]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blame - gdb/ada-lang.c
[Ada] Preserve typedef layer when getting struct element
[thirdparty/binutils-gdb.git] / gdb / ada-lang.c
CommitLineData
6e681866 1/* Ada language support routines for GDB, the GNU debugger.
10a2c479 2
32d0add0 3 Copyright (C) 1992-2015 Free Software Foundation, Inc.
14f9c5c9 4
a9762ec7 5 This file is part of GDB.
14f9c5c9 6
a9762ec7
JB
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
14f9c5c9 11
a9762ec7
JB
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
14f9c5c9 16
a9762ec7
JB
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
14f9c5c9 19
96d887e8 20
4c4b4cd2 21#include "defs.h"
14f9c5c9 22#include <ctype.h>
14f9c5c9 23#include "demangle.h"
4c4b4cd2
PH
24#include "gdb_regex.h"
25#include "frame.h"
14f9c5c9
AS
26#include "symtab.h"
27#include "gdbtypes.h"
28#include "gdbcmd.h"
29#include "expression.h"
30#include "parser-defs.h"
31#include "language.h"
a53b64ea 32#include "varobj.h"
14f9c5c9
AS
33#include "c-lang.h"
34#include "inferior.h"
35#include "symfile.h"
36#include "objfiles.h"
37#include "breakpoint.h"
38#include "gdbcore.h"
4c4b4cd2
PH
39#include "hashtab.h"
40#include "gdb_obstack.h"
14f9c5c9 41#include "ada-lang.h"
4c4b4cd2 42#include "completer.h"
53ce3c39 43#include <sys/stat.h>
14f9c5c9 44#include "ui-out.h"
fe898f56 45#include "block.h"
04714b91 46#include "infcall.h"
de4f826b 47#include "dictionary.h"
f7f9143b
JB
48#include "annotate.h"
49#include "valprint.h"
9bbc9174 50#include "source.h"
0259addd 51#include "observer.h"
2ba95b9b 52#include "vec.h"
692465f1 53#include "stack.h"
fa864999 54#include "gdb_vecs.h"
79d43c61 55#include "typeprint.h"
14f9c5c9 56
ccefe4c4 57#include "psymtab.h"
40bc484c 58#include "value.h"
956a9fb9 59#include "mi/mi-common.h"
9ac4176b 60#include "arch-utils.h"
0fcd72ba 61#include "cli/cli-utils.h"
ccefe4c4 62
4c4b4cd2 63/* Define whether or not the C operator '/' truncates towards zero for
0963b4bd 64 differently signed operands (truncation direction is undefined in C).
4c4b4cd2
PH
65 Copied from valarith.c. */
66
67#ifndef TRUNCATION_TOWARDS_ZERO
68#define TRUNCATION_TOWARDS_ZERO ((-5 / 2) == -2)
69#endif
70
d2e4a39e 71static struct type *desc_base_type (struct type *);
14f9c5c9 72
d2e4a39e 73static struct type *desc_bounds_type (struct type *);
14f9c5c9 74
d2e4a39e 75static struct value *desc_bounds (struct value *);
14f9c5c9 76
d2e4a39e 77static int fat_pntr_bounds_bitpos (struct type *);
14f9c5c9 78
d2e4a39e 79static int fat_pntr_bounds_bitsize (struct type *);
14f9c5c9 80
556bdfd4 81static struct type *desc_data_target_type (struct type *);
14f9c5c9 82
d2e4a39e 83static struct value *desc_data (struct value *);
14f9c5c9 84
d2e4a39e 85static int fat_pntr_data_bitpos (struct type *);
14f9c5c9 86
d2e4a39e 87static int fat_pntr_data_bitsize (struct type *);
14f9c5c9 88
d2e4a39e 89static struct value *desc_one_bound (struct value *, int, int);
14f9c5c9 90
d2e4a39e 91static int desc_bound_bitpos (struct type *, int, int);
14f9c5c9 92
d2e4a39e 93static int desc_bound_bitsize (struct type *, int, int);
14f9c5c9 94
d2e4a39e 95static struct type *desc_index_type (struct type *, int);
14f9c5c9 96
d2e4a39e 97static int desc_arity (struct type *);
14f9c5c9 98
d2e4a39e 99static int ada_type_match (struct type *, struct type *, int);
14f9c5c9 100
d2e4a39e 101static int ada_args_match (struct symbol *, struct value **, int);
14f9c5c9 102
40658b94
PH
103static int full_match (const char *, const char *);
104
40bc484c 105static struct value *make_array_descriptor (struct type *, struct value *);
14f9c5c9 106
4c4b4cd2 107static void ada_add_block_symbols (struct obstack *,
f0c5f9b2 108 const struct block *, const char *,
2570f2b7 109 domain_enum, struct objfile *, int);
14f9c5c9 110
4c4b4cd2 111static int is_nonfunction (struct ada_symbol_info *, int);
14f9c5c9 112
76a01679 113static void add_defn_to_vec (struct obstack *, struct symbol *,
f0c5f9b2 114 const struct block *);
14f9c5c9 115
4c4b4cd2
PH
116static int num_defns_collected (struct obstack *);
117
118static struct ada_symbol_info *defns_collected (struct obstack *, int);
14f9c5c9 119
4c4b4cd2 120static struct value *resolve_subexp (struct expression **, int *, int,
76a01679 121 struct type *);
14f9c5c9 122
d2e4a39e 123static void replace_operator_with_call (struct expression **, int, int, int,
270140bd 124 struct symbol *, const struct block *);
14f9c5c9 125
d2e4a39e 126static int possible_user_operator_p (enum exp_opcode, struct value **);
14f9c5c9 127
4c4b4cd2
PH
128static char *ada_op_name (enum exp_opcode);
129
130static const char *ada_decoded_op_name (enum exp_opcode);
14f9c5c9 131
d2e4a39e 132static int numeric_type_p (struct type *);
14f9c5c9 133
d2e4a39e 134static int integer_type_p (struct type *);
14f9c5c9 135
d2e4a39e 136static int scalar_type_p (struct type *);
14f9c5c9 137
d2e4a39e 138static int discrete_type_p (struct type *);
14f9c5c9 139
aeb5907d
JB
140static enum ada_renaming_category parse_old_style_renaming (struct type *,
141 const char **,
142 int *,
143 const char **);
144
145static struct symbol *find_old_style_renaming_symbol (const char *,
270140bd 146 const struct block *);
aeb5907d 147
4c4b4cd2 148static struct type *ada_lookup_struct_elt_type (struct type *, char *,
76a01679 149 int, int, int *);
4c4b4cd2 150
d2e4a39e 151static struct value *evaluate_subexp_type (struct expression *, int *);
14f9c5c9 152
b4ba55a1
JB
153static struct type *ada_find_parallel_type_with_name (struct type *,
154 const char *);
155
d2e4a39e 156static int is_dynamic_field (struct type *, int);
14f9c5c9 157
10a2c479 158static struct type *to_fixed_variant_branch_type (struct type *,
fc1a4b47 159 const gdb_byte *,
4c4b4cd2
PH
160 CORE_ADDR, struct value *);
161
162static struct type *to_fixed_array_type (struct type *, struct value *, int);
14f9c5c9 163
28c85d6c 164static struct type *to_fixed_range_type (struct type *, struct value *);
14f9c5c9 165
d2e4a39e 166static struct type *to_static_fixed_type (struct type *);
f192137b 167static struct type *static_unwrap_type (struct type *type);
14f9c5c9 168
d2e4a39e 169static struct value *unwrap_value (struct value *);
14f9c5c9 170
ad82864c 171static struct type *constrained_packed_array_type (struct type *, long *);
14f9c5c9 172
ad82864c 173static struct type *decode_constrained_packed_array_type (struct type *);
14f9c5c9 174
ad82864c
JB
175static long decode_packed_array_bitsize (struct type *);
176
177static struct value *decode_constrained_packed_array (struct value *);
178
179static int ada_is_packed_array_type (struct type *);
180
181static int ada_is_unconstrained_packed_array_type (struct type *);
14f9c5c9 182
d2e4a39e 183static struct value *value_subscript_packed (struct value *, int,
4c4b4cd2 184 struct value **);
14f9c5c9 185
50810684 186static void move_bits (gdb_byte *, int, const gdb_byte *, int, int, int);
52ce6436 187
4c4b4cd2
PH
188static struct value *coerce_unspec_val_to_type (struct value *,
189 struct type *);
14f9c5c9 190
d2e4a39e 191static struct value *get_var_value (char *, char *);
14f9c5c9 192
d2e4a39e 193static int lesseq_defined_than (struct symbol *, struct symbol *);
14f9c5c9 194
d2e4a39e 195static int equiv_types (struct type *, struct type *);
14f9c5c9 196
d2e4a39e 197static int is_name_suffix (const char *);
14f9c5c9 198
73589123
PH
199static int advance_wild_match (const char **, const char *, int);
200
201static int wild_match (const char *, const char *);
14f9c5c9 202
d2e4a39e 203static struct value *ada_coerce_ref (struct value *);
14f9c5c9 204
4c4b4cd2
PH
205static LONGEST pos_atr (struct value *);
206
3cb382c9 207static struct value *value_pos_atr (struct type *, struct value *);
14f9c5c9 208
d2e4a39e 209static struct value *value_val_atr (struct type *, struct value *);
14f9c5c9 210
4c4b4cd2
PH
211static struct symbol *standard_lookup (const char *, const struct block *,
212 domain_enum);
14f9c5c9 213
4c4b4cd2
PH
214static struct value *ada_search_struct_field (char *, struct value *, int,
215 struct type *);
216
217static struct value *ada_value_primitive_field (struct value *, int, int,
218 struct type *);
219
0d5cff50 220static int find_struct_field (const char *, struct type *, int,
52ce6436 221 struct type **, int *, int *, int *, int *);
4c4b4cd2
PH
222
223static struct value *ada_to_fixed_value_create (struct type *, CORE_ADDR,
224 struct value *);
225
4c4b4cd2
PH
226static int ada_resolve_function (struct ada_symbol_info *, int,
227 struct value **, int, const char *,
228 struct type *);
229
4c4b4cd2
PH
230static int ada_is_direct_array_type (struct type *);
231
72d5681a
PH
232static void ada_language_arch_info (struct gdbarch *,
233 struct language_arch_info *);
714e53ab 234
52ce6436
PH
235static struct value *ada_index_struct_field (int, struct value *, int,
236 struct type *);
237
238static struct value *assign_aggregate (struct value *, struct value *,
0963b4bd
MS
239 struct expression *,
240 int *, enum noside);
52ce6436
PH
241
242static void aggregate_assign_from_choices (struct value *, struct value *,
243 struct expression *,
244 int *, LONGEST *, int *,
245 int, LONGEST, LONGEST);
246
247static void aggregate_assign_positional (struct value *, struct value *,
248 struct expression *,
249 int *, LONGEST *, int *, int,
250 LONGEST, LONGEST);
251
252
253static void aggregate_assign_others (struct value *, struct value *,
254 struct expression *,
255 int *, LONGEST *, int, LONGEST, LONGEST);
256
257
258static void add_component_interval (LONGEST, LONGEST, LONGEST *, int *, int);
259
260
261static struct value *ada_evaluate_subexp (struct type *, struct expression *,
262 int *, enum noside);
263
264static void ada_forward_operator_length (struct expression *, int, int *,
265 int *);
852dff6c
JB
266
267static struct type *ada_find_any_type (const char *name);
4c4b4cd2
PH
268\f
269
ee01b665
JB
270/* The result of a symbol lookup to be stored in our symbol cache. */
271
272struct cache_entry
273{
274 /* The name used to perform the lookup. */
275 const char *name;
276 /* The namespace used during the lookup. */
fe978cb0 277 domain_enum domain;
ee01b665
JB
278 /* The symbol returned by the lookup, or NULL if no matching symbol
279 was found. */
280 struct symbol *sym;
281 /* The block where the symbol was found, or NULL if no matching
282 symbol was found. */
283 const struct block *block;
284 /* A pointer to the next entry with the same hash. */
285 struct cache_entry *next;
286};
287
288/* The Ada symbol cache, used to store the result of Ada-mode symbol
289 lookups in the course of executing the user's commands.
290
291 The cache is implemented using a simple, fixed-sized hash.
292 The size is fixed on the grounds that there are not likely to be
293 all that many symbols looked up during any given session, regardless
294 of the size of the symbol table. If we decide to go to a resizable
295 table, let's just use the stuff from libiberty instead. */
296
297#define HASH_SIZE 1009
298
299struct ada_symbol_cache
300{
301 /* An obstack used to store the entries in our cache. */
302 struct obstack cache_space;
303
304 /* The root of the hash table used to implement our symbol cache. */
305 struct cache_entry *root[HASH_SIZE];
306};
307
308static void ada_free_symbol_cache (struct ada_symbol_cache *sym_cache);
76a01679 309
4c4b4cd2 310/* Maximum-sized dynamic type. */
14f9c5c9
AS
311static unsigned int varsize_limit;
312
4c4b4cd2
PH
313/* FIXME: brobecker/2003-09-17: No longer a const because it is
314 returned by a function that does not return a const char *. */
315static char *ada_completer_word_break_characters =
316#ifdef VMS
317 " \t\n!@#%^&*()+=|~`}{[]\";:?/,-";
318#else
14f9c5c9 319 " \t\n!@#$%^&*()+=|~`}{[]\";:?/,-";
4c4b4cd2 320#endif
14f9c5c9 321
4c4b4cd2 322/* The name of the symbol to use to get the name of the main subprogram. */
76a01679 323static const char ADA_MAIN_PROGRAM_SYMBOL_NAME[]
4c4b4cd2 324 = "__gnat_ada_main_program_name";
14f9c5c9 325
4c4b4cd2
PH
326/* Limit on the number of warnings to raise per expression evaluation. */
327static int warning_limit = 2;
328
329/* Number of warning messages issued; reset to 0 by cleanups after
330 expression evaluation. */
331static int warnings_issued = 0;
332
333static const char *known_runtime_file_name_patterns[] = {
334 ADA_KNOWN_RUNTIME_FILE_NAME_PATTERNS NULL
335};
336
337static const char *known_auxiliary_function_name_patterns[] = {
338 ADA_KNOWN_AUXILIARY_FUNCTION_NAME_PATTERNS NULL
339};
340
341/* Space for allocating results of ada_lookup_symbol_list. */
342static struct obstack symbol_list_obstack;
343
c6044dd1
JB
344/* Maintenance-related settings for this module. */
345
346static struct cmd_list_element *maint_set_ada_cmdlist;
347static struct cmd_list_element *maint_show_ada_cmdlist;
348
349/* Implement the "maintenance set ada" (prefix) command. */
350
351static void
352maint_set_ada_cmd (char *args, int from_tty)
353{
635c7e8a
TT
354 help_list (maint_set_ada_cmdlist, "maintenance set ada ", all_commands,
355 gdb_stdout);
c6044dd1
JB
356}
357
358/* Implement the "maintenance show ada" (prefix) command. */
359
360static void
361maint_show_ada_cmd (char *args, int from_tty)
362{
363 cmd_show_list (maint_show_ada_cmdlist, from_tty, "");
364}
365
366/* The "maintenance ada set/show ignore-descriptive-type" value. */
367
368static int ada_ignore_descriptive_types_p = 0;
369
e802dbe0
JB
370 /* Inferior-specific data. */
371
372/* Per-inferior data for this module. */
373
374struct ada_inferior_data
375{
376 /* The ada__tags__type_specific_data type, which is used when decoding
377 tagged types. With older versions of GNAT, this type was directly
378 accessible through a component ("tsd") in the object tag. But this
379 is no longer the case, so we cache it for each inferior. */
380 struct type *tsd_type;
3eecfa55
JB
381
382 /* The exception_support_info data. This data is used to determine
383 how to implement support for Ada exception catchpoints in a given
384 inferior. */
385 const struct exception_support_info *exception_info;
e802dbe0
JB
386};
387
388/* Our key to this module's inferior data. */
389static const struct inferior_data *ada_inferior_data;
390
391/* A cleanup routine for our inferior data. */
392static void
393ada_inferior_data_cleanup (struct inferior *inf, void *arg)
394{
395 struct ada_inferior_data *data;
396
397 data = inferior_data (inf, ada_inferior_data);
398 if (data != NULL)
399 xfree (data);
400}
401
402/* Return our inferior data for the given inferior (INF).
403
404 This function always returns a valid pointer to an allocated
405 ada_inferior_data structure. If INF's inferior data has not
406 been previously set, this functions creates a new one with all
407 fields set to zero, sets INF's inferior to it, and then returns
408 a pointer to that newly allocated ada_inferior_data. */
409
410static struct ada_inferior_data *
411get_ada_inferior_data (struct inferior *inf)
412{
413 struct ada_inferior_data *data;
414
415 data = inferior_data (inf, ada_inferior_data);
416 if (data == NULL)
417 {
41bf6aca 418 data = XCNEW (struct ada_inferior_data);
e802dbe0
JB
419 set_inferior_data (inf, ada_inferior_data, data);
420 }
421
422 return data;
423}
424
425/* Perform all necessary cleanups regarding our module's inferior data
426 that is required after the inferior INF just exited. */
427
428static void
429ada_inferior_exit (struct inferior *inf)
430{
431 ada_inferior_data_cleanup (inf, NULL);
432 set_inferior_data (inf, ada_inferior_data, NULL);
433}
434
ee01b665
JB
435
436 /* program-space-specific data. */
437
438/* This module's per-program-space data. */
439struct ada_pspace_data
440{
441 /* The Ada symbol cache. */
442 struct ada_symbol_cache *sym_cache;
443};
444
445/* Key to our per-program-space data. */
446static const struct program_space_data *ada_pspace_data_handle;
447
448/* Return this module's data for the given program space (PSPACE).
449 If not is found, add a zero'ed one now.
450
451 This function always returns a valid object. */
452
453static struct ada_pspace_data *
454get_ada_pspace_data (struct program_space *pspace)
455{
456 struct ada_pspace_data *data;
457
458 data = program_space_data (pspace, ada_pspace_data_handle);
459 if (data == NULL)
460 {
461 data = XCNEW (struct ada_pspace_data);
462 set_program_space_data (pspace, ada_pspace_data_handle, data);
463 }
464
465 return data;
466}
467
468/* The cleanup callback for this module's per-program-space data. */
469
470static void
471ada_pspace_data_cleanup (struct program_space *pspace, void *data)
472{
473 struct ada_pspace_data *pspace_data = data;
474
475 if (pspace_data->sym_cache != NULL)
476 ada_free_symbol_cache (pspace_data->sym_cache);
477 xfree (pspace_data);
478}
479
4c4b4cd2
PH
480 /* Utilities */
481
720d1a40 482/* If TYPE is a TYPE_CODE_TYPEDEF type, return the target type after
eed9788b 483 all typedef layers have been peeled. Otherwise, return TYPE.
720d1a40
JB
484
485 Normally, we really expect a typedef type to only have 1 typedef layer.
486 In other words, we really expect the target type of a typedef type to be
487 a non-typedef type. This is particularly true for Ada units, because
488 the language does not have a typedef vs not-typedef distinction.
489 In that respect, the Ada compiler has been trying to eliminate as many
490 typedef definitions in the debugging information, since they generally
491 do not bring any extra information (we still use typedef under certain
492 circumstances related mostly to the GNAT encoding).
493
494 Unfortunately, we have seen situations where the debugging information
495 generated by the compiler leads to such multiple typedef layers. For
496 instance, consider the following example with stabs:
497
498 .stabs "pck__float_array___XUP:Tt(0,46)=s16P_ARRAY:(0,47)=[...]"[...]
499 .stabs "pck__float_array___XUP:t(0,36)=(0,46)",128,0,6,0
500
501 This is an error in the debugging information which causes type
502 pck__float_array___XUP to be defined twice, and the second time,
503 it is defined as a typedef of a typedef.
504
505 This is on the fringe of legality as far as debugging information is
506 concerned, and certainly unexpected. But it is easy to handle these
507 situations correctly, so we can afford to be lenient in this case. */
508
509static struct type *
510ada_typedef_target_type (struct type *type)
511{
512 while (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
513 type = TYPE_TARGET_TYPE (type);
514 return type;
515}
516
41d27058
JB
517/* Given DECODED_NAME a string holding a symbol name in its
518 decoded form (ie using the Ada dotted notation), returns
519 its unqualified name. */
520
521static const char *
522ada_unqualified_name (const char *decoded_name)
523{
2b0f535a
JB
524 const char *result;
525
526 /* If the decoded name starts with '<', it means that the encoded
527 name does not follow standard naming conventions, and thus that
528 it is not your typical Ada symbol name. Trying to unqualify it
529 is therefore pointless and possibly erroneous. */
530 if (decoded_name[0] == '<')
531 return decoded_name;
532
533 result = strrchr (decoded_name, '.');
41d27058
JB
534 if (result != NULL)
535 result++; /* Skip the dot... */
536 else
537 result = decoded_name;
538
539 return result;
540}
541
542/* Return a string starting with '<', followed by STR, and '>'.
543 The result is good until the next call. */
544
545static char *
546add_angle_brackets (const char *str)
547{
548 static char *result = NULL;
549
550 xfree (result);
88c15c34 551 result = xstrprintf ("<%s>", str);
41d27058
JB
552 return result;
553}
96d887e8 554
4c4b4cd2
PH
555static char *
556ada_get_gdb_completer_word_break_characters (void)
557{
558 return ada_completer_word_break_characters;
559}
560
e79af960
JB
561/* Print an array element index using the Ada syntax. */
562
563static void
564ada_print_array_index (struct value *index_value, struct ui_file *stream,
79a45b7d 565 const struct value_print_options *options)
e79af960 566{
79a45b7d 567 LA_VALUE_PRINT (index_value, stream, options);
e79af960
JB
568 fprintf_filtered (stream, " => ");
569}
570
f27cf670 571/* Assuming VECT points to an array of *SIZE objects of size
14f9c5c9 572 ELEMENT_SIZE, grow it to contain at least MIN_SIZE objects,
f27cf670 573 updating *SIZE as necessary and returning the (new) array. */
14f9c5c9 574
f27cf670
AS
575void *
576grow_vect (void *vect, size_t *size, size_t min_size, int element_size)
14f9c5c9 577{
d2e4a39e
AS
578 if (*size < min_size)
579 {
580 *size *= 2;
581 if (*size < min_size)
4c4b4cd2 582 *size = min_size;
f27cf670 583 vect = xrealloc (vect, *size * element_size);
d2e4a39e 584 }
f27cf670 585 return vect;
14f9c5c9
AS
586}
587
588/* True (non-zero) iff TARGET matches FIELD_NAME up to any trailing
4c4b4cd2 589 suffix of FIELD_NAME beginning "___". */
14f9c5c9
AS
590
591static int
ebf56fd3 592field_name_match (const char *field_name, const char *target)
14f9c5c9
AS
593{
594 int len = strlen (target);
5b4ee69b 595
d2e4a39e 596 return
4c4b4cd2
PH
597 (strncmp (field_name, target, len) == 0
598 && (field_name[len] == '\0'
61012eef 599 || (startswith (field_name + len, "___")
76a01679
JB
600 && strcmp (field_name + strlen (field_name) - 6,
601 "___XVN") != 0)));
14f9c5c9
AS
602}
603
604
872c8b51
JB
605/* Assuming TYPE is a TYPE_CODE_STRUCT or a TYPE_CODE_TYPDEF to
606 a TYPE_CODE_STRUCT, find the field whose name matches FIELD_NAME,
607 and return its index. This function also handles fields whose name
608 have ___ suffixes because the compiler sometimes alters their name
609 by adding such a suffix to represent fields with certain constraints.
610 If the field could not be found, return a negative number if
611 MAYBE_MISSING is set. Otherwise raise an error. */
4c4b4cd2
PH
612
613int
614ada_get_field_index (const struct type *type, const char *field_name,
615 int maybe_missing)
616{
617 int fieldno;
872c8b51
JB
618 struct type *struct_type = check_typedef ((struct type *) type);
619
620 for (fieldno = 0; fieldno < TYPE_NFIELDS (struct_type); fieldno++)
621 if (field_name_match (TYPE_FIELD_NAME (struct_type, fieldno), field_name))
4c4b4cd2
PH
622 return fieldno;
623
624 if (!maybe_missing)
323e0a4a 625 error (_("Unable to find field %s in struct %s. Aborting"),
872c8b51 626 field_name, TYPE_NAME (struct_type));
4c4b4cd2
PH
627
628 return -1;
629}
630
631/* The length of the prefix of NAME prior to any "___" suffix. */
14f9c5c9
AS
632
633int
d2e4a39e 634ada_name_prefix_len (const char *name)
14f9c5c9
AS
635{
636 if (name == NULL)
637 return 0;
d2e4a39e 638 else
14f9c5c9 639 {
d2e4a39e 640 const char *p = strstr (name, "___");
5b4ee69b 641
14f9c5c9 642 if (p == NULL)
4c4b4cd2 643 return strlen (name);
14f9c5c9 644 else
4c4b4cd2 645 return p - name;
14f9c5c9
AS
646 }
647}
648
4c4b4cd2
PH
649/* Return non-zero if SUFFIX is a suffix of STR.
650 Return zero if STR is null. */
651
14f9c5c9 652static int
d2e4a39e 653is_suffix (const char *str, const char *suffix)
14f9c5c9
AS
654{
655 int len1, len2;
5b4ee69b 656
14f9c5c9
AS
657 if (str == NULL)
658 return 0;
659 len1 = strlen (str);
660 len2 = strlen (suffix);
4c4b4cd2 661 return (len1 >= len2 && strcmp (str + len1 - len2, suffix) == 0);
14f9c5c9
AS
662}
663
4c4b4cd2
PH
664/* The contents of value VAL, treated as a value of type TYPE. The
665 result is an lval in memory if VAL is. */
14f9c5c9 666
d2e4a39e 667static struct value *
4c4b4cd2 668coerce_unspec_val_to_type (struct value *val, struct type *type)
14f9c5c9 669{
61ee279c 670 type = ada_check_typedef (type);
df407dfe 671 if (value_type (val) == type)
4c4b4cd2 672 return val;
d2e4a39e 673 else
14f9c5c9 674 {
4c4b4cd2
PH
675 struct value *result;
676
677 /* Make sure that the object size is not unreasonable before
678 trying to allocate some memory for it. */
c1b5a1a6 679 ada_ensure_varsize_limit (type);
4c4b4cd2 680
41e8491f
JK
681 if (value_lazy (val)
682 || TYPE_LENGTH (type) > TYPE_LENGTH (value_type (val)))
683 result = allocate_value_lazy (type);
684 else
685 {
686 result = allocate_value (type);
9a0dc9e3 687 value_contents_copy_raw (result, 0, val, 0, TYPE_LENGTH (type));
41e8491f 688 }
74bcbdf3 689 set_value_component_location (result, val);
9bbda503
AC
690 set_value_bitsize (result, value_bitsize (val));
691 set_value_bitpos (result, value_bitpos (val));
42ae5230 692 set_value_address (result, value_address (val));
14f9c5c9
AS
693 return result;
694 }
695}
696
fc1a4b47
AC
697static const gdb_byte *
698cond_offset_host (const gdb_byte *valaddr, long offset)
14f9c5c9
AS
699{
700 if (valaddr == NULL)
701 return NULL;
702 else
703 return valaddr + offset;
704}
705
706static CORE_ADDR
ebf56fd3 707cond_offset_target (CORE_ADDR address, long offset)
14f9c5c9
AS
708{
709 if (address == 0)
710 return 0;
d2e4a39e 711 else
14f9c5c9
AS
712 return address + offset;
713}
714
4c4b4cd2
PH
715/* Issue a warning (as for the definition of warning in utils.c, but
716 with exactly one argument rather than ...), unless the limit on the
717 number of warnings has passed during the evaluation of the current
718 expression. */
a2249542 719
77109804
AC
720/* FIXME: cagney/2004-10-10: This function is mimicking the behavior
721 provided by "complaint". */
a0b31db1 722static void lim_warning (const char *format, ...) ATTRIBUTE_PRINTF (1, 2);
77109804 723
14f9c5c9 724static void
a2249542 725lim_warning (const char *format, ...)
14f9c5c9 726{
a2249542 727 va_list args;
a2249542 728
5b4ee69b 729 va_start (args, format);
4c4b4cd2
PH
730 warnings_issued += 1;
731 if (warnings_issued <= warning_limit)
a2249542
MK
732 vwarning (format, args);
733
734 va_end (args);
4c4b4cd2
PH
735}
736
714e53ab
PH
737/* Issue an error if the size of an object of type T is unreasonable,
738 i.e. if it would be a bad idea to allocate a value of this type in
739 GDB. */
740
c1b5a1a6
JB
741void
742ada_ensure_varsize_limit (const struct type *type)
714e53ab
PH
743{
744 if (TYPE_LENGTH (type) > varsize_limit)
323e0a4a 745 error (_("object size is larger than varsize-limit"));
714e53ab
PH
746}
747
0963b4bd 748/* Maximum value of a SIZE-byte signed integer type. */
4c4b4cd2 749static LONGEST
c3e5cd34 750max_of_size (int size)
4c4b4cd2 751{
76a01679 752 LONGEST top_bit = (LONGEST) 1 << (size * 8 - 2);
5b4ee69b 753
76a01679 754 return top_bit | (top_bit - 1);
4c4b4cd2
PH
755}
756
0963b4bd 757/* Minimum value of a SIZE-byte signed integer type. */
4c4b4cd2 758static LONGEST
c3e5cd34 759min_of_size (int size)
4c4b4cd2 760{
c3e5cd34 761 return -max_of_size (size) - 1;
4c4b4cd2
PH
762}
763
0963b4bd 764/* Maximum value of a SIZE-byte unsigned integer type. */
4c4b4cd2 765static ULONGEST
c3e5cd34 766umax_of_size (int size)
4c4b4cd2 767{
76a01679 768 ULONGEST top_bit = (ULONGEST) 1 << (size * 8 - 1);
5b4ee69b 769
76a01679 770 return top_bit | (top_bit - 1);
4c4b4cd2
PH
771}
772
0963b4bd 773/* Maximum value of integral type T, as a signed quantity. */
c3e5cd34
PH
774static LONGEST
775max_of_type (struct type *t)
4c4b4cd2 776{
c3e5cd34
PH
777 if (TYPE_UNSIGNED (t))
778 return (LONGEST) umax_of_size (TYPE_LENGTH (t));
779 else
780 return max_of_size (TYPE_LENGTH (t));
781}
782
0963b4bd 783/* Minimum value of integral type T, as a signed quantity. */
c3e5cd34
PH
784static LONGEST
785min_of_type (struct type *t)
786{
787 if (TYPE_UNSIGNED (t))
788 return 0;
789 else
790 return min_of_size (TYPE_LENGTH (t));
4c4b4cd2
PH
791}
792
793/* The largest value in the domain of TYPE, a discrete type, as an integer. */
43bbcdc2
PH
794LONGEST
795ada_discrete_type_high_bound (struct type *type)
4c4b4cd2 796{
8739bc53 797 type = resolve_dynamic_type (type, 0);
76a01679 798 switch (TYPE_CODE (type))
4c4b4cd2
PH
799 {
800 case TYPE_CODE_RANGE:
690cc4eb 801 return TYPE_HIGH_BOUND (type);
4c4b4cd2 802 case TYPE_CODE_ENUM:
14e75d8e 803 return TYPE_FIELD_ENUMVAL (type, TYPE_NFIELDS (type) - 1);
690cc4eb
PH
804 case TYPE_CODE_BOOL:
805 return 1;
806 case TYPE_CODE_CHAR:
76a01679 807 case TYPE_CODE_INT:
690cc4eb 808 return max_of_type (type);
4c4b4cd2 809 default:
43bbcdc2 810 error (_("Unexpected type in ada_discrete_type_high_bound."));
4c4b4cd2
PH
811 }
812}
813
14e75d8e 814/* The smallest value in the domain of TYPE, a discrete type, as an integer. */
43bbcdc2
PH
815LONGEST
816ada_discrete_type_low_bound (struct type *type)
4c4b4cd2 817{
8739bc53 818 type = resolve_dynamic_type (type, 0);
76a01679 819 switch (TYPE_CODE (type))
4c4b4cd2
PH
820 {
821 case TYPE_CODE_RANGE:
690cc4eb 822 return TYPE_LOW_BOUND (type);
4c4b4cd2 823 case TYPE_CODE_ENUM:
14e75d8e 824 return TYPE_FIELD_ENUMVAL (type, 0);
690cc4eb
PH
825 case TYPE_CODE_BOOL:
826 return 0;
827 case TYPE_CODE_CHAR:
76a01679 828 case TYPE_CODE_INT:
690cc4eb 829 return min_of_type (type);
4c4b4cd2 830 default:
43bbcdc2 831 error (_("Unexpected type in ada_discrete_type_low_bound."));
4c4b4cd2
PH
832 }
833}
834
835/* The identity on non-range types. For range types, the underlying
76a01679 836 non-range scalar type. */
4c4b4cd2
PH
837
838static struct type *
18af8284 839get_base_type (struct type *type)
4c4b4cd2
PH
840{
841 while (type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE)
842 {
76a01679
JB
843 if (type == TYPE_TARGET_TYPE (type) || TYPE_TARGET_TYPE (type) == NULL)
844 return type;
4c4b4cd2
PH
845 type = TYPE_TARGET_TYPE (type);
846 }
847 return type;
14f9c5c9 848}
41246937
JB
849
850/* Return a decoded version of the given VALUE. This means returning
851 a value whose type is obtained by applying all the GNAT-specific
852 encondings, making the resulting type a static but standard description
853 of the initial type. */
854
855struct value *
856ada_get_decoded_value (struct value *value)
857{
858 struct type *type = ada_check_typedef (value_type (value));
859
860 if (ada_is_array_descriptor_type (type)
861 || (ada_is_constrained_packed_array_type (type)
862 && TYPE_CODE (type) != TYPE_CODE_PTR))
863 {
864 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF) /* array access type. */
865 value = ada_coerce_to_simple_array_ptr (value);
866 else
867 value = ada_coerce_to_simple_array (value);
868 }
869 else
870 value = ada_to_fixed_value (value);
871
872 return value;
873}
874
875/* Same as ada_get_decoded_value, but with the given TYPE.
876 Because there is no associated actual value for this type,
877 the resulting type might be a best-effort approximation in
878 the case of dynamic types. */
879
880struct type *
881ada_get_decoded_type (struct type *type)
882{
883 type = to_static_fixed_type (type);
884 if (ada_is_constrained_packed_array_type (type))
885 type = ada_coerce_to_simple_array_type (type);
886 return type;
887}
888
4c4b4cd2 889\f
76a01679 890
4c4b4cd2 891 /* Language Selection */
14f9c5c9
AS
892
893/* If the main program is in Ada, return language_ada, otherwise return LANG
ccefe4c4 894 (the main program is in Ada iif the adainit symbol is found). */
d2e4a39e 895
14f9c5c9 896enum language
ccefe4c4 897ada_update_initial_language (enum language lang)
14f9c5c9 898{
d2e4a39e 899 if (lookup_minimal_symbol ("adainit", (const char *) NULL,
3b7344d5 900 (struct objfile *) NULL).minsym != NULL)
4c4b4cd2 901 return language_ada;
14f9c5c9
AS
902
903 return lang;
904}
96d887e8
PH
905
906/* If the main procedure is written in Ada, then return its name.
907 The result is good until the next call. Return NULL if the main
908 procedure doesn't appear to be in Ada. */
909
910char *
911ada_main_name (void)
912{
3b7344d5 913 struct bound_minimal_symbol msym;
f9bc20b9 914 static char *main_program_name = NULL;
6c038f32 915
96d887e8
PH
916 /* For Ada, the name of the main procedure is stored in a specific
917 string constant, generated by the binder. Look for that symbol,
918 extract its address, and then read that string. If we didn't find
919 that string, then most probably the main procedure is not written
920 in Ada. */
921 msym = lookup_minimal_symbol (ADA_MAIN_PROGRAM_SYMBOL_NAME, NULL, NULL);
922
3b7344d5 923 if (msym.minsym != NULL)
96d887e8 924 {
f9bc20b9
JB
925 CORE_ADDR main_program_name_addr;
926 int err_code;
927
77e371c0 928 main_program_name_addr = BMSYMBOL_VALUE_ADDRESS (msym);
96d887e8 929 if (main_program_name_addr == 0)
323e0a4a 930 error (_("Invalid address for Ada main program name."));
96d887e8 931
f9bc20b9
JB
932 xfree (main_program_name);
933 target_read_string (main_program_name_addr, &main_program_name,
934 1024, &err_code);
935
936 if (err_code != 0)
937 return NULL;
96d887e8
PH
938 return main_program_name;
939 }
940
941 /* The main procedure doesn't seem to be in Ada. */
942 return NULL;
943}
14f9c5c9 944\f
4c4b4cd2 945 /* Symbols */
d2e4a39e 946
4c4b4cd2
PH
947/* Table of Ada operators and their GNAT-encoded names. Last entry is pair
948 of NULLs. */
14f9c5c9 949
d2e4a39e
AS
950const struct ada_opname_map ada_opname_table[] = {
951 {"Oadd", "\"+\"", BINOP_ADD},
952 {"Osubtract", "\"-\"", BINOP_SUB},
953 {"Omultiply", "\"*\"", BINOP_MUL},
954 {"Odivide", "\"/\"", BINOP_DIV},
955 {"Omod", "\"mod\"", BINOP_MOD},
956 {"Orem", "\"rem\"", BINOP_REM},
957 {"Oexpon", "\"**\"", BINOP_EXP},
958 {"Olt", "\"<\"", BINOP_LESS},
959 {"Ole", "\"<=\"", BINOP_LEQ},
960 {"Ogt", "\">\"", BINOP_GTR},
961 {"Oge", "\">=\"", BINOP_GEQ},
962 {"Oeq", "\"=\"", BINOP_EQUAL},
963 {"One", "\"/=\"", BINOP_NOTEQUAL},
964 {"Oand", "\"and\"", BINOP_BITWISE_AND},
965 {"Oor", "\"or\"", BINOP_BITWISE_IOR},
966 {"Oxor", "\"xor\"", BINOP_BITWISE_XOR},
967 {"Oconcat", "\"&\"", BINOP_CONCAT},
968 {"Oabs", "\"abs\"", UNOP_ABS},
969 {"Onot", "\"not\"", UNOP_LOGICAL_NOT},
970 {"Oadd", "\"+\"", UNOP_PLUS},
971 {"Osubtract", "\"-\"", UNOP_NEG},
972 {NULL, NULL}
14f9c5c9
AS
973};
974
4c4b4cd2
PH
975/* The "encoded" form of DECODED, according to GNAT conventions.
976 The result is valid until the next call to ada_encode. */
977
14f9c5c9 978char *
4c4b4cd2 979ada_encode (const char *decoded)
14f9c5c9 980{
4c4b4cd2
PH
981 static char *encoding_buffer = NULL;
982 static size_t encoding_buffer_size = 0;
d2e4a39e 983 const char *p;
14f9c5c9 984 int k;
d2e4a39e 985
4c4b4cd2 986 if (decoded == NULL)
14f9c5c9
AS
987 return NULL;
988
4c4b4cd2
PH
989 GROW_VECT (encoding_buffer, encoding_buffer_size,
990 2 * strlen (decoded) + 10);
14f9c5c9
AS
991
992 k = 0;
4c4b4cd2 993 for (p = decoded; *p != '\0'; p += 1)
14f9c5c9 994 {
cdc7bb92 995 if (*p == '.')
4c4b4cd2
PH
996 {
997 encoding_buffer[k] = encoding_buffer[k + 1] = '_';
998 k += 2;
999 }
14f9c5c9 1000 else if (*p == '"')
4c4b4cd2
PH
1001 {
1002 const struct ada_opname_map *mapping;
1003
1004 for (mapping = ada_opname_table;
1265e4aa 1005 mapping->encoded != NULL
61012eef 1006 && !startswith (p, mapping->decoded); mapping += 1)
4c4b4cd2
PH
1007 ;
1008 if (mapping->encoded == NULL)
323e0a4a 1009 error (_("invalid Ada operator name: %s"), p);
4c4b4cd2
PH
1010 strcpy (encoding_buffer + k, mapping->encoded);
1011 k += strlen (mapping->encoded);
1012 break;
1013 }
d2e4a39e 1014 else
4c4b4cd2
PH
1015 {
1016 encoding_buffer[k] = *p;
1017 k += 1;
1018 }
14f9c5c9
AS
1019 }
1020
4c4b4cd2
PH
1021 encoding_buffer[k] = '\0';
1022 return encoding_buffer;
14f9c5c9
AS
1023}
1024
1025/* Return NAME folded to lower case, or, if surrounded by single
4c4b4cd2
PH
1026 quotes, unfolded, but with the quotes stripped away. Result good
1027 to next call. */
1028
d2e4a39e
AS
1029char *
1030ada_fold_name (const char *name)
14f9c5c9 1031{
d2e4a39e 1032 static char *fold_buffer = NULL;
14f9c5c9
AS
1033 static size_t fold_buffer_size = 0;
1034
1035 int len = strlen (name);
d2e4a39e 1036 GROW_VECT (fold_buffer, fold_buffer_size, len + 1);
14f9c5c9
AS
1037
1038 if (name[0] == '\'')
1039 {
d2e4a39e
AS
1040 strncpy (fold_buffer, name + 1, len - 2);
1041 fold_buffer[len - 2] = '\000';
14f9c5c9
AS
1042 }
1043 else
1044 {
1045 int i;
5b4ee69b 1046
14f9c5c9 1047 for (i = 0; i <= len; i += 1)
4c4b4cd2 1048 fold_buffer[i] = tolower (name[i]);
14f9c5c9
AS
1049 }
1050
1051 return fold_buffer;
1052}
1053
529cad9c
PH
1054/* Return nonzero if C is either a digit or a lowercase alphabet character. */
1055
1056static int
1057is_lower_alphanum (const char c)
1058{
1059 return (isdigit (c) || (isalpha (c) && islower (c)));
1060}
1061
c90092fe
JB
1062/* ENCODED is the linkage name of a symbol and LEN contains its length.
1063 This function saves in LEN the length of that same symbol name but
1064 without either of these suffixes:
29480c32
JB
1065 . .{DIGIT}+
1066 . ${DIGIT}+
1067 . ___{DIGIT}+
1068 . __{DIGIT}+.
c90092fe 1069
29480c32
JB
1070 These are suffixes introduced by the compiler for entities such as
1071 nested subprogram for instance, in order to avoid name clashes.
1072 They do not serve any purpose for the debugger. */
1073
1074static void
1075ada_remove_trailing_digits (const char *encoded, int *len)
1076{
1077 if (*len > 1 && isdigit (encoded[*len - 1]))
1078 {
1079 int i = *len - 2;
5b4ee69b 1080
29480c32
JB
1081 while (i > 0 && isdigit (encoded[i]))
1082 i--;
1083 if (i >= 0 && encoded[i] == '.')
1084 *len = i;
1085 else if (i >= 0 && encoded[i] == '$')
1086 *len = i;
61012eef 1087 else if (i >= 2 && startswith (encoded + i - 2, "___"))
29480c32 1088 *len = i - 2;
61012eef 1089 else if (i >= 1 && startswith (encoded + i - 1, "__"))
29480c32
JB
1090 *len = i - 1;
1091 }
1092}
1093
1094/* Remove the suffix introduced by the compiler for protected object
1095 subprograms. */
1096
1097static void
1098ada_remove_po_subprogram_suffix (const char *encoded, int *len)
1099{
1100 /* Remove trailing N. */
1101
1102 /* Protected entry subprograms are broken into two
1103 separate subprograms: The first one is unprotected, and has
1104 a 'N' suffix; the second is the protected version, and has
0963b4bd 1105 the 'P' suffix. The second calls the first one after handling
29480c32
JB
1106 the protection. Since the P subprograms are internally generated,
1107 we leave these names undecoded, giving the user a clue that this
1108 entity is internal. */
1109
1110 if (*len > 1
1111 && encoded[*len - 1] == 'N'
1112 && (isdigit (encoded[*len - 2]) || islower (encoded[*len - 2])))
1113 *len = *len - 1;
1114}
1115
69fadcdf
JB
1116/* Remove trailing X[bn]* suffixes (indicating names in package bodies). */
1117
1118static void
1119ada_remove_Xbn_suffix (const char *encoded, int *len)
1120{
1121 int i = *len - 1;
1122
1123 while (i > 0 && (encoded[i] == 'b' || encoded[i] == 'n'))
1124 i--;
1125
1126 if (encoded[i] != 'X')
1127 return;
1128
1129 if (i == 0)
1130 return;
1131
1132 if (isalnum (encoded[i-1]))
1133 *len = i;
1134}
1135
29480c32
JB
1136/* If ENCODED follows the GNAT entity encoding conventions, then return
1137 the decoded form of ENCODED. Otherwise, return "<%s>" where "%s" is
1138 replaced by ENCODED.
14f9c5c9 1139
4c4b4cd2 1140 The resulting string is valid until the next call of ada_decode.
29480c32 1141 If the string is unchanged by decoding, the original string pointer
4c4b4cd2
PH
1142 is returned. */
1143
1144const char *
1145ada_decode (const char *encoded)
14f9c5c9
AS
1146{
1147 int i, j;
1148 int len0;
d2e4a39e 1149 const char *p;
4c4b4cd2 1150 char *decoded;
14f9c5c9 1151 int at_start_name;
4c4b4cd2
PH
1152 static char *decoding_buffer = NULL;
1153 static size_t decoding_buffer_size = 0;
d2e4a39e 1154
29480c32
JB
1155 /* The name of the Ada main procedure starts with "_ada_".
1156 This prefix is not part of the decoded name, so skip this part
1157 if we see this prefix. */
61012eef 1158 if (startswith (encoded, "_ada_"))
4c4b4cd2 1159 encoded += 5;
14f9c5c9 1160
29480c32
JB
1161 /* If the name starts with '_', then it is not a properly encoded
1162 name, so do not attempt to decode it. Similarly, if the name
1163 starts with '<', the name should not be decoded. */
4c4b4cd2 1164 if (encoded[0] == '_' || encoded[0] == '<')
14f9c5c9
AS
1165 goto Suppress;
1166
4c4b4cd2 1167 len0 = strlen (encoded);
4c4b4cd2 1168
29480c32
JB
1169 ada_remove_trailing_digits (encoded, &len0);
1170 ada_remove_po_subprogram_suffix (encoded, &len0);
529cad9c 1171
4c4b4cd2
PH
1172 /* Remove the ___X.* suffix if present. Do not forget to verify that
1173 the suffix is located before the current "end" of ENCODED. We want
1174 to avoid re-matching parts of ENCODED that have previously been
1175 marked as discarded (by decrementing LEN0). */
1176 p = strstr (encoded, "___");
1177 if (p != NULL && p - encoded < len0 - 3)
14f9c5c9
AS
1178 {
1179 if (p[3] == 'X')
4c4b4cd2 1180 len0 = p - encoded;
14f9c5c9 1181 else
4c4b4cd2 1182 goto Suppress;
14f9c5c9 1183 }
4c4b4cd2 1184
29480c32
JB
1185 /* Remove any trailing TKB suffix. It tells us that this symbol
1186 is for the body of a task, but that information does not actually
1187 appear in the decoded name. */
1188
61012eef 1189 if (len0 > 3 && startswith (encoded + len0 - 3, "TKB"))
14f9c5c9 1190 len0 -= 3;
76a01679 1191
a10967fa
JB
1192 /* Remove any trailing TB suffix. The TB suffix is slightly different
1193 from the TKB suffix because it is used for non-anonymous task
1194 bodies. */
1195
61012eef 1196 if (len0 > 2 && startswith (encoded + len0 - 2, "TB"))
a10967fa
JB
1197 len0 -= 2;
1198
29480c32
JB
1199 /* Remove trailing "B" suffixes. */
1200 /* FIXME: brobecker/2006-04-19: Not sure what this are used for... */
1201
61012eef 1202 if (len0 > 1 && startswith (encoded + len0 - 1, "B"))
14f9c5c9
AS
1203 len0 -= 1;
1204
4c4b4cd2 1205 /* Make decoded big enough for possible expansion by operator name. */
29480c32 1206
4c4b4cd2
PH
1207 GROW_VECT (decoding_buffer, decoding_buffer_size, 2 * len0 + 1);
1208 decoded = decoding_buffer;
14f9c5c9 1209
29480c32
JB
1210 /* Remove trailing __{digit}+ or trailing ${digit}+. */
1211
4c4b4cd2 1212 if (len0 > 1 && isdigit (encoded[len0 - 1]))
d2e4a39e 1213 {
4c4b4cd2
PH
1214 i = len0 - 2;
1215 while ((i >= 0 && isdigit (encoded[i]))
1216 || (i >= 1 && encoded[i] == '_' && isdigit (encoded[i - 1])))
1217 i -= 1;
1218 if (i > 1 && encoded[i] == '_' && encoded[i - 1] == '_')
1219 len0 = i - 1;
1220 else if (encoded[i] == '$')
1221 len0 = i;
d2e4a39e 1222 }
14f9c5c9 1223
29480c32
JB
1224 /* The first few characters that are not alphabetic are not part
1225 of any encoding we use, so we can copy them over verbatim. */
1226
4c4b4cd2
PH
1227 for (i = 0, j = 0; i < len0 && !isalpha (encoded[i]); i += 1, j += 1)
1228 decoded[j] = encoded[i];
14f9c5c9
AS
1229
1230 at_start_name = 1;
1231 while (i < len0)
1232 {
29480c32 1233 /* Is this a symbol function? */
4c4b4cd2
PH
1234 if (at_start_name && encoded[i] == 'O')
1235 {
1236 int k;
5b4ee69b 1237
4c4b4cd2
PH
1238 for (k = 0; ada_opname_table[k].encoded != NULL; k += 1)
1239 {
1240 int op_len = strlen (ada_opname_table[k].encoded);
06d5cf63
JB
1241 if ((strncmp (ada_opname_table[k].encoded + 1, encoded + i + 1,
1242 op_len - 1) == 0)
1243 && !isalnum (encoded[i + op_len]))
4c4b4cd2
PH
1244 {
1245 strcpy (decoded + j, ada_opname_table[k].decoded);
1246 at_start_name = 0;
1247 i += op_len;
1248 j += strlen (ada_opname_table[k].decoded);
1249 break;
1250 }
1251 }
1252 if (ada_opname_table[k].encoded != NULL)
1253 continue;
1254 }
14f9c5c9
AS
1255 at_start_name = 0;
1256
529cad9c
PH
1257 /* Replace "TK__" with "__", which will eventually be translated
1258 into "." (just below). */
1259
61012eef 1260 if (i < len0 - 4 && startswith (encoded + i, "TK__"))
4c4b4cd2 1261 i += 2;
529cad9c 1262
29480c32
JB
1263 /* Replace "__B_{DIGITS}+__" sequences by "__", which will eventually
1264 be translated into "." (just below). These are internal names
1265 generated for anonymous blocks inside which our symbol is nested. */
1266
1267 if (len0 - i > 5 && encoded [i] == '_' && encoded [i+1] == '_'
1268 && encoded [i+2] == 'B' && encoded [i+3] == '_'
1269 && isdigit (encoded [i+4]))
1270 {
1271 int k = i + 5;
1272
1273 while (k < len0 && isdigit (encoded[k]))
1274 k++; /* Skip any extra digit. */
1275
1276 /* Double-check that the "__B_{DIGITS}+" sequence we found
1277 is indeed followed by "__". */
1278 if (len0 - k > 2 && encoded [k] == '_' && encoded [k+1] == '_')
1279 i = k;
1280 }
1281
529cad9c
PH
1282 /* Remove _E{DIGITS}+[sb] */
1283
1284 /* Just as for protected object subprograms, there are 2 categories
0963b4bd 1285 of subprograms created by the compiler for each entry. The first
529cad9c
PH
1286 one implements the actual entry code, and has a suffix following
1287 the convention above; the second one implements the barrier and
1288 uses the same convention as above, except that the 'E' is replaced
1289 by a 'B'.
1290
1291 Just as above, we do not decode the name of barrier functions
1292 to give the user a clue that the code he is debugging has been
1293 internally generated. */
1294
1295 if (len0 - i > 3 && encoded [i] == '_' && encoded[i+1] == 'E'
1296 && isdigit (encoded[i+2]))
1297 {
1298 int k = i + 3;
1299
1300 while (k < len0 && isdigit (encoded[k]))
1301 k++;
1302
1303 if (k < len0
1304 && (encoded[k] == 'b' || encoded[k] == 's'))
1305 {
1306 k++;
1307 /* Just as an extra precaution, make sure that if this
1308 suffix is followed by anything else, it is a '_'.
1309 Otherwise, we matched this sequence by accident. */
1310 if (k == len0
1311 || (k < len0 && encoded[k] == '_'))
1312 i = k;
1313 }
1314 }
1315
1316 /* Remove trailing "N" in [a-z0-9]+N__. The N is added by
1317 the GNAT front-end in protected object subprograms. */
1318
1319 if (i < len0 + 3
1320 && encoded[i] == 'N' && encoded[i+1] == '_' && encoded[i+2] == '_')
1321 {
1322 /* Backtrack a bit up until we reach either the begining of
1323 the encoded name, or "__". Make sure that we only find
1324 digits or lowercase characters. */
1325 const char *ptr = encoded + i - 1;
1326
1327 while (ptr >= encoded && is_lower_alphanum (ptr[0]))
1328 ptr--;
1329 if (ptr < encoded
1330 || (ptr > encoded && ptr[0] == '_' && ptr[-1] == '_'))
1331 i++;
1332 }
1333
4c4b4cd2
PH
1334 if (encoded[i] == 'X' && i != 0 && isalnum (encoded[i - 1]))
1335 {
29480c32
JB
1336 /* This is a X[bn]* sequence not separated from the previous
1337 part of the name with a non-alpha-numeric character (in other
1338 words, immediately following an alpha-numeric character), then
1339 verify that it is placed at the end of the encoded name. If
1340 not, then the encoding is not valid and we should abort the
1341 decoding. Otherwise, just skip it, it is used in body-nested
1342 package names. */
4c4b4cd2
PH
1343 do
1344 i += 1;
1345 while (i < len0 && (encoded[i] == 'b' || encoded[i] == 'n'));
1346 if (i < len0)
1347 goto Suppress;
1348 }
cdc7bb92 1349 else if (i < len0 - 2 && encoded[i] == '_' && encoded[i + 1] == '_')
4c4b4cd2 1350 {
29480c32 1351 /* Replace '__' by '.'. */
4c4b4cd2
PH
1352 decoded[j] = '.';
1353 at_start_name = 1;
1354 i += 2;
1355 j += 1;
1356 }
14f9c5c9 1357 else
4c4b4cd2 1358 {
29480c32
JB
1359 /* It's a character part of the decoded name, so just copy it
1360 over. */
4c4b4cd2
PH
1361 decoded[j] = encoded[i];
1362 i += 1;
1363 j += 1;
1364 }
14f9c5c9 1365 }
4c4b4cd2 1366 decoded[j] = '\000';
14f9c5c9 1367
29480c32
JB
1368 /* Decoded names should never contain any uppercase character.
1369 Double-check this, and abort the decoding if we find one. */
1370
4c4b4cd2
PH
1371 for (i = 0; decoded[i] != '\0'; i += 1)
1372 if (isupper (decoded[i]) || decoded[i] == ' ')
14f9c5c9
AS
1373 goto Suppress;
1374
4c4b4cd2
PH
1375 if (strcmp (decoded, encoded) == 0)
1376 return encoded;
1377 else
1378 return decoded;
14f9c5c9
AS
1379
1380Suppress:
4c4b4cd2
PH
1381 GROW_VECT (decoding_buffer, decoding_buffer_size, strlen (encoded) + 3);
1382 decoded = decoding_buffer;
1383 if (encoded[0] == '<')
1384 strcpy (decoded, encoded);
14f9c5c9 1385 else
88c15c34 1386 xsnprintf (decoded, decoding_buffer_size, "<%s>", encoded);
4c4b4cd2
PH
1387 return decoded;
1388
1389}
1390
1391/* Table for keeping permanent unique copies of decoded names. Once
1392 allocated, names in this table are never released. While this is a
1393 storage leak, it should not be significant unless there are massive
1394 changes in the set of decoded names in successive versions of a
1395 symbol table loaded during a single session. */
1396static struct htab *decoded_names_store;
1397
1398/* Returns the decoded name of GSYMBOL, as for ada_decode, caching it
1399 in the language-specific part of GSYMBOL, if it has not been
1400 previously computed. Tries to save the decoded name in the same
1401 obstack as GSYMBOL, if possible, and otherwise on the heap (so that,
1402 in any case, the decoded symbol has a lifetime at least that of
0963b4bd 1403 GSYMBOL).
4c4b4cd2
PH
1404 The GSYMBOL parameter is "mutable" in the C++ sense: logically
1405 const, but nevertheless modified to a semantically equivalent form
0963b4bd 1406 when a decoded name is cached in it. */
4c4b4cd2 1407
45e6c716 1408const char *
f85f34ed 1409ada_decode_symbol (const struct general_symbol_info *arg)
4c4b4cd2 1410{
f85f34ed
TT
1411 struct general_symbol_info *gsymbol = (struct general_symbol_info *) arg;
1412 const char **resultp =
1413 &gsymbol->language_specific.mangled_lang.demangled_name;
5b4ee69b 1414
f85f34ed 1415 if (!gsymbol->ada_mangled)
4c4b4cd2
PH
1416 {
1417 const char *decoded = ada_decode (gsymbol->name);
f85f34ed 1418 struct obstack *obstack = gsymbol->language_specific.obstack;
5b4ee69b 1419
f85f34ed 1420 gsymbol->ada_mangled = 1;
5b4ee69b 1421
f85f34ed
TT
1422 if (obstack != NULL)
1423 *resultp = obstack_copy0 (obstack, decoded, strlen (decoded));
1424 else
76a01679 1425 {
f85f34ed
TT
1426 /* Sometimes, we can't find a corresponding objfile, in
1427 which case, we put the result on the heap. Since we only
1428 decode when needed, we hope this usually does not cause a
1429 significant memory leak (FIXME). */
1430
76a01679
JB
1431 char **slot = (char **) htab_find_slot (decoded_names_store,
1432 decoded, INSERT);
5b4ee69b 1433
76a01679
JB
1434 if (*slot == NULL)
1435 *slot = xstrdup (decoded);
1436 *resultp = *slot;
1437 }
4c4b4cd2 1438 }
14f9c5c9 1439
4c4b4cd2
PH
1440 return *resultp;
1441}
76a01679 1442
2c0b251b 1443static char *
76a01679 1444ada_la_decode (const char *encoded, int options)
4c4b4cd2
PH
1445{
1446 return xstrdup (ada_decode (encoded));
14f9c5c9
AS
1447}
1448
1449/* Returns non-zero iff SYM_NAME matches NAME, ignoring any trailing
4c4b4cd2
PH
1450 suffixes that encode debugging information or leading _ada_ on
1451 SYM_NAME (see is_name_suffix commentary for the debugging
1452 information that is ignored). If WILD, then NAME need only match a
1453 suffix of SYM_NAME minus the same suffixes. Also returns 0 if
1454 either argument is NULL. */
14f9c5c9 1455
2c0b251b 1456static int
40658b94 1457match_name (const char *sym_name, const char *name, int wild)
14f9c5c9
AS
1458{
1459 if (sym_name == NULL || name == NULL)
1460 return 0;
1461 else if (wild)
73589123 1462 return wild_match (sym_name, name) == 0;
d2e4a39e
AS
1463 else
1464 {
1465 int len_name = strlen (name);
5b4ee69b 1466
4c4b4cd2
PH
1467 return (strncmp (sym_name, name, len_name) == 0
1468 && is_name_suffix (sym_name + len_name))
61012eef 1469 || (startswith (sym_name, "_ada_")
4c4b4cd2
PH
1470 && strncmp (sym_name + 5, name, len_name) == 0
1471 && is_name_suffix (sym_name + len_name + 5));
d2e4a39e 1472 }
14f9c5c9 1473}
14f9c5c9 1474\f
d2e4a39e 1475
4c4b4cd2 1476 /* Arrays */
14f9c5c9 1477
28c85d6c
JB
1478/* Assuming that INDEX_DESC_TYPE is an ___XA structure, a structure
1479 generated by the GNAT compiler to describe the index type used
1480 for each dimension of an array, check whether it follows the latest
1481 known encoding. If not, fix it up to conform to the latest encoding.
1482 Otherwise, do nothing. This function also does nothing if
1483 INDEX_DESC_TYPE is NULL.
1484
1485 The GNAT encoding used to describle the array index type evolved a bit.
1486 Initially, the information would be provided through the name of each
1487 field of the structure type only, while the type of these fields was
1488 described as unspecified and irrelevant. The debugger was then expected
1489 to perform a global type lookup using the name of that field in order
1490 to get access to the full index type description. Because these global
1491 lookups can be very expensive, the encoding was later enhanced to make
1492 the global lookup unnecessary by defining the field type as being
1493 the full index type description.
1494
1495 The purpose of this routine is to allow us to support older versions
1496 of the compiler by detecting the use of the older encoding, and by
1497 fixing up the INDEX_DESC_TYPE to follow the new one (at this point,
1498 we essentially replace each field's meaningless type by the associated
1499 index subtype). */
1500
1501void
1502ada_fixup_array_indexes_type (struct type *index_desc_type)
1503{
1504 int i;
1505
1506 if (index_desc_type == NULL)
1507 return;
1508 gdb_assert (TYPE_NFIELDS (index_desc_type) > 0);
1509
1510 /* Check if INDEX_DESC_TYPE follows the older encoding (it is sufficient
1511 to check one field only, no need to check them all). If not, return
1512 now.
1513
1514 If our INDEX_DESC_TYPE was generated using the older encoding,
1515 the field type should be a meaningless integer type whose name
1516 is not equal to the field name. */
1517 if (TYPE_NAME (TYPE_FIELD_TYPE (index_desc_type, 0)) != NULL
1518 && strcmp (TYPE_NAME (TYPE_FIELD_TYPE (index_desc_type, 0)),
1519 TYPE_FIELD_NAME (index_desc_type, 0)) == 0)
1520 return;
1521
1522 /* Fixup each field of INDEX_DESC_TYPE. */
1523 for (i = 0; i < TYPE_NFIELDS (index_desc_type); i++)
1524 {
0d5cff50 1525 const char *name = TYPE_FIELD_NAME (index_desc_type, i);
28c85d6c
JB
1526 struct type *raw_type = ada_check_typedef (ada_find_any_type (name));
1527
1528 if (raw_type)
1529 TYPE_FIELD_TYPE (index_desc_type, i) = raw_type;
1530 }
1531}
1532
4c4b4cd2 1533/* Names of MAX_ADA_DIMENS bounds in P_BOUNDS fields of array descriptors. */
14f9c5c9 1534
d2e4a39e
AS
1535static char *bound_name[] = {
1536 "LB0", "UB0", "LB1", "UB1", "LB2", "UB2", "LB3", "UB3",
14f9c5c9
AS
1537 "LB4", "UB4", "LB5", "UB5", "LB6", "UB6", "LB7", "UB7"
1538};
1539
1540/* Maximum number of array dimensions we are prepared to handle. */
1541
4c4b4cd2 1542#define MAX_ADA_DIMENS (sizeof(bound_name) / (2*sizeof(char *)))
14f9c5c9 1543
14f9c5c9 1544
4c4b4cd2
PH
1545/* The desc_* routines return primitive portions of array descriptors
1546 (fat pointers). */
14f9c5c9
AS
1547
1548/* The descriptor or array type, if any, indicated by TYPE; removes
4c4b4cd2
PH
1549 level of indirection, if needed. */
1550
d2e4a39e
AS
1551static struct type *
1552desc_base_type (struct type *type)
14f9c5c9
AS
1553{
1554 if (type == NULL)
1555 return NULL;
61ee279c 1556 type = ada_check_typedef (type);
720d1a40
JB
1557 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
1558 type = ada_typedef_target_type (type);
1559
1265e4aa
JB
1560 if (type != NULL
1561 && (TYPE_CODE (type) == TYPE_CODE_PTR
1562 || TYPE_CODE (type) == TYPE_CODE_REF))
61ee279c 1563 return ada_check_typedef (TYPE_TARGET_TYPE (type));
14f9c5c9
AS
1564 else
1565 return type;
1566}
1567
4c4b4cd2
PH
1568/* True iff TYPE indicates a "thin" array pointer type. */
1569
14f9c5c9 1570static int
d2e4a39e 1571is_thin_pntr (struct type *type)
14f9c5c9 1572{
d2e4a39e 1573 return
14f9c5c9
AS
1574 is_suffix (ada_type_name (desc_base_type (type)), "___XUT")
1575 || is_suffix (ada_type_name (desc_base_type (type)), "___XUT___XVE");
1576}
1577
4c4b4cd2
PH
1578/* The descriptor type for thin pointer type TYPE. */
1579
d2e4a39e
AS
1580static struct type *
1581thin_descriptor_type (struct type *type)
14f9c5c9 1582{
d2e4a39e 1583 struct type *base_type = desc_base_type (type);
5b4ee69b 1584
14f9c5c9
AS
1585 if (base_type == NULL)
1586 return NULL;
1587 if (is_suffix (ada_type_name (base_type), "___XVE"))
1588 return base_type;
d2e4a39e 1589 else
14f9c5c9 1590 {
d2e4a39e 1591 struct type *alt_type = ada_find_parallel_type (base_type, "___XVE");
5b4ee69b 1592
14f9c5c9 1593 if (alt_type == NULL)
4c4b4cd2 1594 return base_type;
14f9c5c9 1595 else
4c4b4cd2 1596 return alt_type;
14f9c5c9
AS
1597 }
1598}
1599
4c4b4cd2
PH
1600/* A pointer to the array data for thin-pointer value VAL. */
1601
d2e4a39e
AS
1602static struct value *
1603thin_data_pntr (struct value *val)
14f9c5c9 1604{
828292f2 1605 struct type *type = ada_check_typedef (value_type (val));
556bdfd4 1606 struct type *data_type = desc_data_target_type (thin_descriptor_type (type));
5b4ee69b 1607
556bdfd4
UW
1608 data_type = lookup_pointer_type (data_type);
1609
14f9c5c9 1610 if (TYPE_CODE (type) == TYPE_CODE_PTR)
556bdfd4 1611 return value_cast (data_type, value_copy (val));
d2e4a39e 1612 else
42ae5230 1613 return value_from_longest (data_type, value_address (val));
14f9c5c9
AS
1614}
1615
4c4b4cd2
PH
1616/* True iff TYPE indicates a "thick" array pointer type. */
1617
14f9c5c9 1618static int
d2e4a39e 1619is_thick_pntr (struct type *type)
14f9c5c9
AS
1620{
1621 type = desc_base_type (type);
1622 return (type != NULL && TYPE_CODE (type) == TYPE_CODE_STRUCT
4c4b4cd2 1623 && lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL);
14f9c5c9
AS
1624}
1625
4c4b4cd2
PH
1626/* If TYPE is the type of an array descriptor (fat or thin pointer) or a
1627 pointer to one, the type of its bounds data; otherwise, NULL. */
76a01679 1628
d2e4a39e
AS
1629static struct type *
1630desc_bounds_type (struct type *type)
14f9c5c9 1631{
d2e4a39e 1632 struct type *r;
14f9c5c9
AS
1633
1634 type = desc_base_type (type);
1635
1636 if (type == NULL)
1637 return NULL;
1638 else if (is_thin_pntr (type))
1639 {
1640 type = thin_descriptor_type (type);
1641 if (type == NULL)
4c4b4cd2 1642 return NULL;
14f9c5c9
AS
1643 r = lookup_struct_elt_type (type, "BOUNDS", 1);
1644 if (r != NULL)
61ee279c 1645 return ada_check_typedef (r);
14f9c5c9
AS
1646 }
1647 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
1648 {
1649 r = lookup_struct_elt_type (type, "P_BOUNDS", 1);
1650 if (r != NULL)
61ee279c 1651 return ada_check_typedef (TYPE_TARGET_TYPE (ada_check_typedef (r)));
14f9c5c9
AS
1652 }
1653 return NULL;
1654}
1655
1656/* If ARR is an array descriptor (fat or thin pointer), or pointer to
4c4b4cd2
PH
1657 one, a pointer to its bounds data. Otherwise NULL. */
1658
d2e4a39e
AS
1659static struct value *
1660desc_bounds (struct value *arr)
14f9c5c9 1661{
df407dfe 1662 struct type *type = ada_check_typedef (value_type (arr));
5b4ee69b 1663
d2e4a39e 1664 if (is_thin_pntr (type))
14f9c5c9 1665 {
d2e4a39e 1666 struct type *bounds_type =
4c4b4cd2 1667 desc_bounds_type (thin_descriptor_type (type));
14f9c5c9
AS
1668 LONGEST addr;
1669
4cdfadb1 1670 if (bounds_type == NULL)
323e0a4a 1671 error (_("Bad GNAT array descriptor"));
14f9c5c9
AS
1672
1673 /* NOTE: The following calculation is not really kosher, but
d2e4a39e 1674 since desc_type is an XVE-encoded type (and shouldn't be),
4c4b4cd2 1675 the correct calculation is a real pain. FIXME (and fix GCC). */
14f9c5c9 1676 if (TYPE_CODE (type) == TYPE_CODE_PTR)
4c4b4cd2 1677 addr = value_as_long (arr);
d2e4a39e 1678 else
42ae5230 1679 addr = value_address (arr);
14f9c5c9 1680
d2e4a39e 1681 return
4c4b4cd2
PH
1682 value_from_longest (lookup_pointer_type (bounds_type),
1683 addr - TYPE_LENGTH (bounds_type));
14f9c5c9
AS
1684 }
1685
1686 else if (is_thick_pntr (type))
05e522ef
JB
1687 {
1688 struct value *p_bounds = value_struct_elt (&arr, NULL, "P_BOUNDS", NULL,
1689 _("Bad GNAT array descriptor"));
1690 struct type *p_bounds_type = value_type (p_bounds);
1691
1692 if (p_bounds_type
1693 && TYPE_CODE (p_bounds_type) == TYPE_CODE_PTR)
1694 {
1695 struct type *target_type = TYPE_TARGET_TYPE (p_bounds_type);
1696
1697 if (TYPE_STUB (target_type))
1698 p_bounds = value_cast (lookup_pointer_type
1699 (ada_check_typedef (target_type)),
1700 p_bounds);
1701 }
1702 else
1703 error (_("Bad GNAT array descriptor"));
1704
1705 return p_bounds;
1706 }
14f9c5c9
AS
1707 else
1708 return NULL;
1709}
1710
4c4b4cd2
PH
1711/* If TYPE is the type of an array-descriptor (fat pointer), the bit
1712 position of the field containing the address of the bounds data. */
1713
14f9c5c9 1714static int
d2e4a39e 1715fat_pntr_bounds_bitpos (struct type *type)
14f9c5c9
AS
1716{
1717 return TYPE_FIELD_BITPOS (desc_base_type (type), 1);
1718}
1719
1720/* If TYPE is the type of an array-descriptor (fat pointer), the bit
4c4b4cd2
PH
1721 size of the field containing the address of the bounds data. */
1722
14f9c5c9 1723static int
d2e4a39e 1724fat_pntr_bounds_bitsize (struct type *type)
14f9c5c9
AS
1725{
1726 type = desc_base_type (type);
1727
d2e4a39e 1728 if (TYPE_FIELD_BITSIZE (type, 1) > 0)
14f9c5c9
AS
1729 return TYPE_FIELD_BITSIZE (type, 1);
1730 else
61ee279c 1731 return 8 * TYPE_LENGTH (ada_check_typedef (TYPE_FIELD_TYPE (type, 1)));
14f9c5c9
AS
1732}
1733
4c4b4cd2 1734/* If TYPE is the type of an array descriptor (fat or thin pointer) or a
556bdfd4
UW
1735 pointer to one, the type of its array data (a array-with-no-bounds type);
1736 otherwise, NULL. Use ada_type_of_array to get an array type with bounds
1737 data. */
4c4b4cd2 1738
d2e4a39e 1739static struct type *
556bdfd4 1740desc_data_target_type (struct type *type)
14f9c5c9
AS
1741{
1742 type = desc_base_type (type);
1743
4c4b4cd2 1744 /* NOTE: The following is bogus; see comment in desc_bounds. */
14f9c5c9 1745 if (is_thin_pntr (type))
556bdfd4 1746 return desc_base_type (TYPE_FIELD_TYPE (thin_descriptor_type (type), 1));
14f9c5c9 1747 else if (is_thick_pntr (type))
556bdfd4
UW
1748 {
1749 struct type *data_type = lookup_struct_elt_type (type, "P_ARRAY", 1);
1750
1751 if (data_type
1752 && TYPE_CODE (ada_check_typedef (data_type)) == TYPE_CODE_PTR)
05e522ef 1753 return ada_check_typedef (TYPE_TARGET_TYPE (data_type));
556bdfd4
UW
1754 }
1755
1756 return NULL;
14f9c5c9
AS
1757}
1758
1759/* If ARR is an array descriptor (fat or thin pointer), a pointer to
1760 its array data. */
4c4b4cd2 1761
d2e4a39e
AS
1762static struct value *
1763desc_data (struct value *arr)
14f9c5c9 1764{
df407dfe 1765 struct type *type = value_type (arr);
5b4ee69b 1766
14f9c5c9
AS
1767 if (is_thin_pntr (type))
1768 return thin_data_pntr (arr);
1769 else if (is_thick_pntr (type))
d2e4a39e 1770 return value_struct_elt (&arr, NULL, "P_ARRAY", NULL,
323e0a4a 1771 _("Bad GNAT array descriptor"));
14f9c5c9
AS
1772 else
1773 return NULL;
1774}
1775
1776
1777/* If TYPE is the type of an array-descriptor (fat pointer), the bit
4c4b4cd2
PH
1778 position of the field containing the address of the data. */
1779
14f9c5c9 1780static int
d2e4a39e 1781fat_pntr_data_bitpos (struct type *type)
14f9c5c9
AS
1782{
1783 return TYPE_FIELD_BITPOS (desc_base_type (type), 0);
1784}
1785
1786/* If TYPE is the type of an array-descriptor (fat pointer), the bit
4c4b4cd2
PH
1787 size of the field containing the address of the data. */
1788
14f9c5c9 1789static int
d2e4a39e 1790fat_pntr_data_bitsize (struct type *type)
14f9c5c9
AS
1791{
1792 type = desc_base_type (type);
1793
1794 if (TYPE_FIELD_BITSIZE (type, 0) > 0)
1795 return TYPE_FIELD_BITSIZE (type, 0);
d2e4a39e 1796 else
14f9c5c9
AS
1797 return TARGET_CHAR_BIT * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 0));
1798}
1799
4c4b4cd2 1800/* If BOUNDS is an array-bounds structure (or pointer to one), return
14f9c5c9 1801 the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
4c4b4cd2
PH
1802 bound, if WHICH is 1. The first bound is I=1. */
1803
d2e4a39e
AS
1804static struct value *
1805desc_one_bound (struct value *bounds, int i, int which)
14f9c5c9 1806{
d2e4a39e 1807 return value_struct_elt (&bounds, NULL, bound_name[2 * i + which - 2], NULL,
323e0a4a 1808 _("Bad GNAT array descriptor bounds"));
14f9c5c9
AS
1809}
1810
1811/* If BOUNDS is an array-bounds structure type, return the bit position
1812 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
4c4b4cd2
PH
1813 bound, if WHICH is 1. The first bound is I=1. */
1814
14f9c5c9 1815static int
d2e4a39e 1816desc_bound_bitpos (struct type *type, int i, int which)
14f9c5c9 1817{
d2e4a39e 1818 return TYPE_FIELD_BITPOS (desc_base_type (type), 2 * i + which - 2);
14f9c5c9
AS
1819}
1820
1821/* If BOUNDS is an array-bounds structure type, return the bit field size
1822 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
4c4b4cd2
PH
1823 bound, if WHICH is 1. The first bound is I=1. */
1824
76a01679 1825static int
d2e4a39e 1826desc_bound_bitsize (struct type *type, int i, int which)
14f9c5c9
AS
1827{
1828 type = desc_base_type (type);
1829
d2e4a39e
AS
1830 if (TYPE_FIELD_BITSIZE (type, 2 * i + which - 2) > 0)
1831 return TYPE_FIELD_BITSIZE (type, 2 * i + which - 2);
1832 else
1833 return 8 * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 2 * i + which - 2));
14f9c5c9
AS
1834}
1835
1836/* If TYPE is the type of an array-bounds structure, the type of its
4c4b4cd2
PH
1837 Ith bound (numbering from 1). Otherwise, NULL. */
1838
d2e4a39e
AS
1839static struct type *
1840desc_index_type (struct type *type, int i)
14f9c5c9
AS
1841{
1842 type = desc_base_type (type);
1843
1844 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
d2e4a39e
AS
1845 return lookup_struct_elt_type (type, bound_name[2 * i - 2], 1);
1846 else
14f9c5c9
AS
1847 return NULL;
1848}
1849
4c4b4cd2
PH
1850/* The number of index positions in the array-bounds type TYPE.
1851 Return 0 if TYPE is NULL. */
1852
14f9c5c9 1853static int
d2e4a39e 1854desc_arity (struct type *type)
14f9c5c9
AS
1855{
1856 type = desc_base_type (type);
1857
1858 if (type != NULL)
1859 return TYPE_NFIELDS (type) / 2;
1860 return 0;
1861}
1862
4c4b4cd2
PH
1863/* Non-zero iff TYPE is a simple array type (not a pointer to one) or
1864 an array descriptor type (representing an unconstrained array
1865 type). */
1866
76a01679
JB
1867static int
1868ada_is_direct_array_type (struct type *type)
4c4b4cd2
PH
1869{
1870 if (type == NULL)
1871 return 0;
61ee279c 1872 type = ada_check_typedef (type);
4c4b4cd2 1873 return (TYPE_CODE (type) == TYPE_CODE_ARRAY
76a01679 1874 || ada_is_array_descriptor_type (type));
4c4b4cd2
PH
1875}
1876
52ce6436 1877/* Non-zero iff TYPE represents any kind of array in Ada, or a pointer
0963b4bd 1878 * to one. */
52ce6436 1879
2c0b251b 1880static int
52ce6436
PH
1881ada_is_array_type (struct type *type)
1882{
1883 while (type != NULL
1884 && (TYPE_CODE (type) == TYPE_CODE_PTR
1885 || TYPE_CODE (type) == TYPE_CODE_REF))
1886 type = TYPE_TARGET_TYPE (type);
1887 return ada_is_direct_array_type (type);
1888}
1889
4c4b4cd2 1890/* Non-zero iff TYPE is a simple array type or pointer to one. */
14f9c5c9 1891
14f9c5c9 1892int
4c4b4cd2 1893ada_is_simple_array_type (struct type *type)
14f9c5c9
AS
1894{
1895 if (type == NULL)
1896 return 0;
61ee279c 1897 type = ada_check_typedef (type);
14f9c5c9 1898 return (TYPE_CODE (type) == TYPE_CODE_ARRAY
4c4b4cd2 1899 || (TYPE_CODE (type) == TYPE_CODE_PTR
b0dd7688
JB
1900 && TYPE_CODE (ada_check_typedef (TYPE_TARGET_TYPE (type)))
1901 == TYPE_CODE_ARRAY));
14f9c5c9
AS
1902}
1903
4c4b4cd2
PH
1904/* Non-zero iff TYPE belongs to a GNAT array descriptor. */
1905
14f9c5c9 1906int
4c4b4cd2 1907ada_is_array_descriptor_type (struct type *type)
14f9c5c9 1908{
556bdfd4 1909 struct type *data_type = desc_data_target_type (type);
14f9c5c9
AS
1910
1911 if (type == NULL)
1912 return 0;
61ee279c 1913 type = ada_check_typedef (type);
556bdfd4
UW
1914 return (data_type != NULL
1915 && TYPE_CODE (data_type) == TYPE_CODE_ARRAY
1916 && desc_arity (desc_bounds_type (type)) > 0);
14f9c5c9
AS
1917}
1918
1919/* Non-zero iff type is a partially mal-formed GNAT array
4c4b4cd2 1920 descriptor. FIXME: This is to compensate for some problems with
14f9c5c9 1921 debugging output from GNAT. Re-examine periodically to see if it
4c4b4cd2
PH
1922 is still needed. */
1923
14f9c5c9 1924int
ebf56fd3 1925ada_is_bogus_array_descriptor (struct type *type)
14f9c5c9 1926{
d2e4a39e 1927 return
14f9c5c9
AS
1928 type != NULL
1929 && TYPE_CODE (type) == TYPE_CODE_STRUCT
1930 && (lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL
4c4b4cd2
PH
1931 || lookup_struct_elt_type (type, "P_ARRAY", 1) != NULL)
1932 && !ada_is_array_descriptor_type (type);
14f9c5c9
AS
1933}
1934
1935
4c4b4cd2 1936/* If ARR has a record type in the form of a standard GNAT array descriptor,
14f9c5c9 1937 (fat pointer) returns the type of the array data described---specifically,
4c4b4cd2 1938 a pointer-to-array type. If BOUNDS is non-zero, the bounds data are filled
14f9c5c9 1939 in from the descriptor; otherwise, they are left unspecified. If
4c4b4cd2
PH
1940 the ARR denotes a null array descriptor and BOUNDS is non-zero,
1941 returns NULL. The result is simply the type of ARR if ARR is not
14f9c5c9 1942 a descriptor. */
d2e4a39e
AS
1943struct type *
1944ada_type_of_array (struct value *arr, int bounds)
14f9c5c9 1945{
ad82864c
JB
1946 if (ada_is_constrained_packed_array_type (value_type (arr)))
1947 return decode_constrained_packed_array_type (value_type (arr));
14f9c5c9 1948
df407dfe
AC
1949 if (!ada_is_array_descriptor_type (value_type (arr)))
1950 return value_type (arr);
d2e4a39e
AS
1951
1952 if (!bounds)
ad82864c
JB
1953 {
1954 struct type *array_type =
1955 ada_check_typedef (desc_data_target_type (value_type (arr)));
1956
1957 if (ada_is_unconstrained_packed_array_type (value_type (arr)))
1958 TYPE_FIELD_BITSIZE (array_type, 0) =
1959 decode_packed_array_bitsize (value_type (arr));
1960
1961 return array_type;
1962 }
14f9c5c9
AS
1963 else
1964 {
d2e4a39e 1965 struct type *elt_type;
14f9c5c9 1966 int arity;
d2e4a39e 1967 struct value *descriptor;
14f9c5c9 1968
df407dfe
AC
1969 elt_type = ada_array_element_type (value_type (arr), -1);
1970 arity = ada_array_arity (value_type (arr));
14f9c5c9 1971
d2e4a39e 1972 if (elt_type == NULL || arity == 0)
df407dfe 1973 return ada_check_typedef (value_type (arr));
14f9c5c9
AS
1974
1975 descriptor = desc_bounds (arr);
d2e4a39e 1976 if (value_as_long (descriptor) == 0)
4c4b4cd2 1977 return NULL;
d2e4a39e 1978 while (arity > 0)
4c4b4cd2 1979 {
e9bb382b
UW
1980 struct type *range_type = alloc_type_copy (value_type (arr));
1981 struct type *array_type = alloc_type_copy (value_type (arr));
4c4b4cd2
PH
1982 struct value *low = desc_one_bound (descriptor, arity, 0);
1983 struct value *high = desc_one_bound (descriptor, arity, 1);
4c4b4cd2 1984
5b4ee69b 1985 arity -= 1;
0c9c3474
SA
1986 create_static_range_type (range_type, value_type (low),
1987 longest_to_int (value_as_long (low)),
1988 longest_to_int (value_as_long (high)));
4c4b4cd2 1989 elt_type = create_array_type (array_type, elt_type, range_type);
ad82864c
JB
1990
1991 if (ada_is_unconstrained_packed_array_type (value_type (arr)))
e67ad678
JB
1992 {
1993 /* We need to store the element packed bitsize, as well as
1994 recompute the array size, because it was previously
1995 computed based on the unpacked element size. */
1996 LONGEST lo = value_as_long (low);
1997 LONGEST hi = value_as_long (high);
1998
1999 TYPE_FIELD_BITSIZE (elt_type, 0) =
2000 decode_packed_array_bitsize (value_type (arr));
2001 /* If the array has no element, then the size is already
2002 zero, and does not need to be recomputed. */
2003 if (lo < hi)
2004 {
2005 int array_bitsize =
2006 (hi - lo + 1) * TYPE_FIELD_BITSIZE (elt_type, 0);
2007
2008 TYPE_LENGTH (array_type) = (array_bitsize + 7) / 8;
2009 }
2010 }
4c4b4cd2 2011 }
14f9c5c9
AS
2012
2013 return lookup_pointer_type (elt_type);
2014 }
2015}
2016
2017/* If ARR does not represent an array, returns ARR unchanged.
4c4b4cd2
PH
2018 Otherwise, returns either a standard GDB array with bounds set
2019 appropriately or, if ARR is a non-null fat pointer, a pointer to a standard
2020 GDB array. Returns NULL if ARR is a null fat pointer. */
2021
d2e4a39e
AS
2022struct value *
2023ada_coerce_to_simple_array_ptr (struct value *arr)
14f9c5c9 2024{
df407dfe 2025 if (ada_is_array_descriptor_type (value_type (arr)))
14f9c5c9 2026 {
d2e4a39e 2027 struct type *arrType = ada_type_of_array (arr, 1);
5b4ee69b 2028
14f9c5c9 2029 if (arrType == NULL)
4c4b4cd2 2030 return NULL;
14f9c5c9
AS
2031 return value_cast (arrType, value_copy (desc_data (arr)));
2032 }
ad82864c
JB
2033 else if (ada_is_constrained_packed_array_type (value_type (arr)))
2034 return decode_constrained_packed_array (arr);
14f9c5c9
AS
2035 else
2036 return arr;
2037}
2038
2039/* If ARR does not represent an array, returns ARR unchanged.
2040 Otherwise, returns a standard GDB array describing ARR (which may
4c4b4cd2
PH
2041 be ARR itself if it already is in the proper form). */
2042
720d1a40 2043struct value *
d2e4a39e 2044ada_coerce_to_simple_array (struct value *arr)
14f9c5c9 2045{
df407dfe 2046 if (ada_is_array_descriptor_type (value_type (arr)))
14f9c5c9 2047 {
d2e4a39e 2048 struct value *arrVal = ada_coerce_to_simple_array_ptr (arr);
5b4ee69b 2049
14f9c5c9 2050 if (arrVal == NULL)
323e0a4a 2051 error (_("Bounds unavailable for null array pointer."));
c1b5a1a6 2052 ada_ensure_varsize_limit (TYPE_TARGET_TYPE (value_type (arrVal)));
14f9c5c9
AS
2053 return value_ind (arrVal);
2054 }
ad82864c
JB
2055 else if (ada_is_constrained_packed_array_type (value_type (arr)))
2056 return decode_constrained_packed_array (arr);
d2e4a39e 2057 else
14f9c5c9
AS
2058 return arr;
2059}
2060
2061/* If TYPE represents a GNAT array type, return it translated to an
2062 ordinary GDB array type (possibly with BITSIZE fields indicating
4c4b4cd2
PH
2063 packing). For other types, is the identity. */
2064
d2e4a39e
AS
2065struct type *
2066ada_coerce_to_simple_array_type (struct type *type)
14f9c5c9 2067{
ad82864c
JB
2068 if (ada_is_constrained_packed_array_type (type))
2069 return decode_constrained_packed_array_type (type);
17280b9f
UW
2070
2071 if (ada_is_array_descriptor_type (type))
556bdfd4 2072 return ada_check_typedef (desc_data_target_type (type));
17280b9f
UW
2073
2074 return type;
14f9c5c9
AS
2075}
2076
4c4b4cd2
PH
2077/* Non-zero iff TYPE represents a standard GNAT packed-array type. */
2078
ad82864c
JB
2079static int
2080ada_is_packed_array_type (struct type *type)
14f9c5c9
AS
2081{
2082 if (type == NULL)
2083 return 0;
4c4b4cd2 2084 type = desc_base_type (type);
61ee279c 2085 type = ada_check_typedef (type);
d2e4a39e 2086 return
14f9c5c9
AS
2087 ada_type_name (type) != NULL
2088 && strstr (ada_type_name (type), "___XP") != NULL;
2089}
2090
ad82864c
JB
2091/* Non-zero iff TYPE represents a standard GNAT constrained
2092 packed-array type. */
2093
2094int
2095ada_is_constrained_packed_array_type (struct type *type)
2096{
2097 return ada_is_packed_array_type (type)
2098 && !ada_is_array_descriptor_type (type);
2099}
2100
2101/* Non-zero iff TYPE represents an array descriptor for a
2102 unconstrained packed-array type. */
2103
2104static int
2105ada_is_unconstrained_packed_array_type (struct type *type)
2106{
2107 return ada_is_packed_array_type (type)
2108 && ada_is_array_descriptor_type (type);
2109}
2110
2111/* Given that TYPE encodes a packed array type (constrained or unconstrained),
2112 return the size of its elements in bits. */
2113
2114static long
2115decode_packed_array_bitsize (struct type *type)
2116{
0d5cff50
DE
2117 const char *raw_name;
2118 const char *tail;
ad82864c
JB
2119 long bits;
2120
720d1a40
JB
2121 /* Access to arrays implemented as fat pointers are encoded as a typedef
2122 of the fat pointer type. We need the name of the fat pointer type
2123 to do the decoding, so strip the typedef layer. */
2124 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
2125 type = ada_typedef_target_type (type);
2126
2127 raw_name = ada_type_name (ada_check_typedef (type));
ad82864c
JB
2128 if (!raw_name)
2129 raw_name = ada_type_name (desc_base_type (type));
2130
2131 if (!raw_name)
2132 return 0;
2133
2134 tail = strstr (raw_name, "___XP");
720d1a40 2135 gdb_assert (tail != NULL);
ad82864c
JB
2136
2137 if (sscanf (tail + sizeof ("___XP") - 1, "%ld", &bits) != 1)
2138 {
2139 lim_warning
2140 (_("could not understand bit size information on packed array"));
2141 return 0;
2142 }
2143
2144 return bits;
2145}
2146
14f9c5c9
AS
2147/* Given that TYPE is a standard GDB array type with all bounds filled
2148 in, and that the element size of its ultimate scalar constituents
2149 (that is, either its elements, or, if it is an array of arrays, its
2150 elements' elements, etc.) is *ELT_BITS, return an identical type,
2151 but with the bit sizes of its elements (and those of any
2152 constituent arrays) recorded in the BITSIZE components of its
4c4b4cd2 2153 TYPE_FIELD_BITSIZE values, and with *ELT_BITS set to its total size
4a46959e
JB
2154 in bits.
2155
2156 Note that, for arrays whose index type has an XA encoding where
2157 a bound references a record discriminant, getting that discriminant,
2158 and therefore the actual value of that bound, is not possible
2159 because none of the given parameters gives us access to the record.
2160 This function assumes that it is OK in the context where it is being
2161 used to return an array whose bounds are still dynamic and where
2162 the length is arbitrary. */
4c4b4cd2 2163
d2e4a39e 2164static struct type *
ad82864c 2165constrained_packed_array_type (struct type *type, long *elt_bits)
14f9c5c9 2166{
d2e4a39e
AS
2167 struct type *new_elt_type;
2168 struct type *new_type;
99b1c762
JB
2169 struct type *index_type_desc;
2170 struct type *index_type;
14f9c5c9
AS
2171 LONGEST low_bound, high_bound;
2172
61ee279c 2173 type = ada_check_typedef (type);
14f9c5c9
AS
2174 if (TYPE_CODE (type) != TYPE_CODE_ARRAY)
2175 return type;
2176
99b1c762
JB
2177 index_type_desc = ada_find_parallel_type (type, "___XA");
2178 if (index_type_desc)
2179 index_type = to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, 0),
2180 NULL);
2181 else
2182 index_type = TYPE_INDEX_TYPE (type);
2183
e9bb382b 2184 new_type = alloc_type_copy (type);
ad82864c
JB
2185 new_elt_type =
2186 constrained_packed_array_type (ada_check_typedef (TYPE_TARGET_TYPE (type)),
2187 elt_bits);
99b1c762 2188 create_array_type (new_type, new_elt_type, index_type);
14f9c5c9
AS
2189 TYPE_FIELD_BITSIZE (new_type, 0) = *elt_bits;
2190 TYPE_NAME (new_type) = ada_type_name (type);
2191
4a46959e
JB
2192 if ((TYPE_CODE (check_typedef (index_type)) == TYPE_CODE_RANGE
2193 && is_dynamic_type (check_typedef (index_type)))
2194 || get_discrete_bounds (index_type, &low_bound, &high_bound) < 0)
14f9c5c9
AS
2195 low_bound = high_bound = 0;
2196 if (high_bound < low_bound)
2197 *elt_bits = TYPE_LENGTH (new_type) = 0;
d2e4a39e 2198 else
14f9c5c9
AS
2199 {
2200 *elt_bits *= (high_bound - low_bound + 1);
d2e4a39e 2201 TYPE_LENGTH (new_type) =
4c4b4cd2 2202 (*elt_bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
14f9c5c9
AS
2203 }
2204
876cecd0 2205 TYPE_FIXED_INSTANCE (new_type) = 1;
14f9c5c9
AS
2206 return new_type;
2207}
2208
ad82864c
JB
2209/* The array type encoded by TYPE, where
2210 ada_is_constrained_packed_array_type (TYPE). */
4c4b4cd2 2211
d2e4a39e 2212static struct type *
ad82864c 2213decode_constrained_packed_array_type (struct type *type)
d2e4a39e 2214{
0d5cff50 2215 const char *raw_name = ada_type_name (ada_check_typedef (type));
727e3d2e 2216 char *name;
0d5cff50 2217 const char *tail;
d2e4a39e 2218 struct type *shadow_type;
14f9c5c9 2219 long bits;
14f9c5c9 2220
727e3d2e
JB
2221 if (!raw_name)
2222 raw_name = ada_type_name (desc_base_type (type));
2223
2224 if (!raw_name)
2225 return NULL;
2226
2227 name = (char *) alloca (strlen (raw_name) + 1);
2228 tail = strstr (raw_name, "___XP");
4c4b4cd2
PH
2229 type = desc_base_type (type);
2230
14f9c5c9
AS
2231 memcpy (name, raw_name, tail - raw_name);
2232 name[tail - raw_name] = '\000';
2233
b4ba55a1
JB
2234 shadow_type = ada_find_parallel_type_with_name (type, name);
2235
2236 if (shadow_type == NULL)
14f9c5c9 2237 {
323e0a4a 2238 lim_warning (_("could not find bounds information on packed array"));
14f9c5c9
AS
2239 return NULL;
2240 }
cb249c71 2241 CHECK_TYPEDEF (shadow_type);
14f9c5c9
AS
2242
2243 if (TYPE_CODE (shadow_type) != TYPE_CODE_ARRAY)
2244 {
0963b4bd
MS
2245 lim_warning (_("could not understand bounds "
2246 "information on packed array"));
14f9c5c9
AS
2247 return NULL;
2248 }
d2e4a39e 2249
ad82864c
JB
2250 bits = decode_packed_array_bitsize (type);
2251 return constrained_packed_array_type (shadow_type, &bits);
14f9c5c9
AS
2252}
2253
ad82864c
JB
2254/* Given that ARR is a struct value *indicating a GNAT constrained packed
2255 array, returns a simple array that denotes that array. Its type is a
14f9c5c9
AS
2256 standard GDB array type except that the BITSIZEs of the array
2257 target types are set to the number of bits in each element, and the
4c4b4cd2 2258 type length is set appropriately. */
14f9c5c9 2259
d2e4a39e 2260static struct value *
ad82864c 2261decode_constrained_packed_array (struct value *arr)
14f9c5c9 2262{
4c4b4cd2 2263 struct type *type;
14f9c5c9 2264
11aa919a
PMR
2265 /* If our value is a pointer, then dereference it. Likewise if
2266 the value is a reference. Make sure that this operation does not
2267 cause the target type to be fixed, as this would indirectly cause
2268 this array to be decoded. The rest of the routine assumes that
2269 the array hasn't been decoded yet, so we use the basic "coerce_ref"
2270 and "value_ind" routines to perform the dereferencing, as opposed
2271 to using "ada_coerce_ref" or "ada_value_ind". */
2272 arr = coerce_ref (arr);
828292f2 2273 if (TYPE_CODE (ada_check_typedef (value_type (arr))) == TYPE_CODE_PTR)
284614f0 2274 arr = value_ind (arr);
4c4b4cd2 2275
ad82864c 2276 type = decode_constrained_packed_array_type (value_type (arr));
14f9c5c9
AS
2277 if (type == NULL)
2278 {
323e0a4a 2279 error (_("can't unpack array"));
14f9c5c9
AS
2280 return NULL;
2281 }
61ee279c 2282
50810684 2283 if (gdbarch_bits_big_endian (get_type_arch (value_type (arr)))
32c9a795 2284 && ada_is_modular_type (value_type (arr)))
61ee279c
PH
2285 {
2286 /* This is a (right-justified) modular type representing a packed
2287 array with no wrapper. In order to interpret the value through
2288 the (left-justified) packed array type we just built, we must
2289 first left-justify it. */
2290 int bit_size, bit_pos;
2291 ULONGEST mod;
2292
df407dfe 2293 mod = ada_modulus (value_type (arr)) - 1;
61ee279c
PH
2294 bit_size = 0;
2295 while (mod > 0)
2296 {
2297 bit_size += 1;
2298 mod >>= 1;
2299 }
df407dfe 2300 bit_pos = HOST_CHAR_BIT * TYPE_LENGTH (value_type (arr)) - bit_size;
61ee279c
PH
2301 arr = ada_value_primitive_packed_val (arr, NULL,
2302 bit_pos / HOST_CHAR_BIT,
2303 bit_pos % HOST_CHAR_BIT,
2304 bit_size,
2305 type);
2306 }
2307
4c4b4cd2 2308 return coerce_unspec_val_to_type (arr, type);
14f9c5c9
AS
2309}
2310
2311
2312/* The value of the element of packed array ARR at the ARITY indices
4c4b4cd2 2313 given in IND. ARR must be a simple array. */
14f9c5c9 2314
d2e4a39e
AS
2315static struct value *
2316value_subscript_packed (struct value *arr, int arity, struct value **ind)
14f9c5c9
AS
2317{
2318 int i;
2319 int bits, elt_off, bit_off;
2320 long elt_total_bit_offset;
d2e4a39e
AS
2321 struct type *elt_type;
2322 struct value *v;
14f9c5c9
AS
2323
2324 bits = 0;
2325 elt_total_bit_offset = 0;
df407dfe 2326 elt_type = ada_check_typedef (value_type (arr));
d2e4a39e 2327 for (i = 0; i < arity; i += 1)
14f9c5c9 2328 {
d2e4a39e 2329 if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY
4c4b4cd2
PH
2330 || TYPE_FIELD_BITSIZE (elt_type, 0) == 0)
2331 error
0963b4bd
MS
2332 (_("attempt to do packed indexing of "
2333 "something other than a packed array"));
14f9c5c9 2334 else
4c4b4cd2
PH
2335 {
2336 struct type *range_type = TYPE_INDEX_TYPE (elt_type);
2337 LONGEST lowerbound, upperbound;
2338 LONGEST idx;
2339
2340 if (get_discrete_bounds (range_type, &lowerbound, &upperbound) < 0)
2341 {
323e0a4a 2342 lim_warning (_("don't know bounds of array"));
4c4b4cd2
PH
2343 lowerbound = upperbound = 0;
2344 }
2345
3cb382c9 2346 idx = pos_atr (ind[i]);
4c4b4cd2 2347 if (idx < lowerbound || idx > upperbound)
0963b4bd
MS
2348 lim_warning (_("packed array index %ld out of bounds"),
2349 (long) idx);
4c4b4cd2
PH
2350 bits = TYPE_FIELD_BITSIZE (elt_type, 0);
2351 elt_total_bit_offset += (idx - lowerbound) * bits;
61ee279c 2352 elt_type = ada_check_typedef (TYPE_TARGET_TYPE (elt_type));
4c4b4cd2 2353 }
14f9c5c9
AS
2354 }
2355 elt_off = elt_total_bit_offset / HOST_CHAR_BIT;
2356 bit_off = elt_total_bit_offset % HOST_CHAR_BIT;
d2e4a39e
AS
2357
2358 v = ada_value_primitive_packed_val (arr, NULL, elt_off, bit_off,
4c4b4cd2 2359 bits, elt_type);
14f9c5c9
AS
2360 return v;
2361}
2362
4c4b4cd2 2363/* Non-zero iff TYPE includes negative integer values. */
14f9c5c9
AS
2364
2365static int
d2e4a39e 2366has_negatives (struct type *type)
14f9c5c9 2367{
d2e4a39e
AS
2368 switch (TYPE_CODE (type))
2369 {
2370 default:
2371 return 0;
2372 case TYPE_CODE_INT:
2373 return !TYPE_UNSIGNED (type);
2374 case TYPE_CODE_RANGE:
2375 return TYPE_LOW_BOUND (type) < 0;
2376 }
14f9c5c9 2377}
d2e4a39e 2378
14f9c5c9
AS
2379
2380/* Create a new value of type TYPE from the contents of OBJ starting
2381 at byte OFFSET, and bit offset BIT_OFFSET within that byte,
2382 proceeding for BIT_SIZE bits. If OBJ is an lval in memory, then
0963b4bd 2383 assigning through the result will set the field fetched from.
4c4b4cd2
PH
2384 VALADDR is ignored unless OBJ is NULL, in which case,
2385 VALADDR+OFFSET must address the start of storage containing the
2386 packed value. The value returned in this case is never an lval.
2387 Assumes 0 <= BIT_OFFSET < HOST_CHAR_BIT. */
14f9c5c9 2388
d2e4a39e 2389struct value *
fc1a4b47 2390ada_value_primitive_packed_val (struct value *obj, const gdb_byte *valaddr,
a2bd3dcd 2391 long offset, int bit_offset, int bit_size,
4c4b4cd2 2392 struct type *type)
14f9c5c9 2393{
d2e4a39e 2394 struct value *v;
4c4b4cd2
PH
2395 int src, /* Index into the source area */
2396 targ, /* Index into the target area */
2397 srcBitsLeft, /* Number of source bits left to move */
2398 nsrc, ntarg, /* Number of source and target bytes */
2399 unusedLS, /* Number of bits in next significant
2400 byte of source that are unused */
2401 accumSize; /* Number of meaningful bits in accum */
2402 unsigned char *bytes; /* First byte containing data to unpack */
d2e4a39e 2403 unsigned char *unpacked;
4c4b4cd2 2404 unsigned long accum; /* Staging area for bits being transferred */
14f9c5c9
AS
2405 unsigned char sign;
2406 int len = (bit_size + bit_offset + HOST_CHAR_BIT - 1) / 8;
4c4b4cd2
PH
2407 /* Transmit bytes from least to most significant; delta is the direction
2408 the indices move. */
50810684 2409 int delta = gdbarch_bits_big_endian (get_type_arch (type)) ? -1 : 1;
14f9c5c9 2410
61ee279c 2411 type = ada_check_typedef (type);
14f9c5c9
AS
2412
2413 if (obj == NULL)
2414 {
2415 v = allocate_value (type);
d2e4a39e 2416 bytes = (unsigned char *) (valaddr + offset);
14f9c5c9 2417 }
9214ee5f 2418 else if (VALUE_LVAL (obj) == lval_memory && value_lazy (obj))
14f9c5c9 2419 {
53ba8333 2420 v = value_at (type, value_address (obj));
9f1f738a 2421 type = value_type (v);
d2e4a39e 2422 bytes = (unsigned char *) alloca (len);
53ba8333 2423 read_memory (value_address (v) + offset, bytes, len);
14f9c5c9 2424 }
d2e4a39e 2425 else
14f9c5c9
AS
2426 {
2427 v = allocate_value (type);
0fd88904 2428 bytes = (unsigned char *) value_contents (obj) + offset;
14f9c5c9 2429 }
d2e4a39e
AS
2430
2431 if (obj != NULL)
14f9c5c9 2432 {
53ba8333 2433 long new_offset = offset;
5b4ee69b 2434
74bcbdf3 2435 set_value_component_location (v, obj);
9bbda503
AC
2436 set_value_bitpos (v, bit_offset + value_bitpos (obj));
2437 set_value_bitsize (v, bit_size);
df407dfe 2438 if (value_bitpos (v) >= HOST_CHAR_BIT)
4c4b4cd2 2439 {
53ba8333 2440 ++new_offset;
9bbda503 2441 set_value_bitpos (v, value_bitpos (v) - HOST_CHAR_BIT);
4c4b4cd2 2442 }
53ba8333
JB
2443 set_value_offset (v, new_offset);
2444
2445 /* Also set the parent value. This is needed when trying to
2446 assign a new value (in inferior memory). */
2447 set_value_parent (v, obj);
14f9c5c9
AS
2448 }
2449 else
9bbda503 2450 set_value_bitsize (v, bit_size);
0fd88904 2451 unpacked = (unsigned char *) value_contents (v);
14f9c5c9
AS
2452
2453 srcBitsLeft = bit_size;
2454 nsrc = len;
2455 ntarg = TYPE_LENGTH (type);
2456 sign = 0;
2457 if (bit_size == 0)
2458 {
2459 memset (unpacked, 0, TYPE_LENGTH (type));
2460 return v;
2461 }
50810684 2462 else if (gdbarch_bits_big_endian (get_type_arch (type)))
14f9c5c9 2463 {
d2e4a39e 2464 src = len - 1;
1265e4aa
JB
2465 if (has_negatives (type)
2466 && ((bytes[0] << bit_offset) & (1 << (HOST_CHAR_BIT - 1))))
4c4b4cd2 2467 sign = ~0;
d2e4a39e
AS
2468
2469 unusedLS =
4c4b4cd2
PH
2470 (HOST_CHAR_BIT - (bit_size + bit_offset) % HOST_CHAR_BIT)
2471 % HOST_CHAR_BIT;
14f9c5c9
AS
2472
2473 switch (TYPE_CODE (type))
4c4b4cd2
PH
2474 {
2475 case TYPE_CODE_ARRAY:
2476 case TYPE_CODE_UNION:
2477 case TYPE_CODE_STRUCT:
2478 /* Non-scalar values must be aligned at a byte boundary... */
2479 accumSize =
2480 (HOST_CHAR_BIT - bit_size % HOST_CHAR_BIT) % HOST_CHAR_BIT;
2481 /* ... And are placed at the beginning (most-significant) bytes
2482 of the target. */
529cad9c 2483 targ = (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT - 1;
0056e4d5 2484 ntarg = targ + 1;
4c4b4cd2
PH
2485 break;
2486 default:
2487 accumSize = 0;
2488 targ = TYPE_LENGTH (type) - 1;
2489 break;
2490 }
14f9c5c9 2491 }
d2e4a39e 2492 else
14f9c5c9
AS
2493 {
2494 int sign_bit_offset = (bit_size + bit_offset - 1) % 8;
2495
2496 src = targ = 0;
2497 unusedLS = bit_offset;
2498 accumSize = 0;
2499
d2e4a39e 2500 if (has_negatives (type) && (bytes[len - 1] & (1 << sign_bit_offset)))
4c4b4cd2 2501 sign = ~0;
14f9c5c9 2502 }
d2e4a39e 2503
14f9c5c9
AS
2504 accum = 0;
2505 while (nsrc > 0)
2506 {
2507 /* Mask for removing bits of the next source byte that are not
4c4b4cd2 2508 part of the value. */
d2e4a39e 2509 unsigned int unusedMSMask =
4c4b4cd2
PH
2510 (1 << (srcBitsLeft >= HOST_CHAR_BIT ? HOST_CHAR_BIT : srcBitsLeft)) -
2511 1;
2512 /* Sign-extend bits for this byte. */
14f9c5c9 2513 unsigned int signMask = sign & ~unusedMSMask;
5b4ee69b 2514
d2e4a39e 2515 accum |=
4c4b4cd2 2516 (((bytes[src] >> unusedLS) & unusedMSMask) | signMask) << accumSize;
14f9c5c9 2517 accumSize += HOST_CHAR_BIT - unusedLS;
d2e4a39e 2518 if (accumSize >= HOST_CHAR_BIT)
4c4b4cd2
PH
2519 {
2520 unpacked[targ] = accum & ~(~0L << HOST_CHAR_BIT);
2521 accumSize -= HOST_CHAR_BIT;
2522 accum >>= HOST_CHAR_BIT;
2523 ntarg -= 1;
2524 targ += delta;
2525 }
14f9c5c9
AS
2526 srcBitsLeft -= HOST_CHAR_BIT - unusedLS;
2527 unusedLS = 0;
2528 nsrc -= 1;
2529 src += delta;
2530 }
2531 while (ntarg > 0)
2532 {
2533 accum |= sign << accumSize;
2534 unpacked[targ] = accum & ~(~0L << HOST_CHAR_BIT);
2535 accumSize -= HOST_CHAR_BIT;
2536 accum >>= HOST_CHAR_BIT;
2537 ntarg -= 1;
2538 targ += delta;
2539 }
2540
2541 return v;
2542}
d2e4a39e 2543
14f9c5c9
AS
2544/* Move N bits from SOURCE, starting at bit offset SRC_OFFSET to
2545 TARGET, starting at bit offset TARG_OFFSET. SOURCE and TARGET must
4c4b4cd2 2546 not overlap. */
14f9c5c9 2547static void
fc1a4b47 2548move_bits (gdb_byte *target, int targ_offset, const gdb_byte *source,
50810684 2549 int src_offset, int n, int bits_big_endian_p)
14f9c5c9
AS
2550{
2551 unsigned int accum, mask;
2552 int accum_bits, chunk_size;
2553
2554 target += targ_offset / HOST_CHAR_BIT;
2555 targ_offset %= HOST_CHAR_BIT;
2556 source += src_offset / HOST_CHAR_BIT;
2557 src_offset %= HOST_CHAR_BIT;
50810684 2558 if (bits_big_endian_p)
14f9c5c9
AS
2559 {
2560 accum = (unsigned char) *source;
2561 source += 1;
2562 accum_bits = HOST_CHAR_BIT - src_offset;
2563
d2e4a39e 2564 while (n > 0)
4c4b4cd2
PH
2565 {
2566 int unused_right;
5b4ee69b 2567
4c4b4cd2
PH
2568 accum = (accum << HOST_CHAR_BIT) + (unsigned char) *source;
2569 accum_bits += HOST_CHAR_BIT;
2570 source += 1;
2571 chunk_size = HOST_CHAR_BIT - targ_offset;
2572 if (chunk_size > n)
2573 chunk_size = n;
2574 unused_right = HOST_CHAR_BIT - (chunk_size + targ_offset);
2575 mask = ((1 << chunk_size) - 1) << unused_right;
2576 *target =
2577 (*target & ~mask)
2578 | ((accum >> (accum_bits - chunk_size - unused_right)) & mask);
2579 n -= chunk_size;
2580 accum_bits -= chunk_size;
2581 target += 1;
2582 targ_offset = 0;
2583 }
14f9c5c9
AS
2584 }
2585 else
2586 {
2587 accum = (unsigned char) *source >> src_offset;
2588 source += 1;
2589 accum_bits = HOST_CHAR_BIT - src_offset;
2590
d2e4a39e 2591 while (n > 0)
4c4b4cd2
PH
2592 {
2593 accum = accum + ((unsigned char) *source << accum_bits);
2594 accum_bits += HOST_CHAR_BIT;
2595 source += 1;
2596 chunk_size = HOST_CHAR_BIT - targ_offset;
2597 if (chunk_size > n)
2598 chunk_size = n;
2599 mask = ((1 << chunk_size) - 1) << targ_offset;
2600 *target = (*target & ~mask) | ((accum << targ_offset) & mask);
2601 n -= chunk_size;
2602 accum_bits -= chunk_size;
2603 accum >>= chunk_size;
2604 target += 1;
2605 targ_offset = 0;
2606 }
14f9c5c9
AS
2607 }
2608}
2609
14f9c5c9
AS
2610/* Store the contents of FROMVAL into the location of TOVAL.
2611 Return a new value with the location of TOVAL and contents of
2612 FROMVAL. Handles assignment into packed fields that have
4c4b4cd2 2613 floating-point or non-scalar types. */
14f9c5c9 2614
d2e4a39e
AS
2615static struct value *
2616ada_value_assign (struct value *toval, struct value *fromval)
14f9c5c9 2617{
df407dfe
AC
2618 struct type *type = value_type (toval);
2619 int bits = value_bitsize (toval);
14f9c5c9 2620
52ce6436
PH
2621 toval = ada_coerce_ref (toval);
2622 fromval = ada_coerce_ref (fromval);
2623
2624 if (ada_is_direct_array_type (value_type (toval)))
2625 toval = ada_coerce_to_simple_array (toval);
2626 if (ada_is_direct_array_type (value_type (fromval)))
2627 fromval = ada_coerce_to_simple_array (fromval);
2628
88e3b34b 2629 if (!deprecated_value_modifiable (toval))
323e0a4a 2630 error (_("Left operand of assignment is not a modifiable lvalue."));
14f9c5c9 2631
d2e4a39e 2632 if (VALUE_LVAL (toval) == lval_memory
14f9c5c9 2633 && bits > 0
d2e4a39e 2634 && (TYPE_CODE (type) == TYPE_CODE_FLT
4c4b4cd2 2635 || TYPE_CODE (type) == TYPE_CODE_STRUCT))
14f9c5c9 2636 {
df407dfe
AC
2637 int len = (value_bitpos (toval)
2638 + bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
aced2898 2639 int from_size;
948f8e3d 2640 gdb_byte *buffer = alloca (len);
d2e4a39e 2641 struct value *val;
42ae5230 2642 CORE_ADDR to_addr = value_address (toval);
14f9c5c9
AS
2643
2644 if (TYPE_CODE (type) == TYPE_CODE_FLT)
4c4b4cd2 2645 fromval = value_cast (type, fromval);
14f9c5c9 2646
52ce6436 2647 read_memory (to_addr, buffer, len);
aced2898
PH
2648 from_size = value_bitsize (fromval);
2649 if (from_size == 0)
2650 from_size = TYPE_LENGTH (value_type (fromval)) * TARGET_CHAR_BIT;
50810684 2651 if (gdbarch_bits_big_endian (get_type_arch (type)))
df407dfe 2652 move_bits (buffer, value_bitpos (toval),
50810684 2653 value_contents (fromval), from_size - bits, bits, 1);
14f9c5c9 2654 else
50810684
UW
2655 move_bits (buffer, value_bitpos (toval),
2656 value_contents (fromval), 0, bits, 0);
972daa01 2657 write_memory_with_notification (to_addr, buffer, len);
8cebebb9 2658
14f9c5c9 2659 val = value_copy (toval);
0fd88904 2660 memcpy (value_contents_raw (val), value_contents (fromval),
4c4b4cd2 2661 TYPE_LENGTH (type));
04624583 2662 deprecated_set_value_type (val, type);
d2e4a39e 2663
14f9c5c9
AS
2664 return val;
2665 }
2666
2667 return value_assign (toval, fromval);
2668}
2669
2670
52ce6436
PH
2671/* Given that COMPONENT is a memory lvalue that is part of the lvalue
2672 * CONTAINER, assign the contents of VAL to COMPONENTS's place in
2673 * CONTAINER. Modifies the VALUE_CONTENTS of CONTAINER only, not
2674 * COMPONENT, and not the inferior's memory. The current contents
2675 * of COMPONENT are ignored. */
2676static void
2677value_assign_to_component (struct value *container, struct value *component,
2678 struct value *val)
2679{
2680 LONGEST offset_in_container =
42ae5230 2681 (LONGEST) (value_address (component) - value_address (container));
52ce6436
PH
2682 int bit_offset_in_container =
2683 value_bitpos (component) - value_bitpos (container);
2684 int bits;
2685
2686 val = value_cast (value_type (component), val);
2687
2688 if (value_bitsize (component) == 0)
2689 bits = TARGET_CHAR_BIT * TYPE_LENGTH (value_type (component));
2690 else
2691 bits = value_bitsize (component);
2692
50810684 2693 if (gdbarch_bits_big_endian (get_type_arch (value_type (container))))
52ce6436
PH
2694 move_bits (value_contents_writeable (container) + offset_in_container,
2695 value_bitpos (container) + bit_offset_in_container,
2696 value_contents (val),
2697 TYPE_LENGTH (value_type (component)) * TARGET_CHAR_BIT - bits,
50810684 2698 bits, 1);
52ce6436
PH
2699 else
2700 move_bits (value_contents_writeable (container) + offset_in_container,
2701 value_bitpos (container) + bit_offset_in_container,
50810684 2702 value_contents (val), 0, bits, 0);
52ce6436
PH
2703}
2704
4c4b4cd2
PH
2705/* The value of the element of array ARR at the ARITY indices given in IND.
2706 ARR may be either a simple array, GNAT array descriptor, or pointer
14f9c5c9
AS
2707 thereto. */
2708
d2e4a39e
AS
2709struct value *
2710ada_value_subscript (struct value *arr, int arity, struct value **ind)
14f9c5c9
AS
2711{
2712 int k;
d2e4a39e
AS
2713 struct value *elt;
2714 struct type *elt_type;
14f9c5c9
AS
2715
2716 elt = ada_coerce_to_simple_array (arr);
2717
df407dfe 2718 elt_type = ada_check_typedef (value_type (elt));
d2e4a39e 2719 if (TYPE_CODE (elt_type) == TYPE_CODE_ARRAY
14f9c5c9
AS
2720 && TYPE_FIELD_BITSIZE (elt_type, 0) > 0)
2721 return value_subscript_packed (elt, arity, ind);
2722
2723 for (k = 0; k < arity; k += 1)
2724 {
2725 if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY)
323e0a4a 2726 error (_("too many subscripts (%d expected)"), k);
2497b498 2727 elt = value_subscript (elt, pos_atr (ind[k]));
14f9c5c9
AS
2728 }
2729 return elt;
2730}
2731
deede10c
JB
2732/* Assuming ARR is a pointer to a GDB array, the value of the element
2733 of *ARR at the ARITY indices given in IND.
2734 Does not read the entire array into memory. */
14f9c5c9 2735
2c0b251b 2736static struct value *
deede10c 2737ada_value_ptr_subscript (struct value *arr, int arity, struct value **ind)
14f9c5c9
AS
2738{
2739 int k;
deede10c
JB
2740 struct type *type
2741 = check_typedef (value_enclosing_type (ada_value_ind (arr)));
14f9c5c9
AS
2742
2743 for (k = 0; k < arity; k += 1)
2744 {
2745 LONGEST lwb, upb;
14f9c5c9
AS
2746
2747 if (TYPE_CODE (type) != TYPE_CODE_ARRAY)
323e0a4a 2748 error (_("too many subscripts (%d expected)"), k);
d2e4a39e 2749 arr = value_cast (lookup_pointer_type (TYPE_TARGET_TYPE (type)),
4c4b4cd2 2750 value_copy (arr));
14f9c5c9 2751 get_discrete_bounds (TYPE_INDEX_TYPE (type), &lwb, &upb);
2497b498 2752 arr = value_ptradd (arr, pos_atr (ind[k]) - lwb);
14f9c5c9
AS
2753 type = TYPE_TARGET_TYPE (type);
2754 }
2755
2756 return value_ind (arr);
2757}
2758
0b5d8877 2759/* Given that ARRAY_PTR is a pointer or reference to an array of type TYPE (the
f5938064
JG
2760 actual type of ARRAY_PTR is ignored), returns the Ada slice of HIGH-LOW+1
2761 elements starting at index LOW. The lower bound of this array is LOW, as
0963b4bd 2762 per Ada rules. */
0b5d8877 2763static struct value *
f5938064
JG
2764ada_value_slice_from_ptr (struct value *array_ptr, struct type *type,
2765 int low, int high)
0b5d8877 2766{
b0dd7688 2767 struct type *type0 = ada_check_typedef (type);
6c038f32 2768 CORE_ADDR base = value_as_address (array_ptr)
b0dd7688
JB
2769 + ((low - ada_discrete_type_low_bound (TYPE_INDEX_TYPE (type0)))
2770 * TYPE_LENGTH (TYPE_TARGET_TYPE (type0)));
0c9c3474
SA
2771 struct type *index_type
2772 = create_static_range_type (NULL,
2773 TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type0)),
2774 low, high);
6c038f32 2775 struct type *slice_type =
b0dd7688 2776 create_array_type (NULL, TYPE_TARGET_TYPE (type0), index_type);
5b4ee69b 2777
f5938064 2778 return value_at_lazy (slice_type, base);
0b5d8877
PH
2779}
2780
2781
2782static struct value *
2783ada_value_slice (struct value *array, int low, int high)
2784{
b0dd7688 2785 struct type *type = ada_check_typedef (value_type (array));
0c9c3474
SA
2786 struct type *index_type
2787 = create_static_range_type (NULL, TYPE_INDEX_TYPE (type), low, high);
6c038f32 2788 struct type *slice_type =
0b5d8877 2789 create_array_type (NULL, TYPE_TARGET_TYPE (type), index_type);
5b4ee69b 2790
6c038f32 2791 return value_cast (slice_type, value_slice (array, low, high - low + 1));
0b5d8877
PH
2792}
2793
14f9c5c9
AS
2794/* If type is a record type in the form of a standard GNAT array
2795 descriptor, returns the number of dimensions for type. If arr is a
2796 simple array, returns the number of "array of"s that prefix its
4c4b4cd2 2797 type designation. Otherwise, returns 0. */
14f9c5c9
AS
2798
2799int
d2e4a39e 2800ada_array_arity (struct type *type)
14f9c5c9
AS
2801{
2802 int arity;
2803
2804 if (type == NULL)
2805 return 0;
2806
2807 type = desc_base_type (type);
2808
2809 arity = 0;
d2e4a39e 2810 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
14f9c5c9 2811 return desc_arity (desc_bounds_type (type));
d2e4a39e
AS
2812 else
2813 while (TYPE_CODE (type) == TYPE_CODE_ARRAY)
14f9c5c9 2814 {
4c4b4cd2 2815 arity += 1;
61ee279c 2816 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
14f9c5c9 2817 }
d2e4a39e 2818
14f9c5c9
AS
2819 return arity;
2820}
2821
2822/* If TYPE is a record type in the form of a standard GNAT array
2823 descriptor or a simple array type, returns the element type for
2824 TYPE after indexing by NINDICES indices, or by all indices if
4c4b4cd2 2825 NINDICES is -1. Otherwise, returns NULL. */
14f9c5c9 2826
d2e4a39e
AS
2827struct type *
2828ada_array_element_type (struct type *type, int nindices)
14f9c5c9
AS
2829{
2830 type = desc_base_type (type);
2831
d2e4a39e 2832 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
14f9c5c9
AS
2833 {
2834 int k;
d2e4a39e 2835 struct type *p_array_type;
14f9c5c9 2836
556bdfd4 2837 p_array_type = desc_data_target_type (type);
14f9c5c9
AS
2838
2839 k = ada_array_arity (type);
2840 if (k == 0)
4c4b4cd2 2841 return NULL;
d2e4a39e 2842
4c4b4cd2 2843 /* Initially p_array_type = elt_type(*)[]...(k times)...[]. */
14f9c5c9 2844 if (nindices >= 0 && k > nindices)
4c4b4cd2 2845 k = nindices;
d2e4a39e 2846 while (k > 0 && p_array_type != NULL)
4c4b4cd2 2847 {
61ee279c 2848 p_array_type = ada_check_typedef (TYPE_TARGET_TYPE (p_array_type));
4c4b4cd2
PH
2849 k -= 1;
2850 }
14f9c5c9
AS
2851 return p_array_type;
2852 }
2853 else if (TYPE_CODE (type) == TYPE_CODE_ARRAY)
2854 {
2855 while (nindices != 0 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
4c4b4cd2
PH
2856 {
2857 type = TYPE_TARGET_TYPE (type);
2858 nindices -= 1;
2859 }
14f9c5c9
AS
2860 return type;
2861 }
2862
2863 return NULL;
2864}
2865
4c4b4cd2 2866/* The type of nth index in arrays of given type (n numbering from 1).
dd19d49e
UW
2867 Does not examine memory. Throws an error if N is invalid or TYPE
2868 is not an array type. NAME is the name of the Ada attribute being
2869 evaluated ('range, 'first, 'last, or 'length); it is used in building
2870 the error message. */
14f9c5c9 2871
1eea4ebd
UW
2872static struct type *
2873ada_index_type (struct type *type, int n, const char *name)
14f9c5c9 2874{
4c4b4cd2
PH
2875 struct type *result_type;
2876
14f9c5c9
AS
2877 type = desc_base_type (type);
2878
1eea4ebd
UW
2879 if (n < 0 || n > ada_array_arity (type))
2880 error (_("invalid dimension number to '%s"), name);
14f9c5c9 2881
4c4b4cd2 2882 if (ada_is_simple_array_type (type))
14f9c5c9
AS
2883 {
2884 int i;
2885
2886 for (i = 1; i < n; i += 1)
4c4b4cd2 2887 type = TYPE_TARGET_TYPE (type);
262452ec 2888 result_type = TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type));
4c4b4cd2
PH
2889 /* FIXME: The stabs type r(0,0);bound;bound in an array type
2890 has a target type of TYPE_CODE_UNDEF. We compensate here, but
76a01679 2891 perhaps stabsread.c would make more sense. */
1eea4ebd
UW
2892 if (result_type && TYPE_CODE (result_type) == TYPE_CODE_UNDEF)
2893 result_type = NULL;
14f9c5c9 2894 }
d2e4a39e 2895 else
1eea4ebd
UW
2896 {
2897 result_type = desc_index_type (desc_bounds_type (type), n);
2898 if (result_type == NULL)
2899 error (_("attempt to take bound of something that is not an array"));
2900 }
2901
2902 return result_type;
14f9c5c9
AS
2903}
2904
2905/* Given that arr is an array type, returns the lower bound of the
2906 Nth index (numbering from 1) if WHICH is 0, and the upper bound if
4c4b4cd2 2907 WHICH is 1. This returns bounds 0 .. -1 if ARR_TYPE is an
1eea4ebd
UW
2908 array-descriptor type. It works for other arrays with bounds supplied
2909 by run-time quantities other than discriminants. */
14f9c5c9 2910
abb68b3e 2911static LONGEST
fb5e3d5c 2912ada_array_bound_from_type (struct type *arr_type, int n, int which)
14f9c5c9 2913{
8a48ac95 2914 struct type *type, *index_type_desc, *index_type;
1ce677a4 2915 int i;
262452ec
JK
2916
2917 gdb_assert (which == 0 || which == 1);
14f9c5c9 2918
ad82864c
JB
2919 if (ada_is_constrained_packed_array_type (arr_type))
2920 arr_type = decode_constrained_packed_array_type (arr_type);
14f9c5c9 2921
4c4b4cd2 2922 if (arr_type == NULL || !ada_is_simple_array_type (arr_type))
1eea4ebd 2923 return (LONGEST) - which;
14f9c5c9
AS
2924
2925 if (TYPE_CODE (arr_type) == TYPE_CODE_PTR)
2926 type = TYPE_TARGET_TYPE (arr_type);
2927 else
2928 type = arr_type;
2929
bafffb51
JB
2930 if (TYPE_FIXED_INSTANCE (type))
2931 {
2932 /* The array has already been fixed, so we do not need to
2933 check the parallel ___XA type again. That encoding has
2934 already been applied, so ignore it now. */
2935 index_type_desc = NULL;
2936 }
2937 else
2938 {
2939 index_type_desc = ada_find_parallel_type (type, "___XA");
2940 ada_fixup_array_indexes_type (index_type_desc);
2941 }
2942
262452ec 2943 if (index_type_desc != NULL)
28c85d6c
JB
2944 index_type = to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, n - 1),
2945 NULL);
262452ec 2946 else
8a48ac95
JB
2947 {
2948 struct type *elt_type = check_typedef (type);
2949
2950 for (i = 1; i < n; i++)
2951 elt_type = check_typedef (TYPE_TARGET_TYPE (elt_type));
2952
2953 index_type = TYPE_INDEX_TYPE (elt_type);
2954 }
262452ec 2955
43bbcdc2
PH
2956 return
2957 (LONGEST) (which == 0
2958 ? ada_discrete_type_low_bound (index_type)
2959 : ada_discrete_type_high_bound (index_type));
14f9c5c9
AS
2960}
2961
2962/* Given that arr is an array value, returns the lower bound of the
abb68b3e
JB
2963 nth index (numbering from 1) if WHICH is 0, and the upper bound if
2964 WHICH is 1. This routine will also work for arrays with bounds
4c4b4cd2 2965 supplied by run-time quantities other than discriminants. */
14f9c5c9 2966
1eea4ebd 2967static LONGEST
4dc81987 2968ada_array_bound (struct value *arr, int n, int which)
14f9c5c9 2969{
eb479039
JB
2970 struct type *arr_type;
2971
2972 if (TYPE_CODE (check_typedef (value_type (arr))) == TYPE_CODE_PTR)
2973 arr = value_ind (arr);
2974 arr_type = value_enclosing_type (arr);
14f9c5c9 2975
ad82864c
JB
2976 if (ada_is_constrained_packed_array_type (arr_type))
2977 return ada_array_bound (decode_constrained_packed_array (arr), n, which);
4c4b4cd2 2978 else if (ada_is_simple_array_type (arr_type))
1eea4ebd 2979 return ada_array_bound_from_type (arr_type, n, which);
14f9c5c9 2980 else
1eea4ebd 2981 return value_as_long (desc_one_bound (desc_bounds (arr), n, which));
14f9c5c9
AS
2982}
2983
2984/* Given that arr is an array value, returns the length of the
2985 nth index. This routine will also work for arrays with bounds
4c4b4cd2
PH
2986 supplied by run-time quantities other than discriminants.
2987 Does not work for arrays indexed by enumeration types with representation
2988 clauses at the moment. */
14f9c5c9 2989
1eea4ebd 2990static LONGEST
d2e4a39e 2991ada_array_length (struct value *arr, int n)
14f9c5c9 2992{
eb479039
JB
2993 struct type *arr_type;
2994
2995 if (TYPE_CODE (check_typedef (value_type (arr))) == TYPE_CODE_PTR)
2996 arr = value_ind (arr);
2997 arr_type = value_enclosing_type (arr);
14f9c5c9 2998
ad82864c
JB
2999 if (ada_is_constrained_packed_array_type (arr_type))
3000 return ada_array_length (decode_constrained_packed_array (arr), n);
14f9c5c9 3001
4c4b4cd2 3002 if (ada_is_simple_array_type (arr_type))
1eea4ebd
UW
3003 return (ada_array_bound_from_type (arr_type, n, 1)
3004 - ada_array_bound_from_type (arr_type, n, 0) + 1);
14f9c5c9 3005 else
1eea4ebd
UW
3006 return (value_as_long (desc_one_bound (desc_bounds (arr), n, 1))
3007 - value_as_long (desc_one_bound (desc_bounds (arr), n, 0)) + 1);
4c4b4cd2
PH
3008}
3009
3010/* An empty array whose type is that of ARR_TYPE (an array type),
3011 with bounds LOW to LOW-1. */
3012
3013static struct value *
3014empty_array (struct type *arr_type, int low)
3015{
b0dd7688 3016 struct type *arr_type0 = ada_check_typedef (arr_type);
0c9c3474
SA
3017 struct type *index_type
3018 = create_static_range_type
3019 (NULL, TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (arr_type0)), low, low - 1);
b0dd7688 3020 struct type *elt_type = ada_array_element_type (arr_type0, 1);
5b4ee69b 3021
0b5d8877 3022 return allocate_value (create_array_type (NULL, elt_type, index_type));
14f9c5c9 3023}
14f9c5c9 3024\f
d2e4a39e 3025
4c4b4cd2 3026 /* Name resolution */
14f9c5c9 3027
4c4b4cd2
PH
3028/* The "decoded" name for the user-definable Ada operator corresponding
3029 to OP. */
14f9c5c9 3030
d2e4a39e 3031static const char *
4c4b4cd2 3032ada_decoded_op_name (enum exp_opcode op)
14f9c5c9
AS
3033{
3034 int i;
3035
4c4b4cd2 3036 for (i = 0; ada_opname_table[i].encoded != NULL; i += 1)
14f9c5c9
AS
3037 {
3038 if (ada_opname_table[i].op == op)
4c4b4cd2 3039 return ada_opname_table[i].decoded;
14f9c5c9 3040 }
323e0a4a 3041 error (_("Could not find operator name for opcode"));
14f9c5c9
AS
3042}
3043
3044
4c4b4cd2
PH
3045/* Same as evaluate_type (*EXP), but resolves ambiguous symbol
3046 references (marked by OP_VAR_VALUE nodes in which the symbol has an
3047 undefined namespace) and converts operators that are
3048 user-defined into appropriate function calls. If CONTEXT_TYPE is
14f9c5c9
AS
3049 non-null, it provides a preferred result type [at the moment, only
3050 type void has any effect---causing procedures to be preferred over
3051 functions in calls]. A null CONTEXT_TYPE indicates that a non-void
4c4b4cd2 3052 return type is preferred. May change (expand) *EXP. */
14f9c5c9 3053
4c4b4cd2
PH
3054static void
3055resolve (struct expression **expp, int void_context_p)
14f9c5c9 3056{
30b15541
UW
3057 struct type *context_type = NULL;
3058 int pc = 0;
3059
3060 if (void_context_p)
3061 context_type = builtin_type ((*expp)->gdbarch)->builtin_void;
3062
3063 resolve_subexp (expp, &pc, 1, context_type);
14f9c5c9
AS
3064}
3065
4c4b4cd2
PH
3066/* Resolve the operator of the subexpression beginning at
3067 position *POS of *EXPP. "Resolving" consists of replacing
3068 the symbols that have undefined namespaces in OP_VAR_VALUE nodes
3069 with their resolutions, replacing built-in operators with
3070 function calls to user-defined operators, where appropriate, and,
3071 when DEPROCEDURE_P is non-zero, converting function-valued variables
3072 into parameterless calls. May expand *EXPP. The CONTEXT_TYPE functions
3073 are as in ada_resolve, above. */
14f9c5c9 3074
d2e4a39e 3075static struct value *
4c4b4cd2 3076resolve_subexp (struct expression **expp, int *pos, int deprocedure_p,
76a01679 3077 struct type *context_type)
14f9c5c9
AS
3078{
3079 int pc = *pos;
3080 int i;
4c4b4cd2 3081 struct expression *exp; /* Convenience: == *expp. */
14f9c5c9 3082 enum exp_opcode op = (*expp)->elts[pc].opcode;
4c4b4cd2
PH
3083 struct value **argvec; /* Vector of operand types (alloca'ed). */
3084 int nargs; /* Number of operands. */
52ce6436 3085 int oplen;
14f9c5c9
AS
3086
3087 argvec = NULL;
3088 nargs = 0;
3089 exp = *expp;
3090
52ce6436
PH
3091 /* Pass one: resolve operands, saving their types and updating *pos,
3092 if needed. */
14f9c5c9
AS
3093 switch (op)
3094 {
4c4b4cd2
PH
3095 case OP_FUNCALL:
3096 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
76a01679
JB
3097 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
3098 *pos += 7;
4c4b4cd2
PH
3099 else
3100 {
3101 *pos += 3;
3102 resolve_subexp (expp, pos, 0, NULL);
3103 }
3104 nargs = longest_to_int (exp->elts[pc + 1].longconst);
14f9c5c9
AS
3105 break;
3106
14f9c5c9 3107 case UNOP_ADDR:
4c4b4cd2
PH
3108 *pos += 1;
3109 resolve_subexp (expp, pos, 0, NULL);
3110 break;
3111
52ce6436
PH
3112 case UNOP_QUAL:
3113 *pos += 3;
17466c1a 3114 resolve_subexp (expp, pos, 1, check_typedef (exp->elts[pc + 1].type));
4c4b4cd2
PH
3115 break;
3116
52ce6436 3117 case OP_ATR_MODULUS:
4c4b4cd2
PH
3118 case OP_ATR_SIZE:
3119 case OP_ATR_TAG:
4c4b4cd2
PH
3120 case OP_ATR_FIRST:
3121 case OP_ATR_LAST:
3122 case OP_ATR_LENGTH:
3123 case OP_ATR_POS:
3124 case OP_ATR_VAL:
4c4b4cd2
PH
3125 case OP_ATR_MIN:
3126 case OP_ATR_MAX:
52ce6436
PH
3127 case TERNOP_IN_RANGE:
3128 case BINOP_IN_BOUNDS:
3129 case UNOP_IN_RANGE:
3130 case OP_AGGREGATE:
3131 case OP_OTHERS:
3132 case OP_CHOICES:
3133 case OP_POSITIONAL:
3134 case OP_DISCRETE_RANGE:
3135 case OP_NAME:
3136 ada_forward_operator_length (exp, pc, &oplen, &nargs);
3137 *pos += oplen;
14f9c5c9
AS
3138 break;
3139
3140 case BINOP_ASSIGN:
3141 {
4c4b4cd2
PH
3142 struct value *arg1;
3143
3144 *pos += 1;
3145 arg1 = resolve_subexp (expp, pos, 0, NULL);
3146 if (arg1 == NULL)
3147 resolve_subexp (expp, pos, 1, NULL);
3148 else
df407dfe 3149 resolve_subexp (expp, pos, 1, value_type (arg1));
4c4b4cd2 3150 break;
14f9c5c9
AS
3151 }
3152
4c4b4cd2 3153 case UNOP_CAST:
4c4b4cd2
PH
3154 *pos += 3;
3155 nargs = 1;
3156 break;
14f9c5c9 3157
4c4b4cd2
PH
3158 case BINOP_ADD:
3159 case BINOP_SUB:
3160 case BINOP_MUL:
3161 case BINOP_DIV:
3162 case BINOP_REM:
3163 case BINOP_MOD:
3164 case BINOP_EXP:
3165 case BINOP_CONCAT:
3166 case BINOP_LOGICAL_AND:
3167 case BINOP_LOGICAL_OR:
3168 case BINOP_BITWISE_AND:
3169 case BINOP_BITWISE_IOR:
3170 case BINOP_BITWISE_XOR:
14f9c5c9 3171
4c4b4cd2
PH
3172 case BINOP_EQUAL:
3173 case BINOP_NOTEQUAL:
3174 case BINOP_LESS:
3175 case BINOP_GTR:
3176 case BINOP_LEQ:
3177 case BINOP_GEQ:
14f9c5c9 3178
4c4b4cd2
PH
3179 case BINOP_REPEAT:
3180 case BINOP_SUBSCRIPT:
3181 case BINOP_COMMA:
40c8aaa9
JB
3182 *pos += 1;
3183 nargs = 2;
3184 break;
14f9c5c9 3185
4c4b4cd2
PH
3186 case UNOP_NEG:
3187 case UNOP_PLUS:
3188 case UNOP_LOGICAL_NOT:
3189 case UNOP_ABS:
3190 case UNOP_IND:
3191 *pos += 1;
3192 nargs = 1;
3193 break;
14f9c5c9 3194
4c4b4cd2
PH
3195 case OP_LONG:
3196 case OP_DOUBLE:
3197 case OP_VAR_VALUE:
3198 *pos += 4;
3199 break;
14f9c5c9 3200
4c4b4cd2
PH
3201 case OP_TYPE:
3202 case OP_BOOL:
3203 case OP_LAST:
4c4b4cd2
PH
3204 case OP_INTERNALVAR:
3205 *pos += 3;
3206 break;
14f9c5c9 3207
4c4b4cd2
PH
3208 case UNOP_MEMVAL:
3209 *pos += 3;
3210 nargs = 1;
3211 break;
3212
67f3407f
DJ
3213 case OP_REGISTER:
3214 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
3215 break;
3216
4c4b4cd2
PH
3217 case STRUCTOP_STRUCT:
3218 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
3219 nargs = 1;
3220 break;
3221
4c4b4cd2 3222 case TERNOP_SLICE:
4c4b4cd2
PH
3223 *pos += 1;
3224 nargs = 3;
3225 break;
3226
52ce6436 3227 case OP_STRING:
14f9c5c9 3228 break;
4c4b4cd2
PH
3229
3230 default:
323e0a4a 3231 error (_("Unexpected operator during name resolution"));
14f9c5c9
AS
3232 }
3233
76a01679 3234 argvec = (struct value * *) alloca (sizeof (struct value *) * (nargs + 1));
4c4b4cd2
PH
3235 for (i = 0; i < nargs; i += 1)
3236 argvec[i] = resolve_subexp (expp, pos, 1, NULL);
3237 argvec[i] = NULL;
3238 exp = *expp;
3239
3240 /* Pass two: perform any resolution on principal operator. */
14f9c5c9
AS
3241 switch (op)
3242 {
3243 default:
3244 break;
3245
14f9c5c9 3246 case OP_VAR_VALUE:
4c4b4cd2 3247 if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
76a01679
JB
3248 {
3249 struct ada_symbol_info *candidates;
3250 int n_candidates;
3251
3252 n_candidates =
3253 ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME
3254 (exp->elts[pc + 2].symbol),
3255 exp->elts[pc + 1].block, VAR_DOMAIN,
4eeaa230 3256 &candidates);
76a01679
JB
3257
3258 if (n_candidates > 1)
3259 {
3260 /* Types tend to get re-introduced locally, so if there
3261 are any local symbols that are not types, first filter
3262 out all types. */
3263 int j;
3264 for (j = 0; j < n_candidates; j += 1)
3265 switch (SYMBOL_CLASS (candidates[j].sym))
3266 {
3267 case LOC_REGISTER:
3268 case LOC_ARG:
3269 case LOC_REF_ARG:
76a01679
JB
3270 case LOC_REGPARM_ADDR:
3271 case LOC_LOCAL:
76a01679 3272 case LOC_COMPUTED:
76a01679
JB
3273 goto FoundNonType;
3274 default:
3275 break;
3276 }
3277 FoundNonType:
3278 if (j < n_candidates)
3279 {
3280 j = 0;
3281 while (j < n_candidates)
3282 {
3283 if (SYMBOL_CLASS (candidates[j].sym) == LOC_TYPEDEF)
3284 {
3285 candidates[j] = candidates[n_candidates - 1];
3286 n_candidates -= 1;
3287 }
3288 else
3289 j += 1;
3290 }
3291 }
3292 }
3293
3294 if (n_candidates == 0)
323e0a4a 3295 error (_("No definition found for %s"),
76a01679
JB
3296 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
3297 else if (n_candidates == 1)
3298 i = 0;
3299 else if (deprocedure_p
3300 && !is_nonfunction (candidates, n_candidates))
3301 {
06d5cf63
JB
3302 i = ada_resolve_function
3303 (candidates, n_candidates, NULL, 0,
3304 SYMBOL_LINKAGE_NAME (exp->elts[pc + 2].symbol),
3305 context_type);
76a01679 3306 if (i < 0)
323e0a4a 3307 error (_("Could not find a match for %s"),
76a01679
JB
3308 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
3309 }
3310 else
3311 {
323e0a4a 3312 printf_filtered (_("Multiple matches for %s\n"),
76a01679
JB
3313 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
3314 user_select_syms (candidates, n_candidates, 1);
3315 i = 0;
3316 }
3317
3318 exp->elts[pc + 1].block = candidates[i].block;
3319 exp->elts[pc + 2].symbol = candidates[i].sym;
1265e4aa
JB
3320 if (innermost_block == NULL
3321 || contained_in (candidates[i].block, innermost_block))
76a01679
JB
3322 innermost_block = candidates[i].block;
3323 }
3324
3325 if (deprocedure_p
3326 && (TYPE_CODE (SYMBOL_TYPE (exp->elts[pc + 2].symbol))
3327 == TYPE_CODE_FUNC))
3328 {
3329 replace_operator_with_call (expp, pc, 0, 0,
3330 exp->elts[pc + 2].symbol,
3331 exp->elts[pc + 1].block);
3332 exp = *expp;
3333 }
14f9c5c9
AS
3334 break;
3335
3336 case OP_FUNCALL:
3337 {
4c4b4cd2 3338 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
76a01679 3339 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
4c4b4cd2
PH
3340 {
3341 struct ada_symbol_info *candidates;
3342 int n_candidates;
3343
3344 n_candidates =
76a01679
JB
3345 ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME
3346 (exp->elts[pc + 5].symbol),
3347 exp->elts[pc + 4].block, VAR_DOMAIN,
4eeaa230 3348 &candidates);
4c4b4cd2
PH
3349 if (n_candidates == 1)
3350 i = 0;
3351 else
3352 {
06d5cf63
JB
3353 i = ada_resolve_function
3354 (candidates, n_candidates,
3355 argvec, nargs,
3356 SYMBOL_LINKAGE_NAME (exp->elts[pc + 5].symbol),
3357 context_type);
4c4b4cd2 3358 if (i < 0)
323e0a4a 3359 error (_("Could not find a match for %s"),
4c4b4cd2
PH
3360 SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol));
3361 }
3362
3363 exp->elts[pc + 4].block = candidates[i].block;
3364 exp->elts[pc + 5].symbol = candidates[i].sym;
1265e4aa
JB
3365 if (innermost_block == NULL
3366 || contained_in (candidates[i].block, innermost_block))
4c4b4cd2
PH
3367 innermost_block = candidates[i].block;
3368 }
14f9c5c9
AS
3369 }
3370 break;
3371 case BINOP_ADD:
3372 case BINOP_SUB:
3373 case BINOP_MUL:
3374 case BINOP_DIV:
3375 case BINOP_REM:
3376 case BINOP_MOD:
3377 case BINOP_CONCAT:
3378 case BINOP_BITWISE_AND:
3379 case BINOP_BITWISE_IOR:
3380 case BINOP_BITWISE_XOR:
3381 case BINOP_EQUAL:
3382 case BINOP_NOTEQUAL:
3383 case BINOP_LESS:
3384 case BINOP_GTR:
3385 case BINOP_LEQ:
3386 case BINOP_GEQ:
3387 case BINOP_EXP:
3388 case UNOP_NEG:
3389 case UNOP_PLUS:
3390 case UNOP_LOGICAL_NOT:
3391 case UNOP_ABS:
3392 if (possible_user_operator_p (op, argvec))
4c4b4cd2
PH
3393 {
3394 struct ada_symbol_info *candidates;
3395 int n_candidates;
3396
3397 n_candidates =
3398 ada_lookup_symbol_list (ada_encode (ada_decoded_op_name (op)),
3399 (struct block *) NULL, VAR_DOMAIN,
4eeaa230 3400 &candidates);
4c4b4cd2 3401 i = ada_resolve_function (candidates, n_candidates, argvec, nargs,
76a01679 3402 ada_decoded_op_name (op), NULL);
4c4b4cd2
PH
3403 if (i < 0)
3404 break;
3405
76a01679
JB
3406 replace_operator_with_call (expp, pc, nargs, 1,
3407 candidates[i].sym, candidates[i].block);
4c4b4cd2
PH
3408 exp = *expp;
3409 }
14f9c5c9 3410 break;
4c4b4cd2
PH
3411
3412 case OP_TYPE:
b3dbf008 3413 case OP_REGISTER:
4c4b4cd2 3414 return NULL;
14f9c5c9
AS
3415 }
3416
3417 *pos = pc;
3418 return evaluate_subexp_type (exp, pos);
3419}
3420
3421/* Return non-zero if formal type FTYPE matches actual type ATYPE. If
4c4b4cd2 3422 MAY_DEREF is non-zero, the formal may be a pointer and the actual
5b3d5b7d 3423 a non-pointer. */
14f9c5c9 3424/* The term "match" here is rather loose. The match is heuristic and
5b3d5b7d 3425 liberal. */
14f9c5c9
AS
3426
3427static int
4dc81987 3428ada_type_match (struct type *ftype, struct type *atype, int may_deref)
14f9c5c9 3429{
61ee279c
PH
3430 ftype = ada_check_typedef (ftype);
3431 atype = ada_check_typedef (atype);
14f9c5c9
AS
3432
3433 if (TYPE_CODE (ftype) == TYPE_CODE_REF)
3434 ftype = TYPE_TARGET_TYPE (ftype);
3435 if (TYPE_CODE (atype) == TYPE_CODE_REF)
3436 atype = TYPE_TARGET_TYPE (atype);
3437
d2e4a39e 3438 switch (TYPE_CODE (ftype))
14f9c5c9
AS
3439 {
3440 default:
5b3d5b7d 3441 return TYPE_CODE (ftype) == TYPE_CODE (atype);
14f9c5c9
AS
3442 case TYPE_CODE_PTR:
3443 if (TYPE_CODE (atype) == TYPE_CODE_PTR)
4c4b4cd2
PH
3444 return ada_type_match (TYPE_TARGET_TYPE (ftype),
3445 TYPE_TARGET_TYPE (atype), 0);
d2e4a39e 3446 else
1265e4aa
JB
3447 return (may_deref
3448 && ada_type_match (TYPE_TARGET_TYPE (ftype), atype, 0));
14f9c5c9
AS
3449 case TYPE_CODE_INT:
3450 case TYPE_CODE_ENUM:
3451 case TYPE_CODE_RANGE:
3452 switch (TYPE_CODE (atype))
4c4b4cd2
PH
3453 {
3454 case TYPE_CODE_INT:
3455 case TYPE_CODE_ENUM:
3456 case TYPE_CODE_RANGE:
3457 return 1;
3458 default:
3459 return 0;
3460 }
14f9c5c9
AS
3461
3462 case TYPE_CODE_ARRAY:
d2e4a39e 3463 return (TYPE_CODE (atype) == TYPE_CODE_ARRAY
4c4b4cd2 3464 || ada_is_array_descriptor_type (atype));
14f9c5c9
AS
3465
3466 case TYPE_CODE_STRUCT:
4c4b4cd2
PH
3467 if (ada_is_array_descriptor_type (ftype))
3468 return (TYPE_CODE (atype) == TYPE_CODE_ARRAY
3469 || ada_is_array_descriptor_type (atype));
14f9c5c9 3470 else
4c4b4cd2
PH
3471 return (TYPE_CODE (atype) == TYPE_CODE_STRUCT
3472 && !ada_is_array_descriptor_type (atype));
14f9c5c9
AS
3473
3474 case TYPE_CODE_UNION:
3475 case TYPE_CODE_FLT:
3476 return (TYPE_CODE (atype) == TYPE_CODE (ftype));
3477 }
3478}
3479
3480/* Return non-zero if the formals of FUNC "sufficiently match" the
3481 vector of actual argument types ACTUALS of size N_ACTUALS. FUNC
3482 may also be an enumeral, in which case it is treated as a 0-
4c4b4cd2 3483 argument function. */
14f9c5c9
AS
3484
3485static int
d2e4a39e 3486ada_args_match (struct symbol *func, struct value **actuals, int n_actuals)
14f9c5c9
AS
3487{
3488 int i;
d2e4a39e 3489 struct type *func_type = SYMBOL_TYPE (func);
14f9c5c9 3490
1265e4aa
JB
3491 if (SYMBOL_CLASS (func) == LOC_CONST
3492 && TYPE_CODE (func_type) == TYPE_CODE_ENUM)
14f9c5c9
AS
3493 return (n_actuals == 0);
3494 else if (func_type == NULL || TYPE_CODE (func_type) != TYPE_CODE_FUNC)
3495 return 0;
3496
3497 if (TYPE_NFIELDS (func_type) != n_actuals)
3498 return 0;
3499
3500 for (i = 0; i < n_actuals; i += 1)
3501 {
4c4b4cd2 3502 if (actuals[i] == NULL)
76a01679
JB
3503 return 0;
3504 else
3505 {
5b4ee69b
MS
3506 struct type *ftype = ada_check_typedef (TYPE_FIELD_TYPE (func_type,
3507 i));
df407dfe 3508 struct type *atype = ada_check_typedef (value_type (actuals[i]));
4c4b4cd2 3509
76a01679
JB
3510 if (!ada_type_match (ftype, atype, 1))
3511 return 0;
3512 }
14f9c5c9
AS
3513 }
3514 return 1;
3515}
3516
3517/* False iff function type FUNC_TYPE definitely does not produce a value
3518 compatible with type CONTEXT_TYPE. Conservatively returns 1 if
3519 FUNC_TYPE is not a valid function type with a non-null return type
3520 or an enumerated type. A null CONTEXT_TYPE indicates any non-void type. */
3521
3522static int
d2e4a39e 3523return_match (struct type *func_type, struct type *context_type)
14f9c5c9 3524{
d2e4a39e 3525 struct type *return_type;
14f9c5c9
AS
3526
3527 if (func_type == NULL)
3528 return 1;
3529
4c4b4cd2 3530 if (TYPE_CODE (func_type) == TYPE_CODE_FUNC)
18af8284 3531 return_type = get_base_type (TYPE_TARGET_TYPE (func_type));
4c4b4cd2 3532 else
18af8284 3533 return_type = get_base_type (func_type);
14f9c5c9
AS
3534 if (return_type == NULL)
3535 return 1;
3536
18af8284 3537 context_type = get_base_type (context_type);
14f9c5c9
AS
3538
3539 if (TYPE_CODE (return_type) == TYPE_CODE_ENUM)
3540 return context_type == NULL || return_type == context_type;
3541 else if (context_type == NULL)
3542 return TYPE_CODE (return_type) != TYPE_CODE_VOID;
3543 else
3544 return TYPE_CODE (return_type) == TYPE_CODE (context_type);
3545}
3546
3547
4c4b4cd2 3548/* Returns the index in SYMS[0..NSYMS-1] that contains the symbol for the
14f9c5c9 3549 function (if any) that matches the types of the NARGS arguments in
4c4b4cd2
PH
3550 ARGS. If CONTEXT_TYPE is non-null and there is at least one match
3551 that returns that type, then eliminate matches that don't. If
3552 CONTEXT_TYPE is void and there is at least one match that does not
3553 return void, eliminate all matches that do.
3554
14f9c5c9
AS
3555 Asks the user if there is more than one match remaining. Returns -1
3556 if there is no such symbol or none is selected. NAME is used
4c4b4cd2
PH
3557 solely for messages. May re-arrange and modify SYMS in
3558 the process; the index returned is for the modified vector. */
14f9c5c9 3559
4c4b4cd2
PH
3560static int
3561ada_resolve_function (struct ada_symbol_info syms[],
3562 int nsyms, struct value **args, int nargs,
3563 const char *name, struct type *context_type)
14f9c5c9 3564{
30b15541 3565 int fallback;
14f9c5c9 3566 int k;
4c4b4cd2 3567 int m; /* Number of hits */
14f9c5c9 3568
d2e4a39e 3569 m = 0;
30b15541
UW
3570 /* In the first pass of the loop, we only accept functions matching
3571 context_type. If none are found, we add a second pass of the loop
3572 where every function is accepted. */
3573 for (fallback = 0; m == 0 && fallback < 2; fallback++)
14f9c5c9
AS
3574 {
3575 for (k = 0; k < nsyms; k += 1)
4c4b4cd2 3576 {
61ee279c 3577 struct type *type = ada_check_typedef (SYMBOL_TYPE (syms[k].sym));
4c4b4cd2
PH
3578
3579 if (ada_args_match (syms[k].sym, args, nargs)
30b15541 3580 && (fallback || return_match (type, context_type)))
4c4b4cd2
PH
3581 {
3582 syms[m] = syms[k];
3583 m += 1;
3584 }
3585 }
14f9c5c9
AS
3586 }
3587
3588 if (m == 0)
3589 return -1;
3590 else if (m > 1)
3591 {
323e0a4a 3592 printf_filtered (_("Multiple matches for %s\n"), name);
4c4b4cd2 3593 user_select_syms (syms, m, 1);
14f9c5c9
AS
3594 return 0;
3595 }
3596 return 0;
3597}
3598
4c4b4cd2
PH
3599/* Returns true (non-zero) iff decoded name N0 should appear before N1
3600 in a listing of choices during disambiguation (see sort_choices, below).
3601 The idea is that overloadings of a subprogram name from the
3602 same package should sort in their source order. We settle for ordering
3603 such symbols by their trailing number (__N or $N). */
3604
14f9c5c9 3605static int
0d5cff50 3606encoded_ordered_before (const char *N0, const char *N1)
14f9c5c9
AS
3607{
3608 if (N1 == NULL)
3609 return 0;
3610 else if (N0 == NULL)
3611 return 1;
3612 else
3613 {
3614 int k0, k1;
5b4ee69b 3615
d2e4a39e 3616 for (k0 = strlen (N0) - 1; k0 > 0 && isdigit (N0[k0]); k0 -= 1)
4c4b4cd2 3617 ;
d2e4a39e 3618 for (k1 = strlen (N1) - 1; k1 > 0 && isdigit (N1[k1]); k1 -= 1)
4c4b4cd2 3619 ;
d2e4a39e 3620 if ((N0[k0] == '_' || N0[k0] == '$') && N0[k0 + 1] != '\000'
4c4b4cd2
PH
3621 && (N1[k1] == '_' || N1[k1] == '$') && N1[k1 + 1] != '\000')
3622 {
3623 int n0, n1;
5b4ee69b 3624
4c4b4cd2
PH
3625 n0 = k0;
3626 while (N0[n0] == '_' && n0 > 0 && N0[n0 - 1] == '_')
3627 n0 -= 1;
3628 n1 = k1;
3629 while (N1[n1] == '_' && n1 > 0 && N1[n1 - 1] == '_')
3630 n1 -= 1;
3631 if (n0 == n1 && strncmp (N0, N1, n0) == 0)
3632 return (atoi (N0 + k0 + 1) < atoi (N1 + k1 + 1));
3633 }
14f9c5c9
AS
3634 return (strcmp (N0, N1) < 0);
3635 }
3636}
d2e4a39e 3637
4c4b4cd2
PH
3638/* Sort SYMS[0..NSYMS-1] to put the choices in a canonical order by the
3639 encoded names. */
3640
d2e4a39e 3641static void
4c4b4cd2 3642sort_choices (struct ada_symbol_info syms[], int nsyms)
14f9c5c9 3643{
4c4b4cd2 3644 int i;
5b4ee69b 3645
d2e4a39e 3646 for (i = 1; i < nsyms; i += 1)
14f9c5c9 3647 {
4c4b4cd2 3648 struct ada_symbol_info sym = syms[i];
14f9c5c9
AS
3649 int j;
3650
d2e4a39e 3651 for (j = i - 1; j >= 0; j -= 1)
4c4b4cd2
PH
3652 {
3653 if (encoded_ordered_before (SYMBOL_LINKAGE_NAME (syms[j].sym),
3654 SYMBOL_LINKAGE_NAME (sym.sym)))
3655 break;
3656 syms[j + 1] = syms[j];
3657 }
d2e4a39e 3658 syms[j + 1] = sym;
14f9c5c9
AS
3659 }
3660}
3661
4c4b4cd2
PH
3662/* Given a list of NSYMS symbols in SYMS, select up to MAX_RESULTS>0
3663 by asking the user (if necessary), returning the number selected,
3664 and setting the first elements of SYMS items. Error if no symbols
3665 selected. */
14f9c5c9
AS
3666
3667/* NOTE: Adapted from decode_line_2 in symtab.c, with which it ought
4c4b4cd2 3668 to be re-integrated one of these days. */
14f9c5c9
AS
3669
3670int
4c4b4cd2 3671user_select_syms (struct ada_symbol_info *syms, int nsyms, int max_results)
14f9c5c9
AS
3672{
3673 int i;
d2e4a39e 3674 int *chosen = (int *) alloca (sizeof (int) * nsyms);
14f9c5c9
AS
3675 int n_chosen;
3676 int first_choice = (max_results == 1) ? 1 : 2;
717d2f5a 3677 const char *select_mode = multiple_symbols_select_mode ();
14f9c5c9
AS
3678
3679 if (max_results < 1)
323e0a4a 3680 error (_("Request to select 0 symbols!"));
14f9c5c9
AS
3681 if (nsyms <= 1)
3682 return nsyms;
3683
717d2f5a
JB
3684 if (select_mode == multiple_symbols_cancel)
3685 error (_("\
3686canceled because the command is ambiguous\n\
3687See set/show multiple-symbol."));
3688
3689 /* If select_mode is "all", then return all possible symbols.
3690 Only do that if more than one symbol can be selected, of course.
3691 Otherwise, display the menu as usual. */
3692 if (select_mode == multiple_symbols_all && max_results > 1)
3693 return nsyms;
3694
323e0a4a 3695 printf_unfiltered (_("[0] cancel\n"));
14f9c5c9 3696 if (max_results > 1)
323e0a4a 3697 printf_unfiltered (_("[1] all\n"));
14f9c5c9 3698
4c4b4cd2 3699 sort_choices (syms, nsyms);
14f9c5c9
AS
3700
3701 for (i = 0; i < nsyms; i += 1)
3702 {
4c4b4cd2
PH
3703 if (syms[i].sym == NULL)
3704 continue;
3705
3706 if (SYMBOL_CLASS (syms[i].sym) == LOC_BLOCK)
3707 {
76a01679
JB
3708 struct symtab_and_line sal =
3709 find_function_start_sal (syms[i].sym, 1);
5b4ee69b 3710
323e0a4a
AC
3711 if (sal.symtab == NULL)
3712 printf_unfiltered (_("[%d] %s at <no source file available>:%d\n"),
3713 i + first_choice,
3714 SYMBOL_PRINT_NAME (syms[i].sym),
3715 sal.line);
3716 else
3717 printf_unfiltered (_("[%d] %s at %s:%d\n"), i + first_choice,
3718 SYMBOL_PRINT_NAME (syms[i].sym),
05cba821
JK
3719 symtab_to_filename_for_display (sal.symtab),
3720 sal.line);
4c4b4cd2
PH
3721 continue;
3722 }
d2e4a39e 3723 else
4c4b4cd2
PH
3724 {
3725 int is_enumeral =
3726 (SYMBOL_CLASS (syms[i].sym) == LOC_CONST
3727 && SYMBOL_TYPE (syms[i].sym) != NULL
3728 && TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) == TYPE_CODE_ENUM);
1994afbf
DE
3729 struct symtab *symtab = NULL;
3730
3731 if (SYMBOL_OBJFILE_OWNED (syms[i].sym))
3732 symtab = symbol_symtab (syms[i].sym);
4c4b4cd2
PH
3733
3734 if (SYMBOL_LINE (syms[i].sym) != 0 && symtab != NULL)
323e0a4a 3735 printf_unfiltered (_("[%d] %s at %s:%d\n"),
4c4b4cd2
PH
3736 i + first_choice,
3737 SYMBOL_PRINT_NAME (syms[i].sym),
05cba821
JK
3738 symtab_to_filename_for_display (symtab),
3739 SYMBOL_LINE (syms[i].sym));
76a01679
JB
3740 else if (is_enumeral
3741 && TYPE_NAME (SYMBOL_TYPE (syms[i].sym)) != NULL)
4c4b4cd2 3742 {
a3f17187 3743 printf_unfiltered (("[%d] "), i + first_choice);
76a01679 3744 ada_print_type (SYMBOL_TYPE (syms[i].sym), NULL,
79d43c61 3745 gdb_stdout, -1, 0, &type_print_raw_options);
323e0a4a 3746 printf_unfiltered (_("'(%s) (enumeral)\n"),
4c4b4cd2
PH
3747 SYMBOL_PRINT_NAME (syms[i].sym));
3748 }
3749 else if (symtab != NULL)
3750 printf_unfiltered (is_enumeral
323e0a4a
AC
3751 ? _("[%d] %s in %s (enumeral)\n")
3752 : _("[%d] %s at %s:?\n"),
4c4b4cd2
PH
3753 i + first_choice,
3754 SYMBOL_PRINT_NAME (syms[i].sym),
05cba821 3755 symtab_to_filename_for_display (symtab));
4c4b4cd2
PH
3756 else
3757 printf_unfiltered (is_enumeral
323e0a4a
AC
3758 ? _("[%d] %s (enumeral)\n")
3759 : _("[%d] %s at ?\n"),
4c4b4cd2
PH
3760 i + first_choice,
3761 SYMBOL_PRINT_NAME (syms[i].sym));
3762 }
14f9c5c9 3763 }
d2e4a39e 3764
14f9c5c9 3765 n_chosen = get_selections (chosen, nsyms, max_results, max_results > 1,
4c4b4cd2 3766 "overload-choice");
14f9c5c9
AS
3767
3768 for (i = 0; i < n_chosen; i += 1)
4c4b4cd2 3769 syms[i] = syms[chosen[i]];
14f9c5c9
AS
3770
3771 return n_chosen;
3772}
3773
3774/* Read and validate a set of numeric choices from the user in the
4c4b4cd2 3775 range 0 .. N_CHOICES-1. Place the results in increasing
14f9c5c9
AS
3776 order in CHOICES[0 .. N-1], and return N.
3777
3778 The user types choices as a sequence of numbers on one line
3779 separated by blanks, encoding them as follows:
3780
4c4b4cd2 3781 + A choice of 0 means to cancel the selection, throwing an error.
14f9c5c9
AS
3782 + If IS_ALL_CHOICE, a choice of 1 selects the entire set 0 .. N_CHOICES-1.
3783 + The user chooses k by typing k+IS_ALL_CHOICE+1.
3784
4c4b4cd2 3785 The user is not allowed to choose more than MAX_RESULTS values.
14f9c5c9
AS
3786
3787 ANNOTATION_SUFFIX, if present, is used to annotate the input
4c4b4cd2 3788 prompts (for use with the -f switch). */
14f9c5c9
AS
3789
3790int
d2e4a39e 3791get_selections (int *choices, int n_choices, int max_results,
4c4b4cd2 3792 int is_all_choice, char *annotation_suffix)
14f9c5c9 3793{
d2e4a39e 3794 char *args;
0bcd0149 3795 char *prompt;
14f9c5c9
AS
3796 int n_chosen;
3797 int first_choice = is_all_choice ? 2 : 1;
d2e4a39e 3798
14f9c5c9
AS
3799 prompt = getenv ("PS2");
3800 if (prompt == NULL)
0bcd0149 3801 prompt = "> ";
14f9c5c9 3802
0bcd0149 3803 args = command_line_input (prompt, 0, annotation_suffix);
d2e4a39e 3804
14f9c5c9 3805 if (args == NULL)
323e0a4a 3806 error_no_arg (_("one or more choice numbers"));
14f9c5c9
AS
3807
3808 n_chosen = 0;
76a01679 3809
4c4b4cd2
PH
3810 /* Set choices[0 .. n_chosen-1] to the users' choices in ascending
3811 order, as given in args. Choices are validated. */
14f9c5c9
AS
3812 while (1)
3813 {
d2e4a39e 3814 char *args2;
14f9c5c9
AS
3815 int choice, j;
3816
0fcd72ba 3817 args = skip_spaces (args);
14f9c5c9 3818 if (*args == '\0' && n_chosen == 0)
323e0a4a 3819 error_no_arg (_("one or more choice numbers"));
14f9c5c9 3820 else if (*args == '\0')
4c4b4cd2 3821 break;
14f9c5c9
AS
3822
3823 choice = strtol (args, &args2, 10);
d2e4a39e 3824 if (args == args2 || choice < 0
4c4b4cd2 3825 || choice > n_choices + first_choice - 1)
323e0a4a 3826 error (_("Argument must be choice number"));
14f9c5c9
AS
3827 args = args2;
3828
d2e4a39e 3829 if (choice == 0)
323e0a4a 3830 error (_("cancelled"));
14f9c5c9
AS
3831
3832 if (choice < first_choice)
4c4b4cd2
PH
3833 {
3834 n_chosen = n_choices;
3835 for (j = 0; j < n_choices; j += 1)
3836 choices[j] = j;
3837 break;
3838 }
14f9c5c9
AS
3839 choice -= first_choice;
3840
d2e4a39e 3841 for (j = n_chosen - 1; j >= 0 && choice < choices[j]; j -= 1)
4c4b4cd2
PH
3842 {
3843 }
14f9c5c9
AS
3844
3845 if (j < 0 || choice != choices[j])
4c4b4cd2
PH
3846 {
3847 int k;
5b4ee69b 3848
4c4b4cd2
PH
3849 for (k = n_chosen - 1; k > j; k -= 1)
3850 choices[k + 1] = choices[k];
3851 choices[j + 1] = choice;
3852 n_chosen += 1;
3853 }
14f9c5c9
AS
3854 }
3855
3856 if (n_chosen > max_results)
323e0a4a 3857 error (_("Select no more than %d of the above"), max_results);
d2e4a39e 3858
14f9c5c9
AS
3859 return n_chosen;
3860}
3861
4c4b4cd2
PH
3862/* Replace the operator of length OPLEN at position PC in *EXPP with a call
3863 on the function identified by SYM and BLOCK, and taking NARGS
3864 arguments. Update *EXPP as needed to hold more space. */
14f9c5c9
AS
3865
3866static void
d2e4a39e 3867replace_operator_with_call (struct expression **expp, int pc, int nargs,
4c4b4cd2 3868 int oplen, struct symbol *sym,
270140bd 3869 const struct block *block)
14f9c5c9
AS
3870{
3871 /* A new expression, with 6 more elements (3 for funcall, 4 for function
4c4b4cd2 3872 symbol, -oplen for operator being replaced). */
d2e4a39e 3873 struct expression *newexp = (struct expression *)
8c1a34e7 3874 xzalloc (sizeof (struct expression)
4c4b4cd2 3875 + EXP_ELEM_TO_BYTES ((*expp)->nelts + 7 - oplen));
d2e4a39e 3876 struct expression *exp = *expp;
14f9c5c9
AS
3877
3878 newexp->nelts = exp->nelts + 7 - oplen;
3879 newexp->language_defn = exp->language_defn;
3489610d 3880 newexp->gdbarch = exp->gdbarch;
14f9c5c9 3881 memcpy (newexp->elts, exp->elts, EXP_ELEM_TO_BYTES (pc));
d2e4a39e 3882 memcpy (newexp->elts + pc + 7, exp->elts + pc + oplen,
4c4b4cd2 3883 EXP_ELEM_TO_BYTES (exp->nelts - pc - oplen));
14f9c5c9
AS
3884
3885 newexp->elts[pc].opcode = newexp->elts[pc + 2].opcode = OP_FUNCALL;
3886 newexp->elts[pc + 1].longconst = (LONGEST) nargs;
3887
3888 newexp->elts[pc + 3].opcode = newexp->elts[pc + 6].opcode = OP_VAR_VALUE;
3889 newexp->elts[pc + 4].block = block;
3890 newexp->elts[pc + 5].symbol = sym;
3891
3892 *expp = newexp;
aacb1f0a 3893 xfree (exp);
d2e4a39e 3894}
14f9c5c9
AS
3895
3896/* Type-class predicates */
3897
4c4b4cd2
PH
3898/* True iff TYPE is numeric (i.e., an INT, RANGE (of numeric type),
3899 or FLOAT). */
14f9c5c9
AS
3900
3901static int
d2e4a39e 3902numeric_type_p (struct type *type)
14f9c5c9
AS
3903{
3904 if (type == NULL)
3905 return 0;
d2e4a39e
AS
3906 else
3907 {
3908 switch (TYPE_CODE (type))
4c4b4cd2
PH
3909 {
3910 case TYPE_CODE_INT:
3911 case TYPE_CODE_FLT:
3912 return 1;
3913 case TYPE_CODE_RANGE:
3914 return (type == TYPE_TARGET_TYPE (type)
3915 || numeric_type_p (TYPE_TARGET_TYPE (type)));
3916 default:
3917 return 0;
3918 }
d2e4a39e 3919 }
14f9c5c9
AS
3920}
3921
4c4b4cd2 3922/* True iff TYPE is integral (an INT or RANGE of INTs). */
14f9c5c9
AS
3923
3924static int
d2e4a39e 3925integer_type_p (struct type *type)
14f9c5c9
AS
3926{
3927 if (type == NULL)
3928 return 0;
d2e4a39e
AS
3929 else
3930 {
3931 switch (TYPE_CODE (type))
4c4b4cd2
PH
3932 {
3933 case TYPE_CODE_INT:
3934 return 1;
3935 case TYPE_CODE_RANGE:
3936 return (type == TYPE_TARGET_TYPE (type)
3937 || integer_type_p (TYPE_TARGET_TYPE (type)));
3938 default:
3939 return 0;
3940 }
d2e4a39e 3941 }
14f9c5c9
AS
3942}
3943
4c4b4cd2 3944/* True iff TYPE is scalar (INT, RANGE, FLOAT, ENUM). */
14f9c5c9
AS
3945
3946static int
d2e4a39e 3947scalar_type_p (struct type *type)
14f9c5c9
AS
3948{
3949 if (type == NULL)
3950 return 0;
d2e4a39e
AS
3951 else
3952 {
3953 switch (TYPE_CODE (type))
4c4b4cd2
PH
3954 {
3955 case TYPE_CODE_INT:
3956 case TYPE_CODE_RANGE:
3957 case TYPE_CODE_ENUM:
3958 case TYPE_CODE_FLT:
3959 return 1;
3960 default:
3961 return 0;
3962 }
d2e4a39e 3963 }
14f9c5c9
AS
3964}
3965
4c4b4cd2 3966/* True iff TYPE is discrete (INT, RANGE, ENUM). */
14f9c5c9
AS
3967
3968static int
d2e4a39e 3969discrete_type_p (struct type *type)
14f9c5c9
AS
3970{
3971 if (type == NULL)
3972 return 0;
d2e4a39e
AS
3973 else
3974 {
3975 switch (TYPE_CODE (type))
4c4b4cd2
PH
3976 {
3977 case TYPE_CODE_INT:
3978 case TYPE_CODE_RANGE:
3979 case TYPE_CODE_ENUM:
872f0337 3980 case TYPE_CODE_BOOL:
4c4b4cd2
PH
3981 return 1;
3982 default:
3983 return 0;
3984 }
d2e4a39e 3985 }
14f9c5c9
AS
3986}
3987
4c4b4cd2
PH
3988/* Returns non-zero if OP with operands in the vector ARGS could be
3989 a user-defined function. Errs on the side of pre-defined operators
3990 (i.e., result 0). */
14f9c5c9
AS
3991
3992static int
d2e4a39e 3993possible_user_operator_p (enum exp_opcode op, struct value *args[])
14f9c5c9 3994{
76a01679 3995 struct type *type0 =
df407dfe 3996 (args[0] == NULL) ? NULL : ada_check_typedef (value_type (args[0]));
d2e4a39e 3997 struct type *type1 =
df407dfe 3998 (args[1] == NULL) ? NULL : ada_check_typedef (value_type (args[1]));
d2e4a39e 3999
4c4b4cd2
PH
4000 if (type0 == NULL)
4001 return 0;
4002
14f9c5c9
AS
4003 switch (op)
4004 {
4005 default:
4006 return 0;
4007
4008 case BINOP_ADD:
4009 case BINOP_SUB:
4010 case BINOP_MUL:
4011 case BINOP_DIV:
d2e4a39e 4012 return (!(numeric_type_p (type0) && numeric_type_p (type1)));
14f9c5c9
AS
4013
4014 case BINOP_REM:
4015 case BINOP_MOD:
4016 case BINOP_BITWISE_AND:
4017 case BINOP_BITWISE_IOR:
4018 case BINOP_BITWISE_XOR:
d2e4a39e 4019 return (!(integer_type_p (type0) && integer_type_p (type1)));
14f9c5c9
AS
4020
4021 case BINOP_EQUAL:
4022 case BINOP_NOTEQUAL:
4023 case BINOP_LESS:
4024 case BINOP_GTR:
4025 case BINOP_LEQ:
4026 case BINOP_GEQ:
d2e4a39e 4027 return (!(scalar_type_p (type0) && scalar_type_p (type1)));
14f9c5c9
AS
4028
4029 case BINOP_CONCAT:
ee90b9ab 4030 return !ada_is_array_type (type0) || !ada_is_array_type (type1);
14f9c5c9
AS
4031
4032 case BINOP_EXP:
d2e4a39e 4033 return (!(numeric_type_p (type0) && integer_type_p (type1)));
14f9c5c9
AS
4034
4035 case UNOP_NEG:
4036 case UNOP_PLUS:
4037 case UNOP_LOGICAL_NOT:
d2e4a39e
AS
4038 case UNOP_ABS:
4039 return (!numeric_type_p (type0));
14f9c5c9
AS
4040
4041 }
4042}
4043\f
4c4b4cd2 4044 /* Renaming */
14f9c5c9 4045
aeb5907d
JB
4046/* NOTES:
4047
4048 1. In the following, we assume that a renaming type's name may
4049 have an ___XD suffix. It would be nice if this went away at some
4050 point.
4051 2. We handle both the (old) purely type-based representation of
4052 renamings and the (new) variable-based encoding. At some point,
4053 it is devoutly to be hoped that the former goes away
4054 (FIXME: hilfinger-2007-07-09).
4055 3. Subprogram renamings are not implemented, although the XRS
4056 suffix is recognized (FIXME: hilfinger-2007-07-09). */
4057
4058/* If SYM encodes a renaming,
4059
4060 <renaming> renames <renamed entity>,
4061
4062 sets *LEN to the length of the renamed entity's name,
4063 *RENAMED_ENTITY to that name (not null-terminated), and *RENAMING_EXPR to
4064 the string describing the subcomponent selected from the renamed
0963b4bd 4065 entity. Returns ADA_NOT_RENAMING if SYM does not encode a renaming
aeb5907d
JB
4066 (in which case, the values of *RENAMED_ENTITY, *LEN, and *RENAMING_EXPR
4067 are undefined). Otherwise, returns a value indicating the category
4068 of entity renamed: an object (ADA_OBJECT_RENAMING), exception
4069 (ADA_EXCEPTION_RENAMING), package (ADA_PACKAGE_RENAMING), or
4070 subprogram (ADA_SUBPROGRAM_RENAMING). Does no allocation; the
4071 strings returned in *RENAMED_ENTITY and *RENAMING_EXPR should not be
4072 deallocated. The values of RENAMED_ENTITY, LEN, or RENAMING_EXPR
4073 may be NULL, in which case they are not assigned.
4074
4075 [Currently, however, GCC does not generate subprogram renamings.] */
4076
4077enum ada_renaming_category
4078ada_parse_renaming (struct symbol *sym,
4079 const char **renamed_entity, int *len,
4080 const char **renaming_expr)
4081{
4082 enum ada_renaming_category kind;
4083 const char *info;
4084 const char *suffix;
4085
4086 if (sym == NULL)
4087 return ADA_NOT_RENAMING;
4088 switch (SYMBOL_CLASS (sym))
14f9c5c9 4089 {
aeb5907d
JB
4090 default:
4091 return ADA_NOT_RENAMING;
4092 case LOC_TYPEDEF:
4093 return parse_old_style_renaming (SYMBOL_TYPE (sym),
4094 renamed_entity, len, renaming_expr);
4095 case LOC_LOCAL:
4096 case LOC_STATIC:
4097 case LOC_COMPUTED:
4098 case LOC_OPTIMIZED_OUT:
4099 info = strstr (SYMBOL_LINKAGE_NAME (sym), "___XR");
4100 if (info == NULL)
4101 return ADA_NOT_RENAMING;
4102 switch (info[5])
4103 {
4104 case '_':
4105 kind = ADA_OBJECT_RENAMING;
4106 info += 6;
4107 break;
4108 case 'E':
4109 kind = ADA_EXCEPTION_RENAMING;
4110 info += 7;
4111 break;
4112 case 'P':
4113 kind = ADA_PACKAGE_RENAMING;
4114 info += 7;
4115 break;
4116 case 'S':
4117 kind = ADA_SUBPROGRAM_RENAMING;
4118 info += 7;
4119 break;
4120 default:
4121 return ADA_NOT_RENAMING;
4122 }
14f9c5c9 4123 }
4c4b4cd2 4124
aeb5907d
JB
4125 if (renamed_entity != NULL)
4126 *renamed_entity = info;
4127 suffix = strstr (info, "___XE");
4128 if (suffix == NULL || suffix == info)
4129 return ADA_NOT_RENAMING;
4130 if (len != NULL)
4131 *len = strlen (info) - strlen (suffix);
4132 suffix += 5;
4133 if (renaming_expr != NULL)
4134 *renaming_expr = suffix;
4135 return kind;
4136}
4137
4138/* Assuming TYPE encodes a renaming according to the old encoding in
4139 exp_dbug.ads, returns details of that renaming in *RENAMED_ENTITY,
4140 *LEN, and *RENAMING_EXPR, as for ada_parse_renaming, above. Returns
4141 ADA_NOT_RENAMING otherwise. */
4142static enum ada_renaming_category
4143parse_old_style_renaming (struct type *type,
4144 const char **renamed_entity, int *len,
4145 const char **renaming_expr)
4146{
4147 enum ada_renaming_category kind;
4148 const char *name;
4149 const char *info;
4150 const char *suffix;
14f9c5c9 4151
aeb5907d
JB
4152 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM
4153 || TYPE_NFIELDS (type) != 1)
4154 return ADA_NOT_RENAMING;
14f9c5c9 4155
aeb5907d
JB
4156 name = type_name_no_tag (type);
4157 if (name == NULL)
4158 return ADA_NOT_RENAMING;
4159
4160 name = strstr (name, "___XR");
4161 if (name == NULL)
4162 return ADA_NOT_RENAMING;
4163 switch (name[5])
4164 {
4165 case '\0':
4166 case '_':
4167 kind = ADA_OBJECT_RENAMING;
4168 break;
4169 case 'E':
4170 kind = ADA_EXCEPTION_RENAMING;
4171 break;
4172 case 'P':
4173 kind = ADA_PACKAGE_RENAMING;
4174 break;
4175 case 'S':
4176 kind = ADA_SUBPROGRAM_RENAMING;
4177 break;
4178 default:
4179 return ADA_NOT_RENAMING;
4180 }
14f9c5c9 4181
aeb5907d
JB
4182 info = TYPE_FIELD_NAME (type, 0);
4183 if (info == NULL)
4184 return ADA_NOT_RENAMING;
4185 if (renamed_entity != NULL)
4186 *renamed_entity = info;
4187 suffix = strstr (info, "___XE");
4188 if (renaming_expr != NULL)
4189 *renaming_expr = suffix + 5;
4190 if (suffix == NULL || suffix == info)
4191 return ADA_NOT_RENAMING;
4192 if (len != NULL)
4193 *len = suffix - info;
4194 return kind;
a5ee536b
JB
4195}
4196
4197/* Compute the value of the given RENAMING_SYM, which is expected to
4198 be a symbol encoding a renaming expression. BLOCK is the block
4199 used to evaluate the renaming. */
52ce6436 4200
a5ee536b
JB
4201static struct value *
4202ada_read_renaming_var_value (struct symbol *renaming_sym,
3977b71f 4203 const struct block *block)
a5ee536b 4204{
bbc13ae3 4205 const char *sym_name;
a5ee536b
JB
4206 struct expression *expr;
4207 struct value *value;
4208 struct cleanup *old_chain = NULL;
4209
bbc13ae3 4210 sym_name = SYMBOL_LINKAGE_NAME (renaming_sym);
1bb9788d 4211 expr = parse_exp_1 (&sym_name, 0, block, 0);
bbc13ae3 4212 old_chain = make_cleanup (free_current_contents, &expr);
a5ee536b
JB
4213 value = evaluate_expression (expr);
4214
4215 do_cleanups (old_chain);
4216 return value;
4217}
14f9c5c9 4218\f
d2e4a39e 4219
4c4b4cd2 4220 /* Evaluation: Function Calls */
14f9c5c9 4221
4c4b4cd2 4222/* Return an lvalue containing the value VAL. This is the identity on
40bc484c
JB
4223 lvalues, and otherwise has the side-effect of allocating memory
4224 in the inferior where a copy of the value contents is copied. */
14f9c5c9 4225
d2e4a39e 4226static struct value *
40bc484c 4227ensure_lval (struct value *val)
14f9c5c9 4228{
40bc484c
JB
4229 if (VALUE_LVAL (val) == not_lval
4230 || VALUE_LVAL (val) == lval_internalvar)
c3e5cd34 4231 {
df407dfe 4232 int len = TYPE_LENGTH (ada_check_typedef (value_type (val)));
40bc484c
JB
4233 const CORE_ADDR addr =
4234 value_as_long (value_allocate_space_in_inferior (len));
c3e5cd34 4235
40bc484c 4236 set_value_address (val, addr);
a84a8a0d 4237 VALUE_LVAL (val) = lval_memory;
40bc484c 4238 write_memory (addr, value_contents (val), len);
c3e5cd34 4239 }
14f9c5c9
AS
4240
4241 return val;
4242}
4243
4244/* Return the value ACTUAL, converted to be an appropriate value for a
4245 formal of type FORMAL_TYPE. Use *SP as a stack pointer for
4246 allocating any necessary descriptors (fat pointers), or copies of
4c4b4cd2 4247 values not residing in memory, updating it as needed. */
14f9c5c9 4248
a93c0eb6 4249struct value *
40bc484c 4250ada_convert_actual (struct value *actual, struct type *formal_type0)
14f9c5c9 4251{
df407dfe 4252 struct type *actual_type = ada_check_typedef (value_type (actual));
61ee279c 4253 struct type *formal_type = ada_check_typedef (formal_type0);
d2e4a39e
AS
4254 struct type *formal_target =
4255 TYPE_CODE (formal_type) == TYPE_CODE_PTR
61ee279c 4256 ? ada_check_typedef (TYPE_TARGET_TYPE (formal_type)) : formal_type;
d2e4a39e
AS
4257 struct type *actual_target =
4258 TYPE_CODE (actual_type) == TYPE_CODE_PTR
61ee279c 4259 ? ada_check_typedef (TYPE_TARGET_TYPE (actual_type)) : actual_type;
14f9c5c9 4260
4c4b4cd2 4261 if (ada_is_array_descriptor_type (formal_target)
14f9c5c9 4262 && TYPE_CODE (actual_target) == TYPE_CODE_ARRAY)
40bc484c 4263 return make_array_descriptor (formal_type, actual);
a84a8a0d
JB
4264 else if (TYPE_CODE (formal_type) == TYPE_CODE_PTR
4265 || TYPE_CODE (formal_type) == TYPE_CODE_REF)
14f9c5c9 4266 {
a84a8a0d 4267 struct value *result;
5b4ee69b 4268
14f9c5c9 4269 if (TYPE_CODE (formal_target) == TYPE_CODE_ARRAY
4c4b4cd2 4270 && ada_is_array_descriptor_type (actual_target))
a84a8a0d 4271 result = desc_data (actual);
14f9c5c9 4272 else if (TYPE_CODE (actual_type) != TYPE_CODE_PTR)
4c4b4cd2
PH
4273 {
4274 if (VALUE_LVAL (actual) != lval_memory)
4275 {
4276 struct value *val;
5b4ee69b 4277
df407dfe 4278 actual_type = ada_check_typedef (value_type (actual));
4c4b4cd2 4279 val = allocate_value (actual_type);
990a07ab 4280 memcpy ((char *) value_contents_raw (val),
0fd88904 4281 (char *) value_contents (actual),
4c4b4cd2 4282 TYPE_LENGTH (actual_type));
40bc484c 4283 actual = ensure_lval (val);
4c4b4cd2 4284 }
a84a8a0d 4285 result = value_addr (actual);
4c4b4cd2 4286 }
a84a8a0d
JB
4287 else
4288 return actual;
b1af9e97 4289 return value_cast_pointers (formal_type, result, 0);
14f9c5c9
AS
4290 }
4291 else if (TYPE_CODE (actual_type) == TYPE_CODE_PTR)
4292 return ada_value_ind (actual);
4293
4294 return actual;
4295}
4296
438c98a1
JB
4297/* Convert VALUE (which must be an address) to a CORE_ADDR that is a pointer of
4298 type TYPE. This is usually an inefficient no-op except on some targets
4299 (such as AVR) where the representation of a pointer and an address
4300 differs. */
4301
4302static CORE_ADDR
4303value_pointer (struct value *value, struct type *type)
4304{
4305 struct gdbarch *gdbarch = get_type_arch (type);
4306 unsigned len = TYPE_LENGTH (type);
4307 gdb_byte *buf = alloca (len);
4308 CORE_ADDR addr;
4309
4310 addr = value_address (value);
4311 gdbarch_address_to_pointer (gdbarch, type, buf, addr);
4312 addr = extract_unsigned_integer (buf, len, gdbarch_byte_order (gdbarch));
4313 return addr;
4314}
4315
14f9c5c9 4316
4c4b4cd2
PH
4317/* Push a descriptor of type TYPE for array value ARR on the stack at
4318 *SP, updating *SP to reflect the new descriptor. Return either
14f9c5c9 4319 an lvalue representing the new descriptor, or (if TYPE is a pointer-
4c4b4cd2
PH
4320 to-descriptor type rather than a descriptor type), a struct value *
4321 representing a pointer to this descriptor. */
14f9c5c9 4322
d2e4a39e 4323static struct value *
40bc484c 4324make_array_descriptor (struct type *type, struct value *arr)
14f9c5c9 4325{
d2e4a39e
AS
4326 struct type *bounds_type = desc_bounds_type (type);
4327 struct type *desc_type = desc_base_type (type);
4328 struct value *descriptor = allocate_value (desc_type);
4329 struct value *bounds = allocate_value (bounds_type);
14f9c5c9 4330 int i;
d2e4a39e 4331
0963b4bd
MS
4332 for (i = ada_array_arity (ada_check_typedef (value_type (arr)));
4333 i > 0; i -= 1)
14f9c5c9 4334 {
19f220c3
JK
4335 modify_field (value_type (bounds), value_contents_writeable (bounds),
4336 ada_array_bound (arr, i, 0),
4337 desc_bound_bitpos (bounds_type, i, 0),
4338 desc_bound_bitsize (bounds_type, i, 0));
4339 modify_field (value_type (bounds), value_contents_writeable (bounds),
4340 ada_array_bound (arr, i, 1),
4341 desc_bound_bitpos (bounds_type, i, 1),
4342 desc_bound_bitsize (bounds_type, i, 1));
14f9c5c9 4343 }
d2e4a39e 4344
40bc484c 4345 bounds = ensure_lval (bounds);
d2e4a39e 4346
19f220c3
JK
4347 modify_field (value_type (descriptor),
4348 value_contents_writeable (descriptor),
4349 value_pointer (ensure_lval (arr),
4350 TYPE_FIELD_TYPE (desc_type, 0)),
4351 fat_pntr_data_bitpos (desc_type),
4352 fat_pntr_data_bitsize (desc_type));
4353
4354 modify_field (value_type (descriptor),
4355 value_contents_writeable (descriptor),
4356 value_pointer (bounds,
4357 TYPE_FIELD_TYPE (desc_type, 1)),
4358 fat_pntr_bounds_bitpos (desc_type),
4359 fat_pntr_bounds_bitsize (desc_type));
14f9c5c9 4360
40bc484c 4361 descriptor = ensure_lval (descriptor);
14f9c5c9
AS
4362
4363 if (TYPE_CODE (type) == TYPE_CODE_PTR)
4364 return value_addr (descriptor);
4365 else
4366 return descriptor;
4367}
14f9c5c9 4368\f
3d9434b5
JB
4369 /* Symbol Cache Module */
4370
3d9434b5 4371/* Performance measurements made as of 2010-01-15 indicate that
ee01b665 4372 this cache does bring some noticeable improvements. Depending
3d9434b5
JB
4373 on the type of entity being printed, the cache can make it as much
4374 as an order of magnitude faster than without it.
4375
4376 The descriptive type DWARF extension has significantly reduced
4377 the need for this cache, at least when DWARF is being used. However,
4378 even in this case, some expensive name-based symbol searches are still
4379 sometimes necessary - to find an XVZ variable, mostly. */
4380
ee01b665 4381/* Initialize the contents of SYM_CACHE. */
3d9434b5 4382
ee01b665
JB
4383static void
4384ada_init_symbol_cache (struct ada_symbol_cache *sym_cache)
4385{
4386 obstack_init (&sym_cache->cache_space);
4387 memset (sym_cache->root, '\000', sizeof (sym_cache->root));
4388}
3d9434b5 4389
ee01b665
JB
4390/* Free the memory used by SYM_CACHE. */
4391
4392static void
4393ada_free_symbol_cache (struct ada_symbol_cache *sym_cache)
3d9434b5 4394{
ee01b665
JB
4395 obstack_free (&sym_cache->cache_space, NULL);
4396 xfree (sym_cache);
4397}
3d9434b5 4398
ee01b665
JB
4399/* Return the symbol cache associated to the given program space PSPACE.
4400 If not allocated for this PSPACE yet, allocate and initialize one. */
3d9434b5 4401
ee01b665
JB
4402static struct ada_symbol_cache *
4403ada_get_symbol_cache (struct program_space *pspace)
4404{
4405 struct ada_pspace_data *pspace_data = get_ada_pspace_data (pspace);
ee01b665 4406
66c168ae 4407 if (pspace_data->sym_cache == NULL)
ee01b665 4408 {
66c168ae
JB
4409 pspace_data->sym_cache = XCNEW (struct ada_symbol_cache);
4410 ada_init_symbol_cache (pspace_data->sym_cache);
ee01b665
JB
4411 }
4412
66c168ae 4413 return pspace_data->sym_cache;
ee01b665 4414}
3d9434b5
JB
4415
4416/* Clear all entries from the symbol cache. */
4417
4418static void
4419ada_clear_symbol_cache (void)
4420{
ee01b665
JB
4421 struct ada_symbol_cache *sym_cache
4422 = ada_get_symbol_cache (current_program_space);
4423
4424 obstack_free (&sym_cache->cache_space, NULL);
4425 ada_init_symbol_cache (sym_cache);
3d9434b5
JB
4426}
4427
fe978cb0 4428/* Search our cache for an entry matching NAME and DOMAIN.
3d9434b5
JB
4429 Return it if found, or NULL otherwise. */
4430
4431static struct cache_entry **
fe978cb0 4432find_entry (const char *name, domain_enum domain)
3d9434b5 4433{
ee01b665
JB
4434 struct ada_symbol_cache *sym_cache
4435 = ada_get_symbol_cache (current_program_space);
3d9434b5
JB
4436 int h = msymbol_hash (name) % HASH_SIZE;
4437 struct cache_entry **e;
4438
ee01b665 4439 for (e = &sym_cache->root[h]; *e != NULL; e = &(*e)->next)
3d9434b5 4440 {
fe978cb0 4441 if (domain == (*e)->domain && strcmp (name, (*e)->name) == 0)
3d9434b5
JB
4442 return e;
4443 }
4444 return NULL;
4445}
4446
fe978cb0 4447/* Search the symbol cache for an entry matching NAME and DOMAIN.
3d9434b5
JB
4448 Return 1 if found, 0 otherwise.
4449
4450 If an entry was found and SYM is not NULL, set *SYM to the entry's
4451 SYM. Same principle for BLOCK if not NULL. */
96d887e8 4452
96d887e8 4453static int
fe978cb0 4454lookup_cached_symbol (const char *name, domain_enum domain,
f0c5f9b2 4455 struct symbol **sym, const struct block **block)
96d887e8 4456{
fe978cb0 4457 struct cache_entry **e = find_entry (name, domain);
3d9434b5
JB
4458
4459 if (e == NULL)
4460 return 0;
4461 if (sym != NULL)
4462 *sym = (*e)->sym;
4463 if (block != NULL)
4464 *block = (*e)->block;
4465 return 1;
96d887e8
PH
4466}
4467
3d9434b5 4468/* Assuming that (SYM, BLOCK) is the result of the lookup of NAME
fe978cb0 4469 in domain DOMAIN, save this result in our symbol cache. */
3d9434b5 4470
96d887e8 4471static void
fe978cb0 4472cache_symbol (const char *name, domain_enum domain, struct symbol *sym,
270140bd 4473 const struct block *block)
96d887e8 4474{
ee01b665
JB
4475 struct ada_symbol_cache *sym_cache
4476 = ada_get_symbol_cache (current_program_space);
3d9434b5
JB
4477 int h;
4478 char *copy;
4479 struct cache_entry *e;
4480
1994afbf
DE
4481 /* Symbols for builtin types don't have a block.
4482 For now don't cache such symbols. */
4483 if (sym != NULL && !SYMBOL_OBJFILE_OWNED (sym))
4484 return;
4485
3d9434b5
JB
4486 /* If the symbol is a local symbol, then do not cache it, as a search
4487 for that symbol depends on the context. To determine whether
4488 the symbol is local or not, we check the block where we found it
4489 against the global and static blocks of its associated symtab. */
4490 if (sym
08be3fe3 4491 && BLOCKVECTOR_BLOCK (SYMTAB_BLOCKVECTOR (symbol_symtab (sym)),
439247b6 4492 GLOBAL_BLOCK) != block
08be3fe3 4493 && BLOCKVECTOR_BLOCK (SYMTAB_BLOCKVECTOR (symbol_symtab (sym)),
439247b6 4494 STATIC_BLOCK) != block)
3d9434b5
JB
4495 return;
4496
4497 h = msymbol_hash (name) % HASH_SIZE;
ee01b665
JB
4498 e = (struct cache_entry *) obstack_alloc (&sym_cache->cache_space,
4499 sizeof (*e));
4500 e->next = sym_cache->root[h];
4501 sym_cache->root[h] = e;
4502 e->name = copy = obstack_alloc (&sym_cache->cache_space, strlen (name) + 1);
3d9434b5
JB
4503 strcpy (copy, name);
4504 e->sym = sym;
fe978cb0 4505 e->domain = domain;
3d9434b5 4506 e->block = block;
96d887e8 4507}
4c4b4cd2
PH
4508\f
4509 /* Symbol Lookup */
4510
c0431670
JB
4511/* Return nonzero if wild matching should be used when searching for
4512 all symbols matching LOOKUP_NAME.
4513
4514 LOOKUP_NAME is expected to be a symbol name after transformation
4515 for Ada lookups (see ada_name_for_lookup). */
4516
4517static int
4518should_use_wild_match (const char *lookup_name)
4519{
4520 return (strstr (lookup_name, "__") == NULL);
4521}
4522
4c4b4cd2
PH
4523/* Return the result of a standard (literal, C-like) lookup of NAME in
4524 given DOMAIN, visible from lexical block BLOCK. */
4525
4526static struct symbol *
4527standard_lookup (const char *name, const struct block *block,
4528 domain_enum domain)
4529{
acbd605d
MGD
4530 /* Initialize it just to avoid a GCC false warning. */
4531 struct symbol *sym = NULL;
4c4b4cd2 4532
2570f2b7 4533 if (lookup_cached_symbol (name, domain, &sym, NULL))
4c4b4cd2 4534 return sym;
2570f2b7
UW
4535 sym = lookup_symbol_in_language (name, block, domain, language_c, 0);
4536 cache_symbol (name, domain, sym, block_found);
4c4b4cd2
PH
4537 return sym;
4538}
4539
4540
4541/* Non-zero iff there is at least one non-function/non-enumeral symbol
4542 in the symbol fields of SYMS[0..N-1]. We treat enumerals as functions,
4543 since they contend in overloading in the same way. */
4544static int
4545is_nonfunction (struct ada_symbol_info syms[], int n)
4546{
4547 int i;
4548
4549 for (i = 0; i < n; i += 1)
4550 if (TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) != TYPE_CODE_FUNC
4551 && (TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) != TYPE_CODE_ENUM
4552 || SYMBOL_CLASS (syms[i].sym) != LOC_CONST))
14f9c5c9
AS
4553 return 1;
4554
4555 return 0;
4556}
4557
4558/* If true (non-zero), then TYPE0 and TYPE1 represent equivalent
4c4b4cd2 4559 struct types. Otherwise, they may not. */
14f9c5c9
AS
4560
4561static int
d2e4a39e 4562equiv_types (struct type *type0, struct type *type1)
14f9c5c9 4563{
d2e4a39e 4564 if (type0 == type1)
14f9c5c9 4565 return 1;
d2e4a39e 4566 if (type0 == NULL || type1 == NULL
14f9c5c9
AS
4567 || TYPE_CODE (type0) != TYPE_CODE (type1))
4568 return 0;
d2e4a39e 4569 if ((TYPE_CODE (type0) == TYPE_CODE_STRUCT
14f9c5c9
AS
4570 || TYPE_CODE (type0) == TYPE_CODE_ENUM)
4571 && ada_type_name (type0) != NULL && ada_type_name (type1) != NULL
4c4b4cd2 4572 && strcmp (ada_type_name (type0), ada_type_name (type1)) == 0)
14f9c5c9 4573 return 1;
d2e4a39e 4574
14f9c5c9
AS
4575 return 0;
4576}
4577
4578/* True iff SYM0 represents the same entity as SYM1, or one that is
4c4b4cd2 4579 no more defined than that of SYM1. */
14f9c5c9
AS
4580
4581static int
d2e4a39e 4582lesseq_defined_than (struct symbol *sym0, struct symbol *sym1)
14f9c5c9
AS
4583{
4584 if (sym0 == sym1)
4585 return 1;
176620f1 4586 if (SYMBOL_DOMAIN (sym0) != SYMBOL_DOMAIN (sym1)
14f9c5c9
AS
4587 || SYMBOL_CLASS (sym0) != SYMBOL_CLASS (sym1))
4588 return 0;
4589
d2e4a39e 4590 switch (SYMBOL_CLASS (sym0))
14f9c5c9
AS
4591 {
4592 case LOC_UNDEF:
4593 return 1;
4594 case LOC_TYPEDEF:
4595 {
4c4b4cd2
PH
4596 struct type *type0 = SYMBOL_TYPE (sym0);
4597 struct type *type1 = SYMBOL_TYPE (sym1);
0d5cff50
DE
4598 const char *name0 = SYMBOL_LINKAGE_NAME (sym0);
4599 const char *name1 = SYMBOL_LINKAGE_NAME (sym1);
4c4b4cd2 4600 int len0 = strlen (name0);
5b4ee69b 4601
4c4b4cd2
PH
4602 return
4603 TYPE_CODE (type0) == TYPE_CODE (type1)
4604 && (equiv_types (type0, type1)
4605 || (len0 < strlen (name1) && strncmp (name0, name1, len0) == 0
61012eef 4606 && startswith (name1 + len0, "___XV")));
14f9c5c9
AS
4607 }
4608 case LOC_CONST:
4609 return SYMBOL_VALUE (sym0) == SYMBOL_VALUE (sym1)
4c4b4cd2 4610 && equiv_types (SYMBOL_TYPE (sym0), SYMBOL_TYPE (sym1));
d2e4a39e
AS
4611 default:
4612 return 0;
14f9c5c9
AS
4613 }
4614}
4615
4c4b4cd2
PH
4616/* Append (SYM,BLOCK,SYMTAB) to the end of the array of struct ada_symbol_info
4617 records in OBSTACKP. Do nothing if SYM is a duplicate. */
14f9c5c9
AS
4618
4619static void
76a01679
JB
4620add_defn_to_vec (struct obstack *obstackp,
4621 struct symbol *sym,
f0c5f9b2 4622 const struct block *block)
14f9c5c9
AS
4623{
4624 int i;
4c4b4cd2 4625 struct ada_symbol_info *prevDefns = defns_collected (obstackp, 0);
14f9c5c9 4626
529cad9c
PH
4627 /* Do not try to complete stub types, as the debugger is probably
4628 already scanning all symbols matching a certain name at the
4629 time when this function is called. Trying to replace the stub
4630 type by its associated full type will cause us to restart a scan
4631 which may lead to an infinite recursion. Instead, the client
4632 collecting the matching symbols will end up collecting several
4633 matches, with at least one of them complete. It can then filter
4634 out the stub ones if needed. */
4635
4c4b4cd2
PH
4636 for (i = num_defns_collected (obstackp) - 1; i >= 0; i -= 1)
4637 {
4638 if (lesseq_defined_than (sym, prevDefns[i].sym))
4639 return;
4640 else if (lesseq_defined_than (prevDefns[i].sym, sym))
4641 {
4642 prevDefns[i].sym = sym;
4643 prevDefns[i].block = block;
4c4b4cd2 4644 return;
76a01679 4645 }
4c4b4cd2
PH
4646 }
4647
4648 {
4649 struct ada_symbol_info info;
4650
4651 info.sym = sym;
4652 info.block = block;
4c4b4cd2
PH
4653 obstack_grow (obstackp, &info, sizeof (struct ada_symbol_info));
4654 }
4655}
4656
4657/* Number of ada_symbol_info structures currently collected in
4658 current vector in *OBSTACKP. */
4659
76a01679
JB
4660static int
4661num_defns_collected (struct obstack *obstackp)
4c4b4cd2
PH
4662{
4663 return obstack_object_size (obstackp) / sizeof (struct ada_symbol_info);
4664}
4665
4666/* Vector of ada_symbol_info structures currently collected in current
4667 vector in *OBSTACKP. If FINISH, close off the vector and return
4668 its final address. */
4669
76a01679 4670static struct ada_symbol_info *
4c4b4cd2
PH
4671defns_collected (struct obstack *obstackp, int finish)
4672{
4673 if (finish)
4674 return obstack_finish (obstackp);
4675 else
4676 return (struct ada_symbol_info *) obstack_base (obstackp);
4677}
4678
7c7b6655
TT
4679/* Return a bound minimal symbol matching NAME according to Ada
4680 decoding rules. Returns an invalid symbol if there is no such
4681 minimal symbol. Names prefixed with "standard__" are handled
4682 specially: "standard__" is first stripped off, and only static and
4683 global symbols are searched. */
4c4b4cd2 4684
7c7b6655 4685struct bound_minimal_symbol
96d887e8 4686ada_lookup_simple_minsym (const char *name)
4c4b4cd2 4687{
7c7b6655 4688 struct bound_minimal_symbol result;
4c4b4cd2 4689 struct objfile *objfile;
96d887e8 4690 struct minimal_symbol *msymbol;
dc4024cd 4691 const int wild_match_p = should_use_wild_match (name);
4c4b4cd2 4692
7c7b6655
TT
4693 memset (&result, 0, sizeof (result));
4694
c0431670
JB
4695 /* Special case: If the user specifies a symbol name inside package
4696 Standard, do a non-wild matching of the symbol name without
4697 the "standard__" prefix. This was primarily introduced in order
4698 to allow the user to specifically access the standard exceptions
4699 using, for instance, Standard.Constraint_Error when Constraint_Error
4700 is ambiguous (due to the user defining its own Constraint_Error
4701 entity inside its program). */
61012eef 4702 if (startswith (name, "standard__"))
c0431670 4703 name += sizeof ("standard__") - 1;
4c4b4cd2 4704
96d887e8
PH
4705 ALL_MSYMBOLS (objfile, msymbol)
4706 {
efd66ac6 4707 if (match_name (MSYMBOL_LINKAGE_NAME (msymbol), name, wild_match_p)
96d887e8 4708 && MSYMBOL_TYPE (msymbol) != mst_solib_trampoline)
7c7b6655
TT
4709 {
4710 result.minsym = msymbol;
4711 result.objfile = objfile;
4712 break;
4713 }
96d887e8 4714 }
4c4b4cd2 4715
7c7b6655 4716 return result;
96d887e8 4717}
4c4b4cd2 4718
96d887e8
PH
4719/* For all subprograms that statically enclose the subprogram of the
4720 selected frame, add symbols matching identifier NAME in DOMAIN
4721 and their blocks to the list of data in OBSTACKP, as for
48b78332
JB
4722 ada_add_block_symbols (q.v.). If WILD_MATCH_P, treat as NAME
4723 with a wildcard prefix. */
4c4b4cd2 4724
96d887e8
PH
4725static void
4726add_symbols_from_enclosing_procs (struct obstack *obstackp,
fe978cb0 4727 const char *name, domain_enum domain,
48b78332 4728 int wild_match_p)
96d887e8 4729{
96d887e8 4730}
14f9c5c9 4731
96d887e8
PH
4732/* True if TYPE is definitely an artificial type supplied to a symbol
4733 for which no debugging information was given in the symbol file. */
14f9c5c9 4734
96d887e8
PH
4735static int
4736is_nondebugging_type (struct type *type)
4737{
0d5cff50 4738 const char *name = ada_type_name (type);
5b4ee69b 4739
96d887e8
PH
4740 return (name != NULL && strcmp (name, "<variable, no debug info>") == 0);
4741}
4c4b4cd2 4742
8f17729f
JB
4743/* Return nonzero if TYPE1 and TYPE2 are two enumeration types
4744 that are deemed "identical" for practical purposes.
4745
4746 This function assumes that TYPE1 and TYPE2 are both TYPE_CODE_ENUM
4747 types and that their number of enumerals is identical (in other
4748 words, TYPE_NFIELDS (type1) == TYPE_NFIELDS (type2)). */
4749
4750static int
4751ada_identical_enum_types_p (struct type *type1, struct type *type2)
4752{
4753 int i;
4754
4755 /* The heuristic we use here is fairly conservative. We consider
4756 that 2 enumerate types are identical if they have the same
4757 number of enumerals and that all enumerals have the same
4758 underlying value and name. */
4759
4760 /* All enums in the type should have an identical underlying value. */
4761 for (i = 0; i < TYPE_NFIELDS (type1); i++)
14e75d8e 4762 if (TYPE_FIELD_ENUMVAL (type1, i) != TYPE_FIELD_ENUMVAL (type2, i))
8f17729f
JB
4763 return 0;
4764
4765 /* All enumerals should also have the same name (modulo any numerical
4766 suffix). */
4767 for (i = 0; i < TYPE_NFIELDS (type1); i++)
4768 {
0d5cff50
DE
4769 const char *name_1 = TYPE_FIELD_NAME (type1, i);
4770 const char *name_2 = TYPE_FIELD_NAME (type2, i);
8f17729f
JB
4771 int len_1 = strlen (name_1);
4772 int len_2 = strlen (name_2);
4773
4774 ada_remove_trailing_digits (TYPE_FIELD_NAME (type1, i), &len_1);
4775 ada_remove_trailing_digits (TYPE_FIELD_NAME (type2, i), &len_2);
4776 if (len_1 != len_2
4777 || strncmp (TYPE_FIELD_NAME (type1, i),
4778 TYPE_FIELD_NAME (type2, i),
4779 len_1) != 0)
4780 return 0;
4781 }
4782
4783 return 1;
4784}
4785
4786/* Return nonzero if all the symbols in SYMS are all enumeral symbols
4787 that are deemed "identical" for practical purposes. Sometimes,
4788 enumerals are not strictly identical, but their types are so similar
4789 that they can be considered identical.
4790
4791 For instance, consider the following code:
4792
4793 type Color is (Black, Red, Green, Blue, White);
4794 type RGB_Color is new Color range Red .. Blue;
4795
4796 Type RGB_Color is a subrange of an implicit type which is a copy
4797 of type Color. If we call that implicit type RGB_ColorB ("B" is
4798 for "Base Type"), then type RGB_ColorB is a copy of type Color.
4799 As a result, when an expression references any of the enumeral
4800 by name (Eg. "print green"), the expression is technically
4801 ambiguous and the user should be asked to disambiguate. But
4802 doing so would only hinder the user, since it wouldn't matter
4803 what choice he makes, the outcome would always be the same.
4804 So, for practical purposes, we consider them as the same. */
4805
4806static int
4807symbols_are_identical_enums (struct ada_symbol_info *syms, int nsyms)
4808{
4809 int i;
4810
4811 /* Before performing a thorough comparison check of each type,
4812 we perform a series of inexpensive checks. We expect that these
4813 checks will quickly fail in the vast majority of cases, and thus
4814 help prevent the unnecessary use of a more expensive comparison.
4815 Said comparison also expects us to make some of these checks
4816 (see ada_identical_enum_types_p). */
4817
4818 /* Quick check: All symbols should have an enum type. */
4819 for (i = 0; i < nsyms; i++)
4820 if (TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) != TYPE_CODE_ENUM)
4821 return 0;
4822
4823 /* Quick check: They should all have the same value. */
4824 for (i = 1; i < nsyms; i++)
4825 if (SYMBOL_VALUE (syms[i].sym) != SYMBOL_VALUE (syms[0].sym))
4826 return 0;
4827
4828 /* Quick check: They should all have the same number of enumerals. */
4829 for (i = 1; i < nsyms; i++)
4830 if (TYPE_NFIELDS (SYMBOL_TYPE (syms[i].sym))
4831 != TYPE_NFIELDS (SYMBOL_TYPE (syms[0].sym)))
4832 return 0;
4833
4834 /* All the sanity checks passed, so we might have a set of
4835 identical enumeration types. Perform a more complete
4836 comparison of the type of each symbol. */
4837 for (i = 1; i < nsyms; i++)
4838 if (!ada_identical_enum_types_p (SYMBOL_TYPE (syms[i].sym),
4839 SYMBOL_TYPE (syms[0].sym)))
4840 return 0;
4841
4842 return 1;
4843}
4844
96d887e8
PH
4845/* Remove any non-debugging symbols in SYMS[0 .. NSYMS-1] that definitely
4846 duplicate other symbols in the list (The only case I know of where
4847 this happens is when object files containing stabs-in-ecoff are
4848 linked with files containing ordinary ecoff debugging symbols (or no
4849 debugging symbols)). Modifies SYMS to squeeze out deleted entries.
4850 Returns the number of items in the modified list. */
4c4b4cd2 4851
96d887e8
PH
4852static int
4853remove_extra_symbols (struct ada_symbol_info *syms, int nsyms)
4854{
4855 int i, j;
4c4b4cd2 4856
8f17729f
JB
4857 /* We should never be called with less than 2 symbols, as there
4858 cannot be any extra symbol in that case. But it's easy to
4859 handle, since we have nothing to do in that case. */
4860 if (nsyms < 2)
4861 return nsyms;
4862
96d887e8
PH
4863 i = 0;
4864 while (i < nsyms)
4865 {
a35ddb44 4866 int remove_p = 0;
339c13b6
JB
4867
4868 /* If two symbols have the same name and one of them is a stub type,
4869 the get rid of the stub. */
4870
4871 if (TYPE_STUB (SYMBOL_TYPE (syms[i].sym))
4872 && SYMBOL_LINKAGE_NAME (syms[i].sym) != NULL)
4873 {
4874 for (j = 0; j < nsyms; j++)
4875 {
4876 if (j != i
4877 && !TYPE_STUB (SYMBOL_TYPE (syms[j].sym))
4878 && SYMBOL_LINKAGE_NAME (syms[j].sym) != NULL
4879 && strcmp (SYMBOL_LINKAGE_NAME (syms[i].sym),
4880 SYMBOL_LINKAGE_NAME (syms[j].sym)) == 0)
a35ddb44 4881 remove_p = 1;
339c13b6
JB
4882 }
4883 }
4884
4885 /* Two symbols with the same name, same class and same address
4886 should be identical. */
4887
4888 else if (SYMBOL_LINKAGE_NAME (syms[i].sym) != NULL
96d887e8
PH
4889 && SYMBOL_CLASS (syms[i].sym) == LOC_STATIC
4890 && is_nondebugging_type (SYMBOL_TYPE (syms[i].sym)))
4891 {
4892 for (j = 0; j < nsyms; j += 1)
4893 {
4894 if (i != j
4895 && SYMBOL_LINKAGE_NAME (syms[j].sym) != NULL
4896 && strcmp (SYMBOL_LINKAGE_NAME (syms[i].sym),
76a01679 4897 SYMBOL_LINKAGE_NAME (syms[j].sym)) == 0
96d887e8
PH
4898 && SYMBOL_CLASS (syms[i].sym) == SYMBOL_CLASS (syms[j].sym)
4899 && SYMBOL_VALUE_ADDRESS (syms[i].sym)
4900 == SYMBOL_VALUE_ADDRESS (syms[j].sym))
a35ddb44 4901 remove_p = 1;
4c4b4cd2 4902 }
4c4b4cd2 4903 }
339c13b6 4904
a35ddb44 4905 if (remove_p)
339c13b6
JB
4906 {
4907 for (j = i + 1; j < nsyms; j += 1)
4908 syms[j - 1] = syms[j];
4909 nsyms -= 1;
4910 }
4911
96d887e8 4912 i += 1;
14f9c5c9 4913 }
8f17729f
JB
4914
4915 /* If all the remaining symbols are identical enumerals, then
4916 just keep the first one and discard the rest.
4917
4918 Unlike what we did previously, we do not discard any entry
4919 unless they are ALL identical. This is because the symbol
4920 comparison is not a strict comparison, but rather a practical
4921 comparison. If all symbols are considered identical, then
4922 we can just go ahead and use the first one and discard the rest.
4923 But if we cannot reduce the list to a single element, we have
4924 to ask the user to disambiguate anyways. And if we have to
4925 present a multiple-choice menu, it's less confusing if the list
4926 isn't missing some choices that were identical and yet distinct. */
4927 if (symbols_are_identical_enums (syms, nsyms))
4928 nsyms = 1;
4929
96d887e8 4930 return nsyms;
14f9c5c9
AS
4931}
4932
96d887e8
PH
4933/* Given a type that corresponds to a renaming entity, use the type name
4934 to extract the scope (package name or function name, fully qualified,
4935 and following the GNAT encoding convention) where this renaming has been
4936 defined. The string returned needs to be deallocated after use. */
4c4b4cd2 4937
96d887e8
PH
4938static char *
4939xget_renaming_scope (struct type *renaming_type)
14f9c5c9 4940{
96d887e8 4941 /* The renaming types adhere to the following convention:
0963b4bd 4942 <scope>__<rename>___<XR extension>.
96d887e8
PH
4943 So, to extract the scope, we search for the "___XR" extension,
4944 and then backtrack until we find the first "__". */
76a01679 4945
96d887e8
PH
4946 const char *name = type_name_no_tag (renaming_type);
4947 char *suffix = strstr (name, "___XR");
4948 char *last;
4949 int scope_len;
4950 char *scope;
14f9c5c9 4951
96d887e8
PH
4952 /* Now, backtrack a bit until we find the first "__". Start looking
4953 at suffix - 3, as the <rename> part is at least one character long. */
14f9c5c9 4954
96d887e8
PH
4955 for (last = suffix - 3; last > name; last--)
4956 if (last[0] == '_' && last[1] == '_')
4957 break;
76a01679 4958
96d887e8 4959 /* Make a copy of scope and return it. */
14f9c5c9 4960
96d887e8
PH
4961 scope_len = last - name;
4962 scope = (char *) xmalloc ((scope_len + 1) * sizeof (char));
14f9c5c9 4963
96d887e8
PH
4964 strncpy (scope, name, scope_len);
4965 scope[scope_len] = '\0';
4c4b4cd2 4966
96d887e8 4967 return scope;
4c4b4cd2
PH
4968}
4969
96d887e8 4970/* Return nonzero if NAME corresponds to a package name. */
4c4b4cd2 4971
96d887e8
PH
4972static int
4973is_package_name (const char *name)
4c4b4cd2 4974{
96d887e8
PH
4975 /* Here, We take advantage of the fact that no symbols are generated
4976 for packages, while symbols are generated for each function.
4977 So the condition for NAME represent a package becomes equivalent
4978 to NAME not existing in our list of symbols. There is only one
4979 small complication with library-level functions (see below). */
4c4b4cd2 4980
96d887e8 4981 char *fun_name;
76a01679 4982
96d887e8
PH
4983 /* If it is a function that has not been defined at library level,
4984 then we should be able to look it up in the symbols. */
4985 if (standard_lookup (name, NULL, VAR_DOMAIN) != NULL)
4986 return 0;
14f9c5c9 4987
96d887e8
PH
4988 /* Library-level function names start with "_ada_". See if function
4989 "_ada_" followed by NAME can be found. */
14f9c5c9 4990
96d887e8 4991 /* Do a quick check that NAME does not contain "__", since library-level
e1d5a0d2 4992 functions names cannot contain "__" in them. */
96d887e8
PH
4993 if (strstr (name, "__") != NULL)
4994 return 0;
4c4b4cd2 4995
b435e160 4996 fun_name = xstrprintf ("_ada_%s", name);
14f9c5c9 4997
96d887e8
PH
4998 return (standard_lookup (fun_name, NULL, VAR_DOMAIN) == NULL);
4999}
14f9c5c9 5000
96d887e8 5001/* Return nonzero if SYM corresponds to a renaming entity that is
aeb5907d 5002 not visible from FUNCTION_NAME. */
14f9c5c9 5003
96d887e8 5004static int
0d5cff50 5005old_renaming_is_invisible (const struct symbol *sym, const char *function_name)
96d887e8 5006{
aeb5907d 5007 char *scope;
1509e573 5008 struct cleanup *old_chain;
aeb5907d
JB
5009
5010 if (SYMBOL_CLASS (sym) != LOC_TYPEDEF)
5011 return 0;
5012
5013 scope = xget_renaming_scope (SYMBOL_TYPE (sym));
1509e573 5014 old_chain = make_cleanup (xfree, scope);
14f9c5c9 5015
96d887e8
PH
5016 /* If the rename has been defined in a package, then it is visible. */
5017 if (is_package_name (scope))
1509e573
JB
5018 {
5019 do_cleanups (old_chain);
5020 return 0;
5021 }
14f9c5c9 5022
96d887e8
PH
5023 /* Check that the rename is in the current function scope by checking
5024 that its name starts with SCOPE. */
76a01679 5025
96d887e8
PH
5026 /* If the function name starts with "_ada_", it means that it is
5027 a library-level function. Strip this prefix before doing the
5028 comparison, as the encoding for the renaming does not contain
5029 this prefix. */
61012eef 5030 if (startswith (function_name, "_ada_"))
96d887e8 5031 function_name += 5;
f26caa11 5032
1509e573 5033 {
61012eef 5034 int is_invisible = !startswith (function_name, scope);
1509e573
JB
5035
5036 do_cleanups (old_chain);
5037 return is_invisible;
5038 }
f26caa11
PH
5039}
5040
aeb5907d
JB
5041/* Remove entries from SYMS that corresponds to a renaming entity that
5042 is not visible from the function associated with CURRENT_BLOCK or
5043 that is superfluous due to the presence of more specific renaming
5044 information. Places surviving symbols in the initial entries of
5045 SYMS and returns the number of surviving symbols.
96d887e8
PH
5046
5047 Rationale:
aeb5907d
JB
5048 First, in cases where an object renaming is implemented as a
5049 reference variable, GNAT may produce both the actual reference
5050 variable and the renaming encoding. In this case, we discard the
5051 latter.
5052
5053 Second, GNAT emits a type following a specified encoding for each renaming
96d887e8
PH
5054 entity. Unfortunately, STABS currently does not support the definition
5055 of types that are local to a given lexical block, so all renamings types
5056 are emitted at library level. As a consequence, if an application
5057 contains two renaming entities using the same name, and a user tries to
5058 print the value of one of these entities, the result of the ada symbol
5059 lookup will also contain the wrong renaming type.
f26caa11 5060
96d887e8
PH
5061 This function partially covers for this limitation by attempting to
5062 remove from the SYMS list renaming symbols that should be visible
5063 from CURRENT_BLOCK. However, there does not seem be a 100% reliable
5064 method with the current information available. The implementation
5065 below has a couple of limitations (FIXME: brobecker-2003-05-12):
5066
5067 - When the user tries to print a rename in a function while there
5068 is another rename entity defined in a package: Normally, the
5069 rename in the function has precedence over the rename in the
5070 package, so the latter should be removed from the list. This is
5071 currently not the case.
5072
5073 - This function will incorrectly remove valid renames if
5074 the CURRENT_BLOCK corresponds to a function which symbol name
5075 has been changed by an "Export" pragma. As a consequence,
5076 the user will be unable to print such rename entities. */
4c4b4cd2 5077
14f9c5c9 5078static int
aeb5907d
JB
5079remove_irrelevant_renamings (struct ada_symbol_info *syms,
5080 int nsyms, const struct block *current_block)
4c4b4cd2
PH
5081{
5082 struct symbol *current_function;
0d5cff50 5083 const char *current_function_name;
4c4b4cd2 5084 int i;
aeb5907d
JB
5085 int is_new_style_renaming;
5086
5087 /* If there is both a renaming foo___XR... encoded as a variable and
5088 a simple variable foo in the same block, discard the latter.
0963b4bd 5089 First, zero out such symbols, then compress. */
aeb5907d
JB
5090 is_new_style_renaming = 0;
5091 for (i = 0; i < nsyms; i += 1)
5092 {
5093 struct symbol *sym = syms[i].sym;
270140bd 5094 const struct block *block = syms[i].block;
aeb5907d
JB
5095 const char *name;
5096 const char *suffix;
5097
5098 if (sym == NULL || SYMBOL_CLASS (sym) == LOC_TYPEDEF)
5099 continue;
5100 name = SYMBOL_LINKAGE_NAME (sym);
5101 suffix = strstr (name, "___XR");
5102
5103 if (suffix != NULL)
5104 {
5105 int name_len = suffix - name;
5106 int j;
5b4ee69b 5107
aeb5907d
JB
5108 is_new_style_renaming = 1;
5109 for (j = 0; j < nsyms; j += 1)
5110 if (i != j && syms[j].sym != NULL
5111 && strncmp (name, SYMBOL_LINKAGE_NAME (syms[j].sym),
5112 name_len) == 0
5113 && block == syms[j].block)
5114 syms[j].sym = NULL;
5115 }
5116 }
5117 if (is_new_style_renaming)
5118 {
5119 int j, k;
5120
5121 for (j = k = 0; j < nsyms; j += 1)
5122 if (syms[j].sym != NULL)
5123 {
5124 syms[k] = syms[j];
5125 k += 1;
5126 }
5127 return k;
5128 }
4c4b4cd2
PH
5129
5130 /* Extract the function name associated to CURRENT_BLOCK.
5131 Abort if unable to do so. */
76a01679 5132
4c4b4cd2
PH
5133 if (current_block == NULL)
5134 return nsyms;
76a01679 5135
7f0df278 5136 current_function = block_linkage_function (current_block);
4c4b4cd2
PH
5137 if (current_function == NULL)
5138 return nsyms;
5139
5140 current_function_name = SYMBOL_LINKAGE_NAME (current_function);
5141 if (current_function_name == NULL)
5142 return nsyms;
5143
5144 /* Check each of the symbols, and remove it from the list if it is
5145 a type corresponding to a renaming that is out of the scope of
5146 the current block. */
5147
5148 i = 0;
5149 while (i < nsyms)
5150 {
aeb5907d
JB
5151 if (ada_parse_renaming (syms[i].sym, NULL, NULL, NULL)
5152 == ADA_OBJECT_RENAMING
5153 && old_renaming_is_invisible (syms[i].sym, current_function_name))
4c4b4cd2
PH
5154 {
5155 int j;
5b4ee69b 5156
aeb5907d 5157 for (j = i + 1; j < nsyms; j += 1)
76a01679 5158 syms[j - 1] = syms[j];
4c4b4cd2
PH
5159 nsyms -= 1;
5160 }
5161 else
5162 i += 1;
5163 }
5164
5165 return nsyms;
5166}
5167
339c13b6
JB
5168/* Add to OBSTACKP all symbols from BLOCK (and its super-blocks)
5169 whose name and domain match NAME and DOMAIN respectively.
5170 If no match was found, then extend the search to "enclosing"
5171 routines (in other words, if we're inside a nested function,
5172 search the symbols defined inside the enclosing functions).
d0a8ab18
JB
5173 If WILD_MATCH_P is nonzero, perform the naming matching in
5174 "wild" mode (see function "wild_match" for more info).
339c13b6
JB
5175
5176 Note: This function assumes that OBSTACKP has 0 (zero) element in it. */
5177
5178static void
5179ada_add_local_symbols (struct obstack *obstackp, const char *name,
f0c5f9b2 5180 const struct block *block, domain_enum domain,
d0a8ab18 5181 int wild_match_p)
339c13b6
JB
5182{
5183 int block_depth = 0;
5184
5185 while (block != NULL)
5186 {
5187 block_depth += 1;
d0a8ab18
JB
5188 ada_add_block_symbols (obstackp, block, name, domain, NULL,
5189 wild_match_p);
339c13b6
JB
5190
5191 /* If we found a non-function match, assume that's the one. */
5192 if (is_nonfunction (defns_collected (obstackp, 0),
5193 num_defns_collected (obstackp)))
5194 return;
5195
5196 block = BLOCK_SUPERBLOCK (block);
5197 }
5198
5199 /* If no luck so far, try to find NAME as a local symbol in some lexically
5200 enclosing subprogram. */
5201 if (num_defns_collected (obstackp) == 0 && block_depth > 2)
d0a8ab18 5202 add_symbols_from_enclosing_procs (obstackp, name, domain, wild_match_p);
339c13b6
JB
5203}
5204
ccefe4c4 5205/* An object of this type is used as the user_data argument when
40658b94 5206 calling the map_matching_symbols method. */
ccefe4c4 5207
40658b94 5208struct match_data
ccefe4c4 5209{
40658b94 5210 struct objfile *objfile;
ccefe4c4 5211 struct obstack *obstackp;
40658b94
PH
5212 struct symbol *arg_sym;
5213 int found_sym;
ccefe4c4
TT
5214};
5215
40658b94
PH
5216/* A callback for add_matching_symbols that adds SYM, found in BLOCK,
5217 to a list of symbols. DATA0 is a pointer to a struct match_data *
5218 containing the obstack that collects the symbol list, the file that SYM
5219 must come from, a flag indicating whether a non-argument symbol has
5220 been found in the current block, and the last argument symbol
5221 passed in SYM within the current block (if any). When SYM is null,
5222 marking the end of a block, the argument symbol is added if no
5223 other has been found. */
ccefe4c4 5224
40658b94
PH
5225static int
5226aux_add_nonlocal_symbols (struct block *block, struct symbol *sym, void *data0)
ccefe4c4 5227{
40658b94
PH
5228 struct match_data *data = (struct match_data *) data0;
5229
5230 if (sym == NULL)
5231 {
5232 if (!data->found_sym && data->arg_sym != NULL)
5233 add_defn_to_vec (data->obstackp,
5234 fixup_symbol_section (data->arg_sym, data->objfile),
5235 block);
5236 data->found_sym = 0;
5237 data->arg_sym = NULL;
5238 }
5239 else
5240 {
5241 if (SYMBOL_CLASS (sym) == LOC_UNRESOLVED)
5242 return 0;
5243 else if (SYMBOL_IS_ARGUMENT (sym))
5244 data->arg_sym = sym;
5245 else
5246 {
5247 data->found_sym = 1;
5248 add_defn_to_vec (data->obstackp,
5249 fixup_symbol_section (sym, data->objfile),
5250 block);
5251 }
5252 }
5253 return 0;
5254}
5255
db230ce3
JB
5256/* Implements compare_names, but only applying the comparision using
5257 the given CASING. */
5b4ee69b 5258
40658b94 5259static int
db230ce3
JB
5260compare_names_with_case (const char *string1, const char *string2,
5261 enum case_sensitivity casing)
40658b94
PH
5262{
5263 while (*string1 != '\0' && *string2 != '\0')
5264 {
db230ce3
JB
5265 char c1, c2;
5266
40658b94
PH
5267 if (isspace (*string1) || isspace (*string2))
5268 return strcmp_iw_ordered (string1, string2);
db230ce3
JB
5269
5270 if (casing == case_sensitive_off)
5271 {
5272 c1 = tolower (*string1);
5273 c2 = tolower (*string2);
5274 }
5275 else
5276 {
5277 c1 = *string1;
5278 c2 = *string2;
5279 }
5280 if (c1 != c2)
40658b94 5281 break;
db230ce3 5282
40658b94
PH
5283 string1 += 1;
5284 string2 += 1;
5285 }
db230ce3 5286
40658b94
PH
5287 switch (*string1)
5288 {
5289 case '(':
5290 return strcmp_iw_ordered (string1, string2);
5291 case '_':
5292 if (*string2 == '\0')
5293 {
052874e8 5294 if (is_name_suffix (string1))
40658b94
PH
5295 return 0;
5296 else
1a1d5513 5297 return 1;
40658b94 5298 }
dbb8534f 5299 /* FALLTHROUGH */
40658b94
PH
5300 default:
5301 if (*string2 == '(')
5302 return strcmp_iw_ordered (string1, string2);
5303 else
db230ce3
JB
5304 {
5305 if (casing == case_sensitive_off)
5306 return tolower (*string1) - tolower (*string2);
5307 else
5308 return *string1 - *string2;
5309 }
40658b94 5310 }
ccefe4c4
TT
5311}
5312
db230ce3
JB
5313/* Compare STRING1 to STRING2, with results as for strcmp.
5314 Compatible with strcmp_iw_ordered in that...
5315
5316 strcmp_iw_ordered (STRING1, STRING2) <= 0
5317
5318 ... implies...
5319
5320 compare_names (STRING1, STRING2) <= 0
5321
5322 (they may differ as to what symbols compare equal). */
5323
5324static int
5325compare_names (const char *string1, const char *string2)
5326{
5327 int result;
5328
5329 /* Similar to what strcmp_iw_ordered does, we need to perform
5330 a case-insensitive comparison first, and only resort to
5331 a second, case-sensitive, comparison if the first one was
5332 not sufficient to differentiate the two strings. */
5333
5334 result = compare_names_with_case (string1, string2, case_sensitive_off);
5335 if (result == 0)
5336 result = compare_names_with_case (string1, string2, case_sensitive_on);
5337
5338 return result;
5339}
5340
339c13b6
JB
5341/* Add to OBSTACKP all non-local symbols whose name and domain match
5342 NAME and DOMAIN respectively. The search is performed on GLOBAL_BLOCK
5343 symbols if GLOBAL is non-zero, or on STATIC_BLOCK symbols otherwise. */
5344
5345static void
40658b94
PH
5346add_nonlocal_symbols (struct obstack *obstackp, const char *name,
5347 domain_enum domain, int global,
5348 int is_wild_match)
339c13b6
JB
5349{
5350 struct objfile *objfile;
40658b94 5351 struct match_data data;
339c13b6 5352
6475f2fe 5353 memset (&data, 0, sizeof data);
ccefe4c4 5354 data.obstackp = obstackp;
339c13b6 5355
ccefe4c4 5356 ALL_OBJFILES (objfile)
40658b94
PH
5357 {
5358 data.objfile = objfile;
5359
5360 if (is_wild_match)
4186eb54
KS
5361 objfile->sf->qf->map_matching_symbols (objfile, name, domain, global,
5362 aux_add_nonlocal_symbols, &data,
5363 wild_match, NULL);
40658b94 5364 else
4186eb54
KS
5365 objfile->sf->qf->map_matching_symbols (objfile, name, domain, global,
5366 aux_add_nonlocal_symbols, &data,
5367 full_match, compare_names);
40658b94
PH
5368 }
5369
5370 if (num_defns_collected (obstackp) == 0 && global && !is_wild_match)
5371 {
5372 ALL_OBJFILES (objfile)
5373 {
5374 char *name1 = alloca (strlen (name) + sizeof ("_ada_"));
5375 strcpy (name1, "_ada_");
5376 strcpy (name1 + sizeof ("_ada_") - 1, name);
5377 data.objfile = objfile;
ade7ed9e
DE
5378 objfile->sf->qf->map_matching_symbols (objfile, name1, domain,
5379 global,
0963b4bd
MS
5380 aux_add_nonlocal_symbols,
5381 &data,
40658b94
PH
5382 full_match, compare_names);
5383 }
5384 }
339c13b6
JB
5385}
5386
4eeaa230
DE
5387/* Find symbols in DOMAIN matching NAME0, in BLOCK0 and, if full_search is
5388 non-zero, enclosing scope and in global scopes, returning the number of
5389 matches.
9f88c959 5390 Sets *RESULTS to point to a vector of (SYM,BLOCK) tuples,
4c4b4cd2 5391 indicating the symbols found and the blocks and symbol tables (if
4eeaa230
DE
5392 any) in which they were found. This vector is transient---good only to
5393 the next call of ada_lookup_symbol_list.
5394
5395 When full_search is non-zero, any non-function/non-enumeral
4c4b4cd2
PH
5396 symbol match within the nest of blocks whose innermost member is BLOCK0,
5397 is the one match returned (no other matches in that or
d9680e73 5398 enclosing blocks is returned). If there are any matches in or
4eeaa230
DE
5399 surrounding BLOCK0, then these alone are returned.
5400
9f88c959 5401 Names prefixed with "standard__" are handled specially: "standard__"
4c4b4cd2 5402 is first stripped off, and only static and global symbols are searched. */
14f9c5c9 5403
4eeaa230
DE
5404static int
5405ada_lookup_symbol_list_worker (const char *name0, const struct block *block0,
fe978cb0 5406 domain_enum domain,
4eeaa230
DE
5407 struct ada_symbol_info **results,
5408 int full_search)
14f9c5c9
AS
5409{
5410 struct symbol *sym;
f0c5f9b2 5411 const struct block *block;
4c4b4cd2 5412 const char *name;
82ccd55e 5413 const int wild_match_p = should_use_wild_match (name0);
b1eedac9 5414 int syms_from_global_search = 0;
4c4b4cd2 5415 int ndefns;
14f9c5c9 5416
4c4b4cd2
PH
5417 obstack_free (&symbol_list_obstack, NULL);
5418 obstack_init (&symbol_list_obstack);
14f9c5c9 5419
14f9c5c9
AS
5420 /* Search specified block and its superiors. */
5421
4c4b4cd2 5422 name = name0;
f0c5f9b2 5423 block = block0;
339c13b6
JB
5424
5425 /* Special case: If the user specifies a symbol name inside package
5426 Standard, do a non-wild matching of the symbol name without
5427 the "standard__" prefix. This was primarily introduced in order
5428 to allow the user to specifically access the standard exceptions
5429 using, for instance, Standard.Constraint_Error when Constraint_Error
5430 is ambiguous (due to the user defining its own Constraint_Error
5431 entity inside its program). */
61012eef 5432 if (startswith (name0, "standard__"))
4c4b4cd2 5433 {
4c4b4cd2
PH
5434 block = NULL;
5435 name = name0 + sizeof ("standard__") - 1;
5436 }
5437
339c13b6 5438 /* Check the non-global symbols. If we have ANY match, then we're done. */
14f9c5c9 5439
4eeaa230
DE
5440 if (block != NULL)
5441 {
5442 if (full_search)
5443 {
5444 ada_add_local_symbols (&symbol_list_obstack, name, block,
fe978cb0 5445 domain, wild_match_p);
4eeaa230
DE
5446 }
5447 else
5448 {
5449 /* In the !full_search case we're are being called by
5450 ada_iterate_over_symbols, and we don't want to search
5451 superblocks. */
5452 ada_add_block_symbols (&symbol_list_obstack, block, name,
fe978cb0 5453 domain, NULL, wild_match_p);
4eeaa230
DE
5454 }
5455 if (num_defns_collected (&symbol_list_obstack) > 0 || !full_search)
5456 goto done;
5457 }
d2e4a39e 5458
339c13b6
JB
5459 /* No non-global symbols found. Check our cache to see if we have
5460 already performed this search before. If we have, then return
5461 the same result. */
5462
fe978cb0 5463 if (lookup_cached_symbol (name0, domain, &sym, &block))
4c4b4cd2
PH
5464 {
5465 if (sym != NULL)
2570f2b7 5466 add_defn_to_vec (&symbol_list_obstack, sym, block);
4c4b4cd2
PH
5467 goto done;
5468 }
14f9c5c9 5469
b1eedac9
JB
5470 syms_from_global_search = 1;
5471
339c13b6
JB
5472 /* Search symbols from all global blocks. */
5473
fe978cb0 5474 add_nonlocal_symbols (&symbol_list_obstack, name, domain, 1,
82ccd55e 5475 wild_match_p);
d2e4a39e 5476
4c4b4cd2 5477 /* Now add symbols from all per-file blocks if we've gotten no hits
339c13b6 5478 (not strictly correct, but perhaps better than an error). */
d2e4a39e 5479
4c4b4cd2 5480 if (num_defns_collected (&symbol_list_obstack) == 0)
fe978cb0 5481 add_nonlocal_symbols (&symbol_list_obstack, name, domain, 0,
82ccd55e 5482 wild_match_p);
14f9c5c9 5483
4c4b4cd2
PH
5484done:
5485 ndefns = num_defns_collected (&symbol_list_obstack);
5486 *results = defns_collected (&symbol_list_obstack, 1);
5487
5488 ndefns = remove_extra_symbols (*results, ndefns);
5489
b1eedac9 5490 if (ndefns == 0 && full_search && syms_from_global_search)
fe978cb0 5491 cache_symbol (name0, domain, NULL, NULL);
14f9c5c9 5492
b1eedac9 5493 if (ndefns == 1 && full_search && syms_from_global_search)
fe978cb0 5494 cache_symbol (name0, domain, (*results)[0].sym, (*results)[0].block);
14f9c5c9 5495
aeb5907d 5496 ndefns = remove_irrelevant_renamings (*results, ndefns, block0);
14f9c5c9 5497
14f9c5c9
AS
5498 return ndefns;
5499}
5500
4eeaa230
DE
5501/* Find symbols in DOMAIN matching NAME0, in BLOCK0 and enclosing scope and
5502 in global scopes, returning the number of matches, and setting *RESULTS
5503 to a vector of (SYM,BLOCK) tuples.
5504 See ada_lookup_symbol_list_worker for further details. */
5505
5506int
5507ada_lookup_symbol_list (const char *name0, const struct block *block0,
5508 domain_enum domain, struct ada_symbol_info **results)
5509{
5510 return ada_lookup_symbol_list_worker (name0, block0, domain, results, 1);
5511}
5512
5513/* Implementation of the la_iterate_over_symbols method. */
5514
5515static void
5516ada_iterate_over_symbols (const struct block *block,
5517 const char *name, domain_enum domain,
5518 symbol_found_callback_ftype *callback,
5519 void *data)
5520{
5521 int ndefs, i;
5522 struct ada_symbol_info *results;
5523
5524 ndefs = ada_lookup_symbol_list_worker (name, block, domain, &results, 0);
5525 for (i = 0; i < ndefs; ++i)
5526 {
5527 if (! (*callback) (results[i].sym, data))
5528 break;
5529 }
5530}
5531
f8eba3c6
TT
5532/* If NAME is the name of an entity, return a string that should
5533 be used to look that entity up in Ada units. This string should
5534 be deallocated after use using xfree.
5535
5536 NAME can have any form that the "break" or "print" commands might
5537 recognize. In other words, it does not have to be the "natural"
5538 name, or the "encoded" name. */
5539
5540char *
5541ada_name_for_lookup (const char *name)
5542{
5543 char *canon;
5544 int nlen = strlen (name);
5545
5546 if (name[0] == '<' && name[nlen - 1] == '>')
5547 {
5548 canon = xmalloc (nlen - 1);
5549 memcpy (canon, name + 1, nlen - 2);
5550 canon[nlen - 2] = '\0';
5551 }
5552 else
5553 canon = xstrdup (ada_encode (ada_fold_name (name)));
5554 return canon;
5555}
5556
4e5c77fe
JB
5557/* The result is as for ada_lookup_symbol_list with FULL_SEARCH set
5558 to 1, but choosing the first symbol found if there are multiple
5559 choices.
5560
5e2336be
JB
5561 The result is stored in *INFO, which must be non-NULL.
5562 If no match is found, INFO->SYM is set to NULL. */
4e5c77fe
JB
5563
5564void
5565ada_lookup_encoded_symbol (const char *name, const struct block *block,
fe978cb0 5566 domain_enum domain,
5e2336be 5567 struct ada_symbol_info *info)
14f9c5c9 5568{
4c4b4cd2 5569 struct ada_symbol_info *candidates;
14f9c5c9
AS
5570 int n_candidates;
5571
5e2336be
JB
5572 gdb_assert (info != NULL);
5573 memset (info, 0, sizeof (struct ada_symbol_info));
4e5c77fe 5574
fe978cb0 5575 n_candidates = ada_lookup_symbol_list (name, block, domain, &candidates);
14f9c5c9 5576 if (n_candidates == 0)
4e5c77fe 5577 return;
4c4b4cd2 5578
5e2336be
JB
5579 *info = candidates[0];
5580 info->sym = fixup_symbol_section (info->sym, NULL);
4e5c77fe 5581}
aeb5907d
JB
5582
5583/* Return a symbol in DOMAIN matching NAME, in BLOCK0 and enclosing
5584 scope and in global scopes, or NULL if none. NAME is folded and
5585 encoded first. Otherwise, the result is as for ada_lookup_symbol_list,
0963b4bd 5586 choosing the first symbol if there are multiple choices.
4e5c77fe
JB
5587 If IS_A_FIELD_OF_THIS is not NULL, it is set to zero. */
5588
aeb5907d
JB
5589struct symbol *
5590ada_lookup_symbol (const char *name, const struct block *block0,
fe978cb0 5591 domain_enum domain, int *is_a_field_of_this)
aeb5907d 5592{
5e2336be 5593 struct ada_symbol_info info;
4e5c77fe 5594
aeb5907d
JB
5595 if (is_a_field_of_this != NULL)
5596 *is_a_field_of_this = 0;
5597
4e5c77fe 5598 ada_lookup_encoded_symbol (ada_encode (ada_fold_name (name)),
fe978cb0 5599 block0, domain, &info);
5e2336be 5600 return info.sym;
4c4b4cd2 5601}
14f9c5c9 5602
4c4b4cd2 5603static struct symbol *
f606139a
DE
5604ada_lookup_symbol_nonlocal (const struct language_defn *langdef,
5605 const char *name,
76a01679 5606 const struct block *block,
21b556f4 5607 const domain_enum domain)
4c4b4cd2 5608{
04dccad0
JB
5609 struct symbol *sym;
5610
5611 sym = ada_lookup_symbol (name, block_static_block (block), domain, NULL);
5612 if (sym != NULL)
5613 return sym;
5614
5615 /* If we haven't found a match at this point, try the primitive
5616 types. In other languages, this search is performed before
5617 searching for global symbols in order to short-circuit that
5618 global-symbol search if it happens that the name corresponds
5619 to a primitive type. But we cannot do the same in Ada, because
5620 it is perfectly legitimate for a program to declare a type which
5621 has the same name as a standard type. If looking up a type in
5622 that situation, we have traditionally ignored the primitive type
5623 in favor of user-defined types. This is why, unlike most other
5624 languages, we search the primitive types this late and only after
5625 having searched the global symbols without success. */
5626
5627 if (domain == VAR_DOMAIN)
5628 {
5629 struct gdbarch *gdbarch;
5630
5631 if (block == NULL)
5632 gdbarch = target_gdbarch ();
5633 else
5634 gdbarch = block_gdbarch (block);
5635 sym = language_lookup_primitive_type_as_symbol (langdef, gdbarch, name);
5636 if (sym != NULL)
5637 return sym;
5638 }
5639
5640 return NULL;
14f9c5c9
AS
5641}
5642
5643
4c4b4cd2
PH
5644/* True iff STR is a possible encoded suffix of a normal Ada name
5645 that is to be ignored for matching purposes. Suffixes of parallel
5646 names (e.g., XVE) are not included here. Currently, the possible suffixes
5823c3ef 5647 are given by any of the regular expressions:
4c4b4cd2 5648
babe1480
JB
5649 [.$][0-9]+ [nested subprogram suffix, on platforms such as GNU/Linux]
5650 ___[0-9]+ [nested subprogram suffix, on platforms such as HP/UX]
9ac7f98e 5651 TKB [subprogram suffix for task bodies]
babe1480 5652 _E[0-9]+[bs]$ [protected object entry suffixes]
61ee279c 5653 (X[nb]*)?((\$|__)[0-9](_?[0-9]+)|___(JM|LJM|X([FDBUP].*|R[^T]?)))?$
babe1480
JB
5654
5655 Also, any leading "__[0-9]+" sequence is skipped before the suffix
5656 match is performed. This sequence is used to differentiate homonyms,
5657 is an optional part of a valid name suffix. */
4c4b4cd2 5658
14f9c5c9 5659static int
d2e4a39e 5660is_name_suffix (const char *str)
14f9c5c9
AS
5661{
5662 int k;
4c4b4cd2
PH
5663 const char *matching;
5664 const int len = strlen (str);
5665
babe1480
JB
5666 /* Skip optional leading __[0-9]+. */
5667
4c4b4cd2
PH
5668 if (len > 3 && str[0] == '_' && str[1] == '_' && isdigit (str[2]))
5669 {
babe1480
JB
5670 str += 3;
5671 while (isdigit (str[0]))
5672 str += 1;
4c4b4cd2 5673 }
babe1480
JB
5674
5675 /* [.$][0-9]+ */
4c4b4cd2 5676
babe1480 5677 if (str[0] == '.' || str[0] == '$')
4c4b4cd2 5678 {
babe1480 5679 matching = str + 1;
4c4b4cd2
PH
5680 while (isdigit (matching[0]))
5681 matching += 1;
5682 if (matching[0] == '\0')
5683 return 1;
5684 }
5685
5686 /* ___[0-9]+ */
babe1480 5687
4c4b4cd2
PH
5688 if (len > 3 && str[0] == '_' && str[1] == '_' && str[2] == '_')
5689 {
5690 matching = str + 3;
5691 while (isdigit (matching[0]))
5692 matching += 1;
5693 if (matching[0] == '\0')
5694 return 1;
5695 }
5696
9ac7f98e
JB
5697 /* "TKB" suffixes are used for subprograms implementing task bodies. */
5698
5699 if (strcmp (str, "TKB") == 0)
5700 return 1;
5701
529cad9c
PH
5702#if 0
5703 /* FIXME: brobecker/2005-09-23: Protected Object subprograms end
0963b4bd
MS
5704 with a N at the end. Unfortunately, the compiler uses the same
5705 convention for other internal types it creates. So treating
529cad9c 5706 all entity names that end with an "N" as a name suffix causes
0963b4bd
MS
5707 some regressions. For instance, consider the case of an enumerated
5708 type. To support the 'Image attribute, it creates an array whose
529cad9c
PH
5709 name ends with N.
5710 Having a single character like this as a suffix carrying some
0963b4bd 5711 information is a bit risky. Perhaps we should change the encoding
529cad9c
PH
5712 to be something like "_N" instead. In the meantime, do not do
5713 the following check. */
5714 /* Protected Object Subprograms */
5715 if (len == 1 && str [0] == 'N')
5716 return 1;
5717#endif
5718
5719 /* _E[0-9]+[bs]$ */
5720 if (len > 3 && str[0] == '_' && str [1] == 'E' && isdigit (str[2]))
5721 {
5722 matching = str + 3;
5723 while (isdigit (matching[0]))
5724 matching += 1;
5725 if ((matching[0] == 'b' || matching[0] == 's')
5726 && matching [1] == '\0')
5727 return 1;
5728 }
5729
4c4b4cd2
PH
5730 /* ??? We should not modify STR directly, as we are doing below. This
5731 is fine in this case, but may become problematic later if we find
5732 that this alternative did not work, and want to try matching
5733 another one from the begining of STR. Since we modified it, we
5734 won't be able to find the begining of the string anymore! */
14f9c5c9
AS
5735 if (str[0] == 'X')
5736 {
5737 str += 1;
d2e4a39e 5738 while (str[0] != '_' && str[0] != '\0')
4c4b4cd2
PH
5739 {
5740 if (str[0] != 'n' && str[0] != 'b')
5741 return 0;
5742 str += 1;
5743 }
14f9c5c9 5744 }
babe1480 5745
14f9c5c9
AS
5746 if (str[0] == '\000')
5747 return 1;
babe1480 5748
d2e4a39e 5749 if (str[0] == '_')
14f9c5c9
AS
5750 {
5751 if (str[1] != '_' || str[2] == '\000')
4c4b4cd2 5752 return 0;
d2e4a39e 5753 if (str[2] == '_')
4c4b4cd2 5754 {
61ee279c
PH
5755 if (strcmp (str + 3, "JM") == 0)
5756 return 1;
5757 /* FIXME: brobecker/2004-09-30: GNAT will soon stop using
5758 the LJM suffix in favor of the JM one. But we will
5759 still accept LJM as a valid suffix for a reasonable
5760 amount of time, just to allow ourselves to debug programs
5761 compiled using an older version of GNAT. */
4c4b4cd2
PH
5762 if (strcmp (str + 3, "LJM") == 0)
5763 return 1;
5764 if (str[3] != 'X')
5765 return 0;
1265e4aa
JB
5766 if (str[4] == 'F' || str[4] == 'D' || str[4] == 'B'
5767 || str[4] == 'U' || str[4] == 'P')
4c4b4cd2
PH
5768 return 1;
5769 if (str[4] == 'R' && str[5] != 'T')
5770 return 1;
5771 return 0;
5772 }
5773 if (!isdigit (str[2]))
5774 return 0;
5775 for (k = 3; str[k] != '\0'; k += 1)
5776 if (!isdigit (str[k]) && str[k] != '_')
5777 return 0;
14f9c5c9
AS
5778 return 1;
5779 }
4c4b4cd2 5780 if (str[0] == '$' && isdigit (str[1]))
14f9c5c9 5781 {
4c4b4cd2
PH
5782 for (k = 2; str[k] != '\0'; k += 1)
5783 if (!isdigit (str[k]) && str[k] != '_')
5784 return 0;
14f9c5c9
AS
5785 return 1;
5786 }
5787 return 0;
5788}
d2e4a39e 5789
aeb5907d
JB
5790/* Return non-zero if the string starting at NAME and ending before
5791 NAME_END contains no capital letters. */
529cad9c
PH
5792
5793static int
5794is_valid_name_for_wild_match (const char *name0)
5795{
5796 const char *decoded_name = ada_decode (name0);
5797 int i;
5798
5823c3ef
JB
5799 /* If the decoded name starts with an angle bracket, it means that
5800 NAME0 does not follow the GNAT encoding format. It should then
5801 not be allowed as a possible wild match. */
5802 if (decoded_name[0] == '<')
5803 return 0;
5804
529cad9c
PH
5805 for (i=0; decoded_name[i] != '\0'; i++)
5806 if (isalpha (decoded_name[i]) && !islower (decoded_name[i]))
5807 return 0;
5808
5809 return 1;
5810}
5811
73589123
PH
5812/* Advance *NAMEP to next occurrence of TARGET0 in the string NAME0
5813 that could start a simple name. Assumes that *NAMEP points into
5814 the string beginning at NAME0. */
4c4b4cd2 5815
14f9c5c9 5816static int
73589123 5817advance_wild_match (const char **namep, const char *name0, int target0)
14f9c5c9 5818{
73589123 5819 const char *name = *namep;
5b4ee69b 5820
5823c3ef 5821 while (1)
14f9c5c9 5822 {
aa27d0b3 5823 int t0, t1;
73589123
PH
5824
5825 t0 = *name;
5826 if (t0 == '_')
5827 {
5828 t1 = name[1];
5829 if ((t1 >= 'a' && t1 <= 'z') || (t1 >= '0' && t1 <= '9'))
5830 {
5831 name += 1;
61012eef 5832 if (name == name0 + 5 && startswith (name0, "_ada"))
73589123
PH
5833 break;
5834 else
5835 name += 1;
5836 }
aa27d0b3
JB
5837 else if (t1 == '_' && ((name[2] >= 'a' && name[2] <= 'z')
5838 || name[2] == target0))
73589123
PH
5839 {
5840 name += 2;
5841 break;
5842 }
5843 else
5844 return 0;
5845 }
5846 else if ((t0 >= 'a' && t0 <= 'z') || (t0 >= '0' && t0 <= '9'))
5847 name += 1;
5848 else
5823c3ef 5849 return 0;
73589123
PH
5850 }
5851
5852 *namep = name;
5853 return 1;
5854}
5855
5856/* Return 0 iff NAME encodes a name of the form prefix.PATN. Ignores any
5857 informational suffixes of NAME (i.e., for which is_name_suffix is
5858 true). Assumes that PATN is a lower-cased Ada simple name. */
5859
5860static int
5861wild_match (const char *name, const char *patn)
5862{
22e048c9 5863 const char *p;
73589123
PH
5864 const char *name0 = name;
5865
5866 while (1)
5867 {
5868 const char *match = name;
5869
5870 if (*name == *patn)
5871 {
5872 for (name += 1, p = patn + 1; *p != '\0'; name += 1, p += 1)
5873 if (*p != *name)
5874 break;
5875 if (*p == '\0' && is_name_suffix (name))
5876 return match != name0 && !is_valid_name_for_wild_match (name0);
5877
5878 if (name[-1] == '_')
5879 name -= 1;
5880 }
5881 if (!advance_wild_match (&name, name0, *patn))
5882 return 1;
96d887e8 5883 }
96d887e8
PH
5884}
5885
40658b94
PH
5886/* Returns 0 iff symbol name SYM_NAME matches SEARCH_NAME, apart from
5887 informational suffix. */
5888
c4d840bd
PH
5889static int
5890full_match (const char *sym_name, const char *search_name)
5891{
40658b94 5892 return !match_name (sym_name, search_name, 0);
c4d840bd
PH
5893}
5894
5895
96d887e8
PH
5896/* Add symbols from BLOCK matching identifier NAME in DOMAIN to
5897 vector *defn_symbols, updating the list of symbols in OBSTACKP
0963b4bd 5898 (if necessary). If WILD, treat as NAME with a wildcard prefix.
4eeaa230 5899 OBJFILE is the section containing BLOCK. */
96d887e8
PH
5900
5901static void
5902ada_add_block_symbols (struct obstack *obstackp,
f0c5f9b2 5903 const struct block *block, const char *name,
96d887e8 5904 domain_enum domain, struct objfile *objfile,
2570f2b7 5905 int wild)
96d887e8 5906{
8157b174 5907 struct block_iterator iter;
96d887e8
PH
5908 int name_len = strlen (name);
5909 /* A matching argument symbol, if any. */
5910 struct symbol *arg_sym;
5911 /* Set true when we find a matching non-argument symbol. */
5912 int found_sym;
5913 struct symbol *sym;
5914
5915 arg_sym = NULL;
5916 found_sym = 0;
5917 if (wild)
5918 {
8157b174
TT
5919 for (sym = block_iter_match_first (block, name, wild_match, &iter);
5920 sym != NULL; sym = block_iter_match_next (name, wild_match, &iter))
76a01679 5921 {
4186eb54
KS
5922 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
5923 SYMBOL_DOMAIN (sym), domain)
73589123 5924 && wild_match (SYMBOL_LINKAGE_NAME (sym), name) == 0)
76a01679 5925 {
2a2d4dc3
AS
5926 if (SYMBOL_CLASS (sym) == LOC_UNRESOLVED)
5927 continue;
5928 else if (SYMBOL_IS_ARGUMENT (sym))
5929 arg_sym = sym;
5930 else
5931 {
76a01679
JB
5932 found_sym = 1;
5933 add_defn_to_vec (obstackp,
5934 fixup_symbol_section (sym, objfile),
2570f2b7 5935 block);
76a01679
JB
5936 }
5937 }
5938 }
96d887e8
PH
5939 }
5940 else
5941 {
8157b174
TT
5942 for (sym = block_iter_match_first (block, name, full_match, &iter);
5943 sym != NULL; sym = block_iter_match_next (name, full_match, &iter))
76a01679 5944 {
4186eb54
KS
5945 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
5946 SYMBOL_DOMAIN (sym), domain))
76a01679 5947 {
c4d840bd
PH
5948 if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED)
5949 {
5950 if (SYMBOL_IS_ARGUMENT (sym))
5951 arg_sym = sym;
5952 else
2a2d4dc3 5953 {
c4d840bd
PH
5954 found_sym = 1;
5955 add_defn_to_vec (obstackp,
5956 fixup_symbol_section (sym, objfile),
5957 block);
2a2d4dc3 5958 }
c4d840bd 5959 }
76a01679
JB
5960 }
5961 }
96d887e8
PH
5962 }
5963
5964 if (!found_sym && arg_sym != NULL)
5965 {
76a01679
JB
5966 add_defn_to_vec (obstackp,
5967 fixup_symbol_section (arg_sym, objfile),
2570f2b7 5968 block);
96d887e8
PH
5969 }
5970
5971 if (!wild)
5972 {
5973 arg_sym = NULL;
5974 found_sym = 0;
5975
5976 ALL_BLOCK_SYMBOLS (block, iter, sym)
76a01679 5977 {
4186eb54
KS
5978 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
5979 SYMBOL_DOMAIN (sym), domain))
76a01679
JB
5980 {
5981 int cmp;
5982
5983 cmp = (int) '_' - (int) SYMBOL_LINKAGE_NAME (sym)[0];
5984 if (cmp == 0)
5985 {
61012eef 5986 cmp = !startswith (SYMBOL_LINKAGE_NAME (sym), "_ada_");
76a01679
JB
5987 if (cmp == 0)
5988 cmp = strncmp (name, SYMBOL_LINKAGE_NAME (sym) + 5,
5989 name_len);
5990 }
5991
5992 if (cmp == 0
5993 && is_name_suffix (SYMBOL_LINKAGE_NAME (sym) + name_len + 5))
5994 {
2a2d4dc3
AS
5995 if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED)
5996 {
5997 if (SYMBOL_IS_ARGUMENT (sym))
5998 arg_sym = sym;
5999 else
6000 {
6001 found_sym = 1;
6002 add_defn_to_vec (obstackp,
6003 fixup_symbol_section (sym, objfile),
6004 block);
6005 }
6006 }
76a01679
JB
6007 }
6008 }
76a01679 6009 }
96d887e8
PH
6010
6011 /* NOTE: This really shouldn't be needed for _ada_ symbols.
6012 They aren't parameters, right? */
6013 if (!found_sym && arg_sym != NULL)
6014 {
6015 add_defn_to_vec (obstackp,
76a01679 6016 fixup_symbol_section (arg_sym, objfile),
2570f2b7 6017 block);
96d887e8
PH
6018 }
6019 }
6020}
6021\f
41d27058
JB
6022
6023 /* Symbol Completion */
6024
6025/* If SYM_NAME is a completion candidate for TEXT, return this symbol
6026 name in a form that's appropriate for the completion. The result
6027 does not need to be deallocated, but is only good until the next call.
6028
6029 TEXT_LEN is equal to the length of TEXT.
e701b3c0 6030 Perform a wild match if WILD_MATCH_P is set.
6ea35997 6031 ENCODED_P should be set if TEXT represents the start of a symbol name
41d27058
JB
6032 in its encoded form. */
6033
6034static const char *
6035symbol_completion_match (const char *sym_name,
6036 const char *text, int text_len,
6ea35997 6037 int wild_match_p, int encoded_p)
41d27058 6038{
41d27058
JB
6039 const int verbatim_match = (text[0] == '<');
6040 int match = 0;
6041
6042 if (verbatim_match)
6043 {
6044 /* Strip the leading angle bracket. */
6045 text = text + 1;
6046 text_len--;
6047 }
6048
6049 /* First, test against the fully qualified name of the symbol. */
6050
6051 if (strncmp (sym_name, text, text_len) == 0)
6052 match = 1;
6053
6ea35997 6054 if (match && !encoded_p)
41d27058
JB
6055 {
6056 /* One needed check before declaring a positive match is to verify
6057 that iff we are doing a verbatim match, the decoded version
6058 of the symbol name starts with '<'. Otherwise, this symbol name
6059 is not a suitable completion. */
6060 const char *sym_name_copy = sym_name;
6061 int has_angle_bracket;
6062
6063 sym_name = ada_decode (sym_name);
6064 has_angle_bracket = (sym_name[0] == '<');
6065 match = (has_angle_bracket == verbatim_match);
6066 sym_name = sym_name_copy;
6067 }
6068
6069 if (match && !verbatim_match)
6070 {
6071 /* When doing non-verbatim match, another check that needs to
6072 be done is to verify that the potentially matching symbol name
6073 does not include capital letters, because the ada-mode would
6074 not be able to understand these symbol names without the
6075 angle bracket notation. */
6076 const char *tmp;
6077
6078 for (tmp = sym_name; *tmp != '\0' && !isupper (*tmp); tmp++);
6079 if (*tmp != '\0')
6080 match = 0;
6081 }
6082
6083 /* Second: Try wild matching... */
6084
e701b3c0 6085 if (!match && wild_match_p)
41d27058
JB
6086 {
6087 /* Since we are doing wild matching, this means that TEXT
6088 may represent an unqualified symbol name. We therefore must
6089 also compare TEXT against the unqualified name of the symbol. */
6090 sym_name = ada_unqualified_name (ada_decode (sym_name));
6091
6092 if (strncmp (sym_name, text, text_len) == 0)
6093 match = 1;
6094 }
6095
6096 /* Finally: If we found a mach, prepare the result to return. */
6097
6098 if (!match)
6099 return NULL;
6100
6101 if (verbatim_match)
6102 sym_name = add_angle_brackets (sym_name);
6103
6ea35997 6104 if (!encoded_p)
41d27058
JB
6105 sym_name = ada_decode (sym_name);
6106
6107 return sym_name;
6108}
6109
6110/* A companion function to ada_make_symbol_completion_list().
6111 Check if SYM_NAME represents a symbol which name would be suitable
6112 to complete TEXT (TEXT_LEN is the length of TEXT), in which case
6113 it is appended at the end of the given string vector SV.
6114
6115 ORIG_TEXT is the string original string from the user command
6116 that needs to be completed. WORD is the entire command on which
6117 completion should be performed. These two parameters are used to
6118 determine which part of the symbol name should be added to the
6119 completion vector.
c0af1706 6120 if WILD_MATCH_P is set, then wild matching is performed.
cb8e9b97 6121 ENCODED_P should be set if TEXT represents a symbol name in its
41d27058
JB
6122 encoded formed (in which case the completion should also be
6123 encoded). */
6124
6125static void
d6565258 6126symbol_completion_add (VEC(char_ptr) **sv,
41d27058
JB
6127 const char *sym_name,
6128 const char *text, int text_len,
6129 const char *orig_text, const char *word,
cb8e9b97 6130 int wild_match_p, int encoded_p)
41d27058
JB
6131{
6132 const char *match = symbol_completion_match (sym_name, text, text_len,
cb8e9b97 6133 wild_match_p, encoded_p);
41d27058
JB
6134 char *completion;
6135
6136 if (match == NULL)
6137 return;
6138
6139 /* We found a match, so add the appropriate completion to the given
6140 string vector. */
6141
6142 if (word == orig_text)
6143 {
6144 completion = xmalloc (strlen (match) + 5);
6145 strcpy (completion, match);
6146 }
6147 else if (word > orig_text)
6148 {
6149 /* Return some portion of sym_name. */
6150 completion = xmalloc (strlen (match) + 5);
6151 strcpy (completion, match + (word - orig_text));
6152 }
6153 else
6154 {
6155 /* Return some of ORIG_TEXT plus sym_name. */
6156 completion = xmalloc (strlen (match) + (orig_text - word) + 5);
6157 strncpy (completion, word, orig_text - word);
6158 completion[orig_text - word] = '\0';
6159 strcat (completion, match);
6160 }
6161
d6565258 6162 VEC_safe_push (char_ptr, *sv, completion);
41d27058
JB
6163}
6164
ccefe4c4 6165/* An object of this type is passed as the user_data argument to the
bb4142cf 6166 expand_symtabs_matching method. */
ccefe4c4
TT
6167struct add_partial_datum
6168{
6169 VEC(char_ptr) **completions;
6f937416 6170 const char *text;
ccefe4c4 6171 int text_len;
6f937416
PA
6172 const char *text0;
6173 const char *word;
ccefe4c4
TT
6174 int wild_match;
6175 int encoded;
6176};
6177
bb4142cf
DE
6178/* A callback for expand_symtabs_matching. */
6179
7b08b9eb 6180static int
bb4142cf 6181ada_complete_symbol_matcher (const char *name, void *user_data)
ccefe4c4
TT
6182{
6183 struct add_partial_datum *data = user_data;
7b08b9eb
JK
6184
6185 return symbol_completion_match (name, data->text, data->text_len,
6186 data->wild_match, data->encoded) != NULL;
ccefe4c4
TT
6187}
6188
49c4e619
TT
6189/* Return a list of possible symbol names completing TEXT0. WORD is
6190 the entire command on which completion is made. */
41d27058 6191
49c4e619 6192static VEC (char_ptr) *
6f937416
PA
6193ada_make_symbol_completion_list (const char *text0, const char *word,
6194 enum type_code code)
41d27058
JB
6195{
6196 char *text;
6197 int text_len;
b1ed564a
JB
6198 int wild_match_p;
6199 int encoded_p;
2ba95b9b 6200 VEC(char_ptr) *completions = VEC_alloc (char_ptr, 128);
41d27058 6201 struct symbol *sym;
43f3e411 6202 struct compunit_symtab *s;
41d27058
JB
6203 struct minimal_symbol *msymbol;
6204 struct objfile *objfile;
3977b71f 6205 const struct block *b, *surrounding_static_block = 0;
41d27058 6206 int i;
8157b174 6207 struct block_iterator iter;
b8fea896 6208 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
41d27058 6209
2f68a895
TT
6210 gdb_assert (code == TYPE_CODE_UNDEF);
6211
41d27058
JB
6212 if (text0[0] == '<')
6213 {
6214 text = xstrdup (text0);
6215 make_cleanup (xfree, text);
6216 text_len = strlen (text);
b1ed564a
JB
6217 wild_match_p = 0;
6218 encoded_p = 1;
41d27058
JB
6219 }
6220 else
6221 {
6222 text = xstrdup (ada_encode (text0));
6223 make_cleanup (xfree, text);
6224 text_len = strlen (text);
6225 for (i = 0; i < text_len; i++)
6226 text[i] = tolower (text[i]);
6227
b1ed564a 6228 encoded_p = (strstr (text0, "__") != NULL);
41d27058
JB
6229 /* If the name contains a ".", then the user is entering a fully
6230 qualified entity name, and the match must not be done in wild
6231 mode. Similarly, if the user wants to complete what looks like
6232 an encoded name, the match must not be done in wild mode. */
b1ed564a 6233 wild_match_p = (strchr (text0, '.') == NULL && !encoded_p);
41d27058
JB
6234 }
6235
6236 /* First, look at the partial symtab symbols. */
41d27058 6237 {
ccefe4c4
TT
6238 struct add_partial_datum data;
6239
6240 data.completions = &completions;
6241 data.text = text;
6242 data.text_len = text_len;
6243 data.text0 = text0;
6244 data.word = word;
b1ed564a
JB
6245 data.wild_match = wild_match_p;
6246 data.encoded = encoded_p;
276d885b
GB
6247 expand_symtabs_matching (NULL, ada_complete_symbol_matcher, NULL,
6248 ALL_DOMAIN, &data);
41d27058
JB
6249 }
6250
6251 /* At this point scan through the misc symbol vectors and add each
6252 symbol you find to the list. Eventually we want to ignore
6253 anything that isn't a text symbol (everything else will be
6254 handled by the psymtab code above). */
6255
6256 ALL_MSYMBOLS (objfile, msymbol)
6257 {
6258 QUIT;
efd66ac6 6259 symbol_completion_add (&completions, MSYMBOL_LINKAGE_NAME (msymbol),
b1ed564a
JB
6260 text, text_len, text0, word, wild_match_p,
6261 encoded_p);
41d27058
JB
6262 }
6263
6264 /* Search upwards from currently selected frame (so that we can
6265 complete on local vars. */
6266
6267 for (b = get_selected_block (0); b != NULL; b = BLOCK_SUPERBLOCK (b))
6268 {
6269 if (!BLOCK_SUPERBLOCK (b))
6270 surrounding_static_block = b; /* For elmin of dups */
6271
6272 ALL_BLOCK_SYMBOLS (b, iter, sym)
6273 {
d6565258 6274 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym),
41d27058 6275 text, text_len, text0, word,
b1ed564a 6276 wild_match_p, encoded_p);
41d27058
JB
6277 }
6278 }
6279
6280 /* Go through the symtabs and check the externs and statics for
43f3e411 6281 symbols which match. */
41d27058 6282
43f3e411 6283 ALL_COMPUNITS (objfile, s)
41d27058
JB
6284 {
6285 QUIT;
43f3e411 6286 b = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (s), GLOBAL_BLOCK);
41d27058
JB
6287 ALL_BLOCK_SYMBOLS (b, iter, sym)
6288 {
d6565258 6289 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym),
41d27058 6290 text, text_len, text0, word,
b1ed564a 6291 wild_match_p, encoded_p);
41d27058
JB
6292 }
6293 }
6294
43f3e411 6295 ALL_COMPUNITS (objfile, s)
41d27058
JB
6296 {
6297 QUIT;
43f3e411 6298 b = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (s), STATIC_BLOCK);
41d27058
JB
6299 /* Don't do this block twice. */
6300 if (b == surrounding_static_block)
6301 continue;
6302 ALL_BLOCK_SYMBOLS (b, iter, sym)
6303 {
d6565258 6304 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym),
41d27058 6305 text, text_len, text0, word,
b1ed564a 6306 wild_match_p, encoded_p);
41d27058
JB
6307 }
6308 }
6309
b8fea896 6310 do_cleanups (old_chain);
49c4e619 6311 return completions;
41d27058
JB
6312}
6313
963a6417 6314 /* Field Access */
96d887e8 6315
73fb9985
JB
6316/* Return non-zero if TYPE is a pointer to the GNAT dispatch table used
6317 for tagged types. */
6318
6319static int
6320ada_is_dispatch_table_ptr_type (struct type *type)
6321{
0d5cff50 6322 const char *name;
73fb9985
JB
6323
6324 if (TYPE_CODE (type) != TYPE_CODE_PTR)
6325 return 0;
6326
6327 name = TYPE_NAME (TYPE_TARGET_TYPE (type));
6328 if (name == NULL)
6329 return 0;
6330
6331 return (strcmp (name, "ada__tags__dispatch_table") == 0);
6332}
6333
ac4a2da4
JG
6334/* Return non-zero if TYPE is an interface tag. */
6335
6336static int
6337ada_is_interface_tag (struct type *type)
6338{
6339 const char *name = TYPE_NAME (type);
6340
6341 if (name == NULL)
6342 return 0;
6343
6344 return (strcmp (name, "ada__tags__interface_tag") == 0);
6345}
6346
963a6417
PH
6347/* True if field number FIELD_NUM in struct or union type TYPE is supposed
6348 to be invisible to users. */
96d887e8 6349
963a6417
PH
6350int
6351ada_is_ignored_field (struct type *type, int field_num)
96d887e8 6352{
963a6417
PH
6353 if (field_num < 0 || field_num > TYPE_NFIELDS (type))
6354 return 1;
ffde82bf 6355
73fb9985
JB
6356 /* Check the name of that field. */
6357 {
6358 const char *name = TYPE_FIELD_NAME (type, field_num);
6359
6360 /* Anonymous field names should not be printed.
6361 brobecker/2007-02-20: I don't think this can actually happen
6362 but we don't want to print the value of annonymous fields anyway. */
6363 if (name == NULL)
6364 return 1;
6365
ffde82bf
JB
6366 /* Normally, fields whose name start with an underscore ("_")
6367 are fields that have been internally generated by the compiler,
6368 and thus should not be printed. The "_parent" field is special,
6369 however: This is a field internally generated by the compiler
6370 for tagged types, and it contains the components inherited from
6371 the parent type. This field should not be printed as is, but
6372 should not be ignored either. */
61012eef 6373 if (name[0] == '_' && !startswith (name, "_parent"))
73fb9985
JB
6374 return 1;
6375 }
6376
ac4a2da4
JG
6377 /* If this is the dispatch table of a tagged type or an interface tag,
6378 then ignore. */
73fb9985 6379 if (ada_is_tagged_type (type, 1)
ac4a2da4
JG
6380 && (ada_is_dispatch_table_ptr_type (TYPE_FIELD_TYPE (type, field_num))
6381 || ada_is_interface_tag (TYPE_FIELD_TYPE (type, field_num))))
73fb9985
JB
6382 return 1;
6383
6384 /* Not a special field, so it should not be ignored. */
6385 return 0;
963a6417 6386}
96d887e8 6387
963a6417 6388/* True iff TYPE has a tag field. If REFOK, then TYPE may also be a
0963b4bd 6389 pointer or reference type whose ultimate target has a tag field. */
96d887e8 6390
963a6417
PH
6391int
6392ada_is_tagged_type (struct type *type, int refok)
6393{
6394 return (ada_lookup_struct_elt_type (type, "_tag", refok, 1, NULL) != NULL);
6395}
96d887e8 6396
963a6417 6397/* True iff TYPE represents the type of X'Tag */
96d887e8 6398
963a6417
PH
6399int
6400ada_is_tag_type (struct type *type)
6401{
460efde1
JB
6402 type = ada_check_typedef (type);
6403
963a6417
PH
6404 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_PTR)
6405 return 0;
6406 else
96d887e8 6407 {
963a6417 6408 const char *name = ada_type_name (TYPE_TARGET_TYPE (type));
5b4ee69b 6409
963a6417
PH
6410 return (name != NULL
6411 && strcmp (name, "ada__tags__dispatch_table") == 0);
96d887e8 6412 }
96d887e8
PH
6413}
6414
963a6417 6415/* The type of the tag on VAL. */
76a01679 6416
963a6417
PH
6417struct type *
6418ada_tag_type (struct value *val)
96d887e8 6419{
df407dfe 6420 return ada_lookup_struct_elt_type (value_type (val), "_tag", 1, 0, NULL);
963a6417 6421}
96d887e8 6422
b50d69b5
JG
6423/* Return 1 if TAG follows the old scheme for Ada tags (used for Ada 95,
6424 retired at Ada 05). */
6425
6426static int
6427is_ada95_tag (struct value *tag)
6428{
6429 return ada_value_struct_elt (tag, "tsd", 1) != NULL;
6430}
6431
963a6417 6432/* The value of the tag on VAL. */
96d887e8 6433
963a6417
PH
6434struct value *
6435ada_value_tag (struct value *val)
6436{
03ee6b2e 6437 return ada_value_struct_elt (val, "_tag", 0);
96d887e8
PH
6438}
6439
963a6417
PH
6440/* The value of the tag on the object of type TYPE whose contents are
6441 saved at VALADDR, if it is non-null, or is at memory address
0963b4bd 6442 ADDRESS. */
96d887e8 6443
963a6417 6444static struct value *
10a2c479 6445value_tag_from_contents_and_address (struct type *type,
fc1a4b47 6446 const gdb_byte *valaddr,
963a6417 6447 CORE_ADDR address)
96d887e8 6448{
b5385fc0 6449 int tag_byte_offset;
963a6417 6450 struct type *tag_type;
5b4ee69b 6451
963a6417 6452 if (find_struct_field ("_tag", type, 0, &tag_type, &tag_byte_offset,
52ce6436 6453 NULL, NULL, NULL))
96d887e8 6454 {
fc1a4b47 6455 const gdb_byte *valaddr1 = ((valaddr == NULL)
10a2c479
AC
6456 ? NULL
6457 : valaddr + tag_byte_offset);
963a6417 6458 CORE_ADDR address1 = (address == 0) ? 0 : address + tag_byte_offset;
96d887e8 6459
963a6417 6460 return value_from_contents_and_address (tag_type, valaddr1, address1);
96d887e8 6461 }
963a6417
PH
6462 return NULL;
6463}
96d887e8 6464
963a6417
PH
6465static struct type *
6466type_from_tag (struct value *tag)
6467{
6468 const char *type_name = ada_tag_name (tag);
5b4ee69b 6469
963a6417
PH
6470 if (type_name != NULL)
6471 return ada_find_any_type (ada_encode (type_name));
6472 return NULL;
6473}
96d887e8 6474
b50d69b5
JG
6475/* Given a value OBJ of a tagged type, return a value of this
6476 type at the base address of the object. The base address, as
6477 defined in Ada.Tags, it is the address of the primary tag of
6478 the object, and therefore where the field values of its full
6479 view can be fetched. */
6480
6481struct value *
6482ada_tag_value_at_base_address (struct value *obj)
6483{
b50d69b5
JG
6484 struct value *val;
6485 LONGEST offset_to_top = 0;
6486 struct type *ptr_type, *obj_type;
6487 struct value *tag;
6488 CORE_ADDR base_address;
6489
6490 obj_type = value_type (obj);
6491
6492 /* It is the responsability of the caller to deref pointers. */
6493
6494 if (TYPE_CODE (obj_type) == TYPE_CODE_PTR
6495 || TYPE_CODE (obj_type) == TYPE_CODE_REF)
6496 return obj;
6497
6498 tag = ada_value_tag (obj);
6499 if (!tag)
6500 return obj;
6501
6502 /* Base addresses only appeared with Ada 05 and multiple inheritance. */
6503
6504 if (is_ada95_tag (tag))
6505 return obj;
6506
6507 ptr_type = builtin_type (target_gdbarch ())->builtin_data_ptr;
6508 ptr_type = lookup_pointer_type (ptr_type);
6509 val = value_cast (ptr_type, tag);
6510 if (!val)
6511 return obj;
6512
6513 /* It is perfectly possible that an exception be raised while
6514 trying to determine the base address, just like for the tag;
6515 see ada_tag_name for more details. We do not print the error
6516 message for the same reason. */
6517
492d29ea 6518 TRY
b50d69b5
JG
6519 {
6520 offset_to_top = value_as_long (value_ind (value_ptradd (val, -2)));
6521 }
6522
492d29ea
PA
6523 CATCH (e, RETURN_MASK_ERROR)
6524 {
6525 return obj;
6526 }
6527 END_CATCH
b50d69b5
JG
6528
6529 /* If offset is null, nothing to do. */
6530
6531 if (offset_to_top == 0)
6532 return obj;
6533
6534 /* -1 is a special case in Ada.Tags; however, what should be done
6535 is not quite clear from the documentation. So do nothing for
6536 now. */
6537
6538 if (offset_to_top == -1)
6539 return obj;
6540
6541 base_address = value_address (obj) - offset_to_top;
6542 tag = value_tag_from_contents_and_address (obj_type, NULL, base_address);
6543
6544 /* Make sure that we have a proper tag at the new address.
6545 Otherwise, offset_to_top is bogus (which can happen when
6546 the object is not initialized yet). */
6547
6548 if (!tag)
6549 return obj;
6550
6551 obj_type = type_from_tag (tag);
6552
6553 if (!obj_type)
6554 return obj;
6555
6556 return value_from_contents_and_address (obj_type, NULL, base_address);
6557}
6558
1b611343
JB
6559/* Return the "ada__tags__type_specific_data" type. */
6560
6561static struct type *
6562ada_get_tsd_type (struct inferior *inf)
963a6417 6563{
1b611343 6564 struct ada_inferior_data *data = get_ada_inferior_data (inf);
4c4b4cd2 6565
1b611343
JB
6566 if (data->tsd_type == 0)
6567 data->tsd_type = ada_find_any_type ("ada__tags__type_specific_data");
6568 return data->tsd_type;
6569}
529cad9c 6570
1b611343
JB
6571/* Return the TSD (type-specific data) associated to the given TAG.
6572 TAG is assumed to be the tag of a tagged-type entity.
529cad9c 6573
1b611343 6574 May return NULL if we are unable to get the TSD. */
4c4b4cd2 6575
1b611343
JB
6576static struct value *
6577ada_get_tsd_from_tag (struct value *tag)
4c4b4cd2 6578{
4c4b4cd2 6579 struct value *val;
1b611343 6580 struct type *type;
5b4ee69b 6581
1b611343
JB
6582 /* First option: The TSD is simply stored as a field of our TAG.
6583 Only older versions of GNAT would use this format, but we have
6584 to test it first, because there are no visible markers for
6585 the current approach except the absence of that field. */
529cad9c 6586
1b611343
JB
6587 val = ada_value_struct_elt (tag, "tsd", 1);
6588 if (val)
6589 return val;
e802dbe0 6590
1b611343
JB
6591 /* Try the second representation for the dispatch table (in which
6592 there is no explicit 'tsd' field in the referent of the tag pointer,
6593 and instead the tsd pointer is stored just before the dispatch
6594 table. */
e802dbe0 6595
1b611343
JB
6596 type = ada_get_tsd_type (current_inferior());
6597 if (type == NULL)
6598 return NULL;
6599 type = lookup_pointer_type (lookup_pointer_type (type));
6600 val = value_cast (type, tag);
6601 if (val == NULL)
6602 return NULL;
6603 return value_ind (value_ptradd (val, -1));
e802dbe0
JB
6604}
6605
1b611343
JB
6606/* Given the TSD of a tag (type-specific data), return a string
6607 containing the name of the associated type.
6608
6609 The returned value is good until the next call. May return NULL
6610 if we are unable to determine the tag name. */
6611
6612static char *
6613ada_tag_name_from_tsd (struct value *tsd)
529cad9c 6614{
529cad9c
PH
6615 static char name[1024];
6616 char *p;
1b611343 6617 struct value *val;
529cad9c 6618
1b611343 6619 val = ada_value_struct_elt (tsd, "expanded_name", 1);
4c4b4cd2 6620 if (val == NULL)
1b611343 6621 return NULL;
4c4b4cd2
PH
6622 read_memory_string (value_as_address (val), name, sizeof (name) - 1);
6623 for (p = name; *p != '\0'; p += 1)
6624 if (isalpha (*p))
6625 *p = tolower (*p);
1b611343 6626 return name;
4c4b4cd2
PH
6627}
6628
6629/* The type name of the dynamic type denoted by the 'tag value TAG, as
1b611343
JB
6630 a C string.
6631
6632 Return NULL if the TAG is not an Ada tag, or if we were unable to
6633 determine the name of that tag. The result is good until the next
6634 call. */
4c4b4cd2
PH
6635
6636const char *
6637ada_tag_name (struct value *tag)
6638{
1b611343 6639 char *name = NULL;
5b4ee69b 6640
df407dfe 6641 if (!ada_is_tag_type (value_type (tag)))
4c4b4cd2 6642 return NULL;
1b611343
JB
6643
6644 /* It is perfectly possible that an exception be raised while trying
6645 to determine the TAG's name, even under normal circumstances:
6646 The associated variable may be uninitialized or corrupted, for
6647 instance. We do not let any exception propagate past this point.
6648 instead we return NULL.
6649
6650 We also do not print the error message either (which often is very
6651 low-level (Eg: "Cannot read memory at 0x[...]"), but instead let
6652 the caller print a more meaningful message if necessary. */
492d29ea 6653 TRY
1b611343
JB
6654 {
6655 struct value *tsd = ada_get_tsd_from_tag (tag);
6656
6657 if (tsd != NULL)
6658 name = ada_tag_name_from_tsd (tsd);
6659 }
492d29ea
PA
6660 CATCH (e, RETURN_MASK_ERROR)
6661 {
6662 }
6663 END_CATCH
1b611343
JB
6664
6665 return name;
4c4b4cd2
PH
6666}
6667
6668/* The parent type of TYPE, or NULL if none. */
14f9c5c9 6669
d2e4a39e 6670struct type *
ebf56fd3 6671ada_parent_type (struct type *type)
14f9c5c9
AS
6672{
6673 int i;
6674
61ee279c 6675 type = ada_check_typedef (type);
14f9c5c9
AS
6676
6677 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT)
6678 return NULL;
6679
6680 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
6681 if (ada_is_parent_field (type, i))
0c1f74cf
JB
6682 {
6683 struct type *parent_type = TYPE_FIELD_TYPE (type, i);
6684
6685 /* If the _parent field is a pointer, then dereference it. */
6686 if (TYPE_CODE (parent_type) == TYPE_CODE_PTR)
6687 parent_type = TYPE_TARGET_TYPE (parent_type);
6688 /* If there is a parallel XVS type, get the actual base type. */
6689 parent_type = ada_get_base_type (parent_type);
6690
6691 return ada_check_typedef (parent_type);
6692 }
14f9c5c9
AS
6693
6694 return NULL;
6695}
6696
4c4b4cd2
PH
6697/* True iff field number FIELD_NUM of structure type TYPE contains the
6698 parent-type (inherited) fields of a derived type. Assumes TYPE is
6699 a structure type with at least FIELD_NUM+1 fields. */
14f9c5c9
AS
6700
6701int
ebf56fd3 6702ada_is_parent_field (struct type *type, int field_num)
14f9c5c9 6703{
61ee279c 6704 const char *name = TYPE_FIELD_NAME (ada_check_typedef (type), field_num);
5b4ee69b 6705
4c4b4cd2 6706 return (name != NULL
61012eef
GB
6707 && (startswith (name, "PARENT")
6708 || startswith (name, "_parent")));
14f9c5c9
AS
6709}
6710
4c4b4cd2 6711/* True iff field number FIELD_NUM of structure type TYPE is a
14f9c5c9 6712 transparent wrapper field (which should be silently traversed when doing
4c4b4cd2 6713 field selection and flattened when printing). Assumes TYPE is a
14f9c5c9 6714 structure type with at least FIELD_NUM+1 fields. Such fields are always
4c4b4cd2 6715 structures. */
14f9c5c9
AS
6716
6717int
ebf56fd3 6718ada_is_wrapper_field (struct type *type, int field_num)
14f9c5c9 6719{
d2e4a39e 6720 const char *name = TYPE_FIELD_NAME (type, field_num);
5b4ee69b 6721
d2e4a39e 6722 return (name != NULL
61012eef 6723 && (startswith (name, "PARENT")
4c4b4cd2 6724 || strcmp (name, "REP") == 0
61012eef 6725 || startswith (name, "_parent")
4c4b4cd2 6726 || name[0] == 'S' || name[0] == 'R' || name[0] == 'O'));
14f9c5c9
AS
6727}
6728
4c4b4cd2
PH
6729/* True iff field number FIELD_NUM of structure or union type TYPE
6730 is a variant wrapper. Assumes TYPE is a structure type with at least
6731 FIELD_NUM+1 fields. */
14f9c5c9
AS
6732
6733int
ebf56fd3 6734ada_is_variant_part (struct type *type, int field_num)
14f9c5c9 6735{
d2e4a39e 6736 struct type *field_type = TYPE_FIELD_TYPE (type, field_num);
5b4ee69b 6737
14f9c5c9 6738 return (TYPE_CODE (field_type) == TYPE_CODE_UNION
4c4b4cd2 6739 || (is_dynamic_field (type, field_num)
c3e5cd34
PH
6740 && (TYPE_CODE (TYPE_TARGET_TYPE (field_type))
6741 == TYPE_CODE_UNION)));
14f9c5c9
AS
6742}
6743
6744/* Assuming that VAR_TYPE is a variant wrapper (type of the variant part)
4c4b4cd2 6745 whose discriminants are contained in the record type OUTER_TYPE,
7c964f07
UW
6746 returns the type of the controlling discriminant for the variant.
6747 May return NULL if the type could not be found. */
14f9c5c9 6748
d2e4a39e 6749struct type *
ebf56fd3 6750ada_variant_discrim_type (struct type *var_type, struct type *outer_type)
14f9c5c9 6751{
d2e4a39e 6752 char *name = ada_variant_discrim_name (var_type);
5b4ee69b 6753
7c964f07 6754 return ada_lookup_struct_elt_type (outer_type, name, 1, 1, NULL);
14f9c5c9
AS
6755}
6756
4c4b4cd2 6757/* Assuming that TYPE is the type of a variant wrapper, and FIELD_NUM is a
14f9c5c9 6758 valid field number within it, returns 1 iff field FIELD_NUM of TYPE
4c4b4cd2 6759 represents a 'when others' clause; otherwise 0. */
14f9c5c9
AS
6760
6761int
ebf56fd3 6762ada_is_others_clause (struct type *type, int field_num)
14f9c5c9 6763{
d2e4a39e 6764 const char *name = TYPE_FIELD_NAME (type, field_num);
5b4ee69b 6765
14f9c5c9
AS
6766 return (name != NULL && name[0] == 'O');
6767}
6768
6769/* Assuming that TYPE0 is the type of the variant part of a record,
4c4b4cd2
PH
6770 returns the name of the discriminant controlling the variant.
6771 The value is valid until the next call to ada_variant_discrim_name. */
14f9c5c9 6772
d2e4a39e 6773char *
ebf56fd3 6774ada_variant_discrim_name (struct type *type0)
14f9c5c9 6775{
d2e4a39e 6776 static char *result = NULL;
14f9c5c9 6777 static size_t result_len = 0;
d2e4a39e
AS
6778 struct type *type;
6779 const char *name;
6780 const char *discrim_end;
6781 const char *discrim_start;
14f9c5c9
AS
6782
6783 if (TYPE_CODE (type0) == TYPE_CODE_PTR)
6784 type = TYPE_TARGET_TYPE (type0);
6785 else
6786 type = type0;
6787
6788 name = ada_type_name (type);
6789
6790 if (name == NULL || name[0] == '\000')
6791 return "";
6792
6793 for (discrim_end = name + strlen (name) - 6; discrim_end != name;
6794 discrim_end -= 1)
6795 {
61012eef 6796 if (startswith (discrim_end, "___XVN"))
4c4b4cd2 6797 break;
14f9c5c9
AS
6798 }
6799 if (discrim_end == name)
6800 return "";
6801
d2e4a39e 6802 for (discrim_start = discrim_end; discrim_start != name + 3;
14f9c5c9
AS
6803 discrim_start -= 1)
6804 {
d2e4a39e 6805 if (discrim_start == name + 1)
4c4b4cd2 6806 return "";
76a01679 6807 if ((discrim_start > name + 3
61012eef 6808 && startswith (discrim_start - 3, "___"))
4c4b4cd2
PH
6809 || discrim_start[-1] == '.')
6810 break;
14f9c5c9
AS
6811 }
6812
6813 GROW_VECT (result, result_len, discrim_end - discrim_start + 1);
6814 strncpy (result, discrim_start, discrim_end - discrim_start);
d2e4a39e 6815 result[discrim_end - discrim_start] = '\0';
14f9c5c9
AS
6816 return result;
6817}
6818
4c4b4cd2
PH
6819/* Scan STR for a subtype-encoded number, beginning at position K.
6820 Put the position of the character just past the number scanned in
6821 *NEW_K, if NEW_K!=NULL. Put the scanned number in *R, if R!=NULL.
6822 Return 1 if there was a valid number at the given position, and 0
6823 otherwise. A "subtype-encoded" number consists of the absolute value
6824 in decimal, followed by the letter 'm' to indicate a negative number.
6825 Assumes 0m does not occur. */
14f9c5c9
AS
6826
6827int
d2e4a39e 6828ada_scan_number (const char str[], int k, LONGEST * R, int *new_k)
14f9c5c9
AS
6829{
6830 ULONGEST RU;
6831
d2e4a39e 6832 if (!isdigit (str[k]))
14f9c5c9
AS
6833 return 0;
6834
4c4b4cd2 6835 /* Do it the hard way so as not to make any assumption about
14f9c5c9 6836 the relationship of unsigned long (%lu scan format code) and
4c4b4cd2 6837 LONGEST. */
14f9c5c9
AS
6838 RU = 0;
6839 while (isdigit (str[k]))
6840 {
d2e4a39e 6841 RU = RU * 10 + (str[k] - '0');
14f9c5c9
AS
6842 k += 1;
6843 }
6844
d2e4a39e 6845 if (str[k] == 'm')
14f9c5c9
AS
6846 {
6847 if (R != NULL)
4c4b4cd2 6848 *R = (-(LONGEST) (RU - 1)) - 1;
14f9c5c9
AS
6849 k += 1;
6850 }
6851 else if (R != NULL)
6852 *R = (LONGEST) RU;
6853
4c4b4cd2 6854 /* NOTE on the above: Technically, C does not say what the results of
14f9c5c9
AS
6855 - (LONGEST) RU or (LONGEST) -RU are for RU == largest positive
6856 number representable as a LONGEST (although either would probably work
6857 in most implementations). When RU>0, the locution in the then branch
4c4b4cd2 6858 above is always equivalent to the negative of RU. */
14f9c5c9
AS
6859
6860 if (new_k != NULL)
6861 *new_k = k;
6862 return 1;
6863}
6864
4c4b4cd2
PH
6865/* Assuming that TYPE is a variant part wrapper type (a VARIANTS field),
6866 and FIELD_NUM is a valid field number within it, returns 1 iff VAL is
6867 in the range encoded by field FIELD_NUM of TYPE; otherwise 0. */
14f9c5c9 6868
d2e4a39e 6869int
ebf56fd3 6870ada_in_variant (LONGEST val, struct type *type, int field_num)
14f9c5c9 6871{
d2e4a39e 6872 const char *name = TYPE_FIELD_NAME (type, field_num);
14f9c5c9
AS
6873 int p;
6874
6875 p = 0;
6876 while (1)
6877 {
d2e4a39e 6878 switch (name[p])
4c4b4cd2
PH
6879 {
6880 case '\0':
6881 return 0;
6882 case 'S':
6883 {
6884 LONGEST W;
5b4ee69b 6885
4c4b4cd2
PH
6886 if (!ada_scan_number (name, p + 1, &W, &p))
6887 return 0;
6888 if (val == W)
6889 return 1;
6890 break;
6891 }
6892 case 'R':
6893 {
6894 LONGEST L, U;
5b4ee69b 6895
4c4b4cd2
PH
6896 if (!ada_scan_number (name, p + 1, &L, &p)
6897 || name[p] != 'T' || !ada_scan_number (name, p + 1, &U, &p))
6898 return 0;
6899 if (val >= L && val <= U)
6900 return 1;
6901 break;
6902 }
6903 case 'O':
6904 return 1;
6905 default:
6906 return 0;
6907 }
6908 }
6909}
6910
0963b4bd 6911/* FIXME: Lots of redundancy below. Try to consolidate. */
4c4b4cd2
PH
6912
6913/* Given a value ARG1 (offset by OFFSET bytes) of a struct or union type
6914 ARG_TYPE, extract and return the value of one of its (non-static)
6915 fields. FIELDNO says which field. Differs from value_primitive_field
6916 only in that it can handle packed values of arbitrary type. */
14f9c5c9 6917
4c4b4cd2 6918static struct value *
d2e4a39e 6919ada_value_primitive_field (struct value *arg1, int offset, int fieldno,
4c4b4cd2 6920 struct type *arg_type)
14f9c5c9 6921{
14f9c5c9
AS
6922 struct type *type;
6923
61ee279c 6924 arg_type = ada_check_typedef (arg_type);
14f9c5c9
AS
6925 type = TYPE_FIELD_TYPE (arg_type, fieldno);
6926
4c4b4cd2 6927 /* Handle packed fields. */
14f9c5c9
AS
6928
6929 if (TYPE_FIELD_BITSIZE (arg_type, fieldno) != 0)
6930 {
6931 int bit_pos = TYPE_FIELD_BITPOS (arg_type, fieldno);
6932 int bit_size = TYPE_FIELD_BITSIZE (arg_type, fieldno);
d2e4a39e 6933
0fd88904 6934 return ada_value_primitive_packed_val (arg1, value_contents (arg1),
4c4b4cd2
PH
6935 offset + bit_pos / 8,
6936 bit_pos % 8, bit_size, type);
14f9c5c9
AS
6937 }
6938 else
6939 return value_primitive_field (arg1, offset, fieldno, arg_type);
6940}
6941
52ce6436
PH
6942/* Find field with name NAME in object of type TYPE. If found,
6943 set the following for each argument that is non-null:
6944 - *FIELD_TYPE_P to the field's type;
6945 - *BYTE_OFFSET_P to OFFSET + the byte offset of the field within
6946 an object of that type;
6947 - *BIT_OFFSET_P to the bit offset modulo byte size of the field;
6948 - *BIT_SIZE_P to its size in bits if the field is packed, and
6949 0 otherwise;
6950 If INDEX_P is non-null, increment *INDEX_P by the number of source-visible
6951 fields up to but not including the desired field, or by the total
6952 number of fields if not found. A NULL value of NAME never
6953 matches; the function just counts visible fields in this case.
6954
0963b4bd 6955 Returns 1 if found, 0 otherwise. */
52ce6436 6956
4c4b4cd2 6957static int
0d5cff50 6958find_struct_field (const char *name, struct type *type, int offset,
76a01679 6959 struct type **field_type_p,
52ce6436
PH
6960 int *byte_offset_p, int *bit_offset_p, int *bit_size_p,
6961 int *index_p)
4c4b4cd2
PH
6962{
6963 int i;
6964
61ee279c 6965 type = ada_check_typedef (type);
76a01679 6966
52ce6436
PH
6967 if (field_type_p != NULL)
6968 *field_type_p = NULL;
6969 if (byte_offset_p != NULL)
d5d6fca5 6970 *byte_offset_p = 0;
52ce6436
PH
6971 if (bit_offset_p != NULL)
6972 *bit_offset_p = 0;
6973 if (bit_size_p != NULL)
6974 *bit_size_p = 0;
6975
6976 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
4c4b4cd2
PH
6977 {
6978 int bit_pos = TYPE_FIELD_BITPOS (type, i);
6979 int fld_offset = offset + bit_pos / 8;
0d5cff50 6980 const char *t_field_name = TYPE_FIELD_NAME (type, i);
76a01679 6981
4c4b4cd2
PH
6982 if (t_field_name == NULL)
6983 continue;
6984
52ce6436 6985 else if (name != NULL && field_name_match (t_field_name, name))
76a01679
JB
6986 {
6987 int bit_size = TYPE_FIELD_BITSIZE (type, i);
5b4ee69b 6988
52ce6436
PH
6989 if (field_type_p != NULL)
6990 *field_type_p = TYPE_FIELD_TYPE (type, i);
6991 if (byte_offset_p != NULL)
6992 *byte_offset_p = fld_offset;
6993 if (bit_offset_p != NULL)
6994 *bit_offset_p = bit_pos % 8;
6995 if (bit_size_p != NULL)
6996 *bit_size_p = bit_size;
76a01679
JB
6997 return 1;
6998 }
4c4b4cd2
PH
6999 else if (ada_is_wrapper_field (type, i))
7000 {
52ce6436
PH
7001 if (find_struct_field (name, TYPE_FIELD_TYPE (type, i), fld_offset,
7002 field_type_p, byte_offset_p, bit_offset_p,
7003 bit_size_p, index_p))
76a01679
JB
7004 return 1;
7005 }
4c4b4cd2
PH
7006 else if (ada_is_variant_part (type, i))
7007 {
52ce6436
PH
7008 /* PNH: Wait. Do we ever execute this section, or is ARG always of
7009 fixed type?? */
4c4b4cd2 7010 int j;
52ce6436
PH
7011 struct type *field_type
7012 = ada_check_typedef (TYPE_FIELD_TYPE (type, i));
4c4b4cd2 7013
52ce6436 7014 for (j = 0; j < TYPE_NFIELDS (field_type); j += 1)
4c4b4cd2 7015 {
76a01679
JB
7016 if (find_struct_field (name, TYPE_FIELD_TYPE (field_type, j),
7017 fld_offset
7018 + TYPE_FIELD_BITPOS (field_type, j) / 8,
7019 field_type_p, byte_offset_p,
52ce6436 7020 bit_offset_p, bit_size_p, index_p))
76a01679 7021 return 1;
4c4b4cd2
PH
7022 }
7023 }
52ce6436
PH
7024 else if (index_p != NULL)
7025 *index_p += 1;
4c4b4cd2
PH
7026 }
7027 return 0;
7028}
7029
0963b4bd 7030/* Number of user-visible fields in record type TYPE. */
4c4b4cd2 7031
52ce6436
PH
7032static int
7033num_visible_fields (struct type *type)
7034{
7035 int n;
5b4ee69b 7036
52ce6436
PH
7037 n = 0;
7038 find_struct_field (NULL, type, 0, NULL, NULL, NULL, NULL, &n);
7039 return n;
7040}
14f9c5c9 7041
4c4b4cd2 7042/* Look for a field NAME in ARG. Adjust the address of ARG by OFFSET bytes,
14f9c5c9
AS
7043 and search in it assuming it has (class) type TYPE.
7044 If found, return value, else return NULL.
7045
4c4b4cd2 7046 Searches recursively through wrapper fields (e.g., '_parent'). */
14f9c5c9 7047
4c4b4cd2 7048static struct value *
d2e4a39e 7049ada_search_struct_field (char *name, struct value *arg, int offset,
4c4b4cd2 7050 struct type *type)
14f9c5c9
AS
7051{
7052 int i;
14f9c5c9 7053
5b4ee69b 7054 type = ada_check_typedef (type);
52ce6436 7055 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
14f9c5c9 7056 {
0d5cff50 7057 const char *t_field_name = TYPE_FIELD_NAME (type, i);
14f9c5c9
AS
7058
7059 if (t_field_name == NULL)
4c4b4cd2 7060 continue;
14f9c5c9
AS
7061
7062 else if (field_name_match (t_field_name, name))
4c4b4cd2 7063 return ada_value_primitive_field (arg, offset, i, type);
14f9c5c9
AS
7064
7065 else if (ada_is_wrapper_field (type, i))
4c4b4cd2 7066 {
0963b4bd 7067 struct value *v = /* Do not let indent join lines here. */
06d5cf63
JB
7068 ada_search_struct_field (name, arg,
7069 offset + TYPE_FIELD_BITPOS (type, i) / 8,
7070 TYPE_FIELD_TYPE (type, i));
5b4ee69b 7071
4c4b4cd2
PH
7072 if (v != NULL)
7073 return v;
7074 }
14f9c5c9
AS
7075
7076 else if (ada_is_variant_part (type, i))
4c4b4cd2 7077 {
0963b4bd 7078 /* PNH: Do we ever get here? See find_struct_field. */
4c4b4cd2 7079 int j;
5b4ee69b
MS
7080 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type,
7081 i));
4c4b4cd2
PH
7082 int var_offset = offset + TYPE_FIELD_BITPOS (type, i) / 8;
7083
52ce6436 7084 for (j = 0; j < TYPE_NFIELDS (field_type); j += 1)
4c4b4cd2 7085 {
0963b4bd
MS
7086 struct value *v = ada_search_struct_field /* Force line
7087 break. */
06d5cf63
JB
7088 (name, arg,
7089 var_offset + TYPE_FIELD_BITPOS (field_type, j) / 8,
7090 TYPE_FIELD_TYPE (field_type, j));
5b4ee69b 7091
4c4b4cd2
PH
7092 if (v != NULL)
7093 return v;
7094 }
7095 }
14f9c5c9
AS
7096 }
7097 return NULL;
7098}
d2e4a39e 7099
52ce6436
PH
7100static struct value *ada_index_struct_field_1 (int *, struct value *,
7101 int, struct type *);
7102
7103
7104/* Return field #INDEX in ARG, where the index is that returned by
7105 * find_struct_field through its INDEX_P argument. Adjust the address
7106 * of ARG by OFFSET bytes, and search in it assuming it has (class) type TYPE.
0963b4bd 7107 * If found, return value, else return NULL. */
52ce6436
PH
7108
7109static struct value *
7110ada_index_struct_field (int index, struct value *arg, int offset,
7111 struct type *type)
7112{
7113 return ada_index_struct_field_1 (&index, arg, offset, type);
7114}
7115
7116
7117/* Auxiliary function for ada_index_struct_field. Like
7118 * ada_index_struct_field, but takes index from *INDEX_P and modifies
0963b4bd 7119 * *INDEX_P. */
52ce6436
PH
7120
7121static struct value *
7122ada_index_struct_field_1 (int *index_p, struct value *arg, int offset,
7123 struct type *type)
7124{
7125 int i;
7126 type = ada_check_typedef (type);
7127
7128 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
7129 {
7130 if (TYPE_FIELD_NAME (type, i) == NULL)
7131 continue;
7132 else if (ada_is_wrapper_field (type, i))
7133 {
0963b4bd 7134 struct value *v = /* Do not let indent join lines here. */
52ce6436
PH
7135 ada_index_struct_field_1 (index_p, arg,
7136 offset + TYPE_FIELD_BITPOS (type, i) / 8,
7137 TYPE_FIELD_TYPE (type, i));
5b4ee69b 7138
52ce6436
PH
7139 if (v != NULL)
7140 return v;
7141 }
7142
7143 else if (ada_is_variant_part (type, i))
7144 {
7145 /* PNH: Do we ever get here? See ada_search_struct_field,
0963b4bd 7146 find_struct_field. */
52ce6436
PH
7147 error (_("Cannot assign this kind of variant record"));
7148 }
7149 else if (*index_p == 0)
7150 return ada_value_primitive_field (arg, offset, i, type);
7151 else
7152 *index_p -= 1;
7153 }
7154 return NULL;
7155}
7156
4c4b4cd2
PH
7157/* Given ARG, a value of type (pointer or reference to a)*
7158 structure/union, extract the component named NAME from the ultimate
7159 target structure/union and return it as a value with its
f5938064 7160 appropriate type.
14f9c5c9 7161
4c4b4cd2
PH
7162 The routine searches for NAME among all members of the structure itself
7163 and (recursively) among all members of any wrapper members
14f9c5c9
AS
7164 (e.g., '_parent').
7165
03ee6b2e
PH
7166 If NO_ERR, then simply return NULL in case of error, rather than
7167 calling error. */
14f9c5c9 7168
d2e4a39e 7169struct value *
03ee6b2e 7170ada_value_struct_elt (struct value *arg, char *name, int no_err)
14f9c5c9 7171{
4c4b4cd2 7172 struct type *t, *t1;
d2e4a39e 7173 struct value *v;
14f9c5c9 7174
4c4b4cd2 7175 v = NULL;
df407dfe 7176 t1 = t = ada_check_typedef (value_type (arg));
4c4b4cd2
PH
7177 if (TYPE_CODE (t) == TYPE_CODE_REF)
7178 {
7179 t1 = TYPE_TARGET_TYPE (t);
7180 if (t1 == NULL)
03ee6b2e 7181 goto BadValue;
61ee279c 7182 t1 = ada_check_typedef (t1);
4c4b4cd2 7183 if (TYPE_CODE (t1) == TYPE_CODE_PTR)
76a01679 7184 {
994b9211 7185 arg = coerce_ref (arg);
76a01679
JB
7186 t = t1;
7187 }
4c4b4cd2 7188 }
14f9c5c9 7189
4c4b4cd2
PH
7190 while (TYPE_CODE (t) == TYPE_CODE_PTR)
7191 {
7192 t1 = TYPE_TARGET_TYPE (t);
7193 if (t1 == NULL)
03ee6b2e 7194 goto BadValue;
61ee279c 7195 t1 = ada_check_typedef (t1);
4c4b4cd2 7196 if (TYPE_CODE (t1) == TYPE_CODE_PTR)
76a01679
JB
7197 {
7198 arg = value_ind (arg);
7199 t = t1;
7200 }
4c4b4cd2 7201 else
76a01679 7202 break;
4c4b4cd2 7203 }
14f9c5c9 7204
4c4b4cd2 7205 if (TYPE_CODE (t1) != TYPE_CODE_STRUCT && TYPE_CODE (t1) != TYPE_CODE_UNION)
03ee6b2e 7206 goto BadValue;
14f9c5c9 7207
4c4b4cd2
PH
7208 if (t1 == t)
7209 v = ada_search_struct_field (name, arg, 0, t);
7210 else
7211 {
7212 int bit_offset, bit_size, byte_offset;
7213 struct type *field_type;
7214 CORE_ADDR address;
7215
76a01679 7216 if (TYPE_CODE (t) == TYPE_CODE_PTR)
b50d69b5 7217 address = value_address (ada_value_ind (arg));
4c4b4cd2 7218 else
b50d69b5 7219 address = value_address (ada_coerce_ref (arg));
14f9c5c9 7220
1ed6ede0 7221 t1 = ada_to_fixed_type (ada_get_base_type (t1), NULL, address, NULL, 1);
76a01679
JB
7222 if (find_struct_field (name, t1, 0,
7223 &field_type, &byte_offset, &bit_offset,
52ce6436 7224 &bit_size, NULL))
76a01679
JB
7225 {
7226 if (bit_size != 0)
7227 {
714e53ab
PH
7228 if (TYPE_CODE (t) == TYPE_CODE_REF)
7229 arg = ada_coerce_ref (arg);
7230 else
7231 arg = ada_value_ind (arg);
76a01679
JB
7232 v = ada_value_primitive_packed_val (arg, NULL, byte_offset,
7233 bit_offset, bit_size,
7234 field_type);
7235 }
7236 else
f5938064 7237 v = value_at_lazy (field_type, address + byte_offset);
76a01679
JB
7238 }
7239 }
7240
03ee6b2e
PH
7241 if (v != NULL || no_err)
7242 return v;
7243 else
323e0a4a 7244 error (_("There is no member named %s."), name);
14f9c5c9 7245
03ee6b2e
PH
7246 BadValue:
7247 if (no_err)
7248 return NULL;
7249 else
0963b4bd
MS
7250 error (_("Attempt to extract a component of "
7251 "a value that is not a record."));
14f9c5c9
AS
7252}
7253
7254/* Given a type TYPE, look up the type of the component of type named NAME.
4c4b4cd2
PH
7255 If DISPP is non-null, add its byte displacement from the beginning of a
7256 structure (pointed to by a value) of type TYPE to *DISPP (does not
14f9c5c9
AS
7257 work for packed fields).
7258
7259 Matches any field whose name has NAME as a prefix, possibly
4c4b4cd2 7260 followed by "___".
14f9c5c9 7261
0963b4bd 7262 TYPE can be either a struct or union. If REFOK, TYPE may also
4c4b4cd2
PH
7263 be a (pointer or reference)+ to a struct or union, and the
7264 ultimate target type will be searched.
14f9c5c9
AS
7265
7266 Looks recursively into variant clauses and parent types.
7267
4c4b4cd2
PH
7268 If NOERR is nonzero, return NULL if NAME is not suitably defined or
7269 TYPE is not a type of the right kind. */
14f9c5c9 7270
4c4b4cd2 7271static struct type *
76a01679
JB
7272ada_lookup_struct_elt_type (struct type *type, char *name, int refok,
7273 int noerr, int *dispp)
14f9c5c9
AS
7274{
7275 int i;
7276
7277 if (name == NULL)
7278 goto BadName;
7279
76a01679 7280 if (refok && type != NULL)
4c4b4cd2
PH
7281 while (1)
7282 {
61ee279c 7283 type = ada_check_typedef (type);
76a01679
JB
7284 if (TYPE_CODE (type) != TYPE_CODE_PTR
7285 && TYPE_CODE (type) != TYPE_CODE_REF)
7286 break;
7287 type = TYPE_TARGET_TYPE (type);
4c4b4cd2 7288 }
14f9c5c9 7289
76a01679 7290 if (type == NULL
1265e4aa
JB
7291 || (TYPE_CODE (type) != TYPE_CODE_STRUCT
7292 && TYPE_CODE (type) != TYPE_CODE_UNION))
14f9c5c9 7293 {
4c4b4cd2 7294 if (noerr)
76a01679 7295 return NULL;
4c4b4cd2 7296 else
76a01679
JB
7297 {
7298 target_terminal_ours ();
7299 gdb_flush (gdb_stdout);
323e0a4a
AC
7300 if (type == NULL)
7301 error (_("Type (null) is not a structure or union type"));
7302 else
7303 {
7304 /* XXX: type_sprint */
7305 fprintf_unfiltered (gdb_stderr, _("Type "));
7306 type_print (type, "", gdb_stderr, -1);
7307 error (_(" is not a structure or union type"));
7308 }
76a01679 7309 }
14f9c5c9
AS
7310 }
7311
7312 type = to_static_fixed_type (type);
7313
7314 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
7315 {
0d5cff50 7316 const char *t_field_name = TYPE_FIELD_NAME (type, i);
14f9c5c9
AS
7317 struct type *t;
7318 int disp;
d2e4a39e 7319
14f9c5c9 7320 if (t_field_name == NULL)
4c4b4cd2 7321 continue;
14f9c5c9
AS
7322
7323 else if (field_name_match (t_field_name, name))
4c4b4cd2
PH
7324 {
7325 if (dispp != NULL)
7326 *dispp += TYPE_FIELD_BITPOS (type, i) / 8;
460efde1 7327 return TYPE_FIELD_TYPE (type, i);
4c4b4cd2 7328 }
14f9c5c9
AS
7329
7330 else if (ada_is_wrapper_field (type, i))
4c4b4cd2
PH
7331 {
7332 disp = 0;
7333 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (type, i), name,
7334 0, 1, &disp);
7335 if (t != NULL)
7336 {
7337 if (dispp != NULL)
7338 *dispp += disp + TYPE_FIELD_BITPOS (type, i) / 8;
7339 return t;
7340 }
7341 }
14f9c5c9
AS
7342
7343 else if (ada_is_variant_part (type, i))
4c4b4cd2
PH
7344 {
7345 int j;
5b4ee69b
MS
7346 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type,
7347 i));
4c4b4cd2
PH
7348
7349 for (j = TYPE_NFIELDS (field_type) - 1; j >= 0; j -= 1)
7350 {
b1f33ddd
JB
7351 /* FIXME pnh 2008/01/26: We check for a field that is
7352 NOT wrapped in a struct, since the compiler sometimes
7353 generates these for unchecked variant types. Revisit
0963b4bd 7354 if the compiler changes this practice. */
0d5cff50 7355 const char *v_field_name = TYPE_FIELD_NAME (field_type, j);
4c4b4cd2 7356 disp = 0;
b1f33ddd
JB
7357 if (v_field_name != NULL
7358 && field_name_match (v_field_name, name))
460efde1 7359 t = TYPE_FIELD_TYPE (field_type, j);
b1f33ddd 7360 else
0963b4bd
MS
7361 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (field_type,
7362 j),
b1f33ddd
JB
7363 name, 0, 1, &disp);
7364
4c4b4cd2
PH
7365 if (t != NULL)
7366 {
7367 if (dispp != NULL)
7368 *dispp += disp + TYPE_FIELD_BITPOS (type, i) / 8;
7369 return t;
7370 }
7371 }
7372 }
14f9c5c9
AS
7373
7374 }
7375
7376BadName:
d2e4a39e 7377 if (!noerr)
14f9c5c9
AS
7378 {
7379 target_terminal_ours ();
7380 gdb_flush (gdb_stdout);
323e0a4a
AC
7381 if (name == NULL)
7382 {
7383 /* XXX: type_sprint */
7384 fprintf_unfiltered (gdb_stderr, _("Type "));
7385 type_print (type, "", gdb_stderr, -1);
7386 error (_(" has no component named <null>"));
7387 }
7388 else
7389 {
7390 /* XXX: type_sprint */
7391 fprintf_unfiltered (gdb_stderr, _("Type "));
7392 type_print (type, "", gdb_stderr, -1);
7393 error (_(" has no component named %s"), name);
7394 }
14f9c5c9
AS
7395 }
7396
7397 return NULL;
7398}
7399
b1f33ddd
JB
7400/* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
7401 within a value of type OUTER_TYPE, return true iff VAR_TYPE
7402 represents an unchecked union (that is, the variant part of a
0963b4bd 7403 record that is named in an Unchecked_Union pragma). */
b1f33ddd
JB
7404
7405static int
7406is_unchecked_variant (struct type *var_type, struct type *outer_type)
7407{
7408 char *discrim_name = ada_variant_discrim_name (var_type);
5b4ee69b 7409
b1f33ddd
JB
7410 return (ada_lookup_struct_elt_type (outer_type, discrim_name, 0, 1, NULL)
7411 == NULL);
7412}
7413
7414
14f9c5c9
AS
7415/* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
7416 within a value of type OUTER_TYPE that is stored in GDB at
4c4b4cd2
PH
7417 OUTER_VALADDR, determine which variant clause (field number in VAR_TYPE,
7418 numbering from 0) is applicable. Returns -1 if none are. */
14f9c5c9 7419
d2e4a39e 7420int
ebf56fd3 7421ada_which_variant_applies (struct type *var_type, struct type *outer_type,
fc1a4b47 7422 const gdb_byte *outer_valaddr)
14f9c5c9
AS
7423{
7424 int others_clause;
7425 int i;
d2e4a39e 7426 char *discrim_name = ada_variant_discrim_name (var_type);
0c281816
JB
7427 struct value *outer;
7428 struct value *discrim;
14f9c5c9
AS
7429 LONGEST discrim_val;
7430
012370f6
TT
7431 /* Using plain value_from_contents_and_address here causes problems
7432 because we will end up trying to resolve a type that is currently
7433 being constructed. */
7434 outer = value_from_contents_and_address_unresolved (outer_type,
7435 outer_valaddr, 0);
0c281816
JB
7436 discrim = ada_value_struct_elt (outer, discrim_name, 1);
7437 if (discrim == NULL)
14f9c5c9 7438 return -1;
0c281816 7439 discrim_val = value_as_long (discrim);
14f9c5c9
AS
7440
7441 others_clause = -1;
7442 for (i = 0; i < TYPE_NFIELDS (var_type); i += 1)
7443 {
7444 if (ada_is_others_clause (var_type, i))
4c4b4cd2 7445 others_clause = i;
14f9c5c9 7446 else if (ada_in_variant (discrim_val, var_type, i))
4c4b4cd2 7447 return i;
14f9c5c9
AS
7448 }
7449
7450 return others_clause;
7451}
d2e4a39e 7452\f
14f9c5c9
AS
7453
7454
4c4b4cd2 7455 /* Dynamic-Sized Records */
14f9c5c9
AS
7456
7457/* Strategy: The type ostensibly attached to a value with dynamic size
7458 (i.e., a size that is not statically recorded in the debugging
7459 data) does not accurately reflect the size or layout of the value.
7460 Our strategy is to convert these values to values with accurate,
4c4b4cd2 7461 conventional types that are constructed on the fly. */
14f9c5c9
AS
7462
7463/* There is a subtle and tricky problem here. In general, we cannot
7464 determine the size of dynamic records without its data. However,
7465 the 'struct value' data structure, which GDB uses to represent
7466 quantities in the inferior process (the target), requires the size
7467 of the type at the time of its allocation in order to reserve space
7468 for GDB's internal copy of the data. That's why the
7469 'to_fixed_xxx_type' routines take (target) addresses as parameters,
4c4b4cd2 7470 rather than struct value*s.
14f9c5c9
AS
7471
7472 However, GDB's internal history variables ($1, $2, etc.) are
7473 struct value*s containing internal copies of the data that are not, in
7474 general, the same as the data at their corresponding addresses in
7475 the target. Fortunately, the types we give to these values are all
7476 conventional, fixed-size types (as per the strategy described
7477 above), so that we don't usually have to perform the
7478 'to_fixed_xxx_type' conversions to look at their values.
7479 Unfortunately, there is one exception: if one of the internal
7480 history variables is an array whose elements are unconstrained
7481 records, then we will need to create distinct fixed types for each
7482 element selected. */
7483
7484/* The upshot of all of this is that many routines take a (type, host
7485 address, target address) triple as arguments to represent a value.
7486 The host address, if non-null, is supposed to contain an internal
7487 copy of the relevant data; otherwise, the program is to consult the
4c4b4cd2 7488 target at the target address. */
14f9c5c9
AS
7489
7490/* Assuming that VAL0 represents a pointer value, the result of
7491 dereferencing it. Differs from value_ind in its treatment of
4c4b4cd2 7492 dynamic-sized types. */
14f9c5c9 7493
d2e4a39e
AS
7494struct value *
7495ada_value_ind (struct value *val0)
14f9c5c9 7496{
c48db5ca 7497 struct value *val = value_ind (val0);
5b4ee69b 7498
b50d69b5
JG
7499 if (ada_is_tagged_type (value_type (val), 0))
7500 val = ada_tag_value_at_base_address (val);
7501
4c4b4cd2 7502 return ada_to_fixed_value (val);
14f9c5c9
AS
7503}
7504
7505/* The value resulting from dereferencing any "reference to"
4c4b4cd2
PH
7506 qualifiers on VAL0. */
7507
d2e4a39e
AS
7508static struct value *
7509ada_coerce_ref (struct value *val0)
7510{
df407dfe 7511 if (TYPE_CODE (value_type (val0)) == TYPE_CODE_REF)
d2e4a39e
AS
7512 {
7513 struct value *val = val0;
5b4ee69b 7514
994b9211 7515 val = coerce_ref (val);
b50d69b5
JG
7516
7517 if (ada_is_tagged_type (value_type (val), 0))
7518 val = ada_tag_value_at_base_address (val);
7519
4c4b4cd2 7520 return ada_to_fixed_value (val);
d2e4a39e
AS
7521 }
7522 else
14f9c5c9
AS
7523 return val0;
7524}
7525
7526/* Return OFF rounded upward if necessary to a multiple of
4c4b4cd2 7527 ALIGNMENT (a power of 2). */
14f9c5c9
AS
7528
7529static unsigned int
ebf56fd3 7530align_value (unsigned int off, unsigned int alignment)
14f9c5c9
AS
7531{
7532 return (off + alignment - 1) & ~(alignment - 1);
7533}
7534
4c4b4cd2 7535/* Return the bit alignment required for field #F of template type TYPE. */
14f9c5c9
AS
7536
7537static unsigned int
ebf56fd3 7538field_alignment (struct type *type, int f)
14f9c5c9 7539{
d2e4a39e 7540 const char *name = TYPE_FIELD_NAME (type, f);
64a1bf19 7541 int len;
14f9c5c9
AS
7542 int align_offset;
7543
64a1bf19
JB
7544 /* The field name should never be null, unless the debugging information
7545 is somehow malformed. In this case, we assume the field does not
7546 require any alignment. */
7547 if (name == NULL)
7548 return 1;
7549
7550 len = strlen (name);
7551
4c4b4cd2
PH
7552 if (!isdigit (name[len - 1]))
7553 return 1;
14f9c5c9 7554
d2e4a39e 7555 if (isdigit (name[len - 2]))
14f9c5c9
AS
7556 align_offset = len - 2;
7557 else
7558 align_offset = len - 1;
7559
61012eef 7560 if (align_offset < 7 || !startswith (name + align_offset - 6, "___XV"))
14f9c5c9
AS
7561 return TARGET_CHAR_BIT;
7562
4c4b4cd2
PH
7563 return atoi (name + align_offset) * TARGET_CHAR_BIT;
7564}
7565
852dff6c 7566/* Find a typedef or tag symbol named NAME. Ignores ambiguity. */
4c4b4cd2 7567
852dff6c
JB
7568static struct symbol *
7569ada_find_any_type_symbol (const char *name)
4c4b4cd2
PH
7570{
7571 struct symbol *sym;
7572
7573 sym = standard_lookup (name, get_selected_block (NULL), VAR_DOMAIN);
4186eb54 7574 if (sym != NULL && SYMBOL_CLASS (sym) == LOC_TYPEDEF)
4c4b4cd2
PH
7575 return sym;
7576
4186eb54
KS
7577 sym = standard_lookup (name, NULL, STRUCT_DOMAIN);
7578 return sym;
14f9c5c9
AS
7579}
7580
dddfab26
UW
7581/* Find a type named NAME. Ignores ambiguity. This routine will look
7582 solely for types defined by debug info, it will not search the GDB
7583 primitive types. */
4c4b4cd2 7584
852dff6c 7585static struct type *
ebf56fd3 7586ada_find_any_type (const char *name)
14f9c5c9 7587{
852dff6c 7588 struct symbol *sym = ada_find_any_type_symbol (name);
14f9c5c9 7589
14f9c5c9 7590 if (sym != NULL)
dddfab26 7591 return SYMBOL_TYPE (sym);
14f9c5c9 7592
dddfab26 7593 return NULL;
14f9c5c9
AS
7594}
7595
739593e0
JB
7596/* Given NAME_SYM and an associated BLOCK, find a "renaming" symbol
7597 associated with NAME_SYM's name. NAME_SYM may itself be a renaming
7598 symbol, in which case it is returned. Otherwise, this looks for
7599 symbols whose name is that of NAME_SYM suffixed with "___XR".
7600 Return symbol if found, and NULL otherwise. */
4c4b4cd2
PH
7601
7602struct symbol *
270140bd 7603ada_find_renaming_symbol (struct symbol *name_sym, const struct block *block)
aeb5907d 7604{
739593e0 7605 const char *name = SYMBOL_LINKAGE_NAME (name_sym);
aeb5907d
JB
7606 struct symbol *sym;
7607
739593e0
JB
7608 if (strstr (name, "___XR") != NULL)
7609 return name_sym;
7610
aeb5907d
JB
7611 sym = find_old_style_renaming_symbol (name, block);
7612
7613 if (sym != NULL)
7614 return sym;
7615
0963b4bd 7616 /* Not right yet. FIXME pnh 7/20/2007. */
852dff6c 7617 sym = ada_find_any_type_symbol (name);
aeb5907d
JB
7618 if (sym != NULL && strstr (SYMBOL_LINKAGE_NAME (sym), "___XR") != NULL)
7619 return sym;
7620 else
7621 return NULL;
7622}
7623
7624static struct symbol *
270140bd 7625find_old_style_renaming_symbol (const char *name, const struct block *block)
4c4b4cd2 7626{
7f0df278 7627 const struct symbol *function_sym = block_linkage_function (block);
4c4b4cd2
PH
7628 char *rename;
7629
7630 if (function_sym != NULL)
7631 {
7632 /* If the symbol is defined inside a function, NAME is not fully
7633 qualified. This means we need to prepend the function name
7634 as well as adding the ``___XR'' suffix to build the name of
7635 the associated renaming symbol. */
0d5cff50 7636 const char *function_name = SYMBOL_LINKAGE_NAME (function_sym);
529cad9c
PH
7637 /* Function names sometimes contain suffixes used
7638 for instance to qualify nested subprograms. When building
7639 the XR type name, we need to make sure that this suffix is
7640 not included. So do not include any suffix in the function
7641 name length below. */
69fadcdf 7642 int function_name_len = ada_name_prefix_len (function_name);
76a01679
JB
7643 const int rename_len = function_name_len + 2 /* "__" */
7644 + strlen (name) + 6 /* "___XR\0" */ ;
4c4b4cd2 7645
529cad9c 7646 /* Strip the suffix if necessary. */
69fadcdf
JB
7647 ada_remove_trailing_digits (function_name, &function_name_len);
7648 ada_remove_po_subprogram_suffix (function_name, &function_name_len);
7649 ada_remove_Xbn_suffix (function_name, &function_name_len);
529cad9c 7650
4c4b4cd2
PH
7651 /* Library-level functions are a special case, as GNAT adds
7652 a ``_ada_'' prefix to the function name to avoid namespace
aeb5907d 7653 pollution. However, the renaming symbols themselves do not
4c4b4cd2
PH
7654 have this prefix, so we need to skip this prefix if present. */
7655 if (function_name_len > 5 /* "_ada_" */
7656 && strstr (function_name, "_ada_") == function_name)
69fadcdf
JB
7657 {
7658 function_name += 5;
7659 function_name_len -= 5;
7660 }
4c4b4cd2
PH
7661
7662 rename = (char *) alloca (rename_len * sizeof (char));
69fadcdf
JB
7663 strncpy (rename, function_name, function_name_len);
7664 xsnprintf (rename + function_name_len, rename_len - function_name_len,
7665 "__%s___XR", name);
4c4b4cd2
PH
7666 }
7667 else
7668 {
7669 const int rename_len = strlen (name) + 6;
5b4ee69b 7670
4c4b4cd2 7671 rename = (char *) alloca (rename_len * sizeof (char));
88c15c34 7672 xsnprintf (rename, rename_len * sizeof (char), "%s___XR", name);
4c4b4cd2
PH
7673 }
7674
852dff6c 7675 return ada_find_any_type_symbol (rename);
4c4b4cd2
PH
7676}
7677
14f9c5c9 7678/* Because of GNAT encoding conventions, several GDB symbols may match a
4c4b4cd2 7679 given type name. If the type denoted by TYPE0 is to be preferred to
14f9c5c9 7680 that of TYPE1 for purposes of type printing, return non-zero;
4c4b4cd2
PH
7681 otherwise return 0. */
7682
14f9c5c9 7683int
d2e4a39e 7684ada_prefer_type (struct type *type0, struct type *type1)
14f9c5c9
AS
7685{
7686 if (type1 == NULL)
7687 return 1;
7688 else if (type0 == NULL)
7689 return 0;
7690 else if (TYPE_CODE (type1) == TYPE_CODE_VOID)
7691 return 1;
7692 else if (TYPE_CODE (type0) == TYPE_CODE_VOID)
7693 return 0;
4c4b4cd2
PH
7694 else if (TYPE_NAME (type1) == NULL && TYPE_NAME (type0) != NULL)
7695 return 1;
ad82864c 7696 else if (ada_is_constrained_packed_array_type (type0))
14f9c5c9 7697 return 1;
4c4b4cd2
PH
7698 else if (ada_is_array_descriptor_type (type0)
7699 && !ada_is_array_descriptor_type (type1))
14f9c5c9 7700 return 1;
aeb5907d
JB
7701 else
7702 {
7703 const char *type0_name = type_name_no_tag (type0);
7704 const char *type1_name = type_name_no_tag (type1);
7705
7706 if (type0_name != NULL && strstr (type0_name, "___XR") != NULL
7707 && (type1_name == NULL || strstr (type1_name, "___XR") == NULL))
7708 return 1;
7709 }
14f9c5c9
AS
7710 return 0;
7711}
7712
7713/* The name of TYPE, which is either its TYPE_NAME, or, if that is
4c4b4cd2
PH
7714 null, its TYPE_TAG_NAME. Null if TYPE is null. */
7715
0d5cff50 7716const char *
d2e4a39e 7717ada_type_name (struct type *type)
14f9c5c9 7718{
d2e4a39e 7719 if (type == NULL)
14f9c5c9
AS
7720 return NULL;
7721 else if (TYPE_NAME (type) != NULL)
7722 return TYPE_NAME (type);
7723 else
7724 return TYPE_TAG_NAME (type);
7725}
7726
b4ba55a1
JB
7727/* Search the list of "descriptive" types associated to TYPE for a type
7728 whose name is NAME. */
7729
7730static struct type *
7731find_parallel_type_by_descriptive_type (struct type *type, const char *name)
7732{
7733 struct type *result;
7734
c6044dd1
JB
7735 if (ada_ignore_descriptive_types_p)
7736 return NULL;
7737
b4ba55a1
JB
7738 /* If there no descriptive-type info, then there is no parallel type
7739 to be found. */
7740 if (!HAVE_GNAT_AUX_INFO (type))
7741 return NULL;
7742
7743 result = TYPE_DESCRIPTIVE_TYPE (type);
7744 while (result != NULL)
7745 {
0d5cff50 7746 const char *result_name = ada_type_name (result);
b4ba55a1
JB
7747
7748 if (result_name == NULL)
7749 {
7750 warning (_("unexpected null name on descriptive type"));
7751 return NULL;
7752 }
7753
7754 /* If the names match, stop. */
7755 if (strcmp (result_name, name) == 0)
7756 break;
7757
7758 /* Otherwise, look at the next item on the list, if any. */
7759 if (HAVE_GNAT_AUX_INFO (result))
7760 result = TYPE_DESCRIPTIVE_TYPE (result);
7761 else
7762 result = NULL;
7763 }
7764
7765 /* If we didn't find a match, see whether this is a packed array. With
7766 older compilers, the descriptive type information is either absent or
7767 irrelevant when it comes to packed arrays so the above lookup fails.
7768 Fall back to using a parallel lookup by name in this case. */
12ab9e09 7769 if (result == NULL && ada_is_constrained_packed_array_type (type))
b4ba55a1
JB
7770 return ada_find_any_type (name);
7771
7772 return result;
7773}
7774
7775/* Find a parallel type to TYPE with the specified NAME, using the
7776 descriptive type taken from the debugging information, if available,
7777 and otherwise using the (slower) name-based method. */
7778
7779static struct type *
7780ada_find_parallel_type_with_name (struct type *type, const char *name)
7781{
7782 struct type *result = NULL;
7783
7784 if (HAVE_GNAT_AUX_INFO (type))
7785 result = find_parallel_type_by_descriptive_type (type, name);
7786 else
7787 result = ada_find_any_type (name);
7788
7789 return result;
7790}
7791
7792/* Same as above, but specify the name of the parallel type by appending
4c4b4cd2 7793 SUFFIX to the name of TYPE. */
14f9c5c9 7794
d2e4a39e 7795struct type *
ebf56fd3 7796ada_find_parallel_type (struct type *type, const char *suffix)
14f9c5c9 7797{
0d5cff50 7798 char *name;
fe978cb0 7799 const char *type_name = ada_type_name (type);
14f9c5c9 7800 int len;
d2e4a39e 7801
fe978cb0 7802 if (type_name == NULL)
14f9c5c9
AS
7803 return NULL;
7804
fe978cb0 7805 len = strlen (type_name);
14f9c5c9 7806
b4ba55a1 7807 name = (char *) alloca (len + strlen (suffix) + 1);
14f9c5c9 7808
fe978cb0 7809 strcpy (name, type_name);
14f9c5c9
AS
7810 strcpy (name + len, suffix);
7811
b4ba55a1 7812 return ada_find_parallel_type_with_name (type, name);
14f9c5c9
AS
7813}
7814
14f9c5c9 7815/* If TYPE is a variable-size record type, return the corresponding template
4c4b4cd2 7816 type describing its fields. Otherwise, return NULL. */
14f9c5c9 7817
d2e4a39e
AS
7818static struct type *
7819dynamic_template_type (struct type *type)
14f9c5c9 7820{
61ee279c 7821 type = ada_check_typedef (type);
14f9c5c9
AS
7822
7823 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT
d2e4a39e 7824 || ada_type_name (type) == NULL)
14f9c5c9 7825 return NULL;
d2e4a39e 7826 else
14f9c5c9
AS
7827 {
7828 int len = strlen (ada_type_name (type));
5b4ee69b 7829
4c4b4cd2
PH
7830 if (len > 6 && strcmp (ada_type_name (type) + len - 6, "___XVE") == 0)
7831 return type;
14f9c5c9 7832 else
4c4b4cd2 7833 return ada_find_parallel_type (type, "___XVE");
14f9c5c9
AS
7834 }
7835}
7836
7837/* Assuming that TEMPL_TYPE is a union or struct type, returns
4c4b4cd2 7838 non-zero iff field FIELD_NUM of TEMPL_TYPE has dynamic size. */
14f9c5c9 7839
d2e4a39e
AS
7840static int
7841is_dynamic_field (struct type *templ_type, int field_num)
14f9c5c9
AS
7842{
7843 const char *name = TYPE_FIELD_NAME (templ_type, field_num);
5b4ee69b 7844
d2e4a39e 7845 return name != NULL
14f9c5c9
AS
7846 && TYPE_CODE (TYPE_FIELD_TYPE (templ_type, field_num)) == TYPE_CODE_PTR
7847 && strstr (name, "___XVL") != NULL;
7848}
7849
4c4b4cd2
PH
7850/* The index of the variant field of TYPE, or -1 if TYPE does not
7851 represent a variant record type. */
14f9c5c9 7852
d2e4a39e 7853static int
4c4b4cd2 7854variant_field_index (struct type *type)
14f9c5c9
AS
7855{
7856 int f;
7857
4c4b4cd2
PH
7858 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT)
7859 return -1;
7860
7861 for (f = 0; f < TYPE_NFIELDS (type); f += 1)
7862 {
7863 if (ada_is_variant_part (type, f))
7864 return f;
7865 }
7866 return -1;
14f9c5c9
AS
7867}
7868
4c4b4cd2
PH
7869/* A record type with no fields. */
7870
d2e4a39e 7871static struct type *
fe978cb0 7872empty_record (struct type *templ)
14f9c5c9 7873{
fe978cb0 7874 struct type *type = alloc_type_copy (templ);
5b4ee69b 7875
14f9c5c9
AS
7876 TYPE_CODE (type) = TYPE_CODE_STRUCT;
7877 TYPE_NFIELDS (type) = 0;
7878 TYPE_FIELDS (type) = NULL;
b1f33ddd 7879 INIT_CPLUS_SPECIFIC (type);
14f9c5c9
AS
7880 TYPE_NAME (type) = "<empty>";
7881 TYPE_TAG_NAME (type) = NULL;
14f9c5c9
AS
7882 TYPE_LENGTH (type) = 0;
7883 return type;
7884}
7885
7886/* An ordinary record type (with fixed-length fields) that describes
4c4b4cd2
PH
7887 the value of type TYPE at VALADDR or ADDRESS (see comments at
7888 the beginning of this section) VAL according to GNAT conventions.
7889 DVAL0 should describe the (portion of a) record that contains any
df407dfe 7890 necessary discriminants. It should be NULL if value_type (VAL) is
14f9c5c9
AS
7891 an outer-level type (i.e., as opposed to a branch of a variant.) A
7892 variant field (unless unchecked) is replaced by a particular branch
4c4b4cd2 7893 of the variant.
14f9c5c9 7894
4c4b4cd2
PH
7895 If not KEEP_DYNAMIC_FIELDS, then all fields whose position or
7896 length are not statically known are discarded. As a consequence,
7897 VALADDR, ADDRESS and DVAL0 are ignored.
7898
7899 NOTE: Limitations: For now, we assume that dynamic fields and
7900 variants occupy whole numbers of bytes. However, they need not be
7901 byte-aligned. */
7902
7903struct type *
10a2c479 7904ada_template_to_fixed_record_type_1 (struct type *type,
fc1a4b47 7905 const gdb_byte *valaddr,
4c4b4cd2
PH
7906 CORE_ADDR address, struct value *dval0,
7907 int keep_dynamic_fields)
14f9c5c9 7908{
d2e4a39e
AS
7909 struct value *mark = value_mark ();
7910 struct value *dval;
7911 struct type *rtype;
14f9c5c9 7912 int nfields, bit_len;
4c4b4cd2 7913 int variant_field;
14f9c5c9 7914 long off;
d94e4f4f 7915 int fld_bit_len;
14f9c5c9
AS
7916 int f;
7917
4c4b4cd2
PH
7918 /* Compute the number of fields in this record type that are going
7919 to be processed: unless keep_dynamic_fields, this includes only
7920 fields whose position and length are static will be processed. */
7921 if (keep_dynamic_fields)
7922 nfields = TYPE_NFIELDS (type);
7923 else
7924 {
7925 nfields = 0;
76a01679 7926 while (nfields < TYPE_NFIELDS (type)
4c4b4cd2
PH
7927 && !ada_is_variant_part (type, nfields)
7928 && !is_dynamic_field (type, nfields))
7929 nfields++;
7930 }
7931
e9bb382b 7932 rtype = alloc_type_copy (type);
14f9c5c9
AS
7933 TYPE_CODE (rtype) = TYPE_CODE_STRUCT;
7934 INIT_CPLUS_SPECIFIC (rtype);
7935 TYPE_NFIELDS (rtype) = nfields;
d2e4a39e 7936 TYPE_FIELDS (rtype) = (struct field *)
14f9c5c9
AS
7937 TYPE_ALLOC (rtype, nfields * sizeof (struct field));
7938 memset (TYPE_FIELDS (rtype), 0, sizeof (struct field) * nfields);
7939 TYPE_NAME (rtype) = ada_type_name (type);
7940 TYPE_TAG_NAME (rtype) = NULL;
876cecd0 7941 TYPE_FIXED_INSTANCE (rtype) = 1;
14f9c5c9 7942
d2e4a39e
AS
7943 off = 0;
7944 bit_len = 0;
4c4b4cd2
PH
7945 variant_field = -1;
7946
14f9c5c9
AS
7947 for (f = 0; f < nfields; f += 1)
7948 {
6c038f32
PH
7949 off = align_value (off, field_alignment (type, f))
7950 + TYPE_FIELD_BITPOS (type, f);
945b3a32 7951 SET_FIELD_BITPOS (TYPE_FIELD (rtype, f), off);
d2e4a39e 7952 TYPE_FIELD_BITSIZE (rtype, f) = 0;
14f9c5c9 7953
d2e4a39e 7954 if (ada_is_variant_part (type, f))
4c4b4cd2
PH
7955 {
7956 variant_field = f;
d94e4f4f 7957 fld_bit_len = 0;
4c4b4cd2 7958 }
14f9c5c9 7959 else if (is_dynamic_field (type, f))
4c4b4cd2 7960 {
284614f0
JB
7961 const gdb_byte *field_valaddr = valaddr;
7962 CORE_ADDR field_address = address;
7963 struct type *field_type =
7964 TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type, f));
7965
4c4b4cd2 7966 if (dval0 == NULL)
b5304971
JG
7967 {
7968 /* rtype's length is computed based on the run-time
7969 value of discriminants. If the discriminants are not
7970 initialized, the type size may be completely bogus and
0963b4bd 7971 GDB may fail to allocate a value for it. So check the
b5304971 7972 size first before creating the value. */
c1b5a1a6 7973 ada_ensure_varsize_limit (rtype);
012370f6
TT
7974 /* Using plain value_from_contents_and_address here
7975 causes problems because we will end up trying to
7976 resolve a type that is currently being
7977 constructed. */
7978 dval = value_from_contents_and_address_unresolved (rtype,
7979 valaddr,
7980 address);
9f1f738a 7981 rtype = value_type (dval);
b5304971 7982 }
4c4b4cd2
PH
7983 else
7984 dval = dval0;
7985
284614f0
JB
7986 /* If the type referenced by this field is an aligner type, we need
7987 to unwrap that aligner type, because its size might not be set.
7988 Keeping the aligner type would cause us to compute the wrong
7989 size for this field, impacting the offset of the all the fields
7990 that follow this one. */
7991 if (ada_is_aligner_type (field_type))
7992 {
7993 long field_offset = TYPE_FIELD_BITPOS (field_type, f);
7994
7995 field_valaddr = cond_offset_host (field_valaddr, field_offset);
7996 field_address = cond_offset_target (field_address, field_offset);
7997 field_type = ada_aligned_type (field_type);
7998 }
7999
8000 field_valaddr = cond_offset_host (field_valaddr,
8001 off / TARGET_CHAR_BIT);
8002 field_address = cond_offset_target (field_address,
8003 off / TARGET_CHAR_BIT);
8004
8005 /* Get the fixed type of the field. Note that, in this case,
8006 we do not want to get the real type out of the tag: if
8007 the current field is the parent part of a tagged record,
8008 we will get the tag of the object. Clearly wrong: the real
8009 type of the parent is not the real type of the child. We
8010 would end up in an infinite loop. */
8011 field_type = ada_get_base_type (field_type);
8012 field_type = ada_to_fixed_type (field_type, field_valaddr,
8013 field_address, dval, 0);
27f2a97b
JB
8014 /* If the field size is already larger than the maximum
8015 object size, then the record itself will necessarily
8016 be larger than the maximum object size. We need to make
8017 this check now, because the size might be so ridiculously
8018 large (due to an uninitialized variable in the inferior)
8019 that it would cause an overflow when adding it to the
8020 record size. */
c1b5a1a6 8021 ada_ensure_varsize_limit (field_type);
284614f0
JB
8022
8023 TYPE_FIELD_TYPE (rtype, f) = field_type;
4c4b4cd2 8024 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
27f2a97b
JB
8025 /* The multiplication can potentially overflow. But because
8026 the field length has been size-checked just above, and
8027 assuming that the maximum size is a reasonable value,
8028 an overflow should not happen in practice. So rather than
8029 adding overflow recovery code to this already complex code,
8030 we just assume that it's not going to happen. */
d94e4f4f 8031 fld_bit_len =
4c4b4cd2
PH
8032 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, f)) * TARGET_CHAR_BIT;
8033 }
14f9c5c9 8034 else
4c4b4cd2 8035 {
5ded5331
JB
8036 /* Note: If this field's type is a typedef, it is important
8037 to preserve the typedef layer.
8038
8039 Otherwise, we might be transforming a typedef to a fat
8040 pointer (encoding a pointer to an unconstrained array),
8041 into a basic fat pointer (encoding an unconstrained
8042 array). As both types are implemented using the same
8043 structure, the typedef is the only clue which allows us
8044 to distinguish between the two options. Stripping it
8045 would prevent us from printing this field appropriately. */
8046 TYPE_FIELD_TYPE (rtype, f) = TYPE_FIELD_TYPE (type, f);
4c4b4cd2
PH
8047 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
8048 if (TYPE_FIELD_BITSIZE (type, f) > 0)
d94e4f4f 8049 fld_bit_len =
4c4b4cd2
PH
8050 TYPE_FIELD_BITSIZE (rtype, f) = TYPE_FIELD_BITSIZE (type, f);
8051 else
5ded5331
JB
8052 {
8053 struct type *field_type = TYPE_FIELD_TYPE (type, f);
8054
8055 /* We need to be careful of typedefs when computing
8056 the length of our field. If this is a typedef,
8057 get the length of the target type, not the length
8058 of the typedef. */
8059 if (TYPE_CODE (field_type) == TYPE_CODE_TYPEDEF)
8060 field_type = ada_typedef_target_type (field_type);
8061
8062 fld_bit_len =
8063 TYPE_LENGTH (ada_check_typedef (field_type)) * TARGET_CHAR_BIT;
8064 }
4c4b4cd2 8065 }
14f9c5c9 8066 if (off + fld_bit_len > bit_len)
4c4b4cd2 8067 bit_len = off + fld_bit_len;
d94e4f4f 8068 off += fld_bit_len;
4c4b4cd2
PH
8069 TYPE_LENGTH (rtype) =
8070 align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
14f9c5c9 8071 }
4c4b4cd2
PH
8072
8073 /* We handle the variant part, if any, at the end because of certain
b1f33ddd 8074 odd cases in which it is re-ordered so as NOT to be the last field of
4c4b4cd2
PH
8075 the record. This can happen in the presence of representation
8076 clauses. */
8077 if (variant_field >= 0)
8078 {
8079 struct type *branch_type;
8080
8081 off = TYPE_FIELD_BITPOS (rtype, variant_field);
8082
8083 if (dval0 == NULL)
9f1f738a 8084 {
012370f6
TT
8085 /* Using plain value_from_contents_and_address here causes
8086 problems because we will end up trying to resolve a type
8087 that is currently being constructed. */
8088 dval = value_from_contents_and_address_unresolved (rtype, valaddr,
8089 address);
9f1f738a
SA
8090 rtype = value_type (dval);
8091 }
4c4b4cd2
PH
8092 else
8093 dval = dval0;
8094
8095 branch_type =
8096 to_fixed_variant_branch_type
8097 (TYPE_FIELD_TYPE (type, variant_field),
8098 cond_offset_host (valaddr, off / TARGET_CHAR_BIT),
8099 cond_offset_target (address, off / TARGET_CHAR_BIT), dval);
8100 if (branch_type == NULL)
8101 {
8102 for (f = variant_field + 1; f < TYPE_NFIELDS (rtype); f += 1)
8103 TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f];
8104 TYPE_NFIELDS (rtype) -= 1;
8105 }
8106 else
8107 {
8108 TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
8109 TYPE_FIELD_NAME (rtype, variant_field) = "S";
8110 fld_bit_len =
8111 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, variant_field)) *
8112 TARGET_CHAR_BIT;
8113 if (off + fld_bit_len > bit_len)
8114 bit_len = off + fld_bit_len;
8115 TYPE_LENGTH (rtype) =
8116 align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
8117 }
8118 }
8119
714e53ab
PH
8120 /* According to exp_dbug.ads, the size of TYPE for variable-size records
8121 should contain the alignment of that record, which should be a strictly
8122 positive value. If null or negative, then something is wrong, most
8123 probably in the debug info. In that case, we don't round up the size
0963b4bd 8124 of the resulting type. If this record is not part of another structure,
714e53ab
PH
8125 the current RTYPE length might be good enough for our purposes. */
8126 if (TYPE_LENGTH (type) <= 0)
8127 {
323e0a4a
AC
8128 if (TYPE_NAME (rtype))
8129 warning (_("Invalid type size for `%s' detected: %d."),
8130 TYPE_NAME (rtype), TYPE_LENGTH (type));
8131 else
8132 warning (_("Invalid type size for <unnamed> detected: %d."),
8133 TYPE_LENGTH (type));
714e53ab
PH
8134 }
8135 else
8136 {
8137 TYPE_LENGTH (rtype) = align_value (TYPE_LENGTH (rtype),
8138 TYPE_LENGTH (type));
8139 }
14f9c5c9
AS
8140
8141 value_free_to_mark (mark);
d2e4a39e 8142 if (TYPE_LENGTH (rtype) > varsize_limit)
323e0a4a 8143 error (_("record type with dynamic size is larger than varsize-limit"));
14f9c5c9
AS
8144 return rtype;
8145}
8146
4c4b4cd2
PH
8147/* As for ada_template_to_fixed_record_type_1 with KEEP_DYNAMIC_FIELDS
8148 of 1. */
14f9c5c9 8149
d2e4a39e 8150static struct type *
fc1a4b47 8151template_to_fixed_record_type (struct type *type, const gdb_byte *valaddr,
4c4b4cd2
PH
8152 CORE_ADDR address, struct value *dval0)
8153{
8154 return ada_template_to_fixed_record_type_1 (type, valaddr,
8155 address, dval0, 1);
8156}
8157
8158/* An ordinary record type in which ___XVL-convention fields and
8159 ___XVU- and ___XVN-convention field types in TYPE0 are replaced with
8160 static approximations, containing all possible fields. Uses
8161 no runtime values. Useless for use in values, but that's OK,
8162 since the results are used only for type determinations. Works on both
8163 structs and unions. Representation note: to save space, we memorize
8164 the result of this function in the TYPE_TARGET_TYPE of the
8165 template type. */
8166
8167static struct type *
8168template_to_static_fixed_type (struct type *type0)
14f9c5c9
AS
8169{
8170 struct type *type;
8171 int nfields;
8172 int f;
8173
4c4b4cd2
PH
8174 if (TYPE_TARGET_TYPE (type0) != NULL)
8175 return TYPE_TARGET_TYPE (type0);
8176
8177 nfields = TYPE_NFIELDS (type0);
8178 type = type0;
14f9c5c9
AS
8179
8180 for (f = 0; f < nfields; f += 1)
8181 {
460efde1 8182 struct type *field_type = TYPE_FIELD_TYPE (type0, f);
4c4b4cd2 8183 struct type *new_type;
14f9c5c9 8184
4c4b4cd2 8185 if (is_dynamic_field (type0, f))
460efde1
JB
8186 {
8187 field_type = ada_check_typedef (field_type);
8188 new_type = to_static_fixed_type (TYPE_TARGET_TYPE (field_type));
8189 }
14f9c5c9 8190 else
f192137b 8191 new_type = static_unwrap_type (field_type);
4c4b4cd2
PH
8192 if (type == type0 && new_type != field_type)
8193 {
e9bb382b 8194 TYPE_TARGET_TYPE (type0) = type = alloc_type_copy (type0);
4c4b4cd2
PH
8195 TYPE_CODE (type) = TYPE_CODE (type0);
8196 INIT_CPLUS_SPECIFIC (type);
8197 TYPE_NFIELDS (type) = nfields;
8198 TYPE_FIELDS (type) = (struct field *)
8199 TYPE_ALLOC (type, nfields * sizeof (struct field));
8200 memcpy (TYPE_FIELDS (type), TYPE_FIELDS (type0),
8201 sizeof (struct field) * nfields);
8202 TYPE_NAME (type) = ada_type_name (type0);
8203 TYPE_TAG_NAME (type) = NULL;
876cecd0 8204 TYPE_FIXED_INSTANCE (type) = 1;
4c4b4cd2
PH
8205 TYPE_LENGTH (type) = 0;
8206 }
8207 TYPE_FIELD_TYPE (type, f) = new_type;
8208 TYPE_FIELD_NAME (type, f) = TYPE_FIELD_NAME (type0, f);
14f9c5c9 8209 }
14f9c5c9
AS
8210 return type;
8211}
8212
4c4b4cd2 8213/* Given an object of type TYPE whose contents are at VALADDR and
5823c3ef
JB
8214 whose address in memory is ADDRESS, returns a revision of TYPE,
8215 which should be a non-dynamic-sized record, in which the variant
8216 part, if any, is replaced with the appropriate branch. Looks
4c4b4cd2
PH
8217 for discriminant values in DVAL0, which can be NULL if the record
8218 contains the necessary discriminant values. */
8219
d2e4a39e 8220static struct type *
fc1a4b47 8221to_record_with_fixed_variant_part (struct type *type, const gdb_byte *valaddr,
4c4b4cd2 8222 CORE_ADDR address, struct value *dval0)
14f9c5c9 8223{
d2e4a39e 8224 struct value *mark = value_mark ();
4c4b4cd2 8225 struct value *dval;
d2e4a39e 8226 struct type *rtype;
14f9c5c9
AS
8227 struct type *branch_type;
8228 int nfields = TYPE_NFIELDS (type);
4c4b4cd2 8229 int variant_field = variant_field_index (type);
14f9c5c9 8230
4c4b4cd2 8231 if (variant_field == -1)
14f9c5c9
AS
8232 return type;
8233
4c4b4cd2 8234 if (dval0 == NULL)
9f1f738a
SA
8235 {
8236 dval = value_from_contents_and_address (type, valaddr, address);
8237 type = value_type (dval);
8238 }
4c4b4cd2
PH
8239 else
8240 dval = dval0;
8241
e9bb382b 8242 rtype = alloc_type_copy (type);
14f9c5c9 8243 TYPE_CODE (rtype) = TYPE_CODE_STRUCT;
4c4b4cd2
PH
8244 INIT_CPLUS_SPECIFIC (rtype);
8245 TYPE_NFIELDS (rtype) = nfields;
d2e4a39e
AS
8246 TYPE_FIELDS (rtype) =
8247 (struct field *) TYPE_ALLOC (rtype, nfields * sizeof (struct field));
8248 memcpy (TYPE_FIELDS (rtype), TYPE_FIELDS (type),
4c4b4cd2 8249 sizeof (struct field) * nfields);
14f9c5c9
AS
8250 TYPE_NAME (rtype) = ada_type_name (type);
8251 TYPE_TAG_NAME (rtype) = NULL;
876cecd0 8252 TYPE_FIXED_INSTANCE (rtype) = 1;
14f9c5c9
AS
8253 TYPE_LENGTH (rtype) = TYPE_LENGTH (type);
8254
4c4b4cd2
PH
8255 branch_type = to_fixed_variant_branch_type
8256 (TYPE_FIELD_TYPE (type, variant_field),
d2e4a39e 8257 cond_offset_host (valaddr,
4c4b4cd2
PH
8258 TYPE_FIELD_BITPOS (type, variant_field)
8259 / TARGET_CHAR_BIT),
d2e4a39e 8260 cond_offset_target (address,
4c4b4cd2
PH
8261 TYPE_FIELD_BITPOS (type, variant_field)
8262 / TARGET_CHAR_BIT), dval);
d2e4a39e 8263 if (branch_type == NULL)
14f9c5c9 8264 {
4c4b4cd2 8265 int f;
5b4ee69b 8266
4c4b4cd2
PH
8267 for (f = variant_field + 1; f < nfields; f += 1)
8268 TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f];
14f9c5c9 8269 TYPE_NFIELDS (rtype) -= 1;
14f9c5c9
AS
8270 }
8271 else
8272 {
4c4b4cd2
PH
8273 TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
8274 TYPE_FIELD_NAME (rtype, variant_field) = "S";
8275 TYPE_FIELD_BITSIZE (rtype, variant_field) = 0;
14f9c5c9 8276 TYPE_LENGTH (rtype) += TYPE_LENGTH (branch_type);
14f9c5c9 8277 }
4c4b4cd2 8278 TYPE_LENGTH (rtype) -= TYPE_LENGTH (TYPE_FIELD_TYPE (type, variant_field));
d2e4a39e 8279
4c4b4cd2 8280 value_free_to_mark (mark);
14f9c5c9
AS
8281 return rtype;
8282}
8283
8284/* An ordinary record type (with fixed-length fields) that describes
8285 the value at (TYPE0, VALADDR, ADDRESS) [see explanation at
8286 beginning of this section]. Any necessary discriminants' values
4c4b4cd2
PH
8287 should be in DVAL, a record value; it may be NULL if the object
8288 at ADDR itself contains any necessary discriminant values.
8289 Additionally, VALADDR and ADDRESS may also be NULL if no discriminant
8290 values from the record are needed. Except in the case that DVAL,
8291 VALADDR, and ADDRESS are all 0 or NULL, a variant field (unless
8292 unchecked) is replaced by a particular branch of the variant.
8293
8294 NOTE: the case in which DVAL and VALADDR are NULL and ADDRESS is 0
8295 is questionable and may be removed. It can arise during the
8296 processing of an unconstrained-array-of-record type where all the
8297 variant branches have exactly the same size. This is because in
8298 such cases, the compiler does not bother to use the XVS convention
8299 when encoding the record. I am currently dubious of this
8300 shortcut and suspect the compiler should be altered. FIXME. */
14f9c5c9 8301
d2e4a39e 8302static struct type *
fc1a4b47 8303to_fixed_record_type (struct type *type0, const gdb_byte *valaddr,
4c4b4cd2 8304 CORE_ADDR address, struct value *dval)
14f9c5c9 8305{
d2e4a39e 8306 struct type *templ_type;
14f9c5c9 8307
876cecd0 8308 if (TYPE_FIXED_INSTANCE (type0))
4c4b4cd2
PH
8309 return type0;
8310
d2e4a39e 8311 templ_type = dynamic_template_type (type0);
14f9c5c9
AS
8312
8313 if (templ_type != NULL)
8314 return template_to_fixed_record_type (templ_type, valaddr, address, dval);
4c4b4cd2
PH
8315 else if (variant_field_index (type0) >= 0)
8316 {
8317 if (dval == NULL && valaddr == NULL && address == 0)
8318 return type0;
8319 return to_record_with_fixed_variant_part (type0, valaddr, address,
8320 dval);
8321 }
14f9c5c9
AS
8322 else
8323 {
876cecd0 8324 TYPE_FIXED_INSTANCE (type0) = 1;
14f9c5c9
AS
8325 return type0;
8326 }
8327
8328}
8329
8330/* An ordinary record type (with fixed-length fields) that describes
8331 the value at (VAR_TYPE0, VALADDR, ADDRESS), where VAR_TYPE0 is a
8332 union type. Any necessary discriminants' values should be in DVAL,
8333 a record value. That is, this routine selects the appropriate
8334 branch of the union at ADDR according to the discriminant value
b1f33ddd 8335 indicated in the union's type name. Returns VAR_TYPE0 itself if
0963b4bd 8336 it represents a variant subject to a pragma Unchecked_Union. */
14f9c5c9 8337
d2e4a39e 8338static struct type *
fc1a4b47 8339to_fixed_variant_branch_type (struct type *var_type0, const gdb_byte *valaddr,
4c4b4cd2 8340 CORE_ADDR address, struct value *dval)
14f9c5c9
AS
8341{
8342 int which;
d2e4a39e
AS
8343 struct type *templ_type;
8344 struct type *var_type;
14f9c5c9
AS
8345
8346 if (TYPE_CODE (var_type0) == TYPE_CODE_PTR)
8347 var_type = TYPE_TARGET_TYPE (var_type0);
d2e4a39e 8348 else
14f9c5c9
AS
8349 var_type = var_type0;
8350
8351 templ_type = ada_find_parallel_type (var_type, "___XVU");
8352
8353 if (templ_type != NULL)
8354 var_type = templ_type;
8355
b1f33ddd
JB
8356 if (is_unchecked_variant (var_type, value_type (dval)))
8357 return var_type0;
d2e4a39e
AS
8358 which =
8359 ada_which_variant_applies (var_type,
0fd88904 8360 value_type (dval), value_contents (dval));
14f9c5c9
AS
8361
8362 if (which < 0)
e9bb382b 8363 return empty_record (var_type);
14f9c5c9 8364 else if (is_dynamic_field (var_type, which))
4c4b4cd2 8365 return to_fixed_record_type
d2e4a39e
AS
8366 (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (var_type, which)),
8367 valaddr, address, dval);
4c4b4cd2 8368 else if (variant_field_index (TYPE_FIELD_TYPE (var_type, which)) >= 0)
d2e4a39e
AS
8369 return
8370 to_fixed_record_type
8371 (TYPE_FIELD_TYPE (var_type, which), valaddr, address, dval);
14f9c5c9
AS
8372 else
8373 return TYPE_FIELD_TYPE (var_type, which);
8374}
8375
8908fca5
JB
8376/* Assuming RANGE_TYPE is a TYPE_CODE_RANGE, return nonzero if
8377 ENCODING_TYPE, a type following the GNAT conventions for discrete
8378 type encodings, only carries redundant information. */
8379
8380static int
8381ada_is_redundant_range_encoding (struct type *range_type,
8382 struct type *encoding_type)
8383{
8384 struct type *fixed_range_type;
8385 char *bounds_str;
8386 int n;
8387 LONGEST lo, hi;
8388
8389 gdb_assert (TYPE_CODE (range_type) == TYPE_CODE_RANGE);
8390
005e2509
JB
8391 if (TYPE_CODE (get_base_type (range_type))
8392 != TYPE_CODE (get_base_type (encoding_type)))
8393 {
8394 /* The compiler probably used a simple base type to describe
8395 the range type instead of the range's actual base type,
8396 expecting us to get the real base type from the encoding
8397 anyway. In this situation, the encoding cannot be ignored
8398 as redundant. */
8399 return 0;
8400 }
8401
8908fca5
JB
8402 if (is_dynamic_type (range_type))
8403 return 0;
8404
8405 if (TYPE_NAME (encoding_type) == NULL)
8406 return 0;
8407
8408 bounds_str = strstr (TYPE_NAME (encoding_type), "___XDLU_");
8409 if (bounds_str == NULL)
8410 return 0;
8411
8412 n = 8; /* Skip "___XDLU_". */
8413 if (!ada_scan_number (bounds_str, n, &lo, &n))
8414 return 0;
8415 if (TYPE_LOW_BOUND (range_type) != lo)
8416 return 0;
8417
8418 n += 2; /* Skip the "__" separator between the two bounds. */
8419 if (!ada_scan_number (bounds_str, n, &hi, &n))
8420 return 0;
8421 if (TYPE_HIGH_BOUND (range_type) != hi)
8422 return 0;
8423
8424 return 1;
8425}
8426
8427/* Given the array type ARRAY_TYPE, return nonzero if DESC_TYPE,
8428 a type following the GNAT encoding for describing array type
8429 indices, only carries redundant information. */
8430
8431static int
8432ada_is_redundant_index_type_desc (struct type *array_type,
8433 struct type *desc_type)
8434{
8435 struct type *this_layer = check_typedef (array_type);
8436 int i;
8437
8438 for (i = 0; i < TYPE_NFIELDS (desc_type); i++)
8439 {
8440 if (!ada_is_redundant_range_encoding (TYPE_INDEX_TYPE (this_layer),
8441 TYPE_FIELD_TYPE (desc_type, i)))
8442 return 0;
8443 this_layer = check_typedef (TYPE_TARGET_TYPE (this_layer));
8444 }
8445
8446 return 1;
8447}
8448
14f9c5c9
AS
8449/* Assuming that TYPE0 is an array type describing the type of a value
8450 at ADDR, and that DVAL describes a record containing any
8451 discriminants used in TYPE0, returns a type for the value that
8452 contains no dynamic components (that is, no components whose sizes
8453 are determined by run-time quantities). Unless IGNORE_TOO_BIG is
8454 true, gives an error message if the resulting type's size is over
4c4b4cd2 8455 varsize_limit. */
14f9c5c9 8456
d2e4a39e
AS
8457static struct type *
8458to_fixed_array_type (struct type *type0, struct value *dval,
4c4b4cd2 8459 int ignore_too_big)
14f9c5c9 8460{
d2e4a39e
AS
8461 struct type *index_type_desc;
8462 struct type *result;
ad82864c 8463 int constrained_packed_array_p;
14f9c5c9 8464
b0dd7688 8465 type0 = ada_check_typedef (type0);
284614f0 8466 if (TYPE_FIXED_INSTANCE (type0))
4c4b4cd2 8467 return type0;
14f9c5c9 8468
ad82864c
JB
8469 constrained_packed_array_p = ada_is_constrained_packed_array_type (type0);
8470 if (constrained_packed_array_p)
8471 type0 = decode_constrained_packed_array_type (type0);
284614f0 8472
14f9c5c9 8473 index_type_desc = ada_find_parallel_type (type0, "___XA");
28c85d6c 8474 ada_fixup_array_indexes_type (index_type_desc);
8908fca5
JB
8475 if (index_type_desc != NULL
8476 && ada_is_redundant_index_type_desc (type0, index_type_desc))
8477 {
8478 /* Ignore this ___XA parallel type, as it does not bring any
8479 useful information. This allows us to avoid creating fixed
8480 versions of the array's index types, which would be identical
8481 to the original ones. This, in turn, can also help avoid
8482 the creation of fixed versions of the array itself. */
8483 index_type_desc = NULL;
8484 }
8485
14f9c5c9
AS
8486 if (index_type_desc == NULL)
8487 {
61ee279c 8488 struct type *elt_type0 = ada_check_typedef (TYPE_TARGET_TYPE (type0));
5b4ee69b 8489
14f9c5c9 8490 /* NOTE: elt_type---the fixed version of elt_type0---should never
4c4b4cd2
PH
8491 depend on the contents of the array in properly constructed
8492 debugging data. */
529cad9c
PH
8493 /* Create a fixed version of the array element type.
8494 We're not providing the address of an element here,
e1d5a0d2 8495 and thus the actual object value cannot be inspected to do
529cad9c
PH
8496 the conversion. This should not be a problem, since arrays of
8497 unconstrained objects are not allowed. In particular, all
8498 the elements of an array of a tagged type should all be of
8499 the same type specified in the debugging info. No need to
8500 consult the object tag. */
1ed6ede0 8501 struct type *elt_type = ada_to_fixed_type (elt_type0, 0, 0, dval, 1);
14f9c5c9 8502
284614f0
JB
8503 /* Make sure we always create a new array type when dealing with
8504 packed array types, since we're going to fix-up the array
8505 type length and element bitsize a little further down. */
ad82864c 8506 if (elt_type0 == elt_type && !constrained_packed_array_p)
4c4b4cd2 8507 result = type0;
14f9c5c9 8508 else
e9bb382b 8509 result = create_array_type (alloc_type_copy (type0),
4c4b4cd2 8510 elt_type, TYPE_INDEX_TYPE (type0));
14f9c5c9
AS
8511 }
8512 else
8513 {
8514 int i;
8515 struct type *elt_type0;
8516
8517 elt_type0 = type0;
8518 for (i = TYPE_NFIELDS (index_type_desc); i > 0; i -= 1)
4c4b4cd2 8519 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
14f9c5c9
AS
8520
8521 /* NOTE: result---the fixed version of elt_type0---should never
4c4b4cd2
PH
8522 depend on the contents of the array in properly constructed
8523 debugging data. */
529cad9c
PH
8524 /* Create a fixed version of the array element type.
8525 We're not providing the address of an element here,
e1d5a0d2 8526 and thus the actual object value cannot be inspected to do
529cad9c
PH
8527 the conversion. This should not be a problem, since arrays of
8528 unconstrained objects are not allowed. In particular, all
8529 the elements of an array of a tagged type should all be of
8530 the same type specified in the debugging info. No need to
8531 consult the object tag. */
1ed6ede0
JB
8532 result =
8533 ada_to_fixed_type (ada_check_typedef (elt_type0), 0, 0, dval, 1);
1ce677a4
UW
8534
8535 elt_type0 = type0;
14f9c5c9 8536 for (i = TYPE_NFIELDS (index_type_desc) - 1; i >= 0; i -= 1)
4c4b4cd2
PH
8537 {
8538 struct type *range_type =
28c85d6c 8539 to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, i), dval);
5b4ee69b 8540
e9bb382b 8541 result = create_array_type (alloc_type_copy (elt_type0),
4c4b4cd2 8542 result, range_type);
1ce677a4 8543 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
4c4b4cd2 8544 }
d2e4a39e 8545 if (!ignore_too_big && TYPE_LENGTH (result) > varsize_limit)
323e0a4a 8546 error (_("array type with dynamic size is larger than varsize-limit"));
14f9c5c9
AS
8547 }
8548
2e6fda7d
JB
8549 /* We want to preserve the type name. This can be useful when
8550 trying to get the type name of a value that has already been
8551 printed (for instance, if the user did "print VAR; whatis $". */
8552 TYPE_NAME (result) = TYPE_NAME (type0);
8553
ad82864c 8554 if (constrained_packed_array_p)
284614f0
JB
8555 {
8556 /* So far, the resulting type has been created as if the original
8557 type was a regular (non-packed) array type. As a result, the
8558 bitsize of the array elements needs to be set again, and the array
8559 length needs to be recomputed based on that bitsize. */
8560 int len = TYPE_LENGTH (result) / TYPE_LENGTH (TYPE_TARGET_TYPE (result));
8561 int elt_bitsize = TYPE_FIELD_BITSIZE (type0, 0);
8562
8563 TYPE_FIELD_BITSIZE (result, 0) = TYPE_FIELD_BITSIZE (type0, 0);
8564 TYPE_LENGTH (result) = len * elt_bitsize / HOST_CHAR_BIT;
8565 if (TYPE_LENGTH (result) * HOST_CHAR_BIT < len * elt_bitsize)
8566 TYPE_LENGTH (result)++;
8567 }
8568
876cecd0 8569 TYPE_FIXED_INSTANCE (result) = 1;
14f9c5c9 8570 return result;
d2e4a39e 8571}
14f9c5c9
AS
8572
8573
8574/* A standard type (containing no dynamically sized components)
8575 corresponding to TYPE for the value (TYPE, VALADDR, ADDRESS)
8576 DVAL describes a record containing any discriminants used in TYPE0,
4c4b4cd2 8577 and may be NULL if there are none, or if the object of type TYPE at
529cad9c
PH
8578 ADDRESS or in VALADDR contains these discriminants.
8579
1ed6ede0
JB
8580 If CHECK_TAG is not null, in the case of tagged types, this function
8581 attempts to locate the object's tag and use it to compute the actual
8582 type. However, when ADDRESS is null, we cannot use it to determine the
8583 location of the tag, and therefore compute the tagged type's actual type.
8584 So we return the tagged type without consulting the tag. */
529cad9c 8585
f192137b
JB
8586static struct type *
8587ada_to_fixed_type_1 (struct type *type, const gdb_byte *valaddr,
1ed6ede0 8588 CORE_ADDR address, struct value *dval, int check_tag)
14f9c5c9 8589{
61ee279c 8590 type = ada_check_typedef (type);
d2e4a39e
AS
8591 switch (TYPE_CODE (type))
8592 {
8593 default:
14f9c5c9 8594 return type;
d2e4a39e 8595 case TYPE_CODE_STRUCT:
4c4b4cd2 8596 {
76a01679 8597 struct type *static_type = to_static_fixed_type (type);
1ed6ede0
JB
8598 struct type *fixed_record_type =
8599 to_fixed_record_type (type, valaddr, address, NULL);
5b4ee69b 8600
529cad9c
PH
8601 /* If STATIC_TYPE is a tagged type and we know the object's address,
8602 then we can determine its tag, and compute the object's actual
0963b4bd 8603 type from there. Note that we have to use the fixed record
1ed6ede0
JB
8604 type (the parent part of the record may have dynamic fields
8605 and the way the location of _tag is expressed may depend on
8606 them). */
529cad9c 8607
1ed6ede0 8608 if (check_tag && address != 0 && ada_is_tagged_type (static_type, 0))
76a01679 8609 {
b50d69b5
JG
8610 struct value *tag =
8611 value_tag_from_contents_and_address
8612 (fixed_record_type,
8613 valaddr,
8614 address);
8615 struct type *real_type = type_from_tag (tag);
8616 struct value *obj =
8617 value_from_contents_and_address (fixed_record_type,
8618 valaddr,
8619 address);
9f1f738a 8620 fixed_record_type = value_type (obj);
76a01679 8621 if (real_type != NULL)
b50d69b5
JG
8622 return to_fixed_record_type
8623 (real_type, NULL,
8624 value_address (ada_tag_value_at_base_address (obj)), NULL);
76a01679 8625 }
4af88198
JB
8626
8627 /* Check to see if there is a parallel ___XVZ variable.
8628 If there is, then it provides the actual size of our type. */
8629 else if (ada_type_name (fixed_record_type) != NULL)
8630 {
0d5cff50 8631 const char *name = ada_type_name (fixed_record_type);
4af88198
JB
8632 char *xvz_name = alloca (strlen (name) + 7 /* "___XVZ\0" */);
8633 int xvz_found = 0;
8634 LONGEST size;
8635
88c15c34 8636 xsnprintf (xvz_name, strlen (name) + 7, "%s___XVZ", name);
4af88198
JB
8637 size = get_int_var_value (xvz_name, &xvz_found);
8638 if (xvz_found && TYPE_LENGTH (fixed_record_type) != size)
8639 {
8640 fixed_record_type = copy_type (fixed_record_type);
8641 TYPE_LENGTH (fixed_record_type) = size;
8642
8643 /* The FIXED_RECORD_TYPE may have be a stub. We have
8644 observed this when the debugging info is STABS, and
8645 apparently it is something that is hard to fix.
8646
8647 In practice, we don't need the actual type definition
8648 at all, because the presence of the XVZ variable allows us
8649 to assume that there must be a XVS type as well, which we
8650 should be able to use later, when we need the actual type
8651 definition.
8652
8653 In the meantime, pretend that the "fixed" type we are
8654 returning is NOT a stub, because this can cause trouble
8655 when using this type to create new types targeting it.
8656 Indeed, the associated creation routines often check
8657 whether the target type is a stub and will try to replace
0963b4bd 8658 it, thus using a type with the wrong size. This, in turn,
4af88198
JB
8659 might cause the new type to have the wrong size too.
8660 Consider the case of an array, for instance, where the size
8661 of the array is computed from the number of elements in
8662 our array multiplied by the size of its element. */
8663 TYPE_STUB (fixed_record_type) = 0;
8664 }
8665 }
1ed6ede0 8666 return fixed_record_type;
4c4b4cd2 8667 }
d2e4a39e 8668 case TYPE_CODE_ARRAY:
4c4b4cd2 8669 return to_fixed_array_type (type, dval, 1);
d2e4a39e
AS
8670 case TYPE_CODE_UNION:
8671 if (dval == NULL)
4c4b4cd2 8672 return type;
d2e4a39e 8673 else
4c4b4cd2 8674 return to_fixed_variant_branch_type (type, valaddr, address, dval);
d2e4a39e 8675 }
14f9c5c9
AS
8676}
8677
f192137b
JB
8678/* The same as ada_to_fixed_type_1, except that it preserves the type
8679 if it is a TYPE_CODE_TYPEDEF of a type that is already fixed.
96dbd2c1
JB
8680
8681 The typedef layer needs be preserved in order to differentiate between
8682 arrays and array pointers when both types are implemented using the same
8683 fat pointer. In the array pointer case, the pointer is encoded as
8684 a typedef of the pointer type. For instance, considering:
8685
8686 type String_Access is access String;
8687 S1 : String_Access := null;
8688
8689 To the debugger, S1 is defined as a typedef of type String. But
8690 to the user, it is a pointer. So if the user tries to print S1,
8691 we should not dereference the array, but print the array address
8692 instead.
8693
8694 If we didn't preserve the typedef layer, we would lose the fact that
8695 the type is to be presented as a pointer (needs de-reference before
8696 being printed). And we would also use the source-level type name. */
f192137b
JB
8697
8698struct type *
8699ada_to_fixed_type (struct type *type, const gdb_byte *valaddr,
8700 CORE_ADDR address, struct value *dval, int check_tag)
8701
8702{
8703 struct type *fixed_type =
8704 ada_to_fixed_type_1 (type, valaddr, address, dval, check_tag);
8705
96dbd2c1
JB
8706 /* If TYPE is a typedef and its target type is the same as the FIXED_TYPE,
8707 then preserve the typedef layer.
8708
8709 Implementation note: We can only check the main-type portion of
8710 the TYPE and FIXED_TYPE, because eliminating the typedef layer
8711 from TYPE now returns a type that has the same instance flags
8712 as TYPE. For instance, if TYPE is a "typedef const", and its
8713 target type is a "struct", then the typedef elimination will return
8714 a "const" version of the target type. See check_typedef for more
8715 details about how the typedef layer elimination is done.
8716
8717 brobecker/2010-11-19: It seems to me that the only case where it is
8718 useful to preserve the typedef layer is when dealing with fat pointers.
8719 Perhaps, we could add a check for that and preserve the typedef layer
8720 only in that situation. But this seems unecessary so far, probably
8721 because we call check_typedef/ada_check_typedef pretty much everywhere.
8722 */
f192137b 8723 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF
720d1a40 8724 && (TYPE_MAIN_TYPE (ada_typedef_target_type (type))
96dbd2c1 8725 == TYPE_MAIN_TYPE (fixed_type)))
f192137b
JB
8726 return type;
8727
8728 return fixed_type;
8729}
8730
14f9c5c9 8731/* A standard (static-sized) type corresponding as well as possible to
4c4b4cd2 8732 TYPE0, but based on no runtime data. */
14f9c5c9 8733
d2e4a39e
AS
8734static struct type *
8735to_static_fixed_type (struct type *type0)
14f9c5c9 8736{
d2e4a39e 8737 struct type *type;
14f9c5c9
AS
8738
8739 if (type0 == NULL)
8740 return NULL;
8741
876cecd0 8742 if (TYPE_FIXED_INSTANCE (type0))
4c4b4cd2
PH
8743 return type0;
8744
61ee279c 8745 type0 = ada_check_typedef (type0);
d2e4a39e 8746
14f9c5c9
AS
8747 switch (TYPE_CODE (type0))
8748 {
8749 default:
8750 return type0;
8751 case TYPE_CODE_STRUCT:
8752 type = dynamic_template_type (type0);
d2e4a39e 8753 if (type != NULL)
4c4b4cd2
PH
8754 return template_to_static_fixed_type (type);
8755 else
8756 return template_to_static_fixed_type (type0);
14f9c5c9
AS
8757 case TYPE_CODE_UNION:
8758 type = ada_find_parallel_type (type0, "___XVU");
8759 if (type != NULL)
4c4b4cd2
PH
8760 return template_to_static_fixed_type (type);
8761 else
8762 return template_to_static_fixed_type (type0);
14f9c5c9
AS
8763 }
8764}
8765
4c4b4cd2
PH
8766/* A static approximation of TYPE with all type wrappers removed. */
8767
d2e4a39e
AS
8768static struct type *
8769static_unwrap_type (struct type *type)
14f9c5c9
AS
8770{
8771 if (ada_is_aligner_type (type))
8772 {
61ee279c 8773 struct type *type1 = TYPE_FIELD_TYPE (ada_check_typedef (type), 0);
14f9c5c9 8774 if (ada_type_name (type1) == NULL)
4c4b4cd2 8775 TYPE_NAME (type1) = ada_type_name (type);
14f9c5c9
AS
8776
8777 return static_unwrap_type (type1);
8778 }
d2e4a39e 8779 else
14f9c5c9 8780 {
d2e4a39e 8781 struct type *raw_real_type = ada_get_base_type (type);
5b4ee69b 8782
d2e4a39e 8783 if (raw_real_type == type)
4c4b4cd2 8784 return type;
14f9c5c9 8785 else
4c4b4cd2 8786 return to_static_fixed_type (raw_real_type);
14f9c5c9
AS
8787 }
8788}
8789
8790/* In some cases, incomplete and private types require
4c4b4cd2 8791 cross-references that are not resolved as records (for example,
14f9c5c9
AS
8792 type Foo;
8793 type FooP is access Foo;
8794 V: FooP;
8795 type Foo is array ...;
4c4b4cd2 8796 ). In these cases, since there is no mechanism for producing
14f9c5c9
AS
8797 cross-references to such types, we instead substitute for FooP a
8798 stub enumeration type that is nowhere resolved, and whose tag is
4c4b4cd2 8799 the name of the actual type. Call these types "non-record stubs". */
14f9c5c9
AS
8800
8801/* A type equivalent to TYPE that is not a non-record stub, if one
4c4b4cd2
PH
8802 exists, otherwise TYPE. */
8803
d2e4a39e 8804struct type *
61ee279c 8805ada_check_typedef (struct type *type)
14f9c5c9 8806{
727e3d2e
JB
8807 if (type == NULL)
8808 return NULL;
8809
720d1a40
JB
8810 /* If our type is a typedef type of a fat pointer, then we're done.
8811 We don't want to strip the TYPE_CODE_TYPDEF layer, because this is
8812 what allows us to distinguish between fat pointers that represent
8813 array types, and fat pointers that represent array access types
8814 (in both cases, the compiler implements them as fat pointers). */
8815 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF
8816 && is_thick_pntr (ada_typedef_target_type (type)))
8817 return type;
8818
14f9c5c9
AS
8819 CHECK_TYPEDEF (type);
8820 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM
529cad9c 8821 || !TYPE_STUB (type)
14f9c5c9
AS
8822 || TYPE_TAG_NAME (type) == NULL)
8823 return type;
d2e4a39e 8824 else
14f9c5c9 8825 {
0d5cff50 8826 const char *name = TYPE_TAG_NAME (type);
d2e4a39e 8827 struct type *type1 = ada_find_any_type (name);
5b4ee69b 8828
05e522ef
JB
8829 if (type1 == NULL)
8830 return type;
8831
8832 /* TYPE1 might itself be a TYPE_CODE_TYPEDEF (this can happen with
8833 stubs pointing to arrays, as we don't create symbols for array
3a867c22
JB
8834 types, only for the typedef-to-array types). If that's the case,
8835 strip the typedef layer. */
8836 if (TYPE_CODE (type1) == TYPE_CODE_TYPEDEF)
8837 type1 = ada_check_typedef (type1);
8838
8839 return type1;
14f9c5c9
AS
8840 }
8841}
8842
8843/* A value representing the data at VALADDR/ADDRESS as described by
8844 type TYPE0, but with a standard (static-sized) type that correctly
8845 describes it. If VAL0 is not NULL and TYPE0 already is a standard
8846 type, then return VAL0 [this feature is simply to avoid redundant
4c4b4cd2 8847 creation of struct values]. */
14f9c5c9 8848
4c4b4cd2
PH
8849static struct value *
8850ada_to_fixed_value_create (struct type *type0, CORE_ADDR address,
8851 struct value *val0)
14f9c5c9 8852{
1ed6ede0 8853 struct type *type = ada_to_fixed_type (type0, 0, address, NULL, 1);
5b4ee69b 8854
14f9c5c9
AS
8855 if (type == type0 && val0 != NULL)
8856 return val0;
d2e4a39e 8857 else
4c4b4cd2
PH
8858 return value_from_contents_and_address (type, 0, address);
8859}
8860
8861/* A value representing VAL, but with a standard (static-sized) type
8862 that correctly describes it. Does not necessarily create a new
8863 value. */
8864
0c3acc09 8865struct value *
4c4b4cd2
PH
8866ada_to_fixed_value (struct value *val)
8867{
c48db5ca
JB
8868 val = unwrap_value (val);
8869 val = ada_to_fixed_value_create (value_type (val),
8870 value_address (val),
8871 val);
8872 return val;
14f9c5c9 8873}
d2e4a39e 8874\f
14f9c5c9 8875
14f9c5c9
AS
8876/* Attributes */
8877
4c4b4cd2
PH
8878/* Table mapping attribute numbers to names.
8879 NOTE: Keep up to date with enum ada_attribute definition in ada-lang.h. */
14f9c5c9 8880
d2e4a39e 8881static const char *attribute_names[] = {
14f9c5c9
AS
8882 "<?>",
8883
d2e4a39e 8884 "first",
14f9c5c9
AS
8885 "last",
8886 "length",
8887 "image",
14f9c5c9
AS
8888 "max",
8889 "min",
4c4b4cd2
PH
8890 "modulus",
8891 "pos",
8892 "size",
8893 "tag",
14f9c5c9 8894 "val",
14f9c5c9
AS
8895 0
8896};
8897
d2e4a39e 8898const char *
4c4b4cd2 8899ada_attribute_name (enum exp_opcode n)
14f9c5c9 8900{
4c4b4cd2
PH
8901 if (n >= OP_ATR_FIRST && n <= (int) OP_ATR_VAL)
8902 return attribute_names[n - OP_ATR_FIRST + 1];
14f9c5c9
AS
8903 else
8904 return attribute_names[0];
8905}
8906
4c4b4cd2 8907/* Evaluate the 'POS attribute applied to ARG. */
14f9c5c9 8908
4c4b4cd2
PH
8909static LONGEST
8910pos_atr (struct value *arg)
14f9c5c9 8911{
24209737
PH
8912 struct value *val = coerce_ref (arg);
8913 struct type *type = value_type (val);
14f9c5c9 8914
d2e4a39e 8915 if (!discrete_type_p (type))
323e0a4a 8916 error (_("'POS only defined on discrete types"));
14f9c5c9
AS
8917
8918 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
8919 {
8920 int i;
24209737 8921 LONGEST v = value_as_long (val);
14f9c5c9 8922
d2e4a39e 8923 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
4c4b4cd2 8924 {
14e75d8e 8925 if (v == TYPE_FIELD_ENUMVAL (type, i))
4c4b4cd2
PH
8926 return i;
8927 }
323e0a4a 8928 error (_("enumeration value is invalid: can't find 'POS"));
14f9c5c9
AS
8929 }
8930 else
24209737 8931 return value_as_long (val);
4c4b4cd2
PH
8932}
8933
8934static struct value *
3cb382c9 8935value_pos_atr (struct type *type, struct value *arg)
4c4b4cd2 8936{
3cb382c9 8937 return value_from_longest (type, pos_atr (arg));
14f9c5c9
AS
8938}
8939
4c4b4cd2 8940/* Evaluate the TYPE'VAL attribute applied to ARG. */
14f9c5c9 8941
d2e4a39e
AS
8942static struct value *
8943value_val_atr (struct type *type, struct value *arg)
14f9c5c9 8944{
d2e4a39e 8945 if (!discrete_type_p (type))
323e0a4a 8946 error (_("'VAL only defined on discrete types"));
df407dfe 8947 if (!integer_type_p (value_type (arg)))
323e0a4a 8948 error (_("'VAL requires integral argument"));
14f9c5c9
AS
8949
8950 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
8951 {
8952 long pos = value_as_long (arg);
5b4ee69b 8953
14f9c5c9 8954 if (pos < 0 || pos >= TYPE_NFIELDS (type))
323e0a4a 8955 error (_("argument to 'VAL out of range"));
14e75d8e 8956 return value_from_longest (type, TYPE_FIELD_ENUMVAL (type, pos));
14f9c5c9
AS
8957 }
8958 else
8959 return value_from_longest (type, value_as_long (arg));
8960}
14f9c5c9 8961\f
d2e4a39e 8962
4c4b4cd2 8963 /* Evaluation */
14f9c5c9 8964
4c4b4cd2
PH
8965/* True if TYPE appears to be an Ada character type.
8966 [At the moment, this is true only for Character and Wide_Character;
8967 It is a heuristic test that could stand improvement]. */
14f9c5c9 8968
d2e4a39e
AS
8969int
8970ada_is_character_type (struct type *type)
14f9c5c9 8971{
7b9f71f2
JB
8972 const char *name;
8973
8974 /* If the type code says it's a character, then assume it really is,
8975 and don't check any further. */
8976 if (TYPE_CODE (type) == TYPE_CODE_CHAR)
8977 return 1;
8978
8979 /* Otherwise, assume it's a character type iff it is a discrete type
8980 with a known character type name. */
8981 name = ada_type_name (type);
8982 return (name != NULL
8983 && (TYPE_CODE (type) == TYPE_CODE_INT
8984 || TYPE_CODE (type) == TYPE_CODE_RANGE)
8985 && (strcmp (name, "character") == 0
8986 || strcmp (name, "wide_character") == 0
5a517ebd 8987 || strcmp (name, "wide_wide_character") == 0
7b9f71f2 8988 || strcmp (name, "unsigned char") == 0));
14f9c5c9
AS
8989}
8990
4c4b4cd2 8991/* True if TYPE appears to be an Ada string type. */
14f9c5c9
AS
8992
8993int
ebf56fd3 8994ada_is_string_type (struct type *type)
14f9c5c9 8995{
61ee279c 8996 type = ada_check_typedef (type);
d2e4a39e 8997 if (type != NULL
14f9c5c9 8998 && TYPE_CODE (type) != TYPE_CODE_PTR
76a01679
JB
8999 && (ada_is_simple_array_type (type)
9000 || ada_is_array_descriptor_type (type))
14f9c5c9
AS
9001 && ada_array_arity (type) == 1)
9002 {
9003 struct type *elttype = ada_array_element_type (type, 1);
9004
9005 return ada_is_character_type (elttype);
9006 }
d2e4a39e 9007 else
14f9c5c9
AS
9008 return 0;
9009}
9010
5bf03f13
JB
9011/* The compiler sometimes provides a parallel XVS type for a given
9012 PAD type. Normally, it is safe to follow the PAD type directly,
9013 but older versions of the compiler have a bug that causes the offset
9014 of its "F" field to be wrong. Following that field in that case
9015 would lead to incorrect results, but this can be worked around
9016 by ignoring the PAD type and using the associated XVS type instead.
9017
9018 Set to True if the debugger should trust the contents of PAD types.
9019 Otherwise, ignore the PAD type if there is a parallel XVS type. */
9020static int trust_pad_over_xvs = 1;
14f9c5c9
AS
9021
9022/* True if TYPE is a struct type introduced by the compiler to force the
9023 alignment of a value. Such types have a single field with a
4c4b4cd2 9024 distinctive name. */
14f9c5c9
AS
9025
9026int
ebf56fd3 9027ada_is_aligner_type (struct type *type)
14f9c5c9 9028{
61ee279c 9029 type = ada_check_typedef (type);
714e53ab 9030
5bf03f13 9031 if (!trust_pad_over_xvs && ada_find_parallel_type (type, "___XVS") != NULL)
714e53ab
PH
9032 return 0;
9033
14f9c5c9 9034 return (TYPE_CODE (type) == TYPE_CODE_STRUCT
4c4b4cd2
PH
9035 && TYPE_NFIELDS (type) == 1
9036 && strcmp (TYPE_FIELD_NAME (type, 0), "F") == 0);
14f9c5c9
AS
9037}
9038
9039/* If there is an ___XVS-convention type parallel to SUBTYPE, return
4c4b4cd2 9040 the parallel type. */
14f9c5c9 9041
d2e4a39e
AS
9042struct type *
9043ada_get_base_type (struct type *raw_type)
14f9c5c9 9044{
d2e4a39e
AS
9045 struct type *real_type_namer;
9046 struct type *raw_real_type;
14f9c5c9
AS
9047
9048 if (raw_type == NULL || TYPE_CODE (raw_type) != TYPE_CODE_STRUCT)
9049 return raw_type;
9050
284614f0
JB
9051 if (ada_is_aligner_type (raw_type))
9052 /* The encoding specifies that we should always use the aligner type.
9053 So, even if this aligner type has an associated XVS type, we should
9054 simply ignore it.
9055
9056 According to the compiler gurus, an XVS type parallel to an aligner
9057 type may exist because of a stabs limitation. In stabs, aligner
9058 types are empty because the field has a variable-sized type, and
9059 thus cannot actually be used as an aligner type. As a result,
9060 we need the associated parallel XVS type to decode the type.
9061 Since the policy in the compiler is to not change the internal
9062 representation based on the debugging info format, we sometimes
9063 end up having a redundant XVS type parallel to the aligner type. */
9064 return raw_type;
9065
14f9c5c9 9066 real_type_namer = ada_find_parallel_type (raw_type, "___XVS");
d2e4a39e 9067 if (real_type_namer == NULL
14f9c5c9
AS
9068 || TYPE_CODE (real_type_namer) != TYPE_CODE_STRUCT
9069 || TYPE_NFIELDS (real_type_namer) != 1)
9070 return raw_type;
9071
f80d3ff2
JB
9072 if (TYPE_CODE (TYPE_FIELD_TYPE (real_type_namer, 0)) != TYPE_CODE_REF)
9073 {
9074 /* This is an older encoding form where the base type needs to be
9075 looked up by name. We prefer the newer enconding because it is
9076 more efficient. */
9077 raw_real_type = ada_find_any_type (TYPE_FIELD_NAME (real_type_namer, 0));
9078 if (raw_real_type == NULL)
9079 return raw_type;
9080 else
9081 return raw_real_type;
9082 }
9083
9084 /* The field in our XVS type is a reference to the base type. */
9085 return TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (real_type_namer, 0));
d2e4a39e 9086}
14f9c5c9 9087
4c4b4cd2 9088/* The type of value designated by TYPE, with all aligners removed. */
14f9c5c9 9089
d2e4a39e
AS
9090struct type *
9091ada_aligned_type (struct type *type)
14f9c5c9
AS
9092{
9093 if (ada_is_aligner_type (type))
9094 return ada_aligned_type (TYPE_FIELD_TYPE (type, 0));
9095 else
9096 return ada_get_base_type (type);
9097}
9098
9099
9100/* The address of the aligned value in an object at address VALADDR
4c4b4cd2 9101 having type TYPE. Assumes ada_is_aligner_type (TYPE). */
14f9c5c9 9102
fc1a4b47
AC
9103const gdb_byte *
9104ada_aligned_value_addr (struct type *type, const gdb_byte *valaddr)
14f9c5c9 9105{
d2e4a39e 9106 if (ada_is_aligner_type (type))
14f9c5c9 9107 return ada_aligned_value_addr (TYPE_FIELD_TYPE (type, 0),
4c4b4cd2
PH
9108 valaddr +
9109 TYPE_FIELD_BITPOS (type,
9110 0) / TARGET_CHAR_BIT);
14f9c5c9
AS
9111 else
9112 return valaddr;
9113}
9114
4c4b4cd2
PH
9115
9116
14f9c5c9 9117/* The printed representation of an enumeration literal with encoded
4c4b4cd2 9118 name NAME. The value is good to the next call of ada_enum_name. */
d2e4a39e
AS
9119const char *
9120ada_enum_name (const char *name)
14f9c5c9 9121{
4c4b4cd2
PH
9122 static char *result;
9123 static size_t result_len = 0;
d2e4a39e 9124 char *tmp;
14f9c5c9 9125
4c4b4cd2
PH
9126 /* First, unqualify the enumeration name:
9127 1. Search for the last '.' character. If we find one, then skip
177b42fe 9128 all the preceding characters, the unqualified name starts
76a01679 9129 right after that dot.
4c4b4cd2 9130 2. Otherwise, we may be debugging on a target where the compiler
76a01679
JB
9131 translates dots into "__". Search forward for double underscores,
9132 but stop searching when we hit an overloading suffix, which is
9133 of the form "__" followed by digits. */
4c4b4cd2 9134
c3e5cd34
PH
9135 tmp = strrchr (name, '.');
9136 if (tmp != NULL)
4c4b4cd2
PH
9137 name = tmp + 1;
9138 else
14f9c5c9 9139 {
4c4b4cd2
PH
9140 while ((tmp = strstr (name, "__")) != NULL)
9141 {
9142 if (isdigit (tmp[2]))
9143 break;
9144 else
9145 name = tmp + 2;
9146 }
14f9c5c9
AS
9147 }
9148
9149 if (name[0] == 'Q')
9150 {
14f9c5c9 9151 int v;
5b4ee69b 9152
14f9c5c9 9153 if (name[1] == 'U' || name[1] == 'W')
4c4b4cd2
PH
9154 {
9155 if (sscanf (name + 2, "%x", &v) != 1)
9156 return name;
9157 }
14f9c5c9 9158 else
4c4b4cd2 9159 return name;
14f9c5c9 9160
4c4b4cd2 9161 GROW_VECT (result, result_len, 16);
14f9c5c9 9162 if (isascii (v) && isprint (v))
88c15c34 9163 xsnprintf (result, result_len, "'%c'", v);
14f9c5c9 9164 else if (name[1] == 'U')
88c15c34 9165 xsnprintf (result, result_len, "[\"%02x\"]", v);
14f9c5c9 9166 else
88c15c34 9167 xsnprintf (result, result_len, "[\"%04x\"]", v);
14f9c5c9
AS
9168
9169 return result;
9170 }
d2e4a39e 9171 else
4c4b4cd2 9172 {
c3e5cd34
PH
9173 tmp = strstr (name, "__");
9174 if (tmp == NULL)
9175 tmp = strstr (name, "$");
9176 if (tmp != NULL)
4c4b4cd2
PH
9177 {
9178 GROW_VECT (result, result_len, tmp - name + 1);
9179 strncpy (result, name, tmp - name);
9180 result[tmp - name] = '\0';
9181 return result;
9182 }
9183
9184 return name;
9185 }
14f9c5c9
AS
9186}
9187
14f9c5c9
AS
9188/* Evaluate the subexpression of EXP starting at *POS as for
9189 evaluate_type, updating *POS to point just past the evaluated
4c4b4cd2 9190 expression. */
14f9c5c9 9191
d2e4a39e
AS
9192static struct value *
9193evaluate_subexp_type (struct expression *exp, int *pos)
14f9c5c9 9194{
4b27a620 9195 return evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
14f9c5c9
AS
9196}
9197
9198/* If VAL is wrapped in an aligner or subtype wrapper, return the
4c4b4cd2 9199 value it wraps. */
14f9c5c9 9200
d2e4a39e
AS
9201static struct value *
9202unwrap_value (struct value *val)
14f9c5c9 9203{
df407dfe 9204 struct type *type = ada_check_typedef (value_type (val));
5b4ee69b 9205
14f9c5c9
AS
9206 if (ada_is_aligner_type (type))
9207 {
de4d072f 9208 struct value *v = ada_value_struct_elt (val, "F", 0);
df407dfe 9209 struct type *val_type = ada_check_typedef (value_type (v));
5b4ee69b 9210
14f9c5c9 9211 if (ada_type_name (val_type) == NULL)
4c4b4cd2 9212 TYPE_NAME (val_type) = ada_type_name (type);
14f9c5c9
AS
9213
9214 return unwrap_value (v);
9215 }
d2e4a39e 9216 else
14f9c5c9 9217 {
d2e4a39e 9218 struct type *raw_real_type =
61ee279c 9219 ada_check_typedef (ada_get_base_type (type));
d2e4a39e 9220
5bf03f13
JB
9221 /* If there is no parallel XVS or XVE type, then the value is
9222 already unwrapped. Return it without further modification. */
9223 if ((type == raw_real_type)
9224 && ada_find_parallel_type (type, "___XVE") == NULL)
9225 return val;
14f9c5c9 9226
d2e4a39e 9227 return
4c4b4cd2
PH
9228 coerce_unspec_val_to_type
9229 (val, ada_to_fixed_type (raw_real_type, 0,
42ae5230 9230 value_address (val),
1ed6ede0 9231 NULL, 1));
14f9c5c9
AS
9232 }
9233}
d2e4a39e
AS
9234
9235static struct value *
9236cast_to_fixed (struct type *type, struct value *arg)
14f9c5c9
AS
9237{
9238 LONGEST val;
9239
df407dfe 9240 if (type == value_type (arg))
14f9c5c9 9241 return arg;
df407dfe 9242 else if (ada_is_fixed_point_type (value_type (arg)))
d2e4a39e 9243 val = ada_float_to_fixed (type,
df407dfe 9244 ada_fixed_to_float (value_type (arg),
4c4b4cd2 9245 value_as_long (arg)));
d2e4a39e 9246 else
14f9c5c9 9247 {
a53b7a21 9248 DOUBLEST argd = value_as_double (arg);
5b4ee69b 9249
14f9c5c9
AS
9250 val = ada_float_to_fixed (type, argd);
9251 }
9252
9253 return value_from_longest (type, val);
9254}
9255
d2e4a39e 9256static struct value *
a53b7a21 9257cast_from_fixed (struct type *type, struct value *arg)
14f9c5c9 9258{
df407dfe 9259 DOUBLEST val = ada_fixed_to_float (value_type (arg),
4c4b4cd2 9260 value_as_long (arg));
5b4ee69b 9261
a53b7a21 9262 return value_from_double (type, val);
14f9c5c9
AS
9263}
9264
d99dcf51
JB
9265/* Given two array types T1 and T2, return nonzero iff both arrays
9266 contain the same number of elements. */
9267
9268static int
9269ada_same_array_size_p (struct type *t1, struct type *t2)
9270{
9271 LONGEST lo1, hi1, lo2, hi2;
9272
9273 /* Get the array bounds in order to verify that the size of
9274 the two arrays match. */
9275 if (!get_array_bounds (t1, &lo1, &hi1)
9276 || !get_array_bounds (t2, &lo2, &hi2))
9277 error (_("unable to determine array bounds"));
9278
9279 /* To make things easier for size comparison, normalize a bit
9280 the case of empty arrays by making sure that the difference
9281 between upper bound and lower bound is always -1. */
9282 if (lo1 > hi1)
9283 hi1 = lo1 - 1;
9284 if (lo2 > hi2)
9285 hi2 = lo2 - 1;
9286
9287 return (hi1 - lo1 == hi2 - lo2);
9288}
9289
9290/* Assuming that VAL is an array of integrals, and TYPE represents
9291 an array with the same number of elements, but with wider integral
9292 elements, return an array "casted" to TYPE. In practice, this
9293 means that the returned array is built by casting each element
9294 of the original array into TYPE's (wider) element type. */
9295
9296static struct value *
9297ada_promote_array_of_integrals (struct type *type, struct value *val)
9298{
9299 struct type *elt_type = TYPE_TARGET_TYPE (type);
9300 LONGEST lo, hi;
9301 struct value *res;
9302 LONGEST i;
9303
9304 /* Verify that both val and type are arrays of scalars, and
9305 that the size of val's elements is smaller than the size
9306 of type's element. */
9307 gdb_assert (TYPE_CODE (type) == TYPE_CODE_ARRAY);
9308 gdb_assert (is_integral_type (TYPE_TARGET_TYPE (type)));
9309 gdb_assert (TYPE_CODE (value_type (val)) == TYPE_CODE_ARRAY);
9310 gdb_assert (is_integral_type (TYPE_TARGET_TYPE (value_type (val))));
9311 gdb_assert (TYPE_LENGTH (TYPE_TARGET_TYPE (type))
9312 > TYPE_LENGTH (TYPE_TARGET_TYPE (value_type (val))));
9313
9314 if (!get_array_bounds (type, &lo, &hi))
9315 error (_("unable to determine array bounds"));
9316
9317 res = allocate_value (type);
9318
9319 /* Promote each array element. */
9320 for (i = 0; i < hi - lo + 1; i++)
9321 {
9322 struct value *elt = value_cast (elt_type, value_subscript (val, lo + i));
9323
9324 memcpy (value_contents_writeable (res) + (i * TYPE_LENGTH (elt_type)),
9325 value_contents_all (elt), TYPE_LENGTH (elt_type));
9326 }
9327
9328 return res;
9329}
9330
4c4b4cd2
PH
9331/* Coerce VAL as necessary for assignment to an lval of type TYPE, and
9332 return the converted value. */
9333
d2e4a39e
AS
9334static struct value *
9335coerce_for_assign (struct type *type, struct value *val)
14f9c5c9 9336{
df407dfe 9337 struct type *type2 = value_type (val);
5b4ee69b 9338
14f9c5c9
AS
9339 if (type == type2)
9340 return val;
9341
61ee279c
PH
9342 type2 = ada_check_typedef (type2);
9343 type = ada_check_typedef (type);
14f9c5c9 9344
d2e4a39e
AS
9345 if (TYPE_CODE (type2) == TYPE_CODE_PTR
9346 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
14f9c5c9
AS
9347 {
9348 val = ada_value_ind (val);
df407dfe 9349 type2 = value_type (val);
14f9c5c9
AS
9350 }
9351
d2e4a39e 9352 if (TYPE_CODE (type2) == TYPE_CODE_ARRAY
14f9c5c9
AS
9353 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
9354 {
d99dcf51
JB
9355 if (!ada_same_array_size_p (type, type2))
9356 error (_("cannot assign arrays of different length"));
9357
9358 if (is_integral_type (TYPE_TARGET_TYPE (type))
9359 && is_integral_type (TYPE_TARGET_TYPE (type2))
9360 && TYPE_LENGTH (TYPE_TARGET_TYPE (type2))
9361 < TYPE_LENGTH (TYPE_TARGET_TYPE (type)))
9362 {
9363 /* Allow implicit promotion of the array elements to
9364 a wider type. */
9365 return ada_promote_array_of_integrals (type, val);
9366 }
9367
9368 if (TYPE_LENGTH (TYPE_TARGET_TYPE (type2))
9369 != TYPE_LENGTH (TYPE_TARGET_TYPE (type)))
323e0a4a 9370 error (_("Incompatible types in assignment"));
04624583 9371 deprecated_set_value_type (val, type);
14f9c5c9 9372 }
d2e4a39e 9373 return val;
14f9c5c9
AS
9374}
9375
4c4b4cd2
PH
9376static struct value *
9377ada_value_binop (struct value *arg1, struct value *arg2, enum exp_opcode op)
9378{
9379 struct value *val;
9380 struct type *type1, *type2;
9381 LONGEST v, v1, v2;
9382
994b9211
AC
9383 arg1 = coerce_ref (arg1);
9384 arg2 = coerce_ref (arg2);
18af8284
JB
9385 type1 = get_base_type (ada_check_typedef (value_type (arg1)));
9386 type2 = get_base_type (ada_check_typedef (value_type (arg2)));
4c4b4cd2 9387
76a01679
JB
9388 if (TYPE_CODE (type1) != TYPE_CODE_INT
9389 || TYPE_CODE (type2) != TYPE_CODE_INT)
4c4b4cd2
PH
9390 return value_binop (arg1, arg2, op);
9391
76a01679 9392 switch (op)
4c4b4cd2
PH
9393 {
9394 case BINOP_MOD:
9395 case BINOP_DIV:
9396 case BINOP_REM:
9397 break;
9398 default:
9399 return value_binop (arg1, arg2, op);
9400 }
9401
9402 v2 = value_as_long (arg2);
9403 if (v2 == 0)
323e0a4a 9404 error (_("second operand of %s must not be zero."), op_string (op));
4c4b4cd2
PH
9405
9406 if (TYPE_UNSIGNED (type1) || op == BINOP_MOD)
9407 return value_binop (arg1, arg2, op);
9408
9409 v1 = value_as_long (arg1);
9410 switch (op)
9411 {
9412 case BINOP_DIV:
9413 v = v1 / v2;
76a01679
JB
9414 if (!TRUNCATION_TOWARDS_ZERO && v1 * (v1 % v2) < 0)
9415 v += v > 0 ? -1 : 1;
4c4b4cd2
PH
9416 break;
9417 case BINOP_REM:
9418 v = v1 % v2;
76a01679
JB
9419 if (v * v1 < 0)
9420 v -= v2;
4c4b4cd2
PH
9421 break;
9422 default:
9423 /* Should not reach this point. */
9424 v = 0;
9425 }
9426
9427 val = allocate_value (type1);
990a07ab 9428 store_unsigned_integer (value_contents_raw (val),
e17a4113
UW
9429 TYPE_LENGTH (value_type (val)),
9430 gdbarch_byte_order (get_type_arch (type1)), v);
4c4b4cd2
PH
9431 return val;
9432}
9433
9434static int
9435ada_value_equal (struct value *arg1, struct value *arg2)
9436{
df407dfe
AC
9437 if (ada_is_direct_array_type (value_type (arg1))
9438 || ada_is_direct_array_type (value_type (arg2)))
4c4b4cd2 9439 {
f58b38bf
JB
9440 /* Automatically dereference any array reference before
9441 we attempt to perform the comparison. */
9442 arg1 = ada_coerce_ref (arg1);
9443 arg2 = ada_coerce_ref (arg2);
9444
4c4b4cd2
PH
9445 arg1 = ada_coerce_to_simple_array (arg1);
9446 arg2 = ada_coerce_to_simple_array (arg2);
df407dfe
AC
9447 if (TYPE_CODE (value_type (arg1)) != TYPE_CODE_ARRAY
9448 || TYPE_CODE (value_type (arg2)) != TYPE_CODE_ARRAY)
323e0a4a 9449 error (_("Attempt to compare array with non-array"));
4c4b4cd2 9450 /* FIXME: The following works only for types whose
76a01679
JB
9451 representations use all bits (no padding or undefined bits)
9452 and do not have user-defined equality. */
9453 return
df407dfe 9454 TYPE_LENGTH (value_type (arg1)) == TYPE_LENGTH (value_type (arg2))
0fd88904 9455 && memcmp (value_contents (arg1), value_contents (arg2),
df407dfe 9456 TYPE_LENGTH (value_type (arg1))) == 0;
4c4b4cd2
PH
9457 }
9458 return value_equal (arg1, arg2);
9459}
9460
52ce6436
PH
9461/* Total number of component associations in the aggregate starting at
9462 index PC in EXP. Assumes that index PC is the start of an
0963b4bd 9463 OP_AGGREGATE. */
52ce6436
PH
9464
9465static int
9466num_component_specs (struct expression *exp, int pc)
9467{
9468 int n, m, i;
5b4ee69b 9469
52ce6436
PH
9470 m = exp->elts[pc + 1].longconst;
9471 pc += 3;
9472 n = 0;
9473 for (i = 0; i < m; i += 1)
9474 {
9475 switch (exp->elts[pc].opcode)
9476 {
9477 default:
9478 n += 1;
9479 break;
9480 case OP_CHOICES:
9481 n += exp->elts[pc + 1].longconst;
9482 break;
9483 }
9484 ada_evaluate_subexp (NULL, exp, &pc, EVAL_SKIP);
9485 }
9486 return n;
9487}
9488
9489/* Assign the result of evaluating EXP starting at *POS to the INDEXth
9490 component of LHS (a simple array or a record), updating *POS past
9491 the expression, assuming that LHS is contained in CONTAINER. Does
9492 not modify the inferior's memory, nor does it modify LHS (unless
9493 LHS == CONTAINER). */
9494
9495static void
9496assign_component (struct value *container, struct value *lhs, LONGEST index,
9497 struct expression *exp, int *pos)
9498{
9499 struct value *mark = value_mark ();
9500 struct value *elt;
5b4ee69b 9501
52ce6436
PH
9502 if (TYPE_CODE (value_type (lhs)) == TYPE_CODE_ARRAY)
9503 {
22601c15
UW
9504 struct type *index_type = builtin_type (exp->gdbarch)->builtin_int;
9505 struct value *index_val = value_from_longest (index_type, index);
5b4ee69b 9506
52ce6436
PH
9507 elt = unwrap_value (ada_value_subscript (lhs, 1, &index_val));
9508 }
9509 else
9510 {
9511 elt = ada_index_struct_field (index, lhs, 0, value_type (lhs));
c48db5ca 9512 elt = ada_to_fixed_value (elt);
52ce6436
PH
9513 }
9514
9515 if (exp->elts[*pos].opcode == OP_AGGREGATE)
9516 assign_aggregate (container, elt, exp, pos, EVAL_NORMAL);
9517 else
9518 value_assign_to_component (container, elt,
9519 ada_evaluate_subexp (NULL, exp, pos,
9520 EVAL_NORMAL));
9521
9522 value_free_to_mark (mark);
9523}
9524
9525/* Assuming that LHS represents an lvalue having a record or array
9526 type, and EXP->ELTS[*POS] is an OP_AGGREGATE, evaluate an assignment
9527 of that aggregate's value to LHS, advancing *POS past the
9528 aggregate. NOSIDE is as for evaluate_subexp. CONTAINER is an
9529 lvalue containing LHS (possibly LHS itself). Does not modify
9530 the inferior's memory, nor does it modify the contents of
0963b4bd 9531 LHS (unless == CONTAINER). Returns the modified CONTAINER. */
52ce6436
PH
9532
9533static struct value *
9534assign_aggregate (struct value *container,
9535 struct value *lhs, struct expression *exp,
9536 int *pos, enum noside noside)
9537{
9538 struct type *lhs_type;
9539 int n = exp->elts[*pos+1].longconst;
9540 LONGEST low_index, high_index;
9541 int num_specs;
9542 LONGEST *indices;
9543 int max_indices, num_indices;
52ce6436 9544 int i;
52ce6436
PH
9545
9546 *pos += 3;
9547 if (noside != EVAL_NORMAL)
9548 {
52ce6436
PH
9549 for (i = 0; i < n; i += 1)
9550 ada_evaluate_subexp (NULL, exp, pos, noside);
9551 return container;
9552 }
9553
9554 container = ada_coerce_ref (container);
9555 if (ada_is_direct_array_type (value_type (container)))
9556 container = ada_coerce_to_simple_array (container);
9557 lhs = ada_coerce_ref (lhs);
9558 if (!deprecated_value_modifiable (lhs))
9559 error (_("Left operand of assignment is not a modifiable lvalue."));
9560
9561 lhs_type = value_type (lhs);
9562 if (ada_is_direct_array_type (lhs_type))
9563 {
9564 lhs = ada_coerce_to_simple_array (lhs);
9565 lhs_type = value_type (lhs);
9566 low_index = TYPE_ARRAY_LOWER_BOUND_VALUE (lhs_type);
9567 high_index = TYPE_ARRAY_UPPER_BOUND_VALUE (lhs_type);
52ce6436
PH
9568 }
9569 else if (TYPE_CODE (lhs_type) == TYPE_CODE_STRUCT)
9570 {
9571 low_index = 0;
9572 high_index = num_visible_fields (lhs_type) - 1;
52ce6436
PH
9573 }
9574 else
9575 error (_("Left-hand side must be array or record."));
9576
9577 num_specs = num_component_specs (exp, *pos - 3);
9578 max_indices = 4 * num_specs + 4;
9579 indices = alloca (max_indices * sizeof (indices[0]));
9580 indices[0] = indices[1] = low_index - 1;
9581 indices[2] = indices[3] = high_index + 1;
9582 num_indices = 4;
9583
9584 for (i = 0; i < n; i += 1)
9585 {
9586 switch (exp->elts[*pos].opcode)
9587 {
1fbf5ada
JB
9588 case OP_CHOICES:
9589 aggregate_assign_from_choices (container, lhs, exp, pos, indices,
9590 &num_indices, max_indices,
9591 low_index, high_index);
9592 break;
9593 case OP_POSITIONAL:
9594 aggregate_assign_positional (container, lhs, exp, pos, indices,
52ce6436
PH
9595 &num_indices, max_indices,
9596 low_index, high_index);
1fbf5ada
JB
9597 break;
9598 case OP_OTHERS:
9599 if (i != n-1)
9600 error (_("Misplaced 'others' clause"));
9601 aggregate_assign_others (container, lhs, exp, pos, indices,
9602 num_indices, low_index, high_index);
9603 break;
9604 default:
9605 error (_("Internal error: bad aggregate clause"));
52ce6436
PH
9606 }
9607 }
9608
9609 return container;
9610}
9611
9612/* Assign into the component of LHS indexed by the OP_POSITIONAL
9613 construct at *POS, updating *POS past the construct, given that
9614 the positions are relative to lower bound LOW, where HIGH is the
9615 upper bound. Record the position in INDICES[0 .. MAX_INDICES-1]
9616 updating *NUM_INDICES as needed. CONTAINER is as for
0963b4bd 9617 assign_aggregate. */
52ce6436
PH
9618static void
9619aggregate_assign_positional (struct value *container,
9620 struct value *lhs, struct expression *exp,
9621 int *pos, LONGEST *indices, int *num_indices,
9622 int max_indices, LONGEST low, LONGEST high)
9623{
9624 LONGEST ind = longest_to_int (exp->elts[*pos + 1].longconst) + low;
9625
9626 if (ind - 1 == high)
e1d5a0d2 9627 warning (_("Extra components in aggregate ignored."));
52ce6436
PH
9628 if (ind <= high)
9629 {
9630 add_component_interval (ind, ind, indices, num_indices, max_indices);
9631 *pos += 3;
9632 assign_component (container, lhs, ind, exp, pos);
9633 }
9634 else
9635 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
9636}
9637
9638/* Assign into the components of LHS indexed by the OP_CHOICES
9639 construct at *POS, updating *POS past the construct, given that
9640 the allowable indices are LOW..HIGH. Record the indices assigned
9641 to in INDICES[0 .. MAX_INDICES-1], updating *NUM_INDICES as
0963b4bd 9642 needed. CONTAINER is as for assign_aggregate. */
52ce6436
PH
9643static void
9644aggregate_assign_from_choices (struct value *container,
9645 struct value *lhs, struct expression *exp,
9646 int *pos, LONGEST *indices, int *num_indices,
9647 int max_indices, LONGEST low, LONGEST high)
9648{
9649 int j;
9650 int n_choices = longest_to_int (exp->elts[*pos+1].longconst);
9651 int choice_pos, expr_pc;
9652 int is_array = ada_is_direct_array_type (value_type (lhs));
9653
9654 choice_pos = *pos += 3;
9655
9656 for (j = 0; j < n_choices; j += 1)
9657 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
9658 expr_pc = *pos;
9659 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
9660
9661 for (j = 0; j < n_choices; j += 1)
9662 {
9663 LONGEST lower, upper;
9664 enum exp_opcode op = exp->elts[choice_pos].opcode;
5b4ee69b 9665
52ce6436
PH
9666 if (op == OP_DISCRETE_RANGE)
9667 {
9668 choice_pos += 1;
9669 lower = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
9670 EVAL_NORMAL));
9671 upper = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
9672 EVAL_NORMAL));
9673 }
9674 else if (is_array)
9675 {
9676 lower = value_as_long (ada_evaluate_subexp (NULL, exp, &choice_pos,
9677 EVAL_NORMAL));
9678 upper = lower;
9679 }
9680 else
9681 {
9682 int ind;
0d5cff50 9683 const char *name;
5b4ee69b 9684
52ce6436
PH
9685 switch (op)
9686 {
9687 case OP_NAME:
9688 name = &exp->elts[choice_pos + 2].string;
9689 break;
9690 case OP_VAR_VALUE:
9691 name = SYMBOL_NATURAL_NAME (exp->elts[choice_pos + 2].symbol);
9692 break;
9693 default:
9694 error (_("Invalid record component association."));
9695 }
9696 ada_evaluate_subexp (NULL, exp, &choice_pos, EVAL_SKIP);
9697 ind = 0;
9698 if (! find_struct_field (name, value_type (lhs), 0,
9699 NULL, NULL, NULL, NULL, &ind))
9700 error (_("Unknown component name: %s."), name);
9701 lower = upper = ind;
9702 }
9703
9704 if (lower <= upper && (lower < low || upper > high))
9705 error (_("Index in component association out of bounds."));
9706
9707 add_component_interval (lower, upper, indices, num_indices,
9708 max_indices);
9709 while (lower <= upper)
9710 {
9711 int pos1;
5b4ee69b 9712
52ce6436
PH
9713 pos1 = expr_pc;
9714 assign_component (container, lhs, lower, exp, &pos1);
9715 lower += 1;
9716 }
9717 }
9718}
9719
9720/* Assign the value of the expression in the OP_OTHERS construct in
9721 EXP at *POS into the components of LHS indexed from LOW .. HIGH that
9722 have not been previously assigned. The index intervals already assigned
9723 are in INDICES[0 .. NUM_INDICES-1]. Updates *POS to after the
0963b4bd 9724 OP_OTHERS clause. CONTAINER is as for assign_aggregate. */
52ce6436
PH
9725static void
9726aggregate_assign_others (struct value *container,
9727 struct value *lhs, struct expression *exp,
9728 int *pos, LONGEST *indices, int num_indices,
9729 LONGEST low, LONGEST high)
9730{
9731 int i;
5ce64950 9732 int expr_pc = *pos + 1;
52ce6436
PH
9733
9734 for (i = 0; i < num_indices - 2; i += 2)
9735 {
9736 LONGEST ind;
5b4ee69b 9737
52ce6436
PH
9738 for (ind = indices[i + 1] + 1; ind < indices[i + 2]; ind += 1)
9739 {
5ce64950 9740 int localpos;
5b4ee69b 9741
5ce64950
MS
9742 localpos = expr_pc;
9743 assign_component (container, lhs, ind, exp, &localpos);
52ce6436
PH
9744 }
9745 }
9746 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
9747}
9748
9749/* Add the interval [LOW .. HIGH] to the sorted set of intervals
9750 [ INDICES[0] .. INDICES[1] ],..., [ INDICES[*SIZE-2] .. INDICES[*SIZE-1] ],
9751 modifying *SIZE as needed. It is an error if *SIZE exceeds
9752 MAX_SIZE. The resulting intervals do not overlap. */
9753static void
9754add_component_interval (LONGEST low, LONGEST high,
9755 LONGEST* indices, int *size, int max_size)
9756{
9757 int i, j;
5b4ee69b 9758
52ce6436
PH
9759 for (i = 0; i < *size; i += 2) {
9760 if (high >= indices[i] && low <= indices[i + 1])
9761 {
9762 int kh;
5b4ee69b 9763
52ce6436
PH
9764 for (kh = i + 2; kh < *size; kh += 2)
9765 if (high < indices[kh])
9766 break;
9767 if (low < indices[i])
9768 indices[i] = low;
9769 indices[i + 1] = indices[kh - 1];
9770 if (high > indices[i + 1])
9771 indices[i + 1] = high;
9772 memcpy (indices + i + 2, indices + kh, *size - kh);
9773 *size -= kh - i - 2;
9774 return;
9775 }
9776 else if (high < indices[i])
9777 break;
9778 }
9779
9780 if (*size == max_size)
9781 error (_("Internal error: miscounted aggregate components."));
9782 *size += 2;
9783 for (j = *size-1; j >= i+2; j -= 1)
9784 indices[j] = indices[j - 2];
9785 indices[i] = low;
9786 indices[i + 1] = high;
9787}
9788
6e48bd2c
JB
9789/* Perform and Ada cast of ARG2 to type TYPE if the type of ARG2
9790 is different. */
9791
9792static struct value *
9793ada_value_cast (struct type *type, struct value *arg2, enum noside noside)
9794{
9795 if (type == ada_check_typedef (value_type (arg2)))
9796 return arg2;
9797
9798 if (ada_is_fixed_point_type (type))
9799 return (cast_to_fixed (type, arg2));
9800
9801 if (ada_is_fixed_point_type (value_type (arg2)))
a53b7a21 9802 return cast_from_fixed (type, arg2);
6e48bd2c
JB
9803
9804 return value_cast (type, arg2);
9805}
9806
284614f0
JB
9807/* Evaluating Ada expressions, and printing their result.
9808 ------------------------------------------------------
9809
21649b50
JB
9810 1. Introduction:
9811 ----------------
9812
284614f0
JB
9813 We usually evaluate an Ada expression in order to print its value.
9814 We also evaluate an expression in order to print its type, which
9815 happens during the EVAL_AVOID_SIDE_EFFECTS phase of the evaluation,
9816 but we'll focus mostly on the EVAL_NORMAL phase. In practice, the
9817 EVAL_AVOID_SIDE_EFFECTS phase allows us to simplify certain aspects of
9818 the evaluation compared to the EVAL_NORMAL, but is otherwise very
9819 similar.
9820
9821 Evaluating expressions is a little more complicated for Ada entities
9822 than it is for entities in languages such as C. The main reason for
9823 this is that Ada provides types whose definition might be dynamic.
9824 One example of such types is variant records. Or another example
9825 would be an array whose bounds can only be known at run time.
9826
9827 The following description is a general guide as to what should be
9828 done (and what should NOT be done) in order to evaluate an expression
9829 involving such types, and when. This does not cover how the semantic
9830 information is encoded by GNAT as this is covered separatly. For the
9831 document used as the reference for the GNAT encoding, see exp_dbug.ads
9832 in the GNAT sources.
9833
9834 Ideally, we should embed each part of this description next to its
9835 associated code. Unfortunately, the amount of code is so vast right
9836 now that it's hard to see whether the code handling a particular
9837 situation might be duplicated or not. One day, when the code is
9838 cleaned up, this guide might become redundant with the comments
9839 inserted in the code, and we might want to remove it.
9840
21649b50
JB
9841 2. ``Fixing'' an Entity, the Simple Case:
9842 -----------------------------------------
9843
284614f0
JB
9844 When evaluating Ada expressions, the tricky issue is that they may
9845 reference entities whose type contents and size are not statically
9846 known. Consider for instance a variant record:
9847
9848 type Rec (Empty : Boolean := True) is record
9849 case Empty is
9850 when True => null;
9851 when False => Value : Integer;
9852 end case;
9853 end record;
9854 Yes : Rec := (Empty => False, Value => 1);
9855 No : Rec := (empty => True);
9856
9857 The size and contents of that record depends on the value of the
9858 descriminant (Rec.Empty). At this point, neither the debugging
9859 information nor the associated type structure in GDB are able to
9860 express such dynamic types. So what the debugger does is to create
9861 "fixed" versions of the type that applies to the specific object.
9862 We also informally refer to this opperation as "fixing" an object,
9863 which means creating its associated fixed type.
9864
9865 Example: when printing the value of variable "Yes" above, its fixed
9866 type would look like this:
9867
9868 type Rec is record
9869 Empty : Boolean;
9870 Value : Integer;
9871 end record;
9872
9873 On the other hand, if we printed the value of "No", its fixed type
9874 would become:
9875
9876 type Rec is record
9877 Empty : Boolean;
9878 end record;
9879
9880 Things become a little more complicated when trying to fix an entity
9881 with a dynamic type that directly contains another dynamic type,
9882 such as an array of variant records, for instance. There are
9883 two possible cases: Arrays, and records.
9884
21649b50
JB
9885 3. ``Fixing'' Arrays:
9886 ---------------------
9887
9888 The type structure in GDB describes an array in terms of its bounds,
9889 and the type of its elements. By design, all elements in the array
9890 have the same type and we cannot represent an array of variant elements
9891 using the current type structure in GDB. When fixing an array,
9892 we cannot fix the array element, as we would potentially need one
9893 fixed type per element of the array. As a result, the best we can do
9894 when fixing an array is to produce an array whose bounds and size
9895 are correct (allowing us to read it from memory), but without having
9896 touched its element type. Fixing each element will be done later,
9897 when (if) necessary.
9898
9899 Arrays are a little simpler to handle than records, because the same
9900 amount of memory is allocated for each element of the array, even if
1b536f04 9901 the amount of space actually used by each element differs from element
21649b50 9902 to element. Consider for instance the following array of type Rec:
284614f0
JB
9903
9904 type Rec_Array is array (1 .. 2) of Rec;
9905
1b536f04
JB
9906 The actual amount of memory occupied by each element might be different
9907 from element to element, depending on the value of their discriminant.
21649b50 9908 But the amount of space reserved for each element in the array remains
1b536f04 9909 fixed regardless. So we simply need to compute that size using
21649b50
JB
9910 the debugging information available, from which we can then determine
9911 the array size (we multiply the number of elements of the array by
9912 the size of each element).
9913
9914 The simplest case is when we have an array of a constrained element
9915 type. For instance, consider the following type declarations:
9916
9917 type Bounded_String (Max_Size : Integer) is
9918 Length : Integer;
9919 Buffer : String (1 .. Max_Size);
9920 end record;
9921 type Bounded_String_Array is array (1 ..2) of Bounded_String (80);
9922
9923 In this case, the compiler describes the array as an array of
9924 variable-size elements (identified by its XVS suffix) for which
9925 the size can be read in the parallel XVZ variable.
9926
9927 In the case of an array of an unconstrained element type, the compiler
9928 wraps the array element inside a private PAD type. This type should not
9929 be shown to the user, and must be "unwrap"'ed before printing. Note
284614f0
JB
9930 that we also use the adjective "aligner" in our code to designate
9931 these wrapper types.
9932
1b536f04 9933 In some cases, the size allocated for each element is statically
21649b50
JB
9934 known. In that case, the PAD type already has the correct size,
9935 and the array element should remain unfixed.
9936
9937 But there are cases when this size is not statically known.
9938 For instance, assuming that "Five" is an integer variable:
284614f0
JB
9939
9940 type Dynamic is array (1 .. Five) of Integer;
9941 type Wrapper (Has_Length : Boolean := False) is record
9942 Data : Dynamic;
9943 case Has_Length is
9944 when True => Length : Integer;
9945 when False => null;
9946 end case;
9947 end record;
9948 type Wrapper_Array is array (1 .. 2) of Wrapper;
9949
9950 Hello : Wrapper_Array := (others => (Has_Length => True,
9951 Data => (others => 17),
9952 Length => 1));
9953
9954
9955 The debugging info would describe variable Hello as being an
9956 array of a PAD type. The size of that PAD type is not statically
9957 known, but can be determined using a parallel XVZ variable.
9958 In that case, a copy of the PAD type with the correct size should
9959 be used for the fixed array.
9960
21649b50
JB
9961 3. ``Fixing'' record type objects:
9962 ----------------------------------
9963
9964 Things are slightly different from arrays in the case of dynamic
284614f0
JB
9965 record types. In this case, in order to compute the associated
9966 fixed type, we need to determine the size and offset of each of
9967 its components. This, in turn, requires us to compute the fixed
9968 type of each of these components.
9969
9970 Consider for instance the example:
9971
9972 type Bounded_String (Max_Size : Natural) is record
9973 Str : String (1 .. Max_Size);
9974 Length : Natural;
9975 end record;
9976 My_String : Bounded_String (Max_Size => 10);
9977
9978 In that case, the position of field "Length" depends on the size
9979 of field Str, which itself depends on the value of the Max_Size
21649b50 9980 discriminant. In order to fix the type of variable My_String,
284614f0
JB
9981 we need to fix the type of field Str. Therefore, fixing a variant
9982 record requires us to fix each of its components.
9983
9984 However, if a component does not have a dynamic size, the component
9985 should not be fixed. In particular, fields that use a PAD type
9986 should not fixed. Here is an example where this might happen
9987 (assuming type Rec above):
9988
9989 type Container (Big : Boolean) is record
9990 First : Rec;
9991 After : Integer;
9992 case Big is
9993 when True => Another : Integer;
9994 when False => null;
9995 end case;
9996 end record;
9997 My_Container : Container := (Big => False,
9998 First => (Empty => True),
9999 After => 42);
10000
10001 In that example, the compiler creates a PAD type for component First,
10002 whose size is constant, and then positions the component After just
10003 right after it. The offset of component After is therefore constant
10004 in this case.
10005
10006 The debugger computes the position of each field based on an algorithm
10007 that uses, among other things, the actual position and size of the field
21649b50
JB
10008 preceding it. Let's now imagine that the user is trying to print
10009 the value of My_Container. If the type fixing was recursive, we would
284614f0
JB
10010 end up computing the offset of field After based on the size of the
10011 fixed version of field First. And since in our example First has
10012 only one actual field, the size of the fixed type is actually smaller
10013 than the amount of space allocated to that field, and thus we would
10014 compute the wrong offset of field After.
10015
21649b50
JB
10016 To make things more complicated, we need to watch out for dynamic
10017 components of variant records (identified by the ___XVL suffix in
10018 the component name). Even if the target type is a PAD type, the size
10019 of that type might not be statically known. So the PAD type needs
10020 to be unwrapped and the resulting type needs to be fixed. Otherwise,
10021 we might end up with the wrong size for our component. This can be
10022 observed with the following type declarations:
284614f0
JB
10023
10024 type Octal is new Integer range 0 .. 7;
10025 type Octal_Array is array (Positive range <>) of Octal;
10026 pragma Pack (Octal_Array);
10027
10028 type Octal_Buffer (Size : Positive) is record
10029 Buffer : Octal_Array (1 .. Size);
10030 Length : Integer;
10031 end record;
10032
10033 In that case, Buffer is a PAD type whose size is unset and needs
10034 to be computed by fixing the unwrapped type.
10035
21649b50
JB
10036 4. When to ``Fix'' un-``Fixed'' sub-elements of an entity:
10037 ----------------------------------------------------------
10038
10039 Lastly, when should the sub-elements of an entity that remained unfixed
284614f0
JB
10040 thus far, be actually fixed?
10041
10042 The answer is: Only when referencing that element. For instance
10043 when selecting one component of a record, this specific component
10044 should be fixed at that point in time. Or when printing the value
10045 of a record, each component should be fixed before its value gets
10046 printed. Similarly for arrays, the element of the array should be
10047 fixed when printing each element of the array, or when extracting
10048 one element out of that array. On the other hand, fixing should
10049 not be performed on the elements when taking a slice of an array!
10050
10051 Note that one of the side-effects of miscomputing the offset and
10052 size of each field is that we end up also miscomputing the size
10053 of the containing type. This can have adverse results when computing
10054 the value of an entity. GDB fetches the value of an entity based
10055 on the size of its type, and thus a wrong size causes GDB to fetch
10056 the wrong amount of memory. In the case where the computed size is
10057 too small, GDB fetches too little data to print the value of our
10058 entiry. Results in this case as unpredicatble, as we usually read
10059 past the buffer containing the data =:-o. */
10060
10061/* Implement the evaluate_exp routine in the exp_descriptor structure
10062 for the Ada language. */
10063
52ce6436 10064static struct value *
ebf56fd3 10065ada_evaluate_subexp (struct type *expect_type, struct expression *exp,
4c4b4cd2 10066 int *pos, enum noside noside)
14f9c5c9
AS
10067{
10068 enum exp_opcode op;
b5385fc0 10069 int tem;
14f9c5c9 10070 int pc;
5ec18f2b 10071 int preeval_pos;
14f9c5c9
AS
10072 struct value *arg1 = NULL, *arg2 = NULL, *arg3;
10073 struct type *type;
52ce6436 10074 int nargs, oplen;
d2e4a39e 10075 struct value **argvec;
14f9c5c9 10076
d2e4a39e
AS
10077 pc = *pos;
10078 *pos += 1;
14f9c5c9
AS
10079 op = exp->elts[pc].opcode;
10080
d2e4a39e 10081 switch (op)
14f9c5c9
AS
10082 {
10083 default:
10084 *pos -= 1;
6e48bd2c 10085 arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside);
ca1f964d
JG
10086
10087 if (noside == EVAL_NORMAL)
10088 arg1 = unwrap_value (arg1);
6e48bd2c
JB
10089
10090 /* If evaluating an OP_DOUBLE and an EXPECT_TYPE was provided,
10091 then we need to perform the conversion manually, because
10092 evaluate_subexp_standard doesn't do it. This conversion is
10093 necessary in Ada because the different kinds of float/fixed
10094 types in Ada have different representations.
10095
10096 Similarly, we need to perform the conversion from OP_LONG
10097 ourselves. */
10098 if ((op == OP_DOUBLE || op == OP_LONG) && expect_type != NULL)
10099 arg1 = ada_value_cast (expect_type, arg1, noside);
10100
10101 return arg1;
4c4b4cd2
PH
10102
10103 case OP_STRING:
10104 {
76a01679 10105 struct value *result;
5b4ee69b 10106
76a01679
JB
10107 *pos -= 1;
10108 result = evaluate_subexp_standard (expect_type, exp, pos, noside);
10109 /* The result type will have code OP_STRING, bashed there from
10110 OP_ARRAY. Bash it back. */
df407dfe
AC
10111 if (TYPE_CODE (value_type (result)) == TYPE_CODE_STRING)
10112 TYPE_CODE (value_type (result)) = TYPE_CODE_ARRAY;
76a01679 10113 return result;
4c4b4cd2 10114 }
14f9c5c9
AS
10115
10116 case UNOP_CAST:
10117 (*pos) += 2;
10118 type = exp->elts[pc + 1].type;
10119 arg1 = evaluate_subexp (type, exp, pos, noside);
10120 if (noside == EVAL_SKIP)
4c4b4cd2 10121 goto nosideret;
6e48bd2c 10122 arg1 = ada_value_cast (type, arg1, noside);
14f9c5c9
AS
10123 return arg1;
10124
4c4b4cd2
PH
10125 case UNOP_QUAL:
10126 (*pos) += 2;
10127 type = exp->elts[pc + 1].type;
10128 return ada_evaluate_subexp (type, exp, pos, noside);
10129
14f9c5c9
AS
10130 case BINOP_ASSIGN:
10131 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
52ce6436
PH
10132 if (exp->elts[*pos].opcode == OP_AGGREGATE)
10133 {
10134 arg1 = assign_aggregate (arg1, arg1, exp, pos, noside);
10135 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
10136 return arg1;
10137 return ada_value_assign (arg1, arg1);
10138 }
003f3813
JB
10139 /* Force the evaluation of the rhs ARG2 to the type of the lhs ARG1,
10140 except if the lhs of our assignment is a convenience variable.
10141 In the case of assigning to a convenience variable, the lhs
10142 should be exactly the result of the evaluation of the rhs. */
10143 type = value_type (arg1);
10144 if (VALUE_LVAL (arg1) == lval_internalvar)
10145 type = NULL;
10146 arg2 = evaluate_subexp (type, exp, pos, noside);
14f9c5c9 10147 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
4c4b4cd2 10148 return arg1;
df407dfe
AC
10149 if (ada_is_fixed_point_type (value_type (arg1)))
10150 arg2 = cast_to_fixed (value_type (arg1), arg2);
10151 else if (ada_is_fixed_point_type (value_type (arg2)))
76a01679 10152 error
323e0a4a 10153 (_("Fixed-point values must be assigned to fixed-point variables"));
d2e4a39e 10154 else
df407dfe 10155 arg2 = coerce_for_assign (value_type (arg1), arg2);
4c4b4cd2 10156 return ada_value_assign (arg1, arg2);
14f9c5c9
AS
10157
10158 case BINOP_ADD:
10159 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
10160 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
10161 if (noside == EVAL_SKIP)
4c4b4cd2 10162 goto nosideret;
2ac8a782
JB
10163 if (TYPE_CODE (value_type (arg1)) == TYPE_CODE_PTR)
10164 return (value_from_longest
10165 (value_type (arg1),
10166 value_as_long (arg1) + value_as_long (arg2)));
c40cc657
JB
10167 if (TYPE_CODE (value_type (arg2)) == TYPE_CODE_PTR)
10168 return (value_from_longest
10169 (value_type (arg2),
10170 value_as_long (arg1) + value_as_long (arg2)));
df407dfe
AC
10171 if ((ada_is_fixed_point_type (value_type (arg1))
10172 || ada_is_fixed_point_type (value_type (arg2)))
10173 && value_type (arg1) != value_type (arg2))
323e0a4a 10174 error (_("Operands of fixed-point addition must have the same type"));
b7789565
JB
10175 /* Do the addition, and cast the result to the type of the first
10176 argument. We cannot cast the result to a reference type, so if
10177 ARG1 is a reference type, find its underlying type. */
10178 type = value_type (arg1);
10179 while (TYPE_CODE (type) == TYPE_CODE_REF)
10180 type = TYPE_TARGET_TYPE (type);
f44316fa 10181 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
89eef114 10182 return value_cast (type, value_binop (arg1, arg2, BINOP_ADD));
14f9c5c9
AS
10183
10184 case BINOP_SUB:
10185 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
10186 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
10187 if (noside == EVAL_SKIP)
4c4b4cd2 10188 goto nosideret;
2ac8a782
JB
10189 if (TYPE_CODE (value_type (arg1)) == TYPE_CODE_PTR)
10190 return (value_from_longest
10191 (value_type (arg1),
10192 value_as_long (arg1) - value_as_long (arg2)));
c40cc657
JB
10193 if (TYPE_CODE (value_type (arg2)) == TYPE_CODE_PTR)
10194 return (value_from_longest
10195 (value_type (arg2),
10196 value_as_long (arg1) - value_as_long (arg2)));
df407dfe
AC
10197 if ((ada_is_fixed_point_type (value_type (arg1))
10198 || ada_is_fixed_point_type (value_type (arg2)))
10199 && value_type (arg1) != value_type (arg2))
0963b4bd
MS
10200 error (_("Operands of fixed-point subtraction "
10201 "must have the same type"));
b7789565
JB
10202 /* Do the substraction, and cast the result to the type of the first
10203 argument. We cannot cast the result to a reference type, so if
10204 ARG1 is a reference type, find its underlying type. */
10205 type = value_type (arg1);
10206 while (TYPE_CODE (type) == TYPE_CODE_REF)
10207 type = TYPE_TARGET_TYPE (type);
f44316fa 10208 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
89eef114 10209 return value_cast (type, value_binop (arg1, arg2, BINOP_SUB));
14f9c5c9
AS
10210
10211 case BINOP_MUL:
10212 case BINOP_DIV:
e1578042
JB
10213 case BINOP_REM:
10214 case BINOP_MOD:
14f9c5c9
AS
10215 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10216 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10217 if (noside == EVAL_SKIP)
4c4b4cd2 10218 goto nosideret;
e1578042 10219 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
9c2be529
JB
10220 {
10221 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10222 return value_zero (value_type (arg1), not_lval);
10223 }
14f9c5c9 10224 else
4c4b4cd2 10225 {
a53b7a21 10226 type = builtin_type (exp->gdbarch)->builtin_double;
df407dfe 10227 if (ada_is_fixed_point_type (value_type (arg1)))
a53b7a21 10228 arg1 = cast_from_fixed (type, arg1);
df407dfe 10229 if (ada_is_fixed_point_type (value_type (arg2)))
a53b7a21 10230 arg2 = cast_from_fixed (type, arg2);
f44316fa 10231 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
4c4b4cd2
PH
10232 return ada_value_binop (arg1, arg2, op);
10233 }
10234
4c4b4cd2
PH
10235 case BINOP_EQUAL:
10236 case BINOP_NOTEQUAL:
14f9c5c9 10237 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
df407dfe 10238 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
14f9c5c9 10239 if (noside == EVAL_SKIP)
76a01679 10240 goto nosideret;
4c4b4cd2 10241 if (noside == EVAL_AVOID_SIDE_EFFECTS)
76a01679 10242 tem = 0;
4c4b4cd2 10243 else
f44316fa
UW
10244 {
10245 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10246 tem = ada_value_equal (arg1, arg2);
10247 }
4c4b4cd2 10248 if (op == BINOP_NOTEQUAL)
76a01679 10249 tem = !tem;
fbb06eb1
UW
10250 type = language_bool_type (exp->language_defn, exp->gdbarch);
10251 return value_from_longest (type, (LONGEST) tem);
4c4b4cd2
PH
10252
10253 case UNOP_NEG:
10254 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10255 if (noside == EVAL_SKIP)
10256 goto nosideret;
df407dfe
AC
10257 else if (ada_is_fixed_point_type (value_type (arg1)))
10258 return value_cast (value_type (arg1), value_neg (arg1));
14f9c5c9 10259 else
f44316fa
UW
10260 {
10261 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
10262 return value_neg (arg1);
10263 }
4c4b4cd2 10264
2330c6c6
JB
10265 case BINOP_LOGICAL_AND:
10266 case BINOP_LOGICAL_OR:
10267 case UNOP_LOGICAL_NOT:
000d5124
JB
10268 {
10269 struct value *val;
10270
10271 *pos -= 1;
10272 val = evaluate_subexp_standard (expect_type, exp, pos, noside);
fbb06eb1
UW
10273 type = language_bool_type (exp->language_defn, exp->gdbarch);
10274 return value_cast (type, val);
000d5124 10275 }
2330c6c6
JB
10276
10277 case BINOP_BITWISE_AND:
10278 case BINOP_BITWISE_IOR:
10279 case BINOP_BITWISE_XOR:
000d5124
JB
10280 {
10281 struct value *val;
10282
10283 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
10284 *pos = pc;
10285 val = evaluate_subexp_standard (expect_type, exp, pos, noside);
10286
10287 return value_cast (value_type (arg1), val);
10288 }
2330c6c6 10289
14f9c5c9
AS
10290 case OP_VAR_VALUE:
10291 *pos -= 1;
6799def4 10292
14f9c5c9 10293 if (noside == EVAL_SKIP)
4c4b4cd2
PH
10294 {
10295 *pos += 4;
10296 goto nosideret;
10297 }
da5c522f
JB
10298
10299 if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
76a01679
JB
10300 /* Only encountered when an unresolved symbol occurs in a
10301 context other than a function call, in which case, it is
52ce6436 10302 invalid. */
323e0a4a 10303 error (_("Unexpected unresolved symbol, %s, during evaluation"),
4c4b4cd2 10304 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
da5c522f
JB
10305
10306 if (noside == EVAL_AVOID_SIDE_EFFECTS)
4c4b4cd2 10307 {
0c1f74cf 10308 type = static_unwrap_type (SYMBOL_TYPE (exp->elts[pc + 2].symbol));
31dbc1c5
JB
10309 /* Check to see if this is a tagged type. We also need to handle
10310 the case where the type is a reference to a tagged type, but
10311 we have to be careful to exclude pointers to tagged types.
10312 The latter should be shown as usual (as a pointer), whereas
10313 a reference should mostly be transparent to the user. */
10314 if (ada_is_tagged_type (type, 0)
023db19c 10315 || (TYPE_CODE (type) == TYPE_CODE_REF
31dbc1c5 10316 && ada_is_tagged_type (TYPE_TARGET_TYPE (type), 0)))
0d72a7c3
JB
10317 {
10318 /* Tagged types are a little special in the fact that the real
10319 type is dynamic and can only be determined by inspecting the
10320 object's tag. This means that we need to get the object's
10321 value first (EVAL_NORMAL) and then extract the actual object
10322 type from its tag.
10323
10324 Note that we cannot skip the final step where we extract
10325 the object type from its tag, because the EVAL_NORMAL phase
10326 results in dynamic components being resolved into fixed ones.
10327 This can cause problems when trying to print the type
10328 description of tagged types whose parent has a dynamic size:
10329 We use the type name of the "_parent" component in order
10330 to print the name of the ancestor type in the type description.
10331 If that component had a dynamic size, the resolution into
10332 a fixed type would result in the loss of that type name,
10333 thus preventing us from printing the name of the ancestor
10334 type in the type description. */
10335 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_NORMAL);
10336
10337 if (TYPE_CODE (type) != TYPE_CODE_REF)
10338 {
10339 struct type *actual_type;
10340
10341 actual_type = type_from_tag (ada_value_tag (arg1));
10342 if (actual_type == NULL)
10343 /* If, for some reason, we were unable to determine
10344 the actual type from the tag, then use the static
10345 approximation that we just computed as a fallback.
10346 This can happen if the debugging information is
10347 incomplete, for instance. */
10348 actual_type = type;
10349 return value_zero (actual_type, not_lval);
10350 }
10351 else
10352 {
10353 /* In the case of a ref, ada_coerce_ref takes care
10354 of determining the actual type. But the evaluation
10355 should return a ref as it should be valid to ask
10356 for its address; so rebuild a ref after coerce. */
10357 arg1 = ada_coerce_ref (arg1);
10358 return value_ref (arg1);
10359 }
10360 }
0c1f74cf 10361
84754697
JB
10362 /* Records and unions for which GNAT encodings have been
10363 generated need to be statically fixed as well.
10364 Otherwise, non-static fixing produces a type where
10365 all dynamic properties are removed, which prevents "ptype"
10366 from being able to completely describe the type.
10367 For instance, a case statement in a variant record would be
10368 replaced by the relevant components based on the actual
10369 value of the discriminants. */
10370 if ((TYPE_CODE (type) == TYPE_CODE_STRUCT
10371 && dynamic_template_type (type) != NULL)
10372 || (TYPE_CODE (type) == TYPE_CODE_UNION
10373 && ada_find_parallel_type (type, "___XVU") != NULL))
10374 {
10375 *pos += 4;
10376 return value_zero (to_static_fixed_type (type), not_lval);
10377 }
4c4b4cd2 10378 }
da5c522f
JB
10379
10380 arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside);
10381 return ada_to_fixed_value (arg1);
4c4b4cd2
PH
10382
10383 case OP_FUNCALL:
10384 (*pos) += 2;
10385
10386 /* Allocate arg vector, including space for the function to be
10387 called in argvec[0] and a terminating NULL. */
10388 nargs = longest_to_int (exp->elts[pc + 1].longconst);
10389 argvec =
10390 (struct value **) alloca (sizeof (struct value *) * (nargs + 2));
10391
10392 if (exp->elts[*pos].opcode == OP_VAR_VALUE
76a01679 10393 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
323e0a4a 10394 error (_("Unexpected unresolved symbol, %s, during evaluation"),
4c4b4cd2
PH
10395 SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol));
10396 else
10397 {
10398 for (tem = 0; tem <= nargs; tem += 1)
10399 argvec[tem] = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10400 argvec[tem] = 0;
10401
10402 if (noside == EVAL_SKIP)
10403 goto nosideret;
10404 }
10405
ad82864c
JB
10406 if (ada_is_constrained_packed_array_type
10407 (desc_base_type (value_type (argvec[0]))))
4c4b4cd2 10408 argvec[0] = ada_coerce_to_simple_array (argvec[0]);
284614f0
JB
10409 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_ARRAY
10410 && TYPE_FIELD_BITSIZE (value_type (argvec[0]), 0) != 0)
10411 /* This is a packed array that has already been fixed, and
10412 therefore already coerced to a simple array. Nothing further
10413 to do. */
10414 ;
df407dfe
AC
10415 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_REF
10416 || (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_ARRAY
76a01679 10417 && VALUE_LVAL (argvec[0]) == lval_memory))
4c4b4cd2
PH
10418 argvec[0] = value_addr (argvec[0]);
10419
df407dfe 10420 type = ada_check_typedef (value_type (argvec[0]));
720d1a40
JB
10421
10422 /* Ada allows us to implicitly dereference arrays when subscripting
8f465ea7
JB
10423 them. So, if this is an array typedef (encoding use for array
10424 access types encoded as fat pointers), strip it now. */
720d1a40
JB
10425 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
10426 type = ada_typedef_target_type (type);
10427
4c4b4cd2
PH
10428 if (TYPE_CODE (type) == TYPE_CODE_PTR)
10429 {
61ee279c 10430 switch (TYPE_CODE (ada_check_typedef (TYPE_TARGET_TYPE (type))))
4c4b4cd2
PH
10431 {
10432 case TYPE_CODE_FUNC:
61ee279c 10433 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
4c4b4cd2
PH
10434 break;
10435 case TYPE_CODE_ARRAY:
10436 break;
10437 case TYPE_CODE_STRUCT:
10438 if (noside != EVAL_AVOID_SIDE_EFFECTS)
10439 argvec[0] = ada_value_ind (argvec[0]);
61ee279c 10440 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
4c4b4cd2
PH
10441 break;
10442 default:
323e0a4a 10443 error (_("cannot subscript or call something of type `%s'"),
df407dfe 10444 ada_type_name (value_type (argvec[0])));
4c4b4cd2
PH
10445 break;
10446 }
10447 }
10448
10449 switch (TYPE_CODE (type))
10450 {
10451 case TYPE_CODE_FUNC:
10452 if (noside == EVAL_AVOID_SIDE_EFFECTS)
c8ea1972
PH
10453 {
10454 struct type *rtype = TYPE_TARGET_TYPE (type);
10455
10456 if (TYPE_GNU_IFUNC (type))
10457 return allocate_value (TYPE_TARGET_TYPE (rtype));
10458 return allocate_value (rtype);
10459 }
4c4b4cd2 10460 return call_function_by_hand (argvec[0], nargs, argvec + 1);
c8ea1972
PH
10461 case TYPE_CODE_INTERNAL_FUNCTION:
10462 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10463 /* We don't know anything about what the internal
10464 function might return, but we have to return
10465 something. */
10466 return value_zero (builtin_type (exp->gdbarch)->builtin_int,
10467 not_lval);
10468 else
10469 return call_internal_function (exp->gdbarch, exp->language_defn,
10470 argvec[0], nargs, argvec + 1);
10471
4c4b4cd2
PH
10472 case TYPE_CODE_STRUCT:
10473 {
10474 int arity;
10475
4c4b4cd2
PH
10476 arity = ada_array_arity (type);
10477 type = ada_array_element_type (type, nargs);
10478 if (type == NULL)
323e0a4a 10479 error (_("cannot subscript or call a record"));
4c4b4cd2 10480 if (arity != nargs)
323e0a4a 10481 error (_("wrong number of subscripts; expecting %d"), arity);
4c4b4cd2 10482 if (noside == EVAL_AVOID_SIDE_EFFECTS)
0a07e705 10483 return value_zero (ada_aligned_type (type), lval_memory);
4c4b4cd2
PH
10484 return
10485 unwrap_value (ada_value_subscript
10486 (argvec[0], nargs, argvec + 1));
10487 }
10488 case TYPE_CODE_ARRAY:
10489 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10490 {
10491 type = ada_array_element_type (type, nargs);
10492 if (type == NULL)
323e0a4a 10493 error (_("element type of array unknown"));
4c4b4cd2 10494 else
0a07e705 10495 return value_zero (ada_aligned_type (type), lval_memory);
4c4b4cd2
PH
10496 }
10497 return
10498 unwrap_value (ada_value_subscript
10499 (ada_coerce_to_simple_array (argvec[0]),
10500 nargs, argvec + 1));
10501 case TYPE_CODE_PTR: /* Pointer to array */
4c4b4cd2
PH
10502 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10503 {
deede10c 10504 type = to_fixed_array_type (TYPE_TARGET_TYPE (type), NULL, 1);
4c4b4cd2
PH
10505 type = ada_array_element_type (type, nargs);
10506 if (type == NULL)
323e0a4a 10507 error (_("element type of array unknown"));
4c4b4cd2 10508 else
0a07e705 10509 return value_zero (ada_aligned_type (type), lval_memory);
4c4b4cd2
PH
10510 }
10511 return
deede10c
JB
10512 unwrap_value (ada_value_ptr_subscript (argvec[0],
10513 nargs, argvec + 1));
4c4b4cd2
PH
10514
10515 default:
e1d5a0d2
PH
10516 error (_("Attempt to index or call something other than an "
10517 "array or function"));
4c4b4cd2
PH
10518 }
10519
10520 case TERNOP_SLICE:
10521 {
10522 struct value *array = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10523 struct value *low_bound_val =
10524 evaluate_subexp (NULL_TYPE, exp, pos, noside);
714e53ab
PH
10525 struct value *high_bound_val =
10526 evaluate_subexp (NULL_TYPE, exp, pos, noside);
10527 LONGEST low_bound;
10528 LONGEST high_bound;
5b4ee69b 10529
994b9211
AC
10530 low_bound_val = coerce_ref (low_bound_val);
10531 high_bound_val = coerce_ref (high_bound_val);
714e53ab
PH
10532 low_bound = pos_atr (low_bound_val);
10533 high_bound = pos_atr (high_bound_val);
963a6417 10534
4c4b4cd2
PH
10535 if (noside == EVAL_SKIP)
10536 goto nosideret;
10537
4c4b4cd2
PH
10538 /* If this is a reference to an aligner type, then remove all
10539 the aligners. */
df407dfe
AC
10540 if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF
10541 && ada_is_aligner_type (TYPE_TARGET_TYPE (value_type (array))))
10542 TYPE_TARGET_TYPE (value_type (array)) =
10543 ada_aligned_type (TYPE_TARGET_TYPE (value_type (array)));
4c4b4cd2 10544
ad82864c 10545 if (ada_is_constrained_packed_array_type (value_type (array)))
323e0a4a 10546 error (_("cannot slice a packed array"));
4c4b4cd2
PH
10547
10548 /* If this is a reference to an array or an array lvalue,
10549 convert to a pointer. */
df407dfe
AC
10550 if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF
10551 || (TYPE_CODE (value_type (array)) == TYPE_CODE_ARRAY
4c4b4cd2
PH
10552 && VALUE_LVAL (array) == lval_memory))
10553 array = value_addr (array);
10554
1265e4aa 10555 if (noside == EVAL_AVOID_SIDE_EFFECTS
61ee279c 10556 && ada_is_array_descriptor_type (ada_check_typedef
df407dfe 10557 (value_type (array))))
0b5d8877 10558 return empty_array (ada_type_of_array (array, 0), low_bound);
4c4b4cd2
PH
10559
10560 array = ada_coerce_to_simple_array_ptr (array);
10561
714e53ab
PH
10562 /* If we have more than one level of pointer indirection,
10563 dereference the value until we get only one level. */
df407dfe
AC
10564 while (TYPE_CODE (value_type (array)) == TYPE_CODE_PTR
10565 && (TYPE_CODE (TYPE_TARGET_TYPE (value_type (array)))
714e53ab
PH
10566 == TYPE_CODE_PTR))
10567 array = value_ind (array);
10568
10569 /* Make sure we really do have an array type before going further,
10570 to avoid a SEGV when trying to get the index type or the target
10571 type later down the road if the debug info generated by
10572 the compiler is incorrect or incomplete. */
df407dfe 10573 if (!ada_is_simple_array_type (value_type (array)))
323e0a4a 10574 error (_("cannot take slice of non-array"));
714e53ab 10575
828292f2
JB
10576 if (TYPE_CODE (ada_check_typedef (value_type (array)))
10577 == TYPE_CODE_PTR)
4c4b4cd2 10578 {
828292f2
JB
10579 struct type *type0 = ada_check_typedef (value_type (array));
10580
0b5d8877 10581 if (high_bound < low_bound || noside == EVAL_AVOID_SIDE_EFFECTS)
828292f2 10582 return empty_array (TYPE_TARGET_TYPE (type0), low_bound);
4c4b4cd2
PH
10583 else
10584 {
10585 struct type *arr_type0 =
828292f2 10586 to_fixed_array_type (TYPE_TARGET_TYPE (type0), NULL, 1);
5b4ee69b 10587
f5938064
JG
10588 return ada_value_slice_from_ptr (array, arr_type0,
10589 longest_to_int (low_bound),
10590 longest_to_int (high_bound));
4c4b4cd2
PH
10591 }
10592 }
10593 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
10594 return array;
10595 else if (high_bound < low_bound)
df407dfe 10596 return empty_array (value_type (array), low_bound);
4c4b4cd2 10597 else
529cad9c
PH
10598 return ada_value_slice (array, longest_to_int (low_bound),
10599 longest_to_int (high_bound));
4c4b4cd2 10600 }
14f9c5c9 10601
4c4b4cd2
PH
10602 case UNOP_IN_RANGE:
10603 (*pos) += 2;
10604 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8008e265 10605 type = check_typedef (exp->elts[pc + 1].type);
14f9c5c9 10606
14f9c5c9 10607 if (noside == EVAL_SKIP)
4c4b4cd2 10608 goto nosideret;
14f9c5c9 10609
4c4b4cd2
PH
10610 switch (TYPE_CODE (type))
10611 {
10612 default:
e1d5a0d2
PH
10613 lim_warning (_("Membership test incompletely implemented; "
10614 "always returns true"));
fbb06eb1
UW
10615 type = language_bool_type (exp->language_defn, exp->gdbarch);
10616 return value_from_longest (type, (LONGEST) 1);
4c4b4cd2
PH
10617
10618 case TYPE_CODE_RANGE:
030b4912
UW
10619 arg2 = value_from_longest (type, TYPE_LOW_BOUND (type));
10620 arg3 = value_from_longest (type, TYPE_HIGH_BOUND (type));
f44316fa
UW
10621 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10622 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
fbb06eb1
UW
10623 type = language_bool_type (exp->language_defn, exp->gdbarch);
10624 return
10625 value_from_longest (type,
4c4b4cd2
PH
10626 (value_less (arg1, arg3)
10627 || value_equal (arg1, arg3))
10628 && (value_less (arg2, arg1)
10629 || value_equal (arg2, arg1)));
10630 }
10631
10632 case BINOP_IN_BOUNDS:
14f9c5c9 10633 (*pos) += 2;
4c4b4cd2
PH
10634 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10635 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
14f9c5c9 10636
4c4b4cd2
PH
10637 if (noside == EVAL_SKIP)
10638 goto nosideret;
14f9c5c9 10639
4c4b4cd2 10640 if (noside == EVAL_AVOID_SIDE_EFFECTS)
fbb06eb1
UW
10641 {
10642 type = language_bool_type (exp->language_defn, exp->gdbarch);
10643 return value_zero (type, not_lval);
10644 }
14f9c5c9 10645
4c4b4cd2 10646 tem = longest_to_int (exp->elts[pc + 1].longconst);
14f9c5c9 10647
1eea4ebd
UW
10648 type = ada_index_type (value_type (arg2), tem, "range");
10649 if (!type)
10650 type = value_type (arg1);
14f9c5c9 10651
1eea4ebd
UW
10652 arg3 = value_from_longest (type, ada_array_bound (arg2, tem, 1));
10653 arg2 = value_from_longest (type, ada_array_bound (arg2, tem, 0));
d2e4a39e 10654
f44316fa
UW
10655 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10656 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
fbb06eb1 10657 type = language_bool_type (exp->language_defn, exp->gdbarch);
4c4b4cd2 10658 return
fbb06eb1 10659 value_from_longest (type,
4c4b4cd2
PH
10660 (value_less (arg1, arg3)
10661 || value_equal (arg1, arg3))
10662 && (value_less (arg2, arg1)
10663 || value_equal (arg2, arg1)));
10664
10665 case TERNOP_IN_RANGE:
10666 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10667 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10668 arg3 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10669
10670 if (noside == EVAL_SKIP)
10671 goto nosideret;
10672
f44316fa
UW
10673 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10674 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
fbb06eb1 10675 type = language_bool_type (exp->language_defn, exp->gdbarch);
4c4b4cd2 10676 return
fbb06eb1 10677 value_from_longest (type,
4c4b4cd2
PH
10678 (value_less (arg1, arg3)
10679 || value_equal (arg1, arg3))
10680 && (value_less (arg2, arg1)
10681 || value_equal (arg2, arg1)));
10682
10683 case OP_ATR_FIRST:
10684 case OP_ATR_LAST:
10685 case OP_ATR_LENGTH:
10686 {
76a01679 10687 struct type *type_arg;
5b4ee69b 10688
76a01679
JB
10689 if (exp->elts[*pos].opcode == OP_TYPE)
10690 {
10691 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
10692 arg1 = NULL;
5bc23cb3 10693 type_arg = check_typedef (exp->elts[pc + 2].type);
76a01679
JB
10694 }
10695 else
10696 {
10697 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10698 type_arg = NULL;
10699 }
10700
10701 if (exp->elts[*pos].opcode != OP_LONG)
323e0a4a 10702 error (_("Invalid operand to '%s"), ada_attribute_name (op));
76a01679
JB
10703 tem = longest_to_int (exp->elts[*pos + 2].longconst);
10704 *pos += 4;
10705
10706 if (noside == EVAL_SKIP)
10707 goto nosideret;
10708
10709 if (type_arg == NULL)
10710 {
10711 arg1 = ada_coerce_ref (arg1);
10712
ad82864c 10713 if (ada_is_constrained_packed_array_type (value_type (arg1)))
76a01679
JB
10714 arg1 = ada_coerce_to_simple_array (arg1);
10715
aa4fb036 10716 if (op == OP_ATR_LENGTH)
1eea4ebd 10717 type = builtin_type (exp->gdbarch)->builtin_int;
aa4fb036
JB
10718 else
10719 {
10720 type = ada_index_type (value_type (arg1), tem,
10721 ada_attribute_name (op));
10722 if (type == NULL)
10723 type = builtin_type (exp->gdbarch)->builtin_int;
10724 }
76a01679
JB
10725
10726 if (noside == EVAL_AVOID_SIDE_EFFECTS)
1eea4ebd 10727 return allocate_value (type);
76a01679
JB
10728
10729 switch (op)
10730 {
10731 default: /* Should never happen. */
323e0a4a 10732 error (_("unexpected attribute encountered"));
76a01679 10733 case OP_ATR_FIRST:
1eea4ebd
UW
10734 return value_from_longest
10735 (type, ada_array_bound (arg1, tem, 0));
76a01679 10736 case OP_ATR_LAST:
1eea4ebd
UW
10737 return value_from_longest
10738 (type, ada_array_bound (arg1, tem, 1));
76a01679 10739 case OP_ATR_LENGTH:
1eea4ebd
UW
10740 return value_from_longest
10741 (type, ada_array_length (arg1, tem));
76a01679
JB
10742 }
10743 }
10744 else if (discrete_type_p (type_arg))
10745 {
10746 struct type *range_type;
0d5cff50 10747 const char *name = ada_type_name (type_arg);
5b4ee69b 10748
76a01679
JB
10749 range_type = NULL;
10750 if (name != NULL && TYPE_CODE (type_arg) != TYPE_CODE_ENUM)
28c85d6c 10751 range_type = to_fixed_range_type (type_arg, NULL);
76a01679
JB
10752 if (range_type == NULL)
10753 range_type = type_arg;
10754 switch (op)
10755 {
10756 default:
323e0a4a 10757 error (_("unexpected attribute encountered"));
76a01679 10758 case OP_ATR_FIRST:
690cc4eb 10759 return value_from_longest
43bbcdc2 10760 (range_type, ada_discrete_type_low_bound (range_type));
76a01679 10761 case OP_ATR_LAST:
690cc4eb 10762 return value_from_longest
43bbcdc2 10763 (range_type, ada_discrete_type_high_bound (range_type));
76a01679 10764 case OP_ATR_LENGTH:
323e0a4a 10765 error (_("the 'length attribute applies only to array types"));
76a01679
JB
10766 }
10767 }
10768 else if (TYPE_CODE (type_arg) == TYPE_CODE_FLT)
323e0a4a 10769 error (_("unimplemented type attribute"));
76a01679
JB
10770 else
10771 {
10772 LONGEST low, high;
10773
ad82864c
JB
10774 if (ada_is_constrained_packed_array_type (type_arg))
10775 type_arg = decode_constrained_packed_array_type (type_arg);
76a01679 10776
aa4fb036 10777 if (op == OP_ATR_LENGTH)
1eea4ebd 10778 type = builtin_type (exp->gdbarch)->builtin_int;
aa4fb036
JB
10779 else
10780 {
10781 type = ada_index_type (type_arg, tem, ada_attribute_name (op));
10782 if (type == NULL)
10783 type = builtin_type (exp->gdbarch)->builtin_int;
10784 }
1eea4ebd 10785
76a01679
JB
10786 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10787 return allocate_value (type);
10788
10789 switch (op)
10790 {
10791 default:
323e0a4a 10792 error (_("unexpected attribute encountered"));
76a01679 10793 case OP_ATR_FIRST:
1eea4ebd 10794 low = ada_array_bound_from_type (type_arg, tem, 0);
76a01679
JB
10795 return value_from_longest (type, low);
10796 case OP_ATR_LAST:
1eea4ebd 10797 high = ada_array_bound_from_type (type_arg, tem, 1);
76a01679
JB
10798 return value_from_longest (type, high);
10799 case OP_ATR_LENGTH:
1eea4ebd
UW
10800 low = ada_array_bound_from_type (type_arg, tem, 0);
10801 high = ada_array_bound_from_type (type_arg, tem, 1);
76a01679
JB
10802 return value_from_longest (type, high - low + 1);
10803 }
10804 }
14f9c5c9
AS
10805 }
10806
4c4b4cd2
PH
10807 case OP_ATR_TAG:
10808 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10809 if (noside == EVAL_SKIP)
76a01679 10810 goto nosideret;
4c4b4cd2
PH
10811
10812 if (noside == EVAL_AVOID_SIDE_EFFECTS)
76a01679 10813 return value_zero (ada_tag_type (arg1), not_lval);
4c4b4cd2
PH
10814
10815 return ada_value_tag (arg1);
10816
10817 case OP_ATR_MIN:
10818 case OP_ATR_MAX:
10819 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
14f9c5c9
AS
10820 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10821 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10822 if (noside == EVAL_SKIP)
76a01679 10823 goto nosideret;
d2e4a39e 10824 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
df407dfe 10825 return value_zero (value_type (arg1), not_lval);
14f9c5c9 10826 else
f44316fa
UW
10827 {
10828 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10829 return value_binop (arg1, arg2,
10830 op == OP_ATR_MIN ? BINOP_MIN : BINOP_MAX);
10831 }
14f9c5c9 10832
4c4b4cd2
PH
10833 case OP_ATR_MODULUS:
10834 {
31dedfee 10835 struct type *type_arg = check_typedef (exp->elts[pc + 2].type);
4c4b4cd2 10836
5b4ee69b 10837 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
76a01679
JB
10838 if (noside == EVAL_SKIP)
10839 goto nosideret;
4c4b4cd2 10840
76a01679 10841 if (!ada_is_modular_type (type_arg))
323e0a4a 10842 error (_("'modulus must be applied to modular type"));
4c4b4cd2 10843
76a01679
JB
10844 return value_from_longest (TYPE_TARGET_TYPE (type_arg),
10845 ada_modulus (type_arg));
4c4b4cd2
PH
10846 }
10847
10848
10849 case OP_ATR_POS:
10850 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
14f9c5c9
AS
10851 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10852 if (noside == EVAL_SKIP)
76a01679 10853 goto nosideret;
3cb382c9
UW
10854 type = builtin_type (exp->gdbarch)->builtin_int;
10855 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10856 return value_zero (type, not_lval);
14f9c5c9 10857 else
3cb382c9 10858 return value_pos_atr (type, arg1);
14f9c5c9 10859
4c4b4cd2
PH
10860 case OP_ATR_SIZE:
10861 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8c1c099f
JB
10862 type = value_type (arg1);
10863
10864 /* If the argument is a reference, then dereference its type, since
10865 the user is really asking for the size of the actual object,
10866 not the size of the pointer. */
10867 if (TYPE_CODE (type) == TYPE_CODE_REF)
10868 type = TYPE_TARGET_TYPE (type);
10869
4c4b4cd2 10870 if (noside == EVAL_SKIP)
76a01679 10871 goto nosideret;
4c4b4cd2 10872 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
22601c15 10873 return value_zero (builtin_type (exp->gdbarch)->builtin_int, not_lval);
4c4b4cd2 10874 else
22601c15 10875 return value_from_longest (builtin_type (exp->gdbarch)->builtin_int,
8c1c099f 10876 TARGET_CHAR_BIT * TYPE_LENGTH (type));
4c4b4cd2
PH
10877
10878 case OP_ATR_VAL:
10879 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
14f9c5c9 10880 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
4c4b4cd2 10881 type = exp->elts[pc + 2].type;
14f9c5c9 10882 if (noside == EVAL_SKIP)
76a01679 10883 goto nosideret;
4c4b4cd2 10884 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
76a01679 10885 return value_zero (type, not_lval);
4c4b4cd2 10886 else
76a01679 10887 return value_val_atr (type, arg1);
4c4b4cd2
PH
10888
10889 case BINOP_EXP:
10890 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10891 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10892 if (noside == EVAL_SKIP)
10893 goto nosideret;
10894 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
df407dfe 10895 return value_zero (value_type (arg1), not_lval);
4c4b4cd2 10896 else
f44316fa
UW
10897 {
10898 /* For integer exponentiation operations,
10899 only promote the first argument. */
10900 if (is_integral_type (value_type (arg2)))
10901 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
10902 else
10903 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10904
10905 return value_binop (arg1, arg2, op);
10906 }
4c4b4cd2
PH
10907
10908 case UNOP_PLUS:
10909 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10910 if (noside == EVAL_SKIP)
10911 goto nosideret;
10912 else
10913 return arg1;
10914
10915 case UNOP_ABS:
10916 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10917 if (noside == EVAL_SKIP)
10918 goto nosideret;
f44316fa 10919 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
df407dfe 10920 if (value_less (arg1, value_zero (value_type (arg1), not_lval)))
4c4b4cd2 10921 return value_neg (arg1);
14f9c5c9 10922 else
4c4b4cd2 10923 return arg1;
14f9c5c9
AS
10924
10925 case UNOP_IND:
5ec18f2b 10926 preeval_pos = *pos;
6b0d7253 10927 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
14f9c5c9 10928 if (noside == EVAL_SKIP)
4c4b4cd2 10929 goto nosideret;
df407dfe 10930 type = ada_check_typedef (value_type (arg1));
14f9c5c9 10931 if (noside == EVAL_AVOID_SIDE_EFFECTS)
4c4b4cd2
PH
10932 {
10933 if (ada_is_array_descriptor_type (type))
10934 /* GDB allows dereferencing GNAT array descriptors. */
10935 {
10936 struct type *arrType = ada_type_of_array (arg1, 0);
5b4ee69b 10937
4c4b4cd2 10938 if (arrType == NULL)
323e0a4a 10939 error (_("Attempt to dereference null array pointer."));
00a4c844 10940 return value_at_lazy (arrType, 0);
4c4b4cd2
PH
10941 }
10942 else if (TYPE_CODE (type) == TYPE_CODE_PTR
10943 || TYPE_CODE (type) == TYPE_CODE_REF
10944 /* In C you can dereference an array to get the 1st elt. */
10945 || TYPE_CODE (type) == TYPE_CODE_ARRAY)
714e53ab 10946 {
5ec18f2b
JG
10947 /* As mentioned in the OP_VAR_VALUE case, tagged types can
10948 only be determined by inspecting the object's tag.
10949 This means that we need to evaluate completely the
10950 expression in order to get its type. */
10951
023db19c
JB
10952 if ((TYPE_CODE (type) == TYPE_CODE_REF
10953 || TYPE_CODE (type) == TYPE_CODE_PTR)
5ec18f2b
JG
10954 && ada_is_tagged_type (TYPE_TARGET_TYPE (type), 0))
10955 {
10956 arg1 = evaluate_subexp (NULL_TYPE, exp, &preeval_pos,
10957 EVAL_NORMAL);
10958 type = value_type (ada_value_ind (arg1));
10959 }
10960 else
10961 {
10962 type = to_static_fixed_type
10963 (ada_aligned_type
10964 (ada_check_typedef (TYPE_TARGET_TYPE (type))));
10965 }
c1b5a1a6 10966 ada_ensure_varsize_limit (type);
714e53ab
PH
10967 return value_zero (type, lval_memory);
10968 }
4c4b4cd2 10969 else if (TYPE_CODE (type) == TYPE_CODE_INT)
6b0d7253
JB
10970 {
10971 /* GDB allows dereferencing an int. */
10972 if (expect_type == NULL)
10973 return value_zero (builtin_type (exp->gdbarch)->builtin_int,
10974 lval_memory);
10975 else
10976 {
10977 expect_type =
10978 to_static_fixed_type (ada_aligned_type (expect_type));
10979 return value_zero (expect_type, lval_memory);
10980 }
10981 }
4c4b4cd2 10982 else
323e0a4a 10983 error (_("Attempt to take contents of a non-pointer value."));
4c4b4cd2 10984 }
0963b4bd 10985 arg1 = ada_coerce_ref (arg1); /* FIXME: What is this for?? */
df407dfe 10986 type = ada_check_typedef (value_type (arg1));
d2e4a39e 10987
96967637
JB
10988 if (TYPE_CODE (type) == TYPE_CODE_INT)
10989 /* GDB allows dereferencing an int. If we were given
10990 the expect_type, then use that as the target type.
10991 Otherwise, assume that the target type is an int. */
10992 {
10993 if (expect_type != NULL)
10994 return ada_value_ind (value_cast (lookup_pointer_type (expect_type),
10995 arg1));
10996 else
10997 return value_at_lazy (builtin_type (exp->gdbarch)->builtin_int,
10998 (CORE_ADDR) value_as_address (arg1));
10999 }
6b0d7253 11000
4c4b4cd2
PH
11001 if (ada_is_array_descriptor_type (type))
11002 /* GDB allows dereferencing GNAT array descriptors. */
11003 return ada_coerce_to_simple_array (arg1);
14f9c5c9 11004 else
4c4b4cd2 11005 return ada_value_ind (arg1);
14f9c5c9
AS
11006
11007 case STRUCTOP_STRUCT:
11008 tem = longest_to_int (exp->elts[pc + 1].longconst);
11009 (*pos) += 3 + BYTES_TO_EXP_ELEM (tem + 1);
5ec18f2b 11010 preeval_pos = *pos;
14f9c5c9
AS
11011 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11012 if (noside == EVAL_SKIP)
4c4b4cd2 11013 goto nosideret;
14f9c5c9 11014 if (noside == EVAL_AVOID_SIDE_EFFECTS)
76a01679 11015 {
df407dfe 11016 struct type *type1 = value_type (arg1);
5b4ee69b 11017
76a01679
JB
11018 if (ada_is_tagged_type (type1, 1))
11019 {
11020 type = ada_lookup_struct_elt_type (type1,
11021 &exp->elts[pc + 2].string,
11022 1, 1, NULL);
5ec18f2b
JG
11023
11024 /* If the field is not found, check if it exists in the
11025 extension of this object's type. This means that we
11026 need to evaluate completely the expression. */
11027
76a01679 11028 if (type == NULL)
5ec18f2b
JG
11029 {
11030 arg1 = evaluate_subexp (NULL_TYPE, exp, &preeval_pos,
11031 EVAL_NORMAL);
11032 arg1 = ada_value_struct_elt (arg1,
11033 &exp->elts[pc + 2].string,
11034 0);
11035 arg1 = unwrap_value (arg1);
11036 type = value_type (ada_to_fixed_value (arg1));
11037 }
76a01679
JB
11038 }
11039 else
11040 type =
11041 ada_lookup_struct_elt_type (type1, &exp->elts[pc + 2].string, 1,
11042 0, NULL);
11043
11044 return value_zero (ada_aligned_type (type), lval_memory);
11045 }
14f9c5c9 11046 else
284614f0
JB
11047 arg1 = ada_value_struct_elt (arg1, &exp->elts[pc + 2].string, 0);
11048 arg1 = unwrap_value (arg1);
11049 return ada_to_fixed_value (arg1);
11050
14f9c5c9 11051 case OP_TYPE:
4c4b4cd2
PH
11052 /* The value is not supposed to be used. This is here to make it
11053 easier to accommodate expressions that contain types. */
14f9c5c9
AS
11054 (*pos) += 2;
11055 if (noside == EVAL_SKIP)
4c4b4cd2 11056 goto nosideret;
14f9c5c9 11057 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
a6cfbe68 11058 return allocate_value (exp->elts[pc + 1].type);
14f9c5c9 11059 else
323e0a4a 11060 error (_("Attempt to use a type name as an expression"));
52ce6436
PH
11061
11062 case OP_AGGREGATE:
11063 case OP_CHOICES:
11064 case OP_OTHERS:
11065 case OP_DISCRETE_RANGE:
11066 case OP_POSITIONAL:
11067 case OP_NAME:
11068 if (noside == EVAL_NORMAL)
11069 switch (op)
11070 {
11071 case OP_NAME:
11072 error (_("Undefined name, ambiguous name, or renaming used in "
e1d5a0d2 11073 "component association: %s."), &exp->elts[pc+2].string);
52ce6436
PH
11074 case OP_AGGREGATE:
11075 error (_("Aggregates only allowed on the right of an assignment"));
11076 default:
0963b4bd
MS
11077 internal_error (__FILE__, __LINE__,
11078 _("aggregate apparently mangled"));
52ce6436
PH
11079 }
11080
11081 ada_forward_operator_length (exp, pc, &oplen, &nargs);
11082 *pos += oplen - 1;
11083 for (tem = 0; tem < nargs; tem += 1)
11084 ada_evaluate_subexp (NULL, exp, pos, noside);
11085 goto nosideret;
14f9c5c9
AS
11086 }
11087
11088nosideret:
22601c15 11089 return value_from_longest (builtin_type (exp->gdbarch)->builtin_int, 1);
14f9c5c9 11090}
14f9c5c9 11091\f
d2e4a39e 11092
4c4b4cd2 11093 /* Fixed point */
14f9c5c9
AS
11094
11095/* If TYPE encodes an Ada fixed-point type, return the suffix of the
11096 type name that encodes the 'small and 'delta information.
4c4b4cd2 11097 Otherwise, return NULL. */
14f9c5c9 11098
d2e4a39e 11099static const char *
ebf56fd3 11100fixed_type_info (struct type *type)
14f9c5c9 11101{
d2e4a39e 11102 const char *name = ada_type_name (type);
14f9c5c9
AS
11103 enum type_code code = (type == NULL) ? TYPE_CODE_UNDEF : TYPE_CODE (type);
11104
d2e4a39e
AS
11105 if ((code == TYPE_CODE_INT || code == TYPE_CODE_RANGE) && name != NULL)
11106 {
14f9c5c9 11107 const char *tail = strstr (name, "___XF_");
5b4ee69b 11108
14f9c5c9 11109 if (tail == NULL)
4c4b4cd2 11110 return NULL;
d2e4a39e 11111 else
4c4b4cd2 11112 return tail + 5;
14f9c5c9
AS
11113 }
11114 else if (code == TYPE_CODE_RANGE && TYPE_TARGET_TYPE (type) != type)
11115 return fixed_type_info (TYPE_TARGET_TYPE (type));
11116 else
11117 return NULL;
11118}
11119
4c4b4cd2 11120/* Returns non-zero iff TYPE represents an Ada fixed-point type. */
14f9c5c9
AS
11121
11122int
ebf56fd3 11123ada_is_fixed_point_type (struct type *type)
14f9c5c9
AS
11124{
11125 return fixed_type_info (type) != NULL;
11126}
11127
4c4b4cd2
PH
11128/* Return non-zero iff TYPE represents a System.Address type. */
11129
11130int
11131ada_is_system_address_type (struct type *type)
11132{
11133 return (TYPE_NAME (type)
11134 && strcmp (TYPE_NAME (type), "system__address") == 0);
11135}
11136
14f9c5c9
AS
11137/* Assuming that TYPE is the representation of an Ada fixed-point
11138 type, return its delta, or -1 if the type is malformed and the
4c4b4cd2 11139 delta cannot be determined. */
14f9c5c9
AS
11140
11141DOUBLEST
ebf56fd3 11142ada_delta (struct type *type)
14f9c5c9
AS
11143{
11144 const char *encoding = fixed_type_info (type);
facc390f 11145 DOUBLEST num, den;
14f9c5c9 11146
facc390f
JB
11147 /* Strictly speaking, num and den are encoded as integer. However,
11148 they may not fit into a long, and they will have to be converted
11149 to DOUBLEST anyway. So scan them as DOUBLEST. */
11150 if (sscanf (encoding, "_%" DOUBLEST_SCAN_FORMAT "_%" DOUBLEST_SCAN_FORMAT,
11151 &num, &den) < 2)
14f9c5c9 11152 return -1.0;
d2e4a39e 11153 else
facc390f 11154 return num / den;
14f9c5c9
AS
11155}
11156
11157/* Assuming that ada_is_fixed_point_type (TYPE), return the scaling
4c4b4cd2 11158 factor ('SMALL value) associated with the type. */
14f9c5c9
AS
11159
11160static DOUBLEST
ebf56fd3 11161scaling_factor (struct type *type)
14f9c5c9
AS
11162{
11163 const char *encoding = fixed_type_info (type);
facc390f 11164 DOUBLEST num0, den0, num1, den1;
14f9c5c9 11165 int n;
d2e4a39e 11166
facc390f
JB
11167 /* Strictly speaking, num's and den's are encoded as integer. However,
11168 they may not fit into a long, and they will have to be converted
11169 to DOUBLEST anyway. So scan them as DOUBLEST. */
11170 n = sscanf (encoding,
11171 "_%" DOUBLEST_SCAN_FORMAT "_%" DOUBLEST_SCAN_FORMAT
11172 "_%" DOUBLEST_SCAN_FORMAT "_%" DOUBLEST_SCAN_FORMAT,
11173 &num0, &den0, &num1, &den1);
14f9c5c9
AS
11174
11175 if (n < 2)
11176 return 1.0;
11177 else if (n == 4)
facc390f 11178 return num1 / den1;
d2e4a39e 11179 else
facc390f 11180 return num0 / den0;
14f9c5c9
AS
11181}
11182
11183
11184/* Assuming that X is the representation of a value of fixed-point
4c4b4cd2 11185 type TYPE, return its floating-point equivalent. */
14f9c5c9
AS
11186
11187DOUBLEST
ebf56fd3 11188ada_fixed_to_float (struct type *type, LONGEST x)
14f9c5c9 11189{
d2e4a39e 11190 return (DOUBLEST) x *scaling_factor (type);
14f9c5c9
AS
11191}
11192
4c4b4cd2
PH
11193/* The representation of a fixed-point value of type TYPE
11194 corresponding to the value X. */
14f9c5c9
AS
11195
11196LONGEST
ebf56fd3 11197ada_float_to_fixed (struct type *type, DOUBLEST x)
14f9c5c9
AS
11198{
11199 return (LONGEST) (x / scaling_factor (type) + 0.5);
11200}
11201
14f9c5c9 11202\f
d2e4a39e 11203
4c4b4cd2 11204 /* Range types */
14f9c5c9
AS
11205
11206/* Scan STR beginning at position K for a discriminant name, and
11207 return the value of that discriminant field of DVAL in *PX. If
11208 PNEW_K is not null, put the position of the character beyond the
11209 name scanned in *PNEW_K. Return 1 if successful; return 0 and do
4c4b4cd2 11210 not alter *PX and *PNEW_K if unsuccessful. */
14f9c5c9
AS
11211
11212static int
07d8f827 11213scan_discrim_bound (char *str, int k, struct value *dval, LONGEST * px,
76a01679 11214 int *pnew_k)
14f9c5c9
AS
11215{
11216 static char *bound_buffer = NULL;
11217 static size_t bound_buffer_len = 0;
11218 char *bound;
11219 char *pend;
d2e4a39e 11220 struct value *bound_val;
14f9c5c9
AS
11221
11222 if (dval == NULL || str == NULL || str[k] == '\0')
11223 return 0;
11224
d2e4a39e 11225 pend = strstr (str + k, "__");
14f9c5c9
AS
11226 if (pend == NULL)
11227 {
d2e4a39e 11228 bound = str + k;
14f9c5c9
AS
11229 k += strlen (bound);
11230 }
d2e4a39e 11231 else
14f9c5c9 11232 {
d2e4a39e 11233 GROW_VECT (bound_buffer, bound_buffer_len, pend - (str + k) + 1);
14f9c5c9 11234 bound = bound_buffer;
d2e4a39e
AS
11235 strncpy (bound_buffer, str + k, pend - (str + k));
11236 bound[pend - (str + k)] = '\0';
11237 k = pend - str;
14f9c5c9 11238 }
d2e4a39e 11239
df407dfe 11240 bound_val = ada_search_struct_field (bound, dval, 0, value_type (dval));
14f9c5c9
AS
11241 if (bound_val == NULL)
11242 return 0;
11243
11244 *px = value_as_long (bound_val);
11245 if (pnew_k != NULL)
11246 *pnew_k = k;
11247 return 1;
11248}
11249
11250/* Value of variable named NAME in the current environment. If
11251 no such variable found, then if ERR_MSG is null, returns 0, and
4c4b4cd2
PH
11252 otherwise causes an error with message ERR_MSG. */
11253
d2e4a39e
AS
11254static struct value *
11255get_var_value (char *name, char *err_msg)
14f9c5c9 11256{
4c4b4cd2 11257 struct ada_symbol_info *syms;
14f9c5c9
AS
11258 int nsyms;
11259
4c4b4cd2 11260 nsyms = ada_lookup_symbol_list (name, get_selected_block (0), VAR_DOMAIN,
4eeaa230 11261 &syms);
14f9c5c9
AS
11262
11263 if (nsyms != 1)
11264 {
11265 if (err_msg == NULL)
4c4b4cd2 11266 return 0;
14f9c5c9 11267 else
8a3fe4f8 11268 error (("%s"), err_msg);
14f9c5c9
AS
11269 }
11270
4c4b4cd2 11271 return value_of_variable (syms[0].sym, syms[0].block);
14f9c5c9 11272}
d2e4a39e 11273
14f9c5c9 11274/* Value of integer variable named NAME in the current environment. If
4c4b4cd2
PH
11275 no such variable found, returns 0, and sets *FLAG to 0. If
11276 successful, sets *FLAG to 1. */
11277
14f9c5c9 11278LONGEST
4c4b4cd2 11279get_int_var_value (char *name, int *flag)
14f9c5c9 11280{
4c4b4cd2 11281 struct value *var_val = get_var_value (name, 0);
d2e4a39e 11282
14f9c5c9
AS
11283 if (var_val == 0)
11284 {
11285 if (flag != NULL)
4c4b4cd2 11286 *flag = 0;
14f9c5c9
AS
11287 return 0;
11288 }
11289 else
11290 {
11291 if (flag != NULL)
4c4b4cd2 11292 *flag = 1;
14f9c5c9
AS
11293 return value_as_long (var_val);
11294 }
11295}
d2e4a39e 11296
14f9c5c9
AS
11297
11298/* Return a range type whose base type is that of the range type named
11299 NAME in the current environment, and whose bounds are calculated
4c4b4cd2 11300 from NAME according to the GNAT range encoding conventions.
1ce677a4
UW
11301 Extract discriminant values, if needed, from DVAL. ORIG_TYPE is the
11302 corresponding range type from debug information; fall back to using it
11303 if symbol lookup fails. If a new type must be created, allocate it
11304 like ORIG_TYPE was. The bounds information, in general, is encoded
11305 in NAME, the base type given in the named range type. */
14f9c5c9 11306
d2e4a39e 11307static struct type *
28c85d6c 11308to_fixed_range_type (struct type *raw_type, struct value *dval)
14f9c5c9 11309{
0d5cff50 11310 const char *name;
14f9c5c9 11311 struct type *base_type;
d2e4a39e 11312 char *subtype_info;
14f9c5c9 11313
28c85d6c
JB
11314 gdb_assert (raw_type != NULL);
11315 gdb_assert (TYPE_NAME (raw_type) != NULL);
dddfab26 11316
1ce677a4 11317 if (TYPE_CODE (raw_type) == TYPE_CODE_RANGE)
14f9c5c9
AS
11318 base_type = TYPE_TARGET_TYPE (raw_type);
11319 else
11320 base_type = raw_type;
11321
28c85d6c 11322 name = TYPE_NAME (raw_type);
14f9c5c9
AS
11323 subtype_info = strstr (name, "___XD");
11324 if (subtype_info == NULL)
690cc4eb 11325 {
43bbcdc2
PH
11326 LONGEST L = ada_discrete_type_low_bound (raw_type);
11327 LONGEST U = ada_discrete_type_high_bound (raw_type);
5b4ee69b 11328
690cc4eb
PH
11329 if (L < INT_MIN || U > INT_MAX)
11330 return raw_type;
11331 else
0c9c3474
SA
11332 return create_static_range_type (alloc_type_copy (raw_type), raw_type,
11333 L, U);
690cc4eb 11334 }
14f9c5c9
AS
11335 else
11336 {
11337 static char *name_buf = NULL;
11338 static size_t name_len = 0;
11339 int prefix_len = subtype_info - name;
11340 LONGEST L, U;
11341 struct type *type;
11342 char *bounds_str;
11343 int n;
11344
11345 GROW_VECT (name_buf, name_len, prefix_len + 5);
11346 strncpy (name_buf, name, prefix_len);
11347 name_buf[prefix_len] = '\0';
11348
11349 subtype_info += 5;
11350 bounds_str = strchr (subtype_info, '_');
11351 n = 1;
11352
d2e4a39e 11353 if (*subtype_info == 'L')
4c4b4cd2
PH
11354 {
11355 if (!ada_scan_number (bounds_str, n, &L, &n)
11356 && !scan_discrim_bound (bounds_str, n, dval, &L, &n))
11357 return raw_type;
11358 if (bounds_str[n] == '_')
11359 n += 2;
0963b4bd 11360 else if (bounds_str[n] == '.') /* FIXME? SGI Workshop kludge. */
4c4b4cd2
PH
11361 n += 1;
11362 subtype_info += 1;
11363 }
d2e4a39e 11364 else
4c4b4cd2
PH
11365 {
11366 int ok;
5b4ee69b 11367
4c4b4cd2
PH
11368 strcpy (name_buf + prefix_len, "___L");
11369 L = get_int_var_value (name_buf, &ok);
11370 if (!ok)
11371 {
323e0a4a 11372 lim_warning (_("Unknown lower bound, using 1."));
4c4b4cd2
PH
11373 L = 1;
11374 }
11375 }
14f9c5c9 11376
d2e4a39e 11377 if (*subtype_info == 'U')
4c4b4cd2
PH
11378 {
11379 if (!ada_scan_number (bounds_str, n, &U, &n)
11380 && !scan_discrim_bound (bounds_str, n, dval, &U, &n))
11381 return raw_type;
11382 }
d2e4a39e 11383 else
4c4b4cd2
PH
11384 {
11385 int ok;
5b4ee69b 11386
4c4b4cd2
PH
11387 strcpy (name_buf + prefix_len, "___U");
11388 U = get_int_var_value (name_buf, &ok);
11389 if (!ok)
11390 {
323e0a4a 11391 lim_warning (_("Unknown upper bound, using %ld."), (long) L);
4c4b4cd2
PH
11392 U = L;
11393 }
11394 }
14f9c5c9 11395
0c9c3474
SA
11396 type = create_static_range_type (alloc_type_copy (raw_type),
11397 base_type, L, U);
d2e4a39e 11398 TYPE_NAME (type) = name;
14f9c5c9
AS
11399 return type;
11400 }
11401}
11402
4c4b4cd2
PH
11403/* True iff NAME is the name of a range type. */
11404
14f9c5c9 11405int
d2e4a39e 11406ada_is_range_type_name (const char *name)
14f9c5c9
AS
11407{
11408 return (name != NULL && strstr (name, "___XD"));
d2e4a39e 11409}
14f9c5c9 11410\f
d2e4a39e 11411
4c4b4cd2
PH
11412 /* Modular types */
11413
11414/* True iff TYPE is an Ada modular type. */
14f9c5c9 11415
14f9c5c9 11416int
d2e4a39e 11417ada_is_modular_type (struct type *type)
14f9c5c9 11418{
18af8284 11419 struct type *subranged_type = get_base_type (type);
14f9c5c9
AS
11420
11421 return (subranged_type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE
690cc4eb 11422 && TYPE_CODE (subranged_type) == TYPE_CODE_INT
4c4b4cd2 11423 && TYPE_UNSIGNED (subranged_type));
14f9c5c9
AS
11424}
11425
4c4b4cd2
PH
11426/* Assuming ada_is_modular_type (TYPE), the modulus of TYPE. */
11427
61ee279c 11428ULONGEST
0056e4d5 11429ada_modulus (struct type *type)
14f9c5c9 11430{
43bbcdc2 11431 return (ULONGEST) TYPE_HIGH_BOUND (type) + 1;
14f9c5c9 11432}
d2e4a39e 11433\f
f7f9143b
JB
11434
11435/* Ada exception catchpoint support:
11436 ---------------------------------
11437
11438 We support 3 kinds of exception catchpoints:
11439 . catchpoints on Ada exceptions
11440 . catchpoints on unhandled Ada exceptions
11441 . catchpoints on failed assertions
11442
11443 Exceptions raised during failed assertions, or unhandled exceptions
11444 could perfectly be caught with the general catchpoint on Ada exceptions.
11445 However, we can easily differentiate these two special cases, and having
11446 the option to distinguish these two cases from the rest can be useful
11447 to zero-in on certain situations.
11448
11449 Exception catchpoints are a specialized form of breakpoint,
11450 since they rely on inserting breakpoints inside known routines
11451 of the GNAT runtime. The implementation therefore uses a standard
11452 breakpoint structure of the BP_BREAKPOINT type, but with its own set
11453 of breakpoint_ops.
11454
0259addd
JB
11455 Support in the runtime for exception catchpoints have been changed
11456 a few times already, and these changes affect the implementation
11457 of these catchpoints. In order to be able to support several
11458 variants of the runtime, we use a sniffer that will determine
28010a5d 11459 the runtime variant used by the program being debugged. */
f7f9143b 11460
82eacd52
JB
11461/* Ada's standard exceptions.
11462
11463 The Ada 83 standard also defined Numeric_Error. But there so many
11464 situations where it was unclear from the Ada 83 Reference Manual
11465 (RM) whether Constraint_Error or Numeric_Error should be raised,
11466 that the ARG (Ada Rapporteur Group) eventually issued a Binding
11467 Interpretation saying that anytime the RM says that Numeric_Error
11468 should be raised, the implementation may raise Constraint_Error.
11469 Ada 95 went one step further and pretty much removed Numeric_Error
11470 from the list of standard exceptions (it made it a renaming of
11471 Constraint_Error, to help preserve compatibility when compiling
11472 an Ada83 compiler). As such, we do not include Numeric_Error from
11473 this list of standard exceptions. */
3d0b0fa3
JB
11474
11475static char *standard_exc[] = {
11476 "constraint_error",
11477 "program_error",
11478 "storage_error",
11479 "tasking_error"
11480};
11481
0259addd
JB
11482typedef CORE_ADDR (ada_unhandled_exception_name_addr_ftype) (void);
11483
11484/* A structure that describes how to support exception catchpoints
11485 for a given executable. */
11486
11487struct exception_support_info
11488{
11489 /* The name of the symbol to break on in order to insert
11490 a catchpoint on exceptions. */
11491 const char *catch_exception_sym;
11492
11493 /* The name of the symbol to break on in order to insert
11494 a catchpoint on unhandled exceptions. */
11495 const char *catch_exception_unhandled_sym;
11496
11497 /* The name of the symbol to break on in order to insert
11498 a catchpoint on failed assertions. */
11499 const char *catch_assert_sym;
11500
11501 /* Assuming that the inferior just triggered an unhandled exception
11502 catchpoint, this function is responsible for returning the address
11503 in inferior memory where the name of that exception is stored.
11504 Return zero if the address could not be computed. */
11505 ada_unhandled_exception_name_addr_ftype *unhandled_exception_name_addr;
11506};
11507
11508static CORE_ADDR ada_unhandled_exception_name_addr (void);
11509static CORE_ADDR ada_unhandled_exception_name_addr_from_raise (void);
11510
11511/* The following exception support info structure describes how to
11512 implement exception catchpoints with the latest version of the
11513 Ada runtime (as of 2007-03-06). */
11514
11515static const struct exception_support_info default_exception_support_info =
11516{
11517 "__gnat_debug_raise_exception", /* catch_exception_sym */
11518 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
11519 "__gnat_debug_raise_assert_failure", /* catch_assert_sym */
11520 ada_unhandled_exception_name_addr
11521};
11522
11523/* The following exception support info structure describes how to
11524 implement exception catchpoints with a slightly older version
11525 of the Ada runtime. */
11526
11527static const struct exception_support_info exception_support_info_fallback =
11528{
11529 "__gnat_raise_nodefer_with_msg", /* catch_exception_sym */
11530 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
11531 "system__assertions__raise_assert_failure", /* catch_assert_sym */
11532 ada_unhandled_exception_name_addr_from_raise
11533};
11534
f17011e0
JB
11535/* Return nonzero if we can detect the exception support routines
11536 described in EINFO.
11537
11538 This function errors out if an abnormal situation is detected
11539 (for instance, if we find the exception support routines, but
11540 that support is found to be incomplete). */
11541
11542static int
11543ada_has_this_exception_support (const struct exception_support_info *einfo)
11544{
11545 struct symbol *sym;
11546
11547 /* The symbol we're looking up is provided by a unit in the GNAT runtime
11548 that should be compiled with debugging information. As a result, we
11549 expect to find that symbol in the symtabs. */
11550
11551 sym = standard_lookup (einfo->catch_exception_sym, NULL, VAR_DOMAIN);
11552 if (sym == NULL)
a6af7abe
JB
11553 {
11554 /* Perhaps we did not find our symbol because the Ada runtime was
11555 compiled without debugging info, or simply stripped of it.
11556 It happens on some GNU/Linux distributions for instance, where
11557 users have to install a separate debug package in order to get
11558 the runtime's debugging info. In that situation, let the user
11559 know why we cannot insert an Ada exception catchpoint.
11560
11561 Note: Just for the purpose of inserting our Ada exception
11562 catchpoint, we could rely purely on the associated minimal symbol.
11563 But we would be operating in degraded mode anyway, since we are
11564 still lacking the debugging info needed later on to extract
11565 the name of the exception being raised (this name is printed in
11566 the catchpoint message, and is also used when trying to catch
11567 a specific exception). We do not handle this case for now. */
3b7344d5 11568 struct bound_minimal_symbol msym
1c8e84b0
JB
11569 = lookup_minimal_symbol (einfo->catch_exception_sym, NULL, NULL);
11570
3b7344d5 11571 if (msym.minsym && MSYMBOL_TYPE (msym.minsym) != mst_solib_trampoline)
a6af7abe
JB
11572 error (_("Your Ada runtime appears to be missing some debugging "
11573 "information.\nCannot insert Ada exception catchpoint "
11574 "in this configuration."));
11575
11576 return 0;
11577 }
f17011e0
JB
11578
11579 /* Make sure that the symbol we found corresponds to a function. */
11580
11581 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
11582 error (_("Symbol \"%s\" is not a function (class = %d)"),
11583 SYMBOL_LINKAGE_NAME (sym), SYMBOL_CLASS (sym));
11584
11585 return 1;
11586}
11587
0259addd
JB
11588/* Inspect the Ada runtime and determine which exception info structure
11589 should be used to provide support for exception catchpoints.
11590
3eecfa55
JB
11591 This function will always set the per-inferior exception_info,
11592 or raise an error. */
0259addd
JB
11593
11594static void
11595ada_exception_support_info_sniffer (void)
11596{
3eecfa55 11597 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
0259addd
JB
11598
11599 /* If the exception info is already known, then no need to recompute it. */
3eecfa55 11600 if (data->exception_info != NULL)
0259addd
JB
11601 return;
11602
11603 /* Check the latest (default) exception support info. */
f17011e0 11604 if (ada_has_this_exception_support (&default_exception_support_info))
0259addd 11605 {
3eecfa55 11606 data->exception_info = &default_exception_support_info;
0259addd
JB
11607 return;
11608 }
11609
11610 /* Try our fallback exception suport info. */
f17011e0 11611 if (ada_has_this_exception_support (&exception_support_info_fallback))
0259addd 11612 {
3eecfa55 11613 data->exception_info = &exception_support_info_fallback;
0259addd
JB
11614 return;
11615 }
11616
11617 /* Sometimes, it is normal for us to not be able to find the routine
11618 we are looking for. This happens when the program is linked with
11619 the shared version of the GNAT runtime, and the program has not been
11620 started yet. Inform the user of these two possible causes if
11621 applicable. */
11622
ccefe4c4 11623 if (ada_update_initial_language (language_unknown) != language_ada)
0259addd
JB
11624 error (_("Unable to insert catchpoint. Is this an Ada main program?"));
11625
11626 /* If the symbol does not exist, then check that the program is
11627 already started, to make sure that shared libraries have been
11628 loaded. If it is not started, this may mean that the symbol is
11629 in a shared library. */
11630
11631 if (ptid_get_pid (inferior_ptid) == 0)
11632 error (_("Unable to insert catchpoint. Try to start the program first."));
11633
11634 /* At this point, we know that we are debugging an Ada program and
11635 that the inferior has been started, but we still are not able to
0963b4bd 11636 find the run-time symbols. That can mean that we are in
0259addd
JB
11637 configurable run time mode, or that a-except as been optimized
11638 out by the linker... In any case, at this point it is not worth
11639 supporting this feature. */
11640
7dda8cff 11641 error (_("Cannot insert Ada exception catchpoints in this configuration."));
0259addd
JB
11642}
11643
f7f9143b
JB
11644/* True iff FRAME is very likely to be that of a function that is
11645 part of the runtime system. This is all very heuristic, but is
11646 intended to be used as advice as to what frames are uninteresting
11647 to most users. */
11648
11649static int
11650is_known_support_routine (struct frame_info *frame)
11651{
4ed6b5be 11652 struct symtab_and_line sal;
55b87a52 11653 char *func_name;
692465f1 11654 enum language func_lang;
f7f9143b 11655 int i;
f35a17b5 11656 const char *fullname;
f7f9143b 11657
4ed6b5be
JB
11658 /* If this code does not have any debugging information (no symtab),
11659 This cannot be any user code. */
f7f9143b 11660
4ed6b5be 11661 find_frame_sal (frame, &sal);
f7f9143b
JB
11662 if (sal.symtab == NULL)
11663 return 1;
11664
4ed6b5be
JB
11665 /* If there is a symtab, but the associated source file cannot be
11666 located, then assume this is not user code: Selecting a frame
11667 for which we cannot display the code would not be very helpful
11668 for the user. This should also take care of case such as VxWorks
11669 where the kernel has some debugging info provided for a few units. */
f7f9143b 11670
f35a17b5
JK
11671 fullname = symtab_to_fullname (sal.symtab);
11672 if (access (fullname, R_OK) != 0)
f7f9143b
JB
11673 return 1;
11674
4ed6b5be
JB
11675 /* Check the unit filename againt the Ada runtime file naming.
11676 We also check the name of the objfile against the name of some
11677 known system libraries that sometimes come with debugging info
11678 too. */
11679
f7f9143b
JB
11680 for (i = 0; known_runtime_file_name_patterns[i] != NULL; i += 1)
11681 {
11682 re_comp (known_runtime_file_name_patterns[i]);
f69c91ad 11683 if (re_exec (lbasename (sal.symtab->filename)))
f7f9143b 11684 return 1;
eb822aa6
DE
11685 if (SYMTAB_OBJFILE (sal.symtab) != NULL
11686 && re_exec (objfile_name (SYMTAB_OBJFILE (sal.symtab))))
4ed6b5be 11687 return 1;
f7f9143b
JB
11688 }
11689
4ed6b5be 11690 /* Check whether the function is a GNAT-generated entity. */
f7f9143b 11691
e9e07ba6 11692 find_frame_funname (frame, &func_name, &func_lang, NULL);
f7f9143b
JB
11693 if (func_name == NULL)
11694 return 1;
11695
11696 for (i = 0; known_auxiliary_function_name_patterns[i] != NULL; i += 1)
11697 {
11698 re_comp (known_auxiliary_function_name_patterns[i]);
11699 if (re_exec (func_name))
55b87a52
KS
11700 {
11701 xfree (func_name);
11702 return 1;
11703 }
f7f9143b
JB
11704 }
11705
55b87a52 11706 xfree (func_name);
f7f9143b
JB
11707 return 0;
11708}
11709
11710/* Find the first frame that contains debugging information and that is not
11711 part of the Ada run-time, starting from FI and moving upward. */
11712
0ef643c8 11713void
f7f9143b
JB
11714ada_find_printable_frame (struct frame_info *fi)
11715{
11716 for (; fi != NULL; fi = get_prev_frame (fi))
11717 {
11718 if (!is_known_support_routine (fi))
11719 {
11720 select_frame (fi);
11721 break;
11722 }
11723 }
11724
11725}
11726
11727/* Assuming that the inferior just triggered an unhandled exception
11728 catchpoint, return the address in inferior memory where the name
11729 of the exception is stored.
11730
11731 Return zero if the address could not be computed. */
11732
11733static CORE_ADDR
11734ada_unhandled_exception_name_addr (void)
0259addd
JB
11735{
11736 return parse_and_eval_address ("e.full_name");
11737}
11738
11739/* Same as ada_unhandled_exception_name_addr, except that this function
11740 should be used when the inferior uses an older version of the runtime,
11741 where the exception name needs to be extracted from a specific frame
11742 several frames up in the callstack. */
11743
11744static CORE_ADDR
11745ada_unhandled_exception_name_addr_from_raise (void)
f7f9143b
JB
11746{
11747 int frame_level;
11748 struct frame_info *fi;
3eecfa55 11749 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
55b87a52 11750 struct cleanup *old_chain;
f7f9143b
JB
11751
11752 /* To determine the name of this exception, we need to select
11753 the frame corresponding to RAISE_SYM_NAME. This frame is
11754 at least 3 levels up, so we simply skip the first 3 frames
11755 without checking the name of their associated function. */
11756 fi = get_current_frame ();
11757 for (frame_level = 0; frame_level < 3; frame_level += 1)
11758 if (fi != NULL)
11759 fi = get_prev_frame (fi);
11760
55b87a52 11761 old_chain = make_cleanup (null_cleanup, NULL);
f7f9143b
JB
11762 while (fi != NULL)
11763 {
55b87a52 11764 char *func_name;
692465f1
JB
11765 enum language func_lang;
11766
e9e07ba6 11767 find_frame_funname (fi, &func_name, &func_lang, NULL);
55b87a52
KS
11768 if (func_name != NULL)
11769 {
11770 make_cleanup (xfree, func_name);
11771
11772 if (strcmp (func_name,
11773 data->exception_info->catch_exception_sym) == 0)
11774 break; /* We found the frame we were looking for... */
11775 fi = get_prev_frame (fi);
11776 }
f7f9143b 11777 }
55b87a52 11778 do_cleanups (old_chain);
f7f9143b
JB
11779
11780 if (fi == NULL)
11781 return 0;
11782
11783 select_frame (fi);
11784 return parse_and_eval_address ("id.full_name");
11785}
11786
11787/* Assuming the inferior just triggered an Ada exception catchpoint
11788 (of any type), return the address in inferior memory where the name
11789 of the exception is stored, if applicable.
11790
11791 Return zero if the address could not be computed, or if not relevant. */
11792
11793static CORE_ADDR
761269c8 11794ada_exception_name_addr_1 (enum ada_exception_catchpoint_kind ex,
f7f9143b
JB
11795 struct breakpoint *b)
11796{
3eecfa55
JB
11797 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
11798
f7f9143b
JB
11799 switch (ex)
11800 {
761269c8 11801 case ada_catch_exception:
f7f9143b
JB
11802 return (parse_and_eval_address ("e.full_name"));
11803 break;
11804
761269c8 11805 case ada_catch_exception_unhandled:
3eecfa55 11806 return data->exception_info->unhandled_exception_name_addr ();
f7f9143b
JB
11807 break;
11808
761269c8 11809 case ada_catch_assert:
f7f9143b
JB
11810 return 0; /* Exception name is not relevant in this case. */
11811 break;
11812
11813 default:
11814 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
11815 break;
11816 }
11817
11818 return 0; /* Should never be reached. */
11819}
11820
11821/* Same as ada_exception_name_addr_1, except that it intercepts and contains
11822 any error that ada_exception_name_addr_1 might cause to be thrown.
11823 When an error is intercepted, a warning with the error message is printed,
11824 and zero is returned. */
11825
11826static CORE_ADDR
761269c8 11827ada_exception_name_addr (enum ada_exception_catchpoint_kind ex,
f7f9143b
JB
11828 struct breakpoint *b)
11829{
f7f9143b
JB
11830 CORE_ADDR result = 0;
11831
492d29ea 11832 TRY
f7f9143b
JB
11833 {
11834 result = ada_exception_name_addr_1 (ex, b);
11835 }
11836
492d29ea 11837 CATCH (e, RETURN_MASK_ERROR)
f7f9143b
JB
11838 {
11839 warning (_("failed to get exception name: %s"), e.message);
11840 return 0;
11841 }
492d29ea 11842 END_CATCH
f7f9143b
JB
11843
11844 return result;
11845}
11846
28010a5d
PA
11847static char *ada_exception_catchpoint_cond_string (const char *excep_string);
11848
11849/* Ada catchpoints.
11850
11851 In the case of catchpoints on Ada exceptions, the catchpoint will
11852 stop the target on every exception the program throws. When a user
11853 specifies the name of a specific exception, we translate this
11854 request into a condition expression (in text form), and then parse
11855 it into an expression stored in each of the catchpoint's locations.
11856 We then use this condition to check whether the exception that was
11857 raised is the one the user is interested in. If not, then the
11858 target is resumed again. We store the name of the requested
11859 exception, in order to be able to re-set the condition expression
11860 when symbols change. */
11861
11862/* An instance of this type is used to represent an Ada catchpoint
11863 breakpoint location. It includes a "struct bp_location" as a kind
11864 of base class; users downcast to "struct bp_location *" when
11865 needed. */
11866
11867struct ada_catchpoint_location
11868{
11869 /* The base class. */
11870 struct bp_location base;
11871
11872 /* The condition that checks whether the exception that was raised
11873 is the specific exception the user specified on catchpoint
11874 creation. */
11875 struct expression *excep_cond_expr;
11876};
11877
11878/* Implement the DTOR method in the bp_location_ops structure for all
11879 Ada exception catchpoint kinds. */
11880
11881static void
11882ada_catchpoint_location_dtor (struct bp_location *bl)
11883{
11884 struct ada_catchpoint_location *al = (struct ada_catchpoint_location *) bl;
11885
11886 xfree (al->excep_cond_expr);
11887}
11888
11889/* The vtable to be used in Ada catchpoint locations. */
11890
11891static const struct bp_location_ops ada_catchpoint_location_ops =
11892{
11893 ada_catchpoint_location_dtor
11894};
11895
11896/* An instance of this type is used to represent an Ada catchpoint.
11897 It includes a "struct breakpoint" as a kind of base class; users
11898 downcast to "struct breakpoint *" when needed. */
11899
11900struct ada_catchpoint
11901{
11902 /* The base class. */
11903 struct breakpoint base;
11904
11905 /* The name of the specific exception the user specified. */
11906 char *excep_string;
11907};
11908
11909/* Parse the exception condition string in the context of each of the
11910 catchpoint's locations, and store them for later evaluation. */
11911
11912static void
11913create_excep_cond_exprs (struct ada_catchpoint *c)
11914{
11915 struct cleanup *old_chain;
11916 struct bp_location *bl;
11917 char *cond_string;
11918
11919 /* Nothing to do if there's no specific exception to catch. */
11920 if (c->excep_string == NULL)
11921 return;
11922
11923 /* Same if there are no locations... */
11924 if (c->base.loc == NULL)
11925 return;
11926
11927 /* Compute the condition expression in text form, from the specific
11928 expection we want to catch. */
11929 cond_string = ada_exception_catchpoint_cond_string (c->excep_string);
11930 old_chain = make_cleanup (xfree, cond_string);
11931
11932 /* Iterate over all the catchpoint's locations, and parse an
11933 expression for each. */
11934 for (bl = c->base.loc; bl != NULL; bl = bl->next)
11935 {
11936 struct ada_catchpoint_location *ada_loc
11937 = (struct ada_catchpoint_location *) bl;
11938 struct expression *exp = NULL;
11939
11940 if (!bl->shlib_disabled)
11941 {
bbc13ae3 11942 const char *s;
28010a5d
PA
11943
11944 s = cond_string;
492d29ea 11945 TRY
28010a5d 11946 {
1bb9788d
TT
11947 exp = parse_exp_1 (&s, bl->address,
11948 block_for_pc (bl->address), 0);
28010a5d 11949 }
492d29ea 11950 CATCH (e, RETURN_MASK_ERROR)
849f2b52
JB
11951 {
11952 warning (_("failed to reevaluate internal exception condition "
11953 "for catchpoint %d: %s"),
11954 c->base.number, e.message);
11955 /* There is a bug in GCC on sparc-solaris when building with
11956 optimization which causes EXP to change unexpectedly
11957 (http://gcc.gnu.org/bugzilla/show_bug.cgi?id=56982).
11958 The problem should be fixed starting with GCC 4.9.
11959 In the meantime, work around it by forcing EXP back
11960 to NULL. */
11961 exp = NULL;
11962 }
492d29ea 11963 END_CATCH
28010a5d
PA
11964 }
11965
11966 ada_loc->excep_cond_expr = exp;
11967 }
11968
11969 do_cleanups (old_chain);
11970}
11971
11972/* Implement the DTOR method in the breakpoint_ops structure for all
11973 exception catchpoint kinds. */
11974
11975static void
761269c8 11976dtor_exception (enum ada_exception_catchpoint_kind ex, struct breakpoint *b)
28010a5d
PA
11977{
11978 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
11979
11980 xfree (c->excep_string);
348d480f 11981
2060206e 11982 bkpt_breakpoint_ops.dtor (b);
28010a5d
PA
11983}
11984
11985/* Implement the ALLOCATE_LOCATION method in the breakpoint_ops
11986 structure for all exception catchpoint kinds. */
11987
11988static struct bp_location *
761269c8 11989allocate_location_exception (enum ada_exception_catchpoint_kind ex,
28010a5d
PA
11990 struct breakpoint *self)
11991{
11992 struct ada_catchpoint_location *loc;
11993
11994 loc = XNEW (struct ada_catchpoint_location);
11995 init_bp_location (&loc->base, &ada_catchpoint_location_ops, self);
11996 loc->excep_cond_expr = NULL;
11997 return &loc->base;
11998}
11999
12000/* Implement the RE_SET method in the breakpoint_ops structure for all
12001 exception catchpoint kinds. */
12002
12003static void
761269c8 12004re_set_exception (enum ada_exception_catchpoint_kind ex, struct breakpoint *b)
28010a5d
PA
12005{
12006 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
12007
12008 /* Call the base class's method. This updates the catchpoint's
12009 locations. */
2060206e 12010 bkpt_breakpoint_ops.re_set (b);
28010a5d
PA
12011
12012 /* Reparse the exception conditional expressions. One for each
12013 location. */
12014 create_excep_cond_exprs (c);
12015}
12016
12017/* Returns true if we should stop for this breakpoint hit. If the
12018 user specified a specific exception, we only want to cause a stop
12019 if the program thrown that exception. */
12020
12021static int
12022should_stop_exception (const struct bp_location *bl)
12023{
12024 struct ada_catchpoint *c = (struct ada_catchpoint *) bl->owner;
12025 const struct ada_catchpoint_location *ada_loc
12026 = (const struct ada_catchpoint_location *) bl;
28010a5d
PA
12027 int stop;
12028
12029 /* With no specific exception, should always stop. */
12030 if (c->excep_string == NULL)
12031 return 1;
12032
12033 if (ada_loc->excep_cond_expr == NULL)
12034 {
12035 /* We will have a NULL expression if back when we were creating
12036 the expressions, this location's had failed to parse. */
12037 return 1;
12038 }
12039
12040 stop = 1;
492d29ea 12041 TRY
28010a5d
PA
12042 {
12043 struct value *mark;
12044
12045 mark = value_mark ();
12046 stop = value_true (evaluate_expression (ada_loc->excep_cond_expr));
12047 value_free_to_mark (mark);
12048 }
492d29ea
PA
12049 CATCH (ex, RETURN_MASK_ALL)
12050 {
12051 exception_fprintf (gdb_stderr, ex,
12052 _("Error in testing exception condition:\n"));
12053 }
12054 END_CATCH
12055
28010a5d
PA
12056 return stop;
12057}
12058
12059/* Implement the CHECK_STATUS method in the breakpoint_ops structure
12060 for all exception catchpoint kinds. */
12061
12062static void
761269c8 12063check_status_exception (enum ada_exception_catchpoint_kind ex, bpstat bs)
28010a5d
PA
12064{
12065 bs->stop = should_stop_exception (bs->bp_location_at);
12066}
12067
f7f9143b
JB
12068/* Implement the PRINT_IT method in the breakpoint_ops structure
12069 for all exception catchpoint kinds. */
12070
12071static enum print_stop_action
761269c8 12072print_it_exception (enum ada_exception_catchpoint_kind ex, bpstat bs)
f7f9143b 12073{
79a45e25 12074 struct ui_out *uiout = current_uiout;
348d480f
PA
12075 struct breakpoint *b = bs->breakpoint_at;
12076
956a9fb9 12077 annotate_catchpoint (b->number);
f7f9143b 12078
956a9fb9 12079 if (ui_out_is_mi_like_p (uiout))
f7f9143b 12080 {
956a9fb9
JB
12081 ui_out_field_string (uiout, "reason",
12082 async_reason_lookup (EXEC_ASYNC_BREAKPOINT_HIT));
12083 ui_out_field_string (uiout, "disp", bpdisp_text (b->disposition));
f7f9143b
JB
12084 }
12085
00eb2c4a
JB
12086 ui_out_text (uiout,
12087 b->disposition == disp_del ? "\nTemporary catchpoint "
12088 : "\nCatchpoint ");
956a9fb9
JB
12089 ui_out_field_int (uiout, "bkptno", b->number);
12090 ui_out_text (uiout, ", ");
f7f9143b 12091
f7f9143b
JB
12092 switch (ex)
12093 {
761269c8
JB
12094 case ada_catch_exception:
12095 case ada_catch_exception_unhandled:
956a9fb9
JB
12096 {
12097 const CORE_ADDR addr = ada_exception_name_addr (ex, b);
12098 char exception_name[256];
12099
12100 if (addr != 0)
12101 {
c714b426
PA
12102 read_memory (addr, (gdb_byte *) exception_name,
12103 sizeof (exception_name) - 1);
956a9fb9
JB
12104 exception_name [sizeof (exception_name) - 1] = '\0';
12105 }
12106 else
12107 {
12108 /* For some reason, we were unable to read the exception
12109 name. This could happen if the Runtime was compiled
12110 without debugging info, for instance. In that case,
12111 just replace the exception name by the generic string
12112 "exception" - it will read as "an exception" in the
12113 notification we are about to print. */
967cff16 12114 memcpy (exception_name, "exception", sizeof ("exception"));
956a9fb9
JB
12115 }
12116 /* In the case of unhandled exception breakpoints, we print
12117 the exception name as "unhandled EXCEPTION_NAME", to make
12118 it clearer to the user which kind of catchpoint just got
12119 hit. We used ui_out_text to make sure that this extra
12120 info does not pollute the exception name in the MI case. */
761269c8 12121 if (ex == ada_catch_exception_unhandled)
956a9fb9
JB
12122 ui_out_text (uiout, "unhandled ");
12123 ui_out_field_string (uiout, "exception-name", exception_name);
12124 }
12125 break;
761269c8 12126 case ada_catch_assert:
956a9fb9
JB
12127 /* In this case, the name of the exception is not really
12128 important. Just print "failed assertion" to make it clearer
12129 that his program just hit an assertion-failure catchpoint.
12130 We used ui_out_text because this info does not belong in
12131 the MI output. */
12132 ui_out_text (uiout, "failed assertion");
12133 break;
f7f9143b 12134 }
956a9fb9
JB
12135 ui_out_text (uiout, " at ");
12136 ada_find_printable_frame (get_current_frame ());
f7f9143b
JB
12137
12138 return PRINT_SRC_AND_LOC;
12139}
12140
12141/* Implement the PRINT_ONE method in the breakpoint_ops structure
12142 for all exception catchpoint kinds. */
12143
12144static void
761269c8 12145print_one_exception (enum ada_exception_catchpoint_kind ex,
a6d9a66e 12146 struct breakpoint *b, struct bp_location **last_loc)
f7f9143b 12147{
79a45e25 12148 struct ui_out *uiout = current_uiout;
28010a5d 12149 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
79a45b7d
TT
12150 struct value_print_options opts;
12151
12152 get_user_print_options (&opts);
12153 if (opts.addressprint)
f7f9143b
JB
12154 {
12155 annotate_field (4);
5af949e3 12156 ui_out_field_core_addr (uiout, "addr", b->loc->gdbarch, b->loc->address);
f7f9143b
JB
12157 }
12158
12159 annotate_field (5);
a6d9a66e 12160 *last_loc = b->loc;
f7f9143b
JB
12161 switch (ex)
12162 {
761269c8 12163 case ada_catch_exception:
28010a5d 12164 if (c->excep_string != NULL)
f7f9143b 12165 {
28010a5d
PA
12166 char *msg = xstrprintf (_("`%s' Ada exception"), c->excep_string);
12167
f7f9143b
JB
12168 ui_out_field_string (uiout, "what", msg);
12169 xfree (msg);
12170 }
12171 else
12172 ui_out_field_string (uiout, "what", "all Ada exceptions");
12173
12174 break;
12175
761269c8 12176 case ada_catch_exception_unhandled:
f7f9143b
JB
12177 ui_out_field_string (uiout, "what", "unhandled Ada exceptions");
12178 break;
12179
761269c8 12180 case ada_catch_assert:
f7f9143b
JB
12181 ui_out_field_string (uiout, "what", "failed Ada assertions");
12182 break;
12183
12184 default:
12185 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12186 break;
12187 }
12188}
12189
12190/* Implement the PRINT_MENTION method in the breakpoint_ops structure
12191 for all exception catchpoint kinds. */
12192
12193static void
761269c8 12194print_mention_exception (enum ada_exception_catchpoint_kind ex,
f7f9143b
JB
12195 struct breakpoint *b)
12196{
28010a5d 12197 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
79a45e25 12198 struct ui_out *uiout = current_uiout;
28010a5d 12199
00eb2c4a
JB
12200 ui_out_text (uiout, b->disposition == disp_del ? _("Temporary catchpoint ")
12201 : _("Catchpoint "));
12202 ui_out_field_int (uiout, "bkptno", b->number);
12203 ui_out_text (uiout, ": ");
12204
f7f9143b
JB
12205 switch (ex)
12206 {
761269c8 12207 case ada_catch_exception:
28010a5d 12208 if (c->excep_string != NULL)
00eb2c4a
JB
12209 {
12210 char *info = xstrprintf (_("`%s' Ada exception"), c->excep_string);
12211 struct cleanup *old_chain = make_cleanup (xfree, info);
12212
12213 ui_out_text (uiout, info);
12214 do_cleanups (old_chain);
12215 }
f7f9143b 12216 else
00eb2c4a 12217 ui_out_text (uiout, _("all Ada exceptions"));
f7f9143b
JB
12218 break;
12219
761269c8 12220 case ada_catch_exception_unhandled:
00eb2c4a 12221 ui_out_text (uiout, _("unhandled Ada exceptions"));
f7f9143b
JB
12222 break;
12223
761269c8 12224 case ada_catch_assert:
00eb2c4a 12225 ui_out_text (uiout, _("failed Ada assertions"));
f7f9143b
JB
12226 break;
12227
12228 default:
12229 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12230 break;
12231 }
12232}
12233
6149aea9
PA
12234/* Implement the PRINT_RECREATE method in the breakpoint_ops structure
12235 for all exception catchpoint kinds. */
12236
12237static void
761269c8 12238print_recreate_exception (enum ada_exception_catchpoint_kind ex,
6149aea9
PA
12239 struct breakpoint *b, struct ui_file *fp)
12240{
28010a5d
PA
12241 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
12242
6149aea9
PA
12243 switch (ex)
12244 {
761269c8 12245 case ada_catch_exception:
6149aea9 12246 fprintf_filtered (fp, "catch exception");
28010a5d
PA
12247 if (c->excep_string != NULL)
12248 fprintf_filtered (fp, " %s", c->excep_string);
6149aea9
PA
12249 break;
12250
761269c8 12251 case ada_catch_exception_unhandled:
78076abc 12252 fprintf_filtered (fp, "catch exception unhandled");
6149aea9
PA
12253 break;
12254
761269c8 12255 case ada_catch_assert:
6149aea9
PA
12256 fprintf_filtered (fp, "catch assert");
12257 break;
12258
12259 default:
12260 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12261 }
d9b3f62e 12262 print_recreate_thread (b, fp);
6149aea9
PA
12263}
12264
f7f9143b
JB
12265/* Virtual table for "catch exception" breakpoints. */
12266
28010a5d
PA
12267static void
12268dtor_catch_exception (struct breakpoint *b)
12269{
761269c8 12270 dtor_exception (ada_catch_exception, b);
28010a5d
PA
12271}
12272
12273static struct bp_location *
12274allocate_location_catch_exception (struct breakpoint *self)
12275{
761269c8 12276 return allocate_location_exception (ada_catch_exception, self);
28010a5d
PA
12277}
12278
12279static void
12280re_set_catch_exception (struct breakpoint *b)
12281{
761269c8 12282 re_set_exception (ada_catch_exception, b);
28010a5d
PA
12283}
12284
12285static void
12286check_status_catch_exception (bpstat bs)
12287{
761269c8 12288 check_status_exception (ada_catch_exception, bs);
28010a5d
PA
12289}
12290
f7f9143b 12291static enum print_stop_action
348d480f 12292print_it_catch_exception (bpstat bs)
f7f9143b 12293{
761269c8 12294 return print_it_exception (ada_catch_exception, bs);
f7f9143b
JB
12295}
12296
12297static void
a6d9a66e 12298print_one_catch_exception (struct breakpoint *b, struct bp_location **last_loc)
f7f9143b 12299{
761269c8 12300 print_one_exception (ada_catch_exception, b, last_loc);
f7f9143b
JB
12301}
12302
12303static void
12304print_mention_catch_exception (struct breakpoint *b)
12305{
761269c8 12306 print_mention_exception (ada_catch_exception, b);
f7f9143b
JB
12307}
12308
6149aea9
PA
12309static void
12310print_recreate_catch_exception (struct breakpoint *b, struct ui_file *fp)
12311{
761269c8 12312 print_recreate_exception (ada_catch_exception, b, fp);
6149aea9
PA
12313}
12314
2060206e 12315static struct breakpoint_ops catch_exception_breakpoint_ops;
f7f9143b
JB
12316
12317/* Virtual table for "catch exception unhandled" breakpoints. */
12318
28010a5d
PA
12319static void
12320dtor_catch_exception_unhandled (struct breakpoint *b)
12321{
761269c8 12322 dtor_exception (ada_catch_exception_unhandled, b);
28010a5d
PA
12323}
12324
12325static struct bp_location *
12326allocate_location_catch_exception_unhandled (struct breakpoint *self)
12327{
761269c8 12328 return allocate_location_exception (ada_catch_exception_unhandled, self);
28010a5d
PA
12329}
12330
12331static void
12332re_set_catch_exception_unhandled (struct breakpoint *b)
12333{
761269c8 12334 re_set_exception (ada_catch_exception_unhandled, b);
28010a5d
PA
12335}
12336
12337static void
12338check_status_catch_exception_unhandled (bpstat bs)
12339{
761269c8 12340 check_status_exception (ada_catch_exception_unhandled, bs);
28010a5d
PA
12341}
12342
f7f9143b 12343static enum print_stop_action
348d480f 12344print_it_catch_exception_unhandled (bpstat bs)
f7f9143b 12345{
761269c8 12346 return print_it_exception (ada_catch_exception_unhandled, bs);
f7f9143b
JB
12347}
12348
12349static void
a6d9a66e
UW
12350print_one_catch_exception_unhandled (struct breakpoint *b,
12351 struct bp_location **last_loc)
f7f9143b 12352{
761269c8 12353 print_one_exception (ada_catch_exception_unhandled, b, last_loc);
f7f9143b
JB
12354}
12355
12356static void
12357print_mention_catch_exception_unhandled (struct breakpoint *b)
12358{
761269c8 12359 print_mention_exception (ada_catch_exception_unhandled, b);
f7f9143b
JB
12360}
12361
6149aea9
PA
12362static void
12363print_recreate_catch_exception_unhandled (struct breakpoint *b,
12364 struct ui_file *fp)
12365{
761269c8 12366 print_recreate_exception (ada_catch_exception_unhandled, b, fp);
6149aea9
PA
12367}
12368
2060206e 12369static struct breakpoint_ops catch_exception_unhandled_breakpoint_ops;
f7f9143b
JB
12370
12371/* Virtual table for "catch assert" breakpoints. */
12372
28010a5d
PA
12373static void
12374dtor_catch_assert (struct breakpoint *b)
12375{
761269c8 12376 dtor_exception (ada_catch_assert, b);
28010a5d
PA
12377}
12378
12379static struct bp_location *
12380allocate_location_catch_assert (struct breakpoint *self)
12381{
761269c8 12382 return allocate_location_exception (ada_catch_assert, self);
28010a5d
PA
12383}
12384
12385static void
12386re_set_catch_assert (struct breakpoint *b)
12387{
761269c8 12388 re_set_exception (ada_catch_assert, b);
28010a5d
PA
12389}
12390
12391static void
12392check_status_catch_assert (bpstat bs)
12393{
761269c8 12394 check_status_exception (ada_catch_assert, bs);
28010a5d
PA
12395}
12396
f7f9143b 12397static enum print_stop_action
348d480f 12398print_it_catch_assert (bpstat bs)
f7f9143b 12399{
761269c8 12400 return print_it_exception (ada_catch_assert, bs);
f7f9143b
JB
12401}
12402
12403static void
a6d9a66e 12404print_one_catch_assert (struct breakpoint *b, struct bp_location **last_loc)
f7f9143b 12405{
761269c8 12406 print_one_exception (ada_catch_assert, b, last_loc);
f7f9143b
JB
12407}
12408
12409static void
12410print_mention_catch_assert (struct breakpoint *b)
12411{
761269c8 12412 print_mention_exception (ada_catch_assert, b);
f7f9143b
JB
12413}
12414
6149aea9
PA
12415static void
12416print_recreate_catch_assert (struct breakpoint *b, struct ui_file *fp)
12417{
761269c8 12418 print_recreate_exception (ada_catch_assert, b, fp);
6149aea9
PA
12419}
12420
2060206e 12421static struct breakpoint_ops catch_assert_breakpoint_ops;
f7f9143b 12422
f7f9143b
JB
12423/* Return a newly allocated copy of the first space-separated token
12424 in ARGSP, and then adjust ARGSP to point immediately after that
12425 token.
12426
12427 Return NULL if ARGPS does not contain any more tokens. */
12428
12429static char *
12430ada_get_next_arg (char **argsp)
12431{
12432 char *args = *argsp;
12433 char *end;
12434 char *result;
12435
0fcd72ba 12436 args = skip_spaces (args);
f7f9143b
JB
12437 if (args[0] == '\0')
12438 return NULL; /* No more arguments. */
12439
12440 /* Find the end of the current argument. */
12441
0fcd72ba 12442 end = skip_to_space (args);
f7f9143b
JB
12443
12444 /* Adjust ARGSP to point to the start of the next argument. */
12445
12446 *argsp = end;
12447
12448 /* Make a copy of the current argument and return it. */
12449
12450 result = xmalloc (end - args + 1);
12451 strncpy (result, args, end - args);
12452 result[end - args] = '\0';
12453
12454 return result;
12455}
12456
12457/* Split the arguments specified in a "catch exception" command.
12458 Set EX to the appropriate catchpoint type.
28010a5d 12459 Set EXCEP_STRING to the name of the specific exception if
5845583d
JB
12460 specified by the user.
12461 If a condition is found at the end of the arguments, the condition
12462 expression is stored in COND_STRING (memory must be deallocated
12463 after use). Otherwise COND_STRING is set to NULL. */
f7f9143b
JB
12464
12465static void
12466catch_ada_exception_command_split (char *args,
761269c8 12467 enum ada_exception_catchpoint_kind *ex,
5845583d
JB
12468 char **excep_string,
12469 char **cond_string)
f7f9143b
JB
12470{
12471 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
12472 char *exception_name;
5845583d 12473 char *cond = NULL;
f7f9143b
JB
12474
12475 exception_name = ada_get_next_arg (&args);
5845583d
JB
12476 if (exception_name != NULL && strcmp (exception_name, "if") == 0)
12477 {
12478 /* This is not an exception name; this is the start of a condition
12479 expression for a catchpoint on all exceptions. So, "un-get"
12480 this token, and set exception_name to NULL. */
12481 xfree (exception_name);
12482 exception_name = NULL;
12483 args -= 2;
12484 }
f7f9143b
JB
12485 make_cleanup (xfree, exception_name);
12486
5845583d 12487 /* Check to see if we have a condition. */
f7f9143b 12488
0fcd72ba 12489 args = skip_spaces (args);
61012eef 12490 if (startswith (args, "if")
5845583d
JB
12491 && (isspace (args[2]) || args[2] == '\0'))
12492 {
12493 args += 2;
12494 args = skip_spaces (args);
12495
12496 if (args[0] == '\0')
12497 error (_("Condition missing after `if' keyword"));
12498 cond = xstrdup (args);
12499 make_cleanup (xfree, cond);
12500
12501 args += strlen (args);
12502 }
12503
12504 /* Check that we do not have any more arguments. Anything else
12505 is unexpected. */
f7f9143b
JB
12506
12507 if (args[0] != '\0')
12508 error (_("Junk at end of expression"));
12509
12510 discard_cleanups (old_chain);
12511
12512 if (exception_name == NULL)
12513 {
12514 /* Catch all exceptions. */
761269c8 12515 *ex = ada_catch_exception;
28010a5d 12516 *excep_string = NULL;
f7f9143b
JB
12517 }
12518 else if (strcmp (exception_name, "unhandled") == 0)
12519 {
12520 /* Catch unhandled exceptions. */
761269c8 12521 *ex = ada_catch_exception_unhandled;
28010a5d 12522 *excep_string = NULL;
f7f9143b
JB
12523 }
12524 else
12525 {
12526 /* Catch a specific exception. */
761269c8 12527 *ex = ada_catch_exception;
28010a5d 12528 *excep_string = exception_name;
f7f9143b 12529 }
5845583d 12530 *cond_string = cond;
f7f9143b
JB
12531}
12532
12533/* Return the name of the symbol on which we should break in order to
12534 implement a catchpoint of the EX kind. */
12535
12536static const char *
761269c8 12537ada_exception_sym_name (enum ada_exception_catchpoint_kind ex)
f7f9143b 12538{
3eecfa55
JB
12539 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
12540
12541 gdb_assert (data->exception_info != NULL);
0259addd 12542
f7f9143b
JB
12543 switch (ex)
12544 {
761269c8 12545 case ada_catch_exception:
3eecfa55 12546 return (data->exception_info->catch_exception_sym);
f7f9143b 12547 break;
761269c8 12548 case ada_catch_exception_unhandled:
3eecfa55 12549 return (data->exception_info->catch_exception_unhandled_sym);
f7f9143b 12550 break;
761269c8 12551 case ada_catch_assert:
3eecfa55 12552 return (data->exception_info->catch_assert_sym);
f7f9143b
JB
12553 break;
12554 default:
12555 internal_error (__FILE__, __LINE__,
12556 _("unexpected catchpoint kind (%d)"), ex);
12557 }
12558}
12559
12560/* Return the breakpoint ops "virtual table" used for catchpoints
12561 of the EX kind. */
12562
c0a91b2b 12563static const struct breakpoint_ops *
761269c8 12564ada_exception_breakpoint_ops (enum ada_exception_catchpoint_kind ex)
f7f9143b
JB
12565{
12566 switch (ex)
12567 {
761269c8 12568 case ada_catch_exception:
f7f9143b
JB
12569 return (&catch_exception_breakpoint_ops);
12570 break;
761269c8 12571 case ada_catch_exception_unhandled:
f7f9143b
JB
12572 return (&catch_exception_unhandled_breakpoint_ops);
12573 break;
761269c8 12574 case ada_catch_assert:
f7f9143b
JB
12575 return (&catch_assert_breakpoint_ops);
12576 break;
12577 default:
12578 internal_error (__FILE__, __LINE__,
12579 _("unexpected catchpoint kind (%d)"), ex);
12580 }
12581}
12582
12583/* Return the condition that will be used to match the current exception
12584 being raised with the exception that the user wants to catch. This
12585 assumes that this condition is used when the inferior just triggered
12586 an exception catchpoint.
12587
12588 The string returned is a newly allocated string that needs to be
12589 deallocated later. */
12590
12591static char *
28010a5d 12592ada_exception_catchpoint_cond_string (const char *excep_string)
f7f9143b 12593{
3d0b0fa3
JB
12594 int i;
12595
0963b4bd 12596 /* The standard exceptions are a special case. They are defined in
3d0b0fa3 12597 runtime units that have been compiled without debugging info; if
28010a5d 12598 EXCEP_STRING is the not-fully-qualified name of a standard
3d0b0fa3
JB
12599 exception (e.g. "constraint_error") then, during the evaluation
12600 of the condition expression, the symbol lookup on this name would
0963b4bd 12601 *not* return this standard exception. The catchpoint condition
3d0b0fa3
JB
12602 may then be set only on user-defined exceptions which have the
12603 same not-fully-qualified name (e.g. my_package.constraint_error).
12604
12605 To avoid this unexcepted behavior, these standard exceptions are
0963b4bd 12606 systematically prefixed by "standard". This means that "catch
3d0b0fa3
JB
12607 exception constraint_error" is rewritten into "catch exception
12608 standard.constraint_error".
12609
12610 If an exception named contraint_error is defined in another package of
12611 the inferior program, then the only way to specify this exception as a
12612 breakpoint condition is to use its fully-qualified named:
12613 e.g. my_package.constraint_error. */
12614
12615 for (i = 0; i < sizeof (standard_exc) / sizeof (char *); i++)
12616 {
28010a5d 12617 if (strcmp (standard_exc [i], excep_string) == 0)
3d0b0fa3
JB
12618 {
12619 return xstrprintf ("long_integer (e) = long_integer (&standard.%s)",
28010a5d 12620 excep_string);
3d0b0fa3
JB
12621 }
12622 }
28010a5d 12623 return xstrprintf ("long_integer (e) = long_integer (&%s)", excep_string);
f7f9143b
JB
12624}
12625
12626/* Return the symtab_and_line that should be used to insert an exception
12627 catchpoint of the TYPE kind.
12628
28010a5d
PA
12629 EXCEP_STRING should contain the name of a specific exception that
12630 the catchpoint should catch, or NULL otherwise.
f7f9143b 12631
28010a5d
PA
12632 ADDR_STRING returns the name of the function where the real
12633 breakpoint that implements the catchpoints is set, depending on the
12634 type of catchpoint we need to create. */
f7f9143b
JB
12635
12636static struct symtab_and_line
761269c8 12637ada_exception_sal (enum ada_exception_catchpoint_kind ex, char *excep_string,
c0a91b2b 12638 char **addr_string, const struct breakpoint_ops **ops)
f7f9143b
JB
12639{
12640 const char *sym_name;
12641 struct symbol *sym;
f7f9143b 12642
0259addd
JB
12643 /* First, find out which exception support info to use. */
12644 ada_exception_support_info_sniffer ();
12645
12646 /* Then lookup the function on which we will break in order to catch
f7f9143b 12647 the Ada exceptions requested by the user. */
f7f9143b
JB
12648 sym_name = ada_exception_sym_name (ex);
12649 sym = standard_lookup (sym_name, NULL, VAR_DOMAIN);
12650
f17011e0
JB
12651 /* We can assume that SYM is not NULL at this stage. If the symbol
12652 did not exist, ada_exception_support_info_sniffer would have
12653 raised an exception.
f7f9143b 12654
f17011e0
JB
12655 Also, ada_exception_support_info_sniffer should have already
12656 verified that SYM is a function symbol. */
12657 gdb_assert (sym != NULL);
12658 gdb_assert (SYMBOL_CLASS (sym) == LOC_BLOCK);
f7f9143b
JB
12659
12660 /* Set ADDR_STRING. */
f7f9143b
JB
12661 *addr_string = xstrdup (sym_name);
12662
f7f9143b 12663 /* Set OPS. */
4b9eee8c 12664 *ops = ada_exception_breakpoint_ops (ex);
f7f9143b 12665
f17011e0 12666 return find_function_start_sal (sym, 1);
f7f9143b
JB
12667}
12668
b4a5b78b 12669/* Create an Ada exception catchpoint.
f7f9143b 12670
b4a5b78b 12671 EX_KIND is the kind of exception catchpoint to be created.
5845583d 12672
2df4d1d5
JB
12673 If EXCEPT_STRING is NULL, this catchpoint is expected to trigger
12674 for all exceptions. Otherwise, EXCEPT_STRING indicates the name
12675 of the exception to which this catchpoint applies. When not NULL,
12676 the string must be allocated on the heap, and its deallocation
12677 is no longer the responsibility of the caller.
12678
12679 COND_STRING, if not NULL, is the catchpoint condition. This string
12680 must be allocated on the heap, and its deallocation is no longer
12681 the responsibility of the caller.
f7f9143b 12682
b4a5b78b
JB
12683 TEMPFLAG, if nonzero, means that the underlying breakpoint
12684 should be temporary.
28010a5d 12685
b4a5b78b 12686 FROM_TTY is the usual argument passed to all commands implementations. */
28010a5d 12687
349774ef 12688void
28010a5d 12689create_ada_exception_catchpoint (struct gdbarch *gdbarch,
761269c8 12690 enum ada_exception_catchpoint_kind ex_kind,
28010a5d 12691 char *excep_string,
5845583d 12692 char *cond_string,
28010a5d 12693 int tempflag,
349774ef 12694 int disabled,
28010a5d
PA
12695 int from_tty)
12696{
12697 struct ada_catchpoint *c;
b4a5b78b
JB
12698 char *addr_string = NULL;
12699 const struct breakpoint_ops *ops = NULL;
12700 struct symtab_and_line sal
12701 = ada_exception_sal (ex_kind, excep_string, &addr_string, &ops);
28010a5d
PA
12702
12703 c = XNEW (struct ada_catchpoint);
12704 init_ada_exception_breakpoint (&c->base, gdbarch, sal, addr_string,
349774ef 12705 ops, tempflag, disabled, from_tty);
28010a5d
PA
12706 c->excep_string = excep_string;
12707 create_excep_cond_exprs (c);
5845583d
JB
12708 if (cond_string != NULL)
12709 set_breakpoint_condition (&c->base, cond_string, from_tty);
3ea46bff 12710 install_breakpoint (0, &c->base, 1);
f7f9143b
JB
12711}
12712
9ac4176b
PA
12713/* Implement the "catch exception" command. */
12714
12715static void
12716catch_ada_exception_command (char *arg, int from_tty,
12717 struct cmd_list_element *command)
12718{
12719 struct gdbarch *gdbarch = get_current_arch ();
12720 int tempflag;
761269c8 12721 enum ada_exception_catchpoint_kind ex_kind;
28010a5d 12722 char *excep_string = NULL;
5845583d 12723 char *cond_string = NULL;
9ac4176b
PA
12724
12725 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
12726
12727 if (!arg)
12728 arg = "";
b4a5b78b
JB
12729 catch_ada_exception_command_split (arg, &ex_kind, &excep_string,
12730 &cond_string);
12731 create_ada_exception_catchpoint (gdbarch, ex_kind,
12732 excep_string, cond_string,
349774ef
JB
12733 tempflag, 1 /* enabled */,
12734 from_tty);
9ac4176b
PA
12735}
12736
b4a5b78b 12737/* Split the arguments specified in a "catch assert" command.
5845583d 12738
b4a5b78b
JB
12739 ARGS contains the command's arguments (or the empty string if
12740 no arguments were passed).
5845583d
JB
12741
12742 If ARGS contains a condition, set COND_STRING to that condition
b4a5b78b 12743 (the memory needs to be deallocated after use). */
5845583d 12744
b4a5b78b
JB
12745static void
12746catch_ada_assert_command_split (char *args, char **cond_string)
f7f9143b 12747{
5845583d 12748 args = skip_spaces (args);
f7f9143b 12749
5845583d 12750 /* Check whether a condition was provided. */
61012eef 12751 if (startswith (args, "if")
5845583d 12752 && (isspace (args[2]) || args[2] == '\0'))
f7f9143b 12753 {
5845583d 12754 args += 2;
0fcd72ba 12755 args = skip_spaces (args);
5845583d
JB
12756 if (args[0] == '\0')
12757 error (_("condition missing after `if' keyword"));
12758 *cond_string = xstrdup (args);
f7f9143b
JB
12759 }
12760
5845583d
JB
12761 /* Otherwise, there should be no other argument at the end of
12762 the command. */
12763 else if (args[0] != '\0')
12764 error (_("Junk at end of arguments."));
f7f9143b
JB
12765}
12766
9ac4176b
PA
12767/* Implement the "catch assert" command. */
12768
12769static void
12770catch_assert_command (char *arg, int from_tty,
12771 struct cmd_list_element *command)
12772{
12773 struct gdbarch *gdbarch = get_current_arch ();
12774 int tempflag;
5845583d 12775 char *cond_string = NULL;
9ac4176b
PA
12776
12777 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
12778
12779 if (!arg)
12780 arg = "";
b4a5b78b 12781 catch_ada_assert_command_split (arg, &cond_string);
761269c8 12782 create_ada_exception_catchpoint (gdbarch, ada_catch_assert,
b4a5b78b 12783 NULL, cond_string,
349774ef
JB
12784 tempflag, 1 /* enabled */,
12785 from_tty);
9ac4176b 12786}
778865d3
JB
12787
12788/* Return non-zero if the symbol SYM is an Ada exception object. */
12789
12790static int
12791ada_is_exception_sym (struct symbol *sym)
12792{
12793 const char *type_name = type_name_no_tag (SYMBOL_TYPE (sym));
12794
12795 return (SYMBOL_CLASS (sym) != LOC_TYPEDEF
12796 && SYMBOL_CLASS (sym) != LOC_BLOCK
12797 && SYMBOL_CLASS (sym) != LOC_CONST
12798 && SYMBOL_CLASS (sym) != LOC_UNRESOLVED
12799 && type_name != NULL && strcmp (type_name, "exception") == 0);
12800}
12801
12802/* Given a global symbol SYM, return non-zero iff SYM is a non-standard
12803 Ada exception object. This matches all exceptions except the ones
12804 defined by the Ada language. */
12805
12806static int
12807ada_is_non_standard_exception_sym (struct symbol *sym)
12808{
12809 int i;
12810
12811 if (!ada_is_exception_sym (sym))
12812 return 0;
12813
12814 for (i = 0; i < ARRAY_SIZE (standard_exc); i++)
12815 if (strcmp (SYMBOL_LINKAGE_NAME (sym), standard_exc[i]) == 0)
12816 return 0; /* A standard exception. */
12817
12818 /* Numeric_Error is also a standard exception, so exclude it.
12819 See the STANDARD_EXC description for more details as to why
12820 this exception is not listed in that array. */
12821 if (strcmp (SYMBOL_LINKAGE_NAME (sym), "numeric_error") == 0)
12822 return 0;
12823
12824 return 1;
12825}
12826
12827/* A helper function for qsort, comparing two struct ada_exc_info
12828 objects.
12829
12830 The comparison is determined first by exception name, and then
12831 by exception address. */
12832
12833static int
12834compare_ada_exception_info (const void *a, const void *b)
12835{
12836 const struct ada_exc_info *exc_a = (struct ada_exc_info *) a;
12837 const struct ada_exc_info *exc_b = (struct ada_exc_info *) b;
12838 int result;
12839
12840 result = strcmp (exc_a->name, exc_b->name);
12841 if (result != 0)
12842 return result;
12843
12844 if (exc_a->addr < exc_b->addr)
12845 return -1;
12846 if (exc_a->addr > exc_b->addr)
12847 return 1;
12848
12849 return 0;
12850}
12851
12852/* Sort EXCEPTIONS using compare_ada_exception_info as the comparison
12853 routine, but keeping the first SKIP elements untouched.
12854
12855 All duplicates are also removed. */
12856
12857static void
12858sort_remove_dups_ada_exceptions_list (VEC(ada_exc_info) **exceptions,
12859 int skip)
12860{
12861 struct ada_exc_info *to_sort
12862 = VEC_address (ada_exc_info, *exceptions) + skip;
12863 int to_sort_len
12864 = VEC_length (ada_exc_info, *exceptions) - skip;
12865 int i, j;
12866
12867 qsort (to_sort, to_sort_len, sizeof (struct ada_exc_info),
12868 compare_ada_exception_info);
12869
12870 for (i = 1, j = 1; i < to_sort_len; i++)
12871 if (compare_ada_exception_info (&to_sort[i], &to_sort[j - 1]) != 0)
12872 to_sort[j++] = to_sort[i];
12873 to_sort_len = j;
12874 VEC_truncate(ada_exc_info, *exceptions, skip + to_sort_len);
12875}
12876
12877/* A function intended as the "name_matcher" callback in the struct
12878 quick_symbol_functions' expand_symtabs_matching method.
12879
12880 SEARCH_NAME is the symbol's search name.
12881
12882 If USER_DATA is not NULL, it is a pointer to a regext_t object
12883 used to match the symbol (by natural name). Otherwise, when USER_DATA
12884 is null, no filtering is performed, and all symbols are a positive
12885 match. */
12886
12887static int
12888ada_exc_search_name_matches (const char *search_name, void *user_data)
12889{
12890 regex_t *preg = user_data;
12891
12892 if (preg == NULL)
12893 return 1;
12894
12895 /* In Ada, the symbol "search name" is a linkage name, whereas
12896 the regular expression used to do the matching refers to
12897 the natural name. So match against the decoded name. */
12898 return (regexec (preg, ada_decode (search_name), 0, NULL, 0) == 0);
12899}
12900
12901/* Add all exceptions defined by the Ada standard whose name match
12902 a regular expression.
12903
12904 If PREG is not NULL, then this regexp_t object is used to
12905 perform the symbol name matching. Otherwise, no name-based
12906 filtering is performed.
12907
12908 EXCEPTIONS is a vector of exceptions to which matching exceptions
12909 gets pushed. */
12910
12911static void
12912ada_add_standard_exceptions (regex_t *preg, VEC(ada_exc_info) **exceptions)
12913{
12914 int i;
12915
12916 for (i = 0; i < ARRAY_SIZE (standard_exc); i++)
12917 {
12918 if (preg == NULL
12919 || regexec (preg, standard_exc[i], 0, NULL, 0) == 0)
12920 {
12921 struct bound_minimal_symbol msymbol
12922 = ada_lookup_simple_minsym (standard_exc[i]);
12923
12924 if (msymbol.minsym != NULL)
12925 {
12926 struct ada_exc_info info
77e371c0 12927 = {standard_exc[i], BMSYMBOL_VALUE_ADDRESS (msymbol)};
778865d3
JB
12928
12929 VEC_safe_push (ada_exc_info, *exceptions, &info);
12930 }
12931 }
12932 }
12933}
12934
12935/* Add all Ada exceptions defined locally and accessible from the given
12936 FRAME.
12937
12938 If PREG is not NULL, then this regexp_t object is used to
12939 perform the symbol name matching. Otherwise, no name-based
12940 filtering is performed.
12941
12942 EXCEPTIONS is a vector of exceptions to which matching exceptions
12943 gets pushed. */
12944
12945static void
12946ada_add_exceptions_from_frame (regex_t *preg, struct frame_info *frame,
12947 VEC(ada_exc_info) **exceptions)
12948{
3977b71f 12949 const struct block *block = get_frame_block (frame, 0);
778865d3
JB
12950
12951 while (block != 0)
12952 {
12953 struct block_iterator iter;
12954 struct symbol *sym;
12955
12956 ALL_BLOCK_SYMBOLS (block, iter, sym)
12957 {
12958 switch (SYMBOL_CLASS (sym))
12959 {
12960 case LOC_TYPEDEF:
12961 case LOC_BLOCK:
12962 case LOC_CONST:
12963 break;
12964 default:
12965 if (ada_is_exception_sym (sym))
12966 {
12967 struct ada_exc_info info = {SYMBOL_PRINT_NAME (sym),
12968 SYMBOL_VALUE_ADDRESS (sym)};
12969
12970 VEC_safe_push (ada_exc_info, *exceptions, &info);
12971 }
12972 }
12973 }
12974 if (BLOCK_FUNCTION (block) != NULL)
12975 break;
12976 block = BLOCK_SUPERBLOCK (block);
12977 }
12978}
12979
12980/* Add all exceptions defined globally whose name name match
12981 a regular expression, excluding standard exceptions.
12982
12983 The reason we exclude standard exceptions is that they need
12984 to be handled separately: Standard exceptions are defined inside
12985 a runtime unit which is normally not compiled with debugging info,
12986 and thus usually do not show up in our symbol search. However,
12987 if the unit was in fact built with debugging info, we need to
12988 exclude them because they would duplicate the entry we found
12989 during the special loop that specifically searches for those
12990 standard exceptions.
12991
12992 If PREG is not NULL, then this regexp_t object is used to
12993 perform the symbol name matching. Otherwise, no name-based
12994 filtering is performed.
12995
12996 EXCEPTIONS is a vector of exceptions to which matching exceptions
12997 gets pushed. */
12998
12999static void
13000ada_add_global_exceptions (regex_t *preg, VEC(ada_exc_info) **exceptions)
13001{
13002 struct objfile *objfile;
43f3e411 13003 struct compunit_symtab *s;
778865d3 13004
276d885b 13005 expand_symtabs_matching (NULL, ada_exc_search_name_matches, NULL,
bb4142cf 13006 VARIABLES_DOMAIN, preg);
778865d3 13007
43f3e411 13008 ALL_COMPUNITS (objfile, s)
778865d3 13009 {
43f3e411 13010 const struct blockvector *bv = COMPUNIT_BLOCKVECTOR (s);
778865d3
JB
13011 int i;
13012
13013 for (i = GLOBAL_BLOCK; i <= STATIC_BLOCK; i++)
13014 {
13015 struct block *b = BLOCKVECTOR_BLOCK (bv, i);
13016 struct block_iterator iter;
13017 struct symbol *sym;
13018
13019 ALL_BLOCK_SYMBOLS (b, iter, sym)
13020 if (ada_is_non_standard_exception_sym (sym)
13021 && (preg == NULL
13022 || regexec (preg, SYMBOL_NATURAL_NAME (sym),
13023 0, NULL, 0) == 0))
13024 {
13025 struct ada_exc_info info
13026 = {SYMBOL_PRINT_NAME (sym), SYMBOL_VALUE_ADDRESS (sym)};
13027
13028 VEC_safe_push (ada_exc_info, *exceptions, &info);
13029 }
13030 }
13031 }
13032}
13033
13034/* Implements ada_exceptions_list with the regular expression passed
13035 as a regex_t, rather than a string.
13036
13037 If not NULL, PREG is used to filter out exceptions whose names
13038 do not match. Otherwise, all exceptions are listed. */
13039
13040static VEC(ada_exc_info) *
13041ada_exceptions_list_1 (regex_t *preg)
13042{
13043 VEC(ada_exc_info) *result = NULL;
13044 struct cleanup *old_chain
13045 = make_cleanup (VEC_cleanup (ada_exc_info), &result);
13046 int prev_len;
13047
13048 /* First, list the known standard exceptions. These exceptions
13049 need to be handled separately, as they are usually defined in
13050 runtime units that have been compiled without debugging info. */
13051
13052 ada_add_standard_exceptions (preg, &result);
13053
13054 /* Next, find all exceptions whose scope is local and accessible
13055 from the currently selected frame. */
13056
13057 if (has_stack_frames ())
13058 {
13059 prev_len = VEC_length (ada_exc_info, result);
13060 ada_add_exceptions_from_frame (preg, get_selected_frame (NULL),
13061 &result);
13062 if (VEC_length (ada_exc_info, result) > prev_len)
13063 sort_remove_dups_ada_exceptions_list (&result, prev_len);
13064 }
13065
13066 /* Add all exceptions whose scope is global. */
13067
13068 prev_len = VEC_length (ada_exc_info, result);
13069 ada_add_global_exceptions (preg, &result);
13070 if (VEC_length (ada_exc_info, result) > prev_len)
13071 sort_remove_dups_ada_exceptions_list (&result, prev_len);
13072
13073 discard_cleanups (old_chain);
13074 return result;
13075}
13076
13077/* Return a vector of ada_exc_info.
13078
13079 If REGEXP is NULL, all exceptions are included in the result.
13080 Otherwise, it should contain a valid regular expression,
13081 and only the exceptions whose names match that regular expression
13082 are included in the result.
13083
13084 The exceptions are sorted in the following order:
13085 - Standard exceptions (defined by the Ada language), in
13086 alphabetical order;
13087 - Exceptions only visible from the current frame, in
13088 alphabetical order;
13089 - Exceptions whose scope is global, in alphabetical order. */
13090
13091VEC(ada_exc_info) *
13092ada_exceptions_list (const char *regexp)
13093{
13094 VEC(ada_exc_info) *result = NULL;
13095 struct cleanup *old_chain = NULL;
13096 regex_t reg;
13097
13098 if (regexp != NULL)
13099 old_chain = compile_rx_or_error (&reg, regexp,
13100 _("invalid regular expression"));
13101
13102 result = ada_exceptions_list_1 (regexp != NULL ? &reg : NULL);
13103
13104 if (old_chain != NULL)
13105 do_cleanups (old_chain);
13106 return result;
13107}
13108
13109/* Implement the "info exceptions" command. */
13110
13111static void
13112info_exceptions_command (char *regexp, int from_tty)
13113{
13114 VEC(ada_exc_info) *exceptions;
13115 struct cleanup *cleanup;
13116 struct gdbarch *gdbarch = get_current_arch ();
13117 int ix;
13118 struct ada_exc_info *info;
13119
13120 exceptions = ada_exceptions_list (regexp);
13121 cleanup = make_cleanup (VEC_cleanup (ada_exc_info), &exceptions);
13122
13123 if (regexp != NULL)
13124 printf_filtered
13125 (_("All Ada exceptions matching regular expression \"%s\":\n"), regexp);
13126 else
13127 printf_filtered (_("All defined Ada exceptions:\n"));
13128
13129 for (ix = 0; VEC_iterate(ada_exc_info, exceptions, ix, info); ix++)
13130 printf_filtered ("%s: %s\n", info->name, paddress (gdbarch, info->addr));
13131
13132 do_cleanups (cleanup);
13133}
13134
4c4b4cd2
PH
13135 /* Operators */
13136/* Information about operators given special treatment in functions
13137 below. */
13138/* Format: OP_DEFN (<operator>, <operator length>, <# args>, <binop>). */
13139
13140#define ADA_OPERATORS \
13141 OP_DEFN (OP_VAR_VALUE, 4, 0, 0) \
13142 OP_DEFN (BINOP_IN_BOUNDS, 3, 2, 0) \
13143 OP_DEFN (TERNOP_IN_RANGE, 1, 3, 0) \
13144 OP_DEFN (OP_ATR_FIRST, 1, 2, 0) \
13145 OP_DEFN (OP_ATR_LAST, 1, 2, 0) \
13146 OP_DEFN (OP_ATR_LENGTH, 1, 2, 0) \
13147 OP_DEFN (OP_ATR_IMAGE, 1, 2, 0) \
13148 OP_DEFN (OP_ATR_MAX, 1, 3, 0) \
13149 OP_DEFN (OP_ATR_MIN, 1, 3, 0) \
13150 OP_DEFN (OP_ATR_MODULUS, 1, 1, 0) \
13151 OP_DEFN (OP_ATR_POS, 1, 2, 0) \
13152 OP_DEFN (OP_ATR_SIZE, 1, 1, 0) \
13153 OP_DEFN (OP_ATR_TAG, 1, 1, 0) \
13154 OP_DEFN (OP_ATR_VAL, 1, 2, 0) \
13155 OP_DEFN (UNOP_QUAL, 3, 1, 0) \
52ce6436
PH
13156 OP_DEFN (UNOP_IN_RANGE, 3, 1, 0) \
13157 OP_DEFN (OP_OTHERS, 1, 1, 0) \
13158 OP_DEFN (OP_POSITIONAL, 3, 1, 0) \
13159 OP_DEFN (OP_DISCRETE_RANGE, 1, 2, 0)
4c4b4cd2
PH
13160
13161static void
554794dc
SDJ
13162ada_operator_length (const struct expression *exp, int pc, int *oplenp,
13163 int *argsp)
4c4b4cd2
PH
13164{
13165 switch (exp->elts[pc - 1].opcode)
13166 {
76a01679 13167 default:
4c4b4cd2
PH
13168 operator_length_standard (exp, pc, oplenp, argsp);
13169 break;
13170
13171#define OP_DEFN(op, len, args, binop) \
13172 case op: *oplenp = len; *argsp = args; break;
13173 ADA_OPERATORS;
13174#undef OP_DEFN
52ce6436
PH
13175
13176 case OP_AGGREGATE:
13177 *oplenp = 3;
13178 *argsp = longest_to_int (exp->elts[pc - 2].longconst);
13179 break;
13180
13181 case OP_CHOICES:
13182 *oplenp = 3;
13183 *argsp = longest_to_int (exp->elts[pc - 2].longconst) + 1;
13184 break;
4c4b4cd2
PH
13185 }
13186}
13187
c0201579
JK
13188/* Implementation of the exp_descriptor method operator_check. */
13189
13190static int
13191ada_operator_check (struct expression *exp, int pos,
13192 int (*objfile_func) (struct objfile *objfile, void *data),
13193 void *data)
13194{
13195 const union exp_element *const elts = exp->elts;
13196 struct type *type = NULL;
13197
13198 switch (elts[pos].opcode)
13199 {
13200 case UNOP_IN_RANGE:
13201 case UNOP_QUAL:
13202 type = elts[pos + 1].type;
13203 break;
13204
13205 default:
13206 return operator_check_standard (exp, pos, objfile_func, data);
13207 }
13208
13209 /* Invoke callbacks for TYPE and OBJFILE if they were set as non-NULL. */
13210
13211 if (type && TYPE_OBJFILE (type)
13212 && (*objfile_func) (TYPE_OBJFILE (type), data))
13213 return 1;
13214
13215 return 0;
13216}
13217
4c4b4cd2
PH
13218static char *
13219ada_op_name (enum exp_opcode opcode)
13220{
13221 switch (opcode)
13222 {
76a01679 13223 default:
4c4b4cd2 13224 return op_name_standard (opcode);
52ce6436 13225
4c4b4cd2
PH
13226#define OP_DEFN(op, len, args, binop) case op: return #op;
13227 ADA_OPERATORS;
13228#undef OP_DEFN
52ce6436
PH
13229
13230 case OP_AGGREGATE:
13231 return "OP_AGGREGATE";
13232 case OP_CHOICES:
13233 return "OP_CHOICES";
13234 case OP_NAME:
13235 return "OP_NAME";
4c4b4cd2
PH
13236 }
13237}
13238
13239/* As for operator_length, but assumes PC is pointing at the first
13240 element of the operator, and gives meaningful results only for the
52ce6436 13241 Ada-specific operators, returning 0 for *OPLENP and *ARGSP otherwise. */
4c4b4cd2
PH
13242
13243static void
76a01679
JB
13244ada_forward_operator_length (struct expression *exp, int pc,
13245 int *oplenp, int *argsp)
4c4b4cd2 13246{
76a01679 13247 switch (exp->elts[pc].opcode)
4c4b4cd2
PH
13248 {
13249 default:
13250 *oplenp = *argsp = 0;
13251 break;
52ce6436 13252
4c4b4cd2
PH
13253#define OP_DEFN(op, len, args, binop) \
13254 case op: *oplenp = len; *argsp = args; break;
13255 ADA_OPERATORS;
13256#undef OP_DEFN
52ce6436
PH
13257
13258 case OP_AGGREGATE:
13259 *oplenp = 3;
13260 *argsp = longest_to_int (exp->elts[pc + 1].longconst);
13261 break;
13262
13263 case OP_CHOICES:
13264 *oplenp = 3;
13265 *argsp = longest_to_int (exp->elts[pc + 1].longconst) + 1;
13266 break;
13267
13268 case OP_STRING:
13269 case OP_NAME:
13270 {
13271 int len = longest_to_int (exp->elts[pc + 1].longconst);
5b4ee69b 13272
52ce6436
PH
13273 *oplenp = 4 + BYTES_TO_EXP_ELEM (len + 1);
13274 *argsp = 0;
13275 break;
13276 }
4c4b4cd2
PH
13277 }
13278}
13279
13280static int
13281ada_dump_subexp_body (struct expression *exp, struct ui_file *stream, int elt)
13282{
13283 enum exp_opcode op = exp->elts[elt].opcode;
13284 int oplen, nargs;
13285 int pc = elt;
13286 int i;
76a01679 13287
4c4b4cd2
PH
13288 ada_forward_operator_length (exp, elt, &oplen, &nargs);
13289
76a01679 13290 switch (op)
4c4b4cd2 13291 {
76a01679 13292 /* Ada attributes ('Foo). */
4c4b4cd2
PH
13293 case OP_ATR_FIRST:
13294 case OP_ATR_LAST:
13295 case OP_ATR_LENGTH:
13296 case OP_ATR_IMAGE:
13297 case OP_ATR_MAX:
13298 case OP_ATR_MIN:
13299 case OP_ATR_MODULUS:
13300 case OP_ATR_POS:
13301 case OP_ATR_SIZE:
13302 case OP_ATR_TAG:
13303 case OP_ATR_VAL:
13304 break;
13305
13306 case UNOP_IN_RANGE:
13307 case UNOP_QUAL:
323e0a4a
AC
13308 /* XXX: gdb_sprint_host_address, type_sprint */
13309 fprintf_filtered (stream, _("Type @"));
4c4b4cd2
PH
13310 gdb_print_host_address (exp->elts[pc + 1].type, stream);
13311 fprintf_filtered (stream, " (");
13312 type_print (exp->elts[pc + 1].type, NULL, stream, 0);
13313 fprintf_filtered (stream, ")");
13314 break;
13315 case BINOP_IN_BOUNDS:
52ce6436
PH
13316 fprintf_filtered (stream, " (%d)",
13317 longest_to_int (exp->elts[pc + 2].longconst));
4c4b4cd2
PH
13318 break;
13319 case TERNOP_IN_RANGE:
13320 break;
13321
52ce6436
PH
13322 case OP_AGGREGATE:
13323 case OP_OTHERS:
13324 case OP_DISCRETE_RANGE:
13325 case OP_POSITIONAL:
13326 case OP_CHOICES:
13327 break;
13328
13329 case OP_NAME:
13330 case OP_STRING:
13331 {
13332 char *name = &exp->elts[elt + 2].string;
13333 int len = longest_to_int (exp->elts[elt + 1].longconst);
5b4ee69b 13334
52ce6436
PH
13335 fprintf_filtered (stream, "Text: `%.*s'", len, name);
13336 break;
13337 }
13338
4c4b4cd2
PH
13339 default:
13340 return dump_subexp_body_standard (exp, stream, elt);
13341 }
13342
13343 elt += oplen;
13344 for (i = 0; i < nargs; i += 1)
13345 elt = dump_subexp (exp, stream, elt);
13346
13347 return elt;
13348}
13349
13350/* The Ada extension of print_subexp (q.v.). */
13351
76a01679
JB
13352static void
13353ada_print_subexp (struct expression *exp, int *pos,
13354 struct ui_file *stream, enum precedence prec)
4c4b4cd2 13355{
52ce6436 13356 int oplen, nargs, i;
4c4b4cd2
PH
13357 int pc = *pos;
13358 enum exp_opcode op = exp->elts[pc].opcode;
13359
13360 ada_forward_operator_length (exp, pc, &oplen, &nargs);
13361
52ce6436 13362 *pos += oplen;
4c4b4cd2
PH
13363 switch (op)
13364 {
13365 default:
52ce6436 13366 *pos -= oplen;
4c4b4cd2
PH
13367 print_subexp_standard (exp, pos, stream, prec);
13368 return;
13369
13370 case OP_VAR_VALUE:
4c4b4cd2
PH
13371 fputs_filtered (SYMBOL_NATURAL_NAME (exp->elts[pc + 2].symbol), stream);
13372 return;
13373
13374 case BINOP_IN_BOUNDS:
323e0a4a 13375 /* XXX: sprint_subexp */
4c4b4cd2 13376 print_subexp (exp, pos, stream, PREC_SUFFIX);
0b48a291 13377 fputs_filtered (" in ", stream);
4c4b4cd2 13378 print_subexp (exp, pos, stream, PREC_SUFFIX);
0b48a291 13379 fputs_filtered ("'range", stream);
4c4b4cd2 13380 if (exp->elts[pc + 1].longconst > 1)
76a01679
JB
13381 fprintf_filtered (stream, "(%ld)",
13382 (long) exp->elts[pc + 1].longconst);
4c4b4cd2
PH
13383 return;
13384
13385 case TERNOP_IN_RANGE:
4c4b4cd2 13386 if (prec >= PREC_EQUAL)
76a01679 13387 fputs_filtered ("(", stream);
323e0a4a 13388 /* XXX: sprint_subexp */
4c4b4cd2 13389 print_subexp (exp, pos, stream, PREC_SUFFIX);
0b48a291 13390 fputs_filtered (" in ", stream);
4c4b4cd2
PH
13391 print_subexp (exp, pos, stream, PREC_EQUAL);
13392 fputs_filtered (" .. ", stream);
13393 print_subexp (exp, pos, stream, PREC_EQUAL);
13394 if (prec >= PREC_EQUAL)
76a01679
JB
13395 fputs_filtered (")", stream);
13396 return;
4c4b4cd2
PH
13397
13398 case OP_ATR_FIRST:
13399 case OP_ATR_LAST:
13400 case OP_ATR_LENGTH:
13401 case OP_ATR_IMAGE:
13402 case OP_ATR_MAX:
13403 case OP_ATR_MIN:
13404 case OP_ATR_MODULUS:
13405 case OP_ATR_POS:
13406 case OP_ATR_SIZE:
13407 case OP_ATR_TAG:
13408 case OP_ATR_VAL:
4c4b4cd2 13409 if (exp->elts[*pos].opcode == OP_TYPE)
76a01679
JB
13410 {
13411 if (TYPE_CODE (exp->elts[*pos + 1].type) != TYPE_CODE_VOID)
79d43c61
TT
13412 LA_PRINT_TYPE (exp->elts[*pos + 1].type, "", stream, 0, 0,
13413 &type_print_raw_options);
76a01679
JB
13414 *pos += 3;
13415 }
4c4b4cd2 13416 else
76a01679 13417 print_subexp (exp, pos, stream, PREC_SUFFIX);
4c4b4cd2
PH
13418 fprintf_filtered (stream, "'%s", ada_attribute_name (op));
13419 if (nargs > 1)
76a01679
JB
13420 {
13421 int tem;
5b4ee69b 13422
76a01679
JB
13423 for (tem = 1; tem < nargs; tem += 1)
13424 {
13425 fputs_filtered ((tem == 1) ? " (" : ", ", stream);
13426 print_subexp (exp, pos, stream, PREC_ABOVE_COMMA);
13427 }
13428 fputs_filtered (")", stream);
13429 }
4c4b4cd2 13430 return;
14f9c5c9 13431
4c4b4cd2 13432 case UNOP_QUAL:
4c4b4cd2
PH
13433 type_print (exp->elts[pc + 1].type, "", stream, 0);
13434 fputs_filtered ("'(", stream);
13435 print_subexp (exp, pos, stream, PREC_PREFIX);
13436 fputs_filtered (")", stream);
13437 return;
14f9c5c9 13438
4c4b4cd2 13439 case UNOP_IN_RANGE:
323e0a4a 13440 /* XXX: sprint_subexp */
4c4b4cd2 13441 print_subexp (exp, pos, stream, PREC_SUFFIX);
0b48a291 13442 fputs_filtered (" in ", stream);
79d43c61
TT
13443 LA_PRINT_TYPE (exp->elts[pc + 1].type, "", stream, 1, 0,
13444 &type_print_raw_options);
4c4b4cd2 13445 return;
52ce6436
PH
13446
13447 case OP_DISCRETE_RANGE:
13448 print_subexp (exp, pos, stream, PREC_SUFFIX);
13449 fputs_filtered ("..", stream);
13450 print_subexp (exp, pos, stream, PREC_SUFFIX);
13451 return;
13452
13453 case OP_OTHERS:
13454 fputs_filtered ("others => ", stream);
13455 print_subexp (exp, pos, stream, PREC_SUFFIX);
13456 return;
13457
13458 case OP_CHOICES:
13459 for (i = 0; i < nargs-1; i += 1)
13460 {
13461 if (i > 0)
13462 fputs_filtered ("|", stream);
13463 print_subexp (exp, pos, stream, PREC_SUFFIX);
13464 }
13465 fputs_filtered (" => ", stream);
13466 print_subexp (exp, pos, stream, PREC_SUFFIX);
13467 return;
13468
13469 case OP_POSITIONAL:
13470 print_subexp (exp, pos, stream, PREC_SUFFIX);
13471 return;
13472
13473 case OP_AGGREGATE:
13474 fputs_filtered ("(", stream);
13475 for (i = 0; i < nargs; i += 1)
13476 {
13477 if (i > 0)
13478 fputs_filtered (", ", stream);
13479 print_subexp (exp, pos, stream, PREC_SUFFIX);
13480 }
13481 fputs_filtered (")", stream);
13482 return;
4c4b4cd2
PH
13483 }
13484}
14f9c5c9
AS
13485
13486/* Table mapping opcodes into strings for printing operators
13487 and precedences of the operators. */
13488
d2e4a39e
AS
13489static const struct op_print ada_op_print_tab[] = {
13490 {":=", BINOP_ASSIGN, PREC_ASSIGN, 1},
13491 {"or else", BINOP_LOGICAL_OR, PREC_LOGICAL_OR, 0},
13492 {"and then", BINOP_LOGICAL_AND, PREC_LOGICAL_AND, 0},
13493 {"or", BINOP_BITWISE_IOR, PREC_BITWISE_IOR, 0},
13494 {"xor", BINOP_BITWISE_XOR, PREC_BITWISE_XOR, 0},
13495 {"and", BINOP_BITWISE_AND, PREC_BITWISE_AND, 0},
13496 {"=", BINOP_EQUAL, PREC_EQUAL, 0},
13497 {"/=", BINOP_NOTEQUAL, PREC_EQUAL, 0},
13498 {"<=", BINOP_LEQ, PREC_ORDER, 0},
13499 {">=", BINOP_GEQ, PREC_ORDER, 0},
13500 {">", BINOP_GTR, PREC_ORDER, 0},
13501 {"<", BINOP_LESS, PREC_ORDER, 0},
13502 {">>", BINOP_RSH, PREC_SHIFT, 0},
13503 {"<<", BINOP_LSH, PREC_SHIFT, 0},
13504 {"+", BINOP_ADD, PREC_ADD, 0},
13505 {"-", BINOP_SUB, PREC_ADD, 0},
13506 {"&", BINOP_CONCAT, PREC_ADD, 0},
13507 {"*", BINOP_MUL, PREC_MUL, 0},
13508 {"/", BINOP_DIV, PREC_MUL, 0},
13509 {"rem", BINOP_REM, PREC_MUL, 0},
13510 {"mod", BINOP_MOD, PREC_MUL, 0},
13511 {"**", BINOP_EXP, PREC_REPEAT, 0},
13512 {"@", BINOP_REPEAT, PREC_REPEAT, 0},
13513 {"-", UNOP_NEG, PREC_PREFIX, 0},
13514 {"+", UNOP_PLUS, PREC_PREFIX, 0},
13515 {"not ", UNOP_LOGICAL_NOT, PREC_PREFIX, 0},
13516 {"not ", UNOP_COMPLEMENT, PREC_PREFIX, 0},
13517 {"abs ", UNOP_ABS, PREC_PREFIX, 0},
4c4b4cd2
PH
13518 {".all", UNOP_IND, PREC_SUFFIX, 1},
13519 {"'access", UNOP_ADDR, PREC_SUFFIX, 1},
13520 {"'size", OP_ATR_SIZE, PREC_SUFFIX, 1},
d2e4a39e 13521 {NULL, 0, 0, 0}
14f9c5c9
AS
13522};
13523\f
72d5681a
PH
13524enum ada_primitive_types {
13525 ada_primitive_type_int,
13526 ada_primitive_type_long,
13527 ada_primitive_type_short,
13528 ada_primitive_type_char,
13529 ada_primitive_type_float,
13530 ada_primitive_type_double,
13531 ada_primitive_type_void,
13532 ada_primitive_type_long_long,
13533 ada_primitive_type_long_double,
13534 ada_primitive_type_natural,
13535 ada_primitive_type_positive,
13536 ada_primitive_type_system_address,
13537 nr_ada_primitive_types
13538};
6c038f32
PH
13539
13540static void
d4a9a881 13541ada_language_arch_info (struct gdbarch *gdbarch,
72d5681a
PH
13542 struct language_arch_info *lai)
13543{
d4a9a881 13544 const struct builtin_type *builtin = builtin_type (gdbarch);
5b4ee69b 13545
72d5681a 13546 lai->primitive_type_vector
d4a9a881 13547 = GDBARCH_OBSTACK_CALLOC (gdbarch, nr_ada_primitive_types + 1,
72d5681a 13548 struct type *);
e9bb382b
UW
13549
13550 lai->primitive_type_vector [ada_primitive_type_int]
13551 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
13552 0, "integer");
13553 lai->primitive_type_vector [ada_primitive_type_long]
13554 = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
13555 0, "long_integer");
13556 lai->primitive_type_vector [ada_primitive_type_short]
13557 = arch_integer_type (gdbarch, gdbarch_short_bit (gdbarch),
13558 0, "short_integer");
13559 lai->string_char_type
13560 = lai->primitive_type_vector [ada_primitive_type_char]
13561 = arch_integer_type (gdbarch, TARGET_CHAR_BIT, 0, "character");
13562 lai->primitive_type_vector [ada_primitive_type_float]
13563 = arch_float_type (gdbarch, gdbarch_float_bit (gdbarch),
13564 "float", NULL);
13565 lai->primitive_type_vector [ada_primitive_type_double]
13566 = arch_float_type (gdbarch, gdbarch_double_bit (gdbarch),
13567 "long_float", NULL);
13568 lai->primitive_type_vector [ada_primitive_type_long_long]
13569 = arch_integer_type (gdbarch, gdbarch_long_long_bit (gdbarch),
13570 0, "long_long_integer");
13571 lai->primitive_type_vector [ada_primitive_type_long_double]
13572 = arch_float_type (gdbarch, gdbarch_double_bit (gdbarch),
13573 "long_long_float", NULL);
13574 lai->primitive_type_vector [ada_primitive_type_natural]
13575 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
13576 0, "natural");
13577 lai->primitive_type_vector [ada_primitive_type_positive]
13578 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
13579 0, "positive");
13580 lai->primitive_type_vector [ada_primitive_type_void]
13581 = builtin->builtin_void;
13582
13583 lai->primitive_type_vector [ada_primitive_type_system_address]
13584 = lookup_pointer_type (arch_type (gdbarch, TYPE_CODE_VOID, 1, "void"));
72d5681a
PH
13585 TYPE_NAME (lai->primitive_type_vector [ada_primitive_type_system_address])
13586 = "system__address";
fbb06eb1 13587
47e729a8 13588 lai->bool_type_symbol = NULL;
fbb06eb1 13589 lai->bool_type_default = builtin->builtin_bool;
6c038f32 13590}
6c038f32
PH
13591\f
13592 /* Language vector */
13593
13594/* Not really used, but needed in the ada_language_defn. */
13595
13596static void
6c7a06a3 13597emit_char (int c, struct type *type, struct ui_file *stream, int quoter)
6c038f32 13598{
6c7a06a3 13599 ada_emit_char (c, type, stream, quoter, 1);
6c038f32
PH
13600}
13601
13602static int
410a0ff2 13603parse (struct parser_state *ps)
6c038f32
PH
13604{
13605 warnings_issued = 0;
410a0ff2 13606 return ada_parse (ps);
6c038f32
PH
13607}
13608
13609static const struct exp_descriptor ada_exp_descriptor = {
13610 ada_print_subexp,
13611 ada_operator_length,
c0201579 13612 ada_operator_check,
6c038f32
PH
13613 ada_op_name,
13614 ada_dump_subexp_body,
13615 ada_evaluate_subexp
13616};
13617
1a119f36 13618/* Implement the "la_get_symbol_name_cmp" language_defn method
74ccd7f5
JB
13619 for Ada. */
13620
1a119f36
JB
13621static symbol_name_cmp_ftype
13622ada_get_symbol_name_cmp (const char *lookup_name)
74ccd7f5
JB
13623{
13624 if (should_use_wild_match (lookup_name))
13625 return wild_match;
13626 else
13627 return compare_names;
13628}
13629
a5ee536b
JB
13630/* Implement the "la_read_var_value" language_defn method for Ada. */
13631
13632static struct value *
13633ada_read_var_value (struct symbol *var, struct frame_info *frame)
13634{
3977b71f 13635 const struct block *frame_block = NULL;
a5ee536b
JB
13636 struct symbol *renaming_sym = NULL;
13637
13638 /* The only case where default_read_var_value is not sufficient
13639 is when VAR is a renaming... */
13640 if (frame)
13641 frame_block = get_frame_block (frame, NULL);
13642 if (frame_block)
13643 renaming_sym = ada_find_renaming_symbol (var, frame_block);
13644 if (renaming_sym != NULL)
13645 return ada_read_renaming_var_value (renaming_sym, frame_block);
13646
13647 /* This is a typical case where we expect the default_read_var_value
13648 function to work. */
13649 return default_read_var_value (var, frame);
13650}
13651
6c038f32
PH
13652const struct language_defn ada_language_defn = {
13653 "ada", /* Language name */
6abde28f 13654 "Ada",
6c038f32 13655 language_ada,
6c038f32 13656 range_check_off,
6c038f32
PH
13657 case_sensitive_on, /* Yes, Ada is case-insensitive, but
13658 that's not quite what this means. */
6c038f32 13659 array_row_major,
9a044a89 13660 macro_expansion_no,
6c038f32
PH
13661 &ada_exp_descriptor,
13662 parse,
13663 ada_error,
13664 resolve,
13665 ada_printchar, /* Print a character constant */
13666 ada_printstr, /* Function to print string constant */
13667 emit_char, /* Function to print single char (not used) */
6c038f32 13668 ada_print_type, /* Print a type using appropriate syntax */
be942545 13669 ada_print_typedef, /* Print a typedef using appropriate syntax */
6c038f32
PH
13670 ada_val_print, /* Print a value using appropriate syntax */
13671 ada_value_print, /* Print a top-level value */
a5ee536b 13672 ada_read_var_value, /* la_read_var_value */
6c038f32 13673 NULL, /* Language specific skip_trampoline */
2b2d9e11 13674 NULL, /* name_of_this */
6c038f32
PH
13675 ada_lookup_symbol_nonlocal, /* Looking up non-local symbols. */
13676 basic_lookup_transparent_type, /* lookup_transparent_type */
13677 ada_la_decode, /* Language specific symbol demangler */
0963b4bd
MS
13678 NULL, /* Language specific
13679 class_name_from_physname */
6c038f32
PH
13680 ada_op_print_tab, /* expression operators for printing */
13681 0, /* c-style arrays */
13682 1, /* String lower bound */
6c038f32 13683 ada_get_gdb_completer_word_break_characters,
41d27058 13684 ada_make_symbol_completion_list,
72d5681a 13685 ada_language_arch_info,
e79af960 13686 ada_print_array_index,
41f1b697 13687 default_pass_by_reference,
ae6a3a4c 13688 c_get_string,
1a119f36 13689 ada_get_symbol_name_cmp, /* la_get_symbol_name_cmp */
f8eba3c6 13690 ada_iterate_over_symbols,
a53b64ea 13691 &ada_varobj_ops,
bb2ec1b3
TT
13692 NULL,
13693 NULL,
6c038f32
PH
13694 LANG_MAGIC
13695};
13696
2c0b251b
PA
13697/* Provide a prototype to silence -Wmissing-prototypes. */
13698extern initialize_file_ftype _initialize_ada_language;
13699
5bf03f13
JB
13700/* Command-list for the "set/show ada" prefix command. */
13701static struct cmd_list_element *set_ada_list;
13702static struct cmd_list_element *show_ada_list;
13703
13704/* Implement the "set ada" prefix command. */
13705
13706static void
13707set_ada_command (char *arg, int from_tty)
13708{
13709 printf_unfiltered (_(\
13710"\"set ada\" must be followed by the name of a setting.\n"));
635c7e8a 13711 help_list (set_ada_list, "set ada ", all_commands, gdb_stdout);
5bf03f13
JB
13712}
13713
13714/* Implement the "show ada" prefix command. */
13715
13716static void
13717show_ada_command (char *args, int from_tty)
13718{
13719 cmd_show_list (show_ada_list, from_tty, "");
13720}
13721
2060206e
PA
13722static void
13723initialize_ada_catchpoint_ops (void)
13724{
13725 struct breakpoint_ops *ops;
13726
13727 initialize_breakpoint_ops ();
13728
13729 ops = &catch_exception_breakpoint_ops;
13730 *ops = bkpt_breakpoint_ops;
13731 ops->dtor = dtor_catch_exception;
13732 ops->allocate_location = allocate_location_catch_exception;
13733 ops->re_set = re_set_catch_exception;
13734 ops->check_status = check_status_catch_exception;
13735 ops->print_it = print_it_catch_exception;
13736 ops->print_one = print_one_catch_exception;
13737 ops->print_mention = print_mention_catch_exception;
13738 ops->print_recreate = print_recreate_catch_exception;
13739
13740 ops = &catch_exception_unhandled_breakpoint_ops;
13741 *ops = bkpt_breakpoint_ops;
13742 ops->dtor = dtor_catch_exception_unhandled;
13743 ops->allocate_location = allocate_location_catch_exception_unhandled;
13744 ops->re_set = re_set_catch_exception_unhandled;
13745 ops->check_status = check_status_catch_exception_unhandled;
13746 ops->print_it = print_it_catch_exception_unhandled;
13747 ops->print_one = print_one_catch_exception_unhandled;
13748 ops->print_mention = print_mention_catch_exception_unhandled;
13749 ops->print_recreate = print_recreate_catch_exception_unhandled;
13750
13751 ops = &catch_assert_breakpoint_ops;
13752 *ops = bkpt_breakpoint_ops;
13753 ops->dtor = dtor_catch_assert;
13754 ops->allocate_location = allocate_location_catch_assert;
13755 ops->re_set = re_set_catch_assert;
13756 ops->check_status = check_status_catch_assert;
13757 ops->print_it = print_it_catch_assert;
13758 ops->print_one = print_one_catch_assert;
13759 ops->print_mention = print_mention_catch_assert;
13760 ops->print_recreate = print_recreate_catch_assert;
13761}
13762
3d9434b5
JB
13763/* This module's 'new_objfile' observer. */
13764
13765static void
13766ada_new_objfile_observer (struct objfile *objfile)
13767{
13768 ada_clear_symbol_cache ();
13769}
13770
13771/* This module's 'free_objfile' observer. */
13772
13773static void
13774ada_free_objfile_observer (struct objfile *objfile)
13775{
13776 ada_clear_symbol_cache ();
13777}
13778
d2e4a39e 13779void
6c038f32 13780_initialize_ada_language (void)
14f9c5c9 13781{
6c038f32
PH
13782 add_language (&ada_language_defn);
13783
2060206e
PA
13784 initialize_ada_catchpoint_ops ();
13785
5bf03f13
JB
13786 add_prefix_cmd ("ada", no_class, set_ada_command,
13787 _("Prefix command for changing Ada-specfic settings"),
13788 &set_ada_list, "set ada ", 0, &setlist);
13789
13790 add_prefix_cmd ("ada", no_class, show_ada_command,
13791 _("Generic command for showing Ada-specific settings."),
13792 &show_ada_list, "show ada ", 0, &showlist);
13793
13794 add_setshow_boolean_cmd ("trust-PAD-over-XVS", class_obscure,
13795 &trust_pad_over_xvs, _("\
13796Enable or disable an optimization trusting PAD types over XVS types"), _("\
13797Show whether an optimization trusting PAD types over XVS types is activated"),
13798 _("\
13799This is related to the encoding used by the GNAT compiler. The debugger\n\
13800should normally trust the contents of PAD types, but certain older versions\n\
13801of GNAT have a bug that sometimes causes the information in the PAD type\n\
13802to be incorrect. Turning this setting \"off\" allows the debugger to\n\
13803work around this bug. It is always safe to turn this option \"off\", but\n\
13804this incurs a slight performance penalty, so it is recommended to NOT change\n\
13805this option to \"off\" unless necessary."),
13806 NULL, NULL, &set_ada_list, &show_ada_list);
13807
9ac4176b
PA
13808 add_catch_command ("exception", _("\
13809Catch Ada exceptions, when raised.\n\
13810With an argument, catch only exceptions with the given name."),
13811 catch_ada_exception_command,
13812 NULL,
13813 CATCH_PERMANENT,
13814 CATCH_TEMPORARY);
13815 add_catch_command ("assert", _("\
13816Catch failed Ada assertions, when raised.\n\
13817With an argument, catch only exceptions with the given name."),
13818 catch_assert_command,
13819 NULL,
13820 CATCH_PERMANENT,
13821 CATCH_TEMPORARY);
13822
6c038f32 13823 varsize_limit = 65536;
6c038f32 13824
778865d3
JB
13825 add_info ("exceptions", info_exceptions_command,
13826 _("\
13827List all Ada exception names.\n\
13828If a regular expression is passed as an argument, only those matching\n\
13829the regular expression are listed."));
13830
c6044dd1
JB
13831 add_prefix_cmd ("ada", class_maintenance, maint_set_ada_cmd,
13832 _("Set Ada maintenance-related variables."),
13833 &maint_set_ada_cmdlist, "maintenance set ada ",
13834 0/*allow-unknown*/, &maintenance_set_cmdlist);
13835
13836 add_prefix_cmd ("ada", class_maintenance, maint_show_ada_cmd,
13837 _("Show Ada maintenance-related variables"),
13838 &maint_show_ada_cmdlist, "maintenance show ada ",
13839 0/*allow-unknown*/, &maintenance_show_cmdlist);
13840
13841 add_setshow_boolean_cmd
13842 ("ignore-descriptive-types", class_maintenance,
13843 &ada_ignore_descriptive_types_p,
13844 _("Set whether descriptive types generated by GNAT should be ignored."),
13845 _("Show whether descriptive types generated by GNAT should be ignored."),
13846 _("\
13847When enabled, the debugger will stop using the DW_AT_GNAT_descriptive_type\n\
13848DWARF attribute."),
13849 NULL, NULL, &maint_set_ada_cmdlist, &maint_show_ada_cmdlist);
13850
6c038f32
PH
13851 obstack_init (&symbol_list_obstack);
13852
13853 decoded_names_store = htab_create_alloc
13854 (256, htab_hash_string, (int (*)(const void *, const void *)) streq,
13855 NULL, xcalloc, xfree);
6b69afc4 13856
3d9434b5
JB
13857 /* The ada-lang observers. */
13858 observer_attach_new_objfile (ada_new_objfile_observer);
13859 observer_attach_free_objfile (ada_free_objfile_observer);
e802dbe0 13860 observer_attach_inferior_exit (ada_inferior_exit);
ee01b665
JB
13861
13862 /* Setup various context-specific data. */
e802dbe0 13863 ada_inferior_data
8e260fc0 13864 = register_inferior_data_with_cleanup (NULL, ada_inferior_data_cleanup);
ee01b665
JB
13865 ada_pspace_data_handle
13866 = register_program_space_data_with_cleanup (NULL, ada_pspace_data_cleanup);
14f9c5c9 13867}