]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blame - gdb/ada-lang.c
* ppc-sysv-tdep.c (ppc_sysv_abi_push_dummy_call): Check the selected
[thirdparty/binutils-gdb.git] / gdb / ada-lang.c
CommitLineData
197e01b6 1/* Ada language support routines for GDB, the GNU debugger. Copyright (C)
10a2c479 2
f7f9143b
JB
3 1992, 1993, 1994, 1997, 1998, 1999, 2000, 2003, 2004, 2005, 2007
4 Free Software Foundation, Inc.
14f9c5c9 5
a9762ec7 6 This file is part of GDB.
14f9c5c9 7
a9762ec7
JB
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
14f9c5c9 12
a9762ec7
JB
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
14f9c5c9 17
a9762ec7
JB
18 You should have received a copy of the GNU General Public License
19 along with this program. If not, see <http://www.gnu.org/licenses/>. */
14f9c5c9 20
96d887e8 21
4c4b4cd2 22#include "defs.h"
14f9c5c9 23#include <stdio.h>
0c30c098 24#include "gdb_string.h"
14f9c5c9
AS
25#include <ctype.h>
26#include <stdarg.h>
27#include "demangle.h"
4c4b4cd2
PH
28#include "gdb_regex.h"
29#include "frame.h"
14f9c5c9
AS
30#include "symtab.h"
31#include "gdbtypes.h"
32#include "gdbcmd.h"
33#include "expression.h"
34#include "parser-defs.h"
35#include "language.h"
36#include "c-lang.h"
37#include "inferior.h"
38#include "symfile.h"
39#include "objfiles.h"
40#include "breakpoint.h"
41#include "gdbcore.h"
4c4b4cd2
PH
42#include "hashtab.h"
43#include "gdb_obstack.h"
14f9c5c9 44#include "ada-lang.h"
4c4b4cd2
PH
45#include "completer.h"
46#include "gdb_stat.h"
47#ifdef UI_OUT
14f9c5c9 48#include "ui-out.h"
4c4b4cd2 49#endif
fe898f56 50#include "block.h"
04714b91 51#include "infcall.h"
de4f826b 52#include "dictionary.h"
60250e8b 53#include "exceptions.h"
f7f9143b
JB
54#include "annotate.h"
55#include "valprint.h"
9bbc9174 56#include "source.h"
0259addd 57#include "observer.h"
14f9c5c9 58
4c4b4cd2
PH
59#ifndef ADA_RETAIN_DOTS
60#define ADA_RETAIN_DOTS 0
61#endif
62
63/* Define whether or not the C operator '/' truncates towards zero for
64 differently signed operands (truncation direction is undefined in C).
65 Copied from valarith.c. */
66
67#ifndef TRUNCATION_TOWARDS_ZERO
68#define TRUNCATION_TOWARDS_ZERO ((-5 / 2) == -2)
69#endif
70
4c4b4cd2 71
4c4b4cd2 72static void extract_string (CORE_ADDR addr, char *buf);
14f9c5c9 73
d2e4a39e 74static struct type *ada_create_fundamental_type (struct objfile *, int);
14f9c5c9
AS
75
76static void modify_general_field (char *, LONGEST, int, int);
77
d2e4a39e 78static struct type *desc_base_type (struct type *);
14f9c5c9 79
d2e4a39e 80static struct type *desc_bounds_type (struct type *);
14f9c5c9 81
d2e4a39e 82static struct value *desc_bounds (struct value *);
14f9c5c9 83
d2e4a39e 84static int fat_pntr_bounds_bitpos (struct type *);
14f9c5c9 85
d2e4a39e 86static int fat_pntr_bounds_bitsize (struct type *);
14f9c5c9 87
d2e4a39e 88static struct type *desc_data_type (struct type *);
14f9c5c9 89
d2e4a39e 90static struct value *desc_data (struct value *);
14f9c5c9 91
d2e4a39e 92static int fat_pntr_data_bitpos (struct type *);
14f9c5c9 93
d2e4a39e 94static int fat_pntr_data_bitsize (struct type *);
14f9c5c9 95
d2e4a39e 96static struct value *desc_one_bound (struct value *, int, int);
14f9c5c9 97
d2e4a39e 98static int desc_bound_bitpos (struct type *, int, int);
14f9c5c9 99
d2e4a39e 100static int desc_bound_bitsize (struct type *, int, int);
14f9c5c9 101
d2e4a39e 102static struct type *desc_index_type (struct type *, int);
14f9c5c9 103
d2e4a39e 104static int desc_arity (struct type *);
14f9c5c9 105
d2e4a39e 106static int ada_type_match (struct type *, struct type *, int);
14f9c5c9 107
d2e4a39e 108static int ada_args_match (struct symbol *, struct value **, int);
14f9c5c9 109
4c4b4cd2 110static struct value *ensure_lval (struct value *, CORE_ADDR *);
14f9c5c9 111
d2e4a39e 112static struct value *convert_actual (struct value *, struct type *,
4c4b4cd2 113 CORE_ADDR *);
14f9c5c9 114
d2e4a39e 115static struct value *make_array_descriptor (struct type *, struct value *,
4c4b4cd2 116 CORE_ADDR *);
14f9c5c9 117
4c4b4cd2 118static void ada_add_block_symbols (struct obstack *,
76a01679 119 struct block *, const char *,
4c4b4cd2 120 domain_enum, struct objfile *,
76a01679 121 struct symtab *, int);
14f9c5c9 122
4c4b4cd2 123static int is_nonfunction (struct ada_symbol_info *, int);
14f9c5c9 124
76a01679
JB
125static void add_defn_to_vec (struct obstack *, struct symbol *,
126 struct block *, struct symtab *);
14f9c5c9 127
4c4b4cd2
PH
128static int num_defns_collected (struct obstack *);
129
130static struct ada_symbol_info *defns_collected (struct obstack *, int);
14f9c5c9 131
d2e4a39e 132static struct partial_symbol *ada_lookup_partial_symbol (struct partial_symtab
76a01679
JB
133 *, const char *, int,
134 domain_enum, int);
14f9c5c9 135
d2e4a39e 136static struct symtab *symtab_for_sym (struct symbol *);
14f9c5c9 137
4c4b4cd2 138static struct value *resolve_subexp (struct expression **, int *, int,
76a01679 139 struct type *);
14f9c5c9 140
d2e4a39e 141static void replace_operator_with_call (struct expression **, int, int, int,
4c4b4cd2 142 struct symbol *, struct block *);
14f9c5c9 143
d2e4a39e 144static int possible_user_operator_p (enum exp_opcode, struct value **);
14f9c5c9 145
4c4b4cd2
PH
146static char *ada_op_name (enum exp_opcode);
147
148static const char *ada_decoded_op_name (enum exp_opcode);
14f9c5c9 149
d2e4a39e 150static int numeric_type_p (struct type *);
14f9c5c9 151
d2e4a39e 152static int integer_type_p (struct type *);
14f9c5c9 153
d2e4a39e 154static int scalar_type_p (struct type *);
14f9c5c9 155
d2e4a39e 156static int discrete_type_p (struct type *);
14f9c5c9 157
4c4b4cd2 158static struct type *ada_lookup_struct_elt_type (struct type *, char *,
76a01679 159 int, int, int *);
4c4b4cd2 160
d2e4a39e 161static struct value *evaluate_subexp (struct type *, struct expression *,
4c4b4cd2 162 int *, enum noside);
14f9c5c9 163
d2e4a39e 164static struct value *evaluate_subexp_type (struct expression *, int *);
14f9c5c9 165
d2e4a39e 166static int is_dynamic_field (struct type *, int);
14f9c5c9 167
10a2c479 168static struct type *to_fixed_variant_branch_type (struct type *,
fc1a4b47 169 const gdb_byte *,
4c4b4cd2
PH
170 CORE_ADDR, struct value *);
171
172static struct type *to_fixed_array_type (struct type *, struct value *, int);
14f9c5c9 173
d2e4a39e 174static struct type *to_fixed_range_type (char *, struct value *,
4c4b4cd2 175 struct objfile *);
14f9c5c9 176
d2e4a39e 177static struct type *to_static_fixed_type (struct type *);
14f9c5c9 178
d2e4a39e 179static struct value *unwrap_value (struct value *);
14f9c5c9 180
d2e4a39e 181static struct type *packed_array_type (struct type *, long *);
14f9c5c9 182
d2e4a39e 183static struct type *decode_packed_array_type (struct type *);
14f9c5c9 184
d2e4a39e 185static struct value *decode_packed_array (struct value *);
14f9c5c9 186
d2e4a39e 187static struct value *value_subscript_packed (struct value *, int,
4c4b4cd2 188 struct value **);
14f9c5c9 189
52ce6436
PH
190static void move_bits (gdb_byte *, int, const gdb_byte *, int, int);
191
4c4b4cd2
PH
192static struct value *coerce_unspec_val_to_type (struct value *,
193 struct type *);
14f9c5c9 194
d2e4a39e 195static struct value *get_var_value (char *, char *);
14f9c5c9 196
d2e4a39e 197static int lesseq_defined_than (struct symbol *, struct symbol *);
14f9c5c9 198
d2e4a39e 199static int equiv_types (struct type *, struct type *);
14f9c5c9 200
d2e4a39e 201static int is_name_suffix (const char *);
14f9c5c9 202
d2e4a39e 203static int wild_match (const char *, int, const char *);
14f9c5c9 204
d2e4a39e 205static struct value *ada_coerce_ref (struct value *);
14f9c5c9 206
4c4b4cd2
PH
207static LONGEST pos_atr (struct value *);
208
d2e4a39e 209static struct value *value_pos_atr (struct value *);
14f9c5c9 210
d2e4a39e 211static struct value *value_val_atr (struct type *, struct value *);
14f9c5c9 212
4c4b4cd2
PH
213static struct symbol *standard_lookup (const char *, const struct block *,
214 domain_enum);
14f9c5c9 215
4c4b4cd2
PH
216static struct value *ada_search_struct_field (char *, struct value *, int,
217 struct type *);
218
219static struct value *ada_value_primitive_field (struct value *, int, int,
220 struct type *);
221
76a01679 222static int find_struct_field (char *, struct type *, int,
52ce6436 223 struct type **, int *, int *, int *, int *);
4c4b4cd2
PH
224
225static struct value *ada_to_fixed_value_create (struct type *, CORE_ADDR,
226 struct value *);
227
228static struct value *ada_to_fixed_value (struct value *);
14f9c5c9 229
4c4b4cd2
PH
230static int ada_resolve_function (struct ada_symbol_info *, int,
231 struct value **, int, const char *,
232 struct type *);
233
234static struct value *ada_coerce_to_simple_array (struct value *);
235
236static int ada_is_direct_array_type (struct type *);
237
72d5681a
PH
238static void ada_language_arch_info (struct gdbarch *,
239 struct language_arch_info *);
714e53ab
PH
240
241static void check_size (const struct type *);
52ce6436
PH
242
243static struct value *ada_index_struct_field (int, struct value *, int,
244 struct type *);
245
246static struct value *assign_aggregate (struct value *, struct value *,
247 struct expression *, int *, enum noside);
248
249static void aggregate_assign_from_choices (struct value *, struct value *,
250 struct expression *,
251 int *, LONGEST *, int *,
252 int, LONGEST, LONGEST);
253
254static void aggregate_assign_positional (struct value *, struct value *,
255 struct expression *,
256 int *, LONGEST *, int *, int,
257 LONGEST, LONGEST);
258
259
260static void aggregate_assign_others (struct value *, struct value *,
261 struct expression *,
262 int *, LONGEST *, int, LONGEST, LONGEST);
263
264
265static void add_component_interval (LONGEST, LONGEST, LONGEST *, int *, int);
266
267
268static struct value *ada_evaluate_subexp (struct type *, struct expression *,
269 int *, enum noside);
270
271static void ada_forward_operator_length (struct expression *, int, int *,
272 int *);
4c4b4cd2
PH
273\f
274
76a01679 275
4c4b4cd2 276/* Maximum-sized dynamic type. */
14f9c5c9
AS
277static unsigned int varsize_limit;
278
4c4b4cd2
PH
279/* FIXME: brobecker/2003-09-17: No longer a const because it is
280 returned by a function that does not return a const char *. */
281static char *ada_completer_word_break_characters =
282#ifdef VMS
283 " \t\n!@#%^&*()+=|~`}{[]\";:?/,-";
284#else
14f9c5c9 285 " \t\n!@#$%^&*()+=|~`}{[]\";:?/,-";
4c4b4cd2 286#endif
14f9c5c9 287
4c4b4cd2 288/* The name of the symbol to use to get the name of the main subprogram. */
76a01679 289static const char ADA_MAIN_PROGRAM_SYMBOL_NAME[]
4c4b4cd2 290 = "__gnat_ada_main_program_name";
14f9c5c9 291
4c4b4cd2
PH
292/* Limit on the number of warnings to raise per expression evaluation. */
293static int warning_limit = 2;
294
295/* Number of warning messages issued; reset to 0 by cleanups after
296 expression evaluation. */
297static int warnings_issued = 0;
298
299static const char *known_runtime_file_name_patterns[] = {
300 ADA_KNOWN_RUNTIME_FILE_NAME_PATTERNS NULL
301};
302
303static const char *known_auxiliary_function_name_patterns[] = {
304 ADA_KNOWN_AUXILIARY_FUNCTION_NAME_PATTERNS NULL
305};
306
307/* Space for allocating results of ada_lookup_symbol_list. */
308static struct obstack symbol_list_obstack;
309
310 /* Utilities */
311
96d887e8 312
4c4b4cd2
PH
313static char *
314ada_get_gdb_completer_word_break_characters (void)
315{
316 return ada_completer_word_break_characters;
317}
318
e79af960
JB
319/* Print an array element index using the Ada syntax. */
320
321static void
322ada_print_array_index (struct value *index_value, struct ui_file *stream,
323 int format, enum val_prettyprint pretty)
324{
325 LA_VALUE_PRINT (index_value, stream, format, pretty);
326 fprintf_filtered (stream, " => ");
327}
328
4c4b4cd2
PH
329/* Read the string located at ADDR from the inferior and store the
330 result into BUF. */
331
332static void
14f9c5c9
AS
333extract_string (CORE_ADDR addr, char *buf)
334{
d2e4a39e 335 int char_index = 0;
14f9c5c9 336
4c4b4cd2
PH
337 /* Loop, reading one byte at a time, until we reach the '\000'
338 end-of-string marker. */
d2e4a39e
AS
339 do
340 {
341 target_read_memory (addr + char_index * sizeof (char),
4c4b4cd2 342 buf + char_index * sizeof (char), sizeof (char));
d2e4a39e
AS
343 char_index++;
344 }
345 while (buf[char_index - 1] != '\000');
14f9c5c9
AS
346}
347
f27cf670 348/* Assuming VECT points to an array of *SIZE objects of size
14f9c5c9 349 ELEMENT_SIZE, grow it to contain at least MIN_SIZE objects,
f27cf670 350 updating *SIZE as necessary and returning the (new) array. */
14f9c5c9 351
f27cf670
AS
352void *
353grow_vect (void *vect, size_t *size, size_t min_size, int element_size)
14f9c5c9 354{
d2e4a39e
AS
355 if (*size < min_size)
356 {
357 *size *= 2;
358 if (*size < min_size)
4c4b4cd2 359 *size = min_size;
f27cf670 360 vect = xrealloc (vect, *size * element_size);
d2e4a39e 361 }
f27cf670 362 return vect;
14f9c5c9
AS
363}
364
365/* True (non-zero) iff TARGET matches FIELD_NAME up to any trailing
4c4b4cd2 366 suffix of FIELD_NAME beginning "___". */
14f9c5c9
AS
367
368static int
ebf56fd3 369field_name_match (const char *field_name, const char *target)
14f9c5c9
AS
370{
371 int len = strlen (target);
d2e4a39e 372 return
4c4b4cd2
PH
373 (strncmp (field_name, target, len) == 0
374 && (field_name[len] == '\0'
375 || (strncmp (field_name + len, "___", 3) == 0
76a01679
JB
376 && strcmp (field_name + strlen (field_name) - 6,
377 "___XVN") != 0)));
14f9c5c9
AS
378}
379
380
4c4b4cd2
PH
381/* Assuming TYPE is a TYPE_CODE_STRUCT, find the field whose name matches
382 FIELD_NAME, and return its index. This function also handles fields
383 whose name have ___ suffixes because the compiler sometimes alters
384 their name by adding such a suffix to represent fields with certain
385 constraints. If the field could not be found, return a negative
386 number if MAYBE_MISSING is set. Otherwise raise an error. */
387
388int
389ada_get_field_index (const struct type *type, const char *field_name,
390 int maybe_missing)
391{
392 int fieldno;
393 for (fieldno = 0; fieldno < TYPE_NFIELDS (type); fieldno++)
394 if (field_name_match (TYPE_FIELD_NAME (type, fieldno), field_name))
395 return fieldno;
396
397 if (!maybe_missing)
323e0a4a 398 error (_("Unable to find field %s in struct %s. Aborting"),
4c4b4cd2
PH
399 field_name, TYPE_NAME (type));
400
401 return -1;
402}
403
404/* The length of the prefix of NAME prior to any "___" suffix. */
14f9c5c9
AS
405
406int
d2e4a39e 407ada_name_prefix_len (const char *name)
14f9c5c9
AS
408{
409 if (name == NULL)
410 return 0;
d2e4a39e 411 else
14f9c5c9 412 {
d2e4a39e 413 const char *p = strstr (name, "___");
14f9c5c9 414 if (p == NULL)
4c4b4cd2 415 return strlen (name);
14f9c5c9 416 else
4c4b4cd2 417 return p - name;
14f9c5c9
AS
418 }
419}
420
4c4b4cd2
PH
421/* Return non-zero if SUFFIX is a suffix of STR.
422 Return zero if STR is null. */
423
14f9c5c9 424static int
d2e4a39e 425is_suffix (const char *str, const char *suffix)
14f9c5c9
AS
426{
427 int len1, len2;
428 if (str == NULL)
429 return 0;
430 len1 = strlen (str);
431 len2 = strlen (suffix);
4c4b4cd2 432 return (len1 >= len2 && strcmp (str + len1 - len2, suffix) == 0);
14f9c5c9
AS
433}
434
435/* Create a value of type TYPE whose contents come from VALADDR, if it
4c4b4cd2
PH
436 is non-null, and whose memory address (in the inferior) is
437 ADDRESS. */
438
d2e4a39e 439struct value *
10a2c479 440value_from_contents_and_address (struct type *type,
fc1a4b47 441 const gdb_byte *valaddr,
4c4b4cd2 442 CORE_ADDR address)
14f9c5c9 443{
d2e4a39e
AS
444 struct value *v = allocate_value (type);
445 if (valaddr == NULL)
dfa52d88 446 set_value_lazy (v, 1);
14f9c5c9 447 else
990a07ab 448 memcpy (value_contents_raw (v), valaddr, TYPE_LENGTH (type));
14f9c5c9
AS
449 VALUE_ADDRESS (v) = address;
450 if (address != 0)
451 VALUE_LVAL (v) = lval_memory;
452 return v;
453}
454
4c4b4cd2
PH
455/* The contents of value VAL, treated as a value of type TYPE. The
456 result is an lval in memory if VAL is. */
14f9c5c9 457
d2e4a39e 458static struct value *
4c4b4cd2 459coerce_unspec_val_to_type (struct value *val, struct type *type)
14f9c5c9 460{
61ee279c 461 type = ada_check_typedef (type);
df407dfe 462 if (value_type (val) == type)
4c4b4cd2 463 return val;
d2e4a39e 464 else
14f9c5c9 465 {
4c4b4cd2
PH
466 struct value *result;
467
468 /* Make sure that the object size is not unreasonable before
469 trying to allocate some memory for it. */
714e53ab 470 check_size (type);
4c4b4cd2
PH
471
472 result = allocate_value (type);
473 VALUE_LVAL (result) = VALUE_LVAL (val);
9bbda503
AC
474 set_value_bitsize (result, value_bitsize (val));
475 set_value_bitpos (result, value_bitpos (val));
df407dfe 476 VALUE_ADDRESS (result) = VALUE_ADDRESS (val) + value_offset (val);
d69fe07e 477 if (value_lazy (val)
df407dfe 478 || TYPE_LENGTH (type) > TYPE_LENGTH (value_type (val)))
dfa52d88 479 set_value_lazy (result, 1);
d2e4a39e 480 else
0fd88904 481 memcpy (value_contents_raw (result), value_contents (val),
4c4b4cd2 482 TYPE_LENGTH (type));
14f9c5c9
AS
483 return result;
484 }
485}
486
fc1a4b47
AC
487static const gdb_byte *
488cond_offset_host (const gdb_byte *valaddr, long offset)
14f9c5c9
AS
489{
490 if (valaddr == NULL)
491 return NULL;
492 else
493 return valaddr + offset;
494}
495
496static CORE_ADDR
ebf56fd3 497cond_offset_target (CORE_ADDR address, long offset)
14f9c5c9
AS
498{
499 if (address == 0)
500 return 0;
d2e4a39e 501 else
14f9c5c9
AS
502 return address + offset;
503}
504
4c4b4cd2
PH
505/* Issue a warning (as for the definition of warning in utils.c, but
506 with exactly one argument rather than ...), unless the limit on the
507 number of warnings has passed during the evaluation of the current
508 expression. */
a2249542 509
77109804
AC
510/* FIXME: cagney/2004-10-10: This function is mimicking the behavior
511 provided by "complaint". */
512static void lim_warning (const char *format, ...) ATTR_FORMAT (printf, 1, 2);
513
14f9c5c9 514static void
a2249542 515lim_warning (const char *format, ...)
14f9c5c9 516{
a2249542
MK
517 va_list args;
518 va_start (args, format);
519
4c4b4cd2
PH
520 warnings_issued += 1;
521 if (warnings_issued <= warning_limit)
a2249542
MK
522 vwarning (format, args);
523
524 va_end (args);
4c4b4cd2
PH
525}
526
714e53ab
PH
527/* Issue an error if the size of an object of type T is unreasonable,
528 i.e. if it would be a bad idea to allocate a value of this type in
529 GDB. */
530
531static void
532check_size (const struct type *type)
533{
534 if (TYPE_LENGTH (type) > varsize_limit)
323e0a4a 535 error (_("object size is larger than varsize-limit"));
714e53ab
PH
536}
537
538
c3e5cd34
PH
539/* Note: would have used MAX_OF_TYPE and MIN_OF_TYPE macros from
540 gdbtypes.h, but some of the necessary definitions in that file
541 seem to have gone missing. */
542
543/* Maximum value of a SIZE-byte signed integer type. */
4c4b4cd2 544static LONGEST
c3e5cd34 545max_of_size (int size)
4c4b4cd2 546{
76a01679
JB
547 LONGEST top_bit = (LONGEST) 1 << (size * 8 - 2);
548 return top_bit | (top_bit - 1);
4c4b4cd2
PH
549}
550
c3e5cd34 551/* Minimum value of a SIZE-byte signed integer type. */
4c4b4cd2 552static LONGEST
c3e5cd34 553min_of_size (int size)
4c4b4cd2 554{
c3e5cd34 555 return -max_of_size (size) - 1;
4c4b4cd2
PH
556}
557
c3e5cd34 558/* Maximum value of a SIZE-byte unsigned integer type. */
4c4b4cd2 559static ULONGEST
c3e5cd34 560umax_of_size (int size)
4c4b4cd2 561{
76a01679
JB
562 ULONGEST top_bit = (ULONGEST) 1 << (size * 8 - 1);
563 return top_bit | (top_bit - 1);
4c4b4cd2
PH
564}
565
c3e5cd34
PH
566/* Maximum value of integral type T, as a signed quantity. */
567static LONGEST
568max_of_type (struct type *t)
4c4b4cd2 569{
c3e5cd34
PH
570 if (TYPE_UNSIGNED (t))
571 return (LONGEST) umax_of_size (TYPE_LENGTH (t));
572 else
573 return max_of_size (TYPE_LENGTH (t));
574}
575
576/* Minimum value of integral type T, as a signed quantity. */
577static LONGEST
578min_of_type (struct type *t)
579{
580 if (TYPE_UNSIGNED (t))
581 return 0;
582 else
583 return min_of_size (TYPE_LENGTH (t));
4c4b4cd2
PH
584}
585
586/* The largest value in the domain of TYPE, a discrete type, as an integer. */
587static struct value *
588discrete_type_high_bound (struct type *type)
589{
76a01679 590 switch (TYPE_CODE (type))
4c4b4cd2
PH
591 {
592 case TYPE_CODE_RANGE:
593 return value_from_longest (TYPE_TARGET_TYPE (type),
76a01679 594 TYPE_HIGH_BOUND (type));
4c4b4cd2 595 case TYPE_CODE_ENUM:
76a01679
JB
596 return
597 value_from_longest (type,
598 TYPE_FIELD_BITPOS (type,
599 TYPE_NFIELDS (type) - 1));
600 case TYPE_CODE_INT:
c3e5cd34 601 return value_from_longest (type, max_of_type (type));
4c4b4cd2 602 default:
323e0a4a 603 error (_("Unexpected type in discrete_type_high_bound."));
4c4b4cd2
PH
604 }
605}
606
607/* The largest value in the domain of TYPE, a discrete type, as an integer. */
608static struct value *
609discrete_type_low_bound (struct type *type)
610{
76a01679 611 switch (TYPE_CODE (type))
4c4b4cd2
PH
612 {
613 case TYPE_CODE_RANGE:
614 return value_from_longest (TYPE_TARGET_TYPE (type),
76a01679 615 TYPE_LOW_BOUND (type));
4c4b4cd2 616 case TYPE_CODE_ENUM:
76a01679
JB
617 return value_from_longest (type, TYPE_FIELD_BITPOS (type, 0));
618 case TYPE_CODE_INT:
c3e5cd34 619 return value_from_longest (type, min_of_type (type));
4c4b4cd2 620 default:
323e0a4a 621 error (_("Unexpected type in discrete_type_low_bound."));
4c4b4cd2
PH
622 }
623}
624
625/* The identity on non-range types. For range types, the underlying
76a01679 626 non-range scalar type. */
4c4b4cd2
PH
627
628static struct type *
629base_type (struct type *type)
630{
631 while (type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE)
632 {
76a01679
JB
633 if (type == TYPE_TARGET_TYPE (type) || TYPE_TARGET_TYPE (type) == NULL)
634 return type;
4c4b4cd2
PH
635 type = TYPE_TARGET_TYPE (type);
636 }
637 return type;
14f9c5c9 638}
4c4b4cd2 639\f
76a01679 640
4c4b4cd2 641 /* Language Selection */
14f9c5c9
AS
642
643/* If the main program is in Ada, return language_ada, otherwise return LANG
644 (the main program is in Ada iif the adainit symbol is found).
645
4c4b4cd2 646 MAIN_PST is not used. */
d2e4a39e 647
14f9c5c9 648enum language
d2e4a39e 649ada_update_initial_language (enum language lang,
4c4b4cd2 650 struct partial_symtab *main_pst)
14f9c5c9 651{
d2e4a39e 652 if (lookup_minimal_symbol ("adainit", (const char *) NULL,
4c4b4cd2
PH
653 (struct objfile *) NULL) != NULL)
654 return language_ada;
14f9c5c9
AS
655
656 return lang;
657}
96d887e8
PH
658
659/* If the main procedure is written in Ada, then return its name.
660 The result is good until the next call. Return NULL if the main
661 procedure doesn't appear to be in Ada. */
662
663char *
664ada_main_name (void)
665{
666 struct minimal_symbol *msym;
667 CORE_ADDR main_program_name_addr;
668 static char main_program_name[1024];
6c038f32 669
96d887e8
PH
670 /* For Ada, the name of the main procedure is stored in a specific
671 string constant, generated by the binder. Look for that symbol,
672 extract its address, and then read that string. If we didn't find
673 that string, then most probably the main procedure is not written
674 in Ada. */
675 msym = lookup_minimal_symbol (ADA_MAIN_PROGRAM_SYMBOL_NAME, NULL, NULL);
676
677 if (msym != NULL)
678 {
679 main_program_name_addr = SYMBOL_VALUE_ADDRESS (msym);
680 if (main_program_name_addr == 0)
323e0a4a 681 error (_("Invalid address for Ada main program name."));
96d887e8
PH
682
683 extract_string (main_program_name_addr, main_program_name);
684 return main_program_name;
685 }
686
687 /* The main procedure doesn't seem to be in Ada. */
688 return NULL;
689}
14f9c5c9 690\f
4c4b4cd2 691 /* Symbols */
d2e4a39e 692
4c4b4cd2
PH
693/* Table of Ada operators and their GNAT-encoded names. Last entry is pair
694 of NULLs. */
14f9c5c9 695
d2e4a39e
AS
696const struct ada_opname_map ada_opname_table[] = {
697 {"Oadd", "\"+\"", BINOP_ADD},
698 {"Osubtract", "\"-\"", BINOP_SUB},
699 {"Omultiply", "\"*\"", BINOP_MUL},
700 {"Odivide", "\"/\"", BINOP_DIV},
701 {"Omod", "\"mod\"", BINOP_MOD},
702 {"Orem", "\"rem\"", BINOP_REM},
703 {"Oexpon", "\"**\"", BINOP_EXP},
704 {"Olt", "\"<\"", BINOP_LESS},
705 {"Ole", "\"<=\"", BINOP_LEQ},
706 {"Ogt", "\">\"", BINOP_GTR},
707 {"Oge", "\">=\"", BINOP_GEQ},
708 {"Oeq", "\"=\"", BINOP_EQUAL},
709 {"One", "\"/=\"", BINOP_NOTEQUAL},
710 {"Oand", "\"and\"", BINOP_BITWISE_AND},
711 {"Oor", "\"or\"", BINOP_BITWISE_IOR},
712 {"Oxor", "\"xor\"", BINOP_BITWISE_XOR},
713 {"Oconcat", "\"&\"", BINOP_CONCAT},
714 {"Oabs", "\"abs\"", UNOP_ABS},
715 {"Onot", "\"not\"", UNOP_LOGICAL_NOT},
716 {"Oadd", "\"+\"", UNOP_PLUS},
717 {"Osubtract", "\"-\"", UNOP_NEG},
718 {NULL, NULL}
14f9c5c9
AS
719};
720
4c4b4cd2
PH
721/* Return non-zero if STR should be suppressed in info listings. */
722
14f9c5c9 723static int
d2e4a39e 724is_suppressed_name (const char *str)
14f9c5c9 725{
4c4b4cd2 726 if (strncmp (str, "_ada_", 5) == 0)
14f9c5c9
AS
727 str += 5;
728 if (str[0] == '_' || str[0] == '\000')
729 return 1;
730 else
731 {
d2e4a39e
AS
732 const char *p;
733 const char *suffix = strstr (str, "___");
14f9c5c9 734 if (suffix != NULL && suffix[3] != 'X')
4c4b4cd2 735 return 1;
14f9c5c9 736 if (suffix == NULL)
4c4b4cd2 737 suffix = str + strlen (str);
d2e4a39e 738 for (p = suffix - 1; p != str; p -= 1)
4c4b4cd2
PH
739 if (isupper (*p))
740 {
741 int i;
742 if (p[0] == 'X' && p[-1] != '_')
743 goto OK;
744 if (*p != 'O')
745 return 1;
746 for (i = 0; ada_opname_table[i].encoded != NULL; i += 1)
747 if (strncmp (ada_opname_table[i].encoded, p,
748 strlen (ada_opname_table[i].encoded)) == 0)
749 goto OK;
750 return 1;
751 OK:;
752 }
14f9c5c9
AS
753 return 0;
754 }
755}
756
4c4b4cd2
PH
757/* The "encoded" form of DECODED, according to GNAT conventions.
758 The result is valid until the next call to ada_encode. */
759
14f9c5c9 760char *
4c4b4cd2 761ada_encode (const char *decoded)
14f9c5c9 762{
4c4b4cd2
PH
763 static char *encoding_buffer = NULL;
764 static size_t encoding_buffer_size = 0;
d2e4a39e 765 const char *p;
14f9c5c9 766 int k;
d2e4a39e 767
4c4b4cd2 768 if (decoded == NULL)
14f9c5c9
AS
769 return NULL;
770
4c4b4cd2
PH
771 GROW_VECT (encoding_buffer, encoding_buffer_size,
772 2 * strlen (decoded) + 10);
14f9c5c9
AS
773
774 k = 0;
4c4b4cd2 775 for (p = decoded; *p != '\0'; p += 1)
14f9c5c9 776 {
4c4b4cd2
PH
777 if (!ADA_RETAIN_DOTS && *p == '.')
778 {
779 encoding_buffer[k] = encoding_buffer[k + 1] = '_';
780 k += 2;
781 }
14f9c5c9 782 else if (*p == '"')
4c4b4cd2
PH
783 {
784 const struct ada_opname_map *mapping;
785
786 for (mapping = ada_opname_table;
1265e4aa
JB
787 mapping->encoded != NULL
788 && strncmp (mapping->decoded, p,
789 strlen (mapping->decoded)) != 0; mapping += 1)
4c4b4cd2
PH
790 ;
791 if (mapping->encoded == NULL)
323e0a4a 792 error (_("invalid Ada operator name: %s"), p);
4c4b4cd2
PH
793 strcpy (encoding_buffer + k, mapping->encoded);
794 k += strlen (mapping->encoded);
795 break;
796 }
d2e4a39e 797 else
4c4b4cd2
PH
798 {
799 encoding_buffer[k] = *p;
800 k += 1;
801 }
14f9c5c9
AS
802 }
803
4c4b4cd2
PH
804 encoding_buffer[k] = '\0';
805 return encoding_buffer;
14f9c5c9
AS
806}
807
808/* Return NAME folded to lower case, or, if surrounded by single
4c4b4cd2
PH
809 quotes, unfolded, but with the quotes stripped away. Result good
810 to next call. */
811
d2e4a39e
AS
812char *
813ada_fold_name (const char *name)
14f9c5c9 814{
d2e4a39e 815 static char *fold_buffer = NULL;
14f9c5c9
AS
816 static size_t fold_buffer_size = 0;
817
818 int len = strlen (name);
d2e4a39e 819 GROW_VECT (fold_buffer, fold_buffer_size, len + 1);
14f9c5c9
AS
820
821 if (name[0] == '\'')
822 {
d2e4a39e
AS
823 strncpy (fold_buffer, name + 1, len - 2);
824 fold_buffer[len - 2] = '\000';
14f9c5c9
AS
825 }
826 else
827 {
828 int i;
829 for (i = 0; i <= len; i += 1)
4c4b4cd2 830 fold_buffer[i] = tolower (name[i]);
14f9c5c9
AS
831 }
832
833 return fold_buffer;
834}
835
529cad9c
PH
836/* Return nonzero if C is either a digit or a lowercase alphabet character. */
837
838static int
839is_lower_alphanum (const char c)
840{
841 return (isdigit (c) || (isalpha (c) && islower (c)));
842}
843
844/* Decode:
845 . Discard trailing .{DIGIT}+, ${DIGIT}+ or ___{DIGIT}+
4c4b4cd2
PH
846 These are suffixes introduced by GNAT5 to nested subprogram
847 names, and do not serve any purpose for the debugger.
529cad9c
PH
848 . Discard final __{DIGIT}+ or $({DIGIT}+(__{DIGIT}+)*)
849 . Discard final N if it follows a lowercase alphanumeric character
850 (protected object subprogram suffix)
851 . Convert other instances of embedded "__" to `.'.
852 . Discard leading _ada_.
853 . Convert operator names to the appropriate quoted symbols.
854 . Remove everything after first ___ if it is followed by
14f9c5c9 855 'X'.
529cad9c
PH
856 . Replace TK__ with __, and a trailing B or TKB with nothing.
857 . Replace _[EB]{DIGIT}+[sb] with nothing (protected object entries)
858 . Put symbols that should be suppressed in <...> brackets.
859 . Remove trailing X[bn]* suffix (indicating names in package bodies).
14f9c5c9 860
4c4b4cd2
PH
861 The resulting string is valid until the next call of ada_decode.
862 If the string is unchanged by demangling, the original string pointer
863 is returned. */
864
865const char *
866ada_decode (const char *encoded)
14f9c5c9
AS
867{
868 int i, j;
869 int len0;
d2e4a39e 870 const char *p;
4c4b4cd2 871 char *decoded;
14f9c5c9 872 int at_start_name;
4c4b4cd2
PH
873 static char *decoding_buffer = NULL;
874 static size_t decoding_buffer_size = 0;
d2e4a39e 875
4c4b4cd2
PH
876 if (strncmp (encoded, "_ada_", 5) == 0)
877 encoded += 5;
14f9c5c9 878
4c4b4cd2 879 if (encoded[0] == '_' || encoded[0] == '<')
14f9c5c9
AS
880 goto Suppress;
881
529cad9c 882 /* Remove trailing .{DIGIT}+ or ___{DIGIT}+ or __{DIGIT}+. */
4c4b4cd2
PH
883 len0 = strlen (encoded);
884 if (len0 > 1 && isdigit (encoded[len0 - 1]))
885 {
886 i = len0 - 2;
887 while (i > 0 && isdigit (encoded[i]))
888 i--;
889 if (i >= 0 && encoded[i] == '.')
890 len0 = i;
529cad9c
PH
891 else if (i >= 0 && encoded[i] == '$')
892 len0 = i;
4c4b4cd2
PH
893 else if (i >= 2 && strncmp (encoded + i - 2, "___", 3) == 0)
894 len0 = i - 2;
529cad9c
PH
895 else if (i >= 1 && strncmp (encoded + i - 1, "__", 2) == 0)
896 len0 = i - 1;
4c4b4cd2
PH
897 }
898
529cad9c
PH
899 /* Remove trailing N. */
900
901 /* Protected entry subprograms are broken into two
902 separate subprograms: The first one is unprotected, and has
903 a 'N' suffix; the second is the protected version, and has
904 the 'P' suffix. The second calls the first one after handling
905 the protection. Since the P subprograms are internally generated,
906 we leave these names undecoded, giving the user a clue that this
907 entity is internal. */
908
909 if (len0 > 1
910 && encoded[len0 - 1] == 'N'
911 && (isdigit (encoded[len0 - 2]) || islower (encoded[len0 - 2])))
912 len0--;
913
4c4b4cd2
PH
914 /* Remove the ___X.* suffix if present. Do not forget to verify that
915 the suffix is located before the current "end" of ENCODED. We want
916 to avoid re-matching parts of ENCODED that have previously been
917 marked as discarded (by decrementing LEN0). */
918 p = strstr (encoded, "___");
919 if (p != NULL && p - encoded < len0 - 3)
14f9c5c9
AS
920 {
921 if (p[3] == 'X')
4c4b4cd2 922 len0 = p - encoded;
14f9c5c9 923 else
4c4b4cd2 924 goto Suppress;
14f9c5c9 925 }
4c4b4cd2
PH
926
927 if (len0 > 3 && strncmp (encoded + len0 - 3, "TKB", 3) == 0)
14f9c5c9 928 len0 -= 3;
76a01679 929
4c4b4cd2 930 if (len0 > 1 && strncmp (encoded + len0 - 1, "B", 1) == 0)
14f9c5c9
AS
931 len0 -= 1;
932
4c4b4cd2
PH
933 /* Make decoded big enough for possible expansion by operator name. */
934 GROW_VECT (decoding_buffer, decoding_buffer_size, 2 * len0 + 1);
935 decoded = decoding_buffer;
14f9c5c9 936
4c4b4cd2 937 if (len0 > 1 && isdigit (encoded[len0 - 1]))
d2e4a39e 938 {
4c4b4cd2
PH
939 i = len0 - 2;
940 while ((i >= 0 && isdigit (encoded[i]))
941 || (i >= 1 && encoded[i] == '_' && isdigit (encoded[i - 1])))
942 i -= 1;
943 if (i > 1 && encoded[i] == '_' && encoded[i - 1] == '_')
944 len0 = i - 1;
945 else if (encoded[i] == '$')
946 len0 = i;
d2e4a39e 947 }
14f9c5c9 948
4c4b4cd2
PH
949 for (i = 0, j = 0; i < len0 && !isalpha (encoded[i]); i += 1, j += 1)
950 decoded[j] = encoded[i];
14f9c5c9
AS
951
952 at_start_name = 1;
953 while (i < len0)
954 {
4c4b4cd2
PH
955 if (at_start_name && encoded[i] == 'O')
956 {
957 int k;
958 for (k = 0; ada_opname_table[k].encoded != NULL; k += 1)
959 {
960 int op_len = strlen (ada_opname_table[k].encoded);
06d5cf63
JB
961 if ((strncmp (ada_opname_table[k].encoded + 1, encoded + i + 1,
962 op_len - 1) == 0)
963 && !isalnum (encoded[i + op_len]))
4c4b4cd2
PH
964 {
965 strcpy (decoded + j, ada_opname_table[k].decoded);
966 at_start_name = 0;
967 i += op_len;
968 j += strlen (ada_opname_table[k].decoded);
969 break;
970 }
971 }
972 if (ada_opname_table[k].encoded != NULL)
973 continue;
974 }
14f9c5c9
AS
975 at_start_name = 0;
976
529cad9c
PH
977 /* Replace "TK__" with "__", which will eventually be translated
978 into "." (just below). */
979
4c4b4cd2
PH
980 if (i < len0 - 4 && strncmp (encoded + i, "TK__", 4) == 0)
981 i += 2;
529cad9c
PH
982
983 /* Remove _E{DIGITS}+[sb] */
984
985 /* Just as for protected object subprograms, there are 2 categories
986 of subprograms created by the compiler for each entry. The first
987 one implements the actual entry code, and has a suffix following
988 the convention above; the second one implements the barrier and
989 uses the same convention as above, except that the 'E' is replaced
990 by a 'B'.
991
992 Just as above, we do not decode the name of barrier functions
993 to give the user a clue that the code he is debugging has been
994 internally generated. */
995
996 if (len0 - i > 3 && encoded [i] == '_' && encoded[i+1] == 'E'
997 && isdigit (encoded[i+2]))
998 {
999 int k = i + 3;
1000
1001 while (k < len0 && isdigit (encoded[k]))
1002 k++;
1003
1004 if (k < len0
1005 && (encoded[k] == 'b' || encoded[k] == 's'))
1006 {
1007 k++;
1008 /* Just as an extra precaution, make sure that if this
1009 suffix is followed by anything else, it is a '_'.
1010 Otherwise, we matched this sequence by accident. */
1011 if (k == len0
1012 || (k < len0 && encoded[k] == '_'))
1013 i = k;
1014 }
1015 }
1016
1017 /* Remove trailing "N" in [a-z0-9]+N__. The N is added by
1018 the GNAT front-end in protected object subprograms. */
1019
1020 if (i < len0 + 3
1021 && encoded[i] == 'N' && encoded[i+1] == '_' && encoded[i+2] == '_')
1022 {
1023 /* Backtrack a bit up until we reach either the begining of
1024 the encoded name, or "__". Make sure that we only find
1025 digits or lowercase characters. */
1026 const char *ptr = encoded + i - 1;
1027
1028 while (ptr >= encoded && is_lower_alphanum (ptr[0]))
1029 ptr--;
1030 if (ptr < encoded
1031 || (ptr > encoded && ptr[0] == '_' && ptr[-1] == '_'))
1032 i++;
1033 }
1034
4c4b4cd2
PH
1035 if (encoded[i] == 'X' && i != 0 && isalnum (encoded[i - 1]))
1036 {
1037 do
1038 i += 1;
1039 while (i < len0 && (encoded[i] == 'b' || encoded[i] == 'n'));
1040 if (i < len0)
1041 goto Suppress;
1042 }
1043 else if (!ADA_RETAIN_DOTS
1044 && i < len0 - 2 && encoded[i] == '_' && encoded[i + 1] == '_')
1045 {
1046 decoded[j] = '.';
1047 at_start_name = 1;
1048 i += 2;
1049 j += 1;
1050 }
14f9c5c9 1051 else
4c4b4cd2
PH
1052 {
1053 decoded[j] = encoded[i];
1054 i += 1;
1055 j += 1;
1056 }
14f9c5c9 1057 }
4c4b4cd2 1058 decoded[j] = '\000';
14f9c5c9 1059
4c4b4cd2
PH
1060 for (i = 0; decoded[i] != '\0'; i += 1)
1061 if (isupper (decoded[i]) || decoded[i] == ' ')
14f9c5c9
AS
1062 goto Suppress;
1063
4c4b4cd2
PH
1064 if (strcmp (decoded, encoded) == 0)
1065 return encoded;
1066 else
1067 return decoded;
14f9c5c9
AS
1068
1069Suppress:
4c4b4cd2
PH
1070 GROW_VECT (decoding_buffer, decoding_buffer_size, strlen (encoded) + 3);
1071 decoded = decoding_buffer;
1072 if (encoded[0] == '<')
1073 strcpy (decoded, encoded);
14f9c5c9 1074 else
4c4b4cd2
PH
1075 sprintf (decoded, "<%s>", encoded);
1076 return decoded;
1077
1078}
1079
1080/* Table for keeping permanent unique copies of decoded names. Once
1081 allocated, names in this table are never released. While this is a
1082 storage leak, it should not be significant unless there are massive
1083 changes in the set of decoded names in successive versions of a
1084 symbol table loaded during a single session. */
1085static struct htab *decoded_names_store;
1086
1087/* Returns the decoded name of GSYMBOL, as for ada_decode, caching it
1088 in the language-specific part of GSYMBOL, if it has not been
1089 previously computed. Tries to save the decoded name in the same
1090 obstack as GSYMBOL, if possible, and otherwise on the heap (so that,
1091 in any case, the decoded symbol has a lifetime at least that of
1092 GSYMBOL).
1093 The GSYMBOL parameter is "mutable" in the C++ sense: logically
1094 const, but nevertheless modified to a semantically equivalent form
1095 when a decoded name is cached in it.
76a01679 1096*/
4c4b4cd2 1097
76a01679
JB
1098char *
1099ada_decode_symbol (const struct general_symbol_info *gsymbol)
4c4b4cd2 1100{
76a01679 1101 char **resultp =
4c4b4cd2
PH
1102 (char **) &gsymbol->language_specific.cplus_specific.demangled_name;
1103 if (*resultp == NULL)
1104 {
1105 const char *decoded = ada_decode (gsymbol->name);
1106 if (gsymbol->bfd_section != NULL)
76a01679
JB
1107 {
1108 bfd *obfd = gsymbol->bfd_section->owner;
1109 if (obfd != NULL)
1110 {
1111 struct objfile *objf;
1112 ALL_OBJFILES (objf)
1113 {
1114 if (obfd == objf->obfd)
1115 {
1116 *resultp = obsavestring (decoded, strlen (decoded),
1117 &objf->objfile_obstack);
1118 break;
1119 }
1120 }
1121 }
1122 }
4c4b4cd2 1123 /* Sometimes, we can't find a corresponding objfile, in which
76a01679
JB
1124 case, we put the result on the heap. Since we only decode
1125 when needed, we hope this usually does not cause a
1126 significant memory leak (FIXME). */
4c4b4cd2 1127 if (*resultp == NULL)
76a01679
JB
1128 {
1129 char **slot = (char **) htab_find_slot (decoded_names_store,
1130 decoded, INSERT);
1131 if (*slot == NULL)
1132 *slot = xstrdup (decoded);
1133 *resultp = *slot;
1134 }
4c4b4cd2 1135 }
14f9c5c9 1136
4c4b4cd2
PH
1137 return *resultp;
1138}
76a01679
JB
1139
1140char *
1141ada_la_decode (const char *encoded, int options)
4c4b4cd2
PH
1142{
1143 return xstrdup (ada_decode (encoded));
14f9c5c9
AS
1144}
1145
1146/* Returns non-zero iff SYM_NAME matches NAME, ignoring any trailing
4c4b4cd2
PH
1147 suffixes that encode debugging information or leading _ada_ on
1148 SYM_NAME (see is_name_suffix commentary for the debugging
1149 information that is ignored). If WILD, then NAME need only match a
1150 suffix of SYM_NAME minus the same suffixes. Also returns 0 if
1151 either argument is NULL. */
14f9c5c9
AS
1152
1153int
d2e4a39e 1154ada_match_name (const char *sym_name, const char *name, int wild)
14f9c5c9
AS
1155{
1156 if (sym_name == NULL || name == NULL)
1157 return 0;
1158 else if (wild)
1159 return wild_match (name, strlen (name), sym_name);
d2e4a39e
AS
1160 else
1161 {
1162 int len_name = strlen (name);
4c4b4cd2
PH
1163 return (strncmp (sym_name, name, len_name) == 0
1164 && is_name_suffix (sym_name + len_name))
1165 || (strncmp (sym_name, "_ada_", 5) == 0
1166 && strncmp (sym_name + 5, name, len_name) == 0
1167 && is_name_suffix (sym_name + len_name + 5));
d2e4a39e 1168 }
14f9c5c9
AS
1169}
1170
4c4b4cd2
PH
1171/* True (non-zero) iff, in Ada mode, the symbol SYM should be
1172 suppressed in info listings. */
14f9c5c9
AS
1173
1174int
ebf56fd3 1175ada_suppress_symbol_printing (struct symbol *sym)
14f9c5c9 1176{
176620f1 1177 if (SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN)
14f9c5c9 1178 return 1;
d2e4a39e 1179 else
4c4b4cd2 1180 return is_suppressed_name (SYMBOL_LINKAGE_NAME (sym));
14f9c5c9 1181}
14f9c5c9 1182\f
d2e4a39e 1183
4c4b4cd2 1184 /* Arrays */
14f9c5c9 1185
4c4b4cd2 1186/* Names of MAX_ADA_DIMENS bounds in P_BOUNDS fields of array descriptors. */
14f9c5c9 1187
d2e4a39e
AS
1188static char *bound_name[] = {
1189 "LB0", "UB0", "LB1", "UB1", "LB2", "UB2", "LB3", "UB3",
14f9c5c9
AS
1190 "LB4", "UB4", "LB5", "UB5", "LB6", "UB6", "LB7", "UB7"
1191};
1192
1193/* Maximum number of array dimensions we are prepared to handle. */
1194
4c4b4cd2 1195#define MAX_ADA_DIMENS (sizeof(bound_name) / (2*sizeof(char *)))
14f9c5c9 1196
4c4b4cd2 1197/* Like modify_field, but allows bitpos > wordlength. */
14f9c5c9
AS
1198
1199static void
ebf56fd3 1200modify_general_field (char *addr, LONGEST fieldval, int bitpos, int bitsize)
14f9c5c9 1201{
4c4b4cd2 1202 modify_field (addr + bitpos / 8, fieldval, bitpos % 8, bitsize);
14f9c5c9
AS
1203}
1204
1205
4c4b4cd2
PH
1206/* The desc_* routines return primitive portions of array descriptors
1207 (fat pointers). */
14f9c5c9
AS
1208
1209/* The descriptor or array type, if any, indicated by TYPE; removes
4c4b4cd2
PH
1210 level of indirection, if needed. */
1211
d2e4a39e
AS
1212static struct type *
1213desc_base_type (struct type *type)
14f9c5c9
AS
1214{
1215 if (type == NULL)
1216 return NULL;
61ee279c 1217 type = ada_check_typedef (type);
1265e4aa
JB
1218 if (type != NULL
1219 && (TYPE_CODE (type) == TYPE_CODE_PTR
1220 || TYPE_CODE (type) == TYPE_CODE_REF))
61ee279c 1221 return ada_check_typedef (TYPE_TARGET_TYPE (type));
14f9c5c9
AS
1222 else
1223 return type;
1224}
1225
4c4b4cd2
PH
1226/* True iff TYPE indicates a "thin" array pointer type. */
1227
14f9c5c9 1228static int
d2e4a39e 1229is_thin_pntr (struct type *type)
14f9c5c9 1230{
d2e4a39e 1231 return
14f9c5c9
AS
1232 is_suffix (ada_type_name (desc_base_type (type)), "___XUT")
1233 || is_suffix (ada_type_name (desc_base_type (type)), "___XUT___XVE");
1234}
1235
4c4b4cd2
PH
1236/* The descriptor type for thin pointer type TYPE. */
1237
d2e4a39e
AS
1238static struct type *
1239thin_descriptor_type (struct type *type)
14f9c5c9 1240{
d2e4a39e 1241 struct type *base_type = desc_base_type (type);
14f9c5c9
AS
1242 if (base_type == NULL)
1243 return NULL;
1244 if (is_suffix (ada_type_name (base_type), "___XVE"))
1245 return base_type;
d2e4a39e 1246 else
14f9c5c9 1247 {
d2e4a39e 1248 struct type *alt_type = ada_find_parallel_type (base_type, "___XVE");
14f9c5c9 1249 if (alt_type == NULL)
4c4b4cd2 1250 return base_type;
14f9c5c9 1251 else
4c4b4cd2 1252 return alt_type;
14f9c5c9
AS
1253 }
1254}
1255
4c4b4cd2
PH
1256/* A pointer to the array data for thin-pointer value VAL. */
1257
d2e4a39e
AS
1258static struct value *
1259thin_data_pntr (struct value *val)
14f9c5c9 1260{
df407dfe 1261 struct type *type = value_type (val);
14f9c5c9 1262 if (TYPE_CODE (type) == TYPE_CODE_PTR)
d2e4a39e 1263 return value_cast (desc_data_type (thin_descriptor_type (type)),
4c4b4cd2 1264 value_copy (val));
d2e4a39e 1265 else
14f9c5c9 1266 return value_from_longest (desc_data_type (thin_descriptor_type (type)),
df407dfe 1267 VALUE_ADDRESS (val) + value_offset (val));
14f9c5c9
AS
1268}
1269
4c4b4cd2
PH
1270/* True iff TYPE indicates a "thick" array pointer type. */
1271
14f9c5c9 1272static int
d2e4a39e 1273is_thick_pntr (struct type *type)
14f9c5c9
AS
1274{
1275 type = desc_base_type (type);
1276 return (type != NULL && TYPE_CODE (type) == TYPE_CODE_STRUCT
4c4b4cd2 1277 && lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL);
14f9c5c9
AS
1278}
1279
4c4b4cd2
PH
1280/* If TYPE is the type of an array descriptor (fat or thin pointer) or a
1281 pointer to one, the type of its bounds data; otherwise, NULL. */
76a01679 1282
d2e4a39e
AS
1283static struct type *
1284desc_bounds_type (struct type *type)
14f9c5c9 1285{
d2e4a39e 1286 struct type *r;
14f9c5c9
AS
1287
1288 type = desc_base_type (type);
1289
1290 if (type == NULL)
1291 return NULL;
1292 else if (is_thin_pntr (type))
1293 {
1294 type = thin_descriptor_type (type);
1295 if (type == NULL)
4c4b4cd2 1296 return NULL;
14f9c5c9
AS
1297 r = lookup_struct_elt_type (type, "BOUNDS", 1);
1298 if (r != NULL)
61ee279c 1299 return ada_check_typedef (r);
14f9c5c9
AS
1300 }
1301 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
1302 {
1303 r = lookup_struct_elt_type (type, "P_BOUNDS", 1);
1304 if (r != NULL)
61ee279c 1305 return ada_check_typedef (TYPE_TARGET_TYPE (ada_check_typedef (r)));
14f9c5c9
AS
1306 }
1307 return NULL;
1308}
1309
1310/* If ARR is an array descriptor (fat or thin pointer), or pointer to
4c4b4cd2
PH
1311 one, a pointer to its bounds data. Otherwise NULL. */
1312
d2e4a39e
AS
1313static struct value *
1314desc_bounds (struct value *arr)
14f9c5c9 1315{
df407dfe 1316 struct type *type = ada_check_typedef (value_type (arr));
d2e4a39e 1317 if (is_thin_pntr (type))
14f9c5c9 1318 {
d2e4a39e 1319 struct type *bounds_type =
4c4b4cd2 1320 desc_bounds_type (thin_descriptor_type (type));
14f9c5c9
AS
1321 LONGEST addr;
1322
4cdfadb1 1323 if (bounds_type == NULL)
323e0a4a 1324 error (_("Bad GNAT array descriptor"));
14f9c5c9
AS
1325
1326 /* NOTE: The following calculation is not really kosher, but
d2e4a39e 1327 since desc_type is an XVE-encoded type (and shouldn't be),
4c4b4cd2 1328 the correct calculation is a real pain. FIXME (and fix GCC). */
14f9c5c9 1329 if (TYPE_CODE (type) == TYPE_CODE_PTR)
4c4b4cd2 1330 addr = value_as_long (arr);
d2e4a39e 1331 else
df407dfe 1332 addr = VALUE_ADDRESS (arr) + value_offset (arr);
14f9c5c9 1333
d2e4a39e 1334 return
4c4b4cd2
PH
1335 value_from_longest (lookup_pointer_type (bounds_type),
1336 addr - TYPE_LENGTH (bounds_type));
14f9c5c9
AS
1337 }
1338
1339 else if (is_thick_pntr (type))
d2e4a39e 1340 return value_struct_elt (&arr, NULL, "P_BOUNDS", NULL,
323e0a4a 1341 _("Bad GNAT array descriptor"));
14f9c5c9
AS
1342 else
1343 return NULL;
1344}
1345
4c4b4cd2
PH
1346/* If TYPE is the type of an array-descriptor (fat pointer), the bit
1347 position of the field containing the address of the bounds data. */
1348
14f9c5c9 1349static int
d2e4a39e 1350fat_pntr_bounds_bitpos (struct type *type)
14f9c5c9
AS
1351{
1352 return TYPE_FIELD_BITPOS (desc_base_type (type), 1);
1353}
1354
1355/* If TYPE is the type of an array-descriptor (fat pointer), the bit
4c4b4cd2
PH
1356 size of the field containing the address of the bounds data. */
1357
14f9c5c9 1358static int
d2e4a39e 1359fat_pntr_bounds_bitsize (struct type *type)
14f9c5c9
AS
1360{
1361 type = desc_base_type (type);
1362
d2e4a39e 1363 if (TYPE_FIELD_BITSIZE (type, 1) > 0)
14f9c5c9
AS
1364 return TYPE_FIELD_BITSIZE (type, 1);
1365 else
61ee279c 1366 return 8 * TYPE_LENGTH (ada_check_typedef (TYPE_FIELD_TYPE (type, 1)));
14f9c5c9
AS
1367}
1368
4c4b4cd2 1369/* If TYPE is the type of an array descriptor (fat or thin pointer) or a
14f9c5c9 1370 pointer to one, the type of its array data (a
4c4b4cd2
PH
1371 pointer-to-array-with-no-bounds type); otherwise, NULL. Use
1372 ada_type_of_array to get an array type with bounds data. */
1373
d2e4a39e
AS
1374static struct type *
1375desc_data_type (struct type *type)
14f9c5c9
AS
1376{
1377 type = desc_base_type (type);
1378
4c4b4cd2 1379 /* NOTE: The following is bogus; see comment in desc_bounds. */
14f9c5c9 1380 if (is_thin_pntr (type))
d2e4a39e
AS
1381 return lookup_pointer_type
1382 (desc_base_type (TYPE_FIELD_TYPE (thin_descriptor_type (type), 1)));
14f9c5c9
AS
1383 else if (is_thick_pntr (type))
1384 return lookup_struct_elt_type (type, "P_ARRAY", 1);
1385 else
1386 return NULL;
1387}
1388
1389/* If ARR is an array descriptor (fat or thin pointer), a pointer to
1390 its array data. */
4c4b4cd2 1391
d2e4a39e
AS
1392static struct value *
1393desc_data (struct value *arr)
14f9c5c9 1394{
df407dfe 1395 struct type *type = value_type (arr);
14f9c5c9
AS
1396 if (is_thin_pntr (type))
1397 return thin_data_pntr (arr);
1398 else if (is_thick_pntr (type))
d2e4a39e 1399 return value_struct_elt (&arr, NULL, "P_ARRAY", NULL,
323e0a4a 1400 _("Bad GNAT array descriptor"));
14f9c5c9
AS
1401 else
1402 return NULL;
1403}
1404
1405
1406/* If TYPE is the type of an array-descriptor (fat pointer), the bit
4c4b4cd2
PH
1407 position of the field containing the address of the data. */
1408
14f9c5c9 1409static int
d2e4a39e 1410fat_pntr_data_bitpos (struct type *type)
14f9c5c9
AS
1411{
1412 return TYPE_FIELD_BITPOS (desc_base_type (type), 0);
1413}
1414
1415/* If TYPE is the type of an array-descriptor (fat pointer), the bit
4c4b4cd2
PH
1416 size of the field containing the address of the data. */
1417
14f9c5c9 1418static int
d2e4a39e 1419fat_pntr_data_bitsize (struct type *type)
14f9c5c9
AS
1420{
1421 type = desc_base_type (type);
1422
1423 if (TYPE_FIELD_BITSIZE (type, 0) > 0)
1424 return TYPE_FIELD_BITSIZE (type, 0);
d2e4a39e 1425 else
14f9c5c9
AS
1426 return TARGET_CHAR_BIT * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 0));
1427}
1428
4c4b4cd2 1429/* If BOUNDS is an array-bounds structure (or pointer to one), return
14f9c5c9 1430 the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
4c4b4cd2
PH
1431 bound, if WHICH is 1. The first bound is I=1. */
1432
d2e4a39e
AS
1433static struct value *
1434desc_one_bound (struct value *bounds, int i, int which)
14f9c5c9 1435{
d2e4a39e 1436 return value_struct_elt (&bounds, NULL, bound_name[2 * i + which - 2], NULL,
323e0a4a 1437 _("Bad GNAT array descriptor bounds"));
14f9c5c9
AS
1438}
1439
1440/* If BOUNDS is an array-bounds structure type, return the bit position
1441 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
4c4b4cd2
PH
1442 bound, if WHICH is 1. The first bound is I=1. */
1443
14f9c5c9 1444static int
d2e4a39e 1445desc_bound_bitpos (struct type *type, int i, int which)
14f9c5c9 1446{
d2e4a39e 1447 return TYPE_FIELD_BITPOS (desc_base_type (type), 2 * i + which - 2);
14f9c5c9
AS
1448}
1449
1450/* If BOUNDS is an array-bounds structure type, return the bit field size
1451 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
4c4b4cd2
PH
1452 bound, if WHICH is 1. The first bound is I=1. */
1453
76a01679 1454static int
d2e4a39e 1455desc_bound_bitsize (struct type *type, int i, int which)
14f9c5c9
AS
1456{
1457 type = desc_base_type (type);
1458
d2e4a39e
AS
1459 if (TYPE_FIELD_BITSIZE (type, 2 * i + which - 2) > 0)
1460 return TYPE_FIELD_BITSIZE (type, 2 * i + which - 2);
1461 else
1462 return 8 * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 2 * i + which - 2));
14f9c5c9
AS
1463}
1464
1465/* If TYPE is the type of an array-bounds structure, the type of its
4c4b4cd2
PH
1466 Ith bound (numbering from 1). Otherwise, NULL. */
1467
d2e4a39e
AS
1468static struct type *
1469desc_index_type (struct type *type, int i)
14f9c5c9
AS
1470{
1471 type = desc_base_type (type);
1472
1473 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
d2e4a39e
AS
1474 return lookup_struct_elt_type (type, bound_name[2 * i - 2], 1);
1475 else
14f9c5c9
AS
1476 return NULL;
1477}
1478
4c4b4cd2
PH
1479/* The number of index positions in the array-bounds type TYPE.
1480 Return 0 if TYPE is NULL. */
1481
14f9c5c9 1482static int
d2e4a39e 1483desc_arity (struct type *type)
14f9c5c9
AS
1484{
1485 type = desc_base_type (type);
1486
1487 if (type != NULL)
1488 return TYPE_NFIELDS (type) / 2;
1489 return 0;
1490}
1491
4c4b4cd2
PH
1492/* Non-zero iff TYPE is a simple array type (not a pointer to one) or
1493 an array descriptor type (representing an unconstrained array
1494 type). */
1495
76a01679
JB
1496static int
1497ada_is_direct_array_type (struct type *type)
4c4b4cd2
PH
1498{
1499 if (type == NULL)
1500 return 0;
61ee279c 1501 type = ada_check_typedef (type);
4c4b4cd2 1502 return (TYPE_CODE (type) == TYPE_CODE_ARRAY
76a01679 1503 || ada_is_array_descriptor_type (type));
4c4b4cd2
PH
1504}
1505
52ce6436
PH
1506/* Non-zero iff TYPE represents any kind of array in Ada, or a pointer
1507 * to one. */
1508
1509int
1510ada_is_array_type (struct type *type)
1511{
1512 while (type != NULL
1513 && (TYPE_CODE (type) == TYPE_CODE_PTR
1514 || TYPE_CODE (type) == TYPE_CODE_REF))
1515 type = TYPE_TARGET_TYPE (type);
1516 return ada_is_direct_array_type (type);
1517}
1518
4c4b4cd2 1519/* Non-zero iff TYPE is a simple array type or pointer to one. */
14f9c5c9 1520
14f9c5c9 1521int
4c4b4cd2 1522ada_is_simple_array_type (struct type *type)
14f9c5c9
AS
1523{
1524 if (type == NULL)
1525 return 0;
61ee279c 1526 type = ada_check_typedef (type);
14f9c5c9 1527 return (TYPE_CODE (type) == TYPE_CODE_ARRAY
4c4b4cd2
PH
1528 || (TYPE_CODE (type) == TYPE_CODE_PTR
1529 && TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_ARRAY));
14f9c5c9
AS
1530}
1531
4c4b4cd2
PH
1532/* Non-zero iff TYPE belongs to a GNAT array descriptor. */
1533
14f9c5c9 1534int
4c4b4cd2 1535ada_is_array_descriptor_type (struct type *type)
14f9c5c9 1536{
d2e4a39e 1537 struct type *data_type = desc_data_type (type);
14f9c5c9
AS
1538
1539 if (type == NULL)
1540 return 0;
61ee279c 1541 type = ada_check_typedef (type);
d2e4a39e 1542 return
14f9c5c9
AS
1543 data_type != NULL
1544 && ((TYPE_CODE (data_type) == TYPE_CODE_PTR
4c4b4cd2
PH
1545 && TYPE_TARGET_TYPE (data_type) != NULL
1546 && TYPE_CODE (TYPE_TARGET_TYPE (data_type)) == TYPE_CODE_ARRAY)
1265e4aa 1547 || TYPE_CODE (data_type) == TYPE_CODE_ARRAY)
14f9c5c9
AS
1548 && desc_arity (desc_bounds_type (type)) > 0;
1549}
1550
1551/* Non-zero iff type is a partially mal-formed GNAT array
4c4b4cd2 1552 descriptor. FIXME: This is to compensate for some problems with
14f9c5c9 1553 debugging output from GNAT. Re-examine periodically to see if it
4c4b4cd2
PH
1554 is still needed. */
1555
14f9c5c9 1556int
ebf56fd3 1557ada_is_bogus_array_descriptor (struct type *type)
14f9c5c9 1558{
d2e4a39e 1559 return
14f9c5c9
AS
1560 type != NULL
1561 && TYPE_CODE (type) == TYPE_CODE_STRUCT
1562 && (lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL
4c4b4cd2
PH
1563 || lookup_struct_elt_type (type, "P_ARRAY", 1) != NULL)
1564 && !ada_is_array_descriptor_type (type);
14f9c5c9
AS
1565}
1566
1567
4c4b4cd2 1568/* If ARR has a record type in the form of a standard GNAT array descriptor,
14f9c5c9 1569 (fat pointer) returns the type of the array data described---specifically,
4c4b4cd2 1570 a pointer-to-array type. If BOUNDS is non-zero, the bounds data are filled
14f9c5c9 1571 in from the descriptor; otherwise, they are left unspecified. If
4c4b4cd2
PH
1572 the ARR denotes a null array descriptor and BOUNDS is non-zero,
1573 returns NULL. The result is simply the type of ARR if ARR is not
14f9c5c9 1574 a descriptor. */
d2e4a39e
AS
1575struct type *
1576ada_type_of_array (struct value *arr, int bounds)
14f9c5c9 1577{
df407dfe
AC
1578 if (ada_is_packed_array_type (value_type (arr)))
1579 return decode_packed_array_type (value_type (arr));
14f9c5c9 1580
df407dfe
AC
1581 if (!ada_is_array_descriptor_type (value_type (arr)))
1582 return value_type (arr);
d2e4a39e
AS
1583
1584 if (!bounds)
1585 return
df407dfe 1586 ada_check_typedef (TYPE_TARGET_TYPE (desc_data_type (value_type (arr))));
14f9c5c9
AS
1587 else
1588 {
d2e4a39e 1589 struct type *elt_type;
14f9c5c9 1590 int arity;
d2e4a39e 1591 struct value *descriptor;
df407dfe 1592 struct objfile *objf = TYPE_OBJFILE (value_type (arr));
14f9c5c9 1593
df407dfe
AC
1594 elt_type = ada_array_element_type (value_type (arr), -1);
1595 arity = ada_array_arity (value_type (arr));
14f9c5c9 1596
d2e4a39e 1597 if (elt_type == NULL || arity == 0)
df407dfe 1598 return ada_check_typedef (value_type (arr));
14f9c5c9
AS
1599
1600 descriptor = desc_bounds (arr);
d2e4a39e 1601 if (value_as_long (descriptor) == 0)
4c4b4cd2 1602 return NULL;
d2e4a39e 1603 while (arity > 0)
4c4b4cd2
PH
1604 {
1605 struct type *range_type = alloc_type (objf);
1606 struct type *array_type = alloc_type (objf);
1607 struct value *low = desc_one_bound (descriptor, arity, 0);
1608 struct value *high = desc_one_bound (descriptor, arity, 1);
1609 arity -= 1;
1610
df407dfe 1611 create_range_type (range_type, value_type (low),
529cad9c
PH
1612 longest_to_int (value_as_long (low)),
1613 longest_to_int (value_as_long (high)));
4c4b4cd2
PH
1614 elt_type = create_array_type (array_type, elt_type, range_type);
1615 }
14f9c5c9
AS
1616
1617 return lookup_pointer_type (elt_type);
1618 }
1619}
1620
1621/* If ARR does not represent an array, returns ARR unchanged.
4c4b4cd2
PH
1622 Otherwise, returns either a standard GDB array with bounds set
1623 appropriately or, if ARR is a non-null fat pointer, a pointer to a standard
1624 GDB array. Returns NULL if ARR is a null fat pointer. */
1625
d2e4a39e
AS
1626struct value *
1627ada_coerce_to_simple_array_ptr (struct value *arr)
14f9c5c9 1628{
df407dfe 1629 if (ada_is_array_descriptor_type (value_type (arr)))
14f9c5c9 1630 {
d2e4a39e 1631 struct type *arrType = ada_type_of_array (arr, 1);
14f9c5c9 1632 if (arrType == NULL)
4c4b4cd2 1633 return NULL;
14f9c5c9
AS
1634 return value_cast (arrType, value_copy (desc_data (arr)));
1635 }
df407dfe 1636 else if (ada_is_packed_array_type (value_type (arr)))
14f9c5c9
AS
1637 return decode_packed_array (arr);
1638 else
1639 return arr;
1640}
1641
1642/* If ARR does not represent an array, returns ARR unchanged.
1643 Otherwise, returns a standard GDB array describing ARR (which may
4c4b4cd2
PH
1644 be ARR itself if it already is in the proper form). */
1645
1646static struct value *
d2e4a39e 1647ada_coerce_to_simple_array (struct value *arr)
14f9c5c9 1648{
df407dfe 1649 if (ada_is_array_descriptor_type (value_type (arr)))
14f9c5c9 1650 {
d2e4a39e 1651 struct value *arrVal = ada_coerce_to_simple_array_ptr (arr);
14f9c5c9 1652 if (arrVal == NULL)
323e0a4a 1653 error (_("Bounds unavailable for null array pointer."));
529cad9c 1654 check_size (TYPE_TARGET_TYPE (value_type (arrVal)));
14f9c5c9
AS
1655 return value_ind (arrVal);
1656 }
df407dfe 1657 else if (ada_is_packed_array_type (value_type (arr)))
14f9c5c9 1658 return decode_packed_array (arr);
d2e4a39e 1659 else
14f9c5c9
AS
1660 return arr;
1661}
1662
1663/* If TYPE represents a GNAT array type, return it translated to an
1664 ordinary GDB array type (possibly with BITSIZE fields indicating
4c4b4cd2
PH
1665 packing). For other types, is the identity. */
1666
d2e4a39e
AS
1667struct type *
1668ada_coerce_to_simple_array_type (struct type *type)
14f9c5c9 1669{
d2e4a39e
AS
1670 struct value *mark = value_mark ();
1671 struct value *dummy = value_from_longest (builtin_type_long, 0);
1672 struct type *result;
04624583 1673 deprecated_set_value_type (dummy, type);
14f9c5c9 1674 result = ada_type_of_array (dummy, 0);
4c4b4cd2 1675 value_free_to_mark (mark);
14f9c5c9
AS
1676 return result;
1677}
1678
4c4b4cd2
PH
1679/* Non-zero iff TYPE represents a standard GNAT packed-array type. */
1680
14f9c5c9 1681int
d2e4a39e 1682ada_is_packed_array_type (struct type *type)
14f9c5c9
AS
1683{
1684 if (type == NULL)
1685 return 0;
4c4b4cd2 1686 type = desc_base_type (type);
61ee279c 1687 type = ada_check_typedef (type);
d2e4a39e 1688 return
14f9c5c9
AS
1689 ada_type_name (type) != NULL
1690 && strstr (ada_type_name (type), "___XP") != NULL;
1691}
1692
1693/* Given that TYPE is a standard GDB array type with all bounds filled
1694 in, and that the element size of its ultimate scalar constituents
1695 (that is, either its elements, or, if it is an array of arrays, its
1696 elements' elements, etc.) is *ELT_BITS, return an identical type,
1697 but with the bit sizes of its elements (and those of any
1698 constituent arrays) recorded in the BITSIZE components of its
4c4b4cd2
PH
1699 TYPE_FIELD_BITSIZE values, and with *ELT_BITS set to its total size
1700 in bits. */
1701
d2e4a39e
AS
1702static struct type *
1703packed_array_type (struct type *type, long *elt_bits)
14f9c5c9 1704{
d2e4a39e
AS
1705 struct type *new_elt_type;
1706 struct type *new_type;
14f9c5c9
AS
1707 LONGEST low_bound, high_bound;
1708
61ee279c 1709 type = ada_check_typedef (type);
14f9c5c9
AS
1710 if (TYPE_CODE (type) != TYPE_CODE_ARRAY)
1711 return type;
1712
1713 new_type = alloc_type (TYPE_OBJFILE (type));
61ee279c 1714 new_elt_type = packed_array_type (ada_check_typedef (TYPE_TARGET_TYPE (type)),
4c4b4cd2 1715 elt_bits);
14f9c5c9
AS
1716 create_array_type (new_type, new_elt_type, TYPE_FIELD_TYPE (type, 0));
1717 TYPE_FIELD_BITSIZE (new_type, 0) = *elt_bits;
1718 TYPE_NAME (new_type) = ada_type_name (type);
1719
d2e4a39e 1720 if (get_discrete_bounds (TYPE_FIELD_TYPE (type, 0),
4c4b4cd2 1721 &low_bound, &high_bound) < 0)
14f9c5c9
AS
1722 low_bound = high_bound = 0;
1723 if (high_bound < low_bound)
1724 *elt_bits = TYPE_LENGTH (new_type) = 0;
d2e4a39e 1725 else
14f9c5c9
AS
1726 {
1727 *elt_bits *= (high_bound - low_bound + 1);
d2e4a39e 1728 TYPE_LENGTH (new_type) =
4c4b4cd2 1729 (*elt_bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
14f9c5c9
AS
1730 }
1731
4c4b4cd2 1732 TYPE_FLAGS (new_type) |= TYPE_FLAG_FIXED_INSTANCE;
14f9c5c9
AS
1733 return new_type;
1734}
1735
4c4b4cd2
PH
1736/* The array type encoded by TYPE, where ada_is_packed_array_type (TYPE). */
1737
d2e4a39e
AS
1738static struct type *
1739decode_packed_array_type (struct type *type)
1740{
4c4b4cd2 1741 struct symbol *sym;
d2e4a39e 1742 struct block **blocks;
61ee279c 1743 const char *raw_name = ada_type_name (ada_check_typedef (type));
d2e4a39e
AS
1744 char *name = (char *) alloca (strlen (raw_name) + 1);
1745 char *tail = strstr (raw_name, "___XP");
1746 struct type *shadow_type;
14f9c5c9
AS
1747 long bits;
1748 int i, n;
1749
4c4b4cd2
PH
1750 type = desc_base_type (type);
1751
14f9c5c9
AS
1752 memcpy (name, raw_name, tail - raw_name);
1753 name[tail - raw_name] = '\000';
1754
4c4b4cd2
PH
1755 sym = standard_lookup (name, get_selected_block (0), VAR_DOMAIN);
1756 if (sym == NULL || SYMBOL_TYPE (sym) == NULL)
14f9c5c9 1757 {
323e0a4a 1758 lim_warning (_("could not find bounds information on packed array"));
14f9c5c9
AS
1759 return NULL;
1760 }
4c4b4cd2 1761 shadow_type = SYMBOL_TYPE (sym);
14f9c5c9
AS
1762
1763 if (TYPE_CODE (shadow_type) != TYPE_CODE_ARRAY)
1764 {
323e0a4a 1765 lim_warning (_("could not understand bounds information on packed array"));
14f9c5c9
AS
1766 return NULL;
1767 }
d2e4a39e 1768
14f9c5c9
AS
1769 if (sscanf (tail + sizeof ("___XP") - 1, "%ld", &bits) != 1)
1770 {
4c4b4cd2 1771 lim_warning
323e0a4a 1772 (_("could not understand bit size information on packed array"));
14f9c5c9
AS
1773 return NULL;
1774 }
d2e4a39e 1775
14f9c5c9
AS
1776 return packed_array_type (shadow_type, &bits);
1777}
1778
4c4b4cd2 1779/* Given that ARR is a struct value *indicating a GNAT packed array,
14f9c5c9
AS
1780 returns a simple array that denotes that array. Its type is a
1781 standard GDB array type except that the BITSIZEs of the array
1782 target types are set to the number of bits in each element, and the
4c4b4cd2 1783 type length is set appropriately. */
14f9c5c9 1784
d2e4a39e
AS
1785static struct value *
1786decode_packed_array (struct value *arr)
14f9c5c9 1787{
4c4b4cd2 1788 struct type *type;
14f9c5c9 1789
4c4b4cd2 1790 arr = ada_coerce_ref (arr);
df407dfe 1791 if (TYPE_CODE (value_type (arr)) == TYPE_CODE_PTR)
4c4b4cd2
PH
1792 arr = ada_value_ind (arr);
1793
df407dfe 1794 type = decode_packed_array_type (value_type (arr));
14f9c5c9
AS
1795 if (type == NULL)
1796 {
323e0a4a 1797 error (_("can't unpack array"));
14f9c5c9
AS
1798 return NULL;
1799 }
61ee279c 1800
df407dfe 1801 if (BITS_BIG_ENDIAN && ada_is_modular_type (value_type (arr)))
61ee279c
PH
1802 {
1803 /* This is a (right-justified) modular type representing a packed
1804 array with no wrapper. In order to interpret the value through
1805 the (left-justified) packed array type we just built, we must
1806 first left-justify it. */
1807 int bit_size, bit_pos;
1808 ULONGEST mod;
1809
df407dfe 1810 mod = ada_modulus (value_type (arr)) - 1;
61ee279c
PH
1811 bit_size = 0;
1812 while (mod > 0)
1813 {
1814 bit_size += 1;
1815 mod >>= 1;
1816 }
df407dfe 1817 bit_pos = HOST_CHAR_BIT * TYPE_LENGTH (value_type (arr)) - bit_size;
61ee279c
PH
1818 arr = ada_value_primitive_packed_val (arr, NULL,
1819 bit_pos / HOST_CHAR_BIT,
1820 bit_pos % HOST_CHAR_BIT,
1821 bit_size,
1822 type);
1823 }
1824
4c4b4cd2 1825 return coerce_unspec_val_to_type (arr, type);
14f9c5c9
AS
1826}
1827
1828
1829/* The value of the element of packed array ARR at the ARITY indices
4c4b4cd2 1830 given in IND. ARR must be a simple array. */
14f9c5c9 1831
d2e4a39e
AS
1832static struct value *
1833value_subscript_packed (struct value *arr, int arity, struct value **ind)
14f9c5c9
AS
1834{
1835 int i;
1836 int bits, elt_off, bit_off;
1837 long elt_total_bit_offset;
d2e4a39e
AS
1838 struct type *elt_type;
1839 struct value *v;
14f9c5c9
AS
1840
1841 bits = 0;
1842 elt_total_bit_offset = 0;
df407dfe 1843 elt_type = ada_check_typedef (value_type (arr));
d2e4a39e 1844 for (i = 0; i < arity; i += 1)
14f9c5c9 1845 {
d2e4a39e 1846 if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY
4c4b4cd2
PH
1847 || TYPE_FIELD_BITSIZE (elt_type, 0) == 0)
1848 error
323e0a4a 1849 (_("attempt to do packed indexing of something other than a packed array"));
14f9c5c9 1850 else
4c4b4cd2
PH
1851 {
1852 struct type *range_type = TYPE_INDEX_TYPE (elt_type);
1853 LONGEST lowerbound, upperbound;
1854 LONGEST idx;
1855
1856 if (get_discrete_bounds (range_type, &lowerbound, &upperbound) < 0)
1857 {
323e0a4a 1858 lim_warning (_("don't know bounds of array"));
4c4b4cd2
PH
1859 lowerbound = upperbound = 0;
1860 }
1861
1862 idx = value_as_long (value_pos_atr (ind[i]));
1863 if (idx < lowerbound || idx > upperbound)
323e0a4a 1864 lim_warning (_("packed array index %ld out of bounds"), (long) idx);
4c4b4cd2
PH
1865 bits = TYPE_FIELD_BITSIZE (elt_type, 0);
1866 elt_total_bit_offset += (idx - lowerbound) * bits;
61ee279c 1867 elt_type = ada_check_typedef (TYPE_TARGET_TYPE (elt_type));
4c4b4cd2 1868 }
14f9c5c9
AS
1869 }
1870 elt_off = elt_total_bit_offset / HOST_CHAR_BIT;
1871 bit_off = elt_total_bit_offset % HOST_CHAR_BIT;
d2e4a39e
AS
1872
1873 v = ada_value_primitive_packed_val (arr, NULL, elt_off, bit_off,
4c4b4cd2 1874 bits, elt_type);
14f9c5c9
AS
1875 return v;
1876}
1877
4c4b4cd2 1878/* Non-zero iff TYPE includes negative integer values. */
14f9c5c9
AS
1879
1880static int
d2e4a39e 1881has_negatives (struct type *type)
14f9c5c9 1882{
d2e4a39e
AS
1883 switch (TYPE_CODE (type))
1884 {
1885 default:
1886 return 0;
1887 case TYPE_CODE_INT:
1888 return !TYPE_UNSIGNED (type);
1889 case TYPE_CODE_RANGE:
1890 return TYPE_LOW_BOUND (type) < 0;
1891 }
14f9c5c9 1892}
d2e4a39e 1893
14f9c5c9
AS
1894
1895/* Create a new value of type TYPE from the contents of OBJ starting
1896 at byte OFFSET, and bit offset BIT_OFFSET within that byte,
1897 proceeding for BIT_SIZE bits. If OBJ is an lval in memory, then
4c4b4cd2
PH
1898 assigning through the result will set the field fetched from.
1899 VALADDR is ignored unless OBJ is NULL, in which case,
1900 VALADDR+OFFSET must address the start of storage containing the
1901 packed value. The value returned in this case is never an lval.
1902 Assumes 0 <= BIT_OFFSET < HOST_CHAR_BIT. */
14f9c5c9 1903
d2e4a39e 1904struct value *
fc1a4b47 1905ada_value_primitive_packed_val (struct value *obj, const gdb_byte *valaddr,
a2bd3dcd 1906 long offset, int bit_offset, int bit_size,
4c4b4cd2 1907 struct type *type)
14f9c5c9 1908{
d2e4a39e 1909 struct value *v;
4c4b4cd2
PH
1910 int src, /* Index into the source area */
1911 targ, /* Index into the target area */
1912 srcBitsLeft, /* Number of source bits left to move */
1913 nsrc, ntarg, /* Number of source and target bytes */
1914 unusedLS, /* Number of bits in next significant
1915 byte of source that are unused */
1916 accumSize; /* Number of meaningful bits in accum */
1917 unsigned char *bytes; /* First byte containing data to unpack */
d2e4a39e 1918 unsigned char *unpacked;
4c4b4cd2 1919 unsigned long accum; /* Staging area for bits being transferred */
14f9c5c9
AS
1920 unsigned char sign;
1921 int len = (bit_size + bit_offset + HOST_CHAR_BIT - 1) / 8;
4c4b4cd2
PH
1922 /* Transmit bytes from least to most significant; delta is the direction
1923 the indices move. */
14f9c5c9
AS
1924 int delta = BITS_BIG_ENDIAN ? -1 : 1;
1925
61ee279c 1926 type = ada_check_typedef (type);
14f9c5c9
AS
1927
1928 if (obj == NULL)
1929 {
1930 v = allocate_value (type);
d2e4a39e 1931 bytes = (unsigned char *) (valaddr + offset);
14f9c5c9 1932 }
d69fe07e 1933 else if (value_lazy (obj))
14f9c5c9
AS
1934 {
1935 v = value_at (type,
df407dfe 1936 VALUE_ADDRESS (obj) + value_offset (obj) + offset);
d2e4a39e 1937 bytes = (unsigned char *) alloca (len);
14f9c5c9
AS
1938 read_memory (VALUE_ADDRESS (v), bytes, len);
1939 }
d2e4a39e 1940 else
14f9c5c9
AS
1941 {
1942 v = allocate_value (type);
0fd88904 1943 bytes = (unsigned char *) value_contents (obj) + offset;
14f9c5c9 1944 }
d2e4a39e
AS
1945
1946 if (obj != NULL)
14f9c5c9
AS
1947 {
1948 VALUE_LVAL (v) = VALUE_LVAL (obj);
1949 if (VALUE_LVAL (obj) == lval_internalvar)
4c4b4cd2 1950 VALUE_LVAL (v) = lval_internalvar_component;
df407dfe 1951 VALUE_ADDRESS (v) = VALUE_ADDRESS (obj) + value_offset (obj) + offset;
9bbda503
AC
1952 set_value_bitpos (v, bit_offset + value_bitpos (obj));
1953 set_value_bitsize (v, bit_size);
df407dfe 1954 if (value_bitpos (v) >= HOST_CHAR_BIT)
4c4b4cd2
PH
1955 {
1956 VALUE_ADDRESS (v) += 1;
9bbda503 1957 set_value_bitpos (v, value_bitpos (v) - HOST_CHAR_BIT);
4c4b4cd2 1958 }
14f9c5c9
AS
1959 }
1960 else
9bbda503 1961 set_value_bitsize (v, bit_size);
0fd88904 1962 unpacked = (unsigned char *) value_contents (v);
14f9c5c9
AS
1963
1964 srcBitsLeft = bit_size;
1965 nsrc = len;
1966 ntarg = TYPE_LENGTH (type);
1967 sign = 0;
1968 if (bit_size == 0)
1969 {
1970 memset (unpacked, 0, TYPE_LENGTH (type));
1971 return v;
1972 }
1973 else if (BITS_BIG_ENDIAN)
1974 {
d2e4a39e 1975 src = len - 1;
1265e4aa
JB
1976 if (has_negatives (type)
1977 && ((bytes[0] << bit_offset) & (1 << (HOST_CHAR_BIT - 1))))
4c4b4cd2 1978 sign = ~0;
d2e4a39e
AS
1979
1980 unusedLS =
4c4b4cd2
PH
1981 (HOST_CHAR_BIT - (bit_size + bit_offset) % HOST_CHAR_BIT)
1982 % HOST_CHAR_BIT;
14f9c5c9
AS
1983
1984 switch (TYPE_CODE (type))
4c4b4cd2
PH
1985 {
1986 case TYPE_CODE_ARRAY:
1987 case TYPE_CODE_UNION:
1988 case TYPE_CODE_STRUCT:
1989 /* Non-scalar values must be aligned at a byte boundary... */
1990 accumSize =
1991 (HOST_CHAR_BIT - bit_size % HOST_CHAR_BIT) % HOST_CHAR_BIT;
1992 /* ... And are placed at the beginning (most-significant) bytes
1993 of the target. */
529cad9c 1994 targ = (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT - 1;
4c4b4cd2
PH
1995 break;
1996 default:
1997 accumSize = 0;
1998 targ = TYPE_LENGTH (type) - 1;
1999 break;
2000 }
14f9c5c9 2001 }
d2e4a39e 2002 else
14f9c5c9
AS
2003 {
2004 int sign_bit_offset = (bit_size + bit_offset - 1) % 8;
2005
2006 src = targ = 0;
2007 unusedLS = bit_offset;
2008 accumSize = 0;
2009
d2e4a39e 2010 if (has_negatives (type) && (bytes[len - 1] & (1 << sign_bit_offset)))
4c4b4cd2 2011 sign = ~0;
14f9c5c9 2012 }
d2e4a39e 2013
14f9c5c9
AS
2014 accum = 0;
2015 while (nsrc > 0)
2016 {
2017 /* Mask for removing bits of the next source byte that are not
4c4b4cd2 2018 part of the value. */
d2e4a39e 2019 unsigned int unusedMSMask =
4c4b4cd2
PH
2020 (1 << (srcBitsLeft >= HOST_CHAR_BIT ? HOST_CHAR_BIT : srcBitsLeft)) -
2021 1;
2022 /* Sign-extend bits for this byte. */
14f9c5c9 2023 unsigned int signMask = sign & ~unusedMSMask;
d2e4a39e 2024 accum |=
4c4b4cd2 2025 (((bytes[src] >> unusedLS) & unusedMSMask) | signMask) << accumSize;
14f9c5c9 2026 accumSize += HOST_CHAR_BIT - unusedLS;
d2e4a39e 2027 if (accumSize >= HOST_CHAR_BIT)
4c4b4cd2
PH
2028 {
2029 unpacked[targ] = accum & ~(~0L << HOST_CHAR_BIT);
2030 accumSize -= HOST_CHAR_BIT;
2031 accum >>= HOST_CHAR_BIT;
2032 ntarg -= 1;
2033 targ += delta;
2034 }
14f9c5c9
AS
2035 srcBitsLeft -= HOST_CHAR_BIT - unusedLS;
2036 unusedLS = 0;
2037 nsrc -= 1;
2038 src += delta;
2039 }
2040 while (ntarg > 0)
2041 {
2042 accum |= sign << accumSize;
2043 unpacked[targ] = accum & ~(~0L << HOST_CHAR_BIT);
2044 accumSize -= HOST_CHAR_BIT;
2045 accum >>= HOST_CHAR_BIT;
2046 ntarg -= 1;
2047 targ += delta;
2048 }
2049
2050 return v;
2051}
d2e4a39e 2052
14f9c5c9
AS
2053/* Move N bits from SOURCE, starting at bit offset SRC_OFFSET to
2054 TARGET, starting at bit offset TARG_OFFSET. SOURCE and TARGET must
4c4b4cd2 2055 not overlap. */
14f9c5c9 2056static void
fc1a4b47 2057move_bits (gdb_byte *target, int targ_offset, const gdb_byte *source,
0fd88904 2058 int src_offset, int n)
14f9c5c9
AS
2059{
2060 unsigned int accum, mask;
2061 int accum_bits, chunk_size;
2062
2063 target += targ_offset / HOST_CHAR_BIT;
2064 targ_offset %= HOST_CHAR_BIT;
2065 source += src_offset / HOST_CHAR_BIT;
2066 src_offset %= HOST_CHAR_BIT;
d2e4a39e 2067 if (BITS_BIG_ENDIAN)
14f9c5c9
AS
2068 {
2069 accum = (unsigned char) *source;
2070 source += 1;
2071 accum_bits = HOST_CHAR_BIT - src_offset;
2072
d2e4a39e 2073 while (n > 0)
4c4b4cd2
PH
2074 {
2075 int unused_right;
2076 accum = (accum << HOST_CHAR_BIT) + (unsigned char) *source;
2077 accum_bits += HOST_CHAR_BIT;
2078 source += 1;
2079 chunk_size = HOST_CHAR_BIT - targ_offset;
2080 if (chunk_size > n)
2081 chunk_size = n;
2082 unused_right = HOST_CHAR_BIT - (chunk_size + targ_offset);
2083 mask = ((1 << chunk_size) - 1) << unused_right;
2084 *target =
2085 (*target & ~mask)
2086 | ((accum >> (accum_bits - chunk_size - unused_right)) & mask);
2087 n -= chunk_size;
2088 accum_bits -= chunk_size;
2089 target += 1;
2090 targ_offset = 0;
2091 }
14f9c5c9
AS
2092 }
2093 else
2094 {
2095 accum = (unsigned char) *source >> src_offset;
2096 source += 1;
2097 accum_bits = HOST_CHAR_BIT - src_offset;
2098
d2e4a39e 2099 while (n > 0)
4c4b4cd2
PH
2100 {
2101 accum = accum + ((unsigned char) *source << accum_bits);
2102 accum_bits += HOST_CHAR_BIT;
2103 source += 1;
2104 chunk_size = HOST_CHAR_BIT - targ_offset;
2105 if (chunk_size > n)
2106 chunk_size = n;
2107 mask = ((1 << chunk_size) - 1) << targ_offset;
2108 *target = (*target & ~mask) | ((accum << targ_offset) & mask);
2109 n -= chunk_size;
2110 accum_bits -= chunk_size;
2111 accum >>= chunk_size;
2112 target += 1;
2113 targ_offset = 0;
2114 }
14f9c5c9
AS
2115 }
2116}
2117
14f9c5c9
AS
2118/* Store the contents of FROMVAL into the location of TOVAL.
2119 Return a new value with the location of TOVAL and contents of
2120 FROMVAL. Handles assignment into packed fields that have
4c4b4cd2 2121 floating-point or non-scalar types. */
14f9c5c9 2122
d2e4a39e
AS
2123static struct value *
2124ada_value_assign (struct value *toval, struct value *fromval)
14f9c5c9 2125{
df407dfe
AC
2126 struct type *type = value_type (toval);
2127 int bits = value_bitsize (toval);
14f9c5c9 2128
52ce6436
PH
2129 toval = ada_coerce_ref (toval);
2130 fromval = ada_coerce_ref (fromval);
2131
2132 if (ada_is_direct_array_type (value_type (toval)))
2133 toval = ada_coerce_to_simple_array (toval);
2134 if (ada_is_direct_array_type (value_type (fromval)))
2135 fromval = ada_coerce_to_simple_array (fromval);
2136
88e3b34b 2137 if (!deprecated_value_modifiable (toval))
323e0a4a 2138 error (_("Left operand of assignment is not a modifiable lvalue."));
14f9c5c9 2139
d2e4a39e 2140 if (VALUE_LVAL (toval) == lval_memory
14f9c5c9 2141 && bits > 0
d2e4a39e 2142 && (TYPE_CODE (type) == TYPE_CODE_FLT
4c4b4cd2 2143 || TYPE_CODE (type) == TYPE_CODE_STRUCT))
14f9c5c9 2144 {
df407dfe
AC
2145 int len = (value_bitpos (toval)
2146 + bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
d2e4a39e
AS
2147 char *buffer = (char *) alloca (len);
2148 struct value *val;
52ce6436 2149 CORE_ADDR to_addr = VALUE_ADDRESS (toval) + value_offset (toval);
14f9c5c9
AS
2150
2151 if (TYPE_CODE (type) == TYPE_CODE_FLT)
4c4b4cd2 2152 fromval = value_cast (type, fromval);
14f9c5c9 2153
52ce6436 2154 read_memory (to_addr, buffer, len);
14f9c5c9 2155 if (BITS_BIG_ENDIAN)
df407dfe 2156 move_bits (buffer, value_bitpos (toval),
0fd88904 2157 value_contents (fromval),
df407dfe 2158 TYPE_LENGTH (value_type (fromval)) * TARGET_CHAR_BIT -
4c4b4cd2 2159 bits, bits);
14f9c5c9 2160 else
0fd88904 2161 move_bits (buffer, value_bitpos (toval), value_contents (fromval),
4c4b4cd2 2162 0, bits);
52ce6436
PH
2163 write_memory (to_addr, buffer, len);
2164 if (deprecated_memory_changed_hook)
2165 deprecated_memory_changed_hook (to_addr, len);
2166
14f9c5c9 2167 val = value_copy (toval);
0fd88904 2168 memcpy (value_contents_raw (val), value_contents (fromval),
4c4b4cd2 2169 TYPE_LENGTH (type));
04624583 2170 deprecated_set_value_type (val, type);
d2e4a39e 2171
14f9c5c9
AS
2172 return val;
2173 }
2174
2175 return value_assign (toval, fromval);
2176}
2177
2178
52ce6436
PH
2179/* Given that COMPONENT is a memory lvalue that is part of the lvalue
2180 * CONTAINER, assign the contents of VAL to COMPONENTS's place in
2181 * CONTAINER. Modifies the VALUE_CONTENTS of CONTAINER only, not
2182 * COMPONENT, and not the inferior's memory. The current contents
2183 * of COMPONENT are ignored. */
2184static void
2185value_assign_to_component (struct value *container, struct value *component,
2186 struct value *val)
2187{
2188 LONGEST offset_in_container =
2189 (LONGEST) (VALUE_ADDRESS (component) + value_offset (component)
2190 - VALUE_ADDRESS (container) - value_offset (container));
2191 int bit_offset_in_container =
2192 value_bitpos (component) - value_bitpos (container);
2193 int bits;
2194
2195 val = value_cast (value_type (component), val);
2196
2197 if (value_bitsize (component) == 0)
2198 bits = TARGET_CHAR_BIT * TYPE_LENGTH (value_type (component));
2199 else
2200 bits = value_bitsize (component);
2201
2202 if (BITS_BIG_ENDIAN)
2203 move_bits (value_contents_writeable (container) + offset_in_container,
2204 value_bitpos (container) + bit_offset_in_container,
2205 value_contents (val),
2206 TYPE_LENGTH (value_type (component)) * TARGET_CHAR_BIT - bits,
2207 bits);
2208 else
2209 move_bits (value_contents_writeable (container) + offset_in_container,
2210 value_bitpos (container) + bit_offset_in_container,
2211 value_contents (val), 0, bits);
2212}
2213
4c4b4cd2
PH
2214/* The value of the element of array ARR at the ARITY indices given in IND.
2215 ARR may be either a simple array, GNAT array descriptor, or pointer
14f9c5c9
AS
2216 thereto. */
2217
d2e4a39e
AS
2218struct value *
2219ada_value_subscript (struct value *arr, int arity, struct value **ind)
14f9c5c9
AS
2220{
2221 int k;
d2e4a39e
AS
2222 struct value *elt;
2223 struct type *elt_type;
14f9c5c9
AS
2224
2225 elt = ada_coerce_to_simple_array (arr);
2226
df407dfe 2227 elt_type = ada_check_typedef (value_type (elt));
d2e4a39e 2228 if (TYPE_CODE (elt_type) == TYPE_CODE_ARRAY
14f9c5c9
AS
2229 && TYPE_FIELD_BITSIZE (elt_type, 0) > 0)
2230 return value_subscript_packed (elt, arity, ind);
2231
2232 for (k = 0; k < arity; k += 1)
2233 {
2234 if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY)
323e0a4a 2235 error (_("too many subscripts (%d expected)"), k);
14f9c5c9
AS
2236 elt = value_subscript (elt, value_pos_atr (ind[k]));
2237 }
2238 return elt;
2239}
2240
2241/* Assuming ARR is a pointer to a standard GDB array of type TYPE, the
2242 value of the element of *ARR at the ARITY indices given in
4c4b4cd2 2243 IND. Does not read the entire array into memory. */
14f9c5c9 2244
d2e4a39e
AS
2245struct value *
2246ada_value_ptr_subscript (struct value *arr, struct type *type, int arity,
4c4b4cd2 2247 struct value **ind)
14f9c5c9
AS
2248{
2249 int k;
2250
2251 for (k = 0; k < arity; k += 1)
2252 {
2253 LONGEST lwb, upb;
d2e4a39e 2254 struct value *idx;
14f9c5c9
AS
2255
2256 if (TYPE_CODE (type) != TYPE_CODE_ARRAY)
323e0a4a 2257 error (_("too many subscripts (%d expected)"), k);
d2e4a39e 2258 arr = value_cast (lookup_pointer_type (TYPE_TARGET_TYPE (type)),
4c4b4cd2 2259 value_copy (arr));
14f9c5c9 2260 get_discrete_bounds (TYPE_INDEX_TYPE (type), &lwb, &upb);
4c4b4cd2
PH
2261 idx = value_pos_atr (ind[k]);
2262 if (lwb != 0)
2263 idx = value_sub (idx, value_from_longest (builtin_type_int, lwb));
14f9c5c9
AS
2264 arr = value_add (arr, idx);
2265 type = TYPE_TARGET_TYPE (type);
2266 }
2267
2268 return value_ind (arr);
2269}
2270
0b5d8877
PH
2271/* Given that ARRAY_PTR is a pointer or reference to an array of type TYPE (the
2272 actual type of ARRAY_PTR is ignored), returns a reference to
2273 the Ada slice of HIGH-LOW+1 elements starting at index LOW. The lower
2274 bound of this array is LOW, as per Ada rules. */
2275static struct value *
6c038f32 2276ada_value_slice_ptr (struct value *array_ptr, struct type *type,
0b5d8877
PH
2277 int low, int high)
2278{
6c038f32 2279 CORE_ADDR base = value_as_address (array_ptr)
0b5d8877
PH
2280 + ((low - TYPE_LOW_BOUND (TYPE_INDEX_TYPE (type)))
2281 * TYPE_LENGTH (TYPE_TARGET_TYPE (type)));
6c038f32
PH
2282 struct type *index_type =
2283 create_range_type (NULL, TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type)),
0b5d8877 2284 low, high);
6c038f32 2285 struct type *slice_type =
0b5d8877
PH
2286 create_array_type (NULL, TYPE_TARGET_TYPE (type), index_type);
2287 return value_from_pointer (lookup_reference_type (slice_type), base);
2288}
2289
2290
2291static struct value *
2292ada_value_slice (struct value *array, int low, int high)
2293{
df407dfe 2294 struct type *type = value_type (array);
6c038f32 2295 struct type *index_type =
0b5d8877 2296 create_range_type (NULL, TYPE_INDEX_TYPE (type), low, high);
6c038f32 2297 struct type *slice_type =
0b5d8877 2298 create_array_type (NULL, TYPE_TARGET_TYPE (type), index_type);
6c038f32 2299 return value_cast (slice_type, value_slice (array, low, high - low + 1));
0b5d8877
PH
2300}
2301
14f9c5c9
AS
2302/* If type is a record type in the form of a standard GNAT array
2303 descriptor, returns the number of dimensions for type. If arr is a
2304 simple array, returns the number of "array of"s that prefix its
4c4b4cd2 2305 type designation. Otherwise, returns 0. */
14f9c5c9
AS
2306
2307int
d2e4a39e 2308ada_array_arity (struct type *type)
14f9c5c9
AS
2309{
2310 int arity;
2311
2312 if (type == NULL)
2313 return 0;
2314
2315 type = desc_base_type (type);
2316
2317 arity = 0;
d2e4a39e 2318 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
14f9c5c9 2319 return desc_arity (desc_bounds_type (type));
d2e4a39e
AS
2320 else
2321 while (TYPE_CODE (type) == TYPE_CODE_ARRAY)
14f9c5c9 2322 {
4c4b4cd2 2323 arity += 1;
61ee279c 2324 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
14f9c5c9 2325 }
d2e4a39e 2326
14f9c5c9
AS
2327 return arity;
2328}
2329
2330/* If TYPE is a record type in the form of a standard GNAT array
2331 descriptor or a simple array type, returns the element type for
2332 TYPE after indexing by NINDICES indices, or by all indices if
4c4b4cd2 2333 NINDICES is -1. Otherwise, returns NULL. */
14f9c5c9 2334
d2e4a39e
AS
2335struct type *
2336ada_array_element_type (struct type *type, int nindices)
14f9c5c9
AS
2337{
2338 type = desc_base_type (type);
2339
d2e4a39e 2340 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
14f9c5c9
AS
2341 {
2342 int k;
d2e4a39e 2343 struct type *p_array_type;
14f9c5c9
AS
2344
2345 p_array_type = desc_data_type (type);
2346
2347 k = ada_array_arity (type);
2348 if (k == 0)
4c4b4cd2 2349 return NULL;
d2e4a39e 2350
4c4b4cd2 2351 /* Initially p_array_type = elt_type(*)[]...(k times)...[]. */
14f9c5c9 2352 if (nindices >= 0 && k > nindices)
4c4b4cd2 2353 k = nindices;
14f9c5c9 2354 p_array_type = TYPE_TARGET_TYPE (p_array_type);
d2e4a39e 2355 while (k > 0 && p_array_type != NULL)
4c4b4cd2 2356 {
61ee279c 2357 p_array_type = ada_check_typedef (TYPE_TARGET_TYPE (p_array_type));
4c4b4cd2
PH
2358 k -= 1;
2359 }
14f9c5c9
AS
2360 return p_array_type;
2361 }
2362 else if (TYPE_CODE (type) == TYPE_CODE_ARRAY)
2363 {
2364 while (nindices != 0 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
4c4b4cd2
PH
2365 {
2366 type = TYPE_TARGET_TYPE (type);
2367 nindices -= 1;
2368 }
14f9c5c9
AS
2369 return type;
2370 }
2371
2372 return NULL;
2373}
2374
4c4b4cd2
PH
2375/* The type of nth index in arrays of given type (n numbering from 1).
2376 Does not examine memory. */
14f9c5c9 2377
d2e4a39e
AS
2378struct type *
2379ada_index_type (struct type *type, int n)
14f9c5c9 2380{
4c4b4cd2
PH
2381 struct type *result_type;
2382
14f9c5c9
AS
2383 type = desc_base_type (type);
2384
2385 if (n > ada_array_arity (type))
2386 return NULL;
2387
4c4b4cd2 2388 if (ada_is_simple_array_type (type))
14f9c5c9
AS
2389 {
2390 int i;
2391
2392 for (i = 1; i < n; i += 1)
4c4b4cd2
PH
2393 type = TYPE_TARGET_TYPE (type);
2394 result_type = TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type, 0));
2395 /* FIXME: The stabs type r(0,0);bound;bound in an array type
2396 has a target type of TYPE_CODE_UNDEF. We compensate here, but
76a01679
JB
2397 perhaps stabsread.c would make more sense. */
2398 if (result_type == NULL || TYPE_CODE (result_type) == TYPE_CODE_UNDEF)
2399 result_type = builtin_type_int;
14f9c5c9 2400
4c4b4cd2 2401 return result_type;
14f9c5c9 2402 }
d2e4a39e 2403 else
14f9c5c9
AS
2404 return desc_index_type (desc_bounds_type (type), n);
2405}
2406
2407/* Given that arr is an array type, returns the lower bound of the
2408 Nth index (numbering from 1) if WHICH is 0, and the upper bound if
4c4b4cd2
PH
2409 WHICH is 1. This returns bounds 0 .. -1 if ARR_TYPE is an
2410 array-descriptor type. If TYPEP is non-null, *TYPEP is set to the
2411 bounds type. It works for other arrays with bounds supplied by
2412 run-time quantities other than discriminants. */
14f9c5c9
AS
2413
2414LONGEST
d2e4a39e 2415ada_array_bound_from_type (struct type * arr_type, int n, int which,
4c4b4cd2 2416 struct type ** typep)
14f9c5c9 2417{
d2e4a39e
AS
2418 struct type *type;
2419 struct type *index_type_desc;
14f9c5c9
AS
2420
2421 if (ada_is_packed_array_type (arr_type))
2422 arr_type = decode_packed_array_type (arr_type);
2423
4c4b4cd2 2424 if (arr_type == NULL || !ada_is_simple_array_type (arr_type))
14f9c5c9
AS
2425 {
2426 if (typep != NULL)
4c4b4cd2 2427 *typep = builtin_type_int;
d2e4a39e 2428 return (LONGEST) - which;
14f9c5c9
AS
2429 }
2430
2431 if (TYPE_CODE (arr_type) == TYPE_CODE_PTR)
2432 type = TYPE_TARGET_TYPE (arr_type);
2433 else
2434 type = arr_type;
2435
2436 index_type_desc = ada_find_parallel_type (type, "___XA");
d2e4a39e 2437 if (index_type_desc == NULL)
14f9c5c9 2438 {
d2e4a39e
AS
2439 struct type *range_type;
2440 struct type *index_type;
14f9c5c9 2441
d2e4a39e 2442 while (n > 1)
4c4b4cd2
PH
2443 {
2444 type = TYPE_TARGET_TYPE (type);
2445 n -= 1;
2446 }
14f9c5c9
AS
2447
2448 range_type = TYPE_INDEX_TYPE (type);
2449 index_type = TYPE_TARGET_TYPE (range_type);
2450 if (TYPE_CODE (index_type) == TYPE_CODE_UNDEF)
4c4b4cd2 2451 index_type = builtin_type_long;
14f9c5c9 2452 if (typep != NULL)
4c4b4cd2 2453 *typep = index_type;
d2e4a39e 2454 return
4c4b4cd2
PH
2455 (LONGEST) (which == 0
2456 ? TYPE_LOW_BOUND (range_type)
2457 : TYPE_HIGH_BOUND (range_type));
14f9c5c9 2458 }
d2e4a39e 2459 else
14f9c5c9 2460 {
d2e4a39e 2461 struct type *index_type =
4c4b4cd2
PH
2462 to_fixed_range_type (TYPE_FIELD_NAME (index_type_desc, n - 1),
2463 NULL, TYPE_OBJFILE (arr_type));
14f9c5c9 2464 if (typep != NULL)
4c4b4cd2 2465 *typep = TYPE_TARGET_TYPE (index_type);
d2e4a39e 2466 return
4c4b4cd2
PH
2467 (LONGEST) (which == 0
2468 ? TYPE_LOW_BOUND (index_type)
2469 : TYPE_HIGH_BOUND (index_type));
14f9c5c9
AS
2470 }
2471}
2472
2473/* Given that arr is an array value, returns the lower bound of the
2474 nth index (numbering from 1) if which is 0, and the upper bound if
4c4b4cd2
PH
2475 which is 1. This routine will also work for arrays with bounds
2476 supplied by run-time quantities other than discriminants. */
14f9c5c9 2477
d2e4a39e 2478struct value *
4dc81987 2479ada_array_bound (struct value *arr, int n, int which)
14f9c5c9 2480{
df407dfe 2481 struct type *arr_type = value_type (arr);
14f9c5c9
AS
2482
2483 if (ada_is_packed_array_type (arr_type))
2484 return ada_array_bound (decode_packed_array (arr), n, which);
4c4b4cd2 2485 else if (ada_is_simple_array_type (arr_type))
14f9c5c9 2486 {
d2e4a39e 2487 struct type *type;
14f9c5c9
AS
2488 LONGEST v = ada_array_bound_from_type (arr_type, n, which, &type);
2489 return value_from_longest (type, v);
2490 }
2491 else
2492 return desc_one_bound (desc_bounds (arr), n, which);
2493}
2494
2495/* Given that arr is an array value, returns the length of the
2496 nth index. This routine will also work for arrays with bounds
4c4b4cd2
PH
2497 supplied by run-time quantities other than discriminants.
2498 Does not work for arrays indexed by enumeration types with representation
2499 clauses at the moment. */
14f9c5c9 2500
d2e4a39e
AS
2501struct value *
2502ada_array_length (struct value *arr, int n)
14f9c5c9 2503{
df407dfe 2504 struct type *arr_type = ada_check_typedef (value_type (arr));
14f9c5c9
AS
2505
2506 if (ada_is_packed_array_type (arr_type))
2507 return ada_array_length (decode_packed_array (arr), n);
2508
4c4b4cd2 2509 if (ada_is_simple_array_type (arr_type))
14f9c5c9 2510 {
d2e4a39e 2511 struct type *type;
14f9c5c9 2512 LONGEST v =
4c4b4cd2
PH
2513 ada_array_bound_from_type (arr_type, n, 1, &type) -
2514 ada_array_bound_from_type (arr_type, n, 0, NULL) + 1;
14f9c5c9
AS
2515 return value_from_longest (type, v);
2516 }
2517 else
d2e4a39e 2518 return
72d5681a 2519 value_from_longest (builtin_type_int,
4c4b4cd2
PH
2520 value_as_long (desc_one_bound (desc_bounds (arr),
2521 n, 1))
2522 - value_as_long (desc_one_bound (desc_bounds (arr),
2523 n, 0)) + 1);
2524}
2525
2526/* An empty array whose type is that of ARR_TYPE (an array type),
2527 with bounds LOW to LOW-1. */
2528
2529static struct value *
2530empty_array (struct type *arr_type, int low)
2531{
6c038f32 2532 struct type *index_type =
0b5d8877
PH
2533 create_range_type (NULL, TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (arr_type)),
2534 low, low - 1);
2535 struct type *elt_type = ada_array_element_type (arr_type, 1);
2536 return allocate_value (create_array_type (NULL, elt_type, index_type));
14f9c5c9 2537}
14f9c5c9 2538\f
d2e4a39e 2539
4c4b4cd2 2540 /* Name resolution */
14f9c5c9 2541
4c4b4cd2
PH
2542/* The "decoded" name for the user-definable Ada operator corresponding
2543 to OP. */
14f9c5c9 2544
d2e4a39e 2545static const char *
4c4b4cd2 2546ada_decoded_op_name (enum exp_opcode op)
14f9c5c9
AS
2547{
2548 int i;
2549
4c4b4cd2 2550 for (i = 0; ada_opname_table[i].encoded != NULL; i += 1)
14f9c5c9
AS
2551 {
2552 if (ada_opname_table[i].op == op)
4c4b4cd2 2553 return ada_opname_table[i].decoded;
14f9c5c9 2554 }
323e0a4a 2555 error (_("Could not find operator name for opcode"));
14f9c5c9
AS
2556}
2557
2558
4c4b4cd2
PH
2559/* Same as evaluate_type (*EXP), but resolves ambiguous symbol
2560 references (marked by OP_VAR_VALUE nodes in which the symbol has an
2561 undefined namespace) and converts operators that are
2562 user-defined into appropriate function calls. If CONTEXT_TYPE is
14f9c5c9
AS
2563 non-null, it provides a preferred result type [at the moment, only
2564 type void has any effect---causing procedures to be preferred over
2565 functions in calls]. A null CONTEXT_TYPE indicates that a non-void
4c4b4cd2 2566 return type is preferred. May change (expand) *EXP. */
14f9c5c9 2567
4c4b4cd2
PH
2568static void
2569resolve (struct expression **expp, int void_context_p)
14f9c5c9
AS
2570{
2571 int pc;
2572 pc = 0;
4c4b4cd2 2573 resolve_subexp (expp, &pc, 1, void_context_p ? builtin_type_void : NULL);
14f9c5c9
AS
2574}
2575
4c4b4cd2
PH
2576/* Resolve the operator of the subexpression beginning at
2577 position *POS of *EXPP. "Resolving" consists of replacing
2578 the symbols that have undefined namespaces in OP_VAR_VALUE nodes
2579 with their resolutions, replacing built-in operators with
2580 function calls to user-defined operators, where appropriate, and,
2581 when DEPROCEDURE_P is non-zero, converting function-valued variables
2582 into parameterless calls. May expand *EXPP. The CONTEXT_TYPE functions
2583 are as in ada_resolve, above. */
14f9c5c9 2584
d2e4a39e 2585static struct value *
4c4b4cd2 2586resolve_subexp (struct expression **expp, int *pos, int deprocedure_p,
76a01679 2587 struct type *context_type)
14f9c5c9
AS
2588{
2589 int pc = *pos;
2590 int i;
4c4b4cd2 2591 struct expression *exp; /* Convenience: == *expp. */
14f9c5c9 2592 enum exp_opcode op = (*expp)->elts[pc].opcode;
4c4b4cd2
PH
2593 struct value **argvec; /* Vector of operand types (alloca'ed). */
2594 int nargs; /* Number of operands. */
52ce6436 2595 int oplen;
14f9c5c9
AS
2596
2597 argvec = NULL;
2598 nargs = 0;
2599 exp = *expp;
2600
52ce6436
PH
2601 /* Pass one: resolve operands, saving their types and updating *pos,
2602 if needed. */
14f9c5c9
AS
2603 switch (op)
2604 {
4c4b4cd2
PH
2605 case OP_FUNCALL:
2606 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
76a01679
JB
2607 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
2608 *pos += 7;
4c4b4cd2
PH
2609 else
2610 {
2611 *pos += 3;
2612 resolve_subexp (expp, pos, 0, NULL);
2613 }
2614 nargs = longest_to_int (exp->elts[pc + 1].longconst);
14f9c5c9
AS
2615 break;
2616
14f9c5c9 2617 case UNOP_ADDR:
4c4b4cd2
PH
2618 *pos += 1;
2619 resolve_subexp (expp, pos, 0, NULL);
2620 break;
2621
52ce6436
PH
2622 case UNOP_QUAL:
2623 *pos += 3;
2624 resolve_subexp (expp, pos, 1, exp->elts[pc + 1].type);
4c4b4cd2
PH
2625 break;
2626
52ce6436 2627 case OP_ATR_MODULUS:
4c4b4cd2
PH
2628 case OP_ATR_SIZE:
2629 case OP_ATR_TAG:
4c4b4cd2
PH
2630 case OP_ATR_FIRST:
2631 case OP_ATR_LAST:
2632 case OP_ATR_LENGTH:
2633 case OP_ATR_POS:
2634 case OP_ATR_VAL:
4c4b4cd2
PH
2635 case OP_ATR_MIN:
2636 case OP_ATR_MAX:
52ce6436
PH
2637 case TERNOP_IN_RANGE:
2638 case BINOP_IN_BOUNDS:
2639 case UNOP_IN_RANGE:
2640 case OP_AGGREGATE:
2641 case OP_OTHERS:
2642 case OP_CHOICES:
2643 case OP_POSITIONAL:
2644 case OP_DISCRETE_RANGE:
2645 case OP_NAME:
2646 ada_forward_operator_length (exp, pc, &oplen, &nargs);
2647 *pos += oplen;
14f9c5c9
AS
2648 break;
2649
2650 case BINOP_ASSIGN:
2651 {
4c4b4cd2
PH
2652 struct value *arg1;
2653
2654 *pos += 1;
2655 arg1 = resolve_subexp (expp, pos, 0, NULL);
2656 if (arg1 == NULL)
2657 resolve_subexp (expp, pos, 1, NULL);
2658 else
df407dfe 2659 resolve_subexp (expp, pos, 1, value_type (arg1));
4c4b4cd2 2660 break;
14f9c5c9
AS
2661 }
2662
4c4b4cd2 2663 case UNOP_CAST:
4c4b4cd2
PH
2664 *pos += 3;
2665 nargs = 1;
2666 break;
14f9c5c9 2667
4c4b4cd2
PH
2668 case BINOP_ADD:
2669 case BINOP_SUB:
2670 case BINOP_MUL:
2671 case BINOP_DIV:
2672 case BINOP_REM:
2673 case BINOP_MOD:
2674 case BINOP_EXP:
2675 case BINOP_CONCAT:
2676 case BINOP_LOGICAL_AND:
2677 case BINOP_LOGICAL_OR:
2678 case BINOP_BITWISE_AND:
2679 case BINOP_BITWISE_IOR:
2680 case BINOP_BITWISE_XOR:
14f9c5c9 2681
4c4b4cd2
PH
2682 case BINOP_EQUAL:
2683 case BINOP_NOTEQUAL:
2684 case BINOP_LESS:
2685 case BINOP_GTR:
2686 case BINOP_LEQ:
2687 case BINOP_GEQ:
14f9c5c9 2688
4c4b4cd2
PH
2689 case BINOP_REPEAT:
2690 case BINOP_SUBSCRIPT:
2691 case BINOP_COMMA:
40c8aaa9
JB
2692 *pos += 1;
2693 nargs = 2;
2694 break;
14f9c5c9 2695
4c4b4cd2
PH
2696 case UNOP_NEG:
2697 case UNOP_PLUS:
2698 case UNOP_LOGICAL_NOT:
2699 case UNOP_ABS:
2700 case UNOP_IND:
2701 *pos += 1;
2702 nargs = 1;
2703 break;
14f9c5c9 2704
4c4b4cd2
PH
2705 case OP_LONG:
2706 case OP_DOUBLE:
2707 case OP_VAR_VALUE:
2708 *pos += 4;
2709 break;
14f9c5c9 2710
4c4b4cd2
PH
2711 case OP_TYPE:
2712 case OP_BOOL:
2713 case OP_LAST:
4c4b4cd2
PH
2714 case OP_INTERNALVAR:
2715 *pos += 3;
2716 break;
14f9c5c9 2717
4c4b4cd2
PH
2718 case UNOP_MEMVAL:
2719 *pos += 3;
2720 nargs = 1;
2721 break;
2722
67f3407f
DJ
2723 case OP_REGISTER:
2724 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
2725 break;
2726
4c4b4cd2
PH
2727 case STRUCTOP_STRUCT:
2728 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
2729 nargs = 1;
2730 break;
2731
4c4b4cd2 2732 case TERNOP_SLICE:
4c4b4cd2
PH
2733 *pos += 1;
2734 nargs = 3;
2735 break;
2736
52ce6436 2737 case OP_STRING:
14f9c5c9 2738 break;
4c4b4cd2
PH
2739
2740 default:
323e0a4a 2741 error (_("Unexpected operator during name resolution"));
14f9c5c9
AS
2742 }
2743
76a01679 2744 argvec = (struct value * *) alloca (sizeof (struct value *) * (nargs + 1));
4c4b4cd2
PH
2745 for (i = 0; i < nargs; i += 1)
2746 argvec[i] = resolve_subexp (expp, pos, 1, NULL);
2747 argvec[i] = NULL;
2748 exp = *expp;
2749
2750 /* Pass two: perform any resolution on principal operator. */
14f9c5c9
AS
2751 switch (op)
2752 {
2753 default:
2754 break;
2755
14f9c5c9 2756 case OP_VAR_VALUE:
4c4b4cd2 2757 if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
76a01679
JB
2758 {
2759 struct ada_symbol_info *candidates;
2760 int n_candidates;
2761
2762 n_candidates =
2763 ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME
2764 (exp->elts[pc + 2].symbol),
2765 exp->elts[pc + 1].block, VAR_DOMAIN,
2766 &candidates);
2767
2768 if (n_candidates > 1)
2769 {
2770 /* Types tend to get re-introduced locally, so if there
2771 are any local symbols that are not types, first filter
2772 out all types. */
2773 int j;
2774 for (j = 0; j < n_candidates; j += 1)
2775 switch (SYMBOL_CLASS (candidates[j].sym))
2776 {
2777 case LOC_REGISTER:
2778 case LOC_ARG:
2779 case LOC_REF_ARG:
2780 case LOC_REGPARM:
2781 case LOC_REGPARM_ADDR:
2782 case LOC_LOCAL:
2783 case LOC_LOCAL_ARG:
2784 case LOC_BASEREG:
2785 case LOC_BASEREG_ARG:
2786 case LOC_COMPUTED:
2787 case LOC_COMPUTED_ARG:
2788 goto FoundNonType;
2789 default:
2790 break;
2791 }
2792 FoundNonType:
2793 if (j < n_candidates)
2794 {
2795 j = 0;
2796 while (j < n_candidates)
2797 {
2798 if (SYMBOL_CLASS (candidates[j].sym) == LOC_TYPEDEF)
2799 {
2800 candidates[j] = candidates[n_candidates - 1];
2801 n_candidates -= 1;
2802 }
2803 else
2804 j += 1;
2805 }
2806 }
2807 }
2808
2809 if (n_candidates == 0)
323e0a4a 2810 error (_("No definition found for %s"),
76a01679
JB
2811 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
2812 else if (n_candidates == 1)
2813 i = 0;
2814 else if (deprocedure_p
2815 && !is_nonfunction (candidates, n_candidates))
2816 {
06d5cf63
JB
2817 i = ada_resolve_function
2818 (candidates, n_candidates, NULL, 0,
2819 SYMBOL_LINKAGE_NAME (exp->elts[pc + 2].symbol),
2820 context_type);
76a01679 2821 if (i < 0)
323e0a4a 2822 error (_("Could not find a match for %s"),
76a01679
JB
2823 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
2824 }
2825 else
2826 {
323e0a4a 2827 printf_filtered (_("Multiple matches for %s\n"),
76a01679
JB
2828 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
2829 user_select_syms (candidates, n_candidates, 1);
2830 i = 0;
2831 }
2832
2833 exp->elts[pc + 1].block = candidates[i].block;
2834 exp->elts[pc + 2].symbol = candidates[i].sym;
1265e4aa
JB
2835 if (innermost_block == NULL
2836 || contained_in (candidates[i].block, innermost_block))
76a01679
JB
2837 innermost_block = candidates[i].block;
2838 }
2839
2840 if (deprocedure_p
2841 && (TYPE_CODE (SYMBOL_TYPE (exp->elts[pc + 2].symbol))
2842 == TYPE_CODE_FUNC))
2843 {
2844 replace_operator_with_call (expp, pc, 0, 0,
2845 exp->elts[pc + 2].symbol,
2846 exp->elts[pc + 1].block);
2847 exp = *expp;
2848 }
14f9c5c9
AS
2849 break;
2850
2851 case OP_FUNCALL:
2852 {
4c4b4cd2 2853 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
76a01679 2854 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
4c4b4cd2
PH
2855 {
2856 struct ada_symbol_info *candidates;
2857 int n_candidates;
2858
2859 n_candidates =
76a01679
JB
2860 ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME
2861 (exp->elts[pc + 5].symbol),
2862 exp->elts[pc + 4].block, VAR_DOMAIN,
2863 &candidates);
4c4b4cd2
PH
2864 if (n_candidates == 1)
2865 i = 0;
2866 else
2867 {
06d5cf63
JB
2868 i = ada_resolve_function
2869 (candidates, n_candidates,
2870 argvec, nargs,
2871 SYMBOL_LINKAGE_NAME (exp->elts[pc + 5].symbol),
2872 context_type);
4c4b4cd2 2873 if (i < 0)
323e0a4a 2874 error (_("Could not find a match for %s"),
4c4b4cd2
PH
2875 SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol));
2876 }
2877
2878 exp->elts[pc + 4].block = candidates[i].block;
2879 exp->elts[pc + 5].symbol = candidates[i].sym;
1265e4aa
JB
2880 if (innermost_block == NULL
2881 || contained_in (candidates[i].block, innermost_block))
4c4b4cd2
PH
2882 innermost_block = candidates[i].block;
2883 }
14f9c5c9
AS
2884 }
2885 break;
2886 case BINOP_ADD:
2887 case BINOP_SUB:
2888 case BINOP_MUL:
2889 case BINOP_DIV:
2890 case BINOP_REM:
2891 case BINOP_MOD:
2892 case BINOP_CONCAT:
2893 case BINOP_BITWISE_AND:
2894 case BINOP_BITWISE_IOR:
2895 case BINOP_BITWISE_XOR:
2896 case BINOP_EQUAL:
2897 case BINOP_NOTEQUAL:
2898 case BINOP_LESS:
2899 case BINOP_GTR:
2900 case BINOP_LEQ:
2901 case BINOP_GEQ:
2902 case BINOP_EXP:
2903 case UNOP_NEG:
2904 case UNOP_PLUS:
2905 case UNOP_LOGICAL_NOT:
2906 case UNOP_ABS:
2907 if (possible_user_operator_p (op, argvec))
4c4b4cd2
PH
2908 {
2909 struct ada_symbol_info *candidates;
2910 int n_candidates;
2911
2912 n_candidates =
2913 ada_lookup_symbol_list (ada_encode (ada_decoded_op_name (op)),
2914 (struct block *) NULL, VAR_DOMAIN,
2915 &candidates);
2916 i = ada_resolve_function (candidates, n_candidates, argvec, nargs,
76a01679 2917 ada_decoded_op_name (op), NULL);
4c4b4cd2
PH
2918 if (i < 0)
2919 break;
2920
76a01679
JB
2921 replace_operator_with_call (expp, pc, nargs, 1,
2922 candidates[i].sym, candidates[i].block);
4c4b4cd2
PH
2923 exp = *expp;
2924 }
14f9c5c9 2925 break;
4c4b4cd2
PH
2926
2927 case OP_TYPE:
2928 return NULL;
14f9c5c9
AS
2929 }
2930
2931 *pos = pc;
2932 return evaluate_subexp_type (exp, pos);
2933}
2934
2935/* Return non-zero if formal type FTYPE matches actual type ATYPE. If
4c4b4cd2
PH
2936 MAY_DEREF is non-zero, the formal may be a pointer and the actual
2937 a non-pointer. A type of 'void' (which is never a valid expression type)
2938 by convention matches anything. */
14f9c5c9 2939/* The term "match" here is rather loose. The match is heuristic and
4c4b4cd2 2940 liberal. FIXME: TOO liberal, in fact. */
14f9c5c9
AS
2941
2942static int
4dc81987 2943ada_type_match (struct type *ftype, struct type *atype, int may_deref)
14f9c5c9 2944{
61ee279c
PH
2945 ftype = ada_check_typedef (ftype);
2946 atype = ada_check_typedef (atype);
14f9c5c9
AS
2947
2948 if (TYPE_CODE (ftype) == TYPE_CODE_REF)
2949 ftype = TYPE_TARGET_TYPE (ftype);
2950 if (TYPE_CODE (atype) == TYPE_CODE_REF)
2951 atype = TYPE_TARGET_TYPE (atype);
2952
d2e4a39e 2953 if (TYPE_CODE (ftype) == TYPE_CODE_VOID
14f9c5c9
AS
2954 || TYPE_CODE (atype) == TYPE_CODE_VOID)
2955 return 1;
2956
d2e4a39e 2957 switch (TYPE_CODE (ftype))
14f9c5c9
AS
2958 {
2959 default:
2960 return 1;
2961 case TYPE_CODE_PTR:
2962 if (TYPE_CODE (atype) == TYPE_CODE_PTR)
4c4b4cd2
PH
2963 return ada_type_match (TYPE_TARGET_TYPE (ftype),
2964 TYPE_TARGET_TYPE (atype), 0);
d2e4a39e 2965 else
1265e4aa
JB
2966 return (may_deref
2967 && ada_type_match (TYPE_TARGET_TYPE (ftype), atype, 0));
14f9c5c9
AS
2968 case TYPE_CODE_INT:
2969 case TYPE_CODE_ENUM:
2970 case TYPE_CODE_RANGE:
2971 switch (TYPE_CODE (atype))
4c4b4cd2
PH
2972 {
2973 case TYPE_CODE_INT:
2974 case TYPE_CODE_ENUM:
2975 case TYPE_CODE_RANGE:
2976 return 1;
2977 default:
2978 return 0;
2979 }
14f9c5c9
AS
2980
2981 case TYPE_CODE_ARRAY:
d2e4a39e 2982 return (TYPE_CODE (atype) == TYPE_CODE_ARRAY
4c4b4cd2 2983 || ada_is_array_descriptor_type (atype));
14f9c5c9
AS
2984
2985 case TYPE_CODE_STRUCT:
4c4b4cd2
PH
2986 if (ada_is_array_descriptor_type (ftype))
2987 return (TYPE_CODE (atype) == TYPE_CODE_ARRAY
2988 || ada_is_array_descriptor_type (atype));
14f9c5c9 2989 else
4c4b4cd2
PH
2990 return (TYPE_CODE (atype) == TYPE_CODE_STRUCT
2991 && !ada_is_array_descriptor_type (atype));
14f9c5c9
AS
2992
2993 case TYPE_CODE_UNION:
2994 case TYPE_CODE_FLT:
2995 return (TYPE_CODE (atype) == TYPE_CODE (ftype));
2996 }
2997}
2998
2999/* Return non-zero if the formals of FUNC "sufficiently match" the
3000 vector of actual argument types ACTUALS of size N_ACTUALS. FUNC
3001 may also be an enumeral, in which case it is treated as a 0-
4c4b4cd2 3002 argument function. */
14f9c5c9
AS
3003
3004static int
d2e4a39e 3005ada_args_match (struct symbol *func, struct value **actuals, int n_actuals)
14f9c5c9
AS
3006{
3007 int i;
d2e4a39e 3008 struct type *func_type = SYMBOL_TYPE (func);
14f9c5c9 3009
1265e4aa
JB
3010 if (SYMBOL_CLASS (func) == LOC_CONST
3011 && TYPE_CODE (func_type) == TYPE_CODE_ENUM)
14f9c5c9
AS
3012 return (n_actuals == 0);
3013 else if (func_type == NULL || TYPE_CODE (func_type) != TYPE_CODE_FUNC)
3014 return 0;
3015
3016 if (TYPE_NFIELDS (func_type) != n_actuals)
3017 return 0;
3018
3019 for (i = 0; i < n_actuals; i += 1)
3020 {
4c4b4cd2 3021 if (actuals[i] == NULL)
76a01679
JB
3022 return 0;
3023 else
3024 {
61ee279c 3025 struct type *ftype = ada_check_typedef (TYPE_FIELD_TYPE (func_type, i));
df407dfe 3026 struct type *atype = ada_check_typedef (value_type (actuals[i]));
4c4b4cd2 3027
76a01679
JB
3028 if (!ada_type_match (ftype, atype, 1))
3029 return 0;
3030 }
14f9c5c9
AS
3031 }
3032 return 1;
3033}
3034
3035/* False iff function type FUNC_TYPE definitely does not produce a value
3036 compatible with type CONTEXT_TYPE. Conservatively returns 1 if
3037 FUNC_TYPE is not a valid function type with a non-null return type
3038 or an enumerated type. A null CONTEXT_TYPE indicates any non-void type. */
3039
3040static int
d2e4a39e 3041return_match (struct type *func_type, struct type *context_type)
14f9c5c9 3042{
d2e4a39e 3043 struct type *return_type;
14f9c5c9
AS
3044
3045 if (func_type == NULL)
3046 return 1;
3047
4c4b4cd2
PH
3048 if (TYPE_CODE (func_type) == TYPE_CODE_FUNC)
3049 return_type = base_type (TYPE_TARGET_TYPE (func_type));
3050 else
3051 return_type = base_type (func_type);
14f9c5c9
AS
3052 if (return_type == NULL)
3053 return 1;
3054
4c4b4cd2 3055 context_type = base_type (context_type);
14f9c5c9
AS
3056
3057 if (TYPE_CODE (return_type) == TYPE_CODE_ENUM)
3058 return context_type == NULL || return_type == context_type;
3059 else if (context_type == NULL)
3060 return TYPE_CODE (return_type) != TYPE_CODE_VOID;
3061 else
3062 return TYPE_CODE (return_type) == TYPE_CODE (context_type);
3063}
3064
3065
4c4b4cd2 3066/* Returns the index in SYMS[0..NSYMS-1] that contains the symbol for the
14f9c5c9 3067 function (if any) that matches the types of the NARGS arguments in
4c4b4cd2
PH
3068 ARGS. If CONTEXT_TYPE is non-null and there is at least one match
3069 that returns that type, then eliminate matches that don't. If
3070 CONTEXT_TYPE is void and there is at least one match that does not
3071 return void, eliminate all matches that do.
3072
14f9c5c9
AS
3073 Asks the user if there is more than one match remaining. Returns -1
3074 if there is no such symbol or none is selected. NAME is used
4c4b4cd2
PH
3075 solely for messages. May re-arrange and modify SYMS in
3076 the process; the index returned is for the modified vector. */
14f9c5c9 3077
4c4b4cd2
PH
3078static int
3079ada_resolve_function (struct ada_symbol_info syms[],
3080 int nsyms, struct value **args, int nargs,
3081 const char *name, struct type *context_type)
14f9c5c9
AS
3082{
3083 int k;
4c4b4cd2 3084 int m; /* Number of hits */
d2e4a39e
AS
3085 struct type *fallback;
3086 struct type *return_type;
14f9c5c9
AS
3087
3088 return_type = context_type;
3089 if (context_type == NULL)
3090 fallback = builtin_type_void;
3091 else
3092 fallback = NULL;
3093
d2e4a39e 3094 m = 0;
14f9c5c9
AS
3095 while (1)
3096 {
3097 for (k = 0; k < nsyms; k += 1)
4c4b4cd2 3098 {
61ee279c 3099 struct type *type = ada_check_typedef (SYMBOL_TYPE (syms[k].sym));
4c4b4cd2
PH
3100
3101 if (ada_args_match (syms[k].sym, args, nargs)
3102 && return_match (type, return_type))
3103 {
3104 syms[m] = syms[k];
3105 m += 1;
3106 }
3107 }
14f9c5c9 3108 if (m > 0 || return_type == fallback)
4c4b4cd2 3109 break;
14f9c5c9 3110 else
4c4b4cd2 3111 return_type = fallback;
14f9c5c9
AS
3112 }
3113
3114 if (m == 0)
3115 return -1;
3116 else if (m > 1)
3117 {
323e0a4a 3118 printf_filtered (_("Multiple matches for %s\n"), name);
4c4b4cd2 3119 user_select_syms (syms, m, 1);
14f9c5c9
AS
3120 return 0;
3121 }
3122 return 0;
3123}
3124
4c4b4cd2
PH
3125/* Returns true (non-zero) iff decoded name N0 should appear before N1
3126 in a listing of choices during disambiguation (see sort_choices, below).
3127 The idea is that overloadings of a subprogram name from the
3128 same package should sort in their source order. We settle for ordering
3129 such symbols by their trailing number (__N or $N). */
3130
14f9c5c9 3131static int
4c4b4cd2 3132encoded_ordered_before (char *N0, char *N1)
14f9c5c9
AS
3133{
3134 if (N1 == NULL)
3135 return 0;
3136 else if (N0 == NULL)
3137 return 1;
3138 else
3139 {
3140 int k0, k1;
d2e4a39e 3141 for (k0 = strlen (N0) - 1; k0 > 0 && isdigit (N0[k0]); k0 -= 1)
4c4b4cd2 3142 ;
d2e4a39e 3143 for (k1 = strlen (N1) - 1; k1 > 0 && isdigit (N1[k1]); k1 -= 1)
4c4b4cd2 3144 ;
d2e4a39e 3145 if ((N0[k0] == '_' || N0[k0] == '$') && N0[k0 + 1] != '\000'
4c4b4cd2
PH
3146 && (N1[k1] == '_' || N1[k1] == '$') && N1[k1 + 1] != '\000')
3147 {
3148 int n0, n1;
3149 n0 = k0;
3150 while (N0[n0] == '_' && n0 > 0 && N0[n0 - 1] == '_')
3151 n0 -= 1;
3152 n1 = k1;
3153 while (N1[n1] == '_' && n1 > 0 && N1[n1 - 1] == '_')
3154 n1 -= 1;
3155 if (n0 == n1 && strncmp (N0, N1, n0) == 0)
3156 return (atoi (N0 + k0 + 1) < atoi (N1 + k1 + 1));
3157 }
14f9c5c9
AS
3158 return (strcmp (N0, N1) < 0);
3159 }
3160}
d2e4a39e 3161
4c4b4cd2
PH
3162/* Sort SYMS[0..NSYMS-1] to put the choices in a canonical order by the
3163 encoded names. */
3164
d2e4a39e 3165static void
4c4b4cd2 3166sort_choices (struct ada_symbol_info syms[], int nsyms)
14f9c5c9 3167{
4c4b4cd2 3168 int i;
d2e4a39e 3169 for (i = 1; i < nsyms; i += 1)
14f9c5c9 3170 {
4c4b4cd2 3171 struct ada_symbol_info sym = syms[i];
14f9c5c9
AS
3172 int j;
3173
d2e4a39e 3174 for (j = i - 1; j >= 0; j -= 1)
4c4b4cd2
PH
3175 {
3176 if (encoded_ordered_before (SYMBOL_LINKAGE_NAME (syms[j].sym),
3177 SYMBOL_LINKAGE_NAME (sym.sym)))
3178 break;
3179 syms[j + 1] = syms[j];
3180 }
d2e4a39e 3181 syms[j + 1] = sym;
14f9c5c9
AS
3182 }
3183}
3184
4c4b4cd2
PH
3185/* Given a list of NSYMS symbols in SYMS, select up to MAX_RESULTS>0
3186 by asking the user (if necessary), returning the number selected,
3187 and setting the first elements of SYMS items. Error if no symbols
3188 selected. */
14f9c5c9
AS
3189
3190/* NOTE: Adapted from decode_line_2 in symtab.c, with which it ought
4c4b4cd2 3191 to be re-integrated one of these days. */
14f9c5c9
AS
3192
3193int
4c4b4cd2 3194user_select_syms (struct ada_symbol_info *syms, int nsyms, int max_results)
14f9c5c9
AS
3195{
3196 int i;
d2e4a39e 3197 int *chosen = (int *) alloca (sizeof (int) * nsyms);
14f9c5c9
AS
3198 int n_chosen;
3199 int first_choice = (max_results == 1) ? 1 : 2;
3200
3201 if (max_results < 1)
323e0a4a 3202 error (_("Request to select 0 symbols!"));
14f9c5c9
AS
3203 if (nsyms <= 1)
3204 return nsyms;
3205
323e0a4a 3206 printf_unfiltered (_("[0] cancel\n"));
14f9c5c9 3207 if (max_results > 1)
323e0a4a 3208 printf_unfiltered (_("[1] all\n"));
14f9c5c9 3209
4c4b4cd2 3210 sort_choices (syms, nsyms);
14f9c5c9
AS
3211
3212 for (i = 0; i < nsyms; i += 1)
3213 {
4c4b4cd2
PH
3214 if (syms[i].sym == NULL)
3215 continue;
3216
3217 if (SYMBOL_CLASS (syms[i].sym) == LOC_BLOCK)
3218 {
76a01679
JB
3219 struct symtab_and_line sal =
3220 find_function_start_sal (syms[i].sym, 1);
323e0a4a
AC
3221 if (sal.symtab == NULL)
3222 printf_unfiltered (_("[%d] %s at <no source file available>:%d\n"),
3223 i + first_choice,
3224 SYMBOL_PRINT_NAME (syms[i].sym),
3225 sal.line);
3226 else
3227 printf_unfiltered (_("[%d] %s at %s:%d\n"), i + first_choice,
3228 SYMBOL_PRINT_NAME (syms[i].sym),
3229 sal.symtab->filename, sal.line);
4c4b4cd2
PH
3230 continue;
3231 }
d2e4a39e 3232 else
4c4b4cd2
PH
3233 {
3234 int is_enumeral =
3235 (SYMBOL_CLASS (syms[i].sym) == LOC_CONST
3236 && SYMBOL_TYPE (syms[i].sym) != NULL
3237 && TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) == TYPE_CODE_ENUM);
3238 struct symtab *symtab = symtab_for_sym (syms[i].sym);
3239
3240 if (SYMBOL_LINE (syms[i].sym) != 0 && symtab != NULL)
323e0a4a 3241 printf_unfiltered (_("[%d] %s at %s:%d\n"),
4c4b4cd2
PH
3242 i + first_choice,
3243 SYMBOL_PRINT_NAME (syms[i].sym),
3244 symtab->filename, SYMBOL_LINE (syms[i].sym));
76a01679
JB
3245 else if (is_enumeral
3246 && TYPE_NAME (SYMBOL_TYPE (syms[i].sym)) != NULL)
4c4b4cd2 3247 {
a3f17187 3248 printf_unfiltered (("[%d] "), i + first_choice);
76a01679
JB
3249 ada_print_type (SYMBOL_TYPE (syms[i].sym), NULL,
3250 gdb_stdout, -1, 0);
323e0a4a 3251 printf_unfiltered (_("'(%s) (enumeral)\n"),
4c4b4cd2
PH
3252 SYMBOL_PRINT_NAME (syms[i].sym));
3253 }
3254 else if (symtab != NULL)
3255 printf_unfiltered (is_enumeral
323e0a4a
AC
3256 ? _("[%d] %s in %s (enumeral)\n")
3257 : _("[%d] %s at %s:?\n"),
4c4b4cd2
PH
3258 i + first_choice,
3259 SYMBOL_PRINT_NAME (syms[i].sym),
3260 symtab->filename);
3261 else
3262 printf_unfiltered (is_enumeral
323e0a4a
AC
3263 ? _("[%d] %s (enumeral)\n")
3264 : _("[%d] %s at ?\n"),
4c4b4cd2
PH
3265 i + first_choice,
3266 SYMBOL_PRINT_NAME (syms[i].sym));
3267 }
14f9c5c9 3268 }
d2e4a39e 3269
14f9c5c9 3270 n_chosen = get_selections (chosen, nsyms, max_results, max_results > 1,
4c4b4cd2 3271 "overload-choice");
14f9c5c9
AS
3272
3273 for (i = 0; i < n_chosen; i += 1)
4c4b4cd2 3274 syms[i] = syms[chosen[i]];
14f9c5c9
AS
3275
3276 return n_chosen;
3277}
3278
3279/* Read and validate a set of numeric choices from the user in the
4c4b4cd2 3280 range 0 .. N_CHOICES-1. Place the results in increasing
14f9c5c9
AS
3281 order in CHOICES[0 .. N-1], and return N.
3282
3283 The user types choices as a sequence of numbers on one line
3284 separated by blanks, encoding them as follows:
3285
4c4b4cd2 3286 + A choice of 0 means to cancel the selection, throwing an error.
14f9c5c9
AS
3287 + If IS_ALL_CHOICE, a choice of 1 selects the entire set 0 .. N_CHOICES-1.
3288 + The user chooses k by typing k+IS_ALL_CHOICE+1.
3289
4c4b4cd2 3290 The user is not allowed to choose more than MAX_RESULTS values.
14f9c5c9
AS
3291
3292 ANNOTATION_SUFFIX, if present, is used to annotate the input
4c4b4cd2 3293 prompts (for use with the -f switch). */
14f9c5c9
AS
3294
3295int
d2e4a39e 3296get_selections (int *choices, int n_choices, int max_results,
4c4b4cd2 3297 int is_all_choice, char *annotation_suffix)
14f9c5c9 3298{
d2e4a39e
AS
3299 char *args;
3300 const char *prompt;
14f9c5c9
AS
3301 int n_chosen;
3302 int first_choice = is_all_choice ? 2 : 1;
d2e4a39e 3303
14f9c5c9
AS
3304 prompt = getenv ("PS2");
3305 if (prompt == NULL)
3306 prompt = ">";
3307
a3f17187 3308 printf_unfiltered (("%s "), prompt);
14f9c5c9
AS
3309 gdb_flush (gdb_stdout);
3310
3311 args = command_line_input ((char *) NULL, 0, annotation_suffix);
d2e4a39e 3312
14f9c5c9 3313 if (args == NULL)
323e0a4a 3314 error_no_arg (_("one or more choice numbers"));
14f9c5c9
AS
3315
3316 n_chosen = 0;
76a01679 3317
4c4b4cd2
PH
3318 /* Set choices[0 .. n_chosen-1] to the users' choices in ascending
3319 order, as given in args. Choices are validated. */
14f9c5c9
AS
3320 while (1)
3321 {
d2e4a39e 3322 char *args2;
14f9c5c9
AS
3323 int choice, j;
3324
3325 while (isspace (*args))
4c4b4cd2 3326 args += 1;
14f9c5c9 3327 if (*args == '\0' && n_chosen == 0)
323e0a4a 3328 error_no_arg (_("one or more choice numbers"));
14f9c5c9 3329 else if (*args == '\0')
4c4b4cd2 3330 break;
14f9c5c9
AS
3331
3332 choice = strtol (args, &args2, 10);
d2e4a39e 3333 if (args == args2 || choice < 0
4c4b4cd2 3334 || choice > n_choices + first_choice - 1)
323e0a4a 3335 error (_("Argument must be choice number"));
14f9c5c9
AS
3336 args = args2;
3337
d2e4a39e 3338 if (choice == 0)
323e0a4a 3339 error (_("cancelled"));
14f9c5c9
AS
3340
3341 if (choice < first_choice)
4c4b4cd2
PH
3342 {
3343 n_chosen = n_choices;
3344 for (j = 0; j < n_choices; j += 1)
3345 choices[j] = j;
3346 break;
3347 }
14f9c5c9
AS
3348 choice -= first_choice;
3349
d2e4a39e 3350 for (j = n_chosen - 1; j >= 0 && choice < choices[j]; j -= 1)
4c4b4cd2
PH
3351 {
3352 }
14f9c5c9
AS
3353
3354 if (j < 0 || choice != choices[j])
4c4b4cd2
PH
3355 {
3356 int k;
3357 for (k = n_chosen - 1; k > j; k -= 1)
3358 choices[k + 1] = choices[k];
3359 choices[j + 1] = choice;
3360 n_chosen += 1;
3361 }
14f9c5c9
AS
3362 }
3363
3364 if (n_chosen > max_results)
323e0a4a 3365 error (_("Select no more than %d of the above"), max_results);
d2e4a39e 3366
14f9c5c9
AS
3367 return n_chosen;
3368}
3369
4c4b4cd2
PH
3370/* Replace the operator of length OPLEN at position PC in *EXPP with a call
3371 on the function identified by SYM and BLOCK, and taking NARGS
3372 arguments. Update *EXPP as needed to hold more space. */
14f9c5c9
AS
3373
3374static void
d2e4a39e 3375replace_operator_with_call (struct expression **expp, int pc, int nargs,
4c4b4cd2
PH
3376 int oplen, struct symbol *sym,
3377 struct block *block)
14f9c5c9
AS
3378{
3379 /* A new expression, with 6 more elements (3 for funcall, 4 for function
4c4b4cd2 3380 symbol, -oplen for operator being replaced). */
d2e4a39e 3381 struct expression *newexp = (struct expression *)
14f9c5c9 3382 xmalloc (sizeof (struct expression)
4c4b4cd2 3383 + EXP_ELEM_TO_BYTES ((*expp)->nelts + 7 - oplen));
d2e4a39e 3384 struct expression *exp = *expp;
14f9c5c9
AS
3385
3386 newexp->nelts = exp->nelts + 7 - oplen;
3387 newexp->language_defn = exp->language_defn;
3388 memcpy (newexp->elts, exp->elts, EXP_ELEM_TO_BYTES (pc));
d2e4a39e 3389 memcpy (newexp->elts + pc + 7, exp->elts + pc + oplen,
4c4b4cd2 3390 EXP_ELEM_TO_BYTES (exp->nelts - pc - oplen));
14f9c5c9
AS
3391
3392 newexp->elts[pc].opcode = newexp->elts[pc + 2].opcode = OP_FUNCALL;
3393 newexp->elts[pc + 1].longconst = (LONGEST) nargs;
3394
3395 newexp->elts[pc + 3].opcode = newexp->elts[pc + 6].opcode = OP_VAR_VALUE;
3396 newexp->elts[pc + 4].block = block;
3397 newexp->elts[pc + 5].symbol = sym;
3398
3399 *expp = newexp;
aacb1f0a 3400 xfree (exp);
d2e4a39e 3401}
14f9c5c9
AS
3402
3403/* Type-class predicates */
3404
4c4b4cd2
PH
3405/* True iff TYPE is numeric (i.e., an INT, RANGE (of numeric type),
3406 or FLOAT). */
14f9c5c9
AS
3407
3408static int
d2e4a39e 3409numeric_type_p (struct type *type)
14f9c5c9
AS
3410{
3411 if (type == NULL)
3412 return 0;
d2e4a39e
AS
3413 else
3414 {
3415 switch (TYPE_CODE (type))
4c4b4cd2
PH
3416 {
3417 case TYPE_CODE_INT:
3418 case TYPE_CODE_FLT:
3419 return 1;
3420 case TYPE_CODE_RANGE:
3421 return (type == TYPE_TARGET_TYPE (type)
3422 || numeric_type_p (TYPE_TARGET_TYPE (type)));
3423 default:
3424 return 0;
3425 }
d2e4a39e 3426 }
14f9c5c9
AS
3427}
3428
4c4b4cd2 3429/* True iff TYPE is integral (an INT or RANGE of INTs). */
14f9c5c9
AS
3430
3431static int
d2e4a39e 3432integer_type_p (struct type *type)
14f9c5c9
AS
3433{
3434 if (type == NULL)
3435 return 0;
d2e4a39e
AS
3436 else
3437 {
3438 switch (TYPE_CODE (type))
4c4b4cd2
PH
3439 {
3440 case TYPE_CODE_INT:
3441 return 1;
3442 case TYPE_CODE_RANGE:
3443 return (type == TYPE_TARGET_TYPE (type)
3444 || integer_type_p (TYPE_TARGET_TYPE (type)));
3445 default:
3446 return 0;
3447 }
d2e4a39e 3448 }
14f9c5c9
AS
3449}
3450
4c4b4cd2 3451/* True iff TYPE is scalar (INT, RANGE, FLOAT, ENUM). */
14f9c5c9
AS
3452
3453static int
d2e4a39e 3454scalar_type_p (struct type *type)
14f9c5c9
AS
3455{
3456 if (type == NULL)
3457 return 0;
d2e4a39e
AS
3458 else
3459 {
3460 switch (TYPE_CODE (type))
4c4b4cd2
PH
3461 {
3462 case TYPE_CODE_INT:
3463 case TYPE_CODE_RANGE:
3464 case TYPE_CODE_ENUM:
3465 case TYPE_CODE_FLT:
3466 return 1;
3467 default:
3468 return 0;
3469 }
d2e4a39e 3470 }
14f9c5c9
AS
3471}
3472
4c4b4cd2 3473/* True iff TYPE is discrete (INT, RANGE, ENUM). */
14f9c5c9
AS
3474
3475static int
d2e4a39e 3476discrete_type_p (struct type *type)
14f9c5c9
AS
3477{
3478 if (type == NULL)
3479 return 0;
d2e4a39e
AS
3480 else
3481 {
3482 switch (TYPE_CODE (type))
4c4b4cd2
PH
3483 {
3484 case TYPE_CODE_INT:
3485 case TYPE_CODE_RANGE:
3486 case TYPE_CODE_ENUM:
3487 return 1;
3488 default:
3489 return 0;
3490 }
d2e4a39e 3491 }
14f9c5c9
AS
3492}
3493
4c4b4cd2
PH
3494/* Returns non-zero if OP with operands in the vector ARGS could be
3495 a user-defined function. Errs on the side of pre-defined operators
3496 (i.e., result 0). */
14f9c5c9
AS
3497
3498static int
d2e4a39e 3499possible_user_operator_p (enum exp_opcode op, struct value *args[])
14f9c5c9 3500{
76a01679 3501 struct type *type0 =
df407dfe 3502 (args[0] == NULL) ? NULL : ada_check_typedef (value_type (args[0]));
d2e4a39e 3503 struct type *type1 =
df407dfe 3504 (args[1] == NULL) ? NULL : ada_check_typedef (value_type (args[1]));
d2e4a39e 3505
4c4b4cd2
PH
3506 if (type0 == NULL)
3507 return 0;
3508
14f9c5c9
AS
3509 switch (op)
3510 {
3511 default:
3512 return 0;
3513
3514 case BINOP_ADD:
3515 case BINOP_SUB:
3516 case BINOP_MUL:
3517 case BINOP_DIV:
d2e4a39e 3518 return (!(numeric_type_p (type0) && numeric_type_p (type1)));
14f9c5c9
AS
3519
3520 case BINOP_REM:
3521 case BINOP_MOD:
3522 case BINOP_BITWISE_AND:
3523 case BINOP_BITWISE_IOR:
3524 case BINOP_BITWISE_XOR:
d2e4a39e 3525 return (!(integer_type_p (type0) && integer_type_p (type1)));
14f9c5c9
AS
3526
3527 case BINOP_EQUAL:
3528 case BINOP_NOTEQUAL:
3529 case BINOP_LESS:
3530 case BINOP_GTR:
3531 case BINOP_LEQ:
3532 case BINOP_GEQ:
d2e4a39e 3533 return (!(scalar_type_p (type0) && scalar_type_p (type1)));
14f9c5c9
AS
3534
3535 case BINOP_CONCAT:
ee90b9ab 3536 return !ada_is_array_type (type0) || !ada_is_array_type (type1);
14f9c5c9
AS
3537
3538 case BINOP_EXP:
d2e4a39e 3539 return (!(numeric_type_p (type0) && integer_type_p (type1)));
14f9c5c9
AS
3540
3541 case UNOP_NEG:
3542 case UNOP_PLUS:
3543 case UNOP_LOGICAL_NOT:
d2e4a39e
AS
3544 case UNOP_ABS:
3545 return (!numeric_type_p (type0));
14f9c5c9
AS
3546
3547 }
3548}
3549\f
4c4b4cd2 3550 /* Renaming */
14f9c5c9 3551
4c4b4cd2
PH
3552/* NOTE: In the following, we assume that a renaming type's name may
3553 have an ___XD suffix. It would be nice if this went away at some
3554 point. */
14f9c5c9
AS
3555
3556/* If TYPE encodes a renaming, returns the renaming suffix, which
4c4b4cd2
PH
3557 is XR for an object renaming, XRP for a procedure renaming, XRE for
3558 an exception renaming, and XRS for a subprogram renaming. Returns
3559 NULL if NAME encodes none of these. */
3560
d2e4a39e
AS
3561const char *
3562ada_renaming_type (struct type *type)
14f9c5c9
AS
3563{
3564 if (type != NULL && TYPE_CODE (type) == TYPE_CODE_ENUM)
3565 {
d2e4a39e
AS
3566 const char *name = type_name_no_tag (type);
3567 const char *suffix = (name == NULL) ? NULL : strstr (name, "___XR");
3568 if (suffix == NULL
4c4b4cd2
PH
3569 || (suffix[5] != '\000' && strchr ("PES_", suffix[5]) == NULL))
3570 return NULL;
14f9c5c9 3571 else
4c4b4cd2 3572 return suffix + 3;
14f9c5c9
AS
3573 }
3574 else
3575 return NULL;
3576}
3577
4c4b4cd2
PH
3578/* Return non-zero iff SYM encodes an object renaming. */
3579
14f9c5c9 3580int
d2e4a39e 3581ada_is_object_renaming (struct symbol *sym)
14f9c5c9 3582{
d2e4a39e
AS
3583 const char *renaming_type = ada_renaming_type (SYMBOL_TYPE (sym));
3584 return renaming_type != NULL
14f9c5c9
AS
3585 && (renaming_type[2] == '\0' || renaming_type[2] == '_');
3586}
3587
3588/* Assuming that SYM encodes a non-object renaming, returns the original
4c4b4cd2
PH
3589 name of the renamed entity. The name is good until the end of
3590 parsing. */
3591
3592char *
d2e4a39e 3593ada_simple_renamed_entity (struct symbol *sym)
14f9c5c9 3594{
d2e4a39e
AS
3595 struct type *type;
3596 const char *raw_name;
14f9c5c9 3597 int len;
d2e4a39e 3598 char *result;
14f9c5c9
AS
3599
3600 type = SYMBOL_TYPE (sym);
3601 if (type == NULL || TYPE_NFIELDS (type) < 1)
323e0a4a 3602 error (_("Improperly encoded renaming."));
14f9c5c9
AS
3603
3604 raw_name = TYPE_FIELD_NAME (type, 0);
3605 len = (raw_name == NULL ? 0 : strlen (raw_name)) - 5;
3606 if (len <= 0)
323e0a4a 3607 error (_("Improperly encoded renaming."));
14f9c5c9
AS
3608
3609 result = xmalloc (len + 1);
14f9c5c9
AS
3610 strncpy (result, raw_name, len);
3611 result[len] = '\000';
3612 return result;
3613}
52ce6436 3614
14f9c5c9 3615\f
d2e4a39e 3616
4c4b4cd2 3617 /* Evaluation: Function Calls */
14f9c5c9 3618
4c4b4cd2
PH
3619/* Return an lvalue containing the value VAL. This is the identity on
3620 lvalues, and otherwise has the side-effect of pushing a copy of VAL
3621 on the stack, using and updating *SP as the stack pointer, and
3622 returning an lvalue whose VALUE_ADDRESS points to the copy. */
14f9c5c9 3623
d2e4a39e 3624static struct value *
4c4b4cd2 3625ensure_lval (struct value *val, CORE_ADDR *sp)
14f9c5c9 3626{
c3e5cd34
PH
3627 if (! VALUE_LVAL (val))
3628 {
df407dfe 3629 int len = TYPE_LENGTH (ada_check_typedef (value_type (val)));
c3e5cd34
PH
3630
3631 /* The following is taken from the structure-return code in
3632 call_function_by_hand. FIXME: Therefore, some refactoring seems
3633 indicated. */
4d1e7dd1 3634 if (gdbarch_inner_than (current_gdbarch, 1, 2))
c3e5cd34
PH
3635 {
3636 /* Stack grows downward. Align SP and VALUE_ADDRESS (val) after
3637 reserving sufficient space. */
3638 *sp -= len;
3639 if (gdbarch_frame_align_p (current_gdbarch))
3640 *sp = gdbarch_frame_align (current_gdbarch, *sp);
3641 VALUE_ADDRESS (val) = *sp;
3642 }
3643 else
3644 {
3645 /* Stack grows upward. Align the frame, allocate space, and
3646 then again, re-align the frame. */
3647 if (gdbarch_frame_align_p (current_gdbarch))
3648 *sp = gdbarch_frame_align (current_gdbarch, *sp);
3649 VALUE_ADDRESS (val) = *sp;
3650 *sp += len;
3651 if (gdbarch_frame_align_p (current_gdbarch))
3652 *sp = gdbarch_frame_align (current_gdbarch, *sp);
3653 }
14f9c5c9 3654
990a07ab 3655 write_memory (VALUE_ADDRESS (val), value_contents_raw (val), len);
c3e5cd34 3656 }
14f9c5c9
AS
3657
3658 return val;
3659}
3660
3661/* Return the value ACTUAL, converted to be an appropriate value for a
3662 formal of type FORMAL_TYPE. Use *SP as a stack pointer for
3663 allocating any necessary descriptors (fat pointers), or copies of
4c4b4cd2 3664 values not residing in memory, updating it as needed. */
14f9c5c9 3665
d2e4a39e
AS
3666static struct value *
3667convert_actual (struct value *actual, struct type *formal_type0,
4c4b4cd2 3668 CORE_ADDR *sp)
14f9c5c9 3669{
df407dfe 3670 struct type *actual_type = ada_check_typedef (value_type (actual));
61ee279c 3671 struct type *formal_type = ada_check_typedef (formal_type0);
d2e4a39e
AS
3672 struct type *formal_target =
3673 TYPE_CODE (formal_type) == TYPE_CODE_PTR
61ee279c 3674 ? ada_check_typedef (TYPE_TARGET_TYPE (formal_type)) : formal_type;
d2e4a39e
AS
3675 struct type *actual_target =
3676 TYPE_CODE (actual_type) == TYPE_CODE_PTR
61ee279c 3677 ? ada_check_typedef (TYPE_TARGET_TYPE (actual_type)) : actual_type;
14f9c5c9 3678
4c4b4cd2 3679 if (ada_is_array_descriptor_type (formal_target)
14f9c5c9
AS
3680 && TYPE_CODE (actual_target) == TYPE_CODE_ARRAY)
3681 return make_array_descriptor (formal_type, actual, sp);
3682 else if (TYPE_CODE (formal_type) == TYPE_CODE_PTR)
3683 {
3684 if (TYPE_CODE (formal_target) == TYPE_CODE_ARRAY
4c4b4cd2
PH
3685 && ada_is_array_descriptor_type (actual_target))
3686 return desc_data (actual);
14f9c5c9 3687 else if (TYPE_CODE (actual_type) != TYPE_CODE_PTR)
4c4b4cd2
PH
3688 {
3689 if (VALUE_LVAL (actual) != lval_memory)
3690 {
3691 struct value *val;
df407dfe 3692 actual_type = ada_check_typedef (value_type (actual));
4c4b4cd2 3693 val = allocate_value (actual_type);
990a07ab 3694 memcpy ((char *) value_contents_raw (val),
0fd88904 3695 (char *) value_contents (actual),
4c4b4cd2
PH
3696 TYPE_LENGTH (actual_type));
3697 actual = ensure_lval (val, sp);
3698 }
3699 return value_addr (actual);
3700 }
14f9c5c9
AS
3701 }
3702 else if (TYPE_CODE (actual_type) == TYPE_CODE_PTR)
3703 return ada_value_ind (actual);
3704
3705 return actual;
3706}
3707
3708
4c4b4cd2
PH
3709/* Push a descriptor of type TYPE for array value ARR on the stack at
3710 *SP, updating *SP to reflect the new descriptor. Return either
14f9c5c9 3711 an lvalue representing the new descriptor, or (if TYPE is a pointer-
4c4b4cd2
PH
3712 to-descriptor type rather than a descriptor type), a struct value *
3713 representing a pointer to this descriptor. */
14f9c5c9 3714
d2e4a39e
AS
3715static struct value *
3716make_array_descriptor (struct type *type, struct value *arr, CORE_ADDR *sp)
14f9c5c9 3717{
d2e4a39e
AS
3718 struct type *bounds_type = desc_bounds_type (type);
3719 struct type *desc_type = desc_base_type (type);
3720 struct value *descriptor = allocate_value (desc_type);
3721 struct value *bounds = allocate_value (bounds_type);
14f9c5c9 3722 int i;
d2e4a39e 3723
df407dfe 3724 for (i = ada_array_arity (ada_check_typedef (value_type (arr))); i > 0; i -= 1)
14f9c5c9 3725 {
0fd88904 3726 modify_general_field (value_contents_writeable (bounds),
4c4b4cd2
PH
3727 value_as_long (ada_array_bound (arr, i, 0)),
3728 desc_bound_bitpos (bounds_type, i, 0),
3729 desc_bound_bitsize (bounds_type, i, 0));
0fd88904 3730 modify_general_field (value_contents_writeable (bounds),
4c4b4cd2
PH
3731 value_as_long (ada_array_bound (arr, i, 1)),
3732 desc_bound_bitpos (bounds_type, i, 1),
3733 desc_bound_bitsize (bounds_type, i, 1));
14f9c5c9 3734 }
d2e4a39e 3735
4c4b4cd2 3736 bounds = ensure_lval (bounds, sp);
d2e4a39e 3737
0fd88904 3738 modify_general_field (value_contents_writeable (descriptor),
76a01679
JB
3739 VALUE_ADDRESS (ensure_lval (arr, sp)),
3740 fat_pntr_data_bitpos (desc_type),
3741 fat_pntr_data_bitsize (desc_type));
4c4b4cd2 3742
0fd88904 3743 modify_general_field (value_contents_writeable (descriptor),
4c4b4cd2
PH
3744 VALUE_ADDRESS (bounds),
3745 fat_pntr_bounds_bitpos (desc_type),
3746 fat_pntr_bounds_bitsize (desc_type));
14f9c5c9 3747
4c4b4cd2 3748 descriptor = ensure_lval (descriptor, sp);
14f9c5c9
AS
3749
3750 if (TYPE_CODE (type) == TYPE_CODE_PTR)
3751 return value_addr (descriptor);
3752 else
3753 return descriptor;
3754}
3755
3756
4c4b4cd2 3757/* Assuming a dummy frame has been established on the target, perform any
14f9c5c9 3758 conversions needed for calling function FUNC on the NARGS actual
4c4b4cd2 3759 parameters in ARGS, other than standard C conversions. Does
14f9c5c9 3760 nothing if FUNC does not have Ada-style prototype data, or if NARGS
4c4b4cd2 3761 does not match the number of arguments expected. Use *SP as a
14f9c5c9 3762 stack pointer for additional data that must be pushed, updating its
4c4b4cd2 3763 value as needed. */
14f9c5c9
AS
3764
3765void
d2e4a39e 3766ada_convert_actuals (struct value *func, int nargs, struct value *args[],
4c4b4cd2 3767 CORE_ADDR *sp)
14f9c5c9
AS
3768{
3769 int i;
3770
df407dfe
AC
3771 if (TYPE_NFIELDS (value_type (func)) == 0
3772 || nargs != TYPE_NFIELDS (value_type (func)))
14f9c5c9
AS
3773 return;
3774
3775 for (i = 0; i < nargs; i += 1)
d2e4a39e 3776 args[i] =
df407dfe 3777 convert_actual (args[i], TYPE_FIELD_TYPE (value_type (func), i), sp);
14f9c5c9 3778}
14f9c5c9 3779\f
963a6417
PH
3780/* Dummy definitions for an experimental caching module that is not
3781 * used in the public sources. */
96d887e8 3782
96d887e8
PH
3783static int
3784lookup_cached_symbol (const char *name, domain_enum namespace,
76a01679
JB
3785 struct symbol **sym, struct block **block,
3786 struct symtab **symtab)
96d887e8
PH
3787{
3788 return 0;
3789}
3790
3791static void
3792cache_symbol (const char *name, domain_enum namespace, struct symbol *sym,
76a01679 3793 struct block *block, struct symtab *symtab)
96d887e8
PH
3794{
3795}
4c4b4cd2
PH
3796\f
3797 /* Symbol Lookup */
3798
3799/* Return the result of a standard (literal, C-like) lookup of NAME in
3800 given DOMAIN, visible from lexical block BLOCK. */
3801
3802static struct symbol *
3803standard_lookup (const char *name, const struct block *block,
3804 domain_enum domain)
3805{
3806 struct symbol *sym;
3807 struct symtab *symtab;
3808
3809 if (lookup_cached_symbol (name, domain, &sym, NULL, NULL))
3810 return sym;
76a01679
JB
3811 sym =
3812 lookup_symbol_in_language (name, block, domain, language_c, 0, &symtab);
4c4b4cd2
PH
3813 cache_symbol (name, domain, sym, block_found, symtab);
3814 return sym;
3815}
3816
3817
3818/* Non-zero iff there is at least one non-function/non-enumeral symbol
3819 in the symbol fields of SYMS[0..N-1]. We treat enumerals as functions,
3820 since they contend in overloading in the same way. */
3821static int
3822is_nonfunction (struct ada_symbol_info syms[], int n)
3823{
3824 int i;
3825
3826 for (i = 0; i < n; i += 1)
3827 if (TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) != TYPE_CODE_FUNC
3828 && (TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) != TYPE_CODE_ENUM
3829 || SYMBOL_CLASS (syms[i].sym) != LOC_CONST))
14f9c5c9
AS
3830 return 1;
3831
3832 return 0;
3833}
3834
3835/* If true (non-zero), then TYPE0 and TYPE1 represent equivalent
4c4b4cd2 3836 struct types. Otherwise, they may not. */
14f9c5c9
AS
3837
3838static int
d2e4a39e 3839equiv_types (struct type *type0, struct type *type1)
14f9c5c9 3840{
d2e4a39e 3841 if (type0 == type1)
14f9c5c9 3842 return 1;
d2e4a39e 3843 if (type0 == NULL || type1 == NULL
14f9c5c9
AS
3844 || TYPE_CODE (type0) != TYPE_CODE (type1))
3845 return 0;
d2e4a39e 3846 if ((TYPE_CODE (type0) == TYPE_CODE_STRUCT
14f9c5c9
AS
3847 || TYPE_CODE (type0) == TYPE_CODE_ENUM)
3848 && ada_type_name (type0) != NULL && ada_type_name (type1) != NULL
4c4b4cd2 3849 && strcmp (ada_type_name (type0), ada_type_name (type1)) == 0)
14f9c5c9 3850 return 1;
d2e4a39e 3851
14f9c5c9
AS
3852 return 0;
3853}
3854
3855/* True iff SYM0 represents the same entity as SYM1, or one that is
4c4b4cd2 3856 no more defined than that of SYM1. */
14f9c5c9
AS
3857
3858static int
d2e4a39e 3859lesseq_defined_than (struct symbol *sym0, struct symbol *sym1)
14f9c5c9
AS
3860{
3861 if (sym0 == sym1)
3862 return 1;
176620f1 3863 if (SYMBOL_DOMAIN (sym0) != SYMBOL_DOMAIN (sym1)
14f9c5c9
AS
3864 || SYMBOL_CLASS (sym0) != SYMBOL_CLASS (sym1))
3865 return 0;
3866
d2e4a39e 3867 switch (SYMBOL_CLASS (sym0))
14f9c5c9
AS
3868 {
3869 case LOC_UNDEF:
3870 return 1;
3871 case LOC_TYPEDEF:
3872 {
4c4b4cd2
PH
3873 struct type *type0 = SYMBOL_TYPE (sym0);
3874 struct type *type1 = SYMBOL_TYPE (sym1);
3875 char *name0 = SYMBOL_LINKAGE_NAME (sym0);
3876 char *name1 = SYMBOL_LINKAGE_NAME (sym1);
3877 int len0 = strlen (name0);
3878 return
3879 TYPE_CODE (type0) == TYPE_CODE (type1)
3880 && (equiv_types (type0, type1)
3881 || (len0 < strlen (name1) && strncmp (name0, name1, len0) == 0
3882 && strncmp (name1 + len0, "___XV", 5) == 0));
14f9c5c9
AS
3883 }
3884 case LOC_CONST:
3885 return SYMBOL_VALUE (sym0) == SYMBOL_VALUE (sym1)
4c4b4cd2 3886 && equiv_types (SYMBOL_TYPE (sym0), SYMBOL_TYPE (sym1));
d2e4a39e
AS
3887 default:
3888 return 0;
14f9c5c9
AS
3889 }
3890}
3891
4c4b4cd2
PH
3892/* Append (SYM,BLOCK,SYMTAB) to the end of the array of struct ada_symbol_info
3893 records in OBSTACKP. Do nothing if SYM is a duplicate. */
14f9c5c9
AS
3894
3895static void
76a01679
JB
3896add_defn_to_vec (struct obstack *obstackp,
3897 struct symbol *sym,
3898 struct block *block, struct symtab *symtab)
14f9c5c9
AS
3899{
3900 int i;
3901 size_t tmp;
4c4b4cd2 3902 struct ada_symbol_info *prevDefns = defns_collected (obstackp, 0);
14f9c5c9 3903
529cad9c
PH
3904 /* Do not try to complete stub types, as the debugger is probably
3905 already scanning all symbols matching a certain name at the
3906 time when this function is called. Trying to replace the stub
3907 type by its associated full type will cause us to restart a scan
3908 which may lead to an infinite recursion. Instead, the client
3909 collecting the matching symbols will end up collecting several
3910 matches, with at least one of them complete. It can then filter
3911 out the stub ones if needed. */
3912
4c4b4cd2
PH
3913 for (i = num_defns_collected (obstackp) - 1; i >= 0; i -= 1)
3914 {
3915 if (lesseq_defined_than (sym, prevDefns[i].sym))
3916 return;
3917 else if (lesseq_defined_than (prevDefns[i].sym, sym))
3918 {
3919 prevDefns[i].sym = sym;
3920 prevDefns[i].block = block;
76a01679 3921 prevDefns[i].symtab = symtab;
4c4b4cd2 3922 return;
76a01679 3923 }
4c4b4cd2
PH
3924 }
3925
3926 {
3927 struct ada_symbol_info info;
3928
3929 info.sym = sym;
3930 info.block = block;
3931 info.symtab = symtab;
3932 obstack_grow (obstackp, &info, sizeof (struct ada_symbol_info));
3933 }
3934}
3935
3936/* Number of ada_symbol_info structures currently collected in
3937 current vector in *OBSTACKP. */
3938
76a01679
JB
3939static int
3940num_defns_collected (struct obstack *obstackp)
4c4b4cd2
PH
3941{
3942 return obstack_object_size (obstackp) / sizeof (struct ada_symbol_info);
3943}
3944
3945/* Vector of ada_symbol_info structures currently collected in current
3946 vector in *OBSTACKP. If FINISH, close off the vector and return
3947 its final address. */
3948
76a01679 3949static struct ada_symbol_info *
4c4b4cd2
PH
3950defns_collected (struct obstack *obstackp, int finish)
3951{
3952 if (finish)
3953 return obstack_finish (obstackp);
3954 else
3955 return (struct ada_symbol_info *) obstack_base (obstackp);
3956}
3957
96d887e8
PH
3958/* Look, in partial_symtab PST, for symbol NAME in given namespace.
3959 Check the global symbols if GLOBAL, the static symbols if not.
3960 Do wild-card match if WILD. */
4c4b4cd2 3961
96d887e8
PH
3962static struct partial_symbol *
3963ada_lookup_partial_symbol (struct partial_symtab *pst, const char *name,
3964 int global, domain_enum namespace, int wild)
4c4b4cd2 3965{
96d887e8
PH
3966 struct partial_symbol **start;
3967 int name_len = strlen (name);
3968 int length = (global ? pst->n_global_syms : pst->n_static_syms);
3969 int i;
4c4b4cd2 3970
96d887e8 3971 if (length == 0)
4c4b4cd2 3972 {
96d887e8 3973 return (NULL);
4c4b4cd2
PH
3974 }
3975
96d887e8
PH
3976 start = (global ?
3977 pst->objfile->global_psymbols.list + pst->globals_offset :
3978 pst->objfile->static_psymbols.list + pst->statics_offset);
4c4b4cd2 3979
96d887e8 3980 if (wild)
4c4b4cd2 3981 {
96d887e8
PH
3982 for (i = 0; i < length; i += 1)
3983 {
3984 struct partial_symbol *psym = start[i];
4c4b4cd2 3985
1265e4aa
JB
3986 if (SYMBOL_DOMAIN (psym) == namespace
3987 && wild_match (name, name_len, SYMBOL_LINKAGE_NAME (psym)))
96d887e8
PH
3988 return psym;
3989 }
3990 return NULL;
4c4b4cd2 3991 }
96d887e8
PH
3992 else
3993 {
3994 if (global)
3995 {
3996 int U;
3997 i = 0;
3998 U = length - 1;
3999 while (U - i > 4)
4000 {
4001 int M = (U + i) >> 1;
4002 struct partial_symbol *psym = start[M];
4003 if (SYMBOL_LINKAGE_NAME (psym)[0] < name[0])
4004 i = M + 1;
4005 else if (SYMBOL_LINKAGE_NAME (psym)[0] > name[0])
4006 U = M - 1;
4007 else if (strcmp (SYMBOL_LINKAGE_NAME (psym), name) < 0)
4008 i = M + 1;
4009 else
4010 U = M;
4011 }
4012 }
4013 else
4014 i = 0;
4c4b4cd2 4015
96d887e8
PH
4016 while (i < length)
4017 {
4018 struct partial_symbol *psym = start[i];
4c4b4cd2 4019
96d887e8
PH
4020 if (SYMBOL_DOMAIN (psym) == namespace)
4021 {
4022 int cmp = strncmp (name, SYMBOL_LINKAGE_NAME (psym), name_len);
4c4b4cd2 4023
96d887e8
PH
4024 if (cmp < 0)
4025 {
4026 if (global)
4027 break;
4028 }
4029 else if (cmp == 0
4030 && is_name_suffix (SYMBOL_LINKAGE_NAME (psym)
76a01679 4031 + name_len))
96d887e8
PH
4032 return psym;
4033 }
4034 i += 1;
4035 }
4c4b4cd2 4036
96d887e8
PH
4037 if (global)
4038 {
4039 int U;
4040 i = 0;
4041 U = length - 1;
4042 while (U - i > 4)
4043 {
4044 int M = (U + i) >> 1;
4045 struct partial_symbol *psym = start[M];
4046 if (SYMBOL_LINKAGE_NAME (psym)[0] < '_')
4047 i = M + 1;
4048 else if (SYMBOL_LINKAGE_NAME (psym)[0] > '_')
4049 U = M - 1;
4050 else if (strcmp (SYMBOL_LINKAGE_NAME (psym), "_ada_") < 0)
4051 i = M + 1;
4052 else
4053 U = M;
4054 }
4055 }
4056 else
4057 i = 0;
4c4b4cd2 4058
96d887e8
PH
4059 while (i < length)
4060 {
4061 struct partial_symbol *psym = start[i];
4c4b4cd2 4062
96d887e8
PH
4063 if (SYMBOL_DOMAIN (psym) == namespace)
4064 {
4065 int cmp;
4c4b4cd2 4066
96d887e8
PH
4067 cmp = (int) '_' - (int) SYMBOL_LINKAGE_NAME (psym)[0];
4068 if (cmp == 0)
4069 {
4070 cmp = strncmp ("_ada_", SYMBOL_LINKAGE_NAME (psym), 5);
4071 if (cmp == 0)
4072 cmp = strncmp (name, SYMBOL_LINKAGE_NAME (psym) + 5,
76a01679 4073 name_len);
96d887e8 4074 }
4c4b4cd2 4075
96d887e8
PH
4076 if (cmp < 0)
4077 {
4078 if (global)
4079 break;
4080 }
4081 else if (cmp == 0
4082 && is_name_suffix (SYMBOL_LINKAGE_NAME (psym)
76a01679 4083 + name_len + 5))
96d887e8
PH
4084 return psym;
4085 }
4086 i += 1;
4087 }
4088 }
4089 return NULL;
4c4b4cd2
PH
4090}
4091
96d887e8 4092/* Find a symbol table containing symbol SYM or NULL if none. */
4c4b4cd2 4093
96d887e8
PH
4094static struct symtab *
4095symtab_for_sym (struct symbol *sym)
4c4b4cd2 4096{
96d887e8
PH
4097 struct symtab *s;
4098 struct objfile *objfile;
4099 struct block *b;
4100 struct symbol *tmp_sym;
4101 struct dict_iterator iter;
4102 int j;
4c4b4cd2 4103
11309657 4104 ALL_PRIMARY_SYMTABS (objfile, s)
96d887e8
PH
4105 {
4106 switch (SYMBOL_CLASS (sym))
4107 {
4108 case LOC_CONST:
4109 case LOC_STATIC:
4110 case LOC_TYPEDEF:
4111 case LOC_REGISTER:
4112 case LOC_LABEL:
4113 case LOC_BLOCK:
4114 case LOC_CONST_BYTES:
76a01679
JB
4115 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), GLOBAL_BLOCK);
4116 ALL_BLOCK_SYMBOLS (b, iter, tmp_sym) if (sym == tmp_sym)
4117 return s;
4118 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), STATIC_BLOCK);
4119 ALL_BLOCK_SYMBOLS (b, iter, tmp_sym) if (sym == tmp_sym)
4120 return s;
96d887e8
PH
4121 break;
4122 default:
4123 break;
4124 }
4125 switch (SYMBOL_CLASS (sym))
4126 {
4127 case LOC_REGISTER:
4128 case LOC_ARG:
4129 case LOC_REF_ARG:
4130 case LOC_REGPARM:
4131 case LOC_REGPARM_ADDR:
4132 case LOC_LOCAL:
4133 case LOC_TYPEDEF:
4134 case LOC_LOCAL_ARG:
4135 case LOC_BASEREG:
4136 case LOC_BASEREG_ARG:
4137 case LOC_COMPUTED:
4138 case LOC_COMPUTED_ARG:
76a01679
JB
4139 for (j = FIRST_LOCAL_BLOCK;
4140 j < BLOCKVECTOR_NBLOCKS (BLOCKVECTOR (s)); j += 1)
4141 {
4142 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), j);
4143 ALL_BLOCK_SYMBOLS (b, iter, tmp_sym) if (sym == tmp_sym)
4144 return s;
4145 }
4146 break;
96d887e8
PH
4147 default:
4148 break;
4149 }
4150 }
4151 return NULL;
4c4b4cd2
PH
4152}
4153
96d887e8
PH
4154/* Return a minimal symbol matching NAME according to Ada decoding
4155 rules. Returns NULL if there is no such minimal symbol. Names
4156 prefixed with "standard__" are handled specially: "standard__" is
4157 first stripped off, and only static and global symbols are searched. */
4c4b4cd2 4158
96d887e8
PH
4159struct minimal_symbol *
4160ada_lookup_simple_minsym (const char *name)
4c4b4cd2 4161{
4c4b4cd2 4162 struct objfile *objfile;
96d887e8
PH
4163 struct minimal_symbol *msymbol;
4164 int wild_match;
4c4b4cd2 4165
96d887e8 4166 if (strncmp (name, "standard__", sizeof ("standard__") - 1) == 0)
4c4b4cd2 4167 {
96d887e8 4168 name += sizeof ("standard__") - 1;
4c4b4cd2 4169 wild_match = 0;
4c4b4cd2
PH
4170 }
4171 else
96d887e8 4172 wild_match = (strstr (name, "__") == NULL);
4c4b4cd2 4173
96d887e8
PH
4174 ALL_MSYMBOLS (objfile, msymbol)
4175 {
4176 if (ada_match_name (SYMBOL_LINKAGE_NAME (msymbol), name, wild_match)
4177 && MSYMBOL_TYPE (msymbol) != mst_solib_trampoline)
4178 return msymbol;
4179 }
4c4b4cd2 4180
96d887e8
PH
4181 return NULL;
4182}
4c4b4cd2 4183
96d887e8
PH
4184/* For all subprograms that statically enclose the subprogram of the
4185 selected frame, add symbols matching identifier NAME in DOMAIN
4186 and their blocks to the list of data in OBSTACKP, as for
4187 ada_add_block_symbols (q.v.). If WILD, treat as NAME with a
4188 wildcard prefix. */
4c4b4cd2 4189
96d887e8
PH
4190static void
4191add_symbols_from_enclosing_procs (struct obstack *obstackp,
76a01679 4192 const char *name, domain_enum namespace,
96d887e8
PH
4193 int wild_match)
4194{
96d887e8 4195}
14f9c5c9 4196
96d887e8
PH
4197/* True if TYPE is definitely an artificial type supplied to a symbol
4198 for which no debugging information was given in the symbol file. */
14f9c5c9 4199
96d887e8
PH
4200static int
4201is_nondebugging_type (struct type *type)
4202{
4203 char *name = ada_type_name (type);
4204 return (name != NULL && strcmp (name, "<variable, no debug info>") == 0);
4205}
4c4b4cd2 4206
96d887e8
PH
4207/* Remove any non-debugging symbols in SYMS[0 .. NSYMS-1] that definitely
4208 duplicate other symbols in the list (The only case I know of where
4209 this happens is when object files containing stabs-in-ecoff are
4210 linked with files containing ordinary ecoff debugging symbols (or no
4211 debugging symbols)). Modifies SYMS to squeeze out deleted entries.
4212 Returns the number of items in the modified list. */
4c4b4cd2 4213
96d887e8
PH
4214static int
4215remove_extra_symbols (struct ada_symbol_info *syms, int nsyms)
4216{
4217 int i, j;
4c4b4cd2 4218
96d887e8
PH
4219 i = 0;
4220 while (i < nsyms)
4221 {
4222 if (SYMBOL_LINKAGE_NAME (syms[i].sym) != NULL
4223 && SYMBOL_CLASS (syms[i].sym) == LOC_STATIC
4224 && is_nondebugging_type (SYMBOL_TYPE (syms[i].sym)))
4225 {
4226 for (j = 0; j < nsyms; j += 1)
4227 {
4228 if (i != j
4229 && SYMBOL_LINKAGE_NAME (syms[j].sym) != NULL
4230 && strcmp (SYMBOL_LINKAGE_NAME (syms[i].sym),
76a01679 4231 SYMBOL_LINKAGE_NAME (syms[j].sym)) == 0
96d887e8
PH
4232 && SYMBOL_CLASS (syms[i].sym) == SYMBOL_CLASS (syms[j].sym)
4233 && SYMBOL_VALUE_ADDRESS (syms[i].sym)
4234 == SYMBOL_VALUE_ADDRESS (syms[j].sym))
4c4b4cd2 4235 {
96d887e8
PH
4236 int k;
4237 for (k = i + 1; k < nsyms; k += 1)
76a01679 4238 syms[k - 1] = syms[k];
96d887e8
PH
4239 nsyms -= 1;
4240 goto NextSymbol;
4c4b4cd2 4241 }
4c4b4cd2 4242 }
4c4b4cd2 4243 }
96d887e8
PH
4244 i += 1;
4245 NextSymbol:
4246 ;
14f9c5c9 4247 }
96d887e8 4248 return nsyms;
14f9c5c9
AS
4249}
4250
96d887e8
PH
4251/* Given a type that corresponds to a renaming entity, use the type name
4252 to extract the scope (package name or function name, fully qualified,
4253 and following the GNAT encoding convention) where this renaming has been
4254 defined. The string returned needs to be deallocated after use. */
4c4b4cd2 4255
96d887e8
PH
4256static char *
4257xget_renaming_scope (struct type *renaming_type)
14f9c5c9 4258{
96d887e8
PH
4259 /* The renaming types adhere to the following convention:
4260 <scope>__<rename>___<XR extension>.
4261 So, to extract the scope, we search for the "___XR" extension,
4262 and then backtrack until we find the first "__". */
76a01679 4263
96d887e8
PH
4264 const char *name = type_name_no_tag (renaming_type);
4265 char *suffix = strstr (name, "___XR");
4266 char *last;
4267 int scope_len;
4268 char *scope;
14f9c5c9 4269
96d887e8
PH
4270 /* Now, backtrack a bit until we find the first "__". Start looking
4271 at suffix - 3, as the <rename> part is at least one character long. */
14f9c5c9 4272
96d887e8
PH
4273 for (last = suffix - 3; last > name; last--)
4274 if (last[0] == '_' && last[1] == '_')
4275 break;
76a01679 4276
96d887e8 4277 /* Make a copy of scope and return it. */
14f9c5c9 4278
96d887e8
PH
4279 scope_len = last - name;
4280 scope = (char *) xmalloc ((scope_len + 1) * sizeof (char));
14f9c5c9 4281
96d887e8
PH
4282 strncpy (scope, name, scope_len);
4283 scope[scope_len] = '\0';
4c4b4cd2 4284
96d887e8 4285 return scope;
4c4b4cd2
PH
4286}
4287
96d887e8 4288/* Return nonzero if NAME corresponds to a package name. */
4c4b4cd2 4289
96d887e8
PH
4290static int
4291is_package_name (const char *name)
4c4b4cd2 4292{
96d887e8
PH
4293 /* Here, We take advantage of the fact that no symbols are generated
4294 for packages, while symbols are generated for each function.
4295 So the condition for NAME represent a package becomes equivalent
4296 to NAME not existing in our list of symbols. There is only one
4297 small complication with library-level functions (see below). */
4c4b4cd2 4298
96d887e8 4299 char *fun_name;
76a01679 4300
96d887e8
PH
4301 /* If it is a function that has not been defined at library level,
4302 then we should be able to look it up in the symbols. */
4303 if (standard_lookup (name, NULL, VAR_DOMAIN) != NULL)
4304 return 0;
14f9c5c9 4305
96d887e8
PH
4306 /* Library-level function names start with "_ada_". See if function
4307 "_ada_" followed by NAME can be found. */
14f9c5c9 4308
96d887e8 4309 /* Do a quick check that NAME does not contain "__", since library-level
e1d5a0d2 4310 functions names cannot contain "__" in them. */
96d887e8
PH
4311 if (strstr (name, "__") != NULL)
4312 return 0;
4c4b4cd2 4313
b435e160 4314 fun_name = xstrprintf ("_ada_%s", name);
14f9c5c9 4315
96d887e8
PH
4316 return (standard_lookup (fun_name, NULL, VAR_DOMAIN) == NULL);
4317}
14f9c5c9 4318
96d887e8
PH
4319/* Return nonzero if SYM corresponds to a renaming entity that is
4320 visible from FUNCTION_NAME. */
14f9c5c9 4321
96d887e8
PH
4322static int
4323renaming_is_visible (const struct symbol *sym, char *function_name)
4324{
4325 char *scope = xget_renaming_scope (SYMBOL_TYPE (sym));
d2e4a39e 4326
96d887e8 4327 make_cleanup (xfree, scope);
14f9c5c9 4328
96d887e8
PH
4329 /* If the rename has been defined in a package, then it is visible. */
4330 if (is_package_name (scope))
4331 return 1;
14f9c5c9 4332
96d887e8
PH
4333 /* Check that the rename is in the current function scope by checking
4334 that its name starts with SCOPE. */
76a01679 4335
96d887e8
PH
4336 /* If the function name starts with "_ada_", it means that it is
4337 a library-level function. Strip this prefix before doing the
4338 comparison, as the encoding for the renaming does not contain
4339 this prefix. */
4340 if (strncmp (function_name, "_ada_", 5) == 0)
4341 function_name += 5;
f26caa11 4342
96d887e8 4343 return (strncmp (function_name, scope, strlen (scope)) == 0);
f26caa11
PH
4344}
4345
96d887e8
PH
4346/* Iterates over the SYMS list and remove any entry that corresponds to
4347 a renaming entity that is not visible from the function associated
4348 with CURRENT_BLOCK.
4349
4350 Rationale:
4351 GNAT emits a type following a specified encoding for each renaming
4352 entity. Unfortunately, STABS currently does not support the definition
4353 of types that are local to a given lexical block, so all renamings types
4354 are emitted at library level. As a consequence, if an application
4355 contains two renaming entities using the same name, and a user tries to
4356 print the value of one of these entities, the result of the ada symbol
4357 lookup will also contain the wrong renaming type.
f26caa11 4358
96d887e8
PH
4359 This function partially covers for this limitation by attempting to
4360 remove from the SYMS list renaming symbols that should be visible
4361 from CURRENT_BLOCK. However, there does not seem be a 100% reliable
4362 method with the current information available. The implementation
4363 below has a couple of limitations (FIXME: brobecker-2003-05-12):
4364
4365 - When the user tries to print a rename in a function while there
4366 is another rename entity defined in a package: Normally, the
4367 rename in the function has precedence over the rename in the
4368 package, so the latter should be removed from the list. This is
4369 currently not the case.
4370
4371 - This function will incorrectly remove valid renames if
4372 the CURRENT_BLOCK corresponds to a function which symbol name
4373 has been changed by an "Export" pragma. As a consequence,
4374 the user will be unable to print such rename entities. */
4c4b4cd2 4375
14f9c5c9 4376static int
96d887e8 4377remove_out_of_scope_renamings (struct ada_symbol_info *syms,
b260b6c1 4378 int nsyms, const struct block *current_block)
4c4b4cd2
PH
4379{
4380 struct symbol *current_function;
4381 char *current_function_name;
4382 int i;
4383
4384 /* Extract the function name associated to CURRENT_BLOCK.
4385 Abort if unable to do so. */
76a01679 4386
4c4b4cd2
PH
4387 if (current_block == NULL)
4388 return nsyms;
76a01679 4389
4c4b4cd2
PH
4390 current_function = block_function (current_block);
4391 if (current_function == NULL)
4392 return nsyms;
4393
4394 current_function_name = SYMBOL_LINKAGE_NAME (current_function);
4395 if (current_function_name == NULL)
4396 return nsyms;
4397
4398 /* Check each of the symbols, and remove it from the list if it is
4399 a type corresponding to a renaming that is out of the scope of
4400 the current block. */
4401
4402 i = 0;
4403 while (i < nsyms)
4404 {
4405 if (ada_is_object_renaming (syms[i].sym)
4406 && !renaming_is_visible (syms[i].sym, current_function_name))
4407 {
4408 int j;
4409 for (j = i + 1; j < nsyms; j++)
76a01679 4410 syms[j - 1] = syms[j];
4c4b4cd2
PH
4411 nsyms -= 1;
4412 }
4413 else
4414 i += 1;
4415 }
4416
4417 return nsyms;
4418}
4419
4420/* Find symbols in DOMAIN matching NAME0, in BLOCK0 and enclosing
4421 scope and in global scopes, returning the number of matches. Sets
4422 *RESULTS to point to a vector of (SYM,BLOCK,SYMTAB) triples,
4423 indicating the symbols found and the blocks and symbol tables (if
4424 any) in which they were found. This vector are transient---good only to
4425 the next call of ada_lookup_symbol_list. Any non-function/non-enumeral
4426 symbol match within the nest of blocks whose innermost member is BLOCK0,
4427 is the one match returned (no other matches in that or
4428 enclosing blocks is returned). If there are any matches in or
4429 surrounding BLOCK0, then these alone are returned. Otherwise, the
4430 search extends to global and file-scope (static) symbol tables.
4431 Names prefixed with "standard__" are handled specially: "standard__"
4432 is first stripped off, and only static and global symbols are searched. */
14f9c5c9
AS
4433
4434int
4c4b4cd2 4435ada_lookup_symbol_list (const char *name0, const struct block *block0,
76a01679
JB
4436 domain_enum namespace,
4437 struct ada_symbol_info **results)
14f9c5c9
AS
4438{
4439 struct symbol *sym;
4440 struct symtab *s;
4441 struct partial_symtab *ps;
4442 struct blockvector *bv;
4443 struct objfile *objfile;
14f9c5c9 4444 struct block *block;
4c4b4cd2 4445 const char *name;
14f9c5c9 4446 struct minimal_symbol *msymbol;
4c4b4cd2 4447 int wild_match;
14f9c5c9 4448 int cacheIfUnique;
4c4b4cd2
PH
4449 int block_depth;
4450 int ndefns;
14f9c5c9 4451
4c4b4cd2
PH
4452 obstack_free (&symbol_list_obstack, NULL);
4453 obstack_init (&symbol_list_obstack);
14f9c5c9 4454
14f9c5c9
AS
4455 cacheIfUnique = 0;
4456
4457 /* Search specified block and its superiors. */
4458
4c4b4cd2
PH
4459 wild_match = (strstr (name0, "__") == NULL);
4460 name = name0;
76a01679
JB
4461 block = (struct block *) block0; /* FIXME: No cast ought to be
4462 needed, but adding const will
4463 have a cascade effect. */
4c4b4cd2
PH
4464 if (strncmp (name0, "standard__", sizeof ("standard__") - 1) == 0)
4465 {
4466 wild_match = 0;
4467 block = NULL;
4468 name = name0 + sizeof ("standard__") - 1;
4469 }
4470
4471 block_depth = 0;
14f9c5c9
AS
4472 while (block != NULL)
4473 {
4c4b4cd2 4474 block_depth += 1;
76a01679
JB
4475 ada_add_block_symbols (&symbol_list_obstack, block, name,
4476 namespace, NULL, NULL, wild_match);
14f9c5c9 4477
4c4b4cd2
PH
4478 /* If we found a non-function match, assume that's the one. */
4479 if (is_nonfunction (defns_collected (&symbol_list_obstack, 0),
76a01679 4480 num_defns_collected (&symbol_list_obstack)))
4c4b4cd2 4481 goto done;
14f9c5c9
AS
4482
4483 block = BLOCK_SUPERBLOCK (block);
4484 }
4485
4c4b4cd2
PH
4486 /* If no luck so far, try to find NAME as a local symbol in some lexically
4487 enclosing subprogram. */
4488 if (num_defns_collected (&symbol_list_obstack) == 0 && block_depth > 2)
4489 add_symbols_from_enclosing_procs (&symbol_list_obstack,
76a01679 4490 name, namespace, wild_match);
4c4b4cd2
PH
4491
4492 /* If we found ANY matches among non-global symbols, we're done. */
14f9c5c9 4493
4c4b4cd2 4494 if (num_defns_collected (&symbol_list_obstack) > 0)
14f9c5c9 4495 goto done;
d2e4a39e 4496
14f9c5c9 4497 cacheIfUnique = 1;
4c4b4cd2
PH
4498 if (lookup_cached_symbol (name0, namespace, &sym, &block, &s))
4499 {
4500 if (sym != NULL)
4501 add_defn_to_vec (&symbol_list_obstack, sym, block, s);
4502 goto done;
4503 }
14f9c5c9
AS
4504
4505 /* Now add symbols from all global blocks: symbol tables, minimal symbol
4c4b4cd2 4506 tables, and psymtab's. */
14f9c5c9 4507
11309657 4508 ALL_PRIMARY_SYMTABS (objfile, s)
d2e4a39e
AS
4509 {
4510 QUIT;
d2e4a39e
AS
4511 bv = BLOCKVECTOR (s);
4512 block = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
76a01679
JB
4513 ada_add_block_symbols (&symbol_list_obstack, block, name, namespace,
4514 objfile, s, wild_match);
d2e4a39e 4515 }
14f9c5c9 4516
4c4b4cd2 4517 if (namespace == VAR_DOMAIN)
14f9c5c9
AS
4518 {
4519 ALL_MSYMBOLS (objfile, msymbol)
d2e4a39e 4520 {
4c4b4cd2
PH
4521 if (ada_match_name (SYMBOL_LINKAGE_NAME (msymbol), name, wild_match))
4522 {
4523 switch (MSYMBOL_TYPE (msymbol))
4524 {
4525 case mst_solib_trampoline:
4526 break;
4527 default:
4528 s = find_pc_symtab (SYMBOL_VALUE_ADDRESS (msymbol));
4529 if (s != NULL)
4530 {
4531 int ndefns0 = num_defns_collected (&symbol_list_obstack);
4532 QUIT;
4533 bv = BLOCKVECTOR (s);
4534 block = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
4535 ada_add_block_symbols (&symbol_list_obstack, block,
4536 SYMBOL_LINKAGE_NAME (msymbol),
4537 namespace, objfile, s, wild_match);
76a01679 4538
4c4b4cd2
PH
4539 if (num_defns_collected (&symbol_list_obstack) == ndefns0)
4540 {
4541 block = BLOCKVECTOR_BLOCK (bv, STATIC_BLOCK);
4542 ada_add_block_symbols (&symbol_list_obstack, block,
4543 SYMBOL_LINKAGE_NAME (msymbol),
4544 namespace, objfile, s,
4545 wild_match);
4546 }
4547 }
4548 }
4549 }
d2e4a39e 4550 }
14f9c5c9 4551 }
d2e4a39e 4552
14f9c5c9 4553 ALL_PSYMTABS (objfile, ps)
d2e4a39e
AS
4554 {
4555 QUIT;
4556 if (!ps->readin
4c4b4cd2 4557 && ada_lookup_partial_symbol (ps, name, 1, namespace, wild_match))
d2e4a39e 4558 {
4c4b4cd2
PH
4559 s = PSYMTAB_TO_SYMTAB (ps);
4560 if (!s->primary)
4561 continue;
4562 bv = BLOCKVECTOR (s);
4563 block = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
4564 ada_add_block_symbols (&symbol_list_obstack, block, name,
76a01679 4565 namespace, objfile, s, wild_match);
d2e4a39e
AS
4566 }
4567 }
4568
4c4b4cd2 4569 /* Now add symbols from all per-file blocks if we've gotten no hits
14f9c5c9 4570 (Not strictly correct, but perhaps better than an error).
4c4b4cd2 4571 Do the symtabs first, then check the psymtabs. */
d2e4a39e 4572
4c4b4cd2 4573 if (num_defns_collected (&symbol_list_obstack) == 0)
14f9c5c9
AS
4574 {
4575
11309657 4576 ALL_PRIMARY_SYMTABS (objfile, s)
d2e4a39e 4577 {
4c4b4cd2 4578 QUIT;
4c4b4cd2
PH
4579 bv = BLOCKVECTOR (s);
4580 block = BLOCKVECTOR_BLOCK (bv, STATIC_BLOCK);
76a01679
JB
4581 ada_add_block_symbols (&symbol_list_obstack, block, name, namespace,
4582 objfile, s, wild_match);
d2e4a39e
AS
4583 }
4584
14f9c5c9 4585 ALL_PSYMTABS (objfile, ps)
d2e4a39e 4586 {
4c4b4cd2
PH
4587 QUIT;
4588 if (!ps->readin
4589 && ada_lookup_partial_symbol (ps, name, 0, namespace, wild_match))
4590 {
4591 s = PSYMTAB_TO_SYMTAB (ps);
4592 bv = BLOCKVECTOR (s);
4593 if (!s->primary)
4594 continue;
4595 block = BLOCKVECTOR_BLOCK (bv, STATIC_BLOCK);
76a01679
JB
4596 ada_add_block_symbols (&symbol_list_obstack, block, name,
4597 namespace, objfile, s, wild_match);
4c4b4cd2 4598 }
d2e4a39e
AS
4599 }
4600 }
14f9c5c9 4601
4c4b4cd2
PH
4602done:
4603 ndefns = num_defns_collected (&symbol_list_obstack);
4604 *results = defns_collected (&symbol_list_obstack, 1);
4605
4606 ndefns = remove_extra_symbols (*results, ndefns);
4607
d2e4a39e 4608 if (ndefns == 0)
4c4b4cd2 4609 cache_symbol (name0, namespace, NULL, NULL, NULL);
14f9c5c9 4610
4c4b4cd2 4611 if (ndefns == 1 && cacheIfUnique)
76a01679
JB
4612 cache_symbol (name0, namespace, (*results)[0].sym, (*results)[0].block,
4613 (*results)[0].symtab);
14f9c5c9 4614
b260b6c1 4615 ndefns = remove_out_of_scope_renamings (*results, ndefns, block0);
14f9c5c9 4616
14f9c5c9
AS
4617 return ndefns;
4618}
4619
4c4b4cd2
PH
4620/* Return a symbol in DOMAIN matching NAME, in BLOCK0 and enclosing
4621 scope and in global scopes, or NULL if none. NAME is folded and
4622 encoded first. Otherwise, the result is as for ada_lookup_symbol_list,
714e53ab
PH
4623 choosing the first symbol if there are multiple choices.
4624 *IS_A_FIELD_OF_THIS is set to 0 and *SYMTAB is set to the symbol
4625 table in which the symbol was found (in both cases, these
4626 assignments occur only if the pointers are non-null). */
4627
d2e4a39e 4628struct symbol *
4c4b4cd2
PH
4629ada_lookup_symbol (const char *name, const struct block *block0,
4630 domain_enum namespace, int *is_a_field_of_this,
76a01679 4631 struct symtab **symtab)
14f9c5c9 4632{
4c4b4cd2 4633 struct ada_symbol_info *candidates;
14f9c5c9
AS
4634 int n_candidates;
4635
4c4b4cd2
PH
4636 n_candidates = ada_lookup_symbol_list (ada_encode (ada_fold_name (name)),
4637 block0, namespace, &candidates);
14f9c5c9
AS
4638
4639 if (n_candidates == 0)
4640 return NULL;
4c4b4cd2
PH
4641
4642 if (is_a_field_of_this != NULL)
4643 *is_a_field_of_this = 0;
4644
76a01679 4645 if (symtab != NULL)
4c4b4cd2
PH
4646 {
4647 *symtab = candidates[0].symtab;
76a01679
JB
4648 if (*symtab == NULL && candidates[0].block != NULL)
4649 {
4650 struct objfile *objfile;
4651 struct symtab *s;
4652 struct block *b;
4653 struct blockvector *bv;
4654
4655 /* Search the list of symtabs for one which contains the
4656 address of the start of this block. */
11309657 4657 ALL_PRIMARY_SYMTABS (objfile, s)
76a01679
JB
4658 {
4659 bv = BLOCKVECTOR (s);
4660 b = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
4661 if (BLOCK_START (b) <= BLOCK_START (candidates[0].block)
4662 && BLOCK_END (b) > BLOCK_START (candidates[0].block))
4663 {
4664 *symtab = s;
4665 return fixup_symbol_section (candidates[0].sym, objfile);
4666 }
76a01679 4667 }
529cad9c
PH
4668 /* FIXME: brobecker/2004-11-12: I think that we should never
4669 reach this point. I don't see a reason why we would not
4670 find a symtab for a given block, so I suggest raising an
4671 internal_error exception here. Otherwise, we end up
4672 returning a symbol but no symtab, which certain parts of
4673 the code that rely (indirectly) on this function do not
4674 expect, eventually causing a SEGV. */
4675 return fixup_symbol_section (candidates[0].sym, NULL);
76a01679
JB
4676 }
4677 }
4c4b4cd2
PH
4678 return candidates[0].sym;
4679}
14f9c5c9 4680
4c4b4cd2
PH
4681static struct symbol *
4682ada_lookup_symbol_nonlocal (const char *name,
76a01679
JB
4683 const char *linkage_name,
4684 const struct block *block,
4685 const domain_enum domain, struct symtab **symtab)
4c4b4cd2
PH
4686{
4687 if (linkage_name == NULL)
4688 linkage_name = name;
76a01679
JB
4689 return ada_lookup_symbol (linkage_name, block_static_block (block), domain,
4690 NULL, symtab);
14f9c5c9
AS
4691}
4692
4693
4c4b4cd2
PH
4694/* True iff STR is a possible encoded suffix of a normal Ada name
4695 that is to be ignored for matching purposes. Suffixes of parallel
4696 names (e.g., XVE) are not included here. Currently, the possible suffixes
4697 are given by either of the regular expression:
4698
529cad9c
PH
4699 (__[0-9]+)?[.$][0-9]+ [nested subprogram suffix, on platforms such
4700 as GNU/Linux]
4c4b4cd2 4701 ___[0-9]+ [nested subprogram suffix, on platforms such as HP/UX]
529cad9c 4702 _E[0-9]+[bs]$ [protected object entry suffixes]
61ee279c 4703 (X[nb]*)?((\$|__)[0-9](_?[0-9]+)|___(JM|LJM|X([FDBUP].*|R[^T]?)))?$
14f9c5c9 4704 */
4c4b4cd2 4705
14f9c5c9 4706static int
d2e4a39e 4707is_name_suffix (const char *str)
14f9c5c9
AS
4708{
4709 int k;
4c4b4cd2
PH
4710 const char *matching;
4711 const int len = strlen (str);
4712
4713 /* (__[0-9]+)?\.[0-9]+ */
4714 matching = str;
4715 if (len > 3 && str[0] == '_' && str[1] == '_' && isdigit (str[2]))
4716 {
4717 matching += 3;
4718 while (isdigit (matching[0]))
4719 matching += 1;
4720 if (matching[0] == '\0')
4721 return 1;
4722 }
4723
529cad9c 4724 if (matching[0] == '.' || matching[0] == '$')
4c4b4cd2
PH
4725 {
4726 matching += 1;
4727 while (isdigit (matching[0]))
4728 matching += 1;
4729 if (matching[0] == '\0')
4730 return 1;
4731 }
4732
4733 /* ___[0-9]+ */
4734 if (len > 3 && str[0] == '_' && str[1] == '_' && str[2] == '_')
4735 {
4736 matching = str + 3;
4737 while (isdigit (matching[0]))
4738 matching += 1;
4739 if (matching[0] == '\0')
4740 return 1;
4741 }
4742
529cad9c
PH
4743#if 0
4744 /* FIXME: brobecker/2005-09-23: Protected Object subprograms end
4745 with a N at the end. Unfortunately, the compiler uses the same
4746 convention for other internal types it creates. So treating
4747 all entity names that end with an "N" as a name suffix causes
4748 some regressions. For instance, consider the case of an enumerated
4749 type. To support the 'Image attribute, it creates an array whose
4750 name ends with N.
4751 Having a single character like this as a suffix carrying some
4752 information is a bit risky. Perhaps we should change the encoding
4753 to be something like "_N" instead. In the meantime, do not do
4754 the following check. */
4755 /* Protected Object Subprograms */
4756 if (len == 1 && str [0] == 'N')
4757 return 1;
4758#endif
4759
4760 /* _E[0-9]+[bs]$ */
4761 if (len > 3 && str[0] == '_' && str [1] == 'E' && isdigit (str[2]))
4762 {
4763 matching = str + 3;
4764 while (isdigit (matching[0]))
4765 matching += 1;
4766 if ((matching[0] == 'b' || matching[0] == 's')
4767 && matching [1] == '\0')
4768 return 1;
4769 }
4770
4c4b4cd2
PH
4771 /* ??? We should not modify STR directly, as we are doing below. This
4772 is fine in this case, but may become problematic later if we find
4773 that this alternative did not work, and want to try matching
4774 another one from the begining of STR. Since we modified it, we
4775 won't be able to find the begining of the string anymore! */
14f9c5c9
AS
4776 if (str[0] == 'X')
4777 {
4778 str += 1;
d2e4a39e 4779 while (str[0] != '_' && str[0] != '\0')
4c4b4cd2
PH
4780 {
4781 if (str[0] != 'n' && str[0] != 'b')
4782 return 0;
4783 str += 1;
4784 }
14f9c5c9
AS
4785 }
4786 if (str[0] == '\000')
4787 return 1;
d2e4a39e 4788 if (str[0] == '_')
14f9c5c9
AS
4789 {
4790 if (str[1] != '_' || str[2] == '\000')
4c4b4cd2 4791 return 0;
d2e4a39e 4792 if (str[2] == '_')
4c4b4cd2 4793 {
61ee279c
PH
4794 if (strcmp (str + 3, "JM") == 0)
4795 return 1;
4796 /* FIXME: brobecker/2004-09-30: GNAT will soon stop using
4797 the LJM suffix in favor of the JM one. But we will
4798 still accept LJM as a valid suffix for a reasonable
4799 amount of time, just to allow ourselves to debug programs
4800 compiled using an older version of GNAT. */
4c4b4cd2
PH
4801 if (strcmp (str + 3, "LJM") == 0)
4802 return 1;
4803 if (str[3] != 'X')
4804 return 0;
1265e4aa
JB
4805 if (str[4] == 'F' || str[4] == 'D' || str[4] == 'B'
4806 || str[4] == 'U' || str[4] == 'P')
4c4b4cd2
PH
4807 return 1;
4808 if (str[4] == 'R' && str[5] != 'T')
4809 return 1;
4810 return 0;
4811 }
4812 if (!isdigit (str[2]))
4813 return 0;
4814 for (k = 3; str[k] != '\0'; k += 1)
4815 if (!isdigit (str[k]) && str[k] != '_')
4816 return 0;
14f9c5c9
AS
4817 return 1;
4818 }
4c4b4cd2 4819 if (str[0] == '$' && isdigit (str[1]))
14f9c5c9 4820 {
4c4b4cd2
PH
4821 for (k = 2; str[k] != '\0'; k += 1)
4822 if (!isdigit (str[k]) && str[k] != '_')
4823 return 0;
14f9c5c9
AS
4824 return 1;
4825 }
4826 return 0;
4827}
d2e4a39e 4828
4c4b4cd2
PH
4829/* Return nonzero if the given string starts with a dot ('.')
4830 followed by zero or more digits.
4831
4832 Note: brobecker/2003-11-10: A forward declaration has not been
4833 added at the begining of this file yet, because this function
4834 is only used to work around a problem found during wild matching
4835 when trying to match minimal symbol names against symbol names
4836 obtained from dwarf-2 data. This function is therefore currently
4837 only used in wild_match() and is likely to be deleted when the
4838 problem in dwarf-2 is fixed. */
4839
4840static int
4841is_dot_digits_suffix (const char *str)
4842{
4843 if (str[0] != '.')
4844 return 0;
4845
4846 str++;
4847 while (isdigit (str[0]))
4848 str++;
4849 return (str[0] == '\0');
4850}
4851
529cad9c
PH
4852/* Return non-zero if NAME0 is a valid match when doing wild matching.
4853 Certain symbols appear at first to match, except that they turn out
4854 not to follow the Ada encoding and hence should not be used as a wild
4855 match of a given pattern. */
4856
4857static int
4858is_valid_name_for_wild_match (const char *name0)
4859{
4860 const char *decoded_name = ada_decode (name0);
4861 int i;
4862
4863 for (i=0; decoded_name[i] != '\0'; i++)
4864 if (isalpha (decoded_name[i]) && !islower (decoded_name[i]))
4865 return 0;
4866
4867 return 1;
4868}
4869
4c4b4cd2
PH
4870/* True if NAME represents a name of the form A1.A2....An, n>=1 and
4871 PATN[0..PATN_LEN-1] = Ak.Ak+1.....An for some k >= 1. Ignores
4872 informational suffixes of NAME (i.e., for which is_name_suffix is
4873 true). */
4874
14f9c5c9 4875static int
4c4b4cd2 4876wild_match (const char *patn0, int patn_len, const char *name0)
14f9c5c9
AS
4877{
4878 int name_len;
4c4b4cd2
PH
4879 char *name;
4880 char *patn;
4881
4882 /* FIXME: brobecker/2003-11-10: For some reason, the symbol name
4883 stored in the symbol table for nested function names is sometimes
4884 different from the name of the associated entity stored in
4885 the dwarf-2 data: This is the case for nested subprograms, where
4886 the minimal symbol name contains a trailing ".[:digit:]+" suffix,
4887 while the symbol name from the dwarf-2 data does not.
4888
4889 Although the DWARF-2 standard documents that entity names stored
4890 in the dwarf-2 data should be identical to the name as seen in
4891 the source code, GNAT takes a different approach as we already use
4892 a special encoding mechanism to convey the information so that
4893 a C debugger can still use the information generated to debug
4894 Ada programs. A corollary is that the symbol names in the dwarf-2
4895 data should match the names found in the symbol table. I therefore
4896 consider this issue as a compiler defect.
76a01679 4897
4c4b4cd2
PH
4898 Until the compiler is properly fixed, we work-around the problem
4899 by ignoring such suffixes during the match. We do so by making
4900 a copy of PATN0 and NAME0, and then by stripping such a suffix
4901 if present. We then perform the match on the resulting strings. */
4902 {
4903 char *dot;
4904 name_len = strlen (name0);
4905
4906 name = (char *) alloca ((name_len + 1) * sizeof (char));
4907 strcpy (name, name0);
4908 dot = strrchr (name, '.');
4909 if (dot != NULL && is_dot_digits_suffix (dot))
4910 *dot = '\0';
4911
4912 patn = (char *) alloca ((patn_len + 1) * sizeof (char));
4913 strncpy (patn, patn0, patn_len);
4914 patn[patn_len] = '\0';
4915 dot = strrchr (patn, '.');
4916 if (dot != NULL && is_dot_digits_suffix (dot))
4917 {
4918 *dot = '\0';
4919 patn_len = dot - patn;
4920 }
4921 }
4922
4923 /* Now perform the wild match. */
14f9c5c9
AS
4924
4925 name_len = strlen (name);
4c4b4cd2
PH
4926 if (name_len >= patn_len + 5 && strncmp (name, "_ada_", 5) == 0
4927 && strncmp (patn, name + 5, patn_len) == 0
d2e4a39e 4928 && is_name_suffix (name + patn_len + 5))
14f9c5c9
AS
4929 return 1;
4930
d2e4a39e 4931 while (name_len >= patn_len)
14f9c5c9 4932 {
4c4b4cd2
PH
4933 if (strncmp (patn, name, patn_len) == 0
4934 && is_name_suffix (name + patn_len))
529cad9c 4935 return (is_valid_name_for_wild_match (name0));
4c4b4cd2
PH
4936 do
4937 {
4938 name += 1;
4939 name_len -= 1;
4940 }
d2e4a39e 4941 while (name_len > 0
4c4b4cd2 4942 && name[0] != '.' && (name[0] != '_' || name[1] != '_'));
14f9c5c9 4943 if (name_len <= 0)
4c4b4cd2 4944 return 0;
14f9c5c9 4945 if (name[0] == '_')
4c4b4cd2
PH
4946 {
4947 if (!islower (name[2]))
4948 return 0;
4949 name += 2;
4950 name_len -= 2;
4951 }
14f9c5c9 4952 else
4c4b4cd2
PH
4953 {
4954 if (!islower (name[1]))
4955 return 0;
4956 name += 1;
4957 name_len -= 1;
4958 }
96d887e8
PH
4959 }
4960
4961 return 0;
4962}
4963
4964
4965/* Add symbols from BLOCK matching identifier NAME in DOMAIN to
4966 vector *defn_symbols, updating the list of symbols in OBSTACKP
4967 (if necessary). If WILD, treat as NAME with a wildcard prefix.
4968 OBJFILE is the section containing BLOCK.
4969 SYMTAB is recorded with each symbol added. */
4970
4971static void
4972ada_add_block_symbols (struct obstack *obstackp,
76a01679 4973 struct block *block, const char *name,
96d887e8
PH
4974 domain_enum domain, struct objfile *objfile,
4975 struct symtab *symtab, int wild)
4976{
4977 struct dict_iterator iter;
4978 int name_len = strlen (name);
4979 /* A matching argument symbol, if any. */
4980 struct symbol *arg_sym;
4981 /* Set true when we find a matching non-argument symbol. */
4982 int found_sym;
4983 struct symbol *sym;
4984
4985 arg_sym = NULL;
4986 found_sym = 0;
4987 if (wild)
4988 {
4989 struct symbol *sym;
4990 ALL_BLOCK_SYMBOLS (block, iter, sym)
76a01679 4991 {
1265e4aa
JB
4992 if (SYMBOL_DOMAIN (sym) == domain
4993 && wild_match (name, name_len, SYMBOL_LINKAGE_NAME (sym)))
76a01679
JB
4994 {
4995 switch (SYMBOL_CLASS (sym))
4996 {
4997 case LOC_ARG:
4998 case LOC_LOCAL_ARG:
4999 case LOC_REF_ARG:
5000 case LOC_REGPARM:
5001 case LOC_REGPARM_ADDR:
5002 case LOC_BASEREG_ARG:
5003 case LOC_COMPUTED_ARG:
5004 arg_sym = sym;
5005 break;
5006 case LOC_UNRESOLVED:
5007 continue;
5008 default:
5009 found_sym = 1;
5010 add_defn_to_vec (obstackp,
5011 fixup_symbol_section (sym, objfile),
5012 block, symtab);
5013 break;
5014 }
5015 }
5016 }
96d887e8
PH
5017 }
5018 else
5019 {
5020 ALL_BLOCK_SYMBOLS (block, iter, sym)
76a01679
JB
5021 {
5022 if (SYMBOL_DOMAIN (sym) == domain)
5023 {
5024 int cmp = strncmp (name, SYMBOL_LINKAGE_NAME (sym), name_len);
5025 if (cmp == 0
5026 && is_name_suffix (SYMBOL_LINKAGE_NAME (sym) + name_len))
5027 {
5028 switch (SYMBOL_CLASS (sym))
5029 {
5030 case LOC_ARG:
5031 case LOC_LOCAL_ARG:
5032 case LOC_REF_ARG:
5033 case LOC_REGPARM:
5034 case LOC_REGPARM_ADDR:
5035 case LOC_BASEREG_ARG:
5036 case LOC_COMPUTED_ARG:
5037 arg_sym = sym;
5038 break;
5039 case LOC_UNRESOLVED:
5040 break;
5041 default:
5042 found_sym = 1;
5043 add_defn_to_vec (obstackp,
5044 fixup_symbol_section (sym, objfile),
5045 block, symtab);
5046 break;
5047 }
5048 }
5049 }
5050 }
96d887e8
PH
5051 }
5052
5053 if (!found_sym && arg_sym != NULL)
5054 {
76a01679
JB
5055 add_defn_to_vec (obstackp,
5056 fixup_symbol_section (arg_sym, objfile),
5057 block, symtab);
96d887e8
PH
5058 }
5059
5060 if (!wild)
5061 {
5062 arg_sym = NULL;
5063 found_sym = 0;
5064
5065 ALL_BLOCK_SYMBOLS (block, iter, sym)
76a01679
JB
5066 {
5067 if (SYMBOL_DOMAIN (sym) == domain)
5068 {
5069 int cmp;
5070
5071 cmp = (int) '_' - (int) SYMBOL_LINKAGE_NAME (sym)[0];
5072 if (cmp == 0)
5073 {
5074 cmp = strncmp ("_ada_", SYMBOL_LINKAGE_NAME (sym), 5);
5075 if (cmp == 0)
5076 cmp = strncmp (name, SYMBOL_LINKAGE_NAME (sym) + 5,
5077 name_len);
5078 }
5079
5080 if (cmp == 0
5081 && is_name_suffix (SYMBOL_LINKAGE_NAME (sym) + name_len + 5))
5082 {
5083 switch (SYMBOL_CLASS (sym))
5084 {
5085 case LOC_ARG:
5086 case LOC_LOCAL_ARG:
5087 case LOC_REF_ARG:
5088 case LOC_REGPARM:
5089 case LOC_REGPARM_ADDR:
5090 case LOC_BASEREG_ARG:
5091 case LOC_COMPUTED_ARG:
5092 arg_sym = sym;
5093 break;
5094 case LOC_UNRESOLVED:
5095 break;
5096 default:
5097 found_sym = 1;
5098 add_defn_to_vec (obstackp,
5099 fixup_symbol_section (sym, objfile),
5100 block, symtab);
5101 break;
5102 }
5103 }
5104 }
76a01679 5105 }
96d887e8
PH
5106
5107 /* NOTE: This really shouldn't be needed for _ada_ symbols.
5108 They aren't parameters, right? */
5109 if (!found_sym && arg_sym != NULL)
5110 {
5111 add_defn_to_vec (obstackp,
76a01679
JB
5112 fixup_symbol_section (arg_sym, objfile),
5113 block, symtab);
96d887e8
PH
5114 }
5115 }
5116}
5117\f
963a6417 5118 /* Field Access */
96d887e8 5119
963a6417
PH
5120/* True if field number FIELD_NUM in struct or union type TYPE is supposed
5121 to be invisible to users. */
96d887e8 5122
963a6417
PH
5123int
5124ada_is_ignored_field (struct type *type, int field_num)
96d887e8 5125{
963a6417
PH
5126 if (field_num < 0 || field_num > TYPE_NFIELDS (type))
5127 return 1;
5128 else
96d887e8 5129 {
963a6417
PH
5130 const char *name = TYPE_FIELD_NAME (type, field_num);
5131 return (name == NULL
5132 || (name[0] == '_' && strncmp (name, "_parent", 7) != 0));
96d887e8 5133 }
963a6417 5134}
96d887e8 5135
963a6417
PH
5136/* True iff TYPE has a tag field. If REFOK, then TYPE may also be a
5137 pointer or reference type whose ultimate target has a tag field. */
96d887e8 5138
963a6417
PH
5139int
5140ada_is_tagged_type (struct type *type, int refok)
5141{
5142 return (ada_lookup_struct_elt_type (type, "_tag", refok, 1, NULL) != NULL);
5143}
96d887e8 5144
963a6417 5145/* True iff TYPE represents the type of X'Tag */
96d887e8 5146
963a6417
PH
5147int
5148ada_is_tag_type (struct type *type)
5149{
5150 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_PTR)
5151 return 0;
5152 else
96d887e8 5153 {
963a6417
PH
5154 const char *name = ada_type_name (TYPE_TARGET_TYPE (type));
5155 return (name != NULL
5156 && strcmp (name, "ada__tags__dispatch_table") == 0);
96d887e8 5157 }
96d887e8
PH
5158}
5159
963a6417 5160/* The type of the tag on VAL. */
76a01679 5161
963a6417
PH
5162struct type *
5163ada_tag_type (struct value *val)
96d887e8 5164{
df407dfe 5165 return ada_lookup_struct_elt_type (value_type (val), "_tag", 1, 0, NULL);
963a6417 5166}
96d887e8 5167
963a6417 5168/* The value of the tag on VAL. */
96d887e8 5169
963a6417
PH
5170struct value *
5171ada_value_tag (struct value *val)
5172{
03ee6b2e 5173 return ada_value_struct_elt (val, "_tag", 0);
96d887e8
PH
5174}
5175
963a6417
PH
5176/* The value of the tag on the object of type TYPE whose contents are
5177 saved at VALADDR, if it is non-null, or is at memory address
5178 ADDRESS. */
96d887e8 5179
963a6417 5180static struct value *
10a2c479 5181value_tag_from_contents_and_address (struct type *type,
fc1a4b47 5182 const gdb_byte *valaddr,
963a6417 5183 CORE_ADDR address)
96d887e8 5184{
963a6417
PH
5185 int tag_byte_offset, dummy1, dummy2;
5186 struct type *tag_type;
5187 if (find_struct_field ("_tag", type, 0, &tag_type, &tag_byte_offset,
52ce6436 5188 NULL, NULL, NULL))
96d887e8 5189 {
fc1a4b47 5190 const gdb_byte *valaddr1 = ((valaddr == NULL)
10a2c479
AC
5191 ? NULL
5192 : valaddr + tag_byte_offset);
963a6417 5193 CORE_ADDR address1 = (address == 0) ? 0 : address + tag_byte_offset;
96d887e8 5194
963a6417 5195 return value_from_contents_and_address (tag_type, valaddr1, address1);
96d887e8 5196 }
963a6417
PH
5197 return NULL;
5198}
96d887e8 5199
963a6417
PH
5200static struct type *
5201type_from_tag (struct value *tag)
5202{
5203 const char *type_name = ada_tag_name (tag);
5204 if (type_name != NULL)
5205 return ada_find_any_type (ada_encode (type_name));
5206 return NULL;
5207}
96d887e8 5208
963a6417
PH
5209struct tag_args
5210{
5211 struct value *tag;
5212 char *name;
5213};
4c4b4cd2 5214
529cad9c
PH
5215
5216static int ada_tag_name_1 (void *);
5217static int ada_tag_name_2 (struct tag_args *);
5218
4c4b4cd2
PH
5219/* Wrapper function used by ada_tag_name. Given a struct tag_args*
5220 value ARGS, sets ARGS->name to the tag name of ARGS->tag.
5221 The value stored in ARGS->name is valid until the next call to
5222 ada_tag_name_1. */
5223
5224static int
5225ada_tag_name_1 (void *args0)
5226{
5227 struct tag_args *args = (struct tag_args *) args0;
5228 static char name[1024];
76a01679 5229 char *p;
4c4b4cd2
PH
5230 struct value *val;
5231 args->name = NULL;
03ee6b2e 5232 val = ada_value_struct_elt (args->tag, "tsd", 1);
529cad9c
PH
5233 if (val == NULL)
5234 return ada_tag_name_2 (args);
03ee6b2e 5235 val = ada_value_struct_elt (val, "expanded_name", 1);
529cad9c
PH
5236 if (val == NULL)
5237 return 0;
5238 read_memory_string (value_as_address (val), name, sizeof (name) - 1);
5239 for (p = name; *p != '\0'; p += 1)
5240 if (isalpha (*p))
5241 *p = tolower (*p);
5242 args->name = name;
5243 return 0;
5244}
5245
5246/* Utility function for ada_tag_name_1 that tries the second
5247 representation for the dispatch table (in which there is no
5248 explicit 'tsd' field in the referent of the tag pointer, and instead
5249 the tsd pointer is stored just before the dispatch table. */
5250
5251static int
5252ada_tag_name_2 (struct tag_args *args)
5253{
5254 struct type *info_type;
5255 static char name[1024];
5256 char *p;
5257 struct value *val, *valp;
5258
5259 args->name = NULL;
5260 info_type = ada_find_any_type ("ada__tags__type_specific_data");
5261 if (info_type == NULL)
5262 return 0;
5263 info_type = lookup_pointer_type (lookup_pointer_type (info_type));
5264 valp = value_cast (info_type, args->tag);
5265 if (valp == NULL)
5266 return 0;
5267 val = value_ind (value_add (valp, value_from_longest (builtin_type_int, -1)));
4c4b4cd2
PH
5268 if (val == NULL)
5269 return 0;
03ee6b2e 5270 val = ada_value_struct_elt (val, "expanded_name", 1);
4c4b4cd2
PH
5271 if (val == NULL)
5272 return 0;
5273 read_memory_string (value_as_address (val), name, sizeof (name) - 1);
5274 for (p = name; *p != '\0'; p += 1)
5275 if (isalpha (*p))
5276 *p = tolower (*p);
5277 args->name = name;
5278 return 0;
5279}
5280
5281/* The type name of the dynamic type denoted by the 'tag value TAG, as
5282 * a C string. */
5283
5284const char *
5285ada_tag_name (struct value *tag)
5286{
5287 struct tag_args args;
df407dfe 5288 if (!ada_is_tag_type (value_type (tag)))
4c4b4cd2 5289 return NULL;
76a01679 5290 args.tag = tag;
4c4b4cd2
PH
5291 args.name = NULL;
5292 catch_errors (ada_tag_name_1, &args, NULL, RETURN_MASK_ALL);
5293 return args.name;
5294}
5295
5296/* The parent type of TYPE, or NULL if none. */
14f9c5c9 5297
d2e4a39e 5298struct type *
ebf56fd3 5299ada_parent_type (struct type *type)
14f9c5c9
AS
5300{
5301 int i;
5302
61ee279c 5303 type = ada_check_typedef (type);
14f9c5c9
AS
5304
5305 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT)
5306 return NULL;
5307
5308 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
5309 if (ada_is_parent_field (type, i))
61ee279c 5310 return ada_check_typedef (TYPE_FIELD_TYPE (type, i));
14f9c5c9
AS
5311
5312 return NULL;
5313}
5314
4c4b4cd2
PH
5315/* True iff field number FIELD_NUM of structure type TYPE contains the
5316 parent-type (inherited) fields of a derived type. Assumes TYPE is
5317 a structure type with at least FIELD_NUM+1 fields. */
14f9c5c9
AS
5318
5319int
ebf56fd3 5320ada_is_parent_field (struct type *type, int field_num)
14f9c5c9 5321{
61ee279c 5322 const char *name = TYPE_FIELD_NAME (ada_check_typedef (type), field_num);
4c4b4cd2
PH
5323 return (name != NULL
5324 && (strncmp (name, "PARENT", 6) == 0
5325 || strncmp (name, "_parent", 7) == 0));
14f9c5c9
AS
5326}
5327
4c4b4cd2 5328/* True iff field number FIELD_NUM of structure type TYPE is a
14f9c5c9 5329 transparent wrapper field (which should be silently traversed when doing
4c4b4cd2 5330 field selection and flattened when printing). Assumes TYPE is a
14f9c5c9 5331 structure type with at least FIELD_NUM+1 fields. Such fields are always
4c4b4cd2 5332 structures. */
14f9c5c9
AS
5333
5334int
ebf56fd3 5335ada_is_wrapper_field (struct type *type, int field_num)
14f9c5c9 5336{
d2e4a39e
AS
5337 const char *name = TYPE_FIELD_NAME (type, field_num);
5338 return (name != NULL
4c4b4cd2
PH
5339 && (strncmp (name, "PARENT", 6) == 0
5340 || strcmp (name, "REP") == 0
5341 || strncmp (name, "_parent", 7) == 0
5342 || name[0] == 'S' || name[0] == 'R' || name[0] == 'O'));
14f9c5c9
AS
5343}
5344
4c4b4cd2
PH
5345/* True iff field number FIELD_NUM of structure or union type TYPE
5346 is a variant wrapper. Assumes TYPE is a structure type with at least
5347 FIELD_NUM+1 fields. */
14f9c5c9
AS
5348
5349int
ebf56fd3 5350ada_is_variant_part (struct type *type, int field_num)
14f9c5c9 5351{
d2e4a39e 5352 struct type *field_type = TYPE_FIELD_TYPE (type, field_num);
14f9c5c9 5353 return (TYPE_CODE (field_type) == TYPE_CODE_UNION
4c4b4cd2 5354 || (is_dynamic_field (type, field_num)
c3e5cd34
PH
5355 && (TYPE_CODE (TYPE_TARGET_TYPE (field_type))
5356 == TYPE_CODE_UNION)));
14f9c5c9
AS
5357}
5358
5359/* Assuming that VAR_TYPE is a variant wrapper (type of the variant part)
4c4b4cd2 5360 whose discriminants are contained in the record type OUTER_TYPE,
14f9c5c9
AS
5361 returns the type of the controlling discriminant for the variant. */
5362
d2e4a39e 5363struct type *
ebf56fd3 5364ada_variant_discrim_type (struct type *var_type, struct type *outer_type)
14f9c5c9 5365{
d2e4a39e 5366 char *name = ada_variant_discrim_name (var_type);
76a01679 5367 struct type *type =
4c4b4cd2 5368 ada_lookup_struct_elt_type (outer_type, name, 1, 1, NULL);
14f9c5c9
AS
5369 if (type == NULL)
5370 return builtin_type_int;
5371 else
5372 return type;
5373}
5374
4c4b4cd2 5375/* Assuming that TYPE is the type of a variant wrapper, and FIELD_NUM is a
14f9c5c9 5376 valid field number within it, returns 1 iff field FIELD_NUM of TYPE
4c4b4cd2 5377 represents a 'when others' clause; otherwise 0. */
14f9c5c9
AS
5378
5379int
ebf56fd3 5380ada_is_others_clause (struct type *type, int field_num)
14f9c5c9 5381{
d2e4a39e 5382 const char *name = TYPE_FIELD_NAME (type, field_num);
14f9c5c9
AS
5383 return (name != NULL && name[0] == 'O');
5384}
5385
5386/* Assuming that TYPE0 is the type of the variant part of a record,
4c4b4cd2
PH
5387 returns the name of the discriminant controlling the variant.
5388 The value is valid until the next call to ada_variant_discrim_name. */
14f9c5c9 5389
d2e4a39e 5390char *
ebf56fd3 5391ada_variant_discrim_name (struct type *type0)
14f9c5c9 5392{
d2e4a39e 5393 static char *result = NULL;
14f9c5c9 5394 static size_t result_len = 0;
d2e4a39e
AS
5395 struct type *type;
5396 const char *name;
5397 const char *discrim_end;
5398 const char *discrim_start;
14f9c5c9
AS
5399
5400 if (TYPE_CODE (type0) == TYPE_CODE_PTR)
5401 type = TYPE_TARGET_TYPE (type0);
5402 else
5403 type = type0;
5404
5405 name = ada_type_name (type);
5406
5407 if (name == NULL || name[0] == '\000')
5408 return "";
5409
5410 for (discrim_end = name + strlen (name) - 6; discrim_end != name;
5411 discrim_end -= 1)
5412 {
4c4b4cd2
PH
5413 if (strncmp (discrim_end, "___XVN", 6) == 0)
5414 break;
14f9c5c9
AS
5415 }
5416 if (discrim_end == name)
5417 return "";
5418
d2e4a39e 5419 for (discrim_start = discrim_end; discrim_start != name + 3;
14f9c5c9
AS
5420 discrim_start -= 1)
5421 {
d2e4a39e 5422 if (discrim_start == name + 1)
4c4b4cd2 5423 return "";
76a01679 5424 if ((discrim_start > name + 3
4c4b4cd2
PH
5425 && strncmp (discrim_start - 3, "___", 3) == 0)
5426 || discrim_start[-1] == '.')
5427 break;
14f9c5c9
AS
5428 }
5429
5430 GROW_VECT (result, result_len, discrim_end - discrim_start + 1);
5431 strncpy (result, discrim_start, discrim_end - discrim_start);
d2e4a39e 5432 result[discrim_end - discrim_start] = '\0';
14f9c5c9
AS
5433 return result;
5434}
5435
4c4b4cd2
PH
5436/* Scan STR for a subtype-encoded number, beginning at position K.
5437 Put the position of the character just past the number scanned in
5438 *NEW_K, if NEW_K!=NULL. Put the scanned number in *R, if R!=NULL.
5439 Return 1 if there was a valid number at the given position, and 0
5440 otherwise. A "subtype-encoded" number consists of the absolute value
5441 in decimal, followed by the letter 'm' to indicate a negative number.
5442 Assumes 0m does not occur. */
14f9c5c9
AS
5443
5444int
d2e4a39e 5445ada_scan_number (const char str[], int k, LONGEST * R, int *new_k)
14f9c5c9
AS
5446{
5447 ULONGEST RU;
5448
d2e4a39e 5449 if (!isdigit (str[k]))
14f9c5c9
AS
5450 return 0;
5451
4c4b4cd2 5452 /* Do it the hard way so as not to make any assumption about
14f9c5c9 5453 the relationship of unsigned long (%lu scan format code) and
4c4b4cd2 5454 LONGEST. */
14f9c5c9
AS
5455 RU = 0;
5456 while (isdigit (str[k]))
5457 {
d2e4a39e 5458 RU = RU * 10 + (str[k] - '0');
14f9c5c9
AS
5459 k += 1;
5460 }
5461
d2e4a39e 5462 if (str[k] == 'm')
14f9c5c9
AS
5463 {
5464 if (R != NULL)
4c4b4cd2 5465 *R = (-(LONGEST) (RU - 1)) - 1;
14f9c5c9
AS
5466 k += 1;
5467 }
5468 else if (R != NULL)
5469 *R = (LONGEST) RU;
5470
4c4b4cd2 5471 /* NOTE on the above: Technically, C does not say what the results of
14f9c5c9
AS
5472 - (LONGEST) RU or (LONGEST) -RU are for RU == largest positive
5473 number representable as a LONGEST (although either would probably work
5474 in most implementations). When RU>0, the locution in the then branch
4c4b4cd2 5475 above is always equivalent to the negative of RU. */
14f9c5c9
AS
5476
5477 if (new_k != NULL)
5478 *new_k = k;
5479 return 1;
5480}
5481
4c4b4cd2
PH
5482/* Assuming that TYPE is a variant part wrapper type (a VARIANTS field),
5483 and FIELD_NUM is a valid field number within it, returns 1 iff VAL is
5484 in the range encoded by field FIELD_NUM of TYPE; otherwise 0. */
14f9c5c9 5485
d2e4a39e 5486int
ebf56fd3 5487ada_in_variant (LONGEST val, struct type *type, int field_num)
14f9c5c9 5488{
d2e4a39e 5489 const char *name = TYPE_FIELD_NAME (type, field_num);
14f9c5c9
AS
5490 int p;
5491
5492 p = 0;
5493 while (1)
5494 {
d2e4a39e 5495 switch (name[p])
4c4b4cd2
PH
5496 {
5497 case '\0':
5498 return 0;
5499 case 'S':
5500 {
5501 LONGEST W;
5502 if (!ada_scan_number (name, p + 1, &W, &p))
5503 return 0;
5504 if (val == W)
5505 return 1;
5506 break;
5507 }
5508 case 'R':
5509 {
5510 LONGEST L, U;
5511 if (!ada_scan_number (name, p + 1, &L, &p)
5512 || name[p] != 'T' || !ada_scan_number (name, p + 1, &U, &p))
5513 return 0;
5514 if (val >= L && val <= U)
5515 return 1;
5516 break;
5517 }
5518 case 'O':
5519 return 1;
5520 default:
5521 return 0;
5522 }
5523 }
5524}
5525
5526/* FIXME: Lots of redundancy below. Try to consolidate. */
5527
5528/* Given a value ARG1 (offset by OFFSET bytes) of a struct or union type
5529 ARG_TYPE, extract and return the value of one of its (non-static)
5530 fields. FIELDNO says which field. Differs from value_primitive_field
5531 only in that it can handle packed values of arbitrary type. */
14f9c5c9 5532
4c4b4cd2 5533static struct value *
d2e4a39e 5534ada_value_primitive_field (struct value *arg1, int offset, int fieldno,
4c4b4cd2 5535 struct type *arg_type)
14f9c5c9 5536{
14f9c5c9
AS
5537 struct type *type;
5538
61ee279c 5539 arg_type = ada_check_typedef (arg_type);
14f9c5c9
AS
5540 type = TYPE_FIELD_TYPE (arg_type, fieldno);
5541
4c4b4cd2 5542 /* Handle packed fields. */
14f9c5c9
AS
5543
5544 if (TYPE_FIELD_BITSIZE (arg_type, fieldno) != 0)
5545 {
5546 int bit_pos = TYPE_FIELD_BITPOS (arg_type, fieldno);
5547 int bit_size = TYPE_FIELD_BITSIZE (arg_type, fieldno);
d2e4a39e 5548
0fd88904 5549 return ada_value_primitive_packed_val (arg1, value_contents (arg1),
4c4b4cd2
PH
5550 offset + bit_pos / 8,
5551 bit_pos % 8, bit_size, type);
14f9c5c9
AS
5552 }
5553 else
5554 return value_primitive_field (arg1, offset, fieldno, arg_type);
5555}
5556
52ce6436
PH
5557/* Find field with name NAME in object of type TYPE. If found,
5558 set the following for each argument that is non-null:
5559 - *FIELD_TYPE_P to the field's type;
5560 - *BYTE_OFFSET_P to OFFSET + the byte offset of the field within
5561 an object of that type;
5562 - *BIT_OFFSET_P to the bit offset modulo byte size of the field;
5563 - *BIT_SIZE_P to its size in bits if the field is packed, and
5564 0 otherwise;
5565 If INDEX_P is non-null, increment *INDEX_P by the number of source-visible
5566 fields up to but not including the desired field, or by the total
5567 number of fields if not found. A NULL value of NAME never
5568 matches; the function just counts visible fields in this case.
5569
5570 Returns 1 if found, 0 otherwise. */
5571
4c4b4cd2 5572static int
76a01679
JB
5573find_struct_field (char *name, struct type *type, int offset,
5574 struct type **field_type_p,
52ce6436
PH
5575 int *byte_offset_p, int *bit_offset_p, int *bit_size_p,
5576 int *index_p)
4c4b4cd2
PH
5577{
5578 int i;
5579
61ee279c 5580 type = ada_check_typedef (type);
76a01679 5581
52ce6436
PH
5582 if (field_type_p != NULL)
5583 *field_type_p = NULL;
5584 if (byte_offset_p != NULL)
d5d6fca5 5585 *byte_offset_p = 0;
52ce6436
PH
5586 if (bit_offset_p != NULL)
5587 *bit_offset_p = 0;
5588 if (bit_size_p != NULL)
5589 *bit_size_p = 0;
5590
5591 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
4c4b4cd2
PH
5592 {
5593 int bit_pos = TYPE_FIELD_BITPOS (type, i);
5594 int fld_offset = offset + bit_pos / 8;
5595 char *t_field_name = TYPE_FIELD_NAME (type, i);
76a01679 5596
4c4b4cd2
PH
5597 if (t_field_name == NULL)
5598 continue;
5599
52ce6436 5600 else if (name != NULL && field_name_match (t_field_name, name))
76a01679
JB
5601 {
5602 int bit_size = TYPE_FIELD_BITSIZE (type, i);
52ce6436
PH
5603 if (field_type_p != NULL)
5604 *field_type_p = TYPE_FIELD_TYPE (type, i);
5605 if (byte_offset_p != NULL)
5606 *byte_offset_p = fld_offset;
5607 if (bit_offset_p != NULL)
5608 *bit_offset_p = bit_pos % 8;
5609 if (bit_size_p != NULL)
5610 *bit_size_p = bit_size;
76a01679
JB
5611 return 1;
5612 }
4c4b4cd2
PH
5613 else if (ada_is_wrapper_field (type, i))
5614 {
52ce6436
PH
5615 if (find_struct_field (name, TYPE_FIELD_TYPE (type, i), fld_offset,
5616 field_type_p, byte_offset_p, bit_offset_p,
5617 bit_size_p, index_p))
76a01679
JB
5618 return 1;
5619 }
4c4b4cd2
PH
5620 else if (ada_is_variant_part (type, i))
5621 {
52ce6436
PH
5622 /* PNH: Wait. Do we ever execute this section, or is ARG always of
5623 fixed type?? */
4c4b4cd2 5624 int j;
52ce6436
PH
5625 struct type *field_type
5626 = ada_check_typedef (TYPE_FIELD_TYPE (type, i));
4c4b4cd2 5627
52ce6436 5628 for (j = 0; j < TYPE_NFIELDS (field_type); j += 1)
4c4b4cd2 5629 {
76a01679
JB
5630 if (find_struct_field (name, TYPE_FIELD_TYPE (field_type, j),
5631 fld_offset
5632 + TYPE_FIELD_BITPOS (field_type, j) / 8,
5633 field_type_p, byte_offset_p,
52ce6436 5634 bit_offset_p, bit_size_p, index_p))
76a01679 5635 return 1;
4c4b4cd2
PH
5636 }
5637 }
52ce6436
PH
5638 else if (index_p != NULL)
5639 *index_p += 1;
4c4b4cd2
PH
5640 }
5641 return 0;
5642}
5643
52ce6436 5644/* Number of user-visible fields in record type TYPE. */
4c4b4cd2 5645
52ce6436
PH
5646static int
5647num_visible_fields (struct type *type)
5648{
5649 int n;
5650 n = 0;
5651 find_struct_field (NULL, type, 0, NULL, NULL, NULL, NULL, &n);
5652 return n;
5653}
14f9c5c9 5654
4c4b4cd2 5655/* Look for a field NAME in ARG. Adjust the address of ARG by OFFSET bytes,
14f9c5c9
AS
5656 and search in it assuming it has (class) type TYPE.
5657 If found, return value, else return NULL.
5658
4c4b4cd2 5659 Searches recursively through wrapper fields (e.g., '_parent'). */
14f9c5c9 5660
4c4b4cd2 5661static struct value *
d2e4a39e 5662ada_search_struct_field (char *name, struct value *arg, int offset,
4c4b4cd2 5663 struct type *type)
14f9c5c9
AS
5664{
5665 int i;
61ee279c 5666 type = ada_check_typedef (type);
14f9c5c9 5667
52ce6436 5668 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
14f9c5c9
AS
5669 {
5670 char *t_field_name = TYPE_FIELD_NAME (type, i);
5671
5672 if (t_field_name == NULL)
4c4b4cd2 5673 continue;
14f9c5c9
AS
5674
5675 else if (field_name_match (t_field_name, name))
4c4b4cd2 5676 return ada_value_primitive_field (arg, offset, i, type);
14f9c5c9
AS
5677
5678 else if (ada_is_wrapper_field (type, i))
4c4b4cd2 5679 {
06d5cf63
JB
5680 struct value *v = /* Do not let indent join lines here. */
5681 ada_search_struct_field (name, arg,
5682 offset + TYPE_FIELD_BITPOS (type, i) / 8,
5683 TYPE_FIELD_TYPE (type, i));
4c4b4cd2
PH
5684 if (v != NULL)
5685 return v;
5686 }
14f9c5c9
AS
5687
5688 else if (ada_is_variant_part (type, i))
4c4b4cd2 5689 {
52ce6436 5690 /* PNH: Do we ever get here? See find_struct_field. */
4c4b4cd2 5691 int j;
61ee279c 5692 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type, i));
4c4b4cd2
PH
5693 int var_offset = offset + TYPE_FIELD_BITPOS (type, i) / 8;
5694
52ce6436 5695 for (j = 0; j < TYPE_NFIELDS (field_type); j += 1)
4c4b4cd2 5696 {
06d5cf63
JB
5697 struct value *v = ada_search_struct_field /* Force line break. */
5698 (name, arg,
5699 var_offset + TYPE_FIELD_BITPOS (field_type, j) / 8,
5700 TYPE_FIELD_TYPE (field_type, j));
4c4b4cd2
PH
5701 if (v != NULL)
5702 return v;
5703 }
5704 }
14f9c5c9
AS
5705 }
5706 return NULL;
5707}
d2e4a39e 5708
52ce6436
PH
5709static struct value *ada_index_struct_field_1 (int *, struct value *,
5710 int, struct type *);
5711
5712
5713/* Return field #INDEX in ARG, where the index is that returned by
5714 * find_struct_field through its INDEX_P argument. Adjust the address
5715 * of ARG by OFFSET bytes, and search in it assuming it has (class) type TYPE.
5716 * If found, return value, else return NULL. */
5717
5718static struct value *
5719ada_index_struct_field (int index, struct value *arg, int offset,
5720 struct type *type)
5721{
5722 return ada_index_struct_field_1 (&index, arg, offset, type);
5723}
5724
5725
5726/* Auxiliary function for ada_index_struct_field. Like
5727 * ada_index_struct_field, but takes index from *INDEX_P and modifies
5728 * *INDEX_P. */
5729
5730static struct value *
5731ada_index_struct_field_1 (int *index_p, struct value *arg, int offset,
5732 struct type *type)
5733{
5734 int i;
5735 type = ada_check_typedef (type);
5736
5737 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
5738 {
5739 if (TYPE_FIELD_NAME (type, i) == NULL)
5740 continue;
5741 else if (ada_is_wrapper_field (type, i))
5742 {
5743 struct value *v = /* Do not let indent join lines here. */
5744 ada_index_struct_field_1 (index_p, arg,
5745 offset + TYPE_FIELD_BITPOS (type, i) / 8,
5746 TYPE_FIELD_TYPE (type, i));
5747 if (v != NULL)
5748 return v;
5749 }
5750
5751 else if (ada_is_variant_part (type, i))
5752 {
5753 /* PNH: Do we ever get here? See ada_search_struct_field,
5754 find_struct_field. */
5755 error (_("Cannot assign this kind of variant record"));
5756 }
5757 else if (*index_p == 0)
5758 return ada_value_primitive_field (arg, offset, i, type);
5759 else
5760 *index_p -= 1;
5761 }
5762 return NULL;
5763}
5764
4c4b4cd2
PH
5765/* Given ARG, a value of type (pointer or reference to a)*
5766 structure/union, extract the component named NAME from the ultimate
5767 target structure/union and return it as a value with its
5768 appropriate type. If ARG is a pointer or reference and the field
5769 is not packed, returns a reference to the field, otherwise the
5770 value of the field (an lvalue if ARG is an lvalue).
14f9c5c9 5771
4c4b4cd2
PH
5772 The routine searches for NAME among all members of the structure itself
5773 and (recursively) among all members of any wrapper members
14f9c5c9
AS
5774 (e.g., '_parent').
5775
03ee6b2e
PH
5776 If NO_ERR, then simply return NULL in case of error, rather than
5777 calling error. */
14f9c5c9 5778
d2e4a39e 5779struct value *
03ee6b2e 5780ada_value_struct_elt (struct value *arg, char *name, int no_err)
14f9c5c9 5781{
4c4b4cd2 5782 struct type *t, *t1;
d2e4a39e 5783 struct value *v;
14f9c5c9 5784
4c4b4cd2 5785 v = NULL;
df407dfe 5786 t1 = t = ada_check_typedef (value_type (arg));
4c4b4cd2
PH
5787 if (TYPE_CODE (t) == TYPE_CODE_REF)
5788 {
5789 t1 = TYPE_TARGET_TYPE (t);
5790 if (t1 == NULL)
03ee6b2e 5791 goto BadValue;
61ee279c 5792 t1 = ada_check_typedef (t1);
4c4b4cd2 5793 if (TYPE_CODE (t1) == TYPE_CODE_PTR)
76a01679 5794 {
994b9211 5795 arg = coerce_ref (arg);
76a01679
JB
5796 t = t1;
5797 }
4c4b4cd2 5798 }
14f9c5c9 5799
4c4b4cd2
PH
5800 while (TYPE_CODE (t) == TYPE_CODE_PTR)
5801 {
5802 t1 = TYPE_TARGET_TYPE (t);
5803 if (t1 == NULL)
03ee6b2e 5804 goto BadValue;
61ee279c 5805 t1 = ada_check_typedef (t1);
4c4b4cd2 5806 if (TYPE_CODE (t1) == TYPE_CODE_PTR)
76a01679
JB
5807 {
5808 arg = value_ind (arg);
5809 t = t1;
5810 }
4c4b4cd2 5811 else
76a01679 5812 break;
4c4b4cd2 5813 }
14f9c5c9 5814
4c4b4cd2 5815 if (TYPE_CODE (t1) != TYPE_CODE_STRUCT && TYPE_CODE (t1) != TYPE_CODE_UNION)
03ee6b2e 5816 goto BadValue;
14f9c5c9 5817
4c4b4cd2
PH
5818 if (t1 == t)
5819 v = ada_search_struct_field (name, arg, 0, t);
5820 else
5821 {
5822 int bit_offset, bit_size, byte_offset;
5823 struct type *field_type;
5824 CORE_ADDR address;
5825
76a01679
JB
5826 if (TYPE_CODE (t) == TYPE_CODE_PTR)
5827 address = value_as_address (arg);
4c4b4cd2 5828 else
0fd88904 5829 address = unpack_pointer (t, value_contents (arg));
14f9c5c9 5830
4c4b4cd2 5831 t1 = ada_to_fixed_type (ada_get_base_type (t1), NULL, address, NULL);
76a01679
JB
5832 if (find_struct_field (name, t1, 0,
5833 &field_type, &byte_offset, &bit_offset,
52ce6436 5834 &bit_size, NULL))
76a01679
JB
5835 {
5836 if (bit_size != 0)
5837 {
714e53ab
PH
5838 if (TYPE_CODE (t) == TYPE_CODE_REF)
5839 arg = ada_coerce_ref (arg);
5840 else
5841 arg = ada_value_ind (arg);
76a01679
JB
5842 v = ada_value_primitive_packed_val (arg, NULL, byte_offset,
5843 bit_offset, bit_size,
5844 field_type);
5845 }
5846 else
5847 v = value_from_pointer (lookup_reference_type (field_type),
5848 address + byte_offset);
5849 }
5850 }
5851
03ee6b2e
PH
5852 if (v != NULL || no_err)
5853 return v;
5854 else
323e0a4a 5855 error (_("There is no member named %s."), name);
14f9c5c9 5856
03ee6b2e
PH
5857 BadValue:
5858 if (no_err)
5859 return NULL;
5860 else
5861 error (_("Attempt to extract a component of a value that is not a record."));
14f9c5c9
AS
5862}
5863
5864/* Given a type TYPE, look up the type of the component of type named NAME.
4c4b4cd2
PH
5865 If DISPP is non-null, add its byte displacement from the beginning of a
5866 structure (pointed to by a value) of type TYPE to *DISPP (does not
14f9c5c9
AS
5867 work for packed fields).
5868
5869 Matches any field whose name has NAME as a prefix, possibly
4c4b4cd2 5870 followed by "___".
14f9c5c9 5871
4c4b4cd2
PH
5872 TYPE can be either a struct or union. If REFOK, TYPE may also
5873 be a (pointer or reference)+ to a struct or union, and the
5874 ultimate target type will be searched.
14f9c5c9
AS
5875
5876 Looks recursively into variant clauses and parent types.
5877
4c4b4cd2
PH
5878 If NOERR is nonzero, return NULL if NAME is not suitably defined or
5879 TYPE is not a type of the right kind. */
14f9c5c9 5880
4c4b4cd2 5881static struct type *
76a01679
JB
5882ada_lookup_struct_elt_type (struct type *type, char *name, int refok,
5883 int noerr, int *dispp)
14f9c5c9
AS
5884{
5885 int i;
5886
5887 if (name == NULL)
5888 goto BadName;
5889
76a01679 5890 if (refok && type != NULL)
4c4b4cd2
PH
5891 while (1)
5892 {
61ee279c 5893 type = ada_check_typedef (type);
76a01679
JB
5894 if (TYPE_CODE (type) != TYPE_CODE_PTR
5895 && TYPE_CODE (type) != TYPE_CODE_REF)
5896 break;
5897 type = TYPE_TARGET_TYPE (type);
4c4b4cd2 5898 }
14f9c5c9 5899
76a01679 5900 if (type == NULL
1265e4aa
JB
5901 || (TYPE_CODE (type) != TYPE_CODE_STRUCT
5902 && TYPE_CODE (type) != TYPE_CODE_UNION))
14f9c5c9 5903 {
4c4b4cd2 5904 if (noerr)
76a01679 5905 return NULL;
4c4b4cd2 5906 else
76a01679
JB
5907 {
5908 target_terminal_ours ();
5909 gdb_flush (gdb_stdout);
323e0a4a
AC
5910 if (type == NULL)
5911 error (_("Type (null) is not a structure or union type"));
5912 else
5913 {
5914 /* XXX: type_sprint */
5915 fprintf_unfiltered (gdb_stderr, _("Type "));
5916 type_print (type, "", gdb_stderr, -1);
5917 error (_(" is not a structure or union type"));
5918 }
76a01679 5919 }
14f9c5c9
AS
5920 }
5921
5922 type = to_static_fixed_type (type);
5923
5924 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
5925 {
5926 char *t_field_name = TYPE_FIELD_NAME (type, i);
5927 struct type *t;
5928 int disp;
d2e4a39e 5929
14f9c5c9 5930 if (t_field_name == NULL)
4c4b4cd2 5931 continue;
14f9c5c9
AS
5932
5933 else if (field_name_match (t_field_name, name))
4c4b4cd2
PH
5934 {
5935 if (dispp != NULL)
5936 *dispp += TYPE_FIELD_BITPOS (type, i) / 8;
61ee279c 5937 return ada_check_typedef (TYPE_FIELD_TYPE (type, i));
4c4b4cd2 5938 }
14f9c5c9
AS
5939
5940 else if (ada_is_wrapper_field (type, i))
4c4b4cd2
PH
5941 {
5942 disp = 0;
5943 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (type, i), name,
5944 0, 1, &disp);
5945 if (t != NULL)
5946 {
5947 if (dispp != NULL)
5948 *dispp += disp + TYPE_FIELD_BITPOS (type, i) / 8;
5949 return t;
5950 }
5951 }
14f9c5c9
AS
5952
5953 else if (ada_is_variant_part (type, i))
4c4b4cd2
PH
5954 {
5955 int j;
61ee279c 5956 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type, i));
4c4b4cd2
PH
5957
5958 for (j = TYPE_NFIELDS (field_type) - 1; j >= 0; j -= 1)
5959 {
5960 disp = 0;
5961 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (field_type, j),
5962 name, 0, 1, &disp);
5963 if (t != NULL)
5964 {
5965 if (dispp != NULL)
5966 *dispp += disp + TYPE_FIELD_BITPOS (type, i) / 8;
5967 return t;
5968 }
5969 }
5970 }
14f9c5c9
AS
5971
5972 }
5973
5974BadName:
d2e4a39e 5975 if (!noerr)
14f9c5c9
AS
5976 {
5977 target_terminal_ours ();
5978 gdb_flush (gdb_stdout);
323e0a4a
AC
5979 if (name == NULL)
5980 {
5981 /* XXX: type_sprint */
5982 fprintf_unfiltered (gdb_stderr, _("Type "));
5983 type_print (type, "", gdb_stderr, -1);
5984 error (_(" has no component named <null>"));
5985 }
5986 else
5987 {
5988 /* XXX: type_sprint */
5989 fprintf_unfiltered (gdb_stderr, _("Type "));
5990 type_print (type, "", gdb_stderr, -1);
5991 error (_(" has no component named %s"), name);
5992 }
14f9c5c9
AS
5993 }
5994
5995 return NULL;
5996}
5997
5998/* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
5999 within a value of type OUTER_TYPE that is stored in GDB at
4c4b4cd2
PH
6000 OUTER_VALADDR, determine which variant clause (field number in VAR_TYPE,
6001 numbering from 0) is applicable. Returns -1 if none are. */
14f9c5c9 6002
d2e4a39e 6003int
ebf56fd3 6004ada_which_variant_applies (struct type *var_type, struct type *outer_type,
fc1a4b47 6005 const gdb_byte *outer_valaddr)
14f9c5c9
AS
6006{
6007 int others_clause;
6008 int i;
6009 int disp;
d2e4a39e
AS
6010 struct type *discrim_type;
6011 char *discrim_name = ada_variant_discrim_name (var_type);
14f9c5c9
AS
6012 LONGEST discrim_val;
6013
6014 disp = 0;
d2e4a39e 6015 discrim_type =
4c4b4cd2 6016 ada_lookup_struct_elt_type (outer_type, discrim_name, 1, 1, &disp);
14f9c5c9
AS
6017 if (discrim_type == NULL)
6018 return -1;
6019 discrim_val = unpack_long (discrim_type, outer_valaddr + disp);
6020
6021 others_clause = -1;
6022 for (i = 0; i < TYPE_NFIELDS (var_type); i += 1)
6023 {
6024 if (ada_is_others_clause (var_type, i))
4c4b4cd2 6025 others_clause = i;
14f9c5c9 6026 else if (ada_in_variant (discrim_val, var_type, i))
4c4b4cd2 6027 return i;
14f9c5c9
AS
6028 }
6029
6030 return others_clause;
6031}
d2e4a39e 6032\f
14f9c5c9
AS
6033
6034
4c4b4cd2 6035 /* Dynamic-Sized Records */
14f9c5c9
AS
6036
6037/* Strategy: The type ostensibly attached to a value with dynamic size
6038 (i.e., a size that is not statically recorded in the debugging
6039 data) does not accurately reflect the size or layout of the value.
6040 Our strategy is to convert these values to values with accurate,
4c4b4cd2 6041 conventional types that are constructed on the fly. */
14f9c5c9
AS
6042
6043/* There is a subtle and tricky problem here. In general, we cannot
6044 determine the size of dynamic records without its data. However,
6045 the 'struct value' data structure, which GDB uses to represent
6046 quantities in the inferior process (the target), requires the size
6047 of the type at the time of its allocation in order to reserve space
6048 for GDB's internal copy of the data. That's why the
6049 'to_fixed_xxx_type' routines take (target) addresses as parameters,
4c4b4cd2 6050 rather than struct value*s.
14f9c5c9
AS
6051
6052 However, GDB's internal history variables ($1, $2, etc.) are
6053 struct value*s containing internal copies of the data that are not, in
6054 general, the same as the data at their corresponding addresses in
6055 the target. Fortunately, the types we give to these values are all
6056 conventional, fixed-size types (as per the strategy described
6057 above), so that we don't usually have to perform the
6058 'to_fixed_xxx_type' conversions to look at their values.
6059 Unfortunately, there is one exception: if one of the internal
6060 history variables is an array whose elements are unconstrained
6061 records, then we will need to create distinct fixed types for each
6062 element selected. */
6063
6064/* The upshot of all of this is that many routines take a (type, host
6065 address, target address) triple as arguments to represent a value.
6066 The host address, if non-null, is supposed to contain an internal
6067 copy of the relevant data; otherwise, the program is to consult the
4c4b4cd2 6068 target at the target address. */
14f9c5c9
AS
6069
6070/* Assuming that VAL0 represents a pointer value, the result of
6071 dereferencing it. Differs from value_ind in its treatment of
4c4b4cd2 6072 dynamic-sized types. */
14f9c5c9 6073
d2e4a39e
AS
6074struct value *
6075ada_value_ind (struct value *val0)
14f9c5c9 6076{
d2e4a39e 6077 struct value *val = unwrap_value (value_ind (val0));
4c4b4cd2 6078 return ada_to_fixed_value (val);
14f9c5c9
AS
6079}
6080
6081/* The value resulting from dereferencing any "reference to"
4c4b4cd2
PH
6082 qualifiers on VAL0. */
6083
d2e4a39e
AS
6084static struct value *
6085ada_coerce_ref (struct value *val0)
6086{
df407dfe 6087 if (TYPE_CODE (value_type (val0)) == TYPE_CODE_REF)
d2e4a39e
AS
6088 {
6089 struct value *val = val0;
994b9211 6090 val = coerce_ref (val);
d2e4a39e 6091 val = unwrap_value (val);
4c4b4cd2 6092 return ada_to_fixed_value (val);
d2e4a39e
AS
6093 }
6094 else
14f9c5c9
AS
6095 return val0;
6096}
6097
6098/* Return OFF rounded upward if necessary to a multiple of
4c4b4cd2 6099 ALIGNMENT (a power of 2). */
14f9c5c9
AS
6100
6101static unsigned int
ebf56fd3 6102align_value (unsigned int off, unsigned int alignment)
14f9c5c9
AS
6103{
6104 return (off + alignment - 1) & ~(alignment - 1);
6105}
6106
4c4b4cd2 6107/* Return the bit alignment required for field #F of template type TYPE. */
14f9c5c9
AS
6108
6109static unsigned int
ebf56fd3 6110field_alignment (struct type *type, int f)
14f9c5c9 6111{
d2e4a39e 6112 const char *name = TYPE_FIELD_NAME (type, f);
64a1bf19 6113 int len;
14f9c5c9
AS
6114 int align_offset;
6115
64a1bf19
JB
6116 /* The field name should never be null, unless the debugging information
6117 is somehow malformed. In this case, we assume the field does not
6118 require any alignment. */
6119 if (name == NULL)
6120 return 1;
6121
6122 len = strlen (name);
6123
4c4b4cd2
PH
6124 if (!isdigit (name[len - 1]))
6125 return 1;
14f9c5c9 6126
d2e4a39e 6127 if (isdigit (name[len - 2]))
14f9c5c9
AS
6128 align_offset = len - 2;
6129 else
6130 align_offset = len - 1;
6131
4c4b4cd2 6132 if (align_offset < 7 || strncmp ("___XV", name + align_offset - 6, 5) != 0)
14f9c5c9
AS
6133 return TARGET_CHAR_BIT;
6134
4c4b4cd2
PH
6135 return atoi (name + align_offset) * TARGET_CHAR_BIT;
6136}
6137
6138/* Find a symbol named NAME. Ignores ambiguity. */
6139
6140struct symbol *
6141ada_find_any_symbol (const char *name)
6142{
6143 struct symbol *sym;
6144
6145 sym = standard_lookup (name, get_selected_block (NULL), VAR_DOMAIN);
6146 if (sym != NULL && SYMBOL_CLASS (sym) == LOC_TYPEDEF)
6147 return sym;
6148
6149 sym = standard_lookup (name, NULL, STRUCT_DOMAIN);
6150 return sym;
14f9c5c9
AS
6151}
6152
6153/* Find a type named NAME. Ignores ambiguity. */
4c4b4cd2 6154
d2e4a39e 6155struct type *
ebf56fd3 6156ada_find_any_type (const char *name)
14f9c5c9 6157{
4c4b4cd2 6158 struct symbol *sym = ada_find_any_symbol (name);
14f9c5c9 6159
14f9c5c9
AS
6160 if (sym != NULL)
6161 return SYMBOL_TYPE (sym);
6162
6163 return NULL;
6164}
6165
4c4b4cd2
PH
6166/* Given a symbol NAME and its associated BLOCK, search all symbols
6167 for its ___XR counterpart, which is the ``renaming'' symbol
6168 associated to NAME. Return this symbol if found, return
6169 NULL otherwise. */
6170
6171struct symbol *
6172ada_find_renaming_symbol (const char *name, struct block *block)
6173{
6174 const struct symbol *function_sym = block_function (block);
6175 char *rename;
6176
6177 if (function_sym != NULL)
6178 {
6179 /* If the symbol is defined inside a function, NAME is not fully
6180 qualified. This means we need to prepend the function name
6181 as well as adding the ``___XR'' suffix to build the name of
6182 the associated renaming symbol. */
6183 char *function_name = SYMBOL_LINKAGE_NAME (function_sym);
529cad9c
PH
6184 /* Function names sometimes contain suffixes used
6185 for instance to qualify nested subprograms. When building
6186 the XR type name, we need to make sure that this suffix is
6187 not included. So do not include any suffix in the function
6188 name length below. */
6189 const int function_name_len = ada_name_prefix_len (function_name);
76a01679
JB
6190 const int rename_len = function_name_len + 2 /* "__" */
6191 + strlen (name) + 6 /* "___XR\0" */ ;
4c4b4cd2 6192
529cad9c
PH
6193 /* Strip the suffix if necessary. */
6194 function_name[function_name_len] = '\0';
6195
4c4b4cd2
PH
6196 /* Library-level functions are a special case, as GNAT adds
6197 a ``_ada_'' prefix to the function name to avoid namespace
6198 pollution. However, the renaming symbol themselves do not
6199 have this prefix, so we need to skip this prefix if present. */
6200 if (function_name_len > 5 /* "_ada_" */
6201 && strstr (function_name, "_ada_") == function_name)
6202 function_name = function_name + 5;
6203
6204 rename = (char *) alloca (rename_len * sizeof (char));
6205 sprintf (rename, "%s__%s___XR", function_name, name);
6206 }
6207 else
6208 {
6209 const int rename_len = strlen (name) + 6;
6210 rename = (char *) alloca (rename_len * sizeof (char));
6211 sprintf (rename, "%s___XR", name);
6212 }
6213
6214 return ada_find_any_symbol (rename);
6215}
6216
14f9c5c9 6217/* Because of GNAT encoding conventions, several GDB symbols may match a
4c4b4cd2 6218 given type name. If the type denoted by TYPE0 is to be preferred to
14f9c5c9 6219 that of TYPE1 for purposes of type printing, return non-zero;
4c4b4cd2
PH
6220 otherwise return 0. */
6221
14f9c5c9 6222int
d2e4a39e 6223ada_prefer_type (struct type *type0, struct type *type1)
14f9c5c9
AS
6224{
6225 if (type1 == NULL)
6226 return 1;
6227 else if (type0 == NULL)
6228 return 0;
6229 else if (TYPE_CODE (type1) == TYPE_CODE_VOID)
6230 return 1;
6231 else if (TYPE_CODE (type0) == TYPE_CODE_VOID)
6232 return 0;
4c4b4cd2
PH
6233 else if (TYPE_NAME (type1) == NULL && TYPE_NAME (type0) != NULL)
6234 return 1;
14f9c5c9
AS
6235 else if (ada_is_packed_array_type (type0))
6236 return 1;
4c4b4cd2
PH
6237 else if (ada_is_array_descriptor_type (type0)
6238 && !ada_is_array_descriptor_type (type1))
14f9c5c9 6239 return 1;
d2e4a39e 6240 else if (ada_renaming_type (type0) != NULL
4c4b4cd2 6241 && ada_renaming_type (type1) == NULL)
14f9c5c9
AS
6242 return 1;
6243 return 0;
6244}
6245
6246/* The name of TYPE, which is either its TYPE_NAME, or, if that is
4c4b4cd2
PH
6247 null, its TYPE_TAG_NAME. Null if TYPE is null. */
6248
d2e4a39e
AS
6249char *
6250ada_type_name (struct type *type)
14f9c5c9 6251{
d2e4a39e 6252 if (type == NULL)
14f9c5c9
AS
6253 return NULL;
6254 else if (TYPE_NAME (type) != NULL)
6255 return TYPE_NAME (type);
6256 else
6257 return TYPE_TAG_NAME (type);
6258}
6259
6260/* Find a parallel type to TYPE whose name is formed by appending
4c4b4cd2 6261 SUFFIX to the name of TYPE. */
14f9c5c9 6262
d2e4a39e 6263struct type *
ebf56fd3 6264ada_find_parallel_type (struct type *type, const char *suffix)
14f9c5c9 6265{
d2e4a39e 6266 static char *name;
14f9c5c9 6267 static size_t name_len = 0;
14f9c5c9 6268 int len;
d2e4a39e
AS
6269 char *typename = ada_type_name (type);
6270
14f9c5c9
AS
6271 if (typename == NULL)
6272 return NULL;
6273
6274 len = strlen (typename);
6275
d2e4a39e 6276 GROW_VECT (name, name_len, len + strlen (suffix) + 1);
14f9c5c9
AS
6277
6278 strcpy (name, typename);
6279 strcpy (name + len, suffix);
6280
6281 return ada_find_any_type (name);
6282}
6283
6284
6285/* If TYPE is a variable-size record type, return the corresponding template
4c4b4cd2 6286 type describing its fields. Otherwise, return NULL. */
14f9c5c9 6287
d2e4a39e
AS
6288static struct type *
6289dynamic_template_type (struct type *type)
14f9c5c9 6290{
61ee279c 6291 type = ada_check_typedef (type);
14f9c5c9
AS
6292
6293 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT
d2e4a39e 6294 || ada_type_name (type) == NULL)
14f9c5c9 6295 return NULL;
d2e4a39e 6296 else
14f9c5c9
AS
6297 {
6298 int len = strlen (ada_type_name (type));
4c4b4cd2
PH
6299 if (len > 6 && strcmp (ada_type_name (type) + len - 6, "___XVE") == 0)
6300 return type;
14f9c5c9 6301 else
4c4b4cd2 6302 return ada_find_parallel_type (type, "___XVE");
14f9c5c9
AS
6303 }
6304}
6305
6306/* Assuming that TEMPL_TYPE is a union or struct type, returns
4c4b4cd2 6307 non-zero iff field FIELD_NUM of TEMPL_TYPE has dynamic size. */
14f9c5c9 6308
d2e4a39e
AS
6309static int
6310is_dynamic_field (struct type *templ_type, int field_num)
14f9c5c9
AS
6311{
6312 const char *name = TYPE_FIELD_NAME (templ_type, field_num);
d2e4a39e 6313 return name != NULL
14f9c5c9
AS
6314 && TYPE_CODE (TYPE_FIELD_TYPE (templ_type, field_num)) == TYPE_CODE_PTR
6315 && strstr (name, "___XVL") != NULL;
6316}
6317
4c4b4cd2
PH
6318/* The index of the variant field of TYPE, or -1 if TYPE does not
6319 represent a variant record type. */
14f9c5c9 6320
d2e4a39e 6321static int
4c4b4cd2 6322variant_field_index (struct type *type)
14f9c5c9
AS
6323{
6324 int f;
6325
4c4b4cd2
PH
6326 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT)
6327 return -1;
6328
6329 for (f = 0; f < TYPE_NFIELDS (type); f += 1)
6330 {
6331 if (ada_is_variant_part (type, f))
6332 return f;
6333 }
6334 return -1;
14f9c5c9
AS
6335}
6336
4c4b4cd2
PH
6337/* A record type with no fields. */
6338
d2e4a39e
AS
6339static struct type *
6340empty_record (struct objfile *objfile)
14f9c5c9 6341{
d2e4a39e 6342 struct type *type = alloc_type (objfile);
14f9c5c9
AS
6343 TYPE_CODE (type) = TYPE_CODE_STRUCT;
6344 TYPE_NFIELDS (type) = 0;
6345 TYPE_FIELDS (type) = NULL;
6346 TYPE_NAME (type) = "<empty>";
6347 TYPE_TAG_NAME (type) = NULL;
6348 TYPE_FLAGS (type) = 0;
6349 TYPE_LENGTH (type) = 0;
6350 return type;
6351}
6352
6353/* An ordinary record type (with fixed-length fields) that describes
4c4b4cd2
PH
6354 the value of type TYPE at VALADDR or ADDRESS (see comments at
6355 the beginning of this section) VAL according to GNAT conventions.
6356 DVAL0 should describe the (portion of a) record that contains any
df407dfe 6357 necessary discriminants. It should be NULL if value_type (VAL) is
14f9c5c9
AS
6358 an outer-level type (i.e., as opposed to a branch of a variant.) A
6359 variant field (unless unchecked) is replaced by a particular branch
4c4b4cd2 6360 of the variant.
14f9c5c9 6361
4c4b4cd2
PH
6362 If not KEEP_DYNAMIC_FIELDS, then all fields whose position or
6363 length are not statically known are discarded. As a consequence,
6364 VALADDR, ADDRESS and DVAL0 are ignored.
6365
6366 NOTE: Limitations: For now, we assume that dynamic fields and
6367 variants occupy whole numbers of bytes. However, they need not be
6368 byte-aligned. */
6369
6370struct type *
10a2c479 6371ada_template_to_fixed_record_type_1 (struct type *type,
fc1a4b47 6372 const gdb_byte *valaddr,
4c4b4cd2
PH
6373 CORE_ADDR address, struct value *dval0,
6374 int keep_dynamic_fields)
14f9c5c9 6375{
d2e4a39e
AS
6376 struct value *mark = value_mark ();
6377 struct value *dval;
6378 struct type *rtype;
14f9c5c9 6379 int nfields, bit_len;
4c4b4cd2 6380 int variant_field;
14f9c5c9 6381 long off;
4c4b4cd2 6382 int fld_bit_len, bit_incr;
14f9c5c9
AS
6383 int f;
6384
4c4b4cd2
PH
6385 /* Compute the number of fields in this record type that are going
6386 to be processed: unless keep_dynamic_fields, this includes only
6387 fields whose position and length are static will be processed. */
6388 if (keep_dynamic_fields)
6389 nfields = TYPE_NFIELDS (type);
6390 else
6391 {
6392 nfields = 0;
76a01679 6393 while (nfields < TYPE_NFIELDS (type)
4c4b4cd2
PH
6394 && !ada_is_variant_part (type, nfields)
6395 && !is_dynamic_field (type, nfields))
6396 nfields++;
6397 }
6398
14f9c5c9
AS
6399 rtype = alloc_type (TYPE_OBJFILE (type));
6400 TYPE_CODE (rtype) = TYPE_CODE_STRUCT;
6401 INIT_CPLUS_SPECIFIC (rtype);
6402 TYPE_NFIELDS (rtype) = nfields;
d2e4a39e 6403 TYPE_FIELDS (rtype) = (struct field *)
14f9c5c9
AS
6404 TYPE_ALLOC (rtype, nfields * sizeof (struct field));
6405 memset (TYPE_FIELDS (rtype), 0, sizeof (struct field) * nfields);
6406 TYPE_NAME (rtype) = ada_type_name (type);
6407 TYPE_TAG_NAME (rtype) = NULL;
4c4b4cd2 6408 TYPE_FLAGS (rtype) |= TYPE_FLAG_FIXED_INSTANCE;
14f9c5c9 6409
d2e4a39e
AS
6410 off = 0;
6411 bit_len = 0;
4c4b4cd2
PH
6412 variant_field = -1;
6413
14f9c5c9
AS
6414 for (f = 0; f < nfields; f += 1)
6415 {
6c038f32
PH
6416 off = align_value (off, field_alignment (type, f))
6417 + TYPE_FIELD_BITPOS (type, f);
14f9c5c9 6418 TYPE_FIELD_BITPOS (rtype, f) = off;
d2e4a39e 6419 TYPE_FIELD_BITSIZE (rtype, f) = 0;
14f9c5c9 6420
d2e4a39e 6421 if (ada_is_variant_part (type, f))
4c4b4cd2
PH
6422 {
6423 variant_field = f;
6424 fld_bit_len = bit_incr = 0;
6425 }
14f9c5c9 6426 else if (is_dynamic_field (type, f))
4c4b4cd2
PH
6427 {
6428 if (dval0 == NULL)
6429 dval = value_from_contents_and_address (rtype, valaddr, address);
6430 else
6431 dval = dval0;
6432
6433 TYPE_FIELD_TYPE (rtype, f) =
6434 ada_to_fixed_type
6435 (ada_get_base_type
6436 (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type, f))),
6437 cond_offset_host (valaddr, off / TARGET_CHAR_BIT),
6438 cond_offset_target (address, off / TARGET_CHAR_BIT), dval);
6439 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
6440 bit_incr = fld_bit_len =
6441 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, f)) * TARGET_CHAR_BIT;
6442 }
14f9c5c9 6443 else
4c4b4cd2
PH
6444 {
6445 TYPE_FIELD_TYPE (rtype, f) = TYPE_FIELD_TYPE (type, f);
6446 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
6447 if (TYPE_FIELD_BITSIZE (type, f) > 0)
6448 bit_incr = fld_bit_len =
6449 TYPE_FIELD_BITSIZE (rtype, f) = TYPE_FIELD_BITSIZE (type, f);
6450 else
6451 bit_incr = fld_bit_len =
6452 TYPE_LENGTH (TYPE_FIELD_TYPE (type, f)) * TARGET_CHAR_BIT;
6453 }
14f9c5c9 6454 if (off + fld_bit_len > bit_len)
4c4b4cd2 6455 bit_len = off + fld_bit_len;
14f9c5c9 6456 off += bit_incr;
4c4b4cd2
PH
6457 TYPE_LENGTH (rtype) =
6458 align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
14f9c5c9 6459 }
4c4b4cd2
PH
6460
6461 /* We handle the variant part, if any, at the end because of certain
6462 odd cases in which it is re-ordered so as NOT the last field of
6463 the record. This can happen in the presence of representation
6464 clauses. */
6465 if (variant_field >= 0)
6466 {
6467 struct type *branch_type;
6468
6469 off = TYPE_FIELD_BITPOS (rtype, variant_field);
6470
6471 if (dval0 == NULL)
6472 dval = value_from_contents_and_address (rtype, valaddr, address);
6473 else
6474 dval = dval0;
6475
6476 branch_type =
6477 to_fixed_variant_branch_type
6478 (TYPE_FIELD_TYPE (type, variant_field),
6479 cond_offset_host (valaddr, off / TARGET_CHAR_BIT),
6480 cond_offset_target (address, off / TARGET_CHAR_BIT), dval);
6481 if (branch_type == NULL)
6482 {
6483 for (f = variant_field + 1; f < TYPE_NFIELDS (rtype); f += 1)
6484 TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f];
6485 TYPE_NFIELDS (rtype) -= 1;
6486 }
6487 else
6488 {
6489 TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
6490 TYPE_FIELD_NAME (rtype, variant_field) = "S";
6491 fld_bit_len =
6492 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, variant_field)) *
6493 TARGET_CHAR_BIT;
6494 if (off + fld_bit_len > bit_len)
6495 bit_len = off + fld_bit_len;
6496 TYPE_LENGTH (rtype) =
6497 align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
6498 }
6499 }
6500
714e53ab
PH
6501 /* According to exp_dbug.ads, the size of TYPE for variable-size records
6502 should contain the alignment of that record, which should be a strictly
6503 positive value. If null or negative, then something is wrong, most
6504 probably in the debug info. In that case, we don't round up the size
6505 of the resulting type. If this record is not part of another structure,
6506 the current RTYPE length might be good enough for our purposes. */
6507 if (TYPE_LENGTH (type) <= 0)
6508 {
323e0a4a
AC
6509 if (TYPE_NAME (rtype))
6510 warning (_("Invalid type size for `%s' detected: %d."),
6511 TYPE_NAME (rtype), TYPE_LENGTH (type));
6512 else
6513 warning (_("Invalid type size for <unnamed> detected: %d."),
6514 TYPE_LENGTH (type));
714e53ab
PH
6515 }
6516 else
6517 {
6518 TYPE_LENGTH (rtype) = align_value (TYPE_LENGTH (rtype),
6519 TYPE_LENGTH (type));
6520 }
14f9c5c9
AS
6521
6522 value_free_to_mark (mark);
d2e4a39e 6523 if (TYPE_LENGTH (rtype) > varsize_limit)
323e0a4a 6524 error (_("record type with dynamic size is larger than varsize-limit"));
14f9c5c9
AS
6525 return rtype;
6526}
6527
4c4b4cd2
PH
6528/* As for ada_template_to_fixed_record_type_1 with KEEP_DYNAMIC_FIELDS
6529 of 1. */
14f9c5c9 6530
d2e4a39e 6531static struct type *
fc1a4b47 6532template_to_fixed_record_type (struct type *type, const gdb_byte *valaddr,
4c4b4cd2
PH
6533 CORE_ADDR address, struct value *dval0)
6534{
6535 return ada_template_to_fixed_record_type_1 (type, valaddr,
6536 address, dval0, 1);
6537}
6538
6539/* An ordinary record type in which ___XVL-convention fields and
6540 ___XVU- and ___XVN-convention field types in TYPE0 are replaced with
6541 static approximations, containing all possible fields. Uses
6542 no runtime values. Useless for use in values, but that's OK,
6543 since the results are used only for type determinations. Works on both
6544 structs and unions. Representation note: to save space, we memorize
6545 the result of this function in the TYPE_TARGET_TYPE of the
6546 template type. */
6547
6548static struct type *
6549template_to_static_fixed_type (struct type *type0)
14f9c5c9
AS
6550{
6551 struct type *type;
6552 int nfields;
6553 int f;
6554
4c4b4cd2
PH
6555 if (TYPE_TARGET_TYPE (type0) != NULL)
6556 return TYPE_TARGET_TYPE (type0);
6557
6558 nfields = TYPE_NFIELDS (type0);
6559 type = type0;
14f9c5c9
AS
6560
6561 for (f = 0; f < nfields; f += 1)
6562 {
61ee279c 6563 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type0, f));
4c4b4cd2 6564 struct type *new_type;
14f9c5c9 6565
4c4b4cd2
PH
6566 if (is_dynamic_field (type0, f))
6567 new_type = to_static_fixed_type (TYPE_TARGET_TYPE (field_type));
14f9c5c9 6568 else
4c4b4cd2
PH
6569 new_type = to_static_fixed_type (field_type);
6570 if (type == type0 && new_type != field_type)
6571 {
6572 TYPE_TARGET_TYPE (type0) = type = alloc_type (TYPE_OBJFILE (type0));
6573 TYPE_CODE (type) = TYPE_CODE (type0);
6574 INIT_CPLUS_SPECIFIC (type);
6575 TYPE_NFIELDS (type) = nfields;
6576 TYPE_FIELDS (type) = (struct field *)
6577 TYPE_ALLOC (type, nfields * sizeof (struct field));
6578 memcpy (TYPE_FIELDS (type), TYPE_FIELDS (type0),
6579 sizeof (struct field) * nfields);
6580 TYPE_NAME (type) = ada_type_name (type0);
6581 TYPE_TAG_NAME (type) = NULL;
6582 TYPE_FLAGS (type) |= TYPE_FLAG_FIXED_INSTANCE;
6583 TYPE_LENGTH (type) = 0;
6584 }
6585 TYPE_FIELD_TYPE (type, f) = new_type;
6586 TYPE_FIELD_NAME (type, f) = TYPE_FIELD_NAME (type0, f);
14f9c5c9 6587 }
14f9c5c9
AS
6588 return type;
6589}
6590
4c4b4cd2
PH
6591/* Given an object of type TYPE whose contents are at VALADDR and
6592 whose address in memory is ADDRESS, returns a revision of TYPE --
6593 a non-dynamic-sized record with a variant part -- in which
6594 the variant part is replaced with the appropriate branch. Looks
6595 for discriminant values in DVAL0, which can be NULL if the record
6596 contains the necessary discriminant values. */
6597
d2e4a39e 6598static struct type *
fc1a4b47 6599to_record_with_fixed_variant_part (struct type *type, const gdb_byte *valaddr,
4c4b4cd2 6600 CORE_ADDR address, struct value *dval0)
14f9c5c9 6601{
d2e4a39e 6602 struct value *mark = value_mark ();
4c4b4cd2 6603 struct value *dval;
d2e4a39e 6604 struct type *rtype;
14f9c5c9
AS
6605 struct type *branch_type;
6606 int nfields = TYPE_NFIELDS (type);
4c4b4cd2 6607 int variant_field = variant_field_index (type);
14f9c5c9 6608
4c4b4cd2 6609 if (variant_field == -1)
14f9c5c9
AS
6610 return type;
6611
4c4b4cd2
PH
6612 if (dval0 == NULL)
6613 dval = value_from_contents_and_address (type, valaddr, address);
6614 else
6615 dval = dval0;
6616
14f9c5c9
AS
6617 rtype = alloc_type (TYPE_OBJFILE (type));
6618 TYPE_CODE (rtype) = TYPE_CODE_STRUCT;
4c4b4cd2
PH
6619 INIT_CPLUS_SPECIFIC (rtype);
6620 TYPE_NFIELDS (rtype) = nfields;
d2e4a39e
AS
6621 TYPE_FIELDS (rtype) =
6622 (struct field *) TYPE_ALLOC (rtype, nfields * sizeof (struct field));
6623 memcpy (TYPE_FIELDS (rtype), TYPE_FIELDS (type),
4c4b4cd2 6624 sizeof (struct field) * nfields);
14f9c5c9
AS
6625 TYPE_NAME (rtype) = ada_type_name (type);
6626 TYPE_TAG_NAME (rtype) = NULL;
4c4b4cd2 6627 TYPE_FLAGS (rtype) |= TYPE_FLAG_FIXED_INSTANCE;
14f9c5c9
AS
6628 TYPE_LENGTH (rtype) = TYPE_LENGTH (type);
6629
4c4b4cd2
PH
6630 branch_type = to_fixed_variant_branch_type
6631 (TYPE_FIELD_TYPE (type, variant_field),
d2e4a39e 6632 cond_offset_host (valaddr,
4c4b4cd2
PH
6633 TYPE_FIELD_BITPOS (type, variant_field)
6634 / TARGET_CHAR_BIT),
d2e4a39e 6635 cond_offset_target (address,
4c4b4cd2
PH
6636 TYPE_FIELD_BITPOS (type, variant_field)
6637 / TARGET_CHAR_BIT), dval);
d2e4a39e 6638 if (branch_type == NULL)
14f9c5c9 6639 {
4c4b4cd2
PH
6640 int f;
6641 for (f = variant_field + 1; f < nfields; f += 1)
6642 TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f];
14f9c5c9 6643 TYPE_NFIELDS (rtype) -= 1;
14f9c5c9
AS
6644 }
6645 else
6646 {
4c4b4cd2
PH
6647 TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
6648 TYPE_FIELD_NAME (rtype, variant_field) = "S";
6649 TYPE_FIELD_BITSIZE (rtype, variant_field) = 0;
14f9c5c9 6650 TYPE_LENGTH (rtype) += TYPE_LENGTH (branch_type);
14f9c5c9 6651 }
4c4b4cd2 6652 TYPE_LENGTH (rtype) -= TYPE_LENGTH (TYPE_FIELD_TYPE (type, variant_field));
d2e4a39e 6653
4c4b4cd2 6654 value_free_to_mark (mark);
14f9c5c9
AS
6655 return rtype;
6656}
6657
6658/* An ordinary record type (with fixed-length fields) that describes
6659 the value at (TYPE0, VALADDR, ADDRESS) [see explanation at
6660 beginning of this section]. Any necessary discriminants' values
4c4b4cd2
PH
6661 should be in DVAL, a record value; it may be NULL if the object
6662 at ADDR itself contains any necessary discriminant values.
6663 Additionally, VALADDR and ADDRESS may also be NULL if no discriminant
6664 values from the record are needed. Except in the case that DVAL,
6665 VALADDR, and ADDRESS are all 0 or NULL, a variant field (unless
6666 unchecked) is replaced by a particular branch of the variant.
6667
6668 NOTE: the case in which DVAL and VALADDR are NULL and ADDRESS is 0
6669 is questionable and may be removed. It can arise during the
6670 processing of an unconstrained-array-of-record type where all the
6671 variant branches have exactly the same size. This is because in
6672 such cases, the compiler does not bother to use the XVS convention
6673 when encoding the record. I am currently dubious of this
6674 shortcut and suspect the compiler should be altered. FIXME. */
14f9c5c9 6675
d2e4a39e 6676static struct type *
fc1a4b47 6677to_fixed_record_type (struct type *type0, const gdb_byte *valaddr,
4c4b4cd2 6678 CORE_ADDR address, struct value *dval)
14f9c5c9 6679{
d2e4a39e 6680 struct type *templ_type;
14f9c5c9 6681
4c4b4cd2
PH
6682 if (TYPE_FLAGS (type0) & TYPE_FLAG_FIXED_INSTANCE)
6683 return type0;
6684
d2e4a39e 6685 templ_type = dynamic_template_type (type0);
14f9c5c9
AS
6686
6687 if (templ_type != NULL)
6688 return template_to_fixed_record_type (templ_type, valaddr, address, dval);
4c4b4cd2
PH
6689 else if (variant_field_index (type0) >= 0)
6690 {
6691 if (dval == NULL && valaddr == NULL && address == 0)
6692 return type0;
6693 return to_record_with_fixed_variant_part (type0, valaddr, address,
6694 dval);
6695 }
14f9c5c9
AS
6696 else
6697 {
4c4b4cd2 6698 TYPE_FLAGS (type0) |= TYPE_FLAG_FIXED_INSTANCE;
14f9c5c9
AS
6699 return type0;
6700 }
6701
6702}
6703
6704/* An ordinary record type (with fixed-length fields) that describes
6705 the value at (VAR_TYPE0, VALADDR, ADDRESS), where VAR_TYPE0 is a
6706 union type. Any necessary discriminants' values should be in DVAL,
6707 a record value. That is, this routine selects the appropriate
6708 branch of the union at ADDR according to the discriminant value
4c4b4cd2 6709 indicated in the union's type name. */
14f9c5c9 6710
d2e4a39e 6711static struct type *
fc1a4b47 6712to_fixed_variant_branch_type (struct type *var_type0, const gdb_byte *valaddr,
4c4b4cd2 6713 CORE_ADDR address, struct value *dval)
14f9c5c9
AS
6714{
6715 int which;
d2e4a39e
AS
6716 struct type *templ_type;
6717 struct type *var_type;
14f9c5c9
AS
6718
6719 if (TYPE_CODE (var_type0) == TYPE_CODE_PTR)
6720 var_type = TYPE_TARGET_TYPE (var_type0);
d2e4a39e 6721 else
14f9c5c9
AS
6722 var_type = var_type0;
6723
6724 templ_type = ada_find_parallel_type (var_type, "___XVU");
6725
6726 if (templ_type != NULL)
6727 var_type = templ_type;
6728
d2e4a39e
AS
6729 which =
6730 ada_which_variant_applies (var_type,
0fd88904 6731 value_type (dval), value_contents (dval));
14f9c5c9
AS
6732
6733 if (which < 0)
6734 return empty_record (TYPE_OBJFILE (var_type));
6735 else if (is_dynamic_field (var_type, which))
4c4b4cd2 6736 return to_fixed_record_type
d2e4a39e
AS
6737 (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (var_type, which)),
6738 valaddr, address, dval);
4c4b4cd2 6739 else if (variant_field_index (TYPE_FIELD_TYPE (var_type, which)) >= 0)
d2e4a39e
AS
6740 return
6741 to_fixed_record_type
6742 (TYPE_FIELD_TYPE (var_type, which), valaddr, address, dval);
14f9c5c9
AS
6743 else
6744 return TYPE_FIELD_TYPE (var_type, which);
6745}
6746
6747/* Assuming that TYPE0 is an array type describing the type of a value
6748 at ADDR, and that DVAL describes a record containing any
6749 discriminants used in TYPE0, returns a type for the value that
6750 contains no dynamic components (that is, no components whose sizes
6751 are determined by run-time quantities). Unless IGNORE_TOO_BIG is
6752 true, gives an error message if the resulting type's size is over
4c4b4cd2 6753 varsize_limit. */
14f9c5c9 6754
d2e4a39e
AS
6755static struct type *
6756to_fixed_array_type (struct type *type0, struct value *dval,
4c4b4cd2 6757 int ignore_too_big)
14f9c5c9 6758{
d2e4a39e
AS
6759 struct type *index_type_desc;
6760 struct type *result;
14f9c5c9 6761
4c4b4cd2
PH
6762 if (ada_is_packed_array_type (type0) /* revisit? */
6763 || (TYPE_FLAGS (type0) & TYPE_FLAG_FIXED_INSTANCE))
6764 return type0;
14f9c5c9
AS
6765
6766 index_type_desc = ada_find_parallel_type (type0, "___XA");
6767 if (index_type_desc == NULL)
6768 {
61ee279c 6769 struct type *elt_type0 = ada_check_typedef (TYPE_TARGET_TYPE (type0));
14f9c5c9 6770 /* NOTE: elt_type---the fixed version of elt_type0---should never
4c4b4cd2
PH
6771 depend on the contents of the array in properly constructed
6772 debugging data. */
529cad9c
PH
6773 /* Create a fixed version of the array element type.
6774 We're not providing the address of an element here,
e1d5a0d2 6775 and thus the actual object value cannot be inspected to do
529cad9c
PH
6776 the conversion. This should not be a problem, since arrays of
6777 unconstrained objects are not allowed. In particular, all
6778 the elements of an array of a tagged type should all be of
6779 the same type specified in the debugging info. No need to
6780 consult the object tag. */
d2e4a39e 6781 struct type *elt_type = ada_to_fixed_type (elt_type0, 0, 0, dval);
14f9c5c9
AS
6782
6783 if (elt_type0 == elt_type)
4c4b4cd2 6784 result = type0;
14f9c5c9 6785 else
4c4b4cd2
PH
6786 result = create_array_type (alloc_type (TYPE_OBJFILE (type0)),
6787 elt_type, TYPE_INDEX_TYPE (type0));
14f9c5c9
AS
6788 }
6789 else
6790 {
6791 int i;
6792 struct type *elt_type0;
6793
6794 elt_type0 = type0;
6795 for (i = TYPE_NFIELDS (index_type_desc); i > 0; i -= 1)
4c4b4cd2 6796 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
14f9c5c9
AS
6797
6798 /* NOTE: result---the fixed version of elt_type0---should never
4c4b4cd2
PH
6799 depend on the contents of the array in properly constructed
6800 debugging data. */
529cad9c
PH
6801 /* Create a fixed version of the array element type.
6802 We're not providing the address of an element here,
e1d5a0d2 6803 and thus the actual object value cannot be inspected to do
529cad9c
PH
6804 the conversion. This should not be a problem, since arrays of
6805 unconstrained objects are not allowed. In particular, all
6806 the elements of an array of a tagged type should all be of
6807 the same type specified in the debugging info. No need to
6808 consult the object tag. */
61ee279c 6809 result = ada_to_fixed_type (ada_check_typedef (elt_type0), 0, 0, dval);
14f9c5c9 6810 for (i = TYPE_NFIELDS (index_type_desc) - 1; i >= 0; i -= 1)
4c4b4cd2
PH
6811 {
6812 struct type *range_type =
6813 to_fixed_range_type (TYPE_FIELD_NAME (index_type_desc, i),
6814 dval, TYPE_OBJFILE (type0));
6815 result = create_array_type (alloc_type (TYPE_OBJFILE (type0)),
6816 result, range_type);
6817 }
d2e4a39e 6818 if (!ignore_too_big && TYPE_LENGTH (result) > varsize_limit)
323e0a4a 6819 error (_("array type with dynamic size is larger than varsize-limit"));
14f9c5c9
AS
6820 }
6821
4c4b4cd2 6822 TYPE_FLAGS (result) |= TYPE_FLAG_FIXED_INSTANCE;
14f9c5c9 6823 return result;
d2e4a39e 6824}
14f9c5c9
AS
6825
6826
6827/* A standard type (containing no dynamically sized components)
6828 corresponding to TYPE for the value (TYPE, VALADDR, ADDRESS)
6829 DVAL describes a record containing any discriminants used in TYPE0,
4c4b4cd2 6830 and may be NULL if there are none, or if the object of type TYPE at
529cad9c
PH
6831 ADDRESS or in VALADDR contains these discriminants.
6832
6833 In the case of tagged types, this function attempts to locate the object's
6834 tag and use it to compute the actual type. However, when ADDRESS is null,
6835 we cannot use it to determine the location of the tag, and therefore
6836 compute the tagged type's actual type. So we return the tagged type
6837 without consulting the tag. */
6838
d2e4a39e 6839struct type *
fc1a4b47 6840ada_to_fixed_type (struct type *type, const gdb_byte *valaddr,
4c4b4cd2 6841 CORE_ADDR address, struct value *dval)
14f9c5c9 6842{
61ee279c 6843 type = ada_check_typedef (type);
d2e4a39e
AS
6844 switch (TYPE_CODE (type))
6845 {
6846 default:
14f9c5c9 6847 return type;
d2e4a39e 6848 case TYPE_CODE_STRUCT:
4c4b4cd2 6849 {
76a01679 6850 struct type *static_type = to_static_fixed_type (type);
529cad9c
PH
6851
6852 /* If STATIC_TYPE is a tagged type and we know the object's address,
6853 then we can determine its tag, and compute the object's actual
6854 type from there. */
6855
6856 if (address != 0 && ada_is_tagged_type (static_type, 0))
76a01679
JB
6857 {
6858 struct type *real_type =
6859 type_from_tag (value_tag_from_contents_and_address (static_type,
6860 valaddr,
6861 address));
6862 if (real_type != NULL)
6863 type = real_type;
6864 }
6865 return to_fixed_record_type (type, valaddr, address, NULL);
4c4b4cd2 6866 }
d2e4a39e 6867 case TYPE_CODE_ARRAY:
4c4b4cd2 6868 return to_fixed_array_type (type, dval, 1);
d2e4a39e
AS
6869 case TYPE_CODE_UNION:
6870 if (dval == NULL)
4c4b4cd2 6871 return type;
d2e4a39e 6872 else
4c4b4cd2 6873 return to_fixed_variant_branch_type (type, valaddr, address, dval);
d2e4a39e 6874 }
14f9c5c9
AS
6875}
6876
6877/* A standard (static-sized) type corresponding as well as possible to
4c4b4cd2 6878 TYPE0, but based on no runtime data. */
14f9c5c9 6879
d2e4a39e
AS
6880static struct type *
6881to_static_fixed_type (struct type *type0)
14f9c5c9 6882{
d2e4a39e 6883 struct type *type;
14f9c5c9
AS
6884
6885 if (type0 == NULL)
6886 return NULL;
6887
4c4b4cd2
PH
6888 if (TYPE_FLAGS (type0) & TYPE_FLAG_FIXED_INSTANCE)
6889 return type0;
6890
61ee279c 6891 type0 = ada_check_typedef (type0);
d2e4a39e 6892
14f9c5c9
AS
6893 switch (TYPE_CODE (type0))
6894 {
6895 default:
6896 return type0;
6897 case TYPE_CODE_STRUCT:
6898 type = dynamic_template_type (type0);
d2e4a39e 6899 if (type != NULL)
4c4b4cd2
PH
6900 return template_to_static_fixed_type (type);
6901 else
6902 return template_to_static_fixed_type (type0);
14f9c5c9
AS
6903 case TYPE_CODE_UNION:
6904 type = ada_find_parallel_type (type0, "___XVU");
6905 if (type != NULL)
4c4b4cd2
PH
6906 return template_to_static_fixed_type (type);
6907 else
6908 return template_to_static_fixed_type (type0);
14f9c5c9
AS
6909 }
6910}
6911
4c4b4cd2
PH
6912/* A static approximation of TYPE with all type wrappers removed. */
6913
d2e4a39e
AS
6914static struct type *
6915static_unwrap_type (struct type *type)
14f9c5c9
AS
6916{
6917 if (ada_is_aligner_type (type))
6918 {
61ee279c 6919 struct type *type1 = TYPE_FIELD_TYPE (ada_check_typedef (type), 0);
14f9c5c9 6920 if (ada_type_name (type1) == NULL)
4c4b4cd2 6921 TYPE_NAME (type1) = ada_type_name (type);
14f9c5c9
AS
6922
6923 return static_unwrap_type (type1);
6924 }
d2e4a39e 6925 else
14f9c5c9 6926 {
d2e4a39e
AS
6927 struct type *raw_real_type = ada_get_base_type (type);
6928 if (raw_real_type == type)
4c4b4cd2 6929 return type;
14f9c5c9 6930 else
4c4b4cd2 6931 return to_static_fixed_type (raw_real_type);
14f9c5c9
AS
6932 }
6933}
6934
6935/* In some cases, incomplete and private types require
4c4b4cd2 6936 cross-references that are not resolved as records (for example,
14f9c5c9
AS
6937 type Foo;
6938 type FooP is access Foo;
6939 V: FooP;
6940 type Foo is array ...;
4c4b4cd2 6941 ). In these cases, since there is no mechanism for producing
14f9c5c9
AS
6942 cross-references to such types, we instead substitute for FooP a
6943 stub enumeration type that is nowhere resolved, and whose tag is
4c4b4cd2 6944 the name of the actual type. Call these types "non-record stubs". */
14f9c5c9
AS
6945
6946/* A type equivalent to TYPE that is not a non-record stub, if one
4c4b4cd2
PH
6947 exists, otherwise TYPE. */
6948
d2e4a39e 6949struct type *
61ee279c 6950ada_check_typedef (struct type *type)
14f9c5c9
AS
6951{
6952 CHECK_TYPEDEF (type);
6953 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM
529cad9c 6954 || !TYPE_STUB (type)
14f9c5c9
AS
6955 || TYPE_TAG_NAME (type) == NULL)
6956 return type;
d2e4a39e 6957 else
14f9c5c9 6958 {
d2e4a39e
AS
6959 char *name = TYPE_TAG_NAME (type);
6960 struct type *type1 = ada_find_any_type (name);
14f9c5c9
AS
6961 return (type1 == NULL) ? type : type1;
6962 }
6963}
6964
6965/* A value representing the data at VALADDR/ADDRESS as described by
6966 type TYPE0, but with a standard (static-sized) type that correctly
6967 describes it. If VAL0 is not NULL and TYPE0 already is a standard
6968 type, then return VAL0 [this feature is simply to avoid redundant
4c4b4cd2 6969 creation of struct values]. */
14f9c5c9 6970
4c4b4cd2
PH
6971static struct value *
6972ada_to_fixed_value_create (struct type *type0, CORE_ADDR address,
6973 struct value *val0)
14f9c5c9 6974{
4c4b4cd2 6975 struct type *type = ada_to_fixed_type (type0, 0, address, NULL);
14f9c5c9
AS
6976 if (type == type0 && val0 != NULL)
6977 return val0;
d2e4a39e 6978 else
4c4b4cd2
PH
6979 return value_from_contents_and_address (type, 0, address);
6980}
6981
6982/* A value representing VAL, but with a standard (static-sized) type
6983 that correctly describes it. Does not necessarily create a new
6984 value. */
6985
6986static struct value *
6987ada_to_fixed_value (struct value *val)
6988{
df407dfe
AC
6989 return ada_to_fixed_value_create (value_type (val),
6990 VALUE_ADDRESS (val) + value_offset (val),
4c4b4cd2 6991 val);
14f9c5c9
AS
6992}
6993
4c4b4cd2 6994/* A value representing VAL, but with a standard (static-sized) type
14f9c5c9
AS
6995 chosen to approximate the real type of VAL as well as possible, but
6996 without consulting any runtime values. For Ada dynamic-sized
4c4b4cd2 6997 types, therefore, the type of the result is likely to be inaccurate. */
14f9c5c9 6998
d2e4a39e
AS
6999struct value *
7000ada_to_static_fixed_value (struct value *val)
14f9c5c9 7001{
d2e4a39e 7002 struct type *type =
df407dfe
AC
7003 to_static_fixed_type (static_unwrap_type (value_type (val)));
7004 if (type == value_type (val))
14f9c5c9
AS
7005 return val;
7006 else
4c4b4cd2 7007 return coerce_unspec_val_to_type (val, type);
14f9c5c9 7008}
d2e4a39e 7009\f
14f9c5c9 7010
14f9c5c9
AS
7011/* Attributes */
7012
4c4b4cd2
PH
7013/* Table mapping attribute numbers to names.
7014 NOTE: Keep up to date with enum ada_attribute definition in ada-lang.h. */
14f9c5c9 7015
d2e4a39e 7016static const char *attribute_names[] = {
14f9c5c9
AS
7017 "<?>",
7018
d2e4a39e 7019 "first",
14f9c5c9
AS
7020 "last",
7021 "length",
7022 "image",
14f9c5c9
AS
7023 "max",
7024 "min",
4c4b4cd2
PH
7025 "modulus",
7026 "pos",
7027 "size",
7028 "tag",
14f9c5c9 7029 "val",
14f9c5c9
AS
7030 0
7031};
7032
d2e4a39e 7033const char *
4c4b4cd2 7034ada_attribute_name (enum exp_opcode n)
14f9c5c9 7035{
4c4b4cd2
PH
7036 if (n >= OP_ATR_FIRST && n <= (int) OP_ATR_VAL)
7037 return attribute_names[n - OP_ATR_FIRST + 1];
14f9c5c9
AS
7038 else
7039 return attribute_names[0];
7040}
7041
4c4b4cd2 7042/* Evaluate the 'POS attribute applied to ARG. */
14f9c5c9 7043
4c4b4cd2
PH
7044static LONGEST
7045pos_atr (struct value *arg)
14f9c5c9 7046{
df407dfe 7047 struct type *type = value_type (arg);
14f9c5c9 7048
d2e4a39e 7049 if (!discrete_type_p (type))
323e0a4a 7050 error (_("'POS only defined on discrete types"));
14f9c5c9
AS
7051
7052 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
7053 {
7054 int i;
7055 LONGEST v = value_as_long (arg);
7056
d2e4a39e 7057 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
4c4b4cd2
PH
7058 {
7059 if (v == TYPE_FIELD_BITPOS (type, i))
7060 return i;
7061 }
323e0a4a 7062 error (_("enumeration value is invalid: can't find 'POS"));
14f9c5c9
AS
7063 }
7064 else
4c4b4cd2
PH
7065 return value_as_long (arg);
7066}
7067
7068static struct value *
7069value_pos_atr (struct value *arg)
7070{
72d5681a 7071 return value_from_longest (builtin_type_int, pos_atr (arg));
14f9c5c9
AS
7072}
7073
4c4b4cd2 7074/* Evaluate the TYPE'VAL attribute applied to ARG. */
14f9c5c9 7075
d2e4a39e
AS
7076static struct value *
7077value_val_atr (struct type *type, struct value *arg)
14f9c5c9 7078{
d2e4a39e 7079 if (!discrete_type_p (type))
323e0a4a 7080 error (_("'VAL only defined on discrete types"));
df407dfe 7081 if (!integer_type_p (value_type (arg)))
323e0a4a 7082 error (_("'VAL requires integral argument"));
14f9c5c9
AS
7083
7084 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
7085 {
7086 long pos = value_as_long (arg);
7087 if (pos < 0 || pos >= TYPE_NFIELDS (type))
323e0a4a 7088 error (_("argument to 'VAL out of range"));
d2e4a39e 7089 return value_from_longest (type, TYPE_FIELD_BITPOS (type, pos));
14f9c5c9
AS
7090 }
7091 else
7092 return value_from_longest (type, value_as_long (arg));
7093}
14f9c5c9 7094\f
d2e4a39e 7095
4c4b4cd2 7096 /* Evaluation */
14f9c5c9 7097
4c4b4cd2
PH
7098/* True if TYPE appears to be an Ada character type.
7099 [At the moment, this is true only for Character and Wide_Character;
7100 It is a heuristic test that could stand improvement]. */
14f9c5c9 7101
d2e4a39e
AS
7102int
7103ada_is_character_type (struct type *type)
14f9c5c9 7104{
d2e4a39e
AS
7105 const char *name = ada_type_name (type);
7106 return
14f9c5c9 7107 name != NULL
d2e4a39e 7108 && (TYPE_CODE (type) == TYPE_CODE_CHAR
4c4b4cd2
PH
7109 || TYPE_CODE (type) == TYPE_CODE_INT
7110 || TYPE_CODE (type) == TYPE_CODE_RANGE)
7111 && (strcmp (name, "character") == 0
7112 || strcmp (name, "wide_character") == 0
7113 || strcmp (name, "unsigned char") == 0);
14f9c5c9
AS
7114}
7115
4c4b4cd2 7116/* True if TYPE appears to be an Ada string type. */
14f9c5c9
AS
7117
7118int
ebf56fd3 7119ada_is_string_type (struct type *type)
14f9c5c9 7120{
61ee279c 7121 type = ada_check_typedef (type);
d2e4a39e 7122 if (type != NULL
14f9c5c9 7123 && TYPE_CODE (type) != TYPE_CODE_PTR
76a01679
JB
7124 && (ada_is_simple_array_type (type)
7125 || ada_is_array_descriptor_type (type))
14f9c5c9
AS
7126 && ada_array_arity (type) == 1)
7127 {
7128 struct type *elttype = ada_array_element_type (type, 1);
7129
7130 return ada_is_character_type (elttype);
7131 }
d2e4a39e 7132 else
14f9c5c9
AS
7133 return 0;
7134}
7135
7136
7137/* True if TYPE is a struct type introduced by the compiler to force the
7138 alignment of a value. Such types have a single field with a
4c4b4cd2 7139 distinctive name. */
14f9c5c9
AS
7140
7141int
ebf56fd3 7142ada_is_aligner_type (struct type *type)
14f9c5c9 7143{
61ee279c 7144 type = ada_check_typedef (type);
714e53ab
PH
7145
7146 /* If we can find a parallel XVS type, then the XVS type should
7147 be used instead of this type. And hence, this is not an aligner
7148 type. */
7149 if (ada_find_parallel_type (type, "___XVS") != NULL)
7150 return 0;
7151
14f9c5c9 7152 return (TYPE_CODE (type) == TYPE_CODE_STRUCT
4c4b4cd2
PH
7153 && TYPE_NFIELDS (type) == 1
7154 && strcmp (TYPE_FIELD_NAME (type, 0), "F") == 0);
14f9c5c9
AS
7155}
7156
7157/* If there is an ___XVS-convention type parallel to SUBTYPE, return
4c4b4cd2 7158 the parallel type. */
14f9c5c9 7159
d2e4a39e
AS
7160struct type *
7161ada_get_base_type (struct type *raw_type)
14f9c5c9 7162{
d2e4a39e
AS
7163 struct type *real_type_namer;
7164 struct type *raw_real_type;
14f9c5c9
AS
7165
7166 if (raw_type == NULL || TYPE_CODE (raw_type) != TYPE_CODE_STRUCT)
7167 return raw_type;
7168
7169 real_type_namer = ada_find_parallel_type (raw_type, "___XVS");
d2e4a39e 7170 if (real_type_namer == NULL
14f9c5c9
AS
7171 || TYPE_CODE (real_type_namer) != TYPE_CODE_STRUCT
7172 || TYPE_NFIELDS (real_type_namer) != 1)
7173 return raw_type;
7174
7175 raw_real_type = ada_find_any_type (TYPE_FIELD_NAME (real_type_namer, 0));
d2e4a39e 7176 if (raw_real_type == NULL)
14f9c5c9
AS
7177 return raw_type;
7178 else
7179 return raw_real_type;
d2e4a39e 7180}
14f9c5c9 7181
4c4b4cd2 7182/* The type of value designated by TYPE, with all aligners removed. */
14f9c5c9 7183
d2e4a39e
AS
7184struct type *
7185ada_aligned_type (struct type *type)
14f9c5c9
AS
7186{
7187 if (ada_is_aligner_type (type))
7188 return ada_aligned_type (TYPE_FIELD_TYPE (type, 0));
7189 else
7190 return ada_get_base_type (type);
7191}
7192
7193
7194/* The address of the aligned value in an object at address VALADDR
4c4b4cd2 7195 having type TYPE. Assumes ada_is_aligner_type (TYPE). */
14f9c5c9 7196
fc1a4b47
AC
7197const gdb_byte *
7198ada_aligned_value_addr (struct type *type, const gdb_byte *valaddr)
14f9c5c9 7199{
d2e4a39e 7200 if (ada_is_aligner_type (type))
14f9c5c9 7201 return ada_aligned_value_addr (TYPE_FIELD_TYPE (type, 0),
4c4b4cd2
PH
7202 valaddr +
7203 TYPE_FIELD_BITPOS (type,
7204 0) / TARGET_CHAR_BIT);
14f9c5c9
AS
7205 else
7206 return valaddr;
7207}
7208
4c4b4cd2
PH
7209
7210
14f9c5c9 7211/* The printed representation of an enumeration literal with encoded
4c4b4cd2 7212 name NAME. The value is good to the next call of ada_enum_name. */
d2e4a39e
AS
7213const char *
7214ada_enum_name (const char *name)
14f9c5c9 7215{
4c4b4cd2
PH
7216 static char *result;
7217 static size_t result_len = 0;
d2e4a39e 7218 char *tmp;
14f9c5c9 7219
4c4b4cd2
PH
7220 /* First, unqualify the enumeration name:
7221 1. Search for the last '.' character. If we find one, then skip
76a01679
JB
7222 all the preceeding characters, the unqualified name starts
7223 right after that dot.
4c4b4cd2 7224 2. Otherwise, we may be debugging on a target where the compiler
76a01679
JB
7225 translates dots into "__". Search forward for double underscores,
7226 but stop searching when we hit an overloading suffix, which is
7227 of the form "__" followed by digits. */
4c4b4cd2 7228
c3e5cd34
PH
7229 tmp = strrchr (name, '.');
7230 if (tmp != NULL)
4c4b4cd2
PH
7231 name = tmp + 1;
7232 else
14f9c5c9 7233 {
4c4b4cd2
PH
7234 while ((tmp = strstr (name, "__")) != NULL)
7235 {
7236 if (isdigit (tmp[2]))
7237 break;
7238 else
7239 name = tmp + 2;
7240 }
14f9c5c9
AS
7241 }
7242
7243 if (name[0] == 'Q')
7244 {
14f9c5c9
AS
7245 int v;
7246 if (name[1] == 'U' || name[1] == 'W')
4c4b4cd2
PH
7247 {
7248 if (sscanf (name + 2, "%x", &v) != 1)
7249 return name;
7250 }
14f9c5c9 7251 else
4c4b4cd2 7252 return name;
14f9c5c9 7253
4c4b4cd2 7254 GROW_VECT (result, result_len, 16);
14f9c5c9 7255 if (isascii (v) && isprint (v))
4c4b4cd2 7256 sprintf (result, "'%c'", v);
14f9c5c9 7257 else if (name[1] == 'U')
4c4b4cd2 7258 sprintf (result, "[\"%02x\"]", v);
14f9c5c9 7259 else
4c4b4cd2 7260 sprintf (result, "[\"%04x\"]", v);
14f9c5c9
AS
7261
7262 return result;
7263 }
d2e4a39e 7264 else
4c4b4cd2 7265 {
c3e5cd34
PH
7266 tmp = strstr (name, "__");
7267 if (tmp == NULL)
7268 tmp = strstr (name, "$");
7269 if (tmp != NULL)
4c4b4cd2
PH
7270 {
7271 GROW_VECT (result, result_len, tmp - name + 1);
7272 strncpy (result, name, tmp - name);
7273 result[tmp - name] = '\0';
7274 return result;
7275 }
7276
7277 return name;
7278 }
14f9c5c9
AS
7279}
7280
d2e4a39e 7281static struct value *
ebf56fd3 7282evaluate_subexp (struct type *expect_type, struct expression *exp, int *pos,
4c4b4cd2 7283 enum noside noside)
14f9c5c9 7284{
76a01679 7285 return (*exp->language_defn->la_exp_desc->evaluate_exp)
4c4b4cd2 7286 (expect_type, exp, pos, noside);
14f9c5c9
AS
7287}
7288
7289/* Evaluate the subexpression of EXP starting at *POS as for
7290 evaluate_type, updating *POS to point just past the evaluated
4c4b4cd2 7291 expression. */
14f9c5c9 7292
d2e4a39e
AS
7293static struct value *
7294evaluate_subexp_type (struct expression *exp, int *pos)
14f9c5c9 7295{
4c4b4cd2 7296 return (*exp->language_defn->la_exp_desc->evaluate_exp)
14f9c5c9
AS
7297 (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
7298}
7299
7300/* If VAL is wrapped in an aligner or subtype wrapper, return the
4c4b4cd2 7301 value it wraps. */
14f9c5c9 7302
d2e4a39e
AS
7303static struct value *
7304unwrap_value (struct value *val)
14f9c5c9 7305{
df407dfe 7306 struct type *type = ada_check_typedef (value_type (val));
14f9c5c9
AS
7307 if (ada_is_aligner_type (type))
7308 {
d2e4a39e 7309 struct value *v = value_struct_elt (&val, NULL, "F",
4c4b4cd2 7310 NULL, "internal structure");
df407dfe 7311 struct type *val_type = ada_check_typedef (value_type (v));
14f9c5c9 7312 if (ada_type_name (val_type) == NULL)
4c4b4cd2 7313 TYPE_NAME (val_type) = ada_type_name (type);
14f9c5c9
AS
7314
7315 return unwrap_value (v);
7316 }
d2e4a39e 7317 else
14f9c5c9 7318 {
d2e4a39e 7319 struct type *raw_real_type =
61ee279c 7320 ada_check_typedef (ada_get_base_type (type));
d2e4a39e 7321
14f9c5c9 7322 if (type == raw_real_type)
4c4b4cd2 7323 return val;
14f9c5c9 7324
d2e4a39e 7325 return
4c4b4cd2
PH
7326 coerce_unspec_val_to_type
7327 (val, ada_to_fixed_type (raw_real_type, 0,
df407dfe 7328 VALUE_ADDRESS (val) + value_offset (val),
4c4b4cd2 7329 NULL));
14f9c5c9
AS
7330 }
7331}
d2e4a39e
AS
7332
7333static struct value *
7334cast_to_fixed (struct type *type, struct value *arg)
14f9c5c9
AS
7335{
7336 LONGEST val;
7337
df407dfe 7338 if (type == value_type (arg))
14f9c5c9 7339 return arg;
df407dfe 7340 else if (ada_is_fixed_point_type (value_type (arg)))
d2e4a39e 7341 val = ada_float_to_fixed (type,
df407dfe 7342 ada_fixed_to_float (value_type (arg),
4c4b4cd2 7343 value_as_long (arg)));
d2e4a39e 7344 else
14f9c5c9 7345 {
d2e4a39e 7346 DOUBLEST argd =
4c4b4cd2 7347 value_as_double (value_cast (builtin_type_double, value_copy (arg)));
14f9c5c9
AS
7348 val = ada_float_to_fixed (type, argd);
7349 }
7350
7351 return value_from_longest (type, val);
7352}
7353
d2e4a39e
AS
7354static struct value *
7355cast_from_fixed_to_double (struct value *arg)
14f9c5c9 7356{
df407dfe 7357 DOUBLEST val = ada_fixed_to_float (value_type (arg),
4c4b4cd2 7358 value_as_long (arg));
14f9c5c9
AS
7359 return value_from_double (builtin_type_double, val);
7360}
7361
4c4b4cd2
PH
7362/* Coerce VAL as necessary for assignment to an lval of type TYPE, and
7363 return the converted value. */
7364
d2e4a39e
AS
7365static struct value *
7366coerce_for_assign (struct type *type, struct value *val)
14f9c5c9 7367{
df407dfe 7368 struct type *type2 = value_type (val);
14f9c5c9
AS
7369 if (type == type2)
7370 return val;
7371
61ee279c
PH
7372 type2 = ada_check_typedef (type2);
7373 type = ada_check_typedef (type);
14f9c5c9 7374
d2e4a39e
AS
7375 if (TYPE_CODE (type2) == TYPE_CODE_PTR
7376 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
14f9c5c9
AS
7377 {
7378 val = ada_value_ind (val);
df407dfe 7379 type2 = value_type (val);
14f9c5c9
AS
7380 }
7381
d2e4a39e 7382 if (TYPE_CODE (type2) == TYPE_CODE_ARRAY
14f9c5c9
AS
7383 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
7384 {
7385 if (TYPE_LENGTH (type2) != TYPE_LENGTH (type)
4c4b4cd2
PH
7386 || TYPE_LENGTH (TYPE_TARGET_TYPE (type2))
7387 != TYPE_LENGTH (TYPE_TARGET_TYPE (type2)))
323e0a4a 7388 error (_("Incompatible types in assignment"));
04624583 7389 deprecated_set_value_type (val, type);
14f9c5c9 7390 }
d2e4a39e 7391 return val;
14f9c5c9
AS
7392}
7393
4c4b4cd2
PH
7394static struct value *
7395ada_value_binop (struct value *arg1, struct value *arg2, enum exp_opcode op)
7396{
7397 struct value *val;
7398 struct type *type1, *type2;
7399 LONGEST v, v1, v2;
7400
994b9211
AC
7401 arg1 = coerce_ref (arg1);
7402 arg2 = coerce_ref (arg2);
df407dfe
AC
7403 type1 = base_type (ada_check_typedef (value_type (arg1)));
7404 type2 = base_type (ada_check_typedef (value_type (arg2)));
4c4b4cd2 7405
76a01679
JB
7406 if (TYPE_CODE (type1) != TYPE_CODE_INT
7407 || TYPE_CODE (type2) != TYPE_CODE_INT)
4c4b4cd2
PH
7408 return value_binop (arg1, arg2, op);
7409
76a01679 7410 switch (op)
4c4b4cd2
PH
7411 {
7412 case BINOP_MOD:
7413 case BINOP_DIV:
7414 case BINOP_REM:
7415 break;
7416 default:
7417 return value_binop (arg1, arg2, op);
7418 }
7419
7420 v2 = value_as_long (arg2);
7421 if (v2 == 0)
323e0a4a 7422 error (_("second operand of %s must not be zero."), op_string (op));
4c4b4cd2
PH
7423
7424 if (TYPE_UNSIGNED (type1) || op == BINOP_MOD)
7425 return value_binop (arg1, arg2, op);
7426
7427 v1 = value_as_long (arg1);
7428 switch (op)
7429 {
7430 case BINOP_DIV:
7431 v = v1 / v2;
76a01679
JB
7432 if (!TRUNCATION_TOWARDS_ZERO && v1 * (v1 % v2) < 0)
7433 v += v > 0 ? -1 : 1;
4c4b4cd2
PH
7434 break;
7435 case BINOP_REM:
7436 v = v1 % v2;
76a01679
JB
7437 if (v * v1 < 0)
7438 v -= v2;
4c4b4cd2
PH
7439 break;
7440 default:
7441 /* Should not reach this point. */
7442 v = 0;
7443 }
7444
7445 val = allocate_value (type1);
990a07ab 7446 store_unsigned_integer (value_contents_raw (val),
df407dfe 7447 TYPE_LENGTH (value_type (val)), v);
4c4b4cd2
PH
7448 return val;
7449}
7450
7451static int
7452ada_value_equal (struct value *arg1, struct value *arg2)
7453{
df407dfe
AC
7454 if (ada_is_direct_array_type (value_type (arg1))
7455 || ada_is_direct_array_type (value_type (arg2)))
4c4b4cd2
PH
7456 {
7457 arg1 = ada_coerce_to_simple_array (arg1);
7458 arg2 = ada_coerce_to_simple_array (arg2);
df407dfe
AC
7459 if (TYPE_CODE (value_type (arg1)) != TYPE_CODE_ARRAY
7460 || TYPE_CODE (value_type (arg2)) != TYPE_CODE_ARRAY)
323e0a4a 7461 error (_("Attempt to compare array with non-array"));
4c4b4cd2 7462 /* FIXME: The following works only for types whose
76a01679
JB
7463 representations use all bits (no padding or undefined bits)
7464 and do not have user-defined equality. */
7465 return
df407dfe 7466 TYPE_LENGTH (value_type (arg1)) == TYPE_LENGTH (value_type (arg2))
0fd88904 7467 && memcmp (value_contents (arg1), value_contents (arg2),
df407dfe 7468 TYPE_LENGTH (value_type (arg1))) == 0;
4c4b4cd2
PH
7469 }
7470 return value_equal (arg1, arg2);
7471}
7472
52ce6436
PH
7473/* Total number of component associations in the aggregate starting at
7474 index PC in EXP. Assumes that index PC is the start of an
7475 OP_AGGREGATE. */
7476
7477static int
7478num_component_specs (struct expression *exp, int pc)
7479{
7480 int n, m, i;
7481 m = exp->elts[pc + 1].longconst;
7482 pc += 3;
7483 n = 0;
7484 for (i = 0; i < m; i += 1)
7485 {
7486 switch (exp->elts[pc].opcode)
7487 {
7488 default:
7489 n += 1;
7490 break;
7491 case OP_CHOICES:
7492 n += exp->elts[pc + 1].longconst;
7493 break;
7494 }
7495 ada_evaluate_subexp (NULL, exp, &pc, EVAL_SKIP);
7496 }
7497 return n;
7498}
7499
7500/* Assign the result of evaluating EXP starting at *POS to the INDEXth
7501 component of LHS (a simple array or a record), updating *POS past
7502 the expression, assuming that LHS is contained in CONTAINER. Does
7503 not modify the inferior's memory, nor does it modify LHS (unless
7504 LHS == CONTAINER). */
7505
7506static void
7507assign_component (struct value *container, struct value *lhs, LONGEST index,
7508 struct expression *exp, int *pos)
7509{
7510 struct value *mark = value_mark ();
7511 struct value *elt;
7512 if (TYPE_CODE (value_type (lhs)) == TYPE_CODE_ARRAY)
7513 {
7514 struct value *index_val = value_from_longest (builtin_type_int, index);
7515 elt = unwrap_value (ada_value_subscript (lhs, 1, &index_val));
7516 }
7517 else
7518 {
7519 elt = ada_index_struct_field (index, lhs, 0, value_type (lhs));
7520 elt = ada_to_fixed_value (unwrap_value (elt));
7521 }
7522
7523 if (exp->elts[*pos].opcode == OP_AGGREGATE)
7524 assign_aggregate (container, elt, exp, pos, EVAL_NORMAL);
7525 else
7526 value_assign_to_component (container, elt,
7527 ada_evaluate_subexp (NULL, exp, pos,
7528 EVAL_NORMAL));
7529
7530 value_free_to_mark (mark);
7531}
7532
7533/* Assuming that LHS represents an lvalue having a record or array
7534 type, and EXP->ELTS[*POS] is an OP_AGGREGATE, evaluate an assignment
7535 of that aggregate's value to LHS, advancing *POS past the
7536 aggregate. NOSIDE is as for evaluate_subexp. CONTAINER is an
7537 lvalue containing LHS (possibly LHS itself). Does not modify
7538 the inferior's memory, nor does it modify the contents of
7539 LHS (unless == CONTAINER). Returns the modified CONTAINER. */
7540
7541static struct value *
7542assign_aggregate (struct value *container,
7543 struct value *lhs, struct expression *exp,
7544 int *pos, enum noside noside)
7545{
7546 struct type *lhs_type;
7547 int n = exp->elts[*pos+1].longconst;
7548 LONGEST low_index, high_index;
7549 int num_specs;
7550 LONGEST *indices;
7551 int max_indices, num_indices;
7552 int is_array_aggregate;
7553 int i;
7554 struct value *mark = value_mark ();
7555
7556 *pos += 3;
7557 if (noside != EVAL_NORMAL)
7558 {
7559 int i;
7560 for (i = 0; i < n; i += 1)
7561 ada_evaluate_subexp (NULL, exp, pos, noside);
7562 return container;
7563 }
7564
7565 container = ada_coerce_ref (container);
7566 if (ada_is_direct_array_type (value_type (container)))
7567 container = ada_coerce_to_simple_array (container);
7568 lhs = ada_coerce_ref (lhs);
7569 if (!deprecated_value_modifiable (lhs))
7570 error (_("Left operand of assignment is not a modifiable lvalue."));
7571
7572 lhs_type = value_type (lhs);
7573 if (ada_is_direct_array_type (lhs_type))
7574 {
7575 lhs = ada_coerce_to_simple_array (lhs);
7576 lhs_type = value_type (lhs);
7577 low_index = TYPE_ARRAY_LOWER_BOUND_VALUE (lhs_type);
7578 high_index = TYPE_ARRAY_UPPER_BOUND_VALUE (lhs_type);
7579 is_array_aggregate = 1;
7580 }
7581 else if (TYPE_CODE (lhs_type) == TYPE_CODE_STRUCT)
7582 {
7583 low_index = 0;
7584 high_index = num_visible_fields (lhs_type) - 1;
7585 is_array_aggregate = 0;
7586 }
7587 else
7588 error (_("Left-hand side must be array or record."));
7589
7590 num_specs = num_component_specs (exp, *pos - 3);
7591 max_indices = 4 * num_specs + 4;
7592 indices = alloca (max_indices * sizeof (indices[0]));
7593 indices[0] = indices[1] = low_index - 1;
7594 indices[2] = indices[3] = high_index + 1;
7595 num_indices = 4;
7596
7597 for (i = 0; i < n; i += 1)
7598 {
7599 switch (exp->elts[*pos].opcode)
7600 {
7601 case OP_CHOICES:
7602 aggregate_assign_from_choices (container, lhs, exp, pos, indices,
7603 &num_indices, max_indices,
7604 low_index, high_index);
7605 break;
7606 case OP_POSITIONAL:
7607 aggregate_assign_positional (container, lhs, exp, pos, indices,
7608 &num_indices, max_indices,
7609 low_index, high_index);
7610 break;
7611 case OP_OTHERS:
7612 if (i != n-1)
7613 error (_("Misplaced 'others' clause"));
7614 aggregate_assign_others (container, lhs, exp, pos, indices,
7615 num_indices, low_index, high_index);
7616 break;
7617 default:
7618 error (_("Internal error: bad aggregate clause"));
7619 }
7620 }
7621
7622 return container;
7623}
7624
7625/* Assign into the component of LHS indexed by the OP_POSITIONAL
7626 construct at *POS, updating *POS past the construct, given that
7627 the positions are relative to lower bound LOW, where HIGH is the
7628 upper bound. Record the position in INDICES[0 .. MAX_INDICES-1]
7629 updating *NUM_INDICES as needed. CONTAINER is as for
7630 assign_aggregate. */
7631static void
7632aggregate_assign_positional (struct value *container,
7633 struct value *lhs, struct expression *exp,
7634 int *pos, LONGEST *indices, int *num_indices,
7635 int max_indices, LONGEST low, LONGEST high)
7636{
7637 LONGEST ind = longest_to_int (exp->elts[*pos + 1].longconst) + low;
7638
7639 if (ind - 1 == high)
e1d5a0d2 7640 warning (_("Extra components in aggregate ignored."));
52ce6436
PH
7641 if (ind <= high)
7642 {
7643 add_component_interval (ind, ind, indices, num_indices, max_indices);
7644 *pos += 3;
7645 assign_component (container, lhs, ind, exp, pos);
7646 }
7647 else
7648 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
7649}
7650
7651/* Assign into the components of LHS indexed by the OP_CHOICES
7652 construct at *POS, updating *POS past the construct, given that
7653 the allowable indices are LOW..HIGH. Record the indices assigned
7654 to in INDICES[0 .. MAX_INDICES-1], updating *NUM_INDICES as
7655 needed. CONTAINER is as for assign_aggregate. */
7656static void
7657aggregate_assign_from_choices (struct value *container,
7658 struct value *lhs, struct expression *exp,
7659 int *pos, LONGEST *indices, int *num_indices,
7660 int max_indices, LONGEST low, LONGEST high)
7661{
7662 int j;
7663 int n_choices = longest_to_int (exp->elts[*pos+1].longconst);
7664 int choice_pos, expr_pc;
7665 int is_array = ada_is_direct_array_type (value_type (lhs));
7666
7667 choice_pos = *pos += 3;
7668
7669 for (j = 0; j < n_choices; j += 1)
7670 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
7671 expr_pc = *pos;
7672 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
7673
7674 for (j = 0; j < n_choices; j += 1)
7675 {
7676 LONGEST lower, upper;
7677 enum exp_opcode op = exp->elts[choice_pos].opcode;
7678 if (op == OP_DISCRETE_RANGE)
7679 {
7680 choice_pos += 1;
7681 lower = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
7682 EVAL_NORMAL));
7683 upper = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
7684 EVAL_NORMAL));
7685 }
7686 else if (is_array)
7687 {
7688 lower = value_as_long (ada_evaluate_subexp (NULL, exp, &choice_pos,
7689 EVAL_NORMAL));
7690 upper = lower;
7691 }
7692 else
7693 {
7694 int ind;
7695 char *name;
7696 switch (op)
7697 {
7698 case OP_NAME:
7699 name = &exp->elts[choice_pos + 2].string;
7700 break;
7701 case OP_VAR_VALUE:
7702 name = SYMBOL_NATURAL_NAME (exp->elts[choice_pos + 2].symbol);
7703 break;
7704 default:
7705 error (_("Invalid record component association."));
7706 }
7707 ada_evaluate_subexp (NULL, exp, &choice_pos, EVAL_SKIP);
7708 ind = 0;
7709 if (! find_struct_field (name, value_type (lhs), 0,
7710 NULL, NULL, NULL, NULL, &ind))
7711 error (_("Unknown component name: %s."), name);
7712 lower = upper = ind;
7713 }
7714
7715 if (lower <= upper && (lower < low || upper > high))
7716 error (_("Index in component association out of bounds."));
7717
7718 add_component_interval (lower, upper, indices, num_indices,
7719 max_indices);
7720 while (lower <= upper)
7721 {
7722 int pos1;
7723 pos1 = expr_pc;
7724 assign_component (container, lhs, lower, exp, &pos1);
7725 lower += 1;
7726 }
7727 }
7728}
7729
7730/* Assign the value of the expression in the OP_OTHERS construct in
7731 EXP at *POS into the components of LHS indexed from LOW .. HIGH that
7732 have not been previously assigned. The index intervals already assigned
7733 are in INDICES[0 .. NUM_INDICES-1]. Updates *POS to after the
7734 OP_OTHERS clause. CONTAINER is as for assign_aggregate*/
7735static void
7736aggregate_assign_others (struct value *container,
7737 struct value *lhs, struct expression *exp,
7738 int *pos, LONGEST *indices, int num_indices,
7739 LONGEST low, LONGEST high)
7740{
7741 int i;
7742 int expr_pc = *pos+1;
7743
7744 for (i = 0; i < num_indices - 2; i += 2)
7745 {
7746 LONGEST ind;
7747 for (ind = indices[i + 1] + 1; ind < indices[i + 2]; ind += 1)
7748 {
7749 int pos;
7750 pos = expr_pc;
7751 assign_component (container, lhs, ind, exp, &pos);
7752 }
7753 }
7754 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
7755}
7756
7757/* Add the interval [LOW .. HIGH] to the sorted set of intervals
7758 [ INDICES[0] .. INDICES[1] ],..., [ INDICES[*SIZE-2] .. INDICES[*SIZE-1] ],
7759 modifying *SIZE as needed. It is an error if *SIZE exceeds
7760 MAX_SIZE. The resulting intervals do not overlap. */
7761static void
7762add_component_interval (LONGEST low, LONGEST high,
7763 LONGEST* indices, int *size, int max_size)
7764{
7765 int i, j;
7766 for (i = 0; i < *size; i += 2) {
7767 if (high >= indices[i] && low <= indices[i + 1])
7768 {
7769 int kh;
7770 for (kh = i + 2; kh < *size; kh += 2)
7771 if (high < indices[kh])
7772 break;
7773 if (low < indices[i])
7774 indices[i] = low;
7775 indices[i + 1] = indices[kh - 1];
7776 if (high > indices[i + 1])
7777 indices[i + 1] = high;
7778 memcpy (indices + i + 2, indices + kh, *size - kh);
7779 *size -= kh - i - 2;
7780 return;
7781 }
7782 else if (high < indices[i])
7783 break;
7784 }
7785
7786 if (*size == max_size)
7787 error (_("Internal error: miscounted aggregate components."));
7788 *size += 2;
7789 for (j = *size-1; j >= i+2; j -= 1)
7790 indices[j] = indices[j - 2];
7791 indices[i] = low;
7792 indices[i + 1] = high;
7793}
7794
7795static struct value *
ebf56fd3 7796ada_evaluate_subexp (struct type *expect_type, struct expression *exp,
4c4b4cd2 7797 int *pos, enum noside noside)
14f9c5c9
AS
7798{
7799 enum exp_opcode op;
14f9c5c9
AS
7800 int tem, tem2, tem3;
7801 int pc;
7802 struct value *arg1 = NULL, *arg2 = NULL, *arg3;
7803 struct type *type;
52ce6436 7804 int nargs, oplen;
d2e4a39e 7805 struct value **argvec;
14f9c5c9 7806
d2e4a39e
AS
7807 pc = *pos;
7808 *pos += 1;
14f9c5c9
AS
7809 op = exp->elts[pc].opcode;
7810
d2e4a39e 7811 switch (op)
14f9c5c9
AS
7812 {
7813 default:
7814 *pos -= 1;
d2e4a39e 7815 return
4c4b4cd2
PH
7816 unwrap_value (evaluate_subexp_standard
7817 (expect_type, exp, pos, noside));
7818
7819 case OP_STRING:
7820 {
76a01679
JB
7821 struct value *result;
7822 *pos -= 1;
7823 result = evaluate_subexp_standard (expect_type, exp, pos, noside);
7824 /* The result type will have code OP_STRING, bashed there from
7825 OP_ARRAY. Bash it back. */
df407dfe
AC
7826 if (TYPE_CODE (value_type (result)) == TYPE_CODE_STRING)
7827 TYPE_CODE (value_type (result)) = TYPE_CODE_ARRAY;
76a01679 7828 return result;
4c4b4cd2 7829 }
14f9c5c9
AS
7830
7831 case UNOP_CAST:
7832 (*pos) += 2;
7833 type = exp->elts[pc + 1].type;
7834 arg1 = evaluate_subexp (type, exp, pos, noside);
7835 if (noside == EVAL_SKIP)
4c4b4cd2 7836 goto nosideret;
df407dfe 7837 if (type != ada_check_typedef (value_type (arg1)))
4c4b4cd2
PH
7838 {
7839 if (ada_is_fixed_point_type (type))
7840 arg1 = cast_to_fixed (type, arg1);
df407dfe 7841 else if (ada_is_fixed_point_type (value_type (arg1)))
4c4b4cd2
PH
7842 arg1 = value_cast (type, cast_from_fixed_to_double (arg1));
7843 else if (VALUE_LVAL (arg1) == lval_memory)
7844 {
7845 /* This is in case of the really obscure (and undocumented,
7846 but apparently expected) case of (Foo) Bar.all, where Bar
7847 is an integer constant and Foo is a dynamic-sized type.
7848 If we don't do this, ARG1 will simply be relabeled with
7849 TYPE. */
7850 if (noside == EVAL_AVOID_SIDE_EFFECTS)
7851 return value_zero (to_static_fixed_type (type), not_lval);
7852 arg1 =
7853 ada_to_fixed_value_create
df407dfe 7854 (type, VALUE_ADDRESS (arg1) + value_offset (arg1), 0);
4c4b4cd2
PH
7855 }
7856 else
7857 arg1 = value_cast (type, arg1);
7858 }
14f9c5c9
AS
7859 return arg1;
7860
4c4b4cd2
PH
7861 case UNOP_QUAL:
7862 (*pos) += 2;
7863 type = exp->elts[pc + 1].type;
7864 return ada_evaluate_subexp (type, exp, pos, noside);
7865
14f9c5c9
AS
7866 case BINOP_ASSIGN:
7867 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
52ce6436
PH
7868 if (exp->elts[*pos].opcode == OP_AGGREGATE)
7869 {
7870 arg1 = assign_aggregate (arg1, arg1, exp, pos, noside);
7871 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
7872 return arg1;
7873 return ada_value_assign (arg1, arg1);
7874 }
df407dfe 7875 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
14f9c5c9 7876 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
4c4b4cd2 7877 return arg1;
df407dfe
AC
7878 if (ada_is_fixed_point_type (value_type (arg1)))
7879 arg2 = cast_to_fixed (value_type (arg1), arg2);
7880 else if (ada_is_fixed_point_type (value_type (arg2)))
76a01679 7881 error
323e0a4a 7882 (_("Fixed-point values must be assigned to fixed-point variables"));
d2e4a39e 7883 else
df407dfe 7884 arg2 = coerce_for_assign (value_type (arg1), arg2);
4c4b4cd2 7885 return ada_value_assign (arg1, arg2);
14f9c5c9
AS
7886
7887 case BINOP_ADD:
7888 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
7889 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
7890 if (noside == EVAL_SKIP)
4c4b4cd2 7891 goto nosideret;
df407dfe
AC
7892 if ((ada_is_fixed_point_type (value_type (arg1))
7893 || ada_is_fixed_point_type (value_type (arg2)))
7894 && value_type (arg1) != value_type (arg2))
323e0a4a 7895 error (_("Operands of fixed-point addition must have the same type"));
df407dfe 7896 return value_cast (value_type (arg1), value_add (arg1, arg2));
14f9c5c9
AS
7897
7898 case BINOP_SUB:
7899 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
7900 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
7901 if (noside == EVAL_SKIP)
4c4b4cd2 7902 goto nosideret;
df407dfe
AC
7903 if ((ada_is_fixed_point_type (value_type (arg1))
7904 || ada_is_fixed_point_type (value_type (arg2)))
7905 && value_type (arg1) != value_type (arg2))
323e0a4a 7906 error (_("Operands of fixed-point subtraction must have the same type"));
df407dfe 7907 return value_cast (value_type (arg1), value_sub (arg1, arg2));
14f9c5c9
AS
7908
7909 case BINOP_MUL:
7910 case BINOP_DIV:
7911 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
7912 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
7913 if (noside == EVAL_SKIP)
4c4b4cd2
PH
7914 goto nosideret;
7915 else if (noside == EVAL_AVOID_SIDE_EFFECTS
76a01679 7916 && (op == BINOP_DIV || op == BINOP_REM || op == BINOP_MOD))
df407dfe 7917 return value_zero (value_type (arg1), not_lval);
14f9c5c9 7918 else
4c4b4cd2 7919 {
df407dfe 7920 if (ada_is_fixed_point_type (value_type (arg1)))
4c4b4cd2 7921 arg1 = cast_from_fixed_to_double (arg1);
df407dfe 7922 if (ada_is_fixed_point_type (value_type (arg2)))
4c4b4cd2
PH
7923 arg2 = cast_from_fixed_to_double (arg2);
7924 return ada_value_binop (arg1, arg2, op);
7925 }
7926
7927 case BINOP_REM:
7928 case BINOP_MOD:
7929 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
7930 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
7931 if (noside == EVAL_SKIP)
76a01679 7932 goto nosideret;
4c4b4cd2 7933 else if (noside == EVAL_AVOID_SIDE_EFFECTS
76a01679 7934 && (op == BINOP_DIV || op == BINOP_REM || op == BINOP_MOD))
df407dfe 7935 return value_zero (value_type (arg1), not_lval);
14f9c5c9 7936 else
76a01679 7937 return ada_value_binop (arg1, arg2, op);
14f9c5c9 7938
4c4b4cd2
PH
7939 case BINOP_EQUAL:
7940 case BINOP_NOTEQUAL:
14f9c5c9 7941 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
df407dfe 7942 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
14f9c5c9 7943 if (noside == EVAL_SKIP)
76a01679 7944 goto nosideret;
4c4b4cd2 7945 if (noside == EVAL_AVOID_SIDE_EFFECTS)
76a01679 7946 tem = 0;
4c4b4cd2 7947 else
76a01679 7948 tem = ada_value_equal (arg1, arg2);
4c4b4cd2 7949 if (op == BINOP_NOTEQUAL)
76a01679 7950 tem = !tem;
4c4b4cd2
PH
7951 return value_from_longest (LA_BOOL_TYPE, (LONGEST) tem);
7952
7953 case UNOP_NEG:
7954 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
7955 if (noside == EVAL_SKIP)
7956 goto nosideret;
df407dfe
AC
7957 else if (ada_is_fixed_point_type (value_type (arg1)))
7958 return value_cast (value_type (arg1), value_neg (arg1));
14f9c5c9 7959 else
4c4b4cd2
PH
7960 return value_neg (arg1);
7961
14f9c5c9
AS
7962 case OP_VAR_VALUE:
7963 *pos -= 1;
7964 if (noside == EVAL_SKIP)
4c4b4cd2
PH
7965 {
7966 *pos += 4;
7967 goto nosideret;
7968 }
7969 else if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
76a01679
JB
7970 /* Only encountered when an unresolved symbol occurs in a
7971 context other than a function call, in which case, it is
52ce6436 7972 invalid. */
323e0a4a 7973 error (_("Unexpected unresolved symbol, %s, during evaluation"),
4c4b4cd2 7974 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
14f9c5c9 7975 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
4c4b4cd2
PH
7976 {
7977 *pos += 4;
7978 return value_zero
7979 (to_static_fixed_type
7980 (static_unwrap_type (SYMBOL_TYPE (exp->elts[pc + 2].symbol))),
7981 not_lval);
7982 }
d2e4a39e 7983 else
4c4b4cd2
PH
7984 {
7985 arg1 =
7986 unwrap_value (evaluate_subexp_standard
7987 (expect_type, exp, pos, noside));
7988 return ada_to_fixed_value (arg1);
7989 }
7990
7991 case OP_FUNCALL:
7992 (*pos) += 2;
7993
7994 /* Allocate arg vector, including space for the function to be
7995 called in argvec[0] and a terminating NULL. */
7996 nargs = longest_to_int (exp->elts[pc + 1].longconst);
7997 argvec =
7998 (struct value **) alloca (sizeof (struct value *) * (nargs + 2));
7999
8000 if (exp->elts[*pos].opcode == OP_VAR_VALUE
76a01679 8001 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
323e0a4a 8002 error (_("Unexpected unresolved symbol, %s, during evaluation"),
4c4b4cd2
PH
8003 SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol));
8004 else
8005 {
8006 for (tem = 0; tem <= nargs; tem += 1)
8007 argvec[tem] = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8008 argvec[tem] = 0;
8009
8010 if (noside == EVAL_SKIP)
8011 goto nosideret;
8012 }
8013
df407dfe 8014 if (ada_is_packed_array_type (desc_base_type (value_type (argvec[0]))))
4c4b4cd2 8015 argvec[0] = ada_coerce_to_simple_array (argvec[0]);
df407dfe
AC
8016 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_REF
8017 || (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_ARRAY
76a01679 8018 && VALUE_LVAL (argvec[0]) == lval_memory))
4c4b4cd2
PH
8019 argvec[0] = value_addr (argvec[0]);
8020
df407dfe 8021 type = ada_check_typedef (value_type (argvec[0]));
4c4b4cd2
PH
8022 if (TYPE_CODE (type) == TYPE_CODE_PTR)
8023 {
61ee279c 8024 switch (TYPE_CODE (ada_check_typedef (TYPE_TARGET_TYPE (type))))
4c4b4cd2
PH
8025 {
8026 case TYPE_CODE_FUNC:
61ee279c 8027 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
4c4b4cd2
PH
8028 break;
8029 case TYPE_CODE_ARRAY:
8030 break;
8031 case TYPE_CODE_STRUCT:
8032 if (noside != EVAL_AVOID_SIDE_EFFECTS)
8033 argvec[0] = ada_value_ind (argvec[0]);
61ee279c 8034 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
4c4b4cd2
PH
8035 break;
8036 default:
323e0a4a 8037 error (_("cannot subscript or call something of type `%s'"),
df407dfe 8038 ada_type_name (value_type (argvec[0])));
4c4b4cd2
PH
8039 break;
8040 }
8041 }
8042
8043 switch (TYPE_CODE (type))
8044 {
8045 case TYPE_CODE_FUNC:
8046 if (noside == EVAL_AVOID_SIDE_EFFECTS)
8047 return allocate_value (TYPE_TARGET_TYPE (type));
8048 return call_function_by_hand (argvec[0], nargs, argvec + 1);
8049 case TYPE_CODE_STRUCT:
8050 {
8051 int arity;
8052
4c4b4cd2
PH
8053 arity = ada_array_arity (type);
8054 type = ada_array_element_type (type, nargs);
8055 if (type == NULL)
323e0a4a 8056 error (_("cannot subscript or call a record"));
4c4b4cd2 8057 if (arity != nargs)
323e0a4a 8058 error (_("wrong number of subscripts; expecting %d"), arity);
4c4b4cd2
PH
8059 if (noside == EVAL_AVOID_SIDE_EFFECTS)
8060 return allocate_value (ada_aligned_type (type));
8061 return
8062 unwrap_value (ada_value_subscript
8063 (argvec[0], nargs, argvec + 1));
8064 }
8065 case TYPE_CODE_ARRAY:
8066 if (noside == EVAL_AVOID_SIDE_EFFECTS)
8067 {
8068 type = ada_array_element_type (type, nargs);
8069 if (type == NULL)
323e0a4a 8070 error (_("element type of array unknown"));
4c4b4cd2
PH
8071 else
8072 return allocate_value (ada_aligned_type (type));
8073 }
8074 return
8075 unwrap_value (ada_value_subscript
8076 (ada_coerce_to_simple_array (argvec[0]),
8077 nargs, argvec + 1));
8078 case TYPE_CODE_PTR: /* Pointer to array */
8079 type = to_fixed_array_type (TYPE_TARGET_TYPE (type), NULL, 1);
8080 if (noside == EVAL_AVOID_SIDE_EFFECTS)
8081 {
8082 type = ada_array_element_type (type, nargs);
8083 if (type == NULL)
323e0a4a 8084 error (_("element type of array unknown"));
4c4b4cd2
PH
8085 else
8086 return allocate_value (ada_aligned_type (type));
8087 }
8088 return
8089 unwrap_value (ada_value_ptr_subscript (argvec[0], type,
8090 nargs, argvec + 1));
8091
8092 default:
e1d5a0d2
PH
8093 error (_("Attempt to index or call something other than an "
8094 "array or function"));
4c4b4cd2
PH
8095 }
8096
8097 case TERNOP_SLICE:
8098 {
8099 struct value *array = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8100 struct value *low_bound_val =
8101 evaluate_subexp (NULL_TYPE, exp, pos, noside);
714e53ab
PH
8102 struct value *high_bound_val =
8103 evaluate_subexp (NULL_TYPE, exp, pos, noside);
8104 LONGEST low_bound;
8105 LONGEST high_bound;
994b9211
AC
8106 low_bound_val = coerce_ref (low_bound_val);
8107 high_bound_val = coerce_ref (high_bound_val);
714e53ab
PH
8108 low_bound = pos_atr (low_bound_val);
8109 high_bound = pos_atr (high_bound_val);
963a6417 8110
4c4b4cd2
PH
8111 if (noside == EVAL_SKIP)
8112 goto nosideret;
8113
4c4b4cd2
PH
8114 /* If this is a reference to an aligner type, then remove all
8115 the aligners. */
df407dfe
AC
8116 if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF
8117 && ada_is_aligner_type (TYPE_TARGET_TYPE (value_type (array))))
8118 TYPE_TARGET_TYPE (value_type (array)) =
8119 ada_aligned_type (TYPE_TARGET_TYPE (value_type (array)));
4c4b4cd2 8120
df407dfe 8121 if (ada_is_packed_array_type (value_type (array)))
323e0a4a 8122 error (_("cannot slice a packed array"));
4c4b4cd2
PH
8123
8124 /* If this is a reference to an array or an array lvalue,
8125 convert to a pointer. */
df407dfe
AC
8126 if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF
8127 || (TYPE_CODE (value_type (array)) == TYPE_CODE_ARRAY
4c4b4cd2
PH
8128 && VALUE_LVAL (array) == lval_memory))
8129 array = value_addr (array);
8130
1265e4aa 8131 if (noside == EVAL_AVOID_SIDE_EFFECTS
61ee279c 8132 && ada_is_array_descriptor_type (ada_check_typedef
df407dfe 8133 (value_type (array))))
0b5d8877 8134 return empty_array (ada_type_of_array (array, 0), low_bound);
4c4b4cd2
PH
8135
8136 array = ada_coerce_to_simple_array_ptr (array);
8137
714e53ab
PH
8138 /* If we have more than one level of pointer indirection,
8139 dereference the value until we get only one level. */
df407dfe
AC
8140 while (TYPE_CODE (value_type (array)) == TYPE_CODE_PTR
8141 && (TYPE_CODE (TYPE_TARGET_TYPE (value_type (array)))
714e53ab
PH
8142 == TYPE_CODE_PTR))
8143 array = value_ind (array);
8144
8145 /* Make sure we really do have an array type before going further,
8146 to avoid a SEGV when trying to get the index type or the target
8147 type later down the road if the debug info generated by
8148 the compiler is incorrect or incomplete. */
df407dfe 8149 if (!ada_is_simple_array_type (value_type (array)))
323e0a4a 8150 error (_("cannot take slice of non-array"));
714e53ab 8151
df407dfe 8152 if (TYPE_CODE (value_type (array)) == TYPE_CODE_PTR)
4c4b4cd2 8153 {
0b5d8877 8154 if (high_bound < low_bound || noside == EVAL_AVOID_SIDE_EFFECTS)
df407dfe 8155 return empty_array (TYPE_TARGET_TYPE (value_type (array)),
4c4b4cd2
PH
8156 low_bound);
8157 else
8158 {
8159 struct type *arr_type0 =
df407dfe 8160 to_fixed_array_type (TYPE_TARGET_TYPE (value_type (array)),
4c4b4cd2 8161 NULL, 1);
0b5d8877 8162 return ada_value_slice_ptr (array, arr_type0,
529cad9c
PH
8163 longest_to_int (low_bound),
8164 longest_to_int (high_bound));
4c4b4cd2
PH
8165 }
8166 }
8167 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
8168 return array;
8169 else if (high_bound < low_bound)
df407dfe 8170 return empty_array (value_type (array), low_bound);
4c4b4cd2 8171 else
529cad9c
PH
8172 return ada_value_slice (array, longest_to_int (low_bound),
8173 longest_to_int (high_bound));
4c4b4cd2 8174 }
14f9c5c9 8175
4c4b4cd2
PH
8176 case UNOP_IN_RANGE:
8177 (*pos) += 2;
8178 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8179 type = exp->elts[pc + 1].type;
14f9c5c9 8180
14f9c5c9 8181 if (noside == EVAL_SKIP)
4c4b4cd2 8182 goto nosideret;
14f9c5c9 8183
4c4b4cd2
PH
8184 switch (TYPE_CODE (type))
8185 {
8186 default:
e1d5a0d2
PH
8187 lim_warning (_("Membership test incompletely implemented; "
8188 "always returns true"));
4c4b4cd2
PH
8189 return value_from_longest (builtin_type_int, (LONGEST) 1);
8190
8191 case TYPE_CODE_RANGE:
76a01679 8192 arg2 = value_from_longest (builtin_type_int, TYPE_LOW_BOUND (type));
4c4b4cd2
PH
8193 arg3 = value_from_longest (builtin_type_int,
8194 TYPE_HIGH_BOUND (type));
8195 return
8196 value_from_longest (builtin_type_int,
8197 (value_less (arg1, arg3)
8198 || value_equal (arg1, arg3))
8199 && (value_less (arg2, arg1)
8200 || value_equal (arg2, arg1)));
8201 }
8202
8203 case BINOP_IN_BOUNDS:
14f9c5c9 8204 (*pos) += 2;
4c4b4cd2
PH
8205 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8206 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
14f9c5c9 8207
4c4b4cd2
PH
8208 if (noside == EVAL_SKIP)
8209 goto nosideret;
14f9c5c9 8210
4c4b4cd2
PH
8211 if (noside == EVAL_AVOID_SIDE_EFFECTS)
8212 return value_zero (builtin_type_int, not_lval);
14f9c5c9 8213
4c4b4cd2 8214 tem = longest_to_int (exp->elts[pc + 1].longconst);
14f9c5c9 8215
df407dfe 8216 if (tem < 1 || tem > ada_array_arity (value_type (arg2)))
323e0a4a 8217 error (_("invalid dimension number to 'range"));
14f9c5c9 8218
4c4b4cd2
PH
8219 arg3 = ada_array_bound (arg2, tem, 1);
8220 arg2 = ada_array_bound (arg2, tem, 0);
d2e4a39e 8221
4c4b4cd2
PH
8222 return
8223 value_from_longest (builtin_type_int,
8224 (value_less (arg1, arg3)
8225 || value_equal (arg1, arg3))
8226 && (value_less (arg2, arg1)
8227 || value_equal (arg2, arg1)));
8228
8229 case TERNOP_IN_RANGE:
8230 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8231 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8232 arg3 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8233
8234 if (noside == EVAL_SKIP)
8235 goto nosideret;
8236
8237 return
8238 value_from_longest (builtin_type_int,
8239 (value_less (arg1, arg3)
8240 || value_equal (arg1, arg3))
8241 && (value_less (arg2, arg1)
8242 || value_equal (arg2, arg1)));
8243
8244 case OP_ATR_FIRST:
8245 case OP_ATR_LAST:
8246 case OP_ATR_LENGTH:
8247 {
76a01679
JB
8248 struct type *type_arg;
8249 if (exp->elts[*pos].opcode == OP_TYPE)
8250 {
8251 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
8252 arg1 = NULL;
8253 type_arg = exp->elts[pc + 2].type;
8254 }
8255 else
8256 {
8257 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8258 type_arg = NULL;
8259 }
8260
8261 if (exp->elts[*pos].opcode != OP_LONG)
323e0a4a 8262 error (_("Invalid operand to '%s"), ada_attribute_name (op));
76a01679
JB
8263 tem = longest_to_int (exp->elts[*pos + 2].longconst);
8264 *pos += 4;
8265
8266 if (noside == EVAL_SKIP)
8267 goto nosideret;
8268
8269 if (type_arg == NULL)
8270 {
8271 arg1 = ada_coerce_ref (arg1);
8272
df407dfe 8273 if (ada_is_packed_array_type (value_type (arg1)))
76a01679
JB
8274 arg1 = ada_coerce_to_simple_array (arg1);
8275
df407dfe 8276 if (tem < 1 || tem > ada_array_arity (value_type (arg1)))
323e0a4a 8277 error (_("invalid dimension number to '%s"),
76a01679
JB
8278 ada_attribute_name (op));
8279
8280 if (noside == EVAL_AVOID_SIDE_EFFECTS)
8281 {
df407dfe 8282 type = ada_index_type (value_type (arg1), tem);
76a01679
JB
8283 if (type == NULL)
8284 error
323e0a4a 8285 (_("attempt to take bound of something that is not an array"));
76a01679
JB
8286 return allocate_value (type);
8287 }
8288
8289 switch (op)
8290 {
8291 default: /* Should never happen. */
323e0a4a 8292 error (_("unexpected attribute encountered"));
76a01679
JB
8293 case OP_ATR_FIRST:
8294 return ada_array_bound (arg1, tem, 0);
8295 case OP_ATR_LAST:
8296 return ada_array_bound (arg1, tem, 1);
8297 case OP_ATR_LENGTH:
8298 return ada_array_length (arg1, tem);
8299 }
8300 }
8301 else if (discrete_type_p (type_arg))
8302 {
8303 struct type *range_type;
8304 char *name = ada_type_name (type_arg);
8305 range_type = NULL;
8306 if (name != NULL && TYPE_CODE (type_arg) != TYPE_CODE_ENUM)
8307 range_type =
8308 to_fixed_range_type (name, NULL, TYPE_OBJFILE (type_arg));
8309 if (range_type == NULL)
8310 range_type = type_arg;
8311 switch (op)
8312 {
8313 default:
323e0a4a 8314 error (_("unexpected attribute encountered"));
76a01679
JB
8315 case OP_ATR_FIRST:
8316 return discrete_type_low_bound (range_type);
8317 case OP_ATR_LAST:
8318 return discrete_type_high_bound (range_type);
8319 case OP_ATR_LENGTH:
323e0a4a 8320 error (_("the 'length attribute applies only to array types"));
76a01679
JB
8321 }
8322 }
8323 else if (TYPE_CODE (type_arg) == TYPE_CODE_FLT)
323e0a4a 8324 error (_("unimplemented type attribute"));
76a01679
JB
8325 else
8326 {
8327 LONGEST low, high;
8328
8329 if (ada_is_packed_array_type (type_arg))
8330 type_arg = decode_packed_array_type (type_arg);
8331
8332 if (tem < 1 || tem > ada_array_arity (type_arg))
323e0a4a 8333 error (_("invalid dimension number to '%s"),
76a01679
JB
8334 ada_attribute_name (op));
8335
8336 type = ada_index_type (type_arg, tem);
8337 if (type == NULL)
8338 error
323e0a4a 8339 (_("attempt to take bound of something that is not an array"));
76a01679
JB
8340 if (noside == EVAL_AVOID_SIDE_EFFECTS)
8341 return allocate_value (type);
8342
8343 switch (op)
8344 {
8345 default:
323e0a4a 8346 error (_("unexpected attribute encountered"));
76a01679
JB
8347 case OP_ATR_FIRST:
8348 low = ada_array_bound_from_type (type_arg, tem, 0, &type);
8349 return value_from_longest (type, low);
8350 case OP_ATR_LAST:
8351 high = ada_array_bound_from_type (type_arg, tem, 1, &type);
8352 return value_from_longest (type, high);
8353 case OP_ATR_LENGTH:
8354 low = ada_array_bound_from_type (type_arg, tem, 0, &type);
8355 high = ada_array_bound_from_type (type_arg, tem, 1, NULL);
8356 return value_from_longest (type, high - low + 1);
8357 }
8358 }
14f9c5c9
AS
8359 }
8360
4c4b4cd2
PH
8361 case OP_ATR_TAG:
8362 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8363 if (noside == EVAL_SKIP)
76a01679 8364 goto nosideret;
4c4b4cd2
PH
8365
8366 if (noside == EVAL_AVOID_SIDE_EFFECTS)
76a01679 8367 return value_zero (ada_tag_type (arg1), not_lval);
4c4b4cd2
PH
8368
8369 return ada_value_tag (arg1);
8370
8371 case OP_ATR_MIN:
8372 case OP_ATR_MAX:
8373 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
14f9c5c9
AS
8374 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8375 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8376 if (noside == EVAL_SKIP)
76a01679 8377 goto nosideret;
d2e4a39e 8378 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
df407dfe 8379 return value_zero (value_type (arg1), not_lval);
14f9c5c9 8380 else
76a01679
JB
8381 return value_binop (arg1, arg2,
8382 op == OP_ATR_MIN ? BINOP_MIN : BINOP_MAX);
14f9c5c9 8383
4c4b4cd2
PH
8384 case OP_ATR_MODULUS:
8385 {
76a01679
JB
8386 struct type *type_arg = exp->elts[pc + 2].type;
8387 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
4c4b4cd2 8388
76a01679
JB
8389 if (noside == EVAL_SKIP)
8390 goto nosideret;
4c4b4cd2 8391
76a01679 8392 if (!ada_is_modular_type (type_arg))
323e0a4a 8393 error (_("'modulus must be applied to modular type"));
4c4b4cd2 8394
76a01679
JB
8395 return value_from_longest (TYPE_TARGET_TYPE (type_arg),
8396 ada_modulus (type_arg));
4c4b4cd2
PH
8397 }
8398
8399
8400 case OP_ATR_POS:
8401 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
14f9c5c9
AS
8402 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8403 if (noside == EVAL_SKIP)
76a01679 8404 goto nosideret;
4c4b4cd2 8405 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
72d5681a 8406 return value_zero (builtin_type_int, not_lval);
14f9c5c9 8407 else
76a01679 8408 return value_pos_atr (arg1);
14f9c5c9 8409
4c4b4cd2
PH
8410 case OP_ATR_SIZE:
8411 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8412 if (noside == EVAL_SKIP)
76a01679 8413 goto nosideret;
4c4b4cd2 8414 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
72d5681a 8415 return value_zero (builtin_type_int, not_lval);
4c4b4cd2 8416 else
72d5681a 8417 return value_from_longest (builtin_type_int,
76a01679 8418 TARGET_CHAR_BIT
df407dfe 8419 * TYPE_LENGTH (value_type (arg1)));
4c4b4cd2
PH
8420
8421 case OP_ATR_VAL:
8422 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
14f9c5c9 8423 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
4c4b4cd2 8424 type = exp->elts[pc + 2].type;
14f9c5c9 8425 if (noside == EVAL_SKIP)
76a01679 8426 goto nosideret;
4c4b4cd2 8427 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
76a01679 8428 return value_zero (type, not_lval);
4c4b4cd2 8429 else
76a01679 8430 return value_val_atr (type, arg1);
4c4b4cd2
PH
8431
8432 case BINOP_EXP:
8433 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8434 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8435 if (noside == EVAL_SKIP)
8436 goto nosideret;
8437 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
df407dfe 8438 return value_zero (value_type (arg1), not_lval);
4c4b4cd2
PH
8439 else
8440 return value_binop (arg1, arg2, op);
8441
8442 case UNOP_PLUS:
8443 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8444 if (noside == EVAL_SKIP)
8445 goto nosideret;
8446 else
8447 return arg1;
8448
8449 case UNOP_ABS:
8450 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8451 if (noside == EVAL_SKIP)
8452 goto nosideret;
df407dfe 8453 if (value_less (arg1, value_zero (value_type (arg1), not_lval)))
4c4b4cd2 8454 return value_neg (arg1);
14f9c5c9 8455 else
4c4b4cd2 8456 return arg1;
14f9c5c9
AS
8457
8458 case UNOP_IND:
8459 if (expect_type && TYPE_CODE (expect_type) == TYPE_CODE_PTR)
61ee279c 8460 expect_type = TYPE_TARGET_TYPE (ada_check_typedef (expect_type));
14f9c5c9
AS
8461 arg1 = evaluate_subexp (expect_type, exp, pos, noside);
8462 if (noside == EVAL_SKIP)
4c4b4cd2 8463 goto nosideret;
df407dfe 8464 type = ada_check_typedef (value_type (arg1));
14f9c5c9 8465 if (noside == EVAL_AVOID_SIDE_EFFECTS)
4c4b4cd2
PH
8466 {
8467 if (ada_is_array_descriptor_type (type))
8468 /* GDB allows dereferencing GNAT array descriptors. */
8469 {
8470 struct type *arrType = ada_type_of_array (arg1, 0);
8471 if (arrType == NULL)
323e0a4a 8472 error (_("Attempt to dereference null array pointer."));
00a4c844 8473 return value_at_lazy (arrType, 0);
4c4b4cd2
PH
8474 }
8475 else if (TYPE_CODE (type) == TYPE_CODE_PTR
8476 || TYPE_CODE (type) == TYPE_CODE_REF
8477 /* In C you can dereference an array to get the 1st elt. */
8478 || TYPE_CODE (type) == TYPE_CODE_ARRAY)
714e53ab
PH
8479 {
8480 type = to_static_fixed_type
8481 (ada_aligned_type
8482 (ada_check_typedef (TYPE_TARGET_TYPE (type))));
8483 check_size (type);
8484 return value_zero (type, lval_memory);
8485 }
4c4b4cd2
PH
8486 else if (TYPE_CODE (type) == TYPE_CODE_INT)
8487 /* GDB allows dereferencing an int. */
8488 return value_zero (builtin_type_int, lval_memory);
8489 else
323e0a4a 8490 error (_("Attempt to take contents of a non-pointer value."));
4c4b4cd2 8491 }
76a01679 8492 arg1 = ada_coerce_ref (arg1); /* FIXME: What is this for?? */
df407dfe 8493 type = ada_check_typedef (value_type (arg1));
d2e4a39e 8494
4c4b4cd2
PH
8495 if (ada_is_array_descriptor_type (type))
8496 /* GDB allows dereferencing GNAT array descriptors. */
8497 return ada_coerce_to_simple_array (arg1);
14f9c5c9 8498 else
4c4b4cd2 8499 return ada_value_ind (arg1);
14f9c5c9
AS
8500
8501 case STRUCTOP_STRUCT:
8502 tem = longest_to_int (exp->elts[pc + 1].longconst);
8503 (*pos) += 3 + BYTES_TO_EXP_ELEM (tem + 1);
8504 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8505 if (noside == EVAL_SKIP)
4c4b4cd2 8506 goto nosideret;
14f9c5c9 8507 if (noside == EVAL_AVOID_SIDE_EFFECTS)
76a01679 8508 {
df407dfe 8509 struct type *type1 = value_type (arg1);
76a01679
JB
8510 if (ada_is_tagged_type (type1, 1))
8511 {
8512 type = ada_lookup_struct_elt_type (type1,
8513 &exp->elts[pc + 2].string,
8514 1, 1, NULL);
8515 if (type == NULL)
8516 /* In this case, we assume that the field COULD exist
8517 in some extension of the type. Return an object of
8518 "type" void, which will match any formal
8519 (see ada_type_match). */
8520 return value_zero (builtin_type_void, lval_memory);
8521 }
8522 else
8523 type =
8524 ada_lookup_struct_elt_type (type1, &exp->elts[pc + 2].string, 1,
8525 0, NULL);
8526
8527 return value_zero (ada_aligned_type (type), lval_memory);
8528 }
14f9c5c9 8529 else
76a01679
JB
8530 return
8531 ada_to_fixed_value (unwrap_value
8532 (ada_value_struct_elt
03ee6b2e 8533 (arg1, &exp->elts[pc + 2].string, 0)));
14f9c5c9 8534 case OP_TYPE:
4c4b4cd2
PH
8535 /* The value is not supposed to be used. This is here to make it
8536 easier to accommodate expressions that contain types. */
14f9c5c9
AS
8537 (*pos) += 2;
8538 if (noside == EVAL_SKIP)
4c4b4cd2 8539 goto nosideret;
14f9c5c9 8540 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
a6cfbe68 8541 return allocate_value (exp->elts[pc + 1].type);
14f9c5c9 8542 else
323e0a4a 8543 error (_("Attempt to use a type name as an expression"));
52ce6436
PH
8544
8545 case OP_AGGREGATE:
8546 case OP_CHOICES:
8547 case OP_OTHERS:
8548 case OP_DISCRETE_RANGE:
8549 case OP_POSITIONAL:
8550 case OP_NAME:
8551 if (noside == EVAL_NORMAL)
8552 switch (op)
8553 {
8554 case OP_NAME:
8555 error (_("Undefined name, ambiguous name, or renaming used in "
e1d5a0d2 8556 "component association: %s."), &exp->elts[pc+2].string);
52ce6436
PH
8557 case OP_AGGREGATE:
8558 error (_("Aggregates only allowed on the right of an assignment"));
8559 default:
e1d5a0d2 8560 internal_error (__FILE__, __LINE__, _("aggregate apparently mangled"));
52ce6436
PH
8561 }
8562
8563 ada_forward_operator_length (exp, pc, &oplen, &nargs);
8564 *pos += oplen - 1;
8565 for (tem = 0; tem < nargs; tem += 1)
8566 ada_evaluate_subexp (NULL, exp, pos, noside);
8567 goto nosideret;
14f9c5c9
AS
8568 }
8569
8570nosideret:
8571 return value_from_longest (builtin_type_long, (LONGEST) 1);
8572}
14f9c5c9 8573\f
d2e4a39e 8574
4c4b4cd2 8575 /* Fixed point */
14f9c5c9
AS
8576
8577/* If TYPE encodes an Ada fixed-point type, return the suffix of the
8578 type name that encodes the 'small and 'delta information.
4c4b4cd2 8579 Otherwise, return NULL. */
14f9c5c9 8580
d2e4a39e 8581static const char *
ebf56fd3 8582fixed_type_info (struct type *type)
14f9c5c9 8583{
d2e4a39e 8584 const char *name = ada_type_name (type);
14f9c5c9
AS
8585 enum type_code code = (type == NULL) ? TYPE_CODE_UNDEF : TYPE_CODE (type);
8586
d2e4a39e
AS
8587 if ((code == TYPE_CODE_INT || code == TYPE_CODE_RANGE) && name != NULL)
8588 {
14f9c5c9
AS
8589 const char *tail = strstr (name, "___XF_");
8590 if (tail == NULL)
4c4b4cd2 8591 return NULL;
d2e4a39e 8592 else
4c4b4cd2 8593 return tail + 5;
14f9c5c9
AS
8594 }
8595 else if (code == TYPE_CODE_RANGE && TYPE_TARGET_TYPE (type) != type)
8596 return fixed_type_info (TYPE_TARGET_TYPE (type));
8597 else
8598 return NULL;
8599}
8600
4c4b4cd2 8601/* Returns non-zero iff TYPE represents an Ada fixed-point type. */
14f9c5c9
AS
8602
8603int
ebf56fd3 8604ada_is_fixed_point_type (struct type *type)
14f9c5c9
AS
8605{
8606 return fixed_type_info (type) != NULL;
8607}
8608
4c4b4cd2
PH
8609/* Return non-zero iff TYPE represents a System.Address type. */
8610
8611int
8612ada_is_system_address_type (struct type *type)
8613{
8614 return (TYPE_NAME (type)
8615 && strcmp (TYPE_NAME (type), "system__address") == 0);
8616}
8617
14f9c5c9
AS
8618/* Assuming that TYPE is the representation of an Ada fixed-point
8619 type, return its delta, or -1 if the type is malformed and the
4c4b4cd2 8620 delta cannot be determined. */
14f9c5c9
AS
8621
8622DOUBLEST
ebf56fd3 8623ada_delta (struct type *type)
14f9c5c9
AS
8624{
8625 const char *encoding = fixed_type_info (type);
8626 long num, den;
8627
8628 if (sscanf (encoding, "_%ld_%ld", &num, &den) < 2)
8629 return -1.0;
d2e4a39e 8630 else
14f9c5c9
AS
8631 return (DOUBLEST) num / (DOUBLEST) den;
8632}
8633
8634/* Assuming that ada_is_fixed_point_type (TYPE), return the scaling
4c4b4cd2 8635 factor ('SMALL value) associated with the type. */
14f9c5c9
AS
8636
8637static DOUBLEST
ebf56fd3 8638scaling_factor (struct type *type)
14f9c5c9
AS
8639{
8640 const char *encoding = fixed_type_info (type);
8641 unsigned long num0, den0, num1, den1;
8642 int n;
d2e4a39e 8643
14f9c5c9
AS
8644 n = sscanf (encoding, "_%lu_%lu_%lu_%lu", &num0, &den0, &num1, &den1);
8645
8646 if (n < 2)
8647 return 1.0;
8648 else if (n == 4)
8649 return (DOUBLEST) num1 / (DOUBLEST) den1;
d2e4a39e 8650 else
14f9c5c9
AS
8651 return (DOUBLEST) num0 / (DOUBLEST) den0;
8652}
8653
8654
8655/* Assuming that X is the representation of a value of fixed-point
4c4b4cd2 8656 type TYPE, return its floating-point equivalent. */
14f9c5c9
AS
8657
8658DOUBLEST
ebf56fd3 8659ada_fixed_to_float (struct type *type, LONGEST x)
14f9c5c9 8660{
d2e4a39e 8661 return (DOUBLEST) x *scaling_factor (type);
14f9c5c9
AS
8662}
8663
4c4b4cd2
PH
8664/* The representation of a fixed-point value of type TYPE
8665 corresponding to the value X. */
14f9c5c9
AS
8666
8667LONGEST
ebf56fd3 8668ada_float_to_fixed (struct type *type, DOUBLEST x)
14f9c5c9
AS
8669{
8670 return (LONGEST) (x / scaling_factor (type) + 0.5);
8671}
8672
8673
4c4b4cd2 8674 /* VAX floating formats */
14f9c5c9
AS
8675
8676/* Non-zero iff TYPE represents one of the special VAX floating-point
4c4b4cd2
PH
8677 types. */
8678
14f9c5c9 8679int
d2e4a39e 8680ada_is_vax_floating_type (struct type *type)
14f9c5c9 8681{
d2e4a39e 8682 int name_len =
14f9c5c9 8683 (ada_type_name (type) == NULL) ? 0 : strlen (ada_type_name (type));
d2e4a39e 8684 return
14f9c5c9 8685 name_len > 6
d2e4a39e 8686 && (TYPE_CODE (type) == TYPE_CODE_INT
4c4b4cd2
PH
8687 || TYPE_CODE (type) == TYPE_CODE_RANGE)
8688 && strncmp (ada_type_name (type) + name_len - 6, "___XF", 5) == 0;
14f9c5c9
AS
8689}
8690
8691/* The type of special VAX floating-point type this is, assuming
4c4b4cd2
PH
8692 ada_is_vax_floating_point. */
8693
14f9c5c9 8694int
d2e4a39e 8695ada_vax_float_type_suffix (struct type *type)
14f9c5c9 8696{
d2e4a39e 8697 return ada_type_name (type)[strlen (ada_type_name (type)) - 1];
14f9c5c9
AS
8698}
8699
4c4b4cd2 8700/* A value representing the special debugging function that outputs
14f9c5c9 8701 VAX floating-point values of the type represented by TYPE. Assumes
4c4b4cd2
PH
8702 ada_is_vax_floating_type (TYPE). */
8703
d2e4a39e
AS
8704struct value *
8705ada_vax_float_print_function (struct type *type)
8706{
8707 switch (ada_vax_float_type_suffix (type))
8708 {
8709 case 'F':
8710 return get_var_value ("DEBUG_STRING_F", 0);
8711 case 'D':
8712 return get_var_value ("DEBUG_STRING_D", 0);
8713 case 'G':
8714 return get_var_value ("DEBUG_STRING_G", 0);
8715 default:
323e0a4a 8716 error (_("invalid VAX floating-point type"));
d2e4a39e 8717 }
14f9c5c9 8718}
14f9c5c9 8719\f
d2e4a39e 8720
4c4b4cd2 8721 /* Range types */
14f9c5c9
AS
8722
8723/* Scan STR beginning at position K for a discriminant name, and
8724 return the value of that discriminant field of DVAL in *PX. If
8725 PNEW_K is not null, put the position of the character beyond the
8726 name scanned in *PNEW_K. Return 1 if successful; return 0 and do
4c4b4cd2 8727 not alter *PX and *PNEW_K if unsuccessful. */
14f9c5c9
AS
8728
8729static int
07d8f827 8730scan_discrim_bound (char *str, int k, struct value *dval, LONGEST * px,
76a01679 8731 int *pnew_k)
14f9c5c9
AS
8732{
8733 static char *bound_buffer = NULL;
8734 static size_t bound_buffer_len = 0;
8735 char *bound;
8736 char *pend;
d2e4a39e 8737 struct value *bound_val;
14f9c5c9
AS
8738
8739 if (dval == NULL || str == NULL || str[k] == '\0')
8740 return 0;
8741
d2e4a39e 8742 pend = strstr (str + k, "__");
14f9c5c9
AS
8743 if (pend == NULL)
8744 {
d2e4a39e 8745 bound = str + k;
14f9c5c9
AS
8746 k += strlen (bound);
8747 }
d2e4a39e 8748 else
14f9c5c9 8749 {
d2e4a39e 8750 GROW_VECT (bound_buffer, bound_buffer_len, pend - (str + k) + 1);
14f9c5c9 8751 bound = bound_buffer;
d2e4a39e
AS
8752 strncpy (bound_buffer, str + k, pend - (str + k));
8753 bound[pend - (str + k)] = '\0';
8754 k = pend - str;
14f9c5c9 8755 }
d2e4a39e 8756
df407dfe 8757 bound_val = ada_search_struct_field (bound, dval, 0, value_type (dval));
14f9c5c9
AS
8758 if (bound_val == NULL)
8759 return 0;
8760
8761 *px = value_as_long (bound_val);
8762 if (pnew_k != NULL)
8763 *pnew_k = k;
8764 return 1;
8765}
8766
8767/* Value of variable named NAME in the current environment. If
8768 no such variable found, then if ERR_MSG is null, returns 0, and
4c4b4cd2
PH
8769 otherwise causes an error with message ERR_MSG. */
8770
d2e4a39e
AS
8771static struct value *
8772get_var_value (char *name, char *err_msg)
14f9c5c9 8773{
4c4b4cd2 8774 struct ada_symbol_info *syms;
14f9c5c9
AS
8775 int nsyms;
8776
4c4b4cd2
PH
8777 nsyms = ada_lookup_symbol_list (name, get_selected_block (0), VAR_DOMAIN,
8778 &syms);
14f9c5c9
AS
8779
8780 if (nsyms != 1)
8781 {
8782 if (err_msg == NULL)
4c4b4cd2 8783 return 0;
14f9c5c9 8784 else
8a3fe4f8 8785 error (("%s"), err_msg);
14f9c5c9
AS
8786 }
8787
4c4b4cd2 8788 return value_of_variable (syms[0].sym, syms[0].block);
14f9c5c9 8789}
d2e4a39e 8790
14f9c5c9 8791/* Value of integer variable named NAME in the current environment. If
4c4b4cd2
PH
8792 no such variable found, returns 0, and sets *FLAG to 0. If
8793 successful, sets *FLAG to 1. */
8794
14f9c5c9 8795LONGEST
4c4b4cd2 8796get_int_var_value (char *name, int *flag)
14f9c5c9 8797{
4c4b4cd2 8798 struct value *var_val = get_var_value (name, 0);
d2e4a39e 8799
14f9c5c9
AS
8800 if (var_val == 0)
8801 {
8802 if (flag != NULL)
4c4b4cd2 8803 *flag = 0;
14f9c5c9
AS
8804 return 0;
8805 }
8806 else
8807 {
8808 if (flag != NULL)
4c4b4cd2 8809 *flag = 1;
14f9c5c9
AS
8810 return value_as_long (var_val);
8811 }
8812}
d2e4a39e 8813
14f9c5c9
AS
8814
8815/* Return a range type whose base type is that of the range type named
8816 NAME in the current environment, and whose bounds are calculated
4c4b4cd2 8817 from NAME according to the GNAT range encoding conventions.
14f9c5c9
AS
8818 Extract discriminant values, if needed, from DVAL. If a new type
8819 must be created, allocate in OBJFILE's space. The bounds
8820 information, in general, is encoded in NAME, the base type given in
4c4b4cd2 8821 the named range type. */
14f9c5c9 8822
d2e4a39e 8823static struct type *
ebf56fd3 8824to_fixed_range_type (char *name, struct value *dval, struct objfile *objfile)
14f9c5c9
AS
8825{
8826 struct type *raw_type = ada_find_any_type (name);
8827 struct type *base_type;
d2e4a39e 8828 char *subtype_info;
14f9c5c9
AS
8829
8830 if (raw_type == NULL)
8831 base_type = builtin_type_int;
8832 else if (TYPE_CODE (raw_type) == TYPE_CODE_RANGE)
8833 base_type = TYPE_TARGET_TYPE (raw_type);
8834 else
8835 base_type = raw_type;
8836
8837 subtype_info = strstr (name, "___XD");
8838 if (subtype_info == NULL)
8839 return raw_type;
8840 else
8841 {
8842 static char *name_buf = NULL;
8843 static size_t name_len = 0;
8844 int prefix_len = subtype_info - name;
8845 LONGEST L, U;
8846 struct type *type;
8847 char *bounds_str;
8848 int n;
8849
8850 GROW_VECT (name_buf, name_len, prefix_len + 5);
8851 strncpy (name_buf, name, prefix_len);
8852 name_buf[prefix_len] = '\0';
8853
8854 subtype_info += 5;
8855 bounds_str = strchr (subtype_info, '_');
8856 n = 1;
8857
d2e4a39e 8858 if (*subtype_info == 'L')
4c4b4cd2
PH
8859 {
8860 if (!ada_scan_number (bounds_str, n, &L, &n)
8861 && !scan_discrim_bound (bounds_str, n, dval, &L, &n))
8862 return raw_type;
8863 if (bounds_str[n] == '_')
8864 n += 2;
8865 else if (bounds_str[n] == '.') /* FIXME? SGI Workshop kludge. */
8866 n += 1;
8867 subtype_info += 1;
8868 }
d2e4a39e 8869 else
4c4b4cd2
PH
8870 {
8871 int ok;
8872 strcpy (name_buf + prefix_len, "___L");
8873 L = get_int_var_value (name_buf, &ok);
8874 if (!ok)
8875 {
323e0a4a 8876 lim_warning (_("Unknown lower bound, using 1."));
4c4b4cd2
PH
8877 L = 1;
8878 }
8879 }
14f9c5c9 8880
d2e4a39e 8881 if (*subtype_info == 'U')
4c4b4cd2
PH
8882 {
8883 if (!ada_scan_number (bounds_str, n, &U, &n)
8884 && !scan_discrim_bound (bounds_str, n, dval, &U, &n))
8885 return raw_type;
8886 }
d2e4a39e 8887 else
4c4b4cd2
PH
8888 {
8889 int ok;
8890 strcpy (name_buf + prefix_len, "___U");
8891 U = get_int_var_value (name_buf, &ok);
8892 if (!ok)
8893 {
323e0a4a 8894 lim_warning (_("Unknown upper bound, using %ld."), (long) L);
4c4b4cd2
PH
8895 U = L;
8896 }
8897 }
14f9c5c9 8898
d2e4a39e 8899 if (objfile == NULL)
4c4b4cd2 8900 objfile = TYPE_OBJFILE (base_type);
14f9c5c9 8901 type = create_range_type (alloc_type (objfile), base_type, L, U);
d2e4a39e 8902 TYPE_NAME (type) = name;
14f9c5c9
AS
8903 return type;
8904 }
8905}
8906
4c4b4cd2
PH
8907/* True iff NAME is the name of a range type. */
8908
14f9c5c9 8909int
d2e4a39e 8910ada_is_range_type_name (const char *name)
14f9c5c9
AS
8911{
8912 return (name != NULL && strstr (name, "___XD"));
d2e4a39e 8913}
14f9c5c9 8914\f
d2e4a39e 8915
4c4b4cd2
PH
8916 /* Modular types */
8917
8918/* True iff TYPE is an Ada modular type. */
14f9c5c9 8919
14f9c5c9 8920int
d2e4a39e 8921ada_is_modular_type (struct type *type)
14f9c5c9 8922{
4c4b4cd2 8923 struct type *subranged_type = base_type (type);
14f9c5c9
AS
8924
8925 return (subranged_type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE
4c4b4cd2
PH
8926 && TYPE_CODE (subranged_type) != TYPE_CODE_ENUM
8927 && TYPE_UNSIGNED (subranged_type));
14f9c5c9
AS
8928}
8929
4c4b4cd2
PH
8930/* Assuming ada_is_modular_type (TYPE), the modulus of TYPE. */
8931
61ee279c 8932ULONGEST
d2e4a39e 8933ada_modulus (struct type * type)
14f9c5c9 8934{
61ee279c 8935 return (ULONGEST) TYPE_HIGH_BOUND (type) + 1;
14f9c5c9 8936}
d2e4a39e 8937\f
f7f9143b
JB
8938
8939/* Ada exception catchpoint support:
8940 ---------------------------------
8941
8942 We support 3 kinds of exception catchpoints:
8943 . catchpoints on Ada exceptions
8944 . catchpoints on unhandled Ada exceptions
8945 . catchpoints on failed assertions
8946
8947 Exceptions raised during failed assertions, or unhandled exceptions
8948 could perfectly be caught with the general catchpoint on Ada exceptions.
8949 However, we can easily differentiate these two special cases, and having
8950 the option to distinguish these two cases from the rest can be useful
8951 to zero-in on certain situations.
8952
8953 Exception catchpoints are a specialized form of breakpoint,
8954 since they rely on inserting breakpoints inside known routines
8955 of the GNAT runtime. The implementation therefore uses a standard
8956 breakpoint structure of the BP_BREAKPOINT type, but with its own set
8957 of breakpoint_ops.
8958
0259addd
JB
8959 Support in the runtime for exception catchpoints have been changed
8960 a few times already, and these changes affect the implementation
8961 of these catchpoints. In order to be able to support several
8962 variants of the runtime, we use a sniffer that will determine
8963 the runtime variant used by the program being debugged.
8964
f7f9143b
JB
8965 At this time, we do not support the use of conditions on Ada exception
8966 catchpoints. The COND and COND_STRING fields are therefore set
8967 to NULL (most of the time, see below).
8968
8969 Conditions where EXP_STRING, COND, and COND_STRING are used:
8970
8971 When a user specifies the name of a specific exception in the case
8972 of catchpoints on Ada exceptions, we store the name of that exception
8973 in the EXP_STRING. We then translate this request into an actual
8974 condition stored in COND_STRING, and then parse it into an expression
8975 stored in COND. */
8976
8977/* The different types of catchpoints that we introduced for catching
8978 Ada exceptions. */
8979
8980enum exception_catchpoint_kind
8981{
8982 ex_catch_exception,
8983 ex_catch_exception_unhandled,
8984 ex_catch_assert
8985};
8986
0259addd
JB
8987typedef CORE_ADDR (ada_unhandled_exception_name_addr_ftype) (void);
8988
8989/* A structure that describes how to support exception catchpoints
8990 for a given executable. */
8991
8992struct exception_support_info
8993{
8994 /* The name of the symbol to break on in order to insert
8995 a catchpoint on exceptions. */
8996 const char *catch_exception_sym;
8997
8998 /* The name of the symbol to break on in order to insert
8999 a catchpoint on unhandled exceptions. */
9000 const char *catch_exception_unhandled_sym;
9001
9002 /* The name of the symbol to break on in order to insert
9003 a catchpoint on failed assertions. */
9004 const char *catch_assert_sym;
9005
9006 /* Assuming that the inferior just triggered an unhandled exception
9007 catchpoint, this function is responsible for returning the address
9008 in inferior memory where the name of that exception is stored.
9009 Return zero if the address could not be computed. */
9010 ada_unhandled_exception_name_addr_ftype *unhandled_exception_name_addr;
9011};
9012
9013static CORE_ADDR ada_unhandled_exception_name_addr (void);
9014static CORE_ADDR ada_unhandled_exception_name_addr_from_raise (void);
9015
9016/* The following exception support info structure describes how to
9017 implement exception catchpoints with the latest version of the
9018 Ada runtime (as of 2007-03-06). */
9019
9020static const struct exception_support_info default_exception_support_info =
9021{
9022 "__gnat_debug_raise_exception", /* catch_exception_sym */
9023 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
9024 "__gnat_debug_raise_assert_failure", /* catch_assert_sym */
9025 ada_unhandled_exception_name_addr
9026};
9027
9028/* The following exception support info structure describes how to
9029 implement exception catchpoints with a slightly older version
9030 of the Ada runtime. */
9031
9032static const struct exception_support_info exception_support_info_fallback =
9033{
9034 "__gnat_raise_nodefer_with_msg", /* catch_exception_sym */
9035 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
9036 "system__assertions__raise_assert_failure", /* catch_assert_sym */
9037 ada_unhandled_exception_name_addr_from_raise
9038};
9039
9040/* For each executable, we sniff which exception info structure to use
9041 and cache it in the following global variable. */
9042
9043static const struct exception_support_info *exception_info = NULL;
9044
9045/* Inspect the Ada runtime and determine which exception info structure
9046 should be used to provide support for exception catchpoints.
9047
9048 This function will always set exception_info, or raise an error. */
9049
9050static void
9051ada_exception_support_info_sniffer (void)
9052{
9053 struct symbol *sym;
9054
9055 /* If the exception info is already known, then no need to recompute it. */
9056 if (exception_info != NULL)
9057 return;
9058
9059 /* Check the latest (default) exception support info. */
9060 sym = standard_lookup (default_exception_support_info.catch_exception_sym,
9061 NULL, VAR_DOMAIN);
9062 if (sym != NULL)
9063 {
9064 exception_info = &default_exception_support_info;
9065 return;
9066 }
9067
9068 /* Try our fallback exception suport info. */
9069 sym = standard_lookup (exception_support_info_fallback.catch_exception_sym,
9070 NULL, VAR_DOMAIN);
9071 if (sym != NULL)
9072 {
9073 exception_info = &exception_support_info_fallback;
9074 return;
9075 }
9076
9077 /* Sometimes, it is normal for us to not be able to find the routine
9078 we are looking for. This happens when the program is linked with
9079 the shared version of the GNAT runtime, and the program has not been
9080 started yet. Inform the user of these two possible causes if
9081 applicable. */
9082
9083 if (ada_update_initial_language (language_unknown, NULL) != language_ada)
9084 error (_("Unable to insert catchpoint. Is this an Ada main program?"));
9085
9086 /* If the symbol does not exist, then check that the program is
9087 already started, to make sure that shared libraries have been
9088 loaded. If it is not started, this may mean that the symbol is
9089 in a shared library. */
9090
9091 if (ptid_get_pid (inferior_ptid) == 0)
9092 error (_("Unable to insert catchpoint. Try to start the program first."));
9093
9094 /* At this point, we know that we are debugging an Ada program and
9095 that the inferior has been started, but we still are not able to
9096 find the run-time symbols. That can mean that we are in
9097 configurable run time mode, or that a-except as been optimized
9098 out by the linker... In any case, at this point it is not worth
9099 supporting this feature. */
9100
9101 error (_("Cannot insert catchpoints in this configuration."));
9102}
9103
9104/* An observer of "executable_changed" events.
9105 Its role is to clear certain cached values that need to be recomputed
9106 each time a new executable is loaded by GDB. */
9107
9108static void
9109ada_executable_changed_observer (void *unused)
9110{
9111 /* If the executable changed, then it is possible that the Ada runtime
9112 is different. So we need to invalidate the exception support info
9113 cache. */
9114 exception_info = NULL;
9115}
9116
f7f9143b
JB
9117/* Return the name of the function at PC, NULL if could not find it.
9118 This function only checks the debugging information, not the symbol
9119 table. */
9120
9121static char *
9122function_name_from_pc (CORE_ADDR pc)
9123{
9124 char *func_name;
9125
9126 if (!find_pc_partial_function (pc, &func_name, NULL, NULL))
9127 return NULL;
9128
9129 return func_name;
9130}
9131
9132/* True iff FRAME is very likely to be that of a function that is
9133 part of the runtime system. This is all very heuristic, but is
9134 intended to be used as advice as to what frames are uninteresting
9135 to most users. */
9136
9137static int
9138is_known_support_routine (struct frame_info *frame)
9139{
4ed6b5be 9140 struct symtab_and_line sal;
f7f9143b
JB
9141 char *func_name;
9142 int i;
f7f9143b 9143
4ed6b5be
JB
9144 /* If this code does not have any debugging information (no symtab),
9145 This cannot be any user code. */
f7f9143b 9146
4ed6b5be 9147 find_frame_sal (frame, &sal);
f7f9143b
JB
9148 if (sal.symtab == NULL)
9149 return 1;
9150
4ed6b5be
JB
9151 /* If there is a symtab, but the associated source file cannot be
9152 located, then assume this is not user code: Selecting a frame
9153 for which we cannot display the code would not be very helpful
9154 for the user. This should also take care of case such as VxWorks
9155 where the kernel has some debugging info provided for a few units. */
f7f9143b 9156
9bbc9174 9157 if (symtab_to_fullname (sal.symtab) == NULL)
f7f9143b
JB
9158 return 1;
9159
4ed6b5be
JB
9160 /* Check the unit filename againt the Ada runtime file naming.
9161 We also check the name of the objfile against the name of some
9162 known system libraries that sometimes come with debugging info
9163 too. */
9164
f7f9143b
JB
9165 for (i = 0; known_runtime_file_name_patterns[i] != NULL; i += 1)
9166 {
9167 re_comp (known_runtime_file_name_patterns[i]);
9168 if (re_exec (sal.symtab->filename))
9169 return 1;
4ed6b5be
JB
9170 if (sal.symtab->objfile != NULL
9171 && re_exec (sal.symtab->objfile->name))
9172 return 1;
f7f9143b
JB
9173 }
9174
4ed6b5be 9175 /* Check whether the function is a GNAT-generated entity. */
f7f9143b 9176
4ed6b5be 9177 func_name = function_name_from_pc (get_frame_address_in_block (frame));
f7f9143b
JB
9178 if (func_name == NULL)
9179 return 1;
9180
9181 for (i = 0; known_auxiliary_function_name_patterns[i] != NULL; i += 1)
9182 {
9183 re_comp (known_auxiliary_function_name_patterns[i]);
9184 if (re_exec (func_name))
9185 return 1;
9186 }
9187
9188 return 0;
9189}
9190
9191/* Find the first frame that contains debugging information and that is not
9192 part of the Ada run-time, starting from FI and moving upward. */
9193
9194static void
9195ada_find_printable_frame (struct frame_info *fi)
9196{
9197 for (; fi != NULL; fi = get_prev_frame (fi))
9198 {
9199 if (!is_known_support_routine (fi))
9200 {
9201 select_frame (fi);
9202 break;
9203 }
9204 }
9205
9206}
9207
9208/* Assuming that the inferior just triggered an unhandled exception
9209 catchpoint, return the address in inferior memory where the name
9210 of the exception is stored.
9211
9212 Return zero if the address could not be computed. */
9213
9214static CORE_ADDR
9215ada_unhandled_exception_name_addr (void)
0259addd
JB
9216{
9217 return parse_and_eval_address ("e.full_name");
9218}
9219
9220/* Same as ada_unhandled_exception_name_addr, except that this function
9221 should be used when the inferior uses an older version of the runtime,
9222 where the exception name needs to be extracted from a specific frame
9223 several frames up in the callstack. */
9224
9225static CORE_ADDR
9226ada_unhandled_exception_name_addr_from_raise (void)
f7f9143b
JB
9227{
9228 int frame_level;
9229 struct frame_info *fi;
9230
9231 /* To determine the name of this exception, we need to select
9232 the frame corresponding to RAISE_SYM_NAME. This frame is
9233 at least 3 levels up, so we simply skip the first 3 frames
9234 without checking the name of their associated function. */
9235 fi = get_current_frame ();
9236 for (frame_level = 0; frame_level < 3; frame_level += 1)
9237 if (fi != NULL)
9238 fi = get_prev_frame (fi);
9239
9240 while (fi != NULL)
9241 {
9242 const char *func_name =
9243 function_name_from_pc (get_frame_address_in_block (fi));
9244 if (func_name != NULL
0259addd 9245 && strcmp (func_name, exception_info->catch_exception_sym) == 0)
f7f9143b
JB
9246 break; /* We found the frame we were looking for... */
9247 fi = get_prev_frame (fi);
9248 }
9249
9250 if (fi == NULL)
9251 return 0;
9252
9253 select_frame (fi);
9254 return parse_and_eval_address ("id.full_name");
9255}
9256
9257/* Assuming the inferior just triggered an Ada exception catchpoint
9258 (of any type), return the address in inferior memory where the name
9259 of the exception is stored, if applicable.
9260
9261 Return zero if the address could not be computed, or if not relevant. */
9262
9263static CORE_ADDR
9264ada_exception_name_addr_1 (enum exception_catchpoint_kind ex,
9265 struct breakpoint *b)
9266{
9267 switch (ex)
9268 {
9269 case ex_catch_exception:
9270 return (parse_and_eval_address ("e.full_name"));
9271 break;
9272
9273 case ex_catch_exception_unhandled:
0259addd 9274 return exception_info->unhandled_exception_name_addr ();
f7f9143b
JB
9275 break;
9276
9277 case ex_catch_assert:
9278 return 0; /* Exception name is not relevant in this case. */
9279 break;
9280
9281 default:
9282 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
9283 break;
9284 }
9285
9286 return 0; /* Should never be reached. */
9287}
9288
9289/* Same as ada_exception_name_addr_1, except that it intercepts and contains
9290 any error that ada_exception_name_addr_1 might cause to be thrown.
9291 When an error is intercepted, a warning with the error message is printed,
9292 and zero is returned. */
9293
9294static CORE_ADDR
9295ada_exception_name_addr (enum exception_catchpoint_kind ex,
9296 struct breakpoint *b)
9297{
9298 struct gdb_exception e;
9299 CORE_ADDR result = 0;
9300
9301 TRY_CATCH (e, RETURN_MASK_ERROR)
9302 {
9303 result = ada_exception_name_addr_1 (ex, b);
9304 }
9305
9306 if (e.reason < 0)
9307 {
9308 warning (_("failed to get exception name: %s"), e.message);
9309 return 0;
9310 }
9311
9312 return result;
9313}
9314
9315/* Implement the PRINT_IT method in the breakpoint_ops structure
9316 for all exception catchpoint kinds. */
9317
9318static enum print_stop_action
9319print_it_exception (enum exception_catchpoint_kind ex, struct breakpoint *b)
9320{
9321 const CORE_ADDR addr = ada_exception_name_addr (ex, b);
9322 char exception_name[256];
9323
9324 if (addr != 0)
9325 {
9326 read_memory (addr, exception_name, sizeof (exception_name) - 1);
9327 exception_name [sizeof (exception_name) - 1] = '\0';
9328 }
9329
9330 ada_find_printable_frame (get_current_frame ());
9331
9332 annotate_catchpoint (b->number);
9333 switch (ex)
9334 {
9335 case ex_catch_exception:
9336 if (addr != 0)
9337 printf_filtered (_("\nCatchpoint %d, %s at "),
9338 b->number, exception_name);
9339 else
9340 printf_filtered (_("\nCatchpoint %d, exception at "), b->number);
9341 break;
9342 case ex_catch_exception_unhandled:
9343 if (addr != 0)
9344 printf_filtered (_("\nCatchpoint %d, unhandled %s at "),
9345 b->number, exception_name);
9346 else
9347 printf_filtered (_("\nCatchpoint %d, unhandled exception at "),
9348 b->number);
9349 break;
9350 case ex_catch_assert:
9351 printf_filtered (_("\nCatchpoint %d, failed assertion at "),
9352 b->number);
9353 break;
9354 }
9355
9356 return PRINT_SRC_AND_LOC;
9357}
9358
9359/* Implement the PRINT_ONE method in the breakpoint_ops structure
9360 for all exception catchpoint kinds. */
9361
9362static void
9363print_one_exception (enum exception_catchpoint_kind ex,
9364 struct breakpoint *b, CORE_ADDR *last_addr)
9365{
9366 if (addressprint)
9367 {
9368 annotate_field (4);
9369 ui_out_field_core_addr (uiout, "addr", b->loc->address);
9370 }
9371
9372 annotate_field (5);
9373 *last_addr = b->loc->address;
9374 switch (ex)
9375 {
9376 case ex_catch_exception:
9377 if (b->exp_string != NULL)
9378 {
9379 char *msg = xstrprintf (_("`%s' Ada exception"), b->exp_string);
9380
9381 ui_out_field_string (uiout, "what", msg);
9382 xfree (msg);
9383 }
9384 else
9385 ui_out_field_string (uiout, "what", "all Ada exceptions");
9386
9387 break;
9388
9389 case ex_catch_exception_unhandled:
9390 ui_out_field_string (uiout, "what", "unhandled Ada exceptions");
9391 break;
9392
9393 case ex_catch_assert:
9394 ui_out_field_string (uiout, "what", "failed Ada assertions");
9395 break;
9396
9397 default:
9398 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
9399 break;
9400 }
9401}
9402
9403/* Implement the PRINT_MENTION method in the breakpoint_ops structure
9404 for all exception catchpoint kinds. */
9405
9406static void
9407print_mention_exception (enum exception_catchpoint_kind ex,
9408 struct breakpoint *b)
9409{
9410 switch (ex)
9411 {
9412 case ex_catch_exception:
9413 if (b->exp_string != NULL)
9414 printf_filtered (_("Catchpoint %d: `%s' Ada exception"),
9415 b->number, b->exp_string);
9416 else
9417 printf_filtered (_("Catchpoint %d: all Ada exceptions"), b->number);
9418
9419 break;
9420
9421 case ex_catch_exception_unhandled:
9422 printf_filtered (_("Catchpoint %d: unhandled Ada exceptions"),
9423 b->number);
9424 break;
9425
9426 case ex_catch_assert:
9427 printf_filtered (_("Catchpoint %d: failed Ada assertions"), b->number);
9428 break;
9429
9430 default:
9431 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
9432 break;
9433 }
9434}
9435
9436/* Virtual table for "catch exception" breakpoints. */
9437
9438static enum print_stop_action
9439print_it_catch_exception (struct breakpoint *b)
9440{
9441 return print_it_exception (ex_catch_exception, b);
9442}
9443
9444static void
9445print_one_catch_exception (struct breakpoint *b, CORE_ADDR *last_addr)
9446{
9447 print_one_exception (ex_catch_exception, b, last_addr);
9448}
9449
9450static void
9451print_mention_catch_exception (struct breakpoint *b)
9452{
9453 print_mention_exception (ex_catch_exception, b);
9454}
9455
9456static struct breakpoint_ops catch_exception_breakpoint_ops =
9457{
9458 print_it_catch_exception,
9459 print_one_catch_exception,
9460 print_mention_catch_exception
9461};
9462
9463/* Virtual table for "catch exception unhandled" breakpoints. */
9464
9465static enum print_stop_action
9466print_it_catch_exception_unhandled (struct breakpoint *b)
9467{
9468 return print_it_exception (ex_catch_exception_unhandled, b);
9469}
9470
9471static void
9472print_one_catch_exception_unhandled (struct breakpoint *b, CORE_ADDR *last_addr)
9473{
9474 print_one_exception (ex_catch_exception_unhandled, b, last_addr);
9475}
9476
9477static void
9478print_mention_catch_exception_unhandled (struct breakpoint *b)
9479{
9480 print_mention_exception (ex_catch_exception_unhandled, b);
9481}
9482
9483static struct breakpoint_ops catch_exception_unhandled_breakpoint_ops = {
9484 print_it_catch_exception_unhandled,
9485 print_one_catch_exception_unhandled,
9486 print_mention_catch_exception_unhandled
9487};
9488
9489/* Virtual table for "catch assert" breakpoints. */
9490
9491static enum print_stop_action
9492print_it_catch_assert (struct breakpoint *b)
9493{
9494 return print_it_exception (ex_catch_assert, b);
9495}
9496
9497static void
9498print_one_catch_assert (struct breakpoint *b, CORE_ADDR *last_addr)
9499{
9500 print_one_exception (ex_catch_assert, b, last_addr);
9501}
9502
9503static void
9504print_mention_catch_assert (struct breakpoint *b)
9505{
9506 print_mention_exception (ex_catch_assert, b);
9507}
9508
9509static struct breakpoint_ops catch_assert_breakpoint_ops = {
9510 print_it_catch_assert,
9511 print_one_catch_assert,
9512 print_mention_catch_assert
9513};
9514
9515/* Return non-zero if B is an Ada exception catchpoint. */
9516
9517int
9518ada_exception_catchpoint_p (struct breakpoint *b)
9519{
9520 return (b->ops == &catch_exception_breakpoint_ops
9521 || b->ops == &catch_exception_unhandled_breakpoint_ops
9522 || b->ops == &catch_assert_breakpoint_ops);
9523}
9524
f7f9143b
JB
9525/* Return a newly allocated copy of the first space-separated token
9526 in ARGSP, and then adjust ARGSP to point immediately after that
9527 token.
9528
9529 Return NULL if ARGPS does not contain any more tokens. */
9530
9531static char *
9532ada_get_next_arg (char **argsp)
9533{
9534 char *args = *argsp;
9535 char *end;
9536 char *result;
9537
9538 /* Skip any leading white space. */
9539
9540 while (isspace (*args))
9541 args++;
9542
9543 if (args[0] == '\0')
9544 return NULL; /* No more arguments. */
9545
9546 /* Find the end of the current argument. */
9547
9548 end = args;
9549 while (*end != '\0' && !isspace (*end))
9550 end++;
9551
9552 /* Adjust ARGSP to point to the start of the next argument. */
9553
9554 *argsp = end;
9555
9556 /* Make a copy of the current argument and return it. */
9557
9558 result = xmalloc (end - args + 1);
9559 strncpy (result, args, end - args);
9560 result[end - args] = '\0';
9561
9562 return result;
9563}
9564
9565/* Split the arguments specified in a "catch exception" command.
9566 Set EX to the appropriate catchpoint type.
9567 Set EXP_STRING to the name of the specific exception if
9568 specified by the user. */
9569
9570static void
9571catch_ada_exception_command_split (char *args,
9572 enum exception_catchpoint_kind *ex,
9573 char **exp_string)
9574{
9575 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
9576 char *exception_name;
9577
9578 exception_name = ada_get_next_arg (&args);
9579 make_cleanup (xfree, exception_name);
9580
9581 /* Check that we do not have any more arguments. Anything else
9582 is unexpected. */
9583
9584 while (isspace (*args))
9585 args++;
9586
9587 if (args[0] != '\0')
9588 error (_("Junk at end of expression"));
9589
9590 discard_cleanups (old_chain);
9591
9592 if (exception_name == NULL)
9593 {
9594 /* Catch all exceptions. */
9595 *ex = ex_catch_exception;
9596 *exp_string = NULL;
9597 }
9598 else if (strcmp (exception_name, "unhandled") == 0)
9599 {
9600 /* Catch unhandled exceptions. */
9601 *ex = ex_catch_exception_unhandled;
9602 *exp_string = NULL;
9603 }
9604 else
9605 {
9606 /* Catch a specific exception. */
9607 *ex = ex_catch_exception;
9608 *exp_string = exception_name;
9609 }
9610}
9611
9612/* Return the name of the symbol on which we should break in order to
9613 implement a catchpoint of the EX kind. */
9614
9615static const char *
9616ada_exception_sym_name (enum exception_catchpoint_kind ex)
9617{
0259addd
JB
9618 gdb_assert (exception_info != NULL);
9619
f7f9143b
JB
9620 switch (ex)
9621 {
9622 case ex_catch_exception:
0259addd 9623 return (exception_info->catch_exception_sym);
f7f9143b
JB
9624 break;
9625 case ex_catch_exception_unhandled:
0259addd 9626 return (exception_info->catch_exception_unhandled_sym);
f7f9143b
JB
9627 break;
9628 case ex_catch_assert:
0259addd 9629 return (exception_info->catch_assert_sym);
f7f9143b
JB
9630 break;
9631 default:
9632 internal_error (__FILE__, __LINE__,
9633 _("unexpected catchpoint kind (%d)"), ex);
9634 }
9635}
9636
9637/* Return the breakpoint ops "virtual table" used for catchpoints
9638 of the EX kind. */
9639
9640static struct breakpoint_ops *
4b9eee8c 9641ada_exception_breakpoint_ops (enum exception_catchpoint_kind ex)
f7f9143b
JB
9642{
9643 switch (ex)
9644 {
9645 case ex_catch_exception:
9646 return (&catch_exception_breakpoint_ops);
9647 break;
9648 case ex_catch_exception_unhandled:
9649 return (&catch_exception_unhandled_breakpoint_ops);
9650 break;
9651 case ex_catch_assert:
9652 return (&catch_assert_breakpoint_ops);
9653 break;
9654 default:
9655 internal_error (__FILE__, __LINE__,
9656 _("unexpected catchpoint kind (%d)"), ex);
9657 }
9658}
9659
9660/* Return the condition that will be used to match the current exception
9661 being raised with the exception that the user wants to catch. This
9662 assumes that this condition is used when the inferior just triggered
9663 an exception catchpoint.
9664
9665 The string returned is a newly allocated string that needs to be
9666 deallocated later. */
9667
9668static char *
9669ada_exception_catchpoint_cond_string (const char *exp_string)
9670{
9671 return xstrprintf ("long_integer (e) = long_integer (&%s)", exp_string);
9672}
9673
9674/* Return the expression corresponding to COND_STRING evaluated at SAL. */
9675
9676static struct expression *
9677ada_parse_catchpoint_condition (char *cond_string,
9678 struct symtab_and_line sal)
9679{
9680 return (parse_exp_1 (&cond_string, block_for_pc (sal.pc), 0));
9681}
9682
9683/* Return the symtab_and_line that should be used to insert an exception
9684 catchpoint of the TYPE kind.
9685
9686 EX_STRING should contain the name of a specific exception
9687 that the catchpoint should catch, or NULL otherwise.
9688
9689 The idea behind all the remaining parameters is that their names match
9690 the name of certain fields in the breakpoint structure that are used to
9691 handle exception catchpoints. This function returns the value to which
9692 these fields should be set, depending on the type of catchpoint we need
9693 to create.
9694
9695 If COND and COND_STRING are both non-NULL, any value they might
9696 hold will be free'ed, and then replaced by newly allocated ones.
9697 These parameters are left untouched otherwise. */
9698
9699static struct symtab_and_line
9700ada_exception_sal (enum exception_catchpoint_kind ex, char *exp_string,
9701 char **addr_string, char **cond_string,
9702 struct expression **cond, struct breakpoint_ops **ops)
9703{
9704 const char *sym_name;
9705 struct symbol *sym;
9706 struct symtab_and_line sal;
9707
0259addd
JB
9708 /* First, find out which exception support info to use. */
9709 ada_exception_support_info_sniffer ();
9710
9711 /* Then lookup the function on which we will break in order to catch
f7f9143b
JB
9712 the Ada exceptions requested by the user. */
9713
9714 sym_name = ada_exception_sym_name (ex);
9715 sym = standard_lookup (sym_name, NULL, VAR_DOMAIN);
9716
9717 /* The symbol we're looking up is provided by a unit in the GNAT runtime
9718 that should be compiled with debugging information. As a result, we
9719 expect to find that symbol in the symtabs. If we don't find it, then
9720 the target most likely does not support Ada exceptions, or we cannot
9721 insert exception breakpoints yet, because the GNAT runtime hasn't been
9722 loaded yet. */
9723
9724 /* brobecker/2006-12-26: It is conceivable that the runtime was compiled
9725 in such a way that no debugging information is produced for the symbol
9726 we are looking for. In this case, we could search the minimal symbols
9727 as a fall-back mechanism. This would still be operating in degraded
9728 mode, however, as we would still be missing the debugging information
9729 that is needed in order to extract the name of the exception being
9730 raised (this name is printed in the catchpoint message, and is also
9731 used when trying to catch a specific exception). We do not handle
9732 this case for now. */
9733
9734 if (sym == NULL)
0259addd 9735 error (_("Unable to break on '%s' in this configuration."), sym_name);
f7f9143b
JB
9736
9737 /* Make sure that the symbol we found corresponds to a function. */
9738 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
9739 error (_("Symbol \"%s\" is not a function (class = %d)"),
9740 sym_name, SYMBOL_CLASS (sym));
9741
9742 sal = find_function_start_sal (sym, 1);
9743
9744 /* Set ADDR_STRING. */
9745
9746 *addr_string = xstrdup (sym_name);
9747
9748 /* Set the COND and COND_STRING (if not NULL). */
9749
9750 if (cond_string != NULL && cond != NULL)
9751 {
9752 if (*cond_string != NULL)
9753 {
9754 xfree (*cond_string);
9755 *cond_string = NULL;
9756 }
9757 if (*cond != NULL)
9758 {
9759 xfree (*cond);
9760 *cond = NULL;
9761 }
9762 if (exp_string != NULL)
9763 {
9764 *cond_string = ada_exception_catchpoint_cond_string (exp_string);
9765 *cond = ada_parse_catchpoint_condition (*cond_string, sal);
9766 }
9767 }
9768
9769 /* Set OPS. */
4b9eee8c 9770 *ops = ada_exception_breakpoint_ops (ex);
f7f9143b
JB
9771
9772 return sal;
9773}
9774
9775/* Parse the arguments (ARGS) of the "catch exception" command.
9776
9777 Set TYPE to the appropriate exception catchpoint type.
9778 If the user asked the catchpoint to catch only a specific
9779 exception, then save the exception name in ADDR_STRING.
9780
9781 See ada_exception_sal for a description of all the remaining
9782 function arguments of this function. */
9783
9784struct symtab_and_line
9785ada_decode_exception_location (char *args, char **addr_string,
9786 char **exp_string, char **cond_string,
9787 struct expression **cond,
9788 struct breakpoint_ops **ops)
9789{
9790 enum exception_catchpoint_kind ex;
9791
9792 catch_ada_exception_command_split (args, &ex, exp_string);
9793 return ada_exception_sal (ex, *exp_string, addr_string, cond_string,
9794 cond, ops);
9795}
9796
9797struct symtab_and_line
9798ada_decode_assert_location (char *args, char **addr_string,
9799 struct breakpoint_ops **ops)
9800{
9801 /* Check that no argument where provided at the end of the command. */
9802
9803 if (args != NULL)
9804 {
9805 while (isspace (*args))
9806 args++;
9807 if (*args != '\0')
9808 error (_("Junk at end of arguments."));
9809 }
9810
9811 return ada_exception_sal (ex_catch_assert, NULL, addr_string, NULL, NULL,
9812 ops);
9813}
9814
4c4b4cd2
PH
9815 /* Operators */
9816/* Information about operators given special treatment in functions
9817 below. */
9818/* Format: OP_DEFN (<operator>, <operator length>, <# args>, <binop>). */
9819
9820#define ADA_OPERATORS \
9821 OP_DEFN (OP_VAR_VALUE, 4, 0, 0) \
9822 OP_DEFN (BINOP_IN_BOUNDS, 3, 2, 0) \
9823 OP_DEFN (TERNOP_IN_RANGE, 1, 3, 0) \
9824 OP_DEFN (OP_ATR_FIRST, 1, 2, 0) \
9825 OP_DEFN (OP_ATR_LAST, 1, 2, 0) \
9826 OP_DEFN (OP_ATR_LENGTH, 1, 2, 0) \
9827 OP_DEFN (OP_ATR_IMAGE, 1, 2, 0) \
9828 OP_DEFN (OP_ATR_MAX, 1, 3, 0) \
9829 OP_DEFN (OP_ATR_MIN, 1, 3, 0) \
9830 OP_DEFN (OP_ATR_MODULUS, 1, 1, 0) \
9831 OP_DEFN (OP_ATR_POS, 1, 2, 0) \
9832 OP_DEFN (OP_ATR_SIZE, 1, 1, 0) \
9833 OP_DEFN (OP_ATR_TAG, 1, 1, 0) \
9834 OP_DEFN (OP_ATR_VAL, 1, 2, 0) \
9835 OP_DEFN (UNOP_QUAL, 3, 1, 0) \
52ce6436
PH
9836 OP_DEFN (UNOP_IN_RANGE, 3, 1, 0) \
9837 OP_DEFN (OP_OTHERS, 1, 1, 0) \
9838 OP_DEFN (OP_POSITIONAL, 3, 1, 0) \
9839 OP_DEFN (OP_DISCRETE_RANGE, 1, 2, 0)
4c4b4cd2
PH
9840
9841static void
9842ada_operator_length (struct expression *exp, int pc, int *oplenp, int *argsp)
9843{
9844 switch (exp->elts[pc - 1].opcode)
9845 {
76a01679 9846 default:
4c4b4cd2
PH
9847 operator_length_standard (exp, pc, oplenp, argsp);
9848 break;
9849
9850#define OP_DEFN(op, len, args, binop) \
9851 case op: *oplenp = len; *argsp = args; break;
9852 ADA_OPERATORS;
9853#undef OP_DEFN
52ce6436
PH
9854
9855 case OP_AGGREGATE:
9856 *oplenp = 3;
9857 *argsp = longest_to_int (exp->elts[pc - 2].longconst);
9858 break;
9859
9860 case OP_CHOICES:
9861 *oplenp = 3;
9862 *argsp = longest_to_int (exp->elts[pc - 2].longconst) + 1;
9863 break;
4c4b4cd2
PH
9864 }
9865}
9866
9867static char *
9868ada_op_name (enum exp_opcode opcode)
9869{
9870 switch (opcode)
9871 {
76a01679 9872 default:
4c4b4cd2 9873 return op_name_standard (opcode);
52ce6436 9874
4c4b4cd2
PH
9875#define OP_DEFN(op, len, args, binop) case op: return #op;
9876 ADA_OPERATORS;
9877#undef OP_DEFN
52ce6436
PH
9878
9879 case OP_AGGREGATE:
9880 return "OP_AGGREGATE";
9881 case OP_CHOICES:
9882 return "OP_CHOICES";
9883 case OP_NAME:
9884 return "OP_NAME";
4c4b4cd2
PH
9885 }
9886}
9887
9888/* As for operator_length, but assumes PC is pointing at the first
9889 element of the operator, and gives meaningful results only for the
52ce6436 9890 Ada-specific operators, returning 0 for *OPLENP and *ARGSP otherwise. */
4c4b4cd2
PH
9891
9892static void
76a01679
JB
9893ada_forward_operator_length (struct expression *exp, int pc,
9894 int *oplenp, int *argsp)
4c4b4cd2 9895{
76a01679 9896 switch (exp->elts[pc].opcode)
4c4b4cd2
PH
9897 {
9898 default:
9899 *oplenp = *argsp = 0;
9900 break;
52ce6436 9901
4c4b4cd2
PH
9902#define OP_DEFN(op, len, args, binop) \
9903 case op: *oplenp = len; *argsp = args; break;
9904 ADA_OPERATORS;
9905#undef OP_DEFN
52ce6436
PH
9906
9907 case OP_AGGREGATE:
9908 *oplenp = 3;
9909 *argsp = longest_to_int (exp->elts[pc + 1].longconst);
9910 break;
9911
9912 case OP_CHOICES:
9913 *oplenp = 3;
9914 *argsp = longest_to_int (exp->elts[pc + 1].longconst) + 1;
9915 break;
9916
9917 case OP_STRING:
9918 case OP_NAME:
9919 {
9920 int len = longest_to_int (exp->elts[pc + 1].longconst);
9921 *oplenp = 4 + BYTES_TO_EXP_ELEM (len + 1);
9922 *argsp = 0;
9923 break;
9924 }
4c4b4cd2
PH
9925 }
9926}
9927
9928static int
9929ada_dump_subexp_body (struct expression *exp, struct ui_file *stream, int elt)
9930{
9931 enum exp_opcode op = exp->elts[elt].opcode;
9932 int oplen, nargs;
9933 int pc = elt;
9934 int i;
76a01679 9935
4c4b4cd2
PH
9936 ada_forward_operator_length (exp, elt, &oplen, &nargs);
9937
76a01679 9938 switch (op)
4c4b4cd2 9939 {
76a01679 9940 /* Ada attributes ('Foo). */
4c4b4cd2
PH
9941 case OP_ATR_FIRST:
9942 case OP_ATR_LAST:
9943 case OP_ATR_LENGTH:
9944 case OP_ATR_IMAGE:
9945 case OP_ATR_MAX:
9946 case OP_ATR_MIN:
9947 case OP_ATR_MODULUS:
9948 case OP_ATR_POS:
9949 case OP_ATR_SIZE:
9950 case OP_ATR_TAG:
9951 case OP_ATR_VAL:
9952 break;
9953
9954 case UNOP_IN_RANGE:
9955 case UNOP_QUAL:
323e0a4a
AC
9956 /* XXX: gdb_sprint_host_address, type_sprint */
9957 fprintf_filtered (stream, _("Type @"));
4c4b4cd2
PH
9958 gdb_print_host_address (exp->elts[pc + 1].type, stream);
9959 fprintf_filtered (stream, " (");
9960 type_print (exp->elts[pc + 1].type, NULL, stream, 0);
9961 fprintf_filtered (stream, ")");
9962 break;
9963 case BINOP_IN_BOUNDS:
52ce6436
PH
9964 fprintf_filtered (stream, " (%d)",
9965 longest_to_int (exp->elts[pc + 2].longconst));
4c4b4cd2
PH
9966 break;
9967 case TERNOP_IN_RANGE:
9968 break;
9969
52ce6436
PH
9970 case OP_AGGREGATE:
9971 case OP_OTHERS:
9972 case OP_DISCRETE_RANGE:
9973 case OP_POSITIONAL:
9974 case OP_CHOICES:
9975 break;
9976
9977 case OP_NAME:
9978 case OP_STRING:
9979 {
9980 char *name = &exp->elts[elt + 2].string;
9981 int len = longest_to_int (exp->elts[elt + 1].longconst);
9982 fprintf_filtered (stream, "Text: `%.*s'", len, name);
9983 break;
9984 }
9985
4c4b4cd2
PH
9986 default:
9987 return dump_subexp_body_standard (exp, stream, elt);
9988 }
9989
9990 elt += oplen;
9991 for (i = 0; i < nargs; i += 1)
9992 elt = dump_subexp (exp, stream, elt);
9993
9994 return elt;
9995}
9996
9997/* The Ada extension of print_subexp (q.v.). */
9998
76a01679
JB
9999static void
10000ada_print_subexp (struct expression *exp, int *pos,
10001 struct ui_file *stream, enum precedence prec)
4c4b4cd2 10002{
52ce6436 10003 int oplen, nargs, i;
4c4b4cd2
PH
10004 int pc = *pos;
10005 enum exp_opcode op = exp->elts[pc].opcode;
10006
10007 ada_forward_operator_length (exp, pc, &oplen, &nargs);
10008
52ce6436 10009 *pos += oplen;
4c4b4cd2
PH
10010 switch (op)
10011 {
10012 default:
52ce6436 10013 *pos -= oplen;
4c4b4cd2
PH
10014 print_subexp_standard (exp, pos, stream, prec);
10015 return;
10016
10017 case OP_VAR_VALUE:
4c4b4cd2
PH
10018 fputs_filtered (SYMBOL_NATURAL_NAME (exp->elts[pc + 2].symbol), stream);
10019 return;
10020
10021 case BINOP_IN_BOUNDS:
323e0a4a 10022 /* XXX: sprint_subexp */
4c4b4cd2 10023 print_subexp (exp, pos, stream, PREC_SUFFIX);
0b48a291 10024 fputs_filtered (" in ", stream);
4c4b4cd2 10025 print_subexp (exp, pos, stream, PREC_SUFFIX);
0b48a291 10026 fputs_filtered ("'range", stream);
4c4b4cd2 10027 if (exp->elts[pc + 1].longconst > 1)
76a01679
JB
10028 fprintf_filtered (stream, "(%ld)",
10029 (long) exp->elts[pc + 1].longconst);
4c4b4cd2
PH
10030 return;
10031
10032 case TERNOP_IN_RANGE:
4c4b4cd2 10033 if (prec >= PREC_EQUAL)
76a01679 10034 fputs_filtered ("(", stream);
323e0a4a 10035 /* XXX: sprint_subexp */
4c4b4cd2 10036 print_subexp (exp, pos, stream, PREC_SUFFIX);
0b48a291 10037 fputs_filtered (" in ", stream);
4c4b4cd2
PH
10038 print_subexp (exp, pos, stream, PREC_EQUAL);
10039 fputs_filtered (" .. ", stream);
10040 print_subexp (exp, pos, stream, PREC_EQUAL);
10041 if (prec >= PREC_EQUAL)
76a01679
JB
10042 fputs_filtered (")", stream);
10043 return;
4c4b4cd2
PH
10044
10045 case OP_ATR_FIRST:
10046 case OP_ATR_LAST:
10047 case OP_ATR_LENGTH:
10048 case OP_ATR_IMAGE:
10049 case OP_ATR_MAX:
10050 case OP_ATR_MIN:
10051 case OP_ATR_MODULUS:
10052 case OP_ATR_POS:
10053 case OP_ATR_SIZE:
10054 case OP_ATR_TAG:
10055 case OP_ATR_VAL:
4c4b4cd2 10056 if (exp->elts[*pos].opcode == OP_TYPE)
76a01679
JB
10057 {
10058 if (TYPE_CODE (exp->elts[*pos + 1].type) != TYPE_CODE_VOID)
10059 LA_PRINT_TYPE (exp->elts[*pos + 1].type, "", stream, 0, 0);
10060 *pos += 3;
10061 }
4c4b4cd2 10062 else
76a01679 10063 print_subexp (exp, pos, stream, PREC_SUFFIX);
4c4b4cd2
PH
10064 fprintf_filtered (stream, "'%s", ada_attribute_name (op));
10065 if (nargs > 1)
76a01679
JB
10066 {
10067 int tem;
10068 for (tem = 1; tem < nargs; tem += 1)
10069 {
10070 fputs_filtered ((tem == 1) ? " (" : ", ", stream);
10071 print_subexp (exp, pos, stream, PREC_ABOVE_COMMA);
10072 }
10073 fputs_filtered (")", stream);
10074 }
4c4b4cd2 10075 return;
14f9c5c9 10076
4c4b4cd2 10077 case UNOP_QUAL:
4c4b4cd2
PH
10078 type_print (exp->elts[pc + 1].type, "", stream, 0);
10079 fputs_filtered ("'(", stream);
10080 print_subexp (exp, pos, stream, PREC_PREFIX);
10081 fputs_filtered (")", stream);
10082 return;
14f9c5c9 10083
4c4b4cd2 10084 case UNOP_IN_RANGE:
323e0a4a 10085 /* XXX: sprint_subexp */
4c4b4cd2 10086 print_subexp (exp, pos, stream, PREC_SUFFIX);
0b48a291 10087 fputs_filtered (" in ", stream);
4c4b4cd2
PH
10088 LA_PRINT_TYPE (exp->elts[pc + 1].type, "", stream, 1, 0);
10089 return;
52ce6436
PH
10090
10091 case OP_DISCRETE_RANGE:
10092 print_subexp (exp, pos, stream, PREC_SUFFIX);
10093 fputs_filtered ("..", stream);
10094 print_subexp (exp, pos, stream, PREC_SUFFIX);
10095 return;
10096
10097 case OP_OTHERS:
10098 fputs_filtered ("others => ", stream);
10099 print_subexp (exp, pos, stream, PREC_SUFFIX);
10100 return;
10101
10102 case OP_CHOICES:
10103 for (i = 0; i < nargs-1; i += 1)
10104 {
10105 if (i > 0)
10106 fputs_filtered ("|", stream);
10107 print_subexp (exp, pos, stream, PREC_SUFFIX);
10108 }
10109 fputs_filtered (" => ", stream);
10110 print_subexp (exp, pos, stream, PREC_SUFFIX);
10111 return;
10112
10113 case OP_POSITIONAL:
10114 print_subexp (exp, pos, stream, PREC_SUFFIX);
10115 return;
10116
10117 case OP_AGGREGATE:
10118 fputs_filtered ("(", stream);
10119 for (i = 0; i < nargs; i += 1)
10120 {
10121 if (i > 0)
10122 fputs_filtered (", ", stream);
10123 print_subexp (exp, pos, stream, PREC_SUFFIX);
10124 }
10125 fputs_filtered (")", stream);
10126 return;
4c4b4cd2
PH
10127 }
10128}
14f9c5c9
AS
10129
10130/* Table mapping opcodes into strings for printing operators
10131 and precedences of the operators. */
10132
d2e4a39e
AS
10133static const struct op_print ada_op_print_tab[] = {
10134 {":=", BINOP_ASSIGN, PREC_ASSIGN, 1},
10135 {"or else", BINOP_LOGICAL_OR, PREC_LOGICAL_OR, 0},
10136 {"and then", BINOP_LOGICAL_AND, PREC_LOGICAL_AND, 0},
10137 {"or", BINOP_BITWISE_IOR, PREC_BITWISE_IOR, 0},
10138 {"xor", BINOP_BITWISE_XOR, PREC_BITWISE_XOR, 0},
10139 {"and", BINOP_BITWISE_AND, PREC_BITWISE_AND, 0},
10140 {"=", BINOP_EQUAL, PREC_EQUAL, 0},
10141 {"/=", BINOP_NOTEQUAL, PREC_EQUAL, 0},
10142 {"<=", BINOP_LEQ, PREC_ORDER, 0},
10143 {">=", BINOP_GEQ, PREC_ORDER, 0},
10144 {">", BINOP_GTR, PREC_ORDER, 0},
10145 {"<", BINOP_LESS, PREC_ORDER, 0},
10146 {">>", BINOP_RSH, PREC_SHIFT, 0},
10147 {"<<", BINOP_LSH, PREC_SHIFT, 0},
10148 {"+", BINOP_ADD, PREC_ADD, 0},
10149 {"-", BINOP_SUB, PREC_ADD, 0},
10150 {"&", BINOP_CONCAT, PREC_ADD, 0},
10151 {"*", BINOP_MUL, PREC_MUL, 0},
10152 {"/", BINOP_DIV, PREC_MUL, 0},
10153 {"rem", BINOP_REM, PREC_MUL, 0},
10154 {"mod", BINOP_MOD, PREC_MUL, 0},
10155 {"**", BINOP_EXP, PREC_REPEAT, 0},
10156 {"@", BINOP_REPEAT, PREC_REPEAT, 0},
10157 {"-", UNOP_NEG, PREC_PREFIX, 0},
10158 {"+", UNOP_PLUS, PREC_PREFIX, 0},
10159 {"not ", UNOP_LOGICAL_NOT, PREC_PREFIX, 0},
10160 {"not ", UNOP_COMPLEMENT, PREC_PREFIX, 0},
10161 {"abs ", UNOP_ABS, PREC_PREFIX, 0},
4c4b4cd2
PH
10162 {".all", UNOP_IND, PREC_SUFFIX, 1},
10163 {"'access", UNOP_ADDR, PREC_SUFFIX, 1},
10164 {"'size", OP_ATR_SIZE, PREC_SUFFIX, 1},
d2e4a39e 10165 {NULL, 0, 0, 0}
14f9c5c9
AS
10166};
10167\f
6c038f32 10168 /* Fundamental Ada Types */
14f9c5c9
AS
10169
10170/* Create a fundamental Ada type using default reasonable for the current
10171 target machine.
10172
10173 Some object/debugging file formats (DWARF version 1, COFF, etc) do not
10174 define fundamental types such as "int" or "double". Others (stabs or
10175 DWARF version 2, etc) do define fundamental types. For the formats which
10176 don't provide fundamental types, gdb can create such types using this
10177 function.
10178
10179 FIXME: Some compilers distinguish explicitly signed integral types
10180 (signed short, signed int, signed long) from "regular" integral types
10181 (short, int, long) in the debugging information. There is some dis-
10182 agreement as to how useful this feature is. In particular, gcc does
10183 not support this. Also, only some debugging formats allow the
10184 distinction to be passed on to a debugger. For now, we always just
10185 use "short", "int", or "long" as the type name, for both the implicit
10186 and explicitly signed types. This also makes life easier for the
10187 gdb test suite since we don't have to account for the differences
10188 in output depending upon what the compiler and debugging format
10189 support. We will probably have to re-examine the issue when gdb
10190 starts taking it's fundamental type information directly from the
10191 debugging information supplied by the compiler. fnf@cygnus.com */
10192
10193static struct type *
ebf56fd3 10194ada_create_fundamental_type (struct objfile *objfile, int typeid)
14f9c5c9
AS
10195{
10196 struct type *type = NULL;
10197
10198 switch (typeid)
10199 {
d2e4a39e
AS
10200 default:
10201 /* FIXME: For now, if we are asked to produce a type not in this
10202 language, create the equivalent of a C integer type with the
10203 name "<?type?>". When all the dust settles from the type
4c4b4cd2 10204 reconstruction work, this should probably become an error. */
d2e4a39e 10205 type = init_type (TYPE_CODE_INT,
9a76efb6 10206 gdbarch_int_bit (current_gdbarch) / TARGET_CHAR_BIT,
4c4b4cd2 10207 0, "<?type?>", objfile);
323e0a4a 10208 warning (_("internal error: no Ada fundamental type %d"), typeid);
d2e4a39e
AS
10209 break;
10210 case FT_VOID:
10211 type = init_type (TYPE_CODE_VOID,
4c4b4cd2
PH
10212 TARGET_CHAR_BIT / TARGET_CHAR_BIT,
10213 0, "void", objfile);
d2e4a39e
AS
10214 break;
10215 case FT_CHAR:
10216 type = init_type (TYPE_CODE_INT,
4c4b4cd2
PH
10217 TARGET_CHAR_BIT / TARGET_CHAR_BIT,
10218 0, "character", objfile);
d2e4a39e
AS
10219 break;
10220 case FT_SIGNED_CHAR:
10221 type = init_type (TYPE_CODE_INT,
4c4b4cd2
PH
10222 TARGET_CHAR_BIT / TARGET_CHAR_BIT,
10223 0, "signed char", objfile);
d2e4a39e
AS
10224 break;
10225 case FT_UNSIGNED_CHAR:
10226 type = init_type (TYPE_CODE_INT,
4c4b4cd2
PH
10227 TARGET_CHAR_BIT / TARGET_CHAR_BIT,
10228 TYPE_FLAG_UNSIGNED, "unsigned char", objfile);
d2e4a39e
AS
10229 break;
10230 case FT_SHORT:
10231 type = init_type (TYPE_CODE_INT,
9a76efb6 10232 gdbarch_short_bit (current_gdbarch) / TARGET_CHAR_BIT,
4c4b4cd2 10233 0, "short_integer", objfile);
d2e4a39e
AS
10234 break;
10235 case FT_SIGNED_SHORT:
10236 type = init_type (TYPE_CODE_INT,
9a76efb6 10237 gdbarch_short_bit (current_gdbarch) / TARGET_CHAR_BIT,
4c4b4cd2 10238 0, "short_integer", objfile);
d2e4a39e
AS
10239 break;
10240 case FT_UNSIGNED_SHORT:
10241 type = init_type (TYPE_CODE_INT,
9a76efb6 10242 gdbarch_short_bit (current_gdbarch) / TARGET_CHAR_BIT,
4c4b4cd2 10243 TYPE_FLAG_UNSIGNED, "unsigned short", objfile);
d2e4a39e
AS
10244 break;
10245 case FT_INTEGER:
10246 type = init_type (TYPE_CODE_INT,
9a76efb6 10247 gdbarch_int_bit (current_gdbarch) / TARGET_CHAR_BIT,
4c4b4cd2 10248 0, "integer", objfile);
d2e4a39e
AS
10249 break;
10250 case FT_SIGNED_INTEGER:
9a76efb6
UW
10251 type = init_type (TYPE_CODE_INT,
10252 gdbarch_int_bit (current_gdbarch) / TARGET_CHAR_BIT,
72d5681a 10253 0, "integer", objfile); /* FIXME -fnf */
d2e4a39e
AS
10254 break;
10255 case FT_UNSIGNED_INTEGER:
10256 type = init_type (TYPE_CODE_INT,
9a76efb6 10257 gdbarch_int_bit (current_gdbarch) / TARGET_CHAR_BIT,
4c4b4cd2 10258 TYPE_FLAG_UNSIGNED, "unsigned int", objfile);
d2e4a39e
AS
10259 break;
10260 case FT_LONG:
10261 type = init_type (TYPE_CODE_INT,
9a76efb6 10262 gdbarch_long_bit (current_gdbarch) / TARGET_CHAR_BIT,
4c4b4cd2 10263 0, "long_integer", objfile);
d2e4a39e
AS
10264 break;
10265 case FT_SIGNED_LONG:
10266 type = init_type (TYPE_CODE_INT,
9a76efb6 10267 gdbarch_long_bit (current_gdbarch) / TARGET_CHAR_BIT,
4c4b4cd2 10268 0, "long_integer", objfile);
d2e4a39e
AS
10269 break;
10270 case FT_UNSIGNED_LONG:
10271 type = init_type (TYPE_CODE_INT,
9a76efb6 10272 gdbarch_long_bit (current_gdbarch) / TARGET_CHAR_BIT,
4c4b4cd2 10273 TYPE_FLAG_UNSIGNED, "unsigned long", objfile);
d2e4a39e
AS
10274 break;
10275 case FT_LONG_LONG:
10276 type = init_type (TYPE_CODE_INT,
9a76efb6
UW
10277 gdbarch_long_long_bit (current_gdbarch)
10278 / TARGET_CHAR_BIT,
10279 0, "long_long_integer", objfile);
d2e4a39e
AS
10280 break;
10281 case FT_SIGNED_LONG_LONG:
10282 type = init_type (TYPE_CODE_INT,
9a76efb6
UW
10283 gdbarch_long_long_bit (current_gdbarch)
10284 / TARGET_CHAR_BIT,
10285 0, "long_long_integer", objfile);
d2e4a39e
AS
10286 break;
10287 case FT_UNSIGNED_LONG_LONG:
10288 type = init_type (TYPE_CODE_INT,
9a76efb6
UW
10289 gdbarch_long_long_bit (current_gdbarch)
10290 / TARGET_CHAR_BIT,
10291 TYPE_FLAG_UNSIGNED, "unsigned long long", objfile);
d2e4a39e
AS
10292 break;
10293 case FT_FLOAT:
10294 type = init_type (TYPE_CODE_FLT,
ea06eb3d 10295 gdbarch_float_bit (current_gdbarch) / TARGET_CHAR_BIT,
4c4b4cd2 10296 0, "float", objfile);
d2e4a39e
AS
10297 break;
10298 case FT_DBL_PREC_FLOAT:
10299 type = init_type (TYPE_CODE_FLT,
ea06eb3d 10300 gdbarch_double_bit (current_gdbarch) / TARGET_CHAR_BIT,
4c4b4cd2 10301 0, "long_float", objfile);
d2e4a39e
AS
10302 break;
10303 case FT_EXT_PREC_FLOAT:
10304 type = init_type (TYPE_CODE_FLT,
ea06eb3d
UW
10305 gdbarch_long_double_bit (current_gdbarch)
10306 / TARGET_CHAR_BIT,
4c4b4cd2 10307 0, "long_long_float", objfile);
d2e4a39e
AS
10308 break;
10309 }
14f9c5c9
AS
10310 return (type);
10311}
10312
72d5681a
PH
10313enum ada_primitive_types {
10314 ada_primitive_type_int,
10315 ada_primitive_type_long,
10316 ada_primitive_type_short,
10317 ada_primitive_type_char,
10318 ada_primitive_type_float,
10319 ada_primitive_type_double,
10320 ada_primitive_type_void,
10321 ada_primitive_type_long_long,
10322 ada_primitive_type_long_double,
10323 ada_primitive_type_natural,
10324 ada_primitive_type_positive,
10325 ada_primitive_type_system_address,
10326 nr_ada_primitive_types
10327};
6c038f32
PH
10328
10329static void
72d5681a
PH
10330ada_language_arch_info (struct gdbarch *current_gdbarch,
10331 struct language_arch_info *lai)
10332{
10333 const struct builtin_type *builtin = builtin_type (current_gdbarch);
10334 lai->primitive_type_vector
10335 = GDBARCH_OBSTACK_CALLOC (current_gdbarch, nr_ada_primitive_types + 1,
10336 struct type *);
10337 lai->primitive_type_vector [ada_primitive_type_int] =
9a76efb6
UW
10338 init_type (TYPE_CODE_INT,
10339 gdbarch_int_bit (current_gdbarch) / TARGET_CHAR_BIT,
10340 0, "integer", (struct objfile *) NULL);
72d5681a 10341 lai->primitive_type_vector [ada_primitive_type_long] =
9a76efb6
UW
10342 init_type (TYPE_CODE_INT,
10343 gdbarch_long_bit (current_gdbarch) / TARGET_CHAR_BIT,
10344 0, "long_integer", (struct objfile *) NULL);
72d5681a 10345 lai->primitive_type_vector [ada_primitive_type_short] =
9a76efb6
UW
10346 init_type (TYPE_CODE_INT,
10347 gdbarch_short_bit (current_gdbarch) / TARGET_CHAR_BIT,
10348 0, "short_integer", (struct objfile *) NULL);
61ee279c
PH
10349 lai->string_char_type =
10350 lai->primitive_type_vector [ada_primitive_type_char] =
6c038f32
PH
10351 init_type (TYPE_CODE_INT, TARGET_CHAR_BIT / TARGET_CHAR_BIT,
10352 0, "character", (struct objfile *) NULL);
72d5681a 10353 lai->primitive_type_vector [ada_primitive_type_float] =
ea06eb3d
UW
10354 init_type (TYPE_CODE_FLT,
10355 gdbarch_float_bit (current_gdbarch)/ TARGET_CHAR_BIT,
6c038f32 10356 0, "float", (struct objfile *) NULL);
72d5681a 10357 lai->primitive_type_vector [ada_primitive_type_double] =
ea06eb3d
UW
10358 init_type (TYPE_CODE_FLT,
10359 gdbarch_double_bit (current_gdbarch) / TARGET_CHAR_BIT,
6c038f32 10360 0, "long_float", (struct objfile *) NULL);
72d5681a 10361 lai->primitive_type_vector [ada_primitive_type_long_long] =
9a76efb6
UW
10362 init_type (TYPE_CODE_INT,
10363 gdbarch_long_long_bit (current_gdbarch) / TARGET_CHAR_BIT,
6c038f32 10364 0, "long_long_integer", (struct objfile *) NULL);
72d5681a 10365 lai->primitive_type_vector [ada_primitive_type_long_double] =
ea06eb3d
UW
10366 init_type (TYPE_CODE_FLT,
10367 gdbarch_double_bit (current_gdbarch) / TARGET_CHAR_BIT,
6c038f32 10368 0, "long_long_float", (struct objfile *) NULL);
72d5681a 10369 lai->primitive_type_vector [ada_primitive_type_natural] =
9a76efb6
UW
10370 init_type (TYPE_CODE_INT,
10371 gdbarch_int_bit (current_gdbarch) / TARGET_CHAR_BIT,
10372 0, "natural", (struct objfile *) NULL);
72d5681a 10373 lai->primitive_type_vector [ada_primitive_type_positive] =
9a76efb6
UW
10374 init_type (TYPE_CODE_INT,
10375 gdbarch_int_bit (current_gdbarch) / TARGET_CHAR_BIT,
10376 0, "positive", (struct objfile *) NULL);
72d5681a 10377 lai->primitive_type_vector [ada_primitive_type_void] = builtin->builtin_void;
6c038f32 10378
72d5681a 10379 lai->primitive_type_vector [ada_primitive_type_system_address] =
6c038f32
PH
10380 lookup_pointer_type (init_type (TYPE_CODE_VOID, 1, 0, "void",
10381 (struct objfile *) NULL));
72d5681a
PH
10382 TYPE_NAME (lai->primitive_type_vector [ada_primitive_type_system_address])
10383 = "system__address";
6c038f32 10384}
6c038f32
PH
10385\f
10386 /* Language vector */
10387
10388/* Not really used, but needed in the ada_language_defn. */
10389
10390static void
10391emit_char (int c, struct ui_file *stream, int quoter)
10392{
10393 ada_emit_char (c, stream, quoter, 1);
10394}
10395
10396static int
10397parse (void)
10398{
10399 warnings_issued = 0;
10400 return ada_parse ();
10401}
10402
10403static const struct exp_descriptor ada_exp_descriptor = {
10404 ada_print_subexp,
10405 ada_operator_length,
10406 ada_op_name,
10407 ada_dump_subexp_body,
10408 ada_evaluate_subexp
10409};
10410
10411const struct language_defn ada_language_defn = {
10412 "ada", /* Language name */
10413 language_ada,
72d5681a 10414 NULL,
6c038f32
PH
10415 range_check_off,
10416 type_check_off,
10417 case_sensitive_on, /* Yes, Ada is case-insensitive, but
10418 that's not quite what this means. */
6c038f32
PH
10419 array_row_major,
10420 &ada_exp_descriptor,
10421 parse,
10422 ada_error,
10423 resolve,
10424 ada_printchar, /* Print a character constant */
10425 ada_printstr, /* Function to print string constant */
10426 emit_char, /* Function to print single char (not used) */
10427 ada_create_fundamental_type, /* Create fundamental type in this language */
10428 ada_print_type, /* Print a type using appropriate syntax */
10429 ada_val_print, /* Print a value using appropriate syntax */
10430 ada_value_print, /* Print a top-level value */
10431 NULL, /* Language specific skip_trampoline */
10432 NULL, /* value_of_this */
10433 ada_lookup_symbol_nonlocal, /* Looking up non-local symbols. */
10434 basic_lookup_transparent_type, /* lookup_transparent_type */
10435 ada_la_decode, /* Language specific symbol demangler */
10436 NULL, /* Language specific class_name_from_physname */
10437 ada_op_print_tab, /* expression operators for printing */
10438 0, /* c-style arrays */
10439 1, /* String lower bound */
72d5681a 10440 NULL,
6c038f32 10441 ada_get_gdb_completer_word_break_characters,
72d5681a 10442 ada_language_arch_info,
e79af960 10443 ada_print_array_index,
41f1b697 10444 default_pass_by_reference,
6c038f32
PH
10445 LANG_MAGIC
10446};
10447
d2e4a39e 10448void
6c038f32 10449_initialize_ada_language (void)
14f9c5c9 10450{
6c038f32
PH
10451 add_language (&ada_language_defn);
10452
10453 varsize_limit = 65536;
6c038f32
PH
10454
10455 obstack_init (&symbol_list_obstack);
10456
10457 decoded_names_store = htab_create_alloc
10458 (256, htab_hash_string, (int (*)(const void *, const void *)) streq,
10459 NULL, xcalloc, xfree);
14f9c5c9 10460}