]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blame - gdb/ada-lang.c
buildsym API cleanup
[thirdparty/binutils-gdb.git] / gdb / ada-lang.c
CommitLineData
6e681866 1/* Ada language support routines for GDB, the GNU debugger.
10a2c479 2
ecd75fc8 3 Copyright (C) 1992-2014 Free Software Foundation, Inc.
14f9c5c9 4
a9762ec7 5 This file is part of GDB.
14f9c5c9 6
a9762ec7
JB
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
14f9c5c9 11
a9762ec7
JB
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
14f9c5c9 16
a9762ec7
JB
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
14f9c5c9 19
96d887e8 20
4c4b4cd2 21#include "defs.h"
14f9c5c9 22#include <ctype.h>
14f9c5c9 23#include "demangle.h"
4c4b4cd2
PH
24#include "gdb_regex.h"
25#include "frame.h"
14f9c5c9
AS
26#include "symtab.h"
27#include "gdbtypes.h"
28#include "gdbcmd.h"
29#include "expression.h"
30#include "parser-defs.h"
31#include "language.h"
a53b64ea 32#include "varobj.h"
14f9c5c9
AS
33#include "c-lang.h"
34#include "inferior.h"
35#include "symfile.h"
36#include "objfiles.h"
37#include "breakpoint.h"
38#include "gdbcore.h"
4c4b4cd2
PH
39#include "hashtab.h"
40#include "gdb_obstack.h"
14f9c5c9 41#include "ada-lang.h"
4c4b4cd2 42#include "completer.h"
53ce3c39 43#include <sys/stat.h>
14f9c5c9 44#include "ui-out.h"
fe898f56 45#include "block.h"
04714b91 46#include "infcall.h"
de4f826b 47#include "dictionary.h"
f7f9143b
JB
48#include "annotate.h"
49#include "valprint.h"
9bbc9174 50#include "source.h"
0259addd 51#include "observer.h"
2ba95b9b 52#include "vec.h"
692465f1 53#include "stack.h"
fa864999 54#include "gdb_vecs.h"
79d43c61 55#include "typeprint.h"
14f9c5c9 56
ccefe4c4 57#include "psymtab.h"
40bc484c 58#include "value.h"
956a9fb9 59#include "mi/mi-common.h"
9ac4176b 60#include "arch-utils.h"
0fcd72ba 61#include "cli/cli-utils.h"
ccefe4c4 62
4c4b4cd2 63/* Define whether or not the C operator '/' truncates towards zero for
0963b4bd 64 differently signed operands (truncation direction is undefined in C).
4c4b4cd2
PH
65 Copied from valarith.c. */
66
67#ifndef TRUNCATION_TOWARDS_ZERO
68#define TRUNCATION_TOWARDS_ZERO ((-5 / 2) == -2)
69#endif
70
d2e4a39e 71static struct type *desc_base_type (struct type *);
14f9c5c9 72
d2e4a39e 73static struct type *desc_bounds_type (struct type *);
14f9c5c9 74
d2e4a39e 75static struct value *desc_bounds (struct value *);
14f9c5c9 76
d2e4a39e 77static int fat_pntr_bounds_bitpos (struct type *);
14f9c5c9 78
d2e4a39e 79static int fat_pntr_bounds_bitsize (struct type *);
14f9c5c9 80
556bdfd4 81static struct type *desc_data_target_type (struct type *);
14f9c5c9 82
d2e4a39e 83static struct value *desc_data (struct value *);
14f9c5c9 84
d2e4a39e 85static int fat_pntr_data_bitpos (struct type *);
14f9c5c9 86
d2e4a39e 87static int fat_pntr_data_bitsize (struct type *);
14f9c5c9 88
d2e4a39e 89static struct value *desc_one_bound (struct value *, int, int);
14f9c5c9 90
d2e4a39e 91static int desc_bound_bitpos (struct type *, int, int);
14f9c5c9 92
d2e4a39e 93static int desc_bound_bitsize (struct type *, int, int);
14f9c5c9 94
d2e4a39e 95static struct type *desc_index_type (struct type *, int);
14f9c5c9 96
d2e4a39e 97static int desc_arity (struct type *);
14f9c5c9 98
d2e4a39e 99static int ada_type_match (struct type *, struct type *, int);
14f9c5c9 100
d2e4a39e 101static int ada_args_match (struct symbol *, struct value **, int);
14f9c5c9 102
40658b94
PH
103static int full_match (const char *, const char *);
104
40bc484c 105static struct value *make_array_descriptor (struct type *, struct value *);
14f9c5c9 106
4c4b4cd2 107static void ada_add_block_symbols (struct obstack *,
f0c5f9b2 108 const struct block *, const char *,
2570f2b7 109 domain_enum, struct objfile *, int);
14f9c5c9 110
4c4b4cd2 111static int is_nonfunction (struct ada_symbol_info *, int);
14f9c5c9 112
76a01679 113static void add_defn_to_vec (struct obstack *, struct symbol *,
f0c5f9b2 114 const struct block *);
14f9c5c9 115
4c4b4cd2
PH
116static int num_defns_collected (struct obstack *);
117
118static struct ada_symbol_info *defns_collected (struct obstack *, int);
14f9c5c9 119
4c4b4cd2 120static struct value *resolve_subexp (struct expression **, int *, int,
76a01679 121 struct type *);
14f9c5c9 122
d2e4a39e 123static void replace_operator_with_call (struct expression **, int, int, int,
270140bd 124 struct symbol *, const struct block *);
14f9c5c9 125
d2e4a39e 126static int possible_user_operator_p (enum exp_opcode, struct value **);
14f9c5c9 127
4c4b4cd2
PH
128static char *ada_op_name (enum exp_opcode);
129
130static const char *ada_decoded_op_name (enum exp_opcode);
14f9c5c9 131
d2e4a39e 132static int numeric_type_p (struct type *);
14f9c5c9 133
d2e4a39e 134static int integer_type_p (struct type *);
14f9c5c9 135
d2e4a39e 136static int scalar_type_p (struct type *);
14f9c5c9 137
d2e4a39e 138static int discrete_type_p (struct type *);
14f9c5c9 139
aeb5907d
JB
140static enum ada_renaming_category parse_old_style_renaming (struct type *,
141 const char **,
142 int *,
143 const char **);
144
145static struct symbol *find_old_style_renaming_symbol (const char *,
270140bd 146 const struct block *);
aeb5907d 147
4c4b4cd2 148static struct type *ada_lookup_struct_elt_type (struct type *, char *,
76a01679 149 int, int, int *);
4c4b4cd2 150
d2e4a39e 151static struct value *evaluate_subexp_type (struct expression *, int *);
14f9c5c9 152
b4ba55a1
JB
153static struct type *ada_find_parallel_type_with_name (struct type *,
154 const char *);
155
d2e4a39e 156static int is_dynamic_field (struct type *, int);
14f9c5c9 157
10a2c479 158static struct type *to_fixed_variant_branch_type (struct type *,
fc1a4b47 159 const gdb_byte *,
4c4b4cd2
PH
160 CORE_ADDR, struct value *);
161
162static struct type *to_fixed_array_type (struct type *, struct value *, int);
14f9c5c9 163
28c85d6c 164static struct type *to_fixed_range_type (struct type *, struct value *);
14f9c5c9 165
d2e4a39e 166static struct type *to_static_fixed_type (struct type *);
f192137b 167static struct type *static_unwrap_type (struct type *type);
14f9c5c9 168
d2e4a39e 169static struct value *unwrap_value (struct value *);
14f9c5c9 170
ad82864c 171static struct type *constrained_packed_array_type (struct type *, long *);
14f9c5c9 172
ad82864c 173static struct type *decode_constrained_packed_array_type (struct type *);
14f9c5c9 174
ad82864c
JB
175static long decode_packed_array_bitsize (struct type *);
176
177static struct value *decode_constrained_packed_array (struct value *);
178
179static int ada_is_packed_array_type (struct type *);
180
181static int ada_is_unconstrained_packed_array_type (struct type *);
14f9c5c9 182
d2e4a39e 183static struct value *value_subscript_packed (struct value *, int,
4c4b4cd2 184 struct value **);
14f9c5c9 185
50810684 186static void move_bits (gdb_byte *, int, const gdb_byte *, int, int, int);
52ce6436 187
4c4b4cd2
PH
188static struct value *coerce_unspec_val_to_type (struct value *,
189 struct type *);
14f9c5c9 190
d2e4a39e 191static struct value *get_var_value (char *, char *);
14f9c5c9 192
d2e4a39e 193static int lesseq_defined_than (struct symbol *, struct symbol *);
14f9c5c9 194
d2e4a39e 195static int equiv_types (struct type *, struct type *);
14f9c5c9 196
d2e4a39e 197static int is_name_suffix (const char *);
14f9c5c9 198
73589123
PH
199static int advance_wild_match (const char **, const char *, int);
200
201static int wild_match (const char *, const char *);
14f9c5c9 202
d2e4a39e 203static struct value *ada_coerce_ref (struct value *);
14f9c5c9 204
4c4b4cd2
PH
205static LONGEST pos_atr (struct value *);
206
3cb382c9 207static struct value *value_pos_atr (struct type *, struct value *);
14f9c5c9 208
d2e4a39e 209static struct value *value_val_atr (struct type *, struct value *);
14f9c5c9 210
4c4b4cd2
PH
211static struct symbol *standard_lookup (const char *, const struct block *,
212 domain_enum);
14f9c5c9 213
4c4b4cd2
PH
214static struct value *ada_search_struct_field (char *, struct value *, int,
215 struct type *);
216
217static struct value *ada_value_primitive_field (struct value *, int, int,
218 struct type *);
219
0d5cff50 220static int find_struct_field (const char *, struct type *, int,
52ce6436 221 struct type **, int *, int *, int *, int *);
4c4b4cd2
PH
222
223static struct value *ada_to_fixed_value_create (struct type *, CORE_ADDR,
224 struct value *);
225
4c4b4cd2
PH
226static int ada_resolve_function (struct ada_symbol_info *, int,
227 struct value **, int, const char *,
228 struct type *);
229
4c4b4cd2
PH
230static int ada_is_direct_array_type (struct type *);
231
72d5681a
PH
232static void ada_language_arch_info (struct gdbarch *,
233 struct language_arch_info *);
714e53ab
PH
234
235static void check_size (const struct type *);
52ce6436
PH
236
237static struct value *ada_index_struct_field (int, struct value *, int,
238 struct type *);
239
240static struct value *assign_aggregate (struct value *, struct value *,
0963b4bd
MS
241 struct expression *,
242 int *, enum noside);
52ce6436
PH
243
244static void aggregate_assign_from_choices (struct value *, struct value *,
245 struct expression *,
246 int *, LONGEST *, int *,
247 int, LONGEST, LONGEST);
248
249static void aggregate_assign_positional (struct value *, struct value *,
250 struct expression *,
251 int *, LONGEST *, int *, int,
252 LONGEST, LONGEST);
253
254
255static void aggregate_assign_others (struct value *, struct value *,
256 struct expression *,
257 int *, LONGEST *, int, LONGEST, LONGEST);
258
259
260static void add_component_interval (LONGEST, LONGEST, LONGEST *, int *, int);
261
262
263static struct value *ada_evaluate_subexp (struct type *, struct expression *,
264 int *, enum noside);
265
266static void ada_forward_operator_length (struct expression *, int, int *,
267 int *);
852dff6c
JB
268
269static struct type *ada_find_any_type (const char *name);
4c4b4cd2
PH
270\f
271
ee01b665
JB
272/* The result of a symbol lookup to be stored in our symbol cache. */
273
274struct cache_entry
275{
276 /* The name used to perform the lookup. */
277 const char *name;
278 /* The namespace used during the lookup. */
279 domain_enum namespace;
280 /* The symbol returned by the lookup, or NULL if no matching symbol
281 was found. */
282 struct symbol *sym;
283 /* The block where the symbol was found, or NULL if no matching
284 symbol was found. */
285 const struct block *block;
286 /* A pointer to the next entry with the same hash. */
287 struct cache_entry *next;
288};
289
290/* The Ada symbol cache, used to store the result of Ada-mode symbol
291 lookups in the course of executing the user's commands.
292
293 The cache is implemented using a simple, fixed-sized hash.
294 The size is fixed on the grounds that there are not likely to be
295 all that many symbols looked up during any given session, regardless
296 of the size of the symbol table. If we decide to go to a resizable
297 table, let's just use the stuff from libiberty instead. */
298
299#define HASH_SIZE 1009
300
301struct ada_symbol_cache
302{
303 /* An obstack used to store the entries in our cache. */
304 struct obstack cache_space;
305
306 /* The root of the hash table used to implement our symbol cache. */
307 struct cache_entry *root[HASH_SIZE];
308};
309
310static void ada_free_symbol_cache (struct ada_symbol_cache *sym_cache);
76a01679 311
4c4b4cd2 312/* Maximum-sized dynamic type. */
14f9c5c9
AS
313static unsigned int varsize_limit;
314
4c4b4cd2
PH
315/* FIXME: brobecker/2003-09-17: No longer a const because it is
316 returned by a function that does not return a const char *. */
317static char *ada_completer_word_break_characters =
318#ifdef VMS
319 " \t\n!@#%^&*()+=|~`}{[]\";:?/,-";
320#else
14f9c5c9 321 " \t\n!@#$%^&*()+=|~`}{[]\";:?/,-";
4c4b4cd2 322#endif
14f9c5c9 323
4c4b4cd2 324/* The name of the symbol to use to get the name of the main subprogram. */
76a01679 325static const char ADA_MAIN_PROGRAM_SYMBOL_NAME[]
4c4b4cd2 326 = "__gnat_ada_main_program_name";
14f9c5c9 327
4c4b4cd2
PH
328/* Limit on the number of warnings to raise per expression evaluation. */
329static int warning_limit = 2;
330
331/* Number of warning messages issued; reset to 0 by cleanups after
332 expression evaluation. */
333static int warnings_issued = 0;
334
335static const char *known_runtime_file_name_patterns[] = {
336 ADA_KNOWN_RUNTIME_FILE_NAME_PATTERNS NULL
337};
338
339static const char *known_auxiliary_function_name_patterns[] = {
340 ADA_KNOWN_AUXILIARY_FUNCTION_NAME_PATTERNS NULL
341};
342
343/* Space for allocating results of ada_lookup_symbol_list. */
344static struct obstack symbol_list_obstack;
345
c6044dd1
JB
346/* Maintenance-related settings for this module. */
347
348static struct cmd_list_element *maint_set_ada_cmdlist;
349static struct cmd_list_element *maint_show_ada_cmdlist;
350
351/* Implement the "maintenance set ada" (prefix) command. */
352
353static void
354maint_set_ada_cmd (char *args, int from_tty)
355{
635c7e8a
TT
356 help_list (maint_set_ada_cmdlist, "maintenance set ada ", all_commands,
357 gdb_stdout);
c6044dd1
JB
358}
359
360/* Implement the "maintenance show ada" (prefix) command. */
361
362static void
363maint_show_ada_cmd (char *args, int from_tty)
364{
365 cmd_show_list (maint_show_ada_cmdlist, from_tty, "");
366}
367
368/* The "maintenance ada set/show ignore-descriptive-type" value. */
369
370static int ada_ignore_descriptive_types_p = 0;
371
e802dbe0
JB
372 /* Inferior-specific data. */
373
374/* Per-inferior data for this module. */
375
376struct ada_inferior_data
377{
378 /* The ada__tags__type_specific_data type, which is used when decoding
379 tagged types. With older versions of GNAT, this type was directly
380 accessible through a component ("tsd") in the object tag. But this
381 is no longer the case, so we cache it for each inferior. */
382 struct type *tsd_type;
3eecfa55
JB
383
384 /* The exception_support_info data. This data is used to determine
385 how to implement support for Ada exception catchpoints in a given
386 inferior. */
387 const struct exception_support_info *exception_info;
e802dbe0
JB
388};
389
390/* Our key to this module's inferior data. */
391static const struct inferior_data *ada_inferior_data;
392
393/* A cleanup routine for our inferior data. */
394static void
395ada_inferior_data_cleanup (struct inferior *inf, void *arg)
396{
397 struct ada_inferior_data *data;
398
399 data = inferior_data (inf, ada_inferior_data);
400 if (data != NULL)
401 xfree (data);
402}
403
404/* Return our inferior data for the given inferior (INF).
405
406 This function always returns a valid pointer to an allocated
407 ada_inferior_data structure. If INF's inferior data has not
408 been previously set, this functions creates a new one with all
409 fields set to zero, sets INF's inferior to it, and then returns
410 a pointer to that newly allocated ada_inferior_data. */
411
412static struct ada_inferior_data *
413get_ada_inferior_data (struct inferior *inf)
414{
415 struct ada_inferior_data *data;
416
417 data = inferior_data (inf, ada_inferior_data);
418 if (data == NULL)
419 {
41bf6aca 420 data = XCNEW (struct ada_inferior_data);
e802dbe0
JB
421 set_inferior_data (inf, ada_inferior_data, data);
422 }
423
424 return data;
425}
426
427/* Perform all necessary cleanups regarding our module's inferior data
428 that is required after the inferior INF just exited. */
429
430static void
431ada_inferior_exit (struct inferior *inf)
432{
433 ada_inferior_data_cleanup (inf, NULL);
434 set_inferior_data (inf, ada_inferior_data, NULL);
435}
436
ee01b665
JB
437
438 /* program-space-specific data. */
439
440/* This module's per-program-space data. */
441struct ada_pspace_data
442{
443 /* The Ada symbol cache. */
444 struct ada_symbol_cache *sym_cache;
445};
446
447/* Key to our per-program-space data. */
448static const struct program_space_data *ada_pspace_data_handle;
449
450/* Return this module's data for the given program space (PSPACE).
451 If not is found, add a zero'ed one now.
452
453 This function always returns a valid object. */
454
455static struct ada_pspace_data *
456get_ada_pspace_data (struct program_space *pspace)
457{
458 struct ada_pspace_data *data;
459
460 data = program_space_data (pspace, ada_pspace_data_handle);
461 if (data == NULL)
462 {
463 data = XCNEW (struct ada_pspace_data);
464 set_program_space_data (pspace, ada_pspace_data_handle, data);
465 }
466
467 return data;
468}
469
470/* The cleanup callback for this module's per-program-space data. */
471
472static void
473ada_pspace_data_cleanup (struct program_space *pspace, void *data)
474{
475 struct ada_pspace_data *pspace_data = data;
476
477 if (pspace_data->sym_cache != NULL)
478 ada_free_symbol_cache (pspace_data->sym_cache);
479 xfree (pspace_data);
480}
481
4c4b4cd2
PH
482 /* Utilities */
483
720d1a40 484/* If TYPE is a TYPE_CODE_TYPEDEF type, return the target type after
eed9788b 485 all typedef layers have been peeled. Otherwise, return TYPE.
720d1a40
JB
486
487 Normally, we really expect a typedef type to only have 1 typedef layer.
488 In other words, we really expect the target type of a typedef type to be
489 a non-typedef type. This is particularly true for Ada units, because
490 the language does not have a typedef vs not-typedef distinction.
491 In that respect, the Ada compiler has been trying to eliminate as many
492 typedef definitions in the debugging information, since they generally
493 do not bring any extra information (we still use typedef under certain
494 circumstances related mostly to the GNAT encoding).
495
496 Unfortunately, we have seen situations where the debugging information
497 generated by the compiler leads to such multiple typedef layers. For
498 instance, consider the following example with stabs:
499
500 .stabs "pck__float_array___XUP:Tt(0,46)=s16P_ARRAY:(0,47)=[...]"[...]
501 .stabs "pck__float_array___XUP:t(0,36)=(0,46)",128,0,6,0
502
503 This is an error in the debugging information which causes type
504 pck__float_array___XUP to be defined twice, and the second time,
505 it is defined as a typedef of a typedef.
506
507 This is on the fringe of legality as far as debugging information is
508 concerned, and certainly unexpected. But it is easy to handle these
509 situations correctly, so we can afford to be lenient in this case. */
510
511static struct type *
512ada_typedef_target_type (struct type *type)
513{
514 while (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
515 type = TYPE_TARGET_TYPE (type);
516 return type;
517}
518
41d27058
JB
519/* Given DECODED_NAME a string holding a symbol name in its
520 decoded form (ie using the Ada dotted notation), returns
521 its unqualified name. */
522
523static const char *
524ada_unqualified_name (const char *decoded_name)
525{
526 const char *result = strrchr (decoded_name, '.');
527
528 if (result != NULL)
529 result++; /* Skip the dot... */
530 else
531 result = decoded_name;
532
533 return result;
534}
535
536/* Return a string starting with '<', followed by STR, and '>'.
537 The result is good until the next call. */
538
539static char *
540add_angle_brackets (const char *str)
541{
542 static char *result = NULL;
543
544 xfree (result);
88c15c34 545 result = xstrprintf ("<%s>", str);
41d27058
JB
546 return result;
547}
96d887e8 548
4c4b4cd2
PH
549static char *
550ada_get_gdb_completer_word_break_characters (void)
551{
552 return ada_completer_word_break_characters;
553}
554
e79af960
JB
555/* Print an array element index using the Ada syntax. */
556
557static void
558ada_print_array_index (struct value *index_value, struct ui_file *stream,
79a45b7d 559 const struct value_print_options *options)
e79af960 560{
79a45b7d 561 LA_VALUE_PRINT (index_value, stream, options);
e79af960
JB
562 fprintf_filtered (stream, " => ");
563}
564
f27cf670 565/* Assuming VECT points to an array of *SIZE objects of size
14f9c5c9 566 ELEMENT_SIZE, grow it to contain at least MIN_SIZE objects,
f27cf670 567 updating *SIZE as necessary and returning the (new) array. */
14f9c5c9 568
f27cf670
AS
569void *
570grow_vect (void *vect, size_t *size, size_t min_size, int element_size)
14f9c5c9 571{
d2e4a39e
AS
572 if (*size < min_size)
573 {
574 *size *= 2;
575 if (*size < min_size)
4c4b4cd2 576 *size = min_size;
f27cf670 577 vect = xrealloc (vect, *size * element_size);
d2e4a39e 578 }
f27cf670 579 return vect;
14f9c5c9
AS
580}
581
582/* True (non-zero) iff TARGET matches FIELD_NAME up to any trailing
4c4b4cd2 583 suffix of FIELD_NAME beginning "___". */
14f9c5c9
AS
584
585static int
ebf56fd3 586field_name_match (const char *field_name, const char *target)
14f9c5c9
AS
587{
588 int len = strlen (target);
5b4ee69b 589
d2e4a39e 590 return
4c4b4cd2
PH
591 (strncmp (field_name, target, len) == 0
592 && (field_name[len] == '\0'
593 || (strncmp (field_name + len, "___", 3) == 0
76a01679
JB
594 && strcmp (field_name + strlen (field_name) - 6,
595 "___XVN") != 0)));
14f9c5c9
AS
596}
597
598
872c8b51
JB
599/* Assuming TYPE is a TYPE_CODE_STRUCT or a TYPE_CODE_TYPDEF to
600 a TYPE_CODE_STRUCT, find the field whose name matches FIELD_NAME,
601 and return its index. This function also handles fields whose name
602 have ___ suffixes because the compiler sometimes alters their name
603 by adding such a suffix to represent fields with certain constraints.
604 If the field could not be found, return a negative number if
605 MAYBE_MISSING is set. Otherwise raise an error. */
4c4b4cd2
PH
606
607int
608ada_get_field_index (const struct type *type, const char *field_name,
609 int maybe_missing)
610{
611 int fieldno;
872c8b51
JB
612 struct type *struct_type = check_typedef ((struct type *) type);
613
614 for (fieldno = 0; fieldno < TYPE_NFIELDS (struct_type); fieldno++)
615 if (field_name_match (TYPE_FIELD_NAME (struct_type, fieldno), field_name))
4c4b4cd2
PH
616 return fieldno;
617
618 if (!maybe_missing)
323e0a4a 619 error (_("Unable to find field %s in struct %s. Aborting"),
872c8b51 620 field_name, TYPE_NAME (struct_type));
4c4b4cd2
PH
621
622 return -1;
623}
624
625/* The length of the prefix of NAME prior to any "___" suffix. */
14f9c5c9
AS
626
627int
d2e4a39e 628ada_name_prefix_len (const char *name)
14f9c5c9
AS
629{
630 if (name == NULL)
631 return 0;
d2e4a39e 632 else
14f9c5c9 633 {
d2e4a39e 634 const char *p = strstr (name, "___");
5b4ee69b 635
14f9c5c9 636 if (p == NULL)
4c4b4cd2 637 return strlen (name);
14f9c5c9 638 else
4c4b4cd2 639 return p - name;
14f9c5c9
AS
640 }
641}
642
4c4b4cd2
PH
643/* Return non-zero if SUFFIX is a suffix of STR.
644 Return zero if STR is null. */
645
14f9c5c9 646static int
d2e4a39e 647is_suffix (const char *str, const char *suffix)
14f9c5c9
AS
648{
649 int len1, len2;
5b4ee69b 650
14f9c5c9
AS
651 if (str == NULL)
652 return 0;
653 len1 = strlen (str);
654 len2 = strlen (suffix);
4c4b4cd2 655 return (len1 >= len2 && strcmp (str + len1 - len2, suffix) == 0);
14f9c5c9
AS
656}
657
4c4b4cd2
PH
658/* The contents of value VAL, treated as a value of type TYPE. The
659 result is an lval in memory if VAL is. */
14f9c5c9 660
d2e4a39e 661static struct value *
4c4b4cd2 662coerce_unspec_val_to_type (struct value *val, struct type *type)
14f9c5c9 663{
61ee279c 664 type = ada_check_typedef (type);
df407dfe 665 if (value_type (val) == type)
4c4b4cd2 666 return val;
d2e4a39e 667 else
14f9c5c9 668 {
4c4b4cd2
PH
669 struct value *result;
670
671 /* Make sure that the object size is not unreasonable before
672 trying to allocate some memory for it. */
714e53ab 673 check_size (type);
4c4b4cd2 674
41e8491f
JK
675 if (value_lazy (val)
676 || TYPE_LENGTH (type) > TYPE_LENGTH (value_type (val)))
677 result = allocate_value_lazy (type);
678 else
679 {
680 result = allocate_value (type);
9a0dc9e3 681 value_contents_copy_raw (result, 0, val, 0, TYPE_LENGTH (type));
41e8491f 682 }
74bcbdf3 683 set_value_component_location (result, val);
9bbda503
AC
684 set_value_bitsize (result, value_bitsize (val));
685 set_value_bitpos (result, value_bitpos (val));
42ae5230 686 set_value_address (result, value_address (val));
14f9c5c9
AS
687 return result;
688 }
689}
690
fc1a4b47
AC
691static const gdb_byte *
692cond_offset_host (const gdb_byte *valaddr, long offset)
14f9c5c9
AS
693{
694 if (valaddr == NULL)
695 return NULL;
696 else
697 return valaddr + offset;
698}
699
700static CORE_ADDR
ebf56fd3 701cond_offset_target (CORE_ADDR address, long offset)
14f9c5c9
AS
702{
703 if (address == 0)
704 return 0;
d2e4a39e 705 else
14f9c5c9
AS
706 return address + offset;
707}
708
4c4b4cd2
PH
709/* Issue a warning (as for the definition of warning in utils.c, but
710 with exactly one argument rather than ...), unless the limit on the
711 number of warnings has passed during the evaluation of the current
712 expression. */
a2249542 713
77109804
AC
714/* FIXME: cagney/2004-10-10: This function is mimicking the behavior
715 provided by "complaint". */
a0b31db1 716static void lim_warning (const char *format, ...) ATTRIBUTE_PRINTF (1, 2);
77109804 717
14f9c5c9 718static void
a2249542 719lim_warning (const char *format, ...)
14f9c5c9 720{
a2249542 721 va_list args;
a2249542 722
5b4ee69b 723 va_start (args, format);
4c4b4cd2
PH
724 warnings_issued += 1;
725 if (warnings_issued <= warning_limit)
a2249542
MK
726 vwarning (format, args);
727
728 va_end (args);
4c4b4cd2
PH
729}
730
714e53ab
PH
731/* Issue an error if the size of an object of type T is unreasonable,
732 i.e. if it would be a bad idea to allocate a value of this type in
733 GDB. */
734
735static void
736check_size (const struct type *type)
737{
738 if (TYPE_LENGTH (type) > varsize_limit)
323e0a4a 739 error (_("object size is larger than varsize-limit"));
714e53ab
PH
740}
741
0963b4bd 742/* Maximum value of a SIZE-byte signed integer type. */
4c4b4cd2 743static LONGEST
c3e5cd34 744max_of_size (int size)
4c4b4cd2 745{
76a01679 746 LONGEST top_bit = (LONGEST) 1 << (size * 8 - 2);
5b4ee69b 747
76a01679 748 return top_bit | (top_bit - 1);
4c4b4cd2
PH
749}
750
0963b4bd 751/* Minimum value of a SIZE-byte signed integer type. */
4c4b4cd2 752static LONGEST
c3e5cd34 753min_of_size (int size)
4c4b4cd2 754{
c3e5cd34 755 return -max_of_size (size) - 1;
4c4b4cd2
PH
756}
757
0963b4bd 758/* Maximum value of a SIZE-byte unsigned integer type. */
4c4b4cd2 759static ULONGEST
c3e5cd34 760umax_of_size (int size)
4c4b4cd2 761{
76a01679 762 ULONGEST top_bit = (ULONGEST) 1 << (size * 8 - 1);
5b4ee69b 763
76a01679 764 return top_bit | (top_bit - 1);
4c4b4cd2
PH
765}
766
0963b4bd 767/* Maximum value of integral type T, as a signed quantity. */
c3e5cd34
PH
768static LONGEST
769max_of_type (struct type *t)
4c4b4cd2 770{
c3e5cd34
PH
771 if (TYPE_UNSIGNED (t))
772 return (LONGEST) umax_of_size (TYPE_LENGTH (t));
773 else
774 return max_of_size (TYPE_LENGTH (t));
775}
776
0963b4bd 777/* Minimum value of integral type T, as a signed quantity. */
c3e5cd34
PH
778static LONGEST
779min_of_type (struct type *t)
780{
781 if (TYPE_UNSIGNED (t))
782 return 0;
783 else
784 return min_of_size (TYPE_LENGTH (t));
4c4b4cd2
PH
785}
786
787/* The largest value in the domain of TYPE, a discrete type, as an integer. */
43bbcdc2
PH
788LONGEST
789ada_discrete_type_high_bound (struct type *type)
4c4b4cd2 790{
8739bc53 791 type = resolve_dynamic_type (type, 0);
76a01679 792 switch (TYPE_CODE (type))
4c4b4cd2
PH
793 {
794 case TYPE_CODE_RANGE:
690cc4eb 795 return TYPE_HIGH_BOUND (type);
4c4b4cd2 796 case TYPE_CODE_ENUM:
14e75d8e 797 return TYPE_FIELD_ENUMVAL (type, TYPE_NFIELDS (type) - 1);
690cc4eb
PH
798 case TYPE_CODE_BOOL:
799 return 1;
800 case TYPE_CODE_CHAR:
76a01679 801 case TYPE_CODE_INT:
690cc4eb 802 return max_of_type (type);
4c4b4cd2 803 default:
43bbcdc2 804 error (_("Unexpected type in ada_discrete_type_high_bound."));
4c4b4cd2
PH
805 }
806}
807
14e75d8e 808/* The smallest value in the domain of TYPE, a discrete type, as an integer. */
43bbcdc2
PH
809LONGEST
810ada_discrete_type_low_bound (struct type *type)
4c4b4cd2 811{
8739bc53 812 type = resolve_dynamic_type (type, 0);
76a01679 813 switch (TYPE_CODE (type))
4c4b4cd2
PH
814 {
815 case TYPE_CODE_RANGE:
690cc4eb 816 return TYPE_LOW_BOUND (type);
4c4b4cd2 817 case TYPE_CODE_ENUM:
14e75d8e 818 return TYPE_FIELD_ENUMVAL (type, 0);
690cc4eb
PH
819 case TYPE_CODE_BOOL:
820 return 0;
821 case TYPE_CODE_CHAR:
76a01679 822 case TYPE_CODE_INT:
690cc4eb 823 return min_of_type (type);
4c4b4cd2 824 default:
43bbcdc2 825 error (_("Unexpected type in ada_discrete_type_low_bound."));
4c4b4cd2
PH
826 }
827}
828
829/* The identity on non-range types. For range types, the underlying
76a01679 830 non-range scalar type. */
4c4b4cd2
PH
831
832static struct type *
18af8284 833get_base_type (struct type *type)
4c4b4cd2
PH
834{
835 while (type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE)
836 {
76a01679
JB
837 if (type == TYPE_TARGET_TYPE (type) || TYPE_TARGET_TYPE (type) == NULL)
838 return type;
4c4b4cd2
PH
839 type = TYPE_TARGET_TYPE (type);
840 }
841 return type;
14f9c5c9 842}
41246937
JB
843
844/* Return a decoded version of the given VALUE. This means returning
845 a value whose type is obtained by applying all the GNAT-specific
846 encondings, making the resulting type a static but standard description
847 of the initial type. */
848
849struct value *
850ada_get_decoded_value (struct value *value)
851{
852 struct type *type = ada_check_typedef (value_type (value));
853
854 if (ada_is_array_descriptor_type (type)
855 || (ada_is_constrained_packed_array_type (type)
856 && TYPE_CODE (type) != TYPE_CODE_PTR))
857 {
858 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF) /* array access type. */
859 value = ada_coerce_to_simple_array_ptr (value);
860 else
861 value = ada_coerce_to_simple_array (value);
862 }
863 else
864 value = ada_to_fixed_value (value);
865
866 return value;
867}
868
869/* Same as ada_get_decoded_value, but with the given TYPE.
870 Because there is no associated actual value for this type,
871 the resulting type might be a best-effort approximation in
872 the case of dynamic types. */
873
874struct type *
875ada_get_decoded_type (struct type *type)
876{
877 type = to_static_fixed_type (type);
878 if (ada_is_constrained_packed_array_type (type))
879 type = ada_coerce_to_simple_array_type (type);
880 return type;
881}
882
4c4b4cd2 883\f
76a01679 884
4c4b4cd2 885 /* Language Selection */
14f9c5c9
AS
886
887/* If the main program is in Ada, return language_ada, otherwise return LANG
ccefe4c4 888 (the main program is in Ada iif the adainit symbol is found). */
d2e4a39e 889
14f9c5c9 890enum language
ccefe4c4 891ada_update_initial_language (enum language lang)
14f9c5c9 892{
d2e4a39e 893 if (lookup_minimal_symbol ("adainit", (const char *) NULL,
3b7344d5 894 (struct objfile *) NULL).minsym != NULL)
4c4b4cd2 895 return language_ada;
14f9c5c9
AS
896
897 return lang;
898}
96d887e8
PH
899
900/* If the main procedure is written in Ada, then return its name.
901 The result is good until the next call. Return NULL if the main
902 procedure doesn't appear to be in Ada. */
903
904char *
905ada_main_name (void)
906{
3b7344d5 907 struct bound_minimal_symbol msym;
f9bc20b9 908 static char *main_program_name = NULL;
6c038f32 909
96d887e8
PH
910 /* For Ada, the name of the main procedure is stored in a specific
911 string constant, generated by the binder. Look for that symbol,
912 extract its address, and then read that string. If we didn't find
913 that string, then most probably the main procedure is not written
914 in Ada. */
915 msym = lookup_minimal_symbol (ADA_MAIN_PROGRAM_SYMBOL_NAME, NULL, NULL);
916
3b7344d5 917 if (msym.minsym != NULL)
96d887e8 918 {
f9bc20b9
JB
919 CORE_ADDR main_program_name_addr;
920 int err_code;
921
77e371c0 922 main_program_name_addr = BMSYMBOL_VALUE_ADDRESS (msym);
96d887e8 923 if (main_program_name_addr == 0)
323e0a4a 924 error (_("Invalid address for Ada main program name."));
96d887e8 925
f9bc20b9
JB
926 xfree (main_program_name);
927 target_read_string (main_program_name_addr, &main_program_name,
928 1024, &err_code);
929
930 if (err_code != 0)
931 return NULL;
96d887e8
PH
932 return main_program_name;
933 }
934
935 /* The main procedure doesn't seem to be in Ada. */
936 return NULL;
937}
14f9c5c9 938\f
4c4b4cd2 939 /* Symbols */
d2e4a39e 940
4c4b4cd2
PH
941/* Table of Ada operators and their GNAT-encoded names. Last entry is pair
942 of NULLs. */
14f9c5c9 943
d2e4a39e
AS
944const struct ada_opname_map ada_opname_table[] = {
945 {"Oadd", "\"+\"", BINOP_ADD},
946 {"Osubtract", "\"-\"", BINOP_SUB},
947 {"Omultiply", "\"*\"", BINOP_MUL},
948 {"Odivide", "\"/\"", BINOP_DIV},
949 {"Omod", "\"mod\"", BINOP_MOD},
950 {"Orem", "\"rem\"", BINOP_REM},
951 {"Oexpon", "\"**\"", BINOP_EXP},
952 {"Olt", "\"<\"", BINOP_LESS},
953 {"Ole", "\"<=\"", BINOP_LEQ},
954 {"Ogt", "\">\"", BINOP_GTR},
955 {"Oge", "\">=\"", BINOP_GEQ},
956 {"Oeq", "\"=\"", BINOP_EQUAL},
957 {"One", "\"/=\"", BINOP_NOTEQUAL},
958 {"Oand", "\"and\"", BINOP_BITWISE_AND},
959 {"Oor", "\"or\"", BINOP_BITWISE_IOR},
960 {"Oxor", "\"xor\"", BINOP_BITWISE_XOR},
961 {"Oconcat", "\"&\"", BINOP_CONCAT},
962 {"Oabs", "\"abs\"", UNOP_ABS},
963 {"Onot", "\"not\"", UNOP_LOGICAL_NOT},
964 {"Oadd", "\"+\"", UNOP_PLUS},
965 {"Osubtract", "\"-\"", UNOP_NEG},
966 {NULL, NULL}
14f9c5c9
AS
967};
968
4c4b4cd2
PH
969/* The "encoded" form of DECODED, according to GNAT conventions.
970 The result is valid until the next call to ada_encode. */
971
14f9c5c9 972char *
4c4b4cd2 973ada_encode (const char *decoded)
14f9c5c9 974{
4c4b4cd2
PH
975 static char *encoding_buffer = NULL;
976 static size_t encoding_buffer_size = 0;
d2e4a39e 977 const char *p;
14f9c5c9 978 int k;
d2e4a39e 979
4c4b4cd2 980 if (decoded == NULL)
14f9c5c9
AS
981 return NULL;
982
4c4b4cd2
PH
983 GROW_VECT (encoding_buffer, encoding_buffer_size,
984 2 * strlen (decoded) + 10);
14f9c5c9
AS
985
986 k = 0;
4c4b4cd2 987 for (p = decoded; *p != '\0'; p += 1)
14f9c5c9 988 {
cdc7bb92 989 if (*p == '.')
4c4b4cd2
PH
990 {
991 encoding_buffer[k] = encoding_buffer[k + 1] = '_';
992 k += 2;
993 }
14f9c5c9 994 else if (*p == '"')
4c4b4cd2
PH
995 {
996 const struct ada_opname_map *mapping;
997
998 for (mapping = ada_opname_table;
1265e4aa
JB
999 mapping->encoded != NULL
1000 && strncmp (mapping->decoded, p,
1001 strlen (mapping->decoded)) != 0; mapping += 1)
4c4b4cd2
PH
1002 ;
1003 if (mapping->encoded == NULL)
323e0a4a 1004 error (_("invalid Ada operator name: %s"), p);
4c4b4cd2
PH
1005 strcpy (encoding_buffer + k, mapping->encoded);
1006 k += strlen (mapping->encoded);
1007 break;
1008 }
d2e4a39e 1009 else
4c4b4cd2
PH
1010 {
1011 encoding_buffer[k] = *p;
1012 k += 1;
1013 }
14f9c5c9
AS
1014 }
1015
4c4b4cd2
PH
1016 encoding_buffer[k] = '\0';
1017 return encoding_buffer;
14f9c5c9
AS
1018}
1019
1020/* Return NAME folded to lower case, or, if surrounded by single
4c4b4cd2
PH
1021 quotes, unfolded, but with the quotes stripped away. Result good
1022 to next call. */
1023
d2e4a39e
AS
1024char *
1025ada_fold_name (const char *name)
14f9c5c9 1026{
d2e4a39e 1027 static char *fold_buffer = NULL;
14f9c5c9
AS
1028 static size_t fold_buffer_size = 0;
1029
1030 int len = strlen (name);
d2e4a39e 1031 GROW_VECT (fold_buffer, fold_buffer_size, len + 1);
14f9c5c9
AS
1032
1033 if (name[0] == '\'')
1034 {
d2e4a39e
AS
1035 strncpy (fold_buffer, name + 1, len - 2);
1036 fold_buffer[len - 2] = '\000';
14f9c5c9
AS
1037 }
1038 else
1039 {
1040 int i;
5b4ee69b 1041
14f9c5c9 1042 for (i = 0; i <= len; i += 1)
4c4b4cd2 1043 fold_buffer[i] = tolower (name[i]);
14f9c5c9
AS
1044 }
1045
1046 return fold_buffer;
1047}
1048
529cad9c
PH
1049/* Return nonzero if C is either a digit or a lowercase alphabet character. */
1050
1051static int
1052is_lower_alphanum (const char c)
1053{
1054 return (isdigit (c) || (isalpha (c) && islower (c)));
1055}
1056
c90092fe
JB
1057/* ENCODED is the linkage name of a symbol and LEN contains its length.
1058 This function saves in LEN the length of that same symbol name but
1059 without either of these suffixes:
29480c32
JB
1060 . .{DIGIT}+
1061 . ${DIGIT}+
1062 . ___{DIGIT}+
1063 . __{DIGIT}+.
c90092fe 1064
29480c32
JB
1065 These are suffixes introduced by the compiler for entities such as
1066 nested subprogram for instance, in order to avoid name clashes.
1067 They do not serve any purpose for the debugger. */
1068
1069static void
1070ada_remove_trailing_digits (const char *encoded, int *len)
1071{
1072 if (*len > 1 && isdigit (encoded[*len - 1]))
1073 {
1074 int i = *len - 2;
5b4ee69b 1075
29480c32
JB
1076 while (i > 0 && isdigit (encoded[i]))
1077 i--;
1078 if (i >= 0 && encoded[i] == '.')
1079 *len = i;
1080 else if (i >= 0 && encoded[i] == '$')
1081 *len = i;
1082 else if (i >= 2 && strncmp (encoded + i - 2, "___", 3) == 0)
1083 *len = i - 2;
1084 else if (i >= 1 && strncmp (encoded + i - 1, "__", 2) == 0)
1085 *len = i - 1;
1086 }
1087}
1088
1089/* Remove the suffix introduced by the compiler for protected object
1090 subprograms. */
1091
1092static void
1093ada_remove_po_subprogram_suffix (const char *encoded, int *len)
1094{
1095 /* Remove trailing N. */
1096
1097 /* Protected entry subprograms are broken into two
1098 separate subprograms: The first one is unprotected, and has
1099 a 'N' suffix; the second is the protected version, and has
0963b4bd 1100 the 'P' suffix. The second calls the first one after handling
29480c32
JB
1101 the protection. Since the P subprograms are internally generated,
1102 we leave these names undecoded, giving the user a clue that this
1103 entity is internal. */
1104
1105 if (*len > 1
1106 && encoded[*len - 1] == 'N'
1107 && (isdigit (encoded[*len - 2]) || islower (encoded[*len - 2])))
1108 *len = *len - 1;
1109}
1110
69fadcdf
JB
1111/* Remove trailing X[bn]* suffixes (indicating names in package bodies). */
1112
1113static void
1114ada_remove_Xbn_suffix (const char *encoded, int *len)
1115{
1116 int i = *len - 1;
1117
1118 while (i > 0 && (encoded[i] == 'b' || encoded[i] == 'n'))
1119 i--;
1120
1121 if (encoded[i] != 'X')
1122 return;
1123
1124 if (i == 0)
1125 return;
1126
1127 if (isalnum (encoded[i-1]))
1128 *len = i;
1129}
1130
29480c32
JB
1131/* If ENCODED follows the GNAT entity encoding conventions, then return
1132 the decoded form of ENCODED. Otherwise, return "<%s>" where "%s" is
1133 replaced by ENCODED.
14f9c5c9 1134
4c4b4cd2 1135 The resulting string is valid until the next call of ada_decode.
29480c32 1136 If the string is unchanged by decoding, the original string pointer
4c4b4cd2
PH
1137 is returned. */
1138
1139const char *
1140ada_decode (const char *encoded)
14f9c5c9
AS
1141{
1142 int i, j;
1143 int len0;
d2e4a39e 1144 const char *p;
4c4b4cd2 1145 char *decoded;
14f9c5c9 1146 int at_start_name;
4c4b4cd2
PH
1147 static char *decoding_buffer = NULL;
1148 static size_t decoding_buffer_size = 0;
d2e4a39e 1149
29480c32
JB
1150 /* The name of the Ada main procedure starts with "_ada_".
1151 This prefix is not part of the decoded name, so skip this part
1152 if we see this prefix. */
4c4b4cd2
PH
1153 if (strncmp (encoded, "_ada_", 5) == 0)
1154 encoded += 5;
14f9c5c9 1155
29480c32
JB
1156 /* If the name starts with '_', then it is not a properly encoded
1157 name, so do not attempt to decode it. Similarly, if the name
1158 starts with '<', the name should not be decoded. */
4c4b4cd2 1159 if (encoded[0] == '_' || encoded[0] == '<')
14f9c5c9
AS
1160 goto Suppress;
1161
4c4b4cd2 1162 len0 = strlen (encoded);
4c4b4cd2 1163
29480c32
JB
1164 ada_remove_trailing_digits (encoded, &len0);
1165 ada_remove_po_subprogram_suffix (encoded, &len0);
529cad9c 1166
4c4b4cd2
PH
1167 /* Remove the ___X.* suffix if present. Do not forget to verify that
1168 the suffix is located before the current "end" of ENCODED. We want
1169 to avoid re-matching parts of ENCODED that have previously been
1170 marked as discarded (by decrementing LEN0). */
1171 p = strstr (encoded, "___");
1172 if (p != NULL && p - encoded < len0 - 3)
14f9c5c9
AS
1173 {
1174 if (p[3] == 'X')
4c4b4cd2 1175 len0 = p - encoded;
14f9c5c9 1176 else
4c4b4cd2 1177 goto Suppress;
14f9c5c9 1178 }
4c4b4cd2 1179
29480c32
JB
1180 /* Remove any trailing TKB suffix. It tells us that this symbol
1181 is for the body of a task, but that information does not actually
1182 appear in the decoded name. */
1183
4c4b4cd2 1184 if (len0 > 3 && strncmp (encoded + len0 - 3, "TKB", 3) == 0)
14f9c5c9 1185 len0 -= 3;
76a01679 1186
a10967fa
JB
1187 /* Remove any trailing TB suffix. The TB suffix is slightly different
1188 from the TKB suffix because it is used for non-anonymous task
1189 bodies. */
1190
1191 if (len0 > 2 && strncmp (encoded + len0 - 2, "TB", 2) == 0)
1192 len0 -= 2;
1193
29480c32
JB
1194 /* Remove trailing "B" suffixes. */
1195 /* FIXME: brobecker/2006-04-19: Not sure what this are used for... */
1196
4c4b4cd2 1197 if (len0 > 1 && strncmp (encoded + len0 - 1, "B", 1) == 0)
14f9c5c9
AS
1198 len0 -= 1;
1199
4c4b4cd2 1200 /* Make decoded big enough for possible expansion by operator name. */
29480c32 1201
4c4b4cd2
PH
1202 GROW_VECT (decoding_buffer, decoding_buffer_size, 2 * len0 + 1);
1203 decoded = decoding_buffer;
14f9c5c9 1204
29480c32
JB
1205 /* Remove trailing __{digit}+ or trailing ${digit}+. */
1206
4c4b4cd2 1207 if (len0 > 1 && isdigit (encoded[len0 - 1]))
d2e4a39e 1208 {
4c4b4cd2
PH
1209 i = len0 - 2;
1210 while ((i >= 0 && isdigit (encoded[i]))
1211 || (i >= 1 && encoded[i] == '_' && isdigit (encoded[i - 1])))
1212 i -= 1;
1213 if (i > 1 && encoded[i] == '_' && encoded[i - 1] == '_')
1214 len0 = i - 1;
1215 else if (encoded[i] == '$')
1216 len0 = i;
d2e4a39e 1217 }
14f9c5c9 1218
29480c32
JB
1219 /* The first few characters that are not alphabetic are not part
1220 of any encoding we use, so we can copy them over verbatim. */
1221
4c4b4cd2
PH
1222 for (i = 0, j = 0; i < len0 && !isalpha (encoded[i]); i += 1, j += 1)
1223 decoded[j] = encoded[i];
14f9c5c9
AS
1224
1225 at_start_name = 1;
1226 while (i < len0)
1227 {
29480c32 1228 /* Is this a symbol function? */
4c4b4cd2
PH
1229 if (at_start_name && encoded[i] == 'O')
1230 {
1231 int k;
5b4ee69b 1232
4c4b4cd2
PH
1233 for (k = 0; ada_opname_table[k].encoded != NULL; k += 1)
1234 {
1235 int op_len = strlen (ada_opname_table[k].encoded);
06d5cf63
JB
1236 if ((strncmp (ada_opname_table[k].encoded + 1, encoded + i + 1,
1237 op_len - 1) == 0)
1238 && !isalnum (encoded[i + op_len]))
4c4b4cd2
PH
1239 {
1240 strcpy (decoded + j, ada_opname_table[k].decoded);
1241 at_start_name = 0;
1242 i += op_len;
1243 j += strlen (ada_opname_table[k].decoded);
1244 break;
1245 }
1246 }
1247 if (ada_opname_table[k].encoded != NULL)
1248 continue;
1249 }
14f9c5c9
AS
1250 at_start_name = 0;
1251
529cad9c
PH
1252 /* Replace "TK__" with "__", which will eventually be translated
1253 into "." (just below). */
1254
4c4b4cd2
PH
1255 if (i < len0 - 4 && strncmp (encoded + i, "TK__", 4) == 0)
1256 i += 2;
529cad9c 1257
29480c32
JB
1258 /* Replace "__B_{DIGITS}+__" sequences by "__", which will eventually
1259 be translated into "." (just below). These are internal names
1260 generated for anonymous blocks inside which our symbol is nested. */
1261
1262 if (len0 - i > 5 && encoded [i] == '_' && encoded [i+1] == '_'
1263 && encoded [i+2] == 'B' && encoded [i+3] == '_'
1264 && isdigit (encoded [i+4]))
1265 {
1266 int k = i + 5;
1267
1268 while (k < len0 && isdigit (encoded[k]))
1269 k++; /* Skip any extra digit. */
1270
1271 /* Double-check that the "__B_{DIGITS}+" sequence we found
1272 is indeed followed by "__". */
1273 if (len0 - k > 2 && encoded [k] == '_' && encoded [k+1] == '_')
1274 i = k;
1275 }
1276
529cad9c
PH
1277 /* Remove _E{DIGITS}+[sb] */
1278
1279 /* Just as for protected object subprograms, there are 2 categories
0963b4bd 1280 of subprograms created by the compiler for each entry. The first
529cad9c
PH
1281 one implements the actual entry code, and has a suffix following
1282 the convention above; the second one implements the barrier and
1283 uses the same convention as above, except that the 'E' is replaced
1284 by a 'B'.
1285
1286 Just as above, we do not decode the name of barrier functions
1287 to give the user a clue that the code he is debugging has been
1288 internally generated. */
1289
1290 if (len0 - i > 3 && encoded [i] == '_' && encoded[i+1] == 'E'
1291 && isdigit (encoded[i+2]))
1292 {
1293 int k = i + 3;
1294
1295 while (k < len0 && isdigit (encoded[k]))
1296 k++;
1297
1298 if (k < len0
1299 && (encoded[k] == 'b' || encoded[k] == 's'))
1300 {
1301 k++;
1302 /* Just as an extra precaution, make sure that if this
1303 suffix is followed by anything else, it is a '_'.
1304 Otherwise, we matched this sequence by accident. */
1305 if (k == len0
1306 || (k < len0 && encoded[k] == '_'))
1307 i = k;
1308 }
1309 }
1310
1311 /* Remove trailing "N" in [a-z0-9]+N__. The N is added by
1312 the GNAT front-end in protected object subprograms. */
1313
1314 if (i < len0 + 3
1315 && encoded[i] == 'N' && encoded[i+1] == '_' && encoded[i+2] == '_')
1316 {
1317 /* Backtrack a bit up until we reach either the begining of
1318 the encoded name, or "__". Make sure that we only find
1319 digits or lowercase characters. */
1320 const char *ptr = encoded + i - 1;
1321
1322 while (ptr >= encoded && is_lower_alphanum (ptr[0]))
1323 ptr--;
1324 if (ptr < encoded
1325 || (ptr > encoded && ptr[0] == '_' && ptr[-1] == '_'))
1326 i++;
1327 }
1328
4c4b4cd2
PH
1329 if (encoded[i] == 'X' && i != 0 && isalnum (encoded[i - 1]))
1330 {
29480c32
JB
1331 /* This is a X[bn]* sequence not separated from the previous
1332 part of the name with a non-alpha-numeric character (in other
1333 words, immediately following an alpha-numeric character), then
1334 verify that it is placed at the end of the encoded name. If
1335 not, then the encoding is not valid and we should abort the
1336 decoding. Otherwise, just skip it, it is used in body-nested
1337 package names. */
4c4b4cd2
PH
1338 do
1339 i += 1;
1340 while (i < len0 && (encoded[i] == 'b' || encoded[i] == 'n'));
1341 if (i < len0)
1342 goto Suppress;
1343 }
cdc7bb92 1344 else if (i < len0 - 2 && encoded[i] == '_' && encoded[i + 1] == '_')
4c4b4cd2 1345 {
29480c32 1346 /* Replace '__' by '.'. */
4c4b4cd2
PH
1347 decoded[j] = '.';
1348 at_start_name = 1;
1349 i += 2;
1350 j += 1;
1351 }
14f9c5c9 1352 else
4c4b4cd2 1353 {
29480c32
JB
1354 /* It's a character part of the decoded name, so just copy it
1355 over. */
4c4b4cd2
PH
1356 decoded[j] = encoded[i];
1357 i += 1;
1358 j += 1;
1359 }
14f9c5c9 1360 }
4c4b4cd2 1361 decoded[j] = '\000';
14f9c5c9 1362
29480c32
JB
1363 /* Decoded names should never contain any uppercase character.
1364 Double-check this, and abort the decoding if we find one. */
1365
4c4b4cd2
PH
1366 for (i = 0; decoded[i] != '\0'; i += 1)
1367 if (isupper (decoded[i]) || decoded[i] == ' ')
14f9c5c9
AS
1368 goto Suppress;
1369
4c4b4cd2
PH
1370 if (strcmp (decoded, encoded) == 0)
1371 return encoded;
1372 else
1373 return decoded;
14f9c5c9
AS
1374
1375Suppress:
4c4b4cd2
PH
1376 GROW_VECT (decoding_buffer, decoding_buffer_size, strlen (encoded) + 3);
1377 decoded = decoding_buffer;
1378 if (encoded[0] == '<')
1379 strcpy (decoded, encoded);
14f9c5c9 1380 else
88c15c34 1381 xsnprintf (decoded, decoding_buffer_size, "<%s>", encoded);
4c4b4cd2
PH
1382 return decoded;
1383
1384}
1385
1386/* Table for keeping permanent unique copies of decoded names. Once
1387 allocated, names in this table are never released. While this is a
1388 storage leak, it should not be significant unless there are massive
1389 changes in the set of decoded names in successive versions of a
1390 symbol table loaded during a single session. */
1391static struct htab *decoded_names_store;
1392
1393/* Returns the decoded name of GSYMBOL, as for ada_decode, caching it
1394 in the language-specific part of GSYMBOL, if it has not been
1395 previously computed. Tries to save the decoded name in the same
1396 obstack as GSYMBOL, if possible, and otherwise on the heap (so that,
1397 in any case, the decoded symbol has a lifetime at least that of
0963b4bd 1398 GSYMBOL).
4c4b4cd2
PH
1399 The GSYMBOL parameter is "mutable" in the C++ sense: logically
1400 const, but nevertheless modified to a semantically equivalent form
0963b4bd 1401 when a decoded name is cached in it. */
4c4b4cd2 1402
45e6c716 1403const char *
f85f34ed 1404ada_decode_symbol (const struct general_symbol_info *arg)
4c4b4cd2 1405{
f85f34ed
TT
1406 struct general_symbol_info *gsymbol = (struct general_symbol_info *) arg;
1407 const char **resultp =
1408 &gsymbol->language_specific.mangled_lang.demangled_name;
5b4ee69b 1409
f85f34ed 1410 if (!gsymbol->ada_mangled)
4c4b4cd2
PH
1411 {
1412 const char *decoded = ada_decode (gsymbol->name);
f85f34ed 1413 struct obstack *obstack = gsymbol->language_specific.obstack;
5b4ee69b 1414
f85f34ed 1415 gsymbol->ada_mangled = 1;
5b4ee69b 1416
f85f34ed
TT
1417 if (obstack != NULL)
1418 *resultp = obstack_copy0 (obstack, decoded, strlen (decoded));
1419 else
76a01679 1420 {
f85f34ed
TT
1421 /* Sometimes, we can't find a corresponding objfile, in
1422 which case, we put the result on the heap. Since we only
1423 decode when needed, we hope this usually does not cause a
1424 significant memory leak (FIXME). */
1425
76a01679
JB
1426 char **slot = (char **) htab_find_slot (decoded_names_store,
1427 decoded, INSERT);
5b4ee69b 1428
76a01679
JB
1429 if (*slot == NULL)
1430 *slot = xstrdup (decoded);
1431 *resultp = *slot;
1432 }
4c4b4cd2 1433 }
14f9c5c9 1434
4c4b4cd2
PH
1435 return *resultp;
1436}
76a01679 1437
2c0b251b 1438static char *
76a01679 1439ada_la_decode (const char *encoded, int options)
4c4b4cd2
PH
1440{
1441 return xstrdup (ada_decode (encoded));
14f9c5c9
AS
1442}
1443
1444/* Returns non-zero iff SYM_NAME matches NAME, ignoring any trailing
4c4b4cd2
PH
1445 suffixes that encode debugging information or leading _ada_ on
1446 SYM_NAME (see is_name_suffix commentary for the debugging
1447 information that is ignored). If WILD, then NAME need only match a
1448 suffix of SYM_NAME minus the same suffixes. Also returns 0 if
1449 either argument is NULL. */
14f9c5c9 1450
2c0b251b 1451static int
40658b94 1452match_name (const char *sym_name, const char *name, int wild)
14f9c5c9
AS
1453{
1454 if (sym_name == NULL || name == NULL)
1455 return 0;
1456 else if (wild)
73589123 1457 return wild_match (sym_name, name) == 0;
d2e4a39e
AS
1458 else
1459 {
1460 int len_name = strlen (name);
5b4ee69b 1461
4c4b4cd2
PH
1462 return (strncmp (sym_name, name, len_name) == 0
1463 && is_name_suffix (sym_name + len_name))
1464 || (strncmp (sym_name, "_ada_", 5) == 0
1465 && strncmp (sym_name + 5, name, len_name) == 0
1466 && is_name_suffix (sym_name + len_name + 5));
d2e4a39e 1467 }
14f9c5c9 1468}
14f9c5c9 1469\f
d2e4a39e 1470
4c4b4cd2 1471 /* Arrays */
14f9c5c9 1472
28c85d6c
JB
1473/* Assuming that INDEX_DESC_TYPE is an ___XA structure, a structure
1474 generated by the GNAT compiler to describe the index type used
1475 for each dimension of an array, check whether it follows the latest
1476 known encoding. If not, fix it up to conform to the latest encoding.
1477 Otherwise, do nothing. This function also does nothing if
1478 INDEX_DESC_TYPE is NULL.
1479
1480 The GNAT encoding used to describle the array index type evolved a bit.
1481 Initially, the information would be provided through the name of each
1482 field of the structure type only, while the type of these fields was
1483 described as unspecified and irrelevant. The debugger was then expected
1484 to perform a global type lookup using the name of that field in order
1485 to get access to the full index type description. Because these global
1486 lookups can be very expensive, the encoding was later enhanced to make
1487 the global lookup unnecessary by defining the field type as being
1488 the full index type description.
1489
1490 The purpose of this routine is to allow us to support older versions
1491 of the compiler by detecting the use of the older encoding, and by
1492 fixing up the INDEX_DESC_TYPE to follow the new one (at this point,
1493 we essentially replace each field's meaningless type by the associated
1494 index subtype). */
1495
1496void
1497ada_fixup_array_indexes_type (struct type *index_desc_type)
1498{
1499 int i;
1500
1501 if (index_desc_type == NULL)
1502 return;
1503 gdb_assert (TYPE_NFIELDS (index_desc_type) > 0);
1504
1505 /* Check if INDEX_DESC_TYPE follows the older encoding (it is sufficient
1506 to check one field only, no need to check them all). If not, return
1507 now.
1508
1509 If our INDEX_DESC_TYPE was generated using the older encoding,
1510 the field type should be a meaningless integer type whose name
1511 is not equal to the field name. */
1512 if (TYPE_NAME (TYPE_FIELD_TYPE (index_desc_type, 0)) != NULL
1513 && strcmp (TYPE_NAME (TYPE_FIELD_TYPE (index_desc_type, 0)),
1514 TYPE_FIELD_NAME (index_desc_type, 0)) == 0)
1515 return;
1516
1517 /* Fixup each field of INDEX_DESC_TYPE. */
1518 for (i = 0; i < TYPE_NFIELDS (index_desc_type); i++)
1519 {
0d5cff50 1520 const char *name = TYPE_FIELD_NAME (index_desc_type, i);
28c85d6c
JB
1521 struct type *raw_type = ada_check_typedef (ada_find_any_type (name));
1522
1523 if (raw_type)
1524 TYPE_FIELD_TYPE (index_desc_type, i) = raw_type;
1525 }
1526}
1527
4c4b4cd2 1528/* Names of MAX_ADA_DIMENS bounds in P_BOUNDS fields of array descriptors. */
14f9c5c9 1529
d2e4a39e
AS
1530static char *bound_name[] = {
1531 "LB0", "UB0", "LB1", "UB1", "LB2", "UB2", "LB3", "UB3",
14f9c5c9
AS
1532 "LB4", "UB4", "LB5", "UB5", "LB6", "UB6", "LB7", "UB7"
1533};
1534
1535/* Maximum number of array dimensions we are prepared to handle. */
1536
4c4b4cd2 1537#define MAX_ADA_DIMENS (sizeof(bound_name) / (2*sizeof(char *)))
14f9c5c9 1538
14f9c5c9 1539
4c4b4cd2
PH
1540/* The desc_* routines return primitive portions of array descriptors
1541 (fat pointers). */
14f9c5c9
AS
1542
1543/* The descriptor or array type, if any, indicated by TYPE; removes
4c4b4cd2
PH
1544 level of indirection, if needed. */
1545
d2e4a39e
AS
1546static struct type *
1547desc_base_type (struct type *type)
14f9c5c9
AS
1548{
1549 if (type == NULL)
1550 return NULL;
61ee279c 1551 type = ada_check_typedef (type);
720d1a40
JB
1552 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
1553 type = ada_typedef_target_type (type);
1554
1265e4aa
JB
1555 if (type != NULL
1556 && (TYPE_CODE (type) == TYPE_CODE_PTR
1557 || TYPE_CODE (type) == TYPE_CODE_REF))
61ee279c 1558 return ada_check_typedef (TYPE_TARGET_TYPE (type));
14f9c5c9
AS
1559 else
1560 return type;
1561}
1562
4c4b4cd2
PH
1563/* True iff TYPE indicates a "thin" array pointer type. */
1564
14f9c5c9 1565static int
d2e4a39e 1566is_thin_pntr (struct type *type)
14f9c5c9 1567{
d2e4a39e 1568 return
14f9c5c9
AS
1569 is_suffix (ada_type_name (desc_base_type (type)), "___XUT")
1570 || is_suffix (ada_type_name (desc_base_type (type)), "___XUT___XVE");
1571}
1572
4c4b4cd2
PH
1573/* The descriptor type for thin pointer type TYPE. */
1574
d2e4a39e
AS
1575static struct type *
1576thin_descriptor_type (struct type *type)
14f9c5c9 1577{
d2e4a39e 1578 struct type *base_type = desc_base_type (type);
5b4ee69b 1579
14f9c5c9
AS
1580 if (base_type == NULL)
1581 return NULL;
1582 if (is_suffix (ada_type_name (base_type), "___XVE"))
1583 return base_type;
d2e4a39e 1584 else
14f9c5c9 1585 {
d2e4a39e 1586 struct type *alt_type = ada_find_parallel_type (base_type, "___XVE");
5b4ee69b 1587
14f9c5c9 1588 if (alt_type == NULL)
4c4b4cd2 1589 return base_type;
14f9c5c9 1590 else
4c4b4cd2 1591 return alt_type;
14f9c5c9
AS
1592 }
1593}
1594
4c4b4cd2
PH
1595/* A pointer to the array data for thin-pointer value VAL. */
1596
d2e4a39e
AS
1597static struct value *
1598thin_data_pntr (struct value *val)
14f9c5c9 1599{
828292f2 1600 struct type *type = ada_check_typedef (value_type (val));
556bdfd4 1601 struct type *data_type = desc_data_target_type (thin_descriptor_type (type));
5b4ee69b 1602
556bdfd4
UW
1603 data_type = lookup_pointer_type (data_type);
1604
14f9c5c9 1605 if (TYPE_CODE (type) == TYPE_CODE_PTR)
556bdfd4 1606 return value_cast (data_type, value_copy (val));
d2e4a39e 1607 else
42ae5230 1608 return value_from_longest (data_type, value_address (val));
14f9c5c9
AS
1609}
1610
4c4b4cd2
PH
1611/* True iff TYPE indicates a "thick" array pointer type. */
1612
14f9c5c9 1613static int
d2e4a39e 1614is_thick_pntr (struct type *type)
14f9c5c9
AS
1615{
1616 type = desc_base_type (type);
1617 return (type != NULL && TYPE_CODE (type) == TYPE_CODE_STRUCT
4c4b4cd2 1618 && lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL);
14f9c5c9
AS
1619}
1620
4c4b4cd2
PH
1621/* If TYPE is the type of an array descriptor (fat or thin pointer) or a
1622 pointer to one, the type of its bounds data; otherwise, NULL. */
76a01679 1623
d2e4a39e
AS
1624static struct type *
1625desc_bounds_type (struct type *type)
14f9c5c9 1626{
d2e4a39e 1627 struct type *r;
14f9c5c9
AS
1628
1629 type = desc_base_type (type);
1630
1631 if (type == NULL)
1632 return NULL;
1633 else if (is_thin_pntr (type))
1634 {
1635 type = thin_descriptor_type (type);
1636 if (type == NULL)
4c4b4cd2 1637 return NULL;
14f9c5c9
AS
1638 r = lookup_struct_elt_type (type, "BOUNDS", 1);
1639 if (r != NULL)
61ee279c 1640 return ada_check_typedef (r);
14f9c5c9
AS
1641 }
1642 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
1643 {
1644 r = lookup_struct_elt_type (type, "P_BOUNDS", 1);
1645 if (r != NULL)
61ee279c 1646 return ada_check_typedef (TYPE_TARGET_TYPE (ada_check_typedef (r)));
14f9c5c9
AS
1647 }
1648 return NULL;
1649}
1650
1651/* If ARR is an array descriptor (fat or thin pointer), or pointer to
4c4b4cd2
PH
1652 one, a pointer to its bounds data. Otherwise NULL. */
1653
d2e4a39e
AS
1654static struct value *
1655desc_bounds (struct value *arr)
14f9c5c9 1656{
df407dfe 1657 struct type *type = ada_check_typedef (value_type (arr));
5b4ee69b 1658
d2e4a39e 1659 if (is_thin_pntr (type))
14f9c5c9 1660 {
d2e4a39e 1661 struct type *bounds_type =
4c4b4cd2 1662 desc_bounds_type (thin_descriptor_type (type));
14f9c5c9
AS
1663 LONGEST addr;
1664
4cdfadb1 1665 if (bounds_type == NULL)
323e0a4a 1666 error (_("Bad GNAT array descriptor"));
14f9c5c9
AS
1667
1668 /* NOTE: The following calculation is not really kosher, but
d2e4a39e 1669 since desc_type is an XVE-encoded type (and shouldn't be),
4c4b4cd2 1670 the correct calculation is a real pain. FIXME (and fix GCC). */
14f9c5c9 1671 if (TYPE_CODE (type) == TYPE_CODE_PTR)
4c4b4cd2 1672 addr = value_as_long (arr);
d2e4a39e 1673 else
42ae5230 1674 addr = value_address (arr);
14f9c5c9 1675
d2e4a39e 1676 return
4c4b4cd2
PH
1677 value_from_longest (lookup_pointer_type (bounds_type),
1678 addr - TYPE_LENGTH (bounds_type));
14f9c5c9
AS
1679 }
1680
1681 else if (is_thick_pntr (type))
05e522ef
JB
1682 {
1683 struct value *p_bounds = value_struct_elt (&arr, NULL, "P_BOUNDS", NULL,
1684 _("Bad GNAT array descriptor"));
1685 struct type *p_bounds_type = value_type (p_bounds);
1686
1687 if (p_bounds_type
1688 && TYPE_CODE (p_bounds_type) == TYPE_CODE_PTR)
1689 {
1690 struct type *target_type = TYPE_TARGET_TYPE (p_bounds_type);
1691
1692 if (TYPE_STUB (target_type))
1693 p_bounds = value_cast (lookup_pointer_type
1694 (ada_check_typedef (target_type)),
1695 p_bounds);
1696 }
1697 else
1698 error (_("Bad GNAT array descriptor"));
1699
1700 return p_bounds;
1701 }
14f9c5c9
AS
1702 else
1703 return NULL;
1704}
1705
4c4b4cd2
PH
1706/* If TYPE is the type of an array-descriptor (fat pointer), the bit
1707 position of the field containing the address of the bounds data. */
1708
14f9c5c9 1709static int
d2e4a39e 1710fat_pntr_bounds_bitpos (struct type *type)
14f9c5c9
AS
1711{
1712 return TYPE_FIELD_BITPOS (desc_base_type (type), 1);
1713}
1714
1715/* If TYPE is the type of an array-descriptor (fat pointer), the bit
4c4b4cd2
PH
1716 size of the field containing the address of the bounds data. */
1717
14f9c5c9 1718static int
d2e4a39e 1719fat_pntr_bounds_bitsize (struct type *type)
14f9c5c9
AS
1720{
1721 type = desc_base_type (type);
1722
d2e4a39e 1723 if (TYPE_FIELD_BITSIZE (type, 1) > 0)
14f9c5c9
AS
1724 return TYPE_FIELD_BITSIZE (type, 1);
1725 else
61ee279c 1726 return 8 * TYPE_LENGTH (ada_check_typedef (TYPE_FIELD_TYPE (type, 1)));
14f9c5c9
AS
1727}
1728
4c4b4cd2 1729/* If TYPE is the type of an array descriptor (fat or thin pointer) or a
556bdfd4
UW
1730 pointer to one, the type of its array data (a array-with-no-bounds type);
1731 otherwise, NULL. Use ada_type_of_array to get an array type with bounds
1732 data. */
4c4b4cd2 1733
d2e4a39e 1734static struct type *
556bdfd4 1735desc_data_target_type (struct type *type)
14f9c5c9
AS
1736{
1737 type = desc_base_type (type);
1738
4c4b4cd2 1739 /* NOTE: The following is bogus; see comment in desc_bounds. */
14f9c5c9 1740 if (is_thin_pntr (type))
556bdfd4 1741 return desc_base_type (TYPE_FIELD_TYPE (thin_descriptor_type (type), 1));
14f9c5c9 1742 else if (is_thick_pntr (type))
556bdfd4
UW
1743 {
1744 struct type *data_type = lookup_struct_elt_type (type, "P_ARRAY", 1);
1745
1746 if (data_type
1747 && TYPE_CODE (ada_check_typedef (data_type)) == TYPE_CODE_PTR)
05e522ef 1748 return ada_check_typedef (TYPE_TARGET_TYPE (data_type));
556bdfd4
UW
1749 }
1750
1751 return NULL;
14f9c5c9
AS
1752}
1753
1754/* If ARR is an array descriptor (fat or thin pointer), a pointer to
1755 its array data. */
4c4b4cd2 1756
d2e4a39e
AS
1757static struct value *
1758desc_data (struct value *arr)
14f9c5c9 1759{
df407dfe 1760 struct type *type = value_type (arr);
5b4ee69b 1761
14f9c5c9
AS
1762 if (is_thin_pntr (type))
1763 return thin_data_pntr (arr);
1764 else if (is_thick_pntr (type))
d2e4a39e 1765 return value_struct_elt (&arr, NULL, "P_ARRAY", NULL,
323e0a4a 1766 _("Bad GNAT array descriptor"));
14f9c5c9
AS
1767 else
1768 return NULL;
1769}
1770
1771
1772/* If TYPE is the type of an array-descriptor (fat pointer), the bit
4c4b4cd2
PH
1773 position of the field containing the address of the data. */
1774
14f9c5c9 1775static int
d2e4a39e 1776fat_pntr_data_bitpos (struct type *type)
14f9c5c9
AS
1777{
1778 return TYPE_FIELD_BITPOS (desc_base_type (type), 0);
1779}
1780
1781/* If TYPE is the type of an array-descriptor (fat pointer), the bit
4c4b4cd2
PH
1782 size of the field containing the address of the data. */
1783
14f9c5c9 1784static int
d2e4a39e 1785fat_pntr_data_bitsize (struct type *type)
14f9c5c9
AS
1786{
1787 type = desc_base_type (type);
1788
1789 if (TYPE_FIELD_BITSIZE (type, 0) > 0)
1790 return TYPE_FIELD_BITSIZE (type, 0);
d2e4a39e 1791 else
14f9c5c9
AS
1792 return TARGET_CHAR_BIT * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 0));
1793}
1794
4c4b4cd2 1795/* If BOUNDS is an array-bounds structure (or pointer to one), return
14f9c5c9 1796 the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
4c4b4cd2
PH
1797 bound, if WHICH is 1. The first bound is I=1. */
1798
d2e4a39e
AS
1799static struct value *
1800desc_one_bound (struct value *bounds, int i, int which)
14f9c5c9 1801{
d2e4a39e 1802 return value_struct_elt (&bounds, NULL, bound_name[2 * i + which - 2], NULL,
323e0a4a 1803 _("Bad GNAT array descriptor bounds"));
14f9c5c9
AS
1804}
1805
1806/* If BOUNDS is an array-bounds structure type, return the bit position
1807 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
4c4b4cd2
PH
1808 bound, if WHICH is 1. The first bound is I=1. */
1809
14f9c5c9 1810static int
d2e4a39e 1811desc_bound_bitpos (struct type *type, int i, int which)
14f9c5c9 1812{
d2e4a39e 1813 return TYPE_FIELD_BITPOS (desc_base_type (type), 2 * i + which - 2);
14f9c5c9
AS
1814}
1815
1816/* If BOUNDS is an array-bounds structure type, return the bit field size
1817 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
4c4b4cd2
PH
1818 bound, if WHICH is 1. The first bound is I=1. */
1819
76a01679 1820static int
d2e4a39e 1821desc_bound_bitsize (struct type *type, int i, int which)
14f9c5c9
AS
1822{
1823 type = desc_base_type (type);
1824
d2e4a39e
AS
1825 if (TYPE_FIELD_BITSIZE (type, 2 * i + which - 2) > 0)
1826 return TYPE_FIELD_BITSIZE (type, 2 * i + which - 2);
1827 else
1828 return 8 * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 2 * i + which - 2));
14f9c5c9
AS
1829}
1830
1831/* If TYPE is the type of an array-bounds structure, the type of its
4c4b4cd2
PH
1832 Ith bound (numbering from 1). Otherwise, NULL. */
1833
d2e4a39e
AS
1834static struct type *
1835desc_index_type (struct type *type, int i)
14f9c5c9
AS
1836{
1837 type = desc_base_type (type);
1838
1839 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
d2e4a39e
AS
1840 return lookup_struct_elt_type (type, bound_name[2 * i - 2], 1);
1841 else
14f9c5c9
AS
1842 return NULL;
1843}
1844
4c4b4cd2
PH
1845/* The number of index positions in the array-bounds type TYPE.
1846 Return 0 if TYPE is NULL. */
1847
14f9c5c9 1848static int
d2e4a39e 1849desc_arity (struct type *type)
14f9c5c9
AS
1850{
1851 type = desc_base_type (type);
1852
1853 if (type != NULL)
1854 return TYPE_NFIELDS (type) / 2;
1855 return 0;
1856}
1857
4c4b4cd2
PH
1858/* Non-zero iff TYPE is a simple array type (not a pointer to one) or
1859 an array descriptor type (representing an unconstrained array
1860 type). */
1861
76a01679
JB
1862static int
1863ada_is_direct_array_type (struct type *type)
4c4b4cd2
PH
1864{
1865 if (type == NULL)
1866 return 0;
61ee279c 1867 type = ada_check_typedef (type);
4c4b4cd2 1868 return (TYPE_CODE (type) == TYPE_CODE_ARRAY
76a01679 1869 || ada_is_array_descriptor_type (type));
4c4b4cd2
PH
1870}
1871
52ce6436 1872/* Non-zero iff TYPE represents any kind of array in Ada, or a pointer
0963b4bd 1873 * to one. */
52ce6436 1874
2c0b251b 1875static int
52ce6436
PH
1876ada_is_array_type (struct type *type)
1877{
1878 while (type != NULL
1879 && (TYPE_CODE (type) == TYPE_CODE_PTR
1880 || TYPE_CODE (type) == TYPE_CODE_REF))
1881 type = TYPE_TARGET_TYPE (type);
1882 return ada_is_direct_array_type (type);
1883}
1884
4c4b4cd2 1885/* Non-zero iff TYPE is a simple array type or pointer to one. */
14f9c5c9 1886
14f9c5c9 1887int
4c4b4cd2 1888ada_is_simple_array_type (struct type *type)
14f9c5c9
AS
1889{
1890 if (type == NULL)
1891 return 0;
61ee279c 1892 type = ada_check_typedef (type);
14f9c5c9 1893 return (TYPE_CODE (type) == TYPE_CODE_ARRAY
4c4b4cd2 1894 || (TYPE_CODE (type) == TYPE_CODE_PTR
b0dd7688
JB
1895 && TYPE_CODE (ada_check_typedef (TYPE_TARGET_TYPE (type)))
1896 == TYPE_CODE_ARRAY));
14f9c5c9
AS
1897}
1898
4c4b4cd2
PH
1899/* Non-zero iff TYPE belongs to a GNAT array descriptor. */
1900
14f9c5c9 1901int
4c4b4cd2 1902ada_is_array_descriptor_type (struct type *type)
14f9c5c9 1903{
556bdfd4 1904 struct type *data_type = desc_data_target_type (type);
14f9c5c9
AS
1905
1906 if (type == NULL)
1907 return 0;
61ee279c 1908 type = ada_check_typedef (type);
556bdfd4
UW
1909 return (data_type != NULL
1910 && TYPE_CODE (data_type) == TYPE_CODE_ARRAY
1911 && desc_arity (desc_bounds_type (type)) > 0);
14f9c5c9
AS
1912}
1913
1914/* Non-zero iff type is a partially mal-formed GNAT array
4c4b4cd2 1915 descriptor. FIXME: This is to compensate for some problems with
14f9c5c9 1916 debugging output from GNAT. Re-examine periodically to see if it
4c4b4cd2
PH
1917 is still needed. */
1918
14f9c5c9 1919int
ebf56fd3 1920ada_is_bogus_array_descriptor (struct type *type)
14f9c5c9 1921{
d2e4a39e 1922 return
14f9c5c9
AS
1923 type != NULL
1924 && TYPE_CODE (type) == TYPE_CODE_STRUCT
1925 && (lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL
4c4b4cd2
PH
1926 || lookup_struct_elt_type (type, "P_ARRAY", 1) != NULL)
1927 && !ada_is_array_descriptor_type (type);
14f9c5c9
AS
1928}
1929
1930
4c4b4cd2 1931/* If ARR has a record type in the form of a standard GNAT array descriptor,
14f9c5c9 1932 (fat pointer) returns the type of the array data described---specifically,
4c4b4cd2 1933 a pointer-to-array type. If BOUNDS is non-zero, the bounds data are filled
14f9c5c9 1934 in from the descriptor; otherwise, they are left unspecified. If
4c4b4cd2
PH
1935 the ARR denotes a null array descriptor and BOUNDS is non-zero,
1936 returns NULL. The result is simply the type of ARR if ARR is not
14f9c5c9 1937 a descriptor. */
d2e4a39e
AS
1938struct type *
1939ada_type_of_array (struct value *arr, int bounds)
14f9c5c9 1940{
ad82864c
JB
1941 if (ada_is_constrained_packed_array_type (value_type (arr)))
1942 return decode_constrained_packed_array_type (value_type (arr));
14f9c5c9 1943
df407dfe
AC
1944 if (!ada_is_array_descriptor_type (value_type (arr)))
1945 return value_type (arr);
d2e4a39e
AS
1946
1947 if (!bounds)
ad82864c
JB
1948 {
1949 struct type *array_type =
1950 ada_check_typedef (desc_data_target_type (value_type (arr)));
1951
1952 if (ada_is_unconstrained_packed_array_type (value_type (arr)))
1953 TYPE_FIELD_BITSIZE (array_type, 0) =
1954 decode_packed_array_bitsize (value_type (arr));
1955
1956 return array_type;
1957 }
14f9c5c9
AS
1958 else
1959 {
d2e4a39e 1960 struct type *elt_type;
14f9c5c9 1961 int arity;
d2e4a39e 1962 struct value *descriptor;
14f9c5c9 1963
df407dfe
AC
1964 elt_type = ada_array_element_type (value_type (arr), -1);
1965 arity = ada_array_arity (value_type (arr));
14f9c5c9 1966
d2e4a39e 1967 if (elt_type == NULL || arity == 0)
df407dfe 1968 return ada_check_typedef (value_type (arr));
14f9c5c9
AS
1969
1970 descriptor = desc_bounds (arr);
d2e4a39e 1971 if (value_as_long (descriptor) == 0)
4c4b4cd2 1972 return NULL;
d2e4a39e 1973 while (arity > 0)
4c4b4cd2 1974 {
e9bb382b
UW
1975 struct type *range_type = alloc_type_copy (value_type (arr));
1976 struct type *array_type = alloc_type_copy (value_type (arr));
4c4b4cd2
PH
1977 struct value *low = desc_one_bound (descriptor, arity, 0);
1978 struct value *high = desc_one_bound (descriptor, arity, 1);
4c4b4cd2 1979
5b4ee69b 1980 arity -= 1;
0c9c3474
SA
1981 create_static_range_type (range_type, value_type (low),
1982 longest_to_int (value_as_long (low)),
1983 longest_to_int (value_as_long (high)));
4c4b4cd2 1984 elt_type = create_array_type (array_type, elt_type, range_type);
ad82864c
JB
1985
1986 if (ada_is_unconstrained_packed_array_type (value_type (arr)))
e67ad678
JB
1987 {
1988 /* We need to store the element packed bitsize, as well as
1989 recompute the array size, because it was previously
1990 computed based on the unpacked element size. */
1991 LONGEST lo = value_as_long (low);
1992 LONGEST hi = value_as_long (high);
1993
1994 TYPE_FIELD_BITSIZE (elt_type, 0) =
1995 decode_packed_array_bitsize (value_type (arr));
1996 /* If the array has no element, then the size is already
1997 zero, and does not need to be recomputed. */
1998 if (lo < hi)
1999 {
2000 int array_bitsize =
2001 (hi - lo + 1) * TYPE_FIELD_BITSIZE (elt_type, 0);
2002
2003 TYPE_LENGTH (array_type) = (array_bitsize + 7) / 8;
2004 }
2005 }
4c4b4cd2 2006 }
14f9c5c9
AS
2007
2008 return lookup_pointer_type (elt_type);
2009 }
2010}
2011
2012/* If ARR does not represent an array, returns ARR unchanged.
4c4b4cd2
PH
2013 Otherwise, returns either a standard GDB array with bounds set
2014 appropriately or, if ARR is a non-null fat pointer, a pointer to a standard
2015 GDB array. Returns NULL if ARR is a null fat pointer. */
2016
d2e4a39e
AS
2017struct value *
2018ada_coerce_to_simple_array_ptr (struct value *arr)
14f9c5c9 2019{
df407dfe 2020 if (ada_is_array_descriptor_type (value_type (arr)))
14f9c5c9 2021 {
d2e4a39e 2022 struct type *arrType = ada_type_of_array (arr, 1);
5b4ee69b 2023
14f9c5c9 2024 if (arrType == NULL)
4c4b4cd2 2025 return NULL;
14f9c5c9
AS
2026 return value_cast (arrType, value_copy (desc_data (arr)));
2027 }
ad82864c
JB
2028 else if (ada_is_constrained_packed_array_type (value_type (arr)))
2029 return decode_constrained_packed_array (arr);
14f9c5c9
AS
2030 else
2031 return arr;
2032}
2033
2034/* If ARR does not represent an array, returns ARR unchanged.
2035 Otherwise, returns a standard GDB array describing ARR (which may
4c4b4cd2
PH
2036 be ARR itself if it already is in the proper form). */
2037
720d1a40 2038struct value *
d2e4a39e 2039ada_coerce_to_simple_array (struct value *arr)
14f9c5c9 2040{
df407dfe 2041 if (ada_is_array_descriptor_type (value_type (arr)))
14f9c5c9 2042 {
d2e4a39e 2043 struct value *arrVal = ada_coerce_to_simple_array_ptr (arr);
5b4ee69b 2044
14f9c5c9 2045 if (arrVal == NULL)
323e0a4a 2046 error (_("Bounds unavailable for null array pointer."));
529cad9c 2047 check_size (TYPE_TARGET_TYPE (value_type (arrVal)));
14f9c5c9
AS
2048 return value_ind (arrVal);
2049 }
ad82864c
JB
2050 else if (ada_is_constrained_packed_array_type (value_type (arr)))
2051 return decode_constrained_packed_array (arr);
d2e4a39e 2052 else
14f9c5c9
AS
2053 return arr;
2054}
2055
2056/* If TYPE represents a GNAT array type, return it translated to an
2057 ordinary GDB array type (possibly with BITSIZE fields indicating
4c4b4cd2
PH
2058 packing). For other types, is the identity. */
2059
d2e4a39e
AS
2060struct type *
2061ada_coerce_to_simple_array_type (struct type *type)
14f9c5c9 2062{
ad82864c
JB
2063 if (ada_is_constrained_packed_array_type (type))
2064 return decode_constrained_packed_array_type (type);
17280b9f
UW
2065
2066 if (ada_is_array_descriptor_type (type))
556bdfd4 2067 return ada_check_typedef (desc_data_target_type (type));
17280b9f
UW
2068
2069 return type;
14f9c5c9
AS
2070}
2071
4c4b4cd2
PH
2072/* Non-zero iff TYPE represents a standard GNAT packed-array type. */
2073
ad82864c
JB
2074static int
2075ada_is_packed_array_type (struct type *type)
14f9c5c9
AS
2076{
2077 if (type == NULL)
2078 return 0;
4c4b4cd2 2079 type = desc_base_type (type);
61ee279c 2080 type = ada_check_typedef (type);
d2e4a39e 2081 return
14f9c5c9
AS
2082 ada_type_name (type) != NULL
2083 && strstr (ada_type_name (type), "___XP") != NULL;
2084}
2085
ad82864c
JB
2086/* Non-zero iff TYPE represents a standard GNAT constrained
2087 packed-array type. */
2088
2089int
2090ada_is_constrained_packed_array_type (struct type *type)
2091{
2092 return ada_is_packed_array_type (type)
2093 && !ada_is_array_descriptor_type (type);
2094}
2095
2096/* Non-zero iff TYPE represents an array descriptor for a
2097 unconstrained packed-array type. */
2098
2099static int
2100ada_is_unconstrained_packed_array_type (struct type *type)
2101{
2102 return ada_is_packed_array_type (type)
2103 && ada_is_array_descriptor_type (type);
2104}
2105
2106/* Given that TYPE encodes a packed array type (constrained or unconstrained),
2107 return the size of its elements in bits. */
2108
2109static long
2110decode_packed_array_bitsize (struct type *type)
2111{
0d5cff50
DE
2112 const char *raw_name;
2113 const char *tail;
ad82864c
JB
2114 long bits;
2115
720d1a40
JB
2116 /* Access to arrays implemented as fat pointers are encoded as a typedef
2117 of the fat pointer type. We need the name of the fat pointer type
2118 to do the decoding, so strip the typedef layer. */
2119 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
2120 type = ada_typedef_target_type (type);
2121
2122 raw_name = ada_type_name (ada_check_typedef (type));
ad82864c
JB
2123 if (!raw_name)
2124 raw_name = ada_type_name (desc_base_type (type));
2125
2126 if (!raw_name)
2127 return 0;
2128
2129 tail = strstr (raw_name, "___XP");
720d1a40 2130 gdb_assert (tail != NULL);
ad82864c
JB
2131
2132 if (sscanf (tail + sizeof ("___XP") - 1, "%ld", &bits) != 1)
2133 {
2134 lim_warning
2135 (_("could not understand bit size information on packed array"));
2136 return 0;
2137 }
2138
2139 return bits;
2140}
2141
14f9c5c9
AS
2142/* Given that TYPE is a standard GDB array type with all bounds filled
2143 in, and that the element size of its ultimate scalar constituents
2144 (that is, either its elements, or, if it is an array of arrays, its
2145 elements' elements, etc.) is *ELT_BITS, return an identical type,
2146 but with the bit sizes of its elements (and those of any
2147 constituent arrays) recorded in the BITSIZE components of its
4c4b4cd2
PH
2148 TYPE_FIELD_BITSIZE values, and with *ELT_BITS set to its total size
2149 in bits. */
2150
d2e4a39e 2151static struct type *
ad82864c 2152constrained_packed_array_type (struct type *type, long *elt_bits)
14f9c5c9 2153{
d2e4a39e
AS
2154 struct type *new_elt_type;
2155 struct type *new_type;
99b1c762
JB
2156 struct type *index_type_desc;
2157 struct type *index_type;
14f9c5c9
AS
2158 LONGEST low_bound, high_bound;
2159
61ee279c 2160 type = ada_check_typedef (type);
14f9c5c9
AS
2161 if (TYPE_CODE (type) != TYPE_CODE_ARRAY)
2162 return type;
2163
99b1c762
JB
2164 index_type_desc = ada_find_parallel_type (type, "___XA");
2165 if (index_type_desc)
2166 index_type = to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, 0),
2167 NULL);
2168 else
2169 index_type = TYPE_INDEX_TYPE (type);
2170
e9bb382b 2171 new_type = alloc_type_copy (type);
ad82864c
JB
2172 new_elt_type =
2173 constrained_packed_array_type (ada_check_typedef (TYPE_TARGET_TYPE (type)),
2174 elt_bits);
99b1c762 2175 create_array_type (new_type, new_elt_type, index_type);
14f9c5c9
AS
2176 TYPE_FIELD_BITSIZE (new_type, 0) = *elt_bits;
2177 TYPE_NAME (new_type) = ada_type_name (type);
2178
99b1c762 2179 if (get_discrete_bounds (index_type, &low_bound, &high_bound) < 0)
14f9c5c9
AS
2180 low_bound = high_bound = 0;
2181 if (high_bound < low_bound)
2182 *elt_bits = TYPE_LENGTH (new_type) = 0;
d2e4a39e 2183 else
14f9c5c9
AS
2184 {
2185 *elt_bits *= (high_bound - low_bound + 1);
d2e4a39e 2186 TYPE_LENGTH (new_type) =
4c4b4cd2 2187 (*elt_bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
14f9c5c9
AS
2188 }
2189
876cecd0 2190 TYPE_FIXED_INSTANCE (new_type) = 1;
14f9c5c9
AS
2191 return new_type;
2192}
2193
ad82864c
JB
2194/* The array type encoded by TYPE, where
2195 ada_is_constrained_packed_array_type (TYPE). */
4c4b4cd2 2196
d2e4a39e 2197static struct type *
ad82864c 2198decode_constrained_packed_array_type (struct type *type)
d2e4a39e 2199{
0d5cff50 2200 const char *raw_name = ada_type_name (ada_check_typedef (type));
727e3d2e 2201 char *name;
0d5cff50 2202 const char *tail;
d2e4a39e 2203 struct type *shadow_type;
14f9c5c9 2204 long bits;
14f9c5c9 2205
727e3d2e
JB
2206 if (!raw_name)
2207 raw_name = ada_type_name (desc_base_type (type));
2208
2209 if (!raw_name)
2210 return NULL;
2211
2212 name = (char *) alloca (strlen (raw_name) + 1);
2213 tail = strstr (raw_name, "___XP");
4c4b4cd2
PH
2214 type = desc_base_type (type);
2215
14f9c5c9
AS
2216 memcpy (name, raw_name, tail - raw_name);
2217 name[tail - raw_name] = '\000';
2218
b4ba55a1
JB
2219 shadow_type = ada_find_parallel_type_with_name (type, name);
2220
2221 if (shadow_type == NULL)
14f9c5c9 2222 {
323e0a4a 2223 lim_warning (_("could not find bounds information on packed array"));
14f9c5c9
AS
2224 return NULL;
2225 }
cb249c71 2226 CHECK_TYPEDEF (shadow_type);
14f9c5c9
AS
2227
2228 if (TYPE_CODE (shadow_type) != TYPE_CODE_ARRAY)
2229 {
0963b4bd
MS
2230 lim_warning (_("could not understand bounds "
2231 "information on packed array"));
14f9c5c9
AS
2232 return NULL;
2233 }
d2e4a39e 2234
ad82864c
JB
2235 bits = decode_packed_array_bitsize (type);
2236 return constrained_packed_array_type (shadow_type, &bits);
14f9c5c9
AS
2237}
2238
ad82864c
JB
2239/* Given that ARR is a struct value *indicating a GNAT constrained packed
2240 array, returns a simple array that denotes that array. Its type is a
14f9c5c9
AS
2241 standard GDB array type except that the BITSIZEs of the array
2242 target types are set to the number of bits in each element, and the
4c4b4cd2 2243 type length is set appropriately. */
14f9c5c9 2244
d2e4a39e 2245static struct value *
ad82864c 2246decode_constrained_packed_array (struct value *arr)
14f9c5c9 2247{
4c4b4cd2 2248 struct type *type;
14f9c5c9 2249
11aa919a
PMR
2250 /* If our value is a pointer, then dereference it. Likewise if
2251 the value is a reference. Make sure that this operation does not
2252 cause the target type to be fixed, as this would indirectly cause
2253 this array to be decoded. The rest of the routine assumes that
2254 the array hasn't been decoded yet, so we use the basic "coerce_ref"
2255 and "value_ind" routines to perform the dereferencing, as opposed
2256 to using "ada_coerce_ref" or "ada_value_ind". */
2257 arr = coerce_ref (arr);
828292f2 2258 if (TYPE_CODE (ada_check_typedef (value_type (arr))) == TYPE_CODE_PTR)
284614f0 2259 arr = value_ind (arr);
4c4b4cd2 2260
ad82864c 2261 type = decode_constrained_packed_array_type (value_type (arr));
14f9c5c9
AS
2262 if (type == NULL)
2263 {
323e0a4a 2264 error (_("can't unpack array"));
14f9c5c9
AS
2265 return NULL;
2266 }
61ee279c 2267
50810684 2268 if (gdbarch_bits_big_endian (get_type_arch (value_type (arr)))
32c9a795 2269 && ada_is_modular_type (value_type (arr)))
61ee279c
PH
2270 {
2271 /* This is a (right-justified) modular type representing a packed
2272 array with no wrapper. In order to interpret the value through
2273 the (left-justified) packed array type we just built, we must
2274 first left-justify it. */
2275 int bit_size, bit_pos;
2276 ULONGEST mod;
2277
df407dfe 2278 mod = ada_modulus (value_type (arr)) - 1;
61ee279c
PH
2279 bit_size = 0;
2280 while (mod > 0)
2281 {
2282 bit_size += 1;
2283 mod >>= 1;
2284 }
df407dfe 2285 bit_pos = HOST_CHAR_BIT * TYPE_LENGTH (value_type (arr)) - bit_size;
61ee279c
PH
2286 arr = ada_value_primitive_packed_val (arr, NULL,
2287 bit_pos / HOST_CHAR_BIT,
2288 bit_pos % HOST_CHAR_BIT,
2289 bit_size,
2290 type);
2291 }
2292
4c4b4cd2 2293 return coerce_unspec_val_to_type (arr, type);
14f9c5c9
AS
2294}
2295
2296
2297/* The value of the element of packed array ARR at the ARITY indices
4c4b4cd2 2298 given in IND. ARR must be a simple array. */
14f9c5c9 2299
d2e4a39e
AS
2300static struct value *
2301value_subscript_packed (struct value *arr, int arity, struct value **ind)
14f9c5c9
AS
2302{
2303 int i;
2304 int bits, elt_off, bit_off;
2305 long elt_total_bit_offset;
d2e4a39e
AS
2306 struct type *elt_type;
2307 struct value *v;
14f9c5c9
AS
2308
2309 bits = 0;
2310 elt_total_bit_offset = 0;
df407dfe 2311 elt_type = ada_check_typedef (value_type (arr));
d2e4a39e 2312 for (i = 0; i < arity; i += 1)
14f9c5c9 2313 {
d2e4a39e 2314 if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY
4c4b4cd2
PH
2315 || TYPE_FIELD_BITSIZE (elt_type, 0) == 0)
2316 error
0963b4bd
MS
2317 (_("attempt to do packed indexing of "
2318 "something other than a packed array"));
14f9c5c9 2319 else
4c4b4cd2
PH
2320 {
2321 struct type *range_type = TYPE_INDEX_TYPE (elt_type);
2322 LONGEST lowerbound, upperbound;
2323 LONGEST idx;
2324
2325 if (get_discrete_bounds (range_type, &lowerbound, &upperbound) < 0)
2326 {
323e0a4a 2327 lim_warning (_("don't know bounds of array"));
4c4b4cd2
PH
2328 lowerbound = upperbound = 0;
2329 }
2330
3cb382c9 2331 idx = pos_atr (ind[i]);
4c4b4cd2 2332 if (idx < lowerbound || idx > upperbound)
0963b4bd
MS
2333 lim_warning (_("packed array index %ld out of bounds"),
2334 (long) idx);
4c4b4cd2
PH
2335 bits = TYPE_FIELD_BITSIZE (elt_type, 0);
2336 elt_total_bit_offset += (idx - lowerbound) * bits;
61ee279c 2337 elt_type = ada_check_typedef (TYPE_TARGET_TYPE (elt_type));
4c4b4cd2 2338 }
14f9c5c9
AS
2339 }
2340 elt_off = elt_total_bit_offset / HOST_CHAR_BIT;
2341 bit_off = elt_total_bit_offset % HOST_CHAR_BIT;
d2e4a39e
AS
2342
2343 v = ada_value_primitive_packed_val (arr, NULL, elt_off, bit_off,
4c4b4cd2 2344 bits, elt_type);
14f9c5c9
AS
2345 return v;
2346}
2347
4c4b4cd2 2348/* Non-zero iff TYPE includes negative integer values. */
14f9c5c9
AS
2349
2350static int
d2e4a39e 2351has_negatives (struct type *type)
14f9c5c9 2352{
d2e4a39e
AS
2353 switch (TYPE_CODE (type))
2354 {
2355 default:
2356 return 0;
2357 case TYPE_CODE_INT:
2358 return !TYPE_UNSIGNED (type);
2359 case TYPE_CODE_RANGE:
2360 return TYPE_LOW_BOUND (type) < 0;
2361 }
14f9c5c9 2362}
d2e4a39e 2363
14f9c5c9
AS
2364
2365/* Create a new value of type TYPE from the contents of OBJ starting
2366 at byte OFFSET, and bit offset BIT_OFFSET within that byte,
2367 proceeding for BIT_SIZE bits. If OBJ is an lval in memory, then
0963b4bd 2368 assigning through the result will set the field fetched from.
4c4b4cd2
PH
2369 VALADDR is ignored unless OBJ is NULL, in which case,
2370 VALADDR+OFFSET must address the start of storage containing the
2371 packed value. The value returned in this case is never an lval.
2372 Assumes 0 <= BIT_OFFSET < HOST_CHAR_BIT. */
14f9c5c9 2373
d2e4a39e 2374struct value *
fc1a4b47 2375ada_value_primitive_packed_val (struct value *obj, const gdb_byte *valaddr,
a2bd3dcd 2376 long offset, int bit_offset, int bit_size,
4c4b4cd2 2377 struct type *type)
14f9c5c9 2378{
d2e4a39e 2379 struct value *v;
4c4b4cd2
PH
2380 int src, /* Index into the source area */
2381 targ, /* Index into the target area */
2382 srcBitsLeft, /* Number of source bits left to move */
2383 nsrc, ntarg, /* Number of source and target bytes */
2384 unusedLS, /* Number of bits in next significant
2385 byte of source that are unused */
2386 accumSize; /* Number of meaningful bits in accum */
2387 unsigned char *bytes; /* First byte containing data to unpack */
d2e4a39e 2388 unsigned char *unpacked;
4c4b4cd2 2389 unsigned long accum; /* Staging area for bits being transferred */
14f9c5c9
AS
2390 unsigned char sign;
2391 int len = (bit_size + bit_offset + HOST_CHAR_BIT - 1) / 8;
4c4b4cd2
PH
2392 /* Transmit bytes from least to most significant; delta is the direction
2393 the indices move. */
50810684 2394 int delta = gdbarch_bits_big_endian (get_type_arch (type)) ? -1 : 1;
14f9c5c9 2395
61ee279c 2396 type = ada_check_typedef (type);
14f9c5c9
AS
2397
2398 if (obj == NULL)
2399 {
2400 v = allocate_value (type);
d2e4a39e 2401 bytes = (unsigned char *) (valaddr + offset);
14f9c5c9 2402 }
9214ee5f 2403 else if (VALUE_LVAL (obj) == lval_memory && value_lazy (obj))
14f9c5c9 2404 {
53ba8333 2405 v = value_at (type, value_address (obj));
9f1f738a 2406 type = value_type (v);
d2e4a39e 2407 bytes = (unsigned char *) alloca (len);
53ba8333 2408 read_memory (value_address (v) + offset, bytes, len);
14f9c5c9 2409 }
d2e4a39e 2410 else
14f9c5c9
AS
2411 {
2412 v = allocate_value (type);
0fd88904 2413 bytes = (unsigned char *) value_contents (obj) + offset;
14f9c5c9 2414 }
d2e4a39e
AS
2415
2416 if (obj != NULL)
14f9c5c9 2417 {
53ba8333 2418 long new_offset = offset;
5b4ee69b 2419
74bcbdf3 2420 set_value_component_location (v, obj);
9bbda503
AC
2421 set_value_bitpos (v, bit_offset + value_bitpos (obj));
2422 set_value_bitsize (v, bit_size);
df407dfe 2423 if (value_bitpos (v) >= HOST_CHAR_BIT)
4c4b4cd2 2424 {
53ba8333 2425 ++new_offset;
9bbda503 2426 set_value_bitpos (v, value_bitpos (v) - HOST_CHAR_BIT);
4c4b4cd2 2427 }
53ba8333
JB
2428 set_value_offset (v, new_offset);
2429
2430 /* Also set the parent value. This is needed when trying to
2431 assign a new value (in inferior memory). */
2432 set_value_parent (v, obj);
14f9c5c9
AS
2433 }
2434 else
9bbda503 2435 set_value_bitsize (v, bit_size);
0fd88904 2436 unpacked = (unsigned char *) value_contents (v);
14f9c5c9
AS
2437
2438 srcBitsLeft = bit_size;
2439 nsrc = len;
2440 ntarg = TYPE_LENGTH (type);
2441 sign = 0;
2442 if (bit_size == 0)
2443 {
2444 memset (unpacked, 0, TYPE_LENGTH (type));
2445 return v;
2446 }
50810684 2447 else if (gdbarch_bits_big_endian (get_type_arch (type)))
14f9c5c9 2448 {
d2e4a39e 2449 src = len - 1;
1265e4aa
JB
2450 if (has_negatives (type)
2451 && ((bytes[0] << bit_offset) & (1 << (HOST_CHAR_BIT - 1))))
4c4b4cd2 2452 sign = ~0;
d2e4a39e
AS
2453
2454 unusedLS =
4c4b4cd2
PH
2455 (HOST_CHAR_BIT - (bit_size + bit_offset) % HOST_CHAR_BIT)
2456 % HOST_CHAR_BIT;
14f9c5c9
AS
2457
2458 switch (TYPE_CODE (type))
4c4b4cd2
PH
2459 {
2460 case TYPE_CODE_ARRAY:
2461 case TYPE_CODE_UNION:
2462 case TYPE_CODE_STRUCT:
2463 /* Non-scalar values must be aligned at a byte boundary... */
2464 accumSize =
2465 (HOST_CHAR_BIT - bit_size % HOST_CHAR_BIT) % HOST_CHAR_BIT;
2466 /* ... And are placed at the beginning (most-significant) bytes
2467 of the target. */
529cad9c 2468 targ = (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT - 1;
0056e4d5 2469 ntarg = targ + 1;
4c4b4cd2
PH
2470 break;
2471 default:
2472 accumSize = 0;
2473 targ = TYPE_LENGTH (type) - 1;
2474 break;
2475 }
14f9c5c9 2476 }
d2e4a39e 2477 else
14f9c5c9
AS
2478 {
2479 int sign_bit_offset = (bit_size + bit_offset - 1) % 8;
2480
2481 src = targ = 0;
2482 unusedLS = bit_offset;
2483 accumSize = 0;
2484
d2e4a39e 2485 if (has_negatives (type) && (bytes[len - 1] & (1 << sign_bit_offset)))
4c4b4cd2 2486 sign = ~0;
14f9c5c9 2487 }
d2e4a39e 2488
14f9c5c9
AS
2489 accum = 0;
2490 while (nsrc > 0)
2491 {
2492 /* Mask for removing bits of the next source byte that are not
4c4b4cd2 2493 part of the value. */
d2e4a39e 2494 unsigned int unusedMSMask =
4c4b4cd2
PH
2495 (1 << (srcBitsLeft >= HOST_CHAR_BIT ? HOST_CHAR_BIT : srcBitsLeft)) -
2496 1;
2497 /* Sign-extend bits for this byte. */
14f9c5c9 2498 unsigned int signMask = sign & ~unusedMSMask;
5b4ee69b 2499
d2e4a39e 2500 accum |=
4c4b4cd2 2501 (((bytes[src] >> unusedLS) & unusedMSMask) | signMask) << accumSize;
14f9c5c9 2502 accumSize += HOST_CHAR_BIT - unusedLS;
d2e4a39e 2503 if (accumSize >= HOST_CHAR_BIT)
4c4b4cd2
PH
2504 {
2505 unpacked[targ] = accum & ~(~0L << HOST_CHAR_BIT);
2506 accumSize -= HOST_CHAR_BIT;
2507 accum >>= HOST_CHAR_BIT;
2508 ntarg -= 1;
2509 targ += delta;
2510 }
14f9c5c9
AS
2511 srcBitsLeft -= HOST_CHAR_BIT - unusedLS;
2512 unusedLS = 0;
2513 nsrc -= 1;
2514 src += delta;
2515 }
2516 while (ntarg > 0)
2517 {
2518 accum |= sign << accumSize;
2519 unpacked[targ] = accum & ~(~0L << HOST_CHAR_BIT);
2520 accumSize -= HOST_CHAR_BIT;
2521 accum >>= HOST_CHAR_BIT;
2522 ntarg -= 1;
2523 targ += delta;
2524 }
2525
2526 return v;
2527}
d2e4a39e 2528
14f9c5c9
AS
2529/* Move N bits from SOURCE, starting at bit offset SRC_OFFSET to
2530 TARGET, starting at bit offset TARG_OFFSET. SOURCE and TARGET must
4c4b4cd2 2531 not overlap. */
14f9c5c9 2532static void
fc1a4b47 2533move_bits (gdb_byte *target, int targ_offset, const gdb_byte *source,
50810684 2534 int src_offset, int n, int bits_big_endian_p)
14f9c5c9
AS
2535{
2536 unsigned int accum, mask;
2537 int accum_bits, chunk_size;
2538
2539 target += targ_offset / HOST_CHAR_BIT;
2540 targ_offset %= HOST_CHAR_BIT;
2541 source += src_offset / HOST_CHAR_BIT;
2542 src_offset %= HOST_CHAR_BIT;
50810684 2543 if (bits_big_endian_p)
14f9c5c9
AS
2544 {
2545 accum = (unsigned char) *source;
2546 source += 1;
2547 accum_bits = HOST_CHAR_BIT - src_offset;
2548
d2e4a39e 2549 while (n > 0)
4c4b4cd2
PH
2550 {
2551 int unused_right;
5b4ee69b 2552
4c4b4cd2
PH
2553 accum = (accum << HOST_CHAR_BIT) + (unsigned char) *source;
2554 accum_bits += HOST_CHAR_BIT;
2555 source += 1;
2556 chunk_size = HOST_CHAR_BIT - targ_offset;
2557 if (chunk_size > n)
2558 chunk_size = n;
2559 unused_right = HOST_CHAR_BIT - (chunk_size + targ_offset);
2560 mask = ((1 << chunk_size) - 1) << unused_right;
2561 *target =
2562 (*target & ~mask)
2563 | ((accum >> (accum_bits - chunk_size - unused_right)) & mask);
2564 n -= chunk_size;
2565 accum_bits -= chunk_size;
2566 target += 1;
2567 targ_offset = 0;
2568 }
14f9c5c9
AS
2569 }
2570 else
2571 {
2572 accum = (unsigned char) *source >> src_offset;
2573 source += 1;
2574 accum_bits = HOST_CHAR_BIT - src_offset;
2575
d2e4a39e 2576 while (n > 0)
4c4b4cd2
PH
2577 {
2578 accum = accum + ((unsigned char) *source << accum_bits);
2579 accum_bits += HOST_CHAR_BIT;
2580 source += 1;
2581 chunk_size = HOST_CHAR_BIT - targ_offset;
2582 if (chunk_size > n)
2583 chunk_size = n;
2584 mask = ((1 << chunk_size) - 1) << targ_offset;
2585 *target = (*target & ~mask) | ((accum << targ_offset) & mask);
2586 n -= chunk_size;
2587 accum_bits -= chunk_size;
2588 accum >>= chunk_size;
2589 target += 1;
2590 targ_offset = 0;
2591 }
14f9c5c9
AS
2592 }
2593}
2594
14f9c5c9
AS
2595/* Store the contents of FROMVAL into the location of TOVAL.
2596 Return a new value with the location of TOVAL and contents of
2597 FROMVAL. Handles assignment into packed fields that have
4c4b4cd2 2598 floating-point or non-scalar types. */
14f9c5c9 2599
d2e4a39e
AS
2600static struct value *
2601ada_value_assign (struct value *toval, struct value *fromval)
14f9c5c9 2602{
df407dfe
AC
2603 struct type *type = value_type (toval);
2604 int bits = value_bitsize (toval);
14f9c5c9 2605
52ce6436
PH
2606 toval = ada_coerce_ref (toval);
2607 fromval = ada_coerce_ref (fromval);
2608
2609 if (ada_is_direct_array_type (value_type (toval)))
2610 toval = ada_coerce_to_simple_array (toval);
2611 if (ada_is_direct_array_type (value_type (fromval)))
2612 fromval = ada_coerce_to_simple_array (fromval);
2613
88e3b34b 2614 if (!deprecated_value_modifiable (toval))
323e0a4a 2615 error (_("Left operand of assignment is not a modifiable lvalue."));
14f9c5c9 2616
d2e4a39e 2617 if (VALUE_LVAL (toval) == lval_memory
14f9c5c9 2618 && bits > 0
d2e4a39e 2619 && (TYPE_CODE (type) == TYPE_CODE_FLT
4c4b4cd2 2620 || TYPE_CODE (type) == TYPE_CODE_STRUCT))
14f9c5c9 2621 {
df407dfe
AC
2622 int len = (value_bitpos (toval)
2623 + bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
aced2898 2624 int from_size;
948f8e3d 2625 gdb_byte *buffer = alloca (len);
d2e4a39e 2626 struct value *val;
42ae5230 2627 CORE_ADDR to_addr = value_address (toval);
14f9c5c9
AS
2628
2629 if (TYPE_CODE (type) == TYPE_CODE_FLT)
4c4b4cd2 2630 fromval = value_cast (type, fromval);
14f9c5c9 2631
52ce6436 2632 read_memory (to_addr, buffer, len);
aced2898
PH
2633 from_size = value_bitsize (fromval);
2634 if (from_size == 0)
2635 from_size = TYPE_LENGTH (value_type (fromval)) * TARGET_CHAR_BIT;
50810684 2636 if (gdbarch_bits_big_endian (get_type_arch (type)))
df407dfe 2637 move_bits (buffer, value_bitpos (toval),
50810684 2638 value_contents (fromval), from_size - bits, bits, 1);
14f9c5c9 2639 else
50810684
UW
2640 move_bits (buffer, value_bitpos (toval),
2641 value_contents (fromval), 0, bits, 0);
972daa01 2642 write_memory_with_notification (to_addr, buffer, len);
8cebebb9 2643
14f9c5c9 2644 val = value_copy (toval);
0fd88904 2645 memcpy (value_contents_raw (val), value_contents (fromval),
4c4b4cd2 2646 TYPE_LENGTH (type));
04624583 2647 deprecated_set_value_type (val, type);
d2e4a39e 2648
14f9c5c9
AS
2649 return val;
2650 }
2651
2652 return value_assign (toval, fromval);
2653}
2654
2655
52ce6436
PH
2656/* Given that COMPONENT is a memory lvalue that is part of the lvalue
2657 * CONTAINER, assign the contents of VAL to COMPONENTS's place in
2658 * CONTAINER. Modifies the VALUE_CONTENTS of CONTAINER only, not
2659 * COMPONENT, and not the inferior's memory. The current contents
2660 * of COMPONENT are ignored. */
2661static void
2662value_assign_to_component (struct value *container, struct value *component,
2663 struct value *val)
2664{
2665 LONGEST offset_in_container =
42ae5230 2666 (LONGEST) (value_address (component) - value_address (container));
52ce6436
PH
2667 int bit_offset_in_container =
2668 value_bitpos (component) - value_bitpos (container);
2669 int bits;
2670
2671 val = value_cast (value_type (component), val);
2672
2673 if (value_bitsize (component) == 0)
2674 bits = TARGET_CHAR_BIT * TYPE_LENGTH (value_type (component));
2675 else
2676 bits = value_bitsize (component);
2677
50810684 2678 if (gdbarch_bits_big_endian (get_type_arch (value_type (container))))
52ce6436
PH
2679 move_bits (value_contents_writeable (container) + offset_in_container,
2680 value_bitpos (container) + bit_offset_in_container,
2681 value_contents (val),
2682 TYPE_LENGTH (value_type (component)) * TARGET_CHAR_BIT - bits,
50810684 2683 bits, 1);
52ce6436
PH
2684 else
2685 move_bits (value_contents_writeable (container) + offset_in_container,
2686 value_bitpos (container) + bit_offset_in_container,
50810684 2687 value_contents (val), 0, bits, 0);
52ce6436
PH
2688}
2689
4c4b4cd2
PH
2690/* The value of the element of array ARR at the ARITY indices given in IND.
2691 ARR may be either a simple array, GNAT array descriptor, or pointer
14f9c5c9
AS
2692 thereto. */
2693
d2e4a39e
AS
2694struct value *
2695ada_value_subscript (struct value *arr, int arity, struct value **ind)
14f9c5c9
AS
2696{
2697 int k;
d2e4a39e
AS
2698 struct value *elt;
2699 struct type *elt_type;
14f9c5c9
AS
2700
2701 elt = ada_coerce_to_simple_array (arr);
2702
df407dfe 2703 elt_type = ada_check_typedef (value_type (elt));
d2e4a39e 2704 if (TYPE_CODE (elt_type) == TYPE_CODE_ARRAY
14f9c5c9
AS
2705 && TYPE_FIELD_BITSIZE (elt_type, 0) > 0)
2706 return value_subscript_packed (elt, arity, ind);
2707
2708 for (k = 0; k < arity; k += 1)
2709 {
2710 if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY)
323e0a4a 2711 error (_("too many subscripts (%d expected)"), k);
2497b498 2712 elt = value_subscript (elt, pos_atr (ind[k]));
14f9c5c9
AS
2713 }
2714 return elt;
2715}
2716
deede10c
JB
2717/* Assuming ARR is a pointer to a GDB array, the value of the element
2718 of *ARR at the ARITY indices given in IND.
2719 Does not read the entire array into memory. */
14f9c5c9 2720
2c0b251b 2721static struct value *
deede10c 2722ada_value_ptr_subscript (struct value *arr, int arity, struct value **ind)
14f9c5c9
AS
2723{
2724 int k;
deede10c
JB
2725 struct type *type
2726 = check_typedef (value_enclosing_type (ada_value_ind (arr)));
14f9c5c9
AS
2727
2728 for (k = 0; k < arity; k += 1)
2729 {
2730 LONGEST lwb, upb;
14f9c5c9
AS
2731
2732 if (TYPE_CODE (type) != TYPE_CODE_ARRAY)
323e0a4a 2733 error (_("too many subscripts (%d expected)"), k);
d2e4a39e 2734 arr = value_cast (lookup_pointer_type (TYPE_TARGET_TYPE (type)),
4c4b4cd2 2735 value_copy (arr));
14f9c5c9 2736 get_discrete_bounds (TYPE_INDEX_TYPE (type), &lwb, &upb);
2497b498 2737 arr = value_ptradd (arr, pos_atr (ind[k]) - lwb);
14f9c5c9
AS
2738 type = TYPE_TARGET_TYPE (type);
2739 }
2740
2741 return value_ind (arr);
2742}
2743
0b5d8877 2744/* Given that ARRAY_PTR is a pointer or reference to an array of type TYPE (the
f5938064
JG
2745 actual type of ARRAY_PTR is ignored), returns the Ada slice of HIGH-LOW+1
2746 elements starting at index LOW. The lower bound of this array is LOW, as
0963b4bd 2747 per Ada rules. */
0b5d8877 2748static struct value *
f5938064
JG
2749ada_value_slice_from_ptr (struct value *array_ptr, struct type *type,
2750 int low, int high)
0b5d8877 2751{
b0dd7688 2752 struct type *type0 = ada_check_typedef (type);
6c038f32 2753 CORE_ADDR base = value_as_address (array_ptr)
b0dd7688
JB
2754 + ((low - ada_discrete_type_low_bound (TYPE_INDEX_TYPE (type0)))
2755 * TYPE_LENGTH (TYPE_TARGET_TYPE (type0)));
0c9c3474
SA
2756 struct type *index_type
2757 = create_static_range_type (NULL,
2758 TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type0)),
2759 low, high);
6c038f32 2760 struct type *slice_type =
b0dd7688 2761 create_array_type (NULL, TYPE_TARGET_TYPE (type0), index_type);
5b4ee69b 2762
f5938064 2763 return value_at_lazy (slice_type, base);
0b5d8877
PH
2764}
2765
2766
2767static struct value *
2768ada_value_slice (struct value *array, int low, int high)
2769{
b0dd7688 2770 struct type *type = ada_check_typedef (value_type (array));
0c9c3474
SA
2771 struct type *index_type
2772 = create_static_range_type (NULL, TYPE_INDEX_TYPE (type), low, high);
6c038f32 2773 struct type *slice_type =
0b5d8877 2774 create_array_type (NULL, TYPE_TARGET_TYPE (type), index_type);
5b4ee69b 2775
6c038f32 2776 return value_cast (slice_type, value_slice (array, low, high - low + 1));
0b5d8877
PH
2777}
2778
14f9c5c9
AS
2779/* If type is a record type in the form of a standard GNAT array
2780 descriptor, returns the number of dimensions for type. If arr is a
2781 simple array, returns the number of "array of"s that prefix its
4c4b4cd2 2782 type designation. Otherwise, returns 0. */
14f9c5c9
AS
2783
2784int
d2e4a39e 2785ada_array_arity (struct type *type)
14f9c5c9
AS
2786{
2787 int arity;
2788
2789 if (type == NULL)
2790 return 0;
2791
2792 type = desc_base_type (type);
2793
2794 arity = 0;
d2e4a39e 2795 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
14f9c5c9 2796 return desc_arity (desc_bounds_type (type));
d2e4a39e
AS
2797 else
2798 while (TYPE_CODE (type) == TYPE_CODE_ARRAY)
14f9c5c9 2799 {
4c4b4cd2 2800 arity += 1;
61ee279c 2801 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
14f9c5c9 2802 }
d2e4a39e 2803
14f9c5c9
AS
2804 return arity;
2805}
2806
2807/* If TYPE is a record type in the form of a standard GNAT array
2808 descriptor or a simple array type, returns the element type for
2809 TYPE after indexing by NINDICES indices, or by all indices if
4c4b4cd2 2810 NINDICES is -1. Otherwise, returns NULL. */
14f9c5c9 2811
d2e4a39e
AS
2812struct type *
2813ada_array_element_type (struct type *type, int nindices)
14f9c5c9
AS
2814{
2815 type = desc_base_type (type);
2816
d2e4a39e 2817 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
14f9c5c9
AS
2818 {
2819 int k;
d2e4a39e 2820 struct type *p_array_type;
14f9c5c9 2821
556bdfd4 2822 p_array_type = desc_data_target_type (type);
14f9c5c9
AS
2823
2824 k = ada_array_arity (type);
2825 if (k == 0)
4c4b4cd2 2826 return NULL;
d2e4a39e 2827
4c4b4cd2 2828 /* Initially p_array_type = elt_type(*)[]...(k times)...[]. */
14f9c5c9 2829 if (nindices >= 0 && k > nindices)
4c4b4cd2 2830 k = nindices;
d2e4a39e 2831 while (k > 0 && p_array_type != NULL)
4c4b4cd2 2832 {
61ee279c 2833 p_array_type = ada_check_typedef (TYPE_TARGET_TYPE (p_array_type));
4c4b4cd2
PH
2834 k -= 1;
2835 }
14f9c5c9
AS
2836 return p_array_type;
2837 }
2838 else if (TYPE_CODE (type) == TYPE_CODE_ARRAY)
2839 {
2840 while (nindices != 0 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
4c4b4cd2
PH
2841 {
2842 type = TYPE_TARGET_TYPE (type);
2843 nindices -= 1;
2844 }
14f9c5c9
AS
2845 return type;
2846 }
2847
2848 return NULL;
2849}
2850
4c4b4cd2 2851/* The type of nth index in arrays of given type (n numbering from 1).
dd19d49e
UW
2852 Does not examine memory. Throws an error if N is invalid or TYPE
2853 is not an array type. NAME is the name of the Ada attribute being
2854 evaluated ('range, 'first, 'last, or 'length); it is used in building
2855 the error message. */
14f9c5c9 2856
1eea4ebd
UW
2857static struct type *
2858ada_index_type (struct type *type, int n, const char *name)
14f9c5c9 2859{
4c4b4cd2
PH
2860 struct type *result_type;
2861
14f9c5c9
AS
2862 type = desc_base_type (type);
2863
1eea4ebd
UW
2864 if (n < 0 || n > ada_array_arity (type))
2865 error (_("invalid dimension number to '%s"), name);
14f9c5c9 2866
4c4b4cd2 2867 if (ada_is_simple_array_type (type))
14f9c5c9
AS
2868 {
2869 int i;
2870
2871 for (i = 1; i < n; i += 1)
4c4b4cd2 2872 type = TYPE_TARGET_TYPE (type);
262452ec 2873 result_type = TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type));
4c4b4cd2
PH
2874 /* FIXME: The stabs type r(0,0);bound;bound in an array type
2875 has a target type of TYPE_CODE_UNDEF. We compensate here, but
76a01679 2876 perhaps stabsread.c would make more sense. */
1eea4ebd
UW
2877 if (result_type && TYPE_CODE (result_type) == TYPE_CODE_UNDEF)
2878 result_type = NULL;
14f9c5c9 2879 }
d2e4a39e 2880 else
1eea4ebd
UW
2881 {
2882 result_type = desc_index_type (desc_bounds_type (type), n);
2883 if (result_type == NULL)
2884 error (_("attempt to take bound of something that is not an array"));
2885 }
2886
2887 return result_type;
14f9c5c9
AS
2888}
2889
2890/* Given that arr is an array type, returns the lower bound of the
2891 Nth index (numbering from 1) if WHICH is 0, and the upper bound if
4c4b4cd2 2892 WHICH is 1. This returns bounds 0 .. -1 if ARR_TYPE is an
1eea4ebd
UW
2893 array-descriptor type. It works for other arrays with bounds supplied
2894 by run-time quantities other than discriminants. */
14f9c5c9 2895
abb68b3e 2896static LONGEST
fb5e3d5c 2897ada_array_bound_from_type (struct type *arr_type, int n, int which)
14f9c5c9 2898{
8a48ac95 2899 struct type *type, *index_type_desc, *index_type;
1ce677a4 2900 int i;
262452ec
JK
2901
2902 gdb_assert (which == 0 || which == 1);
14f9c5c9 2903
ad82864c
JB
2904 if (ada_is_constrained_packed_array_type (arr_type))
2905 arr_type = decode_constrained_packed_array_type (arr_type);
14f9c5c9 2906
4c4b4cd2 2907 if (arr_type == NULL || !ada_is_simple_array_type (arr_type))
1eea4ebd 2908 return (LONGEST) - which;
14f9c5c9
AS
2909
2910 if (TYPE_CODE (arr_type) == TYPE_CODE_PTR)
2911 type = TYPE_TARGET_TYPE (arr_type);
2912 else
2913 type = arr_type;
2914
2915 index_type_desc = ada_find_parallel_type (type, "___XA");
28c85d6c 2916 ada_fixup_array_indexes_type (index_type_desc);
262452ec 2917 if (index_type_desc != NULL)
28c85d6c
JB
2918 index_type = to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, n - 1),
2919 NULL);
262452ec 2920 else
8a48ac95
JB
2921 {
2922 struct type *elt_type = check_typedef (type);
2923
2924 for (i = 1; i < n; i++)
2925 elt_type = check_typedef (TYPE_TARGET_TYPE (elt_type));
2926
2927 index_type = TYPE_INDEX_TYPE (elt_type);
2928 }
262452ec 2929
43bbcdc2
PH
2930 return
2931 (LONGEST) (which == 0
2932 ? ada_discrete_type_low_bound (index_type)
2933 : ada_discrete_type_high_bound (index_type));
14f9c5c9
AS
2934}
2935
2936/* Given that arr is an array value, returns the lower bound of the
abb68b3e
JB
2937 nth index (numbering from 1) if WHICH is 0, and the upper bound if
2938 WHICH is 1. This routine will also work for arrays with bounds
4c4b4cd2 2939 supplied by run-time quantities other than discriminants. */
14f9c5c9 2940
1eea4ebd 2941static LONGEST
4dc81987 2942ada_array_bound (struct value *arr, int n, int which)
14f9c5c9 2943{
eb479039
JB
2944 struct type *arr_type;
2945
2946 if (TYPE_CODE (check_typedef (value_type (arr))) == TYPE_CODE_PTR)
2947 arr = value_ind (arr);
2948 arr_type = value_enclosing_type (arr);
14f9c5c9 2949
ad82864c
JB
2950 if (ada_is_constrained_packed_array_type (arr_type))
2951 return ada_array_bound (decode_constrained_packed_array (arr), n, which);
4c4b4cd2 2952 else if (ada_is_simple_array_type (arr_type))
1eea4ebd 2953 return ada_array_bound_from_type (arr_type, n, which);
14f9c5c9 2954 else
1eea4ebd 2955 return value_as_long (desc_one_bound (desc_bounds (arr), n, which));
14f9c5c9
AS
2956}
2957
2958/* Given that arr is an array value, returns the length of the
2959 nth index. This routine will also work for arrays with bounds
4c4b4cd2
PH
2960 supplied by run-time quantities other than discriminants.
2961 Does not work for arrays indexed by enumeration types with representation
2962 clauses at the moment. */
14f9c5c9 2963
1eea4ebd 2964static LONGEST
d2e4a39e 2965ada_array_length (struct value *arr, int n)
14f9c5c9 2966{
eb479039
JB
2967 struct type *arr_type;
2968
2969 if (TYPE_CODE (check_typedef (value_type (arr))) == TYPE_CODE_PTR)
2970 arr = value_ind (arr);
2971 arr_type = value_enclosing_type (arr);
14f9c5c9 2972
ad82864c
JB
2973 if (ada_is_constrained_packed_array_type (arr_type))
2974 return ada_array_length (decode_constrained_packed_array (arr), n);
14f9c5c9 2975
4c4b4cd2 2976 if (ada_is_simple_array_type (arr_type))
1eea4ebd
UW
2977 return (ada_array_bound_from_type (arr_type, n, 1)
2978 - ada_array_bound_from_type (arr_type, n, 0) + 1);
14f9c5c9 2979 else
1eea4ebd
UW
2980 return (value_as_long (desc_one_bound (desc_bounds (arr), n, 1))
2981 - value_as_long (desc_one_bound (desc_bounds (arr), n, 0)) + 1);
4c4b4cd2
PH
2982}
2983
2984/* An empty array whose type is that of ARR_TYPE (an array type),
2985 with bounds LOW to LOW-1. */
2986
2987static struct value *
2988empty_array (struct type *arr_type, int low)
2989{
b0dd7688 2990 struct type *arr_type0 = ada_check_typedef (arr_type);
0c9c3474
SA
2991 struct type *index_type
2992 = create_static_range_type
2993 (NULL, TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (arr_type0)), low, low - 1);
b0dd7688 2994 struct type *elt_type = ada_array_element_type (arr_type0, 1);
5b4ee69b 2995
0b5d8877 2996 return allocate_value (create_array_type (NULL, elt_type, index_type));
14f9c5c9 2997}
14f9c5c9 2998\f
d2e4a39e 2999
4c4b4cd2 3000 /* Name resolution */
14f9c5c9 3001
4c4b4cd2
PH
3002/* The "decoded" name for the user-definable Ada operator corresponding
3003 to OP. */
14f9c5c9 3004
d2e4a39e 3005static const char *
4c4b4cd2 3006ada_decoded_op_name (enum exp_opcode op)
14f9c5c9
AS
3007{
3008 int i;
3009
4c4b4cd2 3010 for (i = 0; ada_opname_table[i].encoded != NULL; i += 1)
14f9c5c9
AS
3011 {
3012 if (ada_opname_table[i].op == op)
4c4b4cd2 3013 return ada_opname_table[i].decoded;
14f9c5c9 3014 }
323e0a4a 3015 error (_("Could not find operator name for opcode"));
14f9c5c9
AS
3016}
3017
3018
4c4b4cd2
PH
3019/* Same as evaluate_type (*EXP), but resolves ambiguous symbol
3020 references (marked by OP_VAR_VALUE nodes in which the symbol has an
3021 undefined namespace) and converts operators that are
3022 user-defined into appropriate function calls. If CONTEXT_TYPE is
14f9c5c9
AS
3023 non-null, it provides a preferred result type [at the moment, only
3024 type void has any effect---causing procedures to be preferred over
3025 functions in calls]. A null CONTEXT_TYPE indicates that a non-void
4c4b4cd2 3026 return type is preferred. May change (expand) *EXP. */
14f9c5c9 3027
4c4b4cd2
PH
3028static void
3029resolve (struct expression **expp, int void_context_p)
14f9c5c9 3030{
30b15541
UW
3031 struct type *context_type = NULL;
3032 int pc = 0;
3033
3034 if (void_context_p)
3035 context_type = builtin_type ((*expp)->gdbarch)->builtin_void;
3036
3037 resolve_subexp (expp, &pc, 1, context_type);
14f9c5c9
AS
3038}
3039
4c4b4cd2
PH
3040/* Resolve the operator of the subexpression beginning at
3041 position *POS of *EXPP. "Resolving" consists of replacing
3042 the symbols that have undefined namespaces in OP_VAR_VALUE nodes
3043 with their resolutions, replacing built-in operators with
3044 function calls to user-defined operators, where appropriate, and,
3045 when DEPROCEDURE_P is non-zero, converting function-valued variables
3046 into parameterless calls. May expand *EXPP. The CONTEXT_TYPE functions
3047 are as in ada_resolve, above. */
14f9c5c9 3048
d2e4a39e 3049static struct value *
4c4b4cd2 3050resolve_subexp (struct expression **expp, int *pos, int deprocedure_p,
76a01679 3051 struct type *context_type)
14f9c5c9
AS
3052{
3053 int pc = *pos;
3054 int i;
4c4b4cd2 3055 struct expression *exp; /* Convenience: == *expp. */
14f9c5c9 3056 enum exp_opcode op = (*expp)->elts[pc].opcode;
4c4b4cd2
PH
3057 struct value **argvec; /* Vector of operand types (alloca'ed). */
3058 int nargs; /* Number of operands. */
52ce6436 3059 int oplen;
14f9c5c9
AS
3060
3061 argvec = NULL;
3062 nargs = 0;
3063 exp = *expp;
3064
52ce6436
PH
3065 /* Pass one: resolve operands, saving their types and updating *pos,
3066 if needed. */
14f9c5c9
AS
3067 switch (op)
3068 {
4c4b4cd2
PH
3069 case OP_FUNCALL:
3070 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
76a01679
JB
3071 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
3072 *pos += 7;
4c4b4cd2
PH
3073 else
3074 {
3075 *pos += 3;
3076 resolve_subexp (expp, pos, 0, NULL);
3077 }
3078 nargs = longest_to_int (exp->elts[pc + 1].longconst);
14f9c5c9
AS
3079 break;
3080
14f9c5c9 3081 case UNOP_ADDR:
4c4b4cd2
PH
3082 *pos += 1;
3083 resolve_subexp (expp, pos, 0, NULL);
3084 break;
3085
52ce6436
PH
3086 case UNOP_QUAL:
3087 *pos += 3;
17466c1a 3088 resolve_subexp (expp, pos, 1, check_typedef (exp->elts[pc + 1].type));
4c4b4cd2
PH
3089 break;
3090
52ce6436 3091 case OP_ATR_MODULUS:
4c4b4cd2
PH
3092 case OP_ATR_SIZE:
3093 case OP_ATR_TAG:
4c4b4cd2
PH
3094 case OP_ATR_FIRST:
3095 case OP_ATR_LAST:
3096 case OP_ATR_LENGTH:
3097 case OP_ATR_POS:
3098 case OP_ATR_VAL:
4c4b4cd2
PH
3099 case OP_ATR_MIN:
3100 case OP_ATR_MAX:
52ce6436
PH
3101 case TERNOP_IN_RANGE:
3102 case BINOP_IN_BOUNDS:
3103 case UNOP_IN_RANGE:
3104 case OP_AGGREGATE:
3105 case OP_OTHERS:
3106 case OP_CHOICES:
3107 case OP_POSITIONAL:
3108 case OP_DISCRETE_RANGE:
3109 case OP_NAME:
3110 ada_forward_operator_length (exp, pc, &oplen, &nargs);
3111 *pos += oplen;
14f9c5c9
AS
3112 break;
3113
3114 case BINOP_ASSIGN:
3115 {
4c4b4cd2
PH
3116 struct value *arg1;
3117
3118 *pos += 1;
3119 arg1 = resolve_subexp (expp, pos, 0, NULL);
3120 if (arg1 == NULL)
3121 resolve_subexp (expp, pos, 1, NULL);
3122 else
df407dfe 3123 resolve_subexp (expp, pos, 1, value_type (arg1));
4c4b4cd2 3124 break;
14f9c5c9
AS
3125 }
3126
4c4b4cd2 3127 case UNOP_CAST:
4c4b4cd2
PH
3128 *pos += 3;
3129 nargs = 1;
3130 break;
14f9c5c9 3131
4c4b4cd2
PH
3132 case BINOP_ADD:
3133 case BINOP_SUB:
3134 case BINOP_MUL:
3135 case BINOP_DIV:
3136 case BINOP_REM:
3137 case BINOP_MOD:
3138 case BINOP_EXP:
3139 case BINOP_CONCAT:
3140 case BINOP_LOGICAL_AND:
3141 case BINOP_LOGICAL_OR:
3142 case BINOP_BITWISE_AND:
3143 case BINOP_BITWISE_IOR:
3144 case BINOP_BITWISE_XOR:
14f9c5c9 3145
4c4b4cd2
PH
3146 case BINOP_EQUAL:
3147 case BINOP_NOTEQUAL:
3148 case BINOP_LESS:
3149 case BINOP_GTR:
3150 case BINOP_LEQ:
3151 case BINOP_GEQ:
14f9c5c9 3152
4c4b4cd2
PH
3153 case BINOP_REPEAT:
3154 case BINOP_SUBSCRIPT:
3155 case BINOP_COMMA:
40c8aaa9
JB
3156 *pos += 1;
3157 nargs = 2;
3158 break;
14f9c5c9 3159
4c4b4cd2
PH
3160 case UNOP_NEG:
3161 case UNOP_PLUS:
3162 case UNOP_LOGICAL_NOT:
3163 case UNOP_ABS:
3164 case UNOP_IND:
3165 *pos += 1;
3166 nargs = 1;
3167 break;
14f9c5c9 3168
4c4b4cd2
PH
3169 case OP_LONG:
3170 case OP_DOUBLE:
3171 case OP_VAR_VALUE:
3172 *pos += 4;
3173 break;
14f9c5c9 3174
4c4b4cd2
PH
3175 case OP_TYPE:
3176 case OP_BOOL:
3177 case OP_LAST:
4c4b4cd2
PH
3178 case OP_INTERNALVAR:
3179 *pos += 3;
3180 break;
14f9c5c9 3181
4c4b4cd2
PH
3182 case UNOP_MEMVAL:
3183 *pos += 3;
3184 nargs = 1;
3185 break;
3186
67f3407f
DJ
3187 case OP_REGISTER:
3188 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
3189 break;
3190
4c4b4cd2
PH
3191 case STRUCTOP_STRUCT:
3192 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
3193 nargs = 1;
3194 break;
3195
4c4b4cd2 3196 case TERNOP_SLICE:
4c4b4cd2
PH
3197 *pos += 1;
3198 nargs = 3;
3199 break;
3200
52ce6436 3201 case OP_STRING:
14f9c5c9 3202 break;
4c4b4cd2
PH
3203
3204 default:
323e0a4a 3205 error (_("Unexpected operator during name resolution"));
14f9c5c9
AS
3206 }
3207
76a01679 3208 argvec = (struct value * *) alloca (sizeof (struct value *) * (nargs + 1));
4c4b4cd2
PH
3209 for (i = 0; i < nargs; i += 1)
3210 argvec[i] = resolve_subexp (expp, pos, 1, NULL);
3211 argvec[i] = NULL;
3212 exp = *expp;
3213
3214 /* Pass two: perform any resolution on principal operator. */
14f9c5c9
AS
3215 switch (op)
3216 {
3217 default:
3218 break;
3219
14f9c5c9 3220 case OP_VAR_VALUE:
4c4b4cd2 3221 if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
76a01679
JB
3222 {
3223 struct ada_symbol_info *candidates;
3224 int n_candidates;
3225
3226 n_candidates =
3227 ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME
3228 (exp->elts[pc + 2].symbol),
3229 exp->elts[pc + 1].block, VAR_DOMAIN,
4eeaa230 3230 &candidates);
76a01679
JB
3231
3232 if (n_candidates > 1)
3233 {
3234 /* Types tend to get re-introduced locally, so if there
3235 are any local symbols that are not types, first filter
3236 out all types. */
3237 int j;
3238 for (j = 0; j < n_candidates; j += 1)
3239 switch (SYMBOL_CLASS (candidates[j].sym))
3240 {
3241 case LOC_REGISTER:
3242 case LOC_ARG:
3243 case LOC_REF_ARG:
76a01679
JB
3244 case LOC_REGPARM_ADDR:
3245 case LOC_LOCAL:
76a01679 3246 case LOC_COMPUTED:
76a01679
JB
3247 goto FoundNonType;
3248 default:
3249 break;
3250 }
3251 FoundNonType:
3252 if (j < n_candidates)
3253 {
3254 j = 0;
3255 while (j < n_candidates)
3256 {
3257 if (SYMBOL_CLASS (candidates[j].sym) == LOC_TYPEDEF)
3258 {
3259 candidates[j] = candidates[n_candidates - 1];
3260 n_candidates -= 1;
3261 }
3262 else
3263 j += 1;
3264 }
3265 }
3266 }
3267
3268 if (n_candidates == 0)
323e0a4a 3269 error (_("No definition found for %s"),
76a01679
JB
3270 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
3271 else if (n_candidates == 1)
3272 i = 0;
3273 else if (deprocedure_p
3274 && !is_nonfunction (candidates, n_candidates))
3275 {
06d5cf63
JB
3276 i = ada_resolve_function
3277 (candidates, n_candidates, NULL, 0,
3278 SYMBOL_LINKAGE_NAME (exp->elts[pc + 2].symbol),
3279 context_type);
76a01679 3280 if (i < 0)
323e0a4a 3281 error (_("Could not find a match for %s"),
76a01679
JB
3282 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
3283 }
3284 else
3285 {
323e0a4a 3286 printf_filtered (_("Multiple matches for %s\n"),
76a01679
JB
3287 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
3288 user_select_syms (candidates, n_candidates, 1);
3289 i = 0;
3290 }
3291
3292 exp->elts[pc + 1].block = candidates[i].block;
3293 exp->elts[pc + 2].symbol = candidates[i].sym;
1265e4aa
JB
3294 if (innermost_block == NULL
3295 || contained_in (candidates[i].block, innermost_block))
76a01679
JB
3296 innermost_block = candidates[i].block;
3297 }
3298
3299 if (deprocedure_p
3300 && (TYPE_CODE (SYMBOL_TYPE (exp->elts[pc + 2].symbol))
3301 == TYPE_CODE_FUNC))
3302 {
3303 replace_operator_with_call (expp, pc, 0, 0,
3304 exp->elts[pc + 2].symbol,
3305 exp->elts[pc + 1].block);
3306 exp = *expp;
3307 }
14f9c5c9
AS
3308 break;
3309
3310 case OP_FUNCALL:
3311 {
4c4b4cd2 3312 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
76a01679 3313 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
4c4b4cd2
PH
3314 {
3315 struct ada_symbol_info *candidates;
3316 int n_candidates;
3317
3318 n_candidates =
76a01679
JB
3319 ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME
3320 (exp->elts[pc + 5].symbol),
3321 exp->elts[pc + 4].block, VAR_DOMAIN,
4eeaa230 3322 &candidates);
4c4b4cd2
PH
3323 if (n_candidates == 1)
3324 i = 0;
3325 else
3326 {
06d5cf63
JB
3327 i = ada_resolve_function
3328 (candidates, n_candidates,
3329 argvec, nargs,
3330 SYMBOL_LINKAGE_NAME (exp->elts[pc + 5].symbol),
3331 context_type);
4c4b4cd2 3332 if (i < 0)
323e0a4a 3333 error (_("Could not find a match for %s"),
4c4b4cd2
PH
3334 SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol));
3335 }
3336
3337 exp->elts[pc + 4].block = candidates[i].block;
3338 exp->elts[pc + 5].symbol = candidates[i].sym;
1265e4aa
JB
3339 if (innermost_block == NULL
3340 || contained_in (candidates[i].block, innermost_block))
4c4b4cd2
PH
3341 innermost_block = candidates[i].block;
3342 }
14f9c5c9
AS
3343 }
3344 break;
3345 case BINOP_ADD:
3346 case BINOP_SUB:
3347 case BINOP_MUL:
3348 case BINOP_DIV:
3349 case BINOP_REM:
3350 case BINOP_MOD:
3351 case BINOP_CONCAT:
3352 case BINOP_BITWISE_AND:
3353 case BINOP_BITWISE_IOR:
3354 case BINOP_BITWISE_XOR:
3355 case BINOP_EQUAL:
3356 case BINOP_NOTEQUAL:
3357 case BINOP_LESS:
3358 case BINOP_GTR:
3359 case BINOP_LEQ:
3360 case BINOP_GEQ:
3361 case BINOP_EXP:
3362 case UNOP_NEG:
3363 case UNOP_PLUS:
3364 case UNOP_LOGICAL_NOT:
3365 case UNOP_ABS:
3366 if (possible_user_operator_p (op, argvec))
4c4b4cd2
PH
3367 {
3368 struct ada_symbol_info *candidates;
3369 int n_candidates;
3370
3371 n_candidates =
3372 ada_lookup_symbol_list (ada_encode (ada_decoded_op_name (op)),
3373 (struct block *) NULL, VAR_DOMAIN,
4eeaa230 3374 &candidates);
4c4b4cd2 3375 i = ada_resolve_function (candidates, n_candidates, argvec, nargs,
76a01679 3376 ada_decoded_op_name (op), NULL);
4c4b4cd2
PH
3377 if (i < 0)
3378 break;
3379
76a01679
JB
3380 replace_operator_with_call (expp, pc, nargs, 1,
3381 candidates[i].sym, candidates[i].block);
4c4b4cd2
PH
3382 exp = *expp;
3383 }
14f9c5c9 3384 break;
4c4b4cd2
PH
3385
3386 case OP_TYPE:
b3dbf008 3387 case OP_REGISTER:
4c4b4cd2 3388 return NULL;
14f9c5c9
AS
3389 }
3390
3391 *pos = pc;
3392 return evaluate_subexp_type (exp, pos);
3393}
3394
3395/* Return non-zero if formal type FTYPE matches actual type ATYPE. If
4c4b4cd2 3396 MAY_DEREF is non-zero, the formal may be a pointer and the actual
5b3d5b7d 3397 a non-pointer. */
14f9c5c9 3398/* The term "match" here is rather loose. The match is heuristic and
5b3d5b7d 3399 liberal. */
14f9c5c9
AS
3400
3401static int
4dc81987 3402ada_type_match (struct type *ftype, struct type *atype, int may_deref)
14f9c5c9 3403{
61ee279c
PH
3404 ftype = ada_check_typedef (ftype);
3405 atype = ada_check_typedef (atype);
14f9c5c9
AS
3406
3407 if (TYPE_CODE (ftype) == TYPE_CODE_REF)
3408 ftype = TYPE_TARGET_TYPE (ftype);
3409 if (TYPE_CODE (atype) == TYPE_CODE_REF)
3410 atype = TYPE_TARGET_TYPE (atype);
3411
d2e4a39e 3412 switch (TYPE_CODE (ftype))
14f9c5c9
AS
3413 {
3414 default:
5b3d5b7d 3415 return TYPE_CODE (ftype) == TYPE_CODE (atype);
14f9c5c9
AS
3416 case TYPE_CODE_PTR:
3417 if (TYPE_CODE (atype) == TYPE_CODE_PTR)
4c4b4cd2
PH
3418 return ada_type_match (TYPE_TARGET_TYPE (ftype),
3419 TYPE_TARGET_TYPE (atype), 0);
d2e4a39e 3420 else
1265e4aa
JB
3421 return (may_deref
3422 && ada_type_match (TYPE_TARGET_TYPE (ftype), atype, 0));
14f9c5c9
AS
3423 case TYPE_CODE_INT:
3424 case TYPE_CODE_ENUM:
3425 case TYPE_CODE_RANGE:
3426 switch (TYPE_CODE (atype))
4c4b4cd2
PH
3427 {
3428 case TYPE_CODE_INT:
3429 case TYPE_CODE_ENUM:
3430 case TYPE_CODE_RANGE:
3431 return 1;
3432 default:
3433 return 0;
3434 }
14f9c5c9
AS
3435
3436 case TYPE_CODE_ARRAY:
d2e4a39e 3437 return (TYPE_CODE (atype) == TYPE_CODE_ARRAY
4c4b4cd2 3438 || ada_is_array_descriptor_type (atype));
14f9c5c9
AS
3439
3440 case TYPE_CODE_STRUCT:
4c4b4cd2
PH
3441 if (ada_is_array_descriptor_type (ftype))
3442 return (TYPE_CODE (atype) == TYPE_CODE_ARRAY
3443 || ada_is_array_descriptor_type (atype));
14f9c5c9 3444 else
4c4b4cd2
PH
3445 return (TYPE_CODE (atype) == TYPE_CODE_STRUCT
3446 && !ada_is_array_descriptor_type (atype));
14f9c5c9
AS
3447
3448 case TYPE_CODE_UNION:
3449 case TYPE_CODE_FLT:
3450 return (TYPE_CODE (atype) == TYPE_CODE (ftype));
3451 }
3452}
3453
3454/* Return non-zero if the formals of FUNC "sufficiently match" the
3455 vector of actual argument types ACTUALS of size N_ACTUALS. FUNC
3456 may also be an enumeral, in which case it is treated as a 0-
4c4b4cd2 3457 argument function. */
14f9c5c9
AS
3458
3459static int
d2e4a39e 3460ada_args_match (struct symbol *func, struct value **actuals, int n_actuals)
14f9c5c9
AS
3461{
3462 int i;
d2e4a39e 3463 struct type *func_type = SYMBOL_TYPE (func);
14f9c5c9 3464
1265e4aa
JB
3465 if (SYMBOL_CLASS (func) == LOC_CONST
3466 && TYPE_CODE (func_type) == TYPE_CODE_ENUM)
14f9c5c9
AS
3467 return (n_actuals == 0);
3468 else if (func_type == NULL || TYPE_CODE (func_type) != TYPE_CODE_FUNC)
3469 return 0;
3470
3471 if (TYPE_NFIELDS (func_type) != n_actuals)
3472 return 0;
3473
3474 for (i = 0; i < n_actuals; i += 1)
3475 {
4c4b4cd2 3476 if (actuals[i] == NULL)
76a01679
JB
3477 return 0;
3478 else
3479 {
5b4ee69b
MS
3480 struct type *ftype = ada_check_typedef (TYPE_FIELD_TYPE (func_type,
3481 i));
df407dfe 3482 struct type *atype = ada_check_typedef (value_type (actuals[i]));
4c4b4cd2 3483
76a01679
JB
3484 if (!ada_type_match (ftype, atype, 1))
3485 return 0;
3486 }
14f9c5c9
AS
3487 }
3488 return 1;
3489}
3490
3491/* False iff function type FUNC_TYPE definitely does not produce a value
3492 compatible with type CONTEXT_TYPE. Conservatively returns 1 if
3493 FUNC_TYPE is not a valid function type with a non-null return type
3494 or an enumerated type. A null CONTEXT_TYPE indicates any non-void type. */
3495
3496static int
d2e4a39e 3497return_match (struct type *func_type, struct type *context_type)
14f9c5c9 3498{
d2e4a39e 3499 struct type *return_type;
14f9c5c9
AS
3500
3501 if (func_type == NULL)
3502 return 1;
3503
4c4b4cd2 3504 if (TYPE_CODE (func_type) == TYPE_CODE_FUNC)
18af8284 3505 return_type = get_base_type (TYPE_TARGET_TYPE (func_type));
4c4b4cd2 3506 else
18af8284 3507 return_type = get_base_type (func_type);
14f9c5c9
AS
3508 if (return_type == NULL)
3509 return 1;
3510
18af8284 3511 context_type = get_base_type (context_type);
14f9c5c9
AS
3512
3513 if (TYPE_CODE (return_type) == TYPE_CODE_ENUM)
3514 return context_type == NULL || return_type == context_type;
3515 else if (context_type == NULL)
3516 return TYPE_CODE (return_type) != TYPE_CODE_VOID;
3517 else
3518 return TYPE_CODE (return_type) == TYPE_CODE (context_type);
3519}
3520
3521
4c4b4cd2 3522/* Returns the index in SYMS[0..NSYMS-1] that contains the symbol for the
14f9c5c9 3523 function (if any) that matches the types of the NARGS arguments in
4c4b4cd2
PH
3524 ARGS. If CONTEXT_TYPE is non-null and there is at least one match
3525 that returns that type, then eliminate matches that don't. If
3526 CONTEXT_TYPE is void and there is at least one match that does not
3527 return void, eliminate all matches that do.
3528
14f9c5c9
AS
3529 Asks the user if there is more than one match remaining. Returns -1
3530 if there is no such symbol or none is selected. NAME is used
4c4b4cd2
PH
3531 solely for messages. May re-arrange and modify SYMS in
3532 the process; the index returned is for the modified vector. */
14f9c5c9 3533
4c4b4cd2
PH
3534static int
3535ada_resolve_function (struct ada_symbol_info syms[],
3536 int nsyms, struct value **args, int nargs,
3537 const char *name, struct type *context_type)
14f9c5c9 3538{
30b15541 3539 int fallback;
14f9c5c9 3540 int k;
4c4b4cd2 3541 int m; /* Number of hits */
14f9c5c9 3542
d2e4a39e 3543 m = 0;
30b15541
UW
3544 /* In the first pass of the loop, we only accept functions matching
3545 context_type. If none are found, we add a second pass of the loop
3546 where every function is accepted. */
3547 for (fallback = 0; m == 0 && fallback < 2; fallback++)
14f9c5c9
AS
3548 {
3549 for (k = 0; k < nsyms; k += 1)
4c4b4cd2 3550 {
61ee279c 3551 struct type *type = ada_check_typedef (SYMBOL_TYPE (syms[k].sym));
4c4b4cd2
PH
3552
3553 if (ada_args_match (syms[k].sym, args, nargs)
30b15541 3554 && (fallback || return_match (type, context_type)))
4c4b4cd2
PH
3555 {
3556 syms[m] = syms[k];
3557 m += 1;
3558 }
3559 }
14f9c5c9
AS
3560 }
3561
3562 if (m == 0)
3563 return -1;
3564 else if (m > 1)
3565 {
323e0a4a 3566 printf_filtered (_("Multiple matches for %s\n"), name);
4c4b4cd2 3567 user_select_syms (syms, m, 1);
14f9c5c9
AS
3568 return 0;
3569 }
3570 return 0;
3571}
3572
4c4b4cd2
PH
3573/* Returns true (non-zero) iff decoded name N0 should appear before N1
3574 in a listing of choices during disambiguation (see sort_choices, below).
3575 The idea is that overloadings of a subprogram name from the
3576 same package should sort in their source order. We settle for ordering
3577 such symbols by their trailing number (__N or $N). */
3578
14f9c5c9 3579static int
0d5cff50 3580encoded_ordered_before (const char *N0, const char *N1)
14f9c5c9
AS
3581{
3582 if (N1 == NULL)
3583 return 0;
3584 else if (N0 == NULL)
3585 return 1;
3586 else
3587 {
3588 int k0, k1;
5b4ee69b 3589
d2e4a39e 3590 for (k0 = strlen (N0) - 1; k0 > 0 && isdigit (N0[k0]); k0 -= 1)
4c4b4cd2 3591 ;
d2e4a39e 3592 for (k1 = strlen (N1) - 1; k1 > 0 && isdigit (N1[k1]); k1 -= 1)
4c4b4cd2 3593 ;
d2e4a39e 3594 if ((N0[k0] == '_' || N0[k0] == '$') && N0[k0 + 1] != '\000'
4c4b4cd2
PH
3595 && (N1[k1] == '_' || N1[k1] == '$') && N1[k1 + 1] != '\000')
3596 {
3597 int n0, n1;
5b4ee69b 3598
4c4b4cd2
PH
3599 n0 = k0;
3600 while (N0[n0] == '_' && n0 > 0 && N0[n0 - 1] == '_')
3601 n0 -= 1;
3602 n1 = k1;
3603 while (N1[n1] == '_' && n1 > 0 && N1[n1 - 1] == '_')
3604 n1 -= 1;
3605 if (n0 == n1 && strncmp (N0, N1, n0) == 0)
3606 return (atoi (N0 + k0 + 1) < atoi (N1 + k1 + 1));
3607 }
14f9c5c9
AS
3608 return (strcmp (N0, N1) < 0);
3609 }
3610}
d2e4a39e 3611
4c4b4cd2
PH
3612/* Sort SYMS[0..NSYMS-1] to put the choices in a canonical order by the
3613 encoded names. */
3614
d2e4a39e 3615static void
4c4b4cd2 3616sort_choices (struct ada_symbol_info syms[], int nsyms)
14f9c5c9 3617{
4c4b4cd2 3618 int i;
5b4ee69b 3619
d2e4a39e 3620 for (i = 1; i < nsyms; i += 1)
14f9c5c9 3621 {
4c4b4cd2 3622 struct ada_symbol_info sym = syms[i];
14f9c5c9
AS
3623 int j;
3624
d2e4a39e 3625 for (j = i - 1; j >= 0; j -= 1)
4c4b4cd2
PH
3626 {
3627 if (encoded_ordered_before (SYMBOL_LINKAGE_NAME (syms[j].sym),
3628 SYMBOL_LINKAGE_NAME (sym.sym)))
3629 break;
3630 syms[j + 1] = syms[j];
3631 }
d2e4a39e 3632 syms[j + 1] = sym;
14f9c5c9
AS
3633 }
3634}
3635
4c4b4cd2
PH
3636/* Given a list of NSYMS symbols in SYMS, select up to MAX_RESULTS>0
3637 by asking the user (if necessary), returning the number selected,
3638 and setting the first elements of SYMS items. Error if no symbols
3639 selected. */
14f9c5c9
AS
3640
3641/* NOTE: Adapted from decode_line_2 in symtab.c, with which it ought
4c4b4cd2 3642 to be re-integrated one of these days. */
14f9c5c9
AS
3643
3644int
4c4b4cd2 3645user_select_syms (struct ada_symbol_info *syms, int nsyms, int max_results)
14f9c5c9
AS
3646{
3647 int i;
d2e4a39e 3648 int *chosen = (int *) alloca (sizeof (int) * nsyms);
14f9c5c9
AS
3649 int n_chosen;
3650 int first_choice = (max_results == 1) ? 1 : 2;
717d2f5a 3651 const char *select_mode = multiple_symbols_select_mode ();
14f9c5c9
AS
3652
3653 if (max_results < 1)
323e0a4a 3654 error (_("Request to select 0 symbols!"));
14f9c5c9
AS
3655 if (nsyms <= 1)
3656 return nsyms;
3657
717d2f5a
JB
3658 if (select_mode == multiple_symbols_cancel)
3659 error (_("\
3660canceled because the command is ambiguous\n\
3661See set/show multiple-symbol."));
3662
3663 /* If select_mode is "all", then return all possible symbols.
3664 Only do that if more than one symbol can be selected, of course.
3665 Otherwise, display the menu as usual. */
3666 if (select_mode == multiple_symbols_all && max_results > 1)
3667 return nsyms;
3668
323e0a4a 3669 printf_unfiltered (_("[0] cancel\n"));
14f9c5c9 3670 if (max_results > 1)
323e0a4a 3671 printf_unfiltered (_("[1] all\n"));
14f9c5c9 3672
4c4b4cd2 3673 sort_choices (syms, nsyms);
14f9c5c9
AS
3674
3675 for (i = 0; i < nsyms; i += 1)
3676 {
4c4b4cd2
PH
3677 if (syms[i].sym == NULL)
3678 continue;
3679
3680 if (SYMBOL_CLASS (syms[i].sym) == LOC_BLOCK)
3681 {
76a01679
JB
3682 struct symtab_and_line sal =
3683 find_function_start_sal (syms[i].sym, 1);
5b4ee69b 3684
323e0a4a
AC
3685 if (sal.symtab == NULL)
3686 printf_unfiltered (_("[%d] %s at <no source file available>:%d\n"),
3687 i + first_choice,
3688 SYMBOL_PRINT_NAME (syms[i].sym),
3689 sal.line);
3690 else
3691 printf_unfiltered (_("[%d] %s at %s:%d\n"), i + first_choice,
3692 SYMBOL_PRINT_NAME (syms[i].sym),
05cba821
JK
3693 symtab_to_filename_for_display (sal.symtab),
3694 sal.line);
4c4b4cd2
PH
3695 continue;
3696 }
d2e4a39e 3697 else
4c4b4cd2
PH
3698 {
3699 int is_enumeral =
3700 (SYMBOL_CLASS (syms[i].sym) == LOC_CONST
3701 && SYMBOL_TYPE (syms[i].sym) != NULL
3702 && TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) == TYPE_CODE_ENUM);
210bbc17 3703 struct symtab *symtab = SYMBOL_SYMTAB (syms[i].sym);
4c4b4cd2
PH
3704
3705 if (SYMBOL_LINE (syms[i].sym) != 0 && symtab != NULL)
323e0a4a 3706 printf_unfiltered (_("[%d] %s at %s:%d\n"),
4c4b4cd2
PH
3707 i + first_choice,
3708 SYMBOL_PRINT_NAME (syms[i].sym),
05cba821
JK
3709 symtab_to_filename_for_display (symtab),
3710 SYMBOL_LINE (syms[i].sym));
76a01679
JB
3711 else if (is_enumeral
3712 && TYPE_NAME (SYMBOL_TYPE (syms[i].sym)) != NULL)
4c4b4cd2 3713 {
a3f17187 3714 printf_unfiltered (("[%d] "), i + first_choice);
76a01679 3715 ada_print_type (SYMBOL_TYPE (syms[i].sym), NULL,
79d43c61 3716 gdb_stdout, -1, 0, &type_print_raw_options);
323e0a4a 3717 printf_unfiltered (_("'(%s) (enumeral)\n"),
4c4b4cd2
PH
3718 SYMBOL_PRINT_NAME (syms[i].sym));
3719 }
3720 else if (symtab != NULL)
3721 printf_unfiltered (is_enumeral
323e0a4a
AC
3722 ? _("[%d] %s in %s (enumeral)\n")
3723 : _("[%d] %s at %s:?\n"),
4c4b4cd2
PH
3724 i + first_choice,
3725 SYMBOL_PRINT_NAME (syms[i].sym),
05cba821 3726 symtab_to_filename_for_display (symtab));
4c4b4cd2
PH
3727 else
3728 printf_unfiltered (is_enumeral
323e0a4a
AC
3729 ? _("[%d] %s (enumeral)\n")
3730 : _("[%d] %s at ?\n"),
4c4b4cd2
PH
3731 i + first_choice,
3732 SYMBOL_PRINT_NAME (syms[i].sym));
3733 }
14f9c5c9 3734 }
d2e4a39e 3735
14f9c5c9 3736 n_chosen = get_selections (chosen, nsyms, max_results, max_results > 1,
4c4b4cd2 3737 "overload-choice");
14f9c5c9
AS
3738
3739 for (i = 0; i < n_chosen; i += 1)
4c4b4cd2 3740 syms[i] = syms[chosen[i]];
14f9c5c9
AS
3741
3742 return n_chosen;
3743}
3744
3745/* Read and validate a set of numeric choices from the user in the
4c4b4cd2 3746 range 0 .. N_CHOICES-1. Place the results in increasing
14f9c5c9
AS
3747 order in CHOICES[0 .. N-1], and return N.
3748
3749 The user types choices as a sequence of numbers on one line
3750 separated by blanks, encoding them as follows:
3751
4c4b4cd2 3752 + A choice of 0 means to cancel the selection, throwing an error.
14f9c5c9
AS
3753 + If IS_ALL_CHOICE, a choice of 1 selects the entire set 0 .. N_CHOICES-1.
3754 + The user chooses k by typing k+IS_ALL_CHOICE+1.
3755
4c4b4cd2 3756 The user is not allowed to choose more than MAX_RESULTS values.
14f9c5c9
AS
3757
3758 ANNOTATION_SUFFIX, if present, is used to annotate the input
4c4b4cd2 3759 prompts (for use with the -f switch). */
14f9c5c9
AS
3760
3761int
d2e4a39e 3762get_selections (int *choices, int n_choices, int max_results,
4c4b4cd2 3763 int is_all_choice, char *annotation_suffix)
14f9c5c9 3764{
d2e4a39e 3765 char *args;
0bcd0149 3766 char *prompt;
14f9c5c9
AS
3767 int n_chosen;
3768 int first_choice = is_all_choice ? 2 : 1;
d2e4a39e 3769
14f9c5c9
AS
3770 prompt = getenv ("PS2");
3771 if (prompt == NULL)
0bcd0149 3772 prompt = "> ";
14f9c5c9 3773
0bcd0149 3774 args = command_line_input (prompt, 0, annotation_suffix);
d2e4a39e 3775
14f9c5c9 3776 if (args == NULL)
323e0a4a 3777 error_no_arg (_("one or more choice numbers"));
14f9c5c9
AS
3778
3779 n_chosen = 0;
76a01679 3780
4c4b4cd2
PH
3781 /* Set choices[0 .. n_chosen-1] to the users' choices in ascending
3782 order, as given in args. Choices are validated. */
14f9c5c9
AS
3783 while (1)
3784 {
d2e4a39e 3785 char *args2;
14f9c5c9
AS
3786 int choice, j;
3787
0fcd72ba 3788 args = skip_spaces (args);
14f9c5c9 3789 if (*args == '\0' && n_chosen == 0)
323e0a4a 3790 error_no_arg (_("one or more choice numbers"));
14f9c5c9 3791 else if (*args == '\0')
4c4b4cd2 3792 break;
14f9c5c9
AS
3793
3794 choice = strtol (args, &args2, 10);
d2e4a39e 3795 if (args == args2 || choice < 0
4c4b4cd2 3796 || choice > n_choices + first_choice - 1)
323e0a4a 3797 error (_("Argument must be choice number"));
14f9c5c9
AS
3798 args = args2;
3799
d2e4a39e 3800 if (choice == 0)
323e0a4a 3801 error (_("cancelled"));
14f9c5c9
AS
3802
3803 if (choice < first_choice)
4c4b4cd2
PH
3804 {
3805 n_chosen = n_choices;
3806 for (j = 0; j < n_choices; j += 1)
3807 choices[j] = j;
3808 break;
3809 }
14f9c5c9
AS
3810 choice -= first_choice;
3811
d2e4a39e 3812 for (j = n_chosen - 1; j >= 0 && choice < choices[j]; j -= 1)
4c4b4cd2
PH
3813 {
3814 }
14f9c5c9
AS
3815
3816 if (j < 0 || choice != choices[j])
4c4b4cd2
PH
3817 {
3818 int k;
5b4ee69b 3819
4c4b4cd2
PH
3820 for (k = n_chosen - 1; k > j; k -= 1)
3821 choices[k + 1] = choices[k];
3822 choices[j + 1] = choice;
3823 n_chosen += 1;
3824 }
14f9c5c9
AS
3825 }
3826
3827 if (n_chosen > max_results)
323e0a4a 3828 error (_("Select no more than %d of the above"), max_results);
d2e4a39e 3829
14f9c5c9
AS
3830 return n_chosen;
3831}
3832
4c4b4cd2
PH
3833/* Replace the operator of length OPLEN at position PC in *EXPP with a call
3834 on the function identified by SYM and BLOCK, and taking NARGS
3835 arguments. Update *EXPP as needed to hold more space. */
14f9c5c9
AS
3836
3837static void
d2e4a39e 3838replace_operator_with_call (struct expression **expp, int pc, int nargs,
4c4b4cd2 3839 int oplen, struct symbol *sym,
270140bd 3840 const struct block *block)
14f9c5c9
AS
3841{
3842 /* A new expression, with 6 more elements (3 for funcall, 4 for function
4c4b4cd2 3843 symbol, -oplen for operator being replaced). */
d2e4a39e 3844 struct expression *newexp = (struct expression *)
8c1a34e7 3845 xzalloc (sizeof (struct expression)
4c4b4cd2 3846 + EXP_ELEM_TO_BYTES ((*expp)->nelts + 7 - oplen));
d2e4a39e 3847 struct expression *exp = *expp;
14f9c5c9
AS
3848
3849 newexp->nelts = exp->nelts + 7 - oplen;
3850 newexp->language_defn = exp->language_defn;
3489610d 3851 newexp->gdbarch = exp->gdbarch;
14f9c5c9 3852 memcpy (newexp->elts, exp->elts, EXP_ELEM_TO_BYTES (pc));
d2e4a39e 3853 memcpy (newexp->elts + pc + 7, exp->elts + pc + oplen,
4c4b4cd2 3854 EXP_ELEM_TO_BYTES (exp->nelts - pc - oplen));
14f9c5c9
AS
3855
3856 newexp->elts[pc].opcode = newexp->elts[pc + 2].opcode = OP_FUNCALL;
3857 newexp->elts[pc + 1].longconst = (LONGEST) nargs;
3858
3859 newexp->elts[pc + 3].opcode = newexp->elts[pc + 6].opcode = OP_VAR_VALUE;
3860 newexp->elts[pc + 4].block = block;
3861 newexp->elts[pc + 5].symbol = sym;
3862
3863 *expp = newexp;
aacb1f0a 3864 xfree (exp);
d2e4a39e 3865}
14f9c5c9
AS
3866
3867/* Type-class predicates */
3868
4c4b4cd2
PH
3869/* True iff TYPE is numeric (i.e., an INT, RANGE (of numeric type),
3870 or FLOAT). */
14f9c5c9
AS
3871
3872static int
d2e4a39e 3873numeric_type_p (struct type *type)
14f9c5c9
AS
3874{
3875 if (type == NULL)
3876 return 0;
d2e4a39e
AS
3877 else
3878 {
3879 switch (TYPE_CODE (type))
4c4b4cd2
PH
3880 {
3881 case TYPE_CODE_INT:
3882 case TYPE_CODE_FLT:
3883 return 1;
3884 case TYPE_CODE_RANGE:
3885 return (type == TYPE_TARGET_TYPE (type)
3886 || numeric_type_p (TYPE_TARGET_TYPE (type)));
3887 default:
3888 return 0;
3889 }
d2e4a39e 3890 }
14f9c5c9
AS
3891}
3892
4c4b4cd2 3893/* True iff TYPE is integral (an INT or RANGE of INTs). */
14f9c5c9
AS
3894
3895static int
d2e4a39e 3896integer_type_p (struct type *type)
14f9c5c9
AS
3897{
3898 if (type == NULL)
3899 return 0;
d2e4a39e
AS
3900 else
3901 {
3902 switch (TYPE_CODE (type))
4c4b4cd2
PH
3903 {
3904 case TYPE_CODE_INT:
3905 return 1;
3906 case TYPE_CODE_RANGE:
3907 return (type == TYPE_TARGET_TYPE (type)
3908 || integer_type_p (TYPE_TARGET_TYPE (type)));
3909 default:
3910 return 0;
3911 }
d2e4a39e 3912 }
14f9c5c9
AS
3913}
3914
4c4b4cd2 3915/* True iff TYPE is scalar (INT, RANGE, FLOAT, ENUM). */
14f9c5c9
AS
3916
3917static int
d2e4a39e 3918scalar_type_p (struct type *type)
14f9c5c9
AS
3919{
3920 if (type == NULL)
3921 return 0;
d2e4a39e
AS
3922 else
3923 {
3924 switch (TYPE_CODE (type))
4c4b4cd2
PH
3925 {
3926 case TYPE_CODE_INT:
3927 case TYPE_CODE_RANGE:
3928 case TYPE_CODE_ENUM:
3929 case TYPE_CODE_FLT:
3930 return 1;
3931 default:
3932 return 0;
3933 }
d2e4a39e 3934 }
14f9c5c9
AS
3935}
3936
4c4b4cd2 3937/* True iff TYPE is discrete (INT, RANGE, ENUM). */
14f9c5c9
AS
3938
3939static int
d2e4a39e 3940discrete_type_p (struct type *type)
14f9c5c9
AS
3941{
3942 if (type == NULL)
3943 return 0;
d2e4a39e
AS
3944 else
3945 {
3946 switch (TYPE_CODE (type))
4c4b4cd2
PH
3947 {
3948 case TYPE_CODE_INT:
3949 case TYPE_CODE_RANGE:
3950 case TYPE_CODE_ENUM:
872f0337 3951 case TYPE_CODE_BOOL:
4c4b4cd2
PH
3952 return 1;
3953 default:
3954 return 0;
3955 }
d2e4a39e 3956 }
14f9c5c9
AS
3957}
3958
4c4b4cd2
PH
3959/* Returns non-zero if OP with operands in the vector ARGS could be
3960 a user-defined function. Errs on the side of pre-defined operators
3961 (i.e., result 0). */
14f9c5c9
AS
3962
3963static int
d2e4a39e 3964possible_user_operator_p (enum exp_opcode op, struct value *args[])
14f9c5c9 3965{
76a01679 3966 struct type *type0 =
df407dfe 3967 (args[0] == NULL) ? NULL : ada_check_typedef (value_type (args[0]));
d2e4a39e 3968 struct type *type1 =
df407dfe 3969 (args[1] == NULL) ? NULL : ada_check_typedef (value_type (args[1]));
d2e4a39e 3970
4c4b4cd2
PH
3971 if (type0 == NULL)
3972 return 0;
3973
14f9c5c9
AS
3974 switch (op)
3975 {
3976 default:
3977 return 0;
3978
3979 case BINOP_ADD:
3980 case BINOP_SUB:
3981 case BINOP_MUL:
3982 case BINOP_DIV:
d2e4a39e 3983 return (!(numeric_type_p (type0) && numeric_type_p (type1)));
14f9c5c9
AS
3984
3985 case BINOP_REM:
3986 case BINOP_MOD:
3987 case BINOP_BITWISE_AND:
3988 case BINOP_BITWISE_IOR:
3989 case BINOP_BITWISE_XOR:
d2e4a39e 3990 return (!(integer_type_p (type0) && integer_type_p (type1)));
14f9c5c9
AS
3991
3992 case BINOP_EQUAL:
3993 case BINOP_NOTEQUAL:
3994 case BINOP_LESS:
3995 case BINOP_GTR:
3996 case BINOP_LEQ:
3997 case BINOP_GEQ:
d2e4a39e 3998 return (!(scalar_type_p (type0) && scalar_type_p (type1)));
14f9c5c9
AS
3999
4000 case BINOP_CONCAT:
ee90b9ab 4001 return !ada_is_array_type (type0) || !ada_is_array_type (type1);
14f9c5c9
AS
4002
4003 case BINOP_EXP:
d2e4a39e 4004 return (!(numeric_type_p (type0) && integer_type_p (type1)));
14f9c5c9
AS
4005
4006 case UNOP_NEG:
4007 case UNOP_PLUS:
4008 case UNOP_LOGICAL_NOT:
d2e4a39e
AS
4009 case UNOP_ABS:
4010 return (!numeric_type_p (type0));
14f9c5c9
AS
4011
4012 }
4013}
4014\f
4c4b4cd2 4015 /* Renaming */
14f9c5c9 4016
aeb5907d
JB
4017/* NOTES:
4018
4019 1. In the following, we assume that a renaming type's name may
4020 have an ___XD suffix. It would be nice if this went away at some
4021 point.
4022 2. We handle both the (old) purely type-based representation of
4023 renamings and the (new) variable-based encoding. At some point,
4024 it is devoutly to be hoped that the former goes away
4025 (FIXME: hilfinger-2007-07-09).
4026 3. Subprogram renamings are not implemented, although the XRS
4027 suffix is recognized (FIXME: hilfinger-2007-07-09). */
4028
4029/* If SYM encodes a renaming,
4030
4031 <renaming> renames <renamed entity>,
4032
4033 sets *LEN to the length of the renamed entity's name,
4034 *RENAMED_ENTITY to that name (not null-terminated), and *RENAMING_EXPR to
4035 the string describing the subcomponent selected from the renamed
0963b4bd 4036 entity. Returns ADA_NOT_RENAMING if SYM does not encode a renaming
aeb5907d
JB
4037 (in which case, the values of *RENAMED_ENTITY, *LEN, and *RENAMING_EXPR
4038 are undefined). Otherwise, returns a value indicating the category
4039 of entity renamed: an object (ADA_OBJECT_RENAMING), exception
4040 (ADA_EXCEPTION_RENAMING), package (ADA_PACKAGE_RENAMING), or
4041 subprogram (ADA_SUBPROGRAM_RENAMING). Does no allocation; the
4042 strings returned in *RENAMED_ENTITY and *RENAMING_EXPR should not be
4043 deallocated. The values of RENAMED_ENTITY, LEN, or RENAMING_EXPR
4044 may be NULL, in which case they are not assigned.
4045
4046 [Currently, however, GCC does not generate subprogram renamings.] */
4047
4048enum ada_renaming_category
4049ada_parse_renaming (struct symbol *sym,
4050 const char **renamed_entity, int *len,
4051 const char **renaming_expr)
4052{
4053 enum ada_renaming_category kind;
4054 const char *info;
4055 const char *suffix;
4056
4057 if (sym == NULL)
4058 return ADA_NOT_RENAMING;
4059 switch (SYMBOL_CLASS (sym))
14f9c5c9 4060 {
aeb5907d
JB
4061 default:
4062 return ADA_NOT_RENAMING;
4063 case LOC_TYPEDEF:
4064 return parse_old_style_renaming (SYMBOL_TYPE (sym),
4065 renamed_entity, len, renaming_expr);
4066 case LOC_LOCAL:
4067 case LOC_STATIC:
4068 case LOC_COMPUTED:
4069 case LOC_OPTIMIZED_OUT:
4070 info = strstr (SYMBOL_LINKAGE_NAME (sym), "___XR");
4071 if (info == NULL)
4072 return ADA_NOT_RENAMING;
4073 switch (info[5])
4074 {
4075 case '_':
4076 kind = ADA_OBJECT_RENAMING;
4077 info += 6;
4078 break;
4079 case 'E':
4080 kind = ADA_EXCEPTION_RENAMING;
4081 info += 7;
4082 break;
4083 case 'P':
4084 kind = ADA_PACKAGE_RENAMING;
4085 info += 7;
4086 break;
4087 case 'S':
4088 kind = ADA_SUBPROGRAM_RENAMING;
4089 info += 7;
4090 break;
4091 default:
4092 return ADA_NOT_RENAMING;
4093 }
14f9c5c9 4094 }
4c4b4cd2 4095
aeb5907d
JB
4096 if (renamed_entity != NULL)
4097 *renamed_entity = info;
4098 suffix = strstr (info, "___XE");
4099 if (suffix == NULL || suffix == info)
4100 return ADA_NOT_RENAMING;
4101 if (len != NULL)
4102 *len = strlen (info) - strlen (suffix);
4103 suffix += 5;
4104 if (renaming_expr != NULL)
4105 *renaming_expr = suffix;
4106 return kind;
4107}
4108
4109/* Assuming TYPE encodes a renaming according to the old encoding in
4110 exp_dbug.ads, returns details of that renaming in *RENAMED_ENTITY,
4111 *LEN, and *RENAMING_EXPR, as for ada_parse_renaming, above. Returns
4112 ADA_NOT_RENAMING otherwise. */
4113static enum ada_renaming_category
4114parse_old_style_renaming (struct type *type,
4115 const char **renamed_entity, int *len,
4116 const char **renaming_expr)
4117{
4118 enum ada_renaming_category kind;
4119 const char *name;
4120 const char *info;
4121 const char *suffix;
14f9c5c9 4122
aeb5907d
JB
4123 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM
4124 || TYPE_NFIELDS (type) != 1)
4125 return ADA_NOT_RENAMING;
14f9c5c9 4126
aeb5907d
JB
4127 name = type_name_no_tag (type);
4128 if (name == NULL)
4129 return ADA_NOT_RENAMING;
4130
4131 name = strstr (name, "___XR");
4132 if (name == NULL)
4133 return ADA_NOT_RENAMING;
4134 switch (name[5])
4135 {
4136 case '\0':
4137 case '_':
4138 kind = ADA_OBJECT_RENAMING;
4139 break;
4140 case 'E':
4141 kind = ADA_EXCEPTION_RENAMING;
4142 break;
4143 case 'P':
4144 kind = ADA_PACKAGE_RENAMING;
4145 break;
4146 case 'S':
4147 kind = ADA_SUBPROGRAM_RENAMING;
4148 break;
4149 default:
4150 return ADA_NOT_RENAMING;
4151 }
14f9c5c9 4152
aeb5907d
JB
4153 info = TYPE_FIELD_NAME (type, 0);
4154 if (info == NULL)
4155 return ADA_NOT_RENAMING;
4156 if (renamed_entity != NULL)
4157 *renamed_entity = info;
4158 suffix = strstr (info, "___XE");
4159 if (renaming_expr != NULL)
4160 *renaming_expr = suffix + 5;
4161 if (suffix == NULL || suffix == info)
4162 return ADA_NOT_RENAMING;
4163 if (len != NULL)
4164 *len = suffix - info;
4165 return kind;
a5ee536b
JB
4166}
4167
4168/* Compute the value of the given RENAMING_SYM, which is expected to
4169 be a symbol encoding a renaming expression. BLOCK is the block
4170 used to evaluate the renaming. */
52ce6436 4171
a5ee536b
JB
4172static struct value *
4173ada_read_renaming_var_value (struct symbol *renaming_sym,
3977b71f 4174 const struct block *block)
a5ee536b 4175{
bbc13ae3 4176 const char *sym_name;
a5ee536b
JB
4177 struct expression *expr;
4178 struct value *value;
4179 struct cleanup *old_chain = NULL;
4180
bbc13ae3 4181 sym_name = SYMBOL_LINKAGE_NAME (renaming_sym);
1bb9788d 4182 expr = parse_exp_1 (&sym_name, 0, block, 0);
bbc13ae3 4183 old_chain = make_cleanup (free_current_contents, &expr);
a5ee536b
JB
4184 value = evaluate_expression (expr);
4185
4186 do_cleanups (old_chain);
4187 return value;
4188}
14f9c5c9 4189\f
d2e4a39e 4190
4c4b4cd2 4191 /* Evaluation: Function Calls */
14f9c5c9 4192
4c4b4cd2 4193/* Return an lvalue containing the value VAL. This is the identity on
40bc484c
JB
4194 lvalues, and otherwise has the side-effect of allocating memory
4195 in the inferior where a copy of the value contents is copied. */
14f9c5c9 4196
d2e4a39e 4197static struct value *
40bc484c 4198ensure_lval (struct value *val)
14f9c5c9 4199{
40bc484c
JB
4200 if (VALUE_LVAL (val) == not_lval
4201 || VALUE_LVAL (val) == lval_internalvar)
c3e5cd34 4202 {
df407dfe 4203 int len = TYPE_LENGTH (ada_check_typedef (value_type (val)));
40bc484c
JB
4204 const CORE_ADDR addr =
4205 value_as_long (value_allocate_space_in_inferior (len));
c3e5cd34 4206
40bc484c 4207 set_value_address (val, addr);
a84a8a0d 4208 VALUE_LVAL (val) = lval_memory;
40bc484c 4209 write_memory (addr, value_contents (val), len);
c3e5cd34 4210 }
14f9c5c9
AS
4211
4212 return val;
4213}
4214
4215/* Return the value ACTUAL, converted to be an appropriate value for a
4216 formal of type FORMAL_TYPE. Use *SP as a stack pointer for
4217 allocating any necessary descriptors (fat pointers), or copies of
4c4b4cd2 4218 values not residing in memory, updating it as needed. */
14f9c5c9 4219
a93c0eb6 4220struct value *
40bc484c 4221ada_convert_actual (struct value *actual, struct type *formal_type0)
14f9c5c9 4222{
df407dfe 4223 struct type *actual_type = ada_check_typedef (value_type (actual));
61ee279c 4224 struct type *formal_type = ada_check_typedef (formal_type0);
d2e4a39e
AS
4225 struct type *formal_target =
4226 TYPE_CODE (formal_type) == TYPE_CODE_PTR
61ee279c 4227 ? ada_check_typedef (TYPE_TARGET_TYPE (formal_type)) : formal_type;
d2e4a39e
AS
4228 struct type *actual_target =
4229 TYPE_CODE (actual_type) == TYPE_CODE_PTR
61ee279c 4230 ? ada_check_typedef (TYPE_TARGET_TYPE (actual_type)) : actual_type;
14f9c5c9 4231
4c4b4cd2 4232 if (ada_is_array_descriptor_type (formal_target)
14f9c5c9 4233 && TYPE_CODE (actual_target) == TYPE_CODE_ARRAY)
40bc484c 4234 return make_array_descriptor (formal_type, actual);
a84a8a0d
JB
4235 else if (TYPE_CODE (formal_type) == TYPE_CODE_PTR
4236 || TYPE_CODE (formal_type) == TYPE_CODE_REF)
14f9c5c9 4237 {
a84a8a0d 4238 struct value *result;
5b4ee69b 4239
14f9c5c9 4240 if (TYPE_CODE (formal_target) == TYPE_CODE_ARRAY
4c4b4cd2 4241 && ada_is_array_descriptor_type (actual_target))
a84a8a0d 4242 result = desc_data (actual);
14f9c5c9 4243 else if (TYPE_CODE (actual_type) != TYPE_CODE_PTR)
4c4b4cd2
PH
4244 {
4245 if (VALUE_LVAL (actual) != lval_memory)
4246 {
4247 struct value *val;
5b4ee69b 4248
df407dfe 4249 actual_type = ada_check_typedef (value_type (actual));
4c4b4cd2 4250 val = allocate_value (actual_type);
990a07ab 4251 memcpy ((char *) value_contents_raw (val),
0fd88904 4252 (char *) value_contents (actual),
4c4b4cd2 4253 TYPE_LENGTH (actual_type));
40bc484c 4254 actual = ensure_lval (val);
4c4b4cd2 4255 }
a84a8a0d 4256 result = value_addr (actual);
4c4b4cd2 4257 }
a84a8a0d
JB
4258 else
4259 return actual;
b1af9e97 4260 return value_cast_pointers (formal_type, result, 0);
14f9c5c9
AS
4261 }
4262 else if (TYPE_CODE (actual_type) == TYPE_CODE_PTR)
4263 return ada_value_ind (actual);
4264
4265 return actual;
4266}
4267
438c98a1
JB
4268/* Convert VALUE (which must be an address) to a CORE_ADDR that is a pointer of
4269 type TYPE. This is usually an inefficient no-op except on some targets
4270 (such as AVR) where the representation of a pointer and an address
4271 differs. */
4272
4273static CORE_ADDR
4274value_pointer (struct value *value, struct type *type)
4275{
4276 struct gdbarch *gdbarch = get_type_arch (type);
4277 unsigned len = TYPE_LENGTH (type);
4278 gdb_byte *buf = alloca (len);
4279 CORE_ADDR addr;
4280
4281 addr = value_address (value);
4282 gdbarch_address_to_pointer (gdbarch, type, buf, addr);
4283 addr = extract_unsigned_integer (buf, len, gdbarch_byte_order (gdbarch));
4284 return addr;
4285}
4286
14f9c5c9 4287
4c4b4cd2
PH
4288/* Push a descriptor of type TYPE for array value ARR on the stack at
4289 *SP, updating *SP to reflect the new descriptor. Return either
14f9c5c9 4290 an lvalue representing the new descriptor, or (if TYPE is a pointer-
4c4b4cd2
PH
4291 to-descriptor type rather than a descriptor type), a struct value *
4292 representing a pointer to this descriptor. */
14f9c5c9 4293
d2e4a39e 4294static struct value *
40bc484c 4295make_array_descriptor (struct type *type, struct value *arr)
14f9c5c9 4296{
d2e4a39e
AS
4297 struct type *bounds_type = desc_bounds_type (type);
4298 struct type *desc_type = desc_base_type (type);
4299 struct value *descriptor = allocate_value (desc_type);
4300 struct value *bounds = allocate_value (bounds_type);
14f9c5c9 4301 int i;
d2e4a39e 4302
0963b4bd
MS
4303 for (i = ada_array_arity (ada_check_typedef (value_type (arr)));
4304 i > 0; i -= 1)
14f9c5c9 4305 {
19f220c3
JK
4306 modify_field (value_type (bounds), value_contents_writeable (bounds),
4307 ada_array_bound (arr, i, 0),
4308 desc_bound_bitpos (bounds_type, i, 0),
4309 desc_bound_bitsize (bounds_type, i, 0));
4310 modify_field (value_type (bounds), value_contents_writeable (bounds),
4311 ada_array_bound (arr, i, 1),
4312 desc_bound_bitpos (bounds_type, i, 1),
4313 desc_bound_bitsize (bounds_type, i, 1));
14f9c5c9 4314 }
d2e4a39e 4315
40bc484c 4316 bounds = ensure_lval (bounds);
d2e4a39e 4317
19f220c3
JK
4318 modify_field (value_type (descriptor),
4319 value_contents_writeable (descriptor),
4320 value_pointer (ensure_lval (arr),
4321 TYPE_FIELD_TYPE (desc_type, 0)),
4322 fat_pntr_data_bitpos (desc_type),
4323 fat_pntr_data_bitsize (desc_type));
4324
4325 modify_field (value_type (descriptor),
4326 value_contents_writeable (descriptor),
4327 value_pointer (bounds,
4328 TYPE_FIELD_TYPE (desc_type, 1)),
4329 fat_pntr_bounds_bitpos (desc_type),
4330 fat_pntr_bounds_bitsize (desc_type));
14f9c5c9 4331
40bc484c 4332 descriptor = ensure_lval (descriptor);
14f9c5c9
AS
4333
4334 if (TYPE_CODE (type) == TYPE_CODE_PTR)
4335 return value_addr (descriptor);
4336 else
4337 return descriptor;
4338}
14f9c5c9 4339\f
3d9434b5
JB
4340 /* Symbol Cache Module */
4341
3d9434b5 4342/* Performance measurements made as of 2010-01-15 indicate that
ee01b665 4343 this cache does bring some noticeable improvements. Depending
3d9434b5
JB
4344 on the type of entity being printed, the cache can make it as much
4345 as an order of magnitude faster than without it.
4346
4347 The descriptive type DWARF extension has significantly reduced
4348 the need for this cache, at least when DWARF is being used. However,
4349 even in this case, some expensive name-based symbol searches are still
4350 sometimes necessary - to find an XVZ variable, mostly. */
4351
ee01b665 4352/* Initialize the contents of SYM_CACHE. */
3d9434b5 4353
ee01b665
JB
4354static void
4355ada_init_symbol_cache (struct ada_symbol_cache *sym_cache)
4356{
4357 obstack_init (&sym_cache->cache_space);
4358 memset (sym_cache->root, '\000', sizeof (sym_cache->root));
4359}
3d9434b5 4360
ee01b665
JB
4361/* Free the memory used by SYM_CACHE. */
4362
4363static void
4364ada_free_symbol_cache (struct ada_symbol_cache *sym_cache)
3d9434b5 4365{
ee01b665
JB
4366 obstack_free (&sym_cache->cache_space, NULL);
4367 xfree (sym_cache);
4368}
3d9434b5 4369
ee01b665
JB
4370/* Return the symbol cache associated to the given program space PSPACE.
4371 If not allocated for this PSPACE yet, allocate and initialize one. */
3d9434b5 4372
ee01b665
JB
4373static struct ada_symbol_cache *
4374ada_get_symbol_cache (struct program_space *pspace)
4375{
4376 struct ada_pspace_data *pspace_data = get_ada_pspace_data (pspace);
4377 struct ada_symbol_cache *sym_cache = pspace_data->sym_cache;
4378
4379 if (sym_cache == NULL)
4380 {
4381 sym_cache = XCNEW (struct ada_symbol_cache);
4382 ada_init_symbol_cache (sym_cache);
4383 }
4384
4385 return sym_cache;
4386}
3d9434b5
JB
4387
4388/* Clear all entries from the symbol cache. */
4389
4390static void
4391ada_clear_symbol_cache (void)
4392{
ee01b665
JB
4393 struct ada_symbol_cache *sym_cache
4394 = ada_get_symbol_cache (current_program_space);
4395
4396 obstack_free (&sym_cache->cache_space, NULL);
4397 ada_init_symbol_cache (sym_cache);
3d9434b5
JB
4398}
4399
4400/* Search our cache for an entry matching NAME and NAMESPACE.
4401 Return it if found, or NULL otherwise. */
4402
4403static struct cache_entry **
4404find_entry (const char *name, domain_enum namespace)
4405{
ee01b665
JB
4406 struct ada_symbol_cache *sym_cache
4407 = ada_get_symbol_cache (current_program_space);
3d9434b5
JB
4408 int h = msymbol_hash (name) % HASH_SIZE;
4409 struct cache_entry **e;
4410
ee01b665 4411 for (e = &sym_cache->root[h]; *e != NULL; e = &(*e)->next)
3d9434b5
JB
4412 {
4413 if (namespace == (*e)->namespace && strcmp (name, (*e)->name) == 0)
4414 return e;
4415 }
4416 return NULL;
4417}
4418
4419/* Search the symbol cache for an entry matching NAME and NAMESPACE.
4420 Return 1 if found, 0 otherwise.
4421
4422 If an entry was found and SYM is not NULL, set *SYM to the entry's
4423 SYM. Same principle for BLOCK if not NULL. */
96d887e8 4424
96d887e8
PH
4425static int
4426lookup_cached_symbol (const char *name, domain_enum namespace,
f0c5f9b2 4427 struct symbol **sym, const struct block **block)
96d887e8 4428{
3d9434b5
JB
4429 struct cache_entry **e = find_entry (name, namespace);
4430
4431 if (e == NULL)
4432 return 0;
4433 if (sym != NULL)
4434 *sym = (*e)->sym;
4435 if (block != NULL)
4436 *block = (*e)->block;
4437 return 1;
96d887e8
PH
4438}
4439
3d9434b5
JB
4440/* Assuming that (SYM, BLOCK) is the result of the lookup of NAME
4441 in domain NAMESPACE, save this result in our symbol cache. */
4442
96d887e8
PH
4443static void
4444cache_symbol (const char *name, domain_enum namespace, struct symbol *sym,
270140bd 4445 const struct block *block)
96d887e8 4446{
ee01b665
JB
4447 struct ada_symbol_cache *sym_cache
4448 = ada_get_symbol_cache (current_program_space);
3d9434b5
JB
4449 int h;
4450 char *copy;
4451 struct cache_entry *e;
4452
4453 /* If the symbol is a local symbol, then do not cache it, as a search
4454 for that symbol depends on the context. To determine whether
4455 the symbol is local or not, we check the block where we found it
4456 against the global and static blocks of its associated symtab. */
4457 if (sym
4458 && BLOCKVECTOR_BLOCK (BLOCKVECTOR (sym->symtab), GLOBAL_BLOCK) != block
4459 && BLOCKVECTOR_BLOCK (BLOCKVECTOR (sym->symtab), STATIC_BLOCK) != block)
4460 return;
4461
4462 h = msymbol_hash (name) % HASH_SIZE;
ee01b665
JB
4463 e = (struct cache_entry *) obstack_alloc (&sym_cache->cache_space,
4464 sizeof (*e));
4465 e->next = sym_cache->root[h];
4466 sym_cache->root[h] = e;
4467 e->name = copy = obstack_alloc (&sym_cache->cache_space, strlen (name) + 1);
3d9434b5
JB
4468 strcpy (copy, name);
4469 e->sym = sym;
4470 e->namespace = namespace;
4471 e->block = block;
96d887e8 4472}
4c4b4cd2
PH
4473\f
4474 /* Symbol Lookup */
4475
c0431670
JB
4476/* Return nonzero if wild matching should be used when searching for
4477 all symbols matching LOOKUP_NAME.
4478
4479 LOOKUP_NAME is expected to be a symbol name after transformation
4480 for Ada lookups (see ada_name_for_lookup). */
4481
4482static int
4483should_use_wild_match (const char *lookup_name)
4484{
4485 return (strstr (lookup_name, "__") == NULL);
4486}
4487
4c4b4cd2
PH
4488/* Return the result of a standard (literal, C-like) lookup of NAME in
4489 given DOMAIN, visible from lexical block BLOCK. */
4490
4491static struct symbol *
4492standard_lookup (const char *name, const struct block *block,
4493 domain_enum domain)
4494{
acbd605d
MGD
4495 /* Initialize it just to avoid a GCC false warning. */
4496 struct symbol *sym = NULL;
4c4b4cd2 4497
2570f2b7 4498 if (lookup_cached_symbol (name, domain, &sym, NULL))
4c4b4cd2 4499 return sym;
2570f2b7
UW
4500 sym = lookup_symbol_in_language (name, block, domain, language_c, 0);
4501 cache_symbol (name, domain, sym, block_found);
4c4b4cd2
PH
4502 return sym;
4503}
4504
4505
4506/* Non-zero iff there is at least one non-function/non-enumeral symbol
4507 in the symbol fields of SYMS[0..N-1]. We treat enumerals as functions,
4508 since they contend in overloading in the same way. */
4509static int
4510is_nonfunction (struct ada_symbol_info syms[], int n)
4511{
4512 int i;
4513
4514 for (i = 0; i < n; i += 1)
4515 if (TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) != TYPE_CODE_FUNC
4516 && (TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) != TYPE_CODE_ENUM
4517 || SYMBOL_CLASS (syms[i].sym) != LOC_CONST))
14f9c5c9
AS
4518 return 1;
4519
4520 return 0;
4521}
4522
4523/* If true (non-zero), then TYPE0 and TYPE1 represent equivalent
4c4b4cd2 4524 struct types. Otherwise, they may not. */
14f9c5c9
AS
4525
4526static int
d2e4a39e 4527equiv_types (struct type *type0, struct type *type1)
14f9c5c9 4528{
d2e4a39e 4529 if (type0 == type1)
14f9c5c9 4530 return 1;
d2e4a39e 4531 if (type0 == NULL || type1 == NULL
14f9c5c9
AS
4532 || TYPE_CODE (type0) != TYPE_CODE (type1))
4533 return 0;
d2e4a39e 4534 if ((TYPE_CODE (type0) == TYPE_CODE_STRUCT
14f9c5c9
AS
4535 || TYPE_CODE (type0) == TYPE_CODE_ENUM)
4536 && ada_type_name (type0) != NULL && ada_type_name (type1) != NULL
4c4b4cd2 4537 && strcmp (ada_type_name (type0), ada_type_name (type1)) == 0)
14f9c5c9 4538 return 1;
d2e4a39e 4539
14f9c5c9
AS
4540 return 0;
4541}
4542
4543/* True iff SYM0 represents the same entity as SYM1, or one that is
4c4b4cd2 4544 no more defined than that of SYM1. */
14f9c5c9
AS
4545
4546static int
d2e4a39e 4547lesseq_defined_than (struct symbol *sym0, struct symbol *sym1)
14f9c5c9
AS
4548{
4549 if (sym0 == sym1)
4550 return 1;
176620f1 4551 if (SYMBOL_DOMAIN (sym0) != SYMBOL_DOMAIN (sym1)
14f9c5c9
AS
4552 || SYMBOL_CLASS (sym0) != SYMBOL_CLASS (sym1))
4553 return 0;
4554
d2e4a39e 4555 switch (SYMBOL_CLASS (sym0))
14f9c5c9
AS
4556 {
4557 case LOC_UNDEF:
4558 return 1;
4559 case LOC_TYPEDEF:
4560 {
4c4b4cd2
PH
4561 struct type *type0 = SYMBOL_TYPE (sym0);
4562 struct type *type1 = SYMBOL_TYPE (sym1);
0d5cff50
DE
4563 const char *name0 = SYMBOL_LINKAGE_NAME (sym0);
4564 const char *name1 = SYMBOL_LINKAGE_NAME (sym1);
4c4b4cd2 4565 int len0 = strlen (name0);
5b4ee69b 4566
4c4b4cd2
PH
4567 return
4568 TYPE_CODE (type0) == TYPE_CODE (type1)
4569 && (equiv_types (type0, type1)
4570 || (len0 < strlen (name1) && strncmp (name0, name1, len0) == 0
4571 && strncmp (name1 + len0, "___XV", 5) == 0));
14f9c5c9
AS
4572 }
4573 case LOC_CONST:
4574 return SYMBOL_VALUE (sym0) == SYMBOL_VALUE (sym1)
4c4b4cd2 4575 && equiv_types (SYMBOL_TYPE (sym0), SYMBOL_TYPE (sym1));
d2e4a39e
AS
4576 default:
4577 return 0;
14f9c5c9
AS
4578 }
4579}
4580
4c4b4cd2
PH
4581/* Append (SYM,BLOCK,SYMTAB) to the end of the array of struct ada_symbol_info
4582 records in OBSTACKP. Do nothing if SYM is a duplicate. */
14f9c5c9
AS
4583
4584static void
76a01679
JB
4585add_defn_to_vec (struct obstack *obstackp,
4586 struct symbol *sym,
f0c5f9b2 4587 const struct block *block)
14f9c5c9
AS
4588{
4589 int i;
4c4b4cd2 4590 struct ada_symbol_info *prevDefns = defns_collected (obstackp, 0);
14f9c5c9 4591
529cad9c
PH
4592 /* Do not try to complete stub types, as the debugger is probably
4593 already scanning all symbols matching a certain name at the
4594 time when this function is called. Trying to replace the stub
4595 type by its associated full type will cause us to restart a scan
4596 which may lead to an infinite recursion. Instead, the client
4597 collecting the matching symbols will end up collecting several
4598 matches, with at least one of them complete. It can then filter
4599 out the stub ones if needed. */
4600
4c4b4cd2
PH
4601 for (i = num_defns_collected (obstackp) - 1; i >= 0; i -= 1)
4602 {
4603 if (lesseq_defined_than (sym, prevDefns[i].sym))
4604 return;
4605 else if (lesseq_defined_than (prevDefns[i].sym, sym))
4606 {
4607 prevDefns[i].sym = sym;
4608 prevDefns[i].block = block;
4c4b4cd2 4609 return;
76a01679 4610 }
4c4b4cd2
PH
4611 }
4612
4613 {
4614 struct ada_symbol_info info;
4615
4616 info.sym = sym;
4617 info.block = block;
4c4b4cd2
PH
4618 obstack_grow (obstackp, &info, sizeof (struct ada_symbol_info));
4619 }
4620}
4621
4622/* Number of ada_symbol_info structures currently collected in
4623 current vector in *OBSTACKP. */
4624
76a01679
JB
4625static int
4626num_defns_collected (struct obstack *obstackp)
4c4b4cd2
PH
4627{
4628 return obstack_object_size (obstackp) / sizeof (struct ada_symbol_info);
4629}
4630
4631/* Vector of ada_symbol_info structures currently collected in current
4632 vector in *OBSTACKP. If FINISH, close off the vector and return
4633 its final address. */
4634
76a01679 4635static struct ada_symbol_info *
4c4b4cd2
PH
4636defns_collected (struct obstack *obstackp, int finish)
4637{
4638 if (finish)
4639 return obstack_finish (obstackp);
4640 else
4641 return (struct ada_symbol_info *) obstack_base (obstackp);
4642}
4643
7c7b6655
TT
4644/* Return a bound minimal symbol matching NAME according to Ada
4645 decoding rules. Returns an invalid symbol if there is no such
4646 minimal symbol. Names prefixed with "standard__" are handled
4647 specially: "standard__" is first stripped off, and only static and
4648 global symbols are searched. */
4c4b4cd2 4649
7c7b6655 4650struct bound_minimal_symbol
96d887e8 4651ada_lookup_simple_minsym (const char *name)
4c4b4cd2 4652{
7c7b6655 4653 struct bound_minimal_symbol result;
4c4b4cd2 4654 struct objfile *objfile;
96d887e8 4655 struct minimal_symbol *msymbol;
dc4024cd 4656 const int wild_match_p = should_use_wild_match (name);
4c4b4cd2 4657
7c7b6655
TT
4658 memset (&result, 0, sizeof (result));
4659
c0431670
JB
4660 /* Special case: If the user specifies a symbol name inside package
4661 Standard, do a non-wild matching of the symbol name without
4662 the "standard__" prefix. This was primarily introduced in order
4663 to allow the user to specifically access the standard exceptions
4664 using, for instance, Standard.Constraint_Error when Constraint_Error
4665 is ambiguous (due to the user defining its own Constraint_Error
4666 entity inside its program). */
96d887e8 4667 if (strncmp (name, "standard__", sizeof ("standard__") - 1) == 0)
c0431670 4668 name += sizeof ("standard__") - 1;
4c4b4cd2 4669
96d887e8
PH
4670 ALL_MSYMBOLS (objfile, msymbol)
4671 {
efd66ac6 4672 if (match_name (MSYMBOL_LINKAGE_NAME (msymbol), name, wild_match_p)
96d887e8 4673 && MSYMBOL_TYPE (msymbol) != mst_solib_trampoline)
7c7b6655
TT
4674 {
4675 result.minsym = msymbol;
4676 result.objfile = objfile;
4677 break;
4678 }
96d887e8 4679 }
4c4b4cd2 4680
7c7b6655 4681 return result;
96d887e8 4682}
4c4b4cd2 4683
96d887e8
PH
4684/* For all subprograms that statically enclose the subprogram of the
4685 selected frame, add symbols matching identifier NAME in DOMAIN
4686 and their blocks to the list of data in OBSTACKP, as for
48b78332
JB
4687 ada_add_block_symbols (q.v.). If WILD_MATCH_P, treat as NAME
4688 with a wildcard prefix. */
4c4b4cd2 4689
96d887e8
PH
4690static void
4691add_symbols_from_enclosing_procs (struct obstack *obstackp,
76a01679 4692 const char *name, domain_enum namespace,
48b78332 4693 int wild_match_p)
96d887e8 4694{
96d887e8 4695}
14f9c5c9 4696
96d887e8
PH
4697/* True if TYPE is definitely an artificial type supplied to a symbol
4698 for which no debugging information was given in the symbol file. */
14f9c5c9 4699
96d887e8
PH
4700static int
4701is_nondebugging_type (struct type *type)
4702{
0d5cff50 4703 const char *name = ada_type_name (type);
5b4ee69b 4704
96d887e8
PH
4705 return (name != NULL && strcmp (name, "<variable, no debug info>") == 0);
4706}
4c4b4cd2 4707
8f17729f
JB
4708/* Return nonzero if TYPE1 and TYPE2 are two enumeration types
4709 that are deemed "identical" for practical purposes.
4710
4711 This function assumes that TYPE1 and TYPE2 are both TYPE_CODE_ENUM
4712 types and that their number of enumerals is identical (in other
4713 words, TYPE_NFIELDS (type1) == TYPE_NFIELDS (type2)). */
4714
4715static int
4716ada_identical_enum_types_p (struct type *type1, struct type *type2)
4717{
4718 int i;
4719
4720 /* The heuristic we use here is fairly conservative. We consider
4721 that 2 enumerate types are identical if they have the same
4722 number of enumerals and that all enumerals have the same
4723 underlying value and name. */
4724
4725 /* All enums in the type should have an identical underlying value. */
4726 for (i = 0; i < TYPE_NFIELDS (type1); i++)
14e75d8e 4727 if (TYPE_FIELD_ENUMVAL (type1, i) != TYPE_FIELD_ENUMVAL (type2, i))
8f17729f
JB
4728 return 0;
4729
4730 /* All enumerals should also have the same name (modulo any numerical
4731 suffix). */
4732 for (i = 0; i < TYPE_NFIELDS (type1); i++)
4733 {
0d5cff50
DE
4734 const char *name_1 = TYPE_FIELD_NAME (type1, i);
4735 const char *name_2 = TYPE_FIELD_NAME (type2, i);
8f17729f
JB
4736 int len_1 = strlen (name_1);
4737 int len_2 = strlen (name_2);
4738
4739 ada_remove_trailing_digits (TYPE_FIELD_NAME (type1, i), &len_1);
4740 ada_remove_trailing_digits (TYPE_FIELD_NAME (type2, i), &len_2);
4741 if (len_1 != len_2
4742 || strncmp (TYPE_FIELD_NAME (type1, i),
4743 TYPE_FIELD_NAME (type2, i),
4744 len_1) != 0)
4745 return 0;
4746 }
4747
4748 return 1;
4749}
4750
4751/* Return nonzero if all the symbols in SYMS are all enumeral symbols
4752 that are deemed "identical" for practical purposes. Sometimes,
4753 enumerals are not strictly identical, but their types are so similar
4754 that they can be considered identical.
4755
4756 For instance, consider the following code:
4757
4758 type Color is (Black, Red, Green, Blue, White);
4759 type RGB_Color is new Color range Red .. Blue;
4760
4761 Type RGB_Color is a subrange of an implicit type which is a copy
4762 of type Color. If we call that implicit type RGB_ColorB ("B" is
4763 for "Base Type"), then type RGB_ColorB is a copy of type Color.
4764 As a result, when an expression references any of the enumeral
4765 by name (Eg. "print green"), the expression is technically
4766 ambiguous and the user should be asked to disambiguate. But
4767 doing so would only hinder the user, since it wouldn't matter
4768 what choice he makes, the outcome would always be the same.
4769 So, for practical purposes, we consider them as the same. */
4770
4771static int
4772symbols_are_identical_enums (struct ada_symbol_info *syms, int nsyms)
4773{
4774 int i;
4775
4776 /* Before performing a thorough comparison check of each type,
4777 we perform a series of inexpensive checks. We expect that these
4778 checks will quickly fail in the vast majority of cases, and thus
4779 help prevent the unnecessary use of a more expensive comparison.
4780 Said comparison also expects us to make some of these checks
4781 (see ada_identical_enum_types_p). */
4782
4783 /* Quick check: All symbols should have an enum type. */
4784 for (i = 0; i < nsyms; i++)
4785 if (TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) != TYPE_CODE_ENUM)
4786 return 0;
4787
4788 /* Quick check: They should all have the same value. */
4789 for (i = 1; i < nsyms; i++)
4790 if (SYMBOL_VALUE (syms[i].sym) != SYMBOL_VALUE (syms[0].sym))
4791 return 0;
4792
4793 /* Quick check: They should all have the same number of enumerals. */
4794 for (i = 1; i < nsyms; i++)
4795 if (TYPE_NFIELDS (SYMBOL_TYPE (syms[i].sym))
4796 != TYPE_NFIELDS (SYMBOL_TYPE (syms[0].sym)))
4797 return 0;
4798
4799 /* All the sanity checks passed, so we might have a set of
4800 identical enumeration types. Perform a more complete
4801 comparison of the type of each symbol. */
4802 for (i = 1; i < nsyms; i++)
4803 if (!ada_identical_enum_types_p (SYMBOL_TYPE (syms[i].sym),
4804 SYMBOL_TYPE (syms[0].sym)))
4805 return 0;
4806
4807 return 1;
4808}
4809
96d887e8
PH
4810/* Remove any non-debugging symbols in SYMS[0 .. NSYMS-1] that definitely
4811 duplicate other symbols in the list (The only case I know of where
4812 this happens is when object files containing stabs-in-ecoff are
4813 linked with files containing ordinary ecoff debugging symbols (or no
4814 debugging symbols)). Modifies SYMS to squeeze out deleted entries.
4815 Returns the number of items in the modified list. */
4c4b4cd2 4816
96d887e8
PH
4817static int
4818remove_extra_symbols (struct ada_symbol_info *syms, int nsyms)
4819{
4820 int i, j;
4c4b4cd2 4821
8f17729f
JB
4822 /* We should never be called with less than 2 symbols, as there
4823 cannot be any extra symbol in that case. But it's easy to
4824 handle, since we have nothing to do in that case. */
4825 if (nsyms < 2)
4826 return nsyms;
4827
96d887e8
PH
4828 i = 0;
4829 while (i < nsyms)
4830 {
a35ddb44 4831 int remove_p = 0;
339c13b6
JB
4832
4833 /* If two symbols have the same name and one of them is a stub type,
4834 the get rid of the stub. */
4835
4836 if (TYPE_STUB (SYMBOL_TYPE (syms[i].sym))
4837 && SYMBOL_LINKAGE_NAME (syms[i].sym) != NULL)
4838 {
4839 for (j = 0; j < nsyms; j++)
4840 {
4841 if (j != i
4842 && !TYPE_STUB (SYMBOL_TYPE (syms[j].sym))
4843 && SYMBOL_LINKAGE_NAME (syms[j].sym) != NULL
4844 && strcmp (SYMBOL_LINKAGE_NAME (syms[i].sym),
4845 SYMBOL_LINKAGE_NAME (syms[j].sym)) == 0)
a35ddb44 4846 remove_p = 1;
339c13b6
JB
4847 }
4848 }
4849
4850 /* Two symbols with the same name, same class and same address
4851 should be identical. */
4852
4853 else if (SYMBOL_LINKAGE_NAME (syms[i].sym) != NULL
96d887e8
PH
4854 && SYMBOL_CLASS (syms[i].sym) == LOC_STATIC
4855 && is_nondebugging_type (SYMBOL_TYPE (syms[i].sym)))
4856 {
4857 for (j = 0; j < nsyms; j += 1)
4858 {
4859 if (i != j
4860 && SYMBOL_LINKAGE_NAME (syms[j].sym) != NULL
4861 && strcmp (SYMBOL_LINKAGE_NAME (syms[i].sym),
76a01679 4862 SYMBOL_LINKAGE_NAME (syms[j].sym)) == 0
96d887e8
PH
4863 && SYMBOL_CLASS (syms[i].sym) == SYMBOL_CLASS (syms[j].sym)
4864 && SYMBOL_VALUE_ADDRESS (syms[i].sym)
4865 == SYMBOL_VALUE_ADDRESS (syms[j].sym))
a35ddb44 4866 remove_p = 1;
4c4b4cd2 4867 }
4c4b4cd2 4868 }
339c13b6 4869
a35ddb44 4870 if (remove_p)
339c13b6
JB
4871 {
4872 for (j = i + 1; j < nsyms; j += 1)
4873 syms[j - 1] = syms[j];
4874 nsyms -= 1;
4875 }
4876
96d887e8 4877 i += 1;
14f9c5c9 4878 }
8f17729f
JB
4879
4880 /* If all the remaining symbols are identical enumerals, then
4881 just keep the first one and discard the rest.
4882
4883 Unlike what we did previously, we do not discard any entry
4884 unless they are ALL identical. This is because the symbol
4885 comparison is not a strict comparison, but rather a practical
4886 comparison. If all symbols are considered identical, then
4887 we can just go ahead and use the first one and discard the rest.
4888 But if we cannot reduce the list to a single element, we have
4889 to ask the user to disambiguate anyways. And if we have to
4890 present a multiple-choice menu, it's less confusing if the list
4891 isn't missing some choices that were identical and yet distinct. */
4892 if (symbols_are_identical_enums (syms, nsyms))
4893 nsyms = 1;
4894
96d887e8 4895 return nsyms;
14f9c5c9
AS
4896}
4897
96d887e8
PH
4898/* Given a type that corresponds to a renaming entity, use the type name
4899 to extract the scope (package name or function name, fully qualified,
4900 and following the GNAT encoding convention) where this renaming has been
4901 defined. The string returned needs to be deallocated after use. */
4c4b4cd2 4902
96d887e8
PH
4903static char *
4904xget_renaming_scope (struct type *renaming_type)
14f9c5c9 4905{
96d887e8 4906 /* The renaming types adhere to the following convention:
0963b4bd 4907 <scope>__<rename>___<XR extension>.
96d887e8
PH
4908 So, to extract the scope, we search for the "___XR" extension,
4909 and then backtrack until we find the first "__". */
76a01679 4910
96d887e8
PH
4911 const char *name = type_name_no_tag (renaming_type);
4912 char *suffix = strstr (name, "___XR");
4913 char *last;
4914 int scope_len;
4915 char *scope;
14f9c5c9 4916
96d887e8
PH
4917 /* Now, backtrack a bit until we find the first "__". Start looking
4918 at suffix - 3, as the <rename> part is at least one character long. */
14f9c5c9 4919
96d887e8
PH
4920 for (last = suffix - 3; last > name; last--)
4921 if (last[0] == '_' && last[1] == '_')
4922 break;
76a01679 4923
96d887e8 4924 /* Make a copy of scope and return it. */
14f9c5c9 4925
96d887e8
PH
4926 scope_len = last - name;
4927 scope = (char *) xmalloc ((scope_len + 1) * sizeof (char));
14f9c5c9 4928
96d887e8
PH
4929 strncpy (scope, name, scope_len);
4930 scope[scope_len] = '\0';
4c4b4cd2 4931
96d887e8 4932 return scope;
4c4b4cd2
PH
4933}
4934
96d887e8 4935/* Return nonzero if NAME corresponds to a package name. */
4c4b4cd2 4936
96d887e8
PH
4937static int
4938is_package_name (const char *name)
4c4b4cd2 4939{
96d887e8
PH
4940 /* Here, We take advantage of the fact that no symbols are generated
4941 for packages, while symbols are generated for each function.
4942 So the condition for NAME represent a package becomes equivalent
4943 to NAME not existing in our list of symbols. There is only one
4944 small complication with library-level functions (see below). */
4c4b4cd2 4945
96d887e8 4946 char *fun_name;
76a01679 4947
96d887e8
PH
4948 /* If it is a function that has not been defined at library level,
4949 then we should be able to look it up in the symbols. */
4950 if (standard_lookup (name, NULL, VAR_DOMAIN) != NULL)
4951 return 0;
14f9c5c9 4952
96d887e8
PH
4953 /* Library-level function names start with "_ada_". See if function
4954 "_ada_" followed by NAME can be found. */
14f9c5c9 4955
96d887e8 4956 /* Do a quick check that NAME does not contain "__", since library-level
e1d5a0d2 4957 functions names cannot contain "__" in them. */
96d887e8
PH
4958 if (strstr (name, "__") != NULL)
4959 return 0;
4c4b4cd2 4960
b435e160 4961 fun_name = xstrprintf ("_ada_%s", name);
14f9c5c9 4962
96d887e8
PH
4963 return (standard_lookup (fun_name, NULL, VAR_DOMAIN) == NULL);
4964}
14f9c5c9 4965
96d887e8 4966/* Return nonzero if SYM corresponds to a renaming entity that is
aeb5907d 4967 not visible from FUNCTION_NAME. */
14f9c5c9 4968
96d887e8 4969static int
0d5cff50 4970old_renaming_is_invisible (const struct symbol *sym, const char *function_name)
96d887e8 4971{
aeb5907d 4972 char *scope;
1509e573 4973 struct cleanup *old_chain;
aeb5907d
JB
4974
4975 if (SYMBOL_CLASS (sym) != LOC_TYPEDEF)
4976 return 0;
4977
4978 scope = xget_renaming_scope (SYMBOL_TYPE (sym));
1509e573 4979 old_chain = make_cleanup (xfree, scope);
14f9c5c9 4980
96d887e8
PH
4981 /* If the rename has been defined in a package, then it is visible. */
4982 if (is_package_name (scope))
1509e573
JB
4983 {
4984 do_cleanups (old_chain);
4985 return 0;
4986 }
14f9c5c9 4987
96d887e8
PH
4988 /* Check that the rename is in the current function scope by checking
4989 that its name starts with SCOPE. */
76a01679 4990
96d887e8
PH
4991 /* If the function name starts with "_ada_", it means that it is
4992 a library-level function. Strip this prefix before doing the
4993 comparison, as the encoding for the renaming does not contain
4994 this prefix. */
4995 if (strncmp (function_name, "_ada_", 5) == 0)
4996 function_name += 5;
f26caa11 4997
1509e573
JB
4998 {
4999 int is_invisible = strncmp (function_name, scope, strlen (scope)) != 0;
5000
5001 do_cleanups (old_chain);
5002 return is_invisible;
5003 }
f26caa11
PH
5004}
5005
aeb5907d
JB
5006/* Remove entries from SYMS that corresponds to a renaming entity that
5007 is not visible from the function associated with CURRENT_BLOCK or
5008 that is superfluous due to the presence of more specific renaming
5009 information. Places surviving symbols in the initial entries of
5010 SYMS and returns the number of surviving symbols.
96d887e8
PH
5011
5012 Rationale:
aeb5907d
JB
5013 First, in cases where an object renaming is implemented as a
5014 reference variable, GNAT may produce both the actual reference
5015 variable and the renaming encoding. In this case, we discard the
5016 latter.
5017
5018 Second, GNAT emits a type following a specified encoding for each renaming
96d887e8
PH
5019 entity. Unfortunately, STABS currently does not support the definition
5020 of types that are local to a given lexical block, so all renamings types
5021 are emitted at library level. As a consequence, if an application
5022 contains two renaming entities using the same name, and a user tries to
5023 print the value of one of these entities, the result of the ada symbol
5024 lookup will also contain the wrong renaming type.
f26caa11 5025
96d887e8
PH
5026 This function partially covers for this limitation by attempting to
5027 remove from the SYMS list renaming symbols that should be visible
5028 from CURRENT_BLOCK. However, there does not seem be a 100% reliable
5029 method with the current information available. The implementation
5030 below has a couple of limitations (FIXME: brobecker-2003-05-12):
5031
5032 - When the user tries to print a rename in a function while there
5033 is another rename entity defined in a package: Normally, the
5034 rename in the function has precedence over the rename in the
5035 package, so the latter should be removed from the list. This is
5036 currently not the case.
5037
5038 - This function will incorrectly remove valid renames if
5039 the CURRENT_BLOCK corresponds to a function which symbol name
5040 has been changed by an "Export" pragma. As a consequence,
5041 the user will be unable to print such rename entities. */
4c4b4cd2 5042
14f9c5c9 5043static int
aeb5907d
JB
5044remove_irrelevant_renamings (struct ada_symbol_info *syms,
5045 int nsyms, const struct block *current_block)
4c4b4cd2
PH
5046{
5047 struct symbol *current_function;
0d5cff50 5048 const char *current_function_name;
4c4b4cd2 5049 int i;
aeb5907d
JB
5050 int is_new_style_renaming;
5051
5052 /* If there is both a renaming foo___XR... encoded as a variable and
5053 a simple variable foo in the same block, discard the latter.
0963b4bd 5054 First, zero out such symbols, then compress. */
aeb5907d
JB
5055 is_new_style_renaming = 0;
5056 for (i = 0; i < nsyms; i += 1)
5057 {
5058 struct symbol *sym = syms[i].sym;
270140bd 5059 const struct block *block = syms[i].block;
aeb5907d
JB
5060 const char *name;
5061 const char *suffix;
5062
5063 if (sym == NULL || SYMBOL_CLASS (sym) == LOC_TYPEDEF)
5064 continue;
5065 name = SYMBOL_LINKAGE_NAME (sym);
5066 suffix = strstr (name, "___XR");
5067
5068 if (suffix != NULL)
5069 {
5070 int name_len = suffix - name;
5071 int j;
5b4ee69b 5072
aeb5907d
JB
5073 is_new_style_renaming = 1;
5074 for (j = 0; j < nsyms; j += 1)
5075 if (i != j && syms[j].sym != NULL
5076 && strncmp (name, SYMBOL_LINKAGE_NAME (syms[j].sym),
5077 name_len) == 0
5078 && block == syms[j].block)
5079 syms[j].sym = NULL;
5080 }
5081 }
5082 if (is_new_style_renaming)
5083 {
5084 int j, k;
5085
5086 for (j = k = 0; j < nsyms; j += 1)
5087 if (syms[j].sym != NULL)
5088 {
5089 syms[k] = syms[j];
5090 k += 1;
5091 }
5092 return k;
5093 }
4c4b4cd2
PH
5094
5095 /* Extract the function name associated to CURRENT_BLOCK.
5096 Abort if unable to do so. */
76a01679 5097
4c4b4cd2
PH
5098 if (current_block == NULL)
5099 return nsyms;
76a01679 5100
7f0df278 5101 current_function = block_linkage_function (current_block);
4c4b4cd2
PH
5102 if (current_function == NULL)
5103 return nsyms;
5104
5105 current_function_name = SYMBOL_LINKAGE_NAME (current_function);
5106 if (current_function_name == NULL)
5107 return nsyms;
5108
5109 /* Check each of the symbols, and remove it from the list if it is
5110 a type corresponding to a renaming that is out of the scope of
5111 the current block. */
5112
5113 i = 0;
5114 while (i < nsyms)
5115 {
aeb5907d
JB
5116 if (ada_parse_renaming (syms[i].sym, NULL, NULL, NULL)
5117 == ADA_OBJECT_RENAMING
5118 && old_renaming_is_invisible (syms[i].sym, current_function_name))
4c4b4cd2
PH
5119 {
5120 int j;
5b4ee69b 5121
aeb5907d 5122 for (j = i + 1; j < nsyms; j += 1)
76a01679 5123 syms[j - 1] = syms[j];
4c4b4cd2
PH
5124 nsyms -= 1;
5125 }
5126 else
5127 i += 1;
5128 }
5129
5130 return nsyms;
5131}
5132
339c13b6
JB
5133/* Add to OBSTACKP all symbols from BLOCK (and its super-blocks)
5134 whose name and domain match NAME and DOMAIN respectively.
5135 If no match was found, then extend the search to "enclosing"
5136 routines (in other words, if we're inside a nested function,
5137 search the symbols defined inside the enclosing functions).
d0a8ab18
JB
5138 If WILD_MATCH_P is nonzero, perform the naming matching in
5139 "wild" mode (see function "wild_match" for more info).
339c13b6
JB
5140
5141 Note: This function assumes that OBSTACKP has 0 (zero) element in it. */
5142
5143static void
5144ada_add_local_symbols (struct obstack *obstackp, const char *name,
f0c5f9b2 5145 const struct block *block, domain_enum domain,
d0a8ab18 5146 int wild_match_p)
339c13b6
JB
5147{
5148 int block_depth = 0;
5149
5150 while (block != NULL)
5151 {
5152 block_depth += 1;
d0a8ab18
JB
5153 ada_add_block_symbols (obstackp, block, name, domain, NULL,
5154 wild_match_p);
339c13b6
JB
5155
5156 /* If we found a non-function match, assume that's the one. */
5157 if (is_nonfunction (defns_collected (obstackp, 0),
5158 num_defns_collected (obstackp)))
5159 return;
5160
5161 block = BLOCK_SUPERBLOCK (block);
5162 }
5163
5164 /* If no luck so far, try to find NAME as a local symbol in some lexically
5165 enclosing subprogram. */
5166 if (num_defns_collected (obstackp) == 0 && block_depth > 2)
d0a8ab18 5167 add_symbols_from_enclosing_procs (obstackp, name, domain, wild_match_p);
339c13b6
JB
5168}
5169
ccefe4c4 5170/* An object of this type is used as the user_data argument when
40658b94 5171 calling the map_matching_symbols method. */
ccefe4c4 5172
40658b94 5173struct match_data
ccefe4c4 5174{
40658b94 5175 struct objfile *objfile;
ccefe4c4 5176 struct obstack *obstackp;
40658b94
PH
5177 struct symbol *arg_sym;
5178 int found_sym;
ccefe4c4
TT
5179};
5180
40658b94
PH
5181/* A callback for add_matching_symbols that adds SYM, found in BLOCK,
5182 to a list of symbols. DATA0 is a pointer to a struct match_data *
5183 containing the obstack that collects the symbol list, the file that SYM
5184 must come from, a flag indicating whether a non-argument symbol has
5185 been found in the current block, and the last argument symbol
5186 passed in SYM within the current block (if any). When SYM is null,
5187 marking the end of a block, the argument symbol is added if no
5188 other has been found. */
ccefe4c4 5189
40658b94
PH
5190static int
5191aux_add_nonlocal_symbols (struct block *block, struct symbol *sym, void *data0)
ccefe4c4 5192{
40658b94
PH
5193 struct match_data *data = (struct match_data *) data0;
5194
5195 if (sym == NULL)
5196 {
5197 if (!data->found_sym && data->arg_sym != NULL)
5198 add_defn_to_vec (data->obstackp,
5199 fixup_symbol_section (data->arg_sym, data->objfile),
5200 block);
5201 data->found_sym = 0;
5202 data->arg_sym = NULL;
5203 }
5204 else
5205 {
5206 if (SYMBOL_CLASS (sym) == LOC_UNRESOLVED)
5207 return 0;
5208 else if (SYMBOL_IS_ARGUMENT (sym))
5209 data->arg_sym = sym;
5210 else
5211 {
5212 data->found_sym = 1;
5213 add_defn_to_vec (data->obstackp,
5214 fixup_symbol_section (sym, data->objfile),
5215 block);
5216 }
5217 }
5218 return 0;
5219}
5220
db230ce3
JB
5221/* Implements compare_names, but only applying the comparision using
5222 the given CASING. */
5b4ee69b 5223
40658b94 5224static int
db230ce3
JB
5225compare_names_with_case (const char *string1, const char *string2,
5226 enum case_sensitivity casing)
40658b94
PH
5227{
5228 while (*string1 != '\0' && *string2 != '\0')
5229 {
db230ce3
JB
5230 char c1, c2;
5231
40658b94
PH
5232 if (isspace (*string1) || isspace (*string2))
5233 return strcmp_iw_ordered (string1, string2);
db230ce3
JB
5234
5235 if (casing == case_sensitive_off)
5236 {
5237 c1 = tolower (*string1);
5238 c2 = tolower (*string2);
5239 }
5240 else
5241 {
5242 c1 = *string1;
5243 c2 = *string2;
5244 }
5245 if (c1 != c2)
40658b94 5246 break;
db230ce3 5247
40658b94
PH
5248 string1 += 1;
5249 string2 += 1;
5250 }
db230ce3 5251
40658b94
PH
5252 switch (*string1)
5253 {
5254 case '(':
5255 return strcmp_iw_ordered (string1, string2);
5256 case '_':
5257 if (*string2 == '\0')
5258 {
052874e8 5259 if (is_name_suffix (string1))
40658b94
PH
5260 return 0;
5261 else
1a1d5513 5262 return 1;
40658b94 5263 }
dbb8534f 5264 /* FALLTHROUGH */
40658b94
PH
5265 default:
5266 if (*string2 == '(')
5267 return strcmp_iw_ordered (string1, string2);
5268 else
db230ce3
JB
5269 {
5270 if (casing == case_sensitive_off)
5271 return tolower (*string1) - tolower (*string2);
5272 else
5273 return *string1 - *string2;
5274 }
40658b94 5275 }
ccefe4c4
TT
5276}
5277
db230ce3
JB
5278/* Compare STRING1 to STRING2, with results as for strcmp.
5279 Compatible with strcmp_iw_ordered in that...
5280
5281 strcmp_iw_ordered (STRING1, STRING2) <= 0
5282
5283 ... implies...
5284
5285 compare_names (STRING1, STRING2) <= 0
5286
5287 (they may differ as to what symbols compare equal). */
5288
5289static int
5290compare_names (const char *string1, const char *string2)
5291{
5292 int result;
5293
5294 /* Similar to what strcmp_iw_ordered does, we need to perform
5295 a case-insensitive comparison first, and only resort to
5296 a second, case-sensitive, comparison if the first one was
5297 not sufficient to differentiate the two strings. */
5298
5299 result = compare_names_with_case (string1, string2, case_sensitive_off);
5300 if (result == 0)
5301 result = compare_names_with_case (string1, string2, case_sensitive_on);
5302
5303 return result;
5304}
5305
339c13b6
JB
5306/* Add to OBSTACKP all non-local symbols whose name and domain match
5307 NAME and DOMAIN respectively. The search is performed on GLOBAL_BLOCK
5308 symbols if GLOBAL is non-zero, or on STATIC_BLOCK symbols otherwise. */
5309
5310static void
40658b94
PH
5311add_nonlocal_symbols (struct obstack *obstackp, const char *name,
5312 domain_enum domain, int global,
5313 int is_wild_match)
339c13b6
JB
5314{
5315 struct objfile *objfile;
40658b94 5316 struct match_data data;
339c13b6 5317
6475f2fe 5318 memset (&data, 0, sizeof data);
ccefe4c4 5319 data.obstackp = obstackp;
339c13b6 5320
ccefe4c4 5321 ALL_OBJFILES (objfile)
40658b94
PH
5322 {
5323 data.objfile = objfile;
5324
5325 if (is_wild_match)
4186eb54
KS
5326 objfile->sf->qf->map_matching_symbols (objfile, name, domain, global,
5327 aux_add_nonlocal_symbols, &data,
5328 wild_match, NULL);
40658b94 5329 else
4186eb54
KS
5330 objfile->sf->qf->map_matching_symbols (objfile, name, domain, global,
5331 aux_add_nonlocal_symbols, &data,
5332 full_match, compare_names);
40658b94
PH
5333 }
5334
5335 if (num_defns_collected (obstackp) == 0 && global && !is_wild_match)
5336 {
5337 ALL_OBJFILES (objfile)
5338 {
5339 char *name1 = alloca (strlen (name) + sizeof ("_ada_"));
5340 strcpy (name1, "_ada_");
5341 strcpy (name1 + sizeof ("_ada_") - 1, name);
5342 data.objfile = objfile;
ade7ed9e
DE
5343 objfile->sf->qf->map_matching_symbols (objfile, name1, domain,
5344 global,
0963b4bd
MS
5345 aux_add_nonlocal_symbols,
5346 &data,
40658b94
PH
5347 full_match, compare_names);
5348 }
5349 }
339c13b6
JB
5350}
5351
4eeaa230
DE
5352/* Find symbols in DOMAIN matching NAME0, in BLOCK0 and, if full_search is
5353 non-zero, enclosing scope and in global scopes, returning the number of
5354 matches.
9f88c959 5355 Sets *RESULTS to point to a vector of (SYM,BLOCK) tuples,
4c4b4cd2 5356 indicating the symbols found and the blocks and symbol tables (if
4eeaa230
DE
5357 any) in which they were found. This vector is transient---good only to
5358 the next call of ada_lookup_symbol_list.
5359
5360 When full_search is non-zero, any non-function/non-enumeral
4c4b4cd2
PH
5361 symbol match within the nest of blocks whose innermost member is BLOCK0,
5362 is the one match returned (no other matches in that or
d9680e73 5363 enclosing blocks is returned). If there are any matches in or
4eeaa230
DE
5364 surrounding BLOCK0, then these alone are returned.
5365
9f88c959 5366 Names prefixed with "standard__" are handled specially: "standard__"
4c4b4cd2 5367 is first stripped off, and only static and global symbols are searched. */
14f9c5c9 5368
4eeaa230
DE
5369static int
5370ada_lookup_symbol_list_worker (const char *name0, const struct block *block0,
5371 domain_enum namespace,
5372 struct ada_symbol_info **results,
5373 int full_search)
14f9c5c9
AS
5374{
5375 struct symbol *sym;
f0c5f9b2 5376 const struct block *block;
4c4b4cd2 5377 const char *name;
82ccd55e 5378 const int wild_match_p = should_use_wild_match (name0);
14f9c5c9 5379 int cacheIfUnique;
4c4b4cd2 5380 int ndefns;
14f9c5c9 5381
4c4b4cd2
PH
5382 obstack_free (&symbol_list_obstack, NULL);
5383 obstack_init (&symbol_list_obstack);
14f9c5c9 5384
14f9c5c9
AS
5385 cacheIfUnique = 0;
5386
5387 /* Search specified block and its superiors. */
5388
4c4b4cd2 5389 name = name0;
f0c5f9b2 5390 block = block0;
339c13b6
JB
5391
5392 /* Special case: If the user specifies a symbol name inside package
5393 Standard, do a non-wild matching of the symbol name without
5394 the "standard__" prefix. This was primarily introduced in order
5395 to allow the user to specifically access the standard exceptions
5396 using, for instance, Standard.Constraint_Error when Constraint_Error
5397 is ambiguous (due to the user defining its own Constraint_Error
5398 entity inside its program). */
4c4b4cd2
PH
5399 if (strncmp (name0, "standard__", sizeof ("standard__") - 1) == 0)
5400 {
4c4b4cd2
PH
5401 block = NULL;
5402 name = name0 + sizeof ("standard__") - 1;
5403 }
5404
339c13b6 5405 /* Check the non-global symbols. If we have ANY match, then we're done. */
14f9c5c9 5406
4eeaa230
DE
5407 if (block != NULL)
5408 {
5409 if (full_search)
5410 {
5411 ada_add_local_symbols (&symbol_list_obstack, name, block,
5412 namespace, wild_match_p);
5413 }
5414 else
5415 {
5416 /* In the !full_search case we're are being called by
5417 ada_iterate_over_symbols, and we don't want to search
5418 superblocks. */
5419 ada_add_block_symbols (&symbol_list_obstack, block, name,
5420 namespace, NULL, wild_match_p);
5421 }
5422 if (num_defns_collected (&symbol_list_obstack) > 0 || !full_search)
5423 goto done;
5424 }
d2e4a39e 5425
339c13b6
JB
5426 /* No non-global symbols found. Check our cache to see if we have
5427 already performed this search before. If we have, then return
5428 the same result. */
5429
14f9c5c9 5430 cacheIfUnique = 1;
2570f2b7 5431 if (lookup_cached_symbol (name0, namespace, &sym, &block))
4c4b4cd2
PH
5432 {
5433 if (sym != NULL)
2570f2b7 5434 add_defn_to_vec (&symbol_list_obstack, sym, block);
4c4b4cd2
PH
5435 goto done;
5436 }
14f9c5c9 5437
339c13b6
JB
5438 /* Search symbols from all global blocks. */
5439
40658b94 5440 add_nonlocal_symbols (&symbol_list_obstack, name, namespace, 1,
82ccd55e 5441 wild_match_p);
d2e4a39e 5442
4c4b4cd2 5443 /* Now add symbols from all per-file blocks if we've gotten no hits
339c13b6 5444 (not strictly correct, but perhaps better than an error). */
d2e4a39e 5445
4c4b4cd2 5446 if (num_defns_collected (&symbol_list_obstack) == 0)
40658b94 5447 add_nonlocal_symbols (&symbol_list_obstack, name, namespace, 0,
82ccd55e 5448 wild_match_p);
14f9c5c9 5449
4c4b4cd2
PH
5450done:
5451 ndefns = num_defns_collected (&symbol_list_obstack);
5452 *results = defns_collected (&symbol_list_obstack, 1);
5453
5454 ndefns = remove_extra_symbols (*results, ndefns);
5455
2ad01556 5456 if (ndefns == 0 && full_search)
2570f2b7 5457 cache_symbol (name0, namespace, NULL, NULL);
14f9c5c9 5458
2ad01556 5459 if (ndefns == 1 && full_search && cacheIfUnique)
2570f2b7 5460 cache_symbol (name0, namespace, (*results)[0].sym, (*results)[0].block);
14f9c5c9 5461
aeb5907d 5462 ndefns = remove_irrelevant_renamings (*results, ndefns, block0);
14f9c5c9 5463
14f9c5c9
AS
5464 return ndefns;
5465}
5466
4eeaa230
DE
5467/* Find symbols in DOMAIN matching NAME0, in BLOCK0 and enclosing scope and
5468 in global scopes, returning the number of matches, and setting *RESULTS
5469 to a vector of (SYM,BLOCK) tuples.
5470 See ada_lookup_symbol_list_worker for further details. */
5471
5472int
5473ada_lookup_symbol_list (const char *name0, const struct block *block0,
5474 domain_enum domain, struct ada_symbol_info **results)
5475{
5476 return ada_lookup_symbol_list_worker (name0, block0, domain, results, 1);
5477}
5478
5479/* Implementation of the la_iterate_over_symbols method. */
5480
5481static void
5482ada_iterate_over_symbols (const struct block *block,
5483 const char *name, domain_enum domain,
5484 symbol_found_callback_ftype *callback,
5485 void *data)
5486{
5487 int ndefs, i;
5488 struct ada_symbol_info *results;
5489
5490 ndefs = ada_lookup_symbol_list_worker (name, block, domain, &results, 0);
5491 for (i = 0; i < ndefs; ++i)
5492 {
5493 if (! (*callback) (results[i].sym, data))
5494 break;
5495 }
5496}
5497
f8eba3c6
TT
5498/* If NAME is the name of an entity, return a string that should
5499 be used to look that entity up in Ada units. This string should
5500 be deallocated after use using xfree.
5501
5502 NAME can have any form that the "break" or "print" commands might
5503 recognize. In other words, it does not have to be the "natural"
5504 name, or the "encoded" name. */
5505
5506char *
5507ada_name_for_lookup (const char *name)
5508{
5509 char *canon;
5510 int nlen = strlen (name);
5511
5512 if (name[0] == '<' && name[nlen - 1] == '>')
5513 {
5514 canon = xmalloc (nlen - 1);
5515 memcpy (canon, name + 1, nlen - 2);
5516 canon[nlen - 2] = '\0';
5517 }
5518 else
5519 canon = xstrdup (ada_encode (ada_fold_name (name)));
5520 return canon;
5521}
5522
4e5c77fe
JB
5523/* The result is as for ada_lookup_symbol_list with FULL_SEARCH set
5524 to 1, but choosing the first symbol found if there are multiple
5525 choices.
5526
5e2336be
JB
5527 The result is stored in *INFO, which must be non-NULL.
5528 If no match is found, INFO->SYM is set to NULL. */
4e5c77fe
JB
5529
5530void
5531ada_lookup_encoded_symbol (const char *name, const struct block *block,
5532 domain_enum namespace,
5e2336be 5533 struct ada_symbol_info *info)
14f9c5c9 5534{
4c4b4cd2 5535 struct ada_symbol_info *candidates;
14f9c5c9
AS
5536 int n_candidates;
5537
5e2336be
JB
5538 gdb_assert (info != NULL);
5539 memset (info, 0, sizeof (struct ada_symbol_info));
4e5c77fe 5540
4eeaa230 5541 n_candidates = ada_lookup_symbol_list (name, block, namespace, &candidates);
14f9c5c9 5542 if (n_candidates == 0)
4e5c77fe 5543 return;
4c4b4cd2 5544
5e2336be
JB
5545 *info = candidates[0];
5546 info->sym = fixup_symbol_section (info->sym, NULL);
4e5c77fe 5547}
aeb5907d
JB
5548
5549/* Return a symbol in DOMAIN matching NAME, in BLOCK0 and enclosing
5550 scope and in global scopes, or NULL if none. NAME is folded and
5551 encoded first. Otherwise, the result is as for ada_lookup_symbol_list,
0963b4bd 5552 choosing the first symbol if there are multiple choices.
4e5c77fe
JB
5553 If IS_A_FIELD_OF_THIS is not NULL, it is set to zero. */
5554
aeb5907d
JB
5555struct symbol *
5556ada_lookup_symbol (const char *name, const struct block *block0,
21b556f4 5557 domain_enum namespace, int *is_a_field_of_this)
aeb5907d 5558{
5e2336be 5559 struct ada_symbol_info info;
4e5c77fe 5560
aeb5907d
JB
5561 if (is_a_field_of_this != NULL)
5562 *is_a_field_of_this = 0;
5563
4e5c77fe 5564 ada_lookup_encoded_symbol (ada_encode (ada_fold_name (name)),
5e2336be
JB
5565 block0, namespace, &info);
5566 return info.sym;
4c4b4cd2 5567}
14f9c5c9 5568
4c4b4cd2
PH
5569static struct symbol *
5570ada_lookup_symbol_nonlocal (const char *name,
76a01679 5571 const struct block *block,
21b556f4 5572 const domain_enum domain)
4c4b4cd2 5573{
94af9270 5574 return ada_lookup_symbol (name, block_static_block (block), domain, NULL);
14f9c5c9
AS
5575}
5576
5577
4c4b4cd2
PH
5578/* True iff STR is a possible encoded suffix of a normal Ada name
5579 that is to be ignored for matching purposes. Suffixes of parallel
5580 names (e.g., XVE) are not included here. Currently, the possible suffixes
5823c3ef 5581 are given by any of the regular expressions:
4c4b4cd2 5582
babe1480
JB
5583 [.$][0-9]+ [nested subprogram suffix, on platforms such as GNU/Linux]
5584 ___[0-9]+ [nested subprogram suffix, on platforms such as HP/UX]
9ac7f98e 5585 TKB [subprogram suffix for task bodies]
babe1480 5586 _E[0-9]+[bs]$ [protected object entry suffixes]
61ee279c 5587 (X[nb]*)?((\$|__)[0-9](_?[0-9]+)|___(JM|LJM|X([FDBUP].*|R[^T]?)))?$
babe1480
JB
5588
5589 Also, any leading "__[0-9]+" sequence is skipped before the suffix
5590 match is performed. This sequence is used to differentiate homonyms,
5591 is an optional part of a valid name suffix. */
4c4b4cd2 5592
14f9c5c9 5593static int
d2e4a39e 5594is_name_suffix (const char *str)
14f9c5c9
AS
5595{
5596 int k;
4c4b4cd2
PH
5597 const char *matching;
5598 const int len = strlen (str);
5599
babe1480
JB
5600 /* Skip optional leading __[0-9]+. */
5601
4c4b4cd2
PH
5602 if (len > 3 && str[0] == '_' && str[1] == '_' && isdigit (str[2]))
5603 {
babe1480
JB
5604 str += 3;
5605 while (isdigit (str[0]))
5606 str += 1;
4c4b4cd2 5607 }
babe1480
JB
5608
5609 /* [.$][0-9]+ */
4c4b4cd2 5610
babe1480 5611 if (str[0] == '.' || str[0] == '$')
4c4b4cd2 5612 {
babe1480 5613 matching = str + 1;
4c4b4cd2
PH
5614 while (isdigit (matching[0]))
5615 matching += 1;
5616 if (matching[0] == '\0')
5617 return 1;
5618 }
5619
5620 /* ___[0-9]+ */
babe1480 5621
4c4b4cd2
PH
5622 if (len > 3 && str[0] == '_' && str[1] == '_' && str[2] == '_')
5623 {
5624 matching = str + 3;
5625 while (isdigit (matching[0]))
5626 matching += 1;
5627 if (matching[0] == '\0')
5628 return 1;
5629 }
5630
9ac7f98e
JB
5631 /* "TKB" suffixes are used for subprograms implementing task bodies. */
5632
5633 if (strcmp (str, "TKB") == 0)
5634 return 1;
5635
529cad9c
PH
5636#if 0
5637 /* FIXME: brobecker/2005-09-23: Protected Object subprograms end
0963b4bd
MS
5638 with a N at the end. Unfortunately, the compiler uses the same
5639 convention for other internal types it creates. So treating
529cad9c 5640 all entity names that end with an "N" as a name suffix causes
0963b4bd
MS
5641 some regressions. For instance, consider the case of an enumerated
5642 type. To support the 'Image attribute, it creates an array whose
529cad9c
PH
5643 name ends with N.
5644 Having a single character like this as a suffix carrying some
0963b4bd 5645 information is a bit risky. Perhaps we should change the encoding
529cad9c
PH
5646 to be something like "_N" instead. In the meantime, do not do
5647 the following check. */
5648 /* Protected Object Subprograms */
5649 if (len == 1 && str [0] == 'N')
5650 return 1;
5651#endif
5652
5653 /* _E[0-9]+[bs]$ */
5654 if (len > 3 && str[0] == '_' && str [1] == 'E' && isdigit (str[2]))
5655 {
5656 matching = str + 3;
5657 while (isdigit (matching[0]))
5658 matching += 1;
5659 if ((matching[0] == 'b' || matching[0] == 's')
5660 && matching [1] == '\0')
5661 return 1;
5662 }
5663
4c4b4cd2
PH
5664 /* ??? We should not modify STR directly, as we are doing below. This
5665 is fine in this case, but may become problematic later if we find
5666 that this alternative did not work, and want to try matching
5667 another one from the begining of STR. Since we modified it, we
5668 won't be able to find the begining of the string anymore! */
14f9c5c9
AS
5669 if (str[0] == 'X')
5670 {
5671 str += 1;
d2e4a39e 5672 while (str[0] != '_' && str[0] != '\0')
4c4b4cd2
PH
5673 {
5674 if (str[0] != 'n' && str[0] != 'b')
5675 return 0;
5676 str += 1;
5677 }
14f9c5c9 5678 }
babe1480 5679
14f9c5c9
AS
5680 if (str[0] == '\000')
5681 return 1;
babe1480 5682
d2e4a39e 5683 if (str[0] == '_')
14f9c5c9
AS
5684 {
5685 if (str[1] != '_' || str[2] == '\000')
4c4b4cd2 5686 return 0;
d2e4a39e 5687 if (str[2] == '_')
4c4b4cd2 5688 {
61ee279c
PH
5689 if (strcmp (str + 3, "JM") == 0)
5690 return 1;
5691 /* FIXME: brobecker/2004-09-30: GNAT will soon stop using
5692 the LJM suffix in favor of the JM one. But we will
5693 still accept LJM as a valid suffix for a reasonable
5694 amount of time, just to allow ourselves to debug programs
5695 compiled using an older version of GNAT. */
4c4b4cd2
PH
5696 if (strcmp (str + 3, "LJM") == 0)
5697 return 1;
5698 if (str[3] != 'X')
5699 return 0;
1265e4aa
JB
5700 if (str[4] == 'F' || str[4] == 'D' || str[4] == 'B'
5701 || str[4] == 'U' || str[4] == 'P')
4c4b4cd2
PH
5702 return 1;
5703 if (str[4] == 'R' && str[5] != 'T')
5704 return 1;
5705 return 0;
5706 }
5707 if (!isdigit (str[2]))
5708 return 0;
5709 for (k = 3; str[k] != '\0'; k += 1)
5710 if (!isdigit (str[k]) && str[k] != '_')
5711 return 0;
14f9c5c9
AS
5712 return 1;
5713 }
4c4b4cd2 5714 if (str[0] == '$' && isdigit (str[1]))
14f9c5c9 5715 {
4c4b4cd2
PH
5716 for (k = 2; str[k] != '\0'; k += 1)
5717 if (!isdigit (str[k]) && str[k] != '_')
5718 return 0;
14f9c5c9
AS
5719 return 1;
5720 }
5721 return 0;
5722}
d2e4a39e 5723
aeb5907d
JB
5724/* Return non-zero if the string starting at NAME and ending before
5725 NAME_END contains no capital letters. */
529cad9c
PH
5726
5727static int
5728is_valid_name_for_wild_match (const char *name0)
5729{
5730 const char *decoded_name = ada_decode (name0);
5731 int i;
5732
5823c3ef
JB
5733 /* If the decoded name starts with an angle bracket, it means that
5734 NAME0 does not follow the GNAT encoding format. It should then
5735 not be allowed as a possible wild match. */
5736 if (decoded_name[0] == '<')
5737 return 0;
5738
529cad9c
PH
5739 for (i=0; decoded_name[i] != '\0'; i++)
5740 if (isalpha (decoded_name[i]) && !islower (decoded_name[i]))
5741 return 0;
5742
5743 return 1;
5744}
5745
73589123
PH
5746/* Advance *NAMEP to next occurrence of TARGET0 in the string NAME0
5747 that could start a simple name. Assumes that *NAMEP points into
5748 the string beginning at NAME0. */
4c4b4cd2 5749
14f9c5c9 5750static int
73589123 5751advance_wild_match (const char **namep, const char *name0, int target0)
14f9c5c9 5752{
73589123 5753 const char *name = *namep;
5b4ee69b 5754
5823c3ef 5755 while (1)
14f9c5c9 5756 {
aa27d0b3 5757 int t0, t1;
73589123
PH
5758
5759 t0 = *name;
5760 if (t0 == '_')
5761 {
5762 t1 = name[1];
5763 if ((t1 >= 'a' && t1 <= 'z') || (t1 >= '0' && t1 <= '9'))
5764 {
5765 name += 1;
5766 if (name == name0 + 5 && strncmp (name0, "_ada", 4) == 0)
5767 break;
5768 else
5769 name += 1;
5770 }
aa27d0b3
JB
5771 else if (t1 == '_' && ((name[2] >= 'a' && name[2] <= 'z')
5772 || name[2] == target0))
73589123
PH
5773 {
5774 name += 2;
5775 break;
5776 }
5777 else
5778 return 0;
5779 }
5780 else if ((t0 >= 'a' && t0 <= 'z') || (t0 >= '0' && t0 <= '9'))
5781 name += 1;
5782 else
5823c3ef 5783 return 0;
73589123
PH
5784 }
5785
5786 *namep = name;
5787 return 1;
5788}
5789
5790/* Return 0 iff NAME encodes a name of the form prefix.PATN. Ignores any
5791 informational suffixes of NAME (i.e., for which is_name_suffix is
5792 true). Assumes that PATN is a lower-cased Ada simple name. */
5793
5794static int
5795wild_match (const char *name, const char *patn)
5796{
22e048c9 5797 const char *p;
73589123
PH
5798 const char *name0 = name;
5799
5800 while (1)
5801 {
5802 const char *match = name;
5803
5804 if (*name == *patn)
5805 {
5806 for (name += 1, p = patn + 1; *p != '\0'; name += 1, p += 1)
5807 if (*p != *name)
5808 break;
5809 if (*p == '\0' && is_name_suffix (name))
5810 return match != name0 && !is_valid_name_for_wild_match (name0);
5811
5812 if (name[-1] == '_')
5813 name -= 1;
5814 }
5815 if (!advance_wild_match (&name, name0, *patn))
5816 return 1;
96d887e8 5817 }
96d887e8
PH
5818}
5819
40658b94
PH
5820/* Returns 0 iff symbol name SYM_NAME matches SEARCH_NAME, apart from
5821 informational suffix. */
5822
c4d840bd
PH
5823static int
5824full_match (const char *sym_name, const char *search_name)
5825{
40658b94 5826 return !match_name (sym_name, search_name, 0);
c4d840bd
PH
5827}
5828
5829
96d887e8
PH
5830/* Add symbols from BLOCK matching identifier NAME in DOMAIN to
5831 vector *defn_symbols, updating the list of symbols in OBSTACKP
0963b4bd 5832 (if necessary). If WILD, treat as NAME with a wildcard prefix.
4eeaa230 5833 OBJFILE is the section containing BLOCK. */
96d887e8
PH
5834
5835static void
5836ada_add_block_symbols (struct obstack *obstackp,
f0c5f9b2 5837 const struct block *block, const char *name,
96d887e8 5838 domain_enum domain, struct objfile *objfile,
2570f2b7 5839 int wild)
96d887e8 5840{
8157b174 5841 struct block_iterator iter;
96d887e8
PH
5842 int name_len = strlen (name);
5843 /* A matching argument symbol, if any. */
5844 struct symbol *arg_sym;
5845 /* Set true when we find a matching non-argument symbol. */
5846 int found_sym;
5847 struct symbol *sym;
5848
5849 arg_sym = NULL;
5850 found_sym = 0;
5851 if (wild)
5852 {
8157b174
TT
5853 for (sym = block_iter_match_first (block, name, wild_match, &iter);
5854 sym != NULL; sym = block_iter_match_next (name, wild_match, &iter))
76a01679 5855 {
4186eb54
KS
5856 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
5857 SYMBOL_DOMAIN (sym), domain)
73589123 5858 && wild_match (SYMBOL_LINKAGE_NAME (sym), name) == 0)
76a01679 5859 {
2a2d4dc3
AS
5860 if (SYMBOL_CLASS (sym) == LOC_UNRESOLVED)
5861 continue;
5862 else if (SYMBOL_IS_ARGUMENT (sym))
5863 arg_sym = sym;
5864 else
5865 {
76a01679
JB
5866 found_sym = 1;
5867 add_defn_to_vec (obstackp,
5868 fixup_symbol_section (sym, objfile),
2570f2b7 5869 block);
76a01679
JB
5870 }
5871 }
5872 }
96d887e8
PH
5873 }
5874 else
5875 {
8157b174
TT
5876 for (sym = block_iter_match_first (block, name, full_match, &iter);
5877 sym != NULL; sym = block_iter_match_next (name, full_match, &iter))
76a01679 5878 {
4186eb54
KS
5879 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
5880 SYMBOL_DOMAIN (sym), domain))
76a01679 5881 {
c4d840bd
PH
5882 if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED)
5883 {
5884 if (SYMBOL_IS_ARGUMENT (sym))
5885 arg_sym = sym;
5886 else
2a2d4dc3 5887 {
c4d840bd
PH
5888 found_sym = 1;
5889 add_defn_to_vec (obstackp,
5890 fixup_symbol_section (sym, objfile),
5891 block);
2a2d4dc3 5892 }
c4d840bd 5893 }
76a01679
JB
5894 }
5895 }
96d887e8
PH
5896 }
5897
5898 if (!found_sym && arg_sym != NULL)
5899 {
76a01679
JB
5900 add_defn_to_vec (obstackp,
5901 fixup_symbol_section (arg_sym, objfile),
2570f2b7 5902 block);
96d887e8
PH
5903 }
5904
5905 if (!wild)
5906 {
5907 arg_sym = NULL;
5908 found_sym = 0;
5909
5910 ALL_BLOCK_SYMBOLS (block, iter, sym)
76a01679 5911 {
4186eb54
KS
5912 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
5913 SYMBOL_DOMAIN (sym), domain))
76a01679
JB
5914 {
5915 int cmp;
5916
5917 cmp = (int) '_' - (int) SYMBOL_LINKAGE_NAME (sym)[0];
5918 if (cmp == 0)
5919 {
5920 cmp = strncmp ("_ada_", SYMBOL_LINKAGE_NAME (sym), 5);
5921 if (cmp == 0)
5922 cmp = strncmp (name, SYMBOL_LINKAGE_NAME (sym) + 5,
5923 name_len);
5924 }
5925
5926 if (cmp == 0
5927 && is_name_suffix (SYMBOL_LINKAGE_NAME (sym) + name_len + 5))
5928 {
2a2d4dc3
AS
5929 if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED)
5930 {
5931 if (SYMBOL_IS_ARGUMENT (sym))
5932 arg_sym = sym;
5933 else
5934 {
5935 found_sym = 1;
5936 add_defn_to_vec (obstackp,
5937 fixup_symbol_section (sym, objfile),
5938 block);
5939 }
5940 }
76a01679
JB
5941 }
5942 }
76a01679 5943 }
96d887e8
PH
5944
5945 /* NOTE: This really shouldn't be needed for _ada_ symbols.
5946 They aren't parameters, right? */
5947 if (!found_sym && arg_sym != NULL)
5948 {
5949 add_defn_to_vec (obstackp,
76a01679 5950 fixup_symbol_section (arg_sym, objfile),
2570f2b7 5951 block);
96d887e8
PH
5952 }
5953 }
5954}
5955\f
41d27058
JB
5956
5957 /* Symbol Completion */
5958
5959/* If SYM_NAME is a completion candidate for TEXT, return this symbol
5960 name in a form that's appropriate for the completion. The result
5961 does not need to be deallocated, but is only good until the next call.
5962
5963 TEXT_LEN is equal to the length of TEXT.
e701b3c0 5964 Perform a wild match if WILD_MATCH_P is set.
6ea35997 5965 ENCODED_P should be set if TEXT represents the start of a symbol name
41d27058
JB
5966 in its encoded form. */
5967
5968static const char *
5969symbol_completion_match (const char *sym_name,
5970 const char *text, int text_len,
6ea35997 5971 int wild_match_p, int encoded_p)
41d27058 5972{
41d27058
JB
5973 const int verbatim_match = (text[0] == '<');
5974 int match = 0;
5975
5976 if (verbatim_match)
5977 {
5978 /* Strip the leading angle bracket. */
5979 text = text + 1;
5980 text_len--;
5981 }
5982
5983 /* First, test against the fully qualified name of the symbol. */
5984
5985 if (strncmp (sym_name, text, text_len) == 0)
5986 match = 1;
5987
6ea35997 5988 if (match && !encoded_p)
41d27058
JB
5989 {
5990 /* One needed check before declaring a positive match is to verify
5991 that iff we are doing a verbatim match, the decoded version
5992 of the symbol name starts with '<'. Otherwise, this symbol name
5993 is not a suitable completion. */
5994 const char *sym_name_copy = sym_name;
5995 int has_angle_bracket;
5996
5997 sym_name = ada_decode (sym_name);
5998 has_angle_bracket = (sym_name[0] == '<');
5999 match = (has_angle_bracket == verbatim_match);
6000 sym_name = sym_name_copy;
6001 }
6002
6003 if (match && !verbatim_match)
6004 {
6005 /* When doing non-verbatim match, another check that needs to
6006 be done is to verify that the potentially matching symbol name
6007 does not include capital letters, because the ada-mode would
6008 not be able to understand these symbol names without the
6009 angle bracket notation. */
6010 const char *tmp;
6011
6012 for (tmp = sym_name; *tmp != '\0' && !isupper (*tmp); tmp++);
6013 if (*tmp != '\0')
6014 match = 0;
6015 }
6016
6017 /* Second: Try wild matching... */
6018
e701b3c0 6019 if (!match && wild_match_p)
41d27058
JB
6020 {
6021 /* Since we are doing wild matching, this means that TEXT
6022 may represent an unqualified symbol name. We therefore must
6023 also compare TEXT against the unqualified name of the symbol. */
6024 sym_name = ada_unqualified_name (ada_decode (sym_name));
6025
6026 if (strncmp (sym_name, text, text_len) == 0)
6027 match = 1;
6028 }
6029
6030 /* Finally: If we found a mach, prepare the result to return. */
6031
6032 if (!match)
6033 return NULL;
6034
6035 if (verbatim_match)
6036 sym_name = add_angle_brackets (sym_name);
6037
6ea35997 6038 if (!encoded_p)
41d27058
JB
6039 sym_name = ada_decode (sym_name);
6040
6041 return sym_name;
6042}
6043
6044/* A companion function to ada_make_symbol_completion_list().
6045 Check if SYM_NAME represents a symbol which name would be suitable
6046 to complete TEXT (TEXT_LEN is the length of TEXT), in which case
6047 it is appended at the end of the given string vector SV.
6048
6049 ORIG_TEXT is the string original string from the user command
6050 that needs to be completed. WORD is the entire command on which
6051 completion should be performed. These two parameters are used to
6052 determine which part of the symbol name should be added to the
6053 completion vector.
c0af1706 6054 if WILD_MATCH_P is set, then wild matching is performed.
cb8e9b97 6055 ENCODED_P should be set if TEXT represents a symbol name in its
41d27058
JB
6056 encoded formed (in which case the completion should also be
6057 encoded). */
6058
6059static void
d6565258 6060symbol_completion_add (VEC(char_ptr) **sv,
41d27058
JB
6061 const char *sym_name,
6062 const char *text, int text_len,
6063 const char *orig_text, const char *word,
cb8e9b97 6064 int wild_match_p, int encoded_p)
41d27058
JB
6065{
6066 const char *match = symbol_completion_match (sym_name, text, text_len,
cb8e9b97 6067 wild_match_p, encoded_p);
41d27058
JB
6068 char *completion;
6069
6070 if (match == NULL)
6071 return;
6072
6073 /* We found a match, so add the appropriate completion to the given
6074 string vector. */
6075
6076 if (word == orig_text)
6077 {
6078 completion = xmalloc (strlen (match) + 5);
6079 strcpy (completion, match);
6080 }
6081 else if (word > orig_text)
6082 {
6083 /* Return some portion of sym_name. */
6084 completion = xmalloc (strlen (match) + 5);
6085 strcpy (completion, match + (word - orig_text));
6086 }
6087 else
6088 {
6089 /* Return some of ORIG_TEXT plus sym_name. */
6090 completion = xmalloc (strlen (match) + (orig_text - word) + 5);
6091 strncpy (completion, word, orig_text - word);
6092 completion[orig_text - word] = '\0';
6093 strcat (completion, match);
6094 }
6095
d6565258 6096 VEC_safe_push (char_ptr, *sv, completion);
41d27058
JB
6097}
6098
ccefe4c4 6099/* An object of this type is passed as the user_data argument to the
bb4142cf 6100 expand_symtabs_matching method. */
ccefe4c4
TT
6101struct add_partial_datum
6102{
6103 VEC(char_ptr) **completions;
6f937416 6104 const char *text;
ccefe4c4 6105 int text_len;
6f937416
PA
6106 const char *text0;
6107 const char *word;
ccefe4c4
TT
6108 int wild_match;
6109 int encoded;
6110};
6111
bb4142cf
DE
6112/* A callback for expand_symtabs_matching. */
6113
7b08b9eb 6114static int
bb4142cf 6115ada_complete_symbol_matcher (const char *name, void *user_data)
ccefe4c4
TT
6116{
6117 struct add_partial_datum *data = user_data;
7b08b9eb
JK
6118
6119 return symbol_completion_match (name, data->text, data->text_len,
6120 data->wild_match, data->encoded) != NULL;
ccefe4c4
TT
6121}
6122
49c4e619
TT
6123/* Return a list of possible symbol names completing TEXT0. WORD is
6124 the entire command on which completion is made. */
41d27058 6125
49c4e619 6126static VEC (char_ptr) *
6f937416
PA
6127ada_make_symbol_completion_list (const char *text0, const char *word,
6128 enum type_code code)
41d27058
JB
6129{
6130 char *text;
6131 int text_len;
b1ed564a
JB
6132 int wild_match_p;
6133 int encoded_p;
2ba95b9b 6134 VEC(char_ptr) *completions = VEC_alloc (char_ptr, 128);
41d27058
JB
6135 struct symbol *sym;
6136 struct symtab *s;
41d27058
JB
6137 struct minimal_symbol *msymbol;
6138 struct objfile *objfile;
3977b71f 6139 const struct block *b, *surrounding_static_block = 0;
41d27058 6140 int i;
8157b174 6141 struct block_iterator iter;
b8fea896 6142 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
41d27058 6143
2f68a895
TT
6144 gdb_assert (code == TYPE_CODE_UNDEF);
6145
41d27058
JB
6146 if (text0[0] == '<')
6147 {
6148 text = xstrdup (text0);
6149 make_cleanup (xfree, text);
6150 text_len = strlen (text);
b1ed564a
JB
6151 wild_match_p = 0;
6152 encoded_p = 1;
41d27058
JB
6153 }
6154 else
6155 {
6156 text = xstrdup (ada_encode (text0));
6157 make_cleanup (xfree, text);
6158 text_len = strlen (text);
6159 for (i = 0; i < text_len; i++)
6160 text[i] = tolower (text[i]);
6161
b1ed564a 6162 encoded_p = (strstr (text0, "__") != NULL);
41d27058
JB
6163 /* If the name contains a ".", then the user is entering a fully
6164 qualified entity name, and the match must not be done in wild
6165 mode. Similarly, if the user wants to complete what looks like
6166 an encoded name, the match must not be done in wild mode. */
b1ed564a 6167 wild_match_p = (strchr (text0, '.') == NULL && !encoded_p);
41d27058
JB
6168 }
6169
6170 /* First, look at the partial symtab symbols. */
41d27058 6171 {
ccefe4c4
TT
6172 struct add_partial_datum data;
6173
6174 data.completions = &completions;
6175 data.text = text;
6176 data.text_len = text_len;
6177 data.text0 = text0;
6178 data.word = word;
b1ed564a
JB
6179 data.wild_match = wild_match_p;
6180 data.encoded = encoded_p;
bb4142cf
DE
6181 expand_symtabs_matching (NULL, ada_complete_symbol_matcher, ALL_DOMAIN,
6182 &data);
41d27058
JB
6183 }
6184
6185 /* At this point scan through the misc symbol vectors and add each
6186 symbol you find to the list. Eventually we want to ignore
6187 anything that isn't a text symbol (everything else will be
6188 handled by the psymtab code above). */
6189
6190 ALL_MSYMBOLS (objfile, msymbol)
6191 {
6192 QUIT;
efd66ac6 6193 symbol_completion_add (&completions, MSYMBOL_LINKAGE_NAME (msymbol),
b1ed564a
JB
6194 text, text_len, text0, word, wild_match_p,
6195 encoded_p);
41d27058
JB
6196 }
6197
6198 /* Search upwards from currently selected frame (so that we can
6199 complete on local vars. */
6200
6201 for (b = get_selected_block (0); b != NULL; b = BLOCK_SUPERBLOCK (b))
6202 {
6203 if (!BLOCK_SUPERBLOCK (b))
6204 surrounding_static_block = b; /* For elmin of dups */
6205
6206 ALL_BLOCK_SYMBOLS (b, iter, sym)
6207 {
d6565258 6208 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym),
41d27058 6209 text, text_len, text0, word,
b1ed564a 6210 wild_match_p, encoded_p);
41d27058
JB
6211 }
6212 }
6213
6214 /* Go through the symtabs and check the externs and statics for
2dd2cd1c
DE
6215 symbols which match.
6216 Non-primary symtabs share the block vector with their primary symtabs
6217 so we use ALL_PRIMARY_SYMTABS here instead of ALL_SYMTABS. */
41d27058 6218
2dd2cd1c 6219 ALL_PRIMARY_SYMTABS (objfile, s)
41d27058
JB
6220 {
6221 QUIT;
6222 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), GLOBAL_BLOCK);
6223 ALL_BLOCK_SYMBOLS (b, iter, sym)
6224 {
d6565258 6225 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym),
41d27058 6226 text, text_len, text0, word,
b1ed564a 6227 wild_match_p, encoded_p);
41d27058
JB
6228 }
6229 }
6230
2dd2cd1c 6231 ALL_PRIMARY_SYMTABS (objfile, s)
41d27058
JB
6232 {
6233 QUIT;
6234 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), STATIC_BLOCK);
6235 /* Don't do this block twice. */
6236 if (b == surrounding_static_block)
6237 continue;
6238 ALL_BLOCK_SYMBOLS (b, iter, sym)
6239 {
d6565258 6240 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym),
41d27058 6241 text, text_len, text0, word,
b1ed564a 6242 wild_match_p, encoded_p);
41d27058
JB
6243 }
6244 }
6245
b8fea896 6246 do_cleanups (old_chain);
49c4e619 6247 return completions;
41d27058
JB
6248}
6249
963a6417 6250 /* Field Access */
96d887e8 6251
73fb9985
JB
6252/* Return non-zero if TYPE is a pointer to the GNAT dispatch table used
6253 for tagged types. */
6254
6255static int
6256ada_is_dispatch_table_ptr_type (struct type *type)
6257{
0d5cff50 6258 const char *name;
73fb9985
JB
6259
6260 if (TYPE_CODE (type) != TYPE_CODE_PTR)
6261 return 0;
6262
6263 name = TYPE_NAME (TYPE_TARGET_TYPE (type));
6264 if (name == NULL)
6265 return 0;
6266
6267 return (strcmp (name, "ada__tags__dispatch_table") == 0);
6268}
6269
ac4a2da4
JG
6270/* Return non-zero if TYPE is an interface tag. */
6271
6272static int
6273ada_is_interface_tag (struct type *type)
6274{
6275 const char *name = TYPE_NAME (type);
6276
6277 if (name == NULL)
6278 return 0;
6279
6280 return (strcmp (name, "ada__tags__interface_tag") == 0);
6281}
6282
963a6417
PH
6283/* True if field number FIELD_NUM in struct or union type TYPE is supposed
6284 to be invisible to users. */
96d887e8 6285
963a6417
PH
6286int
6287ada_is_ignored_field (struct type *type, int field_num)
96d887e8 6288{
963a6417
PH
6289 if (field_num < 0 || field_num > TYPE_NFIELDS (type))
6290 return 1;
ffde82bf 6291
73fb9985
JB
6292 /* Check the name of that field. */
6293 {
6294 const char *name = TYPE_FIELD_NAME (type, field_num);
6295
6296 /* Anonymous field names should not be printed.
6297 brobecker/2007-02-20: I don't think this can actually happen
6298 but we don't want to print the value of annonymous fields anyway. */
6299 if (name == NULL)
6300 return 1;
6301
ffde82bf
JB
6302 /* Normally, fields whose name start with an underscore ("_")
6303 are fields that have been internally generated by the compiler,
6304 and thus should not be printed. The "_parent" field is special,
6305 however: This is a field internally generated by the compiler
6306 for tagged types, and it contains the components inherited from
6307 the parent type. This field should not be printed as is, but
6308 should not be ignored either. */
73fb9985
JB
6309 if (name[0] == '_' && strncmp (name, "_parent", 7) != 0)
6310 return 1;
6311 }
6312
ac4a2da4
JG
6313 /* If this is the dispatch table of a tagged type or an interface tag,
6314 then ignore. */
73fb9985 6315 if (ada_is_tagged_type (type, 1)
ac4a2da4
JG
6316 && (ada_is_dispatch_table_ptr_type (TYPE_FIELD_TYPE (type, field_num))
6317 || ada_is_interface_tag (TYPE_FIELD_TYPE (type, field_num))))
73fb9985
JB
6318 return 1;
6319
6320 /* Not a special field, so it should not be ignored. */
6321 return 0;
963a6417 6322}
96d887e8 6323
963a6417 6324/* True iff TYPE has a tag field. If REFOK, then TYPE may also be a
0963b4bd 6325 pointer or reference type whose ultimate target has a tag field. */
96d887e8 6326
963a6417
PH
6327int
6328ada_is_tagged_type (struct type *type, int refok)
6329{
6330 return (ada_lookup_struct_elt_type (type, "_tag", refok, 1, NULL) != NULL);
6331}
96d887e8 6332
963a6417 6333/* True iff TYPE represents the type of X'Tag */
96d887e8 6334
963a6417
PH
6335int
6336ada_is_tag_type (struct type *type)
6337{
6338 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_PTR)
6339 return 0;
6340 else
96d887e8 6341 {
963a6417 6342 const char *name = ada_type_name (TYPE_TARGET_TYPE (type));
5b4ee69b 6343
963a6417
PH
6344 return (name != NULL
6345 && strcmp (name, "ada__tags__dispatch_table") == 0);
96d887e8 6346 }
96d887e8
PH
6347}
6348
963a6417 6349/* The type of the tag on VAL. */
76a01679 6350
963a6417
PH
6351struct type *
6352ada_tag_type (struct value *val)
96d887e8 6353{
df407dfe 6354 return ada_lookup_struct_elt_type (value_type (val), "_tag", 1, 0, NULL);
963a6417 6355}
96d887e8 6356
b50d69b5
JG
6357/* Return 1 if TAG follows the old scheme for Ada tags (used for Ada 95,
6358 retired at Ada 05). */
6359
6360static int
6361is_ada95_tag (struct value *tag)
6362{
6363 return ada_value_struct_elt (tag, "tsd", 1) != NULL;
6364}
6365
963a6417 6366/* The value of the tag on VAL. */
96d887e8 6367
963a6417
PH
6368struct value *
6369ada_value_tag (struct value *val)
6370{
03ee6b2e 6371 return ada_value_struct_elt (val, "_tag", 0);
96d887e8
PH
6372}
6373
963a6417
PH
6374/* The value of the tag on the object of type TYPE whose contents are
6375 saved at VALADDR, if it is non-null, or is at memory address
0963b4bd 6376 ADDRESS. */
96d887e8 6377
963a6417 6378static struct value *
10a2c479 6379value_tag_from_contents_and_address (struct type *type,
fc1a4b47 6380 const gdb_byte *valaddr,
963a6417 6381 CORE_ADDR address)
96d887e8 6382{
b5385fc0 6383 int tag_byte_offset;
963a6417 6384 struct type *tag_type;
5b4ee69b 6385
963a6417 6386 if (find_struct_field ("_tag", type, 0, &tag_type, &tag_byte_offset,
52ce6436 6387 NULL, NULL, NULL))
96d887e8 6388 {
fc1a4b47 6389 const gdb_byte *valaddr1 = ((valaddr == NULL)
10a2c479
AC
6390 ? NULL
6391 : valaddr + tag_byte_offset);
963a6417 6392 CORE_ADDR address1 = (address == 0) ? 0 : address + tag_byte_offset;
96d887e8 6393
963a6417 6394 return value_from_contents_and_address (tag_type, valaddr1, address1);
96d887e8 6395 }
963a6417
PH
6396 return NULL;
6397}
96d887e8 6398
963a6417
PH
6399static struct type *
6400type_from_tag (struct value *tag)
6401{
6402 const char *type_name = ada_tag_name (tag);
5b4ee69b 6403
963a6417
PH
6404 if (type_name != NULL)
6405 return ada_find_any_type (ada_encode (type_name));
6406 return NULL;
6407}
96d887e8 6408
b50d69b5
JG
6409/* Given a value OBJ of a tagged type, return a value of this
6410 type at the base address of the object. The base address, as
6411 defined in Ada.Tags, it is the address of the primary tag of
6412 the object, and therefore where the field values of its full
6413 view can be fetched. */
6414
6415struct value *
6416ada_tag_value_at_base_address (struct value *obj)
6417{
6418 volatile struct gdb_exception e;
6419 struct value *val;
6420 LONGEST offset_to_top = 0;
6421 struct type *ptr_type, *obj_type;
6422 struct value *tag;
6423 CORE_ADDR base_address;
6424
6425 obj_type = value_type (obj);
6426
6427 /* It is the responsability of the caller to deref pointers. */
6428
6429 if (TYPE_CODE (obj_type) == TYPE_CODE_PTR
6430 || TYPE_CODE (obj_type) == TYPE_CODE_REF)
6431 return obj;
6432
6433 tag = ada_value_tag (obj);
6434 if (!tag)
6435 return obj;
6436
6437 /* Base addresses only appeared with Ada 05 and multiple inheritance. */
6438
6439 if (is_ada95_tag (tag))
6440 return obj;
6441
6442 ptr_type = builtin_type (target_gdbarch ())->builtin_data_ptr;
6443 ptr_type = lookup_pointer_type (ptr_type);
6444 val = value_cast (ptr_type, tag);
6445 if (!val)
6446 return obj;
6447
6448 /* It is perfectly possible that an exception be raised while
6449 trying to determine the base address, just like for the tag;
6450 see ada_tag_name for more details. We do not print the error
6451 message for the same reason. */
6452
6453 TRY_CATCH (e, RETURN_MASK_ERROR)
6454 {
6455 offset_to_top = value_as_long (value_ind (value_ptradd (val, -2)));
6456 }
6457
6458 if (e.reason < 0)
6459 return obj;
6460
6461 /* If offset is null, nothing to do. */
6462
6463 if (offset_to_top == 0)
6464 return obj;
6465
6466 /* -1 is a special case in Ada.Tags; however, what should be done
6467 is not quite clear from the documentation. So do nothing for
6468 now. */
6469
6470 if (offset_to_top == -1)
6471 return obj;
6472
6473 base_address = value_address (obj) - offset_to_top;
6474 tag = value_tag_from_contents_and_address (obj_type, NULL, base_address);
6475
6476 /* Make sure that we have a proper tag at the new address.
6477 Otherwise, offset_to_top is bogus (which can happen when
6478 the object is not initialized yet). */
6479
6480 if (!tag)
6481 return obj;
6482
6483 obj_type = type_from_tag (tag);
6484
6485 if (!obj_type)
6486 return obj;
6487
6488 return value_from_contents_and_address (obj_type, NULL, base_address);
6489}
6490
1b611343
JB
6491/* Return the "ada__tags__type_specific_data" type. */
6492
6493static struct type *
6494ada_get_tsd_type (struct inferior *inf)
963a6417 6495{
1b611343 6496 struct ada_inferior_data *data = get_ada_inferior_data (inf);
4c4b4cd2 6497
1b611343
JB
6498 if (data->tsd_type == 0)
6499 data->tsd_type = ada_find_any_type ("ada__tags__type_specific_data");
6500 return data->tsd_type;
6501}
529cad9c 6502
1b611343
JB
6503/* Return the TSD (type-specific data) associated to the given TAG.
6504 TAG is assumed to be the tag of a tagged-type entity.
529cad9c 6505
1b611343 6506 May return NULL if we are unable to get the TSD. */
4c4b4cd2 6507
1b611343
JB
6508static struct value *
6509ada_get_tsd_from_tag (struct value *tag)
4c4b4cd2 6510{
4c4b4cd2 6511 struct value *val;
1b611343 6512 struct type *type;
5b4ee69b 6513
1b611343
JB
6514 /* First option: The TSD is simply stored as a field of our TAG.
6515 Only older versions of GNAT would use this format, but we have
6516 to test it first, because there are no visible markers for
6517 the current approach except the absence of that field. */
529cad9c 6518
1b611343
JB
6519 val = ada_value_struct_elt (tag, "tsd", 1);
6520 if (val)
6521 return val;
e802dbe0 6522
1b611343
JB
6523 /* Try the second representation for the dispatch table (in which
6524 there is no explicit 'tsd' field in the referent of the tag pointer,
6525 and instead the tsd pointer is stored just before the dispatch
6526 table. */
e802dbe0 6527
1b611343
JB
6528 type = ada_get_tsd_type (current_inferior());
6529 if (type == NULL)
6530 return NULL;
6531 type = lookup_pointer_type (lookup_pointer_type (type));
6532 val = value_cast (type, tag);
6533 if (val == NULL)
6534 return NULL;
6535 return value_ind (value_ptradd (val, -1));
e802dbe0
JB
6536}
6537
1b611343
JB
6538/* Given the TSD of a tag (type-specific data), return a string
6539 containing the name of the associated type.
6540
6541 The returned value is good until the next call. May return NULL
6542 if we are unable to determine the tag name. */
6543
6544static char *
6545ada_tag_name_from_tsd (struct value *tsd)
529cad9c 6546{
529cad9c
PH
6547 static char name[1024];
6548 char *p;
1b611343 6549 struct value *val;
529cad9c 6550
1b611343 6551 val = ada_value_struct_elt (tsd, "expanded_name", 1);
4c4b4cd2 6552 if (val == NULL)
1b611343 6553 return NULL;
4c4b4cd2
PH
6554 read_memory_string (value_as_address (val), name, sizeof (name) - 1);
6555 for (p = name; *p != '\0'; p += 1)
6556 if (isalpha (*p))
6557 *p = tolower (*p);
1b611343 6558 return name;
4c4b4cd2
PH
6559}
6560
6561/* The type name of the dynamic type denoted by the 'tag value TAG, as
1b611343
JB
6562 a C string.
6563
6564 Return NULL if the TAG is not an Ada tag, or if we were unable to
6565 determine the name of that tag. The result is good until the next
6566 call. */
4c4b4cd2
PH
6567
6568const char *
6569ada_tag_name (struct value *tag)
6570{
1b611343
JB
6571 volatile struct gdb_exception e;
6572 char *name = NULL;
5b4ee69b 6573
df407dfe 6574 if (!ada_is_tag_type (value_type (tag)))
4c4b4cd2 6575 return NULL;
1b611343
JB
6576
6577 /* It is perfectly possible that an exception be raised while trying
6578 to determine the TAG's name, even under normal circumstances:
6579 The associated variable may be uninitialized or corrupted, for
6580 instance. We do not let any exception propagate past this point.
6581 instead we return NULL.
6582
6583 We also do not print the error message either (which often is very
6584 low-level (Eg: "Cannot read memory at 0x[...]"), but instead let
6585 the caller print a more meaningful message if necessary. */
6586 TRY_CATCH (e, RETURN_MASK_ERROR)
6587 {
6588 struct value *tsd = ada_get_tsd_from_tag (tag);
6589
6590 if (tsd != NULL)
6591 name = ada_tag_name_from_tsd (tsd);
6592 }
6593
6594 return name;
4c4b4cd2
PH
6595}
6596
6597/* The parent type of TYPE, or NULL if none. */
14f9c5c9 6598
d2e4a39e 6599struct type *
ebf56fd3 6600ada_parent_type (struct type *type)
14f9c5c9
AS
6601{
6602 int i;
6603
61ee279c 6604 type = ada_check_typedef (type);
14f9c5c9
AS
6605
6606 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT)
6607 return NULL;
6608
6609 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
6610 if (ada_is_parent_field (type, i))
0c1f74cf
JB
6611 {
6612 struct type *parent_type = TYPE_FIELD_TYPE (type, i);
6613
6614 /* If the _parent field is a pointer, then dereference it. */
6615 if (TYPE_CODE (parent_type) == TYPE_CODE_PTR)
6616 parent_type = TYPE_TARGET_TYPE (parent_type);
6617 /* If there is a parallel XVS type, get the actual base type. */
6618 parent_type = ada_get_base_type (parent_type);
6619
6620 return ada_check_typedef (parent_type);
6621 }
14f9c5c9
AS
6622
6623 return NULL;
6624}
6625
4c4b4cd2
PH
6626/* True iff field number FIELD_NUM of structure type TYPE contains the
6627 parent-type (inherited) fields of a derived type. Assumes TYPE is
6628 a structure type with at least FIELD_NUM+1 fields. */
14f9c5c9
AS
6629
6630int
ebf56fd3 6631ada_is_parent_field (struct type *type, int field_num)
14f9c5c9 6632{
61ee279c 6633 const char *name = TYPE_FIELD_NAME (ada_check_typedef (type), field_num);
5b4ee69b 6634
4c4b4cd2
PH
6635 return (name != NULL
6636 && (strncmp (name, "PARENT", 6) == 0
6637 || strncmp (name, "_parent", 7) == 0));
14f9c5c9
AS
6638}
6639
4c4b4cd2 6640/* True iff field number FIELD_NUM of structure type TYPE is a
14f9c5c9 6641 transparent wrapper field (which should be silently traversed when doing
4c4b4cd2 6642 field selection and flattened when printing). Assumes TYPE is a
14f9c5c9 6643 structure type with at least FIELD_NUM+1 fields. Such fields are always
4c4b4cd2 6644 structures. */
14f9c5c9
AS
6645
6646int
ebf56fd3 6647ada_is_wrapper_field (struct type *type, int field_num)
14f9c5c9 6648{
d2e4a39e 6649 const char *name = TYPE_FIELD_NAME (type, field_num);
5b4ee69b 6650
d2e4a39e 6651 return (name != NULL
4c4b4cd2
PH
6652 && (strncmp (name, "PARENT", 6) == 0
6653 || strcmp (name, "REP") == 0
6654 || strncmp (name, "_parent", 7) == 0
6655 || name[0] == 'S' || name[0] == 'R' || name[0] == 'O'));
14f9c5c9
AS
6656}
6657
4c4b4cd2
PH
6658/* True iff field number FIELD_NUM of structure or union type TYPE
6659 is a variant wrapper. Assumes TYPE is a structure type with at least
6660 FIELD_NUM+1 fields. */
14f9c5c9
AS
6661
6662int
ebf56fd3 6663ada_is_variant_part (struct type *type, int field_num)
14f9c5c9 6664{
d2e4a39e 6665 struct type *field_type = TYPE_FIELD_TYPE (type, field_num);
5b4ee69b 6666
14f9c5c9 6667 return (TYPE_CODE (field_type) == TYPE_CODE_UNION
4c4b4cd2 6668 || (is_dynamic_field (type, field_num)
c3e5cd34
PH
6669 && (TYPE_CODE (TYPE_TARGET_TYPE (field_type))
6670 == TYPE_CODE_UNION)));
14f9c5c9
AS
6671}
6672
6673/* Assuming that VAR_TYPE is a variant wrapper (type of the variant part)
4c4b4cd2 6674 whose discriminants are contained in the record type OUTER_TYPE,
7c964f07
UW
6675 returns the type of the controlling discriminant for the variant.
6676 May return NULL if the type could not be found. */
14f9c5c9 6677
d2e4a39e 6678struct type *
ebf56fd3 6679ada_variant_discrim_type (struct type *var_type, struct type *outer_type)
14f9c5c9 6680{
d2e4a39e 6681 char *name = ada_variant_discrim_name (var_type);
5b4ee69b 6682
7c964f07 6683 return ada_lookup_struct_elt_type (outer_type, name, 1, 1, NULL);
14f9c5c9
AS
6684}
6685
4c4b4cd2 6686/* Assuming that TYPE is the type of a variant wrapper, and FIELD_NUM is a
14f9c5c9 6687 valid field number within it, returns 1 iff field FIELD_NUM of TYPE
4c4b4cd2 6688 represents a 'when others' clause; otherwise 0. */
14f9c5c9
AS
6689
6690int
ebf56fd3 6691ada_is_others_clause (struct type *type, int field_num)
14f9c5c9 6692{
d2e4a39e 6693 const char *name = TYPE_FIELD_NAME (type, field_num);
5b4ee69b 6694
14f9c5c9
AS
6695 return (name != NULL && name[0] == 'O');
6696}
6697
6698/* Assuming that TYPE0 is the type of the variant part of a record,
4c4b4cd2
PH
6699 returns the name of the discriminant controlling the variant.
6700 The value is valid until the next call to ada_variant_discrim_name. */
14f9c5c9 6701
d2e4a39e 6702char *
ebf56fd3 6703ada_variant_discrim_name (struct type *type0)
14f9c5c9 6704{
d2e4a39e 6705 static char *result = NULL;
14f9c5c9 6706 static size_t result_len = 0;
d2e4a39e
AS
6707 struct type *type;
6708 const char *name;
6709 const char *discrim_end;
6710 const char *discrim_start;
14f9c5c9
AS
6711
6712 if (TYPE_CODE (type0) == TYPE_CODE_PTR)
6713 type = TYPE_TARGET_TYPE (type0);
6714 else
6715 type = type0;
6716
6717 name = ada_type_name (type);
6718
6719 if (name == NULL || name[0] == '\000')
6720 return "";
6721
6722 for (discrim_end = name + strlen (name) - 6; discrim_end != name;
6723 discrim_end -= 1)
6724 {
4c4b4cd2
PH
6725 if (strncmp (discrim_end, "___XVN", 6) == 0)
6726 break;
14f9c5c9
AS
6727 }
6728 if (discrim_end == name)
6729 return "";
6730
d2e4a39e 6731 for (discrim_start = discrim_end; discrim_start != name + 3;
14f9c5c9
AS
6732 discrim_start -= 1)
6733 {
d2e4a39e 6734 if (discrim_start == name + 1)
4c4b4cd2 6735 return "";
76a01679 6736 if ((discrim_start > name + 3
4c4b4cd2
PH
6737 && strncmp (discrim_start - 3, "___", 3) == 0)
6738 || discrim_start[-1] == '.')
6739 break;
14f9c5c9
AS
6740 }
6741
6742 GROW_VECT (result, result_len, discrim_end - discrim_start + 1);
6743 strncpy (result, discrim_start, discrim_end - discrim_start);
d2e4a39e 6744 result[discrim_end - discrim_start] = '\0';
14f9c5c9
AS
6745 return result;
6746}
6747
4c4b4cd2
PH
6748/* Scan STR for a subtype-encoded number, beginning at position K.
6749 Put the position of the character just past the number scanned in
6750 *NEW_K, if NEW_K!=NULL. Put the scanned number in *R, if R!=NULL.
6751 Return 1 if there was a valid number at the given position, and 0
6752 otherwise. A "subtype-encoded" number consists of the absolute value
6753 in decimal, followed by the letter 'm' to indicate a negative number.
6754 Assumes 0m does not occur. */
14f9c5c9
AS
6755
6756int
d2e4a39e 6757ada_scan_number (const char str[], int k, LONGEST * R, int *new_k)
14f9c5c9
AS
6758{
6759 ULONGEST RU;
6760
d2e4a39e 6761 if (!isdigit (str[k]))
14f9c5c9
AS
6762 return 0;
6763
4c4b4cd2 6764 /* Do it the hard way so as not to make any assumption about
14f9c5c9 6765 the relationship of unsigned long (%lu scan format code) and
4c4b4cd2 6766 LONGEST. */
14f9c5c9
AS
6767 RU = 0;
6768 while (isdigit (str[k]))
6769 {
d2e4a39e 6770 RU = RU * 10 + (str[k] - '0');
14f9c5c9
AS
6771 k += 1;
6772 }
6773
d2e4a39e 6774 if (str[k] == 'm')
14f9c5c9
AS
6775 {
6776 if (R != NULL)
4c4b4cd2 6777 *R = (-(LONGEST) (RU - 1)) - 1;
14f9c5c9
AS
6778 k += 1;
6779 }
6780 else if (R != NULL)
6781 *R = (LONGEST) RU;
6782
4c4b4cd2 6783 /* NOTE on the above: Technically, C does not say what the results of
14f9c5c9
AS
6784 - (LONGEST) RU or (LONGEST) -RU are for RU == largest positive
6785 number representable as a LONGEST (although either would probably work
6786 in most implementations). When RU>0, the locution in the then branch
4c4b4cd2 6787 above is always equivalent to the negative of RU. */
14f9c5c9
AS
6788
6789 if (new_k != NULL)
6790 *new_k = k;
6791 return 1;
6792}
6793
4c4b4cd2
PH
6794/* Assuming that TYPE is a variant part wrapper type (a VARIANTS field),
6795 and FIELD_NUM is a valid field number within it, returns 1 iff VAL is
6796 in the range encoded by field FIELD_NUM of TYPE; otherwise 0. */
14f9c5c9 6797
d2e4a39e 6798int
ebf56fd3 6799ada_in_variant (LONGEST val, struct type *type, int field_num)
14f9c5c9 6800{
d2e4a39e 6801 const char *name = TYPE_FIELD_NAME (type, field_num);
14f9c5c9
AS
6802 int p;
6803
6804 p = 0;
6805 while (1)
6806 {
d2e4a39e 6807 switch (name[p])
4c4b4cd2
PH
6808 {
6809 case '\0':
6810 return 0;
6811 case 'S':
6812 {
6813 LONGEST W;
5b4ee69b 6814
4c4b4cd2
PH
6815 if (!ada_scan_number (name, p + 1, &W, &p))
6816 return 0;
6817 if (val == W)
6818 return 1;
6819 break;
6820 }
6821 case 'R':
6822 {
6823 LONGEST L, U;
5b4ee69b 6824
4c4b4cd2
PH
6825 if (!ada_scan_number (name, p + 1, &L, &p)
6826 || name[p] != 'T' || !ada_scan_number (name, p + 1, &U, &p))
6827 return 0;
6828 if (val >= L && val <= U)
6829 return 1;
6830 break;
6831 }
6832 case 'O':
6833 return 1;
6834 default:
6835 return 0;
6836 }
6837 }
6838}
6839
0963b4bd 6840/* FIXME: Lots of redundancy below. Try to consolidate. */
4c4b4cd2
PH
6841
6842/* Given a value ARG1 (offset by OFFSET bytes) of a struct or union type
6843 ARG_TYPE, extract and return the value of one of its (non-static)
6844 fields. FIELDNO says which field. Differs from value_primitive_field
6845 only in that it can handle packed values of arbitrary type. */
14f9c5c9 6846
4c4b4cd2 6847static struct value *
d2e4a39e 6848ada_value_primitive_field (struct value *arg1, int offset, int fieldno,
4c4b4cd2 6849 struct type *arg_type)
14f9c5c9 6850{
14f9c5c9
AS
6851 struct type *type;
6852
61ee279c 6853 arg_type = ada_check_typedef (arg_type);
14f9c5c9
AS
6854 type = TYPE_FIELD_TYPE (arg_type, fieldno);
6855
4c4b4cd2 6856 /* Handle packed fields. */
14f9c5c9
AS
6857
6858 if (TYPE_FIELD_BITSIZE (arg_type, fieldno) != 0)
6859 {
6860 int bit_pos = TYPE_FIELD_BITPOS (arg_type, fieldno);
6861 int bit_size = TYPE_FIELD_BITSIZE (arg_type, fieldno);
d2e4a39e 6862
0fd88904 6863 return ada_value_primitive_packed_val (arg1, value_contents (arg1),
4c4b4cd2
PH
6864 offset + bit_pos / 8,
6865 bit_pos % 8, bit_size, type);
14f9c5c9
AS
6866 }
6867 else
6868 return value_primitive_field (arg1, offset, fieldno, arg_type);
6869}
6870
52ce6436
PH
6871/* Find field with name NAME in object of type TYPE. If found,
6872 set the following for each argument that is non-null:
6873 - *FIELD_TYPE_P to the field's type;
6874 - *BYTE_OFFSET_P to OFFSET + the byte offset of the field within
6875 an object of that type;
6876 - *BIT_OFFSET_P to the bit offset modulo byte size of the field;
6877 - *BIT_SIZE_P to its size in bits if the field is packed, and
6878 0 otherwise;
6879 If INDEX_P is non-null, increment *INDEX_P by the number of source-visible
6880 fields up to but not including the desired field, or by the total
6881 number of fields if not found. A NULL value of NAME never
6882 matches; the function just counts visible fields in this case.
6883
0963b4bd 6884 Returns 1 if found, 0 otherwise. */
52ce6436 6885
4c4b4cd2 6886static int
0d5cff50 6887find_struct_field (const char *name, struct type *type, int offset,
76a01679 6888 struct type **field_type_p,
52ce6436
PH
6889 int *byte_offset_p, int *bit_offset_p, int *bit_size_p,
6890 int *index_p)
4c4b4cd2
PH
6891{
6892 int i;
6893
61ee279c 6894 type = ada_check_typedef (type);
76a01679 6895
52ce6436
PH
6896 if (field_type_p != NULL)
6897 *field_type_p = NULL;
6898 if (byte_offset_p != NULL)
d5d6fca5 6899 *byte_offset_p = 0;
52ce6436
PH
6900 if (bit_offset_p != NULL)
6901 *bit_offset_p = 0;
6902 if (bit_size_p != NULL)
6903 *bit_size_p = 0;
6904
6905 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
4c4b4cd2
PH
6906 {
6907 int bit_pos = TYPE_FIELD_BITPOS (type, i);
6908 int fld_offset = offset + bit_pos / 8;
0d5cff50 6909 const char *t_field_name = TYPE_FIELD_NAME (type, i);
76a01679 6910
4c4b4cd2
PH
6911 if (t_field_name == NULL)
6912 continue;
6913
52ce6436 6914 else if (name != NULL && field_name_match (t_field_name, name))
76a01679
JB
6915 {
6916 int bit_size = TYPE_FIELD_BITSIZE (type, i);
5b4ee69b 6917
52ce6436
PH
6918 if (field_type_p != NULL)
6919 *field_type_p = TYPE_FIELD_TYPE (type, i);
6920 if (byte_offset_p != NULL)
6921 *byte_offset_p = fld_offset;
6922 if (bit_offset_p != NULL)
6923 *bit_offset_p = bit_pos % 8;
6924 if (bit_size_p != NULL)
6925 *bit_size_p = bit_size;
76a01679
JB
6926 return 1;
6927 }
4c4b4cd2
PH
6928 else if (ada_is_wrapper_field (type, i))
6929 {
52ce6436
PH
6930 if (find_struct_field (name, TYPE_FIELD_TYPE (type, i), fld_offset,
6931 field_type_p, byte_offset_p, bit_offset_p,
6932 bit_size_p, index_p))
76a01679
JB
6933 return 1;
6934 }
4c4b4cd2
PH
6935 else if (ada_is_variant_part (type, i))
6936 {
52ce6436
PH
6937 /* PNH: Wait. Do we ever execute this section, or is ARG always of
6938 fixed type?? */
4c4b4cd2 6939 int j;
52ce6436
PH
6940 struct type *field_type
6941 = ada_check_typedef (TYPE_FIELD_TYPE (type, i));
4c4b4cd2 6942
52ce6436 6943 for (j = 0; j < TYPE_NFIELDS (field_type); j += 1)
4c4b4cd2 6944 {
76a01679
JB
6945 if (find_struct_field (name, TYPE_FIELD_TYPE (field_type, j),
6946 fld_offset
6947 + TYPE_FIELD_BITPOS (field_type, j) / 8,
6948 field_type_p, byte_offset_p,
52ce6436 6949 bit_offset_p, bit_size_p, index_p))
76a01679 6950 return 1;
4c4b4cd2
PH
6951 }
6952 }
52ce6436
PH
6953 else if (index_p != NULL)
6954 *index_p += 1;
4c4b4cd2
PH
6955 }
6956 return 0;
6957}
6958
0963b4bd 6959/* Number of user-visible fields in record type TYPE. */
4c4b4cd2 6960
52ce6436
PH
6961static int
6962num_visible_fields (struct type *type)
6963{
6964 int n;
5b4ee69b 6965
52ce6436
PH
6966 n = 0;
6967 find_struct_field (NULL, type, 0, NULL, NULL, NULL, NULL, &n);
6968 return n;
6969}
14f9c5c9 6970
4c4b4cd2 6971/* Look for a field NAME in ARG. Adjust the address of ARG by OFFSET bytes,
14f9c5c9
AS
6972 and search in it assuming it has (class) type TYPE.
6973 If found, return value, else return NULL.
6974
4c4b4cd2 6975 Searches recursively through wrapper fields (e.g., '_parent'). */
14f9c5c9 6976
4c4b4cd2 6977static struct value *
d2e4a39e 6978ada_search_struct_field (char *name, struct value *arg, int offset,
4c4b4cd2 6979 struct type *type)
14f9c5c9
AS
6980{
6981 int i;
14f9c5c9 6982
5b4ee69b 6983 type = ada_check_typedef (type);
52ce6436 6984 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
14f9c5c9 6985 {
0d5cff50 6986 const char *t_field_name = TYPE_FIELD_NAME (type, i);
14f9c5c9
AS
6987
6988 if (t_field_name == NULL)
4c4b4cd2 6989 continue;
14f9c5c9
AS
6990
6991 else if (field_name_match (t_field_name, name))
4c4b4cd2 6992 return ada_value_primitive_field (arg, offset, i, type);
14f9c5c9
AS
6993
6994 else if (ada_is_wrapper_field (type, i))
4c4b4cd2 6995 {
0963b4bd 6996 struct value *v = /* Do not let indent join lines here. */
06d5cf63
JB
6997 ada_search_struct_field (name, arg,
6998 offset + TYPE_FIELD_BITPOS (type, i) / 8,
6999 TYPE_FIELD_TYPE (type, i));
5b4ee69b 7000
4c4b4cd2
PH
7001 if (v != NULL)
7002 return v;
7003 }
14f9c5c9
AS
7004
7005 else if (ada_is_variant_part (type, i))
4c4b4cd2 7006 {
0963b4bd 7007 /* PNH: Do we ever get here? See find_struct_field. */
4c4b4cd2 7008 int j;
5b4ee69b
MS
7009 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type,
7010 i));
4c4b4cd2
PH
7011 int var_offset = offset + TYPE_FIELD_BITPOS (type, i) / 8;
7012
52ce6436 7013 for (j = 0; j < TYPE_NFIELDS (field_type); j += 1)
4c4b4cd2 7014 {
0963b4bd
MS
7015 struct value *v = ada_search_struct_field /* Force line
7016 break. */
06d5cf63
JB
7017 (name, arg,
7018 var_offset + TYPE_FIELD_BITPOS (field_type, j) / 8,
7019 TYPE_FIELD_TYPE (field_type, j));
5b4ee69b 7020
4c4b4cd2
PH
7021 if (v != NULL)
7022 return v;
7023 }
7024 }
14f9c5c9
AS
7025 }
7026 return NULL;
7027}
d2e4a39e 7028
52ce6436
PH
7029static struct value *ada_index_struct_field_1 (int *, struct value *,
7030 int, struct type *);
7031
7032
7033/* Return field #INDEX in ARG, where the index is that returned by
7034 * find_struct_field through its INDEX_P argument. Adjust the address
7035 * of ARG by OFFSET bytes, and search in it assuming it has (class) type TYPE.
0963b4bd 7036 * If found, return value, else return NULL. */
52ce6436
PH
7037
7038static struct value *
7039ada_index_struct_field (int index, struct value *arg, int offset,
7040 struct type *type)
7041{
7042 return ada_index_struct_field_1 (&index, arg, offset, type);
7043}
7044
7045
7046/* Auxiliary function for ada_index_struct_field. Like
7047 * ada_index_struct_field, but takes index from *INDEX_P and modifies
0963b4bd 7048 * *INDEX_P. */
52ce6436
PH
7049
7050static struct value *
7051ada_index_struct_field_1 (int *index_p, struct value *arg, int offset,
7052 struct type *type)
7053{
7054 int i;
7055 type = ada_check_typedef (type);
7056
7057 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
7058 {
7059 if (TYPE_FIELD_NAME (type, i) == NULL)
7060 continue;
7061 else if (ada_is_wrapper_field (type, i))
7062 {
0963b4bd 7063 struct value *v = /* Do not let indent join lines here. */
52ce6436
PH
7064 ada_index_struct_field_1 (index_p, arg,
7065 offset + TYPE_FIELD_BITPOS (type, i) / 8,
7066 TYPE_FIELD_TYPE (type, i));
5b4ee69b 7067
52ce6436
PH
7068 if (v != NULL)
7069 return v;
7070 }
7071
7072 else if (ada_is_variant_part (type, i))
7073 {
7074 /* PNH: Do we ever get here? See ada_search_struct_field,
0963b4bd 7075 find_struct_field. */
52ce6436
PH
7076 error (_("Cannot assign this kind of variant record"));
7077 }
7078 else if (*index_p == 0)
7079 return ada_value_primitive_field (arg, offset, i, type);
7080 else
7081 *index_p -= 1;
7082 }
7083 return NULL;
7084}
7085
4c4b4cd2
PH
7086/* Given ARG, a value of type (pointer or reference to a)*
7087 structure/union, extract the component named NAME from the ultimate
7088 target structure/union and return it as a value with its
f5938064 7089 appropriate type.
14f9c5c9 7090
4c4b4cd2
PH
7091 The routine searches for NAME among all members of the structure itself
7092 and (recursively) among all members of any wrapper members
14f9c5c9
AS
7093 (e.g., '_parent').
7094
03ee6b2e
PH
7095 If NO_ERR, then simply return NULL in case of error, rather than
7096 calling error. */
14f9c5c9 7097
d2e4a39e 7098struct value *
03ee6b2e 7099ada_value_struct_elt (struct value *arg, char *name, int no_err)
14f9c5c9 7100{
4c4b4cd2 7101 struct type *t, *t1;
d2e4a39e 7102 struct value *v;
14f9c5c9 7103
4c4b4cd2 7104 v = NULL;
df407dfe 7105 t1 = t = ada_check_typedef (value_type (arg));
4c4b4cd2
PH
7106 if (TYPE_CODE (t) == TYPE_CODE_REF)
7107 {
7108 t1 = TYPE_TARGET_TYPE (t);
7109 if (t1 == NULL)
03ee6b2e 7110 goto BadValue;
61ee279c 7111 t1 = ada_check_typedef (t1);
4c4b4cd2 7112 if (TYPE_CODE (t1) == TYPE_CODE_PTR)
76a01679 7113 {
994b9211 7114 arg = coerce_ref (arg);
76a01679
JB
7115 t = t1;
7116 }
4c4b4cd2 7117 }
14f9c5c9 7118
4c4b4cd2
PH
7119 while (TYPE_CODE (t) == TYPE_CODE_PTR)
7120 {
7121 t1 = TYPE_TARGET_TYPE (t);
7122 if (t1 == NULL)
03ee6b2e 7123 goto BadValue;
61ee279c 7124 t1 = ada_check_typedef (t1);
4c4b4cd2 7125 if (TYPE_CODE (t1) == TYPE_CODE_PTR)
76a01679
JB
7126 {
7127 arg = value_ind (arg);
7128 t = t1;
7129 }
4c4b4cd2 7130 else
76a01679 7131 break;
4c4b4cd2 7132 }
14f9c5c9 7133
4c4b4cd2 7134 if (TYPE_CODE (t1) != TYPE_CODE_STRUCT && TYPE_CODE (t1) != TYPE_CODE_UNION)
03ee6b2e 7135 goto BadValue;
14f9c5c9 7136
4c4b4cd2
PH
7137 if (t1 == t)
7138 v = ada_search_struct_field (name, arg, 0, t);
7139 else
7140 {
7141 int bit_offset, bit_size, byte_offset;
7142 struct type *field_type;
7143 CORE_ADDR address;
7144
76a01679 7145 if (TYPE_CODE (t) == TYPE_CODE_PTR)
b50d69b5 7146 address = value_address (ada_value_ind (arg));
4c4b4cd2 7147 else
b50d69b5 7148 address = value_address (ada_coerce_ref (arg));
14f9c5c9 7149
1ed6ede0 7150 t1 = ada_to_fixed_type (ada_get_base_type (t1), NULL, address, NULL, 1);
76a01679
JB
7151 if (find_struct_field (name, t1, 0,
7152 &field_type, &byte_offset, &bit_offset,
52ce6436 7153 &bit_size, NULL))
76a01679
JB
7154 {
7155 if (bit_size != 0)
7156 {
714e53ab
PH
7157 if (TYPE_CODE (t) == TYPE_CODE_REF)
7158 arg = ada_coerce_ref (arg);
7159 else
7160 arg = ada_value_ind (arg);
76a01679
JB
7161 v = ada_value_primitive_packed_val (arg, NULL, byte_offset,
7162 bit_offset, bit_size,
7163 field_type);
7164 }
7165 else
f5938064 7166 v = value_at_lazy (field_type, address + byte_offset);
76a01679
JB
7167 }
7168 }
7169
03ee6b2e
PH
7170 if (v != NULL || no_err)
7171 return v;
7172 else
323e0a4a 7173 error (_("There is no member named %s."), name);
14f9c5c9 7174
03ee6b2e
PH
7175 BadValue:
7176 if (no_err)
7177 return NULL;
7178 else
0963b4bd
MS
7179 error (_("Attempt to extract a component of "
7180 "a value that is not a record."));
14f9c5c9
AS
7181}
7182
7183/* Given a type TYPE, look up the type of the component of type named NAME.
4c4b4cd2
PH
7184 If DISPP is non-null, add its byte displacement from the beginning of a
7185 structure (pointed to by a value) of type TYPE to *DISPP (does not
14f9c5c9
AS
7186 work for packed fields).
7187
7188 Matches any field whose name has NAME as a prefix, possibly
4c4b4cd2 7189 followed by "___".
14f9c5c9 7190
0963b4bd 7191 TYPE can be either a struct or union. If REFOK, TYPE may also
4c4b4cd2
PH
7192 be a (pointer or reference)+ to a struct or union, and the
7193 ultimate target type will be searched.
14f9c5c9
AS
7194
7195 Looks recursively into variant clauses and parent types.
7196
4c4b4cd2
PH
7197 If NOERR is nonzero, return NULL if NAME is not suitably defined or
7198 TYPE is not a type of the right kind. */
14f9c5c9 7199
4c4b4cd2 7200static struct type *
76a01679
JB
7201ada_lookup_struct_elt_type (struct type *type, char *name, int refok,
7202 int noerr, int *dispp)
14f9c5c9
AS
7203{
7204 int i;
7205
7206 if (name == NULL)
7207 goto BadName;
7208
76a01679 7209 if (refok && type != NULL)
4c4b4cd2
PH
7210 while (1)
7211 {
61ee279c 7212 type = ada_check_typedef (type);
76a01679
JB
7213 if (TYPE_CODE (type) != TYPE_CODE_PTR
7214 && TYPE_CODE (type) != TYPE_CODE_REF)
7215 break;
7216 type = TYPE_TARGET_TYPE (type);
4c4b4cd2 7217 }
14f9c5c9 7218
76a01679 7219 if (type == NULL
1265e4aa
JB
7220 || (TYPE_CODE (type) != TYPE_CODE_STRUCT
7221 && TYPE_CODE (type) != TYPE_CODE_UNION))
14f9c5c9 7222 {
4c4b4cd2 7223 if (noerr)
76a01679 7224 return NULL;
4c4b4cd2 7225 else
76a01679
JB
7226 {
7227 target_terminal_ours ();
7228 gdb_flush (gdb_stdout);
323e0a4a
AC
7229 if (type == NULL)
7230 error (_("Type (null) is not a structure or union type"));
7231 else
7232 {
7233 /* XXX: type_sprint */
7234 fprintf_unfiltered (gdb_stderr, _("Type "));
7235 type_print (type, "", gdb_stderr, -1);
7236 error (_(" is not a structure or union type"));
7237 }
76a01679 7238 }
14f9c5c9
AS
7239 }
7240
7241 type = to_static_fixed_type (type);
7242
7243 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
7244 {
0d5cff50 7245 const char *t_field_name = TYPE_FIELD_NAME (type, i);
14f9c5c9
AS
7246 struct type *t;
7247 int disp;
d2e4a39e 7248
14f9c5c9 7249 if (t_field_name == NULL)
4c4b4cd2 7250 continue;
14f9c5c9
AS
7251
7252 else if (field_name_match (t_field_name, name))
4c4b4cd2
PH
7253 {
7254 if (dispp != NULL)
7255 *dispp += TYPE_FIELD_BITPOS (type, i) / 8;
61ee279c 7256 return ada_check_typedef (TYPE_FIELD_TYPE (type, i));
4c4b4cd2 7257 }
14f9c5c9
AS
7258
7259 else if (ada_is_wrapper_field (type, i))
4c4b4cd2
PH
7260 {
7261 disp = 0;
7262 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (type, i), name,
7263 0, 1, &disp);
7264 if (t != NULL)
7265 {
7266 if (dispp != NULL)
7267 *dispp += disp + TYPE_FIELD_BITPOS (type, i) / 8;
7268 return t;
7269 }
7270 }
14f9c5c9
AS
7271
7272 else if (ada_is_variant_part (type, i))
4c4b4cd2
PH
7273 {
7274 int j;
5b4ee69b
MS
7275 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type,
7276 i));
4c4b4cd2
PH
7277
7278 for (j = TYPE_NFIELDS (field_type) - 1; j >= 0; j -= 1)
7279 {
b1f33ddd
JB
7280 /* FIXME pnh 2008/01/26: We check for a field that is
7281 NOT wrapped in a struct, since the compiler sometimes
7282 generates these for unchecked variant types. Revisit
0963b4bd 7283 if the compiler changes this practice. */
0d5cff50 7284 const char *v_field_name = TYPE_FIELD_NAME (field_type, j);
4c4b4cd2 7285 disp = 0;
b1f33ddd
JB
7286 if (v_field_name != NULL
7287 && field_name_match (v_field_name, name))
7288 t = ada_check_typedef (TYPE_FIELD_TYPE (field_type, j));
7289 else
0963b4bd
MS
7290 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (field_type,
7291 j),
b1f33ddd
JB
7292 name, 0, 1, &disp);
7293
4c4b4cd2
PH
7294 if (t != NULL)
7295 {
7296 if (dispp != NULL)
7297 *dispp += disp + TYPE_FIELD_BITPOS (type, i) / 8;
7298 return t;
7299 }
7300 }
7301 }
14f9c5c9
AS
7302
7303 }
7304
7305BadName:
d2e4a39e 7306 if (!noerr)
14f9c5c9
AS
7307 {
7308 target_terminal_ours ();
7309 gdb_flush (gdb_stdout);
323e0a4a
AC
7310 if (name == NULL)
7311 {
7312 /* XXX: type_sprint */
7313 fprintf_unfiltered (gdb_stderr, _("Type "));
7314 type_print (type, "", gdb_stderr, -1);
7315 error (_(" has no component named <null>"));
7316 }
7317 else
7318 {
7319 /* XXX: type_sprint */
7320 fprintf_unfiltered (gdb_stderr, _("Type "));
7321 type_print (type, "", gdb_stderr, -1);
7322 error (_(" has no component named %s"), name);
7323 }
14f9c5c9
AS
7324 }
7325
7326 return NULL;
7327}
7328
b1f33ddd
JB
7329/* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
7330 within a value of type OUTER_TYPE, return true iff VAR_TYPE
7331 represents an unchecked union (that is, the variant part of a
0963b4bd 7332 record that is named in an Unchecked_Union pragma). */
b1f33ddd
JB
7333
7334static int
7335is_unchecked_variant (struct type *var_type, struct type *outer_type)
7336{
7337 char *discrim_name = ada_variant_discrim_name (var_type);
5b4ee69b 7338
b1f33ddd
JB
7339 return (ada_lookup_struct_elt_type (outer_type, discrim_name, 0, 1, NULL)
7340 == NULL);
7341}
7342
7343
14f9c5c9
AS
7344/* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
7345 within a value of type OUTER_TYPE that is stored in GDB at
4c4b4cd2
PH
7346 OUTER_VALADDR, determine which variant clause (field number in VAR_TYPE,
7347 numbering from 0) is applicable. Returns -1 if none are. */
14f9c5c9 7348
d2e4a39e 7349int
ebf56fd3 7350ada_which_variant_applies (struct type *var_type, struct type *outer_type,
fc1a4b47 7351 const gdb_byte *outer_valaddr)
14f9c5c9
AS
7352{
7353 int others_clause;
7354 int i;
d2e4a39e 7355 char *discrim_name = ada_variant_discrim_name (var_type);
0c281816
JB
7356 struct value *outer;
7357 struct value *discrim;
14f9c5c9
AS
7358 LONGEST discrim_val;
7359
012370f6
TT
7360 /* Using plain value_from_contents_and_address here causes problems
7361 because we will end up trying to resolve a type that is currently
7362 being constructed. */
7363 outer = value_from_contents_and_address_unresolved (outer_type,
7364 outer_valaddr, 0);
0c281816
JB
7365 discrim = ada_value_struct_elt (outer, discrim_name, 1);
7366 if (discrim == NULL)
14f9c5c9 7367 return -1;
0c281816 7368 discrim_val = value_as_long (discrim);
14f9c5c9
AS
7369
7370 others_clause = -1;
7371 for (i = 0; i < TYPE_NFIELDS (var_type); i += 1)
7372 {
7373 if (ada_is_others_clause (var_type, i))
4c4b4cd2 7374 others_clause = i;
14f9c5c9 7375 else if (ada_in_variant (discrim_val, var_type, i))
4c4b4cd2 7376 return i;
14f9c5c9
AS
7377 }
7378
7379 return others_clause;
7380}
d2e4a39e 7381\f
14f9c5c9
AS
7382
7383
4c4b4cd2 7384 /* Dynamic-Sized Records */
14f9c5c9
AS
7385
7386/* Strategy: The type ostensibly attached to a value with dynamic size
7387 (i.e., a size that is not statically recorded in the debugging
7388 data) does not accurately reflect the size or layout of the value.
7389 Our strategy is to convert these values to values with accurate,
4c4b4cd2 7390 conventional types that are constructed on the fly. */
14f9c5c9
AS
7391
7392/* There is a subtle and tricky problem here. In general, we cannot
7393 determine the size of dynamic records without its data. However,
7394 the 'struct value' data structure, which GDB uses to represent
7395 quantities in the inferior process (the target), requires the size
7396 of the type at the time of its allocation in order to reserve space
7397 for GDB's internal copy of the data. That's why the
7398 'to_fixed_xxx_type' routines take (target) addresses as parameters,
4c4b4cd2 7399 rather than struct value*s.
14f9c5c9
AS
7400
7401 However, GDB's internal history variables ($1, $2, etc.) are
7402 struct value*s containing internal copies of the data that are not, in
7403 general, the same as the data at their corresponding addresses in
7404 the target. Fortunately, the types we give to these values are all
7405 conventional, fixed-size types (as per the strategy described
7406 above), so that we don't usually have to perform the
7407 'to_fixed_xxx_type' conversions to look at their values.
7408 Unfortunately, there is one exception: if one of the internal
7409 history variables is an array whose elements are unconstrained
7410 records, then we will need to create distinct fixed types for each
7411 element selected. */
7412
7413/* The upshot of all of this is that many routines take a (type, host
7414 address, target address) triple as arguments to represent a value.
7415 The host address, if non-null, is supposed to contain an internal
7416 copy of the relevant data; otherwise, the program is to consult the
4c4b4cd2 7417 target at the target address. */
14f9c5c9
AS
7418
7419/* Assuming that VAL0 represents a pointer value, the result of
7420 dereferencing it. Differs from value_ind in its treatment of
4c4b4cd2 7421 dynamic-sized types. */
14f9c5c9 7422
d2e4a39e
AS
7423struct value *
7424ada_value_ind (struct value *val0)
14f9c5c9 7425{
c48db5ca 7426 struct value *val = value_ind (val0);
5b4ee69b 7427
b50d69b5
JG
7428 if (ada_is_tagged_type (value_type (val), 0))
7429 val = ada_tag_value_at_base_address (val);
7430
4c4b4cd2 7431 return ada_to_fixed_value (val);
14f9c5c9
AS
7432}
7433
7434/* The value resulting from dereferencing any "reference to"
4c4b4cd2
PH
7435 qualifiers on VAL0. */
7436
d2e4a39e
AS
7437static struct value *
7438ada_coerce_ref (struct value *val0)
7439{
df407dfe 7440 if (TYPE_CODE (value_type (val0)) == TYPE_CODE_REF)
d2e4a39e
AS
7441 {
7442 struct value *val = val0;
5b4ee69b 7443
994b9211 7444 val = coerce_ref (val);
b50d69b5
JG
7445
7446 if (ada_is_tagged_type (value_type (val), 0))
7447 val = ada_tag_value_at_base_address (val);
7448
4c4b4cd2 7449 return ada_to_fixed_value (val);
d2e4a39e
AS
7450 }
7451 else
14f9c5c9
AS
7452 return val0;
7453}
7454
7455/* Return OFF rounded upward if necessary to a multiple of
4c4b4cd2 7456 ALIGNMENT (a power of 2). */
14f9c5c9
AS
7457
7458static unsigned int
ebf56fd3 7459align_value (unsigned int off, unsigned int alignment)
14f9c5c9
AS
7460{
7461 return (off + alignment - 1) & ~(alignment - 1);
7462}
7463
4c4b4cd2 7464/* Return the bit alignment required for field #F of template type TYPE. */
14f9c5c9
AS
7465
7466static unsigned int
ebf56fd3 7467field_alignment (struct type *type, int f)
14f9c5c9 7468{
d2e4a39e 7469 const char *name = TYPE_FIELD_NAME (type, f);
64a1bf19 7470 int len;
14f9c5c9
AS
7471 int align_offset;
7472
64a1bf19
JB
7473 /* The field name should never be null, unless the debugging information
7474 is somehow malformed. In this case, we assume the field does not
7475 require any alignment. */
7476 if (name == NULL)
7477 return 1;
7478
7479 len = strlen (name);
7480
4c4b4cd2
PH
7481 if (!isdigit (name[len - 1]))
7482 return 1;
14f9c5c9 7483
d2e4a39e 7484 if (isdigit (name[len - 2]))
14f9c5c9
AS
7485 align_offset = len - 2;
7486 else
7487 align_offset = len - 1;
7488
4c4b4cd2 7489 if (align_offset < 7 || strncmp ("___XV", name + align_offset - 6, 5) != 0)
14f9c5c9
AS
7490 return TARGET_CHAR_BIT;
7491
4c4b4cd2
PH
7492 return atoi (name + align_offset) * TARGET_CHAR_BIT;
7493}
7494
852dff6c 7495/* Find a typedef or tag symbol named NAME. Ignores ambiguity. */
4c4b4cd2 7496
852dff6c
JB
7497static struct symbol *
7498ada_find_any_type_symbol (const char *name)
4c4b4cd2
PH
7499{
7500 struct symbol *sym;
7501
7502 sym = standard_lookup (name, get_selected_block (NULL), VAR_DOMAIN);
4186eb54 7503 if (sym != NULL && SYMBOL_CLASS (sym) == LOC_TYPEDEF)
4c4b4cd2
PH
7504 return sym;
7505
4186eb54
KS
7506 sym = standard_lookup (name, NULL, STRUCT_DOMAIN);
7507 return sym;
14f9c5c9
AS
7508}
7509
dddfab26
UW
7510/* Find a type named NAME. Ignores ambiguity. This routine will look
7511 solely for types defined by debug info, it will not search the GDB
7512 primitive types. */
4c4b4cd2 7513
852dff6c 7514static struct type *
ebf56fd3 7515ada_find_any_type (const char *name)
14f9c5c9 7516{
852dff6c 7517 struct symbol *sym = ada_find_any_type_symbol (name);
14f9c5c9 7518
14f9c5c9 7519 if (sym != NULL)
dddfab26 7520 return SYMBOL_TYPE (sym);
14f9c5c9 7521
dddfab26 7522 return NULL;
14f9c5c9
AS
7523}
7524
739593e0
JB
7525/* Given NAME_SYM and an associated BLOCK, find a "renaming" symbol
7526 associated with NAME_SYM's name. NAME_SYM may itself be a renaming
7527 symbol, in which case it is returned. Otherwise, this looks for
7528 symbols whose name is that of NAME_SYM suffixed with "___XR".
7529 Return symbol if found, and NULL otherwise. */
4c4b4cd2
PH
7530
7531struct symbol *
270140bd 7532ada_find_renaming_symbol (struct symbol *name_sym, const struct block *block)
aeb5907d 7533{
739593e0 7534 const char *name = SYMBOL_LINKAGE_NAME (name_sym);
aeb5907d
JB
7535 struct symbol *sym;
7536
739593e0
JB
7537 if (strstr (name, "___XR") != NULL)
7538 return name_sym;
7539
aeb5907d
JB
7540 sym = find_old_style_renaming_symbol (name, block);
7541
7542 if (sym != NULL)
7543 return sym;
7544
0963b4bd 7545 /* Not right yet. FIXME pnh 7/20/2007. */
852dff6c 7546 sym = ada_find_any_type_symbol (name);
aeb5907d
JB
7547 if (sym != NULL && strstr (SYMBOL_LINKAGE_NAME (sym), "___XR") != NULL)
7548 return sym;
7549 else
7550 return NULL;
7551}
7552
7553static struct symbol *
270140bd 7554find_old_style_renaming_symbol (const char *name, const struct block *block)
4c4b4cd2 7555{
7f0df278 7556 const struct symbol *function_sym = block_linkage_function (block);
4c4b4cd2
PH
7557 char *rename;
7558
7559 if (function_sym != NULL)
7560 {
7561 /* If the symbol is defined inside a function, NAME is not fully
7562 qualified. This means we need to prepend the function name
7563 as well as adding the ``___XR'' suffix to build the name of
7564 the associated renaming symbol. */
0d5cff50 7565 const char *function_name = SYMBOL_LINKAGE_NAME (function_sym);
529cad9c
PH
7566 /* Function names sometimes contain suffixes used
7567 for instance to qualify nested subprograms. When building
7568 the XR type name, we need to make sure that this suffix is
7569 not included. So do not include any suffix in the function
7570 name length below. */
69fadcdf 7571 int function_name_len = ada_name_prefix_len (function_name);
76a01679
JB
7572 const int rename_len = function_name_len + 2 /* "__" */
7573 + strlen (name) + 6 /* "___XR\0" */ ;
4c4b4cd2 7574
529cad9c 7575 /* Strip the suffix if necessary. */
69fadcdf
JB
7576 ada_remove_trailing_digits (function_name, &function_name_len);
7577 ada_remove_po_subprogram_suffix (function_name, &function_name_len);
7578 ada_remove_Xbn_suffix (function_name, &function_name_len);
529cad9c 7579
4c4b4cd2
PH
7580 /* Library-level functions are a special case, as GNAT adds
7581 a ``_ada_'' prefix to the function name to avoid namespace
aeb5907d 7582 pollution. However, the renaming symbols themselves do not
4c4b4cd2
PH
7583 have this prefix, so we need to skip this prefix if present. */
7584 if (function_name_len > 5 /* "_ada_" */
7585 && strstr (function_name, "_ada_") == function_name)
69fadcdf
JB
7586 {
7587 function_name += 5;
7588 function_name_len -= 5;
7589 }
4c4b4cd2
PH
7590
7591 rename = (char *) alloca (rename_len * sizeof (char));
69fadcdf
JB
7592 strncpy (rename, function_name, function_name_len);
7593 xsnprintf (rename + function_name_len, rename_len - function_name_len,
7594 "__%s___XR", name);
4c4b4cd2
PH
7595 }
7596 else
7597 {
7598 const int rename_len = strlen (name) + 6;
5b4ee69b 7599
4c4b4cd2 7600 rename = (char *) alloca (rename_len * sizeof (char));
88c15c34 7601 xsnprintf (rename, rename_len * sizeof (char), "%s___XR", name);
4c4b4cd2
PH
7602 }
7603
852dff6c 7604 return ada_find_any_type_symbol (rename);
4c4b4cd2
PH
7605}
7606
14f9c5c9 7607/* Because of GNAT encoding conventions, several GDB symbols may match a
4c4b4cd2 7608 given type name. If the type denoted by TYPE0 is to be preferred to
14f9c5c9 7609 that of TYPE1 for purposes of type printing, return non-zero;
4c4b4cd2
PH
7610 otherwise return 0. */
7611
14f9c5c9 7612int
d2e4a39e 7613ada_prefer_type (struct type *type0, struct type *type1)
14f9c5c9
AS
7614{
7615 if (type1 == NULL)
7616 return 1;
7617 else if (type0 == NULL)
7618 return 0;
7619 else if (TYPE_CODE (type1) == TYPE_CODE_VOID)
7620 return 1;
7621 else if (TYPE_CODE (type0) == TYPE_CODE_VOID)
7622 return 0;
4c4b4cd2
PH
7623 else if (TYPE_NAME (type1) == NULL && TYPE_NAME (type0) != NULL)
7624 return 1;
ad82864c 7625 else if (ada_is_constrained_packed_array_type (type0))
14f9c5c9 7626 return 1;
4c4b4cd2
PH
7627 else if (ada_is_array_descriptor_type (type0)
7628 && !ada_is_array_descriptor_type (type1))
14f9c5c9 7629 return 1;
aeb5907d
JB
7630 else
7631 {
7632 const char *type0_name = type_name_no_tag (type0);
7633 const char *type1_name = type_name_no_tag (type1);
7634
7635 if (type0_name != NULL && strstr (type0_name, "___XR") != NULL
7636 && (type1_name == NULL || strstr (type1_name, "___XR") == NULL))
7637 return 1;
7638 }
14f9c5c9
AS
7639 return 0;
7640}
7641
7642/* The name of TYPE, which is either its TYPE_NAME, or, if that is
4c4b4cd2
PH
7643 null, its TYPE_TAG_NAME. Null if TYPE is null. */
7644
0d5cff50 7645const char *
d2e4a39e 7646ada_type_name (struct type *type)
14f9c5c9 7647{
d2e4a39e 7648 if (type == NULL)
14f9c5c9
AS
7649 return NULL;
7650 else if (TYPE_NAME (type) != NULL)
7651 return TYPE_NAME (type);
7652 else
7653 return TYPE_TAG_NAME (type);
7654}
7655
b4ba55a1
JB
7656/* Search the list of "descriptive" types associated to TYPE for a type
7657 whose name is NAME. */
7658
7659static struct type *
7660find_parallel_type_by_descriptive_type (struct type *type, const char *name)
7661{
7662 struct type *result;
7663
c6044dd1
JB
7664 if (ada_ignore_descriptive_types_p)
7665 return NULL;
7666
b4ba55a1
JB
7667 /* If there no descriptive-type info, then there is no parallel type
7668 to be found. */
7669 if (!HAVE_GNAT_AUX_INFO (type))
7670 return NULL;
7671
7672 result = TYPE_DESCRIPTIVE_TYPE (type);
7673 while (result != NULL)
7674 {
0d5cff50 7675 const char *result_name = ada_type_name (result);
b4ba55a1
JB
7676
7677 if (result_name == NULL)
7678 {
7679 warning (_("unexpected null name on descriptive type"));
7680 return NULL;
7681 }
7682
7683 /* If the names match, stop. */
7684 if (strcmp (result_name, name) == 0)
7685 break;
7686
7687 /* Otherwise, look at the next item on the list, if any. */
7688 if (HAVE_GNAT_AUX_INFO (result))
7689 result = TYPE_DESCRIPTIVE_TYPE (result);
7690 else
7691 result = NULL;
7692 }
7693
7694 /* If we didn't find a match, see whether this is a packed array. With
7695 older compilers, the descriptive type information is either absent or
7696 irrelevant when it comes to packed arrays so the above lookup fails.
7697 Fall back to using a parallel lookup by name in this case. */
12ab9e09 7698 if (result == NULL && ada_is_constrained_packed_array_type (type))
b4ba55a1
JB
7699 return ada_find_any_type (name);
7700
7701 return result;
7702}
7703
7704/* Find a parallel type to TYPE with the specified NAME, using the
7705 descriptive type taken from the debugging information, if available,
7706 and otherwise using the (slower) name-based method. */
7707
7708static struct type *
7709ada_find_parallel_type_with_name (struct type *type, const char *name)
7710{
7711 struct type *result = NULL;
7712
7713 if (HAVE_GNAT_AUX_INFO (type))
7714 result = find_parallel_type_by_descriptive_type (type, name);
7715 else
7716 result = ada_find_any_type (name);
7717
7718 return result;
7719}
7720
7721/* Same as above, but specify the name of the parallel type by appending
4c4b4cd2 7722 SUFFIX to the name of TYPE. */
14f9c5c9 7723
d2e4a39e 7724struct type *
ebf56fd3 7725ada_find_parallel_type (struct type *type, const char *suffix)
14f9c5c9 7726{
0d5cff50
DE
7727 char *name;
7728 const char *typename = ada_type_name (type);
14f9c5c9 7729 int len;
d2e4a39e 7730
14f9c5c9
AS
7731 if (typename == NULL)
7732 return NULL;
7733
7734 len = strlen (typename);
7735
b4ba55a1 7736 name = (char *) alloca (len + strlen (suffix) + 1);
14f9c5c9
AS
7737
7738 strcpy (name, typename);
7739 strcpy (name + len, suffix);
7740
b4ba55a1 7741 return ada_find_parallel_type_with_name (type, name);
14f9c5c9
AS
7742}
7743
14f9c5c9 7744/* If TYPE is a variable-size record type, return the corresponding template
4c4b4cd2 7745 type describing its fields. Otherwise, return NULL. */
14f9c5c9 7746
d2e4a39e
AS
7747static struct type *
7748dynamic_template_type (struct type *type)
14f9c5c9 7749{
61ee279c 7750 type = ada_check_typedef (type);
14f9c5c9
AS
7751
7752 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT
d2e4a39e 7753 || ada_type_name (type) == NULL)
14f9c5c9 7754 return NULL;
d2e4a39e 7755 else
14f9c5c9
AS
7756 {
7757 int len = strlen (ada_type_name (type));
5b4ee69b 7758
4c4b4cd2
PH
7759 if (len > 6 && strcmp (ada_type_name (type) + len - 6, "___XVE") == 0)
7760 return type;
14f9c5c9 7761 else
4c4b4cd2 7762 return ada_find_parallel_type (type, "___XVE");
14f9c5c9
AS
7763 }
7764}
7765
7766/* Assuming that TEMPL_TYPE is a union or struct type, returns
4c4b4cd2 7767 non-zero iff field FIELD_NUM of TEMPL_TYPE has dynamic size. */
14f9c5c9 7768
d2e4a39e
AS
7769static int
7770is_dynamic_field (struct type *templ_type, int field_num)
14f9c5c9
AS
7771{
7772 const char *name = TYPE_FIELD_NAME (templ_type, field_num);
5b4ee69b 7773
d2e4a39e 7774 return name != NULL
14f9c5c9
AS
7775 && TYPE_CODE (TYPE_FIELD_TYPE (templ_type, field_num)) == TYPE_CODE_PTR
7776 && strstr (name, "___XVL") != NULL;
7777}
7778
4c4b4cd2
PH
7779/* The index of the variant field of TYPE, or -1 if TYPE does not
7780 represent a variant record type. */
14f9c5c9 7781
d2e4a39e 7782static int
4c4b4cd2 7783variant_field_index (struct type *type)
14f9c5c9
AS
7784{
7785 int f;
7786
4c4b4cd2
PH
7787 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT)
7788 return -1;
7789
7790 for (f = 0; f < TYPE_NFIELDS (type); f += 1)
7791 {
7792 if (ada_is_variant_part (type, f))
7793 return f;
7794 }
7795 return -1;
14f9c5c9
AS
7796}
7797
4c4b4cd2
PH
7798/* A record type with no fields. */
7799
d2e4a39e 7800static struct type *
e9bb382b 7801empty_record (struct type *template)
14f9c5c9 7802{
e9bb382b 7803 struct type *type = alloc_type_copy (template);
5b4ee69b 7804
14f9c5c9
AS
7805 TYPE_CODE (type) = TYPE_CODE_STRUCT;
7806 TYPE_NFIELDS (type) = 0;
7807 TYPE_FIELDS (type) = NULL;
b1f33ddd 7808 INIT_CPLUS_SPECIFIC (type);
14f9c5c9
AS
7809 TYPE_NAME (type) = "<empty>";
7810 TYPE_TAG_NAME (type) = NULL;
14f9c5c9
AS
7811 TYPE_LENGTH (type) = 0;
7812 return type;
7813}
7814
7815/* An ordinary record type (with fixed-length fields) that describes
4c4b4cd2
PH
7816 the value of type TYPE at VALADDR or ADDRESS (see comments at
7817 the beginning of this section) VAL according to GNAT conventions.
7818 DVAL0 should describe the (portion of a) record that contains any
df407dfe 7819 necessary discriminants. It should be NULL if value_type (VAL) is
14f9c5c9
AS
7820 an outer-level type (i.e., as opposed to a branch of a variant.) A
7821 variant field (unless unchecked) is replaced by a particular branch
4c4b4cd2 7822 of the variant.
14f9c5c9 7823
4c4b4cd2
PH
7824 If not KEEP_DYNAMIC_FIELDS, then all fields whose position or
7825 length are not statically known are discarded. As a consequence,
7826 VALADDR, ADDRESS and DVAL0 are ignored.
7827
7828 NOTE: Limitations: For now, we assume that dynamic fields and
7829 variants occupy whole numbers of bytes. However, they need not be
7830 byte-aligned. */
7831
7832struct type *
10a2c479 7833ada_template_to_fixed_record_type_1 (struct type *type,
fc1a4b47 7834 const gdb_byte *valaddr,
4c4b4cd2
PH
7835 CORE_ADDR address, struct value *dval0,
7836 int keep_dynamic_fields)
14f9c5c9 7837{
d2e4a39e
AS
7838 struct value *mark = value_mark ();
7839 struct value *dval;
7840 struct type *rtype;
14f9c5c9 7841 int nfields, bit_len;
4c4b4cd2 7842 int variant_field;
14f9c5c9 7843 long off;
d94e4f4f 7844 int fld_bit_len;
14f9c5c9
AS
7845 int f;
7846
4c4b4cd2
PH
7847 /* Compute the number of fields in this record type that are going
7848 to be processed: unless keep_dynamic_fields, this includes only
7849 fields whose position and length are static will be processed. */
7850 if (keep_dynamic_fields)
7851 nfields = TYPE_NFIELDS (type);
7852 else
7853 {
7854 nfields = 0;
76a01679 7855 while (nfields < TYPE_NFIELDS (type)
4c4b4cd2
PH
7856 && !ada_is_variant_part (type, nfields)
7857 && !is_dynamic_field (type, nfields))
7858 nfields++;
7859 }
7860
e9bb382b 7861 rtype = alloc_type_copy (type);
14f9c5c9
AS
7862 TYPE_CODE (rtype) = TYPE_CODE_STRUCT;
7863 INIT_CPLUS_SPECIFIC (rtype);
7864 TYPE_NFIELDS (rtype) = nfields;
d2e4a39e 7865 TYPE_FIELDS (rtype) = (struct field *)
14f9c5c9
AS
7866 TYPE_ALLOC (rtype, nfields * sizeof (struct field));
7867 memset (TYPE_FIELDS (rtype), 0, sizeof (struct field) * nfields);
7868 TYPE_NAME (rtype) = ada_type_name (type);
7869 TYPE_TAG_NAME (rtype) = NULL;
876cecd0 7870 TYPE_FIXED_INSTANCE (rtype) = 1;
14f9c5c9 7871
d2e4a39e
AS
7872 off = 0;
7873 bit_len = 0;
4c4b4cd2
PH
7874 variant_field = -1;
7875
14f9c5c9
AS
7876 for (f = 0; f < nfields; f += 1)
7877 {
6c038f32
PH
7878 off = align_value (off, field_alignment (type, f))
7879 + TYPE_FIELD_BITPOS (type, f);
945b3a32 7880 SET_FIELD_BITPOS (TYPE_FIELD (rtype, f), off);
d2e4a39e 7881 TYPE_FIELD_BITSIZE (rtype, f) = 0;
14f9c5c9 7882
d2e4a39e 7883 if (ada_is_variant_part (type, f))
4c4b4cd2
PH
7884 {
7885 variant_field = f;
d94e4f4f 7886 fld_bit_len = 0;
4c4b4cd2 7887 }
14f9c5c9 7888 else if (is_dynamic_field (type, f))
4c4b4cd2 7889 {
284614f0
JB
7890 const gdb_byte *field_valaddr = valaddr;
7891 CORE_ADDR field_address = address;
7892 struct type *field_type =
7893 TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type, f));
7894
4c4b4cd2 7895 if (dval0 == NULL)
b5304971
JG
7896 {
7897 /* rtype's length is computed based on the run-time
7898 value of discriminants. If the discriminants are not
7899 initialized, the type size may be completely bogus and
0963b4bd 7900 GDB may fail to allocate a value for it. So check the
b5304971
JG
7901 size first before creating the value. */
7902 check_size (rtype);
012370f6
TT
7903 /* Using plain value_from_contents_and_address here
7904 causes problems because we will end up trying to
7905 resolve a type that is currently being
7906 constructed. */
7907 dval = value_from_contents_and_address_unresolved (rtype,
7908 valaddr,
7909 address);
9f1f738a 7910 rtype = value_type (dval);
b5304971 7911 }
4c4b4cd2
PH
7912 else
7913 dval = dval0;
7914
284614f0
JB
7915 /* If the type referenced by this field is an aligner type, we need
7916 to unwrap that aligner type, because its size might not be set.
7917 Keeping the aligner type would cause us to compute the wrong
7918 size for this field, impacting the offset of the all the fields
7919 that follow this one. */
7920 if (ada_is_aligner_type (field_type))
7921 {
7922 long field_offset = TYPE_FIELD_BITPOS (field_type, f);
7923
7924 field_valaddr = cond_offset_host (field_valaddr, field_offset);
7925 field_address = cond_offset_target (field_address, field_offset);
7926 field_type = ada_aligned_type (field_type);
7927 }
7928
7929 field_valaddr = cond_offset_host (field_valaddr,
7930 off / TARGET_CHAR_BIT);
7931 field_address = cond_offset_target (field_address,
7932 off / TARGET_CHAR_BIT);
7933
7934 /* Get the fixed type of the field. Note that, in this case,
7935 we do not want to get the real type out of the tag: if
7936 the current field is the parent part of a tagged record,
7937 we will get the tag of the object. Clearly wrong: the real
7938 type of the parent is not the real type of the child. We
7939 would end up in an infinite loop. */
7940 field_type = ada_get_base_type (field_type);
7941 field_type = ada_to_fixed_type (field_type, field_valaddr,
7942 field_address, dval, 0);
27f2a97b
JB
7943 /* If the field size is already larger than the maximum
7944 object size, then the record itself will necessarily
7945 be larger than the maximum object size. We need to make
7946 this check now, because the size might be so ridiculously
7947 large (due to an uninitialized variable in the inferior)
7948 that it would cause an overflow when adding it to the
7949 record size. */
7950 check_size (field_type);
284614f0
JB
7951
7952 TYPE_FIELD_TYPE (rtype, f) = field_type;
4c4b4cd2 7953 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
27f2a97b
JB
7954 /* The multiplication can potentially overflow. But because
7955 the field length has been size-checked just above, and
7956 assuming that the maximum size is a reasonable value,
7957 an overflow should not happen in practice. So rather than
7958 adding overflow recovery code to this already complex code,
7959 we just assume that it's not going to happen. */
d94e4f4f 7960 fld_bit_len =
4c4b4cd2
PH
7961 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, f)) * TARGET_CHAR_BIT;
7962 }
14f9c5c9 7963 else
4c4b4cd2 7964 {
5ded5331
JB
7965 /* Note: If this field's type is a typedef, it is important
7966 to preserve the typedef layer.
7967
7968 Otherwise, we might be transforming a typedef to a fat
7969 pointer (encoding a pointer to an unconstrained array),
7970 into a basic fat pointer (encoding an unconstrained
7971 array). As both types are implemented using the same
7972 structure, the typedef is the only clue which allows us
7973 to distinguish between the two options. Stripping it
7974 would prevent us from printing this field appropriately. */
7975 TYPE_FIELD_TYPE (rtype, f) = TYPE_FIELD_TYPE (type, f);
4c4b4cd2
PH
7976 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
7977 if (TYPE_FIELD_BITSIZE (type, f) > 0)
d94e4f4f 7978 fld_bit_len =
4c4b4cd2
PH
7979 TYPE_FIELD_BITSIZE (rtype, f) = TYPE_FIELD_BITSIZE (type, f);
7980 else
5ded5331
JB
7981 {
7982 struct type *field_type = TYPE_FIELD_TYPE (type, f);
7983
7984 /* We need to be careful of typedefs when computing
7985 the length of our field. If this is a typedef,
7986 get the length of the target type, not the length
7987 of the typedef. */
7988 if (TYPE_CODE (field_type) == TYPE_CODE_TYPEDEF)
7989 field_type = ada_typedef_target_type (field_type);
7990
7991 fld_bit_len =
7992 TYPE_LENGTH (ada_check_typedef (field_type)) * TARGET_CHAR_BIT;
7993 }
4c4b4cd2 7994 }
14f9c5c9 7995 if (off + fld_bit_len > bit_len)
4c4b4cd2 7996 bit_len = off + fld_bit_len;
d94e4f4f 7997 off += fld_bit_len;
4c4b4cd2
PH
7998 TYPE_LENGTH (rtype) =
7999 align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
14f9c5c9 8000 }
4c4b4cd2
PH
8001
8002 /* We handle the variant part, if any, at the end because of certain
b1f33ddd 8003 odd cases in which it is re-ordered so as NOT to be the last field of
4c4b4cd2
PH
8004 the record. This can happen in the presence of representation
8005 clauses. */
8006 if (variant_field >= 0)
8007 {
8008 struct type *branch_type;
8009
8010 off = TYPE_FIELD_BITPOS (rtype, variant_field);
8011
8012 if (dval0 == NULL)
9f1f738a 8013 {
012370f6
TT
8014 /* Using plain value_from_contents_and_address here causes
8015 problems because we will end up trying to resolve a type
8016 that is currently being constructed. */
8017 dval = value_from_contents_and_address_unresolved (rtype, valaddr,
8018 address);
9f1f738a
SA
8019 rtype = value_type (dval);
8020 }
4c4b4cd2
PH
8021 else
8022 dval = dval0;
8023
8024 branch_type =
8025 to_fixed_variant_branch_type
8026 (TYPE_FIELD_TYPE (type, variant_field),
8027 cond_offset_host (valaddr, off / TARGET_CHAR_BIT),
8028 cond_offset_target (address, off / TARGET_CHAR_BIT), dval);
8029 if (branch_type == NULL)
8030 {
8031 for (f = variant_field + 1; f < TYPE_NFIELDS (rtype); f += 1)
8032 TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f];
8033 TYPE_NFIELDS (rtype) -= 1;
8034 }
8035 else
8036 {
8037 TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
8038 TYPE_FIELD_NAME (rtype, variant_field) = "S";
8039 fld_bit_len =
8040 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, variant_field)) *
8041 TARGET_CHAR_BIT;
8042 if (off + fld_bit_len > bit_len)
8043 bit_len = off + fld_bit_len;
8044 TYPE_LENGTH (rtype) =
8045 align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
8046 }
8047 }
8048
714e53ab
PH
8049 /* According to exp_dbug.ads, the size of TYPE for variable-size records
8050 should contain the alignment of that record, which should be a strictly
8051 positive value. If null or negative, then something is wrong, most
8052 probably in the debug info. In that case, we don't round up the size
0963b4bd 8053 of the resulting type. If this record is not part of another structure,
714e53ab
PH
8054 the current RTYPE length might be good enough for our purposes. */
8055 if (TYPE_LENGTH (type) <= 0)
8056 {
323e0a4a
AC
8057 if (TYPE_NAME (rtype))
8058 warning (_("Invalid type size for `%s' detected: %d."),
8059 TYPE_NAME (rtype), TYPE_LENGTH (type));
8060 else
8061 warning (_("Invalid type size for <unnamed> detected: %d."),
8062 TYPE_LENGTH (type));
714e53ab
PH
8063 }
8064 else
8065 {
8066 TYPE_LENGTH (rtype) = align_value (TYPE_LENGTH (rtype),
8067 TYPE_LENGTH (type));
8068 }
14f9c5c9
AS
8069
8070 value_free_to_mark (mark);
d2e4a39e 8071 if (TYPE_LENGTH (rtype) > varsize_limit)
323e0a4a 8072 error (_("record type with dynamic size is larger than varsize-limit"));
14f9c5c9
AS
8073 return rtype;
8074}
8075
4c4b4cd2
PH
8076/* As for ada_template_to_fixed_record_type_1 with KEEP_DYNAMIC_FIELDS
8077 of 1. */
14f9c5c9 8078
d2e4a39e 8079static struct type *
fc1a4b47 8080template_to_fixed_record_type (struct type *type, const gdb_byte *valaddr,
4c4b4cd2
PH
8081 CORE_ADDR address, struct value *dval0)
8082{
8083 return ada_template_to_fixed_record_type_1 (type, valaddr,
8084 address, dval0, 1);
8085}
8086
8087/* An ordinary record type in which ___XVL-convention fields and
8088 ___XVU- and ___XVN-convention field types in TYPE0 are replaced with
8089 static approximations, containing all possible fields. Uses
8090 no runtime values. Useless for use in values, but that's OK,
8091 since the results are used only for type determinations. Works on both
8092 structs and unions. Representation note: to save space, we memorize
8093 the result of this function in the TYPE_TARGET_TYPE of the
8094 template type. */
8095
8096static struct type *
8097template_to_static_fixed_type (struct type *type0)
14f9c5c9
AS
8098{
8099 struct type *type;
8100 int nfields;
8101 int f;
8102
4c4b4cd2
PH
8103 if (TYPE_TARGET_TYPE (type0) != NULL)
8104 return TYPE_TARGET_TYPE (type0);
8105
8106 nfields = TYPE_NFIELDS (type0);
8107 type = type0;
14f9c5c9
AS
8108
8109 for (f = 0; f < nfields; f += 1)
8110 {
61ee279c 8111 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type0, f));
4c4b4cd2 8112 struct type *new_type;
14f9c5c9 8113
4c4b4cd2
PH
8114 if (is_dynamic_field (type0, f))
8115 new_type = to_static_fixed_type (TYPE_TARGET_TYPE (field_type));
14f9c5c9 8116 else
f192137b 8117 new_type = static_unwrap_type (field_type);
4c4b4cd2
PH
8118 if (type == type0 && new_type != field_type)
8119 {
e9bb382b 8120 TYPE_TARGET_TYPE (type0) = type = alloc_type_copy (type0);
4c4b4cd2
PH
8121 TYPE_CODE (type) = TYPE_CODE (type0);
8122 INIT_CPLUS_SPECIFIC (type);
8123 TYPE_NFIELDS (type) = nfields;
8124 TYPE_FIELDS (type) = (struct field *)
8125 TYPE_ALLOC (type, nfields * sizeof (struct field));
8126 memcpy (TYPE_FIELDS (type), TYPE_FIELDS (type0),
8127 sizeof (struct field) * nfields);
8128 TYPE_NAME (type) = ada_type_name (type0);
8129 TYPE_TAG_NAME (type) = NULL;
876cecd0 8130 TYPE_FIXED_INSTANCE (type) = 1;
4c4b4cd2
PH
8131 TYPE_LENGTH (type) = 0;
8132 }
8133 TYPE_FIELD_TYPE (type, f) = new_type;
8134 TYPE_FIELD_NAME (type, f) = TYPE_FIELD_NAME (type0, f);
14f9c5c9 8135 }
14f9c5c9
AS
8136 return type;
8137}
8138
4c4b4cd2 8139/* Given an object of type TYPE whose contents are at VALADDR and
5823c3ef
JB
8140 whose address in memory is ADDRESS, returns a revision of TYPE,
8141 which should be a non-dynamic-sized record, in which the variant
8142 part, if any, is replaced with the appropriate branch. Looks
4c4b4cd2
PH
8143 for discriminant values in DVAL0, which can be NULL if the record
8144 contains the necessary discriminant values. */
8145
d2e4a39e 8146static struct type *
fc1a4b47 8147to_record_with_fixed_variant_part (struct type *type, const gdb_byte *valaddr,
4c4b4cd2 8148 CORE_ADDR address, struct value *dval0)
14f9c5c9 8149{
d2e4a39e 8150 struct value *mark = value_mark ();
4c4b4cd2 8151 struct value *dval;
d2e4a39e 8152 struct type *rtype;
14f9c5c9
AS
8153 struct type *branch_type;
8154 int nfields = TYPE_NFIELDS (type);
4c4b4cd2 8155 int variant_field = variant_field_index (type);
14f9c5c9 8156
4c4b4cd2 8157 if (variant_field == -1)
14f9c5c9
AS
8158 return type;
8159
4c4b4cd2 8160 if (dval0 == NULL)
9f1f738a
SA
8161 {
8162 dval = value_from_contents_and_address (type, valaddr, address);
8163 type = value_type (dval);
8164 }
4c4b4cd2
PH
8165 else
8166 dval = dval0;
8167
e9bb382b 8168 rtype = alloc_type_copy (type);
14f9c5c9 8169 TYPE_CODE (rtype) = TYPE_CODE_STRUCT;
4c4b4cd2
PH
8170 INIT_CPLUS_SPECIFIC (rtype);
8171 TYPE_NFIELDS (rtype) = nfields;
d2e4a39e
AS
8172 TYPE_FIELDS (rtype) =
8173 (struct field *) TYPE_ALLOC (rtype, nfields * sizeof (struct field));
8174 memcpy (TYPE_FIELDS (rtype), TYPE_FIELDS (type),
4c4b4cd2 8175 sizeof (struct field) * nfields);
14f9c5c9
AS
8176 TYPE_NAME (rtype) = ada_type_name (type);
8177 TYPE_TAG_NAME (rtype) = NULL;
876cecd0 8178 TYPE_FIXED_INSTANCE (rtype) = 1;
14f9c5c9
AS
8179 TYPE_LENGTH (rtype) = TYPE_LENGTH (type);
8180
4c4b4cd2
PH
8181 branch_type = to_fixed_variant_branch_type
8182 (TYPE_FIELD_TYPE (type, variant_field),
d2e4a39e 8183 cond_offset_host (valaddr,
4c4b4cd2
PH
8184 TYPE_FIELD_BITPOS (type, variant_field)
8185 / TARGET_CHAR_BIT),
d2e4a39e 8186 cond_offset_target (address,
4c4b4cd2
PH
8187 TYPE_FIELD_BITPOS (type, variant_field)
8188 / TARGET_CHAR_BIT), dval);
d2e4a39e 8189 if (branch_type == NULL)
14f9c5c9 8190 {
4c4b4cd2 8191 int f;
5b4ee69b 8192
4c4b4cd2
PH
8193 for (f = variant_field + 1; f < nfields; f += 1)
8194 TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f];
14f9c5c9 8195 TYPE_NFIELDS (rtype) -= 1;
14f9c5c9
AS
8196 }
8197 else
8198 {
4c4b4cd2
PH
8199 TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
8200 TYPE_FIELD_NAME (rtype, variant_field) = "S";
8201 TYPE_FIELD_BITSIZE (rtype, variant_field) = 0;
14f9c5c9 8202 TYPE_LENGTH (rtype) += TYPE_LENGTH (branch_type);
14f9c5c9 8203 }
4c4b4cd2 8204 TYPE_LENGTH (rtype) -= TYPE_LENGTH (TYPE_FIELD_TYPE (type, variant_field));
d2e4a39e 8205
4c4b4cd2 8206 value_free_to_mark (mark);
14f9c5c9
AS
8207 return rtype;
8208}
8209
8210/* An ordinary record type (with fixed-length fields) that describes
8211 the value at (TYPE0, VALADDR, ADDRESS) [see explanation at
8212 beginning of this section]. Any necessary discriminants' values
4c4b4cd2
PH
8213 should be in DVAL, a record value; it may be NULL if the object
8214 at ADDR itself contains any necessary discriminant values.
8215 Additionally, VALADDR and ADDRESS may also be NULL if no discriminant
8216 values from the record are needed. Except in the case that DVAL,
8217 VALADDR, and ADDRESS are all 0 or NULL, a variant field (unless
8218 unchecked) is replaced by a particular branch of the variant.
8219
8220 NOTE: the case in which DVAL and VALADDR are NULL and ADDRESS is 0
8221 is questionable and may be removed. It can arise during the
8222 processing of an unconstrained-array-of-record type where all the
8223 variant branches have exactly the same size. This is because in
8224 such cases, the compiler does not bother to use the XVS convention
8225 when encoding the record. I am currently dubious of this
8226 shortcut and suspect the compiler should be altered. FIXME. */
14f9c5c9 8227
d2e4a39e 8228static struct type *
fc1a4b47 8229to_fixed_record_type (struct type *type0, const gdb_byte *valaddr,
4c4b4cd2 8230 CORE_ADDR address, struct value *dval)
14f9c5c9 8231{
d2e4a39e 8232 struct type *templ_type;
14f9c5c9 8233
876cecd0 8234 if (TYPE_FIXED_INSTANCE (type0))
4c4b4cd2
PH
8235 return type0;
8236
d2e4a39e 8237 templ_type = dynamic_template_type (type0);
14f9c5c9
AS
8238
8239 if (templ_type != NULL)
8240 return template_to_fixed_record_type (templ_type, valaddr, address, dval);
4c4b4cd2
PH
8241 else if (variant_field_index (type0) >= 0)
8242 {
8243 if (dval == NULL && valaddr == NULL && address == 0)
8244 return type0;
8245 return to_record_with_fixed_variant_part (type0, valaddr, address,
8246 dval);
8247 }
14f9c5c9
AS
8248 else
8249 {
876cecd0 8250 TYPE_FIXED_INSTANCE (type0) = 1;
14f9c5c9
AS
8251 return type0;
8252 }
8253
8254}
8255
8256/* An ordinary record type (with fixed-length fields) that describes
8257 the value at (VAR_TYPE0, VALADDR, ADDRESS), where VAR_TYPE0 is a
8258 union type. Any necessary discriminants' values should be in DVAL,
8259 a record value. That is, this routine selects the appropriate
8260 branch of the union at ADDR according to the discriminant value
b1f33ddd 8261 indicated in the union's type name. Returns VAR_TYPE0 itself if
0963b4bd 8262 it represents a variant subject to a pragma Unchecked_Union. */
14f9c5c9 8263
d2e4a39e 8264static struct type *
fc1a4b47 8265to_fixed_variant_branch_type (struct type *var_type0, const gdb_byte *valaddr,
4c4b4cd2 8266 CORE_ADDR address, struct value *dval)
14f9c5c9
AS
8267{
8268 int which;
d2e4a39e
AS
8269 struct type *templ_type;
8270 struct type *var_type;
14f9c5c9
AS
8271
8272 if (TYPE_CODE (var_type0) == TYPE_CODE_PTR)
8273 var_type = TYPE_TARGET_TYPE (var_type0);
d2e4a39e 8274 else
14f9c5c9
AS
8275 var_type = var_type0;
8276
8277 templ_type = ada_find_parallel_type (var_type, "___XVU");
8278
8279 if (templ_type != NULL)
8280 var_type = templ_type;
8281
b1f33ddd
JB
8282 if (is_unchecked_variant (var_type, value_type (dval)))
8283 return var_type0;
d2e4a39e
AS
8284 which =
8285 ada_which_variant_applies (var_type,
0fd88904 8286 value_type (dval), value_contents (dval));
14f9c5c9
AS
8287
8288 if (which < 0)
e9bb382b 8289 return empty_record (var_type);
14f9c5c9 8290 else if (is_dynamic_field (var_type, which))
4c4b4cd2 8291 return to_fixed_record_type
d2e4a39e
AS
8292 (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (var_type, which)),
8293 valaddr, address, dval);
4c4b4cd2 8294 else if (variant_field_index (TYPE_FIELD_TYPE (var_type, which)) >= 0)
d2e4a39e
AS
8295 return
8296 to_fixed_record_type
8297 (TYPE_FIELD_TYPE (var_type, which), valaddr, address, dval);
14f9c5c9
AS
8298 else
8299 return TYPE_FIELD_TYPE (var_type, which);
8300}
8301
8302/* Assuming that TYPE0 is an array type describing the type of a value
8303 at ADDR, and that DVAL describes a record containing any
8304 discriminants used in TYPE0, returns a type for the value that
8305 contains no dynamic components (that is, no components whose sizes
8306 are determined by run-time quantities). Unless IGNORE_TOO_BIG is
8307 true, gives an error message if the resulting type's size is over
4c4b4cd2 8308 varsize_limit. */
14f9c5c9 8309
d2e4a39e
AS
8310static struct type *
8311to_fixed_array_type (struct type *type0, struct value *dval,
4c4b4cd2 8312 int ignore_too_big)
14f9c5c9 8313{
d2e4a39e
AS
8314 struct type *index_type_desc;
8315 struct type *result;
ad82864c 8316 int constrained_packed_array_p;
14f9c5c9 8317
b0dd7688 8318 type0 = ada_check_typedef (type0);
284614f0 8319 if (TYPE_FIXED_INSTANCE (type0))
4c4b4cd2 8320 return type0;
14f9c5c9 8321
ad82864c
JB
8322 constrained_packed_array_p = ada_is_constrained_packed_array_type (type0);
8323 if (constrained_packed_array_p)
8324 type0 = decode_constrained_packed_array_type (type0);
284614f0 8325
14f9c5c9 8326 index_type_desc = ada_find_parallel_type (type0, "___XA");
28c85d6c 8327 ada_fixup_array_indexes_type (index_type_desc);
14f9c5c9
AS
8328 if (index_type_desc == NULL)
8329 {
61ee279c 8330 struct type *elt_type0 = ada_check_typedef (TYPE_TARGET_TYPE (type0));
5b4ee69b 8331
14f9c5c9 8332 /* NOTE: elt_type---the fixed version of elt_type0---should never
4c4b4cd2
PH
8333 depend on the contents of the array in properly constructed
8334 debugging data. */
529cad9c
PH
8335 /* Create a fixed version of the array element type.
8336 We're not providing the address of an element here,
e1d5a0d2 8337 and thus the actual object value cannot be inspected to do
529cad9c
PH
8338 the conversion. This should not be a problem, since arrays of
8339 unconstrained objects are not allowed. In particular, all
8340 the elements of an array of a tagged type should all be of
8341 the same type specified in the debugging info. No need to
8342 consult the object tag. */
1ed6ede0 8343 struct type *elt_type = ada_to_fixed_type (elt_type0, 0, 0, dval, 1);
14f9c5c9 8344
284614f0
JB
8345 /* Make sure we always create a new array type when dealing with
8346 packed array types, since we're going to fix-up the array
8347 type length and element bitsize a little further down. */
ad82864c 8348 if (elt_type0 == elt_type && !constrained_packed_array_p)
4c4b4cd2 8349 result = type0;
14f9c5c9 8350 else
e9bb382b 8351 result = create_array_type (alloc_type_copy (type0),
4c4b4cd2 8352 elt_type, TYPE_INDEX_TYPE (type0));
14f9c5c9
AS
8353 }
8354 else
8355 {
8356 int i;
8357 struct type *elt_type0;
8358
8359 elt_type0 = type0;
8360 for (i = TYPE_NFIELDS (index_type_desc); i > 0; i -= 1)
4c4b4cd2 8361 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
14f9c5c9
AS
8362
8363 /* NOTE: result---the fixed version of elt_type0---should never
4c4b4cd2
PH
8364 depend on the contents of the array in properly constructed
8365 debugging data. */
529cad9c
PH
8366 /* Create a fixed version of the array element type.
8367 We're not providing the address of an element here,
e1d5a0d2 8368 and thus the actual object value cannot be inspected to do
529cad9c
PH
8369 the conversion. This should not be a problem, since arrays of
8370 unconstrained objects are not allowed. In particular, all
8371 the elements of an array of a tagged type should all be of
8372 the same type specified in the debugging info. No need to
8373 consult the object tag. */
1ed6ede0
JB
8374 result =
8375 ada_to_fixed_type (ada_check_typedef (elt_type0), 0, 0, dval, 1);
1ce677a4
UW
8376
8377 elt_type0 = type0;
14f9c5c9 8378 for (i = TYPE_NFIELDS (index_type_desc) - 1; i >= 0; i -= 1)
4c4b4cd2
PH
8379 {
8380 struct type *range_type =
28c85d6c 8381 to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, i), dval);
5b4ee69b 8382
e9bb382b 8383 result = create_array_type (alloc_type_copy (elt_type0),
4c4b4cd2 8384 result, range_type);
1ce677a4 8385 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
4c4b4cd2 8386 }
d2e4a39e 8387 if (!ignore_too_big && TYPE_LENGTH (result) > varsize_limit)
323e0a4a 8388 error (_("array type with dynamic size is larger than varsize-limit"));
14f9c5c9
AS
8389 }
8390
2e6fda7d
JB
8391 /* We want to preserve the type name. This can be useful when
8392 trying to get the type name of a value that has already been
8393 printed (for instance, if the user did "print VAR; whatis $". */
8394 TYPE_NAME (result) = TYPE_NAME (type0);
8395
ad82864c 8396 if (constrained_packed_array_p)
284614f0
JB
8397 {
8398 /* So far, the resulting type has been created as if the original
8399 type was a regular (non-packed) array type. As a result, the
8400 bitsize of the array elements needs to be set again, and the array
8401 length needs to be recomputed based on that bitsize. */
8402 int len = TYPE_LENGTH (result) / TYPE_LENGTH (TYPE_TARGET_TYPE (result));
8403 int elt_bitsize = TYPE_FIELD_BITSIZE (type0, 0);
8404
8405 TYPE_FIELD_BITSIZE (result, 0) = TYPE_FIELD_BITSIZE (type0, 0);
8406 TYPE_LENGTH (result) = len * elt_bitsize / HOST_CHAR_BIT;
8407 if (TYPE_LENGTH (result) * HOST_CHAR_BIT < len * elt_bitsize)
8408 TYPE_LENGTH (result)++;
8409 }
8410
876cecd0 8411 TYPE_FIXED_INSTANCE (result) = 1;
14f9c5c9 8412 return result;
d2e4a39e 8413}
14f9c5c9
AS
8414
8415
8416/* A standard type (containing no dynamically sized components)
8417 corresponding to TYPE for the value (TYPE, VALADDR, ADDRESS)
8418 DVAL describes a record containing any discriminants used in TYPE0,
4c4b4cd2 8419 and may be NULL if there are none, or if the object of type TYPE at
529cad9c
PH
8420 ADDRESS or in VALADDR contains these discriminants.
8421
1ed6ede0
JB
8422 If CHECK_TAG is not null, in the case of tagged types, this function
8423 attempts to locate the object's tag and use it to compute the actual
8424 type. However, when ADDRESS is null, we cannot use it to determine the
8425 location of the tag, and therefore compute the tagged type's actual type.
8426 So we return the tagged type without consulting the tag. */
529cad9c 8427
f192137b
JB
8428static struct type *
8429ada_to_fixed_type_1 (struct type *type, const gdb_byte *valaddr,
1ed6ede0 8430 CORE_ADDR address, struct value *dval, int check_tag)
14f9c5c9 8431{
61ee279c 8432 type = ada_check_typedef (type);
d2e4a39e
AS
8433 switch (TYPE_CODE (type))
8434 {
8435 default:
14f9c5c9 8436 return type;
d2e4a39e 8437 case TYPE_CODE_STRUCT:
4c4b4cd2 8438 {
76a01679 8439 struct type *static_type = to_static_fixed_type (type);
1ed6ede0
JB
8440 struct type *fixed_record_type =
8441 to_fixed_record_type (type, valaddr, address, NULL);
5b4ee69b 8442
529cad9c
PH
8443 /* If STATIC_TYPE is a tagged type and we know the object's address,
8444 then we can determine its tag, and compute the object's actual
0963b4bd 8445 type from there. Note that we have to use the fixed record
1ed6ede0
JB
8446 type (the parent part of the record may have dynamic fields
8447 and the way the location of _tag is expressed may depend on
8448 them). */
529cad9c 8449
1ed6ede0 8450 if (check_tag && address != 0 && ada_is_tagged_type (static_type, 0))
76a01679 8451 {
b50d69b5
JG
8452 struct value *tag =
8453 value_tag_from_contents_and_address
8454 (fixed_record_type,
8455 valaddr,
8456 address);
8457 struct type *real_type = type_from_tag (tag);
8458 struct value *obj =
8459 value_from_contents_and_address (fixed_record_type,
8460 valaddr,
8461 address);
9f1f738a 8462 fixed_record_type = value_type (obj);
76a01679 8463 if (real_type != NULL)
b50d69b5
JG
8464 return to_fixed_record_type
8465 (real_type, NULL,
8466 value_address (ada_tag_value_at_base_address (obj)), NULL);
76a01679 8467 }
4af88198
JB
8468
8469 /* Check to see if there is a parallel ___XVZ variable.
8470 If there is, then it provides the actual size of our type. */
8471 else if (ada_type_name (fixed_record_type) != NULL)
8472 {
0d5cff50 8473 const char *name = ada_type_name (fixed_record_type);
4af88198
JB
8474 char *xvz_name = alloca (strlen (name) + 7 /* "___XVZ\0" */);
8475 int xvz_found = 0;
8476 LONGEST size;
8477
88c15c34 8478 xsnprintf (xvz_name, strlen (name) + 7, "%s___XVZ", name);
4af88198
JB
8479 size = get_int_var_value (xvz_name, &xvz_found);
8480 if (xvz_found && TYPE_LENGTH (fixed_record_type) != size)
8481 {
8482 fixed_record_type = copy_type (fixed_record_type);
8483 TYPE_LENGTH (fixed_record_type) = size;
8484
8485 /* The FIXED_RECORD_TYPE may have be a stub. We have
8486 observed this when the debugging info is STABS, and
8487 apparently it is something that is hard to fix.
8488
8489 In practice, we don't need the actual type definition
8490 at all, because the presence of the XVZ variable allows us
8491 to assume that there must be a XVS type as well, which we
8492 should be able to use later, when we need the actual type
8493 definition.
8494
8495 In the meantime, pretend that the "fixed" type we are
8496 returning is NOT a stub, because this can cause trouble
8497 when using this type to create new types targeting it.
8498 Indeed, the associated creation routines often check
8499 whether the target type is a stub and will try to replace
0963b4bd 8500 it, thus using a type with the wrong size. This, in turn,
4af88198
JB
8501 might cause the new type to have the wrong size too.
8502 Consider the case of an array, for instance, where the size
8503 of the array is computed from the number of elements in
8504 our array multiplied by the size of its element. */
8505 TYPE_STUB (fixed_record_type) = 0;
8506 }
8507 }
1ed6ede0 8508 return fixed_record_type;
4c4b4cd2 8509 }
d2e4a39e 8510 case TYPE_CODE_ARRAY:
4c4b4cd2 8511 return to_fixed_array_type (type, dval, 1);
d2e4a39e
AS
8512 case TYPE_CODE_UNION:
8513 if (dval == NULL)
4c4b4cd2 8514 return type;
d2e4a39e 8515 else
4c4b4cd2 8516 return to_fixed_variant_branch_type (type, valaddr, address, dval);
d2e4a39e 8517 }
14f9c5c9
AS
8518}
8519
f192137b
JB
8520/* The same as ada_to_fixed_type_1, except that it preserves the type
8521 if it is a TYPE_CODE_TYPEDEF of a type that is already fixed.
96dbd2c1
JB
8522
8523 The typedef layer needs be preserved in order to differentiate between
8524 arrays and array pointers when both types are implemented using the same
8525 fat pointer. In the array pointer case, the pointer is encoded as
8526 a typedef of the pointer type. For instance, considering:
8527
8528 type String_Access is access String;
8529 S1 : String_Access := null;
8530
8531 To the debugger, S1 is defined as a typedef of type String. But
8532 to the user, it is a pointer. So if the user tries to print S1,
8533 we should not dereference the array, but print the array address
8534 instead.
8535
8536 If we didn't preserve the typedef layer, we would lose the fact that
8537 the type is to be presented as a pointer (needs de-reference before
8538 being printed). And we would also use the source-level type name. */
f192137b
JB
8539
8540struct type *
8541ada_to_fixed_type (struct type *type, const gdb_byte *valaddr,
8542 CORE_ADDR address, struct value *dval, int check_tag)
8543
8544{
8545 struct type *fixed_type =
8546 ada_to_fixed_type_1 (type, valaddr, address, dval, check_tag);
8547
96dbd2c1
JB
8548 /* If TYPE is a typedef and its target type is the same as the FIXED_TYPE,
8549 then preserve the typedef layer.
8550
8551 Implementation note: We can only check the main-type portion of
8552 the TYPE and FIXED_TYPE, because eliminating the typedef layer
8553 from TYPE now returns a type that has the same instance flags
8554 as TYPE. For instance, if TYPE is a "typedef const", and its
8555 target type is a "struct", then the typedef elimination will return
8556 a "const" version of the target type. See check_typedef for more
8557 details about how the typedef layer elimination is done.
8558
8559 brobecker/2010-11-19: It seems to me that the only case where it is
8560 useful to preserve the typedef layer is when dealing with fat pointers.
8561 Perhaps, we could add a check for that and preserve the typedef layer
8562 only in that situation. But this seems unecessary so far, probably
8563 because we call check_typedef/ada_check_typedef pretty much everywhere.
8564 */
f192137b 8565 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF
720d1a40 8566 && (TYPE_MAIN_TYPE (ada_typedef_target_type (type))
96dbd2c1 8567 == TYPE_MAIN_TYPE (fixed_type)))
f192137b
JB
8568 return type;
8569
8570 return fixed_type;
8571}
8572
14f9c5c9 8573/* A standard (static-sized) type corresponding as well as possible to
4c4b4cd2 8574 TYPE0, but based on no runtime data. */
14f9c5c9 8575
d2e4a39e
AS
8576static struct type *
8577to_static_fixed_type (struct type *type0)
14f9c5c9 8578{
d2e4a39e 8579 struct type *type;
14f9c5c9
AS
8580
8581 if (type0 == NULL)
8582 return NULL;
8583
876cecd0 8584 if (TYPE_FIXED_INSTANCE (type0))
4c4b4cd2
PH
8585 return type0;
8586
61ee279c 8587 type0 = ada_check_typedef (type0);
d2e4a39e 8588
14f9c5c9
AS
8589 switch (TYPE_CODE (type0))
8590 {
8591 default:
8592 return type0;
8593 case TYPE_CODE_STRUCT:
8594 type = dynamic_template_type (type0);
d2e4a39e 8595 if (type != NULL)
4c4b4cd2
PH
8596 return template_to_static_fixed_type (type);
8597 else
8598 return template_to_static_fixed_type (type0);
14f9c5c9
AS
8599 case TYPE_CODE_UNION:
8600 type = ada_find_parallel_type (type0, "___XVU");
8601 if (type != NULL)
4c4b4cd2
PH
8602 return template_to_static_fixed_type (type);
8603 else
8604 return template_to_static_fixed_type (type0);
14f9c5c9
AS
8605 }
8606}
8607
4c4b4cd2
PH
8608/* A static approximation of TYPE with all type wrappers removed. */
8609
d2e4a39e
AS
8610static struct type *
8611static_unwrap_type (struct type *type)
14f9c5c9
AS
8612{
8613 if (ada_is_aligner_type (type))
8614 {
61ee279c 8615 struct type *type1 = TYPE_FIELD_TYPE (ada_check_typedef (type), 0);
14f9c5c9 8616 if (ada_type_name (type1) == NULL)
4c4b4cd2 8617 TYPE_NAME (type1) = ada_type_name (type);
14f9c5c9
AS
8618
8619 return static_unwrap_type (type1);
8620 }
d2e4a39e 8621 else
14f9c5c9 8622 {
d2e4a39e 8623 struct type *raw_real_type = ada_get_base_type (type);
5b4ee69b 8624
d2e4a39e 8625 if (raw_real_type == type)
4c4b4cd2 8626 return type;
14f9c5c9 8627 else
4c4b4cd2 8628 return to_static_fixed_type (raw_real_type);
14f9c5c9
AS
8629 }
8630}
8631
8632/* In some cases, incomplete and private types require
4c4b4cd2 8633 cross-references that are not resolved as records (for example,
14f9c5c9
AS
8634 type Foo;
8635 type FooP is access Foo;
8636 V: FooP;
8637 type Foo is array ...;
4c4b4cd2 8638 ). In these cases, since there is no mechanism for producing
14f9c5c9
AS
8639 cross-references to such types, we instead substitute for FooP a
8640 stub enumeration type that is nowhere resolved, and whose tag is
4c4b4cd2 8641 the name of the actual type. Call these types "non-record stubs". */
14f9c5c9
AS
8642
8643/* A type equivalent to TYPE that is not a non-record stub, if one
4c4b4cd2
PH
8644 exists, otherwise TYPE. */
8645
d2e4a39e 8646struct type *
61ee279c 8647ada_check_typedef (struct type *type)
14f9c5c9 8648{
727e3d2e
JB
8649 if (type == NULL)
8650 return NULL;
8651
720d1a40
JB
8652 /* If our type is a typedef type of a fat pointer, then we're done.
8653 We don't want to strip the TYPE_CODE_TYPDEF layer, because this is
8654 what allows us to distinguish between fat pointers that represent
8655 array types, and fat pointers that represent array access types
8656 (in both cases, the compiler implements them as fat pointers). */
8657 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF
8658 && is_thick_pntr (ada_typedef_target_type (type)))
8659 return type;
8660
14f9c5c9
AS
8661 CHECK_TYPEDEF (type);
8662 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM
529cad9c 8663 || !TYPE_STUB (type)
14f9c5c9
AS
8664 || TYPE_TAG_NAME (type) == NULL)
8665 return type;
d2e4a39e 8666 else
14f9c5c9 8667 {
0d5cff50 8668 const char *name = TYPE_TAG_NAME (type);
d2e4a39e 8669 struct type *type1 = ada_find_any_type (name);
5b4ee69b 8670
05e522ef
JB
8671 if (type1 == NULL)
8672 return type;
8673
8674 /* TYPE1 might itself be a TYPE_CODE_TYPEDEF (this can happen with
8675 stubs pointing to arrays, as we don't create symbols for array
3a867c22
JB
8676 types, only for the typedef-to-array types). If that's the case,
8677 strip the typedef layer. */
8678 if (TYPE_CODE (type1) == TYPE_CODE_TYPEDEF)
8679 type1 = ada_check_typedef (type1);
8680
8681 return type1;
14f9c5c9
AS
8682 }
8683}
8684
8685/* A value representing the data at VALADDR/ADDRESS as described by
8686 type TYPE0, but with a standard (static-sized) type that correctly
8687 describes it. If VAL0 is not NULL and TYPE0 already is a standard
8688 type, then return VAL0 [this feature is simply to avoid redundant
4c4b4cd2 8689 creation of struct values]. */
14f9c5c9 8690
4c4b4cd2
PH
8691static struct value *
8692ada_to_fixed_value_create (struct type *type0, CORE_ADDR address,
8693 struct value *val0)
14f9c5c9 8694{
1ed6ede0 8695 struct type *type = ada_to_fixed_type (type0, 0, address, NULL, 1);
5b4ee69b 8696
14f9c5c9
AS
8697 if (type == type0 && val0 != NULL)
8698 return val0;
d2e4a39e 8699 else
4c4b4cd2
PH
8700 return value_from_contents_and_address (type, 0, address);
8701}
8702
8703/* A value representing VAL, but with a standard (static-sized) type
8704 that correctly describes it. Does not necessarily create a new
8705 value. */
8706
0c3acc09 8707struct value *
4c4b4cd2
PH
8708ada_to_fixed_value (struct value *val)
8709{
c48db5ca
JB
8710 val = unwrap_value (val);
8711 val = ada_to_fixed_value_create (value_type (val),
8712 value_address (val),
8713 val);
8714 return val;
14f9c5c9 8715}
d2e4a39e 8716\f
14f9c5c9 8717
14f9c5c9
AS
8718/* Attributes */
8719
4c4b4cd2
PH
8720/* Table mapping attribute numbers to names.
8721 NOTE: Keep up to date with enum ada_attribute definition in ada-lang.h. */
14f9c5c9 8722
d2e4a39e 8723static const char *attribute_names[] = {
14f9c5c9
AS
8724 "<?>",
8725
d2e4a39e 8726 "first",
14f9c5c9
AS
8727 "last",
8728 "length",
8729 "image",
14f9c5c9
AS
8730 "max",
8731 "min",
4c4b4cd2
PH
8732 "modulus",
8733 "pos",
8734 "size",
8735 "tag",
14f9c5c9 8736 "val",
14f9c5c9
AS
8737 0
8738};
8739
d2e4a39e 8740const char *
4c4b4cd2 8741ada_attribute_name (enum exp_opcode n)
14f9c5c9 8742{
4c4b4cd2
PH
8743 if (n >= OP_ATR_FIRST && n <= (int) OP_ATR_VAL)
8744 return attribute_names[n - OP_ATR_FIRST + 1];
14f9c5c9
AS
8745 else
8746 return attribute_names[0];
8747}
8748
4c4b4cd2 8749/* Evaluate the 'POS attribute applied to ARG. */
14f9c5c9 8750
4c4b4cd2
PH
8751static LONGEST
8752pos_atr (struct value *arg)
14f9c5c9 8753{
24209737
PH
8754 struct value *val = coerce_ref (arg);
8755 struct type *type = value_type (val);
14f9c5c9 8756
d2e4a39e 8757 if (!discrete_type_p (type))
323e0a4a 8758 error (_("'POS only defined on discrete types"));
14f9c5c9
AS
8759
8760 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
8761 {
8762 int i;
24209737 8763 LONGEST v = value_as_long (val);
14f9c5c9 8764
d2e4a39e 8765 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
4c4b4cd2 8766 {
14e75d8e 8767 if (v == TYPE_FIELD_ENUMVAL (type, i))
4c4b4cd2
PH
8768 return i;
8769 }
323e0a4a 8770 error (_("enumeration value is invalid: can't find 'POS"));
14f9c5c9
AS
8771 }
8772 else
24209737 8773 return value_as_long (val);
4c4b4cd2
PH
8774}
8775
8776static struct value *
3cb382c9 8777value_pos_atr (struct type *type, struct value *arg)
4c4b4cd2 8778{
3cb382c9 8779 return value_from_longest (type, pos_atr (arg));
14f9c5c9
AS
8780}
8781
4c4b4cd2 8782/* Evaluate the TYPE'VAL attribute applied to ARG. */
14f9c5c9 8783
d2e4a39e
AS
8784static struct value *
8785value_val_atr (struct type *type, struct value *arg)
14f9c5c9 8786{
d2e4a39e 8787 if (!discrete_type_p (type))
323e0a4a 8788 error (_("'VAL only defined on discrete types"));
df407dfe 8789 if (!integer_type_p (value_type (arg)))
323e0a4a 8790 error (_("'VAL requires integral argument"));
14f9c5c9
AS
8791
8792 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
8793 {
8794 long pos = value_as_long (arg);
5b4ee69b 8795
14f9c5c9 8796 if (pos < 0 || pos >= TYPE_NFIELDS (type))
323e0a4a 8797 error (_("argument to 'VAL out of range"));
14e75d8e 8798 return value_from_longest (type, TYPE_FIELD_ENUMVAL (type, pos));
14f9c5c9
AS
8799 }
8800 else
8801 return value_from_longest (type, value_as_long (arg));
8802}
14f9c5c9 8803\f
d2e4a39e 8804
4c4b4cd2 8805 /* Evaluation */
14f9c5c9 8806
4c4b4cd2
PH
8807/* True if TYPE appears to be an Ada character type.
8808 [At the moment, this is true only for Character and Wide_Character;
8809 It is a heuristic test that could stand improvement]. */
14f9c5c9 8810
d2e4a39e
AS
8811int
8812ada_is_character_type (struct type *type)
14f9c5c9 8813{
7b9f71f2
JB
8814 const char *name;
8815
8816 /* If the type code says it's a character, then assume it really is,
8817 and don't check any further. */
8818 if (TYPE_CODE (type) == TYPE_CODE_CHAR)
8819 return 1;
8820
8821 /* Otherwise, assume it's a character type iff it is a discrete type
8822 with a known character type name. */
8823 name = ada_type_name (type);
8824 return (name != NULL
8825 && (TYPE_CODE (type) == TYPE_CODE_INT
8826 || TYPE_CODE (type) == TYPE_CODE_RANGE)
8827 && (strcmp (name, "character") == 0
8828 || strcmp (name, "wide_character") == 0
5a517ebd 8829 || strcmp (name, "wide_wide_character") == 0
7b9f71f2 8830 || strcmp (name, "unsigned char") == 0));
14f9c5c9
AS
8831}
8832
4c4b4cd2 8833/* True if TYPE appears to be an Ada string type. */
14f9c5c9
AS
8834
8835int
ebf56fd3 8836ada_is_string_type (struct type *type)
14f9c5c9 8837{
61ee279c 8838 type = ada_check_typedef (type);
d2e4a39e 8839 if (type != NULL
14f9c5c9 8840 && TYPE_CODE (type) != TYPE_CODE_PTR
76a01679
JB
8841 && (ada_is_simple_array_type (type)
8842 || ada_is_array_descriptor_type (type))
14f9c5c9
AS
8843 && ada_array_arity (type) == 1)
8844 {
8845 struct type *elttype = ada_array_element_type (type, 1);
8846
8847 return ada_is_character_type (elttype);
8848 }
d2e4a39e 8849 else
14f9c5c9
AS
8850 return 0;
8851}
8852
5bf03f13
JB
8853/* The compiler sometimes provides a parallel XVS type for a given
8854 PAD type. Normally, it is safe to follow the PAD type directly,
8855 but older versions of the compiler have a bug that causes the offset
8856 of its "F" field to be wrong. Following that field in that case
8857 would lead to incorrect results, but this can be worked around
8858 by ignoring the PAD type and using the associated XVS type instead.
8859
8860 Set to True if the debugger should trust the contents of PAD types.
8861 Otherwise, ignore the PAD type if there is a parallel XVS type. */
8862static int trust_pad_over_xvs = 1;
14f9c5c9
AS
8863
8864/* True if TYPE is a struct type introduced by the compiler to force the
8865 alignment of a value. Such types have a single field with a
4c4b4cd2 8866 distinctive name. */
14f9c5c9
AS
8867
8868int
ebf56fd3 8869ada_is_aligner_type (struct type *type)
14f9c5c9 8870{
61ee279c 8871 type = ada_check_typedef (type);
714e53ab 8872
5bf03f13 8873 if (!trust_pad_over_xvs && ada_find_parallel_type (type, "___XVS") != NULL)
714e53ab
PH
8874 return 0;
8875
14f9c5c9 8876 return (TYPE_CODE (type) == TYPE_CODE_STRUCT
4c4b4cd2
PH
8877 && TYPE_NFIELDS (type) == 1
8878 && strcmp (TYPE_FIELD_NAME (type, 0), "F") == 0);
14f9c5c9
AS
8879}
8880
8881/* If there is an ___XVS-convention type parallel to SUBTYPE, return
4c4b4cd2 8882 the parallel type. */
14f9c5c9 8883
d2e4a39e
AS
8884struct type *
8885ada_get_base_type (struct type *raw_type)
14f9c5c9 8886{
d2e4a39e
AS
8887 struct type *real_type_namer;
8888 struct type *raw_real_type;
14f9c5c9
AS
8889
8890 if (raw_type == NULL || TYPE_CODE (raw_type) != TYPE_CODE_STRUCT)
8891 return raw_type;
8892
284614f0
JB
8893 if (ada_is_aligner_type (raw_type))
8894 /* The encoding specifies that we should always use the aligner type.
8895 So, even if this aligner type has an associated XVS type, we should
8896 simply ignore it.
8897
8898 According to the compiler gurus, an XVS type parallel to an aligner
8899 type may exist because of a stabs limitation. In stabs, aligner
8900 types are empty because the field has a variable-sized type, and
8901 thus cannot actually be used as an aligner type. As a result,
8902 we need the associated parallel XVS type to decode the type.
8903 Since the policy in the compiler is to not change the internal
8904 representation based on the debugging info format, we sometimes
8905 end up having a redundant XVS type parallel to the aligner type. */
8906 return raw_type;
8907
14f9c5c9 8908 real_type_namer = ada_find_parallel_type (raw_type, "___XVS");
d2e4a39e 8909 if (real_type_namer == NULL
14f9c5c9
AS
8910 || TYPE_CODE (real_type_namer) != TYPE_CODE_STRUCT
8911 || TYPE_NFIELDS (real_type_namer) != 1)
8912 return raw_type;
8913
f80d3ff2
JB
8914 if (TYPE_CODE (TYPE_FIELD_TYPE (real_type_namer, 0)) != TYPE_CODE_REF)
8915 {
8916 /* This is an older encoding form where the base type needs to be
8917 looked up by name. We prefer the newer enconding because it is
8918 more efficient. */
8919 raw_real_type = ada_find_any_type (TYPE_FIELD_NAME (real_type_namer, 0));
8920 if (raw_real_type == NULL)
8921 return raw_type;
8922 else
8923 return raw_real_type;
8924 }
8925
8926 /* The field in our XVS type is a reference to the base type. */
8927 return TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (real_type_namer, 0));
d2e4a39e 8928}
14f9c5c9 8929
4c4b4cd2 8930/* The type of value designated by TYPE, with all aligners removed. */
14f9c5c9 8931
d2e4a39e
AS
8932struct type *
8933ada_aligned_type (struct type *type)
14f9c5c9
AS
8934{
8935 if (ada_is_aligner_type (type))
8936 return ada_aligned_type (TYPE_FIELD_TYPE (type, 0));
8937 else
8938 return ada_get_base_type (type);
8939}
8940
8941
8942/* The address of the aligned value in an object at address VALADDR
4c4b4cd2 8943 having type TYPE. Assumes ada_is_aligner_type (TYPE). */
14f9c5c9 8944
fc1a4b47
AC
8945const gdb_byte *
8946ada_aligned_value_addr (struct type *type, const gdb_byte *valaddr)
14f9c5c9 8947{
d2e4a39e 8948 if (ada_is_aligner_type (type))
14f9c5c9 8949 return ada_aligned_value_addr (TYPE_FIELD_TYPE (type, 0),
4c4b4cd2
PH
8950 valaddr +
8951 TYPE_FIELD_BITPOS (type,
8952 0) / TARGET_CHAR_BIT);
14f9c5c9
AS
8953 else
8954 return valaddr;
8955}
8956
4c4b4cd2
PH
8957
8958
14f9c5c9 8959/* The printed representation of an enumeration literal with encoded
4c4b4cd2 8960 name NAME. The value is good to the next call of ada_enum_name. */
d2e4a39e
AS
8961const char *
8962ada_enum_name (const char *name)
14f9c5c9 8963{
4c4b4cd2
PH
8964 static char *result;
8965 static size_t result_len = 0;
d2e4a39e 8966 char *tmp;
14f9c5c9 8967
4c4b4cd2
PH
8968 /* First, unqualify the enumeration name:
8969 1. Search for the last '.' character. If we find one, then skip
177b42fe 8970 all the preceding characters, the unqualified name starts
76a01679 8971 right after that dot.
4c4b4cd2 8972 2. Otherwise, we may be debugging on a target where the compiler
76a01679
JB
8973 translates dots into "__". Search forward for double underscores,
8974 but stop searching when we hit an overloading suffix, which is
8975 of the form "__" followed by digits. */
4c4b4cd2 8976
c3e5cd34
PH
8977 tmp = strrchr (name, '.');
8978 if (tmp != NULL)
4c4b4cd2
PH
8979 name = tmp + 1;
8980 else
14f9c5c9 8981 {
4c4b4cd2
PH
8982 while ((tmp = strstr (name, "__")) != NULL)
8983 {
8984 if (isdigit (tmp[2]))
8985 break;
8986 else
8987 name = tmp + 2;
8988 }
14f9c5c9
AS
8989 }
8990
8991 if (name[0] == 'Q')
8992 {
14f9c5c9 8993 int v;
5b4ee69b 8994
14f9c5c9 8995 if (name[1] == 'U' || name[1] == 'W')
4c4b4cd2
PH
8996 {
8997 if (sscanf (name + 2, "%x", &v) != 1)
8998 return name;
8999 }
14f9c5c9 9000 else
4c4b4cd2 9001 return name;
14f9c5c9 9002
4c4b4cd2 9003 GROW_VECT (result, result_len, 16);
14f9c5c9 9004 if (isascii (v) && isprint (v))
88c15c34 9005 xsnprintf (result, result_len, "'%c'", v);
14f9c5c9 9006 else if (name[1] == 'U')
88c15c34 9007 xsnprintf (result, result_len, "[\"%02x\"]", v);
14f9c5c9 9008 else
88c15c34 9009 xsnprintf (result, result_len, "[\"%04x\"]", v);
14f9c5c9
AS
9010
9011 return result;
9012 }
d2e4a39e 9013 else
4c4b4cd2 9014 {
c3e5cd34
PH
9015 tmp = strstr (name, "__");
9016 if (tmp == NULL)
9017 tmp = strstr (name, "$");
9018 if (tmp != NULL)
4c4b4cd2
PH
9019 {
9020 GROW_VECT (result, result_len, tmp - name + 1);
9021 strncpy (result, name, tmp - name);
9022 result[tmp - name] = '\0';
9023 return result;
9024 }
9025
9026 return name;
9027 }
14f9c5c9
AS
9028}
9029
14f9c5c9
AS
9030/* Evaluate the subexpression of EXP starting at *POS as for
9031 evaluate_type, updating *POS to point just past the evaluated
4c4b4cd2 9032 expression. */
14f9c5c9 9033
d2e4a39e
AS
9034static struct value *
9035evaluate_subexp_type (struct expression *exp, int *pos)
14f9c5c9 9036{
4b27a620 9037 return evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
14f9c5c9
AS
9038}
9039
9040/* If VAL is wrapped in an aligner or subtype wrapper, return the
4c4b4cd2 9041 value it wraps. */
14f9c5c9 9042
d2e4a39e
AS
9043static struct value *
9044unwrap_value (struct value *val)
14f9c5c9 9045{
df407dfe 9046 struct type *type = ada_check_typedef (value_type (val));
5b4ee69b 9047
14f9c5c9
AS
9048 if (ada_is_aligner_type (type))
9049 {
de4d072f 9050 struct value *v = ada_value_struct_elt (val, "F", 0);
df407dfe 9051 struct type *val_type = ada_check_typedef (value_type (v));
5b4ee69b 9052
14f9c5c9 9053 if (ada_type_name (val_type) == NULL)
4c4b4cd2 9054 TYPE_NAME (val_type) = ada_type_name (type);
14f9c5c9
AS
9055
9056 return unwrap_value (v);
9057 }
d2e4a39e 9058 else
14f9c5c9 9059 {
d2e4a39e 9060 struct type *raw_real_type =
61ee279c 9061 ada_check_typedef (ada_get_base_type (type));
d2e4a39e 9062
5bf03f13
JB
9063 /* If there is no parallel XVS or XVE type, then the value is
9064 already unwrapped. Return it without further modification. */
9065 if ((type == raw_real_type)
9066 && ada_find_parallel_type (type, "___XVE") == NULL)
9067 return val;
14f9c5c9 9068
d2e4a39e 9069 return
4c4b4cd2
PH
9070 coerce_unspec_val_to_type
9071 (val, ada_to_fixed_type (raw_real_type, 0,
42ae5230 9072 value_address (val),
1ed6ede0 9073 NULL, 1));
14f9c5c9
AS
9074 }
9075}
d2e4a39e
AS
9076
9077static struct value *
9078cast_to_fixed (struct type *type, struct value *arg)
14f9c5c9
AS
9079{
9080 LONGEST val;
9081
df407dfe 9082 if (type == value_type (arg))
14f9c5c9 9083 return arg;
df407dfe 9084 else if (ada_is_fixed_point_type (value_type (arg)))
d2e4a39e 9085 val = ada_float_to_fixed (type,
df407dfe 9086 ada_fixed_to_float (value_type (arg),
4c4b4cd2 9087 value_as_long (arg)));
d2e4a39e 9088 else
14f9c5c9 9089 {
a53b7a21 9090 DOUBLEST argd = value_as_double (arg);
5b4ee69b 9091
14f9c5c9
AS
9092 val = ada_float_to_fixed (type, argd);
9093 }
9094
9095 return value_from_longest (type, val);
9096}
9097
d2e4a39e 9098static struct value *
a53b7a21 9099cast_from_fixed (struct type *type, struct value *arg)
14f9c5c9 9100{
df407dfe 9101 DOUBLEST val = ada_fixed_to_float (value_type (arg),
4c4b4cd2 9102 value_as_long (arg));
5b4ee69b 9103
a53b7a21 9104 return value_from_double (type, val);
14f9c5c9
AS
9105}
9106
d99dcf51
JB
9107/* Given two array types T1 and T2, return nonzero iff both arrays
9108 contain the same number of elements. */
9109
9110static int
9111ada_same_array_size_p (struct type *t1, struct type *t2)
9112{
9113 LONGEST lo1, hi1, lo2, hi2;
9114
9115 /* Get the array bounds in order to verify that the size of
9116 the two arrays match. */
9117 if (!get_array_bounds (t1, &lo1, &hi1)
9118 || !get_array_bounds (t2, &lo2, &hi2))
9119 error (_("unable to determine array bounds"));
9120
9121 /* To make things easier for size comparison, normalize a bit
9122 the case of empty arrays by making sure that the difference
9123 between upper bound and lower bound is always -1. */
9124 if (lo1 > hi1)
9125 hi1 = lo1 - 1;
9126 if (lo2 > hi2)
9127 hi2 = lo2 - 1;
9128
9129 return (hi1 - lo1 == hi2 - lo2);
9130}
9131
9132/* Assuming that VAL is an array of integrals, and TYPE represents
9133 an array with the same number of elements, but with wider integral
9134 elements, return an array "casted" to TYPE. In practice, this
9135 means that the returned array is built by casting each element
9136 of the original array into TYPE's (wider) element type. */
9137
9138static struct value *
9139ada_promote_array_of_integrals (struct type *type, struct value *val)
9140{
9141 struct type *elt_type = TYPE_TARGET_TYPE (type);
9142 LONGEST lo, hi;
9143 struct value *res;
9144 LONGEST i;
9145
9146 /* Verify that both val and type are arrays of scalars, and
9147 that the size of val's elements is smaller than the size
9148 of type's element. */
9149 gdb_assert (TYPE_CODE (type) == TYPE_CODE_ARRAY);
9150 gdb_assert (is_integral_type (TYPE_TARGET_TYPE (type)));
9151 gdb_assert (TYPE_CODE (value_type (val)) == TYPE_CODE_ARRAY);
9152 gdb_assert (is_integral_type (TYPE_TARGET_TYPE (value_type (val))));
9153 gdb_assert (TYPE_LENGTH (TYPE_TARGET_TYPE (type))
9154 > TYPE_LENGTH (TYPE_TARGET_TYPE (value_type (val))));
9155
9156 if (!get_array_bounds (type, &lo, &hi))
9157 error (_("unable to determine array bounds"));
9158
9159 res = allocate_value (type);
9160
9161 /* Promote each array element. */
9162 for (i = 0; i < hi - lo + 1; i++)
9163 {
9164 struct value *elt = value_cast (elt_type, value_subscript (val, lo + i));
9165
9166 memcpy (value_contents_writeable (res) + (i * TYPE_LENGTH (elt_type)),
9167 value_contents_all (elt), TYPE_LENGTH (elt_type));
9168 }
9169
9170 return res;
9171}
9172
4c4b4cd2
PH
9173/* Coerce VAL as necessary for assignment to an lval of type TYPE, and
9174 return the converted value. */
9175
d2e4a39e
AS
9176static struct value *
9177coerce_for_assign (struct type *type, struct value *val)
14f9c5c9 9178{
df407dfe 9179 struct type *type2 = value_type (val);
5b4ee69b 9180
14f9c5c9
AS
9181 if (type == type2)
9182 return val;
9183
61ee279c
PH
9184 type2 = ada_check_typedef (type2);
9185 type = ada_check_typedef (type);
14f9c5c9 9186
d2e4a39e
AS
9187 if (TYPE_CODE (type2) == TYPE_CODE_PTR
9188 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
14f9c5c9
AS
9189 {
9190 val = ada_value_ind (val);
df407dfe 9191 type2 = value_type (val);
14f9c5c9
AS
9192 }
9193
d2e4a39e 9194 if (TYPE_CODE (type2) == TYPE_CODE_ARRAY
14f9c5c9
AS
9195 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
9196 {
d99dcf51
JB
9197 if (!ada_same_array_size_p (type, type2))
9198 error (_("cannot assign arrays of different length"));
9199
9200 if (is_integral_type (TYPE_TARGET_TYPE (type))
9201 && is_integral_type (TYPE_TARGET_TYPE (type2))
9202 && TYPE_LENGTH (TYPE_TARGET_TYPE (type2))
9203 < TYPE_LENGTH (TYPE_TARGET_TYPE (type)))
9204 {
9205 /* Allow implicit promotion of the array elements to
9206 a wider type. */
9207 return ada_promote_array_of_integrals (type, val);
9208 }
9209
9210 if (TYPE_LENGTH (TYPE_TARGET_TYPE (type2))
9211 != TYPE_LENGTH (TYPE_TARGET_TYPE (type)))
323e0a4a 9212 error (_("Incompatible types in assignment"));
04624583 9213 deprecated_set_value_type (val, type);
14f9c5c9 9214 }
d2e4a39e 9215 return val;
14f9c5c9
AS
9216}
9217
4c4b4cd2
PH
9218static struct value *
9219ada_value_binop (struct value *arg1, struct value *arg2, enum exp_opcode op)
9220{
9221 struct value *val;
9222 struct type *type1, *type2;
9223 LONGEST v, v1, v2;
9224
994b9211
AC
9225 arg1 = coerce_ref (arg1);
9226 arg2 = coerce_ref (arg2);
18af8284
JB
9227 type1 = get_base_type (ada_check_typedef (value_type (arg1)));
9228 type2 = get_base_type (ada_check_typedef (value_type (arg2)));
4c4b4cd2 9229
76a01679
JB
9230 if (TYPE_CODE (type1) != TYPE_CODE_INT
9231 || TYPE_CODE (type2) != TYPE_CODE_INT)
4c4b4cd2
PH
9232 return value_binop (arg1, arg2, op);
9233
76a01679 9234 switch (op)
4c4b4cd2
PH
9235 {
9236 case BINOP_MOD:
9237 case BINOP_DIV:
9238 case BINOP_REM:
9239 break;
9240 default:
9241 return value_binop (arg1, arg2, op);
9242 }
9243
9244 v2 = value_as_long (arg2);
9245 if (v2 == 0)
323e0a4a 9246 error (_("second operand of %s must not be zero."), op_string (op));
4c4b4cd2
PH
9247
9248 if (TYPE_UNSIGNED (type1) || op == BINOP_MOD)
9249 return value_binop (arg1, arg2, op);
9250
9251 v1 = value_as_long (arg1);
9252 switch (op)
9253 {
9254 case BINOP_DIV:
9255 v = v1 / v2;
76a01679
JB
9256 if (!TRUNCATION_TOWARDS_ZERO && v1 * (v1 % v2) < 0)
9257 v += v > 0 ? -1 : 1;
4c4b4cd2
PH
9258 break;
9259 case BINOP_REM:
9260 v = v1 % v2;
76a01679
JB
9261 if (v * v1 < 0)
9262 v -= v2;
4c4b4cd2
PH
9263 break;
9264 default:
9265 /* Should not reach this point. */
9266 v = 0;
9267 }
9268
9269 val = allocate_value (type1);
990a07ab 9270 store_unsigned_integer (value_contents_raw (val),
e17a4113
UW
9271 TYPE_LENGTH (value_type (val)),
9272 gdbarch_byte_order (get_type_arch (type1)), v);
4c4b4cd2
PH
9273 return val;
9274}
9275
9276static int
9277ada_value_equal (struct value *arg1, struct value *arg2)
9278{
df407dfe
AC
9279 if (ada_is_direct_array_type (value_type (arg1))
9280 || ada_is_direct_array_type (value_type (arg2)))
4c4b4cd2 9281 {
f58b38bf
JB
9282 /* Automatically dereference any array reference before
9283 we attempt to perform the comparison. */
9284 arg1 = ada_coerce_ref (arg1);
9285 arg2 = ada_coerce_ref (arg2);
9286
4c4b4cd2
PH
9287 arg1 = ada_coerce_to_simple_array (arg1);
9288 arg2 = ada_coerce_to_simple_array (arg2);
df407dfe
AC
9289 if (TYPE_CODE (value_type (arg1)) != TYPE_CODE_ARRAY
9290 || TYPE_CODE (value_type (arg2)) != TYPE_CODE_ARRAY)
323e0a4a 9291 error (_("Attempt to compare array with non-array"));
4c4b4cd2 9292 /* FIXME: The following works only for types whose
76a01679
JB
9293 representations use all bits (no padding or undefined bits)
9294 and do not have user-defined equality. */
9295 return
df407dfe 9296 TYPE_LENGTH (value_type (arg1)) == TYPE_LENGTH (value_type (arg2))
0fd88904 9297 && memcmp (value_contents (arg1), value_contents (arg2),
df407dfe 9298 TYPE_LENGTH (value_type (arg1))) == 0;
4c4b4cd2
PH
9299 }
9300 return value_equal (arg1, arg2);
9301}
9302
52ce6436
PH
9303/* Total number of component associations in the aggregate starting at
9304 index PC in EXP. Assumes that index PC is the start of an
0963b4bd 9305 OP_AGGREGATE. */
52ce6436
PH
9306
9307static int
9308num_component_specs (struct expression *exp, int pc)
9309{
9310 int n, m, i;
5b4ee69b 9311
52ce6436
PH
9312 m = exp->elts[pc + 1].longconst;
9313 pc += 3;
9314 n = 0;
9315 for (i = 0; i < m; i += 1)
9316 {
9317 switch (exp->elts[pc].opcode)
9318 {
9319 default:
9320 n += 1;
9321 break;
9322 case OP_CHOICES:
9323 n += exp->elts[pc + 1].longconst;
9324 break;
9325 }
9326 ada_evaluate_subexp (NULL, exp, &pc, EVAL_SKIP);
9327 }
9328 return n;
9329}
9330
9331/* Assign the result of evaluating EXP starting at *POS to the INDEXth
9332 component of LHS (a simple array or a record), updating *POS past
9333 the expression, assuming that LHS is contained in CONTAINER. Does
9334 not modify the inferior's memory, nor does it modify LHS (unless
9335 LHS == CONTAINER). */
9336
9337static void
9338assign_component (struct value *container, struct value *lhs, LONGEST index,
9339 struct expression *exp, int *pos)
9340{
9341 struct value *mark = value_mark ();
9342 struct value *elt;
5b4ee69b 9343
52ce6436
PH
9344 if (TYPE_CODE (value_type (lhs)) == TYPE_CODE_ARRAY)
9345 {
22601c15
UW
9346 struct type *index_type = builtin_type (exp->gdbarch)->builtin_int;
9347 struct value *index_val = value_from_longest (index_type, index);
5b4ee69b 9348
52ce6436
PH
9349 elt = unwrap_value (ada_value_subscript (lhs, 1, &index_val));
9350 }
9351 else
9352 {
9353 elt = ada_index_struct_field (index, lhs, 0, value_type (lhs));
c48db5ca 9354 elt = ada_to_fixed_value (elt);
52ce6436
PH
9355 }
9356
9357 if (exp->elts[*pos].opcode == OP_AGGREGATE)
9358 assign_aggregate (container, elt, exp, pos, EVAL_NORMAL);
9359 else
9360 value_assign_to_component (container, elt,
9361 ada_evaluate_subexp (NULL, exp, pos,
9362 EVAL_NORMAL));
9363
9364 value_free_to_mark (mark);
9365}
9366
9367/* Assuming that LHS represents an lvalue having a record or array
9368 type, and EXP->ELTS[*POS] is an OP_AGGREGATE, evaluate an assignment
9369 of that aggregate's value to LHS, advancing *POS past the
9370 aggregate. NOSIDE is as for evaluate_subexp. CONTAINER is an
9371 lvalue containing LHS (possibly LHS itself). Does not modify
9372 the inferior's memory, nor does it modify the contents of
0963b4bd 9373 LHS (unless == CONTAINER). Returns the modified CONTAINER. */
52ce6436
PH
9374
9375static struct value *
9376assign_aggregate (struct value *container,
9377 struct value *lhs, struct expression *exp,
9378 int *pos, enum noside noside)
9379{
9380 struct type *lhs_type;
9381 int n = exp->elts[*pos+1].longconst;
9382 LONGEST low_index, high_index;
9383 int num_specs;
9384 LONGEST *indices;
9385 int max_indices, num_indices;
52ce6436 9386 int i;
52ce6436
PH
9387
9388 *pos += 3;
9389 if (noside != EVAL_NORMAL)
9390 {
52ce6436
PH
9391 for (i = 0; i < n; i += 1)
9392 ada_evaluate_subexp (NULL, exp, pos, noside);
9393 return container;
9394 }
9395
9396 container = ada_coerce_ref (container);
9397 if (ada_is_direct_array_type (value_type (container)))
9398 container = ada_coerce_to_simple_array (container);
9399 lhs = ada_coerce_ref (lhs);
9400 if (!deprecated_value_modifiable (lhs))
9401 error (_("Left operand of assignment is not a modifiable lvalue."));
9402
9403 lhs_type = value_type (lhs);
9404 if (ada_is_direct_array_type (lhs_type))
9405 {
9406 lhs = ada_coerce_to_simple_array (lhs);
9407 lhs_type = value_type (lhs);
9408 low_index = TYPE_ARRAY_LOWER_BOUND_VALUE (lhs_type);
9409 high_index = TYPE_ARRAY_UPPER_BOUND_VALUE (lhs_type);
52ce6436
PH
9410 }
9411 else if (TYPE_CODE (lhs_type) == TYPE_CODE_STRUCT)
9412 {
9413 low_index = 0;
9414 high_index = num_visible_fields (lhs_type) - 1;
52ce6436
PH
9415 }
9416 else
9417 error (_("Left-hand side must be array or record."));
9418
9419 num_specs = num_component_specs (exp, *pos - 3);
9420 max_indices = 4 * num_specs + 4;
9421 indices = alloca (max_indices * sizeof (indices[0]));
9422 indices[0] = indices[1] = low_index - 1;
9423 indices[2] = indices[3] = high_index + 1;
9424 num_indices = 4;
9425
9426 for (i = 0; i < n; i += 1)
9427 {
9428 switch (exp->elts[*pos].opcode)
9429 {
1fbf5ada
JB
9430 case OP_CHOICES:
9431 aggregate_assign_from_choices (container, lhs, exp, pos, indices,
9432 &num_indices, max_indices,
9433 low_index, high_index);
9434 break;
9435 case OP_POSITIONAL:
9436 aggregate_assign_positional (container, lhs, exp, pos, indices,
52ce6436
PH
9437 &num_indices, max_indices,
9438 low_index, high_index);
1fbf5ada
JB
9439 break;
9440 case OP_OTHERS:
9441 if (i != n-1)
9442 error (_("Misplaced 'others' clause"));
9443 aggregate_assign_others (container, lhs, exp, pos, indices,
9444 num_indices, low_index, high_index);
9445 break;
9446 default:
9447 error (_("Internal error: bad aggregate clause"));
52ce6436
PH
9448 }
9449 }
9450
9451 return container;
9452}
9453
9454/* Assign into the component of LHS indexed by the OP_POSITIONAL
9455 construct at *POS, updating *POS past the construct, given that
9456 the positions are relative to lower bound LOW, where HIGH is the
9457 upper bound. Record the position in INDICES[0 .. MAX_INDICES-1]
9458 updating *NUM_INDICES as needed. CONTAINER is as for
0963b4bd 9459 assign_aggregate. */
52ce6436
PH
9460static void
9461aggregate_assign_positional (struct value *container,
9462 struct value *lhs, struct expression *exp,
9463 int *pos, LONGEST *indices, int *num_indices,
9464 int max_indices, LONGEST low, LONGEST high)
9465{
9466 LONGEST ind = longest_to_int (exp->elts[*pos + 1].longconst) + low;
9467
9468 if (ind - 1 == high)
e1d5a0d2 9469 warning (_("Extra components in aggregate ignored."));
52ce6436
PH
9470 if (ind <= high)
9471 {
9472 add_component_interval (ind, ind, indices, num_indices, max_indices);
9473 *pos += 3;
9474 assign_component (container, lhs, ind, exp, pos);
9475 }
9476 else
9477 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
9478}
9479
9480/* Assign into the components of LHS indexed by the OP_CHOICES
9481 construct at *POS, updating *POS past the construct, given that
9482 the allowable indices are LOW..HIGH. Record the indices assigned
9483 to in INDICES[0 .. MAX_INDICES-1], updating *NUM_INDICES as
0963b4bd 9484 needed. CONTAINER is as for assign_aggregate. */
52ce6436
PH
9485static void
9486aggregate_assign_from_choices (struct value *container,
9487 struct value *lhs, struct expression *exp,
9488 int *pos, LONGEST *indices, int *num_indices,
9489 int max_indices, LONGEST low, LONGEST high)
9490{
9491 int j;
9492 int n_choices = longest_to_int (exp->elts[*pos+1].longconst);
9493 int choice_pos, expr_pc;
9494 int is_array = ada_is_direct_array_type (value_type (lhs));
9495
9496 choice_pos = *pos += 3;
9497
9498 for (j = 0; j < n_choices; j += 1)
9499 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
9500 expr_pc = *pos;
9501 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
9502
9503 for (j = 0; j < n_choices; j += 1)
9504 {
9505 LONGEST lower, upper;
9506 enum exp_opcode op = exp->elts[choice_pos].opcode;
5b4ee69b 9507
52ce6436
PH
9508 if (op == OP_DISCRETE_RANGE)
9509 {
9510 choice_pos += 1;
9511 lower = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
9512 EVAL_NORMAL));
9513 upper = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
9514 EVAL_NORMAL));
9515 }
9516 else if (is_array)
9517 {
9518 lower = value_as_long (ada_evaluate_subexp (NULL, exp, &choice_pos,
9519 EVAL_NORMAL));
9520 upper = lower;
9521 }
9522 else
9523 {
9524 int ind;
0d5cff50 9525 const char *name;
5b4ee69b 9526
52ce6436
PH
9527 switch (op)
9528 {
9529 case OP_NAME:
9530 name = &exp->elts[choice_pos + 2].string;
9531 break;
9532 case OP_VAR_VALUE:
9533 name = SYMBOL_NATURAL_NAME (exp->elts[choice_pos + 2].symbol);
9534 break;
9535 default:
9536 error (_("Invalid record component association."));
9537 }
9538 ada_evaluate_subexp (NULL, exp, &choice_pos, EVAL_SKIP);
9539 ind = 0;
9540 if (! find_struct_field (name, value_type (lhs), 0,
9541 NULL, NULL, NULL, NULL, &ind))
9542 error (_("Unknown component name: %s."), name);
9543 lower = upper = ind;
9544 }
9545
9546 if (lower <= upper && (lower < low || upper > high))
9547 error (_("Index in component association out of bounds."));
9548
9549 add_component_interval (lower, upper, indices, num_indices,
9550 max_indices);
9551 while (lower <= upper)
9552 {
9553 int pos1;
5b4ee69b 9554
52ce6436
PH
9555 pos1 = expr_pc;
9556 assign_component (container, lhs, lower, exp, &pos1);
9557 lower += 1;
9558 }
9559 }
9560}
9561
9562/* Assign the value of the expression in the OP_OTHERS construct in
9563 EXP at *POS into the components of LHS indexed from LOW .. HIGH that
9564 have not been previously assigned. The index intervals already assigned
9565 are in INDICES[0 .. NUM_INDICES-1]. Updates *POS to after the
0963b4bd 9566 OP_OTHERS clause. CONTAINER is as for assign_aggregate. */
52ce6436
PH
9567static void
9568aggregate_assign_others (struct value *container,
9569 struct value *lhs, struct expression *exp,
9570 int *pos, LONGEST *indices, int num_indices,
9571 LONGEST low, LONGEST high)
9572{
9573 int i;
5ce64950 9574 int expr_pc = *pos + 1;
52ce6436
PH
9575
9576 for (i = 0; i < num_indices - 2; i += 2)
9577 {
9578 LONGEST ind;
5b4ee69b 9579
52ce6436
PH
9580 for (ind = indices[i + 1] + 1; ind < indices[i + 2]; ind += 1)
9581 {
5ce64950 9582 int localpos;
5b4ee69b 9583
5ce64950
MS
9584 localpos = expr_pc;
9585 assign_component (container, lhs, ind, exp, &localpos);
52ce6436
PH
9586 }
9587 }
9588 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
9589}
9590
9591/* Add the interval [LOW .. HIGH] to the sorted set of intervals
9592 [ INDICES[0] .. INDICES[1] ],..., [ INDICES[*SIZE-2] .. INDICES[*SIZE-1] ],
9593 modifying *SIZE as needed. It is an error if *SIZE exceeds
9594 MAX_SIZE. The resulting intervals do not overlap. */
9595static void
9596add_component_interval (LONGEST low, LONGEST high,
9597 LONGEST* indices, int *size, int max_size)
9598{
9599 int i, j;
5b4ee69b 9600
52ce6436
PH
9601 for (i = 0; i < *size; i += 2) {
9602 if (high >= indices[i] && low <= indices[i + 1])
9603 {
9604 int kh;
5b4ee69b 9605
52ce6436
PH
9606 for (kh = i + 2; kh < *size; kh += 2)
9607 if (high < indices[kh])
9608 break;
9609 if (low < indices[i])
9610 indices[i] = low;
9611 indices[i + 1] = indices[kh - 1];
9612 if (high > indices[i + 1])
9613 indices[i + 1] = high;
9614 memcpy (indices + i + 2, indices + kh, *size - kh);
9615 *size -= kh - i - 2;
9616 return;
9617 }
9618 else if (high < indices[i])
9619 break;
9620 }
9621
9622 if (*size == max_size)
9623 error (_("Internal error: miscounted aggregate components."));
9624 *size += 2;
9625 for (j = *size-1; j >= i+2; j -= 1)
9626 indices[j] = indices[j - 2];
9627 indices[i] = low;
9628 indices[i + 1] = high;
9629}
9630
6e48bd2c
JB
9631/* Perform and Ada cast of ARG2 to type TYPE if the type of ARG2
9632 is different. */
9633
9634static struct value *
9635ada_value_cast (struct type *type, struct value *arg2, enum noside noside)
9636{
9637 if (type == ada_check_typedef (value_type (arg2)))
9638 return arg2;
9639
9640 if (ada_is_fixed_point_type (type))
9641 return (cast_to_fixed (type, arg2));
9642
9643 if (ada_is_fixed_point_type (value_type (arg2)))
a53b7a21 9644 return cast_from_fixed (type, arg2);
6e48bd2c
JB
9645
9646 return value_cast (type, arg2);
9647}
9648
284614f0
JB
9649/* Evaluating Ada expressions, and printing their result.
9650 ------------------------------------------------------
9651
21649b50
JB
9652 1. Introduction:
9653 ----------------
9654
284614f0
JB
9655 We usually evaluate an Ada expression in order to print its value.
9656 We also evaluate an expression in order to print its type, which
9657 happens during the EVAL_AVOID_SIDE_EFFECTS phase of the evaluation,
9658 but we'll focus mostly on the EVAL_NORMAL phase. In practice, the
9659 EVAL_AVOID_SIDE_EFFECTS phase allows us to simplify certain aspects of
9660 the evaluation compared to the EVAL_NORMAL, but is otherwise very
9661 similar.
9662
9663 Evaluating expressions is a little more complicated for Ada entities
9664 than it is for entities in languages such as C. The main reason for
9665 this is that Ada provides types whose definition might be dynamic.
9666 One example of such types is variant records. Or another example
9667 would be an array whose bounds can only be known at run time.
9668
9669 The following description is a general guide as to what should be
9670 done (and what should NOT be done) in order to evaluate an expression
9671 involving such types, and when. This does not cover how the semantic
9672 information is encoded by GNAT as this is covered separatly. For the
9673 document used as the reference for the GNAT encoding, see exp_dbug.ads
9674 in the GNAT sources.
9675
9676 Ideally, we should embed each part of this description next to its
9677 associated code. Unfortunately, the amount of code is so vast right
9678 now that it's hard to see whether the code handling a particular
9679 situation might be duplicated or not. One day, when the code is
9680 cleaned up, this guide might become redundant with the comments
9681 inserted in the code, and we might want to remove it.
9682
21649b50
JB
9683 2. ``Fixing'' an Entity, the Simple Case:
9684 -----------------------------------------
9685
284614f0
JB
9686 When evaluating Ada expressions, the tricky issue is that they may
9687 reference entities whose type contents and size are not statically
9688 known. Consider for instance a variant record:
9689
9690 type Rec (Empty : Boolean := True) is record
9691 case Empty is
9692 when True => null;
9693 when False => Value : Integer;
9694 end case;
9695 end record;
9696 Yes : Rec := (Empty => False, Value => 1);
9697 No : Rec := (empty => True);
9698
9699 The size and contents of that record depends on the value of the
9700 descriminant (Rec.Empty). At this point, neither the debugging
9701 information nor the associated type structure in GDB are able to
9702 express such dynamic types. So what the debugger does is to create
9703 "fixed" versions of the type that applies to the specific object.
9704 We also informally refer to this opperation as "fixing" an object,
9705 which means creating its associated fixed type.
9706
9707 Example: when printing the value of variable "Yes" above, its fixed
9708 type would look like this:
9709
9710 type Rec is record
9711 Empty : Boolean;
9712 Value : Integer;
9713 end record;
9714
9715 On the other hand, if we printed the value of "No", its fixed type
9716 would become:
9717
9718 type Rec is record
9719 Empty : Boolean;
9720 end record;
9721
9722 Things become a little more complicated when trying to fix an entity
9723 with a dynamic type that directly contains another dynamic type,
9724 such as an array of variant records, for instance. There are
9725 two possible cases: Arrays, and records.
9726
21649b50
JB
9727 3. ``Fixing'' Arrays:
9728 ---------------------
9729
9730 The type structure in GDB describes an array in terms of its bounds,
9731 and the type of its elements. By design, all elements in the array
9732 have the same type and we cannot represent an array of variant elements
9733 using the current type structure in GDB. When fixing an array,
9734 we cannot fix the array element, as we would potentially need one
9735 fixed type per element of the array. As a result, the best we can do
9736 when fixing an array is to produce an array whose bounds and size
9737 are correct (allowing us to read it from memory), but without having
9738 touched its element type. Fixing each element will be done later,
9739 when (if) necessary.
9740
9741 Arrays are a little simpler to handle than records, because the same
9742 amount of memory is allocated for each element of the array, even if
1b536f04 9743 the amount of space actually used by each element differs from element
21649b50 9744 to element. Consider for instance the following array of type Rec:
284614f0
JB
9745
9746 type Rec_Array is array (1 .. 2) of Rec;
9747
1b536f04
JB
9748 The actual amount of memory occupied by each element might be different
9749 from element to element, depending on the value of their discriminant.
21649b50 9750 But the amount of space reserved for each element in the array remains
1b536f04 9751 fixed regardless. So we simply need to compute that size using
21649b50
JB
9752 the debugging information available, from which we can then determine
9753 the array size (we multiply the number of elements of the array by
9754 the size of each element).
9755
9756 The simplest case is when we have an array of a constrained element
9757 type. For instance, consider the following type declarations:
9758
9759 type Bounded_String (Max_Size : Integer) is
9760 Length : Integer;
9761 Buffer : String (1 .. Max_Size);
9762 end record;
9763 type Bounded_String_Array is array (1 ..2) of Bounded_String (80);
9764
9765 In this case, the compiler describes the array as an array of
9766 variable-size elements (identified by its XVS suffix) for which
9767 the size can be read in the parallel XVZ variable.
9768
9769 In the case of an array of an unconstrained element type, the compiler
9770 wraps the array element inside a private PAD type. This type should not
9771 be shown to the user, and must be "unwrap"'ed before printing. Note
284614f0
JB
9772 that we also use the adjective "aligner" in our code to designate
9773 these wrapper types.
9774
1b536f04 9775 In some cases, the size allocated for each element is statically
21649b50
JB
9776 known. In that case, the PAD type already has the correct size,
9777 and the array element should remain unfixed.
9778
9779 But there are cases when this size is not statically known.
9780 For instance, assuming that "Five" is an integer variable:
284614f0
JB
9781
9782 type Dynamic is array (1 .. Five) of Integer;
9783 type Wrapper (Has_Length : Boolean := False) is record
9784 Data : Dynamic;
9785 case Has_Length is
9786 when True => Length : Integer;
9787 when False => null;
9788 end case;
9789 end record;
9790 type Wrapper_Array is array (1 .. 2) of Wrapper;
9791
9792 Hello : Wrapper_Array := (others => (Has_Length => True,
9793 Data => (others => 17),
9794 Length => 1));
9795
9796
9797 The debugging info would describe variable Hello as being an
9798 array of a PAD type. The size of that PAD type is not statically
9799 known, but can be determined using a parallel XVZ variable.
9800 In that case, a copy of the PAD type with the correct size should
9801 be used for the fixed array.
9802
21649b50
JB
9803 3. ``Fixing'' record type objects:
9804 ----------------------------------
9805
9806 Things are slightly different from arrays in the case of dynamic
284614f0
JB
9807 record types. In this case, in order to compute the associated
9808 fixed type, we need to determine the size and offset of each of
9809 its components. This, in turn, requires us to compute the fixed
9810 type of each of these components.
9811
9812 Consider for instance the example:
9813
9814 type Bounded_String (Max_Size : Natural) is record
9815 Str : String (1 .. Max_Size);
9816 Length : Natural;
9817 end record;
9818 My_String : Bounded_String (Max_Size => 10);
9819
9820 In that case, the position of field "Length" depends on the size
9821 of field Str, which itself depends on the value of the Max_Size
21649b50 9822 discriminant. In order to fix the type of variable My_String,
284614f0
JB
9823 we need to fix the type of field Str. Therefore, fixing a variant
9824 record requires us to fix each of its components.
9825
9826 However, if a component does not have a dynamic size, the component
9827 should not be fixed. In particular, fields that use a PAD type
9828 should not fixed. Here is an example where this might happen
9829 (assuming type Rec above):
9830
9831 type Container (Big : Boolean) is record
9832 First : Rec;
9833 After : Integer;
9834 case Big is
9835 when True => Another : Integer;
9836 when False => null;
9837 end case;
9838 end record;
9839 My_Container : Container := (Big => False,
9840 First => (Empty => True),
9841 After => 42);
9842
9843 In that example, the compiler creates a PAD type for component First,
9844 whose size is constant, and then positions the component After just
9845 right after it. The offset of component After is therefore constant
9846 in this case.
9847
9848 The debugger computes the position of each field based on an algorithm
9849 that uses, among other things, the actual position and size of the field
21649b50
JB
9850 preceding it. Let's now imagine that the user is trying to print
9851 the value of My_Container. If the type fixing was recursive, we would
284614f0
JB
9852 end up computing the offset of field After based on the size of the
9853 fixed version of field First. And since in our example First has
9854 only one actual field, the size of the fixed type is actually smaller
9855 than the amount of space allocated to that field, and thus we would
9856 compute the wrong offset of field After.
9857
21649b50
JB
9858 To make things more complicated, we need to watch out for dynamic
9859 components of variant records (identified by the ___XVL suffix in
9860 the component name). Even if the target type is a PAD type, the size
9861 of that type might not be statically known. So the PAD type needs
9862 to be unwrapped and the resulting type needs to be fixed. Otherwise,
9863 we might end up with the wrong size for our component. This can be
9864 observed with the following type declarations:
284614f0
JB
9865
9866 type Octal is new Integer range 0 .. 7;
9867 type Octal_Array is array (Positive range <>) of Octal;
9868 pragma Pack (Octal_Array);
9869
9870 type Octal_Buffer (Size : Positive) is record
9871 Buffer : Octal_Array (1 .. Size);
9872 Length : Integer;
9873 end record;
9874
9875 In that case, Buffer is a PAD type whose size is unset and needs
9876 to be computed by fixing the unwrapped type.
9877
21649b50
JB
9878 4. When to ``Fix'' un-``Fixed'' sub-elements of an entity:
9879 ----------------------------------------------------------
9880
9881 Lastly, when should the sub-elements of an entity that remained unfixed
284614f0
JB
9882 thus far, be actually fixed?
9883
9884 The answer is: Only when referencing that element. For instance
9885 when selecting one component of a record, this specific component
9886 should be fixed at that point in time. Or when printing the value
9887 of a record, each component should be fixed before its value gets
9888 printed. Similarly for arrays, the element of the array should be
9889 fixed when printing each element of the array, or when extracting
9890 one element out of that array. On the other hand, fixing should
9891 not be performed on the elements when taking a slice of an array!
9892
9893 Note that one of the side-effects of miscomputing the offset and
9894 size of each field is that we end up also miscomputing the size
9895 of the containing type. This can have adverse results when computing
9896 the value of an entity. GDB fetches the value of an entity based
9897 on the size of its type, and thus a wrong size causes GDB to fetch
9898 the wrong amount of memory. In the case where the computed size is
9899 too small, GDB fetches too little data to print the value of our
9900 entiry. Results in this case as unpredicatble, as we usually read
9901 past the buffer containing the data =:-o. */
9902
9903/* Implement the evaluate_exp routine in the exp_descriptor structure
9904 for the Ada language. */
9905
52ce6436 9906static struct value *
ebf56fd3 9907ada_evaluate_subexp (struct type *expect_type, struct expression *exp,
4c4b4cd2 9908 int *pos, enum noside noside)
14f9c5c9
AS
9909{
9910 enum exp_opcode op;
b5385fc0 9911 int tem;
14f9c5c9 9912 int pc;
5ec18f2b 9913 int preeval_pos;
14f9c5c9
AS
9914 struct value *arg1 = NULL, *arg2 = NULL, *arg3;
9915 struct type *type;
52ce6436 9916 int nargs, oplen;
d2e4a39e 9917 struct value **argvec;
14f9c5c9 9918
d2e4a39e
AS
9919 pc = *pos;
9920 *pos += 1;
14f9c5c9
AS
9921 op = exp->elts[pc].opcode;
9922
d2e4a39e 9923 switch (op)
14f9c5c9
AS
9924 {
9925 default:
9926 *pos -= 1;
6e48bd2c 9927 arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside);
ca1f964d
JG
9928
9929 if (noside == EVAL_NORMAL)
9930 arg1 = unwrap_value (arg1);
6e48bd2c
JB
9931
9932 /* If evaluating an OP_DOUBLE and an EXPECT_TYPE was provided,
9933 then we need to perform the conversion manually, because
9934 evaluate_subexp_standard doesn't do it. This conversion is
9935 necessary in Ada because the different kinds of float/fixed
9936 types in Ada have different representations.
9937
9938 Similarly, we need to perform the conversion from OP_LONG
9939 ourselves. */
9940 if ((op == OP_DOUBLE || op == OP_LONG) && expect_type != NULL)
9941 arg1 = ada_value_cast (expect_type, arg1, noside);
9942
9943 return arg1;
4c4b4cd2
PH
9944
9945 case OP_STRING:
9946 {
76a01679 9947 struct value *result;
5b4ee69b 9948
76a01679
JB
9949 *pos -= 1;
9950 result = evaluate_subexp_standard (expect_type, exp, pos, noside);
9951 /* The result type will have code OP_STRING, bashed there from
9952 OP_ARRAY. Bash it back. */
df407dfe
AC
9953 if (TYPE_CODE (value_type (result)) == TYPE_CODE_STRING)
9954 TYPE_CODE (value_type (result)) = TYPE_CODE_ARRAY;
76a01679 9955 return result;
4c4b4cd2 9956 }
14f9c5c9
AS
9957
9958 case UNOP_CAST:
9959 (*pos) += 2;
9960 type = exp->elts[pc + 1].type;
9961 arg1 = evaluate_subexp (type, exp, pos, noside);
9962 if (noside == EVAL_SKIP)
4c4b4cd2 9963 goto nosideret;
6e48bd2c 9964 arg1 = ada_value_cast (type, arg1, noside);
14f9c5c9
AS
9965 return arg1;
9966
4c4b4cd2
PH
9967 case UNOP_QUAL:
9968 (*pos) += 2;
9969 type = exp->elts[pc + 1].type;
9970 return ada_evaluate_subexp (type, exp, pos, noside);
9971
14f9c5c9
AS
9972 case BINOP_ASSIGN:
9973 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
52ce6436
PH
9974 if (exp->elts[*pos].opcode == OP_AGGREGATE)
9975 {
9976 arg1 = assign_aggregate (arg1, arg1, exp, pos, noside);
9977 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
9978 return arg1;
9979 return ada_value_assign (arg1, arg1);
9980 }
003f3813
JB
9981 /* Force the evaluation of the rhs ARG2 to the type of the lhs ARG1,
9982 except if the lhs of our assignment is a convenience variable.
9983 In the case of assigning to a convenience variable, the lhs
9984 should be exactly the result of the evaluation of the rhs. */
9985 type = value_type (arg1);
9986 if (VALUE_LVAL (arg1) == lval_internalvar)
9987 type = NULL;
9988 arg2 = evaluate_subexp (type, exp, pos, noside);
14f9c5c9 9989 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
4c4b4cd2 9990 return arg1;
df407dfe
AC
9991 if (ada_is_fixed_point_type (value_type (arg1)))
9992 arg2 = cast_to_fixed (value_type (arg1), arg2);
9993 else if (ada_is_fixed_point_type (value_type (arg2)))
76a01679 9994 error
323e0a4a 9995 (_("Fixed-point values must be assigned to fixed-point variables"));
d2e4a39e 9996 else
df407dfe 9997 arg2 = coerce_for_assign (value_type (arg1), arg2);
4c4b4cd2 9998 return ada_value_assign (arg1, arg2);
14f9c5c9
AS
9999
10000 case BINOP_ADD:
10001 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
10002 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
10003 if (noside == EVAL_SKIP)
4c4b4cd2 10004 goto nosideret;
2ac8a782
JB
10005 if (TYPE_CODE (value_type (arg1)) == TYPE_CODE_PTR)
10006 return (value_from_longest
10007 (value_type (arg1),
10008 value_as_long (arg1) + value_as_long (arg2)));
c40cc657
JB
10009 if (TYPE_CODE (value_type (arg2)) == TYPE_CODE_PTR)
10010 return (value_from_longest
10011 (value_type (arg2),
10012 value_as_long (arg1) + value_as_long (arg2)));
df407dfe
AC
10013 if ((ada_is_fixed_point_type (value_type (arg1))
10014 || ada_is_fixed_point_type (value_type (arg2)))
10015 && value_type (arg1) != value_type (arg2))
323e0a4a 10016 error (_("Operands of fixed-point addition must have the same type"));
b7789565
JB
10017 /* Do the addition, and cast the result to the type of the first
10018 argument. We cannot cast the result to a reference type, so if
10019 ARG1 is a reference type, find its underlying type. */
10020 type = value_type (arg1);
10021 while (TYPE_CODE (type) == TYPE_CODE_REF)
10022 type = TYPE_TARGET_TYPE (type);
f44316fa 10023 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
89eef114 10024 return value_cast (type, value_binop (arg1, arg2, BINOP_ADD));
14f9c5c9
AS
10025
10026 case BINOP_SUB:
10027 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
10028 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
10029 if (noside == EVAL_SKIP)
4c4b4cd2 10030 goto nosideret;
2ac8a782
JB
10031 if (TYPE_CODE (value_type (arg1)) == TYPE_CODE_PTR)
10032 return (value_from_longest
10033 (value_type (arg1),
10034 value_as_long (arg1) - value_as_long (arg2)));
c40cc657
JB
10035 if (TYPE_CODE (value_type (arg2)) == TYPE_CODE_PTR)
10036 return (value_from_longest
10037 (value_type (arg2),
10038 value_as_long (arg1) - value_as_long (arg2)));
df407dfe
AC
10039 if ((ada_is_fixed_point_type (value_type (arg1))
10040 || ada_is_fixed_point_type (value_type (arg2)))
10041 && value_type (arg1) != value_type (arg2))
0963b4bd
MS
10042 error (_("Operands of fixed-point subtraction "
10043 "must have the same type"));
b7789565
JB
10044 /* Do the substraction, and cast the result to the type of the first
10045 argument. We cannot cast the result to a reference type, so if
10046 ARG1 is a reference type, find its underlying type. */
10047 type = value_type (arg1);
10048 while (TYPE_CODE (type) == TYPE_CODE_REF)
10049 type = TYPE_TARGET_TYPE (type);
f44316fa 10050 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
89eef114 10051 return value_cast (type, value_binop (arg1, arg2, BINOP_SUB));
14f9c5c9
AS
10052
10053 case BINOP_MUL:
10054 case BINOP_DIV:
e1578042
JB
10055 case BINOP_REM:
10056 case BINOP_MOD:
14f9c5c9
AS
10057 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10058 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10059 if (noside == EVAL_SKIP)
4c4b4cd2 10060 goto nosideret;
e1578042 10061 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
9c2be529
JB
10062 {
10063 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10064 return value_zero (value_type (arg1), not_lval);
10065 }
14f9c5c9 10066 else
4c4b4cd2 10067 {
a53b7a21 10068 type = builtin_type (exp->gdbarch)->builtin_double;
df407dfe 10069 if (ada_is_fixed_point_type (value_type (arg1)))
a53b7a21 10070 arg1 = cast_from_fixed (type, arg1);
df407dfe 10071 if (ada_is_fixed_point_type (value_type (arg2)))
a53b7a21 10072 arg2 = cast_from_fixed (type, arg2);
f44316fa 10073 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
4c4b4cd2
PH
10074 return ada_value_binop (arg1, arg2, op);
10075 }
10076
4c4b4cd2
PH
10077 case BINOP_EQUAL:
10078 case BINOP_NOTEQUAL:
14f9c5c9 10079 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
df407dfe 10080 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
14f9c5c9 10081 if (noside == EVAL_SKIP)
76a01679 10082 goto nosideret;
4c4b4cd2 10083 if (noside == EVAL_AVOID_SIDE_EFFECTS)
76a01679 10084 tem = 0;
4c4b4cd2 10085 else
f44316fa
UW
10086 {
10087 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10088 tem = ada_value_equal (arg1, arg2);
10089 }
4c4b4cd2 10090 if (op == BINOP_NOTEQUAL)
76a01679 10091 tem = !tem;
fbb06eb1
UW
10092 type = language_bool_type (exp->language_defn, exp->gdbarch);
10093 return value_from_longest (type, (LONGEST) tem);
4c4b4cd2
PH
10094
10095 case UNOP_NEG:
10096 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10097 if (noside == EVAL_SKIP)
10098 goto nosideret;
df407dfe
AC
10099 else if (ada_is_fixed_point_type (value_type (arg1)))
10100 return value_cast (value_type (arg1), value_neg (arg1));
14f9c5c9 10101 else
f44316fa
UW
10102 {
10103 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
10104 return value_neg (arg1);
10105 }
4c4b4cd2 10106
2330c6c6
JB
10107 case BINOP_LOGICAL_AND:
10108 case BINOP_LOGICAL_OR:
10109 case UNOP_LOGICAL_NOT:
000d5124
JB
10110 {
10111 struct value *val;
10112
10113 *pos -= 1;
10114 val = evaluate_subexp_standard (expect_type, exp, pos, noside);
fbb06eb1
UW
10115 type = language_bool_type (exp->language_defn, exp->gdbarch);
10116 return value_cast (type, val);
000d5124 10117 }
2330c6c6
JB
10118
10119 case BINOP_BITWISE_AND:
10120 case BINOP_BITWISE_IOR:
10121 case BINOP_BITWISE_XOR:
000d5124
JB
10122 {
10123 struct value *val;
10124
10125 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
10126 *pos = pc;
10127 val = evaluate_subexp_standard (expect_type, exp, pos, noside);
10128
10129 return value_cast (value_type (arg1), val);
10130 }
2330c6c6 10131
14f9c5c9
AS
10132 case OP_VAR_VALUE:
10133 *pos -= 1;
6799def4 10134
14f9c5c9 10135 if (noside == EVAL_SKIP)
4c4b4cd2
PH
10136 {
10137 *pos += 4;
10138 goto nosideret;
10139 }
da5c522f
JB
10140
10141 if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
76a01679
JB
10142 /* Only encountered when an unresolved symbol occurs in a
10143 context other than a function call, in which case, it is
52ce6436 10144 invalid. */
323e0a4a 10145 error (_("Unexpected unresolved symbol, %s, during evaluation"),
4c4b4cd2 10146 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
da5c522f
JB
10147
10148 if (noside == EVAL_AVOID_SIDE_EFFECTS)
4c4b4cd2 10149 {
0c1f74cf 10150 type = static_unwrap_type (SYMBOL_TYPE (exp->elts[pc + 2].symbol));
31dbc1c5
JB
10151 /* Check to see if this is a tagged type. We also need to handle
10152 the case where the type is a reference to a tagged type, but
10153 we have to be careful to exclude pointers to tagged types.
10154 The latter should be shown as usual (as a pointer), whereas
10155 a reference should mostly be transparent to the user. */
10156 if (ada_is_tagged_type (type, 0)
023db19c 10157 || (TYPE_CODE (type) == TYPE_CODE_REF
31dbc1c5 10158 && ada_is_tagged_type (TYPE_TARGET_TYPE (type), 0)))
0d72a7c3
JB
10159 {
10160 /* Tagged types are a little special in the fact that the real
10161 type is dynamic and can only be determined by inspecting the
10162 object's tag. This means that we need to get the object's
10163 value first (EVAL_NORMAL) and then extract the actual object
10164 type from its tag.
10165
10166 Note that we cannot skip the final step where we extract
10167 the object type from its tag, because the EVAL_NORMAL phase
10168 results in dynamic components being resolved into fixed ones.
10169 This can cause problems when trying to print the type
10170 description of tagged types whose parent has a dynamic size:
10171 We use the type name of the "_parent" component in order
10172 to print the name of the ancestor type in the type description.
10173 If that component had a dynamic size, the resolution into
10174 a fixed type would result in the loss of that type name,
10175 thus preventing us from printing the name of the ancestor
10176 type in the type description. */
10177 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_NORMAL);
10178
10179 if (TYPE_CODE (type) != TYPE_CODE_REF)
10180 {
10181 struct type *actual_type;
10182
10183 actual_type = type_from_tag (ada_value_tag (arg1));
10184 if (actual_type == NULL)
10185 /* If, for some reason, we were unable to determine
10186 the actual type from the tag, then use the static
10187 approximation that we just computed as a fallback.
10188 This can happen if the debugging information is
10189 incomplete, for instance. */
10190 actual_type = type;
10191 return value_zero (actual_type, not_lval);
10192 }
10193 else
10194 {
10195 /* In the case of a ref, ada_coerce_ref takes care
10196 of determining the actual type. But the evaluation
10197 should return a ref as it should be valid to ask
10198 for its address; so rebuild a ref after coerce. */
10199 arg1 = ada_coerce_ref (arg1);
10200 return value_ref (arg1);
10201 }
10202 }
0c1f74cf 10203
84754697
JB
10204 /* Records and unions for which GNAT encodings have been
10205 generated need to be statically fixed as well.
10206 Otherwise, non-static fixing produces a type where
10207 all dynamic properties are removed, which prevents "ptype"
10208 from being able to completely describe the type.
10209 For instance, a case statement in a variant record would be
10210 replaced by the relevant components based on the actual
10211 value of the discriminants. */
10212 if ((TYPE_CODE (type) == TYPE_CODE_STRUCT
10213 && dynamic_template_type (type) != NULL)
10214 || (TYPE_CODE (type) == TYPE_CODE_UNION
10215 && ada_find_parallel_type (type, "___XVU") != NULL))
10216 {
10217 *pos += 4;
10218 return value_zero (to_static_fixed_type (type), not_lval);
10219 }
4c4b4cd2 10220 }
da5c522f
JB
10221
10222 arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside);
10223 return ada_to_fixed_value (arg1);
4c4b4cd2
PH
10224
10225 case OP_FUNCALL:
10226 (*pos) += 2;
10227
10228 /* Allocate arg vector, including space for the function to be
10229 called in argvec[0] and a terminating NULL. */
10230 nargs = longest_to_int (exp->elts[pc + 1].longconst);
10231 argvec =
10232 (struct value **) alloca (sizeof (struct value *) * (nargs + 2));
10233
10234 if (exp->elts[*pos].opcode == OP_VAR_VALUE
76a01679 10235 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
323e0a4a 10236 error (_("Unexpected unresolved symbol, %s, during evaluation"),
4c4b4cd2
PH
10237 SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol));
10238 else
10239 {
10240 for (tem = 0; tem <= nargs; tem += 1)
10241 argvec[tem] = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10242 argvec[tem] = 0;
10243
10244 if (noside == EVAL_SKIP)
10245 goto nosideret;
10246 }
10247
ad82864c
JB
10248 if (ada_is_constrained_packed_array_type
10249 (desc_base_type (value_type (argvec[0]))))
4c4b4cd2 10250 argvec[0] = ada_coerce_to_simple_array (argvec[0]);
284614f0
JB
10251 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_ARRAY
10252 && TYPE_FIELD_BITSIZE (value_type (argvec[0]), 0) != 0)
10253 /* This is a packed array that has already been fixed, and
10254 therefore already coerced to a simple array. Nothing further
10255 to do. */
10256 ;
df407dfe
AC
10257 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_REF
10258 || (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_ARRAY
76a01679 10259 && VALUE_LVAL (argvec[0]) == lval_memory))
4c4b4cd2
PH
10260 argvec[0] = value_addr (argvec[0]);
10261
df407dfe 10262 type = ada_check_typedef (value_type (argvec[0]));
720d1a40
JB
10263
10264 /* Ada allows us to implicitly dereference arrays when subscripting
8f465ea7
JB
10265 them. So, if this is an array typedef (encoding use for array
10266 access types encoded as fat pointers), strip it now. */
720d1a40
JB
10267 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
10268 type = ada_typedef_target_type (type);
10269
4c4b4cd2
PH
10270 if (TYPE_CODE (type) == TYPE_CODE_PTR)
10271 {
61ee279c 10272 switch (TYPE_CODE (ada_check_typedef (TYPE_TARGET_TYPE (type))))
4c4b4cd2
PH
10273 {
10274 case TYPE_CODE_FUNC:
61ee279c 10275 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
4c4b4cd2
PH
10276 break;
10277 case TYPE_CODE_ARRAY:
10278 break;
10279 case TYPE_CODE_STRUCT:
10280 if (noside != EVAL_AVOID_SIDE_EFFECTS)
10281 argvec[0] = ada_value_ind (argvec[0]);
61ee279c 10282 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
4c4b4cd2
PH
10283 break;
10284 default:
323e0a4a 10285 error (_("cannot subscript or call something of type `%s'"),
df407dfe 10286 ada_type_name (value_type (argvec[0])));
4c4b4cd2
PH
10287 break;
10288 }
10289 }
10290
10291 switch (TYPE_CODE (type))
10292 {
10293 case TYPE_CODE_FUNC:
10294 if (noside == EVAL_AVOID_SIDE_EFFECTS)
c8ea1972
PH
10295 {
10296 struct type *rtype = TYPE_TARGET_TYPE (type);
10297
10298 if (TYPE_GNU_IFUNC (type))
10299 return allocate_value (TYPE_TARGET_TYPE (rtype));
10300 return allocate_value (rtype);
10301 }
4c4b4cd2 10302 return call_function_by_hand (argvec[0], nargs, argvec + 1);
c8ea1972
PH
10303 case TYPE_CODE_INTERNAL_FUNCTION:
10304 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10305 /* We don't know anything about what the internal
10306 function might return, but we have to return
10307 something. */
10308 return value_zero (builtin_type (exp->gdbarch)->builtin_int,
10309 not_lval);
10310 else
10311 return call_internal_function (exp->gdbarch, exp->language_defn,
10312 argvec[0], nargs, argvec + 1);
10313
4c4b4cd2
PH
10314 case TYPE_CODE_STRUCT:
10315 {
10316 int arity;
10317
4c4b4cd2
PH
10318 arity = ada_array_arity (type);
10319 type = ada_array_element_type (type, nargs);
10320 if (type == NULL)
323e0a4a 10321 error (_("cannot subscript or call a record"));
4c4b4cd2 10322 if (arity != nargs)
323e0a4a 10323 error (_("wrong number of subscripts; expecting %d"), arity);
4c4b4cd2 10324 if (noside == EVAL_AVOID_SIDE_EFFECTS)
0a07e705 10325 return value_zero (ada_aligned_type (type), lval_memory);
4c4b4cd2
PH
10326 return
10327 unwrap_value (ada_value_subscript
10328 (argvec[0], nargs, argvec + 1));
10329 }
10330 case TYPE_CODE_ARRAY:
10331 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10332 {
10333 type = ada_array_element_type (type, nargs);
10334 if (type == NULL)
323e0a4a 10335 error (_("element type of array unknown"));
4c4b4cd2 10336 else
0a07e705 10337 return value_zero (ada_aligned_type (type), lval_memory);
4c4b4cd2
PH
10338 }
10339 return
10340 unwrap_value (ada_value_subscript
10341 (ada_coerce_to_simple_array (argvec[0]),
10342 nargs, argvec + 1));
10343 case TYPE_CODE_PTR: /* Pointer to array */
4c4b4cd2
PH
10344 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10345 {
deede10c 10346 type = to_fixed_array_type (TYPE_TARGET_TYPE (type), NULL, 1);
4c4b4cd2
PH
10347 type = ada_array_element_type (type, nargs);
10348 if (type == NULL)
323e0a4a 10349 error (_("element type of array unknown"));
4c4b4cd2 10350 else
0a07e705 10351 return value_zero (ada_aligned_type (type), lval_memory);
4c4b4cd2
PH
10352 }
10353 return
deede10c
JB
10354 unwrap_value (ada_value_ptr_subscript (argvec[0],
10355 nargs, argvec + 1));
4c4b4cd2
PH
10356
10357 default:
e1d5a0d2
PH
10358 error (_("Attempt to index or call something other than an "
10359 "array or function"));
4c4b4cd2
PH
10360 }
10361
10362 case TERNOP_SLICE:
10363 {
10364 struct value *array = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10365 struct value *low_bound_val =
10366 evaluate_subexp (NULL_TYPE, exp, pos, noside);
714e53ab
PH
10367 struct value *high_bound_val =
10368 evaluate_subexp (NULL_TYPE, exp, pos, noside);
10369 LONGEST low_bound;
10370 LONGEST high_bound;
5b4ee69b 10371
994b9211
AC
10372 low_bound_val = coerce_ref (low_bound_val);
10373 high_bound_val = coerce_ref (high_bound_val);
714e53ab
PH
10374 low_bound = pos_atr (low_bound_val);
10375 high_bound = pos_atr (high_bound_val);
963a6417 10376
4c4b4cd2
PH
10377 if (noside == EVAL_SKIP)
10378 goto nosideret;
10379
4c4b4cd2
PH
10380 /* If this is a reference to an aligner type, then remove all
10381 the aligners. */
df407dfe
AC
10382 if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF
10383 && ada_is_aligner_type (TYPE_TARGET_TYPE (value_type (array))))
10384 TYPE_TARGET_TYPE (value_type (array)) =
10385 ada_aligned_type (TYPE_TARGET_TYPE (value_type (array)));
4c4b4cd2 10386
ad82864c 10387 if (ada_is_constrained_packed_array_type (value_type (array)))
323e0a4a 10388 error (_("cannot slice a packed array"));
4c4b4cd2
PH
10389
10390 /* If this is a reference to an array or an array lvalue,
10391 convert to a pointer. */
df407dfe
AC
10392 if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF
10393 || (TYPE_CODE (value_type (array)) == TYPE_CODE_ARRAY
4c4b4cd2
PH
10394 && VALUE_LVAL (array) == lval_memory))
10395 array = value_addr (array);
10396
1265e4aa 10397 if (noside == EVAL_AVOID_SIDE_EFFECTS
61ee279c 10398 && ada_is_array_descriptor_type (ada_check_typedef
df407dfe 10399 (value_type (array))))
0b5d8877 10400 return empty_array (ada_type_of_array (array, 0), low_bound);
4c4b4cd2
PH
10401
10402 array = ada_coerce_to_simple_array_ptr (array);
10403
714e53ab
PH
10404 /* If we have more than one level of pointer indirection,
10405 dereference the value until we get only one level. */
df407dfe
AC
10406 while (TYPE_CODE (value_type (array)) == TYPE_CODE_PTR
10407 && (TYPE_CODE (TYPE_TARGET_TYPE (value_type (array)))
714e53ab
PH
10408 == TYPE_CODE_PTR))
10409 array = value_ind (array);
10410
10411 /* Make sure we really do have an array type before going further,
10412 to avoid a SEGV when trying to get the index type or the target
10413 type later down the road if the debug info generated by
10414 the compiler is incorrect or incomplete. */
df407dfe 10415 if (!ada_is_simple_array_type (value_type (array)))
323e0a4a 10416 error (_("cannot take slice of non-array"));
714e53ab 10417
828292f2
JB
10418 if (TYPE_CODE (ada_check_typedef (value_type (array)))
10419 == TYPE_CODE_PTR)
4c4b4cd2 10420 {
828292f2
JB
10421 struct type *type0 = ada_check_typedef (value_type (array));
10422
0b5d8877 10423 if (high_bound < low_bound || noside == EVAL_AVOID_SIDE_EFFECTS)
828292f2 10424 return empty_array (TYPE_TARGET_TYPE (type0), low_bound);
4c4b4cd2
PH
10425 else
10426 {
10427 struct type *arr_type0 =
828292f2 10428 to_fixed_array_type (TYPE_TARGET_TYPE (type0), NULL, 1);
5b4ee69b 10429
f5938064
JG
10430 return ada_value_slice_from_ptr (array, arr_type0,
10431 longest_to_int (low_bound),
10432 longest_to_int (high_bound));
4c4b4cd2
PH
10433 }
10434 }
10435 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
10436 return array;
10437 else if (high_bound < low_bound)
df407dfe 10438 return empty_array (value_type (array), low_bound);
4c4b4cd2 10439 else
529cad9c
PH
10440 return ada_value_slice (array, longest_to_int (low_bound),
10441 longest_to_int (high_bound));
4c4b4cd2 10442 }
14f9c5c9 10443
4c4b4cd2
PH
10444 case UNOP_IN_RANGE:
10445 (*pos) += 2;
10446 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8008e265 10447 type = check_typedef (exp->elts[pc + 1].type);
14f9c5c9 10448
14f9c5c9 10449 if (noside == EVAL_SKIP)
4c4b4cd2 10450 goto nosideret;
14f9c5c9 10451
4c4b4cd2
PH
10452 switch (TYPE_CODE (type))
10453 {
10454 default:
e1d5a0d2
PH
10455 lim_warning (_("Membership test incompletely implemented; "
10456 "always returns true"));
fbb06eb1
UW
10457 type = language_bool_type (exp->language_defn, exp->gdbarch);
10458 return value_from_longest (type, (LONGEST) 1);
4c4b4cd2
PH
10459
10460 case TYPE_CODE_RANGE:
030b4912
UW
10461 arg2 = value_from_longest (type, TYPE_LOW_BOUND (type));
10462 arg3 = value_from_longest (type, TYPE_HIGH_BOUND (type));
f44316fa
UW
10463 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10464 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
fbb06eb1
UW
10465 type = language_bool_type (exp->language_defn, exp->gdbarch);
10466 return
10467 value_from_longest (type,
4c4b4cd2
PH
10468 (value_less (arg1, arg3)
10469 || value_equal (arg1, arg3))
10470 && (value_less (arg2, arg1)
10471 || value_equal (arg2, arg1)));
10472 }
10473
10474 case BINOP_IN_BOUNDS:
14f9c5c9 10475 (*pos) += 2;
4c4b4cd2
PH
10476 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10477 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
14f9c5c9 10478
4c4b4cd2
PH
10479 if (noside == EVAL_SKIP)
10480 goto nosideret;
14f9c5c9 10481
4c4b4cd2 10482 if (noside == EVAL_AVOID_SIDE_EFFECTS)
fbb06eb1
UW
10483 {
10484 type = language_bool_type (exp->language_defn, exp->gdbarch);
10485 return value_zero (type, not_lval);
10486 }
14f9c5c9 10487
4c4b4cd2 10488 tem = longest_to_int (exp->elts[pc + 1].longconst);
14f9c5c9 10489
1eea4ebd
UW
10490 type = ada_index_type (value_type (arg2), tem, "range");
10491 if (!type)
10492 type = value_type (arg1);
14f9c5c9 10493
1eea4ebd
UW
10494 arg3 = value_from_longest (type, ada_array_bound (arg2, tem, 1));
10495 arg2 = value_from_longest (type, ada_array_bound (arg2, tem, 0));
d2e4a39e 10496
f44316fa
UW
10497 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10498 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
fbb06eb1 10499 type = language_bool_type (exp->language_defn, exp->gdbarch);
4c4b4cd2 10500 return
fbb06eb1 10501 value_from_longest (type,
4c4b4cd2
PH
10502 (value_less (arg1, arg3)
10503 || value_equal (arg1, arg3))
10504 && (value_less (arg2, arg1)
10505 || value_equal (arg2, arg1)));
10506
10507 case TERNOP_IN_RANGE:
10508 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10509 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10510 arg3 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10511
10512 if (noside == EVAL_SKIP)
10513 goto nosideret;
10514
f44316fa
UW
10515 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10516 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
fbb06eb1 10517 type = language_bool_type (exp->language_defn, exp->gdbarch);
4c4b4cd2 10518 return
fbb06eb1 10519 value_from_longest (type,
4c4b4cd2
PH
10520 (value_less (arg1, arg3)
10521 || value_equal (arg1, arg3))
10522 && (value_less (arg2, arg1)
10523 || value_equal (arg2, arg1)));
10524
10525 case OP_ATR_FIRST:
10526 case OP_ATR_LAST:
10527 case OP_ATR_LENGTH:
10528 {
76a01679 10529 struct type *type_arg;
5b4ee69b 10530
76a01679
JB
10531 if (exp->elts[*pos].opcode == OP_TYPE)
10532 {
10533 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
10534 arg1 = NULL;
5bc23cb3 10535 type_arg = check_typedef (exp->elts[pc + 2].type);
76a01679
JB
10536 }
10537 else
10538 {
10539 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10540 type_arg = NULL;
10541 }
10542
10543 if (exp->elts[*pos].opcode != OP_LONG)
323e0a4a 10544 error (_("Invalid operand to '%s"), ada_attribute_name (op));
76a01679
JB
10545 tem = longest_to_int (exp->elts[*pos + 2].longconst);
10546 *pos += 4;
10547
10548 if (noside == EVAL_SKIP)
10549 goto nosideret;
10550
10551 if (type_arg == NULL)
10552 {
10553 arg1 = ada_coerce_ref (arg1);
10554
ad82864c 10555 if (ada_is_constrained_packed_array_type (value_type (arg1)))
76a01679
JB
10556 arg1 = ada_coerce_to_simple_array (arg1);
10557
aa4fb036 10558 if (op == OP_ATR_LENGTH)
1eea4ebd 10559 type = builtin_type (exp->gdbarch)->builtin_int;
aa4fb036
JB
10560 else
10561 {
10562 type = ada_index_type (value_type (arg1), tem,
10563 ada_attribute_name (op));
10564 if (type == NULL)
10565 type = builtin_type (exp->gdbarch)->builtin_int;
10566 }
76a01679
JB
10567
10568 if (noside == EVAL_AVOID_SIDE_EFFECTS)
1eea4ebd 10569 return allocate_value (type);
76a01679
JB
10570
10571 switch (op)
10572 {
10573 default: /* Should never happen. */
323e0a4a 10574 error (_("unexpected attribute encountered"));
76a01679 10575 case OP_ATR_FIRST:
1eea4ebd
UW
10576 return value_from_longest
10577 (type, ada_array_bound (arg1, tem, 0));
76a01679 10578 case OP_ATR_LAST:
1eea4ebd
UW
10579 return value_from_longest
10580 (type, ada_array_bound (arg1, tem, 1));
76a01679 10581 case OP_ATR_LENGTH:
1eea4ebd
UW
10582 return value_from_longest
10583 (type, ada_array_length (arg1, tem));
76a01679
JB
10584 }
10585 }
10586 else if (discrete_type_p (type_arg))
10587 {
10588 struct type *range_type;
0d5cff50 10589 const char *name = ada_type_name (type_arg);
5b4ee69b 10590
76a01679
JB
10591 range_type = NULL;
10592 if (name != NULL && TYPE_CODE (type_arg) != TYPE_CODE_ENUM)
28c85d6c 10593 range_type = to_fixed_range_type (type_arg, NULL);
76a01679
JB
10594 if (range_type == NULL)
10595 range_type = type_arg;
10596 switch (op)
10597 {
10598 default:
323e0a4a 10599 error (_("unexpected attribute encountered"));
76a01679 10600 case OP_ATR_FIRST:
690cc4eb 10601 return value_from_longest
43bbcdc2 10602 (range_type, ada_discrete_type_low_bound (range_type));
76a01679 10603 case OP_ATR_LAST:
690cc4eb 10604 return value_from_longest
43bbcdc2 10605 (range_type, ada_discrete_type_high_bound (range_type));
76a01679 10606 case OP_ATR_LENGTH:
323e0a4a 10607 error (_("the 'length attribute applies only to array types"));
76a01679
JB
10608 }
10609 }
10610 else if (TYPE_CODE (type_arg) == TYPE_CODE_FLT)
323e0a4a 10611 error (_("unimplemented type attribute"));
76a01679
JB
10612 else
10613 {
10614 LONGEST low, high;
10615
ad82864c
JB
10616 if (ada_is_constrained_packed_array_type (type_arg))
10617 type_arg = decode_constrained_packed_array_type (type_arg);
76a01679 10618
aa4fb036 10619 if (op == OP_ATR_LENGTH)
1eea4ebd 10620 type = builtin_type (exp->gdbarch)->builtin_int;
aa4fb036
JB
10621 else
10622 {
10623 type = ada_index_type (type_arg, tem, ada_attribute_name (op));
10624 if (type == NULL)
10625 type = builtin_type (exp->gdbarch)->builtin_int;
10626 }
1eea4ebd 10627
76a01679
JB
10628 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10629 return allocate_value (type);
10630
10631 switch (op)
10632 {
10633 default:
323e0a4a 10634 error (_("unexpected attribute encountered"));
76a01679 10635 case OP_ATR_FIRST:
1eea4ebd 10636 low = ada_array_bound_from_type (type_arg, tem, 0);
76a01679
JB
10637 return value_from_longest (type, low);
10638 case OP_ATR_LAST:
1eea4ebd 10639 high = ada_array_bound_from_type (type_arg, tem, 1);
76a01679
JB
10640 return value_from_longest (type, high);
10641 case OP_ATR_LENGTH:
1eea4ebd
UW
10642 low = ada_array_bound_from_type (type_arg, tem, 0);
10643 high = ada_array_bound_from_type (type_arg, tem, 1);
76a01679
JB
10644 return value_from_longest (type, high - low + 1);
10645 }
10646 }
14f9c5c9
AS
10647 }
10648
4c4b4cd2
PH
10649 case OP_ATR_TAG:
10650 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10651 if (noside == EVAL_SKIP)
76a01679 10652 goto nosideret;
4c4b4cd2
PH
10653
10654 if (noside == EVAL_AVOID_SIDE_EFFECTS)
76a01679 10655 return value_zero (ada_tag_type (arg1), not_lval);
4c4b4cd2
PH
10656
10657 return ada_value_tag (arg1);
10658
10659 case OP_ATR_MIN:
10660 case OP_ATR_MAX:
10661 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
14f9c5c9
AS
10662 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10663 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10664 if (noside == EVAL_SKIP)
76a01679 10665 goto nosideret;
d2e4a39e 10666 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
df407dfe 10667 return value_zero (value_type (arg1), not_lval);
14f9c5c9 10668 else
f44316fa
UW
10669 {
10670 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10671 return value_binop (arg1, arg2,
10672 op == OP_ATR_MIN ? BINOP_MIN : BINOP_MAX);
10673 }
14f9c5c9 10674
4c4b4cd2
PH
10675 case OP_ATR_MODULUS:
10676 {
31dedfee 10677 struct type *type_arg = check_typedef (exp->elts[pc + 2].type);
4c4b4cd2 10678
5b4ee69b 10679 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
76a01679
JB
10680 if (noside == EVAL_SKIP)
10681 goto nosideret;
4c4b4cd2 10682
76a01679 10683 if (!ada_is_modular_type (type_arg))
323e0a4a 10684 error (_("'modulus must be applied to modular type"));
4c4b4cd2 10685
76a01679
JB
10686 return value_from_longest (TYPE_TARGET_TYPE (type_arg),
10687 ada_modulus (type_arg));
4c4b4cd2
PH
10688 }
10689
10690
10691 case OP_ATR_POS:
10692 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
14f9c5c9
AS
10693 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10694 if (noside == EVAL_SKIP)
76a01679 10695 goto nosideret;
3cb382c9
UW
10696 type = builtin_type (exp->gdbarch)->builtin_int;
10697 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10698 return value_zero (type, not_lval);
14f9c5c9 10699 else
3cb382c9 10700 return value_pos_atr (type, arg1);
14f9c5c9 10701
4c4b4cd2
PH
10702 case OP_ATR_SIZE:
10703 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8c1c099f
JB
10704 type = value_type (arg1);
10705
10706 /* If the argument is a reference, then dereference its type, since
10707 the user is really asking for the size of the actual object,
10708 not the size of the pointer. */
10709 if (TYPE_CODE (type) == TYPE_CODE_REF)
10710 type = TYPE_TARGET_TYPE (type);
10711
4c4b4cd2 10712 if (noside == EVAL_SKIP)
76a01679 10713 goto nosideret;
4c4b4cd2 10714 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
22601c15 10715 return value_zero (builtin_type (exp->gdbarch)->builtin_int, not_lval);
4c4b4cd2 10716 else
22601c15 10717 return value_from_longest (builtin_type (exp->gdbarch)->builtin_int,
8c1c099f 10718 TARGET_CHAR_BIT * TYPE_LENGTH (type));
4c4b4cd2
PH
10719
10720 case OP_ATR_VAL:
10721 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
14f9c5c9 10722 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
4c4b4cd2 10723 type = exp->elts[pc + 2].type;
14f9c5c9 10724 if (noside == EVAL_SKIP)
76a01679 10725 goto nosideret;
4c4b4cd2 10726 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
76a01679 10727 return value_zero (type, not_lval);
4c4b4cd2 10728 else
76a01679 10729 return value_val_atr (type, arg1);
4c4b4cd2
PH
10730
10731 case BINOP_EXP:
10732 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10733 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10734 if (noside == EVAL_SKIP)
10735 goto nosideret;
10736 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
df407dfe 10737 return value_zero (value_type (arg1), not_lval);
4c4b4cd2 10738 else
f44316fa
UW
10739 {
10740 /* For integer exponentiation operations,
10741 only promote the first argument. */
10742 if (is_integral_type (value_type (arg2)))
10743 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
10744 else
10745 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10746
10747 return value_binop (arg1, arg2, op);
10748 }
4c4b4cd2
PH
10749
10750 case UNOP_PLUS:
10751 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10752 if (noside == EVAL_SKIP)
10753 goto nosideret;
10754 else
10755 return arg1;
10756
10757 case UNOP_ABS:
10758 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10759 if (noside == EVAL_SKIP)
10760 goto nosideret;
f44316fa 10761 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
df407dfe 10762 if (value_less (arg1, value_zero (value_type (arg1), not_lval)))
4c4b4cd2 10763 return value_neg (arg1);
14f9c5c9 10764 else
4c4b4cd2 10765 return arg1;
14f9c5c9
AS
10766
10767 case UNOP_IND:
5ec18f2b 10768 preeval_pos = *pos;
6b0d7253 10769 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
14f9c5c9 10770 if (noside == EVAL_SKIP)
4c4b4cd2 10771 goto nosideret;
df407dfe 10772 type = ada_check_typedef (value_type (arg1));
14f9c5c9 10773 if (noside == EVAL_AVOID_SIDE_EFFECTS)
4c4b4cd2
PH
10774 {
10775 if (ada_is_array_descriptor_type (type))
10776 /* GDB allows dereferencing GNAT array descriptors. */
10777 {
10778 struct type *arrType = ada_type_of_array (arg1, 0);
5b4ee69b 10779
4c4b4cd2 10780 if (arrType == NULL)
323e0a4a 10781 error (_("Attempt to dereference null array pointer."));
00a4c844 10782 return value_at_lazy (arrType, 0);
4c4b4cd2
PH
10783 }
10784 else if (TYPE_CODE (type) == TYPE_CODE_PTR
10785 || TYPE_CODE (type) == TYPE_CODE_REF
10786 /* In C you can dereference an array to get the 1st elt. */
10787 || TYPE_CODE (type) == TYPE_CODE_ARRAY)
714e53ab 10788 {
5ec18f2b
JG
10789 /* As mentioned in the OP_VAR_VALUE case, tagged types can
10790 only be determined by inspecting the object's tag.
10791 This means that we need to evaluate completely the
10792 expression in order to get its type. */
10793
023db19c
JB
10794 if ((TYPE_CODE (type) == TYPE_CODE_REF
10795 || TYPE_CODE (type) == TYPE_CODE_PTR)
5ec18f2b
JG
10796 && ada_is_tagged_type (TYPE_TARGET_TYPE (type), 0))
10797 {
10798 arg1 = evaluate_subexp (NULL_TYPE, exp, &preeval_pos,
10799 EVAL_NORMAL);
10800 type = value_type (ada_value_ind (arg1));
10801 }
10802 else
10803 {
10804 type = to_static_fixed_type
10805 (ada_aligned_type
10806 (ada_check_typedef (TYPE_TARGET_TYPE (type))));
10807 }
10808 check_size (type);
714e53ab
PH
10809 return value_zero (type, lval_memory);
10810 }
4c4b4cd2 10811 else if (TYPE_CODE (type) == TYPE_CODE_INT)
6b0d7253
JB
10812 {
10813 /* GDB allows dereferencing an int. */
10814 if (expect_type == NULL)
10815 return value_zero (builtin_type (exp->gdbarch)->builtin_int,
10816 lval_memory);
10817 else
10818 {
10819 expect_type =
10820 to_static_fixed_type (ada_aligned_type (expect_type));
10821 return value_zero (expect_type, lval_memory);
10822 }
10823 }
4c4b4cd2 10824 else
323e0a4a 10825 error (_("Attempt to take contents of a non-pointer value."));
4c4b4cd2 10826 }
0963b4bd 10827 arg1 = ada_coerce_ref (arg1); /* FIXME: What is this for?? */
df407dfe 10828 type = ada_check_typedef (value_type (arg1));
d2e4a39e 10829
96967637
JB
10830 if (TYPE_CODE (type) == TYPE_CODE_INT)
10831 /* GDB allows dereferencing an int. If we were given
10832 the expect_type, then use that as the target type.
10833 Otherwise, assume that the target type is an int. */
10834 {
10835 if (expect_type != NULL)
10836 return ada_value_ind (value_cast (lookup_pointer_type (expect_type),
10837 arg1));
10838 else
10839 return value_at_lazy (builtin_type (exp->gdbarch)->builtin_int,
10840 (CORE_ADDR) value_as_address (arg1));
10841 }
6b0d7253 10842
4c4b4cd2
PH
10843 if (ada_is_array_descriptor_type (type))
10844 /* GDB allows dereferencing GNAT array descriptors. */
10845 return ada_coerce_to_simple_array (arg1);
14f9c5c9 10846 else
4c4b4cd2 10847 return ada_value_ind (arg1);
14f9c5c9
AS
10848
10849 case STRUCTOP_STRUCT:
10850 tem = longest_to_int (exp->elts[pc + 1].longconst);
10851 (*pos) += 3 + BYTES_TO_EXP_ELEM (tem + 1);
5ec18f2b 10852 preeval_pos = *pos;
14f9c5c9
AS
10853 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10854 if (noside == EVAL_SKIP)
4c4b4cd2 10855 goto nosideret;
14f9c5c9 10856 if (noside == EVAL_AVOID_SIDE_EFFECTS)
76a01679 10857 {
df407dfe 10858 struct type *type1 = value_type (arg1);
5b4ee69b 10859
76a01679
JB
10860 if (ada_is_tagged_type (type1, 1))
10861 {
10862 type = ada_lookup_struct_elt_type (type1,
10863 &exp->elts[pc + 2].string,
10864 1, 1, NULL);
5ec18f2b
JG
10865
10866 /* If the field is not found, check if it exists in the
10867 extension of this object's type. This means that we
10868 need to evaluate completely the expression. */
10869
76a01679 10870 if (type == NULL)
5ec18f2b
JG
10871 {
10872 arg1 = evaluate_subexp (NULL_TYPE, exp, &preeval_pos,
10873 EVAL_NORMAL);
10874 arg1 = ada_value_struct_elt (arg1,
10875 &exp->elts[pc + 2].string,
10876 0);
10877 arg1 = unwrap_value (arg1);
10878 type = value_type (ada_to_fixed_value (arg1));
10879 }
76a01679
JB
10880 }
10881 else
10882 type =
10883 ada_lookup_struct_elt_type (type1, &exp->elts[pc + 2].string, 1,
10884 0, NULL);
10885
10886 return value_zero (ada_aligned_type (type), lval_memory);
10887 }
14f9c5c9 10888 else
284614f0
JB
10889 arg1 = ada_value_struct_elt (arg1, &exp->elts[pc + 2].string, 0);
10890 arg1 = unwrap_value (arg1);
10891 return ada_to_fixed_value (arg1);
10892
14f9c5c9 10893 case OP_TYPE:
4c4b4cd2
PH
10894 /* The value is not supposed to be used. This is here to make it
10895 easier to accommodate expressions that contain types. */
14f9c5c9
AS
10896 (*pos) += 2;
10897 if (noside == EVAL_SKIP)
4c4b4cd2 10898 goto nosideret;
14f9c5c9 10899 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
a6cfbe68 10900 return allocate_value (exp->elts[pc + 1].type);
14f9c5c9 10901 else
323e0a4a 10902 error (_("Attempt to use a type name as an expression"));
52ce6436
PH
10903
10904 case OP_AGGREGATE:
10905 case OP_CHOICES:
10906 case OP_OTHERS:
10907 case OP_DISCRETE_RANGE:
10908 case OP_POSITIONAL:
10909 case OP_NAME:
10910 if (noside == EVAL_NORMAL)
10911 switch (op)
10912 {
10913 case OP_NAME:
10914 error (_("Undefined name, ambiguous name, or renaming used in "
e1d5a0d2 10915 "component association: %s."), &exp->elts[pc+2].string);
52ce6436
PH
10916 case OP_AGGREGATE:
10917 error (_("Aggregates only allowed on the right of an assignment"));
10918 default:
0963b4bd
MS
10919 internal_error (__FILE__, __LINE__,
10920 _("aggregate apparently mangled"));
52ce6436
PH
10921 }
10922
10923 ada_forward_operator_length (exp, pc, &oplen, &nargs);
10924 *pos += oplen - 1;
10925 for (tem = 0; tem < nargs; tem += 1)
10926 ada_evaluate_subexp (NULL, exp, pos, noside);
10927 goto nosideret;
14f9c5c9
AS
10928 }
10929
10930nosideret:
22601c15 10931 return value_from_longest (builtin_type (exp->gdbarch)->builtin_int, 1);
14f9c5c9 10932}
14f9c5c9 10933\f
d2e4a39e 10934
4c4b4cd2 10935 /* Fixed point */
14f9c5c9
AS
10936
10937/* If TYPE encodes an Ada fixed-point type, return the suffix of the
10938 type name that encodes the 'small and 'delta information.
4c4b4cd2 10939 Otherwise, return NULL. */
14f9c5c9 10940
d2e4a39e 10941static const char *
ebf56fd3 10942fixed_type_info (struct type *type)
14f9c5c9 10943{
d2e4a39e 10944 const char *name = ada_type_name (type);
14f9c5c9
AS
10945 enum type_code code = (type == NULL) ? TYPE_CODE_UNDEF : TYPE_CODE (type);
10946
d2e4a39e
AS
10947 if ((code == TYPE_CODE_INT || code == TYPE_CODE_RANGE) && name != NULL)
10948 {
14f9c5c9 10949 const char *tail = strstr (name, "___XF_");
5b4ee69b 10950
14f9c5c9 10951 if (tail == NULL)
4c4b4cd2 10952 return NULL;
d2e4a39e 10953 else
4c4b4cd2 10954 return tail + 5;
14f9c5c9
AS
10955 }
10956 else if (code == TYPE_CODE_RANGE && TYPE_TARGET_TYPE (type) != type)
10957 return fixed_type_info (TYPE_TARGET_TYPE (type));
10958 else
10959 return NULL;
10960}
10961
4c4b4cd2 10962/* Returns non-zero iff TYPE represents an Ada fixed-point type. */
14f9c5c9
AS
10963
10964int
ebf56fd3 10965ada_is_fixed_point_type (struct type *type)
14f9c5c9
AS
10966{
10967 return fixed_type_info (type) != NULL;
10968}
10969
4c4b4cd2
PH
10970/* Return non-zero iff TYPE represents a System.Address type. */
10971
10972int
10973ada_is_system_address_type (struct type *type)
10974{
10975 return (TYPE_NAME (type)
10976 && strcmp (TYPE_NAME (type), "system__address") == 0);
10977}
10978
14f9c5c9
AS
10979/* Assuming that TYPE is the representation of an Ada fixed-point
10980 type, return its delta, or -1 if the type is malformed and the
4c4b4cd2 10981 delta cannot be determined. */
14f9c5c9
AS
10982
10983DOUBLEST
ebf56fd3 10984ada_delta (struct type *type)
14f9c5c9
AS
10985{
10986 const char *encoding = fixed_type_info (type);
facc390f 10987 DOUBLEST num, den;
14f9c5c9 10988
facc390f
JB
10989 /* Strictly speaking, num and den are encoded as integer. However,
10990 they may not fit into a long, and they will have to be converted
10991 to DOUBLEST anyway. So scan them as DOUBLEST. */
10992 if (sscanf (encoding, "_%" DOUBLEST_SCAN_FORMAT "_%" DOUBLEST_SCAN_FORMAT,
10993 &num, &den) < 2)
14f9c5c9 10994 return -1.0;
d2e4a39e 10995 else
facc390f 10996 return num / den;
14f9c5c9
AS
10997}
10998
10999/* Assuming that ada_is_fixed_point_type (TYPE), return the scaling
4c4b4cd2 11000 factor ('SMALL value) associated with the type. */
14f9c5c9
AS
11001
11002static DOUBLEST
ebf56fd3 11003scaling_factor (struct type *type)
14f9c5c9
AS
11004{
11005 const char *encoding = fixed_type_info (type);
facc390f 11006 DOUBLEST num0, den0, num1, den1;
14f9c5c9 11007 int n;
d2e4a39e 11008
facc390f
JB
11009 /* Strictly speaking, num's and den's are encoded as integer. However,
11010 they may not fit into a long, and they will have to be converted
11011 to DOUBLEST anyway. So scan them as DOUBLEST. */
11012 n = sscanf (encoding,
11013 "_%" DOUBLEST_SCAN_FORMAT "_%" DOUBLEST_SCAN_FORMAT
11014 "_%" DOUBLEST_SCAN_FORMAT "_%" DOUBLEST_SCAN_FORMAT,
11015 &num0, &den0, &num1, &den1);
14f9c5c9
AS
11016
11017 if (n < 2)
11018 return 1.0;
11019 else if (n == 4)
facc390f 11020 return num1 / den1;
d2e4a39e 11021 else
facc390f 11022 return num0 / den0;
14f9c5c9
AS
11023}
11024
11025
11026/* Assuming that X is the representation of a value of fixed-point
4c4b4cd2 11027 type TYPE, return its floating-point equivalent. */
14f9c5c9
AS
11028
11029DOUBLEST
ebf56fd3 11030ada_fixed_to_float (struct type *type, LONGEST x)
14f9c5c9 11031{
d2e4a39e 11032 return (DOUBLEST) x *scaling_factor (type);
14f9c5c9
AS
11033}
11034
4c4b4cd2
PH
11035/* The representation of a fixed-point value of type TYPE
11036 corresponding to the value X. */
14f9c5c9
AS
11037
11038LONGEST
ebf56fd3 11039ada_float_to_fixed (struct type *type, DOUBLEST x)
14f9c5c9
AS
11040{
11041 return (LONGEST) (x / scaling_factor (type) + 0.5);
11042}
11043
14f9c5c9 11044\f
d2e4a39e 11045
4c4b4cd2 11046 /* Range types */
14f9c5c9
AS
11047
11048/* Scan STR beginning at position K for a discriminant name, and
11049 return the value of that discriminant field of DVAL in *PX. If
11050 PNEW_K is not null, put the position of the character beyond the
11051 name scanned in *PNEW_K. Return 1 if successful; return 0 and do
4c4b4cd2 11052 not alter *PX and *PNEW_K if unsuccessful. */
14f9c5c9
AS
11053
11054static int
07d8f827 11055scan_discrim_bound (char *str, int k, struct value *dval, LONGEST * px,
76a01679 11056 int *pnew_k)
14f9c5c9
AS
11057{
11058 static char *bound_buffer = NULL;
11059 static size_t bound_buffer_len = 0;
11060 char *bound;
11061 char *pend;
d2e4a39e 11062 struct value *bound_val;
14f9c5c9
AS
11063
11064 if (dval == NULL || str == NULL || str[k] == '\0')
11065 return 0;
11066
d2e4a39e 11067 pend = strstr (str + k, "__");
14f9c5c9
AS
11068 if (pend == NULL)
11069 {
d2e4a39e 11070 bound = str + k;
14f9c5c9
AS
11071 k += strlen (bound);
11072 }
d2e4a39e 11073 else
14f9c5c9 11074 {
d2e4a39e 11075 GROW_VECT (bound_buffer, bound_buffer_len, pend - (str + k) + 1);
14f9c5c9 11076 bound = bound_buffer;
d2e4a39e
AS
11077 strncpy (bound_buffer, str + k, pend - (str + k));
11078 bound[pend - (str + k)] = '\0';
11079 k = pend - str;
14f9c5c9 11080 }
d2e4a39e 11081
df407dfe 11082 bound_val = ada_search_struct_field (bound, dval, 0, value_type (dval));
14f9c5c9
AS
11083 if (bound_val == NULL)
11084 return 0;
11085
11086 *px = value_as_long (bound_val);
11087 if (pnew_k != NULL)
11088 *pnew_k = k;
11089 return 1;
11090}
11091
11092/* Value of variable named NAME in the current environment. If
11093 no such variable found, then if ERR_MSG is null, returns 0, and
4c4b4cd2
PH
11094 otherwise causes an error with message ERR_MSG. */
11095
d2e4a39e
AS
11096static struct value *
11097get_var_value (char *name, char *err_msg)
14f9c5c9 11098{
4c4b4cd2 11099 struct ada_symbol_info *syms;
14f9c5c9
AS
11100 int nsyms;
11101
4c4b4cd2 11102 nsyms = ada_lookup_symbol_list (name, get_selected_block (0), VAR_DOMAIN,
4eeaa230 11103 &syms);
14f9c5c9
AS
11104
11105 if (nsyms != 1)
11106 {
11107 if (err_msg == NULL)
4c4b4cd2 11108 return 0;
14f9c5c9 11109 else
8a3fe4f8 11110 error (("%s"), err_msg);
14f9c5c9
AS
11111 }
11112
4c4b4cd2 11113 return value_of_variable (syms[0].sym, syms[0].block);
14f9c5c9 11114}
d2e4a39e 11115
14f9c5c9 11116/* Value of integer variable named NAME in the current environment. If
4c4b4cd2
PH
11117 no such variable found, returns 0, and sets *FLAG to 0. If
11118 successful, sets *FLAG to 1. */
11119
14f9c5c9 11120LONGEST
4c4b4cd2 11121get_int_var_value (char *name, int *flag)
14f9c5c9 11122{
4c4b4cd2 11123 struct value *var_val = get_var_value (name, 0);
d2e4a39e 11124
14f9c5c9
AS
11125 if (var_val == 0)
11126 {
11127 if (flag != NULL)
4c4b4cd2 11128 *flag = 0;
14f9c5c9
AS
11129 return 0;
11130 }
11131 else
11132 {
11133 if (flag != NULL)
4c4b4cd2 11134 *flag = 1;
14f9c5c9
AS
11135 return value_as_long (var_val);
11136 }
11137}
d2e4a39e 11138
14f9c5c9
AS
11139
11140/* Return a range type whose base type is that of the range type named
11141 NAME in the current environment, and whose bounds are calculated
4c4b4cd2 11142 from NAME according to the GNAT range encoding conventions.
1ce677a4
UW
11143 Extract discriminant values, if needed, from DVAL. ORIG_TYPE is the
11144 corresponding range type from debug information; fall back to using it
11145 if symbol lookup fails. If a new type must be created, allocate it
11146 like ORIG_TYPE was. The bounds information, in general, is encoded
11147 in NAME, the base type given in the named range type. */
14f9c5c9 11148
d2e4a39e 11149static struct type *
28c85d6c 11150to_fixed_range_type (struct type *raw_type, struct value *dval)
14f9c5c9 11151{
0d5cff50 11152 const char *name;
14f9c5c9 11153 struct type *base_type;
d2e4a39e 11154 char *subtype_info;
14f9c5c9 11155
28c85d6c
JB
11156 gdb_assert (raw_type != NULL);
11157 gdb_assert (TYPE_NAME (raw_type) != NULL);
dddfab26 11158
1ce677a4 11159 if (TYPE_CODE (raw_type) == TYPE_CODE_RANGE)
14f9c5c9
AS
11160 base_type = TYPE_TARGET_TYPE (raw_type);
11161 else
11162 base_type = raw_type;
11163
28c85d6c 11164 name = TYPE_NAME (raw_type);
14f9c5c9
AS
11165 subtype_info = strstr (name, "___XD");
11166 if (subtype_info == NULL)
690cc4eb 11167 {
43bbcdc2
PH
11168 LONGEST L = ada_discrete_type_low_bound (raw_type);
11169 LONGEST U = ada_discrete_type_high_bound (raw_type);
5b4ee69b 11170
690cc4eb
PH
11171 if (L < INT_MIN || U > INT_MAX)
11172 return raw_type;
11173 else
0c9c3474
SA
11174 return create_static_range_type (alloc_type_copy (raw_type), raw_type,
11175 L, U);
690cc4eb 11176 }
14f9c5c9
AS
11177 else
11178 {
11179 static char *name_buf = NULL;
11180 static size_t name_len = 0;
11181 int prefix_len = subtype_info - name;
11182 LONGEST L, U;
11183 struct type *type;
11184 char *bounds_str;
11185 int n;
11186
11187 GROW_VECT (name_buf, name_len, prefix_len + 5);
11188 strncpy (name_buf, name, prefix_len);
11189 name_buf[prefix_len] = '\0';
11190
11191 subtype_info += 5;
11192 bounds_str = strchr (subtype_info, '_');
11193 n = 1;
11194
d2e4a39e 11195 if (*subtype_info == 'L')
4c4b4cd2
PH
11196 {
11197 if (!ada_scan_number (bounds_str, n, &L, &n)
11198 && !scan_discrim_bound (bounds_str, n, dval, &L, &n))
11199 return raw_type;
11200 if (bounds_str[n] == '_')
11201 n += 2;
0963b4bd 11202 else if (bounds_str[n] == '.') /* FIXME? SGI Workshop kludge. */
4c4b4cd2
PH
11203 n += 1;
11204 subtype_info += 1;
11205 }
d2e4a39e 11206 else
4c4b4cd2
PH
11207 {
11208 int ok;
5b4ee69b 11209
4c4b4cd2
PH
11210 strcpy (name_buf + prefix_len, "___L");
11211 L = get_int_var_value (name_buf, &ok);
11212 if (!ok)
11213 {
323e0a4a 11214 lim_warning (_("Unknown lower bound, using 1."));
4c4b4cd2
PH
11215 L = 1;
11216 }
11217 }
14f9c5c9 11218
d2e4a39e 11219 if (*subtype_info == 'U')
4c4b4cd2
PH
11220 {
11221 if (!ada_scan_number (bounds_str, n, &U, &n)
11222 && !scan_discrim_bound (bounds_str, n, dval, &U, &n))
11223 return raw_type;
11224 }
d2e4a39e 11225 else
4c4b4cd2
PH
11226 {
11227 int ok;
5b4ee69b 11228
4c4b4cd2
PH
11229 strcpy (name_buf + prefix_len, "___U");
11230 U = get_int_var_value (name_buf, &ok);
11231 if (!ok)
11232 {
323e0a4a 11233 lim_warning (_("Unknown upper bound, using %ld."), (long) L);
4c4b4cd2
PH
11234 U = L;
11235 }
11236 }
14f9c5c9 11237
0c9c3474
SA
11238 type = create_static_range_type (alloc_type_copy (raw_type),
11239 base_type, L, U);
d2e4a39e 11240 TYPE_NAME (type) = name;
14f9c5c9
AS
11241 return type;
11242 }
11243}
11244
4c4b4cd2
PH
11245/* True iff NAME is the name of a range type. */
11246
14f9c5c9 11247int
d2e4a39e 11248ada_is_range_type_name (const char *name)
14f9c5c9
AS
11249{
11250 return (name != NULL && strstr (name, "___XD"));
d2e4a39e 11251}
14f9c5c9 11252\f
d2e4a39e 11253
4c4b4cd2
PH
11254 /* Modular types */
11255
11256/* True iff TYPE is an Ada modular type. */
14f9c5c9 11257
14f9c5c9 11258int
d2e4a39e 11259ada_is_modular_type (struct type *type)
14f9c5c9 11260{
18af8284 11261 struct type *subranged_type = get_base_type (type);
14f9c5c9
AS
11262
11263 return (subranged_type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE
690cc4eb 11264 && TYPE_CODE (subranged_type) == TYPE_CODE_INT
4c4b4cd2 11265 && TYPE_UNSIGNED (subranged_type));
14f9c5c9
AS
11266}
11267
4c4b4cd2
PH
11268/* Assuming ada_is_modular_type (TYPE), the modulus of TYPE. */
11269
61ee279c 11270ULONGEST
0056e4d5 11271ada_modulus (struct type *type)
14f9c5c9 11272{
43bbcdc2 11273 return (ULONGEST) TYPE_HIGH_BOUND (type) + 1;
14f9c5c9 11274}
d2e4a39e 11275\f
f7f9143b
JB
11276
11277/* Ada exception catchpoint support:
11278 ---------------------------------
11279
11280 We support 3 kinds of exception catchpoints:
11281 . catchpoints on Ada exceptions
11282 . catchpoints on unhandled Ada exceptions
11283 . catchpoints on failed assertions
11284
11285 Exceptions raised during failed assertions, or unhandled exceptions
11286 could perfectly be caught with the general catchpoint on Ada exceptions.
11287 However, we can easily differentiate these two special cases, and having
11288 the option to distinguish these two cases from the rest can be useful
11289 to zero-in on certain situations.
11290
11291 Exception catchpoints are a specialized form of breakpoint,
11292 since they rely on inserting breakpoints inside known routines
11293 of the GNAT runtime. The implementation therefore uses a standard
11294 breakpoint structure of the BP_BREAKPOINT type, but with its own set
11295 of breakpoint_ops.
11296
0259addd
JB
11297 Support in the runtime for exception catchpoints have been changed
11298 a few times already, and these changes affect the implementation
11299 of these catchpoints. In order to be able to support several
11300 variants of the runtime, we use a sniffer that will determine
28010a5d 11301 the runtime variant used by the program being debugged. */
f7f9143b 11302
82eacd52
JB
11303/* Ada's standard exceptions.
11304
11305 The Ada 83 standard also defined Numeric_Error. But there so many
11306 situations where it was unclear from the Ada 83 Reference Manual
11307 (RM) whether Constraint_Error or Numeric_Error should be raised,
11308 that the ARG (Ada Rapporteur Group) eventually issued a Binding
11309 Interpretation saying that anytime the RM says that Numeric_Error
11310 should be raised, the implementation may raise Constraint_Error.
11311 Ada 95 went one step further and pretty much removed Numeric_Error
11312 from the list of standard exceptions (it made it a renaming of
11313 Constraint_Error, to help preserve compatibility when compiling
11314 an Ada83 compiler). As such, we do not include Numeric_Error from
11315 this list of standard exceptions. */
3d0b0fa3
JB
11316
11317static char *standard_exc[] = {
11318 "constraint_error",
11319 "program_error",
11320 "storage_error",
11321 "tasking_error"
11322};
11323
0259addd
JB
11324typedef CORE_ADDR (ada_unhandled_exception_name_addr_ftype) (void);
11325
11326/* A structure that describes how to support exception catchpoints
11327 for a given executable. */
11328
11329struct exception_support_info
11330{
11331 /* The name of the symbol to break on in order to insert
11332 a catchpoint on exceptions. */
11333 const char *catch_exception_sym;
11334
11335 /* The name of the symbol to break on in order to insert
11336 a catchpoint on unhandled exceptions. */
11337 const char *catch_exception_unhandled_sym;
11338
11339 /* The name of the symbol to break on in order to insert
11340 a catchpoint on failed assertions. */
11341 const char *catch_assert_sym;
11342
11343 /* Assuming that the inferior just triggered an unhandled exception
11344 catchpoint, this function is responsible for returning the address
11345 in inferior memory where the name of that exception is stored.
11346 Return zero if the address could not be computed. */
11347 ada_unhandled_exception_name_addr_ftype *unhandled_exception_name_addr;
11348};
11349
11350static CORE_ADDR ada_unhandled_exception_name_addr (void);
11351static CORE_ADDR ada_unhandled_exception_name_addr_from_raise (void);
11352
11353/* The following exception support info structure describes how to
11354 implement exception catchpoints with the latest version of the
11355 Ada runtime (as of 2007-03-06). */
11356
11357static const struct exception_support_info default_exception_support_info =
11358{
11359 "__gnat_debug_raise_exception", /* catch_exception_sym */
11360 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
11361 "__gnat_debug_raise_assert_failure", /* catch_assert_sym */
11362 ada_unhandled_exception_name_addr
11363};
11364
11365/* The following exception support info structure describes how to
11366 implement exception catchpoints with a slightly older version
11367 of the Ada runtime. */
11368
11369static const struct exception_support_info exception_support_info_fallback =
11370{
11371 "__gnat_raise_nodefer_with_msg", /* catch_exception_sym */
11372 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
11373 "system__assertions__raise_assert_failure", /* catch_assert_sym */
11374 ada_unhandled_exception_name_addr_from_raise
11375};
11376
f17011e0
JB
11377/* Return nonzero if we can detect the exception support routines
11378 described in EINFO.
11379
11380 This function errors out if an abnormal situation is detected
11381 (for instance, if we find the exception support routines, but
11382 that support is found to be incomplete). */
11383
11384static int
11385ada_has_this_exception_support (const struct exception_support_info *einfo)
11386{
11387 struct symbol *sym;
11388
11389 /* The symbol we're looking up is provided by a unit in the GNAT runtime
11390 that should be compiled with debugging information. As a result, we
11391 expect to find that symbol in the symtabs. */
11392
11393 sym = standard_lookup (einfo->catch_exception_sym, NULL, VAR_DOMAIN);
11394 if (sym == NULL)
a6af7abe
JB
11395 {
11396 /* Perhaps we did not find our symbol because the Ada runtime was
11397 compiled without debugging info, or simply stripped of it.
11398 It happens on some GNU/Linux distributions for instance, where
11399 users have to install a separate debug package in order to get
11400 the runtime's debugging info. In that situation, let the user
11401 know why we cannot insert an Ada exception catchpoint.
11402
11403 Note: Just for the purpose of inserting our Ada exception
11404 catchpoint, we could rely purely on the associated minimal symbol.
11405 But we would be operating in degraded mode anyway, since we are
11406 still lacking the debugging info needed later on to extract
11407 the name of the exception being raised (this name is printed in
11408 the catchpoint message, and is also used when trying to catch
11409 a specific exception). We do not handle this case for now. */
3b7344d5 11410 struct bound_minimal_symbol msym
1c8e84b0
JB
11411 = lookup_minimal_symbol (einfo->catch_exception_sym, NULL, NULL);
11412
3b7344d5 11413 if (msym.minsym && MSYMBOL_TYPE (msym.minsym) != mst_solib_trampoline)
a6af7abe
JB
11414 error (_("Your Ada runtime appears to be missing some debugging "
11415 "information.\nCannot insert Ada exception catchpoint "
11416 "in this configuration."));
11417
11418 return 0;
11419 }
f17011e0
JB
11420
11421 /* Make sure that the symbol we found corresponds to a function. */
11422
11423 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
11424 error (_("Symbol \"%s\" is not a function (class = %d)"),
11425 SYMBOL_LINKAGE_NAME (sym), SYMBOL_CLASS (sym));
11426
11427 return 1;
11428}
11429
0259addd
JB
11430/* Inspect the Ada runtime and determine which exception info structure
11431 should be used to provide support for exception catchpoints.
11432
3eecfa55
JB
11433 This function will always set the per-inferior exception_info,
11434 or raise an error. */
0259addd
JB
11435
11436static void
11437ada_exception_support_info_sniffer (void)
11438{
3eecfa55 11439 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
0259addd
JB
11440
11441 /* If the exception info is already known, then no need to recompute it. */
3eecfa55 11442 if (data->exception_info != NULL)
0259addd
JB
11443 return;
11444
11445 /* Check the latest (default) exception support info. */
f17011e0 11446 if (ada_has_this_exception_support (&default_exception_support_info))
0259addd 11447 {
3eecfa55 11448 data->exception_info = &default_exception_support_info;
0259addd
JB
11449 return;
11450 }
11451
11452 /* Try our fallback exception suport info. */
f17011e0 11453 if (ada_has_this_exception_support (&exception_support_info_fallback))
0259addd 11454 {
3eecfa55 11455 data->exception_info = &exception_support_info_fallback;
0259addd
JB
11456 return;
11457 }
11458
11459 /* Sometimes, it is normal for us to not be able to find the routine
11460 we are looking for. This happens when the program is linked with
11461 the shared version of the GNAT runtime, and the program has not been
11462 started yet. Inform the user of these two possible causes if
11463 applicable. */
11464
ccefe4c4 11465 if (ada_update_initial_language (language_unknown) != language_ada)
0259addd
JB
11466 error (_("Unable to insert catchpoint. Is this an Ada main program?"));
11467
11468 /* If the symbol does not exist, then check that the program is
11469 already started, to make sure that shared libraries have been
11470 loaded. If it is not started, this may mean that the symbol is
11471 in a shared library. */
11472
11473 if (ptid_get_pid (inferior_ptid) == 0)
11474 error (_("Unable to insert catchpoint. Try to start the program first."));
11475
11476 /* At this point, we know that we are debugging an Ada program and
11477 that the inferior has been started, but we still are not able to
0963b4bd 11478 find the run-time symbols. That can mean that we are in
0259addd
JB
11479 configurable run time mode, or that a-except as been optimized
11480 out by the linker... In any case, at this point it is not worth
11481 supporting this feature. */
11482
7dda8cff 11483 error (_("Cannot insert Ada exception catchpoints in this configuration."));
0259addd
JB
11484}
11485
f7f9143b
JB
11486/* True iff FRAME is very likely to be that of a function that is
11487 part of the runtime system. This is all very heuristic, but is
11488 intended to be used as advice as to what frames are uninteresting
11489 to most users. */
11490
11491static int
11492is_known_support_routine (struct frame_info *frame)
11493{
4ed6b5be 11494 struct symtab_and_line sal;
55b87a52 11495 char *func_name;
692465f1 11496 enum language func_lang;
f7f9143b 11497 int i;
f35a17b5 11498 const char *fullname;
f7f9143b 11499
4ed6b5be
JB
11500 /* If this code does not have any debugging information (no symtab),
11501 This cannot be any user code. */
f7f9143b 11502
4ed6b5be 11503 find_frame_sal (frame, &sal);
f7f9143b
JB
11504 if (sal.symtab == NULL)
11505 return 1;
11506
4ed6b5be
JB
11507 /* If there is a symtab, but the associated source file cannot be
11508 located, then assume this is not user code: Selecting a frame
11509 for which we cannot display the code would not be very helpful
11510 for the user. This should also take care of case such as VxWorks
11511 where the kernel has some debugging info provided for a few units. */
f7f9143b 11512
f35a17b5
JK
11513 fullname = symtab_to_fullname (sal.symtab);
11514 if (access (fullname, R_OK) != 0)
f7f9143b
JB
11515 return 1;
11516
4ed6b5be
JB
11517 /* Check the unit filename againt the Ada runtime file naming.
11518 We also check the name of the objfile against the name of some
11519 known system libraries that sometimes come with debugging info
11520 too. */
11521
f7f9143b
JB
11522 for (i = 0; known_runtime_file_name_patterns[i] != NULL; i += 1)
11523 {
11524 re_comp (known_runtime_file_name_patterns[i]);
f69c91ad 11525 if (re_exec (lbasename (sal.symtab->filename)))
f7f9143b 11526 return 1;
eb822aa6
DE
11527 if (SYMTAB_OBJFILE (sal.symtab) != NULL
11528 && re_exec (objfile_name (SYMTAB_OBJFILE (sal.symtab))))
4ed6b5be 11529 return 1;
f7f9143b
JB
11530 }
11531
4ed6b5be 11532 /* Check whether the function is a GNAT-generated entity. */
f7f9143b 11533
e9e07ba6 11534 find_frame_funname (frame, &func_name, &func_lang, NULL);
f7f9143b
JB
11535 if (func_name == NULL)
11536 return 1;
11537
11538 for (i = 0; known_auxiliary_function_name_patterns[i] != NULL; i += 1)
11539 {
11540 re_comp (known_auxiliary_function_name_patterns[i]);
11541 if (re_exec (func_name))
55b87a52
KS
11542 {
11543 xfree (func_name);
11544 return 1;
11545 }
f7f9143b
JB
11546 }
11547
55b87a52 11548 xfree (func_name);
f7f9143b
JB
11549 return 0;
11550}
11551
11552/* Find the first frame that contains debugging information and that is not
11553 part of the Ada run-time, starting from FI and moving upward. */
11554
0ef643c8 11555void
f7f9143b
JB
11556ada_find_printable_frame (struct frame_info *fi)
11557{
11558 for (; fi != NULL; fi = get_prev_frame (fi))
11559 {
11560 if (!is_known_support_routine (fi))
11561 {
11562 select_frame (fi);
11563 break;
11564 }
11565 }
11566
11567}
11568
11569/* Assuming that the inferior just triggered an unhandled exception
11570 catchpoint, return the address in inferior memory where the name
11571 of the exception is stored.
11572
11573 Return zero if the address could not be computed. */
11574
11575static CORE_ADDR
11576ada_unhandled_exception_name_addr (void)
0259addd
JB
11577{
11578 return parse_and_eval_address ("e.full_name");
11579}
11580
11581/* Same as ada_unhandled_exception_name_addr, except that this function
11582 should be used when the inferior uses an older version of the runtime,
11583 where the exception name needs to be extracted from a specific frame
11584 several frames up in the callstack. */
11585
11586static CORE_ADDR
11587ada_unhandled_exception_name_addr_from_raise (void)
f7f9143b
JB
11588{
11589 int frame_level;
11590 struct frame_info *fi;
3eecfa55 11591 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
55b87a52 11592 struct cleanup *old_chain;
f7f9143b
JB
11593
11594 /* To determine the name of this exception, we need to select
11595 the frame corresponding to RAISE_SYM_NAME. This frame is
11596 at least 3 levels up, so we simply skip the first 3 frames
11597 without checking the name of their associated function. */
11598 fi = get_current_frame ();
11599 for (frame_level = 0; frame_level < 3; frame_level += 1)
11600 if (fi != NULL)
11601 fi = get_prev_frame (fi);
11602
55b87a52 11603 old_chain = make_cleanup (null_cleanup, NULL);
f7f9143b
JB
11604 while (fi != NULL)
11605 {
55b87a52 11606 char *func_name;
692465f1
JB
11607 enum language func_lang;
11608
e9e07ba6 11609 find_frame_funname (fi, &func_name, &func_lang, NULL);
55b87a52
KS
11610 if (func_name != NULL)
11611 {
11612 make_cleanup (xfree, func_name);
11613
11614 if (strcmp (func_name,
11615 data->exception_info->catch_exception_sym) == 0)
11616 break; /* We found the frame we were looking for... */
11617 fi = get_prev_frame (fi);
11618 }
f7f9143b 11619 }
55b87a52 11620 do_cleanups (old_chain);
f7f9143b
JB
11621
11622 if (fi == NULL)
11623 return 0;
11624
11625 select_frame (fi);
11626 return parse_and_eval_address ("id.full_name");
11627}
11628
11629/* Assuming the inferior just triggered an Ada exception catchpoint
11630 (of any type), return the address in inferior memory where the name
11631 of the exception is stored, if applicable.
11632
11633 Return zero if the address could not be computed, or if not relevant. */
11634
11635static CORE_ADDR
761269c8 11636ada_exception_name_addr_1 (enum ada_exception_catchpoint_kind ex,
f7f9143b
JB
11637 struct breakpoint *b)
11638{
3eecfa55
JB
11639 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
11640
f7f9143b
JB
11641 switch (ex)
11642 {
761269c8 11643 case ada_catch_exception:
f7f9143b
JB
11644 return (parse_and_eval_address ("e.full_name"));
11645 break;
11646
761269c8 11647 case ada_catch_exception_unhandled:
3eecfa55 11648 return data->exception_info->unhandled_exception_name_addr ();
f7f9143b
JB
11649 break;
11650
761269c8 11651 case ada_catch_assert:
f7f9143b
JB
11652 return 0; /* Exception name is not relevant in this case. */
11653 break;
11654
11655 default:
11656 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
11657 break;
11658 }
11659
11660 return 0; /* Should never be reached. */
11661}
11662
11663/* Same as ada_exception_name_addr_1, except that it intercepts and contains
11664 any error that ada_exception_name_addr_1 might cause to be thrown.
11665 When an error is intercepted, a warning with the error message is printed,
11666 and zero is returned. */
11667
11668static CORE_ADDR
761269c8 11669ada_exception_name_addr (enum ada_exception_catchpoint_kind ex,
f7f9143b
JB
11670 struct breakpoint *b)
11671{
bfd189b1 11672 volatile struct gdb_exception e;
f7f9143b
JB
11673 CORE_ADDR result = 0;
11674
11675 TRY_CATCH (e, RETURN_MASK_ERROR)
11676 {
11677 result = ada_exception_name_addr_1 (ex, b);
11678 }
11679
11680 if (e.reason < 0)
11681 {
11682 warning (_("failed to get exception name: %s"), e.message);
11683 return 0;
11684 }
11685
11686 return result;
11687}
11688
28010a5d
PA
11689static char *ada_exception_catchpoint_cond_string (const char *excep_string);
11690
11691/* Ada catchpoints.
11692
11693 In the case of catchpoints on Ada exceptions, the catchpoint will
11694 stop the target on every exception the program throws. When a user
11695 specifies the name of a specific exception, we translate this
11696 request into a condition expression (in text form), and then parse
11697 it into an expression stored in each of the catchpoint's locations.
11698 We then use this condition to check whether the exception that was
11699 raised is the one the user is interested in. If not, then the
11700 target is resumed again. We store the name of the requested
11701 exception, in order to be able to re-set the condition expression
11702 when symbols change. */
11703
11704/* An instance of this type is used to represent an Ada catchpoint
11705 breakpoint location. It includes a "struct bp_location" as a kind
11706 of base class; users downcast to "struct bp_location *" when
11707 needed. */
11708
11709struct ada_catchpoint_location
11710{
11711 /* The base class. */
11712 struct bp_location base;
11713
11714 /* The condition that checks whether the exception that was raised
11715 is the specific exception the user specified on catchpoint
11716 creation. */
11717 struct expression *excep_cond_expr;
11718};
11719
11720/* Implement the DTOR method in the bp_location_ops structure for all
11721 Ada exception catchpoint kinds. */
11722
11723static void
11724ada_catchpoint_location_dtor (struct bp_location *bl)
11725{
11726 struct ada_catchpoint_location *al = (struct ada_catchpoint_location *) bl;
11727
11728 xfree (al->excep_cond_expr);
11729}
11730
11731/* The vtable to be used in Ada catchpoint locations. */
11732
11733static const struct bp_location_ops ada_catchpoint_location_ops =
11734{
11735 ada_catchpoint_location_dtor
11736};
11737
11738/* An instance of this type is used to represent an Ada catchpoint.
11739 It includes a "struct breakpoint" as a kind of base class; users
11740 downcast to "struct breakpoint *" when needed. */
11741
11742struct ada_catchpoint
11743{
11744 /* The base class. */
11745 struct breakpoint base;
11746
11747 /* The name of the specific exception the user specified. */
11748 char *excep_string;
11749};
11750
11751/* Parse the exception condition string in the context of each of the
11752 catchpoint's locations, and store them for later evaluation. */
11753
11754static void
11755create_excep_cond_exprs (struct ada_catchpoint *c)
11756{
11757 struct cleanup *old_chain;
11758 struct bp_location *bl;
11759 char *cond_string;
11760
11761 /* Nothing to do if there's no specific exception to catch. */
11762 if (c->excep_string == NULL)
11763 return;
11764
11765 /* Same if there are no locations... */
11766 if (c->base.loc == NULL)
11767 return;
11768
11769 /* Compute the condition expression in text form, from the specific
11770 expection we want to catch. */
11771 cond_string = ada_exception_catchpoint_cond_string (c->excep_string);
11772 old_chain = make_cleanup (xfree, cond_string);
11773
11774 /* Iterate over all the catchpoint's locations, and parse an
11775 expression for each. */
11776 for (bl = c->base.loc; bl != NULL; bl = bl->next)
11777 {
11778 struct ada_catchpoint_location *ada_loc
11779 = (struct ada_catchpoint_location *) bl;
11780 struct expression *exp = NULL;
11781
11782 if (!bl->shlib_disabled)
11783 {
11784 volatile struct gdb_exception e;
bbc13ae3 11785 const char *s;
28010a5d
PA
11786
11787 s = cond_string;
11788 TRY_CATCH (e, RETURN_MASK_ERROR)
11789 {
1bb9788d
TT
11790 exp = parse_exp_1 (&s, bl->address,
11791 block_for_pc (bl->address), 0);
28010a5d
PA
11792 }
11793 if (e.reason < 0)
849f2b52
JB
11794 {
11795 warning (_("failed to reevaluate internal exception condition "
11796 "for catchpoint %d: %s"),
11797 c->base.number, e.message);
11798 /* There is a bug in GCC on sparc-solaris when building with
11799 optimization which causes EXP to change unexpectedly
11800 (http://gcc.gnu.org/bugzilla/show_bug.cgi?id=56982).
11801 The problem should be fixed starting with GCC 4.9.
11802 In the meantime, work around it by forcing EXP back
11803 to NULL. */
11804 exp = NULL;
11805 }
28010a5d
PA
11806 }
11807
11808 ada_loc->excep_cond_expr = exp;
11809 }
11810
11811 do_cleanups (old_chain);
11812}
11813
11814/* Implement the DTOR method in the breakpoint_ops structure for all
11815 exception catchpoint kinds. */
11816
11817static void
761269c8 11818dtor_exception (enum ada_exception_catchpoint_kind ex, struct breakpoint *b)
28010a5d
PA
11819{
11820 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
11821
11822 xfree (c->excep_string);
348d480f 11823
2060206e 11824 bkpt_breakpoint_ops.dtor (b);
28010a5d
PA
11825}
11826
11827/* Implement the ALLOCATE_LOCATION method in the breakpoint_ops
11828 structure for all exception catchpoint kinds. */
11829
11830static struct bp_location *
761269c8 11831allocate_location_exception (enum ada_exception_catchpoint_kind ex,
28010a5d
PA
11832 struct breakpoint *self)
11833{
11834 struct ada_catchpoint_location *loc;
11835
11836 loc = XNEW (struct ada_catchpoint_location);
11837 init_bp_location (&loc->base, &ada_catchpoint_location_ops, self);
11838 loc->excep_cond_expr = NULL;
11839 return &loc->base;
11840}
11841
11842/* Implement the RE_SET method in the breakpoint_ops structure for all
11843 exception catchpoint kinds. */
11844
11845static void
761269c8 11846re_set_exception (enum ada_exception_catchpoint_kind ex, struct breakpoint *b)
28010a5d
PA
11847{
11848 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
11849
11850 /* Call the base class's method. This updates the catchpoint's
11851 locations. */
2060206e 11852 bkpt_breakpoint_ops.re_set (b);
28010a5d
PA
11853
11854 /* Reparse the exception conditional expressions. One for each
11855 location. */
11856 create_excep_cond_exprs (c);
11857}
11858
11859/* Returns true if we should stop for this breakpoint hit. If the
11860 user specified a specific exception, we only want to cause a stop
11861 if the program thrown that exception. */
11862
11863static int
11864should_stop_exception (const struct bp_location *bl)
11865{
11866 struct ada_catchpoint *c = (struct ada_catchpoint *) bl->owner;
11867 const struct ada_catchpoint_location *ada_loc
11868 = (const struct ada_catchpoint_location *) bl;
11869 volatile struct gdb_exception ex;
11870 int stop;
11871
11872 /* With no specific exception, should always stop. */
11873 if (c->excep_string == NULL)
11874 return 1;
11875
11876 if (ada_loc->excep_cond_expr == NULL)
11877 {
11878 /* We will have a NULL expression if back when we were creating
11879 the expressions, this location's had failed to parse. */
11880 return 1;
11881 }
11882
11883 stop = 1;
11884 TRY_CATCH (ex, RETURN_MASK_ALL)
11885 {
11886 struct value *mark;
11887
11888 mark = value_mark ();
11889 stop = value_true (evaluate_expression (ada_loc->excep_cond_expr));
11890 value_free_to_mark (mark);
11891 }
11892 if (ex.reason < 0)
11893 exception_fprintf (gdb_stderr, ex,
11894 _("Error in testing exception condition:\n"));
11895 return stop;
11896}
11897
11898/* Implement the CHECK_STATUS method in the breakpoint_ops structure
11899 for all exception catchpoint kinds. */
11900
11901static void
761269c8 11902check_status_exception (enum ada_exception_catchpoint_kind ex, bpstat bs)
28010a5d
PA
11903{
11904 bs->stop = should_stop_exception (bs->bp_location_at);
11905}
11906
f7f9143b
JB
11907/* Implement the PRINT_IT method in the breakpoint_ops structure
11908 for all exception catchpoint kinds. */
11909
11910static enum print_stop_action
761269c8 11911print_it_exception (enum ada_exception_catchpoint_kind ex, bpstat bs)
f7f9143b 11912{
79a45e25 11913 struct ui_out *uiout = current_uiout;
348d480f
PA
11914 struct breakpoint *b = bs->breakpoint_at;
11915
956a9fb9 11916 annotate_catchpoint (b->number);
f7f9143b 11917
956a9fb9 11918 if (ui_out_is_mi_like_p (uiout))
f7f9143b 11919 {
956a9fb9
JB
11920 ui_out_field_string (uiout, "reason",
11921 async_reason_lookup (EXEC_ASYNC_BREAKPOINT_HIT));
11922 ui_out_field_string (uiout, "disp", bpdisp_text (b->disposition));
f7f9143b
JB
11923 }
11924
00eb2c4a
JB
11925 ui_out_text (uiout,
11926 b->disposition == disp_del ? "\nTemporary catchpoint "
11927 : "\nCatchpoint ");
956a9fb9
JB
11928 ui_out_field_int (uiout, "bkptno", b->number);
11929 ui_out_text (uiout, ", ");
f7f9143b 11930
f7f9143b
JB
11931 switch (ex)
11932 {
761269c8
JB
11933 case ada_catch_exception:
11934 case ada_catch_exception_unhandled:
956a9fb9
JB
11935 {
11936 const CORE_ADDR addr = ada_exception_name_addr (ex, b);
11937 char exception_name[256];
11938
11939 if (addr != 0)
11940 {
c714b426
PA
11941 read_memory (addr, (gdb_byte *) exception_name,
11942 sizeof (exception_name) - 1);
956a9fb9
JB
11943 exception_name [sizeof (exception_name) - 1] = '\0';
11944 }
11945 else
11946 {
11947 /* For some reason, we were unable to read the exception
11948 name. This could happen if the Runtime was compiled
11949 without debugging info, for instance. In that case,
11950 just replace the exception name by the generic string
11951 "exception" - it will read as "an exception" in the
11952 notification we are about to print. */
967cff16 11953 memcpy (exception_name, "exception", sizeof ("exception"));
956a9fb9
JB
11954 }
11955 /* In the case of unhandled exception breakpoints, we print
11956 the exception name as "unhandled EXCEPTION_NAME", to make
11957 it clearer to the user which kind of catchpoint just got
11958 hit. We used ui_out_text to make sure that this extra
11959 info does not pollute the exception name in the MI case. */
761269c8 11960 if (ex == ada_catch_exception_unhandled)
956a9fb9
JB
11961 ui_out_text (uiout, "unhandled ");
11962 ui_out_field_string (uiout, "exception-name", exception_name);
11963 }
11964 break;
761269c8 11965 case ada_catch_assert:
956a9fb9
JB
11966 /* In this case, the name of the exception is not really
11967 important. Just print "failed assertion" to make it clearer
11968 that his program just hit an assertion-failure catchpoint.
11969 We used ui_out_text because this info does not belong in
11970 the MI output. */
11971 ui_out_text (uiout, "failed assertion");
11972 break;
f7f9143b 11973 }
956a9fb9
JB
11974 ui_out_text (uiout, " at ");
11975 ada_find_printable_frame (get_current_frame ());
f7f9143b
JB
11976
11977 return PRINT_SRC_AND_LOC;
11978}
11979
11980/* Implement the PRINT_ONE method in the breakpoint_ops structure
11981 for all exception catchpoint kinds. */
11982
11983static void
761269c8 11984print_one_exception (enum ada_exception_catchpoint_kind ex,
a6d9a66e 11985 struct breakpoint *b, struct bp_location **last_loc)
f7f9143b 11986{
79a45e25 11987 struct ui_out *uiout = current_uiout;
28010a5d 11988 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
79a45b7d
TT
11989 struct value_print_options opts;
11990
11991 get_user_print_options (&opts);
11992 if (opts.addressprint)
f7f9143b
JB
11993 {
11994 annotate_field (4);
5af949e3 11995 ui_out_field_core_addr (uiout, "addr", b->loc->gdbarch, b->loc->address);
f7f9143b
JB
11996 }
11997
11998 annotate_field (5);
a6d9a66e 11999 *last_loc = b->loc;
f7f9143b
JB
12000 switch (ex)
12001 {
761269c8 12002 case ada_catch_exception:
28010a5d 12003 if (c->excep_string != NULL)
f7f9143b 12004 {
28010a5d
PA
12005 char *msg = xstrprintf (_("`%s' Ada exception"), c->excep_string);
12006
f7f9143b
JB
12007 ui_out_field_string (uiout, "what", msg);
12008 xfree (msg);
12009 }
12010 else
12011 ui_out_field_string (uiout, "what", "all Ada exceptions");
12012
12013 break;
12014
761269c8 12015 case ada_catch_exception_unhandled:
f7f9143b
JB
12016 ui_out_field_string (uiout, "what", "unhandled Ada exceptions");
12017 break;
12018
761269c8 12019 case ada_catch_assert:
f7f9143b
JB
12020 ui_out_field_string (uiout, "what", "failed Ada assertions");
12021 break;
12022
12023 default:
12024 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12025 break;
12026 }
12027}
12028
12029/* Implement the PRINT_MENTION method in the breakpoint_ops structure
12030 for all exception catchpoint kinds. */
12031
12032static void
761269c8 12033print_mention_exception (enum ada_exception_catchpoint_kind ex,
f7f9143b
JB
12034 struct breakpoint *b)
12035{
28010a5d 12036 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
79a45e25 12037 struct ui_out *uiout = current_uiout;
28010a5d 12038
00eb2c4a
JB
12039 ui_out_text (uiout, b->disposition == disp_del ? _("Temporary catchpoint ")
12040 : _("Catchpoint "));
12041 ui_out_field_int (uiout, "bkptno", b->number);
12042 ui_out_text (uiout, ": ");
12043
f7f9143b
JB
12044 switch (ex)
12045 {
761269c8 12046 case ada_catch_exception:
28010a5d 12047 if (c->excep_string != NULL)
00eb2c4a
JB
12048 {
12049 char *info = xstrprintf (_("`%s' Ada exception"), c->excep_string);
12050 struct cleanup *old_chain = make_cleanup (xfree, info);
12051
12052 ui_out_text (uiout, info);
12053 do_cleanups (old_chain);
12054 }
f7f9143b 12055 else
00eb2c4a 12056 ui_out_text (uiout, _("all Ada exceptions"));
f7f9143b
JB
12057 break;
12058
761269c8 12059 case ada_catch_exception_unhandled:
00eb2c4a 12060 ui_out_text (uiout, _("unhandled Ada exceptions"));
f7f9143b
JB
12061 break;
12062
761269c8 12063 case ada_catch_assert:
00eb2c4a 12064 ui_out_text (uiout, _("failed Ada assertions"));
f7f9143b
JB
12065 break;
12066
12067 default:
12068 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12069 break;
12070 }
12071}
12072
6149aea9
PA
12073/* Implement the PRINT_RECREATE method in the breakpoint_ops structure
12074 for all exception catchpoint kinds. */
12075
12076static void
761269c8 12077print_recreate_exception (enum ada_exception_catchpoint_kind ex,
6149aea9
PA
12078 struct breakpoint *b, struct ui_file *fp)
12079{
28010a5d
PA
12080 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
12081
6149aea9
PA
12082 switch (ex)
12083 {
761269c8 12084 case ada_catch_exception:
6149aea9 12085 fprintf_filtered (fp, "catch exception");
28010a5d
PA
12086 if (c->excep_string != NULL)
12087 fprintf_filtered (fp, " %s", c->excep_string);
6149aea9
PA
12088 break;
12089
761269c8 12090 case ada_catch_exception_unhandled:
78076abc 12091 fprintf_filtered (fp, "catch exception unhandled");
6149aea9
PA
12092 break;
12093
761269c8 12094 case ada_catch_assert:
6149aea9
PA
12095 fprintf_filtered (fp, "catch assert");
12096 break;
12097
12098 default:
12099 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12100 }
d9b3f62e 12101 print_recreate_thread (b, fp);
6149aea9
PA
12102}
12103
f7f9143b
JB
12104/* Virtual table for "catch exception" breakpoints. */
12105
28010a5d
PA
12106static void
12107dtor_catch_exception (struct breakpoint *b)
12108{
761269c8 12109 dtor_exception (ada_catch_exception, b);
28010a5d
PA
12110}
12111
12112static struct bp_location *
12113allocate_location_catch_exception (struct breakpoint *self)
12114{
761269c8 12115 return allocate_location_exception (ada_catch_exception, self);
28010a5d
PA
12116}
12117
12118static void
12119re_set_catch_exception (struct breakpoint *b)
12120{
761269c8 12121 re_set_exception (ada_catch_exception, b);
28010a5d
PA
12122}
12123
12124static void
12125check_status_catch_exception (bpstat bs)
12126{
761269c8 12127 check_status_exception (ada_catch_exception, bs);
28010a5d
PA
12128}
12129
f7f9143b 12130static enum print_stop_action
348d480f 12131print_it_catch_exception (bpstat bs)
f7f9143b 12132{
761269c8 12133 return print_it_exception (ada_catch_exception, bs);
f7f9143b
JB
12134}
12135
12136static void
a6d9a66e 12137print_one_catch_exception (struct breakpoint *b, struct bp_location **last_loc)
f7f9143b 12138{
761269c8 12139 print_one_exception (ada_catch_exception, b, last_loc);
f7f9143b
JB
12140}
12141
12142static void
12143print_mention_catch_exception (struct breakpoint *b)
12144{
761269c8 12145 print_mention_exception (ada_catch_exception, b);
f7f9143b
JB
12146}
12147
6149aea9
PA
12148static void
12149print_recreate_catch_exception (struct breakpoint *b, struct ui_file *fp)
12150{
761269c8 12151 print_recreate_exception (ada_catch_exception, b, fp);
6149aea9
PA
12152}
12153
2060206e 12154static struct breakpoint_ops catch_exception_breakpoint_ops;
f7f9143b
JB
12155
12156/* Virtual table for "catch exception unhandled" breakpoints. */
12157
28010a5d
PA
12158static void
12159dtor_catch_exception_unhandled (struct breakpoint *b)
12160{
761269c8 12161 dtor_exception (ada_catch_exception_unhandled, b);
28010a5d
PA
12162}
12163
12164static struct bp_location *
12165allocate_location_catch_exception_unhandled (struct breakpoint *self)
12166{
761269c8 12167 return allocate_location_exception (ada_catch_exception_unhandled, self);
28010a5d
PA
12168}
12169
12170static void
12171re_set_catch_exception_unhandled (struct breakpoint *b)
12172{
761269c8 12173 re_set_exception (ada_catch_exception_unhandled, b);
28010a5d
PA
12174}
12175
12176static void
12177check_status_catch_exception_unhandled (bpstat bs)
12178{
761269c8 12179 check_status_exception (ada_catch_exception_unhandled, bs);
28010a5d
PA
12180}
12181
f7f9143b 12182static enum print_stop_action
348d480f 12183print_it_catch_exception_unhandled (bpstat bs)
f7f9143b 12184{
761269c8 12185 return print_it_exception (ada_catch_exception_unhandled, bs);
f7f9143b
JB
12186}
12187
12188static void
a6d9a66e
UW
12189print_one_catch_exception_unhandled (struct breakpoint *b,
12190 struct bp_location **last_loc)
f7f9143b 12191{
761269c8 12192 print_one_exception (ada_catch_exception_unhandled, b, last_loc);
f7f9143b
JB
12193}
12194
12195static void
12196print_mention_catch_exception_unhandled (struct breakpoint *b)
12197{
761269c8 12198 print_mention_exception (ada_catch_exception_unhandled, b);
f7f9143b
JB
12199}
12200
6149aea9
PA
12201static void
12202print_recreate_catch_exception_unhandled (struct breakpoint *b,
12203 struct ui_file *fp)
12204{
761269c8 12205 print_recreate_exception (ada_catch_exception_unhandled, b, fp);
6149aea9
PA
12206}
12207
2060206e 12208static struct breakpoint_ops catch_exception_unhandled_breakpoint_ops;
f7f9143b
JB
12209
12210/* Virtual table for "catch assert" breakpoints. */
12211
28010a5d
PA
12212static void
12213dtor_catch_assert (struct breakpoint *b)
12214{
761269c8 12215 dtor_exception (ada_catch_assert, b);
28010a5d
PA
12216}
12217
12218static struct bp_location *
12219allocate_location_catch_assert (struct breakpoint *self)
12220{
761269c8 12221 return allocate_location_exception (ada_catch_assert, self);
28010a5d
PA
12222}
12223
12224static void
12225re_set_catch_assert (struct breakpoint *b)
12226{
761269c8 12227 re_set_exception (ada_catch_assert, b);
28010a5d
PA
12228}
12229
12230static void
12231check_status_catch_assert (bpstat bs)
12232{
761269c8 12233 check_status_exception (ada_catch_assert, bs);
28010a5d
PA
12234}
12235
f7f9143b 12236static enum print_stop_action
348d480f 12237print_it_catch_assert (bpstat bs)
f7f9143b 12238{
761269c8 12239 return print_it_exception (ada_catch_assert, bs);
f7f9143b
JB
12240}
12241
12242static void
a6d9a66e 12243print_one_catch_assert (struct breakpoint *b, struct bp_location **last_loc)
f7f9143b 12244{
761269c8 12245 print_one_exception (ada_catch_assert, b, last_loc);
f7f9143b
JB
12246}
12247
12248static void
12249print_mention_catch_assert (struct breakpoint *b)
12250{
761269c8 12251 print_mention_exception (ada_catch_assert, b);
f7f9143b
JB
12252}
12253
6149aea9
PA
12254static void
12255print_recreate_catch_assert (struct breakpoint *b, struct ui_file *fp)
12256{
761269c8 12257 print_recreate_exception (ada_catch_assert, b, fp);
6149aea9
PA
12258}
12259
2060206e 12260static struct breakpoint_ops catch_assert_breakpoint_ops;
f7f9143b 12261
f7f9143b
JB
12262/* Return a newly allocated copy of the first space-separated token
12263 in ARGSP, and then adjust ARGSP to point immediately after that
12264 token.
12265
12266 Return NULL if ARGPS does not contain any more tokens. */
12267
12268static char *
12269ada_get_next_arg (char **argsp)
12270{
12271 char *args = *argsp;
12272 char *end;
12273 char *result;
12274
0fcd72ba 12275 args = skip_spaces (args);
f7f9143b
JB
12276 if (args[0] == '\0')
12277 return NULL; /* No more arguments. */
12278
12279 /* Find the end of the current argument. */
12280
0fcd72ba 12281 end = skip_to_space (args);
f7f9143b
JB
12282
12283 /* Adjust ARGSP to point to the start of the next argument. */
12284
12285 *argsp = end;
12286
12287 /* Make a copy of the current argument and return it. */
12288
12289 result = xmalloc (end - args + 1);
12290 strncpy (result, args, end - args);
12291 result[end - args] = '\0';
12292
12293 return result;
12294}
12295
12296/* Split the arguments specified in a "catch exception" command.
12297 Set EX to the appropriate catchpoint type.
28010a5d 12298 Set EXCEP_STRING to the name of the specific exception if
5845583d
JB
12299 specified by the user.
12300 If a condition is found at the end of the arguments, the condition
12301 expression is stored in COND_STRING (memory must be deallocated
12302 after use). Otherwise COND_STRING is set to NULL. */
f7f9143b
JB
12303
12304static void
12305catch_ada_exception_command_split (char *args,
761269c8 12306 enum ada_exception_catchpoint_kind *ex,
5845583d
JB
12307 char **excep_string,
12308 char **cond_string)
f7f9143b
JB
12309{
12310 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
12311 char *exception_name;
5845583d 12312 char *cond = NULL;
f7f9143b
JB
12313
12314 exception_name = ada_get_next_arg (&args);
5845583d
JB
12315 if (exception_name != NULL && strcmp (exception_name, "if") == 0)
12316 {
12317 /* This is not an exception name; this is the start of a condition
12318 expression for a catchpoint on all exceptions. So, "un-get"
12319 this token, and set exception_name to NULL. */
12320 xfree (exception_name);
12321 exception_name = NULL;
12322 args -= 2;
12323 }
f7f9143b
JB
12324 make_cleanup (xfree, exception_name);
12325
5845583d 12326 /* Check to see if we have a condition. */
f7f9143b 12327
0fcd72ba 12328 args = skip_spaces (args);
5845583d
JB
12329 if (strncmp (args, "if", 2) == 0
12330 && (isspace (args[2]) || args[2] == '\0'))
12331 {
12332 args += 2;
12333 args = skip_spaces (args);
12334
12335 if (args[0] == '\0')
12336 error (_("Condition missing after `if' keyword"));
12337 cond = xstrdup (args);
12338 make_cleanup (xfree, cond);
12339
12340 args += strlen (args);
12341 }
12342
12343 /* Check that we do not have any more arguments. Anything else
12344 is unexpected. */
f7f9143b
JB
12345
12346 if (args[0] != '\0')
12347 error (_("Junk at end of expression"));
12348
12349 discard_cleanups (old_chain);
12350
12351 if (exception_name == NULL)
12352 {
12353 /* Catch all exceptions. */
761269c8 12354 *ex = ada_catch_exception;
28010a5d 12355 *excep_string = NULL;
f7f9143b
JB
12356 }
12357 else if (strcmp (exception_name, "unhandled") == 0)
12358 {
12359 /* Catch unhandled exceptions. */
761269c8 12360 *ex = ada_catch_exception_unhandled;
28010a5d 12361 *excep_string = NULL;
f7f9143b
JB
12362 }
12363 else
12364 {
12365 /* Catch a specific exception. */
761269c8 12366 *ex = ada_catch_exception;
28010a5d 12367 *excep_string = exception_name;
f7f9143b 12368 }
5845583d 12369 *cond_string = cond;
f7f9143b
JB
12370}
12371
12372/* Return the name of the symbol on which we should break in order to
12373 implement a catchpoint of the EX kind. */
12374
12375static const char *
761269c8 12376ada_exception_sym_name (enum ada_exception_catchpoint_kind ex)
f7f9143b 12377{
3eecfa55
JB
12378 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
12379
12380 gdb_assert (data->exception_info != NULL);
0259addd 12381
f7f9143b
JB
12382 switch (ex)
12383 {
761269c8 12384 case ada_catch_exception:
3eecfa55 12385 return (data->exception_info->catch_exception_sym);
f7f9143b 12386 break;
761269c8 12387 case ada_catch_exception_unhandled:
3eecfa55 12388 return (data->exception_info->catch_exception_unhandled_sym);
f7f9143b 12389 break;
761269c8 12390 case ada_catch_assert:
3eecfa55 12391 return (data->exception_info->catch_assert_sym);
f7f9143b
JB
12392 break;
12393 default:
12394 internal_error (__FILE__, __LINE__,
12395 _("unexpected catchpoint kind (%d)"), ex);
12396 }
12397}
12398
12399/* Return the breakpoint ops "virtual table" used for catchpoints
12400 of the EX kind. */
12401
c0a91b2b 12402static const struct breakpoint_ops *
761269c8 12403ada_exception_breakpoint_ops (enum ada_exception_catchpoint_kind ex)
f7f9143b
JB
12404{
12405 switch (ex)
12406 {
761269c8 12407 case ada_catch_exception:
f7f9143b
JB
12408 return (&catch_exception_breakpoint_ops);
12409 break;
761269c8 12410 case ada_catch_exception_unhandled:
f7f9143b
JB
12411 return (&catch_exception_unhandled_breakpoint_ops);
12412 break;
761269c8 12413 case ada_catch_assert:
f7f9143b
JB
12414 return (&catch_assert_breakpoint_ops);
12415 break;
12416 default:
12417 internal_error (__FILE__, __LINE__,
12418 _("unexpected catchpoint kind (%d)"), ex);
12419 }
12420}
12421
12422/* Return the condition that will be used to match the current exception
12423 being raised with the exception that the user wants to catch. This
12424 assumes that this condition is used when the inferior just triggered
12425 an exception catchpoint.
12426
12427 The string returned is a newly allocated string that needs to be
12428 deallocated later. */
12429
12430static char *
28010a5d 12431ada_exception_catchpoint_cond_string (const char *excep_string)
f7f9143b 12432{
3d0b0fa3
JB
12433 int i;
12434
0963b4bd 12435 /* The standard exceptions are a special case. They are defined in
3d0b0fa3 12436 runtime units that have been compiled without debugging info; if
28010a5d 12437 EXCEP_STRING is the not-fully-qualified name of a standard
3d0b0fa3
JB
12438 exception (e.g. "constraint_error") then, during the evaluation
12439 of the condition expression, the symbol lookup on this name would
0963b4bd 12440 *not* return this standard exception. The catchpoint condition
3d0b0fa3
JB
12441 may then be set only on user-defined exceptions which have the
12442 same not-fully-qualified name (e.g. my_package.constraint_error).
12443
12444 To avoid this unexcepted behavior, these standard exceptions are
0963b4bd 12445 systematically prefixed by "standard". This means that "catch
3d0b0fa3
JB
12446 exception constraint_error" is rewritten into "catch exception
12447 standard.constraint_error".
12448
12449 If an exception named contraint_error is defined in another package of
12450 the inferior program, then the only way to specify this exception as a
12451 breakpoint condition is to use its fully-qualified named:
12452 e.g. my_package.constraint_error. */
12453
12454 for (i = 0; i < sizeof (standard_exc) / sizeof (char *); i++)
12455 {
28010a5d 12456 if (strcmp (standard_exc [i], excep_string) == 0)
3d0b0fa3
JB
12457 {
12458 return xstrprintf ("long_integer (e) = long_integer (&standard.%s)",
28010a5d 12459 excep_string);
3d0b0fa3
JB
12460 }
12461 }
28010a5d 12462 return xstrprintf ("long_integer (e) = long_integer (&%s)", excep_string);
f7f9143b
JB
12463}
12464
12465/* Return the symtab_and_line that should be used to insert an exception
12466 catchpoint of the TYPE kind.
12467
28010a5d
PA
12468 EXCEP_STRING should contain the name of a specific exception that
12469 the catchpoint should catch, or NULL otherwise.
f7f9143b 12470
28010a5d
PA
12471 ADDR_STRING returns the name of the function where the real
12472 breakpoint that implements the catchpoints is set, depending on the
12473 type of catchpoint we need to create. */
f7f9143b
JB
12474
12475static struct symtab_and_line
761269c8 12476ada_exception_sal (enum ada_exception_catchpoint_kind ex, char *excep_string,
c0a91b2b 12477 char **addr_string, const struct breakpoint_ops **ops)
f7f9143b
JB
12478{
12479 const char *sym_name;
12480 struct symbol *sym;
f7f9143b 12481
0259addd
JB
12482 /* First, find out which exception support info to use. */
12483 ada_exception_support_info_sniffer ();
12484
12485 /* Then lookup the function on which we will break in order to catch
f7f9143b 12486 the Ada exceptions requested by the user. */
f7f9143b
JB
12487 sym_name = ada_exception_sym_name (ex);
12488 sym = standard_lookup (sym_name, NULL, VAR_DOMAIN);
12489
f17011e0
JB
12490 /* We can assume that SYM is not NULL at this stage. If the symbol
12491 did not exist, ada_exception_support_info_sniffer would have
12492 raised an exception.
f7f9143b 12493
f17011e0
JB
12494 Also, ada_exception_support_info_sniffer should have already
12495 verified that SYM is a function symbol. */
12496 gdb_assert (sym != NULL);
12497 gdb_assert (SYMBOL_CLASS (sym) == LOC_BLOCK);
f7f9143b
JB
12498
12499 /* Set ADDR_STRING. */
f7f9143b
JB
12500 *addr_string = xstrdup (sym_name);
12501
f7f9143b 12502 /* Set OPS. */
4b9eee8c 12503 *ops = ada_exception_breakpoint_ops (ex);
f7f9143b 12504
f17011e0 12505 return find_function_start_sal (sym, 1);
f7f9143b
JB
12506}
12507
b4a5b78b 12508/* Create an Ada exception catchpoint.
f7f9143b 12509
b4a5b78b 12510 EX_KIND is the kind of exception catchpoint to be created.
5845583d 12511
2df4d1d5
JB
12512 If EXCEPT_STRING is NULL, this catchpoint is expected to trigger
12513 for all exceptions. Otherwise, EXCEPT_STRING indicates the name
12514 of the exception to which this catchpoint applies. When not NULL,
12515 the string must be allocated on the heap, and its deallocation
12516 is no longer the responsibility of the caller.
12517
12518 COND_STRING, if not NULL, is the catchpoint condition. This string
12519 must be allocated on the heap, and its deallocation is no longer
12520 the responsibility of the caller.
f7f9143b 12521
b4a5b78b
JB
12522 TEMPFLAG, if nonzero, means that the underlying breakpoint
12523 should be temporary.
28010a5d 12524
b4a5b78b 12525 FROM_TTY is the usual argument passed to all commands implementations. */
28010a5d 12526
349774ef 12527void
28010a5d 12528create_ada_exception_catchpoint (struct gdbarch *gdbarch,
761269c8 12529 enum ada_exception_catchpoint_kind ex_kind,
28010a5d 12530 char *excep_string,
5845583d 12531 char *cond_string,
28010a5d 12532 int tempflag,
349774ef 12533 int disabled,
28010a5d
PA
12534 int from_tty)
12535{
12536 struct ada_catchpoint *c;
b4a5b78b
JB
12537 char *addr_string = NULL;
12538 const struct breakpoint_ops *ops = NULL;
12539 struct symtab_and_line sal
12540 = ada_exception_sal (ex_kind, excep_string, &addr_string, &ops);
28010a5d
PA
12541
12542 c = XNEW (struct ada_catchpoint);
12543 init_ada_exception_breakpoint (&c->base, gdbarch, sal, addr_string,
349774ef 12544 ops, tempflag, disabled, from_tty);
28010a5d
PA
12545 c->excep_string = excep_string;
12546 create_excep_cond_exprs (c);
5845583d
JB
12547 if (cond_string != NULL)
12548 set_breakpoint_condition (&c->base, cond_string, from_tty);
3ea46bff 12549 install_breakpoint (0, &c->base, 1);
f7f9143b
JB
12550}
12551
9ac4176b
PA
12552/* Implement the "catch exception" command. */
12553
12554static void
12555catch_ada_exception_command (char *arg, int from_tty,
12556 struct cmd_list_element *command)
12557{
12558 struct gdbarch *gdbarch = get_current_arch ();
12559 int tempflag;
761269c8 12560 enum ada_exception_catchpoint_kind ex_kind;
28010a5d 12561 char *excep_string = NULL;
5845583d 12562 char *cond_string = NULL;
9ac4176b
PA
12563
12564 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
12565
12566 if (!arg)
12567 arg = "";
b4a5b78b
JB
12568 catch_ada_exception_command_split (arg, &ex_kind, &excep_string,
12569 &cond_string);
12570 create_ada_exception_catchpoint (gdbarch, ex_kind,
12571 excep_string, cond_string,
349774ef
JB
12572 tempflag, 1 /* enabled */,
12573 from_tty);
9ac4176b
PA
12574}
12575
b4a5b78b 12576/* Split the arguments specified in a "catch assert" command.
5845583d 12577
b4a5b78b
JB
12578 ARGS contains the command's arguments (or the empty string if
12579 no arguments were passed).
5845583d
JB
12580
12581 If ARGS contains a condition, set COND_STRING to that condition
b4a5b78b 12582 (the memory needs to be deallocated after use). */
5845583d 12583
b4a5b78b
JB
12584static void
12585catch_ada_assert_command_split (char *args, char **cond_string)
f7f9143b 12586{
5845583d 12587 args = skip_spaces (args);
f7f9143b 12588
5845583d
JB
12589 /* Check whether a condition was provided. */
12590 if (strncmp (args, "if", 2) == 0
12591 && (isspace (args[2]) || args[2] == '\0'))
f7f9143b 12592 {
5845583d 12593 args += 2;
0fcd72ba 12594 args = skip_spaces (args);
5845583d
JB
12595 if (args[0] == '\0')
12596 error (_("condition missing after `if' keyword"));
12597 *cond_string = xstrdup (args);
f7f9143b
JB
12598 }
12599
5845583d
JB
12600 /* Otherwise, there should be no other argument at the end of
12601 the command. */
12602 else if (args[0] != '\0')
12603 error (_("Junk at end of arguments."));
f7f9143b
JB
12604}
12605
9ac4176b
PA
12606/* Implement the "catch assert" command. */
12607
12608static void
12609catch_assert_command (char *arg, int from_tty,
12610 struct cmd_list_element *command)
12611{
12612 struct gdbarch *gdbarch = get_current_arch ();
12613 int tempflag;
5845583d 12614 char *cond_string = NULL;
9ac4176b
PA
12615
12616 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
12617
12618 if (!arg)
12619 arg = "";
b4a5b78b 12620 catch_ada_assert_command_split (arg, &cond_string);
761269c8 12621 create_ada_exception_catchpoint (gdbarch, ada_catch_assert,
b4a5b78b 12622 NULL, cond_string,
349774ef
JB
12623 tempflag, 1 /* enabled */,
12624 from_tty);
9ac4176b 12625}
778865d3
JB
12626
12627/* Return non-zero if the symbol SYM is an Ada exception object. */
12628
12629static int
12630ada_is_exception_sym (struct symbol *sym)
12631{
12632 const char *type_name = type_name_no_tag (SYMBOL_TYPE (sym));
12633
12634 return (SYMBOL_CLASS (sym) != LOC_TYPEDEF
12635 && SYMBOL_CLASS (sym) != LOC_BLOCK
12636 && SYMBOL_CLASS (sym) != LOC_CONST
12637 && SYMBOL_CLASS (sym) != LOC_UNRESOLVED
12638 && type_name != NULL && strcmp (type_name, "exception") == 0);
12639}
12640
12641/* Given a global symbol SYM, return non-zero iff SYM is a non-standard
12642 Ada exception object. This matches all exceptions except the ones
12643 defined by the Ada language. */
12644
12645static int
12646ada_is_non_standard_exception_sym (struct symbol *sym)
12647{
12648 int i;
12649
12650 if (!ada_is_exception_sym (sym))
12651 return 0;
12652
12653 for (i = 0; i < ARRAY_SIZE (standard_exc); i++)
12654 if (strcmp (SYMBOL_LINKAGE_NAME (sym), standard_exc[i]) == 0)
12655 return 0; /* A standard exception. */
12656
12657 /* Numeric_Error is also a standard exception, so exclude it.
12658 See the STANDARD_EXC description for more details as to why
12659 this exception is not listed in that array. */
12660 if (strcmp (SYMBOL_LINKAGE_NAME (sym), "numeric_error") == 0)
12661 return 0;
12662
12663 return 1;
12664}
12665
12666/* A helper function for qsort, comparing two struct ada_exc_info
12667 objects.
12668
12669 The comparison is determined first by exception name, and then
12670 by exception address. */
12671
12672static int
12673compare_ada_exception_info (const void *a, const void *b)
12674{
12675 const struct ada_exc_info *exc_a = (struct ada_exc_info *) a;
12676 const struct ada_exc_info *exc_b = (struct ada_exc_info *) b;
12677 int result;
12678
12679 result = strcmp (exc_a->name, exc_b->name);
12680 if (result != 0)
12681 return result;
12682
12683 if (exc_a->addr < exc_b->addr)
12684 return -1;
12685 if (exc_a->addr > exc_b->addr)
12686 return 1;
12687
12688 return 0;
12689}
12690
12691/* Sort EXCEPTIONS using compare_ada_exception_info as the comparison
12692 routine, but keeping the first SKIP elements untouched.
12693
12694 All duplicates are also removed. */
12695
12696static void
12697sort_remove_dups_ada_exceptions_list (VEC(ada_exc_info) **exceptions,
12698 int skip)
12699{
12700 struct ada_exc_info *to_sort
12701 = VEC_address (ada_exc_info, *exceptions) + skip;
12702 int to_sort_len
12703 = VEC_length (ada_exc_info, *exceptions) - skip;
12704 int i, j;
12705
12706 qsort (to_sort, to_sort_len, sizeof (struct ada_exc_info),
12707 compare_ada_exception_info);
12708
12709 for (i = 1, j = 1; i < to_sort_len; i++)
12710 if (compare_ada_exception_info (&to_sort[i], &to_sort[j - 1]) != 0)
12711 to_sort[j++] = to_sort[i];
12712 to_sort_len = j;
12713 VEC_truncate(ada_exc_info, *exceptions, skip + to_sort_len);
12714}
12715
12716/* A function intended as the "name_matcher" callback in the struct
12717 quick_symbol_functions' expand_symtabs_matching method.
12718
12719 SEARCH_NAME is the symbol's search name.
12720
12721 If USER_DATA is not NULL, it is a pointer to a regext_t object
12722 used to match the symbol (by natural name). Otherwise, when USER_DATA
12723 is null, no filtering is performed, and all symbols are a positive
12724 match. */
12725
12726static int
12727ada_exc_search_name_matches (const char *search_name, void *user_data)
12728{
12729 regex_t *preg = user_data;
12730
12731 if (preg == NULL)
12732 return 1;
12733
12734 /* In Ada, the symbol "search name" is a linkage name, whereas
12735 the regular expression used to do the matching refers to
12736 the natural name. So match against the decoded name. */
12737 return (regexec (preg, ada_decode (search_name), 0, NULL, 0) == 0);
12738}
12739
12740/* Add all exceptions defined by the Ada standard whose name match
12741 a regular expression.
12742
12743 If PREG is not NULL, then this regexp_t object is used to
12744 perform the symbol name matching. Otherwise, no name-based
12745 filtering is performed.
12746
12747 EXCEPTIONS is a vector of exceptions to which matching exceptions
12748 gets pushed. */
12749
12750static void
12751ada_add_standard_exceptions (regex_t *preg, VEC(ada_exc_info) **exceptions)
12752{
12753 int i;
12754
12755 for (i = 0; i < ARRAY_SIZE (standard_exc); i++)
12756 {
12757 if (preg == NULL
12758 || regexec (preg, standard_exc[i], 0, NULL, 0) == 0)
12759 {
12760 struct bound_minimal_symbol msymbol
12761 = ada_lookup_simple_minsym (standard_exc[i]);
12762
12763 if (msymbol.minsym != NULL)
12764 {
12765 struct ada_exc_info info
77e371c0 12766 = {standard_exc[i], BMSYMBOL_VALUE_ADDRESS (msymbol)};
778865d3
JB
12767
12768 VEC_safe_push (ada_exc_info, *exceptions, &info);
12769 }
12770 }
12771 }
12772}
12773
12774/* Add all Ada exceptions defined locally and accessible from the given
12775 FRAME.
12776
12777 If PREG is not NULL, then this regexp_t object is used to
12778 perform the symbol name matching. Otherwise, no name-based
12779 filtering is performed.
12780
12781 EXCEPTIONS is a vector of exceptions to which matching exceptions
12782 gets pushed. */
12783
12784static void
12785ada_add_exceptions_from_frame (regex_t *preg, struct frame_info *frame,
12786 VEC(ada_exc_info) **exceptions)
12787{
3977b71f 12788 const struct block *block = get_frame_block (frame, 0);
778865d3
JB
12789
12790 while (block != 0)
12791 {
12792 struct block_iterator iter;
12793 struct symbol *sym;
12794
12795 ALL_BLOCK_SYMBOLS (block, iter, sym)
12796 {
12797 switch (SYMBOL_CLASS (sym))
12798 {
12799 case LOC_TYPEDEF:
12800 case LOC_BLOCK:
12801 case LOC_CONST:
12802 break;
12803 default:
12804 if (ada_is_exception_sym (sym))
12805 {
12806 struct ada_exc_info info = {SYMBOL_PRINT_NAME (sym),
12807 SYMBOL_VALUE_ADDRESS (sym)};
12808
12809 VEC_safe_push (ada_exc_info, *exceptions, &info);
12810 }
12811 }
12812 }
12813 if (BLOCK_FUNCTION (block) != NULL)
12814 break;
12815 block = BLOCK_SUPERBLOCK (block);
12816 }
12817}
12818
12819/* Add all exceptions defined globally whose name name match
12820 a regular expression, excluding standard exceptions.
12821
12822 The reason we exclude standard exceptions is that they need
12823 to be handled separately: Standard exceptions are defined inside
12824 a runtime unit which is normally not compiled with debugging info,
12825 and thus usually do not show up in our symbol search. However,
12826 if the unit was in fact built with debugging info, we need to
12827 exclude them because they would duplicate the entry we found
12828 during the special loop that specifically searches for those
12829 standard exceptions.
12830
12831 If PREG is not NULL, then this regexp_t object is used to
12832 perform the symbol name matching. Otherwise, no name-based
12833 filtering is performed.
12834
12835 EXCEPTIONS is a vector of exceptions to which matching exceptions
12836 gets pushed. */
12837
12838static void
12839ada_add_global_exceptions (regex_t *preg, VEC(ada_exc_info) **exceptions)
12840{
12841 struct objfile *objfile;
12842 struct symtab *s;
12843
bb4142cf
DE
12844 expand_symtabs_matching (NULL, ada_exc_search_name_matches,
12845 VARIABLES_DOMAIN, preg);
778865d3
JB
12846
12847 ALL_PRIMARY_SYMTABS (objfile, s)
12848 {
346d1dfe 12849 const struct blockvector *bv = BLOCKVECTOR (s);
778865d3
JB
12850 int i;
12851
12852 for (i = GLOBAL_BLOCK; i <= STATIC_BLOCK; i++)
12853 {
12854 struct block *b = BLOCKVECTOR_BLOCK (bv, i);
12855 struct block_iterator iter;
12856 struct symbol *sym;
12857
12858 ALL_BLOCK_SYMBOLS (b, iter, sym)
12859 if (ada_is_non_standard_exception_sym (sym)
12860 && (preg == NULL
12861 || regexec (preg, SYMBOL_NATURAL_NAME (sym),
12862 0, NULL, 0) == 0))
12863 {
12864 struct ada_exc_info info
12865 = {SYMBOL_PRINT_NAME (sym), SYMBOL_VALUE_ADDRESS (sym)};
12866
12867 VEC_safe_push (ada_exc_info, *exceptions, &info);
12868 }
12869 }
12870 }
12871}
12872
12873/* Implements ada_exceptions_list with the regular expression passed
12874 as a regex_t, rather than a string.
12875
12876 If not NULL, PREG is used to filter out exceptions whose names
12877 do not match. Otherwise, all exceptions are listed. */
12878
12879static VEC(ada_exc_info) *
12880ada_exceptions_list_1 (regex_t *preg)
12881{
12882 VEC(ada_exc_info) *result = NULL;
12883 struct cleanup *old_chain
12884 = make_cleanup (VEC_cleanup (ada_exc_info), &result);
12885 int prev_len;
12886
12887 /* First, list the known standard exceptions. These exceptions
12888 need to be handled separately, as they are usually defined in
12889 runtime units that have been compiled without debugging info. */
12890
12891 ada_add_standard_exceptions (preg, &result);
12892
12893 /* Next, find all exceptions whose scope is local and accessible
12894 from the currently selected frame. */
12895
12896 if (has_stack_frames ())
12897 {
12898 prev_len = VEC_length (ada_exc_info, result);
12899 ada_add_exceptions_from_frame (preg, get_selected_frame (NULL),
12900 &result);
12901 if (VEC_length (ada_exc_info, result) > prev_len)
12902 sort_remove_dups_ada_exceptions_list (&result, prev_len);
12903 }
12904
12905 /* Add all exceptions whose scope is global. */
12906
12907 prev_len = VEC_length (ada_exc_info, result);
12908 ada_add_global_exceptions (preg, &result);
12909 if (VEC_length (ada_exc_info, result) > prev_len)
12910 sort_remove_dups_ada_exceptions_list (&result, prev_len);
12911
12912 discard_cleanups (old_chain);
12913 return result;
12914}
12915
12916/* Return a vector of ada_exc_info.
12917
12918 If REGEXP is NULL, all exceptions are included in the result.
12919 Otherwise, it should contain a valid regular expression,
12920 and only the exceptions whose names match that regular expression
12921 are included in the result.
12922
12923 The exceptions are sorted in the following order:
12924 - Standard exceptions (defined by the Ada language), in
12925 alphabetical order;
12926 - Exceptions only visible from the current frame, in
12927 alphabetical order;
12928 - Exceptions whose scope is global, in alphabetical order. */
12929
12930VEC(ada_exc_info) *
12931ada_exceptions_list (const char *regexp)
12932{
12933 VEC(ada_exc_info) *result = NULL;
12934 struct cleanup *old_chain = NULL;
12935 regex_t reg;
12936
12937 if (regexp != NULL)
12938 old_chain = compile_rx_or_error (&reg, regexp,
12939 _("invalid regular expression"));
12940
12941 result = ada_exceptions_list_1 (regexp != NULL ? &reg : NULL);
12942
12943 if (old_chain != NULL)
12944 do_cleanups (old_chain);
12945 return result;
12946}
12947
12948/* Implement the "info exceptions" command. */
12949
12950static void
12951info_exceptions_command (char *regexp, int from_tty)
12952{
12953 VEC(ada_exc_info) *exceptions;
12954 struct cleanup *cleanup;
12955 struct gdbarch *gdbarch = get_current_arch ();
12956 int ix;
12957 struct ada_exc_info *info;
12958
12959 exceptions = ada_exceptions_list (regexp);
12960 cleanup = make_cleanup (VEC_cleanup (ada_exc_info), &exceptions);
12961
12962 if (regexp != NULL)
12963 printf_filtered
12964 (_("All Ada exceptions matching regular expression \"%s\":\n"), regexp);
12965 else
12966 printf_filtered (_("All defined Ada exceptions:\n"));
12967
12968 for (ix = 0; VEC_iterate(ada_exc_info, exceptions, ix, info); ix++)
12969 printf_filtered ("%s: %s\n", info->name, paddress (gdbarch, info->addr));
12970
12971 do_cleanups (cleanup);
12972}
12973
4c4b4cd2
PH
12974 /* Operators */
12975/* Information about operators given special treatment in functions
12976 below. */
12977/* Format: OP_DEFN (<operator>, <operator length>, <# args>, <binop>). */
12978
12979#define ADA_OPERATORS \
12980 OP_DEFN (OP_VAR_VALUE, 4, 0, 0) \
12981 OP_DEFN (BINOP_IN_BOUNDS, 3, 2, 0) \
12982 OP_DEFN (TERNOP_IN_RANGE, 1, 3, 0) \
12983 OP_DEFN (OP_ATR_FIRST, 1, 2, 0) \
12984 OP_DEFN (OP_ATR_LAST, 1, 2, 0) \
12985 OP_DEFN (OP_ATR_LENGTH, 1, 2, 0) \
12986 OP_DEFN (OP_ATR_IMAGE, 1, 2, 0) \
12987 OP_DEFN (OP_ATR_MAX, 1, 3, 0) \
12988 OP_DEFN (OP_ATR_MIN, 1, 3, 0) \
12989 OP_DEFN (OP_ATR_MODULUS, 1, 1, 0) \
12990 OP_DEFN (OP_ATR_POS, 1, 2, 0) \
12991 OP_DEFN (OP_ATR_SIZE, 1, 1, 0) \
12992 OP_DEFN (OP_ATR_TAG, 1, 1, 0) \
12993 OP_DEFN (OP_ATR_VAL, 1, 2, 0) \
12994 OP_DEFN (UNOP_QUAL, 3, 1, 0) \
52ce6436
PH
12995 OP_DEFN (UNOP_IN_RANGE, 3, 1, 0) \
12996 OP_DEFN (OP_OTHERS, 1, 1, 0) \
12997 OP_DEFN (OP_POSITIONAL, 3, 1, 0) \
12998 OP_DEFN (OP_DISCRETE_RANGE, 1, 2, 0)
4c4b4cd2
PH
12999
13000static void
554794dc
SDJ
13001ada_operator_length (const struct expression *exp, int pc, int *oplenp,
13002 int *argsp)
4c4b4cd2
PH
13003{
13004 switch (exp->elts[pc - 1].opcode)
13005 {
76a01679 13006 default:
4c4b4cd2
PH
13007 operator_length_standard (exp, pc, oplenp, argsp);
13008 break;
13009
13010#define OP_DEFN(op, len, args, binop) \
13011 case op: *oplenp = len; *argsp = args; break;
13012 ADA_OPERATORS;
13013#undef OP_DEFN
52ce6436
PH
13014
13015 case OP_AGGREGATE:
13016 *oplenp = 3;
13017 *argsp = longest_to_int (exp->elts[pc - 2].longconst);
13018 break;
13019
13020 case OP_CHOICES:
13021 *oplenp = 3;
13022 *argsp = longest_to_int (exp->elts[pc - 2].longconst) + 1;
13023 break;
4c4b4cd2
PH
13024 }
13025}
13026
c0201579
JK
13027/* Implementation of the exp_descriptor method operator_check. */
13028
13029static int
13030ada_operator_check (struct expression *exp, int pos,
13031 int (*objfile_func) (struct objfile *objfile, void *data),
13032 void *data)
13033{
13034 const union exp_element *const elts = exp->elts;
13035 struct type *type = NULL;
13036
13037 switch (elts[pos].opcode)
13038 {
13039 case UNOP_IN_RANGE:
13040 case UNOP_QUAL:
13041 type = elts[pos + 1].type;
13042 break;
13043
13044 default:
13045 return operator_check_standard (exp, pos, objfile_func, data);
13046 }
13047
13048 /* Invoke callbacks for TYPE and OBJFILE if they were set as non-NULL. */
13049
13050 if (type && TYPE_OBJFILE (type)
13051 && (*objfile_func) (TYPE_OBJFILE (type), data))
13052 return 1;
13053
13054 return 0;
13055}
13056
4c4b4cd2
PH
13057static char *
13058ada_op_name (enum exp_opcode opcode)
13059{
13060 switch (opcode)
13061 {
76a01679 13062 default:
4c4b4cd2 13063 return op_name_standard (opcode);
52ce6436 13064
4c4b4cd2
PH
13065#define OP_DEFN(op, len, args, binop) case op: return #op;
13066 ADA_OPERATORS;
13067#undef OP_DEFN
52ce6436
PH
13068
13069 case OP_AGGREGATE:
13070 return "OP_AGGREGATE";
13071 case OP_CHOICES:
13072 return "OP_CHOICES";
13073 case OP_NAME:
13074 return "OP_NAME";
4c4b4cd2
PH
13075 }
13076}
13077
13078/* As for operator_length, but assumes PC is pointing at the first
13079 element of the operator, and gives meaningful results only for the
52ce6436 13080 Ada-specific operators, returning 0 for *OPLENP and *ARGSP otherwise. */
4c4b4cd2
PH
13081
13082static void
76a01679
JB
13083ada_forward_operator_length (struct expression *exp, int pc,
13084 int *oplenp, int *argsp)
4c4b4cd2 13085{
76a01679 13086 switch (exp->elts[pc].opcode)
4c4b4cd2
PH
13087 {
13088 default:
13089 *oplenp = *argsp = 0;
13090 break;
52ce6436 13091
4c4b4cd2
PH
13092#define OP_DEFN(op, len, args, binop) \
13093 case op: *oplenp = len; *argsp = args; break;
13094 ADA_OPERATORS;
13095#undef OP_DEFN
52ce6436
PH
13096
13097 case OP_AGGREGATE:
13098 *oplenp = 3;
13099 *argsp = longest_to_int (exp->elts[pc + 1].longconst);
13100 break;
13101
13102 case OP_CHOICES:
13103 *oplenp = 3;
13104 *argsp = longest_to_int (exp->elts[pc + 1].longconst) + 1;
13105 break;
13106
13107 case OP_STRING:
13108 case OP_NAME:
13109 {
13110 int len = longest_to_int (exp->elts[pc + 1].longconst);
5b4ee69b 13111
52ce6436
PH
13112 *oplenp = 4 + BYTES_TO_EXP_ELEM (len + 1);
13113 *argsp = 0;
13114 break;
13115 }
4c4b4cd2
PH
13116 }
13117}
13118
13119static int
13120ada_dump_subexp_body (struct expression *exp, struct ui_file *stream, int elt)
13121{
13122 enum exp_opcode op = exp->elts[elt].opcode;
13123 int oplen, nargs;
13124 int pc = elt;
13125 int i;
76a01679 13126
4c4b4cd2
PH
13127 ada_forward_operator_length (exp, elt, &oplen, &nargs);
13128
76a01679 13129 switch (op)
4c4b4cd2 13130 {
76a01679 13131 /* Ada attributes ('Foo). */
4c4b4cd2
PH
13132 case OP_ATR_FIRST:
13133 case OP_ATR_LAST:
13134 case OP_ATR_LENGTH:
13135 case OP_ATR_IMAGE:
13136 case OP_ATR_MAX:
13137 case OP_ATR_MIN:
13138 case OP_ATR_MODULUS:
13139 case OP_ATR_POS:
13140 case OP_ATR_SIZE:
13141 case OP_ATR_TAG:
13142 case OP_ATR_VAL:
13143 break;
13144
13145 case UNOP_IN_RANGE:
13146 case UNOP_QUAL:
323e0a4a
AC
13147 /* XXX: gdb_sprint_host_address, type_sprint */
13148 fprintf_filtered (stream, _("Type @"));
4c4b4cd2
PH
13149 gdb_print_host_address (exp->elts[pc + 1].type, stream);
13150 fprintf_filtered (stream, " (");
13151 type_print (exp->elts[pc + 1].type, NULL, stream, 0);
13152 fprintf_filtered (stream, ")");
13153 break;
13154 case BINOP_IN_BOUNDS:
52ce6436
PH
13155 fprintf_filtered (stream, " (%d)",
13156 longest_to_int (exp->elts[pc + 2].longconst));
4c4b4cd2
PH
13157 break;
13158 case TERNOP_IN_RANGE:
13159 break;
13160
52ce6436
PH
13161 case OP_AGGREGATE:
13162 case OP_OTHERS:
13163 case OP_DISCRETE_RANGE:
13164 case OP_POSITIONAL:
13165 case OP_CHOICES:
13166 break;
13167
13168 case OP_NAME:
13169 case OP_STRING:
13170 {
13171 char *name = &exp->elts[elt + 2].string;
13172 int len = longest_to_int (exp->elts[elt + 1].longconst);
5b4ee69b 13173
52ce6436
PH
13174 fprintf_filtered (stream, "Text: `%.*s'", len, name);
13175 break;
13176 }
13177
4c4b4cd2
PH
13178 default:
13179 return dump_subexp_body_standard (exp, stream, elt);
13180 }
13181
13182 elt += oplen;
13183 for (i = 0; i < nargs; i += 1)
13184 elt = dump_subexp (exp, stream, elt);
13185
13186 return elt;
13187}
13188
13189/* The Ada extension of print_subexp (q.v.). */
13190
76a01679
JB
13191static void
13192ada_print_subexp (struct expression *exp, int *pos,
13193 struct ui_file *stream, enum precedence prec)
4c4b4cd2 13194{
52ce6436 13195 int oplen, nargs, i;
4c4b4cd2
PH
13196 int pc = *pos;
13197 enum exp_opcode op = exp->elts[pc].opcode;
13198
13199 ada_forward_operator_length (exp, pc, &oplen, &nargs);
13200
52ce6436 13201 *pos += oplen;
4c4b4cd2
PH
13202 switch (op)
13203 {
13204 default:
52ce6436 13205 *pos -= oplen;
4c4b4cd2
PH
13206 print_subexp_standard (exp, pos, stream, prec);
13207 return;
13208
13209 case OP_VAR_VALUE:
4c4b4cd2
PH
13210 fputs_filtered (SYMBOL_NATURAL_NAME (exp->elts[pc + 2].symbol), stream);
13211 return;
13212
13213 case BINOP_IN_BOUNDS:
323e0a4a 13214 /* XXX: sprint_subexp */
4c4b4cd2 13215 print_subexp (exp, pos, stream, PREC_SUFFIX);
0b48a291 13216 fputs_filtered (" in ", stream);
4c4b4cd2 13217 print_subexp (exp, pos, stream, PREC_SUFFIX);
0b48a291 13218 fputs_filtered ("'range", stream);
4c4b4cd2 13219 if (exp->elts[pc + 1].longconst > 1)
76a01679
JB
13220 fprintf_filtered (stream, "(%ld)",
13221 (long) exp->elts[pc + 1].longconst);
4c4b4cd2
PH
13222 return;
13223
13224 case TERNOP_IN_RANGE:
4c4b4cd2 13225 if (prec >= PREC_EQUAL)
76a01679 13226 fputs_filtered ("(", stream);
323e0a4a 13227 /* XXX: sprint_subexp */
4c4b4cd2 13228 print_subexp (exp, pos, stream, PREC_SUFFIX);
0b48a291 13229 fputs_filtered (" in ", stream);
4c4b4cd2
PH
13230 print_subexp (exp, pos, stream, PREC_EQUAL);
13231 fputs_filtered (" .. ", stream);
13232 print_subexp (exp, pos, stream, PREC_EQUAL);
13233 if (prec >= PREC_EQUAL)
76a01679
JB
13234 fputs_filtered (")", stream);
13235 return;
4c4b4cd2
PH
13236
13237 case OP_ATR_FIRST:
13238 case OP_ATR_LAST:
13239 case OP_ATR_LENGTH:
13240 case OP_ATR_IMAGE:
13241 case OP_ATR_MAX:
13242 case OP_ATR_MIN:
13243 case OP_ATR_MODULUS:
13244 case OP_ATR_POS:
13245 case OP_ATR_SIZE:
13246 case OP_ATR_TAG:
13247 case OP_ATR_VAL:
4c4b4cd2 13248 if (exp->elts[*pos].opcode == OP_TYPE)
76a01679
JB
13249 {
13250 if (TYPE_CODE (exp->elts[*pos + 1].type) != TYPE_CODE_VOID)
79d43c61
TT
13251 LA_PRINT_TYPE (exp->elts[*pos + 1].type, "", stream, 0, 0,
13252 &type_print_raw_options);
76a01679
JB
13253 *pos += 3;
13254 }
4c4b4cd2 13255 else
76a01679 13256 print_subexp (exp, pos, stream, PREC_SUFFIX);
4c4b4cd2
PH
13257 fprintf_filtered (stream, "'%s", ada_attribute_name (op));
13258 if (nargs > 1)
76a01679
JB
13259 {
13260 int tem;
5b4ee69b 13261
76a01679
JB
13262 for (tem = 1; tem < nargs; tem += 1)
13263 {
13264 fputs_filtered ((tem == 1) ? " (" : ", ", stream);
13265 print_subexp (exp, pos, stream, PREC_ABOVE_COMMA);
13266 }
13267 fputs_filtered (")", stream);
13268 }
4c4b4cd2 13269 return;
14f9c5c9 13270
4c4b4cd2 13271 case UNOP_QUAL:
4c4b4cd2
PH
13272 type_print (exp->elts[pc + 1].type, "", stream, 0);
13273 fputs_filtered ("'(", stream);
13274 print_subexp (exp, pos, stream, PREC_PREFIX);
13275 fputs_filtered (")", stream);
13276 return;
14f9c5c9 13277
4c4b4cd2 13278 case UNOP_IN_RANGE:
323e0a4a 13279 /* XXX: sprint_subexp */
4c4b4cd2 13280 print_subexp (exp, pos, stream, PREC_SUFFIX);
0b48a291 13281 fputs_filtered (" in ", stream);
79d43c61
TT
13282 LA_PRINT_TYPE (exp->elts[pc + 1].type, "", stream, 1, 0,
13283 &type_print_raw_options);
4c4b4cd2 13284 return;
52ce6436
PH
13285
13286 case OP_DISCRETE_RANGE:
13287 print_subexp (exp, pos, stream, PREC_SUFFIX);
13288 fputs_filtered ("..", stream);
13289 print_subexp (exp, pos, stream, PREC_SUFFIX);
13290 return;
13291
13292 case OP_OTHERS:
13293 fputs_filtered ("others => ", stream);
13294 print_subexp (exp, pos, stream, PREC_SUFFIX);
13295 return;
13296
13297 case OP_CHOICES:
13298 for (i = 0; i < nargs-1; i += 1)
13299 {
13300 if (i > 0)
13301 fputs_filtered ("|", stream);
13302 print_subexp (exp, pos, stream, PREC_SUFFIX);
13303 }
13304 fputs_filtered (" => ", stream);
13305 print_subexp (exp, pos, stream, PREC_SUFFIX);
13306 return;
13307
13308 case OP_POSITIONAL:
13309 print_subexp (exp, pos, stream, PREC_SUFFIX);
13310 return;
13311
13312 case OP_AGGREGATE:
13313 fputs_filtered ("(", stream);
13314 for (i = 0; i < nargs; i += 1)
13315 {
13316 if (i > 0)
13317 fputs_filtered (", ", stream);
13318 print_subexp (exp, pos, stream, PREC_SUFFIX);
13319 }
13320 fputs_filtered (")", stream);
13321 return;
4c4b4cd2
PH
13322 }
13323}
14f9c5c9
AS
13324
13325/* Table mapping opcodes into strings for printing operators
13326 and precedences of the operators. */
13327
d2e4a39e
AS
13328static const struct op_print ada_op_print_tab[] = {
13329 {":=", BINOP_ASSIGN, PREC_ASSIGN, 1},
13330 {"or else", BINOP_LOGICAL_OR, PREC_LOGICAL_OR, 0},
13331 {"and then", BINOP_LOGICAL_AND, PREC_LOGICAL_AND, 0},
13332 {"or", BINOP_BITWISE_IOR, PREC_BITWISE_IOR, 0},
13333 {"xor", BINOP_BITWISE_XOR, PREC_BITWISE_XOR, 0},
13334 {"and", BINOP_BITWISE_AND, PREC_BITWISE_AND, 0},
13335 {"=", BINOP_EQUAL, PREC_EQUAL, 0},
13336 {"/=", BINOP_NOTEQUAL, PREC_EQUAL, 0},
13337 {"<=", BINOP_LEQ, PREC_ORDER, 0},
13338 {">=", BINOP_GEQ, PREC_ORDER, 0},
13339 {">", BINOP_GTR, PREC_ORDER, 0},
13340 {"<", BINOP_LESS, PREC_ORDER, 0},
13341 {">>", BINOP_RSH, PREC_SHIFT, 0},
13342 {"<<", BINOP_LSH, PREC_SHIFT, 0},
13343 {"+", BINOP_ADD, PREC_ADD, 0},
13344 {"-", BINOP_SUB, PREC_ADD, 0},
13345 {"&", BINOP_CONCAT, PREC_ADD, 0},
13346 {"*", BINOP_MUL, PREC_MUL, 0},
13347 {"/", BINOP_DIV, PREC_MUL, 0},
13348 {"rem", BINOP_REM, PREC_MUL, 0},
13349 {"mod", BINOP_MOD, PREC_MUL, 0},
13350 {"**", BINOP_EXP, PREC_REPEAT, 0},
13351 {"@", BINOP_REPEAT, PREC_REPEAT, 0},
13352 {"-", UNOP_NEG, PREC_PREFIX, 0},
13353 {"+", UNOP_PLUS, PREC_PREFIX, 0},
13354 {"not ", UNOP_LOGICAL_NOT, PREC_PREFIX, 0},
13355 {"not ", UNOP_COMPLEMENT, PREC_PREFIX, 0},
13356 {"abs ", UNOP_ABS, PREC_PREFIX, 0},
4c4b4cd2
PH
13357 {".all", UNOP_IND, PREC_SUFFIX, 1},
13358 {"'access", UNOP_ADDR, PREC_SUFFIX, 1},
13359 {"'size", OP_ATR_SIZE, PREC_SUFFIX, 1},
d2e4a39e 13360 {NULL, 0, 0, 0}
14f9c5c9
AS
13361};
13362\f
72d5681a
PH
13363enum ada_primitive_types {
13364 ada_primitive_type_int,
13365 ada_primitive_type_long,
13366 ada_primitive_type_short,
13367 ada_primitive_type_char,
13368 ada_primitive_type_float,
13369 ada_primitive_type_double,
13370 ada_primitive_type_void,
13371 ada_primitive_type_long_long,
13372 ada_primitive_type_long_double,
13373 ada_primitive_type_natural,
13374 ada_primitive_type_positive,
13375 ada_primitive_type_system_address,
13376 nr_ada_primitive_types
13377};
6c038f32
PH
13378
13379static void
d4a9a881 13380ada_language_arch_info (struct gdbarch *gdbarch,
72d5681a
PH
13381 struct language_arch_info *lai)
13382{
d4a9a881 13383 const struct builtin_type *builtin = builtin_type (gdbarch);
5b4ee69b 13384
72d5681a 13385 lai->primitive_type_vector
d4a9a881 13386 = GDBARCH_OBSTACK_CALLOC (gdbarch, nr_ada_primitive_types + 1,
72d5681a 13387 struct type *);
e9bb382b
UW
13388
13389 lai->primitive_type_vector [ada_primitive_type_int]
13390 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
13391 0, "integer");
13392 lai->primitive_type_vector [ada_primitive_type_long]
13393 = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
13394 0, "long_integer");
13395 lai->primitive_type_vector [ada_primitive_type_short]
13396 = arch_integer_type (gdbarch, gdbarch_short_bit (gdbarch),
13397 0, "short_integer");
13398 lai->string_char_type
13399 = lai->primitive_type_vector [ada_primitive_type_char]
13400 = arch_integer_type (gdbarch, TARGET_CHAR_BIT, 0, "character");
13401 lai->primitive_type_vector [ada_primitive_type_float]
13402 = arch_float_type (gdbarch, gdbarch_float_bit (gdbarch),
13403 "float", NULL);
13404 lai->primitive_type_vector [ada_primitive_type_double]
13405 = arch_float_type (gdbarch, gdbarch_double_bit (gdbarch),
13406 "long_float", NULL);
13407 lai->primitive_type_vector [ada_primitive_type_long_long]
13408 = arch_integer_type (gdbarch, gdbarch_long_long_bit (gdbarch),
13409 0, "long_long_integer");
13410 lai->primitive_type_vector [ada_primitive_type_long_double]
13411 = arch_float_type (gdbarch, gdbarch_double_bit (gdbarch),
13412 "long_long_float", NULL);
13413 lai->primitive_type_vector [ada_primitive_type_natural]
13414 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
13415 0, "natural");
13416 lai->primitive_type_vector [ada_primitive_type_positive]
13417 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
13418 0, "positive");
13419 lai->primitive_type_vector [ada_primitive_type_void]
13420 = builtin->builtin_void;
13421
13422 lai->primitive_type_vector [ada_primitive_type_system_address]
13423 = lookup_pointer_type (arch_type (gdbarch, TYPE_CODE_VOID, 1, "void"));
72d5681a
PH
13424 TYPE_NAME (lai->primitive_type_vector [ada_primitive_type_system_address])
13425 = "system__address";
fbb06eb1 13426
47e729a8 13427 lai->bool_type_symbol = NULL;
fbb06eb1 13428 lai->bool_type_default = builtin->builtin_bool;
6c038f32 13429}
6c038f32
PH
13430\f
13431 /* Language vector */
13432
13433/* Not really used, but needed in the ada_language_defn. */
13434
13435static void
6c7a06a3 13436emit_char (int c, struct type *type, struct ui_file *stream, int quoter)
6c038f32 13437{
6c7a06a3 13438 ada_emit_char (c, type, stream, quoter, 1);
6c038f32
PH
13439}
13440
13441static int
410a0ff2 13442parse (struct parser_state *ps)
6c038f32
PH
13443{
13444 warnings_issued = 0;
410a0ff2 13445 return ada_parse (ps);
6c038f32
PH
13446}
13447
13448static const struct exp_descriptor ada_exp_descriptor = {
13449 ada_print_subexp,
13450 ada_operator_length,
c0201579 13451 ada_operator_check,
6c038f32
PH
13452 ada_op_name,
13453 ada_dump_subexp_body,
13454 ada_evaluate_subexp
13455};
13456
1a119f36 13457/* Implement the "la_get_symbol_name_cmp" language_defn method
74ccd7f5
JB
13458 for Ada. */
13459
1a119f36
JB
13460static symbol_name_cmp_ftype
13461ada_get_symbol_name_cmp (const char *lookup_name)
74ccd7f5
JB
13462{
13463 if (should_use_wild_match (lookup_name))
13464 return wild_match;
13465 else
13466 return compare_names;
13467}
13468
a5ee536b
JB
13469/* Implement the "la_read_var_value" language_defn method for Ada. */
13470
13471static struct value *
13472ada_read_var_value (struct symbol *var, struct frame_info *frame)
13473{
3977b71f 13474 const struct block *frame_block = NULL;
a5ee536b
JB
13475 struct symbol *renaming_sym = NULL;
13476
13477 /* The only case where default_read_var_value is not sufficient
13478 is when VAR is a renaming... */
13479 if (frame)
13480 frame_block = get_frame_block (frame, NULL);
13481 if (frame_block)
13482 renaming_sym = ada_find_renaming_symbol (var, frame_block);
13483 if (renaming_sym != NULL)
13484 return ada_read_renaming_var_value (renaming_sym, frame_block);
13485
13486 /* This is a typical case where we expect the default_read_var_value
13487 function to work. */
13488 return default_read_var_value (var, frame);
13489}
13490
6c038f32
PH
13491const struct language_defn ada_language_defn = {
13492 "ada", /* Language name */
6abde28f 13493 "Ada",
6c038f32 13494 language_ada,
6c038f32 13495 range_check_off,
6c038f32
PH
13496 case_sensitive_on, /* Yes, Ada is case-insensitive, but
13497 that's not quite what this means. */
6c038f32 13498 array_row_major,
9a044a89 13499 macro_expansion_no,
6c038f32
PH
13500 &ada_exp_descriptor,
13501 parse,
13502 ada_error,
13503 resolve,
13504 ada_printchar, /* Print a character constant */
13505 ada_printstr, /* Function to print string constant */
13506 emit_char, /* Function to print single char (not used) */
6c038f32 13507 ada_print_type, /* Print a type using appropriate syntax */
be942545 13508 ada_print_typedef, /* Print a typedef using appropriate syntax */
6c038f32
PH
13509 ada_val_print, /* Print a value using appropriate syntax */
13510 ada_value_print, /* Print a top-level value */
a5ee536b 13511 ada_read_var_value, /* la_read_var_value */
6c038f32 13512 NULL, /* Language specific skip_trampoline */
2b2d9e11 13513 NULL, /* name_of_this */
6c038f32
PH
13514 ada_lookup_symbol_nonlocal, /* Looking up non-local symbols. */
13515 basic_lookup_transparent_type, /* lookup_transparent_type */
13516 ada_la_decode, /* Language specific symbol demangler */
0963b4bd
MS
13517 NULL, /* Language specific
13518 class_name_from_physname */
6c038f32
PH
13519 ada_op_print_tab, /* expression operators for printing */
13520 0, /* c-style arrays */
13521 1, /* String lower bound */
6c038f32 13522 ada_get_gdb_completer_word_break_characters,
41d27058 13523 ada_make_symbol_completion_list,
72d5681a 13524 ada_language_arch_info,
e79af960 13525 ada_print_array_index,
41f1b697 13526 default_pass_by_reference,
ae6a3a4c 13527 c_get_string,
1a119f36 13528 ada_get_symbol_name_cmp, /* la_get_symbol_name_cmp */
f8eba3c6 13529 ada_iterate_over_symbols,
a53b64ea 13530 &ada_varobj_ops,
6c038f32
PH
13531 LANG_MAGIC
13532};
13533
2c0b251b
PA
13534/* Provide a prototype to silence -Wmissing-prototypes. */
13535extern initialize_file_ftype _initialize_ada_language;
13536
5bf03f13
JB
13537/* Command-list for the "set/show ada" prefix command. */
13538static struct cmd_list_element *set_ada_list;
13539static struct cmd_list_element *show_ada_list;
13540
13541/* Implement the "set ada" prefix command. */
13542
13543static void
13544set_ada_command (char *arg, int from_tty)
13545{
13546 printf_unfiltered (_(\
13547"\"set ada\" must be followed by the name of a setting.\n"));
635c7e8a 13548 help_list (set_ada_list, "set ada ", all_commands, gdb_stdout);
5bf03f13
JB
13549}
13550
13551/* Implement the "show ada" prefix command. */
13552
13553static void
13554show_ada_command (char *args, int from_tty)
13555{
13556 cmd_show_list (show_ada_list, from_tty, "");
13557}
13558
2060206e
PA
13559static void
13560initialize_ada_catchpoint_ops (void)
13561{
13562 struct breakpoint_ops *ops;
13563
13564 initialize_breakpoint_ops ();
13565
13566 ops = &catch_exception_breakpoint_ops;
13567 *ops = bkpt_breakpoint_ops;
13568 ops->dtor = dtor_catch_exception;
13569 ops->allocate_location = allocate_location_catch_exception;
13570 ops->re_set = re_set_catch_exception;
13571 ops->check_status = check_status_catch_exception;
13572 ops->print_it = print_it_catch_exception;
13573 ops->print_one = print_one_catch_exception;
13574 ops->print_mention = print_mention_catch_exception;
13575 ops->print_recreate = print_recreate_catch_exception;
13576
13577 ops = &catch_exception_unhandled_breakpoint_ops;
13578 *ops = bkpt_breakpoint_ops;
13579 ops->dtor = dtor_catch_exception_unhandled;
13580 ops->allocate_location = allocate_location_catch_exception_unhandled;
13581 ops->re_set = re_set_catch_exception_unhandled;
13582 ops->check_status = check_status_catch_exception_unhandled;
13583 ops->print_it = print_it_catch_exception_unhandled;
13584 ops->print_one = print_one_catch_exception_unhandled;
13585 ops->print_mention = print_mention_catch_exception_unhandled;
13586 ops->print_recreate = print_recreate_catch_exception_unhandled;
13587
13588 ops = &catch_assert_breakpoint_ops;
13589 *ops = bkpt_breakpoint_ops;
13590 ops->dtor = dtor_catch_assert;
13591 ops->allocate_location = allocate_location_catch_assert;
13592 ops->re_set = re_set_catch_assert;
13593 ops->check_status = check_status_catch_assert;
13594 ops->print_it = print_it_catch_assert;
13595 ops->print_one = print_one_catch_assert;
13596 ops->print_mention = print_mention_catch_assert;
13597 ops->print_recreate = print_recreate_catch_assert;
13598}
13599
3d9434b5
JB
13600/* This module's 'new_objfile' observer. */
13601
13602static void
13603ada_new_objfile_observer (struct objfile *objfile)
13604{
13605 ada_clear_symbol_cache ();
13606}
13607
13608/* This module's 'free_objfile' observer. */
13609
13610static void
13611ada_free_objfile_observer (struct objfile *objfile)
13612{
13613 ada_clear_symbol_cache ();
13614}
13615
d2e4a39e 13616void
6c038f32 13617_initialize_ada_language (void)
14f9c5c9 13618{
6c038f32
PH
13619 add_language (&ada_language_defn);
13620
2060206e
PA
13621 initialize_ada_catchpoint_ops ();
13622
5bf03f13
JB
13623 add_prefix_cmd ("ada", no_class, set_ada_command,
13624 _("Prefix command for changing Ada-specfic settings"),
13625 &set_ada_list, "set ada ", 0, &setlist);
13626
13627 add_prefix_cmd ("ada", no_class, show_ada_command,
13628 _("Generic command for showing Ada-specific settings."),
13629 &show_ada_list, "show ada ", 0, &showlist);
13630
13631 add_setshow_boolean_cmd ("trust-PAD-over-XVS", class_obscure,
13632 &trust_pad_over_xvs, _("\
13633Enable or disable an optimization trusting PAD types over XVS types"), _("\
13634Show whether an optimization trusting PAD types over XVS types is activated"),
13635 _("\
13636This is related to the encoding used by the GNAT compiler. The debugger\n\
13637should normally trust the contents of PAD types, but certain older versions\n\
13638of GNAT have a bug that sometimes causes the information in the PAD type\n\
13639to be incorrect. Turning this setting \"off\" allows the debugger to\n\
13640work around this bug. It is always safe to turn this option \"off\", but\n\
13641this incurs a slight performance penalty, so it is recommended to NOT change\n\
13642this option to \"off\" unless necessary."),
13643 NULL, NULL, &set_ada_list, &show_ada_list);
13644
9ac4176b
PA
13645 add_catch_command ("exception", _("\
13646Catch Ada exceptions, when raised.\n\
13647With an argument, catch only exceptions with the given name."),
13648 catch_ada_exception_command,
13649 NULL,
13650 CATCH_PERMANENT,
13651 CATCH_TEMPORARY);
13652 add_catch_command ("assert", _("\
13653Catch failed Ada assertions, when raised.\n\
13654With an argument, catch only exceptions with the given name."),
13655 catch_assert_command,
13656 NULL,
13657 CATCH_PERMANENT,
13658 CATCH_TEMPORARY);
13659
6c038f32 13660 varsize_limit = 65536;
6c038f32 13661
778865d3
JB
13662 add_info ("exceptions", info_exceptions_command,
13663 _("\
13664List all Ada exception names.\n\
13665If a regular expression is passed as an argument, only those matching\n\
13666the regular expression are listed."));
13667
c6044dd1
JB
13668 add_prefix_cmd ("ada", class_maintenance, maint_set_ada_cmd,
13669 _("Set Ada maintenance-related variables."),
13670 &maint_set_ada_cmdlist, "maintenance set ada ",
13671 0/*allow-unknown*/, &maintenance_set_cmdlist);
13672
13673 add_prefix_cmd ("ada", class_maintenance, maint_show_ada_cmd,
13674 _("Show Ada maintenance-related variables"),
13675 &maint_show_ada_cmdlist, "maintenance show ada ",
13676 0/*allow-unknown*/, &maintenance_show_cmdlist);
13677
13678 add_setshow_boolean_cmd
13679 ("ignore-descriptive-types", class_maintenance,
13680 &ada_ignore_descriptive_types_p,
13681 _("Set whether descriptive types generated by GNAT should be ignored."),
13682 _("Show whether descriptive types generated by GNAT should be ignored."),
13683 _("\
13684When enabled, the debugger will stop using the DW_AT_GNAT_descriptive_type\n\
13685DWARF attribute."),
13686 NULL, NULL, &maint_set_ada_cmdlist, &maint_show_ada_cmdlist);
13687
6c038f32
PH
13688 obstack_init (&symbol_list_obstack);
13689
13690 decoded_names_store = htab_create_alloc
13691 (256, htab_hash_string, (int (*)(const void *, const void *)) streq,
13692 NULL, xcalloc, xfree);
6b69afc4 13693
3d9434b5
JB
13694 /* The ada-lang observers. */
13695 observer_attach_new_objfile (ada_new_objfile_observer);
13696 observer_attach_free_objfile (ada_free_objfile_observer);
e802dbe0 13697 observer_attach_inferior_exit (ada_inferior_exit);
ee01b665
JB
13698
13699 /* Setup various context-specific data. */
e802dbe0 13700 ada_inferior_data
8e260fc0 13701 = register_inferior_data_with_cleanup (NULL, ada_inferior_data_cleanup);
ee01b665
JB
13702 ada_pspace_data_handle
13703 = register_program_space_data_with_cleanup (NULL, ada_pspace_data_cleanup);
14f9c5c9 13704}