]>
Commit | Line | Data |
---|---|---|
197e01b6 | 1 | /* Ada language support routines for GDB, the GNU debugger. Copyright (C) |
10a2c479 | 2 | |
ae6a3a4c TJB |
3 | 1992, 1993, 1994, 1997, 1998, 1999, 2000, 2003, 2004, 2005, 2007, 2008, |
4 | 2009 Free Software Foundation, Inc. | |
14f9c5c9 | 5 | |
a9762ec7 | 6 | This file is part of GDB. |
14f9c5c9 | 7 | |
a9762ec7 JB |
8 | This program is free software; you can redistribute it and/or modify |
9 | it under the terms of the GNU General Public License as published by | |
10 | the Free Software Foundation; either version 3 of the License, or | |
11 | (at your option) any later version. | |
14f9c5c9 | 12 | |
a9762ec7 JB |
13 | This program is distributed in the hope that it will be useful, |
14 | but WITHOUT ANY WARRANTY; without even the implied warranty of | |
15 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
16 | GNU General Public License for more details. | |
14f9c5c9 | 17 | |
a9762ec7 JB |
18 | You should have received a copy of the GNU General Public License |
19 | along with this program. If not, see <http://www.gnu.org/licenses/>. */ | |
14f9c5c9 | 20 | |
96d887e8 | 21 | |
4c4b4cd2 | 22 | #include "defs.h" |
14f9c5c9 | 23 | #include <stdio.h> |
0c30c098 | 24 | #include "gdb_string.h" |
14f9c5c9 AS |
25 | #include <ctype.h> |
26 | #include <stdarg.h> | |
27 | #include "demangle.h" | |
4c4b4cd2 PH |
28 | #include "gdb_regex.h" |
29 | #include "frame.h" | |
14f9c5c9 AS |
30 | #include "symtab.h" |
31 | #include "gdbtypes.h" | |
32 | #include "gdbcmd.h" | |
33 | #include "expression.h" | |
34 | #include "parser-defs.h" | |
35 | #include "language.h" | |
36 | #include "c-lang.h" | |
37 | #include "inferior.h" | |
38 | #include "symfile.h" | |
39 | #include "objfiles.h" | |
40 | #include "breakpoint.h" | |
41 | #include "gdbcore.h" | |
4c4b4cd2 PH |
42 | #include "hashtab.h" |
43 | #include "gdb_obstack.h" | |
14f9c5c9 | 44 | #include "ada-lang.h" |
4c4b4cd2 PH |
45 | #include "completer.h" |
46 | #include "gdb_stat.h" | |
47 | #ifdef UI_OUT | |
14f9c5c9 | 48 | #include "ui-out.h" |
4c4b4cd2 | 49 | #endif |
fe898f56 | 50 | #include "block.h" |
04714b91 | 51 | #include "infcall.h" |
de4f826b | 52 | #include "dictionary.h" |
60250e8b | 53 | #include "exceptions.h" |
f7f9143b JB |
54 | #include "annotate.h" |
55 | #include "valprint.h" | |
9bbc9174 | 56 | #include "source.h" |
0259addd | 57 | #include "observer.h" |
2ba95b9b | 58 | #include "vec.h" |
692465f1 | 59 | #include "stack.h" |
14f9c5c9 | 60 | |
ccefe4c4 | 61 | #include "psymtab.h" |
40bc484c | 62 | #include "value.h" |
ccefe4c4 | 63 | |
4c4b4cd2 PH |
64 | /* Define whether or not the C operator '/' truncates towards zero for |
65 | differently signed operands (truncation direction is undefined in C). | |
66 | Copied from valarith.c. */ | |
67 | ||
68 | #ifndef TRUNCATION_TOWARDS_ZERO | |
69 | #define TRUNCATION_TOWARDS_ZERO ((-5 / 2) == -2) | |
70 | #endif | |
71 | ||
50810684 | 72 | static void modify_general_field (struct type *, char *, LONGEST, int, int); |
14f9c5c9 | 73 | |
d2e4a39e | 74 | static struct type *desc_base_type (struct type *); |
14f9c5c9 | 75 | |
d2e4a39e | 76 | static struct type *desc_bounds_type (struct type *); |
14f9c5c9 | 77 | |
d2e4a39e | 78 | static struct value *desc_bounds (struct value *); |
14f9c5c9 | 79 | |
d2e4a39e | 80 | static int fat_pntr_bounds_bitpos (struct type *); |
14f9c5c9 | 81 | |
d2e4a39e | 82 | static int fat_pntr_bounds_bitsize (struct type *); |
14f9c5c9 | 83 | |
556bdfd4 | 84 | static struct type *desc_data_target_type (struct type *); |
14f9c5c9 | 85 | |
d2e4a39e | 86 | static struct value *desc_data (struct value *); |
14f9c5c9 | 87 | |
d2e4a39e | 88 | static int fat_pntr_data_bitpos (struct type *); |
14f9c5c9 | 89 | |
d2e4a39e | 90 | static int fat_pntr_data_bitsize (struct type *); |
14f9c5c9 | 91 | |
d2e4a39e | 92 | static struct value *desc_one_bound (struct value *, int, int); |
14f9c5c9 | 93 | |
d2e4a39e | 94 | static int desc_bound_bitpos (struct type *, int, int); |
14f9c5c9 | 95 | |
d2e4a39e | 96 | static int desc_bound_bitsize (struct type *, int, int); |
14f9c5c9 | 97 | |
d2e4a39e | 98 | static struct type *desc_index_type (struct type *, int); |
14f9c5c9 | 99 | |
d2e4a39e | 100 | static int desc_arity (struct type *); |
14f9c5c9 | 101 | |
d2e4a39e | 102 | static int ada_type_match (struct type *, struct type *, int); |
14f9c5c9 | 103 | |
d2e4a39e | 104 | static int ada_args_match (struct symbol *, struct value **, int); |
14f9c5c9 | 105 | |
40bc484c | 106 | static struct value *make_array_descriptor (struct type *, struct value *); |
14f9c5c9 | 107 | |
4c4b4cd2 | 108 | static void ada_add_block_symbols (struct obstack *, |
76a01679 | 109 | struct block *, const char *, |
2570f2b7 | 110 | domain_enum, struct objfile *, int); |
14f9c5c9 | 111 | |
4c4b4cd2 | 112 | static int is_nonfunction (struct ada_symbol_info *, int); |
14f9c5c9 | 113 | |
76a01679 | 114 | static void add_defn_to_vec (struct obstack *, struct symbol *, |
2570f2b7 | 115 | struct block *); |
14f9c5c9 | 116 | |
4c4b4cd2 PH |
117 | static int num_defns_collected (struct obstack *); |
118 | ||
119 | static struct ada_symbol_info *defns_collected (struct obstack *, int); | |
14f9c5c9 | 120 | |
4c4b4cd2 | 121 | static struct value *resolve_subexp (struct expression **, int *, int, |
76a01679 | 122 | struct type *); |
14f9c5c9 | 123 | |
d2e4a39e | 124 | static void replace_operator_with_call (struct expression **, int, int, int, |
4c4b4cd2 | 125 | struct symbol *, struct block *); |
14f9c5c9 | 126 | |
d2e4a39e | 127 | static int possible_user_operator_p (enum exp_opcode, struct value **); |
14f9c5c9 | 128 | |
4c4b4cd2 PH |
129 | static char *ada_op_name (enum exp_opcode); |
130 | ||
131 | static const char *ada_decoded_op_name (enum exp_opcode); | |
14f9c5c9 | 132 | |
d2e4a39e | 133 | static int numeric_type_p (struct type *); |
14f9c5c9 | 134 | |
d2e4a39e | 135 | static int integer_type_p (struct type *); |
14f9c5c9 | 136 | |
d2e4a39e | 137 | static int scalar_type_p (struct type *); |
14f9c5c9 | 138 | |
d2e4a39e | 139 | static int discrete_type_p (struct type *); |
14f9c5c9 | 140 | |
aeb5907d JB |
141 | static enum ada_renaming_category parse_old_style_renaming (struct type *, |
142 | const char **, | |
143 | int *, | |
144 | const char **); | |
145 | ||
146 | static struct symbol *find_old_style_renaming_symbol (const char *, | |
147 | struct block *); | |
148 | ||
4c4b4cd2 | 149 | static struct type *ada_lookup_struct_elt_type (struct type *, char *, |
76a01679 | 150 | int, int, int *); |
4c4b4cd2 | 151 | |
d2e4a39e | 152 | static struct value *evaluate_subexp_type (struct expression *, int *); |
14f9c5c9 | 153 | |
b4ba55a1 JB |
154 | static struct type *ada_find_parallel_type_with_name (struct type *, |
155 | const char *); | |
156 | ||
d2e4a39e | 157 | static int is_dynamic_field (struct type *, int); |
14f9c5c9 | 158 | |
10a2c479 | 159 | static struct type *to_fixed_variant_branch_type (struct type *, |
fc1a4b47 | 160 | const gdb_byte *, |
4c4b4cd2 PH |
161 | CORE_ADDR, struct value *); |
162 | ||
163 | static struct type *to_fixed_array_type (struct type *, struct value *, int); | |
14f9c5c9 | 164 | |
28c85d6c | 165 | static struct type *to_fixed_range_type (struct type *, struct value *); |
14f9c5c9 | 166 | |
d2e4a39e | 167 | static struct type *to_static_fixed_type (struct type *); |
f192137b | 168 | static struct type *static_unwrap_type (struct type *type); |
14f9c5c9 | 169 | |
d2e4a39e | 170 | static struct value *unwrap_value (struct value *); |
14f9c5c9 | 171 | |
ad82864c | 172 | static struct type *constrained_packed_array_type (struct type *, long *); |
14f9c5c9 | 173 | |
ad82864c | 174 | static struct type *decode_constrained_packed_array_type (struct type *); |
14f9c5c9 | 175 | |
ad82864c JB |
176 | static long decode_packed_array_bitsize (struct type *); |
177 | ||
178 | static struct value *decode_constrained_packed_array (struct value *); | |
179 | ||
180 | static int ada_is_packed_array_type (struct type *); | |
181 | ||
182 | static int ada_is_unconstrained_packed_array_type (struct type *); | |
14f9c5c9 | 183 | |
d2e4a39e | 184 | static struct value *value_subscript_packed (struct value *, int, |
4c4b4cd2 | 185 | struct value **); |
14f9c5c9 | 186 | |
50810684 | 187 | static void move_bits (gdb_byte *, int, const gdb_byte *, int, int, int); |
52ce6436 | 188 | |
4c4b4cd2 PH |
189 | static struct value *coerce_unspec_val_to_type (struct value *, |
190 | struct type *); | |
14f9c5c9 | 191 | |
d2e4a39e | 192 | static struct value *get_var_value (char *, char *); |
14f9c5c9 | 193 | |
d2e4a39e | 194 | static int lesseq_defined_than (struct symbol *, struct symbol *); |
14f9c5c9 | 195 | |
d2e4a39e | 196 | static int equiv_types (struct type *, struct type *); |
14f9c5c9 | 197 | |
d2e4a39e | 198 | static int is_name_suffix (const char *); |
14f9c5c9 | 199 | |
73589123 PH |
200 | static int advance_wild_match (const char **, const char *, int); |
201 | ||
202 | static int wild_match (const char *, const char *); | |
14f9c5c9 | 203 | |
d2e4a39e | 204 | static struct value *ada_coerce_ref (struct value *); |
14f9c5c9 | 205 | |
4c4b4cd2 PH |
206 | static LONGEST pos_atr (struct value *); |
207 | ||
3cb382c9 | 208 | static struct value *value_pos_atr (struct type *, struct value *); |
14f9c5c9 | 209 | |
d2e4a39e | 210 | static struct value *value_val_atr (struct type *, struct value *); |
14f9c5c9 | 211 | |
4c4b4cd2 PH |
212 | static struct symbol *standard_lookup (const char *, const struct block *, |
213 | domain_enum); | |
14f9c5c9 | 214 | |
4c4b4cd2 PH |
215 | static struct value *ada_search_struct_field (char *, struct value *, int, |
216 | struct type *); | |
217 | ||
218 | static struct value *ada_value_primitive_field (struct value *, int, int, | |
219 | struct type *); | |
220 | ||
76a01679 | 221 | static int find_struct_field (char *, struct type *, int, |
52ce6436 | 222 | struct type **, int *, int *, int *, int *); |
4c4b4cd2 PH |
223 | |
224 | static struct value *ada_to_fixed_value_create (struct type *, CORE_ADDR, | |
225 | struct value *); | |
226 | ||
4c4b4cd2 PH |
227 | static int ada_resolve_function (struct ada_symbol_info *, int, |
228 | struct value **, int, const char *, | |
229 | struct type *); | |
230 | ||
231 | static struct value *ada_coerce_to_simple_array (struct value *); | |
232 | ||
233 | static int ada_is_direct_array_type (struct type *); | |
234 | ||
72d5681a PH |
235 | static void ada_language_arch_info (struct gdbarch *, |
236 | struct language_arch_info *); | |
714e53ab PH |
237 | |
238 | static void check_size (const struct type *); | |
52ce6436 PH |
239 | |
240 | static struct value *ada_index_struct_field (int, struct value *, int, | |
241 | struct type *); | |
242 | ||
243 | static struct value *assign_aggregate (struct value *, struct value *, | |
244 | struct expression *, int *, enum noside); | |
245 | ||
246 | static void aggregate_assign_from_choices (struct value *, struct value *, | |
247 | struct expression *, | |
248 | int *, LONGEST *, int *, | |
249 | int, LONGEST, LONGEST); | |
250 | ||
251 | static void aggregate_assign_positional (struct value *, struct value *, | |
252 | struct expression *, | |
253 | int *, LONGEST *, int *, int, | |
254 | LONGEST, LONGEST); | |
255 | ||
256 | ||
257 | static void aggregate_assign_others (struct value *, struct value *, | |
258 | struct expression *, | |
259 | int *, LONGEST *, int, LONGEST, LONGEST); | |
260 | ||
261 | ||
262 | static void add_component_interval (LONGEST, LONGEST, LONGEST *, int *, int); | |
263 | ||
264 | ||
265 | static struct value *ada_evaluate_subexp (struct type *, struct expression *, | |
266 | int *, enum noside); | |
267 | ||
268 | static void ada_forward_operator_length (struct expression *, int, int *, | |
269 | int *); | |
4c4b4cd2 PH |
270 | \f |
271 | ||
76a01679 | 272 | |
4c4b4cd2 | 273 | /* Maximum-sized dynamic type. */ |
14f9c5c9 AS |
274 | static unsigned int varsize_limit; |
275 | ||
4c4b4cd2 PH |
276 | /* FIXME: brobecker/2003-09-17: No longer a const because it is |
277 | returned by a function that does not return a const char *. */ | |
278 | static char *ada_completer_word_break_characters = | |
279 | #ifdef VMS | |
280 | " \t\n!@#%^&*()+=|~`}{[]\";:?/,-"; | |
281 | #else | |
14f9c5c9 | 282 | " \t\n!@#$%^&*()+=|~`}{[]\";:?/,-"; |
4c4b4cd2 | 283 | #endif |
14f9c5c9 | 284 | |
4c4b4cd2 | 285 | /* The name of the symbol to use to get the name of the main subprogram. */ |
76a01679 | 286 | static const char ADA_MAIN_PROGRAM_SYMBOL_NAME[] |
4c4b4cd2 | 287 | = "__gnat_ada_main_program_name"; |
14f9c5c9 | 288 | |
4c4b4cd2 PH |
289 | /* Limit on the number of warnings to raise per expression evaluation. */ |
290 | static int warning_limit = 2; | |
291 | ||
292 | /* Number of warning messages issued; reset to 0 by cleanups after | |
293 | expression evaluation. */ | |
294 | static int warnings_issued = 0; | |
295 | ||
296 | static const char *known_runtime_file_name_patterns[] = { | |
297 | ADA_KNOWN_RUNTIME_FILE_NAME_PATTERNS NULL | |
298 | }; | |
299 | ||
300 | static const char *known_auxiliary_function_name_patterns[] = { | |
301 | ADA_KNOWN_AUXILIARY_FUNCTION_NAME_PATTERNS NULL | |
302 | }; | |
303 | ||
304 | /* Space for allocating results of ada_lookup_symbol_list. */ | |
305 | static struct obstack symbol_list_obstack; | |
306 | ||
e802dbe0 JB |
307 | /* Inferior-specific data. */ |
308 | ||
309 | /* Per-inferior data for this module. */ | |
310 | ||
311 | struct ada_inferior_data | |
312 | { | |
313 | /* The ada__tags__type_specific_data type, which is used when decoding | |
314 | tagged types. With older versions of GNAT, this type was directly | |
315 | accessible through a component ("tsd") in the object tag. But this | |
316 | is no longer the case, so we cache it for each inferior. */ | |
317 | struct type *tsd_type; | |
318 | }; | |
319 | ||
320 | /* Our key to this module's inferior data. */ | |
321 | static const struct inferior_data *ada_inferior_data; | |
322 | ||
323 | /* A cleanup routine for our inferior data. */ | |
324 | static void | |
325 | ada_inferior_data_cleanup (struct inferior *inf, void *arg) | |
326 | { | |
327 | struct ada_inferior_data *data; | |
328 | ||
329 | data = inferior_data (inf, ada_inferior_data); | |
330 | if (data != NULL) | |
331 | xfree (data); | |
332 | } | |
333 | ||
334 | /* Return our inferior data for the given inferior (INF). | |
335 | ||
336 | This function always returns a valid pointer to an allocated | |
337 | ada_inferior_data structure. If INF's inferior data has not | |
338 | been previously set, this functions creates a new one with all | |
339 | fields set to zero, sets INF's inferior to it, and then returns | |
340 | a pointer to that newly allocated ada_inferior_data. */ | |
341 | ||
342 | static struct ada_inferior_data * | |
343 | get_ada_inferior_data (struct inferior *inf) | |
344 | { | |
345 | struct ada_inferior_data *data; | |
346 | ||
347 | data = inferior_data (inf, ada_inferior_data); | |
348 | if (data == NULL) | |
349 | { | |
350 | data = XZALLOC (struct ada_inferior_data); | |
351 | set_inferior_data (inf, ada_inferior_data, data); | |
352 | } | |
353 | ||
354 | return data; | |
355 | } | |
356 | ||
357 | /* Perform all necessary cleanups regarding our module's inferior data | |
358 | that is required after the inferior INF just exited. */ | |
359 | ||
360 | static void | |
361 | ada_inferior_exit (struct inferior *inf) | |
362 | { | |
363 | ada_inferior_data_cleanup (inf, NULL); | |
364 | set_inferior_data (inf, ada_inferior_data, NULL); | |
365 | } | |
366 | ||
4c4b4cd2 PH |
367 | /* Utilities */ |
368 | ||
41d27058 JB |
369 | /* Given DECODED_NAME a string holding a symbol name in its |
370 | decoded form (ie using the Ada dotted notation), returns | |
371 | its unqualified name. */ | |
372 | ||
373 | static const char * | |
374 | ada_unqualified_name (const char *decoded_name) | |
375 | { | |
376 | const char *result = strrchr (decoded_name, '.'); | |
377 | ||
378 | if (result != NULL) | |
379 | result++; /* Skip the dot... */ | |
380 | else | |
381 | result = decoded_name; | |
382 | ||
383 | return result; | |
384 | } | |
385 | ||
386 | /* Return a string starting with '<', followed by STR, and '>'. | |
387 | The result is good until the next call. */ | |
388 | ||
389 | static char * | |
390 | add_angle_brackets (const char *str) | |
391 | { | |
392 | static char *result = NULL; | |
393 | ||
394 | xfree (result); | |
88c15c34 | 395 | result = xstrprintf ("<%s>", str); |
41d27058 JB |
396 | return result; |
397 | } | |
96d887e8 | 398 | |
4c4b4cd2 PH |
399 | static char * |
400 | ada_get_gdb_completer_word_break_characters (void) | |
401 | { | |
402 | return ada_completer_word_break_characters; | |
403 | } | |
404 | ||
e79af960 JB |
405 | /* Print an array element index using the Ada syntax. */ |
406 | ||
407 | static void | |
408 | ada_print_array_index (struct value *index_value, struct ui_file *stream, | |
79a45b7d | 409 | const struct value_print_options *options) |
e79af960 | 410 | { |
79a45b7d | 411 | LA_VALUE_PRINT (index_value, stream, options); |
e79af960 JB |
412 | fprintf_filtered (stream, " => "); |
413 | } | |
414 | ||
f27cf670 | 415 | /* Assuming VECT points to an array of *SIZE objects of size |
14f9c5c9 | 416 | ELEMENT_SIZE, grow it to contain at least MIN_SIZE objects, |
f27cf670 | 417 | updating *SIZE as necessary and returning the (new) array. */ |
14f9c5c9 | 418 | |
f27cf670 AS |
419 | void * |
420 | grow_vect (void *vect, size_t *size, size_t min_size, int element_size) | |
14f9c5c9 | 421 | { |
d2e4a39e AS |
422 | if (*size < min_size) |
423 | { | |
424 | *size *= 2; | |
425 | if (*size < min_size) | |
4c4b4cd2 | 426 | *size = min_size; |
f27cf670 | 427 | vect = xrealloc (vect, *size * element_size); |
d2e4a39e | 428 | } |
f27cf670 | 429 | return vect; |
14f9c5c9 AS |
430 | } |
431 | ||
432 | /* True (non-zero) iff TARGET matches FIELD_NAME up to any trailing | |
4c4b4cd2 | 433 | suffix of FIELD_NAME beginning "___". */ |
14f9c5c9 AS |
434 | |
435 | static int | |
ebf56fd3 | 436 | field_name_match (const char *field_name, const char *target) |
14f9c5c9 AS |
437 | { |
438 | int len = strlen (target); | |
5b4ee69b | 439 | |
d2e4a39e | 440 | return |
4c4b4cd2 PH |
441 | (strncmp (field_name, target, len) == 0 |
442 | && (field_name[len] == '\0' | |
443 | || (strncmp (field_name + len, "___", 3) == 0 | |
76a01679 JB |
444 | && strcmp (field_name + strlen (field_name) - 6, |
445 | "___XVN") != 0))); | |
14f9c5c9 AS |
446 | } |
447 | ||
448 | ||
872c8b51 JB |
449 | /* Assuming TYPE is a TYPE_CODE_STRUCT or a TYPE_CODE_TYPDEF to |
450 | a TYPE_CODE_STRUCT, find the field whose name matches FIELD_NAME, | |
451 | and return its index. This function also handles fields whose name | |
452 | have ___ suffixes because the compiler sometimes alters their name | |
453 | by adding such a suffix to represent fields with certain constraints. | |
454 | If the field could not be found, return a negative number if | |
455 | MAYBE_MISSING is set. Otherwise raise an error. */ | |
4c4b4cd2 PH |
456 | |
457 | int | |
458 | ada_get_field_index (const struct type *type, const char *field_name, | |
459 | int maybe_missing) | |
460 | { | |
461 | int fieldno; | |
872c8b51 JB |
462 | struct type *struct_type = check_typedef ((struct type *) type); |
463 | ||
464 | for (fieldno = 0; fieldno < TYPE_NFIELDS (struct_type); fieldno++) | |
465 | if (field_name_match (TYPE_FIELD_NAME (struct_type, fieldno), field_name)) | |
4c4b4cd2 PH |
466 | return fieldno; |
467 | ||
468 | if (!maybe_missing) | |
323e0a4a | 469 | error (_("Unable to find field %s in struct %s. Aborting"), |
872c8b51 | 470 | field_name, TYPE_NAME (struct_type)); |
4c4b4cd2 PH |
471 | |
472 | return -1; | |
473 | } | |
474 | ||
475 | /* The length of the prefix of NAME prior to any "___" suffix. */ | |
14f9c5c9 AS |
476 | |
477 | int | |
d2e4a39e | 478 | ada_name_prefix_len (const char *name) |
14f9c5c9 AS |
479 | { |
480 | if (name == NULL) | |
481 | return 0; | |
d2e4a39e | 482 | else |
14f9c5c9 | 483 | { |
d2e4a39e | 484 | const char *p = strstr (name, "___"); |
5b4ee69b | 485 | |
14f9c5c9 | 486 | if (p == NULL) |
4c4b4cd2 | 487 | return strlen (name); |
14f9c5c9 | 488 | else |
4c4b4cd2 | 489 | return p - name; |
14f9c5c9 AS |
490 | } |
491 | } | |
492 | ||
4c4b4cd2 PH |
493 | /* Return non-zero if SUFFIX is a suffix of STR. |
494 | Return zero if STR is null. */ | |
495 | ||
14f9c5c9 | 496 | static int |
d2e4a39e | 497 | is_suffix (const char *str, const char *suffix) |
14f9c5c9 AS |
498 | { |
499 | int len1, len2; | |
5b4ee69b | 500 | |
14f9c5c9 AS |
501 | if (str == NULL) |
502 | return 0; | |
503 | len1 = strlen (str); | |
504 | len2 = strlen (suffix); | |
4c4b4cd2 | 505 | return (len1 >= len2 && strcmp (str + len1 - len2, suffix) == 0); |
14f9c5c9 AS |
506 | } |
507 | ||
4c4b4cd2 PH |
508 | /* The contents of value VAL, treated as a value of type TYPE. The |
509 | result is an lval in memory if VAL is. */ | |
14f9c5c9 | 510 | |
d2e4a39e | 511 | static struct value * |
4c4b4cd2 | 512 | coerce_unspec_val_to_type (struct value *val, struct type *type) |
14f9c5c9 | 513 | { |
61ee279c | 514 | type = ada_check_typedef (type); |
df407dfe | 515 | if (value_type (val) == type) |
4c4b4cd2 | 516 | return val; |
d2e4a39e | 517 | else |
14f9c5c9 | 518 | { |
4c4b4cd2 PH |
519 | struct value *result; |
520 | ||
521 | /* Make sure that the object size is not unreasonable before | |
522 | trying to allocate some memory for it. */ | |
714e53ab | 523 | check_size (type); |
4c4b4cd2 PH |
524 | |
525 | result = allocate_value (type); | |
74bcbdf3 | 526 | set_value_component_location (result, val); |
9bbda503 AC |
527 | set_value_bitsize (result, value_bitsize (val)); |
528 | set_value_bitpos (result, value_bitpos (val)); | |
42ae5230 | 529 | set_value_address (result, value_address (val)); |
d69fe07e | 530 | if (value_lazy (val) |
df407dfe | 531 | || TYPE_LENGTH (type) > TYPE_LENGTH (value_type (val))) |
dfa52d88 | 532 | set_value_lazy (result, 1); |
d2e4a39e | 533 | else |
0fd88904 | 534 | memcpy (value_contents_raw (result), value_contents (val), |
4c4b4cd2 | 535 | TYPE_LENGTH (type)); |
14f9c5c9 AS |
536 | return result; |
537 | } | |
538 | } | |
539 | ||
fc1a4b47 AC |
540 | static const gdb_byte * |
541 | cond_offset_host (const gdb_byte *valaddr, long offset) | |
14f9c5c9 AS |
542 | { |
543 | if (valaddr == NULL) | |
544 | return NULL; | |
545 | else | |
546 | return valaddr + offset; | |
547 | } | |
548 | ||
549 | static CORE_ADDR | |
ebf56fd3 | 550 | cond_offset_target (CORE_ADDR address, long offset) |
14f9c5c9 AS |
551 | { |
552 | if (address == 0) | |
553 | return 0; | |
d2e4a39e | 554 | else |
14f9c5c9 AS |
555 | return address + offset; |
556 | } | |
557 | ||
4c4b4cd2 PH |
558 | /* Issue a warning (as for the definition of warning in utils.c, but |
559 | with exactly one argument rather than ...), unless the limit on the | |
560 | number of warnings has passed during the evaluation of the current | |
561 | expression. */ | |
a2249542 | 562 | |
77109804 AC |
563 | /* FIXME: cagney/2004-10-10: This function is mimicking the behavior |
564 | provided by "complaint". */ | |
a0b31db1 | 565 | static void lim_warning (const char *format, ...) ATTRIBUTE_PRINTF (1, 2); |
77109804 | 566 | |
14f9c5c9 | 567 | static void |
a2249542 | 568 | lim_warning (const char *format, ...) |
14f9c5c9 | 569 | { |
a2249542 | 570 | va_list args; |
a2249542 | 571 | |
5b4ee69b | 572 | va_start (args, format); |
4c4b4cd2 PH |
573 | warnings_issued += 1; |
574 | if (warnings_issued <= warning_limit) | |
a2249542 MK |
575 | vwarning (format, args); |
576 | ||
577 | va_end (args); | |
4c4b4cd2 PH |
578 | } |
579 | ||
714e53ab PH |
580 | /* Issue an error if the size of an object of type T is unreasonable, |
581 | i.e. if it would be a bad idea to allocate a value of this type in | |
582 | GDB. */ | |
583 | ||
584 | static void | |
585 | check_size (const struct type *type) | |
586 | { | |
587 | if (TYPE_LENGTH (type) > varsize_limit) | |
323e0a4a | 588 | error (_("object size is larger than varsize-limit")); |
714e53ab PH |
589 | } |
590 | ||
c3e5cd34 | 591 | /* Maximum value of a SIZE-byte signed integer type. */ |
4c4b4cd2 | 592 | static LONGEST |
c3e5cd34 | 593 | max_of_size (int size) |
4c4b4cd2 | 594 | { |
76a01679 | 595 | LONGEST top_bit = (LONGEST) 1 << (size * 8 - 2); |
5b4ee69b | 596 | |
76a01679 | 597 | return top_bit | (top_bit - 1); |
4c4b4cd2 PH |
598 | } |
599 | ||
c3e5cd34 | 600 | /* Minimum value of a SIZE-byte signed integer type. */ |
4c4b4cd2 | 601 | static LONGEST |
c3e5cd34 | 602 | min_of_size (int size) |
4c4b4cd2 | 603 | { |
c3e5cd34 | 604 | return -max_of_size (size) - 1; |
4c4b4cd2 PH |
605 | } |
606 | ||
c3e5cd34 | 607 | /* Maximum value of a SIZE-byte unsigned integer type. */ |
4c4b4cd2 | 608 | static ULONGEST |
c3e5cd34 | 609 | umax_of_size (int size) |
4c4b4cd2 | 610 | { |
76a01679 | 611 | ULONGEST top_bit = (ULONGEST) 1 << (size * 8 - 1); |
5b4ee69b | 612 | |
76a01679 | 613 | return top_bit | (top_bit - 1); |
4c4b4cd2 PH |
614 | } |
615 | ||
c3e5cd34 PH |
616 | /* Maximum value of integral type T, as a signed quantity. */ |
617 | static LONGEST | |
618 | max_of_type (struct type *t) | |
4c4b4cd2 | 619 | { |
c3e5cd34 PH |
620 | if (TYPE_UNSIGNED (t)) |
621 | return (LONGEST) umax_of_size (TYPE_LENGTH (t)); | |
622 | else | |
623 | return max_of_size (TYPE_LENGTH (t)); | |
624 | } | |
625 | ||
626 | /* Minimum value of integral type T, as a signed quantity. */ | |
627 | static LONGEST | |
628 | min_of_type (struct type *t) | |
629 | { | |
630 | if (TYPE_UNSIGNED (t)) | |
631 | return 0; | |
632 | else | |
633 | return min_of_size (TYPE_LENGTH (t)); | |
4c4b4cd2 PH |
634 | } |
635 | ||
636 | /* The largest value in the domain of TYPE, a discrete type, as an integer. */ | |
43bbcdc2 PH |
637 | LONGEST |
638 | ada_discrete_type_high_bound (struct type *type) | |
4c4b4cd2 | 639 | { |
76a01679 | 640 | switch (TYPE_CODE (type)) |
4c4b4cd2 PH |
641 | { |
642 | case TYPE_CODE_RANGE: | |
690cc4eb | 643 | return TYPE_HIGH_BOUND (type); |
4c4b4cd2 | 644 | case TYPE_CODE_ENUM: |
690cc4eb PH |
645 | return TYPE_FIELD_BITPOS (type, TYPE_NFIELDS (type) - 1); |
646 | case TYPE_CODE_BOOL: | |
647 | return 1; | |
648 | case TYPE_CODE_CHAR: | |
76a01679 | 649 | case TYPE_CODE_INT: |
690cc4eb | 650 | return max_of_type (type); |
4c4b4cd2 | 651 | default: |
43bbcdc2 | 652 | error (_("Unexpected type in ada_discrete_type_high_bound.")); |
4c4b4cd2 PH |
653 | } |
654 | } | |
655 | ||
656 | /* The largest value in the domain of TYPE, a discrete type, as an integer. */ | |
43bbcdc2 PH |
657 | LONGEST |
658 | ada_discrete_type_low_bound (struct type *type) | |
4c4b4cd2 | 659 | { |
76a01679 | 660 | switch (TYPE_CODE (type)) |
4c4b4cd2 PH |
661 | { |
662 | case TYPE_CODE_RANGE: | |
690cc4eb | 663 | return TYPE_LOW_BOUND (type); |
4c4b4cd2 | 664 | case TYPE_CODE_ENUM: |
690cc4eb PH |
665 | return TYPE_FIELD_BITPOS (type, 0); |
666 | case TYPE_CODE_BOOL: | |
667 | return 0; | |
668 | case TYPE_CODE_CHAR: | |
76a01679 | 669 | case TYPE_CODE_INT: |
690cc4eb | 670 | return min_of_type (type); |
4c4b4cd2 | 671 | default: |
43bbcdc2 | 672 | error (_("Unexpected type in ada_discrete_type_low_bound.")); |
4c4b4cd2 PH |
673 | } |
674 | } | |
675 | ||
676 | /* The identity on non-range types. For range types, the underlying | |
76a01679 | 677 | non-range scalar type. */ |
4c4b4cd2 PH |
678 | |
679 | static struct type * | |
680 | base_type (struct type *type) | |
681 | { | |
682 | while (type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE) | |
683 | { | |
76a01679 JB |
684 | if (type == TYPE_TARGET_TYPE (type) || TYPE_TARGET_TYPE (type) == NULL) |
685 | return type; | |
4c4b4cd2 PH |
686 | type = TYPE_TARGET_TYPE (type); |
687 | } | |
688 | return type; | |
14f9c5c9 | 689 | } |
4c4b4cd2 | 690 | \f |
76a01679 | 691 | |
4c4b4cd2 | 692 | /* Language Selection */ |
14f9c5c9 AS |
693 | |
694 | /* If the main program is in Ada, return language_ada, otherwise return LANG | |
ccefe4c4 | 695 | (the main program is in Ada iif the adainit symbol is found). */ |
d2e4a39e | 696 | |
14f9c5c9 | 697 | enum language |
ccefe4c4 | 698 | ada_update_initial_language (enum language lang) |
14f9c5c9 | 699 | { |
d2e4a39e | 700 | if (lookup_minimal_symbol ("adainit", (const char *) NULL, |
4c4b4cd2 PH |
701 | (struct objfile *) NULL) != NULL) |
702 | return language_ada; | |
14f9c5c9 AS |
703 | |
704 | return lang; | |
705 | } | |
96d887e8 PH |
706 | |
707 | /* If the main procedure is written in Ada, then return its name. | |
708 | The result is good until the next call. Return NULL if the main | |
709 | procedure doesn't appear to be in Ada. */ | |
710 | ||
711 | char * | |
712 | ada_main_name (void) | |
713 | { | |
714 | struct minimal_symbol *msym; | |
f9bc20b9 | 715 | static char *main_program_name = NULL; |
6c038f32 | 716 | |
96d887e8 PH |
717 | /* For Ada, the name of the main procedure is stored in a specific |
718 | string constant, generated by the binder. Look for that symbol, | |
719 | extract its address, and then read that string. If we didn't find | |
720 | that string, then most probably the main procedure is not written | |
721 | in Ada. */ | |
722 | msym = lookup_minimal_symbol (ADA_MAIN_PROGRAM_SYMBOL_NAME, NULL, NULL); | |
723 | ||
724 | if (msym != NULL) | |
725 | { | |
f9bc20b9 JB |
726 | CORE_ADDR main_program_name_addr; |
727 | int err_code; | |
728 | ||
96d887e8 PH |
729 | main_program_name_addr = SYMBOL_VALUE_ADDRESS (msym); |
730 | if (main_program_name_addr == 0) | |
323e0a4a | 731 | error (_("Invalid address for Ada main program name.")); |
96d887e8 | 732 | |
f9bc20b9 JB |
733 | xfree (main_program_name); |
734 | target_read_string (main_program_name_addr, &main_program_name, | |
735 | 1024, &err_code); | |
736 | ||
737 | if (err_code != 0) | |
738 | return NULL; | |
96d887e8 PH |
739 | return main_program_name; |
740 | } | |
741 | ||
742 | /* The main procedure doesn't seem to be in Ada. */ | |
743 | return NULL; | |
744 | } | |
14f9c5c9 | 745 | \f |
4c4b4cd2 | 746 | /* Symbols */ |
d2e4a39e | 747 | |
4c4b4cd2 PH |
748 | /* Table of Ada operators and their GNAT-encoded names. Last entry is pair |
749 | of NULLs. */ | |
14f9c5c9 | 750 | |
d2e4a39e AS |
751 | const struct ada_opname_map ada_opname_table[] = { |
752 | {"Oadd", "\"+\"", BINOP_ADD}, | |
753 | {"Osubtract", "\"-\"", BINOP_SUB}, | |
754 | {"Omultiply", "\"*\"", BINOP_MUL}, | |
755 | {"Odivide", "\"/\"", BINOP_DIV}, | |
756 | {"Omod", "\"mod\"", BINOP_MOD}, | |
757 | {"Orem", "\"rem\"", BINOP_REM}, | |
758 | {"Oexpon", "\"**\"", BINOP_EXP}, | |
759 | {"Olt", "\"<\"", BINOP_LESS}, | |
760 | {"Ole", "\"<=\"", BINOP_LEQ}, | |
761 | {"Ogt", "\">\"", BINOP_GTR}, | |
762 | {"Oge", "\">=\"", BINOP_GEQ}, | |
763 | {"Oeq", "\"=\"", BINOP_EQUAL}, | |
764 | {"One", "\"/=\"", BINOP_NOTEQUAL}, | |
765 | {"Oand", "\"and\"", BINOP_BITWISE_AND}, | |
766 | {"Oor", "\"or\"", BINOP_BITWISE_IOR}, | |
767 | {"Oxor", "\"xor\"", BINOP_BITWISE_XOR}, | |
768 | {"Oconcat", "\"&\"", BINOP_CONCAT}, | |
769 | {"Oabs", "\"abs\"", UNOP_ABS}, | |
770 | {"Onot", "\"not\"", UNOP_LOGICAL_NOT}, | |
771 | {"Oadd", "\"+\"", UNOP_PLUS}, | |
772 | {"Osubtract", "\"-\"", UNOP_NEG}, | |
773 | {NULL, NULL} | |
14f9c5c9 AS |
774 | }; |
775 | ||
4c4b4cd2 PH |
776 | /* The "encoded" form of DECODED, according to GNAT conventions. |
777 | The result is valid until the next call to ada_encode. */ | |
778 | ||
14f9c5c9 | 779 | char * |
4c4b4cd2 | 780 | ada_encode (const char *decoded) |
14f9c5c9 | 781 | { |
4c4b4cd2 PH |
782 | static char *encoding_buffer = NULL; |
783 | static size_t encoding_buffer_size = 0; | |
d2e4a39e | 784 | const char *p; |
14f9c5c9 | 785 | int k; |
d2e4a39e | 786 | |
4c4b4cd2 | 787 | if (decoded == NULL) |
14f9c5c9 AS |
788 | return NULL; |
789 | ||
4c4b4cd2 PH |
790 | GROW_VECT (encoding_buffer, encoding_buffer_size, |
791 | 2 * strlen (decoded) + 10); | |
14f9c5c9 AS |
792 | |
793 | k = 0; | |
4c4b4cd2 | 794 | for (p = decoded; *p != '\0'; p += 1) |
14f9c5c9 | 795 | { |
cdc7bb92 | 796 | if (*p == '.') |
4c4b4cd2 PH |
797 | { |
798 | encoding_buffer[k] = encoding_buffer[k + 1] = '_'; | |
799 | k += 2; | |
800 | } | |
14f9c5c9 | 801 | else if (*p == '"') |
4c4b4cd2 PH |
802 | { |
803 | const struct ada_opname_map *mapping; | |
804 | ||
805 | for (mapping = ada_opname_table; | |
1265e4aa JB |
806 | mapping->encoded != NULL |
807 | && strncmp (mapping->decoded, p, | |
808 | strlen (mapping->decoded)) != 0; mapping += 1) | |
4c4b4cd2 PH |
809 | ; |
810 | if (mapping->encoded == NULL) | |
323e0a4a | 811 | error (_("invalid Ada operator name: %s"), p); |
4c4b4cd2 PH |
812 | strcpy (encoding_buffer + k, mapping->encoded); |
813 | k += strlen (mapping->encoded); | |
814 | break; | |
815 | } | |
d2e4a39e | 816 | else |
4c4b4cd2 PH |
817 | { |
818 | encoding_buffer[k] = *p; | |
819 | k += 1; | |
820 | } | |
14f9c5c9 AS |
821 | } |
822 | ||
4c4b4cd2 PH |
823 | encoding_buffer[k] = '\0'; |
824 | return encoding_buffer; | |
14f9c5c9 AS |
825 | } |
826 | ||
827 | /* Return NAME folded to lower case, or, if surrounded by single | |
4c4b4cd2 PH |
828 | quotes, unfolded, but with the quotes stripped away. Result good |
829 | to next call. */ | |
830 | ||
d2e4a39e AS |
831 | char * |
832 | ada_fold_name (const char *name) | |
14f9c5c9 | 833 | { |
d2e4a39e | 834 | static char *fold_buffer = NULL; |
14f9c5c9 AS |
835 | static size_t fold_buffer_size = 0; |
836 | ||
837 | int len = strlen (name); | |
d2e4a39e | 838 | GROW_VECT (fold_buffer, fold_buffer_size, len + 1); |
14f9c5c9 AS |
839 | |
840 | if (name[0] == '\'') | |
841 | { | |
d2e4a39e AS |
842 | strncpy (fold_buffer, name + 1, len - 2); |
843 | fold_buffer[len - 2] = '\000'; | |
14f9c5c9 AS |
844 | } |
845 | else | |
846 | { | |
847 | int i; | |
5b4ee69b | 848 | |
14f9c5c9 | 849 | for (i = 0; i <= len; i += 1) |
4c4b4cd2 | 850 | fold_buffer[i] = tolower (name[i]); |
14f9c5c9 AS |
851 | } |
852 | ||
853 | return fold_buffer; | |
854 | } | |
855 | ||
529cad9c PH |
856 | /* Return nonzero if C is either a digit or a lowercase alphabet character. */ |
857 | ||
858 | static int | |
859 | is_lower_alphanum (const char c) | |
860 | { | |
861 | return (isdigit (c) || (isalpha (c) && islower (c))); | |
862 | } | |
863 | ||
29480c32 JB |
864 | /* Remove either of these suffixes: |
865 | . .{DIGIT}+ | |
866 | . ${DIGIT}+ | |
867 | . ___{DIGIT}+ | |
868 | . __{DIGIT}+. | |
869 | These are suffixes introduced by the compiler for entities such as | |
870 | nested subprogram for instance, in order to avoid name clashes. | |
871 | They do not serve any purpose for the debugger. */ | |
872 | ||
873 | static void | |
874 | ada_remove_trailing_digits (const char *encoded, int *len) | |
875 | { | |
876 | if (*len > 1 && isdigit (encoded[*len - 1])) | |
877 | { | |
878 | int i = *len - 2; | |
5b4ee69b | 879 | |
29480c32 JB |
880 | while (i > 0 && isdigit (encoded[i])) |
881 | i--; | |
882 | if (i >= 0 && encoded[i] == '.') | |
883 | *len = i; | |
884 | else if (i >= 0 && encoded[i] == '$') | |
885 | *len = i; | |
886 | else if (i >= 2 && strncmp (encoded + i - 2, "___", 3) == 0) | |
887 | *len = i - 2; | |
888 | else if (i >= 1 && strncmp (encoded + i - 1, "__", 2) == 0) | |
889 | *len = i - 1; | |
890 | } | |
891 | } | |
892 | ||
893 | /* Remove the suffix introduced by the compiler for protected object | |
894 | subprograms. */ | |
895 | ||
896 | static void | |
897 | ada_remove_po_subprogram_suffix (const char *encoded, int *len) | |
898 | { | |
899 | /* Remove trailing N. */ | |
900 | ||
901 | /* Protected entry subprograms are broken into two | |
902 | separate subprograms: The first one is unprotected, and has | |
903 | a 'N' suffix; the second is the protected version, and has | |
904 | the 'P' suffix. The second calls the first one after handling | |
905 | the protection. Since the P subprograms are internally generated, | |
906 | we leave these names undecoded, giving the user a clue that this | |
907 | entity is internal. */ | |
908 | ||
909 | if (*len > 1 | |
910 | && encoded[*len - 1] == 'N' | |
911 | && (isdigit (encoded[*len - 2]) || islower (encoded[*len - 2]))) | |
912 | *len = *len - 1; | |
913 | } | |
914 | ||
69fadcdf JB |
915 | /* Remove trailing X[bn]* suffixes (indicating names in package bodies). */ |
916 | ||
917 | static void | |
918 | ada_remove_Xbn_suffix (const char *encoded, int *len) | |
919 | { | |
920 | int i = *len - 1; | |
921 | ||
922 | while (i > 0 && (encoded[i] == 'b' || encoded[i] == 'n')) | |
923 | i--; | |
924 | ||
925 | if (encoded[i] != 'X') | |
926 | return; | |
927 | ||
928 | if (i == 0) | |
929 | return; | |
930 | ||
931 | if (isalnum (encoded[i-1])) | |
932 | *len = i; | |
933 | } | |
934 | ||
29480c32 JB |
935 | /* If ENCODED follows the GNAT entity encoding conventions, then return |
936 | the decoded form of ENCODED. Otherwise, return "<%s>" where "%s" is | |
937 | replaced by ENCODED. | |
14f9c5c9 | 938 | |
4c4b4cd2 | 939 | The resulting string is valid until the next call of ada_decode. |
29480c32 | 940 | If the string is unchanged by decoding, the original string pointer |
4c4b4cd2 PH |
941 | is returned. */ |
942 | ||
943 | const char * | |
944 | ada_decode (const char *encoded) | |
14f9c5c9 AS |
945 | { |
946 | int i, j; | |
947 | int len0; | |
d2e4a39e | 948 | const char *p; |
4c4b4cd2 | 949 | char *decoded; |
14f9c5c9 | 950 | int at_start_name; |
4c4b4cd2 PH |
951 | static char *decoding_buffer = NULL; |
952 | static size_t decoding_buffer_size = 0; | |
d2e4a39e | 953 | |
29480c32 JB |
954 | /* The name of the Ada main procedure starts with "_ada_". |
955 | This prefix is not part of the decoded name, so skip this part | |
956 | if we see this prefix. */ | |
4c4b4cd2 PH |
957 | if (strncmp (encoded, "_ada_", 5) == 0) |
958 | encoded += 5; | |
14f9c5c9 | 959 | |
29480c32 JB |
960 | /* If the name starts with '_', then it is not a properly encoded |
961 | name, so do not attempt to decode it. Similarly, if the name | |
962 | starts with '<', the name should not be decoded. */ | |
4c4b4cd2 | 963 | if (encoded[0] == '_' || encoded[0] == '<') |
14f9c5c9 AS |
964 | goto Suppress; |
965 | ||
4c4b4cd2 | 966 | len0 = strlen (encoded); |
4c4b4cd2 | 967 | |
29480c32 JB |
968 | ada_remove_trailing_digits (encoded, &len0); |
969 | ada_remove_po_subprogram_suffix (encoded, &len0); | |
529cad9c | 970 | |
4c4b4cd2 PH |
971 | /* Remove the ___X.* suffix if present. Do not forget to verify that |
972 | the suffix is located before the current "end" of ENCODED. We want | |
973 | to avoid re-matching parts of ENCODED that have previously been | |
974 | marked as discarded (by decrementing LEN0). */ | |
975 | p = strstr (encoded, "___"); | |
976 | if (p != NULL && p - encoded < len0 - 3) | |
14f9c5c9 AS |
977 | { |
978 | if (p[3] == 'X') | |
4c4b4cd2 | 979 | len0 = p - encoded; |
14f9c5c9 | 980 | else |
4c4b4cd2 | 981 | goto Suppress; |
14f9c5c9 | 982 | } |
4c4b4cd2 | 983 | |
29480c32 JB |
984 | /* Remove any trailing TKB suffix. It tells us that this symbol |
985 | is for the body of a task, but that information does not actually | |
986 | appear in the decoded name. */ | |
987 | ||
4c4b4cd2 | 988 | if (len0 > 3 && strncmp (encoded + len0 - 3, "TKB", 3) == 0) |
14f9c5c9 | 989 | len0 -= 3; |
76a01679 | 990 | |
a10967fa JB |
991 | /* Remove any trailing TB suffix. The TB suffix is slightly different |
992 | from the TKB suffix because it is used for non-anonymous task | |
993 | bodies. */ | |
994 | ||
995 | if (len0 > 2 && strncmp (encoded + len0 - 2, "TB", 2) == 0) | |
996 | len0 -= 2; | |
997 | ||
29480c32 JB |
998 | /* Remove trailing "B" suffixes. */ |
999 | /* FIXME: brobecker/2006-04-19: Not sure what this are used for... */ | |
1000 | ||
4c4b4cd2 | 1001 | if (len0 > 1 && strncmp (encoded + len0 - 1, "B", 1) == 0) |
14f9c5c9 AS |
1002 | len0 -= 1; |
1003 | ||
4c4b4cd2 | 1004 | /* Make decoded big enough for possible expansion by operator name. */ |
29480c32 | 1005 | |
4c4b4cd2 PH |
1006 | GROW_VECT (decoding_buffer, decoding_buffer_size, 2 * len0 + 1); |
1007 | decoded = decoding_buffer; | |
14f9c5c9 | 1008 | |
29480c32 JB |
1009 | /* Remove trailing __{digit}+ or trailing ${digit}+. */ |
1010 | ||
4c4b4cd2 | 1011 | if (len0 > 1 && isdigit (encoded[len0 - 1])) |
d2e4a39e | 1012 | { |
4c4b4cd2 PH |
1013 | i = len0 - 2; |
1014 | while ((i >= 0 && isdigit (encoded[i])) | |
1015 | || (i >= 1 && encoded[i] == '_' && isdigit (encoded[i - 1]))) | |
1016 | i -= 1; | |
1017 | if (i > 1 && encoded[i] == '_' && encoded[i - 1] == '_') | |
1018 | len0 = i - 1; | |
1019 | else if (encoded[i] == '$') | |
1020 | len0 = i; | |
d2e4a39e | 1021 | } |
14f9c5c9 | 1022 | |
29480c32 JB |
1023 | /* The first few characters that are not alphabetic are not part |
1024 | of any encoding we use, so we can copy them over verbatim. */ | |
1025 | ||
4c4b4cd2 PH |
1026 | for (i = 0, j = 0; i < len0 && !isalpha (encoded[i]); i += 1, j += 1) |
1027 | decoded[j] = encoded[i]; | |
14f9c5c9 AS |
1028 | |
1029 | at_start_name = 1; | |
1030 | while (i < len0) | |
1031 | { | |
29480c32 | 1032 | /* Is this a symbol function? */ |
4c4b4cd2 PH |
1033 | if (at_start_name && encoded[i] == 'O') |
1034 | { | |
1035 | int k; | |
5b4ee69b | 1036 | |
4c4b4cd2 PH |
1037 | for (k = 0; ada_opname_table[k].encoded != NULL; k += 1) |
1038 | { | |
1039 | int op_len = strlen (ada_opname_table[k].encoded); | |
06d5cf63 JB |
1040 | if ((strncmp (ada_opname_table[k].encoded + 1, encoded + i + 1, |
1041 | op_len - 1) == 0) | |
1042 | && !isalnum (encoded[i + op_len])) | |
4c4b4cd2 PH |
1043 | { |
1044 | strcpy (decoded + j, ada_opname_table[k].decoded); | |
1045 | at_start_name = 0; | |
1046 | i += op_len; | |
1047 | j += strlen (ada_opname_table[k].decoded); | |
1048 | break; | |
1049 | } | |
1050 | } | |
1051 | if (ada_opname_table[k].encoded != NULL) | |
1052 | continue; | |
1053 | } | |
14f9c5c9 AS |
1054 | at_start_name = 0; |
1055 | ||
529cad9c PH |
1056 | /* Replace "TK__" with "__", which will eventually be translated |
1057 | into "." (just below). */ | |
1058 | ||
4c4b4cd2 PH |
1059 | if (i < len0 - 4 && strncmp (encoded + i, "TK__", 4) == 0) |
1060 | i += 2; | |
529cad9c | 1061 | |
29480c32 JB |
1062 | /* Replace "__B_{DIGITS}+__" sequences by "__", which will eventually |
1063 | be translated into "." (just below). These are internal names | |
1064 | generated for anonymous blocks inside which our symbol is nested. */ | |
1065 | ||
1066 | if (len0 - i > 5 && encoded [i] == '_' && encoded [i+1] == '_' | |
1067 | && encoded [i+2] == 'B' && encoded [i+3] == '_' | |
1068 | && isdigit (encoded [i+4])) | |
1069 | { | |
1070 | int k = i + 5; | |
1071 | ||
1072 | while (k < len0 && isdigit (encoded[k])) | |
1073 | k++; /* Skip any extra digit. */ | |
1074 | ||
1075 | /* Double-check that the "__B_{DIGITS}+" sequence we found | |
1076 | is indeed followed by "__". */ | |
1077 | if (len0 - k > 2 && encoded [k] == '_' && encoded [k+1] == '_') | |
1078 | i = k; | |
1079 | } | |
1080 | ||
529cad9c PH |
1081 | /* Remove _E{DIGITS}+[sb] */ |
1082 | ||
1083 | /* Just as for protected object subprograms, there are 2 categories | |
1084 | of subprograms created by the compiler for each entry. The first | |
1085 | one implements the actual entry code, and has a suffix following | |
1086 | the convention above; the second one implements the barrier and | |
1087 | uses the same convention as above, except that the 'E' is replaced | |
1088 | by a 'B'. | |
1089 | ||
1090 | Just as above, we do not decode the name of barrier functions | |
1091 | to give the user a clue that the code he is debugging has been | |
1092 | internally generated. */ | |
1093 | ||
1094 | if (len0 - i > 3 && encoded [i] == '_' && encoded[i+1] == 'E' | |
1095 | && isdigit (encoded[i+2])) | |
1096 | { | |
1097 | int k = i + 3; | |
1098 | ||
1099 | while (k < len0 && isdigit (encoded[k])) | |
1100 | k++; | |
1101 | ||
1102 | if (k < len0 | |
1103 | && (encoded[k] == 'b' || encoded[k] == 's')) | |
1104 | { | |
1105 | k++; | |
1106 | /* Just as an extra precaution, make sure that if this | |
1107 | suffix is followed by anything else, it is a '_'. | |
1108 | Otherwise, we matched this sequence by accident. */ | |
1109 | if (k == len0 | |
1110 | || (k < len0 && encoded[k] == '_')) | |
1111 | i = k; | |
1112 | } | |
1113 | } | |
1114 | ||
1115 | /* Remove trailing "N" in [a-z0-9]+N__. The N is added by | |
1116 | the GNAT front-end in protected object subprograms. */ | |
1117 | ||
1118 | if (i < len0 + 3 | |
1119 | && encoded[i] == 'N' && encoded[i+1] == '_' && encoded[i+2] == '_') | |
1120 | { | |
1121 | /* Backtrack a bit up until we reach either the begining of | |
1122 | the encoded name, or "__". Make sure that we only find | |
1123 | digits or lowercase characters. */ | |
1124 | const char *ptr = encoded + i - 1; | |
1125 | ||
1126 | while (ptr >= encoded && is_lower_alphanum (ptr[0])) | |
1127 | ptr--; | |
1128 | if (ptr < encoded | |
1129 | || (ptr > encoded && ptr[0] == '_' && ptr[-1] == '_')) | |
1130 | i++; | |
1131 | } | |
1132 | ||
4c4b4cd2 PH |
1133 | if (encoded[i] == 'X' && i != 0 && isalnum (encoded[i - 1])) |
1134 | { | |
29480c32 JB |
1135 | /* This is a X[bn]* sequence not separated from the previous |
1136 | part of the name with a non-alpha-numeric character (in other | |
1137 | words, immediately following an alpha-numeric character), then | |
1138 | verify that it is placed at the end of the encoded name. If | |
1139 | not, then the encoding is not valid and we should abort the | |
1140 | decoding. Otherwise, just skip it, it is used in body-nested | |
1141 | package names. */ | |
4c4b4cd2 PH |
1142 | do |
1143 | i += 1; | |
1144 | while (i < len0 && (encoded[i] == 'b' || encoded[i] == 'n')); | |
1145 | if (i < len0) | |
1146 | goto Suppress; | |
1147 | } | |
cdc7bb92 | 1148 | else if (i < len0 - 2 && encoded[i] == '_' && encoded[i + 1] == '_') |
4c4b4cd2 | 1149 | { |
29480c32 | 1150 | /* Replace '__' by '.'. */ |
4c4b4cd2 PH |
1151 | decoded[j] = '.'; |
1152 | at_start_name = 1; | |
1153 | i += 2; | |
1154 | j += 1; | |
1155 | } | |
14f9c5c9 | 1156 | else |
4c4b4cd2 | 1157 | { |
29480c32 JB |
1158 | /* It's a character part of the decoded name, so just copy it |
1159 | over. */ | |
4c4b4cd2 PH |
1160 | decoded[j] = encoded[i]; |
1161 | i += 1; | |
1162 | j += 1; | |
1163 | } | |
14f9c5c9 | 1164 | } |
4c4b4cd2 | 1165 | decoded[j] = '\000'; |
14f9c5c9 | 1166 | |
29480c32 JB |
1167 | /* Decoded names should never contain any uppercase character. |
1168 | Double-check this, and abort the decoding if we find one. */ | |
1169 | ||
4c4b4cd2 PH |
1170 | for (i = 0; decoded[i] != '\0'; i += 1) |
1171 | if (isupper (decoded[i]) || decoded[i] == ' ') | |
14f9c5c9 AS |
1172 | goto Suppress; |
1173 | ||
4c4b4cd2 PH |
1174 | if (strcmp (decoded, encoded) == 0) |
1175 | return encoded; | |
1176 | else | |
1177 | return decoded; | |
14f9c5c9 AS |
1178 | |
1179 | Suppress: | |
4c4b4cd2 PH |
1180 | GROW_VECT (decoding_buffer, decoding_buffer_size, strlen (encoded) + 3); |
1181 | decoded = decoding_buffer; | |
1182 | if (encoded[0] == '<') | |
1183 | strcpy (decoded, encoded); | |
14f9c5c9 | 1184 | else |
88c15c34 | 1185 | xsnprintf (decoded, decoding_buffer_size, "<%s>", encoded); |
4c4b4cd2 PH |
1186 | return decoded; |
1187 | ||
1188 | } | |
1189 | ||
1190 | /* Table for keeping permanent unique copies of decoded names. Once | |
1191 | allocated, names in this table are never released. While this is a | |
1192 | storage leak, it should not be significant unless there are massive | |
1193 | changes in the set of decoded names in successive versions of a | |
1194 | symbol table loaded during a single session. */ | |
1195 | static struct htab *decoded_names_store; | |
1196 | ||
1197 | /* Returns the decoded name of GSYMBOL, as for ada_decode, caching it | |
1198 | in the language-specific part of GSYMBOL, if it has not been | |
1199 | previously computed. Tries to save the decoded name in the same | |
1200 | obstack as GSYMBOL, if possible, and otherwise on the heap (so that, | |
1201 | in any case, the decoded symbol has a lifetime at least that of | |
1202 | GSYMBOL). | |
1203 | The GSYMBOL parameter is "mutable" in the C++ sense: logically | |
1204 | const, but nevertheless modified to a semantically equivalent form | |
1205 | when a decoded name is cached in it. | |
76a01679 | 1206 | */ |
4c4b4cd2 | 1207 | |
76a01679 JB |
1208 | char * |
1209 | ada_decode_symbol (const struct general_symbol_info *gsymbol) | |
4c4b4cd2 | 1210 | { |
76a01679 | 1211 | char **resultp = |
afa16725 | 1212 | (char **) &gsymbol->language_specific.mangled_lang.demangled_name; |
5b4ee69b | 1213 | |
4c4b4cd2 PH |
1214 | if (*resultp == NULL) |
1215 | { | |
1216 | const char *decoded = ada_decode (gsymbol->name); | |
5b4ee69b | 1217 | |
714835d5 | 1218 | if (gsymbol->obj_section != NULL) |
76a01679 | 1219 | { |
714835d5 | 1220 | struct objfile *objf = gsymbol->obj_section->objfile; |
5b4ee69b | 1221 | |
714835d5 UW |
1222 | *resultp = obsavestring (decoded, strlen (decoded), |
1223 | &objf->objfile_obstack); | |
76a01679 | 1224 | } |
4c4b4cd2 | 1225 | /* Sometimes, we can't find a corresponding objfile, in which |
76a01679 JB |
1226 | case, we put the result on the heap. Since we only decode |
1227 | when needed, we hope this usually does not cause a | |
1228 | significant memory leak (FIXME). */ | |
4c4b4cd2 | 1229 | if (*resultp == NULL) |
76a01679 JB |
1230 | { |
1231 | char **slot = (char **) htab_find_slot (decoded_names_store, | |
1232 | decoded, INSERT); | |
5b4ee69b | 1233 | |
76a01679 JB |
1234 | if (*slot == NULL) |
1235 | *slot = xstrdup (decoded); | |
1236 | *resultp = *slot; | |
1237 | } | |
4c4b4cd2 | 1238 | } |
14f9c5c9 | 1239 | |
4c4b4cd2 PH |
1240 | return *resultp; |
1241 | } | |
76a01679 | 1242 | |
2c0b251b | 1243 | static char * |
76a01679 | 1244 | ada_la_decode (const char *encoded, int options) |
4c4b4cd2 PH |
1245 | { |
1246 | return xstrdup (ada_decode (encoded)); | |
14f9c5c9 AS |
1247 | } |
1248 | ||
1249 | /* Returns non-zero iff SYM_NAME matches NAME, ignoring any trailing | |
4c4b4cd2 PH |
1250 | suffixes that encode debugging information or leading _ada_ on |
1251 | SYM_NAME (see is_name_suffix commentary for the debugging | |
1252 | information that is ignored). If WILD, then NAME need only match a | |
1253 | suffix of SYM_NAME minus the same suffixes. Also returns 0 if | |
1254 | either argument is NULL. */ | |
14f9c5c9 | 1255 | |
2c0b251b | 1256 | static int |
d2e4a39e | 1257 | ada_match_name (const char *sym_name, const char *name, int wild) |
14f9c5c9 AS |
1258 | { |
1259 | if (sym_name == NULL || name == NULL) | |
1260 | return 0; | |
1261 | else if (wild) | |
73589123 | 1262 | return wild_match (sym_name, name) == 0; |
d2e4a39e AS |
1263 | else |
1264 | { | |
1265 | int len_name = strlen (name); | |
5b4ee69b | 1266 | |
4c4b4cd2 PH |
1267 | return (strncmp (sym_name, name, len_name) == 0 |
1268 | && is_name_suffix (sym_name + len_name)) | |
1269 | || (strncmp (sym_name, "_ada_", 5) == 0 | |
1270 | && strncmp (sym_name + 5, name, len_name) == 0 | |
1271 | && is_name_suffix (sym_name + len_name + 5)); | |
d2e4a39e | 1272 | } |
14f9c5c9 | 1273 | } |
14f9c5c9 | 1274 | \f |
d2e4a39e | 1275 | |
4c4b4cd2 | 1276 | /* Arrays */ |
14f9c5c9 | 1277 | |
28c85d6c JB |
1278 | /* Assuming that INDEX_DESC_TYPE is an ___XA structure, a structure |
1279 | generated by the GNAT compiler to describe the index type used | |
1280 | for each dimension of an array, check whether it follows the latest | |
1281 | known encoding. If not, fix it up to conform to the latest encoding. | |
1282 | Otherwise, do nothing. This function also does nothing if | |
1283 | INDEX_DESC_TYPE is NULL. | |
1284 | ||
1285 | The GNAT encoding used to describle the array index type evolved a bit. | |
1286 | Initially, the information would be provided through the name of each | |
1287 | field of the structure type only, while the type of these fields was | |
1288 | described as unspecified and irrelevant. The debugger was then expected | |
1289 | to perform a global type lookup using the name of that field in order | |
1290 | to get access to the full index type description. Because these global | |
1291 | lookups can be very expensive, the encoding was later enhanced to make | |
1292 | the global lookup unnecessary by defining the field type as being | |
1293 | the full index type description. | |
1294 | ||
1295 | The purpose of this routine is to allow us to support older versions | |
1296 | of the compiler by detecting the use of the older encoding, and by | |
1297 | fixing up the INDEX_DESC_TYPE to follow the new one (at this point, | |
1298 | we essentially replace each field's meaningless type by the associated | |
1299 | index subtype). */ | |
1300 | ||
1301 | void | |
1302 | ada_fixup_array_indexes_type (struct type *index_desc_type) | |
1303 | { | |
1304 | int i; | |
1305 | ||
1306 | if (index_desc_type == NULL) | |
1307 | return; | |
1308 | gdb_assert (TYPE_NFIELDS (index_desc_type) > 0); | |
1309 | ||
1310 | /* Check if INDEX_DESC_TYPE follows the older encoding (it is sufficient | |
1311 | to check one field only, no need to check them all). If not, return | |
1312 | now. | |
1313 | ||
1314 | If our INDEX_DESC_TYPE was generated using the older encoding, | |
1315 | the field type should be a meaningless integer type whose name | |
1316 | is not equal to the field name. */ | |
1317 | if (TYPE_NAME (TYPE_FIELD_TYPE (index_desc_type, 0)) != NULL | |
1318 | && strcmp (TYPE_NAME (TYPE_FIELD_TYPE (index_desc_type, 0)), | |
1319 | TYPE_FIELD_NAME (index_desc_type, 0)) == 0) | |
1320 | return; | |
1321 | ||
1322 | /* Fixup each field of INDEX_DESC_TYPE. */ | |
1323 | for (i = 0; i < TYPE_NFIELDS (index_desc_type); i++) | |
1324 | { | |
1325 | char *name = TYPE_FIELD_NAME (index_desc_type, i); | |
1326 | struct type *raw_type = ada_check_typedef (ada_find_any_type (name)); | |
1327 | ||
1328 | if (raw_type) | |
1329 | TYPE_FIELD_TYPE (index_desc_type, i) = raw_type; | |
1330 | } | |
1331 | } | |
1332 | ||
4c4b4cd2 | 1333 | /* Names of MAX_ADA_DIMENS bounds in P_BOUNDS fields of array descriptors. */ |
14f9c5c9 | 1334 | |
d2e4a39e AS |
1335 | static char *bound_name[] = { |
1336 | "LB0", "UB0", "LB1", "UB1", "LB2", "UB2", "LB3", "UB3", | |
14f9c5c9 AS |
1337 | "LB4", "UB4", "LB5", "UB5", "LB6", "UB6", "LB7", "UB7" |
1338 | }; | |
1339 | ||
1340 | /* Maximum number of array dimensions we are prepared to handle. */ | |
1341 | ||
4c4b4cd2 | 1342 | #define MAX_ADA_DIMENS (sizeof(bound_name) / (2*sizeof(char *))) |
14f9c5c9 | 1343 | |
4c4b4cd2 | 1344 | /* Like modify_field, but allows bitpos > wordlength. */ |
14f9c5c9 AS |
1345 | |
1346 | static void | |
50810684 UW |
1347 | modify_general_field (struct type *type, char *addr, |
1348 | LONGEST fieldval, int bitpos, int bitsize) | |
14f9c5c9 | 1349 | { |
50810684 | 1350 | modify_field (type, addr + bitpos / 8, fieldval, bitpos % 8, bitsize); |
14f9c5c9 AS |
1351 | } |
1352 | ||
1353 | ||
4c4b4cd2 PH |
1354 | /* The desc_* routines return primitive portions of array descriptors |
1355 | (fat pointers). */ | |
14f9c5c9 AS |
1356 | |
1357 | /* The descriptor or array type, if any, indicated by TYPE; removes | |
4c4b4cd2 PH |
1358 | level of indirection, if needed. */ |
1359 | ||
d2e4a39e AS |
1360 | static struct type * |
1361 | desc_base_type (struct type *type) | |
14f9c5c9 AS |
1362 | { |
1363 | if (type == NULL) | |
1364 | return NULL; | |
61ee279c | 1365 | type = ada_check_typedef (type); |
1265e4aa JB |
1366 | if (type != NULL |
1367 | && (TYPE_CODE (type) == TYPE_CODE_PTR | |
1368 | || TYPE_CODE (type) == TYPE_CODE_REF)) | |
61ee279c | 1369 | return ada_check_typedef (TYPE_TARGET_TYPE (type)); |
14f9c5c9 AS |
1370 | else |
1371 | return type; | |
1372 | } | |
1373 | ||
4c4b4cd2 PH |
1374 | /* True iff TYPE indicates a "thin" array pointer type. */ |
1375 | ||
14f9c5c9 | 1376 | static int |
d2e4a39e | 1377 | is_thin_pntr (struct type *type) |
14f9c5c9 | 1378 | { |
d2e4a39e | 1379 | return |
14f9c5c9 AS |
1380 | is_suffix (ada_type_name (desc_base_type (type)), "___XUT") |
1381 | || is_suffix (ada_type_name (desc_base_type (type)), "___XUT___XVE"); | |
1382 | } | |
1383 | ||
4c4b4cd2 PH |
1384 | /* The descriptor type for thin pointer type TYPE. */ |
1385 | ||
d2e4a39e AS |
1386 | static struct type * |
1387 | thin_descriptor_type (struct type *type) | |
14f9c5c9 | 1388 | { |
d2e4a39e | 1389 | struct type *base_type = desc_base_type (type); |
5b4ee69b | 1390 | |
14f9c5c9 AS |
1391 | if (base_type == NULL) |
1392 | return NULL; | |
1393 | if (is_suffix (ada_type_name (base_type), "___XVE")) | |
1394 | return base_type; | |
d2e4a39e | 1395 | else |
14f9c5c9 | 1396 | { |
d2e4a39e | 1397 | struct type *alt_type = ada_find_parallel_type (base_type, "___XVE"); |
5b4ee69b | 1398 | |
14f9c5c9 | 1399 | if (alt_type == NULL) |
4c4b4cd2 | 1400 | return base_type; |
14f9c5c9 | 1401 | else |
4c4b4cd2 | 1402 | return alt_type; |
14f9c5c9 AS |
1403 | } |
1404 | } | |
1405 | ||
4c4b4cd2 PH |
1406 | /* A pointer to the array data for thin-pointer value VAL. */ |
1407 | ||
d2e4a39e AS |
1408 | static struct value * |
1409 | thin_data_pntr (struct value *val) | |
14f9c5c9 | 1410 | { |
df407dfe | 1411 | struct type *type = value_type (val); |
556bdfd4 | 1412 | struct type *data_type = desc_data_target_type (thin_descriptor_type (type)); |
5b4ee69b | 1413 | |
556bdfd4 UW |
1414 | data_type = lookup_pointer_type (data_type); |
1415 | ||
14f9c5c9 | 1416 | if (TYPE_CODE (type) == TYPE_CODE_PTR) |
556bdfd4 | 1417 | return value_cast (data_type, value_copy (val)); |
d2e4a39e | 1418 | else |
42ae5230 | 1419 | return value_from_longest (data_type, value_address (val)); |
14f9c5c9 AS |
1420 | } |
1421 | ||
4c4b4cd2 PH |
1422 | /* True iff TYPE indicates a "thick" array pointer type. */ |
1423 | ||
14f9c5c9 | 1424 | static int |
d2e4a39e | 1425 | is_thick_pntr (struct type *type) |
14f9c5c9 AS |
1426 | { |
1427 | type = desc_base_type (type); | |
1428 | return (type != NULL && TYPE_CODE (type) == TYPE_CODE_STRUCT | |
4c4b4cd2 | 1429 | && lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL); |
14f9c5c9 AS |
1430 | } |
1431 | ||
4c4b4cd2 PH |
1432 | /* If TYPE is the type of an array descriptor (fat or thin pointer) or a |
1433 | pointer to one, the type of its bounds data; otherwise, NULL. */ | |
76a01679 | 1434 | |
d2e4a39e AS |
1435 | static struct type * |
1436 | desc_bounds_type (struct type *type) | |
14f9c5c9 | 1437 | { |
d2e4a39e | 1438 | struct type *r; |
14f9c5c9 AS |
1439 | |
1440 | type = desc_base_type (type); | |
1441 | ||
1442 | if (type == NULL) | |
1443 | return NULL; | |
1444 | else if (is_thin_pntr (type)) | |
1445 | { | |
1446 | type = thin_descriptor_type (type); | |
1447 | if (type == NULL) | |
4c4b4cd2 | 1448 | return NULL; |
14f9c5c9 AS |
1449 | r = lookup_struct_elt_type (type, "BOUNDS", 1); |
1450 | if (r != NULL) | |
61ee279c | 1451 | return ada_check_typedef (r); |
14f9c5c9 AS |
1452 | } |
1453 | else if (TYPE_CODE (type) == TYPE_CODE_STRUCT) | |
1454 | { | |
1455 | r = lookup_struct_elt_type (type, "P_BOUNDS", 1); | |
1456 | if (r != NULL) | |
61ee279c | 1457 | return ada_check_typedef (TYPE_TARGET_TYPE (ada_check_typedef (r))); |
14f9c5c9 AS |
1458 | } |
1459 | return NULL; | |
1460 | } | |
1461 | ||
1462 | /* If ARR is an array descriptor (fat or thin pointer), or pointer to | |
4c4b4cd2 PH |
1463 | one, a pointer to its bounds data. Otherwise NULL. */ |
1464 | ||
d2e4a39e AS |
1465 | static struct value * |
1466 | desc_bounds (struct value *arr) | |
14f9c5c9 | 1467 | { |
df407dfe | 1468 | struct type *type = ada_check_typedef (value_type (arr)); |
5b4ee69b | 1469 | |
d2e4a39e | 1470 | if (is_thin_pntr (type)) |
14f9c5c9 | 1471 | { |
d2e4a39e | 1472 | struct type *bounds_type = |
4c4b4cd2 | 1473 | desc_bounds_type (thin_descriptor_type (type)); |
14f9c5c9 AS |
1474 | LONGEST addr; |
1475 | ||
4cdfadb1 | 1476 | if (bounds_type == NULL) |
323e0a4a | 1477 | error (_("Bad GNAT array descriptor")); |
14f9c5c9 AS |
1478 | |
1479 | /* NOTE: The following calculation is not really kosher, but | |
d2e4a39e | 1480 | since desc_type is an XVE-encoded type (and shouldn't be), |
4c4b4cd2 | 1481 | the correct calculation is a real pain. FIXME (and fix GCC). */ |
14f9c5c9 | 1482 | if (TYPE_CODE (type) == TYPE_CODE_PTR) |
4c4b4cd2 | 1483 | addr = value_as_long (arr); |
d2e4a39e | 1484 | else |
42ae5230 | 1485 | addr = value_address (arr); |
14f9c5c9 | 1486 | |
d2e4a39e | 1487 | return |
4c4b4cd2 PH |
1488 | value_from_longest (lookup_pointer_type (bounds_type), |
1489 | addr - TYPE_LENGTH (bounds_type)); | |
14f9c5c9 AS |
1490 | } |
1491 | ||
1492 | else if (is_thick_pntr (type)) | |
05e522ef JB |
1493 | { |
1494 | struct value *p_bounds = value_struct_elt (&arr, NULL, "P_BOUNDS", NULL, | |
1495 | _("Bad GNAT array descriptor")); | |
1496 | struct type *p_bounds_type = value_type (p_bounds); | |
1497 | ||
1498 | if (p_bounds_type | |
1499 | && TYPE_CODE (p_bounds_type) == TYPE_CODE_PTR) | |
1500 | { | |
1501 | struct type *target_type = TYPE_TARGET_TYPE (p_bounds_type); | |
1502 | ||
1503 | if (TYPE_STUB (target_type)) | |
1504 | p_bounds = value_cast (lookup_pointer_type | |
1505 | (ada_check_typedef (target_type)), | |
1506 | p_bounds); | |
1507 | } | |
1508 | else | |
1509 | error (_("Bad GNAT array descriptor")); | |
1510 | ||
1511 | return p_bounds; | |
1512 | } | |
14f9c5c9 AS |
1513 | else |
1514 | return NULL; | |
1515 | } | |
1516 | ||
4c4b4cd2 PH |
1517 | /* If TYPE is the type of an array-descriptor (fat pointer), the bit |
1518 | position of the field containing the address of the bounds data. */ | |
1519 | ||
14f9c5c9 | 1520 | static int |
d2e4a39e | 1521 | fat_pntr_bounds_bitpos (struct type *type) |
14f9c5c9 AS |
1522 | { |
1523 | return TYPE_FIELD_BITPOS (desc_base_type (type), 1); | |
1524 | } | |
1525 | ||
1526 | /* If TYPE is the type of an array-descriptor (fat pointer), the bit | |
4c4b4cd2 PH |
1527 | size of the field containing the address of the bounds data. */ |
1528 | ||
14f9c5c9 | 1529 | static int |
d2e4a39e | 1530 | fat_pntr_bounds_bitsize (struct type *type) |
14f9c5c9 AS |
1531 | { |
1532 | type = desc_base_type (type); | |
1533 | ||
d2e4a39e | 1534 | if (TYPE_FIELD_BITSIZE (type, 1) > 0) |
14f9c5c9 AS |
1535 | return TYPE_FIELD_BITSIZE (type, 1); |
1536 | else | |
61ee279c | 1537 | return 8 * TYPE_LENGTH (ada_check_typedef (TYPE_FIELD_TYPE (type, 1))); |
14f9c5c9 AS |
1538 | } |
1539 | ||
4c4b4cd2 | 1540 | /* If TYPE is the type of an array descriptor (fat or thin pointer) or a |
556bdfd4 UW |
1541 | pointer to one, the type of its array data (a array-with-no-bounds type); |
1542 | otherwise, NULL. Use ada_type_of_array to get an array type with bounds | |
1543 | data. */ | |
4c4b4cd2 | 1544 | |
d2e4a39e | 1545 | static struct type * |
556bdfd4 | 1546 | desc_data_target_type (struct type *type) |
14f9c5c9 AS |
1547 | { |
1548 | type = desc_base_type (type); | |
1549 | ||
4c4b4cd2 | 1550 | /* NOTE: The following is bogus; see comment in desc_bounds. */ |
14f9c5c9 | 1551 | if (is_thin_pntr (type)) |
556bdfd4 | 1552 | return desc_base_type (TYPE_FIELD_TYPE (thin_descriptor_type (type), 1)); |
14f9c5c9 | 1553 | else if (is_thick_pntr (type)) |
556bdfd4 UW |
1554 | { |
1555 | struct type *data_type = lookup_struct_elt_type (type, "P_ARRAY", 1); | |
1556 | ||
1557 | if (data_type | |
1558 | && TYPE_CODE (ada_check_typedef (data_type)) == TYPE_CODE_PTR) | |
05e522ef | 1559 | return ada_check_typedef (TYPE_TARGET_TYPE (data_type)); |
556bdfd4 UW |
1560 | } |
1561 | ||
1562 | return NULL; | |
14f9c5c9 AS |
1563 | } |
1564 | ||
1565 | /* If ARR is an array descriptor (fat or thin pointer), a pointer to | |
1566 | its array data. */ | |
4c4b4cd2 | 1567 | |
d2e4a39e AS |
1568 | static struct value * |
1569 | desc_data (struct value *arr) | |
14f9c5c9 | 1570 | { |
df407dfe | 1571 | struct type *type = value_type (arr); |
5b4ee69b | 1572 | |
14f9c5c9 AS |
1573 | if (is_thin_pntr (type)) |
1574 | return thin_data_pntr (arr); | |
1575 | else if (is_thick_pntr (type)) | |
d2e4a39e | 1576 | return value_struct_elt (&arr, NULL, "P_ARRAY", NULL, |
323e0a4a | 1577 | _("Bad GNAT array descriptor")); |
14f9c5c9 AS |
1578 | else |
1579 | return NULL; | |
1580 | } | |
1581 | ||
1582 | ||
1583 | /* If TYPE is the type of an array-descriptor (fat pointer), the bit | |
4c4b4cd2 PH |
1584 | position of the field containing the address of the data. */ |
1585 | ||
14f9c5c9 | 1586 | static int |
d2e4a39e | 1587 | fat_pntr_data_bitpos (struct type *type) |
14f9c5c9 AS |
1588 | { |
1589 | return TYPE_FIELD_BITPOS (desc_base_type (type), 0); | |
1590 | } | |
1591 | ||
1592 | /* If TYPE is the type of an array-descriptor (fat pointer), the bit | |
4c4b4cd2 PH |
1593 | size of the field containing the address of the data. */ |
1594 | ||
14f9c5c9 | 1595 | static int |
d2e4a39e | 1596 | fat_pntr_data_bitsize (struct type *type) |
14f9c5c9 AS |
1597 | { |
1598 | type = desc_base_type (type); | |
1599 | ||
1600 | if (TYPE_FIELD_BITSIZE (type, 0) > 0) | |
1601 | return TYPE_FIELD_BITSIZE (type, 0); | |
d2e4a39e | 1602 | else |
14f9c5c9 AS |
1603 | return TARGET_CHAR_BIT * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 0)); |
1604 | } | |
1605 | ||
4c4b4cd2 | 1606 | /* If BOUNDS is an array-bounds structure (or pointer to one), return |
14f9c5c9 | 1607 | the Ith lower bound stored in it, if WHICH is 0, and the Ith upper |
4c4b4cd2 PH |
1608 | bound, if WHICH is 1. The first bound is I=1. */ |
1609 | ||
d2e4a39e AS |
1610 | static struct value * |
1611 | desc_one_bound (struct value *bounds, int i, int which) | |
14f9c5c9 | 1612 | { |
d2e4a39e | 1613 | return value_struct_elt (&bounds, NULL, bound_name[2 * i + which - 2], NULL, |
323e0a4a | 1614 | _("Bad GNAT array descriptor bounds")); |
14f9c5c9 AS |
1615 | } |
1616 | ||
1617 | /* If BOUNDS is an array-bounds structure type, return the bit position | |
1618 | of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper | |
4c4b4cd2 PH |
1619 | bound, if WHICH is 1. The first bound is I=1. */ |
1620 | ||
14f9c5c9 | 1621 | static int |
d2e4a39e | 1622 | desc_bound_bitpos (struct type *type, int i, int which) |
14f9c5c9 | 1623 | { |
d2e4a39e | 1624 | return TYPE_FIELD_BITPOS (desc_base_type (type), 2 * i + which - 2); |
14f9c5c9 AS |
1625 | } |
1626 | ||
1627 | /* If BOUNDS is an array-bounds structure type, return the bit field size | |
1628 | of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper | |
4c4b4cd2 PH |
1629 | bound, if WHICH is 1. The first bound is I=1. */ |
1630 | ||
76a01679 | 1631 | static int |
d2e4a39e | 1632 | desc_bound_bitsize (struct type *type, int i, int which) |
14f9c5c9 AS |
1633 | { |
1634 | type = desc_base_type (type); | |
1635 | ||
d2e4a39e AS |
1636 | if (TYPE_FIELD_BITSIZE (type, 2 * i + which - 2) > 0) |
1637 | return TYPE_FIELD_BITSIZE (type, 2 * i + which - 2); | |
1638 | else | |
1639 | return 8 * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 2 * i + which - 2)); | |
14f9c5c9 AS |
1640 | } |
1641 | ||
1642 | /* If TYPE is the type of an array-bounds structure, the type of its | |
4c4b4cd2 PH |
1643 | Ith bound (numbering from 1). Otherwise, NULL. */ |
1644 | ||
d2e4a39e AS |
1645 | static struct type * |
1646 | desc_index_type (struct type *type, int i) | |
14f9c5c9 AS |
1647 | { |
1648 | type = desc_base_type (type); | |
1649 | ||
1650 | if (TYPE_CODE (type) == TYPE_CODE_STRUCT) | |
d2e4a39e AS |
1651 | return lookup_struct_elt_type (type, bound_name[2 * i - 2], 1); |
1652 | else | |
14f9c5c9 AS |
1653 | return NULL; |
1654 | } | |
1655 | ||
4c4b4cd2 PH |
1656 | /* The number of index positions in the array-bounds type TYPE. |
1657 | Return 0 if TYPE is NULL. */ | |
1658 | ||
14f9c5c9 | 1659 | static int |
d2e4a39e | 1660 | desc_arity (struct type *type) |
14f9c5c9 AS |
1661 | { |
1662 | type = desc_base_type (type); | |
1663 | ||
1664 | if (type != NULL) | |
1665 | return TYPE_NFIELDS (type) / 2; | |
1666 | return 0; | |
1667 | } | |
1668 | ||
4c4b4cd2 PH |
1669 | /* Non-zero iff TYPE is a simple array type (not a pointer to one) or |
1670 | an array descriptor type (representing an unconstrained array | |
1671 | type). */ | |
1672 | ||
76a01679 JB |
1673 | static int |
1674 | ada_is_direct_array_type (struct type *type) | |
4c4b4cd2 PH |
1675 | { |
1676 | if (type == NULL) | |
1677 | return 0; | |
61ee279c | 1678 | type = ada_check_typedef (type); |
4c4b4cd2 | 1679 | return (TYPE_CODE (type) == TYPE_CODE_ARRAY |
76a01679 | 1680 | || ada_is_array_descriptor_type (type)); |
4c4b4cd2 PH |
1681 | } |
1682 | ||
52ce6436 PH |
1683 | /* Non-zero iff TYPE represents any kind of array in Ada, or a pointer |
1684 | * to one. */ | |
1685 | ||
2c0b251b | 1686 | static int |
52ce6436 PH |
1687 | ada_is_array_type (struct type *type) |
1688 | { | |
1689 | while (type != NULL | |
1690 | && (TYPE_CODE (type) == TYPE_CODE_PTR | |
1691 | || TYPE_CODE (type) == TYPE_CODE_REF)) | |
1692 | type = TYPE_TARGET_TYPE (type); | |
1693 | return ada_is_direct_array_type (type); | |
1694 | } | |
1695 | ||
4c4b4cd2 | 1696 | /* Non-zero iff TYPE is a simple array type or pointer to one. */ |
14f9c5c9 | 1697 | |
14f9c5c9 | 1698 | int |
4c4b4cd2 | 1699 | ada_is_simple_array_type (struct type *type) |
14f9c5c9 AS |
1700 | { |
1701 | if (type == NULL) | |
1702 | return 0; | |
61ee279c | 1703 | type = ada_check_typedef (type); |
14f9c5c9 | 1704 | return (TYPE_CODE (type) == TYPE_CODE_ARRAY |
4c4b4cd2 PH |
1705 | || (TYPE_CODE (type) == TYPE_CODE_PTR |
1706 | && TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_ARRAY)); | |
14f9c5c9 AS |
1707 | } |
1708 | ||
4c4b4cd2 PH |
1709 | /* Non-zero iff TYPE belongs to a GNAT array descriptor. */ |
1710 | ||
14f9c5c9 | 1711 | int |
4c4b4cd2 | 1712 | ada_is_array_descriptor_type (struct type *type) |
14f9c5c9 | 1713 | { |
556bdfd4 | 1714 | struct type *data_type = desc_data_target_type (type); |
14f9c5c9 AS |
1715 | |
1716 | if (type == NULL) | |
1717 | return 0; | |
61ee279c | 1718 | type = ada_check_typedef (type); |
556bdfd4 UW |
1719 | return (data_type != NULL |
1720 | && TYPE_CODE (data_type) == TYPE_CODE_ARRAY | |
1721 | && desc_arity (desc_bounds_type (type)) > 0); | |
14f9c5c9 AS |
1722 | } |
1723 | ||
1724 | /* Non-zero iff type is a partially mal-formed GNAT array | |
4c4b4cd2 | 1725 | descriptor. FIXME: This is to compensate for some problems with |
14f9c5c9 | 1726 | debugging output from GNAT. Re-examine periodically to see if it |
4c4b4cd2 PH |
1727 | is still needed. */ |
1728 | ||
14f9c5c9 | 1729 | int |
ebf56fd3 | 1730 | ada_is_bogus_array_descriptor (struct type *type) |
14f9c5c9 | 1731 | { |
d2e4a39e | 1732 | return |
14f9c5c9 AS |
1733 | type != NULL |
1734 | && TYPE_CODE (type) == TYPE_CODE_STRUCT | |
1735 | && (lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL | |
4c4b4cd2 PH |
1736 | || lookup_struct_elt_type (type, "P_ARRAY", 1) != NULL) |
1737 | && !ada_is_array_descriptor_type (type); | |
14f9c5c9 AS |
1738 | } |
1739 | ||
1740 | ||
4c4b4cd2 | 1741 | /* If ARR has a record type in the form of a standard GNAT array descriptor, |
14f9c5c9 | 1742 | (fat pointer) returns the type of the array data described---specifically, |
4c4b4cd2 | 1743 | a pointer-to-array type. If BOUNDS is non-zero, the bounds data are filled |
14f9c5c9 | 1744 | in from the descriptor; otherwise, they are left unspecified. If |
4c4b4cd2 PH |
1745 | the ARR denotes a null array descriptor and BOUNDS is non-zero, |
1746 | returns NULL. The result is simply the type of ARR if ARR is not | |
14f9c5c9 | 1747 | a descriptor. */ |
d2e4a39e AS |
1748 | struct type * |
1749 | ada_type_of_array (struct value *arr, int bounds) | |
14f9c5c9 | 1750 | { |
ad82864c JB |
1751 | if (ada_is_constrained_packed_array_type (value_type (arr))) |
1752 | return decode_constrained_packed_array_type (value_type (arr)); | |
14f9c5c9 | 1753 | |
df407dfe AC |
1754 | if (!ada_is_array_descriptor_type (value_type (arr))) |
1755 | return value_type (arr); | |
d2e4a39e AS |
1756 | |
1757 | if (!bounds) | |
ad82864c JB |
1758 | { |
1759 | struct type *array_type = | |
1760 | ada_check_typedef (desc_data_target_type (value_type (arr))); | |
1761 | ||
1762 | if (ada_is_unconstrained_packed_array_type (value_type (arr))) | |
1763 | TYPE_FIELD_BITSIZE (array_type, 0) = | |
1764 | decode_packed_array_bitsize (value_type (arr)); | |
1765 | ||
1766 | return array_type; | |
1767 | } | |
14f9c5c9 AS |
1768 | else |
1769 | { | |
d2e4a39e | 1770 | struct type *elt_type; |
14f9c5c9 | 1771 | int arity; |
d2e4a39e | 1772 | struct value *descriptor; |
14f9c5c9 | 1773 | |
df407dfe AC |
1774 | elt_type = ada_array_element_type (value_type (arr), -1); |
1775 | arity = ada_array_arity (value_type (arr)); | |
14f9c5c9 | 1776 | |
d2e4a39e | 1777 | if (elt_type == NULL || arity == 0) |
df407dfe | 1778 | return ada_check_typedef (value_type (arr)); |
14f9c5c9 AS |
1779 | |
1780 | descriptor = desc_bounds (arr); | |
d2e4a39e | 1781 | if (value_as_long (descriptor) == 0) |
4c4b4cd2 | 1782 | return NULL; |
d2e4a39e | 1783 | while (arity > 0) |
4c4b4cd2 | 1784 | { |
e9bb382b UW |
1785 | struct type *range_type = alloc_type_copy (value_type (arr)); |
1786 | struct type *array_type = alloc_type_copy (value_type (arr)); | |
4c4b4cd2 PH |
1787 | struct value *low = desc_one_bound (descriptor, arity, 0); |
1788 | struct value *high = desc_one_bound (descriptor, arity, 1); | |
4c4b4cd2 | 1789 | |
5b4ee69b | 1790 | arity -= 1; |
df407dfe | 1791 | create_range_type (range_type, value_type (low), |
529cad9c PH |
1792 | longest_to_int (value_as_long (low)), |
1793 | longest_to_int (value_as_long (high))); | |
4c4b4cd2 | 1794 | elt_type = create_array_type (array_type, elt_type, range_type); |
ad82864c JB |
1795 | |
1796 | if (ada_is_unconstrained_packed_array_type (value_type (arr))) | |
1797 | TYPE_FIELD_BITSIZE (elt_type, 0) = | |
1798 | decode_packed_array_bitsize (value_type (arr)); | |
4c4b4cd2 | 1799 | } |
14f9c5c9 AS |
1800 | |
1801 | return lookup_pointer_type (elt_type); | |
1802 | } | |
1803 | } | |
1804 | ||
1805 | /* If ARR does not represent an array, returns ARR unchanged. | |
4c4b4cd2 PH |
1806 | Otherwise, returns either a standard GDB array with bounds set |
1807 | appropriately or, if ARR is a non-null fat pointer, a pointer to a standard | |
1808 | GDB array. Returns NULL if ARR is a null fat pointer. */ | |
1809 | ||
d2e4a39e AS |
1810 | struct value * |
1811 | ada_coerce_to_simple_array_ptr (struct value *arr) | |
14f9c5c9 | 1812 | { |
df407dfe | 1813 | if (ada_is_array_descriptor_type (value_type (arr))) |
14f9c5c9 | 1814 | { |
d2e4a39e | 1815 | struct type *arrType = ada_type_of_array (arr, 1); |
5b4ee69b | 1816 | |
14f9c5c9 | 1817 | if (arrType == NULL) |
4c4b4cd2 | 1818 | return NULL; |
14f9c5c9 AS |
1819 | return value_cast (arrType, value_copy (desc_data (arr))); |
1820 | } | |
ad82864c JB |
1821 | else if (ada_is_constrained_packed_array_type (value_type (arr))) |
1822 | return decode_constrained_packed_array (arr); | |
14f9c5c9 AS |
1823 | else |
1824 | return arr; | |
1825 | } | |
1826 | ||
1827 | /* If ARR does not represent an array, returns ARR unchanged. | |
1828 | Otherwise, returns a standard GDB array describing ARR (which may | |
4c4b4cd2 PH |
1829 | be ARR itself if it already is in the proper form). */ |
1830 | ||
1831 | static struct value * | |
d2e4a39e | 1832 | ada_coerce_to_simple_array (struct value *arr) |
14f9c5c9 | 1833 | { |
df407dfe | 1834 | if (ada_is_array_descriptor_type (value_type (arr))) |
14f9c5c9 | 1835 | { |
d2e4a39e | 1836 | struct value *arrVal = ada_coerce_to_simple_array_ptr (arr); |
5b4ee69b | 1837 | |
14f9c5c9 | 1838 | if (arrVal == NULL) |
323e0a4a | 1839 | error (_("Bounds unavailable for null array pointer.")); |
529cad9c | 1840 | check_size (TYPE_TARGET_TYPE (value_type (arrVal))); |
14f9c5c9 AS |
1841 | return value_ind (arrVal); |
1842 | } | |
ad82864c JB |
1843 | else if (ada_is_constrained_packed_array_type (value_type (arr))) |
1844 | return decode_constrained_packed_array (arr); | |
d2e4a39e | 1845 | else |
14f9c5c9 AS |
1846 | return arr; |
1847 | } | |
1848 | ||
1849 | /* If TYPE represents a GNAT array type, return it translated to an | |
1850 | ordinary GDB array type (possibly with BITSIZE fields indicating | |
4c4b4cd2 PH |
1851 | packing). For other types, is the identity. */ |
1852 | ||
d2e4a39e AS |
1853 | struct type * |
1854 | ada_coerce_to_simple_array_type (struct type *type) | |
14f9c5c9 | 1855 | { |
ad82864c JB |
1856 | if (ada_is_constrained_packed_array_type (type)) |
1857 | return decode_constrained_packed_array_type (type); | |
17280b9f UW |
1858 | |
1859 | if (ada_is_array_descriptor_type (type)) | |
556bdfd4 | 1860 | return ada_check_typedef (desc_data_target_type (type)); |
17280b9f UW |
1861 | |
1862 | return type; | |
14f9c5c9 AS |
1863 | } |
1864 | ||
4c4b4cd2 PH |
1865 | /* Non-zero iff TYPE represents a standard GNAT packed-array type. */ |
1866 | ||
ad82864c JB |
1867 | static int |
1868 | ada_is_packed_array_type (struct type *type) | |
14f9c5c9 AS |
1869 | { |
1870 | if (type == NULL) | |
1871 | return 0; | |
4c4b4cd2 | 1872 | type = desc_base_type (type); |
61ee279c | 1873 | type = ada_check_typedef (type); |
d2e4a39e | 1874 | return |
14f9c5c9 AS |
1875 | ada_type_name (type) != NULL |
1876 | && strstr (ada_type_name (type), "___XP") != NULL; | |
1877 | } | |
1878 | ||
ad82864c JB |
1879 | /* Non-zero iff TYPE represents a standard GNAT constrained |
1880 | packed-array type. */ | |
1881 | ||
1882 | int | |
1883 | ada_is_constrained_packed_array_type (struct type *type) | |
1884 | { | |
1885 | return ada_is_packed_array_type (type) | |
1886 | && !ada_is_array_descriptor_type (type); | |
1887 | } | |
1888 | ||
1889 | /* Non-zero iff TYPE represents an array descriptor for a | |
1890 | unconstrained packed-array type. */ | |
1891 | ||
1892 | static int | |
1893 | ada_is_unconstrained_packed_array_type (struct type *type) | |
1894 | { | |
1895 | return ada_is_packed_array_type (type) | |
1896 | && ada_is_array_descriptor_type (type); | |
1897 | } | |
1898 | ||
1899 | /* Given that TYPE encodes a packed array type (constrained or unconstrained), | |
1900 | return the size of its elements in bits. */ | |
1901 | ||
1902 | static long | |
1903 | decode_packed_array_bitsize (struct type *type) | |
1904 | { | |
1905 | char *raw_name = ada_type_name (ada_check_typedef (type)); | |
1906 | char *tail; | |
1907 | long bits; | |
1908 | ||
1909 | if (!raw_name) | |
1910 | raw_name = ada_type_name (desc_base_type (type)); | |
1911 | ||
1912 | if (!raw_name) | |
1913 | return 0; | |
1914 | ||
1915 | tail = strstr (raw_name, "___XP"); | |
1916 | ||
1917 | if (sscanf (tail + sizeof ("___XP") - 1, "%ld", &bits) != 1) | |
1918 | { | |
1919 | lim_warning | |
1920 | (_("could not understand bit size information on packed array")); | |
1921 | return 0; | |
1922 | } | |
1923 | ||
1924 | return bits; | |
1925 | } | |
1926 | ||
14f9c5c9 AS |
1927 | /* Given that TYPE is a standard GDB array type with all bounds filled |
1928 | in, and that the element size of its ultimate scalar constituents | |
1929 | (that is, either its elements, or, if it is an array of arrays, its | |
1930 | elements' elements, etc.) is *ELT_BITS, return an identical type, | |
1931 | but with the bit sizes of its elements (and those of any | |
1932 | constituent arrays) recorded in the BITSIZE components of its | |
4c4b4cd2 PH |
1933 | TYPE_FIELD_BITSIZE values, and with *ELT_BITS set to its total size |
1934 | in bits. */ | |
1935 | ||
d2e4a39e | 1936 | static struct type * |
ad82864c | 1937 | constrained_packed_array_type (struct type *type, long *elt_bits) |
14f9c5c9 | 1938 | { |
d2e4a39e AS |
1939 | struct type *new_elt_type; |
1940 | struct type *new_type; | |
14f9c5c9 AS |
1941 | LONGEST low_bound, high_bound; |
1942 | ||
61ee279c | 1943 | type = ada_check_typedef (type); |
14f9c5c9 AS |
1944 | if (TYPE_CODE (type) != TYPE_CODE_ARRAY) |
1945 | return type; | |
1946 | ||
e9bb382b | 1947 | new_type = alloc_type_copy (type); |
ad82864c JB |
1948 | new_elt_type = |
1949 | constrained_packed_array_type (ada_check_typedef (TYPE_TARGET_TYPE (type)), | |
1950 | elt_bits); | |
262452ec | 1951 | create_array_type (new_type, new_elt_type, TYPE_INDEX_TYPE (type)); |
14f9c5c9 AS |
1952 | TYPE_FIELD_BITSIZE (new_type, 0) = *elt_bits; |
1953 | TYPE_NAME (new_type) = ada_type_name (type); | |
1954 | ||
262452ec | 1955 | if (get_discrete_bounds (TYPE_INDEX_TYPE (type), |
4c4b4cd2 | 1956 | &low_bound, &high_bound) < 0) |
14f9c5c9 AS |
1957 | low_bound = high_bound = 0; |
1958 | if (high_bound < low_bound) | |
1959 | *elt_bits = TYPE_LENGTH (new_type) = 0; | |
d2e4a39e | 1960 | else |
14f9c5c9 AS |
1961 | { |
1962 | *elt_bits *= (high_bound - low_bound + 1); | |
d2e4a39e | 1963 | TYPE_LENGTH (new_type) = |
4c4b4cd2 | 1964 | (*elt_bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT; |
14f9c5c9 AS |
1965 | } |
1966 | ||
876cecd0 | 1967 | TYPE_FIXED_INSTANCE (new_type) = 1; |
14f9c5c9 AS |
1968 | return new_type; |
1969 | } | |
1970 | ||
ad82864c JB |
1971 | /* The array type encoded by TYPE, where |
1972 | ada_is_constrained_packed_array_type (TYPE). */ | |
4c4b4cd2 | 1973 | |
d2e4a39e | 1974 | static struct type * |
ad82864c | 1975 | decode_constrained_packed_array_type (struct type *type) |
d2e4a39e | 1976 | { |
727e3d2e JB |
1977 | char *raw_name = ada_type_name (ada_check_typedef (type)); |
1978 | char *name; | |
1979 | char *tail; | |
d2e4a39e | 1980 | struct type *shadow_type; |
14f9c5c9 | 1981 | long bits; |
14f9c5c9 | 1982 | |
727e3d2e JB |
1983 | if (!raw_name) |
1984 | raw_name = ada_type_name (desc_base_type (type)); | |
1985 | ||
1986 | if (!raw_name) | |
1987 | return NULL; | |
1988 | ||
1989 | name = (char *) alloca (strlen (raw_name) + 1); | |
1990 | tail = strstr (raw_name, "___XP"); | |
4c4b4cd2 PH |
1991 | type = desc_base_type (type); |
1992 | ||
14f9c5c9 AS |
1993 | memcpy (name, raw_name, tail - raw_name); |
1994 | name[tail - raw_name] = '\000'; | |
1995 | ||
b4ba55a1 JB |
1996 | shadow_type = ada_find_parallel_type_with_name (type, name); |
1997 | ||
1998 | if (shadow_type == NULL) | |
14f9c5c9 | 1999 | { |
323e0a4a | 2000 | lim_warning (_("could not find bounds information on packed array")); |
14f9c5c9 AS |
2001 | return NULL; |
2002 | } | |
cb249c71 | 2003 | CHECK_TYPEDEF (shadow_type); |
14f9c5c9 AS |
2004 | |
2005 | if (TYPE_CODE (shadow_type) != TYPE_CODE_ARRAY) | |
2006 | { | |
323e0a4a | 2007 | lim_warning (_("could not understand bounds information on packed array")); |
14f9c5c9 AS |
2008 | return NULL; |
2009 | } | |
d2e4a39e | 2010 | |
ad82864c JB |
2011 | bits = decode_packed_array_bitsize (type); |
2012 | return constrained_packed_array_type (shadow_type, &bits); | |
14f9c5c9 AS |
2013 | } |
2014 | ||
ad82864c JB |
2015 | /* Given that ARR is a struct value *indicating a GNAT constrained packed |
2016 | array, returns a simple array that denotes that array. Its type is a | |
14f9c5c9 AS |
2017 | standard GDB array type except that the BITSIZEs of the array |
2018 | target types are set to the number of bits in each element, and the | |
4c4b4cd2 | 2019 | type length is set appropriately. */ |
14f9c5c9 | 2020 | |
d2e4a39e | 2021 | static struct value * |
ad82864c | 2022 | decode_constrained_packed_array (struct value *arr) |
14f9c5c9 | 2023 | { |
4c4b4cd2 | 2024 | struct type *type; |
14f9c5c9 | 2025 | |
4c4b4cd2 | 2026 | arr = ada_coerce_ref (arr); |
284614f0 JB |
2027 | |
2028 | /* If our value is a pointer, then dererence it. Make sure that | |
2029 | this operation does not cause the target type to be fixed, as | |
2030 | this would indirectly cause this array to be decoded. The rest | |
2031 | of the routine assumes that the array hasn't been decoded yet, | |
2032 | so we use the basic "value_ind" routine to perform the dereferencing, | |
2033 | as opposed to using "ada_value_ind". */ | |
df407dfe | 2034 | if (TYPE_CODE (value_type (arr)) == TYPE_CODE_PTR) |
284614f0 | 2035 | arr = value_ind (arr); |
4c4b4cd2 | 2036 | |
ad82864c | 2037 | type = decode_constrained_packed_array_type (value_type (arr)); |
14f9c5c9 AS |
2038 | if (type == NULL) |
2039 | { | |
323e0a4a | 2040 | error (_("can't unpack array")); |
14f9c5c9 AS |
2041 | return NULL; |
2042 | } | |
61ee279c | 2043 | |
50810684 | 2044 | if (gdbarch_bits_big_endian (get_type_arch (value_type (arr))) |
32c9a795 | 2045 | && ada_is_modular_type (value_type (arr))) |
61ee279c PH |
2046 | { |
2047 | /* This is a (right-justified) modular type representing a packed | |
2048 | array with no wrapper. In order to interpret the value through | |
2049 | the (left-justified) packed array type we just built, we must | |
2050 | first left-justify it. */ | |
2051 | int bit_size, bit_pos; | |
2052 | ULONGEST mod; | |
2053 | ||
df407dfe | 2054 | mod = ada_modulus (value_type (arr)) - 1; |
61ee279c PH |
2055 | bit_size = 0; |
2056 | while (mod > 0) | |
2057 | { | |
2058 | bit_size += 1; | |
2059 | mod >>= 1; | |
2060 | } | |
df407dfe | 2061 | bit_pos = HOST_CHAR_BIT * TYPE_LENGTH (value_type (arr)) - bit_size; |
61ee279c PH |
2062 | arr = ada_value_primitive_packed_val (arr, NULL, |
2063 | bit_pos / HOST_CHAR_BIT, | |
2064 | bit_pos % HOST_CHAR_BIT, | |
2065 | bit_size, | |
2066 | type); | |
2067 | } | |
2068 | ||
4c4b4cd2 | 2069 | return coerce_unspec_val_to_type (arr, type); |
14f9c5c9 AS |
2070 | } |
2071 | ||
2072 | ||
2073 | /* The value of the element of packed array ARR at the ARITY indices | |
4c4b4cd2 | 2074 | given in IND. ARR must be a simple array. */ |
14f9c5c9 | 2075 | |
d2e4a39e AS |
2076 | static struct value * |
2077 | value_subscript_packed (struct value *arr, int arity, struct value **ind) | |
14f9c5c9 AS |
2078 | { |
2079 | int i; | |
2080 | int bits, elt_off, bit_off; | |
2081 | long elt_total_bit_offset; | |
d2e4a39e AS |
2082 | struct type *elt_type; |
2083 | struct value *v; | |
14f9c5c9 AS |
2084 | |
2085 | bits = 0; | |
2086 | elt_total_bit_offset = 0; | |
df407dfe | 2087 | elt_type = ada_check_typedef (value_type (arr)); |
d2e4a39e | 2088 | for (i = 0; i < arity; i += 1) |
14f9c5c9 | 2089 | { |
d2e4a39e | 2090 | if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY |
4c4b4cd2 PH |
2091 | || TYPE_FIELD_BITSIZE (elt_type, 0) == 0) |
2092 | error | |
323e0a4a | 2093 | (_("attempt to do packed indexing of something other than a packed array")); |
14f9c5c9 | 2094 | else |
4c4b4cd2 PH |
2095 | { |
2096 | struct type *range_type = TYPE_INDEX_TYPE (elt_type); | |
2097 | LONGEST lowerbound, upperbound; | |
2098 | LONGEST idx; | |
2099 | ||
2100 | if (get_discrete_bounds (range_type, &lowerbound, &upperbound) < 0) | |
2101 | { | |
323e0a4a | 2102 | lim_warning (_("don't know bounds of array")); |
4c4b4cd2 PH |
2103 | lowerbound = upperbound = 0; |
2104 | } | |
2105 | ||
3cb382c9 | 2106 | idx = pos_atr (ind[i]); |
4c4b4cd2 | 2107 | if (idx < lowerbound || idx > upperbound) |
323e0a4a | 2108 | lim_warning (_("packed array index %ld out of bounds"), (long) idx); |
4c4b4cd2 PH |
2109 | bits = TYPE_FIELD_BITSIZE (elt_type, 0); |
2110 | elt_total_bit_offset += (idx - lowerbound) * bits; | |
61ee279c | 2111 | elt_type = ada_check_typedef (TYPE_TARGET_TYPE (elt_type)); |
4c4b4cd2 | 2112 | } |
14f9c5c9 AS |
2113 | } |
2114 | elt_off = elt_total_bit_offset / HOST_CHAR_BIT; | |
2115 | bit_off = elt_total_bit_offset % HOST_CHAR_BIT; | |
d2e4a39e AS |
2116 | |
2117 | v = ada_value_primitive_packed_val (arr, NULL, elt_off, bit_off, | |
4c4b4cd2 | 2118 | bits, elt_type); |
14f9c5c9 AS |
2119 | return v; |
2120 | } | |
2121 | ||
4c4b4cd2 | 2122 | /* Non-zero iff TYPE includes negative integer values. */ |
14f9c5c9 AS |
2123 | |
2124 | static int | |
d2e4a39e | 2125 | has_negatives (struct type *type) |
14f9c5c9 | 2126 | { |
d2e4a39e AS |
2127 | switch (TYPE_CODE (type)) |
2128 | { | |
2129 | default: | |
2130 | return 0; | |
2131 | case TYPE_CODE_INT: | |
2132 | return !TYPE_UNSIGNED (type); | |
2133 | case TYPE_CODE_RANGE: | |
2134 | return TYPE_LOW_BOUND (type) < 0; | |
2135 | } | |
14f9c5c9 | 2136 | } |
d2e4a39e | 2137 | |
14f9c5c9 AS |
2138 | |
2139 | /* Create a new value of type TYPE from the contents of OBJ starting | |
2140 | at byte OFFSET, and bit offset BIT_OFFSET within that byte, | |
2141 | proceeding for BIT_SIZE bits. If OBJ is an lval in memory, then | |
4c4b4cd2 PH |
2142 | assigning through the result will set the field fetched from. |
2143 | VALADDR is ignored unless OBJ is NULL, in which case, | |
2144 | VALADDR+OFFSET must address the start of storage containing the | |
2145 | packed value. The value returned in this case is never an lval. | |
2146 | Assumes 0 <= BIT_OFFSET < HOST_CHAR_BIT. */ | |
14f9c5c9 | 2147 | |
d2e4a39e | 2148 | struct value * |
fc1a4b47 | 2149 | ada_value_primitive_packed_val (struct value *obj, const gdb_byte *valaddr, |
a2bd3dcd | 2150 | long offset, int bit_offset, int bit_size, |
4c4b4cd2 | 2151 | struct type *type) |
14f9c5c9 | 2152 | { |
d2e4a39e | 2153 | struct value *v; |
4c4b4cd2 PH |
2154 | int src, /* Index into the source area */ |
2155 | targ, /* Index into the target area */ | |
2156 | srcBitsLeft, /* Number of source bits left to move */ | |
2157 | nsrc, ntarg, /* Number of source and target bytes */ | |
2158 | unusedLS, /* Number of bits in next significant | |
2159 | byte of source that are unused */ | |
2160 | accumSize; /* Number of meaningful bits in accum */ | |
2161 | unsigned char *bytes; /* First byte containing data to unpack */ | |
d2e4a39e | 2162 | unsigned char *unpacked; |
4c4b4cd2 | 2163 | unsigned long accum; /* Staging area for bits being transferred */ |
14f9c5c9 AS |
2164 | unsigned char sign; |
2165 | int len = (bit_size + bit_offset + HOST_CHAR_BIT - 1) / 8; | |
4c4b4cd2 PH |
2166 | /* Transmit bytes from least to most significant; delta is the direction |
2167 | the indices move. */ | |
50810684 | 2168 | int delta = gdbarch_bits_big_endian (get_type_arch (type)) ? -1 : 1; |
14f9c5c9 | 2169 | |
61ee279c | 2170 | type = ada_check_typedef (type); |
14f9c5c9 AS |
2171 | |
2172 | if (obj == NULL) | |
2173 | { | |
2174 | v = allocate_value (type); | |
d2e4a39e | 2175 | bytes = (unsigned char *) (valaddr + offset); |
14f9c5c9 | 2176 | } |
9214ee5f | 2177 | else if (VALUE_LVAL (obj) == lval_memory && value_lazy (obj)) |
14f9c5c9 AS |
2178 | { |
2179 | v = value_at (type, | |
42ae5230 | 2180 | value_address (obj) + offset); |
d2e4a39e | 2181 | bytes = (unsigned char *) alloca (len); |
42ae5230 | 2182 | read_memory (value_address (v), bytes, len); |
14f9c5c9 | 2183 | } |
d2e4a39e | 2184 | else |
14f9c5c9 AS |
2185 | { |
2186 | v = allocate_value (type); | |
0fd88904 | 2187 | bytes = (unsigned char *) value_contents (obj) + offset; |
14f9c5c9 | 2188 | } |
d2e4a39e AS |
2189 | |
2190 | if (obj != NULL) | |
14f9c5c9 | 2191 | { |
42ae5230 | 2192 | CORE_ADDR new_addr; |
5b4ee69b | 2193 | |
74bcbdf3 | 2194 | set_value_component_location (v, obj); |
42ae5230 | 2195 | new_addr = value_address (obj) + offset; |
9bbda503 AC |
2196 | set_value_bitpos (v, bit_offset + value_bitpos (obj)); |
2197 | set_value_bitsize (v, bit_size); | |
df407dfe | 2198 | if (value_bitpos (v) >= HOST_CHAR_BIT) |
4c4b4cd2 | 2199 | { |
42ae5230 | 2200 | ++new_addr; |
9bbda503 | 2201 | set_value_bitpos (v, value_bitpos (v) - HOST_CHAR_BIT); |
4c4b4cd2 | 2202 | } |
42ae5230 | 2203 | set_value_address (v, new_addr); |
14f9c5c9 AS |
2204 | } |
2205 | else | |
9bbda503 | 2206 | set_value_bitsize (v, bit_size); |
0fd88904 | 2207 | unpacked = (unsigned char *) value_contents (v); |
14f9c5c9 AS |
2208 | |
2209 | srcBitsLeft = bit_size; | |
2210 | nsrc = len; | |
2211 | ntarg = TYPE_LENGTH (type); | |
2212 | sign = 0; | |
2213 | if (bit_size == 0) | |
2214 | { | |
2215 | memset (unpacked, 0, TYPE_LENGTH (type)); | |
2216 | return v; | |
2217 | } | |
50810684 | 2218 | else if (gdbarch_bits_big_endian (get_type_arch (type))) |
14f9c5c9 | 2219 | { |
d2e4a39e | 2220 | src = len - 1; |
1265e4aa JB |
2221 | if (has_negatives (type) |
2222 | && ((bytes[0] << bit_offset) & (1 << (HOST_CHAR_BIT - 1)))) | |
4c4b4cd2 | 2223 | sign = ~0; |
d2e4a39e AS |
2224 | |
2225 | unusedLS = | |
4c4b4cd2 PH |
2226 | (HOST_CHAR_BIT - (bit_size + bit_offset) % HOST_CHAR_BIT) |
2227 | % HOST_CHAR_BIT; | |
14f9c5c9 AS |
2228 | |
2229 | switch (TYPE_CODE (type)) | |
4c4b4cd2 PH |
2230 | { |
2231 | case TYPE_CODE_ARRAY: | |
2232 | case TYPE_CODE_UNION: | |
2233 | case TYPE_CODE_STRUCT: | |
2234 | /* Non-scalar values must be aligned at a byte boundary... */ | |
2235 | accumSize = | |
2236 | (HOST_CHAR_BIT - bit_size % HOST_CHAR_BIT) % HOST_CHAR_BIT; | |
2237 | /* ... And are placed at the beginning (most-significant) bytes | |
2238 | of the target. */ | |
529cad9c | 2239 | targ = (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT - 1; |
0056e4d5 | 2240 | ntarg = targ + 1; |
4c4b4cd2 PH |
2241 | break; |
2242 | default: | |
2243 | accumSize = 0; | |
2244 | targ = TYPE_LENGTH (type) - 1; | |
2245 | break; | |
2246 | } | |
14f9c5c9 | 2247 | } |
d2e4a39e | 2248 | else |
14f9c5c9 AS |
2249 | { |
2250 | int sign_bit_offset = (bit_size + bit_offset - 1) % 8; | |
2251 | ||
2252 | src = targ = 0; | |
2253 | unusedLS = bit_offset; | |
2254 | accumSize = 0; | |
2255 | ||
d2e4a39e | 2256 | if (has_negatives (type) && (bytes[len - 1] & (1 << sign_bit_offset))) |
4c4b4cd2 | 2257 | sign = ~0; |
14f9c5c9 | 2258 | } |
d2e4a39e | 2259 | |
14f9c5c9 AS |
2260 | accum = 0; |
2261 | while (nsrc > 0) | |
2262 | { | |
2263 | /* Mask for removing bits of the next source byte that are not | |
4c4b4cd2 | 2264 | part of the value. */ |
d2e4a39e | 2265 | unsigned int unusedMSMask = |
4c4b4cd2 PH |
2266 | (1 << (srcBitsLeft >= HOST_CHAR_BIT ? HOST_CHAR_BIT : srcBitsLeft)) - |
2267 | 1; | |
2268 | /* Sign-extend bits for this byte. */ | |
14f9c5c9 | 2269 | unsigned int signMask = sign & ~unusedMSMask; |
5b4ee69b | 2270 | |
d2e4a39e | 2271 | accum |= |
4c4b4cd2 | 2272 | (((bytes[src] >> unusedLS) & unusedMSMask) | signMask) << accumSize; |
14f9c5c9 | 2273 | accumSize += HOST_CHAR_BIT - unusedLS; |
d2e4a39e | 2274 | if (accumSize >= HOST_CHAR_BIT) |
4c4b4cd2 PH |
2275 | { |
2276 | unpacked[targ] = accum & ~(~0L << HOST_CHAR_BIT); | |
2277 | accumSize -= HOST_CHAR_BIT; | |
2278 | accum >>= HOST_CHAR_BIT; | |
2279 | ntarg -= 1; | |
2280 | targ += delta; | |
2281 | } | |
14f9c5c9 AS |
2282 | srcBitsLeft -= HOST_CHAR_BIT - unusedLS; |
2283 | unusedLS = 0; | |
2284 | nsrc -= 1; | |
2285 | src += delta; | |
2286 | } | |
2287 | while (ntarg > 0) | |
2288 | { | |
2289 | accum |= sign << accumSize; | |
2290 | unpacked[targ] = accum & ~(~0L << HOST_CHAR_BIT); | |
2291 | accumSize -= HOST_CHAR_BIT; | |
2292 | accum >>= HOST_CHAR_BIT; | |
2293 | ntarg -= 1; | |
2294 | targ += delta; | |
2295 | } | |
2296 | ||
2297 | return v; | |
2298 | } | |
d2e4a39e | 2299 | |
14f9c5c9 AS |
2300 | /* Move N bits from SOURCE, starting at bit offset SRC_OFFSET to |
2301 | TARGET, starting at bit offset TARG_OFFSET. SOURCE and TARGET must | |
4c4b4cd2 | 2302 | not overlap. */ |
14f9c5c9 | 2303 | static void |
fc1a4b47 | 2304 | move_bits (gdb_byte *target, int targ_offset, const gdb_byte *source, |
50810684 | 2305 | int src_offset, int n, int bits_big_endian_p) |
14f9c5c9 AS |
2306 | { |
2307 | unsigned int accum, mask; | |
2308 | int accum_bits, chunk_size; | |
2309 | ||
2310 | target += targ_offset / HOST_CHAR_BIT; | |
2311 | targ_offset %= HOST_CHAR_BIT; | |
2312 | source += src_offset / HOST_CHAR_BIT; | |
2313 | src_offset %= HOST_CHAR_BIT; | |
50810684 | 2314 | if (bits_big_endian_p) |
14f9c5c9 AS |
2315 | { |
2316 | accum = (unsigned char) *source; | |
2317 | source += 1; | |
2318 | accum_bits = HOST_CHAR_BIT - src_offset; | |
2319 | ||
d2e4a39e | 2320 | while (n > 0) |
4c4b4cd2 PH |
2321 | { |
2322 | int unused_right; | |
5b4ee69b | 2323 | |
4c4b4cd2 PH |
2324 | accum = (accum << HOST_CHAR_BIT) + (unsigned char) *source; |
2325 | accum_bits += HOST_CHAR_BIT; | |
2326 | source += 1; | |
2327 | chunk_size = HOST_CHAR_BIT - targ_offset; | |
2328 | if (chunk_size > n) | |
2329 | chunk_size = n; | |
2330 | unused_right = HOST_CHAR_BIT - (chunk_size + targ_offset); | |
2331 | mask = ((1 << chunk_size) - 1) << unused_right; | |
2332 | *target = | |
2333 | (*target & ~mask) | |
2334 | | ((accum >> (accum_bits - chunk_size - unused_right)) & mask); | |
2335 | n -= chunk_size; | |
2336 | accum_bits -= chunk_size; | |
2337 | target += 1; | |
2338 | targ_offset = 0; | |
2339 | } | |
14f9c5c9 AS |
2340 | } |
2341 | else | |
2342 | { | |
2343 | accum = (unsigned char) *source >> src_offset; | |
2344 | source += 1; | |
2345 | accum_bits = HOST_CHAR_BIT - src_offset; | |
2346 | ||
d2e4a39e | 2347 | while (n > 0) |
4c4b4cd2 PH |
2348 | { |
2349 | accum = accum + ((unsigned char) *source << accum_bits); | |
2350 | accum_bits += HOST_CHAR_BIT; | |
2351 | source += 1; | |
2352 | chunk_size = HOST_CHAR_BIT - targ_offset; | |
2353 | if (chunk_size > n) | |
2354 | chunk_size = n; | |
2355 | mask = ((1 << chunk_size) - 1) << targ_offset; | |
2356 | *target = (*target & ~mask) | ((accum << targ_offset) & mask); | |
2357 | n -= chunk_size; | |
2358 | accum_bits -= chunk_size; | |
2359 | accum >>= chunk_size; | |
2360 | target += 1; | |
2361 | targ_offset = 0; | |
2362 | } | |
14f9c5c9 AS |
2363 | } |
2364 | } | |
2365 | ||
14f9c5c9 AS |
2366 | /* Store the contents of FROMVAL into the location of TOVAL. |
2367 | Return a new value with the location of TOVAL and contents of | |
2368 | FROMVAL. Handles assignment into packed fields that have | |
4c4b4cd2 | 2369 | floating-point or non-scalar types. */ |
14f9c5c9 | 2370 | |
d2e4a39e AS |
2371 | static struct value * |
2372 | ada_value_assign (struct value *toval, struct value *fromval) | |
14f9c5c9 | 2373 | { |
df407dfe AC |
2374 | struct type *type = value_type (toval); |
2375 | int bits = value_bitsize (toval); | |
14f9c5c9 | 2376 | |
52ce6436 PH |
2377 | toval = ada_coerce_ref (toval); |
2378 | fromval = ada_coerce_ref (fromval); | |
2379 | ||
2380 | if (ada_is_direct_array_type (value_type (toval))) | |
2381 | toval = ada_coerce_to_simple_array (toval); | |
2382 | if (ada_is_direct_array_type (value_type (fromval))) | |
2383 | fromval = ada_coerce_to_simple_array (fromval); | |
2384 | ||
88e3b34b | 2385 | if (!deprecated_value_modifiable (toval)) |
323e0a4a | 2386 | error (_("Left operand of assignment is not a modifiable lvalue.")); |
14f9c5c9 | 2387 | |
d2e4a39e | 2388 | if (VALUE_LVAL (toval) == lval_memory |
14f9c5c9 | 2389 | && bits > 0 |
d2e4a39e | 2390 | && (TYPE_CODE (type) == TYPE_CODE_FLT |
4c4b4cd2 | 2391 | || TYPE_CODE (type) == TYPE_CODE_STRUCT)) |
14f9c5c9 | 2392 | { |
df407dfe AC |
2393 | int len = (value_bitpos (toval) |
2394 | + bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT; | |
aced2898 | 2395 | int from_size; |
d2e4a39e AS |
2396 | char *buffer = (char *) alloca (len); |
2397 | struct value *val; | |
42ae5230 | 2398 | CORE_ADDR to_addr = value_address (toval); |
14f9c5c9 AS |
2399 | |
2400 | if (TYPE_CODE (type) == TYPE_CODE_FLT) | |
4c4b4cd2 | 2401 | fromval = value_cast (type, fromval); |
14f9c5c9 | 2402 | |
52ce6436 | 2403 | read_memory (to_addr, buffer, len); |
aced2898 PH |
2404 | from_size = value_bitsize (fromval); |
2405 | if (from_size == 0) | |
2406 | from_size = TYPE_LENGTH (value_type (fromval)) * TARGET_CHAR_BIT; | |
50810684 | 2407 | if (gdbarch_bits_big_endian (get_type_arch (type))) |
df407dfe | 2408 | move_bits (buffer, value_bitpos (toval), |
50810684 | 2409 | value_contents (fromval), from_size - bits, bits, 1); |
14f9c5c9 | 2410 | else |
50810684 UW |
2411 | move_bits (buffer, value_bitpos (toval), |
2412 | value_contents (fromval), 0, bits, 0); | |
52ce6436 | 2413 | write_memory (to_addr, buffer, len); |
8cebebb9 PP |
2414 | observer_notify_memory_changed (to_addr, len, buffer); |
2415 | ||
14f9c5c9 | 2416 | val = value_copy (toval); |
0fd88904 | 2417 | memcpy (value_contents_raw (val), value_contents (fromval), |
4c4b4cd2 | 2418 | TYPE_LENGTH (type)); |
04624583 | 2419 | deprecated_set_value_type (val, type); |
d2e4a39e | 2420 | |
14f9c5c9 AS |
2421 | return val; |
2422 | } | |
2423 | ||
2424 | return value_assign (toval, fromval); | |
2425 | } | |
2426 | ||
2427 | ||
52ce6436 PH |
2428 | /* Given that COMPONENT is a memory lvalue that is part of the lvalue |
2429 | * CONTAINER, assign the contents of VAL to COMPONENTS's place in | |
2430 | * CONTAINER. Modifies the VALUE_CONTENTS of CONTAINER only, not | |
2431 | * COMPONENT, and not the inferior's memory. The current contents | |
2432 | * of COMPONENT are ignored. */ | |
2433 | static void | |
2434 | value_assign_to_component (struct value *container, struct value *component, | |
2435 | struct value *val) | |
2436 | { | |
2437 | LONGEST offset_in_container = | |
42ae5230 | 2438 | (LONGEST) (value_address (component) - value_address (container)); |
52ce6436 PH |
2439 | int bit_offset_in_container = |
2440 | value_bitpos (component) - value_bitpos (container); | |
2441 | int bits; | |
2442 | ||
2443 | val = value_cast (value_type (component), val); | |
2444 | ||
2445 | if (value_bitsize (component) == 0) | |
2446 | bits = TARGET_CHAR_BIT * TYPE_LENGTH (value_type (component)); | |
2447 | else | |
2448 | bits = value_bitsize (component); | |
2449 | ||
50810684 | 2450 | if (gdbarch_bits_big_endian (get_type_arch (value_type (container)))) |
52ce6436 PH |
2451 | move_bits (value_contents_writeable (container) + offset_in_container, |
2452 | value_bitpos (container) + bit_offset_in_container, | |
2453 | value_contents (val), | |
2454 | TYPE_LENGTH (value_type (component)) * TARGET_CHAR_BIT - bits, | |
50810684 | 2455 | bits, 1); |
52ce6436 PH |
2456 | else |
2457 | move_bits (value_contents_writeable (container) + offset_in_container, | |
2458 | value_bitpos (container) + bit_offset_in_container, | |
50810684 | 2459 | value_contents (val), 0, bits, 0); |
52ce6436 PH |
2460 | } |
2461 | ||
4c4b4cd2 PH |
2462 | /* The value of the element of array ARR at the ARITY indices given in IND. |
2463 | ARR may be either a simple array, GNAT array descriptor, or pointer | |
14f9c5c9 AS |
2464 | thereto. */ |
2465 | ||
d2e4a39e AS |
2466 | struct value * |
2467 | ada_value_subscript (struct value *arr, int arity, struct value **ind) | |
14f9c5c9 AS |
2468 | { |
2469 | int k; | |
d2e4a39e AS |
2470 | struct value *elt; |
2471 | struct type *elt_type; | |
14f9c5c9 AS |
2472 | |
2473 | elt = ada_coerce_to_simple_array (arr); | |
2474 | ||
df407dfe | 2475 | elt_type = ada_check_typedef (value_type (elt)); |
d2e4a39e | 2476 | if (TYPE_CODE (elt_type) == TYPE_CODE_ARRAY |
14f9c5c9 AS |
2477 | && TYPE_FIELD_BITSIZE (elt_type, 0) > 0) |
2478 | return value_subscript_packed (elt, arity, ind); | |
2479 | ||
2480 | for (k = 0; k < arity; k += 1) | |
2481 | { | |
2482 | if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY) | |
323e0a4a | 2483 | error (_("too many subscripts (%d expected)"), k); |
2497b498 | 2484 | elt = value_subscript (elt, pos_atr (ind[k])); |
14f9c5c9 AS |
2485 | } |
2486 | return elt; | |
2487 | } | |
2488 | ||
2489 | /* Assuming ARR is a pointer to a standard GDB array of type TYPE, the | |
2490 | value of the element of *ARR at the ARITY indices given in | |
4c4b4cd2 | 2491 | IND. Does not read the entire array into memory. */ |
14f9c5c9 | 2492 | |
2c0b251b | 2493 | static struct value * |
d2e4a39e | 2494 | ada_value_ptr_subscript (struct value *arr, struct type *type, int arity, |
4c4b4cd2 | 2495 | struct value **ind) |
14f9c5c9 AS |
2496 | { |
2497 | int k; | |
2498 | ||
2499 | for (k = 0; k < arity; k += 1) | |
2500 | { | |
2501 | LONGEST lwb, upb; | |
14f9c5c9 AS |
2502 | |
2503 | if (TYPE_CODE (type) != TYPE_CODE_ARRAY) | |
323e0a4a | 2504 | error (_("too many subscripts (%d expected)"), k); |
d2e4a39e | 2505 | arr = value_cast (lookup_pointer_type (TYPE_TARGET_TYPE (type)), |
4c4b4cd2 | 2506 | value_copy (arr)); |
14f9c5c9 | 2507 | get_discrete_bounds (TYPE_INDEX_TYPE (type), &lwb, &upb); |
2497b498 | 2508 | arr = value_ptradd (arr, pos_atr (ind[k]) - lwb); |
14f9c5c9 AS |
2509 | type = TYPE_TARGET_TYPE (type); |
2510 | } | |
2511 | ||
2512 | return value_ind (arr); | |
2513 | } | |
2514 | ||
0b5d8877 | 2515 | /* Given that ARRAY_PTR is a pointer or reference to an array of type TYPE (the |
f5938064 JG |
2516 | actual type of ARRAY_PTR is ignored), returns the Ada slice of HIGH-LOW+1 |
2517 | elements starting at index LOW. The lower bound of this array is LOW, as | |
2518 | per Ada rules. */ | |
0b5d8877 | 2519 | static struct value * |
f5938064 JG |
2520 | ada_value_slice_from_ptr (struct value *array_ptr, struct type *type, |
2521 | int low, int high) | |
0b5d8877 | 2522 | { |
6c038f32 | 2523 | CORE_ADDR base = value_as_address (array_ptr) |
43bbcdc2 | 2524 | + ((low - ada_discrete_type_low_bound (TYPE_INDEX_TYPE (type))) |
0b5d8877 | 2525 | * TYPE_LENGTH (TYPE_TARGET_TYPE (type))); |
6c038f32 PH |
2526 | struct type *index_type = |
2527 | create_range_type (NULL, TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type)), | |
0b5d8877 | 2528 | low, high); |
6c038f32 | 2529 | struct type *slice_type = |
0b5d8877 | 2530 | create_array_type (NULL, TYPE_TARGET_TYPE (type), index_type); |
5b4ee69b | 2531 | |
f5938064 | 2532 | return value_at_lazy (slice_type, base); |
0b5d8877 PH |
2533 | } |
2534 | ||
2535 | ||
2536 | static struct value * | |
2537 | ada_value_slice (struct value *array, int low, int high) | |
2538 | { | |
df407dfe | 2539 | struct type *type = value_type (array); |
6c038f32 | 2540 | struct type *index_type = |
0b5d8877 | 2541 | create_range_type (NULL, TYPE_INDEX_TYPE (type), low, high); |
6c038f32 | 2542 | struct type *slice_type = |
0b5d8877 | 2543 | create_array_type (NULL, TYPE_TARGET_TYPE (type), index_type); |
5b4ee69b | 2544 | |
6c038f32 | 2545 | return value_cast (slice_type, value_slice (array, low, high - low + 1)); |
0b5d8877 PH |
2546 | } |
2547 | ||
14f9c5c9 AS |
2548 | /* If type is a record type in the form of a standard GNAT array |
2549 | descriptor, returns the number of dimensions for type. If arr is a | |
2550 | simple array, returns the number of "array of"s that prefix its | |
4c4b4cd2 | 2551 | type designation. Otherwise, returns 0. */ |
14f9c5c9 AS |
2552 | |
2553 | int | |
d2e4a39e | 2554 | ada_array_arity (struct type *type) |
14f9c5c9 AS |
2555 | { |
2556 | int arity; | |
2557 | ||
2558 | if (type == NULL) | |
2559 | return 0; | |
2560 | ||
2561 | type = desc_base_type (type); | |
2562 | ||
2563 | arity = 0; | |
d2e4a39e | 2564 | if (TYPE_CODE (type) == TYPE_CODE_STRUCT) |
14f9c5c9 | 2565 | return desc_arity (desc_bounds_type (type)); |
d2e4a39e AS |
2566 | else |
2567 | while (TYPE_CODE (type) == TYPE_CODE_ARRAY) | |
14f9c5c9 | 2568 | { |
4c4b4cd2 | 2569 | arity += 1; |
61ee279c | 2570 | type = ada_check_typedef (TYPE_TARGET_TYPE (type)); |
14f9c5c9 | 2571 | } |
d2e4a39e | 2572 | |
14f9c5c9 AS |
2573 | return arity; |
2574 | } | |
2575 | ||
2576 | /* If TYPE is a record type in the form of a standard GNAT array | |
2577 | descriptor or a simple array type, returns the element type for | |
2578 | TYPE after indexing by NINDICES indices, or by all indices if | |
4c4b4cd2 | 2579 | NINDICES is -1. Otherwise, returns NULL. */ |
14f9c5c9 | 2580 | |
d2e4a39e AS |
2581 | struct type * |
2582 | ada_array_element_type (struct type *type, int nindices) | |
14f9c5c9 AS |
2583 | { |
2584 | type = desc_base_type (type); | |
2585 | ||
d2e4a39e | 2586 | if (TYPE_CODE (type) == TYPE_CODE_STRUCT) |
14f9c5c9 AS |
2587 | { |
2588 | int k; | |
d2e4a39e | 2589 | struct type *p_array_type; |
14f9c5c9 | 2590 | |
556bdfd4 | 2591 | p_array_type = desc_data_target_type (type); |
14f9c5c9 AS |
2592 | |
2593 | k = ada_array_arity (type); | |
2594 | if (k == 0) | |
4c4b4cd2 | 2595 | return NULL; |
d2e4a39e | 2596 | |
4c4b4cd2 | 2597 | /* Initially p_array_type = elt_type(*)[]...(k times)...[]. */ |
14f9c5c9 | 2598 | if (nindices >= 0 && k > nindices) |
4c4b4cd2 | 2599 | k = nindices; |
d2e4a39e | 2600 | while (k > 0 && p_array_type != NULL) |
4c4b4cd2 | 2601 | { |
61ee279c | 2602 | p_array_type = ada_check_typedef (TYPE_TARGET_TYPE (p_array_type)); |
4c4b4cd2 PH |
2603 | k -= 1; |
2604 | } | |
14f9c5c9 AS |
2605 | return p_array_type; |
2606 | } | |
2607 | else if (TYPE_CODE (type) == TYPE_CODE_ARRAY) | |
2608 | { | |
2609 | while (nindices != 0 && TYPE_CODE (type) == TYPE_CODE_ARRAY) | |
4c4b4cd2 PH |
2610 | { |
2611 | type = TYPE_TARGET_TYPE (type); | |
2612 | nindices -= 1; | |
2613 | } | |
14f9c5c9 AS |
2614 | return type; |
2615 | } | |
2616 | ||
2617 | return NULL; | |
2618 | } | |
2619 | ||
4c4b4cd2 | 2620 | /* The type of nth index in arrays of given type (n numbering from 1). |
dd19d49e UW |
2621 | Does not examine memory. Throws an error if N is invalid or TYPE |
2622 | is not an array type. NAME is the name of the Ada attribute being | |
2623 | evaluated ('range, 'first, 'last, or 'length); it is used in building | |
2624 | the error message. */ | |
14f9c5c9 | 2625 | |
1eea4ebd UW |
2626 | static struct type * |
2627 | ada_index_type (struct type *type, int n, const char *name) | |
14f9c5c9 | 2628 | { |
4c4b4cd2 PH |
2629 | struct type *result_type; |
2630 | ||
14f9c5c9 AS |
2631 | type = desc_base_type (type); |
2632 | ||
1eea4ebd UW |
2633 | if (n < 0 || n > ada_array_arity (type)) |
2634 | error (_("invalid dimension number to '%s"), name); | |
14f9c5c9 | 2635 | |
4c4b4cd2 | 2636 | if (ada_is_simple_array_type (type)) |
14f9c5c9 AS |
2637 | { |
2638 | int i; | |
2639 | ||
2640 | for (i = 1; i < n; i += 1) | |
4c4b4cd2 | 2641 | type = TYPE_TARGET_TYPE (type); |
262452ec | 2642 | result_type = TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type)); |
4c4b4cd2 PH |
2643 | /* FIXME: The stabs type r(0,0);bound;bound in an array type |
2644 | has a target type of TYPE_CODE_UNDEF. We compensate here, but | |
76a01679 | 2645 | perhaps stabsread.c would make more sense. */ |
1eea4ebd UW |
2646 | if (result_type && TYPE_CODE (result_type) == TYPE_CODE_UNDEF) |
2647 | result_type = NULL; | |
14f9c5c9 | 2648 | } |
d2e4a39e | 2649 | else |
1eea4ebd UW |
2650 | { |
2651 | result_type = desc_index_type (desc_bounds_type (type), n); | |
2652 | if (result_type == NULL) | |
2653 | error (_("attempt to take bound of something that is not an array")); | |
2654 | } | |
2655 | ||
2656 | return result_type; | |
14f9c5c9 AS |
2657 | } |
2658 | ||
2659 | /* Given that arr is an array type, returns the lower bound of the | |
2660 | Nth index (numbering from 1) if WHICH is 0, and the upper bound if | |
4c4b4cd2 | 2661 | WHICH is 1. This returns bounds 0 .. -1 if ARR_TYPE is an |
1eea4ebd UW |
2662 | array-descriptor type. It works for other arrays with bounds supplied |
2663 | by run-time quantities other than discriminants. */ | |
14f9c5c9 | 2664 | |
abb68b3e | 2665 | static LONGEST |
1eea4ebd | 2666 | ada_array_bound_from_type (struct type * arr_type, int n, int which) |
14f9c5c9 | 2667 | { |
1ce677a4 | 2668 | struct type *type, *elt_type, *index_type_desc, *index_type; |
1ce677a4 | 2669 | int i; |
262452ec JK |
2670 | |
2671 | gdb_assert (which == 0 || which == 1); | |
14f9c5c9 | 2672 | |
ad82864c JB |
2673 | if (ada_is_constrained_packed_array_type (arr_type)) |
2674 | arr_type = decode_constrained_packed_array_type (arr_type); | |
14f9c5c9 | 2675 | |
4c4b4cd2 | 2676 | if (arr_type == NULL || !ada_is_simple_array_type (arr_type)) |
1eea4ebd | 2677 | return (LONGEST) - which; |
14f9c5c9 AS |
2678 | |
2679 | if (TYPE_CODE (arr_type) == TYPE_CODE_PTR) | |
2680 | type = TYPE_TARGET_TYPE (arr_type); | |
2681 | else | |
2682 | type = arr_type; | |
2683 | ||
1ce677a4 UW |
2684 | elt_type = type; |
2685 | for (i = n; i > 1; i--) | |
2686 | elt_type = TYPE_TARGET_TYPE (type); | |
2687 | ||
14f9c5c9 | 2688 | index_type_desc = ada_find_parallel_type (type, "___XA"); |
28c85d6c | 2689 | ada_fixup_array_indexes_type (index_type_desc); |
262452ec | 2690 | if (index_type_desc != NULL) |
28c85d6c JB |
2691 | index_type = to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, n - 1), |
2692 | NULL); | |
262452ec | 2693 | else |
1ce677a4 | 2694 | index_type = TYPE_INDEX_TYPE (elt_type); |
262452ec | 2695 | |
43bbcdc2 PH |
2696 | return |
2697 | (LONGEST) (which == 0 | |
2698 | ? ada_discrete_type_low_bound (index_type) | |
2699 | : ada_discrete_type_high_bound (index_type)); | |
14f9c5c9 AS |
2700 | } |
2701 | ||
2702 | /* Given that arr is an array value, returns the lower bound of the | |
abb68b3e JB |
2703 | nth index (numbering from 1) if WHICH is 0, and the upper bound if |
2704 | WHICH is 1. This routine will also work for arrays with bounds | |
4c4b4cd2 | 2705 | supplied by run-time quantities other than discriminants. */ |
14f9c5c9 | 2706 | |
1eea4ebd | 2707 | static LONGEST |
4dc81987 | 2708 | ada_array_bound (struct value *arr, int n, int which) |
14f9c5c9 | 2709 | { |
df407dfe | 2710 | struct type *arr_type = value_type (arr); |
14f9c5c9 | 2711 | |
ad82864c JB |
2712 | if (ada_is_constrained_packed_array_type (arr_type)) |
2713 | return ada_array_bound (decode_constrained_packed_array (arr), n, which); | |
4c4b4cd2 | 2714 | else if (ada_is_simple_array_type (arr_type)) |
1eea4ebd | 2715 | return ada_array_bound_from_type (arr_type, n, which); |
14f9c5c9 | 2716 | else |
1eea4ebd | 2717 | return value_as_long (desc_one_bound (desc_bounds (arr), n, which)); |
14f9c5c9 AS |
2718 | } |
2719 | ||
2720 | /* Given that arr is an array value, returns the length of the | |
2721 | nth index. This routine will also work for arrays with bounds | |
4c4b4cd2 PH |
2722 | supplied by run-time quantities other than discriminants. |
2723 | Does not work for arrays indexed by enumeration types with representation | |
2724 | clauses at the moment. */ | |
14f9c5c9 | 2725 | |
1eea4ebd | 2726 | static LONGEST |
d2e4a39e | 2727 | ada_array_length (struct value *arr, int n) |
14f9c5c9 | 2728 | { |
df407dfe | 2729 | struct type *arr_type = ada_check_typedef (value_type (arr)); |
14f9c5c9 | 2730 | |
ad82864c JB |
2731 | if (ada_is_constrained_packed_array_type (arr_type)) |
2732 | return ada_array_length (decode_constrained_packed_array (arr), n); | |
14f9c5c9 | 2733 | |
4c4b4cd2 | 2734 | if (ada_is_simple_array_type (arr_type)) |
1eea4ebd UW |
2735 | return (ada_array_bound_from_type (arr_type, n, 1) |
2736 | - ada_array_bound_from_type (arr_type, n, 0) + 1); | |
14f9c5c9 | 2737 | else |
1eea4ebd UW |
2738 | return (value_as_long (desc_one_bound (desc_bounds (arr), n, 1)) |
2739 | - value_as_long (desc_one_bound (desc_bounds (arr), n, 0)) + 1); | |
4c4b4cd2 PH |
2740 | } |
2741 | ||
2742 | /* An empty array whose type is that of ARR_TYPE (an array type), | |
2743 | with bounds LOW to LOW-1. */ | |
2744 | ||
2745 | static struct value * | |
2746 | empty_array (struct type *arr_type, int low) | |
2747 | { | |
6c038f32 | 2748 | struct type *index_type = |
0b5d8877 PH |
2749 | create_range_type (NULL, TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (arr_type)), |
2750 | low, low - 1); | |
2751 | struct type *elt_type = ada_array_element_type (arr_type, 1); | |
5b4ee69b | 2752 | |
0b5d8877 | 2753 | return allocate_value (create_array_type (NULL, elt_type, index_type)); |
14f9c5c9 | 2754 | } |
14f9c5c9 | 2755 | \f |
d2e4a39e | 2756 | |
4c4b4cd2 | 2757 | /* Name resolution */ |
14f9c5c9 | 2758 | |
4c4b4cd2 PH |
2759 | /* The "decoded" name for the user-definable Ada operator corresponding |
2760 | to OP. */ | |
14f9c5c9 | 2761 | |
d2e4a39e | 2762 | static const char * |
4c4b4cd2 | 2763 | ada_decoded_op_name (enum exp_opcode op) |
14f9c5c9 AS |
2764 | { |
2765 | int i; | |
2766 | ||
4c4b4cd2 | 2767 | for (i = 0; ada_opname_table[i].encoded != NULL; i += 1) |
14f9c5c9 AS |
2768 | { |
2769 | if (ada_opname_table[i].op == op) | |
4c4b4cd2 | 2770 | return ada_opname_table[i].decoded; |
14f9c5c9 | 2771 | } |
323e0a4a | 2772 | error (_("Could not find operator name for opcode")); |
14f9c5c9 AS |
2773 | } |
2774 | ||
2775 | ||
4c4b4cd2 PH |
2776 | /* Same as evaluate_type (*EXP), but resolves ambiguous symbol |
2777 | references (marked by OP_VAR_VALUE nodes in which the symbol has an | |
2778 | undefined namespace) and converts operators that are | |
2779 | user-defined into appropriate function calls. If CONTEXT_TYPE is | |
14f9c5c9 AS |
2780 | non-null, it provides a preferred result type [at the moment, only |
2781 | type void has any effect---causing procedures to be preferred over | |
2782 | functions in calls]. A null CONTEXT_TYPE indicates that a non-void | |
4c4b4cd2 | 2783 | return type is preferred. May change (expand) *EXP. */ |
14f9c5c9 | 2784 | |
4c4b4cd2 PH |
2785 | static void |
2786 | resolve (struct expression **expp, int void_context_p) | |
14f9c5c9 | 2787 | { |
30b15541 UW |
2788 | struct type *context_type = NULL; |
2789 | int pc = 0; | |
2790 | ||
2791 | if (void_context_p) | |
2792 | context_type = builtin_type ((*expp)->gdbarch)->builtin_void; | |
2793 | ||
2794 | resolve_subexp (expp, &pc, 1, context_type); | |
14f9c5c9 AS |
2795 | } |
2796 | ||
4c4b4cd2 PH |
2797 | /* Resolve the operator of the subexpression beginning at |
2798 | position *POS of *EXPP. "Resolving" consists of replacing | |
2799 | the symbols that have undefined namespaces in OP_VAR_VALUE nodes | |
2800 | with their resolutions, replacing built-in operators with | |
2801 | function calls to user-defined operators, where appropriate, and, | |
2802 | when DEPROCEDURE_P is non-zero, converting function-valued variables | |
2803 | into parameterless calls. May expand *EXPP. The CONTEXT_TYPE functions | |
2804 | are as in ada_resolve, above. */ | |
14f9c5c9 | 2805 | |
d2e4a39e | 2806 | static struct value * |
4c4b4cd2 | 2807 | resolve_subexp (struct expression **expp, int *pos, int deprocedure_p, |
76a01679 | 2808 | struct type *context_type) |
14f9c5c9 AS |
2809 | { |
2810 | int pc = *pos; | |
2811 | int i; | |
4c4b4cd2 | 2812 | struct expression *exp; /* Convenience: == *expp. */ |
14f9c5c9 | 2813 | enum exp_opcode op = (*expp)->elts[pc].opcode; |
4c4b4cd2 PH |
2814 | struct value **argvec; /* Vector of operand types (alloca'ed). */ |
2815 | int nargs; /* Number of operands. */ | |
52ce6436 | 2816 | int oplen; |
14f9c5c9 AS |
2817 | |
2818 | argvec = NULL; | |
2819 | nargs = 0; | |
2820 | exp = *expp; | |
2821 | ||
52ce6436 PH |
2822 | /* Pass one: resolve operands, saving their types and updating *pos, |
2823 | if needed. */ | |
14f9c5c9 AS |
2824 | switch (op) |
2825 | { | |
4c4b4cd2 PH |
2826 | case OP_FUNCALL: |
2827 | if (exp->elts[pc + 3].opcode == OP_VAR_VALUE | |
76a01679 JB |
2828 | && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN) |
2829 | *pos += 7; | |
4c4b4cd2 PH |
2830 | else |
2831 | { | |
2832 | *pos += 3; | |
2833 | resolve_subexp (expp, pos, 0, NULL); | |
2834 | } | |
2835 | nargs = longest_to_int (exp->elts[pc + 1].longconst); | |
14f9c5c9 AS |
2836 | break; |
2837 | ||
14f9c5c9 | 2838 | case UNOP_ADDR: |
4c4b4cd2 PH |
2839 | *pos += 1; |
2840 | resolve_subexp (expp, pos, 0, NULL); | |
2841 | break; | |
2842 | ||
52ce6436 PH |
2843 | case UNOP_QUAL: |
2844 | *pos += 3; | |
17466c1a | 2845 | resolve_subexp (expp, pos, 1, check_typedef (exp->elts[pc + 1].type)); |
4c4b4cd2 PH |
2846 | break; |
2847 | ||
52ce6436 | 2848 | case OP_ATR_MODULUS: |
4c4b4cd2 PH |
2849 | case OP_ATR_SIZE: |
2850 | case OP_ATR_TAG: | |
4c4b4cd2 PH |
2851 | case OP_ATR_FIRST: |
2852 | case OP_ATR_LAST: | |
2853 | case OP_ATR_LENGTH: | |
2854 | case OP_ATR_POS: | |
2855 | case OP_ATR_VAL: | |
4c4b4cd2 PH |
2856 | case OP_ATR_MIN: |
2857 | case OP_ATR_MAX: | |
52ce6436 PH |
2858 | case TERNOP_IN_RANGE: |
2859 | case BINOP_IN_BOUNDS: | |
2860 | case UNOP_IN_RANGE: | |
2861 | case OP_AGGREGATE: | |
2862 | case OP_OTHERS: | |
2863 | case OP_CHOICES: | |
2864 | case OP_POSITIONAL: | |
2865 | case OP_DISCRETE_RANGE: | |
2866 | case OP_NAME: | |
2867 | ada_forward_operator_length (exp, pc, &oplen, &nargs); | |
2868 | *pos += oplen; | |
14f9c5c9 AS |
2869 | break; |
2870 | ||
2871 | case BINOP_ASSIGN: | |
2872 | { | |
4c4b4cd2 PH |
2873 | struct value *arg1; |
2874 | ||
2875 | *pos += 1; | |
2876 | arg1 = resolve_subexp (expp, pos, 0, NULL); | |
2877 | if (arg1 == NULL) | |
2878 | resolve_subexp (expp, pos, 1, NULL); | |
2879 | else | |
df407dfe | 2880 | resolve_subexp (expp, pos, 1, value_type (arg1)); |
4c4b4cd2 | 2881 | break; |
14f9c5c9 AS |
2882 | } |
2883 | ||
4c4b4cd2 | 2884 | case UNOP_CAST: |
4c4b4cd2 PH |
2885 | *pos += 3; |
2886 | nargs = 1; | |
2887 | break; | |
14f9c5c9 | 2888 | |
4c4b4cd2 PH |
2889 | case BINOP_ADD: |
2890 | case BINOP_SUB: | |
2891 | case BINOP_MUL: | |
2892 | case BINOP_DIV: | |
2893 | case BINOP_REM: | |
2894 | case BINOP_MOD: | |
2895 | case BINOP_EXP: | |
2896 | case BINOP_CONCAT: | |
2897 | case BINOP_LOGICAL_AND: | |
2898 | case BINOP_LOGICAL_OR: | |
2899 | case BINOP_BITWISE_AND: | |
2900 | case BINOP_BITWISE_IOR: | |
2901 | case BINOP_BITWISE_XOR: | |
14f9c5c9 | 2902 | |
4c4b4cd2 PH |
2903 | case BINOP_EQUAL: |
2904 | case BINOP_NOTEQUAL: | |
2905 | case BINOP_LESS: | |
2906 | case BINOP_GTR: | |
2907 | case BINOP_LEQ: | |
2908 | case BINOP_GEQ: | |
14f9c5c9 | 2909 | |
4c4b4cd2 PH |
2910 | case BINOP_REPEAT: |
2911 | case BINOP_SUBSCRIPT: | |
2912 | case BINOP_COMMA: | |
40c8aaa9 JB |
2913 | *pos += 1; |
2914 | nargs = 2; | |
2915 | break; | |
14f9c5c9 | 2916 | |
4c4b4cd2 PH |
2917 | case UNOP_NEG: |
2918 | case UNOP_PLUS: | |
2919 | case UNOP_LOGICAL_NOT: | |
2920 | case UNOP_ABS: | |
2921 | case UNOP_IND: | |
2922 | *pos += 1; | |
2923 | nargs = 1; | |
2924 | break; | |
14f9c5c9 | 2925 | |
4c4b4cd2 PH |
2926 | case OP_LONG: |
2927 | case OP_DOUBLE: | |
2928 | case OP_VAR_VALUE: | |
2929 | *pos += 4; | |
2930 | break; | |
14f9c5c9 | 2931 | |
4c4b4cd2 PH |
2932 | case OP_TYPE: |
2933 | case OP_BOOL: | |
2934 | case OP_LAST: | |
4c4b4cd2 PH |
2935 | case OP_INTERNALVAR: |
2936 | *pos += 3; | |
2937 | break; | |
14f9c5c9 | 2938 | |
4c4b4cd2 PH |
2939 | case UNOP_MEMVAL: |
2940 | *pos += 3; | |
2941 | nargs = 1; | |
2942 | break; | |
2943 | ||
67f3407f DJ |
2944 | case OP_REGISTER: |
2945 | *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1); | |
2946 | break; | |
2947 | ||
4c4b4cd2 PH |
2948 | case STRUCTOP_STRUCT: |
2949 | *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1); | |
2950 | nargs = 1; | |
2951 | break; | |
2952 | ||
4c4b4cd2 | 2953 | case TERNOP_SLICE: |
4c4b4cd2 PH |
2954 | *pos += 1; |
2955 | nargs = 3; | |
2956 | break; | |
2957 | ||
52ce6436 | 2958 | case OP_STRING: |
14f9c5c9 | 2959 | break; |
4c4b4cd2 PH |
2960 | |
2961 | default: | |
323e0a4a | 2962 | error (_("Unexpected operator during name resolution")); |
14f9c5c9 AS |
2963 | } |
2964 | ||
76a01679 | 2965 | argvec = (struct value * *) alloca (sizeof (struct value *) * (nargs + 1)); |
4c4b4cd2 PH |
2966 | for (i = 0; i < nargs; i += 1) |
2967 | argvec[i] = resolve_subexp (expp, pos, 1, NULL); | |
2968 | argvec[i] = NULL; | |
2969 | exp = *expp; | |
2970 | ||
2971 | /* Pass two: perform any resolution on principal operator. */ | |
14f9c5c9 AS |
2972 | switch (op) |
2973 | { | |
2974 | default: | |
2975 | break; | |
2976 | ||
14f9c5c9 | 2977 | case OP_VAR_VALUE: |
4c4b4cd2 | 2978 | if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN) |
76a01679 JB |
2979 | { |
2980 | struct ada_symbol_info *candidates; | |
2981 | int n_candidates; | |
2982 | ||
2983 | n_candidates = | |
2984 | ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME | |
2985 | (exp->elts[pc + 2].symbol), | |
2986 | exp->elts[pc + 1].block, VAR_DOMAIN, | |
2987 | &candidates); | |
2988 | ||
2989 | if (n_candidates > 1) | |
2990 | { | |
2991 | /* Types tend to get re-introduced locally, so if there | |
2992 | are any local symbols that are not types, first filter | |
2993 | out all types. */ | |
2994 | int j; | |
2995 | for (j = 0; j < n_candidates; j += 1) | |
2996 | switch (SYMBOL_CLASS (candidates[j].sym)) | |
2997 | { | |
2998 | case LOC_REGISTER: | |
2999 | case LOC_ARG: | |
3000 | case LOC_REF_ARG: | |
76a01679 JB |
3001 | case LOC_REGPARM_ADDR: |
3002 | case LOC_LOCAL: | |
76a01679 | 3003 | case LOC_COMPUTED: |
76a01679 JB |
3004 | goto FoundNonType; |
3005 | default: | |
3006 | break; | |
3007 | } | |
3008 | FoundNonType: | |
3009 | if (j < n_candidates) | |
3010 | { | |
3011 | j = 0; | |
3012 | while (j < n_candidates) | |
3013 | { | |
3014 | if (SYMBOL_CLASS (candidates[j].sym) == LOC_TYPEDEF) | |
3015 | { | |
3016 | candidates[j] = candidates[n_candidates - 1]; | |
3017 | n_candidates -= 1; | |
3018 | } | |
3019 | else | |
3020 | j += 1; | |
3021 | } | |
3022 | } | |
3023 | } | |
3024 | ||
3025 | if (n_candidates == 0) | |
323e0a4a | 3026 | error (_("No definition found for %s"), |
76a01679 JB |
3027 | SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol)); |
3028 | else if (n_candidates == 1) | |
3029 | i = 0; | |
3030 | else if (deprocedure_p | |
3031 | && !is_nonfunction (candidates, n_candidates)) | |
3032 | { | |
06d5cf63 JB |
3033 | i = ada_resolve_function |
3034 | (candidates, n_candidates, NULL, 0, | |
3035 | SYMBOL_LINKAGE_NAME (exp->elts[pc + 2].symbol), | |
3036 | context_type); | |
76a01679 | 3037 | if (i < 0) |
323e0a4a | 3038 | error (_("Could not find a match for %s"), |
76a01679 JB |
3039 | SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol)); |
3040 | } | |
3041 | else | |
3042 | { | |
323e0a4a | 3043 | printf_filtered (_("Multiple matches for %s\n"), |
76a01679 JB |
3044 | SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol)); |
3045 | user_select_syms (candidates, n_candidates, 1); | |
3046 | i = 0; | |
3047 | } | |
3048 | ||
3049 | exp->elts[pc + 1].block = candidates[i].block; | |
3050 | exp->elts[pc + 2].symbol = candidates[i].sym; | |
1265e4aa JB |
3051 | if (innermost_block == NULL |
3052 | || contained_in (candidates[i].block, innermost_block)) | |
76a01679 JB |
3053 | innermost_block = candidates[i].block; |
3054 | } | |
3055 | ||
3056 | if (deprocedure_p | |
3057 | && (TYPE_CODE (SYMBOL_TYPE (exp->elts[pc + 2].symbol)) | |
3058 | == TYPE_CODE_FUNC)) | |
3059 | { | |
3060 | replace_operator_with_call (expp, pc, 0, 0, | |
3061 | exp->elts[pc + 2].symbol, | |
3062 | exp->elts[pc + 1].block); | |
3063 | exp = *expp; | |
3064 | } | |
14f9c5c9 AS |
3065 | break; |
3066 | ||
3067 | case OP_FUNCALL: | |
3068 | { | |
4c4b4cd2 | 3069 | if (exp->elts[pc + 3].opcode == OP_VAR_VALUE |
76a01679 | 3070 | && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN) |
4c4b4cd2 PH |
3071 | { |
3072 | struct ada_symbol_info *candidates; | |
3073 | int n_candidates; | |
3074 | ||
3075 | n_candidates = | |
76a01679 JB |
3076 | ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME |
3077 | (exp->elts[pc + 5].symbol), | |
3078 | exp->elts[pc + 4].block, VAR_DOMAIN, | |
3079 | &candidates); | |
4c4b4cd2 PH |
3080 | if (n_candidates == 1) |
3081 | i = 0; | |
3082 | else | |
3083 | { | |
06d5cf63 JB |
3084 | i = ada_resolve_function |
3085 | (candidates, n_candidates, | |
3086 | argvec, nargs, | |
3087 | SYMBOL_LINKAGE_NAME (exp->elts[pc + 5].symbol), | |
3088 | context_type); | |
4c4b4cd2 | 3089 | if (i < 0) |
323e0a4a | 3090 | error (_("Could not find a match for %s"), |
4c4b4cd2 PH |
3091 | SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol)); |
3092 | } | |
3093 | ||
3094 | exp->elts[pc + 4].block = candidates[i].block; | |
3095 | exp->elts[pc + 5].symbol = candidates[i].sym; | |
1265e4aa JB |
3096 | if (innermost_block == NULL |
3097 | || contained_in (candidates[i].block, innermost_block)) | |
4c4b4cd2 PH |
3098 | innermost_block = candidates[i].block; |
3099 | } | |
14f9c5c9 AS |
3100 | } |
3101 | break; | |
3102 | case BINOP_ADD: | |
3103 | case BINOP_SUB: | |
3104 | case BINOP_MUL: | |
3105 | case BINOP_DIV: | |
3106 | case BINOP_REM: | |
3107 | case BINOP_MOD: | |
3108 | case BINOP_CONCAT: | |
3109 | case BINOP_BITWISE_AND: | |
3110 | case BINOP_BITWISE_IOR: | |
3111 | case BINOP_BITWISE_XOR: | |
3112 | case BINOP_EQUAL: | |
3113 | case BINOP_NOTEQUAL: | |
3114 | case BINOP_LESS: | |
3115 | case BINOP_GTR: | |
3116 | case BINOP_LEQ: | |
3117 | case BINOP_GEQ: | |
3118 | case BINOP_EXP: | |
3119 | case UNOP_NEG: | |
3120 | case UNOP_PLUS: | |
3121 | case UNOP_LOGICAL_NOT: | |
3122 | case UNOP_ABS: | |
3123 | if (possible_user_operator_p (op, argvec)) | |
4c4b4cd2 PH |
3124 | { |
3125 | struct ada_symbol_info *candidates; | |
3126 | int n_candidates; | |
3127 | ||
3128 | n_candidates = | |
3129 | ada_lookup_symbol_list (ada_encode (ada_decoded_op_name (op)), | |
3130 | (struct block *) NULL, VAR_DOMAIN, | |
3131 | &candidates); | |
3132 | i = ada_resolve_function (candidates, n_candidates, argvec, nargs, | |
76a01679 | 3133 | ada_decoded_op_name (op), NULL); |
4c4b4cd2 PH |
3134 | if (i < 0) |
3135 | break; | |
3136 | ||
76a01679 JB |
3137 | replace_operator_with_call (expp, pc, nargs, 1, |
3138 | candidates[i].sym, candidates[i].block); | |
4c4b4cd2 PH |
3139 | exp = *expp; |
3140 | } | |
14f9c5c9 | 3141 | break; |
4c4b4cd2 PH |
3142 | |
3143 | case OP_TYPE: | |
b3dbf008 | 3144 | case OP_REGISTER: |
4c4b4cd2 | 3145 | return NULL; |
14f9c5c9 AS |
3146 | } |
3147 | ||
3148 | *pos = pc; | |
3149 | return evaluate_subexp_type (exp, pos); | |
3150 | } | |
3151 | ||
3152 | /* Return non-zero if formal type FTYPE matches actual type ATYPE. If | |
4c4b4cd2 | 3153 | MAY_DEREF is non-zero, the formal may be a pointer and the actual |
5b3d5b7d | 3154 | a non-pointer. */ |
14f9c5c9 | 3155 | /* The term "match" here is rather loose. The match is heuristic and |
5b3d5b7d | 3156 | liberal. */ |
14f9c5c9 AS |
3157 | |
3158 | static int | |
4dc81987 | 3159 | ada_type_match (struct type *ftype, struct type *atype, int may_deref) |
14f9c5c9 | 3160 | { |
61ee279c PH |
3161 | ftype = ada_check_typedef (ftype); |
3162 | atype = ada_check_typedef (atype); | |
14f9c5c9 AS |
3163 | |
3164 | if (TYPE_CODE (ftype) == TYPE_CODE_REF) | |
3165 | ftype = TYPE_TARGET_TYPE (ftype); | |
3166 | if (TYPE_CODE (atype) == TYPE_CODE_REF) | |
3167 | atype = TYPE_TARGET_TYPE (atype); | |
3168 | ||
d2e4a39e | 3169 | switch (TYPE_CODE (ftype)) |
14f9c5c9 AS |
3170 | { |
3171 | default: | |
5b3d5b7d | 3172 | return TYPE_CODE (ftype) == TYPE_CODE (atype); |
14f9c5c9 AS |
3173 | case TYPE_CODE_PTR: |
3174 | if (TYPE_CODE (atype) == TYPE_CODE_PTR) | |
4c4b4cd2 PH |
3175 | return ada_type_match (TYPE_TARGET_TYPE (ftype), |
3176 | TYPE_TARGET_TYPE (atype), 0); | |
d2e4a39e | 3177 | else |
1265e4aa JB |
3178 | return (may_deref |
3179 | && ada_type_match (TYPE_TARGET_TYPE (ftype), atype, 0)); | |
14f9c5c9 AS |
3180 | case TYPE_CODE_INT: |
3181 | case TYPE_CODE_ENUM: | |
3182 | case TYPE_CODE_RANGE: | |
3183 | switch (TYPE_CODE (atype)) | |
4c4b4cd2 PH |
3184 | { |
3185 | case TYPE_CODE_INT: | |
3186 | case TYPE_CODE_ENUM: | |
3187 | case TYPE_CODE_RANGE: | |
3188 | return 1; | |
3189 | default: | |
3190 | return 0; | |
3191 | } | |
14f9c5c9 AS |
3192 | |
3193 | case TYPE_CODE_ARRAY: | |
d2e4a39e | 3194 | return (TYPE_CODE (atype) == TYPE_CODE_ARRAY |
4c4b4cd2 | 3195 | || ada_is_array_descriptor_type (atype)); |
14f9c5c9 AS |
3196 | |
3197 | case TYPE_CODE_STRUCT: | |
4c4b4cd2 PH |
3198 | if (ada_is_array_descriptor_type (ftype)) |
3199 | return (TYPE_CODE (atype) == TYPE_CODE_ARRAY | |
3200 | || ada_is_array_descriptor_type (atype)); | |
14f9c5c9 | 3201 | else |
4c4b4cd2 PH |
3202 | return (TYPE_CODE (atype) == TYPE_CODE_STRUCT |
3203 | && !ada_is_array_descriptor_type (atype)); | |
14f9c5c9 AS |
3204 | |
3205 | case TYPE_CODE_UNION: | |
3206 | case TYPE_CODE_FLT: | |
3207 | return (TYPE_CODE (atype) == TYPE_CODE (ftype)); | |
3208 | } | |
3209 | } | |
3210 | ||
3211 | /* Return non-zero if the formals of FUNC "sufficiently match" the | |
3212 | vector of actual argument types ACTUALS of size N_ACTUALS. FUNC | |
3213 | may also be an enumeral, in which case it is treated as a 0- | |
4c4b4cd2 | 3214 | argument function. */ |
14f9c5c9 AS |
3215 | |
3216 | static int | |
d2e4a39e | 3217 | ada_args_match (struct symbol *func, struct value **actuals, int n_actuals) |
14f9c5c9 AS |
3218 | { |
3219 | int i; | |
d2e4a39e | 3220 | struct type *func_type = SYMBOL_TYPE (func); |
14f9c5c9 | 3221 | |
1265e4aa JB |
3222 | if (SYMBOL_CLASS (func) == LOC_CONST |
3223 | && TYPE_CODE (func_type) == TYPE_CODE_ENUM) | |
14f9c5c9 AS |
3224 | return (n_actuals == 0); |
3225 | else if (func_type == NULL || TYPE_CODE (func_type) != TYPE_CODE_FUNC) | |
3226 | return 0; | |
3227 | ||
3228 | if (TYPE_NFIELDS (func_type) != n_actuals) | |
3229 | return 0; | |
3230 | ||
3231 | for (i = 0; i < n_actuals; i += 1) | |
3232 | { | |
4c4b4cd2 | 3233 | if (actuals[i] == NULL) |
76a01679 JB |
3234 | return 0; |
3235 | else | |
3236 | { | |
5b4ee69b MS |
3237 | struct type *ftype = ada_check_typedef (TYPE_FIELD_TYPE (func_type, |
3238 | i)); | |
df407dfe | 3239 | struct type *atype = ada_check_typedef (value_type (actuals[i])); |
4c4b4cd2 | 3240 | |
76a01679 JB |
3241 | if (!ada_type_match (ftype, atype, 1)) |
3242 | return 0; | |
3243 | } | |
14f9c5c9 AS |
3244 | } |
3245 | return 1; | |
3246 | } | |
3247 | ||
3248 | /* False iff function type FUNC_TYPE definitely does not produce a value | |
3249 | compatible with type CONTEXT_TYPE. Conservatively returns 1 if | |
3250 | FUNC_TYPE is not a valid function type with a non-null return type | |
3251 | or an enumerated type. A null CONTEXT_TYPE indicates any non-void type. */ | |
3252 | ||
3253 | static int | |
d2e4a39e | 3254 | return_match (struct type *func_type, struct type *context_type) |
14f9c5c9 | 3255 | { |
d2e4a39e | 3256 | struct type *return_type; |
14f9c5c9 AS |
3257 | |
3258 | if (func_type == NULL) | |
3259 | return 1; | |
3260 | ||
4c4b4cd2 PH |
3261 | if (TYPE_CODE (func_type) == TYPE_CODE_FUNC) |
3262 | return_type = base_type (TYPE_TARGET_TYPE (func_type)); | |
3263 | else | |
3264 | return_type = base_type (func_type); | |
14f9c5c9 AS |
3265 | if (return_type == NULL) |
3266 | return 1; | |
3267 | ||
4c4b4cd2 | 3268 | context_type = base_type (context_type); |
14f9c5c9 AS |
3269 | |
3270 | if (TYPE_CODE (return_type) == TYPE_CODE_ENUM) | |
3271 | return context_type == NULL || return_type == context_type; | |
3272 | else if (context_type == NULL) | |
3273 | return TYPE_CODE (return_type) != TYPE_CODE_VOID; | |
3274 | else | |
3275 | return TYPE_CODE (return_type) == TYPE_CODE (context_type); | |
3276 | } | |
3277 | ||
3278 | ||
4c4b4cd2 | 3279 | /* Returns the index in SYMS[0..NSYMS-1] that contains the symbol for the |
14f9c5c9 | 3280 | function (if any) that matches the types of the NARGS arguments in |
4c4b4cd2 PH |
3281 | ARGS. If CONTEXT_TYPE is non-null and there is at least one match |
3282 | that returns that type, then eliminate matches that don't. If | |
3283 | CONTEXT_TYPE is void and there is at least one match that does not | |
3284 | return void, eliminate all matches that do. | |
3285 | ||
14f9c5c9 AS |
3286 | Asks the user if there is more than one match remaining. Returns -1 |
3287 | if there is no such symbol or none is selected. NAME is used | |
4c4b4cd2 PH |
3288 | solely for messages. May re-arrange and modify SYMS in |
3289 | the process; the index returned is for the modified vector. */ | |
14f9c5c9 | 3290 | |
4c4b4cd2 PH |
3291 | static int |
3292 | ada_resolve_function (struct ada_symbol_info syms[], | |
3293 | int nsyms, struct value **args, int nargs, | |
3294 | const char *name, struct type *context_type) | |
14f9c5c9 | 3295 | { |
30b15541 | 3296 | int fallback; |
14f9c5c9 | 3297 | int k; |
4c4b4cd2 | 3298 | int m; /* Number of hits */ |
14f9c5c9 | 3299 | |
d2e4a39e | 3300 | m = 0; |
30b15541 UW |
3301 | /* In the first pass of the loop, we only accept functions matching |
3302 | context_type. If none are found, we add a second pass of the loop | |
3303 | where every function is accepted. */ | |
3304 | for (fallback = 0; m == 0 && fallback < 2; fallback++) | |
14f9c5c9 AS |
3305 | { |
3306 | for (k = 0; k < nsyms; k += 1) | |
4c4b4cd2 | 3307 | { |
61ee279c | 3308 | struct type *type = ada_check_typedef (SYMBOL_TYPE (syms[k].sym)); |
4c4b4cd2 PH |
3309 | |
3310 | if (ada_args_match (syms[k].sym, args, nargs) | |
30b15541 | 3311 | && (fallback || return_match (type, context_type))) |
4c4b4cd2 PH |
3312 | { |
3313 | syms[m] = syms[k]; | |
3314 | m += 1; | |
3315 | } | |
3316 | } | |
14f9c5c9 AS |
3317 | } |
3318 | ||
3319 | if (m == 0) | |
3320 | return -1; | |
3321 | else if (m > 1) | |
3322 | { | |
323e0a4a | 3323 | printf_filtered (_("Multiple matches for %s\n"), name); |
4c4b4cd2 | 3324 | user_select_syms (syms, m, 1); |
14f9c5c9 AS |
3325 | return 0; |
3326 | } | |
3327 | return 0; | |
3328 | } | |
3329 | ||
4c4b4cd2 PH |
3330 | /* Returns true (non-zero) iff decoded name N0 should appear before N1 |
3331 | in a listing of choices during disambiguation (see sort_choices, below). | |
3332 | The idea is that overloadings of a subprogram name from the | |
3333 | same package should sort in their source order. We settle for ordering | |
3334 | such symbols by their trailing number (__N or $N). */ | |
3335 | ||
14f9c5c9 | 3336 | static int |
4c4b4cd2 | 3337 | encoded_ordered_before (char *N0, char *N1) |
14f9c5c9 AS |
3338 | { |
3339 | if (N1 == NULL) | |
3340 | return 0; | |
3341 | else if (N0 == NULL) | |
3342 | return 1; | |
3343 | else | |
3344 | { | |
3345 | int k0, k1; | |
5b4ee69b | 3346 | |
d2e4a39e | 3347 | for (k0 = strlen (N0) - 1; k0 > 0 && isdigit (N0[k0]); k0 -= 1) |
4c4b4cd2 | 3348 | ; |
d2e4a39e | 3349 | for (k1 = strlen (N1) - 1; k1 > 0 && isdigit (N1[k1]); k1 -= 1) |
4c4b4cd2 | 3350 | ; |
d2e4a39e | 3351 | if ((N0[k0] == '_' || N0[k0] == '$') && N0[k0 + 1] != '\000' |
4c4b4cd2 PH |
3352 | && (N1[k1] == '_' || N1[k1] == '$') && N1[k1 + 1] != '\000') |
3353 | { | |
3354 | int n0, n1; | |
5b4ee69b | 3355 | |
4c4b4cd2 PH |
3356 | n0 = k0; |
3357 | while (N0[n0] == '_' && n0 > 0 && N0[n0 - 1] == '_') | |
3358 | n0 -= 1; | |
3359 | n1 = k1; | |
3360 | while (N1[n1] == '_' && n1 > 0 && N1[n1 - 1] == '_') | |
3361 | n1 -= 1; | |
3362 | if (n0 == n1 && strncmp (N0, N1, n0) == 0) | |
3363 | return (atoi (N0 + k0 + 1) < atoi (N1 + k1 + 1)); | |
3364 | } | |
14f9c5c9 AS |
3365 | return (strcmp (N0, N1) < 0); |
3366 | } | |
3367 | } | |
d2e4a39e | 3368 | |
4c4b4cd2 PH |
3369 | /* Sort SYMS[0..NSYMS-1] to put the choices in a canonical order by the |
3370 | encoded names. */ | |
3371 | ||
d2e4a39e | 3372 | static void |
4c4b4cd2 | 3373 | sort_choices (struct ada_symbol_info syms[], int nsyms) |
14f9c5c9 | 3374 | { |
4c4b4cd2 | 3375 | int i; |
5b4ee69b | 3376 | |
d2e4a39e | 3377 | for (i = 1; i < nsyms; i += 1) |
14f9c5c9 | 3378 | { |
4c4b4cd2 | 3379 | struct ada_symbol_info sym = syms[i]; |
14f9c5c9 AS |
3380 | int j; |
3381 | ||
d2e4a39e | 3382 | for (j = i - 1; j >= 0; j -= 1) |
4c4b4cd2 PH |
3383 | { |
3384 | if (encoded_ordered_before (SYMBOL_LINKAGE_NAME (syms[j].sym), | |
3385 | SYMBOL_LINKAGE_NAME (sym.sym))) | |
3386 | break; | |
3387 | syms[j + 1] = syms[j]; | |
3388 | } | |
d2e4a39e | 3389 | syms[j + 1] = sym; |
14f9c5c9 AS |
3390 | } |
3391 | } | |
3392 | ||
4c4b4cd2 PH |
3393 | /* Given a list of NSYMS symbols in SYMS, select up to MAX_RESULTS>0 |
3394 | by asking the user (if necessary), returning the number selected, | |
3395 | and setting the first elements of SYMS items. Error if no symbols | |
3396 | selected. */ | |
14f9c5c9 AS |
3397 | |
3398 | /* NOTE: Adapted from decode_line_2 in symtab.c, with which it ought | |
4c4b4cd2 | 3399 | to be re-integrated one of these days. */ |
14f9c5c9 AS |
3400 | |
3401 | int | |
4c4b4cd2 | 3402 | user_select_syms (struct ada_symbol_info *syms, int nsyms, int max_results) |
14f9c5c9 AS |
3403 | { |
3404 | int i; | |
d2e4a39e | 3405 | int *chosen = (int *) alloca (sizeof (int) * nsyms); |
14f9c5c9 AS |
3406 | int n_chosen; |
3407 | int first_choice = (max_results == 1) ? 1 : 2; | |
717d2f5a | 3408 | const char *select_mode = multiple_symbols_select_mode (); |
14f9c5c9 AS |
3409 | |
3410 | if (max_results < 1) | |
323e0a4a | 3411 | error (_("Request to select 0 symbols!")); |
14f9c5c9 AS |
3412 | if (nsyms <= 1) |
3413 | return nsyms; | |
3414 | ||
717d2f5a JB |
3415 | if (select_mode == multiple_symbols_cancel) |
3416 | error (_("\ | |
3417 | canceled because the command is ambiguous\n\ | |
3418 | See set/show multiple-symbol.")); | |
3419 | ||
3420 | /* If select_mode is "all", then return all possible symbols. | |
3421 | Only do that if more than one symbol can be selected, of course. | |
3422 | Otherwise, display the menu as usual. */ | |
3423 | if (select_mode == multiple_symbols_all && max_results > 1) | |
3424 | return nsyms; | |
3425 | ||
323e0a4a | 3426 | printf_unfiltered (_("[0] cancel\n")); |
14f9c5c9 | 3427 | if (max_results > 1) |
323e0a4a | 3428 | printf_unfiltered (_("[1] all\n")); |
14f9c5c9 | 3429 | |
4c4b4cd2 | 3430 | sort_choices (syms, nsyms); |
14f9c5c9 AS |
3431 | |
3432 | for (i = 0; i < nsyms; i += 1) | |
3433 | { | |
4c4b4cd2 PH |
3434 | if (syms[i].sym == NULL) |
3435 | continue; | |
3436 | ||
3437 | if (SYMBOL_CLASS (syms[i].sym) == LOC_BLOCK) | |
3438 | { | |
76a01679 JB |
3439 | struct symtab_and_line sal = |
3440 | find_function_start_sal (syms[i].sym, 1); | |
5b4ee69b | 3441 | |
323e0a4a AC |
3442 | if (sal.symtab == NULL) |
3443 | printf_unfiltered (_("[%d] %s at <no source file available>:%d\n"), | |
3444 | i + first_choice, | |
3445 | SYMBOL_PRINT_NAME (syms[i].sym), | |
3446 | sal.line); | |
3447 | else | |
3448 | printf_unfiltered (_("[%d] %s at %s:%d\n"), i + first_choice, | |
3449 | SYMBOL_PRINT_NAME (syms[i].sym), | |
3450 | sal.symtab->filename, sal.line); | |
4c4b4cd2 PH |
3451 | continue; |
3452 | } | |
d2e4a39e | 3453 | else |
4c4b4cd2 PH |
3454 | { |
3455 | int is_enumeral = | |
3456 | (SYMBOL_CLASS (syms[i].sym) == LOC_CONST | |
3457 | && SYMBOL_TYPE (syms[i].sym) != NULL | |
3458 | && TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) == TYPE_CODE_ENUM); | |
6f38eac8 | 3459 | struct symtab *symtab = syms[i].sym->symtab; |
4c4b4cd2 PH |
3460 | |
3461 | if (SYMBOL_LINE (syms[i].sym) != 0 && symtab != NULL) | |
323e0a4a | 3462 | printf_unfiltered (_("[%d] %s at %s:%d\n"), |
4c4b4cd2 PH |
3463 | i + first_choice, |
3464 | SYMBOL_PRINT_NAME (syms[i].sym), | |
3465 | symtab->filename, SYMBOL_LINE (syms[i].sym)); | |
76a01679 JB |
3466 | else if (is_enumeral |
3467 | && TYPE_NAME (SYMBOL_TYPE (syms[i].sym)) != NULL) | |
4c4b4cd2 | 3468 | { |
a3f17187 | 3469 | printf_unfiltered (("[%d] "), i + first_choice); |
76a01679 JB |
3470 | ada_print_type (SYMBOL_TYPE (syms[i].sym), NULL, |
3471 | gdb_stdout, -1, 0); | |
323e0a4a | 3472 | printf_unfiltered (_("'(%s) (enumeral)\n"), |
4c4b4cd2 PH |
3473 | SYMBOL_PRINT_NAME (syms[i].sym)); |
3474 | } | |
3475 | else if (symtab != NULL) | |
3476 | printf_unfiltered (is_enumeral | |
323e0a4a AC |
3477 | ? _("[%d] %s in %s (enumeral)\n") |
3478 | : _("[%d] %s at %s:?\n"), | |
4c4b4cd2 PH |
3479 | i + first_choice, |
3480 | SYMBOL_PRINT_NAME (syms[i].sym), | |
3481 | symtab->filename); | |
3482 | else | |
3483 | printf_unfiltered (is_enumeral | |
323e0a4a AC |
3484 | ? _("[%d] %s (enumeral)\n") |
3485 | : _("[%d] %s at ?\n"), | |
4c4b4cd2 PH |
3486 | i + first_choice, |
3487 | SYMBOL_PRINT_NAME (syms[i].sym)); | |
3488 | } | |
14f9c5c9 | 3489 | } |
d2e4a39e | 3490 | |
14f9c5c9 | 3491 | n_chosen = get_selections (chosen, nsyms, max_results, max_results > 1, |
4c4b4cd2 | 3492 | "overload-choice"); |
14f9c5c9 AS |
3493 | |
3494 | for (i = 0; i < n_chosen; i += 1) | |
4c4b4cd2 | 3495 | syms[i] = syms[chosen[i]]; |
14f9c5c9 AS |
3496 | |
3497 | return n_chosen; | |
3498 | } | |
3499 | ||
3500 | /* Read and validate a set of numeric choices from the user in the | |
4c4b4cd2 | 3501 | range 0 .. N_CHOICES-1. Place the results in increasing |
14f9c5c9 AS |
3502 | order in CHOICES[0 .. N-1], and return N. |
3503 | ||
3504 | The user types choices as a sequence of numbers on one line | |
3505 | separated by blanks, encoding them as follows: | |
3506 | ||
4c4b4cd2 | 3507 | + A choice of 0 means to cancel the selection, throwing an error. |
14f9c5c9 AS |
3508 | + If IS_ALL_CHOICE, a choice of 1 selects the entire set 0 .. N_CHOICES-1. |
3509 | + The user chooses k by typing k+IS_ALL_CHOICE+1. | |
3510 | ||
4c4b4cd2 | 3511 | The user is not allowed to choose more than MAX_RESULTS values. |
14f9c5c9 AS |
3512 | |
3513 | ANNOTATION_SUFFIX, if present, is used to annotate the input | |
4c4b4cd2 | 3514 | prompts (for use with the -f switch). */ |
14f9c5c9 AS |
3515 | |
3516 | int | |
d2e4a39e | 3517 | get_selections (int *choices, int n_choices, int max_results, |
4c4b4cd2 | 3518 | int is_all_choice, char *annotation_suffix) |
14f9c5c9 | 3519 | { |
d2e4a39e | 3520 | char *args; |
0bcd0149 | 3521 | char *prompt; |
14f9c5c9 AS |
3522 | int n_chosen; |
3523 | int first_choice = is_all_choice ? 2 : 1; | |
d2e4a39e | 3524 | |
14f9c5c9 AS |
3525 | prompt = getenv ("PS2"); |
3526 | if (prompt == NULL) | |
0bcd0149 | 3527 | prompt = "> "; |
14f9c5c9 | 3528 | |
0bcd0149 | 3529 | args = command_line_input (prompt, 0, annotation_suffix); |
d2e4a39e | 3530 | |
14f9c5c9 | 3531 | if (args == NULL) |
323e0a4a | 3532 | error_no_arg (_("one or more choice numbers")); |
14f9c5c9 AS |
3533 | |
3534 | n_chosen = 0; | |
76a01679 | 3535 | |
4c4b4cd2 PH |
3536 | /* Set choices[0 .. n_chosen-1] to the users' choices in ascending |
3537 | order, as given in args. Choices are validated. */ | |
14f9c5c9 AS |
3538 | while (1) |
3539 | { | |
d2e4a39e | 3540 | char *args2; |
14f9c5c9 AS |
3541 | int choice, j; |
3542 | ||
3543 | while (isspace (*args)) | |
4c4b4cd2 | 3544 | args += 1; |
14f9c5c9 | 3545 | if (*args == '\0' && n_chosen == 0) |
323e0a4a | 3546 | error_no_arg (_("one or more choice numbers")); |
14f9c5c9 | 3547 | else if (*args == '\0') |
4c4b4cd2 | 3548 | break; |
14f9c5c9 AS |
3549 | |
3550 | choice = strtol (args, &args2, 10); | |
d2e4a39e | 3551 | if (args == args2 || choice < 0 |
4c4b4cd2 | 3552 | || choice > n_choices + first_choice - 1) |
323e0a4a | 3553 | error (_("Argument must be choice number")); |
14f9c5c9 AS |
3554 | args = args2; |
3555 | ||
d2e4a39e | 3556 | if (choice == 0) |
323e0a4a | 3557 | error (_("cancelled")); |
14f9c5c9 AS |
3558 | |
3559 | if (choice < first_choice) | |
4c4b4cd2 PH |
3560 | { |
3561 | n_chosen = n_choices; | |
3562 | for (j = 0; j < n_choices; j += 1) | |
3563 | choices[j] = j; | |
3564 | break; | |
3565 | } | |
14f9c5c9 AS |
3566 | choice -= first_choice; |
3567 | ||
d2e4a39e | 3568 | for (j = n_chosen - 1; j >= 0 && choice < choices[j]; j -= 1) |
4c4b4cd2 PH |
3569 | { |
3570 | } | |
14f9c5c9 AS |
3571 | |
3572 | if (j < 0 || choice != choices[j]) | |
4c4b4cd2 PH |
3573 | { |
3574 | int k; | |
5b4ee69b | 3575 | |
4c4b4cd2 PH |
3576 | for (k = n_chosen - 1; k > j; k -= 1) |
3577 | choices[k + 1] = choices[k]; | |
3578 | choices[j + 1] = choice; | |
3579 | n_chosen += 1; | |
3580 | } | |
14f9c5c9 AS |
3581 | } |
3582 | ||
3583 | if (n_chosen > max_results) | |
323e0a4a | 3584 | error (_("Select no more than %d of the above"), max_results); |
d2e4a39e | 3585 | |
14f9c5c9 AS |
3586 | return n_chosen; |
3587 | } | |
3588 | ||
4c4b4cd2 PH |
3589 | /* Replace the operator of length OPLEN at position PC in *EXPP with a call |
3590 | on the function identified by SYM and BLOCK, and taking NARGS | |
3591 | arguments. Update *EXPP as needed to hold more space. */ | |
14f9c5c9 AS |
3592 | |
3593 | static void | |
d2e4a39e | 3594 | replace_operator_with_call (struct expression **expp, int pc, int nargs, |
4c4b4cd2 PH |
3595 | int oplen, struct symbol *sym, |
3596 | struct block *block) | |
14f9c5c9 AS |
3597 | { |
3598 | /* A new expression, with 6 more elements (3 for funcall, 4 for function | |
4c4b4cd2 | 3599 | symbol, -oplen for operator being replaced). */ |
d2e4a39e | 3600 | struct expression *newexp = (struct expression *) |
14f9c5c9 | 3601 | xmalloc (sizeof (struct expression) |
4c4b4cd2 | 3602 | + EXP_ELEM_TO_BYTES ((*expp)->nelts + 7 - oplen)); |
d2e4a39e | 3603 | struct expression *exp = *expp; |
14f9c5c9 AS |
3604 | |
3605 | newexp->nelts = exp->nelts + 7 - oplen; | |
3606 | newexp->language_defn = exp->language_defn; | |
3607 | memcpy (newexp->elts, exp->elts, EXP_ELEM_TO_BYTES (pc)); | |
d2e4a39e | 3608 | memcpy (newexp->elts + pc + 7, exp->elts + pc + oplen, |
4c4b4cd2 | 3609 | EXP_ELEM_TO_BYTES (exp->nelts - pc - oplen)); |
14f9c5c9 AS |
3610 | |
3611 | newexp->elts[pc].opcode = newexp->elts[pc + 2].opcode = OP_FUNCALL; | |
3612 | newexp->elts[pc + 1].longconst = (LONGEST) nargs; | |
3613 | ||
3614 | newexp->elts[pc + 3].opcode = newexp->elts[pc + 6].opcode = OP_VAR_VALUE; | |
3615 | newexp->elts[pc + 4].block = block; | |
3616 | newexp->elts[pc + 5].symbol = sym; | |
3617 | ||
3618 | *expp = newexp; | |
aacb1f0a | 3619 | xfree (exp); |
d2e4a39e | 3620 | } |
14f9c5c9 AS |
3621 | |
3622 | /* Type-class predicates */ | |
3623 | ||
4c4b4cd2 PH |
3624 | /* True iff TYPE is numeric (i.e., an INT, RANGE (of numeric type), |
3625 | or FLOAT). */ | |
14f9c5c9 AS |
3626 | |
3627 | static int | |
d2e4a39e | 3628 | numeric_type_p (struct type *type) |
14f9c5c9 AS |
3629 | { |
3630 | if (type == NULL) | |
3631 | return 0; | |
d2e4a39e AS |
3632 | else |
3633 | { | |
3634 | switch (TYPE_CODE (type)) | |
4c4b4cd2 PH |
3635 | { |
3636 | case TYPE_CODE_INT: | |
3637 | case TYPE_CODE_FLT: | |
3638 | return 1; | |
3639 | case TYPE_CODE_RANGE: | |
3640 | return (type == TYPE_TARGET_TYPE (type) | |
3641 | || numeric_type_p (TYPE_TARGET_TYPE (type))); | |
3642 | default: | |
3643 | return 0; | |
3644 | } | |
d2e4a39e | 3645 | } |
14f9c5c9 AS |
3646 | } |
3647 | ||
4c4b4cd2 | 3648 | /* True iff TYPE is integral (an INT or RANGE of INTs). */ |
14f9c5c9 AS |
3649 | |
3650 | static int | |
d2e4a39e | 3651 | integer_type_p (struct type *type) |
14f9c5c9 AS |
3652 | { |
3653 | if (type == NULL) | |
3654 | return 0; | |
d2e4a39e AS |
3655 | else |
3656 | { | |
3657 | switch (TYPE_CODE (type)) | |
4c4b4cd2 PH |
3658 | { |
3659 | case TYPE_CODE_INT: | |
3660 | return 1; | |
3661 | case TYPE_CODE_RANGE: | |
3662 | return (type == TYPE_TARGET_TYPE (type) | |
3663 | || integer_type_p (TYPE_TARGET_TYPE (type))); | |
3664 | default: | |
3665 | return 0; | |
3666 | } | |
d2e4a39e | 3667 | } |
14f9c5c9 AS |
3668 | } |
3669 | ||
4c4b4cd2 | 3670 | /* True iff TYPE is scalar (INT, RANGE, FLOAT, ENUM). */ |
14f9c5c9 AS |
3671 | |
3672 | static int | |
d2e4a39e | 3673 | scalar_type_p (struct type *type) |
14f9c5c9 AS |
3674 | { |
3675 | if (type == NULL) | |
3676 | return 0; | |
d2e4a39e AS |
3677 | else |
3678 | { | |
3679 | switch (TYPE_CODE (type)) | |
4c4b4cd2 PH |
3680 | { |
3681 | case TYPE_CODE_INT: | |
3682 | case TYPE_CODE_RANGE: | |
3683 | case TYPE_CODE_ENUM: | |
3684 | case TYPE_CODE_FLT: | |
3685 | return 1; | |
3686 | default: | |
3687 | return 0; | |
3688 | } | |
d2e4a39e | 3689 | } |
14f9c5c9 AS |
3690 | } |
3691 | ||
4c4b4cd2 | 3692 | /* True iff TYPE is discrete (INT, RANGE, ENUM). */ |
14f9c5c9 AS |
3693 | |
3694 | static int | |
d2e4a39e | 3695 | discrete_type_p (struct type *type) |
14f9c5c9 AS |
3696 | { |
3697 | if (type == NULL) | |
3698 | return 0; | |
d2e4a39e AS |
3699 | else |
3700 | { | |
3701 | switch (TYPE_CODE (type)) | |
4c4b4cd2 PH |
3702 | { |
3703 | case TYPE_CODE_INT: | |
3704 | case TYPE_CODE_RANGE: | |
3705 | case TYPE_CODE_ENUM: | |
872f0337 | 3706 | case TYPE_CODE_BOOL: |
4c4b4cd2 PH |
3707 | return 1; |
3708 | default: | |
3709 | return 0; | |
3710 | } | |
d2e4a39e | 3711 | } |
14f9c5c9 AS |
3712 | } |
3713 | ||
4c4b4cd2 PH |
3714 | /* Returns non-zero if OP with operands in the vector ARGS could be |
3715 | a user-defined function. Errs on the side of pre-defined operators | |
3716 | (i.e., result 0). */ | |
14f9c5c9 AS |
3717 | |
3718 | static int | |
d2e4a39e | 3719 | possible_user_operator_p (enum exp_opcode op, struct value *args[]) |
14f9c5c9 | 3720 | { |
76a01679 | 3721 | struct type *type0 = |
df407dfe | 3722 | (args[0] == NULL) ? NULL : ada_check_typedef (value_type (args[0])); |
d2e4a39e | 3723 | struct type *type1 = |
df407dfe | 3724 | (args[1] == NULL) ? NULL : ada_check_typedef (value_type (args[1])); |
d2e4a39e | 3725 | |
4c4b4cd2 PH |
3726 | if (type0 == NULL) |
3727 | return 0; | |
3728 | ||
14f9c5c9 AS |
3729 | switch (op) |
3730 | { | |
3731 | default: | |
3732 | return 0; | |
3733 | ||
3734 | case BINOP_ADD: | |
3735 | case BINOP_SUB: | |
3736 | case BINOP_MUL: | |
3737 | case BINOP_DIV: | |
d2e4a39e | 3738 | return (!(numeric_type_p (type0) && numeric_type_p (type1))); |
14f9c5c9 AS |
3739 | |
3740 | case BINOP_REM: | |
3741 | case BINOP_MOD: | |
3742 | case BINOP_BITWISE_AND: | |
3743 | case BINOP_BITWISE_IOR: | |
3744 | case BINOP_BITWISE_XOR: | |
d2e4a39e | 3745 | return (!(integer_type_p (type0) && integer_type_p (type1))); |
14f9c5c9 AS |
3746 | |
3747 | case BINOP_EQUAL: | |
3748 | case BINOP_NOTEQUAL: | |
3749 | case BINOP_LESS: | |
3750 | case BINOP_GTR: | |
3751 | case BINOP_LEQ: | |
3752 | case BINOP_GEQ: | |
d2e4a39e | 3753 | return (!(scalar_type_p (type0) && scalar_type_p (type1))); |
14f9c5c9 AS |
3754 | |
3755 | case BINOP_CONCAT: | |
ee90b9ab | 3756 | return !ada_is_array_type (type0) || !ada_is_array_type (type1); |
14f9c5c9 AS |
3757 | |
3758 | case BINOP_EXP: | |
d2e4a39e | 3759 | return (!(numeric_type_p (type0) && integer_type_p (type1))); |
14f9c5c9 AS |
3760 | |
3761 | case UNOP_NEG: | |
3762 | case UNOP_PLUS: | |
3763 | case UNOP_LOGICAL_NOT: | |
d2e4a39e AS |
3764 | case UNOP_ABS: |
3765 | return (!numeric_type_p (type0)); | |
14f9c5c9 AS |
3766 | |
3767 | } | |
3768 | } | |
3769 | \f | |
4c4b4cd2 | 3770 | /* Renaming */ |
14f9c5c9 | 3771 | |
aeb5907d JB |
3772 | /* NOTES: |
3773 | ||
3774 | 1. In the following, we assume that a renaming type's name may | |
3775 | have an ___XD suffix. It would be nice if this went away at some | |
3776 | point. | |
3777 | 2. We handle both the (old) purely type-based representation of | |
3778 | renamings and the (new) variable-based encoding. At some point, | |
3779 | it is devoutly to be hoped that the former goes away | |
3780 | (FIXME: hilfinger-2007-07-09). | |
3781 | 3. Subprogram renamings are not implemented, although the XRS | |
3782 | suffix is recognized (FIXME: hilfinger-2007-07-09). */ | |
3783 | ||
3784 | /* If SYM encodes a renaming, | |
3785 | ||
3786 | <renaming> renames <renamed entity>, | |
3787 | ||
3788 | sets *LEN to the length of the renamed entity's name, | |
3789 | *RENAMED_ENTITY to that name (not null-terminated), and *RENAMING_EXPR to | |
3790 | the string describing the subcomponent selected from the renamed | |
3791 | entity. Returns ADA_NOT_RENAMING if SYM does not encode a renaming | |
3792 | (in which case, the values of *RENAMED_ENTITY, *LEN, and *RENAMING_EXPR | |
3793 | are undefined). Otherwise, returns a value indicating the category | |
3794 | of entity renamed: an object (ADA_OBJECT_RENAMING), exception | |
3795 | (ADA_EXCEPTION_RENAMING), package (ADA_PACKAGE_RENAMING), or | |
3796 | subprogram (ADA_SUBPROGRAM_RENAMING). Does no allocation; the | |
3797 | strings returned in *RENAMED_ENTITY and *RENAMING_EXPR should not be | |
3798 | deallocated. The values of RENAMED_ENTITY, LEN, or RENAMING_EXPR | |
3799 | may be NULL, in which case they are not assigned. | |
3800 | ||
3801 | [Currently, however, GCC does not generate subprogram renamings.] */ | |
3802 | ||
3803 | enum ada_renaming_category | |
3804 | ada_parse_renaming (struct symbol *sym, | |
3805 | const char **renamed_entity, int *len, | |
3806 | const char **renaming_expr) | |
3807 | { | |
3808 | enum ada_renaming_category kind; | |
3809 | const char *info; | |
3810 | const char *suffix; | |
3811 | ||
3812 | if (sym == NULL) | |
3813 | return ADA_NOT_RENAMING; | |
3814 | switch (SYMBOL_CLASS (sym)) | |
14f9c5c9 | 3815 | { |
aeb5907d JB |
3816 | default: |
3817 | return ADA_NOT_RENAMING; | |
3818 | case LOC_TYPEDEF: | |
3819 | return parse_old_style_renaming (SYMBOL_TYPE (sym), | |
3820 | renamed_entity, len, renaming_expr); | |
3821 | case LOC_LOCAL: | |
3822 | case LOC_STATIC: | |
3823 | case LOC_COMPUTED: | |
3824 | case LOC_OPTIMIZED_OUT: | |
3825 | info = strstr (SYMBOL_LINKAGE_NAME (sym), "___XR"); | |
3826 | if (info == NULL) | |
3827 | return ADA_NOT_RENAMING; | |
3828 | switch (info[5]) | |
3829 | { | |
3830 | case '_': | |
3831 | kind = ADA_OBJECT_RENAMING; | |
3832 | info += 6; | |
3833 | break; | |
3834 | case 'E': | |
3835 | kind = ADA_EXCEPTION_RENAMING; | |
3836 | info += 7; | |
3837 | break; | |
3838 | case 'P': | |
3839 | kind = ADA_PACKAGE_RENAMING; | |
3840 | info += 7; | |
3841 | break; | |
3842 | case 'S': | |
3843 | kind = ADA_SUBPROGRAM_RENAMING; | |
3844 | info += 7; | |
3845 | break; | |
3846 | default: | |
3847 | return ADA_NOT_RENAMING; | |
3848 | } | |
14f9c5c9 | 3849 | } |
4c4b4cd2 | 3850 | |
aeb5907d JB |
3851 | if (renamed_entity != NULL) |
3852 | *renamed_entity = info; | |
3853 | suffix = strstr (info, "___XE"); | |
3854 | if (suffix == NULL || suffix == info) | |
3855 | return ADA_NOT_RENAMING; | |
3856 | if (len != NULL) | |
3857 | *len = strlen (info) - strlen (suffix); | |
3858 | suffix += 5; | |
3859 | if (renaming_expr != NULL) | |
3860 | *renaming_expr = suffix; | |
3861 | return kind; | |
3862 | } | |
3863 | ||
3864 | /* Assuming TYPE encodes a renaming according to the old encoding in | |
3865 | exp_dbug.ads, returns details of that renaming in *RENAMED_ENTITY, | |
3866 | *LEN, and *RENAMING_EXPR, as for ada_parse_renaming, above. Returns | |
3867 | ADA_NOT_RENAMING otherwise. */ | |
3868 | static enum ada_renaming_category | |
3869 | parse_old_style_renaming (struct type *type, | |
3870 | const char **renamed_entity, int *len, | |
3871 | const char **renaming_expr) | |
3872 | { | |
3873 | enum ada_renaming_category kind; | |
3874 | const char *name; | |
3875 | const char *info; | |
3876 | const char *suffix; | |
14f9c5c9 | 3877 | |
aeb5907d JB |
3878 | if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM |
3879 | || TYPE_NFIELDS (type) != 1) | |
3880 | return ADA_NOT_RENAMING; | |
14f9c5c9 | 3881 | |
aeb5907d JB |
3882 | name = type_name_no_tag (type); |
3883 | if (name == NULL) | |
3884 | return ADA_NOT_RENAMING; | |
3885 | ||
3886 | name = strstr (name, "___XR"); | |
3887 | if (name == NULL) | |
3888 | return ADA_NOT_RENAMING; | |
3889 | switch (name[5]) | |
3890 | { | |
3891 | case '\0': | |
3892 | case '_': | |
3893 | kind = ADA_OBJECT_RENAMING; | |
3894 | break; | |
3895 | case 'E': | |
3896 | kind = ADA_EXCEPTION_RENAMING; | |
3897 | break; | |
3898 | case 'P': | |
3899 | kind = ADA_PACKAGE_RENAMING; | |
3900 | break; | |
3901 | case 'S': | |
3902 | kind = ADA_SUBPROGRAM_RENAMING; | |
3903 | break; | |
3904 | default: | |
3905 | return ADA_NOT_RENAMING; | |
3906 | } | |
14f9c5c9 | 3907 | |
aeb5907d JB |
3908 | info = TYPE_FIELD_NAME (type, 0); |
3909 | if (info == NULL) | |
3910 | return ADA_NOT_RENAMING; | |
3911 | if (renamed_entity != NULL) | |
3912 | *renamed_entity = info; | |
3913 | suffix = strstr (info, "___XE"); | |
3914 | if (renaming_expr != NULL) | |
3915 | *renaming_expr = suffix + 5; | |
3916 | if (suffix == NULL || suffix == info) | |
3917 | return ADA_NOT_RENAMING; | |
3918 | if (len != NULL) | |
3919 | *len = suffix - info; | |
3920 | return kind; | |
3921 | } | |
52ce6436 | 3922 | |
14f9c5c9 | 3923 | \f |
d2e4a39e | 3924 | |
4c4b4cd2 | 3925 | /* Evaluation: Function Calls */ |
14f9c5c9 | 3926 | |
4c4b4cd2 | 3927 | /* Return an lvalue containing the value VAL. This is the identity on |
40bc484c JB |
3928 | lvalues, and otherwise has the side-effect of allocating memory |
3929 | in the inferior where a copy of the value contents is copied. */ | |
14f9c5c9 | 3930 | |
d2e4a39e | 3931 | static struct value * |
40bc484c | 3932 | ensure_lval (struct value *val) |
14f9c5c9 | 3933 | { |
40bc484c JB |
3934 | if (VALUE_LVAL (val) == not_lval |
3935 | || VALUE_LVAL (val) == lval_internalvar) | |
c3e5cd34 | 3936 | { |
df407dfe | 3937 | int len = TYPE_LENGTH (ada_check_typedef (value_type (val))); |
40bc484c JB |
3938 | const CORE_ADDR addr = |
3939 | value_as_long (value_allocate_space_in_inferior (len)); | |
c3e5cd34 | 3940 | |
40bc484c | 3941 | set_value_address (val, addr); |
a84a8a0d | 3942 | VALUE_LVAL (val) = lval_memory; |
40bc484c | 3943 | write_memory (addr, value_contents (val), len); |
c3e5cd34 | 3944 | } |
14f9c5c9 AS |
3945 | |
3946 | return val; | |
3947 | } | |
3948 | ||
3949 | /* Return the value ACTUAL, converted to be an appropriate value for a | |
3950 | formal of type FORMAL_TYPE. Use *SP as a stack pointer for | |
3951 | allocating any necessary descriptors (fat pointers), or copies of | |
4c4b4cd2 | 3952 | values not residing in memory, updating it as needed. */ |
14f9c5c9 | 3953 | |
a93c0eb6 | 3954 | struct value * |
40bc484c | 3955 | ada_convert_actual (struct value *actual, struct type *formal_type0) |
14f9c5c9 | 3956 | { |
df407dfe | 3957 | struct type *actual_type = ada_check_typedef (value_type (actual)); |
61ee279c | 3958 | struct type *formal_type = ada_check_typedef (formal_type0); |
d2e4a39e AS |
3959 | struct type *formal_target = |
3960 | TYPE_CODE (formal_type) == TYPE_CODE_PTR | |
61ee279c | 3961 | ? ada_check_typedef (TYPE_TARGET_TYPE (formal_type)) : formal_type; |
d2e4a39e AS |
3962 | struct type *actual_target = |
3963 | TYPE_CODE (actual_type) == TYPE_CODE_PTR | |
61ee279c | 3964 | ? ada_check_typedef (TYPE_TARGET_TYPE (actual_type)) : actual_type; |
14f9c5c9 | 3965 | |
4c4b4cd2 | 3966 | if (ada_is_array_descriptor_type (formal_target) |
14f9c5c9 | 3967 | && TYPE_CODE (actual_target) == TYPE_CODE_ARRAY) |
40bc484c | 3968 | return make_array_descriptor (formal_type, actual); |
a84a8a0d JB |
3969 | else if (TYPE_CODE (formal_type) == TYPE_CODE_PTR |
3970 | || TYPE_CODE (formal_type) == TYPE_CODE_REF) | |
14f9c5c9 | 3971 | { |
a84a8a0d | 3972 | struct value *result; |
5b4ee69b | 3973 | |
14f9c5c9 | 3974 | if (TYPE_CODE (formal_target) == TYPE_CODE_ARRAY |
4c4b4cd2 | 3975 | && ada_is_array_descriptor_type (actual_target)) |
a84a8a0d | 3976 | result = desc_data (actual); |
14f9c5c9 | 3977 | else if (TYPE_CODE (actual_type) != TYPE_CODE_PTR) |
4c4b4cd2 PH |
3978 | { |
3979 | if (VALUE_LVAL (actual) != lval_memory) | |
3980 | { | |
3981 | struct value *val; | |
5b4ee69b | 3982 | |
df407dfe | 3983 | actual_type = ada_check_typedef (value_type (actual)); |
4c4b4cd2 | 3984 | val = allocate_value (actual_type); |
990a07ab | 3985 | memcpy ((char *) value_contents_raw (val), |
0fd88904 | 3986 | (char *) value_contents (actual), |
4c4b4cd2 | 3987 | TYPE_LENGTH (actual_type)); |
40bc484c | 3988 | actual = ensure_lval (val); |
4c4b4cd2 | 3989 | } |
a84a8a0d | 3990 | result = value_addr (actual); |
4c4b4cd2 | 3991 | } |
a84a8a0d JB |
3992 | else |
3993 | return actual; | |
3994 | return value_cast_pointers (formal_type, result); | |
14f9c5c9 AS |
3995 | } |
3996 | else if (TYPE_CODE (actual_type) == TYPE_CODE_PTR) | |
3997 | return ada_value_ind (actual); | |
3998 | ||
3999 | return actual; | |
4000 | } | |
4001 | ||
438c98a1 JB |
4002 | /* Convert VALUE (which must be an address) to a CORE_ADDR that is a pointer of |
4003 | type TYPE. This is usually an inefficient no-op except on some targets | |
4004 | (such as AVR) where the representation of a pointer and an address | |
4005 | differs. */ | |
4006 | ||
4007 | static CORE_ADDR | |
4008 | value_pointer (struct value *value, struct type *type) | |
4009 | { | |
4010 | struct gdbarch *gdbarch = get_type_arch (type); | |
4011 | unsigned len = TYPE_LENGTH (type); | |
4012 | gdb_byte *buf = alloca (len); | |
4013 | CORE_ADDR addr; | |
4014 | ||
4015 | addr = value_address (value); | |
4016 | gdbarch_address_to_pointer (gdbarch, type, buf, addr); | |
4017 | addr = extract_unsigned_integer (buf, len, gdbarch_byte_order (gdbarch)); | |
4018 | return addr; | |
4019 | } | |
4020 | ||
14f9c5c9 | 4021 | |
4c4b4cd2 PH |
4022 | /* Push a descriptor of type TYPE for array value ARR on the stack at |
4023 | *SP, updating *SP to reflect the new descriptor. Return either | |
14f9c5c9 | 4024 | an lvalue representing the new descriptor, or (if TYPE is a pointer- |
4c4b4cd2 PH |
4025 | to-descriptor type rather than a descriptor type), a struct value * |
4026 | representing a pointer to this descriptor. */ | |
14f9c5c9 | 4027 | |
d2e4a39e | 4028 | static struct value * |
40bc484c | 4029 | make_array_descriptor (struct type *type, struct value *arr) |
14f9c5c9 | 4030 | { |
d2e4a39e AS |
4031 | struct type *bounds_type = desc_bounds_type (type); |
4032 | struct type *desc_type = desc_base_type (type); | |
4033 | struct value *descriptor = allocate_value (desc_type); | |
4034 | struct value *bounds = allocate_value (bounds_type); | |
14f9c5c9 | 4035 | int i; |
d2e4a39e | 4036 | |
df407dfe | 4037 | for (i = ada_array_arity (ada_check_typedef (value_type (arr))); i > 0; i -= 1) |
14f9c5c9 | 4038 | { |
50810684 UW |
4039 | modify_general_field (value_type (bounds), |
4040 | value_contents_writeable (bounds), | |
1eea4ebd | 4041 | ada_array_bound (arr, i, 0), |
4c4b4cd2 PH |
4042 | desc_bound_bitpos (bounds_type, i, 0), |
4043 | desc_bound_bitsize (bounds_type, i, 0)); | |
50810684 UW |
4044 | modify_general_field (value_type (bounds), |
4045 | value_contents_writeable (bounds), | |
1eea4ebd | 4046 | ada_array_bound (arr, i, 1), |
4c4b4cd2 PH |
4047 | desc_bound_bitpos (bounds_type, i, 1), |
4048 | desc_bound_bitsize (bounds_type, i, 1)); | |
14f9c5c9 | 4049 | } |
d2e4a39e | 4050 | |
40bc484c | 4051 | bounds = ensure_lval (bounds); |
d2e4a39e | 4052 | |
50810684 UW |
4053 | modify_general_field (value_type (descriptor), |
4054 | value_contents_writeable (descriptor), | |
40bc484c | 4055 | value_pointer (ensure_lval (arr), |
438c98a1 | 4056 | TYPE_FIELD_TYPE (desc_type, 0)), |
76a01679 JB |
4057 | fat_pntr_data_bitpos (desc_type), |
4058 | fat_pntr_data_bitsize (desc_type)); | |
4c4b4cd2 | 4059 | |
50810684 UW |
4060 | modify_general_field (value_type (descriptor), |
4061 | value_contents_writeable (descriptor), | |
438c98a1 JB |
4062 | value_pointer (bounds, |
4063 | TYPE_FIELD_TYPE (desc_type, 1)), | |
4c4b4cd2 PH |
4064 | fat_pntr_bounds_bitpos (desc_type), |
4065 | fat_pntr_bounds_bitsize (desc_type)); | |
14f9c5c9 | 4066 | |
40bc484c | 4067 | descriptor = ensure_lval (descriptor); |
14f9c5c9 AS |
4068 | |
4069 | if (TYPE_CODE (type) == TYPE_CODE_PTR) | |
4070 | return value_addr (descriptor); | |
4071 | else | |
4072 | return descriptor; | |
4073 | } | |
14f9c5c9 | 4074 | \f |
963a6417 PH |
4075 | /* Dummy definitions for an experimental caching module that is not |
4076 | * used in the public sources. */ | |
96d887e8 | 4077 | |
96d887e8 PH |
4078 | static int |
4079 | lookup_cached_symbol (const char *name, domain_enum namespace, | |
2570f2b7 | 4080 | struct symbol **sym, struct block **block) |
96d887e8 PH |
4081 | { |
4082 | return 0; | |
4083 | } | |
4084 | ||
4085 | static void | |
4086 | cache_symbol (const char *name, domain_enum namespace, struct symbol *sym, | |
2570f2b7 | 4087 | struct block *block) |
96d887e8 PH |
4088 | { |
4089 | } | |
4c4b4cd2 PH |
4090 | \f |
4091 | /* Symbol Lookup */ | |
4092 | ||
4093 | /* Return the result of a standard (literal, C-like) lookup of NAME in | |
4094 | given DOMAIN, visible from lexical block BLOCK. */ | |
4095 | ||
4096 | static struct symbol * | |
4097 | standard_lookup (const char *name, const struct block *block, | |
4098 | domain_enum domain) | |
4099 | { | |
4100 | struct symbol *sym; | |
4c4b4cd2 | 4101 | |
2570f2b7 | 4102 | if (lookup_cached_symbol (name, domain, &sym, NULL)) |
4c4b4cd2 | 4103 | return sym; |
2570f2b7 UW |
4104 | sym = lookup_symbol_in_language (name, block, domain, language_c, 0); |
4105 | cache_symbol (name, domain, sym, block_found); | |
4c4b4cd2 PH |
4106 | return sym; |
4107 | } | |
4108 | ||
4109 | ||
4110 | /* Non-zero iff there is at least one non-function/non-enumeral symbol | |
4111 | in the symbol fields of SYMS[0..N-1]. We treat enumerals as functions, | |
4112 | since they contend in overloading in the same way. */ | |
4113 | static int | |
4114 | is_nonfunction (struct ada_symbol_info syms[], int n) | |
4115 | { | |
4116 | int i; | |
4117 | ||
4118 | for (i = 0; i < n; i += 1) | |
4119 | if (TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) != TYPE_CODE_FUNC | |
4120 | && (TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) != TYPE_CODE_ENUM | |
4121 | || SYMBOL_CLASS (syms[i].sym) != LOC_CONST)) | |
14f9c5c9 AS |
4122 | return 1; |
4123 | ||
4124 | return 0; | |
4125 | } | |
4126 | ||
4127 | /* If true (non-zero), then TYPE0 and TYPE1 represent equivalent | |
4c4b4cd2 | 4128 | struct types. Otherwise, they may not. */ |
14f9c5c9 AS |
4129 | |
4130 | static int | |
d2e4a39e | 4131 | equiv_types (struct type *type0, struct type *type1) |
14f9c5c9 | 4132 | { |
d2e4a39e | 4133 | if (type0 == type1) |
14f9c5c9 | 4134 | return 1; |
d2e4a39e | 4135 | if (type0 == NULL || type1 == NULL |
14f9c5c9 AS |
4136 | || TYPE_CODE (type0) != TYPE_CODE (type1)) |
4137 | return 0; | |
d2e4a39e | 4138 | if ((TYPE_CODE (type0) == TYPE_CODE_STRUCT |
14f9c5c9 AS |
4139 | || TYPE_CODE (type0) == TYPE_CODE_ENUM) |
4140 | && ada_type_name (type0) != NULL && ada_type_name (type1) != NULL | |
4c4b4cd2 | 4141 | && strcmp (ada_type_name (type0), ada_type_name (type1)) == 0) |
14f9c5c9 | 4142 | return 1; |
d2e4a39e | 4143 | |
14f9c5c9 AS |
4144 | return 0; |
4145 | } | |
4146 | ||
4147 | /* True iff SYM0 represents the same entity as SYM1, or one that is | |
4c4b4cd2 | 4148 | no more defined than that of SYM1. */ |
14f9c5c9 AS |
4149 | |
4150 | static int | |
d2e4a39e | 4151 | lesseq_defined_than (struct symbol *sym0, struct symbol *sym1) |
14f9c5c9 AS |
4152 | { |
4153 | if (sym0 == sym1) | |
4154 | return 1; | |
176620f1 | 4155 | if (SYMBOL_DOMAIN (sym0) != SYMBOL_DOMAIN (sym1) |
14f9c5c9 AS |
4156 | || SYMBOL_CLASS (sym0) != SYMBOL_CLASS (sym1)) |
4157 | return 0; | |
4158 | ||
d2e4a39e | 4159 | switch (SYMBOL_CLASS (sym0)) |
14f9c5c9 AS |
4160 | { |
4161 | case LOC_UNDEF: | |
4162 | return 1; | |
4163 | case LOC_TYPEDEF: | |
4164 | { | |
4c4b4cd2 PH |
4165 | struct type *type0 = SYMBOL_TYPE (sym0); |
4166 | struct type *type1 = SYMBOL_TYPE (sym1); | |
4167 | char *name0 = SYMBOL_LINKAGE_NAME (sym0); | |
4168 | char *name1 = SYMBOL_LINKAGE_NAME (sym1); | |
4169 | int len0 = strlen (name0); | |
5b4ee69b | 4170 | |
4c4b4cd2 PH |
4171 | return |
4172 | TYPE_CODE (type0) == TYPE_CODE (type1) | |
4173 | && (equiv_types (type0, type1) | |
4174 | || (len0 < strlen (name1) && strncmp (name0, name1, len0) == 0 | |
4175 | && strncmp (name1 + len0, "___XV", 5) == 0)); | |
14f9c5c9 AS |
4176 | } |
4177 | case LOC_CONST: | |
4178 | return SYMBOL_VALUE (sym0) == SYMBOL_VALUE (sym1) | |
4c4b4cd2 | 4179 | && equiv_types (SYMBOL_TYPE (sym0), SYMBOL_TYPE (sym1)); |
d2e4a39e AS |
4180 | default: |
4181 | return 0; | |
14f9c5c9 AS |
4182 | } |
4183 | } | |
4184 | ||
4c4b4cd2 PH |
4185 | /* Append (SYM,BLOCK,SYMTAB) to the end of the array of struct ada_symbol_info |
4186 | records in OBSTACKP. Do nothing if SYM is a duplicate. */ | |
14f9c5c9 AS |
4187 | |
4188 | static void | |
76a01679 JB |
4189 | add_defn_to_vec (struct obstack *obstackp, |
4190 | struct symbol *sym, | |
2570f2b7 | 4191 | struct block *block) |
14f9c5c9 AS |
4192 | { |
4193 | int i; | |
4c4b4cd2 | 4194 | struct ada_symbol_info *prevDefns = defns_collected (obstackp, 0); |
14f9c5c9 | 4195 | |
529cad9c PH |
4196 | /* Do not try to complete stub types, as the debugger is probably |
4197 | already scanning all symbols matching a certain name at the | |
4198 | time when this function is called. Trying to replace the stub | |
4199 | type by its associated full type will cause us to restart a scan | |
4200 | which may lead to an infinite recursion. Instead, the client | |
4201 | collecting the matching symbols will end up collecting several | |
4202 | matches, with at least one of them complete. It can then filter | |
4203 | out the stub ones if needed. */ | |
4204 | ||
4c4b4cd2 PH |
4205 | for (i = num_defns_collected (obstackp) - 1; i >= 0; i -= 1) |
4206 | { | |
4207 | if (lesseq_defined_than (sym, prevDefns[i].sym)) | |
4208 | return; | |
4209 | else if (lesseq_defined_than (prevDefns[i].sym, sym)) | |
4210 | { | |
4211 | prevDefns[i].sym = sym; | |
4212 | prevDefns[i].block = block; | |
4c4b4cd2 | 4213 | return; |
76a01679 | 4214 | } |
4c4b4cd2 PH |
4215 | } |
4216 | ||
4217 | { | |
4218 | struct ada_symbol_info info; | |
4219 | ||
4220 | info.sym = sym; | |
4221 | info.block = block; | |
4c4b4cd2 PH |
4222 | obstack_grow (obstackp, &info, sizeof (struct ada_symbol_info)); |
4223 | } | |
4224 | } | |
4225 | ||
4226 | /* Number of ada_symbol_info structures currently collected in | |
4227 | current vector in *OBSTACKP. */ | |
4228 | ||
76a01679 JB |
4229 | static int |
4230 | num_defns_collected (struct obstack *obstackp) | |
4c4b4cd2 PH |
4231 | { |
4232 | return obstack_object_size (obstackp) / sizeof (struct ada_symbol_info); | |
4233 | } | |
4234 | ||
4235 | /* Vector of ada_symbol_info structures currently collected in current | |
4236 | vector in *OBSTACKP. If FINISH, close off the vector and return | |
4237 | its final address. */ | |
4238 | ||
76a01679 | 4239 | static struct ada_symbol_info * |
4c4b4cd2 PH |
4240 | defns_collected (struct obstack *obstackp, int finish) |
4241 | { | |
4242 | if (finish) | |
4243 | return obstack_finish (obstackp); | |
4244 | else | |
4245 | return (struct ada_symbol_info *) obstack_base (obstackp); | |
4246 | } | |
4247 | ||
96d887e8 PH |
4248 | /* Return a minimal symbol matching NAME according to Ada decoding |
4249 | rules. Returns NULL if there is no such minimal symbol. Names | |
4250 | prefixed with "standard__" are handled specially: "standard__" is | |
4251 | first stripped off, and only static and global symbols are searched. */ | |
4c4b4cd2 | 4252 | |
96d887e8 PH |
4253 | struct minimal_symbol * |
4254 | ada_lookup_simple_minsym (const char *name) | |
4c4b4cd2 | 4255 | { |
4c4b4cd2 | 4256 | struct objfile *objfile; |
96d887e8 PH |
4257 | struct minimal_symbol *msymbol; |
4258 | int wild_match; | |
4c4b4cd2 | 4259 | |
96d887e8 | 4260 | if (strncmp (name, "standard__", sizeof ("standard__") - 1) == 0) |
4c4b4cd2 | 4261 | { |
96d887e8 | 4262 | name += sizeof ("standard__") - 1; |
4c4b4cd2 | 4263 | wild_match = 0; |
4c4b4cd2 PH |
4264 | } |
4265 | else | |
96d887e8 | 4266 | wild_match = (strstr (name, "__") == NULL); |
4c4b4cd2 | 4267 | |
96d887e8 PH |
4268 | ALL_MSYMBOLS (objfile, msymbol) |
4269 | { | |
4270 | if (ada_match_name (SYMBOL_LINKAGE_NAME (msymbol), name, wild_match) | |
4271 | && MSYMBOL_TYPE (msymbol) != mst_solib_trampoline) | |
4272 | return msymbol; | |
4273 | } | |
4c4b4cd2 | 4274 | |
96d887e8 PH |
4275 | return NULL; |
4276 | } | |
4c4b4cd2 | 4277 | |
96d887e8 PH |
4278 | /* For all subprograms that statically enclose the subprogram of the |
4279 | selected frame, add symbols matching identifier NAME in DOMAIN | |
4280 | and their blocks to the list of data in OBSTACKP, as for | |
4281 | ada_add_block_symbols (q.v.). If WILD, treat as NAME with a | |
4282 | wildcard prefix. */ | |
4c4b4cd2 | 4283 | |
96d887e8 PH |
4284 | static void |
4285 | add_symbols_from_enclosing_procs (struct obstack *obstackp, | |
76a01679 | 4286 | const char *name, domain_enum namespace, |
96d887e8 PH |
4287 | int wild_match) |
4288 | { | |
96d887e8 | 4289 | } |
14f9c5c9 | 4290 | |
96d887e8 PH |
4291 | /* True if TYPE is definitely an artificial type supplied to a symbol |
4292 | for which no debugging information was given in the symbol file. */ | |
14f9c5c9 | 4293 | |
96d887e8 PH |
4294 | static int |
4295 | is_nondebugging_type (struct type *type) | |
4296 | { | |
4297 | char *name = ada_type_name (type); | |
5b4ee69b | 4298 | |
96d887e8 PH |
4299 | return (name != NULL && strcmp (name, "<variable, no debug info>") == 0); |
4300 | } | |
4c4b4cd2 | 4301 | |
96d887e8 PH |
4302 | /* Remove any non-debugging symbols in SYMS[0 .. NSYMS-1] that definitely |
4303 | duplicate other symbols in the list (The only case I know of where | |
4304 | this happens is when object files containing stabs-in-ecoff are | |
4305 | linked with files containing ordinary ecoff debugging symbols (or no | |
4306 | debugging symbols)). Modifies SYMS to squeeze out deleted entries. | |
4307 | Returns the number of items in the modified list. */ | |
4c4b4cd2 | 4308 | |
96d887e8 PH |
4309 | static int |
4310 | remove_extra_symbols (struct ada_symbol_info *syms, int nsyms) | |
4311 | { | |
4312 | int i, j; | |
4c4b4cd2 | 4313 | |
96d887e8 PH |
4314 | i = 0; |
4315 | while (i < nsyms) | |
4316 | { | |
339c13b6 JB |
4317 | int remove = 0; |
4318 | ||
4319 | /* If two symbols have the same name and one of them is a stub type, | |
4320 | the get rid of the stub. */ | |
4321 | ||
4322 | if (TYPE_STUB (SYMBOL_TYPE (syms[i].sym)) | |
4323 | && SYMBOL_LINKAGE_NAME (syms[i].sym) != NULL) | |
4324 | { | |
4325 | for (j = 0; j < nsyms; j++) | |
4326 | { | |
4327 | if (j != i | |
4328 | && !TYPE_STUB (SYMBOL_TYPE (syms[j].sym)) | |
4329 | && SYMBOL_LINKAGE_NAME (syms[j].sym) != NULL | |
4330 | && strcmp (SYMBOL_LINKAGE_NAME (syms[i].sym), | |
4331 | SYMBOL_LINKAGE_NAME (syms[j].sym)) == 0) | |
4332 | remove = 1; | |
4333 | } | |
4334 | } | |
4335 | ||
4336 | /* Two symbols with the same name, same class and same address | |
4337 | should be identical. */ | |
4338 | ||
4339 | else if (SYMBOL_LINKAGE_NAME (syms[i].sym) != NULL | |
96d887e8 PH |
4340 | && SYMBOL_CLASS (syms[i].sym) == LOC_STATIC |
4341 | && is_nondebugging_type (SYMBOL_TYPE (syms[i].sym))) | |
4342 | { | |
4343 | for (j = 0; j < nsyms; j += 1) | |
4344 | { | |
4345 | if (i != j | |
4346 | && SYMBOL_LINKAGE_NAME (syms[j].sym) != NULL | |
4347 | && strcmp (SYMBOL_LINKAGE_NAME (syms[i].sym), | |
76a01679 | 4348 | SYMBOL_LINKAGE_NAME (syms[j].sym)) == 0 |
96d887e8 PH |
4349 | && SYMBOL_CLASS (syms[i].sym) == SYMBOL_CLASS (syms[j].sym) |
4350 | && SYMBOL_VALUE_ADDRESS (syms[i].sym) | |
4351 | == SYMBOL_VALUE_ADDRESS (syms[j].sym)) | |
339c13b6 | 4352 | remove = 1; |
4c4b4cd2 | 4353 | } |
4c4b4cd2 | 4354 | } |
339c13b6 JB |
4355 | |
4356 | if (remove) | |
4357 | { | |
4358 | for (j = i + 1; j < nsyms; j += 1) | |
4359 | syms[j - 1] = syms[j]; | |
4360 | nsyms -= 1; | |
4361 | } | |
4362 | ||
96d887e8 | 4363 | i += 1; |
14f9c5c9 | 4364 | } |
96d887e8 | 4365 | return nsyms; |
14f9c5c9 AS |
4366 | } |
4367 | ||
96d887e8 PH |
4368 | /* Given a type that corresponds to a renaming entity, use the type name |
4369 | to extract the scope (package name or function name, fully qualified, | |
4370 | and following the GNAT encoding convention) where this renaming has been | |
4371 | defined. The string returned needs to be deallocated after use. */ | |
4c4b4cd2 | 4372 | |
96d887e8 PH |
4373 | static char * |
4374 | xget_renaming_scope (struct type *renaming_type) | |
14f9c5c9 | 4375 | { |
96d887e8 PH |
4376 | /* The renaming types adhere to the following convention: |
4377 | <scope>__<rename>___<XR extension>. | |
4378 | So, to extract the scope, we search for the "___XR" extension, | |
4379 | and then backtrack until we find the first "__". */ | |
76a01679 | 4380 | |
96d887e8 PH |
4381 | const char *name = type_name_no_tag (renaming_type); |
4382 | char *suffix = strstr (name, "___XR"); | |
4383 | char *last; | |
4384 | int scope_len; | |
4385 | char *scope; | |
14f9c5c9 | 4386 | |
96d887e8 PH |
4387 | /* Now, backtrack a bit until we find the first "__". Start looking |
4388 | at suffix - 3, as the <rename> part is at least one character long. */ | |
14f9c5c9 | 4389 | |
96d887e8 PH |
4390 | for (last = suffix - 3; last > name; last--) |
4391 | if (last[0] == '_' && last[1] == '_') | |
4392 | break; | |
76a01679 | 4393 | |
96d887e8 | 4394 | /* Make a copy of scope and return it. */ |
14f9c5c9 | 4395 | |
96d887e8 PH |
4396 | scope_len = last - name; |
4397 | scope = (char *) xmalloc ((scope_len + 1) * sizeof (char)); | |
14f9c5c9 | 4398 | |
96d887e8 PH |
4399 | strncpy (scope, name, scope_len); |
4400 | scope[scope_len] = '\0'; | |
4c4b4cd2 | 4401 | |
96d887e8 | 4402 | return scope; |
4c4b4cd2 PH |
4403 | } |
4404 | ||
96d887e8 | 4405 | /* Return nonzero if NAME corresponds to a package name. */ |
4c4b4cd2 | 4406 | |
96d887e8 PH |
4407 | static int |
4408 | is_package_name (const char *name) | |
4c4b4cd2 | 4409 | { |
96d887e8 PH |
4410 | /* Here, We take advantage of the fact that no symbols are generated |
4411 | for packages, while symbols are generated for each function. | |
4412 | So the condition for NAME represent a package becomes equivalent | |
4413 | to NAME not existing in our list of symbols. There is only one | |
4414 | small complication with library-level functions (see below). */ | |
4c4b4cd2 | 4415 | |
96d887e8 | 4416 | char *fun_name; |
76a01679 | 4417 | |
96d887e8 PH |
4418 | /* If it is a function that has not been defined at library level, |
4419 | then we should be able to look it up in the symbols. */ | |
4420 | if (standard_lookup (name, NULL, VAR_DOMAIN) != NULL) | |
4421 | return 0; | |
14f9c5c9 | 4422 | |
96d887e8 PH |
4423 | /* Library-level function names start with "_ada_". See if function |
4424 | "_ada_" followed by NAME can be found. */ | |
14f9c5c9 | 4425 | |
96d887e8 | 4426 | /* Do a quick check that NAME does not contain "__", since library-level |
e1d5a0d2 | 4427 | functions names cannot contain "__" in them. */ |
96d887e8 PH |
4428 | if (strstr (name, "__") != NULL) |
4429 | return 0; | |
4c4b4cd2 | 4430 | |
b435e160 | 4431 | fun_name = xstrprintf ("_ada_%s", name); |
14f9c5c9 | 4432 | |
96d887e8 PH |
4433 | return (standard_lookup (fun_name, NULL, VAR_DOMAIN) == NULL); |
4434 | } | |
14f9c5c9 | 4435 | |
96d887e8 | 4436 | /* Return nonzero if SYM corresponds to a renaming entity that is |
aeb5907d | 4437 | not visible from FUNCTION_NAME. */ |
14f9c5c9 | 4438 | |
96d887e8 | 4439 | static int |
aeb5907d | 4440 | old_renaming_is_invisible (const struct symbol *sym, char *function_name) |
96d887e8 | 4441 | { |
aeb5907d JB |
4442 | char *scope; |
4443 | ||
4444 | if (SYMBOL_CLASS (sym) != LOC_TYPEDEF) | |
4445 | return 0; | |
4446 | ||
4447 | scope = xget_renaming_scope (SYMBOL_TYPE (sym)); | |
d2e4a39e | 4448 | |
96d887e8 | 4449 | make_cleanup (xfree, scope); |
14f9c5c9 | 4450 | |
96d887e8 PH |
4451 | /* If the rename has been defined in a package, then it is visible. */ |
4452 | if (is_package_name (scope)) | |
aeb5907d | 4453 | return 0; |
14f9c5c9 | 4454 | |
96d887e8 PH |
4455 | /* Check that the rename is in the current function scope by checking |
4456 | that its name starts with SCOPE. */ | |
76a01679 | 4457 | |
96d887e8 PH |
4458 | /* If the function name starts with "_ada_", it means that it is |
4459 | a library-level function. Strip this prefix before doing the | |
4460 | comparison, as the encoding for the renaming does not contain | |
4461 | this prefix. */ | |
4462 | if (strncmp (function_name, "_ada_", 5) == 0) | |
4463 | function_name += 5; | |
f26caa11 | 4464 | |
aeb5907d | 4465 | return (strncmp (function_name, scope, strlen (scope)) != 0); |
f26caa11 PH |
4466 | } |
4467 | ||
aeb5907d JB |
4468 | /* Remove entries from SYMS that corresponds to a renaming entity that |
4469 | is not visible from the function associated with CURRENT_BLOCK or | |
4470 | that is superfluous due to the presence of more specific renaming | |
4471 | information. Places surviving symbols in the initial entries of | |
4472 | SYMS and returns the number of surviving symbols. | |
96d887e8 PH |
4473 | |
4474 | Rationale: | |
aeb5907d JB |
4475 | First, in cases where an object renaming is implemented as a |
4476 | reference variable, GNAT may produce both the actual reference | |
4477 | variable and the renaming encoding. In this case, we discard the | |
4478 | latter. | |
4479 | ||
4480 | Second, GNAT emits a type following a specified encoding for each renaming | |
96d887e8 PH |
4481 | entity. Unfortunately, STABS currently does not support the definition |
4482 | of types that are local to a given lexical block, so all renamings types | |
4483 | are emitted at library level. As a consequence, if an application | |
4484 | contains two renaming entities using the same name, and a user tries to | |
4485 | print the value of one of these entities, the result of the ada symbol | |
4486 | lookup will also contain the wrong renaming type. | |
f26caa11 | 4487 | |
96d887e8 PH |
4488 | This function partially covers for this limitation by attempting to |
4489 | remove from the SYMS list renaming symbols that should be visible | |
4490 | from CURRENT_BLOCK. However, there does not seem be a 100% reliable | |
4491 | method with the current information available. The implementation | |
4492 | below has a couple of limitations (FIXME: brobecker-2003-05-12): | |
4493 | ||
4494 | - When the user tries to print a rename in a function while there | |
4495 | is another rename entity defined in a package: Normally, the | |
4496 | rename in the function has precedence over the rename in the | |
4497 | package, so the latter should be removed from the list. This is | |
4498 | currently not the case. | |
4499 | ||
4500 | - This function will incorrectly remove valid renames if | |
4501 | the CURRENT_BLOCK corresponds to a function which symbol name | |
4502 | has been changed by an "Export" pragma. As a consequence, | |
4503 | the user will be unable to print such rename entities. */ | |
4c4b4cd2 | 4504 | |
14f9c5c9 | 4505 | static int |
aeb5907d JB |
4506 | remove_irrelevant_renamings (struct ada_symbol_info *syms, |
4507 | int nsyms, const struct block *current_block) | |
4c4b4cd2 PH |
4508 | { |
4509 | struct symbol *current_function; | |
4510 | char *current_function_name; | |
4511 | int i; | |
aeb5907d JB |
4512 | int is_new_style_renaming; |
4513 | ||
4514 | /* If there is both a renaming foo___XR... encoded as a variable and | |
4515 | a simple variable foo in the same block, discard the latter. | |
4516 | First, zero out such symbols, then compress. */ | |
4517 | is_new_style_renaming = 0; | |
4518 | for (i = 0; i < nsyms; i += 1) | |
4519 | { | |
4520 | struct symbol *sym = syms[i].sym; | |
4521 | struct block *block = syms[i].block; | |
4522 | const char *name; | |
4523 | const char *suffix; | |
4524 | ||
4525 | if (sym == NULL || SYMBOL_CLASS (sym) == LOC_TYPEDEF) | |
4526 | continue; | |
4527 | name = SYMBOL_LINKAGE_NAME (sym); | |
4528 | suffix = strstr (name, "___XR"); | |
4529 | ||
4530 | if (suffix != NULL) | |
4531 | { | |
4532 | int name_len = suffix - name; | |
4533 | int j; | |
5b4ee69b | 4534 | |
aeb5907d JB |
4535 | is_new_style_renaming = 1; |
4536 | for (j = 0; j < nsyms; j += 1) | |
4537 | if (i != j && syms[j].sym != NULL | |
4538 | && strncmp (name, SYMBOL_LINKAGE_NAME (syms[j].sym), | |
4539 | name_len) == 0 | |
4540 | && block == syms[j].block) | |
4541 | syms[j].sym = NULL; | |
4542 | } | |
4543 | } | |
4544 | if (is_new_style_renaming) | |
4545 | { | |
4546 | int j, k; | |
4547 | ||
4548 | for (j = k = 0; j < nsyms; j += 1) | |
4549 | if (syms[j].sym != NULL) | |
4550 | { | |
4551 | syms[k] = syms[j]; | |
4552 | k += 1; | |
4553 | } | |
4554 | return k; | |
4555 | } | |
4c4b4cd2 PH |
4556 | |
4557 | /* Extract the function name associated to CURRENT_BLOCK. | |
4558 | Abort if unable to do so. */ | |
76a01679 | 4559 | |
4c4b4cd2 PH |
4560 | if (current_block == NULL) |
4561 | return nsyms; | |
76a01679 | 4562 | |
7f0df278 | 4563 | current_function = block_linkage_function (current_block); |
4c4b4cd2 PH |
4564 | if (current_function == NULL) |
4565 | return nsyms; | |
4566 | ||
4567 | current_function_name = SYMBOL_LINKAGE_NAME (current_function); | |
4568 | if (current_function_name == NULL) | |
4569 | return nsyms; | |
4570 | ||
4571 | /* Check each of the symbols, and remove it from the list if it is | |
4572 | a type corresponding to a renaming that is out of the scope of | |
4573 | the current block. */ | |
4574 | ||
4575 | i = 0; | |
4576 | while (i < nsyms) | |
4577 | { | |
aeb5907d JB |
4578 | if (ada_parse_renaming (syms[i].sym, NULL, NULL, NULL) |
4579 | == ADA_OBJECT_RENAMING | |
4580 | && old_renaming_is_invisible (syms[i].sym, current_function_name)) | |
4c4b4cd2 PH |
4581 | { |
4582 | int j; | |
5b4ee69b | 4583 | |
aeb5907d | 4584 | for (j = i + 1; j < nsyms; j += 1) |
76a01679 | 4585 | syms[j - 1] = syms[j]; |
4c4b4cd2 PH |
4586 | nsyms -= 1; |
4587 | } | |
4588 | else | |
4589 | i += 1; | |
4590 | } | |
4591 | ||
4592 | return nsyms; | |
4593 | } | |
4594 | ||
339c13b6 JB |
4595 | /* Add to OBSTACKP all symbols from BLOCK (and its super-blocks) |
4596 | whose name and domain match NAME and DOMAIN respectively. | |
4597 | If no match was found, then extend the search to "enclosing" | |
4598 | routines (in other words, if we're inside a nested function, | |
4599 | search the symbols defined inside the enclosing functions). | |
4600 | ||
4601 | Note: This function assumes that OBSTACKP has 0 (zero) element in it. */ | |
4602 | ||
4603 | static void | |
4604 | ada_add_local_symbols (struct obstack *obstackp, const char *name, | |
4605 | struct block *block, domain_enum domain, | |
4606 | int wild_match) | |
4607 | { | |
4608 | int block_depth = 0; | |
4609 | ||
4610 | while (block != NULL) | |
4611 | { | |
4612 | block_depth += 1; | |
4613 | ada_add_block_symbols (obstackp, block, name, domain, NULL, wild_match); | |
4614 | ||
4615 | /* If we found a non-function match, assume that's the one. */ | |
4616 | if (is_nonfunction (defns_collected (obstackp, 0), | |
4617 | num_defns_collected (obstackp))) | |
4618 | return; | |
4619 | ||
4620 | block = BLOCK_SUPERBLOCK (block); | |
4621 | } | |
4622 | ||
4623 | /* If no luck so far, try to find NAME as a local symbol in some lexically | |
4624 | enclosing subprogram. */ | |
4625 | if (num_defns_collected (obstackp) == 0 && block_depth > 2) | |
4626 | add_symbols_from_enclosing_procs (obstackp, name, domain, wild_match); | |
4627 | } | |
4628 | ||
ccefe4c4 TT |
4629 | /* An object of this type is used as the user_data argument when |
4630 | calling the map_ada_symtabs method. */ | |
4631 | ||
4632 | struct ada_psym_data | |
4633 | { | |
4634 | struct obstack *obstackp; | |
4635 | const char *name; | |
4636 | domain_enum domain; | |
4637 | int global; | |
4638 | int wild_match; | |
4639 | }; | |
4640 | ||
4641 | /* Callback function for map_ada_symtabs. */ | |
4642 | ||
4643 | static void | |
4644 | ada_add_psyms (struct objfile *objfile, struct symtab *s, void *user_data) | |
4645 | { | |
4646 | struct ada_psym_data *data = user_data; | |
4647 | const int block_kind = data->global ? GLOBAL_BLOCK : STATIC_BLOCK; | |
5b4ee69b | 4648 | |
ccefe4c4 TT |
4649 | ada_add_block_symbols (data->obstackp, |
4650 | BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), block_kind), | |
4651 | data->name, data->domain, objfile, data->wild_match); | |
4652 | } | |
4653 | ||
339c13b6 JB |
4654 | /* Add to OBSTACKP all non-local symbols whose name and domain match |
4655 | NAME and DOMAIN respectively. The search is performed on GLOBAL_BLOCK | |
4656 | symbols if GLOBAL is non-zero, or on STATIC_BLOCK symbols otherwise. */ | |
4657 | ||
4658 | static void | |
4659 | ada_add_non_local_symbols (struct obstack *obstackp, const char *name, | |
4660 | domain_enum domain, int global, | |
ccefe4c4 | 4661 | int is_wild_match) |
339c13b6 JB |
4662 | { |
4663 | struct objfile *objfile; | |
ccefe4c4 | 4664 | struct ada_psym_data data; |
339c13b6 | 4665 | |
ccefe4c4 TT |
4666 | data.obstackp = obstackp; |
4667 | data.name = name; | |
4668 | data.domain = domain; | |
4669 | data.global = global; | |
4670 | data.wild_match = is_wild_match; | |
339c13b6 | 4671 | |
ccefe4c4 TT |
4672 | ALL_OBJFILES (objfile) |
4673 | { | |
4674 | if (objfile->sf) | |
4675 | objfile->sf->qf->map_ada_symtabs (objfile, wild_match, is_name_suffix, | |
4676 | ada_add_psyms, name, | |
4677 | global, domain, | |
4678 | is_wild_match, &data); | |
339c13b6 JB |
4679 | } |
4680 | } | |
4681 | ||
4c4b4cd2 PH |
4682 | /* Find symbols in DOMAIN matching NAME0, in BLOCK0 and enclosing |
4683 | scope and in global scopes, returning the number of matches. Sets | |
6c9353d3 | 4684 | *RESULTS to point to a vector of (SYM,BLOCK) tuples, |
4c4b4cd2 PH |
4685 | indicating the symbols found and the blocks and symbol tables (if |
4686 | any) in which they were found. This vector are transient---good only to | |
4687 | the next call of ada_lookup_symbol_list. Any non-function/non-enumeral | |
4688 | symbol match within the nest of blocks whose innermost member is BLOCK0, | |
4689 | is the one match returned (no other matches in that or | |
4690 | enclosing blocks is returned). If there are any matches in or | |
4691 | surrounding BLOCK0, then these alone are returned. Otherwise, the | |
4692 | search extends to global and file-scope (static) symbol tables. | |
4693 | Names prefixed with "standard__" are handled specially: "standard__" | |
4694 | is first stripped off, and only static and global symbols are searched. */ | |
14f9c5c9 AS |
4695 | |
4696 | int | |
4c4b4cd2 | 4697 | ada_lookup_symbol_list (const char *name0, const struct block *block0, |
76a01679 JB |
4698 | domain_enum namespace, |
4699 | struct ada_symbol_info **results) | |
14f9c5c9 AS |
4700 | { |
4701 | struct symbol *sym; | |
14f9c5c9 | 4702 | struct block *block; |
4c4b4cd2 | 4703 | const char *name; |
4c4b4cd2 | 4704 | int wild_match; |
14f9c5c9 | 4705 | int cacheIfUnique; |
4c4b4cd2 | 4706 | int ndefns; |
14f9c5c9 | 4707 | |
4c4b4cd2 PH |
4708 | obstack_free (&symbol_list_obstack, NULL); |
4709 | obstack_init (&symbol_list_obstack); | |
14f9c5c9 | 4710 | |
14f9c5c9 AS |
4711 | cacheIfUnique = 0; |
4712 | ||
4713 | /* Search specified block and its superiors. */ | |
4714 | ||
4c4b4cd2 PH |
4715 | wild_match = (strstr (name0, "__") == NULL); |
4716 | name = name0; | |
76a01679 JB |
4717 | block = (struct block *) block0; /* FIXME: No cast ought to be |
4718 | needed, but adding const will | |
4719 | have a cascade effect. */ | |
339c13b6 JB |
4720 | |
4721 | /* Special case: If the user specifies a symbol name inside package | |
4722 | Standard, do a non-wild matching of the symbol name without | |
4723 | the "standard__" prefix. This was primarily introduced in order | |
4724 | to allow the user to specifically access the standard exceptions | |
4725 | using, for instance, Standard.Constraint_Error when Constraint_Error | |
4726 | is ambiguous (due to the user defining its own Constraint_Error | |
4727 | entity inside its program). */ | |
4c4b4cd2 PH |
4728 | if (strncmp (name0, "standard__", sizeof ("standard__") - 1) == 0) |
4729 | { | |
4730 | wild_match = 0; | |
4731 | block = NULL; | |
4732 | name = name0 + sizeof ("standard__") - 1; | |
4733 | } | |
4734 | ||
339c13b6 | 4735 | /* Check the non-global symbols. If we have ANY match, then we're done. */ |
14f9c5c9 | 4736 | |
339c13b6 JB |
4737 | ada_add_local_symbols (&symbol_list_obstack, name, block, namespace, |
4738 | wild_match); | |
4c4b4cd2 | 4739 | if (num_defns_collected (&symbol_list_obstack) > 0) |
14f9c5c9 | 4740 | goto done; |
d2e4a39e | 4741 | |
339c13b6 JB |
4742 | /* No non-global symbols found. Check our cache to see if we have |
4743 | already performed this search before. If we have, then return | |
4744 | the same result. */ | |
4745 | ||
14f9c5c9 | 4746 | cacheIfUnique = 1; |
2570f2b7 | 4747 | if (lookup_cached_symbol (name0, namespace, &sym, &block)) |
4c4b4cd2 PH |
4748 | { |
4749 | if (sym != NULL) | |
2570f2b7 | 4750 | add_defn_to_vec (&symbol_list_obstack, sym, block); |
4c4b4cd2 PH |
4751 | goto done; |
4752 | } | |
14f9c5c9 | 4753 | |
339c13b6 JB |
4754 | /* Search symbols from all global blocks. */ |
4755 | ||
4756 | ada_add_non_local_symbols (&symbol_list_obstack, name, namespace, 1, | |
4757 | wild_match); | |
d2e4a39e | 4758 | |
4c4b4cd2 | 4759 | /* Now add symbols from all per-file blocks if we've gotten no hits |
339c13b6 | 4760 | (not strictly correct, but perhaps better than an error). */ |
d2e4a39e | 4761 | |
4c4b4cd2 | 4762 | if (num_defns_collected (&symbol_list_obstack) == 0) |
339c13b6 JB |
4763 | ada_add_non_local_symbols (&symbol_list_obstack, name, namespace, 0, |
4764 | wild_match); | |
14f9c5c9 | 4765 | |
4c4b4cd2 PH |
4766 | done: |
4767 | ndefns = num_defns_collected (&symbol_list_obstack); | |
4768 | *results = defns_collected (&symbol_list_obstack, 1); | |
4769 | ||
4770 | ndefns = remove_extra_symbols (*results, ndefns); | |
4771 | ||
d2e4a39e | 4772 | if (ndefns == 0) |
2570f2b7 | 4773 | cache_symbol (name0, namespace, NULL, NULL); |
14f9c5c9 | 4774 | |
4c4b4cd2 | 4775 | if (ndefns == 1 && cacheIfUnique) |
2570f2b7 | 4776 | cache_symbol (name0, namespace, (*results)[0].sym, (*results)[0].block); |
14f9c5c9 | 4777 | |
aeb5907d | 4778 | ndefns = remove_irrelevant_renamings (*results, ndefns, block0); |
14f9c5c9 | 4779 | |
14f9c5c9 AS |
4780 | return ndefns; |
4781 | } | |
4782 | ||
d2e4a39e | 4783 | struct symbol * |
aeb5907d | 4784 | ada_lookup_encoded_symbol (const char *name, const struct block *block0, |
21b556f4 | 4785 | domain_enum namespace, struct block **block_found) |
14f9c5c9 | 4786 | { |
4c4b4cd2 | 4787 | struct ada_symbol_info *candidates; |
14f9c5c9 AS |
4788 | int n_candidates; |
4789 | ||
aeb5907d | 4790 | n_candidates = ada_lookup_symbol_list (name, block0, namespace, &candidates); |
14f9c5c9 AS |
4791 | |
4792 | if (n_candidates == 0) | |
4793 | return NULL; | |
4c4b4cd2 | 4794 | |
aeb5907d JB |
4795 | if (block_found != NULL) |
4796 | *block_found = candidates[0].block; | |
4c4b4cd2 | 4797 | |
21b556f4 | 4798 | return fixup_symbol_section (candidates[0].sym, NULL); |
aeb5907d JB |
4799 | } |
4800 | ||
4801 | /* Return a symbol in DOMAIN matching NAME, in BLOCK0 and enclosing | |
4802 | scope and in global scopes, or NULL if none. NAME is folded and | |
4803 | encoded first. Otherwise, the result is as for ada_lookup_symbol_list, | |
4804 | choosing the first symbol if there are multiple choices. | |
4805 | *IS_A_FIELD_OF_THIS is set to 0 and *SYMTAB is set to the symbol | |
4806 | table in which the symbol was found (in both cases, these | |
4807 | assignments occur only if the pointers are non-null). */ | |
4808 | struct symbol * | |
4809 | ada_lookup_symbol (const char *name, const struct block *block0, | |
21b556f4 | 4810 | domain_enum namespace, int *is_a_field_of_this) |
aeb5907d JB |
4811 | { |
4812 | if (is_a_field_of_this != NULL) | |
4813 | *is_a_field_of_this = 0; | |
4814 | ||
4815 | return | |
4816 | ada_lookup_encoded_symbol (ada_encode (ada_fold_name (name)), | |
21b556f4 | 4817 | block0, namespace, NULL); |
4c4b4cd2 | 4818 | } |
14f9c5c9 | 4819 | |
4c4b4cd2 PH |
4820 | static struct symbol * |
4821 | ada_lookup_symbol_nonlocal (const char *name, | |
76a01679 | 4822 | const struct block *block, |
21b556f4 | 4823 | const domain_enum domain) |
4c4b4cd2 | 4824 | { |
94af9270 | 4825 | return ada_lookup_symbol (name, block_static_block (block), domain, NULL); |
14f9c5c9 AS |
4826 | } |
4827 | ||
4828 | ||
4c4b4cd2 PH |
4829 | /* True iff STR is a possible encoded suffix of a normal Ada name |
4830 | that is to be ignored for matching purposes. Suffixes of parallel | |
4831 | names (e.g., XVE) are not included here. Currently, the possible suffixes | |
5823c3ef | 4832 | are given by any of the regular expressions: |
4c4b4cd2 | 4833 | |
babe1480 JB |
4834 | [.$][0-9]+ [nested subprogram suffix, on platforms such as GNU/Linux] |
4835 | ___[0-9]+ [nested subprogram suffix, on platforms such as HP/UX] | |
4836 | _E[0-9]+[bs]$ [protected object entry suffixes] | |
61ee279c | 4837 | (X[nb]*)?((\$|__)[0-9](_?[0-9]+)|___(JM|LJM|X([FDBUP].*|R[^T]?)))?$ |
babe1480 JB |
4838 | |
4839 | Also, any leading "__[0-9]+" sequence is skipped before the suffix | |
4840 | match is performed. This sequence is used to differentiate homonyms, | |
4841 | is an optional part of a valid name suffix. */ | |
4c4b4cd2 | 4842 | |
14f9c5c9 | 4843 | static int |
d2e4a39e | 4844 | is_name_suffix (const char *str) |
14f9c5c9 AS |
4845 | { |
4846 | int k; | |
4c4b4cd2 PH |
4847 | const char *matching; |
4848 | const int len = strlen (str); | |
4849 | ||
babe1480 JB |
4850 | /* Skip optional leading __[0-9]+. */ |
4851 | ||
4c4b4cd2 PH |
4852 | if (len > 3 && str[0] == '_' && str[1] == '_' && isdigit (str[2])) |
4853 | { | |
babe1480 JB |
4854 | str += 3; |
4855 | while (isdigit (str[0])) | |
4856 | str += 1; | |
4c4b4cd2 | 4857 | } |
babe1480 JB |
4858 | |
4859 | /* [.$][0-9]+ */ | |
4c4b4cd2 | 4860 | |
babe1480 | 4861 | if (str[0] == '.' || str[0] == '$') |
4c4b4cd2 | 4862 | { |
babe1480 | 4863 | matching = str + 1; |
4c4b4cd2 PH |
4864 | while (isdigit (matching[0])) |
4865 | matching += 1; | |
4866 | if (matching[0] == '\0') | |
4867 | return 1; | |
4868 | } | |
4869 | ||
4870 | /* ___[0-9]+ */ | |
babe1480 | 4871 | |
4c4b4cd2 PH |
4872 | if (len > 3 && str[0] == '_' && str[1] == '_' && str[2] == '_') |
4873 | { | |
4874 | matching = str + 3; | |
4875 | while (isdigit (matching[0])) | |
4876 | matching += 1; | |
4877 | if (matching[0] == '\0') | |
4878 | return 1; | |
4879 | } | |
4880 | ||
529cad9c PH |
4881 | #if 0 |
4882 | /* FIXME: brobecker/2005-09-23: Protected Object subprograms end | |
4883 | with a N at the end. Unfortunately, the compiler uses the same | |
4884 | convention for other internal types it creates. So treating | |
4885 | all entity names that end with an "N" as a name suffix causes | |
4886 | some regressions. For instance, consider the case of an enumerated | |
4887 | type. To support the 'Image attribute, it creates an array whose | |
4888 | name ends with N. | |
4889 | Having a single character like this as a suffix carrying some | |
4890 | information is a bit risky. Perhaps we should change the encoding | |
4891 | to be something like "_N" instead. In the meantime, do not do | |
4892 | the following check. */ | |
4893 | /* Protected Object Subprograms */ | |
4894 | if (len == 1 && str [0] == 'N') | |
4895 | return 1; | |
4896 | #endif | |
4897 | ||
4898 | /* _E[0-9]+[bs]$ */ | |
4899 | if (len > 3 && str[0] == '_' && str [1] == 'E' && isdigit (str[2])) | |
4900 | { | |
4901 | matching = str + 3; | |
4902 | while (isdigit (matching[0])) | |
4903 | matching += 1; | |
4904 | if ((matching[0] == 'b' || matching[0] == 's') | |
4905 | && matching [1] == '\0') | |
4906 | return 1; | |
4907 | } | |
4908 | ||
4c4b4cd2 PH |
4909 | /* ??? We should not modify STR directly, as we are doing below. This |
4910 | is fine in this case, but may become problematic later if we find | |
4911 | that this alternative did not work, and want to try matching | |
4912 | another one from the begining of STR. Since we modified it, we | |
4913 | won't be able to find the begining of the string anymore! */ | |
14f9c5c9 AS |
4914 | if (str[0] == 'X') |
4915 | { | |
4916 | str += 1; | |
d2e4a39e | 4917 | while (str[0] != '_' && str[0] != '\0') |
4c4b4cd2 PH |
4918 | { |
4919 | if (str[0] != 'n' && str[0] != 'b') | |
4920 | return 0; | |
4921 | str += 1; | |
4922 | } | |
14f9c5c9 | 4923 | } |
babe1480 | 4924 | |
14f9c5c9 AS |
4925 | if (str[0] == '\000') |
4926 | return 1; | |
babe1480 | 4927 | |
d2e4a39e | 4928 | if (str[0] == '_') |
14f9c5c9 AS |
4929 | { |
4930 | if (str[1] != '_' || str[2] == '\000') | |
4c4b4cd2 | 4931 | return 0; |
d2e4a39e | 4932 | if (str[2] == '_') |
4c4b4cd2 | 4933 | { |
61ee279c PH |
4934 | if (strcmp (str + 3, "JM") == 0) |
4935 | return 1; | |
4936 | /* FIXME: brobecker/2004-09-30: GNAT will soon stop using | |
4937 | the LJM suffix in favor of the JM one. But we will | |
4938 | still accept LJM as a valid suffix for a reasonable | |
4939 | amount of time, just to allow ourselves to debug programs | |
4940 | compiled using an older version of GNAT. */ | |
4c4b4cd2 PH |
4941 | if (strcmp (str + 3, "LJM") == 0) |
4942 | return 1; | |
4943 | if (str[3] != 'X') | |
4944 | return 0; | |
1265e4aa JB |
4945 | if (str[4] == 'F' || str[4] == 'D' || str[4] == 'B' |
4946 | || str[4] == 'U' || str[4] == 'P') | |
4c4b4cd2 PH |
4947 | return 1; |
4948 | if (str[4] == 'R' && str[5] != 'T') | |
4949 | return 1; | |
4950 | return 0; | |
4951 | } | |
4952 | if (!isdigit (str[2])) | |
4953 | return 0; | |
4954 | for (k = 3; str[k] != '\0'; k += 1) | |
4955 | if (!isdigit (str[k]) && str[k] != '_') | |
4956 | return 0; | |
14f9c5c9 AS |
4957 | return 1; |
4958 | } | |
4c4b4cd2 | 4959 | if (str[0] == '$' && isdigit (str[1])) |
14f9c5c9 | 4960 | { |
4c4b4cd2 PH |
4961 | for (k = 2; str[k] != '\0'; k += 1) |
4962 | if (!isdigit (str[k]) && str[k] != '_') | |
4963 | return 0; | |
14f9c5c9 AS |
4964 | return 1; |
4965 | } | |
4966 | return 0; | |
4967 | } | |
d2e4a39e | 4968 | |
aeb5907d JB |
4969 | /* Return non-zero if the string starting at NAME and ending before |
4970 | NAME_END contains no capital letters. */ | |
529cad9c PH |
4971 | |
4972 | static int | |
4973 | is_valid_name_for_wild_match (const char *name0) | |
4974 | { | |
4975 | const char *decoded_name = ada_decode (name0); | |
4976 | int i; | |
4977 | ||
5823c3ef JB |
4978 | /* If the decoded name starts with an angle bracket, it means that |
4979 | NAME0 does not follow the GNAT encoding format. It should then | |
4980 | not be allowed as a possible wild match. */ | |
4981 | if (decoded_name[0] == '<') | |
4982 | return 0; | |
4983 | ||
529cad9c PH |
4984 | for (i=0; decoded_name[i] != '\0'; i++) |
4985 | if (isalpha (decoded_name[i]) && !islower (decoded_name[i])) | |
4986 | return 0; | |
4987 | ||
4988 | return 1; | |
4989 | } | |
4990 | ||
73589123 PH |
4991 | /* Advance *NAMEP to next occurrence of TARGET0 in the string NAME0 |
4992 | that could start a simple name. Assumes that *NAMEP points into | |
4993 | the string beginning at NAME0. */ | |
4c4b4cd2 | 4994 | |
14f9c5c9 | 4995 | static int |
73589123 | 4996 | advance_wild_match (const char **namep, const char *name0, int target0) |
14f9c5c9 | 4997 | { |
73589123 | 4998 | const char *name = *namep; |
5b4ee69b | 4999 | |
5823c3ef | 5000 | while (1) |
14f9c5c9 | 5001 | { |
aa27d0b3 | 5002 | int t0, t1; |
73589123 PH |
5003 | |
5004 | t0 = *name; | |
5005 | if (t0 == '_') | |
5006 | { | |
5007 | t1 = name[1]; | |
5008 | if ((t1 >= 'a' && t1 <= 'z') || (t1 >= '0' && t1 <= '9')) | |
5009 | { | |
5010 | name += 1; | |
5011 | if (name == name0 + 5 && strncmp (name0, "_ada", 4) == 0) | |
5012 | break; | |
5013 | else | |
5014 | name += 1; | |
5015 | } | |
aa27d0b3 JB |
5016 | else if (t1 == '_' && ((name[2] >= 'a' && name[2] <= 'z') |
5017 | || name[2] == target0)) | |
73589123 PH |
5018 | { |
5019 | name += 2; | |
5020 | break; | |
5021 | } | |
5022 | else | |
5023 | return 0; | |
5024 | } | |
5025 | else if ((t0 >= 'a' && t0 <= 'z') || (t0 >= '0' && t0 <= '9')) | |
5026 | name += 1; | |
5027 | else | |
5823c3ef | 5028 | return 0; |
73589123 PH |
5029 | } |
5030 | ||
5031 | *namep = name; | |
5032 | return 1; | |
5033 | } | |
5034 | ||
5035 | /* Return 0 iff NAME encodes a name of the form prefix.PATN. Ignores any | |
5036 | informational suffixes of NAME (i.e., for which is_name_suffix is | |
5037 | true). Assumes that PATN is a lower-cased Ada simple name. */ | |
5038 | ||
5039 | static int | |
5040 | wild_match (const char *name, const char *patn) | |
5041 | { | |
5042 | const char *p, *n; | |
5043 | const char *name0 = name; | |
5044 | ||
5045 | while (1) | |
5046 | { | |
5047 | const char *match = name; | |
5048 | ||
5049 | if (*name == *patn) | |
5050 | { | |
5051 | for (name += 1, p = patn + 1; *p != '\0'; name += 1, p += 1) | |
5052 | if (*p != *name) | |
5053 | break; | |
5054 | if (*p == '\0' && is_name_suffix (name)) | |
5055 | return match != name0 && !is_valid_name_for_wild_match (name0); | |
5056 | ||
5057 | if (name[-1] == '_') | |
5058 | name -= 1; | |
5059 | } | |
5060 | if (!advance_wild_match (&name, name0, *patn)) | |
5061 | return 1; | |
96d887e8 | 5062 | } |
96d887e8 PH |
5063 | } |
5064 | ||
96d887e8 PH |
5065 | /* Add symbols from BLOCK matching identifier NAME in DOMAIN to |
5066 | vector *defn_symbols, updating the list of symbols in OBSTACKP | |
5067 | (if necessary). If WILD, treat as NAME with a wildcard prefix. | |
5068 | OBJFILE is the section containing BLOCK. | |
5069 | SYMTAB is recorded with each symbol added. */ | |
5070 | ||
5071 | static void | |
5072 | ada_add_block_symbols (struct obstack *obstackp, | |
76a01679 | 5073 | struct block *block, const char *name, |
96d887e8 | 5074 | domain_enum domain, struct objfile *objfile, |
2570f2b7 | 5075 | int wild) |
96d887e8 PH |
5076 | { |
5077 | struct dict_iterator iter; | |
5078 | int name_len = strlen (name); | |
5079 | /* A matching argument symbol, if any. */ | |
5080 | struct symbol *arg_sym; | |
5081 | /* Set true when we find a matching non-argument symbol. */ | |
5082 | int found_sym; | |
5083 | struct symbol *sym; | |
5084 | ||
5085 | arg_sym = NULL; | |
5086 | found_sym = 0; | |
5087 | if (wild) | |
5088 | { | |
5089 | struct symbol *sym; | |
5b4ee69b | 5090 | |
96d887e8 | 5091 | ALL_BLOCK_SYMBOLS (block, iter, sym) |
76a01679 | 5092 | { |
5eeb2539 AR |
5093 | if (symbol_matches_domain (SYMBOL_LANGUAGE (sym), |
5094 | SYMBOL_DOMAIN (sym), domain) | |
73589123 | 5095 | && wild_match (SYMBOL_LINKAGE_NAME (sym), name) == 0) |
76a01679 | 5096 | { |
2a2d4dc3 AS |
5097 | if (SYMBOL_CLASS (sym) == LOC_UNRESOLVED) |
5098 | continue; | |
5099 | else if (SYMBOL_IS_ARGUMENT (sym)) | |
5100 | arg_sym = sym; | |
5101 | else | |
5102 | { | |
76a01679 JB |
5103 | found_sym = 1; |
5104 | add_defn_to_vec (obstackp, | |
5105 | fixup_symbol_section (sym, objfile), | |
2570f2b7 | 5106 | block); |
76a01679 JB |
5107 | } |
5108 | } | |
5109 | } | |
96d887e8 PH |
5110 | } |
5111 | else | |
5112 | { | |
5113 | ALL_BLOCK_SYMBOLS (block, iter, sym) | |
76a01679 | 5114 | { |
5eeb2539 AR |
5115 | if (symbol_matches_domain (SYMBOL_LANGUAGE (sym), |
5116 | SYMBOL_DOMAIN (sym), domain)) | |
76a01679 JB |
5117 | { |
5118 | int cmp = strncmp (name, SYMBOL_LINKAGE_NAME (sym), name_len); | |
5b4ee69b | 5119 | |
76a01679 JB |
5120 | if (cmp == 0 |
5121 | && is_name_suffix (SYMBOL_LINKAGE_NAME (sym) + name_len)) | |
5122 | { | |
2a2d4dc3 AS |
5123 | if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED) |
5124 | { | |
5125 | if (SYMBOL_IS_ARGUMENT (sym)) | |
5126 | arg_sym = sym; | |
5127 | else | |
5128 | { | |
5129 | found_sym = 1; | |
5130 | add_defn_to_vec (obstackp, | |
5131 | fixup_symbol_section (sym, objfile), | |
5132 | block); | |
5133 | } | |
5134 | } | |
76a01679 JB |
5135 | } |
5136 | } | |
5137 | } | |
96d887e8 PH |
5138 | } |
5139 | ||
5140 | if (!found_sym && arg_sym != NULL) | |
5141 | { | |
76a01679 JB |
5142 | add_defn_to_vec (obstackp, |
5143 | fixup_symbol_section (arg_sym, objfile), | |
2570f2b7 | 5144 | block); |
96d887e8 PH |
5145 | } |
5146 | ||
5147 | if (!wild) | |
5148 | { | |
5149 | arg_sym = NULL; | |
5150 | found_sym = 0; | |
5151 | ||
5152 | ALL_BLOCK_SYMBOLS (block, iter, sym) | |
76a01679 | 5153 | { |
5eeb2539 AR |
5154 | if (symbol_matches_domain (SYMBOL_LANGUAGE (sym), |
5155 | SYMBOL_DOMAIN (sym), domain)) | |
76a01679 JB |
5156 | { |
5157 | int cmp; | |
5158 | ||
5159 | cmp = (int) '_' - (int) SYMBOL_LINKAGE_NAME (sym)[0]; | |
5160 | if (cmp == 0) | |
5161 | { | |
5162 | cmp = strncmp ("_ada_", SYMBOL_LINKAGE_NAME (sym), 5); | |
5163 | if (cmp == 0) | |
5164 | cmp = strncmp (name, SYMBOL_LINKAGE_NAME (sym) + 5, | |
5165 | name_len); | |
5166 | } | |
5167 | ||
5168 | if (cmp == 0 | |
5169 | && is_name_suffix (SYMBOL_LINKAGE_NAME (sym) + name_len + 5)) | |
5170 | { | |
2a2d4dc3 AS |
5171 | if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED) |
5172 | { | |
5173 | if (SYMBOL_IS_ARGUMENT (sym)) | |
5174 | arg_sym = sym; | |
5175 | else | |
5176 | { | |
5177 | found_sym = 1; | |
5178 | add_defn_to_vec (obstackp, | |
5179 | fixup_symbol_section (sym, objfile), | |
5180 | block); | |
5181 | } | |
5182 | } | |
76a01679 JB |
5183 | } |
5184 | } | |
76a01679 | 5185 | } |
96d887e8 PH |
5186 | |
5187 | /* NOTE: This really shouldn't be needed for _ada_ symbols. | |
5188 | They aren't parameters, right? */ | |
5189 | if (!found_sym && arg_sym != NULL) | |
5190 | { | |
5191 | add_defn_to_vec (obstackp, | |
76a01679 | 5192 | fixup_symbol_section (arg_sym, objfile), |
2570f2b7 | 5193 | block); |
96d887e8 PH |
5194 | } |
5195 | } | |
5196 | } | |
5197 | \f | |
41d27058 JB |
5198 | |
5199 | /* Symbol Completion */ | |
5200 | ||
5201 | /* If SYM_NAME is a completion candidate for TEXT, return this symbol | |
5202 | name in a form that's appropriate for the completion. The result | |
5203 | does not need to be deallocated, but is only good until the next call. | |
5204 | ||
5205 | TEXT_LEN is equal to the length of TEXT. | |
5206 | Perform a wild match if WILD_MATCH is set. | |
5207 | ENCODED should be set if TEXT represents the start of a symbol name | |
5208 | in its encoded form. */ | |
5209 | ||
5210 | static const char * | |
5211 | symbol_completion_match (const char *sym_name, | |
5212 | const char *text, int text_len, | |
5213 | int wild_match, int encoded) | |
5214 | { | |
41d27058 JB |
5215 | const int verbatim_match = (text[0] == '<'); |
5216 | int match = 0; | |
5217 | ||
5218 | if (verbatim_match) | |
5219 | { | |
5220 | /* Strip the leading angle bracket. */ | |
5221 | text = text + 1; | |
5222 | text_len--; | |
5223 | } | |
5224 | ||
5225 | /* First, test against the fully qualified name of the symbol. */ | |
5226 | ||
5227 | if (strncmp (sym_name, text, text_len) == 0) | |
5228 | match = 1; | |
5229 | ||
5230 | if (match && !encoded) | |
5231 | { | |
5232 | /* One needed check before declaring a positive match is to verify | |
5233 | that iff we are doing a verbatim match, the decoded version | |
5234 | of the symbol name starts with '<'. Otherwise, this symbol name | |
5235 | is not a suitable completion. */ | |
5236 | const char *sym_name_copy = sym_name; | |
5237 | int has_angle_bracket; | |
5238 | ||
5239 | sym_name = ada_decode (sym_name); | |
5240 | has_angle_bracket = (sym_name[0] == '<'); | |
5241 | match = (has_angle_bracket == verbatim_match); | |
5242 | sym_name = sym_name_copy; | |
5243 | } | |
5244 | ||
5245 | if (match && !verbatim_match) | |
5246 | { | |
5247 | /* When doing non-verbatim match, another check that needs to | |
5248 | be done is to verify that the potentially matching symbol name | |
5249 | does not include capital letters, because the ada-mode would | |
5250 | not be able to understand these symbol names without the | |
5251 | angle bracket notation. */ | |
5252 | const char *tmp; | |
5253 | ||
5254 | for (tmp = sym_name; *tmp != '\0' && !isupper (*tmp); tmp++); | |
5255 | if (*tmp != '\0') | |
5256 | match = 0; | |
5257 | } | |
5258 | ||
5259 | /* Second: Try wild matching... */ | |
5260 | ||
5261 | if (!match && wild_match) | |
5262 | { | |
5263 | /* Since we are doing wild matching, this means that TEXT | |
5264 | may represent an unqualified symbol name. We therefore must | |
5265 | also compare TEXT against the unqualified name of the symbol. */ | |
5266 | sym_name = ada_unqualified_name (ada_decode (sym_name)); | |
5267 | ||
5268 | if (strncmp (sym_name, text, text_len) == 0) | |
5269 | match = 1; | |
5270 | } | |
5271 | ||
5272 | /* Finally: If we found a mach, prepare the result to return. */ | |
5273 | ||
5274 | if (!match) | |
5275 | return NULL; | |
5276 | ||
5277 | if (verbatim_match) | |
5278 | sym_name = add_angle_brackets (sym_name); | |
5279 | ||
5280 | if (!encoded) | |
5281 | sym_name = ada_decode (sym_name); | |
5282 | ||
5283 | return sym_name; | |
5284 | } | |
5285 | ||
2ba95b9b JB |
5286 | DEF_VEC_P (char_ptr); |
5287 | ||
41d27058 JB |
5288 | /* A companion function to ada_make_symbol_completion_list(). |
5289 | Check if SYM_NAME represents a symbol which name would be suitable | |
5290 | to complete TEXT (TEXT_LEN is the length of TEXT), in which case | |
5291 | it is appended at the end of the given string vector SV. | |
5292 | ||
5293 | ORIG_TEXT is the string original string from the user command | |
5294 | that needs to be completed. WORD is the entire command on which | |
5295 | completion should be performed. These two parameters are used to | |
5296 | determine which part of the symbol name should be added to the | |
5297 | completion vector. | |
5298 | if WILD_MATCH is set, then wild matching is performed. | |
5299 | ENCODED should be set if TEXT represents a symbol name in its | |
5300 | encoded formed (in which case the completion should also be | |
5301 | encoded). */ | |
5302 | ||
5303 | static void | |
d6565258 | 5304 | symbol_completion_add (VEC(char_ptr) **sv, |
41d27058 JB |
5305 | const char *sym_name, |
5306 | const char *text, int text_len, | |
5307 | const char *orig_text, const char *word, | |
5308 | int wild_match, int encoded) | |
5309 | { | |
5310 | const char *match = symbol_completion_match (sym_name, text, text_len, | |
5311 | wild_match, encoded); | |
5312 | char *completion; | |
5313 | ||
5314 | if (match == NULL) | |
5315 | return; | |
5316 | ||
5317 | /* We found a match, so add the appropriate completion to the given | |
5318 | string vector. */ | |
5319 | ||
5320 | if (word == orig_text) | |
5321 | { | |
5322 | completion = xmalloc (strlen (match) + 5); | |
5323 | strcpy (completion, match); | |
5324 | } | |
5325 | else if (word > orig_text) | |
5326 | { | |
5327 | /* Return some portion of sym_name. */ | |
5328 | completion = xmalloc (strlen (match) + 5); | |
5329 | strcpy (completion, match + (word - orig_text)); | |
5330 | } | |
5331 | else | |
5332 | { | |
5333 | /* Return some of ORIG_TEXT plus sym_name. */ | |
5334 | completion = xmalloc (strlen (match) + (orig_text - word) + 5); | |
5335 | strncpy (completion, word, orig_text - word); | |
5336 | completion[orig_text - word] = '\0'; | |
5337 | strcat (completion, match); | |
5338 | } | |
5339 | ||
d6565258 | 5340 | VEC_safe_push (char_ptr, *sv, completion); |
41d27058 JB |
5341 | } |
5342 | ||
ccefe4c4 TT |
5343 | /* An object of this type is passed as the user_data argument to the |
5344 | map_partial_symbol_names method. */ | |
5345 | struct add_partial_datum | |
5346 | { | |
5347 | VEC(char_ptr) **completions; | |
5348 | char *text; | |
5349 | int text_len; | |
5350 | char *text0; | |
5351 | char *word; | |
5352 | int wild_match; | |
5353 | int encoded; | |
5354 | }; | |
5355 | ||
5356 | /* A callback for map_partial_symbol_names. */ | |
5357 | static void | |
5358 | ada_add_partial_symbol_completions (const char *name, void *user_data) | |
5359 | { | |
5360 | struct add_partial_datum *data = user_data; | |
5b4ee69b | 5361 | |
ccefe4c4 TT |
5362 | symbol_completion_add (data->completions, name, |
5363 | data->text, data->text_len, data->text0, data->word, | |
5364 | data->wild_match, data->encoded); | |
5365 | } | |
5366 | ||
41d27058 JB |
5367 | /* Return a list of possible symbol names completing TEXT0. The list |
5368 | is NULL terminated. WORD is the entire command on which completion | |
5369 | is made. */ | |
5370 | ||
5371 | static char ** | |
5372 | ada_make_symbol_completion_list (char *text0, char *word) | |
5373 | { | |
5374 | char *text; | |
5375 | int text_len; | |
5376 | int wild_match; | |
5377 | int encoded; | |
2ba95b9b | 5378 | VEC(char_ptr) *completions = VEC_alloc (char_ptr, 128); |
41d27058 JB |
5379 | struct symbol *sym; |
5380 | struct symtab *s; | |
41d27058 JB |
5381 | struct minimal_symbol *msymbol; |
5382 | struct objfile *objfile; | |
5383 | struct block *b, *surrounding_static_block = 0; | |
5384 | int i; | |
5385 | struct dict_iterator iter; | |
5386 | ||
5387 | if (text0[0] == '<') | |
5388 | { | |
5389 | text = xstrdup (text0); | |
5390 | make_cleanup (xfree, text); | |
5391 | text_len = strlen (text); | |
5392 | wild_match = 0; | |
5393 | encoded = 1; | |
5394 | } | |
5395 | else | |
5396 | { | |
5397 | text = xstrdup (ada_encode (text0)); | |
5398 | make_cleanup (xfree, text); | |
5399 | text_len = strlen (text); | |
5400 | for (i = 0; i < text_len; i++) | |
5401 | text[i] = tolower (text[i]); | |
5402 | ||
5403 | encoded = (strstr (text0, "__") != NULL); | |
5404 | /* If the name contains a ".", then the user is entering a fully | |
5405 | qualified entity name, and the match must not be done in wild | |
5406 | mode. Similarly, if the user wants to complete what looks like | |
5407 | an encoded name, the match must not be done in wild mode. */ | |
5408 | wild_match = (strchr (text0, '.') == NULL && !encoded); | |
5409 | } | |
5410 | ||
5411 | /* First, look at the partial symtab symbols. */ | |
41d27058 | 5412 | { |
ccefe4c4 TT |
5413 | struct add_partial_datum data; |
5414 | ||
5415 | data.completions = &completions; | |
5416 | data.text = text; | |
5417 | data.text_len = text_len; | |
5418 | data.text0 = text0; | |
5419 | data.word = word; | |
5420 | data.wild_match = wild_match; | |
5421 | data.encoded = encoded; | |
5422 | map_partial_symbol_names (ada_add_partial_symbol_completions, &data); | |
41d27058 JB |
5423 | } |
5424 | ||
5425 | /* At this point scan through the misc symbol vectors and add each | |
5426 | symbol you find to the list. Eventually we want to ignore | |
5427 | anything that isn't a text symbol (everything else will be | |
5428 | handled by the psymtab code above). */ | |
5429 | ||
5430 | ALL_MSYMBOLS (objfile, msymbol) | |
5431 | { | |
5432 | QUIT; | |
d6565258 | 5433 | symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (msymbol), |
41d27058 JB |
5434 | text, text_len, text0, word, wild_match, encoded); |
5435 | } | |
5436 | ||
5437 | /* Search upwards from currently selected frame (so that we can | |
5438 | complete on local vars. */ | |
5439 | ||
5440 | for (b = get_selected_block (0); b != NULL; b = BLOCK_SUPERBLOCK (b)) | |
5441 | { | |
5442 | if (!BLOCK_SUPERBLOCK (b)) | |
5443 | surrounding_static_block = b; /* For elmin of dups */ | |
5444 | ||
5445 | ALL_BLOCK_SYMBOLS (b, iter, sym) | |
5446 | { | |
d6565258 | 5447 | symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym), |
41d27058 JB |
5448 | text, text_len, text0, word, |
5449 | wild_match, encoded); | |
5450 | } | |
5451 | } | |
5452 | ||
5453 | /* Go through the symtabs and check the externs and statics for | |
5454 | symbols which match. */ | |
5455 | ||
5456 | ALL_SYMTABS (objfile, s) | |
5457 | { | |
5458 | QUIT; | |
5459 | b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), GLOBAL_BLOCK); | |
5460 | ALL_BLOCK_SYMBOLS (b, iter, sym) | |
5461 | { | |
d6565258 | 5462 | symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym), |
41d27058 JB |
5463 | text, text_len, text0, word, |
5464 | wild_match, encoded); | |
5465 | } | |
5466 | } | |
5467 | ||
5468 | ALL_SYMTABS (objfile, s) | |
5469 | { | |
5470 | QUIT; | |
5471 | b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), STATIC_BLOCK); | |
5472 | /* Don't do this block twice. */ | |
5473 | if (b == surrounding_static_block) | |
5474 | continue; | |
5475 | ALL_BLOCK_SYMBOLS (b, iter, sym) | |
5476 | { | |
d6565258 | 5477 | symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym), |
41d27058 JB |
5478 | text, text_len, text0, word, |
5479 | wild_match, encoded); | |
5480 | } | |
5481 | } | |
5482 | ||
5483 | /* Append the closing NULL entry. */ | |
2ba95b9b | 5484 | VEC_safe_push (char_ptr, completions, NULL); |
41d27058 | 5485 | |
2ba95b9b JB |
5486 | /* Make a copy of the COMPLETIONS VEC before we free it, and then |
5487 | return the copy. It's unfortunate that we have to make a copy | |
5488 | of an array that we're about to destroy, but there is nothing much | |
5489 | we can do about it. Fortunately, it's typically not a very large | |
5490 | array. */ | |
5491 | { | |
5492 | const size_t completions_size = | |
5493 | VEC_length (char_ptr, completions) * sizeof (char *); | |
5494 | char **result = malloc (completions_size); | |
5495 | ||
5496 | memcpy (result, VEC_address (char_ptr, completions), completions_size); | |
5497 | ||
5498 | VEC_free (char_ptr, completions); | |
5499 | return result; | |
5500 | } | |
41d27058 JB |
5501 | } |
5502 | ||
963a6417 | 5503 | /* Field Access */ |
96d887e8 | 5504 | |
73fb9985 JB |
5505 | /* Return non-zero if TYPE is a pointer to the GNAT dispatch table used |
5506 | for tagged types. */ | |
5507 | ||
5508 | static int | |
5509 | ada_is_dispatch_table_ptr_type (struct type *type) | |
5510 | { | |
5511 | char *name; | |
5512 | ||
5513 | if (TYPE_CODE (type) != TYPE_CODE_PTR) | |
5514 | return 0; | |
5515 | ||
5516 | name = TYPE_NAME (TYPE_TARGET_TYPE (type)); | |
5517 | if (name == NULL) | |
5518 | return 0; | |
5519 | ||
5520 | return (strcmp (name, "ada__tags__dispatch_table") == 0); | |
5521 | } | |
5522 | ||
963a6417 PH |
5523 | /* True if field number FIELD_NUM in struct or union type TYPE is supposed |
5524 | to be invisible to users. */ | |
96d887e8 | 5525 | |
963a6417 PH |
5526 | int |
5527 | ada_is_ignored_field (struct type *type, int field_num) | |
96d887e8 | 5528 | { |
963a6417 PH |
5529 | if (field_num < 0 || field_num > TYPE_NFIELDS (type)) |
5530 | return 1; | |
73fb9985 JB |
5531 | |
5532 | /* Check the name of that field. */ | |
5533 | { | |
5534 | const char *name = TYPE_FIELD_NAME (type, field_num); | |
5535 | ||
5536 | /* Anonymous field names should not be printed. | |
5537 | brobecker/2007-02-20: I don't think this can actually happen | |
5538 | but we don't want to print the value of annonymous fields anyway. */ | |
5539 | if (name == NULL) | |
5540 | return 1; | |
5541 | ||
5542 | /* A field named "_parent" is internally generated by GNAT for | |
5543 | tagged types, and should not be printed either. */ | |
5544 | if (name[0] == '_' && strncmp (name, "_parent", 7) != 0) | |
5545 | return 1; | |
5546 | } | |
5547 | ||
5548 | /* If this is the dispatch table of a tagged type, then ignore. */ | |
5549 | if (ada_is_tagged_type (type, 1) | |
5550 | && ada_is_dispatch_table_ptr_type (TYPE_FIELD_TYPE (type, field_num))) | |
5551 | return 1; | |
5552 | ||
5553 | /* Not a special field, so it should not be ignored. */ | |
5554 | return 0; | |
963a6417 | 5555 | } |
96d887e8 | 5556 | |
963a6417 PH |
5557 | /* True iff TYPE has a tag field. If REFOK, then TYPE may also be a |
5558 | pointer or reference type whose ultimate target has a tag field. */ | |
96d887e8 | 5559 | |
963a6417 PH |
5560 | int |
5561 | ada_is_tagged_type (struct type *type, int refok) | |
5562 | { | |
5563 | return (ada_lookup_struct_elt_type (type, "_tag", refok, 1, NULL) != NULL); | |
5564 | } | |
96d887e8 | 5565 | |
963a6417 | 5566 | /* True iff TYPE represents the type of X'Tag */ |
96d887e8 | 5567 | |
963a6417 PH |
5568 | int |
5569 | ada_is_tag_type (struct type *type) | |
5570 | { | |
5571 | if (type == NULL || TYPE_CODE (type) != TYPE_CODE_PTR) | |
5572 | return 0; | |
5573 | else | |
96d887e8 | 5574 | { |
963a6417 | 5575 | const char *name = ada_type_name (TYPE_TARGET_TYPE (type)); |
5b4ee69b | 5576 | |
963a6417 PH |
5577 | return (name != NULL |
5578 | && strcmp (name, "ada__tags__dispatch_table") == 0); | |
96d887e8 | 5579 | } |
96d887e8 PH |
5580 | } |
5581 | ||
963a6417 | 5582 | /* The type of the tag on VAL. */ |
76a01679 | 5583 | |
963a6417 PH |
5584 | struct type * |
5585 | ada_tag_type (struct value *val) | |
96d887e8 | 5586 | { |
df407dfe | 5587 | return ada_lookup_struct_elt_type (value_type (val), "_tag", 1, 0, NULL); |
963a6417 | 5588 | } |
96d887e8 | 5589 | |
963a6417 | 5590 | /* The value of the tag on VAL. */ |
96d887e8 | 5591 | |
963a6417 PH |
5592 | struct value * |
5593 | ada_value_tag (struct value *val) | |
5594 | { | |
03ee6b2e | 5595 | return ada_value_struct_elt (val, "_tag", 0); |
96d887e8 PH |
5596 | } |
5597 | ||
963a6417 PH |
5598 | /* The value of the tag on the object of type TYPE whose contents are |
5599 | saved at VALADDR, if it is non-null, or is at memory address | |
5600 | ADDRESS. */ | |
96d887e8 | 5601 | |
963a6417 | 5602 | static struct value * |
10a2c479 | 5603 | value_tag_from_contents_and_address (struct type *type, |
fc1a4b47 | 5604 | const gdb_byte *valaddr, |
963a6417 | 5605 | CORE_ADDR address) |
96d887e8 | 5606 | { |
b5385fc0 | 5607 | int tag_byte_offset; |
963a6417 | 5608 | struct type *tag_type; |
5b4ee69b | 5609 | |
963a6417 | 5610 | if (find_struct_field ("_tag", type, 0, &tag_type, &tag_byte_offset, |
52ce6436 | 5611 | NULL, NULL, NULL)) |
96d887e8 | 5612 | { |
fc1a4b47 | 5613 | const gdb_byte *valaddr1 = ((valaddr == NULL) |
10a2c479 AC |
5614 | ? NULL |
5615 | : valaddr + tag_byte_offset); | |
963a6417 | 5616 | CORE_ADDR address1 = (address == 0) ? 0 : address + tag_byte_offset; |
96d887e8 | 5617 | |
963a6417 | 5618 | return value_from_contents_and_address (tag_type, valaddr1, address1); |
96d887e8 | 5619 | } |
963a6417 PH |
5620 | return NULL; |
5621 | } | |
96d887e8 | 5622 | |
963a6417 PH |
5623 | static struct type * |
5624 | type_from_tag (struct value *tag) | |
5625 | { | |
5626 | const char *type_name = ada_tag_name (tag); | |
5b4ee69b | 5627 | |
963a6417 PH |
5628 | if (type_name != NULL) |
5629 | return ada_find_any_type (ada_encode (type_name)); | |
5630 | return NULL; | |
5631 | } | |
96d887e8 | 5632 | |
963a6417 PH |
5633 | struct tag_args |
5634 | { | |
5635 | struct value *tag; | |
5636 | char *name; | |
5637 | }; | |
4c4b4cd2 | 5638 | |
529cad9c PH |
5639 | |
5640 | static int ada_tag_name_1 (void *); | |
5641 | static int ada_tag_name_2 (struct tag_args *); | |
5642 | ||
4c4b4cd2 PH |
5643 | /* Wrapper function used by ada_tag_name. Given a struct tag_args* |
5644 | value ARGS, sets ARGS->name to the tag name of ARGS->tag. | |
5645 | The value stored in ARGS->name is valid until the next call to | |
5646 | ada_tag_name_1. */ | |
5647 | ||
5648 | static int | |
5649 | ada_tag_name_1 (void *args0) | |
5650 | { | |
5651 | struct tag_args *args = (struct tag_args *) args0; | |
5652 | static char name[1024]; | |
76a01679 | 5653 | char *p; |
4c4b4cd2 | 5654 | struct value *val; |
5b4ee69b | 5655 | |
4c4b4cd2 | 5656 | args->name = NULL; |
03ee6b2e | 5657 | val = ada_value_struct_elt (args->tag, "tsd", 1); |
529cad9c PH |
5658 | if (val == NULL) |
5659 | return ada_tag_name_2 (args); | |
03ee6b2e | 5660 | val = ada_value_struct_elt (val, "expanded_name", 1); |
529cad9c PH |
5661 | if (val == NULL) |
5662 | return 0; | |
5663 | read_memory_string (value_as_address (val), name, sizeof (name) - 1); | |
5664 | for (p = name; *p != '\0'; p += 1) | |
5665 | if (isalpha (*p)) | |
5666 | *p = tolower (*p); | |
5667 | args->name = name; | |
5668 | return 0; | |
5669 | } | |
5670 | ||
e802dbe0 JB |
5671 | /* Return the "ada__tags__type_specific_data" type. */ |
5672 | ||
5673 | static struct type * | |
5674 | ada_get_tsd_type (struct inferior *inf) | |
5675 | { | |
5676 | struct ada_inferior_data *data = get_ada_inferior_data (inf); | |
5677 | ||
5678 | if (data->tsd_type == 0) | |
5679 | data->tsd_type = ada_find_any_type ("ada__tags__type_specific_data"); | |
5680 | return data->tsd_type; | |
5681 | } | |
5682 | ||
529cad9c PH |
5683 | /* Utility function for ada_tag_name_1 that tries the second |
5684 | representation for the dispatch table (in which there is no | |
5685 | explicit 'tsd' field in the referent of the tag pointer, and instead | |
5686 | the tsd pointer is stored just before the dispatch table. */ | |
5687 | ||
5688 | static int | |
5689 | ada_tag_name_2 (struct tag_args *args) | |
5690 | { | |
5691 | struct type *info_type; | |
5692 | static char name[1024]; | |
5693 | char *p; | |
5694 | struct value *val, *valp; | |
5695 | ||
5696 | args->name = NULL; | |
e802dbe0 | 5697 | info_type = ada_get_tsd_type (current_inferior()); |
529cad9c PH |
5698 | if (info_type == NULL) |
5699 | return 0; | |
5700 | info_type = lookup_pointer_type (lookup_pointer_type (info_type)); | |
5701 | valp = value_cast (info_type, args->tag); | |
5702 | if (valp == NULL) | |
5703 | return 0; | |
2497b498 | 5704 | val = value_ind (value_ptradd (valp, -1)); |
4c4b4cd2 PH |
5705 | if (val == NULL) |
5706 | return 0; | |
03ee6b2e | 5707 | val = ada_value_struct_elt (val, "expanded_name", 1); |
4c4b4cd2 PH |
5708 | if (val == NULL) |
5709 | return 0; | |
5710 | read_memory_string (value_as_address (val), name, sizeof (name) - 1); | |
5711 | for (p = name; *p != '\0'; p += 1) | |
5712 | if (isalpha (*p)) | |
5713 | *p = tolower (*p); | |
5714 | args->name = name; | |
5715 | return 0; | |
5716 | } | |
5717 | ||
5718 | /* The type name of the dynamic type denoted by the 'tag value TAG, as | |
e802dbe0 | 5719 | a C string. */ |
4c4b4cd2 PH |
5720 | |
5721 | const char * | |
5722 | ada_tag_name (struct value *tag) | |
5723 | { | |
5724 | struct tag_args args; | |
5b4ee69b | 5725 | |
df407dfe | 5726 | if (!ada_is_tag_type (value_type (tag))) |
4c4b4cd2 | 5727 | return NULL; |
76a01679 | 5728 | args.tag = tag; |
4c4b4cd2 PH |
5729 | args.name = NULL; |
5730 | catch_errors (ada_tag_name_1, &args, NULL, RETURN_MASK_ALL); | |
5731 | return args.name; | |
5732 | } | |
5733 | ||
5734 | /* The parent type of TYPE, or NULL if none. */ | |
14f9c5c9 | 5735 | |
d2e4a39e | 5736 | struct type * |
ebf56fd3 | 5737 | ada_parent_type (struct type *type) |
14f9c5c9 AS |
5738 | { |
5739 | int i; | |
5740 | ||
61ee279c | 5741 | type = ada_check_typedef (type); |
14f9c5c9 AS |
5742 | |
5743 | if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT) | |
5744 | return NULL; | |
5745 | ||
5746 | for (i = 0; i < TYPE_NFIELDS (type); i += 1) | |
5747 | if (ada_is_parent_field (type, i)) | |
0c1f74cf JB |
5748 | { |
5749 | struct type *parent_type = TYPE_FIELD_TYPE (type, i); | |
5750 | ||
5751 | /* If the _parent field is a pointer, then dereference it. */ | |
5752 | if (TYPE_CODE (parent_type) == TYPE_CODE_PTR) | |
5753 | parent_type = TYPE_TARGET_TYPE (parent_type); | |
5754 | /* If there is a parallel XVS type, get the actual base type. */ | |
5755 | parent_type = ada_get_base_type (parent_type); | |
5756 | ||
5757 | return ada_check_typedef (parent_type); | |
5758 | } | |
14f9c5c9 AS |
5759 | |
5760 | return NULL; | |
5761 | } | |
5762 | ||
4c4b4cd2 PH |
5763 | /* True iff field number FIELD_NUM of structure type TYPE contains the |
5764 | parent-type (inherited) fields of a derived type. Assumes TYPE is | |
5765 | a structure type with at least FIELD_NUM+1 fields. */ | |
14f9c5c9 AS |
5766 | |
5767 | int | |
ebf56fd3 | 5768 | ada_is_parent_field (struct type *type, int field_num) |
14f9c5c9 | 5769 | { |
61ee279c | 5770 | const char *name = TYPE_FIELD_NAME (ada_check_typedef (type), field_num); |
5b4ee69b | 5771 | |
4c4b4cd2 PH |
5772 | return (name != NULL |
5773 | && (strncmp (name, "PARENT", 6) == 0 | |
5774 | || strncmp (name, "_parent", 7) == 0)); | |
14f9c5c9 AS |
5775 | } |
5776 | ||
4c4b4cd2 | 5777 | /* True iff field number FIELD_NUM of structure type TYPE is a |
14f9c5c9 | 5778 | transparent wrapper field (which should be silently traversed when doing |
4c4b4cd2 | 5779 | field selection and flattened when printing). Assumes TYPE is a |
14f9c5c9 | 5780 | structure type with at least FIELD_NUM+1 fields. Such fields are always |
4c4b4cd2 | 5781 | structures. */ |
14f9c5c9 AS |
5782 | |
5783 | int | |
ebf56fd3 | 5784 | ada_is_wrapper_field (struct type *type, int field_num) |
14f9c5c9 | 5785 | { |
d2e4a39e | 5786 | const char *name = TYPE_FIELD_NAME (type, field_num); |
5b4ee69b | 5787 | |
d2e4a39e | 5788 | return (name != NULL |
4c4b4cd2 PH |
5789 | && (strncmp (name, "PARENT", 6) == 0 |
5790 | || strcmp (name, "REP") == 0 | |
5791 | || strncmp (name, "_parent", 7) == 0 | |
5792 | || name[0] == 'S' || name[0] == 'R' || name[0] == 'O')); | |
14f9c5c9 AS |
5793 | } |
5794 | ||
4c4b4cd2 PH |
5795 | /* True iff field number FIELD_NUM of structure or union type TYPE |
5796 | is a variant wrapper. Assumes TYPE is a structure type with at least | |
5797 | FIELD_NUM+1 fields. */ | |
14f9c5c9 AS |
5798 | |
5799 | int | |
ebf56fd3 | 5800 | ada_is_variant_part (struct type *type, int field_num) |
14f9c5c9 | 5801 | { |
d2e4a39e | 5802 | struct type *field_type = TYPE_FIELD_TYPE (type, field_num); |
5b4ee69b | 5803 | |
14f9c5c9 | 5804 | return (TYPE_CODE (field_type) == TYPE_CODE_UNION |
4c4b4cd2 | 5805 | || (is_dynamic_field (type, field_num) |
c3e5cd34 PH |
5806 | && (TYPE_CODE (TYPE_TARGET_TYPE (field_type)) |
5807 | == TYPE_CODE_UNION))); | |
14f9c5c9 AS |
5808 | } |
5809 | ||
5810 | /* Assuming that VAR_TYPE is a variant wrapper (type of the variant part) | |
4c4b4cd2 | 5811 | whose discriminants are contained in the record type OUTER_TYPE, |
7c964f07 UW |
5812 | returns the type of the controlling discriminant for the variant. |
5813 | May return NULL if the type could not be found. */ | |
14f9c5c9 | 5814 | |
d2e4a39e | 5815 | struct type * |
ebf56fd3 | 5816 | ada_variant_discrim_type (struct type *var_type, struct type *outer_type) |
14f9c5c9 | 5817 | { |
d2e4a39e | 5818 | char *name = ada_variant_discrim_name (var_type); |
5b4ee69b | 5819 | |
7c964f07 | 5820 | return ada_lookup_struct_elt_type (outer_type, name, 1, 1, NULL); |
14f9c5c9 AS |
5821 | } |
5822 | ||
4c4b4cd2 | 5823 | /* Assuming that TYPE is the type of a variant wrapper, and FIELD_NUM is a |
14f9c5c9 | 5824 | valid field number within it, returns 1 iff field FIELD_NUM of TYPE |
4c4b4cd2 | 5825 | represents a 'when others' clause; otherwise 0. */ |
14f9c5c9 AS |
5826 | |
5827 | int | |
ebf56fd3 | 5828 | ada_is_others_clause (struct type *type, int field_num) |
14f9c5c9 | 5829 | { |
d2e4a39e | 5830 | const char *name = TYPE_FIELD_NAME (type, field_num); |
5b4ee69b | 5831 | |
14f9c5c9 AS |
5832 | return (name != NULL && name[0] == 'O'); |
5833 | } | |
5834 | ||
5835 | /* Assuming that TYPE0 is the type of the variant part of a record, | |
4c4b4cd2 PH |
5836 | returns the name of the discriminant controlling the variant. |
5837 | The value is valid until the next call to ada_variant_discrim_name. */ | |
14f9c5c9 | 5838 | |
d2e4a39e | 5839 | char * |
ebf56fd3 | 5840 | ada_variant_discrim_name (struct type *type0) |
14f9c5c9 | 5841 | { |
d2e4a39e | 5842 | static char *result = NULL; |
14f9c5c9 | 5843 | static size_t result_len = 0; |
d2e4a39e AS |
5844 | struct type *type; |
5845 | const char *name; | |
5846 | const char *discrim_end; | |
5847 | const char *discrim_start; | |
14f9c5c9 AS |
5848 | |
5849 | if (TYPE_CODE (type0) == TYPE_CODE_PTR) | |
5850 | type = TYPE_TARGET_TYPE (type0); | |
5851 | else | |
5852 | type = type0; | |
5853 | ||
5854 | name = ada_type_name (type); | |
5855 | ||
5856 | if (name == NULL || name[0] == '\000') | |
5857 | return ""; | |
5858 | ||
5859 | for (discrim_end = name + strlen (name) - 6; discrim_end != name; | |
5860 | discrim_end -= 1) | |
5861 | { | |
4c4b4cd2 PH |
5862 | if (strncmp (discrim_end, "___XVN", 6) == 0) |
5863 | break; | |
14f9c5c9 AS |
5864 | } |
5865 | if (discrim_end == name) | |
5866 | return ""; | |
5867 | ||
d2e4a39e | 5868 | for (discrim_start = discrim_end; discrim_start != name + 3; |
14f9c5c9 AS |
5869 | discrim_start -= 1) |
5870 | { | |
d2e4a39e | 5871 | if (discrim_start == name + 1) |
4c4b4cd2 | 5872 | return ""; |
76a01679 | 5873 | if ((discrim_start > name + 3 |
4c4b4cd2 PH |
5874 | && strncmp (discrim_start - 3, "___", 3) == 0) |
5875 | || discrim_start[-1] == '.') | |
5876 | break; | |
14f9c5c9 AS |
5877 | } |
5878 | ||
5879 | GROW_VECT (result, result_len, discrim_end - discrim_start + 1); | |
5880 | strncpy (result, discrim_start, discrim_end - discrim_start); | |
d2e4a39e | 5881 | result[discrim_end - discrim_start] = '\0'; |
14f9c5c9 AS |
5882 | return result; |
5883 | } | |
5884 | ||
4c4b4cd2 PH |
5885 | /* Scan STR for a subtype-encoded number, beginning at position K. |
5886 | Put the position of the character just past the number scanned in | |
5887 | *NEW_K, if NEW_K!=NULL. Put the scanned number in *R, if R!=NULL. | |
5888 | Return 1 if there was a valid number at the given position, and 0 | |
5889 | otherwise. A "subtype-encoded" number consists of the absolute value | |
5890 | in decimal, followed by the letter 'm' to indicate a negative number. | |
5891 | Assumes 0m does not occur. */ | |
14f9c5c9 AS |
5892 | |
5893 | int | |
d2e4a39e | 5894 | ada_scan_number (const char str[], int k, LONGEST * R, int *new_k) |
14f9c5c9 AS |
5895 | { |
5896 | ULONGEST RU; | |
5897 | ||
d2e4a39e | 5898 | if (!isdigit (str[k])) |
14f9c5c9 AS |
5899 | return 0; |
5900 | ||
4c4b4cd2 | 5901 | /* Do it the hard way so as not to make any assumption about |
14f9c5c9 | 5902 | the relationship of unsigned long (%lu scan format code) and |
4c4b4cd2 | 5903 | LONGEST. */ |
14f9c5c9 AS |
5904 | RU = 0; |
5905 | while (isdigit (str[k])) | |
5906 | { | |
d2e4a39e | 5907 | RU = RU * 10 + (str[k] - '0'); |
14f9c5c9 AS |
5908 | k += 1; |
5909 | } | |
5910 | ||
d2e4a39e | 5911 | if (str[k] == 'm') |
14f9c5c9 AS |
5912 | { |
5913 | if (R != NULL) | |
4c4b4cd2 | 5914 | *R = (-(LONGEST) (RU - 1)) - 1; |
14f9c5c9 AS |
5915 | k += 1; |
5916 | } | |
5917 | else if (R != NULL) | |
5918 | *R = (LONGEST) RU; | |
5919 | ||
4c4b4cd2 | 5920 | /* NOTE on the above: Technically, C does not say what the results of |
14f9c5c9 AS |
5921 | - (LONGEST) RU or (LONGEST) -RU are for RU == largest positive |
5922 | number representable as a LONGEST (although either would probably work | |
5923 | in most implementations). When RU>0, the locution in the then branch | |
4c4b4cd2 | 5924 | above is always equivalent to the negative of RU. */ |
14f9c5c9 AS |
5925 | |
5926 | if (new_k != NULL) | |
5927 | *new_k = k; | |
5928 | return 1; | |
5929 | } | |
5930 | ||
4c4b4cd2 PH |
5931 | /* Assuming that TYPE is a variant part wrapper type (a VARIANTS field), |
5932 | and FIELD_NUM is a valid field number within it, returns 1 iff VAL is | |
5933 | in the range encoded by field FIELD_NUM of TYPE; otherwise 0. */ | |
14f9c5c9 | 5934 | |
d2e4a39e | 5935 | int |
ebf56fd3 | 5936 | ada_in_variant (LONGEST val, struct type *type, int field_num) |
14f9c5c9 | 5937 | { |
d2e4a39e | 5938 | const char *name = TYPE_FIELD_NAME (type, field_num); |
14f9c5c9 AS |
5939 | int p; |
5940 | ||
5941 | p = 0; | |
5942 | while (1) | |
5943 | { | |
d2e4a39e | 5944 | switch (name[p]) |
4c4b4cd2 PH |
5945 | { |
5946 | case '\0': | |
5947 | return 0; | |
5948 | case 'S': | |
5949 | { | |
5950 | LONGEST W; | |
5b4ee69b | 5951 | |
4c4b4cd2 PH |
5952 | if (!ada_scan_number (name, p + 1, &W, &p)) |
5953 | return 0; | |
5954 | if (val == W) | |
5955 | return 1; | |
5956 | break; | |
5957 | } | |
5958 | case 'R': | |
5959 | { | |
5960 | LONGEST L, U; | |
5b4ee69b | 5961 | |
4c4b4cd2 PH |
5962 | if (!ada_scan_number (name, p + 1, &L, &p) |
5963 | || name[p] != 'T' || !ada_scan_number (name, p + 1, &U, &p)) | |
5964 | return 0; | |
5965 | if (val >= L && val <= U) | |
5966 | return 1; | |
5967 | break; | |
5968 | } | |
5969 | case 'O': | |
5970 | return 1; | |
5971 | default: | |
5972 | return 0; | |
5973 | } | |
5974 | } | |
5975 | } | |
5976 | ||
5977 | /* FIXME: Lots of redundancy below. Try to consolidate. */ | |
5978 | ||
5979 | /* Given a value ARG1 (offset by OFFSET bytes) of a struct or union type | |
5980 | ARG_TYPE, extract and return the value of one of its (non-static) | |
5981 | fields. FIELDNO says which field. Differs from value_primitive_field | |
5982 | only in that it can handle packed values of arbitrary type. */ | |
14f9c5c9 | 5983 | |
4c4b4cd2 | 5984 | static struct value * |
d2e4a39e | 5985 | ada_value_primitive_field (struct value *arg1, int offset, int fieldno, |
4c4b4cd2 | 5986 | struct type *arg_type) |
14f9c5c9 | 5987 | { |
14f9c5c9 AS |
5988 | struct type *type; |
5989 | ||
61ee279c | 5990 | arg_type = ada_check_typedef (arg_type); |
14f9c5c9 AS |
5991 | type = TYPE_FIELD_TYPE (arg_type, fieldno); |
5992 | ||
4c4b4cd2 | 5993 | /* Handle packed fields. */ |
14f9c5c9 AS |
5994 | |
5995 | if (TYPE_FIELD_BITSIZE (arg_type, fieldno) != 0) | |
5996 | { | |
5997 | int bit_pos = TYPE_FIELD_BITPOS (arg_type, fieldno); | |
5998 | int bit_size = TYPE_FIELD_BITSIZE (arg_type, fieldno); | |
d2e4a39e | 5999 | |
0fd88904 | 6000 | return ada_value_primitive_packed_val (arg1, value_contents (arg1), |
4c4b4cd2 PH |
6001 | offset + bit_pos / 8, |
6002 | bit_pos % 8, bit_size, type); | |
14f9c5c9 AS |
6003 | } |
6004 | else | |
6005 | return value_primitive_field (arg1, offset, fieldno, arg_type); | |
6006 | } | |
6007 | ||
52ce6436 PH |
6008 | /* Find field with name NAME in object of type TYPE. If found, |
6009 | set the following for each argument that is non-null: | |
6010 | - *FIELD_TYPE_P to the field's type; | |
6011 | - *BYTE_OFFSET_P to OFFSET + the byte offset of the field within | |
6012 | an object of that type; | |
6013 | - *BIT_OFFSET_P to the bit offset modulo byte size of the field; | |
6014 | - *BIT_SIZE_P to its size in bits if the field is packed, and | |
6015 | 0 otherwise; | |
6016 | If INDEX_P is non-null, increment *INDEX_P by the number of source-visible | |
6017 | fields up to but not including the desired field, or by the total | |
6018 | number of fields if not found. A NULL value of NAME never | |
6019 | matches; the function just counts visible fields in this case. | |
6020 | ||
6021 | Returns 1 if found, 0 otherwise. */ | |
6022 | ||
4c4b4cd2 | 6023 | static int |
76a01679 JB |
6024 | find_struct_field (char *name, struct type *type, int offset, |
6025 | struct type **field_type_p, | |
52ce6436 PH |
6026 | int *byte_offset_p, int *bit_offset_p, int *bit_size_p, |
6027 | int *index_p) | |
4c4b4cd2 PH |
6028 | { |
6029 | int i; | |
6030 | ||
61ee279c | 6031 | type = ada_check_typedef (type); |
76a01679 | 6032 | |
52ce6436 PH |
6033 | if (field_type_p != NULL) |
6034 | *field_type_p = NULL; | |
6035 | if (byte_offset_p != NULL) | |
d5d6fca5 | 6036 | *byte_offset_p = 0; |
52ce6436 PH |
6037 | if (bit_offset_p != NULL) |
6038 | *bit_offset_p = 0; | |
6039 | if (bit_size_p != NULL) | |
6040 | *bit_size_p = 0; | |
6041 | ||
6042 | for (i = 0; i < TYPE_NFIELDS (type); i += 1) | |
4c4b4cd2 PH |
6043 | { |
6044 | int bit_pos = TYPE_FIELD_BITPOS (type, i); | |
6045 | int fld_offset = offset + bit_pos / 8; | |
6046 | char *t_field_name = TYPE_FIELD_NAME (type, i); | |
76a01679 | 6047 | |
4c4b4cd2 PH |
6048 | if (t_field_name == NULL) |
6049 | continue; | |
6050 | ||
52ce6436 | 6051 | else if (name != NULL && field_name_match (t_field_name, name)) |
76a01679 JB |
6052 | { |
6053 | int bit_size = TYPE_FIELD_BITSIZE (type, i); | |
5b4ee69b | 6054 | |
52ce6436 PH |
6055 | if (field_type_p != NULL) |
6056 | *field_type_p = TYPE_FIELD_TYPE (type, i); | |
6057 | if (byte_offset_p != NULL) | |
6058 | *byte_offset_p = fld_offset; | |
6059 | if (bit_offset_p != NULL) | |
6060 | *bit_offset_p = bit_pos % 8; | |
6061 | if (bit_size_p != NULL) | |
6062 | *bit_size_p = bit_size; | |
76a01679 JB |
6063 | return 1; |
6064 | } | |
4c4b4cd2 PH |
6065 | else if (ada_is_wrapper_field (type, i)) |
6066 | { | |
52ce6436 PH |
6067 | if (find_struct_field (name, TYPE_FIELD_TYPE (type, i), fld_offset, |
6068 | field_type_p, byte_offset_p, bit_offset_p, | |
6069 | bit_size_p, index_p)) | |
76a01679 JB |
6070 | return 1; |
6071 | } | |
4c4b4cd2 PH |
6072 | else if (ada_is_variant_part (type, i)) |
6073 | { | |
52ce6436 PH |
6074 | /* PNH: Wait. Do we ever execute this section, or is ARG always of |
6075 | fixed type?? */ | |
4c4b4cd2 | 6076 | int j; |
52ce6436 PH |
6077 | struct type *field_type |
6078 | = ada_check_typedef (TYPE_FIELD_TYPE (type, i)); | |
4c4b4cd2 | 6079 | |
52ce6436 | 6080 | for (j = 0; j < TYPE_NFIELDS (field_type); j += 1) |
4c4b4cd2 | 6081 | { |
76a01679 JB |
6082 | if (find_struct_field (name, TYPE_FIELD_TYPE (field_type, j), |
6083 | fld_offset | |
6084 | + TYPE_FIELD_BITPOS (field_type, j) / 8, | |
6085 | field_type_p, byte_offset_p, | |
52ce6436 | 6086 | bit_offset_p, bit_size_p, index_p)) |
76a01679 | 6087 | return 1; |
4c4b4cd2 PH |
6088 | } |
6089 | } | |
52ce6436 PH |
6090 | else if (index_p != NULL) |
6091 | *index_p += 1; | |
4c4b4cd2 PH |
6092 | } |
6093 | return 0; | |
6094 | } | |
6095 | ||
52ce6436 | 6096 | /* Number of user-visible fields in record type TYPE. */ |
4c4b4cd2 | 6097 | |
52ce6436 PH |
6098 | static int |
6099 | num_visible_fields (struct type *type) | |
6100 | { | |
6101 | int n; | |
5b4ee69b | 6102 | |
52ce6436 PH |
6103 | n = 0; |
6104 | find_struct_field (NULL, type, 0, NULL, NULL, NULL, NULL, &n); | |
6105 | return n; | |
6106 | } | |
14f9c5c9 | 6107 | |
4c4b4cd2 | 6108 | /* Look for a field NAME in ARG. Adjust the address of ARG by OFFSET bytes, |
14f9c5c9 AS |
6109 | and search in it assuming it has (class) type TYPE. |
6110 | If found, return value, else return NULL. | |
6111 | ||
4c4b4cd2 | 6112 | Searches recursively through wrapper fields (e.g., '_parent'). */ |
14f9c5c9 | 6113 | |
4c4b4cd2 | 6114 | static struct value * |
d2e4a39e | 6115 | ada_search_struct_field (char *name, struct value *arg, int offset, |
4c4b4cd2 | 6116 | struct type *type) |
14f9c5c9 AS |
6117 | { |
6118 | int i; | |
14f9c5c9 | 6119 | |
5b4ee69b | 6120 | type = ada_check_typedef (type); |
52ce6436 | 6121 | for (i = 0; i < TYPE_NFIELDS (type); i += 1) |
14f9c5c9 AS |
6122 | { |
6123 | char *t_field_name = TYPE_FIELD_NAME (type, i); | |
6124 | ||
6125 | if (t_field_name == NULL) | |
4c4b4cd2 | 6126 | continue; |
14f9c5c9 AS |
6127 | |
6128 | else if (field_name_match (t_field_name, name)) | |
4c4b4cd2 | 6129 | return ada_value_primitive_field (arg, offset, i, type); |
14f9c5c9 AS |
6130 | |
6131 | else if (ada_is_wrapper_field (type, i)) | |
4c4b4cd2 | 6132 | { |
06d5cf63 JB |
6133 | struct value *v = /* Do not let indent join lines here. */ |
6134 | ada_search_struct_field (name, arg, | |
6135 | offset + TYPE_FIELD_BITPOS (type, i) / 8, | |
6136 | TYPE_FIELD_TYPE (type, i)); | |
5b4ee69b | 6137 | |
4c4b4cd2 PH |
6138 | if (v != NULL) |
6139 | return v; | |
6140 | } | |
14f9c5c9 AS |
6141 | |
6142 | else if (ada_is_variant_part (type, i)) | |
4c4b4cd2 | 6143 | { |
52ce6436 | 6144 | /* PNH: Do we ever get here? See find_struct_field. */ |
4c4b4cd2 | 6145 | int j; |
5b4ee69b MS |
6146 | struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type, |
6147 | i)); | |
4c4b4cd2 PH |
6148 | int var_offset = offset + TYPE_FIELD_BITPOS (type, i) / 8; |
6149 | ||
52ce6436 | 6150 | for (j = 0; j < TYPE_NFIELDS (field_type); j += 1) |
4c4b4cd2 | 6151 | { |
06d5cf63 JB |
6152 | struct value *v = ada_search_struct_field /* Force line break. */ |
6153 | (name, arg, | |
6154 | var_offset + TYPE_FIELD_BITPOS (field_type, j) / 8, | |
6155 | TYPE_FIELD_TYPE (field_type, j)); | |
5b4ee69b | 6156 | |
4c4b4cd2 PH |
6157 | if (v != NULL) |
6158 | return v; | |
6159 | } | |
6160 | } | |
14f9c5c9 AS |
6161 | } |
6162 | return NULL; | |
6163 | } | |
d2e4a39e | 6164 | |
52ce6436 PH |
6165 | static struct value *ada_index_struct_field_1 (int *, struct value *, |
6166 | int, struct type *); | |
6167 | ||
6168 | ||
6169 | /* Return field #INDEX in ARG, where the index is that returned by | |
6170 | * find_struct_field through its INDEX_P argument. Adjust the address | |
6171 | * of ARG by OFFSET bytes, and search in it assuming it has (class) type TYPE. | |
6172 | * If found, return value, else return NULL. */ | |
6173 | ||
6174 | static struct value * | |
6175 | ada_index_struct_field (int index, struct value *arg, int offset, | |
6176 | struct type *type) | |
6177 | { | |
6178 | return ada_index_struct_field_1 (&index, arg, offset, type); | |
6179 | } | |
6180 | ||
6181 | ||
6182 | /* Auxiliary function for ada_index_struct_field. Like | |
6183 | * ada_index_struct_field, but takes index from *INDEX_P and modifies | |
6184 | * *INDEX_P. */ | |
6185 | ||
6186 | static struct value * | |
6187 | ada_index_struct_field_1 (int *index_p, struct value *arg, int offset, | |
6188 | struct type *type) | |
6189 | { | |
6190 | int i; | |
6191 | type = ada_check_typedef (type); | |
6192 | ||
6193 | for (i = 0; i < TYPE_NFIELDS (type); i += 1) | |
6194 | { | |
6195 | if (TYPE_FIELD_NAME (type, i) == NULL) | |
6196 | continue; | |
6197 | else if (ada_is_wrapper_field (type, i)) | |
6198 | { | |
6199 | struct value *v = /* Do not let indent join lines here. */ | |
6200 | ada_index_struct_field_1 (index_p, arg, | |
6201 | offset + TYPE_FIELD_BITPOS (type, i) / 8, | |
6202 | TYPE_FIELD_TYPE (type, i)); | |
5b4ee69b | 6203 | |
52ce6436 PH |
6204 | if (v != NULL) |
6205 | return v; | |
6206 | } | |
6207 | ||
6208 | else if (ada_is_variant_part (type, i)) | |
6209 | { | |
6210 | /* PNH: Do we ever get here? See ada_search_struct_field, | |
6211 | find_struct_field. */ | |
6212 | error (_("Cannot assign this kind of variant record")); | |
6213 | } | |
6214 | else if (*index_p == 0) | |
6215 | return ada_value_primitive_field (arg, offset, i, type); | |
6216 | else | |
6217 | *index_p -= 1; | |
6218 | } | |
6219 | return NULL; | |
6220 | } | |
6221 | ||
4c4b4cd2 PH |
6222 | /* Given ARG, a value of type (pointer or reference to a)* |
6223 | structure/union, extract the component named NAME from the ultimate | |
6224 | target structure/union and return it as a value with its | |
f5938064 | 6225 | appropriate type. |
14f9c5c9 | 6226 | |
4c4b4cd2 PH |
6227 | The routine searches for NAME among all members of the structure itself |
6228 | and (recursively) among all members of any wrapper members | |
14f9c5c9 AS |
6229 | (e.g., '_parent'). |
6230 | ||
03ee6b2e PH |
6231 | If NO_ERR, then simply return NULL in case of error, rather than |
6232 | calling error. */ | |
14f9c5c9 | 6233 | |
d2e4a39e | 6234 | struct value * |
03ee6b2e | 6235 | ada_value_struct_elt (struct value *arg, char *name, int no_err) |
14f9c5c9 | 6236 | { |
4c4b4cd2 | 6237 | struct type *t, *t1; |
d2e4a39e | 6238 | struct value *v; |
14f9c5c9 | 6239 | |
4c4b4cd2 | 6240 | v = NULL; |
df407dfe | 6241 | t1 = t = ada_check_typedef (value_type (arg)); |
4c4b4cd2 PH |
6242 | if (TYPE_CODE (t) == TYPE_CODE_REF) |
6243 | { | |
6244 | t1 = TYPE_TARGET_TYPE (t); | |
6245 | if (t1 == NULL) | |
03ee6b2e | 6246 | goto BadValue; |
61ee279c | 6247 | t1 = ada_check_typedef (t1); |
4c4b4cd2 | 6248 | if (TYPE_CODE (t1) == TYPE_CODE_PTR) |
76a01679 | 6249 | { |
994b9211 | 6250 | arg = coerce_ref (arg); |
76a01679 JB |
6251 | t = t1; |
6252 | } | |
4c4b4cd2 | 6253 | } |
14f9c5c9 | 6254 | |
4c4b4cd2 PH |
6255 | while (TYPE_CODE (t) == TYPE_CODE_PTR) |
6256 | { | |
6257 | t1 = TYPE_TARGET_TYPE (t); | |
6258 | if (t1 == NULL) | |
03ee6b2e | 6259 | goto BadValue; |
61ee279c | 6260 | t1 = ada_check_typedef (t1); |
4c4b4cd2 | 6261 | if (TYPE_CODE (t1) == TYPE_CODE_PTR) |
76a01679 JB |
6262 | { |
6263 | arg = value_ind (arg); | |
6264 | t = t1; | |
6265 | } | |
4c4b4cd2 | 6266 | else |
76a01679 | 6267 | break; |
4c4b4cd2 | 6268 | } |
14f9c5c9 | 6269 | |
4c4b4cd2 | 6270 | if (TYPE_CODE (t1) != TYPE_CODE_STRUCT && TYPE_CODE (t1) != TYPE_CODE_UNION) |
03ee6b2e | 6271 | goto BadValue; |
14f9c5c9 | 6272 | |
4c4b4cd2 PH |
6273 | if (t1 == t) |
6274 | v = ada_search_struct_field (name, arg, 0, t); | |
6275 | else | |
6276 | { | |
6277 | int bit_offset, bit_size, byte_offset; | |
6278 | struct type *field_type; | |
6279 | CORE_ADDR address; | |
6280 | ||
76a01679 JB |
6281 | if (TYPE_CODE (t) == TYPE_CODE_PTR) |
6282 | address = value_as_address (arg); | |
4c4b4cd2 | 6283 | else |
0fd88904 | 6284 | address = unpack_pointer (t, value_contents (arg)); |
14f9c5c9 | 6285 | |
1ed6ede0 | 6286 | t1 = ada_to_fixed_type (ada_get_base_type (t1), NULL, address, NULL, 1); |
76a01679 JB |
6287 | if (find_struct_field (name, t1, 0, |
6288 | &field_type, &byte_offset, &bit_offset, | |
52ce6436 | 6289 | &bit_size, NULL)) |
76a01679 JB |
6290 | { |
6291 | if (bit_size != 0) | |
6292 | { | |
714e53ab PH |
6293 | if (TYPE_CODE (t) == TYPE_CODE_REF) |
6294 | arg = ada_coerce_ref (arg); | |
6295 | else | |
6296 | arg = ada_value_ind (arg); | |
76a01679 JB |
6297 | v = ada_value_primitive_packed_val (arg, NULL, byte_offset, |
6298 | bit_offset, bit_size, | |
6299 | field_type); | |
6300 | } | |
6301 | else | |
f5938064 | 6302 | v = value_at_lazy (field_type, address + byte_offset); |
76a01679 JB |
6303 | } |
6304 | } | |
6305 | ||
03ee6b2e PH |
6306 | if (v != NULL || no_err) |
6307 | return v; | |
6308 | else | |
323e0a4a | 6309 | error (_("There is no member named %s."), name); |
14f9c5c9 | 6310 | |
03ee6b2e PH |
6311 | BadValue: |
6312 | if (no_err) | |
6313 | return NULL; | |
6314 | else | |
6315 | error (_("Attempt to extract a component of a value that is not a record.")); | |
14f9c5c9 AS |
6316 | } |
6317 | ||
6318 | /* Given a type TYPE, look up the type of the component of type named NAME. | |
4c4b4cd2 PH |
6319 | If DISPP is non-null, add its byte displacement from the beginning of a |
6320 | structure (pointed to by a value) of type TYPE to *DISPP (does not | |
14f9c5c9 AS |
6321 | work for packed fields). |
6322 | ||
6323 | Matches any field whose name has NAME as a prefix, possibly | |
4c4b4cd2 | 6324 | followed by "___". |
14f9c5c9 | 6325 | |
4c4b4cd2 PH |
6326 | TYPE can be either a struct or union. If REFOK, TYPE may also |
6327 | be a (pointer or reference)+ to a struct or union, and the | |
6328 | ultimate target type will be searched. | |
14f9c5c9 AS |
6329 | |
6330 | Looks recursively into variant clauses and parent types. | |
6331 | ||
4c4b4cd2 PH |
6332 | If NOERR is nonzero, return NULL if NAME is not suitably defined or |
6333 | TYPE is not a type of the right kind. */ | |
14f9c5c9 | 6334 | |
4c4b4cd2 | 6335 | static struct type * |
76a01679 JB |
6336 | ada_lookup_struct_elt_type (struct type *type, char *name, int refok, |
6337 | int noerr, int *dispp) | |
14f9c5c9 AS |
6338 | { |
6339 | int i; | |
6340 | ||
6341 | if (name == NULL) | |
6342 | goto BadName; | |
6343 | ||
76a01679 | 6344 | if (refok && type != NULL) |
4c4b4cd2 PH |
6345 | while (1) |
6346 | { | |
61ee279c | 6347 | type = ada_check_typedef (type); |
76a01679 JB |
6348 | if (TYPE_CODE (type) != TYPE_CODE_PTR |
6349 | && TYPE_CODE (type) != TYPE_CODE_REF) | |
6350 | break; | |
6351 | type = TYPE_TARGET_TYPE (type); | |
4c4b4cd2 | 6352 | } |
14f9c5c9 | 6353 | |
76a01679 | 6354 | if (type == NULL |
1265e4aa JB |
6355 | || (TYPE_CODE (type) != TYPE_CODE_STRUCT |
6356 | && TYPE_CODE (type) != TYPE_CODE_UNION)) | |
14f9c5c9 | 6357 | { |
4c4b4cd2 | 6358 | if (noerr) |
76a01679 | 6359 | return NULL; |
4c4b4cd2 | 6360 | else |
76a01679 JB |
6361 | { |
6362 | target_terminal_ours (); | |
6363 | gdb_flush (gdb_stdout); | |
323e0a4a AC |
6364 | if (type == NULL) |
6365 | error (_("Type (null) is not a structure or union type")); | |
6366 | else | |
6367 | { | |
6368 | /* XXX: type_sprint */ | |
6369 | fprintf_unfiltered (gdb_stderr, _("Type ")); | |
6370 | type_print (type, "", gdb_stderr, -1); | |
6371 | error (_(" is not a structure or union type")); | |
6372 | } | |
76a01679 | 6373 | } |
14f9c5c9 AS |
6374 | } |
6375 | ||
6376 | type = to_static_fixed_type (type); | |
6377 | ||
6378 | for (i = 0; i < TYPE_NFIELDS (type); i += 1) | |
6379 | { | |
6380 | char *t_field_name = TYPE_FIELD_NAME (type, i); | |
6381 | struct type *t; | |
6382 | int disp; | |
d2e4a39e | 6383 | |
14f9c5c9 | 6384 | if (t_field_name == NULL) |
4c4b4cd2 | 6385 | continue; |
14f9c5c9 AS |
6386 | |
6387 | else if (field_name_match (t_field_name, name)) | |
4c4b4cd2 PH |
6388 | { |
6389 | if (dispp != NULL) | |
6390 | *dispp += TYPE_FIELD_BITPOS (type, i) / 8; | |
61ee279c | 6391 | return ada_check_typedef (TYPE_FIELD_TYPE (type, i)); |
4c4b4cd2 | 6392 | } |
14f9c5c9 AS |
6393 | |
6394 | else if (ada_is_wrapper_field (type, i)) | |
4c4b4cd2 PH |
6395 | { |
6396 | disp = 0; | |
6397 | t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (type, i), name, | |
6398 | 0, 1, &disp); | |
6399 | if (t != NULL) | |
6400 | { | |
6401 | if (dispp != NULL) | |
6402 | *dispp += disp + TYPE_FIELD_BITPOS (type, i) / 8; | |
6403 | return t; | |
6404 | } | |
6405 | } | |
14f9c5c9 AS |
6406 | |
6407 | else if (ada_is_variant_part (type, i)) | |
4c4b4cd2 PH |
6408 | { |
6409 | int j; | |
5b4ee69b MS |
6410 | struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type, |
6411 | i)); | |
4c4b4cd2 PH |
6412 | |
6413 | for (j = TYPE_NFIELDS (field_type) - 1; j >= 0; j -= 1) | |
6414 | { | |
b1f33ddd JB |
6415 | /* FIXME pnh 2008/01/26: We check for a field that is |
6416 | NOT wrapped in a struct, since the compiler sometimes | |
6417 | generates these for unchecked variant types. Revisit | |
6418 | if the compiler changes this practice. */ | |
6419 | char *v_field_name = TYPE_FIELD_NAME (field_type, j); | |
4c4b4cd2 | 6420 | disp = 0; |
b1f33ddd JB |
6421 | if (v_field_name != NULL |
6422 | && field_name_match (v_field_name, name)) | |
6423 | t = ada_check_typedef (TYPE_FIELD_TYPE (field_type, j)); | |
6424 | else | |
6425 | t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (field_type, j), | |
6426 | name, 0, 1, &disp); | |
6427 | ||
4c4b4cd2 PH |
6428 | if (t != NULL) |
6429 | { | |
6430 | if (dispp != NULL) | |
6431 | *dispp += disp + TYPE_FIELD_BITPOS (type, i) / 8; | |
6432 | return t; | |
6433 | } | |
6434 | } | |
6435 | } | |
14f9c5c9 AS |
6436 | |
6437 | } | |
6438 | ||
6439 | BadName: | |
d2e4a39e | 6440 | if (!noerr) |
14f9c5c9 AS |
6441 | { |
6442 | target_terminal_ours (); | |
6443 | gdb_flush (gdb_stdout); | |
323e0a4a AC |
6444 | if (name == NULL) |
6445 | { | |
6446 | /* XXX: type_sprint */ | |
6447 | fprintf_unfiltered (gdb_stderr, _("Type ")); | |
6448 | type_print (type, "", gdb_stderr, -1); | |
6449 | error (_(" has no component named <null>")); | |
6450 | } | |
6451 | else | |
6452 | { | |
6453 | /* XXX: type_sprint */ | |
6454 | fprintf_unfiltered (gdb_stderr, _("Type ")); | |
6455 | type_print (type, "", gdb_stderr, -1); | |
6456 | error (_(" has no component named %s"), name); | |
6457 | } | |
14f9c5c9 AS |
6458 | } |
6459 | ||
6460 | return NULL; | |
6461 | } | |
6462 | ||
b1f33ddd JB |
6463 | /* Assuming that VAR_TYPE is the type of a variant part of a record (a union), |
6464 | within a value of type OUTER_TYPE, return true iff VAR_TYPE | |
6465 | represents an unchecked union (that is, the variant part of a | |
6466 | record that is named in an Unchecked_Union pragma). */ | |
6467 | ||
6468 | static int | |
6469 | is_unchecked_variant (struct type *var_type, struct type *outer_type) | |
6470 | { | |
6471 | char *discrim_name = ada_variant_discrim_name (var_type); | |
5b4ee69b | 6472 | |
b1f33ddd JB |
6473 | return (ada_lookup_struct_elt_type (outer_type, discrim_name, 0, 1, NULL) |
6474 | == NULL); | |
6475 | } | |
6476 | ||
6477 | ||
14f9c5c9 AS |
6478 | /* Assuming that VAR_TYPE is the type of a variant part of a record (a union), |
6479 | within a value of type OUTER_TYPE that is stored in GDB at | |
4c4b4cd2 PH |
6480 | OUTER_VALADDR, determine which variant clause (field number in VAR_TYPE, |
6481 | numbering from 0) is applicable. Returns -1 if none are. */ | |
14f9c5c9 | 6482 | |
d2e4a39e | 6483 | int |
ebf56fd3 | 6484 | ada_which_variant_applies (struct type *var_type, struct type *outer_type, |
fc1a4b47 | 6485 | const gdb_byte *outer_valaddr) |
14f9c5c9 AS |
6486 | { |
6487 | int others_clause; | |
6488 | int i; | |
d2e4a39e | 6489 | char *discrim_name = ada_variant_discrim_name (var_type); |
0c281816 JB |
6490 | struct value *outer; |
6491 | struct value *discrim; | |
14f9c5c9 AS |
6492 | LONGEST discrim_val; |
6493 | ||
0c281816 JB |
6494 | outer = value_from_contents_and_address (outer_type, outer_valaddr, 0); |
6495 | discrim = ada_value_struct_elt (outer, discrim_name, 1); | |
6496 | if (discrim == NULL) | |
14f9c5c9 | 6497 | return -1; |
0c281816 | 6498 | discrim_val = value_as_long (discrim); |
14f9c5c9 AS |
6499 | |
6500 | others_clause = -1; | |
6501 | for (i = 0; i < TYPE_NFIELDS (var_type); i += 1) | |
6502 | { | |
6503 | if (ada_is_others_clause (var_type, i)) | |
4c4b4cd2 | 6504 | others_clause = i; |
14f9c5c9 | 6505 | else if (ada_in_variant (discrim_val, var_type, i)) |
4c4b4cd2 | 6506 | return i; |
14f9c5c9 AS |
6507 | } |
6508 | ||
6509 | return others_clause; | |
6510 | } | |
d2e4a39e | 6511 | \f |
14f9c5c9 AS |
6512 | |
6513 | ||
4c4b4cd2 | 6514 | /* Dynamic-Sized Records */ |
14f9c5c9 AS |
6515 | |
6516 | /* Strategy: The type ostensibly attached to a value with dynamic size | |
6517 | (i.e., a size that is not statically recorded in the debugging | |
6518 | data) does not accurately reflect the size or layout of the value. | |
6519 | Our strategy is to convert these values to values with accurate, | |
4c4b4cd2 | 6520 | conventional types that are constructed on the fly. */ |
14f9c5c9 AS |
6521 | |
6522 | /* There is a subtle and tricky problem here. In general, we cannot | |
6523 | determine the size of dynamic records without its data. However, | |
6524 | the 'struct value' data structure, which GDB uses to represent | |
6525 | quantities in the inferior process (the target), requires the size | |
6526 | of the type at the time of its allocation in order to reserve space | |
6527 | for GDB's internal copy of the data. That's why the | |
6528 | 'to_fixed_xxx_type' routines take (target) addresses as parameters, | |
4c4b4cd2 | 6529 | rather than struct value*s. |
14f9c5c9 AS |
6530 | |
6531 | However, GDB's internal history variables ($1, $2, etc.) are | |
6532 | struct value*s containing internal copies of the data that are not, in | |
6533 | general, the same as the data at their corresponding addresses in | |
6534 | the target. Fortunately, the types we give to these values are all | |
6535 | conventional, fixed-size types (as per the strategy described | |
6536 | above), so that we don't usually have to perform the | |
6537 | 'to_fixed_xxx_type' conversions to look at their values. | |
6538 | Unfortunately, there is one exception: if one of the internal | |
6539 | history variables is an array whose elements are unconstrained | |
6540 | records, then we will need to create distinct fixed types for each | |
6541 | element selected. */ | |
6542 | ||
6543 | /* The upshot of all of this is that many routines take a (type, host | |
6544 | address, target address) triple as arguments to represent a value. | |
6545 | The host address, if non-null, is supposed to contain an internal | |
6546 | copy of the relevant data; otherwise, the program is to consult the | |
4c4b4cd2 | 6547 | target at the target address. */ |
14f9c5c9 AS |
6548 | |
6549 | /* Assuming that VAL0 represents a pointer value, the result of | |
6550 | dereferencing it. Differs from value_ind in its treatment of | |
4c4b4cd2 | 6551 | dynamic-sized types. */ |
14f9c5c9 | 6552 | |
d2e4a39e AS |
6553 | struct value * |
6554 | ada_value_ind (struct value *val0) | |
14f9c5c9 | 6555 | { |
d2e4a39e | 6556 | struct value *val = unwrap_value (value_ind (val0)); |
5b4ee69b | 6557 | |
4c4b4cd2 | 6558 | return ada_to_fixed_value (val); |
14f9c5c9 AS |
6559 | } |
6560 | ||
6561 | /* The value resulting from dereferencing any "reference to" | |
4c4b4cd2 PH |
6562 | qualifiers on VAL0. */ |
6563 | ||
d2e4a39e AS |
6564 | static struct value * |
6565 | ada_coerce_ref (struct value *val0) | |
6566 | { | |
df407dfe | 6567 | if (TYPE_CODE (value_type (val0)) == TYPE_CODE_REF) |
d2e4a39e AS |
6568 | { |
6569 | struct value *val = val0; | |
5b4ee69b | 6570 | |
994b9211 | 6571 | val = coerce_ref (val); |
d2e4a39e | 6572 | val = unwrap_value (val); |
4c4b4cd2 | 6573 | return ada_to_fixed_value (val); |
d2e4a39e AS |
6574 | } |
6575 | else | |
14f9c5c9 AS |
6576 | return val0; |
6577 | } | |
6578 | ||
6579 | /* Return OFF rounded upward if necessary to a multiple of | |
4c4b4cd2 | 6580 | ALIGNMENT (a power of 2). */ |
14f9c5c9 AS |
6581 | |
6582 | static unsigned int | |
ebf56fd3 | 6583 | align_value (unsigned int off, unsigned int alignment) |
14f9c5c9 AS |
6584 | { |
6585 | return (off + alignment - 1) & ~(alignment - 1); | |
6586 | } | |
6587 | ||
4c4b4cd2 | 6588 | /* Return the bit alignment required for field #F of template type TYPE. */ |
14f9c5c9 AS |
6589 | |
6590 | static unsigned int | |
ebf56fd3 | 6591 | field_alignment (struct type *type, int f) |
14f9c5c9 | 6592 | { |
d2e4a39e | 6593 | const char *name = TYPE_FIELD_NAME (type, f); |
64a1bf19 | 6594 | int len; |
14f9c5c9 AS |
6595 | int align_offset; |
6596 | ||
64a1bf19 JB |
6597 | /* The field name should never be null, unless the debugging information |
6598 | is somehow malformed. In this case, we assume the field does not | |
6599 | require any alignment. */ | |
6600 | if (name == NULL) | |
6601 | return 1; | |
6602 | ||
6603 | len = strlen (name); | |
6604 | ||
4c4b4cd2 PH |
6605 | if (!isdigit (name[len - 1])) |
6606 | return 1; | |
14f9c5c9 | 6607 | |
d2e4a39e | 6608 | if (isdigit (name[len - 2])) |
14f9c5c9 AS |
6609 | align_offset = len - 2; |
6610 | else | |
6611 | align_offset = len - 1; | |
6612 | ||
4c4b4cd2 | 6613 | if (align_offset < 7 || strncmp ("___XV", name + align_offset - 6, 5) != 0) |
14f9c5c9 AS |
6614 | return TARGET_CHAR_BIT; |
6615 | ||
4c4b4cd2 PH |
6616 | return atoi (name + align_offset) * TARGET_CHAR_BIT; |
6617 | } | |
6618 | ||
6619 | /* Find a symbol named NAME. Ignores ambiguity. */ | |
6620 | ||
6621 | struct symbol * | |
6622 | ada_find_any_symbol (const char *name) | |
6623 | { | |
6624 | struct symbol *sym; | |
6625 | ||
6626 | sym = standard_lookup (name, get_selected_block (NULL), VAR_DOMAIN); | |
6627 | if (sym != NULL && SYMBOL_CLASS (sym) == LOC_TYPEDEF) | |
6628 | return sym; | |
6629 | ||
6630 | sym = standard_lookup (name, NULL, STRUCT_DOMAIN); | |
6631 | return sym; | |
14f9c5c9 AS |
6632 | } |
6633 | ||
dddfab26 UW |
6634 | /* Find a type named NAME. Ignores ambiguity. This routine will look |
6635 | solely for types defined by debug info, it will not search the GDB | |
6636 | primitive types. */ | |
4c4b4cd2 | 6637 | |
d2e4a39e | 6638 | struct type * |
ebf56fd3 | 6639 | ada_find_any_type (const char *name) |
14f9c5c9 | 6640 | { |
4c4b4cd2 | 6641 | struct symbol *sym = ada_find_any_symbol (name); |
14f9c5c9 | 6642 | |
14f9c5c9 | 6643 | if (sym != NULL) |
dddfab26 | 6644 | return SYMBOL_TYPE (sym); |
14f9c5c9 | 6645 | |
dddfab26 | 6646 | return NULL; |
14f9c5c9 AS |
6647 | } |
6648 | ||
aeb5907d JB |
6649 | /* Given NAME and an associated BLOCK, search all symbols for |
6650 | NAME suffixed with "___XR", which is the ``renaming'' symbol | |
4c4b4cd2 PH |
6651 | associated to NAME. Return this symbol if found, return |
6652 | NULL otherwise. */ | |
6653 | ||
6654 | struct symbol * | |
6655 | ada_find_renaming_symbol (const char *name, struct block *block) | |
aeb5907d JB |
6656 | { |
6657 | struct symbol *sym; | |
6658 | ||
6659 | sym = find_old_style_renaming_symbol (name, block); | |
6660 | ||
6661 | if (sym != NULL) | |
6662 | return sym; | |
6663 | ||
6664 | /* Not right yet. FIXME pnh 7/20/2007. */ | |
6665 | sym = ada_find_any_symbol (name); | |
6666 | if (sym != NULL && strstr (SYMBOL_LINKAGE_NAME (sym), "___XR") != NULL) | |
6667 | return sym; | |
6668 | else | |
6669 | return NULL; | |
6670 | } | |
6671 | ||
6672 | static struct symbol * | |
6673 | find_old_style_renaming_symbol (const char *name, struct block *block) | |
4c4b4cd2 | 6674 | { |
7f0df278 | 6675 | const struct symbol *function_sym = block_linkage_function (block); |
4c4b4cd2 PH |
6676 | char *rename; |
6677 | ||
6678 | if (function_sym != NULL) | |
6679 | { | |
6680 | /* If the symbol is defined inside a function, NAME is not fully | |
6681 | qualified. This means we need to prepend the function name | |
6682 | as well as adding the ``___XR'' suffix to build the name of | |
6683 | the associated renaming symbol. */ | |
6684 | char *function_name = SYMBOL_LINKAGE_NAME (function_sym); | |
529cad9c PH |
6685 | /* Function names sometimes contain suffixes used |
6686 | for instance to qualify nested subprograms. When building | |
6687 | the XR type name, we need to make sure that this suffix is | |
6688 | not included. So do not include any suffix in the function | |
6689 | name length below. */ | |
69fadcdf | 6690 | int function_name_len = ada_name_prefix_len (function_name); |
76a01679 JB |
6691 | const int rename_len = function_name_len + 2 /* "__" */ |
6692 | + strlen (name) + 6 /* "___XR\0" */ ; | |
4c4b4cd2 | 6693 | |
529cad9c | 6694 | /* Strip the suffix if necessary. */ |
69fadcdf JB |
6695 | ada_remove_trailing_digits (function_name, &function_name_len); |
6696 | ada_remove_po_subprogram_suffix (function_name, &function_name_len); | |
6697 | ada_remove_Xbn_suffix (function_name, &function_name_len); | |
529cad9c | 6698 | |
4c4b4cd2 PH |
6699 | /* Library-level functions are a special case, as GNAT adds |
6700 | a ``_ada_'' prefix to the function name to avoid namespace | |
aeb5907d | 6701 | pollution. However, the renaming symbols themselves do not |
4c4b4cd2 PH |
6702 | have this prefix, so we need to skip this prefix if present. */ |
6703 | if (function_name_len > 5 /* "_ada_" */ | |
6704 | && strstr (function_name, "_ada_") == function_name) | |
69fadcdf JB |
6705 | { |
6706 | function_name += 5; | |
6707 | function_name_len -= 5; | |
6708 | } | |
4c4b4cd2 PH |
6709 | |
6710 | rename = (char *) alloca (rename_len * sizeof (char)); | |
69fadcdf JB |
6711 | strncpy (rename, function_name, function_name_len); |
6712 | xsnprintf (rename + function_name_len, rename_len - function_name_len, | |
6713 | "__%s___XR", name); | |
4c4b4cd2 PH |
6714 | } |
6715 | else | |
6716 | { | |
6717 | const int rename_len = strlen (name) + 6; | |
5b4ee69b | 6718 | |
4c4b4cd2 | 6719 | rename = (char *) alloca (rename_len * sizeof (char)); |
88c15c34 | 6720 | xsnprintf (rename, rename_len * sizeof (char), "%s___XR", name); |
4c4b4cd2 PH |
6721 | } |
6722 | ||
6723 | return ada_find_any_symbol (rename); | |
6724 | } | |
6725 | ||
14f9c5c9 | 6726 | /* Because of GNAT encoding conventions, several GDB symbols may match a |
4c4b4cd2 | 6727 | given type name. If the type denoted by TYPE0 is to be preferred to |
14f9c5c9 | 6728 | that of TYPE1 for purposes of type printing, return non-zero; |
4c4b4cd2 PH |
6729 | otherwise return 0. */ |
6730 | ||
14f9c5c9 | 6731 | int |
d2e4a39e | 6732 | ada_prefer_type (struct type *type0, struct type *type1) |
14f9c5c9 AS |
6733 | { |
6734 | if (type1 == NULL) | |
6735 | return 1; | |
6736 | else if (type0 == NULL) | |
6737 | return 0; | |
6738 | else if (TYPE_CODE (type1) == TYPE_CODE_VOID) | |
6739 | return 1; | |
6740 | else if (TYPE_CODE (type0) == TYPE_CODE_VOID) | |
6741 | return 0; | |
4c4b4cd2 PH |
6742 | else if (TYPE_NAME (type1) == NULL && TYPE_NAME (type0) != NULL) |
6743 | return 1; | |
ad82864c | 6744 | else if (ada_is_constrained_packed_array_type (type0)) |
14f9c5c9 | 6745 | return 1; |
4c4b4cd2 PH |
6746 | else if (ada_is_array_descriptor_type (type0) |
6747 | && !ada_is_array_descriptor_type (type1)) | |
14f9c5c9 | 6748 | return 1; |
aeb5907d JB |
6749 | else |
6750 | { | |
6751 | const char *type0_name = type_name_no_tag (type0); | |
6752 | const char *type1_name = type_name_no_tag (type1); | |
6753 | ||
6754 | if (type0_name != NULL && strstr (type0_name, "___XR") != NULL | |
6755 | && (type1_name == NULL || strstr (type1_name, "___XR") == NULL)) | |
6756 | return 1; | |
6757 | } | |
14f9c5c9 AS |
6758 | return 0; |
6759 | } | |
6760 | ||
6761 | /* The name of TYPE, which is either its TYPE_NAME, or, if that is | |
4c4b4cd2 PH |
6762 | null, its TYPE_TAG_NAME. Null if TYPE is null. */ |
6763 | ||
d2e4a39e AS |
6764 | char * |
6765 | ada_type_name (struct type *type) | |
14f9c5c9 | 6766 | { |
d2e4a39e | 6767 | if (type == NULL) |
14f9c5c9 AS |
6768 | return NULL; |
6769 | else if (TYPE_NAME (type) != NULL) | |
6770 | return TYPE_NAME (type); | |
6771 | else | |
6772 | return TYPE_TAG_NAME (type); | |
6773 | } | |
6774 | ||
b4ba55a1 JB |
6775 | /* Search the list of "descriptive" types associated to TYPE for a type |
6776 | whose name is NAME. */ | |
6777 | ||
6778 | static struct type * | |
6779 | find_parallel_type_by_descriptive_type (struct type *type, const char *name) | |
6780 | { | |
6781 | struct type *result; | |
6782 | ||
6783 | /* If there no descriptive-type info, then there is no parallel type | |
6784 | to be found. */ | |
6785 | if (!HAVE_GNAT_AUX_INFO (type)) | |
6786 | return NULL; | |
6787 | ||
6788 | result = TYPE_DESCRIPTIVE_TYPE (type); | |
6789 | while (result != NULL) | |
6790 | { | |
6791 | char *result_name = ada_type_name (result); | |
6792 | ||
6793 | if (result_name == NULL) | |
6794 | { | |
6795 | warning (_("unexpected null name on descriptive type")); | |
6796 | return NULL; | |
6797 | } | |
6798 | ||
6799 | /* If the names match, stop. */ | |
6800 | if (strcmp (result_name, name) == 0) | |
6801 | break; | |
6802 | ||
6803 | /* Otherwise, look at the next item on the list, if any. */ | |
6804 | if (HAVE_GNAT_AUX_INFO (result)) | |
6805 | result = TYPE_DESCRIPTIVE_TYPE (result); | |
6806 | else | |
6807 | result = NULL; | |
6808 | } | |
6809 | ||
6810 | /* If we didn't find a match, see whether this is a packed array. With | |
6811 | older compilers, the descriptive type information is either absent or | |
6812 | irrelevant when it comes to packed arrays so the above lookup fails. | |
6813 | Fall back to using a parallel lookup by name in this case. */ | |
12ab9e09 | 6814 | if (result == NULL && ada_is_constrained_packed_array_type (type)) |
b4ba55a1 JB |
6815 | return ada_find_any_type (name); |
6816 | ||
6817 | return result; | |
6818 | } | |
6819 | ||
6820 | /* Find a parallel type to TYPE with the specified NAME, using the | |
6821 | descriptive type taken from the debugging information, if available, | |
6822 | and otherwise using the (slower) name-based method. */ | |
6823 | ||
6824 | static struct type * | |
6825 | ada_find_parallel_type_with_name (struct type *type, const char *name) | |
6826 | { | |
6827 | struct type *result = NULL; | |
6828 | ||
6829 | if (HAVE_GNAT_AUX_INFO (type)) | |
6830 | result = find_parallel_type_by_descriptive_type (type, name); | |
6831 | else | |
6832 | result = ada_find_any_type (name); | |
6833 | ||
6834 | return result; | |
6835 | } | |
6836 | ||
6837 | /* Same as above, but specify the name of the parallel type by appending | |
4c4b4cd2 | 6838 | SUFFIX to the name of TYPE. */ |
14f9c5c9 | 6839 | |
d2e4a39e | 6840 | struct type * |
ebf56fd3 | 6841 | ada_find_parallel_type (struct type *type, const char *suffix) |
14f9c5c9 | 6842 | { |
b4ba55a1 | 6843 | char *name, *typename = ada_type_name (type); |
14f9c5c9 | 6844 | int len; |
d2e4a39e | 6845 | |
14f9c5c9 AS |
6846 | if (typename == NULL) |
6847 | return NULL; | |
6848 | ||
6849 | len = strlen (typename); | |
6850 | ||
b4ba55a1 | 6851 | name = (char *) alloca (len + strlen (suffix) + 1); |
14f9c5c9 AS |
6852 | |
6853 | strcpy (name, typename); | |
6854 | strcpy (name + len, suffix); | |
6855 | ||
b4ba55a1 | 6856 | return ada_find_parallel_type_with_name (type, name); |
14f9c5c9 AS |
6857 | } |
6858 | ||
14f9c5c9 | 6859 | /* If TYPE is a variable-size record type, return the corresponding template |
4c4b4cd2 | 6860 | type describing its fields. Otherwise, return NULL. */ |
14f9c5c9 | 6861 | |
d2e4a39e AS |
6862 | static struct type * |
6863 | dynamic_template_type (struct type *type) | |
14f9c5c9 | 6864 | { |
61ee279c | 6865 | type = ada_check_typedef (type); |
14f9c5c9 AS |
6866 | |
6867 | if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT | |
d2e4a39e | 6868 | || ada_type_name (type) == NULL) |
14f9c5c9 | 6869 | return NULL; |
d2e4a39e | 6870 | else |
14f9c5c9 AS |
6871 | { |
6872 | int len = strlen (ada_type_name (type)); | |
5b4ee69b | 6873 | |
4c4b4cd2 PH |
6874 | if (len > 6 && strcmp (ada_type_name (type) + len - 6, "___XVE") == 0) |
6875 | return type; | |
14f9c5c9 | 6876 | else |
4c4b4cd2 | 6877 | return ada_find_parallel_type (type, "___XVE"); |
14f9c5c9 AS |
6878 | } |
6879 | } | |
6880 | ||
6881 | /* Assuming that TEMPL_TYPE is a union or struct type, returns | |
4c4b4cd2 | 6882 | non-zero iff field FIELD_NUM of TEMPL_TYPE has dynamic size. */ |
14f9c5c9 | 6883 | |
d2e4a39e AS |
6884 | static int |
6885 | is_dynamic_field (struct type *templ_type, int field_num) | |
14f9c5c9 AS |
6886 | { |
6887 | const char *name = TYPE_FIELD_NAME (templ_type, field_num); | |
5b4ee69b | 6888 | |
d2e4a39e | 6889 | return name != NULL |
14f9c5c9 AS |
6890 | && TYPE_CODE (TYPE_FIELD_TYPE (templ_type, field_num)) == TYPE_CODE_PTR |
6891 | && strstr (name, "___XVL") != NULL; | |
6892 | } | |
6893 | ||
4c4b4cd2 PH |
6894 | /* The index of the variant field of TYPE, or -1 if TYPE does not |
6895 | represent a variant record type. */ | |
14f9c5c9 | 6896 | |
d2e4a39e | 6897 | static int |
4c4b4cd2 | 6898 | variant_field_index (struct type *type) |
14f9c5c9 AS |
6899 | { |
6900 | int f; | |
6901 | ||
4c4b4cd2 PH |
6902 | if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT) |
6903 | return -1; | |
6904 | ||
6905 | for (f = 0; f < TYPE_NFIELDS (type); f += 1) | |
6906 | { | |
6907 | if (ada_is_variant_part (type, f)) | |
6908 | return f; | |
6909 | } | |
6910 | return -1; | |
14f9c5c9 AS |
6911 | } |
6912 | ||
4c4b4cd2 PH |
6913 | /* A record type with no fields. */ |
6914 | ||
d2e4a39e | 6915 | static struct type * |
e9bb382b | 6916 | empty_record (struct type *template) |
14f9c5c9 | 6917 | { |
e9bb382b | 6918 | struct type *type = alloc_type_copy (template); |
5b4ee69b | 6919 | |
14f9c5c9 AS |
6920 | TYPE_CODE (type) = TYPE_CODE_STRUCT; |
6921 | TYPE_NFIELDS (type) = 0; | |
6922 | TYPE_FIELDS (type) = NULL; | |
b1f33ddd | 6923 | INIT_CPLUS_SPECIFIC (type); |
14f9c5c9 AS |
6924 | TYPE_NAME (type) = "<empty>"; |
6925 | TYPE_TAG_NAME (type) = NULL; | |
14f9c5c9 AS |
6926 | TYPE_LENGTH (type) = 0; |
6927 | return type; | |
6928 | } | |
6929 | ||
6930 | /* An ordinary record type (with fixed-length fields) that describes | |
4c4b4cd2 PH |
6931 | the value of type TYPE at VALADDR or ADDRESS (see comments at |
6932 | the beginning of this section) VAL according to GNAT conventions. | |
6933 | DVAL0 should describe the (portion of a) record that contains any | |
df407dfe | 6934 | necessary discriminants. It should be NULL if value_type (VAL) is |
14f9c5c9 AS |
6935 | an outer-level type (i.e., as opposed to a branch of a variant.) A |
6936 | variant field (unless unchecked) is replaced by a particular branch | |
4c4b4cd2 | 6937 | of the variant. |
14f9c5c9 | 6938 | |
4c4b4cd2 PH |
6939 | If not KEEP_DYNAMIC_FIELDS, then all fields whose position or |
6940 | length are not statically known are discarded. As a consequence, | |
6941 | VALADDR, ADDRESS and DVAL0 are ignored. | |
6942 | ||
6943 | NOTE: Limitations: For now, we assume that dynamic fields and | |
6944 | variants occupy whole numbers of bytes. However, they need not be | |
6945 | byte-aligned. */ | |
6946 | ||
6947 | struct type * | |
10a2c479 | 6948 | ada_template_to_fixed_record_type_1 (struct type *type, |
fc1a4b47 | 6949 | const gdb_byte *valaddr, |
4c4b4cd2 PH |
6950 | CORE_ADDR address, struct value *dval0, |
6951 | int keep_dynamic_fields) | |
14f9c5c9 | 6952 | { |
d2e4a39e AS |
6953 | struct value *mark = value_mark (); |
6954 | struct value *dval; | |
6955 | struct type *rtype; | |
14f9c5c9 | 6956 | int nfields, bit_len; |
4c4b4cd2 | 6957 | int variant_field; |
14f9c5c9 | 6958 | long off; |
4c4b4cd2 | 6959 | int fld_bit_len, bit_incr; |
14f9c5c9 AS |
6960 | int f; |
6961 | ||
4c4b4cd2 PH |
6962 | /* Compute the number of fields in this record type that are going |
6963 | to be processed: unless keep_dynamic_fields, this includes only | |
6964 | fields whose position and length are static will be processed. */ | |
6965 | if (keep_dynamic_fields) | |
6966 | nfields = TYPE_NFIELDS (type); | |
6967 | else | |
6968 | { | |
6969 | nfields = 0; | |
76a01679 | 6970 | while (nfields < TYPE_NFIELDS (type) |
4c4b4cd2 PH |
6971 | && !ada_is_variant_part (type, nfields) |
6972 | && !is_dynamic_field (type, nfields)) | |
6973 | nfields++; | |
6974 | } | |
6975 | ||
e9bb382b | 6976 | rtype = alloc_type_copy (type); |
14f9c5c9 AS |
6977 | TYPE_CODE (rtype) = TYPE_CODE_STRUCT; |
6978 | INIT_CPLUS_SPECIFIC (rtype); | |
6979 | TYPE_NFIELDS (rtype) = nfields; | |
d2e4a39e | 6980 | TYPE_FIELDS (rtype) = (struct field *) |
14f9c5c9 AS |
6981 | TYPE_ALLOC (rtype, nfields * sizeof (struct field)); |
6982 | memset (TYPE_FIELDS (rtype), 0, sizeof (struct field) * nfields); | |
6983 | TYPE_NAME (rtype) = ada_type_name (type); | |
6984 | TYPE_TAG_NAME (rtype) = NULL; | |
876cecd0 | 6985 | TYPE_FIXED_INSTANCE (rtype) = 1; |
14f9c5c9 | 6986 | |
d2e4a39e AS |
6987 | off = 0; |
6988 | bit_len = 0; | |
4c4b4cd2 PH |
6989 | variant_field = -1; |
6990 | ||
14f9c5c9 AS |
6991 | for (f = 0; f < nfields; f += 1) |
6992 | { | |
6c038f32 PH |
6993 | off = align_value (off, field_alignment (type, f)) |
6994 | + TYPE_FIELD_BITPOS (type, f); | |
14f9c5c9 | 6995 | TYPE_FIELD_BITPOS (rtype, f) = off; |
d2e4a39e | 6996 | TYPE_FIELD_BITSIZE (rtype, f) = 0; |
14f9c5c9 | 6997 | |
d2e4a39e | 6998 | if (ada_is_variant_part (type, f)) |
4c4b4cd2 PH |
6999 | { |
7000 | variant_field = f; | |
7001 | fld_bit_len = bit_incr = 0; | |
7002 | } | |
14f9c5c9 | 7003 | else if (is_dynamic_field (type, f)) |
4c4b4cd2 | 7004 | { |
284614f0 JB |
7005 | const gdb_byte *field_valaddr = valaddr; |
7006 | CORE_ADDR field_address = address; | |
7007 | struct type *field_type = | |
7008 | TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type, f)); | |
7009 | ||
4c4b4cd2 | 7010 | if (dval0 == NULL) |
b5304971 JG |
7011 | { |
7012 | /* rtype's length is computed based on the run-time | |
7013 | value of discriminants. If the discriminants are not | |
7014 | initialized, the type size may be completely bogus and | |
7015 | GDB may fail to allocate a value for it. So check the | |
7016 | size first before creating the value. */ | |
7017 | check_size (rtype); | |
7018 | dval = value_from_contents_and_address (rtype, valaddr, address); | |
7019 | } | |
4c4b4cd2 PH |
7020 | else |
7021 | dval = dval0; | |
7022 | ||
284614f0 JB |
7023 | /* If the type referenced by this field is an aligner type, we need |
7024 | to unwrap that aligner type, because its size might not be set. | |
7025 | Keeping the aligner type would cause us to compute the wrong | |
7026 | size for this field, impacting the offset of the all the fields | |
7027 | that follow this one. */ | |
7028 | if (ada_is_aligner_type (field_type)) | |
7029 | { | |
7030 | long field_offset = TYPE_FIELD_BITPOS (field_type, f); | |
7031 | ||
7032 | field_valaddr = cond_offset_host (field_valaddr, field_offset); | |
7033 | field_address = cond_offset_target (field_address, field_offset); | |
7034 | field_type = ada_aligned_type (field_type); | |
7035 | } | |
7036 | ||
7037 | field_valaddr = cond_offset_host (field_valaddr, | |
7038 | off / TARGET_CHAR_BIT); | |
7039 | field_address = cond_offset_target (field_address, | |
7040 | off / TARGET_CHAR_BIT); | |
7041 | ||
7042 | /* Get the fixed type of the field. Note that, in this case, | |
7043 | we do not want to get the real type out of the tag: if | |
7044 | the current field is the parent part of a tagged record, | |
7045 | we will get the tag of the object. Clearly wrong: the real | |
7046 | type of the parent is not the real type of the child. We | |
7047 | would end up in an infinite loop. */ | |
7048 | field_type = ada_get_base_type (field_type); | |
7049 | field_type = ada_to_fixed_type (field_type, field_valaddr, | |
7050 | field_address, dval, 0); | |
7051 | ||
7052 | TYPE_FIELD_TYPE (rtype, f) = field_type; | |
4c4b4cd2 PH |
7053 | TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f); |
7054 | bit_incr = fld_bit_len = | |
7055 | TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, f)) * TARGET_CHAR_BIT; | |
7056 | } | |
14f9c5c9 | 7057 | else |
4c4b4cd2 | 7058 | { |
9f0dec2d JB |
7059 | struct type *field_type = TYPE_FIELD_TYPE (type, f); |
7060 | ||
7061 | TYPE_FIELD_TYPE (rtype, f) = field_type; | |
4c4b4cd2 PH |
7062 | TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f); |
7063 | if (TYPE_FIELD_BITSIZE (type, f) > 0) | |
7064 | bit_incr = fld_bit_len = | |
7065 | TYPE_FIELD_BITSIZE (rtype, f) = TYPE_FIELD_BITSIZE (type, f); | |
7066 | else | |
7067 | bit_incr = fld_bit_len = | |
9f0dec2d | 7068 | TYPE_LENGTH (ada_check_typedef (field_type)) * TARGET_CHAR_BIT; |
4c4b4cd2 | 7069 | } |
14f9c5c9 | 7070 | if (off + fld_bit_len > bit_len) |
4c4b4cd2 | 7071 | bit_len = off + fld_bit_len; |
14f9c5c9 | 7072 | off += bit_incr; |
4c4b4cd2 PH |
7073 | TYPE_LENGTH (rtype) = |
7074 | align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT; | |
14f9c5c9 | 7075 | } |
4c4b4cd2 PH |
7076 | |
7077 | /* We handle the variant part, if any, at the end because of certain | |
b1f33ddd | 7078 | odd cases in which it is re-ordered so as NOT to be the last field of |
4c4b4cd2 PH |
7079 | the record. This can happen in the presence of representation |
7080 | clauses. */ | |
7081 | if (variant_field >= 0) | |
7082 | { | |
7083 | struct type *branch_type; | |
7084 | ||
7085 | off = TYPE_FIELD_BITPOS (rtype, variant_field); | |
7086 | ||
7087 | if (dval0 == NULL) | |
7088 | dval = value_from_contents_and_address (rtype, valaddr, address); | |
7089 | else | |
7090 | dval = dval0; | |
7091 | ||
7092 | branch_type = | |
7093 | to_fixed_variant_branch_type | |
7094 | (TYPE_FIELD_TYPE (type, variant_field), | |
7095 | cond_offset_host (valaddr, off / TARGET_CHAR_BIT), | |
7096 | cond_offset_target (address, off / TARGET_CHAR_BIT), dval); | |
7097 | if (branch_type == NULL) | |
7098 | { | |
7099 | for (f = variant_field + 1; f < TYPE_NFIELDS (rtype); f += 1) | |
7100 | TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f]; | |
7101 | TYPE_NFIELDS (rtype) -= 1; | |
7102 | } | |
7103 | else | |
7104 | { | |
7105 | TYPE_FIELD_TYPE (rtype, variant_field) = branch_type; | |
7106 | TYPE_FIELD_NAME (rtype, variant_field) = "S"; | |
7107 | fld_bit_len = | |
7108 | TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, variant_field)) * | |
7109 | TARGET_CHAR_BIT; | |
7110 | if (off + fld_bit_len > bit_len) | |
7111 | bit_len = off + fld_bit_len; | |
7112 | TYPE_LENGTH (rtype) = | |
7113 | align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT; | |
7114 | } | |
7115 | } | |
7116 | ||
714e53ab PH |
7117 | /* According to exp_dbug.ads, the size of TYPE for variable-size records |
7118 | should contain the alignment of that record, which should be a strictly | |
7119 | positive value. If null or negative, then something is wrong, most | |
7120 | probably in the debug info. In that case, we don't round up the size | |
7121 | of the resulting type. If this record is not part of another structure, | |
7122 | the current RTYPE length might be good enough for our purposes. */ | |
7123 | if (TYPE_LENGTH (type) <= 0) | |
7124 | { | |
323e0a4a AC |
7125 | if (TYPE_NAME (rtype)) |
7126 | warning (_("Invalid type size for `%s' detected: %d."), | |
7127 | TYPE_NAME (rtype), TYPE_LENGTH (type)); | |
7128 | else | |
7129 | warning (_("Invalid type size for <unnamed> detected: %d."), | |
7130 | TYPE_LENGTH (type)); | |
714e53ab PH |
7131 | } |
7132 | else | |
7133 | { | |
7134 | TYPE_LENGTH (rtype) = align_value (TYPE_LENGTH (rtype), | |
7135 | TYPE_LENGTH (type)); | |
7136 | } | |
14f9c5c9 AS |
7137 | |
7138 | value_free_to_mark (mark); | |
d2e4a39e | 7139 | if (TYPE_LENGTH (rtype) > varsize_limit) |
323e0a4a | 7140 | error (_("record type with dynamic size is larger than varsize-limit")); |
14f9c5c9 AS |
7141 | return rtype; |
7142 | } | |
7143 | ||
4c4b4cd2 PH |
7144 | /* As for ada_template_to_fixed_record_type_1 with KEEP_DYNAMIC_FIELDS |
7145 | of 1. */ | |
14f9c5c9 | 7146 | |
d2e4a39e | 7147 | static struct type * |
fc1a4b47 | 7148 | template_to_fixed_record_type (struct type *type, const gdb_byte *valaddr, |
4c4b4cd2 PH |
7149 | CORE_ADDR address, struct value *dval0) |
7150 | { | |
7151 | return ada_template_to_fixed_record_type_1 (type, valaddr, | |
7152 | address, dval0, 1); | |
7153 | } | |
7154 | ||
7155 | /* An ordinary record type in which ___XVL-convention fields and | |
7156 | ___XVU- and ___XVN-convention field types in TYPE0 are replaced with | |
7157 | static approximations, containing all possible fields. Uses | |
7158 | no runtime values. Useless for use in values, but that's OK, | |
7159 | since the results are used only for type determinations. Works on both | |
7160 | structs and unions. Representation note: to save space, we memorize | |
7161 | the result of this function in the TYPE_TARGET_TYPE of the | |
7162 | template type. */ | |
7163 | ||
7164 | static struct type * | |
7165 | template_to_static_fixed_type (struct type *type0) | |
14f9c5c9 AS |
7166 | { |
7167 | struct type *type; | |
7168 | int nfields; | |
7169 | int f; | |
7170 | ||
4c4b4cd2 PH |
7171 | if (TYPE_TARGET_TYPE (type0) != NULL) |
7172 | return TYPE_TARGET_TYPE (type0); | |
7173 | ||
7174 | nfields = TYPE_NFIELDS (type0); | |
7175 | type = type0; | |
14f9c5c9 AS |
7176 | |
7177 | for (f = 0; f < nfields; f += 1) | |
7178 | { | |
61ee279c | 7179 | struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type0, f)); |
4c4b4cd2 | 7180 | struct type *new_type; |
14f9c5c9 | 7181 | |
4c4b4cd2 PH |
7182 | if (is_dynamic_field (type0, f)) |
7183 | new_type = to_static_fixed_type (TYPE_TARGET_TYPE (field_type)); | |
14f9c5c9 | 7184 | else |
f192137b | 7185 | new_type = static_unwrap_type (field_type); |
4c4b4cd2 PH |
7186 | if (type == type0 && new_type != field_type) |
7187 | { | |
e9bb382b | 7188 | TYPE_TARGET_TYPE (type0) = type = alloc_type_copy (type0); |
4c4b4cd2 PH |
7189 | TYPE_CODE (type) = TYPE_CODE (type0); |
7190 | INIT_CPLUS_SPECIFIC (type); | |
7191 | TYPE_NFIELDS (type) = nfields; | |
7192 | TYPE_FIELDS (type) = (struct field *) | |
7193 | TYPE_ALLOC (type, nfields * sizeof (struct field)); | |
7194 | memcpy (TYPE_FIELDS (type), TYPE_FIELDS (type0), | |
7195 | sizeof (struct field) * nfields); | |
7196 | TYPE_NAME (type) = ada_type_name (type0); | |
7197 | TYPE_TAG_NAME (type) = NULL; | |
876cecd0 | 7198 | TYPE_FIXED_INSTANCE (type) = 1; |
4c4b4cd2 PH |
7199 | TYPE_LENGTH (type) = 0; |
7200 | } | |
7201 | TYPE_FIELD_TYPE (type, f) = new_type; | |
7202 | TYPE_FIELD_NAME (type, f) = TYPE_FIELD_NAME (type0, f); | |
14f9c5c9 | 7203 | } |
14f9c5c9 AS |
7204 | return type; |
7205 | } | |
7206 | ||
4c4b4cd2 | 7207 | /* Given an object of type TYPE whose contents are at VALADDR and |
5823c3ef JB |
7208 | whose address in memory is ADDRESS, returns a revision of TYPE, |
7209 | which should be a non-dynamic-sized record, in which the variant | |
7210 | part, if any, is replaced with the appropriate branch. Looks | |
4c4b4cd2 PH |
7211 | for discriminant values in DVAL0, which can be NULL if the record |
7212 | contains the necessary discriminant values. */ | |
7213 | ||
d2e4a39e | 7214 | static struct type * |
fc1a4b47 | 7215 | to_record_with_fixed_variant_part (struct type *type, const gdb_byte *valaddr, |
4c4b4cd2 | 7216 | CORE_ADDR address, struct value *dval0) |
14f9c5c9 | 7217 | { |
d2e4a39e | 7218 | struct value *mark = value_mark (); |
4c4b4cd2 | 7219 | struct value *dval; |
d2e4a39e | 7220 | struct type *rtype; |
14f9c5c9 AS |
7221 | struct type *branch_type; |
7222 | int nfields = TYPE_NFIELDS (type); | |
4c4b4cd2 | 7223 | int variant_field = variant_field_index (type); |
14f9c5c9 | 7224 | |
4c4b4cd2 | 7225 | if (variant_field == -1) |
14f9c5c9 AS |
7226 | return type; |
7227 | ||
4c4b4cd2 PH |
7228 | if (dval0 == NULL) |
7229 | dval = value_from_contents_and_address (type, valaddr, address); | |
7230 | else | |
7231 | dval = dval0; | |
7232 | ||
e9bb382b | 7233 | rtype = alloc_type_copy (type); |
14f9c5c9 | 7234 | TYPE_CODE (rtype) = TYPE_CODE_STRUCT; |
4c4b4cd2 PH |
7235 | INIT_CPLUS_SPECIFIC (rtype); |
7236 | TYPE_NFIELDS (rtype) = nfields; | |
d2e4a39e AS |
7237 | TYPE_FIELDS (rtype) = |
7238 | (struct field *) TYPE_ALLOC (rtype, nfields * sizeof (struct field)); | |
7239 | memcpy (TYPE_FIELDS (rtype), TYPE_FIELDS (type), | |
4c4b4cd2 | 7240 | sizeof (struct field) * nfields); |
14f9c5c9 AS |
7241 | TYPE_NAME (rtype) = ada_type_name (type); |
7242 | TYPE_TAG_NAME (rtype) = NULL; | |
876cecd0 | 7243 | TYPE_FIXED_INSTANCE (rtype) = 1; |
14f9c5c9 AS |
7244 | TYPE_LENGTH (rtype) = TYPE_LENGTH (type); |
7245 | ||
4c4b4cd2 PH |
7246 | branch_type = to_fixed_variant_branch_type |
7247 | (TYPE_FIELD_TYPE (type, variant_field), | |
d2e4a39e | 7248 | cond_offset_host (valaddr, |
4c4b4cd2 PH |
7249 | TYPE_FIELD_BITPOS (type, variant_field) |
7250 | / TARGET_CHAR_BIT), | |
d2e4a39e | 7251 | cond_offset_target (address, |
4c4b4cd2 PH |
7252 | TYPE_FIELD_BITPOS (type, variant_field) |
7253 | / TARGET_CHAR_BIT), dval); | |
d2e4a39e | 7254 | if (branch_type == NULL) |
14f9c5c9 | 7255 | { |
4c4b4cd2 | 7256 | int f; |
5b4ee69b | 7257 | |
4c4b4cd2 PH |
7258 | for (f = variant_field + 1; f < nfields; f += 1) |
7259 | TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f]; | |
14f9c5c9 | 7260 | TYPE_NFIELDS (rtype) -= 1; |
14f9c5c9 AS |
7261 | } |
7262 | else | |
7263 | { | |
4c4b4cd2 PH |
7264 | TYPE_FIELD_TYPE (rtype, variant_field) = branch_type; |
7265 | TYPE_FIELD_NAME (rtype, variant_field) = "S"; | |
7266 | TYPE_FIELD_BITSIZE (rtype, variant_field) = 0; | |
14f9c5c9 | 7267 | TYPE_LENGTH (rtype) += TYPE_LENGTH (branch_type); |
14f9c5c9 | 7268 | } |
4c4b4cd2 | 7269 | TYPE_LENGTH (rtype) -= TYPE_LENGTH (TYPE_FIELD_TYPE (type, variant_field)); |
d2e4a39e | 7270 | |
4c4b4cd2 | 7271 | value_free_to_mark (mark); |
14f9c5c9 AS |
7272 | return rtype; |
7273 | } | |
7274 | ||
7275 | /* An ordinary record type (with fixed-length fields) that describes | |
7276 | the value at (TYPE0, VALADDR, ADDRESS) [see explanation at | |
7277 | beginning of this section]. Any necessary discriminants' values | |
4c4b4cd2 PH |
7278 | should be in DVAL, a record value; it may be NULL if the object |
7279 | at ADDR itself contains any necessary discriminant values. | |
7280 | Additionally, VALADDR and ADDRESS may also be NULL if no discriminant | |
7281 | values from the record are needed. Except in the case that DVAL, | |
7282 | VALADDR, and ADDRESS are all 0 or NULL, a variant field (unless | |
7283 | unchecked) is replaced by a particular branch of the variant. | |
7284 | ||
7285 | NOTE: the case in which DVAL and VALADDR are NULL and ADDRESS is 0 | |
7286 | is questionable and may be removed. It can arise during the | |
7287 | processing of an unconstrained-array-of-record type where all the | |
7288 | variant branches have exactly the same size. This is because in | |
7289 | such cases, the compiler does not bother to use the XVS convention | |
7290 | when encoding the record. I am currently dubious of this | |
7291 | shortcut and suspect the compiler should be altered. FIXME. */ | |
14f9c5c9 | 7292 | |
d2e4a39e | 7293 | static struct type * |
fc1a4b47 | 7294 | to_fixed_record_type (struct type *type0, const gdb_byte *valaddr, |
4c4b4cd2 | 7295 | CORE_ADDR address, struct value *dval) |
14f9c5c9 | 7296 | { |
d2e4a39e | 7297 | struct type *templ_type; |
14f9c5c9 | 7298 | |
876cecd0 | 7299 | if (TYPE_FIXED_INSTANCE (type0)) |
4c4b4cd2 PH |
7300 | return type0; |
7301 | ||
d2e4a39e | 7302 | templ_type = dynamic_template_type (type0); |
14f9c5c9 AS |
7303 | |
7304 | if (templ_type != NULL) | |
7305 | return template_to_fixed_record_type (templ_type, valaddr, address, dval); | |
4c4b4cd2 PH |
7306 | else if (variant_field_index (type0) >= 0) |
7307 | { | |
7308 | if (dval == NULL && valaddr == NULL && address == 0) | |
7309 | return type0; | |
7310 | return to_record_with_fixed_variant_part (type0, valaddr, address, | |
7311 | dval); | |
7312 | } | |
14f9c5c9 AS |
7313 | else |
7314 | { | |
876cecd0 | 7315 | TYPE_FIXED_INSTANCE (type0) = 1; |
14f9c5c9 AS |
7316 | return type0; |
7317 | } | |
7318 | ||
7319 | } | |
7320 | ||
7321 | /* An ordinary record type (with fixed-length fields) that describes | |
7322 | the value at (VAR_TYPE0, VALADDR, ADDRESS), where VAR_TYPE0 is a | |
7323 | union type. Any necessary discriminants' values should be in DVAL, | |
7324 | a record value. That is, this routine selects the appropriate | |
7325 | branch of the union at ADDR according to the discriminant value | |
b1f33ddd JB |
7326 | indicated in the union's type name. Returns VAR_TYPE0 itself if |
7327 | it represents a variant subject to a pragma Unchecked_Union. */ | |
14f9c5c9 | 7328 | |
d2e4a39e | 7329 | static struct type * |
fc1a4b47 | 7330 | to_fixed_variant_branch_type (struct type *var_type0, const gdb_byte *valaddr, |
4c4b4cd2 | 7331 | CORE_ADDR address, struct value *dval) |
14f9c5c9 AS |
7332 | { |
7333 | int which; | |
d2e4a39e AS |
7334 | struct type *templ_type; |
7335 | struct type *var_type; | |
14f9c5c9 AS |
7336 | |
7337 | if (TYPE_CODE (var_type0) == TYPE_CODE_PTR) | |
7338 | var_type = TYPE_TARGET_TYPE (var_type0); | |
d2e4a39e | 7339 | else |
14f9c5c9 AS |
7340 | var_type = var_type0; |
7341 | ||
7342 | templ_type = ada_find_parallel_type (var_type, "___XVU"); | |
7343 | ||
7344 | if (templ_type != NULL) | |
7345 | var_type = templ_type; | |
7346 | ||
b1f33ddd JB |
7347 | if (is_unchecked_variant (var_type, value_type (dval))) |
7348 | return var_type0; | |
d2e4a39e AS |
7349 | which = |
7350 | ada_which_variant_applies (var_type, | |
0fd88904 | 7351 | value_type (dval), value_contents (dval)); |
14f9c5c9 AS |
7352 | |
7353 | if (which < 0) | |
e9bb382b | 7354 | return empty_record (var_type); |
14f9c5c9 | 7355 | else if (is_dynamic_field (var_type, which)) |
4c4b4cd2 | 7356 | return to_fixed_record_type |
d2e4a39e AS |
7357 | (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (var_type, which)), |
7358 | valaddr, address, dval); | |
4c4b4cd2 | 7359 | else if (variant_field_index (TYPE_FIELD_TYPE (var_type, which)) >= 0) |
d2e4a39e AS |
7360 | return |
7361 | to_fixed_record_type | |
7362 | (TYPE_FIELD_TYPE (var_type, which), valaddr, address, dval); | |
14f9c5c9 AS |
7363 | else |
7364 | return TYPE_FIELD_TYPE (var_type, which); | |
7365 | } | |
7366 | ||
7367 | /* Assuming that TYPE0 is an array type describing the type of a value | |
7368 | at ADDR, and that DVAL describes a record containing any | |
7369 | discriminants used in TYPE0, returns a type for the value that | |
7370 | contains no dynamic components (that is, no components whose sizes | |
7371 | are determined by run-time quantities). Unless IGNORE_TOO_BIG is | |
7372 | true, gives an error message if the resulting type's size is over | |
4c4b4cd2 | 7373 | varsize_limit. */ |
14f9c5c9 | 7374 | |
d2e4a39e AS |
7375 | static struct type * |
7376 | to_fixed_array_type (struct type *type0, struct value *dval, | |
4c4b4cd2 | 7377 | int ignore_too_big) |
14f9c5c9 | 7378 | { |
d2e4a39e AS |
7379 | struct type *index_type_desc; |
7380 | struct type *result; | |
ad82864c | 7381 | int constrained_packed_array_p; |
14f9c5c9 | 7382 | |
284614f0 | 7383 | if (TYPE_FIXED_INSTANCE (type0)) |
4c4b4cd2 | 7384 | return type0; |
14f9c5c9 | 7385 | |
ad82864c JB |
7386 | constrained_packed_array_p = ada_is_constrained_packed_array_type (type0); |
7387 | if (constrained_packed_array_p) | |
7388 | type0 = decode_constrained_packed_array_type (type0); | |
284614f0 | 7389 | |
14f9c5c9 | 7390 | index_type_desc = ada_find_parallel_type (type0, "___XA"); |
28c85d6c | 7391 | ada_fixup_array_indexes_type (index_type_desc); |
14f9c5c9 AS |
7392 | if (index_type_desc == NULL) |
7393 | { | |
61ee279c | 7394 | struct type *elt_type0 = ada_check_typedef (TYPE_TARGET_TYPE (type0)); |
5b4ee69b | 7395 | |
14f9c5c9 | 7396 | /* NOTE: elt_type---the fixed version of elt_type0---should never |
4c4b4cd2 PH |
7397 | depend on the contents of the array in properly constructed |
7398 | debugging data. */ | |
529cad9c PH |
7399 | /* Create a fixed version of the array element type. |
7400 | We're not providing the address of an element here, | |
e1d5a0d2 | 7401 | and thus the actual object value cannot be inspected to do |
529cad9c PH |
7402 | the conversion. This should not be a problem, since arrays of |
7403 | unconstrained objects are not allowed. In particular, all | |
7404 | the elements of an array of a tagged type should all be of | |
7405 | the same type specified in the debugging info. No need to | |
7406 | consult the object tag. */ | |
1ed6ede0 | 7407 | struct type *elt_type = ada_to_fixed_type (elt_type0, 0, 0, dval, 1); |
14f9c5c9 | 7408 | |
284614f0 JB |
7409 | /* Make sure we always create a new array type when dealing with |
7410 | packed array types, since we're going to fix-up the array | |
7411 | type length and element bitsize a little further down. */ | |
ad82864c | 7412 | if (elt_type0 == elt_type && !constrained_packed_array_p) |
4c4b4cd2 | 7413 | result = type0; |
14f9c5c9 | 7414 | else |
e9bb382b | 7415 | result = create_array_type (alloc_type_copy (type0), |
4c4b4cd2 | 7416 | elt_type, TYPE_INDEX_TYPE (type0)); |
14f9c5c9 AS |
7417 | } |
7418 | else | |
7419 | { | |
7420 | int i; | |
7421 | struct type *elt_type0; | |
7422 | ||
7423 | elt_type0 = type0; | |
7424 | for (i = TYPE_NFIELDS (index_type_desc); i > 0; i -= 1) | |
4c4b4cd2 | 7425 | elt_type0 = TYPE_TARGET_TYPE (elt_type0); |
14f9c5c9 AS |
7426 | |
7427 | /* NOTE: result---the fixed version of elt_type0---should never | |
4c4b4cd2 PH |
7428 | depend on the contents of the array in properly constructed |
7429 | debugging data. */ | |
529cad9c PH |
7430 | /* Create a fixed version of the array element type. |
7431 | We're not providing the address of an element here, | |
e1d5a0d2 | 7432 | and thus the actual object value cannot be inspected to do |
529cad9c PH |
7433 | the conversion. This should not be a problem, since arrays of |
7434 | unconstrained objects are not allowed. In particular, all | |
7435 | the elements of an array of a tagged type should all be of | |
7436 | the same type specified in the debugging info. No need to | |
7437 | consult the object tag. */ | |
1ed6ede0 JB |
7438 | result = |
7439 | ada_to_fixed_type (ada_check_typedef (elt_type0), 0, 0, dval, 1); | |
1ce677a4 UW |
7440 | |
7441 | elt_type0 = type0; | |
14f9c5c9 | 7442 | for (i = TYPE_NFIELDS (index_type_desc) - 1; i >= 0; i -= 1) |
4c4b4cd2 PH |
7443 | { |
7444 | struct type *range_type = | |
28c85d6c | 7445 | to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, i), dval); |
5b4ee69b | 7446 | |
e9bb382b | 7447 | result = create_array_type (alloc_type_copy (elt_type0), |
4c4b4cd2 | 7448 | result, range_type); |
1ce677a4 | 7449 | elt_type0 = TYPE_TARGET_TYPE (elt_type0); |
4c4b4cd2 | 7450 | } |
d2e4a39e | 7451 | if (!ignore_too_big && TYPE_LENGTH (result) > varsize_limit) |
323e0a4a | 7452 | error (_("array type with dynamic size is larger than varsize-limit")); |
14f9c5c9 AS |
7453 | } |
7454 | ||
ad82864c | 7455 | if (constrained_packed_array_p) |
284614f0 JB |
7456 | { |
7457 | /* So far, the resulting type has been created as if the original | |
7458 | type was a regular (non-packed) array type. As a result, the | |
7459 | bitsize of the array elements needs to be set again, and the array | |
7460 | length needs to be recomputed based on that bitsize. */ | |
7461 | int len = TYPE_LENGTH (result) / TYPE_LENGTH (TYPE_TARGET_TYPE (result)); | |
7462 | int elt_bitsize = TYPE_FIELD_BITSIZE (type0, 0); | |
7463 | ||
7464 | TYPE_FIELD_BITSIZE (result, 0) = TYPE_FIELD_BITSIZE (type0, 0); | |
7465 | TYPE_LENGTH (result) = len * elt_bitsize / HOST_CHAR_BIT; | |
7466 | if (TYPE_LENGTH (result) * HOST_CHAR_BIT < len * elt_bitsize) | |
7467 | TYPE_LENGTH (result)++; | |
7468 | } | |
7469 | ||
876cecd0 | 7470 | TYPE_FIXED_INSTANCE (result) = 1; |
14f9c5c9 | 7471 | return result; |
d2e4a39e | 7472 | } |
14f9c5c9 AS |
7473 | |
7474 | ||
7475 | /* A standard type (containing no dynamically sized components) | |
7476 | corresponding to TYPE for the value (TYPE, VALADDR, ADDRESS) | |
7477 | DVAL describes a record containing any discriminants used in TYPE0, | |
4c4b4cd2 | 7478 | and may be NULL if there are none, or if the object of type TYPE at |
529cad9c PH |
7479 | ADDRESS or in VALADDR contains these discriminants. |
7480 | ||
1ed6ede0 JB |
7481 | If CHECK_TAG is not null, in the case of tagged types, this function |
7482 | attempts to locate the object's tag and use it to compute the actual | |
7483 | type. However, when ADDRESS is null, we cannot use it to determine the | |
7484 | location of the tag, and therefore compute the tagged type's actual type. | |
7485 | So we return the tagged type without consulting the tag. */ | |
529cad9c | 7486 | |
f192137b JB |
7487 | static struct type * |
7488 | ada_to_fixed_type_1 (struct type *type, const gdb_byte *valaddr, | |
1ed6ede0 | 7489 | CORE_ADDR address, struct value *dval, int check_tag) |
14f9c5c9 | 7490 | { |
61ee279c | 7491 | type = ada_check_typedef (type); |
d2e4a39e AS |
7492 | switch (TYPE_CODE (type)) |
7493 | { | |
7494 | default: | |
14f9c5c9 | 7495 | return type; |
d2e4a39e | 7496 | case TYPE_CODE_STRUCT: |
4c4b4cd2 | 7497 | { |
76a01679 | 7498 | struct type *static_type = to_static_fixed_type (type); |
1ed6ede0 JB |
7499 | struct type *fixed_record_type = |
7500 | to_fixed_record_type (type, valaddr, address, NULL); | |
5b4ee69b | 7501 | |
529cad9c PH |
7502 | /* If STATIC_TYPE is a tagged type and we know the object's address, |
7503 | then we can determine its tag, and compute the object's actual | |
1ed6ede0 JB |
7504 | type from there. Note that we have to use the fixed record |
7505 | type (the parent part of the record may have dynamic fields | |
7506 | and the way the location of _tag is expressed may depend on | |
7507 | them). */ | |
529cad9c | 7508 | |
1ed6ede0 | 7509 | if (check_tag && address != 0 && ada_is_tagged_type (static_type, 0)) |
76a01679 JB |
7510 | { |
7511 | struct type *real_type = | |
1ed6ede0 JB |
7512 | type_from_tag (value_tag_from_contents_and_address |
7513 | (fixed_record_type, | |
7514 | valaddr, | |
7515 | address)); | |
5b4ee69b | 7516 | |
76a01679 | 7517 | if (real_type != NULL) |
1ed6ede0 | 7518 | return to_fixed_record_type (real_type, valaddr, address, NULL); |
76a01679 | 7519 | } |
4af88198 JB |
7520 | |
7521 | /* Check to see if there is a parallel ___XVZ variable. | |
7522 | If there is, then it provides the actual size of our type. */ | |
7523 | else if (ada_type_name (fixed_record_type) != NULL) | |
7524 | { | |
7525 | char *name = ada_type_name (fixed_record_type); | |
7526 | char *xvz_name = alloca (strlen (name) + 7 /* "___XVZ\0" */); | |
7527 | int xvz_found = 0; | |
7528 | LONGEST size; | |
7529 | ||
88c15c34 | 7530 | xsnprintf (xvz_name, strlen (name) + 7, "%s___XVZ", name); |
4af88198 JB |
7531 | size = get_int_var_value (xvz_name, &xvz_found); |
7532 | if (xvz_found && TYPE_LENGTH (fixed_record_type) != size) | |
7533 | { | |
7534 | fixed_record_type = copy_type (fixed_record_type); | |
7535 | TYPE_LENGTH (fixed_record_type) = size; | |
7536 | ||
7537 | /* The FIXED_RECORD_TYPE may have be a stub. We have | |
7538 | observed this when the debugging info is STABS, and | |
7539 | apparently it is something that is hard to fix. | |
7540 | ||
7541 | In practice, we don't need the actual type definition | |
7542 | at all, because the presence of the XVZ variable allows us | |
7543 | to assume that there must be a XVS type as well, which we | |
7544 | should be able to use later, when we need the actual type | |
7545 | definition. | |
7546 | ||
7547 | In the meantime, pretend that the "fixed" type we are | |
7548 | returning is NOT a stub, because this can cause trouble | |
7549 | when using this type to create new types targeting it. | |
7550 | Indeed, the associated creation routines often check | |
7551 | whether the target type is a stub and will try to replace | |
7552 | it, thus using a type with the wrong size. This, in turn, | |
7553 | might cause the new type to have the wrong size too. | |
7554 | Consider the case of an array, for instance, where the size | |
7555 | of the array is computed from the number of elements in | |
7556 | our array multiplied by the size of its element. */ | |
7557 | TYPE_STUB (fixed_record_type) = 0; | |
7558 | } | |
7559 | } | |
1ed6ede0 | 7560 | return fixed_record_type; |
4c4b4cd2 | 7561 | } |
d2e4a39e | 7562 | case TYPE_CODE_ARRAY: |
4c4b4cd2 | 7563 | return to_fixed_array_type (type, dval, 1); |
d2e4a39e AS |
7564 | case TYPE_CODE_UNION: |
7565 | if (dval == NULL) | |
4c4b4cd2 | 7566 | return type; |
d2e4a39e | 7567 | else |
4c4b4cd2 | 7568 | return to_fixed_variant_branch_type (type, valaddr, address, dval); |
d2e4a39e | 7569 | } |
14f9c5c9 AS |
7570 | } |
7571 | ||
f192137b JB |
7572 | /* The same as ada_to_fixed_type_1, except that it preserves the type |
7573 | if it is a TYPE_CODE_TYPEDEF of a type that is already fixed. | |
7574 | ada_to_fixed_type_1 would return the type referenced by TYPE. */ | |
7575 | ||
7576 | struct type * | |
7577 | ada_to_fixed_type (struct type *type, const gdb_byte *valaddr, | |
7578 | CORE_ADDR address, struct value *dval, int check_tag) | |
7579 | ||
7580 | { | |
7581 | struct type *fixed_type = | |
7582 | ada_to_fixed_type_1 (type, valaddr, address, dval, check_tag); | |
7583 | ||
7584 | if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF | |
7585 | && TYPE_TARGET_TYPE (type) == fixed_type) | |
7586 | return type; | |
7587 | ||
7588 | return fixed_type; | |
7589 | } | |
7590 | ||
14f9c5c9 | 7591 | /* A standard (static-sized) type corresponding as well as possible to |
4c4b4cd2 | 7592 | TYPE0, but based on no runtime data. */ |
14f9c5c9 | 7593 | |
d2e4a39e AS |
7594 | static struct type * |
7595 | to_static_fixed_type (struct type *type0) | |
14f9c5c9 | 7596 | { |
d2e4a39e | 7597 | struct type *type; |
14f9c5c9 AS |
7598 | |
7599 | if (type0 == NULL) | |
7600 | return NULL; | |
7601 | ||
876cecd0 | 7602 | if (TYPE_FIXED_INSTANCE (type0)) |
4c4b4cd2 PH |
7603 | return type0; |
7604 | ||
61ee279c | 7605 | type0 = ada_check_typedef (type0); |
d2e4a39e | 7606 | |
14f9c5c9 AS |
7607 | switch (TYPE_CODE (type0)) |
7608 | { | |
7609 | default: | |
7610 | return type0; | |
7611 | case TYPE_CODE_STRUCT: | |
7612 | type = dynamic_template_type (type0); | |
d2e4a39e | 7613 | if (type != NULL) |
4c4b4cd2 PH |
7614 | return template_to_static_fixed_type (type); |
7615 | else | |
7616 | return template_to_static_fixed_type (type0); | |
14f9c5c9 AS |
7617 | case TYPE_CODE_UNION: |
7618 | type = ada_find_parallel_type (type0, "___XVU"); | |
7619 | if (type != NULL) | |
4c4b4cd2 PH |
7620 | return template_to_static_fixed_type (type); |
7621 | else | |
7622 | return template_to_static_fixed_type (type0); | |
14f9c5c9 AS |
7623 | } |
7624 | } | |
7625 | ||
4c4b4cd2 PH |
7626 | /* A static approximation of TYPE with all type wrappers removed. */ |
7627 | ||
d2e4a39e AS |
7628 | static struct type * |
7629 | static_unwrap_type (struct type *type) | |
14f9c5c9 AS |
7630 | { |
7631 | if (ada_is_aligner_type (type)) | |
7632 | { | |
61ee279c | 7633 | struct type *type1 = TYPE_FIELD_TYPE (ada_check_typedef (type), 0); |
14f9c5c9 | 7634 | if (ada_type_name (type1) == NULL) |
4c4b4cd2 | 7635 | TYPE_NAME (type1) = ada_type_name (type); |
14f9c5c9 AS |
7636 | |
7637 | return static_unwrap_type (type1); | |
7638 | } | |
d2e4a39e | 7639 | else |
14f9c5c9 | 7640 | { |
d2e4a39e | 7641 | struct type *raw_real_type = ada_get_base_type (type); |
5b4ee69b | 7642 | |
d2e4a39e | 7643 | if (raw_real_type == type) |
4c4b4cd2 | 7644 | return type; |
14f9c5c9 | 7645 | else |
4c4b4cd2 | 7646 | return to_static_fixed_type (raw_real_type); |
14f9c5c9 AS |
7647 | } |
7648 | } | |
7649 | ||
7650 | /* In some cases, incomplete and private types require | |
4c4b4cd2 | 7651 | cross-references that are not resolved as records (for example, |
14f9c5c9 AS |
7652 | type Foo; |
7653 | type FooP is access Foo; | |
7654 | V: FooP; | |
7655 | type Foo is array ...; | |
4c4b4cd2 | 7656 | ). In these cases, since there is no mechanism for producing |
14f9c5c9 AS |
7657 | cross-references to such types, we instead substitute for FooP a |
7658 | stub enumeration type that is nowhere resolved, and whose tag is | |
4c4b4cd2 | 7659 | the name of the actual type. Call these types "non-record stubs". */ |
14f9c5c9 AS |
7660 | |
7661 | /* A type equivalent to TYPE that is not a non-record stub, if one | |
4c4b4cd2 PH |
7662 | exists, otherwise TYPE. */ |
7663 | ||
d2e4a39e | 7664 | struct type * |
61ee279c | 7665 | ada_check_typedef (struct type *type) |
14f9c5c9 | 7666 | { |
727e3d2e JB |
7667 | if (type == NULL) |
7668 | return NULL; | |
7669 | ||
14f9c5c9 AS |
7670 | CHECK_TYPEDEF (type); |
7671 | if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM | |
529cad9c | 7672 | || !TYPE_STUB (type) |
14f9c5c9 AS |
7673 | || TYPE_TAG_NAME (type) == NULL) |
7674 | return type; | |
d2e4a39e | 7675 | else |
14f9c5c9 | 7676 | { |
d2e4a39e AS |
7677 | char *name = TYPE_TAG_NAME (type); |
7678 | struct type *type1 = ada_find_any_type (name); | |
5b4ee69b | 7679 | |
05e522ef JB |
7680 | if (type1 == NULL) |
7681 | return type; | |
7682 | ||
7683 | /* TYPE1 might itself be a TYPE_CODE_TYPEDEF (this can happen with | |
7684 | stubs pointing to arrays, as we don't create symbols for array | |
7685 | types, only for the typedef-to-array types). This is why | |
7686 | we process TYPE1 with ada_check_typedef before returning | |
7687 | the result. */ | |
7688 | return ada_check_typedef (type1); | |
14f9c5c9 AS |
7689 | } |
7690 | } | |
7691 | ||
7692 | /* A value representing the data at VALADDR/ADDRESS as described by | |
7693 | type TYPE0, but with a standard (static-sized) type that correctly | |
7694 | describes it. If VAL0 is not NULL and TYPE0 already is a standard | |
7695 | type, then return VAL0 [this feature is simply to avoid redundant | |
4c4b4cd2 | 7696 | creation of struct values]. */ |
14f9c5c9 | 7697 | |
4c4b4cd2 PH |
7698 | static struct value * |
7699 | ada_to_fixed_value_create (struct type *type0, CORE_ADDR address, | |
7700 | struct value *val0) | |
14f9c5c9 | 7701 | { |
1ed6ede0 | 7702 | struct type *type = ada_to_fixed_type (type0, 0, address, NULL, 1); |
5b4ee69b | 7703 | |
14f9c5c9 AS |
7704 | if (type == type0 && val0 != NULL) |
7705 | return val0; | |
d2e4a39e | 7706 | else |
4c4b4cd2 PH |
7707 | return value_from_contents_and_address (type, 0, address); |
7708 | } | |
7709 | ||
7710 | /* A value representing VAL, but with a standard (static-sized) type | |
7711 | that correctly describes it. Does not necessarily create a new | |
7712 | value. */ | |
7713 | ||
0c3acc09 | 7714 | struct value * |
4c4b4cd2 PH |
7715 | ada_to_fixed_value (struct value *val) |
7716 | { | |
df407dfe | 7717 | return ada_to_fixed_value_create (value_type (val), |
42ae5230 | 7718 | value_address (val), |
4c4b4cd2 | 7719 | val); |
14f9c5c9 | 7720 | } |
d2e4a39e | 7721 | \f |
14f9c5c9 | 7722 | |
14f9c5c9 AS |
7723 | /* Attributes */ |
7724 | ||
4c4b4cd2 PH |
7725 | /* Table mapping attribute numbers to names. |
7726 | NOTE: Keep up to date with enum ada_attribute definition in ada-lang.h. */ | |
14f9c5c9 | 7727 | |
d2e4a39e | 7728 | static const char *attribute_names[] = { |
14f9c5c9 AS |
7729 | "<?>", |
7730 | ||
d2e4a39e | 7731 | "first", |
14f9c5c9 AS |
7732 | "last", |
7733 | "length", | |
7734 | "image", | |
14f9c5c9 AS |
7735 | "max", |
7736 | "min", | |
4c4b4cd2 PH |
7737 | "modulus", |
7738 | "pos", | |
7739 | "size", | |
7740 | "tag", | |
14f9c5c9 | 7741 | "val", |
14f9c5c9 AS |
7742 | 0 |
7743 | }; | |
7744 | ||
d2e4a39e | 7745 | const char * |
4c4b4cd2 | 7746 | ada_attribute_name (enum exp_opcode n) |
14f9c5c9 | 7747 | { |
4c4b4cd2 PH |
7748 | if (n >= OP_ATR_FIRST && n <= (int) OP_ATR_VAL) |
7749 | return attribute_names[n - OP_ATR_FIRST + 1]; | |
14f9c5c9 AS |
7750 | else |
7751 | return attribute_names[0]; | |
7752 | } | |
7753 | ||
4c4b4cd2 | 7754 | /* Evaluate the 'POS attribute applied to ARG. */ |
14f9c5c9 | 7755 | |
4c4b4cd2 PH |
7756 | static LONGEST |
7757 | pos_atr (struct value *arg) | |
14f9c5c9 | 7758 | { |
24209737 PH |
7759 | struct value *val = coerce_ref (arg); |
7760 | struct type *type = value_type (val); | |
14f9c5c9 | 7761 | |
d2e4a39e | 7762 | if (!discrete_type_p (type)) |
323e0a4a | 7763 | error (_("'POS only defined on discrete types")); |
14f9c5c9 AS |
7764 | |
7765 | if (TYPE_CODE (type) == TYPE_CODE_ENUM) | |
7766 | { | |
7767 | int i; | |
24209737 | 7768 | LONGEST v = value_as_long (val); |
14f9c5c9 | 7769 | |
d2e4a39e | 7770 | for (i = 0; i < TYPE_NFIELDS (type); i += 1) |
4c4b4cd2 PH |
7771 | { |
7772 | if (v == TYPE_FIELD_BITPOS (type, i)) | |
7773 | return i; | |
7774 | } | |
323e0a4a | 7775 | error (_("enumeration value is invalid: can't find 'POS")); |
14f9c5c9 AS |
7776 | } |
7777 | else | |
24209737 | 7778 | return value_as_long (val); |
4c4b4cd2 PH |
7779 | } |
7780 | ||
7781 | static struct value * | |
3cb382c9 | 7782 | value_pos_atr (struct type *type, struct value *arg) |
4c4b4cd2 | 7783 | { |
3cb382c9 | 7784 | return value_from_longest (type, pos_atr (arg)); |
14f9c5c9 AS |
7785 | } |
7786 | ||
4c4b4cd2 | 7787 | /* Evaluate the TYPE'VAL attribute applied to ARG. */ |
14f9c5c9 | 7788 | |
d2e4a39e AS |
7789 | static struct value * |
7790 | value_val_atr (struct type *type, struct value *arg) | |
14f9c5c9 | 7791 | { |
d2e4a39e | 7792 | if (!discrete_type_p (type)) |
323e0a4a | 7793 | error (_("'VAL only defined on discrete types")); |
df407dfe | 7794 | if (!integer_type_p (value_type (arg))) |
323e0a4a | 7795 | error (_("'VAL requires integral argument")); |
14f9c5c9 AS |
7796 | |
7797 | if (TYPE_CODE (type) == TYPE_CODE_ENUM) | |
7798 | { | |
7799 | long pos = value_as_long (arg); | |
5b4ee69b | 7800 | |
14f9c5c9 | 7801 | if (pos < 0 || pos >= TYPE_NFIELDS (type)) |
323e0a4a | 7802 | error (_("argument to 'VAL out of range")); |
d2e4a39e | 7803 | return value_from_longest (type, TYPE_FIELD_BITPOS (type, pos)); |
14f9c5c9 AS |
7804 | } |
7805 | else | |
7806 | return value_from_longest (type, value_as_long (arg)); | |
7807 | } | |
14f9c5c9 | 7808 | \f |
d2e4a39e | 7809 | |
4c4b4cd2 | 7810 | /* Evaluation */ |
14f9c5c9 | 7811 | |
4c4b4cd2 PH |
7812 | /* True if TYPE appears to be an Ada character type. |
7813 | [At the moment, this is true only for Character and Wide_Character; | |
7814 | It is a heuristic test that could stand improvement]. */ | |
14f9c5c9 | 7815 | |
d2e4a39e AS |
7816 | int |
7817 | ada_is_character_type (struct type *type) | |
14f9c5c9 | 7818 | { |
7b9f71f2 JB |
7819 | const char *name; |
7820 | ||
7821 | /* If the type code says it's a character, then assume it really is, | |
7822 | and don't check any further. */ | |
7823 | if (TYPE_CODE (type) == TYPE_CODE_CHAR) | |
7824 | return 1; | |
7825 | ||
7826 | /* Otherwise, assume it's a character type iff it is a discrete type | |
7827 | with a known character type name. */ | |
7828 | name = ada_type_name (type); | |
7829 | return (name != NULL | |
7830 | && (TYPE_CODE (type) == TYPE_CODE_INT | |
7831 | || TYPE_CODE (type) == TYPE_CODE_RANGE) | |
7832 | && (strcmp (name, "character") == 0 | |
7833 | || strcmp (name, "wide_character") == 0 | |
5a517ebd | 7834 | || strcmp (name, "wide_wide_character") == 0 |
7b9f71f2 | 7835 | || strcmp (name, "unsigned char") == 0)); |
14f9c5c9 AS |
7836 | } |
7837 | ||
4c4b4cd2 | 7838 | /* True if TYPE appears to be an Ada string type. */ |
14f9c5c9 AS |
7839 | |
7840 | int | |
ebf56fd3 | 7841 | ada_is_string_type (struct type *type) |
14f9c5c9 | 7842 | { |
61ee279c | 7843 | type = ada_check_typedef (type); |
d2e4a39e | 7844 | if (type != NULL |
14f9c5c9 | 7845 | && TYPE_CODE (type) != TYPE_CODE_PTR |
76a01679 JB |
7846 | && (ada_is_simple_array_type (type) |
7847 | || ada_is_array_descriptor_type (type)) | |
14f9c5c9 AS |
7848 | && ada_array_arity (type) == 1) |
7849 | { | |
7850 | struct type *elttype = ada_array_element_type (type, 1); | |
7851 | ||
7852 | return ada_is_character_type (elttype); | |
7853 | } | |
d2e4a39e | 7854 | else |
14f9c5c9 AS |
7855 | return 0; |
7856 | } | |
7857 | ||
5bf03f13 JB |
7858 | /* The compiler sometimes provides a parallel XVS type for a given |
7859 | PAD type. Normally, it is safe to follow the PAD type directly, | |
7860 | but older versions of the compiler have a bug that causes the offset | |
7861 | of its "F" field to be wrong. Following that field in that case | |
7862 | would lead to incorrect results, but this can be worked around | |
7863 | by ignoring the PAD type and using the associated XVS type instead. | |
7864 | ||
7865 | Set to True if the debugger should trust the contents of PAD types. | |
7866 | Otherwise, ignore the PAD type if there is a parallel XVS type. */ | |
7867 | static int trust_pad_over_xvs = 1; | |
14f9c5c9 AS |
7868 | |
7869 | /* True if TYPE is a struct type introduced by the compiler to force the | |
7870 | alignment of a value. Such types have a single field with a | |
4c4b4cd2 | 7871 | distinctive name. */ |
14f9c5c9 AS |
7872 | |
7873 | int | |
ebf56fd3 | 7874 | ada_is_aligner_type (struct type *type) |
14f9c5c9 | 7875 | { |
61ee279c | 7876 | type = ada_check_typedef (type); |
714e53ab | 7877 | |
5bf03f13 | 7878 | if (!trust_pad_over_xvs && ada_find_parallel_type (type, "___XVS") != NULL) |
714e53ab PH |
7879 | return 0; |
7880 | ||
14f9c5c9 | 7881 | return (TYPE_CODE (type) == TYPE_CODE_STRUCT |
4c4b4cd2 PH |
7882 | && TYPE_NFIELDS (type) == 1 |
7883 | && strcmp (TYPE_FIELD_NAME (type, 0), "F") == 0); | |
14f9c5c9 AS |
7884 | } |
7885 | ||
7886 | /* If there is an ___XVS-convention type parallel to SUBTYPE, return | |
4c4b4cd2 | 7887 | the parallel type. */ |
14f9c5c9 | 7888 | |
d2e4a39e AS |
7889 | struct type * |
7890 | ada_get_base_type (struct type *raw_type) | |
14f9c5c9 | 7891 | { |
d2e4a39e AS |
7892 | struct type *real_type_namer; |
7893 | struct type *raw_real_type; | |
14f9c5c9 AS |
7894 | |
7895 | if (raw_type == NULL || TYPE_CODE (raw_type) != TYPE_CODE_STRUCT) | |
7896 | return raw_type; | |
7897 | ||
284614f0 JB |
7898 | if (ada_is_aligner_type (raw_type)) |
7899 | /* The encoding specifies that we should always use the aligner type. | |
7900 | So, even if this aligner type has an associated XVS type, we should | |
7901 | simply ignore it. | |
7902 | ||
7903 | According to the compiler gurus, an XVS type parallel to an aligner | |
7904 | type may exist because of a stabs limitation. In stabs, aligner | |
7905 | types are empty because the field has a variable-sized type, and | |
7906 | thus cannot actually be used as an aligner type. As a result, | |
7907 | we need the associated parallel XVS type to decode the type. | |
7908 | Since the policy in the compiler is to not change the internal | |
7909 | representation based on the debugging info format, we sometimes | |
7910 | end up having a redundant XVS type parallel to the aligner type. */ | |
7911 | return raw_type; | |
7912 | ||
14f9c5c9 | 7913 | real_type_namer = ada_find_parallel_type (raw_type, "___XVS"); |
d2e4a39e | 7914 | if (real_type_namer == NULL |
14f9c5c9 AS |
7915 | || TYPE_CODE (real_type_namer) != TYPE_CODE_STRUCT |
7916 | || TYPE_NFIELDS (real_type_namer) != 1) | |
7917 | return raw_type; | |
7918 | ||
f80d3ff2 JB |
7919 | if (TYPE_CODE (TYPE_FIELD_TYPE (real_type_namer, 0)) != TYPE_CODE_REF) |
7920 | { | |
7921 | /* This is an older encoding form where the base type needs to be | |
7922 | looked up by name. We prefer the newer enconding because it is | |
7923 | more efficient. */ | |
7924 | raw_real_type = ada_find_any_type (TYPE_FIELD_NAME (real_type_namer, 0)); | |
7925 | if (raw_real_type == NULL) | |
7926 | return raw_type; | |
7927 | else | |
7928 | return raw_real_type; | |
7929 | } | |
7930 | ||
7931 | /* The field in our XVS type is a reference to the base type. */ | |
7932 | return TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (real_type_namer, 0)); | |
d2e4a39e | 7933 | } |
14f9c5c9 | 7934 | |
4c4b4cd2 | 7935 | /* The type of value designated by TYPE, with all aligners removed. */ |
14f9c5c9 | 7936 | |
d2e4a39e AS |
7937 | struct type * |
7938 | ada_aligned_type (struct type *type) | |
14f9c5c9 AS |
7939 | { |
7940 | if (ada_is_aligner_type (type)) | |
7941 | return ada_aligned_type (TYPE_FIELD_TYPE (type, 0)); | |
7942 | else | |
7943 | return ada_get_base_type (type); | |
7944 | } | |
7945 | ||
7946 | ||
7947 | /* The address of the aligned value in an object at address VALADDR | |
4c4b4cd2 | 7948 | having type TYPE. Assumes ada_is_aligner_type (TYPE). */ |
14f9c5c9 | 7949 | |
fc1a4b47 AC |
7950 | const gdb_byte * |
7951 | ada_aligned_value_addr (struct type *type, const gdb_byte *valaddr) | |
14f9c5c9 | 7952 | { |
d2e4a39e | 7953 | if (ada_is_aligner_type (type)) |
14f9c5c9 | 7954 | return ada_aligned_value_addr (TYPE_FIELD_TYPE (type, 0), |
4c4b4cd2 PH |
7955 | valaddr + |
7956 | TYPE_FIELD_BITPOS (type, | |
7957 | 0) / TARGET_CHAR_BIT); | |
14f9c5c9 AS |
7958 | else |
7959 | return valaddr; | |
7960 | } | |
7961 | ||
4c4b4cd2 PH |
7962 | |
7963 | ||
14f9c5c9 | 7964 | /* The printed representation of an enumeration literal with encoded |
4c4b4cd2 | 7965 | name NAME. The value is good to the next call of ada_enum_name. */ |
d2e4a39e AS |
7966 | const char * |
7967 | ada_enum_name (const char *name) | |
14f9c5c9 | 7968 | { |
4c4b4cd2 PH |
7969 | static char *result; |
7970 | static size_t result_len = 0; | |
d2e4a39e | 7971 | char *tmp; |
14f9c5c9 | 7972 | |
4c4b4cd2 PH |
7973 | /* First, unqualify the enumeration name: |
7974 | 1. Search for the last '.' character. If we find one, then skip | |
76a01679 JB |
7975 | all the preceeding characters, the unqualified name starts |
7976 | right after that dot. | |
4c4b4cd2 | 7977 | 2. Otherwise, we may be debugging on a target where the compiler |
76a01679 JB |
7978 | translates dots into "__". Search forward for double underscores, |
7979 | but stop searching when we hit an overloading suffix, which is | |
7980 | of the form "__" followed by digits. */ | |
4c4b4cd2 | 7981 | |
c3e5cd34 PH |
7982 | tmp = strrchr (name, '.'); |
7983 | if (tmp != NULL) | |
4c4b4cd2 PH |
7984 | name = tmp + 1; |
7985 | else | |
14f9c5c9 | 7986 | { |
4c4b4cd2 PH |
7987 | while ((tmp = strstr (name, "__")) != NULL) |
7988 | { | |
7989 | if (isdigit (tmp[2])) | |
7990 | break; | |
7991 | else | |
7992 | name = tmp + 2; | |
7993 | } | |
14f9c5c9 AS |
7994 | } |
7995 | ||
7996 | if (name[0] == 'Q') | |
7997 | { | |
14f9c5c9 | 7998 | int v; |
5b4ee69b | 7999 | |
14f9c5c9 | 8000 | if (name[1] == 'U' || name[1] == 'W') |
4c4b4cd2 PH |
8001 | { |
8002 | if (sscanf (name + 2, "%x", &v) != 1) | |
8003 | return name; | |
8004 | } | |
14f9c5c9 | 8005 | else |
4c4b4cd2 | 8006 | return name; |
14f9c5c9 | 8007 | |
4c4b4cd2 | 8008 | GROW_VECT (result, result_len, 16); |
14f9c5c9 | 8009 | if (isascii (v) && isprint (v)) |
88c15c34 | 8010 | xsnprintf (result, result_len, "'%c'", v); |
14f9c5c9 | 8011 | else if (name[1] == 'U') |
88c15c34 | 8012 | xsnprintf (result, result_len, "[\"%02x\"]", v); |
14f9c5c9 | 8013 | else |
88c15c34 | 8014 | xsnprintf (result, result_len, "[\"%04x\"]", v); |
14f9c5c9 AS |
8015 | |
8016 | return result; | |
8017 | } | |
d2e4a39e | 8018 | else |
4c4b4cd2 | 8019 | { |
c3e5cd34 PH |
8020 | tmp = strstr (name, "__"); |
8021 | if (tmp == NULL) | |
8022 | tmp = strstr (name, "$"); | |
8023 | if (tmp != NULL) | |
4c4b4cd2 PH |
8024 | { |
8025 | GROW_VECT (result, result_len, tmp - name + 1); | |
8026 | strncpy (result, name, tmp - name); | |
8027 | result[tmp - name] = '\0'; | |
8028 | return result; | |
8029 | } | |
8030 | ||
8031 | return name; | |
8032 | } | |
14f9c5c9 AS |
8033 | } |
8034 | ||
14f9c5c9 AS |
8035 | /* Evaluate the subexpression of EXP starting at *POS as for |
8036 | evaluate_type, updating *POS to point just past the evaluated | |
4c4b4cd2 | 8037 | expression. */ |
14f9c5c9 | 8038 | |
d2e4a39e AS |
8039 | static struct value * |
8040 | evaluate_subexp_type (struct expression *exp, int *pos) | |
14f9c5c9 | 8041 | { |
4b27a620 | 8042 | return evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS); |
14f9c5c9 AS |
8043 | } |
8044 | ||
8045 | /* If VAL is wrapped in an aligner or subtype wrapper, return the | |
4c4b4cd2 | 8046 | value it wraps. */ |
14f9c5c9 | 8047 | |
d2e4a39e AS |
8048 | static struct value * |
8049 | unwrap_value (struct value *val) | |
14f9c5c9 | 8050 | { |
df407dfe | 8051 | struct type *type = ada_check_typedef (value_type (val)); |
5b4ee69b | 8052 | |
14f9c5c9 AS |
8053 | if (ada_is_aligner_type (type)) |
8054 | { | |
de4d072f | 8055 | struct value *v = ada_value_struct_elt (val, "F", 0); |
df407dfe | 8056 | struct type *val_type = ada_check_typedef (value_type (v)); |
5b4ee69b | 8057 | |
14f9c5c9 | 8058 | if (ada_type_name (val_type) == NULL) |
4c4b4cd2 | 8059 | TYPE_NAME (val_type) = ada_type_name (type); |
14f9c5c9 AS |
8060 | |
8061 | return unwrap_value (v); | |
8062 | } | |
d2e4a39e | 8063 | else |
14f9c5c9 | 8064 | { |
d2e4a39e | 8065 | struct type *raw_real_type = |
61ee279c | 8066 | ada_check_typedef (ada_get_base_type (type)); |
d2e4a39e | 8067 | |
5bf03f13 JB |
8068 | /* If there is no parallel XVS or XVE type, then the value is |
8069 | already unwrapped. Return it without further modification. */ | |
8070 | if ((type == raw_real_type) | |
8071 | && ada_find_parallel_type (type, "___XVE") == NULL) | |
8072 | return val; | |
14f9c5c9 | 8073 | |
d2e4a39e | 8074 | return |
4c4b4cd2 PH |
8075 | coerce_unspec_val_to_type |
8076 | (val, ada_to_fixed_type (raw_real_type, 0, | |
42ae5230 | 8077 | value_address (val), |
1ed6ede0 | 8078 | NULL, 1)); |
14f9c5c9 AS |
8079 | } |
8080 | } | |
d2e4a39e AS |
8081 | |
8082 | static struct value * | |
8083 | cast_to_fixed (struct type *type, struct value *arg) | |
14f9c5c9 AS |
8084 | { |
8085 | LONGEST val; | |
8086 | ||
df407dfe | 8087 | if (type == value_type (arg)) |
14f9c5c9 | 8088 | return arg; |
df407dfe | 8089 | else if (ada_is_fixed_point_type (value_type (arg))) |
d2e4a39e | 8090 | val = ada_float_to_fixed (type, |
df407dfe | 8091 | ada_fixed_to_float (value_type (arg), |
4c4b4cd2 | 8092 | value_as_long (arg))); |
d2e4a39e | 8093 | else |
14f9c5c9 | 8094 | { |
a53b7a21 | 8095 | DOUBLEST argd = value_as_double (arg); |
5b4ee69b | 8096 | |
14f9c5c9 AS |
8097 | val = ada_float_to_fixed (type, argd); |
8098 | } | |
8099 | ||
8100 | return value_from_longest (type, val); | |
8101 | } | |
8102 | ||
d2e4a39e | 8103 | static struct value * |
a53b7a21 | 8104 | cast_from_fixed (struct type *type, struct value *arg) |
14f9c5c9 | 8105 | { |
df407dfe | 8106 | DOUBLEST val = ada_fixed_to_float (value_type (arg), |
4c4b4cd2 | 8107 | value_as_long (arg)); |
5b4ee69b | 8108 | |
a53b7a21 | 8109 | return value_from_double (type, val); |
14f9c5c9 AS |
8110 | } |
8111 | ||
4c4b4cd2 PH |
8112 | /* Coerce VAL as necessary for assignment to an lval of type TYPE, and |
8113 | return the converted value. */ | |
8114 | ||
d2e4a39e AS |
8115 | static struct value * |
8116 | coerce_for_assign (struct type *type, struct value *val) | |
14f9c5c9 | 8117 | { |
df407dfe | 8118 | struct type *type2 = value_type (val); |
5b4ee69b | 8119 | |
14f9c5c9 AS |
8120 | if (type == type2) |
8121 | return val; | |
8122 | ||
61ee279c PH |
8123 | type2 = ada_check_typedef (type2); |
8124 | type = ada_check_typedef (type); | |
14f9c5c9 | 8125 | |
d2e4a39e AS |
8126 | if (TYPE_CODE (type2) == TYPE_CODE_PTR |
8127 | && TYPE_CODE (type) == TYPE_CODE_ARRAY) | |
14f9c5c9 AS |
8128 | { |
8129 | val = ada_value_ind (val); | |
df407dfe | 8130 | type2 = value_type (val); |
14f9c5c9 AS |
8131 | } |
8132 | ||
d2e4a39e | 8133 | if (TYPE_CODE (type2) == TYPE_CODE_ARRAY |
14f9c5c9 AS |
8134 | && TYPE_CODE (type) == TYPE_CODE_ARRAY) |
8135 | { | |
8136 | if (TYPE_LENGTH (type2) != TYPE_LENGTH (type) | |
4c4b4cd2 PH |
8137 | || TYPE_LENGTH (TYPE_TARGET_TYPE (type2)) |
8138 | != TYPE_LENGTH (TYPE_TARGET_TYPE (type2))) | |
323e0a4a | 8139 | error (_("Incompatible types in assignment")); |
04624583 | 8140 | deprecated_set_value_type (val, type); |
14f9c5c9 | 8141 | } |
d2e4a39e | 8142 | return val; |
14f9c5c9 AS |
8143 | } |
8144 | ||
4c4b4cd2 PH |
8145 | static struct value * |
8146 | ada_value_binop (struct value *arg1, struct value *arg2, enum exp_opcode op) | |
8147 | { | |
8148 | struct value *val; | |
8149 | struct type *type1, *type2; | |
8150 | LONGEST v, v1, v2; | |
8151 | ||
994b9211 AC |
8152 | arg1 = coerce_ref (arg1); |
8153 | arg2 = coerce_ref (arg2); | |
df407dfe AC |
8154 | type1 = base_type (ada_check_typedef (value_type (arg1))); |
8155 | type2 = base_type (ada_check_typedef (value_type (arg2))); | |
4c4b4cd2 | 8156 | |
76a01679 JB |
8157 | if (TYPE_CODE (type1) != TYPE_CODE_INT |
8158 | || TYPE_CODE (type2) != TYPE_CODE_INT) | |
4c4b4cd2 PH |
8159 | return value_binop (arg1, arg2, op); |
8160 | ||
76a01679 | 8161 | switch (op) |
4c4b4cd2 PH |
8162 | { |
8163 | case BINOP_MOD: | |
8164 | case BINOP_DIV: | |
8165 | case BINOP_REM: | |
8166 | break; | |
8167 | default: | |
8168 | return value_binop (arg1, arg2, op); | |
8169 | } | |
8170 | ||
8171 | v2 = value_as_long (arg2); | |
8172 | if (v2 == 0) | |
323e0a4a | 8173 | error (_("second operand of %s must not be zero."), op_string (op)); |
4c4b4cd2 PH |
8174 | |
8175 | if (TYPE_UNSIGNED (type1) || op == BINOP_MOD) | |
8176 | return value_binop (arg1, arg2, op); | |
8177 | ||
8178 | v1 = value_as_long (arg1); | |
8179 | switch (op) | |
8180 | { | |
8181 | case BINOP_DIV: | |
8182 | v = v1 / v2; | |
76a01679 JB |
8183 | if (!TRUNCATION_TOWARDS_ZERO && v1 * (v1 % v2) < 0) |
8184 | v += v > 0 ? -1 : 1; | |
4c4b4cd2 PH |
8185 | break; |
8186 | case BINOP_REM: | |
8187 | v = v1 % v2; | |
76a01679 JB |
8188 | if (v * v1 < 0) |
8189 | v -= v2; | |
4c4b4cd2 PH |
8190 | break; |
8191 | default: | |
8192 | /* Should not reach this point. */ | |
8193 | v = 0; | |
8194 | } | |
8195 | ||
8196 | val = allocate_value (type1); | |
990a07ab | 8197 | store_unsigned_integer (value_contents_raw (val), |
e17a4113 UW |
8198 | TYPE_LENGTH (value_type (val)), |
8199 | gdbarch_byte_order (get_type_arch (type1)), v); | |
4c4b4cd2 PH |
8200 | return val; |
8201 | } | |
8202 | ||
8203 | static int | |
8204 | ada_value_equal (struct value *arg1, struct value *arg2) | |
8205 | { | |
df407dfe AC |
8206 | if (ada_is_direct_array_type (value_type (arg1)) |
8207 | || ada_is_direct_array_type (value_type (arg2))) | |
4c4b4cd2 | 8208 | { |
f58b38bf JB |
8209 | /* Automatically dereference any array reference before |
8210 | we attempt to perform the comparison. */ | |
8211 | arg1 = ada_coerce_ref (arg1); | |
8212 | arg2 = ada_coerce_ref (arg2); | |
8213 | ||
4c4b4cd2 PH |
8214 | arg1 = ada_coerce_to_simple_array (arg1); |
8215 | arg2 = ada_coerce_to_simple_array (arg2); | |
df407dfe AC |
8216 | if (TYPE_CODE (value_type (arg1)) != TYPE_CODE_ARRAY |
8217 | || TYPE_CODE (value_type (arg2)) != TYPE_CODE_ARRAY) | |
323e0a4a | 8218 | error (_("Attempt to compare array with non-array")); |
4c4b4cd2 | 8219 | /* FIXME: The following works only for types whose |
76a01679 JB |
8220 | representations use all bits (no padding or undefined bits) |
8221 | and do not have user-defined equality. */ | |
8222 | return | |
df407dfe | 8223 | TYPE_LENGTH (value_type (arg1)) == TYPE_LENGTH (value_type (arg2)) |
0fd88904 | 8224 | && memcmp (value_contents (arg1), value_contents (arg2), |
df407dfe | 8225 | TYPE_LENGTH (value_type (arg1))) == 0; |
4c4b4cd2 PH |
8226 | } |
8227 | return value_equal (arg1, arg2); | |
8228 | } | |
8229 | ||
52ce6436 PH |
8230 | /* Total number of component associations in the aggregate starting at |
8231 | index PC in EXP. Assumes that index PC is the start of an | |
8232 | OP_AGGREGATE. */ | |
8233 | ||
8234 | static int | |
8235 | num_component_specs (struct expression *exp, int pc) | |
8236 | { | |
8237 | int n, m, i; | |
5b4ee69b | 8238 | |
52ce6436 PH |
8239 | m = exp->elts[pc + 1].longconst; |
8240 | pc += 3; | |
8241 | n = 0; | |
8242 | for (i = 0; i < m; i += 1) | |
8243 | { | |
8244 | switch (exp->elts[pc].opcode) | |
8245 | { | |
8246 | default: | |
8247 | n += 1; | |
8248 | break; | |
8249 | case OP_CHOICES: | |
8250 | n += exp->elts[pc + 1].longconst; | |
8251 | break; | |
8252 | } | |
8253 | ada_evaluate_subexp (NULL, exp, &pc, EVAL_SKIP); | |
8254 | } | |
8255 | return n; | |
8256 | } | |
8257 | ||
8258 | /* Assign the result of evaluating EXP starting at *POS to the INDEXth | |
8259 | component of LHS (a simple array or a record), updating *POS past | |
8260 | the expression, assuming that LHS is contained in CONTAINER. Does | |
8261 | not modify the inferior's memory, nor does it modify LHS (unless | |
8262 | LHS == CONTAINER). */ | |
8263 | ||
8264 | static void | |
8265 | assign_component (struct value *container, struct value *lhs, LONGEST index, | |
8266 | struct expression *exp, int *pos) | |
8267 | { | |
8268 | struct value *mark = value_mark (); | |
8269 | struct value *elt; | |
5b4ee69b | 8270 | |
52ce6436 PH |
8271 | if (TYPE_CODE (value_type (lhs)) == TYPE_CODE_ARRAY) |
8272 | { | |
22601c15 UW |
8273 | struct type *index_type = builtin_type (exp->gdbarch)->builtin_int; |
8274 | struct value *index_val = value_from_longest (index_type, index); | |
5b4ee69b | 8275 | |
52ce6436 PH |
8276 | elt = unwrap_value (ada_value_subscript (lhs, 1, &index_val)); |
8277 | } | |
8278 | else | |
8279 | { | |
8280 | elt = ada_index_struct_field (index, lhs, 0, value_type (lhs)); | |
8281 | elt = ada_to_fixed_value (unwrap_value (elt)); | |
8282 | } | |
8283 | ||
8284 | if (exp->elts[*pos].opcode == OP_AGGREGATE) | |
8285 | assign_aggregate (container, elt, exp, pos, EVAL_NORMAL); | |
8286 | else | |
8287 | value_assign_to_component (container, elt, | |
8288 | ada_evaluate_subexp (NULL, exp, pos, | |
8289 | EVAL_NORMAL)); | |
8290 | ||
8291 | value_free_to_mark (mark); | |
8292 | } | |
8293 | ||
8294 | /* Assuming that LHS represents an lvalue having a record or array | |
8295 | type, and EXP->ELTS[*POS] is an OP_AGGREGATE, evaluate an assignment | |
8296 | of that aggregate's value to LHS, advancing *POS past the | |
8297 | aggregate. NOSIDE is as for evaluate_subexp. CONTAINER is an | |
8298 | lvalue containing LHS (possibly LHS itself). Does not modify | |
8299 | the inferior's memory, nor does it modify the contents of | |
8300 | LHS (unless == CONTAINER). Returns the modified CONTAINER. */ | |
8301 | ||
8302 | static struct value * | |
8303 | assign_aggregate (struct value *container, | |
8304 | struct value *lhs, struct expression *exp, | |
8305 | int *pos, enum noside noside) | |
8306 | { | |
8307 | struct type *lhs_type; | |
8308 | int n = exp->elts[*pos+1].longconst; | |
8309 | LONGEST low_index, high_index; | |
8310 | int num_specs; | |
8311 | LONGEST *indices; | |
8312 | int max_indices, num_indices; | |
8313 | int is_array_aggregate; | |
8314 | int i; | |
52ce6436 PH |
8315 | |
8316 | *pos += 3; | |
8317 | if (noside != EVAL_NORMAL) | |
8318 | { | |
8319 | int i; | |
5b4ee69b | 8320 | |
52ce6436 PH |
8321 | for (i = 0; i < n; i += 1) |
8322 | ada_evaluate_subexp (NULL, exp, pos, noside); | |
8323 | return container; | |
8324 | } | |
8325 | ||
8326 | container = ada_coerce_ref (container); | |
8327 | if (ada_is_direct_array_type (value_type (container))) | |
8328 | container = ada_coerce_to_simple_array (container); | |
8329 | lhs = ada_coerce_ref (lhs); | |
8330 | if (!deprecated_value_modifiable (lhs)) | |
8331 | error (_("Left operand of assignment is not a modifiable lvalue.")); | |
8332 | ||
8333 | lhs_type = value_type (lhs); | |
8334 | if (ada_is_direct_array_type (lhs_type)) | |
8335 | { | |
8336 | lhs = ada_coerce_to_simple_array (lhs); | |
8337 | lhs_type = value_type (lhs); | |
8338 | low_index = TYPE_ARRAY_LOWER_BOUND_VALUE (lhs_type); | |
8339 | high_index = TYPE_ARRAY_UPPER_BOUND_VALUE (lhs_type); | |
8340 | is_array_aggregate = 1; | |
8341 | } | |
8342 | else if (TYPE_CODE (lhs_type) == TYPE_CODE_STRUCT) | |
8343 | { | |
8344 | low_index = 0; | |
8345 | high_index = num_visible_fields (lhs_type) - 1; | |
8346 | is_array_aggregate = 0; | |
8347 | } | |
8348 | else | |
8349 | error (_("Left-hand side must be array or record.")); | |
8350 | ||
8351 | num_specs = num_component_specs (exp, *pos - 3); | |
8352 | max_indices = 4 * num_specs + 4; | |
8353 | indices = alloca (max_indices * sizeof (indices[0])); | |
8354 | indices[0] = indices[1] = low_index - 1; | |
8355 | indices[2] = indices[3] = high_index + 1; | |
8356 | num_indices = 4; | |
8357 | ||
8358 | for (i = 0; i < n; i += 1) | |
8359 | { | |
8360 | switch (exp->elts[*pos].opcode) | |
8361 | { | |
8362 | case OP_CHOICES: | |
8363 | aggregate_assign_from_choices (container, lhs, exp, pos, indices, | |
8364 | &num_indices, max_indices, | |
8365 | low_index, high_index); | |
8366 | break; | |
8367 | case OP_POSITIONAL: | |
8368 | aggregate_assign_positional (container, lhs, exp, pos, indices, | |
8369 | &num_indices, max_indices, | |
8370 | low_index, high_index); | |
8371 | break; | |
8372 | case OP_OTHERS: | |
8373 | if (i != n-1) | |
8374 | error (_("Misplaced 'others' clause")); | |
8375 | aggregate_assign_others (container, lhs, exp, pos, indices, | |
8376 | num_indices, low_index, high_index); | |
8377 | break; | |
8378 | default: | |
8379 | error (_("Internal error: bad aggregate clause")); | |
8380 | } | |
8381 | } | |
8382 | ||
8383 | return container; | |
8384 | } | |
8385 | ||
8386 | /* Assign into the component of LHS indexed by the OP_POSITIONAL | |
8387 | construct at *POS, updating *POS past the construct, given that | |
8388 | the positions are relative to lower bound LOW, where HIGH is the | |
8389 | upper bound. Record the position in INDICES[0 .. MAX_INDICES-1] | |
8390 | updating *NUM_INDICES as needed. CONTAINER is as for | |
8391 | assign_aggregate. */ | |
8392 | static void | |
8393 | aggregate_assign_positional (struct value *container, | |
8394 | struct value *lhs, struct expression *exp, | |
8395 | int *pos, LONGEST *indices, int *num_indices, | |
8396 | int max_indices, LONGEST low, LONGEST high) | |
8397 | { | |
8398 | LONGEST ind = longest_to_int (exp->elts[*pos + 1].longconst) + low; | |
8399 | ||
8400 | if (ind - 1 == high) | |
e1d5a0d2 | 8401 | warning (_("Extra components in aggregate ignored.")); |
52ce6436 PH |
8402 | if (ind <= high) |
8403 | { | |
8404 | add_component_interval (ind, ind, indices, num_indices, max_indices); | |
8405 | *pos += 3; | |
8406 | assign_component (container, lhs, ind, exp, pos); | |
8407 | } | |
8408 | else | |
8409 | ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP); | |
8410 | } | |
8411 | ||
8412 | /* Assign into the components of LHS indexed by the OP_CHOICES | |
8413 | construct at *POS, updating *POS past the construct, given that | |
8414 | the allowable indices are LOW..HIGH. Record the indices assigned | |
8415 | to in INDICES[0 .. MAX_INDICES-1], updating *NUM_INDICES as | |
8416 | needed. CONTAINER is as for assign_aggregate. */ | |
8417 | static void | |
8418 | aggregate_assign_from_choices (struct value *container, | |
8419 | struct value *lhs, struct expression *exp, | |
8420 | int *pos, LONGEST *indices, int *num_indices, | |
8421 | int max_indices, LONGEST low, LONGEST high) | |
8422 | { | |
8423 | int j; | |
8424 | int n_choices = longest_to_int (exp->elts[*pos+1].longconst); | |
8425 | int choice_pos, expr_pc; | |
8426 | int is_array = ada_is_direct_array_type (value_type (lhs)); | |
8427 | ||
8428 | choice_pos = *pos += 3; | |
8429 | ||
8430 | for (j = 0; j < n_choices; j += 1) | |
8431 | ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP); | |
8432 | expr_pc = *pos; | |
8433 | ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP); | |
8434 | ||
8435 | for (j = 0; j < n_choices; j += 1) | |
8436 | { | |
8437 | LONGEST lower, upper; | |
8438 | enum exp_opcode op = exp->elts[choice_pos].opcode; | |
5b4ee69b | 8439 | |
52ce6436 PH |
8440 | if (op == OP_DISCRETE_RANGE) |
8441 | { | |
8442 | choice_pos += 1; | |
8443 | lower = value_as_long (ada_evaluate_subexp (NULL, exp, pos, | |
8444 | EVAL_NORMAL)); | |
8445 | upper = value_as_long (ada_evaluate_subexp (NULL, exp, pos, | |
8446 | EVAL_NORMAL)); | |
8447 | } | |
8448 | else if (is_array) | |
8449 | { | |
8450 | lower = value_as_long (ada_evaluate_subexp (NULL, exp, &choice_pos, | |
8451 | EVAL_NORMAL)); | |
8452 | upper = lower; | |
8453 | } | |
8454 | else | |
8455 | { | |
8456 | int ind; | |
8457 | char *name; | |
5b4ee69b | 8458 | |
52ce6436 PH |
8459 | switch (op) |
8460 | { | |
8461 | case OP_NAME: | |
8462 | name = &exp->elts[choice_pos + 2].string; | |
8463 | break; | |
8464 | case OP_VAR_VALUE: | |
8465 | name = SYMBOL_NATURAL_NAME (exp->elts[choice_pos + 2].symbol); | |
8466 | break; | |
8467 | default: | |
8468 | error (_("Invalid record component association.")); | |
8469 | } | |
8470 | ada_evaluate_subexp (NULL, exp, &choice_pos, EVAL_SKIP); | |
8471 | ind = 0; | |
8472 | if (! find_struct_field (name, value_type (lhs), 0, | |
8473 | NULL, NULL, NULL, NULL, &ind)) | |
8474 | error (_("Unknown component name: %s."), name); | |
8475 | lower = upper = ind; | |
8476 | } | |
8477 | ||
8478 | if (lower <= upper && (lower < low || upper > high)) | |
8479 | error (_("Index in component association out of bounds.")); | |
8480 | ||
8481 | add_component_interval (lower, upper, indices, num_indices, | |
8482 | max_indices); | |
8483 | while (lower <= upper) | |
8484 | { | |
8485 | int pos1; | |
5b4ee69b | 8486 | |
52ce6436 PH |
8487 | pos1 = expr_pc; |
8488 | assign_component (container, lhs, lower, exp, &pos1); | |
8489 | lower += 1; | |
8490 | } | |
8491 | } | |
8492 | } | |
8493 | ||
8494 | /* Assign the value of the expression in the OP_OTHERS construct in | |
8495 | EXP at *POS into the components of LHS indexed from LOW .. HIGH that | |
8496 | have not been previously assigned. The index intervals already assigned | |
8497 | are in INDICES[0 .. NUM_INDICES-1]. Updates *POS to after the | |
8498 | OP_OTHERS clause. CONTAINER is as for assign_aggregate*/ | |
8499 | static void | |
8500 | aggregate_assign_others (struct value *container, | |
8501 | struct value *lhs, struct expression *exp, | |
8502 | int *pos, LONGEST *indices, int num_indices, | |
8503 | LONGEST low, LONGEST high) | |
8504 | { | |
8505 | int i; | |
8506 | int expr_pc = *pos+1; | |
8507 | ||
8508 | for (i = 0; i < num_indices - 2; i += 2) | |
8509 | { | |
8510 | LONGEST ind; | |
5b4ee69b | 8511 | |
52ce6436 PH |
8512 | for (ind = indices[i + 1] + 1; ind < indices[i + 2]; ind += 1) |
8513 | { | |
8514 | int pos; | |
5b4ee69b | 8515 | |
52ce6436 PH |
8516 | pos = expr_pc; |
8517 | assign_component (container, lhs, ind, exp, &pos); | |
8518 | } | |
8519 | } | |
8520 | ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP); | |
8521 | } | |
8522 | ||
8523 | /* Add the interval [LOW .. HIGH] to the sorted set of intervals | |
8524 | [ INDICES[0] .. INDICES[1] ],..., [ INDICES[*SIZE-2] .. INDICES[*SIZE-1] ], | |
8525 | modifying *SIZE as needed. It is an error if *SIZE exceeds | |
8526 | MAX_SIZE. The resulting intervals do not overlap. */ | |
8527 | static void | |
8528 | add_component_interval (LONGEST low, LONGEST high, | |
8529 | LONGEST* indices, int *size, int max_size) | |
8530 | { | |
8531 | int i, j; | |
5b4ee69b | 8532 | |
52ce6436 PH |
8533 | for (i = 0; i < *size; i += 2) { |
8534 | if (high >= indices[i] && low <= indices[i + 1]) | |
8535 | { | |
8536 | int kh; | |
5b4ee69b | 8537 | |
52ce6436 PH |
8538 | for (kh = i + 2; kh < *size; kh += 2) |
8539 | if (high < indices[kh]) | |
8540 | break; | |
8541 | if (low < indices[i]) | |
8542 | indices[i] = low; | |
8543 | indices[i + 1] = indices[kh - 1]; | |
8544 | if (high > indices[i + 1]) | |
8545 | indices[i + 1] = high; | |
8546 | memcpy (indices + i + 2, indices + kh, *size - kh); | |
8547 | *size -= kh - i - 2; | |
8548 | return; | |
8549 | } | |
8550 | else if (high < indices[i]) | |
8551 | break; | |
8552 | } | |
8553 | ||
8554 | if (*size == max_size) | |
8555 | error (_("Internal error: miscounted aggregate components.")); | |
8556 | *size += 2; | |
8557 | for (j = *size-1; j >= i+2; j -= 1) | |
8558 | indices[j] = indices[j - 2]; | |
8559 | indices[i] = low; | |
8560 | indices[i + 1] = high; | |
8561 | } | |
8562 | ||
6e48bd2c JB |
8563 | /* Perform and Ada cast of ARG2 to type TYPE if the type of ARG2 |
8564 | is different. */ | |
8565 | ||
8566 | static struct value * | |
8567 | ada_value_cast (struct type *type, struct value *arg2, enum noside noside) | |
8568 | { | |
8569 | if (type == ada_check_typedef (value_type (arg2))) | |
8570 | return arg2; | |
8571 | ||
8572 | if (ada_is_fixed_point_type (type)) | |
8573 | return (cast_to_fixed (type, arg2)); | |
8574 | ||
8575 | if (ada_is_fixed_point_type (value_type (arg2))) | |
a53b7a21 | 8576 | return cast_from_fixed (type, arg2); |
6e48bd2c JB |
8577 | |
8578 | return value_cast (type, arg2); | |
8579 | } | |
8580 | ||
284614f0 JB |
8581 | /* Evaluating Ada expressions, and printing their result. |
8582 | ------------------------------------------------------ | |
8583 | ||
21649b50 JB |
8584 | 1. Introduction: |
8585 | ---------------- | |
8586 | ||
284614f0 JB |
8587 | We usually evaluate an Ada expression in order to print its value. |
8588 | We also evaluate an expression in order to print its type, which | |
8589 | happens during the EVAL_AVOID_SIDE_EFFECTS phase of the evaluation, | |
8590 | but we'll focus mostly on the EVAL_NORMAL phase. In practice, the | |
8591 | EVAL_AVOID_SIDE_EFFECTS phase allows us to simplify certain aspects of | |
8592 | the evaluation compared to the EVAL_NORMAL, but is otherwise very | |
8593 | similar. | |
8594 | ||
8595 | Evaluating expressions is a little more complicated for Ada entities | |
8596 | than it is for entities in languages such as C. The main reason for | |
8597 | this is that Ada provides types whose definition might be dynamic. | |
8598 | One example of such types is variant records. Or another example | |
8599 | would be an array whose bounds can only be known at run time. | |
8600 | ||
8601 | The following description is a general guide as to what should be | |
8602 | done (and what should NOT be done) in order to evaluate an expression | |
8603 | involving such types, and when. This does not cover how the semantic | |
8604 | information is encoded by GNAT as this is covered separatly. For the | |
8605 | document used as the reference for the GNAT encoding, see exp_dbug.ads | |
8606 | in the GNAT sources. | |
8607 | ||
8608 | Ideally, we should embed each part of this description next to its | |
8609 | associated code. Unfortunately, the amount of code is so vast right | |
8610 | now that it's hard to see whether the code handling a particular | |
8611 | situation might be duplicated or not. One day, when the code is | |
8612 | cleaned up, this guide might become redundant with the comments | |
8613 | inserted in the code, and we might want to remove it. | |
8614 | ||
21649b50 JB |
8615 | 2. ``Fixing'' an Entity, the Simple Case: |
8616 | ----------------------------------------- | |
8617 | ||
284614f0 JB |
8618 | When evaluating Ada expressions, the tricky issue is that they may |
8619 | reference entities whose type contents and size are not statically | |
8620 | known. Consider for instance a variant record: | |
8621 | ||
8622 | type Rec (Empty : Boolean := True) is record | |
8623 | case Empty is | |
8624 | when True => null; | |
8625 | when False => Value : Integer; | |
8626 | end case; | |
8627 | end record; | |
8628 | Yes : Rec := (Empty => False, Value => 1); | |
8629 | No : Rec := (empty => True); | |
8630 | ||
8631 | The size and contents of that record depends on the value of the | |
8632 | descriminant (Rec.Empty). At this point, neither the debugging | |
8633 | information nor the associated type structure in GDB are able to | |
8634 | express such dynamic types. So what the debugger does is to create | |
8635 | "fixed" versions of the type that applies to the specific object. | |
8636 | We also informally refer to this opperation as "fixing" an object, | |
8637 | which means creating its associated fixed type. | |
8638 | ||
8639 | Example: when printing the value of variable "Yes" above, its fixed | |
8640 | type would look like this: | |
8641 | ||
8642 | type Rec is record | |
8643 | Empty : Boolean; | |
8644 | Value : Integer; | |
8645 | end record; | |
8646 | ||
8647 | On the other hand, if we printed the value of "No", its fixed type | |
8648 | would become: | |
8649 | ||
8650 | type Rec is record | |
8651 | Empty : Boolean; | |
8652 | end record; | |
8653 | ||
8654 | Things become a little more complicated when trying to fix an entity | |
8655 | with a dynamic type that directly contains another dynamic type, | |
8656 | such as an array of variant records, for instance. There are | |
8657 | two possible cases: Arrays, and records. | |
8658 | ||
21649b50 JB |
8659 | 3. ``Fixing'' Arrays: |
8660 | --------------------- | |
8661 | ||
8662 | The type structure in GDB describes an array in terms of its bounds, | |
8663 | and the type of its elements. By design, all elements in the array | |
8664 | have the same type and we cannot represent an array of variant elements | |
8665 | using the current type structure in GDB. When fixing an array, | |
8666 | we cannot fix the array element, as we would potentially need one | |
8667 | fixed type per element of the array. As a result, the best we can do | |
8668 | when fixing an array is to produce an array whose bounds and size | |
8669 | are correct (allowing us to read it from memory), but without having | |
8670 | touched its element type. Fixing each element will be done later, | |
8671 | when (if) necessary. | |
8672 | ||
8673 | Arrays are a little simpler to handle than records, because the same | |
8674 | amount of memory is allocated for each element of the array, even if | |
1b536f04 | 8675 | the amount of space actually used by each element differs from element |
21649b50 | 8676 | to element. Consider for instance the following array of type Rec: |
284614f0 JB |
8677 | |
8678 | type Rec_Array is array (1 .. 2) of Rec; | |
8679 | ||
1b536f04 JB |
8680 | The actual amount of memory occupied by each element might be different |
8681 | from element to element, depending on the value of their discriminant. | |
21649b50 | 8682 | But the amount of space reserved for each element in the array remains |
1b536f04 | 8683 | fixed regardless. So we simply need to compute that size using |
21649b50 JB |
8684 | the debugging information available, from which we can then determine |
8685 | the array size (we multiply the number of elements of the array by | |
8686 | the size of each element). | |
8687 | ||
8688 | The simplest case is when we have an array of a constrained element | |
8689 | type. For instance, consider the following type declarations: | |
8690 | ||
8691 | type Bounded_String (Max_Size : Integer) is | |
8692 | Length : Integer; | |
8693 | Buffer : String (1 .. Max_Size); | |
8694 | end record; | |
8695 | type Bounded_String_Array is array (1 ..2) of Bounded_String (80); | |
8696 | ||
8697 | In this case, the compiler describes the array as an array of | |
8698 | variable-size elements (identified by its XVS suffix) for which | |
8699 | the size can be read in the parallel XVZ variable. | |
8700 | ||
8701 | In the case of an array of an unconstrained element type, the compiler | |
8702 | wraps the array element inside a private PAD type. This type should not | |
8703 | be shown to the user, and must be "unwrap"'ed before printing. Note | |
284614f0 JB |
8704 | that we also use the adjective "aligner" in our code to designate |
8705 | these wrapper types. | |
8706 | ||
1b536f04 | 8707 | In some cases, the size allocated for each element is statically |
21649b50 JB |
8708 | known. In that case, the PAD type already has the correct size, |
8709 | and the array element should remain unfixed. | |
8710 | ||
8711 | But there are cases when this size is not statically known. | |
8712 | For instance, assuming that "Five" is an integer variable: | |
284614f0 JB |
8713 | |
8714 | type Dynamic is array (1 .. Five) of Integer; | |
8715 | type Wrapper (Has_Length : Boolean := False) is record | |
8716 | Data : Dynamic; | |
8717 | case Has_Length is | |
8718 | when True => Length : Integer; | |
8719 | when False => null; | |
8720 | end case; | |
8721 | end record; | |
8722 | type Wrapper_Array is array (1 .. 2) of Wrapper; | |
8723 | ||
8724 | Hello : Wrapper_Array := (others => (Has_Length => True, | |
8725 | Data => (others => 17), | |
8726 | Length => 1)); | |
8727 | ||
8728 | ||
8729 | The debugging info would describe variable Hello as being an | |
8730 | array of a PAD type. The size of that PAD type is not statically | |
8731 | known, but can be determined using a parallel XVZ variable. | |
8732 | In that case, a copy of the PAD type with the correct size should | |
8733 | be used for the fixed array. | |
8734 | ||
21649b50 JB |
8735 | 3. ``Fixing'' record type objects: |
8736 | ---------------------------------- | |
8737 | ||
8738 | Things are slightly different from arrays in the case of dynamic | |
284614f0 JB |
8739 | record types. In this case, in order to compute the associated |
8740 | fixed type, we need to determine the size and offset of each of | |
8741 | its components. This, in turn, requires us to compute the fixed | |
8742 | type of each of these components. | |
8743 | ||
8744 | Consider for instance the example: | |
8745 | ||
8746 | type Bounded_String (Max_Size : Natural) is record | |
8747 | Str : String (1 .. Max_Size); | |
8748 | Length : Natural; | |
8749 | end record; | |
8750 | My_String : Bounded_String (Max_Size => 10); | |
8751 | ||
8752 | In that case, the position of field "Length" depends on the size | |
8753 | of field Str, which itself depends on the value of the Max_Size | |
21649b50 | 8754 | discriminant. In order to fix the type of variable My_String, |
284614f0 JB |
8755 | we need to fix the type of field Str. Therefore, fixing a variant |
8756 | record requires us to fix each of its components. | |
8757 | ||
8758 | However, if a component does not have a dynamic size, the component | |
8759 | should not be fixed. In particular, fields that use a PAD type | |
8760 | should not fixed. Here is an example where this might happen | |
8761 | (assuming type Rec above): | |
8762 | ||
8763 | type Container (Big : Boolean) is record | |
8764 | First : Rec; | |
8765 | After : Integer; | |
8766 | case Big is | |
8767 | when True => Another : Integer; | |
8768 | when False => null; | |
8769 | end case; | |
8770 | end record; | |
8771 | My_Container : Container := (Big => False, | |
8772 | First => (Empty => True), | |
8773 | After => 42); | |
8774 | ||
8775 | In that example, the compiler creates a PAD type for component First, | |
8776 | whose size is constant, and then positions the component After just | |
8777 | right after it. The offset of component After is therefore constant | |
8778 | in this case. | |
8779 | ||
8780 | The debugger computes the position of each field based on an algorithm | |
8781 | that uses, among other things, the actual position and size of the field | |
21649b50 JB |
8782 | preceding it. Let's now imagine that the user is trying to print |
8783 | the value of My_Container. If the type fixing was recursive, we would | |
284614f0 JB |
8784 | end up computing the offset of field After based on the size of the |
8785 | fixed version of field First. And since in our example First has | |
8786 | only one actual field, the size of the fixed type is actually smaller | |
8787 | than the amount of space allocated to that field, and thus we would | |
8788 | compute the wrong offset of field After. | |
8789 | ||
21649b50 JB |
8790 | To make things more complicated, we need to watch out for dynamic |
8791 | components of variant records (identified by the ___XVL suffix in | |
8792 | the component name). Even if the target type is a PAD type, the size | |
8793 | of that type might not be statically known. So the PAD type needs | |
8794 | to be unwrapped and the resulting type needs to be fixed. Otherwise, | |
8795 | we might end up with the wrong size for our component. This can be | |
8796 | observed with the following type declarations: | |
284614f0 JB |
8797 | |
8798 | type Octal is new Integer range 0 .. 7; | |
8799 | type Octal_Array is array (Positive range <>) of Octal; | |
8800 | pragma Pack (Octal_Array); | |
8801 | ||
8802 | type Octal_Buffer (Size : Positive) is record | |
8803 | Buffer : Octal_Array (1 .. Size); | |
8804 | Length : Integer; | |
8805 | end record; | |
8806 | ||
8807 | In that case, Buffer is a PAD type whose size is unset and needs | |
8808 | to be computed by fixing the unwrapped type. | |
8809 | ||
21649b50 JB |
8810 | 4. When to ``Fix'' un-``Fixed'' sub-elements of an entity: |
8811 | ---------------------------------------------------------- | |
8812 | ||
8813 | Lastly, when should the sub-elements of an entity that remained unfixed | |
284614f0 JB |
8814 | thus far, be actually fixed? |
8815 | ||
8816 | The answer is: Only when referencing that element. For instance | |
8817 | when selecting one component of a record, this specific component | |
8818 | should be fixed at that point in time. Or when printing the value | |
8819 | of a record, each component should be fixed before its value gets | |
8820 | printed. Similarly for arrays, the element of the array should be | |
8821 | fixed when printing each element of the array, or when extracting | |
8822 | one element out of that array. On the other hand, fixing should | |
8823 | not be performed on the elements when taking a slice of an array! | |
8824 | ||
8825 | Note that one of the side-effects of miscomputing the offset and | |
8826 | size of each field is that we end up also miscomputing the size | |
8827 | of the containing type. This can have adverse results when computing | |
8828 | the value of an entity. GDB fetches the value of an entity based | |
8829 | on the size of its type, and thus a wrong size causes GDB to fetch | |
8830 | the wrong amount of memory. In the case where the computed size is | |
8831 | too small, GDB fetches too little data to print the value of our | |
8832 | entiry. Results in this case as unpredicatble, as we usually read | |
8833 | past the buffer containing the data =:-o. */ | |
8834 | ||
8835 | /* Implement the evaluate_exp routine in the exp_descriptor structure | |
8836 | for the Ada language. */ | |
8837 | ||
52ce6436 | 8838 | static struct value * |
ebf56fd3 | 8839 | ada_evaluate_subexp (struct type *expect_type, struct expression *exp, |
4c4b4cd2 | 8840 | int *pos, enum noside noside) |
14f9c5c9 AS |
8841 | { |
8842 | enum exp_opcode op; | |
b5385fc0 | 8843 | int tem; |
14f9c5c9 AS |
8844 | int pc; |
8845 | struct value *arg1 = NULL, *arg2 = NULL, *arg3; | |
8846 | struct type *type; | |
52ce6436 | 8847 | int nargs, oplen; |
d2e4a39e | 8848 | struct value **argvec; |
14f9c5c9 | 8849 | |
d2e4a39e AS |
8850 | pc = *pos; |
8851 | *pos += 1; | |
14f9c5c9 AS |
8852 | op = exp->elts[pc].opcode; |
8853 | ||
d2e4a39e | 8854 | switch (op) |
14f9c5c9 AS |
8855 | { |
8856 | default: | |
8857 | *pos -= 1; | |
6e48bd2c JB |
8858 | arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside); |
8859 | arg1 = unwrap_value (arg1); | |
8860 | ||
8861 | /* If evaluating an OP_DOUBLE and an EXPECT_TYPE was provided, | |
8862 | then we need to perform the conversion manually, because | |
8863 | evaluate_subexp_standard doesn't do it. This conversion is | |
8864 | necessary in Ada because the different kinds of float/fixed | |
8865 | types in Ada have different representations. | |
8866 | ||
8867 | Similarly, we need to perform the conversion from OP_LONG | |
8868 | ourselves. */ | |
8869 | if ((op == OP_DOUBLE || op == OP_LONG) && expect_type != NULL) | |
8870 | arg1 = ada_value_cast (expect_type, arg1, noside); | |
8871 | ||
8872 | return arg1; | |
4c4b4cd2 PH |
8873 | |
8874 | case OP_STRING: | |
8875 | { | |
76a01679 | 8876 | struct value *result; |
5b4ee69b | 8877 | |
76a01679 JB |
8878 | *pos -= 1; |
8879 | result = evaluate_subexp_standard (expect_type, exp, pos, noside); | |
8880 | /* The result type will have code OP_STRING, bashed there from | |
8881 | OP_ARRAY. Bash it back. */ | |
df407dfe AC |
8882 | if (TYPE_CODE (value_type (result)) == TYPE_CODE_STRING) |
8883 | TYPE_CODE (value_type (result)) = TYPE_CODE_ARRAY; | |
76a01679 | 8884 | return result; |
4c4b4cd2 | 8885 | } |
14f9c5c9 AS |
8886 | |
8887 | case UNOP_CAST: | |
8888 | (*pos) += 2; | |
8889 | type = exp->elts[pc + 1].type; | |
8890 | arg1 = evaluate_subexp (type, exp, pos, noside); | |
8891 | if (noside == EVAL_SKIP) | |
4c4b4cd2 | 8892 | goto nosideret; |
6e48bd2c | 8893 | arg1 = ada_value_cast (type, arg1, noside); |
14f9c5c9 AS |
8894 | return arg1; |
8895 | ||
4c4b4cd2 PH |
8896 | case UNOP_QUAL: |
8897 | (*pos) += 2; | |
8898 | type = exp->elts[pc + 1].type; | |
8899 | return ada_evaluate_subexp (type, exp, pos, noside); | |
8900 | ||
14f9c5c9 AS |
8901 | case BINOP_ASSIGN: |
8902 | arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside); | |
52ce6436 PH |
8903 | if (exp->elts[*pos].opcode == OP_AGGREGATE) |
8904 | { | |
8905 | arg1 = assign_aggregate (arg1, arg1, exp, pos, noside); | |
8906 | if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS) | |
8907 | return arg1; | |
8908 | return ada_value_assign (arg1, arg1); | |
8909 | } | |
003f3813 JB |
8910 | /* Force the evaluation of the rhs ARG2 to the type of the lhs ARG1, |
8911 | except if the lhs of our assignment is a convenience variable. | |
8912 | In the case of assigning to a convenience variable, the lhs | |
8913 | should be exactly the result of the evaluation of the rhs. */ | |
8914 | type = value_type (arg1); | |
8915 | if (VALUE_LVAL (arg1) == lval_internalvar) | |
8916 | type = NULL; | |
8917 | arg2 = evaluate_subexp (type, exp, pos, noside); | |
14f9c5c9 | 8918 | if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS) |
4c4b4cd2 | 8919 | return arg1; |
df407dfe AC |
8920 | if (ada_is_fixed_point_type (value_type (arg1))) |
8921 | arg2 = cast_to_fixed (value_type (arg1), arg2); | |
8922 | else if (ada_is_fixed_point_type (value_type (arg2))) | |
76a01679 | 8923 | error |
323e0a4a | 8924 | (_("Fixed-point values must be assigned to fixed-point variables")); |
d2e4a39e | 8925 | else |
df407dfe | 8926 | arg2 = coerce_for_assign (value_type (arg1), arg2); |
4c4b4cd2 | 8927 | return ada_value_assign (arg1, arg2); |
14f9c5c9 AS |
8928 | |
8929 | case BINOP_ADD: | |
8930 | arg1 = evaluate_subexp_with_coercion (exp, pos, noside); | |
8931 | arg2 = evaluate_subexp_with_coercion (exp, pos, noside); | |
8932 | if (noside == EVAL_SKIP) | |
4c4b4cd2 | 8933 | goto nosideret; |
2ac8a782 JB |
8934 | if (TYPE_CODE (value_type (arg1)) == TYPE_CODE_PTR) |
8935 | return (value_from_longest | |
8936 | (value_type (arg1), | |
8937 | value_as_long (arg1) + value_as_long (arg2))); | |
df407dfe AC |
8938 | if ((ada_is_fixed_point_type (value_type (arg1)) |
8939 | || ada_is_fixed_point_type (value_type (arg2))) | |
8940 | && value_type (arg1) != value_type (arg2)) | |
323e0a4a | 8941 | error (_("Operands of fixed-point addition must have the same type")); |
b7789565 JB |
8942 | /* Do the addition, and cast the result to the type of the first |
8943 | argument. We cannot cast the result to a reference type, so if | |
8944 | ARG1 is a reference type, find its underlying type. */ | |
8945 | type = value_type (arg1); | |
8946 | while (TYPE_CODE (type) == TYPE_CODE_REF) | |
8947 | type = TYPE_TARGET_TYPE (type); | |
f44316fa | 8948 | binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2); |
89eef114 | 8949 | return value_cast (type, value_binop (arg1, arg2, BINOP_ADD)); |
14f9c5c9 AS |
8950 | |
8951 | case BINOP_SUB: | |
8952 | arg1 = evaluate_subexp_with_coercion (exp, pos, noside); | |
8953 | arg2 = evaluate_subexp_with_coercion (exp, pos, noside); | |
8954 | if (noside == EVAL_SKIP) | |
4c4b4cd2 | 8955 | goto nosideret; |
2ac8a782 JB |
8956 | if (TYPE_CODE (value_type (arg1)) == TYPE_CODE_PTR) |
8957 | return (value_from_longest | |
8958 | (value_type (arg1), | |
8959 | value_as_long (arg1) - value_as_long (arg2))); | |
df407dfe AC |
8960 | if ((ada_is_fixed_point_type (value_type (arg1)) |
8961 | || ada_is_fixed_point_type (value_type (arg2))) | |
8962 | && value_type (arg1) != value_type (arg2)) | |
323e0a4a | 8963 | error (_("Operands of fixed-point subtraction must have the same type")); |
b7789565 JB |
8964 | /* Do the substraction, and cast the result to the type of the first |
8965 | argument. We cannot cast the result to a reference type, so if | |
8966 | ARG1 is a reference type, find its underlying type. */ | |
8967 | type = value_type (arg1); | |
8968 | while (TYPE_CODE (type) == TYPE_CODE_REF) | |
8969 | type = TYPE_TARGET_TYPE (type); | |
f44316fa | 8970 | binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2); |
89eef114 | 8971 | return value_cast (type, value_binop (arg1, arg2, BINOP_SUB)); |
14f9c5c9 AS |
8972 | |
8973 | case BINOP_MUL: | |
8974 | case BINOP_DIV: | |
e1578042 JB |
8975 | case BINOP_REM: |
8976 | case BINOP_MOD: | |
14f9c5c9 AS |
8977 | arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside); |
8978 | arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside); | |
8979 | if (noside == EVAL_SKIP) | |
4c4b4cd2 | 8980 | goto nosideret; |
e1578042 | 8981 | else if (noside == EVAL_AVOID_SIDE_EFFECTS) |
9c2be529 JB |
8982 | { |
8983 | binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2); | |
8984 | return value_zero (value_type (arg1), not_lval); | |
8985 | } | |
14f9c5c9 | 8986 | else |
4c4b4cd2 | 8987 | { |
a53b7a21 | 8988 | type = builtin_type (exp->gdbarch)->builtin_double; |
df407dfe | 8989 | if (ada_is_fixed_point_type (value_type (arg1))) |
a53b7a21 | 8990 | arg1 = cast_from_fixed (type, arg1); |
df407dfe | 8991 | if (ada_is_fixed_point_type (value_type (arg2))) |
a53b7a21 | 8992 | arg2 = cast_from_fixed (type, arg2); |
f44316fa | 8993 | binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2); |
4c4b4cd2 PH |
8994 | return ada_value_binop (arg1, arg2, op); |
8995 | } | |
8996 | ||
4c4b4cd2 PH |
8997 | case BINOP_EQUAL: |
8998 | case BINOP_NOTEQUAL: | |
14f9c5c9 | 8999 | arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside); |
df407dfe | 9000 | arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside); |
14f9c5c9 | 9001 | if (noside == EVAL_SKIP) |
76a01679 | 9002 | goto nosideret; |
4c4b4cd2 | 9003 | if (noside == EVAL_AVOID_SIDE_EFFECTS) |
76a01679 | 9004 | tem = 0; |
4c4b4cd2 | 9005 | else |
f44316fa UW |
9006 | { |
9007 | binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2); | |
9008 | tem = ada_value_equal (arg1, arg2); | |
9009 | } | |
4c4b4cd2 | 9010 | if (op == BINOP_NOTEQUAL) |
76a01679 | 9011 | tem = !tem; |
fbb06eb1 UW |
9012 | type = language_bool_type (exp->language_defn, exp->gdbarch); |
9013 | return value_from_longest (type, (LONGEST) tem); | |
4c4b4cd2 PH |
9014 | |
9015 | case UNOP_NEG: | |
9016 | arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside); | |
9017 | if (noside == EVAL_SKIP) | |
9018 | goto nosideret; | |
df407dfe AC |
9019 | else if (ada_is_fixed_point_type (value_type (arg1))) |
9020 | return value_cast (value_type (arg1), value_neg (arg1)); | |
14f9c5c9 | 9021 | else |
f44316fa UW |
9022 | { |
9023 | unop_promote (exp->language_defn, exp->gdbarch, &arg1); | |
9024 | return value_neg (arg1); | |
9025 | } | |
4c4b4cd2 | 9026 | |
2330c6c6 JB |
9027 | case BINOP_LOGICAL_AND: |
9028 | case BINOP_LOGICAL_OR: | |
9029 | case UNOP_LOGICAL_NOT: | |
000d5124 JB |
9030 | { |
9031 | struct value *val; | |
9032 | ||
9033 | *pos -= 1; | |
9034 | val = evaluate_subexp_standard (expect_type, exp, pos, noside); | |
fbb06eb1 UW |
9035 | type = language_bool_type (exp->language_defn, exp->gdbarch); |
9036 | return value_cast (type, val); | |
000d5124 | 9037 | } |
2330c6c6 JB |
9038 | |
9039 | case BINOP_BITWISE_AND: | |
9040 | case BINOP_BITWISE_IOR: | |
9041 | case BINOP_BITWISE_XOR: | |
000d5124 JB |
9042 | { |
9043 | struct value *val; | |
9044 | ||
9045 | arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS); | |
9046 | *pos = pc; | |
9047 | val = evaluate_subexp_standard (expect_type, exp, pos, noside); | |
9048 | ||
9049 | return value_cast (value_type (arg1), val); | |
9050 | } | |
2330c6c6 | 9051 | |
14f9c5c9 AS |
9052 | case OP_VAR_VALUE: |
9053 | *pos -= 1; | |
6799def4 | 9054 | |
14f9c5c9 | 9055 | if (noside == EVAL_SKIP) |
4c4b4cd2 PH |
9056 | { |
9057 | *pos += 4; | |
9058 | goto nosideret; | |
9059 | } | |
9060 | else if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN) | |
76a01679 JB |
9061 | /* Only encountered when an unresolved symbol occurs in a |
9062 | context other than a function call, in which case, it is | |
52ce6436 | 9063 | invalid. */ |
323e0a4a | 9064 | error (_("Unexpected unresolved symbol, %s, during evaluation"), |
4c4b4cd2 | 9065 | SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol)); |
14f9c5c9 | 9066 | else if (noside == EVAL_AVOID_SIDE_EFFECTS) |
4c4b4cd2 | 9067 | { |
0c1f74cf | 9068 | type = static_unwrap_type (SYMBOL_TYPE (exp->elts[pc + 2].symbol)); |
31dbc1c5 JB |
9069 | /* Check to see if this is a tagged type. We also need to handle |
9070 | the case where the type is a reference to a tagged type, but | |
9071 | we have to be careful to exclude pointers to tagged types. | |
9072 | The latter should be shown as usual (as a pointer), whereas | |
9073 | a reference should mostly be transparent to the user. */ | |
9074 | if (ada_is_tagged_type (type, 0) | |
9075 | || (TYPE_CODE(type) == TYPE_CODE_REF | |
9076 | && ada_is_tagged_type (TYPE_TARGET_TYPE (type), 0))) | |
0c1f74cf JB |
9077 | { |
9078 | /* Tagged types are a little special in the fact that the real | |
9079 | type is dynamic and can only be determined by inspecting the | |
9080 | object's tag. This means that we need to get the object's | |
9081 | value first (EVAL_NORMAL) and then extract the actual object | |
9082 | type from its tag. | |
9083 | ||
9084 | Note that we cannot skip the final step where we extract | |
9085 | the object type from its tag, because the EVAL_NORMAL phase | |
9086 | results in dynamic components being resolved into fixed ones. | |
9087 | This can cause problems when trying to print the type | |
9088 | description of tagged types whose parent has a dynamic size: | |
9089 | We use the type name of the "_parent" component in order | |
9090 | to print the name of the ancestor type in the type description. | |
9091 | If that component had a dynamic size, the resolution into | |
9092 | a fixed type would result in the loss of that type name, | |
9093 | thus preventing us from printing the name of the ancestor | |
9094 | type in the type description. */ | |
b79819ba JB |
9095 | struct type *actual_type; |
9096 | ||
0c1f74cf | 9097 | arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_NORMAL); |
b79819ba JB |
9098 | actual_type = type_from_tag (ada_value_tag (arg1)); |
9099 | if (actual_type == NULL) | |
9100 | /* If, for some reason, we were unable to determine | |
9101 | the actual type from the tag, then use the static | |
9102 | approximation that we just computed as a fallback. | |
9103 | This can happen if the debugging information is | |
9104 | incomplete, for instance. */ | |
9105 | actual_type = type; | |
9106 | ||
9107 | return value_zero (actual_type, not_lval); | |
0c1f74cf JB |
9108 | } |
9109 | ||
4c4b4cd2 PH |
9110 | *pos += 4; |
9111 | return value_zero | |
9112 | (to_static_fixed_type | |
9113 | (static_unwrap_type (SYMBOL_TYPE (exp->elts[pc + 2].symbol))), | |
9114 | not_lval); | |
9115 | } | |
d2e4a39e | 9116 | else |
4c4b4cd2 | 9117 | { |
284614f0 JB |
9118 | arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside); |
9119 | arg1 = unwrap_value (arg1); | |
4c4b4cd2 PH |
9120 | return ada_to_fixed_value (arg1); |
9121 | } | |
9122 | ||
9123 | case OP_FUNCALL: | |
9124 | (*pos) += 2; | |
9125 | ||
9126 | /* Allocate arg vector, including space for the function to be | |
9127 | called in argvec[0] and a terminating NULL. */ | |
9128 | nargs = longest_to_int (exp->elts[pc + 1].longconst); | |
9129 | argvec = | |
9130 | (struct value **) alloca (sizeof (struct value *) * (nargs + 2)); | |
9131 | ||
9132 | if (exp->elts[*pos].opcode == OP_VAR_VALUE | |
76a01679 | 9133 | && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN) |
323e0a4a | 9134 | error (_("Unexpected unresolved symbol, %s, during evaluation"), |
4c4b4cd2 PH |
9135 | SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol)); |
9136 | else | |
9137 | { | |
9138 | for (tem = 0; tem <= nargs; tem += 1) | |
9139 | argvec[tem] = evaluate_subexp (NULL_TYPE, exp, pos, noside); | |
9140 | argvec[tem] = 0; | |
9141 | ||
9142 | if (noside == EVAL_SKIP) | |
9143 | goto nosideret; | |
9144 | } | |
9145 | ||
ad82864c JB |
9146 | if (ada_is_constrained_packed_array_type |
9147 | (desc_base_type (value_type (argvec[0])))) | |
4c4b4cd2 | 9148 | argvec[0] = ada_coerce_to_simple_array (argvec[0]); |
284614f0 JB |
9149 | else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_ARRAY |
9150 | && TYPE_FIELD_BITSIZE (value_type (argvec[0]), 0) != 0) | |
9151 | /* This is a packed array that has already been fixed, and | |
9152 | therefore already coerced to a simple array. Nothing further | |
9153 | to do. */ | |
9154 | ; | |
df407dfe AC |
9155 | else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_REF |
9156 | || (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_ARRAY | |
76a01679 | 9157 | && VALUE_LVAL (argvec[0]) == lval_memory)) |
4c4b4cd2 PH |
9158 | argvec[0] = value_addr (argvec[0]); |
9159 | ||
df407dfe | 9160 | type = ada_check_typedef (value_type (argvec[0])); |
4c4b4cd2 PH |
9161 | if (TYPE_CODE (type) == TYPE_CODE_PTR) |
9162 | { | |
61ee279c | 9163 | switch (TYPE_CODE (ada_check_typedef (TYPE_TARGET_TYPE (type)))) |
4c4b4cd2 PH |
9164 | { |
9165 | case TYPE_CODE_FUNC: | |
61ee279c | 9166 | type = ada_check_typedef (TYPE_TARGET_TYPE (type)); |
4c4b4cd2 PH |
9167 | break; |
9168 | case TYPE_CODE_ARRAY: | |
9169 | break; | |
9170 | case TYPE_CODE_STRUCT: | |
9171 | if (noside != EVAL_AVOID_SIDE_EFFECTS) | |
9172 | argvec[0] = ada_value_ind (argvec[0]); | |
61ee279c | 9173 | type = ada_check_typedef (TYPE_TARGET_TYPE (type)); |
4c4b4cd2 PH |
9174 | break; |
9175 | default: | |
323e0a4a | 9176 | error (_("cannot subscript or call something of type `%s'"), |
df407dfe | 9177 | ada_type_name (value_type (argvec[0]))); |
4c4b4cd2 PH |
9178 | break; |
9179 | } | |
9180 | } | |
9181 | ||
9182 | switch (TYPE_CODE (type)) | |
9183 | { | |
9184 | case TYPE_CODE_FUNC: | |
9185 | if (noside == EVAL_AVOID_SIDE_EFFECTS) | |
9186 | return allocate_value (TYPE_TARGET_TYPE (type)); | |
9187 | return call_function_by_hand (argvec[0], nargs, argvec + 1); | |
9188 | case TYPE_CODE_STRUCT: | |
9189 | { | |
9190 | int arity; | |
9191 | ||
4c4b4cd2 PH |
9192 | arity = ada_array_arity (type); |
9193 | type = ada_array_element_type (type, nargs); | |
9194 | if (type == NULL) | |
323e0a4a | 9195 | error (_("cannot subscript or call a record")); |
4c4b4cd2 | 9196 | if (arity != nargs) |
323e0a4a | 9197 | error (_("wrong number of subscripts; expecting %d"), arity); |
4c4b4cd2 | 9198 | if (noside == EVAL_AVOID_SIDE_EFFECTS) |
0a07e705 | 9199 | return value_zero (ada_aligned_type (type), lval_memory); |
4c4b4cd2 PH |
9200 | return |
9201 | unwrap_value (ada_value_subscript | |
9202 | (argvec[0], nargs, argvec + 1)); | |
9203 | } | |
9204 | case TYPE_CODE_ARRAY: | |
9205 | if (noside == EVAL_AVOID_SIDE_EFFECTS) | |
9206 | { | |
9207 | type = ada_array_element_type (type, nargs); | |
9208 | if (type == NULL) | |
323e0a4a | 9209 | error (_("element type of array unknown")); |
4c4b4cd2 | 9210 | else |
0a07e705 | 9211 | return value_zero (ada_aligned_type (type), lval_memory); |
4c4b4cd2 PH |
9212 | } |
9213 | return | |
9214 | unwrap_value (ada_value_subscript | |
9215 | (ada_coerce_to_simple_array (argvec[0]), | |
9216 | nargs, argvec + 1)); | |
9217 | case TYPE_CODE_PTR: /* Pointer to array */ | |
9218 | type = to_fixed_array_type (TYPE_TARGET_TYPE (type), NULL, 1); | |
9219 | if (noside == EVAL_AVOID_SIDE_EFFECTS) | |
9220 | { | |
9221 | type = ada_array_element_type (type, nargs); | |
9222 | if (type == NULL) | |
323e0a4a | 9223 | error (_("element type of array unknown")); |
4c4b4cd2 | 9224 | else |
0a07e705 | 9225 | return value_zero (ada_aligned_type (type), lval_memory); |
4c4b4cd2 PH |
9226 | } |
9227 | return | |
9228 | unwrap_value (ada_value_ptr_subscript (argvec[0], type, | |
9229 | nargs, argvec + 1)); | |
9230 | ||
9231 | default: | |
e1d5a0d2 PH |
9232 | error (_("Attempt to index or call something other than an " |
9233 | "array or function")); | |
4c4b4cd2 PH |
9234 | } |
9235 | ||
9236 | case TERNOP_SLICE: | |
9237 | { | |
9238 | struct value *array = evaluate_subexp (NULL_TYPE, exp, pos, noside); | |
9239 | struct value *low_bound_val = | |
9240 | evaluate_subexp (NULL_TYPE, exp, pos, noside); | |
714e53ab PH |
9241 | struct value *high_bound_val = |
9242 | evaluate_subexp (NULL_TYPE, exp, pos, noside); | |
9243 | LONGEST low_bound; | |
9244 | LONGEST high_bound; | |
5b4ee69b | 9245 | |
994b9211 AC |
9246 | low_bound_val = coerce_ref (low_bound_val); |
9247 | high_bound_val = coerce_ref (high_bound_val); | |
714e53ab PH |
9248 | low_bound = pos_atr (low_bound_val); |
9249 | high_bound = pos_atr (high_bound_val); | |
963a6417 | 9250 | |
4c4b4cd2 PH |
9251 | if (noside == EVAL_SKIP) |
9252 | goto nosideret; | |
9253 | ||
4c4b4cd2 PH |
9254 | /* If this is a reference to an aligner type, then remove all |
9255 | the aligners. */ | |
df407dfe AC |
9256 | if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF |
9257 | && ada_is_aligner_type (TYPE_TARGET_TYPE (value_type (array)))) | |
9258 | TYPE_TARGET_TYPE (value_type (array)) = | |
9259 | ada_aligned_type (TYPE_TARGET_TYPE (value_type (array))); | |
4c4b4cd2 | 9260 | |
ad82864c | 9261 | if (ada_is_constrained_packed_array_type (value_type (array))) |
323e0a4a | 9262 | error (_("cannot slice a packed array")); |
4c4b4cd2 PH |
9263 | |
9264 | /* If this is a reference to an array or an array lvalue, | |
9265 | convert to a pointer. */ | |
df407dfe AC |
9266 | if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF |
9267 | || (TYPE_CODE (value_type (array)) == TYPE_CODE_ARRAY | |
4c4b4cd2 PH |
9268 | && VALUE_LVAL (array) == lval_memory)) |
9269 | array = value_addr (array); | |
9270 | ||
1265e4aa | 9271 | if (noside == EVAL_AVOID_SIDE_EFFECTS |
61ee279c | 9272 | && ada_is_array_descriptor_type (ada_check_typedef |
df407dfe | 9273 | (value_type (array)))) |
0b5d8877 | 9274 | return empty_array (ada_type_of_array (array, 0), low_bound); |
4c4b4cd2 PH |
9275 | |
9276 | array = ada_coerce_to_simple_array_ptr (array); | |
9277 | ||
714e53ab PH |
9278 | /* If we have more than one level of pointer indirection, |
9279 | dereference the value until we get only one level. */ | |
df407dfe AC |
9280 | while (TYPE_CODE (value_type (array)) == TYPE_CODE_PTR |
9281 | && (TYPE_CODE (TYPE_TARGET_TYPE (value_type (array))) | |
714e53ab PH |
9282 | == TYPE_CODE_PTR)) |
9283 | array = value_ind (array); | |
9284 | ||
9285 | /* Make sure we really do have an array type before going further, | |
9286 | to avoid a SEGV when trying to get the index type or the target | |
9287 | type later down the road if the debug info generated by | |
9288 | the compiler is incorrect or incomplete. */ | |
df407dfe | 9289 | if (!ada_is_simple_array_type (value_type (array))) |
323e0a4a | 9290 | error (_("cannot take slice of non-array")); |
714e53ab | 9291 | |
df407dfe | 9292 | if (TYPE_CODE (value_type (array)) == TYPE_CODE_PTR) |
4c4b4cd2 | 9293 | { |
0b5d8877 | 9294 | if (high_bound < low_bound || noside == EVAL_AVOID_SIDE_EFFECTS) |
df407dfe | 9295 | return empty_array (TYPE_TARGET_TYPE (value_type (array)), |
4c4b4cd2 PH |
9296 | low_bound); |
9297 | else | |
9298 | { | |
9299 | struct type *arr_type0 = | |
df407dfe | 9300 | to_fixed_array_type (TYPE_TARGET_TYPE (value_type (array)), |
4c4b4cd2 | 9301 | NULL, 1); |
5b4ee69b | 9302 | |
f5938064 JG |
9303 | return ada_value_slice_from_ptr (array, arr_type0, |
9304 | longest_to_int (low_bound), | |
9305 | longest_to_int (high_bound)); | |
4c4b4cd2 PH |
9306 | } |
9307 | } | |
9308 | else if (noside == EVAL_AVOID_SIDE_EFFECTS) | |
9309 | return array; | |
9310 | else if (high_bound < low_bound) | |
df407dfe | 9311 | return empty_array (value_type (array), low_bound); |
4c4b4cd2 | 9312 | else |
529cad9c PH |
9313 | return ada_value_slice (array, longest_to_int (low_bound), |
9314 | longest_to_int (high_bound)); | |
4c4b4cd2 | 9315 | } |
14f9c5c9 | 9316 | |
4c4b4cd2 PH |
9317 | case UNOP_IN_RANGE: |
9318 | (*pos) += 2; | |
9319 | arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside); | |
8008e265 | 9320 | type = check_typedef (exp->elts[pc + 1].type); |
14f9c5c9 | 9321 | |
14f9c5c9 | 9322 | if (noside == EVAL_SKIP) |
4c4b4cd2 | 9323 | goto nosideret; |
14f9c5c9 | 9324 | |
4c4b4cd2 PH |
9325 | switch (TYPE_CODE (type)) |
9326 | { | |
9327 | default: | |
e1d5a0d2 PH |
9328 | lim_warning (_("Membership test incompletely implemented; " |
9329 | "always returns true")); | |
fbb06eb1 UW |
9330 | type = language_bool_type (exp->language_defn, exp->gdbarch); |
9331 | return value_from_longest (type, (LONGEST) 1); | |
4c4b4cd2 PH |
9332 | |
9333 | case TYPE_CODE_RANGE: | |
030b4912 UW |
9334 | arg2 = value_from_longest (type, TYPE_LOW_BOUND (type)); |
9335 | arg3 = value_from_longest (type, TYPE_HIGH_BOUND (type)); | |
f44316fa UW |
9336 | binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2); |
9337 | binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3); | |
fbb06eb1 UW |
9338 | type = language_bool_type (exp->language_defn, exp->gdbarch); |
9339 | return | |
9340 | value_from_longest (type, | |
4c4b4cd2 PH |
9341 | (value_less (arg1, arg3) |
9342 | || value_equal (arg1, arg3)) | |
9343 | && (value_less (arg2, arg1) | |
9344 | || value_equal (arg2, arg1))); | |
9345 | } | |
9346 | ||
9347 | case BINOP_IN_BOUNDS: | |
14f9c5c9 | 9348 | (*pos) += 2; |
4c4b4cd2 PH |
9349 | arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside); |
9350 | arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside); | |
14f9c5c9 | 9351 | |
4c4b4cd2 PH |
9352 | if (noside == EVAL_SKIP) |
9353 | goto nosideret; | |
14f9c5c9 | 9354 | |
4c4b4cd2 | 9355 | if (noside == EVAL_AVOID_SIDE_EFFECTS) |
fbb06eb1 UW |
9356 | { |
9357 | type = language_bool_type (exp->language_defn, exp->gdbarch); | |
9358 | return value_zero (type, not_lval); | |
9359 | } | |
14f9c5c9 | 9360 | |
4c4b4cd2 | 9361 | tem = longest_to_int (exp->elts[pc + 1].longconst); |
14f9c5c9 | 9362 | |
1eea4ebd UW |
9363 | type = ada_index_type (value_type (arg2), tem, "range"); |
9364 | if (!type) | |
9365 | type = value_type (arg1); | |
14f9c5c9 | 9366 | |
1eea4ebd UW |
9367 | arg3 = value_from_longest (type, ada_array_bound (arg2, tem, 1)); |
9368 | arg2 = value_from_longest (type, ada_array_bound (arg2, tem, 0)); | |
d2e4a39e | 9369 | |
f44316fa UW |
9370 | binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2); |
9371 | binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3); | |
fbb06eb1 | 9372 | type = language_bool_type (exp->language_defn, exp->gdbarch); |
4c4b4cd2 | 9373 | return |
fbb06eb1 | 9374 | value_from_longest (type, |
4c4b4cd2 PH |
9375 | (value_less (arg1, arg3) |
9376 | || value_equal (arg1, arg3)) | |
9377 | && (value_less (arg2, arg1) | |
9378 | || value_equal (arg2, arg1))); | |
9379 | ||
9380 | case TERNOP_IN_RANGE: | |
9381 | arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside); | |
9382 | arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside); | |
9383 | arg3 = evaluate_subexp (NULL_TYPE, exp, pos, noside); | |
9384 | ||
9385 | if (noside == EVAL_SKIP) | |
9386 | goto nosideret; | |
9387 | ||
f44316fa UW |
9388 | binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2); |
9389 | binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3); | |
fbb06eb1 | 9390 | type = language_bool_type (exp->language_defn, exp->gdbarch); |
4c4b4cd2 | 9391 | return |
fbb06eb1 | 9392 | value_from_longest (type, |
4c4b4cd2 PH |
9393 | (value_less (arg1, arg3) |
9394 | || value_equal (arg1, arg3)) | |
9395 | && (value_less (arg2, arg1) | |
9396 | || value_equal (arg2, arg1))); | |
9397 | ||
9398 | case OP_ATR_FIRST: | |
9399 | case OP_ATR_LAST: | |
9400 | case OP_ATR_LENGTH: | |
9401 | { | |
76a01679 | 9402 | struct type *type_arg; |
5b4ee69b | 9403 | |
76a01679 JB |
9404 | if (exp->elts[*pos].opcode == OP_TYPE) |
9405 | { | |
9406 | evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP); | |
9407 | arg1 = NULL; | |
5bc23cb3 | 9408 | type_arg = check_typedef (exp->elts[pc + 2].type); |
76a01679 JB |
9409 | } |
9410 | else | |
9411 | { | |
9412 | arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside); | |
9413 | type_arg = NULL; | |
9414 | } | |
9415 | ||
9416 | if (exp->elts[*pos].opcode != OP_LONG) | |
323e0a4a | 9417 | error (_("Invalid operand to '%s"), ada_attribute_name (op)); |
76a01679 JB |
9418 | tem = longest_to_int (exp->elts[*pos + 2].longconst); |
9419 | *pos += 4; | |
9420 | ||
9421 | if (noside == EVAL_SKIP) | |
9422 | goto nosideret; | |
9423 | ||
9424 | if (type_arg == NULL) | |
9425 | { | |
9426 | arg1 = ada_coerce_ref (arg1); | |
9427 | ||
ad82864c | 9428 | if (ada_is_constrained_packed_array_type (value_type (arg1))) |
76a01679 JB |
9429 | arg1 = ada_coerce_to_simple_array (arg1); |
9430 | ||
1eea4ebd UW |
9431 | type = ada_index_type (value_type (arg1), tem, |
9432 | ada_attribute_name (op)); | |
9433 | if (type == NULL) | |
9434 | type = builtin_type (exp->gdbarch)->builtin_int; | |
76a01679 JB |
9435 | |
9436 | if (noside == EVAL_AVOID_SIDE_EFFECTS) | |
1eea4ebd | 9437 | return allocate_value (type); |
76a01679 JB |
9438 | |
9439 | switch (op) | |
9440 | { | |
9441 | default: /* Should never happen. */ | |
323e0a4a | 9442 | error (_("unexpected attribute encountered")); |
76a01679 | 9443 | case OP_ATR_FIRST: |
1eea4ebd UW |
9444 | return value_from_longest |
9445 | (type, ada_array_bound (arg1, tem, 0)); | |
76a01679 | 9446 | case OP_ATR_LAST: |
1eea4ebd UW |
9447 | return value_from_longest |
9448 | (type, ada_array_bound (arg1, tem, 1)); | |
76a01679 | 9449 | case OP_ATR_LENGTH: |
1eea4ebd UW |
9450 | return value_from_longest |
9451 | (type, ada_array_length (arg1, tem)); | |
76a01679 JB |
9452 | } |
9453 | } | |
9454 | else if (discrete_type_p (type_arg)) | |
9455 | { | |
9456 | struct type *range_type; | |
9457 | char *name = ada_type_name (type_arg); | |
5b4ee69b | 9458 | |
76a01679 JB |
9459 | range_type = NULL; |
9460 | if (name != NULL && TYPE_CODE (type_arg) != TYPE_CODE_ENUM) | |
28c85d6c | 9461 | range_type = to_fixed_range_type (type_arg, NULL); |
76a01679 JB |
9462 | if (range_type == NULL) |
9463 | range_type = type_arg; | |
9464 | switch (op) | |
9465 | { | |
9466 | default: | |
323e0a4a | 9467 | error (_("unexpected attribute encountered")); |
76a01679 | 9468 | case OP_ATR_FIRST: |
690cc4eb | 9469 | return value_from_longest |
43bbcdc2 | 9470 | (range_type, ada_discrete_type_low_bound (range_type)); |
76a01679 | 9471 | case OP_ATR_LAST: |
690cc4eb | 9472 | return value_from_longest |
43bbcdc2 | 9473 | (range_type, ada_discrete_type_high_bound (range_type)); |
76a01679 | 9474 | case OP_ATR_LENGTH: |
323e0a4a | 9475 | error (_("the 'length attribute applies only to array types")); |
76a01679 JB |
9476 | } |
9477 | } | |
9478 | else if (TYPE_CODE (type_arg) == TYPE_CODE_FLT) | |
323e0a4a | 9479 | error (_("unimplemented type attribute")); |
76a01679 JB |
9480 | else |
9481 | { | |
9482 | LONGEST low, high; | |
9483 | ||
ad82864c JB |
9484 | if (ada_is_constrained_packed_array_type (type_arg)) |
9485 | type_arg = decode_constrained_packed_array_type (type_arg); | |
76a01679 | 9486 | |
1eea4ebd | 9487 | type = ada_index_type (type_arg, tem, ada_attribute_name (op)); |
76a01679 | 9488 | if (type == NULL) |
1eea4ebd UW |
9489 | type = builtin_type (exp->gdbarch)->builtin_int; |
9490 | ||
76a01679 JB |
9491 | if (noside == EVAL_AVOID_SIDE_EFFECTS) |
9492 | return allocate_value (type); | |
9493 | ||
9494 | switch (op) | |
9495 | { | |
9496 | default: | |
323e0a4a | 9497 | error (_("unexpected attribute encountered")); |
76a01679 | 9498 | case OP_ATR_FIRST: |
1eea4ebd | 9499 | low = ada_array_bound_from_type (type_arg, tem, 0); |
76a01679 JB |
9500 | return value_from_longest (type, low); |
9501 | case OP_ATR_LAST: | |
1eea4ebd | 9502 | high = ada_array_bound_from_type (type_arg, tem, 1); |
76a01679 JB |
9503 | return value_from_longest (type, high); |
9504 | case OP_ATR_LENGTH: | |
1eea4ebd UW |
9505 | low = ada_array_bound_from_type (type_arg, tem, 0); |
9506 | high = ada_array_bound_from_type (type_arg, tem, 1); | |
76a01679 JB |
9507 | return value_from_longest (type, high - low + 1); |
9508 | } | |
9509 | } | |
14f9c5c9 AS |
9510 | } |
9511 | ||
4c4b4cd2 PH |
9512 | case OP_ATR_TAG: |
9513 | arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside); | |
9514 | if (noside == EVAL_SKIP) | |
76a01679 | 9515 | goto nosideret; |
4c4b4cd2 PH |
9516 | |
9517 | if (noside == EVAL_AVOID_SIDE_EFFECTS) | |
76a01679 | 9518 | return value_zero (ada_tag_type (arg1), not_lval); |
4c4b4cd2 PH |
9519 | |
9520 | return ada_value_tag (arg1); | |
9521 | ||
9522 | case OP_ATR_MIN: | |
9523 | case OP_ATR_MAX: | |
9524 | evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP); | |
14f9c5c9 AS |
9525 | arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside); |
9526 | arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside); | |
9527 | if (noside == EVAL_SKIP) | |
76a01679 | 9528 | goto nosideret; |
d2e4a39e | 9529 | else if (noside == EVAL_AVOID_SIDE_EFFECTS) |
df407dfe | 9530 | return value_zero (value_type (arg1), not_lval); |
14f9c5c9 | 9531 | else |
f44316fa UW |
9532 | { |
9533 | binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2); | |
9534 | return value_binop (arg1, arg2, | |
9535 | op == OP_ATR_MIN ? BINOP_MIN : BINOP_MAX); | |
9536 | } | |
14f9c5c9 | 9537 | |
4c4b4cd2 PH |
9538 | case OP_ATR_MODULUS: |
9539 | { | |
31dedfee | 9540 | struct type *type_arg = check_typedef (exp->elts[pc + 2].type); |
4c4b4cd2 | 9541 | |
5b4ee69b | 9542 | evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP); |
76a01679 JB |
9543 | if (noside == EVAL_SKIP) |
9544 | goto nosideret; | |
4c4b4cd2 | 9545 | |
76a01679 | 9546 | if (!ada_is_modular_type (type_arg)) |
323e0a4a | 9547 | error (_("'modulus must be applied to modular type")); |
4c4b4cd2 | 9548 | |
76a01679 JB |
9549 | return value_from_longest (TYPE_TARGET_TYPE (type_arg), |
9550 | ada_modulus (type_arg)); | |
4c4b4cd2 PH |
9551 | } |
9552 | ||
9553 | ||
9554 | case OP_ATR_POS: | |
9555 | evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP); | |
14f9c5c9 AS |
9556 | arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside); |
9557 | if (noside == EVAL_SKIP) | |
76a01679 | 9558 | goto nosideret; |
3cb382c9 UW |
9559 | type = builtin_type (exp->gdbarch)->builtin_int; |
9560 | if (noside == EVAL_AVOID_SIDE_EFFECTS) | |
9561 | return value_zero (type, not_lval); | |
14f9c5c9 | 9562 | else |
3cb382c9 | 9563 | return value_pos_atr (type, arg1); |
14f9c5c9 | 9564 | |
4c4b4cd2 PH |
9565 | case OP_ATR_SIZE: |
9566 | arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside); | |
8c1c099f JB |
9567 | type = value_type (arg1); |
9568 | ||
9569 | /* If the argument is a reference, then dereference its type, since | |
9570 | the user is really asking for the size of the actual object, | |
9571 | not the size of the pointer. */ | |
9572 | if (TYPE_CODE (type) == TYPE_CODE_REF) | |
9573 | type = TYPE_TARGET_TYPE (type); | |
9574 | ||
4c4b4cd2 | 9575 | if (noside == EVAL_SKIP) |
76a01679 | 9576 | goto nosideret; |
4c4b4cd2 | 9577 | else if (noside == EVAL_AVOID_SIDE_EFFECTS) |
22601c15 | 9578 | return value_zero (builtin_type (exp->gdbarch)->builtin_int, not_lval); |
4c4b4cd2 | 9579 | else |
22601c15 | 9580 | return value_from_longest (builtin_type (exp->gdbarch)->builtin_int, |
8c1c099f | 9581 | TARGET_CHAR_BIT * TYPE_LENGTH (type)); |
4c4b4cd2 PH |
9582 | |
9583 | case OP_ATR_VAL: | |
9584 | evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP); | |
14f9c5c9 | 9585 | arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside); |
4c4b4cd2 | 9586 | type = exp->elts[pc + 2].type; |
14f9c5c9 | 9587 | if (noside == EVAL_SKIP) |
76a01679 | 9588 | goto nosideret; |
4c4b4cd2 | 9589 | else if (noside == EVAL_AVOID_SIDE_EFFECTS) |
76a01679 | 9590 | return value_zero (type, not_lval); |
4c4b4cd2 | 9591 | else |
76a01679 | 9592 | return value_val_atr (type, arg1); |
4c4b4cd2 PH |
9593 | |
9594 | case BINOP_EXP: | |
9595 | arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside); | |
9596 | arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside); | |
9597 | if (noside == EVAL_SKIP) | |
9598 | goto nosideret; | |
9599 | else if (noside == EVAL_AVOID_SIDE_EFFECTS) | |
df407dfe | 9600 | return value_zero (value_type (arg1), not_lval); |
4c4b4cd2 | 9601 | else |
f44316fa UW |
9602 | { |
9603 | /* For integer exponentiation operations, | |
9604 | only promote the first argument. */ | |
9605 | if (is_integral_type (value_type (arg2))) | |
9606 | unop_promote (exp->language_defn, exp->gdbarch, &arg1); | |
9607 | else | |
9608 | binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2); | |
9609 | ||
9610 | return value_binop (arg1, arg2, op); | |
9611 | } | |
4c4b4cd2 PH |
9612 | |
9613 | case UNOP_PLUS: | |
9614 | arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside); | |
9615 | if (noside == EVAL_SKIP) | |
9616 | goto nosideret; | |
9617 | else | |
9618 | return arg1; | |
9619 | ||
9620 | case UNOP_ABS: | |
9621 | arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside); | |
9622 | if (noside == EVAL_SKIP) | |
9623 | goto nosideret; | |
f44316fa | 9624 | unop_promote (exp->language_defn, exp->gdbarch, &arg1); |
df407dfe | 9625 | if (value_less (arg1, value_zero (value_type (arg1), not_lval))) |
4c4b4cd2 | 9626 | return value_neg (arg1); |
14f9c5c9 | 9627 | else |
4c4b4cd2 | 9628 | return arg1; |
14f9c5c9 AS |
9629 | |
9630 | case UNOP_IND: | |
6b0d7253 | 9631 | arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside); |
14f9c5c9 | 9632 | if (noside == EVAL_SKIP) |
4c4b4cd2 | 9633 | goto nosideret; |
df407dfe | 9634 | type = ada_check_typedef (value_type (arg1)); |
14f9c5c9 | 9635 | if (noside == EVAL_AVOID_SIDE_EFFECTS) |
4c4b4cd2 PH |
9636 | { |
9637 | if (ada_is_array_descriptor_type (type)) | |
9638 | /* GDB allows dereferencing GNAT array descriptors. */ | |
9639 | { | |
9640 | struct type *arrType = ada_type_of_array (arg1, 0); | |
5b4ee69b | 9641 | |
4c4b4cd2 | 9642 | if (arrType == NULL) |
323e0a4a | 9643 | error (_("Attempt to dereference null array pointer.")); |
00a4c844 | 9644 | return value_at_lazy (arrType, 0); |
4c4b4cd2 PH |
9645 | } |
9646 | else if (TYPE_CODE (type) == TYPE_CODE_PTR | |
9647 | || TYPE_CODE (type) == TYPE_CODE_REF | |
9648 | /* In C you can dereference an array to get the 1st elt. */ | |
9649 | || TYPE_CODE (type) == TYPE_CODE_ARRAY) | |
714e53ab PH |
9650 | { |
9651 | type = to_static_fixed_type | |
9652 | (ada_aligned_type | |
9653 | (ada_check_typedef (TYPE_TARGET_TYPE (type)))); | |
9654 | check_size (type); | |
9655 | return value_zero (type, lval_memory); | |
9656 | } | |
4c4b4cd2 | 9657 | else if (TYPE_CODE (type) == TYPE_CODE_INT) |
6b0d7253 JB |
9658 | { |
9659 | /* GDB allows dereferencing an int. */ | |
9660 | if (expect_type == NULL) | |
9661 | return value_zero (builtin_type (exp->gdbarch)->builtin_int, | |
9662 | lval_memory); | |
9663 | else | |
9664 | { | |
9665 | expect_type = | |
9666 | to_static_fixed_type (ada_aligned_type (expect_type)); | |
9667 | return value_zero (expect_type, lval_memory); | |
9668 | } | |
9669 | } | |
4c4b4cd2 | 9670 | else |
323e0a4a | 9671 | error (_("Attempt to take contents of a non-pointer value.")); |
4c4b4cd2 | 9672 | } |
76a01679 | 9673 | arg1 = ada_coerce_ref (arg1); /* FIXME: What is this for?? */ |
df407dfe | 9674 | type = ada_check_typedef (value_type (arg1)); |
d2e4a39e | 9675 | |
96967637 JB |
9676 | if (TYPE_CODE (type) == TYPE_CODE_INT) |
9677 | /* GDB allows dereferencing an int. If we were given | |
9678 | the expect_type, then use that as the target type. | |
9679 | Otherwise, assume that the target type is an int. */ | |
9680 | { | |
9681 | if (expect_type != NULL) | |
9682 | return ada_value_ind (value_cast (lookup_pointer_type (expect_type), | |
9683 | arg1)); | |
9684 | else | |
9685 | return value_at_lazy (builtin_type (exp->gdbarch)->builtin_int, | |
9686 | (CORE_ADDR) value_as_address (arg1)); | |
9687 | } | |
6b0d7253 | 9688 | |
4c4b4cd2 PH |
9689 | if (ada_is_array_descriptor_type (type)) |
9690 | /* GDB allows dereferencing GNAT array descriptors. */ | |
9691 | return ada_coerce_to_simple_array (arg1); | |
14f9c5c9 | 9692 | else |
4c4b4cd2 | 9693 | return ada_value_ind (arg1); |
14f9c5c9 AS |
9694 | |
9695 | case STRUCTOP_STRUCT: | |
9696 | tem = longest_to_int (exp->elts[pc + 1].longconst); | |
9697 | (*pos) += 3 + BYTES_TO_EXP_ELEM (tem + 1); | |
9698 | arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside); | |
9699 | if (noside == EVAL_SKIP) | |
4c4b4cd2 | 9700 | goto nosideret; |
14f9c5c9 | 9701 | if (noside == EVAL_AVOID_SIDE_EFFECTS) |
76a01679 | 9702 | { |
df407dfe | 9703 | struct type *type1 = value_type (arg1); |
5b4ee69b | 9704 | |
76a01679 JB |
9705 | if (ada_is_tagged_type (type1, 1)) |
9706 | { | |
9707 | type = ada_lookup_struct_elt_type (type1, | |
9708 | &exp->elts[pc + 2].string, | |
9709 | 1, 1, NULL); | |
9710 | if (type == NULL) | |
9711 | /* In this case, we assume that the field COULD exist | |
9712 | in some extension of the type. Return an object of | |
9713 | "type" void, which will match any formal | |
9714 | (see ada_type_match). */ | |
30b15541 UW |
9715 | return value_zero (builtin_type (exp->gdbarch)->builtin_void, |
9716 | lval_memory); | |
76a01679 JB |
9717 | } |
9718 | else | |
9719 | type = | |
9720 | ada_lookup_struct_elt_type (type1, &exp->elts[pc + 2].string, 1, | |
9721 | 0, NULL); | |
9722 | ||
9723 | return value_zero (ada_aligned_type (type), lval_memory); | |
9724 | } | |
14f9c5c9 | 9725 | else |
284614f0 JB |
9726 | arg1 = ada_value_struct_elt (arg1, &exp->elts[pc + 2].string, 0); |
9727 | arg1 = unwrap_value (arg1); | |
9728 | return ada_to_fixed_value (arg1); | |
9729 | ||
14f9c5c9 | 9730 | case OP_TYPE: |
4c4b4cd2 PH |
9731 | /* The value is not supposed to be used. This is here to make it |
9732 | easier to accommodate expressions that contain types. */ | |
14f9c5c9 AS |
9733 | (*pos) += 2; |
9734 | if (noside == EVAL_SKIP) | |
4c4b4cd2 | 9735 | goto nosideret; |
14f9c5c9 | 9736 | else if (noside == EVAL_AVOID_SIDE_EFFECTS) |
a6cfbe68 | 9737 | return allocate_value (exp->elts[pc + 1].type); |
14f9c5c9 | 9738 | else |
323e0a4a | 9739 | error (_("Attempt to use a type name as an expression")); |
52ce6436 PH |
9740 | |
9741 | case OP_AGGREGATE: | |
9742 | case OP_CHOICES: | |
9743 | case OP_OTHERS: | |
9744 | case OP_DISCRETE_RANGE: | |
9745 | case OP_POSITIONAL: | |
9746 | case OP_NAME: | |
9747 | if (noside == EVAL_NORMAL) | |
9748 | switch (op) | |
9749 | { | |
9750 | case OP_NAME: | |
9751 | error (_("Undefined name, ambiguous name, or renaming used in " | |
e1d5a0d2 | 9752 | "component association: %s."), &exp->elts[pc+2].string); |
52ce6436 PH |
9753 | case OP_AGGREGATE: |
9754 | error (_("Aggregates only allowed on the right of an assignment")); | |
9755 | default: | |
e1d5a0d2 | 9756 | internal_error (__FILE__, __LINE__, _("aggregate apparently mangled")); |
52ce6436 PH |
9757 | } |
9758 | ||
9759 | ada_forward_operator_length (exp, pc, &oplen, &nargs); | |
9760 | *pos += oplen - 1; | |
9761 | for (tem = 0; tem < nargs; tem += 1) | |
9762 | ada_evaluate_subexp (NULL, exp, pos, noside); | |
9763 | goto nosideret; | |
14f9c5c9 AS |
9764 | } |
9765 | ||
9766 | nosideret: | |
22601c15 | 9767 | return value_from_longest (builtin_type (exp->gdbarch)->builtin_int, 1); |
14f9c5c9 | 9768 | } |
14f9c5c9 | 9769 | \f |
d2e4a39e | 9770 | |
4c4b4cd2 | 9771 | /* Fixed point */ |
14f9c5c9 AS |
9772 | |
9773 | /* If TYPE encodes an Ada fixed-point type, return the suffix of the | |
9774 | type name that encodes the 'small and 'delta information. | |
4c4b4cd2 | 9775 | Otherwise, return NULL. */ |
14f9c5c9 | 9776 | |
d2e4a39e | 9777 | static const char * |
ebf56fd3 | 9778 | fixed_type_info (struct type *type) |
14f9c5c9 | 9779 | { |
d2e4a39e | 9780 | const char *name = ada_type_name (type); |
14f9c5c9 AS |
9781 | enum type_code code = (type == NULL) ? TYPE_CODE_UNDEF : TYPE_CODE (type); |
9782 | ||
d2e4a39e AS |
9783 | if ((code == TYPE_CODE_INT || code == TYPE_CODE_RANGE) && name != NULL) |
9784 | { | |
14f9c5c9 | 9785 | const char *tail = strstr (name, "___XF_"); |
5b4ee69b | 9786 | |
14f9c5c9 | 9787 | if (tail == NULL) |
4c4b4cd2 | 9788 | return NULL; |
d2e4a39e | 9789 | else |
4c4b4cd2 | 9790 | return tail + 5; |
14f9c5c9 AS |
9791 | } |
9792 | else if (code == TYPE_CODE_RANGE && TYPE_TARGET_TYPE (type) != type) | |
9793 | return fixed_type_info (TYPE_TARGET_TYPE (type)); | |
9794 | else | |
9795 | return NULL; | |
9796 | } | |
9797 | ||
4c4b4cd2 | 9798 | /* Returns non-zero iff TYPE represents an Ada fixed-point type. */ |
14f9c5c9 AS |
9799 | |
9800 | int | |
ebf56fd3 | 9801 | ada_is_fixed_point_type (struct type *type) |
14f9c5c9 AS |
9802 | { |
9803 | return fixed_type_info (type) != NULL; | |
9804 | } | |
9805 | ||
4c4b4cd2 PH |
9806 | /* Return non-zero iff TYPE represents a System.Address type. */ |
9807 | ||
9808 | int | |
9809 | ada_is_system_address_type (struct type *type) | |
9810 | { | |
9811 | return (TYPE_NAME (type) | |
9812 | && strcmp (TYPE_NAME (type), "system__address") == 0); | |
9813 | } | |
9814 | ||
14f9c5c9 AS |
9815 | /* Assuming that TYPE is the representation of an Ada fixed-point |
9816 | type, return its delta, or -1 if the type is malformed and the | |
4c4b4cd2 | 9817 | delta cannot be determined. */ |
14f9c5c9 AS |
9818 | |
9819 | DOUBLEST | |
ebf56fd3 | 9820 | ada_delta (struct type *type) |
14f9c5c9 AS |
9821 | { |
9822 | const char *encoding = fixed_type_info (type); | |
facc390f | 9823 | DOUBLEST num, den; |
14f9c5c9 | 9824 | |
facc390f JB |
9825 | /* Strictly speaking, num and den are encoded as integer. However, |
9826 | they may not fit into a long, and they will have to be converted | |
9827 | to DOUBLEST anyway. So scan them as DOUBLEST. */ | |
9828 | if (sscanf (encoding, "_%" DOUBLEST_SCAN_FORMAT "_%" DOUBLEST_SCAN_FORMAT, | |
9829 | &num, &den) < 2) | |
14f9c5c9 | 9830 | return -1.0; |
d2e4a39e | 9831 | else |
facc390f | 9832 | return num / den; |
14f9c5c9 AS |
9833 | } |
9834 | ||
9835 | /* Assuming that ada_is_fixed_point_type (TYPE), return the scaling | |
4c4b4cd2 | 9836 | factor ('SMALL value) associated with the type. */ |
14f9c5c9 AS |
9837 | |
9838 | static DOUBLEST | |
ebf56fd3 | 9839 | scaling_factor (struct type *type) |
14f9c5c9 AS |
9840 | { |
9841 | const char *encoding = fixed_type_info (type); | |
facc390f | 9842 | DOUBLEST num0, den0, num1, den1; |
14f9c5c9 | 9843 | int n; |
d2e4a39e | 9844 | |
facc390f JB |
9845 | /* Strictly speaking, num's and den's are encoded as integer. However, |
9846 | they may not fit into a long, and they will have to be converted | |
9847 | to DOUBLEST anyway. So scan them as DOUBLEST. */ | |
9848 | n = sscanf (encoding, | |
9849 | "_%" DOUBLEST_SCAN_FORMAT "_%" DOUBLEST_SCAN_FORMAT | |
9850 | "_%" DOUBLEST_SCAN_FORMAT "_%" DOUBLEST_SCAN_FORMAT, | |
9851 | &num0, &den0, &num1, &den1); | |
14f9c5c9 AS |
9852 | |
9853 | if (n < 2) | |
9854 | return 1.0; | |
9855 | else if (n == 4) | |
facc390f | 9856 | return num1 / den1; |
d2e4a39e | 9857 | else |
facc390f | 9858 | return num0 / den0; |
14f9c5c9 AS |
9859 | } |
9860 | ||
9861 | ||
9862 | /* Assuming that X is the representation of a value of fixed-point | |
4c4b4cd2 | 9863 | type TYPE, return its floating-point equivalent. */ |
14f9c5c9 AS |
9864 | |
9865 | DOUBLEST | |
ebf56fd3 | 9866 | ada_fixed_to_float (struct type *type, LONGEST x) |
14f9c5c9 | 9867 | { |
d2e4a39e | 9868 | return (DOUBLEST) x *scaling_factor (type); |
14f9c5c9 AS |
9869 | } |
9870 | ||
4c4b4cd2 PH |
9871 | /* The representation of a fixed-point value of type TYPE |
9872 | corresponding to the value X. */ | |
14f9c5c9 AS |
9873 | |
9874 | LONGEST | |
ebf56fd3 | 9875 | ada_float_to_fixed (struct type *type, DOUBLEST x) |
14f9c5c9 AS |
9876 | { |
9877 | return (LONGEST) (x / scaling_factor (type) + 0.5); | |
9878 | } | |
9879 | ||
14f9c5c9 | 9880 | \f |
d2e4a39e | 9881 | |
4c4b4cd2 | 9882 | /* Range types */ |
14f9c5c9 AS |
9883 | |
9884 | /* Scan STR beginning at position K for a discriminant name, and | |
9885 | return the value of that discriminant field of DVAL in *PX. If | |
9886 | PNEW_K is not null, put the position of the character beyond the | |
9887 | name scanned in *PNEW_K. Return 1 if successful; return 0 and do | |
4c4b4cd2 | 9888 | not alter *PX and *PNEW_K if unsuccessful. */ |
14f9c5c9 AS |
9889 | |
9890 | static int | |
07d8f827 | 9891 | scan_discrim_bound (char *str, int k, struct value *dval, LONGEST * px, |
76a01679 | 9892 | int *pnew_k) |
14f9c5c9 AS |
9893 | { |
9894 | static char *bound_buffer = NULL; | |
9895 | static size_t bound_buffer_len = 0; | |
9896 | char *bound; | |
9897 | char *pend; | |
d2e4a39e | 9898 | struct value *bound_val; |
14f9c5c9 AS |
9899 | |
9900 | if (dval == NULL || str == NULL || str[k] == '\0') | |
9901 | return 0; | |
9902 | ||
d2e4a39e | 9903 | pend = strstr (str + k, "__"); |
14f9c5c9 AS |
9904 | if (pend == NULL) |
9905 | { | |
d2e4a39e | 9906 | bound = str + k; |
14f9c5c9 AS |
9907 | k += strlen (bound); |
9908 | } | |
d2e4a39e | 9909 | else |
14f9c5c9 | 9910 | { |
d2e4a39e | 9911 | GROW_VECT (bound_buffer, bound_buffer_len, pend - (str + k) + 1); |
14f9c5c9 | 9912 | bound = bound_buffer; |
d2e4a39e AS |
9913 | strncpy (bound_buffer, str + k, pend - (str + k)); |
9914 | bound[pend - (str + k)] = '\0'; | |
9915 | k = pend - str; | |
14f9c5c9 | 9916 | } |
d2e4a39e | 9917 | |
df407dfe | 9918 | bound_val = ada_search_struct_field (bound, dval, 0, value_type (dval)); |
14f9c5c9 AS |
9919 | if (bound_val == NULL) |
9920 | return 0; | |
9921 | ||
9922 | *px = value_as_long (bound_val); | |
9923 | if (pnew_k != NULL) | |
9924 | *pnew_k = k; | |
9925 | return 1; | |
9926 | } | |
9927 | ||
9928 | /* Value of variable named NAME in the current environment. If | |
9929 | no such variable found, then if ERR_MSG is null, returns 0, and | |
4c4b4cd2 PH |
9930 | otherwise causes an error with message ERR_MSG. */ |
9931 | ||
d2e4a39e AS |
9932 | static struct value * |
9933 | get_var_value (char *name, char *err_msg) | |
14f9c5c9 | 9934 | { |
4c4b4cd2 | 9935 | struct ada_symbol_info *syms; |
14f9c5c9 AS |
9936 | int nsyms; |
9937 | ||
4c4b4cd2 PH |
9938 | nsyms = ada_lookup_symbol_list (name, get_selected_block (0), VAR_DOMAIN, |
9939 | &syms); | |
14f9c5c9 AS |
9940 | |
9941 | if (nsyms != 1) | |
9942 | { | |
9943 | if (err_msg == NULL) | |
4c4b4cd2 | 9944 | return 0; |
14f9c5c9 | 9945 | else |
8a3fe4f8 | 9946 | error (("%s"), err_msg); |
14f9c5c9 AS |
9947 | } |
9948 | ||
4c4b4cd2 | 9949 | return value_of_variable (syms[0].sym, syms[0].block); |
14f9c5c9 | 9950 | } |
d2e4a39e | 9951 | |
14f9c5c9 | 9952 | /* Value of integer variable named NAME in the current environment. If |
4c4b4cd2 PH |
9953 | no such variable found, returns 0, and sets *FLAG to 0. If |
9954 | successful, sets *FLAG to 1. */ | |
9955 | ||
14f9c5c9 | 9956 | LONGEST |
4c4b4cd2 | 9957 | get_int_var_value (char *name, int *flag) |
14f9c5c9 | 9958 | { |
4c4b4cd2 | 9959 | struct value *var_val = get_var_value (name, 0); |
d2e4a39e | 9960 | |
14f9c5c9 AS |
9961 | if (var_val == 0) |
9962 | { | |
9963 | if (flag != NULL) | |
4c4b4cd2 | 9964 | *flag = 0; |
14f9c5c9 AS |
9965 | return 0; |
9966 | } | |
9967 | else | |
9968 | { | |
9969 | if (flag != NULL) | |
4c4b4cd2 | 9970 | *flag = 1; |
14f9c5c9 AS |
9971 | return value_as_long (var_val); |
9972 | } | |
9973 | } | |
d2e4a39e | 9974 | |
14f9c5c9 AS |
9975 | |
9976 | /* Return a range type whose base type is that of the range type named | |
9977 | NAME in the current environment, and whose bounds are calculated | |
4c4b4cd2 | 9978 | from NAME according to the GNAT range encoding conventions. |
1ce677a4 UW |
9979 | Extract discriminant values, if needed, from DVAL. ORIG_TYPE is the |
9980 | corresponding range type from debug information; fall back to using it | |
9981 | if symbol lookup fails. If a new type must be created, allocate it | |
9982 | like ORIG_TYPE was. The bounds information, in general, is encoded | |
9983 | in NAME, the base type given in the named range type. */ | |
14f9c5c9 | 9984 | |
d2e4a39e | 9985 | static struct type * |
28c85d6c | 9986 | to_fixed_range_type (struct type *raw_type, struct value *dval) |
14f9c5c9 | 9987 | { |
28c85d6c | 9988 | char *name; |
14f9c5c9 | 9989 | struct type *base_type; |
d2e4a39e | 9990 | char *subtype_info; |
14f9c5c9 | 9991 | |
28c85d6c JB |
9992 | gdb_assert (raw_type != NULL); |
9993 | gdb_assert (TYPE_NAME (raw_type) != NULL); | |
dddfab26 | 9994 | |
1ce677a4 | 9995 | if (TYPE_CODE (raw_type) == TYPE_CODE_RANGE) |
14f9c5c9 AS |
9996 | base_type = TYPE_TARGET_TYPE (raw_type); |
9997 | else | |
9998 | base_type = raw_type; | |
9999 | ||
28c85d6c | 10000 | name = TYPE_NAME (raw_type); |
14f9c5c9 AS |
10001 | subtype_info = strstr (name, "___XD"); |
10002 | if (subtype_info == NULL) | |
690cc4eb | 10003 | { |
43bbcdc2 PH |
10004 | LONGEST L = ada_discrete_type_low_bound (raw_type); |
10005 | LONGEST U = ada_discrete_type_high_bound (raw_type); | |
5b4ee69b | 10006 | |
690cc4eb PH |
10007 | if (L < INT_MIN || U > INT_MAX) |
10008 | return raw_type; | |
10009 | else | |
28c85d6c | 10010 | return create_range_type (alloc_type_copy (raw_type), raw_type, |
43bbcdc2 PH |
10011 | ada_discrete_type_low_bound (raw_type), |
10012 | ada_discrete_type_high_bound (raw_type)); | |
690cc4eb | 10013 | } |
14f9c5c9 AS |
10014 | else |
10015 | { | |
10016 | static char *name_buf = NULL; | |
10017 | static size_t name_len = 0; | |
10018 | int prefix_len = subtype_info - name; | |
10019 | LONGEST L, U; | |
10020 | struct type *type; | |
10021 | char *bounds_str; | |
10022 | int n; | |
10023 | ||
10024 | GROW_VECT (name_buf, name_len, prefix_len + 5); | |
10025 | strncpy (name_buf, name, prefix_len); | |
10026 | name_buf[prefix_len] = '\0'; | |
10027 | ||
10028 | subtype_info += 5; | |
10029 | bounds_str = strchr (subtype_info, '_'); | |
10030 | n = 1; | |
10031 | ||
d2e4a39e | 10032 | if (*subtype_info == 'L') |
4c4b4cd2 PH |
10033 | { |
10034 | if (!ada_scan_number (bounds_str, n, &L, &n) | |
10035 | && !scan_discrim_bound (bounds_str, n, dval, &L, &n)) | |
10036 | return raw_type; | |
10037 | if (bounds_str[n] == '_') | |
10038 | n += 2; | |
10039 | else if (bounds_str[n] == '.') /* FIXME? SGI Workshop kludge. */ | |
10040 | n += 1; | |
10041 | subtype_info += 1; | |
10042 | } | |
d2e4a39e | 10043 | else |
4c4b4cd2 PH |
10044 | { |
10045 | int ok; | |
5b4ee69b | 10046 | |
4c4b4cd2 PH |
10047 | strcpy (name_buf + prefix_len, "___L"); |
10048 | L = get_int_var_value (name_buf, &ok); | |
10049 | if (!ok) | |
10050 | { | |
323e0a4a | 10051 | lim_warning (_("Unknown lower bound, using 1.")); |
4c4b4cd2 PH |
10052 | L = 1; |
10053 | } | |
10054 | } | |
14f9c5c9 | 10055 | |
d2e4a39e | 10056 | if (*subtype_info == 'U') |
4c4b4cd2 PH |
10057 | { |
10058 | if (!ada_scan_number (bounds_str, n, &U, &n) | |
10059 | && !scan_discrim_bound (bounds_str, n, dval, &U, &n)) | |
10060 | return raw_type; | |
10061 | } | |
d2e4a39e | 10062 | else |
4c4b4cd2 PH |
10063 | { |
10064 | int ok; | |
5b4ee69b | 10065 | |
4c4b4cd2 PH |
10066 | strcpy (name_buf + prefix_len, "___U"); |
10067 | U = get_int_var_value (name_buf, &ok); | |
10068 | if (!ok) | |
10069 | { | |
323e0a4a | 10070 | lim_warning (_("Unknown upper bound, using %ld."), (long) L); |
4c4b4cd2 PH |
10071 | U = L; |
10072 | } | |
10073 | } | |
14f9c5c9 | 10074 | |
28c85d6c | 10075 | type = create_range_type (alloc_type_copy (raw_type), base_type, L, U); |
d2e4a39e | 10076 | TYPE_NAME (type) = name; |
14f9c5c9 AS |
10077 | return type; |
10078 | } | |
10079 | } | |
10080 | ||
4c4b4cd2 PH |
10081 | /* True iff NAME is the name of a range type. */ |
10082 | ||
14f9c5c9 | 10083 | int |
d2e4a39e | 10084 | ada_is_range_type_name (const char *name) |
14f9c5c9 AS |
10085 | { |
10086 | return (name != NULL && strstr (name, "___XD")); | |
d2e4a39e | 10087 | } |
14f9c5c9 | 10088 | \f |
d2e4a39e | 10089 | |
4c4b4cd2 PH |
10090 | /* Modular types */ |
10091 | ||
10092 | /* True iff TYPE is an Ada modular type. */ | |
14f9c5c9 | 10093 | |
14f9c5c9 | 10094 | int |
d2e4a39e | 10095 | ada_is_modular_type (struct type *type) |
14f9c5c9 | 10096 | { |
4c4b4cd2 | 10097 | struct type *subranged_type = base_type (type); |
14f9c5c9 AS |
10098 | |
10099 | return (subranged_type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE | |
690cc4eb | 10100 | && TYPE_CODE (subranged_type) == TYPE_CODE_INT |
4c4b4cd2 | 10101 | && TYPE_UNSIGNED (subranged_type)); |
14f9c5c9 AS |
10102 | } |
10103 | ||
0056e4d5 JB |
10104 | /* Try to determine the lower and upper bounds of the given modular type |
10105 | using the type name only. Return non-zero and set L and U as the lower | |
10106 | and upper bounds (respectively) if successful. */ | |
10107 | ||
10108 | int | |
10109 | ada_modulus_from_name (struct type *type, ULONGEST *modulus) | |
10110 | { | |
10111 | char *name = ada_type_name (type); | |
10112 | char *suffix; | |
10113 | int k; | |
10114 | LONGEST U; | |
10115 | ||
10116 | if (name == NULL) | |
10117 | return 0; | |
10118 | ||
10119 | /* Discrete type bounds are encoded using an __XD suffix. In our case, | |
10120 | we are looking for static bounds, which means an __XDLU suffix. | |
10121 | Moreover, we know that the lower bound of modular types is always | |
10122 | zero, so the actual suffix should start with "__XDLU_0__", and | |
10123 | then be followed by the upper bound value. */ | |
10124 | suffix = strstr (name, "__XDLU_0__"); | |
10125 | if (suffix == NULL) | |
10126 | return 0; | |
10127 | k = 10; | |
10128 | if (!ada_scan_number (suffix, k, &U, NULL)) | |
10129 | return 0; | |
10130 | ||
10131 | *modulus = (ULONGEST) U + 1; | |
10132 | return 1; | |
10133 | } | |
10134 | ||
4c4b4cd2 PH |
10135 | /* Assuming ada_is_modular_type (TYPE), the modulus of TYPE. */ |
10136 | ||
61ee279c | 10137 | ULONGEST |
0056e4d5 | 10138 | ada_modulus (struct type *type) |
14f9c5c9 | 10139 | { |
43bbcdc2 | 10140 | return (ULONGEST) TYPE_HIGH_BOUND (type) + 1; |
14f9c5c9 | 10141 | } |
d2e4a39e | 10142 | \f |
f7f9143b JB |
10143 | |
10144 | /* Ada exception catchpoint support: | |
10145 | --------------------------------- | |
10146 | ||
10147 | We support 3 kinds of exception catchpoints: | |
10148 | . catchpoints on Ada exceptions | |
10149 | . catchpoints on unhandled Ada exceptions | |
10150 | . catchpoints on failed assertions | |
10151 | ||
10152 | Exceptions raised during failed assertions, or unhandled exceptions | |
10153 | could perfectly be caught with the general catchpoint on Ada exceptions. | |
10154 | However, we can easily differentiate these two special cases, and having | |
10155 | the option to distinguish these two cases from the rest can be useful | |
10156 | to zero-in on certain situations. | |
10157 | ||
10158 | Exception catchpoints are a specialized form of breakpoint, | |
10159 | since they rely on inserting breakpoints inside known routines | |
10160 | of the GNAT runtime. The implementation therefore uses a standard | |
10161 | breakpoint structure of the BP_BREAKPOINT type, but with its own set | |
10162 | of breakpoint_ops. | |
10163 | ||
0259addd JB |
10164 | Support in the runtime for exception catchpoints have been changed |
10165 | a few times already, and these changes affect the implementation | |
10166 | of these catchpoints. In order to be able to support several | |
10167 | variants of the runtime, we use a sniffer that will determine | |
10168 | the runtime variant used by the program being debugged. | |
10169 | ||
f7f9143b JB |
10170 | At this time, we do not support the use of conditions on Ada exception |
10171 | catchpoints. The COND and COND_STRING fields are therefore set | |
10172 | to NULL (most of the time, see below). | |
10173 | ||
10174 | Conditions where EXP_STRING, COND, and COND_STRING are used: | |
10175 | ||
10176 | When a user specifies the name of a specific exception in the case | |
10177 | of catchpoints on Ada exceptions, we store the name of that exception | |
10178 | in the EXP_STRING. We then translate this request into an actual | |
10179 | condition stored in COND_STRING, and then parse it into an expression | |
10180 | stored in COND. */ | |
10181 | ||
10182 | /* The different types of catchpoints that we introduced for catching | |
10183 | Ada exceptions. */ | |
10184 | ||
10185 | enum exception_catchpoint_kind | |
10186 | { | |
10187 | ex_catch_exception, | |
10188 | ex_catch_exception_unhandled, | |
10189 | ex_catch_assert | |
10190 | }; | |
10191 | ||
3d0b0fa3 JB |
10192 | /* Ada's standard exceptions. */ |
10193 | ||
10194 | static char *standard_exc[] = { | |
10195 | "constraint_error", | |
10196 | "program_error", | |
10197 | "storage_error", | |
10198 | "tasking_error" | |
10199 | }; | |
10200 | ||
0259addd JB |
10201 | typedef CORE_ADDR (ada_unhandled_exception_name_addr_ftype) (void); |
10202 | ||
10203 | /* A structure that describes how to support exception catchpoints | |
10204 | for a given executable. */ | |
10205 | ||
10206 | struct exception_support_info | |
10207 | { | |
10208 | /* The name of the symbol to break on in order to insert | |
10209 | a catchpoint on exceptions. */ | |
10210 | const char *catch_exception_sym; | |
10211 | ||
10212 | /* The name of the symbol to break on in order to insert | |
10213 | a catchpoint on unhandled exceptions. */ | |
10214 | const char *catch_exception_unhandled_sym; | |
10215 | ||
10216 | /* The name of the symbol to break on in order to insert | |
10217 | a catchpoint on failed assertions. */ | |
10218 | const char *catch_assert_sym; | |
10219 | ||
10220 | /* Assuming that the inferior just triggered an unhandled exception | |
10221 | catchpoint, this function is responsible for returning the address | |
10222 | in inferior memory where the name of that exception is stored. | |
10223 | Return zero if the address could not be computed. */ | |
10224 | ada_unhandled_exception_name_addr_ftype *unhandled_exception_name_addr; | |
10225 | }; | |
10226 | ||
10227 | static CORE_ADDR ada_unhandled_exception_name_addr (void); | |
10228 | static CORE_ADDR ada_unhandled_exception_name_addr_from_raise (void); | |
10229 | ||
10230 | /* The following exception support info structure describes how to | |
10231 | implement exception catchpoints with the latest version of the | |
10232 | Ada runtime (as of 2007-03-06). */ | |
10233 | ||
10234 | static const struct exception_support_info default_exception_support_info = | |
10235 | { | |
10236 | "__gnat_debug_raise_exception", /* catch_exception_sym */ | |
10237 | "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */ | |
10238 | "__gnat_debug_raise_assert_failure", /* catch_assert_sym */ | |
10239 | ada_unhandled_exception_name_addr | |
10240 | }; | |
10241 | ||
10242 | /* The following exception support info structure describes how to | |
10243 | implement exception catchpoints with a slightly older version | |
10244 | of the Ada runtime. */ | |
10245 | ||
10246 | static const struct exception_support_info exception_support_info_fallback = | |
10247 | { | |
10248 | "__gnat_raise_nodefer_with_msg", /* catch_exception_sym */ | |
10249 | "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */ | |
10250 | "system__assertions__raise_assert_failure", /* catch_assert_sym */ | |
10251 | ada_unhandled_exception_name_addr_from_raise | |
10252 | }; | |
10253 | ||
10254 | /* For each executable, we sniff which exception info structure to use | |
10255 | and cache it in the following global variable. */ | |
10256 | ||
10257 | static const struct exception_support_info *exception_info = NULL; | |
10258 | ||
10259 | /* Inspect the Ada runtime and determine which exception info structure | |
10260 | should be used to provide support for exception catchpoints. | |
10261 | ||
10262 | This function will always set exception_info, or raise an error. */ | |
10263 | ||
10264 | static void | |
10265 | ada_exception_support_info_sniffer (void) | |
10266 | { | |
10267 | struct symbol *sym; | |
10268 | ||
10269 | /* If the exception info is already known, then no need to recompute it. */ | |
10270 | if (exception_info != NULL) | |
10271 | return; | |
10272 | ||
10273 | /* Check the latest (default) exception support info. */ | |
10274 | sym = standard_lookup (default_exception_support_info.catch_exception_sym, | |
10275 | NULL, VAR_DOMAIN); | |
10276 | if (sym != NULL) | |
10277 | { | |
10278 | exception_info = &default_exception_support_info; | |
10279 | return; | |
10280 | } | |
10281 | ||
10282 | /* Try our fallback exception suport info. */ | |
10283 | sym = standard_lookup (exception_support_info_fallback.catch_exception_sym, | |
10284 | NULL, VAR_DOMAIN); | |
10285 | if (sym != NULL) | |
10286 | { | |
10287 | exception_info = &exception_support_info_fallback; | |
10288 | return; | |
10289 | } | |
10290 | ||
10291 | /* Sometimes, it is normal for us to not be able to find the routine | |
10292 | we are looking for. This happens when the program is linked with | |
10293 | the shared version of the GNAT runtime, and the program has not been | |
10294 | started yet. Inform the user of these two possible causes if | |
10295 | applicable. */ | |
10296 | ||
ccefe4c4 | 10297 | if (ada_update_initial_language (language_unknown) != language_ada) |
0259addd JB |
10298 | error (_("Unable to insert catchpoint. Is this an Ada main program?")); |
10299 | ||
10300 | /* If the symbol does not exist, then check that the program is | |
10301 | already started, to make sure that shared libraries have been | |
10302 | loaded. If it is not started, this may mean that the symbol is | |
10303 | in a shared library. */ | |
10304 | ||
10305 | if (ptid_get_pid (inferior_ptid) == 0) | |
10306 | error (_("Unable to insert catchpoint. Try to start the program first.")); | |
10307 | ||
10308 | /* At this point, we know that we are debugging an Ada program and | |
10309 | that the inferior has been started, but we still are not able to | |
10310 | find the run-time symbols. That can mean that we are in | |
10311 | configurable run time mode, or that a-except as been optimized | |
10312 | out by the linker... In any case, at this point it is not worth | |
10313 | supporting this feature. */ | |
10314 | ||
10315 | error (_("Cannot insert catchpoints in this configuration.")); | |
10316 | } | |
10317 | ||
10318 | /* An observer of "executable_changed" events. | |
10319 | Its role is to clear certain cached values that need to be recomputed | |
10320 | each time a new executable is loaded by GDB. */ | |
10321 | ||
10322 | static void | |
781b42b0 | 10323 | ada_executable_changed_observer (void) |
0259addd JB |
10324 | { |
10325 | /* If the executable changed, then it is possible that the Ada runtime | |
10326 | is different. So we need to invalidate the exception support info | |
10327 | cache. */ | |
10328 | exception_info = NULL; | |
10329 | } | |
10330 | ||
f7f9143b JB |
10331 | /* True iff FRAME is very likely to be that of a function that is |
10332 | part of the runtime system. This is all very heuristic, but is | |
10333 | intended to be used as advice as to what frames are uninteresting | |
10334 | to most users. */ | |
10335 | ||
10336 | static int | |
10337 | is_known_support_routine (struct frame_info *frame) | |
10338 | { | |
4ed6b5be | 10339 | struct symtab_and_line sal; |
f7f9143b | 10340 | char *func_name; |
692465f1 | 10341 | enum language func_lang; |
f7f9143b | 10342 | int i; |
f7f9143b | 10343 | |
4ed6b5be JB |
10344 | /* If this code does not have any debugging information (no symtab), |
10345 | This cannot be any user code. */ | |
f7f9143b | 10346 | |
4ed6b5be | 10347 | find_frame_sal (frame, &sal); |
f7f9143b JB |
10348 | if (sal.symtab == NULL) |
10349 | return 1; | |
10350 | ||
4ed6b5be JB |
10351 | /* If there is a symtab, but the associated source file cannot be |
10352 | located, then assume this is not user code: Selecting a frame | |
10353 | for which we cannot display the code would not be very helpful | |
10354 | for the user. This should also take care of case such as VxWorks | |
10355 | where the kernel has some debugging info provided for a few units. */ | |
f7f9143b | 10356 | |
9bbc9174 | 10357 | if (symtab_to_fullname (sal.symtab) == NULL) |
f7f9143b JB |
10358 | return 1; |
10359 | ||
4ed6b5be JB |
10360 | /* Check the unit filename againt the Ada runtime file naming. |
10361 | We also check the name of the objfile against the name of some | |
10362 | known system libraries that sometimes come with debugging info | |
10363 | too. */ | |
10364 | ||
f7f9143b JB |
10365 | for (i = 0; known_runtime_file_name_patterns[i] != NULL; i += 1) |
10366 | { | |
10367 | re_comp (known_runtime_file_name_patterns[i]); | |
10368 | if (re_exec (sal.symtab->filename)) | |
10369 | return 1; | |
4ed6b5be JB |
10370 | if (sal.symtab->objfile != NULL |
10371 | && re_exec (sal.symtab->objfile->name)) | |
10372 | return 1; | |
f7f9143b JB |
10373 | } |
10374 | ||
4ed6b5be | 10375 | /* Check whether the function is a GNAT-generated entity. */ |
f7f9143b | 10376 | |
e9e07ba6 | 10377 | find_frame_funname (frame, &func_name, &func_lang, NULL); |
f7f9143b JB |
10378 | if (func_name == NULL) |
10379 | return 1; | |
10380 | ||
10381 | for (i = 0; known_auxiliary_function_name_patterns[i] != NULL; i += 1) | |
10382 | { | |
10383 | re_comp (known_auxiliary_function_name_patterns[i]); | |
10384 | if (re_exec (func_name)) | |
10385 | return 1; | |
10386 | } | |
10387 | ||
10388 | return 0; | |
10389 | } | |
10390 | ||
10391 | /* Find the first frame that contains debugging information and that is not | |
10392 | part of the Ada run-time, starting from FI and moving upward. */ | |
10393 | ||
0ef643c8 | 10394 | void |
f7f9143b JB |
10395 | ada_find_printable_frame (struct frame_info *fi) |
10396 | { | |
10397 | for (; fi != NULL; fi = get_prev_frame (fi)) | |
10398 | { | |
10399 | if (!is_known_support_routine (fi)) | |
10400 | { | |
10401 | select_frame (fi); | |
10402 | break; | |
10403 | } | |
10404 | } | |
10405 | ||
10406 | } | |
10407 | ||
10408 | /* Assuming that the inferior just triggered an unhandled exception | |
10409 | catchpoint, return the address in inferior memory where the name | |
10410 | of the exception is stored. | |
10411 | ||
10412 | Return zero if the address could not be computed. */ | |
10413 | ||
10414 | static CORE_ADDR | |
10415 | ada_unhandled_exception_name_addr (void) | |
0259addd JB |
10416 | { |
10417 | return parse_and_eval_address ("e.full_name"); | |
10418 | } | |
10419 | ||
10420 | /* Same as ada_unhandled_exception_name_addr, except that this function | |
10421 | should be used when the inferior uses an older version of the runtime, | |
10422 | where the exception name needs to be extracted from a specific frame | |
10423 | several frames up in the callstack. */ | |
10424 | ||
10425 | static CORE_ADDR | |
10426 | ada_unhandled_exception_name_addr_from_raise (void) | |
f7f9143b JB |
10427 | { |
10428 | int frame_level; | |
10429 | struct frame_info *fi; | |
10430 | ||
10431 | /* To determine the name of this exception, we need to select | |
10432 | the frame corresponding to RAISE_SYM_NAME. This frame is | |
10433 | at least 3 levels up, so we simply skip the first 3 frames | |
10434 | without checking the name of their associated function. */ | |
10435 | fi = get_current_frame (); | |
10436 | for (frame_level = 0; frame_level < 3; frame_level += 1) | |
10437 | if (fi != NULL) | |
10438 | fi = get_prev_frame (fi); | |
10439 | ||
10440 | while (fi != NULL) | |
10441 | { | |
692465f1 JB |
10442 | char *func_name; |
10443 | enum language func_lang; | |
10444 | ||
e9e07ba6 | 10445 | find_frame_funname (fi, &func_name, &func_lang, NULL); |
f7f9143b | 10446 | if (func_name != NULL |
0259addd | 10447 | && strcmp (func_name, exception_info->catch_exception_sym) == 0) |
f7f9143b JB |
10448 | break; /* We found the frame we were looking for... */ |
10449 | fi = get_prev_frame (fi); | |
10450 | } | |
10451 | ||
10452 | if (fi == NULL) | |
10453 | return 0; | |
10454 | ||
10455 | select_frame (fi); | |
10456 | return parse_and_eval_address ("id.full_name"); | |
10457 | } | |
10458 | ||
10459 | /* Assuming the inferior just triggered an Ada exception catchpoint | |
10460 | (of any type), return the address in inferior memory where the name | |
10461 | of the exception is stored, if applicable. | |
10462 | ||
10463 | Return zero if the address could not be computed, or if not relevant. */ | |
10464 | ||
10465 | static CORE_ADDR | |
10466 | ada_exception_name_addr_1 (enum exception_catchpoint_kind ex, | |
10467 | struct breakpoint *b) | |
10468 | { | |
10469 | switch (ex) | |
10470 | { | |
10471 | case ex_catch_exception: | |
10472 | return (parse_and_eval_address ("e.full_name")); | |
10473 | break; | |
10474 | ||
10475 | case ex_catch_exception_unhandled: | |
0259addd | 10476 | return exception_info->unhandled_exception_name_addr (); |
f7f9143b JB |
10477 | break; |
10478 | ||
10479 | case ex_catch_assert: | |
10480 | return 0; /* Exception name is not relevant in this case. */ | |
10481 | break; | |
10482 | ||
10483 | default: | |
10484 | internal_error (__FILE__, __LINE__, _("unexpected catchpoint type")); | |
10485 | break; | |
10486 | } | |
10487 | ||
10488 | return 0; /* Should never be reached. */ | |
10489 | } | |
10490 | ||
10491 | /* Same as ada_exception_name_addr_1, except that it intercepts and contains | |
10492 | any error that ada_exception_name_addr_1 might cause to be thrown. | |
10493 | When an error is intercepted, a warning with the error message is printed, | |
10494 | and zero is returned. */ | |
10495 | ||
10496 | static CORE_ADDR | |
10497 | ada_exception_name_addr (enum exception_catchpoint_kind ex, | |
10498 | struct breakpoint *b) | |
10499 | { | |
10500 | struct gdb_exception e; | |
10501 | CORE_ADDR result = 0; | |
10502 | ||
10503 | TRY_CATCH (e, RETURN_MASK_ERROR) | |
10504 | { | |
10505 | result = ada_exception_name_addr_1 (ex, b); | |
10506 | } | |
10507 | ||
10508 | if (e.reason < 0) | |
10509 | { | |
10510 | warning (_("failed to get exception name: %s"), e.message); | |
10511 | return 0; | |
10512 | } | |
10513 | ||
10514 | return result; | |
10515 | } | |
10516 | ||
10517 | /* Implement the PRINT_IT method in the breakpoint_ops structure | |
10518 | for all exception catchpoint kinds. */ | |
10519 | ||
10520 | static enum print_stop_action | |
10521 | print_it_exception (enum exception_catchpoint_kind ex, struct breakpoint *b) | |
10522 | { | |
10523 | const CORE_ADDR addr = ada_exception_name_addr (ex, b); | |
10524 | char exception_name[256]; | |
10525 | ||
10526 | if (addr != 0) | |
10527 | { | |
10528 | read_memory (addr, exception_name, sizeof (exception_name) - 1); | |
10529 | exception_name [sizeof (exception_name) - 1] = '\0'; | |
10530 | } | |
10531 | ||
10532 | ada_find_printable_frame (get_current_frame ()); | |
10533 | ||
10534 | annotate_catchpoint (b->number); | |
10535 | switch (ex) | |
10536 | { | |
10537 | case ex_catch_exception: | |
10538 | if (addr != 0) | |
10539 | printf_filtered (_("\nCatchpoint %d, %s at "), | |
10540 | b->number, exception_name); | |
10541 | else | |
10542 | printf_filtered (_("\nCatchpoint %d, exception at "), b->number); | |
10543 | break; | |
10544 | case ex_catch_exception_unhandled: | |
10545 | if (addr != 0) | |
10546 | printf_filtered (_("\nCatchpoint %d, unhandled %s at "), | |
10547 | b->number, exception_name); | |
10548 | else | |
10549 | printf_filtered (_("\nCatchpoint %d, unhandled exception at "), | |
10550 | b->number); | |
10551 | break; | |
10552 | case ex_catch_assert: | |
10553 | printf_filtered (_("\nCatchpoint %d, failed assertion at "), | |
10554 | b->number); | |
10555 | break; | |
10556 | } | |
10557 | ||
10558 | return PRINT_SRC_AND_LOC; | |
10559 | } | |
10560 | ||
10561 | /* Implement the PRINT_ONE method in the breakpoint_ops structure | |
10562 | for all exception catchpoint kinds. */ | |
10563 | ||
10564 | static void | |
10565 | print_one_exception (enum exception_catchpoint_kind ex, | |
a6d9a66e | 10566 | struct breakpoint *b, struct bp_location **last_loc) |
f7f9143b | 10567 | { |
79a45b7d TT |
10568 | struct value_print_options opts; |
10569 | ||
10570 | get_user_print_options (&opts); | |
10571 | if (opts.addressprint) | |
f7f9143b JB |
10572 | { |
10573 | annotate_field (4); | |
5af949e3 | 10574 | ui_out_field_core_addr (uiout, "addr", b->loc->gdbarch, b->loc->address); |
f7f9143b JB |
10575 | } |
10576 | ||
10577 | annotate_field (5); | |
a6d9a66e | 10578 | *last_loc = b->loc; |
f7f9143b JB |
10579 | switch (ex) |
10580 | { | |
10581 | case ex_catch_exception: | |
10582 | if (b->exp_string != NULL) | |
10583 | { | |
10584 | char *msg = xstrprintf (_("`%s' Ada exception"), b->exp_string); | |
10585 | ||
10586 | ui_out_field_string (uiout, "what", msg); | |
10587 | xfree (msg); | |
10588 | } | |
10589 | else | |
10590 | ui_out_field_string (uiout, "what", "all Ada exceptions"); | |
10591 | ||
10592 | break; | |
10593 | ||
10594 | case ex_catch_exception_unhandled: | |
10595 | ui_out_field_string (uiout, "what", "unhandled Ada exceptions"); | |
10596 | break; | |
10597 | ||
10598 | case ex_catch_assert: | |
10599 | ui_out_field_string (uiout, "what", "failed Ada assertions"); | |
10600 | break; | |
10601 | ||
10602 | default: | |
10603 | internal_error (__FILE__, __LINE__, _("unexpected catchpoint type")); | |
10604 | break; | |
10605 | } | |
10606 | } | |
10607 | ||
10608 | /* Implement the PRINT_MENTION method in the breakpoint_ops structure | |
10609 | for all exception catchpoint kinds. */ | |
10610 | ||
10611 | static void | |
10612 | print_mention_exception (enum exception_catchpoint_kind ex, | |
10613 | struct breakpoint *b) | |
10614 | { | |
10615 | switch (ex) | |
10616 | { | |
10617 | case ex_catch_exception: | |
10618 | if (b->exp_string != NULL) | |
10619 | printf_filtered (_("Catchpoint %d: `%s' Ada exception"), | |
10620 | b->number, b->exp_string); | |
10621 | else | |
10622 | printf_filtered (_("Catchpoint %d: all Ada exceptions"), b->number); | |
10623 | ||
10624 | break; | |
10625 | ||
10626 | case ex_catch_exception_unhandled: | |
10627 | printf_filtered (_("Catchpoint %d: unhandled Ada exceptions"), | |
10628 | b->number); | |
10629 | break; | |
10630 | ||
10631 | case ex_catch_assert: | |
10632 | printf_filtered (_("Catchpoint %d: failed Ada assertions"), b->number); | |
10633 | break; | |
10634 | ||
10635 | default: | |
10636 | internal_error (__FILE__, __LINE__, _("unexpected catchpoint type")); | |
10637 | break; | |
10638 | } | |
10639 | } | |
10640 | ||
6149aea9 PA |
10641 | /* Implement the PRINT_RECREATE method in the breakpoint_ops structure |
10642 | for all exception catchpoint kinds. */ | |
10643 | ||
10644 | static void | |
10645 | print_recreate_exception (enum exception_catchpoint_kind ex, | |
10646 | struct breakpoint *b, struct ui_file *fp) | |
10647 | { | |
10648 | switch (ex) | |
10649 | { | |
10650 | case ex_catch_exception: | |
10651 | fprintf_filtered (fp, "catch exception"); | |
10652 | if (b->exp_string != NULL) | |
10653 | fprintf_filtered (fp, " %s", b->exp_string); | |
10654 | break; | |
10655 | ||
10656 | case ex_catch_exception_unhandled: | |
78076abc | 10657 | fprintf_filtered (fp, "catch exception unhandled"); |
6149aea9 PA |
10658 | break; |
10659 | ||
10660 | case ex_catch_assert: | |
10661 | fprintf_filtered (fp, "catch assert"); | |
10662 | break; | |
10663 | ||
10664 | default: | |
10665 | internal_error (__FILE__, __LINE__, _("unexpected catchpoint type")); | |
10666 | } | |
10667 | } | |
10668 | ||
f7f9143b JB |
10669 | /* Virtual table for "catch exception" breakpoints. */ |
10670 | ||
10671 | static enum print_stop_action | |
10672 | print_it_catch_exception (struct breakpoint *b) | |
10673 | { | |
10674 | return print_it_exception (ex_catch_exception, b); | |
10675 | } | |
10676 | ||
10677 | static void | |
a6d9a66e | 10678 | print_one_catch_exception (struct breakpoint *b, struct bp_location **last_loc) |
f7f9143b | 10679 | { |
a6d9a66e | 10680 | print_one_exception (ex_catch_exception, b, last_loc); |
f7f9143b JB |
10681 | } |
10682 | ||
10683 | static void | |
10684 | print_mention_catch_exception (struct breakpoint *b) | |
10685 | { | |
10686 | print_mention_exception (ex_catch_exception, b); | |
10687 | } | |
10688 | ||
6149aea9 PA |
10689 | static void |
10690 | print_recreate_catch_exception (struct breakpoint *b, struct ui_file *fp) | |
10691 | { | |
10692 | print_recreate_exception (ex_catch_exception, b, fp); | |
10693 | } | |
10694 | ||
f7f9143b JB |
10695 | static struct breakpoint_ops catch_exception_breakpoint_ops = |
10696 | { | |
ce78b96d JB |
10697 | NULL, /* insert */ |
10698 | NULL, /* remove */ | |
10699 | NULL, /* breakpoint_hit */ | |
f7f9143b JB |
10700 | print_it_catch_exception, |
10701 | print_one_catch_exception, | |
6149aea9 PA |
10702 | print_mention_catch_exception, |
10703 | print_recreate_catch_exception | |
f7f9143b JB |
10704 | }; |
10705 | ||
10706 | /* Virtual table for "catch exception unhandled" breakpoints. */ | |
10707 | ||
10708 | static enum print_stop_action | |
10709 | print_it_catch_exception_unhandled (struct breakpoint *b) | |
10710 | { | |
10711 | return print_it_exception (ex_catch_exception_unhandled, b); | |
10712 | } | |
10713 | ||
10714 | static void | |
a6d9a66e UW |
10715 | print_one_catch_exception_unhandled (struct breakpoint *b, |
10716 | struct bp_location **last_loc) | |
f7f9143b | 10717 | { |
a6d9a66e | 10718 | print_one_exception (ex_catch_exception_unhandled, b, last_loc); |
f7f9143b JB |
10719 | } |
10720 | ||
10721 | static void | |
10722 | print_mention_catch_exception_unhandled (struct breakpoint *b) | |
10723 | { | |
10724 | print_mention_exception (ex_catch_exception_unhandled, b); | |
10725 | } | |
10726 | ||
6149aea9 PA |
10727 | static void |
10728 | print_recreate_catch_exception_unhandled (struct breakpoint *b, | |
10729 | struct ui_file *fp) | |
10730 | { | |
10731 | print_recreate_exception (ex_catch_exception_unhandled, b, fp); | |
10732 | } | |
10733 | ||
f7f9143b | 10734 | static struct breakpoint_ops catch_exception_unhandled_breakpoint_ops = { |
ce78b96d JB |
10735 | NULL, /* insert */ |
10736 | NULL, /* remove */ | |
10737 | NULL, /* breakpoint_hit */ | |
f7f9143b JB |
10738 | print_it_catch_exception_unhandled, |
10739 | print_one_catch_exception_unhandled, | |
6149aea9 PA |
10740 | print_mention_catch_exception_unhandled, |
10741 | print_recreate_catch_exception_unhandled | |
f7f9143b JB |
10742 | }; |
10743 | ||
10744 | /* Virtual table for "catch assert" breakpoints. */ | |
10745 | ||
10746 | static enum print_stop_action | |
10747 | print_it_catch_assert (struct breakpoint *b) | |
10748 | { | |
10749 | return print_it_exception (ex_catch_assert, b); | |
10750 | } | |
10751 | ||
10752 | static void | |
a6d9a66e | 10753 | print_one_catch_assert (struct breakpoint *b, struct bp_location **last_loc) |
f7f9143b | 10754 | { |
a6d9a66e | 10755 | print_one_exception (ex_catch_assert, b, last_loc); |
f7f9143b JB |
10756 | } |
10757 | ||
10758 | static void | |
10759 | print_mention_catch_assert (struct breakpoint *b) | |
10760 | { | |
10761 | print_mention_exception (ex_catch_assert, b); | |
10762 | } | |
10763 | ||
6149aea9 PA |
10764 | static void |
10765 | print_recreate_catch_assert (struct breakpoint *b, struct ui_file *fp) | |
10766 | { | |
10767 | print_recreate_exception (ex_catch_assert, b, fp); | |
10768 | } | |
10769 | ||
f7f9143b | 10770 | static struct breakpoint_ops catch_assert_breakpoint_ops = { |
ce78b96d JB |
10771 | NULL, /* insert */ |
10772 | NULL, /* remove */ | |
10773 | NULL, /* breakpoint_hit */ | |
f7f9143b JB |
10774 | print_it_catch_assert, |
10775 | print_one_catch_assert, | |
6149aea9 PA |
10776 | print_mention_catch_assert, |
10777 | print_recreate_catch_assert | |
f7f9143b JB |
10778 | }; |
10779 | ||
10780 | /* Return non-zero if B is an Ada exception catchpoint. */ | |
10781 | ||
10782 | int | |
10783 | ada_exception_catchpoint_p (struct breakpoint *b) | |
10784 | { | |
10785 | return (b->ops == &catch_exception_breakpoint_ops | |
10786 | || b->ops == &catch_exception_unhandled_breakpoint_ops | |
10787 | || b->ops == &catch_assert_breakpoint_ops); | |
10788 | } | |
10789 | ||
f7f9143b JB |
10790 | /* Return a newly allocated copy of the first space-separated token |
10791 | in ARGSP, and then adjust ARGSP to point immediately after that | |
10792 | token. | |
10793 | ||
10794 | Return NULL if ARGPS does not contain any more tokens. */ | |
10795 | ||
10796 | static char * | |
10797 | ada_get_next_arg (char **argsp) | |
10798 | { | |
10799 | char *args = *argsp; | |
10800 | char *end; | |
10801 | char *result; | |
10802 | ||
10803 | /* Skip any leading white space. */ | |
10804 | ||
10805 | while (isspace (*args)) | |
10806 | args++; | |
10807 | ||
10808 | if (args[0] == '\0') | |
10809 | return NULL; /* No more arguments. */ | |
10810 | ||
10811 | /* Find the end of the current argument. */ | |
10812 | ||
10813 | end = args; | |
10814 | while (*end != '\0' && !isspace (*end)) | |
10815 | end++; | |
10816 | ||
10817 | /* Adjust ARGSP to point to the start of the next argument. */ | |
10818 | ||
10819 | *argsp = end; | |
10820 | ||
10821 | /* Make a copy of the current argument and return it. */ | |
10822 | ||
10823 | result = xmalloc (end - args + 1); | |
10824 | strncpy (result, args, end - args); | |
10825 | result[end - args] = '\0'; | |
10826 | ||
10827 | return result; | |
10828 | } | |
10829 | ||
10830 | /* Split the arguments specified in a "catch exception" command. | |
10831 | Set EX to the appropriate catchpoint type. | |
10832 | Set EXP_STRING to the name of the specific exception if | |
10833 | specified by the user. */ | |
10834 | ||
10835 | static void | |
10836 | catch_ada_exception_command_split (char *args, | |
10837 | enum exception_catchpoint_kind *ex, | |
10838 | char **exp_string) | |
10839 | { | |
10840 | struct cleanup *old_chain = make_cleanup (null_cleanup, NULL); | |
10841 | char *exception_name; | |
10842 | ||
10843 | exception_name = ada_get_next_arg (&args); | |
10844 | make_cleanup (xfree, exception_name); | |
10845 | ||
10846 | /* Check that we do not have any more arguments. Anything else | |
10847 | is unexpected. */ | |
10848 | ||
10849 | while (isspace (*args)) | |
10850 | args++; | |
10851 | ||
10852 | if (args[0] != '\0') | |
10853 | error (_("Junk at end of expression")); | |
10854 | ||
10855 | discard_cleanups (old_chain); | |
10856 | ||
10857 | if (exception_name == NULL) | |
10858 | { | |
10859 | /* Catch all exceptions. */ | |
10860 | *ex = ex_catch_exception; | |
10861 | *exp_string = NULL; | |
10862 | } | |
10863 | else if (strcmp (exception_name, "unhandled") == 0) | |
10864 | { | |
10865 | /* Catch unhandled exceptions. */ | |
10866 | *ex = ex_catch_exception_unhandled; | |
10867 | *exp_string = NULL; | |
10868 | } | |
10869 | else | |
10870 | { | |
10871 | /* Catch a specific exception. */ | |
10872 | *ex = ex_catch_exception; | |
10873 | *exp_string = exception_name; | |
10874 | } | |
10875 | } | |
10876 | ||
10877 | /* Return the name of the symbol on which we should break in order to | |
10878 | implement a catchpoint of the EX kind. */ | |
10879 | ||
10880 | static const char * | |
10881 | ada_exception_sym_name (enum exception_catchpoint_kind ex) | |
10882 | { | |
0259addd JB |
10883 | gdb_assert (exception_info != NULL); |
10884 | ||
f7f9143b JB |
10885 | switch (ex) |
10886 | { | |
10887 | case ex_catch_exception: | |
0259addd | 10888 | return (exception_info->catch_exception_sym); |
f7f9143b JB |
10889 | break; |
10890 | case ex_catch_exception_unhandled: | |
0259addd | 10891 | return (exception_info->catch_exception_unhandled_sym); |
f7f9143b JB |
10892 | break; |
10893 | case ex_catch_assert: | |
0259addd | 10894 | return (exception_info->catch_assert_sym); |
f7f9143b JB |
10895 | break; |
10896 | default: | |
10897 | internal_error (__FILE__, __LINE__, | |
10898 | _("unexpected catchpoint kind (%d)"), ex); | |
10899 | } | |
10900 | } | |
10901 | ||
10902 | /* Return the breakpoint ops "virtual table" used for catchpoints | |
10903 | of the EX kind. */ | |
10904 | ||
10905 | static struct breakpoint_ops * | |
4b9eee8c | 10906 | ada_exception_breakpoint_ops (enum exception_catchpoint_kind ex) |
f7f9143b JB |
10907 | { |
10908 | switch (ex) | |
10909 | { | |
10910 | case ex_catch_exception: | |
10911 | return (&catch_exception_breakpoint_ops); | |
10912 | break; | |
10913 | case ex_catch_exception_unhandled: | |
10914 | return (&catch_exception_unhandled_breakpoint_ops); | |
10915 | break; | |
10916 | case ex_catch_assert: | |
10917 | return (&catch_assert_breakpoint_ops); | |
10918 | break; | |
10919 | default: | |
10920 | internal_error (__FILE__, __LINE__, | |
10921 | _("unexpected catchpoint kind (%d)"), ex); | |
10922 | } | |
10923 | } | |
10924 | ||
10925 | /* Return the condition that will be used to match the current exception | |
10926 | being raised with the exception that the user wants to catch. This | |
10927 | assumes that this condition is used when the inferior just triggered | |
10928 | an exception catchpoint. | |
10929 | ||
10930 | The string returned is a newly allocated string that needs to be | |
10931 | deallocated later. */ | |
10932 | ||
10933 | static char * | |
10934 | ada_exception_catchpoint_cond_string (const char *exp_string) | |
10935 | { | |
3d0b0fa3 JB |
10936 | int i; |
10937 | ||
10938 | /* The standard exceptions are a special case. They are defined in | |
10939 | runtime units that have been compiled without debugging info; if | |
10940 | EXP_STRING is the not-fully-qualified name of a standard | |
10941 | exception (e.g. "constraint_error") then, during the evaluation | |
10942 | of the condition expression, the symbol lookup on this name would | |
10943 | *not* return this standard exception. The catchpoint condition | |
10944 | may then be set only on user-defined exceptions which have the | |
10945 | same not-fully-qualified name (e.g. my_package.constraint_error). | |
10946 | ||
10947 | To avoid this unexcepted behavior, these standard exceptions are | |
10948 | systematically prefixed by "standard". This means that "catch | |
10949 | exception constraint_error" is rewritten into "catch exception | |
10950 | standard.constraint_error". | |
10951 | ||
10952 | If an exception named contraint_error is defined in another package of | |
10953 | the inferior program, then the only way to specify this exception as a | |
10954 | breakpoint condition is to use its fully-qualified named: | |
10955 | e.g. my_package.constraint_error. */ | |
10956 | ||
10957 | for (i = 0; i < sizeof (standard_exc) / sizeof (char *); i++) | |
10958 | { | |
10959 | if (strcmp (standard_exc [i], exp_string) == 0) | |
10960 | { | |
10961 | return xstrprintf ("long_integer (e) = long_integer (&standard.%s)", | |
10962 | exp_string); | |
10963 | } | |
10964 | } | |
f7f9143b JB |
10965 | return xstrprintf ("long_integer (e) = long_integer (&%s)", exp_string); |
10966 | } | |
10967 | ||
10968 | /* Return the expression corresponding to COND_STRING evaluated at SAL. */ | |
10969 | ||
10970 | static struct expression * | |
10971 | ada_parse_catchpoint_condition (char *cond_string, | |
10972 | struct symtab_and_line sal) | |
10973 | { | |
10974 | return (parse_exp_1 (&cond_string, block_for_pc (sal.pc), 0)); | |
10975 | } | |
10976 | ||
10977 | /* Return the symtab_and_line that should be used to insert an exception | |
10978 | catchpoint of the TYPE kind. | |
10979 | ||
10980 | EX_STRING should contain the name of a specific exception | |
10981 | that the catchpoint should catch, or NULL otherwise. | |
10982 | ||
10983 | The idea behind all the remaining parameters is that their names match | |
10984 | the name of certain fields in the breakpoint structure that are used to | |
10985 | handle exception catchpoints. This function returns the value to which | |
10986 | these fields should be set, depending on the type of catchpoint we need | |
10987 | to create. | |
10988 | ||
10989 | If COND and COND_STRING are both non-NULL, any value they might | |
10990 | hold will be free'ed, and then replaced by newly allocated ones. | |
10991 | These parameters are left untouched otherwise. */ | |
10992 | ||
10993 | static struct symtab_and_line | |
10994 | ada_exception_sal (enum exception_catchpoint_kind ex, char *exp_string, | |
10995 | char **addr_string, char **cond_string, | |
10996 | struct expression **cond, struct breakpoint_ops **ops) | |
10997 | { | |
10998 | const char *sym_name; | |
10999 | struct symbol *sym; | |
11000 | struct symtab_and_line sal; | |
11001 | ||
0259addd JB |
11002 | /* First, find out which exception support info to use. */ |
11003 | ada_exception_support_info_sniffer (); | |
11004 | ||
11005 | /* Then lookup the function on which we will break in order to catch | |
f7f9143b JB |
11006 | the Ada exceptions requested by the user. */ |
11007 | ||
11008 | sym_name = ada_exception_sym_name (ex); | |
11009 | sym = standard_lookup (sym_name, NULL, VAR_DOMAIN); | |
11010 | ||
11011 | /* The symbol we're looking up is provided by a unit in the GNAT runtime | |
11012 | that should be compiled with debugging information. As a result, we | |
11013 | expect to find that symbol in the symtabs. If we don't find it, then | |
11014 | the target most likely does not support Ada exceptions, or we cannot | |
11015 | insert exception breakpoints yet, because the GNAT runtime hasn't been | |
11016 | loaded yet. */ | |
11017 | ||
11018 | /* brobecker/2006-12-26: It is conceivable that the runtime was compiled | |
11019 | in such a way that no debugging information is produced for the symbol | |
11020 | we are looking for. In this case, we could search the minimal symbols | |
11021 | as a fall-back mechanism. This would still be operating in degraded | |
11022 | mode, however, as we would still be missing the debugging information | |
11023 | that is needed in order to extract the name of the exception being | |
11024 | raised (this name is printed in the catchpoint message, and is also | |
11025 | used when trying to catch a specific exception). We do not handle | |
11026 | this case for now. */ | |
11027 | ||
11028 | if (sym == NULL) | |
0259addd | 11029 | error (_("Unable to break on '%s' in this configuration."), sym_name); |
f7f9143b JB |
11030 | |
11031 | /* Make sure that the symbol we found corresponds to a function. */ | |
11032 | if (SYMBOL_CLASS (sym) != LOC_BLOCK) | |
11033 | error (_("Symbol \"%s\" is not a function (class = %d)"), | |
11034 | sym_name, SYMBOL_CLASS (sym)); | |
11035 | ||
11036 | sal = find_function_start_sal (sym, 1); | |
11037 | ||
11038 | /* Set ADDR_STRING. */ | |
11039 | ||
11040 | *addr_string = xstrdup (sym_name); | |
11041 | ||
11042 | /* Set the COND and COND_STRING (if not NULL). */ | |
11043 | ||
11044 | if (cond_string != NULL && cond != NULL) | |
11045 | { | |
11046 | if (*cond_string != NULL) | |
11047 | { | |
11048 | xfree (*cond_string); | |
11049 | *cond_string = NULL; | |
11050 | } | |
11051 | if (*cond != NULL) | |
11052 | { | |
11053 | xfree (*cond); | |
11054 | *cond = NULL; | |
11055 | } | |
11056 | if (exp_string != NULL) | |
11057 | { | |
11058 | *cond_string = ada_exception_catchpoint_cond_string (exp_string); | |
11059 | *cond = ada_parse_catchpoint_condition (*cond_string, sal); | |
11060 | } | |
11061 | } | |
11062 | ||
11063 | /* Set OPS. */ | |
4b9eee8c | 11064 | *ops = ada_exception_breakpoint_ops (ex); |
f7f9143b JB |
11065 | |
11066 | return sal; | |
11067 | } | |
11068 | ||
11069 | /* Parse the arguments (ARGS) of the "catch exception" command. | |
11070 | ||
11071 | Set TYPE to the appropriate exception catchpoint type. | |
11072 | If the user asked the catchpoint to catch only a specific | |
11073 | exception, then save the exception name in ADDR_STRING. | |
11074 | ||
11075 | See ada_exception_sal for a description of all the remaining | |
11076 | function arguments of this function. */ | |
11077 | ||
11078 | struct symtab_and_line | |
11079 | ada_decode_exception_location (char *args, char **addr_string, | |
11080 | char **exp_string, char **cond_string, | |
11081 | struct expression **cond, | |
11082 | struct breakpoint_ops **ops) | |
11083 | { | |
11084 | enum exception_catchpoint_kind ex; | |
11085 | ||
11086 | catch_ada_exception_command_split (args, &ex, exp_string); | |
11087 | return ada_exception_sal (ex, *exp_string, addr_string, cond_string, | |
11088 | cond, ops); | |
11089 | } | |
11090 | ||
11091 | struct symtab_and_line | |
11092 | ada_decode_assert_location (char *args, char **addr_string, | |
11093 | struct breakpoint_ops **ops) | |
11094 | { | |
11095 | /* Check that no argument where provided at the end of the command. */ | |
11096 | ||
11097 | if (args != NULL) | |
11098 | { | |
11099 | while (isspace (*args)) | |
11100 | args++; | |
11101 | if (*args != '\0') | |
11102 | error (_("Junk at end of arguments.")); | |
11103 | } | |
11104 | ||
11105 | return ada_exception_sal (ex_catch_assert, NULL, addr_string, NULL, NULL, | |
11106 | ops); | |
11107 | } | |
11108 | ||
4c4b4cd2 PH |
11109 | /* Operators */ |
11110 | /* Information about operators given special treatment in functions | |
11111 | below. */ | |
11112 | /* Format: OP_DEFN (<operator>, <operator length>, <# args>, <binop>). */ | |
11113 | ||
11114 | #define ADA_OPERATORS \ | |
11115 | OP_DEFN (OP_VAR_VALUE, 4, 0, 0) \ | |
11116 | OP_DEFN (BINOP_IN_BOUNDS, 3, 2, 0) \ | |
11117 | OP_DEFN (TERNOP_IN_RANGE, 1, 3, 0) \ | |
11118 | OP_DEFN (OP_ATR_FIRST, 1, 2, 0) \ | |
11119 | OP_DEFN (OP_ATR_LAST, 1, 2, 0) \ | |
11120 | OP_DEFN (OP_ATR_LENGTH, 1, 2, 0) \ | |
11121 | OP_DEFN (OP_ATR_IMAGE, 1, 2, 0) \ | |
11122 | OP_DEFN (OP_ATR_MAX, 1, 3, 0) \ | |
11123 | OP_DEFN (OP_ATR_MIN, 1, 3, 0) \ | |
11124 | OP_DEFN (OP_ATR_MODULUS, 1, 1, 0) \ | |
11125 | OP_DEFN (OP_ATR_POS, 1, 2, 0) \ | |
11126 | OP_DEFN (OP_ATR_SIZE, 1, 1, 0) \ | |
11127 | OP_DEFN (OP_ATR_TAG, 1, 1, 0) \ | |
11128 | OP_DEFN (OP_ATR_VAL, 1, 2, 0) \ | |
11129 | OP_DEFN (UNOP_QUAL, 3, 1, 0) \ | |
52ce6436 PH |
11130 | OP_DEFN (UNOP_IN_RANGE, 3, 1, 0) \ |
11131 | OP_DEFN (OP_OTHERS, 1, 1, 0) \ | |
11132 | OP_DEFN (OP_POSITIONAL, 3, 1, 0) \ | |
11133 | OP_DEFN (OP_DISCRETE_RANGE, 1, 2, 0) | |
4c4b4cd2 PH |
11134 | |
11135 | static void | |
554794dc SDJ |
11136 | ada_operator_length (const struct expression *exp, int pc, int *oplenp, |
11137 | int *argsp) | |
4c4b4cd2 PH |
11138 | { |
11139 | switch (exp->elts[pc - 1].opcode) | |
11140 | { | |
76a01679 | 11141 | default: |
4c4b4cd2 PH |
11142 | operator_length_standard (exp, pc, oplenp, argsp); |
11143 | break; | |
11144 | ||
11145 | #define OP_DEFN(op, len, args, binop) \ | |
11146 | case op: *oplenp = len; *argsp = args; break; | |
11147 | ADA_OPERATORS; | |
11148 | #undef OP_DEFN | |
52ce6436 PH |
11149 | |
11150 | case OP_AGGREGATE: | |
11151 | *oplenp = 3; | |
11152 | *argsp = longest_to_int (exp->elts[pc - 2].longconst); | |
11153 | break; | |
11154 | ||
11155 | case OP_CHOICES: | |
11156 | *oplenp = 3; | |
11157 | *argsp = longest_to_int (exp->elts[pc - 2].longconst) + 1; | |
11158 | break; | |
4c4b4cd2 PH |
11159 | } |
11160 | } | |
11161 | ||
c0201579 JK |
11162 | /* Implementation of the exp_descriptor method operator_check. */ |
11163 | ||
11164 | static int | |
11165 | ada_operator_check (struct expression *exp, int pos, | |
11166 | int (*objfile_func) (struct objfile *objfile, void *data), | |
11167 | void *data) | |
11168 | { | |
11169 | const union exp_element *const elts = exp->elts; | |
11170 | struct type *type = NULL; | |
11171 | ||
11172 | switch (elts[pos].opcode) | |
11173 | { | |
11174 | case UNOP_IN_RANGE: | |
11175 | case UNOP_QUAL: | |
11176 | type = elts[pos + 1].type; | |
11177 | break; | |
11178 | ||
11179 | default: | |
11180 | return operator_check_standard (exp, pos, objfile_func, data); | |
11181 | } | |
11182 | ||
11183 | /* Invoke callbacks for TYPE and OBJFILE if they were set as non-NULL. */ | |
11184 | ||
11185 | if (type && TYPE_OBJFILE (type) | |
11186 | && (*objfile_func) (TYPE_OBJFILE (type), data)) | |
11187 | return 1; | |
11188 | ||
11189 | return 0; | |
11190 | } | |
11191 | ||
4c4b4cd2 PH |
11192 | static char * |
11193 | ada_op_name (enum exp_opcode opcode) | |
11194 | { | |
11195 | switch (opcode) | |
11196 | { | |
76a01679 | 11197 | default: |
4c4b4cd2 | 11198 | return op_name_standard (opcode); |
52ce6436 | 11199 | |
4c4b4cd2 PH |
11200 | #define OP_DEFN(op, len, args, binop) case op: return #op; |
11201 | ADA_OPERATORS; | |
11202 | #undef OP_DEFN | |
52ce6436 PH |
11203 | |
11204 | case OP_AGGREGATE: | |
11205 | return "OP_AGGREGATE"; | |
11206 | case OP_CHOICES: | |
11207 | return "OP_CHOICES"; | |
11208 | case OP_NAME: | |
11209 | return "OP_NAME"; | |
4c4b4cd2 PH |
11210 | } |
11211 | } | |
11212 | ||
11213 | /* As for operator_length, but assumes PC is pointing at the first | |
11214 | element of the operator, and gives meaningful results only for the | |
52ce6436 | 11215 | Ada-specific operators, returning 0 for *OPLENP and *ARGSP otherwise. */ |
4c4b4cd2 PH |
11216 | |
11217 | static void | |
76a01679 JB |
11218 | ada_forward_operator_length (struct expression *exp, int pc, |
11219 | int *oplenp, int *argsp) | |
4c4b4cd2 | 11220 | { |
76a01679 | 11221 | switch (exp->elts[pc].opcode) |
4c4b4cd2 PH |
11222 | { |
11223 | default: | |
11224 | *oplenp = *argsp = 0; | |
11225 | break; | |
52ce6436 | 11226 | |
4c4b4cd2 PH |
11227 | #define OP_DEFN(op, len, args, binop) \ |
11228 | case op: *oplenp = len; *argsp = args; break; | |
11229 | ADA_OPERATORS; | |
11230 | #undef OP_DEFN | |
52ce6436 PH |
11231 | |
11232 | case OP_AGGREGATE: | |
11233 | *oplenp = 3; | |
11234 | *argsp = longest_to_int (exp->elts[pc + 1].longconst); | |
11235 | break; | |
11236 | ||
11237 | case OP_CHOICES: | |
11238 | *oplenp = 3; | |
11239 | *argsp = longest_to_int (exp->elts[pc + 1].longconst) + 1; | |
11240 | break; | |
11241 | ||
11242 | case OP_STRING: | |
11243 | case OP_NAME: | |
11244 | { | |
11245 | int len = longest_to_int (exp->elts[pc + 1].longconst); | |
5b4ee69b | 11246 | |
52ce6436 PH |
11247 | *oplenp = 4 + BYTES_TO_EXP_ELEM (len + 1); |
11248 | *argsp = 0; | |
11249 | break; | |
11250 | } | |
4c4b4cd2 PH |
11251 | } |
11252 | } | |
11253 | ||
11254 | static int | |
11255 | ada_dump_subexp_body (struct expression *exp, struct ui_file *stream, int elt) | |
11256 | { | |
11257 | enum exp_opcode op = exp->elts[elt].opcode; | |
11258 | int oplen, nargs; | |
11259 | int pc = elt; | |
11260 | int i; | |
76a01679 | 11261 | |
4c4b4cd2 PH |
11262 | ada_forward_operator_length (exp, elt, &oplen, &nargs); |
11263 | ||
76a01679 | 11264 | switch (op) |
4c4b4cd2 | 11265 | { |
76a01679 | 11266 | /* Ada attributes ('Foo). */ |
4c4b4cd2 PH |
11267 | case OP_ATR_FIRST: |
11268 | case OP_ATR_LAST: | |
11269 | case OP_ATR_LENGTH: | |
11270 | case OP_ATR_IMAGE: | |
11271 | case OP_ATR_MAX: | |
11272 | case OP_ATR_MIN: | |
11273 | case OP_ATR_MODULUS: | |
11274 | case OP_ATR_POS: | |
11275 | case OP_ATR_SIZE: | |
11276 | case OP_ATR_TAG: | |
11277 | case OP_ATR_VAL: | |
11278 | break; | |
11279 | ||
11280 | case UNOP_IN_RANGE: | |
11281 | case UNOP_QUAL: | |
323e0a4a AC |
11282 | /* XXX: gdb_sprint_host_address, type_sprint */ |
11283 | fprintf_filtered (stream, _("Type @")); | |
4c4b4cd2 PH |
11284 | gdb_print_host_address (exp->elts[pc + 1].type, stream); |
11285 | fprintf_filtered (stream, " ("); | |
11286 | type_print (exp->elts[pc + 1].type, NULL, stream, 0); | |
11287 | fprintf_filtered (stream, ")"); | |
11288 | break; | |
11289 | case BINOP_IN_BOUNDS: | |
52ce6436 PH |
11290 | fprintf_filtered (stream, " (%d)", |
11291 | longest_to_int (exp->elts[pc + 2].longconst)); | |
4c4b4cd2 PH |
11292 | break; |
11293 | case TERNOP_IN_RANGE: | |
11294 | break; | |
11295 | ||
52ce6436 PH |
11296 | case OP_AGGREGATE: |
11297 | case OP_OTHERS: | |
11298 | case OP_DISCRETE_RANGE: | |
11299 | case OP_POSITIONAL: | |
11300 | case OP_CHOICES: | |
11301 | break; | |
11302 | ||
11303 | case OP_NAME: | |
11304 | case OP_STRING: | |
11305 | { | |
11306 | char *name = &exp->elts[elt + 2].string; | |
11307 | int len = longest_to_int (exp->elts[elt + 1].longconst); | |
5b4ee69b | 11308 | |
52ce6436 PH |
11309 | fprintf_filtered (stream, "Text: `%.*s'", len, name); |
11310 | break; | |
11311 | } | |
11312 | ||
4c4b4cd2 PH |
11313 | default: |
11314 | return dump_subexp_body_standard (exp, stream, elt); | |
11315 | } | |
11316 | ||
11317 | elt += oplen; | |
11318 | for (i = 0; i < nargs; i += 1) | |
11319 | elt = dump_subexp (exp, stream, elt); | |
11320 | ||
11321 | return elt; | |
11322 | } | |
11323 | ||
11324 | /* The Ada extension of print_subexp (q.v.). */ | |
11325 | ||
76a01679 JB |
11326 | static void |
11327 | ada_print_subexp (struct expression *exp, int *pos, | |
11328 | struct ui_file *stream, enum precedence prec) | |
4c4b4cd2 | 11329 | { |
52ce6436 | 11330 | int oplen, nargs, i; |
4c4b4cd2 PH |
11331 | int pc = *pos; |
11332 | enum exp_opcode op = exp->elts[pc].opcode; | |
11333 | ||
11334 | ada_forward_operator_length (exp, pc, &oplen, &nargs); | |
11335 | ||
52ce6436 | 11336 | *pos += oplen; |
4c4b4cd2 PH |
11337 | switch (op) |
11338 | { | |
11339 | default: | |
52ce6436 | 11340 | *pos -= oplen; |
4c4b4cd2 PH |
11341 | print_subexp_standard (exp, pos, stream, prec); |
11342 | return; | |
11343 | ||
11344 | case OP_VAR_VALUE: | |
4c4b4cd2 PH |
11345 | fputs_filtered (SYMBOL_NATURAL_NAME (exp->elts[pc + 2].symbol), stream); |
11346 | return; | |
11347 | ||
11348 | case BINOP_IN_BOUNDS: | |
323e0a4a | 11349 | /* XXX: sprint_subexp */ |
4c4b4cd2 | 11350 | print_subexp (exp, pos, stream, PREC_SUFFIX); |
0b48a291 | 11351 | fputs_filtered (" in ", stream); |
4c4b4cd2 | 11352 | print_subexp (exp, pos, stream, PREC_SUFFIX); |
0b48a291 | 11353 | fputs_filtered ("'range", stream); |
4c4b4cd2 | 11354 | if (exp->elts[pc + 1].longconst > 1) |
76a01679 JB |
11355 | fprintf_filtered (stream, "(%ld)", |
11356 | (long) exp->elts[pc + 1].longconst); | |
4c4b4cd2 PH |
11357 | return; |
11358 | ||
11359 | case TERNOP_IN_RANGE: | |
4c4b4cd2 | 11360 | if (prec >= PREC_EQUAL) |
76a01679 | 11361 | fputs_filtered ("(", stream); |
323e0a4a | 11362 | /* XXX: sprint_subexp */ |
4c4b4cd2 | 11363 | print_subexp (exp, pos, stream, PREC_SUFFIX); |
0b48a291 | 11364 | fputs_filtered (" in ", stream); |
4c4b4cd2 PH |
11365 | print_subexp (exp, pos, stream, PREC_EQUAL); |
11366 | fputs_filtered (" .. ", stream); | |
11367 | print_subexp (exp, pos, stream, PREC_EQUAL); | |
11368 | if (prec >= PREC_EQUAL) | |
76a01679 JB |
11369 | fputs_filtered (")", stream); |
11370 | return; | |
4c4b4cd2 PH |
11371 | |
11372 | case OP_ATR_FIRST: | |
11373 | case OP_ATR_LAST: | |
11374 | case OP_ATR_LENGTH: | |
11375 | case OP_ATR_IMAGE: | |
11376 | case OP_ATR_MAX: | |
11377 | case OP_ATR_MIN: | |
11378 | case OP_ATR_MODULUS: | |
11379 | case OP_ATR_POS: | |
11380 | case OP_ATR_SIZE: | |
11381 | case OP_ATR_TAG: | |
11382 | case OP_ATR_VAL: | |
4c4b4cd2 | 11383 | if (exp->elts[*pos].opcode == OP_TYPE) |
76a01679 JB |
11384 | { |
11385 | if (TYPE_CODE (exp->elts[*pos + 1].type) != TYPE_CODE_VOID) | |
11386 | LA_PRINT_TYPE (exp->elts[*pos + 1].type, "", stream, 0, 0); | |
11387 | *pos += 3; | |
11388 | } | |
4c4b4cd2 | 11389 | else |
76a01679 | 11390 | print_subexp (exp, pos, stream, PREC_SUFFIX); |
4c4b4cd2 PH |
11391 | fprintf_filtered (stream, "'%s", ada_attribute_name (op)); |
11392 | if (nargs > 1) | |
76a01679 JB |
11393 | { |
11394 | int tem; | |
5b4ee69b | 11395 | |
76a01679 JB |
11396 | for (tem = 1; tem < nargs; tem += 1) |
11397 | { | |
11398 | fputs_filtered ((tem == 1) ? " (" : ", ", stream); | |
11399 | print_subexp (exp, pos, stream, PREC_ABOVE_COMMA); | |
11400 | } | |
11401 | fputs_filtered (")", stream); | |
11402 | } | |
4c4b4cd2 | 11403 | return; |
14f9c5c9 | 11404 | |
4c4b4cd2 | 11405 | case UNOP_QUAL: |
4c4b4cd2 PH |
11406 | type_print (exp->elts[pc + 1].type, "", stream, 0); |
11407 | fputs_filtered ("'(", stream); | |
11408 | print_subexp (exp, pos, stream, PREC_PREFIX); | |
11409 | fputs_filtered (")", stream); | |
11410 | return; | |
14f9c5c9 | 11411 | |
4c4b4cd2 | 11412 | case UNOP_IN_RANGE: |
323e0a4a | 11413 | /* XXX: sprint_subexp */ |
4c4b4cd2 | 11414 | print_subexp (exp, pos, stream, PREC_SUFFIX); |
0b48a291 | 11415 | fputs_filtered (" in ", stream); |
4c4b4cd2 PH |
11416 | LA_PRINT_TYPE (exp->elts[pc + 1].type, "", stream, 1, 0); |
11417 | return; | |
52ce6436 PH |
11418 | |
11419 | case OP_DISCRETE_RANGE: | |
11420 | print_subexp (exp, pos, stream, PREC_SUFFIX); | |
11421 | fputs_filtered ("..", stream); | |
11422 | print_subexp (exp, pos, stream, PREC_SUFFIX); | |
11423 | return; | |
11424 | ||
11425 | case OP_OTHERS: | |
11426 | fputs_filtered ("others => ", stream); | |
11427 | print_subexp (exp, pos, stream, PREC_SUFFIX); | |
11428 | return; | |
11429 | ||
11430 | case OP_CHOICES: | |
11431 | for (i = 0; i < nargs-1; i += 1) | |
11432 | { | |
11433 | if (i > 0) | |
11434 | fputs_filtered ("|", stream); | |
11435 | print_subexp (exp, pos, stream, PREC_SUFFIX); | |
11436 | } | |
11437 | fputs_filtered (" => ", stream); | |
11438 | print_subexp (exp, pos, stream, PREC_SUFFIX); | |
11439 | return; | |
11440 | ||
11441 | case OP_POSITIONAL: | |
11442 | print_subexp (exp, pos, stream, PREC_SUFFIX); | |
11443 | return; | |
11444 | ||
11445 | case OP_AGGREGATE: | |
11446 | fputs_filtered ("(", stream); | |
11447 | for (i = 0; i < nargs; i += 1) | |
11448 | { | |
11449 | if (i > 0) | |
11450 | fputs_filtered (", ", stream); | |
11451 | print_subexp (exp, pos, stream, PREC_SUFFIX); | |
11452 | } | |
11453 | fputs_filtered (")", stream); | |
11454 | return; | |
4c4b4cd2 PH |
11455 | } |
11456 | } | |
14f9c5c9 AS |
11457 | |
11458 | /* Table mapping opcodes into strings for printing operators | |
11459 | and precedences of the operators. */ | |
11460 | ||
d2e4a39e AS |
11461 | static const struct op_print ada_op_print_tab[] = { |
11462 | {":=", BINOP_ASSIGN, PREC_ASSIGN, 1}, | |
11463 | {"or else", BINOP_LOGICAL_OR, PREC_LOGICAL_OR, 0}, | |
11464 | {"and then", BINOP_LOGICAL_AND, PREC_LOGICAL_AND, 0}, | |
11465 | {"or", BINOP_BITWISE_IOR, PREC_BITWISE_IOR, 0}, | |
11466 | {"xor", BINOP_BITWISE_XOR, PREC_BITWISE_XOR, 0}, | |
11467 | {"and", BINOP_BITWISE_AND, PREC_BITWISE_AND, 0}, | |
11468 | {"=", BINOP_EQUAL, PREC_EQUAL, 0}, | |
11469 | {"/=", BINOP_NOTEQUAL, PREC_EQUAL, 0}, | |
11470 | {"<=", BINOP_LEQ, PREC_ORDER, 0}, | |
11471 | {">=", BINOP_GEQ, PREC_ORDER, 0}, | |
11472 | {">", BINOP_GTR, PREC_ORDER, 0}, | |
11473 | {"<", BINOP_LESS, PREC_ORDER, 0}, | |
11474 | {">>", BINOP_RSH, PREC_SHIFT, 0}, | |
11475 | {"<<", BINOP_LSH, PREC_SHIFT, 0}, | |
11476 | {"+", BINOP_ADD, PREC_ADD, 0}, | |
11477 | {"-", BINOP_SUB, PREC_ADD, 0}, | |
11478 | {"&", BINOP_CONCAT, PREC_ADD, 0}, | |
11479 | {"*", BINOP_MUL, PREC_MUL, 0}, | |
11480 | {"/", BINOP_DIV, PREC_MUL, 0}, | |
11481 | {"rem", BINOP_REM, PREC_MUL, 0}, | |
11482 | {"mod", BINOP_MOD, PREC_MUL, 0}, | |
11483 | {"**", BINOP_EXP, PREC_REPEAT, 0}, | |
11484 | {"@", BINOP_REPEAT, PREC_REPEAT, 0}, | |
11485 | {"-", UNOP_NEG, PREC_PREFIX, 0}, | |
11486 | {"+", UNOP_PLUS, PREC_PREFIX, 0}, | |
11487 | {"not ", UNOP_LOGICAL_NOT, PREC_PREFIX, 0}, | |
11488 | {"not ", UNOP_COMPLEMENT, PREC_PREFIX, 0}, | |
11489 | {"abs ", UNOP_ABS, PREC_PREFIX, 0}, | |
4c4b4cd2 PH |
11490 | {".all", UNOP_IND, PREC_SUFFIX, 1}, |
11491 | {"'access", UNOP_ADDR, PREC_SUFFIX, 1}, | |
11492 | {"'size", OP_ATR_SIZE, PREC_SUFFIX, 1}, | |
d2e4a39e | 11493 | {NULL, 0, 0, 0} |
14f9c5c9 AS |
11494 | }; |
11495 | \f | |
72d5681a PH |
11496 | enum ada_primitive_types { |
11497 | ada_primitive_type_int, | |
11498 | ada_primitive_type_long, | |
11499 | ada_primitive_type_short, | |
11500 | ada_primitive_type_char, | |
11501 | ada_primitive_type_float, | |
11502 | ada_primitive_type_double, | |
11503 | ada_primitive_type_void, | |
11504 | ada_primitive_type_long_long, | |
11505 | ada_primitive_type_long_double, | |
11506 | ada_primitive_type_natural, | |
11507 | ada_primitive_type_positive, | |
11508 | ada_primitive_type_system_address, | |
11509 | nr_ada_primitive_types | |
11510 | }; | |
6c038f32 PH |
11511 | |
11512 | static void | |
d4a9a881 | 11513 | ada_language_arch_info (struct gdbarch *gdbarch, |
72d5681a PH |
11514 | struct language_arch_info *lai) |
11515 | { | |
d4a9a881 | 11516 | const struct builtin_type *builtin = builtin_type (gdbarch); |
5b4ee69b | 11517 | |
72d5681a | 11518 | lai->primitive_type_vector |
d4a9a881 | 11519 | = GDBARCH_OBSTACK_CALLOC (gdbarch, nr_ada_primitive_types + 1, |
72d5681a | 11520 | struct type *); |
e9bb382b UW |
11521 | |
11522 | lai->primitive_type_vector [ada_primitive_type_int] | |
11523 | = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch), | |
11524 | 0, "integer"); | |
11525 | lai->primitive_type_vector [ada_primitive_type_long] | |
11526 | = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch), | |
11527 | 0, "long_integer"); | |
11528 | lai->primitive_type_vector [ada_primitive_type_short] | |
11529 | = arch_integer_type (gdbarch, gdbarch_short_bit (gdbarch), | |
11530 | 0, "short_integer"); | |
11531 | lai->string_char_type | |
11532 | = lai->primitive_type_vector [ada_primitive_type_char] | |
11533 | = arch_integer_type (gdbarch, TARGET_CHAR_BIT, 0, "character"); | |
11534 | lai->primitive_type_vector [ada_primitive_type_float] | |
11535 | = arch_float_type (gdbarch, gdbarch_float_bit (gdbarch), | |
11536 | "float", NULL); | |
11537 | lai->primitive_type_vector [ada_primitive_type_double] | |
11538 | = arch_float_type (gdbarch, gdbarch_double_bit (gdbarch), | |
11539 | "long_float", NULL); | |
11540 | lai->primitive_type_vector [ada_primitive_type_long_long] | |
11541 | = arch_integer_type (gdbarch, gdbarch_long_long_bit (gdbarch), | |
11542 | 0, "long_long_integer"); | |
11543 | lai->primitive_type_vector [ada_primitive_type_long_double] | |
11544 | = arch_float_type (gdbarch, gdbarch_double_bit (gdbarch), | |
11545 | "long_long_float", NULL); | |
11546 | lai->primitive_type_vector [ada_primitive_type_natural] | |
11547 | = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch), | |
11548 | 0, "natural"); | |
11549 | lai->primitive_type_vector [ada_primitive_type_positive] | |
11550 | = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch), | |
11551 | 0, "positive"); | |
11552 | lai->primitive_type_vector [ada_primitive_type_void] | |
11553 | = builtin->builtin_void; | |
11554 | ||
11555 | lai->primitive_type_vector [ada_primitive_type_system_address] | |
11556 | = lookup_pointer_type (arch_type (gdbarch, TYPE_CODE_VOID, 1, "void")); | |
72d5681a PH |
11557 | TYPE_NAME (lai->primitive_type_vector [ada_primitive_type_system_address]) |
11558 | = "system__address"; | |
fbb06eb1 | 11559 | |
47e729a8 | 11560 | lai->bool_type_symbol = NULL; |
fbb06eb1 | 11561 | lai->bool_type_default = builtin->builtin_bool; |
6c038f32 | 11562 | } |
6c038f32 PH |
11563 | \f |
11564 | /* Language vector */ | |
11565 | ||
11566 | /* Not really used, but needed in the ada_language_defn. */ | |
11567 | ||
11568 | static void | |
6c7a06a3 | 11569 | emit_char (int c, struct type *type, struct ui_file *stream, int quoter) |
6c038f32 | 11570 | { |
6c7a06a3 | 11571 | ada_emit_char (c, type, stream, quoter, 1); |
6c038f32 PH |
11572 | } |
11573 | ||
11574 | static int | |
11575 | parse (void) | |
11576 | { | |
11577 | warnings_issued = 0; | |
11578 | return ada_parse (); | |
11579 | } | |
11580 | ||
11581 | static const struct exp_descriptor ada_exp_descriptor = { | |
11582 | ada_print_subexp, | |
11583 | ada_operator_length, | |
c0201579 | 11584 | ada_operator_check, |
6c038f32 PH |
11585 | ada_op_name, |
11586 | ada_dump_subexp_body, | |
11587 | ada_evaluate_subexp | |
11588 | }; | |
11589 | ||
11590 | const struct language_defn ada_language_defn = { | |
11591 | "ada", /* Language name */ | |
11592 | language_ada, | |
6c038f32 PH |
11593 | range_check_off, |
11594 | type_check_off, | |
11595 | case_sensitive_on, /* Yes, Ada is case-insensitive, but | |
11596 | that's not quite what this means. */ | |
6c038f32 | 11597 | array_row_major, |
9a044a89 | 11598 | macro_expansion_no, |
6c038f32 PH |
11599 | &ada_exp_descriptor, |
11600 | parse, | |
11601 | ada_error, | |
11602 | resolve, | |
11603 | ada_printchar, /* Print a character constant */ | |
11604 | ada_printstr, /* Function to print string constant */ | |
11605 | emit_char, /* Function to print single char (not used) */ | |
6c038f32 | 11606 | ada_print_type, /* Print a type using appropriate syntax */ |
be942545 | 11607 | ada_print_typedef, /* Print a typedef using appropriate syntax */ |
6c038f32 PH |
11608 | ada_val_print, /* Print a value using appropriate syntax */ |
11609 | ada_value_print, /* Print a top-level value */ | |
11610 | NULL, /* Language specific skip_trampoline */ | |
2b2d9e11 | 11611 | NULL, /* name_of_this */ |
6c038f32 PH |
11612 | ada_lookup_symbol_nonlocal, /* Looking up non-local symbols. */ |
11613 | basic_lookup_transparent_type, /* lookup_transparent_type */ | |
11614 | ada_la_decode, /* Language specific symbol demangler */ | |
11615 | NULL, /* Language specific class_name_from_physname */ | |
11616 | ada_op_print_tab, /* expression operators for printing */ | |
11617 | 0, /* c-style arrays */ | |
11618 | 1, /* String lower bound */ | |
6c038f32 | 11619 | ada_get_gdb_completer_word_break_characters, |
41d27058 | 11620 | ada_make_symbol_completion_list, |
72d5681a | 11621 | ada_language_arch_info, |
e79af960 | 11622 | ada_print_array_index, |
41f1b697 | 11623 | default_pass_by_reference, |
ae6a3a4c | 11624 | c_get_string, |
6c038f32 PH |
11625 | LANG_MAGIC |
11626 | }; | |
11627 | ||
2c0b251b PA |
11628 | /* Provide a prototype to silence -Wmissing-prototypes. */ |
11629 | extern initialize_file_ftype _initialize_ada_language; | |
11630 | ||
5bf03f13 JB |
11631 | /* Command-list for the "set/show ada" prefix command. */ |
11632 | static struct cmd_list_element *set_ada_list; | |
11633 | static struct cmd_list_element *show_ada_list; | |
11634 | ||
11635 | /* Implement the "set ada" prefix command. */ | |
11636 | ||
11637 | static void | |
11638 | set_ada_command (char *arg, int from_tty) | |
11639 | { | |
11640 | printf_unfiltered (_(\ | |
11641 | "\"set ada\" must be followed by the name of a setting.\n")); | |
11642 | help_list (set_ada_list, "set ada ", -1, gdb_stdout); | |
11643 | } | |
11644 | ||
11645 | /* Implement the "show ada" prefix command. */ | |
11646 | ||
11647 | static void | |
11648 | show_ada_command (char *args, int from_tty) | |
11649 | { | |
11650 | cmd_show_list (show_ada_list, from_tty, ""); | |
11651 | } | |
11652 | ||
d2e4a39e | 11653 | void |
6c038f32 | 11654 | _initialize_ada_language (void) |
14f9c5c9 | 11655 | { |
6c038f32 PH |
11656 | add_language (&ada_language_defn); |
11657 | ||
5bf03f13 JB |
11658 | add_prefix_cmd ("ada", no_class, set_ada_command, |
11659 | _("Prefix command for changing Ada-specfic settings"), | |
11660 | &set_ada_list, "set ada ", 0, &setlist); | |
11661 | ||
11662 | add_prefix_cmd ("ada", no_class, show_ada_command, | |
11663 | _("Generic command for showing Ada-specific settings."), | |
11664 | &show_ada_list, "show ada ", 0, &showlist); | |
11665 | ||
11666 | add_setshow_boolean_cmd ("trust-PAD-over-XVS", class_obscure, | |
11667 | &trust_pad_over_xvs, _("\ | |
11668 | Enable or disable an optimization trusting PAD types over XVS types"), _("\ | |
11669 | Show whether an optimization trusting PAD types over XVS types is activated"), | |
11670 | _("\ | |
11671 | This is related to the encoding used by the GNAT compiler. The debugger\n\ | |
11672 | should normally trust the contents of PAD types, but certain older versions\n\ | |
11673 | of GNAT have a bug that sometimes causes the information in the PAD type\n\ | |
11674 | to be incorrect. Turning this setting \"off\" allows the debugger to\n\ | |
11675 | work around this bug. It is always safe to turn this option \"off\", but\n\ | |
11676 | this incurs a slight performance penalty, so it is recommended to NOT change\n\ | |
11677 | this option to \"off\" unless necessary."), | |
11678 | NULL, NULL, &set_ada_list, &show_ada_list); | |
11679 | ||
6c038f32 | 11680 | varsize_limit = 65536; |
6c038f32 PH |
11681 | |
11682 | obstack_init (&symbol_list_obstack); | |
11683 | ||
11684 | decoded_names_store = htab_create_alloc | |
11685 | (256, htab_hash_string, (int (*)(const void *, const void *)) streq, | |
11686 | NULL, xcalloc, xfree); | |
6b69afc4 JB |
11687 | |
11688 | observer_attach_executable_changed (ada_executable_changed_observer); | |
e802dbe0 JB |
11689 | |
11690 | /* Setup per-inferior data. */ | |
11691 | observer_attach_inferior_exit (ada_inferior_exit); | |
11692 | ada_inferior_data | |
11693 | = register_inferior_data_with_cleanup (ada_inferior_data_cleanup); | |
14f9c5c9 | 11694 | } |