]>
Commit | Line | Data |
---|---|---|
6e681866 | 1 | /* Ada language support routines for GDB, the GNU debugger. |
10a2c479 | 2 | |
ecd75fc8 | 3 | Copyright (C) 1992-2014 Free Software Foundation, Inc. |
14f9c5c9 | 4 | |
a9762ec7 | 5 | This file is part of GDB. |
14f9c5c9 | 6 | |
a9762ec7 JB |
7 | This program is free software; you can redistribute it and/or modify |
8 | it under the terms of the GNU General Public License as published by | |
9 | the Free Software Foundation; either version 3 of the License, or | |
10 | (at your option) any later version. | |
14f9c5c9 | 11 | |
a9762ec7 JB |
12 | This program is distributed in the hope that it will be useful, |
13 | but WITHOUT ANY WARRANTY; without even the implied warranty of | |
14 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
15 | GNU General Public License for more details. | |
14f9c5c9 | 16 | |
a9762ec7 JB |
17 | You should have received a copy of the GNU General Public License |
18 | along with this program. If not, see <http://www.gnu.org/licenses/>. */ | |
14f9c5c9 | 19 | |
96d887e8 | 20 | |
4c4b4cd2 | 21 | #include "defs.h" |
14f9c5c9 | 22 | #include <ctype.h> |
14f9c5c9 | 23 | #include "demangle.h" |
4c4b4cd2 PH |
24 | #include "gdb_regex.h" |
25 | #include "frame.h" | |
14f9c5c9 AS |
26 | #include "symtab.h" |
27 | #include "gdbtypes.h" | |
28 | #include "gdbcmd.h" | |
29 | #include "expression.h" | |
30 | #include "parser-defs.h" | |
31 | #include "language.h" | |
a53b64ea | 32 | #include "varobj.h" |
14f9c5c9 AS |
33 | #include "c-lang.h" |
34 | #include "inferior.h" | |
35 | #include "symfile.h" | |
36 | #include "objfiles.h" | |
37 | #include "breakpoint.h" | |
38 | #include "gdbcore.h" | |
4c4b4cd2 PH |
39 | #include "hashtab.h" |
40 | #include "gdb_obstack.h" | |
14f9c5c9 | 41 | #include "ada-lang.h" |
4c4b4cd2 | 42 | #include "completer.h" |
53ce3c39 | 43 | #include <sys/stat.h> |
14f9c5c9 | 44 | #include "ui-out.h" |
fe898f56 | 45 | #include "block.h" |
04714b91 | 46 | #include "infcall.h" |
de4f826b | 47 | #include "dictionary.h" |
f7f9143b JB |
48 | #include "annotate.h" |
49 | #include "valprint.h" | |
9bbc9174 | 50 | #include "source.h" |
0259addd | 51 | #include "observer.h" |
2ba95b9b | 52 | #include "vec.h" |
692465f1 | 53 | #include "stack.h" |
fa864999 | 54 | #include "gdb_vecs.h" |
79d43c61 | 55 | #include "typeprint.h" |
14f9c5c9 | 56 | |
ccefe4c4 | 57 | #include "psymtab.h" |
40bc484c | 58 | #include "value.h" |
956a9fb9 | 59 | #include "mi/mi-common.h" |
9ac4176b | 60 | #include "arch-utils.h" |
0fcd72ba | 61 | #include "cli/cli-utils.h" |
ccefe4c4 | 62 | |
4c4b4cd2 | 63 | /* Define whether or not the C operator '/' truncates towards zero for |
0963b4bd | 64 | differently signed operands (truncation direction is undefined in C). |
4c4b4cd2 PH |
65 | Copied from valarith.c. */ |
66 | ||
67 | #ifndef TRUNCATION_TOWARDS_ZERO | |
68 | #define TRUNCATION_TOWARDS_ZERO ((-5 / 2) == -2) | |
69 | #endif | |
70 | ||
d2e4a39e | 71 | static struct type *desc_base_type (struct type *); |
14f9c5c9 | 72 | |
d2e4a39e | 73 | static struct type *desc_bounds_type (struct type *); |
14f9c5c9 | 74 | |
d2e4a39e | 75 | static struct value *desc_bounds (struct value *); |
14f9c5c9 | 76 | |
d2e4a39e | 77 | static int fat_pntr_bounds_bitpos (struct type *); |
14f9c5c9 | 78 | |
d2e4a39e | 79 | static int fat_pntr_bounds_bitsize (struct type *); |
14f9c5c9 | 80 | |
556bdfd4 | 81 | static struct type *desc_data_target_type (struct type *); |
14f9c5c9 | 82 | |
d2e4a39e | 83 | static struct value *desc_data (struct value *); |
14f9c5c9 | 84 | |
d2e4a39e | 85 | static int fat_pntr_data_bitpos (struct type *); |
14f9c5c9 | 86 | |
d2e4a39e | 87 | static int fat_pntr_data_bitsize (struct type *); |
14f9c5c9 | 88 | |
d2e4a39e | 89 | static struct value *desc_one_bound (struct value *, int, int); |
14f9c5c9 | 90 | |
d2e4a39e | 91 | static int desc_bound_bitpos (struct type *, int, int); |
14f9c5c9 | 92 | |
d2e4a39e | 93 | static int desc_bound_bitsize (struct type *, int, int); |
14f9c5c9 | 94 | |
d2e4a39e | 95 | static struct type *desc_index_type (struct type *, int); |
14f9c5c9 | 96 | |
d2e4a39e | 97 | static int desc_arity (struct type *); |
14f9c5c9 | 98 | |
d2e4a39e | 99 | static int ada_type_match (struct type *, struct type *, int); |
14f9c5c9 | 100 | |
d2e4a39e | 101 | static int ada_args_match (struct symbol *, struct value **, int); |
14f9c5c9 | 102 | |
40658b94 PH |
103 | static int full_match (const char *, const char *); |
104 | ||
40bc484c | 105 | static struct value *make_array_descriptor (struct type *, struct value *); |
14f9c5c9 | 106 | |
4c4b4cd2 | 107 | static void ada_add_block_symbols (struct obstack *, |
f0c5f9b2 | 108 | const struct block *, const char *, |
2570f2b7 | 109 | domain_enum, struct objfile *, int); |
14f9c5c9 | 110 | |
4c4b4cd2 | 111 | static int is_nonfunction (struct ada_symbol_info *, int); |
14f9c5c9 | 112 | |
76a01679 | 113 | static void add_defn_to_vec (struct obstack *, struct symbol *, |
f0c5f9b2 | 114 | const struct block *); |
14f9c5c9 | 115 | |
4c4b4cd2 PH |
116 | static int num_defns_collected (struct obstack *); |
117 | ||
118 | static struct ada_symbol_info *defns_collected (struct obstack *, int); | |
14f9c5c9 | 119 | |
4c4b4cd2 | 120 | static struct value *resolve_subexp (struct expression **, int *, int, |
76a01679 | 121 | struct type *); |
14f9c5c9 | 122 | |
d2e4a39e | 123 | static void replace_operator_with_call (struct expression **, int, int, int, |
270140bd | 124 | struct symbol *, const struct block *); |
14f9c5c9 | 125 | |
d2e4a39e | 126 | static int possible_user_operator_p (enum exp_opcode, struct value **); |
14f9c5c9 | 127 | |
4c4b4cd2 PH |
128 | static char *ada_op_name (enum exp_opcode); |
129 | ||
130 | static const char *ada_decoded_op_name (enum exp_opcode); | |
14f9c5c9 | 131 | |
d2e4a39e | 132 | static int numeric_type_p (struct type *); |
14f9c5c9 | 133 | |
d2e4a39e | 134 | static int integer_type_p (struct type *); |
14f9c5c9 | 135 | |
d2e4a39e | 136 | static int scalar_type_p (struct type *); |
14f9c5c9 | 137 | |
d2e4a39e | 138 | static int discrete_type_p (struct type *); |
14f9c5c9 | 139 | |
aeb5907d JB |
140 | static enum ada_renaming_category parse_old_style_renaming (struct type *, |
141 | const char **, | |
142 | int *, | |
143 | const char **); | |
144 | ||
145 | static struct symbol *find_old_style_renaming_symbol (const char *, | |
270140bd | 146 | const struct block *); |
aeb5907d | 147 | |
4c4b4cd2 | 148 | static struct type *ada_lookup_struct_elt_type (struct type *, char *, |
76a01679 | 149 | int, int, int *); |
4c4b4cd2 | 150 | |
d2e4a39e | 151 | static struct value *evaluate_subexp_type (struct expression *, int *); |
14f9c5c9 | 152 | |
b4ba55a1 JB |
153 | static struct type *ada_find_parallel_type_with_name (struct type *, |
154 | const char *); | |
155 | ||
d2e4a39e | 156 | static int is_dynamic_field (struct type *, int); |
14f9c5c9 | 157 | |
10a2c479 | 158 | static struct type *to_fixed_variant_branch_type (struct type *, |
fc1a4b47 | 159 | const gdb_byte *, |
4c4b4cd2 PH |
160 | CORE_ADDR, struct value *); |
161 | ||
162 | static struct type *to_fixed_array_type (struct type *, struct value *, int); | |
14f9c5c9 | 163 | |
28c85d6c | 164 | static struct type *to_fixed_range_type (struct type *, struct value *); |
14f9c5c9 | 165 | |
d2e4a39e | 166 | static struct type *to_static_fixed_type (struct type *); |
f192137b | 167 | static struct type *static_unwrap_type (struct type *type); |
14f9c5c9 | 168 | |
d2e4a39e | 169 | static struct value *unwrap_value (struct value *); |
14f9c5c9 | 170 | |
ad82864c | 171 | static struct type *constrained_packed_array_type (struct type *, long *); |
14f9c5c9 | 172 | |
ad82864c | 173 | static struct type *decode_constrained_packed_array_type (struct type *); |
14f9c5c9 | 174 | |
ad82864c JB |
175 | static long decode_packed_array_bitsize (struct type *); |
176 | ||
177 | static struct value *decode_constrained_packed_array (struct value *); | |
178 | ||
179 | static int ada_is_packed_array_type (struct type *); | |
180 | ||
181 | static int ada_is_unconstrained_packed_array_type (struct type *); | |
14f9c5c9 | 182 | |
d2e4a39e | 183 | static struct value *value_subscript_packed (struct value *, int, |
4c4b4cd2 | 184 | struct value **); |
14f9c5c9 | 185 | |
50810684 | 186 | static void move_bits (gdb_byte *, int, const gdb_byte *, int, int, int); |
52ce6436 | 187 | |
4c4b4cd2 PH |
188 | static struct value *coerce_unspec_val_to_type (struct value *, |
189 | struct type *); | |
14f9c5c9 | 190 | |
d2e4a39e | 191 | static struct value *get_var_value (char *, char *); |
14f9c5c9 | 192 | |
d2e4a39e | 193 | static int lesseq_defined_than (struct symbol *, struct symbol *); |
14f9c5c9 | 194 | |
d2e4a39e | 195 | static int equiv_types (struct type *, struct type *); |
14f9c5c9 | 196 | |
d2e4a39e | 197 | static int is_name_suffix (const char *); |
14f9c5c9 | 198 | |
73589123 PH |
199 | static int advance_wild_match (const char **, const char *, int); |
200 | ||
201 | static int wild_match (const char *, const char *); | |
14f9c5c9 | 202 | |
d2e4a39e | 203 | static struct value *ada_coerce_ref (struct value *); |
14f9c5c9 | 204 | |
4c4b4cd2 PH |
205 | static LONGEST pos_atr (struct value *); |
206 | ||
3cb382c9 | 207 | static struct value *value_pos_atr (struct type *, struct value *); |
14f9c5c9 | 208 | |
d2e4a39e | 209 | static struct value *value_val_atr (struct type *, struct value *); |
14f9c5c9 | 210 | |
4c4b4cd2 PH |
211 | static struct symbol *standard_lookup (const char *, const struct block *, |
212 | domain_enum); | |
14f9c5c9 | 213 | |
4c4b4cd2 PH |
214 | static struct value *ada_search_struct_field (char *, struct value *, int, |
215 | struct type *); | |
216 | ||
217 | static struct value *ada_value_primitive_field (struct value *, int, int, | |
218 | struct type *); | |
219 | ||
0d5cff50 | 220 | static int find_struct_field (const char *, struct type *, int, |
52ce6436 | 221 | struct type **, int *, int *, int *, int *); |
4c4b4cd2 PH |
222 | |
223 | static struct value *ada_to_fixed_value_create (struct type *, CORE_ADDR, | |
224 | struct value *); | |
225 | ||
4c4b4cd2 PH |
226 | static int ada_resolve_function (struct ada_symbol_info *, int, |
227 | struct value **, int, const char *, | |
228 | struct type *); | |
229 | ||
4c4b4cd2 PH |
230 | static int ada_is_direct_array_type (struct type *); |
231 | ||
72d5681a PH |
232 | static void ada_language_arch_info (struct gdbarch *, |
233 | struct language_arch_info *); | |
714e53ab | 234 | |
52ce6436 PH |
235 | static struct value *ada_index_struct_field (int, struct value *, int, |
236 | struct type *); | |
237 | ||
238 | static struct value *assign_aggregate (struct value *, struct value *, | |
0963b4bd MS |
239 | struct expression *, |
240 | int *, enum noside); | |
52ce6436 PH |
241 | |
242 | static void aggregate_assign_from_choices (struct value *, struct value *, | |
243 | struct expression *, | |
244 | int *, LONGEST *, int *, | |
245 | int, LONGEST, LONGEST); | |
246 | ||
247 | static void aggregate_assign_positional (struct value *, struct value *, | |
248 | struct expression *, | |
249 | int *, LONGEST *, int *, int, | |
250 | LONGEST, LONGEST); | |
251 | ||
252 | ||
253 | static void aggregate_assign_others (struct value *, struct value *, | |
254 | struct expression *, | |
255 | int *, LONGEST *, int, LONGEST, LONGEST); | |
256 | ||
257 | ||
258 | static void add_component_interval (LONGEST, LONGEST, LONGEST *, int *, int); | |
259 | ||
260 | ||
261 | static struct value *ada_evaluate_subexp (struct type *, struct expression *, | |
262 | int *, enum noside); | |
263 | ||
264 | static void ada_forward_operator_length (struct expression *, int, int *, | |
265 | int *); | |
852dff6c JB |
266 | |
267 | static struct type *ada_find_any_type (const char *name); | |
4c4b4cd2 PH |
268 | \f |
269 | ||
ee01b665 JB |
270 | /* The result of a symbol lookup to be stored in our symbol cache. */ |
271 | ||
272 | struct cache_entry | |
273 | { | |
274 | /* The name used to perform the lookup. */ | |
275 | const char *name; | |
276 | /* The namespace used during the lookup. */ | |
277 | domain_enum namespace; | |
278 | /* The symbol returned by the lookup, or NULL if no matching symbol | |
279 | was found. */ | |
280 | struct symbol *sym; | |
281 | /* The block where the symbol was found, or NULL if no matching | |
282 | symbol was found. */ | |
283 | const struct block *block; | |
284 | /* A pointer to the next entry with the same hash. */ | |
285 | struct cache_entry *next; | |
286 | }; | |
287 | ||
288 | /* The Ada symbol cache, used to store the result of Ada-mode symbol | |
289 | lookups in the course of executing the user's commands. | |
290 | ||
291 | The cache is implemented using a simple, fixed-sized hash. | |
292 | The size is fixed on the grounds that there are not likely to be | |
293 | all that many symbols looked up during any given session, regardless | |
294 | of the size of the symbol table. If we decide to go to a resizable | |
295 | table, let's just use the stuff from libiberty instead. */ | |
296 | ||
297 | #define HASH_SIZE 1009 | |
298 | ||
299 | struct ada_symbol_cache | |
300 | { | |
301 | /* An obstack used to store the entries in our cache. */ | |
302 | struct obstack cache_space; | |
303 | ||
304 | /* The root of the hash table used to implement our symbol cache. */ | |
305 | struct cache_entry *root[HASH_SIZE]; | |
306 | }; | |
307 | ||
308 | static void ada_free_symbol_cache (struct ada_symbol_cache *sym_cache); | |
76a01679 | 309 | |
4c4b4cd2 | 310 | /* Maximum-sized dynamic type. */ |
14f9c5c9 AS |
311 | static unsigned int varsize_limit; |
312 | ||
4c4b4cd2 PH |
313 | /* FIXME: brobecker/2003-09-17: No longer a const because it is |
314 | returned by a function that does not return a const char *. */ | |
315 | static char *ada_completer_word_break_characters = | |
316 | #ifdef VMS | |
317 | " \t\n!@#%^&*()+=|~`}{[]\";:?/,-"; | |
318 | #else | |
14f9c5c9 | 319 | " \t\n!@#$%^&*()+=|~`}{[]\";:?/,-"; |
4c4b4cd2 | 320 | #endif |
14f9c5c9 | 321 | |
4c4b4cd2 | 322 | /* The name of the symbol to use to get the name of the main subprogram. */ |
76a01679 | 323 | static const char ADA_MAIN_PROGRAM_SYMBOL_NAME[] |
4c4b4cd2 | 324 | = "__gnat_ada_main_program_name"; |
14f9c5c9 | 325 | |
4c4b4cd2 PH |
326 | /* Limit on the number of warnings to raise per expression evaluation. */ |
327 | static int warning_limit = 2; | |
328 | ||
329 | /* Number of warning messages issued; reset to 0 by cleanups after | |
330 | expression evaluation. */ | |
331 | static int warnings_issued = 0; | |
332 | ||
333 | static const char *known_runtime_file_name_patterns[] = { | |
334 | ADA_KNOWN_RUNTIME_FILE_NAME_PATTERNS NULL | |
335 | }; | |
336 | ||
337 | static const char *known_auxiliary_function_name_patterns[] = { | |
338 | ADA_KNOWN_AUXILIARY_FUNCTION_NAME_PATTERNS NULL | |
339 | }; | |
340 | ||
341 | /* Space for allocating results of ada_lookup_symbol_list. */ | |
342 | static struct obstack symbol_list_obstack; | |
343 | ||
c6044dd1 JB |
344 | /* Maintenance-related settings for this module. */ |
345 | ||
346 | static struct cmd_list_element *maint_set_ada_cmdlist; | |
347 | static struct cmd_list_element *maint_show_ada_cmdlist; | |
348 | ||
349 | /* Implement the "maintenance set ada" (prefix) command. */ | |
350 | ||
351 | static void | |
352 | maint_set_ada_cmd (char *args, int from_tty) | |
353 | { | |
635c7e8a TT |
354 | help_list (maint_set_ada_cmdlist, "maintenance set ada ", all_commands, |
355 | gdb_stdout); | |
c6044dd1 JB |
356 | } |
357 | ||
358 | /* Implement the "maintenance show ada" (prefix) command. */ | |
359 | ||
360 | static void | |
361 | maint_show_ada_cmd (char *args, int from_tty) | |
362 | { | |
363 | cmd_show_list (maint_show_ada_cmdlist, from_tty, ""); | |
364 | } | |
365 | ||
366 | /* The "maintenance ada set/show ignore-descriptive-type" value. */ | |
367 | ||
368 | static int ada_ignore_descriptive_types_p = 0; | |
369 | ||
e802dbe0 JB |
370 | /* Inferior-specific data. */ |
371 | ||
372 | /* Per-inferior data for this module. */ | |
373 | ||
374 | struct ada_inferior_data | |
375 | { | |
376 | /* The ada__tags__type_specific_data type, which is used when decoding | |
377 | tagged types. With older versions of GNAT, this type was directly | |
378 | accessible through a component ("tsd") in the object tag. But this | |
379 | is no longer the case, so we cache it for each inferior. */ | |
380 | struct type *tsd_type; | |
3eecfa55 JB |
381 | |
382 | /* The exception_support_info data. This data is used to determine | |
383 | how to implement support for Ada exception catchpoints in a given | |
384 | inferior. */ | |
385 | const struct exception_support_info *exception_info; | |
e802dbe0 JB |
386 | }; |
387 | ||
388 | /* Our key to this module's inferior data. */ | |
389 | static const struct inferior_data *ada_inferior_data; | |
390 | ||
391 | /* A cleanup routine for our inferior data. */ | |
392 | static void | |
393 | ada_inferior_data_cleanup (struct inferior *inf, void *arg) | |
394 | { | |
395 | struct ada_inferior_data *data; | |
396 | ||
397 | data = inferior_data (inf, ada_inferior_data); | |
398 | if (data != NULL) | |
399 | xfree (data); | |
400 | } | |
401 | ||
402 | /* Return our inferior data for the given inferior (INF). | |
403 | ||
404 | This function always returns a valid pointer to an allocated | |
405 | ada_inferior_data structure. If INF's inferior data has not | |
406 | been previously set, this functions creates a new one with all | |
407 | fields set to zero, sets INF's inferior to it, and then returns | |
408 | a pointer to that newly allocated ada_inferior_data. */ | |
409 | ||
410 | static struct ada_inferior_data * | |
411 | get_ada_inferior_data (struct inferior *inf) | |
412 | { | |
413 | struct ada_inferior_data *data; | |
414 | ||
415 | data = inferior_data (inf, ada_inferior_data); | |
416 | if (data == NULL) | |
417 | { | |
41bf6aca | 418 | data = XCNEW (struct ada_inferior_data); |
e802dbe0 JB |
419 | set_inferior_data (inf, ada_inferior_data, data); |
420 | } | |
421 | ||
422 | return data; | |
423 | } | |
424 | ||
425 | /* Perform all necessary cleanups regarding our module's inferior data | |
426 | that is required after the inferior INF just exited. */ | |
427 | ||
428 | static void | |
429 | ada_inferior_exit (struct inferior *inf) | |
430 | { | |
431 | ada_inferior_data_cleanup (inf, NULL); | |
432 | set_inferior_data (inf, ada_inferior_data, NULL); | |
433 | } | |
434 | ||
ee01b665 JB |
435 | |
436 | /* program-space-specific data. */ | |
437 | ||
438 | /* This module's per-program-space data. */ | |
439 | struct ada_pspace_data | |
440 | { | |
441 | /* The Ada symbol cache. */ | |
442 | struct ada_symbol_cache *sym_cache; | |
443 | }; | |
444 | ||
445 | /* Key to our per-program-space data. */ | |
446 | static const struct program_space_data *ada_pspace_data_handle; | |
447 | ||
448 | /* Return this module's data for the given program space (PSPACE). | |
449 | If not is found, add a zero'ed one now. | |
450 | ||
451 | This function always returns a valid object. */ | |
452 | ||
453 | static struct ada_pspace_data * | |
454 | get_ada_pspace_data (struct program_space *pspace) | |
455 | { | |
456 | struct ada_pspace_data *data; | |
457 | ||
458 | data = program_space_data (pspace, ada_pspace_data_handle); | |
459 | if (data == NULL) | |
460 | { | |
461 | data = XCNEW (struct ada_pspace_data); | |
462 | set_program_space_data (pspace, ada_pspace_data_handle, data); | |
463 | } | |
464 | ||
465 | return data; | |
466 | } | |
467 | ||
468 | /* The cleanup callback for this module's per-program-space data. */ | |
469 | ||
470 | static void | |
471 | ada_pspace_data_cleanup (struct program_space *pspace, void *data) | |
472 | { | |
473 | struct ada_pspace_data *pspace_data = data; | |
474 | ||
475 | if (pspace_data->sym_cache != NULL) | |
476 | ada_free_symbol_cache (pspace_data->sym_cache); | |
477 | xfree (pspace_data); | |
478 | } | |
479 | ||
4c4b4cd2 PH |
480 | /* Utilities */ |
481 | ||
720d1a40 | 482 | /* If TYPE is a TYPE_CODE_TYPEDEF type, return the target type after |
eed9788b | 483 | all typedef layers have been peeled. Otherwise, return TYPE. |
720d1a40 JB |
484 | |
485 | Normally, we really expect a typedef type to only have 1 typedef layer. | |
486 | In other words, we really expect the target type of a typedef type to be | |
487 | a non-typedef type. This is particularly true for Ada units, because | |
488 | the language does not have a typedef vs not-typedef distinction. | |
489 | In that respect, the Ada compiler has been trying to eliminate as many | |
490 | typedef definitions in the debugging information, since they generally | |
491 | do not bring any extra information (we still use typedef under certain | |
492 | circumstances related mostly to the GNAT encoding). | |
493 | ||
494 | Unfortunately, we have seen situations where the debugging information | |
495 | generated by the compiler leads to such multiple typedef layers. For | |
496 | instance, consider the following example with stabs: | |
497 | ||
498 | .stabs "pck__float_array___XUP:Tt(0,46)=s16P_ARRAY:(0,47)=[...]"[...] | |
499 | .stabs "pck__float_array___XUP:t(0,36)=(0,46)",128,0,6,0 | |
500 | ||
501 | This is an error in the debugging information which causes type | |
502 | pck__float_array___XUP to be defined twice, and the second time, | |
503 | it is defined as a typedef of a typedef. | |
504 | ||
505 | This is on the fringe of legality as far as debugging information is | |
506 | concerned, and certainly unexpected. But it is easy to handle these | |
507 | situations correctly, so we can afford to be lenient in this case. */ | |
508 | ||
509 | static struct type * | |
510 | ada_typedef_target_type (struct type *type) | |
511 | { | |
512 | while (TYPE_CODE (type) == TYPE_CODE_TYPEDEF) | |
513 | type = TYPE_TARGET_TYPE (type); | |
514 | return type; | |
515 | } | |
516 | ||
41d27058 JB |
517 | /* Given DECODED_NAME a string holding a symbol name in its |
518 | decoded form (ie using the Ada dotted notation), returns | |
519 | its unqualified name. */ | |
520 | ||
521 | static const char * | |
522 | ada_unqualified_name (const char *decoded_name) | |
523 | { | |
2b0f535a JB |
524 | const char *result; |
525 | ||
526 | /* If the decoded name starts with '<', it means that the encoded | |
527 | name does not follow standard naming conventions, and thus that | |
528 | it is not your typical Ada symbol name. Trying to unqualify it | |
529 | is therefore pointless and possibly erroneous. */ | |
530 | if (decoded_name[0] == '<') | |
531 | return decoded_name; | |
532 | ||
533 | result = strrchr (decoded_name, '.'); | |
41d27058 JB |
534 | if (result != NULL) |
535 | result++; /* Skip the dot... */ | |
536 | else | |
537 | result = decoded_name; | |
538 | ||
539 | return result; | |
540 | } | |
541 | ||
542 | /* Return a string starting with '<', followed by STR, and '>'. | |
543 | The result is good until the next call. */ | |
544 | ||
545 | static char * | |
546 | add_angle_brackets (const char *str) | |
547 | { | |
548 | static char *result = NULL; | |
549 | ||
550 | xfree (result); | |
88c15c34 | 551 | result = xstrprintf ("<%s>", str); |
41d27058 JB |
552 | return result; |
553 | } | |
96d887e8 | 554 | |
4c4b4cd2 PH |
555 | static char * |
556 | ada_get_gdb_completer_word_break_characters (void) | |
557 | { | |
558 | return ada_completer_word_break_characters; | |
559 | } | |
560 | ||
e79af960 JB |
561 | /* Print an array element index using the Ada syntax. */ |
562 | ||
563 | static void | |
564 | ada_print_array_index (struct value *index_value, struct ui_file *stream, | |
79a45b7d | 565 | const struct value_print_options *options) |
e79af960 | 566 | { |
79a45b7d | 567 | LA_VALUE_PRINT (index_value, stream, options); |
e79af960 JB |
568 | fprintf_filtered (stream, " => "); |
569 | } | |
570 | ||
f27cf670 | 571 | /* Assuming VECT points to an array of *SIZE objects of size |
14f9c5c9 | 572 | ELEMENT_SIZE, grow it to contain at least MIN_SIZE objects, |
f27cf670 | 573 | updating *SIZE as necessary and returning the (new) array. */ |
14f9c5c9 | 574 | |
f27cf670 AS |
575 | void * |
576 | grow_vect (void *vect, size_t *size, size_t min_size, int element_size) | |
14f9c5c9 | 577 | { |
d2e4a39e AS |
578 | if (*size < min_size) |
579 | { | |
580 | *size *= 2; | |
581 | if (*size < min_size) | |
4c4b4cd2 | 582 | *size = min_size; |
f27cf670 | 583 | vect = xrealloc (vect, *size * element_size); |
d2e4a39e | 584 | } |
f27cf670 | 585 | return vect; |
14f9c5c9 AS |
586 | } |
587 | ||
588 | /* True (non-zero) iff TARGET matches FIELD_NAME up to any trailing | |
4c4b4cd2 | 589 | suffix of FIELD_NAME beginning "___". */ |
14f9c5c9 AS |
590 | |
591 | static int | |
ebf56fd3 | 592 | field_name_match (const char *field_name, const char *target) |
14f9c5c9 AS |
593 | { |
594 | int len = strlen (target); | |
5b4ee69b | 595 | |
d2e4a39e | 596 | return |
4c4b4cd2 PH |
597 | (strncmp (field_name, target, len) == 0 |
598 | && (field_name[len] == '\0' | |
599 | || (strncmp (field_name + len, "___", 3) == 0 | |
76a01679 JB |
600 | && strcmp (field_name + strlen (field_name) - 6, |
601 | "___XVN") != 0))); | |
14f9c5c9 AS |
602 | } |
603 | ||
604 | ||
872c8b51 JB |
605 | /* Assuming TYPE is a TYPE_CODE_STRUCT or a TYPE_CODE_TYPDEF to |
606 | a TYPE_CODE_STRUCT, find the field whose name matches FIELD_NAME, | |
607 | and return its index. This function also handles fields whose name | |
608 | have ___ suffixes because the compiler sometimes alters their name | |
609 | by adding such a suffix to represent fields with certain constraints. | |
610 | If the field could not be found, return a negative number if | |
611 | MAYBE_MISSING is set. Otherwise raise an error. */ | |
4c4b4cd2 PH |
612 | |
613 | int | |
614 | ada_get_field_index (const struct type *type, const char *field_name, | |
615 | int maybe_missing) | |
616 | { | |
617 | int fieldno; | |
872c8b51 JB |
618 | struct type *struct_type = check_typedef ((struct type *) type); |
619 | ||
620 | for (fieldno = 0; fieldno < TYPE_NFIELDS (struct_type); fieldno++) | |
621 | if (field_name_match (TYPE_FIELD_NAME (struct_type, fieldno), field_name)) | |
4c4b4cd2 PH |
622 | return fieldno; |
623 | ||
624 | if (!maybe_missing) | |
323e0a4a | 625 | error (_("Unable to find field %s in struct %s. Aborting"), |
872c8b51 | 626 | field_name, TYPE_NAME (struct_type)); |
4c4b4cd2 PH |
627 | |
628 | return -1; | |
629 | } | |
630 | ||
631 | /* The length of the prefix of NAME prior to any "___" suffix. */ | |
14f9c5c9 AS |
632 | |
633 | int | |
d2e4a39e | 634 | ada_name_prefix_len (const char *name) |
14f9c5c9 AS |
635 | { |
636 | if (name == NULL) | |
637 | return 0; | |
d2e4a39e | 638 | else |
14f9c5c9 | 639 | { |
d2e4a39e | 640 | const char *p = strstr (name, "___"); |
5b4ee69b | 641 | |
14f9c5c9 | 642 | if (p == NULL) |
4c4b4cd2 | 643 | return strlen (name); |
14f9c5c9 | 644 | else |
4c4b4cd2 | 645 | return p - name; |
14f9c5c9 AS |
646 | } |
647 | } | |
648 | ||
4c4b4cd2 PH |
649 | /* Return non-zero if SUFFIX is a suffix of STR. |
650 | Return zero if STR is null. */ | |
651 | ||
14f9c5c9 | 652 | static int |
d2e4a39e | 653 | is_suffix (const char *str, const char *suffix) |
14f9c5c9 AS |
654 | { |
655 | int len1, len2; | |
5b4ee69b | 656 | |
14f9c5c9 AS |
657 | if (str == NULL) |
658 | return 0; | |
659 | len1 = strlen (str); | |
660 | len2 = strlen (suffix); | |
4c4b4cd2 | 661 | return (len1 >= len2 && strcmp (str + len1 - len2, suffix) == 0); |
14f9c5c9 AS |
662 | } |
663 | ||
4c4b4cd2 PH |
664 | /* The contents of value VAL, treated as a value of type TYPE. The |
665 | result is an lval in memory if VAL is. */ | |
14f9c5c9 | 666 | |
d2e4a39e | 667 | static struct value * |
4c4b4cd2 | 668 | coerce_unspec_val_to_type (struct value *val, struct type *type) |
14f9c5c9 | 669 | { |
61ee279c | 670 | type = ada_check_typedef (type); |
df407dfe | 671 | if (value_type (val) == type) |
4c4b4cd2 | 672 | return val; |
d2e4a39e | 673 | else |
14f9c5c9 | 674 | { |
4c4b4cd2 PH |
675 | struct value *result; |
676 | ||
677 | /* Make sure that the object size is not unreasonable before | |
678 | trying to allocate some memory for it. */ | |
c1b5a1a6 | 679 | ada_ensure_varsize_limit (type); |
4c4b4cd2 | 680 | |
41e8491f JK |
681 | if (value_lazy (val) |
682 | || TYPE_LENGTH (type) > TYPE_LENGTH (value_type (val))) | |
683 | result = allocate_value_lazy (type); | |
684 | else | |
685 | { | |
686 | result = allocate_value (type); | |
9a0dc9e3 | 687 | value_contents_copy_raw (result, 0, val, 0, TYPE_LENGTH (type)); |
41e8491f | 688 | } |
74bcbdf3 | 689 | set_value_component_location (result, val); |
9bbda503 AC |
690 | set_value_bitsize (result, value_bitsize (val)); |
691 | set_value_bitpos (result, value_bitpos (val)); | |
42ae5230 | 692 | set_value_address (result, value_address (val)); |
14f9c5c9 AS |
693 | return result; |
694 | } | |
695 | } | |
696 | ||
fc1a4b47 AC |
697 | static const gdb_byte * |
698 | cond_offset_host (const gdb_byte *valaddr, long offset) | |
14f9c5c9 AS |
699 | { |
700 | if (valaddr == NULL) | |
701 | return NULL; | |
702 | else | |
703 | return valaddr + offset; | |
704 | } | |
705 | ||
706 | static CORE_ADDR | |
ebf56fd3 | 707 | cond_offset_target (CORE_ADDR address, long offset) |
14f9c5c9 AS |
708 | { |
709 | if (address == 0) | |
710 | return 0; | |
d2e4a39e | 711 | else |
14f9c5c9 AS |
712 | return address + offset; |
713 | } | |
714 | ||
4c4b4cd2 PH |
715 | /* Issue a warning (as for the definition of warning in utils.c, but |
716 | with exactly one argument rather than ...), unless the limit on the | |
717 | number of warnings has passed during the evaluation of the current | |
718 | expression. */ | |
a2249542 | 719 | |
77109804 AC |
720 | /* FIXME: cagney/2004-10-10: This function is mimicking the behavior |
721 | provided by "complaint". */ | |
a0b31db1 | 722 | static void lim_warning (const char *format, ...) ATTRIBUTE_PRINTF (1, 2); |
77109804 | 723 | |
14f9c5c9 | 724 | static void |
a2249542 | 725 | lim_warning (const char *format, ...) |
14f9c5c9 | 726 | { |
a2249542 | 727 | va_list args; |
a2249542 | 728 | |
5b4ee69b | 729 | va_start (args, format); |
4c4b4cd2 PH |
730 | warnings_issued += 1; |
731 | if (warnings_issued <= warning_limit) | |
a2249542 MK |
732 | vwarning (format, args); |
733 | ||
734 | va_end (args); | |
4c4b4cd2 PH |
735 | } |
736 | ||
714e53ab PH |
737 | /* Issue an error if the size of an object of type T is unreasonable, |
738 | i.e. if it would be a bad idea to allocate a value of this type in | |
739 | GDB. */ | |
740 | ||
c1b5a1a6 JB |
741 | void |
742 | ada_ensure_varsize_limit (const struct type *type) | |
714e53ab PH |
743 | { |
744 | if (TYPE_LENGTH (type) > varsize_limit) | |
323e0a4a | 745 | error (_("object size is larger than varsize-limit")); |
714e53ab PH |
746 | } |
747 | ||
0963b4bd | 748 | /* Maximum value of a SIZE-byte signed integer type. */ |
4c4b4cd2 | 749 | static LONGEST |
c3e5cd34 | 750 | max_of_size (int size) |
4c4b4cd2 | 751 | { |
76a01679 | 752 | LONGEST top_bit = (LONGEST) 1 << (size * 8 - 2); |
5b4ee69b | 753 | |
76a01679 | 754 | return top_bit | (top_bit - 1); |
4c4b4cd2 PH |
755 | } |
756 | ||
0963b4bd | 757 | /* Minimum value of a SIZE-byte signed integer type. */ |
4c4b4cd2 | 758 | static LONGEST |
c3e5cd34 | 759 | min_of_size (int size) |
4c4b4cd2 | 760 | { |
c3e5cd34 | 761 | return -max_of_size (size) - 1; |
4c4b4cd2 PH |
762 | } |
763 | ||
0963b4bd | 764 | /* Maximum value of a SIZE-byte unsigned integer type. */ |
4c4b4cd2 | 765 | static ULONGEST |
c3e5cd34 | 766 | umax_of_size (int size) |
4c4b4cd2 | 767 | { |
76a01679 | 768 | ULONGEST top_bit = (ULONGEST) 1 << (size * 8 - 1); |
5b4ee69b | 769 | |
76a01679 | 770 | return top_bit | (top_bit - 1); |
4c4b4cd2 PH |
771 | } |
772 | ||
0963b4bd | 773 | /* Maximum value of integral type T, as a signed quantity. */ |
c3e5cd34 PH |
774 | static LONGEST |
775 | max_of_type (struct type *t) | |
4c4b4cd2 | 776 | { |
c3e5cd34 PH |
777 | if (TYPE_UNSIGNED (t)) |
778 | return (LONGEST) umax_of_size (TYPE_LENGTH (t)); | |
779 | else | |
780 | return max_of_size (TYPE_LENGTH (t)); | |
781 | } | |
782 | ||
0963b4bd | 783 | /* Minimum value of integral type T, as a signed quantity. */ |
c3e5cd34 PH |
784 | static LONGEST |
785 | min_of_type (struct type *t) | |
786 | { | |
787 | if (TYPE_UNSIGNED (t)) | |
788 | return 0; | |
789 | else | |
790 | return min_of_size (TYPE_LENGTH (t)); | |
4c4b4cd2 PH |
791 | } |
792 | ||
793 | /* The largest value in the domain of TYPE, a discrete type, as an integer. */ | |
43bbcdc2 PH |
794 | LONGEST |
795 | ada_discrete_type_high_bound (struct type *type) | |
4c4b4cd2 | 796 | { |
8739bc53 | 797 | type = resolve_dynamic_type (type, 0); |
76a01679 | 798 | switch (TYPE_CODE (type)) |
4c4b4cd2 PH |
799 | { |
800 | case TYPE_CODE_RANGE: | |
690cc4eb | 801 | return TYPE_HIGH_BOUND (type); |
4c4b4cd2 | 802 | case TYPE_CODE_ENUM: |
14e75d8e | 803 | return TYPE_FIELD_ENUMVAL (type, TYPE_NFIELDS (type) - 1); |
690cc4eb PH |
804 | case TYPE_CODE_BOOL: |
805 | return 1; | |
806 | case TYPE_CODE_CHAR: | |
76a01679 | 807 | case TYPE_CODE_INT: |
690cc4eb | 808 | return max_of_type (type); |
4c4b4cd2 | 809 | default: |
43bbcdc2 | 810 | error (_("Unexpected type in ada_discrete_type_high_bound.")); |
4c4b4cd2 PH |
811 | } |
812 | } | |
813 | ||
14e75d8e | 814 | /* The smallest value in the domain of TYPE, a discrete type, as an integer. */ |
43bbcdc2 PH |
815 | LONGEST |
816 | ada_discrete_type_low_bound (struct type *type) | |
4c4b4cd2 | 817 | { |
8739bc53 | 818 | type = resolve_dynamic_type (type, 0); |
76a01679 | 819 | switch (TYPE_CODE (type)) |
4c4b4cd2 PH |
820 | { |
821 | case TYPE_CODE_RANGE: | |
690cc4eb | 822 | return TYPE_LOW_BOUND (type); |
4c4b4cd2 | 823 | case TYPE_CODE_ENUM: |
14e75d8e | 824 | return TYPE_FIELD_ENUMVAL (type, 0); |
690cc4eb PH |
825 | case TYPE_CODE_BOOL: |
826 | return 0; | |
827 | case TYPE_CODE_CHAR: | |
76a01679 | 828 | case TYPE_CODE_INT: |
690cc4eb | 829 | return min_of_type (type); |
4c4b4cd2 | 830 | default: |
43bbcdc2 | 831 | error (_("Unexpected type in ada_discrete_type_low_bound.")); |
4c4b4cd2 PH |
832 | } |
833 | } | |
834 | ||
835 | /* The identity on non-range types. For range types, the underlying | |
76a01679 | 836 | non-range scalar type. */ |
4c4b4cd2 PH |
837 | |
838 | static struct type * | |
18af8284 | 839 | get_base_type (struct type *type) |
4c4b4cd2 PH |
840 | { |
841 | while (type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE) | |
842 | { | |
76a01679 JB |
843 | if (type == TYPE_TARGET_TYPE (type) || TYPE_TARGET_TYPE (type) == NULL) |
844 | return type; | |
4c4b4cd2 PH |
845 | type = TYPE_TARGET_TYPE (type); |
846 | } | |
847 | return type; | |
14f9c5c9 | 848 | } |
41246937 JB |
849 | |
850 | /* Return a decoded version of the given VALUE. This means returning | |
851 | a value whose type is obtained by applying all the GNAT-specific | |
852 | encondings, making the resulting type a static but standard description | |
853 | of the initial type. */ | |
854 | ||
855 | struct value * | |
856 | ada_get_decoded_value (struct value *value) | |
857 | { | |
858 | struct type *type = ada_check_typedef (value_type (value)); | |
859 | ||
860 | if (ada_is_array_descriptor_type (type) | |
861 | || (ada_is_constrained_packed_array_type (type) | |
862 | && TYPE_CODE (type) != TYPE_CODE_PTR)) | |
863 | { | |
864 | if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF) /* array access type. */ | |
865 | value = ada_coerce_to_simple_array_ptr (value); | |
866 | else | |
867 | value = ada_coerce_to_simple_array (value); | |
868 | } | |
869 | else | |
870 | value = ada_to_fixed_value (value); | |
871 | ||
872 | return value; | |
873 | } | |
874 | ||
875 | /* Same as ada_get_decoded_value, but with the given TYPE. | |
876 | Because there is no associated actual value for this type, | |
877 | the resulting type might be a best-effort approximation in | |
878 | the case of dynamic types. */ | |
879 | ||
880 | struct type * | |
881 | ada_get_decoded_type (struct type *type) | |
882 | { | |
883 | type = to_static_fixed_type (type); | |
884 | if (ada_is_constrained_packed_array_type (type)) | |
885 | type = ada_coerce_to_simple_array_type (type); | |
886 | return type; | |
887 | } | |
888 | ||
4c4b4cd2 | 889 | \f |
76a01679 | 890 | |
4c4b4cd2 | 891 | /* Language Selection */ |
14f9c5c9 AS |
892 | |
893 | /* If the main program is in Ada, return language_ada, otherwise return LANG | |
ccefe4c4 | 894 | (the main program is in Ada iif the adainit symbol is found). */ |
d2e4a39e | 895 | |
14f9c5c9 | 896 | enum language |
ccefe4c4 | 897 | ada_update_initial_language (enum language lang) |
14f9c5c9 | 898 | { |
d2e4a39e | 899 | if (lookup_minimal_symbol ("adainit", (const char *) NULL, |
3b7344d5 | 900 | (struct objfile *) NULL).minsym != NULL) |
4c4b4cd2 | 901 | return language_ada; |
14f9c5c9 AS |
902 | |
903 | return lang; | |
904 | } | |
96d887e8 PH |
905 | |
906 | /* If the main procedure is written in Ada, then return its name. | |
907 | The result is good until the next call. Return NULL if the main | |
908 | procedure doesn't appear to be in Ada. */ | |
909 | ||
910 | char * | |
911 | ada_main_name (void) | |
912 | { | |
3b7344d5 | 913 | struct bound_minimal_symbol msym; |
f9bc20b9 | 914 | static char *main_program_name = NULL; |
6c038f32 | 915 | |
96d887e8 PH |
916 | /* For Ada, the name of the main procedure is stored in a specific |
917 | string constant, generated by the binder. Look for that symbol, | |
918 | extract its address, and then read that string. If we didn't find | |
919 | that string, then most probably the main procedure is not written | |
920 | in Ada. */ | |
921 | msym = lookup_minimal_symbol (ADA_MAIN_PROGRAM_SYMBOL_NAME, NULL, NULL); | |
922 | ||
3b7344d5 | 923 | if (msym.minsym != NULL) |
96d887e8 | 924 | { |
f9bc20b9 JB |
925 | CORE_ADDR main_program_name_addr; |
926 | int err_code; | |
927 | ||
77e371c0 | 928 | main_program_name_addr = BMSYMBOL_VALUE_ADDRESS (msym); |
96d887e8 | 929 | if (main_program_name_addr == 0) |
323e0a4a | 930 | error (_("Invalid address for Ada main program name.")); |
96d887e8 | 931 | |
f9bc20b9 JB |
932 | xfree (main_program_name); |
933 | target_read_string (main_program_name_addr, &main_program_name, | |
934 | 1024, &err_code); | |
935 | ||
936 | if (err_code != 0) | |
937 | return NULL; | |
96d887e8 PH |
938 | return main_program_name; |
939 | } | |
940 | ||
941 | /* The main procedure doesn't seem to be in Ada. */ | |
942 | return NULL; | |
943 | } | |
14f9c5c9 | 944 | \f |
4c4b4cd2 | 945 | /* Symbols */ |
d2e4a39e | 946 | |
4c4b4cd2 PH |
947 | /* Table of Ada operators and their GNAT-encoded names. Last entry is pair |
948 | of NULLs. */ | |
14f9c5c9 | 949 | |
d2e4a39e AS |
950 | const struct ada_opname_map ada_opname_table[] = { |
951 | {"Oadd", "\"+\"", BINOP_ADD}, | |
952 | {"Osubtract", "\"-\"", BINOP_SUB}, | |
953 | {"Omultiply", "\"*\"", BINOP_MUL}, | |
954 | {"Odivide", "\"/\"", BINOP_DIV}, | |
955 | {"Omod", "\"mod\"", BINOP_MOD}, | |
956 | {"Orem", "\"rem\"", BINOP_REM}, | |
957 | {"Oexpon", "\"**\"", BINOP_EXP}, | |
958 | {"Olt", "\"<\"", BINOP_LESS}, | |
959 | {"Ole", "\"<=\"", BINOP_LEQ}, | |
960 | {"Ogt", "\">\"", BINOP_GTR}, | |
961 | {"Oge", "\">=\"", BINOP_GEQ}, | |
962 | {"Oeq", "\"=\"", BINOP_EQUAL}, | |
963 | {"One", "\"/=\"", BINOP_NOTEQUAL}, | |
964 | {"Oand", "\"and\"", BINOP_BITWISE_AND}, | |
965 | {"Oor", "\"or\"", BINOP_BITWISE_IOR}, | |
966 | {"Oxor", "\"xor\"", BINOP_BITWISE_XOR}, | |
967 | {"Oconcat", "\"&\"", BINOP_CONCAT}, | |
968 | {"Oabs", "\"abs\"", UNOP_ABS}, | |
969 | {"Onot", "\"not\"", UNOP_LOGICAL_NOT}, | |
970 | {"Oadd", "\"+\"", UNOP_PLUS}, | |
971 | {"Osubtract", "\"-\"", UNOP_NEG}, | |
972 | {NULL, NULL} | |
14f9c5c9 AS |
973 | }; |
974 | ||
4c4b4cd2 PH |
975 | /* The "encoded" form of DECODED, according to GNAT conventions. |
976 | The result is valid until the next call to ada_encode. */ | |
977 | ||
14f9c5c9 | 978 | char * |
4c4b4cd2 | 979 | ada_encode (const char *decoded) |
14f9c5c9 | 980 | { |
4c4b4cd2 PH |
981 | static char *encoding_buffer = NULL; |
982 | static size_t encoding_buffer_size = 0; | |
d2e4a39e | 983 | const char *p; |
14f9c5c9 | 984 | int k; |
d2e4a39e | 985 | |
4c4b4cd2 | 986 | if (decoded == NULL) |
14f9c5c9 AS |
987 | return NULL; |
988 | ||
4c4b4cd2 PH |
989 | GROW_VECT (encoding_buffer, encoding_buffer_size, |
990 | 2 * strlen (decoded) + 10); | |
14f9c5c9 AS |
991 | |
992 | k = 0; | |
4c4b4cd2 | 993 | for (p = decoded; *p != '\0'; p += 1) |
14f9c5c9 | 994 | { |
cdc7bb92 | 995 | if (*p == '.') |
4c4b4cd2 PH |
996 | { |
997 | encoding_buffer[k] = encoding_buffer[k + 1] = '_'; | |
998 | k += 2; | |
999 | } | |
14f9c5c9 | 1000 | else if (*p == '"') |
4c4b4cd2 PH |
1001 | { |
1002 | const struct ada_opname_map *mapping; | |
1003 | ||
1004 | for (mapping = ada_opname_table; | |
1265e4aa JB |
1005 | mapping->encoded != NULL |
1006 | && strncmp (mapping->decoded, p, | |
1007 | strlen (mapping->decoded)) != 0; mapping += 1) | |
4c4b4cd2 PH |
1008 | ; |
1009 | if (mapping->encoded == NULL) | |
323e0a4a | 1010 | error (_("invalid Ada operator name: %s"), p); |
4c4b4cd2 PH |
1011 | strcpy (encoding_buffer + k, mapping->encoded); |
1012 | k += strlen (mapping->encoded); | |
1013 | break; | |
1014 | } | |
d2e4a39e | 1015 | else |
4c4b4cd2 PH |
1016 | { |
1017 | encoding_buffer[k] = *p; | |
1018 | k += 1; | |
1019 | } | |
14f9c5c9 AS |
1020 | } |
1021 | ||
4c4b4cd2 PH |
1022 | encoding_buffer[k] = '\0'; |
1023 | return encoding_buffer; | |
14f9c5c9 AS |
1024 | } |
1025 | ||
1026 | /* Return NAME folded to lower case, or, if surrounded by single | |
4c4b4cd2 PH |
1027 | quotes, unfolded, but with the quotes stripped away. Result good |
1028 | to next call. */ | |
1029 | ||
d2e4a39e AS |
1030 | char * |
1031 | ada_fold_name (const char *name) | |
14f9c5c9 | 1032 | { |
d2e4a39e | 1033 | static char *fold_buffer = NULL; |
14f9c5c9 AS |
1034 | static size_t fold_buffer_size = 0; |
1035 | ||
1036 | int len = strlen (name); | |
d2e4a39e | 1037 | GROW_VECT (fold_buffer, fold_buffer_size, len + 1); |
14f9c5c9 AS |
1038 | |
1039 | if (name[0] == '\'') | |
1040 | { | |
d2e4a39e AS |
1041 | strncpy (fold_buffer, name + 1, len - 2); |
1042 | fold_buffer[len - 2] = '\000'; | |
14f9c5c9 AS |
1043 | } |
1044 | else | |
1045 | { | |
1046 | int i; | |
5b4ee69b | 1047 | |
14f9c5c9 | 1048 | for (i = 0; i <= len; i += 1) |
4c4b4cd2 | 1049 | fold_buffer[i] = tolower (name[i]); |
14f9c5c9 AS |
1050 | } |
1051 | ||
1052 | return fold_buffer; | |
1053 | } | |
1054 | ||
529cad9c PH |
1055 | /* Return nonzero if C is either a digit or a lowercase alphabet character. */ |
1056 | ||
1057 | static int | |
1058 | is_lower_alphanum (const char c) | |
1059 | { | |
1060 | return (isdigit (c) || (isalpha (c) && islower (c))); | |
1061 | } | |
1062 | ||
c90092fe JB |
1063 | /* ENCODED is the linkage name of a symbol and LEN contains its length. |
1064 | This function saves in LEN the length of that same symbol name but | |
1065 | without either of these suffixes: | |
29480c32 JB |
1066 | . .{DIGIT}+ |
1067 | . ${DIGIT}+ | |
1068 | . ___{DIGIT}+ | |
1069 | . __{DIGIT}+. | |
c90092fe | 1070 | |
29480c32 JB |
1071 | These are suffixes introduced by the compiler for entities such as |
1072 | nested subprogram for instance, in order to avoid name clashes. | |
1073 | They do not serve any purpose for the debugger. */ | |
1074 | ||
1075 | static void | |
1076 | ada_remove_trailing_digits (const char *encoded, int *len) | |
1077 | { | |
1078 | if (*len > 1 && isdigit (encoded[*len - 1])) | |
1079 | { | |
1080 | int i = *len - 2; | |
5b4ee69b | 1081 | |
29480c32 JB |
1082 | while (i > 0 && isdigit (encoded[i])) |
1083 | i--; | |
1084 | if (i >= 0 && encoded[i] == '.') | |
1085 | *len = i; | |
1086 | else if (i >= 0 && encoded[i] == '$') | |
1087 | *len = i; | |
1088 | else if (i >= 2 && strncmp (encoded + i - 2, "___", 3) == 0) | |
1089 | *len = i - 2; | |
1090 | else if (i >= 1 && strncmp (encoded + i - 1, "__", 2) == 0) | |
1091 | *len = i - 1; | |
1092 | } | |
1093 | } | |
1094 | ||
1095 | /* Remove the suffix introduced by the compiler for protected object | |
1096 | subprograms. */ | |
1097 | ||
1098 | static void | |
1099 | ada_remove_po_subprogram_suffix (const char *encoded, int *len) | |
1100 | { | |
1101 | /* Remove trailing N. */ | |
1102 | ||
1103 | /* Protected entry subprograms are broken into two | |
1104 | separate subprograms: The first one is unprotected, and has | |
1105 | a 'N' suffix; the second is the protected version, and has | |
0963b4bd | 1106 | the 'P' suffix. The second calls the first one after handling |
29480c32 JB |
1107 | the protection. Since the P subprograms are internally generated, |
1108 | we leave these names undecoded, giving the user a clue that this | |
1109 | entity is internal. */ | |
1110 | ||
1111 | if (*len > 1 | |
1112 | && encoded[*len - 1] == 'N' | |
1113 | && (isdigit (encoded[*len - 2]) || islower (encoded[*len - 2]))) | |
1114 | *len = *len - 1; | |
1115 | } | |
1116 | ||
69fadcdf JB |
1117 | /* Remove trailing X[bn]* suffixes (indicating names in package bodies). */ |
1118 | ||
1119 | static void | |
1120 | ada_remove_Xbn_suffix (const char *encoded, int *len) | |
1121 | { | |
1122 | int i = *len - 1; | |
1123 | ||
1124 | while (i > 0 && (encoded[i] == 'b' || encoded[i] == 'n')) | |
1125 | i--; | |
1126 | ||
1127 | if (encoded[i] != 'X') | |
1128 | return; | |
1129 | ||
1130 | if (i == 0) | |
1131 | return; | |
1132 | ||
1133 | if (isalnum (encoded[i-1])) | |
1134 | *len = i; | |
1135 | } | |
1136 | ||
29480c32 JB |
1137 | /* If ENCODED follows the GNAT entity encoding conventions, then return |
1138 | the decoded form of ENCODED. Otherwise, return "<%s>" where "%s" is | |
1139 | replaced by ENCODED. | |
14f9c5c9 | 1140 | |
4c4b4cd2 | 1141 | The resulting string is valid until the next call of ada_decode. |
29480c32 | 1142 | If the string is unchanged by decoding, the original string pointer |
4c4b4cd2 PH |
1143 | is returned. */ |
1144 | ||
1145 | const char * | |
1146 | ada_decode (const char *encoded) | |
14f9c5c9 AS |
1147 | { |
1148 | int i, j; | |
1149 | int len0; | |
d2e4a39e | 1150 | const char *p; |
4c4b4cd2 | 1151 | char *decoded; |
14f9c5c9 | 1152 | int at_start_name; |
4c4b4cd2 PH |
1153 | static char *decoding_buffer = NULL; |
1154 | static size_t decoding_buffer_size = 0; | |
d2e4a39e | 1155 | |
29480c32 JB |
1156 | /* The name of the Ada main procedure starts with "_ada_". |
1157 | This prefix is not part of the decoded name, so skip this part | |
1158 | if we see this prefix. */ | |
4c4b4cd2 PH |
1159 | if (strncmp (encoded, "_ada_", 5) == 0) |
1160 | encoded += 5; | |
14f9c5c9 | 1161 | |
29480c32 JB |
1162 | /* If the name starts with '_', then it is not a properly encoded |
1163 | name, so do not attempt to decode it. Similarly, if the name | |
1164 | starts with '<', the name should not be decoded. */ | |
4c4b4cd2 | 1165 | if (encoded[0] == '_' || encoded[0] == '<') |
14f9c5c9 AS |
1166 | goto Suppress; |
1167 | ||
4c4b4cd2 | 1168 | len0 = strlen (encoded); |
4c4b4cd2 | 1169 | |
29480c32 JB |
1170 | ada_remove_trailing_digits (encoded, &len0); |
1171 | ada_remove_po_subprogram_suffix (encoded, &len0); | |
529cad9c | 1172 | |
4c4b4cd2 PH |
1173 | /* Remove the ___X.* suffix if present. Do not forget to verify that |
1174 | the suffix is located before the current "end" of ENCODED. We want | |
1175 | to avoid re-matching parts of ENCODED that have previously been | |
1176 | marked as discarded (by decrementing LEN0). */ | |
1177 | p = strstr (encoded, "___"); | |
1178 | if (p != NULL && p - encoded < len0 - 3) | |
14f9c5c9 AS |
1179 | { |
1180 | if (p[3] == 'X') | |
4c4b4cd2 | 1181 | len0 = p - encoded; |
14f9c5c9 | 1182 | else |
4c4b4cd2 | 1183 | goto Suppress; |
14f9c5c9 | 1184 | } |
4c4b4cd2 | 1185 | |
29480c32 JB |
1186 | /* Remove any trailing TKB suffix. It tells us that this symbol |
1187 | is for the body of a task, but that information does not actually | |
1188 | appear in the decoded name. */ | |
1189 | ||
4c4b4cd2 | 1190 | if (len0 > 3 && strncmp (encoded + len0 - 3, "TKB", 3) == 0) |
14f9c5c9 | 1191 | len0 -= 3; |
76a01679 | 1192 | |
a10967fa JB |
1193 | /* Remove any trailing TB suffix. The TB suffix is slightly different |
1194 | from the TKB suffix because it is used for non-anonymous task | |
1195 | bodies. */ | |
1196 | ||
1197 | if (len0 > 2 && strncmp (encoded + len0 - 2, "TB", 2) == 0) | |
1198 | len0 -= 2; | |
1199 | ||
29480c32 JB |
1200 | /* Remove trailing "B" suffixes. */ |
1201 | /* FIXME: brobecker/2006-04-19: Not sure what this are used for... */ | |
1202 | ||
4c4b4cd2 | 1203 | if (len0 > 1 && strncmp (encoded + len0 - 1, "B", 1) == 0) |
14f9c5c9 AS |
1204 | len0 -= 1; |
1205 | ||
4c4b4cd2 | 1206 | /* Make decoded big enough for possible expansion by operator name. */ |
29480c32 | 1207 | |
4c4b4cd2 PH |
1208 | GROW_VECT (decoding_buffer, decoding_buffer_size, 2 * len0 + 1); |
1209 | decoded = decoding_buffer; | |
14f9c5c9 | 1210 | |
29480c32 JB |
1211 | /* Remove trailing __{digit}+ or trailing ${digit}+. */ |
1212 | ||
4c4b4cd2 | 1213 | if (len0 > 1 && isdigit (encoded[len0 - 1])) |
d2e4a39e | 1214 | { |
4c4b4cd2 PH |
1215 | i = len0 - 2; |
1216 | while ((i >= 0 && isdigit (encoded[i])) | |
1217 | || (i >= 1 && encoded[i] == '_' && isdigit (encoded[i - 1]))) | |
1218 | i -= 1; | |
1219 | if (i > 1 && encoded[i] == '_' && encoded[i - 1] == '_') | |
1220 | len0 = i - 1; | |
1221 | else if (encoded[i] == '$') | |
1222 | len0 = i; | |
d2e4a39e | 1223 | } |
14f9c5c9 | 1224 | |
29480c32 JB |
1225 | /* The first few characters that are not alphabetic are not part |
1226 | of any encoding we use, so we can copy them over verbatim. */ | |
1227 | ||
4c4b4cd2 PH |
1228 | for (i = 0, j = 0; i < len0 && !isalpha (encoded[i]); i += 1, j += 1) |
1229 | decoded[j] = encoded[i]; | |
14f9c5c9 AS |
1230 | |
1231 | at_start_name = 1; | |
1232 | while (i < len0) | |
1233 | { | |
29480c32 | 1234 | /* Is this a symbol function? */ |
4c4b4cd2 PH |
1235 | if (at_start_name && encoded[i] == 'O') |
1236 | { | |
1237 | int k; | |
5b4ee69b | 1238 | |
4c4b4cd2 PH |
1239 | for (k = 0; ada_opname_table[k].encoded != NULL; k += 1) |
1240 | { | |
1241 | int op_len = strlen (ada_opname_table[k].encoded); | |
06d5cf63 JB |
1242 | if ((strncmp (ada_opname_table[k].encoded + 1, encoded + i + 1, |
1243 | op_len - 1) == 0) | |
1244 | && !isalnum (encoded[i + op_len])) | |
4c4b4cd2 PH |
1245 | { |
1246 | strcpy (decoded + j, ada_opname_table[k].decoded); | |
1247 | at_start_name = 0; | |
1248 | i += op_len; | |
1249 | j += strlen (ada_opname_table[k].decoded); | |
1250 | break; | |
1251 | } | |
1252 | } | |
1253 | if (ada_opname_table[k].encoded != NULL) | |
1254 | continue; | |
1255 | } | |
14f9c5c9 AS |
1256 | at_start_name = 0; |
1257 | ||
529cad9c PH |
1258 | /* Replace "TK__" with "__", which will eventually be translated |
1259 | into "." (just below). */ | |
1260 | ||
4c4b4cd2 PH |
1261 | if (i < len0 - 4 && strncmp (encoded + i, "TK__", 4) == 0) |
1262 | i += 2; | |
529cad9c | 1263 | |
29480c32 JB |
1264 | /* Replace "__B_{DIGITS}+__" sequences by "__", which will eventually |
1265 | be translated into "." (just below). These are internal names | |
1266 | generated for anonymous blocks inside which our symbol is nested. */ | |
1267 | ||
1268 | if (len0 - i > 5 && encoded [i] == '_' && encoded [i+1] == '_' | |
1269 | && encoded [i+2] == 'B' && encoded [i+3] == '_' | |
1270 | && isdigit (encoded [i+4])) | |
1271 | { | |
1272 | int k = i + 5; | |
1273 | ||
1274 | while (k < len0 && isdigit (encoded[k])) | |
1275 | k++; /* Skip any extra digit. */ | |
1276 | ||
1277 | /* Double-check that the "__B_{DIGITS}+" sequence we found | |
1278 | is indeed followed by "__". */ | |
1279 | if (len0 - k > 2 && encoded [k] == '_' && encoded [k+1] == '_') | |
1280 | i = k; | |
1281 | } | |
1282 | ||
529cad9c PH |
1283 | /* Remove _E{DIGITS}+[sb] */ |
1284 | ||
1285 | /* Just as for protected object subprograms, there are 2 categories | |
0963b4bd | 1286 | of subprograms created by the compiler for each entry. The first |
529cad9c PH |
1287 | one implements the actual entry code, and has a suffix following |
1288 | the convention above; the second one implements the barrier and | |
1289 | uses the same convention as above, except that the 'E' is replaced | |
1290 | by a 'B'. | |
1291 | ||
1292 | Just as above, we do not decode the name of barrier functions | |
1293 | to give the user a clue that the code he is debugging has been | |
1294 | internally generated. */ | |
1295 | ||
1296 | if (len0 - i > 3 && encoded [i] == '_' && encoded[i+1] == 'E' | |
1297 | && isdigit (encoded[i+2])) | |
1298 | { | |
1299 | int k = i + 3; | |
1300 | ||
1301 | while (k < len0 && isdigit (encoded[k])) | |
1302 | k++; | |
1303 | ||
1304 | if (k < len0 | |
1305 | && (encoded[k] == 'b' || encoded[k] == 's')) | |
1306 | { | |
1307 | k++; | |
1308 | /* Just as an extra precaution, make sure that if this | |
1309 | suffix is followed by anything else, it is a '_'. | |
1310 | Otherwise, we matched this sequence by accident. */ | |
1311 | if (k == len0 | |
1312 | || (k < len0 && encoded[k] == '_')) | |
1313 | i = k; | |
1314 | } | |
1315 | } | |
1316 | ||
1317 | /* Remove trailing "N" in [a-z0-9]+N__. The N is added by | |
1318 | the GNAT front-end in protected object subprograms. */ | |
1319 | ||
1320 | if (i < len0 + 3 | |
1321 | && encoded[i] == 'N' && encoded[i+1] == '_' && encoded[i+2] == '_') | |
1322 | { | |
1323 | /* Backtrack a bit up until we reach either the begining of | |
1324 | the encoded name, or "__". Make sure that we only find | |
1325 | digits or lowercase characters. */ | |
1326 | const char *ptr = encoded + i - 1; | |
1327 | ||
1328 | while (ptr >= encoded && is_lower_alphanum (ptr[0])) | |
1329 | ptr--; | |
1330 | if (ptr < encoded | |
1331 | || (ptr > encoded && ptr[0] == '_' && ptr[-1] == '_')) | |
1332 | i++; | |
1333 | } | |
1334 | ||
4c4b4cd2 PH |
1335 | if (encoded[i] == 'X' && i != 0 && isalnum (encoded[i - 1])) |
1336 | { | |
29480c32 JB |
1337 | /* This is a X[bn]* sequence not separated from the previous |
1338 | part of the name with a non-alpha-numeric character (in other | |
1339 | words, immediately following an alpha-numeric character), then | |
1340 | verify that it is placed at the end of the encoded name. If | |
1341 | not, then the encoding is not valid and we should abort the | |
1342 | decoding. Otherwise, just skip it, it is used in body-nested | |
1343 | package names. */ | |
4c4b4cd2 PH |
1344 | do |
1345 | i += 1; | |
1346 | while (i < len0 && (encoded[i] == 'b' || encoded[i] == 'n')); | |
1347 | if (i < len0) | |
1348 | goto Suppress; | |
1349 | } | |
cdc7bb92 | 1350 | else if (i < len0 - 2 && encoded[i] == '_' && encoded[i + 1] == '_') |
4c4b4cd2 | 1351 | { |
29480c32 | 1352 | /* Replace '__' by '.'. */ |
4c4b4cd2 PH |
1353 | decoded[j] = '.'; |
1354 | at_start_name = 1; | |
1355 | i += 2; | |
1356 | j += 1; | |
1357 | } | |
14f9c5c9 | 1358 | else |
4c4b4cd2 | 1359 | { |
29480c32 JB |
1360 | /* It's a character part of the decoded name, so just copy it |
1361 | over. */ | |
4c4b4cd2 PH |
1362 | decoded[j] = encoded[i]; |
1363 | i += 1; | |
1364 | j += 1; | |
1365 | } | |
14f9c5c9 | 1366 | } |
4c4b4cd2 | 1367 | decoded[j] = '\000'; |
14f9c5c9 | 1368 | |
29480c32 JB |
1369 | /* Decoded names should never contain any uppercase character. |
1370 | Double-check this, and abort the decoding if we find one. */ | |
1371 | ||
4c4b4cd2 PH |
1372 | for (i = 0; decoded[i] != '\0'; i += 1) |
1373 | if (isupper (decoded[i]) || decoded[i] == ' ') | |
14f9c5c9 AS |
1374 | goto Suppress; |
1375 | ||
4c4b4cd2 PH |
1376 | if (strcmp (decoded, encoded) == 0) |
1377 | return encoded; | |
1378 | else | |
1379 | return decoded; | |
14f9c5c9 AS |
1380 | |
1381 | Suppress: | |
4c4b4cd2 PH |
1382 | GROW_VECT (decoding_buffer, decoding_buffer_size, strlen (encoded) + 3); |
1383 | decoded = decoding_buffer; | |
1384 | if (encoded[0] == '<') | |
1385 | strcpy (decoded, encoded); | |
14f9c5c9 | 1386 | else |
88c15c34 | 1387 | xsnprintf (decoded, decoding_buffer_size, "<%s>", encoded); |
4c4b4cd2 PH |
1388 | return decoded; |
1389 | ||
1390 | } | |
1391 | ||
1392 | /* Table for keeping permanent unique copies of decoded names. Once | |
1393 | allocated, names in this table are never released. While this is a | |
1394 | storage leak, it should not be significant unless there are massive | |
1395 | changes in the set of decoded names in successive versions of a | |
1396 | symbol table loaded during a single session. */ | |
1397 | static struct htab *decoded_names_store; | |
1398 | ||
1399 | /* Returns the decoded name of GSYMBOL, as for ada_decode, caching it | |
1400 | in the language-specific part of GSYMBOL, if it has not been | |
1401 | previously computed. Tries to save the decoded name in the same | |
1402 | obstack as GSYMBOL, if possible, and otherwise on the heap (so that, | |
1403 | in any case, the decoded symbol has a lifetime at least that of | |
0963b4bd | 1404 | GSYMBOL). |
4c4b4cd2 PH |
1405 | The GSYMBOL parameter is "mutable" in the C++ sense: logically |
1406 | const, but nevertheless modified to a semantically equivalent form | |
0963b4bd | 1407 | when a decoded name is cached in it. */ |
4c4b4cd2 | 1408 | |
45e6c716 | 1409 | const char * |
f85f34ed | 1410 | ada_decode_symbol (const struct general_symbol_info *arg) |
4c4b4cd2 | 1411 | { |
f85f34ed TT |
1412 | struct general_symbol_info *gsymbol = (struct general_symbol_info *) arg; |
1413 | const char **resultp = | |
1414 | &gsymbol->language_specific.mangled_lang.demangled_name; | |
5b4ee69b | 1415 | |
f85f34ed | 1416 | if (!gsymbol->ada_mangled) |
4c4b4cd2 PH |
1417 | { |
1418 | const char *decoded = ada_decode (gsymbol->name); | |
f85f34ed | 1419 | struct obstack *obstack = gsymbol->language_specific.obstack; |
5b4ee69b | 1420 | |
f85f34ed | 1421 | gsymbol->ada_mangled = 1; |
5b4ee69b | 1422 | |
f85f34ed TT |
1423 | if (obstack != NULL) |
1424 | *resultp = obstack_copy0 (obstack, decoded, strlen (decoded)); | |
1425 | else | |
76a01679 | 1426 | { |
f85f34ed TT |
1427 | /* Sometimes, we can't find a corresponding objfile, in |
1428 | which case, we put the result on the heap. Since we only | |
1429 | decode when needed, we hope this usually does not cause a | |
1430 | significant memory leak (FIXME). */ | |
1431 | ||
76a01679 JB |
1432 | char **slot = (char **) htab_find_slot (decoded_names_store, |
1433 | decoded, INSERT); | |
5b4ee69b | 1434 | |
76a01679 JB |
1435 | if (*slot == NULL) |
1436 | *slot = xstrdup (decoded); | |
1437 | *resultp = *slot; | |
1438 | } | |
4c4b4cd2 | 1439 | } |
14f9c5c9 | 1440 | |
4c4b4cd2 PH |
1441 | return *resultp; |
1442 | } | |
76a01679 | 1443 | |
2c0b251b | 1444 | static char * |
76a01679 | 1445 | ada_la_decode (const char *encoded, int options) |
4c4b4cd2 PH |
1446 | { |
1447 | return xstrdup (ada_decode (encoded)); | |
14f9c5c9 AS |
1448 | } |
1449 | ||
1450 | /* Returns non-zero iff SYM_NAME matches NAME, ignoring any trailing | |
4c4b4cd2 PH |
1451 | suffixes that encode debugging information or leading _ada_ on |
1452 | SYM_NAME (see is_name_suffix commentary for the debugging | |
1453 | information that is ignored). If WILD, then NAME need only match a | |
1454 | suffix of SYM_NAME minus the same suffixes. Also returns 0 if | |
1455 | either argument is NULL. */ | |
14f9c5c9 | 1456 | |
2c0b251b | 1457 | static int |
40658b94 | 1458 | match_name (const char *sym_name, const char *name, int wild) |
14f9c5c9 AS |
1459 | { |
1460 | if (sym_name == NULL || name == NULL) | |
1461 | return 0; | |
1462 | else if (wild) | |
73589123 | 1463 | return wild_match (sym_name, name) == 0; |
d2e4a39e AS |
1464 | else |
1465 | { | |
1466 | int len_name = strlen (name); | |
5b4ee69b | 1467 | |
4c4b4cd2 PH |
1468 | return (strncmp (sym_name, name, len_name) == 0 |
1469 | && is_name_suffix (sym_name + len_name)) | |
1470 | || (strncmp (sym_name, "_ada_", 5) == 0 | |
1471 | && strncmp (sym_name + 5, name, len_name) == 0 | |
1472 | && is_name_suffix (sym_name + len_name + 5)); | |
d2e4a39e | 1473 | } |
14f9c5c9 | 1474 | } |
14f9c5c9 | 1475 | \f |
d2e4a39e | 1476 | |
4c4b4cd2 | 1477 | /* Arrays */ |
14f9c5c9 | 1478 | |
28c85d6c JB |
1479 | /* Assuming that INDEX_DESC_TYPE is an ___XA structure, a structure |
1480 | generated by the GNAT compiler to describe the index type used | |
1481 | for each dimension of an array, check whether it follows the latest | |
1482 | known encoding. If not, fix it up to conform to the latest encoding. | |
1483 | Otherwise, do nothing. This function also does nothing if | |
1484 | INDEX_DESC_TYPE is NULL. | |
1485 | ||
1486 | The GNAT encoding used to describle the array index type evolved a bit. | |
1487 | Initially, the information would be provided through the name of each | |
1488 | field of the structure type only, while the type of these fields was | |
1489 | described as unspecified and irrelevant. The debugger was then expected | |
1490 | to perform a global type lookup using the name of that field in order | |
1491 | to get access to the full index type description. Because these global | |
1492 | lookups can be very expensive, the encoding was later enhanced to make | |
1493 | the global lookup unnecessary by defining the field type as being | |
1494 | the full index type description. | |
1495 | ||
1496 | The purpose of this routine is to allow us to support older versions | |
1497 | of the compiler by detecting the use of the older encoding, and by | |
1498 | fixing up the INDEX_DESC_TYPE to follow the new one (at this point, | |
1499 | we essentially replace each field's meaningless type by the associated | |
1500 | index subtype). */ | |
1501 | ||
1502 | void | |
1503 | ada_fixup_array_indexes_type (struct type *index_desc_type) | |
1504 | { | |
1505 | int i; | |
1506 | ||
1507 | if (index_desc_type == NULL) | |
1508 | return; | |
1509 | gdb_assert (TYPE_NFIELDS (index_desc_type) > 0); | |
1510 | ||
1511 | /* Check if INDEX_DESC_TYPE follows the older encoding (it is sufficient | |
1512 | to check one field only, no need to check them all). If not, return | |
1513 | now. | |
1514 | ||
1515 | If our INDEX_DESC_TYPE was generated using the older encoding, | |
1516 | the field type should be a meaningless integer type whose name | |
1517 | is not equal to the field name. */ | |
1518 | if (TYPE_NAME (TYPE_FIELD_TYPE (index_desc_type, 0)) != NULL | |
1519 | && strcmp (TYPE_NAME (TYPE_FIELD_TYPE (index_desc_type, 0)), | |
1520 | TYPE_FIELD_NAME (index_desc_type, 0)) == 0) | |
1521 | return; | |
1522 | ||
1523 | /* Fixup each field of INDEX_DESC_TYPE. */ | |
1524 | for (i = 0; i < TYPE_NFIELDS (index_desc_type); i++) | |
1525 | { | |
0d5cff50 | 1526 | const char *name = TYPE_FIELD_NAME (index_desc_type, i); |
28c85d6c JB |
1527 | struct type *raw_type = ada_check_typedef (ada_find_any_type (name)); |
1528 | ||
1529 | if (raw_type) | |
1530 | TYPE_FIELD_TYPE (index_desc_type, i) = raw_type; | |
1531 | } | |
1532 | } | |
1533 | ||
4c4b4cd2 | 1534 | /* Names of MAX_ADA_DIMENS bounds in P_BOUNDS fields of array descriptors. */ |
14f9c5c9 | 1535 | |
d2e4a39e AS |
1536 | static char *bound_name[] = { |
1537 | "LB0", "UB0", "LB1", "UB1", "LB2", "UB2", "LB3", "UB3", | |
14f9c5c9 AS |
1538 | "LB4", "UB4", "LB5", "UB5", "LB6", "UB6", "LB7", "UB7" |
1539 | }; | |
1540 | ||
1541 | /* Maximum number of array dimensions we are prepared to handle. */ | |
1542 | ||
4c4b4cd2 | 1543 | #define MAX_ADA_DIMENS (sizeof(bound_name) / (2*sizeof(char *))) |
14f9c5c9 | 1544 | |
14f9c5c9 | 1545 | |
4c4b4cd2 PH |
1546 | /* The desc_* routines return primitive portions of array descriptors |
1547 | (fat pointers). */ | |
14f9c5c9 AS |
1548 | |
1549 | /* The descriptor or array type, if any, indicated by TYPE; removes | |
4c4b4cd2 PH |
1550 | level of indirection, if needed. */ |
1551 | ||
d2e4a39e AS |
1552 | static struct type * |
1553 | desc_base_type (struct type *type) | |
14f9c5c9 AS |
1554 | { |
1555 | if (type == NULL) | |
1556 | return NULL; | |
61ee279c | 1557 | type = ada_check_typedef (type); |
720d1a40 JB |
1558 | if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF) |
1559 | type = ada_typedef_target_type (type); | |
1560 | ||
1265e4aa JB |
1561 | if (type != NULL |
1562 | && (TYPE_CODE (type) == TYPE_CODE_PTR | |
1563 | || TYPE_CODE (type) == TYPE_CODE_REF)) | |
61ee279c | 1564 | return ada_check_typedef (TYPE_TARGET_TYPE (type)); |
14f9c5c9 AS |
1565 | else |
1566 | return type; | |
1567 | } | |
1568 | ||
4c4b4cd2 PH |
1569 | /* True iff TYPE indicates a "thin" array pointer type. */ |
1570 | ||
14f9c5c9 | 1571 | static int |
d2e4a39e | 1572 | is_thin_pntr (struct type *type) |
14f9c5c9 | 1573 | { |
d2e4a39e | 1574 | return |
14f9c5c9 AS |
1575 | is_suffix (ada_type_name (desc_base_type (type)), "___XUT") |
1576 | || is_suffix (ada_type_name (desc_base_type (type)), "___XUT___XVE"); | |
1577 | } | |
1578 | ||
4c4b4cd2 PH |
1579 | /* The descriptor type for thin pointer type TYPE. */ |
1580 | ||
d2e4a39e AS |
1581 | static struct type * |
1582 | thin_descriptor_type (struct type *type) | |
14f9c5c9 | 1583 | { |
d2e4a39e | 1584 | struct type *base_type = desc_base_type (type); |
5b4ee69b | 1585 | |
14f9c5c9 AS |
1586 | if (base_type == NULL) |
1587 | return NULL; | |
1588 | if (is_suffix (ada_type_name (base_type), "___XVE")) | |
1589 | return base_type; | |
d2e4a39e | 1590 | else |
14f9c5c9 | 1591 | { |
d2e4a39e | 1592 | struct type *alt_type = ada_find_parallel_type (base_type, "___XVE"); |
5b4ee69b | 1593 | |
14f9c5c9 | 1594 | if (alt_type == NULL) |
4c4b4cd2 | 1595 | return base_type; |
14f9c5c9 | 1596 | else |
4c4b4cd2 | 1597 | return alt_type; |
14f9c5c9 AS |
1598 | } |
1599 | } | |
1600 | ||
4c4b4cd2 PH |
1601 | /* A pointer to the array data for thin-pointer value VAL. */ |
1602 | ||
d2e4a39e AS |
1603 | static struct value * |
1604 | thin_data_pntr (struct value *val) | |
14f9c5c9 | 1605 | { |
828292f2 | 1606 | struct type *type = ada_check_typedef (value_type (val)); |
556bdfd4 | 1607 | struct type *data_type = desc_data_target_type (thin_descriptor_type (type)); |
5b4ee69b | 1608 | |
556bdfd4 UW |
1609 | data_type = lookup_pointer_type (data_type); |
1610 | ||
14f9c5c9 | 1611 | if (TYPE_CODE (type) == TYPE_CODE_PTR) |
556bdfd4 | 1612 | return value_cast (data_type, value_copy (val)); |
d2e4a39e | 1613 | else |
42ae5230 | 1614 | return value_from_longest (data_type, value_address (val)); |
14f9c5c9 AS |
1615 | } |
1616 | ||
4c4b4cd2 PH |
1617 | /* True iff TYPE indicates a "thick" array pointer type. */ |
1618 | ||
14f9c5c9 | 1619 | static int |
d2e4a39e | 1620 | is_thick_pntr (struct type *type) |
14f9c5c9 AS |
1621 | { |
1622 | type = desc_base_type (type); | |
1623 | return (type != NULL && TYPE_CODE (type) == TYPE_CODE_STRUCT | |
4c4b4cd2 | 1624 | && lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL); |
14f9c5c9 AS |
1625 | } |
1626 | ||
4c4b4cd2 PH |
1627 | /* If TYPE is the type of an array descriptor (fat or thin pointer) or a |
1628 | pointer to one, the type of its bounds data; otherwise, NULL. */ | |
76a01679 | 1629 | |
d2e4a39e AS |
1630 | static struct type * |
1631 | desc_bounds_type (struct type *type) | |
14f9c5c9 | 1632 | { |
d2e4a39e | 1633 | struct type *r; |
14f9c5c9 AS |
1634 | |
1635 | type = desc_base_type (type); | |
1636 | ||
1637 | if (type == NULL) | |
1638 | return NULL; | |
1639 | else if (is_thin_pntr (type)) | |
1640 | { | |
1641 | type = thin_descriptor_type (type); | |
1642 | if (type == NULL) | |
4c4b4cd2 | 1643 | return NULL; |
14f9c5c9 AS |
1644 | r = lookup_struct_elt_type (type, "BOUNDS", 1); |
1645 | if (r != NULL) | |
61ee279c | 1646 | return ada_check_typedef (r); |
14f9c5c9 AS |
1647 | } |
1648 | else if (TYPE_CODE (type) == TYPE_CODE_STRUCT) | |
1649 | { | |
1650 | r = lookup_struct_elt_type (type, "P_BOUNDS", 1); | |
1651 | if (r != NULL) | |
61ee279c | 1652 | return ada_check_typedef (TYPE_TARGET_TYPE (ada_check_typedef (r))); |
14f9c5c9 AS |
1653 | } |
1654 | return NULL; | |
1655 | } | |
1656 | ||
1657 | /* If ARR is an array descriptor (fat or thin pointer), or pointer to | |
4c4b4cd2 PH |
1658 | one, a pointer to its bounds data. Otherwise NULL. */ |
1659 | ||
d2e4a39e AS |
1660 | static struct value * |
1661 | desc_bounds (struct value *arr) | |
14f9c5c9 | 1662 | { |
df407dfe | 1663 | struct type *type = ada_check_typedef (value_type (arr)); |
5b4ee69b | 1664 | |
d2e4a39e | 1665 | if (is_thin_pntr (type)) |
14f9c5c9 | 1666 | { |
d2e4a39e | 1667 | struct type *bounds_type = |
4c4b4cd2 | 1668 | desc_bounds_type (thin_descriptor_type (type)); |
14f9c5c9 AS |
1669 | LONGEST addr; |
1670 | ||
4cdfadb1 | 1671 | if (bounds_type == NULL) |
323e0a4a | 1672 | error (_("Bad GNAT array descriptor")); |
14f9c5c9 AS |
1673 | |
1674 | /* NOTE: The following calculation is not really kosher, but | |
d2e4a39e | 1675 | since desc_type is an XVE-encoded type (and shouldn't be), |
4c4b4cd2 | 1676 | the correct calculation is a real pain. FIXME (and fix GCC). */ |
14f9c5c9 | 1677 | if (TYPE_CODE (type) == TYPE_CODE_PTR) |
4c4b4cd2 | 1678 | addr = value_as_long (arr); |
d2e4a39e | 1679 | else |
42ae5230 | 1680 | addr = value_address (arr); |
14f9c5c9 | 1681 | |
d2e4a39e | 1682 | return |
4c4b4cd2 PH |
1683 | value_from_longest (lookup_pointer_type (bounds_type), |
1684 | addr - TYPE_LENGTH (bounds_type)); | |
14f9c5c9 AS |
1685 | } |
1686 | ||
1687 | else if (is_thick_pntr (type)) | |
05e522ef JB |
1688 | { |
1689 | struct value *p_bounds = value_struct_elt (&arr, NULL, "P_BOUNDS", NULL, | |
1690 | _("Bad GNAT array descriptor")); | |
1691 | struct type *p_bounds_type = value_type (p_bounds); | |
1692 | ||
1693 | if (p_bounds_type | |
1694 | && TYPE_CODE (p_bounds_type) == TYPE_CODE_PTR) | |
1695 | { | |
1696 | struct type *target_type = TYPE_TARGET_TYPE (p_bounds_type); | |
1697 | ||
1698 | if (TYPE_STUB (target_type)) | |
1699 | p_bounds = value_cast (lookup_pointer_type | |
1700 | (ada_check_typedef (target_type)), | |
1701 | p_bounds); | |
1702 | } | |
1703 | else | |
1704 | error (_("Bad GNAT array descriptor")); | |
1705 | ||
1706 | return p_bounds; | |
1707 | } | |
14f9c5c9 AS |
1708 | else |
1709 | return NULL; | |
1710 | } | |
1711 | ||
4c4b4cd2 PH |
1712 | /* If TYPE is the type of an array-descriptor (fat pointer), the bit |
1713 | position of the field containing the address of the bounds data. */ | |
1714 | ||
14f9c5c9 | 1715 | static int |
d2e4a39e | 1716 | fat_pntr_bounds_bitpos (struct type *type) |
14f9c5c9 AS |
1717 | { |
1718 | return TYPE_FIELD_BITPOS (desc_base_type (type), 1); | |
1719 | } | |
1720 | ||
1721 | /* If TYPE is the type of an array-descriptor (fat pointer), the bit | |
4c4b4cd2 PH |
1722 | size of the field containing the address of the bounds data. */ |
1723 | ||
14f9c5c9 | 1724 | static int |
d2e4a39e | 1725 | fat_pntr_bounds_bitsize (struct type *type) |
14f9c5c9 AS |
1726 | { |
1727 | type = desc_base_type (type); | |
1728 | ||
d2e4a39e | 1729 | if (TYPE_FIELD_BITSIZE (type, 1) > 0) |
14f9c5c9 AS |
1730 | return TYPE_FIELD_BITSIZE (type, 1); |
1731 | else | |
61ee279c | 1732 | return 8 * TYPE_LENGTH (ada_check_typedef (TYPE_FIELD_TYPE (type, 1))); |
14f9c5c9 AS |
1733 | } |
1734 | ||
4c4b4cd2 | 1735 | /* If TYPE is the type of an array descriptor (fat or thin pointer) or a |
556bdfd4 UW |
1736 | pointer to one, the type of its array data (a array-with-no-bounds type); |
1737 | otherwise, NULL. Use ada_type_of_array to get an array type with bounds | |
1738 | data. */ | |
4c4b4cd2 | 1739 | |
d2e4a39e | 1740 | static struct type * |
556bdfd4 | 1741 | desc_data_target_type (struct type *type) |
14f9c5c9 AS |
1742 | { |
1743 | type = desc_base_type (type); | |
1744 | ||
4c4b4cd2 | 1745 | /* NOTE: The following is bogus; see comment in desc_bounds. */ |
14f9c5c9 | 1746 | if (is_thin_pntr (type)) |
556bdfd4 | 1747 | return desc_base_type (TYPE_FIELD_TYPE (thin_descriptor_type (type), 1)); |
14f9c5c9 | 1748 | else if (is_thick_pntr (type)) |
556bdfd4 UW |
1749 | { |
1750 | struct type *data_type = lookup_struct_elt_type (type, "P_ARRAY", 1); | |
1751 | ||
1752 | if (data_type | |
1753 | && TYPE_CODE (ada_check_typedef (data_type)) == TYPE_CODE_PTR) | |
05e522ef | 1754 | return ada_check_typedef (TYPE_TARGET_TYPE (data_type)); |
556bdfd4 UW |
1755 | } |
1756 | ||
1757 | return NULL; | |
14f9c5c9 AS |
1758 | } |
1759 | ||
1760 | /* If ARR is an array descriptor (fat or thin pointer), a pointer to | |
1761 | its array data. */ | |
4c4b4cd2 | 1762 | |
d2e4a39e AS |
1763 | static struct value * |
1764 | desc_data (struct value *arr) | |
14f9c5c9 | 1765 | { |
df407dfe | 1766 | struct type *type = value_type (arr); |
5b4ee69b | 1767 | |
14f9c5c9 AS |
1768 | if (is_thin_pntr (type)) |
1769 | return thin_data_pntr (arr); | |
1770 | else if (is_thick_pntr (type)) | |
d2e4a39e | 1771 | return value_struct_elt (&arr, NULL, "P_ARRAY", NULL, |
323e0a4a | 1772 | _("Bad GNAT array descriptor")); |
14f9c5c9 AS |
1773 | else |
1774 | return NULL; | |
1775 | } | |
1776 | ||
1777 | ||
1778 | /* If TYPE is the type of an array-descriptor (fat pointer), the bit | |
4c4b4cd2 PH |
1779 | position of the field containing the address of the data. */ |
1780 | ||
14f9c5c9 | 1781 | static int |
d2e4a39e | 1782 | fat_pntr_data_bitpos (struct type *type) |
14f9c5c9 AS |
1783 | { |
1784 | return TYPE_FIELD_BITPOS (desc_base_type (type), 0); | |
1785 | } | |
1786 | ||
1787 | /* If TYPE is the type of an array-descriptor (fat pointer), the bit | |
4c4b4cd2 PH |
1788 | size of the field containing the address of the data. */ |
1789 | ||
14f9c5c9 | 1790 | static int |
d2e4a39e | 1791 | fat_pntr_data_bitsize (struct type *type) |
14f9c5c9 AS |
1792 | { |
1793 | type = desc_base_type (type); | |
1794 | ||
1795 | if (TYPE_FIELD_BITSIZE (type, 0) > 0) | |
1796 | return TYPE_FIELD_BITSIZE (type, 0); | |
d2e4a39e | 1797 | else |
14f9c5c9 AS |
1798 | return TARGET_CHAR_BIT * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 0)); |
1799 | } | |
1800 | ||
4c4b4cd2 | 1801 | /* If BOUNDS is an array-bounds structure (or pointer to one), return |
14f9c5c9 | 1802 | the Ith lower bound stored in it, if WHICH is 0, and the Ith upper |
4c4b4cd2 PH |
1803 | bound, if WHICH is 1. The first bound is I=1. */ |
1804 | ||
d2e4a39e AS |
1805 | static struct value * |
1806 | desc_one_bound (struct value *bounds, int i, int which) | |
14f9c5c9 | 1807 | { |
d2e4a39e | 1808 | return value_struct_elt (&bounds, NULL, bound_name[2 * i + which - 2], NULL, |
323e0a4a | 1809 | _("Bad GNAT array descriptor bounds")); |
14f9c5c9 AS |
1810 | } |
1811 | ||
1812 | /* If BOUNDS is an array-bounds structure type, return the bit position | |
1813 | of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper | |
4c4b4cd2 PH |
1814 | bound, if WHICH is 1. The first bound is I=1. */ |
1815 | ||
14f9c5c9 | 1816 | static int |
d2e4a39e | 1817 | desc_bound_bitpos (struct type *type, int i, int which) |
14f9c5c9 | 1818 | { |
d2e4a39e | 1819 | return TYPE_FIELD_BITPOS (desc_base_type (type), 2 * i + which - 2); |
14f9c5c9 AS |
1820 | } |
1821 | ||
1822 | /* If BOUNDS is an array-bounds structure type, return the bit field size | |
1823 | of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper | |
4c4b4cd2 PH |
1824 | bound, if WHICH is 1. The first bound is I=1. */ |
1825 | ||
76a01679 | 1826 | static int |
d2e4a39e | 1827 | desc_bound_bitsize (struct type *type, int i, int which) |
14f9c5c9 AS |
1828 | { |
1829 | type = desc_base_type (type); | |
1830 | ||
d2e4a39e AS |
1831 | if (TYPE_FIELD_BITSIZE (type, 2 * i + which - 2) > 0) |
1832 | return TYPE_FIELD_BITSIZE (type, 2 * i + which - 2); | |
1833 | else | |
1834 | return 8 * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 2 * i + which - 2)); | |
14f9c5c9 AS |
1835 | } |
1836 | ||
1837 | /* If TYPE is the type of an array-bounds structure, the type of its | |
4c4b4cd2 PH |
1838 | Ith bound (numbering from 1). Otherwise, NULL. */ |
1839 | ||
d2e4a39e AS |
1840 | static struct type * |
1841 | desc_index_type (struct type *type, int i) | |
14f9c5c9 AS |
1842 | { |
1843 | type = desc_base_type (type); | |
1844 | ||
1845 | if (TYPE_CODE (type) == TYPE_CODE_STRUCT) | |
d2e4a39e AS |
1846 | return lookup_struct_elt_type (type, bound_name[2 * i - 2], 1); |
1847 | else | |
14f9c5c9 AS |
1848 | return NULL; |
1849 | } | |
1850 | ||
4c4b4cd2 PH |
1851 | /* The number of index positions in the array-bounds type TYPE. |
1852 | Return 0 if TYPE is NULL. */ | |
1853 | ||
14f9c5c9 | 1854 | static int |
d2e4a39e | 1855 | desc_arity (struct type *type) |
14f9c5c9 AS |
1856 | { |
1857 | type = desc_base_type (type); | |
1858 | ||
1859 | if (type != NULL) | |
1860 | return TYPE_NFIELDS (type) / 2; | |
1861 | return 0; | |
1862 | } | |
1863 | ||
4c4b4cd2 PH |
1864 | /* Non-zero iff TYPE is a simple array type (not a pointer to one) or |
1865 | an array descriptor type (representing an unconstrained array | |
1866 | type). */ | |
1867 | ||
76a01679 JB |
1868 | static int |
1869 | ada_is_direct_array_type (struct type *type) | |
4c4b4cd2 PH |
1870 | { |
1871 | if (type == NULL) | |
1872 | return 0; | |
61ee279c | 1873 | type = ada_check_typedef (type); |
4c4b4cd2 | 1874 | return (TYPE_CODE (type) == TYPE_CODE_ARRAY |
76a01679 | 1875 | || ada_is_array_descriptor_type (type)); |
4c4b4cd2 PH |
1876 | } |
1877 | ||
52ce6436 | 1878 | /* Non-zero iff TYPE represents any kind of array in Ada, or a pointer |
0963b4bd | 1879 | * to one. */ |
52ce6436 | 1880 | |
2c0b251b | 1881 | static int |
52ce6436 PH |
1882 | ada_is_array_type (struct type *type) |
1883 | { | |
1884 | while (type != NULL | |
1885 | && (TYPE_CODE (type) == TYPE_CODE_PTR | |
1886 | || TYPE_CODE (type) == TYPE_CODE_REF)) | |
1887 | type = TYPE_TARGET_TYPE (type); | |
1888 | return ada_is_direct_array_type (type); | |
1889 | } | |
1890 | ||
4c4b4cd2 | 1891 | /* Non-zero iff TYPE is a simple array type or pointer to one. */ |
14f9c5c9 | 1892 | |
14f9c5c9 | 1893 | int |
4c4b4cd2 | 1894 | ada_is_simple_array_type (struct type *type) |
14f9c5c9 AS |
1895 | { |
1896 | if (type == NULL) | |
1897 | return 0; | |
61ee279c | 1898 | type = ada_check_typedef (type); |
14f9c5c9 | 1899 | return (TYPE_CODE (type) == TYPE_CODE_ARRAY |
4c4b4cd2 | 1900 | || (TYPE_CODE (type) == TYPE_CODE_PTR |
b0dd7688 JB |
1901 | && TYPE_CODE (ada_check_typedef (TYPE_TARGET_TYPE (type))) |
1902 | == TYPE_CODE_ARRAY)); | |
14f9c5c9 AS |
1903 | } |
1904 | ||
4c4b4cd2 PH |
1905 | /* Non-zero iff TYPE belongs to a GNAT array descriptor. */ |
1906 | ||
14f9c5c9 | 1907 | int |
4c4b4cd2 | 1908 | ada_is_array_descriptor_type (struct type *type) |
14f9c5c9 | 1909 | { |
556bdfd4 | 1910 | struct type *data_type = desc_data_target_type (type); |
14f9c5c9 AS |
1911 | |
1912 | if (type == NULL) | |
1913 | return 0; | |
61ee279c | 1914 | type = ada_check_typedef (type); |
556bdfd4 UW |
1915 | return (data_type != NULL |
1916 | && TYPE_CODE (data_type) == TYPE_CODE_ARRAY | |
1917 | && desc_arity (desc_bounds_type (type)) > 0); | |
14f9c5c9 AS |
1918 | } |
1919 | ||
1920 | /* Non-zero iff type is a partially mal-formed GNAT array | |
4c4b4cd2 | 1921 | descriptor. FIXME: This is to compensate for some problems with |
14f9c5c9 | 1922 | debugging output from GNAT. Re-examine periodically to see if it |
4c4b4cd2 PH |
1923 | is still needed. */ |
1924 | ||
14f9c5c9 | 1925 | int |
ebf56fd3 | 1926 | ada_is_bogus_array_descriptor (struct type *type) |
14f9c5c9 | 1927 | { |
d2e4a39e | 1928 | return |
14f9c5c9 AS |
1929 | type != NULL |
1930 | && TYPE_CODE (type) == TYPE_CODE_STRUCT | |
1931 | && (lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL | |
4c4b4cd2 PH |
1932 | || lookup_struct_elt_type (type, "P_ARRAY", 1) != NULL) |
1933 | && !ada_is_array_descriptor_type (type); | |
14f9c5c9 AS |
1934 | } |
1935 | ||
1936 | ||
4c4b4cd2 | 1937 | /* If ARR has a record type in the form of a standard GNAT array descriptor, |
14f9c5c9 | 1938 | (fat pointer) returns the type of the array data described---specifically, |
4c4b4cd2 | 1939 | a pointer-to-array type. If BOUNDS is non-zero, the bounds data are filled |
14f9c5c9 | 1940 | in from the descriptor; otherwise, they are left unspecified. If |
4c4b4cd2 PH |
1941 | the ARR denotes a null array descriptor and BOUNDS is non-zero, |
1942 | returns NULL. The result is simply the type of ARR if ARR is not | |
14f9c5c9 | 1943 | a descriptor. */ |
d2e4a39e AS |
1944 | struct type * |
1945 | ada_type_of_array (struct value *arr, int bounds) | |
14f9c5c9 | 1946 | { |
ad82864c JB |
1947 | if (ada_is_constrained_packed_array_type (value_type (arr))) |
1948 | return decode_constrained_packed_array_type (value_type (arr)); | |
14f9c5c9 | 1949 | |
df407dfe AC |
1950 | if (!ada_is_array_descriptor_type (value_type (arr))) |
1951 | return value_type (arr); | |
d2e4a39e AS |
1952 | |
1953 | if (!bounds) | |
ad82864c JB |
1954 | { |
1955 | struct type *array_type = | |
1956 | ada_check_typedef (desc_data_target_type (value_type (arr))); | |
1957 | ||
1958 | if (ada_is_unconstrained_packed_array_type (value_type (arr))) | |
1959 | TYPE_FIELD_BITSIZE (array_type, 0) = | |
1960 | decode_packed_array_bitsize (value_type (arr)); | |
1961 | ||
1962 | return array_type; | |
1963 | } | |
14f9c5c9 AS |
1964 | else |
1965 | { | |
d2e4a39e | 1966 | struct type *elt_type; |
14f9c5c9 | 1967 | int arity; |
d2e4a39e | 1968 | struct value *descriptor; |
14f9c5c9 | 1969 | |
df407dfe AC |
1970 | elt_type = ada_array_element_type (value_type (arr), -1); |
1971 | arity = ada_array_arity (value_type (arr)); | |
14f9c5c9 | 1972 | |
d2e4a39e | 1973 | if (elt_type == NULL || arity == 0) |
df407dfe | 1974 | return ada_check_typedef (value_type (arr)); |
14f9c5c9 AS |
1975 | |
1976 | descriptor = desc_bounds (arr); | |
d2e4a39e | 1977 | if (value_as_long (descriptor) == 0) |
4c4b4cd2 | 1978 | return NULL; |
d2e4a39e | 1979 | while (arity > 0) |
4c4b4cd2 | 1980 | { |
e9bb382b UW |
1981 | struct type *range_type = alloc_type_copy (value_type (arr)); |
1982 | struct type *array_type = alloc_type_copy (value_type (arr)); | |
4c4b4cd2 PH |
1983 | struct value *low = desc_one_bound (descriptor, arity, 0); |
1984 | struct value *high = desc_one_bound (descriptor, arity, 1); | |
4c4b4cd2 | 1985 | |
5b4ee69b | 1986 | arity -= 1; |
0c9c3474 SA |
1987 | create_static_range_type (range_type, value_type (low), |
1988 | longest_to_int (value_as_long (low)), | |
1989 | longest_to_int (value_as_long (high))); | |
4c4b4cd2 | 1990 | elt_type = create_array_type (array_type, elt_type, range_type); |
ad82864c JB |
1991 | |
1992 | if (ada_is_unconstrained_packed_array_type (value_type (arr))) | |
e67ad678 JB |
1993 | { |
1994 | /* We need to store the element packed bitsize, as well as | |
1995 | recompute the array size, because it was previously | |
1996 | computed based on the unpacked element size. */ | |
1997 | LONGEST lo = value_as_long (low); | |
1998 | LONGEST hi = value_as_long (high); | |
1999 | ||
2000 | TYPE_FIELD_BITSIZE (elt_type, 0) = | |
2001 | decode_packed_array_bitsize (value_type (arr)); | |
2002 | /* If the array has no element, then the size is already | |
2003 | zero, and does not need to be recomputed. */ | |
2004 | if (lo < hi) | |
2005 | { | |
2006 | int array_bitsize = | |
2007 | (hi - lo + 1) * TYPE_FIELD_BITSIZE (elt_type, 0); | |
2008 | ||
2009 | TYPE_LENGTH (array_type) = (array_bitsize + 7) / 8; | |
2010 | } | |
2011 | } | |
4c4b4cd2 | 2012 | } |
14f9c5c9 AS |
2013 | |
2014 | return lookup_pointer_type (elt_type); | |
2015 | } | |
2016 | } | |
2017 | ||
2018 | /* If ARR does not represent an array, returns ARR unchanged. | |
4c4b4cd2 PH |
2019 | Otherwise, returns either a standard GDB array with bounds set |
2020 | appropriately or, if ARR is a non-null fat pointer, a pointer to a standard | |
2021 | GDB array. Returns NULL if ARR is a null fat pointer. */ | |
2022 | ||
d2e4a39e AS |
2023 | struct value * |
2024 | ada_coerce_to_simple_array_ptr (struct value *arr) | |
14f9c5c9 | 2025 | { |
df407dfe | 2026 | if (ada_is_array_descriptor_type (value_type (arr))) |
14f9c5c9 | 2027 | { |
d2e4a39e | 2028 | struct type *arrType = ada_type_of_array (arr, 1); |
5b4ee69b | 2029 | |
14f9c5c9 | 2030 | if (arrType == NULL) |
4c4b4cd2 | 2031 | return NULL; |
14f9c5c9 AS |
2032 | return value_cast (arrType, value_copy (desc_data (arr))); |
2033 | } | |
ad82864c JB |
2034 | else if (ada_is_constrained_packed_array_type (value_type (arr))) |
2035 | return decode_constrained_packed_array (arr); | |
14f9c5c9 AS |
2036 | else |
2037 | return arr; | |
2038 | } | |
2039 | ||
2040 | /* If ARR does not represent an array, returns ARR unchanged. | |
2041 | Otherwise, returns a standard GDB array describing ARR (which may | |
4c4b4cd2 PH |
2042 | be ARR itself if it already is in the proper form). */ |
2043 | ||
720d1a40 | 2044 | struct value * |
d2e4a39e | 2045 | ada_coerce_to_simple_array (struct value *arr) |
14f9c5c9 | 2046 | { |
df407dfe | 2047 | if (ada_is_array_descriptor_type (value_type (arr))) |
14f9c5c9 | 2048 | { |
d2e4a39e | 2049 | struct value *arrVal = ada_coerce_to_simple_array_ptr (arr); |
5b4ee69b | 2050 | |
14f9c5c9 | 2051 | if (arrVal == NULL) |
323e0a4a | 2052 | error (_("Bounds unavailable for null array pointer.")); |
c1b5a1a6 | 2053 | ada_ensure_varsize_limit (TYPE_TARGET_TYPE (value_type (arrVal))); |
14f9c5c9 AS |
2054 | return value_ind (arrVal); |
2055 | } | |
ad82864c JB |
2056 | else if (ada_is_constrained_packed_array_type (value_type (arr))) |
2057 | return decode_constrained_packed_array (arr); | |
d2e4a39e | 2058 | else |
14f9c5c9 AS |
2059 | return arr; |
2060 | } | |
2061 | ||
2062 | /* If TYPE represents a GNAT array type, return it translated to an | |
2063 | ordinary GDB array type (possibly with BITSIZE fields indicating | |
4c4b4cd2 PH |
2064 | packing). For other types, is the identity. */ |
2065 | ||
d2e4a39e AS |
2066 | struct type * |
2067 | ada_coerce_to_simple_array_type (struct type *type) | |
14f9c5c9 | 2068 | { |
ad82864c JB |
2069 | if (ada_is_constrained_packed_array_type (type)) |
2070 | return decode_constrained_packed_array_type (type); | |
17280b9f UW |
2071 | |
2072 | if (ada_is_array_descriptor_type (type)) | |
556bdfd4 | 2073 | return ada_check_typedef (desc_data_target_type (type)); |
17280b9f UW |
2074 | |
2075 | return type; | |
14f9c5c9 AS |
2076 | } |
2077 | ||
4c4b4cd2 PH |
2078 | /* Non-zero iff TYPE represents a standard GNAT packed-array type. */ |
2079 | ||
ad82864c JB |
2080 | static int |
2081 | ada_is_packed_array_type (struct type *type) | |
14f9c5c9 AS |
2082 | { |
2083 | if (type == NULL) | |
2084 | return 0; | |
4c4b4cd2 | 2085 | type = desc_base_type (type); |
61ee279c | 2086 | type = ada_check_typedef (type); |
d2e4a39e | 2087 | return |
14f9c5c9 AS |
2088 | ada_type_name (type) != NULL |
2089 | && strstr (ada_type_name (type), "___XP") != NULL; | |
2090 | } | |
2091 | ||
ad82864c JB |
2092 | /* Non-zero iff TYPE represents a standard GNAT constrained |
2093 | packed-array type. */ | |
2094 | ||
2095 | int | |
2096 | ada_is_constrained_packed_array_type (struct type *type) | |
2097 | { | |
2098 | return ada_is_packed_array_type (type) | |
2099 | && !ada_is_array_descriptor_type (type); | |
2100 | } | |
2101 | ||
2102 | /* Non-zero iff TYPE represents an array descriptor for a | |
2103 | unconstrained packed-array type. */ | |
2104 | ||
2105 | static int | |
2106 | ada_is_unconstrained_packed_array_type (struct type *type) | |
2107 | { | |
2108 | return ada_is_packed_array_type (type) | |
2109 | && ada_is_array_descriptor_type (type); | |
2110 | } | |
2111 | ||
2112 | /* Given that TYPE encodes a packed array type (constrained or unconstrained), | |
2113 | return the size of its elements in bits. */ | |
2114 | ||
2115 | static long | |
2116 | decode_packed_array_bitsize (struct type *type) | |
2117 | { | |
0d5cff50 DE |
2118 | const char *raw_name; |
2119 | const char *tail; | |
ad82864c JB |
2120 | long bits; |
2121 | ||
720d1a40 JB |
2122 | /* Access to arrays implemented as fat pointers are encoded as a typedef |
2123 | of the fat pointer type. We need the name of the fat pointer type | |
2124 | to do the decoding, so strip the typedef layer. */ | |
2125 | if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF) | |
2126 | type = ada_typedef_target_type (type); | |
2127 | ||
2128 | raw_name = ada_type_name (ada_check_typedef (type)); | |
ad82864c JB |
2129 | if (!raw_name) |
2130 | raw_name = ada_type_name (desc_base_type (type)); | |
2131 | ||
2132 | if (!raw_name) | |
2133 | return 0; | |
2134 | ||
2135 | tail = strstr (raw_name, "___XP"); | |
720d1a40 | 2136 | gdb_assert (tail != NULL); |
ad82864c JB |
2137 | |
2138 | if (sscanf (tail + sizeof ("___XP") - 1, "%ld", &bits) != 1) | |
2139 | { | |
2140 | lim_warning | |
2141 | (_("could not understand bit size information on packed array")); | |
2142 | return 0; | |
2143 | } | |
2144 | ||
2145 | return bits; | |
2146 | } | |
2147 | ||
14f9c5c9 AS |
2148 | /* Given that TYPE is a standard GDB array type with all bounds filled |
2149 | in, and that the element size of its ultimate scalar constituents | |
2150 | (that is, either its elements, or, if it is an array of arrays, its | |
2151 | elements' elements, etc.) is *ELT_BITS, return an identical type, | |
2152 | but with the bit sizes of its elements (and those of any | |
2153 | constituent arrays) recorded in the BITSIZE components of its | |
4c4b4cd2 | 2154 | TYPE_FIELD_BITSIZE values, and with *ELT_BITS set to its total size |
4a46959e JB |
2155 | in bits. |
2156 | ||
2157 | Note that, for arrays whose index type has an XA encoding where | |
2158 | a bound references a record discriminant, getting that discriminant, | |
2159 | and therefore the actual value of that bound, is not possible | |
2160 | because none of the given parameters gives us access to the record. | |
2161 | This function assumes that it is OK in the context where it is being | |
2162 | used to return an array whose bounds are still dynamic and where | |
2163 | the length is arbitrary. */ | |
4c4b4cd2 | 2164 | |
d2e4a39e | 2165 | static struct type * |
ad82864c | 2166 | constrained_packed_array_type (struct type *type, long *elt_bits) |
14f9c5c9 | 2167 | { |
d2e4a39e AS |
2168 | struct type *new_elt_type; |
2169 | struct type *new_type; | |
99b1c762 JB |
2170 | struct type *index_type_desc; |
2171 | struct type *index_type; | |
14f9c5c9 AS |
2172 | LONGEST low_bound, high_bound; |
2173 | ||
61ee279c | 2174 | type = ada_check_typedef (type); |
14f9c5c9 AS |
2175 | if (TYPE_CODE (type) != TYPE_CODE_ARRAY) |
2176 | return type; | |
2177 | ||
99b1c762 JB |
2178 | index_type_desc = ada_find_parallel_type (type, "___XA"); |
2179 | if (index_type_desc) | |
2180 | index_type = to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, 0), | |
2181 | NULL); | |
2182 | else | |
2183 | index_type = TYPE_INDEX_TYPE (type); | |
2184 | ||
e9bb382b | 2185 | new_type = alloc_type_copy (type); |
ad82864c JB |
2186 | new_elt_type = |
2187 | constrained_packed_array_type (ada_check_typedef (TYPE_TARGET_TYPE (type)), | |
2188 | elt_bits); | |
99b1c762 | 2189 | create_array_type (new_type, new_elt_type, index_type); |
14f9c5c9 AS |
2190 | TYPE_FIELD_BITSIZE (new_type, 0) = *elt_bits; |
2191 | TYPE_NAME (new_type) = ada_type_name (type); | |
2192 | ||
4a46959e JB |
2193 | if ((TYPE_CODE (check_typedef (index_type)) == TYPE_CODE_RANGE |
2194 | && is_dynamic_type (check_typedef (index_type))) | |
2195 | || get_discrete_bounds (index_type, &low_bound, &high_bound) < 0) | |
14f9c5c9 AS |
2196 | low_bound = high_bound = 0; |
2197 | if (high_bound < low_bound) | |
2198 | *elt_bits = TYPE_LENGTH (new_type) = 0; | |
d2e4a39e | 2199 | else |
14f9c5c9 AS |
2200 | { |
2201 | *elt_bits *= (high_bound - low_bound + 1); | |
d2e4a39e | 2202 | TYPE_LENGTH (new_type) = |
4c4b4cd2 | 2203 | (*elt_bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT; |
14f9c5c9 AS |
2204 | } |
2205 | ||
876cecd0 | 2206 | TYPE_FIXED_INSTANCE (new_type) = 1; |
14f9c5c9 AS |
2207 | return new_type; |
2208 | } | |
2209 | ||
ad82864c JB |
2210 | /* The array type encoded by TYPE, where |
2211 | ada_is_constrained_packed_array_type (TYPE). */ | |
4c4b4cd2 | 2212 | |
d2e4a39e | 2213 | static struct type * |
ad82864c | 2214 | decode_constrained_packed_array_type (struct type *type) |
d2e4a39e | 2215 | { |
0d5cff50 | 2216 | const char *raw_name = ada_type_name (ada_check_typedef (type)); |
727e3d2e | 2217 | char *name; |
0d5cff50 | 2218 | const char *tail; |
d2e4a39e | 2219 | struct type *shadow_type; |
14f9c5c9 | 2220 | long bits; |
14f9c5c9 | 2221 | |
727e3d2e JB |
2222 | if (!raw_name) |
2223 | raw_name = ada_type_name (desc_base_type (type)); | |
2224 | ||
2225 | if (!raw_name) | |
2226 | return NULL; | |
2227 | ||
2228 | name = (char *) alloca (strlen (raw_name) + 1); | |
2229 | tail = strstr (raw_name, "___XP"); | |
4c4b4cd2 PH |
2230 | type = desc_base_type (type); |
2231 | ||
14f9c5c9 AS |
2232 | memcpy (name, raw_name, tail - raw_name); |
2233 | name[tail - raw_name] = '\000'; | |
2234 | ||
b4ba55a1 JB |
2235 | shadow_type = ada_find_parallel_type_with_name (type, name); |
2236 | ||
2237 | if (shadow_type == NULL) | |
14f9c5c9 | 2238 | { |
323e0a4a | 2239 | lim_warning (_("could not find bounds information on packed array")); |
14f9c5c9 AS |
2240 | return NULL; |
2241 | } | |
cb249c71 | 2242 | CHECK_TYPEDEF (shadow_type); |
14f9c5c9 AS |
2243 | |
2244 | if (TYPE_CODE (shadow_type) != TYPE_CODE_ARRAY) | |
2245 | { | |
0963b4bd MS |
2246 | lim_warning (_("could not understand bounds " |
2247 | "information on packed array")); | |
14f9c5c9 AS |
2248 | return NULL; |
2249 | } | |
d2e4a39e | 2250 | |
ad82864c JB |
2251 | bits = decode_packed_array_bitsize (type); |
2252 | return constrained_packed_array_type (shadow_type, &bits); | |
14f9c5c9 AS |
2253 | } |
2254 | ||
ad82864c JB |
2255 | /* Given that ARR is a struct value *indicating a GNAT constrained packed |
2256 | array, returns a simple array that denotes that array. Its type is a | |
14f9c5c9 AS |
2257 | standard GDB array type except that the BITSIZEs of the array |
2258 | target types are set to the number of bits in each element, and the | |
4c4b4cd2 | 2259 | type length is set appropriately. */ |
14f9c5c9 | 2260 | |
d2e4a39e | 2261 | static struct value * |
ad82864c | 2262 | decode_constrained_packed_array (struct value *arr) |
14f9c5c9 | 2263 | { |
4c4b4cd2 | 2264 | struct type *type; |
14f9c5c9 | 2265 | |
11aa919a PMR |
2266 | /* If our value is a pointer, then dereference it. Likewise if |
2267 | the value is a reference. Make sure that this operation does not | |
2268 | cause the target type to be fixed, as this would indirectly cause | |
2269 | this array to be decoded. The rest of the routine assumes that | |
2270 | the array hasn't been decoded yet, so we use the basic "coerce_ref" | |
2271 | and "value_ind" routines to perform the dereferencing, as opposed | |
2272 | to using "ada_coerce_ref" or "ada_value_ind". */ | |
2273 | arr = coerce_ref (arr); | |
828292f2 | 2274 | if (TYPE_CODE (ada_check_typedef (value_type (arr))) == TYPE_CODE_PTR) |
284614f0 | 2275 | arr = value_ind (arr); |
4c4b4cd2 | 2276 | |
ad82864c | 2277 | type = decode_constrained_packed_array_type (value_type (arr)); |
14f9c5c9 AS |
2278 | if (type == NULL) |
2279 | { | |
323e0a4a | 2280 | error (_("can't unpack array")); |
14f9c5c9 AS |
2281 | return NULL; |
2282 | } | |
61ee279c | 2283 | |
50810684 | 2284 | if (gdbarch_bits_big_endian (get_type_arch (value_type (arr))) |
32c9a795 | 2285 | && ada_is_modular_type (value_type (arr))) |
61ee279c PH |
2286 | { |
2287 | /* This is a (right-justified) modular type representing a packed | |
2288 | array with no wrapper. In order to interpret the value through | |
2289 | the (left-justified) packed array type we just built, we must | |
2290 | first left-justify it. */ | |
2291 | int bit_size, bit_pos; | |
2292 | ULONGEST mod; | |
2293 | ||
df407dfe | 2294 | mod = ada_modulus (value_type (arr)) - 1; |
61ee279c PH |
2295 | bit_size = 0; |
2296 | while (mod > 0) | |
2297 | { | |
2298 | bit_size += 1; | |
2299 | mod >>= 1; | |
2300 | } | |
df407dfe | 2301 | bit_pos = HOST_CHAR_BIT * TYPE_LENGTH (value_type (arr)) - bit_size; |
61ee279c PH |
2302 | arr = ada_value_primitive_packed_val (arr, NULL, |
2303 | bit_pos / HOST_CHAR_BIT, | |
2304 | bit_pos % HOST_CHAR_BIT, | |
2305 | bit_size, | |
2306 | type); | |
2307 | } | |
2308 | ||
4c4b4cd2 | 2309 | return coerce_unspec_val_to_type (arr, type); |
14f9c5c9 AS |
2310 | } |
2311 | ||
2312 | ||
2313 | /* The value of the element of packed array ARR at the ARITY indices | |
4c4b4cd2 | 2314 | given in IND. ARR must be a simple array. */ |
14f9c5c9 | 2315 | |
d2e4a39e AS |
2316 | static struct value * |
2317 | value_subscript_packed (struct value *arr, int arity, struct value **ind) | |
14f9c5c9 AS |
2318 | { |
2319 | int i; | |
2320 | int bits, elt_off, bit_off; | |
2321 | long elt_total_bit_offset; | |
d2e4a39e AS |
2322 | struct type *elt_type; |
2323 | struct value *v; | |
14f9c5c9 AS |
2324 | |
2325 | bits = 0; | |
2326 | elt_total_bit_offset = 0; | |
df407dfe | 2327 | elt_type = ada_check_typedef (value_type (arr)); |
d2e4a39e | 2328 | for (i = 0; i < arity; i += 1) |
14f9c5c9 | 2329 | { |
d2e4a39e | 2330 | if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY |
4c4b4cd2 PH |
2331 | || TYPE_FIELD_BITSIZE (elt_type, 0) == 0) |
2332 | error | |
0963b4bd MS |
2333 | (_("attempt to do packed indexing of " |
2334 | "something other than a packed array")); | |
14f9c5c9 | 2335 | else |
4c4b4cd2 PH |
2336 | { |
2337 | struct type *range_type = TYPE_INDEX_TYPE (elt_type); | |
2338 | LONGEST lowerbound, upperbound; | |
2339 | LONGEST idx; | |
2340 | ||
2341 | if (get_discrete_bounds (range_type, &lowerbound, &upperbound) < 0) | |
2342 | { | |
323e0a4a | 2343 | lim_warning (_("don't know bounds of array")); |
4c4b4cd2 PH |
2344 | lowerbound = upperbound = 0; |
2345 | } | |
2346 | ||
3cb382c9 | 2347 | idx = pos_atr (ind[i]); |
4c4b4cd2 | 2348 | if (idx < lowerbound || idx > upperbound) |
0963b4bd MS |
2349 | lim_warning (_("packed array index %ld out of bounds"), |
2350 | (long) idx); | |
4c4b4cd2 PH |
2351 | bits = TYPE_FIELD_BITSIZE (elt_type, 0); |
2352 | elt_total_bit_offset += (idx - lowerbound) * bits; | |
61ee279c | 2353 | elt_type = ada_check_typedef (TYPE_TARGET_TYPE (elt_type)); |
4c4b4cd2 | 2354 | } |
14f9c5c9 AS |
2355 | } |
2356 | elt_off = elt_total_bit_offset / HOST_CHAR_BIT; | |
2357 | bit_off = elt_total_bit_offset % HOST_CHAR_BIT; | |
d2e4a39e AS |
2358 | |
2359 | v = ada_value_primitive_packed_val (arr, NULL, elt_off, bit_off, | |
4c4b4cd2 | 2360 | bits, elt_type); |
14f9c5c9 AS |
2361 | return v; |
2362 | } | |
2363 | ||
4c4b4cd2 | 2364 | /* Non-zero iff TYPE includes negative integer values. */ |
14f9c5c9 AS |
2365 | |
2366 | static int | |
d2e4a39e | 2367 | has_negatives (struct type *type) |
14f9c5c9 | 2368 | { |
d2e4a39e AS |
2369 | switch (TYPE_CODE (type)) |
2370 | { | |
2371 | default: | |
2372 | return 0; | |
2373 | case TYPE_CODE_INT: | |
2374 | return !TYPE_UNSIGNED (type); | |
2375 | case TYPE_CODE_RANGE: | |
2376 | return TYPE_LOW_BOUND (type) < 0; | |
2377 | } | |
14f9c5c9 | 2378 | } |
d2e4a39e | 2379 | |
14f9c5c9 AS |
2380 | |
2381 | /* Create a new value of type TYPE from the contents of OBJ starting | |
2382 | at byte OFFSET, and bit offset BIT_OFFSET within that byte, | |
2383 | proceeding for BIT_SIZE bits. If OBJ is an lval in memory, then | |
0963b4bd | 2384 | assigning through the result will set the field fetched from. |
4c4b4cd2 PH |
2385 | VALADDR is ignored unless OBJ is NULL, in which case, |
2386 | VALADDR+OFFSET must address the start of storage containing the | |
2387 | packed value. The value returned in this case is never an lval. | |
2388 | Assumes 0 <= BIT_OFFSET < HOST_CHAR_BIT. */ | |
14f9c5c9 | 2389 | |
d2e4a39e | 2390 | struct value * |
fc1a4b47 | 2391 | ada_value_primitive_packed_val (struct value *obj, const gdb_byte *valaddr, |
a2bd3dcd | 2392 | long offset, int bit_offset, int bit_size, |
4c4b4cd2 | 2393 | struct type *type) |
14f9c5c9 | 2394 | { |
d2e4a39e | 2395 | struct value *v; |
4c4b4cd2 PH |
2396 | int src, /* Index into the source area */ |
2397 | targ, /* Index into the target area */ | |
2398 | srcBitsLeft, /* Number of source bits left to move */ | |
2399 | nsrc, ntarg, /* Number of source and target bytes */ | |
2400 | unusedLS, /* Number of bits in next significant | |
2401 | byte of source that are unused */ | |
2402 | accumSize; /* Number of meaningful bits in accum */ | |
2403 | unsigned char *bytes; /* First byte containing data to unpack */ | |
d2e4a39e | 2404 | unsigned char *unpacked; |
4c4b4cd2 | 2405 | unsigned long accum; /* Staging area for bits being transferred */ |
14f9c5c9 AS |
2406 | unsigned char sign; |
2407 | int len = (bit_size + bit_offset + HOST_CHAR_BIT - 1) / 8; | |
4c4b4cd2 PH |
2408 | /* Transmit bytes from least to most significant; delta is the direction |
2409 | the indices move. */ | |
50810684 | 2410 | int delta = gdbarch_bits_big_endian (get_type_arch (type)) ? -1 : 1; |
14f9c5c9 | 2411 | |
61ee279c | 2412 | type = ada_check_typedef (type); |
14f9c5c9 AS |
2413 | |
2414 | if (obj == NULL) | |
2415 | { | |
2416 | v = allocate_value (type); | |
d2e4a39e | 2417 | bytes = (unsigned char *) (valaddr + offset); |
14f9c5c9 | 2418 | } |
9214ee5f | 2419 | else if (VALUE_LVAL (obj) == lval_memory && value_lazy (obj)) |
14f9c5c9 | 2420 | { |
53ba8333 | 2421 | v = value_at (type, value_address (obj)); |
9f1f738a | 2422 | type = value_type (v); |
d2e4a39e | 2423 | bytes = (unsigned char *) alloca (len); |
53ba8333 | 2424 | read_memory (value_address (v) + offset, bytes, len); |
14f9c5c9 | 2425 | } |
d2e4a39e | 2426 | else |
14f9c5c9 AS |
2427 | { |
2428 | v = allocate_value (type); | |
0fd88904 | 2429 | bytes = (unsigned char *) value_contents (obj) + offset; |
14f9c5c9 | 2430 | } |
d2e4a39e AS |
2431 | |
2432 | if (obj != NULL) | |
14f9c5c9 | 2433 | { |
53ba8333 | 2434 | long new_offset = offset; |
5b4ee69b | 2435 | |
74bcbdf3 | 2436 | set_value_component_location (v, obj); |
9bbda503 AC |
2437 | set_value_bitpos (v, bit_offset + value_bitpos (obj)); |
2438 | set_value_bitsize (v, bit_size); | |
df407dfe | 2439 | if (value_bitpos (v) >= HOST_CHAR_BIT) |
4c4b4cd2 | 2440 | { |
53ba8333 | 2441 | ++new_offset; |
9bbda503 | 2442 | set_value_bitpos (v, value_bitpos (v) - HOST_CHAR_BIT); |
4c4b4cd2 | 2443 | } |
53ba8333 JB |
2444 | set_value_offset (v, new_offset); |
2445 | ||
2446 | /* Also set the parent value. This is needed when trying to | |
2447 | assign a new value (in inferior memory). */ | |
2448 | set_value_parent (v, obj); | |
14f9c5c9 AS |
2449 | } |
2450 | else | |
9bbda503 | 2451 | set_value_bitsize (v, bit_size); |
0fd88904 | 2452 | unpacked = (unsigned char *) value_contents (v); |
14f9c5c9 AS |
2453 | |
2454 | srcBitsLeft = bit_size; | |
2455 | nsrc = len; | |
2456 | ntarg = TYPE_LENGTH (type); | |
2457 | sign = 0; | |
2458 | if (bit_size == 0) | |
2459 | { | |
2460 | memset (unpacked, 0, TYPE_LENGTH (type)); | |
2461 | return v; | |
2462 | } | |
50810684 | 2463 | else if (gdbarch_bits_big_endian (get_type_arch (type))) |
14f9c5c9 | 2464 | { |
d2e4a39e | 2465 | src = len - 1; |
1265e4aa JB |
2466 | if (has_negatives (type) |
2467 | && ((bytes[0] << bit_offset) & (1 << (HOST_CHAR_BIT - 1)))) | |
4c4b4cd2 | 2468 | sign = ~0; |
d2e4a39e AS |
2469 | |
2470 | unusedLS = | |
4c4b4cd2 PH |
2471 | (HOST_CHAR_BIT - (bit_size + bit_offset) % HOST_CHAR_BIT) |
2472 | % HOST_CHAR_BIT; | |
14f9c5c9 AS |
2473 | |
2474 | switch (TYPE_CODE (type)) | |
4c4b4cd2 PH |
2475 | { |
2476 | case TYPE_CODE_ARRAY: | |
2477 | case TYPE_CODE_UNION: | |
2478 | case TYPE_CODE_STRUCT: | |
2479 | /* Non-scalar values must be aligned at a byte boundary... */ | |
2480 | accumSize = | |
2481 | (HOST_CHAR_BIT - bit_size % HOST_CHAR_BIT) % HOST_CHAR_BIT; | |
2482 | /* ... And are placed at the beginning (most-significant) bytes | |
2483 | of the target. */ | |
529cad9c | 2484 | targ = (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT - 1; |
0056e4d5 | 2485 | ntarg = targ + 1; |
4c4b4cd2 PH |
2486 | break; |
2487 | default: | |
2488 | accumSize = 0; | |
2489 | targ = TYPE_LENGTH (type) - 1; | |
2490 | break; | |
2491 | } | |
14f9c5c9 | 2492 | } |
d2e4a39e | 2493 | else |
14f9c5c9 AS |
2494 | { |
2495 | int sign_bit_offset = (bit_size + bit_offset - 1) % 8; | |
2496 | ||
2497 | src = targ = 0; | |
2498 | unusedLS = bit_offset; | |
2499 | accumSize = 0; | |
2500 | ||
d2e4a39e | 2501 | if (has_negatives (type) && (bytes[len - 1] & (1 << sign_bit_offset))) |
4c4b4cd2 | 2502 | sign = ~0; |
14f9c5c9 | 2503 | } |
d2e4a39e | 2504 | |
14f9c5c9 AS |
2505 | accum = 0; |
2506 | while (nsrc > 0) | |
2507 | { | |
2508 | /* Mask for removing bits of the next source byte that are not | |
4c4b4cd2 | 2509 | part of the value. */ |
d2e4a39e | 2510 | unsigned int unusedMSMask = |
4c4b4cd2 PH |
2511 | (1 << (srcBitsLeft >= HOST_CHAR_BIT ? HOST_CHAR_BIT : srcBitsLeft)) - |
2512 | 1; | |
2513 | /* Sign-extend bits for this byte. */ | |
14f9c5c9 | 2514 | unsigned int signMask = sign & ~unusedMSMask; |
5b4ee69b | 2515 | |
d2e4a39e | 2516 | accum |= |
4c4b4cd2 | 2517 | (((bytes[src] >> unusedLS) & unusedMSMask) | signMask) << accumSize; |
14f9c5c9 | 2518 | accumSize += HOST_CHAR_BIT - unusedLS; |
d2e4a39e | 2519 | if (accumSize >= HOST_CHAR_BIT) |
4c4b4cd2 PH |
2520 | { |
2521 | unpacked[targ] = accum & ~(~0L << HOST_CHAR_BIT); | |
2522 | accumSize -= HOST_CHAR_BIT; | |
2523 | accum >>= HOST_CHAR_BIT; | |
2524 | ntarg -= 1; | |
2525 | targ += delta; | |
2526 | } | |
14f9c5c9 AS |
2527 | srcBitsLeft -= HOST_CHAR_BIT - unusedLS; |
2528 | unusedLS = 0; | |
2529 | nsrc -= 1; | |
2530 | src += delta; | |
2531 | } | |
2532 | while (ntarg > 0) | |
2533 | { | |
2534 | accum |= sign << accumSize; | |
2535 | unpacked[targ] = accum & ~(~0L << HOST_CHAR_BIT); | |
2536 | accumSize -= HOST_CHAR_BIT; | |
2537 | accum >>= HOST_CHAR_BIT; | |
2538 | ntarg -= 1; | |
2539 | targ += delta; | |
2540 | } | |
2541 | ||
2542 | return v; | |
2543 | } | |
d2e4a39e | 2544 | |
14f9c5c9 AS |
2545 | /* Move N bits from SOURCE, starting at bit offset SRC_OFFSET to |
2546 | TARGET, starting at bit offset TARG_OFFSET. SOURCE and TARGET must | |
4c4b4cd2 | 2547 | not overlap. */ |
14f9c5c9 | 2548 | static void |
fc1a4b47 | 2549 | move_bits (gdb_byte *target, int targ_offset, const gdb_byte *source, |
50810684 | 2550 | int src_offset, int n, int bits_big_endian_p) |
14f9c5c9 AS |
2551 | { |
2552 | unsigned int accum, mask; | |
2553 | int accum_bits, chunk_size; | |
2554 | ||
2555 | target += targ_offset / HOST_CHAR_BIT; | |
2556 | targ_offset %= HOST_CHAR_BIT; | |
2557 | source += src_offset / HOST_CHAR_BIT; | |
2558 | src_offset %= HOST_CHAR_BIT; | |
50810684 | 2559 | if (bits_big_endian_p) |
14f9c5c9 AS |
2560 | { |
2561 | accum = (unsigned char) *source; | |
2562 | source += 1; | |
2563 | accum_bits = HOST_CHAR_BIT - src_offset; | |
2564 | ||
d2e4a39e | 2565 | while (n > 0) |
4c4b4cd2 PH |
2566 | { |
2567 | int unused_right; | |
5b4ee69b | 2568 | |
4c4b4cd2 PH |
2569 | accum = (accum << HOST_CHAR_BIT) + (unsigned char) *source; |
2570 | accum_bits += HOST_CHAR_BIT; | |
2571 | source += 1; | |
2572 | chunk_size = HOST_CHAR_BIT - targ_offset; | |
2573 | if (chunk_size > n) | |
2574 | chunk_size = n; | |
2575 | unused_right = HOST_CHAR_BIT - (chunk_size + targ_offset); | |
2576 | mask = ((1 << chunk_size) - 1) << unused_right; | |
2577 | *target = | |
2578 | (*target & ~mask) | |
2579 | | ((accum >> (accum_bits - chunk_size - unused_right)) & mask); | |
2580 | n -= chunk_size; | |
2581 | accum_bits -= chunk_size; | |
2582 | target += 1; | |
2583 | targ_offset = 0; | |
2584 | } | |
14f9c5c9 AS |
2585 | } |
2586 | else | |
2587 | { | |
2588 | accum = (unsigned char) *source >> src_offset; | |
2589 | source += 1; | |
2590 | accum_bits = HOST_CHAR_BIT - src_offset; | |
2591 | ||
d2e4a39e | 2592 | while (n > 0) |
4c4b4cd2 PH |
2593 | { |
2594 | accum = accum + ((unsigned char) *source << accum_bits); | |
2595 | accum_bits += HOST_CHAR_BIT; | |
2596 | source += 1; | |
2597 | chunk_size = HOST_CHAR_BIT - targ_offset; | |
2598 | if (chunk_size > n) | |
2599 | chunk_size = n; | |
2600 | mask = ((1 << chunk_size) - 1) << targ_offset; | |
2601 | *target = (*target & ~mask) | ((accum << targ_offset) & mask); | |
2602 | n -= chunk_size; | |
2603 | accum_bits -= chunk_size; | |
2604 | accum >>= chunk_size; | |
2605 | target += 1; | |
2606 | targ_offset = 0; | |
2607 | } | |
14f9c5c9 AS |
2608 | } |
2609 | } | |
2610 | ||
14f9c5c9 AS |
2611 | /* Store the contents of FROMVAL into the location of TOVAL. |
2612 | Return a new value with the location of TOVAL and contents of | |
2613 | FROMVAL. Handles assignment into packed fields that have | |
4c4b4cd2 | 2614 | floating-point or non-scalar types. */ |
14f9c5c9 | 2615 | |
d2e4a39e AS |
2616 | static struct value * |
2617 | ada_value_assign (struct value *toval, struct value *fromval) | |
14f9c5c9 | 2618 | { |
df407dfe AC |
2619 | struct type *type = value_type (toval); |
2620 | int bits = value_bitsize (toval); | |
14f9c5c9 | 2621 | |
52ce6436 PH |
2622 | toval = ada_coerce_ref (toval); |
2623 | fromval = ada_coerce_ref (fromval); | |
2624 | ||
2625 | if (ada_is_direct_array_type (value_type (toval))) | |
2626 | toval = ada_coerce_to_simple_array (toval); | |
2627 | if (ada_is_direct_array_type (value_type (fromval))) | |
2628 | fromval = ada_coerce_to_simple_array (fromval); | |
2629 | ||
88e3b34b | 2630 | if (!deprecated_value_modifiable (toval)) |
323e0a4a | 2631 | error (_("Left operand of assignment is not a modifiable lvalue.")); |
14f9c5c9 | 2632 | |
d2e4a39e | 2633 | if (VALUE_LVAL (toval) == lval_memory |
14f9c5c9 | 2634 | && bits > 0 |
d2e4a39e | 2635 | && (TYPE_CODE (type) == TYPE_CODE_FLT |
4c4b4cd2 | 2636 | || TYPE_CODE (type) == TYPE_CODE_STRUCT)) |
14f9c5c9 | 2637 | { |
df407dfe AC |
2638 | int len = (value_bitpos (toval) |
2639 | + bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT; | |
aced2898 | 2640 | int from_size; |
948f8e3d | 2641 | gdb_byte *buffer = alloca (len); |
d2e4a39e | 2642 | struct value *val; |
42ae5230 | 2643 | CORE_ADDR to_addr = value_address (toval); |
14f9c5c9 AS |
2644 | |
2645 | if (TYPE_CODE (type) == TYPE_CODE_FLT) | |
4c4b4cd2 | 2646 | fromval = value_cast (type, fromval); |
14f9c5c9 | 2647 | |
52ce6436 | 2648 | read_memory (to_addr, buffer, len); |
aced2898 PH |
2649 | from_size = value_bitsize (fromval); |
2650 | if (from_size == 0) | |
2651 | from_size = TYPE_LENGTH (value_type (fromval)) * TARGET_CHAR_BIT; | |
50810684 | 2652 | if (gdbarch_bits_big_endian (get_type_arch (type))) |
df407dfe | 2653 | move_bits (buffer, value_bitpos (toval), |
50810684 | 2654 | value_contents (fromval), from_size - bits, bits, 1); |
14f9c5c9 | 2655 | else |
50810684 UW |
2656 | move_bits (buffer, value_bitpos (toval), |
2657 | value_contents (fromval), 0, bits, 0); | |
972daa01 | 2658 | write_memory_with_notification (to_addr, buffer, len); |
8cebebb9 | 2659 | |
14f9c5c9 | 2660 | val = value_copy (toval); |
0fd88904 | 2661 | memcpy (value_contents_raw (val), value_contents (fromval), |
4c4b4cd2 | 2662 | TYPE_LENGTH (type)); |
04624583 | 2663 | deprecated_set_value_type (val, type); |
d2e4a39e | 2664 | |
14f9c5c9 AS |
2665 | return val; |
2666 | } | |
2667 | ||
2668 | return value_assign (toval, fromval); | |
2669 | } | |
2670 | ||
2671 | ||
52ce6436 PH |
2672 | /* Given that COMPONENT is a memory lvalue that is part of the lvalue |
2673 | * CONTAINER, assign the contents of VAL to COMPONENTS's place in | |
2674 | * CONTAINER. Modifies the VALUE_CONTENTS of CONTAINER only, not | |
2675 | * COMPONENT, and not the inferior's memory. The current contents | |
2676 | * of COMPONENT are ignored. */ | |
2677 | static void | |
2678 | value_assign_to_component (struct value *container, struct value *component, | |
2679 | struct value *val) | |
2680 | { | |
2681 | LONGEST offset_in_container = | |
42ae5230 | 2682 | (LONGEST) (value_address (component) - value_address (container)); |
52ce6436 PH |
2683 | int bit_offset_in_container = |
2684 | value_bitpos (component) - value_bitpos (container); | |
2685 | int bits; | |
2686 | ||
2687 | val = value_cast (value_type (component), val); | |
2688 | ||
2689 | if (value_bitsize (component) == 0) | |
2690 | bits = TARGET_CHAR_BIT * TYPE_LENGTH (value_type (component)); | |
2691 | else | |
2692 | bits = value_bitsize (component); | |
2693 | ||
50810684 | 2694 | if (gdbarch_bits_big_endian (get_type_arch (value_type (container)))) |
52ce6436 PH |
2695 | move_bits (value_contents_writeable (container) + offset_in_container, |
2696 | value_bitpos (container) + bit_offset_in_container, | |
2697 | value_contents (val), | |
2698 | TYPE_LENGTH (value_type (component)) * TARGET_CHAR_BIT - bits, | |
50810684 | 2699 | bits, 1); |
52ce6436 PH |
2700 | else |
2701 | move_bits (value_contents_writeable (container) + offset_in_container, | |
2702 | value_bitpos (container) + bit_offset_in_container, | |
50810684 | 2703 | value_contents (val), 0, bits, 0); |
52ce6436 PH |
2704 | } |
2705 | ||
4c4b4cd2 PH |
2706 | /* The value of the element of array ARR at the ARITY indices given in IND. |
2707 | ARR may be either a simple array, GNAT array descriptor, or pointer | |
14f9c5c9 AS |
2708 | thereto. */ |
2709 | ||
d2e4a39e AS |
2710 | struct value * |
2711 | ada_value_subscript (struct value *arr, int arity, struct value **ind) | |
14f9c5c9 AS |
2712 | { |
2713 | int k; | |
d2e4a39e AS |
2714 | struct value *elt; |
2715 | struct type *elt_type; | |
14f9c5c9 AS |
2716 | |
2717 | elt = ada_coerce_to_simple_array (arr); | |
2718 | ||
df407dfe | 2719 | elt_type = ada_check_typedef (value_type (elt)); |
d2e4a39e | 2720 | if (TYPE_CODE (elt_type) == TYPE_CODE_ARRAY |
14f9c5c9 AS |
2721 | && TYPE_FIELD_BITSIZE (elt_type, 0) > 0) |
2722 | return value_subscript_packed (elt, arity, ind); | |
2723 | ||
2724 | for (k = 0; k < arity; k += 1) | |
2725 | { | |
2726 | if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY) | |
323e0a4a | 2727 | error (_("too many subscripts (%d expected)"), k); |
2497b498 | 2728 | elt = value_subscript (elt, pos_atr (ind[k])); |
14f9c5c9 AS |
2729 | } |
2730 | return elt; | |
2731 | } | |
2732 | ||
deede10c JB |
2733 | /* Assuming ARR is a pointer to a GDB array, the value of the element |
2734 | of *ARR at the ARITY indices given in IND. | |
2735 | Does not read the entire array into memory. */ | |
14f9c5c9 | 2736 | |
2c0b251b | 2737 | static struct value * |
deede10c | 2738 | ada_value_ptr_subscript (struct value *arr, int arity, struct value **ind) |
14f9c5c9 AS |
2739 | { |
2740 | int k; | |
deede10c JB |
2741 | struct type *type |
2742 | = check_typedef (value_enclosing_type (ada_value_ind (arr))); | |
14f9c5c9 AS |
2743 | |
2744 | for (k = 0; k < arity; k += 1) | |
2745 | { | |
2746 | LONGEST lwb, upb; | |
14f9c5c9 AS |
2747 | |
2748 | if (TYPE_CODE (type) != TYPE_CODE_ARRAY) | |
323e0a4a | 2749 | error (_("too many subscripts (%d expected)"), k); |
d2e4a39e | 2750 | arr = value_cast (lookup_pointer_type (TYPE_TARGET_TYPE (type)), |
4c4b4cd2 | 2751 | value_copy (arr)); |
14f9c5c9 | 2752 | get_discrete_bounds (TYPE_INDEX_TYPE (type), &lwb, &upb); |
2497b498 | 2753 | arr = value_ptradd (arr, pos_atr (ind[k]) - lwb); |
14f9c5c9 AS |
2754 | type = TYPE_TARGET_TYPE (type); |
2755 | } | |
2756 | ||
2757 | return value_ind (arr); | |
2758 | } | |
2759 | ||
0b5d8877 | 2760 | /* Given that ARRAY_PTR is a pointer or reference to an array of type TYPE (the |
f5938064 JG |
2761 | actual type of ARRAY_PTR is ignored), returns the Ada slice of HIGH-LOW+1 |
2762 | elements starting at index LOW. The lower bound of this array is LOW, as | |
0963b4bd | 2763 | per Ada rules. */ |
0b5d8877 | 2764 | static struct value * |
f5938064 JG |
2765 | ada_value_slice_from_ptr (struct value *array_ptr, struct type *type, |
2766 | int low, int high) | |
0b5d8877 | 2767 | { |
b0dd7688 | 2768 | struct type *type0 = ada_check_typedef (type); |
6c038f32 | 2769 | CORE_ADDR base = value_as_address (array_ptr) |
b0dd7688 JB |
2770 | + ((low - ada_discrete_type_low_bound (TYPE_INDEX_TYPE (type0))) |
2771 | * TYPE_LENGTH (TYPE_TARGET_TYPE (type0))); | |
0c9c3474 SA |
2772 | struct type *index_type |
2773 | = create_static_range_type (NULL, | |
2774 | TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type0)), | |
2775 | low, high); | |
6c038f32 | 2776 | struct type *slice_type = |
b0dd7688 | 2777 | create_array_type (NULL, TYPE_TARGET_TYPE (type0), index_type); |
5b4ee69b | 2778 | |
f5938064 | 2779 | return value_at_lazy (slice_type, base); |
0b5d8877 PH |
2780 | } |
2781 | ||
2782 | ||
2783 | static struct value * | |
2784 | ada_value_slice (struct value *array, int low, int high) | |
2785 | { | |
b0dd7688 | 2786 | struct type *type = ada_check_typedef (value_type (array)); |
0c9c3474 SA |
2787 | struct type *index_type |
2788 | = create_static_range_type (NULL, TYPE_INDEX_TYPE (type), low, high); | |
6c038f32 | 2789 | struct type *slice_type = |
0b5d8877 | 2790 | create_array_type (NULL, TYPE_TARGET_TYPE (type), index_type); |
5b4ee69b | 2791 | |
6c038f32 | 2792 | return value_cast (slice_type, value_slice (array, low, high - low + 1)); |
0b5d8877 PH |
2793 | } |
2794 | ||
14f9c5c9 AS |
2795 | /* If type is a record type in the form of a standard GNAT array |
2796 | descriptor, returns the number of dimensions for type. If arr is a | |
2797 | simple array, returns the number of "array of"s that prefix its | |
4c4b4cd2 | 2798 | type designation. Otherwise, returns 0. */ |
14f9c5c9 AS |
2799 | |
2800 | int | |
d2e4a39e | 2801 | ada_array_arity (struct type *type) |
14f9c5c9 AS |
2802 | { |
2803 | int arity; | |
2804 | ||
2805 | if (type == NULL) | |
2806 | return 0; | |
2807 | ||
2808 | type = desc_base_type (type); | |
2809 | ||
2810 | arity = 0; | |
d2e4a39e | 2811 | if (TYPE_CODE (type) == TYPE_CODE_STRUCT) |
14f9c5c9 | 2812 | return desc_arity (desc_bounds_type (type)); |
d2e4a39e AS |
2813 | else |
2814 | while (TYPE_CODE (type) == TYPE_CODE_ARRAY) | |
14f9c5c9 | 2815 | { |
4c4b4cd2 | 2816 | arity += 1; |
61ee279c | 2817 | type = ada_check_typedef (TYPE_TARGET_TYPE (type)); |
14f9c5c9 | 2818 | } |
d2e4a39e | 2819 | |
14f9c5c9 AS |
2820 | return arity; |
2821 | } | |
2822 | ||
2823 | /* If TYPE is a record type in the form of a standard GNAT array | |
2824 | descriptor or a simple array type, returns the element type for | |
2825 | TYPE after indexing by NINDICES indices, or by all indices if | |
4c4b4cd2 | 2826 | NINDICES is -1. Otherwise, returns NULL. */ |
14f9c5c9 | 2827 | |
d2e4a39e AS |
2828 | struct type * |
2829 | ada_array_element_type (struct type *type, int nindices) | |
14f9c5c9 AS |
2830 | { |
2831 | type = desc_base_type (type); | |
2832 | ||
d2e4a39e | 2833 | if (TYPE_CODE (type) == TYPE_CODE_STRUCT) |
14f9c5c9 AS |
2834 | { |
2835 | int k; | |
d2e4a39e | 2836 | struct type *p_array_type; |
14f9c5c9 | 2837 | |
556bdfd4 | 2838 | p_array_type = desc_data_target_type (type); |
14f9c5c9 AS |
2839 | |
2840 | k = ada_array_arity (type); | |
2841 | if (k == 0) | |
4c4b4cd2 | 2842 | return NULL; |
d2e4a39e | 2843 | |
4c4b4cd2 | 2844 | /* Initially p_array_type = elt_type(*)[]...(k times)...[]. */ |
14f9c5c9 | 2845 | if (nindices >= 0 && k > nindices) |
4c4b4cd2 | 2846 | k = nindices; |
d2e4a39e | 2847 | while (k > 0 && p_array_type != NULL) |
4c4b4cd2 | 2848 | { |
61ee279c | 2849 | p_array_type = ada_check_typedef (TYPE_TARGET_TYPE (p_array_type)); |
4c4b4cd2 PH |
2850 | k -= 1; |
2851 | } | |
14f9c5c9 AS |
2852 | return p_array_type; |
2853 | } | |
2854 | else if (TYPE_CODE (type) == TYPE_CODE_ARRAY) | |
2855 | { | |
2856 | while (nindices != 0 && TYPE_CODE (type) == TYPE_CODE_ARRAY) | |
4c4b4cd2 PH |
2857 | { |
2858 | type = TYPE_TARGET_TYPE (type); | |
2859 | nindices -= 1; | |
2860 | } | |
14f9c5c9 AS |
2861 | return type; |
2862 | } | |
2863 | ||
2864 | return NULL; | |
2865 | } | |
2866 | ||
4c4b4cd2 | 2867 | /* The type of nth index in arrays of given type (n numbering from 1). |
dd19d49e UW |
2868 | Does not examine memory. Throws an error if N is invalid or TYPE |
2869 | is not an array type. NAME is the name of the Ada attribute being | |
2870 | evaluated ('range, 'first, 'last, or 'length); it is used in building | |
2871 | the error message. */ | |
14f9c5c9 | 2872 | |
1eea4ebd UW |
2873 | static struct type * |
2874 | ada_index_type (struct type *type, int n, const char *name) | |
14f9c5c9 | 2875 | { |
4c4b4cd2 PH |
2876 | struct type *result_type; |
2877 | ||
14f9c5c9 AS |
2878 | type = desc_base_type (type); |
2879 | ||
1eea4ebd UW |
2880 | if (n < 0 || n > ada_array_arity (type)) |
2881 | error (_("invalid dimension number to '%s"), name); | |
14f9c5c9 | 2882 | |
4c4b4cd2 | 2883 | if (ada_is_simple_array_type (type)) |
14f9c5c9 AS |
2884 | { |
2885 | int i; | |
2886 | ||
2887 | for (i = 1; i < n; i += 1) | |
4c4b4cd2 | 2888 | type = TYPE_TARGET_TYPE (type); |
262452ec | 2889 | result_type = TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type)); |
4c4b4cd2 PH |
2890 | /* FIXME: The stabs type r(0,0);bound;bound in an array type |
2891 | has a target type of TYPE_CODE_UNDEF. We compensate here, but | |
76a01679 | 2892 | perhaps stabsread.c would make more sense. */ |
1eea4ebd UW |
2893 | if (result_type && TYPE_CODE (result_type) == TYPE_CODE_UNDEF) |
2894 | result_type = NULL; | |
14f9c5c9 | 2895 | } |
d2e4a39e | 2896 | else |
1eea4ebd UW |
2897 | { |
2898 | result_type = desc_index_type (desc_bounds_type (type), n); | |
2899 | if (result_type == NULL) | |
2900 | error (_("attempt to take bound of something that is not an array")); | |
2901 | } | |
2902 | ||
2903 | return result_type; | |
14f9c5c9 AS |
2904 | } |
2905 | ||
2906 | /* Given that arr is an array type, returns the lower bound of the | |
2907 | Nth index (numbering from 1) if WHICH is 0, and the upper bound if | |
4c4b4cd2 | 2908 | WHICH is 1. This returns bounds 0 .. -1 if ARR_TYPE is an |
1eea4ebd UW |
2909 | array-descriptor type. It works for other arrays with bounds supplied |
2910 | by run-time quantities other than discriminants. */ | |
14f9c5c9 | 2911 | |
abb68b3e | 2912 | static LONGEST |
fb5e3d5c | 2913 | ada_array_bound_from_type (struct type *arr_type, int n, int which) |
14f9c5c9 | 2914 | { |
8a48ac95 | 2915 | struct type *type, *index_type_desc, *index_type; |
1ce677a4 | 2916 | int i; |
262452ec JK |
2917 | |
2918 | gdb_assert (which == 0 || which == 1); | |
14f9c5c9 | 2919 | |
ad82864c JB |
2920 | if (ada_is_constrained_packed_array_type (arr_type)) |
2921 | arr_type = decode_constrained_packed_array_type (arr_type); | |
14f9c5c9 | 2922 | |
4c4b4cd2 | 2923 | if (arr_type == NULL || !ada_is_simple_array_type (arr_type)) |
1eea4ebd | 2924 | return (LONGEST) - which; |
14f9c5c9 AS |
2925 | |
2926 | if (TYPE_CODE (arr_type) == TYPE_CODE_PTR) | |
2927 | type = TYPE_TARGET_TYPE (arr_type); | |
2928 | else | |
2929 | type = arr_type; | |
2930 | ||
2931 | index_type_desc = ada_find_parallel_type (type, "___XA"); | |
28c85d6c | 2932 | ada_fixup_array_indexes_type (index_type_desc); |
262452ec | 2933 | if (index_type_desc != NULL) |
28c85d6c JB |
2934 | index_type = to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, n - 1), |
2935 | NULL); | |
262452ec | 2936 | else |
8a48ac95 JB |
2937 | { |
2938 | struct type *elt_type = check_typedef (type); | |
2939 | ||
2940 | for (i = 1; i < n; i++) | |
2941 | elt_type = check_typedef (TYPE_TARGET_TYPE (elt_type)); | |
2942 | ||
2943 | index_type = TYPE_INDEX_TYPE (elt_type); | |
2944 | } | |
262452ec | 2945 | |
43bbcdc2 PH |
2946 | return |
2947 | (LONGEST) (which == 0 | |
2948 | ? ada_discrete_type_low_bound (index_type) | |
2949 | : ada_discrete_type_high_bound (index_type)); | |
14f9c5c9 AS |
2950 | } |
2951 | ||
2952 | /* Given that arr is an array value, returns the lower bound of the | |
abb68b3e JB |
2953 | nth index (numbering from 1) if WHICH is 0, and the upper bound if |
2954 | WHICH is 1. This routine will also work for arrays with bounds | |
4c4b4cd2 | 2955 | supplied by run-time quantities other than discriminants. */ |
14f9c5c9 | 2956 | |
1eea4ebd | 2957 | static LONGEST |
4dc81987 | 2958 | ada_array_bound (struct value *arr, int n, int which) |
14f9c5c9 | 2959 | { |
eb479039 JB |
2960 | struct type *arr_type; |
2961 | ||
2962 | if (TYPE_CODE (check_typedef (value_type (arr))) == TYPE_CODE_PTR) | |
2963 | arr = value_ind (arr); | |
2964 | arr_type = value_enclosing_type (arr); | |
14f9c5c9 | 2965 | |
ad82864c JB |
2966 | if (ada_is_constrained_packed_array_type (arr_type)) |
2967 | return ada_array_bound (decode_constrained_packed_array (arr), n, which); | |
4c4b4cd2 | 2968 | else if (ada_is_simple_array_type (arr_type)) |
1eea4ebd | 2969 | return ada_array_bound_from_type (arr_type, n, which); |
14f9c5c9 | 2970 | else |
1eea4ebd | 2971 | return value_as_long (desc_one_bound (desc_bounds (arr), n, which)); |
14f9c5c9 AS |
2972 | } |
2973 | ||
2974 | /* Given that arr is an array value, returns the length of the | |
2975 | nth index. This routine will also work for arrays with bounds | |
4c4b4cd2 PH |
2976 | supplied by run-time quantities other than discriminants. |
2977 | Does not work for arrays indexed by enumeration types with representation | |
2978 | clauses at the moment. */ | |
14f9c5c9 | 2979 | |
1eea4ebd | 2980 | static LONGEST |
d2e4a39e | 2981 | ada_array_length (struct value *arr, int n) |
14f9c5c9 | 2982 | { |
eb479039 JB |
2983 | struct type *arr_type; |
2984 | ||
2985 | if (TYPE_CODE (check_typedef (value_type (arr))) == TYPE_CODE_PTR) | |
2986 | arr = value_ind (arr); | |
2987 | arr_type = value_enclosing_type (arr); | |
14f9c5c9 | 2988 | |
ad82864c JB |
2989 | if (ada_is_constrained_packed_array_type (arr_type)) |
2990 | return ada_array_length (decode_constrained_packed_array (arr), n); | |
14f9c5c9 | 2991 | |
4c4b4cd2 | 2992 | if (ada_is_simple_array_type (arr_type)) |
1eea4ebd UW |
2993 | return (ada_array_bound_from_type (arr_type, n, 1) |
2994 | - ada_array_bound_from_type (arr_type, n, 0) + 1); | |
14f9c5c9 | 2995 | else |
1eea4ebd UW |
2996 | return (value_as_long (desc_one_bound (desc_bounds (arr), n, 1)) |
2997 | - value_as_long (desc_one_bound (desc_bounds (arr), n, 0)) + 1); | |
4c4b4cd2 PH |
2998 | } |
2999 | ||
3000 | /* An empty array whose type is that of ARR_TYPE (an array type), | |
3001 | with bounds LOW to LOW-1. */ | |
3002 | ||
3003 | static struct value * | |
3004 | empty_array (struct type *arr_type, int low) | |
3005 | { | |
b0dd7688 | 3006 | struct type *arr_type0 = ada_check_typedef (arr_type); |
0c9c3474 SA |
3007 | struct type *index_type |
3008 | = create_static_range_type | |
3009 | (NULL, TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (arr_type0)), low, low - 1); | |
b0dd7688 | 3010 | struct type *elt_type = ada_array_element_type (arr_type0, 1); |
5b4ee69b | 3011 | |
0b5d8877 | 3012 | return allocate_value (create_array_type (NULL, elt_type, index_type)); |
14f9c5c9 | 3013 | } |
14f9c5c9 | 3014 | \f |
d2e4a39e | 3015 | |
4c4b4cd2 | 3016 | /* Name resolution */ |
14f9c5c9 | 3017 | |
4c4b4cd2 PH |
3018 | /* The "decoded" name for the user-definable Ada operator corresponding |
3019 | to OP. */ | |
14f9c5c9 | 3020 | |
d2e4a39e | 3021 | static const char * |
4c4b4cd2 | 3022 | ada_decoded_op_name (enum exp_opcode op) |
14f9c5c9 AS |
3023 | { |
3024 | int i; | |
3025 | ||
4c4b4cd2 | 3026 | for (i = 0; ada_opname_table[i].encoded != NULL; i += 1) |
14f9c5c9 AS |
3027 | { |
3028 | if (ada_opname_table[i].op == op) | |
4c4b4cd2 | 3029 | return ada_opname_table[i].decoded; |
14f9c5c9 | 3030 | } |
323e0a4a | 3031 | error (_("Could not find operator name for opcode")); |
14f9c5c9 AS |
3032 | } |
3033 | ||
3034 | ||
4c4b4cd2 PH |
3035 | /* Same as evaluate_type (*EXP), but resolves ambiguous symbol |
3036 | references (marked by OP_VAR_VALUE nodes in which the symbol has an | |
3037 | undefined namespace) and converts operators that are | |
3038 | user-defined into appropriate function calls. If CONTEXT_TYPE is | |
14f9c5c9 AS |
3039 | non-null, it provides a preferred result type [at the moment, only |
3040 | type void has any effect---causing procedures to be preferred over | |
3041 | functions in calls]. A null CONTEXT_TYPE indicates that a non-void | |
4c4b4cd2 | 3042 | return type is preferred. May change (expand) *EXP. */ |
14f9c5c9 | 3043 | |
4c4b4cd2 PH |
3044 | static void |
3045 | resolve (struct expression **expp, int void_context_p) | |
14f9c5c9 | 3046 | { |
30b15541 UW |
3047 | struct type *context_type = NULL; |
3048 | int pc = 0; | |
3049 | ||
3050 | if (void_context_p) | |
3051 | context_type = builtin_type ((*expp)->gdbarch)->builtin_void; | |
3052 | ||
3053 | resolve_subexp (expp, &pc, 1, context_type); | |
14f9c5c9 AS |
3054 | } |
3055 | ||
4c4b4cd2 PH |
3056 | /* Resolve the operator of the subexpression beginning at |
3057 | position *POS of *EXPP. "Resolving" consists of replacing | |
3058 | the symbols that have undefined namespaces in OP_VAR_VALUE nodes | |
3059 | with their resolutions, replacing built-in operators with | |
3060 | function calls to user-defined operators, where appropriate, and, | |
3061 | when DEPROCEDURE_P is non-zero, converting function-valued variables | |
3062 | into parameterless calls. May expand *EXPP. The CONTEXT_TYPE functions | |
3063 | are as in ada_resolve, above. */ | |
14f9c5c9 | 3064 | |
d2e4a39e | 3065 | static struct value * |
4c4b4cd2 | 3066 | resolve_subexp (struct expression **expp, int *pos, int deprocedure_p, |
76a01679 | 3067 | struct type *context_type) |
14f9c5c9 AS |
3068 | { |
3069 | int pc = *pos; | |
3070 | int i; | |
4c4b4cd2 | 3071 | struct expression *exp; /* Convenience: == *expp. */ |
14f9c5c9 | 3072 | enum exp_opcode op = (*expp)->elts[pc].opcode; |
4c4b4cd2 PH |
3073 | struct value **argvec; /* Vector of operand types (alloca'ed). */ |
3074 | int nargs; /* Number of operands. */ | |
52ce6436 | 3075 | int oplen; |
14f9c5c9 AS |
3076 | |
3077 | argvec = NULL; | |
3078 | nargs = 0; | |
3079 | exp = *expp; | |
3080 | ||
52ce6436 PH |
3081 | /* Pass one: resolve operands, saving their types and updating *pos, |
3082 | if needed. */ | |
14f9c5c9 AS |
3083 | switch (op) |
3084 | { | |
4c4b4cd2 PH |
3085 | case OP_FUNCALL: |
3086 | if (exp->elts[pc + 3].opcode == OP_VAR_VALUE | |
76a01679 JB |
3087 | && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN) |
3088 | *pos += 7; | |
4c4b4cd2 PH |
3089 | else |
3090 | { | |
3091 | *pos += 3; | |
3092 | resolve_subexp (expp, pos, 0, NULL); | |
3093 | } | |
3094 | nargs = longest_to_int (exp->elts[pc + 1].longconst); | |
14f9c5c9 AS |
3095 | break; |
3096 | ||
14f9c5c9 | 3097 | case UNOP_ADDR: |
4c4b4cd2 PH |
3098 | *pos += 1; |
3099 | resolve_subexp (expp, pos, 0, NULL); | |
3100 | break; | |
3101 | ||
52ce6436 PH |
3102 | case UNOP_QUAL: |
3103 | *pos += 3; | |
17466c1a | 3104 | resolve_subexp (expp, pos, 1, check_typedef (exp->elts[pc + 1].type)); |
4c4b4cd2 PH |
3105 | break; |
3106 | ||
52ce6436 | 3107 | case OP_ATR_MODULUS: |
4c4b4cd2 PH |
3108 | case OP_ATR_SIZE: |
3109 | case OP_ATR_TAG: | |
4c4b4cd2 PH |
3110 | case OP_ATR_FIRST: |
3111 | case OP_ATR_LAST: | |
3112 | case OP_ATR_LENGTH: | |
3113 | case OP_ATR_POS: | |
3114 | case OP_ATR_VAL: | |
4c4b4cd2 PH |
3115 | case OP_ATR_MIN: |
3116 | case OP_ATR_MAX: | |
52ce6436 PH |
3117 | case TERNOP_IN_RANGE: |
3118 | case BINOP_IN_BOUNDS: | |
3119 | case UNOP_IN_RANGE: | |
3120 | case OP_AGGREGATE: | |
3121 | case OP_OTHERS: | |
3122 | case OP_CHOICES: | |
3123 | case OP_POSITIONAL: | |
3124 | case OP_DISCRETE_RANGE: | |
3125 | case OP_NAME: | |
3126 | ada_forward_operator_length (exp, pc, &oplen, &nargs); | |
3127 | *pos += oplen; | |
14f9c5c9 AS |
3128 | break; |
3129 | ||
3130 | case BINOP_ASSIGN: | |
3131 | { | |
4c4b4cd2 PH |
3132 | struct value *arg1; |
3133 | ||
3134 | *pos += 1; | |
3135 | arg1 = resolve_subexp (expp, pos, 0, NULL); | |
3136 | if (arg1 == NULL) | |
3137 | resolve_subexp (expp, pos, 1, NULL); | |
3138 | else | |
df407dfe | 3139 | resolve_subexp (expp, pos, 1, value_type (arg1)); |
4c4b4cd2 | 3140 | break; |
14f9c5c9 AS |
3141 | } |
3142 | ||
4c4b4cd2 | 3143 | case UNOP_CAST: |
4c4b4cd2 PH |
3144 | *pos += 3; |
3145 | nargs = 1; | |
3146 | break; | |
14f9c5c9 | 3147 | |
4c4b4cd2 PH |
3148 | case BINOP_ADD: |
3149 | case BINOP_SUB: | |
3150 | case BINOP_MUL: | |
3151 | case BINOP_DIV: | |
3152 | case BINOP_REM: | |
3153 | case BINOP_MOD: | |
3154 | case BINOP_EXP: | |
3155 | case BINOP_CONCAT: | |
3156 | case BINOP_LOGICAL_AND: | |
3157 | case BINOP_LOGICAL_OR: | |
3158 | case BINOP_BITWISE_AND: | |
3159 | case BINOP_BITWISE_IOR: | |
3160 | case BINOP_BITWISE_XOR: | |
14f9c5c9 | 3161 | |
4c4b4cd2 PH |
3162 | case BINOP_EQUAL: |
3163 | case BINOP_NOTEQUAL: | |
3164 | case BINOP_LESS: | |
3165 | case BINOP_GTR: | |
3166 | case BINOP_LEQ: | |
3167 | case BINOP_GEQ: | |
14f9c5c9 | 3168 | |
4c4b4cd2 PH |
3169 | case BINOP_REPEAT: |
3170 | case BINOP_SUBSCRIPT: | |
3171 | case BINOP_COMMA: | |
40c8aaa9 JB |
3172 | *pos += 1; |
3173 | nargs = 2; | |
3174 | break; | |
14f9c5c9 | 3175 | |
4c4b4cd2 PH |
3176 | case UNOP_NEG: |
3177 | case UNOP_PLUS: | |
3178 | case UNOP_LOGICAL_NOT: | |
3179 | case UNOP_ABS: | |
3180 | case UNOP_IND: | |
3181 | *pos += 1; | |
3182 | nargs = 1; | |
3183 | break; | |
14f9c5c9 | 3184 | |
4c4b4cd2 PH |
3185 | case OP_LONG: |
3186 | case OP_DOUBLE: | |
3187 | case OP_VAR_VALUE: | |
3188 | *pos += 4; | |
3189 | break; | |
14f9c5c9 | 3190 | |
4c4b4cd2 PH |
3191 | case OP_TYPE: |
3192 | case OP_BOOL: | |
3193 | case OP_LAST: | |
4c4b4cd2 PH |
3194 | case OP_INTERNALVAR: |
3195 | *pos += 3; | |
3196 | break; | |
14f9c5c9 | 3197 | |
4c4b4cd2 PH |
3198 | case UNOP_MEMVAL: |
3199 | *pos += 3; | |
3200 | nargs = 1; | |
3201 | break; | |
3202 | ||
67f3407f DJ |
3203 | case OP_REGISTER: |
3204 | *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1); | |
3205 | break; | |
3206 | ||
4c4b4cd2 PH |
3207 | case STRUCTOP_STRUCT: |
3208 | *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1); | |
3209 | nargs = 1; | |
3210 | break; | |
3211 | ||
4c4b4cd2 | 3212 | case TERNOP_SLICE: |
4c4b4cd2 PH |
3213 | *pos += 1; |
3214 | nargs = 3; | |
3215 | break; | |
3216 | ||
52ce6436 | 3217 | case OP_STRING: |
14f9c5c9 | 3218 | break; |
4c4b4cd2 PH |
3219 | |
3220 | default: | |
323e0a4a | 3221 | error (_("Unexpected operator during name resolution")); |
14f9c5c9 AS |
3222 | } |
3223 | ||
76a01679 | 3224 | argvec = (struct value * *) alloca (sizeof (struct value *) * (nargs + 1)); |
4c4b4cd2 PH |
3225 | for (i = 0; i < nargs; i += 1) |
3226 | argvec[i] = resolve_subexp (expp, pos, 1, NULL); | |
3227 | argvec[i] = NULL; | |
3228 | exp = *expp; | |
3229 | ||
3230 | /* Pass two: perform any resolution on principal operator. */ | |
14f9c5c9 AS |
3231 | switch (op) |
3232 | { | |
3233 | default: | |
3234 | break; | |
3235 | ||
14f9c5c9 | 3236 | case OP_VAR_VALUE: |
4c4b4cd2 | 3237 | if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN) |
76a01679 JB |
3238 | { |
3239 | struct ada_symbol_info *candidates; | |
3240 | int n_candidates; | |
3241 | ||
3242 | n_candidates = | |
3243 | ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME | |
3244 | (exp->elts[pc + 2].symbol), | |
3245 | exp->elts[pc + 1].block, VAR_DOMAIN, | |
4eeaa230 | 3246 | &candidates); |
76a01679 JB |
3247 | |
3248 | if (n_candidates > 1) | |
3249 | { | |
3250 | /* Types tend to get re-introduced locally, so if there | |
3251 | are any local symbols that are not types, first filter | |
3252 | out all types. */ | |
3253 | int j; | |
3254 | for (j = 0; j < n_candidates; j += 1) | |
3255 | switch (SYMBOL_CLASS (candidates[j].sym)) | |
3256 | { | |
3257 | case LOC_REGISTER: | |
3258 | case LOC_ARG: | |
3259 | case LOC_REF_ARG: | |
76a01679 JB |
3260 | case LOC_REGPARM_ADDR: |
3261 | case LOC_LOCAL: | |
76a01679 | 3262 | case LOC_COMPUTED: |
76a01679 JB |
3263 | goto FoundNonType; |
3264 | default: | |
3265 | break; | |
3266 | } | |
3267 | FoundNonType: | |
3268 | if (j < n_candidates) | |
3269 | { | |
3270 | j = 0; | |
3271 | while (j < n_candidates) | |
3272 | { | |
3273 | if (SYMBOL_CLASS (candidates[j].sym) == LOC_TYPEDEF) | |
3274 | { | |
3275 | candidates[j] = candidates[n_candidates - 1]; | |
3276 | n_candidates -= 1; | |
3277 | } | |
3278 | else | |
3279 | j += 1; | |
3280 | } | |
3281 | } | |
3282 | } | |
3283 | ||
3284 | if (n_candidates == 0) | |
323e0a4a | 3285 | error (_("No definition found for %s"), |
76a01679 JB |
3286 | SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol)); |
3287 | else if (n_candidates == 1) | |
3288 | i = 0; | |
3289 | else if (deprocedure_p | |
3290 | && !is_nonfunction (candidates, n_candidates)) | |
3291 | { | |
06d5cf63 JB |
3292 | i = ada_resolve_function |
3293 | (candidates, n_candidates, NULL, 0, | |
3294 | SYMBOL_LINKAGE_NAME (exp->elts[pc + 2].symbol), | |
3295 | context_type); | |
76a01679 | 3296 | if (i < 0) |
323e0a4a | 3297 | error (_("Could not find a match for %s"), |
76a01679 JB |
3298 | SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol)); |
3299 | } | |
3300 | else | |
3301 | { | |
323e0a4a | 3302 | printf_filtered (_("Multiple matches for %s\n"), |
76a01679 JB |
3303 | SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol)); |
3304 | user_select_syms (candidates, n_candidates, 1); | |
3305 | i = 0; | |
3306 | } | |
3307 | ||
3308 | exp->elts[pc + 1].block = candidates[i].block; | |
3309 | exp->elts[pc + 2].symbol = candidates[i].sym; | |
1265e4aa JB |
3310 | if (innermost_block == NULL |
3311 | || contained_in (candidates[i].block, innermost_block)) | |
76a01679 JB |
3312 | innermost_block = candidates[i].block; |
3313 | } | |
3314 | ||
3315 | if (deprocedure_p | |
3316 | && (TYPE_CODE (SYMBOL_TYPE (exp->elts[pc + 2].symbol)) | |
3317 | == TYPE_CODE_FUNC)) | |
3318 | { | |
3319 | replace_operator_with_call (expp, pc, 0, 0, | |
3320 | exp->elts[pc + 2].symbol, | |
3321 | exp->elts[pc + 1].block); | |
3322 | exp = *expp; | |
3323 | } | |
14f9c5c9 AS |
3324 | break; |
3325 | ||
3326 | case OP_FUNCALL: | |
3327 | { | |
4c4b4cd2 | 3328 | if (exp->elts[pc + 3].opcode == OP_VAR_VALUE |
76a01679 | 3329 | && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN) |
4c4b4cd2 PH |
3330 | { |
3331 | struct ada_symbol_info *candidates; | |
3332 | int n_candidates; | |
3333 | ||
3334 | n_candidates = | |
76a01679 JB |
3335 | ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME |
3336 | (exp->elts[pc + 5].symbol), | |
3337 | exp->elts[pc + 4].block, VAR_DOMAIN, | |
4eeaa230 | 3338 | &candidates); |
4c4b4cd2 PH |
3339 | if (n_candidates == 1) |
3340 | i = 0; | |
3341 | else | |
3342 | { | |
06d5cf63 JB |
3343 | i = ada_resolve_function |
3344 | (candidates, n_candidates, | |
3345 | argvec, nargs, | |
3346 | SYMBOL_LINKAGE_NAME (exp->elts[pc + 5].symbol), | |
3347 | context_type); | |
4c4b4cd2 | 3348 | if (i < 0) |
323e0a4a | 3349 | error (_("Could not find a match for %s"), |
4c4b4cd2 PH |
3350 | SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol)); |
3351 | } | |
3352 | ||
3353 | exp->elts[pc + 4].block = candidates[i].block; | |
3354 | exp->elts[pc + 5].symbol = candidates[i].sym; | |
1265e4aa JB |
3355 | if (innermost_block == NULL |
3356 | || contained_in (candidates[i].block, innermost_block)) | |
4c4b4cd2 PH |
3357 | innermost_block = candidates[i].block; |
3358 | } | |
14f9c5c9 AS |
3359 | } |
3360 | break; | |
3361 | case BINOP_ADD: | |
3362 | case BINOP_SUB: | |
3363 | case BINOP_MUL: | |
3364 | case BINOP_DIV: | |
3365 | case BINOP_REM: | |
3366 | case BINOP_MOD: | |
3367 | case BINOP_CONCAT: | |
3368 | case BINOP_BITWISE_AND: | |
3369 | case BINOP_BITWISE_IOR: | |
3370 | case BINOP_BITWISE_XOR: | |
3371 | case BINOP_EQUAL: | |
3372 | case BINOP_NOTEQUAL: | |
3373 | case BINOP_LESS: | |
3374 | case BINOP_GTR: | |
3375 | case BINOP_LEQ: | |
3376 | case BINOP_GEQ: | |
3377 | case BINOP_EXP: | |
3378 | case UNOP_NEG: | |
3379 | case UNOP_PLUS: | |
3380 | case UNOP_LOGICAL_NOT: | |
3381 | case UNOP_ABS: | |
3382 | if (possible_user_operator_p (op, argvec)) | |
4c4b4cd2 PH |
3383 | { |
3384 | struct ada_symbol_info *candidates; | |
3385 | int n_candidates; | |
3386 | ||
3387 | n_candidates = | |
3388 | ada_lookup_symbol_list (ada_encode (ada_decoded_op_name (op)), | |
3389 | (struct block *) NULL, VAR_DOMAIN, | |
4eeaa230 | 3390 | &candidates); |
4c4b4cd2 | 3391 | i = ada_resolve_function (candidates, n_candidates, argvec, nargs, |
76a01679 | 3392 | ada_decoded_op_name (op), NULL); |
4c4b4cd2 PH |
3393 | if (i < 0) |
3394 | break; | |
3395 | ||
76a01679 JB |
3396 | replace_operator_with_call (expp, pc, nargs, 1, |
3397 | candidates[i].sym, candidates[i].block); | |
4c4b4cd2 PH |
3398 | exp = *expp; |
3399 | } | |
14f9c5c9 | 3400 | break; |
4c4b4cd2 PH |
3401 | |
3402 | case OP_TYPE: | |
b3dbf008 | 3403 | case OP_REGISTER: |
4c4b4cd2 | 3404 | return NULL; |
14f9c5c9 AS |
3405 | } |
3406 | ||
3407 | *pos = pc; | |
3408 | return evaluate_subexp_type (exp, pos); | |
3409 | } | |
3410 | ||
3411 | /* Return non-zero if formal type FTYPE matches actual type ATYPE. If | |
4c4b4cd2 | 3412 | MAY_DEREF is non-zero, the formal may be a pointer and the actual |
5b3d5b7d | 3413 | a non-pointer. */ |
14f9c5c9 | 3414 | /* The term "match" here is rather loose. The match is heuristic and |
5b3d5b7d | 3415 | liberal. */ |
14f9c5c9 AS |
3416 | |
3417 | static int | |
4dc81987 | 3418 | ada_type_match (struct type *ftype, struct type *atype, int may_deref) |
14f9c5c9 | 3419 | { |
61ee279c PH |
3420 | ftype = ada_check_typedef (ftype); |
3421 | atype = ada_check_typedef (atype); | |
14f9c5c9 AS |
3422 | |
3423 | if (TYPE_CODE (ftype) == TYPE_CODE_REF) | |
3424 | ftype = TYPE_TARGET_TYPE (ftype); | |
3425 | if (TYPE_CODE (atype) == TYPE_CODE_REF) | |
3426 | atype = TYPE_TARGET_TYPE (atype); | |
3427 | ||
d2e4a39e | 3428 | switch (TYPE_CODE (ftype)) |
14f9c5c9 AS |
3429 | { |
3430 | default: | |
5b3d5b7d | 3431 | return TYPE_CODE (ftype) == TYPE_CODE (atype); |
14f9c5c9 AS |
3432 | case TYPE_CODE_PTR: |
3433 | if (TYPE_CODE (atype) == TYPE_CODE_PTR) | |
4c4b4cd2 PH |
3434 | return ada_type_match (TYPE_TARGET_TYPE (ftype), |
3435 | TYPE_TARGET_TYPE (atype), 0); | |
d2e4a39e | 3436 | else |
1265e4aa JB |
3437 | return (may_deref |
3438 | && ada_type_match (TYPE_TARGET_TYPE (ftype), atype, 0)); | |
14f9c5c9 AS |
3439 | case TYPE_CODE_INT: |
3440 | case TYPE_CODE_ENUM: | |
3441 | case TYPE_CODE_RANGE: | |
3442 | switch (TYPE_CODE (atype)) | |
4c4b4cd2 PH |
3443 | { |
3444 | case TYPE_CODE_INT: | |
3445 | case TYPE_CODE_ENUM: | |
3446 | case TYPE_CODE_RANGE: | |
3447 | return 1; | |
3448 | default: | |
3449 | return 0; | |
3450 | } | |
14f9c5c9 AS |
3451 | |
3452 | case TYPE_CODE_ARRAY: | |
d2e4a39e | 3453 | return (TYPE_CODE (atype) == TYPE_CODE_ARRAY |
4c4b4cd2 | 3454 | || ada_is_array_descriptor_type (atype)); |
14f9c5c9 AS |
3455 | |
3456 | case TYPE_CODE_STRUCT: | |
4c4b4cd2 PH |
3457 | if (ada_is_array_descriptor_type (ftype)) |
3458 | return (TYPE_CODE (atype) == TYPE_CODE_ARRAY | |
3459 | || ada_is_array_descriptor_type (atype)); | |
14f9c5c9 | 3460 | else |
4c4b4cd2 PH |
3461 | return (TYPE_CODE (atype) == TYPE_CODE_STRUCT |
3462 | && !ada_is_array_descriptor_type (atype)); | |
14f9c5c9 AS |
3463 | |
3464 | case TYPE_CODE_UNION: | |
3465 | case TYPE_CODE_FLT: | |
3466 | return (TYPE_CODE (atype) == TYPE_CODE (ftype)); | |
3467 | } | |
3468 | } | |
3469 | ||
3470 | /* Return non-zero if the formals of FUNC "sufficiently match" the | |
3471 | vector of actual argument types ACTUALS of size N_ACTUALS. FUNC | |
3472 | may also be an enumeral, in which case it is treated as a 0- | |
4c4b4cd2 | 3473 | argument function. */ |
14f9c5c9 AS |
3474 | |
3475 | static int | |
d2e4a39e | 3476 | ada_args_match (struct symbol *func, struct value **actuals, int n_actuals) |
14f9c5c9 AS |
3477 | { |
3478 | int i; | |
d2e4a39e | 3479 | struct type *func_type = SYMBOL_TYPE (func); |
14f9c5c9 | 3480 | |
1265e4aa JB |
3481 | if (SYMBOL_CLASS (func) == LOC_CONST |
3482 | && TYPE_CODE (func_type) == TYPE_CODE_ENUM) | |
14f9c5c9 AS |
3483 | return (n_actuals == 0); |
3484 | else if (func_type == NULL || TYPE_CODE (func_type) != TYPE_CODE_FUNC) | |
3485 | return 0; | |
3486 | ||
3487 | if (TYPE_NFIELDS (func_type) != n_actuals) | |
3488 | return 0; | |
3489 | ||
3490 | for (i = 0; i < n_actuals; i += 1) | |
3491 | { | |
4c4b4cd2 | 3492 | if (actuals[i] == NULL) |
76a01679 JB |
3493 | return 0; |
3494 | else | |
3495 | { | |
5b4ee69b MS |
3496 | struct type *ftype = ada_check_typedef (TYPE_FIELD_TYPE (func_type, |
3497 | i)); | |
df407dfe | 3498 | struct type *atype = ada_check_typedef (value_type (actuals[i])); |
4c4b4cd2 | 3499 | |
76a01679 JB |
3500 | if (!ada_type_match (ftype, atype, 1)) |
3501 | return 0; | |
3502 | } | |
14f9c5c9 AS |
3503 | } |
3504 | return 1; | |
3505 | } | |
3506 | ||
3507 | /* False iff function type FUNC_TYPE definitely does not produce a value | |
3508 | compatible with type CONTEXT_TYPE. Conservatively returns 1 if | |
3509 | FUNC_TYPE is not a valid function type with a non-null return type | |
3510 | or an enumerated type. A null CONTEXT_TYPE indicates any non-void type. */ | |
3511 | ||
3512 | static int | |
d2e4a39e | 3513 | return_match (struct type *func_type, struct type *context_type) |
14f9c5c9 | 3514 | { |
d2e4a39e | 3515 | struct type *return_type; |
14f9c5c9 AS |
3516 | |
3517 | if (func_type == NULL) | |
3518 | return 1; | |
3519 | ||
4c4b4cd2 | 3520 | if (TYPE_CODE (func_type) == TYPE_CODE_FUNC) |
18af8284 | 3521 | return_type = get_base_type (TYPE_TARGET_TYPE (func_type)); |
4c4b4cd2 | 3522 | else |
18af8284 | 3523 | return_type = get_base_type (func_type); |
14f9c5c9 AS |
3524 | if (return_type == NULL) |
3525 | return 1; | |
3526 | ||
18af8284 | 3527 | context_type = get_base_type (context_type); |
14f9c5c9 AS |
3528 | |
3529 | if (TYPE_CODE (return_type) == TYPE_CODE_ENUM) | |
3530 | return context_type == NULL || return_type == context_type; | |
3531 | else if (context_type == NULL) | |
3532 | return TYPE_CODE (return_type) != TYPE_CODE_VOID; | |
3533 | else | |
3534 | return TYPE_CODE (return_type) == TYPE_CODE (context_type); | |
3535 | } | |
3536 | ||
3537 | ||
4c4b4cd2 | 3538 | /* Returns the index in SYMS[0..NSYMS-1] that contains the symbol for the |
14f9c5c9 | 3539 | function (if any) that matches the types of the NARGS arguments in |
4c4b4cd2 PH |
3540 | ARGS. If CONTEXT_TYPE is non-null and there is at least one match |
3541 | that returns that type, then eliminate matches that don't. If | |
3542 | CONTEXT_TYPE is void and there is at least one match that does not | |
3543 | return void, eliminate all matches that do. | |
3544 | ||
14f9c5c9 AS |
3545 | Asks the user if there is more than one match remaining. Returns -1 |
3546 | if there is no such symbol or none is selected. NAME is used | |
4c4b4cd2 PH |
3547 | solely for messages. May re-arrange and modify SYMS in |
3548 | the process; the index returned is for the modified vector. */ | |
14f9c5c9 | 3549 | |
4c4b4cd2 PH |
3550 | static int |
3551 | ada_resolve_function (struct ada_symbol_info syms[], | |
3552 | int nsyms, struct value **args, int nargs, | |
3553 | const char *name, struct type *context_type) | |
14f9c5c9 | 3554 | { |
30b15541 | 3555 | int fallback; |
14f9c5c9 | 3556 | int k; |
4c4b4cd2 | 3557 | int m; /* Number of hits */ |
14f9c5c9 | 3558 | |
d2e4a39e | 3559 | m = 0; |
30b15541 UW |
3560 | /* In the first pass of the loop, we only accept functions matching |
3561 | context_type. If none are found, we add a second pass of the loop | |
3562 | where every function is accepted. */ | |
3563 | for (fallback = 0; m == 0 && fallback < 2; fallback++) | |
14f9c5c9 AS |
3564 | { |
3565 | for (k = 0; k < nsyms; k += 1) | |
4c4b4cd2 | 3566 | { |
61ee279c | 3567 | struct type *type = ada_check_typedef (SYMBOL_TYPE (syms[k].sym)); |
4c4b4cd2 PH |
3568 | |
3569 | if (ada_args_match (syms[k].sym, args, nargs) | |
30b15541 | 3570 | && (fallback || return_match (type, context_type))) |
4c4b4cd2 PH |
3571 | { |
3572 | syms[m] = syms[k]; | |
3573 | m += 1; | |
3574 | } | |
3575 | } | |
14f9c5c9 AS |
3576 | } |
3577 | ||
3578 | if (m == 0) | |
3579 | return -1; | |
3580 | else if (m > 1) | |
3581 | { | |
323e0a4a | 3582 | printf_filtered (_("Multiple matches for %s\n"), name); |
4c4b4cd2 | 3583 | user_select_syms (syms, m, 1); |
14f9c5c9 AS |
3584 | return 0; |
3585 | } | |
3586 | return 0; | |
3587 | } | |
3588 | ||
4c4b4cd2 PH |
3589 | /* Returns true (non-zero) iff decoded name N0 should appear before N1 |
3590 | in a listing of choices during disambiguation (see sort_choices, below). | |
3591 | The idea is that overloadings of a subprogram name from the | |
3592 | same package should sort in their source order. We settle for ordering | |
3593 | such symbols by their trailing number (__N or $N). */ | |
3594 | ||
14f9c5c9 | 3595 | static int |
0d5cff50 | 3596 | encoded_ordered_before (const char *N0, const char *N1) |
14f9c5c9 AS |
3597 | { |
3598 | if (N1 == NULL) | |
3599 | return 0; | |
3600 | else if (N0 == NULL) | |
3601 | return 1; | |
3602 | else | |
3603 | { | |
3604 | int k0, k1; | |
5b4ee69b | 3605 | |
d2e4a39e | 3606 | for (k0 = strlen (N0) - 1; k0 > 0 && isdigit (N0[k0]); k0 -= 1) |
4c4b4cd2 | 3607 | ; |
d2e4a39e | 3608 | for (k1 = strlen (N1) - 1; k1 > 0 && isdigit (N1[k1]); k1 -= 1) |
4c4b4cd2 | 3609 | ; |
d2e4a39e | 3610 | if ((N0[k0] == '_' || N0[k0] == '$') && N0[k0 + 1] != '\000' |
4c4b4cd2 PH |
3611 | && (N1[k1] == '_' || N1[k1] == '$') && N1[k1 + 1] != '\000') |
3612 | { | |
3613 | int n0, n1; | |
5b4ee69b | 3614 | |
4c4b4cd2 PH |
3615 | n0 = k0; |
3616 | while (N0[n0] == '_' && n0 > 0 && N0[n0 - 1] == '_') | |
3617 | n0 -= 1; | |
3618 | n1 = k1; | |
3619 | while (N1[n1] == '_' && n1 > 0 && N1[n1 - 1] == '_') | |
3620 | n1 -= 1; | |
3621 | if (n0 == n1 && strncmp (N0, N1, n0) == 0) | |
3622 | return (atoi (N0 + k0 + 1) < atoi (N1 + k1 + 1)); | |
3623 | } | |
14f9c5c9 AS |
3624 | return (strcmp (N0, N1) < 0); |
3625 | } | |
3626 | } | |
d2e4a39e | 3627 | |
4c4b4cd2 PH |
3628 | /* Sort SYMS[0..NSYMS-1] to put the choices in a canonical order by the |
3629 | encoded names. */ | |
3630 | ||
d2e4a39e | 3631 | static void |
4c4b4cd2 | 3632 | sort_choices (struct ada_symbol_info syms[], int nsyms) |
14f9c5c9 | 3633 | { |
4c4b4cd2 | 3634 | int i; |
5b4ee69b | 3635 | |
d2e4a39e | 3636 | for (i = 1; i < nsyms; i += 1) |
14f9c5c9 | 3637 | { |
4c4b4cd2 | 3638 | struct ada_symbol_info sym = syms[i]; |
14f9c5c9 AS |
3639 | int j; |
3640 | ||
d2e4a39e | 3641 | for (j = i - 1; j >= 0; j -= 1) |
4c4b4cd2 PH |
3642 | { |
3643 | if (encoded_ordered_before (SYMBOL_LINKAGE_NAME (syms[j].sym), | |
3644 | SYMBOL_LINKAGE_NAME (sym.sym))) | |
3645 | break; | |
3646 | syms[j + 1] = syms[j]; | |
3647 | } | |
d2e4a39e | 3648 | syms[j + 1] = sym; |
14f9c5c9 AS |
3649 | } |
3650 | } | |
3651 | ||
4c4b4cd2 PH |
3652 | /* Given a list of NSYMS symbols in SYMS, select up to MAX_RESULTS>0 |
3653 | by asking the user (if necessary), returning the number selected, | |
3654 | and setting the first elements of SYMS items. Error if no symbols | |
3655 | selected. */ | |
14f9c5c9 AS |
3656 | |
3657 | /* NOTE: Adapted from decode_line_2 in symtab.c, with which it ought | |
4c4b4cd2 | 3658 | to be re-integrated one of these days. */ |
14f9c5c9 AS |
3659 | |
3660 | int | |
4c4b4cd2 | 3661 | user_select_syms (struct ada_symbol_info *syms, int nsyms, int max_results) |
14f9c5c9 AS |
3662 | { |
3663 | int i; | |
d2e4a39e | 3664 | int *chosen = (int *) alloca (sizeof (int) * nsyms); |
14f9c5c9 AS |
3665 | int n_chosen; |
3666 | int first_choice = (max_results == 1) ? 1 : 2; | |
717d2f5a | 3667 | const char *select_mode = multiple_symbols_select_mode (); |
14f9c5c9 AS |
3668 | |
3669 | if (max_results < 1) | |
323e0a4a | 3670 | error (_("Request to select 0 symbols!")); |
14f9c5c9 AS |
3671 | if (nsyms <= 1) |
3672 | return nsyms; | |
3673 | ||
717d2f5a JB |
3674 | if (select_mode == multiple_symbols_cancel) |
3675 | error (_("\ | |
3676 | canceled because the command is ambiguous\n\ | |
3677 | See set/show multiple-symbol.")); | |
3678 | ||
3679 | /* If select_mode is "all", then return all possible symbols. | |
3680 | Only do that if more than one symbol can be selected, of course. | |
3681 | Otherwise, display the menu as usual. */ | |
3682 | if (select_mode == multiple_symbols_all && max_results > 1) | |
3683 | return nsyms; | |
3684 | ||
323e0a4a | 3685 | printf_unfiltered (_("[0] cancel\n")); |
14f9c5c9 | 3686 | if (max_results > 1) |
323e0a4a | 3687 | printf_unfiltered (_("[1] all\n")); |
14f9c5c9 | 3688 | |
4c4b4cd2 | 3689 | sort_choices (syms, nsyms); |
14f9c5c9 AS |
3690 | |
3691 | for (i = 0; i < nsyms; i += 1) | |
3692 | { | |
4c4b4cd2 PH |
3693 | if (syms[i].sym == NULL) |
3694 | continue; | |
3695 | ||
3696 | if (SYMBOL_CLASS (syms[i].sym) == LOC_BLOCK) | |
3697 | { | |
76a01679 JB |
3698 | struct symtab_and_line sal = |
3699 | find_function_start_sal (syms[i].sym, 1); | |
5b4ee69b | 3700 | |
323e0a4a AC |
3701 | if (sal.symtab == NULL) |
3702 | printf_unfiltered (_("[%d] %s at <no source file available>:%d\n"), | |
3703 | i + first_choice, | |
3704 | SYMBOL_PRINT_NAME (syms[i].sym), | |
3705 | sal.line); | |
3706 | else | |
3707 | printf_unfiltered (_("[%d] %s at %s:%d\n"), i + first_choice, | |
3708 | SYMBOL_PRINT_NAME (syms[i].sym), | |
05cba821 JK |
3709 | symtab_to_filename_for_display (sal.symtab), |
3710 | sal.line); | |
4c4b4cd2 PH |
3711 | continue; |
3712 | } | |
d2e4a39e | 3713 | else |
4c4b4cd2 PH |
3714 | { |
3715 | int is_enumeral = | |
3716 | (SYMBOL_CLASS (syms[i].sym) == LOC_CONST | |
3717 | && SYMBOL_TYPE (syms[i].sym) != NULL | |
3718 | && TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) == TYPE_CODE_ENUM); | |
210bbc17 | 3719 | struct symtab *symtab = SYMBOL_SYMTAB (syms[i].sym); |
4c4b4cd2 PH |
3720 | |
3721 | if (SYMBOL_LINE (syms[i].sym) != 0 && symtab != NULL) | |
323e0a4a | 3722 | printf_unfiltered (_("[%d] %s at %s:%d\n"), |
4c4b4cd2 PH |
3723 | i + first_choice, |
3724 | SYMBOL_PRINT_NAME (syms[i].sym), | |
05cba821 JK |
3725 | symtab_to_filename_for_display (symtab), |
3726 | SYMBOL_LINE (syms[i].sym)); | |
76a01679 JB |
3727 | else if (is_enumeral |
3728 | && TYPE_NAME (SYMBOL_TYPE (syms[i].sym)) != NULL) | |
4c4b4cd2 | 3729 | { |
a3f17187 | 3730 | printf_unfiltered (("[%d] "), i + first_choice); |
76a01679 | 3731 | ada_print_type (SYMBOL_TYPE (syms[i].sym), NULL, |
79d43c61 | 3732 | gdb_stdout, -1, 0, &type_print_raw_options); |
323e0a4a | 3733 | printf_unfiltered (_("'(%s) (enumeral)\n"), |
4c4b4cd2 PH |
3734 | SYMBOL_PRINT_NAME (syms[i].sym)); |
3735 | } | |
3736 | else if (symtab != NULL) | |
3737 | printf_unfiltered (is_enumeral | |
323e0a4a AC |
3738 | ? _("[%d] %s in %s (enumeral)\n") |
3739 | : _("[%d] %s at %s:?\n"), | |
4c4b4cd2 PH |
3740 | i + first_choice, |
3741 | SYMBOL_PRINT_NAME (syms[i].sym), | |
05cba821 | 3742 | symtab_to_filename_for_display (symtab)); |
4c4b4cd2 PH |
3743 | else |
3744 | printf_unfiltered (is_enumeral | |
323e0a4a AC |
3745 | ? _("[%d] %s (enumeral)\n") |
3746 | : _("[%d] %s at ?\n"), | |
4c4b4cd2 PH |
3747 | i + first_choice, |
3748 | SYMBOL_PRINT_NAME (syms[i].sym)); | |
3749 | } | |
14f9c5c9 | 3750 | } |
d2e4a39e | 3751 | |
14f9c5c9 | 3752 | n_chosen = get_selections (chosen, nsyms, max_results, max_results > 1, |
4c4b4cd2 | 3753 | "overload-choice"); |
14f9c5c9 AS |
3754 | |
3755 | for (i = 0; i < n_chosen; i += 1) | |
4c4b4cd2 | 3756 | syms[i] = syms[chosen[i]]; |
14f9c5c9 AS |
3757 | |
3758 | return n_chosen; | |
3759 | } | |
3760 | ||
3761 | /* Read and validate a set of numeric choices from the user in the | |
4c4b4cd2 | 3762 | range 0 .. N_CHOICES-1. Place the results in increasing |
14f9c5c9 AS |
3763 | order in CHOICES[0 .. N-1], and return N. |
3764 | ||
3765 | The user types choices as a sequence of numbers on one line | |
3766 | separated by blanks, encoding them as follows: | |
3767 | ||
4c4b4cd2 | 3768 | + A choice of 0 means to cancel the selection, throwing an error. |
14f9c5c9 AS |
3769 | + If IS_ALL_CHOICE, a choice of 1 selects the entire set 0 .. N_CHOICES-1. |
3770 | + The user chooses k by typing k+IS_ALL_CHOICE+1. | |
3771 | ||
4c4b4cd2 | 3772 | The user is not allowed to choose more than MAX_RESULTS values. |
14f9c5c9 AS |
3773 | |
3774 | ANNOTATION_SUFFIX, if present, is used to annotate the input | |
4c4b4cd2 | 3775 | prompts (for use with the -f switch). */ |
14f9c5c9 AS |
3776 | |
3777 | int | |
d2e4a39e | 3778 | get_selections (int *choices, int n_choices, int max_results, |
4c4b4cd2 | 3779 | int is_all_choice, char *annotation_suffix) |
14f9c5c9 | 3780 | { |
d2e4a39e | 3781 | char *args; |
0bcd0149 | 3782 | char *prompt; |
14f9c5c9 AS |
3783 | int n_chosen; |
3784 | int first_choice = is_all_choice ? 2 : 1; | |
d2e4a39e | 3785 | |
14f9c5c9 AS |
3786 | prompt = getenv ("PS2"); |
3787 | if (prompt == NULL) | |
0bcd0149 | 3788 | prompt = "> "; |
14f9c5c9 | 3789 | |
0bcd0149 | 3790 | args = command_line_input (prompt, 0, annotation_suffix); |
d2e4a39e | 3791 | |
14f9c5c9 | 3792 | if (args == NULL) |
323e0a4a | 3793 | error_no_arg (_("one or more choice numbers")); |
14f9c5c9 AS |
3794 | |
3795 | n_chosen = 0; | |
76a01679 | 3796 | |
4c4b4cd2 PH |
3797 | /* Set choices[0 .. n_chosen-1] to the users' choices in ascending |
3798 | order, as given in args. Choices are validated. */ | |
14f9c5c9 AS |
3799 | while (1) |
3800 | { | |
d2e4a39e | 3801 | char *args2; |
14f9c5c9 AS |
3802 | int choice, j; |
3803 | ||
0fcd72ba | 3804 | args = skip_spaces (args); |
14f9c5c9 | 3805 | if (*args == '\0' && n_chosen == 0) |
323e0a4a | 3806 | error_no_arg (_("one or more choice numbers")); |
14f9c5c9 | 3807 | else if (*args == '\0') |
4c4b4cd2 | 3808 | break; |
14f9c5c9 AS |
3809 | |
3810 | choice = strtol (args, &args2, 10); | |
d2e4a39e | 3811 | if (args == args2 || choice < 0 |
4c4b4cd2 | 3812 | || choice > n_choices + first_choice - 1) |
323e0a4a | 3813 | error (_("Argument must be choice number")); |
14f9c5c9 AS |
3814 | args = args2; |
3815 | ||
d2e4a39e | 3816 | if (choice == 0) |
323e0a4a | 3817 | error (_("cancelled")); |
14f9c5c9 AS |
3818 | |
3819 | if (choice < first_choice) | |
4c4b4cd2 PH |
3820 | { |
3821 | n_chosen = n_choices; | |
3822 | for (j = 0; j < n_choices; j += 1) | |
3823 | choices[j] = j; | |
3824 | break; | |
3825 | } | |
14f9c5c9 AS |
3826 | choice -= first_choice; |
3827 | ||
d2e4a39e | 3828 | for (j = n_chosen - 1; j >= 0 && choice < choices[j]; j -= 1) |
4c4b4cd2 PH |
3829 | { |
3830 | } | |
14f9c5c9 AS |
3831 | |
3832 | if (j < 0 || choice != choices[j]) | |
4c4b4cd2 PH |
3833 | { |
3834 | int k; | |
5b4ee69b | 3835 | |
4c4b4cd2 PH |
3836 | for (k = n_chosen - 1; k > j; k -= 1) |
3837 | choices[k + 1] = choices[k]; | |
3838 | choices[j + 1] = choice; | |
3839 | n_chosen += 1; | |
3840 | } | |
14f9c5c9 AS |
3841 | } |
3842 | ||
3843 | if (n_chosen > max_results) | |
323e0a4a | 3844 | error (_("Select no more than %d of the above"), max_results); |
d2e4a39e | 3845 | |
14f9c5c9 AS |
3846 | return n_chosen; |
3847 | } | |
3848 | ||
4c4b4cd2 PH |
3849 | /* Replace the operator of length OPLEN at position PC in *EXPP with a call |
3850 | on the function identified by SYM and BLOCK, and taking NARGS | |
3851 | arguments. Update *EXPP as needed to hold more space. */ | |
14f9c5c9 AS |
3852 | |
3853 | static void | |
d2e4a39e | 3854 | replace_operator_with_call (struct expression **expp, int pc, int nargs, |
4c4b4cd2 | 3855 | int oplen, struct symbol *sym, |
270140bd | 3856 | const struct block *block) |
14f9c5c9 AS |
3857 | { |
3858 | /* A new expression, with 6 more elements (3 for funcall, 4 for function | |
4c4b4cd2 | 3859 | symbol, -oplen for operator being replaced). */ |
d2e4a39e | 3860 | struct expression *newexp = (struct expression *) |
8c1a34e7 | 3861 | xzalloc (sizeof (struct expression) |
4c4b4cd2 | 3862 | + EXP_ELEM_TO_BYTES ((*expp)->nelts + 7 - oplen)); |
d2e4a39e | 3863 | struct expression *exp = *expp; |
14f9c5c9 AS |
3864 | |
3865 | newexp->nelts = exp->nelts + 7 - oplen; | |
3866 | newexp->language_defn = exp->language_defn; | |
3489610d | 3867 | newexp->gdbarch = exp->gdbarch; |
14f9c5c9 | 3868 | memcpy (newexp->elts, exp->elts, EXP_ELEM_TO_BYTES (pc)); |
d2e4a39e | 3869 | memcpy (newexp->elts + pc + 7, exp->elts + pc + oplen, |
4c4b4cd2 | 3870 | EXP_ELEM_TO_BYTES (exp->nelts - pc - oplen)); |
14f9c5c9 AS |
3871 | |
3872 | newexp->elts[pc].opcode = newexp->elts[pc + 2].opcode = OP_FUNCALL; | |
3873 | newexp->elts[pc + 1].longconst = (LONGEST) nargs; | |
3874 | ||
3875 | newexp->elts[pc + 3].opcode = newexp->elts[pc + 6].opcode = OP_VAR_VALUE; | |
3876 | newexp->elts[pc + 4].block = block; | |
3877 | newexp->elts[pc + 5].symbol = sym; | |
3878 | ||
3879 | *expp = newexp; | |
aacb1f0a | 3880 | xfree (exp); |
d2e4a39e | 3881 | } |
14f9c5c9 AS |
3882 | |
3883 | /* Type-class predicates */ | |
3884 | ||
4c4b4cd2 PH |
3885 | /* True iff TYPE is numeric (i.e., an INT, RANGE (of numeric type), |
3886 | or FLOAT). */ | |
14f9c5c9 AS |
3887 | |
3888 | static int | |
d2e4a39e | 3889 | numeric_type_p (struct type *type) |
14f9c5c9 AS |
3890 | { |
3891 | if (type == NULL) | |
3892 | return 0; | |
d2e4a39e AS |
3893 | else |
3894 | { | |
3895 | switch (TYPE_CODE (type)) | |
4c4b4cd2 PH |
3896 | { |
3897 | case TYPE_CODE_INT: | |
3898 | case TYPE_CODE_FLT: | |
3899 | return 1; | |
3900 | case TYPE_CODE_RANGE: | |
3901 | return (type == TYPE_TARGET_TYPE (type) | |
3902 | || numeric_type_p (TYPE_TARGET_TYPE (type))); | |
3903 | default: | |
3904 | return 0; | |
3905 | } | |
d2e4a39e | 3906 | } |
14f9c5c9 AS |
3907 | } |
3908 | ||
4c4b4cd2 | 3909 | /* True iff TYPE is integral (an INT or RANGE of INTs). */ |
14f9c5c9 AS |
3910 | |
3911 | static int | |
d2e4a39e | 3912 | integer_type_p (struct type *type) |
14f9c5c9 AS |
3913 | { |
3914 | if (type == NULL) | |
3915 | return 0; | |
d2e4a39e AS |
3916 | else |
3917 | { | |
3918 | switch (TYPE_CODE (type)) | |
4c4b4cd2 PH |
3919 | { |
3920 | case TYPE_CODE_INT: | |
3921 | return 1; | |
3922 | case TYPE_CODE_RANGE: | |
3923 | return (type == TYPE_TARGET_TYPE (type) | |
3924 | || integer_type_p (TYPE_TARGET_TYPE (type))); | |
3925 | default: | |
3926 | return 0; | |
3927 | } | |
d2e4a39e | 3928 | } |
14f9c5c9 AS |
3929 | } |
3930 | ||
4c4b4cd2 | 3931 | /* True iff TYPE is scalar (INT, RANGE, FLOAT, ENUM). */ |
14f9c5c9 AS |
3932 | |
3933 | static int | |
d2e4a39e | 3934 | scalar_type_p (struct type *type) |
14f9c5c9 AS |
3935 | { |
3936 | if (type == NULL) | |
3937 | return 0; | |
d2e4a39e AS |
3938 | else |
3939 | { | |
3940 | switch (TYPE_CODE (type)) | |
4c4b4cd2 PH |
3941 | { |
3942 | case TYPE_CODE_INT: | |
3943 | case TYPE_CODE_RANGE: | |
3944 | case TYPE_CODE_ENUM: | |
3945 | case TYPE_CODE_FLT: | |
3946 | return 1; | |
3947 | default: | |
3948 | return 0; | |
3949 | } | |
d2e4a39e | 3950 | } |
14f9c5c9 AS |
3951 | } |
3952 | ||
4c4b4cd2 | 3953 | /* True iff TYPE is discrete (INT, RANGE, ENUM). */ |
14f9c5c9 AS |
3954 | |
3955 | static int | |
d2e4a39e | 3956 | discrete_type_p (struct type *type) |
14f9c5c9 AS |
3957 | { |
3958 | if (type == NULL) | |
3959 | return 0; | |
d2e4a39e AS |
3960 | else |
3961 | { | |
3962 | switch (TYPE_CODE (type)) | |
4c4b4cd2 PH |
3963 | { |
3964 | case TYPE_CODE_INT: | |
3965 | case TYPE_CODE_RANGE: | |
3966 | case TYPE_CODE_ENUM: | |
872f0337 | 3967 | case TYPE_CODE_BOOL: |
4c4b4cd2 PH |
3968 | return 1; |
3969 | default: | |
3970 | return 0; | |
3971 | } | |
d2e4a39e | 3972 | } |
14f9c5c9 AS |
3973 | } |
3974 | ||
4c4b4cd2 PH |
3975 | /* Returns non-zero if OP with operands in the vector ARGS could be |
3976 | a user-defined function. Errs on the side of pre-defined operators | |
3977 | (i.e., result 0). */ | |
14f9c5c9 AS |
3978 | |
3979 | static int | |
d2e4a39e | 3980 | possible_user_operator_p (enum exp_opcode op, struct value *args[]) |
14f9c5c9 | 3981 | { |
76a01679 | 3982 | struct type *type0 = |
df407dfe | 3983 | (args[0] == NULL) ? NULL : ada_check_typedef (value_type (args[0])); |
d2e4a39e | 3984 | struct type *type1 = |
df407dfe | 3985 | (args[1] == NULL) ? NULL : ada_check_typedef (value_type (args[1])); |
d2e4a39e | 3986 | |
4c4b4cd2 PH |
3987 | if (type0 == NULL) |
3988 | return 0; | |
3989 | ||
14f9c5c9 AS |
3990 | switch (op) |
3991 | { | |
3992 | default: | |
3993 | return 0; | |
3994 | ||
3995 | case BINOP_ADD: | |
3996 | case BINOP_SUB: | |
3997 | case BINOP_MUL: | |
3998 | case BINOP_DIV: | |
d2e4a39e | 3999 | return (!(numeric_type_p (type0) && numeric_type_p (type1))); |
14f9c5c9 AS |
4000 | |
4001 | case BINOP_REM: | |
4002 | case BINOP_MOD: | |
4003 | case BINOP_BITWISE_AND: | |
4004 | case BINOP_BITWISE_IOR: | |
4005 | case BINOP_BITWISE_XOR: | |
d2e4a39e | 4006 | return (!(integer_type_p (type0) && integer_type_p (type1))); |
14f9c5c9 AS |
4007 | |
4008 | case BINOP_EQUAL: | |
4009 | case BINOP_NOTEQUAL: | |
4010 | case BINOP_LESS: | |
4011 | case BINOP_GTR: | |
4012 | case BINOP_LEQ: | |
4013 | case BINOP_GEQ: | |
d2e4a39e | 4014 | return (!(scalar_type_p (type0) && scalar_type_p (type1))); |
14f9c5c9 AS |
4015 | |
4016 | case BINOP_CONCAT: | |
ee90b9ab | 4017 | return !ada_is_array_type (type0) || !ada_is_array_type (type1); |
14f9c5c9 AS |
4018 | |
4019 | case BINOP_EXP: | |
d2e4a39e | 4020 | return (!(numeric_type_p (type0) && integer_type_p (type1))); |
14f9c5c9 AS |
4021 | |
4022 | case UNOP_NEG: | |
4023 | case UNOP_PLUS: | |
4024 | case UNOP_LOGICAL_NOT: | |
d2e4a39e AS |
4025 | case UNOP_ABS: |
4026 | return (!numeric_type_p (type0)); | |
14f9c5c9 AS |
4027 | |
4028 | } | |
4029 | } | |
4030 | \f | |
4c4b4cd2 | 4031 | /* Renaming */ |
14f9c5c9 | 4032 | |
aeb5907d JB |
4033 | /* NOTES: |
4034 | ||
4035 | 1. In the following, we assume that a renaming type's name may | |
4036 | have an ___XD suffix. It would be nice if this went away at some | |
4037 | point. | |
4038 | 2. We handle both the (old) purely type-based representation of | |
4039 | renamings and the (new) variable-based encoding. At some point, | |
4040 | it is devoutly to be hoped that the former goes away | |
4041 | (FIXME: hilfinger-2007-07-09). | |
4042 | 3. Subprogram renamings are not implemented, although the XRS | |
4043 | suffix is recognized (FIXME: hilfinger-2007-07-09). */ | |
4044 | ||
4045 | /* If SYM encodes a renaming, | |
4046 | ||
4047 | <renaming> renames <renamed entity>, | |
4048 | ||
4049 | sets *LEN to the length of the renamed entity's name, | |
4050 | *RENAMED_ENTITY to that name (not null-terminated), and *RENAMING_EXPR to | |
4051 | the string describing the subcomponent selected from the renamed | |
0963b4bd | 4052 | entity. Returns ADA_NOT_RENAMING if SYM does not encode a renaming |
aeb5907d JB |
4053 | (in which case, the values of *RENAMED_ENTITY, *LEN, and *RENAMING_EXPR |
4054 | are undefined). Otherwise, returns a value indicating the category | |
4055 | of entity renamed: an object (ADA_OBJECT_RENAMING), exception | |
4056 | (ADA_EXCEPTION_RENAMING), package (ADA_PACKAGE_RENAMING), or | |
4057 | subprogram (ADA_SUBPROGRAM_RENAMING). Does no allocation; the | |
4058 | strings returned in *RENAMED_ENTITY and *RENAMING_EXPR should not be | |
4059 | deallocated. The values of RENAMED_ENTITY, LEN, or RENAMING_EXPR | |
4060 | may be NULL, in which case they are not assigned. | |
4061 | ||
4062 | [Currently, however, GCC does not generate subprogram renamings.] */ | |
4063 | ||
4064 | enum ada_renaming_category | |
4065 | ada_parse_renaming (struct symbol *sym, | |
4066 | const char **renamed_entity, int *len, | |
4067 | const char **renaming_expr) | |
4068 | { | |
4069 | enum ada_renaming_category kind; | |
4070 | const char *info; | |
4071 | const char *suffix; | |
4072 | ||
4073 | if (sym == NULL) | |
4074 | return ADA_NOT_RENAMING; | |
4075 | switch (SYMBOL_CLASS (sym)) | |
14f9c5c9 | 4076 | { |
aeb5907d JB |
4077 | default: |
4078 | return ADA_NOT_RENAMING; | |
4079 | case LOC_TYPEDEF: | |
4080 | return parse_old_style_renaming (SYMBOL_TYPE (sym), | |
4081 | renamed_entity, len, renaming_expr); | |
4082 | case LOC_LOCAL: | |
4083 | case LOC_STATIC: | |
4084 | case LOC_COMPUTED: | |
4085 | case LOC_OPTIMIZED_OUT: | |
4086 | info = strstr (SYMBOL_LINKAGE_NAME (sym), "___XR"); | |
4087 | if (info == NULL) | |
4088 | return ADA_NOT_RENAMING; | |
4089 | switch (info[5]) | |
4090 | { | |
4091 | case '_': | |
4092 | kind = ADA_OBJECT_RENAMING; | |
4093 | info += 6; | |
4094 | break; | |
4095 | case 'E': | |
4096 | kind = ADA_EXCEPTION_RENAMING; | |
4097 | info += 7; | |
4098 | break; | |
4099 | case 'P': | |
4100 | kind = ADA_PACKAGE_RENAMING; | |
4101 | info += 7; | |
4102 | break; | |
4103 | case 'S': | |
4104 | kind = ADA_SUBPROGRAM_RENAMING; | |
4105 | info += 7; | |
4106 | break; | |
4107 | default: | |
4108 | return ADA_NOT_RENAMING; | |
4109 | } | |
14f9c5c9 | 4110 | } |
4c4b4cd2 | 4111 | |
aeb5907d JB |
4112 | if (renamed_entity != NULL) |
4113 | *renamed_entity = info; | |
4114 | suffix = strstr (info, "___XE"); | |
4115 | if (suffix == NULL || suffix == info) | |
4116 | return ADA_NOT_RENAMING; | |
4117 | if (len != NULL) | |
4118 | *len = strlen (info) - strlen (suffix); | |
4119 | suffix += 5; | |
4120 | if (renaming_expr != NULL) | |
4121 | *renaming_expr = suffix; | |
4122 | return kind; | |
4123 | } | |
4124 | ||
4125 | /* Assuming TYPE encodes a renaming according to the old encoding in | |
4126 | exp_dbug.ads, returns details of that renaming in *RENAMED_ENTITY, | |
4127 | *LEN, and *RENAMING_EXPR, as for ada_parse_renaming, above. Returns | |
4128 | ADA_NOT_RENAMING otherwise. */ | |
4129 | static enum ada_renaming_category | |
4130 | parse_old_style_renaming (struct type *type, | |
4131 | const char **renamed_entity, int *len, | |
4132 | const char **renaming_expr) | |
4133 | { | |
4134 | enum ada_renaming_category kind; | |
4135 | const char *name; | |
4136 | const char *info; | |
4137 | const char *suffix; | |
14f9c5c9 | 4138 | |
aeb5907d JB |
4139 | if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM |
4140 | || TYPE_NFIELDS (type) != 1) | |
4141 | return ADA_NOT_RENAMING; | |
14f9c5c9 | 4142 | |
aeb5907d JB |
4143 | name = type_name_no_tag (type); |
4144 | if (name == NULL) | |
4145 | return ADA_NOT_RENAMING; | |
4146 | ||
4147 | name = strstr (name, "___XR"); | |
4148 | if (name == NULL) | |
4149 | return ADA_NOT_RENAMING; | |
4150 | switch (name[5]) | |
4151 | { | |
4152 | case '\0': | |
4153 | case '_': | |
4154 | kind = ADA_OBJECT_RENAMING; | |
4155 | break; | |
4156 | case 'E': | |
4157 | kind = ADA_EXCEPTION_RENAMING; | |
4158 | break; | |
4159 | case 'P': | |
4160 | kind = ADA_PACKAGE_RENAMING; | |
4161 | break; | |
4162 | case 'S': | |
4163 | kind = ADA_SUBPROGRAM_RENAMING; | |
4164 | break; | |
4165 | default: | |
4166 | return ADA_NOT_RENAMING; | |
4167 | } | |
14f9c5c9 | 4168 | |
aeb5907d JB |
4169 | info = TYPE_FIELD_NAME (type, 0); |
4170 | if (info == NULL) | |
4171 | return ADA_NOT_RENAMING; | |
4172 | if (renamed_entity != NULL) | |
4173 | *renamed_entity = info; | |
4174 | suffix = strstr (info, "___XE"); | |
4175 | if (renaming_expr != NULL) | |
4176 | *renaming_expr = suffix + 5; | |
4177 | if (suffix == NULL || suffix == info) | |
4178 | return ADA_NOT_RENAMING; | |
4179 | if (len != NULL) | |
4180 | *len = suffix - info; | |
4181 | return kind; | |
a5ee536b JB |
4182 | } |
4183 | ||
4184 | /* Compute the value of the given RENAMING_SYM, which is expected to | |
4185 | be a symbol encoding a renaming expression. BLOCK is the block | |
4186 | used to evaluate the renaming. */ | |
52ce6436 | 4187 | |
a5ee536b JB |
4188 | static struct value * |
4189 | ada_read_renaming_var_value (struct symbol *renaming_sym, | |
3977b71f | 4190 | const struct block *block) |
a5ee536b | 4191 | { |
bbc13ae3 | 4192 | const char *sym_name; |
a5ee536b JB |
4193 | struct expression *expr; |
4194 | struct value *value; | |
4195 | struct cleanup *old_chain = NULL; | |
4196 | ||
bbc13ae3 | 4197 | sym_name = SYMBOL_LINKAGE_NAME (renaming_sym); |
1bb9788d | 4198 | expr = parse_exp_1 (&sym_name, 0, block, 0); |
bbc13ae3 | 4199 | old_chain = make_cleanup (free_current_contents, &expr); |
a5ee536b JB |
4200 | value = evaluate_expression (expr); |
4201 | ||
4202 | do_cleanups (old_chain); | |
4203 | return value; | |
4204 | } | |
14f9c5c9 | 4205 | \f |
d2e4a39e | 4206 | |
4c4b4cd2 | 4207 | /* Evaluation: Function Calls */ |
14f9c5c9 | 4208 | |
4c4b4cd2 | 4209 | /* Return an lvalue containing the value VAL. This is the identity on |
40bc484c JB |
4210 | lvalues, and otherwise has the side-effect of allocating memory |
4211 | in the inferior where a copy of the value contents is copied. */ | |
14f9c5c9 | 4212 | |
d2e4a39e | 4213 | static struct value * |
40bc484c | 4214 | ensure_lval (struct value *val) |
14f9c5c9 | 4215 | { |
40bc484c JB |
4216 | if (VALUE_LVAL (val) == not_lval |
4217 | || VALUE_LVAL (val) == lval_internalvar) | |
c3e5cd34 | 4218 | { |
df407dfe | 4219 | int len = TYPE_LENGTH (ada_check_typedef (value_type (val))); |
40bc484c JB |
4220 | const CORE_ADDR addr = |
4221 | value_as_long (value_allocate_space_in_inferior (len)); | |
c3e5cd34 | 4222 | |
40bc484c | 4223 | set_value_address (val, addr); |
a84a8a0d | 4224 | VALUE_LVAL (val) = lval_memory; |
40bc484c | 4225 | write_memory (addr, value_contents (val), len); |
c3e5cd34 | 4226 | } |
14f9c5c9 AS |
4227 | |
4228 | return val; | |
4229 | } | |
4230 | ||
4231 | /* Return the value ACTUAL, converted to be an appropriate value for a | |
4232 | formal of type FORMAL_TYPE. Use *SP as a stack pointer for | |
4233 | allocating any necessary descriptors (fat pointers), or copies of | |
4c4b4cd2 | 4234 | values not residing in memory, updating it as needed. */ |
14f9c5c9 | 4235 | |
a93c0eb6 | 4236 | struct value * |
40bc484c | 4237 | ada_convert_actual (struct value *actual, struct type *formal_type0) |
14f9c5c9 | 4238 | { |
df407dfe | 4239 | struct type *actual_type = ada_check_typedef (value_type (actual)); |
61ee279c | 4240 | struct type *formal_type = ada_check_typedef (formal_type0); |
d2e4a39e AS |
4241 | struct type *formal_target = |
4242 | TYPE_CODE (formal_type) == TYPE_CODE_PTR | |
61ee279c | 4243 | ? ada_check_typedef (TYPE_TARGET_TYPE (formal_type)) : formal_type; |
d2e4a39e AS |
4244 | struct type *actual_target = |
4245 | TYPE_CODE (actual_type) == TYPE_CODE_PTR | |
61ee279c | 4246 | ? ada_check_typedef (TYPE_TARGET_TYPE (actual_type)) : actual_type; |
14f9c5c9 | 4247 | |
4c4b4cd2 | 4248 | if (ada_is_array_descriptor_type (formal_target) |
14f9c5c9 | 4249 | && TYPE_CODE (actual_target) == TYPE_CODE_ARRAY) |
40bc484c | 4250 | return make_array_descriptor (formal_type, actual); |
a84a8a0d JB |
4251 | else if (TYPE_CODE (formal_type) == TYPE_CODE_PTR |
4252 | || TYPE_CODE (formal_type) == TYPE_CODE_REF) | |
14f9c5c9 | 4253 | { |
a84a8a0d | 4254 | struct value *result; |
5b4ee69b | 4255 | |
14f9c5c9 | 4256 | if (TYPE_CODE (formal_target) == TYPE_CODE_ARRAY |
4c4b4cd2 | 4257 | && ada_is_array_descriptor_type (actual_target)) |
a84a8a0d | 4258 | result = desc_data (actual); |
14f9c5c9 | 4259 | else if (TYPE_CODE (actual_type) != TYPE_CODE_PTR) |
4c4b4cd2 PH |
4260 | { |
4261 | if (VALUE_LVAL (actual) != lval_memory) | |
4262 | { | |
4263 | struct value *val; | |
5b4ee69b | 4264 | |
df407dfe | 4265 | actual_type = ada_check_typedef (value_type (actual)); |
4c4b4cd2 | 4266 | val = allocate_value (actual_type); |
990a07ab | 4267 | memcpy ((char *) value_contents_raw (val), |
0fd88904 | 4268 | (char *) value_contents (actual), |
4c4b4cd2 | 4269 | TYPE_LENGTH (actual_type)); |
40bc484c | 4270 | actual = ensure_lval (val); |
4c4b4cd2 | 4271 | } |
a84a8a0d | 4272 | result = value_addr (actual); |
4c4b4cd2 | 4273 | } |
a84a8a0d JB |
4274 | else |
4275 | return actual; | |
b1af9e97 | 4276 | return value_cast_pointers (formal_type, result, 0); |
14f9c5c9 AS |
4277 | } |
4278 | else if (TYPE_CODE (actual_type) == TYPE_CODE_PTR) | |
4279 | return ada_value_ind (actual); | |
4280 | ||
4281 | return actual; | |
4282 | } | |
4283 | ||
438c98a1 JB |
4284 | /* Convert VALUE (which must be an address) to a CORE_ADDR that is a pointer of |
4285 | type TYPE. This is usually an inefficient no-op except on some targets | |
4286 | (such as AVR) where the representation of a pointer and an address | |
4287 | differs. */ | |
4288 | ||
4289 | static CORE_ADDR | |
4290 | value_pointer (struct value *value, struct type *type) | |
4291 | { | |
4292 | struct gdbarch *gdbarch = get_type_arch (type); | |
4293 | unsigned len = TYPE_LENGTH (type); | |
4294 | gdb_byte *buf = alloca (len); | |
4295 | CORE_ADDR addr; | |
4296 | ||
4297 | addr = value_address (value); | |
4298 | gdbarch_address_to_pointer (gdbarch, type, buf, addr); | |
4299 | addr = extract_unsigned_integer (buf, len, gdbarch_byte_order (gdbarch)); | |
4300 | return addr; | |
4301 | } | |
4302 | ||
14f9c5c9 | 4303 | |
4c4b4cd2 PH |
4304 | /* Push a descriptor of type TYPE for array value ARR on the stack at |
4305 | *SP, updating *SP to reflect the new descriptor. Return either | |
14f9c5c9 | 4306 | an lvalue representing the new descriptor, or (if TYPE is a pointer- |
4c4b4cd2 PH |
4307 | to-descriptor type rather than a descriptor type), a struct value * |
4308 | representing a pointer to this descriptor. */ | |
14f9c5c9 | 4309 | |
d2e4a39e | 4310 | static struct value * |
40bc484c | 4311 | make_array_descriptor (struct type *type, struct value *arr) |
14f9c5c9 | 4312 | { |
d2e4a39e AS |
4313 | struct type *bounds_type = desc_bounds_type (type); |
4314 | struct type *desc_type = desc_base_type (type); | |
4315 | struct value *descriptor = allocate_value (desc_type); | |
4316 | struct value *bounds = allocate_value (bounds_type); | |
14f9c5c9 | 4317 | int i; |
d2e4a39e | 4318 | |
0963b4bd MS |
4319 | for (i = ada_array_arity (ada_check_typedef (value_type (arr))); |
4320 | i > 0; i -= 1) | |
14f9c5c9 | 4321 | { |
19f220c3 JK |
4322 | modify_field (value_type (bounds), value_contents_writeable (bounds), |
4323 | ada_array_bound (arr, i, 0), | |
4324 | desc_bound_bitpos (bounds_type, i, 0), | |
4325 | desc_bound_bitsize (bounds_type, i, 0)); | |
4326 | modify_field (value_type (bounds), value_contents_writeable (bounds), | |
4327 | ada_array_bound (arr, i, 1), | |
4328 | desc_bound_bitpos (bounds_type, i, 1), | |
4329 | desc_bound_bitsize (bounds_type, i, 1)); | |
14f9c5c9 | 4330 | } |
d2e4a39e | 4331 | |
40bc484c | 4332 | bounds = ensure_lval (bounds); |
d2e4a39e | 4333 | |
19f220c3 JK |
4334 | modify_field (value_type (descriptor), |
4335 | value_contents_writeable (descriptor), | |
4336 | value_pointer (ensure_lval (arr), | |
4337 | TYPE_FIELD_TYPE (desc_type, 0)), | |
4338 | fat_pntr_data_bitpos (desc_type), | |
4339 | fat_pntr_data_bitsize (desc_type)); | |
4340 | ||
4341 | modify_field (value_type (descriptor), | |
4342 | value_contents_writeable (descriptor), | |
4343 | value_pointer (bounds, | |
4344 | TYPE_FIELD_TYPE (desc_type, 1)), | |
4345 | fat_pntr_bounds_bitpos (desc_type), | |
4346 | fat_pntr_bounds_bitsize (desc_type)); | |
14f9c5c9 | 4347 | |
40bc484c | 4348 | descriptor = ensure_lval (descriptor); |
14f9c5c9 AS |
4349 | |
4350 | if (TYPE_CODE (type) == TYPE_CODE_PTR) | |
4351 | return value_addr (descriptor); | |
4352 | else | |
4353 | return descriptor; | |
4354 | } | |
14f9c5c9 | 4355 | \f |
3d9434b5 JB |
4356 | /* Symbol Cache Module */ |
4357 | ||
3d9434b5 | 4358 | /* Performance measurements made as of 2010-01-15 indicate that |
ee01b665 | 4359 | this cache does bring some noticeable improvements. Depending |
3d9434b5 JB |
4360 | on the type of entity being printed, the cache can make it as much |
4361 | as an order of magnitude faster than without it. | |
4362 | ||
4363 | The descriptive type DWARF extension has significantly reduced | |
4364 | the need for this cache, at least when DWARF is being used. However, | |
4365 | even in this case, some expensive name-based symbol searches are still | |
4366 | sometimes necessary - to find an XVZ variable, mostly. */ | |
4367 | ||
ee01b665 | 4368 | /* Initialize the contents of SYM_CACHE. */ |
3d9434b5 | 4369 | |
ee01b665 JB |
4370 | static void |
4371 | ada_init_symbol_cache (struct ada_symbol_cache *sym_cache) | |
4372 | { | |
4373 | obstack_init (&sym_cache->cache_space); | |
4374 | memset (sym_cache->root, '\000', sizeof (sym_cache->root)); | |
4375 | } | |
3d9434b5 | 4376 | |
ee01b665 JB |
4377 | /* Free the memory used by SYM_CACHE. */ |
4378 | ||
4379 | static void | |
4380 | ada_free_symbol_cache (struct ada_symbol_cache *sym_cache) | |
3d9434b5 | 4381 | { |
ee01b665 JB |
4382 | obstack_free (&sym_cache->cache_space, NULL); |
4383 | xfree (sym_cache); | |
4384 | } | |
3d9434b5 | 4385 | |
ee01b665 JB |
4386 | /* Return the symbol cache associated to the given program space PSPACE. |
4387 | If not allocated for this PSPACE yet, allocate and initialize one. */ | |
3d9434b5 | 4388 | |
ee01b665 JB |
4389 | static struct ada_symbol_cache * |
4390 | ada_get_symbol_cache (struct program_space *pspace) | |
4391 | { | |
4392 | struct ada_pspace_data *pspace_data = get_ada_pspace_data (pspace); | |
4393 | struct ada_symbol_cache *sym_cache = pspace_data->sym_cache; | |
4394 | ||
4395 | if (sym_cache == NULL) | |
4396 | { | |
4397 | sym_cache = XCNEW (struct ada_symbol_cache); | |
4398 | ada_init_symbol_cache (sym_cache); | |
4399 | } | |
4400 | ||
4401 | return sym_cache; | |
4402 | } | |
3d9434b5 JB |
4403 | |
4404 | /* Clear all entries from the symbol cache. */ | |
4405 | ||
4406 | static void | |
4407 | ada_clear_symbol_cache (void) | |
4408 | { | |
ee01b665 JB |
4409 | struct ada_symbol_cache *sym_cache |
4410 | = ada_get_symbol_cache (current_program_space); | |
4411 | ||
4412 | obstack_free (&sym_cache->cache_space, NULL); | |
4413 | ada_init_symbol_cache (sym_cache); | |
3d9434b5 JB |
4414 | } |
4415 | ||
4416 | /* Search our cache for an entry matching NAME and NAMESPACE. | |
4417 | Return it if found, or NULL otherwise. */ | |
4418 | ||
4419 | static struct cache_entry ** | |
4420 | find_entry (const char *name, domain_enum namespace) | |
4421 | { | |
ee01b665 JB |
4422 | struct ada_symbol_cache *sym_cache |
4423 | = ada_get_symbol_cache (current_program_space); | |
3d9434b5 JB |
4424 | int h = msymbol_hash (name) % HASH_SIZE; |
4425 | struct cache_entry **e; | |
4426 | ||
ee01b665 | 4427 | for (e = &sym_cache->root[h]; *e != NULL; e = &(*e)->next) |
3d9434b5 JB |
4428 | { |
4429 | if (namespace == (*e)->namespace && strcmp (name, (*e)->name) == 0) | |
4430 | return e; | |
4431 | } | |
4432 | return NULL; | |
4433 | } | |
4434 | ||
4435 | /* Search the symbol cache for an entry matching NAME and NAMESPACE. | |
4436 | Return 1 if found, 0 otherwise. | |
4437 | ||
4438 | If an entry was found and SYM is not NULL, set *SYM to the entry's | |
4439 | SYM. Same principle for BLOCK if not NULL. */ | |
96d887e8 | 4440 | |
96d887e8 PH |
4441 | static int |
4442 | lookup_cached_symbol (const char *name, domain_enum namespace, | |
f0c5f9b2 | 4443 | struct symbol **sym, const struct block **block) |
96d887e8 | 4444 | { |
3d9434b5 JB |
4445 | struct cache_entry **e = find_entry (name, namespace); |
4446 | ||
4447 | if (e == NULL) | |
4448 | return 0; | |
4449 | if (sym != NULL) | |
4450 | *sym = (*e)->sym; | |
4451 | if (block != NULL) | |
4452 | *block = (*e)->block; | |
4453 | return 1; | |
96d887e8 PH |
4454 | } |
4455 | ||
3d9434b5 JB |
4456 | /* Assuming that (SYM, BLOCK) is the result of the lookup of NAME |
4457 | in domain NAMESPACE, save this result in our symbol cache. */ | |
4458 | ||
96d887e8 PH |
4459 | static void |
4460 | cache_symbol (const char *name, domain_enum namespace, struct symbol *sym, | |
270140bd | 4461 | const struct block *block) |
96d887e8 | 4462 | { |
ee01b665 JB |
4463 | struct ada_symbol_cache *sym_cache |
4464 | = ada_get_symbol_cache (current_program_space); | |
3d9434b5 JB |
4465 | int h; |
4466 | char *copy; | |
4467 | struct cache_entry *e; | |
4468 | ||
4469 | /* If the symbol is a local symbol, then do not cache it, as a search | |
4470 | for that symbol depends on the context. To determine whether | |
4471 | the symbol is local or not, we check the block where we found it | |
4472 | against the global and static blocks of its associated symtab. */ | |
4473 | if (sym | |
439247b6 DE |
4474 | && BLOCKVECTOR_BLOCK (SYMTAB_BLOCKVECTOR (sym->symtab), |
4475 | GLOBAL_BLOCK) != block | |
4476 | && BLOCKVECTOR_BLOCK (SYMTAB_BLOCKVECTOR (sym->symtab), | |
4477 | STATIC_BLOCK) != block) | |
3d9434b5 JB |
4478 | return; |
4479 | ||
4480 | h = msymbol_hash (name) % HASH_SIZE; | |
ee01b665 JB |
4481 | e = (struct cache_entry *) obstack_alloc (&sym_cache->cache_space, |
4482 | sizeof (*e)); | |
4483 | e->next = sym_cache->root[h]; | |
4484 | sym_cache->root[h] = e; | |
4485 | e->name = copy = obstack_alloc (&sym_cache->cache_space, strlen (name) + 1); | |
3d9434b5 JB |
4486 | strcpy (copy, name); |
4487 | e->sym = sym; | |
4488 | e->namespace = namespace; | |
4489 | e->block = block; | |
96d887e8 | 4490 | } |
4c4b4cd2 PH |
4491 | \f |
4492 | /* Symbol Lookup */ | |
4493 | ||
c0431670 JB |
4494 | /* Return nonzero if wild matching should be used when searching for |
4495 | all symbols matching LOOKUP_NAME. | |
4496 | ||
4497 | LOOKUP_NAME is expected to be a symbol name after transformation | |
4498 | for Ada lookups (see ada_name_for_lookup). */ | |
4499 | ||
4500 | static int | |
4501 | should_use_wild_match (const char *lookup_name) | |
4502 | { | |
4503 | return (strstr (lookup_name, "__") == NULL); | |
4504 | } | |
4505 | ||
4c4b4cd2 PH |
4506 | /* Return the result of a standard (literal, C-like) lookup of NAME in |
4507 | given DOMAIN, visible from lexical block BLOCK. */ | |
4508 | ||
4509 | static struct symbol * | |
4510 | standard_lookup (const char *name, const struct block *block, | |
4511 | domain_enum domain) | |
4512 | { | |
acbd605d MGD |
4513 | /* Initialize it just to avoid a GCC false warning. */ |
4514 | struct symbol *sym = NULL; | |
4c4b4cd2 | 4515 | |
2570f2b7 | 4516 | if (lookup_cached_symbol (name, domain, &sym, NULL)) |
4c4b4cd2 | 4517 | return sym; |
2570f2b7 UW |
4518 | sym = lookup_symbol_in_language (name, block, domain, language_c, 0); |
4519 | cache_symbol (name, domain, sym, block_found); | |
4c4b4cd2 PH |
4520 | return sym; |
4521 | } | |
4522 | ||
4523 | ||
4524 | /* Non-zero iff there is at least one non-function/non-enumeral symbol | |
4525 | in the symbol fields of SYMS[0..N-1]. We treat enumerals as functions, | |
4526 | since they contend in overloading in the same way. */ | |
4527 | static int | |
4528 | is_nonfunction (struct ada_symbol_info syms[], int n) | |
4529 | { | |
4530 | int i; | |
4531 | ||
4532 | for (i = 0; i < n; i += 1) | |
4533 | if (TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) != TYPE_CODE_FUNC | |
4534 | && (TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) != TYPE_CODE_ENUM | |
4535 | || SYMBOL_CLASS (syms[i].sym) != LOC_CONST)) | |
14f9c5c9 AS |
4536 | return 1; |
4537 | ||
4538 | return 0; | |
4539 | } | |
4540 | ||
4541 | /* If true (non-zero), then TYPE0 and TYPE1 represent equivalent | |
4c4b4cd2 | 4542 | struct types. Otherwise, they may not. */ |
14f9c5c9 AS |
4543 | |
4544 | static int | |
d2e4a39e | 4545 | equiv_types (struct type *type0, struct type *type1) |
14f9c5c9 | 4546 | { |
d2e4a39e | 4547 | if (type0 == type1) |
14f9c5c9 | 4548 | return 1; |
d2e4a39e | 4549 | if (type0 == NULL || type1 == NULL |
14f9c5c9 AS |
4550 | || TYPE_CODE (type0) != TYPE_CODE (type1)) |
4551 | return 0; | |
d2e4a39e | 4552 | if ((TYPE_CODE (type0) == TYPE_CODE_STRUCT |
14f9c5c9 AS |
4553 | || TYPE_CODE (type0) == TYPE_CODE_ENUM) |
4554 | && ada_type_name (type0) != NULL && ada_type_name (type1) != NULL | |
4c4b4cd2 | 4555 | && strcmp (ada_type_name (type0), ada_type_name (type1)) == 0) |
14f9c5c9 | 4556 | return 1; |
d2e4a39e | 4557 | |
14f9c5c9 AS |
4558 | return 0; |
4559 | } | |
4560 | ||
4561 | /* True iff SYM0 represents the same entity as SYM1, or one that is | |
4c4b4cd2 | 4562 | no more defined than that of SYM1. */ |
14f9c5c9 AS |
4563 | |
4564 | static int | |
d2e4a39e | 4565 | lesseq_defined_than (struct symbol *sym0, struct symbol *sym1) |
14f9c5c9 AS |
4566 | { |
4567 | if (sym0 == sym1) | |
4568 | return 1; | |
176620f1 | 4569 | if (SYMBOL_DOMAIN (sym0) != SYMBOL_DOMAIN (sym1) |
14f9c5c9 AS |
4570 | || SYMBOL_CLASS (sym0) != SYMBOL_CLASS (sym1)) |
4571 | return 0; | |
4572 | ||
d2e4a39e | 4573 | switch (SYMBOL_CLASS (sym0)) |
14f9c5c9 AS |
4574 | { |
4575 | case LOC_UNDEF: | |
4576 | return 1; | |
4577 | case LOC_TYPEDEF: | |
4578 | { | |
4c4b4cd2 PH |
4579 | struct type *type0 = SYMBOL_TYPE (sym0); |
4580 | struct type *type1 = SYMBOL_TYPE (sym1); | |
0d5cff50 DE |
4581 | const char *name0 = SYMBOL_LINKAGE_NAME (sym0); |
4582 | const char *name1 = SYMBOL_LINKAGE_NAME (sym1); | |
4c4b4cd2 | 4583 | int len0 = strlen (name0); |
5b4ee69b | 4584 | |
4c4b4cd2 PH |
4585 | return |
4586 | TYPE_CODE (type0) == TYPE_CODE (type1) | |
4587 | && (equiv_types (type0, type1) | |
4588 | || (len0 < strlen (name1) && strncmp (name0, name1, len0) == 0 | |
4589 | && strncmp (name1 + len0, "___XV", 5) == 0)); | |
14f9c5c9 AS |
4590 | } |
4591 | case LOC_CONST: | |
4592 | return SYMBOL_VALUE (sym0) == SYMBOL_VALUE (sym1) | |
4c4b4cd2 | 4593 | && equiv_types (SYMBOL_TYPE (sym0), SYMBOL_TYPE (sym1)); |
d2e4a39e AS |
4594 | default: |
4595 | return 0; | |
14f9c5c9 AS |
4596 | } |
4597 | } | |
4598 | ||
4c4b4cd2 PH |
4599 | /* Append (SYM,BLOCK,SYMTAB) to the end of the array of struct ada_symbol_info |
4600 | records in OBSTACKP. Do nothing if SYM is a duplicate. */ | |
14f9c5c9 AS |
4601 | |
4602 | static void | |
76a01679 JB |
4603 | add_defn_to_vec (struct obstack *obstackp, |
4604 | struct symbol *sym, | |
f0c5f9b2 | 4605 | const struct block *block) |
14f9c5c9 AS |
4606 | { |
4607 | int i; | |
4c4b4cd2 | 4608 | struct ada_symbol_info *prevDefns = defns_collected (obstackp, 0); |
14f9c5c9 | 4609 | |
529cad9c PH |
4610 | /* Do not try to complete stub types, as the debugger is probably |
4611 | already scanning all symbols matching a certain name at the | |
4612 | time when this function is called. Trying to replace the stub | |
4613 | type by its associated full type will cause us to restart a scan | |
4614 | which may lead to an infinite recursion. Instead, the client | |
4615 | collecting the matching symbols will end up collecting several | |
4616 | matches, with at least one of them complete. It can then filter | |
4617 | out the stub ones if needed. */ | |
4618 | ||
4c4b4cd2 PH |
4619 | for (i = num_defns_collected (obstackp) - 1; i >= 0; i -= 1) |
4620 | { | |
4621 | if (lesseq_defined_than (sym, prevDefns[i].sym)) | |
4622 | return; | |
4623 | else if (lesseq_defined_than (prevDefns[i].sym, sym)) | |
4624 | { | |
4625 | prevDefns[i].sym = sym; | |
4626 | prevDefns[i].block = block; | |
4c4b4cd2 | 4627 | return; |
76a01679 | 4628 | } |
4c4b4cd2 PH |
4629 | } |
4630 | ||
4631 | { | |
4632 | struct ada_symbol_info info; | |
4633 | ||
4634 | info.sym = sym; | |
4635 | info.block = block; | |
4c4b4cd2 PH |
4636 | obstack_grow (obstackp, &info, sizeof (struct ada_symbol_info)); |
4637 | } | |
4638 | } | |
4639 | ||
4640 | /* Number of ada_symbol_info structures currently collected in | |
4641 | current vector in *OBSTACKP. */ | |
4642 | ||
76a01679 JB |
4643 | static int |
4644 | num_defns_collected (struct obstack *obstackp) | |
4c4b4cd2 PH |
4645 | { |
4646 | return obstack_object_size (obstackp) / sizeof (struct ada_symbol_info); | |
4647 | } | |
4648 | ||
4649 | /* Vector of ada_symbol_info structures currently collected in current | |
4650 | vector in *OBSTACKP. If FINISH, close off the vector and return | |
4651 | its final address. */ | |
4652 | ||
76a01679 | 4653 | static struct ada_symbol_info * |
4c4b4cd2 PH |
4654 | defns_collected (struct obstack *obstackp, int finish) |
4655 | { | |
4656 | if (finish) | |
4657 | return obstack_finish (obstackp); | |
4658 | else | |
4659 | return (struct ada_symbol_info *) obstack_base (obstackp); | |
4660 | } | |
4661 | ||
7c7b6655 TT |
4662 | /* Return a bound minimal symbol matching NAME according to Ada |
4663 | decoding rules. Returns an invalid symbol if there is no such | |
4664 | minimal symbol. Names prefixed with "standard__" are handled | |
4665 | specially: "standard__" is first stripped off, and only static and | |
4666 | global symbols are searched. */ | |
4c4b4cd2 | 4667 | |
7c7b6655 | 4668 | struct bound_minimal_symbol |
96d887e8 | 4669 | ada_lookup_simple_minsym (const char *name) |
4c4b4cd2 | 4670 | { |
7c7b6655 | 4671 | struct bound_minimal_symbol result; |
4c4b4cd2 | 4672 | struct objfile *objfile; |
96d887e8 | 4673 | struct minimal_symbol *msymbol; |
dc4024cd | 4674 | const int wild_match_p = should_use_wild_match (name); |
4c4b4cd2 | 4675 | |
7c7b6655 TT |
4676 | memset (&result, 0, sizeof (result)); |
4677 | ||
c0431670 JB |
4678 | /* Special case: If the user specifies a symbol name inside package |
4679 | Standard, do a non-wild matching of the symbol name without | |
4680 | the "standard__" prefix. This was primarily introduced in order | |
4681 | to allow the user to specifically access the standard exceptions | |
4682 | using, for instance, Standard.Constraint_Error when Constraint_Error | |
4683 | is ambiguous (due to the user defining its own Constraint_Error | |
4684 | entity inside its program). */ | |
96d887e8 | 4685 | if (strncmp (name, "standard__", sizeof ("standard__") - 1) == 0) |
c0431670 | 4686 | name += sizeof ("standard__") - 1; |
4c4b4cd2 | 4687 | |
96d887e8 PH |
4688 | ALL_MSYMBOLS (objfile, msymbol) |
4689 | { | |
efd66ac6 | 4690 | if (match_name (MSYMBOL_LINKAGE_NAME (msymbol), name, wild_match_p) |
96d887e8 | 4691 | && MSYMBOL_TYPE (msymbol) != mst_solib_trampoline) |
7c7b6655 TT |
4692 | { |
4693 | result.minsym = msymbol; | |
4694 | result.objfile = objfile; | |
4695 | break; | |
4696 | } | |
96d887e8 | 4697 | } |
4c4b4cd2 | 4698 | |
7c7b6655 | 4699 | return result; |
96d887e8 | 4700 | } |
4c4b4cd2 | 4701 | |
96d887e8 PH |
4702 | /* For all subprograms that statically enclose the subprogram of the |
4703 | selected frame, add symbols matching identifier NAME in DOMAIN | |
4704 | and their blocks to the list of data in OBSTACKP, as for | |
48b78332 JB |
4705 | ada_add_block_symbols (q.v.). If WILD_MATCH_P, treat as NAME |
4706 | with a wildcard prefix. */ | |
4c4b4cd2 | 4707 | |
96d887e8 PH |
4708 | static void |
4709 | add_symbols_from_enclosing_procs (struct obstack *obstackp, | |
76a01679 | 4710 | const char *name, domain_enum namespace, |
48b78332 | 4711 | int wild_match_p) |
96d887e8 | 4712 | { |
96d887e8 | 4713 | } |
14f9c5c9 | 4714 | |
96d887e8 PH |
4715 | /* True if TYPE is definitely an artificial type supplied to a symbol |
4716 | for which no debugging information was given in the symbol file. */ | |
14f9c5c9 | 4717 | |
96d887e8 PH |
4718 | static int |
4719 | is_nondebugging_type (struct type *type) | |
4720 | { | |
0d5cff50 | 4721 | const char *name = ada_type_name (type); |
5b4ee69b | 4722 | |
96d887e8 PH |
4723 | return (name != NULL && strcmp (name, "<variable, no debug info>") == 0); |
4724 | } | |
4c4b4cd2 | 4725 | |
8f17729f JB |
4726 | /* Return nonzero if TYPE1 and TYPE2 are two enumeration types |
4727 | that are deemed "identical" for practical purposes. | |
4728 | ||
4729 | This function assumes that TYPE1 and TYPE2 are both TYPE_CODE_ENUM | |
4730 | types and that their number of enumerals is identical (in other | |
4731 | words, TYPE_NFIELDS (type1) == TYPE_NFIELDS (type2)). */ | |
4732 | ||
4733 | static int | |
4734 | ada_identical_enum_types_p (struct type *type1, struct type *type2) | |
4735 | { | |
4736 | int i; | |
4737 | ||
4738 | /* The heuristic we use here is fairly conservative. We consider | |
4739 | that 2 enumerate types are identical if they have the same | |
4740 | number of enumerals and that all enumerals have the same | |
4741 | underlying value and name. */ | |
4742 | ||
4743 | /* All enums in the type should have an identical underlying value. */ | |
4744 | for (i = 0; i < TYPE_NFIELDS (type1); i++) | |
14e75d8e | 4745 | if (TYPE_FIELD_ENUMVAL (type1, i) != TYPE_FIELD_ENUMVAL (type2, i)) |
8f17729f JB |
4746 | return 0; |
4747 | ||
4748 | /* All enumerals should also have the same name (modulo any numerical | |
4749 | suffix). */ | |
4750 | for (i = 0; i < TYPE_NFIELDS (type1); i++) | |
4751 | { | |
0d5cff50 DE |
4752 | const char *name_1 = TYPE_FIELD_NAME (type1, i); |
4753 | const char *name_2 = TYPE_FIELD_NAME (type2, i); | |
8f17729f JB |
4754 | int len_1 = strlen (name_1); |
4755 | int len_2 = strlen (name_2); | |
4756 | ||
4757 | ada_remove_trailing_digits (TYPE_FIELD_NAME (type1, i), &len_1); | |
4758 | ada_remove_trailing_digits (TYPE_FIELD_NAME (type2, i), &len_2); | |
4759 | if (len_1 != len_2 | |
4760 | || strncmp (TYPE_FIELD_NAME (type1, i), | |
4761 | TYPE_FIELD_NAME (type2, i), | |
4762 | len_1) != 0) | |
4763 | return 0; | |
4764 | } | |
4765 | ||
4766 | return 1; | |
4767 | } | |
4768 | ||
4769 | /* Return nonzero if all the symbols in SYMS are all enumeral symbols | |
4770 | that are deemed "identical" for practical purposes. Sometimes, | |
4771 | enumerals are not strictly identical, but their types are so similar | |
4772 | that they can be considered identical. | |
4773 | ||
4774 | For instance, consider the following code: | |
4775 | ||
4776 | type Color is (Black, Red, Green, Blue, White); | |
4777 | type RGB_Color is new Color range Red .. Blue; | |
4778 | ||
4779 | Type RGB_Color is a subrange of an implicit type which is a copy | |
4780 | of type Color. If we call that implicit type RGB_ColorB ("B" is | |
4781 | for "Base Type"), then type RGB_ColorB is a copy of type Color. | |
4782 | As a result, when an expression references any of the enumeral | |
4783 | by name (Eg. "print green"), the expression is technically | |
4784 | ambiguous and the user should be asked to disambiguate. But | |
4785 | doing so would only hinder the user, since it wouldn't matter | |
4786 | what choice he makes, the outcome would always be the same. | |
4787 | So, for practical purposes, we consider them as the same. */ | |
4788 | ||
4789 | static int | |
4790 | symbols_are_identical_enums (struct ada_symbol_info *syms, int nsyms) | |
4791 | { | |
4792 | int i; | |
4793 | ||
4794 | /* Before performing a thorough comparison check of each type, | |
4795 | we perform a series of inexpensive checks. We expect that these | |
4796 | checks will quickly fail in the vast majority of cases, and thus | |
4797 | help prevent the unnecessary use of a more expensive comparison. | |
4798 | Said comparison also expects us to make some of these checks | |
4799 | (see ada_identical_enum_types_p). */ | |
4800 | ||
4801 | /* Quick check: All symbols should have an enum type. */ | |
4802 | for (i = 0; i < nsyms; i++) | |
4803 | if (TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) != TYPE_CODE_ENUM) | |
4804 | return 0; | |
4805 | ||
4806 | /* Quick check: They should all have the same value. */ | |
4807 | for (i = 1; i < nsyms; i++) | |
4808 | if (SYMBOL_VALUE (syms[i].sym) != SYMBOL_VALUE (syms[0].sym)) | |
4809 | return 0; | |
4810 | ||
4811 | /* Quick check: They should all have the same number of enumerals. */ | |
4812 | for (i = 1; i < nsyms; i++) | |
4813 | if (TYPE_NFIELDS (SYMBOL_TYPE (syms[i].sym)) | |
4814 | != TYPE_NFIELDS (SYMBOL_TYPE (syms[0].sym))) | |
4815 | return 0; | |
4816 | ||
4817 | /* All the sanity checks passed, so we might have a set of | |
4818 | identical enumeration types. Perform a more complete | |
4819 | comparison of the type of each symbol. */ | |
4820 | for (i = 1; i < nsyms; i++) | |
4821 | if (!ada_identical_enum_types_p (SYMBOL_TYPE (syms[i].sym), | |
4822 | SYMBOL_TYPE (syms[0].sym))) | |
4823 | return 0; | |
4824 | ||
4825 | return 1; | |
4826 | } | |
4827 | ||
96d887e8 PH |
4828 | /* Remove any non-debugging symbols in SYMS[0 .. NSYMS-1] that definitely |
4829 | duplicate other symbols in the list (The only case I know of where | |
4830 | this happens is when object files containing stabs-in-ecoff are | |
4831 | linked with files containing ordinary ecoff debugging symbols (or no | |
4832 | debugging symbols)). Modifies SYMS to squeeze out deleted entries. | |
4833 | Returns the number of items in the modified list. */ | |
4c4b4cd2 | 4834 | |
96d887e8 PH |
4835 | static int |
4836 | remove_extra_symbols (struct ada_symbol_info *syms, int nsyms) | |
4837 | { | |
4838 | int i, j; | |
4c4b4cd2 | 4839 | |
8f17729f JB |
4840 | /* We should never be called with less than 2 symbols, as there |
4841 | cannot be any extra symbol in that case. But it's easy to | |
4842 | handle, since we have nothing to do in that case. */ | |
4843 | if (nsyms < 2) | |
4844 | return nsyms; | |
4845 | ||
96d887e8 PH |
4846 | i = 0; |
4847 | while (i < nsyms) | |
4848 | { | |
a35ddb44 | 4849 | int remove_p = 0; |
339c13b6 JB |
4850 | |
4851 | /* If two symbols have the same name and one of them is a stub type, | |
4852 | the get rid of the stub. */ | |
4853 | ||
4854 | if (TYPE_STUB (SYMBOL_TYPE (syms[i].sym)) | |
4855 | && SYMBOL_LINKAGE_NAME (syms[i].sym) != NULL) | |
4856 | { | |
4857 | for (j = 0; j < nsyms; j++) | |
4858 | { | |
4859 | if (j != i | |
4860 | && !TYPE_STUB (SYMBOL_TYPE (syms[j].sym)) | |
4861 | && SYMBOL_LINKAGE_NAME (syms[j].sym) != NULL | |
4862 | && strcmp (SYMBOL_LINKAGE_NAME (syms[i].sym), | |
4863 | SYMBOL_LINKAGE_NAME (syms[j].sym)) == 0) | |
a35ddb44 | 4864 | remove_p = 1; |
339c13b6 JB |
4865 | } |
4866 | } | |
4867 | ||
4868 | /* Two symbols with the same name, same class and same address | |
4869 | should be identical. */ | |
4870 | ||
4871 | else if (SYMBOL_LINKAGE_NAME (syms[i].sym) != NULL | |
96d887e8 PH |
4872 | && SYMBOL_CLASS (syms[i].sym) == LOC_STATIC |
4873 | && is_nondebugging_type (SYMBOL_TYPE (syms[i].sym))) | |
4874 | { | |
4875 | for (j = 0; j < nsyms; j += 1) | |
4876 | { | |
4877 | if (i != j | |
4878 | && SYMBOL_LINKAGE_NAME (syms[j].sym) != NULL | |
4879 | && strcmp (SYMBOL_LINKAGE_NAME (syms[i].sym), | |
76a01679 | 4880 | SYMBOL_LINKAGE_NAME (syms[j].sym)) == 0 |
96d887e8 PH |
4881 | && SYMBOL_CLASS (syms[i].sym) == SYMBOL_CLASS (syms[j].sym) |
4882 | && SYMBOL_VALUE_ADDRESS (syms[i].sym) | |
4883 | == SYMBOL_VALUE_ADDRESS (syms[j].sym)) | |
a35ddb44 | 4884 | remove_p = 1; |
4c4b4cd2 | 4885 | } |
4c4b4cd2 | 4886 | } |
339c13b6 | 4887 | |
a35ddb44 | 4888 | if (remove_p) |
339c13b6 JB |
4889 | { |
4890 | for (j = i + 1; j < nsyms; j += 1) | |
4891 | syms[j - 1] = syms[j]; | |
4892 | nsyms -= 1; | |
4893 | } | |
4894 | ||
96d887e8 | 4895 | i += 1; |
14f9c5c9 | 4896 | } |
8f17729f JB |
4897 | |
4898 | /* If all the remaining symbols are identical enumerals, then | |
4899 | just keep the first one and discard the rest. | |
4900 | ||
4901 | Unlike what we did previously, we do not discard any entry | |
4902 | unless they are ALL identical. This is because the symbol | |
4903 | comparison is not a strict comparison, but rather a practical | |
4904 | comparison. If all symbols are considered identical, then | |
4905 | we can just go ahead and use the first one and discard the rest. | |
4906 | But if we cannot reduce the list to a single element, we have | |
4907 | to ask the user to disambiguate anyways. And if we have to | |
4908 | present a multiple-choice menu, it's less confusing if the list | |
4909 | isn't missing some choices that were identical and yet distinct. */ | |
4910 | if (symbols_are_identical_enums (syms, nsyms)) | |
4911 | nsyms = 1; | |
4912 | ||
96d887e8 | 4913 | return nsyms; |
14f9c5c9 AS |
4914 | } |
4915 | ||
96d887e8 PH |
4916 | /* Given a type that corresponds to a renaming entity, use the type name |
4917 | to extract the scope (package name or function name, fully qualified, | |
4918 | and following the GNAT encoding convention) where this renaming has been | |
4919 | defined. The string returned needs to be deallocated after use. */ | |
4c4b4cd2 | 4920 | |
96d887e8 PH |
4921 | static char * |
4922 | xget_renaming_scope (struct type *renaming_type) | |
14f9c5c9 | 4923 | { |
96d887e8 | 4924 | /* The renaming types adhere to the following convention: |
0963b4bd | 4925 | <scope>__<rename>___<XR extension>. |
96d887e8 PH |
4926 | So, to extract the scope, we search for the "___XR" extension, |
4927 | and then backtrack until we find the first "__". */ | |
76a01679 | 4928 | |
96d887e8 PH |
4929 | const char *name = type_name_no_tag (renaming_type); |
4930 | char *suffix = strstr (name, "___XR"); | |
4931 | char *last; | |
4932 | int scope_len; | |
4933 | char *scope; | |
14f9c5c9 | 4934 | |
96d887e8 PH |
4935 | /* Now, backtrack a bit until we find the first "__". Start looking |
4936 | at suffix - 3, as the <rename> part is at least one character long. */ | |
14f9c5c9 | 4937 | |
96d887e8 PH |
4938 | for (last = suffix - 3; last > name; last--) |
4939 | if (last[0] == '_' && last[1] == '_') | |
4940 | break; | |
76a01679 | 4941 | |
96d887e8 | 4942 | /* Make a copy of scope and return it. */ |
14f9c5c9 | 4943 | |
96d887e8 PH |
4944 | scope_len = last - name; |
4945 | scope = (char *) xmalloc ((scope_len + 1) * sizeof (char)); | |
14f9c5c9 | 4946 | |
96d887e8 PH |
4947 | strncpy (scope, name, scope_len); |
4948 | scope[scope_len] = '\0'; | |
4c4b4cd2 | 4949 | |
96d887e8 | 4950 | return scope; |
4c4b4cd2 PH |
4951 | } |
4952 | ||
96d887e8 | 4953 | /* Return nonzero if NAME corresponds to a package name. */ |
4c4b4cd2 | 4954 | |
96d887e8 PH |
4955 | static int |
4956 | is_package_name (const char *name) | |
4c4b4cd2 | 4957 | { |
96d887e8 PH |
4958 | /* Here, We take advantage of the fact that no symbols are generated |
4959 | for packages, while symbols are generated for each function. | |
4960 | So the condition for NAME represent a package becomes equivalent | |
4961 | to NAME not existing in our list of symbols. There is only one | |
4962 | small complication with library-level functions (see below). */ | |
4c4b4cd2 | 4963 | |
96d887e8 | 4964 | char *fun_name; |
76a01679 | 4965 | |
96d887e8 PH |
4966 | /* If it is a function that has not been defined at library level, |
4967 | then we should be able to look it up in the symbols. */ | |
4968 | if (standard_lookup (name, NULL, VAR_DOMAIN) != NULL) | |
4969 | return 0; | |
14f9c5c9 | 4970 | |
96d887e8 PH |
4971 | /* Library-level function names start with "_ada_". See if function |
4972 | "_ada_" followed by NAME can be found. */ | |
14f9c5c9 | 4973 | |
96d887e8 | 4974 | /* Do a quick check that NAME does not contain "__", since library-level |
e1d5a0d2 | 4975 | functions names cannot contain "__" in them. */ |
96d887e8 PH |
4976 | if (strstr (name, "__") != NULL) |
4977 | return 0; | |
4c4b4cd2 | 4978 | |
b435e160 | 4979 | fun_name = xstrprintf ("_ada_%s", name); |
14f9c5c9 | 4980 | |
96d887e8 PH |
4981 | return (standard_lookup (fun_name, NULL, VAR_DOMAIN) == NULL); |
4982 | } | |
14f9c5c9 | 4983 | |
96d887e8 | 4984 | /* Return nonzero if SYM corresponds to a renaming entity that is |
aeb5907d | 4985 | not visible from FUNCTION_NAME. */ |
14f9c5c9 | 4986 | |
96d887e8 | 4987 | static int |
0d5cff50 | 4988 | old_renaming_is_invisible (const struct symbol *sym, const char *function_name) |
96d887e8 | 4989 | { |
aeb5907d | 4990 | char *scope; |
1509e573 | 4991 | struct cleanup *old_chain; |
aeb5907d JB |
4992 | |
4993 | if (SYMBOL_CLASS (sym) != LOC_TYPEDEF) | |
4994 | return 0; | |
4995 | ||
4996 | scope = xget_renaming_scope (SYMBOL_TYPE (sym)); | |
1509e573 | 4997 | old_chain = make_cleanup (xfree, scope); |
14f9c5c9 | 4998 | |
96d887e8 PH |
4999 | /* If the rename has been defined in a package, then it is visible. */ |
5000 | if (is_package_name (scope)) | |
1509e573 JB |
5001 | { |
5002 | do_cleanups (old_chain); | |
5003 | return 0; | |
5004 | } | |
14f9c5c9 | 5005 | |
96d887e8 PH |
5006 | /* Check that the rename is in the current function scope by checking |
5007 | that its name starts with SCOPE. */ | |
76a01679 | 5008 | |
96d887e8 PH |
5009 | /* If the function name starts with "_ada_", it means that it is |
5010 | a library-level function. Strip this prefix before doing the | |
5011 | comparison, as the encoding for the renaming does not contain | |
5012 | this prefix. */ | |
5013 | if (strncmp (function_name, "_ada_", 5) == 0) | |
5014 | function_name += 5; | |
f26caa11 | 5015 | |
1509e573 JB |
5016 | { |
5017 | int is_invisible = strncmp (function_name, scope, strlen (scope)) != 0; | |
5018 | ||
5019 | do_cleanups (old_chain); | |
5020 | return is_invisible; | |
5021 | } | |
f26caa11 PH |
5022 | } |
5023 | ||
aeb5907d JB |
5024 | /* Remove entries from SYMS that corresponds to a renaming entity that |
5025 | is not visible from the function associated with CURRENT_BLOCK or | |
5026 | that is superfluous due to the presence of more specific renaming | |
5027 | information. Places surviving symbols in the initial entries of | |
5028 | SYMS and returns the number of surviving symbols. | |
96d887e8 PH |
5029 | |
5030 | Rationale: | |
aeb5907d JB |
5031 | First, in cases where an object renaming is implemented as a |
5032 | reference variable, GNAT may produce both the actual reference | |
5033 | variable and the renaming encoding. In this case, we discard the | |
5034 | latter. | |
5035 | ||
5036 | Second, GNAT emits a type following a specified encoding for each renaming | |
96d887e8 PH |
5037 | entity. Unfortunately, STABS currently does not support the definition |
5038 | of types that are local to a given lexical block, so all renamings types | |
5039 | are emitted at library level. As a consequence, if an application | |
5040 | contains two renaming entities using the same name, and a user tries to | |
5041 | print the value of one of these entities, the result of the ada symbol | |
5042 | lookup will also contain the wrong renaming type. | |
f26caa11 | 5043 | |
96d887e8 PH |
5044 | This function partially covers for this limitation by attempting to |
5045 | remove from the SYMS list renaming symbols that should be visible | |
5046 | from CURRENT_BLOCK. However, there does not seem be a 100% reliable | |
5047 | method with the current information available. The implementation | |
5048 | below has a couple of limitations (FIXME: brobecker-2003-05-12): | |
5049 | ||
5050 | - When the user tries to print a rename in a function while there | |
5051 | is another rename entity defined in a package: Normally, the | |
5052 | rename in the function has precedence over the rename in the | |
5053 | package, so the latter should be removed from the list. This is | |
5054 | currently not the case. | |
5055 | ||
5056 | - This function will incorrectly remove valid renames if | |
5057 | the CURRENT_BLOCK corresponds to a function which symbol name | |
5058 | has been changed by an "Export" pragma. As a consequence, | |
5059 | the user will be unable to print such rename entities. */ | |
4c4b4cd2 | 5060 | |
14f9c5c9 | 5061 | static int |
aeb5907d JB |
5062 | remove_irrelevant_renamings (struct ada_symbol_info *syms, |
5063 | int nsyms, const struct block *current_block) | |
4c4b4cd2 PH |
5064 | { |
5065 | struct symbol *current_function; | |
0d5cff50 | 5066 | const char *current_function_name; |
4c4b4cd2 | 5067 | int i; |
aeb5907d JB |
5068 | int is_new_style_renaming; |
5069 | ||
5070 | /* If there is both a renaming foo___XR... encoded as a variable and | |
5071 | a simple variable foo in the same block, discard the latter. | |
0963b4bd | 5072 | First, zero out such symbols, then compress. */ |
aeb5907d JB |
5073 | is_new_style_renaming = 0; |
5074 | for (i = 0; i < nsyms; i += 1) | |
5075 | { | |
5076 | struct symbol *sym = syms[i].sym; | |
270140bd | 5077 | const struct block *block = syms[i].block; |
aeb5907d JB |
5078 | const char *name; |
5079 | const char *suffix; | |
5080 | ||
5081 | if (sym == NULL || SYMBOL_CLASS (sym) == LOC_TYPEDEF) | |
5082 | continue; | |
5083 | name = SYMBOL_LINKAGE_NAME (sym); | |
5084 | suffix = strstr (name, "___XR"); | |
5085 | ||
5086 | if (suffix != NULL) | |
5087 | { | |
5088 | int name_len = suffix - name; | |
5089 | int j; | |
5b4ee69b | 5090 | |
aeb5907d JB |
5091 | is_new_style_renaming = 1; |
5092 | for (j = 0; j < nsyms; j += 1) | |
5093 | if (i != j && syms[j].sym != NULL | |
5094 | && strncmp (name, SYMBOL_LINKAGE_NAME (syms[j].sym), | |
5095 | name_len) == 0 | |
5096 | && block == syms[j].block) | |
5097 | syms[j].sym = NULL; | |
5098 | } | |
5099 | } | |
5100 | if (is_new_style_renaming) | |
5101 | { | |
5102 | int j, k; | |
5103 | ||
5104 | for (j = k = 0; j < nsyms; j += 1) | |
5105 | if (syms[j].sym != NULL) | |
5106 | { | |
5107 | syms[k] = syms[j]; | |
5108 | k += 1; | |
5109 | } | |
5110 | return k; | |
5111 | } | |
4c4b4cd2 PH |
5112 | |
5113 | /* Extract the function name associated to CURRENT_BLOCK. | |
5114 | Abort if unable to do so. */ | |
76a01679 | 5115 | |
4c4b4cd2 PH |
5116 | if (current_block == NULL) |
5117 | return nsyms; | |
76a01679 | 5118 | |
7f0df278 | 5119 | current_function = block_linkage_function (current_block); |
4c4b4cd2 PH |
5120 | if (current_function == NULL) |
5121 | return nsyms; | |
5122 | ||
5123 | current_function_name = SYMBOL_LINKAGE_NAME (current_function); | |
5124 | if (current_function_name == NULL) | |
5125 | return nsyms; | |
5126 | ||
5127 | /* Check each of the symbols, and remove it from the list if it is | |
5128 | a type corresponding to a renaming that is out of the scope of | |
5129 | the current block. */ | |
5130 | ||
5131 | i = 0; | |
5132 | while (i < nsyms) | |
5133 | { | |
aeb5907d JB |
5134 | if (ada_parse_renaming (syms[i].sym, NULL, NULL, NULL) |
5135 | == ADA_OBJECT_RENAMING | |
5136 | && old_renaming_is_invisible (syms[i].sym, current_function_name)) | |
4c4b4cd2 PH |
5137 | { |
5138 | int j; | |
5b4ee69b | 5139 | |
aeb5907d | 5140 | for (j = i + 1; j < nsyms; j += 1) |
76a01679 | 5141 | syms[j - 1] = syms[j]; |
4c4b4cd2 PH |
5142 | nsyms -= 1; |
5143 | } | |
5144 | else | |
5145 | i += 1; | |
5146 | } | |
5147 | ||
5148 | return nsyms; | |
5149 | } | |
5150 | ||
339c13b6 JB |
5151 | /* Add to OBSTACKP all symbols from BLOCK (and its super-blocks) |
5152 | whose name and domain match NAME and DOMAIN respectively. | |
5153 | If no match was found, then extend the search to "enclosing" | |
5154 | routines (in other words, if we're inside a nested function, | |
5155 | search the symbols defined inside the enclosing functions). | |
d0a8ab18 JB |
5156 | If WILD_MATCH_P is nonzero, perform the naming matching in |
5157 | "wild" mode (see function "wild_match" for more info). | |
339c13b6 JB |
5158 | |
5159 | Note: This function assumes that OBSTACKP has 0 (zero) element in it. */ | |
5160 | ||
5161 | static void | |
5162 | ada_add_local_symbols (struct obstack *obstackp, const char *name, | |
f0c5f9b2 | 5163 | const struct block *block, domain_enum domain, |
d0a8ab18 | 5164 | int wild_match_p) |
339c13b6 JB |
5165 | { |
5166 | int block_depth = 0; | |
5167 | ||
5168 | while (block != NULL) | |
5169 | { | |
5170 | block_depth += 1; | |
d0a8ab18 JB |
5171 | ada_add_block_symbols (obstackp, block, name, domain, NULL, |
5172 | wild_match_p); | |
339c13b6 JB |
5173 | |
5174 | /* If we found a non-function match, assume that's the one. */ | |
5175 | if (is_nonfunction (defns_collected (obstackp, 0), | |
5176 | num_defns_collected (obstackp))) | |
5177 | return; | |
5178 | ||
5179 | block = BLOCK_SUPERBLOCK (block); | |
5180 | } | |
5181 | ||
5182 | /* If no luck so far, try to find NAME as a local symbol in some lexically | |
5183 | enclosing subprogram. */ | |
5184 | if (num_defns_collected (obstackp) == 0 && block_depth > 2) | |
d0a8ab18 | 5185 | add_symbols_from_enclosing_procs (obstackp, name, domain, wild_match_p); |
339c13b6 JB |
5186 | } |
5187 | ||
ccefe4c4 | 5188 | /* An object of this type is used as the user_data argument when |
40658b94 | 5189 | calling the map_matching_symbols method. */ |
ccefe4c4 | 5190 | |
40658b94 | 5191 | struct match_data |
ccefe4c4 | 5192 | { |
40658b94 | 5193 | struct objfile *objfile; |
ccefe4c4 | 5194 | struct obstack *obstackp; |
40658b94 PH |
5195 | struct symbol *arg_sym; |
5196 | int found_sym; | |
ccefe4c4 TT |
5197 | }; |
5198 | ||
40658b94 PH |
5199 | /* A callback for add_matching_symbols that adds SYM, found in BLOCK, |
5200 | to a list of symbols. DATA0 is a pointer to a struct match_data * | |
5201 | containing the obstack that collects the symbol list, the file that SYM | |
5202 | must come from, a flag indicating whether a non-argument symbol has | |
5203 | been found in the current block, and the last argument symbol | |
5204 | passed in SYM within the current block (if any). When SYM is null, | |
5205 | marking the end of a block, the argument symbol is added if no | |
5206 | other has been found. */ | |
ccefe4c4 | 5207 | |
40658b94 PH |
5208 | static int |
5209 | aux_add_nonlocal_symbols (struct block *block, struct symbol *sym, void *data0) | |
ccefe4c4 | 5210 | { |
40658b94 PH |
5211 | struct match_data *data = (struct match_data *) data0; |
5212 | ||
5213 | if (sym == NULL) | |
5214 | { | |
5215 | if (!data->found_sym && data->arg_sym != NULL) | |
5216 | add_defn_to_vec (data->obstackp, | |
5217 | fixup_symbol_section (data->arg_sym, data->objfile), | |
5218 | block); | |
5219 | data->found_sym = 0; | |
5220 | data->arg_sym = NULL; | |
5221 | } | |
5222 | else | |
5223 | { | |
5224 | if (SYMBOL_CLASS (sym) == LOC_UNRESOLVED) | |
5225 | return 0; | |
5226 | else if (SYMBOL_IS_ARGUMENT (sym)) | |
5227 | data->arg_sym = sym; | |
5228 | else | |
5229 | { | |
5230 | data->found_sym = 1; | |
5231 | add_defn_to_vec (data->obstackp, | |
5232 | fixup_symbol_section (sym, data->objfile), | |
5233 | block); | |
5234 | } | |
5235 | } | |
5236 | return 0; | |
5237 | } | |
5238 | ||
db230ce3 JB |
5239 | /* Implements compare_names, but only applying the comparision using |
5240 | the given CASING. */ | |
5b4ee69b | 5241 | |
40658b94 | 5242 | static int |
db230ce3 JB |
5243 | compare_names_with_case (const char *string1, const char *string2, |
5244 | enum case_sensitivity casing) | |
40658b94 PH |
5245 | { |
5246 | while (*string1 != '\0' && *string2 != '\0') | |
5247 | { | |
db230ce3 JB |
5248 | char c1, c2; |
5249 | ||
40658b94 PH |
5250 | if (isspace (*string1) || isspace (*string2)) |
5251 | return strcmp_iw_ordered (string1, string2); | |
db230ce3 JB |
5252 | |
5253 | if (casing == case_sensitive_off) | |
5254 | { | |
5255 | c1 = tolower (*string1); | |
5256 | c2 = tolower (*string2); | |
5257 | } | |
5258 | else | |
5259 | { | |
5260 | c1 = *string1; | |
5261 | c2 = *string2; | |
5262 | } | |
5263 | if (c1 != c2) | |
40658b94 | 5264 | break; |
db230ce3 | 5265 | |
40658b94 PH |
5266 | string1 += 1; |
5267 | string2 += 1; | |
5268 | } | |
db230ce3 | 5269 | |
40658b94 PH |
5270 | switch (*string1) |
5271 | { | |
5272 | case '(': | |
5273 | return strcmp_iw_ordered (string1, string2); | |
5274 | case '_': | |
5275 | if (*string2 == '\0') | |
5276 | { | |
052874e8 | 5277 | if (is_name_suffix (string1)) |
40658b94 PH |
5278 | return 0; |
5279 | else | |
1a1d5513 | 5280 | return 1; |
40658b94 | 5281 | } |
dbb8534f | 5282 | /* FALLTHROUGH */ |
40658b94 PH |
5283 | default: |
5284 | if (*string2 == '(') | |
5285 | return strcmp_iw_ordered (string1, string2); | |
5286 | else | |
db230ce3 JB |
5287 | { |
5288 | if (casing == case_sensitive_off) | |
5289 | return tolower (*string1) - tolower (*string2); | |
5290 | else | |
5291 | return *string1 - *string2; | |
5292 | } | |
40658b94 | 5293 | } |
ccefe4c4 TT |
5294 | } |
5295 | ||
db230ce3 JB |
5296 | /* Compare STRING1 to STRING2, with results as for strcmp. |
5297 | Compatible with strcmp_iw_ordered in that... | |
5298 | ||
5299 | strcmp_iw_ordered (STRING1, STRING2) <= 0 | |
5300 | ||
5301 | ... implies... | |
5302 | ||
5303 | compare_names (STRING1, STRING2) <= 0 | |
5304 | ||
5305 | (they may differ as to what symbols compare equal). */ | |
5306 | ||
5307 | static int | |
5308 | compare_names (const char *string1, const char *string2) | |
5309 | { | |
5310 | int result; | |
5311 | ||
5312 | /* Similar to what strcmp_iw_ordered does, we need to perform | |
5313 | a case-insensitive comparison first, and only resort to | |
5314 | a second, case-sensitive, comparison if the first one was | |
5315 | not sufficient to differentiate the two strings. */ | |
5316 | ||
5317 | result = compare_names_with_case (string1, string2, case_sensitive_off); | |
5318 | if (result == 0) | |
5319 | result = compare_names_with_case (string1, string2, case_sensitive_on); | |
5320 | ||
5321 | return result; | |
5322 | } | |
5323 | ||
339c13b6 JB |
5324 | /* Add to OBSTACKP all non-local symbols whose name and domain match |
5325 | NAME and DOMAIN respectively. The search is performed on GLOBAL_BLOCK | |
5326 | symbols if GLOBAL is non-zero, or on STATIC_BLOCK symbols otherwise. */ | |
5327 | ||
5328 | static void | |
40658b94 PH |
5329 | add_nonlocal_symbols (struct obstack *obstackp, const char *name, |
5330 | domain_enum domain, int global, | |
5331 | int is_wild_match) | |
339c13b6 JB |
5332 | { |
5333 | struct objfile *objfile; | |
40658b94 | 5334 | struct match_data data; |
339c13b6 | 5335 | |
6475f2fe | 5336 | memset (&data, 0, sizeof data); |
ccefe4c4 | 5337 | data.obstackp = obstackp; |
339c13b6 | 5338 | |
ccefe4c4 | 5339 | ALL_OBJFILES (objfile) |
40658b94 PH |
5340 | { |
5341 | data.objfile = objfile; | |
5342 | ||
5343 | if (is_wild_match) | |
4186eb54 KS |
5344 | objfile->sf->qf->map_matching_symbols (objfile, name, domain, global, |
5345 | aux_add_nonlocal_symbols, &data, | |
5346 | wild_match, NULL); | |
40658b94 | 5347 | else |
4186eb54 KS |
5348 | objfile->sf->qf->map_matching_symbols (objfile, name, domain, global, |
5349 | aux_add_nonlocal_symbols, &data, | |
5350 | full_match, compare_names); | |
40658b94 PH |
5351 | } |
5352 | ||
5353 | if (num_defns_collected (obstackp) == 0 && global && !is_wild_match) | |
5354 | { | |
5355 | ALL_OBJFILES (objfile) | |
5356 | { | |
5357 | char *name1 = alloca (strlen (name) + sizeof ("_ada_")); | |
5358 | strcpy (name1, "_ada_"); | |
5359 | strcpy (name1 + sizeof ("_ada_") - 1, name); | |
5360 | data.objfile = objfile; | |
ade7ed9e DE |
5361 | objfile->sf->qf->map_matching_symbols (objfile, name1, domain, |
5362 | global, | |
0963b4bd MS |
5363 | aux_add_nonlocal_symbols, |
5364 | &data, | |
40658b94 PH |
5365 | full_match, compare_names); |
5366 | } | |
5367 | } | |
339c13b6 JB |
5368 | } |
5369 | ||
4eeaa230 DE |
5370 | /* Find symbols in DOMAIN matching NAME0, in BLOCK0 and, if full_search is |
5371 | non-zero, enclosing scope and in global scopes, returning the number of | |
5372 | matches. | |
9f88c959 | 5373 | Sets *RESULTS to point to a vector of (SYM,BLOCK) tuples, |
4c4b4cd2 | 5374 | indicating the symbols found and the blocks and symbol tables (if |
4eeaa230 DE |
5375 | any) in which they were found. This vector is transient---good only to |
5376 | the next call of ada_lookup_symbol_list. | |
5377 | ||
5378 | When full_search is non-zero, any non-function/non-enumeral | |
4c4b4cd2 PH |
5379 | symbol match within the nest of blocks whose innermost member is BLOCK0, |
5380 | is the one match returned (no other matches in that or | |
d9680e73 | 5381 | enclosing blocks is returned). If there are any matches in or |
4eeaa230 DE |
5382 | surrounding BLOCK0, then these alone are returned. |
5383 | ||
9f88c959 | 5384 | Names prefixed with "standard__" are handled specially: "standard__" |
4c4b4cd2 | 5385 | is first stripped off, and only static and global symbols are searched. */ |
14f9c5c9 | 5386 | |
4eeaa230 DE |
5387 | static int |
5388 | ada_lookup_symbol_list_worker (const char *name0, const struct block *block0, | |
5389 | domain_enum namespace, | |
5390 | struct ada_symbol_info **results, | |
5391 | int full_search) | |
14f9c5c9 AS |
5392 | { |
5393 | struct symbol *sym; | |
f0c5f9b2 | 5394 | const struct block *block; |
4c4b4cd2 | 5395 | const char *name; |
82ccd55e | 5396 | const int wild_match_p = should_use_wild_match (name0); |
14f9c5c9 | 5397 | int cacheIfUnique; |
4c4b4cd2 | 5398 | int ndefns; |
14f9c5c9 | 5399 | |
4c4b4cd2 PH |
5400 | obstack_free (&symbol_list_obstack, NULL); |
5401 | obstack_init (&symbol_list_obstack); | |
14f9c5c9 | 5402 | |
14f9c5c9 AS |
5403 | cacheIfUnique = 0; |
5404 | ||
5405 | /* Search specified block and its superiors. */ | |
5406 | ||
4c4b4cd2 | 5407 | name = name0; |
f0c5f9b2 | 5408 | block = block0; |
339c13b6 JB |
5409 | |
5410 | /* Special case: If the user specifies a symbol name inside package | |
5411 | Standard, do a non-wild matching of the symbol name without | |
5412 | the "standard__" prefix. This was primarily introduced in order | |
5413 | to allow the user to specifically access the standard exceptions | |
5414 | using, for instance, Standard.Constraint_Error when Constraint_Error | |
5415 | is ambiguous (due to the user defining its own Constraint_Error | |
5416 | entity inside its program). */ | |
4c4b4cd2 PH |
5417 | if (strncmp (name0, "standard__", sizeof ("standard__") - 1) == 0) |
5418 | { | |
4c4b4cd2 PH |
5419 | block = NULL; |
5420 | name = name0 + sizeof ("standard__") - 1; | |
5421 | } | |
5422 | ||
339c13b6 | 5423 | /* Check the non-global symbols. If we have ANY match, then we're done. */ |
14f9c5c9 | 5424 | |
4eeaa230 DE |
5425 | if (block != NULL) |
5426 | { | |
5427 | if (full_search) | |
5428 | { | |
5429 | ada_add_local_symbols (&symbol_list_obstack, name, block, | |
5430 | namespace, wild_match_p); | |
5431 | } | |
5432 | else | |
5433 | { | |
5434 | /* In the !full_search case we're are being called by | |
5435 | ada_iterate_over_symbols, and we don't want to search | |
5436 | superblocks. */ | |
5437 | ada_add_block_symbols (&symbol_list_obstack, block, name, | |
5438 | namespace, NULL, wild_match_p); | |
5439 | } | |
5440 | if (num_defns_collected (&symbol_list_obstack) > 0 || !full_search) | |
5441 | goto done; | |
5442 | } | |
d2e4a39e | 5443 | |
339c13b6 JB |
5444 | /* No non-global symbols found. Check our cache to see if we have |
5445 | already performed this search before. If we have, then return | |
5446 | the same result. */ | |
5447 | ||
14f9c5c9 | 5448 | cacheIfUnique = 1; |
2570f2b7 | 5449 | if (lookup_cached_symbol (name0, namespace, &sym, &block)) |
4c4b4cd2 PH |
5450 | { |
5451 | if (sym != NULL) | |
2570f2b7 | 5452 | add_defn_to_vec (&symbol_list_obstack, sym, block); |
4c4b4cd2 PH |
5453 | goto done; |
5454 | } | |
14f9c5c9 | 5455 | |
339c13b6 JB |
5456 | /* Search symbols from all global blocks. */ |
5457 | ||
40658b94 | 5458 | add_nonlocal_symbols (&symbol_list_obstack, name, namespace, 1, |
82ccd55e | 5459 | wild_match_p); |
d2e4a39e | 5460 | |
4c4b4cd2 | 5461 | /* Now add symbols from all per-file blocks if we've gotten no hits |
339c13b6 | 5462 | (not strictly correct, but perhaps better than an error). */ |
d2e4a39e | 5463 | |
4c4b4cd2 | 5464 | if (num_defns_collected (&symbol_list_obstack) == 0) |
40658b94 | 5465 | add_nonlocal_symbols (&symbol_list_obstack, name, namespace, 0, |
82ccd55e | 5466 | wild_match_p); |
14f9c5c9 | 5467 | |
4c4b4cd2 PH |
5468 | done: |
5469 | ndefns = num_defns_collected (&symbol_list_obstack); | |
5470 | *results = defns_collected (&symbol_list_obstack, 1); | |
5471 | ||
5472 | ndefns = remove_extra_symbols (*results, ndefns); | |
5473 | ||
2ad01556 | 5474 | if (ndefns == 0 && full_search) |
2570f2b7 | 5475 | cache_symbol (name0, namespace, NULL, NULL); |
14f9c5c9 | 5476 | |
2ad01556 | 5477 | if (ndefns == 1 && full_search && cacheIfUnique) |
2570f2b7 | 5478 | cache_symbol (name0, namespace, (*results)[0].sym, (*results)[0].block); |
14f9c5c9 | 5479 | |
aeb5907d | 5480 | ndefns = remove_irrelevant_renamings (*results, ndefns, block0); |
14f9c5c9 | 5481 | |
14f9c5c9 AS |
5482 | return ndefns; |
5483 | } | |
5484 | ||
4eeaa230 DE |
5485 | /* Find symbols in DOMAIN matching NAME0, in BLOCK0 and enclosing scope and |
5486 | in global scopes, returning the number of matches, and setting *RESULTS | |
5487 | to a vector of (SYM,BLOCK) tuples. | |
5488 | See ada_lookup_symbol_list_worker for further details. */ | |
5489 | ||
5490 | int | |
5491 | ada_lookup_symbol_list (const char *name0, const struct block *block0, | |
5492 | domain_enum domain, struct ada_symbol_info **results) | |
5493 | { | |
5494 | return ada_lookup_symbol_list_worker (name0, block0, domain, results, 1); | |
5495 | } | |
5496 | ||
5497 | /* Implementation of the la_iterate_over_symbols method. */ | |
5498 | ||
5499 | static void | |
5500 | ada_iterate_over_symbols (const struct block *block, | |
5501 | const char *name, domain_enum domain, | |
5502 | symbol_found_callback_ftype *callback, | |
5503 | void *data) | |
5504 | { | |
5505 | int ndefs, i; | |
5506 | struct ada_symbol_info *results; | |
5507 | ||
5508 | ndefs = ada_lookup_symbol_list_worker (name, block, domain, &results, 0); | |
5509 | for (i = 0; i < ndefs; ++i) | |
5510 | { | |
5511 | if (! (*callback) (results[i].sym, data)) | |
5512 | break; | |
5513 | } | |
5514 | } | |
5515 | ||
f8eba3c6 TT |
5516 | /* If NAME is the name of an entity, return a string that should |
5517 | be used to look that entity up in Ada units. This string should | |
5518 | be deallocated after use using xfree. | |
5519 | ||
5520 | NAME can have any form that the "break" or "print" commands might | |
5521 | recognize. In other words, it does not have to be the "natural" | |
5522 | name, or the "encoded" name. */ | |
5523 | ||
5524 | char * | |
5525 | ada_name_for_lookup (const char *name) | |
5526 | { | |
5527 | char *canon; | |
5528 | int nlen = strlen (name); | |
5529 | ||
5530 | if (name[0] == '<' && name[nlen - 1] == '>') | |
5531 | { | |
5532 | canon = xmalloc (nlen - 1); | |
5533 | memcpy (canon, name + 1, nlen - 2); | |
5534 | canon[nlen - 2] = '\0'; | |
5535 | } | |
5536 | else | |
5537 | canon = xstrdup (ada_encode (ada_fold_name (name))); | |
5538 | return canon; | |
5539 | } | |
5540 | ||
4e5c77fe JB |
5541 | /* The result is as for ada_lookup_symbol_list with FULL_SEARCH set |
5542 | to 1, but choosing the first symbol found if there are multiple | |
5543 | choices. | |
5544 | ||
5e2336be JB |
5545 | The result is stored in *INFO, which must be non-NULL. |
5546 | If no match is found, INFO->SYM is set to NULL. */ | |
4e5c77fe JB |
5547 | |
5548 | void | |
5549 | ada_lookup_encoded_symbol (const char *name, const struct block *block, | |
5550 | domain_enum namespace, | |
5e2336be | 5551 | struct ada_symbol_info *info) |
14f9c5c9 | 5552 | { |
4c4b4cd2 | 5553 | struct ada_symbol_info *candidates; |
14f9c5c9 AS |
5554 | int n_candidates; |
5555 | ||
5e2336be JB |
5556 | gdb_assert (info != NULL); |
5557 | memset (info, 0, sizeof (struct ada_symbol_info)); | |
4e5c77fe | 5558 | |
4eeaa230 | 5559 | n_candidates = ada_lookup_symbol_list (name, block, namespace, &candidates); |
14f9c5c9 | 5560 | if (n_candidates == 0) |
4e5c77fe | 5561 | return; |
4c4b4cd2 | 5562 | |
5e2336be JB |
5563 | *info = candidates[0]; |
5564 | info->sym = fixup_symbol_section (info->sym, NULL); | |
4e5c77fe | 5565 | } |
aeb5907d JB |
5566 | |
5567 | /* Return a symbol in DOMAIN matching NAME, in BLOCK0 and enclosing | |
5568 | scope and in global scopes, or NULL if none. NAME is folded and | |
5569 | encoded first. Otherwise, the result is as for ada_lookup_symbol_list, | |
0963b4bd | 5570 | choosing the first symbol if there are multiple choices. |
4e5c77fe JB |
5571 | If IS_A_FIELD_OF_THIS is not NULL, it is set to zero. */ |
5572 | ||
aeb5907d JB |
5573 | struct symbol * |
5574 | ada_lookup_symbol (const char *name, const struct block *block0, | |
21b556f4 | 5575 | domain_enum namespace, int *is_a_field_of_this) |
aeb5907d | 5576 | { |
5e2336be | 5577 | struct ada_symbol_info info; |
4e5c77fe | 5578 | |
aeb5907d JB |
5579 | if (is_a_field_of_this != NULL) |
5580 | *is_a_field_of_this = 0; | |
5581 | ||
4e5c77fe | 5582 | ada_lookup_encoded_symbol (ada_encode (ada_fold_name (name)), |
5e2336be JB |
5583 | block0, namespace, &info); |
5584 | return info.sym; | |
4c4b4cd2 | 5585 | } |
14f9c5c9 | 5586 | |
4c4b4cd2 PH |
5587 | static struct symbol * |
5588 | ada_lookup_symbol_nonlocal (const char *name, | |
76a01679 | 5589 | const struct block *block, |
21b556f4 | 5590 | const domain_enum domain) |
4c4b4cd2 | 5591 | { |
94af9270 | 5592 | return ada_lookup_symbol (name, block_static_block (block), domain, NULL); |
14f9c5c9 AS |
5593 | } |
5594 | ||
5595 | ||
4c4b4cd2 PH |
5596 | /* True iff STR is a possible encoded suffix of a normal Ada name |
5597 | that is to be ignored for matching purposes. Suffixes of parallel | |
5598 | names (e.g., XVE) are not included here. Currently, the possible suffixes | |
5823c3ef | 5599 | are given by any of the regular expressions: |
4c4b4cd2 | 5600 | |
babe1480 JB |
5601 | [.$][0-9]+ [nested subprogram suffix, on platforms such as GNU/Linux] |
5602 | ___[0-9]+ [nested subprogram suffix, on platforms such as HP/UX] | |
9ac7f98e | 5603 | TKB [subprogram suffix for task bodies] |
babe1480 | 5604 | _E[0-9]+[bs]$ [protected object entry suffixes] |
61ee279c | 5605 | (X[nb]*)?((\$|__)[0-9](_?[0-9]+)|___(JM|LJM|X([FDBUP].*|R[^T]?)))?$ |
babe1480 JB |
5606 | |
5607 | Also, any leading "__[0-9]+" sequence is skipped before the suffix | |
5608 | match is performed. This sequence is used to differentiate homonyms, | |
5609 | is an optional part of a valid name suffix. */ | |
4c4b4cd2 | 5610 | |
14f9c5c9 | 5611 | static int |
d2e4a39e | 5612 | is_name_suffix (const char *str) |
14f9c5c9 AS |
5613 | { |
5614 | int k; | |
4c4b4cd2 PH |
5615 | const char *matching; |
5616 | const int len = strlen (str); | |
5617 | ||
babe1480 JB |
5618 | /* Skip optional leading __[0-9]+. */ |
5619 | ||
4c4b4cd2 PH |
5620 | if (len > 3 && str[0] == '_' && str[1] == '_' && isdigit (str[2])) |
5621 | { | |
babe1480 JB |
5622 | str += 3; |
5623 | while (isdigit (str[0])) | |
5624 | str += 1; | |
4c4b4cd2 | 5625 | } |
babe1480 JB |
5626 | |
5627 | /* [.$][0-9]+ */ | |
4c4b4cd2 | 5628 | |
babe1480 | 5629 | if (str[0] == '.' || str[0] == '$') |
4c4b4cd2 | 5630 | { |
babe1480 | 5631 | matching = str + 1; |
4c4b4cd2 PH |
5632 | while (isdigit (matching[0])) |
5633 | matching += 1; | |
5634 | if (matching[0] == '\0') | |
5635 | return 1; | |
5636 | } | |
5637 | ||
5638 | /* ___[0-9]+ */ | |
babe1480 | 5639 | |
4c4b4cd2 PH |
5640 | if (len > 3 && str[0] == '_' && str[1] == '_' && str[2] == '_') |
5641 | { | |
5642 | matching = str + 3; | |
5643 | while (isdigit (matching[0])) | |
5644 | matching += 1; | |
5645 | if (matching[0] == '\0') | |
5646 | return 1; | |
5647 | } | |
5648 | ||
9ac7f98e JB |
5649 | /* "TKB" suffixes are used for subprograms implementing task bodies. */ |
5650 | ||
5651 | if (strcmp (str, "TKB") == 0) | |
5652 | return 1; | |
5653 | ||
529cad9c PH |
5654 | #if 0 |
5655 | /* FIXME: brobecker/2005-09-23: Protected Object subprograms end | |
0963b4bd MS |
5656 | with a N at the end. Unfortunately, the compiler uses the same |
5657 | convention for other internal types it creates. So treating | |
529cad9c | 5658 | all entity names that end with an "N" as a name suffix causes |
0963b4bd MS |
5659 | some regressions. For instance, consider the case of an enumerated |
5660 | type. To support the 'Image attribute, it creates an array whose | |
529cad9c PH |
5661 | name ends with N. |
5662 | Having a single character like this as a suffix carrying some | |
0963b4bd | 5663 | information is a bit risky. Perhaps we should change the encoding |
529cad9c PH |
5664 | to be something like "_N" instead. In the meantime, do not do |
5665 | the following check. */ | |
5666 | /* Protected Object Subprograms */ | |
5667 | if (len == 1 && str [0] == 'N') | |
5668 | return 1; | |
5669 | #endif | |
5670 | ||
5671 | /* _E[0-9]+[bs]$ */ | |
5672 | if (len > 3 && str[0] == '_' && str [1] == 'E' && isdigit (str[2])) | |
5673 | { | |
5674 | matching = str + 3; | |
5675 | while (isdigit (matching[0])) | |
5676 | matching += 1; | |
5677 | if ((matching[0] == 'b' || matching[0] == 's') | |
5678 | && matching [1] == '\0') | |
5679 | return 1; | |
5680 | } | |
5681 | ||
4c4b4cd2 PH |
5682 | /* ??? We should not modify STR directly, as we are doing below. This |
5683 | is fine in this case, but may become problematic later if we find | |
5684 | that this alternative did not work, and want to try matching | |
5685 | another one from the begining of STR. Since we modified it, we | |
5686 | won't be able to find the begining of the string anymore! */ | |
14f9c5c9 AS |
5687 | if (str[0] == 'X') |
5688 | { | |
5689 | str += 1; | |
d2e4a39e | 5690 | while (str[0] != '_' && str[0] != '\0') |
4c4b4cd2 PH |
5691 | { |
5692 | if (str[0] != 'n' && str[0] != 'b') | |
5693 | return 0; | |
5694 | str += 1; | |
5695 | } | |
14f9c5c9 | 5696 | } |
babe1480 | 5697 | |
14f9c5c9 AS |
5698 | if (str[0] == '\000') |
5699 | return 1; | |
babe1480 | 5700 | |
d2e4a39e | 5701 | if (str[0] == '_') |
14f9c5c9 AS |
5702 | { |
5703 | if (str[1] != '_' || str[2] == '\000') | |
4c4b4cd2 | 5704 | return 0; |
d2e4a39e | 5705 | if (str[2] == '_') |
4c4b4cd2 | 5706 | { |
61ee279c PH |
5707 | if (strcmp (str + 3, "JM") == 0) |
5708 | return 1; | |
5709 | /* FIXME: brobecker/2004-09-30: GNAT will soon stop using | |
5710 | the LJM suffix in favor of the JM one. But we will | |
5711 | still accept LJM as a valid suffix for a reasonable | |
5712 | amount of time, just to allow ourselves to debug programs | |
5713 | compiled using an older version of GNAT. */ | |
4c4b4cd2 PH |
5714 | if (strcmp (str + 3, "LJM") == 0) |
5715 | return 1; | |
5716 | if (str[3] != 'X') | |
5717 | return 0; | |
1265e4aa JB |
5718 | if (str[4] == 'F' || str[4] == 'D' || str[4] == 'B' |
5719 | || str[4] == 'U' || str[4] == 'P') | |
4c4b4cd2 PH |
5720 | return 1; |
5721 | if (str[4] == 'R' && str[5] != 'T') | |
5722 | return 1; | |
5723 | return 0; | |
5724 | } | |
5725 | if (!isdigit (str[2])) | |
5726 | return 0; | |
5727 | for (k = 3; str[k] != '\0'; k += 1) | |
5728 | if (!isdigit (str[k]) && str[k] != '_') | |
5729 | return 0; | |
14f9c5c9 AS |
5730 | return 1; |
5731 | } | |
4c4b4cd2 | 5732 | if (str[0] == '$' && isdigit (str[1])) |
14f9c5c9 | 5733 | { |
4c4b4cd2 PH |
5734 | for (k = 2; str[k] != '\0'; k += 1) |
5735 | if (!isdigit (str[k]) && str[k] != '_') | |
5736 | return 0; | |
14f9c5c9 AS |
5737 | return 1; |
5738 | } | |
5739 | return 0; | |
5740 | } | |
d2e4a39e | 5741 | |
aeb5907d JB |
5742 | /* Return non-zero if the string starting at NAME and ending before |
5743 | NAME_END contains no capital letters. */ | |
529cad9c PH |
5744 | |
5745 | static int | |
5746 | is_valid_name_for_wild_match (const char *name0) | |
5747 | { | |
5748 | const char *decoded_name = ada_decode (name0); | |
5749 | int i; | |
5750 | ||
5823c3ef JB |
5751 | /* If the decoded name starts with an angle bracket, it means that |
5752 | NAME0 does not follow the GNAT encoding format. It should then | |
5753 | not be allowed as a possible wild match. */ | |
5754 | if (decoded_name[0] == '<') | |
5755 | return 0; | |
5756 | ||
529cad9c PH |
5757 | for (i=0; decoded_name[i] != '\0'; i++) |
5758 | if (isalpha (decoded_name[i]) && !islower (decoded_name[i])) | |
5759 | return 0; | |
5760 | ||
5761 | return 1; | |
5762 | } | |
5763 | ||
73589123 PH |
5764 | /* Advance *NAMEP to next occurrence of TARGET0 in the string NAME0 |
5765 | that could start a simple name. Assumes that *NAMEP points into | |
5766 | the string beginning at NAME0. */ | |
4c4b4cd2 | 5767 | |
14f9c5c9 | 5768 | static int |
73589123 | 5769 | advance_wild_match (const char **namep, const char *name0, int target0) |
14f9c5c9 | 5770 | { |
73589123 | 5771 | const char *name = *namep; |
5b4ee69b | 5772 | |
5823c3ef | 5773 | while (1) |
14f9c5c9 | 5774 | { |
aa27d0b3 | 5775 | int t0, t1; |
73589123 PH |
5776 | |
5777 | t0 = *name; | |
5778 | if (t0 == '_') | |
5779 | { | |
5780 | t1 = name[1]; | |
5781 | if ((t1 >= 'a' && t1 <= 'z') || (t1 >= '0' && t1 <= '9')) | |
5782 | { | |
5783 | name += 1; | |
5784 | if (name == name0 + 5 && strncmp (name0, "_ada", 4) == 0) | |
5785 | break; | |
5786 | else | |
5787 | name += 1; | |
5788 | } | |
aa27d0b3 JB |
5789 | else if (t1 == '_' && ((name[2] >= 'a' && name[2] <= 'z') |
5790 | || name[2] == target0)) | |
73589123 PH |
5791 | { |
5792 | name += 2; | |
5793 | break; | |
5794 | } | |
5795 | else | |
5796 | return 0; | |
5797 | } | |
5798 | else if ((t0 >= 'a' && t0 <= 'z') || (t0 >= '0' && t0 <= '9')) | |
5799 | name += 1; | |
5800 | else | |
5823c3ef | 5801 | return 0; |
73589123 PH |
5802 | } |
5803 | ||
5804 | *namep = name; | |
5805 | return 1; | |
5806 | } | |
5807 | ||
5808 | /* Return 0 iff NAME encodes a name of the form prefix.PATN. Ignores any | |
5809 | informational suffixes of NAME (i.e., for which is_name_suffix is | |
5810 | true). Assumes that PATN is a lower-cased Ada simple name. */ | |
5811 | ||
5812 | static int | |
5813 | wild_match (const char *name, const char *patn) | |
5814 | { | |
22e048c9 | 5815 | const char *p; |
73589123 PH |
5816 | const char *name0 = name; |
5817 | ||
5818 | while (1) | |
5819 | { | |
5820 | const char *match = name; | |
5821 | ||
5822 | if (*name == *patn) | |
5823 | { | |
5824 | for (name += 1, p = patn + 1; *p != '\0'; name += 1, p += 1) | |
5825 | if (*p != *name) | |
5826 | break; | |
5827 | if (*p == '\0' && is_name_suffix (name)) | |
5828 | return match != name0 && !is_valid_name_for_wild_match (name0); | |
5829 | ||
5830 | if (name[-1] == '_') | |
5831 | name -= 1; | |
5832 | } | |
5833 | if (!advance_wild_match (&name, name0, *patn)) | |
5834 | return 1; | |
96d887e8 | 5835 | } |
96d887e8 PH |
5836 | } |
5837 | ||
40658b94 PH |
5838 | /* Returns 0 iff symbol name SYM_NAME matches SEARCH_NAME, apart from |
5839 | informational suffix. */ | |
5840 | ||
c4d840bd PH |
5841 | static int |
5842 | full_match (const char *sym_name, const char *search_name) | |
5843 | { | |
40658b94 | 5844 | return !match_name (sym_name, search_name, 0); |
c4d840bd PH |
5845 | } |
5846 | ||
5847 | ||
96d887e8 PH |
5848 | /* Add symbols from BLOCK matching identifier NAME in DOMAIN to |
5849 | vector *defn_symbols, updating the list of symbols in OBSTACKP | |
0963b4bd | 5850 | (if necessary). If WILD, treat as NAME with a wildcard prefix. |
4eeaa230 | 5851 | OBJFILE is the section containing BLOCK. */ |
96d887e8 PH |
5852 | |
5853 | static void | |
5854 | ada_add_block_symbols (struct obstack *obstackp, | |
f0c5f9b2 | 5855 | const struct block *block, const char *name, |
96d887e8 | 5856 | domain_enum domain, struct objfile *objfile, |
2570f2b7 | 5857 | int wild) |
96d887e8 | 5858 | { |
8157b174 | 5859 | struct block_iterator iter; |
96d887e8 PH |
5860 | int name_len = strlen (name); |
5861 | /* A matching argument symbol, if any. */ | |
5862 | struct symbol *arg_sym; | |
5863 | /* Set true when we find a matching non-argument symbol. */ | |
5864 | int found_sym; | |
5865 | struct symbol *sym; | |
5866 | ||
5867 | arg_sym = NULL; | |
5868 | found_sym = 0; | |
5869 | if (wild) | |
5870 | { | |
8157b174 TT |
5871 | for (sym = block_iter_match_first (block, name, wild_match, &iter); |
5872 | sym != NULL; sym = block_iter_match_next (name, wild_match, &iter)) | |
76a01679 | 5873 | { |
4186eb54 KS |
5874 | if (symbol_matches_domain (SYMBOL_LANGUAGE (sym), |
5875 | SYMBOL_DOMAIN (sym), domain) | |
73589123 | 5876 | && wild_match (SYMBOL_LINKAGE_NAME (sym), name) == 0) |
76a01679 | 5877 | { |
2a2d4dc3 AS |
5878 | if (SYMBOL_CLASS (sym) == LOC_UNRESOLVED) |
5879 | continue; | |
5880 | else if (SYMBOL_IS_ARGUMENT (sym)) | |
5881 | arg_sym = sym; | |
5882 | else | |
5883 | { | |
76a01679 JB |
5884 | found_sym = 1; |
5885 | add_defn_to_vec (obstackp, | |
5886 | fixup_symbol_section (sym, objfile), | |
2570f2b7 | 5887 | block); |
76a01679 JB |
5888 | } |
5889 | } | |
5890 | } | |
96d887e8 PH |
5891 | } |
5892 | else | |
5893 | { | |
8157b174 TT |
5894 | for (sym = block_iter_match_first (block, name, full_match, &iter); |
5895 | sym != NULL; sym = block_iter_match_next (name, full_match, &iter)) | |
76a01679 | 5896 | { |
4186eb54 KS |
5897 | if (symbol_matches_domain (SYMBOL_LANGUAGE (sym), |
5898 | SYMBOL_DOMAIN (sym), domain)) | |
76a01679 | 5899 | { |
c4d840bd PH |
5900 | if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED) |
5901 | { | |
5902 | if (SYMBOL_IS_ARGUMENT (sym)) | |
5903 | arg_sym = sym; | |
5904 | else | |
2a2d4dc3 | 5905 | { |
c4d840bd PH |
5906 | found_sym = 1; |
5907 | add_defn_to_vec (obstackp, | |
5908 | fixup_symbol_section (sym, objfile), | |
5909 | block); | |
2a2d4dc3 | 5910 | } |
c4d840bd | 5911 | } |
76a01679 JB |
5912 | } |
5913 | } | |
96d887e8 PH |
5914 | } |
5915 | ||
5916 | if (!found_sym && arg_sym != NULL) | |
5917 | { | |
76a01679 JB |
5918 | add_defn_to_vec (obstackp, |
5919 | fixup_symbol_section (arg_sym, objfile), | |
2570f2b7 | 5920 | block); |
96d887e8 PH |
5921 | } |
5922 | ||
5923 | if (!wild) | |
5924 | { | |
5925 | arg_sym = NULL; | |
5926 | found_sym = 0; | |
5927 | ||
5928 | ALL_BLOCK_SYMBOLS (block, iter, sym) | |
76a01679 | 5929 | { |
4186eb54 KS |
5930 | if (symbol_matches_domain (SYMBOL_LANGUAGE (sym), |
5931 | SYMBOL_DOMAIN (sym), domain)) | |
76a01679 JB |
5932 | { |
5933 | int cmp; | |
5934 | ||
5935 | cmp = (int) '_' - (int) SYMBOL_LINKAGE_NAME (sym)[0]; | |
5936 | if (cmp == 0) | |
5937 | { | |
5938 | cmp = strncmp ("_ada_", SYMBOL_LINKAGE_NAME (sym), 5); | |
5939 | if (cmp == 0) | |
5940 | cmp = strncmp (name, SYMBOL_LINKAGE_NAME (sym) + 5, | |
5941 | name_len); | |
5942 | } | |
5943 | ||
5944 | if (cmp == 0 | |
5945 | && is_name_suffix (SYMBOL_LINKAGE_NAME (sym) + name_len + 5)) | |
5946 | { | |
2a2d4dc3 AS |
5947 | if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED) |
5948 | { | |
5949 | if (SYMBOL_IS_ARGUMENT (sym)) | |
5950 | arg_sym = sym; | |
5951 | else | |
5952 | { | |
5953 | found_sym = 1; | |
5954 | add_defn_to_vec (obstackp, | |
5955 | fixup_symbol_section (sym, objfile), | |
5956 | block); | |
5957 | } | |
5958 | } | |
76a01679 JB |
5959 | } |
5960 | } | |
76a01679 | 5961 | } |
96d887e8 PH |
5962 | |
5963 | /* NOTE: This really shouldn't be needed for _ada_ symbols. | |
5964 | They aren't parameters, right? */ | |
5965 | if (!found_sym && arg_sym != NULL) | |
5966 | { | |
5967 | add_defn_to_vec (obstackp, | |
76a01679 | 5968 | fixup_symbol_section (arg_sym, objfile), |
2570f2b7 | 5969 | block); |
96d887e8 PH |
5970 | } |
5971 | } | |
5972 | } | |
5973 | \f | |
41d27058 JB |
5974 | |
5975 | /* Symbol Completion */ | |
5976 | ||
5977 | /* If SYM_NAME is a completion candidate for TEXT, return this symbol | |
5978 | name in a form that's appropriate for the completion. The result | |
5979 | does not need to be deallocated, but is only good until the next call. | |
5980 | ||
5981 | TEXT_LEN is equal to the length of TEXT. | |
e701b3c0 | 5982 | Perform a wild match if WILD_MATCH_P is set. |
6ea35997 | 5983 | ENCODED_P should be set if TEXT represents the start of a symbol name |
41d27058 JB |
5984 | in its encoded form. */ |
5985 | ||
5986 | static const char * | |
5987 | symbol_completion_match (const char *sym_name, | |
5988 | const char *text, int text_len, | |
6ea35997 | 5989 | int wild_match_p, int encoded_p) |
41d27058 | 5990 | { |
41d27058 JB |
5991 | const int verbatim_match = (text[0] == '<'); |
5992 | int match = 0; | |
5993 | ||
5994 | if (verbatim_match) | |
5995 | { | |
5996 | /* Strip the leading angle bracket. */ | |
5997 | text = text + 1; | |
5998 | text_len--; | |
5999 | } | |
6000 | ||
6001 | /* First, test against the fully qualified name of the symbol. */ | |
6002 | ||
6003 | if (strncmp (sym_name, text, text_len) == 0) | |
6004 | match = 1; | |
6005 | ||
6ea35997 | 6006 | if (match && !encoded_p) |
41d27058 JB |
6007 | { |
6008 | /* One needed check before declaring a positive match is to verify | |
6009 | that iff we are doing a verbatim match, the decoded version | |
6010 | of the symbol name starts with '<'. Otherwise, this symbol name | |
6011 | is not a suitable completion. */ | |
6012 | const char *sym_name_copy = sym_name; | |
6013 | int has_angle_bracket; | |
6014 | ||
6015 | sym_name = ada_decode (sym_name); | |
6016 | has_angle_bracket = (sym_name[0] == '<'); | |
6017 | match = (has_angle_bracket == verbatim_match); | |
6018 | sym_name = sym_name_copy; | |
6019 | } | |
6020 | ||
6021 | if (match && !verbatim_match) | |
6022 | { | |
6023 | /* When doing non-verbatim match, another check that needs to | |
6024 | be done is to verify that the potentially matching symbol name | |
6025 | does not include capital letters, because the ada-mode would | |
6026 | not be able to understand these symbol names without the | |
6027 | angle bracket notation. */ | |
6028 | const char *tmp; | |
6029 | ||
6030 | for (tmp = sym_name; *tmp != '\0' && !isupper (*tmp); tmp++); | |
6031 | if (*tmp != '\0') | |
6032 | match = 0; | |
6033 | } | |
6034 | ||
6035 | /* Second: Try wild matching... */ | |
6036 | ||
e701b3c0 | 6037 | if (!match && wild_match_p) |
41d27058 JB |
6038 | { |
6039 | /* Since we are doing wild matching, this means that TEXT | |
6040 | may represent an unqualified symbol name. We therefore must | |
6041 | also compare TEXT against the unqualified name of the symbol. */ | |
6042 | sym_name = ada_unqualified_name (ada_decode (sym_name)); | |
6043 | ||
6044 | if (strncmp (sym_name, text, text_len) == 0) | |
6045 | match = 1; | |
6046 | } | |
6047 | ||
6048 | /* Finally: If we found a mach, prepare the result to return. */ | |
6049 | ||
6050 | if (!match) | |
6051 | return NULL; | |
6052 | ||
6053 | if (verbatim_match) | |
6054 | sym_name = add_angle_brackets (sym_name); | |
6055 | ||
6ea35997 | 6056 | if (!encoded_p) |
41d27058 JB |
6057 | sym_name = ada_decode (sym_name); |
6058 | ||
6059 | return sym_name; | |
6060 | } | |
6061 | ||
6062 | /* A companion function to ada_make_symbol_completion_list(). | |
6063 | Check if SYM_NAME represents a symbol which name would be suitable | |
6064 | to complete TEXT (TEXT_LEN is the length of TEXT), in which case | |
6065 | it is appended at the end of the given string vector SV. | |
6066 | ||
6067 | ORIG_TEXT is the string original string from the user command | |
6068 | that needs to be completed. WORD is the entire command on which | |
6069 | completion should be performed. These two parameters are used to | |
6070 | determine which part of the symbol name should be added to the | |
6071 | completion vector. | |
c0af1706 | 6072 | if WILD_MATCH_P is set, then wild matching is performed. |
cb8e9b97 | 6073 | ENCODED_P should be set if TEXT represents a symbol name in its |
41d27058 JB |
6074 | encoded formed (in which case the completion should also be |
6075 | encoded). */ | |
6076 | ||
6077 | static void | |
d6565258 | 6078 | symbol_completion_add (VEC(char_ptr) **sv, |
41d27058 JB |
6079 | const char *sym_name, |
6080 | const char *text, int text_len, | |
6081 | const char *orig_text, const char *word, | |
cb8e9b97 | 6082 | int wild_match_p, int encoded_p) |
41d27058 JB |
6083 | { |
6084 | const char *match = symbol_completion_match (sym_name, text, text_len, | |
cb8e9b97 | 6085 | wild_match_p, encoded_p); |
41d27058 JB |
6086 | char *completion; |
6087 | ||
6088 | if (match == NULL) | |
6089 | return; | |
6090 | ||
6091 | /* We found a match, so add the appropriate completion to the given | |
6092 | string vector. */ | |
6093 | ||
6094 | if (word == orig_text) | |
6095 | { | |
6096 | completion = xmalloc (strlen (match) + 5); | |
6097 | strcpy (completion, match); | |
6098 | } | |
6099 | else if (word > orig_text) | |
6100 | { | |
6101 | /* Return some portion of sym_name. */ | |
6102 | completion = xmalloc (strlen (match) + 5); | |
6103 | strcpy (completion, match + (word - orig_text)); | |
6104 | } | |
6105 | else | |
6106 | { | |
6107 | /* Return some of ORIG_TEXT plus sym_name. */ | |
6108 | completion = xmalloc (strlen (match) + (orig_text - word) + 5); | |
6109 | strncpy (completion, word, orig_text - word); | |
6110 | completion[orig_text - word] = '\0'; | |
6111 | strcat (completion, match); | |
6112 | } | |
6113 | ||
d6565258 | 6114 | VEC_safe_push (char_ptr, *sv, completion); |
41d27058 JB |
6115 | } |
6116 | ||
ccefe4c4 | 6117 | /* An object of this type is passed as the user_data argument to the |
bb4142cf | 6118 | expand_symtabs_matching method. */ |
ccefe4c4 TT |
6119 | struct add_partial_datum |
6120 | { | |
6121 | VEC(char_ptr) **completions; | |
6f937416 | 6122 | const char *text; |
ccefe4c4 | 6123 | int text_len; |
6f937416 PA |
6124 | const char *text0; |
6125 | const char *word; | |
ccefe4c4 TT |
6126 | int wild_match; |
6127 | int encoded; | |
6128 | }; | |
6129 | ||
bb4142cf DE |
6130 | /* A callback for expand_symtabs_matching. */ |
6131 | ||
7b08b9eb | 6132 | static int |
bb4142cf | 6133 | ada_complete_symbol_matcher (const char *name, void *user_data) |
ccefe4c4 TT |
6134 | { |
6135 | struct add_partial_datum *data = user_data; | |
7b08b9eb JK |
6136 | |
6137 | return symbol_completion_match (name, data->text, data->text_len, | |
6138 | data->wild_match, data->encoded) != NULL; | |
ccefe4c4 TT |
6139 | } |
6140 | ||
49c4e619 TT |
6141 | /* Return a list of possible symbol names completing TEXT0. WORD is |
6142 | the entire command on which completion is made. */ | |
41d27058 | 6143 | |
49c4e619 | 6144 | static VEC (char_ptr) * |
6f937416 PA |
6145 | ada_make_symbol_completion_list (const char *text0, const char *word, |
6146 | enum type_code code) | |
41d27058 JB |
6147 | { |
6148 | char *text; | |
6149 | int text_len; | |
b1ed564a JB |
6150 | int wild_match_p; |
6151 | int encoded_p; | |
2ba95b9b | 6152 | VEC(char_ptr) *completions = VEC_alloc (char_ptr, 128); |
41d27058 | 6153 | struct symbol *sym; |
43f3e411 | 6154 | struct compunit_symtab *s; |
41d27058 JB |
6155 | struct minimal_symbol *msymbol; |
6156 | struct objfile *objfile; | |
3977b71f | 6157 | const struct block *b, *surrounding_static_block = 0; |
41d27058 | 6158 | int i; |
8157b174 | 6159 | struct block_iterator iter; |
b8fea896 | 6160 | struct cleanup *old_chain = make_cleanup (null_cleanup, NULL); |
41d27058 | 6161 | |
2f68a895 TT |
6162 | gdb_assert (code == TYPE_CODE_UNDEF); |
6163 | ||
41d27058 JB |
6164 | if (text0[0] == '<') |
6165 | { | |
6166 | text = xstrdup (text0); | |
6167 | make_cleanup (xfree, text); | |
6168 | text_len = strlen (text); | |
b1ed564a JB |
6169 | wild_match_p = 0; |
6170 | encoded_p = 1; | |
41d27058 JB |
6171 | } |
6172 | else | |
6173 | { | |
6174 | text = xstrdup (ada_encode (text0)); | |
6175 | make_cleanup (xfree, text); | |
6176 | text_len = strlen (text); | |
6177 | for (i = 0; i < text_len; i++) | |
6178 | text[i] = tolower (text[i]); | |
6179 | ||
b1ed564a | 6180 | encoded_p = (strstr (text0, "__") != NULL); |
41d27058 JB |
6181 | /* If the name contains a ".", then the user is entering a fully |
6182 | qualified entity name, and the match must not be done in wild | |
6183 | mode. Similarly, if the user wants to complete what looks like | |
6184 | an encoded name, the match must not be done in wild mode. */ | |
b1ed564a | 6185 | wild_match_p = (strchr (text0, '.') == NULL && !encoded_p); |
41d27058 JB |
6186 | } |
6187 | ||
6188 | /* First, look at the partial symtab symbols. */ | |
41d27058 | 6189 | { |
ccefe4c4 TT |
6190 | struct add_partial_datum data; |
6191 | ||
6192 | data.completions = &completions; | |
6193 | data.text = text; | |
6194 | data.text_len = text_len; | |
6195 | data.text0 = text0; | |
6196 | data.word = word; | |
b1ed564a JB |
6197 | data.wild_match = wild_match_p; |
6198 | data.encoded = encoded_p; | |
bb4142cf DE |
6199 | expand_symtabs_matching (NULL, ada_complete_symbol_matcher, ALL_DOMAIN, |
6200 | &data); | |
41d27058 JB |
6201 | } |
6202 | ||
6203 | /* At this point scan through the misc symbol vectors and add each | |
6204 | symbol you find to the list. Eventually we want to ignore | |
6205 | anything that isn't a text symbol (everything else will be | |
6206 | handled by the psymtab code above). */ | |
6207 | ||
6208 | ALL_MSYMBOLS (objfile, msymbol) | |
6209 | { | |
6210 | QUIT; | |
efd66ac6 | 6211 | symbol_completion_add (&completions, MSYMBOL_LINKAGE_NAME (msymbol), |
b1ed564a JB |
6212 | text, text_len, text0, word, wild_match_p, |
6213 | encoded_p); | |
41d27058 JB |
6214 | } |
6215 | ||
6216 | /* Search upwards from currently selected frame (so that we can | |
6217 | complete on local vars. */ | |
6218 | ||
6219 | for (b = get_selected_block (0); b != NULL; b = BLOCK_SUPERBLOCK (b)) | |
6220 | { | |
6221 | if (!BLOCK_SUPERBLOCK (b)) | |
6222 | surrounding_static_block = b; /* For elmin of dups */ | |
6223 | ||
6224 | ALL_BLOCK_SYMBOLS (b, iter, sym) | |
6225 | { | |
d6565258 | 6226 | symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym), |
41d27058 | 6227 | text, text_len, text0, word, |
b1ed564a | 6228 | wild_match_p, encoded_p); |
41d27058 JB |
6229 | } |
6230 | } | |
6231 | ||
6232 | /* Go through the symtabs and check the externs and statics for | |
43f3e411 | 6233 | symbols which match. */ |
41d27058 | 6234 | |
43f3e411 | 6235 | ALL_COMPUNITS (objfile, s) |
41d27058 JB |
6236 | { |
6237 | QUIT; | |
43f3e411 | 6238 | b = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (s), GLOBAL_BLOCK); |
41d27058 JB |
6239 | ALL_BLOCK_SYMBOLS (b, iter, sym) |
6240 | { | |
d6565258 | 6241 | symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym), |
41d27058 | 6242 | text, text_len, text0, word, |
b1ed564a | 6243 | wild_match_p, encoded_p); |
41d27058 JB |
6244 | } |
6245 | } | |
6246 | ||
43f3e411 | 6247 | ALL_COMPUNITS (objfile, s) |
41d27058 JB |
6248 | { |
6249 | QUIT; | |
43f3e411 | 6250 | b = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (s), STATIC_BLOCK); |
41d27058 JB |
6251 | /* Don't do this block twice. */ |
6252 | if (b == surrounding_static_block) | |
6253 | continue; | |
6254 | ALL_BLOCK_SYMBOLS (b, iter, sym) | |
6255 | { | |
d6565258 | 6256 | symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym), |
41d27058 | 6257 | text, text_len, text0, word, |
b1ed564a | 6258 | wild_match_p, encoded_p); |
41d27058 JB |
6259 | } |
6260 | } | |
6261 | ||
b8fea896 | 6262 | do_cleanups (old_chain); |
49c4e619 | 6263 | return completions; |
41d27058 JB |
6264 | } |
6265 | ||
963a6417 | 6266 | /* Field Access */ |
96d887e8 | 6267 | |
73fb9985 JB |
6268 | /* Return non-zero if TYPE is a pointer to the GNAT dispatch table used |
6269 | for tagged types. */ | |
6270 | ||
6271 | static int | |
6272 | ada_is_dispatch_table_ptr_type (struct type *type) | |
6273 | { | |
0d5cff50 | 6274 | const char *name; |
73fb9985 JB |
6275 | |
6276 | if (TYPE_CODE (type) != TYPE_CODE_PTR) | |
6277 | return 0; | |
6278 | ||
6279 | name = TYPE_NAME (TYPE_TARGET_TYPE (type)); | |
6280 | if (name == NULL) | |
6281 | return 0; | |
6282 | ||
6283 | return (strcmp (name, "ada__tags__dispatch_table") == 0); | |
6284 | } | |
6285 | ||
ac4a2da4 JG |
6286 | /* Return non-zero if TYPE is an interface tag. */ |
6287 | ||
6288 | static int | |
6289 | ada_is_interface_tag (struct type *type) | |
6290 | { | |
6291 | const char *name = TYPE_NAME (type); | |
6292 | ||
6293 | if (name == NULL) | |
6294 | return 0; | |
6295 | ||
6296 | return (strcmp (name, "ada__tags__interface_tag") == 0); | |
6297 | } | |
6298 | ||
963a6417 PH |
6299 | /* True if field number FIELD_NUM in struct or union type TYPE is supposed |
6300 | to be invisible to users. */ | |
96d887e8 | 6301 | |
963a6417 PH |
6302 | int |
6303 | ada_is_ignored_field (struct type *type, int field_num) | |
96d887e8 | 6304 | { |
963a6417 PH |
6305 | if (field_num < 0 || field_num > TYPE_NFIELDS (type)) |
6306 | return 1; | |
ffde82bf | 6307 | |
73fb9985 JB |
6308 | /* Check the name of that field. */ |
6309 | { | |
6310 | const char *name = TYPE_FIELD_NAME (type, field_num); | |
6311 | ||
6312 | /* Anonymous field names should not be printed. | |
6313 | brobecker/2007-02-20: I don't think this can actually happen | |
6314 | but we don't want to print the value of annonymous fields anyway. */ | |
6315 | if (name == NULL) | |
6316 | return 1; | |
6317 | ||
ffde82bf JB |
6318 | /* Normally, fields whose name start with an underscore ("_") |
6319 | are fields that have been internally generated by the compiler, | |
6320 | and thus should not be printed. The "_parent" field is special, | |
6321 | however: This is a field internally generated by the compiler | |
6322 | for tagged types, and it contains the components inherited from | |
6323 | the parent type. This field should not be printed as is, but | |
6324 | should not be ignored either. */ | |
73fb9985 JB |
6325 | if (name[0] == '_' && strncmp (name, "_parent", 7) != 0) |
6326 | return 1; | |
6327 | } | |
6328 | ||
ac4a2da4 JG |
6329 | /* If this is the dispatch table of a tagged type or an interface tag, |
6330 | then ignore. */ | |
73fb9985 | 6331 | if (ada_is_tagged_type (type, 1) |
ac4a2da4 JG |
6332 | && (ada_is_dispatch_table_ptr_type (TYPE_FIELD_TYPE (type, field_num)) |
6333 | || ada_is_interface_tag (TYPE_FIELD_TYPE (type, field_num)))) | |
73fb9985 JB |
6334 | return 1; |
6335 | ||
6336 | /* Not a special field, so it should not be ignored. */ | |
6337 | return 0; | |
963a6417 | 6338 | } |
96d887e8 | 6339 | |
963a6417 | 6340 | /* True iff TYPE has a tag field. If REFOK, then TYPE may also be a |
0963b4bd | 6341 | pointer or reference type whose ultimate target has a tag field. */ |
96d887e8 | 6342 | |
963a6417 PH |
6343 | int |
6344 | ada_is_tagged_type (struct type *type, int refok) | |
6345 | { | |
6346 | return (ada_lookup_struct_elt_type (type, "_tag", refok, 1, NULL) != NULL); | |
6347 | } | |
96d887e8 | 6348 | |
963a6417 | 6349 | /* True iff TYPE represents the type of X'Tag */ |
96d887e8 | 6350 | |
963a6417 PH |
6351 | int |
6352 | ada_is_tag_type (struct type *type) | |
6353 | { | |
6354 | if (type == NULL || TYPE_CODE (type) != TYPE_CODE_PTR) | |
6355 | return 0; | |
6356 | else | |
96d887e8 | 6357 | { |
963a6417 | 6358 | const char *name = ada_type_name (TYPE_TARGET_TYPE (type)); |
5b4ee69b | 6359 | |
963a6417 PH |
6360 | return (name != NULL |
6361 | && strcmp (name, "ada__tags__dispatch_table") == 0); | |
96d887e8 | 6362 | } |
96d887e8 PH |
6363 | } |
6364 | ||
963a6417 | 6365 | /* The type of the tag on VAL. */ |
76a01679 | 6366 | |
963a6417 PH |
6367 | struct type * |
6368 | ada_tag_type (struct value *val) | |
96d887e8 | 6369 | { |
df407dfe | 6370 | return ada_lookup_struct_elt_type (value_type (val), "_tag", 1, 0, NULL); |
963a6417 | 6371 | } |
96d887e8 | 6372 | |
b50d69b5 JG |
6373 | /* Return 1 if TAG follows the old scheme for Ada tags (used for Ada 95, |
6374 | retired at Ada 05). */ | |
6375 | ||
6376 | static int | |
6377 | is_ada95_tag (struct value *tag) | |
6378 | { | |
6379 | return ada_value_struct_elt (tag, "tsd", 1) != NULL; | |
6380 | } | |
6381 | ||
963a6417 | 6382 | /* The value of the tag on VAL. */ |
96d887e8 | 6383 | |
963a6417 PH |
6384 | struct value * |
6385 | ada_value_tag (struct value *val) | |
6386 | { | |
03ee6b2e | 6387 | return ada_value_struct_elt (val, "_tag", 0); |
96d887e8 PH |
6388 | } |
6389 | ||
963a6417 PH |
6390 | /* The value of the tag on the object of type TYPE whose contents are |
6391 | saved at VALADDR, if it is non-null, or is at memory address | |
0963b4bd | 6392 | ADDRESS. */ |
96d887e8 | 6393 | |
963a6417 | 6394 | static struct value * |
10a2c479 | 6395 | value_tag_from_contents_and_address (struct type *type, |
fc1a4b47 | 6396 | const gdb_byte *valaddr, |
963a6417 | 6397 | CORE_ADDR address) |
96d887e8 | 6398 | { |
b5385fc0 | 6399 | int tag_byte_offset; |
963a6417 | 6400 | struct type *tag_type; |
5b4ee69b | 6401 | |
963a6417 | 6402 | if (find_struct_field ("_tag", type, 0, &tag_type, &tag_byte_offset, |
52ce6436 | 6403 | NULL, NULL, NULL)) |
96d887e8 | 6404 | { |
fc1a4b47 | 6405 | const gdb_byte *valaddr1 = ((valaddr == NULL) |
10a2c479 AC |
6406 | ? NULL |
6407 | : valaddr + tag_byte_offset); | |
963a6417 | 6408 | CORE_ADDR address1 = (address == 0) ? 0 : address + tag_byte_offset; |
96d887e8 | 6409 | |
963a6417 | 6410 | return value_from_contents_and_address (tag_type, valaddr1, address1); |
96d887e8 | 6411 | } |
963a6417 PH |
6412 | return NULL; |
6413 | } | |
96d887e8 | 6414 | |
963a6417 PH |
6415 | static struct type * |
6416 | type_from_tag (struct value *tag) | |
6417 | { | |
6418 | const char *type_name = ada_tag_name (tag); | |
5b4ee69b | 6419 | |
963a6417 PH |
6420 | if (type_name != NULL) |
6421 | return ada_find_any_type (ada_encode (type_name)); | |
6422 | return NULL; | |
6423 | } | |
96d887e8 | 6424 | |
b50d69b5 JG |
6425 | /* Given a value OBJ of a tagged type, return a value of this |
6426 | type at the base address of the object. The base address, as | |
6427 | defined in Ada.Tags, it is the address of the primary tag of | |
6428 | the object, and therefore where the field values of its full | |
6429 | view can be fetched. */ | |
6430 | ||
6431 | struct value * | |
6432 | ada_tag_value_at_base_address (struct value *obj) | |
6433 | { | |
6434 | volatile struct gdb_exception e; | |
6435 | struct value *val; | |
6436 | LONGEST offset_to_top = 0; | |
6437 | struct type *ptr_type, *obj_type; | |
6438 | struct value *tag; | |
6439 | CORE_ADDR base_address; | |
6440 | ||
6441 | obj_type = value_type (obj); | |
6442 | ||
6443 | /* It is the responsability of the caller to deref pointers. */ | |
6444 | ||
6445 | if (TYPE_CODE (obj_type) == TYPE_CODE_PTR | |
6446 | || TYPE_CODE (obj_type) == TYPE_CODE_REF) | |
6447 | return obj; | |
6448 | ||
6449 | tag = ada_value_tag (obj); | |
6450 | if (!tag) | |
6451 | return obj; | |
6452 | ||
6453 | /* Base addresses only appeared with Ada 05 and multiple inheritance. */ | |
6454 | ||
6455 | if (is_ada95_tag (tag)) | |
6456 | return obj; | |
6457 | ||
6458 | ptr_type = builtin_type (target_gdbarch ())->builtin_data_ptr; | |
6459 | ptr_type = lookup_pointer_type (ptr_type); | |
6460 | val = value_cast (ptr_type, tag); | |
6461 | if (!val) | |
6462 | return obj; | |
6463 | ||
6464 | /* It is perfectly possible that an exception be raised while | |
6465 | trying to determine the base address, just like for the tag; | |
6466 | see ada_tag_name for more details. We do not print the error | |
6467 | message for the same reason. */ | |
6468 | ||
6469 | TRY_CATCH (e, RETURN_MASK_ERROR) | |
6470 | { | |
6471 | offset_to_top = value_as_long (value_ind (value_ptradd (val, -2))); | |
6472 | } | |
6473 | ||
6474 | if (e.reason < 0) | |
6475 | return obj; | |
6476 | ||
6477 | /* If offset is null, nothing to do. */ | |
6478 | ||
6479 | if (offset_to_top == 0) | |
6480 | return obj; | |
6481 | ||
6482 | /* -1 is a special case in Ada.Tags; however, what should be done | |
6483 | is not quite clear from the documentation. So do nothing for | |
6484 | now. */ | |
6485 | ||
6486 | if (offset_to_top == -1) | |
6487 | return obj; | |
6488 | ||
6489 | base_address = value_address (obj) - offset_to_top; | |
6490 | tag = value_tag_from_contents_and_address (obj_type, NULL, base_address); | |
6491 | ||
6492 | /* Make sure that we have a proper tag at the new address. | |
6493 | Otherwise, offset_to_top is bogus (which can happen when | |
6494 | the object is not initialized yet). */ | |
6495 | ||
6496 | if (!tag) | |
6497 | return obj; | |
6498 | ||
6499 | obj_type = type_from_tag (tag); | |
6500 | ||
6501 | if (!obj_type) | |
6502 | return obj; | |
6503 | ||
6504 | return value_from_contents_and_address (obj_type, NULL, base_address); | |
6505 | } | |
6506 | ||
1b611343 JB |
6507 | /* Return the "ada__tags__type_specific_data" type. */ |
6508 | ||
6509 | static struct type * | |
6510 | ada_get_tsd_type (struct inferior *inf) | |
963a6417 | 6511 | { |
1b611343 | 6512 | struct ada_inferior_data *data = get_ada_inferior_data (inf); |
4c4b4cd2 | 6513 | |
1b611343 JB |
6514 | if (data->tsd_type == 0) |
6515 | data->tsd_type = ada_find_any_type ("ada__tags__type_specific_data"); | |
6516 | return data->tsd_type; | |
6517 | } | |
529cad9c | 6518 | |
1b611343 JB |
6519 | /* Return the TSD (type-specific data) associated to the given TAG. |
6520 | TAG is assumed to be the tag of a tagged-type entity. | |
529cad9c | 6521 | |
1b611343 | 6522 | May return NULL if we are unable to get the TSD. */ |
4c4b4cd2 | 6523 | |
1b611343 JB |
6524 | static struct value * |
6525 | ada_get_tsd_from_tag (struct value *tag) | |
4c4b4cd2 | 6526 | { |
4c4b4cd2 | 6527 | struct value *val; |
1b611343 | 6528 | struct type *type; |
5b4ee69b | 6529 | |
1b611343 JB |
6530 | /* First option: The TSD is simply stored as a field of our TAG. |
6531 | Only older versions of GNAT would use this format, but we have | |
6532 | to test it first, because there are no visible markers for | |
6533 | the current approach except the absence of that field. */ | |
529cad9c | 6534 | |
1b611343 JB |
6535 | val = ada_value_struct_elt (tag, "tsd", 1); |
6536 | if (val) | |
6537 | return val; | |
e802dbe0 | 6538 | |
1b611343 JB |
6539 | /* Try the second representation for the dispatch table (in which |
6540 | there is no explicit 'tsd' field in the referent of the tag pointer, | |
6541 | and instead the tsd pointer is stored just before the dispatch | |
6542 | table. */ | |
e802dbe0 | 6543 | |
1b611343 JB |
6544 | type = ada_get_tsd_type (current_inferior()); |
6545 | if (type == NULL) | |
6546 | return NULL; | |
6547 | type = lookup_pointer_type (lookup_pointer_type (type)); | |
6548 | val = value_cast (type, tag); | |
6549 | if (val == NULL) | |
6550 | return NULL; | |
6551 | return value_ind (value_ptradd (val, -1)); | |
e802dbe0 JB |
6552 | } |
6553 | ||
1b611343 JB |
6554 | /* Given the TSD of a tag (type-specific data), return a string |
6555 | containing the name of the associated type. | |
6556 | ||
6557 | The returned value is good until the next call. May return NULL | |
6558 | if we are unable to determine the tag name. */ | |
6559 | ||
6560 | static char * | |
6561 | ada_tag_name_from_tsd (struct value *tsd) | |
529cad9c | 6562 | { |
529cad9c PH |
6563 | static char name[1024]; |
6564 | char *p; | |
1b611343 | 6565 | struct value *val; |
529cad9c | 6566 | |
1b611343 | 6567 | val = ada_value_struct_elt (tsd, "expanded_name", 1); |
4c4b4cd2 | 6568 | if (val == NULL) |
1b611343 | 6569 | return NULL; |
4c4b4cd2 PH |
6570 | read_memory_string (value_as_address (val), name, sizeof (name) - 1); |
6571 | for (p = name; *p != '\0'; p += 1) | |
6572 | if (isalpha (*p)) | |
6573 | *p = tolower (*p); | |
1b611343 | 6574 | return name; |
4c4b4cd2 PH |
6575 | } |
6576 | ||
6577 | /* The type name of the dynamic type denoted by the 'tag value TAG, as | |
1b611343 JB |
6578 | a C string. |
6579 | ||
6580 | Return NULL if the TAG is not an Ada tag, or if we were unable to | |
6581 | determine the name of that tag. The result is good until the next | |
6582 | call. */ | |
4c4b4cd2 PH |
6583 | |
6584 | const char * | |
6585 | ada_tag_name (struct value *tag) | |
6586 | { | |
1b611343 JB |
6587 | volatile struct gdb_exception e; |
6588 | char *name = NULL; | |
5b4ee69b | 6589 | |
df407dfe | 6590 | if (!ada_is_tag_type (value_type (tag))) |
4c4b4cd2 | 6591 | return NULL; |
1b611343 JB |
6592 | |
6593 | /* It is perfectly possible that an exception be raised while trying | |
6594 | to determine the TAG's name, even under normal circumstances: | |
6595 | The associated variable may be uninitialized or corrupted, for | |
6596 | instance. We do not let any exception propagate past this point. | |
6597 | instead we return NULL. | |
6598 | ||
6599 | We also do not print the error message either (which often is very | |
6600 | low-level (Eg: "Cannot read memory at 0x[...]"), but instead let | |
6601 | the caller print a more meaningful message if necessary. */ | |
6602 | TRY_CATCH (e, RETURN_MASK_ERROR) | |
6603 | { | |
6604 | struct value *tsd = ada_get_tsd_from_tag (tag); | |
6605 | ||
6606 | if (tsd != NULL) | |
6607 | name = ada_tag_name_from_tsd (tsd); | |
6608 | } | |
6609 | ||
6610 | return name; | |
4c4b4cd2 PH |
6611 | } |
6612 | ||
6613 | /* The parent type of TYPE, or NULL if none. */ | |
14f9c5c9 | 6614 | |
d2e4a39e | 6615 | struct type * |
ebf56fd3 | 6616 | ada_parent_type (struct type *type) |
14f9c5c9 AS |
6617 | { |
6618 | int i; | |
6619 | ||
61ee279c | 6620 | type = ada_check_typedef (type); |
14f9c5c9 AS |
6621 | |
6622 | if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT) | |
6623 | return NULL; | |
6624 | ||
6625 | for (i = 0; i < TYPE_NFIELDS (type); i += 1) | |
6626 | if (ada_is_parent_field (type, i)) | |
0c1f74cf JB |
6627 | { |
6628 | struct type *parent_type = TYPE_FIELD_TYPE (type, i); | |
6629 | ||
6630 | /* If the _parent field is a pointer, then dereference it. */ | |
6631 | if (TYPE_CODE (parent_type) == TYPE_CODE_PTR) | |
6632 | parent_type = TYPE_TARGET_TYPE (parent_type); | |
6633 | /* If there is a parallel XVS type, get the actual base type. */ | |
6634 | parent_type = ada_get_base_type (parent_type); | |
6635 | ||
6636 | return ada_check_typedef (parent_type); | |
6637 | } | |
14f9c5c9 AS |
6638 | |
6639 | return NULL; | |
6640 | } | |
6641 | ||
4c4b4cd2 PH |
6642 | /* True iff field number FIELD_NUM of structure type TYPE contains the |
6643 | parent-type (inherited) fields of a derived type. Assumes TYPE is | |
6644 | a structure type with at least FIELD_NUM+1 fields. */ | |
14f9c5c9 AS |
6645 | |
6646 | int | |
ebf56fd3 | 6647 | ada_is_parent_field (struct type *type, int field_num) |
14f9c5c9 | 6648 | { |
61ee279c | 6649 | const char *name = TYPE_FIELD_NAME (ada_check_typedef (type), field_num); |
5b4ee69b | 6650 | |
4c4b4cd2 PH |
6651 | return (name != NULL |
6652 | && (strncmp (name, "PARENT", 6) == 0 | |
6653 | || strncmp (name, "_parent", 7) == 0)); | |
14f9c5c9 AS |
6654 | } |
6655 | ||
4c4b4cd2 | 6656 | /* True iff field number FIELD_NUM of structure type TYPE is a |
14f9c5c9 | 6657 | transparent wrapper field (which should be silently traversed when doing |
4c4b4cd2 | 6658 | field selection and flattened when printing). Assumes TYPE is a |
14f9c5c9 | 6659 | structure type with at least FIELD_NUM+1 fields. Such fields are always |
4c4b4cd2 | 6660 | structures. */ |
14f9c5c9 AS |
6661 | |
6662 | int | |
ebf56fd3 | 6663 | ada_is_wrapper_field (struct type *type, int field_num) |
14f9c5c9 | 6664 | { |
d2e4a39e | 6665 | const char *name = TYPE_FIELD_NAME (type, field_num); |
5b4ee69b | 6666 | |
d2e4a39e | 6667 | return (name != NULL |
4c4b4cd2 PH |
6668 | && (strncmp (name, "PARENT", 6) == 0 |
6669 | || strcmp (name, "REP") == 0 | |
6670 | || strncmp (name, "_parent", 7) == 0 | |
6671 | || name[0] == 'S' || name[0] == 'R' || name[0] == 'O')); | |
14f9c5c9 AS |
6672 | } |
6673 | ||
4c4b4cd2 PH |
6674 | /* True iff field number FIELD_NUM of structure or union type TYPE |
6675 | is a variant wrapper. Assumes TYPE is a structure type with at least | |
6676 | FIELD_NUM+1 fields. */ | |
14f9c5c9 AS |
6677 | |
6678 | int | |
ebf56fd3 | 6679 | ada_is_variant_part (struct type *type, int field_num) |
14f9c5c9 | 6680 | { |
d2e4a39e | 6681 | struct type *field_type = TYPE_FIELD_TYPE (type, field_num); |
5b4ee69b | 6682 | |
14f9c5c9 | 6683 | return (TYPE_CODE (field_type) == TYPE_CODE_UNION |
4c4b4cd2 | 6684 | || (is_dynamic_field (type, field_num) |
c3e5cd34 PH |
6685 | && (TYPE_CODE (TYPE_TARGET_TYPE (field_type)) |
6686 | == TYPE_CODE_UNION))); | |
14f9c5c9 AS |
6687 | } |
6688 | ||
6689 | /* Assuming that VAR_TYPE is a variant wrapper (type of the variant part) | |
4c4b4cd2 | 6690 | whose discriminants are contained in the record type OUTER_TYPE, |
7c964f07 UW |
6691 | returns the type of the controlling discriminant for the variant. |
6692 | May return NULL if the type could not be found. */ | |
14f9c5c9 | 6693 | |
d2e4a39e | 6694 | struct type * |
ebf56fd3 | 6695 | ada_variant_discrim_type (struct type *var_type, struct type *outer_type) |
14f9c5c9 | 6696 | { |
d2e4a39e | 6697 | char *name = ada_variant_discrim_name (var_type); |
5b4ee69b | 6698 | |
7c964f07 | 6699 | return ada_lookup_struct_elt_type (outer_type, name, 1, 1, NULL); |
14f9c5c9 AS |
6700 | } |
6701 | ||
4c4b4cd2 | 6702 | /* Assuming that TYPE is the type of a variant wrapper, and FIELD_NUM is a |
14f9c5c9 | 6703 | valid field number within it, returns 1 iff field FIELD_NUM of TYPE |
4c4b4cd2 | 6704 | represents a 'when others' clause; otherwise 0. */ |
14f9c5c9 AS |
6705 | |
6706 | int | |
ebf56fd3 | 6707 | ada_is_others_clause (struct type *type, int field_num) |
14f9c5c9 | 6708 | { |
d2e4a39e | 6709 | const char *name = TYPE_FIELD_NAME (type, field_num); |
5b4ee69b | 6710 | |
14f9c5c9 AS |
6711 | return (name != NULL && name[0] == 'O'); |
6712 | } | |
6713 | ||
6714 | /* Assuming that TYPE0 is the type of the variant part of a record, | |
4c4b4cd2 PH |
6715 | returns the name of the discriminant controlling the variant. |
6716 | The value is valid until the next call to ada_variant_discrim_name. */ | |
14f9c5c9 | 6717 | |
d2e4a39e | 6718 | char * |
ebf56fd3 | 6719 | ada_variant_discrim_name (struct type *type0) |
14f9c5c9 | 6720 | { |
d2e4a39e | 6721 | static char *result = NULL; |
14f9c5c9 | 6722 | static size_t result_len = 0; |
d2e4a39e AS |
6723 | struct type *type; |
6724 | const char *name; | |
6725 | const char *discrim_end; | |
6726 | const char *discrim_start; | |
14f9c5c9 AS |
6727 | |
6728 | if (TYPE_CODE (type0) == TYPE_CODE_PTR) | |
6729 | type = TYPE_TARGET_TYPE (type0); | |
6730 | else | |
6731 | type = type0; | |
6732 | ||
6733 | name = ada_type_name (type); | |
6734 | ||
6735 | if (name == NULL || name[0] == '\000') | |
6736 | return ""; | |
6737 | ||
6738 | for (discrim_end = name + strlen (name) - 6; discrim_end != name; | |
6739 | discrim_end -= 1) | |
6740 | { | |
4c4b4cd2 PH |
6741 | if (strncmp (discrim_end, "___XVN", 6) == 0) |
6742 | break; | |
14f9c5c9 AS |
6743 | } |
6744 | if (discrim_end == name) | |
6745 | return ""; | |
6746 | ||
d2e4a39e | 6747 | for (discrim_start = discrim_end; discrim_start != name + 3; |
14f9c5c9 AS |
6748 | discrim_start -= 1) |
6749 | { | |
d2e4a39e | 6750 | if (discrim_start == name + 1) |
4c4b4cd2 | 6751 | return ""; |
76a01679 | 6752 | if ((discrim_start > name + 3 |
4c4b4cd2 PH |
6753 | && strncmp (discrim_start - 3, "___", 3) == 0) |
6754 | || discrim_start[-1] == '.') | |
6755 | break; | |
14f9c5c9 AS |
6756 | } |
6757 | ||
6758 | GROW_VECT (result, result_len, discrim_end - discrim_start + 1); | |
6759 | strncpy (result, discrim_start, discrim_end - discrim_start); | |
d2e4a39e | 6760 | result[discrim_end - discrim_start] = '\0'; |
14f9c5c9 AS |
6761 | return result; |
6762 | } | |
6763 | ||
4c4b4cd2 PH |
6764 | /* Scan STR for a subtype-encoded number, beginning at position K. |
6765 | Put the position of the character just past the number scanned in | |
6766 | *NEW_K, if NEW_K!=NULL. Put the scanned number in *R, if R!=NULL. | |
6767 | Return 1 if there was a valid number at the given position, and 0 | |
6768 | otherwise. A "subtype-encoded" number consists of the absolute value | |
6769 | in decimal, followed by the letter 'm' to indicate a negative number. | |
6770 | Assumes 0m does not occur. */ | |
14f9c5c9 AS |
6771 | |
6772 | int | |
d2e4a39e | 6773 | ada_scan_number (const char str[], int k, LONGEST * R, int *new_k) |
14f9c5c9 AS |
6774 | { |
6775 | ULONGEST RU; | |
6776 | ||
d2e4a39e | 6777 | if (!isdigit (str[k])) |
14f9c5c9 AS |
6778 | return 0; |
6779 | ||
4c4b4cd2 | 6780 | /* Do it the hard way so as not to make any assumption about |
14f9c5c9 | 6781 | the relationship of unsigned long (%lu scan format code) and |
4c4b4cd2 | 6782 | LONGEST. */ |
14f9c5c9 AS |
6783 | RU = 0; |
6784 | while (isdigit (str[k])) | |
6785 | { | |
d2e4a39e | 6786 | RU = RU * 10 + (str[k] - '0'); |
14f9c5c9 AS |
6787 | k += 1; |
6788 | } | |
6789 | ||
d2e4a39e | 6790 | if (str[k] == 'm') |
14f9c5c9 AS |
6791 | { |
6792 | if (R != NULL) | |
4c4b4cd2 | 6793 | *R = (-(LONGEST) (RU - 1)) - 1; |
14f9c5c9 AS |
6794 | k += 1; |
6795 | } | |
6796 | else if (R != NULL) | |
6797 | *R = (LONGEST) RU; | |
6798 | ||
4c4b4cd2 | 6799 | /* NOTE on the above: Technically, C does not say what the results of |
14f9c5c9 AS |
6800 | - (LONGEST) RU or (LONGEST) -RU are for RU == largest positive |
6801 | number representable as a LONGEST (although either would probably work | |
6802 | in most implementations). When RU>0, the locution in the then branch | |
4c4b4cd2 | 6803 | above is always equivalent to the negative of RU. */ |
14f9c5c9 AS |
6804 | |
6805 | if (new_k != NULL) | |
6806 | *new_k = k; | |
6807 | return 1; | |
6808 | } | |
6809 | ||
4c4b4cd2 PH |
6810 | /* Assuming that TYPE is a variant part wrapper type (a VARIANTS field), |
6811 | and FIELD_NUM is a valid field number within it, returns 1 iff VAL is | |
6812 | in the range encoded by field FIELD_NUM of TYPE; otherwise 0. */ | |
14f9c5c9 | 6813 | |
d2e4a39e | 6814 | int |
ebf56fd3 | 6815 | ada_in_variant (LONGEST val, struct type *type, int field_num) |
14f9c5c9 | 6816 | { |
d2e4a39e | 6817 | const char *name = TYPE_FIELD_NAME (type, field_num); |
14f9c5c9 AS |
6818 | int p; |
6819 | ||
6820 | p = 0; | |
6821 | while (1) | |
6822 | { | |
d2e4a39e | 6823 | switch (name[p]) |
4c4b4cd2 PH |
6824 | { |
6825 | case '\0': | |
6826 | return 0; | |
6827 | case 'S': | |
6828 | { | |
6829 | LONGEST W; | |
5b4ee69b | 6830 | |
4c4b4cd2 PH |
6831 | if (!ada_scan_number (name, p + 1, &W, &p)) |
6832 | return 0; | |
6833 | if (val == W) | |
6834 | return 1; | |
6835 | break; | |
6836 | } | |
6837 | case 'R': | |
6838 | { | |
6839 | LONGEST L, U; | |
5b4ee69b | 6840 | |
4c4b4cd2 PH |
6841 | if (!ada_scan_number (name, p + 1, &L, &p) |
6842 | || name[p] != 'T' || !ada_scan_number (name, p + 1, &U, &p)) | |
6843 | return 0; | |
6844 | if (val >= L && val <= U) | |
6845 | return 1; | |
6846 | break; | |
6847 | } | |
6848 | case 'O': | |
6849 | return 1; | |
6850 | default: | |
6851 | return 0; | |
6852 | } | |
6853 | } | |
6854 | } | |
6855 | ||
0963b4bd | 6856 | /* FIXME: Lots of redundancy below. Try to consolidate. */ |
4c4b4cd2 PH |
6857 | |
6858 | /* Given a value ARG1 (offset by OFFSET bytes) of a struct or union type | |
6859 | ARG_TYPE, extract and return the value of one of its (non-static) | |
6860 | fields. FIELDNO says which field. Differs from value_primitive_field | |
6861 | only in that it can handle packed values of arbitrary type. */ | |
14f9c5c9 | 6862 | |
4c4b4cd2 | 6863 | static struct value * |
d2e4a39e | 6864 | ada_value_primitive_field (struct value *arg1, int offset, int fieldno, |
4c4b4cd2 | 6865 | struct type *arg_type) |
14f9c5c9 | 6866 | { |
14f9c5c9 AS |
6867 | struct type *type; |
6868 | ||
61ee279c | 6869 | arg_type = ada_check_typedef (arg_type); |
14f9c5c9 AS |
6870 | type = TYPE_FIELD_TYPE (arg_type, fieldno); |
6871 | ||
4c4b4cd2 | 6872 | /* Handle packed fields. */ |
14f9c5c9 AS |
6873 | |
6874 | if (TYPE_FIELD_BITSIZE (arg_type, fieldno) != 0) | |
6875 | { | |
6876 | int bit_pos = TYPE_FIELD_BITPOS (arg_type, fieldno); | |
6877 | int bit_size = TYPE_FIELD_BITSIZE (arg_type, fieldno); | |
d2e4a39e | 6878 | |
0fd88904 | 6879 | return ada_value_primitive_packed_val (arg1, value_contents (arg1), |
4c4b4cd2 PH |
6880 | offset + bit_pos / 8, |
6881 | bit_pos % 8, bit_size, type); | |
14f9c5c9 AS |
6882 | } |
6883 | else | |
6884 | return value_primitive_field (arg1, offset, fieldno, arg_type); | |
6885 | } | |
6886 | ||
52ce6436 PH |
6887 | /* Find field with name NAME in object of type TYPE. If found, |
6888 | set the following for each argument that is non-null: | |
6889 | - *FIELD_TYPE_P to the field's type; | |
6890 | - *BYTE_OFFSET_P to OFFSET + the byte offset of the field within | |
6891 | an object of that type; | |
6892 | - *BIT_OFFSET_P to the bit offset modulo byte size of the field; | |
6893 | - *BIT_SIZE_P to its size in bits if the field is packed, and | |
6894 | 0 otherwise; | |
6895 | If INDEX_P is non-null, increment *INDEX_P by the number of source-visible | |
6896 | fields up to but not including the desired field, or by the total | |
6897 | number of fields if not found. A NULL value of NAME never | |
6898 | matches; the function just counts visible fields in this case. | |
6899 | ||
0963b4bd | 6900 | Returns 1 if found, 0 otherwise. */ |
52ce6436 | 6901 | |
4c4b4cd2 | 6902 | static int |
0d5cff50 | 6903 | find_struct_field (const char *name, struct type *type, int offset, |
76a01679 | 6904 | struct type **field_type_p, |
52ce6436 PH |
6905 | int *byte_offset_p, int *bit_offset_p, int *bit_size_p, |
6906 | int *index_p) | |
4c4b4cd2 PH |
6907 | { |
6908 | int i; | |
6909 | ||
61ee279c | 6910 | type = ada_check_typedef (type); |
76a01679 | 6911 | |
52ce6436 PH |
6912 | if (field_type_p != NULL) |
6913 | *field_type_p = NULL; | |
6914 | if (byte_offset_p != NULL) | |
d5d6fca5 | 6915 | *byte_offset_p = 0; |
52ce6436 PH |
6916 | if (bit_offset_p != NULL) |
6917 | *bit_offset_p = 0; | |
6918 | if (bit_size_p != NULL) | |
6919 | *bit_size_p = 0; | |
6920 | ||
6921 | for (i = 0; i < TYPE_NFIELDS (type); i += 1) | |
4c4b4cd2 PH |
6922 | { |
6923 | int bit_pos = TYPE_FIELD_BITPOS (type, i); | |
6924 | int fld_offset = offset + bit_pos / 8; | |
0d5cff50 | 6925 | const char *t_field_name = TYPE_FIELD_NAME (type, i); |
76a01679 | 6926 | |
4c4b4cd2 PH |
6927 | if (t_field_name == NULL) |
6928 | continue; | |
6929 | ||
52ce6436 | 6930 | else if (name != NULL && field_name_match (t_field_name, name)) |
76a01679 JB |
6931 | { |
6932 | int bit_size = TYPE_FIELD_BITSIZE (type, i); | |
5b4ee69b | 6933 | |
52ce6436 PH |
6934 | if (field_type_p != NULL) |
6935 | *field_type_p = TYPE_FIELD_TYPE (type, i); | |
6936 | if (byte_offset_p != NULL) | |
6937 | *byte_offset_p = fld_offset; | |
6938 | if (bit_offset_p != NULL) | |
6939 | *bit_offset_p = bit_pos % 8; | |
6940 | if (bit_size_p != NULL) | |
6941 | *bit_size_p = bit_size; | |
76a01679 JB |
6942 | return 1; |
6943 | } | |
4c4b4cd2 PH |
6944 | else if (ada_is_wrapper_field (type, i)) |
6945 | { | |
52ce6436 PH |
6946 | if (find_struct_field (name, TYPE_FIELD_TYPE (type, i), fld_offset, |
6947 | field_type_p, byte_offset_p, bit_offset_p, | |
6948 | bit_size_p, index_p)) | |
76a01679 JB |
6949 | return 1; |
6950 | } | |
4c4b4cd2 PH |
6951 | else if (ada_is_variant_part (type, i)) |
6952 | { | |
52ce6436 PH |
6953 | /* PNH: Wait. Do we ever execute this section, or is ARG always of |
6954 | fixed type?? */ | |
4c4b4cd2 | 6955 | int j; |
52ce6436 PH |
6956 | struct type *field_type |
6957 | = ada_check_typedef (TYPE_FIELD_TYPE (type, i)); | |
4c4b4cd2 | 6958 | |
52ce6436 | 6959 | for (j = 0; j < TYPE_NFIELDS (field_type); j += 1) |
4c4b4cd2 | 6960 | { |
76a01679 JB |
6961 | if (find_struct_field (name, TYPE_FIELD_TYPE (field_type, j), |
6962 | fld_offset | |
6963 | + TYPE_FIELD_BITPOS (field_type, j) / 8, | |
6964 | field_type_p, byte_offset_p, | |
52ce6436 | 6965 | bit_offset_p, bit_size_p, index_p)) |
76a01679 | 6966 | return 1; |
4c4b4cd2 PH |
6967 | } |
6968 | } | |
52ce6436 PH |
6969 | else if (index_p != NULL) |
6970 | *index_p += 1; | |
4c4b4cd2 PH |
6971 | } |
6972 | return 0; | |
6973 | } | |
6974 | ||
0963b4bd | 6975 | /* Number of user-visible fields in record type TYPE. */ |
4c4b4cd2 | 6976 | |
52ce6436 PH |
6977 | static int |
6978 | num_visible_fields (struct type *type) | |
6979 | { | |
6980 | int n; | |
5b4ee69b | 6981 | |
52ce6436 PH |
6982 | n = 0; |
6983 | find_struct_field (NULL, type, 0, NULL, NULL, NULL, NULL, &n); | |
6984 | return n; | |
6985 | } | |
14f9c5c9 | 6986 | |
4c4b4cd2 | 6987 | /* Look for a field NAME in ARG. Adjust the address of ARG by OFFSET bytes, |
14f9c5c9 AS |
6988 | and search in it assuming it has (class) type TYPE. |
6989 | If found, return value, else return NULL. | |
6990 | ||
4c4b4cd2 | 6991 | Searches recursively through wrapper fields (e.g., '_parent'). */ |
14f9c5c9 | 6992 | |
4c4b4cd2 | 6993 | static struct value * |
d2e4a39e | 6994 | ada_search_struct_field (char *name, struct value *arg, int offset, |
4c4b4cd2 | 6995 | struct type *type) |
14f9c5c9 AS |
6996 | { |
6997 | int i; | |
14f9c5c9 | 6998 | |
5b4ee69b | 6999 | type = ada_check_typedef (type); |
52ce6436 | 7000 | for (i = 0; i < TYPE_NFIELDS (type); i += 1) |
14f9c5c9 | 7001 | { |
0d5cff50 | 7002 | const char *t_field_name = TYPE_FIELD_NAME (type, i); |
14f9c5c9 AS |
7003 | |
7004 | if (t_field_name == NULL) | |
4c4b4cd2 | 7005 | continue; |
14f9c5c9 AS |
7006 | |
7007 | else if (field_name_match (t_field_name, name)) | |
4c4b4cd2 | 7008 | return ada_value_primitive_field (arg, offset, i, type); |
14f9c5c9 AS |
7009 | |
7010 | else if (ada_is_wrapper_field (type, i)) | |
4c4b4cd2 | 7011 | { |
0963b4bd | 7012 | struct value *v = /* Do not let indent join lines here. */ |
06d5cf63 JB |
7013 | ada_search_struct_field (name, arg, |
7014 | offset + TYPE_FIELD_BITPOS (type, i) / 8, | |
7015 | TYPE_FIELD_TYPE (type, i)); | |
5b4ee69b | 7016 | |
4c4b4cd2 PH |
7017 | if (v != NULL) |
7018 | return v; | |
7019 | } | |
14f9c5c9 AS |
7020 | |
7021 | else if (ada_is_variant_part (type, i)) | |
4c4b4cd2 | 7022 | { |
0963b4bd | 7023 | /* PNH: Do we ever get here? See find_struct_field. */ |
4c4b4cd2 | 7024 | int j; |
5b4ee69b MS |
7025 | struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type, |
7026 | i)); | |
4c4b4cd2 PH |
7027 | int var_offset = offset + TYPE_FIELD_BITPOS (type, i) / 8; |
7028 | ||
52ce6436 | 7029 | for (j = 0; j < TYPE_NFIELDS (field_type); j += 1) |
4c4b4cd2 | 7030 | { |
0963b4bd MS |
7031 | struct value *v = ada_search_struct_field /* Force line |
7032 | break. */ | |
06d5cf63 JB |
7033 | (name, arg, |
7034 | var_offset + TYPE_FIELD_BITPOS (field_type, j) / 8, | |
7035 | TYPE_FIELD_TYPE (field_type, j)); | |
5b4ee69b | 7036 | |
4c4b4cd2 PH |
7037 | if (v != NULL) |
7038 | return v; | |
7039 | } | |
7040 | } | |
14f9c5c9 AS |
7041 | } |
7042 | return NULL; | |
7043 | } | |
d2e4a39e | 7044 | |
52ce6436 PH |
7045 | static struct value *ada_index_struct_field_1 (int *, struct value *, |
7046 | int, struct type *); | |
7047 | ||
7048 | ||
7049 | /* Return field #INDEX in ARG, where the index is that returned by | |
7050 | * find_struct_field through its INDEX_P argument. Adjust the address | |
7051 | * of ARG by OFFSET bytes, and search in it assuming it has (class) type TYPE. | |
0963b4bd | 7052 | * If found, return value, else return NULL. */ |
52ce6436 PH |
7053 | |
7054 | static struct value * | |
7055 | ada_index_struct_field (int index, struct value *arg, int offset, | |
7056 | struct type *type) | |
7057 | { | |
7058 | return ada_index_struct_field_1 (&index, arg, offset, type); | |
7059 | } | |
7060 | ||
7061 | ||
7062 | /* Auxiliary function for ada_index_struct_field. Like | |
7063 | * ada_index_struct_field, but takes index from *INDEX_P and modifies | |
0963b4bd | 7064 | * *INDEX_P. */ |
52ce6436 PH |
7065 | |
7066 | static struct value * | |
7067 | ada_index_struct_field_1 (int *index_p, struct value *arg, int offset, | |
7068 | struct type *type) | |
7069 | { | |
7070 | int i; | |
7071 | type = ada_check_typedef (type); | |
7072 | ||
7073 | for (i = 0; i < TYPE_NFIELDS (type); i += 1) | |
7074 | { | |
7075 | if (TYPE_FIELD_NAME (type, i) == NULL) | |
7076 | continue; | |
7077 | else if (ada_is_wrapper_field (type, i)) | |
7078 | { | |
0963b4bd | 7079 | struct value *v = /* Do not let indent join lines here. */ |
52ce6436 PH |
7080 | ada_index_struct_field_1 (index_p, arg, |
7081 | offset + TYPE_FIELD_BITPOS (type, i) / 8, | |
7082 | TYPE_FIELD_TYPE (type, i)); | |
5b4ee69b | 7083 | |
52ce6436 PH |
7084 | if (v != NULL) |
7085 | return v; | |
7086 | } | |
7087 | ||
7088 | else if (ada_is_variant_part (type, i)) | |
7089 | { | |
7090 | /* PNH: Do we ever get here? See ada_search_struct_field, | |
0963b4bd | 7091 | find_struct_field. */ |
52ce6436 PH |
7092 | error (_("Cannot assign this kind of variant record")); |
7093 | } | |
7094 | else if (*index_p == 0) | |
7095 | return ada_value_primitive_field (arg, offset, i, type); | |
7096 | else | |
7097 | *index_p -= 1; | |
7098 | } | |
7099 | return NULL; | |
7100 | } | |
7101 | ||
4c4b4cd2 PH |
7102 | /* Given ARG, a value of type (pointer or reference to a)* |
7103 | structure/union, extract the component named NAME from the ultimate | |
7104 | target structure/union and return it as a value with its | |
f5938064 | 7105 | appropriate type. |
14f9c5c9 | 7106 | |
4c4b4cd2 PH |
7107 | The routine searches for NAME among all members of the structure itself |
7108 | and (recursively) among all members of any wrapper members | |
14f9c5c9 AS |
7109 | (e.g., '_parent'). |
7110 | ||
03ee6b2e PH |
7111 | If NO_ERR, then simply return NULL in case of error, rather than |
7112 | calling error. */ | |
14f9c5c9 | 7113 | |
d2e4a39e | 7114 | struct value * |
03ee6b2e | 7115 | ada_value_struct_elt (struct value *arg, char *name, int no_err) |
14f9c5c9 | 7116 | { |
4c4b4cd2 | 7117 | struct type *t, *t1; |
d2e4a39e | 7118 | struct value *v; |
14f9c5c9 | 7119 | |
4c4b4cd2 | 7120 | v = NULL; |
df407dfe | 7121 | t1 = t = ada_check_typedef (value_type (arg)); |
4c4b4cd2 PH |
7122 | if (TYPE_CODE (t) == TYPE_CODE_REF) |
7123 | { | |
7124 | t1 = TYPE_TARGET_TYPE (t); | |
7125 | if (t1 == NULL) | |
03ee6b2e | 7126 | goto BadValue; |
61ee279c | 7127 | t1 = ada_check_typedef (t1); |
4c4b4cd2 | 7128 | if (TYPE_CODE (t1) == TYPE_CODE_PTR) |
76a01679 | 7129 | { |
994b9211 | 7130 | arg = coerce_ref (arg); |
76a01679 JB |
7131 | t = t1; |
7132 | } | |
4c4b4cd2 | 7133 | } |
14f9c5c9 | 7134 | |
4c4b4cd2 PH |
7135 | while (TYPE_CODE (t) == TYPE_CODE_PTR) |
7136 | { | |
7137 | t1 = TYPE_TARGET_TYPE (t); | |
7138 | if (t1 == NULL) | |
03ee6b2e | 7139 | goto BadValue; |
61ee279c | 7140 | t1 = ada_check_typedef (t1); |
4c4b4cd2 | 7141 | if (TYPE_CODE (t1) == TYPE_CODE_PTR) |
76a01679 JB |
7142 | { |
7143 | arg = value_ind (arg); | |
7144 | t = t1; | |
7145 | } | |
4c4b4cd2 | 7146 | else |
76a01679 | 7147 | break; |
4c4b4cd2 | 7148 | } |
14f9c5c9 | 7149 | |
4c4b4cd2 | 7150 | if (TYPE_CODE (t1) != TYPE_CODE_STRUCT && TYPE_CODE (t1) != TYPE_CODE_UNION) |
03ee6b2e | 7151 | goto BadValue; |
14f9c5c9 | 7152 | |
4c4b4cd2 PH |
7153 | if (t1 == t) |
7154 | v = ada_search_struct_field (name, arg, 0, t); | |
7155 | else | |
7156 | { | |
7157 | int bit_offset, bit_size, byte_offset; | |
7158 | struct type *field_type; | |
7159 | CORE_ADDR address; | |
7160 | ||
76a01679 | 7161 | if (TYPE_CODE (t) == TYPE_CODE_PTR) |
b50d69b5 | 7162 | address = value_address (ada_value_ind (arg)); |
4c4b4cd2 | 7163 | else |
b50d69b5 | 7164 | address = value_address (ada_coerce_ref (arg)); |
14f9c5c9 | 7165 | |
1ed6ede0 | 7166 | t1 = ada_to_fixed_type (ada_get_base_type (t1), NULL, address, NULL, 1); |
76a01679 JB |
7167 | if (find_struct_field (name, t1, 0, |
7168 | &field_type, &byte_offset, &bit_offset, | |
52ce6436 | 7169 | &bit_size, NULL)) |
76a01679 JB |
7170 | { |
7171 | if (bit_size != 0) | |
7172 | { | |
714e53ab PH |
7173 | if (TYPE_CODE (t) == TYPE_CODE_REF) |
7174 | arg = ada_coerce_ref (arg); | |
7175 | else | |
7176 | arg = ada_value_ind (arg); | |
76a01679 JB |
7177 | v = ada_value_primitive_packed_val (arg, NULL, byte_offset, |
7178 | bit_offset, bit_size, | |
7179 | field_type); | |
7180 | } | |
7181 | else | |
f5938064 | 7182 | v = value_at_lazy (field_type, address + byte_offset); |
76a01679 JB |
7183 | } |
7184 | } | |
7185 | ||
03ee6b2e PH |
7186 | if (v != NULL || no_err) |
7187 | return v; | |
7188 | else | |
323e0a4a | 7189 | error (_("There is no member named %s."), name); |
14f9c5c9 | 7190 | |
03ee6b2e PH |
7191 | BadValue: |
7192 | if (no_err) | |
7193 | return NULL; | |
7194 | else | |
0963b4bd MS |
7195 | error (_("Attempt to extract a component of " |
7196 | "a value that is not a record.")); | |
14f9c5c9 AS |
7197 | } |
7198 | ||
7199 | /* Given a type TYPE, look up the type of the component of type named NAME. | |
4c4b4cd2 PH |
7200 | If DISPP is non-null, add its byte displacement from the beginning of a |
7201 | structure (pointed to by a value) of type TYPE to *DISPP (does not | |
14f9c5c9 AS |
7202 | work for packed fields). |
7203 | ||
7204 | Matches any field whose name has NAME as a prefix, possibly | |
4c4b4cd2 | 7205 | followed by "___". |
14f9c5c9 | 7206 | |
0963b4bd | 7207 | TYPE can be either a struct or union. If REFOK, TYPE may also |
4c4b4cd2 PH |
7208 | be a (pointer or reference)+ to a struct or union, and the |
7209 | ultimate target type will be searched. | |
14f9c5c9 AS |
7210 | |
7211 | Looks recursively into variant clauses and parent types. | |
7212 | ||
4c4b4cd2 PH |
7213 | If NOERR is nonzero, return NULL if NAME is not suitably defined or |
7214 | TYPE is not a type of the right kind. */ | |
14f9c5c9 | 7215 | |
4c4b4cd2 | 7216 | static struct type * |
76a01679 JB |
7217 | ada_lookup_struct_elt_type (struct type *type, char *name, int refok, |
7218 | int noerr, int *dispp) | |
14f9c5c9 AS |
7219 | { |
7220 | int i; | |
7221 | ||
7222 | if (name == NULL) | |
7223 | goto BadName; | |
7224 | ||
76a01679 | 7225 | if (refok && type != NULL) |
4c4b4cd2 PH |
7226 | while (1) |
7227 | { | |
61ee279c | 7228 | type = ada_check_typedef (type); |
76a01679 JB |
7229 | if (TYPE_CODE (type) != TYPE_CODE_PTR |
7230 | && TYPE_CODE (type) != TYPE_CODE_REF) | |
7231 | break; | |
7232 | type = TYPE_TARGET_TYPE (type); | |
4c4b4cd2 | 7233 | } |
14f9c5c9 | 7234 | |
76a01679 | 7235 | if (type == NULL |
1265e4aa JB |
7236 | || (TYPE_CODE (type) != TYPE_CODE_STRUCT |
7237 | && TYPE_CODE (type) != TYPE_CODE_UNION)) | |
14f9c5c9 | 7238 | { |
4c4b4cd2 | 7239 | if (noerr) |
76a01679 | 7240 | return NULL; |
4c4b4cd2 | 7241 | else |
76a01679 JB |
7242 | { |
7243 | target_terminal_ours (); | |
7244 | gdb_flush (gdb_stdout); | |
323e0a4a AC |
7245 | if (type == NULL) |
7246 | error (_("Type (null) is not a structure or union type")); | |
7247 | else | |
7248 | { | |
7249 | /* XXX: type_sprint */ | |
7250 | fprintf_unfiltered (gdb_stderr, _("Type ")); | |
7251 | type_print (type, "", gdb_stderr, -1); | |
7252 | error (_(" is not a structure or union type")); | |
7253 | } | |
76a01679 | 7254 | } |
14f9c5c9 AS |
7255 | } |
7256 | ||
7257 | type = to_static_fixed_type (type); | |
7258 | ||
7259 | for (i = 0; i < TYPE_NFIELDS (type); i += 1) | |
7260 | { | |
0d5cff50 | 7261 | const char *t_field_name = TYPE_FIELD_NAME (type, i); |
14f9c5c9 AS |
7262 | struct type *t; |
7263 | int disp; | |
d2e4a39e | 7264 | |
14f9c5c9 | 7265 | if (t_field_name == NULL) |
4c4b4cd2 | 7266 | continue; |
14f9c5c9 AS |
7267 | |
7268 | else if (field_name_match (t_field_name, name)) | |
4c4b4cd2 PH |
7269 | { |
7270 | if (dispp != NULL) | |
7271 | *dispp += TYPE_FIELD_BITPOS (type, i) / 8; | |
61ee279c | 7272 | return ada_check_typedef (TYPE_FIELD_TYPE (type, i)); |
4c4b4cd2 | 7273 | } |
14f9c5c9 AS |
7274 | |
7275 | else if (ada_is_wrapper_field (type, i)) | |
4c4b4cd2 PH |
7276 | { |
7277 | disp = 0; | |
7278 | t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (type, i), name, | |
7279 | 0, 1, &disp); | |
7280 | if (t != NULL) | |
7281 | { | |
7282 | if (dispp != NULL) | |
7283 | *dispp += disp + TYPE_FIELD_BITPOS (type, i) / 8; | |
7284 | return t; | |
7285 | } | |
7286 | } | |
14f9c5c9 AS |
7287 | |
7288 | else if (ada_is_variant_part (type, i)) | |
4c4b4cd2 PH |
7289 | { |
7290 | int j; | |
5b4ee69b MS |
7291 | struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type, |
7292 | i)); | |
4c4b4cd2 PH |
7293 | |
7294 | for (j = TYPE_NFIELDS (field_type) - 1; j >= 0; j -= 1) | |
7295 | { | |
b1f33ddd JB |
7296 | /* FIXME pnh 2008/01/26: We check for a field that is |
7297 | NOT wrapped in a struct, since the compiler sometimes | |
7298 | generates these for unchecked variant types. Revisit | |
0963b4bd | 7299 | if the compiler changes this practice. */ |
0d5cff50 | 7300 | const char *v_field_name = TYPE_FIELD_NAME (field_type, j); |
4c4b4cd2 | 7301 | disp = 0; |
b1f33ddd JB |
7302 | if (v_field_name != NULL |
7303 | && field_name_match (v_field_name, name)) | |
7304 | t = ada_check_typedef (TYPE_FIELD_TYPE (field_type, j)); | |
7305 | else | |
0963b4bd MS |
7306 | t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (field_type, |
7307 | j), | |
b1f33ddd JB |
7308 | name, 0, 1, &disp); |
7309 | ||
4c4b4cd2 PH |
7310 | if (t != NULL) |
7311 | { | |
7312 | if (dispp != NULL) | |
7313 | *dispp += disp + TYPE_FIELD_BITPOS (type, i) / 8; | |
7314 | return t; | |
7315 | } | |
7316 | } | |
7317 | } | |
14f9c5c9 AS |
7318 | |
7319 | } | |
7320 | ||
7321 | BadName: | |
d2e4a39e | 7322 | if (!noerr) |
14f9c5c9 AS |
7323 | { |
7324 | target_terminal_ours (); | |
7325 | gdb_flush (gdb_stdout); | |
323e0a4a AC |
7326 | if (name == NULL) |
7327 | { | |
7328 | /* XXX: type_sprint */ | |
7329 | fprintf_unfiltered (gdb_stderr, _("Type ")); | |
7330 | type_print (type, "", gdb_stderr, -1); | |
7331 | error (_(" has no component named <null>")); | |
7332 | } | |
7333 | else | |
7334 | { | |
7335 | /* XXX: type_sprint */ | |
7336 | fprintf_unfiltered (gdb_stderr, _("Type ")); | |
7337 | type_print (type, "", gdb_stderr, -1); | |
7338 | error (_(" has no component named %s"), name); | |
7339 | } | |
14f9c5c9 AS |
7340 | } |
7341 | ||
7342 | return NULL; | |
7343 | } | |
7344 | ||
b1f33ddd JB |
7345 | /* Assuming that VAR_TYPE is the type of a variant part of a record (a union), |
7346 | within a value of type OUTER_TYPE, return true iff VAR_TYPE | |
7347 | represents an unchecked union (that is, the variant part of a | |
0963b4bd | 7348 | record that is named in an Unchecked_Union pragma). */ |
b1f33ddd JB |
7349 | |
7350 | static int | |
7351 | is_unchecked_variant (struct type *var_type, struct type *outer_type) | |
7352 | { | |
7353 | char *discrim_name = ada_variant_discrim_name (var_type); | |
5b4ee69b | 7354 | |
b1f33ddd JB |
7355 | return (ada_lookup_struct_elt_type (outer_type, discrim_name, 0, 1, NULL) |
7356 | == NULL); | |
7357 | } | |
7358 | ||
7359 | ||
14f9c5c9 AS |
7360 | /* Assuming that VAR_TYPE is the type of a variant part of a record (a union), |
7361 | within a value of type OUTER_TYPE that is stored in GDB at | |
4c4b4cd2 PH |
7362 | OUTER_VALADDR, determine which variant clause (field number in VAR_TYPE, |
7363 | numbering from 0) is applicable. Returns -1 if none are. */ | |
14f9c5c9 | 7364 | |
d2e4a39e | 7365 | int |
ebf56fd3 | 7366 | ada_which_variant_applies (struct type *var_type, struct type *outer_type, |
fc1a4b47 | 7367 | const gdb_byte *outer_valaddr) |
14f9c5c9 AS |
7368 | { |
7369 | int others_clause; | |
7370 | int i; | |
d2e4a39e | 7371 | char *discrim_name = ada_variant_discrim_name (var_type); |
0c281816 JB |
7372 | struct value *outer; |
7373 | struct value *discrim; | |
14f9c5c9 AS |
7374 | LONGEST discrim_val; |
7375 | ||
012370f6 TT |
7376 | /* Using plain value_from_contents_and_address here causes problems |
7377 | because we will end up trying to resolve a type that is currently | |
7378 | being constructed. */ | |
7379 | outer = value_from_contents_and_address_unresolved (outer_type, | |
7380 | outer_valaddr, 0); | |
0c281816 JB |
7381 | discrim = ada_value_struct_elt (outer, discrim_name, 1); |
7382 | if (discrim == NULL) | |
14f9c5c9 | 7383 | return -1; |
0c281816 | 7384 | discrim_val = value_as_long (discrim); |
14f9c5c9 AS |
7385 | |
7386 | others_clause = -1; | |
7387 | for (i = 0; i < TYPE_NFIELDS (var_type); i += 1) | |
7388 | { | |
7389 | if (ada_is_others_clause (var_type, i)) | |
4c4b4cd2 | 7390 | others_clause = i; |
14f9c5c9 | 7391 | else if (ada_in_variant (discrim_val, var_type, i)) |
4c4b4cd2 | 7392 | return i; |
14f9c5c9 AS |
7393 | } |
7394 | ||
7395 | return others_clause; | |
7396 | } | |
d2e4a39e | 7397 | \f |
14f9c5c9 AS |
7398 | |
7399 | ||
4c4b4cd2 | 7400 | /* Dynamic-Sized Records */ |
14f9c5c9 AS |
7401 | |
7402 | /* Strategy: The type ostensibly attached to a value with dynamic size | |
7403 | (i.e., a size that is not statically recorded in the debugging | |
7404 | data) does not accurately reflect the size or layout of the value. | |
7405 | Our strategy is to convert these values to values with accurate, | |
4c4b4cd2 | 7406 | conventional types that are constructed on the fly. */ |
14f9c5c9 AS |
7407 | |
7408 | /* There is a subtle and tricky problem here. In general, we cannot | |
7409 | determine the size of dynamic records without its data. However, | |
7410 | the 'struct value' data structure, which GDB uses to represent | |
7411 | quantities in the inferior process (the target), requires the size | |
7412 | of the type at the time of its allocation in order to reserve space | |
7413 | for GDB's internal copy of the data. That's why the | |
7414 | 'to_fixed_xxx_type' routines take (target) addresses as parameters, | |
4c4b4cd2 | 7415 | rather than struct value*s. |
14f9c5c9 AS |
7416 | |
7417 | However, GDB's internal history variables ($1, $2, etc.) are | |
7418 | struct value*s containing internal copies of the data that are not, in | |
7419 | general, the same as the data at their corresponding addresses in | |
7420 | the target. Fortunately, the types we give to these values are all | |
7421 | conventional, fixed-size types (as per the strategy described | |
7422 | above), so that we don't usually have to perform the | |
7423 | 'to_fixed_xxx_type' conversions to look at their values. | |
7424 | Unfortunately, there is one exception: if one of the internal | |
7425 | history variables is an array whose elements are unconstrained | |
7426 | records, then we will need to create distinct fixed types for each | |
7427 | element selected. */ | |
7428 | ||
7429 | /* The upshot of all of this is that many routines take a (type, host | |
7430 | address, target address) triple as arguments to represent a value. | |
7431 | The host address, if non-null, is supposed to contain an internal | |
7432 | copy of the relevant data; otherwise, the program is to consult the | |
4c4b4cd2 | 7433 | target at the target address. */ |
14f9c5c9 AS |
7434 | |
7435 | /* Assuming that VAL0 represents a pointer value, the result of | |
7436 | dereferencing it. Differs from value_ind in its treatment of | |
4c4b4cd2 | 7437 | dynamic-sized types. */ |
14f9c5c9 | 7438 | |
d2e4a39e AS |
7439 | struct value * |
7440 | ada_value_ind (struct value *val0) | |
14f9c5c9 | 7441 | { |
c48db5ca | 7442 | struct value *val = value_ind (val0); |
5b4ee69b | 7443 | |
b50d69b5 JG |
7444 | if (ada_is_tagged_type (value_type (val), 0)) |
7445 | val = ada_tag_value_at_base_address (val); | |
7446 | ||
4c4b4cd2 | 7447 | return ada_to_fixed_value (val); |
14f9c5c9 AS |
7448 | } |
7449 | ||
7450 | /* The value resulting from dereferencing any "reference to" | |
4c4b4cd2 PH |
7451 | qualifiers on VAL0. */ |
7452 | ||
d2e4a39e AS |
7453 | static struct value * |
7454 | ada_coerce_ref (struct value *val0) | |
7455 | { | |
df407dfe | 7456 | if (TYPE_CODE (value_type (val0)) == TYPE_CODE_REF) |
d2e4a39e AS |
7457 | { |
7458 | struct value *val = val0; | |
5b4ee69b | 7459 | |
994b9211 | 7460 | val = coerce_ref (val); |
b50d69b5 JG |
7461 | |
7462 | if (ada_is_tagged_type (value_type (val), 0)) | |
7463 | val = ada_tag_value_at_base_address (val); | |
7464 | ||
4c4b4cd2 | 7465 | return ada_to_fixed_value (val); |
d2e4a39e AS |
7466 | } |
7467 | else | |
14f9c5c9 AS |
7468 | return val0; |
7469 | } | |
7470 | ||
7471 | /* Return OFF rounded upward if necessary to a multiple of | |
4c4b4cd2 | 7472 | ALIGNMENT (a power of 2). */ |
14f9c5c9 AS |
7473 | |
7474 | static unsigned int | |
ebf56fd3 | 7475 | align_value (unsigned int off, unsigned int alignment) |
14f9c5c9 AS |
7476 | { |
7477 | return (off + alignment - 1) & ~(alignment - 1); | |
7478 | } | |
7479 | ||
4c4b4cd2 | 7480 | /* Return the bit alignment required for field #F of template type TYPE. */ |
14f9c5c9 AS |
7481 | |
7482 | static unsigned int | |
ebf56fd3 | 7483 | field_alignment (struct type *type, int f) |
14f9c5c9 | 7484 | { |
d2e4a39e | 7485 | const char *name = TYPE_FIELD_NAME (type, f); |
64a1bf19 | 7486 | int len; |
14f9c5c9 AS |
7487 | int align_offset; |
7488 | ||
64a1bf19 JB |
7489 | /* The field name should never be null, unless the debugging information |
7490 | is somehow malformed. In this case, we assume the field does not | |
7491 | require any alignment. */ | |
7492 | if (name == NULL) | |
7493 | return 1; | |
7494 | ||
7495 | len = strlen (name); | |
7496 | ||
4c4b4cd2 PH |
7497 | if (!isdigit (name[len - 1])) |
7498 | return 1; | |
14f9c5c9 | 7499 | |
d2e4a39e | 7500 | if (isdigit (name[len - 2])) |
14f9c5c9 AS |
7501 | align_offset = len - 2; |
7502 | else | |
7503 | align_offset = len - 1; | |
7504 | ||
4c4b4cd2 | 7505 | if (align_offset < 7 || strncmp ("___XV", name + align_offset - 6, 5) != 0) |
14f9c5c9 AS |
7506 | return TARGET_CHAR_BIT; |
7507 | ||
4c4b4cd2 PH |
7508 | return atoi (name + align_offset) * TARGET_CHAR_BIT; |
7509 | } | |
7510 | ||
852dff6c | 7511 | /* Find a typedef or tag symbol named NAME. Ignores ambiguity. */ |
4c4b4cd2 | 7512 | |
852dff6c JB |
7513 | static struct symbol * |
7514 | ada_find_any_type_symbol (const char *name) | |
4c4b4cd2 PH |
7515 | { |
7516 | struct symbol *sym; | |
7517 | ||
7518 | sym = standard_lookup (name, get_selected_block (NULL), VAR_DOMAIN); | |
4186eb54 | 7519 | if (sym != NULL && SYMBOL_CLASS (sym) == LOC_TYPEDEF) |
4c4b4cd2 PH |
7520 | return sym; |
7521 | ||
4186eb54 KS |
7522 | sym = standard_lookup (name, NULL, STRUCT_DOMAIN); |
7523 | return sym; | |
14f9c5c9 AS |
7524 | } |
7525 | ||
dddfab26 UW |
7526 | /* Find a type named NAME. Ignores ambiguity. This routine will look |
7527 | solely for types defined by debug info, it will not search the GDB | |
7528 | primitive types. */ | |
4c4b4cd2 | 7529 | |
852dff6c | 7530 | static struct type * |
ebf56fd3 | 7531 | ada_find_any_type (const char *name) |
14f9c5c9 | 7532 | { |
852dff6c | 7533 | struct symbol *sym = ada_find_any_type_symbol (name); |
14f9c5c9 | 7534 | |
14f9c5c9 | 7535 | if (sym != NULL) |
dddfab26 | 7536 | return SYMBOL_TYPE (sym); |
14f9c5c9 | 7537 | |
dddfab26 | 7538 | return NULL; |
14f9c5c9 AS |
7539 | } |
7540 | ||
739593e0 JB |
7541 | /* Given NAME_SYM and an associated BLOCK, find a "renaming" symbol |
7542 | associated with NAME_SYM's name. NAME_SYM may itself be a renaming | |
7543 | symbol, in which case it is returned. Otherwise, this looks for | |
7544 | symbols whose name is that of NAME_SYM suffixed with "___XR". | |
7545 | Return symbol if found, and NULL otherwise. */ | |
4c4b4cd2 PH |
7546 | |
7547 | struct symbol * | |
270140bd | 7548 | ada_find_renaming_symbol (struct symbol *name_sym, const struct block *block) |
aeb5907d | 7549 | { |
739593e0 | 7550 | const char *name = SYMBOL_LINKAGE_NAME (name_sym); |
aeb5907d JB |
7551 | struct symbol *sym; |
7552 | ||
739593e0 JB |
7553 | if (strstr (name, "___XR") != NULL) |
7554 | return name_sym; | |
7555 | ||
aeb5907d JB |
7556 | sym = find_old_style_renaming_symbol (name, block); |
7557 | ||
7558 | if (sym != NULL) | |
7559 | return sym; | |
7560 | ||
0963b4bd | 7561 | /* Not right yet. FIXME pnh 7/20/2007. */ |
852dff6c | 7562 | sym = ada_find_any_type_symbol (name); |
aeb5907d JB |
7563 | if (sym != NULL && strstr (SYMBOL_LINKAGE_NAME (sym), "___XR") != NULL) |
7564 | return sym; | |
7565 | else | |
7566 | return NULL; | |
7567 | } | |
7568 | ||
7569 | static struct symbol * | |
270140bd | 7570 | find_old_style_renaming_symbol (const char *name, const struct block *block) |
4c4b4cd2 | 7571 | { |
7f0df278 | 7572 | const struct symbol *function_sym = block_linkage_function (block); |
4c4b4cd2 PH |
7573 | char *rename; |
7574 | ||
7575 | if (function_sym != NULL) | |
7576 | { | |
7577 | /* If the symbol is defined inside a function, NAME is not fully | |
7578 | qualified. This means we need to prepend the function name | |
7579 | as well as adding the ``___XR'' suffix to build the name of | |
7580 | the associated renaming symbol. */ | |
0d5cff50 | 7581 | const char *function_name = SYMBOL_LINKAGE_NAME (function_sym); |
529cad9c PH |
7582 | /* Function names sometimes contain suffixes used |
7583 | for instance to qualify nested subprograms. When building | |
7584 | the XR type name, we need to make sure that this suffix is | |
7585 | not included. So do not include any suffix in the function | |
7586 | name length below. */ | |
69fadcdf | 7587 | int function_name_len = ada_name_prefix_len (function_name); |
76a01679 JB |
7588 | const int rename_len = function_name_len + 2 /* "__" */ |
7589 | + strlen (name) + 6 /* "___XR\0" */ ; | |
4c4b4cd2 | 7590 | |
529cad9c | 7591 | /* Strip the suffix if necessary. */ |
69fadcdf JB |
7592 | ada_remove_trailing_digits (function_name, &function_name_len); |
7593 | ada_remove_po_subprogram_suffix (function_name, &function_name_len); | |
7594 | ada_remove_Xbn_suffix (function_name, &function_name_len); | |
529cad9c | 7595 | |
4c4b4cd2 PH |
7596 | /* Library-level functions are a special case, as GNAT adds |
7597 | a ``_ada_'' prefix to the function name to avoid namespace | |
aeb5907d | 7598 | pollution. However, the renaming symbols themselves do not |
4c4b4cd2 PH |
7599 | have this prefix, so we need to skip this prefix if present. */ |
7600 | if (function_name_len > 5 /* "_ada_" */ | |
7601 | && strstr (function_name, "_ada_") == function_name) | |
69fadcdf JB |
7602 | { |
7603 | function_name += 5; | |
7604 | function_name_len -= 5; | |
7605 | } | |
4c4b4cd2 PH |
7606 | |
7607 | rename = (char *) alloca (rename_len * sizeof (char)); | |
69fadcdf JB |
7608 | strncpy (rename, function_name, function_name_len); |
7609 | xsnprintf (rename + function_name_len, rename_len - function_name_len, | |
7610 | "__%s___XR", name); | |
4c4b4cd2 PH |
7611 | } |
7612 | else | |
7613 | { | |
7614 | const int rename_len = strlen (name) + 6; | |
5b4ee69b | 7615 | |
4c4b4cd2 | 7616 | rename = (char *) alloca (rename_len * sizeof (char)); |
88c15c34 | 7617 | xsnprintf (rename, rename_len * sizeof (char), "%s___XR", name); |
4c4b4cd2 PH |
7618 | } |
7619 | ||
852dff6c | 7620 | return ada_find_any_type_symbol (rename); |
4c4b4cd2 PH |
7621 | } |
7622 | ||
14f9c5c9 | 7623 | /* Because of GNAT encoding conventions, several GDB symbols may match a |
4c4b4cd2 | 7624 | given type name. If the type denoted by TYPE0 is to be preferred to |
14f9c5c9 | 7625 | that of TYPE1 for purposes of type printing, return non-zero; |
4c4b4cd2 PH |
7626 | otherwise return 0. */ |
7627 | ||
14f9c5c9 | 7628 | int |
d2e4a39e | 7629 | ada_prefer_type (struct type *type0, struct type *type1) |
14f9c5c9 AS |
7630 | { |
7631 | if (type1 == NULL) | |
7632 | return 1; | |
7633 | else if (type0 == NULL) | |
7634 | return 0; | |
7635 | else if (TYPE_CODE (type1) == TYPE_CODE_VOID) | |
7636 | return 1; | |
7637 | else if (TYPE_CODE (type0) == TYPE_CODE_VOID) | |
7638 | return 0; | |
4c4b4cd2 PH |
7639 | else if (TYPE_NAME (type1) == NULL && TYPE_NAME (type0) != NULL) |
7640 | return 1; | |
ad82864c | 7641 | else if (ada_is_constrained_packed_array_type (type0)) |
14f9c5c9 | 7642 | return 1; |
4c4b4cd2 PH |
7643 | else if (ada_is_array_descriptor_type (type0) |
7644 | && !ada_is_array_descriptor_type (type1)) | |
14f9c5c9 | 7645 | return 1; |
aeb5907d JB |
7646 | else |
7647 | { | |
7648 | const char *type0_name = type_name_no_tag (type0); | |
7649 | const char *type1_name = type_name_no_tag (type1); | |
7650 | ||
7651 | if (type0_name != NULL && strstr (type0_name, "___XR") != NULL | |
7652 | && (type1_name == NULL || strstr (type1_name, "___XR") == NULL)) | |
7653 | return 1; | |
7654 | } | |
14f9c5c9 AS |
7655 | return 0; |
7656 | } | |
7657 | ||
7658 | /* The name of TYPE, which is either its TYPE_NAME, or, if that is | |
4c4b4cd2 PH |
7659 | null, its TYPE_TAG_NAME. Null if TYPE is null. */ |
7660 | ||
0d5cff50 | 7661 | const char * |
d2e4a39e | 7662 | ada_type_name (struct type *type) |
14f9c5c9 | 7663 | { |
d2e4a39e | 7664 | if (type == NULL) |
14f9c5c9 AS |
7665 | return NULL; |
7666 | else if (TYPE_NAME (type) != NULL) | |
7667 | return TYPE_NAME (type); | |
7668 | else | |
7669 | return TYPE_TAG_NAME (type); | |
7670 | } | |
7671 | ||
b4ba55a1 JB |
7672 | /* Search the list of "descriptive" types associated to TYPE for a type |
7673 | whose name is NAME. */ | |
7674 | ||
7675 | static struct type * | |
7676 | find_parallel_type_by_descriptive_type (struct type *type, const char *name) | |
7677 | { | |
7678 | struct type *result; | |
7679 | ||
c6044dd1 JB |
7680 | if (ada_ignore_descriptive_types_p) |
7681 | return NULL; | |
7682 | ||
b4ba55a1 JB |
7683 | /* If there no descriptive-type info, then there is no parallel type |
7684 | to be found. */ | |
7685 | if (!HAVE_GNAT_AUX_INFO (type)) | |
7686 | return NULL; | |
7687 | ||
7688 | result = TYPE_DESCRIPTIVE_TYPE (type); | |
7689 | while (result != NULL) | |
7690 | { | |
0d5cff50 | 7691 | const char *result_name = ada_type_name (result); |
b4ba55a1 JB |
7692 | |
7693 | if (result_name == NULL) | |
7694 | { | |
7695 | warning (_("unexpected null name on descriptive type")); | |
7696 | return NULL; | |
7697 | } | |
7698 | ||
7699 | /* If the names match, stop. */ | |
7700 | if (strcmp (result_name, name) == 0) | |
7701 | break; | |
7702 | ||
7703 | /* Otherwise, look at the next item on the list, if any. */ | |
7704 | if (HAVE_GNAT_AUX_INFO (result)) | |
7705 | result = TYPE_DESCRIPTIVE_TYPE (result); | |
7706 | else | |
7707 | result = NULL; | |
7708 | } | |
7709 | ||
7710 | /* If we didn't find a match, see whether this is a packed array. With | |
7711 | older compilers, the descriptive type information is either absent or | |
7712 | irrelevant when it comes to packed arrays so the above lookup fails. | |
7713 | Fall back to using a parallel lookup by name in this case. */ | |
12ab9e09 | 7714 | if (result == NULL && ada_is_constrained_packed_array_type (type)) |
b4ba55a1 JB |
7715 | return ada_find_any_type (name); |
7716 | ||
7717 | return result; | |
7718 | } | |
7719 | ||
7720 | /* Find a parallel type to TYPE with the specified NAME, using the | |
7721 | descriptive type taken from the debugging information, if available, | |
7722 | and otherwise using the (slower) name-based method. */ | |
7723 | ||
7724 | static struct type * | |
7725 | ada_find_parallel_type_with_name (struct type *type, const char *name) | |
7726 | { | |
7727 | struct type *result = NULL; | |
7728 | ||
7729 | if (HAVE_GNAT_AUX_INFO (type)) | |
7730 | result = find_parallel_type_by_descriptive_type (type, name); | |
7731 | else | |
7732 | result = ada_find_any_type (name); | |
7733 | ||
7734 | return result; | |
7735 | } | |
7736 | ||
7737 | /* Same as above, but specify the name of the parallel type by appending | |
4c4b4cd2 | 7738 | SUFFIX to the name of TYPE. */ |
14f9c5c9 | 7739 | |
d2e4a39e | 7740 | struct type * |
ebf56fd3 | 7741 | ada_find_parallel_type (struct type *type, const char *suffix) |
14f9c5c9 | 7742 | { |
0d5cff50 DE |
7743 | char *name; |
7744 | const char *typename = ada_type_name (type); | |
14f9c5c9 | 7745 | int len; |
d2e4a39e | 7746 | |
14f9c5c9 AS |
7747 | if (typename == NULL) |
7748 | return NULL; | |
7749 | ||
7750 | len = strlen (typename); | |
7751 | ||
b4ba55a1 | 7752 | name = (char *) alloca (len + strlen (suffix) + 1); |
14f9c5c9 AS |
7753 | |
7754 | strcpy (name, typename); | |
7755 | strcpy (name + len, suffix); | |
7756 | ||
b4ba55a1 | 7757 | return ada_find_parallel_type_with_name (type, name); |
14f9c5c9 AS |
7758 | } |
7759 | ||
14f9c5c9 | 7760 | /* If TYPE is a variable-size record type, return the corresponding template |
4c4b4cd2 | 7761 | type describing its fields. Otherwise, return NULL. */ |
14f9c5c9 | 7762 | |
d2e4a39e AS |
7763 | static struct type * |
7764 | dynamic_template_type (struct type *type) | |
14f9c5c9 | 7765 | { |
61ee279c | 7766 | type = ada_check_typedef (type); |
14f9c5c9 AS |
7767 | |
7768 | if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT | |
d2e4a39e | 7769 | || ada_type_name (type) == NULL) |
14f9c5c9 | 7770 | return NULL; |
d2e4a39e | 7771 | else |
14f9c5c9 AS |
7772 | { |
7773 | int len = strlen (ada_type_name (type)); | |
5b4ee69b | 7774 | |
4c4b4cd2 PH |
7775 | if (len > 6 && strcmp (ada_type_name (type) + len - 6, "___XVE") == 0) |
7776 | return type; | |
14f9c5c9 | 7777 | else |
4c4b4cd2 | 7778 | return ada_find_parallel_type (type, "___XVE"); |
14f9c5c9 AS |
7779 | } |
7780 | } | |
7781 | ||
7782 | /* Assuming that TEMPL_TYPE is a union or struct type, returns | |
4c4b4cd2 | 7783 | non-zero iff field FIELD_NUM of TEMPL_TYPE has dynamic size. */ |
14f9c5c9 | 7784 | |
d2e4a39e AS |
7785 | static int |
7786 | is_dynamic_field (struct type *templ_type, int field_num) | |
14f9c5c9 AS |
7787 | { |
7788 | const char *name = TYPE_FIELD_NAME (templ_type, field_num); | |
5b4ee69b | 7789 | |
d2e4a39e | 7790 | return name != NULL |
14f9c5c9 AS |
7791 | && TYPE_CODE (TYPE_FIELD_TYPE (templ_type, field_num)) == TYPE_CODE_PTR |
7792 | && strstr (name, "___XVL") != NULL; | |
7793 | } | |
7794 | ||
4c4b4cd2 PH |
7795 | /* The index of the variant field of TYPE, or -1 if TYPE does not |
7796 | represent a variant record type. */ | |
14f9c5c9 | 7797 | |
d2e4a39e | 7798 | static int |
4c4b4cd2 | 7799 | variant_field_index (struct type *type) |
14f9c5c9 AS |
7800 | { |
7801 | int f; | |
7802 | ||
4c4b4cd2 PH |
7803 | if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT) |
7804 | return -1; | |
7805 | ||
7806 | for (f = 0; f < TYPE_NFIELDS (type); f += 1) | |
7807 | { | |
7808 | if (ada_is_variant_part (type, f)) | |
7809 | return f; | |
7810 | } | |
7811 | return -1; | |
14f9c5c9 AS |
7812 | } |
7813 | ||
4c4b4cd2 PH |
7814 | /* A record type with no fields. */ |
7815 | ||
d2e4a39e | 7816 | static struct type * |
e9bb382b | 7817 | empty_record (struct type *template) |
14f9c5c9 | 7818 | { |
e9bb382b | 7819 | struct type *type = alloc_type_copy (template); |
5b4ee69b | 7820 | |
14f9c5c9 AS |
7821 | TYPE_CODE (type) = TYPE_CODE_STRUCT; |
7822 | TYPE_NFIELDS (type) = 0; | |
7823 | TYPE_FIELDS (type) = NULL; | |
b1f33ddd | 7824 | INIT_CPLUS_SPECIFIC (type); |
14f9c5c9 AS |
7825 | TYPE_NAME (type) = "<empty>"; |
7826 | TYPE_TAG_NAME (type) = NULL; | |
14f9c5c9 AS |
7827 | TYPE_LENGTH (type) = 0; |
7828 | return type; | |
7829 | } | |
7830 | ||
7831 | /* An ordinary record type (with fixed-length fields) that describes | |
4c4b4cd2 PH |
7832 | the value of type TYPE at VALADDR or ADDRESS (see comments at |
7833 | the beginning of this section) VAL according to GNAT conventions. | |
7834 | DVAL0 should describe the (portion of a) record that contains any | |
df407dfe | 7835 | necessary discriminants. It should be NULL if value_type (VAL) is |
14f9c5c9 AS |
7836 | an outer-level type (i.e., as opposed to a branch of a variant.) A |
7837 | variant field (unless unchecked) is replaced by a particular branch | |
4c4b4cd2 | 7838 | of the variant. |
14f9c5c9 | 7839 | |
4c4b4cd2 PH |
7840 | If not KEEP_DYNAMIC_FIELDS, then all fields whose position or |
7841 | length are not statically known are discarded. As a consequence, | |
7842 | VALADDR, ADDRESS and DVAL0 are ignored. | |
7843 | ||
7844 | NOTE: Limitations: For now, we assume that dynamic fields and | |
7845 | variants occupy whole numbers of bytes. However, they need not be | |
7846 | byte-aligned. */ | |
7847 | ||
7848 | struct type * | |
10a2c479 | 7849 | ada_template_to_fixed_record_type_1 (struct type *type, |
fc1a4b47 | 7850 | const gdb_byte *valaddr, |
4c4b4cd2 PH |
7851 | CORE_ADDR address, struct value *dval0, |
7852 | int keep_dynamic_fields) | |
14f9c5c9 | 7853 | { |
d2e4a39e AS |
7854 | struct value *mark = value_mark (); |
7855 | struct value *dval; | |
7856 | struct type *rtype; | |
14f9c5c9 | 7857 | int nfields, bit_len; |
4c4b4cd2 | 7858 | int variant_field; |
14f9c5c9 | 7859 | long off; |
d94e4f4f | 7860 | int fld_bit_len; |
14f9c5c9 AS |
7861 | int f; |
7862 | ||
4c4b4cd2 PH |
7863 | /* Compute the number of fields in this record type that are going |
7864 | to be processed: unless keep_dynamic_fields, this includes only | |
7865 | fields whose position and length are static will be processed. */ | |
7866 | if (keep_dynamic_fields) | |
7867 | nfields = TYPE_NFIELDS (type); | |
7868 | else | |
7869 | { | |
7870 | nfields = 0; | |
76a01679 | 7871 | while (nfields < TYPE_NFIELDS (type) |
4c4b4cd2 PH |
7872 | && !ada_is_variant_part (type, nfields) |
7873 | && !is_dynamic_field (type, nfields)) | |
7874 | nfields++; | |
7875 | } | |
7876 | ||
e9bb382b | 7877 | rtype = alloc_type_copy (type); |
14f9c5c9 AS |
7878 | TYPE_CODE (rtype) = TYPE_CODE_STRUCT; |
7879 | INIT_CPLUS_SPECIFIC (rtype); | |
7880 | TYPE_NFIELDS (rtype) = nfields; | |
d2e4a39e | 7881 | TYPE_FIELDS (rtype) = (struct field *) |
14f9c5c9 AS |
7882 | TYPE_ALLOC (rtype, nfields * sizeof (struct field)); |
7883 | memset (TYPE_FIELDS (rtype), 0, sizeof (struct field) * nfields); | |
7884 | TYPE_NAME (rtype) = ada_type_name (type); | |
7885 | TYPE_TAG_NAME (rtype) = NULL; | |
876cecd0 | 7886 | TYPE_FIXED_INSTANCE (rtype) = 1; |
14f9c5c9 | 7887 | |
d2e4a39e AS |
7888 | off = 0; |
7889 | bit_len = 0; | |
4c4b4cd2 PH |
7890 | variant_field = -1; |
7891 | ||
14f9c5c9 AS |
7892 | for (f = 0; f < nfields; f += 1) |
7893 | { | |
6c038f32 PH |
7894 | off = align_value (off, field_alignment (type, f)) |
7895 | + TYPE_FIELD_BITPOS (type, f); | |
945b3a32 | 7896 | SET_FIELD_BITPOS (TYPE_FIELD (rtype, f), off); |
d2e4a39e | 7897 | TYPE_FIELD_BITSIZE (rtype, f) = 0; |
14f9c5c9 | 7898 | |
d2e4a39e | 7899 | if (ada_is_variant_part (type, f)) |
4c4b4cd2 PH |
7900 | { |
7901 | variant_field = f; | |
d94e4f4f | 7902 | fld_bit_len = 0; |
4c4b4cd2 | 7903 | } |
14f9c5c9 | 7904 | else if (is_dynamic_field (type, f)) |
4c4b4cd2 | 7905 | { |
284614f0 JB |
7906 | const gdb_byte *field_valaddr = valaddr; |
7907 | CORE_ADDR field_address = address; | |
7908 | struct type *field_type = | |
7909 | TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type, f)); | |
7910 | ||
4c4b4cd2 | 7911 | if (dval0 == NULL) |
b5304971 JG |
7912 | { |
7913 | /* rtype's length is computed based on the run-time | |
7914 | value of discriminants. If the discriminants are not | |
7915 | initialized, the type size may be completely bogus and | |
0963b4bd | 7916 | GDB may fail to allocate a value for it. So check the |
b5304971 | 7917 | size first before creating the value. */ |
c1b5a1a6 | 7918 | ada_ensure_varsize_limit (rtype); |
012370f6 TT |
7919 | /* Using plain value_from_contents_and_address here |
7920 | causes problems because we will end up trying to | |
7921 | resolve a type that is currently being | |
7922 | constructed. */ | |
7923 | dval = value_from_contents_and_address_unresolved (rtype, | |
7924 | valaddr, | |
7925 | address); | |
9f1f738a | 7926 | rtype = value_type (dval); |
b5304971 | 7927 | } |
4c4b4cd2 PH |
7928 | else |
7929 | dval = dval0; | |
7930 | ||
284614f0 JB |
7931 | /* If the type referenced by this field is an aligner type, we need |
7932 | to unwrap that aligner type, because its size might not be set. | |
7933 | Keeping the aligner type would cause us to compute the wrong | |
7934 | size for this field, impacting the offset of the all the fields | |
7935 | that follow this one. */ | |
7936 | if (ada_is_aligner_type (field_type)) | |
7937 | { | |
7938 | long field_offset = TYPE_FIELD_BITPOS (field_type, f); | |
7939 | ||
7940 | field_valaddr = cond_offset_host (field_valaddr, field_offset); | |
7941 | field_address = cond_offset_target (field_address, field_offset); | |
7942 | field_type = ada_aligned_type (field_type); | |
7943 | } | |
7944 | ||
7945 | field_valaddr = cond_offset_host (field_valaddr, | |
7946 | off / TARGET_CHAR_BIT); | |
7947 | field_address = cond_offset_target (field_address, | |
7948 | off / TARGET_CHAR_BIT); | |
7949 | ||
7950 | /* Get the fixed type of the field. Note that, in this case, | |
7951 | we do not want to get the real type out of the tag: if | |
7952 | the current field is the parent part of a tagged record, | |
7953 | we will get the tag of the object. Clearly wrong: the real | |
7954 | type of the parent is not the real type of the child. We | |
7955 | would end up in an infinite loop. */ | |
7956 | field_type = ada_get_base_type (field_type); | |
7957 | field_type = ada_to_fixed_type (field_type, field_valaddr, | |
7958 | field_address, dval, 0); | |
27f2a97b JB |
7959 | /* If the field size is already larger than the maximum |
7960 | object size, then the record itself will necessarily | |
7961 | be larger than the maximum object size. We need to make | |
7962 | this check now, because the size might be so ridiculously | |
7963 | large (due to an uninitialized variable in the inferior) | |
7964 | that it would cause an overflow when adding it to the | |
7965 | record size. */ | |
c1b5a1a6 | 7966 | ada_ensure_varsize_limit (field_type); |
284614f0 JB |
7967 | |
7968 | TYPE_FIELD_TYPE (rtype, f) = field_type; | |
4c4b4cd2 | 7969 | TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f); |
27f2a97b JB |
7970 | /* The multiplication can potentially overflow. But because |
7971 | the field length has been size-checked just above, and | |
7972 | assuming that the maximum size is a reasonable value, | |
7973 | an overflow should not happen in practice. So rather than | |
7974 | adding overflow recovery code to this already complex code, | |
7975 | we just assume that it's not going to happen. */ | |
d94e4f4f | 7976 | fld_bit_len = |
4c4b4cd2 PH |
7977 | TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, f)) * TARGET_CHAR_BIT; |
7978 | } | |
14f9c5c9 | 7979 | else |
4c4b4cd2 | 7980 | { |
5ded5331 JB |
7981 | /* Note: If this field's type is a typedef, it is important |
7982 | to preserve the typedef layer. | |
7983 | ||
7984 | Otherwise, we might be transforming a typedef to a fat | |
7985 | pointer (encoding a pointer to an unconstrained array), | |
7986 | into a basic fat pointer (encoding an unconstrained | |
7987 | array). As both types are implemented using the same | |
7988 | structure, the typedef is the only clue which allows us | |
7989 | to distinguish between the two options. Stripping it | |
7990 | would prevent us from printing this field appropriately. */ | |
7991 | TYPE_FIELD_TYPE (rtype, f) = TYPE_FIELD_TYPE (type, f); | |
4c4b4cd2 PH |
7992 | TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f); |
7993 | if (TYPE_FIELD_BITSIZE (type, f) > 0) | |
d94e4f4f | 7994 | fld_bit_len = |
4c4b4cd2 PH |
7995 | TYPE_FIELD_BITSIZE (rtype, f) = TYPE_FIELD_BITSIZE (type, f); |
7996 | else | |
5ded5331 JB |
7997 | { |
7998 | struct type *field_type = TYPE_FIELD_TYPE (type, f); | |
7999 | ||
8000 | /* We need to be careful of typedefs when computing | |
8001 | the length of our field. If this is a typedef, | |
8002 | get the length of the target type, not the length | |
8003 | of the typedef. */ | |
8004 | if (TYPE_CODE (field_type) == TYPE_CODE_TYPEDEF) | |
8005 | field_type = ada_typedef_target_type (field_type); | |
8006 | ||
8007 | fld_bit_len = | |
8008 | TYPE_LENGTH (ada_check_typedef (field_type)) * TARGET_CHAR_BIT; | |
8009 | } | |
4c4b4cd2 | 8010 | } |
14f9c5c9 | 8011 | if (off + fld_bit_len > bit_len) |
4c4b4cd2 | 8012 | bit_len = off + fld_bit_len; |
d94e4f4f | 8013 | off += fld_bit_len; |
4c4b4cd2 PH |
8014 | TYPE_LENGTH (rtype) = |
8015 | align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT; | |
14f9c5c9 | 8016 | } |
4c4b4cd2 PH |
8017 | |
8018 | /* We handle the variant part, if any, at the end because of certain | |
b1f33ddd | 8019 | odd cases in which it is re-ordered so as NOT to be the last field of |
4c4b4cd2 PH |
8020 | the record. This can happen in the presence of representation |
8021 | clauses. */ | |
8022 | if (variant_field >= 0) | |
8023 | { | |
8024 | struct type *branch_type; | |
8025 | ||
8026 | off = TYPE_FIELD_BITPOS (rtype, variant_field); | |
8027 | ||
8028 | if (dval0 == NULL) | |
9f1f738a | 8029 | { |
012370f6 TT |
8030 | /* Using plain value_from_contents_and_address here causes |
8031 | problems because we will end up trying to resolve a type | |
8032 | that is currently being constructed. */ | |
8033 | dval = value_from_contents_and_address_unresolved (rtype, valaddr, | |
8034 | address); | |
9f1f738a SA |
8035 | rtype = value_type (dval); |
8036 | } | |
4c4b4cd2 PH |
8037 | else |
8038 | dval = dval0; | |
8039 | ||
8040 | branch_type = | |
8041 | to_fixed_variant_branch_type | |
8042 | (TYPE_FIELD_TYPE (type, variant_field), | |
8043 | cond_offset_host (valaddr, off / TARGET_CHAR_BIT), | |
8044 | cond_offset_target (address, off / TARGET_CHAR_BIT), dval); | |
8045 | if (branch_type == NULL) | |
8046 | { | |
8047 | for (f = variant_field + 1; f < TYPE_NFIELDS (rtype); f += 1) | |
8048 | TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f]; | |
8049 | TYPE_NFIELDS (rtype) -= 1; | |
8050 | } | |
8051 | else | |
8052 | { | |
8053 | TYPE_FIELD_TYPE (rtype, variant_field) = branch_type; | |
8054 | TYPE_FIELD_NAME (rtype, variant_field) = "S"; | |
8055 | fld_bit_len = | |
8056 | TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, variant_field)) * | |
8057 | TARGET_CHAR_BIT; | |
8058 | if (off + fld_bit_len > bit_len) | |
8059 | bit_len = off + fld_bit_len; | |
8060 | TYPE_LENGTH (rtype) = | |
8061 | align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT; | |
8062 | } | |
8063 | } | |
8064 | ||
714e53ab PH |
8065 | /* According to exp_dbug.ads, the size of TYPE for variable-size records |
8066 | should contain the alignment of that record, which should be a strictly | |
8067 | positive value. If null or negative, then something is wrong, most | |
8068 | probably in the debug info. In that case, we don't round up the size | |
0963b4bd | 8069 | of the resulting type. If this record is not part of another structure, |
714e53ab PH |
8070 | the current RTYPE length might be good enough for our purposes. */ |
8071 | if (TYPE_LENGTH (type) <= 0) | |
8072 | { | |
323e0a4a AC |
8073 | if (TYPE_NAME (rtype)) |
8074 | warning (_("Invalid type size for `%s' detected: %d."), | |
8075 | TYPE_NAME (rtype), TYPE_LENGTH (type)); | |
8076 | else | |
8077 | warning (_("Invalid type size for <unnamed> detected: %d."), | |
8078 | TYPE_LENGTH (type)); | |
714e53ab PH |
8079 | } |
8080 | else | |
8081 | { | |
8082 | TYPE_LENGTH (rtype) = align_value (TYPE_LENGTH (rtype), | |
8083 | TYPE_LENGTH (type)); | |
8084 | } | |
14f9c5c9 AS |
8085 | |
8086 | value_free_to_mark (mark); | |
d2e4a39e | 8087 | if (TYPE_LENGTH (rtype) > varsize_limit) |
323e0a4a | 8088 | error (_("record type with dynamic size is larger than varsize-limit")); |
14f9c5c9 AS |
8089 | return rtype; |
8090 | } | |
8091 | ||
4c4b4cd2 PH |
8092 | /* As for ada_template_to_fixed_record_type_1 with KEEP_DYNAMIC_FIELDS |
8093 | of 1. */ | |
14f9c5c9 | 8094 | |
d2e4a39e | 8095 | static struct type * |
fc1a4b47 | 8096 | template_to_fixed_record_type (struct type *type, const gdb_byte *valaddr, |
4c4b4cd2 PH |
8097 | CORE_ADDR address, struct value *dval0) |
8098 | { | |
8099 | return ada_template_to_fixed_record_type_1 (type, valaddr, | |
8100 | address, dval0, 1); | |
8101 | } | |
8102 | ||
8103 | /* An ordinary record type in which ___XVL-convention fields and | |
8104 | ___XVU- and ___XVN-convention field types in TYPE0 are replaced with | |
8105 | static approximations, containing all possible fields. Uses | |
8106 | no runtime values. Useless for use in values, but that's OK, | |
8107 | since the results are used only for type determinations. Works on both | |
8108 | structs and unions. Representation note: to save space, we memorize | |
8109 | the result of this function in the TYPE_TARGET_TYPE of the | |
8110 | template type. */ | |
8111 | ||
8112 | static struct type * | |
8113 | template_to_static_fixed_type (struct type *type0) | |
14f9c5c9 AS |
8114 | { |
8115 | struct type *type; | |
8116 | int nfields; | |
8117 | int f; | |
8118 | ||
4c4b4cd2 PH |
8119 | if (TYPE_TARGET_TYPE (type0) != NULL) |
8120 | return TYPE_TARGET_TYPE (type0); | |
8121 | ||
8122 | nfields = TYPE_NFIELDS (type0); | |
8123 | type = type0; | |
14f9c5c9 AS |
8124 | |
8125 | for (f = 0; f < nfields; f += 1) | |
8126 | { | |
61ee279c | 8127 | struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type0, f)); |
4c4b4cd2 | 8128 | struct type *new_type; |
14f9c5c9 | 8129 | |
4c4b4cd2 PH |
8130 | if (is_dynamic_field (type0, f)) |
8131 | new_type = to_static_fixed_type (TYPE_TARGET_TYPE (field_type)); | |
14f9c5c9 | 8132 | else |
f192137b | 8133 | new_type = static_unwrap_type (field_type); |
4c4b4cd2 PH |
8134 | if (type == type0 && new_type != field_type) |
8135 | { | |
e9bb382b | 8136 | TYPE_TARGET_TYPE (type0) = type = alloc_type_copy (type0); |
4c4b4cd2 PH |
8137 | TYPE_CODE (type) = TYPE_CODE (type0); |
8138 | INIT_CPLUS_SPECIFIC (type); | |
8139 | TYPE_NFIELDS (type) = nfields; | |
8140 | TYPE_FIELDS (type) = (struct field *) | |
8141 | TYPE_ALLOC (type, nfields * sizeof (struct field)); | |
8142 | memcpy (TYPE_FIELDS (type), TYPE_FIELDS (type0), | |
8143 | sizeof (struct field) * nfields); | |
8144 | TYPE_NAME (type) = ada_type_name (type0); | |
8145 | TYPE_TAG_NAME (type) = NULL; | |
876cecd0 | 8146 | TYPE_FIXED_INSTANCE (type) = 1; |
4c4b4cd2 PH |
8147 | TYPE_LENGTH (type) = 0; |
8148 | } | |
8149 | TYPE_FIELD_TYPE (type, f) = new_type; | |
8150 | TYPE_FIELD_NAME (type, f) = TYPE_FIELD_NAME (type0, f); | |
14f9c5c9 | 8151 | } |
14f9c5c9 AS |
8152 | return type; |
8153 | } | |
8154 | ||
4c4b4cd2 | 8155 | /* Given an object of type TYPE whose contents are at VALADDR and |
5823c3ef JB |
8156 | whose address in memory is ADDRESS, returns a revision of TYPE, |
8157 | which should be a non-dynamic-sized record, in which the variant | |
8158 | part, if any, is replaced with the appropriate branch. Looks | |
4c4b4cd2 PH |
8159 | for discriminant values in DVAL0, which can be NULL if the record |
8160 | contains the necessary discriminant values. */ | |
8161 | ||
d2e4a39e | 8162 | static struct type * |
fc1a4b47 | 8163 | to_record_with_fixed_variant_part (struct type *type, const gdb_byte *valaddr, |
4c4b4cd2 | 8164 | CORE_ADDR address, struct value *dval0) |
14f9c5c9 | 8165 | { |
d2e4a39e | 8166 | struct value *mark = value_mark (); |
4c4b4cd2 | 8167 | struct value *dval; |
d2e4a39e | 8168 | struct type *rtype; |
14f9c5c9 AS |
8169 | struct type *branch_type; |
8170 | int nfields = TYPE_NFIELDS (type); | |
4c4b4cd2 | 8171 | int variant_field = variant_field_index (type); |
14f9c5c9 | 8172 | |
4c4b4cd2 | 8173 | if (variant_field == -1) |
14f9c5c9 AS |
8174 | return type; |
8175 | ||
4c4b4cd2 | 8176 | if (dval0 == NULL) |
9f1f738a SA |
8177 | { |
8178 | dval = value_from_contents_and_address (type, valaddr, address); | |
8179 | type = value_type (dval); | |
8180 | } | |
4c4b4cd2 PH |
8181 | else |
8182 | dval = dval0; | |
8183 | ||
e9bb382b | 8184 | rtype = alloc_type_copy (type); |
14f9c5c9 | 8185 | TYPE_CODE (rtype) = TYPE_CODE_STRUCT; |
4c4b4cd2 PH |
8186 | INIT_CPLUS_SPECIFIC (rtype); |
8187 | TYPE_NFIELDS (rtype) = nfields; | |
d2e4a39e AS |
8188 | TYPE_FIELDS (rtype) = |
8189 | (struct field *) TYPE_ALLOC (rtype, nfields * sizeof (struct field)); | |
8190 | memcpy (TYPE_FIELDS (rtype), TYPE_FIELDS (type), | |
4c4b4cd2 | 8191 | sizeof (struct field) * nfields); |
14f9c5c9 AS |
8192 | TYPE_NAME (rtype) = ada_type_name (type); |
8193 | TYPE_TAG_NAME (rtype) = NULL; | |
876cecd0 | 8194 | TYPE_FIXED_INSTANCE (rtype) = 1; |
14f9c5c9 AS |
8195 | TYPE_LENGTH (rtype) = TYPE_LENGTH (type); |
8196 | ||
4c4b4cd2 PH |
8197 | branch_type = to_fixed_variant_branch_type |
8198 | (TYPE_FIELD_TYPE (type, variant_field), | |
d2e4a39e | 8199 | cond_offset_host (valaddr, |
4c4b4cd2 PH |
8200 | TYPE_FIELD_BITPOS (type, variant_field) |
8201 | / TARGET_CHAR_BIT), | |
d2e4a39e | 8202 | cond_offset_target (address, |
4c4b4cd2 PH |
8203 | TYPE_FIELD_BITPOS (type, variant_field) |
8204 | / TARGET_CHAR_BIT), dval); | |
d2e4a39e | 8205 | if (branch_type == NULL) |
14f9c5c9 | 8206 | { |
4c4b4cd2 | 8207 | int f; |
5b4ee69b | 8208 | |
4c4b4cd2 PH |
8209 | for (f = variant_field + 1; f < nfields; f += 1) |
8210 | TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f]; | |
14f9c5c9 | 8211 | TYPE_NFIELDS (rtype) -= 1; |
14f9c5c9 AS |
8212 | } |
8213 | else | |
8214 | { | |
4c4b4cd2 PH |
8215 | TYPE_FIELD_TYPE (rtype, variant_field) = branch_type; |
8216 | TYPE_FIELD_NAME (rtype, variant_field) = "S"; | |
8217 | TYPE_FIELD_BITSIZE (rtype, variant_field) = 0; | |
14f9c5c9 | 8218 | TYPE_LENGTH (rtype) += TYPE_LENGTH (branch_type); |
14f9c5c9 | 8219 | } |
4c4b4cd2 | 8220 | TYPE_LENGTH (rtype) -= TYPE_LENGTH (TYPE_FIELD_TYPE (type, variant_field)); |
d2e4a39e | 8221 | |
4c4b4cd2 | 8222 | value_free_to_mark (mark); |
14f9c5c9 AS |
8223 | return rtype; |
8224 | } | |
8225 | ||
8226 | /* An ordinary record type (with fixed-length fields) that describes | |
8227 | the value at (TYPE0, VALADDR, ADDRESS) [see explanation at | |
8228 | beginning of this section]. Any necessary discriminants' values | |
4c4b4cd2 PH |
8229 | should be in DVAL, a record value; it may be NULL if the object |
8230 | at ADDR itself contains any necessary discriminant values. | |
8231 | Additionally, VALADDR and ADDRESS may also be NULL if no discriminant | |
8232 | values from the record are needed. Except in the case that DVAL, | |
8233 | VALADDR, and ADDRESS are all 0 or NULL, a variant field (unless | |
8234 | unchecked) is replaced by a particular branch of the variant. | |
8235 | ||
8236 | NOTE: the case in which DVAL and VALADDR are NULL and ADDRESS is 0 | |
8237 | is questionable and may be removed. It can arise during the | |
8238 | processing of an unconstrained-array-of-record type where all the | |
8239 | variant branches have exactly the same size. This is because in | |
8240 | such cases, the compiler does not bother to use the XVS convention | |
8241 | when encoding the record. I am currently dubious of this | |
8242 | shortcut and suspect the compiler should be altered. FIXME. */ | |
14f9c5c9 | 8243 | |
d2e4a39e | 8244 | static struct type * |
fc1a4b47 | 8245 | to_fixed_record_type (struct type *type0, const gdb_byte *valaddr, |
4c4b4cd2 | 8246 | CORE_ADDR address, struct value *dval) |
14f9c5c9 | 8247 | { |
d2e4a39e | 8248 | struct type *templ_type; |
14f9c5c9 | 8249 | |
876cecd0 | 8250 | if (TYPE_FIXED_INSTANCE (type0)) |
4c4b4cd2 PH |
8251 | return type0; |
8252 | ||
d2e4a39e | 8253 | templ_type = dynamic_template_type (type0); |
14f9c5c9 AS |
8254 | |
8255 | if (templ_type != NULL) | |
8256 | return template_to_fixed_record_type (templ_type, valaddr, address, dval); | |
4c4b4cd2 PH |
8257 | else if (variant_field_index (type0) >= 0) |
8258 | { | |
8259 | if (dval == NULL && valaddr == NULL && address == 0) | |
8260 | return type0; | |
8261 | return to_record_with_fixed_variant_part (type0, valaddr, address, | |
8262 | dval); | |
8263 | } | |
14f9c5c9 AS |
8264 | else |
8265 | { | |
876cecd0 | 8266 | TYPE_FIXED_INSTANCE (type0) = 1; |
14f9c5c9 AS |
8267 | return type0; |
8268 | } | |
8269 | ||
8270 | } | |
8271 | ||
8272 | /* An ordinary record type (with fixed-length fields) that describes | |
8273 | the value at (VAR_TYPE0, VALADDR, ADDRESS), where VAR_TYPE0 is a | |
8274 | union type. Any necessary discriminants' values should be in DVAL, | |
8275 | a record value. That is, this routine selects the appropriate | |
8276 | branch of the union at ADDR according to the discriminant value | |
b1f33ddd | 8277 | indicated in the union's type name. Returns VAR_TYPE0 itself if |
0963b4bd | 8278 | it represents a variant subject to a pragma Unchecked_Union. */ |
14f9c5c9 | 8279 | |
d2e4a39e | 8280 | static struct type * |
fc1a4b47 | 8281 | to_fixed_variant_branch_type (struct type *var_type0, const gdb_byte *valaddr, |
4c4b4cd2 | 8282 | CORE_ADDR address, struct value *dval) |
14f9c5c9 AS |
8283 | { |
8284 | int which; | |
d2e4a39e AS |
8285 | struct type *templ_type; |
8286 | struct type *var_type; | |
14f9c5c9 AS |
8287 | |
8288 | if (TYPE_CODE (var_type0) == TYPE_CODE_PTR) | |
8289 | var_type = TYPE_TARGET_TYPE (var_type0); | |
d2e4a39e | 8290 | else |
14f9c5c9 AS |
8291 | var_type = var_type0; |
8292 | ||
8293 | templ_type = ada_find_parallel_type (var_type, "___XVU"); | |
8294 | ||
8295 | if (templ_type != NULL) | |
8296 | var_type = templ_type; | |
8297 | ||
b1f33ddd JB |
8298 | if (is_unchecked_variant (var_type, value_type (dval))) |
8299 | return var_type0; | |
d2e4a39e AS |
8300 | which = |
8301 | ada_which_variant_applies (var_type, | |
0fd88904 | 8302 | value_type (dval), value_contents (dval)); |
14f9c5c9 AS |
8303 | |
8304 | if (which < 0) | |
e9bb382b | 8305 | return empty_record (var_type); |
14f9c5c9 | 8306 | else if (is_dynamic_field (var_type, which)) |
4c4b4cd2 | 8307 | return to_fixed_record_type |
d2e4a39e AS |
8308 | (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (var_type, which)), |
8309 | valaddr, address, dval); | |
4c4b4cd2 | 8310 | else if (variant_field_index (TYPE_FIELD_TYPE (var_type, which)) >= 0) |
d2e4a39e AS |
8311 | return |
8312 | to_fixed_record_type | |
8313 | (TYPE_FIELD_TYPE (var_type, which), valaddr, address, dval); | |
14f9c5c9 AS |
8314 | else |
8315 | return TYPE_FIELD_TYPE (var_type, which); | |
8316 | } | |
8317 | ||
8908fca5 JB |
8318 | /* Assuming RANGE_TYPE is a TYPE_CODE_RANGE, return nonzero if |
8319 | ENCODING_TYPE, a type following the GNAT conventions for discrete | |
8320 | type encodings, only carries redundant information. */ | |
8321 | ||
8322 | static int | |
8323 | ada_is_redundant_range_encoding (struct type *range_type, | |
8324 | struct type *encoding_type) | |
8325 | { | |
8326 | struct type *fixed_range_type; | |
8327 | char *bounds_str; | |
8328 | int n; | |
8329 | LONGEST lo, hi; | |
8330 | ||
8331 | gdb_assert (TYPE_CODE (range_type) == TYPE_CODE_RANGE); | |
8332 | ||
005e2509 JB |
8333 | if (TYPE_CODE (get_base_type (range_type)) |
8334 | != TYPE_CODE (get_base_type (encoding_type))) | |
8335 | { | |
8336 | /* The compiler probably used a simple base type to describe | |
8337 | the range type instead of the range's actual base type, | |
8338 | expecting us to get the real base type from the encoding | |
8339 | anyway. In this situation, the encoding cannot be ignored | |
8340 | as redundant. */ | |
8341 | return 0; | |
8342 | } | |
8343 | ||
8908fca5 JB |
8344 | if (is_dynamic_type (range_type)) |
8345 | return 0; | |
8346 | ||
8347 | if (TYPE_NAME (encoding_type) == NULL) | |
8348 | return 0; | |
8349 | ||
8350 | bounds_str = strstr (TYPE_NAME (encoding_type), "___XDLU_"); | |
8351 | if (bounds_str == NULL) | |
8352 | return 0; | |
8353 | ||
8354 | n = 8; /* Skip "___XDLU_". */ | |
8355 | if (!ada_scan_number (bounds_str, n, &lo, &n)) | |
8356 | return 0; | |
8357 | if (TYPE_LOW_BOUND (range_type) != lo) | |
8358 | return 0; | |
8359 | ||
8360 | n += 2; /* Skip the "__" separator between the two bounds. */ | |
8361 | if (!ada_scan_number (bounds_str, n, &hi, &n)) | |
8362 | return 0; | |
8363 | if (TYPE_HIGH_BOUND (range_type) != hi) | |
8364 | return 0; | |
8365 | ||
8366 | return 1; | |
8367 | } | |
8368 | ||
8369 | /* Given the array type ARRAY_TYPE, return nonzero if DESC_TYPE, | |
8370 | a type following the GNAT encoding for describing array type | |
8371 | indices, only carries redundant information. */ | |
8372 | ||
8373 | static int | |
8374 | ada_is_redundant_index_type_desc (struct type *array_type, | |
8375 | struct type *desc_type) | |
8376 | { | |
8377 | struct type *this_layer = check_typedef (array_type); | |
8378 | int i; | |
8379 | ||
8380 | for (i = 0; i < TYPE_NFIELDS (desc_type); i++) | |
8381 | { | |
8382 | if (!ada_is_redundant_range_encoding (TYPE_INDEX_TYPE (this_layer), | |
8383 | TYPE_FIELD_TYPE (desc_type, i))) | |
8384 | return 0; | |
8385 | this_layer = check_typedef (TYPE_TARGET_TYPE (this_layer)); | |
8386 | } | |
8387 | ||
8388 | return 1; | |
8389 | } | |
8390 | ||
14f9c5c9 AS |
8391 | /* Assuming that TYPE0 is an array type describing the type of a value |
8392 | at ADDR, and that DVAL describes a record containing any | |
8393 | discriminants used in TYPE0, returns a type for the value that | |
8394 | contains no dynamic components (that is, no components whose sizes | |
8395 | are determined by run-time quantities). Unless IGNORE_TOO_BIG is | |
8396 | true, gives an error message if the resulting type's size is over | |
4c4b4cd2 | 8397 | varsize_limit. */ |
14f9c5c9 | 8398 | |
d2e4a39e AS |
8399 | static struct type * |
8400 | to_fixed_array_type (struct type *type0, struct value *dval, | |
4c4b4cd2 | 8401 | int ignore_too_big) |
14f9c5c9 | 8402 | { |
d2e4a39e AS |
8403 | struct type *index_type_desc; |
8404 | struct type *result; | |
ad82864c | 8405 | int constrained_packed_array_p; |
14f9c5c9 | 8406 | |
b0dd7688 | 8407 | type0 = ada_check_typedef (type0); |
284614f0 | 8408 | if (TYPE_FIXED_INSTANCE (type0)) |
4c4b4cd2 | 8409 | return type0; |
14f9c5c9 | 8410 | |
ad82864c JB |
8411 | constrained_packed_array_p = ada_is_constrained_packed_array_type (type0); |
8412 | if (constrained_packed_array_p) | |
8413 | type0 = decode_constrained_packed_array_type (type0); | |
284614f0 | 8414 | |
14f9c5c9 | 8415 | index_type_desc = ada_find_parallel_type (type0, "___XA"); |
28c85d6c | 8416 | ada_fixup_array_indexes_type (index_type_desc); |
8908fca5 JB |
8417 | if (index_type_desc != NULL |
8418 | && ada_is_redundant_index_type_desc (type0, index_type_desc)) | |
8419 | { | |
8420 | /* Ignore this ___XA parallel type, as it does not bring any | |
8421 | useful information. This allows us to avoid creating fixed | |
8422 | versions of the array's index types, which would be identical | |
8423 | to the original ones. This, in turn, can also help avoid | |
8424 | the creation of fixed versions of the array itself. */ | |
8425 | index_type_desc = NULL; | |
8426 | } | |
8427 | ||
14f9c5c9 AS |
8428 | if (index_type_desc == NULL) |
8429 | { | |
61ee279c | 8430 | struct type *elt_type0 = ada_check_typedef (TYPE_TARGET_TYPE (type0)); |
5b4ee69b | 8431 | |
14f9c5c9 | 8432 | /* NOTE: elt_type---the fixed version of elt_type0---should never |
4c4b4cd2 PH |
8433 | depend on the contents of the array in properly constructed |
8434 | debugging data. */ | |
529cad9c PH |
8435 | /* Create a fixed version of the array element type. |
8436 | We're not providing the address of an element here, | |
e1d5a0d2 | 8437 | and thus the actual object value cannot be inspected to do |
529cad9c PH |
8438 | the conversion. This should not be a problem, since arrays of |
8439 | unconstrained objects are not allowed. In particular, all | |
8440 | the elements of an array of a tagged type should all be of | |
8441 | the same type specified in the debugging info. No need to | |
8442 | consult the object tag. */ | |
1ed6ede0 | 8443 | struct type *elt_type = ada_to_fixed_type (elt_type0, 0, 0, dval, 1); |
14f9c5c9 | 8444 | |
284614f0 JB |
8445 | /* Make sure we always create a new array type when dealing with |
8446 | packed array types, since we're going to fix-up the array | |
8447 | type length and element bitsize a little further down. */ | |
ad82864c | 8448 | if (elt_type0 == elt_type && !constrained_packed_array_p) |
4c4b4cd2 | 8449 | result = type0; |
14f9c5c9 | 8450 | else |
e9bb382b | 8451 | result = create_array_type (alloc_type_copy (type0), |
4c4b4cd2 | 8452 | elt_type, TYPE_INDEX_TYPE (type0)); |
14f9c5c9 AS |
8453 | } |
8454 | else | |
8455 | { | |
8456 | int i; | |
8457 | struct type *elt_type0; | |
8458 | ||
8459 | elt_type0 = type0; | |
8460 | for (i = TYPE_NFIELDS (index_type_desc); i > 0; i -= 1) | |
4c4b4cd2 | 8461 | elt_type0 = TYPE_TARGET_TYPE (elt_type0); |
14f9c5c9 AS |
8462 | |
8463 | /* NOTE: result---the fixed version of elt_type0---should never | |
4c4b4cd2 PH |
8464 | depend on the contents of the array in properly constructed |
8465 | debugging data. */ | |
529cad9c PH |
8466 | /* Create a fixed version of the array element type. |
8467 | We're not providing the address of an element here, | |
e1d5a0d2 | 8468 | and thus the actual object value cannot be inspected to do |
529cad9c PH |
8469 | the conversion. This should not be a problem, since arrays of |
8470 | unconstrained objects are not allowed. In particular, all | |
8471 | the elements of an array of a tagged type should all be of | |
8472 | the same type specified in the debugging info. No need to | |
8473 | consult the object tag. */ | |
1ed6ede0 JB |
8474 | result = |
8475 | ada_to_fixed_type (ada_check_typedef (elt_type0), 0, 0, dval, 1); | |
1ce677a4 UW |
8476 | |
8477 | elt_type0 = type0; | |
14f9c5c9 | 8478 | for (i = TYPE_NFIELDS (index_type_desc) - 1; i >= 0; i -= 1) |
4c4b4cd2 PH |
8479 | { |
8480 | struct type *range_type = | |
28c85d6c | 8481 | to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, i), dval); |
5b4ee69b | 8482 | |
e9bb382b | 8483 | result = create_array_type (alloc_type_copy (elt_type0), |
4c4b4cd2 | 8484 | result, range_type); |
1ce677a4 | 8485 | elt_type0 = TYPE_TARGET_TYPE (elt_type0); |
4c4b4cd2 | 8486 | } |
d2e4a39e | 8487 | if (!ignore_too_big && TYPE_LENGTH (result) > varsize_limit) |
323e0a4a | 8488 | error (_("array type with dynamic size is larger than varsize-limit")); |
14f9c5c9 AS |
8489 | } |
8490 | ||
2e6fda7d JB |
8491 | /* We want to preserve the type name. This can be useful when |
8492 | trying to get the type name of a value that has already been | |
8493 | printed (for instance, if the user did "print VAR; whatis $". */ | |
8494 | TYPE_NAME (result) = TYPE_NAME (type0); | |
8495 | ||
ad82864c | 8496 | if (constrained_packed_array_p) |
284614f0 JB |
8497 | { |
8498 | /* So far, the resulting type has been created as if the original | |
8499 | type was a regular (non-packed) array type. As a result, the | |
8500 | bitsize of the array elements needs to be set again, and the array | |
8501 | length needs to be recomputed based on that bitsize. */ | |
8502 | int len = TYPE_LENGTH (result) / TYPE_LENGTH (TYPE_TARGET_TYPE (result)); | |
8503 | int elt_bitsize = TYPE_FIELD_BITSIZE (type0, 0); | |
8504 | ||
8505 | TYPE_FIELD_BITSIZE (result, 0) = TYPE_FIELD_BITSIZE (type0, 0); | |
8506 | TYPE_LENGTH (result) = len * elt_bitsize / HOST_CHAR_BIT; | |
8507 | if (TYPE_LENGTH (result) * HOST_CHAR_BIT < len * elt_bitsize) | |
8508 | TYPE_LENGTH (result)++; | |
8509 | } | |
8510 | ||
876cecd0 | 8511 | TYPE_FIXED_INSTANCE (result) = 1; |
14f9c5c9 | 8512 | return result; |
d2e4a39e | 8513 | } |
14f9c5c9 AS |
8514 | |
8515 | ||
8516 | /* A standard type (containing no dynamically sized components) | |
8517 | corresponding to TYPE for the value (TYPE, VALADDR, ADDRESS) | |
8518 | DVAL describes a record containing any discriminants used in TYPE0, | |
4c4b4cd2 | 8519 | and may be NULL if there are none, or if the object of type TYPE at |
529cad9c PH |
8520 | ADDRESS or in VALADDR contains these discriminants. |
8521 | ||
1ed6ede0 JB |
8522 | If CHECK_TAG is not null, in the case of tagged types, this function |
8523 | attempts to locate the object's tag and use it to compute the actual | |
8524 | type. However, when ADDRESS is null, we cannot use it to determine the | |
8525 | location of the tag, and therefore compute the tagged type's actual type. | |
8526 | So we return the tagged type without consulting the tag. */ | |
529cad9c | 8527 | |
f192137b JB |
8528 | static struct type * |
8529 | ada_to_fixed_type_1 (struct type *type, const gdb_byte *valaddr, | |
1ed6ede0 | 8530 | CORE_ADDR address, struct value *dval, int check_tag) |
14f9c5c9 | 8531 | { |
61ee279c | 8532 | type = ada_check_typedef (type); |
d2e4a39e AS |
8533 | switch (TYPE_CODE (type)) |
8534 | { | |
8535 | default: | |
14f9c5c9 | 8536 | return type; |
d2e4a39e | 8537 | case TYPE_CODE_STRUCT: |
4c4b4cd2 | 8538 | { |
76a01679 | 8539 | struct type *static_type = to_static_fixed_type (type); |
1ed6ede0 JB |
8540 | struct type *fixed_record_type = |
8541 | to_fixed_record_type (type, valaddr, address, NULL); | |
5b4ee69b | 8542 | |
529cad9c PH |
8543 | /* If STATIC_TYPE is a tagged type and we know the object's address, |
8544 | then we can determine its tag, and compute the object's actual | |
0963b4bd | 8545 | type from there. Note that we have to use the fixed record |
1ed6ede0 JB |
8546 | type (the parent part of the record may have dynamic fields |
8547 | and the way the location of _tag is expressed may depend on | |
8548 | them). */ | |
529cad9c | 8549 | |
1ed6ede0 | 8550 | if (check_tag && address != 0 && ada_is_tagged_type (static_type, 0)) |
76a01679 | 8551 | { |
b50d69b5 JG |
8552 | struct value *tag = |
8553 | value_tag_from_contents_and_address | |
8554 | (fixed_record_type, | |
8555 | valaddr, | |
8556 | address); | |
8557 | struct type *real_type = type_from_tag (tag); | |
8558 | struct value *obj = | |
8559 | value_from_contents_and_address (fixed_record_type, | |
8560 | valaddr, | |
8561 | address); | |
9f1f738a | 8562 | fixed_record_type = value_type (obj); |
76a01679 | 8563 | if (real_type != NULL) |
b50d69b5 JG |
8564 | return to_fixed_record_type |
8565 | (real_type, NULL, | |
8566 | value_address (ada_tag_value_at_base_address (obj)), NULL); | |
76a01679 | 8567 | } |
4af88198 JB |
8568 | |
8569 | /* Check to see if there is a parallel ___XVZ variable. | |
8570 | If there is, then it provides the actual size of our type. */ | |
8571 | else if (ada_type_name (fixed_record_type) != NULL) | |
8572 | { | |
0d5cff50 | 8573 | const char *name = ada_type_name (fixed_record_type); |
4af88198 JB |
8574 | char *xvz_name = alloca (strlen (name) + 7 /* "___XVZ\0" */); |
8575 | int xvz_found = 0; | |
8576 | LONGEST size; | |
8577 | ||
88c15c34 | 8578 | xsnprintf (xvz_name, strlen (name) + 7, "%s___XVZ", name); |
4af88198 JB |
8579 | size = get_int_var_value (xvz_name, &xvz_found); |
8580 | if (xvz_found && TYPE_LENGTH (fixed_record_type) != size) | |
8581 | { | |
8582 | fixed_record_type = copy_type (fixed_record_type); | |
8583 | TYPE_LENGTH (fixed_record_type) = size; | |
8584 | ||
8585 | /* The FIXED_RECORD_TYPE may have be a stub. We have | |
8586 | observed this when the debugging info is STABS, and | |
8587 | apparently it is something that is hard to fix. | |
8588 | ||
8589 | In practice, we don't need the actual type definition | |
8590 | at all, because the presence of the XVZ variable allows us | |
8591 | to assume that there must be a XVS type as well, which we | |
8592 | should be able to use later, when we need the actual type | |
8593 | definition. | |
8594 | ||
8595 | In the meantime, pretend that the "fixed" type we are | |
8596 | returning is NOT a stub, because this can cause trouble | |
8597 | when using this type to create new types targeting it. | |
8598 | Indeed, the associated creation routines often check | |
8599 | whether the target type is a stub and will try to replace | |
0963b4bd | 8600 | it, thus using a type with the wrong size. This, in turn, |
4af88198 JB |
8601 | might cause the new type to have the wrong size too. |
8602 | Consider the case of an array, for instance, where the size | |
8603 | of the array is computed from the number of elements in | |
8604 | our array multiplied by the size of its element. */ | |
8605 | TYPE_STUB (fixed_record_type) = 0; | |
8606 | } | |
8607 | } | |
1ed6ede0 | 8608 | return fixed_record_type; |
4c4b4cd2 | 8609 | } |
d2e4a39e | 8610 | case TYPE_CODE_ARRAY: |
4c4b4cd2 | 8611 | return to_fixed_array_type (type, dval, 1); |
d2e4a39e AS |
8612 | case TYPE_CODE_UNION: |
8613 | if (dval == NULL) | |
4c4b4cd2 | 8614 | return type; |
d2e4a39e | 8615 | else |
4c4b4cd2 | 8616 | return to_fixed_variant_branch_type (type, valaddr, address, dval); |
d2e4a39e | 8617 | } |
14f9c5c9 AS |
8618 | } |
8619 | ||
f192137b JB |
8620 | /* The same as ada_to_fixed_type_1, except that it preserves the type |
8621 | if it is a TYPE_CODE_TYPEDEF of a type that is already fixed. | |
96dbd2c1 JB |
8622 | |
8623 | The typedef layer needs be preserved in order to differentiate between | |
8624 | arrays and array pointers when both types are implemented using the same | |
8625 | fat pointer. In the array pointer case, the pointer is encoded as | |
8626 | a typedef of the pointer type. For instance, considering: | |
8627 | ||
8628 | type String_Access is access String; | |
8629 | S1 : String_Access := null; | |
8630 | ||
8631 | To the debugger, S1 is defined as a typedef of type String. But | |
8632 | to the user, it is a pointer. So if the user tries to print S1, | |
8633 | we should not dereference the array, but print the array address | |
8634 | instead. | |
8635 | ||
8636 | If we didn't preserve the typedef layer, we would lose the fact that | |
8637 | the type is to be presented as a pointer (needs de-reference before | |
8638 | being printed). And we would also use the source-level type name. */ | |
f192137b JB |
8639 | |
8640 | struct type * | |
8641 | ada_to_fixed_type (struct type *type, const gdb_byte *valaddr, | |
8642 | CORE_ADDR address, struct value *dval, int check_tag) | |
8643 | ||
8644 | { | |
8645 | struct type *fixed_type = | |
8646 | ada_to_fixed_type_1 (type, valaddr, address, dval, check_tag); | |
8647 | ||
96dbd2c1 JB |
8648 | /* If TYPE is a typedef and its target type is the same as the FIXED_TYPE, |
8649 | then preserve the typedef layer. | |
8650 | ||
8651 | Implementation note: We can only check the main-type portion of | |
8652 | the TYPE and FIXED_TYPE, because eliminating the typedef layer | |
8653 | from TYPE now returns a type that has the same instance flags | |
8654 | as TYPE. For instance, if TYPE is a "typedef const", and its | |
8655 | target type is a "struct", then the typedef elimination will return | |
8656 | a "const" version of the target type. See check_typedef for more | |
8657 | details about how the typedef layer elimination is done. | |
8658 | ||
8659 | brobecker/2010-11-19: It seems to me that the only case where it is | |
8660 | useful to preserve the typedef layer is when dealing with fat pointers. | |
8661 | Perhaps, we could add a check for that and preserve the typedef layer | |
8662 | only in that situation. But this seems unecessary so far, probably | |
8663 | because we call check_typedef/ada_check_typedef pretty much everywhere. | |
8664 | */ | |
f192137b | 8665 | if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF |
720d1a40 | 8666 | && (TYPE_MAIN_TYPE (ada_typedef_target_type (type)) |
96dbd2c1 | 8667 | == TYPE_MAIN_TYPE (fixed_type))) |
f192137b JB |
8668 | return type; |
8669 | ||
8670 | return fixed_type; | |
8671 | } | |
8672 | ||
14f9c5c9 | 8673 | /* A standard (static-sized) type corresponding as well as possible to |
4c4b4cd2 | 8674 | TYPE0, but based on no runtime data. */ |
14f9c5c9 | 8675 | |
d2e4a39e AS |
8676 | static struct type * |
8677 | to_static_fixed_type (struct type *type0) | |
14f9c5c9 | 8678 | { |
d2e4a39e | 8679 | struct type *type; |
14f9c5c9 AS |
8680 | |
8681 | if (type0 == NULL) | |
8682 | return NULL; | |
8683 | ||
876cecd0 | 8684 | if (TYPE_FIXED_INSTANCE (type0)) |
4c4b4cd2 PH |
8685 | return type0; |
8686 | ||
61ee279c | 8687 | type0 = ada_check_typedef (type0); |
d2e4a39e | 8688 | |
14f9c5c9 AS |
8689 | switch (TYPE_CODE (type0)) |
8690 | { | |
8691 | default: | |
8692 | return type0; | |
8693 | case TYPE_CODE_STRUCT: | |
8694 | type = dynamic_template_type (type0); | |
d2e4a39e | 8695 | if (type != NULL) |
4c4b4cd2 PH |
8696 | return template_to_static_fixed_type (type); |
8697 | else | |
8698 | return template_to_static_fixed_type (type0); | |
14f9c5c9 AS |
8699 | case TYPE_CODE_UNION: |
8700 | type = ada_find_parallel_type (type0, "___XVU"); | |
8701 | if (type != NULL) | |
4c4b4cd2 PH |
8702 | return template_to_static_fixed_type (type); |
8703 | else | |
8704 | return template_to_static_fixed_type (type0); | |
14f9c5c9 AS |
8705 | } |
8706 | } | |
8707 | ||
4c4b4cd2 PH |
8708 | /* A static approximation of TYPE with all type wrappers removed. */ |
8709 | ||
d2e4a39e AS |
8710 | static struct type * |
8711 | static_unwrap_type (struct type *type) | |
14f9c5c9 AS |
8712 | { |
8713 | if (ada_is_aligner_type (type)) | |
8714 | { | |
61ee279c | 8715 | struct type *type1 = TYPE_FIELD_TYPE (ada_check_typedef (type), 0); |
14f9c5c9 | 8716 | if (ada_type_name (type1) == NULL) |
4c4b4cd2 | 8717 | TYPE_NAME (type1) = ada_type_name (type); |
14f9c5c9 AS |
8718 | |
8719 | return static_unwrap_type (type1); | |
8720 | } | |
d2e4a39e | 8721 | else |
14f9c5c9 | 8722 | { |
d2e4a39e | 8723 | struct type *raw_real_type = ada_get_base_type (type); |
5b4ee69b | 8724 | |
d2e4a39e | 8725 | if (raw_real_type == type) |
4c4b4cd2 | 8726 | return type; |
14f9c5c9 | 8727 | else |
4c4b4cd2 | 8728 | return to_static_fixed_type (raw_real_type); |
14f9c5c9 AS |
8729 | } |
8730 | } | |
8731 | ||
8732 | /* In some cases, incomplete and private types require | |
4c4b4cd2 | 8733 | cross-references that are not resolved as records (for example, |
14f9c5c9 AS |
8734 | type Foo; |
8735 | type FooP is access Foo; | |
8736 | V: FooP; | |
8737 | type Foo is array ...; | |
4c4b4cd2 | 8738 | ). In these cases, since there is no mechanism for producing |
14f9c5c9 AS |
8739 | cross-references to such types, we instead substitute for FooP a |
8740 | stub enumeration type that is nowhere resolved, and whose tag is | |
4c4b4cd2 | 8741 | the name of the actual type. Call these types "non-record stubs". */ |
14f9c5c9 AS |
8742 | |
8743 | /* A type equivalent to TYPE that is not a non-record stub, if one | |
4c4b4cd2 PH |
8744 | exists, otherwise TYPE. */ |
8745 | ||
d2e4a39e | 8746 | struct type * |
61ee279c | 8747 | ada_check_typedef (struct type *type) |
14f9c5c9 | 8748 | { |
727e3d2e JB |
8749 | if (type == NULL) |
8750 | return NULL; | |
8751 | ||
720d1a40 JB |
8752 | /* If our type is a typedef type of a fat pointer, then we're done. |
8753 | We don't want to strip the TYPE_CODE_TYPDEF layer, because this is | |
8754 | what allows us to distinguish between fat pointers that represent | |
8755 | array types, and fat pointers that represent array access types | |
8756 | (in both cases, the compiler implements them as fat pointers). */ | |
8757 | if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF | |
8758 | && is_thick_pntr (ada_typedef_target_type (type))) | |
8759 | return type; | |
8760 | ||
14f9c5c9 AS |
8761 | CHECK_TYPEDEF (type); |
8762 | if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM | |
529cad9c | 8763 | || !TYPE_STUB (type) |
14f9c5c9 AS |
8764 | || TYPE_TAG_NAME (type) == NULL) |
8765 | return type; | |
d2e4a39e | 8766 | else |
14f9c5c9 | 8767 | { |
0d5cff50 | 8768 | const char *name = TYPE_TAG_NAME (type); |
d2e4a39e | 8769 | struct type *type1 = ada_find_any_type (name); |
5b4ee69b | 8770 | |
05e522ef JB |
8771 | if (type1 == NULL) |
8772 | return type; | |
8773 | ||
8774 | /* TYPE1 might itself be a TYPE_CODE_TYPEDEF (this can happen with | |
8775 | stubs pointing to arrays, as we don't create symbols for array | |
3a867c22 JB |
8776 | types, only for the typedef-to-array types). If that's the case, |
8777 | strip the typedef layer. */ | |
8778 | if (TYPE_CODE (type1) == TYPE_CODE_TYPEDEF) | |
8779 | type1 = ada_check_typedef (type1); | |
8780 | ||
8781 | return type1; | |
14f9c5c9 AS |
8782 | } |
8783 | } | |
8784 | ||
8785 | /* A value representing the data at VALADDR/ADDRESS as described by | |
8786 | type TYPE0, but with a standard (static-sized) type that correctly | |
8787 | describes it. If VAL0 is not NULL and TYPE0 already is a standard | |
8788 | type, then return VAL0 [this feature is simply to avoid redundant | |
4c4b4cd2 | 8789 | creation of struct values]. */ |
14f9c5c9 | 8790 | |
4c4b4cd2 PH |
8791 | static struct value * |
8792 | ada_to_fixed_value_create (struct type *type0, CORE_ADDR address, | |
8793 | struct value *val0) | |
14f9c5c9 | 8794 | { |
1ed6ede0 | 8795 | struct type *type = ada_to_fixed_type (type0, 0, address, NULL, 1); |
5b4ee69b | 8796 | |
14f9c5c9 AS |
8797 | if (type == type0 && val0 != NULL) |
8798 | return val0; | |
d2e4a39e | 8799 | else |
4c4b4cd2 PH |
8800 | return value_from_contents_and_address (type, 0, address); |
8801 | } | |
8802 | ||
8803 | /* A value representing VAL, but with a standard (static-sized) type | |
8804 | that correctly describes it. Does not necessarily create a new | |
8805 | value. */ | |
8806 | ||
0c3acc09 | 8807 | struct value * |
4c4b4cd2 PH |
8808 | ada_to_fixed_value (struct value *val) |
8809 | { | |
c48db5ca JB |
8810 | val = unwrap_value (val); |
8811 | val = ada_to_fixed_value_create (value_type (val), | |
8812 | value_address (val), | |
8813 | val); | |
8814 | return val; | |
14f9c5c9 | 8815 | } |
d2e4a39e | 8816 | \f |
14f9c5c9 | 8817 | |
14f9c5c9 AS |
8818 | /* Attributes */ |
8819 | ||
4c4b4cd2 PH |
8820 | /* Table mapping attribute numbers to names. |
8821 | NOTE: Keep up to date with enum ada_attribute definition in ada-lang.h. */ | |
14f9c5c9 | 8822 | |
d2e4a39e | 8823 | static const char *attribute_names[] = { |
14f9c5c9 AS |
8824 | "<?>", |
8825 | ||
d2e4a39e | 8826 | "first", |
14f9c5c9 AS |
8827 | "last", |
8828 | "length", | |
8829 | "image", | |
14f9c5c9 AS |
8830 | "max", |
8831 | "min", | |
4c4b4cd2 PH |
8832 | "modulus", |
8833 | "pos", | |
8834 | "size", | |
8835 | "tag", | |
14f9c5c9 | 8836 | "val", |
14f9c5c9 AS |
8837 | 0 |
8838 | }; | |
8839 | ||
d2e4a39e | 8840 | const char * |
4c4b4cd2 | 8841 | ada_attribute_name (enum exp_opcode n) |
14f9c5c9 | 8842 | { |
4c4b4cd2 PH |
8843 | if (n >= OP_ATR_FIRST && n <= (int) OP_ATR_VAL) |
8844 | return attribute_names[n - OP_ATR_FIRST + 1]; | |
14f9c5c9 AS |
8845 | else |
8846 | return attribute_names[0]; | |
8847 | } | |
8848 | ||
4c4b4cd2 | 8849 | /* Evaluate the 'POS attribute applied to ARG. */ |
14f9c5c9 | 8850 | |
4c4b4cd2 PH |
8851 | static LONGEST |
8852 | pos_atr (struct value *arg) | |
14f9c5c9 | 8853 | { |
24209737 PH |
8854 | struct value *val = coerce_ref (arg); |
8855 | struct type *type = value_type (val); | |
14f9c5c9 | 8856 | |
d2e4a39e | 8857 | if (!discrete_type_p (type)) |
323e0a4a | 8858 | error (_("'POS only defined on discrete types")); |
14f9c5c9 AS |
8859 | |
8860 | if (TYPE_CODE (type) == TYPE_CODE_ENUM) | |
8861 | { | |
8862 | int i; | |
24209737 | 8863 | LONGEST v = value_as_long (val); |
14f9c5c9 | 8864 | |
d2e4a39e | 8865 | for (i = 0; i < TYPE_NFIELDS (type); i += 1) |
4c4b4cd2 | 8866 | { |
14e75d8e | 8867 | if (v == TYPE_FIELD_ENUMVAL (type, i)) |
4c4b4cd2 PH |
8868 | return i; |
8869 | } | |
323e0a4a | 8870 | error (_("enumeration value is invalid: can't find 'POS")); |
14f9c5c9 AS |
8871 | } |
8872 | else | |
24209737 | 8873 | return value_as_long (val); |
4c4b4cd2 PH |
8874 | } |
8875 | ||
8876 | static struct value * | |
3cb382c9 | 8877 | value_pos_atr (struct type *type, struct value *arg) |
4c4b4cd2 | 8878 | { |
3cb382c9 | 8879 | return value_from_longest (type, pos_atr (arg)); |
14f9c5c9 AS |
8880 | } |
8881 | ||
4c4b4cd2 | 8882 | /* Evaluate the TYPE'VAL attribute applied to ARG. */ |
14f9c5c9 | 8883 | |
d2e4a39e AS |
8884 | static struct value * |
8885 | value_val_atr (struct type *type, struct value *arg) | |
14f9c5c9 | 8886 | { |
d2e4a39e | 8887 | if (!discrete_type_p (type)) |
323e0a4a | 8888 | error (_("'VAL only defined on discrete types")); |
df407dfe | 8889 | if (!integer_type_p (value_type (arg))) |
323e0a4a | 8890 | error (_("'VAL requires integral argument")); |
14f9c5c9 AS |
8891 | |
8892 | if (TYPE_CODE (type) == TYPE_CODE_ENUM) | |
8893 | { | |
8894 | long pos = value_as_long (arg); | |
5b4ee69b | 8895 | |
14f9c5c9 | 8896 | if (pos < 0 || pos >= TYPE_NFIELDS (type)) |
323e0a4a | 8897 | error (_("argument to 'VAL out of range")); |
14e75d8e | 8898 | return value_from_longest (type, TYPE_FIELD_ENUMVAL (type, pos)); |
14f9c5c9 AS |
8899 | } |
8900 | else | |
8901 | return value_from_longest (type, value_as_long (arg)); | |
8902 | } | |
14f9c5c9 | 8903 | \f |
d2e4a39e | 8904 | |
4c4b4cd2 | 8905 | /* Evaluation */ |
14f9c5c9 | 8906 | |
4c4b4cd2 PH |
8907 | /* True if TYPE appears to be an Ada character type. |
8908 | [At the moment, this is true only for Character and Wide_Character; | |
8909 | It is a heuristic test that could stand improvement]. */ | |
14f9c5c9 | 8910 | |
d2e4a39e AS |
8911 | int |
8912 | ada_is_character_type (struct type *type) | |
14f9c5c9 | 8913 | { |
7b9f71f2 JB |
8914 | const char *name; |
8915 | ||
8916 | /* If the type code says it's a character, then assume it really is, | |
8917 | and don't check any further. */ | |
8918 | if (TYPE_CODE (type) == TYPE_CODE_CHAR) | |
8919 | return 1; | |
8920 | ||
8921 | /* Otherwise, assume it's a character type iff it is a discrete type | |
8922 | with a known character type name. */ | |
8923 | name = ada_type_name (type); | |
8924 | return (name != NULL | |
8925 | && (TYPE_CODE (type) == TYPE_CODE_INT | |
8926 | || TYPE_CODE (type) == TYPE_CODE_RANGE) | |
8927 | && (strcmp (name, "character") == 0 | |
8928 | || strcmp (name, "wide_character") == 0 | |
5a517ebd | 8929 | || strcmp (name, "wide_wide_character") == 0 |
7b9f71f2 | 8930 | || strcmp (name, "unsigned char") == 0)); |
14f9c5c9 AS |
8931 | } |
8932 | ||
4c4b4cd2 | 8933 | /* True if TYPE appears to be an Ada string type. */ |
14f9c5c9 AS |
8934 | |
8935 | int | |
ebf56fd3 | 8936 | ada_is_string_type (struct type *type) |
14f9c5c9 | 8937 | { |
61ee279c | 8938 | type = ada_check_typedef (type); |
d2e4a39e | 8939 | if (type != NULL |
14f9c5c9 | 8940 | && TYPE_CODE (type) != TYPE_CODE_PTR |
76a01679 JB |
8941 | && (ada_is_simple_array_type (type) |
8942 | || ada_is_array_descriptor_type (type)) | |
14f9c5c9 AS |
8943 | && ada_array_arity (type) == 1) |
8944 | { | |
8945 | struct type *elttype = ada_array_element_type (type, 1); | |
8946 | ||
8947 | return ada_is_character_type (elttype); | |
8948 | } | |
d2e4a39e | 8949 | else |
14f9c5c9 AS |
8950 | return 0; |
8951 | } | |
8952 | ||
5bf03f13 JB |
8953 | /* The compiler sometimes provides a parallel XVS type for a given |
8954 | PAD type. Normally, it is safe to follow the PAD type directly, | |
8955 | but older versions of the compiler have a bug that causes the offset | |
8956 | of its "F" field to be wrong. Following that field in that case | |
8957 | would lead to incorrect results, but this can be worked around | |
8958 | by ignoring the PAD type and using the associated XVS type instead. | |
8959 | ||
8960 | Set to True if the debugger should trust the contents of PAD types. | |
8961 | Otherwise, ignore the PAD type if there is a parallel XVS type. */ | |
8962 | static int trust_pad_over_xvs = 1; | |
14f9c5c9 AS |
8963 | |
8964 | /* True if TYPE is a struct type introduced by the compiler to force the | |
8965 | alignment of a value. Such types have a single field with a | |
4c4b4cd2 | 8966 | distinctive name. */ |
14f9c5c9 AS |
8967 | |
8968 | int | |
ebf56fd3 | 8969 | ada_is_aligner_type (struct type *type) |
14f9c5c9 | 8970 | { |
61ee279c | 8971 | type = ada_check_typedef (type); |
714e53ab | 8972 | |
5bf03f13 | 8973 | if (!trust_pad_over_xvs && ada_find_parallel_type (type, "___XVS") != NULL) |
714e53ab PH |
8974 | return 0; |
8975 | ||
14f9c5c9 | 8976 | return (TYPE_CODE (type) == TYPE_CODE_STRUCT |
4c4b4cd2 PH |
8977 | && TYPE_NFIELDS (type) == 1 |
8978 | && strcmp (TYPE_FIELD_NAME (type, 0), "F") == 0); | |
14f9c5c9 AS |
8979 | } |
8980 | ||
8981 | /* If there is an ___XVS-convention type parallel to SUBTYPE, return | |
4c4b4cd2 | 8982 | the parallel type. */ |
14f9c5c9 | 8983 | |
d2e4a39e AS |
8984 | struct type * |
8985 | ada_get_base_type (struct type *raw_type) | |
14f9c5c9 | 8986 | { |
d2e4a39e AS |
8987 | struct type *real_type_namer; |
8988 | struct type *raw_real_type; | |
14f9c5c9 AS |
8989 | |
8990 | if (raw_type == NULL || TYPE_CODE (raw_type) != TYPE_CODE_STRUCT) | |
8991 | return raw_type; | |
8992 | ||
284614f0 JB |
8993 | if (ada_is_aligner_type (raw_type)) |
8994 | /* The encoding specifies that we should always use the aligner type. | |
8995 | So, even if this aligner type has an associated XVS type, we should | |
8996 | simply ignore it. | |
8997 | ||
8998 | According to the compiler gurus, an XVS type parallel to an aligner | |
8999 | type may exist because of a stabs limitation. In stabs, aligner | |
9000 | types are empty because the field has a variable-sized type, and | |
9001 | thus cannot actually be used as an aligner type. As a result, | |
9002 | we need the associated parallel XVS type to decode the type. | |
9003 | Since the policy in the compiler is to not change the internal | |
9004 | representation based on the debugging info format, we sometimes | |
9005 | end up having a redundant XVS type parallel to the aligner type. */ | |
9006 | return raw_type; | |
9007 | ||
14f9c5c9 | 9008 | real_type_namer = ada_find_parallel_type (raw_type, "___XVS"); |
d2e4a39e | 9009 | if (real_type_namer == NULL |
14f9c5c9 AS |
9010 | || TYPE_CODE (real_type_namer) != TYPE_CODE_STRUCT |
9011 | || TYPE_NFIELDS (real_type_namer) != 1) | |
9012 | return raw_type; | |
9013 | ||
f80d3ff2 JB |
9014 | if (TYPE_CODE (TYPE_FIELD_TYPE (real_type_namer, 0)) != TYPE_CODE_REF) |
9015 | { | |
9016 | /* This is an older encoding form where the base type needs to be | |
9017 | looked up by name. We prefer the newer enconding because it is | |
9018 | more efficient. */ | |
9019 | raw_real_type = ada_find_any_type (TYPE_FIELD_NAME (real_type_namer, 0)); | |
9020 | if (raw_real_type == NULL) | |
9021 | return raw_type; | |
9022 | else | |
9023 | return raw_real_type; | |
9024 | } | |
9025 | ||
9026 | /* The field in our XVS type is a reference to the base type. */ | |
9027 | return TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (real_type_namer, 0)); | |
d2e4a39e | 9028 | } |
14f9c5c9 | 9029 | |
4c4b4cd2 | 9030 | /* The type of value designated by TYPE, with all aligners removed. */ |
14f9c5c9 | 9031 | |
d2e4a39e AS |
9032 | struct type * |
9033 | ada_aligned_type (struct type *type) | |
14f9c5c9 AS |
9034 | { |
9035 | if (ada_is_aligner_type (type)) | |
9036 | return ada_aligned_type (TYPE_FIELD_TYPE (type, 0)); | |
9037 | else | |
9038 | return ada_get_base_type (type); | |
9039 | } | |
9040 | ||
9041 | ||
9042 | /* The address of the aligned value in an object at address VALADDR | |
4c4b4cd2 | 9043 | having type TYPE. Assumes ada_is_aligner_type (TYPE). */ |
14f9c5c9 | 9044 | |
fc1a4b47 AC |
9045 | const gdb_byte * |
9046 | ada_aligned_value_addr (struct type *type, const gdb_byte *valaddr) | |
14f9c5c9 | 9047 | { |
d2e4a39e | 9048 | if (ada_is_aligner_type (type)) |
14f9c5c9 | 9049 | return ada_aligned_value_addr (TYPE_FIELD_TYPE (type, 0), |
4c4b4cd2 PH |
9050 | valaddr + |
9051 | TYPE_FIELD_BITPOS (type, | |
9052 | 0) / TARGET_CHAR_BIT); | |
14f9c5c9 AS |
9053 | else |
9054 | return valaddr; | |
9055 | } | |
9056 | ||
4c4b4cd2 PH |
9057 | |
9058 | ||
14f9c5c9 | 9059 | /* The printed representation of an enumeration literal with encoded |
4c4b4cd2 | 9060 | name NAME. The value is good to the next call of ada_enum_name. */ |
d2e4a39e AS |
9061 | const char * |
9062 | ada_enum_name (const char *name) | |
14f9c5c9 | 9063 | { |
4c4b4cd2 PH |
9064 | static char *result; |
9065 | static size_t result_len = 0; | |
d2e4a39e | 9066 | char *tmp; |
14f9c5c9 | 9067 | |
4c4b4cd2 PH |
9068 | /* First, unqualify the enumeration name: |
9069 | 1. Search for the last '.' character. If we find one, then skip | |
177b42fe | 9070 | all the preceding characters, the unqualified name starts |
76a01679 | 9071 | right after that dot. |
4c4b4cd2 | 9072 | 2. Otherwise, we may be debugging on a target where the compiler |
76a01679 JB |
9073 | translates dots into "__". Search forward for double underscores, |
9074 | but stop searching when we hit an overloading suffix, which is | |
9075 | of the form "__" followed by digits. */ | |
4c4b4cd2 | 9076 | |
c3e5cd34 PH |
9077 | tmp = strrchr (name, '.'); |
9078 | if (tmp != NULL) | |
4c4b4cd2 PH |
9079 | name = tmp + 1; |
9080 | else | |
14f9c5c9 | 9081 | { |
4c4b4cd2 PH |
9082 | while ((tmp = strstr (name, "__")) != NULL) |
9083 | { | |
9084 | if (isdigit (tmp[2])) | |
9085 | break; | |
9086 | else | |
9087 | name = tmp + 2; | |
9088 | } | |
14f9c5c9 AS |
9089 | } |
9090 | ||
9091 | if (name[0] == 'Q') | |
9092 | { | |
14f9c5c9 | 9093 | int v; |
5b4ee69b | 9094 | |
14f9c5c9 | 9095 | if (name[1] == 'U' || name[1] == 'W') |
4c4b4cd2 PH |
9096 | { |
9097 | if (sscanf (name + 2, "%x", &v) != 1) | |
9098 | return name; | |
9099 | } | |
14f9c5c9 | 9100 | else |
4c4b4cd2 | 9101 | return name; |
14f9c5c9 | 9102 | |
4c4b4cd2 | 9103 | GROW_VECT (result, result_len, 16); |
14f9c5c9 | 9104 | if (isascii (v) && isprint (v)) |
88c15c34 | 9105 | xsnprintf (result, result_len, "'%c'", v); |
14f9c5c9 | 9106 | else if (name[1] == 'U') |
88c15c34 | 9107 | xsnprintf (result, result_len, "[\"%02x\"]", v); |
14f9c5c9 | 9108 | else |
88c15c34 | 9109 | xsnprintf (result, result_len, "[\"%04x\"]", v); |
14f9c5c9 AS |
9110 | |
9111 | return result; | |
9112 | } | |
d2e4a39e | 9113 | else |
4c4b4cd2 | 9114 | { |
c3e5cd34 PH |
9115 | tmp = strstr (name, "__"); |
9116 | if (tmp == NULL) | |
9117 | tmp = strstr (name, "$"); | |
9118 | if (tmp != NULL) | |
4c4b4cd2 PH |
9119 | { |
9120 | GROW_VECT (result, result_len, tmp - name + 1); | |
9121 | strncpy (result, name, tmp - name); | |
9122 | result[tmp - name] = '\0'; | |
9123 | return result; | |
9124 | } | |
9125 | ||
9126 | return name; | |
9127 | } | |
14f9c5c9 AS |
9128 | } |
9129 | ||
14f9c5c9 AS |
9130 | /* Evaluate the subexpression of EXP starting at *POS as for |
9131 | evaluate_type, updating *POS to point just past the evaluated | |
4c4b4cd2 | 9132 | expression. */ |
14f9c5c9 | 9133 | |
d2e4a39e AS |
9134 | static struct value * |
9135 | evaluate_subexp_type (struct expression *exp, int *pos) | |
14f9c5c9 | 9136 | { |
4b27a620 | 9137 | return evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS); |
14f9c5c9 AS |
9138 | } |
9139 | ||
9140 | /* If VAL is wrapped in an aligner or subtype wrapper, return the | |
4c4b4cd2 | 9141 | value it wraps. */ |
14f9c5c9 | 9142 | |
d2e4a39e AS |
9143 | static struct value * |
9144 | unwrap_value (struct value *val) | |
14f9c5c9 | 9145 | { |
df407dfe | 9146 | struct type *type = ada_check_typedef (value_type (val)); |
5b4ee69b | 9147 | |
14f9c5c9 AS |
9148 | if (ada_is_aligner_type (type)) |
9149 | { | |
de4d072f | 9150 | struct value *v = ada_value_struct_elt (val, "F", 0); |
df407dfe | 9151 | struct type *val_type = ada_check_typedef (value_type (v)); |
5b4ee69b | 9152 | |
14f9c5c9 | 9153 | if (ada_type_name (val_type) == NULL) |
4c4b4cd2 | 9154 | TYPE_NAME (val_type) = ada_type_name (type); |
14f9c5c9 AS |
9155 | |
9156 | return unwrap_value (v); | |
9157 | } | |
d2e4a39e | 9158 | else |
14f9c5c9 | 9159 | { |
d2e4a39e | 9160 | struct type *raw_real_type = |
61ee279c | 9161 | ada_check_typedef (ada_get_base_type (type)); |
d2e4a39e | 9162 | |
5bf03f13 JB |
9163 | /* If there is no parallel XVS or XVE type, then the value is |
9164 | already unwrapped. Return it without further modification. */ | |
9165 | if ((type == raw_real_type) | |
9166 | && ada_find_parallel_type (type, "___XVE") == NULL) | |
9167 | return val; | |
14f9c5c9 | 9168 | |
d2e4a39e | 9169 | return |
4c4b4cd2 PH |
9170 | coerce_unspec_val_to_type |
9171 | (val, ada_to_fixed_type (raw_real_type, 0, | |
42ae5230 | 9172 | value_address (val), |
1ed6ede0 | 9173 | NULL, 1)); |
14f9c5c9 AS |
9174 | } |
9175 | } | |
d2e4a39e AS |
9176 | |
9177 | static struct value * | |
9178 | cast_to_fixed (struct type *type, struct value *arg) | |
14f9c5c9 AS |
9179 | { |
9180 | LONGEST val; | |
9181 | ||
df407dfe | 9182 | if (type == value_type (arg)) |
14f9c5c9 | 9183 | return arg; |
df407dfe | 9184 | else if (ada_is_fixed_point_type (value_type (arg))) |
d2e4a39e | 9185 | val = ada_float_to_fixed (type, |
df407dfe | 9186 | ada_fixed_to_float (value_type (arg), |
4c4b4cd2 | 9187 | value_as_long (arg))); |
d2e4a39e | 9188 | else |
14f9c5c9 | 9189 | { |
a53b7a21 | 9190 | DOUBLEST argd = value_as_double (arg); |
5b4ee69b | 9191 | |
14f9c5c9 AS |
9192 | val = ada_float_to_fixed (type, argd); |
9193 | } | |
9194 | ||
9195 | return value_from_longest (type, val); | |
9196 | } | |
9197 | ||
d2e4a39e | 9198 | static struct value * |
a53b7a21 | 9199 | cast_from_fixed (struct type *type, struct value *arg) |
14f9c5c9 | 9200 | { |
df407dfe | 9201 | DOUBLEST val = ada_fixed_to_float (value_type (arg), |
4c4b4cd2 | 9202 | value_as_long (arg)); |
5b4ee69b | 9203 | |
a53b7a21 | 9204 | return value_from_double (type, val); |
14f9c5c9 AS |
9205 | } |
9206 | ||
d99dcf51 JB |
9207 | /* Given two array types T1 and T2, return nonzero iff both arrays |
9208 | contain the same number of elements. */ | |
9209 | ||
9210 | static int | |
9211 | ada_same_array_size_p (struct type *t1, struct type *t2) | |
9212 | { | |
9213 | LONGEST lo1, hi1, lo2, hi2; | |
9214 | ||
9215 | /* Get the array bounds in order to verify that the size of | |
9216 | the two arrays match. */ | |
9217 | if (!get_array_bounds (t1, &lo1, &hi1) | |
9218 | || !get_array_bounds (t2, &lo2, &hi2)) | |
9219 | error (_("unable to determine array bounds")); | |
9220 | ||
9221 | /* To make things easier for size comparison, normalize a bit | |
9222 | the case of empty arrays by making sure that the difference | |
9223 | between upper bound and lower bound is always -1. */ | |
9224 | if (lo1 > hi1) | |
9225 | hi1 = lo1 - 1; | |
9226 | if (lo2 > hi2) | |
9227 | hi2 = lo2 - 1; | |
9228 | ||
9229 | return (hi1 - lo1 == hi2 - lo2); | |
9230 | } | |
9231 | ||
9232 | /* Assuming that VAL is an array of integrals, and TYPE represents | |
9233 | an array with the same number of elements, but with wider integral | |
9234 | elements, return an array "casted" to TYPE. In practice, this | |
9235 | means that the returned array is built by casting each element | |
9236 | of the original array into TYPE's (wider) element type. */ | |
9237 | ||
9238 | static struct value * | |
9239 | ada_promote_array_of_integrals (struct type *type, struct value *val) | |
9240 | { | |
9241 | struct type *elt_type = TYPE_TARGET_TYPE (type); | |
9242 | LONGEST lo, hi; | |
9243 | struct value *res; | |
9244 | LONGEST i; | |
9245 | ||
9246 | /* Verify that both val and type are arrays of scalars, and | |
9247 | that the size of val's elements is smaller than the size | |
9248 | of type's element. */ | |
9249 | gdb_assert (TYPE_CODE (type) == TYPE_CODE_ARRAY); | |
9250 | gdb_assert (is_integral_type (TYPE_TARGET_TYPE (type))); | |
9251 | gdb_assert (TYPE_CODE (value_type (val)) == TYPE_CODE_ARRAY); | |
9252 | gdb_assert (is_integral_type (TYPE_TARGET_TYPE (value_type (val)))); | |
9253 | gdb_assert (TYPE_LENGTH (TYPE_TARGET_TYPE (type)) | |
9254 | > TYPE_LENGTH (TYPE_TARGET_TYPE (value_type (val)))); | |
9255 | ||
9256 | if (!get_array_bounds (type, &lo, &hi)) | |
9257 | error (_("unable to determine array bounds")); | |
9258 | ||
9259 | res = allocate_value (type); | |
9260 | ||
9261 | /* Promote each array element. */ | |
9262 | for (i = 0; i < hi - lo + 1; i++) | |
9263 | { | |
9264 | struct value *elt = value_cast (elt_type, value_subscript (val, lo + i)); | |
9265 | ||
9266 | memcpy (value_contents_writeable (res) + (i * TYPE_LENGTH (elt_type)), | |
9267 | value_contents_all (elt), TYPE_LENGTH (elt_type)); | |
9268 | } | |
9269 | ||
9270 | return res; | |
9271 | } | |
9272 | ||
4c4b4cd2 PH |
9273 | /* Coerce VAL as necessary for assignment to an lval of type TYPE, and |
9274 | return the converted value. */ | |
9275 | ||
d2e4a39e AS |
9276 | static struct value * |
9277 | coerce_for_assign (struct type *type, struct value *val) | |
14f9c5c9 | 9278 | { |
df407dfe | 9279 | struct type *type2 = value_type (val); |
5b4ee69b | 9280 | |
14f9c5c9 AS |
9281 | if (type == type2) |
9282 | return val; | |
9283 | ||
61ee279c PH |
9284 | type2 = ada_check_typedef (type2); |
9285 | type = ada_check_typedef (type); | |
14f9c5c9 | 9286 | |
d2e4a39e AS |
9287 | if (TYPE_CODE (type2) == TYPE_CODE_PTR |
9288 | && TYPE_CODE (type) == TYPE_CODE_ARRAY) | |
14f9c5c9 AS |
9289 | { |
9290 | val = ada_value_ind (val); | |
df407dfe | 9291 | type2 = value_type (val); |
14f9c5c9 AS |
9292 | } |
9293 | ||
d2e4a39e | 9294 | if (TYPE_CODE (type2) == TYPE_CODE_ARRAY |
14f9c5c9 AS |
9295 | && TYPE_CODE (type) == TYPE_CODE_ARRAY) |
9296 | { | |
d99dcf51 JB |
9297 | if (!ada_same_array_size_p (type, type2)) |
9298 | error (_("cannot assign arrays of different length")); | |
9299 | ||
9300 | if (is_integral_type (TYPE_TARGET_TYPE (type)) | |
9301 | && is_integral_type (TYPE_TARGET_TYPE (type2)) | |
9302 | && TYPE_LENGTH (TYPE_TARGET_TYPE (type2)) | |
9303 | < TYPE_LENGTH (TYPE_TARGET_TYPE (type))) | |
9304 | { | |
9305 | /* Allow implicit promotion of the array elements to | |
9306 | a wider type. */ | |
9307 | return ada_promote_array_of_integrals (type, val); | |
9308 | } | |
9309 | ||
9310 | if (TYPE_LENGTH (TYPE_TARGET_TYPE (type2)) | |
9311 | != TYPE_LENGTH (TYPE_TARGET_TYPE (type))) | |
323e0a4a | 9312 | error (_("Incompatible types in assignment")); |
04624583 | 9313 | deprecated_set_value_type (val, type); |
14f9c5c9 | 9314 | } |
d2e4a39e | 9315 | return val; |
14f9c5c9 AS |
9316 | } |
9317 | ||
4c4b4cd2 PH |
9318 | static struct value * |
9319 | ada_value_binop (struct value *arg1, struct value *arg2, enum exp_opcode op) | |
9320 | { | |
9321 | struct value *val; | |
9322 | struct type *type1, *type2; | |
9323 | LONGEST v, v1, v2; | |
9324 | ||
994b9211 AC |
9325 | arg1 = coerce_ref (arg1); |
9326 | arg2 = coerce_ref (arg2); | |
18af8284 JB |
9327 | type1 = get_base_type (ada_check_typedef (value_type (arg1))); |
9328 | type2 = get_base_type (ada_check_typedef (value_type (arg2))); | |
4c4b4cd2 | 9329 | |
76a01679 JB |
9330 | if (TYPE_CODE (type1) != TYPE_CODE_INT |
9331 | || TYPE_CODE (type2) != TYPE_CODE_INT) | |
4c4b4cd2 PH |
9332 | return value_binop (arg1, arg2, op); |
9333 | ||
76a01679 | 9334 | switch (op) |
4c4b4cd2 PH |
9335 | { |
9336 | case BINOP_MOD: | |
9337 | case BINOP_DIV: | |
9338 | case BINOP_REM: | |
9339 | break; | |
9340 | default: | |
9341 | return value_binop (arg1, arg2, op); | |
9342 | } | |
9343 | ||
9344 | v2 = value_as_long (arg2); | |
9345 | if (v2 == 0) | |
323e0a4a | 9346 | error (_("second operand of %s must not be zero."), op_string (op)); |
4c4b4cd2 PH |
9347 | |
9348 | if (TYPE_UNSIGNED (type1) || op == BINOP_MOD) | |
9349 | return value_binop (arg1, arg2, op); | |
9350 | ||
9351 | v1 = value_as_long (arg1); | |
9352 | switch (op) | |
9353 | { | |
9354 | case BINOP_DIV: | |
9355 | v = v1 / v2; | |
76a01679 JB |
9356 | if (!TRUNCATION_TOWARDS_ZERO && v1 * (v1 % v2) < 0) |
9357 | v += v > 0 ? -1 : 1; | |
4c4b4cd2 PH |
9358 | break; |
9359 | case BINOP_REM: | |
9360 | v = v1 % v2; | |
76a01679 JB |
9361 | if (v * v1 < 0) |
9362 | v -= v2; | |
4c4b4cd2 PH |
9363 | break; |
9364 | default: | |
9365 | /* Should not reach this point. */ | |
9366 | v = 0; | |
9367 | } | |
9368 | ||
9369 | val = allocate_value (type1); | |
990a07ab | 9370 | store_unsigned_integer (value_contents_raw (val), |
e17a4113 UW |
9371 | TYPE_LENGTH (value_type (val)), |
9372 | gdbarch_byte_order (get_type_arch (type1)), v); | |
4c4b4cd2 PH |
9373 | return val; |
9374 | } | |
9375 | ||
9376 | static int | |
9377 | ada_value_equal (struct value *arg1, struct value *arg2) | |
9378 | { | |
df407dfe AC |
9379 | if (ada_is_direct_array_type (value_type (arg1)) |
9380 | || ada_is_direct_array_type (value_type (arg2))) | |
4c4b4cd2 | 9381 | { |
f58b38bf JB |
9382 | /* Automatically dereference any array reference before |
9383 | we attempt to perform the comparison. */ | |
9384 | arg1 = ada_coerce_ref (arg1); | |
9385 | arg2 = ada_coerce_ref (arg2); | |
9386 | ||
4c4b4cd2 PH |
9387 | arg1 = ada_coerce_to_simple_array (arg1); |
9388 | arg2 = ada_coerce_to_simple_array (arg2); | |
df407dfe AC |
9389 | if (TYPE_CODE (value_type (arg1)) != TYPE_CODE_ARRAY |
9390 | || TYPE_CODE (value_type (arg2)) != TYPE_CODE_ARRAY) | |
323e0a4a | 9391 | error (_("Attempt to compare array with non-array")); |
4c4b4cd2 | 9392 | /* FIXME: The following works only for types whose |
76a01679 JB |
9393 | representations use all bits (no padding or undefined bits) |
9394 | and do not have user-defined equality. */ | |
9395 | return | |
df407dfe | 9396 | TYPE_LENGTH (value_type (arg1)) == TYPE_LENGTH (value_type (arg2)) |
0fd88904 | 9397 | && memcmp (value_contents (arg1), value_contents (arg2), |
df407dfe | 9398 | TYPE_LENGTH (value_type (arg1))) == 0; |
4c4b4cd2 PH |
9399 | } |
9400 | return value_equal (arg1, arg2); | |
9401 | } | |
9402 | ||
52ce6436 PH |
9403 | /* Total number of component associations in the aggregate starting at |
9404 | index PC in EXP. Assumes that index PC is the start of an | |
0963b4bd | 9405 | OP_AGGREGATE. */ |
52ce6436 PH |
9406 | |
9407 | static int | |
9408 | num_component_specs (struct expression *exp, int pc) | |
9409 | { | |
9410 | int n, m, i; | |
5b4ee69b | 9411 | |
52ce6436 PH |
9412 | m = exp->elts[pc + 1].longconst; |
9413 | pc += 3; | |
9414 | n = 0; | |
9415 | for (i = 0; i < m; i += 1) | |
9416 | { | |
9417 | switch (exp->elts[pc].opcode) | |
9418 | { | |
9419 | default: | |
9420 | n += 1; | |
9421 | break; | |
9422 | case OP_CHOICES: | |
9423 | n += exp->elts[pc + 1].longconst; | |
9424 | break; | |
9425 | } | |
9426 | ada_evaluate_subexp (NULL, exp, &pc, EVAL_SKIP); | |
9427 | } | |
9428 | return n; | |
9429 | } | |
9430 | ||
9431 | /* Assign the result of evaluating EXP starting at *POS to the INDEXth | |
9432 | component of LHS (a simple array or a record), updating *POS past | |
9433 | the expression, assuming that LHS is contained in CONTAINER. Does | |
9434 | not modify the inferior's memory, nor does it modify LHS (unless | |
9435 | LHS == CONTAINER). */ | |
9436 | ||
9437 | static void | |
9438 | assign_component (struct value *container, struct value *lhs, LONGEST index, | |
9439 | struct expression *exp, int *pos) | |
9440 | { | |
9441 | struct value *mark = value_mark (); | |
9442 | struct value *elt; | |
5b4ee69b | 9443 | |
52ce6436 PH |
9444 | if (TYPE_CODE (value_type (lhs)) == TYPE_CODE_ARRAY) |
9445 | { | |
22601c15 UW |
9446 | struct type *index_type = builtin_type (exp->gdbarch)->builtin_int; |
9447 | struct value *index_val = value_from_longest (index_type, index); | |
5b4ee69b | 9448 | |
52ce6436 PH |
9449 | elt = unwrap_value (ada_value_subscript (lhs, 1, &index_val)); |
9450 | } | |
9451 | else | |
9452 | { | |
9453 | elt = ada_index_struct_field (index, lhs, 0, value_type (lhs)); | |
c48db5ca | 9454 | elt = ada_to_fixed_value (elt); |
52ce6436 PH |
9455 | } |
9456 | ||
9457 | if (exp->elts[*pos].opcode == OP_AGGREGATE) | |
9458 | assign_aggregate (container, elt, exp, pos, EVAL_NORMAL); | |
9459 | else | |
9460 | value_assign_to_component (container, elt, | |
9461 | ada_evaluate_subexp (NULL, exp, pos, | |
9462 | EVAL_NORMAL)); | |
9463 | ||
9464 | value_free_to_mark (mark); | |
9465 | } | |
9466 | ||
9467 | /* Assuming that LHS represents an lvalue having a record or array | |
9468 | type, and EXP->ELTS[*POS] is an OP_AGGREGATE, evaluate an assignment | |
9469 | of that aggregate's value to LHS, advancing *POS past the | |
9470 | aggregate. NOSIDE is as for evaluate_subexp. CONTAINER is an | |
9471 | lvalue containing LHS (possibly LHS itself). Does not modify | |
9472 | the inferior's memory, nor does it modify the contents of | |
0963b4bd | 9473 | LHS (unless == CONTAINER). Returns the modified CONTAINER. */ |
52ce6436 PH |
9474 | |
9475 | static struct value * | |
9476 | assign_aggregate (struct value *container, | |
9477 | struct value *lhs, struct expression *exp, | |
9478 | int *pos, enum noside noside) | |
9479 | { | |
9480 | struct type *lhs_type; | |
9481 | int n = exp->elts[*pos+1].longconst; | |
9482 | LONGEST low_index, high_index; | |
9483 | int num_specs; | |
9484 | LONGEST *indices; | |
9485 | int max_indices, num_indices; | |
52ce6436 | 9486 | int i; |
52ce6436 PH |
9487 | |
9488 | *pos += 3; | |
9489 | if (noside != EVAL_NORMAL) | |
9490 | { | |
52ce6436 PH |
9491 | for (i = 0; i < n; i += 1) |
9492 | ada_evaluate_subexp (NULL, exp, pos, noside); | |
9493 | return container; | |
9494 | } | |
9495 | ||
9496 | container = ada_coerce_ref (container); | |
9497 | if (ada_is_direct_array_type (value_type (container))) | |
9498 | container = ada_coerce_to_simple_array (container); | |
9499 | lhs = ada_coerce_ref (lhs); | |
9500 | if (!deprecated_value_modifiable (lhs)) | |
9501 | error (_("Left operand of assignment is not a modifiable lvalue.")); | |
9502 | ||
9503 | lhs_type = value_type (lhs); | |
9504 | if (ada_is_direct_array_type (lhs_type)) | |
9505 | { | |
9506 | lhs = ada_coerce_to_simple_array (lhs); | |
9507 | lhs_type = value_type (lhs); | |
9508 | low_index = TYPE_ARRAY_LOWER_BOUND_VALUE (lhs_type); | |
9509 | high_index = TYPE_ARRAY_UPPER_BOUND_VALUE (lhs_type); | |
52ce6436 PH |
9510 | } |
9511 | else if (TYPE_CODE (lhs_type) == TYPE_CODE_STRUCT) | |
9512 | { | |
9513 | low_index = 0; | |
9514 | high_index = num_visible_fields (lhs_type) - 1; | |
52ce6436 PH |
9515 | } |
9516 | else | |
9517 | error (_("Left-hand side must be array or record.")); | |
9518 | ||
9519 | num_specs = num_component_specs (exp, *pos - 3); | |
9520 | max_indices = 4 * num_specs + 4; | |
9521 | indices = alloca (max_indices * sizeof (indices[0])); | |
9522 | indices[0] = indices[1] = low_index - 1; | |
9523 | indices[2] = indices[3] = high_index + 1; | |
9524 | num_indices = 4; | |
9525 | ||
9526 | for (i = 0; i < n; i += 1) | |
9527 | { | |
9528 | switch (exp->elts[*pos].opcode) | |
9529 | { | |
1fbf5ada JB |
9530 | case OP_CHOICES: |
9531 | aggregate_assign_from_choices (container, lhs, exp, pos, indices, | |
9532 | &num_indices, max_indices, | |
9533 | low_index, high_index); | |
9534 | break; | |
9535 | case OP_POSITIONAL: | |
9536 | aggregate_assign_positional (container, lhs, exp, pos, indices, | |
52ce6436 PH |
9537 | &num_indices, max_indices, |
9538 | low_index, high_index); | |
1fbf5ada JB |
9539 | break; |
9540 | case OP_OTHERS: | |
9541 | if (i != n-1) | |
9542 | error (_("Misplaced 'others' clause")); | |
9543 | aggregate_assign_others (container, lhs, exp, pos, indices, | |
9544 | num_indices, low_index, high_index); | |
9545 | break; | |
9546 | default: | |
9547 | error (_("Internal error: bad aggregate clause")); | |
52ce6436 PH |
9548 | } |
9549 | } | |
9550 | ||
9551 | return container; | |
9552 | } | |
9553 | ||
9554 | /* Assign into the component of LHS indexed by the OP_POSITIONAL | |
9555 | construct at *POS, updating *POS past the construct, given that | |
9556 | the positions are relative to lower bound LOW, where HIGH is the | |
9557 | upper bound. Record the position in INDICES[0 .. MAX_INDICES-1] | |
9558 | updating *NUM_INDICES as needed. CONTAINER is as for | |
0963b4bd | 9559 | assign_aggregate. */ |
52ce6436 PH |
9560 | static void |
9561 | aggregate_assign_positional (struct value *container, | |
9562 | struct value *lhs, struct expression *exp, | |
9563 | int *pos, LONGEST *indices, int *num_indices, | |
9564 | int max_indices, LONGEST low, LONGEST high) | |
9565 | { | |
9566 | LONGEST ind = longest_to_int (exp->elts[*pos + 1].longconst) + low; | |
9567 | ||
9568 | if (ind - 1 == high) | |
e1d5a0d2 | 9569 | warning (_("Extra components in aggregate ignored.")); |
52ce6436 PH |
9570 | if (ind <= high) |
9571 | { | |
9572 | add_component_interval (ind, ind, indices, num_indices, max_indices); | |
9573 | *pos += 3; | |
9574 | assign_component (container, lhs, ind, exp, pos); | |
9575 | } | |
9576 | else | |
9577 | ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP); | |
9578 | } | |
9579 | ||
9580 | /* Assign into the components of LHS indexed by the OP_CHOICES | |
9581 | construct at *POS, updating *POS past the construct, given that | |
9582 | the allowable indices are LOW..HIGH. Record the indices assigned | |
9583 | to in INDICES[0 .. MAX_INDICES-1], updating *NUM_INDICES as | |
0963b4bd | 9584 | needed. CONTAINER is as for assign_aggregate. */ |
52ce6436 PH |
9585 | static void |
9586 | aggregate_assign_from_choices (struct value *container, | |
9587 | struct value *lhs, struct expression *exp, | |
9588 | int *pos, LONGEST *indices, int *num_indices, | |
9589 | int max_indices, LONGEST low, LONGEST high) | |
9590 | { | |
9591 | int j; | |
9592 | int n_choices = longest_to_int (exp->elts[*pos+1].longconst); | |
9593 | int choice_pos, expr_pc; | |
9594 | int is_array = ada_is_direct_array_type (value_type (lhs)); | |
9595 | ||
9596 | choice_pos = *pos += 3; | |
9597 | ||
9598 | for (j = 0; j < n_choices; j += 1) | |
9599 | ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP); | |
9600 | expr_pc = *pos; | |
9601 | ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP); | |
9602 | ||
9603 | for (j = 0; j < n_choices; j += 1) | |
9604 | { | |
9605 | LONGEST lower, upper; | |
9606 | enum exp_opcode op = exp->elts[choice_pos].opcode; | |
5b4ee69b | 9607 | |
52ce6436 PH |
9608 | if (op == OP_DISCRETE_RANGE) |
9609 | { | |
9610 | choice_pos += 1; | |
9611 | lower = value_as_long (ada_evaluate_subexp (NULL, exp, pos, | |
9612 | EVAL_NORMAL)); | |
9613 | upper = value_as_long (ada_evaluate_subexp (NULL, exp, pos, | |
9614 | EVAL_NORMAL)); | |
9615 | } | |
9616 | else if (is_array) | |
9617 | { | |
9618 | lower = value_as_long (ada_evaluate_subexp (NULL, exp, &choice_pos, | |
9619 | EVAL_NORMAL)); | |
9620 | upper = lower; | |
9621 | } | |
9622 | else | |
9623 | { | |
9624 | int ind; | |
0d5cff50 | 9625 | const char *name; |
5b4ee69b | 9626 | |
52ce6436 PH |
9627 | switch (op) |
9628 | { | |
9629 | case OP_NAME: | |
9630 | name = &exp->elts[choice_pos + 2].string; | |
9631 | break; | |
9632 | case OP_VAR_VALUE: | |
9633 | name = SYMBOL_NATURAL_NAME (exp->elts[choice_pos + 2].symbol); | |
9634 | break; | |
9635 | default: | |
9636 | error (_("Invalid record component association.")); | |
9637 | } | |
9638 | ada_evaluate_subexp (NULL, exp, &choice_pos, EVAL_SKIP); | |
9639 | ind = 0; | |
9640 | if (! find_struct_field (name, value_type (lhs), 0, | |
9641 | NULL, NULL, NULL, NULL, &ind)) | |
9642 | error (_("Unknown component name: %s."), name); | |
9643 | lower = upper = ind; | |
9644 | } | |
9645 | ||
9646 | if (lower <= upper && (lower < low || upper > high)) | |
9647 | error (_("Index in component association out of bounds.")); | |
9648 | ||
9649 | add_component_interval (lower, upper, indices, num_indices, | |
9650 | max_indices); | |
9651 | while (lower <= upper) | |
9652 | { | |
9653 | int pos1; | |
5b4ee69b | 9654 | |
52ce6436 PH |
9655 | pos1 = expr_pc; |
9656 | assign_component (container, lhs, lower, exp, &pos1); | |
9657 | lower += 1; | |
9658 | } | |
9659 | } | |
9660 | } | |
9661 | ||
9662 | /* Assign the value of the expression in the OP_OTHERS construct in | |
9663 | EXP at *POS into the components of LHS indexed from LOW .. HIGH that | |
9664 | have not been previously assigned. The index intervals already assigned | |
9665 | are in INDICES[0 .. NUM_INDICES-1]. Updates *POS to after the | |
0963b4bd | 9666 | OP_OTHERS clause. CONTAINER is as for assign_aggregate. */ |
52ce6436 PH |
9667 | static void |
9668 | aggregate_assign_others (struct value *container, | |
9669 | struct value *lhs, struct expression *exp, | |
9670 | int *pos, LONGEST *indices, int num_indices, | |
9671 | LONGEST low, LONGEST high) | |
9672 | { | |
9673 | int i; | |
5ce64950 | 9674 | int expr_pc = *pos + 1; |
52ce6436 PH |
9675 | |
9676 | for (i = 0; i < num_indices - 2; i += 2) | |
9677 | { | |
9678 | LONGEST ind; | |
5b4ee69b | 9679 | |
52ce6436 PH |
9680 | for (ind = indices[i + 1] + 1; ind < indices[i + 2]; ind += 1) |
9681 | { | |
5ce64950 | 9682 | int localpos; |
5b4ee69b | 9683 | |
5ce64950 MS |
9684 | localpos = expr_pc; |
9685 | assign_component (container, lhs, ind, exp, &localpos); | |
52ce6436 PH |
9686 | } |
9687 | } | |
9688 | ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP); | |
9689 | } | |
9690 | ||
9691 | /* Add the interval [LOW .. HIGH] to the sorted set of intervals | |
9692 | [ INDICES[0] .. INDICES[1] ],..., [ INDICES[*SIZE-2] .. INDICES[*SIZE-1] ], | |
9693 | modifying *SIZE as needed. It is an error if *SIZE exceeds | |
9694 | MAX_SIZE. The resulting intervals do not overlap. */ | |
9695 | static void | |
9696 | add_component_interval (LONGEST low, LONGEST high, | |
9697 | LONGEST* indices, int *size, int max_size) | |
9698 | { | |
9699 | int i, j; | |
5b4ee69b | 9700 | |
52ce6436 PH |
9701 | for (i = 0; i < *size; i += 2) { |
9702 | if (high >= indices[i] && low <= indices[i + 1]) | |
9703 | { | |
9704 | int kh; | |
5b4ee69b | 9705 | |
52ce6436 PH |
9706 | for (kh = i + 2; kh < *size; kh += 2) |
9707 | if (high < indices[kh]) | |
9708 | break; | |
9709 | if (low < indices[i]) | |
9710 | indices[i] = low; | |
9711 | indices[i + 1] = indices[kh - 1]; | |
9712 | if (high > indices[i + 1]) | |
9713 | indices[i + 1] = high; | |
9714 | memcpy (indices + i + 2, indices + kh, *size - kh); | |
9715 | *size -= kh - i - 2; | |
9716 | return; | |
9717 | } | |
9718 | else if (high < indices[i]) | |
9719 | break; | |
9720 | } | |
9721 | ||
9722 | if (*size == max_size) | |
9723 | error (_("Internal error: miscounted aggregate components.")); | |
9724 | *size += 2; | |
9725 | for (j = *size-1; j >= i+2; j -= 1) | |
9726 | indices[j] = indices[j - 2]; | |
9727 | indices[i] = low; | |
9728 | indices[i + 1] = high; | |
9729 | } | |
9730 | ||
6e48bd2c JB |
9731 | /* Perform and Ada cast of ARG2 to type TYPE if the type of ARG2 |
9732 | is different. */ | |
9733 | ||
9734 | static struct value * | |
9735 | ada_value_cast (struct type *type, struct value *arg2, enum noside noside) | |
9736 | { | |
9737 | if (type == ada_check_typedef (value_type (arg2))) | |
9738 | return arg2; | |
9739 | ||
9740 | if (ada_is_fixed_point_type (type)) | |
9741 | return (cast_to_fixed (type, arg2)); | |
9742 | ||
9743 | if (ada_is_fixed_point_type (value_type (arg2))) | |
a53b7a21 | 9744 | return cast_from_fixed (type, arg2); |
6e48bd2c JB |
9745 | |
9746 | return value_cast (type, arg2); | |
9747 | } | |
9748 | ||
284614f0 JB |
9749 | /* Evaluating Ada expressions, and printing their result. |
9750 | ------------------------------------------------------ | |
9751 | ||
21649b50 JB |
9752 | 1. Introduction: |
9753 | ---------------- | |
9754 | ||
284614f0 JB |
9755 | We usually evaluate an Ada expression in order to print its value. |
9756 | We also evaluate an expression in order to print its type, which | |
9757 | happens during the EVAL_AVOID_SIDE_EFFECTS phase of the evaluation, | |
9758 | but we'll focus mostly on the EVAL_NORMAL phase. In practice, the | |
9759 | EVAL_AVOID_SIDE_EFFECTS phase allows us to simplify certain aspects of | |
9760 | the evaluation compared to the EVAL_NORMAL, but is otherwise very | |
9761 | similar. | |
9762 | ||
9763 | Evaluating expressions is a little more complicated for Ada entities | |
9764 | than it is for entities in languages such as C. The main reason for | |
9765 | this is that Ada provides types whose definition might be dynamic. | |
9766 | One example of such types is variant records. Or another example | |
9767 | would be an array whose bounds can only be known at run time. | |
9768 | ||
9769 | The following description is a general guide as to what should be | |
9770 | done (and what should NOT be done) in order to evaluate an expression | |
9771 | involving such types, and when. This does not cover how the semantic | |
9772 | information is encoded by GNAT as this is covered separatly. For the | |
9773 | document used as the reference for the GNAT encoding, see exp_dbug.ads | |
9774 | in the GNAT sources. | |
9775 | ||
9776 | Ideally, we should embed each part of this description next to its | |
9777 | associated code. Unfortunately, the amount of code is so vast right | |
9778 | now that it's hard to see whether the code handling a particular | |
9779 | situation might be duplicated or not. One day, when the code is | |
9780 | cleaned up, this guide might become redundant with the comments | |
9781 | inserted in the code, and we might want to remove it. | |
9782 | ||
21649b50 JB |
9783 | 2. ``Fixing'' an Entity, the Simple Case: |
9784 | ----------------------------------------- | |
9785 | ||
284614f0 JB |
9786 | When evaluating Ada expressions, the tricky issue is that they may |
9787 | reference entities whose type contents and size are not statically | |
9788 | known. Consider for instance a variant record: | |
9789 | ||
9790 | type Rec (Empty : Boolean := True) is record | |
9791 | case Empty is | |
9792 | when True => null; | |
9793 | when False => Value : Integer; | |
9794 | end case; | |
9795 | end record; | |
9796 | Yes : Rec := (Empty => False, Value => 1); | |
9797 | No : Rec := (empty => True); | |
9798 | ||
9799 | The size and contents of that record depends on the value of the | |
9800 | descriminant (Rec.Empty). At this point, neither the debugging | |
9801 | information nor the associated type structure in GDB are able to | |
9802 | express such dynamic types. So what the debugger does is to create | |
9803 | "fixed" versions of the type that applies to the specific object. | |
9804 | We also informally refer to this opperation as "fixing" an object, | |
9805 | which means creating its associated fixed type. | |
9806 | ||
9807 | Example: when printing the value of variable "Yes" above, its fixed | |
9808 | type would look like this: | |
9809 | ||
9810 | type Rec is record | |
9811 | Empty : Boolean; | |
9812 | Value : Integer; | |
9813 | end record; | |
9814 | ||
9815 | On the other hand, if we printed the value of "No", its fixed type | |
9816 | would become: | |
9817 | ||
9818 | type Rec is record | |
9819 | Empty : Boolean; | |
9820 | end record; | |
9821 | ||
9822 | Things become a little more complicated when trying to fix an entity | |
9823 | with a dynamic type that directly contains another dynamic type, | |
9824 | such as an array of variant records, for instance. There are | |
9825 | two possible cases: Arrays, and records. | |
9826 | ||
21649b50 JB |
9827 | 3. ``Fixing'' Arrays: |
9828 | --------------------- | |
9829 | ||
9830 | The type structure in GDB describes an array in terms of its bounds, | |
9831 | and the type of its elements. By design, all elements in the array | |
9832 | have the same type and we cannot represent an array of variant elements | |
9833 | using the current type structure in GDB. When fixing an array, | |
9834 | we cannot fix the array element, as we would potentially need one | |
9835 | fixed type per element of the array. As a result, the best we can do | |
9836 | when fixing an array is to produce an array whose bounds and size | |
9837 | are correct (allowing us to read it from memory), but without having | |
9838 | touched its element type. Fixing each element will be done later, | |
9839 | when (if) necessary. | |
9840 | ||
9841 | Arrays are a little simpler to handle than records, because the same | |
9842 | amount of memory is allocated for each element of the array, even if | |
1b536f04 | 9843 | the amount of space actually used by each element differs from element |
21649b50 | 9844 | to element. Consider for instance the following array of type Rec: |
284614f0 JB |
9845 | |
9846 | type Rec_Array is array (1 .. 2) of Rec; | |
9847 | ||
1b536f04 JB |
9848 | The actual amount of memory occupied by each element might be different |
9849 | from element to element, depending on the value of their discriminant. | |
21649b50 | 9850 | But the amount of space reserved for each element in the array remains |
1b536f04 | 9851 | fixed regardless. So we simply need to compute that size using |
21649b50 JB |
9852 | the debugging information available, from which we can then determine |
9853 | the array size (we multiply the number of elements of the array by | |
9854 | the size of each element). | |
9855 | ||
9856 | The simplest case is when we have an array of a constrained element | |
9857 | type. For instance, consider the following type declarations: | |
9858 | ||
9859 | type Bounded_String (Max_Size : Integer) is | |
9860 | Length : Integer; | |
9861 | Buffer : String (1 .. Max_Size); | |
9862 | end record; | |
9863 | type Bounded_String_Array is array (1 ..2) of Bounded_String (80); | |
9864 | ||
9865 | In this case, the compiler describes the array as an array of | |
9866 | variable-size elements (identified by its XVS suffix) for which | |
9867 | the size can be read in the parallel XVZ variable. | |
9868 | ||
9869 | In the case of an array of an unconstrained element type, the compiler | |
9870 | wraps the array element inside a private PAD type. This type should not | |
9871 | be shown to the user, and must be "unwrap"'ed before printing. Note | |
284614f0 JB |
9872 | that we also use the adjective "aligner" in our code to designate |
9873 | these wrapper types. | |
9874 | ||
1b536f04 | 9875 | In some cases, the size allocated for each element is statically |
21649b50 JB |
9876 | known. In that case, the PAD type already has the correct size, |
9877 | and the array element should remain unfixed. | |
9878 | ||
9879 | But there are cases when this size is not statically known. | |
9880 | For instance, assuming that "Five" is an integer variable: | |
284614f0 JB |
9881 | |
9882 | type Dynamic is array (1 .. Five) of Integer; | |
9883 | type Wrapper (Has_Length : Boolean := False) is record | |
9884 | Data : Dynamic; | |
9885 | case Has_Length is | |
9886 | when True => Length : Integer; | |
9887 | when False => null; | |
9888 | end case; | |
9889 | end record; | |
9890 | type Wrapper_Array is array (1 .. 2) of Wrapper; | |
9891 | ||
9892 | Hello : Wrapper_Array := (others => (Has_Length => True, | |
9893 | Data => (others => 17), | |
9894 | Length => 1)); | |
9895 | ||
9896 | ||
9897 | The debugging info would describe variable Hello as being an | |
9898 | array of a PAD type. The size of that PAD type is not statically | |
9899 | known, but can be determined using a parallel XVZ variable. | |
9900 | In that case, a copy of the PAD type with the correct size should | |
9901 | be used for the fixed array. | |
9902 | ||
21649b50 JB |
9903 | 3. ``Fixing'' record type objects: |
9904 | ---------------------------------- | |
9905 | ||
9906 | Things are slightly different from arrays in the case of dynamic | |
284614f0 JB |
9907 | record types. In this case, in order to compute the associated |
9908 | fixed type, we need to determine the size and offset of each of | |
9909 | its components. This, in turn, requires us to compute the fixed | |
9910 | type of each of these components. | |
9911 | ||
9912 | Consider for instance the example: | |
9913 | ||
9914 | type Bounded_String (Max_Size : Natural) is record | |
9915 | Str : String (1 .. Max_Size); | |
9916 | Length : Natural; | |
9917 | end record; | |
9918 | My_String : Bounded_String (Max_Size => 10); | |
9919 | ||
9920 | In that case, the position of field "Length" depends on the size | |
9921 | of field Str, which itself depends on the value of the Max_Size | |
21649b50 | 9922 | discriminant. In order to fix the type of variable My_String, |
284614f0 JB |
9923 | we need to fix the type of field Str. Therefore, fixing a variant |
9924 | record requires us to fix each of its components. | |
9925 | ||
9926 | However, if a component does not have a dynamic size, the component | |
9927 | should not be fixed. In particular, fields that use a PAD type | |
9928 | should not fixed. Here is an example where this might happen | |
9929 | (assuming type Rec above): | |
9930 | ||
9931 | type Container (Big : Boolean) is record | |
9932 | First : Rec; | |
9933 | After : Integer; | |
9934 | case Big is | |
9935 | when True => Another : Integer; | |
9936 | when False => null; | |
9937 | end case; | |
9938 | end record; | |
9939 | My_Container : Container := (Big => False, | |
9940 | First => (Empty => True), | |
9941 | After => 42); | |
9942 | ||
9943 | In that example, the compiler creates a PAD type for component First, | |
9944 | whose size is constant, and then positions the component After just | |
9945 | right after it. The offset of component After is therefore constant | |
9946 | in this case. | |
9947 | ||
9948 | The debugger computes the position of each field based on an algorithm | |
9949 | that uses, among other things, the actual position and size of the field | |
21649b50 JB |
9950 | preceding it. Let's now imagine that the user is trying to print |
9951 | the value of My_Container. If the type fixing was recursive, we would | |
284614f0 JB |
9952 | end up computing the offset of field After based on the size of the |
9953 | fixed version of field First. And since in our example First has | |
9954 | only one actual field, the size of the fixed type is actually smaller | |
9955 | than the amount of space allocated to that field, and thus we would | |
9956 | compute the wrong offset of field After. | |
9957 | ||
21649b50 JB |
9958 | To make things more complicated, we need to watch out for dynamic |
9959 | components of variant records (identified by the ___XVL suffix in | |
9960 | the component name). Even if the target type is a PAD type, the size | |
9961 | of that type might not be statically known. So the PAD type needs | |
9962 | to be unwrapped and the resulting type needs to be fixed. Otherwise, | |
9963 | we might end up with the wrong size for our component. This can be | |
9964 | observed with the following type declarations: | |
284614f0 JB |
9965 | |
9966 | type Octal is new Integer range 0 .. 7; | |
9967 | type Octal_Array is array (Positive range <>) of Octal; | |
9968 | pragma Pack (Octal_Array); | |
9969 | ||
9970 | type Octal_Buffer (Size : Positive) is record | |
9971 | Buffer : Octal_Array (1 .. Size); | |
9972 | Length : Integer; | |
9973 | end record; | |
9974 | ||
9975 | In that case, Buffer is a PAD type whose size is unset and needs | |
9976 | to be computed by fixing the unwrapped type. | |
9977 | ||
21649b50 JB |
9978 | 4. When to ``Fix'' un-``Fixed'' sub-elements of an entity: |
9979 | ---------------------------------------------------------- | |
9980 | ||
9981 | Lastly, when should the sub-elements of an entity that remained unfixed | |
284614f0 JB |
9982 | thus far, be actually fixed? |
9983 | ||
9984 | The answer is: Only when referencing that element. For instance | |
9985 | when selecting one component of a record, this specific component | |
9986 | should be fixed at that point in time. Or when printing the value | |
9987 | of a record, each component should be fixed before its value gets | |
9988 | printed. Similarly for arrays, the element of the array should be | |
9989 | fixed when printing each element of the array, or when extracting | |
9990 | one element out of that array. On the other hand, fixing should | |
9991 | not be performed on the elements when taking a slice of an array! | |
9992 | ||
9993 | Note that one of the side-effects of miscomputing the offset and | |
9994 | size of each field is that we end up also miscomputing the size | |
9995 | of the containing type. This can have adverse results when computing | |
9996 | the value of an entity. GDB fetches the value of an entity based | |
9997 | on the size of its type, and thus a wrong size causes GDB to fetch | |
9998 | the wrong amount of memory. In the case where the computed size is | |
9999 | too small, GDB fetches too little data to print the value of our | |
10000 | entiry. Results in this case as unpredicatble, as we usually read | |
10001 | past the buffer containing the data =:-o. */ | |
10002 | ||
10003 | /* Implement the evaluate_exp routine in the exp_descriptor structure | |
10004 | for the Ada language. */ | |
10005 | ||
52ce6436 | 10006 | static struct value * |
ebf56fd3 | 10007 | ada_evaluate_subexp (struct type *expect_type, struct expression *exp, |
4c4b4cd2 | 10008 | int *pos, enum noside noside) |
14f9c5c9 AS |
10009 | { |
10010 | enum exp_opcode op; | |
b5385fc0 | 10011 | int tem; |
14f9c5c9 | 10012 | int pc; |
5ec18f2b | 10013 | int preeval_pos; |
14f9c5c9 AS |
10014 | struct value *arg1 = NULL, *arg2 = NULL, *arg3; |
10015 | struct type *type; | |
52ce6436 | 10016 | int nargs, oplen; |
d2e4a39e | 10017 | struct value **argvec; |
14f9c5c9 | 10018 | |
d2e4a39e AS |
10019 | pc = *pos; |
10020 | *pos += 1; | |
14f9c5c9 AS |
10021 | op = exp->elts[pc].opcode; |
10022 | ||
d2e4a39e | 10023 | switch (op) |
14f9c5c9 AS |
10024 | { |
10025 | default: | |
10026 | *pos -= 1; | |
6e48bd2c | 10027 | arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside); |
ca1f964d JG |
10028 | |
10029 | if (noside == EVAL_NORMAL) | |
10030 | arg1 = unwrap_value (arg1); | |
6e48bd2c JB |
10031 | |
10032 | /* If evaluating an OP_DOUBLE and an EXPECT_TYPE was provided, | |
10033 | then we need to perform the conversion manually, because | |
10034 | evaluate_subexp_standard doesn't do it. This conversion is | |
10035 | necessary in Ada because the different kinds of float/fixed | |
10036 | types in Ada have different representations. | |
10037 | ||
10038 | Similarly, we need to perform the conversion from OP_LONG | |
10039 | ourselves. */ | |
10040 | if ((op == OP_DOUBLE || op == OP_LONG) && expect_type != NULL) | |
10041 | arg1 = ada_value_cast (expect_type, arg1, noside); | |
10042 | ||
10043 | return arg1; | |
4c4b4cd2 PH |
10044 | |
10045 | case OP_STRING: | |
10046 | { | |
76a01679 | 10047 | struct value *result; |
5b4ee69b | 10048 | |
76a01679 JB |
10049 | *pos -= 1; |
10050 | result = evaluate_subexp_standard (expect_type, exp, pos, noside); | |
10051 | /* The result type will have code OP_STRING, bashed there from | |
10052 | OP_ARRAY. Bash it back. */ | |
df407dfe AC |
10053 | if (TYPE_CODE (value_type (result)) == TYPE_CODE_STRING) |
10054 | TYPE_CODE (value_type (result)) = TYPE_CODE_ARRAY; | |
76a01679 | 10055 | return result; |
4c4b4cd2 | 10056 | } |
14f9c5c9 AS |
10057 | |
10058 | case UNOP_CAST: | |
10059 | (*pos) += 2; | |
10060 | type = exp->elts[pc + 1].type; | |
10061 | arg1 = evaluate_subexp (type, exp, pos, noside); | |
10062 | if (noside == EVAL_SKIP) | |
4c4b4cd2 | 10063 | goto nosideret; |
6e48bd2c | 10064 | arg1 = ada_value_cast (type, arg1, noside); |
14f9c5c9 AS |
10065 | return arg1; |
10066 | ||
4c4b4cd2 PH |
10067 | case UNOP_QUAL: |
10068 | (*pos) += 2; | |
10069 | type = exp->elts[pc + 1].type; | |
10070 | return ada_evaluate_subexp (type, exp, pos, noside); | |
10071 | ||
14f9c5c9 AS |
10072 | case BINOP_ASSIGN: |
10073 | arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside); | |
52ce6436 PH |
10074 | if (exp->elts[*pos].opcode == OP_AGGREGATE) |
10075 | { | |
10076 | arg1 = assign_aggregate (arg1, arg1, exp, pos, noside); | |
10077 | if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS) | |
10078 | return arg1; | |
10079 | return ada_value_assign (arg1, arg1); | |
10080 | } | |
003f3813 JB |
10081 | /* Force the evaluation of the rhs ARG2 to the type of the lhs ARG1, |
10082 | except if the lhs of our assignment is a convenience variable. | |
10083 | In the case of assigning to a convenience variable, the lhs | |
10084 | should be exactly the result of the evaluation of the rhs. */ | |
10085 | type = value_type (arg1); | |
10086 | if (VALUE_LVAL (arg1) == lval_internalvar) | |
10087 | type = NULL; | |
10088 | arg2 = evaluate_subexp (type, exp, pos, noside); | |
14f9c5c9 | 10089 | if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS) |
4c4b4cd2 | 10090 | return arg1; |
df407dfe AC |
10091 | if (ada_is_fixed_point_type (value_type (arg1))) |
10092 | arg2 = cast_to_fixed (value_type (arg1), arg2); | |
10093 | else if (ada_is_fixed_point_type (value_type (arg2))) | |
76a01679 | 10094 | error |
323e0a4a | 10095 | (_("Fixed-point values must be assigned to fixed-point variables")); |
d2e4a39e | 10096 | else |
df407dfe | 10097 | arg2 = coerce_for_assign (value_type (arg1), arg2); |
4c4b4cd2 | 10098 | return ada_value_assign (arg1, arg2); |
14f9c5c9 AS |
10099 | |
10100 | case BINOP_ADD: | |
10101 | arg1 = evaluate_subexp_with_coercion (exp, pos, noside); | |
10102 | arg2 = evaluate_subexp_with_coercion (exp, pos, noside); | |
10103 | if (noside == EVAL_SKIP) | |
4c4b4cd2 | 10104 | goto nosideret; |
2ac8a782 JB |
10105 | if (TYPE_CODE (value_type (arg1)) == TYPE_CODE_PTR) |
10106 | return (value_from_longest | |
10107 | (value_type (arg1), | |
10108 | value_as_long (arg1) + value_as_long (arg2))); | |
c40cc657 JB |
10109 | if (TYPE_CODE (value_type (arg2)) == TYPE_CODE_PTR) |
10110 | return (value_from_longest | |
10111 | (value_type (arg2), | |
10112 | value_as_long (arg1) + value_as_long (arg2))); | |
df407dfe AC |
10113 | if ((ada_is_fixed_point_type (value_type (arg1)) |
10114 | || ada_is_fixed_point_type (value_type (arg2))) | |
10115 | && value_type (arg1) != value_type (arg2)) | |
323e0a4a | 10116 | error (_("Operands of fixed-point addition must have the same type")); |
b7789565 JB |
10117 | /* Do the addition, and cast the result to the type of the first |
10118 | argument. We cannot cast the result to a reference type, so if | |
10119 | ARG1 is a reference type, find its underlying type. */ | |
10120 | type = value_type (arg1); | |
10121 | while (TYPE_CODE (type) == TYPE_CODE_REF) | |
10122 | type = TYPE_TARGET_TYPE (type); | |
f44316fa | 10123 | binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2); |
89eef114 | 10124 | return value_cast (type, value_binop (arg1, arg2, BINOP_ADD)); |
14f9c5c9 AS |
10125 | |
10126 | case BINOP_SUB: | |
10127 | arg1 = evaluate_subexp_with_coercion (exp, pos, noside); | |
10128 | arg2 = evaluate_subexp_with_coercion (exp, pos, noside); | |
10129 | if (noside == EVAL_SKIP) | |
4c4b4cd2 | 10130 | goto nosideret; |
2ac8a782 JB |
10131 | if (TYPE_CODE (value_type (arg1)) == TYPE_CODE_PTR) |
10132 | return (value_from_longest | |
10133 | (value_type (arg1), | |
10134 | value_as_long (arg1) - value_as_long (arg2))); | |
c40cc657 JB |
10135 | if (TYPE_CODE (value_type (arg2)) == TYPE_CODE_PTR) |
10136 | return (value_from_longest | |
10137 | (value_type (arg2), | |
10138 | value_as_long (arg1) - value_as_long (arg2))); | |
df407dfe AC |
10139 | if ((ada_is_fixed_point_type (value_type (arg1)) |
10140 | || ada_is_fixed_point_type (value_type (arg2))) | |
10141 | && value_type (arg1) != value_type (arg2)) | |
0963b4bd MS |
10142 | error (_("Operands of fixed-point subtraction " |
10143 | "must have the same type")); | |
b7789565 JB |
10144 | /* Do the substraction, and cast the result to the type of the first |
10145 | argument. We cannot cast the result to a reference type, so if | |
10146 | ARG1 is a reference type, find its underlying type. */ | |
10147 | type = value_type (arg1); | |
10148 | while (TYPE_CODE (type) == TYPE_CODE_REF) | |
10149 | type = TYPE_TARGET_TYPE (type); | |
f44316fa | 10150 | binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2); |
89eef114 | 10151 | return value_cast (type, value_binop (arg1, arg2, BINOP_SUB)); |
14f9c5c9 AS |
10152 | |
10153 | case BINOP_MUL: | |
10154 | case BINOP_DIV: | |
e1578042 JB |
10155 | case BINOP_REM: |
10156 | case BINOP_MOD: | |
14f9c5c9 AS |
10157 | arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside); |
10158 | arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside); | |
10159 | if (noside == EVAL_SKIP) | |
4c4b4cd2 | 10160 | goto nosideret; |
e1578042 | 10161 | else if (noside == EVAL_AVOID_SIDE_EFFECTS) |
9c2be529 JB |
10162 | { |
10163 | binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2); | |
10164 | return value_zero (value_type (arg1), not_lval); | |
10165 | } | |
14f9c5c9 | 10166 | else |
4c4b4cd2 | 10167 | { |
a53b7a21 | 10168 | type = builtin_type (exp->gdbarch)->builtin_double; |
df407dfe | 10169 | if (ada_is_fixed_point_type (value_type (arg1))) |
a53b7a21 | 10170 | arg1 = cast_from_fixed (type, arg1); |
df407dfe | 10171 | if (ada_is_fixed_point_type (value_type (arg2))) |
a53b7a21 | 10172 | arg2 = cast_from_fixed (type, arg2); |
f44316fa | 10173 | binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2); |
4c4b4cd2 PH |
10174 | return ada_value_binop (arg1, arg2, op); |
10175 | } | |
10176 | ||
4c4b4cd2 PH |
10177 | case BINOP_EQUAL: |
10178 | case BINOP_NOTEQUAL: | |
14f9c5c9 | 10179 | arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside); |
df407dfe | 10180 | arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside); |
14f9c5c9 | 10181 | if (noside == EVAL_SKIP) |
76a01679 | 10182 | goto nosideret; |
4c4b4cd2 | 10183 | if (noside == EVAL_AVOID_SIDE_EFFECTS) |
76a01679 | 10184 | tem = 0; |
4c4b4cd2 | 10185 | else |
f44316fa UW |
10186 | { |
10187 | binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2); | |
10188 | tem = ada_value_equal (arg1, arg2); | |
10189 | } | |
4c4b4cd2 | 10190 | if (op == BINOP_NOTEQUAL) |
76a01679 | 10191 | tem = !tem; |
fbb06eb1 UW |
10192 | type = language_bool_type (exp->language_defn, exp->gdbarch); |
10193 | return value_from_longest (type, (LONGEST) tem); | |
4c4b4cd2 PH |
10194 | |
10195 | case UNOP_NEG: | |
10196 | arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside); | |
10197 | if (noside == EVAL_SKIP) | |
10198 | goto nosideret; | |
df407dfe AC |
10199 | else if (ada_is_fixed_point_type (value_type (arg1))) |
10200 | return value_cast (value_type (arg1), value_neg (arg1)); | |
14f9c5c9 | 10201 | else |
f44316fa UW |
10202 | { |
10203 | unop_promote (exp->language_defn, exp->gdbarch, &arg1); | |
10204 | return value_neg (arg1); | |
10205 | } | |
4c4b4cd2 | 10206 | |
2330c6c6 JB |
10207 | case BINOP_LOGICAL_AND: |
10208 | case BINOP_LOGICAL_OR: | |
10209 | case UNOP_LOGICAL_NOT: | |
000d5124 JB |
10210 | { |
10211 | struct value *val; | |
10212 | ||
10213 | *pos -= 1; | |
10214 | val = evaluate_subexp_standard (expect_type, exp, pos, noside); | |
fbb06eb1 UW |
10215 | type = language_bool_type (exp->language_defn, exp->gdbarch); |
10216 | return value_cast (type, val); | |
000d5124 | 10217 | } |
2330c6c6 JB |
10218 | |
10219 | case BINOP_BITWISE_AND: | |
10220 | case BINOP_BITWISE_IOR: | |
10221 | case BINOP_BITWISE_XOR: | |
000d5124 JB |
10222 | { |
10223 | struct value *val; | |
10224 | ||
10225 | arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS); | |
10226 | *pos = pc; | |
10227 | val = evaluate_subexp_standard (expect_type, exp, pos, noside); | |
10228 | ||
10229 | return value_cast (value_type (arg1), val); | |
10230 | } | |
2330c6c6 | 10231 | |
14f9c5c9 AS |
10232 | case OP_VAR_VALUE: |
10233 | *pos -= 1; | |
6799def4 | 10234 | |
14f9c5c9 | 10235 | if (noside == EVAL_SKIP) |
4c4b4cd2 PH |
10236 | { |
10237 | *pos += 4; | |
10238 | goto nosideret; | |
10239 | } | |
da5c522f JB |
10240 | |
10241 | if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN) | |
76a01679 JB |
10242 | /* Only encountered when an unresolved symbol occurs in a |
10243 | context other than a function call, in which case, it is | |
52ce6436 | 10244 | invalid. */ |
323e0a4a | 10245 | error (_("Unexpected unresolved symbol, %s, during evaluation"), |
4c4b4cd2 | 10246 | SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol)); |
da5c522f JB |
10247 | |
10248 | if (noside == EVAL_AVOID_SIDE_EFFECTS) | |
4c4b4cd2 | 10249 | { |
0c1f74cf | 10250 | type = static_unwrap_type (SYMBOL_TYPE (exp->elts[pc + 2].symbol)); |
31dbc1c5 JB |
10251 | /* Check to see if this is a tagged type. We also need to handle |
10252 | the case where the type is a reference to a tagged type, but | |
10253 | we have to be careful to exclude pointers to tagged types. | |
10254 | The latter should be shown as usual (as a pointer), whereas | |
10255 | a reference should mostly be transparent to the user. */ | |
10256 | if (ada_is_tagged_type (type, 0) | |
023db19c | 10257 | || (TYPE_CODE (type) == TYPE_CODE_REF |
31dbc1c5 | 10258 | && ada_is_tagged_type (TYPE_TARGET_TYPE (type), 0))) |
0d72a7c3 JB |
10259 | { |
10260 | /* Tagged types are a little special in the fact that the real | |
10261 | type is dynamic and can only be determined by inspecting the | |
10262 | object's tag. This means that we need to get the object's | |
10263 | value first (EVAL_NORMAL) and then extract the actual object | |
10264 | type from its tag. | |
10265 | ||
10266 | Note that we cannot skip the final step where we extract | |
10267 | the object type from its tag, because the EVAL_NORMAL phase | |
10268 | results in dynamic components being resolved into fixed ones. | |
10269 | This can cause problems when trying to print the type | |
10270 | description of tagged types whose parent has a dynamic size: | |
10271 | We use the type name of the "_parent" component in order | |
10272 | to print the name of the ancestor type in the type description. | |
10273 | If that component had a dynamic size, the resolution into | |
10274 | a fixed type would result in the loss of that type name, | |
10275 | thus preventing us from printing the name of the ancestor | |
10276 | type in the type description. */ | |
10277 | arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_NORMAL); | |
10278 | ||
10279 | if (TYPE_CODE (type) != TYPE_CODE_REF) | |
10280 | { | |
10281 | struct type *actual_type; | |
10282 | ||
10283 | actual_type = type_from_tag (ada_value_tag (arg1)); | |
10284 | if (actual_type == NULL) | |
10285 | /* If, for some reason, we were unable to determine | |
10286 | the actual type from the tag, then use the static | |
10287 | approximation that we just computed as a fallback. | |
10288 | This can happen if the debugging information is | |
10289 | incomplete, for instance. */ | |
10290 | actual_type = type; | |
10291 | return value_zero (actual_type, not_lval); | |
10292 | } | |
10293 | else | |
10294 | { | |
10295 | /* In the case of a ref, ada_coerce_ref takes care | |
10296 | of determining the actual type. But the evaluation | |
10297 | should return a ref as it should be valid to ask | |
10298 | for its address; so rebuild a ref after coerce. */ | |
10299 | arg1 = ada_coerce_ref (arg1); | |
10300 | return value_ref (arg1); | |
10301 | } | |
10302 | } | |
0c1f74cf | 10303 | |
84754697 JB |
10304 | /* Records and unions for which GNAT encodings have been |
10305 | generated need to be statically fixed as well. | |
10306 | Otherwise, non-static fixing produces a type where | |
10307 | all dynamic properties are removed, which prevents "ptype" | |
10308 | from being able to completely describe the type. | |
10309 | For instance, a case statement in a variant record would be | |
10310 | replaced by the relevant components based on the actual | |
10311 | value of the discriminants. */ | |
10312 | if ((TYPE_CODE (type) == TYPE_CODE_STRUCT | |
10313 | && dynamic_template_type (type) != NULL) | |
10314 | || (TYPE_CODE (type) == TYPE_CODE_UNION | |
10315 | && ada_find_parallel_type (type, "___XVU") != NULL)) | |
10316 | { | |
10317 | *pos += 4; | |
10318 | return value_zero (to_static_fixed_type (type), not_lval); | |
10319 | } | |
4c4b4cd2 | 10320 | } |
da5c522f JB |
10321 | |
10322 | arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside); | |
10323 | return ada_to_fixed_value (arg1); | |
4c4b4cd2 PH |
10324 | |
10325 | case OP_FUNCALL: | |
10326 | (*pos) += 2; | |
10327 | ||
10328 | /* Allocate arg vector, including space for the function to be | |
10329 | called in argvec[0] and a terminating NULL. */ | |
10330 | nargs = longest_to_int (exp->elts[pc + 1].longconst); | |
10331 | argvec = | |
10332 | (struct value **) alloca (sizeof (struct value *) * (nargs + 2)); | |
10333 | ||
10334 | if (exp->elts[*pos].opcode == OP_VAR_VALUE | |
76a01679 | 10335 | && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN) |
323e0a4a | 10336 | error (_("Unexpected unresolved symbol, %s, during evaluation"), |
4c4b4cd2 PH |
10337 | SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol)); |
10338 | else | |
10339 | { | |
10340 | for (tem = 0; tem <= nargs; tem += 1) | |
10341 | argvec[tem] = evaluate_subexp (NULL_TYPE, exp, pos, noside); | |
10342 | argvec[tem] = 0; | |
10343 | ||
10344 | if (noside == EVAL_SKIP) | |
10345 | goto nosideret; | |
10346 | } | |
10347 | ||
ad82864c JB |
10348 | if (ada_is_constrained_packed_array_type |
10349 | (desc_base_type (value_type (argvec[0])))) | |
4c4b4cd2 | 10350 | argvec[0] = ada_coerce_to_simple_array (argvec[0]); |
284614f0 JB |
10351 | else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_ARRAY |
10352 | && TYPE_FIELD_BITSIZE (value_type (argvec[0]), 0) != 0) | |
10353 | /* This is a packed array that has already been fixed, and | |
10354 | therefore already coerced to a simple array. Nothing further | |
10355 | to do. */ | |
10356 | ; | |
df407dfe AC |
10357 | else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_REF |
10358 | || (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_ARRAY | |
76a01679 | 10359 | && VALUE_LVAL (argvec[0]) == lval_memory)) |
4c4b4cd2 PH |
10360 | argvec[0] = value_addr (argvec[0]); |
10361 | ||
df407dfe | 10362 | type = ada_check_typedef (value_type (argvec[0])); |
720d1a40 JB |
10363 | |
10364 | /* Ada allows us to implicitly dereference arrays when subscripting | |
8f465ea7 JB |
10365 | them. So, if this is an array typedef (encoding use for array |
10366 | access types encoded as fat pointers), strip it now. */ | |
720d1a40 JB |
10367 | if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF) |
10368 | type = ada_typedef_target_type (type); | |
10369 | ||
4c4b4cd2 PH |
10370 | if (TYPE_CODE (type) == TYPE_CODE_PTR) |
10371 | { | |
61ee279c | 10372 | switch (TYPE_CODE (ada_check_typedef (TYPE_TARGET_TYPE (type)))) |
4c4b4cd2 PH |
10373 | { |
10374 | case TYPE_CODE_FUNC: | |
61ee279c | 10375 | type = ada_check_typedef (TYPE_TARGET_TYPE (type)); |
4c4b4cd2 PH |
10376 | break; |
10377 | case TYPE_CODE_ARRAY: | |
10378 | break; | |
10379 | case TYPE_CODE_STRUCT: | |
10380 | if (noside != EVAL_AVOID_SIDE_EFFECTS) | |
10381 | argvec[0] = ada_value_ind (argvec[0]); | |
61ee279c | 10382 | type = ada_check_typedef (TYPE_TARGET_TYPE (type)); |
4c4b4cd2 PH |
10383 | break; |
10384 | default: | |
323e0a4a | 10385 | error (_("cannot subscript or call something of type `%s'"), |
df407dfe | 10386 | ada_type_name (value_type (argvec[0]))); |
4c4b4cd2 PH |
10387 | break; |
10388 | } | |
10389 | } | |
10390 | ||
10391 | switch (TYPE_CODE (type)) | |
10392 | { | |
10393 | case TYPE_CODE_FUNC: | |
10394 | if (noside == EVAL_AVOID_SIDE_EFFECTS) | |
c8ea1972 PH |
10395 | { |
10396 | struct type *rtype = TYPE_TARGET_TYPE (type); | |
10397 | ||
10398 | if (TYPE_GNU_IFUNC (type)) | |
10399 | return allocate_value (TYPE_TARGET_TYPE (rtype)); | |
10400 | return allocate_value (rtype); | |
10401 | } | |
4c4b4cd2 | 10402 | return call_function_by_hand (argvec[0], nargs, argvec + 1); |
c8ea1972 PH |
10403 | case TYPE_CODE_INTERNAL_FUNCTION: |
10404 | if (noside == EVAL_AVOID_SIDE_EFFECTS) | |
10405 | /* We don't know anything about what the internal | |
10406 | function might return, but we have to return | |
10407 | something. */ | |
10408 | return value_zero (builtin_type (exp->gdbarch)->builtin_int, | |
10409 | not_lval); | |
10410 | else | |
10411 | return call_internal_function (exp->gdbarch, exp->language_defn, | |
10412 | argvec[0], nargs, argvec + 1); | |
10413 | ||
4c4b4cd2 PH |
10414 | case TYPE_CODE_STRUCT: |
10415 | { | |
10416 | int arity; | |
10417 | ||
4c4b4cd2 PH |
10418 | arity = ada_array_arity (type); |
10419 | type = ada_array_element_type (type, nargs); | |
10420 | if (type == NULL) | |
323e0a4a | 10421 | error (_("cannot subscript or call a record")); |
4c4b4cd2 | 10422 | if (arity != nargs) |
323e0a4a | 10423 | error (_("wrong number of subscripts; expecting %d"), arity); |
4c4b4cd2 | 10424 | if (noside == EVAL_AVOID_SIDE_EFFECTS) |
0a07e705 | 10425 | return value_zero (ada_aligned_type (type), lval_memory); |
4c4b4cd2 PH |
10426 | return |
10427 | unwrap_value (ada_value_subscript | |
10428 | (argvec[0], nargs, argvec + 1)); | |
10429 | } | |
10430 | case TYPE_CODE_ARRAY: | |
10431 | if (noside == EVAL_AVOID_SIDE_EFFECTS) | |
10432 | { | |
10433 | type = ada_array_element_type (type, nargs); | |
10434 | if (type == NULL) | |
323e0a4a | 10435 | error (_("element type of array unknown")); |
4c4b4cd2 | 10436 | else |
0a07e705 | 10437 | return value_zero (ada_aligned_type (type), lval_memory); |
4c4b4cd2 PH |
10438 | } |
10439 | return | |
10440 | unwrap_value (ada_value_subscript | |
10441 | (ada_coerce_to_simple_array (argvec[0]), | |
10442 | nargs, argvec + 1)); | |
10443 | case TYPE_CODE_PTR: /* Pointer to array */ | |
4c4b4cd2 PH |
10444 | if (noside == EVAL_AVOID_SIDE_EFFECTS) |
10445 | { | |
deede10c | 10446 | type = to_fixed_array_type (TYPE_TARGET_TYPE (type), NULL, 1); |
4c4b4cd2 PH |
10447 | type = ada_array_element_type (type, nargs); |
10448 | if (type == NULL) | |
323e0a4a | 10449 | error (_("element type of array unknown")); |
4c4b4cd2 | 10450 | else |
0a07e705 | 10451 | return value_zero (ada_aligned_type (type), lval_memory); |
4c4b4cd2 PH |
10452 | } |
10453 | return | |
deede10c JB |
10454 | unwrap_value (ada_value_ptr_subscript (argvec[0], |
10455 | nargs, argvec + 1)); | |
4c4b4cd2 PH |
10456 | |
10457 | default: | |
e1d5a0d2 PH |
10458 | error (_("Attempt to index or call something other than an " |
10459 | "array or function")); | |
4c4b4cd2 PH |
10460 | } |
10461 | ||
10462 | case TERNOP_SLICE: | |
10463 | { | |
10464 | struct value *array = evaluate_subexp (NULL_TYPE, exp, pos, noside); | |
10465 | struct value *low_bound_val = | |
10466 | evaluate_subexp (NULL_TYPE, exp, pos, noside); | |
714e53ab PH |
10467 | struct value *high_bound_val = |
10468 | evaluate_subexp (NULL_TYPE, exp, pos, noside); | |
10469 | LONGEST low_bound; | |
10470 | LONGEST high_bound; | |
5b4ee69b | 10471 | |
994b9211 AC |
10472 | low_bound_val = coerce_ref (low_bound_val); |
10473 | high_bound_val = coerce_ref (high_bound_val); | |
714e53ab PH |
10474 | low_bound = pos_atr (low_bound_val); |
10475 | high_bound = pos_atr (high_bound_val); | |
963a6417 | 10476 | |
4c4b4cd2 PH |
10477 | if (noside == EVAL_SKIP) |
10478 | goto nosideret; | |
10479 | ||
4c4b4cd2 PH |
10480 | /* If this is a reference to an aligner type, then remove all |
10481 | the aligners. */ | |
df407dfe AC |
10482 | if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF |
10483 | && ada_is_aligner_type (TYPE_TARGET_TYPE (value_type (array)))) | |
10484 | TYPE_TARGET_TYPE (value_type (array)) = | |
10485 | ada_aligned_type (TYPE_TARGET_TYPE (value_type (array))); | |
4c4b4cd2 | 10486 | |
ad82864c | 10487 | if (ada_is_constrained_packed_array_type (value_type (array))) |
323e0a4a | 10488 | error (_("cannot slice a packed array")); |
4c4b4cd2 PH |
10489 | |
10490 | /* If this is a reference to an array or an array lvalue, | |
10491 | convert to a pointer. */ | |
df407dfe AC |
10492 | if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF |
10493 | || (TYPE_CODE (value_type (array)) == TYPE_CODE_ARRAY | |
4c4b4cd2 PH |
10494 | && VALUE_LVAL (array) == lval_memory)) |
10495 | array = value_addr (array); | |
10496 | ||
1265e4aa | 10497 | if (noside == EVAL_AVOID_SIDE_EFFECTS |
61ee279c | 10498 | && ada_is_array_descriptor_type (ada_check_typedef |
df407dfe | 10499 | (value_type (array)))) |
0b5d8877 | 10500 | return empty_array (ada_type_of_array (array, 0), low_bound); |
4c4b4cd2 PH |
10501 | |
10502 | array = ada_coerce_to_simple_array_ptr (array); | |
10503 | ||
714e53ab PH |
10504 | /* If we have more than one level of pointer indirection, |
10505 | dereference the value until we get only one level. */ | |
df407dfe AC |
10506 | while (TYPE_CODE (value_type (array)) == TYPE_CODE_PTR |
10507 | && (TYPE_CODE (TYPE_TARGET_TYPE (value_type (array))) | |
714e53ab PH |
10508 | == TYPE_CODE_PTR)) |
10509 | array = value_ind (array); | |
10510 | ||
10511 | /* Make sure we really do have an array type before going further, | |
10512 | to avoid a SEGV when trying to get the index type or the target | |
10513 | type later down the road if the debug info generated by | |
10514 | the compiler is incorrect or incomplete. */ | |
df407dfe | 10515 | if (!ada_is_simple_array_type (value_type (array))) |
323e0a4a | 10516 | error (_("cannot take slice of non-array")); |
714e53ab | 10517 | |
828292f2 JB |
10518 | if (TYPE_CODE (ada_check_typedef (value_type (array))) |
10519 | == TYPE_CODE_PTR) | |
4c4b4cd2 | 10520 | { |
828292f2 JB |
10521 | struct type *type0 = ada_check_typedef (value_type (array)); |
10522 | ||
0b5d8877 | 10523 | if (high_bound < low_bound || noside == EVAL_AVOID_SIDE_EFFECTS) |
828292f2 | 10524 | return empty_array (TYPE_TARGET_TYPE (type0), low_bound); |
4c4b4cd2 PH |
10525 | else |
10526 | { | |
10527 | struct type *arr_type0 = | |
828292f2 | 10528 | to_fixed_array_type (TYPE_TARGET_TYPE (type0), NULL, 1); |
5b4ee69b | 10529 | |
f5938064 JG |
10530 | return ada_value_slice_from_ptr (array, arr_type0, |
10531 | longest_to_int (low_bound), | |
10532 | longest_to_int (high_bound)); | |
4c4b4cd2 PH |
10533 | } |
10534 | } | |
10535 | else if (noside == EVAL_AVOID_SIDE_EFFECTS) | |
10536 | return array; | |
10537 | else if (high_bound < low_bound) | |
df407dfe | 10538 | return empty_array (value_type (array), low_bound); |
4c4b4cd2 | 10539 | else |
529cad9c PH |
10540 | return ada_value_slice (array, longest_to_int (low_bound), |
10541 | longest_to_int (high_bound)); | |
4c4b4cd2 | 10542 | } |
14f9c5c9 | 10543 | |
4c4b4cd2 PH |
10544 | case UNOP_IN_RANGE: |
10545 | (*pos) += 2; | |
10546 | arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside); | |
8008e265 | 10547 | type = check_typedef (exp->elts[pc + 1].type); |
14f9c5c9 | 10548 | |
14f9c5c9 | 10549 | if (noside == EVAL_SKIP) |
4c4b4cd2 | 10550 | goto nosideret; |
14f9c5c9 | 10551 | |
4c4b4cd2 PH |
10552 | switch (TYPE_CODE (type)) |
10553 | { | |
10554 | default: | |
e1d5a0d2 PH |
10555 | lim_warning (_("Membership test incompletely implemented; " |
10556 | "always returns true")); | |
fbb06eb1 UW |
10557 | type = language_bool_type (exp->language_defn, exp->gdbarch); |
10558 | return value_from_longest (type, (LONGEST) 1); | |
4c4b4cd2 PH |
10559 | |
10560 | case TYPE_CODE_RANGE: | |
030b4912 UW |
10561 | arg2 = value_from_longest (type, TYPE_LOW_BOUND (type)); |
10562 | arg3 = value_from_longest (type, TYPE_HIGH_BOUND (type)); | |
f44316fa UW |
10563 | binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2); |
10564 | binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3); | |
fbb06eb1 UW |
10565 | type = language_bool_type (exp->language_defn, exp->gdbarch); |
10566 | return | |
10567 | value_from_longest (type, | |
4c4b4cd2 PH |
10568 | (value_less (arg1, arg3) |
10569 | || value_equal (arg1, arg3)) | |
10570 | && (value_less (arg2, arg1) | |
10571 | || value_equal (arg2, arg1))); | |
10572 | } | |
10573 | ||
10574 | case BINOP_IN_BOUNDS: | |
14f9c5c9 | 10575 | (*pos) += 2; |
4c4b4cd2 PH |
10576 | arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside); |
10577 | arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside); | |
14f9c5c9 | 10578 | |
4c4b4cd2 PH |
10579 | if (noside == EVAL_SKIP) |
10580 | goto nosideret; | |
14f9c5c9 | 10581 | |
4c4b4cd2 | 10582 | if (noside == EVAL_AVOID_SIDE_EFFECTS) |
fbb06eb1 UW |
10583 | { |
10584 | type = language_bool_type (exp->language_defn, exp->gdbarch); | |
10585 | return value_zero (type, not_lval); | |
10586 | } | |
14f9c5c9 | 10587 | |
4c4b4cd2 | 10588 | tem = longest_to_int (exp->elts[pc + 1].longconst); |
14f9c5c9 | 10589 | |
1eea4ebd UW |
10590 | type = ada_index_type (value_type (arg2), tem, "range"); |
10591 | if (!type) | |
10592 | type = value_type (arg1); | |
14f9c5c9 | 10593 | |
1eea4ebd UW |
10594 | arg3 = value_from_longest (type, ada_array_bound (arg2, tem, 1)); |
10595 | arg2 = value_from_longest (type, ada_array_bound (arg2, tem, 0)); | |
d2e4a39e | 10596 | |
f44316fa UW |
10597 | binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2); |
10598 | binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3); | |
fbb06eb1 | 10599 | type = language_bool_type (exp->language_defn, exp->gdbarch); |
4c4b4cd2 | 10600 | return |
fbb06eb1 | 10601 | value_from_longest (type, |
4c4b4cd2 PH |
10602 | (value_less (arg1, arg3) |
10603 | || value_equal (arg1, arg3)) | |
10604 | && (value_less (arg2, arg1) | |
10605 | || value_equal (arg2, arg1))); | |
10606 | ||
10607 | case TERNOP_IN_RANGE: | |
10608 | arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside); | |
10609 | arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside); | |
10610 | arg3 = evaluate_subexp (NULL_TYPE, exp, pos, noside); | |
10611 | ||
10612 | if (noside == EVAL_SKIP) | |
10613 | goto nosideret; | |
10614 | ||
f44316fa UW |
10615 | binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2); |
10616 | binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3); | |
fbb06eb1 | 10617 | type = language_bool_type (exp->language_defn, exp->gdbarch); |
4c4b4cd2 | 10618 | return |
fbb06eb1 | 10619 | value_from_longest (type, |
4c4b4cd2 PH |
10620 | (value_less (arg1, arg3) |
10621 | || value_equal (arg1, arg3)) | |
10622 | && (value_less (arg2, arg1) | |
10623 | || value_equal (arg2, arg1))); | |
10624 | ||
10625 | case OP_ATR_FIRST: | |
10626 | case OP_ATR_LAST: | |
10627 | case OP_ATR_LENGTH: | |
10628 | { | |
76a01679 | 10629 | struct type *type_arg; |
5b4ee69b | 10630 | |
76a01679 JB |
10631 | if (exp->elts[*pos].opcode == OP_TYPE) |
10632 | { | |
10633 | evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP); | |
10634 | arg1 = NULL; | |
5bc23cb3 | 10635 | type_arg = check_typedef (exp->elts[pc + 2].type); |
76a01679 JB |
10636 | } |
10637 | else | |
10638 | { | |
10639 | arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside); | |
10640 | type_arg = NULL; | |
10641 | } | |
10642 | ||
10643 | if (exp->elts[*pos].opcode != OP_LONG) | |
323e0a4a | 10644 | error (_("Invalid operand to '%s"), ada_attribute_name (op)); |
76a01679 JB |
10645 | tem = longest_to_int (exp->elts[*pos + 2].longconst); |
10646 | *pos += 4; | |
10647 | ||
10648 | if (noside == EVAL_SKIP) | |
10649 | goto nosideret; | |
10650 | ||
10651 | if (type_arg == NULL) | |
10652 | { | |
10653 | arg1 = ada_coerce_ref (arg1); | |
10654 | ||
ad82864c | 10655 | if (ada_is_constrained_packed_array_type (value_type (arg1))) |
76a01679 JB |
10656 | arg1 = ada_coerce_to_simple_array (arg1); |
10657 | ||
aa4fb036 | 10658 | if (op == OP_ATR_LENGTH) |
1eea4ebd | 10659 | type = builtin_type (exp->gdbarch)->builtin_int; |
aa4fb036 JB |
10660 | else |
10661 | { | |
10662 | type = ada_index_type (value_type (arg1), tem, | |
10663 | ada_attribute_name (op)); | |
10664 | if (type == NULL) | |
10665 | type = builtin_type (exp->gdbarch)->builtin_int; | |
10666 | } | |
76a01679 JB |
10667 | |
10668 | if (noside == EVAL_AVOID_SIDE_EFFECTS) | |
1eea4ebd | 10669 | return allocate_value (type); |
76a01679 JB |
10670 | |
10671 | switch (op) | |
10672 | { | |
10673 | default: /* Should never happen. */ | |
323e0a4a | 10674 | error (_("unexpected attribute encountered")); |
76a01679 | 10675 | case OP_ATR_FIRST: |
1eea4ebd UW |
10676 | return value_from_longest |
10677 | (type, ada_array_bound (arg1, tem, 0)); | |
76a01679 | 10678 | case OP_ATR_LAST: |
1eea4ebd UW |
10679 | return value_from_longest |
10680 | (type, ada_array_bound (arg1, tem, 1)); | |
76a01679 | 10681 | case OP_ATR_LENGTH: |
1eea4ebd UW |
10682 | return value_from_longest |
10683 | (type, ada_array_length (arg1, tem)); | |
76a01679 JB |
10684 | } |
10685 | } | |
10686 | else if (discrete_type_p (type_arg)) | |
10687 | { | |
10688 | struct type *range_type; | |
0d5cff50 | 10689 | const char *name = ada_type_name (type_arg); |
5b4ee69b | 10690 | |
76a01679 JB |
10691 | range_type = NULL; |
10692 | if (name != NULL && TYPE_CODE (type_arg) != TYPE_CODE_ENUM) | |
28c85d6c | 10693 | range_type = to_fixed_range_type (type_arg, NULL); |
76a01679 JB |
10694 | if (range_type == NULL) |
10695 | range_type = type_arg; | |
10696 | switch (op) | |
10697 | { | |
10698 | default: | |
323e0a4a | 10699 | error (_("unexpected attribute encountered")); |
76a01679 | 10700 | case OP_ATR_FIRST: |
690cc4eb | 10701 | return value_from_longest |
43bbcdc2 | 10702 | (range_type, ada_discrete_type_low_bound (range_type)); |
76a01679 | 10703 | case OP_ATR_LAST: |
690cc4eb | 10704 | return value_from_longest |
43bbcdc2 | 10705 | (range_type, ada_discrete_type_high_bound (range_type)); |
76a01679 | 10706 | case OP_ATR_LENGTH: |
323e0a4a | 10707 | error (_("the 'length attribute applies only to array types")); |
76a01679 JB |
10708 | } |
10709 | } | |
10710 | else if (TYPE_CODE (type_arg) == TYPE_CODE_FLT) | |
323e0a4a | 10711 | error (_("unimplemented type attribute")); |
76a01679 JB |
10712 | else |
10713 | { | |
10714 | LONGEST low, high; | |
10715 | ||
ad82864c JB |
10716 | if (ada_is_constrained_packed_array_type (type_arg)) |
10717 | type_arg = decode_constrained_packed_array_type (type_arg); | |
76a01679 | 10718 | |
aa4fb036 | 10719 | if (op == OP_ATR_LENGTH) |
1eea4ebd | 10720 | type = builtin_type (exp->gdbarch)->builtin_int; |
aa4fb036 JB |
10721 | else |
10722 | { | |
10723 | type = ada_index_type (type_arg, tem, ada_attribute_name (op)); | |
10724 | if (type == NULL) | |
10725 | type = builtin_type (exp->gdbarch)->builtin_int; | |
10726 | } | |
1eea4ebd | 10727 | |
76a01679 JB |
10728 | if (noside == EVAL_AVOID_SIDE_EFFECTS) |
10729 | return allocate_value (type); | |
10730 | ||
10731 | switch (op) | |
10732 | { | |
10733 | default: | |
323e0a4a | 10734 | error (_("unexpected attribute encountered")); |
76a01679 | 10735 | case OP_ATR_FIRST: |
1eea4ebd | 10736 | low = ada_array_bound_from_type (type_arg, tem, 0); |
76a01679 JB |
10737 | return value_from_longest (type, low); |
10738 | case OP_ATR_LAST: | |
1eea4ebd | 10739 | high = ada_array_bound_from_type (type_arg, tem, 1); |
76a01679 JB |
10740 | return value_from_longest (type, high); |
10741 | case OP_ATR_LENGTH: | |
1eea4ebd UW |
10742 | low = ada_array_bound_from_type (type_arg, tem, 0); |
10743 | high = ada_array_bound_from_type (type_arg, tem, 1); | |
76a01679 JB |
10744 | return value_from_longest (type, high - low + 1); |
10745 | } | |
10746 | } | |
14f9c5c9 AS |
10747 | } |
10748 | ||
4c4b4cd2 PH |
10749 | case OP_ATR_TAG: |
10750 | arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside); | |
10751 | if (noside == EVAL_SKIP) | |
76a01679 | 10752 | goto nosideret; |
4c4b4cd2 PH |
10753 | |
10754 | if (noside == EVAL_AVOID_SIDE_EFFECTS) | |
76a01679 | 10755 | return value_zero (ada_tag_type (arg1), not_lval); |
4c4b4cd2 PH |
10756 | |
10757 | return ada_value_tag (arg1); | |
10758 | ||
10759 | case OP_ATR_MIN: | |
10760 | case OP_ATR_MAX: | |
10761 | evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP); | |
14f9c5c9 AS |
10762 | arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside); |
10763 | arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside); | |
10764 | if (noside == EVAL_SKIP) | |
76a01679 | 10765 | goto nosideret; |
d2e4a39e | 10766 | else if (noside == EVAL_AVOID_SIDE_EFFECTS) |
df407dfe | 10767 | return value_zero (value_type (arg1), not_lval); |
14f9c5c9 | 10768 | else |
f44316fa UW |
10769 | { |
10770 | binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2); | |
10771 | return value_binop (arg1, arg2, | |
10772 | op == OP_ATR_MIN ? BINOP_MIN : BINOP_MAX); | |
10773 | } | |
14f9c5c9 | 10774 | |
4c4b4cd2 PH |
10775 | case OP_ATR_MODULUS: |
10776 | { | |
31dedfee | 10777 | struct type *type_arg = check_typedef (exp->elts[pc + 2].type); |
4c4b4cd2 | 10778 | |
5b4ee69b | 10779 | evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP); |
76a01679 JB |
10780 | if (noside == EVAL_SKIP) |
10781 | goto nosideret; | |
4c4b4cd2 | 10782 | |
76a01679 | 10783 | if (!ada_is_modular_type (type_arg)) |
323e0a4a | 10784 | error (_("'modulus must be applied to modular type")); |
4c4b4cd2 | 10785 | |
76a01679 JB |
10786 | return value_from_longest (TYPE_TARGET_TYPE (type_arg), |
10787 | ada_modulus (type_arg)); | |
4c4b4cd2 PH |
10788 | } |
10789 | ||
10790 | ||
10791 | case OP_ATR_POS: | |
10792 | evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP); | |
14f9c5c9 AS |
10793 | arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside); |
10794 | if (noside == EVAL_SKIP) | |
76a01679 | 10795 | goto nosideret; |
3cb382c9 UW |
10796 | type = builtin_type (exp->gdbarch)->builtin_int; |
10797 | if (noside == EVAL_AVOID_SIDE_EFFECTS) | |
10798 | return value_zero (type, not_lval); | |
14f9c5c9 | 10799 | else |
3cb382c9 | 10800 | return value_pos_atr (type, arg1); |
14f9c5c9 | 10801 | |
4c4b4cd2 PH |
10802 | case OP_ATR_SIZE: |
10803 | arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside); | |
8c1c099f JB |
10804 | type = value_type (arg1); |
10805 | ||
10806 | /* If the argument is a reference, then dereference its type, since | |
10807 | the user is really asking for the size of the actual object, | |
10808 | not the size of the pointer. */ | |
10809 | if (TYPE_CODE (type) == TYPE_CODE_REF) | |
10810 | type = TYPE_TARGET_TYPE (type); | |
10811 | ||
4c4b4cd2 | 10812 | if (noside == EVAL_SKIP) |
76a01679 | 10813 | goto nosideret; |
4c4b4cd2 | 10814 | else if (noside == EVAL_AVOID_SIDE_EFFECTS) |
22601c15 | 10815 | return value_zero (builtin_type (exp->gdbarch)->builtin_int, not_lval); |
4c4b4cd2 | 10816 | else |
22601c15 | 10817 | return value_from_longest (builtin_type (exp->gdbarch)->builtin_int, |
8c1c099f | 10818 | TARGET_CHAR_BIT * TYPE_LENGTH (type)); |
4c4b4cd2 PH |
10819 | |
10820 | case OP_ATR_VAL: | |
10821 | evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP); | |
14f9c5c9 | 10822 | arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside); |
4c4b4cd2 | 10823 | type = exp->elts[pc + 2].type; |
14f9c5c9 | 10824 | if (noside == EVAL_SKIP) |
76a01679 | 10825 | goto nosideret; |
4c4b4cd2 | 10826 | else if (noside == EVAL_AVOID_SIDE_EFFECTS) |
76a01679 | 10827 | return value_zero (type, not_lval); |
4c4b4cd2 | 10828 | else |
76a01679 | 10829 | return value_val_atr (type, arg1); |
4c4b4cd2 PH |
10830 | |
10831 | case BINOP_EXP: | |
10832 | arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside); | |
10833 | arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside); | |
10834 | if (noside == EVAL_SKIP) | |
10835 | goto nosideret; | |
10836 | else if (noside == EVAL_AVOID_SIDE_EFFECTS) | |
df407dfe | 10837 | return value_zero (value_type (arg1), not_lval); |
4c4b4cd2 | 10838 | else |
f44316fa UW |
10839 | { |
10840 | /* For integer exponentiation operations, | |
10841 | only promote the first argument. */ | |
10842 | if (is_integral_type (value_type (arg2))) | |
10843 | unop_promote (exp->language_defn, exp->gdbarch, &arg1); | |
10844 | else | |
10845 | binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2); | |
10846 | ||
10847 | return value_binop (arg1, arg2, op); | |
10848 | } | |
4c4b4cd2 PH |
10849 | |
10850 | case UNOP_PLUS: | |
10851 | arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside); | |
10852 | if (noside == EVAL_SKIP) | |
10853 | goto nosideret; | |
10854 | else | |
10855 | return arg1; | |
10856 | ||
10857 | case UNOP_ABS: | |
10858 | arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside); | |
10859 | if (noside == EVAL_SKIP) | |
10860 | goto nosideret; | |
f44316fa | 10861 | unop_promote (exp->language_defn, exp->gdbarch, &arg1); |
df407dfe | 10862 | if (value_less (arg1, value_zero (value_type (arg1), not_lval))) |
4c4b4cd2 | 10863 | return value_neg (arg1); |
14f9c5c9 | 10864 | else |
4c4b4cd2 | 10865 | return arg1; |
14f9c5c9 AS |
10866 | |
10867 | case UNOP_IND: | |
5ec18f2b | 10868 | preeval_pos = *pos; |
6b0d7253 | 10869 | arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside); |
14f9c5c9 | 10870 | if (noside == EVAL_SKIP) |
4c4b4cd2 | 10871 | goto nosideret; |
df407dfe | 10872 | type = ada_check_typedef (value_type (arg1)); |
14f9c5c9 | 10873 | if (noside == EVAL_AVOID_SIDE_EFFECTS) |
4c4b4cd2 PH |
10874 | { |
10875 | if (ada_is_array_descriptor_type (type)) | |
10876 | /* GDB allows dereferencing GNAT array descriptors. */ | |
10877 | { | |
10878 | struct type *arrType = ada_type_of_array (arg1, 0); | |
5b4ee69b | 10879 | |
4c4b4cd2 | 10880 | if (arrType == NULL) |
323e0a4a | 10881 | error (_("Attempt to dereference null array pointer.")); |
00a4c844 | 10882 | return value_at_lazy (arrType, 0); |
4c4b4cd2 PH |
10883 | } |
10884 | else if (TYPE_CODE (type) == TYPE_CODE_PTR | |
10885 | || TYPE_CODE (type) == TYPE_CODE_REF | |
10886 | /* In C you can dereference an array to get the 1st elt. */ | |
10887 | || TYPE_CODE (type) == TYPE_CODE_ARRAY) | |
714e53ab | 10888 | { |
5ec18f2b JG |
10889 | /* As mentioned in the OP_VAR_VALUE case, tagged types can |
10890 | only be determined by inspecting the object's tag. | |
10891 | This means that we need to evaluate completely the | |
10892 | expression in order to get its type. */ | |
10893 | ||
023db19c JB |
10894 | if ((TYPE_CODE (type) == TYPE_CODE_REF |
10895 | || TYPE_CODE (type) == TYPE_CODE_PTR) | |
5ec18f2b JG |
10896 | && ada_is_tagged_type (TYPE_TARGET_TYPE (type), 0)) |
10897 | { | |
10898 | arg1 = evaluate_subexp (NULL_TYPE, exp, &preeval_pos, | |
10899 | EVAL_NORMAL); | |
10900 | type = value_type (ada_value_ind (arg1)); | |
10901 | } | |
10902 | else | |
10903 | { | |
10904 | type = to_static_fixed_type | |
10905 | (ada_aligned_type | |
10906 | (ada_check_typedef (TYPE_TARGET_TYPE (type)))); | |
10907 | } | |
c1b5a1a6 | 10908 | ada_ensure_varsize_limit (type); |
714e53ab PH |
10909 | return value_zero (type, lval_memory); |
10910 | } | |
4c4b4cd2 | 10911 | else if (TYPE_CODE (type) == TYPE_CODE_INT) |
6b0d7253 JB |
10912 | { |
10913 | /* GDB allows dereferencing an int. */ | |
10914 | if (expect_type == NULL) | |
10915 | return value_zero (builtin_type (exp->gdbarch)->builtin_int, | |
10916 | lval_memory); | |
10917 | else | |
10918 | { | |
10919 | expect_type = | |
10920 | to_static_fixed_type (ada_aligned_type (expect_type)); | |
10921 | return value_zero (expect_type, lval_memory); | |
10922 | } | |
10923 | } | |
4c4b4cd2 | 10924 | else |
323e0a4a | 10925 | error (_("Attempt to take contents of a non-pointer value.")); |
4c4b4cd2 | 10926 | } |
0963b4bd | 10927 | arg1 = ada_coerce_ref (arg1); /* FIXME: What is this for?? */ |
df407dfe | 10928 | type = ada_check_typedef (value_type (arg1)); |
d2e4a39e | 10929 | |
96967637 JB |
10930 | if (TYPE_CODE (type) == TYPE_CODE_INT) |
10931 | /* GDB allows dereferencing an int. If we were given | |
10932 | the expect_type, then use that as the target type. | |
10933 | Otherwise, assume that the target type is an int. */ | |
10934 | { | |
10935 | if (expect_type != NULL) | |
10936 | return ada_value_ind (value_cast (lookup_pointer_type (expect_type), | |
10937 | arg1)); | |
10938 | else | |
10939 | return value_at_lazy (builtin_type (exp->gdbarch)->builtin_int, | |
10940 | (CORE_ADDR) value_as_address (arg1)); | |
10941 | } | |
6b0d7253 | 10942 | |
4c4b4cd2 PH |
10943 | if (ada_is_array_descriptor_type (type)) |
10944 | /* GDB allows dereferencing GNAT array descriptors. */ | |
10945 | return ada_coerce_to_simple_array (arg1); | |
14f9c5c9 | 10946 | else |
4c4b4cd2 | 10947 | return ada_value_ind (arg1); |
14f9c5c9 AS |
10948 | |
10949 | case STRUCTOP_STRUCT: | |
10950 | tem = longest_to_int (exp->elts[pc + 1].longconst); | |
10951 | (*pos) += 3 + BYTES_TO_EXP_ELEM (tem + 1); | |
5ec18f2b | 10952 | preeval_pos = *pos; |
14f9c5c9 AS |
10953 | arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside); |
10954 | if (noside == EVAL_SKIP) | |
4c4b4cd2 | 10955 | goto nosideret; |
14f9c5c9 | 10956 | if (noside == EVAL_AVOID_SIDE_EFFECTS) |
76a01679 | 10957 | { |
df407dfe | 10958 | struct type *type1 = value_type (arg1); |
5b4ee69b | 10959 | |
76a01679 JB |
10960 | if (ada_is_tagged_type (type1, 1)) |
10961 | { | |
10962 | type = ada_lookup_struct_elt_type (type1, | |
10963 | &exp->elts[pc + 2].string, | |
10964 | 1, 1, NULL); | |
5ec18f2b JG |
10965 | |
10966 | /* If the field is not found, check if it exists in the | |
10967 | extension of this object's type. This means that we | |
10968 | need to evaluate completely the expression. */ | |
10969 | ||
76a01679 | 10970 | if (type == NULL) |
5ec18f2b JG |
10971 | { |
10972 | arg1 = evaluate_subexp (NULL_TYPE, exp, &preeval_pos, | |
10973 | EVAL_NORMAL); | |
10974 | arg1 = ada_value_struct_elt (arg1, | |
10975 | &exp->elts[pc + 2].string, | |
10976 | 0); | |
10977 | arg1 = unwrap_value (arg1); | |
10978 | type = value_type (ada_to_fixed_value (arg1)); | |
10979 | } | |
76a01679 JB |
10980 | } |
10981 | else | |
10982 | type = | |
10983 | ada_lookup_struct_elt_type (type1, &exp->elts[pc + 2].string, 1, | |
10984 | 0, NULL); | |
10985 | ||
10986 | return value_zero (ada_aligned_type (type), lval_memory); | |
10987 | } | |
14f9c5c9 | 10988 | else |
284614f0 JB |
10989 | arg1 = ada_value_struct_elt (arg1, &exp->elts[pc + 2].string, 0); |
10990 | arg1 = unwrap_value (arg1); | |
10991 | return ada_to_fixed_value (arg1); | |
10992 | ||
14f9c5c9 | 10993 | case OP_TYPE: |
4c4b4cd2 PH |
10994 | /* The value is not supposed to be used. This is here to make it |
10995 | easier to accommodate expressions that contain types. */ | |
14f9c5c9 AS |
10996 | (*pos) += 2; |
10997 | if (noside == EVAL_SKIP) | |
4c4b4cd2 | 10998 | goto nosideret; |
14f9c5c9 | 10999 | else if (noside == EVAL_AVOID_SIDE_EFFECTS) |
a6cfbe68 | 11000 | return allocate_value (exp->elts[pc + 1].type); |
14f9c5c9 | 11001 | else |
323e0a4a | 11002 | error (_("Attempt to use a type name as an expression")); |
52ce6436 PH |
11003 | |
11004 | case OP_AGGREGATE: | |
11005 | case OP_CHOICES: | |
11006 | case OP_OTHERS: | |
11007 | case OP_DISCRETE_RANGE: | |
11008 | case OP_POSITIONAL: | |
11009 | case OP_NAME: | |
11010 | if (noside == EVAL_NORMAL) | |
11011 | switch (op) | |
11012 | { | |
11013 | case OP_NAME: | |
11014 | error (_("Undefined name, ambiguous name, or renaming used in " | |
e1d5a0d2 | 11015 | "component association: %s."), &exp->elts[pc+2].string); |
52ce6436 PH |
11016 | case OP_AGGREGATE: |
11017 | error (_("Aggregates only allowed on the right of an assignment")); | |
11018 | default: | |
0963b4bd MS |
11019 | internal_error (__FILE__, __LINE__, |
11020 | _("aggregate apparently mangled")); | |
52ce6436 PH |
11021 | } |
11022 | ||
11023 | ada_forward_operator_length (exp, pc, &oplen, &nargs); | |
11024 | *pos += oplen - 1; | |
11025 | for (tem = 0; tem < nargs; tem += 1) | |
11026 | ada_evaluate_subexp (NULL, exp, pos, noside); | |
11027 | goto nosideret; | |
14f9c5c9 AS |
11028 | } |
11029 | ||
11030 | nosideret: | |
22601c15 | 11031 | return value_from_longest (builtin_type (exp->gdbarch)->builtin_int, 1); |
14f9c5c9 | 11032 | } |
14f9c5c9 | 11033 | \f |
d2e4a39e | 11034 | |
4c4b4cd2 | 11035 | /* Fixed point */ |
14f9c5c9 AS |
11036 | |
11037 | /* If TYPE encodes an Ada fixed-point type, return the suffix of the | |
11038 | type name that encodes the 'small and 'delta information. | |
4c4b4cd2 | 11039 | Otherwise, return NULL. */ |
14f9c5c9 | 11040 | |
d2e4a39e | 11041 | static const char * |
ebf56fd3 | 11042 | fixed_type_info (struct type *type) |
14f9c5c9 | 11043 | { |
d2e4a39e | 11044 | const char *name = ada_type_name (type); |
14f9c5c9 AS |
11045 | enum type_code code = (type == NULL) ? TYPE_CODE_UNDEF : TYPE_CODE (type); |
11046 | ||
d2e4a39e AS |
11047 | if ((code == TYPE_CODE_INT || code == TYPE_CODE_RANGE) && name != NULL) |
11048 | { | |
14f9c5c9 | 11049 | const char *tail = strstr (name, "___XF_"); |
5b4ee69b | 11050 | |
14f9c5c9 | 11051 | if (tail == NULL) |
4c4b4cd2 | 11052 | return NULL; |
d2e4a39e | 11053 | else |
4c4b4cd2 | 11054 | return tail + 5; |
14f9c5c9 AS |
11055 | } |
11056 | else if (code == TYPE_CODE_RANGE && TYPE_TARGET_TYPE (type) != type) | |
11057 | return fixed_type_info (TYPE_TARGET_TYPE (type)); | |
11058 | else | |
11059 | return NULL; | |
11060 | } | |
11061 | ||
4c4b4cd2 | 11062 | /* Returns non-zero iff TYPE represents an Ada fixed-point type. */ |
14f9c5c9 AS |
11063 | |
11064 | int | |
ebf56fd3 | 11065 | ada_is_fixed_point_type (struct type *type) |
14f9c5c9 AS |
11066 | { |
11067 | return fixed_type_info (type) != NULL; | |
11068 | } | |
11069 | ||
4c4b4cd2 PH |
11070 | /* Return non-zero iff TYPE represents a System.Address type. */ |
11071 | ||
11072 | int | |
11073 | ada_is_system_address_type (struct type *type) | |
11074 | { | |
11075 | return (TYPE_NAME (type) | |
11076 | && strcmp (TYPE_NAME (type), "system__address") == 0); | |
11077 | } | |
11078 | ||
14f9c5c9 AS |
11079 | /* Assuming that TYPE is the representation of an Ada fixed-point |
11080 | type, return its delta, or -1 if the type is malformed and the | |
4c4b4cd2 | 11081 | delta cannot be determined. */ |
14f9c5c9 AS |
11082 | |
11083 | DOUBLEST | |
ebf56fd3 | 11084 | ada_delta (struct type *type) |
14f9c5c9 AS |
11085 | { |
11086 | const char *encoding = fixed_type_info (type); | |
facc390f | 11087 | DOUBLEST num, den; |
14f9c5c9 | 11088 | |
facc390f JB |
11089 | /* Strictly speaking, num and den are encoded as integer. However, |
11090 | they may not fit into a long, and they will have to be converted | |
11091 | to DOUBLEST anyway. So scan them as DOUBLEST. */ | |
11092 | if (sscanf (encoding, "_%" DOUBLEST_SCAN_FORMAT "_%" DOUBLEST_SCAN_FORMAT, | |
11093 | &num, &den) < 2) | |
14f9c5c9 | 11094 | return -1.0; |
d2e4a39e | 11095 | else |
facc390f | 11096 | return num / den; |
14f9c5c9 AS |
11097 | } |
11098 | ||
11099 | /* Assuming that ada_is_fixed_point_type (TYPE), return the scaling | |
4c4b4cd2 | 11100 | factor ('SMALL value) associated with the type. */ |
14f9c5c9 AS |
11101 | |
11102 | static DOUBLEST | |
ebf56fd3 | 11103 | scaling_factor (struct type *type) |
14f9c5c9 AS |
11104 | { |
11105 | const char *encoding = fixed_type_info (type); | |
facc390f | 11106 | DOUBLEST num0, den0, num1, den1; |
14f9c5c9 | 11107 | int n; |
d2e4a39e | 11108 | |
facc390f JB |
11109 | /* Strictly speaking, num's and den's are encoded as integer. However, |
11110 | they may not fit into a long, and they will have to be converted | |
11111 | to DOUBLEST anyway. So scan them as DOUBLEST. */ | |
11112 | n = sscanf (encoding, | |
11113 | "_%" DOUBLEST_SCAN_FORMAT "_%" DOUBLEST_SCAN_FORMAT | |
11114 | "_%" DOUBLEST_SCAN_FORMAT "_%" DOUBLEST_SCAN_FORMAT, | |
11115 | &num0, &den0, &num1, &den1); | |
14f9c5c9 AS |
11116 | |
11117 | if (n < 2) | |
11118 | return 1.0; | |
11119 | else if (n == 4) | |
facc390f | 11120 | return num1 / den1; |
d2e4a39e | 11121 | else |
facc390f | 11122 | return num0 / den0; |
14f9c5c9 AS |
11123 | } |
11124 | ||
11125 | ||
11126 | /* Assuming that X is the representation of a value of fixed-point | |
4c4b4cd2 | 11127 | type TYPE, return its floating-point equivalent. */ |
14f9c5c9 AS |
11128 | |
11129 | DOUBLEST | |
ebf56fd3 | 11130 | ada_fixed_to_float (struct type *type, LONGEST x) |
14f9c5c9 | 11131 | { |
d2e4a39e | 11132 | return (DOUBLEST) x *scaling_factor (type); |
14f9c5c9 AS |
11133 | } |
11134 | ||
4c4b4cd2 PH |
11135 | /* The representation of a fixed-point value of type TYPE |
11136 | corresponding to the value X. */ | |
14f9c5c9 AS |
11137 | |
11138 | LONGEST | |
ebf56fd3 | 11139 | ada_float_to_fixed (struct type *type, DOUBLEST x) |
14f9c5c9 AS |
11140 | { |
11141 | return (LONGEST) (x / scaling_factor (type) + 0.5); | |
11142 | } | |
11143 | ||
14f9c5c9 | 11144 | \f |
d2e4a39e | 11145 | |
4c4b4cd2 | 11146 | /* Range types */ |
14f9c5c9 AS |
11147 | |
11148 | /* Scan STR beginning at position K for a discriminant name, and | |
11149 | return the value of that discriminant field of DVAL in *PX. If | |
11150 | PNEW_K is not null, put the position of the character beyond the | |
11151 | name scanned in *PNEW_K. Return 1 if successful; return 0 and do | |
4c4b4cd2 | 11152 | not alter *PX and *PNEW_K if unsuccessful. */ |
14f9c5c9 AS |
11153 | |
11154 | static int | |
07d8f827 | 11155 | scan_discrim_bound (char *str, int k, struct value *dval, LONGEST * px, |
76a01679 | 11156 | int *pnew_k) |
14f9c5c9 AS |
11157 | { |
11158 | static char *bound_buffer = NULL; | |
11159 | static size_t bound_buffer_len = 0; | |
11160 | char *bound; | |
11161 | char *pend; | |
d2e4a39e | 11162 | struct value *bound_val; |
14f9c5c9 AS |
11163 | |
11164 | if (dval == NULL || str == NULL || str[k] == '\0') | |
11165 | return 0; | |
11166 | ||
d2e4a39e | 11167 | pend = strstr (str + k, "__"); |
14f9c5c9 AS |
11168 | if (pend == NULL) |
11169 | { | |
d2e4a39e | 11170 | bound = str + k; |
14f9c5c9 AS |
11171 | k += strlen (bound); |
11172 | } | |
d2e4a39e | 11173 | else |
14f9c5c9 | 11174 | { |
d2e4a39e | 11175 | GROW_VECT (bound_buffer, bound_buffer_len, pend - (str + k) + 1); |
14f9c5c9 | 11176 | bound = bound_buffer; |
d2e4a39e AS |
11177 | strncpy (bound_buffer, str + k, pend - (str + k)); |
11178 | bound[pend - (str + k)] = '\0'; | |
11179 | k = pend - str; | |
14f9c5c9 | 11180 | } |
d2e4a39e | 11181 | |
df407dfe | 11182 | bound_val = ada_search_struct_field (bound, dval, 0, value_type (dval)); |
14f9c5c9 AS |
11183 | if (bound_val == NULL) |
11184 | return 0; | |
11185 | ||
11186 | *px = value_as_long (bound_val); | |
11187 | if (pnew_k != NULL) | |
11188 | *pnew_k = k; | |
11189 | return 1; | |
11190 | } | |
11191 | ||
11192 | /* Value of variable named NAME in the current environment. If | |
11193 | no such variable found, then if ERR_MSG is null, returns 0, and | |
4c4b4cd2 PH |
11194 | otherwise causes an error with message ERR_MSG. */ |
11195 | ||
d2e4a39e AS |
11196 | static struct value * |
11197 | get_var_value (char *name, char *err_msg) | |
14f9c5c9 | 11198 | { |
4c4b4cd2 | 11199 | struct ada_symbol_info *syms; |
14f9c5c9 AS |
11200 | int nsyms; |
11201 | ||
4c4b4cd2 | 11202 | nsyms = ada_lookup_symbol_list (name, get_selected_block (0), VAR_DOMAIN, |
4eeaa230 | 11203 | &syms); |
14f9c5c9 AS |
11204 | |
11205 | if (nsyms != 1) | |
11206 | { | |
11207 | if (err_msg == NULL) | |
4c4b4cd2 | 11208 | return 0; |
14f9c5c9 | 11209 | else |
8a3fe4f8 | 11210 | error (("%s"), err_msg); |
14f9c5c9 AS |
11211 | } |
11212 | ||
4c4b4cd2 | 11213 | return value_of_variable (syms[0].sym, syms[0].block); |
14f9c5c9 | 11214 | } |
d2e4a39e | 11215 | |
14f9c5c9 | 11216 | /* Value of integer variable named NAME in the current environment. If |
4c4b4cd2 PH |
11217 | no such variable found, returns 0, and sets *FLAG to 0. If |
11218 | successful, sets *FLAG to 1. */ | |
11219 | ||
14f9c5c9 | 11220 | LONGEST |
4c4b4cd2 | 11221 | get_int_var_value (char *name, int *flag) |
14f9c5c9 | 11222 | { |
4c4b4cd2 | 11223 | struct value *var_val = get_var_value (name, 0); |
d2e4a39e | 11224 | |
14f9c5c9 AS |
11225 | if (var_val == 0) |
11226 | { | |
11227 | if (flag != NULL) | |
4c4b4cd2 | 11228 | *flag = 0; |
14f9c5c9 AS |
11229 | return 0; |
11230 | } | |
11231 | else | |
11232 | { | |
11233 | if (flag != NULL) | |
4c4b4cd2 | 11234 | *flag = 1; |
14f9c5c9 AS |
11235 | return value_as_long (var_val); |
11236 | } | |
11237 | } | |
d2e4a39e | 11238 | |
14f9c5c9 AS |
11239 | |
11240 | /* Return a range type whose base type is that of the range type named | |
11241 | NAME in the current environment, and whose bounds are calculated | |
4c4b4cd2 | 11242 | from NAME according to the GNAT range encoding conventions. |
1ce677a4 UW |
11243 | Extract discriminant values, if needed, from DVAL. ORIG_TYPE is the |
11244 | corresponding range type from debug information; fall back to using it | |
11245 | if symbol lookup fails. If a new type must be created, allocate it | |
11246 | like ORIG_TYPE was. The bounds information, in general, is encoded | |
11247 | in NAME, the base type given in the named range type. */ | |
14f9c5c9 | 11248 | |
d2e4a39e | 11249 | static struct type * |
28c85d6c | 11250 | to_fixed_range_type (struct type *raw_type, struct value *dval) |
14f9c5c9 | 11251 | { |
0d5cff50 | 11252 | const char *name; |
14f9c5c9 | 11253 | struct type *base_type; |
d2e4a39e | 11254 | char *subtype_info; |
14f9c5c9 | 11255 | |
28c85d6c JB |
11256 | gdb_assert (raw_type != NULL); |
11257 | gdb_assert (TYPE_NAME (raw_type) != NULL); | |
dddfab26 | 11258 | |
1ce677a4 | 11259 | if (TYPE_CODE (raw_type) == TYPE_CODE_RANGE) |
14f9c5c9 AS |
11260 | base_type = TYPE_TARGET_TYPE (raw_type); |
11261 | else | |
11262 | base_type = raw_type; | |
11263 | ||
28c85d6c | 11264 | name = TYPE_NAME (raw_type); |
14f9c5c9 AS |
11265 | subtype_info = strstr (name, "___XD"); |
11266 | if (subtype_info == NULL) | |
690cc4eb | 11267 | { |
43bbcdc2 PH |
11268 | LONGEST L = ada_discrete_type_low_bound (raw_type); |
11269 | LONGEST U = ada_discrete_type_high_bound (raw_type); | |
5b4ee69b | 11270 | |
690cc4eb PH |
11271 | if (L < INT_MIN || U > INT_MAX) |
11272 | return raw_type; | |
11273 | else | |
0c9c3474 SA |
11274 | return create_static_range_type (alloc_type_copy (raw_type), raw_type, |
11275 | L, U); | |
690cc4eb | 11276 | } |
14f9c5c9 AS |
11277 | else |
11278 | { | |
11279 | static char *name_buf = NULL; | |
11280 | static size_t name_len = 0; | |
11281 | int prefix_len = subtype_info - name; | |
11282 | LONGEST L, U; | |
11283 | struct type *type; | |
11284 | char *bounds_str; | |
11285 | int n; | |
11286 | ||
11287 | GROW_VECT (name_buf, name_len, prefix_len + 5); | |
11288 | strncpy (name_buf, name, prefix_len); | |
11289 | name_buf[prefix_len] = '\0'; | |
11290 | ||
11291 | subtype_info += 5; | |
11292 | bounds_str = strchr (subtype_info, '_'); | |
11293 | n = 1; | |
11294 | ||
d2e4a39e | 11295 | if (*subtype_info == 'L') |
4c4b4cd2 PH |
11296 | { |
11297 | if (!ada_scan_number (bounds_str, n, &L, &n) | |
11298 | && !scan_discrim_bound (bounds_str, n, dval, &L, &n)) | |
11299 | return raw_type; | |
11300 | if (bounds_str[n] == '_') | |
11301 | n += 2; | |
0963b4bd | 11302 | else if (bounds_str[n] == '.') /* FIXME? SGI Workshop kludge. */ |
4c4b4cd2 PH |
11303 | n += 1; |
11304 | subtype_info += 1; | |
11305 | } | |
d2e4a39e | 11306 | else |
4c4b4cd2 PH |
11307 | { |
11308 | int ok; | |
5b4ee69b | 11309 | |
4c4b4cd2 PH |
11310 | strcpy (name_buf + prefix_len, "___L"); |
11311 | L = get_int_var_value (name_buf, &ok); | |
11312 | if (!ok) | |
11313 | { | |
323e0a4a | 11314 | lim_warning (_("Unknown lower bound, using 1.")); |
4c4b4cd2 PH |
11315 | L = 1; |
11316 | } | |
11317 | } | |
14f9c5c9 | 11318 | |
d2e4a39e | 11319 | if (*subtype_info == 'U') |
4c4b4cd2 PH |
11320 | { |
11321 | if (!ada_scan_number (bounds_str, n, &U, &n) | |
11322 | && !scan_discrim_bound (bounds_str, n, dval, &U, &n)) | |
11323 | return raw_type; | |
11324 | } | |
d2e4a39e | 11325 | else |
4c4b4cd2 PH |
11326 | { |
11327 | int ok; | |
5b4ee69b | 11328 | |
4c4b4cd2 PH |
11329 | strcpy (name_buf + prefix_len, "___U"); |
11330 | U = get_int_var_value (name_buf, &ok); | |
11331 | if (!ok) | |
11332 | { | |
323e0a4a | 11333 | lim_warning (_("Unknown upper bound, using %ld."), (long) L); |
4c4b4cd2 PH |
11334 | U = L; |
11335 | } | |
11336 | } | |
14f9c5c9 | 11337 | |
0c9c3474 SA |
11338 | type = create_static_range_type (alloc_type_copy (raw_type), |
11339 | base_type, L, U); | |
d2e4a39e | 11340 | TYPE_NAME (type) = name; |
14f9c5c9 AS |
11341 | return type; |
11342 | } | |
11343 | } | |
11344 | ||
4c4b4cd2 PH |
11345 | /* True iff NAME is the name of a range type. */ |
11346 | ||
14f9c5c9 | 11347 | int |
d2e4a39e | 11348 | ada_is_range_type_name (const char *name) |
14f9c5c9 AS |
11349 | { |
11350 | return (name != NULL && strstr (name, "___XD")); | |
d2e4a39e | 11351 | } |
14f9c5c9 | 11352 | \f |
d2e4a39e | 11353 | |
4c4b4cd2 PH |
11354 | /* Modular types */ |
11355 | ||
11356 | /* True iff TYPE is an Ada modular type. */ | |
14f9c5c9 | 11357 | |
14f9c5c9 | 11358 | int |
d2e4a39e | 11359 | ada_is_modular_type (struct type *type) |
14f9c5c9 | 11360 | { |
18af8284 | 11361 | struct type *subranged_type = get_base_type (type); |
14f9c5c9 AS |
11362 | |
11363 | return (subranged_type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE | |
690cc4eb | 11364 | && TYPE_CODE (subranged_type) == TYPE_CODE_INT |
4c4b4cd2 | 11365 | && TYPE_UNSIGNED (subranged_type)); |
14f9c5c9 AS |
11366 | } |
11367 | ||
4c4b4cd2 PH |
11368 | /* Assuming ada_is_modular_type (TYPE), the modulus of TYPE. */ |
11369 | ||
61ee279c | 11370 | ULONGEST |
0056e4d5 | 11371 | ada_modulus (struct type *type) |
14f9c5c9 | 11372 | { |
43bbcdc2 | 11373 | return (ULONGEST) TYPE_HIGH_BOUND (type) + 1; |
14f9c5c9 | 11374 | } |
d2e4a39e | 11375 | \f |
f7f9143b JB |
11376 | |
11377 | /* Ada exception catchpoint support: | |
11378 | --------------------------------- | |
11379 | ||
11380 | We support 3 kinds of exception catchpoints: | |
11381 | . catchpoints on Ada exceptions | |
11382 | . catchpoints on unhandled Ada exceptions | |
11383 | . catchpoints on failed assertions | |
11384 | ||
11385 | Exceptions raised during failed assertions, or unhandled exceptions | |
11386 | could perfectly be caught with the general catchpoint on Ada exceptions. | |
11387 | However, we can easily differentiate these two special cases, and having | |
11388 | the option to distinguish these two cases from the rest can be useful | |
11389 | to zero-in on certain situations. | |
11390 | ||
11391 | Exception catchpoints are a specialized form of breakpoint, | |
11392 | since they rely on inserting breakpoints inside known routines | |
11393 | of the GNAT runtime. The implementation therefore uses a standard | |
11394 | breakpoint structure of the BP_BREAKPOINT type, but with its own set | |
11395 | of breakpoint_ops. | |
11396 | ||
0259addd JB |
11397 | Support in the runtime for exception catchpoints have been changed |
11398 | a few times already, and these changes affect the implementation | |
11399 | of these catchpoints. In order to be able to support several | |
11400 | variants of the runtime, we use a sniffer that will determine | |
28010a5d | 11401 | the runtime variant used by the program being debugged. */ |
f7f9143b | 11402 | |
82eacd52 JB |
11403 | /* Ada's standard exceptions. |
11404 | ||
11405 | The Ada 83 standard also defined Numeric_Error. But there so many | |
11406 | situations where it was unclear from the Ada 83 Reference Manual | |
11407 | (RM) whether Constraint_Error or Numeric_Error should be raised, | |
11408 | that the ARG (Ada Rapporteur Group) eventually issued a Binding | |
11409 | Interpretation saying that anytime the RM says that Numeric_Error | |
11410 | should be raised, the implementation may raise Constraint_Error. | |
11411 | Ada 95 went one step further and pretty much removed Numeric_Error | |
11412 | from the list of standard exceptions (it made it a renaming of | |
11413 | Constraint_Error, to help preserve compatibility when compiling | |
11414 | an Ada83 compiler). As such, we do not include Numeric_Error from | |
11415 | this list of standard exceptions. */ | |
3d0b0fa3 JB |
11416 | |
11417 | static char *standard_exc[] = { | |
11418 | "constraint_error", | |
11419 | "program_error", | |
11420 | "storage_error", | |
11421 | "tasking_error" | |
11422 | }; | |
11423 | ||
0259addd JB |
11424 | typedef CORE_ADDR (ada_unhandled_exception_name_addr_ftype) (void); |
11425 | ||
11426 | /* A structure that describes how to support exception catchpoints | |
11427 | for a given executable. */ | |
11428 | ||
11429 | struct exception_support_info | |
11430 | { | |
11431 | /* The name of the symbol to break on in order to insert | |
11432 | a catchpoint on exceptions. */ | |
11433 | const char *catch_exception_sym; | |
11434 | ||
11435 | /* The name of the symbol to break on in order to insert | |
11436 | a catchpoint on unhandled exceptions. */ | |
11437 | const char *catch_exception_unhandled_sym; | |
11438 | ||
11439 | /* The name of the symbol to break on in order to insert | |
11440 | a catchpoint on failed assertions. */ | |
11441 | const char *catch_assert_sym; | |
11442 | ||
11443 | /* Assuming that the inferior just triggered an unhandled exception | |
11444 | catchpoint, this function is responsible for returning the address | |
11445 | in inferior memory where the name of that exception is stored. | |
11446 | Return zero if the address could not be computed. */ | |
11447 | ada_unhandled_exception_name_addr_ftype *unhandled_exception_name_addr; | |
11448 | }; | |
11449 | ||
11450 | static CORE_ADDR ada_unhandled_exception_name_addr (void); | |
11451 | static CORE_ADDR ada_unhandled_exception_name_addr_from_raise (void); | |
11452 | ||
11453 | /* The following exception support info structure describes how to | |
11454 | implement exception catchpoints with the latest version of the | |
11455 | Ada runtime (as of 2007-03-06). */ | |
11456 | ||
11457 | static const struct exception_support_info default_exception_support_info = | |
11458 | { | |
11459 | "__gnat_debug_raise_exception", /* catch_exception_sym */ | |
11460 | "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */ | |
11461 | "__gnat_debug_raise_assert_failure", /* catch_assert_sym */ | |
11462 | ada_unhandled_exception_name_addr | |
11463 | }; | |
11464 | ||
11465 | /* The following exception support info structure describes how to | |
11466 | implement exception catchpoints with a slightly older version | |
11467 | of the Ada runtime. */ | |
11468 | ||
11469 | static const struct exception_support_info exception_support_info_fallback = | |
11470 | { | |
11471 | "__gnat_raise_nodefer_with_msg", /* catch_exception_sym */ | |
11472 | "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */ | |
11473 | "system__assertions__raise_assert_failure", /* catch_assert_sym */ | |
11474 | ada_unhandled_exception_name_addr_from_raise | |
11475 | }; | |
11476 | ||
f17011e0 JB |
11477 | /* Return nonzero if we can detect the exception support routines |
11478 | described in EINFO. | |
11479 | ||
11480 | This function errors out if an abnormal situation is detected | |
11481 | (for instance, if we find the exception support routines, but | |
11482 | that support is found to be incomplete). */ | |
11483 | ||
11484 | static int | |
11485 | ada_has_this_exception_support (const struct exception_support_info *einfo) | |
11486 | { | |
11487 | struct symbol *sym; | |
11488 | ||
11489 | /* The symbol we're looking up is provided by a unit in the GNAT runtime | |
11490 | that should be compiled with debugging information. As a result, we | |
11491 | expect to find that symbol in the symtabs. */ | |
11492 | ||
11493 | sym = standard_lookup (einfo->catch_exception_sym, NULL, VAR_DOMAIN); | |
11494 | if (sym == NULL) | |
a6af7abe JB |
11495 | { |
11496 | /* Perhaps we did not find our symbol because the Ada runtime was | |
11497 | compiled without debugging info, or simply stripped of it. | |
11498 | It happens on some GNU/Linux distributions for instance, where | |
11499 | users have to install a separate debug package in order to get | |
11500 | the runtime's debugging info. In that situation, let the user | |
11501 | know why we cannot insert an Ada exception catchpoint. | |
11502 | ||
11503 | Note: Just for the purpose of inserting our Ada exception | |
11504 | catchpoint, we could rely purely on the associated minimal symbol. | |
11505 | But we would be operating in degraded mode anyway, since we are | |
11506 | still lacking the debugging info needed later on to extract | |
11507 | the name of the exception being raised (this name is printed in | |
11508 | the catchpoint message, and is also used when trying to catch | |
11509 | a specific exception). We do not handle this case for now. */ | |
3b7344d5 | 11510 | struct bound_minimal_symbol msym |
1c8e84b0 JB |
11511 | = lookup_minimal_symbol (einfo->catch_exception_sym, NULL, NULL); |
11512 | ||
3b7344d5 | 11513 | if (msym.minsym && MSYMBOL_TYPE (msym.minsym) != mst_solib_trampoline) |
a6af7abe JB |
11514 | error (_("Your Ada runtime appears to be missing some debugging " |
11515 | "information.\nCannot insert Ada exception catchpoint " | |
11516 | "in this configuration.")); | |
11517 | ||
11518 | return 0; | |
11519 | } | |
f17011e0 JB |
11520 | |
11521 | /* Make sure that the symbol we found corresponds to a function. */ | |
11522 | ||
11523 | if (SYMBOL_CLASS (sym) != LOC_BLOCK) | |
11524 | error (_("Symbol \"%s\" is not a function (class = %d)"), | |
11525 | SYMBOL_LINKAGE_NAME (sym), SYMBOL_CLASS (sym)); | |
11526 | ||
11527 | return 1; | |
11528 | } | |
11529 | ||
0259addd JB |
11530 | /* Inspect the Ada runtime and determine which exception info structure |
11531 | should be used to provide support for exception catchpoints. | |
11532 | ||
3eecfa55 JB |
11533 | This function will always set the per-inferior exception_info, |
11534 | or raise an error. */ | |
0259addd JB |
11535 | |
11536 | static void | |
11537 | ada_exception_support_info_sniffer (void) | |
11538 | { | |
3eecfa55 | 11539 | struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ()); |
0259addd JB |
11540 | |
11541 | /* If the exception info is already known, then no need to recompute it. */ | |
3eecfa55 | 11542 | if (data->exception_info != NULL) |
0259addd JB |
11543 | return; |
11544 | ||
11545 | /* Check the latest (default) exception support info. */ | |
f17011e0 | 11546 | if (ada_has_this_exception_support (&default_exception_support_info)) |
0259addd | 11547 | { |
3eecfa55 | 11548 | data->exception_info = &default_exception_support_info; |
0259addd JB |
11549 | return; |
11550 | } | |
11551 | ||
11552 | /* Try our fallback exception suport info. */ | |
f17011e0 | 11553 | if (ada_has_this_exception_support (&exception_support_info_fallback)) |
0259addd | 11554 | { |
3eecfa55 | 11555 | data->exception_info = &exception_support_info_fallback; |
0259addd JB |
11556 | return; |
11557 | } | |
11558 | ||
11559 | /* Sometimes, it is normal for us to not be able to find the routine | |
11560 | we are looking for. This happens when the program is linked with | |
11561 | the shared version of the GNAT runtime, and the program has not been | |
11562 | started yet. Inform the user of these two possible causes if | |
11563 | applicable. */ | |
11564 | ||
ccefe4c4 | 11565 | if (ada_update_initial_language (language_unknown) != language_ada) |
0259addd JB |
11566 | error (_("Unable to insert catchpoint. Is this an Ada main program?")); |
11567 | ||
11568 | /* If the symbol does not exist, then check that the program is | |
11569 | already started, to make sure that shared libraries have been | |
11570 | loaded. If it is not started, this may mean that the symbol is | |
11571 | in a shared library. */ | |
11572 | ||
11573 | if (ptid_get_pid (inferior_ptid) == 0) | |
11574 | error (_("Unable to insert catchpoint. Try to start the program first.")); | |
11575 | ||
11576 | /* At this point, we know that we are debugging an Ada program and | |
11577 | that the inferior has been started, but we still are not able to | |
0963b4bd | 11578 | find the run-time symbols. That can mean that we are in |
0259addd JB |
11579 | configurable run time mode, or that a-except as been optimized |
11580 | out by the linker... In any case, at this point it is not worth | |
11581 | supporting this feature. */ | |
11582 | ||
7dda8cff | 11583 | error (_("Cannot insert Ada exception catchpoints in this configuration.")); |
0259addd JB |
11584 | } |
11585 | ||
f7f9143b JB |
11586 | /* True iff FRAME is very likely to be that of a function that is |
11587 | part of the runtime system. This is all very heuristic, but is | |
11588 | intended to be used as advice as to what frames are uninteresting | |
11589 | to most users. */ | |
11590 | ||
11591 | static int | |
11592 | is_known_support_routine (struct frame_info *frame) | |
11593 | { | |
4ed6b5be | 11594 | struct symtab_and_line sal; |
55b87a52 | 11595 | char *func_name; |
692465f1 | 11596 | enum language func_lang; |
f7f9143b | 11597 | int i; |
f35a17b5 | 11598 | const char *fullname; |
f7f9143b | 11599 | |
4ed6b5be JB |
11600 | /* If this code does not have any debugging information (no symtab), |
11601 | This cannot be any user code. */ | |
f7f9143b | 11602 | |
4ed6b5be | 11603 | find_frame_sal (frame, &sal); |
f7f9143b JB |
11604 | if (sal.symtab == NULL) |
11605 | return 1; | |
11606 | ||
4ed6b5be JB |
11607 | /* If there is a symtab, but the associated source file cannot be |
11608 | located, then assume this is not user code: Selecting a frame | |
11609 | for which we cannot display the code would not be very helpful | |
11610 | for the user. This should also take care of case such as VxWorks | |
11611 | where the kernel has some debugging info provided for a few units. */ | |
f7f9143b | 11612 | |
f35a17b5 JK |
11613 | fullname = symtab_to_fullname (sal.symtab); |
11614 | if (access (fullname, R_OK) != 0) | |
f7f9143b JB |
11615 | return 1; |
11616 | ||
4ed6b5be JB |
11617 | /* Check the unit filename againt the Ada runtime file naming. |
11618 | We also check the name of the objfile against the name of some | |
11619 | known system libraries that sometimes come with debugging info | |
11620 | too. */ | |
11621 | ||
f7f9143b JB |
11622 | for (i = 0; known_runtime_file_name_patterns[i] != NULL; i += 1) |
11623 | { | |
11624 | re_comp (known_runtime_file_name_patterns[i]); | |
f69c91ad | 11625 | if (re_exec (lbasename (sal.symtab->filename))) |
f7f9143b | 11626 | return 1; |
eb822aa6 DE |
11627 | if (SYMTAB_OBJFILE (sal.symtab) != NULL |
11628 | && re_exec (objfile_name (SYMTAB_OBJFILE (sal.symtab)))) | |
4ed6b5be | 11629 | return 1; |
f7f9143b JB |
11630 | } |
11631 | ||
4ed6b5be | 11632 | /* Check whether the function is a GNAT-generated entity. */ |
f7f9143b | 11633 | |
e9e07ba6 | 11634 | find_frame_funname (frame, &func_name, &func_lang, NULL); |
f7f9143b JB |
11635 | if (func_name == NULL) |
11636 | return 1; | |
11637 | ||
11638 | for (i = 0; known_auxiliary_function_name_patterns[i] != NULL; i += 1) | |
11639 | { | |
11640 | re_comp (known_auxiliary_function_name_patterns[i]); | |
11641 | if (re_exec (func_name)) | |
55b87a52 KS |
11642 | { |
11643 | xfree (func_name); | |
11644 | return 1; | |
11645 | } | |
f7f9143b JB |
11646 | } |
11647 | ||
55b87a52 | 11648 | xfree (func_name); |
f7f9143b JB |
11649 | return 0; |
11650 | } | |
11651 | ||
11652 | /* Find the first frame that contains debugging information and that is not | |
11653 | part of the Ada run-time, starting from FI and moving upward. */ | |
11654 | ||
0ef643c8 | 11655 | void |
f7f9143b JB |
11656 | ada_find_printable_frame (struct frame_info *fi) |
11657 | { | |
11658 | for (; fi != NULL; fi = get_prev_frame (fi)) | |
11659 | { | |
11660 | if (!is_known_support_routine (fi)) | |
11661 | { | |
11662 | select_frame (fi); | |
11663 | break; | |
11664 | } | |
11665 | } | |
11666 | ||
11667 | } | |
11668 | ||
11669 | /* Assuming that the inferior just triggered an unhandled exception | |
11670 | catchpoint, return the address in inferior memory where the name | |
11671 | of the exception is stored. | |
11672 | ||
11673 | Return zero if the address could not be computed. */ | |
11674 | ||
11675 | static CORE_ADDR | |
11676 | ada_unhandled_exception_name_addr (void) | |
0259addd JB |
11677 | { |
11678 | return parse_and_eval_address ("e.full_name"); | |
11679 | } | |
11680 | ||
11681 | /* Same as ada_unhandled_exception_name_addr, except that this function | |
11682 | should be used when the inferior uses an older version of the runtime, | |
11683 | where the exception name needs to be extracted from a specific frame | |
11684 | several frames up in the callstack. */ | |
11685 | ||
11686 | static CORE_ADDR | |
11687 | ada_unhandled_exception_name_addr_from_raise (void) | |
f7f9143b JB |
11688 | { |
11689 | int frame_level; | |
11690 | struct frame_info *fi; | |
3eecfa55 | 11691 | struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ()); |
55b87a52 | 11692 | struct cleanup *old_chain; |
f7f9143b JB |
11693 | |
11694 | /* To determine the name of this exception, we need to select | |
11695 | the frame corresponding to RAISE_SYM_NAME. This frame is | |
11696 | at least 3 levels up, so we simply skip the first 3 frames | |
11697 | without checking the name of their associated function. */ | |
11698 | fi = get_current_frame (); | |
11699 | for (frame_level = 0; frame_level < 3; frame_level += 1) | |
11700 | if (fi != NULL) | |
11701 | fi = get_prev_frame (fi); | |
11702 | ||
55b87a52 | 11703 | old_chain = make_cleanup (null_cleanup, NULL); |
f7f9143b JB |
11704 | while (fi != NULL) |
11705 | { | |
55b87a52 | 11706 | char *func_name; |
692465f1 JB |
11707 | enum language func_lang; |
11708 | ||
e9e07ba6 | 11709 | find_frame_funname (fi, &func_name, &func_lang, NULL); |
55b87a52 KS |
11710 | if (func_name != NULL) |
11711 | { | |
11712 | make_cleanup (xfree, func_name); | |
11713 | ||
11714 | if (strcmp (func_name, | |
11715 | data->exception_info->catch_exception_sym) == 0) | |
11716 | break; /* We found the frame we were looking for... */ | |
11717 | fi = get_prev_frame (fi); | |
11718 | } | |
f7f9143b | 11719 | } |
55b87a52 | 11720 | do_cleanups (old_chain); |
f7f9143b JB |
11721 | |
11722 | if (fi == NULL) | |
11723 | return 0; | |
11724 | ||
11725 | select_frame (fi); | |
11726 | return parse_and_eval_address ("id.full_name"); | |
11727 | } | |
11728 | ||
11729 | /* Assuming the inferior just triggered an Ada exception catchpoint | |
11730 | (of any type), return the address in inferior memory where the name | |
11731 | of the exception is stored, if applicable. | |
11732 | ||
11733 | Return zero if the address could not be computed, or if not relevant. */ | |
11734 | ||
11735 | static CORE_ADDR | |
761269c8 | 11736 | ada_exception_name_addr_1 (enum ada_exception_catchpoint_kind ex, |
f7f9143b JB |
11737 | struct breakpoint *b) |
11738 | { | |
3eecfa55 JB |
11739 | struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ()); |
11740 | ||
f7f9143b JB |
11741 | switch (ex) |
11742 | { | |
761269c8 | 11743 | case ada_catch_exception: |
f7f9143b JB |
11744 | return (parse_and_eval_address ("e.full_name")); |
11745 | break; | |
11746 | ||
761269c8 | 11747 | case ada_catch_exception_unhandled: |
3eecfa55 | 11748 | return data->exception_info->unhandled_exception_name_addr (); |
f7f9143b JB |
11749 | break; |
11750 | ||
761269c8 | 11751 | case ada_catch_assert: |
f7f9143b JB |
11752 | return 0; /* Exception name is not relevant in this case. */ |
11753 | break; | |
11754 | ||
11755 | default: | |
11756 | internal_error (__FILE__, __LINE__, _("unexpected catchpoint type")); | |
11757 | break; | |
11758 | } | |
11759 | ||
11760 | return 0; /* Should never be reached. */ | |
11761 | } | |
11762 | ||
11763 | /* Same as ada_exception_name_addr_1, except that it intercepts and contains | |
11764 | any error that ada_exception_name_addr_1 might cause to be thrown. | |
11765 | When an error is intercepted, a warning with the error message is printed, | |
11766 | and zero is returned. */ | |
11767 | ||
11768 | static CORE_ADDR | |
761269c8 | 11769 | ada_exception_name_addr (enum ada_exception_catchpoint_kind ex, |
f7f9143b JB |
11770 | struct breakpoint *b) |
11771 | { | |
bfd189b1 | 11772 | volatile struct gdb_exception e; |
f7f9143b JB |
11773 | CORE_ADDR result = 0; |
11774 | ||
11775 | TRY_CATCH (e, RETURN_MASK_ERROR) | |
11776 | { | |
11777 | result = ada_exception_name_addr_1 (ex, b); | |
11778 | } | |
11779 | ||
11780 | if (e.reason < 0) | |
11781 | { | |
11782 | warning (_("failed to get exception name: %s"), e.message); | |
11783 | return 0; | |
11784 | } | |
11785 | ||
11786 | return result; | |
11787 | } | |
11788 | ||
28010a5d PA |
11789 | static char *ada_exception_catchpoint_cond_string (const char *excep_string); |
11790 | ||
11791 | /* Ada catchpoints. | |
11792 | ||
11793 | In the case of catchpoints on Ada exceptions, the catchpoint will | |
11794 | stop the target on every exception the program throws. When a user | |
11795 | specifies the name of a specific exception, we translate this | |
11796 | request into a condition expression (in text form), and then parse | |
11797 | it into an expression stored in each of the catchpoint's locations. | |
11798 | We then use this condition to check whether the exception that was | |
11799 | raised is the one the user is interested in. If not, then the | |
11800 | target is resumed again. We store the name of the requested | |
11801 | exception, in order to be able to re-set the condition expression | |
11802 | when symbols change. */ | |
11803 | ||
11804 | /* An instance of this type is used to represent an Ada catchpoint | |
11805 | breakpoint location. It includes a "struct bp_location" as a kind | |
11806 | of base class; users downcast to "struct bp_location *" when | |
11807 | needed. */ | |
11808 | ||
11809 | struct ada_catchpoint_location | |
11810 | { | |
11811 | /* The base class. */ | |
11812 | struct bp_location base; | |
11813 | ||
11814 | /* The condition that checks whether the exception that was raised | |
11815 | is the specific exception the user specified on catchpoint | |
11816 | creation. */ | |
11817 | struct expression *excep_cond_expr; | |
11818 | }; | |
11819 | ||
11820 | /* Implement the DTOR method in the bp_location_ops structure for all | |
11821 | Ada exception catchpoint kinds. */ | |
11822 | ||
11823 | static void | |
11824 | ada_catchpoint_location_dtor (struct bp_location *bl) | |
11825 | { | |
11826 | struct ada_catchpoint_location *al = (struct ada_catchpoint_location *) bl; | |
11827 | ||
11828 | xfree (al->excep_cond_expr); | |
11829 | } | |
11830 | ||
11831 | /* The vtable to be used in Ada catchpoint locations. */ | |
11832 | ||
11833 | static const struct bp_location_ops ada_catchpoint_location_ops = | |
11834 | { | |
11835 | ada_catchpoint_location_dtor | |
11836 | }; | |
11837 | ||
11838 | /* An instance of this type is used to represent an Ada catchpoint. | |
11839 | It includes a "struct breakpoint" as a kind of base class; users | |
11840 | downcast to "struct breakpoint *" when needed. */ | |
11841 | ||
11842 | struct ada_catchpoint | |
11843 | { | |
11844 | /* The base class. */ | |
11845 | struct breakpoint base; | |
11846 | ||
11847 | /* The name of the specific exception the user specified. */ | |
11848 | char *excep_string; | |
11849 | }; | |
11850 | ||
11851 | /* Parse the exception condition string in the context of each of the | |
11852 | catchpoint's locations, and store them for later evaluation. */ | |
11853 | ||
11854 | static void | |
11855 | create_excep_cond_exprs (struct ada_catchpoint *c) | |
11856 | { | |
11857 | struct cleanup *old_chain; | |
11858 | struct bp_location *bl; | |
11859 | char *cond_string; | |
11860 | ||
11861 | /* Nothing to do if there's no specific exception to catch. */ | |
11862 | if (c->excep_string == NULL) | |
11863 | return; | |
11864 | ||
11865 | /* Same if there are no locations... */ | |
11866 | if (c->base.loc == NULL) | |
11867 | return; | |
11868 | ||
11869 | /* Compute the condition expression in text form, from the specific | |
11870 | expection we want to catch. */ | |
11871 | cond_string = ada_exception_catchpoint_cond_string (c->excep_string); | |
11872 | old_chain = make_cleanup (xfree, cond_string); | |
11873 | ||
11874 | /* Iterate over all the catchpoint's locations, and parse an | |
11875 | expression for each. */ | |
11876 | for (bl = c->base.loc; bl != NULL; bl = bl->next) | |
11877 | { | |
11878 | struct ada_catchpoint_location *ada_loc | |
11879 | = (struct ada_catchpoint_location *) bl; | |
11880 | struct expression *exp = NULL; | |
11881 | ||
11882 | if (!bl->shlib_disabled) | |
11883 | { | |
11884 | volatile struct gdb_exception e; | |
bbc13ae3 | 11885 | const char *s; |
28010a5d PA |
11886 | |
11887 | s = cond_string; | |
11888 | TRY_CATCH (e, RETURN_MASK_ERROR) | |
11889 | { | |
1bb9788d TT |
11890 | exp = parse_exp_1 (&s, bl->address, |
11891 | block_for_pc (bl->address), 0); | |
28010a5d PA |
11892 | } |
11893 | if (e.reason < 0) | |
849f2b52 JB |
11894 | { |
11895 | warning (_("failed to reevaluate internal exception condition " | |
11896 | "for catchpoint %d: %s"), | |
11897 | c->base.number, e.message); | |
11898 | /* There is a bug in GCC on sparc-solaris when building with | |
11899 | optimization which causes EXP to change unexpectedly | |
11900 | (http://gcc.gnu.org/bugzilla/show_bug.cgi?id=56982). | |
11901 | The problem should be fixed starting with GCC 4.9. | |
11902 | In the meantime, work around it by forcing EXP back | |
11903 | to NULL. */ | |
11904 | exp = NULL; | |
11905 | } | |
28010a5d PA |
11906 | } |
11907 | ||
11908 | ada_loc->excep_cond_expr = exp; | |
11909 | } | |
11910 | ||
11911 | do_cleanups (old_chain); | |
11912 | } | |
11913 | ||
11914 | /* Implement the DTOR method in the breakpoint_ops structure for all | |
11915 | exception catchpoint kinds. */ | |
11916 | ||
11917 | static void | |
761269c8 | 11918 | dtor_exception (enum ada_exception_catchpoint_kind ex, struct breakpoint *b) |
28010a5d PA |
11919 | { |
11920 | struct ada_catchpoint *c = (struct ada_catchpoint *) b; | |
11921 | ||
11922 | xfree (c->excep_string); | |
348d480f | 11923 | |
2060206e | 11924 | bkpt_breakpoint_ops.dtor (b); |
28010a5d PA |
11925 | } |
11926 | ||
11927 | /* Implement the ALLOCATE_LOCATION method in the breakpoint_ops | |
11928 | structure for all exception catchpoint kinds. */ | |
11929 | ||
11930 | static struct bp_location * | |
761269c8 | 11931 | allocate_location_exception (enum ada_exception_catchpoint_kind ex, |
28010a5d PA |
11932 | struct breakpoint *self) |
11933 | { | |
11934 | struct ada_catchpoint_location *loc; | |
11935 | ||
11936 | loc = XNEW (struct ada_catchpoint_location); | |
11937 | init_bp_location (&loc->base, &ada_catchpoint_location_ops, self); | |
11938 | loc->excep_cond_expr = NULL; | |
11939 | return &loc->base; | |
11940 | } | |
11941 | ||
11942 | /* Implement the RE_SET method in the breakpoint_ops structure for all | |
11943 | exception catchpoint kinds. */ | |
11944 | ||
11945 | static void | |
761269c8 | 11946 | re_set_exception (enum ada_exception_catchpoint_kind ex, struct breakpoint *b) |
28010a5d PA |
11947 | { |
11948 | struct ada_catchpoint *c = (struct ada_catchpoint *) b; | |
11949 | ||
11950 | /* Call the base class's method. This updates the catchpoint's | |
11951 | locations. */ | |
2060206e | 11952 | bkpt_breakpoint_ops.re_set (b); |
28010a5d PA |
11953 | |
11954 | /* Reparse the exception conditional expressions. One for each | |
11955 | location. */ | |
11956 | create_excep_cond_exprs (c); | |
11957 | } | |
11958 | ||
11959 | /* Returns true if we should stop for this breakpoint hit. If the | |
11960 | user specified a specific exception, we only want to cause a stop | |
11961 | if the program thrown that exception. */ | |
11962 | ||
11963 | static int | |
11964 | should_stop_exception (const struct bp_location *bl) | |
11965 | { | |
11966 | struct ada_catchpoint *c = (struct ada_catchpoint *) bl->owner; | |
11967 | const struct ada_catchpoint_location *ada_loc | |
11968 | = (const struct ada_catchpoint_location *) bl; | |
11969 | volatile struct gdb_exception ex; | |
11970 | int stop; | |
11971 | ||
11972 | /* With no specific exception, should always stop. */ | |
11973 | if (c->excep_string == NULL) | |
11974 | return 1; | |
11975 | ||
11976 | if (ada_loc->excep_cond_expr == NULL) | |
11977 | { | |
11978 | /* We will have a NULL expression if back when we were creating | |
11979 | the expressions, this location's had failed to parse. */ | |
11980 | return 1; | |
11981 | } | |
11982 | ||
11983 | stop = 1; | |
11984 | TRY_CATCH (ex, RETURN_MASK_ALL) | |
11985 | { | |
11986 | struct value *mark; | |
11987 | ||
11988 | mark = value_mark (); | |
11989 | stop = value_true (evaluate_expression (ada_loc->excep_cond_expr)); | |
11990 | value_free_to_mark (mark); | |
11991 | } | |
11992 | if (ex.reason < 0) | |
11993 | exception_fprintf (gdb_stderr, ex, | |
11994 | _("Error in testing exception condition:\n")); | |
11995 | return stop; | |
11996 | } | |
11997 | ||
11998 | /* Implement the CHECK_STATUS method in the breakpoint_ops structure | |
11999 | for all exception catchpoint kinds. */ | |
12000 | ||
12001 | static void | |
761269c8 | 12002 | check_status_exception (enum ada_exception_catchpoint_kind ex, bpstat bs) |
28010a5d PA |
12003 | { |
12004 | bs->stop = should_stop_exception (bs->bp_location_at); | |
12005 | } | |
12006 | ||
f7f9143b JB |
12007 | /* Implement the PRINT_IT method in the breakpoint_ops structure |
12008 | for all exception catchpoint kinds. */ | |
12009 | ||
12010 | static enum print_stop_action | |
761269c8 | 12011 | print_it_exception (enum ada_exception_catchpoint_kind ex, bpstat bs) |
f7f9143b | 12012 | { |
79a45e25 | 12013 | struct ui_out *uiout = current_uiout; |
348d480f PA |
12014 | struct breakpoint *b = bs->breakpoint_at; |
12015 | ||
956a9fb9 | 12016 | annotate_catchpoint (b->number); |
f7f9143b | 12017 | |
956a9fb9 | 12018 | if (ui_out_is_mi_like_p (uiout)) |
f7f9143b | 12019 | { |
956a9fb9 JB |
12020 | ui_out_field_string (uiout, "reason", |
12021 | async_reason_lookup (EXEC_ASYNC_BREAKPOINT_HIT)); | |
12022 | ui_out_field_string (uiout, "disp", bpdisp_text (b->disposition)); | |
f7f9143b JB |
12023 | } |
12024 | ||
00eb2c4a JB |
12025 | ui_out_text (uiout, |
12026 | b->disposition == disp_del ? "\nTemporary catchpoint " | |
12027 | : "\nCatchpoint "); | |
956a9fb9 JB |
12028 | ui_out_field_int (uiout, "bkptno", b->number); |
12029 | ui_out_text (uiout, ", "); | |
f7f9143b | 12030 | |
f7f9143b JB |
12031 | switch (ex) |
12032 | { | |
761269c8 JB |
12033 | case ada_catch_exception: |
12034 | case ada_catch_exception_unhandled: | |
956a9fb9 JB |
12035 | { |
12036 | const CORE_ADDR addr = ada_exception_name_addr (ex, b); | |
12037 | char exception_name[256]; | |
12038 | ||
12039 | if (addr != 0) | |
12040 | { | |
c714b426 PA |
12041 | read_memory (addr, (gdb_byte *) exception_name, |
12042 | sizeof (exception_name) - 1); | |
956a9fb9 JB |
12043 | exception_name [sizeof (exception_name) - 1] = '\0'; |
12044 | } | |
12045 | else | |
12046 | { | |
12047 | /* For some reason, we were unable to read the exception | |
12048 | name. This could happen if the Runtime was compiled | |
12049 | without debugging info, for instance. In that case, | |
12050 | just replace the exception name by the generic string | |
12051 | "exception" - it will read as "an exception" in the | |
12052 | notification we are about to print. */ | |
967cff16 | 12053 | memcpy (exception_name, "exception", sizeof ("exception")); |
956a9fb9 JB |
12054 | } |
12055 | /* In the case of unhandled exception breakpoints, we print | |
12056 | the exception name as "unhandled EXCEPTION_NAME", to make | |
12057 | it clearer to the user which kind of catchpoint just got | |
12058 | hit. We used ui_out_text to make sure that this extra | |
12059 | info does not pollute the exception name in the MI case. */ | |
761269c8 | 12060 | if (ex == ada_catch_exception_unhandled) |
956a9fb9 JB |
12061 | ui_out_text (uiout, "unhandled "); |
12062 | ui_out_field_string (uiout, "exception-name", exception_name); | |
12063 | } | |
12064 | break; | |
761269c8 | 12065 | case ada_catch_assert: |
956a9fb9 JB |
12066 | /* In this case, the name of the exception is not really |
12067 | important. Just print "failed assertion" to make it clearer | |
12068 | that his program just hit an assertion-failure catchpoint. | |
12069 | We used ui_out_text because this info does not belong in | |
12070 | the MI output. */ | |
12071 | ui_out_text (uiout, "failed assertion"); | |
12072 | break; | |
f7f9143b | 12073 | } |
956a9fb9 JB |
12074 | ui_out_text (uiout, " at "); |
12075 | ada_find_printable_frame (get_current_frame ()); | |
f7f9143b JB |
12076 | |
12077 | return PRINT_SRC_AND_LOC; | |
12078 | } | |
12079 | ||
12080 | /* Implement the PRINT_ONE method in the breakpoint_ops structure | |
12081 | for all exception catchpoint kinds. */ | |
12082 | ||
12083 | static void | |
761269c8 | 12084 | print_one_exception (enum ada_exception_catchpoint_kind ex, |
a6d9a66e | 12085 | struct breakpoint *b, struct bp_location **last_loc) |
f7f9143b | 12086 | { |
79a45e25 | 12087 | struct ui_out *uiout = current_uiout; |
28010a5d | 12088 | struct ada_catchpoint *c = (struct ada_catchpoint *) b; |
79a45b7d TT |
12089 | struct value_print_options opts; |
12090 | ||
12091 | get_user_print_options (&opts); | |
12092 | if (opts.addressprint) | |
f7f9143b JB |
12093 | { |
12094 | annotate_field (4); | |
5af949e3 | 12095 | ui_out_field_core_addr (uiout, "addr", b->loc->gdbarch, b->loc->address); |
f7f9143b JB |
12096 | } |
12097 | ||
12098 | annotate_field (5); | |
a6d9a66e | 12099 | *last_loc = b->loc; |
f7f9143b JB |
12100 | switch (ex) |
12101 | { | |
761269c8 | 12102 | case ada_catch_exception: |
28010a5d | 12103 | if (c->excep_string != NULL) |
f7f9143b | 12104 | { |
28010a5d PA |
12105 | char *msg = xstrprintf (_("`%s' Ada exception"), c->excep_string); |
12106 | ||
f7f9143b JB |
12107 | ui_out_field_string (uiout, "what", msg); |
12108 | xfree (msg); | |
12109 | } | |
12110 | else | |
12111 | ui_out_field_string (uiout, "what", "all Ada exceptions"); | |
12112 | ||
12113 | break; | |
12114 | ||
761269c8 | 12115 | case ada_catch_exception_unhandled: |
f7f9143b JB |
12116 | ui_out_field_string (uiout, "what", "unhandled Ada exceptions"); |
12117 | break; | |
12118 | ||
761269c8 | 12119 | case ada_catch_assert: |
f7f9143b JB |
12120 | ui_out_field_string (uiout, "what", "failed Ada assertions"); |
12121 | break; | |
12122 | ||
12123 | default: | |
12124 | internal_error (__FILE__, __LINE__, _("unexpected catchpoint type")); | |
12125 | break; | |
12126 | } | |
12127 | } | |
12128 | ||
12129 | /* Implement the PRINT_MENTION method in the breakpoint_ops structure | |
12130 | for all exception catchpoint kinds. */ | |
12131 | ||
12132 | static void | |
761269c8 | 12133 | print_mention_exception (enum ada_exception_catchpoint_kind ex, |
f7f9143b JB |
12134 | struct breakpoint *b) |
12135 | { | |
28010a5d | 12136 | struct ada_catchpoint *c = (struct ada_catchpoint *) b; |
79a45e25 | 12137 | struct ui_out *uiout = current_uiout; |
28010a5d | 12138 | |
00eb2c4a JB |
12139 | ui_out_text (uiout, b->disposition == disp_del ? _("Temporary catchpoint ") |
12140 | : _("Catchpoint ")); | |
12141 | ui_out_field_int (uiout, "bkptno", b->number); | |
12142 | ui_out_text (uiout, ": "); | |
12143 | ||
f7f9143b JB |
12144 | switch (ex) |
12145 | { | |
761269c8 | 12146 | case ada_catch_exception: |
28010a5d | 12147 | if (c->excep_string != NULL) |
00eb2c4a JB |
12148 | { |
12149 | char *info = xstrprintf (_("`%s' Ada exception"), c->excep_string); | |
12150 | struct cleanup *old_chain = make_cleanup (xfree, info); | |
12151 | ||
12152 | ui_out_text (uiout, info); | |
12153 | do_cleanups (old_chain); | |
12154 | } | |
f7f9143b | 12155 | else |
00eb2c4a | 12156 | ui_out_text (uiout, _("all Ada exceptions")); |
f7f9143b JB |
12157 | break; |
12158 | ||
761269c8 | 12159 | case ada_catch_exception_unhandled: |
00eb2c4a | 12160 | ui_out_text (uiout, _("unhandled Ada exceptions")); |
f7f9143b JB |
12161 | break; |
12162 | ||
761269c8 | 12163 | case ada_catch_assert: |
00eb2c4a | 12164 | ui_out_text (uiout, _("failed Ada assertions")); |
f7f9143b JB |
12165 | break; |
12166 | ||
12167 | default: | |
12168 | internal_error (__FILE__, __LINE__, _("unexpected catchpoint type")); | |
12169 | break; | |
12170 | } | |
12171 | } | |
12172 | ||
6149aea9 PA |
12173 | /* Implement the PRINT_RECREATE method in the breakpoint_ops structure |
12174 | for all exception catchpoint kinds. */ | |
12175 | ||
12176 | static void | |
761269c8 | 12177 | print_recreate_exception (enum ada_exception_catchpoint_kind ex, |
6149aea9 PA |
12178 | struct breakpoint *b, struct ui_file *fp) |
12179 | { | |
28010a5d PA |
12180 | struct ada_catchpoint *c = (struct ada_catchpoint *) b; |
12181 | ||
6149aea9 PA |
12182 | switch (ex) |
12183 | { | |
761269c8 | 12184 | case ada_catch_exception: |
6149aea9 | 12185 | fprintf_filtered (fp, "catch exception"); |
28010a5d PA |
12186 | if (c->excep_string != NULL) |
12187 | fprintf_filtered (fp, " %s", c->excep_string); | |
6149aea9 PA |
12188 | break; |
12189 | ||
761269c8 | 12190 | case ada_catch_exception_unhandled: |
78076abc | 12191 | fprintf_filtered (fp, "catch exception unhandled"); |
6149aea9 PA |
12192 | break; |
12193 | ||
761269c8 | 12194 | case ada_catch_assert: |
6149aea9 PA |
12195 | fprintf_filtered (fp, "catch assert"); |
12196 | break; | |
12197 | ||
12198 | default: | |
12199 | internal_error (__FILE__, __LINE__, _("unexpected catchpoint type")); | |
12200 | } | |
d9b3f62e | 12201 | print_recreate_thread (b, fp); |
6149aea9 PA |
12202 | } |
12203 | ||
f7f9143b JB |
12204 | /* Virtual table for "catch exception" breakpoints. */ |
12205 | ||
28010a5d PA |
12206 | static void |
12207 | dtor_catch_exception (struct breakpoint *b) | |
12208 | { | |
761269c8 | 12209 | dtor_exception (ada_catch_exception, b); |
28010a5d PA |
12210 | } |
12211 | ||
12212 | static struct bp_location * | |
12213 | allocate_location_catch_exception (struct breakpoint *self) | |
12214 | { | |
761269c8 | 12215 | return allocate_location_exception (ada_catch_exception, self); |
28010a5d PA |
12216 | } |
12217 | ||
12218 | static void | |
12219 | re_set_catch_exception (struct breakpoint *b) | |
12220 | { | |
761269c8 | 12221 | re_set_exception (ada_catch_exception, b); |
28010a5d PA |
12222 | } |
12223 | ||
12224 | static void | |
12225 | check_status_catch_exception (bpstat bs) | |
12226 | { | |
761269c8 | 12227 | check_status_exception (ada_catch_exception, bs); |
28010a5d PA |
12228 | } |
12229 | ||
f7f9143b | 12230 | static enum print_stop_action |
348d480f | 12231 | print_it_catch_exception (bpstat bs) |
f7f9143b | 12232 | { |
761269c8 | 12233 | return print_it_exception (ada_catch_exception, bs); |
f7f9143b JB |
12234 | } |
12235 | ||
12236 | static void | |
a6d9a66e | 12237 | print_one_catch_exception (struct breakpoint *b, struct bp_location **last_loc) |
f7f9143b | 12238 | { |
761269c8 | 12239 | print_one_exception (ada_catch_exception, b, last_loc); |
f7f9143b JB |
12240 | } |
12241 | ||
12242 | static void | |
12243 | print_mention_catch_exception (struct breakpoint *b) | |
12244 | { | |
761269c8 | 12245 | print_mention_exception (ada_catch_exception, b); |
f7f9143b JB |
12246 | } |
12247 | ||
6149aea9 PA |
12248 | static void |
12249 | print_recreate_catch_exception (struct breakpoint *b, struct ui_file *fp) | |
12250 | { | |
761269c8 | 12251 | print_recreate_exception (ada_catch_exception, b, fp); |
6149aea9 PA |
12252 | } |
12253 | ||
2060206e | 12254 | static struct breakpoint_ops catch_exception_breakpoint_ops; |
f7f9143b JB |
12255 | |
12256 | /* Virtual table for "catch exception unhandled" breakpoints. */ | |
12257 | ||
28010a5d PA |
12258 | static void |
12259 | dtor_catch_exception_unhandled (struct breakpoint *b) | |
12260 | { | |
761269c8 | 12261 | dtor_exception (ada_catch_exception_unhandled, b); |
28010a5d PA |
12262 | } |
12263 | ||
12264 | static struct bp_location * | |
12265 | allocate_location_catch_exception_unhandled (struct breakpoint *self) | |
12266 | { | |
761269c8 | 12267 | return allocate_location_exception (ada_catch_exception_unhandled, self); |
28010a5d PA |
12268 | } |
12269 | ||
12270 | static void | |
12271 | re_set_catch_exception_unhandled (struct breakpoint *b) | |
12272 | { | |
761269c8 | 12273 | re_set_exception (ada_catch_exception_unhandled, b); |
28010a5d PA |
12274 | } |
12275 | ||
12276 | static void | |
12277 | check_status_catch_exception_unhandled (bpstat bs) | |
12278 | { | |
761269c8 | 12279 | check_status_exception (ada_catch_exception_unhandled, bs); |
28010a5d PA |
12280 | } |
12281 | ||
f7f9143b | 12282 | static enum print_stop_action |
348d480f | 12283 | print_it_catch_exception_unhandled (bpstat bs) |
f7f9143b | 12284 | { |
761269c8 | 12285 | return print_it_exception (ada_catch_exception_unhandled, bs); |
f7f9143b JB |
12286 | } |
12287 | ||
12288 | static void | |
a6d9a66e UW |
12289 | print_one_catch_exception_unhandled (struct breakpoint *b, |
12290 | struct bp_location **last_loc) | |
f7f9143b | 12291 | { |
761269c8 | 12292 | print_one_exception (ada_catch_exception_unhandled, b, last_loc); |
f7f9143b JB |
12293 | } |
12294 | ||
12295 | static void | |
12296 | print_mention_catch_exception_unhandled (struct breakpoint *b) | |
12297 | { | |
761269c8 | 12298 | print_mention_exception (ada_catch_exception_unhandled, b); |
f7f9143b JB |
12299 | } |
12300 | ||
6149aea9 PA |
12301 | static void |
12302 | print_recreate_catch_exception_unhandled (struct breakpoint *b, | |
12303 | struct ui_file *fp) | |
12304 | { | |
761269c8 | 12305 | print_recreate_exception (ada_catch_exception_unhandled, b, fp); |
6149aea9 PA |
12306 | } |
12307 | ||
2060206e | 12308 | static struct breakpoint_ops catch_exception_unhandled_breakpoint_ops; |
f7f9143b JB |
12309 | |
12310 | /* Virtual table for "catch assert" breakpoints. */ | |
12311 | ||
28010a5d PA |
12312 | static void |
12313 | dtor_catch_assert (struct breakpoint *b) | |
12314 | { | |
761269c8 | 12315 | dtor_exception (ada_catch_assert, b); |
28010a5d PA |
12316 | } |
12317 | ||
12318 | static struct bp_location * | |
12319 | allocate_location_catch_assert (struct breakpoint *self) | |
12320 | { | |
761269c8 | 12321 | return allocate_location_exception (ada_catch_assert, self); |
28010a5d PA |
12322 | } |
12323 | ||
12324 | static void | |
12325 | re_set_catch_assert (struct breakpoint *b) | |
12326 | { | |
761269c8 | 12327 | re_set_exception (ada_catch_assert, b); |
28010a5d PA |
12328 | } |
12329 | ||
12330 | static void | |
12331 | check_status_catch_assert (bpstat bs) | |
12332 | { | |
761269c8 | 12333 | check_status_exception (ada_catch_assert, bs); |
28010a5d PA |
12334 | } |
12335 | ||
f7f9143b | 12336 | static enum print_stop_action |
348d480f | 12337 | print_it_catch_assert (bpstat bs) |
f7f9143b | 12338 | { |
761269c8 | 12339 | return print_it_exception (ada_catch_assert, bs); |
f7f9143b JB |
12340 | } |
12341 | ||
12342 | static void | |
a6d9a66e | 12343 | print_one_catch_assert (struct breakpoint *b, struct bp_location **last_loc) |
f7f9143b | 12344 | { |
761269c8 | 12345 | print_one_exception (ada_catch_assert, b, last_loc); |
f7f9143b JB |
12346 | } |
12347 | ||
12348 | static void | |
12349 | print_mention_catch_assert (struct breakpoint *b) | |
12350 | { | |
761269c8 | 12351 | print_mention_exception (ada_catch_assert, b); |
f7f9143b JB |
12352 | } |
12353 | ||
6149aea9 PA |
12354 | static void |
12355 | print_recreate_catch_assert (struct breakpoint *b, struct ui_file *fp) | |
12356 | { | |
761269c8 | 12357 | print_recreate_exception (ada_catch_assert, b, fp); |
6149aea9 PA |
12358 | } |
12359 | ||
2060206e | 12360 | static struct breakpoint_ops catch_assert_breakpoint_ops; |
f7f9143b | 12361 | |
f7f9143b JB |
12362 | /* Return a newly allocated copy of the first space-separated token |
12363 | in ARGSP, and then adjust ARGSP to point immediately after that | |
12364 | token. | |
12365 | ||
12366 | Return NULL if ARGPS does not contain any more tokens. */ | |
12367 | ||
12368 | static char * | |
12369 | ada_get_next_arg (char **argsp) | |
12370 | { | |
12371 | char *args = *argsp; | |
12372 | char *end; | |
12373 | char *result; | |
12374 | ||
0fcd72ba | 12375 | args = skip_spaces (args); |
f7f9143b JB |
12376 | if (args[0] == '\0') |
12377 | return NULL; /* No more arguments. */ | |
12378 | ||
12379 | /* Find the end of the current argument. */ | |
12380 | ||
0fcd72ba | 12381 | end = skip_to_space (args); |
f7f9143b JB |
12382 | |
12383 | /* Adjust ARGSP to point to the start of the next argument. */ | |
12384 | ||
12385 | *argsp = end; | |
12386 | ||
12387 | /* Make a copy of the current argument and return it. */ | |
12388 | ||
12389 | result = xmalloc (end - args + 1); | |
12390 | strncpy (result, args, end - args); | |
12391 | result[end - args] = '\0'; | |
12392 | ||
12393 | return result; | |
12394 | } | |
12395 | ||
12396 | /* Split the arguments specified in a "catch exception" command. | |
12397 | Set EX to the appropriate catchpoint type. | |
28010a5d | 12398 | Set EXCEP_STRING to the name of the specific exception if |
5845583d JB |
12399 | specified by the user. |
12400 | If a condition is found at the end of the arguments, the condition | |
12401 | expression is stored in COND_STRING (memory must be deallocated | |
12402 | after use). Otherwise COND_STRING is set to NULL. */ | |
f7f9143b JB |
12403 | |
12404 | static void | |
12405 | catch_ada_exception_command_split (char *args, | |
761269c8 | 12406 | enum ada_exception_catchpoint_kind *ex, |
5845583d JB |
12407 | char **excep_string, |
12408 | char **cond_string) | |
f7f9143b JB |
12409 | { |
12410 | struct cleanup *old_chain = make_cleanup (null_cleanup, NULL); | |
12411 | char *exception_name; | |
5845583d | 12412 | char *cond = NULL; |
f7f9143b JB |
12413 | |
12414 | exception_name = ada_get_next_arg (&args); | |
5845583d JB |
12415 | if (exception_name != NULL && strcmp (exception_name, "if") == 0) |
12416 | { | |
12417 | /* This is not an exception name; this is the start of a condition | |
12418 | expression for a catchpoint on all exceptions. So, "un-get" | |
12419 | this token, and set exception_name to NULL. */ | |
12420 | xfree (exception_name); | |
12421 | exception_name = NULL; | |
12422 | args -= 2; | |
12423 | } | |
f7f9143b JB |
12424 | make_cleanup (xfree, exception_name); |
12425 | ||
5845583d | 12426 | /* Check to see if we have a condition. */ |
f7f9143b | 12427 | |
0fcd72ba | 12428 | args = skip_spaces (args); |
5845583d JB |
12429 | if (strncmp (args, "if", 2) == 0 |
12430 | && (isspace (args[2]) || args[2] == '\0')) | |
12431 | { | |
12432 | args += 2; | |
12433 | args = skip_spaces (args); | |
12434 | ||
12435 | if (args[0] == '\0') | |
12436 | error (_("Condition missing after `if' keyword")); | |
12437 | cond = xstrdup (args); | |
12438 | make_cleanup (xfree, cond); | |
12439 | ||
12440 | args += strlen (args); | |
12441 | } | |
12442 | ||
12443 | /* Check that we do not have any more arguments. Anything else | |
12444 | is unexpected. */ | |
f7f9143b JB |
12445 | |
12446 | if (args[0] != '\0') | |
12447 | error (_("Junk at end of expression")); | |
12448 | ||
12449 | discard_cleanups (old_chain); | |
12450 | ||
12451 | if (exception_name == NULL) | |
12452 | { | |
12453 | /* Catch all exceptions. */ | |
761269c8 | 12454 | *ex = ada_catch_exception; |
28010a5d | 12455 | *excep_string = NULL; |
f7f9143b JB |
12456 | } |
12457 | else if (strcmp (exception_name, "unhandled") == 0) | |
12458 | { | |
12459 | /* Catch unhandled exceptions. */ | |
761269c8 | 12460 | *ex = ada_catch_exception_unhandled; |
28010a5d | 12461 | *excep_string = NULL; |
f7f9143b JB |
12462 | } |
12463 | else | |
12464 | { | |
12465 | /* Catch a specific exception. */ | |
761269c8 | 12466 | *ex = ada_catch_exception; |
28010a5d | 12467 | *excep_string = exception_name; |
f7f9143b | 12468 | } |
5845583d | 12469 | *cond_string = cond; |
f7f9143b JB |
12470 | } |
12471 | ||
12472 | /* Return the name of the symbol on which we should break in order to | |
12473 | implement a catchpoint of the EX kind. */ | |
12474 | ||
12475 | static const char * | |
761269c8 | 12476 | ada_exception_sym_name (enum ada_exception_catchpoint_kind ex) |
f7f9143b | 12477 | { |
3eecfa55 JB |
12478 | struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ()); |
12479 | ||
12480 | gdb_assert (data->exception_info != NULL); | |
0259addd | 12481 | |
f7f9143b JB |
12482 | switch (ex) |
12483 | { | |
761269c8 | 12484 | case ada_catch_exception: |
3eecfa55 | 12485 | return (data->exception_info->catch_exception_sym); |
f7f9143b | 12486 | break; |
761269c8 | 12487 | case ada_catch_exception_unhandled: |
3eecfa55 | 12488 | return (data->exception_info->catch_exception_unhandled_sym); |
f7f9143b | 12489 | break; |
761269c8 | 12490 | case ada_catch_assert: |
3eecfa55 | 12491 | return (data->exception_info->catch_assert_sym); |
f7f9143b JB |
12492 | break; |
12493 | default: | |
12494 | internal_error (__FILE__, __LINE__, | |
12495 | _("unexpected catchpoint kind (%d)"), ex); | |
12496 | } | |
12497 | } | |
12498 | ||
12499 | /* Return the breakpoint ops "virtual table" used for catchpoints | |
12500 | of the EX kind. */ | |
12501 | ||
c0a91b2b | 12502 | static const struct breakpoint_ops * |
761269c8 | 12503 | ada_exception_breakpoint_ops (enum ada_exception_catchpoint_kind ex) |
f7f9143b JB |
12504 | { |
12505 | switch (ex) | |
12506 | { | |
761269c8 | 12507 | case ada_catch_exception: |
f7f9143b JB |
12508 | return (&catch_exception_breakpoint_ops); |
12509 | break; | |
761269c8 | 12510 | case ada_catch_exception_unhandled: |
f7f9143b JB |
12511 | return (&catch_exception_unhandled_breakpoint_ops); |
12512 | break; | |
761269c8 | 12513 | case ada_catch_assert: |
f7f9143b JB |
12514 | return (&catch_assert_breakpoint_ops); |
12515 | break; | |
12516 | default: | |
12517 | internal_error (__FILE__, __LINE__, | |
12518 | _("unexpected catchpoint kind (%d)"), ex); | |
12519 | } | |
12520 | } | |
12521 | ||
12522 | /* Return the condition that will be used to match the current exception | |
12523 | being raised with the exception that the user wants to catch. This | |
12524 | assumes that this condition is used when the inferior just triggered | |
12525 | an exception catchpoint. | |
12526 | ||
12527 | The string returned is a newly allocated string that needs to be | |
12528 | deallocated later. */ | |
12529 | ||
12530 | static char * | |
28010a5d | 12531 | ada_exception_catchpoint_cond_string (const char *excep_string) |
f7f9143b | 12532 | { |
3d0b0fa3 JB |
12533 | int i; |
12534 | ||
0963b4bd | 12535 | /* The standard exceptions are a special case. They are defined in |
3d0b0fa3 | 12536 | runtime units that have been compiled without debugging info; if |
28010a5d | 12537 | EXCEP_STRING is the not-fully-qualified name of a standard |
3d0b0fa3 JB |
12538 | exception (e.g. "constraint_error") then, during the evaluation |
12539 | of the condition expression, the symbol lookup on this name would | |
0963b4bd | 12540 | *not* return this standard exception. The catchpoint condition |
3d0b0fa3 JB |
12541 | may then be set only on user-defined exceptions which have the |
12542 | same not-fully-qualified name (e.g. my_package.constraint_error). | |
12543 | ||
12544 | To avoid this unexcepted behavior, these standard exceptions are | |
0963b4bd | 12545 | systematically prefixed by "standard". This means that "catch |
3d0b0fa3 JB |
12546 | exception constraint_error" is rewritten into "catch exception |
12547 | standard.constraint_error". | |
12548 | ||
12549 | If an exception named contraint_error is defined in another package of | |
12550 | the inferior program, then the only way to specify this exception as a | |
12551 | breakpoint condition is to use its fully-qualified named: | |
12552 | e.g. my_package.constraint_error. */ | |
12553 | ||
12554 | for (i = 0; i < sizeof (standard_exc) / sizeof (char *); i++) | |
12555 | { | |
28010a5d | 12556 | if (strcmp (standard_exc [i], excep_string) == 0) |
3d0b0fa3 JB |
12557 | { |
12558 | return xstrprintf ("long_integer (e) = long_integer (&standard.%s)", | |
28010a5d | 12559 | excep_string); |
3d0b0fa3 JB |
12560 | } |
12561 | } | |
28010a5d | 12562 | return xstrprintf ("long_integer (e) = long_integer (&%s)", excep_string); |
f7f9143b JB |
12563 | } |
12564 | ||
12565 | /* Return the symtab_and_line that should be used to insert an exception | |
12566 | catchpoint of the TYPE kind. | |
12567 | ||
28010a5d PA |
12568 | EXCEP_STRING should contain the name of a specific exception that |
12569 | the catchpoint should catch, or NULL otherwise. | |
f7f9143b | 12570 | |
28010a5d PA |
12571 | ADDR_STRING returns the name of the function where the real |
12572 | breakpoint that implements the catchpoints is set, depending on the | |
12573 | type of catchpoint we need to create. */ | |
f7f9143b JB |
12574 | |
12575 | static struct symtab_and_line | |
761269c8 | 12576 | ada_exception_sal (enum ada_exception_catchpoint_kind ex, char *excep_string, |
c0a91b2b | 12577 | char **addr_string, const struct breakpoint_ops **ops) |
f7f9143b JB |
12578 | { |
12579 | const char *sym_name; | |
12580 | struct symbol *sym; | |
f7f9143b | 12581 | |
0259addd JB |
12582 | /* First, find out which exception support info to use. */ |
12583 | ada_exception_support_info_sniffer (); | |
12584 | ||
12585 | /* Then lookup the function on which we will break in order to catch | |
f7f9143b | 12586 | the Ada exceptions requested by the user. */ |
f7f9143b JB |
12587 | sym_name = ada_exception_sym_name (ex); |
12588 | sym = standard_lookup (sym_name, NULL, VAR_DOMAIN); | |
12589 | ||
f17011e0 JB |
12590 | /* We can assume that SYM is not NULL at this stage. If the symbol |
12591 | did not exist, ada_exception_support_info_sniffer would have | |
12592 | raised an exception. | |
f7f9143b | 12593 | |
f17011e0 JB |
12594 | Also, ada_exception_support_info_sniffer should have already |
12595 | verified that SYM is a function symbol. */ | |
12596 | gdb_assert (sym != NULL); | |
12597 | gdb_assert (SYMBOL_CLASS (sym) == LOC_BLOCK); | |
f7f9143b JB |
12598 | |
12599 | /* Set ADDR_STRING. */ | |
f7f9143b JB |
12600 | *addr_string = xstrdup (sym_name); |
12601 | ||
f7f9143b | 12602 | /* Set OPS. */ |
4b9eee8c | 12603 | *ops = ada_exception_breakpoint_ops (ex); |
f7f9143b | 12604 | |
f17011e0 | 12605 | return find_function_start_sal (sym, 1); |
f7f9143b JB |
12606 | } |
12607 | ||
b4a5b78b | 12608 | /* Create an Ada exception catchpoint. |
f7f9143b | 12609 | |
b4a5b78b | 12610 | EX_KIND is the kind of exception catchpoint to be created. |
5845583d | 12611 | |
2df4d1d5 JB |
12612 | If EXCEPT_STRING is NULL, this catchpoint is expected to trigger |
12613 | for all exceptions. Otherwise, EXCEPT_STRING indicates the name | |
12614 | of the exception to which this catchpoint applies. When not NULL, | |
12615 | the string must be allocated on the heap, and its deallocation | |
12616 | is no longer the responsibility of the caller. | |
12617 | ||
12618 | COND_STRING, if not NULL, is the catchpoint condition. This string | |
12619 | must be allocated on the heap, and its deallocation is no longer | |
12620 | the responsibility of the caller. | |
f7f9143b | 12621 | |
b4a5b78b JB |
12622 | TEMPFLAG, if nonzero, means that the underlying breakpoint |
12623 | should be temporary. | |
28010a5d | 12624 | |
b4a5b78b | 12625 | FROM_TTY is the usual argument passed to all commands implementations. */ |
28010a5d | 12626 | |
349774ef | 12627 | void |
28010a5d | 12628 | create_ada_exception_catchpoint (struct gdbarch *gdbarch, |
761269c8 | 12629 | enum ada_exception_catchpoint_kind ex_kind, |
28010a5d | 12630 | char *excep_string, |
5845583d | 12631 | char *cond_string, |
28010a5d | 12632 | int tempflag, |
349774ef | 12633 | int disabled, |
28010a5d PA |
12634 | int from_tty) |
12635 | { | |
12636 | struct ada_catchpoint *c; | |
b4a5b78b JB |
12637 | char *addr_string = NULL; |
12638 | const struct breakpoint_ops *ops = NULL; | |
12639 | struct symtab_and_line sal | |
12640 | = ada_exception_sal (ex_kind, excep_string, &addr_string, &ops); | |
28010a5d PA |
12641 | |
12642 | c = XNEW (struct ada_catchpoint); | |
12643 | init_ada_exception_breakpoint (&c->base, gdbarch, sal, addr_string, | |
349774ef | 12644 | ops, tempflag, disabled, from_tty); |
28010a5d PA |
12645 | c->excep_string = excep_string; |
12646 | create_excep_cond_exprs (c); | |
5845583d JB |
12647 | if (cond_string != NULL) |
12648 | set_breakpoint_condition (&c->base, cond_string, from_tty); | |
3ea46bff | 12649 | install_breakpoint (0, &c->base, 1); |
f7f9143b JB |
12650 | } |
12651 | ||
9ac4176b PA |
12652 | /* Implement the "catch exception" command. */ |
12653 | ||
12654 | static void | |
12655 | catch_ada_exception_command (char *arg, int from_tty, | |
12656 | struct cmd_list_element *command) | |
12657 | { | |
12658 | struct gdbarch *gdbarch = get_current_arch (); | |
12659 | int tempflag; | |
761269c8 | 12660 | enum ada_exception_catchpoint_kind ex_kind; |
28010a5d | 12661 | char *excep_string = NULL; |
5845583d | 12662 | char *cond_string = NULL; |
9ac4176b PA |
12663 | |
12664 | tempflag = get_cmd_context (command) == CATCH_TEMPORARY; | |
12665 | ||
12666 | if (!arg) | |
12667 | arg = ""; | |
b4a5b78b JB |
12668 | catch_ada_exception_command_split (arg, &ex_kind, &excep_string, |
12669 | &cond_string); | |
12670 | create_ada_exception_catchpoint (gdbarch, ex_kind, | |
12671 | excep_string, cond_string, | |
349774ef JB |
12672 | tempflag, 1 /* enabled */, |
12673 | from_tty); | |
9ac4176b PA |
12674 | } |
12675 | ||
b4a5b78b | 12676 | /* Split the arguments specified in a "catch assert" command. |
5845583d | 12677 | |
b4a5b78b JB |
12678 | ARGS contains the command's arguments (or the empty string if |
12679 | no arguments were passed). | |
5845583d JB |
12680 | |
12681 | If ARGS contains a condition, set COND_STRING to that condition | |
b4a5b78b | 12682 | (the memory needs to be deallocated after use). */ |
5845583d | 12683 | |
b4a5b78b JB |
12684 | static void |
12685 | catch_ada_assert_command_split (char *args, char **cond_string) | |
f7f9143b | 12686 | { |
5845583d | 12687 | args = skip_spaces (args); |
f7f9143b | 12688 | |
5845583d JB |
12689 | /* Check whether a condition was provided. */ |
12690 | if (strncmp (args, "if", 2) == 0 | |
12691 | && (isspace (args[2]) || args[2] == '\0')) | |
f7f9143b | 12692 | { |
5845583d | 12693 | args += 2; |
0fcd72ba | 12694 | args = skip_spaces (args); |
5845583d JB |
12695 | if (args[0] == '\0') |
12696 | error (_("condition missing after `if' keyword")); | |
12697 | *cond_string = xstrdup (args); | |
f7f9143b JB |
12698 | } |
12699 | ||
5845583d JB |
12700 | /* Otherwise, there should be no other argument at the end of |
12701 | the command. */ | |
12702 | else if (args[0] != '\0') | |
12703 | error (_("Junk at end of arguments.")); | |
f7f9143b JB |
12704 | } |
12705 | ||
9ac4176b PA |
12706 | /* Implement the "catch assert" command. */ |
12707 | ||
12708 | static void | |
12709 | catch_assert_command (char *arg, int from_tty, | |
12710 | struct cmd_list_element *command) | |
12711 | { | |
12712 | struct gdbarch *gdbarch = get_current_arch (); | |
12713 | int tempflag; | |
5845583d | 12714 | char *cond_string = NULL; |
9ac4176b PA |
12715 | |
12716 | tempflag = get_cmd_context (command) == CATCH_TEMPORARY; | |
12717 | ||
12718 | if (!arg) | |
12719 | arg = ""; | |
b4a5b78b | 12720 | catch_ada_assert_command_split (arg, &cond_string); |
761269c8 | 12721 | create_ada_exception_catchpoint (gdbarch, ada_catch_assert, |
b4a5b78b | 12722 | NULL, cond_string, |
349774ef JB |
12723 | tempflag, 1 /* enabled */, |
12724 | from_tty); | |
9ac4176b | 12725 | } |
778865d3 JB |
12726 | |
12727 | /* Return non-zero if the symbol SYM is an Ada exception object. */ | |
12728 | ||
12729 | static int | |
12730 | ada_is_exception_sym (struct symbol *sym) | |
12731 | { | |
12732 | const char *type_name = type_name_no_tag (SYMBOL_TYPE (sym)); | |
12733 | ||
12734 | return (SYMBOL_CLASS (sym) != LOC_TYPEDEF | |
12735 | && SYMBOL_CLASS (sym) != LOC_BLOCK | |
12736 | && SYMBOL_CLASS (sym) != LOC_CONST | |
12737 | && SYMBOL_CLASS (sym) != LOC_UNRESOLVED | |
12738 | && type_name != NULL && strcmp (type_name, "exception") == 0); | |
12739 | } | |
12740 | ||
12741 | /* Given a global symbol SYM, return non-zero iff SYM is a non-standard | |
12742 | Ada exception object. This matches all exceptions except the ones | |
12743 | defined by the Ada language. */ | |
12744 | ||
12745 | static int | |
12746 | ada_is_non_standard_exception_sym (struct symbol *sym) | |
12747 | { | |
12748 | int i; | |
12749 | ||
12750 | if (!ada_is_exception_sym (sym)) | |
12751 | return 0; | |
12752 | ||
12753 | for (i = 0; i < ARRAY_SIZE (standard_exc); i++) | |
12754 | if (strcmp (SYMBOL_LINKAGE_NAME (sym), standard_exc[i]) == 0) | |
12755 | return 0; /* A standard exception. */ | |
12756 | ||
12757 | /* Numeric_Error is also a standard exception, so exclude it. | |
12758 | See the STANDARD_EXC description for more details as to why | |
12759 | this exception is not listed in that array. */ | |
12760 | if (strcmp (SYMBOL_LINKAGE_NAME (sym), "numeric_error") == 0) | |
12761 | return 0; | |
12762 | ||
12763 | return 1; | |
12764 | } | |
12765 | ||
12766 | /* A helper function for qsort, comparing two struct ada_exc_info | |
12767 | objects. | |
12768 | ||
12769 | The comparison is determined first by exception name, and then | |
12770 | by exception address. */ | |
12771 | ||
12772 | static int | |
12773 | compare_ada_exception_info (const void *a, const void *b) | |
12774 | { | |
12775 | const struct ada_exc_info *exc_a = (struct ada_exc_info *) a; | |
12776 | const struct ada_exc_info *exc_b = (struct ada_exc_info *) b; | |
12777 | int result; | |
12778 | ||
12779 | result = strcmp (exc_a->name, exc_b->name); | |
12780 | if (result != 0) | |
12781 | return result; | |
12782 | ||
12783 | if (exc_a->addr < exc_b->addr) | |
12784 | return -1; | |
12785 | if (exc_a->addr > exc_b->addr) | |
12786 | return 1; | |
12787 | ||
12788 | return 0; | |
12789 | } | |
12790 | ||
12791 | /* Sort EXCEPTIONS using compare_ada_exception_info as the comparison | |
12792 | routine, but keeping the first SKIP elements untouched. | |
12793 | ||
12794 | All duplicates are also removed. */ | |
12795 | ||
12796 | static void | |
12797 | sort_remove_dups_ada_exceptions_list (VEC(ada_exc_info) **exceptions, | |
12798 | int skip) | |
12799 | { | |
12800 | struct ada_exc_info *to_sort | |
12801 | = VEC_address (ada_exc_info, *exceptions) + skip; | |
12802 | int to_sort_len | |
12803 | = VEC_length (ada_exc_info, *exceptions) - skip; | |
12804 | int i, j; | |
12805 | ||
12806 | qsort (to_sort, to_sort_len, sizeof (struct ada_exc_info), | |
12807 | compare_ada_exception_info); | |
12808 | ||
12809 | for (i = 1, j = 1; i < to_sort_len; i++) | |
12810 | if (compare_ada_exception_info (&to_sort[i], &to_sort[j - 1]) != 0) | |
12811 | to_sort[j++] = to_sort[i]; | |
12812 | to_sort_len = j; | |
12813 | VEC_truncate(ada_exc_info, *exceptions, skip + to_sort_len); | |
12814 | } | |
12815 | ||
12816 | /* A function intended as the "name_matcher" callback in the struct | |
12817 | quick_symbol_functions' expand_symtabs_matching method. | |
12818 | ||
12819 | SEARCH_NAME is the symbol's search name. | |
12820 | ||
12821 | If USER_DATA is not NULL, it is a pointer to a regext_t object | |
12822 | used to match the symbol (by natural name). Otherwise, when USER_DATA | |
12823 | is null, no filtering is performed, and all symbols are a positive | |
12824 | match. */ | |
12825 | ||
12826 | static int | |
12827 | ada_exc_search_name_matches (const char *search_name, void *user_data) | |
12828 | { | |
12829 | regex_t *preg = user_data; | |
12830 | ||
12831 | if (preg == NULL) | |
12832 | return 1; | |
12833 | ||
12834 | /* In Ada, the symbol "search name" is a linkage name, whereas | |
12835 | the regular expression used to do the matching refers to | |
12836 | the natural name. So match against the decoded name. */ | |
12837 | return (regexec (preg, ada_decode (search_name), 0, NULL, 0) == 0); | |
12838 | } | |
12839 | ||
12840 | /* Add all exceptions defined by the Ada standard whose name match | |
12841 | a regular expression. | |
12842 | ||
12843 | If PREG is not NULL, then this regexp_t object is used to | |
12844 | perform the symbol name matching. Otherwise, no name-based | |
12845 | filtering is performed. | |
12846 | ||
12847 | EXCEPTIONS is a vector of exceptions to which matching exceptions | |
12848 | gets pushed. */ | |
12849 | ||
12850 | static void | |
12851 | ada_add_standard_exceptions (regex_t *preg, VEC(ada_exc_info) **exceptions) | |
12852 | { | |
12853 | int i; | |
12854 | ||
12855 | for (i = 0; i < ARRAY_SIZE (standard_exc); i++) | |
12856 | { | |
12857 | if (preg == NULL | |
12858 | || regexec (preg, standard_exc[i], 0, NULL, 0) == 0) | |
12859 | { | |
12860 | struct bound_minimal_symbol msymbol | |
12861 | = ada_lookup_simple_minsym (standard_exc[i]); | |
12862 | ||
12863 | if (msymbol.minsym != NULL) | |
12864 | { | |
12865 | struct ada_exc_info info | |
77e371c0 | 12866 | = {standard_exc[i], BMSYMBOL_VALUE_ADDRESS (msymbol)}; |
778865d3 JB |
12867 | |
12868 | VEC_safe_push (ada_exc_info, *exceptions, &info); | |
12869 | } | |
12870 | } | |
12871 | } | |
12872 | } | |
12873 | ||
12874 | /* Add all Ada exceptions defined locally and accessible from the given | |
12875 | FRAME. | |
12876 | ||
12877 | If PREG is not NULL, then this regexp_t object is used to | |
12878 | perform the symbol name matching. Otherwise, no name-based | |
12879 | filtering is performed. | |
12880 | ||
12881 | EXCEPTIONS is a vector of exceptions to which matching exceptions | |
12882 | gets pushed. */ | |
12883 | ||
12884 | static void | |
12885 | ada_add_exceptions_from_frame (regex_t *preg, struct frame_info *frame, | |
12886 | VEC(ada_exc_info) **exceptions) | |
12887 | { | |
3977b71f | 12888 | const struct block *block = get_frame_block (frame, 0); |
778865d3 JB |
12889 | |
12890 | while (block != 0) | |
12891 | { | |
12892 | struct block_iterator iter; | |
12893 | struct symbol *sym; | |
12894 | ||
12895 | ALL_BLOCK_SYMBOLS (block, iter, sym) | |
12896 | { | |
12897 | switch (SYMBOL_CLASS (sym)) | |
12898 | { | |
12899 | case LOC_TYPEDEF: | |
12900 | case LOC_BLOCK: | |
12901 | case LOC_CONST: | |
12902 | break; | |
12903 | default: | |
12904 | if (ada_is_exception_sym (sym)) | |
12905 | { | |
12906 | struct ada_exc_info info = {SYMBOL_PRINT_NAME (sym), | |
12907 | SYMBOL_VALUE_ADDRESS (sym)}; | |
12908 | ||
12909 | VEC_safe_push (ada_exc_info, *exceptions, &info); | |
12910 | } | |
12911 | } | |
12912 | } | |
12913 | if (BLOCK_FUNCTION (block) != NULL) | |
12914 | break; | |
12915 | block = BLOCK_SUPERBLOCK (block); | |
12916 | } | |
12917 | } | |
12918 | ||
12919 | /* Add all exceptions defined globally whose name name match | |
12920 | a regular expression, excluding standard exceptions. | |
12921 | ||
12922 | The reason we exclude standard exceptions is that they need | |
12923 | to be handled separately: Standard exceptions are defined inside | |
12924 | a runtime unit which is normally not compiled with debugging info, | |
12925 | and thus usually do not show up in our symbol search. However, | |
12926 | if the unit was in fact built with debugging info, we need to | |
12927 | exclude them because they would duplicate the entry we found | |
12928 | during the special loop that specifically searches for those | |
12929 | standard exceptions. | |
12930 | ||
12931 | If PREG is not NULL, then this regexp_t object is used to | |
12932 | perform the symbol name matching. Otherwise, no name-based | |
12933 | filtering is performed. | |
12934 | ||
12935 | EXCEPTIONS is a vector of exceptions to which matching exceptions | |
12936 | gets pushed. */ | |
12937 | ||
12938 | static void | |
12939 | ada_add_global_exceptions (regex_t *preg, VEC(ada_exc_info) **exceptions) | |
12940 | { | |
12941 | struct objfile *objfile; | |
43f3e411 | 12942 | struct compunit_symtab *s; |
778865d3 | 12943 | |
bb4142cf DE |
12944 | expand_symtabs_matching (NULL, ada_exc_search_name_matches, |
12945 | VARIABLES_DOMAIN, preg); | |
778865d3 | 12946 | |
43f3e411 | 12947 | ALL_COMPUNITS (objfile, s) |
778865d3 | 12948 | { |
43f3e411 | 12949 | const struct blockvector *bv = COMPUNIT_BLOCKVECTOR (s); |
778865d3 JB |
12950 | int i; |
12951 | ||
12952 | for (i = GLOBAL_BLOCK; i <= STATIC_BLOCK; i++) | |
12953 | { | |
12954 | struct block *b = BLOCKVECTOR_BLOCK (bv, i); | |
12955 | struct block_iterator iter; | |
12956 | struct symbol *sym; | |
12957 | ||
12958 | ALL_BLOCK_SYMBOLS (b, iter, sym) | |
12959 | if (ada_is_non_standard_exception_sym (sym) | |
12960 | && (preg == NULL | |
12961 | || regexec (preg, SYMBOL_NATURAL_NAME (sym), | |
12962 | 0, NULL, 0) == 0)) | |
12963 | { | |
12964 | struct ada_exc_info info | |
12965 | = {SYMBOL_PRINT_NAME (sym), SYMBOL_VALUE_ADDRESS (sym)}; | |
12966 | ||
12967 | VEC_safe_push (ada_exc_info, *exceptions, &info); | |
12968 | } | |
12969 | } | |
12970 | } | |
12971 | } | |
12972 | ||
12973 | /* Implements ada_exceptions_list with the regular expression passed | |
12974 | as a regex_t, rather than a string. | |
12975 | ||
12976 | If not NULL, PREG is used to filter out exceptions whose names | |
12977 | do not match. Otherwise, all exceptions are listed. */ | |
12978 | ||
12979 | static VEC(ada_exc_info) * | |
12980 | ada_exceptions_list_1 (regex_t *preg) | |
12981 | { | |
12982 | VEC(ada_exc_info) *result = NULL; | |
12983 | struct cleanup *old_chain | |
12984 | = make_cleanup (VEC_cleanup (ada_exc_info), &result); | |
12985 | int prev_len; | |
12986 | ||
12987 | /* First, list the known standard exceptions. These exceptions | |
12988 | need to be handled separately, as they are usually defined in | |
12989 | runtime units that have been compiled without debugging info. */ | |
12990 | ||
12991 | ada_add_standard_exceptions (preg, &result); | |
12992 | ||
12993 | /* Next, find all exceptions whose scope is local and accessible | |
12994 | from the currently selected frame. */ | |
12995 | ||
12996 | if (has_stack_frames ()) | |
12997 | { | |
12998 | prev_len = VEC_length (ada_exc_info, result); | |
12999 | ada_add_exceptions_from_frame (preg, get_selected_frame (NULL), | |
13000 | &result); | |
13001 | if (VEC_length (ada_exc_info, result) > prev_len) | |
13002 | sort_remove_dups_ada_exceptions_list (&result, prev_len); | |
13003 | } | |
13004 | ||
13005 | /* Add all exceptions whose scope is global. */ | |
13006 | ||
13007 | prev_len = VEC_length (ada_exc_info, result); | |
13008 | ada_add_global_exceptions (preg, &result); | |
13009 | if (VEC_length (ada_exc_info, result) > prev_len) | |
13010 | sort_remove_dups_ada_exceptions_list (&result, prev_len); | |
13011 | ||
13012 | discard_cleanups (old_chain); | |
13013 | return result; | |
13014 | } | |
13015 | ||
13016 | /* Return a vector of ada_exc_info. | |
13017 | ||
13018 | If REGEXP is NULL, all exceptions are included in the result. | |
13019 | Otherwise, it should contain a valid regular expression, | |
13020 | and only the exceptions whose names match that regular expression | |
13021 | are included in the result. | |
13022 | ||
13023 | The exceptions are sorted in the following order: | |
13024 | - Standard exceptions (defined by the Ada language), in | |
13025 | alphabetical order; | |
13026 | - Exceptions only visible from the current frame, in | |
13027 | alphabetical order; | |
13028 | - Exceptions whose scope is global, in alphabetical order. */ | |
13029 | ||
13030 | VEC(ada_exc_info) * | |
13031 | ada_exceptions_list (const char *regexp) | |
13032 | { | |
13033 | VEC(ada_exc_info) *result = NULL; | |
13034 | struct cleanup *old_chain = NULL; | |
13035 | regex_t reg; | |
13036 | ||
13037 | if (regexp != NULL) | |
13038 | old_chain = compile_rx_or_error (®, regexp, | |
13039 | _("invalid regular expression")); | |
13040 | ||
13041 | result = ada_exceptions_list_1 (regexp != NULL ? ® : NULL); | |
13042 | ||
13043 | if (old_chain != NULL) | |
13044 | do_cleanups (old_chain); | |
13045 | return result; | |
13046 | } | |
13047 | ||
13048 | /* Implement the "info exceptions" command. */ | |
13049 | ||
13050 | static void | |
13051 | info_exceptions_command (char *regexp, int from_tty) | |
13052 | { | |
13053 | VEC(ada_exc_info) *exceptions; | |
13054 | struct cleanup *cleanup; | |
13055 | struct gdbarch *gdbarch = get_current_arch (); | |
13056 | int ix; | |
13057 | struct ada_exc_info *info; | |
13058 | ||
13059 | exceptions = ada_exceptions_list (regexp); | |
13060 | cleanup = make_cleanup (VEC_cleanup (ada_exc_info), &exceptions); | |
13061 | ||
13062 | if (regexp != NULL) | |
13063 | printf_filtered | |
13064 | (_("All Ada exceptions matching regular expression \"%s\":\n"), regexp); | |
13065 | else | |
13066 | printf_filtered (_("All defined Ada exceptions:\n")); | |
13067 | ||
13068 | for (ix = 0; VEC_iterate(ada_exc_info, exceptions, ix, info); ix++) | |
13069 | printf_filtered ("%s: %s\n", info->name, paddress (gdbarch, info->addr)); | |
13070 | ||
13071 | do_cleanups (cleanup); | |
13072 | } | |
13073 | ||
4c4b4cd2 PH |
13074 | /* Operators */ |
13075 | /* Information about operators given special treatment in functions | |
13076 | below. */ | |
13077 | /* Format: OP_DEFN (<operator>, <operator length>, <# args>, <binop>). */ | |
13078 | ||
13079 | #define ADA_OPERATORS \ | |
13080 | OP_DEFN (OP_VAR_VALUE, 4, 0, 0) \ | |
13081 | OP_DEFN (BINOP_IN_BOUNDS, 3, 2, 0) \ | |
13082 | OP_DEFN (TERNOP_IN_RANGE, 1, 3, 0) \ | |
13083 | OP_DEFN (OP_ATR_FIRST, 1, 2, 0) \ | |
13084 | OP_DEFN (OP_ATR_LAST, 1, 2, 0) \ | |
13085 | OP_DEFN (OP_ATR_LENGTH, 1, 2, 0) \ | |
13086 | OP_DEFN (OP_ATR_IMAGE, 1, 2, 0) \ | |
13087 | OP_DEFN (OP_ATR_MAX, 1, 3, 0) \ | |
13088 | OP_DEFN (OP_ATR_MIN, 1, 3, 0) \ | |
13089 | OP_DEFN (OP_ATR_MODULUS, 1, 1, 0) \ | |
13090 | OP_DEFN (OP_ATR_POS, 1, 2, 0) \ | |
13091 | OP_DEFN (OP_ATR_SIZE, 1, 1, 0) \ | |
13092 | OP_DEFN (OP_ATR_TAG, 1, 1, 0) \ | |
13093 | OP_DEFN (OP_ATR_VAL, 1, 2, 0) \ | |
13094 | OP_DEFN (UNOP_QUAL, 3, 1, 0) \ | |
52ce6436 PH |
13095 | OP_DEFN (UNOP_IN_RANGE, 3, 1, 0) \ |
13096 | OP_DEFN (OP_OTHERS, 1, 1, 0) \ | |
13097 | OP_DEFN (OP_POSITIONAL, 3, 1, 0) \ | |
13098 | OP_DEFN (OP_DISCRETE_RANGE, 1, 2, 0) | |
4c4b4cd2 PH |
13099 | |
13100 | static void | |
554794dc SDJ |
13101 | ada_operator_length (const struct expression *exp, int pc, int *oplenp, |
13102 | int *argsp) | |
4c4b4cd2 PH |
13103 | { |
13104 | switch (exp->elts[pc - 1].opcode) | |
13105 | { | |
76a01679 | 13106 | default: |
4c4b4cd2 PH |
13107 | operator_length_standard (exp, pc, oplenp, argsp); |
13108 | break; | |
13109 | ||
13110 | #define OP_DEFN(op, len, args, binop) \ | |
13111 | case op: *oplenp = len; *argsp = args; break; | |
13112 | ADA_OPERATORS; | |
13113 | #undef OP_DEFN | |
52ce6436 PH |
13114 | |
13115 | case OP_AGGREGATE: | |
13116 | *oplenp = 3; | |
13117 | *argsp = longest_to_int (exp->elts[pc - 2].longconst); | |
13118 | break; | |
13119 | ||
13120 | case OP_CHOICES: | |
13121 | *oplenp = 3; | |
13122 | *argsp = longest_to_int (exp->elts[pc - 2].longconst) + 1; | |
13123 | break; | |
4c4b4cd2 PH |
13124 | } |
13125 | } | |
13126 | ||
c0201579 JK |
13127 | /* Implementation of the exp_descriptor method operator_check. */ |
13128 | ||
13129 | static int | |
13130 | ada_operator_check (struct expression *exp, int pos, | |
13131 | int (*objfile_func) (struct objfile *objfile, void *data), | |
13132 | void *data) | |
13133 | { | |
13134 | const union exp_element *const elts = exp->elts; | |
13135 | struct type *type = NULL; | |
13136 | ||
13137 | switch (elts[pos].opcode) | |
13138 | { | |
13139 | case UNOP_IN_RANGE: | |
13140 | case UNOP_QUAL: | |
13141 | type = elts[pos + 1].type; | |
13142 | break; | |
13143 | ||
13144 | default: | |
13145 | return operator_check_standard (exp, pos, objfile_func, data); | |
13146 | } | |
13147 | ||
13148 | /* Invoke callbacks for TYPE and OBJFILE if they were set as non-NULL. */ | |
13149 | ||
13150 | if (type && TYPE_OBJFILE (type) | |
13151 | && (*objfile_func) (TYPE_OBJFILE (type), data)) | |
13152 | return 1; | |
13153 | ||
13154 | return 0; | |
13155 | } | |
13156 | ||
4c4b4cd2 PH |
13157 | static char * |
13158 | ada_op_name (enum exp_opcode opcode) | |
13159 | { | |
13160 | switch (opcode) | |
13161 | { | |
76a01679 | 13162 | default: |
4c4b4cd2 | 13163 | return op_name_standard (opcode); |
52ce6436 | 13164 | |
4c4b4cd2 PH |
13165 | #define OP_DEFN(op, len, args, binop) case op: return #op; |
13166 | ADA_OPERATORS; | |
13167 | #undef OP_DEFN | |
52ce6436 PH |
13168 | |
13169 | case OP_AGGREGATE: | |
13170 | return "OP_AGGREGATE"; | |
13171 | case OP_CHOICES: | |
13172 | return "OP_CHOICES"; | |
13173 | case OP_NAME: | |
13174 | return "OP_NAME"; | |
4c4b4cd2 PH |
13175 | } |
13176 | } | |
13177 | ||
13178 | /* As for operator_length, but assumes PC is pointing at the first | |
13179 | element of the operator, and gives meaningful results only for the | |
52ce6436 | 13180 | Ada-specific operators, returning 0 for *OPLENP and *ARGSP otherwise. */ |
4c4b4cd2 PH |
13181 | |
13182 | static void | |
76a01679 JB |
13183 | ada_forward_operator_length (struct expression *exp, int pc, |
13184 | int *oplenp, int *argsp) | |
4c4b4cd2 | 13185 | { |
76a01679 | 13186 | switch (exp->elts[pc].opcode) |
4c4b4cd2 PH |
13187 | { |
13188 | default: | |
13189 | *oplenp = *argsp = 0; | |
13190 | break; | |
52ce6436 | 13191 | |
4c4b4cd2 PH |
13192 | #define OP_DEFN(op, len, args, binop) \ |
13193 | case op: *oplenp = len; *argsp = args; break; | |
13194 | ADA_OPERATORS; | |
13195 | #undef OP_DEFN | |
52ce6436 PH |
13196 | |
13197 | case OP_AGGREGATE: | |
13198 | *oplenp = 3; | |
13199 | *argsp = longest_to_int (exp->elts[pc + 1].longconst); | |
13200 | break; | |
13201 | ||
13202 | case OP_CHOICES: | |
13203 | *oplenp = 3; | |
13204 | *argsp = longest_to_int (exp->elts[pc + 1].longconst) + 1; | |
13205 | break; | |
13206 | ||
13207 | case OP_STRING: | |
13208 | case OP_NAME: | |
13209 | { | |
13210 | int len = longest_to_int (exp->elts[pc + 1].longconst); | |
5b4ee69b | 13211 | |
52ce6436 PH |
13212 | *oplenp = 4 + BYTES_TO_EXP_ELEM (len + 1); |
13213 | *argsp = 0; | |
13214 | break; | |
13215 | } | |
4c4b4cd2 PH |
13216 | } |
13217 | } | |
13218 | ||
13219 | static int | |
13220 | ada_dump_subexp_body (struct expression *exp, struct ui_file *stream, int elt) | |
13221 | { | |
13222 | enum exp_opcode op = exp->elts[elt].opcode; | |
13223 | int oplen, nargs; | |
13224 | int pc = elt; | |
13225 | int i; | |
76a01679 | 13226 | |
4c4b4cd2 PH |
13227 | ada_forward_operator_length (exp, elt, &oplen, &nargs); |
13228 | ||
76a01679 | 13229 | switch (op) |
4c4b4cd2 | 13230 | { |
76a01679 | 13231 | /* Ada attributes ('Foo). */ |
4c4b4cd2 PH |
13232 | case OP_ATR_FIRST: |
13233 | case OP_ATR_LAST: | |
13234 | case OP_ATR_LENGTH: | |
13235 | case OP_ATR_IMAGE: | |
13236 | case OP_ATR_MAX: | |
13237 | case OP_ATR_MIN: | |
13238 | case OP_ATR_MODULUS: | |
13239 | case OP_ATR_POS: | |
13240 | case OP_ATR_SIZE: | |
13241 | case OP_ATR_TAG: | |
13242 | case OP_ATR_VAL: | |
13243 | break; | |
13244 | ||
13245 | case UNOP_IN_RANGE: | |
13246 | case UNOP_QUAL: | |
323e0a4a AC |
13247 | /* XXX: gdb_sprint_host_address, type_sprint */ |
13248 | fprintf_filtered (stream, _("Type @")); | |
4c4b4cd2 PH |
13249 | gdb_print_host_address (exp->elts[pc + 1].type, stream); |
13250 | fprintf_filtered (stream, " ("); | |
13251 | type_print (exp->elts[pc + 1].type, NULL, stream, 0); | |
13252 | fprintf_filtered (stream, ")"); | |
13253 | break; | |
13254 | case BINOP_IN_BOUNDS: | |
52ce6436 PH |
13255 | fprintf_filtered (stream, " (%d)", |
13256 | longest_to_int (exp->elts[pc + 2].longconst)); | |
4c4b4cd2 PH |
13257 | break; |
13258 | case TERNOP_IN_RANGE: | |
13259 | break; | |
13260 | ||
52ce6436 PH |
13261 | case OP_AGGREGATE: |
13262 | case OP_OTHERS: | |
13263 | case OP_DISCRETE_RANGE: | |
13264 | case OP_POSITIONAL: | |
13265 | case OP_CHOICES: | |
13266 | break; | |
13267 | ||
13268 | case OP_NAME: | |
13269 | case OP_STRING: | |
13270 | { | |
13271 | char *name = &exp->elts[elt + 2].string; | |
13272 | int len = longest_to_int (exp->elts[elt + 1].longconst); | |
5b4ee69b | 13273 | |
52ce6436 PH |
13274 | fprintf_filtered (stream, "Text: `%.*s'", len, name); |
13275 | break; | |
13276 | } | |
13277 | ||
4c4b4cd2 PH |
13278 | default: |
13279 | return dump_subexp_body_standard (exp, stream, elt); | |
13280 | } | |
13281 | ||
13282 | elt += oplen; | |
13283 | for (i = 0; i < nargs; i += 1) | |
13284 | elt = dump_subexp (exp, stream, elt); | |
13285 | ||
13286 | return elt; | |
13287 | } | |
13288 | ||
13289 | /* The Ada extension of print_subexp (q.v.). */ | |
13290 | ||
76a01679 JB |
13291 | static void |
13292 | ada_print_subexp (struct expression *exp, int *pos, | |
13293 | struct ui_file *stream, enum precedence prec) | |
4c4b4cd2 | 13294 | { |
52ce6436 | 13295 | int oplen, nargs, i; |
4c4b4cd2 PH |
13296 | int pc = *pos; |
13297 | enum exp_opcode op = exp->elts[pc].opcode; | |
13298 | ||
13299 | ada_forward_operator_length (exp, pc, &oplen, &nargs); | |
13300 | ||
52ce6436 | 13301 | *pos += oplen; |
4c4b4cd2 PH |
13302 | switch (op) |
13303 | { | |
13304 | default: | |
52ce6436 | 13305 | *pos -= oplen; |
4c4b4cd2 PH |
13306 | print_subexp_standard (exp, pos, stream, prec); |
13307 | return; | |
13308 | ||
13309 | case OP_VAR_VALUE: | |
4c4b4cd2 PH |
13310 | fputs_filtered (SYMBOL_NATURAL_NAME (exp->elts[pc + 2].symbol), stream); |
13311 | return; | |
13312 | ||
13313 | case BINOP_IN_BOUNDS: | |
323e0a4a | 13314 | /* XXX: sprint_subexp */ |
4c4b4cd2 | 13315 | print_subexp (exp, pos, stream, PREC_SUFFIX); |
0b48a291 | 13316 | fputs_filtered (" in ", stream); |
4c4b4cd2 | 13317 | print_subexp (exp, pos, stream, PREC_SUFFIX); |
0b48a291 | 13318 | fputs_filtered ("'range", stream); |
4c4b4cd2 | 13319 | if (exp->elts[pc + 1].longconst > 1) |
76a01679 JB |
13320 | fprintf_filtered (stream, "(%ld)", |
13321 | (long) exp->elts[pc + 1].longconst); | |
4c4b4cd2 PH |
13322 | return; |
13323 | ||
13324 | case TERNOP_IN_RANGE: | |
4c4b4cd2 | 13325 | if (prec >= PREC_EQUAL) |
76a01679 | 13326 | fputs_filtered ("(", stream); |
323e0a4a | 13327 | /* XXX: sprint_subexp */ |
4c4b4cd2 | 13328 | print_subexp (exp, pos, stream, PREC_SUFFIX); |
0b48a291 | 13329 | fputs_filtered (" in ", stream); |
4c4b4cd2 PH |
13330 | print_subexp (exp, pos, stream, PREC_EQUAL); |
13331 | fputs_filtered (" .. ", stream); | |
13332 | print_subexp (exp, pos, stream, PREC_EQUAL); | |
13333 | if (prec >= PREC_EQUAL) | |
76a01679 JB |
13334 | fputs_filtered (")", stream); |
13335 | return; | |
4c4b4cd2 PH |
13336 | |
13337 | case OP_ATR_FIRST: | |
13338 | case OP_ATR_LAST: | |
13339 | case OP_ATR_LENGTH: | |
13340 | case OP_ATR_IMAGE: | |
13341 | case OP_ATR_MAX: | |
13342 | case OP_ATR_MIN: | |
13343 | case OP_ATR_MODULUS: | |
13344 | case OP_ATR_POS: | |
13345 | case OP_ATR_SIZE: | |
13346 | case OP_ATR_TAG: | |
13347 | case OP_ATR_VAL: | |
4c4b4cd2 | 13348 | if (exp->elts[*pos].opcode == OP_TYPE) |
76a01679 JB |
13349 | { |
13350 | if (TYPE_CODE (exp->elts[*pos + 1].type) != TYPE_CODE_VOID) | |
79d43c61 TT |
13351 | LA_PRINT_TYPE (exp->elts[*pos + 1].type, "", stream, 0, 0, |
13352 | &type_print_raw_options); | |
76a01679 JB |
13353 | *pos += 3; |
13354 | } | |
4c4b4cd2 | 13355 | else |
76a01679 | 13356 | print_subexp (exp, pos, stream, PREC_SUFFIX); |
4c4b4cd2 PH |
13357 | fprintf_filtered (stream, "'%s", ada_attribute_name (op)); |
13358 | if (nargs > 1) | |
76a01679 JB |
13359 | { |
13360 | int tem; | |
5b4ee69b | 13361 | |
76a01679 JB |
13362 | for (tem = 1; tem < nargs; tem += 1) |
13363 | { | |
13364 | fputs_filtered ((tem == 1) ? " (" : ", ", stream); | |
13365 | print_subexp (exp, pos, stream, PREC_ABOVE_COMMA); | |
13366 | } | |
13367 | fputs_filtered (")", stream); | |
13368 | } | |
4c4b4cd2 | 13369 | return; |
14f9c5c9 | 13370 | |
4c4b4cd2 | 13371 | case UNOP_QUAL: |
4c4b4cd2 PH |
13372 | type_print (exp->elts[pc + 1].type, "", stream, 0); |
13373 | fputs_filtered ("'(", stream); | |
13374 | print_subexp (exp, pos, stream, PREC_PREFIX); | |
13375 | fputs_filtered (")", stream); | |
13376 | return; | |
14f9c5c9 | 13377 | |
4c4b4cd2 | 13378 | case UNOP_IN_RANGE: |
323e0a4a | 13379 | /* XXX: sprint_subexp */ |
4c4b4cd2 | 13380 | print_subexp (exp, pos, stream, PREC_SUFFIX); |
0b48a291 | 13381 | fputs_filtered (" in ", stream); |
79d43c61 TT |
13382 | LA_PRINT_TYPE (exp->elts[pc + 1].type, "", stream, 1, 0, |
13383 | &type_print_raw_options); | |
4c4b4cd2 | 13384 | return; |
52ce6436 PH |
13385 | |
13386 | case OP_DISCRETE_RANGE: | |
13387 | print_subexp (exp, pos, stream, PREC_SUFFIX); | |
13388 | fputs_filtered ("..", stream); | |
13389 | print_subexp (exp, pos, stream, PREC_SUFFIX); | |
13390 | return; | |
13391 | ||
13392 | case OP_OTHERS: | |
13393 | fputs_filtered ("others => ", stream); | |
13394 | print_subexp (exp, pos, stream, PREC_SUFFIX); | |
13395 | return; | |
13396 | ||
13397 | case OP_CHOICES: | |
13398 | for (i = 0; i < nargs-1; i += 1) | |
13399 | { | |
13400 | if (i > 0) | |
13401 | fputs_filtered ("|", stream); | |
13402 | print_subexp (exp, pos, stream, PREC_SUFFIX); | |
13403 | } | |
13404 | fputs_filtered (" => ", stream); | |
13405 | print_subexp (exp, pos, stream, PREC_SUFFIX); | |
13406 | return; | |
13407 | ||
13408 | case OP_POSITIONAL: | |
13409 | print_subexp (exp, pos, stream, PREC_SUFFIX); | |
13410 | return; | |
13411 | ||
13412 | case OP_AGGREGATE: | |
13413 | fputs_filtered ("(", stream); | |
13414 | for (i = 0; i < nargs; i += 1) | |
13415 | { | |
13416 | if (i > 0) | |
13417 | fputs_filtered (", ", stream); | |
13418 | print_subexp (exp, pos, stream, PREC_SUFFIX); | |
13419 | } | |
13420 | fputs_filtered (")", stream); | |
13421 | return; | |
4c4b4cd2 PH |
13422 | } |
13423 | } | |
14f9c5c9 AS |
13424 | |
13425 | /* Table mapping opcodes into strings for printing operators | |
13426 | and precedences of the operators. */ | |
13427 | ||
d2e4a39e AS |
13428 | static const struct op_print ada_op_print_tab[] = { |
13429 | {":=", BINOP_ASSIGN, PREC_ASSIGN, 1}, | |
13430 | {"or else", BINOP_LOGICAL_OR, PREC_LOGICAL_OR, 0}, | |
13431 | {"and then", BINOP_LOGICAL_AND, PREC_LOGICAL_AND, 0}, | |
13432 | {"or", BINOP_BITWISE_IOR, PREC_BITWISE_IOR, 0}, | |
13433 | {"xor", BINOP_BITWISE_XOR, PREC_BITWISE_XOR, 0}, | |
13434 | {"and", BINOP_BITWISE_AND, PREC_BITWISE_AND, 0}, | |
13435 | {"=", BINOP_EQUAL, PREC_EQUAL, 0}, | |
13436 | {"/=", BINOP_NOTEQUAL, PREC_EQUAL, 0}, | |
13437 | {"<=", BINOP_LEQ, PREC_ORDER, 0}, | |
13438 | {">=", BINOP_GEQ, PREC_ORDER, 0}, | |
13439 | {">", BINOP_GTR, PREC_ORDER, 0}, | |
13440 | {"<", BINOP_LESS, PREC_ORDER, 0}, | |
13441 | {">>", BINOP_RSH, PREC_SHIFT, 0}, | |
13442 | {"<<", BINOP_LSH, PREC_SHIFT, 0}, | |
13443 | {"+", BINOP_ADD, PREC_ADD, 0}, | |
13444 | {"-", BINOP_SUB, PREC_ADD, 0}, | |
13445 | {"&", BINOP_CONCAT, PREC_ADD, 0}, | |
13446 | {"*", BINOP_MUL, PREC_MUL, 0}, | |
13447 | {"/", BINOP_DIV, PREC_MUL, 0}, | |
13448 | {"rem", BINOP_REM, PREC_MUL, 0}, | |
13449 | {"mod", BINOP_MOD, PREC_MUL, 0}, | |
13450 | {"**", BINOP_EXP, PREC_REPEAT, 0}, | |
13451 | {"@", BINOP_REPEAT, PREC_REPEAT, 0}, | |
13452 | {"-", UNOP_NEG, PREC_PREFIX, 0}, | |
13453 | {"+", UNOP_PLUS, PREC_PREFIX, 0}, | |
13454 | {"not ", UNOP_LOGICAL_NOT, PREC_PREFIX, 0}, | |
13455 | {"not ", UNOP_COMPLEMENT, PREC_PREFIX, 0}, | |
13456 | {"abs ", UNOP_ABS, PREC_PREFIX, 0}, | |
4c4b4cd2 PH |
13457 | {".all", UNOP_IND, PREC_SUFFIX, 1}, |
13458 | {"'access", UNOP_ADDR, PREC_SUFFIX, 1}, | |
13459 | {"'size", OP_ATR_SIZE, PREC_SUFFIX, 1}, | |
d2e4a39e | 13460 | {NULL, 0, 0, 0} |
14f9c5c9 AS |
13461 | }; |
13462 | \f | |
72d5681a PH |
13463 | enum ada_primitive_types { |
13464 | ada_primitive_type_int, | |
13465 | ada_primitive_type_long, | |
13466 | ada_primitive_type_short, | |
13467 | ada_primitive_type_char, | |
13468 | ada_primitive_type_float, | |
13469 | ada_primitive_type_double, | |
13470 | ada_primitive_type_void, | |
13471 | ada_primitive_type_long_long, | |
13472 | ada_primitive_type_long_double, | |
13473 | ada_primitive_type_natural, | |
13474 | ada_primitive_type_positive, | |
13475 | ada_primitive_type_system_address, | |
13476 | nr_ada_primitive_types | |
13477 | }; | |
6c038f32 PH |
13478 | |
13479 | static void | |
d4a9a881 | 13480 | ada_language_arch_info (struct gdbarch *gdbarch, |
72d5681a PH |
13481 | struct language_arch_info *lai) |
13482 | { | |
d4a9a881 | 13483 | const struct builtin_type *builtin = builtin_type (gdbarch); |
5b4ee69b | 13484 | |
72d5681a | 13485 | lai->primitive_type_vector |
d4a9a881 | 13486 | = GDBARCH_OBSTACK_CALLOC (gdbarch, nr_ada_primitive_types + 1, |
72d5681a | 13487 | struct type *); |
e9bb382b UW |
13488 | |
13489 | lai->primitive_type_vector [ada_primitive_type_int] | |
13490 | = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch), | |
13491 | 0, "integer"); | |
13492 | lai->primitive_type_vector [ada_primitive_type_long] | |
13493 | = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch), | |
13494 | 0, "long_integer"); | |
13495 | lai->primitive_type_vector [ada_primitive_type_short] | |
13496 | = arch_integer_type (gdbarch, gdbarch_short_bit (gdbarch), | |
13497 | 0, "short_integer"); | |
13498 | lai->string_char_type | |
13499 | = lai->primitive_type_vector [ada_primitive_type_char] | |
13500 | = arch_integer_type (gdbarch, TARGET_CHAR_BIT, 0, "character"); | |
13501 | lai->primitive_type_vector [ada_primitive_type_float] | |
13502 | = arch_float_type (gdbarch, gdbarch_float_bit (gdbarch), | |
13503 | "float", NULL); | |
13504 | lai->primitive_type_vector [ada_primitive_type_double] | |
13505 | = arch_float_type (gdbarch, gdbarch_double_bit (gdbarch), | |
13506 | "long_float", NULL); | |
13507 | lai->primitive_type_vector [ada_primitive_type_long_long] | |
13508 | = arch_integer_type (gdbarch, gdbarch_long_long_bit (gdbarch), | |
13509 | 0, "long_long_integer"); | |
13510 | lai->primitive_type_vector [ada_primitive_type_long_double] | |
13511 | = arch_float_type (gdbarch, gdbarch_double_bit (gdbarch), | |
13512 | "long_long_float", NULL); | |
13513 | lai->primitive_type_vector [ada_primitive_type_natural] | |
13514 | = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch), | |
13515 | 0, "natural"); | |
13516 | lai->primitive_type_vector [ada_primitive_type_positive] | |
13517 | = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch), | |
13518 | 0, "positive"); | |
13519 | lai->primitive_type_vector [ada_primitive_type_void] | |
13520 | = builtin->builtin_void; | |
13521 | ||
13522 | lai->primitive_type_vector [ada_primitive_type_system_address] | |
13523 | = lookup_pointer_type (arch_type (gdbarch, TYPE_CODE_VOID, 1, "void")); | |
72d5681a PH |
13524 | TYPE_NAME (lai->primitive_type_vector [ada_primitive_type_system_address]) |
13525 | = "system__address"; | |
fbb06eb1 | 13526 | |
47e729a8 | 13527 | lai->bool_type_symbol = NULL; |
fbb06eb1 | 13528 | lai->bool_type_default = builtin->builtin_bool; |
6c038f32 | 13529 | } |
6c038f32 PH |
13530 | \f |
13531 | /* Language vector */ | |
13532 | ||
13533 | /* Not really used, but needed in the ada_language_defn. */ | |
13534 | ||
13535 | static void | |
6c7a06a3 | 13536 | emit_char (int c, struct type *type, struct ui_file *stream, int quoter) |
6c038f32 | 13537 | { |
6c7a06a3 | 13538 | ada_emit_char (c, type, stream, quoter, 1); |
6c038f32 PH |
13539 | } |
13540 | ||
13541 | static int | |
410a0ff2 | 13542 | parse (struct parser_state *ps) |
6c038f32 PH |
13543 | { |
13544 | warnings_issued = 0; | |
410a0ff2 | 13545 | return ada_parse (ps); |
6c038f32 PH |
13546 | } |
13547 | ||
13548 | static const struct exp_descriptor ada_exp_descriptor = { | |
13549 | ada_print_subexp, | |
13550 | ada_operator_length, | |
c0201579 | 13551 | ada_operator_check, |
6c038f32 PH |
13552 | ada_op_name, |
13553 | ada_dump_subexp_body, | |
13554 | ada_evaluate_subexp | |
13555 | }; | |
13556 | ||
1a119f36 | 13557 | /* Implement the "la_get_symbol_name_cmp" language_defn method |
74ccd7f5 JB |
13558 | for Ada. */ |
13559 | ||
1a119f36 JB |
13560 | static symbol_name_cmp_ftype |
13561 | ada_get_symbol_name_cmp (const char *lookup_name) | |
74ccd7f5 JB |
13562 | { |
13563 | if (should_use_wild_match (lookup_name)) | |
13564 | return wild_match; | |
13565 | else | |
13566 | return compare_names; | |
13567 | } | |
13568 | ||
a5ee536b JB |
13569 | /* Implement the "la_read_var_value" language_defn method for Ada. */ |
13570 | ||
13571 | static struct value * | |
13572 | ada_read_var_value (struct symbol *var, struct frame_info *frame) | |
13573 | { | |
3977b71f | 13574 | const struct block *frame_block = NULL; |
a5ee536b JB |
13575 | struct symbol *renaming_sym = NULL; |
13576 | ||
13577 | /* The only case where default_read_var_value is not sufficient | |
13578 | is when VAR is a renaming... */ | |
13579 | if (frame) | |
13580 | frame_block = get_frame_block (frame, NULL); | |
13581 | if (frame_block) | |
13582 | renaming_sym = ada_find_renaming_symbol (var, frame_block); | |
13583 | if (renaming_sym != NULL) | |
13584 | return ada_read_renaming_var_value (renaming_sym, frame_block); | |
13585 | ||
13586 | /* This is a typical case where we expect the default_read_var_value | |
13587 | function to work. */ | |
13588 | return default_read_var_value (var, frame); | |
13589 | } | |
13590 | ||
6c038f32 PH |
13591 | const struct language_defn ada_language_defn = { |
13592 | "ada", /* Language name */ | |
6abde28f | 13593 | "Ada", |
6c038f32 | 13594 | language_ada, |
6c038f32 | 13595 | range_check_off, |
6c038f32 PH |
13596 | case_sensitive_on, /* Yes, Ada is case-insensitive, but |
13597 | that's not quite what this means. */ | |
6c038f32 | 13598 | array_row_major, |
9a044a89 | 13599 | macro_expansion_no, |
6c038f32 PH |
13600 | &ada_exp_descriptor, |
13601 | parse, | |
13602 | ada_error, | |
13603 | resolve, | |
13604 | ada_printchar, /* Print a character constant */ | |
13605 | ada_printstr, /* Function to print string constant */ | |
13606 | emit_char, /* Function to print single char (not used) */ | |
6c038f32 | 13607 | ada_print_type, /* Print a type using appropriate syntax */ |
be942545 | 13608 | ada_print_typedef, /* Print a typedef using appropriate syntax */ |
6c038f32 PH |
13609 | ada_val_print, /* Print a value using appropriate syntax */ |
13610 | ada_value_print, /* Print a top-level value */ | |
a5ee536b | 13611 | ada_read_var_value, /* la_read_var_value */ |
6c038f32 | 13612 | NULL, /* Language specific skip_trampoline */ |
2b2d9e11 | 13613 | NULL, /* name_of_this */ |
6c038f32 PH |
13614 | ada_lookup_symbol_nonlocal, /* Looking up non-local symbols. */ |
13615 | basic_lookup_transparent_type, /* lookup_transparent_type */ | |
13616 | ada_la_decode, /* Language specific symbol demangler */ | |
0963b4bd MS |
13617 | NULL, /* Language specific |
13618 | class_name_from_physname */ | |
6c038f32 PH |
13619 | ada_op_print_tab, /* expression operators for printing */ |
13620 | 0, /* c-style arrays */ | |
13621 | 1, /* String lower bound */ | |
6c038f32 | 13622 | ada_get_gdb_completer_word_break_characters, |
41d27058 | 13623 | ada_make_symbol_completion_list, |
72d5681a | 13624 | ada_language_arch_info, |
e79af960 | 13625 | ada_print_array_index, |
41f1b697 | 13626 | default_pass_by_reference, |
ae6a3a4c | 13627 | c_get_string, |
1a119f36 | 13628 | ada_get_symbol_name_cmp, /* la_get_symbol_name_cmp */ |
f8eba3c6 | 13629 | ada_iterate_over_symbols, |
a53b64ea | 13630 | &ada_varobj_ops, |
bb2ec1b3 TT |
13631 | NULL, |
13632 | NULL, | |
6c038f32 PH |
13633 | LANG_MAGIC |
13634 | }; | |
13635 | ||
2c0b251b PA |
13636 | /* Provide a prototype to silence -Wmissing-prototypes. */ |
13637 | extern initialize_file_ftype _initialize_ada_language; | |
13638 | ||
5bf03f13 JB |
13639 | /* Command-list for the "set/show ada" prefix command. */ |
13640 | static struct cmd_list_element *set_ada_list; | |
13641 | static struct cmd_list_element *show_ada_list; | |
13642 | ||
13643 | /* Implement the "set ada" prefix command. */ | |
13644 | ||
13645 | static void | |
13646 | set_ada_command (char *arg, int from_tty) | |
13647 | { | |
13648 | printf_unfiltered (_(\ | |
13649 | "\"set ada\" must be followed by the name of a setting.\n")); | |
635c7e8a | 13650 | help_list (set_ada_list, "set ada ", all_commands, gdb_stdout); |
5bf03f13 JB |
13651 | } |
13652 | ||
13653 | /* Implement the "show ada" prefix command. */ | |
13654 | ||
13655 | static void | |
13656 | show_ada_command (char *args, int from_tty) | |
13657 | { | |
13658 | cmd_show_list (show_ada_list, from_tty, ""); | |
13659 | } | |
13660 | ||
2060206e PA |
13661 | static void |
13662 | initialize_ada_catchpoint_ops (void) | |
13663 | { | |
13664 | struct breakpoint_ops *ops; | |
13665 | ||
13666 | initialize_breakpoint_ops (); | |
13667 | ||
13668 | ops = &catch_exception_breakpoint_ops; | |
13669 | *ops = bkpt_breakpoint_ops; | |
13670 | ops->dtor = dtor_catch_exception; | |
13671 | ops->allocate_location = allocate_location_catch_exception; | |
13672 | ops->re_set = re_set_catch_exception; | |
13673 | ops->check_status = check_status_catch_exception; | |
13674 | ops->print_it = print_it_catch_exception; | |
13675 | ops->print_one = print_one_catch_exception; | |
13676 | ops->print_mention = print_mention_catch_exception; | |
13677 | ops->print_recreate = print_recreate_catch_exception; | |
13678 | ||
13679 | ops = &catch_exception_unhandled_breakpoint_ops; | |
13680 | *ops = bkpt_breakpoint_ops; | |
13681 | ops->dtor = dtor_catch_exception_unhandled; | |
13682 | ops->allocate_location = allocate_location_catch_exception_unhandled; | |
13683 | ops->re_set = re_set_catch_exception_unhandled; | |
13684 | ops->check_status = check_status_catch_exception_unhandled; | |
13685 | ops->print_it = print_it_catch_exception_unhandled; | |
13686 | ops->print_one = print_one_catch_exception_unhandled; | |
13687 | ops->print_mention = print_mention_catch_exception_unhandled; | |
13688 | ops->print_recreate = print_recreate_catch_exception_unhandled; | |
13689 | ||
13690 | ops = &catch_assert_breakpoint_ops; | |
13691 | *ops = bkpt_breakpoint_ops; | |
13692 | ops->dtor = dtor_catch_assert; | |
13693 | ops->allocate_location = allocate_location_catch_assert; | |
13694 | ops->re_set = re_set_catch_assert; | |
13695 | ops->check_status = check_status_catch_assert; | |
13696 | ops->print_it = print_it_catch_assert; | |
13697 | ops->print_one = print_one_catch_assert; | |
13698 | ops->print_mention = print_mention_catch_assert; | |
13699 | ops->print_recreate = print_recreate_catch_assert; | |
13700 | } | |
13701 | ||
3d9434b5 JB |
13702 | /* This module's 'new_objfile' observer. */ |
13703 | ||
13704 | static void | |
13705 | ada_new_objfile_observer (struct objfile *objfile) | |
13706 | { | |
13707 | ada_clear_symbol_cache (); | |
13708 | } | |
13709 | ||
13710 | /* This module's 'free_objfile' observer. */ | |
13711 | ||
13712 | static void | |
13713 | ada_free_objfile_observer (struct objfile *objfile) | |
13714 | { | |
13715 | ada_clear_symbol_cache (); | |
13716 | } | |
13717 | ||
d2e4a39e | 13718 | void |
6c038f32 | 13719 | _initialize_ada_language (void) |
14f9c5c9 | 13720 | { |
6c038f32 PH |
13721 | add_language (&ada_language_defn); |
13722 | ||
2060206e PA |
13723 | initialize_ada_catchpoint_ops (); |
13724 | ||
5bf03f13 JB |
13725 | add_prefix_cmd ("ada", no_class, set_ada_command, |
13726 | _("Prefix command for changing Ada-specfic settings"), | |
13727 | &set_ada_list, "set ada ", 0, &setlist); | |
13728 | ||
13729 | add_prefix_cmd ("ada", no_class, show_ada_command, | |
13730 | _("Generic command for showing Ada-specific settings."), | |
13731 | &show_ada_list, "show ada ", 0, &showlist); | |
13732 | ||
13733 | add_setshow_boolean_cmd ("trust-PAD-over-XVS", class_obscure, | |
13734 | &trust_pad_over_xvs, _("\ | |
13735 | Enable or disable an optimization trusting PAD types over XVS types"), _("\ | |
13736 | Show whether an optimization trusting PAD types over XVS types is activated"), | |
13737 | _("\ | |
13738 | This is related to the encoding used by the GNAT compiler. The debugger\n\ | |
13739 | should normally trust the contents of PAD types, but certain older versions\n\ | |
13740 | of GNAT have a bug that sometimes causes the information in the PAD type\n\ | |
13741 | to be incorrect. Turning this setting \"off\" allows the debugger to\n\ | |
13742 | work around this bug. It is always safe to turn this option \"off\", but\n\ | |
13743 | this incurs a slight performance penalty, so it is recommended to NOT change\n\ | |
13744 | this option to \"off\" unless necessary."), | |
13745 | NULL, NULL, &set_ada_list, &show_ada_list); | |
13746 | ||
9ac4176b PA |
13747 | add_catch_command ("exception", _("\ |
13748 | Catch Ada exceptions, when raised.\n\ | |
13749 | With an argument, catch only exceptions with the given name."), | |
13750 | catch_ada_exception_command, | |
13751 | NULL, | |
13752 | CATCH_PERMANENT, | |
13753 | CATCH_TEMPORARY); | |
13754 | add_catch_command ("assert", _("\ | |
13755 | Catch failed Ada assertions, when raised.\n\ | |
13756 | With an argument, catch only exceptions with the given name."), | |
13757 | catch_assert_command, | |
13758 | NULL, | |
13759 | CATCH_PERMANENT, | |
13760 | CATCH_TEMPORARY); | |
13761 | ||
6c038f32 | 13762 | varsize_limit = 65536; |
6c038f32 | 13763 | |
778865d3 JB |
13764 | add_info ("exceptions", info_exceptions_command, |
13765 | _("\ | |
13766 | List all Ada exception names.\n\ | |
13767 | If a regular expression is passed as an argument, only those matching\n\ | |
13768 | the regular expression are listed.")); | |
13769 | ||
c6044dd1 JB |
13770 | add_prefix_cmd ("ada", class_maintenance, maint_set_ada_cmd, |
13771 | _("Set Ada maintenance-related variables."), | |
13772 | &maint_set_ada_cmdlist, "maintenance set ada ", | |
13773 | 0/*allow-unknown*/, &maintenance_set_cmdlist); | |
13774 | ||
13775 | add_prefix_cmd ("ada", class_maintenance, maint_show_ada_cmd, | |
13776 | _("Show Ada maintenance-related variables"), | |
13777 | &maint_show_ada_cmdlist, "maintenance show ada ", | |
13778 | 0/*allow-unknown*/, &maintenance_show_cmdlist); | |
13779 | ||
13780 | add_setshow_boolean_cmd | |
13781 | ("ignore-descriptive-types", class_maintenance, | |
13782 | &ada_ignore_descriptive_types_p, | |
13783 | _("Set whether descriptive types generated by GNAT should be ignored."), | |
13784 | _("Show whether descriptive types generated by GNAT should be ignored."), | |
13785 | _("\ | |
13786 | When enabled, the debugger will stop using the DW_AT_GNAT_descriptive_type\n\ | |
13787 | DWARF attribute."), | |
13788 | NULL, NULL, &maint_set_ada_cmdlist, &maint_show_ada_cmdlist); | |
13789 | ||
6c038f32 PH |
13790 | obstack_init (&symbol_list_obstack); |
13791 | ||
13792 | decoded_names_store = htab_create_alloc | |
13793 | (256, htab_hash_string, (int (*)(const void *, const void *)) streq, | |
13794 | NULL, xcalloc, xfree); | |
6b69afc4 | 13795 | |
3d9434b5 JB |
13796 | /* The ada-lang observers. */ |
13797 | observer_attach_new_objfile (ada_new_objfile_observer); | |
13798 | observer_attach_free_objfile (ada_free_objfile_observer); | |
e802dbe0 | 13799 | observer_attach_inferior_exit (ada_inferior_exit); |
ee01b665 JB |
13800 | |
13801 | /* Setup various context-specific data. */ | |
e802dbe0 | 13802 | ada_inferior_data |
8e260fc0 | 13803 | = register_inferior_data_with_cleanup (NULL, ada_inferior_data_cleanup); |
ee01b665 JB |
13804 | ada_pspace_data_handle |
13805 | = register_program_space_data_with_cleanup (NULL, ada_pspace_data_cleanup); | |
14f9c5c9 | 13806 | } |