]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blame - gdb/ada-lang.c
Use search_domain::FUNCTIONS_DOMAIN when setting breakpoints
[thirdparty/binutils-gdb.git] / gdb / ada-lang.c
CommitLineData
6e681866 1/* Ada language support routines for GDB, the GNU debugger.
10a2c479 2
61baf725 3 Copyright (C) 1992-2017 Free Software Foundation, Inc.
14f9c5c9 4
a9762ec7 5 This file is part of GDB.
14f9c5c9 6
a9762ec7
JB
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
14f9c5c9 11
a9762ec7
JB
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
14f9c5c9 16
a9762ec7
JB
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
14f9c5c9 19
96d887e8 20
4c4b4cd2 21#include "defs.h"
14f9c5c9 22#include <ctype.h>
14f9c5c9 23#include "demangle.h"
4c4b4cd2
PH
24#include "gdb_regex.h"
25#include "frame.h"
14f9c5c9
AS
26#include "symtab.h"
27#include "gdbtypes.h"
28#include "gdbcmd.h"
29#include "expression.h"
30#include "parser-defs.h"
31#include "language.h"
a53b64ea 32#include "varobj.h"
14f9c5c9
AS
33#include "c-lang.h"
34#include "inferior.h"
35#include "symfile.h"
36#include "objfiles.h"
37#include "breakpoint.h"
38#include "gdbcore.h"
4c4b4cd2
PH
39#include "hashtab.h"
40#include "gdb_obstack.h"
14f9c5c9 41#include "ada-lang.h"
4c4b4cd2 42#include "completer.h"
53ce3c39 43#include <sys/stat.h>
14f9c5c9 44#include "ui-out.h"
fe898f56 45#include "block.h"
04714b91 46#include "infcall.h"
de4f826b 47#include "dictionary.h"
f7f9143b
JB
48#include "annotate.h"
49#include "valprint.h"
9bbc9174 50#include "source.h"
0259addd 51#include "observer.h"
2ba95b9b 52#include "vec.h"
692465f1 53#include "stack.h"
fa864999 54#include "gdb_vecs.h"
79d43c61 55#include "typeprint.h"
22cee43f 56#include "namespace.h"
14f9c5c9 57
ccefe4c4 58#include "psymtab.h"
40bc484c 59#include "value.h"
956a9fb9 60#include "mi/mi-common.h"
9ac4176b 61#include "arch-utils.h"
0fcd72ba 62#include "cli/cli-utils.h"
14bc53a8 63#include "common/function-view.h"
d5722aa2 64#include "common/byte-vector.h"
ab816a27 65#include <algorithm>
ccefe4c4 66
4c4b4cd2 67/* Define whether or not the C operator '/' truncates towards zero for
0963b4bd 68 differently signed operands (truncation direction is undefined in C).
4c4b4cd2
PH
69 Copied from valarith.c. */
70
71#ifndef TRUNCATION_TOWARDS_ZERO
72#define TRUNCATION_TOWARDS_ZERO ((-5 / 2) == -2)
73#endif
74
d2e4a39e 75static struct type *desc_base_type (struct type *);
14f9c5c9 76
d2e4a39e 77static struct type *desc_bounds_type (struct type *);
14f9c5c9 78
d2e4a39e 79static struct value *desc_bounds (struct value *);
14f9c5c9 80
d2e4a39e 81static int fat_pntr_bounds_bitpos (struct type *);
14f9c5c9 82
d2e4a39e 83static int fat_pntr_bounds_bitsize (struct type *);
14f9c5c9 84
556bdfd4 85static struct type *desc_data_target_type (struct type *);
14f9c5c9 86
d2e4a39e 87static struct value *desc_data (struct value *);
14f9c5c9 88
d2e4a39e 89static int fat_pntr_data_bitpos (struct type *);
14f9c5c9 90
d2e4a39e 91static int fat_pntr_data_bitsize (struct type *);
14f9c5c9 92
d2e4a39e 93static struct value *desc_one_bound (struct value *, int, int);
14f9c5c9 94
d2e4a39e 95static int desc_bound_bitpos (struct type *, int, int);
14f9c5c9 96
d2e4a39e 97static int desc_bound_bitsize (struct type *, int, int);
14f9c5c9 98
d2e4a39e 99static struct type *desc_index_type (struct type *, int);
14f9c5c9 100
d2e4a39e 101static int desc_arity (struct type *);
14f9c5c9 102
d2e4a39e 103static int ada_type_match (struct type *, struct type *, int);
14f9c5c9 104
d2e4a39e 105static int ada_args_match (struct symbol *, struct value **, int);
14f9c5c9 106
40bc484c 107static struct value *make_array_descriptor (struct type *, struct value *);
14f9c5c9 108
4c4b4cd2 109static void ada_add_block_symbols (struct obstack *,
b5ec771e
PA
110 const struct block *,
111 const lookup_name_info &lookup_name,
112 domain_enum, struct objfile *);
14f9c5c9 113
22cee43f 114static void ada_add_all_symbols (struct obstack *, const struct block *,
b5ec771e
PA
115 const lookup_name_info &lookup_name,
116 domain_enum, int, int *);
22cee43f 117
d12307c1 118static int is_nonfunction (struct block_symbol *, int);
14f9c5c9 119
76a01679 120static void add_defn_to_vec (struct obstack *, struct symbol *,
f0c5f9b2 121 const struct block *);
14f9c5c9 122
4c4b4cd2
PH
123static int num_defns_collected (struct obstack *);
124
d12307c1 125static struct block_symbol *defns_collected (struct obstack *, int);
14f9c5c9 126
4c4b4cd2 127static struct value *resolve_subexp (struct expression **, int *, int,
76a01679 128 struct type *);
14f9c5c9 129
d2e4a39e 130static void replace_operator_with_call (struct expression **, int, int, int,
270140bd 131 struct symbol *, const struct block *);
14f9c5c9 132
d2e4a39e 133static int possible_user_operator_p (enum exp_opcode, struct value **);
14f9c5c9 134
a121b7c1 135static const char *ada_op_name (enum exp_opcode);
4c4b4cd2
PH
136
137static const char *ada_decoded_op_name (enum exp_opcode);
14f9c5c9 138
d2e4a39e 139static int numeric_type_p (struct type *);
14f9c5c9 140
d2e4a39e 141static int integer_type_p (struct type *);
14f9c5c9 142
d2e4a39e 143static int scalar_type_p (struct type *);
14f9c5c9 144
d2e4a39e 145static int discrete_type_p (struct type *);
14f9c5c9 146
aeb5907d
JB
147static enum ada_renaming_category parse_old_style_renaming (struct type *,
148 const char **,
149 int *,
150 const char **);
151
152static struct symbol *find_old_style_renaming_symbol (const char *,
270140bd 153 const struct block *);
aeb5907d 154
a121b7c1 155static struct type *ada_lookup_struct_elt_type (struct type *, const char *,
988f6b3d 156 int, int);
4c4b4cd2 157
d2e4a39e 158static struct value *evaluate_subexp_type (struct expression *, int *);
14f9c5c9 159
b4ba55a1
JB
160static struct type *ada_find_parallel_type_with_name (struct type *,
161 const char *);
162
d2e4a39e 163static int is_dynamic_field (struct type *, int);
14f9c5c9 164
10a2c479 165static struct type *to_fixed_variant_branch_type (struct type *,
fc1a4b47 166 const gdb_byte *,
4c4b4cd2
PH
167 CORE_ADDR, struct value *);
168
169static struct type *to_fixed_array_type (struct type *, struct value *, int);
14f9c5c9 170
28c85d6c 171static struct type *to_fixed_range_type (struct type *, struct value *);
14f9c5c9 172
d2e4a39e 173static struct type *to_static_fixed_type (struct type *);
f192137b 174static struct type *static_unwrap_type (struct type *type);
14f9c5c9 175
d2e4a39e 176static struct value *unwrap_value (struct value *);
14f9c5c9 177
ad82864c 178static struct type *constrained_packed_array_type (struct type *, long *);
14f9c5c9 179
ad82864c 180static struct type *decode_constrained_packed_array_type (struct type *);
14f9c5c9 181
ad82864c
JB
182static long decode_packed_array_bitsize (struct type *);
183
184static struct value *decode_constrained_packed_array (struct value *);
185
186static int ada_is_packed_array_type (struct type *);
187
188static int ada_is_unconstrained_packed_array_type (struct type *);
14f9c5c9 189
d2e4a39e 190static struct value *value_subscript_packed (struct value *, int,
4c4b4cd2 191 struct value **);
14f9c5c9 192
50810684 193static void move_bits (gdb_byte *, int, const gdb_byte *, int, int, int);
52ce6436 194
4c4b4cd2
PH
195static struct value *coerce_unspec_val_to_type (struct value *,
196 struct type *);
14f9c5c9 197
d2e4a39e 198static int lesseq_defined_than (struct symbol *, struct symbol *);
14f9c5c9 199
d2e4a39e 200static int equiv_types (struct type *, struct type *);
14f9c5c9 201
d2e4a39e 202static int is_name_suffix (const char *);
14f9c5c9 203
73589123
PH
204static int advance_wild_match (const char **, const char *, int);
205
b5ec771e 206static bool wild_match (const char *name, const char *patn);
14f9c5c9 207
d2e4a39e 208static struct value *ada_coerce_ref (struct value *);
14f9c5c9 209
4c4b4cd2
PH
210static LONGEST pos_atr (struct value *);
211
3cb382c9 212static struct value *value_pos_atr (struct type *, struct value *);
14f9c5c9 213
d2e4a39e 214static struct value *value_val_atr (struct type *, struct value *);
14f9c5c9 215
4c4b4cd2
PH
216static struct symbol *standard_lookup (const char *, const struct block *,
217 domain_enum);
14f9c5c9 218
108d56a4 219static struct value *ada_search_struct_field (const char *, struct value *, int,
4c4b4cd2
PH
220 struct type *);
221
222static struct value *ada_value_primitive_field (struct value *, int, int,
223 struct type *);
224
0d5cff50 225static int find_struct_field (const char *, struct type *, int,
52ce6436 226 struct type **, int *, int *, int *, int *);
4c4b4cd2
PH
227
228static struct value *ada_to_fixed_value_create (struct type *, CORE_ADDR,
229 struct value *);
230
d12307c1 231static int ada_resolve_function (struct block_symbol *, int,
4c4b4cd2
PH
232 struct value **, int, const char *,
233 struct type *);
234
4c4b4cd2
PH
235static int ada_is_direct_array_type (struct type *);
236
72d5681a
PH
237static void ada_language_arch_info (struct gdbarch *,
238 struct language_arch_info *);
714e53ab 239
52ce6436
PH
240static struct value *ada_index_struct_field (int, struct value *, int,
241 struct type *);
242
243static struct value *assign_aggregate (struct value *, struct value *,
0963b4bd
MS
244 struct expression *,
245 int *, enum noside);
52ce6436
PH
246
247static void aggregate_assign_from_choices (struct value *, struct value *,
248 struct expression *,
249 int *, LONGEST *, int *,
250 int, LONGEST, LONGEST);
251
252static void aggregate_assign_positional (struct value *, struct value *,
253 struct expression *,
254 int *, LONGEST *, int *, int,
255 LONGEST, LONGEST);
256
257
258static void aggregate_assign_others (struct value *, struct value *,
259 struct expression *,
260 int *, LONGEST *, int, LONGEST, LONGEST);
261
262
263static void add_component_interval (LONGEST, LONGEST, LONGEST *, int *, int);
264
265
266static struct value *ada_evaluate_subexp (struct type *, struct expression *,
267 int *, enum noside);
268
269static void ada_forward_operator_length (struct expression *, int, int *,
270 int *);
852dff6c
JB
271
272static struct type *ada_find_any_type (const char *name);
b5ec771e
PA
273
274static symbol_name_matcher_ftype *ada_get_symbol_name_matcher
275 (const lookup_name_info &lookup_name);
276
4c4b4cd2
PH
277\f
278
ee01b665
JB
279/* The result of a symbol lookup to be stored in our symbol cache. */
280
281struct cache_entry
282{
283 /* The name used to perform the lookup. */
284 const char *name;
285 /* The namespace used during the lookup. */
fe978cb0 286 domain_enum domain;
ee01b665
JB
287 /* The symbol returned by the lookup, or NULL if no matching symbol
288 was found. */
289 struct symbol *sym;
290 /* The block where the symbol was found, or NULL if no matching
291 symbol was found. */
292 const struct block *block;
293 /* A pointer to the next entry with the same hash. */
294 struct cache_entry *next;
295};
296
297/* The Ada symbol cache, used to store the result of Ada-mode symbol
298 lookups in the course of executing the user's commands.
299
300 The cache is implemented using a simple, fixed-sized hash.
301 The size is fixed on the grounds that there are not likely to be
302 all that many symbols looked up during any given session, regardless
303 of the size of the symbol table. If we decide to go to a resizable
304 table, let's just use the stuff from libiberty instead. */
305
306#define HASH_SIZE 1009
307
308struct ada_symbol_cache
309{
310 /* An obstack used to store the entries in our cache. */
311 struct obstack cache_space;
312
313 /* The root of the hash table used to implement our symbol cache. */
314 struct cache_entry *root[HASH_SIZE];
315};
316
317static void ada_free_symbol_cache (struct ada_symbol_cache *sym_cache);
76a01679 318
4c4b4cd2 319/* Maximum-sized dynamic type. */
14f9c5c9
AS
320static unsigned int varsize_limit;
321
67cb5b2d 322static const char ada_completer_word_break_characters[] =
4c4b4cd2
PH
323#ifdef VMS
324 " \t\n!@#%^&*()+=|~`}{[]\";:?/,-";
325#else
14f9c5c9 326 " \t\n!@#$%^&*()+=|~`}{[]\";:?/,-";
4c4b4cd2 327#endif
14f9c5c9 328
4c4b4cd2 329/* The name of the symbol to use to get the name of the main subprogram. */
76a01679 330static const char ADA_MAIN_PROGRAM_SYMBOL_NAME[]
4c4b4cd2 331 = "__gnat_ada_main_program_name";
14f9c5c9 332
4c4b4cd2
PH
333/* Limit on the number of warnings to raise per expression evaluation. */
334static int warning_limit = 2;
335
336/* Number of warning messages issued; reset to 0 by cleanups after
337 expression evaluation. */
338static int warnings_issued = 0;
339
340static const char *known_runtime_file_name_patterns[] = {
341 ADA_KNOWN_RUNTIME_FILE_NAME_PATTERNS NULL
342};
343
344static const char *known_auxiliary_function_name_patterns[] = {
345 ADA_KNOWN_AUXILIARY_FUNCTION_NAME_PATTERNS NULL
346};
347
348/* Space for allocating results of ada_lookup_symbol_list. */
349static struct obstack symbol_list_obstack;
350
c6044dd1
JB
351/* Maintenance-related settings for this module. */
352
353static struct cmd_list_element *maint_set_ada_cmdlist;
354static struct cmd_list_element *maint_show_ada_cmdlist;
355
356/* Implement the "maintenance set ada" (prefix) command. */
357
358static void
981a3fb3 359maint_set_ada_cmd (const char *args, int from_tty)
c6044dd1 360{
635c7e8a
TT
361 help_list (maint_set_ada_cmdlist, "maintenance set ada ", all_commands,
362 gdb_stdout);
c6044dd1
JB
363}
364
365/* Implement the "maintenance show ada" (prefix) command. */
366
367static void
981a3fb3 368maint_show_ada_cmd (const char *args, int from_tty)
c6044dd1
JB
369{
370 cmd_show_list (maint_show_ada_cmdlist, from_tty, "");
371}
372
373/* The "maintenance ada set/show ignore-descriptive-type" value. */
374
375static int ada_ignore_descriptive_types_p = 0;
376
e802dbe0
JB
377 /* Inferior-specific data. */
378
379/* Per-inferior data for this module. */
380
381struct ada_inferior_data
382{
383 /* The ada__tags__type_specific_data type, which is used when decoding
384 tagged types. With older versions of GNAT, this type was directly
385 accessible through a component ("tsd") in the object tag. But this
386 is no longer the case, so we cache it for each inferior. */
387 struct type *tsd_type;
3eecfa55
JB
388
389 /* The exception_support_info data. This data is used to determine
390 how to implement support for Ada exception catchpoints in a given
391 inferior. */
392 const struct exception_support_info *exception_info;
e802dbe0
JB
393};
394
395/* Our key to this module's inferior data. */
396static const struct inferior_data *ada_inferior_data;
397
398/* A cleanup routine for our inferior data. */
399static void
400ada_inferior_data_cleanup (struct inferior *inf, void *arg)
401{
402 struct ada_inferior_data *data;
403
9a3c8263 404 data = (struct ada_inferior_data *) inferior_data (inf, ada_inferior_data);
e802dbe0
JB
405 if (data != NULL)
406 xfree (data);
407}
408
409/* Return our inferior data for the given inferior (INF).
410
411 This function always returns a valid pointer to an allocated
412 ada_inferior_data structure. If INF's inferior data has not
413 been previously set, this functions creates a new one with all
414 fields set to zero, sets INF's inferior to it, and then returns
415 a pointer to that newly allocated ada_inferior_data. */
416
417static struct ada_inferior_data *
418get_ada_inferior_data (struct inferior *inf)
419{
420 struct ada_inferior_data *data;
421
9a3c8263 422 data = (struct ada_inferior_data *) inferior_data (inf, ada_inferior_data);
e802dbe0
JB
423 if (data == NULL)
424 {
41bf6aca 425 data = XCNEW (struct ada_inferior_data);
e802dbe0
JB
426 set_inferior_data (inf, ada_inferior_data, data);
427 }
428
429 return data;
430}
431
432/* Perform all necessary cleanups regarding our module's inferior data
433 that is required after the inferior INF just exited. */
434
435static void
436ada_inferior_exit (struct inferior *inf)
437{
438 ada_inferior_data_cleanup (inf, NULL);
439 set_inferior_data (inf, ada_inferior_data, NULL);
440}
441
ee01b665
JB
442
443 /* program-space-specific data. */
444
445/* This module's per-program-space data. */
446struct ada_pspace_data
447{
448 /* The Ada symbol cache. */
449 struct ada_symbol_cache *sym_cache;
450};
451
452/* Key to our per-program-space data. */
453static const struct program_space_data *ada_pspace_data_handle;
454
455/* Return this module's data for the given program space (PSPACE).
456 If not is found, add a zero'ed one now.
457
458 This function always returns a valid object. */
459
460static struct ada_pspace_data *
461get_ada_pspace_data (struct program_space *pspace)
462{
463 struct ada_pspace_data *data;
464
9a3c8263
SM
465 data = ((struct ada_pspace_data *)
466 program_space_data (pspace, ada_pspace_data_handle));
ee01b665
JB
467 if (data == NULL)
468 {
469 data = XCNEW (struct ada_pspace_data);
470 set_program_space_data (pspace, ada_pspace_data_handle, data);
471 }
472
473 return data;
474}
475
476/* The cleanup callback for this module's per-program-space data. */
477
478static void
479ada_pspace_data_cleanup (struct program_space *pspace, void *data)
480{
9a3c8263 481 struct ada_pspace_data *pspace_data = (struct ada_pspace_data *) data;
ee01b665
JB
482
483 if (pspace_data->sym_cache != NULL)
484 ada_free_symbol_cache (pspace_data->sym_cache);
485 xfree (pspace_data);
486}
487
4c4b4cd2
PH
488 /* Utilities */
489
720d1a40 490/* If TYPE is a TYPE_CODE_TYPEDEF type, return the target type after
eed9788b 491 all typedef layers have been peeled. Otherwise, return TYPE.
720d1a40
JB
492
493 Normally, we really expect a typedef type to only have 1 typedef layer.
494 In other words, we really expect the target type of a typedef type to be
495 a non-typedef type. This is particularly true for Ada units, because
496 the language does not have a typedef vs not-typedef distinction.
497 In that respect, the Ada compiler has been trying to eliminate as many
498 typedef definitions in the debugging information, since they generally
499 do not bring any extra information (we still use typedef under certain
500 circumstances related mostly to the GNAT encoding).
501
502 Unfortunately, we have seen situations where the debugging information
503 generated by the compiler leads to such multiple typedef layers. For
504 instance, consider the following example with stabs:
505
506 .stabs "pck__float_array___XUP:Tt(0,46)=s16P_ARRAY:(0,47)=[...]"[...]
507 .stabs "pck__float_array___XUP:t(0,36)=(0,46)",128,0,6,0
508
509 This is an error in the debugging information which causes type
510 pck__float_array___XUP to be defined twice, and the second time,
511 it is defined as a typedef of a typedef.
512
513 This is on the fringe of legality as far as debugging information is
514 concerned, and certainly unexpected. But it is easy to handle these
515 situations correctly, so we can afford to be lenient in this case. */
516
517static struct type *
518ada_typedef_target_type (struct type *type)
519{
520 while (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
521 type = TYPE_TARGET_TYPE (type);
522 return type;
523}
524
41d27058
JB
525/* Given DECODED_NAME a string holding a symbol name in its
526 decoded form (ie using the Ada dotted notation), returns
527 its unqualified name. */
528
529static const char *
530ada_unqualified_name (const char *decoded_name)
531{
2b0f535a
JB
532 const char *result;
533
534 /* If the decoded name starts with '<', it means that the encoded
535 name does not follow standard naming conventions, and thus that
536 it is not your typical Ada symbol name. Trying to unqualify it
537 is therefore pointless and possibly erroneous. */
538 if (decoded_name[0] == '<')
539 return decoded_name;
540
541 result = strrchr (decoded_name, '.');
41d27058
JB
542 if (result != NULL)
543 result++; /* Skip the dot... */
544 else
545 result = decoded_name;
546
547 return result;
548}
549
550/* Return a string starting with '<', followed by STR, and '>'.
551 The result is good until the next call. */
552
553static char *
554add_angle_brackets (const char *str)
555{
556 static char *result = NULL;
557
558 xfree (result);
88c15c34 559 result = xstrprintf ("<%s>", str);
41d27058
JB
560 return result;
561}
96d887e8 562
67cb5b2d 563static const char *
4c4b4cd2
PH
564ada_get_gdb_completer_word_break_characters (void)
565{
566 return ada_completer_word_break_characters;
567}
568
e79af960
JB
569/* Print an array element index using the Ada syntax. */
570
571static void
572ada_print_array_index (struct value *index_value, struct ui_file *stream,
79a45b7d 573 const struct value_print_options *options)
e79af960 574{
79a45b7d 575 LA_VALUE_PRINT (index_value, stream, options);
e79af960
JB
576 fprintf_filtered (stream, " => ");
577}
578
f27cf670 579/* Assuming VECT points to an array of *SIZE objects of size
14f9c5c9 580 ELEMENT_SIZE, grow it to contain at least MIN_SIZE objects,
f27cf670 581 updating *SIZE as necessary and returning the (new) array. */
14f9c5c9 582
f27cf670
AS
583void *
584grow_vect (void *vect, size_t *size, size_t min_size, int element_size)
14f9c5c9 585{
d2e4a39e
AS
586 if (*size < min_size)
587 {
588 *size *= 2;
589 if (*size < min_size)
4c4b4cd2 590 *size = min_size;
f27cf670 591 vect = xrealloc (vect, *size * element_size);
d2e4a39e 592 }
f27cf670 593 return vect;
14f9c5c9
AS
594}
595
596/* True (non-zero) iff TARGET matches FIELD_NAME up to any trailing
4c4b4cd2 597 suffix of FIELD_NAME beginning "___". */
14f9c5c9
AS
598
599static int
ebf56fd3 600field_name_match (const char *field_name, const char *target)
14f9c5c9
AS
601{
602 int len = strlen (target);
5b4ee69b 603
d2e4a39e 604 return
4c4b4cd2
PH
605 (strncmp (field_name, target, len) == 0
606 && (field_name[len] == '\0'
61012eef 607 || (startswith (field_name + len, "___")
76a01679
JB
608 && strcmp (field_name + strlen (field_name) - 6,
609 "___XVN") != 0)));
14f9c5c9
AS
610}
611
612
872c8b51
JB
613/* Assuming TYPE is a TYPE_CODE_STRUCT or a TYPE_CODE_TYPDEF to
614 a TYPE_CODE_STRUCT, find the field whose name matches FIELD_NAME,
615 and return its index. This function also handles fields whose name
616 have ___ suffixes because the compiler sometimes alters their name
617 by adding such a suffix to represent fields with certain constraints.
618 If the field could not be found, return a negative number if
619 MAYBE_MISSING is set. Otherwise raise an error. */
4c4b4cd2
PH
620
621int
622ada_get_field_index (const struct type *type, const char *field_name,
623 int maybe_missing)
624{
625 int fieldno;
872c8b51
JB
626 struct type *struct_type = check_typedef ((struct type *) type);
627
628 for (fieldno = 0; fieldno < TYPE_NFIELDS (struct_type); fieldno++)
629 if (field_name_match (TYPE_FIELD_NAME (struct_type, fieldno), field_name))
4c4b4cd2
PH
630 return fieldno;
631
632 if (!maybe_missing)
323e0a4a 633 error (_("Unable to find field %s in struct %s. Aborting"),
872c8b51 634 field_name, TYPE_NAME (struct_type));
4c4b4cd2
PH
635
636 return -1;
637}
638
639/* The length of the prefix of NAME prior to any "___" suffix. */
14f9c5c9
AS
640
641int
d2e4a39e 642ada_name_prefix_len (const char *name)
14f9c5c9
AS
643{
644 if (name == NULL)
645 return 0;
d2e4a39e 646 else
14f9c5c9 647 {
d2e4a39e 648 const char *p = strstr (name, "___");
5b4ee69b 649
14f9c5c9 650 if (p == NULL)
4c4b4cd2 651 return strlen (name);
14f9c5c9 652 else
4c4b4cd2 653 return p - name;
14f9c5c9
AS
654 }
655}
656
4c4b4cd2
PH
657/* Return non-zero if SUFFIX is a suffix of STR.
658 Return zero if STR is null. */
659
14f9c5c9 660static int
d2e4a39e 661is_suffix (const char *str, const char *suffix)
14f9c5c9
AS
662{
663 int len1, len2;
5b4ee69b 664
14f9c5c9
AS
665 if (str == NULL)
666 return 0;
667 len1 = strlen (str);
668 len2 = strlen (suffix);
4c4b4cd2 669 return (len1 >= len2 && strcmp (str + len1 - len2, suffix) == 0);
14f9c5c9
AS
670}
671
4c4b4cd2
PH
672/* The contents of value VAL, treated as a value of type TYPE. The
673 result is an lval in memory if VAL is. */
14f9c5c9 674
d2e4a39e 675static struct value *
4c4b4cd2 676coerce_unspec_val_to_type (struct value *val, struct type *type)
14f9c5c9 677{
61ee279c 678 type = ada_check_typedef (type);
df407dfe 679 if (value_type (val) == type)
4c4b4cd2 680 return val;
d2e4a39e 681 else
14f9c5c9 682 {
4c4b4cd2
PH
683 struct value *result;
684
685 /* Make sure that the object size is not unreasonable before
686 trying to allocate some memory for it. */
c1b5a1a6 687 ada_ensure_varsize_limit (type);
4c4b4cd2 688
41e8491f
JK
689 if (value_lazy (val)
690 || TYPE_LENGTH (type) > TYPE_LENGTH (value_type (val)))
691 result = allocate_value_lazy (type);
692 else
693 {
694 result = allocate_value (type);
9a0dc9e3 695 value_contents_copy_raw (result, 0, val, 0, TYPE_LENGTH (type));
41e8491f 696 }
74bcbdf3 697 set_value_component_location (result, val);
9bbda503
AC
698 set_value_bitsize (result, value_bitsize (val));
699 set_value_bitpos (result, value_bitpos (val));
42ae5230 700 set_value_address (result, value_address (val));
14f9c5c9
AS
701 return result;
702 }
703}
704
fc1a4b47
AC
705static const gdb_byte *
706cond_offset_host (const gdb_byte *valaddr, long offset)
14f9c5c9
AS
707{
708 if (valaddr == NULL)
709 return NULL;
710 else
711 return valaddr + offset;
712}
713
714static CORE_ADDR
ebf56fd3 715cond_offset_target (CORE_ADDR address, long offset)
14f9c5c9
AS
716{
717 if (address == 0)
718 return 0;
d2e4a39e 719 else
14f9c5c9
AS
720 return address + offset;
721}
722
4c4b4cd2
PH
723/* Issue a warning (as for the definition of warning in utils.c, but
724 with exactly one argument rather than ...), unless the limit on the
725 number of warnings has passed during the evaluation of the current
726 expression. */
a2249542 727
77109804
AC
728/* FIXME: cagney/2004-10-10: This function is mimicking the behavior
729 provided by "complaint". */
a0b31db1 730static void lim_warning (const char *format, ...) ATTRIBUTE_PRINTF (1, 2);
77109804 731
14f9c5c9 732static void
a2249542 733lim_warning (const char *format, ...)
14f9c5c9 734{
a2249542 735 va_list args;
a2249542 736
5b4ee69b 737 va_start (args, format);
4c4b4cd2
PH
738 warnings_issued += 1;
739 if (warnings_issued <= warning_limit)
a2249542
MK
740 vwarning (format, args);
741
742 va_end (args);
4c4b4cd2
PH
743}
744
714e53ab
PH
745/* Issue an error if the size of an object of type T is unreasonable,
746 i.e. if it would be a bad idea to allocate a value of this type in
747 GDB. */
748
c1b5a1a6
JB
749void
750ada_ensure_varsize_limit (const struct type *type)
714e53ab
PH
751{
752 if (TYPE_LENGTH (type) > varsize_limit)
323e0a4a 753 error (_("object size is larger than varsize-limit"));
714e53ab
PH
754}
755
0963b4bd 756/* Maximum value of a SIZE-byte signed integer type. */
4c4b4cd2 757static LONGEST
c3e5cd34 758max_of_size (int size)
4c4b4cd2 759{
76a01679 760 LONGEST top_bit = (LONGEST) 1 << (size * 8 - 2);
5b4ee69b 761
76a01679 762 return top_bit | (top_bit - 1);
4c4b4cd2
PH
763}
764
0963b4bd 765/* Minimum value of a SIZE-byte signed integer type. */
4c4b4cd2 766static LONGEST
c3e5cd34 767min_of_size (int size)
4c4b4cd2 768{
c3e5cd34 769 return -max_of_size (size) - 1;
4c4b4cd2
PH
770}
771
0963b4bd 772/* Maximum value of a SIZE-byte unsigned integer type. */
4c4b4cd2 773static ULONGEST
c3e5cd34 774umax_of_size (int size)
4c4b4cd2 775{
76a01679 776 ULONGEST top_bit = (ULONGEST) 1 << (size * 8 - 1);
5b4ee69b 777
76a01679 778 return top_bit | (top_bit - 1);
4c4b4cd2
PH
779}
780
0963b4bd 781/* Maximum value of integral type T, as a signed quantity. */
c3e5cd34
PH
782static LONGEST
783max_of_type (struct type *t)
4c4b4cd2 784{
c3e5cd34
PH
785 if (TYPE_UNSIGNED (t))
786 return (LONGEST) umax_of_size (TYPE_LENGTH (t));
787 else
788 return max_of_size (TYPE_LENGTH (t));
789}
790
0963b4bd 791/* Minimum value of integral type T, as a signed quantity. */
c3e5cd34
PH
792static LONGEST
793min_of_type (struct type *t)
794{
795 if (TYPE_UNSIGNED (t))
796 return 0;
797 else
798 return min_of_size (TYPE_LENGTH (t));
4c4b4cd2
PH
799}
800
801/* The largest value in the domain of TYPE, a discrete type, as an integer. */
43bbcdc2
PH
802LONGEST
803ada_discrete_type_high_bound (struct type *type)
4c4b4cd2 804{
c3345124 805 type = resolve_dynamic_type (type, NULL, 0);
76a01679 806 switch (TYPE_CODE (type))
4c4b4cd2
PH
807 {
808 case TYPE_CODE_RANGE:
690cc4eb 809 return TYPE_HIGH_BOUND (type);
4c4b4cd2 810 case TYPE_CODE_ENUM:
14e75d8e 811 return TYPE_FIELD_ENUMVAL (type, TYPE_NFIELDS (type) - 1);
690cc4eb
PH
812 case TYPE_CODE_BOOL:
813 return 1;
814 case TYPE_CODE_CHAR:
76a01679 815 case TYPE_CODE_INT:
690cc4eb 816 return max_of_type (type);
4c4b4cd2 817 default:
43bbcdc2 818 error (_("Unexpected type in ada_discrete_type_high_bound."));
4c4b4cd2
PH
819 }
820}
821
14e75d8e 822/* The smallest value in the domain of TYPE, a discrete type, as an integer. */
43bbcdc2
PH
823LONGEST
824ada_discrete_type_low_bound (struct type *type)
4c4b4cd2 825{
c3345124 826 type = resolve_dynamic_type (type, NULL, 0);
76a01679 827 switch (TYPE_CODE (type))
4c4b4cd2
PH
828 {
829 case TYPE_CODE_RANGE:
690cc4eb 830 return TYPE_LOW_BOUND (type);
4c4b4cd2 831 case TYPE_CODE_ENUM:
14e75d8e 832 return TYPE_FIELD_ENUMVAL (type, 0);
690cc4eb
PH
833 case TYPE_CODE_BOOL:
834 return 0;
835 case TYPE_CODE_CHAR:
76a01679 836 case TYPE_CODE_INT:
690cc4eb 837 return min_of_type (type);
4c4b4cd2 838 default:
43bbcdc2 839 error (_("Unexpected type in ada_discrete_type_low_bound."));
4c4b4cd2
PH
840 }
841}
842
843/* The identity on non-range types. For range types, the underlying
76a01679 844 non-range scalar type. */
4c4b4cd2
PH
845
846static struct type *
18af8284 847get_base_type (struct type *type)
4c4b4cd2
PH
848{
849 while (type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE)
850 {
76a01679
JB
851 if (type == TYPE_TARGET_TYPE (type) || TYPE_TARGET_TYPE (type) == NULL)
852 return type;
4c4b4cd2
PH
853 type = TYPE_TARGET_TYPE (type);
854 }
855 return type;
14f9c5c9 856}
41246937
JB
857
858/* Return a decoded version of the given VALUE. This means returning
859 a value whose type is obtained by applying all the GNAT-specific
860 encondings, making the resulting type a static but standard description
861 of the initial type. */
862
863struct value *
864ada_get_decoded_value (struct value *value)
865{
866 struct type *type = ada_check_typedef (value_type (value));
867
868 if (ada_is_array_descriptor_type (type)
869 || (ada_is_constrained_packed_array_type (type)
870 && TYPE_CODE (type) != TYPE_CODE_PTR))
871 {
872 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF) /* array access type. */
873 value = ada_coerce_to_simple_array_ptr (value);
874 else
875 value = ada_coerce_to_simple_array (value);
876 }
877 else
878 value = ada_to_fixed_value (value);
879
880 return value;
881}
882
883/* Same as ada_get_decoded_value, but with the given TYPE.
884 Because there is no associated actual value for this type,
885 the resulting type might be a best-effort approximation in
886 the case of dynamic types. */
887
888struct type *
889ada_get_decoded_type (struct type *type)
890{
891 type = to_static_fixed_type (type);
892 if (ada_is_constrained_packed_array_type (type))
893 type = ada_coerce_to_simple_array_type (type);
894 return type;
895}
896
4c4b4cd2 897\f
76a01679 898
4c4b4cd2 899 /* Language Selection */
14f9c5c9
AS
900
901/* If the main program is in Ada, return language_ada, otherwise return LANG
ccefe4c4 902 (the main program is in Ada iif the adainit symbol is found). */
d2e4a39e 903
14f9c5c9 904enum language
ccefe4c4 905ada_update_initial_language (enum language lang)
14f9c5c9 906{
d2e4a39e 907 if (lookup_minimal_symbol ("adainit", (const char *) NULL,
3b7344d5 908 (struct objfile *) NULL).minsym != NULL)
4c4b4cd2 909 return language_ada;
14f9c5c9
AS
910
911 return lang;
912}
96d887e8
PH
913
914/* If the main procedure is written in Ada, then return its name.
915 The result is good until the next call. Return NULL if the main
916 procedure doesn't appear to be in Ada. */
917
918char *
919ada_main_name (void)
920{
3b7344d5 921 struct bound_minimal_symbol msym;
f9bc20b9 922 static char *main_program_name = NULL;
6c038f32 923
96d887e8
PH
924 /* For Ada, the name of the main procedure is stored in a specific
925 string constant, generated by the binder. Look for that symbol,
926 extract its address, and then read that string. If we didn't find
927 that string, then most probably the main procedure is not written
928 in Ada. */
929 msym = lookup_minimal_symbol (ADA_MAIN_PROGRAM_SYMBOL_NAME, NULL, NULL);
930
3b7344d5 931 if (msym.minsym != NULL)
96d887e8 932 {
f9bc20b9
JB
933 CORE_ADDR main_program_name_addr;
934 int err_code;
935
77e371c0 936 main_program_name_addr = BMSYMBOL_VALUE_ADDRESS (msym);
96d887e8 937 if (main_program_name_addr == 0)
323e0a4a 938 error (_("Invalid address for Ada main program name."));
96d887e8 939
f9bc20b9
JB
940 xfree (main_program_name);
941 target_read_string (main_program_name_addr, &main_program_name,
942 1024, &err_code);
943
944 if (err_code != 0)
945 return NULL;
96d887e8
PH
946 return main_program_name;
947 }
948
949 /* The main procedure doesn't seem to be in Ada. */
950 return NULL;
951}
14f9c5c9 952\f
4c4b4cd2 953 /* Symbols */
d2e4a39e 954
4c4b4cd2
PH
955/* Table of Ada operators and their GNAT-encoded names. Last entry is pair
956 of NULLs. */
14f9c5c9 957
d2e4a39e
AS
958const struct ada_opname_map ada_opname_table[] = {
959 {"Oadd", "\"+\"", BINOP_ADD},
960 {"Osubtract", "\"-\"", BINOP_SUB},
961 {"Omultiply", "\"*\"", BINOP_MUL},
962 {"Odivide", "\"/\"", BINOP_DIV},
963 {"Omod", "\"mod\"", BINOP_MOD},
964 {"Orem", "\"rem\"", BINOP_REM},
965 {"Oexpon", "\"**\"", BINOP_EXP},
966 {"Olt", "\"<\"", BINOP_LESS},
967 {"Ole", "\"<=\"", BINOP_LEQ},
968 {"Ogt", "\">\"", BINOP_GTR},
969 {"Oge", "\">=\"", BINOP_GEQ},
970 {"Oeq", "\"=\"", BINOP_EQUAL},
971 {"One", "\"/=\"", BINOP_NOTEQUAL},
972 {"Oand", "\"and\"", BINOP_BITWISE_AND},
973 {"Oor", "\"or\"", BINOP_BITWISE_IOR},
974 {"Oxor", "\"xor\"", BINOP_BITWISE_XOR},
975 {"Oconcat", "\"&\"", BINOP_CONCAT},
976 {"Oabs", "\"abs\"", UNOP_ABS},
977 {"Onot", "\"not\"", UNOP_LOGICAL_NOT},
978 {"Oadd", "\"+\"", UNOP_PLUS},
979 {"Osubtract", "\"-\"", UNOP_NEG},
980 {NULL, NULL}
14f9c5c9
AS
981};
982
b5ec771e
PA
983/* The "encoded" form of DECODED, according to GNAT conventions. The
984 result is valid until the next call to ada_encode. If
985 THROW_ERRORS, throw an error if invalid operator name is found.
986 Otherwise, return NULL in that case. */
4c4b4cd2 987
b5ec771e
PA
988static char *
989ada_encode_1 (const char *decoded, bool throw_errors)
14f9c5c9 990{
4c4b4cd2
PH
991 static char *encoding_buffer = NULL;
992 static size_t encoding_buffer_size = 0;
d2e4a39e 993 const char *p;
14f9c5c9 994 int k;
d2e4a39e 995
4c4b4cd2 996 if (decoded == NULL)
14f9c5c9
AS
997 return NULL;
998
4c4b4cd2
PH
999 GROW_VECT (encoding_buffer, encoding_buffer_size,
1000 2 * strlen (decoded) + 10);
14f9c5c9
AS
1001
1002 k = 0;
4c4b4cd2 1003 for (p = decoded; *p != '\0'; p += 1)
14f9c5c9 1004 {
cdc7bb92 1005 if (*p == '.')
4c4b4cd2
PH
1006 {
1007 encoding_buffer[k] = encoding_buffer[k + 1] = '_';
1008 k += 2;
1009 }
14f9c5c9 1010 else if (*p == '"')
4c4b4cd2
PH
1011 {
1012 const struct ada_opname_map *mapping;
1013
1014 for (mapping = ada_opname_table;
1265e4aa 1015 mapping->encoded != NULL
61012eef 1016 && !startswith (p, mapping->decoded); mapping += 1)
4c4b4cd2
PH
1017 ;
1018 if (mapping->encoded == NULL)
b5ec771e
PA
1019 {
1020 if (throw_errors)
1021 error (_("invalid Ada operator name: %s"), p);
1022 else
1023 return NULL;
1024 }
4c4b4cd2
PH
1025 strcpy (encoding_buffer + k, mapping->encoded);
1026 k += strlen (mapping->encoded);
1027 break;
1028 }
d2e4a39e 1029 else
4c4b4cd2
PH
1030 {
1031 encoding_buffer[k] = *p;
1032 k += 1;
1033 }
14f9c5c9
AS
1034 }
1035
4c4b4cd2
PH
1036 encoding_buffer[k] = '\0';
1037 return encoding_buffer;
14f9c5c9
AS
1038}
1039
b5ec771e
PA
1040/* The "encoded" form of DECODED, according to GNAT conventions.
1041 The result is valid until the next call to ada_encode. */
1042
1043char *
1044ada_encode (const char *decoded)
1045{
1046 return ada_encode_1 (decoded, true);
1047}
1048
14f9c5c9 1049/* Return NAME folded to lower case, or, if surrounded by single
4c4b4cd2
PH
1050 quotes, unfolded, but with the quotes stripped away. Result good
1051 to next call. */
1052
d2e4a39e
AS
1053char *
1054ada_fold_name (const char *name)
14f9c5c9 1055{
d2e4a39e 1056 static char *fold_buffer = NULL;
14f9c5c9
AS
1057 static size_t fold_buffer_size = 0;
1058
1059 int len = strlen (name);
d2e4a39e 1060 GROW_VECT (fold_buffer, fold_buffer_size, len + 1);
14f9c5c9
AS
1061
1062 if (name[0] == '\'')
1063 {
d2e4a39e
AS
1064 strncpy (fold_buffer, name + 1, len - 2);
1065 fold_buffer[len - 2] = '\000';
14f9c5c9
AS
1066 }
1067 else
1068 {
1069 int i;
5b4ee69b 1070
14f9c5c9 1071 for (i = 0; i <= len; i += 1)
4c4b4cd2 1072 fold_buffer[i] = tolower (name[i]);
14f9c5c9
AS
1073 }
1074
1075 return fold_buffer;
1076}
1077
529cad9c
PH
1078/* Return nonzero if C is either a digit or a lowercase alphabet character. */
1079
1080static int
1081is_lower_alphanum (const char c)
1082{
1083 return (isdigit (c) || (isalpha (c) && islower (c)));
1084}
1085
c90092fe
JB
1086/* ENCODED is the linkage name of a symbol and LEN contains its length.
1087 This function saves in LEN the length of that same symbol name but
1088 without either of these suffixes:
29480c32
JB
1089 . .{DIGIT}+
1090 . ${DIGIT}+
1091 . ___{DIGIT}+
1092 . __{DIGIT}+.
c90092fe 1093
29480c32
JB
1094 These are suffixes introduced by the compiler for entities such as
1095 nested subprogram for instance, in order to avoid name clashes.
1096 They do not serve any purpose for the debugger. */
1097
1098static void
1099ada_remove_trailing_digits (const char *encoded, int *len)
1100{
1101 if (*len > 1 && isdigit (encoded[*len - 1]))
1102 {
1103 int i = *len - 2;
5b4ee69b 1104
29480c32
JB
1105 while (i > 0 && isdigit (encoded[i]))
1106 i--;
1107 if (i >= 0 && encoded[i] == '.')
1108 *len = i;
1109 else if (i >= 0 && encoded[i] == '$')
1110 *len = i;
61012eef 1111 else if (i >= 2 && startswith (encoded + i - 2, "___"))
29480c32 1112 *len = i - 2;
61012eef 1113 else if (i >= 1 && startswith (encoded + i - 1, "__"))
29480c32
JB
1114 *len = i - 1;
1115 }
1116}
1117
1118/* Remove the suffix introduced by the compiler for protected object
1119 subprograms. */
1120
1121static void
1122ada_remove_po_subprogram_suffix (const char *encoded, int *len)
1123{
1124 /* Remove trailing N. */
1125
1126 /* Protected entry subprograms are broken into two
1127 separate subprograms: The first one is unprotected, and has
1128 a 'N' suffix; the second is the protected version, and has
0963b4bd 1129 the 'P' suffix. The second calls the first one after handling
29480c32
JB
1130 the protection. Since the P subprograms are internally generated,
1131 we leave these names undecoded, giving the user a clue that this
1132 entity is internal. */
1133
1134 if (*len > 1
1135 && encoded[*len - 1] == 'N'
1136 && (isdigit (encoded[*len - 2]) || islower (encoded[*len - 2])))
1137 *len = *len - 1;
1138}
1139
69fadcdf
JB
1140/* Remove trailing X[bn]* suffixes (indicating names in package bodies). */
1141
1142static void
1143ada_remove_Xbn_suffix (const char *encoded, int *len)
1144{
1145 int i = *len - 1;
1146
1147 while (i > 0 && (encoded[i] == 'b' || encoded[i] == 'n'))
1148 i--;
1149
1150 if (encoded[i] != 'X')
1151 return;
1152
1153 if (i == 0)
1154 return;
1155
1156 if (isalnum (encoded[i-1]))
1157 *len = i;
1158}
1159
29480c32
JB
1160/* If ENCODED follows the GNAT entity encoding conventions, then return
1161 the decoded form of ENCODED. Otherwise, return "<%s>" where "%s" is
1162 replaced by ENCODED.
14f9c5c9 1163
4c4b4cd2 1164 The resulting string is valid until the next call of ada_decode.
29480c32 1165 If the string is unchanged by decoding, the original string pointer
4c4b4cd2
PH
1166 is returned. */
1167
1168const char *
1169ada_decode (const char *encoded)
14f9c5c9
AS
1170{
1171 int i, j;
1172 int len0;
d2e4a39e 1173 const char *p;
4c4b4cd2 1174 char *decoded;
14f9c5c9 1175 int at_start_name;
4c4b4cd2
PH
1176 static char *decoding_buffer = NULL;
1177 static size_t decoding_buffer_size = 0;
d2e4a39e 1178
29480c32
JB
1179 /* The name of the Ada main procedure starts with "_ada_".
1180 This prefix is not part of the decoded name, so skip this part
1181 if we see this prefix. */
61012eef 1182 if (startswith (encoded, "_ada_"))
4c4b4cd2 1183 encoded += 5;
14f9c5c9 1184
29480c32
JB
1185 /* If the name starts with '_', then it is not a properly encoded
1186 name, so do not attempt to decode it. Similarly, if the name
1187 starts with '<', the name should not be decoded. */
4c4b4cd2 1188 if (encoded[0] == '_' || encoded[0] == '<')
14f9c5c9
AS
1189 goto Suppress;
1190
4c4b4cd2 1191 len0 = strlen (encoded);
4c4b4cd2 1192
29480c32
JB
1193 ada_remove_trailing_digits (encoded, &len0);
1194 ada_remove_po_subprogram_suffix (encoded, &len0);
529cad9c 1195
4c4b4cd2
PH
1196 /* Remove the ___X.* suffix if present. Do not forget to verify that
1197 the suffix is located before the current "end" of ENCODED. We want
1198 to avoid re-matching parts of ENCODED that have previously been
1199 marked as discarded (by decrementing LEN0). */
1200 p = strstr (encoded, "___");
1201 if (p != NULL && p - encoded < len0 - 3)
14f9c5c9
AS
1202 {
1203 if (p[3] == 'X')
4c4b4cd2 1204 len0 = p - encoded;
14f9c5c9 1205 else
4c4b4cd2 1206 goto Suppress;
14f9c5c9 1207 }
4c4b4cd2 1208
29480c32
JB
1209 /* Remove any trailing TKB suffix. It tells us that this symbol
1210 is for the body of a task, but that information does not actually
1211 appear in the decoded name. */
1212
61012eef 1213 if (len0 > 3 && startswith (encoded + len0 - 3, "TKB"))
14f9c5c9 1214 len0 -= 3;
76a01679 1215
a10967fa
JB
1216 /* Remove any trailing TB suffix. The TB suffix is slightly different
1217 from the TKB suffix because it is used for non-anonymous task
1218 bodies. */
1219
61012eef 1220 if (len0 > 2 && startswith (encoded + len0 - 2, "TB"))
a10967fa
JB
1221 len0 -= 2;
1222
29480c32
JB
1223 /* Remove trailing "B" suffixes. */
1224 /* FIXME: brobecker/2006-04-19: Not sure what this are used for... */
1225
61012eef 1226 if (len0 > 1 && startswith (encoded + len0 - 1, "B"))
14f9c5c9
AS
1227 len0 -= 1;
1228
4c4b4cd2 1229 /* Make decoded big enough for possible expansion by operator name. */
29480c32 1230
4c4b4cd2
PH
1231 GROW_VECT (decoding_buffer, decoding_buffer_size, 2 * len0 + 1);
1232 decoded = decoding_buffer;
14f9c5c9 1233
29480c32
JB
1234 /* Remove trailing __{digit}+ or trailing ${digit}+. */
1235
4c4b4cd2 1236 if (len0 > 1 && isdigit (encoded[len0 - 1]))
d2e4a39e 1237 {
4c4b4cd2
PH
1238 i = len0 - 2;
1239 while ((i >= 0 && isdigit (encoded[i]))
1240 || (i >= 1 && encoded[i] == '_' && isdigit (encoded[i - 1])))
1241 i -= 1;
1242 if (i > 1 && encoded[i] == '_' && encoded[i - 1] == '_')
1243 len0 = i - 1;
1244 else if (encoded[i] == '$')
1245 len0 = i;
d2e4a39e 1246 }
14f9c5c9 1247
29480c32
JB
1248 /* The first few characters that are not alphabetic are not part
1249 of any encoding we use, so we can copy them over verbatim. */
1250
4c4b4cd2
PH
1251 for (i = 0, j = 0; i < len0 && !isalpha (encoded[i]); i += 1, j += 1)
1252 decoded[j] = encoded[i];
14f9c5c9
AS
1253
1254 at_start_name = 1;
1255 while (i < len0)
1256 {
29480c32 1257 /* Is this a symbol function? */
4c4b4cd2
PH
1258 if (at_start_name && encoded[i] == 'O')
1259 {
1260 int k;
5b4ee69b 1261
4c4b4cd2
PH
1262 for (k = 0; ada_opname_table[k].encoded != NULL; k += 1)
1263 {
1264 int op_len = strlen (ada_opname_table[k].encoded);
06d5cf63
JB
1265 if ((strncmp (ada_opname_table[k].encoded + 1, encoded + i + 1,
1266 op_len - 1) == 0)
1267 && !isalnum (encoded[i + op_len]))
4c4b4cd2
PH
1268 {
1269 strcpy (decoded + j, ada_opname_table[k].decoded);
1270 at_start_name = 0;
1271 i += op_len;
1272 j += strlen (ada_opname_table[k].decoded);
1273 break;
1274 }
1275 }
1276 if (ada_opname_table[k].encoded != NULL)
1277 continue;
1278 }
14f9c5c9
AS
1279 at_start_name = 0;
1280
529cad9c
PH
1281 /* Replace "TK__" with "__", which will eventually be translated
1282 into "." (just below). */
1283
61012eef 1284 if (i < len0 - 4 && startswith (encoded + i, "TK__"))
4c4b4cd2 1285 i += 2;
529cad9c 1286
29480c32
JB
1287 /* Replace "__B_{DIGITS}+__" sequences by "__", which will eventually
1288 be translated into "." (just below). These are internal names
1289 generated for anonymous blocks inside which our symbol is nested. */
1290
1291 if (len0 - i > 5 && encoded [i] == '_' && encoded [i+1] == '_'
1292 && encoded [i+2] == 'B' && encoded [i+3] == '_'
1293 && isdigit (encoded [i+4]))
1294 {
1295 int k = i + 5;
1296
1297 while (k < len0 && isdigit (encoded[k]))
1298 k++; /* Skip any extra digit. */
1299
1300 /* Double-check that the "__B_{DIGITS}+" sequence we found
1301 is indeed followed by "__". */
1302 if (len0 - k > 2 && encoded [k] == '_' && encoded [k+1] == '_')
1303 i = k;
1304 }
1305
529cad9c
PH
1306 /* Remove _E{DIGITS}+[sb] */
1307
1308 /* Just as for protected object subprograms, there are 2 categories
0963b4bd 1309 of subprograms created by the compiler for each entry. The first
529cad9c
PH
1310 one implements the actual entry code, and has a suffix following
1311 the convention above; the second one implements the barrier and
1312 uses the same convention as above, except that the 'E' is replaced
1313 by a 'B'.
1314
1315 Just as above, we do not decode the name of barrier functions
1316 to give the user a clue that the code he is debugging has been
1317 internally generated. */
1318
1319 if (len0 - i > 3 && encoded [i] == '_' && encoded[i+1] == 'E'
1320 && isdigit (encoded[i+2]))
1321 {
1322 int k = i + 3;
1323
1324 while (k < len0 && isdigit (encoded[k]))
1325 k++;
1326
1327 if (k < len0
1328 && (encoded[k] == 'b' || encoded[k] == 's'))
1329 {
1330 k++;
1331 /* Just as an extra precaution, make sure that if this
1332 suffix is followed by anything else, it is a '_'.
1333 Otherwise, we matched this sequence by accident. */
1334 if (k == len0
1335 || (k < len0 && encoded[k] == '_'))
1336 i = k;
1337 }
1338 }
1339
1340 /* Remove trailing "N" in [a-z0-9]+N__. The N is added by
1341 the GNAT front-end in protected object subprograms. */
1342
1343 if (i < len0 + 3
1344 && encoded[i] == 'N' && encoded[i+1] == '_' && encoded[i+2] == '_')
1345 {
1346 /* Backtrack a bit up until we reach either the begining of
1347 the encoded name, or "__". Make sure that we only find
1348 digits or lowercase characters. */
1349 const char *ptr = encoded + i - 1;
1350
1351 while (ptr >= encoded && is_lower_alphanum (ptr[0]))
1352 ptr--;
1353 if (ptr < encoded
1354 || (ptr > encoded && ptr[0] == '_' && ptr[-1] == '_'))
1355 i++;
1356 }
1357
4c4b4cd2
PH
1358 if (encoded[i] == 'X' && i != 0 && isalnum (encoded[i - 1]))
1359 {
29480c32
JB
1360 /* This is a X[bn]* sequence not separated from the previous
1361 part of the name with a non-alpha-numeric character (in other
1362 words, immediately following an alpha-numeric character), then
1363 verify that it is placed at the end of the encoded name. If
1364 not, then the encoding is not valid and we should abort the
1365 decoding. Otherwise, just skip it, it is used in body-nested
1366 package names. */
4c4b4cd2
PH
1367 do
1368 i += 1;
1369 while (i < len0 && (encoded[i] == 'b' || encoded[i] == 'n'));
1370 if (i < len0)
1371 goto Suppress;
1372 }
cdc7bb92 1373 else if (i < len0 - 2 && encoded[i] == '_' && encoded[i + 1] == '_')
4c4b4cd2 1374 {
29480c32 1375 /* Replace '__' by '.'. */
4c4b4cd2
PH
1376 decoded[j] = '.';
1377 at_start_name = 1;
1378 i += 2;
1379 j += 1;
1380 }
14f9c5c9 1381 else
4c4b4cd2 1382 {
29480c32
JB
1383 /* It's a character part of the decoded name, so just copy it
1384 over. */
4c4b4cd2
PH
1385 decoded[j] = encoded[i];
1386 i += 1;
1387 j += 1;
1388 }
14f9c5c9 1389 }
4c4b4cd2 1390 decoded[j] = '\000';
14f9c5c9 1391
29480c32
JB
1392 /* Decoded names should never contain any uppercase character.
1393 Double-check this, and abort the decoding if we find one. */
1394
4c4b4cd2
PH
1395 for (i = 0; decoded[i] != '\0'; i += 1)
1396 if (isupper (decoded[i]) || decoded[i] == ' ')
14f9c5c9
AS
1397 goto Suppress;
1398
4c4b4cd2
PH
1399 if (strcmp (decoded, encoded) == 0)
1400 return encoded;
1401 else
1402 return decoded;
14f9c5c9
AS
1403
1404Suppress:
4c4b4cd2
PH
1405 GROW_VECT (decoding_buffer, decoding_buffer_size, strlen (encoded) + 3);
1406 decoded = decoding_buffer;
1407 if (encoded[0] == '<')
1408 strcpy (decoded, encoded);
14f9c5c9 1409 else
88c15c34 1410 xsnprintf (decoded, decoding_buffer_size, "<%s>", encoded);
4c4b4cd2
PH
1411 return decoded;
1412
1413}
1414
1415/* Table for keeping permanent unique copies of decoded names. Once
1416 allocated, names in this table are never released. While this is a
1417 storage leak, it should not be significant unless there are massive
1418 changes in the set of decoded names in successive versions of a
1419 symbol table loaded during a single session. */
1420static struct htab *decoded_names_store;
1421
1422/* Returns the decoded name of GSYMBOL, as for ada_decode, caching it
1423 in the language-specific part of GSYMBOL, if it has not been
1424 previously computed. Tries to save the decoded name in the same
1425 obstack as GSYMBOL, if possible, and otherwise on the heap (so that,
1426 in any case, the decoded symbol has a lifetime at least that of
0963b4bd 1427 GSYMBOL).
4c4b4cd2
PH
1428 The GSYMBOL parameter is "mutable" in the C++ sense: logically
1429 const, but nevertheless modified to a semantically equivalent form
0963b4bd 1430 when a decoded name is cached in it. */
4c4b4cd2 1431
45e6c716 1432const char *
f85f34ed 1433ada_decode_symbol (const struct general_symbol_info *arg)
4c4b4cd2 1434{
f85f34ed
TT
1435 struct general_symbol_info *gsymbol = (struct general_symbol_info *) arg;
1436 const char **resultp =
615b3f62 1437 &gsymbol->language_specific.demangled_name;
5b4ee69b 1438
f85f34ed 1439 if (!gsymbol->ada_mangled)
4c4b4cd2
PH
1440 {
1441 const char *decoded = ada_decode (gsymbol->name);
f85f34ed 1442 struct obstack *obstack = gsymbol->language_specific.obstack;
5b4ee69b 1443
f85f34ed 1444 gsymbol->ada_mangled = 1;
5b4ee69b 1445
f85f34ed 1446 if (obstack != NULL)
224c3ddb
SM
1447 *resultp
1448 = (const char *) obstack_copy0 (obstack, decoded, strlen (decoded));
f85f34ed 1449 else
76a01679 1450 {
f85f34ed
TT
1451 /* Sometimes, we can't find a corresponding objfile, in
1452 which case, we put the result on the heap. Since we only
1453 decode when needed, we hope this usually does not cause a
1454 significant memory leak (FIXME). */
1455
76a01679
JB
1456 char **slot = (char **) htab_find_slot (decoded_names_store,
1457 decoded, INSERT);
5b4ee69b 1458
76a01679
JB
1459 if (*slot == NULL)
1460 *slot = xstrdup (decoded);
1461 *resultp = *slot;
1462 }
4c4b4cd2 1463 }
14f9c5c9 1464
4c4b4cd2
PH
1465 return *resultp;
1466}
76a01679 1467
2c0b251b 1468static char *
76a01679 1469ada_la_decode (const char *encoded, int options)
4c4b4cd2
PH
1470{
1471 return xstrdup (ada_decode (encoded));
14f9c5c9
AS
1472}
1473
8b302db8
TT
1474/* Implement la_sniff_from_mangled_name for Ada. */
1475
1476static int
1477ada_sniff_from_mangled_name (const char *mangled, char **out)
1478{
1479 const char *demangled = ada_decode (mangled);
1480
1481 *out = NULL;
1482
1483 if (demangled != mangled && demangled != NULL && demangled[0] != '<')
1484 {
1485 /* Set the gsymbol language to Ada, but still return 0.
1486 Two reasons for that:
1487
1488 1. For Ada, we prefer computing the symbol's decoded name
1489 on the fly rather than pre-compute it, in order to save
1490 memory (Ada projects are typically very large).
1491
1492 2. There are some areas in the definition of the GNAT
1493 encoding where, with a bit of bad luck, we might be able
1494 to decode a non-Ada symbol, generating an incorrect
1495 demangled name (Eg: names ending with "TB" for instance
1496 are identified as task bodies and so stripped from
1497 the decoded name returned).
1498
1499 Returning 1, here, but not setting *DEMANGLED, helps us get a
1500 little bit of the best of both worlds. Because we're last,
1501 we should not affect any of the other languages that were
1502 able to demangle the symbol before us; we get to correctly
1503 tag Ada symbols as such; and even if we incorrectly tagged a
1504 non-Ada symbol, which should be rare, any routing through the
1505 Ada language should be transparent (Ada tries to behave much
1506 like C/C++ with non-Ada symbols). */
1507 return 1;
1508 }
1509
1510 return 0;
1511}
1512
14f9c5c9 1513\f
d2e4a39e 1514
4c4b4cd2 1515 /* Arrays */
14f9c5c9 1516
28c85d6c
JB
1517/* Assuming that INDEX_DESC_TYPE is an ___XA structure, a structure
1518 generated by the GNAT compiler to describe the index type used
1519 for each dimension of an array, check whether it follows the latest
1520 known encoding. If not, fix it up to conform to the latest encoding.
1521 Otherwise, do nothing. This function also does nothing if
1522 INDEX_DESC_TYPE is NULL.
1523
1524 The GNAT encoding used to describle the array index type evolved a bit.
1525 Initially, the information would be provided through the name of each
1526 field of the structure type only, while the type of these fields was
1527 described as unspecified and irrelevant. The debugger was then expected
1528 to perform a global type lookup using the name of that field in order
1529 to get access to the full index type description. Because these global
1530 lookups can be very expensive, the encoding was later enhanced to make
1531 the global lookup unnecessary by defining the field type as being
1532 the full index type description.
1533
1534 The purpose of this routine is to allow us to support older versions
1535 of the compiler by detecting the use of the older encoding, and by
1536 fixing up the INDEX_DESC_TYPE to follow the new one (at this point,
1537 we essentially replace each field's meaningless type by the associated
1538 index subtype). */
1539
1540void
1541ada_fixup_array_indexes_type (struct type *index_desc_type)
1542{
1543 int i;
1544
1545 if (index_desc_type == NULL)
1546 return;
1547 gdb_assert (TYPE_NFIELDS (index_desc_type) > 0);
1548
1549 /* Check if INDEX_DESC_TYPE follows the older encoding (it is sufficient
1550 to check one field only, no need to check them all). If not, return
1551 now.
1552
1553 If our INDEX_DESC_TYPE was generated using the older encoding,
1554 the field type should be a meaningless integer type whose name
1555 is not equal to the field name. */
1556 if (TYPE_NAME (TYPE_FIELD_TYPE (index_desc_type, 0)) != NULL
1557 && strcmp (TYPE_NAME (TYPE_FIELD_TYPE (index_desc_type, 0)),
1558 TYPE_FIELD_NAME (index_desc_type, 0)) == 0)
1559 return;
1560
1561 /* Fixup each field of INDEX_DESC_TYPE. */
1562 for (i = 0; i < TYPE_NFIELDS (index_desc_type); i++)
1563 {
0d5cff50 1564 const char *name = TYPE_FIELD_NAME (index_desc_type, i);
28c85d6c
JB
1565 struct type *raw_type = ada_check_typedef (ada_find_any_type (name));
1566
1567 if (raw_type)
1568 TYPE_FIELD_TYPE (index_desc_type, i) = raw_type;
1569 }
1570}
1571
4c4b4cd2 1572/* Names of MAX_ADA_DIMENS bounds in P_BOUNDS fields of array descriptors. */
14f9c5c9 1573
a121b7c1 1574static const char *bound_name[] = {
d2e4a39e 1575 "LB0", "UB0", "LB1", "UB1", "LB2", "UB2", "LB3", "UB3",
14f9c5c9
AS
1576 "LB4", "UB4", "LB5", "UB5", "LB6", "UB6", "LB7", "UB7"
1577};
1578
1579/* Maximum number of array dimensions we are prepared to handle. */
1580
4c4b4cd2 1581#define MAX_ADA_DIMENS (sizeof(bound_name) / (2*sizeof(char *)))
14f9c5c9 1582
14f9c5c9 1583
4c4b4cd2
PH
1584/* The desc_* routines return primitive portions of array descriptors
1585 (fat pointers). */
14f9c5c9
AS
1586
1587/* The descriptor or array type, if any, indicated by TYPE; removes
4c4b4cd2
PH
1588 level of indirection, if needed. */
1589
d2e4a39e
AS
1590static struct type *
1591desc_base_type (struct type *type)
14f9c5c9
AS
1592{
1593 if (type == NULL)
1594 return NULL;
61ee279c 1595 type = ada_check_typedef (type);
720d1a40
JB
1596 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
1597 type = ada_typedef_target_type (type);
1598
1265e4aa
JB
1599 if (type != NULL
1600 && (TYPE_CODE (type) == TYPE_CODE_PTR
1601 || TYPE_CODE (type) == TYPE_CODE_REF))
61ee279c 1602 return ada_check_typedef (TYPE_TARGET_TYPE (type));
14f9c5c9
AS
1603 else
1604 return type;
1605}
1606
4c4b4cd2
PH
1607/* True iff TYPE indicates a "thin" array pointer type. */
1608
14f9c5c9 1609static int
d2e4a39e 1610is_thin_pntr (struct type *type)
14f9c5c9 1611{
d2e4a39e 1612 return
14f9c5c9
AS
1613 is_suffix (ada_type_name (desc_base_type (type)), "___XUT")
1614 || is_suffix (ada_type_name (desc_base_type (type)), "___XUT___XVE");
1615}
1616
4c4b4cd2
PH
1617/* The descriptor type for thin pointer type TYPE. */
1618
d2e4a39e
AS
1619static struct type *
1620thin_descriptor_type (struct type *type)
14f9c5c9 1621{
d2e4a39e 1622 struct type *base_type = desc_base_type (type);
5b4ee69b 1623
14f9c5c9
AS
1624 if (base_type == NULL)
1625 return NULL;
1626 if (is_suffix (ada_type_name (base_type), "___XVE"))
1627 return base_type;
d2e4a39e 1628 else
14f9c5c9 1629 {
d2e4a39e 1630 struct type *alt_type = ada_find_parallel_type (base_type, "___XVE");
5b4ee69b 1631
14f9c5c9 1632 if (alt_type == NULL)
4c4b4cd2 1633 return base_type;
14f9c5c9 1634 else
4c4b4cd2 1635 return alt_type;
14f9c5c9
AS
1636 }
1637}
1638
4c4b4cd2
PH
1639/* A pointer to the array data for thin-pointer value VAL. */
1640
d2e4a39e
AS
1641static struct value *
1642thin_data_pntr (struct value *val)
14f9c5c9 1643{
828292f2 1644 struct type *type = ada_check_typedef (value_type (val));
556bdfd4 1645 struct type *data_type = desc_data_target_type (thin_descriptor_type (type));
5b4ee69b 1646
556bdfd4
UW
1647 data_type = lookup_pointer_type (data_type);
1648
14f9c5c9 1649 if (TYPE_CODE (type) == TYPE_CODE_PTR)
556bdfd4 1650 return value_cast (data_type, value_copy (val));
d2e4a39e 1651 else
42ae5230 1652 return value_from_longest (data_type, value_address (val));
14f9c5c9
AS
1653}
1654
4c4b4cd2
PH
1655/* True iff TYPE indicates a "thick" array pointer type. */
1656
14f9c5c9 1657static int
d2e4a39e 1658is_thick_pntr (struct type *type)
14f9c5c9
AS
1659{
1660 type = desc_base_type (type);
1661 return (type != NULL && TYPE_CODE (type) == TYPE_CODE_STRUCT
4c4b4cd2 1662 && lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL);
14f9c5c9
AS
1663}
1664
4c4b4cd2
PH
1665/* If TYPE is the type of an array descriptor (fat or thin pointer) or a
1666 pointer to one, the type of its bounds data; otherwise, NULL. */
76a01679 1667
d2e4a39e
AS
1668static struct type *
1669desc_bounds_type (struct type *type)
14f9c5c9 1670{
d2e4a39e 1671 struct type *r;
14f9c5c9
AS
1672
1673 type = desc_base_type (type);
1674
1675 if (type == NULL)
1676 return NULL;
1677 else if (is_thin_pntr (type))
1678 {
1679 type = thin_descriptor_type (type);
1680 if (type == NULL)
4c4b4cd2 1681 return NULL;
14f9c5c9
AS
1682 r = lookup_struct_elt_type (type, "BOUNDS", 1);
1683 if (r != NULL)
61ee279c 1684 return ada_check_typedef (r);
14f9c5c9
AS
1685 }
1686 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
1687 {
1688 r = lookup_struct_elt_type (type, "P_BOUNDS", 1);
1689 if (r != NULL)
61ee279c 1690 return ada_check_typedef (TYPE_TARGET_TYPE (ada_check_typedef (r)));
14f9c5c9
AS
1691 }
1692 return NULL;
1693}
1694
1695/* If ARR is an array descriptor (fat or thin pointer), or pointer to
4c4b4cd2
PH
1696 one, a pointer to its bounds data. Otherwise NULL. */
1697
d2e4a39e
AS
1698static struct value *
1699desc_bounds (struct value *arr)
14f9c5c9 1700{
df407dfe 1701 struct type *type = ada_check_typedef (value_type (arr));
5b4ee69b 1702
d2e4a39e 1703 if (is_thin_pntr (type))
14f9c5c9 1704 {
d2e4a39e 1705 struct type *bounds_type =
4c4b4cd2 1706 desc_bounds_type (thin_descriptor_type (type));
14f9c5c9
AS
1707 LONGEST addr;
1708
4cdfadb1 1709 if (bounds_type == NULL)
323e0a4a 1710 error (_("Bad GNAT array descriptor"));
14f9c5c9
AS
1711
1712 /* NOTE: The following calculation is not really kosher, but
d2e4a39e 1713 since desc_type is an XVE-encoded type (and shouldn't be),
4c4b4cd2 1714 the correct calculation is a real pain. FIXME (and fix GCC). */
14f9c5c9 1715 if (TYPE_CODE (type) == TYPE_CODE_PTR)
4c4b4cd2 1716 addr = value_as_long (arr);
d2e4a39e 1717 else
42ae5230 1718 addr = value_address (arr);
14f9c5c9 1719
d2e4a39e 1720 return
4c4b4cd2
PH
1721 value_from_longest (lookup_pointer_type (bounds_type),
1722 addr - TYPE_LENGTH (bounds_type));
14f9c5c9
AS
1723 }
1724
1725 else if (is_thick_pntr (type))
05e522ef
JB
1726 {
1727 struct value *p_bounds = value_struct_elt (&arr, NULL, "P_BOUNDS", NULL,
1728 _("Bad GNAT array descriptor"));
1729 struct type *p_bounds_type = value_type (p_bounds);
1730
1731 if (p_bounds_type
1732 && TYPE_CODE (p_bounds_type) == TYPE_CODE_PTR)
1733 {
1734 struct type *target_type = TYPE_TARGET_TYPE (p_bounds_type);
1735
1736 if (TYPE_STUB (target_type))
1737 p_bounds = value_cast (lookup_pointer_type
1738 (ada_check_typedef (target_type)),
1739 p_bounds);
1740 }
1741 else
1742 error (_("Bad GNAT array descriptor"));
1743
1744 return p_bounds;
1745 }
14f9c5c9
AS
1746 else
1747 return NULL;
1748}
1749
4c4b4cd2
PH
1750/* If TYPE is the type of an array-descriptor (fat pointer), the bit
1751 position of the field containing the address of the bounds data. */
1752
14f9c5c9 1753static int
d2e4a39e 1754fat_pntr_bounds_bitpos (struct type *type)
14f9c5c9
AS
1755{
1756 return TYPE_FIELD_BITPOS (desc_base_type (type), 1);
1757}
1758
1759/* If TYPE is the type of an array-descriptor (fat pointer), the bit
4c4b4cd2
PH
1760 size of the field containing the address of the bounds data. */
1761
14f9c5c9 1762static int
d2e4a39e 1763fat_pntr_bounds_bitsize (struct type *type)
14f9c5c9
AS
1764{
1765 type = desc_base_type (type);
1766
d2e4a39e 1767 if (TYPE_FIELD_BITSIZE (type, 1) > 0)
14f9c5c9
AS
1768 return TYPE_FIELD_BITSIZE (type, 1);
1769 else
61ee279c 1770 return 8 * TYPE_LENGTH (ada_check_typedef (TYPE_FIELD_TYPE (type, 1)));
14f9c5c9
AS
1771}
1772
4c4b4cd2 1773/* If TYPE is the type of an array descriptor (fat or thin pointer) or a
556bdfd4
UW
1774 pointer to one, the type of its array data (a array-with-no-bounds type);
1775 otherwise, NULL. Use ada_type_of_array to get an array type with bounds
1776 data. */
4c4b4cd2 1777
d2e4a39e 1778static struct type *
556bdfd4 1779desc_data_target_type (struct type *type)
14f9c5c9
AS
1780{
1781 type = desc_base_type (type);
1782
4c4b4cd2 1783 /* NOTE: The following is bogus; see comment in desc_bounds. */
14f9c5c9 1784 if (is_thin_pntr (type))
556bdfd4 1785 return desc_base_type (TYPE_FIELD_TYPE (thin_descriptor_type (type), 1));
14f9c5c9 1786 else if (is_thick_pntr (type))
556bdfd4
UW
1787 {
1788 struct type *data_type = lookup_struct_elt_type (type, "P_ARRAY", 1);
1789
1790 if (data_type
1791 && TYPE_CODE (ada_check_typedef (data_type)) == TYPE_CODE_PTR)
05e522ef 1792 return ada_check_typedef (TYPE_TARGET_TYPE (data_type));
556bdfd4
UW
1793 }
1794
1795 return NULL;
14f9c5c9
AS
1796}
1797
1798/* If ARR is an array descriptor (fat or thin pointer), a pointer to
1799 its array data. */
4c4b4cd2 1800
d2e4a39e
AS
1801static struct value *
1802desc_data (struct value *arr)
14f9c5c9 1803{
df407dfe 1804 struct type *type = value_type (arr);
5b4ee69b 1805
14f9c5c9
AS
1806 if (is_thin_pntr (type))
1807 return thin_data_pntr (arr);
1808 else if (is_thick_pntr (type))
d2e4a39e 1809 return value_struct_elt (&arr, NULL, "P_ARRAY", NULL,
323e0a4a 1810 _("Bad GNAT array descriptor"));
14f9c5c9
AS
1811 else
1812 return NULL;
1813}
1814
1815
1816/* If TYPE is the type of an array-descriptor (fat pointer), the bit
4c4b4cd2
PH
1817 position of the field containing the address of the data. */
1818
14f9c5c9 1819static int
d2e4a39e 1820fat_pntr_data_bitpos (struct type *type)
14f9c5c9
AS
1821{
1822 return TYPE_FIELD_BITPOS (desc_base_type (type), 0);
1823}
1824
1825/* If TYPE is the type of an array-descriptor (fat pointer), the bit
4c4b4cd2
PH
1826 size of the field containing the address of the data. */
1827
14f9c5c9 1828static int
d2e4a39e 1829fat_pntr_data_bitsize (struct type *type)
14f9c5c9
AS
1830{
1831 type = desc_base_type (type);
1832
1833 if (TYPE_FIELD_BITSIZE (type, 0) > 0)
1834 return TYPE_FIELD_BITSIZE (type, 0);
d2e4a39e 1835 else
14f9c5c9
AS
1836 return TARGET_CHAR_BIT * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 0));
1837}
1838
4c4b4cd2 1839/* If BOUNDS is an array-bounds structure (or pointer to one), return
14f9c5c9 1840 the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
4c4b4cd2
PH
1841 bound, if WHICH is 1. The first bound is I=1. */
1842
d2e4a39e
AS
1843static struct value *
1844desc_one_bound (struct value *bounds, int i, int which)
14f9c5c9 1845{
d2e4a39e 1846 return value_struct_elt (&bounds, NULL, bound_name[2 * i + which - 2], NULL,
323e0a4a 1847 _("Bad GNAT array descriptor bounds"));
14f9c5c9
AS
1848}
1849
1850/* If BOUNDS is an array-bounds structure type, return the bit position
1851 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
4c4b4cd2
PH
1852 bound, if WHICH is 1. The first bound is I=1. */
1853
14f9c5c9 1854static int
d2e4a39e 1855desc_bound_bitpos (struct type *type, int i, int which)
14f9c5c9 1856{
d2e4a39e 1857 return TYPE_FIELD_BITPOS (desc_base_type (type), 2 * i + which - 2);
14f9c5c9
AS
1858}
1859
1860/* If BOUNDS is an array-bounds structure type, return the bit field size
1861 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
4c4b4cd2
PH
1862 bound, if WHICH is 1. The first bound is I=1. */
1863
76a01679 1864static int
d2e4a39e 1865desc_bound_bitsize (struct type *type, int i, int which)
14f9c5c9
AS
1866{
1867 type = desc_base_type (type);
1868
d2e4a39e
AS
1869 if (TYPE_FIELD_BITSIZE (type, 2 * i + which - 2) > 0)
1870 return TYPE_FIELD_BITSIZE (type, 2 * i + which - 2);
1871 else
1872 return 8 * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 2 * i + which - 2));
14f9c5c9
AS
1873}
1874
1875/* If TYPE is the type of an array-bounds structure, the type of its
4c4b4cd2
PH
1876 Ith bound (numbering from 1). Otherwise, NULL. */
1877
d2e4a39e
AS
1878static struct type *
1879desc_index_type (struct type *type, int i)
14f9c5c9
AS
1880{
1881 type = desc_base_type (type);
1882
1883 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
d2e4a39e
AS
1884 return lookup_struct_elt_type (type, bound_name[2 * i - 2], 1);
1885 else
14f9c5c9
AS
1886 return NULL;
1887}
1888
4c4b4cd2
PH
1889/* The number of index positions in the array-bounds type TYPE.
1890 Return 0 if TYPE is NULL. */
1891
14f9c5c9 1892static int
d2e4a39e 1893desc_arity (struct type *type)
14f9c5c9
AS
1894{
1895 type = desc_base_type (type);
1896
1897 if (type != NULL)
1898 return TYPE_NFIELDS (type) / 2;
1899 return 0;
1900}
1901
4c4b4cd2
PH
1902/* Non-zero iff TYPE is a simple array type (not a pointer to one) or
1903 an array descriptor type (representing an unconstrained array
1904 type). */
1905
76a01679
JB
1906static int
1907ada_is_direct_array_type (struct type *type)
4c4b4cd2
PH
1908{
1909 if (type == NULL)
1910 return 0;
61ee279c 1911 type = ada_check_typedef (type);
4c4b4cd2 1912 return (TYPE_CODE (type) == TYPE_CODE_ARRAY
76a01679 1913 || ada_is_array_descriptor_type (type));
4c4b4cd2
PH
1914}
1915
52ce6436 1916/* Non-zero iff TYPE represents any kind of array in Ada, or a pointer
0963b4bd 1917 * to one. */
52ce6436 1918
2c0b251b 1919static int
52ce6436
PH
1920ada_is_array_type (struct type *type)
1921{
1922 while (type != NULL
1923 && (TYPE_CODE (type) == TYPE_CODE_PTR
1924 || TYPE_CODE (type) == TYPE_CODE_REF))
1925 type = TYPE_TARGET_TYPE (type);
1926 return ada_is_direct_array_type (type);
1927}
1928
4c4b4cd2 1929/* Non-zero iff TYPE is a simple array type or pointer to one. */
14f9c5c9 1930
14f9c5c9 1931int
4c4b4cd2 1932ada_is_simple_array_type (struct type *type)
14f9c5c9
AS
1933{
1934 if (type == NULL)
1935 return 0;
61ee279c 1936 type = ada_check_typedef (type);
14f9c5c9 1937 return (TYPE_CODE (type) == TYPE_CODE_ARRAY
4c4b4cd2 1938 || (TYPE_CODE (type) == TYPE_CODE_PTR
b0dd7688
JB
1939 && TYPE_CODE (ada_check_typedef (TYPE_TARGET_TYPE (type)))
1940 == TYPE_CODE_ARRAY));
14f9c5c9
AS
1941}
1942
4c4b4cd2
PH
1943/* Non-zero iff TYPE belongs to a GNAT array descriptor. */
1944
14f9c5c9 1945int
4c4b4cd2 1946ada_is_array_descriptor_type (struct type *type)
14f9c5c9 1947{
556bdfd4 1948 struct type *data_type = desc_data_target_type (type);
14f9c5c9
AS
1949
1950 if (type == NULL)
1951 return 0;
61ee279c 1952 type = ada_check_typedef (type);
556bdfd4
UW
1953 return (data_type != NULL
1954 && TYPE_CODE (data_type) == TYPE_CODE_ARRAY
1955 && desc_arity (desc_bounds_type (type)) > 0);
14f9c5c9
AS
1956}
1957
1958/* Non-zero iff type is a partially mal-formed GNAT array
4c4b4cd2 1959 descriptor. FIXME: This is to compensate for some problems with
14f9c5c9 1960 debugging output from GNAT. Re-examine periodically to see if it
4c4b4cd2
PH
1961 is still needed. */
1962
14f9c5c9 1963int
ebf56fd3 1964ada_is_bogus_array_descriptor (struct type *type)
14f9c5c9 1965{
d2e4a39e 1966 return
14f9c5c9
AS
1967 type != NULL
1968 && TYPE_CODE (type) == TYPE_CODE_STRUCT
1969 && (lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL
4c4b4cd2
PH
1970 || lookup_struct_elt_type (type, "P_ARRAY", 1) != NULL)
1971 && !ada_is_array_descriptor_type (type);
14f9c5c9
AS
1972}
1973
1974
4c4b4cd2 1975/* If ARR has a record type in the form of a standard GNAT array descriptor,
14f9c5c9 1976 (fat pointer) returns the type of the array data described---specifically,
4c4b4cd2 1977 a pointer-to-array type. If BOUNDS is non-zero, the bounds data are filled
14f9c5c9 1978 in from the descriptor; otherwise, they are left unspecified. If
4c4b4cd2
PH
1979 the ARR denotes a null array descriptor and BOUNDS is non-zero,
1980 returns NULL. The result is simply the type of ARR if ARR is not
14f9c5c9 1981 a descriptor. */
d2e4a39e
AS
1982struct type *
1983ada_type_of_array (struct value *arr, int bounds)
14f9c5c9 1984{
ad82864c
JB
1985 if (ada_is_constrained_packed_array_type (value_type (arr)))
1986 return decode_constrained_packed_array_type (value_type (arr));
14f9c5c9 1987
df407dfe
AC
1988 if (!ada_is_array_descriptor_type (value_type (arr)))
1989 return value_type (arr);
d2e4a39e
AS
1990
1991 if (!bounds)
ad82864c
JB
1992 {
1993 struct type *array_type =
1994 ada_check_typedef (desc_data_target_type (value_type (arr)));
1995
1996 if (ada_is_unconstrained_packed_array_type (value_type (arr)))
1997 TYPE_FIELD_BITSIZE (array_type, 0) =
1998 decode_packed_array_bitsize (value_type (arr));
1999
2000 return array_type;
2001 }
14f9c5c9
AS
2002 else
2003 {
d2e4a39e 2004 struct type *elt_type;
14f9c5c9 2005 int arity;
d2e4a39e 2006 struct value *descriptor;
14f9c5c9 2007
df407dfe
AC
2008 elt_type = ada_array_element_type (value_type (arr), -1);
2009 arity = ada_array_arity (value_type (arr));
14f9c5c9 2010
d2e4a39e 2011 if (elt_type == NULL || arity == 0)
df407dfe 2012 return ada_check_typedef (value_type (arr));
14f9c5c9
AS
2013
2014 descriptor = desc_bounds (arr);
d2e4a39e 2015 if (value_as_long (descriptor) == 0)
4c4b4cd2 2016 return NULL;
d2e4a39e 2017 while (arity > 0)
4c4b4cd2 2018 {
e9bb382b
UW
2019 struct type *range_type = alloc_type_copy (value_type (arr));
2020 struct type *array_type = alloc_type_copy (value_type (arr));
4c4b4cd2
PH
2021 struct value *low = desc_one_bound (descriptor, arity, 0);
2022 struct value *high = desc_one_bound (descriptor, arity, 1);
4c4b4cd2 2023
5b4ee69b 2024 arity -= 1;
0c9c3474
SA
2025 create_static_range_type (range_type, value_type (low),
2026 longest_to_int (value_as_long (low)),
2027 longest_to_int (value_as_long (high)));
4c4b4cd2 2028 elt_type = create_array_type (array_type, elt_type, range_type);
ad82864c
JB
2029
2030 if (ada_is_unconstrained_packed_array_type (value_type (arr)))
e67ad678
JB
2031 {
2032 /* We need to store the element packed bitsize, as well as
2033 recompute the array size, because it was previously
2034 computed based on the unpacked element size. */
2035 LONGEST lo = value_as_long (low);
2036 LONGEST hi = value_as_long (high);
2037
2038 TYPE_FIELD_BITSIZE (elt_type, 0) =
2039 decode_packed_array_bitsize (value_type (arr));
2040 /* If the array has no element, then the size is already
2041 zero, and does not need to be recomputed. */
2042 if (lo < hi)
2043 {
2044 int array_bitsize =
2045 (hi - lo + 1) * TYPE_FIELD_BITSIZE (elt_type, 0);
2046
2047 TYPE_LENGTH (array_type) = (array_bitsize + 7) / 8;
2048 }
2049 }
4c4b4cd2 2050 }
14f9c5c9
AS
2051
2052 return lookup_pointer_type (elt_type);
2053 }
2054}
2055
2056/* If ARR does not represent an array, returns ARR unchanged.
4c4b4cd2
PH
2057 Otherwise, returns either a standard GDB array with bounds set
2058 appropriately or, if ARR is a non-null fat pointer, a pointer to a standard
2059 GDB array. Returns NULL if ARR is a null fat pointer. */
2060
d2e4a39e
AS
2061struct value *
2062ada_coerce_to_simple_array_ptr (struct value *arr)
14f9c5c9 2063{
df407dfe 2064 if (ada_is_array_descriptor_type (value_type (arr)))
14f9c5c9 2065 {
d2e4a39e 2066 struct type *arrType = ada_type_of_array (arr, 1);
5b4ee69b 2067
14f9c5c9 2068 if (arrType == NULL)
4c4b4cd2 2069 return NULL;
14f9c5c9
AS
2070 return value_cast (arrType, value_copy (desc_data (arr)));
2071 }
ad82864c
JB
2072 else if (ada_is_constrained_packed_array_type (value_type (arr)))
2073 return decode_constrained_packed_array (arr);
14f9c5c9
AS
2074 else
2075 return arr;
2076}
2077
2078/* If ARR does not represent an array, returns ARR unchanged.
2079 Otherwise, returns a standard GDB array describing ARR (which may
4c4b4cd2
PH
2080 be ARR itself if it already is in the proper form). */
2081
720d1a40 2082struct value *
d2e4a39e 2083ada_coerce_to_simple_array (struct value *arr)
14f9c5c9 2084{
df407dfe 2085 if (ada_is_array_descriptor_type (value_type (arr)))
14f9c5c9 2086 {
d2e4a39e 2087 struct value *arrVal = ada_coerce_to_simple_array_ptr (arr);
5b4ee69b 2088
14f9c5c9 2089 if (arrVal == NULL)
323e0a4a 2090 error (_("Bounds unavailable for null array pointer."));
c1b5a1a6 2091 ada_ensure_varsize_limit (TYPE_TARGET_TYPE (value_type (arrVal)));
14f9c5c9
AS
2092 return value_ind (arrVal);
2093 }
ad82864c
JB
2094 else if (ada_is_constrained_packed_array_type (value_type (arr)))
2095 return decode_constrained_packed_array (arr);
d2e4a39e 2096 else
14f9c5c9
AS
2097 return arr;
2098}
2099
2100/* If TYPE represents a GNAT array type, return it translated to an
2101 ordinary GDB array type (possibly with BITSIZE fields indicating
4c4b4cd2
PH
2102 packing). For other types, is the identity. */
2103
d2e4a39e
AS
2104struct type *
2105ada_coerce_to_simple_array_type (struct type *type)
14f9c5c9 2106{
ad82864c
JB
2107 if (ada_is_constrained_packed_array_type (type))
2108 return decode_constrained_packed_array_type (type);
17280b9f
UW
2109
2110 if (ada_is_array_descriptor_type (type))
556bdfd4 2111 return ada_check_typedef (desc_data_target_type (type));
17280b9f
UW
2112
2113 return type;
14f9c5c9
AS
2114}
2115
4c4b4cd2
PH
2116/* Non-zero iff TYPE represents a standard GNAT packed-array type. */
2117
ad82864c
JB
2118static int
2119ada_is_packed_array_type (struct type *type)
14f9c5c9
AS
2120{
2121 if (type == NULL)
2122 return 0;
4c4b4cd2 2123 type = desc_base_type (type);
61ee279c 2124 type = ada_check_typedef (type);
d2e4a39e 2125 return
14f9c5c9
AS
2126 ada_type_name (type) != NULL
2127 && strstr (ada_type_name (type), "___XP") != NULL;
2128}
2129
ad82864c
JB
2130/* Non-zero iff TYPE represents a standard GNAT constrained
2131 packed-array type. */
2132
2133int
2134ada_is_constrained_packed_array_type (struct type *type)
2135{
2136 return ada_is_packed_array_type (type)
2137 && !ada_is_array_descriptor_type (type);
2138}
2139
2140/* Non-zero iff TYPE represents an array descriptor for a
2141 unconstrained packed-array type. */
2142
2143static int
2144ada_is_unconstrained_packed_array_type (struct type *type)
2145{
2146 return ada_is_packed_array_type (type)
2147 && ada_is_array_descriptor_type (type);
2148}
2149
2150/* Given that TYPE encodes a packed array type (constrained or unconstrained),
2151 return the size of its elements in bits. */
2152
2153static long
2154decode_packed_array_bitsize (struct type *type)
2155{
0d5cff50
DE
2156 const char *raw_name;
2157 const char *tail;
ad82864c
JB
2158 long bits;
2159
720d1a40
JB
2160 /* Access to arrays implemented as fat pointers are encoded as a typedef
2161 of the fat pointer type. We need the name of the fat pointer type
2162 to do the decoding, so strip the typedef layer. */
2163 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
2164 type = ada_typedef_target_type (type);
2165
2166 raw_name = ada_type_name (ada_check_typedef (type));
ad82864c
JB
2167 if (!raw_name)
2168 raw_name = ada_type_name (desc_base_type (type));
2169
2170 if (!raw_name)
2171 return 0;
2172
2173 tail = strstr (raw_name, "___XP");
720d1a40 2174 gdb_assert (tail != NULL);
ad82864c
JB
2175
2176 if (sscanf (tail + sizeof ("___XP") - 1, "%ld", &bits) != 1)
2177 {
2178 lim_warning
2179 (_("could not understand bit size information on packed array"));
2180 return 0;
2181 }
2182
2183 return bits;
2184}
2185
14f9c5c9
AS
2186/* Given that TYPE is a standard GDB array type with all bounds filled
2187 in, and that the element size of its ultimate scalar constituents
2188 (that is, either its elements, or, if it is an array of arrays, its
2189 elements' elements, etc.) is *ELT_BITS, return an identical type,
2190 but with the bit sizes of its elements (and those of any
2191 constituent arrays) recorded in the BITSIZE components of its
4c4b4cd2 2192 TYPE_FIELD_BITSIZE values, and with *ELT_BITS set to its total size
4a46959e
JB
2193 in bits.
2194
2195 Note that, for arrays whose index type has an XA encoding where
2196 a bound references a record discriminant, getting that discriminant,
2197 and therefore the actual value of that bound, is not possible
2198 because none of the given parameters gives us access to the record.
2199 This function assumes that it is OK in the context where it is being
2200 used to return an array whose bounds are still dynamic and where
2201 the length is arbitrary. */
4c4b4cd2 2202
d2e4a39e 2203static struct type *
ad82864c 2204constrained_packed_array_type (struct type *type, long *elt_bits)
14f9c5c9 2205{
d2e4a39e
AS
2206 struct type *new_elt_type;
2207 struct type *new_type;
99b1c762
JB
2208 struct type *index_type_desc;
2209 struct type *index_type;
14f9c5c9
AS
2210 LONGEST low_bound, high_bound;
2211
61ee279c 2212 type = ada_check_typedef (type);
14f9c5c9
AS
2213 if (TYPE_CODE (type) != TYPE_CODE_ARRAY)
2214 return type;
2215
99b1c762
JB
2216 index_type_desc = ada_find_parallel_type (type, "___XA");
2217 if (index_type_desc)
2218 index_type = to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, 0),
2219 NULL);
2220 else
2221 index_type = TYPE_INDEX_TYPE (type);
2222
e9bb382b 2223 new_type = alloc_type_copy (type);
ad82864c
JB
2224 new_elt_type =
2225 constrained_packed_array_type (ada_check_typedef (TYPE_TARGET_TYPE (type)),
2226 elt_bits);
99b1c762 2227 create_array_type (new_type, new_elt_type, index_type);
14f9c5c9
AS
2228 TYPE_FIELD_BITSIZE (new_type, 0) = *elt_bits;
2229 TYPE_NAME (new_type) = ada_type_name (type);
2230
4a46959e
JB
2231 if ((TYPE_CODE (check_typedef (index_type)) == TYPE_CODE_RANGE
2232 && is_dynamic_type (check_typedef (index_type)))
2233 || get_discrete_bounds (index_type, &low_bound, &high_bound) < 0)
14f9c5c9
AS
2234 low_bound = high_bound = 0;
2235 if (high_bound < low_bound)
2236 *elt_bits = TYPE_LENGTH (new_type) = 0;
d2e4a39e 2237 else
14f9c5c9
AS
2238 {
2239 *elt_bits *= (high_bound - low_bound + 1);
d2e4a39e 2240 TYPE_LENGTH (new_type) =
4c4b4cd2 2241 (*elt_bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
14f9c5c9
AS
2242 }
2243
876cecd0 2244 TYPE_FIXED_INSTANCE (new_type) = 1;
14f9c5c9
AS
2245 return new_type;
2246}
2247
ad82864c
JB
2248/* The array type encoded by TYPE, where
2249 ada_is_constrained_packed_array_type (TYPE). */
4c4b4cd2 2250
d2e4a39e 2251static struct type *
ad82864c 2252decode_constrained_packed_array_type (struct type *type)
d2e4a39e 2253{
0d5cff50 2254 const char *raw_name = ada_type_name (ada_check_typedef (type));
727e3d2e 2255 char *name;
0d5cff50 2256 const char *tail;
d2e4a39e 2257 struct type *shadow_type;
14f9c5c9 2258 long bits;
14f9c5c9 2259
727e3d2e
JB
2260 if (!raw_name)
2261 raw_name = ada_type_name (desc_base_type (type));
2262
2263 if (!raw_name)
2264 return NULL;
2265
2266 name = (char *) alloca (strlen (raw_name) + 1);
2267 tail = strstr (raw_name, "___XP");
4c4b4cd2
PH
2268 type = desc_base_type (type);
2269
14f9c5c9
AS
2270 memcpy (name, raw_name, tail - raw_name);
2271 name[tail - raw_name] = '\000';
2272
b4ba55a1
JB
2273 shadow_type = ada_find_parallel_type_with_name (type, name);
2274
2275 if (shadow_type == NULL)
14f9c5c9 2276 {
323e0a4a 2277 lim_warning (_("could not find bounds information on packed array"));
14f9c5c9
AS
2278 return NULL;
2279 }
f168693b 2280 shadow_type = check_typedef (shadow_type);
14f9c5c9
AS
2281
2282 if (TYPE_CODE (shadow_type) != TYPE_CODE_ARRAY)
2283 {
0963b4bd
MS
2284 lim_warning (_("could not understand bounds "
2285 "information on packed array"));
14f9c5c9
AS
2286 return NULL;
2287 }
d2e4a39e 2288
ad82864c
JB
2289 bits = decode_packed_array_bitsize (type);
2290 return constrained_packed_array_type (shadow_type, &bits);
14f9c5c9
AS
2291}
2292
ad82864c
JB
2293/* Given that ARR is a struct value *indicating a GNAT constrained packed
2294 array, returns a simple array that denotes that array. Its type is a
14f9c5c9
AS
2295 standard GDB array type except that the BITSIZEs of the array
2296 target types are set to the number of bits in each element, and the
4c4b4cd2 2297 type length is set appropriately. */
14f9c5c9 2298
d2e4a39e 2299static struct value *
ad82864c 2300decode_constrained_packed_array (struct value *arr)
14f9c5c9 2301{
4c4b4cd2 2302 struct type *type;
14f9c5c9 2303
11aa919a
PMR
2304 /* If our value is a pointer, then dereference it. Likewise if
2305 the value is a reference. Make sure that this operation does not
2306 cause the target type to be fixed, as this would indirectly cause
2307 this array to be decoded. The rest of the routine assumes that
2308 the array hasn't been decoded yet, so we use the basic "coerce_ref"
2309 and "value_ind" routines to perform the dereferencing, as opposed
2310 to using "ada_coerce_ref" or "ada_value_ind". */
2311 arr = coerce_ref (arr);
828292f2 2312 if (TYPE_CODE (ada_check_typedef (value_type (arr))) == TYPE_CODE_PTR)
284614f0 2313 arr = value_ind (arr);
4c4b4cd2 2314
ad82864c 2315 type = decode_constrained_packed_array_type (value_type (arr));
14f9c5c9
AS
2316 if (type == NULL)
2317 {
323e0a4a 2318 error (_("can't unpack array"));
14f9c5c9
AS
2319 return NULL;
2320 }
61ee279c 2321
50810684 2322 if (gdbarch_bits_big_endian (get_type_arch (value_type (arr)))
32c9a795 2323 && ada_is_modular_type (value_type (arr)))
61ee279c
PH
2324 {
2325 /* This is a (right-justified) modular type representing a packed
2326 array with no wrapper. In order to interpret the value through
2327 the (left-justified) packed array type we just built, we must
2328 first left-justify it. */
2329 int bit_size, bit_pos;
2330 ULONGEST mod;
2331
df407dfe 2332 mod = ada_modulus (value_type (arr)) - 1;
61ee279c
PH
2333 bit_size = 0;
2334 while (mod > 0)
2335 {
2336 bit_size += 1;
2337 mod >>= 1;
2338 }
df407dfe 2339 bit_pos = HOST_CHAR_BIT * TYPE_LENGTH (value_type (arr)) - bit_size;
61ee279c
PH
2340 arr = ada_value_primitive_packed_val (arr, NULL,
2341 bit_pos / HOST_CHAR_BIT,
2342 bit_pos % HOST_CHAR_BIT,
2343 bit_size,
2344 type);
2345 }
2346
4c4b4cd2 2347 return coerce_unspec_val_to_type (arr, type);
14f9c5c9
AS
2348}
2349
2350
2351/* The value of the element of packed array ARR at the ARITY indices
4c4b4cd2 2352 given in IND. ARR must be a simple array. */
14f9c5c9 2353
d2e4a39e
AS
2354static struct value *
2355value_subscript_packed (struct value *arr, int arity, struct value **ind)
14f9c5c9
AS
2356{
2357 int i;
2358 int bits, elt_off, bit_off;
2359 long elt_total_bit_offset;
d2e4a39e
AS
2360 struct type *elt_type;
2361 struct value *v;
14f9c5c9
AS
2362
2363 bits = 0;
2364 elt_total_bit_offset = 0;
df407dfe 2365 elt_type = ada_check_typedef (value_type (arr));
d2e4a39e 2366 for (i = 0; i < arity; i += 1)
14f9c5c9 2367 {
d2e4a39e 2368 if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY
4c4b4cd2
PH
2369 || TYPE_FIELD_BITSIZE (elt_type, 0) == 0)
2370 error
0963b4bd
MS
2371 (_("attempt to do packed indexing of "
2372 "something other than a packed array"));
14f9c5c9 2373 else
4c4b4cd2
PH
2374 {
2375 struct type *range_type = TYPE_INDEX_TYPE (elt_type);
2376 LONGEST lowerbound, upperbound;
2377 LONGEST idx;
2378
2379 if (get_discrete_bounds (range_type, &lowerbound, &upperbound) < 0)
2380 {
323e0a4a 2381 lim_warning (_("don't know bounds of array"));
4c4b4cd2
PH
2382 lowerbound = upperbound = 0;
2383 }
2384
3cb382c9 2385 idx = pos_atr (ind[i]);
4c4b4cd2 2386 if (idx < lowerbound || idx > upperbound)
0963b4bd
MS
2387 lim_warning (_("packed array index %ld out of bounds"),
2388 (long) idx);
4c4b4cd2
PH
2389 bits = TYPE_FIELD_BITSIZE (elt_type, 0);
2390 elt_total_bit_offset += (idx - lowerbound) * bits;
61ee279c 2391 elt_type = ada_check_typedef (TYPE_TARGET_TYPE (elt_type));
4c4b4cd2 2392 }
14f9c5c9
AS
2393 }
2394 elt_off = elt_total_bit_offset / HOST_CHAR_BIT;
2395 bit_off = elt_total_bit_offset % HOST_CHAR_BIT;
d2e4a39e
AS
2396
2397 v = ada_value_primitive_packed_val (arr, NULL, elt_off, bit_off,
4c4b4cd2 2398 bits, elt_type);
14f9c5c9
AS
2399 return v;
2400}
2401
4c4b4cd2 2402/* Non-zero iff TYPE includes negative integer values. */
14f9c5c9
AS
2403
2404static int
d2e4a39e 2405has_negatives (struct type *type)
14f9c5c9 2406{
d2e4a39e
AS
2407 switch (TYPE_CODE (type))
2408 {
2409 default:
2410 return 0;
2411 case TYPE_CODE_INT:
2412 return !TYPE_UNSIGNED (type);
2413 case TYPE_CODE_RANGE:
2414 return TYPE_LOW_BOUND (type) < 0;
2415 }
14f9c5c9 2416}
d2e4a39e 2417
f93fca70 2418/* With SRC being a buffer containing BIT_SIZE bits of data at BIT_OFFSET,
5b639dea 2419 unpack that data into UNPACKED. UNPACKED_LEN is the size in bytes of
f93fca70 2420 the unpacked buffer.
14f9c5c9 2421
5b639dea
JB
2422 The size of the unpacked buffer (UNPACKED_LEN) is expected to be large
2423 enough to contain at least BIT_OFFSET bits. If not, an error is raised.
2424
f93fca70
JB
2425 IS_BIG_ENDIAN is nonzero if the data is stored in big endian mode,
2426 zero otherwise.
14f9c5c9 2427
f93fca70 2428 IS_SIGNED_TYPE is nonzero if the data corresponds to a signed type.
a1c95e6b 2429
f93fca70
JB
2430 IS_SCALAR is nonzero if the data corresponds to a signed type. */
2431
2432static void
2433ada_unpack_from_contents (const gdb_byte *src, int bit_offset, int bit_size,
2434 gdb_byte *unpacked, int unpacked_len,
2435 int is_big_endian, int is_signed_type,
2436 int is_scalar)
2437{
a1c95e6b
JB
2438 int src_len = (bit_size + bit_offset + HOST_CHAR_BIT - 1) / 8;
2439 int src_idx; /* Index into the source area */
2440 int src_bytes_left; /* Number of source bytes left to process. */
2441 int srcBitsLeft; /* Number of source bits left to move */
2442 int unusedLS; /* Number of bits in next significant
2443 byte of source that are unused */
2444
a1c95e6b
JB
2445 int unpacked_idx; /* Index into the unpacked buffer */
2446 int unpacked_bytes_left; /* Number of bytes left to set in unpacked. */
2447
4c4b4cd2 2448 unsigned long accum; /* Staging area for bits being transferred */
a1c95e6b 2449 int accumSize; /* Number of meaningful bits in accum */
14f9c5c9 2450 unsigned char sign;
a1c95e6b 2451
4c4b4cd2
PH
2452 /* Transmit bytes from least to most significant; delta is the direction
2453 the indices move. */
f93fca70 2454 int delta = is_big_endian ? -1 : 1;
14f9c5c9 2455
5b639dea
JB
2456 /* Make sure that unpacked is large enough to receive the BIT_SIZE
2457 bits from SRC. .*/
2458 if ((bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT > unpacked_len)
2459 error (_("Cannot unpack %d bits into buffer of %d bytes"),
2460 bit_size, unpacked_len);
2461
14f9c5c9 2462 srcBitsLeft = bit_size;
086ca51f 2463 src_bytes_left = src_len;
f93fca70 2464 unpacked_bytes_left = unpacked_len;
14f9c5c9 2465 sign = 0;
f93fca70
JB
2466
2467 if (is_big_endian)
14f9c5c9 2468 {
086ca51f 2469 src_idx = src_len - 1;
f93fca70
JB
2470 if (is_signed_type
2471 && ((src[0] << bit_offset) & (1 << (HOST_CHAR_BIT - 1))))
4c4b4cd2 2472 sign = ~0;
d2e4a39e
AS
2473
2474 unusedLS =
4c4b4cd2
PH
2475 (HOST_CHAR_BIT - (bit_size + bit_offset) % HOST_CHAR_BIT)
2476 % HOST_CHAR_BIT;
14f9c5c9 2477
f93fca70
JB
2478 if (is_scalar)
2479 {
2480 accumSize = 0;
2481 unpacked_idx = unpacked_len - 1;
2482 }
2483 else
2484 {
4c4b4cd2
PH
2485 /* Non-scalar values must be aligned at a byte boundary... */
2486 accumSize =
2487 (HOST_CHAR_BIT - bit_size % HOST_CHAR_BIT) % HOST_CHAR_BIT;
2488 /* ... And are placed at the beginning (most-significant) bytes
2489 of the target. */
086ca51f
JB
2490 unpacked_idx = (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT - 1;
2491 unpacked_bytes_left = unpacked_idx + 1;
f93fca70 2492 }
14f9c5c9 2493 }
d2e4a39e 2494 else
14f9c5c9
AS
2495 {
2496 int sign_bit_offset = (bit_size + bit_offset - 1) % 8;
2497
086ca51f 2498 src_idx = unpacked_idx = 0;
14f9c5c9
AS
2499 unusedLS = bit_offset;
2500 accumSize = 0;
2501
f93fca70 2502 if (is_signed_type && (src[src_len - 1] & (1 << sign_bit_offset)))
4c4b4cd2 2503 sign = ~0;
14f9c5c9 2504 }
d2e4a39e 2505
14f9c5c9 2506 accum = 0;
086ca51f 2507 while (src_bytes_left > 0)
14f9c5c9
AS
2508 {
2509 /* Mask for removing bits of the next source byte that are not
4c4b4cd2 2510 part of the value. */
d2e4a39e 2511 unsigned int unusedMSMask =
4c4b4cd2
PH
2512 (1 << (srcBitsLeft >= HOST_CHAR_BIT ? HOST_CHAR_BIT : srcBitsLeft)) -
2513 1;
2514 /* Sign-extend bits for this byte. */
14f9c5c9 2515 unsigned int signMask = sign & ~unusedMSMask;
5b4ee69b 2516
d2e4a39e 2517 accum |=
086ca51f 2518 (((src[src_idx] >> unusedLS) & unusedMSMask) | signMask) << accumSize;
14f9c5c9 2519 accumSize += HOST_CHAR_BIT - unusedLS;
d2e4a39e 2520 if (accumSize >= HOST_CHAR_BIT)
4c4b4cd2 2521 {
db297a65 2522 unpacked[unpacked_idx] = accum & ~(~0UL << HOST_CHAR_BIT);
4c4b4cd2
PH
2523 accumSize -= HOST_CHAR_BIT;
2524 accum >>= HOST_CHAR_BIT;
086ca51f
JB
2525 unpacked_bytes_left -= 1;
2526 unpacked_idx += delta;
4c4b4cd2 2527 }
14f9c5c9
AS
2528 srcBitsLeft -= HOST_CHAR_BIT - unusedLS;
2529 unusedLS = 0;
086ca51f
JB
2530 src_bytes_left -= 1;
2531 src_idx += delta;
14f9c5c9 2532 }
086ca51f 2533 while (unpacked_bytes_left > 0)
14f9c5c9
AS
2534 {
2535 accum |= sign << accumSize;
db297a65 2536 unpacked[unpacked_idx] = accum & ~(~0UL << HOST_CHAR_BIT);
14f9c5c9 2537 accumSize -= HOST_CHAR_BIT;
9cd4d857
JB
2538 if (accumSize < 0)
2539 accumSize = 0;
14f9c5c9 2540 accum >>= HOST_CHAR_BIT;
086ca51f
JB
2541 unpacked_bytes_left -= 1;
2542 unpacked_idx += delta;
14f9c5c9 2543 }
f93fca70
JB
2544}
2545
2546/* Create a new value of type TYPE from the contents of OBJ starting
2547 at byte OFFSET, and bit offset BIT_OFFSET within that byte,
2548 proceeding for BIT_SIZE bits. If OBJ is an lval in memory, then
2549 assigning through the result will set the field fetched from.
2550 VALADDR is ignored unless OBJ is NULL, in which case,
2551 VALADDR+OFFSET must address the start of storage containing the
2552 packed value. The value returned in this case is never an lval.
2553 Assumes 0 <= BIT_OFFSET < HOST_CHAR_BIT. */
2554
2555struct value *
2556ada_value_primitive_packed_val (struct value *obj, const gdb_byte *valaddr,
2557 long offset, int bit_offset, int bit_size,
2558 struct type *type)
2559{
2560 struct value *v;
bfb1c796 2561 const gdb_byte *src; /* First byte containing data to unpack */
f93fca70 2562 gdb_byte *unpacked;
220475ed 2563 const int is_scalar = is_scalar_type (type);
d0a9e810 2564 const int is_big_endian = gdbarch_bits_big_endian (get_type_arch (type));
d5722aa2 2565 gdb::byte_vector staging;
f93fca70
JB
2566
2567 type = ada_check_typedef (type);
2568
d0a9e810 2569 if (obj == NULL)
bfb1c796 2570 src = valaddr + offset;
d0a9e810 2571 else
bfb1c796 2572 src = value_contents (obj) + offset;
d0a9e810
JB
2573
2574 if (is_dynamic_type (type))
2575 {
2576 /* The length of TYPE might by dynamic, so we need to resolve
2577 TYPE in order to know its actual size, which we then use
2578 to create the contents buffer of the value we return.
2579 The difficulty is that the data containing our object is
2580 packed, and therefore maybe not at a byte boundary. So, what
2581 we do, is unpack the data into a byte-aligned buffer, and then
2582 use that buffer as our object's value for resolving the type. */
d5722aa2
PA
2583 int staging_len = (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
2584 staging.resize (staging_len);
d0a9e810
JB
2585
2586 ada_unpack_from_contents (src, bit_offset, bit_size,
d5722aa2 2587 staging.data (), staging.size (),
d0a9e810
JB
2588 is_big_endian, has_negatives (type),
2589 is_scalar);
d5722aa2 2590 type = resolve_dynamic_type (type, staging.data (), 0);
0cafa88c
JB
2591 if (TYPE_LENGTH (type) < (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT)
2592 {
2593 /* This happens when the length of the object is dynamic,
2594 and is actually smaller than the space reserved for it.
2595 For instance, in an array of variant records, the bit_size
2596 we're given is the array stride, which is constant and
2597 normally equal to the maximum size of its element.
2598 But, in reality, each element only actually spans a portion
2599 of that stride. */
2600 bit_size = TYPE_LENGTH (type) * HOST_CHAR_BIT;
2601 }
d0a9e810
JB
2602 }
2603
f93fca70
JB
2604 if (obj == NULL)
2605 {
2606 v = allocate_value (type);
bfb1c796 2607 src = valaddr + offset;
f93fca70
JB
2608 }
2609 else if (VALUE_LVAL (obj) == lval_memory && value_lazy (obj))
2610 {
0cafa88c 2611 int src_len = (bit_size + bit_offset + HOST_CHAR_BIT - 1) / 8;
bfb1c796 2612 gdb_byte *buf;
0cafa88c 2613
f93fca70 2614 v = value_at (type, value_address (obj) + offset);
bfb1c796
PA
2615 buf = (gdb_byte *) alloca (src_len);
2616 read_memory (value_address (v), buf, src_len);
2617 src = buf;
f93fca70
JB
2618 }
2619 else
2620 {
2621 v = allocate_value (type);
bfb1c796 2622 src = value_contents (obj) + offset;
f93fca70
JB
2623 }
2624
2625 if (obj != NULL)
2626 {
2627 long new_offset = offset;
2628
2629 set_value_component_location (v, obj);
2630 set_value_bitpos (v, bit_offset + value_bitpos (obj));
2631 set_value_bitsize (v, bit_size);
2632 if (value_bitpos (v) >= HOST_CHAR_BIT)
2633 {
2634 ++new_offset;
2635 set_value_bitpos (v, value_bitpos (v) - HOST_CHAR_BIT);
2636 }
2637 set_value_offset (v, new_offset);
2638
2639 /* Also set the parent value. This is needed when trying to
2640 assign a new value (in inferior memory). */
2641 set_value_parent (v, obj);
2642 }
2643 else
2644 set_value_bitsize (v, bit_size);
bfb1c796 2645 unpacked = value_contents_writeable (v);
f93fca70
JB
2646
2647 if (bit_size == 0)
2648 {
2649 memset (unpacked, 0, TYPE_LENGTH (type));
2650 return v;
2651 }
2652
d5722aa2 2653 if (staging.size () == TYPE_LENGTH (type))
f93fca70 2654 {
d0a9e810
JB
2655 /* Small short-cut: If we've unpacked the data into a buffer
2656 of the same size as TYPE's length, then we can reuse that,
2657 instead of doing the unpacking again. */
d5722aa2 2658 memcpy (unpacked, staging.data (), staging.size ());
f93fca70 2659 }
d0a9e810
JB
2660 else
2661 ada_unpack_from_contents (src, bit_offset, bit_size,
2662 unpacked, TYPE_LENGTH (type),
2663 is_big_endian, has_negatives (type), is_scalar);
f93fca70 2664
14f9c5c9
AS
2665 return v;
2666}
d2e4a39e 2667
14f9c5c9
AS
2668/* Move N bits from SOURCE, starting at bit offset SRC_OFFSET to
2669 TARGET, starting at bit offset TARG_OFFSET. SOURCE and TARGET must
4c4b4cd2 2670 not overlap. */
14f9c5c9 2671static void
fc1a4b47 2672move_bits (gdb_byte *target, int targ_offset, const gdb_byte *source,
50810684 2673 int src_offset, int n, int bits_big_endian_p)
14f9c5c9
AS
2674{
2675 unsigned int accum, mask;
2676 int accum_bits, chunk_size;
2677
2678 target += targ_offset / HOST_CHAR_BIT;
2679 targ_offset %= HOST_CHAR_BIT;
2680 source += src_offset / HOST_CHAR_BIT;
2681 src_offset %= HOST_CHAR_BIT;
50810684 2682 if (bits_big_endian_p)
14f9c5c9
AS
2683 {
2684 accum = (unsigned char) *source;
2685 source += 1;
2686 accum_bits = HOST_CHAR_BIT - src_offset;
2687
d2e4a39e 2688 while (n > 0)
4c4b4cd2
PH
2689 {
2690 int unused_right;
5b4ee69b 2691
4c4b4cd2
PH
2692 accum = (accum << HOST_CHAR_BIT) + (unsigned char) *source;
2693 accum_bits += HOST_CHAR_BIT;
2694 source += 1;
2695 chunk_size = HOST_CHAR_BIT - targ_offset;
2696 if (chunk_size > n)
2697 chunk_size = n;
2698 unused_right = HOST_CHAR_BIT - (chunk_size + targ_offset);
2699 mask = ((1 << chunk_size) - 1) << unused_right;
2700 *target =
2701 (*target & ~mask)
2702 | ((accum >> (accum_bits - chunk_size - unused_right)) & mask);
2703 n -= chunk_size;
2704 accum_bits -= chunk_size;
2705 target += 1;
2706 targ_offset = 0;
2707 }
14f9c5c9
AS
2708 }
2709 else
2710 {
2711 accum = (unsigned char) *source >> src_offset;
2712 source += 1;
2713 accum_bits = HOST_CHAR_BIT - src_offset;
2714
d2e4a39e 2715 while (n > 0)
4c4b4cd2
PH
2716 {
2717 accum = accum + ((unsigned char) *source << accum_bits);
2718 accum_bits += HOST_CHAR_BIT;
2719 source += 1;
2720 chunk_size = HOST_CHAR_BIT - targ_offset;
2721 if (chunk_size > n)
2722 chunk_size = n;
2723 mask = ((1 << chunk_size) - 1) << targ_offset;
2724 *target = (*target & ~mask) | ((accum << targ_offset) & mask);
2725 n -= chunk_size;
2726 accum_bits -= chunk_size;
2727 accum >>= chunk_size;
2728 target += 1;
2729 targ_offset = 0;
2730 }
14f9c5c9
AS
2731 }
2732}
2733
14f9c5c9
AS
2734/* Store the contents of FROMVAL into the location of TOVAL.
2735 Return a new value with the location of TOVAL and contents of
2736 FROMVAL. Handles assignment into packed fields that have
4c4b4cd2 2737 floating-point or non-scalar types. */
14f9c5c9 2738
d2e4a39e
AS
2739static struct value *
2740ada_value_assign (struct value *toval, struct value *fromval)
14f9c5c9 2741{
df407dfe
AC
2742 struct type *type = value_type (toval);
2743 int bits = value_bitsize (toval);
14f9c5c9 2744
52ce6436
PH
2745 toval = ada_coerce_ref (toval);
2746 fromval = ada_coerce_ref (fromval);
2747
2748 if (ada_is_direct_array_type (value_type (toval)))
2749 toval = ada_coerce_to_simple_array (toval);
2750 if (ada_is_direct_array_type (value_type (fromval)))
2751 fromval = ada_coerce_to_simple_array (fromval);
2752
88e3b34b 2753 if (!deprecated_value_modifiable (toval))
323e0a4a 2754 error (_("Left operand of assignment is not a modifiable lvalue."));
14f9c5c9 2755
d2e4a39e 2756 if (VALUE_LVAL (toval) == lval_memory
14f9c5c9 2757 && bits > 0
d2e4a39e 2758 && (TYPE_CODE (type) == TYPE_CODE_FLT
4c4b4cd2 2759 || TYPE_CODE (type) == TYPE_CODE_STRUCT))
14f9c5c9 2760 {
df407dfe
AC
2761 int len = (value_bitpos (toval)
2762 + bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
aced2898 2763 int from_size;
224c3ddb 2764 gdb_byte *buffer = (gdb_byte *) alloca (len);
d2e4a39e 2765 struct value *val;
42ae5230 2766 CORE_ADDR to_addr = value_address (toval);
14f9c5c9
AS
2767
2768 if (TYPE_CODE (type) == TYPE_CODE_FLT)
4c4b4cd2 2769 fromval = value_cast (type, fromval);
14f9c5c9 2770
52ce6436 2771 read_memory (to_addr, buffer, len);
aced2898
PH
2772 from_size = value_bitsize (fromval);
2773 if (from_size == 0)
2774 from_size = TYPE_LENGTH (value_type (fromval)) * TARGET_CHAR_BIT;
50810684 2775 if (gdbarch_bits_big_endian (get_type_arch (type)))
df407dfe 2776 move_bits (buffer, value_bitpos (toval),
50810684 2777 value_contents (fromval), from_size - bits, bits, 1);
14f9c5c9 2778 else
50810684
UW
2779 move_bits (buffer, value_bitpos (toval),
2780 value_contents (fromval), 0, bits, 0);
972daa01 2781 write_memory_with_notification (to_addr, buffer, len);
8cebebb9 2782
14f9c5c9 2783 val = value_copy (toval);
0fd88904 2784 memcpy (value_contents_raw (val), value_contents (fromval),
4c4b4cd2 2785 TYPE_LENGTH (type));
04624583 2786 deprecated_set_value_type (val, type);
d2e4a39e 2787
14f9c5c9
AS
2788 return val;
2789 }
2790
2791 return value_assign (toval, fromval);
2792}
2793
2794
7c512744
JB
2795/* Given that COMPONENT is a memory lvalue that is part of the lvalue
2796 CONTAINER, assign the contents of VAL to COMPONENTS's place in
2797 CONTAINER. Modifies the VALUE_CONTENTS of CONTAINER only, not
2798 COMPONENT, and not the inferior's memory. The current contents
2799 of COMPONENT are ignored.
2800
2801 Although not part of the initial design, this function also works
2802 when CONTAINER and COMPONENT are not_lval's: it works as if CONTAINER
2803 had a null address, and COMPONENT had an address which is equal to
2804 its offset inside CONTAINER. */
2805
52ce6436
PH
2806static void
2807value_assign_to_component (struct value *container, struct value *component,
2808 struct value *val)
2809{
2810 LONGEST offset_in_container =
42ae5230 2811 (LONGEST) (value_address (component) - value_address (container));
7c512744 2812 int bit_offset_in_container =
52ce6436
PH
2813 value_bitpos (component) - value_bitpos (container);
2814 int bits;
7c512744 2815
52ce6436
PH
2816 val = value_cast (value_type (component), val);
2817
2818 if (value_bitsize (component) == 0)
2819 bits = TARGET_CHAR_BIT * TYPE_LENGTH (value_type (component));
2820 else
2821 bits = value_bitsize (component);
2822
50810684 2823 if (gdbarch_bits_big_endian (get_type_arch (value_type (container))))
7c512744 2824 move_bits (value_contents_writeable (container) + offset_in_container,
52ce6436
PH
2825 value_bitpos (container) + bit_offset_in_container,
2826 value_contents (val),
2827 TYPE_LENGTH (value_type (component)) * TARGET_CHAR_BIT - bits,
50810684 2828 bits, 1);
52ce6436 2829 else
7c512744 2830 move_bits (value_contents_writeable (container) + offset_in_container,
52ce6436 2831 value_bitpos (container) + bit_offset_in_container,
50810684 2832 value_contents (val), 0, bits, 0);
7c512744
JB
2833}
2834
4c4b4cd2
PH
2835/* The value of the element of array ARR at the ARITY indices given in IND.
2836 ARR may be either a simple array, GNAT array descriptor, or pointer
14f9c5c9
AS
2837 thereto. */
2838
d2e4a39e
AS
2839struct value *
2840ada_value_subscript (struct value *arr, int arity, struct value **ind)
14f9c5c9
AS
2841{
2842 int k;
d2e4a39e
AS
2843 struct value *elt;
2844 struct type *elt_type;
14f9c5c9
AS
2845
2846 elt = ada_coerce_to_simple_array (arr);
2847
df407dfe 2848 elt_type = ada_check_typedef (value_type (elt));
d2e4a39e 2849 if (TYPE_CODE (elt_type) == TYPE_CODE_ARRAY
14f9c5c9
AS
2850 && TYPE_FIELD_BITSIZE (elt_type, 0) > 0)
2851 return value_subscript_packed (elt, arity, ind);
2852
2853 for (k = 0; k < arity; k += 1)
2854 {
2855 if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY)
323e0a4a 2856 error (_("too many subscripts (%d expected)"), k);
2497b498 2857 elt = value_subscript (elt, pos_atr (ind[k]));
14f9c5c9
AS
2858 }
2859 return elt;
2860}
2861
deede10c
JB
2862/* Assuming ARR is a pointer to a GDB array, the value of the element
2863 of *ARR at the ARITY indices given in IND.
919e6dbe
PMR
2864 Does not read the entire array into memory.
2865
2866 Note: Unlike what one would expect, this function is used instead of
2867 ada_value_subscript for basically all non-packed array types. The reason
2868 for this is that a side effect of doing our own pointer arithmetics instead
2869 of relying on value_subscript is that there is no implicit typedef peeling.
2870 This is important for arrays of array accesses, where it allows us to
2871 preserve the fact that the array's element is an array access, where the
2872 access part os encoded in a typedef layer. */
14f9c5c9 2873
2c0b251b 2874static struct value *
deede10c 2875ada_value_ptr_subscript (struct value *arr, int arity, struct value **ind)
14f9c5c9
AS
2876{
2877 int k;
919e6dbe 2878 struct value *array_ind = ada_value_ind (arr);
deede10c 2879 struct type *type
919e6dbe
PMR
2880 = check_typedef (value_enclosing_type (array_ind));
2881
2882 if (TYPE_CODE (type) == TYPE_CODE_ARRAY
2883 && TYPE_FIELD_BITSIZE (type, 0) > 0)
2884 return value_subscript_packed (array_ind, arity, ind);
14f9c5c9
AS
2885
2886 for (k = 0; k < arity; k += 1)
2887 {
2888 LONGEST lwb, upb;
aa715135 2889 struct value *lwb_value;
14f9c5c9
AS
2890
2891 if (TYPE_CODE (type) != TYPE_CODE_ARRAY)
323e0a4a 2892 error (_("too many subscripts (%d expected)"), k);
d2e4a39e 2893 arr = value_cast (lookup_pointer_type (TYPE_TARGET_TYPE (type)),
4c4b4cd2 2894 value_copy (arr));
14f9c5c9 2895 get_discrete_bounds (TYPE_INDEX_TYPE (type), &lwb, &upb);
aa715135
JG
2896 lwb_value = value_from_longest (value_type(ind[k]), lwb);
2897 arr = value_ptradd (arr, pos_atr (ind[k]) - pos_atr (lwb_value));
14f9c5c9
AS
2898 type = TYPE_TARGET_TYPE (type);
2899 }
2900
2901 return value_ind (arr);
2902}
2903
0b5d8877 2904/* Given that ARRAY_PTR is a pointer or reference to an array of type TYPE (the
aa715135
JG
2905 actual type of ARRAY_PTR is ignored), returns the Ada slice of
2906 HIGH'Pos-LOW'Pos+1 elements starting at index LOW. The lower bound of
2907 this array is LOW, as per Ada rules. */
0b5d8877 2908static struct value *
f5938064
JG
2909ada_value_slice_from_ptr (struct value *array_ptr, struct type *type,
2910 int low, int high)
0b5d8877 2911{
b0dd7688 2912 struct type *type0 = ada_check_typedef (type);
aa715135 2913 struct type *base_index_type = TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type0));
0c9c3474 2914 struct type *index_type
aa715135 2915 = create_static_range_type (NULL, base_index_type, low, high);
6c038f32 2916 struct type *slice_type =
b0dd7688 2917 create_array_type (NULL, TYPE_TARGET_TYPE (type0), index_type);
aa715135
JG
2918 int base_low = ada_discrete_type_low_bound (TYPE_INDEX_TYPE (type0));
2919 LONGEST base_low_pos, low_pos;
2920 CORE_ADDR base;
2921
2922 if (!discrete_position (base_index_type, low, &low_pos)
2923 || !discrete_position (base_index_type, base_low, &base_low_pos))
2924 {
2925 warning (_("unable to get positions in slice, use bounds instead"));
2926 low_pos = low;
2927 base_low_pos = base_low;
2928 }
5b4ee69b 2929
aa715135
JG
2930 base = value_as_address (array_ptr)
2931 + ((low_pos - base_low_pos)
2932 * TYPE_LENGTH (TYPE_TARGET_TYPE (type0)));
f5938064 2933 return value_at_lazy (slice_type, base);
0b5d8877
PH
2934}
2935
2936
2937static struct value *
2938ada_value_slice (struct value *array, int low, int high)
2939{
b0dd7688 2940 struct type *type = ada_check_typedef (value_type (array));
aa715135 2941 struct type *base_index_type = TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type));
0c9c3474
SA
2942 struct type *index_type
2943 = create_static_range_type (NULL, TYPE_INDEX_TYPE (type), low, high);
6c038f32 2944 struct type *slice_type =
0b5d8877 2945 create_array_type (NULL, TYPE_TARGET_TYPE (type), index_type);
aa715135 2946 LONGEST low_pos, high_pos;
5b4ee69b 2947
aa715135
JG
2948 if (!discrete_position (base_index_type, low, &low_pos)
2949 || !discrete_position (base_index_type, high, &high_pos))
2950 {
2951 warning (_("unable to get positions in slice, use bounds instead"));
2952 low_pos = low;
2953 high_pos = high;
2954 }
2955
2956 return value_cast (slice_type,
2957 value_slice (array, low, high_pos - low_pos + 1));
0b5d8877
PH
2958}
2959
14f9c5c9
AS
2960/* If type is a record type in the form of a standard GNAT array
2961 descriptor, returns the number of dimensions for type. If arr is a
2962 simple array, returns the number of "array of"s that prefix its
4c4b4cd2 2963 type designation. Otherwise, returns 0. */
14f9c5c9
AS
2964
2965int
d2e4a39e 2966ada_array_arity (struct type *type)
14f9c5c9
AS
2967{
2968 int arity;
2969
2970 if (type == NULL)
2971 return 0;
2972
2973 type = desc_base_type (type);
2974
2975 arity = 0;
d2e4a39e 2976 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
14f9c5c9 2977 return desc_arity (desc_bounds_type (type));
d2e4a39e
AS
2978 else
2979 while (TYPE_CODE (type) == TYPE_CODE_ARRAY)
14f9c5c9 2980 {
4c4b4cd2 2981 arity += 1;
61ee279c 2982 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
14f9c5c9 2983 }
d2e4a39e 2984
14f9c5c9
AS
2985 return arity;
2986}
2987
2988/* If TYPE is a record type in the form of a standard GNAT array
2989 descriptor or a simple array type, returns the element type for
2990 TYPE after indexing by NINDICES indices, or by all indices if
4c4b4cd2 2991 NINDICES is -1. Otherwise, returns NULL. */
14f9c5c9 2992
d2e4a39e
AS
2993struct type *
2994ada_array_element_type (struct type *type, int nindices)
14f9c5c9
AS
2995{
2996 type = desc_base_type (type);
2997
d2e4a39e 2998 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
14f9c5c9
AS
2999 {
3000 int k;
d2e4a39e 3001 struct type *p_array_type;
14f9c5c9 3002
556bdfd4 3003 p_array_type = desc_data_target_type (type);
14f9c5c9
AS
3004
3005 k = ada_array_arity (type);
3006 if (k == 0)
4c4b4cd2 3007 return NULL;
d2e4a39e 3008
4c4b4cd2 3009 /* Initially p_array_type = elt_type(*)[]...(k times)...[]. */
14f9c5c9 3010 if (nindices >= 0 && k > nindices)
4c4b4cd2 3011 k = nindices;
d2e4a39e 3012 while (k > 0 && p_array_type != NULL)
4c4b4cd2 3013 {
61ee279c 3014 p_array_type = ada_check_typedef (TYPE_TARGET_TYPE (p_array_type));
4c4b4cd2
PH
3015 k -= 1;
3016 }
14f9c5c9
AS
3017 return p_array_type;
3018 }
3019 else if (TYPE_CODE (type) == TYPE_CODE_ARRAY)
3020 {
3021 while (nindices != 0 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
4c4b4cd2
PH
3022 {
3023 type = TYPE_TARGET_TYPE (type);
3024 nindices -= 1;
3025 }
14f9c5c9
AS
3026 return type;
3027 }
3028
3029 return NULL;
3030}
3031
4c4b4cd2 3032/* The type of nth index in arrays of given type (n numbering from 1).
dd19d49e
UW
3033 Does not examine memory. Throws an error if N is invalid or TYPE
3034 is not an array type. NAME is the name of the Ada attribute being
3035 evaluated ('range, 'first, 'last, or 'length); it is used in building
3036 the error message. */
14f9c5c9 3037
1eea4ebd
UW
3038static struct type *
3039ada_index_type (struct type *type, int n, const char *name)
14f9c5c9 3040{
4c4b4cd2
PH
3041 struct type *result_type;
3042
14f9c5c9
AS
3043 type = desc_base_type (type);
3044
1eea4ebd
UW
3045 if (n < 0 || n > ada_array_arity (type))
3046 error (_("invalid dimension number to '%s"), name);
14f9c5c9 3047
4c4b4cd2 3048 if (ada_is_simple_array_type (type))
14f9c5c9
AS
3049 {
3050 int i;
3051
3052 for (i = 1; i < n; i += 1)
4c4b4cd2 3053 type = TYPE_TARGET_TYPE (type);
262452ec 3054 result_type = TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type));
4c4b4cd2
PH
3055 /* FIXME: The stabs type r(0,0);bound;bound in an array type
3056 has a target type of TYPE_CODE_UNDEF. We compensate here, but
76a01679 3057 perhaps stabsread.c would make more sense. */
1eea4ebd
UW
3058 if (result_type && TYPE_CODE (result_type) == TYPE_CODE_UNDEF)
3059 result_type = NULL;
14f9c5c9 3060 }
d2e4a39e 3061 else
1eea4ebd
UW
3062 {
3063 result_type = desc_index_type (desc_bounds_type (type), n);
3064 if (result_type == NULL)
3065 error (_("attempt to take bound of something that is not an array"));
3066 }
3067
3068 return result_type;
14f9c5c9
AS
3069}
3070
3071/* Given that arr is an array type, returns the lower bound of the
3072 Nth index (numbering from 1) if WHICH is 0, and the upper bound if
4c4b4cd2 3073 WHICH is 1. This returns bounds 0 .. -1 if ARR_TYPE is an
1eea4ebd
UW
3074 array-descriptor type. It works for other arrays with bounds supplied
3075 by run-time quantities other than discriminants. */
14f9c5c9 3076
abb68b3e 3077static LONGEST
fb5e3d5c 3078ada_array_bound_from_type (struct type *arr_type, int n, int which)
14f9c5c9 3079{
8a48ac95 3080 struct type *type, *index_type_desc, *index_type;
1ce677a4 3081 int i;
262452ec
JK
3082
3083 gdb_assert (which == 0 || which == 1);
14f9c5c9 3084
ad82864c
JB
3085 if (ada_is_constrained_packed_array_type (arr_type))
3086 arr_type = decode_constrained_packed_array_type (arr_type);
14f9c5c9 3087
4c4b4cd2 3088 if (arr_type == NULL || !ada_is_simple_array_type (arr_type))
1eea4ebd 3089 return (LONGEST) - which;
14f9c5c9
AS
3090
3091 if (TYPE_CODE (arr_type) == TYPE_CODE_PTR)
3092 type = TYPE_TARGET_TYPE (arr_type);
3093 else
3094 type = arr_type;
3095
bafffb51
JB
3096 if (TYPE_FIXED_INSTANCE (type))
3097 {
3098 /* The array has already been fixed, so we do not need to
3099 check the parallel ___XA type again. That encoding has
3100 already been applied, so ignore it now. */
3101 index_type_desc = NULL;
3102 }
3103 else
3104 {
3105 index_type_desc = ada_find_parallel_type (type, "___XA");
3106 ada_fixup_array_indexes_type (index_type_desc);
3107 }
3108
262452ec 3109 if (index_type_desc != NULL)
28c85d6c
JB
3110 index_type = to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, n - 1),
3111 NULL);
262452ec 3112 else
8a48ac95
JB
3113 {
3114 struct type *elt_type = check_typedef (type);
3115
3116 for (i = 1; i < n; i++)
3117 elt_type = check_typedef (TYPE_TARGET_TYPE (elt_type));
3118
3119 index_type = TYPE_INDEX_TYPE (elt_type);
3120 }
262452ec 3121
43bbcdc2
PH
3122 return
3123 (LONGEST) (which == 0
3124 ? ada_discrete_type_low_bound (index_type)
3125 : ada_discrete_type_high_bound (index_type));
14f9c5c9
AS
3126}
3127
3128/* Given that arr is an array value, returns the lower bound of the
abb68b3e
JB
3129 nth index (numbering from 1) if WHICH is 0, and the upper bound if
3130 WHICH is 1. This routine will also work for arrays with bounds
4c4b4cd2 3131 supplied by run-time quantities other than discriminants. */
14f9c5c9 3132
1eea4ebd 3133static LONGEST
4dc81987 3134ada_array_bound (struct value *arr, int n, int which)
14f9c5c9 3135{
eb479039
JB
3136 struct type *arr_type;
3137
3138 if (TYPE_CODE (check_typedef (value_type (arr))) == TYPE_CODE_PTR)
3139 arr = value_ind (arr);
3140 arr_type = value_enclosing_type (arr);
14f9c5c9 3141
ad82864c
JB
3142 if (ada_is_constrained_packed_array_type (arr_type))
3143 return ada_array_bound (decode_constrained_packed_array (arr), n, which);
4c4b4cd2 3144 else if (ada_is_simple_array_type (arr_type))
1eea4ebd 3145 return ada_array_bound_from_type (arr_type, n, which);
14f9c5c9 3146 else
1eea4ebd 3147 return value_as_long (desc_one_bound (desc_bounds (arr), n, which));
14f9c5c9
AS
3148}
3149
3150/* Given that arr is an array value, returns the length of the
3151 nth index. This routine will also work for arrays with bounds
4c4b4cd2
PH
3152 supplied by run-time quantities other than discriminants.
3153 Does not work for arrays indexed by enumeration types with representation
3154 clauses at the moment. */
14f9c5c9 3155
1eea4ebd 3156static LONGEST
d2e4a39e 3157ada_array_length (struct value *arr, int n)
14f9c5c9 3158{
aa715135
JG
3159 struct type *arr_type, *index_type;
3160 int low, high;
eb479039
JB
3161
3162 if (TYPE_CODE (check_typedef (value_type (arr))) == TYPE_CODE_PTR)
3163 arr = value_ind (arr);
3164 arr_type = value_enclosing_type (arr);
14f9c5c9 3165
ad82864c
JB
3166 if (ada_is_constrained_packed_array_type (arr_type))
3167 return ada_array_length (decode_constrained_packed_array (arr), n);
14f9c5c9 3168
4c4b4cd2 3169 if (ada_is_simple_array_type (arr_type))
aa715135
JG
3170 {
3171 low = ada_array_bound_from_type (arr_type, n, 0);
3172 high = ada_array_bound_from_type (arr_type, n, 1);
3173 }
14f9c5c9 3174 else
aa715135
JG
3175 {
3176 low = value_as_long (desc_one_bound (desc_bounds (arr), n, 0));
3177 high = value_as_long (desc_one_bound (desc_bounds (arr), n, 1));
3178 }
3179
f168693b 3180 arr_type = check_typedef (arr_type);
aa715135
JG
3181 index_type = TYPE_INDEX_TYPE (arr_type);
3182 if (index_type != NULL)
3183 {
3184 struct type *base_type;
3185 if (TYPE_CODE (index_type) == TYPE_CODE_RANGE)
3186 base_type = TYPE_TARGET_TYPE (index_type);
3187 else
3188 base_type = index_type;
3189
3190 low = pos_atr (value_from_longest (base_type, low));
3191 high = pos_atr (value_from_longest (base_type, high));
3192 }
3193 return high - low + 1;
4c4b4cd2
PH
3194}
3195
3196/* An empty array whose type is that of ARR_TYPE (an array type),
3197 with bounds LOW to LOW-1. */
3198
3199static struct value *
3200empty_array (struct type *arr_type, int low)
3201{
b0dd7688 3202 struct type *arr_type0 = ada_check_typedef (arr_type);
0c9c3474
SA
3203 struct type *index_type
3204 = create_static_range_type
3205 (NULL, TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (arr_type0)), low, low - 1);
b0dd7688 3206 struct type *elt_type = ada_array_element_type (arr_type0, 1);
5b4ee69b 3207
0b5d8877 3208 return allocate_value (create_array_type (NULL, elt_type, index_type));
14f9c5c9 3209}
14f9c5c9 3210\f
d2e4a39e 3211
4c4b4cd2 3212 /* Name resolution */
14f9c5c9 3213
4c4b4cd2
PH
3214/* The "decoded" name for the user-definable Ada operator corresponding
3215 to OP. */
14f9c5c9 3216
d2e4a39e 3217static const char *
4c4b4cd2 3218ada_decoded_op_name (enum exp_opcode op)
14f9c5c9
AS
3219{
3220 int i;
3221
4c4b4cd2 3222 for (i = 0; ada_opname_table[i].encoded != NULL; i += 1)
14f9c5c9
AS
3223 {
3224 if (ada_opname_table[i].op == op)
4c4b4cd2 3225 return ada_opname_table[i].decoded;
14f9c5c9 3226 }
323e0a4a 3227 error (_("Could not find operator name for opcode"));
14f9c5c9
AS
3228}
3229
3230
4c4b4cd2
PH
3231/* Same as evaluate_type (*EXP), but resolves ambiguous symbol
3232 references (marked by OP_VAR_VALUE nodes in which the symbol has an
3233 undefined namespace) and converts operators that are
3234 user-defined into appropriate function calls. If CONTEXT_TYPE is
14f9c5c9
AS
3235 non-null, it provides a preferred result type [at the moment, only
3236 type void has any effect---causing procedures to be preferred over
3237 functions in calls]. A null CONTEXT_TYPE indicates that a non-void
4c4b4cd2 3238 return type is preferred. May change (expand) *EXP. */
14f9c5c9 3239
4c4b4cd2
PH
3240static void
3241resolve (struct expression **expp, int void_context_p)
14f9c5c9 3242{
30b15541
UW
3243 struct type *context_type = NULL;
3244 int pc = 0;
3245
3246 if (void_context_p)
3247 context_type = builtin_type ((*expp)->gdbarch)->builtin_void;
3248
3249 resolve_subexp (expp, &pc, 1, context_type);
14f9c5c9
AS
3250}
3251
4c4b4cd2
PH
3252/* Resolve the operator of the subexpression beginning at
3253 position *POS of *EXPP. "Resolving" consists of replacing
3254 the symbols that have undefined namespaces in OP_VAR_VALUE nodes
3255 with their resolutions, replacing built-in operators with
3256 function calls to user-defined operators, where appropriate, and,
3257 when DEPROCEDURE_P is non-zero, converting function-valued variables
3258 into parameterless calls. May expand *EXPP. The CONTEXT_TYPE functions
3259 are as in ada_resolve, above. */
14f9c5c9 3260
d2e4a39e 3261static struct value *
4c4b4cd2 3262resolve_subexp (struct expression **expp, int *pos, int deprocedure_p,
76a01679 3263 struct type *context_type)
14f9c5c9
AS
3264{
3265 int pc = *pos;
3266 int i;
4c4b4cd2 3267 struct expression *exp; /* Convenience: == *expp. */
14f9c5c9 3268 enum exp_opcode op = (*expp)->elts[pc].opcode;
4c4b4cd2
PH
3269 struct value **argvec; /* Vector of operand types (alloca'ed). */
3270 int nargs; /* Number of operands. */
52ce6436 3271 int oplen;
14f9c5c9
AS
3272
3273 argvec = NULL;
3274 nargs = 0;
3275 exp = *expp;
3276
52ce6436
PH
3277 /* Pass one: resolve operands, saving their types and updating *pos,
3278 if needed. */
14f9c5c9
AS
3279 switch (op)
3280 {
4c4b4cd2
PH
3281 case OP_FUNCALL:
3282 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
76a01679
JB
3283 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
3284 *pos += 7;
4c4b4cd2
PH
3285 else
3286 {
3287 *pos += 3;
3288 resolve_subexp (expp, pos, 0, NULL);
3289 }
3290 nargs = longest_to_int (exp->elts[pc + 1].longconst);
14f9c5c9
AS
3291 break;
3292
14f9c5c9 3293 case UNOP_ADDR:
4c4b4cd2
PH
3294 *pos += 1;
3295 resolve_subexp (expp, pos, 0, NULL);
3296 break;
3297
52ce6436
PH
3298 case UNOP_QUAL:
3299 *pos += 3;
17466c1a 3300 resolve_subexp (expp, pos, 1, check_typedef (exp->elts[pc + 1].type));
4c4b4cd2
PH
3301 break;
3302
52ce6436 3303 case OP_ATR_MODULUS:
4c4b4cd2
PH
3304 case OP_ATR_SIZE:
3305 case OP_ATR_TAG:
4c4b4cd2
PH
3306 case OP_ATR_FIRST:
3307 case OP_ATR_LAST:
3308 case OP_ATR_LENGTH:
3309 case OP_ATR_POS:
3310 case OP_ATR_VAL:
4c4b4cd2
PH
3311 case OP_ATR_MIN:
3312 case OP_ATR_MAX:
52ce6436
PH
3313 case TERNOP_IN_RANGE:
3314 case BINOP_IN_BOUNDS:
3315 case UNOP_IN_RANGE:
3316 case OP_AGGREGATE:
3317 case OP_OTHERS:
3318 case OP_CHOICES:
3319 case OP_POSITIONAL:
3320 case OP_DISCRETE_RANGE:
3321 case OP_NAME:
3322 ada_forward_operator_length (exp, pc, &oplen, &nargs);
3323 *pos += oplen;
14f9c5c9
AS
3324 break;
3325
3326 case BINOP_ASSIGN:
3327 {
4c4b4cd2
PH
3328 struct value *arg1;
3329
3330 *pos += 1;
3331 arg1 = resolve_subexp (expp, pos, 0, NULL);
3332 if (arg1 == NULL)
3333 resolve_subexp (expp, pos, 1, NULL);
3334 else
df407dfe 3335 resolve_subexp (expp, pos, 1, value_type (arg1));
4c4b4cd2 3336 break;
14f9c5c9
AS
3337 }
3338
4c4b4cd2 3339 case UNOP_CAST:
4c4b4cd2
PH
3340 *pos += 3;
3341 nargs = 1;
3342 break;
14f9c5c9 3343
4c4b4cd2
PH
3344 case BINOP_ADD:
3345 case BINOP_SUB:
3346 case BINOP_MUL:
3347 case BINOP_DIV:
3348 case BINOP_REM:
3349 case BINOP_MOD:
3350 case BINOP_EXP:
3351 case BINOP_CONCAT:
3352 case BINOP_LOGICAL_AND:
3353 case BINOP_LOGICAL_OR:
3354 case BINOP_BITWISE_AND:
3355 case BINOP_BITWISE_IOR:
3356 case BINOP_BITWISE_XOR:
14f9c5c9 3357
4c4b4cd2
PH
3358 case BINOP_EQUAL:
3359 case BINOP_NOTEQUAL:
3360 case BINOP_LESS:
3361 case BINOP_GTR:
3362 case BINOP_LEQ:
3363 case BINOP_GEQ:
14f9c5c9 3364
4c4b4cd2
PH
3365 case BINOP_REPEAT:
3366 case BINOP_SUBSCRIPT:
3367 case BINOP_COMMA:
40c8aaa9
JB
3368 *pos += 1;
3369 nargs = 2;
3370 break;
14f9c5c9 3371
4c4b4cd2
PH
3372 case UNOP_NEG:
3373 case UNOP_PLUS:
3374 case UNOP_LOGICAL_NOT:
3375 case UNOP_ABS:
3376 case UNOP_IND:
3377 *pos += 1;
3378 nargs = 1;
3379 break;
14f9c5c9 3380
4c4b4cd2 3381 case OP_LONG:
edd079d9 3382 case OP_FLOAT:
4c4b4cd2 3383 case OP_VAR_VALUE:
74ea4be4 3384 case OP_VAR_MSYM_VALUE:
4c4b4cd2
PH
3385 *pos += 4;
3386 break;
14f9c5c9 3387
4c4b4cd2
PH
3388 case OP_TYPE:
3389 case OP_BOOL:
3390 case OP_LAST:
4c4b4cd2
PH
3391 case OP_INTERNALVAR:
3392 *pos += 3;
3393 break;
14f9c5c9 3394
4c4b4cd2
PH
3395 case UNOP_MEMVAL:
3396 *pos += 3;
3397 nargs = 1;
3398 break;
3399
67f3407f
DJ
3400 case OP_REGISTER:
3401 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
3402 break;
3403
4c4b4cd2
PH
3404 case STRUCTOP_STRUCT:
3405 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
3406 nargs = 1;
3407 break;
3408
4c4b4cd2 3409 case TERNOP_SLICE:
4c4b4cd2
PH
3410 *pos += 1;
3411 nargs = 3;
3412 break;
3413
52ce6436 3414 case OP_STRING:
14f9c5c9 3415 break;
4c4b4cd2
PH
3416
3417 default:
323e0a4a 3418 error (_("Unexpected operator during name resolution"));
14f9c5c9
AS
3419 }
3420
8d749320 3421 argvec = XALLOCAVEC (struct value *, nargs + 1);
4c4b4cd2
PH
3422 for (i = 0; i < nargs; i += 1)
3423 argvec[i] = resolve_subexp (expp, pos, 1, NULL);
3424 argvec[i] = NULL;
3425 exp = *expp;
3426
3427 /* Pass two: perform any resolution on principal operator. */
14f9c5c9
AS
3428 switch (op)
3429 {
3430 default:
3431 break;
3432
14f9c5c9 3433 case OP_VAR_VALUE:
4c4b4cd2 3434 if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
76a01679 3435 {
d12307c1 3436 struct block_symbol *candidates;
76a01679
JB
3437 int n_candidates;
3438
3439 n_candidates =
3440 ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME
3441 (exp->elts[pc + 2].symbol),
3442 exp->elts[pc + 1].block, VAR_DOMAIN,
4eeaa230 3443 &candidates);
76a01679
JB
3444
3445 if (n_candidates > 1)
3446 {
3447 /* Types tend to get re-introduced locally, so if there
3448 are any local symbols that are not types, first filter
3449 out all types. */
3450 int j;
3451 for (j = 0; j < n_candidates; j += 1)
d12307c1 3452 switch (SYMBOL_CLASS (candidates[j].symbol))
76a01679
JB
3453 {
3454 case LOC_REGISTER:
3455 case LOC_ARG:
3456 case LOC_REF_ARG:
76a01679
JB
3457 case LOC_REGPARM_ADDR:
3458 case LOC_LOCAL:
76a01679 3459 case LOC_COMPUTED:
76a01679
JB
3460 goto FoundNonType;
3461 default:
3462 break;
3463 }
3464 FoundNonType:
3465 if (j < n_candidates)
3466 {
3467 j = 0;
3468 while (j < n_candidates)
3469 {
d12307c1 3470 if (SYMBOL_CLASS (candidates[j].symbol) == LOC_TYPEDEF)
76a01679
JB
3471 {
3472 candidates[j] = candidates[n_candidates - 1];
3473 n_candidates -= 1;
3474 }
3475 else
3476 j += 1;
3477 }
3478 }
3479 }
3480
3481 if (n_candidates == 0)
323e0a4a 3482 error (_("No definition found for %s"),
76a01679
JB
3483 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
3484 else if (n_candidates == 1)
3485 i = 0;
3486 else if (deprocedure_p
3487 && !is_nonfunction (candidates, n_candidates))
3488 {
06d5cf63
JB
3489 i = ada_resolve_function
3490 (candidates, n_candidates, NULL, 0,
3491 SYMBOL_LINKAGE_NAME (exp->elts[pc + 2].symbol),
3492 context_type);
76a01679 3493 if (i < 0)
323e0a4a 3494 error (_("Could not find a match for %s"),
76a01679
JB
3495 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
3496 }
3497 else
3498 {
323e0a4a 3499 printf_filtered (_("Multiple matches for %s\n"),
76a01679
JB
3500 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
3501 user_select_syms (candidates, n_candidates, 1);
3502 i = 0;
3503 }
3504
3505 exp->elts[pc + 1].block = candidates[i].block;
d12307c1 3506 exp->elts[pc + 2].symbol = candidates[i].symbol;
1265e4aa
JB
3507 if (innermost_block == NULL
3508 || contained_in (candidates[i].block, innermost_block))
76a01679
JB
3509 innermost_block = candidates[i].block;
3510 }
3511
3512 if (deprocedure_p
3513 && (TYPE_CODE (SYMBOL_TYPE (exp->elts[pc + 2].symbol))
3514 == TYPE_CODE_FUNC))
3515 {
3516 replace_operator_with_call (expp, pc, 0, 0,
3517 exp->elts[pc + 2].symbol,
3518 exp->elts[pc + 1].block);
3519 exp = *expp;
3520 }
14f9c5c9
AS
3521 break;
3522
3523 case OP_FUNCALL:
3524 {
4c4b4cd2 3525 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
76a01679 3526 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
4c4b4cd2 3527 {
d12307c1 3528 struct block_symbol *candidates;
4c4b4cd2
PH
3529 int n_candidates;
3530
3531 n_candidates =
76a01679
JB
3532 ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME
3533 (exp->elts[pc + 5].symbol),
3534 exp->elts[pc + 4].block, VAR_DOMAIN,
4eeaa230 3535 &candidates);
4c4b4cd2
PH
3536 if (n_candidates == 1)
3537 i = 0;
3538 else
3539 {
06d5cf63
JB
3540 i = ada_resolve_function
3541 (candidates, n_candidates,
3542 argvec, nargs,
3543 SYMBOL_LINKAGE_NAME (exp->elts[pc + 5].symbol),
3544 context_type);
4c4b4cd2 3545 if (i < 0)
323e0a4a 3546 error (_("Could not find a match for %s"),
4c4b4cd2
PH
3547 SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol));
3548 }
3549
3550 exp->elts[pc + 4].block = candidates[i].block;
d12307c1 3551 exp->elts[pc + 5].symbol = candidates[i].symbol;
1265e4aa
JB
3552 if (innermost_block == NULL
3553 || contained_in (candidates[i].block, innermost_block))
4c4b4cd2
PH
3554 innermost_block = candidates[i].block;
3555 }
14f9c5c9
AS
3556 }
3557 break;
3558 case BINOP_ADD:
3559 case BINOP_SUB:
3560 case BINOP_MUL:
3561 case BINOP_DIV:
3562 case BINOP_REM:
3563 case BINOP_MOD:
3564 case BINOP_CONCAT:
3565 case BINOP_BITWISE_AND:
3566 case BINOP_BITWISE_IOR:
3567 case BINOP_BITWISE_XOR:
3568 case BINOP_EQUAL:
3569 case BINOP_NOTEQUAL:
3570 case BINOP_LESS:
3571 case BINOP_GTR:
3572 case BINOP_LEQ:
3573 case BINOP_GEQ:
3574 case BINOP_EXP:
3575 case UNOP_NEG:
3576 case UNOP_PLUS:
3577 case UNOP_LOGICAL_NOT:
3578 case UNOP_ABS:
3579 if (possible_user_operator_p (op, argvec))
4c4b4cd2 3580 {
d12307c1 3581 struct block_symbol *candidates;
4c4b4cd2
PH
3582 int n_candidates;
3583
3584 n_candidates =
b5ec771e 3585 ada_lookup_symbol_list (ada_decoded_op_name (op),
4c4b4cd2 3586 (struct block *) NULL, VAR_DOMAIN,
4eeaa230 3587 &candidates);
4c4b4cd2 3588 i = ada_resolve_function (candidates, n_candidates, argvec, nargs,
76a01679 3589 ada_decoded_op_name (op), NULL);
4c4b4cd2
PH
3590 if (i < 0)
3591 break;
3592
d12307c1
PMR
3593 replace_operator_with_call (expp, pc, nargs, 1,
3594 candidates[i].symbol,
3595 candidates[i].block);
4c4b4cd2
PH
3596 exp = *expp;
3597 }
14f9c5c9 3598 break;
4c4b4cd2
PH
3599
3600 case OP_TYPE:
b3dbf008 3601 case OP_REGISTER:
4c4b4cd2 3602 return NULL;
14f9c5c9
AS
3603 }
3604
3605 *pos = pc;
3606 return evaluate_subexp_type (exp, pos);
3607}
3608
3609/* Return non-zero if formal type FTYPE matches actual type ATYPE. If
4c4b4cd2 3610 MAY_DEREF is non-zero, the formal may be a pointer and the actual
5b3d5b7d 3611 a non-pointer. */
14f9c5c9 3612/* The term "match" here is rather loose. The match is heuristic and
5b3d5b7d 3613 liberal. */
14f9c5c9
AS
3614
3615static int
4dc81987 3616ada_type_match (struct type *ftype, struct type *atype, int may_deref)
14f9c5c9 3617{
61ee279c
PH
3618 ftype = ada_check_typedef (ftype);
3619 atype = ada_check_typedef (atype);
14f9c5c9
AS
3620
3621 if (TYPE_CODE (ftype) == TYPE_CODE_REF)
3622 ftype = TYPE_TARGET_TYPE (ftype);
3623 if (TYPE_CODE (atype) == TYPE_CODE_REF)
3624 atype = TYPE_TARGET_TYPE (atype);
3625
d2e4a39e 3626 switch (TYPE_CODE (ftype))
14f9c5c9
AS
3627 {
3628 default:
5b3d5b7d 3629 return TYPE_CODE (ftype) == TYPE_CODE (atype);
14f9c5c9
AS
3630 case TYPE_CODE_PTR:
3631 if (TYPE_CODE (atype) == TYPE_CODE_PTR)
4c4b4cd2
PH
3632 return ada_type_match (TYPE_TARGET_TYPE (ftype),
3633 TYPE_TARGET_TYPE (atype), 0);
d2e4a39e 3634 else
1265e4aa
JB
3635 return (may_deref
3636 && ada_type_match (TYPE_TARGET_TYPE (ftype), atype, 0));
14f9c5c9
AS
3637 case TYPE_CODE_INT:
3638 case TYPE_CODE_ENUM:
3639 case TYPE_CODE_RANGE:
3640 switch (TYPE_CODE (atype))
4c4b4cd2
PH
3641 {
3642 case TYPE_CODE_INT:
3643 case TYPE_CODE_ENUM:
3644 case TYPE_CODE_RANGE:
3645 return 1;
3646 default:
3647 return 0;
3648 }
14f9c5c9
AS
3649
3650 case TYPE_CODE_ARRAY:
d2e4a39e 3651 return (TYPE_CODE (atype) == TYPE_CODE_ARRAY
4c4b4cd2 3652 || ada_is_array_descriptor_type (atype));
14f9c5c9
AS
3653
3654 case TYPE_CODE_STRUCT:
4c4b4cd2
PH
3655 if (ada_is_array_descriptor_type (ftype))
3656 return (TYPE_CODE (atype) == TYPE_CODE_ARRAY
3657 || ada_is_array_descriptor_type (atype));
14f9c5c9 3658 else
4c4b4cd2
PH
3659 return (TYPE_CODE (atype) == TYPE_CODE_STRUCT
3660 && !ada_is_array_descriptor_type (atype));
14f9c5c9
AS
3661
3662 case TYPE_CODE_UNION:
3663 case TYPE_CODE_FLT:
3664 return (TYPE_CODE (atype) == TYPE_CODE (ftype));
3665 }
3666}
3667
3668/* Return non-zero if the formals of FUNC "sufficiently match" the
3669 vector of actual argument types ACTUALS of size N_ACTUALS. FUNC
3670 may also be an enumeral, in which case it is treated as a 0-
4c4b4cd2 3671 argument function. */
14f9c5c9
AS
3672
3673static int
d2e4a39e 3674ada_args_match (struct symbol *func, struct value **actuals, int n_actuals)
14f9c5c9
AS
3675{
3676 int i;
d2e4a39e 3677 struct type *func_type = SYMBOL_TYPE (func);
14f9c5c9 3678
1265e4aa
JB
3679 if (SYMBOL_CLASS (func) == LOC_CONST
3680 && TYPE_CODE (func_type) == TYPE_CODE_ENUM)
14f9c5c9
AS
3681 return (n_actuals == 0);
3682 else if (func_type == NULL || TYPE_CODE (func_type) != TYPE_CODE_FUNC)
3683 return 0;
3684
3685 if (TYPE_NFIELDS (func_type) != n_actuals)
3686 return 0;
3687
3688 for (i = 0; i < n_actuals; i += 1)
3689 {
4c4b4cd2 3690 if (actuals[i] == NULL)
76a01679
JB
3691 return 0;
3692 else
3693 {
5b4ee69b
MS
3694 struct type *ftype = ada_check_typedef (TYPE_FIELD_TYPE (func_type,
3695 i));
df407dfe 3696 struct type *atype = ada_check_typedef (value_type (actuals[i]));
4c4b4cd2 3697
76a01679
JB
3698 if (!ada_type_match (ftype, atype, 1))
3699 return 0;
3700 }
14f9c5c9
AS
3701 }
3702 return 1;
3703}
3704
3705/* False iff function type FUNC_TYPE definitely does not produce a value
3706 compatible with type CONTEXT_TYPE. Conservatively returns 1 if
3707 FUNC_TYPE is not a valid function type with a non-null return type
3708 or an enumerated type. A null CONTEXT_TYPE indicates any non-void type. */
3709
3710static int
d2e4a39e 3711return_match (struct type *func_type, struct type *context_type)
14f9c5c9 3712{
d2e4a39e 3713 struct type *return_type;
14f9c5c9
AS
3714
3715 if (func_type == NULL)
3716 return 1;
3717
4c4b4cd2 3718 if (TYPE_CODE (func_type) == TYPE_CODE_FUNC)
18af8284 3719 return_type = get_base_type (TYPE_TARGET_TYPE (func_type));
4c4b4cd2 3720 else
18af8284 3721 return_type = get_base_type (func_type);
14f9c5c9
AS
3722 if (return_type == NULL)
3723 return 1;
3724
18af8284 3725 context_type = get_base_type (context_type);
14f9c5c9
AS
3726
3727 if (TYPE_CODE (return_type) == TYPE_CODE_ENUM)
3728 return context_type == NULL || return_type == context_type;
3729 else if (context_type == NULL)
3730 return TYPE_CODE (return_type) != TYPE_CODE_VOID;
3731 else
3732 return TYPE_CODE (return_type) == TYPE_CODE (context_type);
3733}
3734
3735
4c4b4cd2 3736/* Returns the index in SYMS[0..NSYMS-1] that contains the symbol for the
14f9c5c9 3737 function (if any) that matches the types of the NARGS arguments in
4c4b4cd2
PH
3738 ARGS. If CONTEXT_TYPE is non-null and there is at least one match
3739 that returns that type, then eliminate matches that don't. If
3740 CONTEXT_TYPE is void and there is at least one match that does not
3741 return void, eliminate all matches that do.
3742
14f9c5c9
AS
3743 Asks the user if there is more than one match remaining. Returns -1
3744 if there is no such symbol or none is selected. NAME is used
4c4b4cd2
PH
3745 solely for messages. May re-arrange and modify SYMS in
3746 the process; the index returned is for the modified vector. */
14f9c5c9 3747
4c4b4cd2 3748static int
d12307c1 3749ada_resolve_function (struct block_symbol syms[],
4c4b4cd2
PH
3750 int nsyms, struct value **args, int nargs,
3751 const char *name, struct type *context_type)
14f9c5c9 3752{
30b15541 3753 int fallback;
14f9c5c9 3754 int k;
4c4b4cd2 3755 int m; /* Number of hits */
14f9c5c9 3756
d2e4a39e 3757 m = 0;
30b15541
UW
3758 /* In the first pass of the loop, we only accept functions matching
3759 context_type. If none are found, we add a second pass of the loop
3760 where every function is accepted. */
3761 for (fallback = 0; m == 0 && fallback < 2; fallback++)
14f9c5c9
AS
3762 {
3763 for (k = 0; k < nsyms; k += 1)
4c4b4cd2 3764 {
d12307c1 3765 struct type *type = ada_check_typedef (SYMBOL_TYPE (syms[k].symbol));
4c4b4cd2 3766
d12307c1 3767 if (ada_args_match (syms[k].symbol, args, nargs)
30b15541 3768 && (fallback || return_match (type, context_type)))
4c4b4cd2
PH
3769 {
3770 syms[m] = syms[k];
3771 m += 1;
3772 }
3773 }
14f9c5c9
AS
3774 }
3775
dc5c8746
PMR
3776 /* If we got multiple matches, ask the user which one to use. Don't do this
3777 interactive thing during completion, though, as the purpose of the
3778 completion is providing a list of all possible matches. Prompting the
3779 user to filter it down would be completely unexpected in this case. */
14f9c5c9
AS
3780 if (m == 0)
3781 return -1;
dc5c8746 3782 else if (m > 1 && !parse_completion)
14f9c5c9 3783 {
323e0a4a 3784 printf_filtered (_("Multiple matches for %s\n"), name);
4c4b4cd2 3785 user_select_syms (syms, m, 1);
14f9c5c9
AS
3786 return 0;
3787 }
3788 return 0;
3789}
3790
4c4b4cd2
PH
3791/* Returns true (non-zero) iff decoded name N0 should appear before N1
3792 in a listing of choices during disambiguation (see sort_choices, below).
3793 The idea is that overloadings of a subprogram name from the
3794 same package should sort in their source order. We settle for ordering
3795 such symbols by their trailing number (__N or $N). */
3796
14f9c5c9 3797static int
0d5cff50 3798encoded_ordered_before (const char *N0, const char *N1)
14f9c5c9
AS
3799{
3800 if (N1 == NULL)
3801 return 0;
3802 else if (N0 == NULL)
3803 return 1;
3804 else
3805 {
3806 int k0, k1;
5b4ee69b 3807
d2e4a39e 3808 for (k0 = strlen (N0) - 1; k0 > 0 && isdigit (N0[k0]); k0 -= 1)
4c4b4cd2 3809 ;
d2e4a39e 3810 for (k1 = strlen (N1) - 1; k1 > 0 && isdigit (N1[k1]); k1 -= 1)
4c4b4cd2 3811 ;
d2e4a39e 3812 if ((N0[k0] == '_' || N0[k0] == '$') && N0[k0 + 1] != '\000'
4c4b4cd2
PH
3813 && (N1[k1] == '_' || N1[k1] == '$') && N1[k1 + 1] != '\000')
3814 {
3815 int n0, n1;
5b4ee69b 3816
4c4b4cd2
PH
3817 n0 = k0;
3818 while (N0[n0] == '_' && n0 > 0 && N0[n0 - 1] == '_')
3819 n0 -= 1;
3820 n1 = k1;
3821 while (N1[n1] == '_' && n1 > 0 && N1[n1 - 1] == '_')
3822 n1 -= 1;
3823 if (n0 == n1 && strncmp (N0, N1, n0) == 0)
3824 return (atoi (N0 + k0 + 1) < atoi (N1 + k1 + 1));
3825 }
14f9c5c9
AS
3826 return (strcmp (N0, N1) < 0);
3827 }
3828}
d2e4a39e 3829
4c4b4cd2
PH
3830/* Sort SYMS[0..NSYMS-1] to put the choices in a canonical order by the
3831 encoded names. */
3832
d2e4a39e 3833static void
d12307c1 3834sort_choices (struct block_symbol syms[], int nsyms)
14f9c5c9 3835{
4c4b4cd2 3836 int i;
5b4ee69b 3837
d2e4a39e 3838 for (i = 1; i < nsyms; i += 1)
14f9c5c9 3839 {
d12307c1 3840 struct block_symbol sym = syms[i];
14f9c5c9
AS
3841 int j;
3842
d2e4a39e 3843 for (j = i - 1; j >= 0; j -= 1)
4c4b4cd2 3844 {
d12307c1
PMR
3845 if (encoded_ordered_before (SYMBOL_LINKAGE_NAME (syms[j].symbol),
3846 SYMBOL_LINKAGE_NAME (sym.symbol)))
4c4b4cd2
PH
3847 break;
3848 syms[j + 1] = syms[j];
3849 }
d2e4a39e 3850 syms[j + 1] = sym;
14f9c5c9
AS
3851 }
3852}
3853
d72413e6
PMR
3854/* Whether GDB should display formals and return types for functions in the
3855 overloads selection menu. */
3856static int print_signatures = 1;
3857
3858/* Print the signature for SYM on STREAM according to the FLAGS options. For
3859 all but functions, the signature is just the name of the symbol. For
3860 functions, this is the name of the function, the list of types for formals
3861 and the return type (if any). */
3862
3863static void
3864ada_print_symbol_signature (struct ui_file *stream, struct symbol *sym,
3865 const struct type_print_options *flags)
3866{
3867 struct type *type = SYMBOL_TYPE (sym);
3868
3869 fprintf_filtered (stream, "%s", SYMBOL_PRINT_NAME (sym));
3870 if (!print_signatures
3871 || type == NULL
3872 || TYPE_CODE (type) != TYPE_CODE_FUNC)
3873 return;
3874
3875 if (TYPE_NFIELDS (type) > 0)
3876 {
3877 int i;
3878
3879 fprintf_filtered (stream, " (");
3880 for (i = 0; i < TYPE_NFIELDS (type); ++i)
3881 {
3882 if (i > 0)
3883 fprintf_filtered (stream, "; ");
3884 ada_print_type (TYPE_FIELD_TYPE (type, i), NULL, stream, -1, 0,
3885 flags);
3886 }
3887 fprintf_filtered (stream, ")");
3888 }
3889 if (TYPE_TARGET_TYPE (type) != NULL
3890 && TYPE_CODE (TYPE_TARGET_TYPE (type)) != TYPE_CODE_VOID)
3891 {
3892 fprintf_filtered (stream, " return ");
3893 ada_print_type (TYPE_TARGET_TYPE (type), NULL, stream, -1, 0, flags);
3894 }
3895}
3896
4c4b4cd2
PH
3897/* Given a list of NSYMS symbols in SYMS, select up to MAX_RESULTS>0
3898 by asking the user (if necessary), returning the number selected,
3899 and setting the first elements of SYMS items. Error if no symbols
3900 selected. */
14f9c5c9
AS
3901
3902/* NOTE: Adapted from decode_line_2 in symtab.c, with which it ought
4c4b4cd2 3903 to be re-integrated one of these days. */
14f9c5c9
AS
3904
3905int
d12307c1 3906user_select_syms (struct block_symbol *syms, int nsyms, int max_results)
14f9c5c9
AS
3907{
3908 int i;
8d749320 3909 int *chosen = XALLOCAVEC (int , nsyms);
14f9c5c9
AS
3910 int n_chosen;
3911 int first_choice = (max_results == 1) ? 1 : 2;
717d2f5a 3912 const char *select_mode = multiple_symbols_select_mode ();
14f9c5c9
AS
3913
3914 if (max_results < 1)
323e0a4a 3915 error (_("Request to select 0 symbols!"));
14f9c5c9
AS
3916 if (nsyms <= 1)
3917 return nsyms;
3918
717d2f5a
JB
3919 if (select_mode == multiple_symbols_cancel)
3920 error (_("\
3921canceled because the command is ambiguous\n\
3922See set/show multiple-symbol."));
3923
3924 /* If select_mode is "all", then return all possible symbols.
3925 Only do that if more than one symbol can be selected, of course.
3926 Otherwise, display the menu as usual. */
3927 if (select_mode == multiple_symbols_all && max_results > 1)
3928 return nsyms;
3929
323e0a4a 3930 printf_unfiltered (_("[0] cancel\n"));
14f9c5c9 3931 if (max_results > 1)
323e0a4a 3932 printf_unfiltered (_("[1] all\n"));
14f9c5c9 3933
4c4b4cd2 3934 sort_choices (syms, nsyms);
14f9c5c9
AS
3935
3936 for (i = 0; i < nsyms; i += 1)
3937 {
d12307c1 3938 if (syms[i].symbol == NULL)
4c4b4cd2
PH
3939 continue;
3940
d12307c1 3941 if (SYMBOL_CLASS (syms[i].symbol) == LOC_BLOCK)
4c4b4cd2 3942 {
76a01679 3943 struct symtab_and_line sal =
d12307c1 3944 find_function_start_sal (syms[i].symbol, 1);
5b4ee69b 3945
d72413e6
PMR
3946 printf_unfiltered ("[%d] ", i + first_choice);
3947 ada_print_symbol_signature (gdb_stdout, syms[i].symbol,
3948 &type_print_raw_options);
323e0a4a 3949 if (sal.symtab == NULL)
d72413e6 3950 printf_unfiltered (_(" at <no source file available>:%d\n"),
323e0a4a
AC
3951 sal.line);
3952 else
d72413e6 3953 printf_unfiltered (_(" at %s:%d\n"),
05cba821
JK
3954 symtab_to_filename_for_display (sal.symtab),
3955 sal.line);
4c4b4cd2
PH
3956 continue;
3957 }
d2e4a39e 3958 else
4c4b4cd2
PH
3959 {
3960 int is_enumeral =
d12307c1
PMR
3961 (SYMBOL_CLASS (syms[i].symbol) == LOC_CONST
3962 && SYMBOL_TYPE (syms[i].symbol) != NULL
3963 && TYPE_CODE (SYMBOL_TYPE (syms[i].symbol)) == TYPE_CODE_ENUM);
1994afbf
DE
3964 struct symtab *symtab = NULL;
3965
d12307c1
PMR
3966 if (SYMBOL_OBJFILE_OWNED (syms[i].symbol))
3967 symtab = symbol_symtab (syms[i].symbol);
4c4b4cd2 3968
d12307c1 3969 if (SYMBOL_LINE (syms[i].symbol) != 0 && symtab != NULL)
d72413e6
PMR
3970 {
3971 printf_unfiltered ("[%d] ", i + first_choice);
3972 ada_print_symbol_signature (gdb_stdout, syms[i].symbol,
3973 &type_print_raw_options);
3974 printf_unfiltered (_(" at %s:%d\n"),
3975 symtab_to_filename_for_display (symtab),
3976 SYMBOL_LINE (syms[i].symbol));
3977 }
76a01679 3978 else if (is_enumeral
d12307c1 3979 && TYPE_NAME (SYMBOL_TYPE (syms[i].symbol)) != NULL)
4c4b4cd2 3980 {
a3f17187 3981 printf_unfiltered (("[%d] "), i + first_choice);
d12307c1 3982 ada_print_type (SYMBOL_TYPE (syms[i].symbol), NULL,
79d43c61 3983 gdb_stdout, -1, 0, &type_print_raw_options);
323e0a4a 3984 printf_unfiltered (_("'(%s) (enumeral)\n"),
d12307c1 3985 SYMBOL_PRINT_NAME (syms[i].symbol));
4c4b4cd2 3986 }
d72413e6
PMR
3987 else
3988 {
3989 printf_unfiltered ("[%d] ", i + first_choice);
3990 ada_print_symbol_signature (gdb_stdout, syms[i].symbol,
3991 &type_print_raw_options);
3992
3993 if (symtab != NULL)
3994 printf_unfiltered (is_enumeral
3995 ? _(" in %s (enumeral)\n")
3996 : _(" at %s:?\n"),
3997 symtab_to_filename_for_display (symtab));
3998 else
3999 printf_unfiltered (is_enumeral
4000 ? _(" (enumeral)\n")
4001 : _(" at ?\n"));
4002 }
4c4b4cd2 4003 }
14f9c5c9 4004 }
d2e4a39e 4005
14f9c5c9 4006 n_chosen = get_selections (chosen, nsyms, max_results, max_results > 1,
4c4b4cd2 4007 "overload-choice");
14f9c5c9
AS
4008
4009 for (i = 0; i < n_chosen; i += 1)
4c4b4cd2 4010 syms[i] = syms[chosen[i]];
14f9c5c9
AS
4011
4012 return n_chosen;
4013}
4014
4015/* Read and validate a set of numeric choices from the user in the
4c4b4cd2 4016 range 0 .. N_CHOICES-1. Place the results in increasing
14f9c5c9
AS
4017 order in CHOICES[0 .. N-1], and return N.
4018
4019 The user types choices as a sequence of numbers on one line
4020 separated by blanks, encoding them as follows:
4021
4c4b4cd2 4022 + A choice of 0 means to cancel the selection, throwing an error.
14f9c5c9
AS
4023 + If IS_ALL_CHOICE, a choice of 1 selects the entire set 0 .. N_CHOICES-1.
4024 + The user chooses k by typing k+IS_ALL_CHOICE+1.
4025
4c4b4cd2 4026 The user is not allowed to choose more than MAX_RESULTS values.
14f9c5c9
AS
4027
4028 ANNOTATION_SUFFIX, if present, is used to annotate the input
4c4b4cd2 4029 prompts (for use with the -f switch). */
14f9c5c9
AS
4030
4031int
d2e4a39e 4032get_selections (int *choices, int n_choices, int max_results,
a121b7c1 4033 int is_all_choice, const char *annotation_suffix)
14f9c5c9 4034{
d2e4a39e 4035 char *args;
a121b7c1 4036 const char *prompt;
14f9c5c9
AS
4037 int n_chosen;
4038 int first_choice = is_all_choice ? 2 : 1;
d2e4a39e 4039
14f9c5c9
AS
4040 prompt = getenv ("PS2");
4041 if (prompt == NULL)
0bcd0149 4042 prompt = "> ";
14f9c5c9 4043
0bcd0149 4044 args = command_line_input (prompt, 0, annotation_suffix);
d2e4a39e 4045
14f9c5c9 4046 if (args == NULL)
323e0a4a 4047 error_no_arg (_("one or more choice numbers"));
14f9c5c9
AS
4048
4049 n_chosen = 0;
76a01679 4050
4c4b4cd2
PH
4051 /* Set choices[0 .. n_chosen-1] to the users' choices in ascending
4052 order, as given in args. Choices are validated. */
14f9c5c9
AS
4053 while (1)
4054 {
d2e4a39e 4055 char *args2;
14f9c5c9
AS
4056 int choice, j;
4057
0fcd72ba 4058 args = skip_spaces (args);
14f9c5c9 4059 if (*args == '\0' && n_chosen == 0)
323e0a4a 4060 error_no_arg (_("one or more choice numbers"));
14f9c5c9 4061 else if (*args == '\0')
4c4b4cd2 4062 break;
14f9c5c9
AS
4063
4064 choice = strtol (args, &args2, 10);
d2e4a39e 4065 if (args == args2 || choice < 0
4c4b4cd2 4066 || choice > n_choices + first_choice - 1)
323e0a4a 4067 error (_("Argument must be choice number"));
14f9c5c9
AS
4068 args = args2;
4069
d2e4a39e 4070 if (choice == 0)
323e0a4a 4071 error (_("cancelled"));
14f9c5c9
AS
4072
4073 if (choice < first_choice)
4c4b4cd2
PH
4074 {
4075 n_chosen = n_choices;
4076 for (j = 0; j < n_choices; j += 1)
4077 choices[j] = j;
4078 break;
4079 }
14f9c5c9
AS
4080 choice -= first_choice;
4081
d2e4a39e 4082 for (j = n_chosen - 1; j >= 0 && choice < choices[j]; j -= 1)
4c4b4cd2
PH
4083 {
4084 }
14f9c5c9
AS
4085
4086 if (j < 0 || choice != choices[j])
4c4b4cd2
PH
4087 {
4088 int k;
5b4ee69b 4089
4c4b4cd2
PH
4090 for (k = n_chosen - 1; k > j; k -= 1)
4091 choices[k + 1] = choices[k];
4092 choices[j + 1] = choice;
4093 n_chosen += 1;
4094 }
14f9c5c9
AS
4095 }
4096
4097 if (n_chosen > max_results)
323e0a4a 4098 error (_("Select no more than %d of the above"), max_results);
d2e4a39e 4099
14f9c5c9
AS
4100 return n_chosen;
4101}
4102
4c4b4cd2
PH
4103/* Replace the operator of length OPLEN at position PC in *EXPP with a call
4104 on the function identified by SYM and BLOCK, and taking NARGS
4105 arguments. Update *EXPP as needed to hold more space. */
14f9c5c9
AS
4106
4107static void
d2e4a39e 4108replace_operator_with_call (struct expression **expp, int pc, int nargs,
4c4b4cd2 4109 int oplen, struct symbol *sym,
270140bd 4110 const struct block *block)
14f9c5c9
AS
4111{
4112 /* A new expression, with 6 more elements (3 for funcall, 4 for function
4c4b4cd2 4113 symbol, -oplen for operator being replaced). */
d2e4a39e 4114 struct expression *newexp = (struct expression *)
8c1a34e7 4115 xzalloc (sizeof (struct expression)
4c4b4cd2 4116 + EXP_ELEM_TO_BYTES ((*expp)->nelts + 7 - oplen));
d2e4a39e 4117 struct expression *exp = *expp;
14f9c5c9
AS
4118
4119 newexp->nelts = exp->nelts + 7 - oplen;
4120 newexp->language_defn = exp->language_defn;
3489610d 4121 newexp->gdbarch = exp->gdbarch;
14f9c5c9 4122 memcpy (newexp->elts, exp->elts, EXP_ELEM_TO_BYTES (pc));
d2e4a39e 4123 memcpy (newexp->elts + pc + 7, exp->elts + pc + oplen,
4c4b4cd2 4124 EXP_ELEM_TO_BYTES (exp->nelts - pc - oplen));
14f9c5c9
AS
4125
4126 newexp->elts[pc].opcode = newexp->elts[pc + 2].opcode = OP_FUNCALL;
4127 newexp->elts[pc + 1].longconst = (LONGEST) nargs;
4128
4129 newexp->elts[pc + 3].opcode = newexp->elts[pc + 6].opcode = OP_VAR_VALUE;
4130 newexp->elts[pc + 4].block = block;
4131 newexp->elts[pc + 5].symbol = sym;
4132
4133 *expp = newexp;
aacb1f0a 4134 xfree (exp);
d2e4a39e 4135}
14f9c5c9
AS
4136
4137/* Type-class predicates */
4138
4c4b4cd2
PH
4139/* True iff TYPE is numeric (i.e., an INT, RANGE (of numeric type),
4140 or FLOAT). */
14f9c5c9
AS
4141
4142static int
d2e4a39e 4143numeric_type_p (struct type *type)
14f9c5c9
AS
4144{
4145 if (type == NULL)
4146 return 0;
d2e4a39e
AS
4147 else
4148 {
4149 switch (TYPE_CODE (type))
4c4b4cd2
PH
4150 {
4151 case TYPE_CODE_INT:
4152 case TYPE_CODE_FLT:
4153 return 1;
4154 case TYPE_CODE_RANGE:
4155 return (type == TYPE_TARGET_TYPE (type)
4156 || numeric_type_p (TYPE_TARGET_TYPE (type)));
4157 default:
4158 return 0;
4159 }
d2e4a39e 4160 }
14f9c5c9
AS
4161}
4162
4c4b4cd2 4163/* True iff TYPE is integral (an INT or RANGE of INTs). */
14f9c5c9
AS
4164
4165static int
d2e4a39e 4166integer_type_p (struct type *type)
14f9c5c9
AS
4167{
4168 if (type == NULL)
4169 return 0;
d2e4a39e
AS
4170 else
4171 {
4172 switch (TYPE_CODE (type))
4c4b4cd2
PH
4173 {
4174 case TYPE_CODE_INT:
4175 return 1;
4176 case TYPE_CODE_RANGE:
4177 return (type == TYPE_TARGET_TYPE (type)
4178 || integer_type_p (TYPE_TARGET_TYPE (type)));
4179 default:
4180 return 0;
4181 }
d2e4a39e 4182 }
14f9c5c9
AS
4183}
4184
4c4b4cd2 4185/* True iff TYPE is scalar (INT, RANGE, FLOAT, ENUM). */
14f9c5c9
AS
4186
4187static int
d2e4a39e 4188scalar_type_p (struct type *type)
14f9c5c9
AS
4189{
4190 if (type == NULL)
4191 return 0;
d2e4a39e
AS
4192 else
4193 {
4194 switch (TYPE_CODE (type))
4c4b4cd2
PH
4195 {
4196 case TYPE_CODE_INT:
4197 case TYPE_CODE_RANGE:
4198 case TYPE_CODE_ENUM:
4199 case TYPE_CODE_FLT:
4200 return 1;
4201 default:
4202 return 0;
4203 }
d2e4a39e 4204 }
14f9c5c9
AS
4205}
4206
4c4b4cd2 4207/* True iff TYPE is discrete (INT, RANGE, ENUM). */
14f9c5c9
AS
4208
4209static int
d2e4a39e 4210discrete_type_p (struct type *type)
14f9c5c9
AS
4211{
4212 if (type == NULL)
4213 return 0;
d2e4a39e
AS
4214 else
4215 {
4216 switch (TYPE_CODE (type))
4c4b4cd2
PH
4217 {
4218 case TYPE_CODE_INT:
4219 case TYPE_CODE_RANGE:
4220 case TYPE_CODE_ENUM:
872f0337 4221 case TYPE_CODE_BOOL:
4c4b4cd2
PH
4222 return 1;
4223 default:
4224 return 0;
4225 }
d2e4a39e 4226 }
14f9c5c9
AS
4227}
4228
4c4b4cd2
PH
4229/* Returns non-zero if OP with operands in the vector ARGS could be
4230 a user-defined function. Errs on the side of pre-defined operators
4231 (i.e., result 0). */
14f9c5c9
AS
4232
4233static int
d2e4a39e 4234possible_user_operator_p (enum exp_opcode op, struct value *args[])
14f9c5c9 4235{
76a01679 4236 struct type *type0 =
df407dfe 4237 (args[0] == NULL) ? NULL : ada_check_typedef (value_type (args[0]));
d2e4a39e 4238 struct type *type1 =
df407dfe 4239 (args[1] == NULL) ? NULL : ada_check_typedef (value_type (args[1]));
d2e4a39e 4240
4c4b4cd2
PH
4241 if (type0 == NULL)
4242 return 0;
4243
14f9c5c9
AS
4244 switch (op)
4245 {
4246 default:
4247 return 0;
4248
4249 case BINOP_ADD:
4250 case BINOP_SUB:
4251 case BINOP_MUL:
4252 case BINOP_DIV:
d2e4a39e 4253 return (!(numeric_type_p (type0) && numeric_type_p (type1)));
14f9c5c9
AS
4254
4255 case BINOP_REM:
4256 case BINOP_MOD:
4257 case BINOP_BITWISE_AND:
4258 case BINOP_BITWISE_IOR:
4259 case BINOP_BITWISE_XOR:
d2e4a39e 4260 return (!(integer_type_p (type0) && integer_type_p (type1)));
14f9c5c9
AS
4261
4262 case BINOP_EQUAL:
4263 case BINOP_NOTEQUAL:
4264 case BINOP_LESS:
4265 case BINOP_GTR:
4266 case BINOP_LEQ:
4267 case BINOP_GEQ:
d2e4a39e 4268 return (!(scalar_type_p (type0) && scalar_type_p (type1)));
14f9c5c9
AS
4269
4270 case BINOP_CONCAT:
ee90b9ab 4271 return !ada_is_array_type (type0) || !ada_is_array_type (type1);
14f9c5c9
AS
4272
4273 case BINOP_EXP:
d2e4a39e 4274 return (!(numeric_type_p (type0) && integer_type_p (type1)));
14f9c5c9
AS
4275
4276 case UNOP_NEG:
4277 case UNOP_PLUS:
4278 case UNOP_LOGICAL_NOT:
d2e4a39e
AS
4279 case UNOP_ABS:
4280 return (!numeric_type_p (type0));
14f9c5c9
AS
4281
4282 }
4283}
4284\f
4c4b4cd2 4285 /* Renaming */
14f9c5c9 4286
aeb5907d
JB
4287/* NOTES:
4288
4289 1. In the following, we assume that a renaming type's name may
4290 have an ___XD suffix. It would be nice if this went away at some
4291 point.
4292 2. We handle both the (old) purely type-based representation of
4293 renamings and the (new) variable-based encoding. At some point,
4294 it is devoutly to be hoped that the former goes away
4295 (FIXME: hilfinger-2007-07-09).
4296 3. Subprogram renamings are not implemented, although the XRS
4297 suffix is recognized (FIXME: hilfinger-2007-07-09). */
4298
4299/* If SYM encodes a renaming,
4300
4301 <renaming> renames <renamed entity>,
4302
4303 sets *LEN to the length of the renamed entity's name,
4304 *RENAMED_ENTITY to that name (not null-terminated), and *RENAMING_EXPR to
4305 the string describing the subcomponent selected from the renamed
0963b4bd 4306 entity. Returns ADA_NOT_RENAMING if SYM does not encode a renaming
aeb5907d
JB
4307 (in which case, the values of *RENAMED_ENTITY, *LEN, and *RENAMING_EXPR
4308 are undefined). Otherwise, returns a value indicating the category
4309 of entity renamed: an object (ADA_OBJECT_RENAMING), exception
4310 (ADA_EXCEPTION_RENAMING), package (ADA_PACKAGE_RENAMING), or
4311 subprogram (ADA_SUBPROGRAM_RENAMING). Does no allocation; the
4312 strings returned in *RENAMED_ENTITY and *RENAMING_EXPR should not be
4313 deallocated. The values of RENAMED_ENTITY, LEN, or RENAMING_EXPR
4314 may be NULL, in which case they are not assigned.
4315
4316 [Currently, however, GCC does not generate subprogram renamings.] */
4317
4318enum ada_renaming_category
4319ada_parse_renaming (struct symbol *sym,
4320 const char **renamed_entity, int *len,
4321 const char **renaming_expr)
4322{
4323 enum ada_renaming_category kind;
4324 const char *info;
4325 const char *suffix;
4326
4327 if (sym == NULL)
4328 return ADA_NOT_RENAMING;
4329 switch (SYMBOL_CLASS (sym))
14f9c5c9 4330 {
aeb5907d
JB
4331 default:
4332 return ADA_NOT_RENAMING;
4333 case LOC_TYPEDEF:
4334 return parse_old_style_renaming (SYMBOL_TYPE (sym),
4335 renamed_entity, len, renaming_expr);
4336 case LOC_LOCAL:
4337 case LOC_STATIC:
4338 case LOC_COMPUTED:
4339 case LOC_OPTIMIZED_OUT:
4340 info = strstr (SYMBOL_LINKAGE_NAME (sym), "___XR");
4341 if (info == NULL)
4342 return ADA_NOT_RENAMING;
4343 switch (info[5])
4344 {
4345 case '_':
4346 kind = ADA_OBJECT_RENAMING;
4347 info += 6;
4348 break;
4349 case 'E':
4350 kind = ADA_EXCEPTION_RENAMING;
4351 info += 7;
4352 break;
4353 case 'P':
4354 kind = ADA_PACKAGE_RENAMING;
4355 info += 7;
4356 break;
4357 case 'S':
4358 kind = ADA_SUBPROGRAM_RENAMING;
4359 info += 7;
4360 break;
4361 default:
4362 return ADA_NOT_RENAMING;
4363 }
14f9c5c9 4364 }
4c4b4cd2 4365
aeb5907d
JB
4366 if (renamed_entity != NULL)
4367 *renamed_entity = info;
4368 suffix = strstr (info, "___XE");
4369 if (suffix == NULL || suffix == info)
4370 return ADA_NOT_RENAMING;
4371 if (len != NULL)
4372 *len = strlen (info) - strlen (suffix);
4373 suffix += 5;
4374 if (renaming_expr != NULL)
4375 *renaming_expr = suffix;
4376 return kind;
4377}
4378
4379/* Assuming TYPE encodes a renaming according to the old encoding in
4380 exp_dbug.ads, returns details of that renaming in *RENAMED_ENTITY,
4381 *LEN, and *RENAMING_EXPR, as for ada_parse_renaming, above. Returns
4382 ADA_NOT_RENAMING otherwise. */
4383static enum ada_renaming_category
4384parse_old_style_renaming (struct type *type,
4385 const char **renamed_entity, int *len,
4386 const char **renaming_expr)
4387{
4388 enum ada_renaming_category kind;
4389 const char *name;
4390 const char *info;
4391 const char *suffix;
14f9c5c9 4392
aeb5907d
JB
4393 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM
4394 || TYPE_NFIELDS (type) != 1)
4395 return ADA_NOT_RENAMING;
14f9c5c9 4396
aeb5907d
JB
4397 name = type_name_no_tag (type);
4398 if (name == NULL)
4399 return ADA_NOT_RENAMING;
4400
4401 name = strstr (name, "___XR");
4402 if (name == NULL)
4403 return ADA_NOT_RENAMING;
4404 switch (name[5])
4405 {
4406 case '\0':
4407 case '_':
4408 kind = ADA_OBJECT_RENAMING;
4409 break;
4410 case 'E':
4411 kind = ADA_EXCEPTION_RENAMING;
4412 break;
4413 case 'P':
4414 kind = ADA_PACKAGE_RENAMING;
4415 break;
4416 case 'S':
4417 kind = ADA_SUBPROGRAM_RENAMING;
4418 break;
4419 default:
4420 return ADA_NOT_RENAMING;
4421 }
14f9c5c9 4422
aeb5907d
JB
4423 info = TYPE_FIELD_NAME (type, 0);
4424 if (info == NULL)
4425 return ADA_NOT_RENAMING;
4426 if (renamed_entity != NULL)
4427 *renamed_entity = info;
4428 suffix = strstr (info, "___XE");
4429 if (renaming_expr != NULL)
4430 *renaming_expr = suffix + 5;
4431 if (suffix == NULL || suffix == info)
4432 return ADA_NOT_RENAMING;
4433 if (len != NULL)
4434 *len = suffix - info;
4435 return kind;
a5ee536b
JB
4436}
4437
4438/* Compute the value of the given RENAMING_SYM, which is expected to
4439 be a symbol encoding a renaming expression. BLOCK is the block
4440 used to evaluate the renaming. */
52ce6436 4441
a5ee536b
JB
4442static struct value *
4443ada_read_renaming_var_value (struct symbol *renaming_sym,
3977b71f 4444 const struct block *block)
a5ee536b 4445{
bbc13ae3 4446 const char *sym_name;
a5ee536b 4447
bbc13ae3 4448 sym_name = SYMBOL_LINKAGE_NAME (renaming_sym);
4d01a485
PA
4449 expression_up expr = parse_exp_1 (&sym_name, 0, block, 0);
4450 return evaluate_expression (expr.get ());
a5ee536b 4451}
14f9c5c9 4452\f
d2e4a39e 4453
4c4b4cd2 4454 /* Evaluation: Function Calls */
14f9c5c9 4455
4c4b4cd2 4456/* Return an lvalue containing the value VAL. This is the identity on
40bc484c
JB
4457 lvalues, and otherwise has the side-effect of allocating memory
4458 in the inferior where a copy of the value contents is copied. */
14f9c5c9 4459
d2e4a39e 4460static struct value *
40bc484c 4461ensure_lval (struct value *val)
14f9c5c9 4462{
40bc484c
JB
4463 if (VALUE_LVAL (val) == not_lval
4464 || VALUE_LVAL (val) == lval_internalvar)
c3e5cd34 4465 {
df407dfe 4466 int len = TYPE_LENGTH (ada_check_typedef (value_type (val)));
40bc484c
JB
4467 const CORE_ADDR addr =
4468 value_as_long (value_allocate_space_in_inferior (len));
c3e5cd34 4469
a84a8a0d 4470 VALUE_LVAL (val) = lval_memory;
1a088441 4471 set_value_address (val, addr);
40bc484c 4472 write_memory (addr, value_contents (val), len);
c3e5cd34 4473 }
14f9c5c9
AS
4474
4475 return val;
4476}
4477
4478/* Return the value ACTUAL, converted to be an appropriate value for a
4479 formal of type FORMAL_TYPE. Use *SP as a stack pointer for
4480 allocating any necessary descriptors (fat pointers), or copies of
4c4b4cd2 4481 values not residing in memory, updating it as needed. */
14f9c5c9 4482
a93c0eb6 4483struct value *
40bc484c 4484ada_convert_actual (struct value *actual, struct type *formal_type0)
14f9c5c9 4485{
df407dfe 4486 struct type *actual_type = ada_check_typedef (value_type (actual));
61ee279c 4487 struct type *formal_type = ada_check_typedef (formal_type0);
d2e4a39e
AS
4488 struct type *formal_target =
4489 TYPE_CODE (formal_type) == TYPE_CODE_PTR
61ee279c 4490 ? ada_check_typedef (TYPE_TARGET_TYPE (formal_type)) : formal_type;
d2e4a39e
AS
4491 struct type *actual_target =
4492 TYPE_CODE (actual_type) == TYPE_CODE_PTR
61ee279c 4493 ? ada_check_typedef (TYPE_TARGET_TYPE (actual_type)) : actual_type;
14f9c5c9 4494
4c4b4cd2 4495 if (ada_is_array_descriptor_type (formal_target)
14f9c5c9 4496 && TYPE_CODE (actual_target) == TYPE_CODE_ARRAY)
40bc484c 4497 return make_array_descriptor (formal_type, actual);
a84a8a0d
JB
4498 else if (TYPE_CODE (formal_type) == TYPE_CODE_PTR
4499 || TYPE_CODE (formal_type) == TYPE_CODE_REF)
14f9c5c9 4500 {
a84a8a0d 4501 struct value *result;
5b4ee69b 4502
14f9c5c9 4503 if (TYPE_CODE (formal_target) == TYPE_CODE_ARRAY
4c4b4cd2 4504 && ada_is_array_descriptor_type (actual_target))
a84a8a0d 4505 result = desc_data (actual);
14f9c5c9 4506 else if (TYPE_CODE (actual_type) != TYPE_CODE_PTR)
4c4b4cd2
PH
4507 {
4508 if (VALUE_LVAL (actual) != lval_memory)
4509 {
4510 struct value *val;
5b4ee69b 4511
df407dfe 4512 actual_type = ada_check_typedef (value_type (actual));
4c4b4cd2 4513 val = allocate_value (actual_type);
990a07ab 4514 memcpy ((char *) value_contents_raw (val),
0fd88904 4515 (char *) value_contents (actual),
4c4b4cd2 4516 TYPE_LENGTH (actual_type));
40bc484c 4517 actual = ensure_lval (val);
4c4b4cd2 4518 }
a84a8a0d 4519 result = value_addr (actual);
4c4b4cd2 4520 }
a84a8a0d
JB
4521 else
4522 return actual;
b1af9e97 4523 return value_cast_pointers (formal_type, result, 0);
14f9c5c9
AS
4524 }
4525 else if (TYPE_CODE (actual_type) == TYPE_CODE_PTR)
4526 return ada_value_ind (actual);
8344af1e
JB
4527 else if (ada_is_aligner_type (formal_type))
4528 {
4529 /* We need to turn this parameter into an aligner type
4530 as well. */
4531 struct value *aligner = allocate_value (formal_type);
4532 struct value *component = ada_value_struct_elt (aligner, "F", 0);
4533
4534 value_assign_to_component (aligner, component, actual);
4535 return aligner;
4536 }
14f9c5c9
AS
4537
4538 return actual;
4539}
4540
438c98a1
JB
4541/* Convert VALUE (which must be an address) to a CORE_ADDR that is a pointer of
4542 type TYPE. This is usually an inefficient no-op except on some targets
4543 (such as AVR) where the representation of a pointer and an address
4544 differs. */
4545
4546static CORE_ADDR
4547value_pointer (struct value *value, struct type *type)
4548{
4549 struct gdbarch *gdbarch = get_type_arch (type);
4550 unsigned len = TYPE_LENGTH (type);
224c3ddb 4551 gdb_byte *buf = (gdb_byte *) alloca (len);
438c98a1
JB
4552 CORE_ADDR addr;
4553
4554 addr = value_address (value);
4555 gdbarch_address_to_pointer (gdbarch, type, buf, addr);
4556 addr = extract_unsigned_integer (buf, len, gdbarch_byte_order (gdbarch));
4557 return addr;
4558}
4559
14f9c5c9 4560
4c4b4cd2
PH
4561/* Push a descriptor of type TYPE for array value ARR on the stack at
4562 *SP, updating *SP to reflect the new descriptor. Return either
14f9c5c9 4563 an lvalue representing the new descriptor, or (if TYPE is a pointer-
4c4b4cd2
PH
4564 to-descriptor type rather than a descriptor type), a struct value *
4565 representing a pointer to this descriptor. */
14f9c5c9 4566
d2e4a39e 4567static struct value *
40bc484c 4568make_array_descriptor (struct type *type, struct value *arr)
14f9c5c9 4569{
d2e4a39e
AS
4570 struct type *bounds_type = desc_bounds_type (type);
4571 struct type *desc_type = desc_base_type (type);
4572 struct value *descriptor = allocate_value (desc_type);
4573 struct value *bounds = allocate_value (bounds_type);
14f9c5c9 4574 int i;
d2e4a39e 4575
0963b4bd
MS
4576 for (i = ada_array_arity (ada_check_typedef (value_type (arr)));
4577 i > 0; i -= 1)
14f9c5c9 4578 {
19f220c3
JK
4579 modify_field (value_type (bounds), value_contents_writeable (bounds),
4580 ada_array_bound (arr, i, 0),
4581 desc_bound_bitpos (bounds_type, i, 0),
4582 desc_bound_bitsize (bounds_type, i, 0));
4583 modify_field (value_type (bounds), value_contents_writeable (bounds),
4584 ada_array_bound (arr, i, 1),
4585 desc_bound_bitpos (bounds_type, i, 1),
4586 desc_bound_bitsize (bounds_type, i, 1));
14f9c5c9 4587 }
d2e4a39e 4588
40bc484c 4589 bounds = ensure_lval (bounds);
d2e4a39e 4590
19f220c3
JK
4591 modify_field (value_type (descriptor),
4592 value_contents_writeable (descriptor),
4593 value_pointer (ensure_lval (arr),
4594 TYPE_FIELD_TYPE (desc_type, 0)),
4595 fat_pntr_data_bitpos (desc_type),
4596 fat_pntr_data_bitsize (desc_type));
4597
4598 modify_field (value_type (descriptor),
4599 value_contents_writeable (descriptor),
4600 value_pointer (bounds,
4601 TYPE_FIELD_TYPE (desc_type, 1)),
4602 fat_pntr_bounds_bitpos (desc_type),
4603 fat_pntr_bounds_bitsize (desc_type));
14f9c5c9 4604
40bc484c 4605 descriptor = ensure_lval (descriptor);
14f9c5c9
AS
4606
4607 if (TYPE_CODE (type) == TYPE_CODE_PTR)
4608 return value_addr (descriptor);
4609 else
4610 return descriptor;
4611}
14f9c5c9 4612\f
3d9434b5
JB
4613 /* Symbol Cache Module */
4614
3d9434b5 4615/* Performance measurements made as of 2010-01-15 indicate that
ee01b665 4616 this cache does bring some noticeable improvements. Depending
3d9434b5
JB
4617 on the type of entity being printed, the cache can make it as much
4618 as an order of magnitude faster than without it.
4619
4620 The descriptive type DWARF extension has significantly reduced
4621 the need for this cache, at least when DWARF is being used. However,
4622 even in this case, some expensive name-based symbol searches are still
4623 sometimes necessary - to find an XVZ variable, mostly. */
4624
ee01b665 4625/* Initialize the contents of SYM_CACHE. */
3d9434b5 4626
ee01b665
JB
4627static void
4628ada_init_symbol_cache (struct ada_symbol_cache *sym_cache)
4629{
4630 obstack_init (&sym_cache->cache_space);
4631 memset (sym_cache->root, '\000', sizeof (sym_cache->root));
4632}
3d9434b5 4633
ee01b665
JB
4634/* Free the memory used by SYM_CACHE. */
4635
4636static void
4637ada_free_symbol_cache (struct ada_symbol_cache *sym_cache)
3d9434b5 4638{
ee01b665
JB
4639 obstack_free (&sym_cache->cache_space, NULL);
4640 xfree (sym_cache);
4641}
3d9434b5 4642
ee01b665
JB
4643/* Return the symbol cache associated to the given program space PSPACE.
4644 If not allocated for this PSPACE yet, allocate and initialize one. */
3d9434b5 4645
ee01b665
JB
4646static struct ada_symbol_cache *
4647ada_get_symbol_cache (struct program_space *pspace)
4648{
4649 struct ada_pspace_data *pspace_data = get_ada_pspace_data (pspace);
ee01b665 4650
66c168ae 4651 if (pspace_data->sym_cache == NULL)
ee01b665 4652 {
66c168ae
JB
4653 pspace_data->sym_cache = XCNEW (struct ada_symbol_cache);
4654 ada_init_symbol_cache (pspace_data->sym_cache);
ee01b665
JB
4655 }
4656
66c168ae 4657 return pspace_data->sym_cache;
ee01b665 4658}
3d9434b5
JB
4659
4660/* Clear all entries from the symbol cache. */
4661
4662static void
4663ada_clear_symbol_cache (void)
4664{
ee01b665
JB
4665 struct ada_symbol_cache *sym_cache
4666 = ada_get_symbol_cache (current_program_space);
4667
4668 obstack_free (&sym_cache->cache_space, NULL);
4669 ada_init_symbol_cache (sym_cache);
3d9434b5
JB
4670}
4671
fe978cb0 4672/* Search our cache for an entry matching NAME and DOMAIN.
3d9434b5
JB
4673 Return it if found, or NULL otherwise. */
4674
4675static struct cache_entry **
fe978cb0 4676find_entry (const char *name, domain_enum domain)
3d9434b5 4677{
ee01b665
JB
4678 struct ada_symbol_cache *sym_cache
4679 = ada_get_symbol_cache (current_program_space);
3d9434b5
JB
4680 int h = msymbol_hash (name) % HASH_SIZE;
4681 struct cache_entry **e;
4682
ee01b665 4683 for (e = &sym_cache->root[h]; *e != NULL; e = &(*e)->next)
3d9434b5 4684 {
fe978cb0 4685 if (domain == (*e)->domain && strcmp (name, (*e)->name) == 0)
3d9434b5
JB
4686 return e;
4687 }
4688 return NULL;
4689}
4690
fe978cb0 4691/* Search the symbol cache for an entry matching NAME and DOMAIN.
3d9434b5
JB
4692 Return 1 if found, 0 otherwise.
4693
4694 If an entry was found and SYM is not NULL, set *SYM to the entry's
4695 SYM. Same principle for BLOCK if not NULL. */
96d887e8 4696
96d887e8 4697static int
fe978cb0 4698lookup_cached_symbol (const char *name, domain_enum domain,
f0c5f9b2 4699 struct symbol **sym, const struct block **block)
96d887e8 4700{
fe978cb0 4701 struct cache_entry **e = find_entry (name, domain);
3d9434b5
JB
4702
4703 if (e == NULL)
4704 return 0;
4705 if (sym != NULL)
4706 *sym = (*e)->sym;
4707 if (block != NULL)
4708 *block = (*e)->block;
4709 return 1;
96d887e8
PH
4710}
4711
3d9434b5 4712/* Assuming that (SYM, BLOCK) is the result of the lookup of NAME
fe978cb0 4713 in domain DOMAIN, save this result in our symbol cache. */
3d9434b5 4714
96d887e8 4715static void
fe978cb0 4716cache_symbol (const char *name, domain_enum domain, struct symbol *sym,
270140bd 4717 const struct block *block)
96d887e8 4718{
ee01b665
JB
4719 struct ada_symbol_cache *sym_cache
4720 = ada_get_symbol_cache (current_program_space);
3d9434b5
JB
4721 int h;
4722 char *copy;
4723 struct cache_entry *e;
4724
1994afbf
DE
4725 /* Symbols for builtin types don't have a block.
4726 For now don't cache such symbols. */
4727 if (sym != NULL && !SYMBOL_OBJFILE_OWNED (sym))
4728 return;
4729
3d9434b5
JB
4730 /* If the symbol is a local symbol, then do not cache it, as a search
4731 for that symbol depends on the context. To determine whether
4732 the symbol is local or not, we check the block where we found it
4733 against the global and static blocks of its associated symtab. */
4734 if (sym
08be3fe3 4735 && BLOCKVECTOR_BLOCK (SYMTAB_BLOCKVECTOR (symbol_symtab (sym)),
439247b6 4736 GLOBAL_BLOCK) != block
08be3fe3 4737 && BLOCKVECTOR_BLOCK (SYMTAB_BLOCKVECTOR (symbol_symtab (sym)),
439247b6 4738 STATIC_BLOCK) != block)
3d9434b5
JB
4739 return;
4740
4741 h = msymbol_hash (name) % HASH_SIZE;
ee01b665
JB
4742 e = (struct cache_entry *) obstack_alloc (&sym_cache->cache_space,
4743 sizeof (*e));
4744 e->next = sym_cache->root[h];
4745 sym_cache->root[h] = e;
224c3ddb
SM
4746 e->name = copy
4747 = (char *) obstack_alloc (&sym_cache->cache_space, strlen (name) + 1);
3d9434b5
JB
4748 strcpy (copy, name);
4749 e->sym = sym;
fe978cb0 4750 e->domain = domain;
3d9434b5 4751 e->block = block;
96d887e8 4752}
4c4b4cd2
PH
4753\f
4754 /* Symbol Lookup */
4755
b5ec771e
PA
4756/* Return the symbol name match type that should be used used when
4757 searching for all symbols matching LOOKUP_NAME.
c0431670
JB
4758
4759 LOOKUP_NAME is expected to be a symbol name after transformation
4760 for Ada lookups (see ada_name_for_lookup). */
4761
b5ec771e
PA
4762static symbol_name_match_type
4763name_match_type_from_name (const char *lookup_name)
c0431670 4764{
b5ec771e
PA
4765 return (strstr (lookup_name, "__") == NULL
4766 ? symbol_name_match_type::WILD
4767 : symbol_name_match_type::FULL);
c0431670
JB
4768}
4769
4c4b4cd2
PH
4770/* Return the result of a standard (literal, C-like) lookup of NAME in
4771 given DOMAIN, visible from lexical block BLOCK. */
4772
4773static struct symbol *
4774standard_lookup (const char *name, const struct block *block,
4775 domain_enum domain)
4776{
acbd605d 4777 /* Initialize it just to avoid a GCC false warning. */
d12307c1 4778 struct block_symbol sym = {NULL, NULL};
4c4b4cd2 4779
d12307c1
PMR
4780 if (lookup_cached_symbol (name, domain, &sym.symbol, NULL))
4781 return sym.symbol;
2570f2b7 4782 sym = lookup_symbol_in_language (name, block, domain, language_c, 0);
d12307c1
PMR
4783 cache_symbol (name, domain, sym.symbol, sym.block);
4784 return sym.symbol;
4c4b4cd2
PH
4785}
4786
4787
4788/* Non-zero iff there is at least one non-function/non-enumeral symbol
4789 in the symbol fields of SYMS[0..N-1]. We treat enumerals as functions,
4790 since they contend in overloading in the same way. */
4791static int
d12307c1 4792is_nonfunction (struct block_symbol syms[], int n)
4c4b4cd2
PH
4793{
4794 int i;
4795
4796 for (i = 0; i < n; i += 1)
d12307c1
PMR
4797 if (TYPE_CODE (SYMBOL_TYPE (syms[i].symbol)) != TYPE_CODE_FUNC
4798 && (TYPE_CODE (SYMBOL_TYPE (syms[i].symbol)) != TYPE_CODE_ENUM
4799 || SYMBOL_CLASS (syms[i].symbol) != LOC_CONST))
14f9c5c9
AS
4800 return 1;
4801
4802 return 0;
4803}
4804
4805/* If true (non-zero), then TYPE0 and TYPE1 represent equivalent
4c4b4cd2 4806 struct types. Otherwise, they may not. */
14f9c5c9
AS
4807
4808static int
d2e4a39e 4809equiv_types (struct type *type0, struct type *type1)
14f9c5c9 4810{
d2e4a39e 4811 if (type0 == type1)
14f9c5c9 4812 return 1;
d2e4a39e 4813 if (type0 == NULL || type1 == NULL
14f9c5c9
AS
4814 || TYPE_CODE (type0) != TYPE_CODE (type1))
4815 return 0;
d2e4a39e 4816 if ((TYPE_CODE (type0) == TYPE_CODE_STRUCT
14f9c5c9
AS
4817 || TYPE_CODE (type0) == TYPE_CODE_ENUM)
4818 && ada_type_name (type0) != NULL && ada_type_name (type1) != NULL
4c4b4cd2 4819 && strcmp (ada_type_name (type0), ada_type_name (type1)) == 0)
14f9c5c9 4820 return 1;
d2e4a39e 4821
14f9c5c9
AS
4822 return 0;
4823}
4824
4825/* True iff SYM0 represents the same entity as SYM1, or one that is
4c4b4cd2 4826 no more defined than that of SYM1. */
14f9c5c9
AS
4827
4828static int
d2e4a39e 4829lesseq_defined_than (struct symbol *sym0, struct symbol *sym1)
14f9c5c9
AS
4830{
4831 if (sym0 == sym1)
4832 return 1;
176620f1 4833 if (SYMBOL_DOMAIN (sym0) != SYMBOL_DOMAIN (sym1)
14f9c5c9
AS
4834 || SYMBOL_CLASS (sym0) != SYMBOL_CLASS (sym1))
4835 return 0;
4836
d2e4a39e 4837 switch (SYMBOL_CLASS (sym0))
14f9c5c9
AS
4838 {
4839 case LOC_UNDEF:
4840 return 1;
4841 case LOC_TYPEDEF:
4842 {
4c4b4cd2
PH
4843 struct type *type0 = SYMBOL_TYPE (sym0);
4844 struct type *type1 = SYMBOL_TYPE (sym1);
0d5cff50
DE
4845 const char *name0 = SYMBOL_LINKAGE_NAME (sym0);
4846 const char *name1 = SYMBOL_LINKAGE_NAME (sym1);
4c4b4cd2 4847 int len0 = strlen (name0);
5b4ee69b 4848
4c4b4cd2
PH
4849 return
4850 TYPE_CODE (type0) == TYPE_CODE (type1)
4851 && (equiv_types (type0, type1)
4852 || (len0 < strlen (name1) && strncmp (name0, name1, len0) == 0
61012eef 4853 && startswith (name1 + len0, "___XV")));
14f9c5c9
AS
4854 }
4855 case LOC_CONST:
4856 return SYMBOL_VALUE (sym0) == SYMBOL_VALUE (sym1)
4c4b4cd2 4857 && equiv_types (SYMBOL_TYPE (sym0), SYMBOL_TYPE (sym1));
d2e4a39e
AS
4858 default:
4859 return 0;
14f9c5c9
AS
4860 }
4861}
4862
d12307c1 4863/* Append (SYM,BLOCK,SYMTAB) to the end of the array of struct block_symbol
4c4b4cd2 4864 records in OBSTACKP. Do nothing if SYM is a duplicate. */
14f9c5c9
AS
4865
4866static void
76a01679
JB
4867add_defn_to_vec (struct obstack *obstackp,
4868 struct symbol *sym,
f0c5f9b2 4869 const struct block *block)
14f9c5c9
AS
4870{
4871 int i;
d12307c1 4872 struct block_symbol *prevDefns = defns_collected (obstackp, 0);
14f9c5c9 4873
529cad9c
PH
4874 /* Do not try to complete stub types, as the debugger is probably
4875 already scanning all symbols matching a certain name at the
4876 time when this function is called. Trying to replace the stub
4877 type by its associated full type will cause us to restart a scan
4878 which may lead to an infinite recursion. Instead, the client
4879 collecting the matching symbols will end up collecting several
4880 matches, with at least one of them complete. It can then filter
4881 out the stub ones if needed. */
4882
4c4b4cd2
PH
4883 for (i = num_defns_collected (obstackp) - 1; i >= 0; i -= 1)
4884 {
d12307c1 4885 if (lesseq_defined_than (sym, prevDefns[i].symbol))
4c4b4cd2 4886 return;
d12307c1 4887 else if (lesseq_defined_than (prevDefns[i].symbol, sym))
4c4b4cd2 4888 {
d12307c1 4889 prevDefns[i].symbol = sym;
4c4b4cd2 4890 prevDefns[i].block = block;
4c4b4cd2 4891 return;
76a01679 4892 }
4c4b4cd2
PH
4893 }
4894
4895 {
d12307c1 4896 struct block_symbol info;
4c4b4cd2 4897
d12307c1 4898 info.symbol = sym;
4c4b4cd2 4899 info.block = block;
d12307c1 4900 obstack_grow (obstackp, &info, sizeof (struct block_symbol));
4c4b4cd2
PH
4901 }
4902}
4903
d12307c1
PMR
4904/* Number of block_symbol structures currently collected in current vector in
4905 OBSTACKP. */
4c4b4cd2 4906
76a01679
JB
4907static int
4908num_defns_collected (struct obstack *obstackp)
4c4b4cd2 4909{
d12307c1 4910 return obstack_object_size (obstackp) / sizeof (struct block_symbol);
4c4b4cd2
PH
4911}
4912
d12307c1
PMR
4913/* Vector of block_symbol structures currently collected in current vector in
4914 OBSTACKP. If FINISH, close off the vector and return its final address. */
4c4b4cd2 4915
d12307c1 4916static struct block_symbol *
4c4b4cd2
PH
4917defns_collected (struct obstack *obstackp, int finish)
4918{
4919 if (finish)
224c3ddb 4920 return (struct block_symbol *) obstack_finish (obstackp);
4c4b4cd2 4921 else
d12307c1 4922 return (struct block_symbol *) obstack_base (obstackp);
4c4b4cd2
PH
4923}
4924
7c7b6655
TT
4925/* Return a bound minimal symbol matching NAME according to Ada
4926 decoding rules. Returns an invalid symbol if there is no such
4927 minimal symbol. Names prefixed with "standard__" are handled
4928 specially: "standard__" is first stripped off, and only static and
4929 global symbols are searched. */
4c4b4cd2 4930
7c7b6655 4931struct bound_minimal_symbol
96d887e8 4932ada_lookup_simple_minsym (const char *name)
4c4b4cd2 4933{
7c7b6655 4934 struct bound_minimal_symbol result;
4c4b4cd2 4935 struct objfile *objfile;
96d887e8 4936 struct minimal_symbol *msymbol;
4c4b4cd2 4937
7c7b6655
TT
4938 memset (&result, 0, sizeof (result));
4939
b5ec771e
PA
4940 symbol_name_match_type match_type = name_match_type_from_name (name);
4941 lookup_name_info lookup_name (name, match_type);
4942
4943 symbol_name_matcher_ftype *match_name
4944 = ada_get_symbol_name_matcher (lookup_name);
4c4b4cd2 4945
96d887e8
PH
4946 ALL_MSYMBOLS (objfile, msymbol)
4947 {
b5ec771e 4948 if (match_name (MSYMBOL_LINKAGE_NAME (msymbol), lookup_name, NULL)
96d887e8 4949 && MSYMBOL_TYPE (msymbol) != mst_solib_trampoline)
7c7b6655
TT
4950 {
4951 result.minsym = msymbol;
4952 result.objfile = objfile;
4953 break;
4954 }
96d887e8 4955 }
4c4b4cd2 4956
7c7b6655 4957 return result;
96d887e8 4958}
4c4b4cd2 4959
96d887e8
PH
4960/* For all subprograms that statically enclose the subprogram of the
4961 selected frame, add symbols matching identifier NAME in DOMAIN
4962 and their blocks to the list of data in OBSTACKP, as for
48b78332
JB
4963 ada_add_block_symbols (q.v.). If WILD_MATCH_P, treat as NAME
4964 with a wildcard prefix. */
4c4b4cd2 4965
96d887e8
PH
4966static void
4967add_symbols_from_enclosing_procs (struct obstack *obstackp,
b5ec771e
PA
4968 const lookup_name_info &lookup_name,
4969 domain_enum domain)
96d887e8 4970{
96d887e8 4971}
14f9c5c9 4972
96d887e8
PH
4973/* True if TYPE is definitely an artificial type supplied to a symbol
4974 for which no debugging information was given in the symbol file. */
14f9c5c9 4975
96d887e8
PH
4976static int
4977is_nondebugging_type (struct type *type)
4978{
0d5cff50 4979 const char *name = ada_type_name (type);
5b4ee69b 4980
96d887e8
PH
4981 return (name != NULL && strcmp (name, "<variable, no debug info>") == 0);
4982}
4c4b4cd2 4983
8f17729f
JB
4984/* Return nonzero if TYPE1 and TYPE2 are two enumeration types
4985 that are deemed "identical" for practical purposes.
4986
4987 This function assumes that TYPE1 and TYPE2 are both TYPE_CODE_ENUM
4988 types and that their number of enumerals is identical (in other
4989 words, TYPE_NFIELDS (type1) == TYPE_NFIELDS (type2)). */
4990
4991static int
4992ada_identical_enum_types_p (struct type *type1, struct type *type2)
4993{
4994 int i;
4995
4996 /* The heuristic we use here is fairly conservative. We consider
4997 that 2 enumerate types are identical if they have the same
4998 number of enumerals and that all enumerals have the same
4999 underlying value and name. */
5000
5001 /* All enums in the type should have an identical underlying value. */
5002 for (i = 0; i < TYPE_NFIELDS (type1); i++)
14e75d8e 5003 if (TYPE_FIELD_ENUMVAL (type1, i) != TYPE_FIELD_ENUMVAL (type2, i))
8f17729f
JB
5004 return 0;
5005
5006 /* All enumerals should also have the same name (modulo any numerical
5007 suffix). */
5008 for (i = 0; i < TYPE_NFIELDS (type1); i++)
5009 {
0d5cff50
DE
5010 const char *name_1 = TYPE_FIELD_NAME (type1, i);
5011 const char *name_2 = TYPE_FIELD_NAME (type2, i);
8f17729f
JB
5012 int len_1 = strlen (name_1);
5013 int len_2 = strlen (name_2);
5014
5015 ada_remove_trailing_digits (TYPE_FIELD_NAME (type1, i), &len_1);
5016 ada_remove_trailing_digits (TYPE_FIELD_NAME (type2, i), &len_2);
5017 if (len_1 != len_2
5018 || strncmp (TYPE_FIELD_NAME (type1, i),
5019 TYPE_FIELD_NAME (type2, i),
5020 len_1) != 0)
5021 return 0;
5022 }
5023
5024 return 1;
5025}
5026
5027/* Return nonzero if all the symbols in SYMS are all enumeral symbols
5028 that are deemed "identical" for practical purposes. Sometimes,
5029 enumerals are not strictly identical, but their types are so similar
5030 that they can be considered identical.
5031
5032 For instance, consider the following code:
5033
5034 type Color is (Black, Red, Green, Blue, White);
5035 type RGB_Color is new Color range Red .. Blue;
5036
5037 Type RGB_Color is a subrange of an implicit type which is a copy
5038 of type Color. If we call that implicit type RGB_ColorB ("B" is
5039 for "Base Type"), then type RGB_ColorB is a copy of type Color.
5040 As a result, when an expression references any of the enumeral
5041 by name (Eg. "print green"), the expression is technically
5042 ambiguous and the user should be asked to disambiguate. But
5043 doing so would only hinder the user, since it wouldn't matter
5044 what choice he makes, the outcome would always be the same.
5045 So, for practical purposes, we consider them as the same. */
5046
5047static int
d12307c1 5048symbols_are_identical_enums (struct block_symbol *syms, int nsyms)
8f17729f
JB
5049{
5050 int i;
5051
5052 /* Before performing a thorough comparison check of each type,
5053 we perform a series of inexpensive checks. We expect that these
5054 checks will quickly fail in the vast majority of cases, and thus
5055 help prevent the unnecessary use of a more expensive comparison.
5056 Said comparison also expects us to make some of these checks
5057 (see ada_identical_enum_types_p). */
5058
5059 /* Quick check: All symbols should have an enum type. */
5060 for (i = 0; i < nsyms; i++)
d12307c1 5061 if (TYPE_CODE (SYMBOL_TYPE (syms[i].symbol)) != TYPE_CODE_ENUM)
8f17729f
JB
5062 return 0;
5063
5064 /* Quick check: They should all have the same value. */
5065 for (i = 1; i < nsyms; i++)
d12307c1 5066 if (SYMBOL_VALUE (syms[i].symbol) != SYMBOL_VALUE (syms[0].symbol))
8f17729f
JB
5067 return 0;
5068
5069 /* Quick check: They should all have the same number of enumerals. */
5070 for (i = 1; i < nsyms; i++)
d12307c1
PMR
5071 if (TYPE_NFIELDS (SYMBOL_TYPE (syms[i].symbol))
5072 != TYPE_NFIELDS (SYMBOL_TYPE (syms[0].symbol)))
8f17729f
JB
5073 return 0;
5074
5075 /* All the sanity checks passed, so we might have a set of
5076 identical enumeration types. Perform a more complete
5077 comparison of the type of each symbol. */
5078 for (i = 1; i < nsyms; i++)
d12307c1
PMR
5079 if (!ada_identical_enum_types_p (SYMBOL_TYPE (syms[i].symbol),
5080 SYMBOL_TYPE (syms[0].symbol)))
8f17729f
JB
5081 return 0;
5082
5083 return 1;
5084}
5085
96d887e8
PH
5086/* Remove any non-debugging symbols in SYMS[0 .. NSYMS-1] that definitely
5087 duplicate other symbols in the list (The only case I know of where
5088 this happens is when object files containing stabs-in-ecoff are
5089 linked with files containing ordinary ecoff debugging symbols (or no
5090 debugging symbols)). Modifies SYMS to squeeze out deleted entries.
5091 Returns the number of items in the modified list. */
4c4b4cd2 5092
96d887e8 5093static int
d12307c1 5094remove_extra_symbols (struct block_symbol *syms, int nsyms)
96d887e8
PH
5095{
5096 int i, j;
4c4b4cd2 5097
8f17729f
JB
5098 /* We should never be called with less than 2 symbols, as there
5099 cannot be any extra symbol in that case. But it's easy to
5100 handle, since we have nothing to do in that case. */
5101 if (nsyms < 2)
5102 return nsyms;
5103
96d887e8
PH
5104 i = 0;
5105 while (i < nsyms)
5106 {
a35ddb44 5107 int remove_p = 0;
339c13b6
JB
5108
5109 /* If two symbols have the same name and one of them is a stub type,
5110 the get rid of the stub. */
5111
d12307c1
PMR
5112 if (TYPE_STUB (SYMBOL_TYPE (syms[i].symbol))
5113 && SYMBOL_LINKAGE_NAME (syms[i].symbol) != NULL)
339c13b6
JB
5114 {
5115 for (j = 0; j < nsyms; j++)
5116 {
5117 if (j != i
d12307c1
PMR
5118 && !TYPE_STUB (SYMBOL_TYPE (syms[j].symbol))
5119 && SYMBOL_LINKAGE_NAME (syms[j].symbol) != NULL
5120 && strcmp (SYMBOL_LINKAGE_NAME (syms[i].symbol),
5121 SYMBOL_LINKAGE_NAME (syms[j].symbol)) == 0)
a35ddb44 5122 remove_p = 1;
339c13b6
JB
5123 }
5124 }
5125
5126 /* Two symbols with the same name, same class and same address
5127 should be identical. */
5128
d12307c1
PMR
5129 else if (SYMBOL_LINKAGE_NAME (syms[i].symbol) != NULL
5130 && SYMBOL_CLASS (syms[i].symbol) == LOC_STATIC
5131 && is_nondebugging_type (SYMBOL_TYPE (syms[i].symbol)))
96d887e8
PH
5132 {
5133 for (j = 0; j < nsyms; j += 1)
5134 {
5135 if (i != j
d12307c1
PMR
5136 && SYMBOL_LINKAGE_NAME (syms[j].symbol) != NULL
5137 && strcmp (SYMBOL_LINKAGE_NAME (syms[i].symbol),
5138 SYMBOL_LINKAGE_NAME (syms[j].symbol)) == 0
5139 && SYMBOL_CLASS (syms[i].symbol)
5140 == SYMBOL_CLASS (syms[j].symbol)
5141 && SYMBOL_VALUE_ADDRESS (syms[i].symbol)
5142 == SYMBOL_VALUE_ADDRESS (syms[j].symbol))
a35ddb44 5143 remove_p = 1;
4c4b4cd2 5144 }
4c4b4cd2 5145 }
339c13b6 5146
a35ddb44 5147 if (remove_p)
339c13b6
JB
5148 {
5149 for (j = i + 1; j < nsyms; j += 1)
5150 syms[j - 1] = syms[j];
5151 nsyms -= 1;
5152 }
5153
96d887e8 5154 i += 1;
14f9c5c9 5155 }
8f17729f
JB
5156
5157 /* If all the remaining symbols are identical enumerals, then
5158 just keep the first one and discard the rest.
5159
5160 Unlike what we did previously, we do not discard any entry
5161 unless they are ALL identical. This is because the symbol
5162 comparison is not a strict comparison, but rather a practical
5163 comparison. If all symbols are considered identical, then
5164 we can just go ahead and use the first one and discard the rest.
5165 But if we cannot reduce the list to a single element, we have
5166 to ask the user to disambiguate anyways. And if we have to
5167 present a multiple-choice menu, it's less confusing if the list
5168 isn't missing some choices that were identical and yet distinct. */
5169 if (symbols_are_identical_enums (syms, nsyms))
5170 nsyms = 1;
5171
96d887e8 5172 return nsyms;
14f9c5c9
AS
5173}
5174
96d887e8
PH
5175/* Given a type that corresponds to a renaming entity, use the type name
5176 to extract the scope (package name or function name, fully qualified,
5177 and following the GNAT encoding convention) where this renaming has been
5178 defined. The string returned needs to be deallocated after use. */
4c4b4cd2 5179
96d887e8
PH
5180static char *
5181xget_renaming_scope (struct type *renaming_type)
14f9c5c9 5182{
96d887e8 5183 /* The renaming types adhere to the following convention:
0963b4bd 5184 <scope>__<rename>___<XR extension>.
96d887e8
PH
5185 So, to extract the scope, we search for the "___XR" extension,
5186 and then backtrack until we find the first "__". */
76a01679 5187
96d887e8 5188 const char *name = type_name_no_tag (renaming_type);
108d56a4
SM
5189 const char *suffix = strstr (name, "___XR");
5190 const char *last;
96d887e8
PH
5191 int scope_len;
5192 char *scope;
14f9c5c9 5193
96d887e8
PH
5194 /* Now, backtrack a bit until we find the first "__". Start looking
5195 at suffix - 3, as the <rename> part is at least one character long. */
14f9c5c9 5196
96d887e8
PH
5197 for (last = suffix - 3; last > name; last--)
5198 if (last[0] == '_' && last[1] == '_')
5199 break;
76a01679 5200
96d887e8 5201 /* Make a copy of scope and return it. */
14f9c5c9 5202
96d887e8
PH
5203 scope_len = last - name;
5204 scope = (char *) xmalloc ((scope_len + 1) * sizeof (char));
14f9c5c9 5205
96d887e8
PH
5206 strncpy (scope, name, scope_len);
5207 scope[scope_len] = '\0';
4c4b4cd2 5208
96d887e8 5209 return scope;
4c4b4cd2
PH
5210}
5211
96d887e8 5212/* Return nonzero if NAME corresponds to a package name. */
4c4b4cd2 5213
96d887e8
PH
5214static int
5215is_package_name (const char *name)
4c4b4cd2 5216{
96d887e8
PH
5217 /* Here, We take advantage of the fact that no symbols are generated
5218 for packages, while symbols are generated for each function.
5219 So the condition for NAME represent a package becomes equivalent
5220 to NAME not existing in our list of symbols. There is only one
5221 small complication with library-level functions (see below). */
4c4b4cd2 5222
96d887e8 5223 char *fun_name;
76a01679 5224
96d887e8
PH
5225 /* If it is a function that has not been defined at library level,
5226 then we should be able to look it up in the symbols. */
5227 if (standard_lookup (name, NULL, VAR_DOMAIN) != NULL)
5228 return 0;
14f9c5c9 5229
96d887e8
PH
5230 /* Library-level function names start with "_ada_". See if function
5231 "_ada_" followed by NAME can be found. */
14f9c5c9 5232
96d887e8 5233 /* Do a quick check that NAME does not contain "__", since library-level
e1d5a0d2 5234 functions names cannot contain "__" in them. */
96d887e8
PH
5235 if (strstr (name, "__") != NULL)
5236 return 0;
4c4b4cd2 5237
b435e160 5238 fun_name = xstrprintf ("_ada_%s", name);
14f9c5c9 5239
96d887e8
PH
5240 return (standard_lookup (fun_name, NULL, VAR_DOMAIN) == NULL);
5241}
14f9c5c9 5242
96d887e8 5243/* Return nonzero if SYM corresponds to a renaming entity that is
aeb5907d 5244 not visible from FUNCTION_NAME. */
14f9c5c9 5245
96d887e8 5246static int
0d5cff50 5247old_renaming_is_invisible (const struct symbol *sym, const char *function_name)
96d887e8 5248{
aeb5907d 5249 char *scope;
1509e573 5250 struct cleanup *old_chain;
aeb5907d
JB
5251
5252 if (SYMBOL_CLASS (sym) != LOC_TYPEDEF)
5253 return 0;
5254
5255 scope = xget_renaming_scope (SYMBOL_TYPE (sym));
1509e573 5256 old_chain = make_cleanup (xfree, scope);
14f9c5c9 5257
96d887e8
PH
5258 /* If the rename has been defined in a package, then it is visible. */
5259 if (is_package_name (scope))
1509e573
JB
5260 {
5261 do_cleanups (old_chain);
5262 return 0;
5263 }
14f9c5c9 5264
96d887e8
PH
5265 /* Check that the rename is in the current function scope by checking
5266 that its name starts with SCOPE. */
76a01679 5267
96d887e8
PH
5268 /* If the function name starts with "_ada_", it means that it is
5269 a library-level function. Strip this prefix before doing the
5270 comparison, as the encoding for the renaming does not contain
5271 this prefix. */
61012eef 5272 if (startswith (function_name, "_ada_"))
96d887e8 5273 function_name += 5;
f26caa11 5274
1509e573 5275 {
61012eef 5276 int is_invisible = !startswith (function_name, scope);
1509e573
JB
5277
5278 do_cleanups (old_chain);
5279 return is_invisible;
5280 }
f26caa11
PH
5281}
5282
aeb5907d
JB
5283/* Remove entries from SYMS that corresponds to a renaming entity that
5284 is not visible from the function associated with CURRENT_BLOCK or
5285 that is superfluous due to the presence of more specific renaming
5286 information. Places surviving symbols in the initial entries of
5287 SYMS and returns the number of surviving symbols.
96d887e8
PH
5288
5289 Rationale:
aeb5907d
JB
5290 First, in cases where an object renaming is implemented as a
5291 reference variable, GNAT may produce both the actual reference
5292 variable and the renaming encoding. In this case, we discard the
5293 latter.
5294
5295 Second, GNAT emits a type following a specified encoding for each renaming
96d887e8
PH
5296 entity. Unfortunately, STABS currently does not support the definition
5297 of types that are local to a given lexical block, so all renamings types
5298 are emitted at library level. As a consequence, if an application
5299 contains two renaming entities using the same name, and a user tries to
5300 print the value of one of these entities, the result of the ada symbol
5301 lookup will also contain the wrong renaming type.
f26caa11 5302
96d887e8
PH
5303 This function partially covers for this limitation by attempting to
5304 remove from the SYMS list renaming symbols that should be visible
5305 from CURRENT_BLOCK. However, there does not seem be a 100% reliable
5306 method with the current information available. The implementation
5307 below has a couple of limitations (FIXME: brobecker-2003-05-12):
5308
5309 - When the user tries to print a rename in a function while there
5310 is another rename entity defined in a package: Normally, the
5311 rename in the function has precedence over the rename in the
5312 package, so the latter should be removed from the list. This is
5313 currently not the case.
5314
5315 - This function will incorrectly remove valid renames if
5316 the CURRENT_BLOCK corresponds to a function which symbol name
5317 has been changed by an "Export" pragma. As a consequence,
5318 the user will be unable to print such rename entities. */
4c4b4cd2 5319
14f9c5c9 5320static int
d12307c1 5321remove_irrelevant_renamings (struct block_symbol *syms,
aeb5907d 5322 int nsyms, const struct block *current_block)
4c4b4cd2
PH
5323{
5324 struct symbol *current_function;
0d5cff50 5325 const char *current_function_name;
4c4b4cd2 5326 int i;
aeb5907d
JB
5327 int is_new_style_renaming;
5328
5329 /* If there is both a renaming foo___XR... encoded as a variable and
5330 a simple variable foo in the same block, discard the latter.
0963b4bd 5331 First, zero out such symbols, then compress. */
aeb5907d
JB
5332 is_new_style_renaming = 0;
5333 for (i = 0; i < nsyms; i += 1)
5334 {
d12307c1 5335 struct symbol *sym = syms[i].symbol;
270140bd 5336 const struct block *block = syms[i].block;
aeb5907d
JB
5337 const char *name;
5338 const char *suffix;
5339
5340 if (sym == NULL || SYMBOL_CLASS (sym) == LOC_TYPEDEF)
5341 continue;
5342 name = SYMBOL_LINKAGE_NAME (sym);
5343 suffix = strstr (name, "___XR");
5344
5345 if (suffix != NULL)
5346 {
5347 int name_len = suffix - name;
5348 int j;
5b4ee69b 5349
aeb5907d
JB
5350 is_new_style_renaming = 1;
5351 for (j = 0; j < nsyms; j += 1)
d12307c1
PMR
5352 if (i != j && syms[j].symbol != NULL
5353 && strncmp (name, SYMBOL_LINKAGE_NAME (syms[j].symbol),
aeb5907d
JB
5354 name_len) == 0
5355 && block == syms[j].block)
d12307c1 5356 syms[j].symbol = NULL;
aeb5907d
JB
5357 }
5358 }
5359 if (is_new_style_renaming)
5360 {
5361 int j, k;
5362
5363 for (j = k = 0; j < nsyms; j += 1)
d12307c1 5364 if (syms[j].symbol != NULL)
aeb5907d
JB
5365 {
5366 syms[k] = syms[j];
5367 k += 1;
5368 }
5369 return k;
5370 }
4c4b4cd2
PH
5371
5372 /* Extract the function name associated to CURRENT_BLOCK.
5373 Abort if unable to do so. */
76a01679 5374
4c4b4cd2
PH
5375 if (current_block == NULL)
5376 return nsyms;
76a01679 5377
7f0df278 5378 current_function = block_linkage_function (current_block);
4c4b4cd2
PH
5379 if (current_function == NULL)
5380 return nsyms;
5381
5382 current_function_name = SYMBOL_LINKAGE_NAME (current_function);
5383 if (current_function_name == NULL)
5384 return nsyms;
5385
5386 /* Check each of the symbols, and remove it from the list if it is
5387 a type corresponding to a renaming that is out of the scope of
5388 the current block. */
5389
5390 i = 0;
5391 while (i < nsyms)
5392 {
d12307c1 5393 if (ada_parse_renaming (syms[i].symbol, NULL, NULL, NULL)
aeb5907d 5394 == ADA_OBJECT_RENAMING
d12307c1 5395 && old_renaming_is_invisible (syms[i].symbol, current_function_name))
4c4b4cd2
PH
5396 {
5397 int j;
5b4ee69b 5398
aeb5907d 5399 for (j = i + 1; j < nsyms; j += 1)
76a01679 5400 syms[j - 1] = syms[j];
4c4b4cd2
PH
5401 nsyms -= 1;
5402 }
5403 else
5404 i += 1;
5405 }
5406
5407 return nsyms;
5408}
5409
339c13b6
JB
5410/* Add to OBSTACKP all symbols from BLOCK (and its super-blocks)
5411 whose name and domain match NAME and DOMAIN respectively.
5412 If no match was found, then extend the search to "enclosing"
5413 routines (in other words, if we're inside a nested function,
5414 search the symbols defined inside the enclosing functions).
d0a8ab18
JB
5415 If WILD_MATCH_P is nonzero, perform the naming matching in
5416 "wild" mode (see function "wild_match" for more info).
339c13b6
JB
5417
5418 Note: This function assumes that OBSTACKP has 0 (zero) element in it. */
5419
5420static void
b5ec771e
PA
5421ada_add_local_symbols (struct obstack *obstackp,
5422 const lookup_name_info &lookup_name,
5423 const struct block *block, domain_enum domain)
339c13b6
JB
5424{
5425 int block_depth = 0;
5426
5427 while (block != NULL)
5428 {
5429 block_depth += 1;
b5ec771e 5430 ada_add_block_symbols (obstackp, block, lookup_name, domain, NULL);
339c13b6
JB
5431
5432 /* If we found a non-function match, assume that's the one. */
5433 if (is_nonfunction (defns_collected (obstackp, 0),
5434 num_defns_collected (obstackp)))
5435 return;
5436
5437 block = BLOCK_SUPERBLOCK (block);
5438 }
5439
5440 /* If no luck so far, try to find NAME as a local symbol in some lexically
5441 enclosing subprogram. */
5442 if (num_defns_collected (obstackp) == 0 && block_depth > 2)
b5ec771e 5443 add_symbols_from_enclosing_procs (obstackp, lookup_name, domain);
339c13b6
JB
5444}
5445
ccefe4c4 5446/* An object of this type is used as the user_data argument when
40658b94 5447 calling the map_matching_symbols method. */
ccefe4c4 5448
40658b94 5449struct match_data
ccefe4c4 5450{
40658b94 5451 struct objfile *objfile;
ccefe4c4 5452 struct obstack *obstackp;
40658b94
PH
5453 struct symbol *arg_sym;
5454 int found_sym;
ccefe4c4
TT
5455};
5456
22cee43f 5457/* A callback for add_nonlocal_symbols that adds SYM, found in BLOCK,
40658b94
PH
5458 to a list of symbols. DATA0 is a pointer to a struct match_data *
5459 containing the obstack that collects the symbol list, the file that SYM
5460 must come from, a flag indicating whether a non-argument symbol has
5461 been found in the current block, and the last argument symbol
5462 passed in SYM within the current block (if any). When SYM is null,
5463 marking the end of a block, the argument symbol is added if no
5464 other has been found. */
ccefe4c4 5465
40658b94
PH
5466static int
5467aux_add_nonlocal_symbols (struct block *block, struct symbol *sym, void *data0)
ccefe4c4 5468{
40658b94
PH
5469 struct match_data *data = (struct match_data *) data0;
5470
5471 if (sym == NULL)
5472 {
5473 if (!data->found_sym && data->arg_sym != NULL)
5474 add_defn_to_vec (data->obstackp,
5475 fixup_symbol_section (data->arg_sym, data->objfile),
5476 block);
5477 data->found_sym = 0;
5478 data->arg_sym = NULL;
5479 }
5480 else
5481 {
5482 if (SYMBOL_CLASS (sym) == LOC_UNRESOLVED)
5483 return 0;
5484 else if (SYMBOL_IS_ARGUMENT (sym))
5485 data->arg_sym = sym;
5486 else
5487 {
5488 data->found_sym = 1;
5489 add_defn_to_vec (data->obstackp,
5490 fixup_symbol_section (sym, data->objfile),
5491 block);
5492 }
5493 }
5494 return 0;
5495}
5496
b5ec771e
PA
5497/* Helper for add_nonlocal_symbols. Find symbols in DOMAIN which are
5498 targeted by renamings matching LOOKUP_NAME in BLOCK. Add these
5499 symbols to OBSTACKP. Return whether we found such symbols. */
22cee43f
PMR
5500
5501static int
5502ada_add_block_renamings (struct obstack *obstackp,
5503 const struct block *block,
b5ec771e
PA
5504 const lookup_name_info &lookup_name,
5505 domain_enum domain)
22cee43f
PMR
5506{
5507 struct using_direct *renaming;
5508 int defns_mark = num_defns_collected (obstackp);
5509
b5ec771e
PA
5510 symbol_name_matcher_ftype *name_match
5511 = ada_get_symbol_name_matcher (lookup_name);
5512
22cee43f
PMR
5513 for (renaming = block_using (block);
5514 renaming != NULL;
5515 renaming = renaming->next)
5516 {
5517 const char *r_name;
22cee43f
PMR
5518
5519 /* Avoid infinite recursions: skip this renaming if we are actually
5520 already traversing it.
5521
5522 Currently, symbol lookup in Ada don't use the namespace machinery from
5523 C++/Fortran support: skip namespace imports that use them. */
5524 if (renaming->searched
5525 || (renaming->import_src != NULL
5526 && renaming->import_src[0] != '\0')
5527 || (renaming->import_dest != NULL
5528 && renaming->import_dest[0] != '\0'))
5529 continue;
5530 renaming->searched = 1;
5531
5532 /* TODO: here, we perform another name-based symbol lookup, which can
5533 pull its own multiple overloads. In theory, we should be able to do
5534 better in this case since, in DWARF, DW_AT_import is a DIE reference,
5535 not a simple name. But in order to do this, we would need to enhance
5536 the DWARF reader to associate a symbol to this renaming, instead of a
5537 name. So, for now, we do something simpler: re-use the C++/Fortran
5538 namespace machinery. */
5539 r_name = (renaming->alias != NULL
5540 ? renaming->alias
5541 : renaming->declaration);
b5ec771e
PA
5542 if (name_match (r_name, lookup_name, NULL))
5543 {
5544 lookup_name_info decl_lookup_name (renaming->declaration,
5545 lookup_name.match_type ());
5546 ada_add_all_symbols (obstackp, block, decl_lookup_name, domain,
5547 1, NULL);
5548 }
22cee43f
PMR
5549 renaming->searched = 0;
5550 }
5551 return num_defns_collected (obstackp) != defns_mark;
5552}
5553
db230ce3
JB
5554/* Implements compare_names, but only applying the comparision using
5555 the given CASING. */
5b4ee69b 5556
40658b94 5557static int
db230ce3
JB
5558compare_names_with_case (const char *string1, const char *string2,
5559 enum case_sensitivity casing)
40658b94
PH
5560{
5561 while (*string1 != '\0' && *string2 != '\0')
5562 {
db230ce3
JB
5563 char c1, c2;
5564
40658b94
PH
5565 if (isspace (*string1) || isspace (*string2))
5566 return strcmp_iw_ordered (string1, string2);
db230ce3
JB
5567
5568 if (casing == case_sensitive_off)
5569 {
5570 c1 = tolower (*string1);
5571 c2 = tolower (*string2);
5572 }
5573 else
5574 {
5575 c1 = *string1;
5576 c2 = *string2;
5577 }
5578 if (c1 != c2)
40658b94 5579 break;
db230ce3 5580
40658b94
PH
5581 string1 += 1;
5582 string2 += 1;
5583 }
db230ce3 5584
40658b94
PH
5585 switch (*string1)
5586 {
5587 case '(':
5588 return strcmp_iw_ordered (string1, string2);
5589 case '_':
5590 if (*string2 == '\0')
5591 {
052874e8 5592 if (is_name_suffix (string1))
40658b94
PH
5593 return 0;
5594 else
1a1d5513 5595 return 1;
40658b94 5596 }
dbb8534f 5597 /* FALLTHROUGH */
40658b94
PH
5598 default:
5599 if (*string2 == '(')
5600 return strcmp_iw_ordered (string1, string2);
5601 else
db230ce3
JB
5602 {
5603 if (casing == case_sensitive_off)
5604 return tolower (*string1) - tolower (*string2);
5605 else
5606 return *string1 - *string2;
5607 }
40658b94 5608 }
ccefe4c4
TT
5609}
5610
db230ce3
JB
5611/* Compare STRING1 to STRING2, with results as for strcmp.
5612 Compatible with strcmp_iw_ordered in that...
5613
5614 strcmp_iw_ordered (STRING1, STRING2) <= 0
5615
5616 ... implies...
5617
5618 compare_names (STRING1, STRING2) <= 0
5619
5620 (they may differ as to what symbols compare equal). */
5621
5622static int
5623compare_names (const char *string1, const char *string2)
5624{
5625 int result;
5626
5627 /* Similar to what strcmp_iw_ordered does, we need to perform
5628 a case-insensitive comparison first, and only resort to
5629 a second, case-sensitive, comparison if the first one was
5630 not sufficient to differentiate the two strings. */
5631
5632 result = compare_names_with_case (string1, string2, case_sensitive_off);
5633 if (result == 0)
5634 result = compare_names_with_case (string1, string2, case_sensitive_on);
5635
5636 return result;
5637}
5638
b5ec771e
PA
5639/* Convenience function to get at the Ada encoded lookup name for
5640 LOOKUP_NAME, as a C string. */
5641
5642static const char *
5643ada_lookup_name (const lookup_name_info &lookup_name)
5644{
5645 return lookup_name.ada ().lookup_name ().c_str ();
5646}
5647
339c13b6 5648/* Add to OBSTACKP all non-local symbols whose name and domain match
b5ec771e
PA
5649 LOOKUP_NAME and DOMAIN respectively. The search is performed on
5650 GLOBAL_BLOCK symbols if GLOBAL is non-zero, or on STATIC_BLOCK
5651 symbols otherwise. */
339c13b6
JB
5652
5653static void
b5ec771e
PA
5654add_nonlocal_symbols (struct obstack *obstackp,
5655 const lookup_name_info &lookup_name,
5656 domain_enum domain, int global)
339c13b6
JB
5657{
5658 struct objfile *objfile;
22cee43f 5659 struct compunit_symtab *cu;
40658b94 5660 struct match_data data;
339c13b6 5661
6475f2fe 5662 memset (&data, 0, sizeof data);
ccefe4c4 5663 data.obstackp = obstackp;
339c13b6 5664
b5ec771e
PA
5665 bool is_wild_match = lookup_name.ada ().wild_match_p ();
5666
ccefe4c4 5667 ALL_OBJFILES (objfile)
40658b94
PH
5668 {
5669 data.objfile = objfile;
5670
5671 if (is_wild_match)
b5ec771e
PA
5672 objfile->sf->qf->map_matching_symbols (objfile, lookup_name.name ().c_str (),
5673 domain, global,
4186eb54 5674 aux_add_nonlocal_symbols, &data,
b5ec771e
PA
5675 symbol_name_match_type::WILD,
5676 NULL);
40658b94 5677 else
b5ec771e
PA
5678 objfile->sf->qf->map_matching_symbols (objfile, lookup_name.name ().c_str (),
5679 domain, global,
4186eb54 5680 aux_add_nonlocal_symbols, &data,
b5ec771e
PA
5681 symbol_name_match_type::FULL,
5682 compare_names);
22cee43f
PMR
5683
5684 ALL_OBJFILE_COMPUNITS (objfile, cu)
5685 {
5686 const struct block *global_block
5687 = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (cu), GLOBAL_BLOCK);
5688
b5ec771e
PA
5689 if (ada_add_block_renamings (obstackp, global_block, lookup_name,
5690 domain))
22cee43f
PMR
5691 data.found_sym = 1;
5692 }
40658b94
PH
5693 }
5694
5695 if (num_defns_collected (obstackp) == 0 && global && !is_wild_match)
5696 {
b5ec771e
PA
5697 const char *name = ada_lookup_name (lookup_name);
5698 std::string name1 = std::string ("<_ada_") + name + '>';
5699
40658b94
PH
5700 ALL_OBJFILES (objfile)
5701 {
40658b94 5702 data.objfile = objfile;
b5ec771e
PA
5703 objfile->sf->qf->map_matching_symbols (objfile, name1.c_str (),
5704 domain, global,
0963b4bd
MS
5705 aux_add_nonlocal_symbols,
5706 &data,
b5ec771e
PA
5707 symbol_name_match_type::FULL,
5708 compare_names);
40658b94
PH
5709 }
5710 }
339c13b6
JB
5711}
5712
b5ec771e
PA
5713/* Find symbols in DOMAIN matching LOOKUP_NAME, in BLOCK and, if
5714 FULL_SEARCH is non-zero, enclosing scope and in global scopes,
5715 returning the number of matches. Add these to OBSTACKP.
4eeaa230 5716
22cee43f
PMR
5717 When FULL_SEARCH is non-zero, any non-function/non-enumeral
5718 symbol match within the nest of blocks whose innermost member is BLOCK,
4c4b4cd2 5719 is the one match returned (no other matches in that or
d9680e73 5720 enclosing blocks is returned). If there are any matches in or
22cee43f 5721 surrounding BLOCK, then these alone are returned.
4eeaa230 5722
b5ec771e
PA
5723 Names prefixed with "standard__" are handled specially:
5724 "standard__" is first stripped off (by the lookup_name
5725 constructor), and only static and global symbols are searched.
14f9c5c9 5726
22cee43f
PMR
5727 If MADE_GLOBAL_LOOKUP_P is non-null, set it before return to whether we had
5728 to lookup global symbols. */
5729
5730static void
5731ada_add_all_symbols (struct obstack *obstackp,
5732 const struct block *block,
b5ec771e 5733 const lookup_name_info &lookup_name,
22cee43f
PMR
5734 domain_enum domain,
5735 int full_search,
5736 int *made_global_lookup_p)
14f9c5c9
AS
5737{
5738 struct symbol *sym;
14f9c5c9 5739
22cee43f
PMR
5740 if (made_global_lookup_p)
5741 *made_global_lookup_p = 0;
339c13b6
JB
5742
5743 /* Special case: If the user specifies a symbol name inside package
5744 Standard, do a non-wild matching of the symbol name without
5745 the "standard__" prefix. This was primarily introduced in order
5746 to allow the user to specifically access the standard exceptions
5747 using, for instance, Standard.Constraint_Error when Constraint_Error
5748 is ambiguous (due to the user defining its own Constraint_Error
5749 entity inside its program). */
b5ec771e
PA
5750 if (lookup_name.ada ().standard_p ())
5751 block = NULL;
4c4b4cd2 5752
339c13b6 5753 /* Check the non-global symbols. If we have ANY match, then we're done. */
14f9c5c9 5754
4eeaa230
DE
5755 if (block != NULL)
5756 {
5757 if (full_search)
b5ec771e 5758 ada_add_local_symbols (obstackp, lookup_name, block, domain);
4eeaa230
DE
5759 else
5760 {
5761 /* In the !full_search case we're are being called by
5762 ada_iterate_over_symbols, and we don't want to search
5763 superblocks. */
b5ec771e 5764 ada_add_block_symbols (obstackp, block, lookup_name, domain, NULL);
4eeaa230 5765 }
22cee43f
PMR
5766 if (num_defns_collected (obstackp) > 0 || !full_search)
5767 return;
4eeaa230 5768 }
d2e4a39e 5769
339c13b6
JB
5770 /* No non-global symbols found. Check our cache to see if we have
5771 already performed this search before. If we have, then return
5772 the same result. */
5773
b5ec771e
PA
5774 if (lookup_cached_symbol (ada_lookup_name (lookup_name),
5775 domain, &sym, &block))
4c4b4cd2
PH
5776 {
5777 if (sym != NULL)
b5ec771e 5778 add_defn_to_vec (obstackp, sym, block);
22cee43f 5779 return;
4c4b4cd2 5780 }
14f9c5c9 5781
22cee43f
PMR
5782 if (made_global_lookup_p)
5783 *made_global_lookup_p = 1;
b1eedac9 5784
339c13b6
JB
5785 /* Search symbols from all global blocks. */
5786
b5ec771e 5787 add_nonlocal_symbols (obstackp, lookup_name, domain, 1);
d2e4a39e 5788
4c4b4cd2 5789 /* Now add symbols from all per-file blocks if we've gotten no hits
339c13b6 5790 (not strictly correct, but perhaps better than an error). */
d2e4a39e 5791
22cee43f 5792 if (num_defns_collected (obstackp) == 0)
b5ec771e 5793 add_nonlocal_symbols (obstackp, lookup_name, domain, 0);
22cee43f
PMR
5794}
5795
b5ec771e
PA
5796/* Find symbols in DOMAIN matching LOOKUP_NAME, in BLOCK and, if FULL_SEARCH
5797 is non-zero, enclosing scope and in global scopes, returning the number of
22cee43f
PMR
5798 matches.
5799 Sets *RESULTS to point to a vector of (SYM,BLOCK) tuples,
5800 indicating the symbols found and the blocks and symbol tables (if
5801 any) in which they were found. This vector is transient---good only to
5802 the next call of ada_lookup_symbol_list.
5803
5804 When full_search is non-zero, any non-function/non-enumeral
5805 symbol match within the nest of blocks whose innermost member is BLOCK,
5806 is the one match returned (no other matches in that or
5807 enclosing blocks is returned). If there are any matches in or
5808 surrounding BLOCK, then these alone are returned.
5809
5810 Names prefixed with "standard__" are handled specially: "standard__"
5811 is first stripped off, and only static and global symbols are searched. */
5812
5813static int
b5ec771e
PA
5814ada_lookup_symbol_list_worker (const lookup_name_info &lookup_name,
5815 const struct block *block,
22cee43f
PMR
5816 domain_enum domain,
5817 struct block_symbol **results,
5818 int full_search)
5819{
22cee43f
PMR
5820 int syms_from_global_search;
5821 int ndefns;
5822
5823 obstack_free (&symbol_list_obstack, NULL);
5824 obstack_init (&symbol_list_obstack);
b5ec771e
PA
5825 ada_add_all_symbols (&symbol_list_obstack, block, lookup_name,
5826 domain, full_search, &syms_from_global_search);
14f9c5c9 5827
4c4b4cd2
PH
5828 ndefns = num_defns_collected (&symbol_list_obstack);
5829 *results = defns_collected (&symbol_list_obstack, 1);
5830
5831 ndefns = remove_extra_symbols (*results, ndefns);
5832
b1eedac9 5833 if (ndefns == 0 && full_search && syms_from_global_search)
b5ec771e 5834 cache_symbol (ada_lookup_name (lookup_name), domain, NULL, NULL);
14f9c5c9 5835
b1eedac9 5836 if (ndefns == 1 && full_search && syms_from_global_search)
b5ec771e
PA
5837 cache_symbol (ada_lookup_name (lookup_name), domain,
5838 (*results)[0].symbol, (*results)[0].block);
14f9c5c9 5839
22cee43f 5840 ndefns = remove_irrelevant_renamings (*results, ndefns, block);
14f9c5c9
AS
5841 return ndefns;
5842}
5843
b5ec771e 5844/* Find symbols in DOMAIN matching NAME, in BLOCK and enclosing scope and
4eeaa230
DE
5845 in global scopes, returning the number of matches, and setting *RESULTS
5846 to a vector of (SYM,BLOCK) tuples.
5847 See ada_lookup_symbol_list_worker for further details. */
5848
5849int
b5ec771e 5850ada_lookup_symbol_list (const char *name, const struct block *block,
d12307c1 5851 domain_enum domain, struct block_symbol **results)
4eeaa230 5852{
b5ec771e
PA
5853 symbol_name_match_type name_match_type = name_match_type_from_name (name);
5854 lookup_name_info lookup_name (name, name_match_type);
5855
5856 return ada_lookup_symbol_list_worker (lookup_name, block, domain, results, 1);
4eeaa230
DE
5857}
5858
5859/* Implementation of the la_iterate_over_symbols method. */
5860
5861static void
14bc53a8 5862ada_iterate_over_symbols
b5ec771e
PA
5863 (const struct block *block, const lookup_name_info &name,
5864 domain_enum domain,
14bc53a8 5865 gdb::function_view<symbol_found_callback_ftype> callback)
4eeaa230
DE
5866{
5867 int ndefs, i;
d12307c1 5868 struct block_symbol *results;
4eeaa230
DE
5869
5870 ndefs = ada_lookup_symbol_list_worker (name, block, domain, &results, 0);
5871 for (i = 0; i < ndefs; ++i)
5872 {
14bc53a8 5873 if (!callback (results[i].symbol))
4eeaa230
DE
5874 break;
5875 }
5876}
5877
4e5c77fe
JB
5878/* The result is as for ada_lookup_symbol_list with FULL_SEARCH set
5879 to 1, but choosing the first symbol found if there are multiple
5880 choices.
5881
5e2336be
JB
5882 The result is stored in *INFO, which must be non-NULL.
5883 If no match is found, INFO->SYM is set to NULL. */
4e5c77fe
JB
5884
5885void
5886ada_lookup_encoded_symbol (const char *name, const struct block *block,
fe978cb0 5887 domain_enum domain,
d12307c1 5888 struct block_symbol *info)
14f9c5c9 5889{
d12307c1 5890 struct block_symbol *candidates;
14f9c5c9
AS
5891 int n_candidates;
5892
b5ec771e
PA
5893 /* Since we already have an encoded name, wrap it in '<>' to force a
5894 verbatim match. Otherwise, if the name happens to not look like
5895 an encoded name (because it doesn't include a "__"),
5896 ada_lookup_name_info would re-encode/fold it again, and that
5897 would e.g., incorrectly lowercase object renaming names like
5898 "R28b" -> "r28b". */
5899 std::string verbatim = std::string ("<") + name + '>';
5900
5e2336be 5901 gdb_assert (info != NULL);
d12307c1 5902 memset (info, 0, sizeof (struct block_symbol));
4e5c77fe 5903
b5ec771e
PA
5904 n_candidates = ada_lookup_symbol_list (verbatim.c_str (), block,
5905 domain, &candidates);
14f9c5c9 5906 if (n_candidates == 0)
4e5c77fe 5907 return;
4c4b4cd2 5908
5e2336be 5909 *info = candidates[0];
d12307c1 5910 info->symbol = fixup_symbol_section (info->symbol, NULL);
4e5c77fe 5911}
aeb5907d
JB
5912
5913/* Return a symbol in DOMAIN matching NAME, in BLOCK0 and enclosing
5914 scope and in global scopes, or NULL if none. NAME is folded and
5915 encoded first. Otherwise, the result is as for ada_lookup_symbol_list,
0963b4bd 5916 choosing the first symbol if there are multiple choices.
4e5c77fe
JB
5917 If IS_A_FIELD_OF_THIS is not NULL, it is set to zero. */
5918
d12307c1 5919struct block_symbol
aeb5907d 5920ada_lookup_symbol (const char *name, const struct block *block0,
fe978cb0 5921 domain_enum domain, int *is_a_field_of_this)
aeb5907d 5922{
d12307c1 5923 struct block_symbol info;
4e5c77fe 5924
aeb5907d
JB
5925 if (is_a_field_of_this != NULL)
5926 *is_a_field_of_this = 0;
5927
4e5c77fe 5928 ada_lookup_encoded_symbol (ada_encode (ada_fold_name (name)),
fe978cb0 5929 block0, domain, &info);
d12307c1 5930 return info;
4c4b4cd2 5931}
14f9c5c9 5932
d12307c1 5933static struct block_symbol
f606139a
DE
5934ada_lookup_symbol_nonlocal (const struct language_defn *langdef,
5935 const char *name,
76a01679 5936 const struct block *block,
21b556f4 5937 const domain_enum domain)
4c4b4cd2 5938{
d12307c1 5939 struct block_symbol sym;
04dccad0
JB
5940
5941 sym = ada_lookup_symbol (name, block_static_block (block), domain, NULL);
d12307c1 5942 if (sym.symbol != NULL)
04dccad0
JB
5943 return sym;
5944
5945 /* If we haven't found a match at this point, try the primitive
5946 types. In other languages, this search is performed before
5947 searching for global symbols in order to short-circuit that
5948 global-symbol search if it happens that the name corresponds
5949 to a primitive type. But we cannot do the same in Ada, because
5950 it is perfectly legitimate for a program to declare a type which
5951 has the same name as a standard type. If looking up a type in
5952 that situation, we have traditionally ignored the primitive type
5953 in favor of user-defined types. This is why, unlike most other
5954 languages, we search the primitive types this late and only after
5955 having searched the global symbols without success. */
5956
5957 if (domain == VAR_DOMAIN)
5958 {
5959 struct gdbarch *gdbarch;
5960
5961 if (block == NULL)
5962 gdbarch = target_gdbarch ();
5963 else
5964 gdbarch = block_gdbarch (block);
d12307c1
PMR
5965 sym.symbol = language_lookup_primitive_type_as_symbol (langdef, gdbarch, name);
5966 if (sym.symbol != NULL)
04dccad0
JB
5967 return sym;
5968 }
5969
d12307c1 5970 return (struct block_symbol) {NULL, NULL};
14f9c5c9
AS
5971}
5972
5973
4c4b4cd2
PH
5974/* True iff STR is a possible encoded suffix of a normal Ada name
5975 that is to be ignored for matching purposes. Suffixes of parallel
5976 names (e.g., XVE) are not included here. Currently, the possible suffixes
5823c3ef 5977 are given by any of the regular expressions:
4c4b4cd2 5978
babe1480
JB
5979 [.$][0-9]+ [nested subprogram suffix, on platforms such as GNU/Linux]
5980 ___[0-9]+ [nested subprogram suffix, on platforms such as HP/UX]
9ac7f98e 5981 TKB [subprogram suffix for task bodies]
babe1480 5982 _E[0-9]+[bs]$ [protected object entry suffixes]
61ee279c 5983 (X[nb]*)?((\$|__)[0-9](_?[0-9]+)|___(JM|LJM|X([FDBUP].*|R[^T]?)))?$
babe1480
JB
5984
5985 Also, any leading "__[0-9]+" sequence is skipped before the suffix
5986 match is performed. This sequence is used to differentiate homonyms,
5987 is an optional part of a valid name suffix. */
4c4b4cd2 5988
14f9c5c9 5989static int
d2e4a39e 5990is_name_suffix (const char *str)
14f9c5c9
AS
5991{
5992 int k;
4c4b4cd2
PH
5993 const char *matching;
5994 const int len = strlen (str);
5995
babe1480
JB
5996 /* Skip optional leading __[0-9]+. */
5997
4c4b4cd2
PH
5998 if (len > 3 && str[0] == '_' && str[1] == '_' && isdigit (str[2]))
5999 {
babe1480
JB
6000 str += 3;
6001 while (isdigit (str[0]))
6002 str += 1;
4c4b4cd2 6003 }
babe1480
JB
6004
6005 /* [.$][0-9]+ */
4c4b4cd2 6006
babe1480 6007 if (str[0] == '.' || str[0] == '$')
4c4b4cd2 6008 {
babe1480 6009 matching = str + 1;
4c4b4cd2
PH
6010 while (isdigit (matching[0]))
6011 matching += 1;
6012 if (matching[0] == '\0')
6013 return 1;
6014 }
6015
6016 /* ___[0-9]+ */
babe1480 6017
4c4b4cd2
PH
6018 if (len > 3 && str[0] == '_' && str[1] == '_' && str[2] == '_')
6019 {
6020 matching = str + 3;
6021 while (isdigit (matching[0]))
6022 matching += 1;
6023 if (matching[0] == '\0')
6024 return 1;
6025 }
6026
9ac7f98e
JB
6027 /* "TKB" suffixes are used for subprograms implementing task bodies. */
6028
6029 if (strcmp (str, "TKB") == 0)
6030 return 1;
6031
529cad9c
PH
6032#if 0
6033 /* FIXME: brobecker/2005-09-23: Protected Object subprograms end
0963b4bd
MS
6034 with a N at the end. Unfortunately, the compiler uses the same
6035 convention for other internal types it creates. So treating
529cad9c 6036 all entity names that end with an "N" as a name suffix causes
0963b4bd
MS
6037 some regressions. For instance, consider the case of an enumerated
6038 type. To support the 'Image attribute, it creates an array whose
529cad9c
PH
6039 name ends with N.
6040 Having a single character like this as a suffix carrying some
0963b4bd 6041 information is a bit risky. Perhaps we should change the encoding
529cad9c
PH
6042 to be something like "_N" instead. In the meantime, do not do
6043 the following check. */
6044 /* Protected Object Subprograms */
6045 if (len == 1 && str [0] == 'N')
6046 return 1;
6047#endif
6048
6049 /* _E[0-9]+[bs]$ */
6050 if (len > 3 && str[0] == '_' && str [1] == 'E' && isdigit (str[2]))
6051 {
6052 matching = str + 3;
6053 while (isdigit (matching[0]))
6054 matching += 1;
6055 if ((matching[0] == 'b' || matching[0] == 's')
6056 && matching [1] == '\0')
6057 return 1;
6058 }
6059
4c4b4cd2
PH
6060 /* ??? We should not modify STR directly, as we are doing below. This
6061 is fine in this case, but may become problematic later if we find
6062 that this alternative did not work, and want to try matching
6063 another one from the begining of STR. Since we modified it, we
6064 won't be able to find the begining of the string anymore! */
14f9c5c9
AS
6065 if (str[0] == 'X')
6066 {
6067 str += 1;
d2e4a39e 6068 while (str[0] != '_' && str[0] != '\0')
4c4b4cd2
PH
6069 {
6070 if (str[0] != 'n' && str[0] != 'b')
6071 return 0;
6072 str += 1;
6073 }
14f9c5c9 6074 }
babe1480 6075
14f9c5c9
AS
6076 if (str[0] == '\000')
6077 return 1;
babe1480 6078
d2e4a39e 6079 if (str[0] == '_')
14f9c5c9
AS
6080 {
6081 if (str[1] != '_' || str[2] == '\000')
4c4b4cd2 6082 return 0;
d2e4a39e 6083 if (str[2] == '_')
4c4b4cd2 6084 {
61ee279c
PH
6085 if (strcmp (str + 3, "JM") == 0)
6086 return 1;
6087 /* FIXME: brobecker/2004-09-30: GNAT will soon stop using
6088 the LJM suffix in favor of the JM one. But we will
6089 still accept LJM as a valid suffix for a reasonable
6090 amount of time, just to allow ourselves to debug programs
6091 compiled using an older version of GNAT. */
4c4b4cd2
PH
6092 if (strcmp (str + 3, "LJM") == 0)
6093 return 1;
6094 if (str[3] != 'X')
6095 return 0;
1265e4aa
JB
6096 if (str[4] == 'F' || str[4] == 'D' || str[4] == 'B'
6097 || str[4] == 'U' || str[4] == 'P')
4c4b4cd2
PH
6098 return 1;
6099 if (str[4] == 'R' && str[5] != 'T')
6100 return 1;
6101 return 0;
6102 }
6103 if (!isdigit (str[2]))
6104 return 0;
6105 for (k = 3; str[k] != '\0'; k += 1)
6106 if (!isdigit (str[k]) && str[k] != '_')
6107 return 0;
14f9c5c9
AS
6108 return 1;
6109 }
4c4b4cd2 6110 if (str[0] == '$' && isdigit (str[1]))
14f9c5c9 6111 {
4c4b4cd2
PH
6112 for (k = 2; str[k] != '\0'; k += 1)
6113 if (!isdigit (str[k]) && str[k] != '_')
6114 return 0;
14f9c5c9
AS
6115 return 1;
6116 }
6117 return 0;
6118}
d2e4a39e 6119
aeb5907d
JB
6120/* Return non-zero if the string starting at NAME and ending before
6121 NAME_END contains no capital letters. */
529cad9c
PH
6122
6123static int
6124is_valid_name_for_wild_match (const char *name0)
6125{
6126 const char *decoded_name = ada_decode (name0);
6127 int i;
6128
5823c3ef
JB
6129 /* If the decoded name starts with an angle bracket, it means that
6130 NAME0 does not follow the GNAT encoding format. It should then
6131 not be allowed as a possible wild match. */
6132 if (decoded_name[0] == '<')
6133 return 0;
6134
529cad9c
PH
6135 for (i=0; decoded_name[i] != '\0'; i++)
6136 if (isalpha (decoded_name[i]) && !islower (decoded_name[i]))
6137 return 0;
6138
6139 return 1;
6140}
6141
73589123
PH
6142/* Advance *NAMEP to next occurrence of TARGET0 in the string NAME0
6143 that could start a simple name. Assumes that *NAMEP points into
6144 the string beginning at NAME0. */
4c4b4cd2 6145
14f9c5c9 6146static int
73589123 6147advance_wild_match (const char **namep, const char *name0, int target0)
14f9c5c9 6148{
73589123 6149 const char *name = *namep;
5b4ee69b 6150
5823c3ef 6151 while (1)
14f9c5c9 6152 {
aa27d0b3 6153 int t0, t1;
73589123
PH
6154
6155 t0 = *name;
6156 if (t0 == '_')
6157 {
6158 t1 = name[1];
6159 if ((t1 >= 'a' && t1 <= 'z') || (t1 >= '0' && t1 <= '9'))
6160 {
6161 name += 1;
61012eef 6162 if (name == name0 + 5 && startswith (name0, "_ada"))
73589123
PH
6163 break;
6164 else
6165 name += 1;
6166 }
aa27d0b3
JB
6167 else if (t1 == '_' && ((name[2] >= 'a' && name[2] <= 'z')
6168 || name[2] == target0))
73589123
PH
6169 {
6170 name += 2;
6171 break;
6172 }
6173 else
6174 return 0;
6175 }
6176 else if ((t0 >= 'a' && t0 <= 'z') || (t0 >= '0' && t0 <= '9'))
6177 name += 1;
6178 else
5823c3ef 6179 return 0;
73589123
PH
6180 }
6181
6182 *namep = name;
6183 return 1;
6184}
6185
b5ec771e
PA
6186/* Return true iff NAME encodes a name of the form prefix.PATN.
6187 Ignores any informational suffixes of NAME (i.e., for which
6188 is_name_suffix is true). Assumes that PATN is a lower-cased Ada
6189 simple name. */
73589123 6190
b5ec771e 6191static bool
73589123
PH
6192wild_match (const char *name, const char *patn)
6193{
22e048c9 6194 const char *p;
73589123
PH
6195 const char *name0 = name;
6196
6197 while (1)
6198 {
6199 const char *match = name;
6200
6201 if (*name == *patn)
6202 {
6203 for (name += 1, p = patn + 1; *p != '\0'; name += 1, p += 1)
6204 if (*p != *name)
6205 break;
6206 if (*p == '\0' && is_name_suffix (name))
b5ec771e 6207 return match == name0 || is_valid_name_for_wild_match (name0);
73589123
PH
6208
6209 if (name[-1] == '_')
6210 name -= 1;
6211 }
6212 if (!advance_wild_match (&name, name0, *patn))
b5ec771e 6213 return false;
96d887e8 6214 }
96d887e8
PH
6215}
6216
b5ec771e
PA
6217/* Returns true iff symbol name SYM_NAME matches SEARCH_NAME, ignoring
6218 any trailing suffixes that encode debugging information or leading
6219 _ada_ on SYM_NAME (see is_name_suffix commentary for the debugging
6220 information that is ignored). */
40658b94 6221
b5ec771e 6222static bool
c4d840bd
PH
6223full_match (const char *sym_name, const char *search_name)
6224{
b5ec771e
PA
6225 size_t search_name_len = strlen (search_name);
6226
6227 if (strncmp (sym_name, search_name, search_name_len) == 0
6228 && is_name_suffix (sym_name + search_name_len))
6229 return true;
6230
6231 if (startswith (sym_name, "_ada_")
6232 && strncmp (sym_name + 5, search_name, search_name_len) == 0
6233 && is_name_suffix (sym_name + search_name_len + 5))
6234 return true;
c4d840bd 6235
b5ec771e
PA
6236 return false;
6237}
c4d840bd 6238
b5ec771e
PA
6239/* Add symbols from BLOCK matching LOOKUP_NAME in DOMAIN to vector
6240 *defn_symbols, updating the list of symbols in OBSTACKP (if
6241 necessary). OBJFILE is the section containing BLOCK. */
96d887e8
PH
6242
6243static void
6244ada_add_block_symbols (struct obstack *obstackp,
b5ec771e
PA
6245 const struct block *block,
6246 const lookup_name_info &lookup_name,
6247 domain_enum domain, struct objfile *objfile)
96d887e8 6248{
8157b174 6249 struct block_iterator iter;
96d887e8
PH
6250 /* A matching argument symbol, if any. */
6251 struct symbol *arg_sym;
6252 /* Set true when we find a matching non-argument symbol. */
6253 int found_sym;
6254 struct symbol *sym;
6255
6256 arg_sym = NULL;
6257 found_sym = 0;
b5ec771e
PA
6258 for (sym = block_iter_match_first (block, lookup_name, &iter);
6259 sym != NULL;
6260 sym = block_iter_match_next (lookup_name, &iter))
96d887e8 6261 {
b5ec771e
PA
6262 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
6263 SYMBOL_DOMAIN (sym), domain))
6264 {
6265 if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED)
6266 {
6267 if (SYMBOL_IS_ARGUMENT (sym))
6268 arg_sym = sym;
6269 else
6270 {
6271 found_sym = 1;
6272 add_defn_to_vec (obstackp,
6273 fixup_symbol_section (sym, objfile),
6274 block);
6275 }
6276 }
6277 }
96d887e8
PH
6278 }
6279
22cee43f
PMR
6280 /* Handle renamings. */
6281
b5ec771e 6282 if (ada_add_block_renamings (obstackp, block, lookup_name, domain))
22cee43f
PMR
6283 found_sym = 1;
6284
96d887e8
PH
6285 if (!found_sym && arg_sym != NULL)
6286 {
76a01679
JB
6287 add_defn_to_vec (obstackp,
6288 fixup_symbol_section (arg_sym, objfile),
2570f2b7 6289 block);
96d887e8
PH
6290 }
6291
b5ec771e 6292 if (!lookup_name.ada ().wild_match_p ())
96d887e8
PH
6293 {
6294 arg_sym = NULL;
6295 found_sym = 0;
b5ec771e
PA
6296 const std::string &ada_lookup_name = lookup_name.ada ().lookup_name ();
6297 const char *name = ada_lookup_name.c_str ();
6298 size_t name_len = ada_lookup_name.size ();
96d887e8
PH
6299
6300 ALL_BLOCK_SYMBOLS (block, iter, sym)
76a01679 6301 {
4186eb54
KS
6302 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
6303 SYMBOL_DOMAIN (sym), domain))
76a01679
JB
6304 {
6305 int cmp;
6306
6307 cmp = (int) '_' - (int) SYMBOL_LINKAGE_NAME (sym)[0];
6308 if (cmp == 0)
6309 {
61012eef 6310 cmp = !startswith (SYMBOL_LINKAGE_NAME (sym), "_ada_");
76a01679
JB
6311 if (cmp == 0)
6312 cmp = strncmp (name, SYMBOL_LINKAGE_NAME (sym) + 5,
6313 name_len);
6314 }
6315
6316 if (cmp == 0
6317 && is_name_suffix (SYMBOL_LINKAGE_NAME (sym) + name_len + 5))
6318 {
2a2d4dc3
AS
6319 if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED)
6320 {
6321 if (SYMBOL_IS_ARGUMENT (sym))
6322 arg_sym = sym;
6323 else
6324 {
6325 found_sym = 1;
6326 add_defn_to_vec (obstackp,
6327 fixup_symbol_section (sym, objfile),
6328 block);
6329 }
6330 }
76a01679
JB
6331 }
6332 }
76a01679 6333 }
96d887e8
PH
6334
6335 /* NOTE: This really shouldn't be needed for _ada_ symbols.
6336 They aren't parameters, right? */
6337 if (!found_sym && arg_sym != NULL)
6338 {
6339 add_defn_to_vec (obstackp,
76a01679 6340 fixup_symbol_section (arg_sym, objfile),
2570f2b7 6341 block);
96d887e8
PH
6342 }
6343 }
6344}
6345\f
41d27058
JB
6346
6347 /* Symbol Completion */
6348
b5ec771e 6349/* See symtab.h. */
41d27058 6350
b5ec771e
PA
6351bool
6352ada_lookup_name_info::matches
6353 (const char *sym_name,
6354 symbol_name_match_type match_type,
6355 completion_match *comp_match) const
41d27058 6356{
b5ec771e
PA
6357 bool match = false;
6358 const char *text = m_encoded_name.c_str ();
6359 size_t text_len = m_encoded_name.size ();
41d27058
JB
6360
6361 /* First, test against the fully qualified name of the symbol. */
6362
6363 if (strncmp (sym_name, text, text_len) == 0)
b5ec771e 6364 match = true;
41d27058 6365
b5ec771e 6366 if (match && !m_encoded_p)
41d27058
JB
6367 {
6368 /* One needed check before declaring a positive match is to verify
6369 that iff we are doing a verbatim match, the decoded version
6370 of the symbol name starts with '<'. Otherwise, this symbol name
6371 is not a suitable completion. */
6372 const char *sym_name_copy = sym_name;
b5ec771e 6373 bool has_angle_bracket;
41d27058
JB
6374
6375 sym_name = ada_decode (sym_name);
6376 has_angle_bracket = (sym_name[0] == '<');
b5ec771e 6377 match = (has_angle_bracket == m_verbatim_p);
41d27058
JB
6378 sym_name = sym_name_copy;
6379 }
6380
b5ec771e 6381 if (match && !m_verbatim_p)
41d27058
JB
6382 {
6383 /* When doing non-verbatim match, another check that needs to
6384 be done is to verify that the potentially matching symbol name
6385 does not include capital letters, because the ada-mode would
6386 not be able to understand these symbol names without the
6387 angle bracket notation. */
6388 const char *tmp;
6389
6390 for (tmp = sym_name; *tmp != '\0' && !isupper (*tmp); tmp++);
6391 if (*tmp != '\0')
b5ec771e 6392 match = false;
41d27058
JB
6393 }
6394
6395 /* Second: Try wild matching... */
6396
b5ec771e 6397 if (!match && m_wild_match_p)
41d27058
JB
6398 {
6399 /* Since we are doing wild matching, this means that TEXT
6400 may represent an unqualified symbol name. We therefore must
6401 also compare TEXT against the unqualified name of the symbol. */
6402 sym_name = ada_unqualified_name (ada_decode (sym_name));
6403
6404 if (strncmp (sym_name, text, text_len) == 0)
b5ec771e 6405 match = true;
41d27058
JB
6406 }
6407
b5ec771e 6408 /* Finally: If we found a match, prepare the result to return. */
41d27058
JB
6409
6410 if (!match)
b5ec771e 6411 return false;
41d27058 6412
b5ec771e
PA
6413 if (comp_match != NULL)
6414 {
6415 std::string &match_str = comp_match->storage ();
41d27058 6416
b5ec771e
PA
6417 if (!m_encoded_p)
6418 {
6419 match_str = ada_decode (sym_name);
6420 comp_match->set_match (match_str.c_str ());
6421 }
6422 else
6423 {
6424 if (m_verbatim_p)
6425 match_str = add_angle_brackets (sym_name);
6426 else
6427 match_str = sym_name;
41d27058 6428
b5ec771e
PA
6429 comp_match->set_match (match_str.c_str ());
6430 }
41d27058
JB
6431 }
6432
b5ec771e 6433 return true;
41d27058
JB
6434}
6435
b5ec771e 6436/* Add the list of possible symbol names completing TEXT to TRACKER.
eb3ff9a5 6437 WORD is the entire command on which completion is made. */
41d27058 6438
eb3ff9a5
PA
6439static void
6440ada_collect_symbol_completion_matches (completion_tracker &tracker,
c6756f62 6441 complete_symbol_mode mode,
b5ec771e
PA
6442 symbol_name_match_type name_match_type,
6443 const char *text, const char *word,
eb3ff9a5 6444 enum type_code code)
41d27058 6445{
41d27058 6446 struct symbol *sym;
43f3e411 6447 struct compunit_symtab *s;
41d27058
JB
6448 struct minimal_symbol *msymbol;
6449 struct objfile *objfile;
3977b71f 6450 const struct block *b, *surrounding_static_block = 0;
41d27058 6451 int i;
8157b174 6452 struct block_iterator iter;
b8fea896 6453 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
41d27058 6454
2f68a895
TT
6455 gdb_assert (code == TYPE_CODE_UNDEF);
6456
1b026119 6457 lookup_name_info lookup_name (text, name_match_type, true);
41d27058
JB
6458
6459 /* First, look at the partial symtab symbols. */
14bc53a8 6460 expand_symtabs_matching (NULL,
b5ec771e
PA
6461 lookup_name,
6462 NULL,
14bc53a8
PA
6463 NULL,
6464 ALL_DOMAIN);
41d27058
JB
6465
6466 /* At this point scan through the misc symbol vectors and add each
6467 symbol you find to the list. Eventually we want to ignore
6468 anything that isn't a text symbol (everything else will be
6469 handled by the psymtab code above). */
6470
6471 ALL_MSYMBOLS (objfile, msymbol)
6472 {
6473 QUIT;
b5ec771e
PA
6474
6475 completion_list_add_name (tracker,
6476 MSYMBOL_LANGUAGE (msymbol),
6477 MSYMBOL_LINKAGE_NAME (msymbol),
1b026119 6478 lookup_name, text, word);
41d27058
JB
6479 }
6480
6481 /* Search upwards from currently selected frame (so that we can
6482 complete on local vars. */
6483
6484 for (b = get_selected_block (0); b != NULL; b = BLOCK_SUPERBLOCK (b))
6485 {
6486 if (!BLOCK_SUPERBLOCK (b))
6487 surrounding_static_block = b; /* For elmin of dups */
6488
6489 ALL_BLOCK_SYMBOLS (b, iter, sym)
6490 {
b5ec771e
PA
6491 completion_list_add_name (tracker,
6492 SYMBOL_LANGUAGE (sym),
6493 SYMBOL_LINKAGE_NAME (sym),
1b026119 6494 lookup_name, text, word);
41d27058
JB
6495 }
6496 }
6497
6498 /* Go through the symtabs and check the externs and statics for
43f3e411 6499 symbols which match. */
41d27058 6500
43f3e411 6501 ALL_COMPUNITS (objfile, s)
41d27058
JB
6502 {
6503 QUIT;
43f3e411 6504 b = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (s), GLOBAL_BLOCK);
41d27058
JB
6505 ALL_BLOCK_SYMBOLS (b, iter, sym)
6506 {
b5ec771e
PA
6507 completion_list_add_name (tracker,
6508 SYMBOL_LANGUAGE (sym),
6509 SYMBOL_LINKAGE_NAME (sym),
1b026119 6510 lookup_name, text, word);
41d27058
JB
6511 }
6512 }
6513
43f3e411 6514 ALL_COMPUNITS (objfile, s)
41d27058
JB
6515 {
6516 QUIT;
43f3e411 6517 b = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (s), STATIC_BLOCK);
41d27058
JB
6518 /* Don't do this block twice. */
6519 if (b == surrounding_static_block)
6520 continue;
6521 ALL_BLOCK_SYMBOLS (b, iter, sym)
6522 {
b5ec771e
PA
6523 completion_list_add_name (tracker,
6524 SYMBOL_LANGUAGE (sym),
6525 SYMBOL_LINKAGE_NAME (sym),
1b026119 6526 lookup_name, text, word);
41d27058
JB
6527 }
6528 }
6529
b8fea896 6530 do_cleanups (old_chain);
41d27058
JB
6531}
6532
963a6417 6533 /* Field Access */
96d887e8 6534
73fb9985
JB
6535/* Return non-zero if TYPE is a pointer to the GNAT dispatch table used
6536 for tagged types. */
6537
6538static int
6539ada_is_dispatch_table_ptr_type (struct type *type)
6540{
0d5cff50 6541 const char *name;
73fb9985
JB
6542
6543 if (TYPE_CODE (type) != TYPE_CODE_PTR)
6544 return 0;
6545
6546 name = TYPE_NAME (TYPE_TARGET_TYPE (type));
6547 if (name == NULL)
6548 return 0;
6549
6550 return (strcmp (name, "ada__tags__dispatch_table") == 0);
6551}
6552
ac4a2da4
JG
6553/* Return non-zero if TYPE is an interface tag. */
6554
6555static int
6556ada_is_interface_tag (struct type *type)
6557{
6558 const char *name = TYPE_NAME (type);
6559
6560 if (name == NULL)
6561 return 0;
6562
6563 return (strcmp (name, "ada__tags__interface_tag") == 0);
6564}
6565
963a6417
PH
6566/* True if field number FIELD_NUM in struct or union type TYPE is supposed
6567 to be invisible to users. */
96d887e8 6568
963a6417
PH
6569int
6570ada_is_ignored_field (struct type *type, int field_num)
96d887e8 6571{
963a6417
PH
6572 if (field_num < 0 || field_num > TYPE_NFIELDS (type))
6573 return 1;
ffde82bf 6574
73fb9985
JB
6575 /* Check the name of that field. */
6576 {
6577 const char *name = TYPE_FIELD_NAME (type, field_num);
6578
6579 /* Anonymous field names should not be printed.
6580 brobecker/2007-02-20: I don't think this can actually happen
6581 but we don't want to print the value of annonymous fields anyway. */
6582 if (name == NULL)
6583 return 1;
6584
ffde82bf
JB
6585 /* Normally, fields whose name start with an underscore ("_")
6586 are fields that have been internally generated by the compiler,
6587 and thus should not be printed. The "_parent" field is special,
6588 however: This is a field internally generated by the compiler
6589 for tagged types, and it contains the components inherited from
6590 the parent type. This field should not be printed as is, but
6591 should not be ignored either. */
61012eef 6592 if (name[0] == '_' && !startswith (name, "_parent"))
73fb9985
JB
6593 return 1;
6594 }
6595
ac4a2da4
JG
6596 /* If this is the dispatch table of a tagged type or an interface tag,
6597 then ignore. */
73fb9985 6598 if (ada_is_tagged_type (type, 1)
ac4a2da4
JG
6599 && (ada_is_dispatch_table_ptr_type (TYPE_FIELD_TYPE (type, field_num))
6600 || ada_is_interface_tag (TYPE_FIELD_TYPE (type, field_num))))
73fb9985
JB
6601 return 1;
6602
6603 /* Not a special field, so it should not be ignored. */
6604 return 0;
963a6417 6605}
96d887e8 6606
963a6417 6607/* True iff TYPE has a tag field. If REFOK, then TYPE may also be a
0963b4bd 6608 pointer or reference type whose ultimate target has a tag field. */
96d887e8 6609
963a6417
PH
6610int
6611ada_is_tagged_type (struct type *type, int refok)
6612{
988f6b3d 6613 return (ada_lookup_struct_elt_type (type, "_tag", refok, 1) != NULL);
963a6417 6614}
96d887e8 6615
963a6417 6616/* True iff TYPE represents the type of X'Tag */
96d887e8 6617
963a6417
PH
6618int
6619ada_is_tag_type (struct type *type)
6620{
460efde1
JB
6621 type = ada_check_typedef (type);
6622
963a6417
PH
6623 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_PTR)
6624 return 0;
6625 else
96d887e8 6626 {
963a6417 6627 const char *name = ada_type_name (TYPE_TARGET_TYPE (type));
5b4ee69b 6628
963a6417
PH
6629 return (name != NULL
6630 && strcmp (name, "ada__tags__dispatch_table") == 0);
96d887e8 6631 }
96d887e8
PH
6632}
6633
963a6417 6634/* The type of the tag on VAL. */
76a01679 6635
963a6417
PH
6636struct type *
6637ada_tag_type (struct value *val)
96d887e8 6638{
988f6b3d 6639 return ada_lookup_struct_elt_type (value_type (val), "_tag", 1, 0);
963a6417 6640}
96d887e8 6641
b50d69b5
JG
6642/* Return 1 if TAG follows the old scheme for Ada tags (used for Ada 95,
6643 retired at Ada 05). */
6644
6645static int
6646is_ada95_tag (struct value *tag)
6647{
6648 return ada_value_struct_elt (tag, "tsd", 1) != NULL;
6649}
6650
963a6417 6651/* The value of the tag on VAL. */
96d887e8 6652
963a6417
PH
6653struct value *
6654ada_value_tag (struct value *val)
6655{
03ee6b2e 6656 return ada_value_struct_elt (val, "_tag", 0);
96d887e8
PH
6657}
6658
963a6417
PH
6659/* The value of the tag on the object of type TYPE whose contents are
6660 saved at VALADDR, if it is non-null, or is at memory address
0963b4bd 6661 ADDRESS. */
96d887e8 6662
963a6417 6663static struct value *
10a2c479 6664value_tag_from_contents_and_address (struct type *type,
fc1a4b47 6665 const gdb_byte *valaddr,
963a6417 6666 CORE_ADDR address)
96d887e8 6667{
b5385fc0 6668 int tag_byte_offset;
963a6417 6669 struct type *tag_type;
5b4ee69b 6670
963a6417 6671 if (find_struct_field ("_tag", type, 0, &tag_type, &tag_byte_offset,
52ce6436 6672 NULL, NULL, NULL))
96d887e8 6673 {
fc1a4b47 6674 const gdb_byte *valaddr1 = ((valaddr == NULL)
10a2c479
AC
6675 ? NULL
6676 : valaddr + tag_byte_offset);
963a6417 6677 CORE_ADDR address1 = (address == 0) ? 0 : address + tag_byte_offset;
96d887e8 6678
963a6417 6679 return value_from_contents_and_address (tag_type, valaddr1, address1);
96d887e8 6680 }
963a6417
PH
6681 return NULL;
6682}
96d887e8 6683
963a6417
PH
6684static struct type *
6685type_from_tag (struct value *tag)
6686{
6687 const char *type_name = ada_tag_name (tag);
5b4ee69b 6688
963a6417
PH
6689 if (type_name != NULL)
6690 return ada_find_any_type (ada_encode (type_name));
6691 return NULL;
6692}
96d887e8 6693
b50d69b5
JG
6694/* Given a value OBJ of a tagged type, return a value of this
6695 type at the base address of the object. The base address, as
6696 defined in Ada.Tags, it is the address of the primary tag of
6697 the object, and therefore where the field values of its full
6698 view can be fetched. */
6699
6700struct value *
6701ada_tag_value_at_base_address (struct value *obj)
6702{
b50d69b5
JG
6703 struct value *val;
6704 LONGEST offset_to_top = 0;
6705 struct type *ptr_type, *obj_type;
6706 struct value *tag;
6707 CORE_ADDR base_address;
6708
6709 obj_type = value_type (obj);
6710
6711 /* It is the responsability of the caller to deref pointers. */
6712
6713 if (TYPE_CODE (obj_type) == TYPE_CODE_PTR
6714 || TYPE_CODE (obj_type) == TYPE_CODE_REF)
6715 return obj;
6716
6717 tag = ada_value_tag (obj);
6718 if (!tag)
6719 return obj;
6720
6721 /* Base addresses only appeared with Ada 05 and multiple inheritance. */
6722
6723 if (is_ada95_tag (tag))
6724 return obj;
6725
6726 ptr_type = builtin_type (target_gdbarch ())->builtin_data_ptr;
6727 ptr_type = lookup_pointer_type (ptr_type);
6728 val = value_cast (ptr_type, tag);
6729 if (!val)
6730 return obj;
6731
6732 /* It is perfectly possible that an exception be raised while
6733 trying to determine the base address, just like for the tag;
6734 see ada_tag_name for more details. We do not print the error
6735 message for the same reason. */
6736
492d29ea 6737 TRY
b50d69b5
JG
6738 {
6739 offset_to_top = value_as_long (value_ind (value_ptradd (val, -2)));
6740 }
6741
492d29ea
PA
6742 CATCH (e, RETURN_MASK_ERROR)
6743 {
6744 return obj;
6745 }
6746 END_CATCH
b50d69b5
JG
6747
6748 /* If offset is null, nothing to do. */
6749
6750 if (offset_to_top == 0)
6751 return obj;
6752
6753 /* -1 is a special case in Ada.Tags; however, what should be done
6754 is not quite clear from the documentation. So do nothing for
6755 now. */
6756
6757 if (offset_to_top == -1)
6758 return obj;
6759
6760 base_address = value_address (obj) - offset_to_top;
6761 tag = value_tag_from_contents_and_address (obj_type, NULL, base_address);
6762
6763 /* Make sure that we have a proper tag at the new address.
6764 Otherwise, offset_to_top is bogus (which can happen when
6765 the object is not initialized yet). */
6766
6767 if (!tag)
6768 return obj;
6769
6770 obj_type = type_from_tag (tag);
6771
6772 if (!obj_type)
6773 return obj;
6774
6775 return value_from_contents_and_address (obj_type, NULL, base_address);
6776}
6777
1b611343
JB
6778/* Return the "ada__tags__type_specific_data" type. */
6779
6780static struct type *
6781ada_get_tsd_type (struct inferior *inf)
963a6417 6782{
1b611343 6783 struct ada_inferior_data *data = get_ada_inferior_data (inf);
4c4b4cd2 6784
1b611343
JB
6785 if (data->tsd_type == 0)
6786 data->tsd_type = ada_find_any_type ("ada__tags__type_specific_data");
6787 return data->tsd_type;
6788}
529cad9c 6789
1b611343
JB
6790/* Return the TSD (type-specific data) associated to the given TAG.
6791 TAG is assumed to be the tag of a tagged-type entity.
529cad9c 6792
1b611343 6793 May return NULL if we are unable to get the TSD. */
4c4b4cd2 6794
1b611343
JB
6795static struct value *
6796ada_get_tsd_from_tag (struct value *tag)
4c4b4cd2 6797{
4c4b4cd2 6798 struct value *val;
1b611343 6799 struct type *type;
5b4ee69b 6800
1b611343
JB
6801 /* First option: The TSD is simply stored as a field of our TAG.
6802 Only older versions of GNAT would use this format, but we have
6803 to test it first, because there are no visible markers for
6804 the current approach except the absence of that field. */
529cad9c 6805
1b611343
JB
6806 val = ada_value_struct_elt (tag, "tsd", 1);
6807 if (val)
6808 return val;
e802dbe0 6809
1b611343
JB
6810 /* Try the second representation for the dispatch table (in which
6811 there is no explicit 'tsd' field in the referent of the tag pointer,
6812 and instead the tsd pointer is stored just before the dispatch
6813 table. */
e802dbe0 6814
1b611343
JB
6815 type = ada_get_tsd_type (current_inferior());
6816 if (type == NULL)
6817 return NULL;
6818 type = lookup_pointer_type (lookup_pointer_type (type));
6819 val = value_cast (type, tag);
6820 if (val == NULL)
6821 return NULL;
6822 return value_ind (value_ptradd (val, -1));
e802dbe0
JB
6823}
6824
1b611343
JB
6825/* Given the TSD of a tag (type-specific data), return a string
6826 containing the name of the associated type.
6827
6828 The returned value is good until the next call. May return NULL
6829 if we are unable to determine the tag name. */
6830
6831static char *
6832ada_tag_name_from_tsd (struct value *tsd)
529cad9c 6833{
529cad9c
PH
6834 static char name[1024];
6835 char *p;
1b611343 6836 struct value *val;
529cad9c 6837
1b611343 6838 val = ada_value_struct_elt (tsd, "expanded_name", 1);
4c4b4cd2 6839 if (val == NULL)
1b611343 6840 return NULL;
4c4b4cd2
PH
6841 read_memory_string (value_as_address (val), name, sizeof (name) - 1);
6842 for (p = name; *p != '\0'; p += 1)
6843 if (isalpha (*p))
6844 *p = tolower (*p);
1b611343 6845 return name;
4c4b4cd2
PH
6846}
6847
6848/* The type name of the dynamic type denoted by the 'tag value TAG, as
1b611343
JB
6849 a C string.
6850
6851 Return NULL if the TAG is not an Ada tag, or if we were unable to
6852 determine the name of that tag. The result is good until the next
6853 call. */
4c4b4cd2
PH
6854
6855const char *
6856ada_tag_name (struct value *tag)
6857{
1b611343 6858 char *name = NULL;
5b4ee69b 6859
df407dfe 6860 if (!ada_is_tag_type (value_type (tag)))
4c4b4cd2 6861 return NULL;
1b611343
JB
6862
6863 /* It is perfectly possible that an exception be raised while trying
6864 to determine the TAG's name, even under normal circumstances:
6865 The associated variable may be uninitialized or corrupted, for
6866 instance. We do not let any exception propagate past this point.
6867 instead we return NULL.
6868
6869 We also do not print the error message either (which often is very
6870 low-level (Eg: "Cannot read memory at 0x[...]"), but instead let
6871 the caller print a more meaningful message if necessary. */
492d29ea 6872 TRY
1b611343
JB
6873 {
6874 struct value *tsd = ada_get_tsd_from_tag (tag);
6875
6876 if (tsd != NULL)
6877 name = ada_tag_name_from_tsd (tsd);
6878 }
492d29ea
PA
6879 CATCH (e, RETURN_MASK_ERROR)
6880 {
6881 }
6882 END_CATCH
1b611343
JB
6883
6884 return name;
4c4b4cd2
PH
6885}
6886
6887/* The parent type of TYPE, or NULL if none. */
14f9c5c9 6888
d2e4a39e 6889struct type *
ebf56fd3 6890ada_parent_type (struct type *type)
14f9c5c9
AS
6891{
6892 int i;
6893
61ee279c 6894 type = ada_check_typedef (type);
14f9c5c9
AS
6895
6896 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT)
6897 return NULL;
6898
6899 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
6900 if (ada_is_parent_field (type, i))
0c1f74cf
JB
6901 {
6902 struct type *parent_type = TYPE_FIELD_TYPE (type, i);
6903
6904 /* If the _parent field is a pointer, then dereference it. */
6905 if (TYPE_CODE (parent_type) == TYPE_CODE_PTR)
6906 parent_type = TYPE_TARGET_TYPE (parent_type);
6907 /* If there is a parallel XVS type, get the actual base type. */
6908 parent_type = ada_get_base_type (parent_type);
6909
6910 return ada_check_typedef (parent_type);
6911 }
14f9c5c9
AS
6912
6913 return NULL;
6914}
6915
4c4b4cd2
PH
6916/* True iff field number FIELD_NUM of structure type TYPE contains the
6917 parent-type (inherited) fields of a derived type. Assumes TYPE is
6918 a structure type with at least FIELD_NUM+1 fields. */
14f9c5c9
AS
6919
6920int
ebf56fd3 6921ada_is_parent_field (struct type *type, int field_num)
14f9c5c9 6922{
61ee279c 6923 const char *name = TYPE_FIELD_NAME (ada_check_typedef (type), field_num);
5b4ee69b 6924
4c4b4cd2 6925 return (name != NULL
61012eef
GB
6926 && (startswith (name, "PARENT")
6927 || startswith (name, "_parent")));
14f9c5c9
AS
6928}
6929
4c4b4cd2 6930/* True iff field number FIELD_NUM of structure type TYPE is a
14f9c5c9 6931 transparent wrapper field (which should be silently traversed when doing
4c4b4cd2 6932 field selection and flattened when printing). Assumes TYPE is a
14f9c5c9 6933 structure type with at least FIELD_NUM+1 fields. Such fields are always
4c4b4cd2 6934 structures. */
14f9c5c9
AS
6935
6936int
ebf56fd3 6937ada_is_wrapper_field (struct type *type, int field_num)
14f9c5c9 6938{
d2e4a39e 6939 const char *name = TYPE_FIELD_NAME (type, field_num);
5b4ee69b 6940
dddc0e16
JB
6941 if (name != NULL && strcmp (name, "RETVAL") == 0)
6942 {
6943 /* This happens in functions with "out" or "in out" parameters
6944 which are passed by copy. For such functions, GNAT describes
6945 the function's return type as being a struct where the return
6946 value is in a field called RETVAL, and where the other "out"
6947 or "in out" parameters are fields of that struct. This is not
6948 a wrapper. */
6949 return 0;
6950 }
6951
d2e4a39e 6952 return (name != NULL
61012eef 6953 && (startswith (name, "PARENT")
4c4b4cd2 6954 || strcmp (name, "REP") == 0
61012eef 6955 || startswith (name, "_parent")
4c4b4cd2 6956 || name[0] == 'S' || name[0] == 'R' || name[0] == 'O'));
14f9c5c9
AS
6957}
6958
4c4b4cd2
PH
6959/* True iff field number FIELD_NUM of structure or union type TYPE
6960 is a variant wrapper. Assumes TYPE is a structure type with at least
6961 FIELD_NUM+1 fields. */
14f9c5c9
AS
6962
6963int
ebf56fd3 6964ada_is_variant_part (struct type *type, int field_num)
14f9c5c9 6965{
d2e4a39e 6966 struct type *field_type = TYPE_FIELD_TYPE (type, field_num);
5b4ee69b 6967
14f9c5c9 6968 return (TYPE_CODE (field_type) == TYPE_CODE_UNION
4c4b4cd2 6969 || (is_dynamic_field (type, field_num)
c3e5cd34
PH
6970 && (TYPE_CODE (TYPE_TARGET_TYPE (field_type))
6971 == TYPE_CODE_UNION)));
14f9c5c9
AS
6972}
6973
6974/* Assuming that VAR_TYPE is a variant wrapper (type of the variant part)
4c4b4cd2 6975 whose discriminants are contained in the record type OUTER_TYPE,
7c964f07
UW
6976 returns the type of the controlling discriminant for the variant.
6977 May return NULL if the type could not be found. */
14f9c5c9 6978
d2e4a39e 6979struct type *
ebf56fd3 6980ada_variant_discrim_type (struct type *var_type, struct type *outer_type)
14f9c5c9 6981{
a121b7c1 6982 const char *name = ada_variant_discrim_name (var_type);
5b4ee69b 6983
988f6b3d 6984 return ada_lookup_struct_elt_type (outer_type, name, 1, 1);
14f9c5c9
AS
6985}
6986
4c4b4cd2 6987/* Assuming that TYPE is the type of a variant wrapper, and FIELD_NUM is a
14f9c5c9 6988 valid field number within it, returns 1 iff field FIELD_NUM of TYPE
4c4b4cd2 6989 represents a 'when others' clause; otherwise 0. */
14f9c5c9
AS
6990
6991int
ebf56fd3 6992ada_is_others_clause (struct type *type, int field_num)
14f9c5c9 6993{
d2e4a39e 6994 const char *name = TYPE_FIELD_NAME (type, field_num);
5b4ee69b 6995
14f9c5c9
AS
6996 return (name != NULL && name[0] == 'O');
6997}
6998
6999/* Assuming that TYPE0 is the type of the variant part of a record,
4c4b4cd2
PH
7000 returns the name of the discriminant controlling the variant.
7001 The value is valid until the next call to ada_variant_discrim_name. */
14f9c5c9 7002
a121b7c1 7003const char *
ebf56fd3 7004ada_variant_discrim_name (struct type *type0)
14f9c5c9 7005{
d2e4a39e 7006 static char *result = NULL;
14f9c5c9 7007 static size_t result_len = 0;
d2e4a39e
AS
7008 struct type *type;
7009 const char *name;
7010 const char *discrim_end;
7011 const char *discrim_start;
14f9c5c9
AS
7012
7013 if (TYPE_CODE (type0) == TYPE_CODE_PTR)
7014 type = TYPE_TARGET_TYPE (type0);
7015 else
7016 type = type0;
7017
7018 name = ada_type_name (type);
7019
7020 if (name == NULL || name[0] == '\000')
7021 return "";
7022
7023 for (discrim_end = name + strlen (name) - 6; discrim_end != name;
7024 discrim_end -= 1)
7025 {
61012eef 7026 if (startswith (discrim_end, "___XVN"))
4c4b4cd2 7027 break;
14f9c5c9
AS
7028 }
7029 if (discrim_end == name)
7030 return "";
7031
d2e4a39e 7032 for (discrim_start = discrim_end; discrim_start != name + 3;
14f9c5c9
AS
7033 discrim_start -= 1)
7034 {
d2e4a39e 7035 if (discrim_start == name + 1)
4c4b4cd2 7036 return "";
76a01679 7037 if ((discrim_start > name + 3
61012eef 7038 && startswith (discrim_start - 3, "___"))
4c4b4cd2
PH
7039 || discrim_start[-1] == '.')
7040 break;
14f9c5c9
AS
7041 }
7042
7043 GROW_VECT (result, result_len, discrim_end - discrim_start + 1);
7044 strncpy (result, discrim_start, discrim_end - discrim_start);
d2e4a39e 7045 result[discrim_end - discrim_start] = '\0';
14f9c5c9
AS
7046 return result;
7047}
7048
4c4b4cd2
PH
7049/* Scan STR for a subtype-encoded number, beginning at position K.
7050 Put the position of the character just past the number scanned in
7051 *NEW_K, if NEW_K!=NULL. Put the scanned number in *R, if R!=NULL.
7052 Return 1 if there was a valid number at the given position, and 0
7053 otherwise. A "subtype-encoded" number consists of the absolute value
7054 in decimal, followed by the letter 'm' to indicate a negative number.
7055 Assumes 0m does not occur. */
14f9c5c9
AS
7056
7057int
d2e4a39e 7058ada_scan_number (const char str[], int k, LONGEST * R, int *new_k)
14f9c5c9
AS
7059{
7060 ULONGEST RU;
7061
d2e4a39e 7062 if (!isdigit (str[k]))
14f9c5c9
AS
7063 return 0;
7064
4c4b4cd2 7065 /* Do it the hard way so as not to make any assumption about
14f9c5c9 7066 the relationship of unsigned long (%lu scan format code) and
4c4b4cd2 7067 LONGEST. */
14f9c5c9
AS
7068 RU = 0;
7069 while (isdigit (str[k]))
7070 {
d2e4a39e 7071 RU = RU * 10 + (str[k] - '0');
14f9c5c9
AS
7072 k += 1;
7073 }
7074
d2e4a39e 7075 if (str[k] == 'm')
14f9c5c9
AS
7076 {
7077 if (R != NULL)
4c4b4cd2 7078 *R = (-(LONGEST) (RU - 1)) - 1;
14f9c5c9
AS
7079 k += 1;
7080 }
7081 else if (R != NULL)
7082 *R = (LONGEST) RU;
7083
4c4b4cd2 7084 /* NOTE on the above: Technically, C does not say what the results of
14f9c5c9
AS
7085 - (LONGEST) RU or (LONGEST) -RU are for RU == largest positive
7086 number representable as a LONGEST (although either would probably work
7087 in most implementations). When RU>0, the locution in the then branch
4c4b4cd2 7088 above is always equivalent to the negative of RU. */
14f9c5c9
AS
7089
7090 if (new_k != NULL)
7091 *new_k = k;
7092 return 1;
7093}
7094
4c4b4cd2
PH
7095/* Assuming that TYPE is a variant part wrapper type (a VARIANTS field),
7096 and FIELD_NUM is a valid field number within it, returns 1 iff VAL is
7097 in the range encoded by field FIELD_NUM of TYPE; otherwise 0. */
14f9c5c9 7098
d2e4a39e 7099int
ebf56fd3 7100ada_in_variant (LONGEST val, struct type *type, int field_num)
14f9c5c9 7101{
d2e4a39e 7102 const char *name = TYPE_FIELD_NAME (type, field_num);
14f9c5c9
AS
7103 int p;
7104
7105 p = 0;
7106 while (1)
7107 {
d2e4a39e 7108 switch (name[p])
4c4b4cd2
PH
7109 {
7110 case '\0':
7111 return 0;
7112 case 'S':
7113 {
7114 LONGEST W;
5b4ee69b 7115
4c4b4cd2
PH
7116 if (!ada_scan_number (name, p + 1, &W, &p))
7117 return 0;
7118 if (val == W)
7119 return 1;
7120 break;
7121 }
7122 case 'R':
7123 {
7124 LONGEST L, U;
5b4ee69b 7125
4c4b4cd2
PH
7126 if (!ada_scan_number (name, p + 1, &L, &p)
7127 || name[p] != 'T' || !ada_scan_number (name, p + 1, &U, &p))
7128 return 0;
7129 if (val >= L && val <= U)
7130 return 1;
7131 break;
7132 }
7133 case 'O':
7134 return 1;
7135 default:
7136 return 0;
7137 }
7138 }
7139}
7140
0963b4bd 7141/* FIXME: Lots of redundancy below. Try to consolidate. */
4c4b4cd2
PH
7142
7143/* Given a value ARG1 (offset by OFFSET bytes) of a struct or union type
7144 ARG_TYPE, extract and return the value of one of its (non-static)
7145 fields. FIELDNO says which field. Differs from value_primitive_field
7146 only in that it can handle packed values of arbitrary type. */
14f9c5c9 7147
4c4b4cd2 7148static struct value *
d2e4a39e 7149ada_value_primitive_field (struct value *arg1, int offset, int fieldno,
4c4b4cd2 7150 struct type *arg_type)
14f9c5c9 7151{
14f9c5c9
AS
7152 struct type *type;
7153
61ee279c 7154 arg_type = ada_check_typedef (arg_type);
14f9c5c9
AS
7155 type = TYPE_FIELD_TYPE (arg_type, fieldno);
7156
4c4b4cd2 7157 /* Handle packed fields. */
14f9c5c9
AS
7158
7159 if (TYPE_FIELD_BITSIZE (arg_type, fieldno) != 0)
7160 {
7161 int bit_pos = TYPE_FIELD_BITPOS (arg_type, fieldno);
7162 int bit_size = TYPE_FIELD_BITSIZE (arg_type, fieldno);
d2e4a39e 7163
0fd88904 7164 return ada_value_primitive_packed_val (arg1, value_contents (arg1),
4c4b4cd2
PH
7165 offset + bit_pos / 8,
7166 bit_pos % 8, bit_size, type);
14f9c5c9
AS
7167 }
7168 else
7169 return value_primitive_field (arg1, offset, fieldno, arg_type);
7170}
7171
52ce6436
PH
7172/* Find field with name NAME in object of type TYPE. If found,
7173 set the following for each argument that is non-null:
7174 - *FIELD_TYPE_P to the field's type;
7175 - *BYTE_OFFSET_P to OFFSET + the byte offset of the field within
7176 an object of that type;
7177 - *BIT_OFFSET_P to the bit offset modulo byte size of the field;
7178 - *BIT_SIZE_P to its size in bits if the field is packed, and
7179 0 otherwise;
7180 If INDEX_P is non-null, increment *INDEX_P by the number of source-visible
7181 fields up to but not including the desired field, or by the total
7182 number of fields if not found. A NULL value of NAME never
7183 matches; the function just counts visible fields in this case.
7184
0963b4bd 7185 Returns 1 if found, 0 otherwise. */
52ce6436 7186
4c4b4cd2 7187static int
0d5cff50 7188find_struct_field (const char *name, struct type *type, int offset,
76a01679 7189 struct type **field_type_p,
52ce6436
PH
7190 int *byte_offset_p, int *bit_offset_p, int *bit_size_p,
7191 int *index_p)
4c4b4cd2
PH
7192{
7193 int i;
7194
61ee279c 7195 type = ada_check_typedef (type);
76a01679 7196
52ce6436
PH
7197 if (field_type_p != NULL)
7198 *field_type_p = NULL;
7199 if (byte_offset_p != NULL)
d5d6fca5 7200 *byte_offset_p = 0;
52ce6436
PH
7201 if (bit_offset_p != NULL)
7202 *bit_offset_p = 0;
7203 if (bit_size_p != NULL)
7204 *bit_size_p = 0;
7205
7206 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
4c4b4cd2
PH
7207 {
7208 int bit_pos = TYPE_FIELD_BITPOS (type, i);
7209 int fld_offset = offset + bit_pos / 8;
0d5cff50 7210 const char *t_field_name = TYPE_FIELD_NAME (type, i);
76a01679 7211
4c4b4cd2
PH
7212 if (t_field_name == NULL)
7213 continue;
7214
52ce6436 7215 else if (name != NULL && field_name_match (t_field_name, name))
76a01679
JB
7216 {
7217 int bit_size = TYPE_FIELD_BITSIZE (type, i);
5b4ee69b 7218
52ce6436
PH
7219 if (field_type_p != NULL)
7220 *field_type_p = TYPE_FIELD_TYPE (type, i);
7221 if (byte_offset_p != NULL)
7222 *byte_offset_p = fld_offset;
7223 if (bit_offset_p != NULL)
7224 *bit_offset_p = bit_pos % 8;
7225 if (bit_size_p != NULL)
7226 *bit_size_p = bit_size;
76a01679
JB
7227 return 1;
7228 }
4c4b4cd2
PH
7229 else if (ada_is_wrapper_field (type, i))
7230 {
52ce6436
PH
7231 if (find_struct_field (name, TYPE_FIELD_TYPE (type, i), fld_offset,
7232 field_type_p, byte_offset_p, bit_offset_p,
7233 bit_size_p, index_p))
76a01679
JB
7234 return 1;
7235 }
4c4b4cd2
PH
7236 else if (ada_is_variant_part (type, i))
7237 {
52ce6436
PH
7238 /* PNH: Wait. Do we ever execute this section, or is ARG always of
7239 fixed type?? */
4c4b4cd2 7240 int j;
52ce6436
PH
7241 struct type *field_type
7242 = ada_check_typedef (TYPE_FIELD_TYPE (type, i));
4c4b4cd2 7243
52ce6436 7244 for (j = 0; j < TYPE_NFIELDS (field_type); j += 1)
4c4b4cd2 7245 {
76a01679
JB
7246 if (find_struct_field (name, TYPE_FIELD_TYPE (field_type, j),
7247 fld_offset
7248 + TYPE_FIELD_BITPOS (field_type, j) / 8,
7249 field_type_p, byte_offset_p,
52ce6436 7250 bit_offset_p, bit_size_p, index_p))
76a01679 7251 return 1;
4c4b4cd2
PH
7252 }
7253 }
52ce6436
PH
7254 else if (index_p != NULL)
7255 *index_p += 1;
4c4b4cd2
PH
7256 }
7257 return 0;
7258}
7259
0963b4bd 7260/* Number of user-visible fields in record type TYPE. */
4c4b4cd2 7261
52ce6436
PH
7262static int
7263num_visible_fields (struct type *type)
7264{
7265 int n;
5b4ee69b 7266
52ce6436
PH
7267 n = 0;
7268 find_struct_field (NULL, type, 0, NULL, NULL, NULL, NULL, &n);
7269 return n;
7270}
14f9c5c9 7271
4c4b4cd2 7272/* Look for a field NAME in ARG. Adjust the address of ARG by OFFSET bytes,
14f9c5c9
AS
7273 and search in it assuming it has (class) type TYPE.
7274 If found, return value, else return NULL.
7275
4c4b4cd2 7276 Searches recursively through wrapper fields (e.g., '_parent'). */
14f9c5c9 7277
4c4b4cd2 7278static struct value *
108d56a4 7279ada_search_struct_field (const char *name, struct value *arg, int offset,
4c4b4cd2 7280 struct type *type)
14f9c5c9
AS
7281{
7282 int i;
14f9c5c9 7283
5b4ee69b 7284 type = ada_check_typedef (type);
52ce6436 7285 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
14f9c5c9 7286 {
0d5cff50 7287 const char *t_field_name = TYPE_FIELD_NAME (type, i);
14f9c5c9
AS
7288
7289 if (t_field_name == NULL)
4c4b4cd2 7290 continue;
14f9c5c9
AS
7291
7292 else if (field_name_match (t_field_name, name))
4c4b4cd2 7293 return ada_value_primitive_field (arg, offset, i, type);
14f9c5c9
AS
7294
7295 else if (ada_is_wrapper_field (type, i))
4c4b4cd2 7296 {
0963b4bd 7297 struct value *v = /* Do not let indent join lines here. */
06d5cf63
JB
7298 ada_search_struct_field (name, arg,
7299 offset + TYPE_FIELD_BITPOS (type, i) / 8,
7300 TYPE_FIELD_TYPE (type, i));
5b4ee69b 7301
4c4b4cd2
PH
7302 if (v != NULL)
7303 return v;
7304 }
14f9c5c9
AS
7305
7306 else if (ada_is_variant_part (type, i))
4c4b4cd2 7307 {
0963b4bd 7308 /* PNH: Do we ever get here? See find_struct_field. */
4c4b4cd2 7309 int j;
5b4ee69b
MS
7310 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type,
7311 i));
4c4b4cd2
PH
7312 int var_offset = offset + TYPE_FIELD_BITPOS (type, i) / 8;
7313
52ce6436 7314 for (j = 0; j < TYPE_NFIELDS (field_type); j += 1)
4c4b4cd2 7315 {
0963b4bd
MS
7316 struct value *v = ada_search_struct_field /* Force line
7317 break. */
06d5cf63
JB
7318 (name, arg,
7319 var_offset + TYPE_FIELD_BITPOS (field_type, j) / 8,
7320 TYPE_FIELD_TYPE (field_type, j));
5b4ee69b 7321
4c4b4cd2
PH
7322 if (v != NULL)
7323 return v;
7324 }
7325 }
14f9c5c9
AS
7326 }
7327 return NULL;
7328}
d2e4a39e 7329
52ce6436
PH
7330static struct value *ada_index_struct_field_1 (int *, struct value *,
7331 int, struct type *);
7332
7333
7334/* Return field #INDEX in ARG, where the index is that returned by
7335 * find_struct_field through its INDEX_P argument. Adjust the address
7336 * of ARG by OFFSET bytes, and search in it assuming it has (class) type TYPE.
0963b4bd 7337 * If found, return value, else return NULL. */
52ce6436
PH
7338
7339static struct value *
7340ada_index_struct_field (int index, struct value *arg, int offset,
7341 struct type *type)
7342{
7343 return ada_index_struct_field_1 (&index, arg, offset, type);
7344}
7345
7346
7347/* Auxiliary function for ada_index_struct_field. Like
7348 * ada_index_struct_field, but takes index from *INDEX_P and modifies
0963b4bd 7349 * *INDEX_P. */
52ce6436
PH
7350
7351static struct value *
7352ada_index_struct_field_1 (int *index_p, struct value *arg, int offset,
7353 struct type *type)
7354{
7355 int i;
7356 type = ada_check_typedef (type);
7357
7358 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
7359 {
7360 if (TYPE_FIELD_NAME (type, i) == NULL)
7361 continue;
7362 else if (ada_is_wrapper_field (type, i))
7363 {
0963b4bd 7364 struct value *v = /* Do not let indent join lines here. */
52ce6436
PH
7365 ada_index_struct_field_1 (index_p, arg,
7366 offset + TYPE_FIELD_BITPOS (type, i) / 8,
7367 TYPE_FIELD_TYPE (type, i));
5b4ee69b 7368
52ce6436
PH
7369 if (v != NULL)
7370 return v;
7371 }
7372
7373 else if (ada_is_variant_part (type, i))
7374 {
7375 /* PNH: Do we ever get here? See ada_search_struct_field,
0963b4bd 7376 find_struct_field. */
52ce6436
PH
7377 error (_("Cannot assign this kind of variant record"));
7378 }
7379 else if (*index_p == 0)
7380 return ada_value_primitive_field (arg, offset, i, type);
7381 else
7382 *index_p -= 1;
7383 }
7384 return NULL;
7385}
7386
4c4b4cd2
PH
7387/* Given ARG, a value of type (pointer or reference to a)*
7388 structure/union, extract the component named NAME from the ultimate
7389 target structure/union and return it as a value with its
f5938064 7390 appropriate type.
14f9c5c9 7391
4c4b4cd2
PH
7392 The routine searches for NAME among all members of the structure itself
7393 and (recursively) among all members of any wrapper members
14f9c5c9
AS
7394 (e.g., '_parent').
7395
03ee6b2e
PH
7396 If NO_ERR, then simply return NULL in case of error, rather than
7397 calling error. */
14f9c5c9 7398
d2e4a39e 7399struct value *
a121b7c1 7400ada_value_struct_elt (struct value *arg, const char *name, int no_err)
14f9c5c9 7401{
4c4b4cd2 7402 struct type *t, *t1;
d2e4a39e 7403 struct value *v;
14f9c5c9 7404
4c4b4cd2 7405 v = NULL;
df407dfe 7406 t1 = t = ada_check_typedef (value_type (arg));
4c4b4cd2
PH
7407 if (TYPE_CODE (t) == TYPE_CODE_REF)
7408 {
7409 t1 = TYPE_TARGET_TYPE (t);
7410 if (t1 == NULL)
03ee6b2e 7411 goto BadValue;
61ee279c 7412 t1 = ada_check_typedef (t1);
4c4b4cd2 7413 if (TYPE_CODE (t1) == TYPE_CODE_PTR)
76a01679 7414 {
994b9211 7415 arg = coerce_ref (arg);
76a01679
JB
7416 t = t1;
7417 }
4c4b4cd2 7418 }
14f9c5c9 7419
4c4b4cd2
PH
7420 while (TYPE_CODE (t) == TYPE_CODE_PTR)
7421 {
7422 t1 = TYPE_TARGET_TYPE (t);
7423 if (t1 == NULL)
03ee6b2e 7424 goto BadValue;
61ee279c 7425 t1 = ada_check_typedef (t1);
4c4b4cd2 7426 if (TYPE_CODE (t1) == TYPE_CODE_PTR)
76a01679
JB
7427 {
7428 arg = value_ind (arg);
7429 t = t1;
7430 }
4c4b4cd2 7431 else
76a01679 7432 break;
4c4b4cd2 7433 }
14f9c5c9 7434
4c4b4cd2 7435 if (TYPE_CODE (t1) != TYPE_CODE_STRUCT && TYPE_CODE (t1) != TYPE_CODE_UNION)
03ee6b2e 7436 goto BadValue;
14f9c5c9 7437
4c4b4cd2
PH
7438 if (t1 == t)
7439 v = ada_search_struct_field (name, arg, 0, t);
7440 else
7441 {
7442 int bit_offset, bit_size, byte_offset;
7443 struct type *field_type;
7444 CORE_ADDR address;
7445
76a01679 7446 if (TYPE_CODE (t) == TYPE_CODE_PTR)
b50d69b5 7447 address = value_address (ada_value_ind (arg));
4c4b4cd2 7448 else
b50d69b5 7449 address = value_address (ada_coerce_ref (arg));
14f9c5c9 7450
1ed6ede0 7451 t1 = ada_to_fixed_type (ada_get_base_type (t1), NULL, address, NULL, 1);
76a01679
JB
7452 if (find_struct_field (name, t1, 0,
7453 &field_type, &byte_offset, &bit_offset,
52ce6436 7454 &bit_size, NULL))
76a01679
JB
7455 {
7456 if (bit_size != 0)
7457 {
714e53ab
PH
7458 if (TYPE_CODE (t) == TYPE_CODE_REF)
7459 arg = ada_coerce_ref (arg);
7460 else
7461 arg = ada_value_ind (arg);
76a01679
JB
7462 v = ada_value_primitive_packed_val (arg, NULL, byte_offset,
7463 bit_offset, bit_size,
7464 field_type);
7465 }
7466 else
f5938064 7467 v = value_at_lazy (field_type, address + byte_offset);
76a01679
JB
7468 }
7469 }
7470
03ee6b2e
PH
7471 if (v != NULL || no_err)
7472 return v;
7473 else
323e0a4a 7474 error (_("There is no member named %s."), name);
14f9c5c9 7475
03ee6b2e
PH
7476 BadValue:
7477 if (no_err)
7478 return NULL;
7479 else
0963b4bd
MS
7480 error (_("Attempt to extract a component of "
7481 "a value that is not a record."));
14f9c5c9
AS
7482}
7483
3b4de39c 7484/* Return a string representation of type TYPE. */
99bbb428 7485
3b4de39c 7486static std::string
99bbb428
PA
7487type_as_string (struct type *type)
7488{
d7e74731 7489 string_file tmp_stream;
99bbb428 7490
d7e74731 7491 type_print (type, "", &tmp_stream, -1);
99bbb428 7492
d7e74731 7493 return std::move (tmp_stream.string ());
99bbb428
PA
7494}
7495
14f9c5c9 7496/* Given a type TYPE, look up the type of the component of type named NAME.
4c4b4cd2
PH
7497 If DISPP is non-null, add its byte displacement from the beginning of a
7498 structure (pointed to by a value) of type TYPE to *DISPP (does not
14f9c5c9
AS
7499 work for packed fields).
7500
7501 Matches any field whose name has NAME as a prefix, possibly
4c4b4cd2 7502 followed by "___".
14f9c5c9 7503
0963b4bd 7504 TYPE can be either a struct or union. If REFOK, TYPE may also
4c4b4cd2
PH
7505 be a (pointer or reference)+ to a struct or union, and the
7506 ultimate target type will be searched.
14f9c5c9
AS
7507
7508 Looks recursively into variant clauses and parent types.
7509
4c4b4cd2
PH
7510 If NOERR is nonzero, return NULL if NAME is not suitably defined or
7511 TYPE is not a type of the right kind. */
14f9c5c9 7512
4c4b4cd2 7513static struct type *
a121b7c1 7514ada_lookup_struct_elt_type (struct type *type, const char *name, int refok,
988f6b3d 7515 int noerr)
14f9c5c9
AS
7516{
7517 int i;
7518
7519 if (name == NULL)
7520 goto BadName;
7521
76a01679 7522 if (refok && type != NULL)
4c4b4cd2
PH
7523 while (1)
7524 {
61ee279c 7525 type = ada_check_typedef (type);
76a01679
JB
7526 if (TYPE_CODE (type) != TYPE_CODE_PTR
7527 && TYPE_CODE (type) != TYPE_CODE_REF)
7528 break;
7529 type = TYPE_TARGET_TYPE (type);
4c4b4cd2 7530 }
14f9c5c9 7531
76a01679 7532 if (type == NULL
1265e4aa
JB
7533 || (TYPE_CODE (type) != TYPE_CODE_STRUCT
7534 && TYPE_CODE (type) != TYPE_CODE_UNION))
14f9c5c9 7535 {
4c4b4cd2 7536 if (noerr)
76a01679 7537 return NULL;
99bbb428 7538
3b4de39c
PA
7539 error (_("Type %s is not a structure or union type"),
7540 type != NULL ? type_as_string (type).c_str () : _("(null)"));
14f9c5c9
AS
7541 }
7542
7543 type = to_static_fixed_type (type);
7544
7545 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
7546 {
0d5cff50 7547 const char *t_field_name = TYPE_FIELD_NAME (type, i);
14f9c5c9 7548 struct type *t;
d2e4a39e 7549
14f9c5c9 7550 if (t_field_name == NULL)
4c4b4cd2 7551 continue;
14f9c5c9
AS
7552
7553 else if (field_name_match (t_field_name, name))
988f6b3d 7554 return TYPE_FIELD_TYPE (type, i);
14f9c5c9
AS
7555
7556 else if (ada_is_wrapper_field (type, i))
4c4b4cd2 7557 {
4c4b4cd2 7558 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (type, i), name,
988f6b3d 7559 0, 1);
4c4b4cd2 7560 if (t != NULL)
988f6b3d 7561 return t;
4c4b4cd2 7562 }
14f9c5c9
AS
7563
7564 else if (ada_is_variant_part (type, i))
4c4b4cd2
PH
7565 {
7566 int j;
5b4ee69b
MS
7567 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type,
7568 i));
4c4b4cd2
PH
7569
7570 for (j = TYPE_NFIELDS (field_type) - 1; j >= 0; j -= 1)
7571 {
b1f33ddd
JB
7572 /* FIXME pnh 2008/01/26: We check for a field that is
7573 NOT wrapped in a struct, since the compiler sometimes
7574 generates these for unchecked variant types. Revisit
0963b4bd 7575 if the compiler changes this practice. */
0d5cff50 7576 const char *v_field_name = TYPE_FIELD_NAME (field_type, j);
988f6b3d 7577
b1f33ddd
JB
7578 if (v_field_name != NULL
7579 && field_name_match (v_field_name, name))
460efde1 7580 t = TYPE_FIELD_TYPE (field_type, j);
b1f33ddd 7581 else
0963b4bd
MS
7582 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (field_type,
7583 j),
988f6b3d 7584 name, 0, 1);
b1f33ddd 7585
4c4b4cd2 7586 if (t != NULL)
988f6b3d 7587 return t;
4c4b4cd2
PH
7588 }
7589 }
14f9c5c9
AS
7590
7591 }
7592
7593BadName:
d2e4a39e 7594 if (!noerr)
14f9c5c9 7595 {
2b2798cc 7596 const char *name_str = name != NULL ? name : _("<null>");
99bbb428
PA
7597
7598 error (_("Type %s has no component named %s"),
3b4de39c 7599 type_as_string (type).c_str (), name_str);
14f9c5c9
AS
7600 }
7601
7602 return NULL;
7603}
7604
b1f33ddd
JB
7605/* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
7606 within a value of type OUTER_TYPE, return true iff VAR_TYPE
7607 represents an unchecked union (that is, the variant part of a
0963b4bd 7608 record that is named in an Unchecked_Union pragma). */
b1f33ddd
JB
7609
7610static int
7611is_unchecked_variant (struct type *var_type, struct type *outer_type)
7612{
a121b7c1 7613 const char *discrim_name = ada_variant_discrim_name (var_type);
5b4ee69b 7614
988f6b3d 7615 return (ada_lookup_struct_elt_type (outer_type, discrim_name, 0, 1) == NULL);
b1f33ddd
JB
7616}
7617
7618
14f9c5c9
AS
7619/* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
7620 within a value of type OUTER_TYPE that is stored in GDB at
4c4b4cd2
PH
7621 OUTER_VALADDR, determine which variant clause (field number in VAR_TYPE,
7622 numbering from 0) is applicable. Returns -1 if none are. */
14f9c5c9 7623
d2e4a39e 7624int
ebf56fd3 7625ada_which_variant_applies (struct type *var_type, struct type *outer_type,
fc1a4b47 7626 const gdb_byte *outer_valaddr)
14f9c5c9
AS
7627{
7628 int others_clause;
7629 int i;
a121b7c1 7630 const char *discrim_name = ada_variant_discrim_name (var_type);
0c281816
JB
7631 struct value *outer;
7632 struct value *discrim;
14f9c5c9
AS
7633 LONGEST discrim_val;
7634
012370f6
TT
7635 /* Using plain value_from_contents_and_address here causes problems
7636 because we will end up trying to resolve a type that is currently
7637 being constructed. */
7638 outer = value_from_contents_and_address_unresolved (outer_type,
7639 outer_valaddr, 0);
0c281816
JB
7640 discrim = ada_value_struct_elt (outer, discrim_name, 1);
7641 if (discrim == NULL)
14f9c5c9 7642 return -1;
0c281816 7643 discrim_val = value_as_long (discrim);
14f9c5c9
AS
7644
7645 others_clause = -1;
7646 for (i = 0; i < TYPE_NFIELDS (var_type); i += 1)
7647 {
7648 if (ada_is_others_clause (var_type, i))
4c4b4cd2 7649 others_clause = i;
14f9c5c9 7650 else if (ada_in_variant (discrim_val, var_type, i))
4c4b4cd2 7651 return i;
14f9c5c9
AS
7652 }
7653
7654 return others_clause;
7655}
d2e4a39e 7656\f
14f9c5c9
AS
7657
7658
4c4b4cd2 7659 /* Dynamic-Sized Records */
14f9c5c9
AS
7660
7661/* Strategy: The type ostensibly attached to a value with dynamic size
7662 (i.e., a size that is not statically recorded in the debugging
7663 data) does not accurately reflect the size or layout of the value.
7664 Our strategy is to convert these values to values with accurate,
4c4b4cd2 7665 conventional types that are constructed on the fly. */
14f9c5c9
AS
7666
7667/* There is a subtle and tricky problem here. In general, we cannot
7668 determine the size of dynamic records without its data. However,
7669 the 'struct value' data structure, which GDB uses to represent
7670 quantities in the inferior process (the target), requires the size
7671 of the type at the time of its allocation in order to reserve space
7672 for GDB's internal copy of the data. That's why the
7673 'to_fixed_xxx_type' routines take (target) addresses as parameters,
4c4b4cd2 7674 rather than struct value*s.
14f9c5c9
AS
7675
7676 However, GDB's internal history variables ($1, $2, etc.) are
7677 struct value*s containing internal copies of the data that are not, in
7678 general, the same as the data at their corresponding addresses in
7679 the target. Fortunately, the types we give to these values are all
7680 conventional, fixed-size types (as per the strategy described
7681 above), so that we don't usually have to perform the
7682 'to_fixed_xxx_type' conversions to look at their values.
7683 Unfortunately, there is one exception: if one of the internal
7684 history variables is an array whose elements are unconstrained
7685 records, then we will need to create distinct fixed types for each
7686 element selected. */
7687
7688/* The upshot of all of this is that many routines take a (type, host
7689 address, target address) triple as arguments to represent a value.
7690 The host address, if non-null, is supposed to contain an internal
7691 copy of the relevant data; otherwise, the program is to consult the
4c4b4cd2 7692 target at the target address. */
14f9c5c9
AS
7693
7694/* Assuming that VAL0 represents a pointer value, the result of
7695 dereferencing it. Differs from value_ind in its treatment of
4c4b4cd2 7696 dynamic-sized types. */
14f9c5c9 7697
d2e4a39e
AS
7698struct value *
7699ada_value_ind (struct value *val0)
14f9c5c9 7700{
c48db5ca 7701 struct value *val = value_ind (val0);
5b4ee69b 7702
b50d69b5
JG
7703 if (ada_is_tagged_type (value_type (val), 0))
7704 val = ada_tag_value_at_base_address (val);
7705
4c4b4cd2 7706 return ada_to_fixed_value (val);
14f9c5c9
AS
7707}
7708
7709/* The value resulting from dereferencing any "reference to"
4c4b4cd2
PH
7710 qualifiers on VAL0. */
7711
d2e4a39e
AS
7712static struct value *
7713ada_coerce_ref (struct value *val0)
7714{
df407dfe 7715 if (TYPE_CODE (value_type (val0)) == TYPE_CODE_REF)
d2e4a39e
AS
7716 {
7717 struct value *val = val0;
5b4ee69b 7718
994b9211 7719 val = coerce_ref (val);
b50d69b5
JG
7720
7721 if (ada_is_tagged_type (value_type (val), 0))
7722 val = ada_tag_value_at_base_address (val);
7723
4c4b4cd2 7724 return ada_to_fixed_value (val);
d2e4a39e
AS
7725 }
7726 else
14f9c5c9
AS
7727 return val0;
7728}
7729
7730/* Return OFF rounded upward if necessary to a multiple of
4c4b4cd2 7731 ALIGNMENT (a power of 2). */
14f9c5c9
AS
7732
7733static unsigned int
ebf56fd3 7734align_value (unsigned int off, unsigned int alignment)
14f9c5c9
AS
7735{
7736 return (off + alignment - 1) & ~(alignment - 1);
7737}
7738
4c4b4cd2 7739/* Return the bit alignment required for field #F of template type TYPE. */
14f9c5c9
AS
7740
7741static unsigned int
ebf56fd3 7742field_alignment (struct type *type, int f)
14f9c5c9 7743{
d2e4a39e 7744 const char *name = TYPE_FIELD_NAME (type, f);
64a1bf19 7745 int len;
14f9c5c9
AS
7746 int align_offset;
7747
64a1bf19
JB
7748 /* The field name should never be null, unless the debugging information
7749 is somehow malformed. In this case, we assume the field does not
7750 require any alignment. */
7751 if (name == NULL)
7752 return 1;
7753
7754 len = strlen (name);
7755
4c4b4cd2
PH
7756 if (!isdigit (name[len - 1]))
7757 return 1;
14f9c5c9 7758
d2e4a39e 7759 if (isdigit (name[len - 2]))
14f9c5c9
AS
7760 align_offset = len - 2;
7761 else
7762 align_offset = len - 1;
7763
61012eef 7764 if (align_offset < 7 || !startswith (name + align_offset - 6, "___XV"))
14f9c5c9
AS
7765 return TARGET_CHAR_BIT;
7766
4c4b4cd2
PH
7767 return atoi (name + align_offset) * TARGET_CHAR_BIT;
7768}
7769
852dff6c 7770/* Find a typedef or tag symbol named NAME. Ignores ambiguity. */
4c4b4cd2 7771
852dff6c
JB
7772static struct symbol *
7773ada_find_any_type_symbol (const char *name)
4c4b4cd2
PH
7774{
7775 struct symbol *sym;
7776
7777 sym = standard_lookup (name, get_selected_block (NULL), VAR_DOMAIN);
4186eb54 7778 if (sym != NULL && SYMBOL_CLASS (sym) == LOC_TYPEDEF)
4c4b4cd2
PH
7779 return sym;
7780
4186eb54
KS
7781 sym = standard_lookup (name, NULL, STRUCT_DOMAIN);
7782 return sym;
14f9c5c9
AS
7783}
7784
dddfab26
UW
7785/* Find a type named NAME. Ignores ambiguity. This routine will look
7786 solely for types defined by debug info, it will not search the GDB
7787 primitive types. */
4c4b4cd2 7788
852dff6c 7789static struct type *
ebf56fd3 7790ada_find_any_type (const char *name)
14f9c5c9 7791{
852dff6c 7792 struct symbol *sym = ada_find_any_type_symbol (name);
14f9c5c9 7793
14f9c5c9 7794 if (sym != NULL)
dddfab26 7795 return SYMBOL_TYPE (sym);
14f9c5c9 7796
dddfab26 7797 return NULL;
14f9c5c9
AS
7798}
7799
739593e0
JB
7800/* Given NAME_SYM and an associated BLOCK, find a "renaming" symbol
7801 associated with NAME_SYM's name. NAME_SYM may itself be a renaming
7802 symbol, in which case it is returned. Otherwise, this looks for
7803 symbols whose name is that of NAME_SYM suffixed with "___XR".
7804 Return symbol if found, and NULL otherwise. */
4c4b4cd2
PH
7805
7806struct symbol *
270140bd 7807ada_find_renaming_symbol (struct symbol *name_sym, const struct block *block)
aeb5907d 7808{
739593e0 7809 const char *name = SYMBOL_LINKAGE_NAME (name_sym);
aeb5907d
JB
7810 struct symbol *sym;
7811
739593e0
JB
7812 if (strstr (name, "___XR") != NULL)
7813 return name_sym;
7814
aeb5907d
JB
7815 sym = find_old_style_renaming_symbol (name, block);
7816
7817 if (sym != NULL)
7818 return sym;
7819
0963b4bd 7820 /* Not right yet. FIXME pnh 7/20/2007. */
852dff6c 7821 sym = ada_find_any_type_symbol (name);
aeb5907d
JB
7822 if (sym != NULL && strstr (SYMBOL_LINKAGE_NAME (sym), "___XR") != NULL)
7823 return sym;
7824 else
7825 return NULL;
7826}
7827
7828static struct symbol *
270140bd 7829find_old_style_renaming_symbol (const char *name, const struct block *block)
4c4b4cd2 7830{
7f0df278 7831 const struct symbol *function_sym = block_linkage_function (block);
4c4b4cd2
PH
7832 char *rename;
7833
7834 if (function_sym != NULL)
7835 {
7836 /* If the symbol is defined inside a function, NAME is not fully
7837 qualified. This means we need to prepend the function name
7838 as well as adding the ``___XR'' suffix to build the name of
7839 the associated renaming symbol. */
0d5cff50 7840 const char *function_name = SYMBOL_LINKAGE_NAME (function_sym);
529cad9c
PH
7841 /* Function names sometimes contain suffixes used
7842 for instance to qualify nested subprograms. When building
7843 the XR type name, we need to make sure that this suffix is
7844 not included. So do not include any suffix in the function
7845 name length below. */
69fadcdf 7846 int function_name_len = ada_name_prefix_len (function_name);
76a01679
JB
7847 const int rename_len = function_name_len + 2 /* "__" */
7848 + strlen (name) + 6 /* "___XR\0" */ ;
4c4b4cd2 7849
529cad9c 7850 /* Strip the suffix if necessary. */
69fadcdf
JB
7851 ada_remove_trailing_digits (function_name, &function_name_len);
7852 ada_remove_po_subprogram_suffix (function_name, &function_name_len);
7853 ada_remove_Xbn_suffix (function_name, &function_name_len);
529cad9c 7854
4c4b4cd2
PH
7855 /* Library-level functions are a special case, as GNAT adds
7856 a ``_ada_'' prefix to the function name to avoid namespace
aeb5907d 7857 pollution. However, the renaming symbols themselves do not
4c4b4cd2
PH
7858 have this prefix, so we need to skip this prefix if present. */
7859 if (function_name_len > 5 /* "_ada_" */
7860 && strstr (function_name, "_ada_") == function_name)
69fadcdf
JB
7861 {
7862 function_name += 5;
7863 function_name_len -= 5;
7864 }
4c4b4cd2
PH
7865
7866 rename = (char *) alloca (rename_len * sizeof (char));
69fadcdf
JB
7867 strncpy (rename, function_name, function_name_len);
7868 xsnprintf (rename + function_name_len, rename_len - function_name_len,
7869 "__%s___XR", name);
4c4b4cd2
PH
7870 }
7871 else
7872 {
7873 const int rename_len = strlen (name) + 6;
5b4ee69b 7874
4c4b4cd2 7875 rename = (char *) alloca (rename_len * sizeof (char));
88c15c34 7876 xsnprintf (rename, rename_len * sizeof (char), "%s___XR", name);
4c4b4cd2
PH
7877 }
7878
852dff6c 7879 return ada_find_any_type_symbol (rename);
4c4b4cd2
PH
7880}
7881
14f9c5c9 7882/* Because of GNAT encoding conventions, several GDB symbols may match a
4c4b4cd2 7883 given type name. If the type denoted by TYPE0 is to be preferred to
14f9c5c9 7884 that of TYPE1 for purposes of type printing, return non-zero;
4c4b4cd2
PH
7885 otherwise return 0. */
7886
14f9c5c9 7887int
d2e4a39e 7888ada_prefer_type (struct type *type0, struct type *type1)
14f9c5c9
AS
7889{
7890 if (type1 == NULL)
7891 return 1;
7892 else if (type0 == NULL)
7893 return 0;
7894 else if (TYPE_CODE (type1) == TYPE_CODE_VOID)
7895 return 1;
7896 else if (TYPE_CODE (type0) == TYPE_CODE_VOID)
7897 return 0;
4c4b4cd2
PH
7898 else if (TYPE_NAME (type1) == NULL && TYPE_NAME (type0) != NULL)
7899 return 1;
ad82864c 7900 else if (ada_is_constrained_packed_array_type (type0))
14f9c5c9 7901 return 1;
4c4b4cd2
PH
7902 else if (ada_is_array_descriptor_type (type0)
7903 && !ada_is_array_descriptor_type (type1))
14f9c5c9 7904 return 1;
aeb5907d
JB
7905 else
7906 {
7907 const char *type0_name = type_name_no_tag (type0);
7908 const char *type1_name = type_name_no_tag (type1);
7909
7910 if (type0_name != NULL && strstr (type0_name, "___XR") != NULL
7911 && (type1_name == NULL || strstr (type1_name, "___XR") == NULL))
7912 return 1;
7913 }
14f9c5c9
AS
7914 return 0;
7915}
7916
7917/* The name of TYPE, which is either its TYPE_NAME, or, if that is
4c4b4cd2
PH
7918 null, its TYPE_TAG_NAME. Null if TYPE is null. */
7919
0d5cff50 7920const char *
d2e4a39e 7921ada_type_name (struct type *type)
14f9c5c9 7922{
d2e4a39e 7923 if (type == NULL)
14f9c5c9
AS
7924 return NULL;
7925 else if (TYPE_NAME (type) != NULL)
7926 return TYPE_NAME (type);
7927 else
7928 return TYPE_TAG_NAME (type);
7929}
7930
b4ba55a1
JB
7931/* Search the list of "descriptive" types associated to TYPE for a type
7932 whose name is NAME. */
7933
7934static struct type *
7935find_parallel_type_by_descriptive_type (struct type *type, const char *name)
7936{
931e5bc3 7937 struct type *result, *tmp;
b4ba55a1 7938
c6044dd1
JB
7939 if (ada_ignore_descriptive_types_p)
7940 return NULL;
7941
b4ba55a1
JB
7942 /* If there no descriptive-type info, then there is no parallel type
7943 to be found. */
7944 if (!HAVE_GNAT_AUX_INFO (type))
7945 return NULL;
7946
7947 result = TYPE_DESCRIPTIVE_TYPE (type);
7948 while (result != NULL)
7949 {
0d5cff50 7950 const char *result_name = ada_type_name (result);
b4ba55a1
JB
7951
7952 if (result_name == NULL)
7953 {
7954 warning (_("unexpected null name on descriptive type"));
7955 return NULL;
7956 }
7957
7958 /* If the names match, stop. */
7959 if (strcmp (result_name, name) == 0)
7960 break;
7961
7962 /* Otherwise, look at the next item on the list, if any. */
7963 if (HAVE_GNAT_AUX_INFO (result))
931e5bc3
JG
7964 tmp = TYPE_DESCRIPTIVE_TYPE (result);
7965 else
7966 tmp = NULL;
7967
7968 /* If not found either, try after having resolved the typedef. */
7969 if (tmp != NULL)
7970 result = tmp;
b4ba55a1 7971 else
931e5bc3 7972 {
f168693b 7973 result = check_typedef (result);
931e5bc3
JG
7974 if (HAVE_GNAT_AUX_INFO (result))
7975 result = TYPE_DESCRIPTIVE_TYPE (result);
7976 else
7977 result = NULL;
7978 }
b4ba55a1
JB
7979 }
7980
7981 /* If we didn't find a match, see whether this is a packed array. With
7982 older compilers, the descriptive type information is either absent or
7983 irrelevant when it comes to packed arrays so the above lookup fails.
7984 Fall back to using a parallel lookup by name in this case. */
12ab9e09 7985 if (result == NULL && ada_is_constrained_packed_array_type (type))
b4ba55a1
JB
7986 return ada_find_any_type (name);
7987
7988 return result;
7989}
7990
7991/* Find a parallel type to TYPE with the specified NAME, using the
7992 descriptive type taken from the debugging information, if available,
7993 and otherwise using the (slower) name-based method. */
7994
7995static struct type *
7996ada_find_parallel_type_with_name (struct type *type, const char *name)
7997{
7998 struct type *result = NULL;
7999
8000 if (HAVE_GNAT_AUX_INFO (type))
8001 result = find_parallel_type_by_descriptive_type (type, name);
8002 else
8003 result = ada_find_any_type (name);
8004
8005 return result;
8006}
8007
8008/* Same as above, but specify the name of the parallel type by appending
4c4b4cd2 8009 SUFFIX to the name of TYPE. */
14f9c5c9 8010
d2e4a39e 8011struct type *
ebf56fd3 8012ada_find_parallel_type (struct type *type, const char *suffix)
14f9c5c9 8013{
0d5cff50 8014 char *name;
fe978cb0 8015 const char *type_name = ada_type_name (type);
14f9c5c9 8016 int len;
d2e4a39e 8017
fe978cb0 8018 if (type_name == NULL)
14f9c5c9
AS
8019 return NULL;
8020
fe978cb0 8021 len = strlen (type_name);
14f9c5c9 8022
b4ba55a1 8023 name = (char *) alloca (len + strlen (suffix) + 1);
14f9c5c9 8024
fe978cb0 8025 strcpy (name, type_name);
14f9c5c9
AS
8026 strcpy (name + len, suffix);
8027
b4ba55a1 8028 return ada_find_parallel_type_with_name (type, name);
14f9c5c9
AS
8029}
8030
14f9c5c9 8031/* If TYPE is a variable-size record type, return the corresponding template
4c4b4cd2 8032 type describing its fields. Otherwise, return NULL. */
14f9c5c9 8033
d2e4a39e
AS
8034static struct type *
8035dynamic_template_type (struct type *type)
14f9c5c9 8036{
61ee279c 8037 type = ada_check_typedef (type);
14f9c5c9
AS
8038
8039 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT
d2e4a39e 8040 || ada_type_name (type) == NULL)
14f9c5c9 8041 return NULL;
d2e4a39e 8042 else
14f9c5c9
AS
8043 {
8044 int len = strlen (ada_type_name (type));
5b4ee69b 8045
4c4b4cd2
PH
8046 if (len > 6 && strcmp (ada_type_name (type) + len - 6, "___XVE") == 0)
8047 return type;
14f9c5c9 8048 else
4c4b4cd2 8049 return ada_find_parallel_type (type, "___XVE");
14f9c5c9
AS
8050 }
8051}
8052
8053/* Assuming that TEMPL_TYPE is a union or struct type, returns
4c4b4cd2 8054 non-zero iff field FIELD_NUM of TEMPL_TYPE has dynamic size. */
14f9c5c9 8055
d2e4a39e
AS
8056static int
8057is_dynamic_field (struct type *templ_type, int field_num)
14f9c5c9
AS
8058{
8059 const char *name = TYPE_FIELD_NAME (templ_type, field_num);
5b4ee69b 8060
d2e4a39e 8061 return name != NULL
14f9c5c9
AS
8062 && TYPE_CODE (TYPE_FIELD_TYPE (templ_type, field_num)) == TYPE_CODE_PTR
8063 && strstr (name, "___XVL") != NULL;
8064}
8065
4c4b4cd2
PH
8066/* The index of the variant field of TYPE, or -1 if TYPE does not
8067 represent a variant record type. */
14f9c5c9 8068
d2e4a39e 8069static int
4c4b4cd2 8070variant_field_index (struct type *type)
14f9c5c9
AS
8071{
8072 int f;
8073
4c4b4cd2
PH
8074 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT)
8075 return -1;
8076
8077 for (f = 0; f < TYPE_NFIELDS (type); f += 1)
8078 {
8079 if (ada_is_variant_part (type, f))
8080 return f;
8081 }
8082 return -1;
14f9c5c9
AS
8083}
8084
4c4b4cd2
PH
8085/* A record type with no fields. */
8086
d2e4a39e 8087static struct type *
fe978cb0 8088empty_record (struct type *templ)
14f9c5c9 8089{
fe978cb0 8090 struct type *type = alloc_type_copy (templ);
5b4ee69b 8091
14f9c5c9
AS
8092 TYPE_CODE (type) = TYPE_CODE_STRUCT;
8093 TYPE_NFIELDS (type) = 0;
8094 TYPE_FIELDS (type) = NULL;
b1f33ddd 8095 INIT_CPLUS_SPECIFIC (type);
14f9c5c9
AS
8096 TYPE_NAME (type) = "<empty>";
8097 TYPE_TAG_NAME (type) = NULL;
14f9c5c9
AS
8098 TYPE_LENGTH (type) = 0;
8099 return type;
8100}
8101
8102/* An ordinary record type (with fixed-length fields) that describes
4c4b4cd2
PH
8103 the value of type TYPE at VALADDR or ADDRESS (see comments at
8104 the beginning of this section) VAL according to GNAT conventions.
8105 DVAL0 should describe the (portion of a) record that contains any
df407dfe 8106 necessary discriminants. It should be NULL if value_type (VAL) is
14f9c5c9
AS
8107 an outer-level type (i.e., as opposed to a branch of a variant.) A
8108 variant field (unless unchecked) is replaced by a particular branch
4c4b4cd2 8109 of the variant.
14f9c5c9 8110
4c4b4cd2
PH
8111 If not KEEP_DYNAMIC_FIELDS, then all fields whose position or
8112 length are not statically known are discarded. As a consequence,
8113 VALADDR, ADDRESS and DVAL0 are ignored.
8114
8115 NOTE: Limitations: For now, we assume that dynamic fields and
8116 variants occupy whole numbers of bytes. However, they need not be
8117 byte-aligned. */
8118
8119struct type *
10a2c479 8120ada_template_to_fixed_record_type_1 (struct type *type,
fc1a4b47 8121 const gdb_byte *valaddr,
4c4b4cd2
PH
8122 CORE_ADDR address, struct value *dval0,
8123 int keep_dynamic_fields)
14f9c5c9 8124{
d2e4a39e
AS
8125 struct value *mark = value_mark ();
8126 struct value *dval;
8127 struct type *rtype;
14f9c5c9 8128 int nfields, bit_len;
4c4b4cd2 8129 int variant_field;
14f9c5c9 8130 long off;
d94e4f4f 8131 int fld_bit_len;
14f9c5c9
AS
8132 int f;
8133
4c4b4cd2
PH
8134 /* Compute the number of fields in this record type that are going
8135 to be processed: unless keep_dynamic_fields, this includes only
8136 fields whose position and length are static will be processed. */
8137 if (keep_dynamic_fields)
8138 nfields = TYPE_NFIELDS (type);
8139 else
8140 {
8141 nfields = 0;
76a01679 8142 while (nfields < TYPE_NFIELDS (type)
4c4b4cd2
PH
8143 && !ada_is_variant_part (type, nfields)
8144 && !is_dynamic_field (type, nfields))
8145 nfields++;
8146 }
8147
e9bb382b 8148 rtype = alloc_type_copy (type);
14f9c5c9
AS
8149 TYPE_CODE (rtype) = TYPE_CODE_STRUCT;
8150 INIT_CPLUS_SPECIFIC (rtype);
8151 TYPE_NFIELDS (rtype) = nfields;
d2e4a39e 8152 TYPE_FIELDS (rtype) = (struct field *)
14f9c5c9
AS
8153 TYPE_ALLOC (rtype, nfields * sizeof (struct field));
8154 memset (TYPE_FIELDS (rtype), 0, sizeof (struct field) * nfields);
8155 TYPE_NAME (rtype) = ada_type_name (type);
8156 TYPE_TAG_NAME (rtype) = NULL;
876cecd0 8157 TYPE_FIXED_INSTANCE (rtype) = 1;
14f9c5c9 8158
d2e4a39e
AS
8159 off = 0;
8160 bit_len = 0;
4c4b4cd2
PH
8161 variant_field = -1;
8162
14f9c5c9
AS
8163 for (f = 0; f < nfields; f += 1)
8164 {
6c038f32
PH
8165 off = align_value (off, field_alignment (type, f))
8166 + TYPE_FIELD_BITPOS (type, f);
945b3a32 8167 SET_FIELD_BITPOS (TYPE_FIELD (rtype, f), off);
d2e4a39e 8168 TYPE_FIELD_BITSIZE (rtype, f) = 0;
14f9c5c9 8169
d2e4a39e 8170 if (ada_is_variant_part (type, f))
4c4b4cd2
PH
8171 {
8172 variant_field = f;
d94e4f4f 8173 fld_bit_len = 0;
4c4b4cd2 8174 }
14f9c5c9 8175 else if (is_dynamic_field (type, f))
4c4b4cd2 8176 {
284614f0
JB
8177 const gdb_byte *field_valaddr = valaddr;
8178 CORE_ADDR field_address = address;
8179 struct type *field_type =
8180 TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type, f));
8181
4c4b4cd2 8182 if (dval0 == NULL)
b5304971
JG
8183 {
8184 /* rtype's length is computed based on the run-time
8185 value of discriminants. If the discriminants are not
8186 initialized, the type size may be completely bogus and
0963b4bd 8187 GDB may fail to allocate a value for it. So check the
b5304971 8188 size first before creating the value. */
c1b5a1a6 8189 ada_ensure_varsize_limit (rtype);
012370f6
TT
8190 /* Using plain value_from_contents_and_address here
8191 causes problems because we will end up trying to
8192 resolve a type that is currently being
8193 constructed. */
8194 dval = value_from_contents_and_address_unresolved (rtype,
8195 valaddr,
8196 address);
9f1f738a 8197 rtype = value_type (dval);
b5304971 8198 }
4c4b4cd2
PH
8199 else
8200 dval = dval0;
8201
284614f0
JB
8202 /* If the type referenced by this field is an aligner type, we need
8203 to unwrap that aligner type, because its size might not be set.
8204 Keeping the aligner type would cause us to compute the wrong
8205 size for this field, impacting the offset of the all the fields
8206 that follow this one. */
8207 if (ada_is_aligner_type (field_type))
8208 {
8209 long field_offset = TYPE_FIELD_BITPOS (field_type, f);
8210
8211 field_valaddr = cond_offset_host (field_valaddr, field_offset);
8212 field_address = cond_offset_target (field_address, field_offset);
8213 field_type = ada_aligned_type (field_type);
8214 }
8215
8216 field_valaddr = cond_offset_host (field_valaddr,
8217 off / TARGET_CHAR_BIT);
8218 field_address = cond_offset_target (field_address,
8219 off / TARGET_CHAR_BIT);
8220
8221 /* Get the fixed type of the field. Note that, in this case,
8222 we do not want to get the real type out of the tag: if
8223 the current field is the parent part of a tagged record,
8224 we will get the tag of the object. Clearly wrong: the real
8225 type of the parent is not the real type of the child. We
8226 would end up in an infinite loop. */
8227 field_type = ada_get_base_type (field_type);
8228 field_type = ada_to_fixed_type (field_type, field_valaddr,
8229 field_address, dval, 0);
27f2a97b
JB
8230 /* If the field size is already larger than the maximum
8231 object size, then the record itself will necessarily
8232 be larger than the maximum object size. We need to make
8233 this check now, because the size might be so ridiculously
8234 large (due to an uninitialized variable in the inferior)
8235 that it would cause an overflow when adding it to the
8236 record size. */
c1b5a1a6 8237 ada_ensure_varsize_limit (field_type);
284614f0
JB
8238
8239 TYPE_FIELD_TYPE (rtype, f) = field_type;
4c4b4cd2 8240 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
27f2a97b
JB
8241 /* The multiplication can potentially overflow. But because
8242 the field length has been size-checked just above, and
8243 assuming that the maximum size is a reasonable value,
8244 an overflow should not happen in practice. So rather than
8245 adding overflow recovery code to this already complex code,
8246 we just assume that it's not going to happen. */
d94e4f4f 8247 fld_bit_len =
4c4b4cd2
PH
8248 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, f)) * TARGET_CHAR_BIT;
8249 }
14f9c5c9 8250 else
4c4b4cd2 8251 {
5ded5331
JB
8252 /* Note: If this field's type is a typedef, it is important
8253 to preserve the typedef layer.
8254
8255 Otherwise, we might be transforming a typedef to a fat
8256 pointer (encoding a pointer to an unconstrained array),
8257 into a basic fat pointer (encoding an unconstrained
8258 array). As both types are implemented using the same
8259 structure, the typedef is the only clue which allows us
8260 to distinguish between the two options. Stripping it
8261 would prevent us from printing this field appropriately. */
8262 TYPE_FIELD_TYPE (rtype, f) = TYPE_FIELD_TYPE (type, f);
4c4b4cd2
PH
8263 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
8264 if (TYPE_FIELD_BITSIZE (type, f) > 0)
d94e4f4f 8265 fld_bit_len =
4c4b4cd2
PH
8266 TYPE_FIELD_BITSIZE (rtype, f) = TYPE_FIELD_BITSIZE (type, f);
8267 else
5ded5331
JB
8268 {
8269 struct type *field_type = TYPE_FIELD_TYPE (type, f);
8270
8271 /* We need to be careful of typedefs when computing
8272 the length of our field. If this is a typedef,
8273 get the length of the target type, not the length
8274 of the typedef. */
8275 if (TYPE_CODE (field_type) == TYPE_CODE_TYPEDEF)
8276 field_type = ada_typedef_target_type (field_type);
8277
8278 fld_bit_len =
8279 TYPE_LENGTH (ada_check_typedef (field_type)) * TARGET_CHAR_BIT;
8280 }
4c4b4cd2 8281 }
14f9c5c9 8282 if (off + fld_bit_len > bit_len)
4c4b4cd2 8283 bit_len = off + fld_bit_len;
d94e4f4f 8284 off += fld_bit_len;
4c4b4cd2
PH
8285 TYPE_LENGTH (rtype) =
8286 align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
14f9c5c9 8287 }
4c4b4cd2
PH
8288
8289 /* We handle the variant part, if any, at the end because of certain
b1f33ddd 8290 odd cases in which it is re-ordered so as NOT to be the last field of
4c4b4cd2
PH
8291 the record. This can happen in the presence of representation
8292 clauses. */
8293 if (variant_field >= 0)
8294 {
8295 struct type *branch_type;
8296
8297 off = TYPE_FIELD_BITPOS (rtype, variant_field);
8298
8299 if (dval0 == NULL)
9f1f738a 8300 {
012370f6
TT
8301 /* Using plain value_from_contents_and_address here causes
8302 problems because we will end up trying to resolve a type
8303 that is currently being constructed. */
8304 dval = value_from_contents_and_address_unresolved (rtype, valaddr,
8305 address);
9f1f738a
SA
8306 rtype = value_type (dval);
8307 }
4c4b4cd2
PH
8308 else
8309 dval = dval0;
8310
8311 branch_type =
8312 to_fixed_variant_branch_type
8313 (TYPE_FIELD_TYPE (type, variant_field),
8314 cond_offset_host (valaddr, off / TARGET_CHAR_BIT),
8315 cond_offset_target (address, off / TARGET_CHAR_BIT), dval);
8316 if (branch_type == NULL)
8317 {
8318 for (f = variant_field + 1; f < TYPE_NFIELDS (rtype); f += 1)
8319 TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f];
8320 TYPE_NFIELDS (rtype) -= 1;
8321 }
8322 else
8323 {
8324 TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
8325 TYPE_FIELD_NAME (rtype, variant_field) = "S";
8326 fld_bit_len =
8327 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, variant_field)) *
8328 TARGET_CHAR_BIT;
8329 if (off + fld_bit_len > bit_len)
8330 bit_len = off + fld_bit_len;
8331 TYPE_LENGTH (rtype) =
8332 align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
8333 }
8334 }
8335
714e53ab
PH
8336 /* According to exp_dbug.ads, the size of TYPE for variable-size records
8337 should contain the alignment of that record, which should be a strictly
8338 positive value. If null or negative, then something is wrong, most
8339 probably in the debug info. In that case, we don't round up the size
0963b4bd 8340 of the resulting type. If this record is not part of another structure,
714e53ab
PH
8341 the current RTYPE length might be good enough for our purposes. */
8342 if (TYPE_LENGTH (type) <= 0)
8343 {
323e0a4a
AC
8344 if (TYPE_NAME (rtype))
8345 warning (_("Invalid type size for `%s' detected: %d."),
8346 TYPE_NAME (rtype), TYPE_LENGTH (type));
8347 else
8348 warning (_("Invalid type size for <unnamed> detected: %d."),
8349 TYPE_LENGTH (type));
714e53ab
PH
8350 }
8351 else
8352 {
8353 TYPE_LENGTH (rtype) = align_value (TYPE_LENGTH (rtype),
8354 TYPE_LENGTH (type));
8355 }
14f9c5c9
AS
8356
8357 value_free_to_mark (mark);
d2e4a39e 8358 if (TYPE_LENGTH (rtype) > varsize_limit)
323e0a4a 8359 error (_("record type with dynamic size is larger than varsize-limit"));
14f9c5c9
AS
8360 return rtype;
8361}
8362
4c4b4cd2
PH
8363/* As for ada_template_to_fixed_record_type_1 with KEEP_DYNAMIC_FIELDS
8364 of 1. */
14f9c5c9 8365
d2e4a39e 8366static struct type *
fc1a4b47 8367template_to_fixed_record_type (struct type *type, const gdb_byte *valaddr,
4c4b4cd2
PH
8368 CORE_ADDR address, struct value *dval0)
8369{
8370 return ada_template_to_fixed_record_type_1 (type, valaddr,
8371 address, dval0, 1);
8372}
8373
8374/* An ordinary record type in which ___XVL-convention fields and
8375 ___XVU- and ___XVN-convention field types in TYPE0 are replaced with
8376 static approximations, containing all possible fields. Uses
8377 no runtime values. Useless for use in values, but that's OK,
8378 since the results are used only for type determinations. Works on both
8379 structs and unions. Representation note: to save space, we memorize
8380 the result of this function in the TYPE_TARGET_TYPE of the
8381 template type. */
8382
8383static struct type *
8384template_to_static_fixed_type (struct type *type0)
14f9c5c9
AS
8385{
8386 struct type *type;
8387 int nfields;
8388 int f;
8389
9e195661
PMR
8390 /* No need no do anything if the input type is already fixed. */
8391 if (TYPE_FIXED_INSTANCE (type0))
8392 return type0;
8393
8394 /* Likewise if we already have computed the static approximation. */
4c4b4cd2
PH
8395 if (TYPE_TARGET_TYPE (type0) != NULL)
8396 return TYPE_TARGET_TYPE (type0);
8397
9e195661 8398 /* Don't clone TYPE0 until we are sure we are going to need a copy. */
4c4b4cd2 8399 type = type0;
9e195661
PMR
8400 nfields = TYPE_NFIELDS (type0);
8401
8402 /* Whether or not we cloned TYPE0, cache the result so that we don't do
8403 recompute all over next time. */
8404 TYPE_TARGET_TYPE (type0) = type;
14f9c5c9
AS
8405
8406 for (f = 0; f < nfields; f += 1)
8407 {
460efde1 8408 struct type *field_type = TYPE_FIELD_TYPE (type0, f);
4c4b4cd2 8409 struct type *new_type;
14f9c5c9 8410
4c4b4cd2 8411 if (is_dynamic_field (type0, f))
460efde1
JB
8412 {
8413 field_type = ada_check_typedef (field_type);
8414 new_type = to_static_fixed_type (TYPE_TARGET_TYPE (field_type));
8415 }
14f9c5c9 8416 else
f192137b 8417 new_type = static_unwrap_type (field_type);
9e195661
PMR
8418
8419 if (new_type != field_type)
8420 {
8421 /* Clone TYPE0 only the first time we get a new field type. */
8422 if (type == type0)
8423 {
8424 TYPE_TARGET_TYPE (type0) = type = alloc_type_copy (type0);
8425 TYPE_CODE (type) = TYPE_CODE (type0);
8426 INIT_CPLUS_SPECIFIC (type);
8427 TYPE_NFIELDS (type) = nfields;
8428 TYPE_FIELDS (type) = (struct field *)
8429 TYPE_ALLOC (type, nfields * sizeof (struct field));
8430 memcpy (TYPE_FIELDS (type), TYPE_FIELDS (type0),
8431 sizeof (struct field) * nfields);
8432 TYPE_NAME (type) = ada_type_name (type0);
8433 TYPE_TAG_NAME (type) = NULL;
8434 TYPE_FIXED_INSTANCE (type) = 1;
8435 TYPE_LENGTH (type) = 0;
8436 }
8437 TYPE_FIELD_TYPE (type, f) = new_type;
8438 TYPE_FIELD_NAME (type, f) = TYPE_FIELD_NAME (type0, f);
8439 }
14f9c5c9 8440 }
9e195661 8441
14f9c5c9
AS
8442 return type;
8443}
8444
4c4b4cd2 8445/* Given an object of type TYPE whose contents are at VALADDR and
5823c3ef
JB
8446 whose address in memory is ADDRESS, returns a revision of TYPE,
8447 which should be a non-dynamic-sized record, in which the variant
8448 part, if any, is replaced with the appropriate branch. Looks
4c4b4cd2
PH
8449 for discriminant values in DVAL0, which can be NULL if the record
8450 contains the necessary discriminant values. */
8451
d2e4a39e 8452static struct type *
fc1a4b47 8453to_record_with_fixed_variant_part (struct type *type, const gdb_byte *valaddr,
4c4b4cd2 8454 CORE_ADDR address, struct value *dval0)
14f9c5c9 8455{
d2e4a39e 8456 struct value *mark = value_mark ();
4c4b4cd2 8457 struct value *dval;
d2e4a39e 8458 struct type *rtype;
14f9c5c9
AS
8459 struct type *branch_type;
8460 int nfields = TYPE_NFIELDS (type);
4c4b4cd2 8461 int variant_field = variant_field_index (type);
14f9c5c9 8462
4c4b4cd2 8463 if (variant_field == -1)
14f9c5c9
AS
8464 return type;
8465
4c4b4cd2 8466 if (dval0 == NULL)
9f1f738a
SA
8467 {
8468 dval = value_from_contents_and_address (type, valaddr, address);
8469 type = value_type (dval);
8470 }
4c4b4cd2
PH
8471 else
8472 dval = dval0;
8473
e9bb382b 8474 rtype = alloc_type_copy (type);
14f9c5c9 8475 TYPE_CODE (rtype) = TYPE_CODE_STRUCT;
4c4b4cd2
PH
8476 INIT_CPLUS_SPECIFIC (rtype);
8477 TYPE_NFIELDS (rtype) = nfields;
d2e4a39e
AS
8478 TYPE_FIELDS (rtype) =
8479 (struct field *) TYPE_ALLOC (rtype, nfields * sizeof (struct field));
8480 memcpy (TYPE_FIELDS (rtype), TYPE_FIELDS (type),
4c4b4cd2 8481 sizeof (struct field) * nfields);
14f9c5c9
AS
8482 TYPE_NAME (rtype) = ada_type_name (type);
8483 TYPE_TAG_NAME (rtype) = NULL;
876cecd0 8484 TYPE_FIXED_INSTANCE (rtype) = 1;
14f9c5c9
AS
8485 TYPE_LENGTH (rtype) = TYPE_LENGTH (type);
8486
4c4b4cd2
PH
8487 branch_type = to_fixed_variant_branch_type
8488 (TYPE_FIELD_TYPE (type, variant_field),
d2e4a39e 8489 cond_offset_host (valaddr,
4c4b4cd2
PH
8490 TYPE_FIELD_BITPOS (type, variant_field)
8491 / TARGET_CHAR_BIT),
d2e4a39e 8492 cond_offset_target (address,
4c4b4cd2
PH
8493 TYPE_FIELD_BITPOS (type, variant_field)
8494 / TARGET_CHAR_BIT), dval);
d2e4a39e 8495 if (branch_type == NULL)
14f9c5c9 8496 {
4c4b4cd2 8497 int f;
5b4ee69b 8498
4c4b4cd2
PH
8499 for (f = variant_field + 1; f < nfields; f += 1)
8500 TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f];
14f9c5c9 8501 TYPE_NFIELDS (rtype) -= 1;
14f9c5c9
AS
8502 }
8503 else
8504 {
4c4b4cd2
PH
8505 TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
8506 TYPE_FIELD_NAME (rtype, variant_field) = "S";
8507 TYPE_FIELD_BITSIZE (rtype, variant_field) = 0;
14f9c5c9 8508 TYPE_LENGTH (rtype) += TYPE_LENGTH (branch_type);
14f9c5c9 8509 }
4c4b4cd2 8510 TYPE_LENGTH (rtype) -= TYPE_LENGTH (TYPE_FIELD_TYPE (type, variant_field));
d2e4a39e 8511
4c4b4cd2 8512 value_free_to_mark (mark);
14f9c5c9
AS
8513 return rtype;
8514}
8515
8516/* An ordinary record type (with fixed-length fields) that describes
8517 the value at (TYPE0, VALADDR, ADDRESS) [see explanation at
8518 beginning of this section]. Any necessary discriminants' values
4c4b4cd2
PH
8519 should be in DVAL, a record value; it may be NULL if the object
8520 at ADDR itself contains any necessary discriminant values.
8521 Additionally, VALADDR and ADDRESS may also be NULL if no discriminant
8522 values from the record are needed. Except in the case that DVAL,
8523 VALADDR, and ADDRESS are all 0 or NULL, a variant field (unless
8524 unchecked) is replaced by a particular branch of the variant.
8525
8526 NOTE: the case in which DVAL and VALADDR are NULL and ADDRESS is 0
8527 is questionable and may be removed. It can arise during the
8528 processing of an unconstrained-array-of-record type where all the
8529 variant branches have exactly the same size. This is because in
8530 such cases, the compiler does not bother to use the XVS convention
8531 when encoding the record. I am currently dubious of this
8532 shortcut and suspect the compiler should be altered. FIXME. */
14f9c5c9 8533
d2e4a39e 8534static struct type *
fc1a4b47 8535to_fixed_record_type (struct type *type0, const gdb_byte *valaddr,
4c4b4cd2 8536 CORE_ADDR address, struct value *dval)
14f9c5c9 8537{
d2e4a39e 8538 struct type *templ_type;
14f9c5c9 8539
876cecd0 8540 if (TYPE_FIXED_INSTANCE (type0))
4c4b4cd2
PH
8541 return type0;
8542
d2e4a39e 8543 templ_type = dynamic_template_type (type0);
14f9c5c9
AS
8544
8545 if (templ_type != NULL)
8546 return template_to_fixed_record_type (templ_type, valaddr, address, dval);
4c4b4cd2
PH
8547 else if (variant_field_index (type0) >= 0)
8548 {
8549 if (dval == NULL && valaddr == NULL && address == 0)
8550 return type0;
8551 return to_record_with_fixed_variant_part (type0, valaddr, address,
8552 dval);
8553 }
14f9c5c9
AS
8554 else
8555 {
876cecd0 8556 TYPE_FIXED_INSTANCE (type0) = 1;
14f9c5c9
AS
8557 return type0;
8558 }
8559
8560}
8561
8562/* An ordinary record type (with fixed-length fields) that describes
8563 the value at (VAR_TYPE0, VALADDR, ADDRESS), where VAR_TYPE0 is a
8564 union type. Any necessary discriminants' values should be in DVAL,
8565 a record value. That is, this routine selects the appropriate
8566 branch of the union at ADDR according to the discriminant value
b1f33ddd 8567 indicated in the union's type name. Returns VAR_TYPE0 itself if
0963b4bd 8568 it represents a variant subject to a pragma Unchecked_Union. */
14f9c5c9 8569
d2e4a39e 8570static struct type *
fc1a4b47 8571to_fixed_variant_branch_type (struct type *var_type0, const gdb_byte *valaddr,
4c4b4cd2 8572 CORE_ADDR address, struct value *dval)
14f9c5c9
AS
8573{
8574 int which;
d2e4a39e
AS
8575 struct type *templ_type;
8576 struct type *var_type;
14f9c5c9
AS
8577
8578 if (TYPE_CODE (var_type0) == TYPE_CODE_PTR)
8579 var_type = TYPE_TARGET_TYPE (var_type0);
d2e4a39e 8580 else
14f9c5c9
AS
8581 var_type = var_type0;
8582
8583 templ_type = ada_find_parallel_type (var_type, "___XVU");
8584
8585 if (templ_type != NULL)
8586 var_type = templ_type;
8587
b1f33ddd
JB
8588 if (is_unchecked_variant (var_type, value_type (dval)))
8589 return var_type0;
d2e4a39e
AS
8590 which =
8591 ada_which_variant_applies (var_type,
0fd88904 8592 value_type (dval), value_contents (dval));
14f9c5c9
AS
8593
8594 if (which < 0)
e9bb382b 8595 return empty_record (var_type);
14f9c5c9 8596 else if (is_dynamic_field (var_type, which))
4c4b4cd2 8597 return to_fixed_record_type
d2e4a39e
AS
8598 (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (var_type, which)),
8599 valaddr, address, dval);
4c4b4cd2 8600 else if (variant_field_index (TYPE_FIELD_TYPE (var_type, which)) >= 0)
d2e4a39e
AS
8601 return
8602 to_fixed_record_type
8603 (TYPE_FIELD_TYPE (var_type, which), valaddr, address, dval);
14f9c5c9
AS
8604 else
8605 return TYPE_FIELD_TYPE (var_type, which);
8606}
8607
8908fca5
JB
8608/* Assuming RANGE_TYPE is a TYPE_CODE_RANGE, return nonzero if
8609 ENCODING_TYPE, a type following the GNAT conventions for discrete
8610 type encodings, only carries redundant information. */
8611
8612static int
8613ada_is_redundant_range_encoding (struct type *range_type,
8614 struct type *encoding_type)
8615{
8616 struct type *fixed_range_type;
108d56a4 8617 const char *bounds_str;
8908fca5
JB
8618 int n;
8619 LONGEST lo, hi;
8620
8621 gdb_assert (TYPE_CODE (range_type) == TYPE_CODE_RANGE);
8622
005e2509
JB
8623 if (TYPE_CODE (get_base_type (range_type))
8624 != TYPE_CODE (get_base_type (encoding_type)))
8625 {
8626 /* The compiler probably used a simple base type to describe
8627 the range type instead of the range's actual base type,
8628 expecting us to get the real base type from the encoding
8629 anyway. In this situation, the encoding cannot be ignored
8630 as redundant. */
8631 return 0;
8632 }
8633
8908fca5
JB
8634 if (is_dynamic_type (range_type))
8635 return 0;
8636
8637 if (TYPE_NAME (encoding_type) == NULL)
8638 return 0;
8639
8640 bounds_str = strstr (TYPE_NAME (encoding_type), "___XDLU_");
8641 if (bounds_str == NULL)
8642 return 0;
8643
8644 n = 8; /* Skip "___XDLU_". */
8645 if (!ada_scan_number (bounds_str, n, &lo, &n))
8646 return 0;
8647 if (TYPE_LOW_BOUND (range_type) != lo)
8648 return 0;
8649
8650 n += 2; /* Skip the "__" separator between the two bounds. */
8651 if (!ada_scan_number (bounds_str, n, &hi, &n))
8652 return 0;
8653 if (TYPE_HIGH_BOUND (range_type) != hi)
8654 return 0;
8655
8656 return 1;
8657}
8658
8659/* Given the array type ARRAY_TYPE, return nonzero if DESC_TYPE,
8660 a type following the GNAT encoding for describing array type
8661 indices, only carries redundant information. */
8662
8663static int
8664ada_is_redundant_index_type_desc (struct type *array_type,
8665 struct type *desc_type)
8666{
8667 struct type *this_layer = check_typedef (array_type);
8668 int i;
8669
8670 for (i = 0; i < TYPE_NFIELDS (desc_type); i++)
8671 {
8672 if (!ada_is_redundant_range_encoding (TYPE_INDEX_TYPE (this_layer),
8673 TYPE_FIELD_TYPE (desc_type, i)))
8674 return 0;
8675 this_layer = check_typedef (TYPE_TARGET_TYPE (this_layer));
8676 }
8677
8678 return 1;
8679}
8680
14f9c5c9
AS
8681/* Assuming that TYPE0 is an array type describing the type of a value
8682 at ADDR, and that DVAL describes a record containing any
8683 discriminants used in TYPE0, returns a type for the value that
8684 contains no dynamic components (that is, no components whose sizes
8685 are determined by run-time quantities). Unless IGNORE_TOO_BIG is
8686 true, gives an error message if the resulting type's size is over
4c4b4cd2 8687 varsize_limit. */
14f9c5c9 8688
d2e4a39e
AS
8689static struct type *
8690to_fixed_array_type (struct type *type0, struct value *dval,
4c4b4cd2 8691 int ignore_too_big)
14f9c5c9 8692{
d2e4a39e
AS
8693 struct type *index_type_desc;
8694 struct type *result;
ad82864c 8695 int constrained_packed_array_p;
931e5bc3 8696 static const char *xa_suffix = "___XA";
14f9c5c9 8697
b0dd7688 8698 type0 = ada_check_typedef (type0);
284614f0 8699 if (TYPE_FIXED_INSTANCE (type0))
4c4b4cd2 8700 return type0;
14f9c5c9 8701
ad82864c
JB
8702 constrained_packed_array_p = ada_is_constrained_packed_array_type (type0);
8703 if (constrained_packed_array_p)
8704 type0 = decode_constrained_packed_array_type (type0);
284614f0 8705
931e5bc3
JG
8706 index_type_desc = ada_find_parallel_type (type0, xa_suffix);
8707
8708 /* As mentioned in exp_dbug.ads, for non bit-packed arrays an
8709 encoding suffixed with 'P' may still be generated. If so,
8710 it should be used to find the XA type. */
8711
8712 if (index_type_desc == NULL)
8713 {
1da0522e 8714 const char *type_name = ada_type_name (type0);
931e5bc3 8715
1da0522e 8716 if (type_name != NULL)
931e5bc3 8717 {
1da0522e 8718 const int len = strlen (type_name);
931e5bc3
JG
8719 char *name = (char *) alloca (len + strlen (xa_suffix));
8720
1da0522e 8721 if (type_name[len - 1] == 'P')
931e5bc3 8722 {
1da0522e 8723 strcpy (name, type_name);
931e5bc3
JG
8724 strcpy (name + len - 1, xa_suffix);
8725 index_type_desc = ada_find_parallel_type_with_name (type0, name);
8726 }
8727 }
8728 }
8729
28c85d6c 8730 ada_fixup_array_indexes_type (index_type_desc);
8908fca5
JB
8731 if (index_type_desc != NULL
8732 && ada_is_redundant_index_type_desc (type0, index_type_desc))
8733 {
8734 /* Ignore this ___XA parallel type, as it does not bring any
8735 useful information. This allows us to avoid creating fixed
8736 versions of the array's index types, which would be identical
8737 to the original ones. This, in turn, can also help avoid
8738 the creation of fixed versions of the array itself. */
8739 index_type_desc = NULL;
8740 }
8741
14f9c5c9
AS
8742 if (index_type_desc == NULL)
8743 {
61ee279c 8744 struct type *elt_type0 = ada_check_typedef (TYPE_TARGET_TYPE (type0));
5b4ee69b 8745
14f9c5c9 8746 /* NOTE: elt_type---the fixed version of elt_type0---should never
4c4b4cd2
PH
8747 depend on the contents of the array in properly constructed
8748 debugging data. */
529cad9c
PH
8749 /* Create a fixed version of the array element type.
8750 We're not providing the address of an element here,
e1d5a0d2 8751 and thus the actual object value cannot be inspected to do
529cad9c
PH
8752 the conversion. This should not be a problem, since arrays of
8753 unconstrained objects are not allowed. In particular, all
8754 the elements of an array of a tagged type should all be of
8755 the same type specified in the debugging info. No need to
8756 consult the object tag. */
1ed6ede0 8757 struct type *elt_type = ada_to_fixed_type (elt_type0, 0, 0, dval, 1);
14f9c5c9 8758
284614f0
JB
8759 /* Make sure we always create a new array type when dealing with
8760 packed array types, since we're going to fix-up the array
8761 type length and element bitsize a little further down. */
ad82864c 8762 if (elt_type0 == elt_type && !constrained_packed_array_p)
4c4b4cd2 8763 result = type0;
14f9c5c9 8764 else
e9bb382b 8765 result = create_array_type (alloc_type_copy (type0),
4c4b4cd2 8766 elt_type, TYPE_INDEX_TYPE (type0));
14f9c5c9
AS
8767 }
8768 else
8769 {
8770 int i;
8771 struct type *elt_type0;
8772
8773 elt_type0 = type0;
8774 for (i = TYPE_NFIELDS (index_type_desc); i > 0; i -= 1)
4c4b4cd2 8775 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
14f9c5c9
AS
8776
8777 /* NOTE: result---the fixed version of elt_type0---should never
4c4b4cd2
PH
8778 depend on the contents of the array in properly constructed
8779 debugging data. */
529cad9c
PH
8780 /* Create a fixed version of the array element type.
8781 We're not providing the address of an element here,
e1d5a0d2 8782 and thus the actual object value cannot be inspected to do
529cad9c
PH
8783 the conversion. This should not be a problem, since arrays of
8784 unconstrained objects are not allowed. In particular, all
8785 the elements of an array of a tagged type should all be of
8786 the same type specified in the debugging info. No need to
8787 consult the object tag. */
1ed6ede0
JB
8788 result =
8789 ada_to_fixed_type (ada_check_typedef (elt_type0), 0, 0, dval, 1);
1ce677a4
UW
8790
8791 elt_type0 = type0;
14f9c5c9 8792 for (i = TYPE_NFIELDS (index_type_desc) - 1; i >= 0; i -= 1)
4c4b4cd2
PH
8793 {
8794 struct type *range_type =
28c85d6c 8795 to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, i), dval);
5b4ee69b 8796
e9bb382b 8797 result = create_array_type (alloc_type_copy (elt_type0),
4c4b4cd2 8798 result, range_type);
1ce677a4 8799 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
4c4b4cd2 8800 }
d2e4a39e 8801 if (!ignore_too_big && TYPE_LENGTH (result) > varsize_limit)
323e0a4a 8802 error (_("array type with dynamic size is larger than varsize-limit"));
14f9c5c9
AS
8803 }
8804
2e6fda7d
JB
8805 /* We want to preserve the type name. This can be useful when
8806 trying to get the type name of a value that has already been
8807 printed (for instance, if the user did "print VAR; whatis $". */
8808 TYPE_NAME (result) = TYPE_NAME (type0);
8809
ad82864c 8810 if (constrained_packed_array_p)
284614f0
JB
8811 {
8812 /* So far, the resulting type has been created as if the original
8813 type was a regular (non-packed) array type. As a result, the
8814 bitsize of the array elements needs to be set again, and the array
8815 length needs to be recomputed based on that bitsize. */
8816 int len = TYPE_LENGTH (result) / TYPE_LENGTH (TYPE_TARGET_TYPE (result));
8817 int elt_bitsize = TYPE_FIELD_BITSIZE (type0, 0);
8818
8819 TYPE_FIELD_BITSIZE (result, 0) = TYPE_FIELD_BITSIZE (type0, 0);
8820 TYPE_LENGTH (result) = len * elt_bitsize / HOST_CHAR_BIT;
8821 if (TYPE_LENGTH (result) * HOST_CHAR_BIT < len * elt_bitsize)
8822 TYPE_LENGTH (result)++;
8823 }
8824
876cecd0 8825 TYPE_FIXED_INSTANCE (result) = 1;
14f9c5c9 8826 return result;
d2e4a39e 8827}
14f9c5c9
AS
8828
8829
8830/* A standard type (containing no dynamically sized components)
8831 corresponding to TYPE for the value (TYPE, VALADDR, ADDRESS)
8832 DVAL describes a record containing any discriminants used in TYPE0,
4c4b4cd2 8833 and may be NULL if there are none, or if the object of type TYPE at
529cad9c
PH
8834 ADDRESS or in VALADDR contains these discriminants.
8835
1ed6ede0
JB
8836 If CHECK_TAG is not null, in the case of tagged types, this function
8837 attempts to locate the object's tag and use it to compute the actual
8838 type. However, when ADDRESS is null, we cannot use it to determine the
8839 location of the tag, and therefore compute the tagged type's actual type.
8840 So we return the tagged type without consulting the tag. */
529cad9c 8841
f192137b
JB
8842static struct type *
8843ada_to_fixed_type_1 (struct type *type, const gdb_byte *valaddr,
1ed6ede0 8844 CORE_ADDR address, struct value *dval, int check_tag)
14f9c5c9 8845{
61ee279c 8846 type = ada_check_typedef (type);
d2e4a39e
AS
8847 switch (TYPE_CODE (type))
8848 {
8849 default:
14f9c5c9 8850 return type;
d2e4a39e 8851 case TYPE_CODE_STRUCT:
4c4b4cd2 8852 {
76a01679 8853 struct type *static_type = to_static_fixed_type (type);
1ed6ede0
JB
8854 struct type *fixed_record_type =
8855 to_fixed_record_type (type, valaddr, address, NULL);
5b4ee69b 8856
529cad9c
PH
8857 /* If STATIC_TYPE is a tagged type and we know the object's address,
8858 then we can determine its tag, and compute the object's actual
0963b4bd 8859 type from there. Note that we have to use the fixed record
1ed6ede0
JB
8860 type (the parent part of the record may have dynamic fields
8861 and the way the location of _tag is expressed may depend on
8862 them). */
529cad9c 8863
1ed6ede0 8864 if (check_tag && address != 0 && ada_is_tagged_type (static_type, 0))
76a01679 8865 {
b50d69b5
JG
8866 struct value *tag =
8867 value_tag_from_contents_and_address
8868 (fixed_record_type,
8869 valaddr,
8870 address);
8871 struct type *real_type = type_from_tag (tag);
8872 struct value *obj =
8873 value_from_contents_and_address (fixed_record_type,
8874 valaddr,
8875 address);
9f1f738a 8876 fixed_record_type = value_type (obj);
76a01679 8877 if (real_type != NULL)
b50d69b5
JG
8878 return to_fixed_record_type
8879 (real_type, NULL,
8880 value_address (ada_tag_value_at_base_address (obj)), NULL);
76a01679 8881 }
4af88198
JB
8882
8883 /* Check to see if there is a parallel ___XVZ variable.
8884 If there is, then it provides the actual size of our type. */
8885 else if (ada_type_name (fixed_record_type) != NULL)
8886 {
0d5cff50 8887 const char *name = ada_type_name (fixed_record_type);
224c3ddb
SM
8888 char *xvz_name
8889 = (char *) alloca (strlen (name) + 7 /* "___XVZ\0" */);
4af88198
JB
8890 LONGEST size;
8891
88c15c34 8892 xsnprintf (xvz_name, strlen (name) + 7, "%s___XVZ", name);
edb0c9cb
PA
8893 if (get_int_var_value (xvz_name, size)
8894 && TYPE_LENGTH (fixed_record_type) != size)
4af88198
JB
8895 {
8896 fixed_record_type = copy_type (fixed_record_type);
8897 TYPE_LENGTH (fixed_record_type) = size;
8898
8899 /* The FIXED_RECORD_TYPE may have be a stub. We have
8900 observed this when the debugging info is STABS, and
8901 apparently it is something that is hard to fix.
8902
8903 In practice, we don't need the actual type definition
8904 at all, because the presence of the XVZ variable allows us
8905 to assume that there must be a XVS type as well, which we
8906 should be able to use later, when we need the actual type
8907 definition.
8908
8909 In the meantime, pretend that the "fixed" type we are
8910 returning is NOT a stub, because this can cause trouble
8911 when using this type to create new types targeting it.
8912 Indeed, the associated creation routines often check
8913 whether the target type is a stub and will try to replace
0963b4bd 8914 it, thus using a type with the wrong size. This, in turn,
4af88198
JB
8915 might cause the new type to have the wrong size too.
8916 Consider the case of an array, for instance, where the size
8917 of the array is computed from the number of elements in
8918 our array multiplied by the size of its element. */
8919 TYPE_STUB (fixed_record_type) = 0;
8920 }
8921 }
1ed6ede0 8922 return fixed_record_type;
4c4b4cd2 8923 }
d2e4a39e 8924 case TYPE_CODE_ARRAY:
4c4b4cd2 8925 return to_fixed_array_type (type, dval, 1);
d2e4a39e
AS
8926 case TYPE_CODE_UNION:
8927 if (dval == NULL)
4c4b4cd2 8928 return type;
d2e4a39e 8929 else
4c4b4cd2 8930 return to_fixed_variant_branch_type (type, valaddr, address, dval);
d2e4a39e 8931 }
14f9c5c9
AS
8932}
8933
f192137b
JB
8934/* The same as ada_to_fixed_type_1, except that it preserves the type
8935 if it is a TYPE_CODE_TYPEDEF of a type that is already fixed.
96dbd2c1
JB
8936
8937 The typedef layer needs be preserved in order to differentiate between
8938 arrays and array pointers when both types are implemented using the same
8939 fat pointer. In the array pointer case, the pointer is encoded as
8940 a typedef of the pointer type. For instance, considering:
8941
8942 type String_Access is access String;
8943 S1 : String_Access := null;
8944
8945 To the debugger, S1 is defined as a typedef of type String. But
8946 to the user, it is a pointer. So if the user tries to print S1,
8947 we should not dereference the array, but print the array address
8948 instead.
8949
8950 If we didn't preserve the typedef layer, we would lose the fact that
8951 the type is to be presented as a pointer (needs de-reference before
8952 being printed). And we would also use the source-level type name. */
f192137b
JB
8953
8954struct type *
8955ada_to_fixed_type (struct type *type, const gdb_byte *valaddr,
8956 CORE_ADDR address, struct value *dval, int check_tag)
8957
8958{
8959 struct type *fixed_type =
8960 ada_to_fixed_type_1 (type, valaddr, address, dval, check_tag);
8961
96dbd2c1
JB
8962 /* If TYPE is a typedef and its target type is the same as the FIXED_TYPE,
8963 then preserve the typedef layer.
8964
8965 Implementation note: We can only check the main-type portion of
8966 the TYPE and FIXED_TYPE, because eliminating the typedef layer
8967 from TYPE now returns a type that has the same instance flags
8968 as TYPE. For instance, if TYPE is a "typedef const", and its
8969 target type is a "struct", then the typedef elimination will return
8970 a "const" version of the target type. See check_typedef for more
8971 details about how the typedef layer elimination is done.
8972
8973 brobecker/2010-11-19: It seems to me that the only case where it is
8974 useful to preserve the typedef layer is when dealing with fat pointers.
8975 Perhaps, we could add a check for that and preserve the typedef layer
8976 only in that situation. But this seems unecessary so far, probably
8977 because we call check_typedef/ada_check_typedef pretty much everywhere.
8978 */
f192137b 8979 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF
720d1a40 8980 && (TYPE_MAIN_TYPE (ada_typedef_target_type (type))
96dbd2c1 8981 == TYPE_MAIN_TYPE (fixed_type)))
f192137b
JB
8982 return type;
8983
8984 return fixed_type;
8985}
8986
14f9c5c9 8987/* A standard (static-sized) type corresponding as well as possible to
4c4b4cd2 8988 TYPE0, but based on no runtime data. */
14f9c5c9 8989
d2e4a39e
AS
8990static struct type *
8991to_static_fixed_type (struct type *type0)
14f9c5c9 8992{
d2e4a39e 8993 struct type *type;
14f9c5c9
AS
8994
8995 if (type0 == NULL)
8996 return NULL;
8997
876cecd0 8998 if (TYPE_FIXED_INSTANCE (type0))
4c4b4cd2
PH
8999 return type0;
9000
61ee279c 9001 type0 = ada_check_typedef (type0);
d2e4a39e 9002
14f9c5c9
AS
9003 switch (TYPE_CODE (type0))
9004 {
9005 default:
9006 return type0;
9007 case TYPE_CODE_STRUCT:
9008 type = dynamic_template_type (type0);
d2e4a39e 9009 if (type != NULL)
4c4b4cd2
PH
9010 return template_to_static_fixed_type (type);
9011 else
9012 return template_to_static_fixed_type (type0);
14f9c5c9
AS
9013 case TYPE_CODE_UNION:
9014 type = ada_find_parallel_type (type0, "___XVU");
9015 if (type != NULL)
4c4b4cd2
PH
9016 return template_to_static_fixed_type (type);
9017 else
9018 return template_to_static_fixed_type (type0);
14f9c5c9
AS
9019 }
9020}
9021
4c4b4cd2
PH
9022/* A static approximation of TYPE with all type wrappers removed. */
9023
d2e4a39e
AS
9024static struct type *
9025static_unwrap_type (struct type *type)
14f9c5c9
AS
9026{
9027 if (ada_is_aligner_type (type))
9028 {
61ee279c 9029 struct type *type1 = TYPE_FIELD_TYPE (ada_check_typedef (type), 0);
14f9c5c9 9030 if (ada_type_name (type1) == NULL)
4c4b4cd2 9031 TYPE_NAME (type1) = ada_type_name (type);
14f9c5c9
AS
9032
9033 return static_unwrap_type (type1);
9034 }
d2e4a39e 9035 else
14f9c5c9 9036 {
d2e4a39e 9037 struct type *raw_real_type = ada_get_base_type (type);
5b4ee69b 9038
d2e4a39e 9039 if (raw_real_type == type)
4c4b4cd2 9040 return type;
14f9c5c9 9041 else
4c4b4cd2 9042 return to_static_fixed_type (raw_real_type);
14f9c5c9
AS
9043 }
9044}
9045
9046/* In some cases, incomplete and private types require
4c4b4cd2 9047 cross-references that are not resolved as records (for example,
14f9c5c9
AS
9048 type Foo;
9049 type FooP is access Foo;
9050 V: FooP;
9051 type Foo is array ...;
4c4b4cd2 9052 ). In these cases, since there is no mechanism for producing
14f9c5c9
AS
9053 cross-references to such types, we instead substitute for FooP a
9054 stub enumeration type that is nowhere resolved, and whose tag is
4c4b4cd2 9055 the name of the actual type. Call these types "non-record stubs". */
14f9c5c9
AS
9056
9057/* A type equivalent to TYPE that is not a non-record stub, if one
4c4b4cd2
PH
9058 exists, otherwise TYPE. */
9059
d2e4a39e 9060struct type *
61ee279c 9061ada_check_typedef (struct type *type)
14f9c5c9 9062{
727e3d2e
JB
9063 if (type == NULL)
9064 return NULL;
9065
720d1a40
JB
9066 /* If our type is a typedef type of a fat pointer, then we're done.
9067 We don't want to strip the TYPE_CODE_TYPDEF layer, because this is
9068 what allows us to distinguish between fat pointers that represent
9069 array types, and fat pointers that represent array access types
9070 (in both cases, the compiler implements them as fat pointers). */
9071 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF
9072 && is_thick_pntr (ada_typedef_target_type (type)))
9073 return type;
9074
f168693b 9075 type = check_typedef (type);
14f9c5c9 9076 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM
529cad9c 9077 || !TYPE_STUB (type)
14f9c5c9
AS
9078 || TYPE_TAG_NAME (type) == NULL)
9079 return type;
d2e4a39e 9080 else
14f9c5c9 9081 {
0d5cff50 9082 const char *name = TYPE_TAG_NAME (type);
d2e4a39e 9083 struct type *type1 = ada_find_any_type (name);
5b4ee69b 9084
05e522ef
JB
9085 if (type1 == NULL)
9086 return type;
9087
9088 /* TYPE1 might itself be a TYPE_CODE_TYPEDEF (this can happen with
9089 stubs pointing to arrays, as we don't create symbols for array
3a867c22
JB
9090 types, only for the typedef-to-array types). If that's the case,
9091 strip the typedef layer. */
9092 if (TYPE_CODE (type1) == TYPE_CODE_TYPEDEF)
9093 type1 = ada_check_typedef (type1);
9094
9095 return type1;
14f9c5c9
AS
9096 }
9097}
9098
9099/* A value representing the data at VALADDR/ADDRESS as described by
9100 type TYPE0, but with a standard (static-sized) type that correctly
9101 describes it. If VAL0 is not NULL and TYPE0 already is a standard
9102 type, then return VAL0 [this feature is simply to avoid redundant
4c4b4cd2 9103 creation of struct values]. */
14f9c5c9 9104
4c4b4cd2
PH
9105static struct value *
9106ada_to_fixed_value_create (struct type *type0, CORE_ADDR address,
9107 struct value *val0)
14f9c5c9 9108{
1ed6ede0 9109 struct type *type = ada_to_fixed_type (type0, 0, address, NULL, 1);
5b4ee69b 9110
14f9c5c9
AS
9111 if (type == type0 && val0 != NULL)
9112 return val0;
d2e4a39e 9113 else
4c4b4cd2
PH
9114 return value_from_contents_and_address (type, 0, address);
9115}
9116
9117/* A value representing VAL, but with a standard (static-sized) type
9118 that correctly describes it. Does not necessarily create a new
9119 value. */
9120
0c3acc09 9121struct value *
4c4b4cd2
PH
9122ada_to_fixed_value (struct value *val)
9123{
c48db5ca
JB
9124 val = unwrap_value (val);
9125 val = ada_to_fixed_value_create (value_type (val),
9126 value_address (val),
9127 val);
9128 return val;
14f9c5c9 9129}
d2e4a39e 9130\f
14f9c5c9 9131
14f9c5c9
AS
9132/* Attributes */
9133
4c4b4cd2
PH
9134/* Table mapping attribute numbers to names.
9135 NOTE: Keep up to date with enum ada_attribute definition in ada-lang.h. */
14f9c5c9 9136
d2e4a39e 9137static const char *attribute_names[] = {
14f9c5c9
AS
9138 "<?>",
9139
d2e4a39e 9140 "first",
14f9c5c9
AS
9141 "last",
9142 "length",
9143 "image",
14f9c5c9
AS
9144 "max",
9145 "min",
4c4b4cd2
PH
9146 "modulus",
9147 "pos",
9148 "size",
9149 "tag",
14f9c5c9 9150 "val",
14f9c5c9
AS
9151 0
9152};
9153
d2e4a39e 9154const char *
4c4b4cd2 9155ada_attribute_name (enum exp_opcode n)
14f9c5c9 9156{
4c4b4cd2
PH
9157 if (n >= OP_ATR_FIRST && n <= (int) OP_ATR_VAL)
9158 return attribute_names[n - OP_ATR_FIRST + 1];
14f9c5c9
AS
9159 else
9160 return attribute_names[0];
9161}
9162
4c4b4cd2 9163/* Evaluate the 'POS attribute applied to ARG. */
14f9c5c9 9164
4c4b4cd2
PH
9165static LONGEST
9166pos_atr (struct value *arg)
14f9c5c9 9167{
24209737
PH
9168 struct value *val = coerce_ref (arg);
9169 struct type *type = value_type (val);
aa715135 9170 LONGEST result;
14f9c5c9 9171
d2e4a39e 9172 if (!discrete_type_p (type))
323e0a4a 9173 error (_("'POS only defined on discrete types"));
14f9c5c9 9174
aa715135
JG
9175 if (!discrete_position (type, value_as_long (val), &result))
9176 error (_("enumeration value is invalid: can't find 'POS"));
14f9c5c9 9177
aa715135 9178 return result;
4c4b4cd2
PH
9179}
9180
9181static struct value *
3cb382c9 9182value_pos_atr (struct type *type, struct value *arg)
4c4b4cd2 9183{
3cb382c9 9184 return value_from_longest (type, pos_atr (arg));
14f9c5c9
AS
9185}
9186
4c4b4cd2 9187/* Evaluate the TYPE'VAL attribute applied to ARG. */
14f9c5c9 9188
d2e4a39e
AS
9189static struct value *
9190value_val_atr (struct type *type, struct value *arg)
14f9c5c9 9191{
d2e4a39e 9192 if (!discrete_type_p (type))
323e0a4a 9193 error (_("'VAL only defined on discrete types"));
df407dfe 9194 if (!integer_type_p (value_type (arg)))
323e0a4a 9195 error (_("'VAL requires integral argument"));
14f9c5c9
AS
9196
9197 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
9198 {
9199 long pos = value_as_long (arg);
5b4ee69b 9200
14f9c5c9 9201 if (pos < 0 || pos >= TYPE_NFIELDS (type))
323e0a4a 9202 error (_("argument to 'VAL out of range"));
14e75d8e 9203 return value_from_longest (type, TYPE_FIELD_ENUMVAL (type, pos));
14f9c5c9
AS
9204 }
9205 else
9206 return value_from_longest (type, value_as_long (arg));
9207}
14f9c5c9 9208\f
d2e4a39e 9209
4c4b4cd2 9210 /* Evaluation */
14f9c5c9 9211
4c4b4cd2
PH
9212/* True if TYPE appears to be an Ada character type.
9213 [At the moment, this is true only for Character and Wide_Character;
9214 It is a heuristic test that could stand improvement]. */
14f9c5c9 9215
d2e4a39e
AS
9216int
9217ada_is_character_type (struct type *type)
14f9c5c9 9218{
7b9f71f2
JB
9219 const char *name;
9220
9221 /* If the type code says it's a character, then assume it really is,
9222 and don't check any further. */
9223 if (TYPE_CODE (type) == TYPE_CODE_CHAR)
9224 return 1;
9225
9226 /* Otherwise, assume it's a character type iff it is a discrete type
9227 with a known character type name. */
9228 name = ada_type_name (type);
9229 return (name != NULL
9230 && (TYPE_CODE (type) == TYPE_CODE_INT
9231 || TYPE_CODE (type) == TYPE_CODE_RANGE)
9232 && (strcmp (name, "character") == 0
9233 || strcmp (name, "wide_character") == 0
5a517ebd 9234 || strcmp (name, "wide_wide_character") == 0
7b9f71f2 9235 || strcmp (name, "unsigned char") == 0));
14f9c5c9
AS
9236}
9237
4c4b4cd2 9238/* True if TYPE appears to be an Ada string type. */
14f9c5c9
AS
9239
9240int
ebf56fd3 9241ada_is_string_type (struct type *type)
14f9c5c9 9242{
61ee279c 9243 type = ada_check_typedef (type);
d2e4a39e 9244 if (type != NULL
14f9c5c9 9245 && TYPE_CODE (type) != TYPE_CODE_PTR
76a01679
JB
9246 && (ada_is_simple_array_type (type)
9247 || ada_is_array_descriptor_type (type))
14f9c5c9
AS
9248 && ada_array_arity (type) == 1)
9249 {
9250 struct type *elttype = ada_array_element_type (type, 1);
9251
9252 return ada_is_character_type (elttype);
9253 }
d2e4a39e 9254 else
14f9c5c9
AS
9255 return 0;
9256}
9257
5bf03f13
JB
9258/* The compiler sometimes provides a parallel XVS type for a given
9259 PAD type. Normally, it is safe to follow the PAD type directly,
9260 but older versions of the compiler have a bug that causes the offset
9261 of its "F" field to be wrong. Following that field in that case
9262 would lead to incorrect results, but this can be worked around
9263 by ignoring the PAD type and using the associated XVS type instead.
9264
9265 Set to True if the debugger should trust the contents of PAD types.
9266 Otherwise, ignore the PAD type if there is a parallel XVS type. */
9267static int trust_pad_over_xvs = 1;
14f9c5c9
AS
9268
9269/* True if TYPE is a struct type introduced by the compiler to force the
9270 alignment of a value. Such types have a single field with a
4c4b4cd2 9271 distinctive name. */
14f9c5c9
AS
9272
9273int
ebf56fd3 9274ada_is_aligner_type (struct type *type)
14f9c5c9 9275{
61ee279c 9276 type = ada_check_typedef (type);
714e53ab 9277
5bf03f13 9278 if (!trust_pad_over_xvs && ada_find_parallel_type (type, "___XVS") != NULL)
714e53ab
PH
9279 return 0;
9280
14f9c5c9 9281 return (TYPE_CODE (type) == TYPE_CODE_STRUCT
4c4b4cd2
PH
9282 && TYPE_NFIELDS (type) == 1
9283 && strcmp (TYPE_FIELD_NAME (type, 0), "F") == 0);
14f9c5c9
AS
9284}
9285
9286/* If there is an ___XVS-convention type parallel to SUBTYPE, return
4c4b4cd2 9287 the parallel type. */
14f9c5c9 9288
d2e4a39e
AS
9289struct type *
9290ada_get_base_type (struct type *raw_type)
14f9c5c9 9291{
d2e4a39e
AS
9292 struct type *real_type_namer;
9293 struct type *raw_real_type;
14f9c5c9
AS
9294
9295 if (raw_type == NULL || TYPE_CODE (raw_type) != TYPE_CODE_STRUCT)
9296 return raw_type;
9297
284614f0
JB
9298 if (ada_is_aligner_type (raw_type))
9299 /* The encoding specifies that we should always use the aligner type.
9300 So, even if this aligner type has an associated XVS type, we should
9301 simply ignore it.
9302
9303 According to the compiler gurus, an XVS type parallel to an aligner
9304 type may exist because of a stabs limitation. In stabs, aligner
9305 types are empty because the field has a variable-sized type, and
9306 thus cannot actually be used as an aligner type. As a result,
9307 we need the associated parallel XVS type to decode the type.
9308 Since the policy in the compiler is to not change the internal
9309 representation based on the debugging info format, we sometimes
9310 end up having a redundant XVS type parallel to the aligner type. */
9311 return raw_type;
9312
14f9c5c9 9313 real_type_namer = ada_find_parallel_type (raw_type, "___XVS");
d2e4a39e 9314 if (real_type_namer == NULL
14f9c5c9
AS
9315 || TYPE_CODE (real_type_namer) != TYPE_CODE_STRUCT
9316 || TYPE_NFIELDS (real_type_namer) != 1)
9317 return raw_type;
9318
f80d3ff2
JB
9319 if (TYPE_CODE (TYPE_FIELD_TYPE (real_type_namer, 0)) != TYPE_CODE_REF)
9320 {
9321 /* This is an older encoding form where the base type needs to be
9322 looked up by name. We prefer the newer enconding because it is
9323 more efficient. */
9324 raw_real_type = ada_find_any_type (TYPE_FIELD_NAME (real_type_namer, 0));
9325 if (raw_real_type == NULL)
9326 return raw_type;
9327 else
9328 return raw_real_type;
9329 }
9330
9331 /* The field in our XVS type is a reference to the base type. */
9332 return TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (real_type_namer, 0));
d2e4a39e 9333}
14f9c5c9 9334
4c4b4cd2 9335/* The type of value designated by TYPE, with all aligners removed. */
14f9c5c9 9336
d2e4a39e
AS
9337struct type *
9338ada_aligned_type (struct type *type)
14f9c5c9
AS
9339{
9340 if (ada_is_aligner_type (type))
9341 return ada_aligned_type (TYPE_FIELD_TYPE (type, 0));
9342 else
9343 return ada_get_base_type (type);
9344}
9345
9346
9347/* The address of the aligned value in an object at address VALADDR
4c4b4cd2 9348 having type TYPE. Assumes ada_is_aligner_type (TYPE). */
14f9c5c9 9349
fc1a4b47
AC
9350const gdb_byte *
9351ada_aligned_value_addr (struct type *type, const gdb_byte *valaddr)
14f9c5c9 9352{
d2e4a39e 9353 if (ada_is_aligner_type (type))
14f9c5c9 9354 return ada_aligned_value_addr (TYPE_FIELD_TYPE (type, 0),
4c4b4cd2
PH
9355 valaddr +
9356 TYPE_FIELD_BITPOS (type,
9357 0) / TARGET_CHAR_BIT);
14f9c5c9
AS
9358 else
9359 return valaddr;
9360}
9361
4c4b4cd2
PH
9362
9363
14f9c5c9 9364/* The printed representation of an enumeration literal with encoded
4c4b4cd2 9365 name NAME. The value is good to the next call of ada_enum_name. */
d2e4a39e
AS
9366const char *
9367ada_enum_name (const char *name)
14f9c5c9 9368{
4c4b4cd2
PH
9369 static char *result;
9370 static size_t result_len = 0;
e6a959d6 9371 const char *tmp;
14f9c5c9 9372
4c4b4cd2
PH
9373 /* First, unqualify the enumeration name:
9374 1. Search for the last '.' character. If we find one, then skip
177b42fe 9375 all the preceding characters, the unqualified name starts
76a01679 9376 right after that dot.
4c4b4cd2 9377 2. Otherwise, we may be debugging on a target where the compiler
76a01679
JB
9378 translates dots into "__". Search forward for double underscores,
9379 but stop searching when we hit an overloading suffix, which is
9380 of the form "__" followed by digits. */
4c4b4cd2 9381
c3e5cd34
PH
9382 tmp = strrchr (name, '.');
9383 if (tmp != NULL)
4c4b4cd2
PH
9384 name = tmp + 1;
9385 else
14f9c5c9 9386 {
4c4b4cd2
PH
9387 while ((tmp = strstr (name, "__")) != NULL)
9388 {
9389 if (isdigit (tmp[2]))
9390 break;
9391 else
9392 name = tmp + 2;
9393 }
14f9c5c9
AS
9394 }
9395
9396 if (name[0] == 'Q')
9397 {
14f9c5c9 9398 int v;
5b4ee69b 9399
14f9c5c9 9400 if (name[1] == 'U' || name[1] == 'W')
4c4b4cd2
PH
9401 {
9402 if (sscanf (name + 2, "%x", &v) != 1)
9403 return name;
9404 }
14f9c5c9 9405 else
4c4b4cd2 9406 return name;
14f9c5c9 9407
4c4b4cd2 9408 GROW_VECT (result, result_len, 16);
14f9c5c9 9409 if (isascii (v) && isprint (v))
88c15c34 9410 xsnprintf (result, result_len, "'%c'", v);
14f9c5c9 9411 else if (name[1] == 'U')
88c15c34 9412 xsnprintf (result, result_len, "[\"%02x\"]", v);
14f9c5c9 9413 else
88c15c34 9414 xsnprintf (result, result_len, "[\"%04x\"]", v);
14f9c5c9
AS
9415
9416 return result;
9417 }
d2e4a39e 9418 else
4c4b4cd2 9419 {
c3e5cd34
PH
9420 tmp = strstr (name, "__");
9421 if (tmp == NULL)
9422 tmp = strstr (name, "$");
9423 if (tmp != NULL)
4c4b4cd2
PH
9424 {
9425 GROW_VECT (result, result_len, tmp - name + 1);
9426 strncpy (result, name, tmp - name);
9427 result[tmp - name] = '\0';
9428 return result;
9429 }
9430
9431 return name;
9432 }
14f9c5c9
AS
9433}
9434
14f9c5c9
AS
9435/* Evaluate the subexpression of EXP starting at *POS as for
9436 evaluate_type, updating *POS to point just past the evaluated
4c4b4cd2 9437 expression. */
14f9c5c9 9438
d2e4a39e
AS
9439static struct value *
9440evaluate_subexp_type (struct expression *exp, int *pos)
14f9c5c9 9441{
4b27a620 9442 return evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
14f9c5c9
AS
9443}
9444
9445/* If VAL is wrapped in an aligner or subtype wrapper, return the
4c4b4cd2 9446 value it wraps. */
14f9c5c9 9447
d2e4a39e
AS
9448static struct value *
9449unwrap_value (struct value *val)
14f9c5c9 9450{
df407dfe 9451 struct type *type = ada_check_typedef (value_type (val));
5b4ee69b 9452
14f9c5c9
AS
9453 if (ada_is_aligner_type (type))
9454 {
de4d072f 9455 struct value *v = ada_value_struct_elt (val, "F", 0);
df407dfe 9456 struct type *val_type = ada_check_typedef (value_type (v));
5b4ee69b 9457
14f9c5c9 9458 if (ada_type_name (val_type) == NULL)
4c4b4cd2 9459 TYPE_NAME (val_type) = ada_type_name (type);
14f9c5c9
AS
9460
9461 return unwrap_value (v);
9462 }
d2e4a39e 9463 else
14f9c5c9 9464 {
d2e4a39e 9465 struct type *raw_real_type =
61ee279c 9466 ada_check_typedef (ada_get_base_type (type));
d2e4a39e 9467
5bf03f13
JB
9468 /* If there is no parallel XVS or XVE type, then the value is
9469 already unwrapped. Return it without further modification. */
9470 if ((type == raw_real_type)
9471 && ada_find_parallel_type (type, "___XVE") == NULL)
9472 return val;
14f9c5c9 9473
d2e4a39e 9474 return
4c4b4cd2
PH
9475 coerce_unspec_val_to_type
9476 (val, ada_to_fixed_type (raw_real_type, 0,
42ae5230 9477 value_address (val),
1ed6ede0 9478 NULL, 1));
14f9c5c9
AS
9479 }
9480}
d2e4a39e
AS
9481
9482static struct value *
50eff16b 9483cast_from_fixed (struct type *type, struct value *arg)
14f9c5c9 9484{
50eff16b
UW
9485 struct value *scale = ada_scaling_factor (value_type (arg));
9486 arg = value_cast (value_type (scale), arg);
14f9c5c9 9487
50eff16b
UW
9488 arg = value_binop (arg, scale, BINOP_MUL);
9489 return value_cast (type, arg);
14f9c5c9
AS
9490}
9491
d2e4a39e 9492static struct value *
50eff16b 9493cast_to_fixed (struct type *type, struct value *arg)
14f9c5c9 9494{
50eff16b
UW
9495 if (type == value_type (arg))
9496 return arg;
5b4ee69b 9497
50eff16b
UW
9498 struct value *scale = ada_scaling_factor (type);
9499 if (ada_is_fixed_point_type (value_type (arg)))
9500 arg = cast_from_fixed (value_type (scale), arg);
9501 else
9502 arg = value_cast (value_type (scale), arg);
9503
9504 arg = value_binop (arg, scale, BINOP_DIV);
9505 return value_cast (type, arg);
14f9c5c9
AS
9506}
9507
d99dcf51
JB
9508/* Given two array types T1 and T2, return nonzero iff both arrays
9509 contain the same number of elements. */
9510
9511static int
9512ada_same_array_size_p (struct type *t1, struct type *t2)
9513{
9514 LONGEST lo1, hi1, lo2, hi2;
9515
9516 /* Get the array bounds in order to verify that the size of
9517 the two arrays match. */
9518 if (!get_array_bounds (t1, &lo1, &hi1)
9519 || !get_array_bounds (t2, &lo2, &hi2))
9520 error (_("unable to determine array bounds"));
9521
9522 /* To make things easier for size comparison, normalize a bit
9523 the case of empty arrays by making sure that the difference
9524 between upper bound and lower bound is always -1. */
9525 if (lo1 > hi1)
9526 hi1 = lo1 - 1;
9527 if (lo2 > hi2)
9528 hi2 = lo2 - 1;
9529
9530 return (hi1 - lo1 == hi2 - lo2);
9531}
9532
9533/* Assuming that VAL is an array of integrals, and TYPE represents
9534 an array with the same number of elements, but with wider integral
9535 elements, return an array "casted" to TYPE. In practice, this
9536 means that the returned array is built by casting each element
9537 of the original array into TYPE's (wider) element type. */
9538
9539static struct value *
9540ada_promote_array_of_integrals (struct type *type, struct value *val)
9541{
9542 struct type *elt_type = TYPE_TARGET_TYPE (type);
9543 LONGEST lo, hi;
9544 struct value *res;
9545 LONGEST i;
9546
9547 /* Verify that both val and type are arrays of scalars, and
9548 that the size of val's elements is smaller than the size
9549 of type's element. */
9550 gdb_assert (TYPE_CODE (type) == TYPE_CODE_ARRAY);
9551 gdb_assert (is_integral_type (TYPE_TARGET_TYPE (type)));
9552 gdb_assert (TYPE_CODE (value_type (val)) == TYPE_CODE_ARRAY);
9553 gdb_assert (is_integral_type (TYPE_TARGET_TYPE (value_type (val))));
9554 gdb_assert (TYPE_LENGTH (TYPE_TARGET_TYPE (type))
9555 > TYPE_LENGTH (TYPE_TARGET_TYPE (value_type (val))));
9556
9557 if (!get_array_bounds (type, &lo, &hi))
9558 error (_("unable to determine array bounds"));
9559
9560 res = allocate_value (type);
9561
9562 /* Promote each array element. */
9563 for (i = 0; i < hi - lo + 1; i++)
9564 {
9565 struct value *elt = value_cast (elt_type, value_subscript (val, lo + i));
9566
9567 memcpy (value_contents_writeable (res) + (i * TYPE_LENGTH (elt_type)),
9568 value_contents_all (elt), TYPE_LENGTH (elt_type));
9569 }
9570
9571 return res;
9572}
9573
4c4b4cd2
PH
9574/* Coerce VAL as necessary for assignment to an lval of type TYPE, and
9575 return the converted value. */
9576
d2e4a39e
AS
9577static struct value *
9578coerce_for_assign (struct type *type, struct value *val)
14f9c5c9 9579{
df407dfe 9580 struct type *type2 = value_type (val);
5b4ee69b 9581
14f9c5c9
AS
9582 if (type == type2)
9583 return val;
9584
61ee279c
PH
9585 type2 = ada_check_typedef (type2);
9586 type = ada_check_typedef (type);
14f9c5c9 9587
d2e4a39e
AS
9588 if (TYPE_CODE (type2) == TYPE_CODE_PTR
9589 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
14f9c5c9
AS
9590 {
9591 val = ada_value_ind (val);
df407dfe 9592 type2 = value_type (val);
14f9c5c9
AS
9593 }
9594
d2e4a39e 9595 if (TYPE_CODE (type2) == TYPE_CODE_ARRAY
14f9c5c9
AS
9596 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
9597 {
d99dcf51
JB
9598 if (!ada_same_array_size_p (type, type2))
9599 error (_("cannot assign arrays of different length"));
9600
9601 if (is_integral_type (TYPE_TARGET_TYPE (type))
9602 && is_integral_type (TYPE_TARGET_TYPE (type2))
9603 && TYPE_LENGTH (TYPE_TARGET_TYPE (type2))
9604 < TYPE_LENGTH (TYPE_TARGET_TYPE (type)))
9605 {
9606 /* Allow implicit promotion of the array elements to
9607 a wider type. */
9608 return ada_promote_array_of_integrals (type, val);
9609 }
9610
9611 if (TYPE_LENGTH (TYPE_TARGET_TYPE (type2))
9612 != TYPE_LENGTH (TYPE_TARGET_TYPE (type)))
323e0a4a 9613 error (_("Incompatible types in assignment"));
04624583 9614 deprecated_set_value_type (val, type);
14f9c5c9 9615 }
d2e4a39e 9616 return val;
14f9c5c9
AS
9617}
9618
4c4b4cd2
PH
9619static struct value *
9620ada_value_binop (struct value *arg1, struct value *arg2, enum exp_opcode op)
9621{
9622 struct value *val;
9623 struct type *type1, *type2;
9624 LONGEST v, v1, v2;
9625
994b9211
AC
9626 arg1 = coerce_ref (arg1);
9627 arg2 = coerce_ref (arg2);
18af8284
JB
9628 type1 = get_base_type (ada_check_typedef (value_type (arg1)));
9629 type2 = get_base_type (ada_check_typedef (value_type (arg2)));
4c4b4cd2 9630
76a01679
JB
9631 if (TYPE_CODE (type1) != TYPE_CODE_INT
9632 || TYPE_CODE (type2) != TYPE_CODE_INT)
4c4b4cd2
PH
9633 return value_binop (arg1, arg2, op);
9634
76a01679 9635 switch (op)
4c4b4cd2
PH
9636 {
9637 case BINOP_MOD:
9638 case BINOP_DIV:
9639 case BINOP_REM:
9640 break;
9641 default:
9642 return value_binop (arg1, arg2, op);
9643 }
9644
9645 v2 = value_as_long (arg2);
9646 if (v2 == 0)
323e0a4a 9647 error (_("second operand of %s must not be zero."), op_string (op));
4c4b4cd2
PH
9648
9649 if (TYPE_UNSIGNED (type1) || op == BINOP_MOD)
9650 return value_binop (arg1, arg2, op);
9651
9652 v1 = value_as_long (arg1);
9653 switch (op)
9654 {
9655 case BINOP_DIV:
9656 v = v1 / v2;
76a01679
JB
9657 if (!TRUNCATION_TOWARDS_ZERO && v1 * (v1 % v2) < 0)
9658 v += v > 0 ? -1 : 1;
4c4b4cd2
PH
9659 break;
9660 case BINOP_REM:
9661 v = v1 % v2;
76a01679
JB
9662 if (v * v1 < 0)
9663 v -= v2;
4c4b4cd2
PH
9664 break;
9665 default:
9666 /* Should not reach this point. */
9667 v = 0;
9668 }
9669
9670 val = allocate_value (type1);
990a07ab 9671 store_unsigned_integer (value_contents_raw (val),
e17a4113
UW
9672 TYPE_LENGTH (value_type (val)),
9673 gdbarch_byte_order (get_type_arch (type1)), v);
4c4b4cd2
PH
9674 return val;
9675}
9676
9677static int
9678ada_value_equal (struct value *arg1, struct value *arg2)
9679{
df407dfe
AC
9680 if (ada_is_direct_array_type (value_type (arg1))
9681 || ada_is_direct_array_type (value_type (arg2)))
4c4b4cd2 9682 {
f58b38bf
JB
9683 /* Automatically dereference any array reference before
9684 we attempt to perform the comparison. */
9685 arg1 = ada_coerce_ref (arg1);
9686 arg2 = ada_coerce_ref (arg2);
9687
4c4b4cd2
PH
9688 arg1 = ada_coerce_to_simple_array (arg1);
9689 arg2 = ada_coerce_to_simple_array (arg2);
df407dfe
AC
9690 if (TYPE_CODE (value_type (arg1)) != TYPE_CODE_ARRAY
9691 || TYPE_CODE (value_type (arg2)) != TYPE_CODE_ARRAY)
323e0a4a 9692 error (_("Attempt to compare array with non-array"));
4c4b4cd2 9693 /* FIXME: The following works only for types whose
76a01679
JB
9694 representations use all bits (no padding or undefined bits)
9695 and do not have user-defined equality. */
9696 return
df407dfe 9697 TYPE_LENGTH (value_type (arg1)) == TYPE_LENGTH (value_type (arg2))
0fd88904 9698 && memcmp (value_contents (arg1), value_contents (arg2),
df407dfe 9699 TYPE_LENGTH (value_type (arg1))) == 0;
4c4b4cd2
PH
9700 }
9701 return value_equal (arg1, arg2);
9702}
9703
52ce6436
PH
9704/* Total number of component associations in the aggregate starting at
9705 index PC in EXP. Assumes that index PC is the start of an
0963b4bd 9706 OP_AGGREGATE. */
52ce6436
PH
9707
9708static int
9709num_component_specs (struct expression *exp, int pc)
9710{
9711 int n, m, i;
5b4ee69b 9712
52ce6436
PH
9713 m = exp->elts[pc + 1].longconst;
9714 pc += 3;
9715 n = 0;
9716 for (i = 0; i < m; i += 1)
9717 {
9718 switch (exp->elts[pc].opcode)
9719 {
9720 default:
9721 n += 1;
9722 break;
9723 case OP_CHOICES:
9724 n += exp->elts[pc + 1].longconst;
9725 break;
9726 }
9727 ada_evaluate_subexp (NULL, exp, &pc, EVAL_SKIP);
9728 }
9729 return n;
9730}
9731
9732/* Assign the result of evaluating EXP starting at *POS to the INDEXth
9733 component of LHS (a simple array or a record), updating *POS past
9734 the expression, assuming that LHS is contained in CONTAINER. Does
9735 not modify the inferior's memory, nor does it modify LHS (unless
9736 LHS == CONTAINER). */
9737
9738static void
9739assign_component (struct value *container, struct value *lhs, LONGEST index,
9740 struct expression *exp, int *pos)
9741{
9742 struct value *mark = value_mark ();
9743 struct value *elt;
5b4ee69b 9744
52ce6436
PH
9745 if (TYPE_CODE (value_type (lhs)) == TYPE_CODE_ARRAY)
9746 {
22601c15
UW
9747 struct type *index_type = builtin_type (exp->gdbarch)->builtin_int;
9748 struct value *index_val = value_from_longest (index_type, index);
5b4ee69b 9749
52ce6436
PH
9750 elt = unwrap_value (ada_value_subscript (lhs, 1, &index_val));
9751 }
9752 else
9753 {
9754 elt = ada_index_struct_field (index, lhs, 0, value_type (lhs));
c48db5ca 9755 elt = ada_to_fixed_value (elt);
52ce6436
PH
9756 }
9757
9758 if (exp->elts[*pos].opcode == OP_AGGREGATE)
9759 assign_aggregate (container, elt, exp, pos, EVAL_NORMAL);
9760 else
9761 value_assign_to_component (container, elt,
9762 ada_evaluate_subexp (NULL, exp, pos,
9763 EVAL_NORMAL));
9764
9765 value_free_to_mark (mark);
9766}
9767
9768/* Assuming that LHS represents an lvalue having a record or array
9769 type, and EXP->ELTS[*POS] is an OP_AGGREGATE, evaluate an assignment
9770 of that aggregate's value to LHS, advancing *POS past the
9771 aggregate. NOSIDE is as for evaluate_subexp. CONTAINER is an
9772 lvalue containing LHS (possibly LHS itself). Does not modify
9773 the inferior's memory, nor does it modify the contents of
0963b4bd 9774 LHS (unless == CONTAINER). Returns the modified CONTAINER. */
52ce6436
PH
9775
9776static struct value *
9777assign_aggregate (struct value *container,
9778 struct value *lhs, struct expression *exp,
9779 int *pos, enum noside noside)
9780{
9781 struct type *lhs_type;
9782 int n = exp->elts[*pos+1].longconst;
9783 LONGEST low_index, high_index;
9784 int num_specs;
9785 LONGEST *indices;
9786 int max_indices, num_indices;
52ce6436 9787 int i;
52ce6436
PH
9788
9789 *pos += 3;
9790 if (noside != EVAL_NORMAL)
9791 {
52ce6436
PH
9792 for (i = 0; i < n; i += 1)
9793 ada_evaluate_subexp (NULL, exp, pos, noside);
9794 return container;
9795 }
9796
9797 container = ada_coerce_ref (container);
9798 if (ada_is_direct_array_type (value_type (container)))
9799 container = ada_coerce_to_simple_array (container);
9800 lhs = ada_coerce_ref (lhs);
9801 if (!deprecated_value_modifiable (lhs))
9802 error (_("Left operand of assignment is not a modifiable lvalue."));
9803
9804 lhs_type = value_type (lhs);
9805 if (ada_is_direct_array_type (lhs_type))
9806 {
9807 lhs = ada_coerce_to_simple_array (lhs);
9808 lhs_type = value_type (lhs);
9809 low_index = TYPE_ARRAY_LOWER_BOUND_VALUE (lhs_type);
9810 high_index = TYPE_ARRAY_UPPER_BOUND_VALUE (lhs_type);
52ce6436
PH
9811 }
9812 else if (TYPE_CODE (lhs_type) == TYPE_CODE_STRUCT)
9813 {
9814 low_index = 0;
9815 high_index = num_visible_fields (lhs_type) - 1;
52ce6436
PH
9816 }
9817 else
9818 error (_("Left-hand side must be array or record."));
9819
9820 num_specs = num_component_specs (exp, *pos - 3);
9821 max_indices = 4 * num_specs + 4;
8d749320 9822 indices = XALLOCAVEC (LONGEST, max_indices);
52ce6436
PH
9823 indices[0] = indices[1] = low_index - 1;
9824 indices[2] = indices[3] = high_index + 1;
9825 num_indices = 4;
9826
9827 for (i = 0; i < n; i += 1)
9828 {
9829 switch (exp->elts[*pos].opcode)
9830 {
1fbf5ada
JB
9831 case OP_CHOICES:
9832 aggregate_assign_from_choices (container, lhs, exp, pos, indices,
9833 &num_indices, max_indices,
9834 low_index, high_index);
9835 break;
9836 case OP_POSITIONAL:
9837 aggregate_assign_positional (container, lhs, exp, pos, indices,
52ce6436
PH
9838 &num_indices, max_indices,
9839 low_index, high_index);
1fbf5ada
JB
9840 break;
9841 case OP_OTHERS:
9842 if (i != n-1)
9843 error (_("Misplaced 'others' clause"));
9844 aggregate_assign_others (container, lhs, exp, pos, indices,
9845 num_indices, low_index, high_index);
9846 break;
9847 default:
9848 error (_("Internal error: bad aggregate clause"));
52ce6436
PH
9849 }
9850 }
9851
9852 return container;
9853}
9854
9855/* Assign into the component of LHS indexed by the OP_POSITIONAL
9856 construct at *POS, updating *POS past the construct, given that
9857 the positions are relative to lower bound LOW, where HIGH is the
9858 upper bound. Record the position in INDICES[0 .. MAX_INDICES-1]
9859 updating *NUM_INDICES as needed. CONTAINER is as for
0963b4bd 9860 assign_aggregate. */
52ce6436
PH
9861static void
9862aggregate_assign_positional (struct value *container,
9863 struct value *lhs, struct expression *exp,
9864 int *pos, LONGEST *indices, int *num_indices,
9865 int max_indices, LONGEST low, LONGEST high)
9866{
9867 LONGEST ind = longest_to_int (exp->elts[*pos + 1].longconst) + low;
9868
9869 if (ind - 1 == high)
e1d5a0d2 9870 warning (_("Extra components in aggregate ignored."));
52ce6436
PH
9871 if (ind <= high)
9872 {
9873 add_component_interval (ind, ind, indices, num_indices, max_indices);
9874 *pos += 3;
9875 assign_component (container, lhs, ind, exp, pos);
9876 }
9877 else
9878 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
9879}
9880
9881/* Assign into the components of LHS indexed by the OP_CHOICES
9882 construct at *POS, updating *POS past the construct, given that
9883 the allowable indices are LOW..HIGH. Record the indices assigned
9884 to in INDICES[0 .. MAX_INDICES-1], updating *NUM_INDICES as
0963b4bd 9885 needed. CONTAINER is as for assign_aggregate. */
52ce6436
PH
9886static void
9887aggregate_assign_from_choices (struct value *container,
9888 struct value *lhs, struct expression *exp,
9889 int *pos, LONGEST *indices, int *num_indices,
9890 int max_indices, LONGEST low, LONGEST high)
9891{
9892 int j;
9893 int n_choices = longest_to_int (exp->elts[*pos+1].longconst);
9894 int choice_pos, expr_pc;
9895 int is_array = ada_is_direct_array_type (value_type (lhs));
9896
9897 choice_pos = *pos += 3;
9898
9899 for (j = 0; j < n_choices; j += 1)
9900 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
9901 expr_pc = *pos;
9902 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
9903
9904 for (j = 0; j < n_choices; j += 1)
9905 {
9906 LONGEST lower, upper;
9907 enum exp_opcode op = exp->elts[choice_pos].opcode;
5b4ee69b 9908
52ce6436
PH
9909 if (op == OP_DISCRETE_RANGE)
9910 {
9911 choice_pos += 1;
9912 lower = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
9913 EVAL_NORMAL));
9914 upper = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
9915 EVAL_NORMAL));
9916 }
9917 else if (is_array)
9918 {
9919 lower = value_as_long (ada_evaluate_subexp (NULL, exp, &choice_pos,
9920 EVAL_NORMAL));
9921 upper = lower;
9922 }
9923 else
9924 {
9925 int ind;
0d5cff50 9926 const char *name;
5b4ee69b 9927
52ce6436
PH
9928 switch (op)
9929 {
9930 case OP_NAME:
9931 name = &exp->elts[choice_pos + 2].string;
9932 break;
9933 case OP_VAR_VALUE:
9934 name = SYMBOL_NATURAL_NAME (exp->elts[choice_pos + 2].symbol);
9935 break;
9936 default:
9937 error (_("Invalid record component association."));
9938 }
9939 ada_evaluate_subexp (NULL, exp, &choice_pos, EVAL_SKIP);
9940 ind = 0;
9941 if (! find_struct_field (name, value_type (lhs), 0,
9942 NULL, NULL, NULL, NULL, &ind))
9943 error (_("Unknown component name: %s."), name);
9944 lower = upper = ind;
9945 }
9946
9947 if (lower <= upper && (lower < low || upper > high))
9948 error (_("Index in component association out of bounds."));
9949
9950 add_component_interval (lower, upper, indices, num_indices,
9951 max_indices);
9952 while (lower <= upper)
9953 {
9954 int pos1;
5b4ee69b 9955
52ce6436
PH
9956 pos1 = expr_pc;
9957 assign_component (container, lhs, lower, exp, &pos1);
9958 lower += 1;
9959 }
9960 }
9961}
9962
9963/* Assign the value of the expression in the OP_OTHERS construct in
9964 EXP at *POS into the components of LHS indexed from LOW .. HIGH that
9965 have not been previously assigned. The index intervals already assigned
9966 are in INDICES[0 .. NUM_INDICES-1]. Updates *POS to after the
0963b4bd 9967 OP_OTHERS clause. CONTAINER is as for assign_aggregate. */
52ce6436
PH
9968static void
9969aggregate_assign_others (struct value *container,
9970 struct value *lhs, struct expression *exp,
9971 int *pos, LONGEST *indices, int num_indices,
9972 LONGEST low, LONGEST high)
9973{
9974 int i;
5ce64950 9975 int expr_pc = *pos + 1;
52ce6436
PH
9976
9977 for (i = 0; i < num_indices - 2; i += 2)
9978 {
9979 LONGEST ind;
5b4ee69b 9980
52ce6436
PH
9981 for (ind = indices[i + 1] + 1; ind < indices[i + 2]; ind += 1)
9982 {
5ce64950 9983 int localpos;
5b4ee69b 9984
5ce64950
MS
9985 localpos = expr_pc;
9986 assign_component (container, lhs, ind, exp, &localpos);
52ce6436
PH
9987 }
9988 }
9989 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
9990}
9991
9992/* Add the interval [LOW .. HIGH] to the sorted set of intervals
9993 [ INDICES[0] .. INDICES[1] ],..., [ INDICES[*SIZE-2] .. INDICES[*SIZE-1] ],
9994 modifying *SIZE as needed. It is an error if *SIZE exceeds
9995 MAX_SIZE. The resulting intervals do not overlap. */
9996static void
9997add_component_interval (LONGEST low, LONGEST high,
9998 LONGEST* indices, int *size, int max_size)
9999{
10000 int i, j;
5b4ee69b 10001
52ce6436
PH
10002 for (i = 0; i < *size; i += 2) {
10003 if (high >= indices[i] && low <= indices[i + 1])
10004 {
10005 int kh;
5b4ee69b 10006
52ce6436
PH
10007 for (kh = i + 2; kh < *size; kh += 2)
10008 if (high < indices[kh])
10009 break;
10010 if (low < indices[i])
10011 indices[i] = low;
10012 indices[i + 1] = indices[kh - 1];
10013 if (high > indices[i + 1])
10014 indices[i + 1] = high;
10015 memcpy (indices + i + 2, indices + kh, *size - kh);
10016 *size -= kh - i - 2;
10017 return;
10018 }
10019 else if (high < indices[i])
10020 break;
10021 }
10022
10023 if (*size == max_size)
10024 error (_("Internal error: miscounted aggregate components."));
10025 *size += 2;
10026 for (j = *size-1; j >= i+2; j -= 1)
10027 indices[j] = indices[j - 2];
10028 indices[i] = low;
10029 indices[i + 1] = high;
10030}
10031
6e48bd2c
JB
10032/* Perform and Ada cast of ARG2 to type TYPE if the type of ARG2
10033 is different. */
10034
10035static struct value *
10036ada_value_cast (struct type *type, struct value *arg2, enum noside noside)
10037{
10038 if (type == ada_check_typedef (value_type (arg2)))
10039 return arg2;
10040
10041 if (ada_is_fixed_point_type (type))
10042 return (cast_to_fixed (type, arg2));
10043
10044 if (ada_is_fixed_point_type (value_type (arg2)))
a53b7a21 10045 return cast_from_fixed (type, arg2);
6e48bd2c
JB
10046
10047 return value_cast (type, arg2);
10048}
10049
284614f0
JB
10050/* Evaluating Ada expressions, and printing their result.
10051 ------------------------------------------------------
10052
21649b50
JB
10053 1. Introduction:
10054 ----------------
10055
284614f0
JB
10056 We usually evaluate an Ada expression in order to print its value.
10057 We also evaluate an expression in order to print its type, which
10058 happens during the EVAL_AVOID_SIDE_EFFECTS phase of the evaluation,
10059 but we'll focus mostly on the EVAL_NORMAL phase. In practice, the
10060 EVAL_AVOID_SIDE_EFFECTS phase allows us to simplify certain aspects of
10061 the evaluation compared to the EVAL_NORMAL, but is otherwise very
10062 similar.
10063
10064 Evaluating expressions is a little more complicated for Ada entities
10065 than it is for entities in languages such as C. The main reason for
10066 this is that Ada provides types whose definition might be dynamic.
10067 One example of such types is variant records. Or another example
10068 would be an array whose bounds can only be known at run time.
10069
10070 The following description is a general guide as to what should be
10071 done (and what should NOT be done) in order to evaluate an expression
10072 involving such types, and when. This does not cover how the semantic
10073 information is encoded by GNAT as this is covered separatly. For the
10074 document used as the reference for the GNAT encoding, see exp_dbug.ads
10075 in the GNAT sources.
10076
10077 Ideally, we should embed each part of this description next to its
10078 associated code. Unfortunately, the amount of code is so vast right
10079 now that it's hard to see whether the code handling a particular
10080 situation might be duplicated or not. One day, when the code is
10081 cleaned up, this guide might become redundant with the comments
10082 inserted in the code, and we might want to remove it.
10083
21649b50
JB
10084 2. ``Fixing'' an Entity, the Simple Case:
10085 -----------------------------------------
10086
284614f0
JB
10087 When evaluating Ada expressions, the tricky issue is that they may
10088 reference entities whose type contents and size are not statically
10089 known. Consider for instance a variant record:
10090
10091 type Rec (Empty : Boolean := True) is record
10092 case Empty is
10093 when True => null;
10094 when False => Value : Integer;
10095 end case;
10096 end record;
10097 Yes : Rec := (Empty => False, Value => 1);
10098 No : Rec := (empty => True);
10099
10100 The size and contents of that record depends on the value of the
10101 descriminant (Rec.Empty). At this point, neither the debugging
10102 information nor the associated type structure in GDB are able to
10103 express such dynamic types. So what the debugger does is to create
10104 "fixed" versions of the type that applies to the specific object.
10105 We also informally refer to this opperation as "fixing" an object,
10106 which means creating its associated fixed type.
10107
10108 Example: when printing the value of variable "Yes" above, its fixed
10109 type would look like this:
10110
10111 type Rec is record
10112 Empty : Boolean;
10113 Value : Integer;
10114 end record;
10115
10116 On the other hand, if we printed the value of "No", its fixed type
10117 would become:
10118
10119 type Rec is record
10120 Empty : Boolean;
10121 end record;
10122
10123 Things become a little more complicated when trying to fix an entity
10124 with a dynamic type that directly contains another dynamic type,
10125 such as an array of variant records, for instance. There are
10126 two possible cases: Arrays, and records.
10127
21649b50
JB
10128 3. ``Fixing'' Arrays:
10129 ---------------------
10130
10131 The type structure in GDB describes an array in terms of its bounds,
10132 and the type of its elements. By design, all elements in the array
10133 have the same type and we cannot represent an array of variant elements
10134 using the current type structure in GDB. When fixing an array,
10135 we cannot fix the array element, as we would potentially need one
10136 fixed type per element of the array. As a result, the best we can do
10137 when fixing an array is to produce an array whose bounds and size
10138 are correct (allowing us to read it from memory), but without having
10139 touched its element type. Fixing each element will be done later,
10140 when (if) necessary.
10141
10142 Arrays are a little simpler to handle than records, because the same
10143 amount of memory is allocated for each element of the array, even if
1b536f04 10144 the amount of space actually used by each element differs from element
21649b50 10145 to element. Consider for instance the following array of type Rec:
284614f0
JB
10146
10147 type Rec_Array is array (1 .. 2) of Rec;
10148
1b536f04
JB
10149 The actual amount of memory occupied by each element might be different
10150 from element to element, depending on the value of their discriminant.
21649b50 10151 But the amount of space reserved for each element in the array remains
1b536f04 10152 fixed regardless. So we simply need to compute that size using
21649b50
JB
10153 the debugging information available, from which we can then determine
10154 the array size (we multiply the number of elements of the array by
10155 the size of each element).
10156
10157 The simplest case is when we have an array of a constrained element
10158 type. For instance, consider the following type declarations:
10159
10160 type Bounded_String (Max_Size : Integer) is
10161 Length : Integer;
10162 Buffer : String (1 .. Max_Size);
10163 end record;
10164 type Bounded_String_Array is array (1 ..2) of Bounded_String (80);
10165
10166 In this case, the compiler describes the array as an array of
10167 variable-size elements (identified by its XVS suffix) for which
10168 the size can be read in the parallel XVZ variable.
10169
10170 In the case of an array of an unconstrained element type, the compiler
10171 wraps the array element inside a private PAD type. This type should not
10172 be shown to the user, and must be "unwrap"'ed before printing. Note
284614f0
JB
10173 that we also use the adjective "aligner" in our code to designate
10174 these wrapper types.
10175
1b536f04 10176 In some cases, the size allocated for each element is statically
21649b50
JB
10177 known. In that case, the PAD type already has the correct size,
10178 and the array element should remain unfixed.
10179
10180 But there are cases when this size is not statically known.
10181 For instance, assuming that "Five" is an integer variable:
284614f0
JB
10182
10183 type Dynamic is array (1 .. Five) of Integer;
10184 type Wrapper (Has_Length : Boolean := False) is record
10185 Data : Dynamic;
10186 case Has_Length is
10187 when True => Length : Integer;
10188 when False => null;
10189 end case;
10190 end record;
10191 type Wrapper_Array is array (1 .. 2) of Wrapper;
10192
10193 Hello : Wrapper_Array := (others => (Has_Length => True,
10194 Data => (others => 17),
10195 Length => 1));
10196
10197
10198 The debugging info would describe variable Hello as being an
10199 array of a PAD type. The size of that PAD type is not statically
10200 known, but can be determined using a parallel XVZ variable.
10201 In that case, a copy of the PAD type with the correct size should
10202 be used for the fixed array.
10203
21649b50
JB
10204 3. ``Fixing'' record type objects:
10205 ----------------------------------
10206
10207 Things are slightly different from arrays in the case of dynamic
284614f0
JB
10208 record types. In this case, in order to compute the associated
10209 fixed type, we need to determine the size and offset of each of
10210 its components. This, in turn, requires us to compute the fixed
10211 type of each of these components.
10212
10213 Consider for instance the example:
10214
10215 type Bounded_String (Max_Size : Natural) is record
10216 Str : String (1 .. Max_Size);
10217 Length : Natural;
10218 end record;
10219 My_String : Bounded_String (Max_Size => 10);
10220
10221 In that case, the position of field "Length" depends on the size
10222 of field Str, which itself depends on the value of the Max_Size
21649b50 10223 discriminant. In order to fix the type of variable My_String,
284614f0
JB
10224 we need to fix the type of field Str. Therefore, fixing a variant
10225 record requires us to fix each of its components.
10226
10227 However, if a component does not have a dynamic size, the component
10228 should not be fixed. In particular, fields that use a PAD type
10229 should not fixed. Here is an example where this might happen
10230 (assuming type Rec above):
10231
10232 type Container (Big : Boolean) is record
10233 First : Rec;
10234 After : Integer;
10235 case Big is
10236 when True => Another : Integer;
10237 when False => null;
10238 end case;
10239 end record;
10240 My_Container : Container := (Big => False,
10241 First => (Empty => True),
10242 After => 42);
10243
10244 In that example, the compiler creates a PAD type for component First,
10245 whose size is constant, and then positions the component After just
10246 right after it. The offset of component After is therefore constant
10247 in this case.
10248
10249 The debugger computes the position of each field based on an algorithm
10250 that uses, among other things, the actual position and size of the field
21649b50
JB
10251 preceding it. Let's now imagine that the user is trying to print
10252 the value of My_Container. If the type fixing was recursive, we would
284614f0
JB
10253 end up computing the offset of field After based on the size of the
10254 fixed version of field First. And since in our example First has
10255 only one actual field, the size of the fixed type is actually smaller
10256 than the amount of space allocated to that field, and thus we would
10257 compute the wrong offset of field After.
10258
21649b50
JB
10259 To make things more complicated, we need to watch out for dynamic
10260 components of variant records (identified by the ___XVL suffix in
10261 the component name). Even if the target type is a PAD type, the size
10262 of that type might not be statically known. So the PAD type needs
10263 to be unwrapped and the resulting type needs to be fixed. Otherwise,
10264 we might end up with the wrong size for our component. This can be
10265 observed with the following type declarations:
284614f0
JB
10266
10267 type Octal is new Integer range 0 .. 7;
10268 type Octal_Array is array (Positive range <>) of Octal;
10269 pragma Pack (Octal_Array);
10270
10271 type Octal_Buffer (Size : Positive) is record
10272 Buffer : Octal_Array (1 .. Size);
10273 Length : Integer;
10274 end record;
10275
10276 In that case, Buffer is a PAD type whose size is unset and needs
10277 to be computed by fixing the unwrapped type.
10278
21649b50
JB
10279 4. When to ``Fix'' un-``Fixed'' sub-elements of an entity:
10280 ----------------------------------------------------------
10281
10282 Lastly, when should the sub-elements of an entity that remained unfixed
284614f0
JB
10283 thus far, be actually fixed?
10284
10285 The answer is: Only when referencing that element. For instance
10286 when selecting one component of a record, this specific component
10287 should be fixed at that point in time. Or when printing the value
10288 of a record, each component should be fixed before its value gets
10289 printed. Similarly for arrays, the element of the array should be
10290 fixed when printing each element of the array, or when extracting
10291 one element out of that array. On the other hand, fixing should
10292 not be performed on the elements when taking a slice of an array!
10293
10294 Note that one of the side-effects of miscomputing the offset and
10295 size of each field is that we end up also miscomputing the size
10296 of the containing type. This can have adverse results when computing
10297 the value of an entity. GDB fetches the value of an entity based
10298 on the size of its type, and thus a wrong size causes GDB to fetch
10299 the wrong amount of memory. In the case where the computed size is
10300 too small, GDB fetches too little data to print the value of our
10301 entiry. Results in this case as unpredicatble, as we usually read
10302 past the buffer containing the data =:-o. */
10303
10304/* Implement the evaluate_exp routine in the exp_descriptor structure
10305 for the Ada language. */
10306
52ce6436 10307static struct value *
ebf56fd3 10308ada_evaluate_subexp (struct type *expect_type, struct expression *exp,
4c4b4cd2 10309 int *pos, enum noside noside)
14f9c5c9
AS
10310{
10311 enum exp_opcode op;
b5385fc0 10312 int tem;
14f9c5c9 10313 int pc;
5ec18f2b 10314 int preeval_pos;
14f9c5c9
AS
10315 struct value *arg1 = NULL, *arg2 = NULL, *arg3;
10316 struct type *type;
52ce6436 10317 int nargs, oplen;
d2e4a39e 10318 struct value **argvec;
14f9c5c9 10319
d2e4a39e
AS
10320 pc = *pos;
10321 *pos += 1;
14f9c5c9
AS
10322 op = exp->elts[pc].opcode;
10323
d2e4a39e 10324 switch (op)
14f9c5c9
AS
10325 {
10326 default:
10327 *pos -= 1;
6e48bd2c 10328 arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside);
ca1f964d
JG
10329
10330 if (noside == EVAL_NORMAL)
10331 arg1 = unwrap_value (arg1);
6e48bd2c 10332
edd079d9 10333 /* If evaluating an OP_FLOAT and an EXPECT_TYPE was provided,
6e48bd2c
JB
10334 then we need to perform the conversion manually, because
10335 evaluate_subexp_standard doesn't do it. This conversion is
10336 necessary in Ada because the different kinds of float/fixed
10337 types in Ada have different representations.
10338
10339 Similarly, we need to perform the conversion from OP_LONG
10340 ourselves. */
edd079d9 10341 if ((op == OP_FLOAT || op == OP_LONG) && expect_type != NULL)
6e48bd2c
JB
10342 arg1 = ada_value_cast (expect_type, arg1, noside);
10343
10344 return arg1;
4c4b4cd2
PH
10345
10346 case OP_STRING:
10347 {
76a01679 10348 struct value *result;
5b4ee69b 10349
76a01679
JB
10350 *pos -= 1;
10351 result = evaluate_subexp_standard (expect_type, exp, pos, noside);
10352 /* The result type will have code OP_STRING, bashed there from
10353 OP_ARRAY. Bash it back. */
df407dfe
AC
10354 if (TYPE_CODE (value_type (result)) == TYPE_CODE_STRING)
10355 TYPE_CODE (value_type (result)) = TYPE_CODE_ARRAY;
76a01679 10356 return result;
4c4b4cd2 10357 }
14f9c5c9
AS
10358
10359 case UNOP_CAST:
10360 (*pos) += 2;
10361 type = exp->elts[pc + 1].type;
10362 arg1 = evaluate_subexp (type, exp, pos, noside);
10363 if (noside == EVAL_SKIP)
4c4b4cd2 10364 goto nosideret;
6e48bd2c 10365 arg1 = ada_value_cast (type, arg1, noside);
14f9c5c9
AS
10366 return arg1;
10367
4c4b4cd2
PH
10368 case UNOP_QUAL:
10369 (*pos) += 2;
10370 type = exp->elts[pc + 1].type;
10371 return ada_evaluate_subexp (type, exp, pos, noside);
10372
14f9c5c9
AS
10373 case BINOP_ASSIGN:
10374 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
52ce6436
PH
10375 if (exp->elts[*pos].opcode == OP_AGGREGATE)
10376 {
10377 arg1 = assign_aggregate (arg1, arg1, exp, pos, noside);
10378 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
10379 return arg1;
10380 return ada_value_assign (arg1, arg1);
10381 }
003f3813
JB
10382 /* Force the evaluation of the rhs ARG2 to the type of the lhs ARG1,
10383 except if the lhs of our assignment is a convenience variable.
10384 In the case of assigning to a convenience variable, the lhs
10385 should be exactly the result of the evaluation of the rhs. */
10386 type = value_type (arg1);
10387 if (VALUE_LVAL (arg1) == lval_internalvar)
10388 type = NULL;
10389 arg2 = evaluate_subexp (type, exp, pos, noside);
14f9c5c9 10390 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
4c4b4cd2 10391 return arg1;
df407dfe
AC
10392 if (ada_is_fixed_point_type (value_type (arg1)))
10393 arg2 = cast_to_fixed (value_type (arg1), arg2);
10394 else if (ada_is_fixed_point_type (value_type (arg2)))
76a01679 10395 error
323e0a4a 10396 (_("Fixed-point values must be assigned to fixed-point variables"));
d2e4a39e 10397 else
df407dfe 10398 arg2 = coerce_for_assign (value_type (arg1), arg2);
4c4b4cd2 10399 return ada_value_assign (arg1, arg2);
14f9c5c9
AS
10400
10401 case BINOP_ADD:
10402 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
10403 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
10404 if (noside == EVAL_SKIP)
4c4b4cd2 10405 goto nosideret;
2ac8a782
JB
10406 if (TYPE_CODE (value_type (arg1)) == TYPE_CODE_PTR)
10407 return (value_from_longest
10408 (value_type (arg1),
10409 value_as_long (arg1) + value_as_long (arg2)));
c40cc657
JB
10410 if (TYPE_CODE (value_type (arg2)) == TYPE_CODE_PTR)
10411 return (value_from_longest
10412 (value_type (arg2),
10413 value_as_long (arg1) + value_as_long (arg2)));
df407dfe
AC
10414 if ((ada_is_fixed_point_type (value_type (arg1))
10415 || ada_is_fixed_point_type (value_type (arg2)))
10416 && value_type (arg1) != value_type (arg2))
323e0a4a 10417 error (_("Operands of fixed-point addition must have the same type"));
b7789565
JB
10418 /* Do the addition, and cast the result to the type of the first
10419 argument. We cannot cast the result to a reference type, so if
10420 ARG1 is a reference type, find its underlying type. */
10421 type = value_type (arg1);
10422 while (TYPE_CODE (type) == TYPE_CODE_REF)
10423 type = TYPE_TARGET_TYPE (type);
f44316fa 10424 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
89eef114 10425 return value_cast (type, value_binop (arg1, arg2, BINOP_ADD));
14f9c5c9
AS
10426
10427 case BINOP_SUB:
10428 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
10429 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
10430 if (noside == EVAL_SKIP)
4c4b4cd2 10431 goto nosideret;
2ac8a782
JB
10432 if (TYPE_CODE (value_type (arg1)) == TYPE_CODE_PTR)
10433 return (value_from_longest
10434 (value_type (arg1),
10435 value_as_long (arg1) - value_as_long (arg2)));
c40cc657
JB
10436 if (TYPE_CODE (value_type (arg2)) == TYPE_CODE_PTR)
10437 return (value_from_longest
10438 (value_type (arg2),
10439 value_as_long (arg1) - value_as_long (arg2)));
df407dfe
AC
10440 if ((ada_is_fixed_point_type (value_type (arg1))
10441 || ada_is_fixed_point_type (value_type (arg2)))
10442 && value_type (arg1) != value_type (arg2))
0963b4bd
MS
10443 error (_("Operands of fixed-point subtraction "
10444 "must have the same type"));
b7789565
JB
10445 /* Do the substraction, and cast the result to the type of the first
10446 argument. We cannot cast the result to a reference type, so if
10447 ARG1 is a reference type, find its underlying type. */
10448 type = value_type (arg1);
10449 while (TYPE_CODE (type) == TYPE_CODE_REF)
10450 type = TYPE_TARGET_TYPE (type);
f44316fa 10451 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
89eef114 10452 return value_cast (type, value_binop (arg1, arg2, BINOP_SUB));
14f9c5c9
AS
10453
10454 case BINOP_MUL:
10455 case BINOP_DIV:
e1578042
JB
10456 case BINOP_REM:
10457 case BINOP_MOD:
14f9c5c9
AS
10458 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10459 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10460 if (noside == EVAL_SKIP)
4c4b4cd2 10461 goto nosideret;
e1578042 10462 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
9c2be529
JB
10463 {
10464 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10465 return value_zero (value_type (arg1), not_lval);
10466 }
14f9c5c9 10467 else
4c4b4cd2 10468 {
a53b7a21 10469 type = builtin_type (exp->gdbarch)->builtin_double;
df407dfe 10470 if (ada_is_fixed_point_type (value_type (arg1)))
a53b7a21 10471 arg1 = cast_from_fixed (type, arg1);
df407dfe 10472 if (ada_is_fixed_point_type (value_type (arg2)))
a53b7a21 10473 arg2 = cast_from_fixed (type, arg2);
f44316fa 10474 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
4c4b4cd2
PH
10475 return ada_value_binop (arg1, arg2, op);
10476 }
10477
4c4b4cd2
PH
10478 case BINOP_EQUAL:
10479 case BINOP_NOTEQUAL:
14f9c5c9 10480 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
df407dfe 10481 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
14f9c5c9 10482 if (noside == EVAL_SKIP)
76a01679 10483 goto nosideret;
4c4b4cd2 10484 if (noside == EVAL_AVOID_SIDE_EFFECTS)
76a01679 10485 tem = 0;
4c4b4cd2 10486 else
f44316fa
UW
10487 {
10488 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10489 tem = ada_value_equal (arg1, arg2);
10490 }
4c4b4cd2 10491 if (op == BINOP_NOTEQUAL)
76a01679 10492 tem = !tem;
fbb06eb1
UW
10493 type = language_bool_type (exp->language_defn, exp->gdbarch);
10494 return value_from_longest (type, (LONGEST) tem);
4c4b4cd2
PH
10495
10496 case UNOP_NEG:
10497 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10498 if (noside == EVAL_SKIP)
10499 goto nosideret;
df407dfe
AC
10500 else if (ada_is_fixed_point_type (value_type (arg1)))
10501 return value_cast (value_type (arg1), value_neg (arg1));
14f9c5c9 10502 else
f44316fa
UW
10503 {
10504 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
10505 return value_neg (arg1);
10506 }
4c4b4cd2 10507
2330c6c6
JB
10508 case BINOP_LOGICAL_AND:
10509 case BINOP_LOGICAL_OR:
10510 case UNOP_LOGICAL_NOT:
000d5124
JB
10511 {
10512 struct value *val;
10513
10514 *pos -= 1;
10515 val = evaluate_subexp_standard (expect_type, exp, pos, noside);
fbb06eb1
UW
10516 type = language_bool_type (exp->language_defn, exp->gdbarch);
10517 return value_cast (type, val);
000d5124 10518 }
2330c6c6
JB
10519
10520 case BINOP_BITWISE_AND:
10521 case BINOP_BITWISE_IOR:
10522 case BINOP_BITWISE_XOR:
000d5124
JB
10523 {
10524 struct value *val;
10525
10526 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
10527 *pos = pc;
10528 val = evaluate_subexp_standard (expect_type, exp, pos, noside);
10529
10530 return value_cast (value_type (arg1), val);
10531 }
2330c6c6 10532
14f9c5c9
AS
10533 case OP_VAR_VALUE:
10534 *pos -= 1;
6799def4 10535
14f9c5c9 10536 if (noside == EVAL_SKIP)
4c4b4cd2
PH
10537 {
10538 *pos += 4;
10539 goto nosideret;
10540 }
da5c522f
JB
10541
10542 if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
76a01679
JB
10543 /* Only encountered when an unresolved symbol occurs in a
10544 context other than a function call, in which case, it is
52ce6436 10545 invalid. */
323e0a4a 10546 error (_("Unexpected unresolved symbol, %s, during evaluation"),
4c4b4cd2 10547 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
da5c522f
JB
10548
10549 if (noside == EVAL_AVOID_SIDE_EFFECTS)
4c4b4cd2 10550 {
0c1f74cf 10551 type = static_unwrap_type (SYMBOL_TYPE (exp->elts[pc + 2].symbol));
31dbc1c5
JB
10552 /* Check to see if this is a tagged type. We also need to handle
10553 the case where the type is a reference to a tagged type, but
10554 we have to be careful to exclude pointers to tagged types.
10555 The latter should be shown as usual (as a pointer), whereas
10556 a reference should mostly be transparent to the user. */
10557 if (ada_is_tagged_type (type, 0)
023db19c 10558 || (TYPE_CODE (type) == TYPE_CODE_REF
31dbc1c5 10559 && ada_is_tagged_type (TYPE_TARGET_TYPE (type), 0)))
0d72a7c3
JB
10560 {
10561 /* Tagged types are a little special in the fact that the real
10562 type is dynamic and can only be determined by inspecting the
10563 object's tag. This means that we need to get the object's
10564 value first (EVAL_NORMAL) and then extract the actual object
10565 type from its tag.
10566
10567 Note that we cannot skip the final step where we extract
10568 the object type from its tag, because the EVAL_NORMAL phase
10569 results in dynamic components being resolved into fixed ones.
10570 This can cause problems when trying to print the type
10571 description of tagged types whose parent has a dynamic size:
10572 We use the type name of the "_parent" component in order
10573 to print the name of the ancestor type in the type description.
10574 If that component had a dynamic size, the resolution into
10575 a fixed type would result in the loss of that type name,
10576 thus preventing us from printing the name of the ancestor
10577 type in the type description. */
10578 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_NORMAL);
10579
10580 if (TYPE_CODE (type) != TYPE_CODE_REF)
10581 {
10582 struct type *actual_type;
10583
10584 actual_type = type_from_tag (ada_value_tag (arg1));
10585 if (actual_type == NULL)
10586 /* If, for some reason, we were unable to determine
10587 the actual type from the tag, then use the static
10588 approximation that we just computed as a fallback.
10589 This can happen if the debugging information is
10590 incomplete, for instance. */
10591 actual_type = type;
10592 return value_zero (actual_type, not_lval);
10593 }
10594 else
10595 {
10596 /* In the case of a ref, ada_coerce_ref takes care
10597 of determining the actual type. But the evaluation
10598 should return a ref as it should be valid to ask
10599 for its address; so rebuild a ref after coerce. */
10600 arg1 = ada_coerce_ref (arg1);
a65cfae5 10601 return value_ref (arg1, TYPE_CODE_REF);
0d72a7c3
JB
10602 }
10603 }
0c1f74cf 10604
84754697
JB
10605 /* Records and unions for which GNAT encodings have been
10606 generated need to be statically fixed as well.
10607 Otherwise, non-static fixing produces a type where
10608 all dynamic properties are removed, which prevents "ptype"
10609 from being able to completely describe the type.
10610 For instance, a case statement in a variant record would be
10611 replaced by the relevant components based on the actual
10612 value of the discriminants. */
10613 if ((TYPE_CODE (type) == TYPE_CODE_STRUCT
10614 && dynamic_template_type (type) != NULL)
10615 || (TYPE_CODE (type) == TYPE_CODE_UNION
10616 && ada_find_parallel_type (type, "___XVU") != NULL))
10617 {
10618 *pos += 4;
10619 return value_zero (to_static_fixed_type (type), not_lval);
10620 }
4c4b4cd2 10621 }
da5c522f
JB
10622
10623 arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside);
10624 return ada_to_fixed_value (arg1);
4c4b4cd2
PH
10625
10626 case OP_FUNCALL:
10627 (*pos) += 2;
10628
10629 /* Allocate arg vector, including space for the function to be
10630 called in argvec[0] and a terminating NULL. */
10631 nargs = longest_to_int (exp->elts[pc + 1].longconst);
8d749320 10632 argvec = XALLOCAVEC (struct value *, nargs + 2);
4c4b4cd2
PH
10633
10634 if (exp->elts[*pos].opcode == OP_VAR_VALUE
76a01679 10635 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
323e0a4a 10636 error (_("Unexpected unresolved symbol, %s, during evaluation"),
4c4b4cd2
PH
10637 SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol));
10638 else
10639 {
10640 for (tem = 0; tem <= nargs; tem += 1)
10641 argvec[tem] = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10642 argvec[tem] = 0;
10643
10644 if (noside == EVAL_SKIP)
10645 goto nosideret;
10646 }
10647
ad82864c
JB
10648 if (ada_is_constrained_packed_array_type
10649 (desc_base_type (value_type (argvec[0]))))
4c4b4cd2 10650 argvec[0] = ada_coerce_to_simple_array (argvec[0]);
284614f0
JB
10651 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_ARRAY
10652 && TYPE_FIELD_BITSIZE (value_type (argvec[0]), 0) != 0)
10653 /* This is a packed array that has already been fixed, and
10654 therefore already coerced to a simple array. Nothing further
10655 to do. */
10656 ;
e6c2c623
PMR
10657 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_REF)
10658 {
10659 /* Make sure we dereference references so that all the code below
10660 feels like it's really handling the referenced value. Wrapping
10661 types (for alignment) may be there, so make sure we strip them as
10662 well. */
10663 argvec[0] = ada_to_fixed_value (coerce_ref (argvec[0]));
10664 }
10665 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_ARRAY
10666 && VALUE_LVAL (argvec[0]) == lval_memory)
10667 argvec[0] = value_addr (argvec[0]);
4c4b4cd2 10668
df407dfe 10669 type = ada_check_typedef (value_type (argvec[0]));
720d1a40
JB
10670
10671 /* Ada allows us to implicitly dereference arrays when subscripting
8f465ea7
JB
10672 them. So, if this is an array typedef (encoding use for array
10673 access types encoded as fat pointers), strip it now. */
720d1a40
JB
10674 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
10675 type = ada_typedef_target_type (type);
10676
4c4b4cd2
PH
10677 if (TYPE_CODE (type) == TYPE_CODE_PTR)
10678 {
61ee279c 10679 switch (TYPE_CODE (ada_check_typedef (TYPE_TARGET_TYPE (type))))
4c4b4cd2
PH
10680 {
10681 case TYPE_CODE_FUNC:
61ee279c 10682 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
4c4b4cd2
PH
10683 break;
10684 case TYPE_CODE_ARRAY:
10685 break;
10686 case TYPE_CODE_STRUCT:
10687 if (noside != EVAL_AVOID_SIDE_EFFECTS)
10688 argvec[0] = ada_value_ind (argvec[0]);
61ee279c 10689 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
4c4b4cd2
PH
10690 break;
10691 default:
323e0a4a 10692 error (_("cannot subscript or call something of type `%s'"),
df407dfe 10693 ada_type_name (value_type (argvec[0])));
4c4b4cd2
PH
10694 break;
10695 }
10696 }
10697
10698 switch (TYPE_CODE (type))
10699 {
10700 case TYPE_CODE_FUNC:
10701 if (noside == EVAL_AVOID_SIDE_EFFECTS)
c8ea1972 10702 {
7022349d
PA
10703 if (TYPE_TARGET_TYPE (type) == NULL)
10704 error_call_unknown_return_type (NULL);
10705 return allocate_value (TYPE_TARGET_TYPE (type));
c8ea1972 10706 }
7022349d 10707 return call_function_by_hand (argvec[0], NULL, nargs, argvec + 1);
c8ea1972
PH
10708 case TYPE_CODE_INTERNAL_FUNCTION:
10709 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10710 /* We don't know anything about what the internal
10711 function might return, but we have to return
10712 something. */
10713 return value_zero (builtin_type (exp->gdbarch)->builtin_int,
10714 not_lval);
10715 else
10716 return call_internal_function (exp->gdbarch, exp->language_defn,
10717 argvec[0], nargs, argvec + 1);
10718
4c4b4cd2
PH
10719 case TYPE_CODE_STRUCT:
10720 {
10721 int arity;
10722
4c4b4cd2
PH
10723 arity = ada_array_arity (type);
10724 type = ada_array_element_type (type, nargs);
10725 if (type == NULL)
323e0a4a 10726 error (_("cannot subscript or call a record"));
4c4b4cd2 10727 if (arity != nargs)
323e0a4a 10728 error (_("wrong number of subscripts; expecting %d"), arity);
4c4b4cd2 10729 if (noside == EVAL_AVOID_SIDE_EFFECTS)
0a07e705 10730 return value_zero (ada_aligned_type (type), lval_memory);
4c4b4cd2
PH
10731 return
10732 unwrap_value (ada_value_subscript
10733 (argvec[0], nargs, argvec + 1));
10734 }
10735 case TYPE_CODE_ARRAY:
10736 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10737 {
10738 type = ada_array_element_type (type, nargs);
10739 if (type == NULL)
323e0a4a 10740 error (_("element type of array unknown"));
4c4b4cd2 10741 else
0a07e705 10742 return value_zero (ada_aligned_type (type), lval_memory);
4c4b4cd2
PH
10743 }
10744 return
10745 unwrap_value (ada_value_subscript
10746 (ada_coerce_to_simple_array (argvec[0]),
10747 nargs, argvec + 1));
10748 case TYPE_CODE_PTR: /* Pointer to array */
4c4b4cd2
PH
10749 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10750 {
deede10c 10751 type = to_fixed_array_type (TYPE_TARGET_TYPE (type), NULL, 1);
4c4b4cd2
PH
10752 type = ada_array_element_type (type, nargs);
10753 if (type == NULL)
323e0a4a 10754 error (_("element type of array unknown"));
4c4b4cd2 10755 else
0a07e705 10756 return value_zero (ada_aligned_type (type), lval_memory);
4c4b4cd2
PH
10757 }
10758 return
deede10c
JB
10759 unwrap_value (ada_value_ptr_subscript (argvec[0],
10760 nargs, argvec + 1));
4c4b4cd2
PH
10761
10762 default:
e1d5a0d2
PH
10763 error (_("Attempt to index or call something other than an "
10764 "array or function"));
4c4b4cd2
PH
10765 }
10766
10767 case TERNOP_SLICE:
10768 {
10769 struct value *array = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10770 struct value *low_bound_val =
10771 evaluate_subexp (NULL_TYPE, exp, pos, noside);
714e53ab
PH
10772 struct value *high_bound_val =
10773 evaluate_subexp (NULL_TYPE, exp, pos, noside);
10774 LONGEST low_bound;
10775 LONGEST high_bound;
5b4ee69b 10776
994b9211
AC
10777 low_bound_val = coerce_ref (low_bound_val);
10778 high_bound_val = coerce_ref (high_bound_val);
aa715135
JG
10779 low_bound = value_as_long (low_bound_val);
10780 high_bound = value_as_long (high_bound_val);
963a6417 10781
4c4b4cd2
PH
10782 if (noside == EVAL_SKIP)
10783 goto nosideret;
10784
4c4b4cd2
PH
10785 /* If this is a reference to an aligner type, then remove all
10786 the aligners. */
df407dfe
AC
10787 if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF
10788 && ada_is_aligner_type (TYPE_TARGET_TYPE (value_type (array))))
10789 TYPE_TARGET_TYPE (value_type (array)) =
10790 ada_aligned_type (TYPE_TARGET_TYPE (value_type (array)));
4c4b4cd2 10791
ad82864c 10792 if (ada_is_constrained_packed_array_type (value_type (array)))
323e0a4a 10793 error (_("cannot slice a packed array"));
4c4b4cd2
PH
10794
10795 /* If this is a reference to an array or an array lvalue,
10796 convert to a pointer. */
df407dfe
AC
10797 if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF
10798 || (TYPE_CODE (value_type (array)) == TYPE_CODE_ARRAY
4c4b4cd2
PH
10799 && VALUE_LVAL (array) == lval_memory))
10800 array = value_addr (array);
10801
1265e4aa 10802 if (noside == EVAL_AVOID_SIDE_EFFECTS
61ee279c 10803 && ada_is_array_descriptor_type (ada_check_typedef
df407dfe 10804 (value_type (array))))
0b5d8877 10805 return empty_array (ada_type_of_array (array, 0), low_bound);
4c4b4cd2
PH
10806
10807 array = ada_coerce_to_simple_array_ptr (array);
10808
714e53ab
PH
10809 /* If we have more than one level of pointer indirection,
10810 dereference the value until we get only one level. */
df407dfe
AC
10811 while (TYPE_CODE (value_type (array)) == TYPE_CODE_PTR
10812 && (TYPE_CODE (TYPE_TARGET_TYPE (value_type (array)))
714e53ab
PH
10813 == TYPE_CODE_PTR))
10814 array = value_ind (array);
10815
10816 /* Make sure we really do have an array type before going further,
10817 to avoid a SEGV when trying to get the index type or the target
10818 type later down the road if the debug info generated by
10819 the compiler is incorrect or incomplete. */
df407dfe 10820 if (!ada_is_simple_array_type (value_type (array)))
323e0a4a 10821 error (_("cannot take slice of non-array"));
714e53ab 10822
828292f2
JB
10823 if (TYPE_CODE (ada_check_typedef (value_type (array)))
10824 == TYPE_CODE_PTR)
4c4b4cd2 10825 {
828292f2
JB
10826 struct type *type0 = ada_check_typedef (value_type (array));
10827
0b5d8877 10828 if (high_bound < low_bound || noside == EVAL_AVOID_SIDE_EFFECTS)
828292f2 10829 return empty_array (TYPE_TARGET_TYPE (type0), low_bound);
4c4b4cd2
PH
10830 else
10831 {
10832 struct type *arr_type0 =
828292f2 10833 to_fixed_array_type (TYPE_TARGET_TYPE (type0), NULL, 1);
5b4ee69b 10834
f5938064
JG
10835 return ada_value_slice_from_ptr (array, arr_type0,
10836 longest_to_int (low_bound),
10837 longest_to_int (high_bound));
4c4b4cd2
PH
10838 }
10839 }
10840 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
10841 return array;
10842 else if (high_bound < low_bound)
df407dfe 10843 return empty_array (value_type (array), low_bound);
4c4b4cd2 10844 else
529cad9c
PH
10845 return ada_value_slice (array, longest_to_int (low_bound),
10846 longest_to_int (high_bound));
4c4b4cd2 10847 }
14f9c5c9 10848
4c4b4cd2
PH
10849 case UNOP_IN_RANGE:
10850 (*pos) += 2;
10851 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8008e265 10852 type = check_typedef (exp->elts[pc + 1].type);
14f9c5c9 10853
14f9c5c9 10854 if (noside == EVAL_SKIP)
4c4b4cd2 10855 goto nosideret;
14f9c5c9 10856
4c4b4cd2
PH
10857 switch (TYPE_CODE (type))
10858 {
10859 default:
e1d5a0d2
PH
10860 lim_warning (_("Membership test incompletely implemented; "
10861 "always returns true"));
fbb06eb1
UW
10862 type = language_bool_type (exp->language_defn, exp->gdbarch);
10863 return value_from_longest (type, (LONGEST) 1);
4c4b4cd2
PH
10864
10865 case TYPE_CODE_RANGE:
030b4912
UW
10866 arg2 = value_from_longest (type, TYPE_LOW_BOUND (type));
10867 arg3 = value_from_longest (type, TYPE_HIGH_BOUND (type));
f44316fa
UW
10868 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10869 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
fbb06eb1
UW
10870 type = language_bool_type (exp->language_defn, exp->gdbarch);
10871 return
10872 value_from_longest (type,
4c4b4cd2
PH
10873 (value_less (arg1, arg3)
10874 || value_equal (arg1, arg3))
10875 && (value_less (arg2, arg1)
10876 || value_equal (arg2, arg1)));
10877 }
10878
10879 case BINOP_IN_BOUNDS:
14f9c5c9 10880 (*pos) += 2;
4c4b4cd2
PH
10881 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10882 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
14f9c5c9 10883
4c4b4cd2
PH
10884 if (noside == EVAL_SKIP)
10885 goto nosideret;
14f9c5c9 10886
4c4b4cd2 10887 if (noside == EVAL_AVOID_SIDE_EFFECTS)
fbb06eb1
UW
10888 {
10889 type = language_bool_type (exp->language_defn, exp->gdbarch);
10890 return value_zero (type, not_lval);
10891 }
14f9c5c9 10892
4c4b4cd2 10893 tem = longest_to_int (exp->elts[pc + 1].longconst);
14f9c5c9 10894
1eea4ebd
UW
10895 type = ada_index_type (value_type (arg2), tem, "range");
10896 if (!type)
10897 type = value_type (arg1);
14f9c5c9 10898
1eea4ebd
UW
10899 arg3 = value_from_longest (type, ada_array_bound (arg2, tem, 1));
10900 arg2 = value_from_longest (type, ada_array_bound (arg2, tem, 0));
d2e4a39e 10901
f44316fa
UW
10902 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10903 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
fbb06eb1 10904 type = language_bool_type (exp->language_defn, exp->gdbarch);
4c4b4cd2 10905 return
fbb06eb1 10906 value_from_longest (type,
4c4b4cd2
PH
10907 (value_less (arg1, arg3)
10908 || value_equal (arg1, arg3))
10909 && (value_less (arg2, arg1)
10910 || value_equal (arg2, arg1)));
10911
10912 case TERNOP_IN_RANGE:
10913 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10914 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10915 arg3 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10916
10917 if (noside == EVAL_SKIP)
10918 goto nosideret;
10919
f44316fa
UW
10920 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10921 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
fbb06eb1 10922 type = language_bool_type (exp->language_defn, exp->gdbarch);
4c4b4cd2 10923 return
fbb06eb1 10924 value_from_longest (type,
4c4b4cd2
PH
10925 (value_less (arg1, arg3)
10926 || value_equal (arg1, arg3))
10927 && (value_less (arg2, arg1)
10928 || value_equal (arg2, arg1)));
10929
10930 case OP_ATR_FIRST:
10931 case OP_ATR_LAST:
10932 case OP_ATR_LENGTH:
10933 {
76a01679 10934 struct type *type_arg;
5b4ee69b 10935
76a01679
JB
10936 if (exp->elts[*pos].opcode == OP_TYPE)
10937 {
10938 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
10939 arg1 = NULL;
5bc23cb3 10940 type_arg = check_typedef (exp->elts[pc + 2].type);
76a01679
JB
10941 }
10942 else
10943 {
10944 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10945 type_arg = NULL;
10946 }
10947
10948 if (exp->elts[*pos].opcode != OP_LONG)
323e0a4a 10949 error (_("Invalid operand to '%s"), ada_attribute_name (op));
76a01679
JB
10950 tem = longest_to_int (exp->elts[*pos + 2].longconst);
10951 *pos += 4;
10952
10953 if (noside == EVAL_SKIP)
10954 goto nosideret;
10955
10956 if (type_arg == NULL)
10957 {
10958 arg1 = ada_coerce_ref (arg1);
10959
ad82864c 10960 if (ada_is_constrained_packed_array_type (value_type (arg1)))
76a01679
JB
10961 arg1 = ada_coerce_to_simple_array (arg1);
10962
aa4fb036 10963 if (op == OP_ATR_LENGTH)
1eea4ebd 10964 type = builtin_type (exp->gdbarch)->builtin_int;
aa4fb036
JB
10965 else
10966 {
10967 type = ada_index_type (value_type (arg1), tem,
10968 ada_attribute_name (op));
10969 if (type == NULL)
10970 type = builtin_type (exp->gdbarch)->builtin_int;
10971 }
76a01679
JB
10972
10973 if (noside == EVAL_AVOID_SIDE_EFFECTS)
1eea4ebd 10974 return allocate_value (type);
76a01679
JB
10975
10976 switch (op)
10977 {
10978 default: /* Should never happen. */
323e0a4a 10979 error (_("unexpected attribute encountered"));
76a01679 10980 case OP_ATR_FIRST:
1eea4ebd
UW
10981 return value_from_longest
10982 (type, ada_array_bound (arg1, tem, 0));
76a01679 10983 case OP_ATR_LAST:
1eea4ebd
UW
10984 return value_from_longest
10985 (type, ada_array_bound (arg1, tem, 1));
76a01679 10986 case OP_ATR_LENGTH:
1eea4ebd
UW
10987 return value_from_longest
10988 (type, ada_array_length (arg1, tem));
76a01679
JB
10989 }
10990 }
10991 else if (discrete_type_p (type_arg))
10992 {
10993 struct type *range_type;
0d5cff50 10994 const char *name = ada_type_name (type_arg);
5b4ee69b 10995
76a01679
JB
10996 range_type = NULL;
10997 if (name != NULL && TYPE_CODE (type_arg) != TYPE_CODE_ENUM)
28c85d6c 10998 range_type = to_fixed_range_type (type_arg, NULL);
76a01679
JB
10999 if (range_type == NULL)
11000 range_type = type_arg;
11001 switch (op)
11002 {
11003 default:
323e0a4a 11004 error (_("unexpected attribute encountered"));
76a01679 11005 case OP_ATR_FIRST:
690cc4eb 11006 return value_from_longest
43bbcdc2 11007 (range_type, ada_discrete_type_low_bound (range_type));
76a01679 11008 case OP_ATR_LAST:
690cc4eb 11009 return value_from_longest
43bbcdc2 11010 (range_type, ada_discrete_type_high_bound (range_type));
76a01679 11011 case OP_ATR_LENGTH:
323e0a4a 11012 error (_("the 'length attribute applies only to array types"));
76a01679
JB
11013 }
11014 }
11015 else if (TYPE_CODE (type_arg) == TYPE_CODE_FLT)
323e0a4a 11016 error (_("unimplemented type attribute"));
76a01679
JB
11017 else
11018 {
11019 LONGEST low, high;
11020
ad82864c
JB
11021 if (ada_is_constrained_packed_array_type (type_arg))
11022 type_arg = decode_constrained_packed_array_type (type_arg);
76a01679 11023
aa4fb036 11024 if (op == OP_ATR_LENGTH)
1eea4ebd 11025 type = builtin_type (exp->gdbarch)->builtin_int;
aa4fb036
JB
11026 else
11027 {
11028 type = ada_index_type (type_arg, tem, ada_attribute_name (op));
11029 if (type == NULL)
11030 type = builtin_type (exp->gdbarch)->builtin_int;
11031 }
1eea4ebd 11032
76a01679
JB
11033 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11034 return allocate_value (type);
11035
11036 switch (op)
11037 {
11038 default:
323e0a4a 11039 error (_("unexpected attribute encountered"));
76a01679 11040 case OP_ATR_FIRST:
1eea4ebd 11041 low = ada_array_bound_from_type (type_arg, tem, 0);
76a01679
JB
11042 return value_from_longest (type, low);
11043 case OP_ATR_LAST:
1eea4ebd 11044 high = ada_array_bound_from_type (type_arg, tem, 1);
76a01679
JB
11045 return value_from_longest (type, high);
11046 case OP_ATR_LENGTH:
1eea4ebd
UW
11047 low = ada_array_bound_from_type (type_arg, tem, 0);
11048 high = ada_array_bound_from_type (type_arg, tem, 1);
76a01679
JB
11049 return value_from_longest (type, high - low + 1);
11050 }
11051 }
14f9c5c9
AS
11052 }
11053
4c4b4cd2
PH
11054 case OP_ATR_TAG:
11055 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11056 if (noside == EVAL_SKIP)
76a01679 11057 goto nosideret;
4c4b4cd2
PH
11058
11059 if (noside == EVAL_AVOID_SIDE_EFFECTS)
76a01679 11060 return value_zero (ada_tag_type (arg1), not_lval);
4c4b4cd2
PH
11061
11062 return ada_value_tag (arg1);
11063
11064 case OP_ATR_MIN:
11065 case OP_ATR_MAX:
11066 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
14f9c5c9
AS
11067 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11068 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11069 if (noside == EVAL_SKIP)
76a01679 11070 goto nosideret;
d2e4a39e 11071 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
df407dfe 11072 return value_zero (value_type (arg1), not_lval);
14f9c5c9 11073 else
f44316fa
UW
11074 {
11075 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
11076 return value_binop (arg1, arg2,
11077 op == OP_ATR_MIN ? BINOP_MIN : BINOP_MAX);
11078 }
14f9c5c9 11079
4c4b4cd2
PH
11080 case OP_ATR_MODULUS:
11081 {
31dedfee 11082 struct type *type_arg = check_typedef (exp->elts[pc + 2].type);
4c4b4cd2 11083
5b4ee69b 11084 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
76a01679
JB
11085 if (noside == EVAL_SKIP)
11086 goto nosideret;
4c4b4cd2 11087
76a01679 11088 if (!ada_is_modular_type (type_arg))
323e0a4a 11089 error (_("'modulus must be applied to modular type"));
4c4b4cd2 11090
76a01679
JB
11091 return value_from_longest (TYPE_TARGET_TYPE (type_arg),
11092 ada_modulus (type_arg));
4c4b4cd2
PH
11093 }
11094
11095
11096 case OP_ATR_POS:
11097 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
14f9c5c9
AS
11098 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11099 if (noside == EVAL_SKIP)
76a01679 11100 goto nosideret;
3cb382c9
UW
11101 type = builtin_type (exp->gdbarch)->builtin_int;
11102 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11103 return value_zero (type, not_lval);
14f9c5c9 11104 else
3cb382c9 11105 return value_pos_atr (type, arg1);
14f9c5c9 11106
4c4b4cd2
PH
11107 case OP_ATR_SIZE:
11108 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8c1c099f
JB
11109 type = value_type (arg1);
11110
11111 /* If the argument is a reference, then dereference its type, since
11112 the user is really asking for the size of the actual object,
11113 not the size of the pointer. */
11114 if (TYPE_CODE (type) == TYPE_CODE_REF)
11115 type = TYPE_TARGET_TYPE (type);
11116
4c4b4cd2 11117 if (noside == EVAL_SKIP)
76a01679 11118 goto nosideret;
4c4b4cd2 11119 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
22601c15 11120 return value_zero (builtin_type (exp->gdbarch)->builtin_int, not_lval);
4c4b4cd2 11121 else
22601c15 11122 return value_from_longest (builtin_type (exp->gdbarch)->builtin_int,
8c1c099f 11123 TARGET_CHAR_BIT * TYPE_LENGTH (type));
4c4b4cd2
PH
11124
11125 case OP_ATR_VAL:
11126 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
14f9c5c9 11127 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
4c4b4cd2 11128 type = exp->elts[pc + 2].type;
14f9c5c9 11129 if (noside == EVAL_SKIP)
76a01679 11130 goto nosideret;
4c4b4cd2 11131 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
76a01679 11132 return value_zero (type, not_lval);
4c4b4cd2 11133 else
76a01679 11134 return value_val_atr (type, arg1);
4c4b4cd2
PH
11135
11136 case BINOP_EXP:
11137 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11138 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11139 if (noside == EVAL_SKIP)
11140 goto nosideret;
11141 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
df407dfe 11142 return value_zero (value_type (arg1), not_lval);
4c4b4cd2 11143 else
f44316fa
UW
11144 {
11145 /* For integer exponentiation operations,
11146 only promote the first argument. */
11147 if (is_integral_type (value_type (arg2)))
11148 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
11149 else
11150 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
11151
11152 return value_binop (arg1, arg2, op);
11153 }
4c4b4cd2
PH
11154
11155 case UNOP_PLUS:
11156 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11157 if (noside == EVAL_SKIP)
11158 goto nosideret;
11159 else
11160 return arg1;
11161
11162 case UNOP_ABS:
11163 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11164 if (noside == EVAL_SKIP)
11165 goto nosideret;
f44316fa 11166 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
df407dfe 11167 if (value_less (arg1, value_zero (value_type (arg1), not_lval)))
4c4b4cd2 11168 return value_neg (arg1);
14f9c5c9 11169 else
4c4b4cd2 11170 return arg1;
14f9c5c9
AS
11171
11172 case UNOP_IND:
5ec18f2b 11173 preeval_pos = *pos;
6b0d7253 11174 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
14f9c5c9 11175 if (noside == EVAL_SKIP)
4c4b4cd2 11176 goto nosideret;
df407dfe 11177 type = ada_check_typedef (value_type (arg1));
14f9c5c9 11178 if (noside == EVAL_AVOID_SIDE_EFFECTS)
4c4b4cd2
PH
11179 {
11180 if (ada_is_array_descriptor_type (type))
11181 /* GDB allows dereferencing GNAT array descriptors. */
11182 {
11183 struct type *arrType = ada_type_of_array (arg1, 0);
5b4ee69b 11184
4c4b4cd2 11185 if (arrType == NULL)
323e0a4a 11186 error (_("Attempt to dereference null array pointer."));
00a4c844 11187 return value_at_lazy (arrType, 0);
4c4b4cd2
PH
11188 }
11189 else if (TYPE_CODE (type) == TYPE_CODE_PTR
11190 || TYPE_CODE (type) == TYPE_CODE_REF
11191 /* In C you can dereference an array to get the 1st elt. */
11192 || TYPE_CODE (type) == TYPE_CODE_ARRAY)
714e53ab 11193 {
5ec18f2b
JG
11194 /* As mentioned in the OP_VAR_VALUE case, tagged types can
11195 only be determined by inspecting the object's tag.
11196 This means that we need to evaluate completely the
11197 expression in order to get its type. */
11198
023db19c
JB
11199 if ((TYPE_CODE (type) == TYPE_CODE_REF
11200 || TYPE_CODE (type) == TYPE_CODE_PTR)
5ec18f2b
JG
11201 && ada_is_tagged_type (TYPE_TARGET_TYPE (type), 0))
11202 {
11203 arg1 = evaluate_subexp (NULL_TYPE, exp, &preeval_pos,
11204 EVAL_NORMAL);
11205 type = value_type (ada_value_ind (arg1));
11206 }
11207 else
11208 {
11209 type = to_static_fixed_type
11210 (ada_aligned_type
11211 (ada_check_typedef (TYPE_TARGET_TYPE (type))));
11212 }
c1b5a1a6 11213 ada_ensure_varsize_limit (type);
714e53ab
PH
11214 return value_zero (type, lval_memory);
11215 }
4c4b4cd2 11216 else if (TYPE_CODE (type) == TYPE_CODE_INT)
6b0d7253
JB
11217 {
11218 /* GDB allows dereferencing an int. */
11219 if (expect_type == NULL)
11220 return value_zero (builtin_type (exp->gdbarch)->builtin_int,
11221 lval_memory);
11222 else
11223 {
11224 expect_type =
11225 to_static_fixed_type (ada_aligned_type (expect_type));
11226 return value_zero (expect_type, lval_memory);
11227 }
11228 }
4c4b4cd2 11229 else
323e0a4a 11230 error (_("Attempt to take contents of a non-pointer value."));
4c4b4cd2 11231 }
0963b4bd 11232 arg1 = ada_coerce_ref (arg1); /* FIXME: What is this for?? */
df407dfe 11233 type = ada_check_typedef (value_type (arg1));
d2e4a39e 11234
96967637
JB
11235 if (TYPE_CODE (type) == TYPE_CODE_INT)
11236 /* GDB allows dereferencing an int. If we were given
11237 the expect_type, then use that as the target type.
11238 Otherwise, assume that the target type is an int. */
11239 {
11240 if (expect_type != NULL)
11241 return ada_value_ind (value_cast (lookup_pointer_type (expect_type),
11242 arg1));
11243 else
11244 return value_at_lazy (builtin_type (exp->gdbarch)->builtin_int,
11245 (CORE_ADDR) value_as_address (arg1));
11246 }
6b0d7253 11247
4c4b4cd2
PH
11248 if (ada_is_array_descriptor_type (type))
11249 /* GDB allows dereferencing GNAT array descriptors. */
11250 return ada_coerce_to_simple_array (arg1);
14f9c5c9 11251 else
4c4b4cd2 11252 return ada_value_ind (arg1);
14f9c5c9
AS
11253
11254 case STRUCTOP_STRUCT:
11255 tem = longest_to_int (exp->elts[pc + 1].longconst);
11256 (*pos) += 3 + BYTES_TO_EXP_ELEM (tem + 1);
5ec18f2b 11257 preeval_pos = *pos;
14f9c5c9
AS
11258 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11259 if (noside == EVAL_SKIP)
4c4b4cd2 11260 goto nosideret;
14f9c5c9 11261 if (noside == EVAL_AVOID_SIDE_EFFECTS)
76a01679 11262 {
df407dfe 11263 struct type *type1 = value_type (arg1);
5b4ee69b 11264
76a01679
JB
11265 if (ada_is_tagged_type (type1, 1))
11266 {
11267 type = ada_lookup_struct_elt_type (type1,
11268 &exp->elts[pc + 2].string,
988f6b3d 11269 1, 1);
5ec18f2b
JG
11270
11271 /* If the field is not found, check if it exists in the
11272 extension of this object's type. This means that we
11273 need to evaluate completely the expression. */
11274
76a01679 11275 if (type == NULL)
5ec18f2b
JG
11276 {
11277 arg1 = evaluate_subexp (NULL_TYPE, exp, &preeval_pos,
11278 EVAL_NORMAL);
11279 arg1 = ada_value_struct_elt (arg1,
11280 &exp->elts[pc + 2].string,
11281 0);
11282 arg1 = unwrap_value (arg1);
11283 type = value_type (ada_to_fixed_value (arg1));
11284 }
76a01679
JB
11285 }
11286 else
11287 type =
11288 ada_lookup_struct_elt_type (type1, &exp->elts[pc + 2].string, 1,
988f6b3d 11289 0);
76a01679
JB
11290
11291 return value_zero (ada_aligned_type (type), lval_memory);
11292 }
14f9c5c9 11293 else
a579cd9a
MW
11294 {
11295 arg1 = ada_value_struct_elt (arg1, &exp->elts[pc + 2].string, 0);
11296 arg1 = unwrap_value (arg1);
11297 return ada_to_fixed_value (arg1);
11298 }
284614f0 11299
14f9c5c9 11300 case OP_TYPE:
4c4b4cd2
PH
11301 /* The value is not supposed to be used. This is here to make it
11302 easier to accommodate expressions that contain types. */
14f9c5c9
AS
11303 (*pos) += 2;
11304 if (noside == EVAL_SKIP)
4c4b4cd2 11305 goto nosideret;
14f9c5c9 11306 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
a6cfbe68 11307 return allocate_value (exp->elts[pc + 1].type);
14f9c5c9 11308 else
323e0a4a 11309 error (_("Attempt to use a type name as an expression"));
52ce6436
PH
11310
11311 case OP_AGGREGATE:
11312 case OP_CHOICES:
11313 case OP_OTHERS:
11314 case OP_DISCRETE_RANGE:
11315 case OP_POSITIONAL:
11316 case OP_NAME:
11317 if (noside == EVAL_NORMAL)
11318 switch (op)
11319 {
11320 case OP_NAME:
11321 error (_("Undefined name, ambiguous name, or renaming used in "
e1d5a0d2 11322 "component association: %s."), &exp->elts[pc+2].string);
52ce6436
PH
11323 case OP_AGGREGATE:
11324 error (_("Aggregates only allowed on the right of an assignment"));
11325 default:
0963b4bd
MS
11326 internal_error (__FILE__, __LINE__,
11327 _("aggregate apparently mangled"));
52ce6436
PH
11328 }
11329
11330 ada_forward_operator_length (exp, pc, &oplen, &nargs);
11331 *pos += oplen - 1;
11332 for (tem = 0; tem < nargs; tem += 1)
11333 ada_evaluate_subexp (NULL, exp, pos, noside);
11334 goto nosideret;
14f9c5c9
AS
11335 }
11336
11337nosideret:
22601c15 11338 return value_from_longest (builtin_type (exp->gdbarch)->builtin_int, 1);
14f9c5c9 11339}
14f9c5c9 11340\f
d2e4a39e 11341
4c4b4cd2 11342 /* Fixed point */
14f9c5c9
AS
11343
11344/* If TYPE encodes an Ada fixed-point type, return the suffix of the
11345 type name that encodes the 'small and 'delta information.
4c4b4cd2 11346 Otherwise, return NULL. */
14f9c5c9 11347
d2e4a39e 11348static const char *
ebf56fd3 11349fixed_type_info (struct type *type)
14f9c5c9 11350{
d2e4a39e 11351 const char *name = ada_type_name (type);
14f9c5c9
AS
11352 enum type_code code = (type == NULL) ? TYPE_CODE_UNDEF : TYPE_CODE (type);
11353
d2e4a39e
AS
11354 if ((code == TYPE_CODE_INT || code == TYPE_CODE_RANGE) && name != NULL)
11355 {
14f9c5c9 11356 const char *tail = strstr (name, "___XF_");
5b4ee69b 11357
14f9c5c9 11358 if (tail == NULL)
4c4b4cd2 11359 return NULL;
d2e4a39e 11360 else
4c4b4cd2 11361 return tail + 5;
14f9c5c9
AS
11362 }
11363 else if (code == TYPE_CODE_RANGE && TYPE_TARGET_TYPE (type) != type)
11364 return fixed_type_info (TYPE_TARGET_TYPE (type));
11365 else
11366 return NULL;
11367}
11368
4c4b4cd2 11369/* Returns non-zero iff TYPE represents an Ada fixed-point type. */
14f9c5c9
AS
11370
11371int
ebf56fd3 11372ada_is_fixed_point_type (struct type *type)
14f9c5c9
AS
11373{
11374 return fixed_type_info (type) != NULL;
11375}
11376
4c4b4cd2
PH
11377/* Return non-zero iff TYPE represents a System.Address type. */
11378
11379int
11380ada_is_system_address_type (struct type *type)
11381{
11382 return (TYPE_NAME (type)
11383 && strcmp (TYPE_NAME (type), "system__address") == 0);
11384}
11385
14f9c5c9 11386/* Assuming that TYPE is the representation of an Ada fixed-point
50eff16b
UW
11387 type, return the target floating-point type to be used to represent
11388 of this type during internal computation. */
11389
11390static struct type *
11391ada_scaling_type (struct type *type)
11392{
11393 return builtin_type (get_type_arch (type))->builtin_long_double;
11394}
11395
11396/* Assuming that TYPE is the representation of an Ada fixed-point
11397 type, return its delta, or NULL if the type is malformed and the
4c4b4cd2 11398 delta cannot be determined. */
14f9c5c9 11399
50eff16b 11400struct value *
ebf56fd3 11401ada_delta (struct type *type)
14f9c5c9
AS
11402{
11403 const char *encoding = fixed_type_info (type);
50eff16b
UW
11404 struct type *scale_type = ada_scaling_type (type);
11405
11406 long long num, den;
11407
11408 if (sscanf (encoding, "_%lld_%lld", &num, &den) < 2)
11409 return nullptr;
d2e4a39e 11410 else
50eff16b
UW
11411 return value_binop (value_from_longest (scale_type, num),
11412 value_from_longest (scale_type, den), BINOP_DIV);
14f9c5c9
AS
11413}
11414
11415/* Assuming that ada_is_fixed_point_type (TYPE), return the scaling
4c4b4cd2 11416 factor ('SMALL value) associated with the type. */
14f9c5c9 11417
50eff16b
UW
11418struct value *
11419ada_scaling_factor (struct type *type)
14f9c5c9
AS
11420{
11421 const char *encoding = fixed_type_info (type);
50eff16b
UW
11422 struct type *scale_type = ada_scaling_type (type);
11423
11424 long long num0, den0, num1, den1;
14f9c5c9 11425 int n;
d2e4a39e 11426
50eff16b 11427 n = sscanf (encoding, "_%lld_%lld_%lld_%lld",
facc390f 11428 &num0, &den0, &num1, &den1);
14f9c5c9
AS
11429
11430 if (n < 2)
50eff16b 11431 return value_from_longest (scale_type, 1);
14f9c5c9 11432 else if (n == 4)
50eff16b
UW
11433 return value_binop (value_from_longest (scale_type, num1),
11434 value_from_longest (scale_type, den1), BINOP_DIV);
d2e4a39e 11435 else
50eff16b
UW
11436 return value_binop (value_from_longest (scale_type, num0),
11437 value_from_longest (scale_type, den0), BINOP_DIV);
14f9c5c9
AS
11438}
11439
14f9c5c9 11440\f
d2e4a39e 11441
4c4b4cd2 11442 /* Range types */
14f9c5c9
AS
11443
11444/* Scan STR beginning at position K for a discriminant name, and
11445 return the value of that discriminant field of DVAL in *PX. If
11446 PNEW_K is not null, put the position of the character beyond the
11447 name scanned in *PNEW_K. Return 1 if successful; return 0 and do
4c4b4cd2 11448 not alter *PX and *PNEW_K if unsuccessful. */
14f9c5c9
AS
11449
11450static int
108d56a4 11451scan_discrim_bound (const char *str, int k, struct value *dval, LONGEST * px,
76a01679 11452 int *pnew_k)
14f9c5c9
AS
11453{
11454 static char *bound_buffer = NULL;
11455 static size_t bound_buffer_len = 0;
5da1a4d3 11456 const char *pstart, *pend, *bound;
d2e4a39e 11457 struct value *bound_val;
14f9c5c9
AS
11458
11459 if (dval == NULL || str == NULL || str[k] == '\0')
11460 return 0;
11461
5da1a4d3
SM
11462 pstart = str + k;
11463 pend = strstr (pstart, "__");
14f9c5c9
AS
11464 if (pend == NULL)
11465 {
5da1a4d3 11466 bound = pstart;
14f9c5c9
AS
11467 k += strlen (bound);
11468 }
d2e4a39e 11469 else
14f9c5c9 11470 {
5da1a4d3
SM
11471 int len = pend - pstart;
11472
11473 /* Strip __ and beyond. */
11474 GROW_VECT (bound_buffer, bound_buffer_len, len + 1);
11475 strncpy (bound_buffer, pstart, len);
11476 bound_buffer[len] = '\0';
11477
14f9c5c9 11478 bound = bound_buffer;
d2e4a39e 11479 k = pend - str;
14f9c5c9 11480 }
d2e4a39e 11481
df407dfe 11482 bound_val = ada_search_struct_field (bound, dval, 0, value_type (dval));
14f9c5c9
AS
11483 if (bound_val == NULL)
11484 return 0;
11485
11486 *px = value_as_long (bound_val);
11487 if (pnew_k != NULL)
11488 *pnew_k = k;
11489 return 1;
11490}
11491
11492/* Value of variable named NAME in the current environment. If
11493 no such variable found, then if ERR_MSG is null, returns 0, and
4c4b4cd2
PH
11494 otherwise causes an error with message ERR_MSG. */
11495
d2e4a39e 11496static struct value *
edb0c9cb 11497get_var_value (const char *name, const char *err_msg)
14f9c5c9 11498{
b5ec771e 11499 lookup_name_info lookup_name (name, symbol_name_match_type::FULL);
14f9c5c9 11500
b5ec771e
PA
11501 struct block_symbol *syms;
11502 int nsyms = ada_lookup_symbol_list_worker (lookup_name,
11503 get_selected_block (0),
11504 VAR_DOMAIN, &syms, 1);
14f9c5c9
AS
11505
11506 if (nsyms != 1)
11507 {
11508 if (err_msg == NULL)
4c4b4cd2 11509 return 0;
14f9c5c9 11510 else
8a3fe4f8 11511 error (("%s"), err_msg);
14f9c5c9
AS
11512 }
11513
d12307c1 11514 return value_of_variable (syms[0].symbol, syms[0].block);
14f9c5c9 11515}
d2e4a39e 11516
edb0c9cb
PA
11517/* Value of integer variable named NAME in the current environment.
11518 If no such variable is found, returns false. Otherwise, sets VALUE
11519 to the variable's value and returns true. */
4c4b4cd2 11520
edb0c9cb
PA
11521bool
11522get_int_var_value (const char *name, LONGEST &value)
14f9c5c9 11523{
4c4b4cd2 11524 struct value *var_val = get_var_value (name, 0);
d2e4a39e 11525
14f9c5c9 11526 if (var_val == 0)
edb0c9cb
PA
11527 return false;
11528
11529 value = value_as_long (var_val);
11530 return true;
14f9c5c9 11531}
d2e4a39e 11532
14f9c5c9
AS
11533
11534/* Return a range type whose base type is that of the range type named
11535 NAME in the current environment, and whose bounds are calculated
4c4b4cd2 11536 from NAME according to the GNAT range encoding conventions.
1ce677a4
UW
11537 Extract discriminant values, if needed, from DVAL. ORIG_TYPE is the
11538 corresponding range type from debug information; fall back to using it
11539 if symbol lookup fails. If a new type must be created, allocate it
11540 like ORIG_TYPE was. The bounds information, in general, is encoded
11541 in NAME, the base type given in the named range type. */
14f9c5c9 11542
d2e4a39e 11543static struct type *
28c85d6c 11544to_fixed_range_type (struct type *raw_type, struct value *dval)
14f9c5c9 11545{
0d5cff50 11546 const char *name;
14f9c5c9 11547 struct type *base_type;
108d56a4 11548 const char *subtype_info;
14f9c5c9 11549
28c85d6c
JB
11550 gdb_assert (raw_type != NULL);
11551 gdb_assert (TYPE_NAME (raw_type) != NULL);
dddfab26 11552
1ce677a4 11553 if (TYPE_CODE (raw_type) == TYPE_CODE_RANGE)
14f9c5c9
AS
11554 base_type = TYPE_TARGET_TYPE (raw_type);
11555 else
11556 base_type = raw_type;
11557
28c85d6c 11558 name = TYPE_NAME (raw_type);
14f9c5c9
AS
11559 subtype_info = strstr (name, "___XD");
11560 if (subtype_info == NULL)
690cc4eb 11561 {
43bbcdc2
PH
11562 LONGEST L = ada_discrete_type_low_bound (raw_type);
11563 LONGEST U = ada_discrete_type_high_bound (raw_type);
5b4ee69b 11564
690cc4eb
PH
11565 if (L < INT_MIN || U > INT_MAX)
11566 return raw_type;
11567 else
0c9c3474
SA
11568 return create_static_range_type (alloc_type_copy (raw_type), raw_type,
11569 L, U);
690cc4eb 11570 }
14f9c5c9
AS
11571 else
11572 {
11573 static char *name_buf = NULL;
11574 static size_t name_len = 0;
11575 int prefix_len = subtype_info - name;
11576 LONGEST L, U;
11577 struct type *type;
108d56a4 11578 const char *bounds_str;
14f9c5c9
AS
11579 int n;
11580
11581 GROW_VECT (name_buf, name_len, prefix_len + 5);
11582 strncpy (name_buf, name, prefix_len);
11583 name_buf[prefix_len] = '\0';
11584
11585 subtype_info += 5;
11586 bounds_str = strchr (subtype_info, '_');
11587 n = 1;
11588
d2e4a39e 11589 if (*subtype_info == 'L')
4c4b4cd2
PH
11590 {
11591 if (!ada_scan_number (bounds_str, n, &L, &n)
11592 && !scan_discrim_bound (bounds_str, n, dval, &L, &n))
11593 return raw_type;
11594 if (bounds_str[n] == '_')
11595 n += 2;
0963b4bd 11596 else if (bounds_str[n] == '.') /* FIXME? SGI Workshop kludge. */
4c4b4cd2
PH
11597 n += 1;
11598 subtype_info += 1;
11599 }
d2e4a39e 11600 else
4c4b4cd2 11601 {
4c4b4cd2 11602 strcpy (name_buf + prefix_len, "___L");
edb0c9cb 11603 if (!get_int_var_value (name_buf, L))
4c4b4cd2 11604 {
323e0a4a 11605 lim_warning (_("Unknown lower bound, using 1."));
4c4b4cd2
PH
11606 L = 1;
11607 }
11608 }
14f9c5c9 11609
d2e4a39e 11610 if (*subtype_info == 'U')
4c4b4cd2
PH
11611 {
11612 if (!ada_scan_number (bounds_str, n, &U, &n)
11613 && !scan_discrim_bound (bounds_str, n, dval, &U, &n))
11614 return raw_type;
11615 }
d2e4a39e 11616 else
4c4b4cd2 11617 {
4c4b4cd2 11618 strcpy (name_buf + prefix_len, "___U");
edb0c9cb 11619 if (!get_int_var_value (name_buf, U))
4c4b4cd2 11620 {
323e0a4a 11621 lim_warning (_("Unknown upper bound, using %ld."), (long) L);
4c4b4cd2
PH
11622 U = L;
11623 }
11624 }
14f9c5c9 11625
0c9c3474
SA
11626 type = create_static_range_type (alloc_type_copy (raw_type),
11627 base_type, L, U);
d2e4a39e 11628 TYPE_NAME (type) = name;
14f9c5c9
AS
11629 return type;
11630 }
11631}
11632
4c4b4cd2
PH
11633/* True iff NAME is the name of a range type. */
11634
14f9c5c9 11635int
d2e4a39e 11636ada_is_range_type_name (const char *name)
14f9c5c9
AS
11637{
11638 return (name != NULL && strstr (name, "___XD"));
d2e4a39e 11639}
14f9c5c9 11640\f
d2e4a39e 11641
4c4b4cd2
PH
11642 /* Modular types */
11643
11644/* True iff TYPE is an Ada modular type. */
14f9c5c9 11645
14f9c5c9 11646int
d2e4a39e 11647ada_is_modular_type (struct type *type)
14f9c5c9 11648{
18af8284 11649 struct type *subranged_type = get_base_type (type);
14f9c5c9
AS
11650
11651 return (subranged_type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE
690cc4eb 11652 && TYPE_CODE (subranged_type) == TYPE_CODE_INT
4c4b4cd2 11653 && TYPE_UNSIGNED (subranged_type));
14f9c5c9
AS
11654}
11655
4c4b4cd2
PH
11656/* Assuming ada_is_modular_type (TYPE), the modulus of TYPE. */
11657
61ee279c 11658ULONGEST
0056e4d5 11659ada_modulus (struct type *type)
14f9c5c9 11660{
43bbcdc2 11661 return (ULONGEST) TYPE_HIGH_BOUND (type) + 1;
14f9c5c9 11662}
d2e4a39e 11663\f
f7f9143b
JB
11664
11665/* Ada exception catchpoint support:
11666 ---------------------------------
11667
11668 We support 3 kinds of exception catchpoints:
11669 . catchpoints on Ada exceptions
11670 . catchpoints on unhandled Ada exceptions
11671 . catchpoints on failed assertions
11672
11673 Exceptions raised during failed assertions, or unhandled exceptions
11674 could perfectly be caught with the general catchpoint on Ada exceptions.
11675 However, we can easily differentiate these two special cases, and having
11676 the option to distinguish these two cases from the rest can be useful
11677 to zero-in on certain situations.
11678
11679 Exception catchpoints are a specialized form of breakpoint,
11680 since they rely on inserting breakpoints inside known routines
11681 of the GNAT runtime. The implementation therefore uses a standard
11682 breakpoint structure of the BP_BREAKPOINT type, but with its own set
11683 of breakpoint_ops.
11684
0259addd
JB
11685 Support in the runtime for exception catchpoints have been changed
11686 a few times already, and these changes affect the implementation
11687 of these catchpoints. In order to be able to support several
11688 variants of the runtime, we use a sniffer that will determine
28010a5d 11689 the runtime variant used by the program being debugged. */
f7f9143b 11690
82eacd52
JB
11691/* Ada's standard exceptions.
11692
11693 The Ada 83 standard also defined Numeric_Error. But there so many
11694 situations where it was unclear from the Ada 83 Reference Manual
11695 (RM) whether Constraint_Error or Numeric_Error should be raised,
11696 that the ARG (Ada Rapporteur Group) eventually issued a Binding
11697 Interpretation saying that anytime the RM says that Numeric_Error
11698 should be raised, the implementation may raise Constraint_Error.
11699 Ada 95 went one step further and pretty much removed Numeric_Error
11700 from the list of standard exceptions (it made it a renaming of
11701 Constraint_Error, to help preserve compatibility when compiling
11702 an Ada83 compiler). As such, we do not include Numeric_Error from
11703 this list of standard exceptions. */
3d0b0fa3 11704
a121b7c1 11705static const char *standard_exc[] = {
3d0b0fa3
JB
11706 "constraint_error",
11707 "program_error",
11708 "storage_error",
11709 "tasking_error"
11710};
11711
0259addd
JB
11712typedef CORE_ADDR (ada_unhandled_exception_name_addr_ftype) (void);
11713
11714/* A structure that describes how to support exception catchpoints
11715 for a given executable. */
11716
11717struct exception_support_info
11718{
11719 /* The name of the symbol to break on in order to insert
11720 a catchpoint on exceptions. */
11721 const char *catch_exception_sym;
11722
11723 /* The name of the symbol to break on in order to insert
11724 a catchpoint on unhandled exceptions. */
11725 const char *catch_exception_unhandled_sym;
11726
11727 /* The name of the symbol to break on in order to insert
11728 a catchpoint on failed assertions. */
11729 const char *catch_assert_sym;
11730
11731 /* Assuming that the inferior just triggered an unhandled exception
11732 catchpoint, this function is responsible for returning the address
11733 in inferior memory where the name of that exception is stored.
11734 Return zero if the address could not be computed. */
11735 ada_unhandled_exception_name_addr_ftype *unhandled_exception_name_addr;
11736};
11737
11738static CORE_ADDR ada_unhandled_exception_name_addr (void);
11739static CORE_ADDR ada_unhandled_exception_name_addr_from_raise (void);
11740
11741/* The following exception support info structure describes how to
11742 implement exception catchpoints with the latest version of the
11743 Ada runtime (as of 2007-03-06). */
11744
11745static const struct exception_support_info default_exception_support_info =
11746{
11747 "__gnat_debug_raise_exception", /* catch_exception_sym */
11748 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
11749 "__gnat_debug_raise_assert_failure", /* catch_assert_sym */
11750 ada_unhandled_exception_name_addr
11751};
11752
11753/* The following exception support info structure describes how to
11754 implement exception catchpoints with a slightly older version
11755 of the Ada runtime. */
11756
11757static const struct exception_support_info exception_support_info_fallback =
11758{
11759 "__gnat_raise_nodefer_with_msg", /* catch_exception_sym */
11760 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
11761 "system__assertions__raise_assert_failure", /* catch_assert_sym */
11762 ada_unhandled_exception_name_addr_from_raise
11763};
11764
f17011e0
JB
11765/* Return nonzero if we can detect the exception support routines
11766 described in EINFO.
11767
11768 This function errors out if an abnormal situation is detected
11769 (for instance, if we find the exception support routines, but
11770 that support is found to be incomplete). */
11771
11772static int
11773ada_has_this_exception_support (const struct exception_support_info *einfo)
11774{
11775 struct symbol *sym;
11776
11777 /* The symbol we're looking up is provided by a unit in the GNAT runtime
11778 that should be compiled with debugging information. As a result, we
11779 expect to find that symbol in the symtabs. */
11780
11781 sym = standard_lookup (einfo->catch_exception_sym, NULL, VAR_DOMAIN);
11782 if (sym == NULL)
a6af7abe
JB
11783 {
11784 /* Perhaps we did not find our symbol because the Ada runtime was
11785 compiled without debugging info, or simply stripped of it.
11786 It happens on some GNU/Linux distributions for instance, where
11787 users have to install a separate debug package in order to get
11788 the runtime's debugging info. In that situation, let the user
11789 know why we cannot insert an Ada exception catchpoint.
11790
11791 Note: Just for the purpose of inserting our Ada exception
11792 catchpoint, we could rely purely on the associated minimal symbol.
11793 But we would be operating in degraded mode anyway, since we are
11794 still lacking the debugging info needed later on to extract
11795 the name of the exception being raised (this name is printed in
11796 the catchpoint message, and is also used when trying to catch
11797 a specific exception). We do not handle this case for now. */
3b7344d5 11798 struct bound_minimal_symbol msym
1c8e84b0
JB
11799 = lookup_minimal_symbol (einfo->catch_exception_sym, NULL, NULL);
11800
3b7344d5 11801 if (msym.minsym && MSYMBOL_TYPE (msym.minsym) != mst_solib_trampoline)
a6af7abe
JB
11802 error (_("Your Ada runtime appears to be missing some debugging "
11803 "information.\nCannot insert Ada exception catchpoint "
11804 "in this configuration."));
11805
11806 return 0;
11807 }
f17011e0
JB
11808
11809 /* Make sure that the symbol we found corresponds to a function. */
11810
11811 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
11812 error (_("Symbol \"%s\" is not a function (class = %d)"),
11813 SYMBOL_LINKAGE_NAME (sym), SYMBOL_CLASS (sym));
11814
11815 return 1;
11816}
11817
0259addd
JB
11818/* Inspect the Ada runtime and determine which exception info structure
11819 should be used to provide support for exception catchpoints.
11820
3eecfa55
JB
11821 This function will always set the per-inferior exception_info,
11822 or raise an error. */
0259addd
JB
11823
11824static void
11825ada_exception_support_info_sniffer (void)
11826{
3eecfa55 11827 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
0259addd
JB
11828
11829 /* If the exception info is already known, then no need to recompute it. */
3eecfa55 11830 if (data->exception_info != NULL)
0259addd
JB
11831 return;
11832
11833 /* Check the latest (default) exception support info. */
f17011e0 11834 if (ada_has_this_exception_support (&default_exception_support_info))
0259addd 11835 {
3eecfa55 11836 data->exception_info = &default_exception_support_info;
0259addd
JB
11837 return;
11838 }
11839
11840 /* Try our fallback exception suport info. */
f17011e0 11841 if (ada_has_this_exception_support (&exception_support_info_fallback))
0259addd 11842 {
3eecfa55 11843 data->exception_info = &exception_support_info_fallback;
0259addd
JB
11844 return;
11845 }
11846
11847 /* Sometimes, it is normal for us to not be able to find the routine
11848 we are looking for. This happens when the program is linked with
11849 the shared version of the GNAT runtime, and the program has not been
11850 started yet. Inform the user of these two possible causes if
11851 applicable. */
11852
ccefe4c4 11853 if (ada_update_initial_language (language_unknown) != language_ada)
0259addd
JB
11854 error (_("Unable to insert catchpoint. Is this an Ada main program?"));
11855
11856 /* If the symbol does not exist, then check that the program is
11857 already started, to make sure that shared libraries have been
11858 loaded. If it is not started, this may mean that the symbol is
11859 in a shared library. */
11860
11861 if (ptid_get_pid (inferior_ptid) == 0)
11862 error (_("Unable to insert catchpoint. Try to start the program first."));
11863
11864 /* At this point, we know that we are debugging an Ada program and
11865 that the inferior has been started, but we still are not able to
0963b4bd 11866 find the run-time symbols. That can mean that we are in
0259addd
JB
11867 configurable run time mode, or that a-except as been optimized
11868 out by the linker... In any case, at this point it is not worth
11869 supporting this feature. */
11870
7dda8cff 11871 error (_("Cannot insert Ada exception catchpoints in this configuration."));
0259addd
JB
11872}
11873
f7f9143b
JB
11874/* True iff FRAME is very likely to be that of a function that is
11875 part of the runtime system. This is all very heuristic, but is
11876 intended to be used as advice as to what frames are uninteresting
11877 to most users. */
11878
11879static int
11880is_known_support_routine (struct frame_info *frame)
11881{
692465f1 11882 enum language func_lang;
f7f9143b 11883 int i;
f35a17b5 11884 const char *fullname;
f7f9143b 11885
4ed6b5be
JB
11886 /* If this code does not have any debugging information (no symtab),
11887 This cannot be any user code. */
f7f9143b 11888
51abb421 11889 symtab_and_line sal = find_frame_sal (frame);
f7f9143b
JB
11890 if (sal.symtab == NULL)
11891 return 1;
11892
4ed6b5be
JB
11893 /* If there is a symtab, but the associated source file cannot be
11894 located, then assume this is not user code: Selecting a frame
11895 for which we cannot display the code would not be very helpful
11896 for the user. This should also take care of case such as VxWorks
11897 where the kernel has some debugging info provided for a few units. */
f7f9143b 11898
f35a17b5
JK
11899 fullname = symtab_to_fullname (sal.symtab);
11900 if (access (fullname, R_OK) != 0)
f7f9143b
JB
11901 return 1;
11902
4ed6b5be
JB
11903 /* Check the unit filename againt the Ada runtime file naming.
11904 We also check the name of the objfile against the name of some
11905 known system libraries that sometimes come with debugging info
11906 too. */
11907
f7f9143b
JB
11908 for (i = 0; known_runtime_file_name_patterns[i] != NULL; i += 1)
11909 {
11910 re_comp (known_runtime_file_name_patterns[i]);
f69c91ad 11911 if (re_exec (lbasename (sal.symtab->filename)))
f7f9143b 11912 return 1;
eb822aa6
DE
11913 if (SYMTAB_OBJFILE (sal.symtab) != NULL
11914 && re_exec (objfile_name (SYMTAB_OBJFILE (sal.symtab))))
4ed6b5be 11915 return 1;
f7f9143b
JB
11916 }
11917
4ed6b5be 11918 /* Check whether the function is a GNAT-generated entity. */
f7f9143b 11919
c6dc63a1
TT
11920 gdb::unique_xmalloc_ptr<char> func_name
11921 = find_frame_funname (frame, &func_lang, NULL);
f7f9143b
JB
11922 if (func_name == NULL)
11923 return 1;
11924
11925 for (i = 0; known_auxiliary_function_name_patterns[i] != NULL; i += 1)
11926 {
11927 re_comp (known_auxiliary_function_name_patterns[i]);
c6dc63a1
TT
11928 if (re_exec (func_name.get ()))
11929 return 1;
f7f9143b
JB
11930 }
11931
11932 return 0;
11933}
11934
11935/* Find the first frame that contains debugging information and that is not
11936 part of the Ada run-time, starting from FI and moving upward. */
11937
0ef643c8 11938void
f7f9143b
JB
11939ada_find_printable_frame (struct frame_info *fi)
11940{
11941 for (; fi != NULL; fi = get_prev_frame (fi))
11942 {
11943 if (!is_known_support_routine (fi))
11944 {
11945 select_frame (fi);
11946 break;
11947 }
11948 }
11949
11950}
11951
11952/* Assuming that the inferior just triggered an unhandled exception
11953 catchpoint, return the address in inferior memory where the name
11954 of the exception is stored.
11955
11956 Return zero if the address could not be computed. */
11957
11958static CORE_ADDR
11959ada_unhandled_exception_name_addr (void)
0259addd
JB
11960{
11961 return parse_and_eval_address ("e.full_name");
11962}
11963
11964/* Same as ada_unhandled_exception_name_addr, except that this function
11965 should be used when the inferior uses an older version of the runtime,
11966 where the exception name needs to be extracted from a specific frame
11967 several frames up in the callstack. */
11968
11969static CORE_ADDR
11970ada_unhandled_exception_name_addr_from_raise (void)
f7f9143b
JB
11971{
11972 int frame_level;
11973 struct frame_info *fi;
3eecfa55 11974 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
f7f9143b
JB
11975
11976 /* To determine the name of this exception, we need to select
11977 the frame corresponding to RAISE_SYM_NAME. This frame is
11978 at least 3 levels up, so we simply skip the first 3 frames
11979 without checking the name of their associated function. */
11980 fi = get_current_frame ();
11981 for (frame_level = 0; frame_level < 3; frame_level += 1)
11982 if (fi != NULL)
11983 fi = get_prev_frame (fi);
11984
11985 while (fi != NULL)
11986 {
692465f1
JB
11987 enum language func_lang;
11988
c6dc63a1
TT
11989 gdb::unique_xmalloc_ptr<char> func_name
11990 = find_frame_funname (fi, &func_lang, NULL);
55b87a52
KS
11991 if (func_name != NULL)
11992 {
c6dc63a1 11993 if (strcmp (func_name.get (),
55b87a52
KS
11994 data->exception_info->catch_exception_sym) == 0)
11995 break; /* We found the frame we were looking for... */
11996 fi = get_prev_frame (fi);
11997 }
f7f9143b
JB
11998 }
11999
12000 if (fi == NULL)
12001 return 0;
12002
12003 select_frame (fi);
12004 return parse_and_eval_address ("id.full_name");
12005}
12006
12007/* Assuming the inferior just triggered an Ada exception catchpoint
12008 (of any type), return the address in inferior memory where the name
12009 of the exception is stored, if applicable.
12010
45db7c09
PA
12011 Assumes the selected frame is the current frame.
12012
f7f9143b
JB
12013 Return zero if the address could not be computed, or if not relevant. */
12014
12015static CORE_ADDR
761269c8 12016ada_exception_name_addr_1 (enum ada_exception_catchpoint_kind ex,
f7f9143b
JB
12017 struct breakpoint *b)
12018{
3eecfa55
JB
12019 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
12020
f7f9143b
JB
12021 switch (ex)
12022 {
761269c8 12023 case ada_catch_exception:
f7f9143b
JB
12024 return (parse_and_eval_address ("e.full_name"));
12025 break;
12026
761269c8 12027 case ada_catch_exception_unhandled:
3eecfa55 12028 return data->exception_info->unhandled_exception_name_addr ();
f7f9143b
JB
12029 break;
12030
761269c8 12031 case ada_catch_assert:
f7f9143b
JB
12032 return 0; /* Exception name is not relevant in this case. */
12033 break;
12034
12035 default:
12036 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12037 break;
12038 }
12039
12040 return 0; /* Should never be reached. */
12041}
12042
12043/* Same as ada_exception_name_addr_1, except that it intercepts and contains
12044 any error that ada_exception_name_addr_1 might cause to be thrown.
12045 When an error is intercepted, a warning with the error message is printed,
12046 and zero is returned. */
12047
12048static CORE_ADDR
761269c8 12049ada_exception_name_addr (enum ada_exception_catchpoint_kind ex,
f7f9143b
JB
12050 struct breakpoint *b)
12051{
f7f9143b
JB
12052 CORE_ADDR result = 0;
12053
492d29ea 12054 TRY
f7f9143b
JB
12055 {
12056 result = ada_exception_name_addr_1 (ex, b);
12057 }
12058
492d29ea 12059 CATCH (e, RETURN_MASK_ERROR)
f7f9143b
JB
12060 {
12061 warning (_("failed to get exception name: %s"), e.message);
12062 return 0;
12063 }
492d29ea 12064 END_CATCH
f7f9143b
JB
12065
12066 return result;
12067}
12068
28010a5d
PA
12069static char *ada_exception_catchpoint_cond_string (const char *excep_string);
12070
12071/* Ada catchpoints.
12072
12073 In the case of catchpoints on Ada exceptions, the catchpoint will
12074 stop the target on every exception the program throws. When a user
12075 specifies the name of a specific exception, we translate this
12076 request into a condition expression (in text form), and then parse
12077 it into an expression stored in each of the catchpoint's locations.
12078 We then use this condition to check whether the exception that was
12079 raised is the one the user is interested in. If not, then the
12080 target is resumed again. We store the name of the requested
12081 exception, in order to be able to re-set the condition expression
12082 when symbols change. */
12083
12084/* An instance of this type is used to represent an Ada catchpoint
5625a286 12085 breakpoint location. */
28010a5d 12086
5625a286 12087class ada_catchpoint_location : public bp_location
28010a5d 12088{
5625a286
PA
12089public:
12090 ada_catchpoint_location (const bp_location_ops *ops, breakpoint *owner)
12091 : bp_location (ops, owner)
12092 {}
28010a5d
PA
12093
12094 /* The condition that checks whether the exception that was raised
12095 is the specific exception the user specified on catchpoint
12096 creation. */
4d01a485 12097 expression_up excep_cond_expr;
28010a5d
PA
12098};
12099
12100/* Implement the DTOR method in the bp_location_ops structure for all
12101 Ada exception catchpoint kinds. */
12102
12103static void
12104ada_catchpoint_location_dtor (struct bp_location *bl)
12105{
12106 struct ada_catchpoint_location *al = (struct ada_catchpoint_location *) bl;
12107
4d01a485 12108 al->excep_cond_expr.reset ();
28010a5d
PA
12109}
12110
12111/* The vtable to be used in Ada catchpoint locations. */
12112
12113static const struct bp_location_ops ada_catchpoint_location_ops =
12114{
12115 ada_catchpoint_location_dtor
12116};
12117
c1fc2657 12118/* An instance of this type is used to represent an Ada catchpoint. */
28010a5d 12119
c1fc2657 12120struct ada_catchpoint : public breakpoint
28010a5d 12121{
c1fc2657 12122 ~ada_catchpoint () override;
28010a5d
PA
12123
12124 /* The name of the specific exception the user specified. */
12125 char *excep_string;
12126};
12127
12128/* Parse the exception condition string in the context of each of the
12129 catchpoint's locations, and store them for later evaluation. */
12130
12131static void
12132create_excep_cond_exprs (struct ada_catchpoint *c)
12133{
12134 struct cleanup *old_chain;
12135 struct bp_location *bl;
12136 char *cond_string;
12137
12138 /* Nothing to do if there's no specific exception to catch. */
12139 if (c->excep_string == NULL)
12140 return;
12141
12142 /* Same if there are no locations... */
c1fc2657 12143 if (c->loc == NULL)
28010a5d
PA
12144 return;
12145
12146 /* Compute the condition expression in text form, from the specific
12147 expection we want to catch. */
12148 cond_string = ada_exception_catchpoint_cond_string (c->excep_string);
12149 old_chain = make_cleanup (xfree, cond_string);
12150
12151 /* Iterate over all the catchpoint's locations, and parse an
12152 expression for each. */
c1fc2657 12153 for (bl = c->loc; bl != NULL; bl = bl->next)
28010a5d
PA
12154 {
12155 struct ada_catchpoint_location *ada_loc
12156 = (struct ada_catchpoint_location *) bl;
4d01a485 12157 expression_up exp;
28010a5d
PA
12158
12159 if (!bl->shlib_disabled)
12160 {
bbc13ae3 12161 const char *s;
28010a5d
PA
12162
12163 s = cond_string;
492d29ea 12164 TRY
28010a5d 12165 {
036e657b
JB
12166 exp = parse_exp_1 (&s, bl->address,
12167 block_for_pc (bl->address),
12168 0);
28010a5d 12169 }
492d29ea 12170 CATCH (e, RETURN_MASK_ERROR)
849f2b52
JB
12171 {
12172 warning (_("failed to reevaluate internal exception condition "
12173 "for catchpoint %d: %s"),
c1fc2657 12174 c->number, e.message);
849f2b52 12175 }
492d29ea 12176 END_CATCH
28010a5d
PA
12177 }
12178
b22e99fd 12179 ada_loc->excep_cond_expr = std::move (exp);
28010a5d
PA
12180 }
12181
12182 do_cleanups (old_chain);
12183}
12184
c1fc2657 12185/* ada_catchpoint destructor. */
28010a5d 12186
c1fc2657 12187ada_catchpoint::~ada_catchpoint ()
28010a5d 12188{
c1fc2657 12189 xfree (this->excep_string);
28010a5d
PA
12190}
12191
12192/* Implement the ALLOCATE_LOCATION method in the breakpoint_ops
12193 structure for all exception catchpoint kinds. */
12194
12195static struct bp_location *
761269c8 12196allocate_location_exception (enum ada_exception_catchpoint_kind ex,
28010a5d
PA
12197 struct breakpoint *self)
12198{
5625a286 12199 return new ada_catchpoint_location (&ada_catchpoint_location_ops, self);
28010a5d
PA
12200}
12201
12202/* Implement the RE_SET method in the breakpoint_ops structure for all
12203 exception catchpoint kinds. */
12204
12205static void
761269c8 12206re_set_exception (enum ada_exception_catchpoint_kind ex, struct breakpoint *b)
28010a5d
PA
12207{
12208 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
12209
12210 /* Call the base class's method. This updates the catchpoint's
12211 locations. */
2060206e 12212 bkpt_breakpoint_ops.re_set (b);
28010a5d
PA
12213
12214 /* Reparse the exception conditional expressions. One for each
12215 location. */
12216 create_excep_cond_exprs (c);
12217}
12218
12219/* Returns true if we should stop for this breakpoint hit. If the
12220 user specified a specific exception, we only want to cause a stop
12221 if the program thrown that exception. */
12222
12223static int
12224should_stop_exception (const struct bp_location *bl)
12225{
12226 struct ada_catchpoint *c = (struct ada_catchpoint *) bl->owner;
12227 const struct ada_catchpoint_location *ada_loc
12228 = (const struct ada_catchpoint_location *) bl;
28010a5d
PA
12229 int stop;
12230
12231 /* With no specific exception, should always stop. */
12232 if (c->excep_string == NULL)
12233 return 1;
12234
12235 if (ada_loc->excep_cond_expr == NULL)
12236 {
12237 /* We will have a NULL expression if back when we were creating
12238 the expressions, this location's had failed to parse. */
12239 return 1;
12240 }
12241
12242 stop = 1;
492d29ea 12243 TRY
28010a5d
PA
12244 {
12245 struct value *mark;
12246
12247 mark = value_mark ();
4d01a485 12248 stop = value_true (evaluate_expression (ada_loc->excep_cond_expr.get ()));
28010a5d
PA
12249 value_free_to_mark (mark);
12250 }
492d29ea
PA
12251 CATCH (ex, RETURN_MASK_ALL)
12252 {
12253 exception_fprintf (gdb_stderr, ex,
12254 _("Error in testing exception condition:\n"));
12255 }
12256 END_CATCH
12257
28010a5d
PA
12258 return stop;
12259}
12260
12261/* Implement the CHECK_STATUS method in the breakpoint_ops structure
12262 for all exception catchpoint kinds. */
12263
12264static void
761269c8 12265check_status_exception (enum ada_exception_catchpoint_kind ex, bpstat bs)
28010a5d
PA
12266{
12267 bs->stop = should_stop_exception (bs->bp_location_at);
12268}
12269
f7f9143b
JB
12270/* Implement the PRINT_IT method in the breakpoint_ops structure
12271 for all exception catchpoint kinds. */
12272
12273static enum print_stop_action
761269c8 12274print_it_exception (enum ada_exception_catchpoint_kind ex, bpstat bs)
f7f9143b 12275{
79a45e25 12276 struct ui_out *uiout = current_uiout;
348d480f
PA
12277 struct breakpoint *b = bs->breakpoint_at;
12278
956a9fb9 12279 annotate_catchpoint (b->number);
f7f9143b 12280
112e8700 12281 if (uiout->is_mi_like_p ())
f7f9143b 12282 {
112e8700 12283 uiout->field_string ("reason",
956a9fb9 12284 async_reason_lookup (EXEC_ASYNC_BREAKPOINT_HIT));
112e8700 12285 uiout->field_string ("disp", bpdisp_text (b->disposition));
f7f9143b
JB
12286 }
12287
112e8700
SM
12288 uiout->text (b->disposition == disp_del
12289 ? "\nTemporary catchpoint " : "\nCatchpoint ");
12290 uiout->field_int ("bkptno", b->number);
12291 uiout->text (", ");
f7f9143b 12292
45db7c09
PA
12293 /* ada_exception_name_addr relies on the selected frame being the
12294 current frame. Need to do this here because this function may be
12295 called more than once when printing a stop, and below, we'll
12296 select the first frame past the Ada run-time (see
12297 ada_find_printable_frame). */
12298 select_frame (get_current_frame ());
12299
f7f9143b
JB
12300 switch (ex)
12301 {
761269c8
JB
12302 case ada_catch_exception:
12303 case ada_catch_exception_unhandled:
956a9fb9
JB
12304 {
12305 const CORE_ADDR addr = ada_exception_name_addr (ex, b);
12306 char exception_name[256];
12307
12308 if (addr != 0)
12309 {
c714b426
PA
12310 read_memory (addr, (gdb_byte *) exception_name,
12311 sizeof (exception_name) - 1);
956a9fb9
JB
12312 exception_name [sizeof (exception_name) - 1] = '\0';
12313 }
12314 else
12315 {
12316 /* For some reason, we were unable to read the exception
12317 name. This could happen if the Runtime was compiled
12318 without debugging info, for instance. In that case,
12319 just replace the exception name by the generic string
12320 "exception" - it will read as "an exception" in the
12321 notification we are about to print. */
967cff16 12322 memcpy (exception_name, "exception", sizeof ("exception"));
956a9fb9
JB
12323 }
12324 /* In the case of unhandled exception breakpoints, we print
12325 the exception name as "unhandled EXCEPTION_NAME", to make
12326 it clearer to the user which kind of catchpoint just got
12327 hit. We used ui_out_text to make sure that this extra
12328 info does not pollute the exception name in the MI case. */
761269c8 12329 if (ex == ada_catch_exception_unhandled)
112e8700
SM
12330 uiout->text ("unhandled ");
12331 uiout->field_string ("exception-name", exception_name);
956a9fb9
JB
12332 }
12333 break;
761269c8 12334 case ada_catch_assert:
956a9fb9
JB
12335 /* In this case, the name of the exception is not really
12336 important. Just print "failed assertion" to make it clearer
12337 that his program just hit an assertion-failure catchpoint.
12338 We used ui_out_text because this info does not belong in
12339 the MI output. */
112e8700 12340 uiout->text ("failed assertion");
956a9fb9 12341 break;
f7f9143b 12342 }
112e8700 12343 uiout->text (" at ");
956a9fb9 12344 ada_find_printable_frame (get_current_frame ());
f7f9143b
JB
12345
12346 return PRINT_SRC_AND_LOC;
12347}
12348
12349/* Implement the PRINT_ONE method in the breakpoint_ops structure
12350 for all exception catchpoint kinds. */
12351
12352static void
761269c8 12353print_one_exception (enum ada_exception_catchpoint_kind ex,
a6d9a66e 12354 struct breakpoint *b, struct bp_location **last_loc)
f7f9143b 12355{
79a45e25 12356 struct ui_out *uiout = current_uiout;
28010a5d 12357 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
79a45b7d
TT
12358 struct value_print_options opts;
12359
12360 get_user_print_options (&opts);
12361 if (opts.addressprint)
f7f9143b
JB
12362 {
12363 annotate_field (4);
112e8700 12364 uiout->field_core_addr ("addr", b->loc->gdbarch, b->loc->address);
f7f9143b
JB
12365 }
12366
12367 annotate_field (5);
a6d9a66e 12368 *last_loc = b->loc;
f7f9143b
JB
12369 switch (ex)
12370 {
761269c8 12371 case ada_catch_exception:
28010a5d 12372 if (c->excep_string != NULL)
f7f9143b 12373 {
28010a5d
PA
12374 char *msg = xstrprintf (_("`%s' Ada exception"), c->excep_string);
12375
112e8700 12376 uiout->field_string ("what", msg);
f7f9143b
JB
12377 xfree (msg);
12378 }
12379 else
112e8700 12380 uiout->field_string ("what", "all Ada exceptions");
f7f9143b
JB
12381
12382 break;
12383
761269c8 12384 case ada_catch_exception_unhandled:
112e8700 12385 uiout->field_string ("what", "unhandled Ada exceptions");
f7f9143b
JB
12386 break;
12387
761269c8 12388 case ada_catch_assert:
112e8700 12389 uiout->field_string ("what", "failed Ada assertions");
f7f9143b
JB
12390 break;
12391
12392 default:
12393 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12394 break;
12395 }
12396}
12397
12398/* Implement the PRINT_MENTION method in the breakpoint_ops structure
12399 for all exception catchpoint kinds. */
12400
12401static void
761269c8 12402print_mention_exception (enum ada_exception_catchpoint_kind ex,
f7f9143b
JB
12403 struct breakpoint *b)
12404{
28010a5d 12405 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
79a45e25 12406 struct ui_out *uiout = current_uiout;
28010a5d 12407
112e8700 12408 uiout->text (b->disposition == disp_del ? _("Temporary catchpoint ")
00eb2c4a 12409 : _("Catchpoint "));
112e8700
SM
12410 uiout->field_int ("bkptno", b->number);
12411 uiout->text (": ");
00eb2c4a 12412
f7f9143b
JB
12413 switch (ex)
12414 {
761269c8 12415 case ada_catch_exception:
28010a5d 12416 if (c->excep_string != NULL)
00eb2c4a
JB
12417 {
12418 char *info = xstrprintf (_("`%s' Ada exception"), c->excep_string);
12419 struct cleanup *old_chain = make_cleanup (xfree, info);
12420
112e8700 12421 uiout->text (info);
00eb2c4a
JB
12422 do_cleanups (old_chain);
12423 }
f7f9143b 12424 else
112e8700 12425 uiout->text (_("all Ada exceptions"));
f7f9143b
JB
12426 break;
12427
761269c8 12428 case ada_catch_exception_unhandled:
112e8700 12429 uiout->text (_("unhandled Ada exceptions"));
f7f9143b
JB
12430 break;
12431
761269c8 12432 case ada_catch_assert:
112e8700 12433 uiout->text (_("failed Ada assertions"));
f7f9143b
JB
12434 break;
12435
12436 default:
12437 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12438 break;
12439 }
12440}
12441
6149aea9
PA
12442/* Implement the PRINT_RECREATE method in the breakpoint_ops structure
12443 for all exception catchpoint kinds. */
12444
12445static void
761269c8 12446print_recreate_exception (enum ada_exception_catchpoint_kind ex,
6149aea9
PA
12447 struct breakpoint *b, struct ui_file *fp)
12448{
28010a5d
PA
12449 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
12450
6149aea9
PA
12451 switch (ex)
12452 {
761269c8 12453 case ada_catch_exception:
6149aea9 12454 fprintf_filtered (fp, "catch exception");
28010a5d
PA
12455 if (c->excep_string != NULL)
12456 fprintf_filtered (fp, " %s", c->excep_string);
6149aea9
PA
12457 break;
12458
761269c8 12459 case ada_catch_exception_unhandled:
78076abc 12460 fprintf_filtered (fp, "catch exception unhandled");
6149aea9
PA
12461 break;
12462
761269c8 12463 case ada_catch_assert:
6149aea9
PA
12464 fprintf_filtered (fp, "catch assert");
12465 break;
12466
12467 default:
12468 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12469 }
d9b3f62e 12470 print_recreate_thread (b, fp);
6149aea9
PA
12471}
12472
f7f9143b
JB
12473/* Virtual table for "catch exception" breakpoints. */
12474
28010a5d
PA
12475static struct bp_location *
12476allocate_location_catch_exception (struct breakpoint *self)
12477{
761269c8 12478 return allocate_location_exception (ada_catch_exception, self);
28010a5d
PA
12479}
12480
12481static void
12482re_set_catch_exception (struct breakpoint *b)
12483{
761269c8 12484 re_set_exception (ada_catch_exception, b);
28010a5d
PA
12485}
12486
12487static void
12488check_status_catch_exception (bpstat bs)
12489{
761269c8 12490 check_status_exception (ada_catch_exception, bs);
28010a5d
PA
12491}
12492
f7f9143b 12493static enum print_stop_action
348d480f 12494print_it_catch_exception (bpstat bs)
f7f9143b 12495{
761269c8 12496 return print_it_exception (ada_catch_exception, bs);
f7f9143b
JB
12497}
12498
12499static void
a6d9a66e 12500print_one_catch_exception (struct breakpoint *b, struct bp_location **last_loc)
f7f9143b 12501{
761269c8 12502 print_one_exception (ada_catch_exception, b, last_loc);
f7f9143b
JB
12503}
12504
12505static void
12506print_mention_catch_exception (struct breakpoint *b)
12507{
761269c8 12508 print_mention_exception (ada_catch_exception, b);
f7f9143b
JB
12509}
12510
6149aea9
PA
12511static void
12512print_recreate_catch_exception (struct breakpoint *b, struct ui_file *fp)
12513{
761269c8 12514 print_recreate_exception (ada_catch_exception, b, fp);
6149aea9
PA
12515}
12516
2060206e 12517static struct breakpoint_ops catch_exception_breakpoint_ops;
f7f9143b
JB
12518
12519/* Virtual table for "catch exception unhandled" breakpoints. */
12520
28010a5d
PA
12521static struct bp_location *
12522allocate_location_catch_exception_unhandled (struct breakpoint *self)
12523{
761269c8 12524 return allocate_location_exception (ada_catch_exception_unhandled, self);
28010a5d
PA
12525}
12526
12527static void
12528re_set_catch_exception_unhandled (struct breakpoint *b)
12529{
761269c8 12530 re_set_exception (ada_catch_exception_unhandled, b);
28010a5d
PA
12531}
12532
12533static void
12534check_status_catch_exception_unhandled (bpstat bs)
12535{
761269c8 12536 check_status_exception (ada_catch_exception_unhandled, bs);
28010a5d
PA
12537}
12538
f7f9143b 12539static enum print_stop_action
348d480f 12540print_it_catch_exception_unhandled (bpstat bs)
f7f9143b 12541{
761269c8 12542 return print_it_exception (ada_catch_exception_unhandled, bs);
f7f9143b
JB
12543}
12544
12545static void
a6d9a66e
UW
12546print_one_catch_exception_unhandled (struct breakpoint *b,
12547 struct bp_location **last_loc)
f7f9143b 12548{
761269c8 12549 print_one_exception (ada_catch_exception_unhandled, b, last_loc);
f7f9143b
JB
12550}
12551
12552static void
12553print_mention_catch_exception_unhandled (struct breakpoint *b)
12554{
761269c8 12555 print_mention_exception (ada_catch_exception_unhandled, b);
f7f9143b
JB
12556}
12557
6149aea9
PA
12558static void
12559print_recreate_catch_exception_unhandled (struct breakpoint *b,
12560 struct ui_file *fp)
12561{
761269c8 12562 print_recreate_exception (ada_catch_exception_unhandled, b, fp);
6149aea9
PA
12563}
12564
2060206e 12565static struct breakpoint_ops catch_exception_unhandled_breakpoint_ops;
f7f9143b
JB
12566
12567/* Virtual table for "catch assert" breakpoints. */
12568
28010a5d
PA
12569static struct bp_location *
12570allocate_location_catch_assert (struct breakpoint *self)
12571{
761269c8 12572 return allocate_location_exception (ada_catch_assert, self);
28010a5d
PA
12573}
12574
12575static void
12576re_set_catch_assert (struct breakpoint *b)
12577{
761269c8 12578 re_set_exception (ada_catch_assert, b);
28010a5d
PA
12579}
12580
12581static void
12582check_status_catch_assert (bpstat bs)
12583{
761269c8 12584 check_status_exception (ada_catch_assert, bs);
28010a5d
PA
12585}
12586
f7f9143b 12587static enum print_stop_action
348d480f 12588print_it_catch_assert (bpstat bs)
f7f9143b 12589{
761269c8 12590 return print_it_exception (ada_catch_assert, bs);
f7f9143b
JB
12591}
12592
12593static void
a6d9a66e 12594print_one_catch_assert (struct breakpoint *b, struct bp_location **last_loc)
f7f9143b 12595{
761269c8 12596 print_one_exception (ada_catch_assert, b, last_loc);
f7f9143b
JB
12597}
12598
12599static void
12600print_mention_catch_assert (struct breakpoint *b)
12601{
761269c8 12602 print_mention_exception (ada_catch_assert, b);
f7f9143b
JB
12603}
12604
6149aea9
PA
12605static void
12606print_recreate_catch_assert (struct breakpoint *b, struct ui_file *fp)
12607{
761269c8 12608 print_recreate_exception (ada_catch_assert, b, fp);
6149aea9
PA
12609}
12610
2060206e 12611static struct breakpoint_ops catch_assert_breakpoint_ops;
f7f9143b 12612
f7f9143b
JB
12613/* Return a newly allocated copy of the first space-separated token
12614 in ARGSP, and then adjust ARGSP to point immediately after that
12615 token.
12616
12617 Return NULL if ARGPS does not contain any more tokens. */
12618
12619static char *
a121b7c1 12620ada_get_next_arg (const char **argsp)
f7f9143b 12621{
a121b7c1
PA
12622 const char *args = *argsp;
12623 const char *end;
f7f9143b
JB
12624 char *result;
12625
f1735a53 12626 args = skip_spaces (args);
f7f9143b
JB
12627 if (args[0] == '\0')
12628 return NULL; /* No more arguments. */
12629
12630 /* Find the end of the current argument. */
12631
f1735a53 12632 end = skip_to_space (args);
f7f9143b
JB
12633
12634 /* Adjust ARGSP to point to the start of the next argument. */
12635
12636 *argsp = end;
12637
12638 /* Make a copy of the current argument and return it. */
12639
224c3ddb 12640 result = (char *) xmalloc (end - args + 1);
f7f9143b
JB
12641 strncpy (result, args, end - args);
12642 result[end - args] = '\0';
12643
12644 return result;
12645}
12646
12647/* Split the arguments specified in a "catch exception" command.
12648 Set EX to the appropriate catchpoint type.
28010a5d 12649 Set EXCEP_STRING to the name of the specific exception if
5845583d
JB
12650 specified by the user.
12651 If a condition is found at the end of the arguments, the condition
12652 expression is stored in COND_STRING (memory must be deallocated
12653 after use). Otherwise COND_STRING is set to NULL. */
f7f9143b
JB
12654
12655static void
a121b7c1 12656catch_ada_exception_command_split (const char *args,
761269c8 12657 enum ada_exception_catchpoint_kind *ex,
5845583d
JB
12658 char **excep_string,
12659 char **cond_string)
f7f9143b
JB
12660{
12661 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
12662 char *exception_name;
5845583d 12663 char *cond = NULL;
f7f9143b
JB
12664
12665 exception_name = ada_get_next_arg (&args);
5845583d
JB
12666 if (exception_name != NULL && strcmp (exception_name, "if") == 0)
12667 {
12668 /* This is not an exception name; this is the start of a condition
12669 expression for a catchpoint on all exceptions. So, "un-get"
12670 this token, and set exception_name to NULL. */
12671 xfree (exception_name);
12672 exception_name = NULL;
12673 args -= 2;
12674 }
f7f9143b
JB
12675 make_cleanup (xfree, exception_name);
12676
5845583d 12677 /* Check to see if we have a condition. */
f7f9143b 12678
f1735a53 12679 args = skip_spaces (args);
61012eef 12680 if (startswith (args, "if")
5845583d
JB
12681 && (isspace (args[2]) || args[2] == '\0'))
12682 {
12683 args += 2;
f1735a53 12684 args = skip_spaces (args);
5845583d
JB
12685
12686 if (args[0] == '\0')
12687 error (_("Condition missing after `if' keyword"));
12688 cond = xstrdup (args);
12689 make_cleanup (xfree, cond);
12690
12691 args += strlen (args);
12692 }
12693
12694 /* Check that we do not have any more arguments. Anything else
12695 is unexpected. */
f7f9143b
JB
12696
12697 if (args[0] != '\0')
12698 error (_("Junk at end of expression"));
12699
12700 discard_cleanups (old_chain);
12701
12702 if (exception_name == NULL)
12703 {
12704 /* Catch all exceptions. */
761269c8 12705 *ex = ada_catch_exception;
28010a5d 12706 *excep_string = NULL;
f7f9143b
JB
12707 }
12708 else if (strcmp (exception_name, "unhandled") == 0)
12709 {
12710 /* Catch unhandled exceptions. */
761269c8 12711 *ex = ada_catch_exception_unhandled;
28010a5d 12712 *excep_string = NULL;
f7f9143b
JB
12713 }
12714 else
12715 {
12716 /* Catch a specific exception. */
761269c8 12717 *ex = ada_catch_exception;
28010a5d 12718 *excep_string = exception_name;
f7f9143b 12719 }
5845583d 12720 *cond_string = cond;
f7f9143b
JB
12721}
12722
12723/* Return the name of the symbol on which we should break in order to
12724 implement a catchpoint of the EX kind. */
12725
12726static const char *
761269c8 12727ada_exception_sym_name (enum ada_exception_catchpoint_kind ex)
f7f9143b 12728{
3eecfa55
JB
12729 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
12730
12731 gdb_assert (data->exception_info != NULL);
0259addd 12732
f7f9143b
JB
12733 switch (ex)
12734 {
761269c8 12735 case ada_catch_exception:
3eecfa55 12736 return (data->exception_info->catch_exception_sym);
f7f9143b 12737 break;
761269c8 12738 case ada_catch_exception_unhandled:
3eecfa55 12739 return (data->exception_info->catch_exception_unhandled_sym);
f7f9143b 12740 break;
761269c8 12741 case ada_catch_assert:
3eecfa55 12742 return (data->exception_info->catch_assert_sym);
f7f9143b
JB
12743 break;
12744 default:
12745 internal_error (__FILE__, __LINE__,
12746 _("unexpected catchpoint kind (%d)"), ex);
12747 }
12748}
12749
12750/* Return the breakpoint ops "virtual table" used for catchpoints
12751 of the EX kind. */
12752
c0a91b2b 12753static const struct breakpoint_ops *
761269c8 12754ada_exception_breakpoint_ops (enum ada_exception_catchpoint_kind ex)
f7f9143b
JB
12755{
12756 switch (ex)
12757 {
761269c8 12758 case ada_catch_exception:
f7f9143b
JB
12759 return (&catch_exception_breakpoint_ops);
12760 break;
761269c8 12761 case ada_catch_exception_unhandled:
f7f9143b
JB
12762 return (&catch_exception_unhandled_breakpoint_ops);
12763 break;
761269c8 12764 case ada_catch_assert:
f7f9143b
JB
12765 return (&catch_assert_breakpoint_ops);
12766 break;
12767 default:
12768 internal_error (__FILE__, __LINE__,
12769 _("unexpected catchpoint kind (%d)"), ex);
12770 }
12771}
12772
12773/* Return the condition that will be used to match the current exception
12774 being raised with the exception that the user wants to catch. This
12775 assumes that this condition is used when the inferior just triggered
12776 an exception catchpoint.
12777
12778 The string returned is a newly allocated string that needs to be
12779 deallocated later. */
12780
12781static char *
28010a5d 12782ada_exception_catchpoint_cond_string (const char *excep_string)
f7f9143b 12783{
3d0b0fa3
JB
12784 int i;
12785
0963b4bd 12786 /* The standard exceptions are a special case. They are defined in
3d0b0fa3 12787 runtime units that have been compiled without debugging info; if
28010a5d 12788 EXCEP_STRING is the not-fully-qualified name of a standard
3d0b0fa3
JB
12789 exception (e.g. "constraint_error") then, during the evaluation
12790 of the condition expression, the symbol lookup on this name would
0963b4bd 12791 *not* return this standard exception. The catchpoint condition
3d0b0fa3
JB
12792 may then be set only on user-defined exceptions which have the
12793 same not-fully-qualified name (e.g. my_package.constraint_error).
12794
12795 To avoid this unexcepted behavior, these standard exceptions are
0963b4bd 12796 systematically prefixed by "standard". This means that "catch
3d0b0fa3
JB
12797 exception constraint_error" is rewritten into "catch exception
12798 standard.constraint_error".
12799
12800 If an exception named contraint_error is defined in another package of
12801 the inferior program, then the only way to specify this exception as a
12802 breakpoint condition is to use its fully-qualified named:
12803 e.g. my_package.constraint_error. */
12804
12805 for (i = 0; i < sizeof (standard_exc) / sizeof (char *); i++)
12806 {
28010a5d 12807 if (strcmp (standard_exc [i], excep_string) == 0)
3d0b0fa3
JB
12808 {
12809 return xstrprintf ("long_integer (e) = long_integer (&standard.%s)",
28010a5d 12810 excep_string);
3d0b0fa3
JB
12811 }
12812 }
28010a5d 12813 return xstrprintf ("long_integer (e) = long_integer (&%s)", excep_string);
f7f9143b
JB
12814}
12815
12816/* Return the symtab_and_line that should be used to insert an exception
12817 catchpoint of the TYPE kind.
12818
28010a5d
PA
12819 EXCEP_STRING should contain the name of a specific exception that
12820 the catchpoint should catch, or NULL otherwise.
f7f9143b 12821
28010a5d
PA
12822 ADDR_STRING returns the name of the function where the real
12823 breakpoint that implements the catchpoints is set, depending on the
12824 type of catchpoint we need to create. */
f7f9143b
JB
12825
12826static struct symtab_and_line
761269c8 12827ada_exception_sal (enum ada_exception_catchpoint_kind ex, char *excep_string,
f2fc3015 12828 const char **addr_string, const struct breakpoint_ops **ops)
f7f9143b
JB
12829{
12830 const char *sym_name;
12831 struct symbol *sym;
f7f9143b 12832
0259addd
JB
12833 /* First, find out which exception support info to use. */
12834 ada_exception_support_info_sniffer ();
12835
12836 /* Then lookup the function on which we will break in order to catch
f7f9143b 12837 the Ada exceptions requested by the user. */
f7f9143b
JB
12838 sym_name = ada_exception_sym_name (ex);
12839 sym = standard_lookup (sym_name, NULL, VAR_DOMAIN);
12840
f17011e0
JB
12841 /* We can assume that SYM is not NULL at this stage. If the symbol
12842 did not exist, ada_exception_support_info_sniffer would have
12843 raised an exception.
f7f9143b 12844
f17011e0
JB
12845 Also, ada_exception_support_info_sniffer should have already
12846 verified that SYM is a function symbol. */
12847 gdb_assert (sym != NULL);
12848 gdb_assert (SYMBOL_CLASS (sym) == LOC_BLOCK);
f7f9143b
JB
12849
12850 /* Set ADDR_STRING. */
f7f9143b
JB
12851 *addr_string = xstrdup (sym_name);
12852
f7f9143b 12853 /* Set OPS. */
4b9eee8c 12854 *ops = ada_exception_breakpoint_ops (ex);
f7f9143b 12855
f17011e0 12856 return find_function_start_sal (sym, 1);
f7f9143b
JB
12857}
12858
b4a5b78b 12859/* Create an Ada exception catchpoint.
f7f9143b 12860
b4a5b78b 12861 EX_KIND is the kind of exception catchpoint to be created.
5845583d 12862
2df4d1d5
JB
12863 If EXCEPT_STRING is NULL, this catchpoint is expected to trigger
12864 for all exceptions. Otherwise, EXCEPT_STRING indicates the name
12865 of the exception to which this catchpoint applies. When not NULL,
12866 the string must be allocated on the heap, and its deallocation
12867 is no longer the responsibility of the caller.
12868
12869 COND_STRING, if not NULL, is the catchpoint condition. This string
12870 must be allocated on the heap, and its deallocation is no longer
12871 the responsibility of the caller.
f7f9143b 12872
b4a5b78b
JB
12873 TEMPFLAG, if nonzero, means that the underlying breakpoint
12874 should be temporary.
28010a5d 12875
b4a5b78b 12876 FROM_TTY is the usual argument passed to all commands implementations. */
28010a5d 12877
349774ef 12878void
28010a5d 12879create_ada_exception_catchpoint (struct gdbarch *gdbarch,
761269c8 12880 enum ada_exception_catchpoint_kind ex_kind,
28010a5d 12881 char *excep_string,
5845583d 12882 char *cond_string,
28010a5d 12883 int tempflag,
349774ef 12884 int disabled,
28010a5d
PA
12885 int from_tty)
12886{
f2fc3015 12887 const char *addr_string = NULL;
b4a5b78b
JB
12888 const struct breakpoint_ops *ops = NULL;
12889 struct symtab_and_line sal
12890 = ada_exception_sal (ex_kind, excep_string, &addr_string, &ops);
28010a5d 12891
b270e6f9
TT
12892 std::unique_ptr<ada_catchpoint> c (new ada_catchpoint ());
12893 init_ada_exception_breakpoint (c.get (), gdbarch, sal, addr_string,
349774ef 12894 ops, tempflag, disabled, from_tty);
28010a5d 12895 c->excep_string = excep_string;
b270e6f9 12896 create_excep_cond_exprs (c.get ());
5845583d 12897 if (cond_string != NULL)
b270e6f9
TT
12898 set_breakpoint_condition (c.get (), cond_string, from_tty);
12899 install_breakpoint (0, std::move (c), 1);
f7f9143b
JB
12900}
12901
9ac4176b
PA
12902/* Implement the "catch exception" command. */
12903
12904static void
eb4c3f4a 12905catch_ada_exception_command (const char *arg_entry, int from_tty,
9ac4176b
PA
12906 struct cmd_list_element *command)
12907{
a121b7c1 12908 const char *arg = arg_entry;
9ac4176b
PA
12909 struct gdbarch *gdbarch = get_current_arch ();
12910 int tempflag;
761269c8 12911 enum ada_exception_catchpoint_kind ex_kind;
28010a5d 12912 char *excep_string = NULL;
5845583d 12913 char *cond_string = NULL;
9ac4176b
PA
12914
12915 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
12916
12917 if (!arg)
12918 arg = "";
b4a5b78b
JB
12919 catch_ada_exception_command_split (arg, &ex_kind, &excep_string,
12920 &cond_string);
12921 create_ada_exception_catchpoint (gdbarch, ex_kind,
12922 excep_string, cond_string,
349774ef
JB
12923 tempflag, 1 /* enabled */,
12924 from_tty);
9ac4176b
PA
12925}
12926
b4a5b78b 12927/* Split the arguments specified in a "catch assert" command.
5845583d 12928
b4a5b78b
JB
12929 ARGS contains the command's arguments (or the empty string if
12930 no arguments were passed).
5845583d
JB
12931
12932 If ARGS contains a condition, set COND_STRING to that condition
b4a5b78b 12933 (the memory needs to be deallocated after use). */
5845583d 12934
b4a5b78b 12935static void
a121b7c1 12936catch_ada_assert_command_split (const char *args, char **cond_string)
f7f9143b 12937{
f1735a53 12938 args = skip_spaces (args);
f7f9143b 12939
5845583d 12940 /* Check whether a condition was provided. */
61012eef 12941 if (startswith (args, "if")
5845583d 12942 && (isspace (args[2]) || args[2] == '\0'))
f7f9143b 12943 {
5845583d 12944 args += 2;
f1735a53 12945 args = skip_spaces (args);
5845583d
JB
12946 if (args[0] == '\0')
12947 error (_("condition missing after `if' keyword"));
12948 *cond_string = xstrdup (args);
f7f9143b
JB
12949 }
12950
5845583d
JB
12951 /* Otherwise, there should be no other argument at the end of
12952 the command. */
12953 else if (args[0] != '\0')
12954 error (_("Junk at end of arguments."));
f7f9143b
JB
12955}
12956
9ac4176b
PA
12957/* Implement the "catch assert" command. */
12958
12959static void
eb4c3f4a 12960catch_assert_command (const char *arg_entry, int from_tty,
9ac4176b
PA
12961 struct cmd_list_element *command)
12962{
a121b7c1 12963 const char *arg = arg_entry;
9ac4176b
PA
12964 struct gdbarch *gdbarch = get_current_arch ();
12965 int tempflag;
5845583d 12966 char *cond_string = NULL;
9ac4176b
PA
12967
12968 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
12969
12970 if (!arg)
12971 arg = "";
b4a5b78b 12972 catch_ada_assert_command_split (arg, &cond_string);
761269c8 12973 create_ada_exception_catchpoint (gdbarch, ada_catch_assert,
b4a5b78b 12974 NULL, cond_string,
349774ef
JB
12975 tempflag, 1 /* enabled */,
12976 from_tty);
9ac4176b 12977}
778865d3
JB
12978
12979/* Return non-zero if the symbol SYM is an Ada exception object. */
12980
12981static int
12982ada_is_exception_sym (struct symbol *sym)
12983{
12984 const char *type_name = type_name_no_tag (SYMBOL_TYPE (sym));
12985
12986 return (SYMBOL_CLASS (sym) != LOC_TYPEDEF
12987 && SYMBOL_CLASS (sym) != LOC_BLOCK
12988 && SYMBOL_CLASS (sym) != LOC_CONST
12989 && SYMBOL_CLASS (sym) != LOC_UNRESOLVED
12990 && type_name != NULL && strcmp (type_name, "exception") == 0);
12991}
12992
12993/* Given a global symbol SYM, return non-zero iff SYM is a non-standard
12994 Ada exception object. This matches all exceptions except the ones
12995 defined by the Ada language. */
12996
12997static int
12998ada_is_non_standard_exception_sym (struct symbol *sym)
12999{
13000 int i;
13001
13002 if (!ada_is_exception_sym (sym))
13003 return 0;
13004
13005 for (i = 0; i < ARRAY_SIZE (standard_exc); i++)
13006 if (strcmp (SYMBOL_LINKAGE_NAME (sym), standard_exc[i]) == 0)
13007 return 0; /* A standard exception. */
13008
13009 /* Numeric_Error is also a standard exception, so exclude it.
13010 See the STANDARD_EXC description for more details as to why
13011 this exception is not listed in that array. */
13012 if (strcmp (SYMBOL_LINKAGE_NAME (sym), "numeric_error") == 0)
13013 return 0;
13014
13015 return 1;
13016}
13017
ab816a27 13018/* A helper function for std::sort, comparing two struct ada_exc_info
778865d3
JB
13019 objects.
13020
13021 The comparison is determined first by exception name, and then
13022 by exception address. */
13023
ab816a27 13024bool
cc536b21 13025ada_exc_info::operator< (const ada_exc_info &other) const
778865d3 13026{
778865d3
JB
13027 int result;
13028
ab816a27
TT
13029 result = strcmp (name, other.name);
13030 if (result < 0)
13031 return true;
13032 if (result == 0 && addr < other.addr)
13033 return true;
13034 return false;
13035}
778865d3 13036
ab816a27 13037bool
cc536b21 13038ada_exc_info::operator== (const ada_exc_info &other) const
ab816a27
TT
13039{
13040 return addr == other.addr && strcmp (name, other.name) == 0;
778865d3
JB
13041}
13042
13043/* Sort EXCEPTIONS using compare_ada_exception_info as the comparison
13044 routine, but keeping the first SKIP elements untouched.
13045
13046 All duplicates are also removed. */
13047
13048static void
ab816a27 13049sort_remove_dups_ada_exceptions_list (std::vector<ada_exc_info> *exceptions,
778865d3
JB
13050 int skip)
13051{
ab816a27
TT
13052 std::sort (exceptions->begin () + skip, exceptions->end ());
13053 exceptions->erase (std::unique (exceptions->begin () + skip, exceptions->end ()),
13054 exceptions->end ());
778865d3
JB
13055}
13056
778865d3
JB
13057/* Add all exceptions defined by the Ada standard whose name match
13058 a regular expression.
13059
13060 If PREG is not NULL, then this regexp_t object is used to
13061 perform the symbol name matching. Otherwise, no name-based
13062 filtering is performed.
13063
13064 EXCEPTIONS is a vector of exceptions to which matching exceptions
13065 gets pushed. */
13066
13067static void
2d7cc5c7 13068ada_add_standard_exceptions (compiled_regex *preg,
ab816a27 13069 std::vector<ada_exc_info> *exceptions)
778865d3
JB
13070{
13071 int i;
13072
13073 for (i = 0; i < ARRAY_SIZE (standard_exc); i++)
13074 {
13075 if (preg == NULL
2d7cc5c7 13076 || preg->exec (standard_exc[i], 0, NULL, 0) == 0)
778865d3
JB
13077 {
13078 struct bound_minimal_symbol msymbol
13079 = ada_lookup_simple_minsym (standard_exc[i]);
13080
13081 if (msymbol.minsym != NULL)
13082 {
13083 struct ada_exc_info info
77e371c0 13084 = {standard_exc[i], BMSYMBOL_VALUE_ADDRESS (msymbol)};
778865d3 13085
ab816a27 13086 exceptions->push_back (info);
778865d3
JB
13087 }
13088 }
13089 }
13090}
13091
13092/* Add all Ada exceptions defined locally and accessible from the given
13093 FRAME.
13094
13095 If PREG is not NULL, then this regexp_t object is used to
13096 perform the symbol name matching. Otherwise, no name-based
13097 filtering is performed.
13098
13099 EXCEPTIONS is a vector of exceptions to which matching exceptions
13100 gets pushed. */
13101
13102static void
2d7cc5c7
PA
13103ada_add_exceptions_from_frame (compiled_regex *preg,
13104 struct frame_info *frame,
ab816a27 13105 std::vector<ada_exc_info> *exceptions)
778865d3 13106{
3977b71f 13107 const struct block *block = get_frame_block (frame, 0);
778865d3
JB
13108
13109 while (block != 0)
13110 {
13111 struct block_iterator iter;
13112 struct symbol *sym;
13113
13114 ALL_BLOCK_SYMBOLS (block, iter, sym)
13115 {
13116 switch (SYMBOL_CLASS (sym))
13117 {
13118 case LOC_TYPEDEF:
13119 case LOC_BLOCK:
13120 case LOC_CONST:
13121 break;
13122 default:
13123 if (ada_is_exception_sym (sym))
13124 {
13125 struct ada_exc_info info = {SYMBOL_PRINT_NAME (sym),
13126 SYMBOL_VALUE_ADDRESS (sym)};
13127
ab816a27 13128 exceptions->push_back (info);
778865d3
JB
13129 }
13130 }
13131 }
13132 if (BLOCK_FUNCTION (block) != NULL)
13133 break;
13134 block = BLOCK_SUPERBLOCK (block);
13135 }
13136}
13137
14bc53a8
PA
13138/* Return true if NAME matches PREG or if PREG is NULL. */
13139
13140static bool
2d7cc5c7 13141name_matches_regex (const char *name, compiled_regex *preg)
14bc53a8
PA
13142{
13143 return (preg == NULL
2d7cc5c7 13144 || preg->exec (ada_decode (name), 0, NULL, 0) == 0);
14bc53a8
PA
13145}
13146
778865d3
JB
13147/* Add all exceptions defined globally whose name name match
13148 a regular expression, excluding standard exceptions.
13149
13150 The reason we exclude standard exceptions is that they need
13151 to be handled separately: Standard exceptions are defined inside
13152 a runtime unit which is normally not compiled with debugging info,
13153 and thus usually do not show up in our symbol search. However,
13154 if the unit was in fact built with debugging info, we need to
13155 exclude them because they would duplicate the entry we found
13156 during the special loop that specifically searches for those
13157 standard exceptions.
13158
13159 If PREG is not NULL, then this regexp_t object is used to
13160 perform the symbol name matching. Otherwise, no name-based
13161 filtering is performed.
13162
13163 EXCEPTIONS is a vector of exceptions to which matching exceptions
13164 gets pushed. */
13165
13166static void
2d7cc5c7 13167ada_add_global_exceptions (compiled_regex *preg,
ab816a27 13168 std::vector<ada_exc_info> *exceptions)
778865d3
JB
13169{
13170 struct objfile *objfile;
43f3e411 13171 struct compunit_symtab *s;
778865d3 13172
14bc53a8
PA
13173 /* In Ada, the symbol "search name" is a linkage name, whereas the
13174 regular expression used to do the matching refers to the natural
13175 name. So match against the decoded name. */
13176 expand_symtabs_matching (NULL,
b5ec771e 13177 lookup_name_info::match_any (),
14bc53a8
PA
13178 [&] (const char *search_name)
13179 {
13180 const char *decoded = ada_decode (search_name);
13181 return name_matches_regex (decoded, preg);
13182 },
13183 NULL,
13184 VARIABLES_DOMAIN);
778865d3 13185
43f3e411 13186 ALL_COMPUNITS (objfile, s)
778865d3 13187 {
43f3e411 13188 const struct blockvector *bv = COMPUNIT_BLOCKVECTOR (s);
778865d3
JB
13189 int i;
13190
13191 for (i = GLOBAL_BLOCK; i <= STATIC_BLOCK; i++)
13192 {
13193 struct block *b = BLOCKVECTOR_BLOCK (bv, i);
13194 struct block_iterator iter;
13195 struct symbol *sym;
13196
13197 ALL_BLOCK_SYMBOLS (b, iter, sym)
13198 if (ada_is_non_standard_exception_sym (sym)
14bc53a8 13199 && name_matches_regex (SYMBOL_NATURAL_NAME (sym), preg))
778865d3
JB
13200 {
13201 struct ada_exc_info info
13202 = {SYMBOL_PRINT_NAME (sym), SYMBOL_VALUE_ADDRESS (sym)};
13203
ab816a27 13204 exceptions->push_back (info);
778865d3
JB
13205 }
13206 }
13207 }
13208}
13209
13210/* Implements ada_exceptions_list with the regular expression passed
13211 as a regex_t, rather than a string.
13212
13213 If not NULL, PREG is used to filter out exceptions whose names
13214 do not match. Otherwise, all exceptions are listed. */
13215
ab816a27 13216static std::vector<ada_exc_info>
2d7cc5c7 13217ada_exceptions_list_1 (compiled_regex *preg)
778865d3 13218{
ab816a27 13219 std::vector<ada_exc_info> result;
778865d3
JB
13220 int prev_len;
13221
13222 /* First, list the known standard exceptions. These exceptions
13223 need to be handled separately, as they are usually defined in
13224 runtime units that have been compiled without debugging info. */
13225
13226 ada_add_standard_exceptions (preg, &result);
13227
13228 /* Next, find all exceptions whose scope is local and accessible
13229 from the currently selected frame. */
13230
13231 if (has_stack_frames ())
13232 {
ab816a27 13233 prev_len = result.size ();
778865d3
JB
13234 ada_add_exceptions_from_frame (preg, get_selected_frame (NULL),
13235 &result);
ab816a27 13236 if (result.size () > prev_len)
778865d3
JB
13237 sort_remove_dups_ada_exceptions_list (&result, prev_len);
13238 }
13239
13240 /* Add all exceptions whose scope is global. */
13241
ab816a27 13242 prev_len = result.size ();
778865d3 13243 ada_add_global_exceptions (preg, &result);
ab816a27 13244 if (result.size () > prev_len)
778865d3
JB
13245 sort_remove_dups_ada_exceptions_list (&result, prev_len);
13246
778865d3
JB
13247 return result;
13248}
13249
13250/* Return a vector of ada_exc_info.
13251
13252 If REGEXP is NULL, all exceptions are included in the result.
13253 Otherwise, it should contain a valid regular expression,
13254 and only the exceptions whose names match that regular expression
13255 are included in the result.
13256
13257 The exceptions are sorted in the following order:
13258 - Standard exceptions (defined by the Ada language), in
13259 alphabetical order;
13260 - Exceptions only visible from the current frame, in
13261 alphabetical order;
13262 - Exceptions whose scope is global, in alphabetical order. */
13263
ab816a27 13264std::vector<ada_exc_info>
778865d3
JB
13265ada_exceptions_list (const char *regexp)
13266{
2d7cc5c7
PA
13267 if (regexp == NULL)
13268 return ada_exceptions_list_1 (NULL);
778865d3 13269
2d7cc5c7
PA
13270 compiled_regex reg (regexp, REG_NOSUB, _("invalid regular expression"));
13271 return ada_exceptions_list_1 (&reg);
778865d3
JB
13272}
13273
13274/* Implement the "info exceptions" command. */
13275
13276static void
1d12d88f 13277info_exceptions_command (const char *regexp, int from_tty)
778865d3 13278{
778865d3 13279 struct gdbarch *gdbarch = get_current_arch ();
778865d3 13280
ab816a27 13281 std::vector<ada_exc_info> exceptions = ada_exceptions_list (regexp);
778865d3
JB
13282
13283 if (regexp != NULL)
13284 printf_filtered
13285 (_("All Ada exceptions matching regular expression \"%s\":\n"), regexp);
13286 else
13287 printf_filtered (_("All defined Ada exceptions:\n"));
13288
ab816a27
TT
13289 for (const ada_exc_info &info : exceptions)
13290 printf_filtered ("%s: %s\n", info.name, paddress (gdbarch, info.addr));
778865d3
JB
13291}
13292
4c4b4cd2
PH
13293 /* Operators */
13294/* Information about operators given special treatment in functions
13295 below. */
13296/* Format: OP_DEFN (<operator>, <operator length>, <# args>, <binop>). */
13297
13298#define ADA_OPERATORS \
13299 OP_DEFN (OP_VAR_VALUE, 4, 0, 0) \
13300 OP_DEFN (BINOP_IN_BOUNDS, 3, 2, 0) \
13301 OP_DEFN (TERNOP_IN_RANGE, 1, 3, 0) \
13302 OP_DEFN (OP_ATR_FIRST, 1, 2, 0) \
13303 OP_DEFN (OP_ATR_LAST, 1, 2, 0) \
13304 OP_DEFN (OP_ATR_LENGTH, 1, 2, 0) \
13305 OP_DEFN (OP_ATR_IMAGE, 1, 2, 0) \
13306 OP_DEFN (OP_ATR_MAX, 1, 3, 0) \
13307 OP_DEFN (OP_ATR_MIN, 1, 3, 0) \
13308 OP_DEFN (OP_ATR_MODULUS, 1, 1, 0) \
13309 OP_DEFN (OP_ATR_POS, 1, 2, 0) \
13310 OP_DEFN (OP_ATR_SIZE, 1, 1, 0) \
13311 OP_DEFN (OP_ATR_TAG, 1, 1, 0) \
13312 OP_DEFN (OP_ATR_VAL, 1, 2, 0) \
13313 OP_DEFN (UNOP_QUAL, 3, 1, 0) \
52ce6436
PH
13314 OP_DEFN (UNOP_IN_RANGE, 3, 1, 0) \
13315 OP_DEFN (OP_OTHERS, 1, 1, 0) \
13316 OP_DEFN (OP_POSITIONAL, 3, 1, 0) \
13317 OP_DEFN (OP_DISCRETE_RANGE, 1, 2, 0)
4c4b4cd2
PH
13318
13319static void
554794dc
SDJ
13320ada_operator_length (const struct expression *exp, int pc, int *oplenp,
13321 int *argsp)
4c4b4cd2
PH
13322{
13323 switch (exp->elts[pc - 1].opcode)
13324 {
76a01679 13325 default:
4c4b4cd2
PH
13326 operator_length_standard (exp, pc, oplenp, argsp);
13327 break;
13328
13329#define OP_DEFN(op, len, args, binop) \
13330 case op: *oplenp = len; *argsp = args; break;
13331 ADA_OPERATORS;
13332#undef OP_DEFN
52ce6436
PH
13333
13334 case OP_AGGREGATE:
13335 *oplenp = 3;
13336 *argsp = longest_to_int (exp->elts[pc - 2].longconst);
13337 break;
13338
13339 case OP_CHOICES:
13340 *oplenp = 3;
13341 *argsp = longest_to_int (exp->elts[pc - 2].longconst) + 1;
13342 break;
4c4b4cd2
PH
13343 }
13344}
13345
c0201579
JK
13346/* Implementation of the exp_descriptor method operator_check. */
13347
13348static int
13349ada_operator_check (struct expression *exp, int pos,
13350 int (*objfile_func) (struct objfile *objfile, void *data),
13351 void *data)
13352{
13353 const union exp_element *const elts = exp->elts;
13354 struct type *type = NULL;
13355
13356 switch (elts[pos].opcode)
13357 {
13358 case UNOP_IN_RANGE:
13359 case UNOP_QUAL:
13360 type = elts[pos + 1].type;
13361 break;
13362
13363 default:
13364 return operator_check_standard (exp, pos, objfile_func, data);
13365 }
13366
13367 /* Invoke callbacks for TYPE and OBJFILE if they were set as non-NULL. */
13368
13369 if (type && TYPE_OBJFILE (type)
13370 && (*objfile_func) (TYPE_OBJFILE (type), data))
13371 return 1;
13372
13373 return 0;
13374}
13375
a121b7c1 13376static const char *
4c4b4cd2
PH
13377ada_op_name (enum exp_opcode opcode)
13378{
13379 switch (opcode)
13380 {
76a01679 13381 default:
4c4b4cd2 13382 return op_name_standard (opcode);
52ce6436 13383
4c4b4cd2
PH
13384#define OP_DEFN(op, len, args, binop) case op: return #op;
13385 ADA_OPERATORS;
13386#undef OP_DEFN
52ce6436
PH
13387
13388 case OP_AGGREGATE:
13389 return "OP_AGGREGATE";
13390 case OP_CHOICES:
13391 return "OP_CHOICES";
13392 case OP_NAME:
13393 return "OP_NAME";
4c4b4cd2
PH
13394 }
13395}
13396
13397/* As for operator_length, but assumes PC is pointing at the first
13398 element of the operator, and gives meaningful results only for the
52ce6436 13399 Ada-specific operators, returning 0 for *OPLENP and *ARGSP otherwise. */
4c4b4cd2
PH
13400
13401static void
76a01679
JB
13402ada_forward_operator_length (struct expression *exp, int pc,
13403 int *oplenp, int *argsp)
4c4b4cd2 13404{
76a01679 13405 switch (exp->elts[pc].opcode)
4c4b4cd2
PH
13406 {
13407 default:
13408 *oplenp = *argsp = 0;
13409 break;
52ce6436 13410
4c4b4cd2
PH
13411#define OP_DEFN(op, len, args, binop) \
13412 case op: *oplenp = len; *argsp = args; break;
13413 ADA_OPERATORS;
13414#undef OP_DEFN
52ce6436
PH
13415
13416 case OP_AGGREGATE:
13417 *oplenp = 3;
13418 *argsp = longest_to_int (exp->elts[pc + 1].longconst);
13419 break;
13420
13421 case OP_CHOICES:
13422 *oplenp = 3;
13423 *argsp = longest_to_int (exp->elts[pc + 1].longconst) + 1;
13424 break;
13425
13426 case OP_STRING:
13427 case OP_NAME:
13428 {
13429 int len = longest_to_int (exp->elts[pc + 1].longconst);
5b4ee69b 13430
52ce6436
PH
13431 *oplenp = 4 + BYTES_TO_EXP_ELEM (len + 1);
13432 *argsp = 0;
13433 break;
13434 }
4c4b4cd2
PH
13435 }
13436}
13437
13438static int
13439ada_dump_subexp_body (struct expression *exp, struct ui_file *stream, int elt)
13440{
13441 enum exp_opcode op = exp->elts[elt].opcode;
13442 int oplen, nargs;
13443 int pc = elt;
13444 int i;
76a01679 13445
4c4b4cd2
PH
13446 ada_forward_operator_length (exp, elt, &oplen, &nargs);
13447
76a01679 13448 switch (op)
4c4b4cd2 13449 {
76a01679 13450 /* Ada attributes ('Foo). */
4c4b4cd2
PH
13451 case OP_ATR_FIRST:
13452 case OP_ATR_LAST:
13453 case OP_ATR_LENGTH:
13454 case OP_ATR_IMAGE:
13455 case OP_ATR_MAX:
13456 case OP_ATR_MIN:
13457 case OP_ATR_MODULUS:
13458 case OP_ATR_POS:
13459 case OP_ATR_SIZE:
13460 case OP_ATR_TAG:
13461 case OP_ATR_VAL:
13462 break;
13463
13464 case UNOP_IN_RANGE:
13465 case UNOP_QUAL:
323e0a4a
AC
13466 /* XXX: gdb_sprint_host_address, type_sprint */
13467 fprintf_filtered (stream, _("Type @"));
4c4b4cd2
PH
13468 gdb_print_host_address (exp->elts[pc + 1].type, stream);
13469 fprintf_filtered (stream, " (");
13470 type_print (exp->elts[pc + 1].type, NULL, stream, 0);
13471 fprintf_filtered (stream, ")");
13472 break;
13473 case BINOP_IN_BOUNDS:
52ce6436
PH
13474 fprintf_filtered (stream, " (%d)",
13475 longest_to_int (exp->elts[pc + 2].longconst));
4c4b4cd2
PH
13476 break;
13477 case TERNOP_IN_RANGE:
13478 break;
13479
52ce6436
PH
13480 case OP_AGGREGATE:
13481 case OP_OTHERS:
13482 case OP_DISCRETE_RANGE:
13483 case OP_POSITIONAL:
13484 case OP_CHOICES:
13485 break;
13486
13487 case OP_NAME:
13488 case OP_STRING:
13489 {
13490 char *name = &exp->elts[elt + 2].string;
13491 int len = longest_to_int (exp->elts[elt + 1].longconst);
5b4ee69b 13492
52ce6436
PH
13493 fprintf_filtered (stream, "Text: `%.*s'", len, name);
13494 break;
13495 }
13496
4c4b4cd2
PH
13497 default:
13498 return dump_subexp_body_standard (exp, stream, elt);
13499 }
13500
13501 elt += oplen;
13502 for (i = 0; i < nargs; i += 1)
13503 elt = dump_subexp (exp, stream, elt);
13504
13505 return elt;
13506}
13507
13508/* The Ada extension of print_subexp (q.v.). */
13509
76a01679
JB
13510static void
13511ada_print_subexp (struct expression *exp, int *pos,
13512 struct ui_file *stream, enum precedence prec)
4c4b4cd2 13513{
52ce6436 13514 int oplen, nargs, i;
4c4b4cd2
PH
13515 int pc = *pos;
13516 enum exp_opcode op = exp->elts[pc].opcode;
13517
13518 ada_forward_operator_length (exp, pc, &oplen, &nargs);
13519
52ce6436 13520 *pos += oplen;
4c4b4cd2
PH
13521 switch (op)
13522 {
13523 default:
52ce6436 13524 *pos -= oplen;
4c4b4cd2
PH
13525 print_subexp_standard (exp, pos, stream, prec);
13526 return;
13527
13528 case OP_VAR_VALUE:
4c4b4cd2
PH
13529 fputs_filtered (SYMBOL_NATURAL_NAME (exp->elts[pc + 2].symbol), stream);
13530 return;
13531
13532 case BINOP_IN_BOUNDS:
323e0a4a 13533 /* XXX: sprint_subexp */
4c4b4cd2 13534 print_subexp (exp, pos, stream, PREC_SUFFIX);
0b48a291 13535 fputs_filtered (" in ", stream);
4c4b4cd2 13536 print_subexp (exp, pos, stream, PREC_SUFFIX);
0b48a291 13537 fputs_filtered ("'range", stream);
4c4b4cd2 13538 if (exp->elts[pc + 1].longconst > 1)
76a01679
JB
13539 fprintf_filtered (stream, "(%ld)",
13540 (long) exp->elts[pc + 1].longconst);
4c4b4cd2
PH
13541 return;
13542
13543 case TERNOP_IN_RANGE:
4c4b4cd2 13544 if (prec >= PREC_EQUAL)
76a01679 13545 fputs_filtered ("(", stream);
323e0a4a 13546 /* XXX: sprint_subexp */
4c4b4cd2 13547 print_subexp (exp, pos, stream, PREC_SUFFIX);
0b48a291 13548 fputs_filtered (" in ", stream);
4c4b4cd2
PH
13549 print_subexp (exp, pos, stream, PREC_EQUAL);
13550 fputs_filtered (" .. ", stream);
13551 print_subexp (exp, pos, stream, PREC_EQUAL);
13552 if (prec >= PREC_EQUAL)
76a01679
JB
13553 fputs_filtered (")", stream);
13554 return;
4c4b4cd2
PH
13555
13556 case OP_ATR_FIRST:
13557 case OP_ATR_LAST:
13558 case OP_ATR_LENGTH:
13559 case OP_ATR_IMAGE:
13560 case OP_ATR_MAX:
13561 case OP_ATR_MIN:
13562 case OP_ATR_MODULUS:
13563 case OP_ATR_POS:
13564 case OP_ATR_SIZE:
13565 case OP_ATR_TAG:
13566 case OP_ATR_VAL:
4c4b4cd2 13567 if (exp->elts[*pos].opcode == OP_TYPE)
76a01679
JB
13568 {
13569 if (TYPE_CODE (exp->elts[*pos + 1].type) != TYPE_CODE_VOID)
79d43c61
TT
13570 LA_PRINT_TYPE (exp->elts[*pos + 1].type, "", stream, 0, 0,
13571 &type_print_raw_options);
76a01679
JB
13572 *pos += 3;
13573 }
4c4b4cd2 13574 else
76a01679 13575 print_subexp (exp, pos, stream, PREC_SUFFIX);
4c4b4cd2
PH
13576 fprintf_filtered (stream, "'%s", ada_attribute_name (op));
13577 if (nargs > 1)
76a01679
JB
13578 {
13579 int tem;
5b4ee69b 13580
76a01679
JB
13581 for (tem = 1; tem < nargs; tem += 1)
13582 {
13583 fputs_filtered ((tem == 1) ? " (" : ", ", stream);
13584 print_subexp (exp, pos, stream, PREC_ABOVE_COMMA);
13585 }
13586 fputs_filtered (")", stream);
13587 }
4c4b4cd2 13588 return;
14f9c5c9 13589
4c4b4cd2 13590 case UNOP_QUAL:
4c4b4cd2
PH
13591 type_print (exp->elts[pc + 1].type, "", stream, 0);
13592 fputs_filtered ("'(", stream);
13593 print_subexp (exp, pos, stream, PREC_PREFIX);
13594 fputs_filtered (")", stream);
13595 return;
14f9c5c9 13596
4c4b4cd2 13597 case UNOP_IN_RANGE:
323e0a4a 13598 /* XXX: sprint_subexp */
4c4b4cd2 13599 print_subexp (exp, pos, stream, PREC_SUFFIX);
0b48a291 13600 fputs_filtered (" in ", stream);
79d43c61
TT
13601 LA_PRINT_TYPE (exp->elts[pc + 1].type, "", stream, 1, 0,
13602 &type_print_raw_options);
4c4b4cd2 13603 return;
52ce6436
PH
13604
13605 case OP_DISCRETE_RANGE:
13606 print_subexp (exp, pos, stream, PREC_SUFFIX);
13607 fputs_filtered ("..", stream);
13608 print_subexp (exp, pos, stream, PREC_SUFFIX);
13609 return;
13610
13611 case OP_OTHERS:
13612 fputs_filtered ("others => ", stream);
13613 print_subexp (exp, pos, stream, PREC_SUFFIX);
13614 return;
13615
13616 case OP_CHOICES:
13617 for (i = 0; i < nargs-1; i += 1)
13618 {
13619 if (i > 0)
13620 fputs_filtered ("|", stream);
13621 print_subexp (exp, pos, stream, PREC_SUFFIX);
13622 }
13623 fputs_filtered (" => ", stream);
13624 print_subexp (exp, pos, stream, PREC_SUFFIX);
13625 return;
13626
13627 case OP_POSITIONAL:
13628 print_subexp (exp, pos, stream, PREC_SUFFIX);
13629 return;
13630
13631 case OP_AGGREGATE:
13632 fputs_filtered ("(", stream);
13633 for (i = 0; i < nargs; i += 1)
13634 {
13635 if (i > 0)
13636 fputs_filtered (", ", stream);
13637 print_subexp (exp, pos, stream, PREC_SUFFIX);
13638 }
13639 fputs_filtered (")", stream);
13640 return;
4c4b4cd2
PH
13641 }
13642}
14f9c5c9
AS
13643
13644/* Table mapping opcodes into strings for printing operators
13645 and precedences of the operators. */
13646
d2e4a39e
AS
13647static const struct op_print ada_op_print_tab[] = {
13648 {":=", BINOP_ASSIGN, PREC_ASSIGN, 1},
13649 {"or else", BINOP_LOGICAL_OR, PREC_LOGICAL_OR, 0},
13650 {"and then", BINOP_LOGICAL_AND, PREC_LOGICAL_AND, 0},
13651 {"or", BINOP_BITWISE_IOR, PREC_BITWISE_IOR, 0},
13652 {"xor", BINOP_BITWISE_XOR, PREC_BITWISE_XOR, 0},
13653 {"and", BINOP_BITWISE_AND, PREC_BITWISE_AND, 0},
13654 {"=", BINOP_EQUAL, PREC_EQUAL, 0},
13655 {"/=", BINOP_NOTEQUAL, PREC_EQUAL, 0},
13656 {"<=", BINOP_LEQ, PREC_ORDER, 0},
13657 {">=", BINOP_GEQ, PREC_ORDER, 0},
13658 {">", BINOP_GTR, PREC_ORDER, 0},
13659 {"<", BINOP_LESS, PREC_ORDER, 0},
13660 {">>", BINOP_RSH, PREC_SHIFT, 0},
13661 {"<<", BINOP_LSH, PREC_SHIFT, 0},
13662 {"+", BINOP_ADD, PREC_ADD, 0},
13663 {"-", BINOP_SUB, PREC_ADD, 0},
13664 {"&", BINOP_CONCAT, PREC_ADD, 0},
13665 {"*", BINOP_MUL, PREC_MUL, 0},
13666 {"/", BINOP_DIV, PREC_MUL, 0},
13667 {"rem", BINOP_REM, PREC_MUL, 0},
13668 {"mod", BINOP_MOD, PREC_MUL, 0},
13669 {"**", BINOP_EXP, PREC_REPEAT, 0},
13670 {"@", BINOP_REPEAT, PREC_REPEAT, 0},
13671 {"-", UNOP_NEG, PREC_PREFIX, 0},
13672 {"+", UNOP_PLUS, PREC_PREFIX, 0},
13673 {"not ", UNOP_LOGICAL_NOT, PREC_PREFIX, 0},
13674 {"not ", UNOP_COMPLEMENT, PREC_PREFIX, 0},
13675 {"abs ", UNOP_ABS, PREC_PREFIX, 0},
4c4b4cd2
PH
13676 {".all", UNOP_IND, PREC_SUFFIX, 1},
13677 {"'access", UNOP_ADDR, PREC_SUFFIX, 1},
13678 {"'size", OP_ATR_SIZE, PREC_SUFFIX, 1},
f486487f 13679 {NULL, OP_NULL, PREC_SUFFIX, 0}
14f9c5c9
AS
13680};
13681\f
72d5681a
PH
13682enum ada_primitive_types {
13683 ada_primitive_type_int,
13684 ada_primitive_type_long,
13685 ada_primitive_type_short,
13686 ada_primitive_type_char,
13687 ada_primitive_type_float,
13688 ada_primitive_type_double,
13689 ada_primitive_type_void,
13690 ada_primitive_type_long_long,
13691 ada_primitive_type_long_double,
13692 ada_primitive_type_natural,
13693 ada_primitive_type_positive,
13694 ada_primitive_type_system_address,
13695 nr_ada_primitive_types
13696};
6c038f32
PH
13697
13698static void
d4a9a881 13699ada_language_arch_info (struct gdbarch *gdbarch,
72d5681a
PH
13700 struct language_arch_info *lai)
13701{
d4a9a881 13702 const struct builtin_type *builtin = builtin_type (gdbarch);
5b4ee69b 13703
72d5681a 13704 lai->primitive_type_vector
d4a9a881 13705 = GDBARCH_OBSTACK_CALLOC (gdbarch, nr_ada_primitive_types + 1,
72d5681a 13706 struct type *);
e9bb382b
UW
13707
13708 lai->primitive_type_vector [ada_primitive_type_int]
13709 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
13710 0, "integer");
13711 lai->primitive_type_vector [ada_primitive_type_long]
13712 = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
13713 0, "long_integer");
13714 lai->primitive_type_vector [ada_primitive_type_short]
13715 = arch_integer_type (gdbarch, gdbarch_short_bit (gdbarch),
13716 0, "short_integer");
13717 lai->string_char_type
13718 = lai->primitive_type_vector [ada_primitive_type_char]
cd7c1778 13719 = arch_character_type (gdbarch, TARGET_CHAR_BIT, 0, "character");
e9bb382b
UW
13720 lai->primitive_type_vector [ada_primitive_type_float]
13721 = arch_float_type (gdbarch, gdbarch_float_bit (gdbarch),
49f190bc 13722 "float", gdbarch_float_format (gdbarch));
e9bb382b
UW
13723 lai->primitive_type_vector [ada_primitive_type_double]
13724 = arch_float_type (gdbarch, gdbarch_double_bit (gdbarch),
49f190bc 13725 "long_float", gdbarch_double_format (gdbarch));
e9bb382b
UW
13726 lai->primitive_type_vector [ada_primitive_type_long_long]
13727 = arch_integer_type (gdbarch, gdbarch_long_long_bit (gdbarch),
13728 0, "long_long_integer");
13729 lai->primitive_type_vector [ada_primitive_type_long_double]
5f3bceb6 13730 = arch_float_type (gdbarch, gdbarch_long_double_bit (gdbarch),
49f190bc 13731 "long_long_float", gdbarch_long_double_format (gdbarch));
e9bb382b
UW
13732 lai->primitive_type_vector [ada_primitive_type_natural]
13733 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
13734 0, "natural");
13735 lai->primitive_type_vector [ada_primitive_type_positive]
13736 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
13737 0, "positive");
13738 lai->primitive_type_vector [ada_primitive_type_void]
13739 = builtin->builtin_void;
13740
13741 lai->primitive_type_vector [ada_primitive_type_system_address]
77b7c781
UW
13742 = lookup_pointer_type (arch_type (gdbarch, TYPE_CODE_VOID, TARGET_CHAR_BIT,
13743 "void"));
72d5681a
PH
13744 TYPE_NAME (lai->primitive_type_vector [ada_primitive_type_system_address])
13745 = "system__address";
fbb06eb1 13746
47e729a8 13747 lai->bool_type_symbol = NULL;
fbb06eb1 13748 lai->bool_type_default = builtin->builtin_bool;
6c038f32 13749}
6c038f32
PH
13750\f
13751 /* Language vector */
13752
13753/* Not really used, but needed in the ada_language_defn. */
13754
13755static void
6c7a06a3 13756emit_char (int c, struct type *type, struct ui_file *stream, int quoter)
6c038f32 13757{
6c7a06a3 13758 ada_emit_char (c, type, stream, quoter, 1);
6c038f32
PH
13759}
13760
13761static int
410a0ff2 13762parse (struct parser_state *ps)
6c038f32
PH
13763{
13764 warnings_issued = 0;
410a0ff2 13765 return ada_parse (ps);
6c038f32
PH
13766}
13767
13768static const struct exp_descriptor ada_exp_descriptor = {
13769 ada_print_subexp,
13770 ada_operator_length,
c0201579 13771 ada_operator_check,
6c038f32
PH
13772 ada_op_name,
13773 ada_dump_subexp_body,
13774 ada_evaluate_subexp
13775};
13776
b5ec771e
PA
13777/* symbol_name_matcher_ftype adapter for wild_match. */
13778
13779static bool
13780do_wild_match (const char *symbol_search_name,
13781 const lookup_name_info &lookup_name,
13782 completion_match *match)
13783{
13784 return wild_match (symbol_search_name, ada_lookup_name (lookup_name));
13785}
13786
13787/* symbol_name_matcher_ftype adapter for full_match. */
13788
13789static bool
13790do_full_match (const char *symbol_search_name,
13791 const lookup_name_info &lookup_name,
13792 completion_match *match)
13793{
13794 return full_match (symbol_search_name, ada_lookup_name (lookup_name));
13795}
13796
13797/* Build the Ada lookup name for LOOKUP_NAME. */
13798
13799ada_lookup_name_info::ada_lookup_name_info (const lookup_name_info &lookup_name)
13800{
13801 const std::string &user_name = lookup_name.name ();
13802
13803 if (user_name[0] == '<')
13804 {
13805 if (user_name.back () == '>')
13806 m_encoded_name = user_name.substr (1, user_name.size () - 2);
13807 else
13808 m_encoded_name = user_name.substr (1, user_name.size () - 1);
13809 m_encoded_p = true;
13810 m_verbatim_p = true;
13811 m_wild_match_p = false;
13812 m_standard_p = false;
13813 }
13814 else
13815 {
13816 m_verbatim_p = false;
13817
13818 m_encoded_p = user_name.find ("__") != std::string::npos;
13819
13820 if (!m_encoded_p)
13821 {
13822 const char *folded = ada_fold_name (user_name.c_str ());
13823 const char *encoded = ada_encode_1 (folded, false);
13824 if (encoded != NULL)
13825 m_encoded_name = encoded;
13826 else
13827 m_encoded_name = user_name;
13828 }
13829 else
13830 m_encoded_name = user_name;
13831
13832 /* Handle the 'package Standard' special case. See description
13833 of m_standard_p. */
13834 if (startswith (m_encoded_name.c_str (), "standard__"))
13835 {
13836 m_encoded_name = m_encoded_name.substr (sizeof ("standard__") - 1);
13837 m_standard_p = true;
13838 }
13839 else
13840 m_standard_p = false;
74ccd7f5 13841
b5ec771e
PA
13842 /* If the name contains a ".", then the user is entering a fully
13843 qualified entity name, and the match must not be done in wild
13844 mode. Similarly, if the user wants to complete what looks
13845 like an encoded name, the match must not be done in wild
13846 mode. Also, in the standard__ special case always do
13847 non-wild matching. */
13848 m_wild_match_p
13849 = (lookup_name.match_type () != symbol_name_match_type::FULL
13850 && !m_encoded_p
13851 && !m_standard_p
13852 && user_name.find ('.') == std::string::npos);
13853 }
13854}
13855
13856/* symbol_name_matcher_ftype method for Ada. This only handles
13857 completion mode. */
13858
13859static bool
13860ada_symbol_name_matches (const char *symbol_search_name,
13861 const lookup_name_info &lookup_name,
13862 completion_match *match)
74ccd7f5 13863{
b5ec771e
PA
13864 return lookup_name.ada ().matches (symbol_search_name,
13865 lookup_name.match_type (),
13866 match);
13867}
13868
13869/* Implement the "la_get_symbol_name_matcher" language_defn method for
13870 Ada. */
13871
13872static symbol_name_matcher_ftype *
13873ada_get_symbol_name_matcher (const lookup_name_info &lookup_name)
13874{
13875 if (lookup_name.completion_mode ())
13876 return ada_symbol_name_matches;
74ccd7f5 13877 else
b5ec771e
PA
13878 {
13879 if (lookup_name.ada ().wild_match_p ())
13880 return do_wild_match;
13881 else
13882 return do_full_match;
13883 }
74ccd7f5
JB
13884}
13885
a5ee536b
JB
13886/* Implement the "la_read_var_value" language_defn method for Ada. */
13887
13888static struct value *
63e43d3a
PMR
13889ada_read_var_value (struct symbol *var, const struct block *var_block,
13890 struct frame_info *frame)
a5ee536b 13891{
3977b71f 13892 const struct block *frame_block = NULL;
a5ee536b
JB
13893 struct symbol *renaming_sym = NULL;
13894
13895 /* The only case where default_read_var_value is not sufficient
13896 is when VAR is a renaming... */
13897 if (frame)
13898 frame_block = get_frame_block (frame, NULL);
13899 if (frame_block)
13900 renaming_sym = ada_find_renaming_symbol (var, frame_block);
13901 if (renaming_sym != NULL)
13902 return ada_read_renaming_var_value (renaming_sym, frame_block);
13903
13904 /* This is a typical case where we expect the default_read_var_value
13905 function to work. */
63e43d3a 13906 return default_read_var_value (var, var_block, frame);
a5ee536b
JB
13907}
13908
56618e20
TT
13909static const char *ada_extensions[] =
13910{
13911 ".adb", ".ads", ".a", ".ada", ".dg", NULL
13912};
13913
47e77640 13914extern const struct language_defn ada_language_defn = {
6c038f32 13915 "ada", /* Language name */
6abde28f 13916 "Ada",
6c038f32 13917 language_ada,
6c038f32 13918 range_check_off,
6c038f32
PH
13919 case_sensitive_on, /* Yes, Ada is case-insensitive, but
13920 that's not quite what this means. */
6c038f32 13921 array_row_major,
9a044a89 13922 macro_expansion_no,
56618e20 13923 ada_extensions,
6c038f32
PH
13924 &ada_exp_descriptor,
13925 parse,
b3f11165 13926 ada_yyerror,
6c038f32
PH
13927 resolve,
13928 ada_printchar, /* Print a character constant */
13929 ada_printstr, /* Function to print string constant */
13930 emit_char, /* Function to print single char (not used) */
6c038f32 13931 ada_print_type, /* Print a type using appropriate syntax */
be942545 13932 ada_print_typedef, /* Print a typedef using appropriate syntax */
6c038f32
PH
13933 ada_val_print, /* Print a value using appropriate syntax */
13934 ada_value_print, /* Print a top-level value */
a5ee536b 13935 ada_read_var_value, /* la_read_var_value */
6c038f32 13936 NULL, /* Language specific skip_trampoline */
2b2d9e11 13937 NULL, /* name_of_this */
6c038f32
PH
13938 ada_lookup_symbol_nonlocal, /* Looking up non-local symbols. */
13939 basic_lookup_transparent_type, /* lookup_transparent_type */
13940 ada_la_decode, /* Language specific symbol demangler */
8b302db8 13941 ada_sniff_from_mangled_name,
0963b4bd
MS
13942 NULL, /* Language specific
13943 class_name_from_physname */
6c038f32
PH
13944 ada_op_print_tab, /* expression operators for printing */
13945 0, /* c-style arrays */
13946 1, /* String lower bound */
6c038f32 13947 ada_get_gdb_completer_word_break_characters,
eb3ff9a5 13948 ada_collect_symbol_completion_matches,
72d5681a 13949 ada_language_arch_info,
e79af960 13950 ada_print_array_index,
41f1b697 13951 default_pass_by_reference,
ae6a3a4c 13952 c_get_string,
43cc5389 13953 c_watch_location_expression,
b5ec771e 13954 ada_get_symbol_name_matcher, /* la_get_symbol_name_matcher */
f8eba3c6 13955 ada_iterate_over_symbols,
5ffa0793 13956 default_search_name_hash,
a53b64ea 13957 &ada_varobj_ops,
bb2ec1b3
TT
13958 NULL,
13959 NULL,
6c038f32
PH
13960 LANG_MAGIC
13961};
13962
5bf03f13
JB
13963/* Command-list for the "set/show ada" prefix command. */
13964static struct cmd_list_element *set_ada_list;
13965static struct cmd_list_element *show_ada_list;
13966
13967/* Implement the "set ada" prefix command. */
13968
13969static void
981a3fb3 13970set_ada_command (const char *arg, int from_tty)
5bf03f13
JB
13971{
13972 printf_unfiltered (_(\
13973"\"set ada\" must be followed by the name of a setting.\n"));
635c7e8a 13974 help_list (set_ada_list, "set ada ", all_commands, gdb_stdout);
5bf03f13
JB
13975}
13976
13977/* Implement the "show ada" prefix command. */
13978
13979static void
981a3fb3 13980show_ada_command (const char *args, int from_tty)
5bf03f13
JB
13981{
13982 cmd_show_list (show_ada_list, from_tty, "");
13983}
13984
2060206e
PA
13985static void
13986initialize_ada_catchpoint_ops (void)
13987{
13988 struct breakpoint_ops *ops;
13989
13990 initialize_breakpoint_ops ();
13991
13992 ops = &catch_exception_breakpoint_ops;
13993 *ops = bkpt_breakpoint_ops;
2060206e
PA
13994 ops->allocate_location = allocate_location_catch_exception;
13995 ops->re_set = re_set_catch_exception;
13996 ops->check_status = check_status_catch_exception;
13997 ops->print_it = print_it_catch_exception;
13998 ops->print_one = print_one_catch_exception;
13999 ops->print_mention = print_mention_catch_exception;
14000 ops->print_recreate = print_recreate_catch_exception;
14001
14002 ops = &catch_exception_unhandled_breakpoint_ops;
14003 *ops = bkpt_breakpoint_ops;
2060206e
PA
14004 ops->allocate_location = allocate_location_catch_exception_unhandled;
14005 ops->re_set = re_set_catch_exception_unhandled;
14006 ops->check_status = check_status_catch_exception_unhandled;
14007 ops->print_it = print_it_catch_exception_unhandled;
14008 ops->print_one = print_one_catch_exception_unhandled;
14009 ops->print_mention = print_mention_catch_exception_unhandled;
14010 ops->print_recreate = print_recreate_catch_exception_unhandled;
14011
14012 ops = &catch_assert_breakpoint_ops;
14013 *ops = bkpt_breakpoint_ops;
2060206e
PA
14014 ops->allocate_location = allocate_location_catch_assert;
14015 ops->re_set = re_set_catch_assert;
14016 ops->check_status = check_status_catch_assert;
14017 ops->print_it = print_it_catch_assert;
14018 ops->print_one = print_one_catch_assert;
14019 ops->print_mention = print_mention_catch_assert;
14020 ops->print_recreate = print_recreate_catch_assert;
14021}
14022
3d9434b5
JB
14023/* This module's 'new_objfile' observer. */
14024
14025static void
14026ada_new_objfile_observer (struct objfile *objfile)
14027{
14028 ada_clear_symbol_cache ();
14029}
14030
14031/* This module's 'free_objfile' observer. */
14032
14033static void
14034ada_free_objfile_observer (struct objfile *objfile)
14035{
14036 ada_clear_symbol_cache ();
14037}
14038
d2e4a39e 14039void
6c038f32 14040_initialize_ada_language (void)
14f9c5c9 14041{
2060206e
PA
14042 initialize_ada_catchpoint_ops ();
14043
5bf03f13
JB
14044 add_prefix_cmd ("ada", no_class, set_ada_command,
14045 _("Prefix command for changing Ada-specfic settings"),
14046 &set_ada_list, "set ada ", 0, &setlist);
14047
14048 add_prefix_cmd ("ada", no_class, show_ada_command,
14049 _("Generic command for showing Ada-specific settings."),
14050 &show_ada_list, "show ada ", 0, &showlist);
14051
14052 add_setshow_boolean_cmd ("trust-PAD-over-XVS", class_obscure,
14053 &trust_pad_over_xvs, _("\
14054Enable or disable an optimization trusting PAD types over XVS types"), _("\
14055Show whether an optimization trusting PAD types over XVS types is activated"),
14056 _("\
14057This is related to the encoding used by the GNAT compiler. The debugger\n\
14058should normally trust the contents of PAD types, but certain older versions\n\
14059of GNAT have a bug that sometimes causes the information in the PAD type\n\
14060to be incorrect. Turning this setting \"off\" allows the debugger to\n\
14061work around this bug. It is always safe to turn this option \"off\", but\n\
14062this incurs a slight performance penalty, so it is recommended to NOT change\n\
14063this option to \"off\" unless necessary."),
14064 NULL, NULL, &set_ada_list, &show_ada_list);
14065
d72413e6
PMR
14066 add_setshow_boolean_cmd ("print-signatures", class_vars,
14067 &print_signatures, _("\
14068Enable or disable the output of formal and return types for functions in the \
14069overloads selection menu"), _("\
14070Show whether the output of formal and return types for functions in the \
14071overloads selection menu is activated"),
14072 NULL, NULL, NULL, &set_ada_list, &show_ada_list);
14073
9ac4176b
PA
14074 add_catch_command ("exception", _("\
14075Catch Ada exceptions, when raised.\n\
14076With an argument, catch only exceptions with the given name."),
14077 catch_ada_exception_command,
14078 NULL,
14079 CATCH_PERMANENT,
14080 CATCH_TEMPORARY);
14081 add_catch_command ("assert", _("\
14082Catch failed Ada assertions, when raised.\n\
14083With an argument, catch only exceptions with the given name."),
14084 catch_assert_command,
14085 NULL,
14086 CATCH_PERMANENT,
14087 CATCH_TEMPORARY);
14088
6c038f32 14089 varsize_limit = 65536;
6c038f32 14090
778865d3
JB
14091 add_info ("exceptions", info_exceptions_command,
14092 _("\
14093List all Ada exception names.\n\
14094If a regular expression is passed as an argument, only those matching\n\
14095the regular expression are listed."));
14096
c6044dd1
JB
14097 add_prefix_cmd ("ada", class_maintenance, maint_set_ada_cmd,
14098 _("Set Ada maintenance-related variables."),
14099 &maint_set_ada_cmdlist, "maintenance set ada ",
14100 0/*allow-unknown*/, &maintenance_set_cmdlist);
14101
14102 add_prefix_cmd ("ada", class_maintenance, maint_show_ada_cmd,
14103 _("Show Ada maintenance-related variables"),
14104 &maint_show_ada_cmdlist, "maintenance show ada ",
14105 0/*allow-unknown*/, &maintenance_show_cmdlist);
14106
14107 add_setshow_boolean_cmd
14108 ("ignore-descriptive-types", class_maintenance,
14109 &ada_ignore_descriptive_types_p,
14110 _("Set whether descriptive types generated by GNAT should be ignored."),
14111 _("Show whether descriptive types generated by GNAT should be ignored."),
14112 _("\
14113When enabled, the debugger will stop using the DW_AT_GNAT_descriptive_type\n\
14114DWARF attribute."),
14115 NULL, NULL, &maint_set_ada_cmdlist, &maint_show_ada_cmdlist);
14116
6c038f32
PH
14117 obstack_init (&symbol_list_obstack);
14118
14119 decoded_names_store = htab_create_alloc
14120 (256, htab_hash_string, (int (*)(const void *, const void *)) streq,
14121 NULL, xcalloc, xfree);
6b69afc4 14122
3d9434b5
JB
14123 /* The ada-lang observers. */
14124 observer_attach_new_objfile (ada_new_objfile_observer);
14125 observer_attach_free_objfile (ada_free_objfile_observer);
e802dbe0 14126 observer_attach_inferior_exit (ada_inferior_exit);
ee01b665
JB
14127
14128 /* Setup various context-specific data. */
e802dbe0 14129 ada_inferior_data
8e260fc0 14130 = register_inferior_data_with_cleanup (NULL, ada_inferior_data_cleanup);
ee01b665
JB
14131 ada_pspace_data_handle
14132 = register_program_space_data_with_cleanup (NULL, ada_pspace_data_cleanup);
14f9c5c9 14133}