]>
Commit | Line | Data |
---|---|---|
6e681866 | 1 | /* Ada language support routines for GDB, the GNU debugger. |
10a2c479 | 2 | |
61baf725 | 3 | Copyright (C) 1992-2017 Free Software Foundation, Inc. |
14f9c5c9 | 4 | |
a9762ec7 | 5 | This file is part of GDB. |
14f9c5c9 | 6 | |
a9762ec7 JB |
7 | This program is free software; you can redistribute it and/or modify |
8 | it under the terms of the GNU General Public License as published by | |
9 | the Free Software Foundation; either version 3 of the License, or | |
10 | (at your option) any later version. | |
14f9c5c9 | 11 | |
a9762ec7 JB |
12 | This program is distributed in the hope that it will be useful, |
13 | but WITHOUT ANY WARRANTY; without even the implied warranty of | |
14 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
15 | GNU General Public License for more details. | |
14f9c5c9 | 16 | |
a9762ec7 JB |
17 | You should have received a copy of the GNU General Public License |
18 | along with this program. If not, see <http://www.gnu.org/licenses/>. */ | |
14f9c5c9 | 19 | |
96d887e8 | 20 | |
4c4b4cd2 | 21 | #include "defs.h" |
14f9c5c9 | 22 | #include <ctype.h> |
14f9c5c9 | 23 | #include "demangle.h" |
4c4b4cd2 PH |
24 | #include "gdb_regex.h" |
25 | #include "frame.h" | |
14f9c5c9 AS |
26 | #include "symtab.h" |
27 | #include "gdbtypes.h" | |
28 | #include "gdbcmd.h" | |
29 | #include "expression.h" | |
30 | #include "parser-defs.h" | |
31 | #include "language.h" | |
a53b64ea | 32 | #include "varobj.h" |
14f9c5c9 AS |
33 | #include "c-lang.h" |
34 | #include "inferior.h" | |
35 | #include "symfile.h" | |
36 | #include "objfiles.h" | |
37 | #include "breakpoint.h" | |
38 | #include "gdbcore.h" | |
4c4b4cd2 PH |
39 | #include "hashtab.h" |
40 | #include "gdb_obstack.h" | |
14f9c5c9 | 41 | #include "ada-lang.h" |
4c4b4cd2 | 42 | #include "completer.h" |
53ce3c39 | 43 | #include <sys/stat.h> |
14f9c5c9 | 44 | #include "ui-out.h" |
fe898f56 | 45 | #include "block.h" |
04714b91 | 46 | #include "infcall.h" |
de4f826b | 47 | #include "dictionary.h" |
f7f9143b JB |
48 | #include "annotate.h" |
49 | #include "valprint.h" | |
9bbc9174 | 50 | #include "source.h" |
0259addd | 51 | #include "observer.h" |
2ba95b9b | 52 | #include "vec.h" |
692465f1 | 53 | #include "stack.h" |
fa864999 | 54 | #include "gdb_vecs.h" |
79d43c61 | 55 | #include "typeprint.h" |
22cee43f | 56 | #include "namespace.h" |
14f9c5c9 | 57 | |
ccefe4c4 | 58 | #include "psymtab.h" |
40bc484c | 59 | #include "value.h" |
956a9fb9 | 60 | #include "mi/mi-common.h" |
9ac4176b | 61 | #include "arch-utils.h" |
0fcd72ba | 62 | #include "cli/cli-utils.h" |
14bc53a8 | 63 | #include "common/function-view.h" |
d5722aa2 | 64 | #include "common/byte-vector.h" |
ab816a27 | 65 | #include <algorithm> |
ccefe4c4 | 66 | |
4c4b4cd2 | 67 | /* Define whether or not the C operator '/' truncates towards zero for |
0963b4bd | 68 | differently signed operands (truncation direction is undefined in C). |
4c4b4cd2 PH |
69 | Copied from valarith.c. */ |
70 | ||
71 | #ifndef TRUNCATION_TOWARDS_ZERO | |
72 | #define TRUNCATION_TOWARDS_ZERO ((-5 / 2) == -2) | |
73 | #endif | |
74 | ||
d2e4a39e | 75 | static struct type *desc_base_type (struct type *); |
14f9c5c9 | 76 | |
d2e4a39e | 77 | static struct type *desc_bounds_type (struct type *); |
14f9c5c9 | 78 | |
d2e4a39e | 79 | static struct value *desc_bounds (struct value *); |
14f9c5c9 | 80 | |
d2e4a39e | 81 | static int fat_pntr_bounds_bitpos (struct type *); |
14f9c5c9 | 82 | |
d2e4a39e | 83 | static int fat_pntr_bounds_bitsize (struct type *); |
14f9c5c9 | 84 | |
556bdfd4 | 85 | static struct type *desc_data_target_type (struct type *); |
14f9c5c9 | 86 | |
d2e4a39e | 87 | static struct value *desc_data (struct value *); |
14f9c5c9 | 88 | |
d2e4a39e | 89 | static int fat_pntr_data_bitpos (struct type *); |
14f9c5c9 | 90 | |
d2e4a39e | 91 | static int fat_pntr_data_bitsize (struct type *); |
14f9c5c9 | 92 | |
d2e4a39e | 93 | static struct value *desc_one_bound (struct value *, int, int); |
14f9c5c9 | 94 | |
d2e4a39e | 95 | static int desc_bound_bitpos (struct type *, int, int); |
14f9c5c9 | 96 | |
d2e4a39e | 97 | static int desc_bound_bitsize (struct type *, int, int); |
14f9c5c9 | 98 | |
d2e4a39e | 99 | static struct type *desc_index_type (struct type *, int); |
14f9c5c9 | 100 | |
d2e4a39e | 101 | static int desc_arity (struct type *); |
14f9c5c9 | 102 | |
d2e4a39e | 103 | static int ada_type_match (struct type *, struct type *, int); |
14f9c5c9 | 104 | |
d2e4a39e | 105 | static int ada_args_match (struct symbol *, struct value **, int); |
14f9c5c9 | 106 | |
40658b94 PH |
107 | static int full_match (const char *, const char *); |
108 | ||
40bc484c | 109 | static struct value *make_array_descriptor (struct type *, struct value *); |
14f9c5c9 | 110 | |
4c4b4cd2 | 111 | static void ada_add_block_symbols (struct obstack *, |
f0c5f9b2 | 112 | const struct block *, const char *, |
2570f2b7 | 113 | domain_enum, struct objfile *, int); |
14f9c5c9 | 114 | |
22cee43f PMR |
115 | static void ada_add_all_symbols (struct obstack *, const struct block *, |
116 | const char *, domain_enum, int, int *); | |
117 | ||
d12307c1 | 118 | static int is_nonfunction (struct block_symbol *, int); |
14f9c5c9 | 119 | |
76a01679 | 120 | static void add_defn_to_vec (struct obstack *, struct symbol *, |
f0c5f9b2 | 121 | const struct block *); |
14f9c5c9 | 122 | |
4c4b4cd2 PH |
123 | static int num_defns_collected (struct obstack *); |
124 | ||
d12307c1 | 125 | static struct block_symbol *defns_collected (struct obstack *, int); |
14f9c5c9 | 126 | |
4c4b4cd2 | 127 | static struct value *resolve_subexp (struct expression **, int *, int, |
76a01679 | 128 | struct type *); |
14f9c5c9 | 129 | |
d2e4a39e | 130 | static void replace_operator_with_call (struct expression **, int, int, int, |
270140bd | 131 | struct symbol *, const struct block *); |
14f9c5c9 | 132 | |
d2e4a39e | 133 | static int possible_user_operator_p (enum exp_opcode, struct value **); |
14f9c5c9 | 134 | |
a121b7c1 | 135 | static const char *ada_op_name (enum exp_opcode); |
4c4b4cd2 PH |
136 | |
137 | static const char *ada_decoded_op_name (enum exp_opcode); | |
14f9c5c9 | 138 | |
d2e4a39e | 139 | static int numeric_type_p (struct type *); |
14f9c5c9 | 140 | |
d2e4a39e | 141 | static int integer_type_p (struct type *); |
14f9c5c9 | 142 | |
d2e4a39e | 143 | static int scalar_type_p (struct type *); |
14f9c5c9 | 144 | |
d2e4a39e | 145 | static int discrete_type_p (struct type *); |
14f9c5c9 | 146 | |
aeb5907d JB |
147 | static enum ada_renaming_category parse_old_style_renaming (struct type *, |
148 | const char **, | |
149 | int *, | |
150 | const char **); | |
151 | ||
152 | static struct symbol *find_old_style_renaming_symbol (const char *, | |
270140bd | 153 | const struct block *); |
aeb5907d | 154 | |
a121b7c1 | 155 | static struct type *ada_lookup_struct_elt_type (struct type *, const char *, |
988f6b3d | 156 | int, int); |
4c4b4cd2 | 157 | |
d2e4a39e | 158 | static struct value *evaluate_subexp_type (struct expression *, int *); |
14f9c5c9 | 159 | |
b4ba55a1 JB |
160 | static struct type *ada_find_parallel_type_with_name (struct type *, |
161 | const char *); | |
162 | ||
d2e4a39e | 163 | static int is_dynamic_field (struct type *, int); |
14f9c5c9 | 164 | |
10a2c479 | 165 | static struct type *to_fixed_variant_branch_type (struct type *, |
fc1a4b47 | 166 | const gdb_byte *, |
4c4b4cd2 PH |
167 | CORE_ADDR, struct value *); |
168 | ||
169 | static struct type *to_fixed_array_type (struct type *, struct value *, int); | |
14f9c5c9 | 170 | |
28c85d6c | 171 | static struct type *to_fixed_range_type (struct type *, struct value *); |
14f9c5c9 | 172 | |
d2e4a39e | 173 | static struct type *to_static_fixed_type (struct type *); |
f192137b | 174 | static struct type *static_unwrap_type (struct type *type); |
14f9c5c9 | 175 | |
d2e4a39e | 176 | static struct value *unwrap_value (struct value *); |
14f9c5c9 | 177 | |
ad82864c | 178 | static struct type *constrained_packed_array_type (struct type *, long *); |
14f9c5c9 | 179 | |
ad82864c | 180 | static struct type *decode_constrained_packed_array_type (struct type *); |
14f9c5c9 | 181 | |
ad82864c JB |
182 | static long decode_packed_array_bitsize (struct type *); |
183 | ||
184 | static struct value *decode_constrained_packed_array (struct value *); | |
185 | ||
186 | static int ada_is_packed_array_type (struct type *); | |
187 | ||
188 | static int ada_is_unconstrained_packed_array_type (struct type *); | |
14f9c5c9 | 189 | |
d2e4a39e | 190 | static struct value *value_subscript_packed (struct value *, int, |
4c4b4cd2 | 191 | struct value **); |
14f9c5c9 | 192 | |
50810684 | 193 | static void move_bits (gdb_byte *, int, const gdb_byte *, int, int, int); |
52ce6436 | 194 | |
4c4b4cd2 PH |
195 | static struct value *coerce_unspec_val_to_type (struct value *, |
196 | struct type *); | |
14f9c5c9 | 197 | |
d2e4a39e | 198 | static int lesseq_defined_than (struct symbol *, struct symbol *); |
14f9c5c9 | 199 | |
d2e4a39e | 200 | static int equiv_types (struct type *, struct type *); |
14f9c5c9 | 201 | |
d2e4a39e | 202 | static int is_name_suffix (const char *); |
14f9c5c9 | 203 | |
73589123 PH |
204 | static int advance_wild_match (const char **, const char *, int); |
205 | ||
206 | static int wild_match (const char *, const char *); | |
14f9c5c9 | 207 | |
d2e4a39e | 208 | static struct value *ada_coerce_ref (struct value *); |
14f9c5c9 | 209 | |
4c4b4cd2 PH |
210 | static LONGEST pos_atr (struct value *); |
211 | ||
3cb382c9 | 212 | static struct value *value_pos_atr (struct type *, struct value *); |
14f9c5c9 | 213 | |
d2e4a39e | 214 | static struct value *value_val_atr (struct type *, struct value *); |
14f9c5c9 | 215 | |
4c4b4cd2 PH |
216 | static struct symbol *standard_lookup (const char *, const struct block *, |
217 | domain_enum); | |
14f9c5c9 | 218 | |
108d56a4 | 219 | static struct value *ada_search_struct_field (const char *, struct value *, int, |
4c4b4cd2 PH |
220 | struct type *); |
221 | ||
222 | static struct value *ada_value_primitive_field (struct value *, int, int, | |
223 | struct type *); | |
224 | ||
0d5cff50 | 225 | static int find_struct_field (const char *, struct type *, int, |
52ce6436 | 226 | struct type **, int *, int *, int *, int *); |
4c4b4cd2 PH |
227 | |
228 | static struct value *ada_to_fixed_value_create (struct type *, CORE_ADDR, | |
229 | struct value *); | |
230 | ||
d12307c1 | 231 | static int ada_resolve_function (struct block_symbol *, int, |
4c4b4cd2 PH |
232 | struct value **, int, const char *, |
233 | struct type *); | |
234 | ||
4c4b4cd2 PH |
235 | static int ada_is_direct_array_type (struct type *); |
236 | ||
72d5681a PH |
237 | static void ada_language_arch_info (struct gdbarch *, |
238 | struct language_arch_info *); | |
714e53ab | 239 | |
52ce6436 PH |
240 | static struct value *ada_index_struct_field (int, struct value *, int, |
241 | struct type *); | |
242 | ||
243 | static struct value *assign_aggregate (struct value *, struct value *, | |
0963b4bd MS |
244 | struct expression *, |
245 | int *, enum noside); | |
52ce6436 PH |
246 | |
247 | static void aggregate_assign_from_choices (struct value *, struct value *, | |
248 | struct expression *, | |
249 | int *, LONGEST *, int *, | |
250 | int, LONGEST, LONGEST); | |
251 | ||
252 | static void aggregate_assign_positional (struct value *, struct value *, | |
253 | struct expression *, | |
254 | int *, LONGEST *, int *, int, | |
255 | LONGEST, LONGEST); | |
256 | ||
257 | ||
258 | static void aggregate_assign_others (struct value *, struct value *, | |
259 | struct expression *, | |
260 | int *, LONGEST *, int, LONGEST, LONGEST); | |
261 | ||
262 | ||
263 | static void add_component_interval (LONGEST, LONGEST, LONGEST *, int *, int); | |
264 | ||
265 | ||
266 | static struct value *ada_evaluate_subexp (struct type *, struct expression *, | |
267 | int *, enum noside); | |
268 | ||
269 | static void ada_forward_operator_length (struct expression *, int, int *, | |
270 | int *); | |
852dff6c JB |
271 | |
272 | static struct type *ada_find_any_type (const char *name); | |
4c4b4cd2 PH |
273 | \f |
274 | ||
ee01b665 JB |
275 | /* The result of a symbol lookup to be stored in our symbol cache. */ |
276 | ||
277 | struct cache_entry | |
278 | { | |
279 | /* The name used to perform the lookup. */ | |
280 | const char *name; | |
281 | /* The namespace used during the lookup. */ | |
fe978cb0 | 282 | domain_enum domain; |
ee01b665 JB |
283 | /* The symbol returned by the lookup, or NULL if no matching symbol |
284 | was found. */ | |
285 | struct symbol *sym; | |
286 | /* The block where the symbol was found, or NULL if no matching | |
287 | symbol was found. */ | |
288 | const struct block *block; | |
289 | /* A pointer to the next entry with the same hash. */ | |
290 | struct cache_entry *next; | |
291 | }; | |
292 | ||
293 | /* The Ada symbol cache, used to store the result of Ada-mode symbol | |
294 | lookups in the course of executing the user's commands. | |
295 | ||
296 | The cache is implemented using a simple, fixed-sized hash. | |
297 | The size is fixed on the grounds that there are not likely to be | |
298 | all that many symbols looked up during any given session, regardless | |
299 | of the size of the symbol table. If we decide to go to a resizable | |
300 | table, let's just use the stuff from libiberty instead. */ | |
301 | ||
302 | #define HASH_SIZE 1009 | |
303 | ||
304 | struct ada_symbol_cache | |
305 | { | |
306 | /* An obstack used to store the entries in our cache. */ | |
307 | struct obstack cache_space; | |
308 | ||
309 | /* The root of the hash table used to implement our symbol cache. */ | |
310 | struct cache_entry *root[HASH_SIZE]; | |
311 | }; | |
312 | ||
313 | static void ada_free_symbol_cache (struct ada_symbol_cache *sym_cache); | |
76a01679 | 314 | |
4c4b4cd2 | 315 | /* Maximum-sized dynamic type. */ |
14f9c5c9 AS |
316 | static unsigned int varsize_limit; |
317 | ||
67cb5b2d | 318 | static const char ada_completer_word_break_characters[] = |
4c4b4cd2 PH |
319 | #ifdef VMS |
320 | " \t\n!@#%^&*()+=|~`}{[]\";:?/,-"; | |
321 | #else | |
14f9c5c9 | 322 | " \t\n!@#$%^&*()+=|~`}{[]\";:?/,-"; |
4c4b4cd2 | 323 | #endif |
14f9c5c9 | 324 | |
4c4b4cd2 | 325 | /* The name of the symbol to use to get the name of the main subprogram. */ |
76a01679 | 326 | static const char ADA_MAIN_PROGRAM_SYMBOL_NAME[] |
4c4b4cd2 | 327 | = "__gnat_ada_main_program_name"; |
14f9c5c9 | 328 | |
4c4b4cd2 PH |
329 | /* Limit on the number of warnings to raise per expression evaluation. */ |
330 | static int warning_limit = 2; | |
331 | ||
332 | /* Number of warning messages issued; reset to 0 by cleanups after | |
333 | expression evaluation. */ | |
334 | static int warnings_issued = 0; | |
335 | ||
336 | static const char *known_runtime_file_name_patterns[] = { | |
337 | ADA_KNOWN_RUNTIME_FILE_NAME_PATTERNS NULL | |
338 | }; | |
339 | ||
340 | static const char *known_auxiliary_function_name_patterns[] = { | |
341 | ADA_KNOWN_AUXILIARY_FUNCTION_NAME_PATTERNS NULL | |
342 | }; | |
343 | ||
344 | /* Space for allocating results of ada_lookup_symbol_list. */ | |
345 | static struct obstack symbol_list_obstack; | |
346 | ||
c6044dd1 JB |
347 | /* Maintenance-related settings for this module. */ |
348 | ||
349 | static struct cmd_list_element *maint_set_ada_cmdlist; | |
350 | static struct cmd_list_element *maint_show_ada_cmdlist; | |
351 | ||
352 | /* Implement the "maintenance set ada" (prefix) command. */ | |
353 | ||
354 | static void | |
981a3fb3 | 355 | maint_set_ada_cmd (const char *args, int from_tty) |
c6044dd1 | 356 | { |
635c7e8a TT |
357 | help_list (maint_set_ada_cmdlist, "maintenance set ada ", all_commands, |
358 | gdb_stdout); | |
c6044dd1 JB |
359 | } |
360 | ||
361 | /* Implement the "maintenance show ada" (prefix) command. */ | |
362 | ||
363 | static void | |
981a3fb3 | 364 | maint_show_ada_cmd (const char *args, int from_tty) |
c6044dd1 JB |
365 | { |
366 | cmd_show_list (maint_show_ada_cmdlist, from_tty, ""); | |
367 | } | |
368 | ||
369 | /* The "maintenance ada set/show ignore-descriptive-type" value. */ | |
370 | ||
371 | static int ada_ignore_descriptive_types_p = 0; | |
372 | ||
e802dbe0 JB |
373 | /* Inferior-specific data. */ |
374 | ||
375 | /* Per-inferior data for this module. */ | |
376 | ||
377 | struct ada_inferior_data | |
378 | { | |
379 | /* The ada__tags__type_specific_data type, which is used when decoding | |
380 | tagged types. With older versions of GNAT, this type was directly | |
381 | accessible through a component ("tsd") in the object tag. But this | |
382 | is no longer the case, so we cache it for each inferior. */ | |
383 | struct type *tsd_type; | |
3eecfa55 JB |
384 | |
385 | /* The exception_support_info data. This data is used to determine | |
386 | how to implement support for Ada exception catchpoints in a given | |
387 | inferior. */ | |
388 | const struct exception_support_info *exception_info; | |
e802dbe0 JB |
389 | }; |
390 | ||
391 | /* Our key to this module's inferior data. */ | |
392 | static const struct inferior_data *ada_inferior_data; | |
393 | ||
394 | /* A cleanup routine for our inferior data. */ | |
395 | static void | |
396 | ada_inferior_data_cleanup (struct inferior *inf, void *arg) | |
397 | { | |
398 | struct ada_inferior_data *data; | |
399 | ||
9a3c8263 | 400 | data = (struct ada_inferior_data *) inferior_data (inf, ada_inferior_data); |
e802dbe0 JB |
401 | if (data != NULL) |
402 | xfree (data); | |
403 | } | |
404 | ||
405 | /* Return our inferior data for the given inferior (INF). | |
406 | ||
407 | This function always returns a valid pointer to an allocated | |
408 | ada_inferior_data structure. If INF's inferior data has not | |
409 | been previously set, this functions creates a new one with all | |
410 | fields set to zero, sets INF's inferior to it, and then returns | |
411 | a pointer to that newly allocated ada_inferior_data. */ | |
412 | ||
413 | static struct ada_inferior_data * | |
414 | get_ada_inferior_data (struct inferior *inf) | |
415 | { | |
416 | struct ada_inferior_data *data; | |
417 | ||
9a3c8263 | 418 | data = (struct ada_inferior_data *) inferior_data (inf, ada_inferior_data); |
e802dbe0 JB |
419 | if (data == NULL) |
420 | { | |
41bf6aca | 421 | data = XCNEW (struct ada_inferior_data); |
e802dbe0 JB |
422 | set_inferior_data (inf, ada_inferior_data, data); |
423 | } | |
424 | ||
425 | return data; | |
426 | } | |
427 | ||
428 | /* Perform all necessary cleanups regarding our module's inferior data | |
429 | that is required after the inferior INF just exited. */ | |
430 | ||
431 | static void | |
432 | ada_inferior_exit (struct inferior *inf) | |
433 | { | |
434 | ada_inferior_data_cleanup (inf, NULL); | |
435 | set_inferior_data (inf, ada_inferior_data, NULL); | |
436 | } | |
437 | ||
ee01b665 JB |
438 | |
439 | /* program-space-specific data. */ | |
440 | ||
441 | /* This module's per-program-space data. */ | |
442 | struct ada_pspace_data | |
443 | { | |
444 | /* The Ada symbol cache. */ | |
445 | struct ada_symbol_cache *sym_cache; | |
446 | }; | |
447 | ||
448 | /* Key to our per-program-space data. */ | |
449 | static const struct program_space_data *ada_pspace_data_handle; | |
450 | ||
451 | /* Return this module's data for the given program space (PSPACE). | |
452 | If not is found, add a zero'ed one now. | |
453 | ||
454 | This function always returns a valid object. */ | |
455 | ||
456 | static struct ada_pspace_data * | |
457 | get_ada_pspace_data (struct program_space *pspace) | |
458 | { | |
459 | struct ada_pspace_data *data; | |
460 | ||
9a3c8263 SM |
461 | data = ((struct ada_pspace_data *) |
462 | program_space_data (pspace, ada_pspace_data_handle)); | |
ee01b665 JB |
463 | if (data == NULL) |
464 | { | |
465 | data = XCNEW (struct ada_pspace_data); | |
466 | set_program_space_data (pspace, ada_pspace_data_handle, data); | |
467 | } | |
468 | ||
469 | return data; | |
470 | } | |
471 | ||
472 | /* The cleanup callback for this module's per-program-space data. */ | |
473 | ||
474 | static void | |
475 | ada_pspace_data_cleanup (struct program_space *pspace, void *data) | |
476 | { | |
9a3c8263 | 477 | struct ada_pspace_data *pspace_data = (struct ada_pspace_data *) data; |
ee01b665 JB |
478 | |
479 | if (pspace_data->sym_cache != NULL) | |
480 | ada_free_symbol_cache (pspace_data->sym_cache); | |
481 | xfree (pspace_data); | |
482 | } | |
483 | ||
4c4b4cd2 PH |
484 | /* Utilities */ |
485 | ||
720d1a40 | 486 | /* If TYPE is a TYPE_CODE_TYPEDEF type, return the target type after |
eed9788b | 487 | all typedef layers have been peeled. Otherwise, return TYPE. |
720d1a40 JB |
488 | |
489 | Normally, we really expect a typedef type to only have 1 typedef layer. | |
490 | In other words, we really expect the target type of a typedef type to be | |
491 | a non-typedef type. This is particularly true for Ada units, because | |
492 | the language does not have a typedef vs not-typedef distinction. | |
493 | In that respect, the Ada compiler has been trying to eliminate as many | |
494 | typedef definitions in the debugging information, since they generally | |
495 | do not bring any extra information (we still use typedef under certain | |
496 | circumstances related mostly to the GNAT encoding). | |
497 | ||
498 | Unfortunately, we have seen situations where the debugging information | |
499 | generated by the compiler leads to such multiple typedef layers. For | |
500 | instance, consider the following example with stabs: | |
501 | ||
502 | .stabs "pck__float_array___XUP:Tt(0,46)=s16P_ARRAY:(0,47)=[...]"[...] | |
503 | .stabs "pck__float_array___XUP:t(0,36)=(0,46)",128,0,6,0 | |
504 | ||
505 | This is an error in the debugging information which causes type | |
506 | pck__float_array___XUP to be defined twice, and the second time, | |
507 | it is defined as a typedef of a typedef. | |
508 | ||
509 | This is on the fringe of legality as far as debugging information is | |
510 | concerned, and certainly unexpected. But it is easy to handle these | |
511 | situations correctly, so we can afford to be lenient in this case. */ | |
512 | ||
513 | static struct type * | |
514 | ada_typedef_target_type (struct type *type) | |
515 | { | |
516 | while (TYPE_CODE (type) == TYPE_CODE_TYPEDEF) | |
517 | type = TYPE_TARGET_TYPE (type); | |
518 | return type; | |
519 | } | |
520 | ||
41d27058 JB |
521 | /* Given DECODED_NAME a string holding a symbol name in its |
522 | decoded form (ie using the Ada dotted notation), returns | |
523 | its unqualified name. */ | |
524 | ||
525 | static const char * | |
526 | ada_unqualified_name (const char *decoded_name) | |
527 | { | |
2b0f535a JB |
528 | const char *result; |
529 | ||
530 | /* If the decoded name starts with '<', it means that the encoded | |
531 | name does not follow standard naming conventions, and thus that | |
532 | it is not your typical Ada symbol name. Trying to unqualify it | |
533 | is therefore pointless and possibly erroneous. */ | |
534 | if (decoded_name[0] == '<') | |
535 | return decoded_name; | |
536 | ||
537 | result = strrchr (decoded_name, '.'); | |
41d27058 JB |
538 | if (result != NULL) |
539 | result++; /* Skip the dot... */ | |
540 | else | |
541 | result = decoded_name; | |
542 | ||
543 | return result; | |
544 | } | |
545 | ||
546 | /* Return a string starting with '<', followed by STR, and '>'. | |
547 | The result is good until the next call. */ | |
548 | ||
549 | static char * | |
550 | add_angle_brackets (const char *str) | |
551 | { | |
552 | static char *result = NULL; | |
553 | ||
554 | xfree (result); | |
88c15c34 | 555 | result = xstrprintf ("<%s>", str); |
41d27058 JB |
556 | return result; |
557 | } | |
96d887e8 | 558 | |
67cb5b2d | 559 | static const char * |
4c4b4cd2 PH |
560 | ada_get_gdb_completer_word_break_characters (void) |
561 | { | |
562 | return ada_completer_word_break_characters; | |
563 | } | |
564 | ||
e79af960 JB |
565 | /* Print an array element index using the Ada syntax. */ |
566 | ||
567 | static void | |
568 | ada_print_array_index (struct value *index_value, struct ui_file *stream, | |
79a45b7d | 569 | const struct value_print_options *options) |
e79af960 | 570 | { |
79a45b7d | 571 | LA_VALUE_PRINT (index_value, stream, options); |
e79af960 JB |
572 | fprintf_filtered (stream, " => "); |
573 | } | |
574 | ||
f27cf670 | 575 | /* Assuming VECT points to an array of *SIZE objects of size |
14f9c5c9 | 576 | ELEMENT_SIZE, grow it to contain at least MIN_SIZE objects, |
f27cf670 | 577 | updating *SIZE as necessary and returning the (new) array. */ |
14f9c5c9 | 578 | |
f27cf670 AS |
579 | void * |
580 | grow_vect (void *vect, size_t *size, size_t min_size, int element_size) | |
14f9c5c9 | 581 | { |
d2e4a39e AS |
582 | if (*size < min_size) |
583 | { | |
584 | *size *= 2; | |
585 | if (*size < min_size) | |
4c4b4cd2 | 586 | *size = min_size; |
f27cf670 | 587 | vect = xrealloc (vect, *size * element_size); |
d2e4a39e | 588 | } |
f27cf670 | 589 | return vect; |
14f9c5c9 AS |
590 | } |
591 | ||
592 | /* True (non-zero) iff TARGET matches FIELD_NAME up to any trailing | |
4c4b4cd2 | 593 | suffix of FIELD_NAME beginning "___". */ |
14f9c5c9 AS |
594 | |
595 | static int | |
ebf56fd3 | 596 | field_name_match (const char *field_name, const char *target) |
14f9c5c9 AS |
597 | { |
598 | int len = strlen (target); | |
5b4ee69b | 599 | |
d2e4a39e | 600 | return |
4c4b4cd2 PH |
601 | (strncmp (field_name, target, len) == 0 |
602 | && (field_name[len] == '\0' | |
61012eef | 603 | || (startswith (field_name + len, "___") |
76a01679 JB |
604 | && strcmp (field_name + strlen (field_name) - 6, |
605 | "___XVN") != 0))); | |
14f9c5c9 AS |
606 | } |
607 | ||
608 | ||
872c8b51 JB |
609 | /* Assuming TYPE is a TYPE_CODE_STRUCT or a TYPE_CODE_TYPDEF to |
610 | a TYPE_CODE_STRUCT, find the field whose name matches FIELD_NAME, | |
611 | and return its index. This function also handles fields whose name | |
612 | have ___ suffixes because the compiler sometimes alters their name | |
613 | by adding such a suffix to represent fields with certain constraints. | |
614 | If the field could not be found, return a negative number if | |
615 | MAYBE_MISSING is set. Otherwise raise an error. */ | |
4c4b4cd2 PH |
616 | |
617 | int | |
618 | ada_get_field_index (const struct type *type, const char *field_name, | |
619 | int maybe_missing) | |
620 | { | |
621 | int fieldno; | |
872c8b51 JB |
622 | struct type *struct_type = check_typedef ((struct type *) type); |
623 | ||
624 | for (fieldno = 0; fieldno < TYPE_NFIELDS (struct_type); fieldno++) | |
625 | if (field_name_match (TYPE_FIELD_NAME (struct_type, fieldno), field_name)) | |
4c4b4cd2 PH |
626 | return fieldno; |
627 | ||
628 | if (!maybe_missing) | |
323e0a4a | 629 | error (_("Unable to find field %s in struct %s. Aborting"), |
872c8b51 | 630 | field_name, TYPE_NAME (struct_type)); |
4c4b4cd2 PH |
631 | |
632 | return -1; | |
633 | } | |
634 | ||
635 | /* The length of the prefix of NAME prior to any "___" suffix. */ | |
14f9c5c9 AS |
636 | |
637 | int | |
d2e4a39e | 638 | ada_name_prefix_len (const char *name) |
14f9c5c9 AS |
639 | { |
640 | if (name == NULL) | |
641 | return 0; | |
d2e4a39e | 642 | else |
14f9c5c9 | 643 | { |
d2e4a39e | 644 | const char *p = strstr (name, "___"); |
5b4ee69b | 645 | |
14f9c5c9 | 646 | if (p == NULL) |
4c4b4cd2 | 647 | return strlen (name); |
14f9c5c9 | 648 | else |
4c4b4cd2 | 649 | return p - name; |
14f9c5c9 AS |
650 | } |
651 | } | |
652 | ||
4c4b4cd2 PH |
653 | /* Return non-zero if SUFFIX is a suffix of STR. |
654 | Return zero if STR is null. */ | |
655 | ||
14f9c5c9 | 656 | static int |
d2e4a39e | 657 | is_suffix (const char *str, const char *suffix) |
14f9c5c9 AS |
658 | { |
659 | int len1, len2; | |
5b4ee69b | 660 | |
14f9c5c9 AS |
661 | if (str == NULL) |
662 | return 0; | |
663 | len1 = strlen (str); | |
664 | len2 = strlen (suffix); | |
4c4b4cd2 | 665 | return (len1 >= len2 && strcmp (str + len1 - len2, suffix) == 0); |
14f9c5c9 AS |
666 | } |
667 | ||
4c4b4cd2 PH |
668 | /* The contents of value VAL, treated as a value of type TYPE. The |
669 | result is an lval in memory if VAL is. */ | |
14f9c5c9 | 670 | |
d2e4a39e | 671 | static struct value * |
4c4b4cd2 | 672 | coerce_unspec_val_to_type (struct value *val, struct type *type) |
14f9c5c9 | 673 | { |
61ee279c | 674 | type = ada_check_typedef (type); |
df407dfe | 675 | if (value_type (val) == type) |
4c4b4cd2 | 676 | return val; |
d2e4a39e | 677 | else |
14f9c5c9 | 678 | { |
4c4b4cd2 PH |
679 | struct value *result; |
680 | ||
681 | /* Make sure that the object size is not unreasonable before | |
682 | trying to allocate some memory for it. */ | |
c1b5a1a6 | 683 | ada_ensure_varsize_limit (type); |
4c4b4cd2 | 684 | |
41e8491f JK |
685 | if (value_lazy (val) |
686 | || TYPE_LENGTH (type) > TYPE_LENGTH (value_type (val))) | |
687 | result = allocate_value_lazy (type); | |
688 | else | |
689 | { | |
690 | result = allocate_value (type); | |
9a0dc9e3 | 691 | value_contents_copy_raw (result, 0, val, 0, TYPE_LENGTH (type)); |
41e8491f | 692 | } |
74bcbdf3 | 693 | set_value_component_location (result, val); |
9bbda503 AC |
694 | set_value_bitsize (result, value_bitsize (val)); |
695 | set_value_bitpos (result, value_bitpos (val)); | |
42ae5230 | 696 | set_value_address (result, value_address (val)); |
14f9c5c9 AS |
697 | return result; |
698 | } | |
699 | } | |
700 | ||
fc1a4b47 AC |
701 | static const gdb_byte * |
702 | cond_offset_host (const gdb_byte *valaddr, long offset) | |
14f9c5c9 AS |
703 | { |
704 | if (valaddr == NULL) | |
705 | return NULL; | |
706 | else | |
707 | return valaddr + offset; | |
708 | } | |
709 | ||
710 | static CORE_ADDR | |
ebf56fd3 | 711 | cond_offset_target (CORE_ADDR address, long offset) |
14f9c5c9 AS |
712 | { |
713 | if (address == 0) | |
714 | return 0; | |
d2e4a39e | 715 | else |
14f9c5c9 AS |
716 | return address + offset; |
717 | } | |
718 | ||
4c4b4cd2 PH |
719 | /* Issue a warning (as for the definition of warning in utils.c, but |
720 | with exactly one argument rather than ...), unless the limit on the | |
721 | number of warnings has passed during the evaluation of the current | |
722 | expression. */ | |
a2249542 | 723 | |
77109804 AC |
724 | /* FIXME: cagney/2004-10-10: This function is mimicking the behavior |
725 | provided by "complaint". */ | |
a0b31db1 | 726 | static void lim_warning (const char *format, ...) ATTRIBUTE_PRINTF (1, 2); |
77109804 | 727 | |
14f9c5c9 | 728 | static void |
a2249542 | 729 | lim_warning (const char *format, ...) |
14f9c5c9 | 730 | { |
a2249542 | 731 | va_list args; |
a2249542 | 732 | |
5b4ee69b | 733 | va_start (args, format); |
4c4b4cd2 PH |
734 | warnings_issued += 1; |
735 | if (warnings_issued <= warning_limit) | |
a2249542 MK |
736 | vwarning (format, args); |
737 | ||
738 | va_end (args); | |
4c4b4cd2 PH |
739 | } |
740 | ||
714e53ab PH |
741 | /* Issue an error if the size of an object of type T is unreasonable, |
742 | i.e. if it would be a bad idea to allocate a value of this type in | |
743 | GDB. */ | |
744 | ||
c1b5a1a6 JB |
745 | void |
746 | ada_ensure_varsize_limit (const struct type *type) | |
714e53ab PH |
747 | { |
748 | if (TYPE_LENGTH (type) > varsize_limit) | |
323e0a4a | 749 | error (_("object size is larger than varsize-limit")); |
714e53ab PH |
750 | } |
751 | ||
0963b4bd | 752 | /* Maximum value of a SIZE-byte signed integer type. */ |
4c4b4cd2 | 753 | static LONGEST |
c3e5cd34 | 754 | max_of_size (int size) |
4c4b4cd2 | 755 | { |
76a01679 | 756 | LONGEST top_bit = (LONGEST) 1 << (size * 8 - 2); |
5b4ee69b | 757 | |
76a01679 | 758 | return top_bit | (top_bit - 1); |
4c4b4cd2 PH |
759 | } |
760 | ||
0963b4bd | 761 | /* Minimum value of a SIZE-byte signed integer type. */ |
4c4b4cd2 | 762 | static LONGEST |
c3e5cd34 | 763 | min_of_size (int size) |
4c4b4cd2 | 764 | { |
c3e5cd34 | 765 | return -max_of_size (size) - 1; |
4c4b4cd2 PH |
766 | } |
767 | ||
0963b4bd | 768 | /* Maximum value of a SIZE-byte unsigned integer type. */ |
4c4b4cd2 | 769 | static ULONGEST |
c3e5cd34 | 770 | umax_of_size (int size) |
4c4b4cd2 | 771 | { |
76a01679 | 772 | ULONGEST top_bit = (ULONGEST) 1 << (size * 8 - 1); |
5b4ee69b | 773 | |
76a01679 | 774 | return top_bit | (top_bit - 1); |
4c4b4cd2 PH |
775 | } |
776 | ||
0963b4bd | 777 | /* Maximum value of integral type T, as a signed quantity. */ |
c3e5cd34 PH |
778 | static LONGEST |
779 | max_of_type (struct type *t) | |
4c4b4cd2 | 780 | { |
c3e5cd34 PH |
781 | if (TYPE_UNSIGNED (t)) |
782 | return (LONGEST) umax_of_size (TYPE_LENGTH (t)); | |
783 | else | |
784 | return max_of_size (TYPE_LENGTH (t)); | |
785 | } | |
786 | ||
0963b4bd | 787 | /* Minimum value of integral type T, as a signed quantity. */ |
c3e5cd34 PH |
788 | static LONGEST |
789 | min_of_type (struct type *t) | |
790 | { | |
791 | if (TYPE_UNSIGNED (t)) | |
792 | return 0; | |
793 | else | |
794 | return min_of_size (TYPE_LENGTH (t)); | |
4c4b4cd2 PH |
795 | } |
796 | ||
797 | /* The largest value in the domain of TYPE, a discrete type, as an integer. */ | |
43bbcdc2 PH |
798 | LONGEST |
799 | ada_discrete_type_high_bound (struct type *type) | |
4c4b4cd2 | 800 | { |
c3345124 | 801 | type = resolve_dynamic_type (type, NULL, 0); |
76a01679 | 802 | switch (TYPE_CODE (type)) |
4c4b4cd2 PH |
803 | { |
804 | case TYPE_CODE_RANGE: | |
690cc4eb | 805 | return TYPE_HIGH_BOUND (type); |
4c4b4cd2 | 806 | case TYPE_CODE_ENUM: |
14e75d8e | 807 | return TYPE_FIELD_ENUMVAL (type, TYPE_NFIELDS (type) - 1); |
690cc4eb PH |
808 | case TYPE_CODE_BOOL: |
809 | return 1; | |
810 | case TYPE_CODE_CHAR: | |
76a01679 | 811 | case TYPE_CODE_INT: |
690cc4eb | 812 | return max_of_type (type); |
4c4b4cd2 | 813 | default: |
43bbcdc2 | 814 | error (_("Unexpected type in ada_discrete_type_high_bound.")); |
4c4b4cd2 PH |
815 | } |
816 | } | |
817 | ||
14e75d8e | 818 | /* The smallest value in the domain of TYPE, a discrete type, as an integer. */ |
43bbcdc2 PH |
819 | LONGEST |
820 | ada_discrete_type_low_bound (struct type *type) | |
4c4b4cd2 | 821 | { |
c3345124 | 822 | type = resolve_dynamic_type (type, NULL, 0); |
76a01679 | 823 | switch (TYPE_CODE (type)) |
4c4b4cd2 PH |
824 | { |
825 | case TYPE_CODE_RANGE: | |
690cc4eb | 826 | return TYPE_LOW_BOUND (type); |
4c4b4cd2 | 827 | case TYPE_CODE_ENUM: |
14e75d8e | 828 | return TYPE_FIELD_ENUMVAL (type, 0); |
690cc4eb PH |
829 | case TYPE_CODE_BOOL: |
830 | return 0; | |
831 | case TYPE_CODE_CHAR: | |
76a01679 | 832 | case TYPE_CODE_INT: |
690cc4eb | 833 | return min_of_type (type); |
4c4b4cd2 | 834 | default: |
43bbcdc2 | 835 | error (_("Unexpected type in ada_discrete_type_low_bound.")); |
4c4b4cd2 PH |
836 | } |
837 | } | |
838 | ||
839 | /* The identity on non-range types. For range types, the underlying | |
76a01679 | 840 | non-range scalar type. */ |
4c4b4cd2 PH |
841 | |
842 | static struct type * | |
18af8284 | 843 | get_base_type (struct type *type) |
4c4b4cd2 PH |
844 | { |
845 | while (type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE) | |
846 | { | |
76a01679 JB |
847 | if (type == TYPE_TARGET_TYPE (type) || TYPE_TARGET_TYPE (type) == NULL) |
848 | return type; | |
4c4b4cd2 PH |
849 | type = TYPE_TARGET_TYPE (type); |
850 | } | |
851 | return type; | |
14f9c5c9 | 852 | } |
41246937 JB |
853 | |
854 | /* Return a decoded version of the given VALUE. This means returning | |
855 | a value whose type is obtained by applying all the GNAT-specific | |
856 | encondings, making the resulting type a static but standard description | |
857 | of the initial type. */ | |
858 | ||
859 | struct value * | |
860 | ada_get_decoded_value (struct value *value) | |
861 | { | |
862 | struct type *type = ada_check_typedef (value_type (value)); | |
863 | ||
864 | if (ada_is_array_descriptor_type (type) | |
865 | || (ada_is_constrained_packed_array_type (type) | |
866 | && TYPE_CODE (type) != TYPE_CODE_PTR)) | |
867 | { | |
868 | if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF) /* array access type. */ | |
869 | value = ada_coerce_to_simple_array_ptr (value); | |
870 | else | |
871 | value = ada_coerce_to_simple_array (value); | |
872 | } | |
873 | else | |
874 | value = ada_to_fixed_value (value); | |
875 | ||
876 | return value; | |
877 | } | |
878 | ||
879 | /* Same as ada_get_decoded_value, but with the given TYPE. | |
880 | Because there is no associated actual value for this type, | |
881 | the resulting type might be a best-effort approximation in | |
882 | the case of dynamic types. */ | |
883 | ||
884 | struct type * | |
885 | ada_get_decoded_type (struct type *type) | |
886 | { | |
887 | type = to_static_fixed_type (type); | |
888 | if (ada_is_constrained_packed_array_type (type)) | |
889 | type = ada_coerce_to_simple_array_type (type); | |
890 | return type; | |
891 | } | |
892 | ||
4c4b4cd2 | 893 | \f |
76a01679 | 894 | |
4c4b4cd2 | 895 | /* Language Selection */ |
14f9c5c9 AS |
896 | |
897 | /* If the main program is in Ada, return language_ada, otherwise return LANG | |
ccefe4c4 | 898 | (the main program is in Ada iif the adainit symbol is found). */ |
d2e4a39e | 899 | |
14f9c5c9 | 900 | enum language |
ccefe4c4 | 901 | ada_update_initial_language (enum language lang) |
14f9c5c9 | 902 | { |
d2e4a39e | 903 | if (lookup_minimal_symbol ("adainit", (const char *) NULL, |
3b7344d5 | 904 | (struct objfile *) NULL).minsym != NULL) |
4c4b4cd2 | 905 | return language_ada; |
14f9c5c9 AS |
906 | |
907 | return lang; | |
908 | } | |
96d887e8 PH |
909 | |
910 | /* If the main procedure is written in Ada, then return its name. | |
911 | The result is good until the next call. Return NULL if the main | |
912 | procedure doesn't appear to be in Ada. */ | |
913 | ||
914 | char * | |
915 | ada_main_name (void) | |
916 | { | |
3b7344d5 | 917 | struct bound_minimal_symbol msym; |
f9bc20b9 | 918 | static char *main_program_name = NULL; |
6c038f32 | 919 | |
96d887e8 PH |
920 | /* For Ada, the name of the main procedure is stored in a specific |
921 | string constant, generated by the binder. Look for that symbol, | |
922 | extract its address, and then read that string. If we didn't find | |
923 | that string, then most probably the main procedure is not written | |
924 | in Ada. */ | |
925 | msym = lookup_minimal_symbol (ADA_MAIN_PROGRAM_SYMBOL_NAME, NULL, NULL); | |
926 | ||
3b7344d5 | 927 | if (msym.minsym != NULL) |
96d887e8 | 928 | { |
f9bc20b9 JB |
929 | CORE_ADDR main_program_name_addr; |
930 | int err_code; | |
931 | ||
77e371c0 | 932 | main_program_name_addr = BMSYMBOL_VALUE_ADDRESS (msym); |
96d887e8 | 933 | if (main_program_name_addr == 0) |
323e0a4a | 934 | error (_("Invalid address for Ada main program name.")); |
96d887e8 | 935 | |
f9bc20b9 JB |
936 | xfree (main_program_name); |
937 | target_read_string (main_program_name_addr, &main_program_name, | |
938 | 1024, &err_code); | |
939 | ||
940 | if (err_code != 0) | |
941 | return NULL; | |
96d887e8 PH |
942 | return main_program_name; |
943 | } | |
944 | ||
945 | /* The main procedure doesn't seem to be in Ada. */ | |
946 | return NULL; | |
947 | } | |
14f9c5c9 | 948 | \f |
4c4b4cd2 | 949 | /* Symbols */ |
d2e4a39e | 950 | |
4c4b4cd2 PH |
951 | /* Table of Ada operators and their GNAT-encoded names. Last entry is pair |
952 | of NULLs. */ | |
14f9c5c9 | 953 | |
d2e4a39e AS |
954 | const struct ada_opname_map ada_opname_table[] = { |
955 | {"Oadd", "\"+\"", BINOP_ADD}, | |
956 | {"Osubtract", "\"-\"", BINOP_SUB}, | |
957 | {"Omultiply", "\"*\"", BINOP_MUL}, | |
958 | {"Odivide", "\"/\"", BINOP_DIV}, | |
959 | {"Omod", "\"mod\"", BINOP_MOD}, | |
960 | {"Orem", "\"rem\"", BINOP_REM}, | |
961 | {"Oexpon", "\"**\"", BINOP_EXP}, | |
962 | {"Olt", "\"<\"", BINOP_LESS}, | |
963 | {"Ole", "\"<=\"", BINOP_LEQ}, | |
964 | {"Ogt", "\">\"", BINOP_GTR}, | |
965 | {"Oge", "\">=\"", BINOP_GEQ}, | |
966 | {"Oeq", "\"=\"", BINOP_EQUAL}, | |
967 | {"One", "\"/=\"", BINOP_NOTEQUAL}, | |
968 | {"Oand", "\"and\"", BINOP_BITWISE_AND}, | |
969 | {"Oor", "\"or\"", BINOP_BITWISE_IOR}, | |
970 | {"Oxor", "\"xor\"", BINOP_BITWISE_XOR}, | |
971 | {"Oconcat", "\"&\"", BINOP_CONCAT}, | |
972 | {"Oabs", "\"abs\"", UNOP_ABS}, | |
973 | {"Onot", "\"not\"", UNOP_LOGICAL_NOT}, | |
974 | {"Oadd", "\"+\"", UNOP_PLUS}, | |
975 | {"Osubtract", "\"-\"", UNOP_NEG}, | |
976 | {NULL, NULL} | |
14f9c5c9 AS |
977 | }; |
978 | ||
4c4b4cd2 PH |
979 | /* The "encoded" form of DECODED, according to GNAT conventions. |
980 | The result is valid until the next call to ada_encode. */ | |
981 | ||
14f9c5c9 | 982 | char * |
4c4b4cd2 | 983 | ada_encode (const char *decoded) |
14f9c5c9 | 984 | { |
4c4b4cd2 PH |
985 | static char *encoding_buffer = NULL; |
986 | static size_t encoding_buffer_size = 0; | |
d2e4a39e | 987 | const char *p; |
14f9c5c9 | 988 | int k; |
d2e4a39e | 989 | |
4c4b4cd2 | 990 | if (decoded == NULL) |
14f9c5c9 AS |
991 | return NULL; |
992 | ||
4c4b4cd2 PH |
993 | GROW_VECT (encoding_buffer, encoding_buffer_size, |
994 | 2 * strlen (decoded) + 10); | |
14f9c5c9 AS |
995 | |
996 | k = 0; | |
4c4b4cd2 | 997 | for (p = decoded; *p != '\0'; p += 1) |
14f9c5c9 | 998 | { |
cdc7bb92 | 999 | if (*p == '.') |
4c4b4cd2 PH |
1000 | { |
1001 | encoding_buffer[k] = encoding_buffer[k + 1] = '_'; | |
1002 | k += 2; | |
1003 | } | |
14f9c5c9 | 1004 | else if (*p == '"') |
4c4b4cd2 PH |
1005 | { |
1006 | const struct ada_opname_map *mapping; | |
1007 | ||
1008 | for (mapping = ada_opname_table; | |
1265e4aa | 1009 | mapping->encoded != NULL |
61012eef | 1010 | && !startswith (p, mapping->decoded); mapping += 1) |
4c4b4cd2 PH |
1011 | ; |
1012 | if (mapping->encoded == NULL) | |
323e0a4a | 1013 | error (_("invalid Ada operator name: %s"), p); |
4c4b4cd2 PH |
1014 | strcpy (encoding_buffer + k, mapping->encoded); |
1015 | k += strlen (mapping->encoded); | |
1016 | break; | |
1017 | } | |
d2e4a39e | 1018 | else |
4c4b4cd2 PH |
1019 | { |
1020 | encoding_buffer[k] = *p; | |
1021 | k += 1; | |
1022 | } | |
14f9c5c9 AS |
1023 | } |
1024 | ||
4c4b4cd2 PH |
1025 | encoding_buffer[k] = '\0'; |
1026 | return encoding_buffer; | |
14f9c5c9 AS |
1027 | } |
1028 | ||
1029 | /* Return NAME folded to lower case, or, if surrounded by single | |
4c4b4cd2 PH |
1030 | quotes, unfolded, but with the quotes stripped away. Result good |
1031 | to next call. */ | |
1032 | ||
d2e4a39e AS |
1033 | char * |
1034 | ada_fold_name (const char *name) | |
14f9c5c9 | 1035 | { |
d2e4a39e | 1036 | static char *fold_buffer = NULL; |
14f9c5c9 AS |
1037 | static size_t fold_buffer_size = 0; |
1038 | ||
1039 | int len = strlen (name); | |
d2e4a39e | 1040 | GROW_VECT (fold_buffer, fold_buffer_size, len + 1); |
14f9c5c9 AS |
1041 | |
1042 | if (name[0] == '\'') | |
1043 | { | |
d2e4a39e AS |
1044 | strncpy (fold_buffer, name + 1, len - 2); |
1045 | fold_buffer[len - 2] = '\000'; | |
14f9c5c9 AS |
1046 | } |
1047 | else | |
1048 | { | |
1049 | int i; | |
5b4ee69b | 1050 | |
14f9c5c9 | 1051 | for (i = 0; i <= len; i += 1) |
4c4b4cd2 | 1052 | fold_buffer[i] = tolower (name[i]); |
14f9c5c9 AS |
1053 | } |
1054 | ||
1055 | return fold_buffer; | |
1056 | } | |
1057 | ||
529cad9c PH |
1058 | /* Return nonzero if C is either a digit or a lowercase alphabet character. */ |
1059 | ||
1060 | static int | |
1061 | is_lower_alphanum (const char c) | |
1062 | { | |
1063 | return (isdigit (c) || (isalpha (c) && islower (c))); | |
1064 | } | |
1065 | ||
c90092fe JB |
1066 | /* ENCODED is the linkage name of a symbol and LEN contains its length. |
1067 | This function saves in LEN the length of that same symbol name but | |
1068 | without either of these suffixes: | |
29480c32 JB |
1069 | . .{DIGIT}+ |
1070 | . ${DIGIT}+ | |
1071 | . ___{DIGIT}+ | |
1072 | . __{DIGIT}+. | |
c90092fe | 1073 | |
29480c32 JB |
1074 | These are suffixes introduced by the compiler for entities such as |
1075 | nested subprogram for instance, in order to avoid name clashes. | |
1076 | They do not serve any purpose for the debugger. */ | |
1077 | ||
1078 | static void | |
1079 | ada_remove_trailing_digits (const char *encoded, int *len) | |
1080 | { | |
1081 | if (*len > 1 && isdigit (encoded[*len - 1])) | |
1082 | { | |
1083 | int i = *len - 2; | |
5b4ee69b | 1084 | |
29480c32 JB |
1085 | while (i > 0 && isdigit (encoded[i])) |
1086 | i--; | |
1087 | if (i >= 0 && encoded[i] == '.') | |
1088 | *len = i; | |
1089 | else if (i >= 0 && encoded[i] == '$') | |
1090 | *len = i; | |
61012eef | 1091 | else if (i >= 2 && startswith (encoded + i - 2, "___")) |
29480c32 | 1092 | *len = i - 2; |
61012eef | 1093 | else if (i >= 1 && startswith (encoded + i - 1, "__")) |
29480c32 JB |
1094 | *len = i - 1; |
1095 | } | |
1096 | } | |
1097 | ||
1098 | /* Remove the suffix introduced by the compiler for protected object | |
1099 | subprograms. */ | |
1100 | ||
1101 | static void | |
1102 | ada_remove_po_subprogram_suffix (const char *encoded, int *len) | |
1103 | { | |
1104 | /* Remove trailing N. */ | |
1105 | ||
1106 | /* Protected entry subprograms are broken into two | |
1107 | separate subprograms: The first one is unprotected, and has | |
1108 | a 'N' suffix; the second is the protected version, and has | |
0963b4bd | 1109 | the 'P' suffix. The second calls the first one after handling |
29480c32 JB |
1110 | the protection. Since the P subprograms are internally generated, |
1111 | we leave these names undecoded, giving the user a clue that this | |
1112 | entity is internal. */ | |
1113 | ||
1114 | if (*len > 1 | |
1115 | && encoded[*len - 1] == 'N' | |
1116 | && (isdigit (encoded[*len - 2]) || islower (encoded[*len - 2]))) | |
1117 | *len = *len - 1; | |
1118 | } | |
1119 | ||
69fadcdf JB |
1120 | /* Remove trailing X[bn]* suffixes (indicating names in package bodies). */ |
1121 | ||
1122 | static void | |
1123 | ada_remove_Xbn_suffix (const char *encoded, int *len) | |
1124 | { | |
1125 | int i = *len - 1; | |
1126 | ||
1127 | while (i > 0 && (encoded[i] == 'b' || encoded[i] == 'n')) | |
1128 | i--; | |
1129 | ||
1130 | if (encoded[i] != 'X') | |
1131 | return; | |
1132 | ||
1133 | if (i == 0) | |
1134 | return; | |
1135 | ||
1136 | if (isalnum (encoded[i-1])) | |
1137 | *len = i; | |
1138 | } | |
1139 | ||
29480c32 JB |
1140 | /* If ENCODED follows the GNAT entity encoding conventions, then return |
1141 | the decoded form of ENCODED. Otherwise, return "<%s>" where "%s" is | |
1142 | replaced by ENCODED. | |
14f9c5c9 | 1143 | |
4c4b4cd2 | 1144 | The resulting string is valid until the next call of ada_decode. |
29480c32 | 1145 | If the string is unchanged by decoding, the original string pointer |
4c4b4cd2 PH |
1146 | is returned. */ |
1147 | ||
1148 | const char * | |
1149 | ada_decode (const char *encoded) | |
14f9c5c9 AS |
1150 | { |
1151 | int i, j; | |
1152 | int len0; | |
d2e4a39e | 1153 | const char *p; |
4c4b4cd2 | 1154 | char *decoded; |
14f9c5c9 | 1155 | int at_start_name; |
4c4b4cd2 PH |
1156 | static char *decoding_buffer = NULL; |
1157 | static size_t decoding_buffer_size = 0; | |
d2e4a39e | 1158 | |
29480c32 JB |
1159 | /* The name of the Ada main procedure starts with "_ada_". |
1160 | This prefix is not part of the decoded name, so skip this part | |
1161 | if we see this prefix. */ | |
61012eef | 1162 | if (startswith (encoded, "_ada_")) |
4c4b4cd2 | 1163 | encoded += 5; |
14f9c5c9 | 1164 | |
29480c32 JB |
1165 | /* If the name starts with '_', then it is not a properly encoded |
1166 | name, so do not attempt to decode it. Similarly, if the name | |
1167 | starts with '<', the name should not be decoded. */ | |
4c4b4cd2 | 1168 | if (encoded[0] == '_' || encoded[0] == '<') |
14f9c5c9 AS |
1169 | goto Suppress; |
1170 | ||
4c4b4cd2 | 1171 | len0 = strlen (encoded); |
4c4b4cd2 | 1172 | |
29480c32 JB |
1173 | ada_remove_trailing_digits (encoded, &len0); |
1174 | ada_remove_po_subprogram_suffix (encoded, &len0); | |
529cad9c | 1175 | |
4c4b4cd2 PH |
1176 | /* Remove the ___X.* suffix if present. Do not forget to verify that |
1177 | the suffix is located before the current "end" of ENCODED. We want | |
1178 | to avoid re-matching parts of ENCODED that have previously been | |
1179 | marked as discarded (by decrementing LEN0). */ | |
1180 | p = strstr (encoded, "___"); | |
1181 | if (p != NULL && p - encoded < len0 - 3) | |
14f9c5c9 AS |
1182 | { |
1183 | if (p[3] == 'X') | |
4c4b4cd2 | 1184 | len0 = p - encoded; |
14f9c5c9 | 1185 | else |
4c4b4cd2 | 1186 | goto Suppress; |
14f9c5c9 | 1187 | } |
4c4b4cd2 | 1188 | |
29480c32 JB |
1189 | /* Remove any trailing TKB suffix. It tells us that this symbol |
1190 | is for the body of a task, but that information does not actually | |
1191 | appear in the decoded name. */ | |
1192 | ||
61012eef | 1193 | if (len0 > 3 && startswith (encoded + len0 - 3, "TKB")) |
14f9c5c9 | 1194 | len0 -= 3; |
76a01679 | 1195 | |
a10967fa JB |
1196 | /* Remove any trailing TB suffix. The TB suffix is slightly different |
1197 | from the TKB suffix because it is used for non-anonymous task | |
1198 | bodies. */ | |
1199 | ||
61012eef | 1200 | if (len0 > 2 && startswith (encoded + len0 - 2, "TB")) |
a10967fa JB |
1201 | len0 -= 2; |
1202 | ||
29480c32 JB |
1203 | /* Remove trailing "B" suffixes. */ |
1204 | /* FIXME: brobecker/2006-04-19: Not sure what this are used for... */ | |
1205 | ||
61012eef | 1206 | if (len0 > 1 && startswith (encoded + len0 - 1, "B")) |
14f9c5c9 AS |
1207 | len0 -= 1; |
1208 | ||
4c4b4cd2 | 1209 | /* Make decoded big enough for possible expansion by operator name. */ |
29480c32 | 1210 | |
4c4b4cd2 PH |
1211 | GROW_VECT (decoding_buffer, decoding_buffer_size, 2 * len0 + 1); |
1212 | decoded = decoding_buffer; | |
14f9c5c9 | 1213 | |
29480c32 JB |
1214 | /* Remove trailing __{digit}+ or trailing ${digit}+. */ |
1215 | ||
4c4b4cd2 | 1216 | if (len0 > 1 && isdigit (encoded[len0 - 1])) |
d2e4a39e | 1217 | { |
4c4b4cd2 PH |
1218 | i = len0 - 2; |
1219 | while ((i >= 0 && isdigit (encoded[i])) | |
1220 | || (i >= 1 && encoded[i] == '_' && isdigit (encoded[i - 1]))) | |
1221 | i -= 1; | |
1222 | if (i > 1 && encoded[i] == '_' && encoded[i - 1] == '_') | |
1223 | len0 = i - 1; | |
1224 | else if (encoded[i] == '$') | |
1225 | len0 = i; | |
d2e4a39e | 1226 | } |
14f9c5c9 | 1227 | |
29480c32 JB |
1228 | /* The first few characters that are not alphabetic are not part |
1229 | of any encoding we use, so we can copy them over verbatim. */ | |
1230 | ||
4c4b4cd2 PH |
1231 | for (i = 0, j = 0; i < len0 && !isalpha (encoded[i]); i += 1, j += 1) |
1232 | decoded[j] = encoded[i]; | |
14f9c5c9 AS |
1233 | |
1234 | at_start_name = 1; | |
1235 | while (i < len0) | |
1236 | { | |
29480c32 | 1237 | /* Is this a symbol function? */ |
4c4b4cd2 PH |
1238 | if (at_start_name && encoded[i] == 'O') |
1239 | { | |
1240 | int k; | |
5b4ee69b | 1241 | |
4c4b4cd2 PH |
1242 | for (k = 0; ada_opname_table[k].encoded != NULL; k += 1) |
1243 | { | |
1244 | int op_len = strlen (ada_opname_table[k].encoded); | |
06d5cf63 JB |
1245 | if ((strncmp (ada_opname_table[k].encoded + 1, encoded + i + 1, |
1246 | op_len - 1) == 0) | |
1247 | && !isalnum (encoded[i + op_len])) | |
4c4b4cd2 PH |
1248 | { |
1249 | strcpy (decoded + j, ada_opname_table[k].decoded); | |
1250 | at_start_name = 0; | |
1251 | i += op_len; | |
1252 | j += strlen (ada_opname_table[k].decoded); | |
1253 | break; | |
1254 | } | |
1255 | } | |
1256 | if (ada_opname_table[k].encoded != NULL) | |
1257 | continue; | |
1258 | } | |
14f9c5c9 AS |
1259 | at_start_name = 0; |
1260 | ||
529cad9c PH |
1261 | /* Replace "TK__" with "__", which will eventually be translated |
1262 | into "." (just below). */ | |
1263 | ||
61012eef | 1264 | if (i < len0 - 4 && startswith (encoded + i, "TK__")) |
4c4b4cd2 | 1265 | i += 2; |
529cad9c | 1266 | |
29480c32 JB |
1267 | /* Replace "__B_{DIGITS}+__" sequences by "__", which will eventually |
1268 | be translated into "." (just below). These are internal names | |
1269 | generated for anonymous blocks inside which our symbol is nested. */ | |
1270 | ||
1271 | if (len0 - i > 5 && encoded [i] == '_' && encoded [i+1] == '_' | |
1272 | && encoded [i+2] == 'B' && encoded [i+3] == '_' | |
1273 | && isdigit (encoded [i+4])) | |
1274 | { | |
1275 | int k = i + 5; | |
1276 | ||
1277 | while (k < len0 && isdigit (encoded[k])) | |
1278 | k++; /* Skip any extra digit. */ | |
1279 | ||
1280 | /* Double-check that the "__B_{DIGITS}+" sequence we found | |
1281 | is indeed followed by "__". */ | |
1282 | if (len0 - k > 2 && encoded [k] == '_' && encoded [k+1] == '_') | |
1283 | i = k; | |
1284 | } | |
1285 | ||
529cad9c PH |
1286 | /* Remove _E{DIGITS}+[sb] */ |
1287 | ||
1288 | /* Just as for protected object subprograms, there are 2 categories | |
0963b4bd | 1289 | of subprograms created by the compiler for each entry. The first |
529cad9c PH |
1290 | one implements the actual entry code, and has a suffix following |
1291 | the convention above; the second one implements the barrier and | |
1292 | uses the same convention as above, except that the 'E' is replaced | |
1293 | by a 'B'. | |
1294 | ||
1295 | Just as above, we do not decode the name of barrier functions | |
1296 | to give the user a clue that the code he is debugging has been | |
1297 | internally generated. */ | |
1298 | ||
1299 | if (len0 - i > 3 && encoded [i] == '_' && encoded[i+1] == 'E' | |
1300 | && isdigit (encoded[i+2])) | |
1301 | { | |
1302 | int k = i + 3; | |
1303 | ||
1304 | while (k < len0 && isdigit (encoded[k])) | |
1305 | k++; | |
1306 | ||
1307 | if (k < len0 | |
1308 | && (encoded[k] == 'b' || encoded[k] == 's')) | |
1309 | { | |
1310 | k++; | |
1311 | /* Just as an extra precaution, make sure that if this | |
1312 | suffix is followed by anything else, it is a '_'. | |
1313 | Otherwise, we matched this sequence by accident. */ | |
1314 | if (k == len0 | |
1315 | || (k < len0 && encoded[k] == '_')) | |
1316 | i = k; | |
1317 | } | |
1318 | } | |
1319 | ||
1320 | /* Remove trailing "N" in [a-z0-9]+N__. The N is added by | |
1321 | the GNAT front-end in protected object subprograms. */ | |
1322 | ||
1323 | if (i < len0 + 3 | |
1324 | && encoded[i] == 'N' && encoded[i+1] == '_' && encoded[i+2] == '_') | |
1325 | { | |
1326 | /* Backtrack a bit up until we reach either the begining of | |
1327 | the encoded name, or "__". Make sure that we only find | |
1328 | digits or lowercase characters. */ | |
1329 | const char *ptr = encoded + i - 1; | |
1330 | ||
1331 | while (ptr >= encoded && is_lower_alphanum (ptr[0])) | |
1332 | ptr--; | |
1333 | if (ptr < encoded | |
1334 | || (ptr > encoded && ptr[0] == '_' && ptr[-1] == '_')) | |
1335 | i++; | |
1336 | } | |
1337 | ||
4c4b4cd2 PH |
1338 | if (encoded[i] == 'X' && i != 0 && isalnum (encoded[i - 1])) |
1339 | { | |
29480c32 JB |
1340 | /* This is a X[bn]* sequence not separated from the previous |
1341 | part of the name with a non-alpha-numeric character (in other | |
1342 | words, immediately following an alpha-numeric character), then | |
1343 | verify that it is placed at the end of the encoded name. If | |
1344 | not, then the encoding is not valid and we should abort the | |
1345 | decoding. Otherwise, just skip it, it is used in body-nested | |
1346 | package names. */ | |
4c4b4cd2 PH |
1347 | do |
1348 | i += 1; | |
1349 | while (i < len0 && (encoded[i] == 'b' || encoded[i] == 'n')); | |
1350 | if (i < len0) | |
1351 | goto Suppress; | |
1352 | } | |
cdc7bb92 | 1353 | else if (i < len0 - 2 && encoded[i] == '_' && encoded[i + 1] == '_') |
4c4b4cd2 | 1354 | { |
29480c32 | 1355 | /* Replace '__' by '.'. */ |
4c4b4cd2 PH |
1356 | decoded[j] = '.'; |
1357 | at_start_name = 1; | |
1358 | i += 2; | |
1359 | j += 1; | |
1360 | } | |
14f9c5c9 | 1361 | else |
4c4b4cd2 | 1362 | { |
29480c32 JB |
1363 | /* It's a character part of the decoded name, so just copy it |
1364 | over. */ | |
4c4b4cd2 PH |
1365 | decoded[j] = encoded[i]; |
1366 | i += 1; | |
1367 | j += 1; | |
1368 | } | |
14f9c5c9 | 1369 | } |
4c4b4cd2 | 1370 | decoded[j] = '\000'; |
14f9c5c9 | 1371 | |
29480c32 JB |
1372 | /* Decoded names should never contain any uppercase character. |
1373 | Double-check this, and abort the decoding if we find one. */ | |
1374 | ||
4c4b4cd2 PH |
1375 | for (i = 0; decoded[i] != '\0'; i += 1) |
1376 | if (isupper (decoded[i]) || decoded[i] == ' ') | |
14f9c5c9 AS |
1377 | goto Suppress; |
1378 | ||
4c4b4cd2 PH |
1379 | if (strcmp (decoded, encoded) == 0) |
1380 | return encoded; | |
1381 | else | |
1382 | return decoded; | |
14f9c5c9 AS |
1383 | |
1384 | Suppress: | |
4c4b4cd2 PH |
1385 | GROW_VECT (decoding_buffer, decoding_buffer_size, strlen (encoded) + 3); |
1386 | decoded = decoding_buffer; | |
1387 | if (encoded[0] == '<') | |
1388 | strcpy (decoded, encoded); | |
14f9c5c9 | 1389 | else |
88c15c34 | 1390 | xsnprintf (decoded, decoding_buffer_size, "<%s>", encoded); |
4c4b4cd2 PH |
1391 | return decoded; |
1392 | ||
1393 | } | |
1394 | ||
1395 | /* Table for keeping permanent unique copies of decoded names. Once | |
1396 | allocated, names in this table are never released. While this is a | |
1397 | storage leak, it should not be significant unless there are massive | |
1398 | changes in the set of decoded names in successive versions of a | |
1399 | symbol table loaded during a single session. */ | |
1400 | static struct htab *decoded_names_store; | |
1401 | ||
1402 | /* Returns the decoded name of GSYMBOL, as for ada_decode, caching it | |
1403 | in the language-specific part of GSYMBOL, if it has not been | |
1404 | previously computed. Tries to save the decoded name in the same | |
1405 | obstack as GSYMBOL, if possible, and otherwise on the heap (so that, | |
1406 | in any case, the decoded symbol has a lifetime at least that of | |
0963b4bd | 1407 | GSYMBOL). |
4c4b4cd2 PH |
1408 | The GSYMBOL parameter is "mutable" in the C++ sense: logically |
1409 | const, but nevertheless modified to a semantically equivalent form | |
0963b4bd | 1410 | when a decoded name is cached in it. */ |
4c4b4cd2 | 1411 | |
45e6c716 | 1412 | const char * |
f85f34ed | 1413 | ada_decode_symbol (const struct general_symbol_info *arg) |
4c4b4cd2 | 1414 | { |
f85f34ed TT |
1415 | struct general_symbol_info *gsymbol = (struct general_symbol_info *) arg; |
1416 | const char **resultp = | |
615b3f62 | 1417 | &gsymbol->language_specific.demangled_name; |
5b4ee69b | 1418 | |
f85f34ed | 1419 | if (!gsymbol->ada_mangled) |
4c4b4cd2 PH |
1420 | { |
1421 | const char *decoded = ada_decode (gsymbol->name); | |
f85f34ed | 1422 | struct obstack *obstack = gsymbol->language_specific.obstack; |
5b4ee69b | 1423 | |
f85f34ed | 1424 | gsymbol->ada_mangled = 1; |
5b4ee69b | 1425 | |
f85f34ed | 1426 | if (obstack != NULL) |
224c3ddb SM |
1427 | *resultp |
1428 | = (const char *) obstack_copy0 (obstack, decoded, strlen (decoded)); | |
f85f34ed | 1429 | else |
76a01679 | 1430 | { |
f85f34ed TT |
1431 | /* Sometimes, we can't find a corresponding objfile, in |
1432 | which case, we put the result on the heap. Since we only | |
1433 | decode when needed, we hope this usually does not cause a | |
1434 | significant memory leak (FIXME). */ | |
1435 | ||
76a01679 JB |
1436 | char **slot = (char **) htab_find_slot (decoded_names_store, |
1437 | decoded, INSERT); | |
5b4ee69b | 1438 | |
76a01679 JB |
1439 | if (*slot == NULL) |
1440 | *slot = xstrdup (decoded); | |
1441 | *resultp = *slot; | |
1442 | } | |
4c4b4cd2 | 1443 | } |
14f9c5c9 | 1444 | |
4c4b4cd2 PH |
1445 | return *resultp; |
1446 | } | |
76a01679 | 1447 | |
2c0b251b | 1448 | static char * |
76a01679 | 1449 | ada_la_decode (const char *encoded, int options) |
4c4b4cd2 PH |
1450 | { |
1451 | return xstrdup (ada_decode (encoded)); | |
14f9c5c9 AS |
1452 | } |
1453 | ||
8b302db8 TT |
1454 | /* Implement la_sniff_from_mangled_name for Ada. */ |
1455 | ||
1456 | static int | |
1457 | ada_sniff_from_mangled_name (const char *mangled, char **out) | |
1458 | { | |
1459 | const char *demangled = ada_decode (mangled); | |
1460 | ||
1461 | *out = NULL; | |
1462 | ||
1463 | if (demangled != mangled && demangled != NULL && demangled[0] != '<') | |
1464 | { | |
1465 | /* Set the gsymbol language to Ada, but still return 0. | |
1466 | Two reasons for that: | |
1467 | ||
1468 | 1. For Ada, we prefer computing the symbol's decoded name | |
1469 | on the fly rather than pre-compute it, in order to save | |
1470 | memory (Ada projects are typically very large). | |
1471 | ||
1472 | 2. There are some areas in the definition of the GNAT | |
1473 | encoding where, with a bit of bad luck, we might be able | |
1474 | to decode a non-Ada symbol, generating an incorrect | |
1475 | demangled name (Eg: names ending with "TB" for instance | |
1476 | are identified as task bodies and so stripped from | |
1477 | the decoded name returned). | |
1478 | ||
1479 | Returning 1, here, but not setting *DEMANGLED, helps us get a | |
1480 | little bit of the best of both worlds. Because we're last, | |
1481 | we should not affect any of the other languages that were | |
1482 | able to demangle the symbol before us; we get to correctly | |
1483 | tag Ada symbols as such; and even if we incorrectly tagged a | |
1484 | non-Ada symbol, which should be rare, any routing through the | |
1485 | Ada language should be transparent (Ada tries to behave much | |
1486 | like C/C++ with non-Ada symbols). */ | |
1487 | return 1; | |
1488 | } | |
1489 | ||
1490 | return 0; | |
1491 | } | |
1492 | ||
14f9c5c9 | 1493 | /* Returns non-zero iff SYM_NAME matches NAME, ignoring any trailing |
4c4b4cd2 PH |
1494 | suffixes that encode debugging information or leading _ada_ on |
1495 | SYM_NAME (see is_name_suffix commentary for the debugging | |
1496 | information that is ignored). If WILD, then NAME need only match a | |
1497 | suffix of SYM_NAME minus the same suffixes. Also returns 0 if | |
1498 | either argument is NULL. */ | |
14f9c5c9 | 1499 | |
2c0b251b | 1500 | static int |
40658b94 | 1501 | match_name (const char *sym_name, const char *name, int wild) |
14f9c5c9 AS |
1502 | { |
1503 | if (sym_name == NULL || name == NULL) | |
1504 | return 0; | |
1505 | else if (wild) | |
73589123 | 1506 | return wild_match (sym_name, name) == 0; |
d2e4a39e AS |
1507 | else |
1508 | { | |
1509 | int len_name = strlen (name); | |
5b4ee69b | 1510 | |
4c4b4cd2 PH |
1511 | return (strncmp (sym_name, name, len_name) == 0 |
1512 | && is_name_suffix (sym_name + len_name)) | |
61012eef | 1513 | || (startswith (sym_name, "_ada_") |
4c4b4cd2 PH |
1514 | && strncmp (sym_name + 5, name, len_name) == 0 |
1515 | && is_name_suffix (sym_name + len_name + 5)); | |
d2e4a39e | 1516 | } |
14f9c5c9 | 1517 | } |
14f9c5c9 | 1518 | \f |
d2e4a39e | 1519 | |
4c4b4cd2 | 1520 | /* Arrays */ |
14f9c5c9 | 1521 | |
28c85d6c JB |
1522 | /* Assuming that INDEX_DESC_TYPE is an ___XA structure, a structure |
1523 | generated by the GNAT compiler to describe the index type used | |
1524 | for each dimension of an array, check whether it follows the latest | |
1525 | known encoding. If not, fix it up to conform to the latest encoding. | |
1526 | Otherwise, do nothing. This function also does nothing if | |
1527 | INDEX_DESC_TYPE is NULL. | |
1528 | ||
1529 | The GNAT encoding used to describle the array index type evolved a bit. | |
1530 | Initially, the information would be provided through the name of each | |
1531 | field of the structure type only, while the type of these fields was | |
1532 | described as unspecified and irrelevant. The debugger was then expected | |
1533 | to perform a global type lookup using the name of that field in order | |
1534 | to get access to the full index type description. Because these global | |
1535 | lookups can be very expensive, the encoding was later enhanced to make | |
1536 | the global lookup unnecessary by defining the field type as being | |
1537 | the full index type description. | |
1538 | ||
1539 | The purpose of this routine is to allow us to support older versions | |
1540 | of the compiler by detecting the use of the older encoding, and by | |
1541 | fixing up the INDEX_DESC_TYPE to follow the new one (at this point, | |
1542 | we essentially replace each field's meaningless type by the associated | |
1543 | index subtype). */ | |
1544 | ||
1545 | void | |
1546 | ada_fixup_array_indexes_type (struct type *index_desc_type) | |
1547 | { | |
1548 | int i; | |
1549 | ||
1550 | if (index_desc_type == NULL) | |
1551 | return; | |
1552 | gdb_assert (TYPE_NFIELDS (index_desc_type) > 0); | |
1553 | ||
1554 | /* Check if INDEX_DESC_TYPE follows the older encoding (it is sufficient | |
1555 | to check one field only, no need to check them all). If not, return | |
1556 | now. | |
1557 | ||
1558 | If our INDEX_DESC_TYPE was generated using the older encoding, | |
1559 | the field type should be a meaningless integer type whose name | |
1560 | is not equal to the field name. */ | |
1561 | if (TYPE_NAME (TYPE_FIELD_TYPE (index_desc_type, 0)) != NULL | |
1562 | && strcmp (TYPE_NAME (TYPE_FIELD_TYPE (index_desc_type, 0)), | |
1563 | TYPE_FIELD_NAME (index_desc_type, 0)) == 0) | |
1564 | return; | |
1565 | ||
1566 | /* Fixup each field of INDEX_DESC_TYPE. */ | |
1567 | for (i = 0; i < TYPE_NFIELDS (index_desc_type); i++) | |
1568 | { | |
0d5cff50 | 1569 | const char *name = TYPE_FIELD_NAME (index_desc_type, i); |
28c85d6c JB |
1570 | struct type *raw_type = ada_check_typedef (ada_find_any_type (name)); |
1571 | ||
1572 | if (raw_type) | |
1573 | TYPE_FIELD_TYPE (index_desc_type, i) = raw_type; | |
1574 | } | |
1575 | } | |
1576 | ||
4c4b4cd2 | 1577 | /* Names of MAX_ADA_DIMENS bounds in P_BOUNDS fields of array descriptors. */ |
14f9c5c9 | 1578 | |
a121b7c1 | 1579 | static const char *bound_name[] = { |
d2e4a39e | 1580 | "LB0", "UB0", "LB1", "UB1", "LB2", "UB2", "LB3", "UB3", |
14f9c5c9 AS |
1581 | "LB4", "UB4", "LB5", "UB5", "LB6", "UB6", "LB7", "UB7" |
1582 | }; | |
1583 | ||
1584 | /* Maximum number of array dimensions we are prepared to handle. */ | |
1585 | ||
4c4b4cd2 | 1586 | #define MAX_ADA_DIMENS (sizeof(bound_name) / (2*sizeof(char *))) |
14f9c5c9 | 1587 | |
14f9c5c9 | 1588 | |
4c4b4cd2 PH |
1589 | /* The desc_* routines return primitive portions of array descriptors |
1590 | (fat pointers). */ | |
14f9c5c9 AS |
1591 | |
1592 | /* The descriptor or array type, if any, indicated by TYPE; removes | |
4c4b4cd2 PH |
1593 | level of indirection, if needed. */ |
1594 | ||
d2e4a39e AS |
1595 | static struct type * |
1596 | desc_base_type (struct type *type) | |
14f9c5c9 AS |
1597 | { |
1598 | if (type == NULL) | |
1599 | return NULL; | |
61ee279c | 1600 | type = ada_check_typedef (type); |
720d1a40 JB |
1601 | if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF) |
1602 | type = ada_typedef_target_type (type); | |
1603 | ||
1265e4aa JB |
1604 | if (type != NULL |
1605 | && (TYPE_CODE (type) == TYPE_CODE_PTR | |
1606 | || TYPE_CODE (type) == TYPE_CODE_REF)) | |
61ee279c | 1607 | return ada_check_typedef (TYPE_TARGET_TYPE (type)); |
14f9c5c9 AS |
1608 | else |
1609 | return type; | |
1610 | } | |
1611 | ||
4c4b4cd2 PH |
1612 | /* True iff TYPE indicates a "thin" array pointer type. */ |
1613 | ||
14f9c5c9 | 1614 | static int |
d2e4a39e | 1615 | is_thin_pntr (struct type *type) |
14f9c5c9 | 1616 | { |
d2e4a39e | 1617 | return |
14f9c5c9 AS |
1618 | is_suffix (ada_type_name (desc_base_type (type)), "___XUT") |
1619 | || is_suffix (ada_type_name (desc_base_type (type)), "___XUT___XVE"); | |
1620 | } | |
1621 | ||
4c4b4cd2 PH |
1622 | /* The descriptor type for thin pointer type TYPE. */ |
1623 | ||
d2e4a39e AS |
1624 | static struct type * |
1625 | thin_descriptor_type (struct type *type) | |
14f9c5c9 | 1626 | { |
d2e4a39e | 1627 | struct type *base_type = desc_base_type (type); |
5b4ee69b | 1628 | |
14f9c5c9 AS |
1629 | if (base_type == NULL) |
1630 | return NULL; | |
1631 | if (is_suffix (ada_type_name (base_type), "___XVE")) | |
1632 | return base_type; | |
d2e4a39e | 1633 | else |
14f9c5c9 | 1634 | { |
d2e4a39e | 1635 | struct type *alt_type = ada_find_parallel_type (base_type, "___XVE"); |
5b4ee69b | 1636 | |
14f9c5c9 | 1637 | if (alt_type == NULL) |
4c4b4cd2 | 1638 | return base_type; |
14f9c5c9 | 1639 | else |
4c4b4cd2 | 1640 | return alt_type; |
14f9c5c9 AS |
1641 | } |
1642 | } | |
1643 | ||
4c4b4cd2 PH |
1644 | /* A pointer to the array data for thin-pointer value VAL. */ |
1645 | ||
d2e4a39e AS |
1646 | static struct value * |
1647 | thin_data_pntr (struct value *val) | |
14f9c5c9 | 1648 | { |
828292f2 | 1649 | struct type *type = ada_check_typedef (value_type (val)); |
556bdfd4 | 1650 | struct type *data_type = desc_data_target_type (thin_descriptor_type (type)); |
5b4ee69b | 1651 | |
556bdfd4 UW |
1652 | data_type = lookup_pointer_type (data_type); |
1653 | ||
14f9c5c9 | 1654 | if (TYPE_CODE (type) == TYPE_CODE_PTR) |
556bdfd4 | 1655 | return value_cast (data_type, value_copy (val)); |
d2e4a39e | 1656 | else |
42ae5230 | 1657 | return value_from_longest (data_type, value_address (val)); |
14f9c5c9 AS |
1658 | } |
1659 | ||
4c4b4cd2 PH |
1660 | /* True iff TYPE indicates a "thick" array pointer type. */ |
1661 | ||
14f9c5c9 | 1662 | static int |
d2e4a39e | 1663 | is_thick_pntr (struct type *type) |
14f9c5c9 AS |
1664 | { |
1665 | type = desc_base_type (type); | |
1666 | return (type != NULL && TYPE_CODE (type) == TYPE_CODE_STRUCT | |
4c4b4cd2 | 1667 | && lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL); |
14f9c5c9 AS |
1668 | } |
1669 | ||
4c4b4cd2 PH |
1670 | /* If TYPE is the type of an array descriptor (fat or thin pointer) or a |
1671 | pointer to one, the type of its bounds data; otherwise, NULL. */ | |
76a01679 | 1672 | |
d2e4a39e AS |
1673 | static struct type * |
1674 | desc_bounds_type (struct type *type) | |
14f9c5c9 | 1675 | { |
d2e4a39e | 1676 | struct type *r; |
14f9c5c9 AS |
1677 | |
1678 | type = desc_base_type (type); | |
1679 | ||
1680 | if (type == NULL) | |
1681 | return NULL; | |
1682 | else if (is_thin_pntr (type)) | |
1683 | { | |
1684 | type = thin_descriptor_type (type); | |
1685 | if (type == NULL) | |
4c4b4cd2 | 1686 | return NULL; |
14f9c5c9 AS |
1687 | r = lookup_struct_elt_type (type, "BOUNDS", 1); |
1688 | if (r != NULL) | |
61ee279c | 1689 | return ada_check_typedef (r); |
14f9c5c9 AS |
1690 | } |
1691 | else if (TYPE_CODE (type) == TYPE_CODE_STRUCT) | |
1692 | { | |
1693 | r = lookup_struct_elt_type (type, "P_BOUNDS", 1); | |
1694 | if (r != NULL) | |
61ee279c | 1695 | return ada_check_typedef (TYPE_TARGET_TYPE (ada_check_typedef (r))); |
14f9c5c9 AS |
1696 | } |
1697 | return NULL; | |
1698 | } | |
1699 | ||
1700 | /* If ARR is an array descriptor (fat or thin pointer), or pointer to | |
4c4b4cd2 PH |
1701 | one, a pointer to its bounds data. Otherwise NULL. */ |
1702 | ||
d2e4a39e AS |
1703 | static struct value * |
1704 | desc_bounds (struct value *arr) | |
14f9c5c9 | 1705 | { |
df407dfe | 1706 | struct type *type = ada_check_typedef (value_type (arr)); |
5b4ee69b | 1707 | |
d2e4a39e | 1708 | if (is_thin_pntr (type)) |
14f9c5c9 | 1709 | { |
d2e4a39e | 1710 | struct type *bounds_type = |
4c4b4cd2 | 1711 | desc_bounds_type (thin_descriptor_type (type)); |
14f9c5c9 AS |
1712 | LONGEST addr; |
1713 | ||
4cdfadb1 | 1714 | if (bounds_type == NULL) |
323e0a4a | 1715 | error (_("Bad GNAT array descriptor")); |
14f9c5c9 AS |
1716 | |
1717 | /* NOTE: The following calculation is not really kosher, but | |
d2e4a39e | 1718 | since desc_type is an XVE-encoded type (and shouldn't be), |
4c4b4cd2 | 1719 | the correct calculation is a real pain. FIXME (and fix GCC). */ |
14f9c5c9 | 1720 | if (TYPE_CODE (type) == TYPE_CODE_PTR) |
4c4b4cd2 | 1721 | addr = value_as_long (arr); |
d2e4a39e | 1722 | else |
42ae5230 | 1723 | addr = value_address (arr); |
14f9c5c9 | 1724 | |
d2e4a39e | 1725 | return |
4c4b4cd2 PH |
1726 | value_from_longest (lookup_pointer_type (bounds_type), |
1727 | addr - TYPE_LENGTH (bounds_type)); | |
14f9c5c9 AS |
1728 | } |
1729 | ||
1730 | else if (is_thick_pntr (type)) | |
05e522ef JB |
1731 | { |
1732 | struct value *p_bounds = value_struct_elt (&arr, NULL, "P_BOUNDS", NULL, | |
1733 | _("Bad GNAT array descriptor")); | |
1734 | struct type *p_bounds_type = value_type (p_bounds); | |
1735 | ||
1736 | if (p_bounds_type | |
1737 | && TYPE_CODE (p_bounds_type) == TYPE_CODE_PTR) | |
1738 | { | |
1739 | struct type *target_type = TYPE_TARGET_TYPE (p_bounds_type); | |
1740 | ||
1741 | if (TYPE_STUB (target_type)) | |
1742 | p_bounds = value_cast (lookup_pointer_type | |
1743 | (ada_check_typedef (target_type)), | |
1744 | p_bounds); | |
1745 | } | |
1746 | else | |
1747 | error (_("Bad GNAT array descriptor")); | |
1748 | ||
1749 | return p_bounds; | |
1750 | } | |
14f9c5c9 AS |
1751 | else |
1752 | return NULL; | |
1753 | } | |
1754 | ||
4c4b4cd2 PH |
1755 | /* If TYPE is the type of an array-descriptor (fat pointer), the bit |
1756 | position of the field containing the address of the bounds data. */ | |
1757 | ||
14f9c5c9 | 1758 | static int |
d2e4a39e | 1759 | fat_pntr_bounds_bitpos (struct type *type) |
14f9c5c9 AS |
1760 | { |
1761 | return TYPE_FIELD_BITPOS (desc_base_type (type), 1); | |
1762 | } | |
1763 | ||
1764 | /* If TYPE is the type of an array-descriptor (fat pointer), the bit | |
4c4b4cd2 PH |
1765 | size of the field containing the address of the bounds data. */ |
1766 | ||
14f9c5c9 | 1767 | static int |
d2e4a39e | 1768 | fat_pntr_bounds_bitsize (struct type *type) |
14f9c5c9 AS |
1769 | { |
1770 | type = desc_base_type (type); | |
1771 | ||
d2e4a39e | 1772 | if (TYPE_FIELD_BITSIZE (type, 1) > 0) |
14f9c5c9 AS |
1773 | return TYPE_FIELD_BITSIZE (type, 1); |
1774 | else | |
61ee279c | 1775 | return 8 * TYPE_LENGTH (ada_check_typedef (TYPE_FIELD_TYPE (type, 1))); |
14f9c5c9 AS |
1776 | } |
1777 | ||
4c4b4cd2 | 1778 | /* If TYPE is the type of an array descriptor (fat or thin pointer) or a |
556bdfd4 UW |
1779 | pointer to one, the type of its array data (a array-with-no-bounds type); |
1780 | otherwise, NULL. Use ada_type_of_array to get an array type with bounds | |
1781 | data. */ | |
4c4b4cd2 | 1782 | |
d2e4a39e | 1783 | static struct type * |
556bdfd4 | 1784 | desc_data_target_type (struct type *type) |
14f9c5c9 AS |
1785 | { |
1786 | type = desc_base_type (type); | |
1787 | ||
4c4b4cd2 | 1788 | /* NOTE: The following is bogus; see comment in desc_bounds. */ |
14f9c5c9 | 1789 | if (is_thin_pntr (type)) |
556bdfd4 | 1790 | return desc_base_type (TYPE_FIELD_TYPE (thin_descriptor_type (type), 1)); |
14f9c5c9 | 1791 | else if (is_thick_pntr (type)) |
556bdfd4 UW |
1792 | { |
1793 | struct type *data_type = lookup_struct_elt_type (type, "P_ARRAY", 1); | |
1794 | ||
1795 | if (data_type | |
1796 | && TYPE_CODE (ada_check_typedef (data_type)) == TYPE_CODE_PTR) | |
05e522ef | 1797 | return ada_check_typedef (TYPE_TARGET_TYPE (data_type)); |
556bdfd4 UW |
1798 | } |
1799 | ||
1800 | return NULL; | |
14f9c5c9 AS |
1801 | } |
1802 | ||
1803 | /* If ARR is an array descriptor (fat or thin pointer), a pointer to | |
1804 | its array data. */ | |
4c4b4cd2 | 1805 | |
d2e4a39e AS |
1806 | static struct value * |
1807 | desc_data (struct value *arr) | |
14f9c5c9 | 1808 | { |
df407dfe | 1809 | struct type *type = value_type (arr); |
5b4ee69b | 1810 | |
14f9c5c9 AS |
1811 | if (is_thin_pntr (type)) |
1812 | return thin_data_pntr (arr); | |
1813 | else if (is_thick_pntr (type)) | |
d2e4a39e | 1814 | return value_struct_elt (&arr, NULL, "P_ARRAY", NULL, |
323e0a4a | 1815 | _("Bad GNAT array descriptor")); |
14f9c5c9 AS |
1816 | else |
1817 | return NULL; | |
1818 | } | |
1819 | ||
1820 | ||
1821 | /* If TYPE is the type of an array-descriptor (fat pointer), the bit | |
4c4b4cd2 PH |
1822 | position of the field containing the address of the data. */ |
1823 | ||
14f9c5c9 | 1824 | static int |
d2e4a39e | 1825 | fat_pntr_data_bitpos (struct type *type) |
14f9c5c9 AS |
1826 | { |
1827 | return TYPE_FIELD_BITPOS (desc_base_type (type), 0); | |
1828 | } | |
1829 | ||
1830 | /* If TYPE is the type of an array-descriptor (fat pointer), the bit | |
4c4b4cd2 PH |
1831 | size of the field containing the address of the data. */ |
1832 | ||
14f9c5c9 | 1833 | static int |
d2e4a39e | 1834 | fat_pntr_data_bitsize (struct type *type) |
14f9c5c9 AS |
1835 | { |
1836 | type = desc_base_type (type); | |
1837 | ||
1838 | if (TYPE_FIELD_BITSIZE (type, 0) > 0) | |
1839 | return TYPE_FIELD_BITSIZE (type, 0); | |
d2e4a39e | 1840 | else |
14f9c5c9 AS |
1841 | return TARGET_CHAR_BIT * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 0)); |
1842 | } | |
1843 | ||
4c4b4cd2 | 1844 | /* If BOUNDS is an array-bounds structure (or pointer to one), return |
14f9c5c9 | 1845 | the Ith lower bound stored in it, if WHICH is 0, and the Ith upper |
4c4b4cd2 PH |
1846 | bound, if WHICH is 1. The first bound is I=1. */ |
1847 | ||
d2e4a39e AS |
1848 | static struct value * |
1849 | desc_one_bound (struct value *bounds, int i, int which) | |
14f9c5c9 | 1850 | { |
d2e4a39e | 1851 | return value_struct_elt (&bounds, NULL, bound_name[2 * i + which - 2], NULL, |
323e0a4a | 1852 | _("Bad GNAT array descriptor bounds")); |
14f9c5c9 AS |
1853 | } |
1854 | ||
1855 | /* If BOUNDS is an array-bounds structure type, return the bit position | |
1856 | of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper | |
4c4b4cd2 PH |
1857 | bound, if WHICH is 1. The first bound is I=1. */ |
1858 | ||
14f9c5c9 | 1859 | static int |
d2e4a39e | 1860 | desc_bound_bitpos (struct type *type, int i, int which) |
14f9c5c9 | 1861 | { |
d2e4a39e | 1862 | return TYPE_FIELD_BITPOS (desc_base_type (type), 2 * i + which - 2); |
14f9c5c9 AS |
1863 | } |
1864 | ||
1865 | /* If BOUNDS is an array-bounds structure type, return the bit field size | |
1866 | of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper | |
4c4b4cd2 PH |
1867 | bound, if WHICH is 1. The first bound is I=1. */ |
1868 | ||
76a01679 | 1869 | static int |
d2e4a39e | 1870 | desc_bound_bitsize (struct type *type, int i, int which) |
14f9c5c9 AS |
1871 | { |
1872 | type = desc_base_type (type); | |
1873 | ||
d2e4a39e AS |
1874 | if (TYPE_FIELD_BITSIZE (type, 2 * i + which - 2) > 0) |
1875 | return TYPE_FIELD_BITSIZE (type, 2 * i + which - 2); | |
1876 | else | |
1877 | return 8 * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 2 * i + which - 2)); | |
14f9c5c9 AS |
1878 | } |
1879 | ||
1880 | /* If TYPE is the type of an array-bounds structure, the type of its | |
4c4b4cd2 PH |
1881 | Ith bound (numbering from 1). Otherwise, NULL. */ |
1882 | ||
d2e4a39e AS |
1883 | static struct type * |
1884 | desc_index_type (struct type *type, int i) | |
14f9c5c9 AS |
1885 | { |
1886 | type = desc_base_type (type); | |
1887 | ||
1888 | if (TYPE_CODE (type) == TYPE_CODE_STRUCT) | |
d2e4a39e AS |
1889 | return lookup_struct_elt_type (type, bound_name[2 * i - 2], 1); |
1890 | else | |
14f9c5c9 AS |
1891 | return NULL; |
1892 | } | |
1893 | ||
4c4b4cd2 PH |
1894 | /* The number of index positions in the array-bounds type TYPE. |
1895 | Return 0 if TYPE is NULL. */ | |
1896 | ||
14f9c5c9 | 1897 | static int |
d2e4a39e | 1898 | desc_arity (struct type *type) |
14f9c5c9 AS |
1899 | { |
1900 | type = desc_base_type (type); | |
1901 | ||
1902 | if (type != NULL) | |
1903 | return TYPE_NFIELDS (type) / 2; | |
1904 | return 0; | |
1905 | } | |
1906 | ||
4c4b4cd2 PH |
1907 | /* Non-zero iff TYPE is a simple array type (not a pointer to one) or |
1908 | an array descriptor type (representing an unconstrained array | |
1909 | type). */ | |
1910 | ||
76a01679 JB |
1911 | static int |
1912 | ada_is_direct_array_type (struct type *type) | |
4c4b4cd2 PH |
1913 | { |
1914 | if (type == NULL) | |
1915 | return 0; | |
61ee279c | 1916 | type = ada_check_typedef (type); |
4c4b4cd2 | 1917 | return (TYPE_CODE (type) == TYPE_CODE_ARRAY |
76a01679 | 1918 | || ada_is_array_descriptor_type (type)); |
4c4b4cd2 PH |
1919 | } |
1920 | ||
52ce6436 | 1921 | /* Non-zero iff TYPE represents any kind of array in Ada, or a pointer |
0963b4bd | 1922 | * to one. */ |
52ce6436 | 1923 | |
2c0b251b | 1924 | static int |
52ce6436 PH |
1925 | ada_is_array_type (struct type *type) |
1926 | { | |
1927 | while (type != NULL | |
1928 | && (TYPE_CODE (type) == TYPE_CODE_PTR | |
1929 | || TYPE_CODE (type) == TYPE_CODE_REF)) | |
1930 | type = TYPE_TARGET_TYPE (type); | |
1931 | return ada_is_direct_array_type (type); | |
1932 | } | |
1933 | ||
4c4b4cd2 | 1934 | /* Non-zero iff TYPE is a simple array type or pointer to one. */ |
14f9c5c9 | 1935 | |
14f9c5c9 | 1936 | int |
4c4b4cd2 | 1937 | ada_is_simple_array_type (struct type *type) |
14f9c5c9 AS |
1938 | { |
1939 | if (type == NULL) | |
1940 | return 0; | |
61ee279c | 1941 | type = ada_check_typedef (type); |
14f9c5c9 | 1942 | return (TYPE_CODE (type) == TYPE_CODE_ARRAY |
4c4b4cd2 | 1943 | || (TYPE_CODE (type) == TYPE_CODE_PTR |
b0dd7688 JB |
1944 | && TYPE_CODE (ada_check_typedef (TYPE_TARGET_TYPE (type))) |
1945 | == TYPE_CODE_ARRAY)); | |
14f9c5c9 AS |
1946 | } |
1947 | ||
4c4b4cd2 PH |
1948 | /* Non-zero iff TYPE belongs to a GNAT array descriptor. */ |
1949 | ||
14f9c5c9 | 1950 | int |
4c4b4cd2 | 1951 | ada_is_array_descriptor_type (struct type *type) |
14f9c5c9 | 1952 | { |
556bdfd4 | 1953 | struct type *data_type = desc_data_target_type (type); |
14f9c5c9 AS |
1954 | |
1955 | if (type == NULL) | |
1956 | return 0; | |
61ee279c | 1957 | type = ada_check_typedef (type); |
556bdfd4 UW |
1958 | return (data_type != NULL |
1959 | && TYPE_CODE (data_type) == TYPE_CODE_ARRAY | |
1960 | && desc_arity (desc_bounds_type (type)) > 0); | |
14f9c5c9 AS |
1961 | } |
1962 | ||
1963 | /* Non-zero iff type is a partially mal-formed GNAT array | |
4c4b4cd2 | 1964 | descriptor. FIXME: This is to compensate for some problems with |
14f9c5c9 | 1965 | debugging output from GNAT. Re-examine periodically to see if it |
4c4b4cd2 PH |
1966 | is still needed. */ |
1967 | ||
14f9c5c9 | 1968 | int |
ebf56fd3 | 1969 | ada_is_bogus_array_descriptor (struct type *type) |
14f9c5c9 | 1970 | { |
d2e4a39e | 1971 | return |
14f9c5c9 AS |
1972 | type != NULL |
1973 | && TYPE_CODE (type) == TYPE_CODE_STRUCT | |
1974 | && (lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL | |
4c4b4cd2 PH |
1975 | || lookup_struct_elt_type (type, "P_ARRAY", 1) != NULL) |
1976 | && !ada_is_array_descriptor_type (type); | |
14f9c5c9 AS |
1977 | } |
1978 | ||
1979 | ||
4c4b4cd2 | 1980 | /* If ARR has a record type in the form of a standard GNAT array descriptor, |
14f9c5c9 | 1981 | (fat pointer) returns the type of the array data described---specifically, |
4c4b4cd2 | 1982 | a pointer-to-array type. If BOUNDS is non-zero, the bounds data are filled |
14f9c5c9 | 1983 | in from the descriptor; otherwise, they are left unspecified. If |
4c4b4cd2 PH |
1984 | the ARR denotes a null array descriptor and BOUNDS is non-zero, |
1985 | returns NULL. The result is simply the type of ARR if ARR is not | |
14f9c5c9 | 1986 | a descriptor. */ |
d2e4a39e AS |
1987 | struct type * |
1988 | ada_type_of_array (struct value *arr, int bounds) | |
14f9c5c9 | 1989 | { |
ad82864c JB |
1990 | if (ada_is_constrained_packed_array_type (value_type (arr))) |
1991 | return decode_constrained_packed_array_type (value_type (arr)); | |
14f9c5c9 | 1992 | |
df407dfe AC |
1993 | if (!ada_is_array_descriptor_type (value_type (arr))) |
1994 | return value_type (arr); | |
d2e4a39e AS |
1995 | |
1996 | if (!bounds) | |
ad82864c JB |
1997 | { |
1998 | struct type *array_type = | |
1999 | ada_check_typedef (desc_data_target_type (value_type (arr))); | |
2000 | ||
2001 | if (ada_is_unconstrained_packed_array_type (value_type (arr))) | |
2002 | TYPE_FIELD_BITSIZE (array_type, 0) = | |
2003 | decode_packed_array_bitsize (value_type (arr)); | |
2004 | ||
2005 | return array_type; | |
2006 | } | |
14f9c5c9 AS |
2007 | else |
2008 | { | |
d2e4a39e | 2009 | struct type *elt_type; |
14f9c5c9 | 2010 | int arity; |
d2e4a39e | 2011 | struct value *descriptor; |
14f9c5c9 | 2012 | |
df407dfe AC |
2013 | elt_type = ada_array_element_type (value_type (arr), -1); |
2014 | arity = ada_array_arity (value_type (arr)); | |
14f9c5c9 | 2015 | |
d2e4a39e | 2016 | if (elt_type == NULL || arity == 0) |
df407dfe | 2017 | return ada_check_typedef (value_type (arr)); |
14f9c5c9 AS |
2018 | |
2019 | descriptor = desc_bounds (arr); | |
d2e4a39e | 2020 | if (value_as_long (descriptor) == 0) |
4c4b4cd2 | 2021 | return NULL; |
d2e4a39e | 2022 | while (arity > 0) |
4c4b4cd2 | 2023 | { |
e9bb382b UW |
2024 | struct type *range_type = alloc_type_copy (value_type (arr)); |
2025 | struct type *array_type = alloc_type_copy (value_type (arr)); | |
4c4b4cd2 PH |
2026 | struct value *low = desc_one_bound (descriptor, arity, 0); |
2027 | struct value *high = desc_one_bound (descriptor, arity, 1); | |
4c4b4cd2 | 2028 | |
5b4ee69b | 2029 | arity -= 1; |
0c9c3474 SA |
2030 | create_static_range_type (range_type, value_type (low), |
2031 | longest_to_int (value_as_long (low)), | |
2032 | longest_to_int (value_as_long (high))); | |
4c4b4cd2 | 2033 | elt_type = create_array_type (array_type, elt_type, range_type); |
ad82864c JB |
2034 | |
2035 | if (ada_is_unconstrained_packed_array_type (value_type (arr))) | |
e67ad678 JB |
2036 | { |
2037 | /* We need to store the element packed bitsize, as well as | |
2038 | recompute the array size, because it was previously | |
2039 | computed based on the unpacked element size. */ | |
2040 | LONGEST lo = value_as_long (low); | |
2041 | LONGEST hi = value_as_long (high); | |
2042 | ||
2043 | TYPE_FIELD_BITSIZE (elt_type, 0) = | |
2044 | decode_packed_array_bitsize (value_type (arr)); | |
2045 | /* If the array has no element, then the size is already | |
2046 | zero, and does not need to be recomputed. */ | |
2047 | if (lo < hi) | |
2048 | { | |
2049 | int array_bitsize = | |
2050 | (hi - lo + 1) * TYPE_FIELD_BITSIZE (elt_type, 0); | |
2051 | ||
2052 | TYPE_LENGTH (array_type) = (array_bitsize + 7) / 8; | |
2053 | } | |
2054 | } | |
4c4b4cd2 | 2055 | } |
14f9c5c9 AS |
2056 | |
2057 | return lookup_pointer_type (elt_type); | |
2058 | } | |
2059 | } | |
2060 | ||
2061 | /* If ARR does not represent an array, returns ARR unchanged. | |
4c4b4cd2 PH |
2062 | Otherwise, returns either a standard GDB array with bounds set |
2063 | appropriately or, if ARR is a non-null fat pointer, a pointer to a standard | |
2064 | GDB array. Returns NULL if ARR is a null fat pointer. */ | |
2065 | ||
d2e4a39e AS |
2066 | struct value * |
2067 | ada_coerce_to_simple_array_ptr (struct value *arr) | |
14f9c5c9 | 2068 | { |
df407dfe | 2069 | if (ada_is_array_descriptor_type (value_type (arr))) |
14f9c5c9 | 2070 | { |
d2e4a39e | 2071 | struct type *arrType = ada_type_of_array (arr, 1); |
5b4ee69b | 2072 | |
14f9c5c9 | 2073 | if (arrType == NULL) |
4c4b4cd2 | 2074 | return NULL; |
14f9c5c9 AS |
2075 | return value_cast (arrType, value_copy (desc_data (arr))); |
2076 | } | |
ad82864c JB |
2077 | else if (ada_is_constrained_packed_array_type (value_type (arr))) |
2078 | return decode_constrained_packed_array (arr); | |
14f9c5c9 AS |
2079 | else |
2080 | return arr; | |
2081 | } | |
2082 | ||
2083 | /* If ARR does not represent an array, returns ARR unchanged. | |
2084 | Otherwise, returns a standard GDB array describing ARR (which may | |
4c4b4cd2 PH |
2085 | be ARR itself if it already is in the proper form). */ |
2086 | ||
720d1a40 | 2087 | struct value * |
d2e4a39e | 2088 | ada_coerce_to_simple_array (struct value *arr) |
14f9c5c9 | 2089 | { |
df407dfe | 2090 | if (ada_is_array_descriptor_type (value_type (arr))) |
14f9c5c9 | 2091 | { |
d2e4a39e | 2092 | struct value *arrVal = ada_coerce_to_simple_array_ptr (arr); |
5b4ee69b | 2093 | |
14f9c5c9 | 2094 | if (arrVal == NULL) |
323e0a4a | 2095 | error (_("Bounds unavailable for null array pointer.")); |
c1b5a1a6 | 2096 | ada_ensure_varsize_limit (TYPE_TARGET_TYPE (value_type (arrVal))); |
14f9c5c9 AS |
2097 | return value_ind (arrVal); |
2098 | } | |
ad82864c JB |
2099 | else if (ada_is_constrained_packed_array_type (value_type (arr))) |
2100 | return decode_constrained_packed_array (arr); | |
d2e4a39e | 2101 | else |
14f9c5c9 AS |
2102 | return arr; |
2103 | } | |
2104 | ||
2105 | /* If TYPE represents a GNAT array type, return it translated to an | |
2106 | ordinary GDB array type (possibly with BITSIZE fields indicating | |
4c4b4cd2 PH |
2107 | packing). For other types, is the identity. */ |
2108 | ||
d2e4a39e AS |
2109 | struct type * |
2110 | ada_coerce_to_simple_array_type (struct type *type) | |
14f9c5c9 | 2111 | { |
ad82864c JB |
2112 | if (ada_is_constrained_packed_array_type (type)) |
2113 | return decode_constrained_packed_array_type (type); | |
17280b9f UW |
2114 | |
2115 | if (ada_is_array_descriptor_type (type)) | |
556bdfd4 | 2116 | return ada_check_typedef (desc_data_target_type (type)); |
17280b9f UW |
2117 | |
2118 | return type; | |
14f9c5c9 AS |
2119 | } |
2120 | ||
4c4b4cd2 PH |
2121 | /* Non-zero iff TYPE represents a standard GNAT packed-array type. */ |
2122 | ||
ad82864c JB |
2123 | static int |
2124 | ada_is_packed_array_type (struct type *type) | |
14f9c5c9 AS |
2125 | { |
2126 | if (type == NULL) | |
2127 | return 0; | |
4c4b4cd2 | 2128 | type = desc_base_type (type); |
61ee279c | 2129 | type = ada_check_typedef (type); |
d2e4a39e | 2130 | return |
14f9c5c9 AS |
2131 | ada_type_name (type) != NULL |
2132 | && strstr (ada_type_name (type), "___XP") != NULL; | |
2133 | } | |
2134 | ||
ad82864c JB |
2135 | /* Non-zero iff TYPE represents a standard GNAT constrained |
2136 | packed-array type. */ | |
2137 | ||
2138 | int | |
2139 | ada_is_constrained_packed_array_type (struct type *type) | |
2140 | { | |
2141 | return ada_is_packed_array_type (type) | |
2142 | && !ada_is_array_descriptor_type (type); | |
2143 | } | |
2144 | ||
2145 | /* Non-zero iff TYPE represents an array descriptor for a | |
2146 | unconstrained packed-array type. */ | |
2147 | ||
2148 | static int | |
2149 | ada_is_unconstrained_packed_array_type (struct type *type) | |
2150 | { | |
2151 | return ada_is_packed_array_type (type) | |
2152 | && ada_is_array_descriptor_type (type); | |
2153 | } | |
2154 | ||
2155 | /* Given that TYPE encodes a packed array type (constrained or unconstrained), | |
2156 | return the size of its elements in bits. */ | |
2157 | ||
2158 | static long | |
2159 | decode_packed_array_bitsize (struct type *type) | |
2160 | { | |
0d5cff50 DE |
2161 | const char *raw_name; |
2162 | const char *tail; | |
ad82864c JB |
2163 | long bits; |
2164 | ||
720d1a40 JB |
2165 | /* Access to arrays implemented as fat pointers are encoded as a typedef |
2166 | of the fat pointer type. We need the name of the fat pointer type | |
2167 | to do the decoding, so strip the typedef layer. */ | |
2168 | if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF) | |
2169 | type = ada_typedef_target_type (type); | |
2170 | ||
2171 | raw_name = ada_type_name (ada_check_typedef (type)); | |
ad82864c JB |
2172 | if (!raw_name) |
2173 | raw_name = ada_type_name (desc_base_type (type)); | |
2174 | ||
2175 | if (!raw_name) | |
2176 | return 0; | |
2177 | ||
2178 | tail = strstr (raw_name, "___XP"); | |
720d1a40 | 2179 | gdb_assert (tail != NULL); |
ad82864c JB |
2180 | |
2181 | if (sscanf (tail + sizeof ("___XP") - 1, "%ld", &bits) != 1) | |
2182 | { | |
2183 | lim_warning | |
2184 | (_("could not understand bit size information on packed array")); | |
2185 | return 0; | |
2186 | } | |
2187 | ||
2188 | return bits; | |
2189 | } | |
2190 | ||
14f9c5c9 AS |
2191 | /* Given that TYPE is a standard GDB array type with all bounds filled |
2192 | in, and that the element size of its ultimate scalar constituents | |
2193 | (that is, either its elements, or, if it is an array of arrays, its | |
2194 | elements' elements, etc.) is *ELT_BITS, return an identical type, | |
2195 | but with the bit sizes of its elements (and those of any | |
2196 | constituent arrays) recorded in the BITSIZE components of its | |
4c4b4cd2 | 2197 | TYPE_FIELD_BITSIZE values, and with *ELT_BITS set to its total size |
4a46959e JB |
2198 | in bits. |
2199 | ||
2200 | Note that, for arrays whose index type has an XA encoding where | |
2201 | a bound references a record discriminant, getting that discriminant, | |
2202 | and therefore the actual value of that bound, is not possible | |
2203 | because none of the given parameters gives us access to the record. | |
2204 | This function assumes that it is OK in the context where it is being | |
2205 | used to return an array whose bounds are still dynamic and where | |
2206 | the length is arbitrary. */ | |
4c4b4cd2 | 2207 | |
d2e4a39e | 2208 | static struct type * |
ad82864c | 2209 | constrained_packed_array_type (struct type *type, long *elt_bits) |
14f9c5c9 | 2210 | { |
d2e4a39e AS |
2211 | struct type *new_elt_type; |
2212 | struct type *new_type; | |
99b1c762 JB |
2213 | struct type *index_type_desc; |
2214 | struct type *index_type; | |
14f9c5c9 AS |
2215 | LONGEST low_bound, high_bound; |
2216 | ||
61ee279c | 2217 | type = ada_check_typedef (type); |
14f9c5c9 AS |
2218 | if (TYPE_CODE (type) != TYPE_CODE_ARRAY) |
2219 | return type; | |
2220 | ||
99b1c762 JB |
2221 | index_type_desc = ada_find_parallel_type (type, "___XA"); |
2222 | if (index_type_desc) | |
2223 | index_type = to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, 0), | |
2224 | NULL); | |
2225 | else | |
2226 | index_type = TYPE_INDEX_TYPE (type); | |
2227 | ||
e9bb382b | 2228 | new_type = alloc_type_copy (type); |
ad82864c JB |
2229 | new_elt_type = |
2230 | constrained_packed_array_type (ada_check_typedef (TYPE_TARGET_TYPE (type)), | |
2231 | elt_bits); | |
99b1c762 | 2232 | create_array_type (new_type, new_elt_type, index_type); |
14f9c5c9 AS |
2233 | TYPE_FIELD_BITSIZE (new_type, 0) = *elt_bits; |
2234 | TYPE_NAME (new_type) = ada_type_name (type); | |
2235 | ||
4a46959e JB |
2236 | if ((TYPE_CODE (check_typedef (index_type)) == TYPE_CODE_RANGE |
2237 | && is_dynamic_type (check_typedef (index_type))) | |
2238 | || get_discrete_bounds (index_type, &low_bound, &high_bound) < 0) | |
14f9c5c9 AS |
2239 | low_bound = high_bound = 0; |
2240 | if (high_bound < low_bound) | |
2241 | *elt_bits = TYPE_LENGTH (new_type) = 0; | |
d2e4a39e | 2242 | else |
14f9c5c9 AS |
2243 | { |
2244 | *elt_bits *= (high_bound - low_bound + 1); | |
d2e4a39e | 2245 | TYPE_LENGTH (new_type) = |
4c4b4cd2 | 2246 | (*elt_bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT; |
14f9c5c9 AS |
2247 | } |
2248 | ||
876cecd0 | 2249 | TYPE_FIXED_INSTANCE (new_type) = 1; |
14f9c5c9 AS |
2250 | return new_type; |
2251 | } | |
2252 | ||
ad82864c JB |
2253 | /* The array type encoded by TYPE, where |
2254 | ada_is_constrained_packed_array_type (TYPE). */ | |
4c4b4cd2 | 2255 | |
d2e4a39e | 2256 | static struct type * |
ad82864c | 2257 | decode_constrained_packed_array_type (struct type *type) |
d2e4a39e | 2258 | { |
0d5cff50 | 2259 | const char *raw_name = ada_type_name (ada_check_typedef (type)); |
727e3d2e | 2260 | char *name; |
0d5cff50 | 2261 | const char *tail; |
d2e4a39e | 2262 | struct type *shadow_type; |
14f9c5c9 | 2263 | long bits; |
14f9c5c9 | 2264 | |
727e3d2e JB |
2265 | if (!raw_name) |
2266 | raw_name = ada_type_name (desc_base_type (type)); | |
2267 | ||
2268 | if (!raw_name) | |
2269 | return NULL; | |
2270 | ||
2271 | name = (char *) alloca (strlen (raw_name) + 1); | |
2272 | tail = strstr (raw_name, "___XP"); | |
4c4b4cd2 PH |
2273 | type = desc_base_type (type); |
2274 | ||
14f9c5c9 AS |
2275 | memcpy (name, raw_name, tail - raw_name); |
2276 | name[tail - raw_name] = '\000'; | |
2277 | ||
b4ba55a1 JB |
2278 | shadow_type = ada_find_parallel_type_with_name (type, name); |
2279 | ||
2280 | if (shadow_type == NULL) | |
14f9c5c9 | 2281 | { |
323e0a4a | 2282 | lim_warning (_("could not find bounds information on packed array")); |
14f9c5c9 AS |
2283 | return NULL; |
2284 | } | |
f168693b | 2285 | shadow_type = check_typedef (shadow_type); |
14f9c5c9 AS |
2286 | |
2287 | if (TYPE_CODE (shadow_type) != TYPE_CODE_ARRAY) | |
2288 | { | |
0963b4bd MS |
2289 | lim_warning (_("could not understand bounds " |
2290 | "information on packed array")); | |
14f9c5c9 AS |
2291 | return NULL; |
2292 | } | |
d2e4a39e | 2293 | |
ad82864c JB |
2294 | bits = decode_packed_array_bitsize (type); |
2295 | return constrained_packed_array_type (shadow_type, &bits); | |
14f9c5c9 AS |
2296 | } |
2297 | ||
ad82864c JB |
2298 | /* Given that ARR is a struct value *indicating a GNAT constrained packed |
2299 | array, returns a simple array that denotes that array. Its type is a | |
14f9c5c9 AS |
2300 | standard GDB array type except that the BITSIZEs of the array |
2301 | target types are set to the number of bits in each element, and the | |
4c4b4cd2 | 2302 | type length is set appropriately. */ |
14f9c5c9 | 2303 | |
d2e4a39e | 2304 | static struct value * |
ad82864c | 2305 | decode_constrained_packed_array (struct value *arr) |
14f9c5c9 | 2306 | { |
4c4b4cd2 | 2307 | struct type *type; |
14f9c5c9 | 2308 | |
11aa919a PMR |
2309 | /* If our value is a pointer, then dereference it. Likewise if |
2310 | the value is a reference. Make sure that this operation does not | |
2311 | cause the target type to be fixed, as this would indirectly cause | |
2312 | this array to be decoded. The rest of the routine assumes that | |
2313 | the array hasn't been decoded yet, so we use the basic "coerce_ref" | |
2314 | and "value_ind" routines to perform the dereferencing, as opposed | |
2315 | to using "ada_coerce_ref" or "ada_value_ind". */ | |
2316 | arr = coerce_ref (arr); | |
828292f2 | 2317 | if (TYPE_CODE (ada_check_typedef (value_type (arr))) == TYPE_CODE_PTR) |
284614f0 | 2318 | arr = value_ind (arr); |
4c4b4cd2 | 2319 | |
ad82864c | 2320 | type = decode_constrained_packed_array_type (value_type (arr)); |
14f9c5c9 AS |
2321 | if (type == NULL) |
2322 | { | |
323e0a4a | 2323 | error (_("can't unpack array")); |
14f9c5c9 AS |
2324 | return NULL; |
2325 | } | |
61ee279c | 2326 | |
50810684 | 2327 | if (gdbarch_bits_big_endian (get_type_arch (value_type (arr))) |
32c9a795 | 2328 | && ada_is_modular_type (value_type (arr))) |
61ee279c PH |
2329 | { |
2330 | /* This is a (right-justified) modular type representing a packed | |
2331 | array with no wrapper. In order to interpret the value through | |
2332 | the (left-justified) packed array type we just built, we must | |
2333 | first left-justify it. */ | |
2334 | int bit_size, bit_pos; | |
2335 | ULONGEST mod; | |
2336 | ||
df407dfe | 2337 | mod = ada_modulus (value_type (arr)) - 1; |
61ee279c PH |
2338 | bit_size = 0; |
2339 | while (mod > 0) | |
2340 | { | |
2341 | bit_size += 1; | |
2342 | mod >>= 1; | |
2343 | } | |
df407dfe | 2344 | bit_pos = HOST_CHAR_BIT * TYPE_LENGTH (value_type (arr)) - bit_size; |
61ee279c PH |
2345 | arr = ada_value_primitive_packed_val (arr, NULL, |
2346 | bit_pos / HOST_CHAR_BIT, | |
2347 | bit_pos % HOST_CHAR_BIT, | |
2348 | bit_size, | |
2349 | type); | |
2350 | } | |
2351 | ||
4c4b4cd2 | 2352 | return coerce_unspec_val_to_type (arr, type); |
14f9c5c9 AS |
2353 | } |
2354 | ||
2355 | ||
2356 | /* The value of the element of packed array ARR at the ARITY indices | |
4c4b4cd2 | 2357 | given in IND. ARR must be a simple array. */ |
14f9c5c9 | 2358 | |
d2e4a39e AS |
2359 | static struct value * |
2360 | value_subscript_packed (struct value *arr, int arity, struct value **ind) | |
14f9c5c9 AS |
2361 | { |
2362 | int i; | |
2363 | int bits, elt_off, bit_off; | |
2364 | long elt_total_bit_offset; | |
d2e4a39e AS |
2365 | struct type *elt_type; |
2366 | struct value *v; | |
14f9c5c9 AS |
2367 | |
2368 | bits = 0; | |
2369 | elt_total_bit_offset = 0; | |
df407dfe | 2370 | elt_type = ada_check_typedef (value_type (arr)); |
d2e4a39e | 2371 | for (i = 0; i < arity; i += 1) |
14f9c5c9 | 2372 | { |
d2e4a39e | 2373 | if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY |
4c4b4cd2 PH |
2374 | || TYPE_FIELD_BITSIZE (elt_type, 0) == 0) |
2375 | error | |
0963b4bd MS |
2376 | (_("attempt to do packed indexing of " |
2377 | "something other than a packed array")); | |
14f9c5c9 | 2378 | else |
4c4b4cd2 PH |
2379 | { |
2380 | struct type *range_type = TYPE_INDEX_TYPE (elt_type); | |
2381 | LONGEST lowerbound, upperbound; | |
2382 | LONGEST idx; | |
2383 | ||
2384 | if (get_discrete_bounds (range_type, &lowerbound, &upperbound) < 0) | |
2385 | { | |
323e0a4a | 2386 | lim_warning (_("don't know bounds of array")); |
4c4b4cd2 PH |
2387 | lowerbound = upperbound = 0; |
2388 | } | |
2389 | ||
3cb382c9 | 2390 | idx = pos_atr (ind[i]); |
4c4b4cd2 | 2391 | if (idx < lowerbound || idx > upperbound) |
0963b4bd MS |
2392 | lim_warning (_("packed array index %ld out of bounds"), |
2393 | (long) idx); | |
4c4b4cd2 PH |
2394 | bits = TYPE_FIELD_BITSIZE (elt_type, 0); |
2395 | elt_total_bit_offset += (idx - lowerbound) * bits; | |
61ee279c | 2396 | elt_type = ada_check_typedef (TYPE_TARGET_TYPE (elt_type)); |
4c4b4cd2 | 2397 | } |
14f9c5c9 AS |
2398 | } |
2399 | elt_off = elt_total_bit_offset / HOST_CHAR_BIT; | |
2400 | bit_off = elt_total_bit_offset % HOST_CHAR_BIT; | |
d2e4a39e AS |
2401 | |
2402 | v = ada_value_primitive_packed_val (arr, NULL, elt_off, bit_off, | |
4c4b4cd2 | 2403 | bits, elt_type); |
14f9c5c9 AS |
2404 | return v; |
2405 | } | |
2406 | ||
4c4b4cd2 | 2407 | /* Non-zero iff TYPE includes negative integer values. */ |
14f9c5c9 AS |
2408 | |
2409 | static int | |
d2e4a39e | 2410 | has_negatives (struct type *type) |
14f9c5c9 | 2411 | { |
d2e4a39e AS |
2412 | switch (TYPE_CODE (type)) |
2413 | { | |
2414 | default: | |
2415 | return 0; | |
2416 | case TYPE_CODE_INT: | |
2417 | return !TYPE_UNSIGNED (type); | |
2418 | case TYPE_CODE_RANGE: | |
2419 | return TYPE_LOW_BOUND (type) < 0; | |
2420 | } | |
14f9c5c9 | 2421 | } |
d2e4a39e | 2422 | |
f93fca70 | 2423 | /* With SRC being a buffer containing BIT_SIZE bits of data at BIT_OFFSET, |
5b639dea | 2424 | unpack that data into UNPACKED. UNPACKED_LEN is the size in bytes of |
f93fca70 | 2425 | the unpacked buffer. |
14f9c5c9 | 2426 | |
5b639dea JB |
2427 | The size of the unpacked buffer (UNPACKED_LEN) is expected to be large |
2428 | enough to contain at least BIT_OFFSET bits. If not, an error is raised. | |
2429 | ||
f93fca70 JB |
2430 | IS_BIG_ENDIAN is nonzero if the data is stored in big endian mode, |
2431 | zero otherwise. | |
14f9c5c9 | 2432 | |
f93fca70 | 2433 | IS_SIGNED_TYPE is nonzero if the data corresponds to a signed type. |
a1c95e6b | 2434 | |
f93fca70 JB |
2435 | IS_SCALAR is nonzero if the data corresponds to a signed type. */ |
2436 | ||
2437 | static void | |
2438 | ada_unpack_from_contents (const gdb_byte *src, int bit_offset, int bit_size, | |
2439 | gdb_byte *unpacked, int unpacked_len, | |
2440 | int is_big_endian, int is_signed_type, | |
2441 | int is_scalar) | |
2442 | { | |
a1c95e6b JB |
2443 | int src_len = (bit_size + bit_offset + HOST_CHAR_BIT - 1) / 8; |
2444 | int src_idx; /* Index into the source area */ | |
2445 | int src_bytes_left; /* Number of source bytes left to process. */ | |
2446 | int srcBitsLeft; /* Number of source bits left to move */ | |
2447 | int unusedLS; /* Number of bits in next significant | |
2448 | byte of source that are unused */ | |
2449 | ||
a1c95e6b JB |
2450 | int unpacked_idx; /* Index into the unpacked buffer */ |
2451 | int unpacked_bytes_left; /* Number of bytes left to set in unpacked. */ | |
2452 | ||
4c4b4cd2 | 2453 | unsigned long accum; /* Staging area for bits being transferred */ |
a1c95e6b | 2454 | int accumSize; /* Number of meaningful bits in accum */ |
14f9c5c9 | 2455 | unsigned char sign; |
a1c95e6b | 2456 | |
4c4b4cd2 PH |
2457 | /* Transmit bytes from least to most significant; delta is the direction |
2458 | the indices move. */ | |
f93fca70 | 2459 | int delta = is_big_endian ? -1 : 1; |
14f9c5c9 | 2460 | |
5b639dea JB |
2461 | /* Make sure that unpacked is large enough to receive the BIT_SIZE |
2462 | bits from SRC. .*/ | |
2463 | if ((bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT > unpacked_len) | |
2464 | error (_("Cannot unpack %d bits into buffer of %d bytes"), | |
2465 | bit_size, unpacked_len); | |
2466 | ||
14f9c5c9 | 2467 | srcBitsLeft = bit_size; |
086ca51f | 2468 | src_bytes_left = src_len; |
f93fca70 | 2469 | unpacked_bytes_left = unpacked_len; |
14f9c5c9 | 2470 | sign = 0; |
f93fca70 JB |
2471 | |
2472 | if (is_big_endian) | |
14f9c5c9 | 2473 | { |
086ca51f | 2474 | src_idx = src_len - 1; |
f93fca70 JB |
2475 | if (is_signed_type |
2476 | && ((src[0] << bit_offset) & (1 << (HOST_CHAR_BIT - 1)))) | |
4c4b4cd2 | 2477 | sign = ~0; |
d2e4a39e AS |
2478 | |
2479 | unusedLS = | |
4c4b4cd2 PH |
2480 | (HOST_CHAR_BIT - (bit_size + bit_offset) % HOST_CHAR_BIT) |
2481 | % HOST_CHAR_BIT; | |
14f9c5c9 | 2482 | |
f93fca70 JB |
2483 | if (is_scalar) |
2484 | { | |
2485 | accumSize = 0; | |
2486 | unpacked_idx = unpacked_len - 1; | |
2487 | } | |
2488 | else | |
2489 | { | |
4c4b4cd2 PH |
2490 | /* Non-scalar values must be aligned at a byte boundary... */ |
2491 | accumSize = | |
2492 | (HOST_CHAR_BIT - bit_size % HOST_CHAR_BIT) % HOST_CHAR_BIT; | |
2493 | /* ... And are placed at the beginning (most-significant) bytes | |
2494 | of the target. */ | |
086ca51f JB |
2495 | unpacked_idx = (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT - 1; |
2496 | unpacked_bytes_left = unpacked_idx + 1; | |
f93fca70 | 2497 | } |
14f9c5c9 | 2498 | } |
d2e4a39e | 2499 | else |
14f9c5c9 AS |
2500 | { |
2501 | int sign_bit_offset = (bit_size + bit_offset - 1) % 8; | |
2502 | ||
086ca51f | 2503 | src_idx = unpacked_idx = 0; |
14f9c5c9 AS |
2504 | unusedLS = bit_offset; |
2505 | accumSize = 0; | |
2506 | ||
f93fca70 | 2507 | if (is_signed_type && (src[src_len - 1] & (1 << sign_bit_offset))) |
4c4b4cd2 | 2508 | sign = ~0; |
14f9c5c9 | 2509 | } |
d2e4a39e | 2510 | |
14f9c5c9 | 2511 | accum = 0; |
086ca51f | 2512 | while (src_bytes_left > 0) |
14f9c5c9 AS |
2513 | { |
2514 | /* Mask for removing bits of the next source byte that are not | |
4c4b4cd2 | 2515 | part of the value. */ |
d2e4a39e | 2516 | unsigned int unusedMSMask = |
4c4b4cd2 PH |
2517 | (1 << (srcBitsLeft >= HOST_CHAR_BIT ? HOST_CHAR_BIT : srcBitsLeft)) - |
2518 | 1; | |
2519 | /* Sign-extend bits for this byte. */ | |
14f9c5c9 | 2520 | unsigned int signMask = sign & ~unusedMSMask; |
5b4ee69b | 2521 | |
d2e4a39e | 2522 | accum |= |
086ca51f | 2523 | (((src[src_idx] >> unusedLS) & unusedMSMask) | signMask) << accumSize; |
14f9c5c9 | 2524 | accumSize += HOST_CHAR_BIT - unusedLS; |
d2e4a39e | 2525 | if (accumSize >= HOST_CHAR_BIT) |
4c4b4cd2 | 2526 | { |
db297a65 | 2527 | unpacked[unpacked_idx] = accum & ~(~0UL << HOST_CHAR_BIT); |
4c4b4cd2 PH |
2528 | accumSize -= HOST_CHAR_BIT; |
2529 | accum >>= HOST_CHAR_BIT; | |
086ca51f JB |
2530 | unpacked_bytes_left -= 1; |
2531 | unpacked_idx += delta; | |
4c4b4cd2 | 2532 | } |
14f9c5c9 AS |
2533 | srcBitsLeft -= HOST_CHAR_BIT - unusedLS; |
2534 | unusedLS = 0; | |
086ca51f JB |
2535 | src_bytes_left -= 1; |
2536 | src_idx += delta; | |
14f9c5c9 | 2537 | } |
086ca51f | 2538 | while (unpacked_bytes_left > 0) |
14f9c5c9 AS |
2539 | { |
2540 | accum |= sign << accumSize; | |
db297a65 | 2541 | unpacked[unpacked_idx] = accum & ~(~0UL << HOST_CHAR_BIT); |
14f9c5c9 | 2542 | accumSize -= HOST_CHAR_BIT; |
9cd4d857 JB |
2543 | if (accumSize < 0) |
2544 | accumSize = 0; | |
14f9c5c9 | 2545 | accum >>= HOST_CHAR_BIT; |
086ca51f JB |
2546 | unpacked_bytes_left -= 1; |
2547 | unpacked_idx += delta; | |
14f9c5c9 | 2548 | } |
f93fca70 JB |
2549 | } |
2550 | ||
2551 | /* Create a new value of type TYPE from the contents of OBJ starting | |
2552 | at byte OFFSET, and bit offset BIT_OFFSET within that byte, | |
2553 | proceeding for BIT_SIZE bits. If OBJ is an lval in memory, then | |
2554 | assigning through the result will set the field fetched from. | |
2555 | VALADDR is ignored unless OBJ is NULL, in which case, | |
2556 | VALADDR+OFFSET must address the start of storage containing the | |
2557 | packed value. The value returned in this case is never an lval. | |
2558 | Assumes 0 <= BIT_OFFSET < HOST_CHAR_BIT. */ | |
2559 | ||
2560 | struct value * | |
2561 | ada_value_primitive_packed_val (struct value *obj, const gdb_byte *valaddr, | |
2562 | long offset, int bit_offset, int bit_size, | |
2563 | struct type *type) | |
2564 | { | |
2565 | struct value *v; | |
bfb1c796 | 2566 | const gdb_byte *src; /* First byte containing data to unpack */ |
f93fca70 | 2567 | gdb_byte *unpacked; |
220475ed | 2568 | const int is_scalar = is_scalar_type (type); |
d0a9e810 | 2569 | const int is_big_endian = gdbarch_bits_big_endian (get_type_arch (type)); |
d5722aa2 | 2570 | gdb::byte_vector staging; |
f93fca70 JB |
2571 | |
2572 | type = ada_check_typedef (type); | |
2573 | ||
d0a9e810 | 2574 | if (obj == NULL) |
bfb1c796 | 2575 | src = valaddr + offset; |
d0a9e810 | 2576 | else |
bfb1c796 | 2577 | src = value_contents (obj) + offset; |
d0a9e810 JB |
2578 | |
2579 | if (is_dynamic_type (type)) | |
2580 | { | |
2581 | /* The length of TYPE might by dynamic, so we need to resolve | |
2582 | TYPE in order to know its actual size, which we then use | |
2583 | to create the contents buffer of the value we return. | |
2584 | The difficulty is that the data containing our object is | |
2585 | packed, and therefore maybe not at a byte boundary. So, what | |
2586 | we do, is unpack the data into a byte-aligned buffer, and then | |
2587 | use that buffer as our object's value for resolving the type. */ | |
d5722aa2 PA |
2588 | int staging_len = (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT; |
2589 | staging.resize (staging_len); | |
d0a9e810 JB |
2590 | |
2591 | ada_unpack_from_contents (src, bit_offset, bit_size, | |
d5722aa2 | 2592 | staging.data (), staging.size (), |
d0a9e810 JB |
2593 | is_big_endian, has_negatives (type), |
2594 | is_scalar); | |
d5722aa2 | 2595 | type = resolve_dynamic_type (type, staging.data (), 0); |
0cafa88c JB |
2596 | if (TYPE_LENGTH (type) < (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT) |
2597 | { | |
2598 | /* This happens when the length of the object is dynamic, | |
2599 | and is actually smaller than the space reserved for it. | |
2600 | For instance, in an array of variant records, the bit_size | |
2601 | we're given is the array stride, which is constant and | |
2602 | normally equal to the maximum size of its element. | |
2603 | But, in reality, each element only actually spans a portion | |
2604 | of that stride. */ | |
2605 | bit_size = TYPE_LENGTH (type) * HOST_CHAR_BIT; | |
2606 | } | |
d0a9e810 JB |
2607 | } |
2608 | ||
f93fca70 JB |
2609 | if (obj == NULL) |
2610 | { | |
2611 | v = allocate_value (type); | |
bfb1c796 | 2612 | src = valaddr + offset; |
f93fca70 JB |
2613 | } |
2614 | else if (VALUE_LVAL (obj) == lval_memory && value_lazy (obj)) | |
2615 | { | |
0cafa88c | 2616 | int src_len = (bit_size + bit_offset + HOST_CHAR_BIT - 1) / 8; |
bfb1c796 | 2617 | gdb_byte *buf; |
0cafa88c | 2618 | |
f93fca70 | 2619 | v = value_at (type, value_address (obj) + offset); |
bfb1c796 PA |
2620 | buf = (gdb_byte *) alloca (src_len); |
2621 | read_memory (value_address (v), buf, src_len); | |
2622 | src = buf; | |
f93fca70 JB |
2623 | } |
2624 | else | |
2625 | { | |
2626 | v = allocate_value (type); | |
bfb1c796 | 2627 | src = value_contents (obj) + offset; |
f93fca70 JB |
2628 | } |
2629 | ||
2630 | if (obj != NULL) | |
2631 | { | |
2632 | long new_offset = offset; | |
2633 | ||
2634 | set_value_component_location (v, obj); | |
2635 | set_value_bitpos (v, bit_offset + value_bitpos (obj)); | |
2636 | set_value_bitsize (v, bit_size); | |
2637 | if (value_bitpos (v) >= HOST_CHAR_BIT) | |
2638 | { | |
2639 | ++new_offset; | |
2640 | set_value_bitpos (v, value_bitpos (v) - HOST_CHAR_BIT); | |
2641 | } | |
2642 | set_value_offset (v, new_offset); | |
2643 | ||
2644 | /* Also set the parent value. This is needed when trying to | |
2645 | assign a new value (in inferior memory). */ | |
2646 | set_value_parent (v, obj); | |
2647 | } | |
2648 | else | |
2649 | set_value_bitsize (v, bit_size); | |
bfb1c796 | 2650 | unpacked = value_contents_writeable (v); |
f93fca70 JB |
2651 | |
2652 | if (bit_size == 0) | |
2653 | { | |
2654 | memset (unpacked, 0, TYPE_LENGTH (type)); | |
2655 | return v; | |
2656 | } | |
2657 | ||
d5722aa2 | 2658 | if (staging.size () == TYPE_LENGTH (type)) |
f93fca70 | 2659 | { |
d0a9e810 JB |
2660 | /* Small short-cut: If we've unpacked the data into a buffer |
2661 | of the same size as TYPE's length, then we can reuse that, | |
2662 | instead of doing the unpacking again. */ | |
d5722aa2 | 2663 | memcpy (unpacked, staging.data (), staging.size ()); |
f93fca70 | 2664 | } |
d0a9e810 JB |
2665 | else |
2666 | ada_unpack_from_contents (src, bit_offset, bit_size, | |
2667 | unpacked, TYPE_LENGTH (type), | |
2668 | is_big_endian, has_negatives (type), is_scalar); | |
f93fca70 | 2669 | |
14f9c5c9 AS |
2670 | return v; |
2671 | } | |
d2e4a39e | 2672 | |
14f9c5c9 AS |
2673 | /* Move N bits from SOURCE, starting at bit offset SRC_OFFSET to |
2674 | TARGET, starting at bit offset TARG_OFFSET. SOURCE and TARGET must | |
4c4b4cd2 | 2675 | not overlap. */ |
14f9c5c9 | 2676 | static void |
fc1a4b47 | 2677 | move_bits (gdb_byte *target, int targ_offset, const gdb_byte *source, |
50810684 | 2678 | int src_offset, int n, int bits_big_endian_p) |
14f9c5c9 AS |
2679 | { |
2680 | unsigned int accum, mask; | |
2681 | int accum_bits, chunk_size; | |
2682 | ||
2683 | target += targ_offset / HOST_CHAR_BIT; | |
2684 | targ_offset %= HOST_CHAR_BIT; | |
2685 | source += src_offset / HOST_CHAR_BIT; | |
2686 | src_offset %= HOST_CHAR_BIT; | |
50810684 | 2687 | if (bits_big_endian_p) |
14f9c5c9 AS |
2688 | { |
2689 | accum = (unsigned char) *source; | |
2690 | source += 1; | |
2691 | accum_bits = HOST_CHAR_BIT - src_offset; | |
2692 | ||
d2e4a39e | 2693 | while (n > 0) |
4c4b4cd2 PH |
2694 | { |
2695 | int unused_right; | |
5b4ee69b | 2696 | |
4c4b4cd2 PH |
2697 | accum = (accum << HOST_CHAR_BIT) + (unsigned char) *source; |
2698 | accum_bits += HOST_CHAR_BIT; | |
2699 | source += 1; | |
2700 | chunk_size = HOST_CHAR_BIT - targ_offset; | |
2701 | if (chunk_size > n) | |
2702 | chunk_size = n; | |
2703 | unused_right = HOST_CHAR_BIT - (chunk_size + targ_offset); | |
2704 | mask = ((1 << chunk_size) - 1) << unused_right; | |
2705 | *target = | |
2706 | (*target & ~mask) | |
2707 | | ((accum >> (accum_bits - chunk_size - unused_right)) & mask); | |
2708 | n -= chunk_size; | |
2709 | accum_bits -= chunk_size; | |
2710 | target += 1; | |
2711 | targ_offset = 0; | |
2712 | } | |
14f9c5c9 AS |
2713 | } |
2714 | else | |
2715 | { | |
2716 | accum = (unsigned char) *source >> src_offset; | |
2717 | source += 1; | |
2718 | accum_bits = HOST_CHAR_BIT - src_offset; | |
2719 | ||
d2e4a39e | 2720 | while (n > 0) |
4c4b4cd2 PH |
2721 | { |
2722 | accum = accum + ((unsigned char) *source << accum_bits); | |
2723 | accum_bits += HOST_CHAR_BIT; | |
2724 | source += 1; | |
2725 | chunk_size = HOST_CHAR_BIT - targ_offset; | |
2726 | if (chunk_size > n) | |
2727 | chunk_size = n; | |
2728 | mask = ((1 << chunk_size) - 1) << targ_offset; | |
2729 | *target = (*target & ~mask) | ((accum << targ_offset) & mask); | |
2730 | n -= chunk_size; | |
2731 | accum_bits -= chunk_size; | |
2732 | accum >>= chunk_size; | |
2733 | target += 1; | |
2734 | targ_offset = 0; | |
2735 | } | |
14f9c5c9 AS |
2736 | } |
2737 | } | |
2738 | ||
14f9c5c9 AS |
2739 | /* Store the contents of FROMVAL into the location of TOVAL. |
2740 | Return a new value with the location of TOVAL and contents of | |
2741 | FROMVAL. Handles assignment into packed fields that have | |
4c4b4cd2 | 2742 | floating-point or non-scalar types. */ |
14f9c5c9 | 2743 | |
d2e4a39e AS |
2744 | static struct value * |
2745 | ada_value_assign (struct value *toval, struct value *fromval) | |
14f9c5c9 | 2746 | { |
df407dfe AC |
2747 | struct type *type = value_type (toval); |
2748 | int bits = value_bitsize (toval); | |
14f9c5c9 | 2749 | |
52ce6436 PH |
2750 | toval = ada_coerce_ref (toval); |
2751 | fromval = ada_coerce_ref (fromval); | |
2752 | ||
2753 | if (ada_is_direct_array_type (value_type (toval))) | |
2754 | toval = ada_coerce_to_simple_array (toval); | |
2755 | if (ada_is_direct_array_type (value_type (fromval))) | |
2756 | fromval = ada_coerce_to_simple_array (fromval); | |
2757 | ||
88e3b34b | 2758 | if (!deprecated_value_modifiable (toval)) |
323e0a4a | 2759 | error (_("Left operand of assignment is not a modifiable lvalue.")); |
14f9c5c9 | 2760 | |
d2e4a39e | 2761 | if (VALUE_LVAL (toval) == lval_memory |
14f9c5c9 | 2762 | && bits > 0 |
d2e4a39e | 2763 | && (TYPE_CODE (type) == TYPE_CODE_FLT |
4c4b4cd2 | 2764 | || TYPE_CODE (type) == TYPE_CODE_STRUCT)) |
14f9c5c9 | 2765 | { |
df407dfe AC |
2766 | int len = (value_bitpos (toval) |
2767 | + bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT; | |
aced2898 | 2768 | int from_size; |
224c3ddb | 2769 | gdb_byte *buffer = (gdb_byte *) alloca (len); |
d2e4a39e | 2770 | struct value *val; |
42ae5230 | 2771 | CORE_ADDR to_addr = value_address (toval); |
14f9c5c9 AS |
2772 | |
2773 | if (TYPE_CODE (type) == TYPE_CODE_FLT) | |
4c4b4cd2 | 2774 | fromval = value_cast (type, fromval); |
14f9c5c9 | 2775 | |
52ce6436 | 2776 | read_memory (to_addr, buffer, len); |
aced2898 PH |
2777 | from_size = value_bitsize (fromval); |
2778 | if (from_size == 0) | |
2779 | from_size = TYPE_LENGTH (value_type (fromval)) * TARGET_CHAR_BIT; | |
50810684 | 2780 | if (gdbarch_bits_big_endian (get_type_arch (type))) |
df407dfe | 2781 | move_bits (buffer, value_bitpos (toval), |
50810684 | 2782 | value_contents (fromval), from_size - bits, bits, 1); |
14f9c5c9 | 2783 | else |
50810684 UW |
2784 | move_bits (buffer, value_bitpos (toval), |
2785 | value_contents (fromval), 0, bits, 0); | |
972daa01 | 2786 | write_memory_with_notification (to_addr, buffer, len); |
8cebebb9 | 2787 | |
14f9c5c9 | 2788 | val = value_copy (toval); |
0fd88904 | 2789 | memcpy (value_contents_raw (val), value_contents (fromval), |
4c4b4cd2 | 2790 | TYPE_LENGTH (type)); |
04624583 | 2791 | deprecated_set_value_type (val, type); |
d2e4a39e | 2792 | |
14f9c5c9 AS |
2793 | return val; |
2794 | } | |
2795 | ||
2796 | return value_assign (toval, fromval); | |
2797 | } | |
2798 | ||
2799 | ||
7c512744 JB |
2800 | /* Given that COMPONENT is a memory lvalue that is part of the lvalue |
2801 | CONTAINER, assign the contents of VAL to COMPONENTS's place in | |
2802 | CONTAINER. Modifies the VALUE_CONTENTS of CONTAINER only, not | |
2803 | COMPONENT, and not the inferior's memory. The current contents | |
2804 | of COMPONENT are ignored. | |
2805 | ||
2806 | Although not part of the initial design, this function also works | |
2807 | when CONTAINER and COMPONENT are not_lval's: it works as if CONTAINER | |
2808 | had a null address, and COMPONENT had an address which is equal to | |
2809 | its offset inside CONTAINER. */ | |
2810 | ||
52ce6436 PH |
2811 | static void |
2812 | value_assign_to_component (struct value *container, struct value *component, | |
2813 | struct value *val) | |
2814 | { | |
2815 | LONGEST offset_in_container = | |
42ae5230 | 2816 | (LONGEST) (value_address (component) - value_address (container)); |
7c512744 | 2817 | int bit_offset_in_container = |
52ce6436 PH |
2818 | value_bitpos (component) - value_bitpos (container); |
2819 | int bits; | |
7c512744 | 2820 | |
52ce6436 PH |
2821 | val = value_cast (value_type (component), val); |
2822 | ||
2823 | if (value_bitsize (component) == 0) | |
2824 | bits = TARGET_CHAR_BIT * TYPE_LENGTH (value_type (component)); | |
2825 | else | |
2826 | bits = value_bitsize (component); | |
2827 | ||
50810684 | 2828 | if (gdbarch_bits_big_endian (get_type_arch (value_type (container)))) |
7c512744 | 2829 | move_bits (value_contents_writeable (container) + offset_in_container, |
52ce6436 PH |
2830 | value_bitpos (container) + bit_offset_in_container, |
2831 | value_contents (val), | |
2832 | TYPE_LENGTH (value_type (component)) * TARGET_CHAR_BIT - bits, | |
50810684 | 2833 | bits, 1); |
52ce6436 | 2834 | else |
7c512744 | 2835 | move_bits (value_contents_writeable (container) + offset_in_container, |
52ce6436 | 2836 | value_bitpos (container) + bit_offset_in_container, |
50810684 | 2837 | value_contents (val), 0, bits, 0); |
7c512744 JB |
2838 | } |
2839 | ||
4c4b4cd2 PH |
2840 | /* The value of the element of array ARR at the ARITY indices given in IND. |
2841 | ARR may be either a simple array, GNAT array descriptor, or pointer | |
14f9c5c9 AS |
2842 | thereto. */ |
2843 | ||
d2e4a39e AS |
2844 | struct value * |
2845 | ada_value_subscript (struct value *arr, int arity, struct value **ind) | |
14f9c5c9 AS |
2846 | { |
2847 | int k; | |
d2e4a39e AS |
2848 | struct value *elt; |
2849 | struct type *elt_type; | |
14f9c5c9 AS |
2850 | |
2851 | elt = ada_coerce_to_simple_array (arr); | |
2852 | ||
df407dfe | 2853 | elt_type = ada_check_typedef (value_type (elt)); |
d2e4a39e | 2854 | if (TYPE_CODE (elt_type) == TYPE_CODE_ARRAY |
14f9c5c9 AS |
2855 | && TYPE_FIELD_BITSIZE (elt_type, 0) > 0) |
2856 | return value_subscript_packed (elt, arity, ind); | |
2857 | ||
2858 | for (k = 0; k < arity; k += 1) | |
2859 | { | |
2860 | if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY) | |
323e0a4a | 2861 | error (_("too many subscripts (%d expected)"), k); |
2497b498 | 2862 | elt = value_subscript (elt, pos_atr (ind[k])); |
14f9c5c9 AS |
2863 | } |
2864 | return elt; | |
2865 | } | |
2866 | ||
deede10c JB |
2867 | /* Assuming ARR is a pointer to a GDB array, the value of the element |
2868 | of *ARR at the ARITY indices given in IND. | |
919e6dbe PMR |
2869 | Does not read the entire array into memory. |
2870 | ||
2871 | Note: Unlike what one would expect, this function is used instead of | |
2872 | ada_value_subscript for basically all non-packed array types. The reason | |
2873 | for this is that a side effect of doing our own pointer arithmetics instead | |
2874 | of relying on value_subscript is that there is no implicit typedef peeling. | |
2875 | This is important for arrays of array accesses, where it allows us to | |
2876 | preserve the fact that the array's element is an array access, where the | |
2877 | access part os encoded in a typedef layer. */ | |
14f9c5c9 | 2878 | |
2c0b251b | 2879 | static struct value * |
deede10c | 2880 | ada_value_ptr_subscript (struct value *arr, int arity, struct value **ind) |
14f9c5c9 AS |
2881 | { |
2882 | int k; | |
919e6dbe | 2883 | struct value *array_ind = ada_value_ind (arr); |
deede10c | 2884 | struct type *type |
919e6dbe PMR |
2885 | = check_typedef (value_enclosing_type (array_ind)); |
2886 | ||
2887 | if (TYPE_CODE (type) == TYPE_CODE_ARRAY | |
2888 | && TYPE_FIELD_BITSIZE (type, 0) > 0) | |
2889 | return value_subscript_packed (array_ind, arity, ind); | |
14f9c5c9 AS |
2890 | |
2891 | for (k = 0; k < arity; k += 1) | |
2892 | { | |
2893 | LONGEST lwb, upb; | |
aa715135 | 2894 | struct value *lwb_value; |
14f9c5c9 AS |
2895 | |
2896 | if (TYPE_CODE (type) != TYPE_CODE_ARRAY) | |
323e0a4a | 2897 | error (_("too many subscripts (%d expected)"), k); |
d2e4a39e | 2898 | arr = value_cast (lookup_pointer_type (TYPE_TARGET_TYPE (type)), |
4c4b4cd2 | 2899 | value_copy (arr)); |
14f9c5c9 | 2900 | get_discrete_bounds (TYPE_INDEX_TYPE (type), &lwb, &upb); |
aa715135 JG |
2901 | lwb_value = value_from_longest (value_type(ind[k]), lwb); |
2902 | arr = value_ptradd (arr, pos_atr (ind[k]) - pos_atr (lwb_value)); | |
14f9c5c9 AS |
2903 | type = TYPE_TARGET_TYPE (type); |
2904 | } | |
2905 | ||
2906 | return value_ind (arr); | |
2907 | } | |
2908 | ||
0b5d8877 | 2909 | /* Given that ARRAY_PTR is a pointer or reference to an array of type TYPE (the |
aa715135 JG |
2910 | actual type of ARRAY_PTR is ignored), returns the Ada slice of |
2911 | HIGH'Pos-LOW'Pos+1 elements starting at index LOW. The lower bound of | |
2912 | this array is LOW, as per Ada rules. */ | |
0b5d8877 | 2913 | static struct value * |
f5938064 JG |
2914 | ada_value_slice_from_ptr (struct value *array_ptr, struct type *type, |
2915 | int low, int high) | |
0b5d8877 | 2916 | { |
b0dd7688 | 2917 | struct type *type0 = ada_check_typedef (type); |
aa715135 | 2918 | struct type *base_index_type = TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type0)); |
0c9c3474 | 2919 | struct type *index_type |
aa715135 | 2920 | = create_static_range_type (NULL, base_index_type, low, high); |
6c038f32 | 2921 | struct type *slice_type = |
b0dd7688 | 2922 | create_array_type (NULL, TYPE_TARGET_TYPE (type0), index_type); |
aa715135 JG |
2923 | int base_low = ada_discrete_type_low_bound (TYPE_INDEX_TYPE (type0)); |
2924 | LONGEST base_low_pos, low_pos; | |
2925 | CORE_ADDR base; | |
2926 | ||
2927 | if (!discrete_position (base_index_type, low, &low_pos) | |
2928 | || !discrete_position (base_index_type, base_low, &base_low_pos)) | |
2929 | { | |
2930 | warning (_("unable to get positions in slice, use bounds instead")); | |
2931 | low_pos = low; | |
2932 | base_low_pos = base_low; | |
2933 | } | |
5b4ee69b | 2934 | |
aa715135 JG |
2935 | base = value_as_address (array_ptr) |
2936 | + ((low_pos - base_low_pos) | |
2937 | * TYPE_LENGTH (TYPE_TARGET_TYPE (type0))); | |
f5938064 | 2938 | return value_at_lazy (slice_type, base); |
0b5d8877 PH |
2939 | } |
2940 | ||
2941 | ||
2942 | static struct value * | |
2943 | ada_value_slice (struct value *array, int low, int high) | |
2944 | { | |
b0dd7688 | 2945 | struct type *type = ada_check_typedef (value_type (array)); |
aa715135 | 2946 | struct type *base_index_type = TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type)); |
0c9c3474 SA |
2947 | struct type *index_type |
2948 | = create_static_range_type (NULL, TYPE_INDEX_TYPE (type), low, high); | |
6c038f32 | 2949 | struct type *slice_type = |
0b5d8877 | 2950 | create_array_type (NULL, TYPE_TARGET_TYPE (type), index_type); |
aa715135 | 2951 | LONGEST low_pos, high_pos; |
5b4ee69b | 2952 | |
aa715135 JG |
2953 | if (!discrete_position (base_index_type, low, &low_pos) |
2954 | || !discrete_position (base_index_type, high, &high_pos)) | |
2955 | { | |
2956 | warning (_("unable to get positions in slice, use bounds instead")); | |
2957 | low_pos = low; | |
2958 | high_pos = high; | |
2959 | } | |
2960 | ||
2961 | return value_cast (slice_type, | |
2962 | value_slice (array, low, high_pos - low_pos + 1)); | |
0b5d8877 PH |
2963 | } |
2964 | ||
14f9c5c9 AS |
2965 | /* If type is a record type in the form of a standard GNAT array |
2966 | descriptor, returns the number of dimensions for type. If arr is a | |
2967 | simple array, returns the number of "array of"s that prefix its | |
4c4b4cd2 | 2968 | type designation. Otherwise, returns 0. */ |
14f9c5c9 AS |
2969 | |
2970 | int | |
d2e4a39e | 2971 | ada_array_arity (struct type *type) |
14f9c5c9 AS |
2972 | { |
2973 | int arity; | |
2974 | ||
2975 | if (type == NULL) | |
2976 | return 0; | |
2977 | ||
2978 | type = desc_base_type (type); | |
2979 | ||
2980 | arity = 0; | |
d2e4a39e | 2981 | if (TYPE_CODE (type) == TYPE_CODE_STRUCT) |
14f9c5c9 | 2982 | return desc_arity (desc_bounds_type (type)); |
d2e4a39e AS |
2983 | else |
2984 | while (TYPE_CODE (type) == TYPE_CODE_ARRAY) | |
14f9c5c9 | 2985 | { |
4c4b4cd2 | 2986 | arity += 1; |
61ee279c | 2987 | type = ada_check_typedef (TYPE_TARGET_TYPE (type)); |
14f9c5c9 | 2988 | } |
d2e4a39e | 2989 | |
14f9c5c9 AS |
2990 | return arity; |
2991 | } | |
2992 | ||
2993 | /* If TYPE is a record type in the form of a standard GNAT array | |
2994 | descriptor or a simple array type, returns the element type for | |
2995 | TYPE after indexing by NINDICES indices, or by all indices if | |
4c4b4cd2 | 2996 | NINDICES is -1. Otherwise, returns NULL. */ |
14f9c5c9 | 2997 | |
d2e4a39e AS |
2998 | struct type * |
2999 | ada_array_element_type (struct type *type, int nindices) | |
14f9c5c9 AS |
3000 | { |
3001 | type = desc_base_type (type); | |
3002 | ||
d2e4a39e | 3003 | if (TYPE_CODE (type) == TYPE_CODE_STRUCT) |
14f9c5c9 AS |
3004 | { |
3005 | int k; | |
d2e4a39e | 3006 | struct type *p_array_type; |
14f9c5c9 | 3007 | |
556bdfd4 | 3008 | p_array_type = desc_data_target_type (type); |
14f9c5c9 AS |
3009 | |
3010 | k = ada_array_arity (type); | |
3011 | if (k == 0) | |
4c4b4cd2 | 3012 | return NULL; |
d2e4a39e | 3013 | |
4c4b4cd2 | 3014 | /* Initially p_array_type = elt_type(*)[]...(k times)...[]. */ |
14f9c5c9 | 3015 | if (nindices >= 0 && k > nindices) |
4c4b4cd2 | 3016 | k = nindices; |
d2e4a39e | 3017 | while (k > 0 && p_array_type != NULL) |
4c4b4cd2 | 3018 | { |
61ee279c | 3019 | p_array_type = ada_check_typedef (TYPE_TARGET_TYPE (p_array_type)); |
4c4b4cd2 PH |
3020 | k -= 1; |
3021 | } | |
14f9c5c9 AS |
3022 | return p_array_type; |
3023 | } | |
3024 | else if (TYPE_CODE (type) == TYPE_CODE_ARRAY) | |
3025 | { | |
3026 | while (nindices != 0 && TYPE_CODE (type) == TYPE_CODE_ARRAY) | |
4c4b4cd2 PH |
3027 | { |
3028 | type = TYPE_TARGET_TYPE (type); | |
3029 | nindices -= 1; | |
3030 | } | |
14f9c5c9 AS |
3031 | return type; |
3032 | } | |
3033 | ||
3034 | return NULL; | |
3035 | } | |
3036 | ||
4c4b4cd2 | 3037 | /* The type of nth index in arrays of given type (n numbering from 1). |
dd19d49e UW |
3038 | Does not examine memory. Throws an error if N is invalid or TYPE |
3039 | is not an array type. NAME is the name of the Ada attribute being | |
3040 | evaluated ('range, 'first, 'last, or 'length); it is used in building | |
3041 | the error message. */ | |
14f9c5c9 | 3042 | |
1eea4ebd UW |
3043 | static struct type * |
3044 | ada_index_type (struct type *type, int n, const char *name) | |
14f9c5c9 | 3045 | { |
4c4b4cd2 PH |
3046 | struct type *result_type; |
3047 | ||
14f9c5c9 AS |
3048 | type = desc_base_type (type); |
3049 | ||
1eea4ebd UW |
3050 | if (n < 0 || n > ada_array_arity (type)) |
3051 | error (_("invalid dimension number to '%s"), name); | |
14f9c5c9 | 3052 | |
4c4b4cd2 | 3053 | if (ada_is_simple_array_type (type)) |
14f9c5c9 AS |
3054 | { |
3055 | int i; | |
3056 | ||
3057 | for (i = 1; i < n; i += 1) | |
4c4b4cd2 | 3058 | type = TYPE_TARGET_TYPE (type); |
262452ec | 3059 | result_type = TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type)); |
4c4b4cd2 PH |
3060 | /* FIXME: The stabs type r(0,0);bound;bound in an array type |
3061 | has a target type of TYPE_CODE_UNDEF. We compensate here, but | |
76a01679 | 3062 | perhaps stabsread.c would make more sense. */ |
1eea4ebd UW |
3063 | if (result_type && TYPE_CODE (result_type) == TYPE_CODE_UNDEF) |
3064 | result_type = NULL; | |
14f9c5c9 | 3065 | } |
d2e4a39e | 3066 | else |
1eea4ebd UW |
3067 | { |
3068 | result_type = desc_index_type (desc_bounds_type (type), n); | |
3069 | if (result_type == NULL) | |
3070 | error (_("attempt to take bound of something that is not an array")); | |
3071 | } | |
3072 | ||
3073 | return result_type; | |
14f9c5c9 AS |
3074 | } |
3075 | ||
3076 | /* Given that arr is an array type, returns the lower bound of the | |
3077 | Nth index (numbering from 1) if WHICH is 0, and the upper bound if | |
4c4b4cd2 | 3078 | WHICH is 1. This returns bounds 0 .. -1 if ARR_TYPE is an |
1eea4ebd UW |
3079 | array-descriptor type. It works for other arrays with bounds supplied |
3080 | by run-time quantities other than discriminants. */ | |
14f9c5c9 | 3081 | |
abb68b3e | 3082 | static LONGEST |
fb5e3d5c | 3083 | ada_array_bound_from_type (struct type *arr_type, int n, int which) |
14f9c5c9 | 3084 | { |
8a48ac95 | 3085 | struct type *type, *index_type_desc, *index_type; |
1ce677a4 | 3086 | int i; |
262452ec JK |
3087 | |
3088 | gdb_assert (which == 0 || which == 1); | |
14f9c5c9 | 3089 | |
ad82864c JB |
3090 | if (ada_is_constrained_packed_array_type (arr_type)) |
3091 | arr_type = decode_constrained_packed_array_type (arr_type); | |
14f9c5c9 | 3092 | |
4c4b4cd2 | 3093 | if (arr_type == NULL || !ada_is_simple_array_type (arr_type)) |
1eea4ebd | 3094 | return (LONGEST) - which; |
14f9c5c9 AS |
3095 | |
3096 | if (TYPE_CODE (arr_type) == TYPE_CODE_PTR) | |
3097 | type = TYPE_TARGET_TYPE (arr_type); | |
3098 | else | |
3099 | type = arr_type; | |
3100 | ||
bafffb51 JB |
3101 | if (TYPE_FIXED_INSTANCE (type)) |
3102 | { | |
3103 | /* The array has already been fixed, so we do not need to | |
3104 | check the parallel ___XA type again. That encoding has | |
3105 | already been applied, so ignore it now. */ | |
3106 | index_type_desc = NULL; | |
3107 | } | |
3108 | else | |
3109 | { | |
3110 | index_type_desc = ada_find_parallel_type (type, "___XA"); | |
3111 | ada_fixup_array_indexes_type (index_type_desc); | |
3112 | } | |
3113 | ||
262452ec | 3114 | if (index_type_desc != NULL) |
28c85d6c JB |
3115 | index_type = to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, n - 1), |
3116 | NULL); | |
262452ec | 3117 | else |
8a48ac95 JB |
3118 | { |
3119 | struct type *elt_type = check_typedef (type); | |
3120 | ||
3121 | for (i = 1; i < n; i++) | |
3122 | elt_type = check_typedef (TYPE_TARGET_TYPE (elt_type)); | |
3123 | ||
3124 | index_type = TYPE_INDEX_TYPE (elt_type); | |
3125 | } | |
262452ec | 3126 | |
43bbcdc2 PH |
3127 | return |
3128 | (LONGEST) (which == 0 | |
3129 | ? ada_discrete_type_low_bound (index_type) | |
3130 | : ada_discrete_type_high_bound (index_type)); | |
14f9c5c9 AS |
3131 | } |
3132 | ||
3133 | /* Given that arr is an array value, returns the lower bound of the | |
abb68b3e JB |
3134 | nth index (numbering from 1) if WHICH is 0, and the upper bound if |
3135 | WHICH is 1. This routine will also work for arrays with bounds | |
4c4b4cd2 | 3136 | supplied by run-time quantities other than discriminants. */ |
14f9c5c9 | 3137 | |
1eea4ebd | 3138 | static LONGEST |
4dc81987 | 3139 | ada_array_bound (struct value *arr, int n, int which) |
14f9c5c9 | 3140 | { |
eb479039 JB |
3141 | struct type *arr_type; |
3142 | ||
3143 | if (TYPE_CODE (check_typedef (value_type (arr))) == TYPE_CODE_PTR) | |
3144 | arr = value_ind (arr); | |
3145 | arr_type = value_enclosing_type (arr); | |
14f9c5c9 | 3146 | |
ad82864c JB |
3147 | if (ada_is_constrained_packed_array_type (arr_type)) |
3148 | return ada_array_bound (decode_constrained_packed_array (arr), n, which); | |
4c4b4cd2 | 3149 | else if (ada_is_simple_array_type (arr_type)) |
1eea4ebd | 3150 | return ada_array_bound_from_type (arr_type, n, which); |
14f9c5c9 | 3151 | else |
1eea4ebd | 3152 | return value_as_long (desc_one_bound (desc_bounds (arr), n, which)); |
14f9c5c9 AS |
3153 | } |
3154 | ||
3155 | /* Given that arr is an array value, returns the length of the | |
3156 | nth index. This routine will also work for arrays with bounds | |
4c4b4cd2 PH |
3157 | supplied by run-time quantities other than discriminants. |
3158 | Does not work for arrays indexed by enumeration types with representation | |
3159 | clauses at the moment. */ | |
14f9c5c9 | 3160 | |
1eea4ebd | 3161 | static LONGEST |
d2e4a39e | 3162 | ada_array_length (struct value *arr, int n) |
14f9c5c9 | 3163 | { |
aa715135 JG |
3164 | struct type *arr_type, *index_type; |
3165 | int low, high; | |
eb479039 JB |
3166 | |
3167 | if (TYPE_CODE (check_typedef (value_type (arr))) == TYPE_CODE_PTR) | |
3168 | arr = value_ind (arr); | |
3169 | arr_type = value_enclosing_type (arr); | |
14f9c5c9 | 3170 | |
ad82864c JB |
3171 | if (ada_is_constrained_packed_array_type (arr_type)) |
3172 | return ada_array_length (decode_constrained_packed_array (arr), n); | |
14f9c5c9 | 3173 | |
4c4b4cd2 | 3174 | if (ada_is_simple_array_type (arr_type)) |
aa715135 JG |
3175 | { |
3176 | low = ada_array_bound_from_type (arr_type, n, 0); | |
3177 | high = ada_array_bound_from_type (arr_type, n, 1); | |
3178 | } | |
14f9c5c9 | 3179 | else |
aa715135 JG |
3180 | { |
3181 | low = value_as_long (desc_one_bound (desc_bounds (arr), n, 0)); | |
3182 | high = value_as_long (desc_one_bound (desc_bounds (arr), n, 1)); | |
3183 | } | |
3184 | ||
f168693b | 3185 | arr_type = check_typedef (arr_type); |
aa715135 JG |
3186 | index_type = TYPE_INDEX_TYPE (arr_type); |
3187 | if (index_type != NULL) | |
3188 | { | |
3189 | struct type *base_type; | |
3190 | if (TYPE_CODE (index_type) == TYPE_CODE_RANGE) | |
3191 | base_type = TYPE_TARGET_TYPE (index_type); | |
3192 | else | |
3193 | base_type = index_type; | |
3194 | ||
3195 | low = pos_atr (value_from_longest (base_type, low)); | |
3196 | high = pos_atr (value_from_longest (base_type, high)); | |
3197 | } | |
3198 | return high - low + 1; | |
4c4b4cd2 PH |
3199 | } |
3200 | ||
3201 | /* An empty array whose type is that of ARR_TYPE (an array type), | |
3202 | with bounds LOW to LOW-1. */ | |
3203 | ||
3204 | static struct value * | |
3205 | empty_array (struct type *arr_type, int low) | |
3206 | { | |
b0dd7688 | 3207 | struct type *arr_type0 = ada_check_typedef (arr_type); |
0c9c3474 SA |
3208 | struct type *index_type |
3209 | = create_static_range_type | |
3210 | (NULL, TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (arr_type0)), low, low - 1); | |
b0dd7688 | 3211 | struct type *elt_type = ada_array_element_type (arr_type0, 1); |
5b4ee69b | 3212 | |
0b5d8877 | 3213 | return allocate_value (create_array_type (NULL, elt_type, index_type)); |
14f9c5c9 | 3214 | } |
14f9c5c9 | 3215 | \f |
d2e4a39e | 3216 | |
4c4b4cd2 | 3217 | /* Name resolution */ |
14f9c5c9 | 3218 | |
4c4b4cd2 PH |
3219 | /* The "decoded" name for the user-definable Ada operator corresponding |
3220 | to OP. */ | |
14f9c5c9 | 3221 | |
d2e4a39e | 3222 | static const char * |
4c4b4cd2 | 3223 | ada_decoded_op_name (enum exp_opcode op) |
14f9c5c9 AS |
3224 | { |
3225 | int i; | |
3226 | ||
4c4b4cd2 | 3227 | for (i = 0; ada_opname_table[i].encoded != NULL; i += 1) |
14f9c5c9 AS |
3228 | { |
3229 | if (ada_opname_table[i].op == op) | |
4c4b4cd2 | 3230 | return ada_opname_table[i].decoded; |
14f9c5c9 | 3231 | } |
323e0a4a | 3232 | error (_("Could not find operator name for opcode")); |
14f9c5c9 AS |
3233 | } |
3234 | ||
3235 | ||
4c4b4cd2 PH |
3236 | /* Same as evaluate_type (*EXP), but resolves ambiguous symbol |
3237 | references (marked by OP_VAR_VALUE nodes in which the symbol has an | |
3238 | undefined namespace) and converts operators that are | |
3239 | user-defined into appropriate function calls. If CONTEXT_TYPE is | |
14f9c5c9 AS |
3240 | non-null, it provides a preferred result type [at the moment, only |
3241 | type void has any effect---causing procedures to be preferred over | |
3242 | functions in calls]. A null CONTEXT_TYPE indicates that a non-void | |
4c4b4cd2 | 3243 | return type is preferred. May change (expand) *EXP. */ |
14f9c5c9 | 3244 | |
4c4b4cd2 PH |
3245 | static void |
3246 | resolve (struct expression **expp, int void_context_p) | |
14f9c5c9 | 3247 | { |
30b15541 UW |
3248 | struct type *context_type = NULL; |
3249 | int pc = 0; | |
3250 | ||
3251 | if (void_context_p) | |
3252 | context_type = builtin_type ((*expp)->gdbarch)->builtin_void; | |
3253 | ||
3254 | resolve_subexp (expp, &pc, 1, context_type); | |
14f9c5c9 AS |
3255 | } |
3256 | ||
4c4b4cd2 PH |
3257 | /* Resolve the operator of the subexpression beginning at |
3258 | position *POS of *EXPP. "Resolving" consists of replacing | |
3259 | the symbols that have undefined namespaces in OP_VAR_VALUE nodes | |
3260 | with their resolutions, replacing built-in operators with | |
3261 | function calls to user-defined operators, where appropriate, and, | |
3262 | when DEPROCEDURE_P is non-zero, converting function-valued variables | |
3263 | into parameterless calls. May expand *EXPP. The CONTEXT_TYPE functions | |
3264 | are as in ada_resolve, above. */ | |
14f9c5c9 | 3265 | |
d2e4a39e | 3266 | static struct value * |
4c4b4cd2 | 3267 | resolve_subexp (struct expression **expp, int *pos, int deprocedure_p, |
76a01679 | 3268 | struct type *context_type) |
14f9c5c9 AS |
3269 | { |
3270 | int pc = *pos; | |
3271 | int i; | |
4c4b4cd2 | 3272 | struct expression *exp; /* Convenience: == *expp. */ |
14f9c5c9 | 3273 | enum exp_opcode op = (*expp)->elts[pc].opcode; |
4c4b4cd2 PH |
3274 | struct value **argvec; /* Vector of operand types (alloca'ed). */ |
3275 | int nargs; /* Number of operands. */ | |
52ce6436 | 3276 | int oplen; |
14f9c5c9 AS |
3277 | |
3278 | argvec = NULL; | |
3279 | nargs = 0; | |
3280 | exp = *expp; | |
3281 | ||
52ce6436 PH |
3282 | /* Pass one: resolve operands, saving their types and updating *pos, |
3283 | if needed. */ | |
14f9c5c9 AS |
3284 | switch (op) |
3285 | { | |
4c4b4cd2 PH |
3286 | case OP_FUNCALL: |
3287 | if (exp->elts[pc + 3].opcode == OP_VAR_VALUE | |
76a01679 JB |
3288 | && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN) |
3289 | *pos += 7; | |
4c4b4cd2 PH |
3290 | else |
3291 | { | |
3292 | *pos += 3; | |
3293 | resolve_subexp (expp, pos, 0, NULL); | |
3294 | } | |
3295 | nargs = longest_to_int (exp->elts[pc + 1].longconst); | |
14f9c5c9 AS |
3296 | break; |
3297 | ||
14f9c5c9 | 3298 | case UNOP_ADDR: |
4c4b4cd2 PH |
3299 | *pos += 1; |
3300 | resolve_subexp (expp, pos, 0, NULL); | |
3301 | break; | |
3302 | ||
52ce6436 PH |
3303 | case UNOP_QUAL: |
3304 | *pos += 3; | |
17466c1a | 3305 | resolve_subexp (expp, pos, 1, check_typedef (exp->elts[pc + 1].type)); |
4c4b4cd2 PH |
3306 | break; |
3307 | ||
52ce6436 | 3308 | case OP_ATR_MODULUS: |
4c4b4cd2 PH |
3309 | case OP_ATR_SIZE: |
3310 | case OP_ATR_TAG: | |
4c4b4cd2 PH |
3311 | case OP_ATR_FIRST: |
3312 | case OP_ATR_LAST: | |
3313 | case OP_ATR_LENGTH: | |
3314 | case OP_ATR_POS: | |
3315 | case OP_ATR_VAL: | |
4c4b4cd2 PH |
3316 | case OP_ATR_MIN: |
3317 | case OP_ATR_MAX: | |
52ce6436 PH |
3318 | case TERNOP_IN_RANGE: |
3319 | case BINOP_IN_BOUNDS: | |
3320 | case UNOP_IN_RANGE: | |
3321 | case OP_AGGREGATE: | |
3322 | case OP_OTHERS: | |
3323 | case OP_CHOICES: | |
3324 | case OP_POSITIONAL: | |
3325 | case OP_DISCRETE_RANGE: | |
3326 | case OP_NAME: | |
3327 | ada_forward_operator_length (exp, pc, &oplen, &nargs); | |
3328 | *pos += oplen; | |
14f9c5c9 AS |
3329 | break; |
3330 | ||
3331 | case BINOP_ASSIGN: | |
3332 | { | |
4c4b4cd2 PH |
3333 | struct value *arg1; |
3334 | ||
3335 | *pos += 1; | |
3336 | arg1 = resolve_subexp (expp, pos, 0, NULL); | |
3337 | if (arg1 == NULL) | |
3338 | resolve_subexp (expp, pos, 1, NULL); | |
3339 | else | |
df407dfe | 3340 | resolve_subexp (expp, pos, 1, value_type (arg1)); |
4c4b4cd2 | 3341 | break; |
14f9c5c9 AS |
3342 | } |
3343 | ||
4c4b4cd2 | 3344 | case UNOP_CAST: |
4c4b4cd2 PH |
3345 | *pos += 3; |
3346 | nargs = 1; | |
3347 | break; | |
14f9c5c9 | 3348 | |
4c4b4cd2 PH |
3349 | case BINOP_ADD: |
3350 | case BINOP_SUB: | |
3351 | case BINOP_MUL: | |
3352 | case BINOP_DIV: | |
3353 | case BINOP_REM: | |
3354 | case BINOP_MOD: | |
3355 | case BINOP_EXP: | |
3356 | case BINOP_CONCAT: | |
3357 | case BINOP_LOGICAL_AND: | |
3358 | case BINOP_LOGICAL_OR: | |
3359 | case BINOP_BITWISE_AND: | |
3360 | case BINOP_BITWISE_IOR: | |
3361 | case BINOP_BITWISE_XOR: | |
14f9c5c9 | 3362 | |
4c4b4cd2 PH |
3363 | case BINOP_EQUAL: |
3364 | case BINOP_NOTEQUAL: | |
3365 | case BINOP_LESS: | |
3366 | case BINOP_GTR: | |
3367 | case BINOP_LEQ: | |
3368 | case BINOP_GEQ: | |
14f9c5c9 | 3369 | |
4c4b4cd2 PH |
3370 | case BINOP_REPEAT: |
3371 | case BINOP_SUBSCRIPT: | |
3372 | case BINOP_COMMA: | |
40c8aaa9 JB |
3373 | *pos += 1; |
3374 | nargs = 2; | |
3375 | break; | |
14f9c5c9 | 3376 | |
4c4b4cd2 PH |
3377 | case UNOP_NEG: |
3378 | case UNOP_PLUS: | |
3379 | case UNOP_LOGICAL_NOT: | |
3380 | case UNOP_ABS: | |
3381 | case UNOP_IND: | |
3382 | *pos += 1; | |
3383 | nargs = 1; | |
3384 | break; | |
14f9c5c9 | 3385 | |
4c4b4cd2 | 3386 | case OP_LONG: |
edd079d9 | 3387 | case OP_FLOAT: |
4c4b4cd2 | 3388 | case OP_VAR_VALUE: |
74ea4be4 | 3389 | case OP_VAR_MSYM_VALUE: |
4c4b4cd2 PH |
3390 | *pos += 4; |
3391 | break; | |
14f9c5c9 | 3392 | |
4c4b4cd2 PH |
3393 | case OP_TYPE: |
3394 | case OP_BOOL: | |
3395 | case OP_LAST: | |
4c4b4cd2 PH |
3396 | case OP_INTERNALVAR: |
3397 | *pos += 3; | |
3398 | break; | |
14f9c5c9 | 3399 | |
4c4b4cd2 PH |
3400 | case UNOP_MEMVAL: |
3401 | *pos += 3; | |
3402 | nargs = 1; | |
3403 | break; | |
3404 | ||
67f3407f DJ |
3405 | case OP_REGISTER: |
3406 | *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1); | |
3407 | break; | |
3408 | ||
4c4b4cd2 PH |
3409 | case STRUCTOP_STRUCT: |
3410 | *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1); | |
3411 | nargs = 1; | |
3412 | break; | |
3413 | ||
4c4b4cd2 | 3414 | case TERNOP_SLICE: |
4c4b4cd2 PH |
3415 | *pos += 1; |
3416 | nargs = 3; | |
3417 | break; | |
3418 | ||
52ce6436 | 3419 | case OP_STRING: |
14f9c5c9 | 3420 | break; |
4c4b4cd2 PH |
3421 | |
3422 | default: | |
323e0a4a | 3423 | error (_("Unexpected operator during name resolution")); |
14f9c5c9 AS |
3424 | } |
3425 | ||
8d749320 | 3426 | argvec = XALLOCAVEC (struct value *, nargs + 1); |
4c4b4cd2 PH |
3427 | for (i = 0; i < nargs; i += 1) |
3428 | argvec[i] = resolve_subexp (expp, pos, 1, NULL); | |
3429 | argvec[i] = NULL; | |
3430 | exp = *expp; | |
3431 | ||
3432 | /* Pass two: perform any resolution on principal operator. */ | |
14f9c5c9 AS |
3433 | switch (op) |
3434 | { | |
3435 | default: | |
3436 | break; | |
3437 | ||
14f9c5c9 | 3438 | case OP_VAR_VALUE: |
4c4b4cd2 | 3439 | if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN) |
76a01679 | 3440 | { |
d12307c1 | 3441 | struct block_symbol *candidates; |
76a01679 JB |
3442 | int n_candidates; |
3443 | ||
3444 | n_candidates = | |
3445 | ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME | |
3446 | (exp->elts[pc + 2].symbol), | |
3447 | exp->elts[pc + 1].block, VAR_DOMAIN, | |
4eeaa230 | 3448 | &candidates); |
76a01679 JB |
3449 | |
3450 | if (n_candidates > 1) | |
3451 | { | |
3452 | /* Types tend to get re-introduced locally, so if there | |
3453 | are any local symbols that are not types, first filter | |
3454 | out all types. */ | |
3455 | int j; | |
3456 | for (j = 0; j < n_candidates; j += 1) | |
d12307c1 | 3457 | switch (SYMBOL_CLASS (candidates[j].symbol)) |
76a01679 JB |
3458 | { |
3459 | case LOC_REGISTER: | |
3460 | case LOC_ARG: | |
3461 | case LOC_REF_ARG: | |
76a01679 JB |
3462 | case LOC_REGPARM_ADDR: |
3463 | case LOC_LOCAL: | |
76a01679 | 3464 | case LOC_COMPUTED: |
76a01679 JB |
3465 | goto FoundNonType; |
3466 | default: | |
3467 | break; | |
3468 | } | |
3469 | FoundNonType: | |
3470 | if (j < n_candidates) | |
3471 | { | |
3472 | j = 0; | |
3473 | while (j < n_candidates) | |
3474 | { | |
d12307c1 | 3475 | if (SYMBOL_CLASS (candidates[j].symbol) == LOC_TYPEDEF) |
76a01679 JB |
3476 | { |
3477 | candidates[j] = candidates[n_candidates - 1]; | |
3478 | n_candidates -= 1; | |
3479 | } | |
3480 | else | |
3481 | j += 1; | |
3482 | } | |
3483 | } | |
3484 | } | |
3485 | ||
3486 | if (n_candidates == 0) | |
323e0a4a | 3487 | error (_("No definition found for %s"), |
76a01679 JB |
3488 | SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol)); |
3489 | else if (n_candidates == 1) | |
3490 | i = 0; | |
3491 | else if (deprocedure_p | |
3492 | && !is_nonfunction (candidates, n_candidates)) | |
3493 | { | |
06d5cf63 JB |
3494 | i = ada_resolve_function |
3495 | (candidates, n_candidates, NULL, 0, | |
3496 | SYMBOL_LINKAGE_NAME (exp->elts[pc + 2].symbol), | |
3497 | context_type); | |
76a01679 | 3498 | if (i < 0) |
323e0a4a | 3499 | error (_("Could not find a match for %s"), |
76a01679 JB |
3500 | SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol)); |
3501 | } | |
3502 | else | |
3503 | { | |
323e0a4a | 3504 | printf_filtered (_("Multiple matches for %s\n"), |
76a01679 JB |
3505 | SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol)); |
3506 | user_select_syms (candidates, n_candidates, 1); | |
3507 | i = 0; | |
3508 | } | |
3509 | ||
3510 | exp->elts[pc + 1].block = candidates[i].block; | |
d12307c1 | 3511 | exp->elts[pc + 2].symbol = candidates[i].symbol; |
1265e4aa JB |
3512 | if (innermost_block == NULL |
3513 | || contained_in (candidates[i].block, innermost_block)) | |
76a01679 JB |
3514 | innermost_block = candidates[i].block; |
3515 | } | |
3516 | ||
3517 | if (deprocedure_p | |
3518 | && (TYPE_CODE (SYMBOL_TYPE (exp->elts[pc + 2].symbol)) | |
3519 | == TYPE_CODE_FUNC)) | |
3520 | { | |
3521 | replace_operator_with_call (expp, pc, 0, 0, | |
3522 | exp->elts[pc + 2].symbol, | |
3523 | exp->elts[pc + 1].block); | |
3524 | exp = *expp; | |
3525 | } | |
14f9c5c9 AS |
3526 | break; |
3527 | ||
3528 | case OP_FUNCALL: | |
3529 | { | |
4c4b4cd2 | 3530 | if (exp->elts[pc + 3].opcode == OP_VAR_VALUE |
76a01679 | 3531 | && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN) |
4c4b4cd2 | 3532 | { |
d12307c1 | 3533 | struct block_symbol *candidates; |
4c4b4cd2 PH |
3534 | int n_candidates; |
3535 | ||
3536 | n_candidates = | |
76a01679 JB |
3537 | ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME |
3538 | (exp->elts[pc + 5].symbol), | |
3539 | exp->elts[pc + 4].block, VAR_DOMAIN, | |
4eeaa230 | 3540 | &candidates); |
4c4b4cd2 PH |
3541 | if (n_candidates == 1) |
3542 | i = 0; | |
3543 | else | |
3544 | { | |
06d5cf63 JB |
3545 | i = ada_resolve_function |
3546 | (candidates, n_candidates, | |
3547 | argvec, nargs, | |
3548 | SYMBOL_LINKAGE_NAME (exp->elts[pc + 5].symbol), | |
3549 | context_type); | |
4c4b4cd2 | 3550 | if (i < 0) |
323e0a4a | 3551 | error (_("Could not find a match for %s"), |
4c4b4cd2 PH |
3552 | SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol)); |
3553 | } | |
3554 | ||
3555 | exp->elts[pc + 4].block = candidates[i].block; | |
d12307c1 | 3556 | exp->elts[pc + 5].symbol = candidates[i].symbol; |
1265e4aa JB |
3557 | if (innermost_block == NULL |
3558 | || contained_in (candidates[i].block, innermost_block)) | |
4c4b4cd2 PH |
3559 | innermost_block = candidates[i].block; |
3560 | } | |
14f9c5c9 AS |
3561 | } |
3562 | break; | |
3563 | case BINOP_ADD: | |
3564 | case BINOP_SUB: | |
3565 | case BINOP_MUL: | |
3566 | case BINOP_DIV: | |
3567 | case BINOP_REM: | |
3568 | case BINOP_MOD: | |
3569 | case BINOP_CONCAT: | |
3570 | case BINOP_BITWISE_AND: | |
3571 | case BINOP_BITWISE_IOR: | |
3572 | case BINOP_BITWISE_XOR: | |
3573 | case BINOP_EQUAL: | |
3574 | case BINOP_NOTEQUAL: | |
3575 | case BINOP_LESS: | |
3576 | case BINOP_GTR: | |
3577 | case BINOP_LEQ: | |
3578 | case BINOP_GEQ: | |
3579 | case BINOP_EXP: | |
3580 | case UNOP_NEG: | |
3581 | case UNOP_PLUS: | |
3582 | case UNOP_LOGICAL_NOT: | |
3583 | case UNOP_ABS: | |
3584 | if (possible_user_operator_p (op, argvec)) | |
4c4b4cd2 | 3585 | { |
d12307c1 | 3586 | struct block_symbol *candidates; |
4c4b4cd2 PH |
3587 | int n_candidates; |
3588 | ||
3589 | n_candidates = | |
3590 | ada_lookup_symbol_list (ada_encode (ada_decoded_op_name (op)), | |
3591 | (struct block *) NULL, VAR_DOMAIN, | |
4eeaa230 | 3592 | &candidates); |
4c4b4cd2 | 3593 | i = ada_resolve_function (candidates, n_candidates, argvec, nargs, |
76a01679 | 3594 | ada_decoded_op_name (op), NULL); |
4c4b4cd2 PH |
3595 | if (i < 0) |
3596 | break; | |
3597 | ||
d12307c1 PMR |
3598 | replace_operator_with_call (expp, pc, nargs, 1, |
3599 | candidates[i].symbol, | |
3600 | candidates[i].block); | |
4c4b4cd2 PH |
3601 | exp = *expp; |
3602 | } | |
14f9c5c9 | 3603 | break; |
4c4b4cd2 PH |
3604 | |
3605 | case OP_TYPE: | |
b3dbf008 | 3606 | case OP_REGISTER: |
4c4b4cd2 | 3607 | return NULL; |
14f9c5c9 AS |
3608 | } |
3609 | ||
3610 | *pos = pc; | |
3611 | return evaluate_subexp_type (exp, pos); | |
3612 | } | |
3613 | ||
3614 | /* Return non-zero if formal type FTYPE matches actual type ATYPE. If | |
4c4b4cd2 | 3615 | MAY_DEREF is non-zero, the formal may be a pointer and the actual |
5b3d5b7d | 3616 | a non-pointer. */ |
14f9c5c9 | 3617 | /* The term "match" here is rather loose. The match is heuristic and |
5b3d5b7d | 3618 | liberal. */ |
14f9c5c9 AS |
3619 | |
3620 | static int | |
4dc81987 | 3621 | ada_type_match (struct type *ftype, struct type *atype, int may_deref) |
14f9c5c9 | 3622 | { |
61ee279c PH |
3623 | ftype = ada_check_typedef (ftype); |
3624 | atype = ada_check_typedef (atype); | |
14f9c5c9 AS |
3625 | |
3626 | if (TYPE_CODE (ftype) == TYPE_CODE_REF) | |
3627 | ftype = TYPE_TARGET_TYPE (ftype); | |
3628 | if (TYPE_CODE (atype) == TYPE_CODE_REF) | |
3629 | atype = TYPE_TARGET_TYPE (atype); | |
3630 | ||
d2e4a39e | 3631 | switch (TYPE_CODE (ftype)) |
14f9c5c9 AS |
3632 | { |
3633 | default: | |
5b3d5b7d | 3634 | return TYPE_CODE (ftype) == TYPE_CODE (atype); |
14f9c5c9 AS |
3635 | case TYPE_CODE_PTR: |
3636 | if (TYPE_CODE (atype) == TYPE_CODE_PTR) | |
4c4b4cd2 PH |
3637 | return ada_type_match (TYPE_TARGET_TYPE (ftype), |
3638 | TYPE_TARGET_TYPE (atype), 0); | |
d2e4a39e | 3639 | else |
1265e4aa JB |
3640 | return (may_deref |
3641 | && ada_type_match (TYPE_TARGET_TYPE (ftype), atype, 0)); | |
14f9c5c9 AS |
3642 | case TYPE_CODE_INT: |
3643 | case TYPE_CODE_ENUM: | |
3644 | case TYPE_CODE_RANGE: | |
3645 | switch (TYPE_CODE (atype)) | |
4c4b4cd2 PH |
3646 | { |
3647 | case TYPE_CODE_INT: | |
3648 | case TYPE_CODE_ENUM: | |
3649 | case TYPE_CODE_RANGE: | |
3650 | return 1; | |
3651 | default: | |
3652 | return 0; | |
3653 | } | |
14f9c5c9 AS |
3654 | |
3655 | case TYPE_CODE_ARRAY: | |
d2e4a39e | 3656 | return (TYPE_CODE (atype) == TYPE_CODE_ARRAY |
4c4b4cd2 | 3657 | || ada_is_array_descriptor_type (atype)); |
14f9c5c9 AS |
3658 | |
3659 | case TYPE_CODE_STRUCT: | |
4c4b4cd2 PH |
3660 | if (ada_is_array_descriptor_type (ftype)) |
3661 | return (TYPE_CODE (atype) == TYPE_CODE_ARRAY | |
3662 | || ada_is_array_descriptor_type (atype)); | |
14f9c5c9 | 3663 | else |
4c4b4cd2 PH |
3664 | return (TYPE_CODE (atype) == TYPE_CODE_STRUCT |
3665 | && !ada_is_array_descriptor_type (atype)); | |
14f9c5c9 AS |
3666 | |
3667 | case TYPE_CODE_UNION: | |
3668 | case TYPE_CODE_FLT: | |
3669 | return (TYPE_CODE (atype) == TYPE_CODE (ftype)); | |
3670 | } | |
3671 | } | |
3672 | ||
3673 | /* Return non-zero if the formals of FUNC "sufficiently match" the | |
3674 | vector of actual argument types ACTUALS of size N_ACTUALS. FUNC | |
3675 | may also be an enumeral, in which case it is treated as a 0- | |
4c4b4cd2 | 3676 | argument function. */ |
14f9c5c9 AS |
3677 | |
3678 | static int | |
d2e4a39e | 3679 | ada_args_match (struct symbol *func, struct value **actuals, int n_actuals) |
14f9c5c9 AS |
3680 | { |
3681 | int i; | |
d2e4a39e | 3682 | struct type *func_type = SYMBOL_TYPE (func); |
14f9c5c9 | 3683 | |
1265e4aa JB |
3684 | if (SYMBOL_CLASS (func) == LOC_CONST |
3685 | && TYPE_CODE (func_type) == TYPE_CODE_ENUM) | |
14f9c5c9 AS |
3686 | return (n_actuals == 0); |
3687 | else if (func_type == NULL || TYPE_CODE (func_type) != TYPE_CODE_FUNC) | |
3688 | return 0; | |
3689 | ||
3690 | if (TYPE_NFIELDS (func_type) != n_actuals) | |
3691 | return 0; | |
3692 | ||
3693 | for (i = 0; i < n_actuals; i += 1) | |
3694 | { | |
4c4b4cd2 | 3695 | if (actuals[i] == NULL) |
76a01679 JB |
3696 | return 0; |
3697 | else | |
3698 | { | |
5b4ee69b MS |
3699 | struct type *ftype = ada_check_typedef (TYPE_FIELD_TYPE (func_type, |
3700 | i)); | |
df407dfe | 3701 | struct type *atype = ada_check_typedef (value_type (actuals[i])); |
4c4b4cd2 | 3702 | |
76a01679 JB |
3703 | if (!ada_type_match (ftype, atype, 1)) |
3704 | return 0; | |
3705 | } | |
14f9c5c9 AS |
3706 | } |
3707 | return 1; | |
3708 | } | |
3709 | ||
3710 | /* False iff function type FUNC_TYPE definitely does not produce a value | |
3711 | compatible with type CONTEXT_TYPE. Conservatively returns 1 if | |
3712 | FUNC_TYPE is not a valid function type with a non-null return type | |
3713 | or an enumerated type. A null CONTEXT_TYPE indicates any non-void type. */ | |
3714 | ||
3715 | static int | |
d2e4a39e | 3716 | return_match (struct type *func_type, struct type *context_type) |
14f9c5c9 | 3717 | { |
d2e4a39e | 3718 | struct type *return_type; |
14f9c5c9 AS |
3719 | |
3720 | if (func_type == NULL) | |
3721 | return 1; | |
3722 | ||
4c4b4cd2 | 3723 | if (TYPE_CODE (func_type) == TYPE_CODE_FUNC) |
18af8284 | 3724 | return_type = get_base_type (TYPE_TARGET_TYPE (func_type)); |
4c4b4cd2 | 3725 | else |
18af8284 | 3726 | return_type = get_base_type (func_type); |
14f9c5c9 AS |
3727 | if (return_type == NULL) |
3728 | return 1; | |
3729 | ||
18af8284 | 3730 | context_type = get_base_type (context_type); |
14f9c5c9 AS |
3731 | |
3732 | if (TYPE_CODE (return_type) == TYPE_CODE_ENUM) | |
3733 | return context_type == NULL || return_type == context_type; | |
3734 | else if (context_type == NULL) | |
3735 | return TYPE_CODE (return_type) != TYPE_CODE_VOID; | |
3736 | else | |
3737 | return TYPE_CODE (return_type) == TYPE_CODE (context_type); | |
3738 | } | |
3739 | ||
3740 | ||
4c4b4cd2 | 3741 | /* Returns the index in SYMS[0..NSYMS-1] that contains the symbol for the |
14f9c5c9 | 3742 | function (if any) that matches the types of the NARGS arguments in |
4c4b4cd2 PH |
3743 | ARGS. If CONTEXT_TYPE is non-null and there is at least one match |
3744 | that returns that type, then eliminate matches that don't. If | |
3745 | CONTEXT_TYPE is void and there is at least one match that does not | |
3746 | return void, eliminate all matches that do. | |
3747 | ||
14f9c5c9 AS |
3748 | Asks the user if there is more than one match remaining. Returns -1 |
3749 | if there is no such symbol or none is selected. NAME is used | |
4c4b4cd2 PH |
3750 | solely for messages. May re-arrange and modify SYMS in |
3751 | the process; the index returned is for the modified vector. */ | |
14f9c5c9 | 3752 | |
4c4b4cd2 | 3753 | static int |
d12307c1 | 3754 | ada_resolve_function (struct block_symbol syms[], |
4c4b4cd2 PH |
3755 | int nsyms, struct value **args, int nargs, |
3756 | const char *name, struct type *context_type) | |
14f9c5c9 | 3757 | { |
30b15541 | 3758 | int fallback; |
14f9c5c9 | 3759 | int k; |
4c4b4cd2 | 3760 | int m; /* Number of hits */ |
14f9c5c9 | 3761 | |
d2e4a39e | 3762 | m = 0; |
30b15541 UW |
3763 | /* In the first pass of the loop, we only accept functions matching |
3764 | context_type. If none are found, we add a second pass of the loop | |
3765 | where every function is accepted. */ | |
3766 | for (fallback = 0; m == 0 && fallback < 2; fallback++) | |
14f9c5c9 AS |
3767 | { |
3768 | for (k = 0; k < nsyms; k += 1) | |
4c4b4cd2 | 3769 | { |
d12307c1 | 3770 | struct type *type = ada_check_typedef (SYMBOL_TYPE (syms[k].symbol)); |
4c4b4cd2 | 3771 | |
d12307c1 | 3772 | if (ada_args_match (syms[k].symbol, args, nargs) |
30b15541 | 3773 | && (fallback || return_match (type, context_type))) |
4c4b4cd2 PH |
3774 | { |
3775 | syms[m] = syms[k]; | |
3776 | m += 1; | |
3777 | } | |
3778 | } | |
14f9c5c9 AS |
3779 | } |
3780 | ||
dc5c8746 PMR |
3781 | /* If we got multiple matches, ask the user which one to use. Don't do this |
3782 | interactive thing during completion, though, as the purpose of the | |
3783 | completion is providing a list of all possible matches. Prompting the | |
3784 | user to filter it down would be completely unexpected in this case. */ | |
14f9c5c9 AS |
3785 | if (m == 0) |
3786 | return -1; | |
dc5c8746 | 3787 | else if (m > 1 && !parse_completion) |
14f9c5c9 | 3788 | { |
323e0a4a | 3789 | printf_filtered (_("Multiple matches for %s\n"), name); |
4c4b4cd2 | 3790 | user_select_syms (syms, m, 1); |
14f9c5c9 AS |
3791 | return 0; |
3792 | } | |
3793 | return 0; | |
3794 | } | |
3795 | ||
4c4b4cd2 PH |
3796 | /* Returns true (non-zero) iff decoded name N0 should appear before N1 |
3797 | in a listing of choices during disambiguation (see sort_choices, below). | |
3798 | The idea is that overloadings of a subprogram name from the | |
3799 | same package should sort in their source order. We settle for ordering | |
3800 | such symbols by their trailing number (__N or $N). */ | |
3801 | ||
14f9c5c9 | 3802 | static int |
0d5cff50 | 3803 | encoded_ordered_before (const char *N0, const char *N1) |
14f9c5c9 AS |
3804 | { |
3805 | if (N1 == NULL) | |
3806 | return 0; | |
3807 | else if (N0 == NULL) | |
3808 | return 1; | |
3809 | else | |
3810 | { | |
3811 | int k0, k1; | |
5b4ee69b | 3812 | |
d2e4a39e | 3813 | for (k0 = strlen (N0) - 1; k0 > 0 && isdigit (N0[k0]); k0 -= 1) |
4c4b4cd2 | 3814 | ; |
d2e4a39e | 3815 | for (k1 = strlen (N1) - 1; k1 > 0 && isdigit (N1[k1]); k1 -= 1) |
4c4b4cd2 | 3816 | ; |
d2e4a39e | 3817 | if ((N0[k0] == '_' || N0[k0] == '$') && N0[k0 + 1] != '\000' |
4c4b4cd2 PH |
3818 | && (N1[k1] == '_' || N1[k1] == '$') && N1[k1 + 1] != '\000') |
3819 | { | |
3820 | int n0, n1; | |
5b4ee69b | 3821 | |
4c4b4cd2 PH |
3822 | n0 = k0; |
3823 | while (N0[n0] == '_' && n0 > 0 && N0[n0 - 1] == '_') | |
3824 | n0 -= 1; | |
3825 | n1 = k1; | |
3826 | while (N1[n1] == '_' && n1 > 0 && N1[n1 - 1] == '_') | |
3827 | n1 -= 1; | |
3828 | if (n0 == n1 && strncmp (N0, N1, n0) == 0) | |
3829 | return (atoi (N0 + k0 + 1) < atoi (N1 + k1 + 1)); | |
3830 | } | |
14f9c5c9 AS |
3831 | return (strcmp (N0, N1) < 0); |
3832 | } | |
3833 | } | |
d2e4a39e | 3834 | |
4c4b4cd2 PH |
3835 | /* Sort SYMS[0..NSYMS-1] to put the choices in a canonical order by the |
3836 | encoded names. */ | |
3837 | ||
d2e4a39e | 3838 | static void |
d12307c1 | 3839 | sort_choices (struct block_symbol syms[], int nsyms) |
14f9c5c9 | 3840 | { |
4c4b4cd2 | 3841 | int i; |
5b4ee69b | 3842 | |
d2e4a39e | 3843 | for (i = 1; i < nsyms; i += 1) |
14f9c5c9 | 3844 | { |
d12307c1 | 3845 | struct block_symbol sym = syms[i]; |
14f9c5c9 AS |
3846 | int j; |
3847 | ||
d2e4a39e | 3848 | for (j = i - 1; j >= 0; j -= 1) |
4c4b4cd2 | 3849 | { |
d12307c1 PMR |
3850 | if (encoded_ordered_before (SYMBOL_LINKAGE_NAME (syms[j].symbol), |
3851 | SYMBOL_LINKAGE_NAME (sym.symbol))) | |
4c4b4cd2 PH |
3852 | break; |
3853 | syms[j + 1] = syms[j]; | |
3854 | } | |
d2e4a39e | 3855 | syms[j + 1] = sym; |
14f9c5c9 AS |
3856 | } |
3857 | } | |
3858 | ||
d72413e6 PMR |
3859 | /* Whether GDB should display formals and return types for functions in the |
3860 | overloads selection menu. */ | |
3861 | static int print_signatures = 1; | |
3862 | ||
3863 | /* Print the signature for SYM on STREAM according to the FLAGS options. For | |
3864 | all but functions, the signature is just the name of the symbol. For | |
3865 | functions, this is the name of the function, the list of types for formals | |
3866 | and the return type (if any). */ | |
3867 | ||
3868 | static void | |
3869 | ada_print_symbol_signature (struct ui_file *stream, struct symbol *sym, | |
3870 | const struct type_print_options *flags) | |
3871 | { | |
3872 | struct type *type = SYMBOL_TYPE (sym); | |
3873 | ||
3874 | fprintf_filtered (stream, "%s", SYMBOL_PRINT_NAME (sym)); | |
3875 | if (!print_signatures | |
3876 | || type == NULL | |
3877 | || TYPE_CODE (type) != TYPE_CODE_FUNC) | |
3878 | return; | |
3879 | ||
3880 | if (TYPE_NFIELDS (type) > 0) | |
3881 | { | |
3882 | int i; | |
3883 | ||
3884 | fprintf_filtered (stream, " ("); | |
3885 | for (i = 0; i < TYPE_NFIELDS (type); ++i) | |
3886 | { | |
3887 | if (i > 0) | |
3888 | fprintf_filtered (stream, "; "); | |
3889 | ada_print_type (TYPE_FIELD_TYPE (type, i), NULL, stream, -1, 0, | |
3890 | flags); | |
3891 | } | |
3892 | fprintf_filtered (stream, ")"); | |
3893 | } | |
3894 | if (TYPE_TARGET_TYPE (type) != NULL | |
3895 | && TYPE_CODE (TYPE_TARGET_TYPE (type)) != TYPE_CODE_VOID) | |
3896 | { | |
3897 | fprintf_filtered (stream, " return "); | |
3898 | ada_print_type (TYPE_TARGET_TYPE (type), NULL, stream, -1, 0, flags); | |
3899 | } | |
3900 | } | |
3901 | ||
4c4b4cd2 PH |
3902 | /* Given a list of NSYMS symbols in SYMS, select up to MAX_RESULTS>0 |
3903 | by asking the user (if necessary), returning the number selected, | |
3904 | and setting the first elements of SYMS items. Error if no symbols | |
3905 | selected. */ | |
14f9c5c9 AS |
3906 | |
3907 | /* NOTE: Adapted from decode_line_2 in symtab.c, with which it ought | |
4c4b4cd2 | 3908 | to be re-integrated one of these days. */ |
14f9c5c9 AS |
3909 | |
3910 | int | |
d12307c1 | 3911 | user_select_syms (struct block_symbol *syms, int nsyms, int max_results) |
14f9c5c9 AS |
3912 | { |
3913 | int i; | |
8d749320 | 3914 | int *chosen = XALLOCAVEC (int , nsyms); |
14f9c5c9 AS |
3915 | int n_chosen; |
3916 | int first_choice = (max_results == 1) ? 1 : 2; | |
717d2f5a | 3917 | const char *select_mode = multiple_symbols_select_mode (); |
14f9c5c9 AS |
3918 | |
3919 | if (max_results < 1) | |
323e0a4a | 3920 | error (_("Request to select 0 symbols!")); |
14f9c5c9 AS |
3921 | if (nsyms <= 1) |
3922 | return nsyms; | |
3923 | ||
717d2f5a JB |
3924 | if (select_mode == multiple_symbols_cancel) |
3925 | error (_("\ | |
3926 | canceled because the command is ambiguous\n\ | |
3927 | See set/show multiple-symbol.")); | |
3928 | ||
3929 | /* If select_mode is "all", then return all possible symbols. | |
3930 | Only do that if more than one symbol can be selected, of course. | |
3931 | Otherwise, display the menu as usual. */ | |
3932 | if (select_mode == multiple_symbols_all && max_results > 1) | |
3933 | return nsyms; | |
3934 | ||
323e0a4a | 3935 | printf_unfiltered (_("[0] cancel\n")); |
14f9c5c9 | 3936 | if (max_results > 1) |
323e0a4a | 3937 | printf_unfiltered (_("[1] all\n")); |
14f9c5c9 | 3938 | |
4c4b4cd2 | 3939 | sort_choices (syms, nsyms); |
14f9c5c9 AS |
3940 | |
3941 | for (i = 0; i < nsyms; i += 1) | |
3942 | { | |
d12307c1 | 3943 | if (syms[i].symbol == NULL) |
4c4b4cd2 PH |
3944 | continue; |
3945 | ||
d12307c1 | 3946 | if (SYMBOL_CLASS (syms[i].symbol) == LOC_BLOCK) |
4c4b4cd2 | 3947 | { |
76a01679 | 3948 | struct symtab_and_line sal = |
d12307c1 | 3949 | find_function_start_sal (syms[i].symbol, 1); |
5b4ee69b | 3950 | |
d72413e6 PMR |
3951 | printf_unfiltered ("[%d] ", i + first_choice); |
3952 | ada_print_symbol_signature (gdb_stdout, syms[i].symbol, | |
3953 | &type_print_raw_options); | |
323e0a4a | 3954 | if (sal.symtab == NULL) |
d72413e6 | 3955 | printf_unfiltered (_(" at <no source file available>:%d\n"), |
323e0a4a AC |
3956 | sal.line); |
3957 | else | |
d72413e6 | 3958 | printf_unfiltered (_(" at %s:%d\n"), |
05cba821 JK |
3959 | symtab_to_filename_for_display (sal.symtab), |
3960 | sal.line); | |
4c4b4cd2 PH |
3961 | continue; |
3962 | } | |
d2e4a39e | 3963 | else |
4c4b4cd2 PH |
3964 | { |
3965 | int is_enumeral = | |
d12307c1 PMR |
3966 | (SYMBOL_CLASS (syms[i].symbol) == LOC_CONST |
3967 | && SYMBOL_TYPE (syms[i].symbol) != NULL | |
3968 | && TYPE_CODE (SYMBOL_TYPE (syms[i].symbol)) == TYPE_CODE_ENUM); | |
1994afbf DE |
3969 | struct symtab *symtab = NULL; |
3970 | ||
d12307c1 PMR |
3971 | if (SYMBOL_OBJFILE_OWNED (syms[i].symbol)) |
3972 | symtab = symbol_symtab (syms[i].symbol); | |
4c4b4cd2 | 3973 | |
d12307c1 | 3974 | if (SYMBOL_LINE (syms[i].symbol) != 0 && symtab != NULL) |
d72413e6 PMR |
3975 | { |
3976 | printf_unfiltered ("[%d] ", i + first_choice); | |
3977 | ada_print_symbol_signature (gdb_stdout, syms[i].symbol, | |
3978 | &type_print_raw_options); | |
3979 | printf_unfiltered (_(" at %s:%d\n"), | |
3980 | symtab_to_filename_for_display (symtab), | |
3981 | SYMBOL_LINE (syms[i].symbol)); | |
3982 | } | |
76a01679 | 3983 | else if (is_enumeral |
d12307c1 | 3984 | && TYPE_NAME (SYMBOL_TYPE (syms[i].symbol)) != NULL) |
4c4b4cd2 | 3985 | { |
a3f17187 | 3986 | printf_unfiltered (("[%d] "), i + first_choice); |
d12307c1 | 3987 | ada_print_type (SYMBOL_TYPE (syms[i].symbol), NULL, |
79d43c61 | 3988 | gdb_stdout, -1, 0, &type_print_raw_options); |
323e0a4a | 3989 | printf_unfiltered (_("'(%s) (enumeral)\n"), |
d12307c1 | 3990 | SYMBOL_PRINT_NAME (syms[i].symbol)); |
4c4b4cd2 | 3991 | } |
d72413e6 PMR |
3992 | else |
3993 | { | |
3994 | printf_unfiltered ("[%d] ", i + first_choice); | |
3995 | ada_print_symbol_signature (gdb_stdout, syms[i].symbol, | |
3996 | &type_print_raw_options); | |
3997 | ||
3998 | if (symtab != NULL) | |
3999 | printf_unfiltered (is_enumeral | |
4000 | ? _(" in %s (enumeral)\n") | |
4001 | : _(" at %s:?\n"), | |
4002 | symtab_to_filename_for_display (symtab)); | |
4003 | else | |
4004 | printf_unfiltered (is_enumeral | |
4005 | ? _(" (enumeral)\n") | |
4006 | : _(" at ?\n")); | |
4007 | } | |
4c4b4cd2 | 4008 | } |
14f9c5c9 | 4009 | } |
d2e4a39e | 4010 | |
14f9c5c9 | 4011 | n_chosen = get_selections (chosen, nsyms, max_results, max_results > 1, |
4c4b4cd2 | 4012 | "overload-choice"); |
14f9c5c9 AS |
4013 | |
4014 | for (i = 0; i < n_chosen; i += 1) | |
4c4b4cd2 | 4015 | syms[i] = syms[chosen[i]]; |
14f9c5c9 AS |
4016 | |
4017 | return n_chosen; | |
4018 | } | |
4019 | ||
4020 | /* Read and validate a set of numeric choices from the user in the | |
4c4b4cd2 | 4021 | range 0 .. N_CHOICES-1. Place the results in increasing |
14f9c5c9 AS |
4022 | order in CHOICES[0 .. N-1], and return N. |
4023 | ||
4024 | The user types choices as a sequence of numbers on one line | |
4025 | separated by blanks, encoding them as follows: | |
4026 | ||
4c4b4cd2 | 4027 | + A choice of 0 means to cancel the selection, throwing an error. |
14f9c5c9 AS |
4028 | + If IS_ALL_CHOICE, a choice of 1 selects the entire set 0 .. N_CHOICES-1. |
4029 | + The user chooses k by typing k+IS_ALL_CHOICE+1. | |
4030 | ||
4c4b4cd2 | 4031 | The user is not allowed to choose more than MAX_RESULTS values. |
14f9c5c9 AS |
4032 | |
4033 | ANNOTATION_SUFFIX, if present, is used to annotate the input | |
4c4b4cd2 | 4034 | prompts (for use with the -f switch). */ |
14f9c5c9 AS |
4035 | |
4036 | int | |
d2e4a39e | 4037 | get_selections (int *choices, int n_choices, int max_results, |
a121b7c1 | 4038 | int is_all_choice, const char *annotation_suffix) |
14f9c5c9 | 4039 | { |
d2e4a39e | 4040 | char *args; |
a121b7c1 | 4041 | const char *prompt; |
14f9c5c9 AS |
4042 | int n_chosen; |
4043 | int first_choice = is_all_choice ? 2 : 1; | |
d2e4a39e | 4044 | |
14f9c5c9 AS |
4045 | prompt = getenv ("PS2"); |
4046 | if (prompt == NULL) | |
0bcd0149 | 4047 | prompt = "> "; |
14f9c5c9 | 4048 | |
0bcd0149 | 4049 | args = command_line_input (prompt, 0, annotation_suffix); |
d2e4a39e | 4050 | |
14f9c5c9 | 4051 | if (args == NULL) |
323e0a4a | 4052 | error_no_arg (_("one or more choice numbers")); |
14f9c5c9 AS |
4053 | |
4054 | n_chosen = 0; | |
76a01679 | 4055 | |
4c4b4cd2 PH |
4056 | /* Set choices[0 .. n_chosen-1] to the users' choices in ascending |
4057 | order, as given in args. Choices are validated. */ | |
14f9c5c9 AS |
4058 | while (1) |
4059 | { | |
d2e4a39e | 4060 | char *args2; |
14f9c5c9 AS |
4061 | int choice, j; |
4062 | ||
0fcd72ba | 4063 | args = skip_spaces (args); |
14f9c5c9 | 4064 | if (*args == '\0' && n_chosen == 0) |
323e0a4a | 4065 | error_no_arg (_("one or more choice numbers")); |
14f9c5c9 | 4066 | else if (*args == '\0') |
4c4b4cd2 | 4067 | break; |
14f9c5c9 AS |
4068 | |
4069 | choice = strtol (args, &args2, 10); | |
d2e4a39e | 4070 | if (args == args2 || choice < 0 |
4c4b4cd2 | 4071 | || choice > n_choices + first_choice - 1) |
323e0a4a | 4072 | error (_("Argument must be choice number")); |
14f9c5c9 AS |
4073 | args = args2; |
4074 | ||
d2e4a39e | 4075 | if (choice == 0) |
323e0a4a | 4076 | error (_("cancelled")); |
14f9c5c9 AS |
4077 | |
4078 | if (choice < first_choice) | |
4c4b4cd2 PH |
4079 | { |
4080 | n_chosen = n_choices; | |
4081 | for (j = 0; j < n_choices; j += 1) | |
4082 | choices[j] = j; | |
4083 | break; | |
4084 | } | |
14f9c5c9 AS |
4085 | choice -= first_choice; |
4086 | ||
d2e4a39e | 4087 | for (j = n_chosen - 1; j >= 0 && choice < choices[j]; j -= 1) |
4c4b4cd2 PH |
4088 | { |
4089 | } | |
14f9c5c9 AS |
4090 | |
4091 | if (j < 0 || choice != choices[j]) | |
4c4b4cd2 PH |
4092 | { |
4093 | int k; | |
5b4ee69b | 4094 | |
4c4b4cd2 PH |
4095 | for (k = n_chosen - 1; k > j; k -= 1) |
4096 | choices[k + 1] = choices[k]; | |
4097 | choices[j + 1] = choice; | |
4098 | n_chosen += 1; | |
4099 | } | |
14f9c5c9 AS |
4100 | } |
4101 | ||
4102 | if (n_chosen > max_results) | |
323e0a4a | 4103 | error (_("Select no more than %d of the above"), max_results); |
d2e4a39e | 4104 | |
14f9c5c9 AS |
4105 | return n_chosen; |
4106 | } | |
4107 | ||
4c4b4cd2 PH |
4108 | /* Replace the operator of length OPLEN at position PC in *EXPP with a call |
4109 | on the function identified by SYM and BLOCK, and taking NARGS | |
4110 | arguments. Update *EXPP as needed to hold more space. */ | |
14f9c5c9 AS |
4111 | |
4112 | static void | |
d2e4a39e | 4113 | replace_operator_with_call (struct expression **expp, int pc, int nargs, |
4c4b4cd2 | 4114 | int oplen, struct symbol *sym, |
270140bd | 4115 | const struct block *block) |
14f9c5c9 AS |
4116 | { |
4117 | /* A new expression, with 6 more elements (3 for funcall, 4 for function | |
4c4b4cd2 | 4118 | symbol, -oplen for operator being replaced). */ |
d2e4a39e | 4119 | struct expression *newexp = (struct expression *) |
8c1a34e7 | 4120 | xzalloc (sizeof (struct expression) |
4c4b4cd2 | 4121 | + EXP_ELEM_TO_BYTES ((*expp)->nelts + 7 - oplen)); |
d2e4a39e | 4122 | struct expression *exp = *expp; |
14f9c5c9 AS |
4123 | |
4124 | newexp->nelts = exp->nelts + 7 - oplen; | |
4125 | newexp->language_defn = exp->language_defn; | |
3489610d | 4126 | newexp->gdbarch = exp->gdbarch; |
14f9c5c9 | 4127 | memcpy (newexp->elts, exp->elts, EXP_ELEM_TO_BYTES (pc)); |
d2e4a39e | 4128 | memcpy (newexp->elts + pc + 7, exp->elts + pc + oplen, |
4c4b4cd2 | 4129 | EXP_ELEM_TO_BYTES (exp->nelts - pc - oplen)); |
14f9c5c9 AS |
4130 | |
4131 | newexp->elts[pc].opcode = newexp->elts[pc + 2].opcode = OP_FUNCALL; | |
4132 | newexp->elts[pc + 1].longconst = (LONGEST) nargs; | |
4133 | ||
4134 | newexp->elts[pc + 3].opcode = newexp->elts[pc + 6].opcode = OP_VAR_VALUE; | |
4135 | newexp->elts[pc + 4].block = block; | |
4136 | newexp->elts[pc + 5].symbol = sym; | |
4137 | ||
4138 | *expp = newexp; | |
aacb1f0a | 4139 | xfree (exp); |
d2e4a39e | 4140 | } |
14f9c5c9 AS |
4141 | |
4142 | /* Type-class predicates */ | |
4143 | ||
4c4b4cd2 PH |
4144 | /* True iff TYPE is numeric (i.e., an INT, RANGE (of numeric type), |
4145 | or FLOAT). */ | |
14f9c5c9 AS |
4146 | |
4147 | static int | |
d2e4a39e | 4148 | numeric_type_p (struct type *type) |
14f9c5c9 AS |
4149 | { |
4150 | if (type == NULL) | |
4151 | return 0; | |
d2e4a39e AS |
4152 | else |
4153 | { | |
4154 | switch (TYPE_CODE (type)) | |
4c4b4cd2 PH |
4155 | { |
4156 | case TYPE_CODE_INT: | |
4157 | case TYPE_CODE_FLT: | |
4158 | return 1; | |
4159 | case TYPE_CODE_RANGE: | |
4160 | return (type == TYPE_TARGET_TYPE (type) | |
4161 | || numeric_type_p (TYPE_TARGET_TYPE (type))); | |
4162 | default: | |
4163 | return 0; | |
4164 | } | |
d2e4a39e | 4165 | } |
14f9c5c9 AS |
4166 | } |
4167 | ||
4c4b4cd2 | 4168 | /* True iff TYPE is integral (an INT or RANGE of INTs). */ |
14f9c5c9 AS |
4169 | |
4170 | static int | |
d2e4a39e | 4171 | integer_type_p (struct type *type) |
14f9c5c9 AS |
4172 | { |
4173 | if (type == NULL) | |
4174 | return 0; | |
d2e4a39e AS |
4175 | else |
4176 | { | |
4177 | switch (TYPE_CODE (type)) | |
4c4b4cd2 PH |
4178 | { |
4179 | case TYPE_CODE_INT: | |
4180 | return 1; | |
4181 | case TYPE_CODE_RANGE: | |
4182 | return (type == TYPE_TARGET_TYPE (type) | |
4183 | || integer_type_p (TYPE_TARGET_TYPE (type))); | |
4184 | default: | |
4185 | return 0; | |
4186 | } | |
d2e4a39e | 4187 | } |
14f9c5c9 AS |
4188 | } |
4189 | ||
4c4b4cd2 | 4190 | /* True iff TYPE is scalar (INT, RANGE, FLOAT, ENUM). */ |
14f9c5c9 AS |
4191 | |
4192 | static int | |
d2e4a39e | 4193 | scalar_type_p (struct type *type) |
14f9c5c9 AS |
4194 | { |
4195 | if (type == NULL) | |
4196 | return 0; | |
d2e4a39e AS |
4197 | else |
4198 | { | |
4199 | switch (TYPE_CODE (type)) | |
4c4b4cd2 PH |
4200 | { |
4201 | case TYPE_CODE_INT: | |
4202 | case TYPE_CODE_RANGE: | |
4203 | case TYPE_CODE_ENUM: | |
4204 | case TYPE_CODE_FLT: | |
4205 | return 1; | |
4206 | default: | |
4207 | return 0; | |
4208 | } | |
d2e4a39e | 4209 | } |
14f9c5c9 AS |
4210 | } |
4211 | ||
4c4b4cd2 | 4212 | /* True iff TYPE is discrete (INT, RANGE, ENUM). */ |
14f9c5c9 AS |
4213 | |
4214 | static int | |
d2e4a39e | 4215 | discrete_type_p (struct type *type) |
14f9c5c9 AS |
4216 | { |
4217 | if (type == NULL) | |
4218 | return 0; | |
d2e4a39e AS |
4219 | else |
4220 | { | |
4221 | switch (TYPE_CODE (type)) | |
4c4b4cd2 PH |
4222 | { |
4223 | case TYPE_CODE_INT: | |
4224 | case TYPE_CODE_RANGE: | |
4225 | case TYPE_CODE_ENUM: | |
872f0337 | 4226 | case TYPE_CODE_BOOL: |
4c4b4cd2 PH |
4227 | return 1; |
4228 | default: | |
4229 | return 0; | |
4230 | } | |
d2e4a39e | 4231 | } |
14f9c5c9 AS |
4232 | } |
4233 | ||
4c4b4cd2 PH |
4234 | /* Returns non-zero if OP with operands in the vector ARGS could be |
4235 | a user-defined function. Errs on the side of pre-defined operators | |
4236 | (i.e., result 0). */ | |
14f9c5c9 AS |
4237 | |
4238 | static int | |
d2e4a39e | 4239 | possible_user_operator_p (enum exp_opcode op, struct value *args[]) |
14f9c5c9 | 4240 | { |
76a01679 | 4241 | struct type *type0 = |
df407dfe | 4242 | (args[0] == NULL) ? NULL : ada_check_typedef (value_type (args[0])); |
d2e4a39e | 4243 | struct type *type1 = |
df407dfe | 4244 | (args[1] == NULL) ? NULL : ada_check_typedef (value_type (args[1])); |
d2e4a39e | 4245 | |
4c4b4cd2 PH |
4246 | if (type0 == NULL) |
4247 | return 0; | |
4248 | ||
14f9c5c9 AS |
4249 | switch (op) |
4250 | { | |
4251 | default: | |
4252 | return 0; | |
4253 | ||
4254 | case BINOP_ADD: | |
4255 | case BINOP_SUB: | |
4256 | case BINOP_MUL: | |
4257 | case BINOP_DIV: | |
d2e4a39e | 4258 | return (!(numeric_type_p (type0) && numeric_type_p (type1))); |
14f9c5c9 AS |
4259 | |
4260 | case BINOP_REM: | |
4261 | case BINOP_MOD: | |
4262 | case BINOP_BITWISE_AND: | |
4263 | case BINOP_BITWISE_IOR: | |
4264 | case BINOP_BITWISE_XOR: | |
d2e4a39e | 4265 | return (!(integer_type_p (type0) && integer_type_p (type1))); |
14f9c5c9 AS |
4266 | |
4267 | case BINOP_EQUAL: | |
4268 | case BINOP_NOTEQUAL: | |
4269 | case BINOP_LESS: | |
4270 | case BINOP_GTR: | |
4271 | case BINOP_LEQ: | |
4272 | case BINOP_GEQ: | |
d2e4a39e | 4273 | return (!(scalar_type_p (type0) && scalar_type_p (type1))); |
14f9c5c9 AS |
4274 | |
4275 | case BINOP_CONCAT: | |
ee90b9ab | 4276 | return !ada_is_array_type (type0) || !ada_is_array_type (type1); |
14f9c5c9 AS |
4277 | |
4278 | case BINOP_EXP: | |
d2e4a39e | 4279 | return (!(numeric_type_p (type0) && integer_type_p (type1))); |
14f9c5c9 AS |
4280 | |
4281 | case UNOP_NEG: | |
4282 | case UNOP_PLUS: | |
4283 | case UNOP_LOGICAL_NOT: | |
d2e4a39e AS |
4284 | case UNOP_ABS: |
4285 | return (!numeric_type_p (type0)); | |
14f9c5c9 AS |
4286 | |
4287 | } | |
4288 | } | |
4289 | \f | |
4c4b4cd2 | 4290 | /* Renaming */ |
14f9c5c9 | 4291 | |
aeb5907d JB |
4292 | /* NOTES: |
4293 | ||
4294 | 1. In the following, we assume that a renaming type's name may | |
4295 | have an ___XD suffix. It would be nice if this went away at some | |
4296 | point. | |
4297 | 2. We handle both the (old) purely type-based representation of | |
4298 | renamings and the (new) variable-based encoding. At some point, | |
4299 | it is devoutly to be hoped that the former goes away | |
4300 | (FIXME: hilfinger-2007-07-09). | |
4301 | 3. Subprogram renamings are not implemented, although the XRS | |
4302 | suffix is recognized (FIXME: hilfinger-2007-07-09). */ | |
4303 | ||
4304 | /* If SYM encodes a renaming, | |
4305 | ||
4306 | <renaming> renames <renamed entity>, | |
4307 | ||
4308 | sets *LEN to the length of the renamed entity's name, | |
4309 | *RENAMED_ENTITY to that name (not null-terminated), and *RENAMING_EXPR to | |
4310 | the string describing the subcomponent selected from the renamed | |
0963b4bd | 4311 | entity. Returns ADA_NOT_RENAMING if SYM does not encode a renaming |
aeb5907d JB |
4312 | (in which case, the values of *RENAMED_ENTITY, *LEN, and *RENAMING_EXPR |
4313 | are undefined). Otherwise, returns a value indicating the category | |
4314 | of entity renamed: an object (ADA_OBJECT_RENAMING), exception | |
4315 | (ADA_EXCEPTION_RENAMING), package (ADA_PACKAGE_RENAMING), or | |
4316 | subprogram (ADA_SUBPROGRAM_RENAMING). Does no allocation; the | |
4317 | strings returned in *RENAMED_ENTITY and *RENAMING_EXPR should not be | |
4318 | deallocated. The values of RENAMED_ENTITY, LEN, or RENAMING_EXPR | |
4319 | may be NULL, in which case they are not assigned. | |
4320 | ||
4321 | [Currently, however, GCC does not generate subprogram renamings.] */ | |
4322 | ||
4323 | enum ada_renaming_category | |
4324 | ada_parse_renaming (struct symbol *sym, | |
4325 | const char **renamed_entity, int *len, | |
4326 | const char **renaming_expr) | |
4327 | { | |
4328 | enum ada_renaming_category kind; | |
4329 | const char *info; | |
4330 | const char *suffix; | |
4331 | ||
4332 | if (sym == NULL) | |
4333 | return ADA_NOT_RENAMING; | |
4334 | switch (SYMBOL_CLASS (sym)) | |
14f9c5c9 | 4335 | { |
aeb5907d JB |
4336 | default: |
4337 | return ADA_NOT_RENAMING; | |
4338 | case LOC_TYPEDEF: | |
4339 | return parse_old_style_renaming (SYMBOL_TYPE (sym), | |
4340 | renamed_entity, len, renaming_expr); | |
4341 | case LOC_LOCAL: | |
4342 | case LOC_STATIC: | |
4343 | case LOC_COMPUTED: | |
4344 | case LOC_OPTIMIZED_OUT: | |
4345 | info = strstr (SYMBOL_LINKAGE_NAME (sym), "___XR"); | |
4346 | if (info == NULL) | |
4347 | return ADA_NOT_RENAMING; | |
4348 | switch (info[5]) | |
4349 | { | |
4350 | case '_': | |
4351 | kind = ADA_OBJECT_RENAMING; | |
4352 | info += 6; | |
4353 | break; | |
4354 | case 'E': | |
4355 | kind = ADA_EXCEPTION_RENAMING; | |
4356 | info += 7; | |
4357 | break; | |
4358 | case 'P': | |
4359 | kind = ADA_PACKAGE_RENAMING; | |
4360 | info += 7; | |
4361 | break; | |
4362 | case 'S': | |
4363 | kind = ADA_SUBPROGRAM_RENAMING; | |
4364 | info += 7; | |
4365 | break; | |
4366 | default: | |
4367 | return ADA_NOT_RENAMING; | |
4368 | } | |
14f9c5c9 | 4369 | } |
4c4b4cd2 | 4370 | |
aeb5907d JB |
4371 | if (renamed_entity != NULL) |
4372 | *renamed_entity = info; | |
4373 | suffix = strstr (info, "___XE"); | |
4374 | if (suffix == NULL || suffix == info) | |
4375 | return ADA_NOT_RENAMING; | |
4376 | if (len != NULL) | |
4377 | *len = strlen (info) - strlen (suffix); | |
4378 | suffix += 5; | |
4379 | if (renaming_expr != NULL) | |
4380 | *renaming_expr = suffix; | |
4381 | return kind; | |
4382 | } | |
4383 | ||
4384 | /* Assuming TYPE encodes a renaming according to the old encoding in | |
4385 | exp_dbug.ads, returns details of that renaming in *RENAMED_ENTITY, | |
4386 | *LEN, and *RENAMING_EXPR, as for ada_parse_renaming, above. Returns | |
4387 | ADA_NOT_RENAMING otherwise. */ | |
4388 | static enum ada_renaming_category | |
4389 | parse_old_style_renaming (struct type *type, | |
4390 | const char **renamed_entity, int *len, | |
4391 | const char **renaming_expr) | |
4392 | { | |
4393 | enum ada_renaming_category kind; | |
4394 | const char *name; | |
4395 | const char *info; | |
4396 | const char *suffix; | |
14f9c5c9 | 4397 | |
aeb5907d JB |
4398 | if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM |
4399 | || TYPE_NFIELDS (type) != 1) | |
4400 | return ADA_NOT_RENAMING; | |
14f9c5c9 | 4401 | |
aeb5907d JB |
4402 | name = type_name_no_tag (type); |
4403 | if (name == NULL) | |
4404 | return ADA_NOT_RENAMING; | |
4405 | ||
4406 | name = strstr (name, "___XR"); | |
4407 | if (name == NULL) | |
4408 | return ADA_NOT_RENAMING; | |
4409 | switch (name[5]) | |
4410 | { | |
4411 | case '\0': | |
4412 | case '_': | |
4413 | kind = ADA_OBJECT_RENAMING; | |
4414 | break; | |
4415 | case 'E': | |
4416 | kind = ADA_EXCEPTION_RENAMING; | |
4417 | break; | |
4418 | case 'P': | |
4419 | kind = ADA_PACKAGE_RENAMING; | |
4420 | break; | |
4421 | case 'S': | |
4422 | kind = ADA_SUBPROGRAM_RENAMING; | |
4423 | break; | |
4424 | default: | |
4425 | return ADA_NOT_RENAMING; | |
4426 | } | |
14f9c5c9 | 4427 | |
aeb5907d JB |
4428 | info = TYPE_FIELD_NAME (type, 0); |
4429 | if (info == NULL) | |
4430 | return ADA_NOT_RENAMING; | |
4431 | if (renamed_entity != NULL) | |
4432 | *renamed_entity = info; | |
4433 | suffix = strstr (info, "___XE"); | |
4434 | if (renaming_expr != NULL) | |
4435 | *renaming_expr = suffix + 5; | |
4436 | if (suffix == NULL || suffix == info) | |
4437 | return ADA_NOT_RENAMING; | |
4438 | if (len != NULL) | |
4439 | *len = suffix - info; | |
4440 | return kind; | |
a5ee536b JB |
4441 | } |
4442 | ||
4443 | /* Compute the value of the given RENAMING_SYM, which is expected to | |
4444 | be a symbol encoding a renaming expression. BLOCK is the block | |
4445 | used to evaluate the renaming. */ | |
52ce6436 | 4446 | |
a5ee536b JB |
4447 | static struct value * |
4448 | ada_read_renaming_var_value (struct symbol *renaming_sym, | |
3977b71f | 4449 | const struct block *block) |
a5ee536b | 4450 | { |
bbc13ae3 | 4451 | const char *sym_name; |
a5ee536b | 4452 | |
bbc13ae3 | 4453 | sym_name = SYMBOL_LINKAGE_NAME (renaming_sym); |
4d01a485 PA |
4454 | expression_up expr = parse_exp_1 (&sym_name, 0, block, 0); |
4455 | return evaluate_expression (expr.get ()); | |
a5ee536b | 4456 | } |
14f9c5c9 | 4457 | \f |
d2e4a39e | 4458 | |
4c4b4cd2 | 4459 | /* Evaluation: Function Calls */ |
14f9c5c9 | 4460 | |
4c4b4cd2 | 4461 | /* Return an lvalue containing the value VAL. This is the identity on |
40bc484c JB |
4462 | lvalues, and otherwise has the side-effect of allocating memory |
4463 | in the inferior where a copy of the value contents is copied. */ | |
14f9c5c9 | 4464 | |
d2e4a39e | 4465 | static struct value * |
40bc484c | 4466 | ensure_lval (struct value *val) |
14f9c5c9 | 4467 | { |
40bc484c JB |
4468 | if (VALUE_LVAL (val) == not_lval |
4469 | || VALUE_LVAL (val) == lval_internalvar) | |
c3e5cd34 | 4470 | { |
df407dfe | 4471 | int len = TYPE_LENGTH (ada_check_typedef (value_type (val))); |
40bc484c JB |
4472 | const CORE_ADDR addr = |
4473 | value_as_long (value_allocate_space_in_inferior (len)); | |
c3e5cd34 | 4474 | |
a84a8a0d | 4475 | VALUE_LVAL (val) = lval_memory; |
1a088441 | 4476 | set_value_address (val, addr); |
40bc484c | 4477 | write_memory (addr, value_contents (val), len); |
c3e5cd34 | 4478 | } |
14f9c5c9 AS |
4479 | |
4480 | return val; | |
4481 | } | |
4482 | ||
4483 | /* Return the value ACTUAL, converted to be an appropriate value for a | |
4484 | formal of type FORMAL_TYPE. Use *SP as a stack pointer for | |
4485 | allocating any necessary descriptors (fat pointers), or copies of | |
4c4b4cd2 | 4486 | values not residing in memory, updating it as needed. */ |
14f9c5c9 | 4487 | |
a93c0eb6 | 4488 | struct value * |
40bc484c | 4489 | ada_convert_actual (struct value *actual, struct type *formal_type0) |
14f9c5c9 | 4490 | { |
df407dfe | 4491 | struct type *actual_type = ada_check_typedef (value_type (actual)); |
61ee279c | 4492 | struct type *formal_type = ada_check_typedef (formal_type0); |
d2e4a39e AS |
4493 | struct type *formal_target = |
4494 | TYPE_CODE (formal_type) == TYPE_CODE_PTR | |
61ee279c | 4495 | ? ada_check_typedef (TYPE_TARGET_TYPE (formal_type)) : formal_type; |
d2e4a39e AS |
4496 | struct type *actual_target = |
4497 | TYPE_CODE (actual_type) == TYPE_CODE_PTR | |
61ee279c | 4498 | ? ada_check_typedef (TYPE_TARGET_TYPE (actual_type)) : actual_type; |
14f9c5c9 | 4499 | |
4c4b4cd2 | 4500 | if (ada_is_array_descriptor_type (formal_target) |
14f9c5c9 | 4501 | && TYPE_CODE (actual_target) == TYPE_CODE_ARRAY) |
40bc484c | 4502 | return make_array_descriptor (formal_type, actual); |
a84a8a0d JB |
4503 | else if (TYPE_CODE (formal_type) == TYPE_CODE_PTR |
4504 | || TYPE_CODE (formal_type) == TYPE_CODE_REF) | |
14f9c5c9 | 4505 | { |
a84a8a0d | 4506 | struct value *result; |
5b4ee69b | 4507 | |
14f9c5c9 | 4508 | if (TYPE_CODE (formal_target) == TYPE_CODE_ARRAY |
4c4b4cd2 | 4509 | && ada_is_array_descriptor_type (actual_target)) |
a84a8a0d | 4510 | result = desc_data (actual); |
14f9c5c9 | 4511 | else if (TYPE_CODE (actual_type) != TYPE_CODE_PTR) |
4c4b4cd2 PH |
4512 | { |
4513 | if (VALUE_LVAL (actual) != lval_memory) | |
4514 | { | |
4515 | struct value *val; | |
5b4ee69b | 4516 | |
df407dfe | 4517 | actual_type = ada_check_typedef (value_type (actual)); |
4c4b4cd2 | 4518 | val = allocate_value (actual_type); |
990a07ab | 4519 | memcpy ((char *) value_contents_raw (val), |
0fd88904 | 4520 | (char *) value_contents (actual), |
4c4b4cd2 | 4521 | TYPE_LENGTH (actual_type)); |
40bc484c | 4522 | actual = ensure_lval (val); |
4c4b4cd2 | 4523 | } |
a84a8a0d | 4524 | result = value_addr (actual); |
4c4b4cd2 | 4525 | } |
a84a8a0d JB |
4526 | else |
4527 | return actual; | |
b1af9e97 | 4528 | return value_cast_pointers (formal_type, result, 0); |
14f9c5c9 AS |
4529 | } |
4530 | else if (TYPE_CODE (actual_type) == TYPE_CODE_PTR) | |
4531 | return ada_value_ind (actual); | |
8344af1e JB |
4532 | else if (ada_is_aligner_type (formal_type)) |
4533 | { | |
4534 | /* We need to turn this parameter into an aligner type | |
4535 | as well. */ | |
4536 | struct value *aligner = allocate_value (formal_type); | |
4537 | struct value *component = ada_value_struct_elt (aligner, "F", 0); | |
4538 | ||
4539 | value_assign_to_component (aligner, component, actual); | |
4540 | return aligner; | |
4541 | } | |
14f9c5c9 AS |
4542 | |
4543 | return actual; | |
4544 | } | |
4545 | ||
438c98a1 JB |
4546 | /* Convert VALUE (which must be an address) to a CORE_ADDR that is a pointer of |
4547 | type TYPE. This is usually an inefficient no-op except on some targets | |
4548 | (such as AVR) where the representation of a pointer and an address | |
4549 | differs. */ | |
4550 | ||
4551 | static CORE_ADDR | |
4552 | value_pointer (struct value *value, struct type *type) | |
4553 | { | |
4554 | struct gdbarch *gdbarch = get_type_arch (type); | |
4555 | unsigned len = TYPE_LENGTH (type); | |
224c3ddb | 4556 | gdb_byte *buf = (gdb_byte *) alloca (len); |
438c98a1 JB |
4557 | CORE_ADDR addr; |
4558 | ||
4559 | addr = value_address (value); | |
4560 | gdbarch_address_to_pointer (gdbarch, type, buf, addr); | |
4561 | addr = extract_unsigned_integer (buf, len, gdbarch_byte_order (gdbarch)); | |
4562 | return addr; | |
4563 | } | |
4564 | ||
14f9c5c9 | 4565 | |
4c4b4cd2 PH |
4566 | /* Push a descriptor of type TYPE for array value ARR on the stack at |
4567 | *SP, updating *SP to reflect the new descriptor. Return either | |
14f9c5c9 | 4568 | an lvalue representing the new descriptor, or (if TYPE is a pointer- |
4c4b4cd2 PH |
4569 | to-descriptor type rather than a descriptor type), a struct value * |
4570 | representing a pointer to this descriptor. */ | |
14f9c5c9 | 4571 | |
d2e4a39e | 4572 | static struct value * |
40bc484c | 4573 | make_array_descriptor (struct type *type, struct value *arr) |
14f9c5c9 | 4574 | { |
d2e4a39e AS |
4575 | struct type *bounds_type = desc_bounds_type (type); |
4576 | struct type *desc_type = desc_base_type (type); | |
4577 | struct value *descriptor = allocate_value (desc_type); | |
4578 | struct value *bounds = allocate_value (bounds_type); | |
14f9c5c9 | 4579 | int i; |
d2e4a39e | 4580 | |
0963b4bd MS |
4581 | for (i = ada_array_arity (ada_check_typedef (value_type (arr))); |
4582 | i > 0; i -= 1) | |
14f9c5c9 | 4583 | { |
19f220c3 JK |
4584 | modify_field (value_type (bounds), value_contents_writeable (bounds), |
4585 | ada_array_bound (arr, i, 0), | |
4586 | desc_bound_bitpos (bounds_type, i, 0), | |
4587 | desc_bound_bitsize (bounds_type, i, 0)); | |
4588 | modify_field (value_type (bounds), value_contents_writeable (bounds), | |
4589 | ada_array_bound (arr, i, 1), | |
4590 | desc_bound_bitpos (bounds_type, i, 1), | |
4591 | desc_bound_bitsize (bounds_type, i, 1)); | |
14f9c5c9 | 4592 | } |
d2e4a39e | 4593 | |
40bc484c | 4594 | bounds = ensure_lval (bounds); |
d2e4a39e | 4595 | |
19f220c3 JK |
4596 | modify_field (value_type (descriptor), |
4597 | value_contents_writeable (descriptor), | |
4598 | value_pointer (ensure_lval (arr), | |
4599 | TYPE_FIELD_TYPE (desc_type, 0)), | |
4600 | fat_pntr_data_bitpos (desc_type), | |
4601 | fat_pntr_data_bitsize (desc_type)); | |
4602 | ||
4603 | modify_field (value_type (descriptor), | |
4604 | value_contents_writeable (descriptor), | |
4605 | value_pointer (bounds, | |
4606 | TYPE_FIELD_TYPE (desc_type, 1)), | |
4607 | fat_pntr_bounds_bitpos (desc_type), | |
4608 | fat_pntr_bounds_bitsize (desc_type)); | |
14f9c5c9 | 4609 | |
40bc484c | 4610 | descriptor = ensure_lval (descriptor); |
14f9c5c9 AS |
4611 | |
4612 | if (TYPE_CODE (type) == TYPE_CODE_PTR) | |
4613 | return value_addr (descriptor); | |
4614 | else | |
4615 | return descriptor; | |
4616 | } | |
14f9c5c9 | 4617 | \f |
3d9434b5 JB |
4618 | /* Symbol Cache Module */ |
4619 | ||
3d9434b5 | 4620 | /* Performance measurements made as of 2010-01-15 indicate that |
ee01b665 | 4621 | this cache does bring some noticeable improvements. Depending |
3d9434b5 JB |
4622 | on the type of entity being printed, the cache can make it as much |
4623 | as an order of magnitude faster than without it. | |
4624 | ||
4625 | The descriptive type DWARF extension has significantly reduced | |
4626 | the need for this cache, at least when DWARF is being used. However, | |
4627 | even in this case, some expensive name-based symbol searches are still | |
4628 | sometimes necessary - to find an XVZ variable, mostly. */ | |
4629 | ||
ee01b665 | 4630 | /* Initialize the contents of SYM_CACHE. */ |
3d9434b5 | 4631 | |
ee01b665 JB |
4632 | static void |
4633 | ada_init_symbol_cache (struct ada_symbol_cache *sym_cache) | |
4634 | { | |
4635 | obstack_init (&sym_cache->cache_space); | |
4636 | memset (sym_cache->root, '\000', sizeof (sym_cache->root)); | |
4637 | } | |
3d9434b5 | 4638 | |
ee01b665 JB |
4639 | /* Free the memory used by SYM_CACHE. */ |
4640 | ||
4641 | static void | |
4642 | ada_free_symbol_cache (struct ada_symbol_cache *sym_cache) | |
3d9434b5 | 4643 | { |
ee01b665 JB |
4644 | obstack_free (&sym_cache->cache_space, NULL); |
4645 | xfree (sym_cache); | |
4646 | } | |
3d9434b5 | 4647 | |
ee01b665 JB |
4648 | /* Return the symbol cache associated to the given program space PSPACE. |
4649 | If not allocated for this PSPACE yet, allocate and initialize one. */ | |
3d9434b5 | 4650 | |
ee01b665 JB |
4651 | static struct ada_symbol_cache * |
4652 | ada_get_symbol_cache (struct program_space *pspace) | |
4653 | { | |
4654 | struct ada_pspace_data *pspace_data = get_ada_pspace_data (pspace); | |
ee01b665 | 4655 | |
66c168ae | 4656 | if (pspace_data->sym_cache == NULL) |
ee01b665 | 4657 | { |
66c168ae JB |
4658 | pspace_data->sym_cache = XCNEW (struct ada_symbol_cache); |
4659 | ada_init_symbol_cache (pspace_data->sym_cache); | |
ee01b665 JB |
4660 | } |
4661 | ||
66c168ae | 4662 | return pspace_data->sym_cache; |
ee01b665 | 4663 | } |
3d9434b5 JB |
4664 | |
4665 | /* Clear all entries from the symbol cache. */ | |
4666 | ||
4667 | static void | |
4668 | ada_clear_symbol_cache (void) | |
4669 | { | |
ee01b665 JB |
4670 | struct ada_symbol_cache *sym_cache |
4671 | = ada_get_symbol_cache (current_program_space); | |
4672 | ||
4673 | obstack_free (&sym_cache->cache_space, NULL); | |
4674 | ada_init_symbol_cache (sym_cache); | |
3d9434b5 JB |
4675 | } |
4676 | ||
fe978cb0 | 4677 | /* Search our cache for an entry matching NAME and DOMAIN. |
3d9434b5 JB |
4678 | Return it if found, or NULL otherwise. */ |
4679 | ||
4680 | static struct cache_entry ** | |
fe978cb0 | 4681 | find_entry (const char *name, domain_enum domain) |
3d9434b5 | 4682 | { |
ee01b665 JB |
4683 | struct ada_symbol_cache *sym_cache |
4684 | = ada_get_symbol_cache (current_program_space); | |
3d9434b5 JB |
4685 | int h = msymbol_hash (name) % HASH_SIZE; |
4686 | struct cache_entry **e; | |
4687 | ||
ee01b665 | 4688 | for (e = &sym_cache->root[h]; *e != NULL; e = &(*e)->next) |
3d9434b5 | 4689 | { |
fe978cb0 | 4690 | if (domain == (*e)->domain && strcmp (name, (*e)->name) == 0) |
3d9434b5 JB |
4691 | return e; |
4692 | } | |
4693 | return NULL; | |
4694 | } | |
4695 | ||
fe978cb0 | 4696 | /* Search the symbol cache for an entry matching NAME and DOMAIN. |
3d9434b5 JB |
4697 | Return 1 if found, 0 otherwise. |
4698 | ||
4699 | If an entry was found and SYM is not NULL, set *SYM to the entry's | |
4700 | SYM. Same principle for BLOCK if not NULL. */ | |
96d887e8 | 4701 | |
96d887e8 | 4702 | static int |
fe978cb0 | 4703 | lookup_cached_symbol (const char *name, domain_enum domain, |
f0c5f9b2 | 4704 | struct symbol **sym, const struct block **block) |
96d887e8 | 4705 | { |
fe978cb0 | 4706 | struct cache_entry **e = find_entry (name, domain); |
3d9434b5 JB |
4707 | |
4708 | if (e == NULL) | |
4709 | return 0; | |
4710 | if (sym != NULL) | |
4711 | *sym = (*e)->sym; | |
4712 | if (block != NULL) | |
4713 | *block = (*e)->block; | |
4714 | return 1; | |
96d887e8 PH |
4715 | } |
4716 | ||
3d9434b5 | 4717 | /* Assuming that (SYM, BLOCK) is the result of the lookup of NAME |
fe978cb0 | 4718 | in domain DOMAIN, save this result in our symbol cache. */ |
3d9434b5 | 4719 | |
96d887e8 | 4720 | static void |
fe978cb0 | 4721 | cache_symbol (const char *name, domain_enum domain, struct symbol *sym, |
270140bd | 4722 | const struct block *block) |
96d887e8 | 4723 | { |
ee01b665 JB |
4724 | struct ada_symbol_cache *sym_cache |
4725 | = ada_get_symbol_cache (current_program_space); | |
3d9434b5 JB |
4726 | int h; |
4727 | char *copy; | |
4728 | struct cache_entry *e; | |
4729 | ||
1994afbf DE |
4730 | /* Symbols for builtin types don't have a block. |
4731 | For now don't cache such symbols. */ | |
4732 | if (sym != NULL && !SYMBOL_OBJFILE_OWNED (sym)) | |
4733 | return; | |
4734 | ||
3d9434b5 JB |
4735 | /* If the symbol is a local symbol, then do not cache it, as a search |
4736 | for that symbol depends on the context. To determine whether | |
4737 | the symbol is local or not, we check the block where we found it | |
4738 | against the global and static blocks of its associated symtab. */ | |
4739 | if (sym | |
08be3fe3 | 4740 | && BLOCKVECTOR_BLOCK (SYMTAB_BLOCKVECTOR (symbol_symtab (sym)), |
439247b6 | 4741 | GLOBAL_BLOCK) != block |
08be3fe3 | 4742 | && BLOCKVECTOR_BLOCK (SYMTAB_BLOCKVECTOR (symbol_symtab (sym)), |
439247b6 | 4743 | STATIC_BLOCK) != block) |
3d9434b5 JB |
4744 | return; |
4745 | ||
4746 | h = msymbol_hash (name) % HASH_SIZE; | |
ee01b665 JB |
4747 | e = (struct cache_entry *) obstack_alloc (&sym_cache->cache_space, |
4748 | sizeof (*e)); | |
4749 | e->next = sym_cache->root[h]; | |
4750 | sym_cache->root[h] = e; | |
224c3ddb SM |
4751 | e->name = copy |
4752 | = (char *) obstack_alloc (&sym_cache->cache_space, strlen (name) + 1); | |
3d9434b5 JB |
4753 | strcpy (copy, name); |
4754 | e->sym = sym; | |
fe978cb0 | 4755 | e->domain = domain; |
3d9434b5 | 4756 | e->block = block; |
96d887e8 | 4757 | } |
4c4b4cd2 PH |
4758 | \f |
4759 | /* Symbol Lookup */ | |
4760 | ||
c0431670 JB |
4761 | /* Return nonzero if wild matching should be used when searching for |
4762 | all symbols matching LOOKUP_NAME. | |
4763 | ||
4764 | LOOKUP_NAME is expected to be a symbol name after transformation | |
4765 | for Ada lookups (see ada_name_for_lookup). */ | |
4766 | ||
4767 | static int | |
4768 | should_use_wild_match (const char *lookup_name) | |
4769 | { | |
4770 | return (strstr (lookup_name, "__") == NULL); | |
4771 | } | |
4772 | ||
4c4b4cd2 PH |
4773 | /* Return the result of a standard (literal, C-like) lookup of NAME in |
4774 | given DOMAIN, visible from lexical block BLOCK. */ | |
4775 | ||
4776 | static struct symbol * | |
4777 | standard_lookup (const char *name, const struct block *block, | |
4778 | domain_enum domain) | |
4779 | { | |
acbd605d | 4780 | /* Initialize it just to avoid a GCC false warning. */ |
d12307c1 | 4781 | struct block_symbol sym = {NULL, NULL}; |
4c4b4cd2 | 4782 | |
d12307c1 PMR |
4783 | if (lookup_cached_symbol (name, domain, &sym.symbol, NULL)) |
4784 | return sym.symbol; | |
2570f2b7 | 4785 | sym = lookup_symbol_in_language (name, block, domain, language_c, 0); |
d12307c1 PMR |
4786 | cache_symbol (name, domain, sym.symbol, sym.block); |
4787 | return sym.symbol; | |
4c4b4cd2 PH |
4788 | } |
4789 | ||
4790 | ||
4791 | /* Non-zero iff there is at least one non-function/non-enumeral symbol | |
4792 | in the symbol fields of SYMS[0..N-1]. We treat enumerals as functions, | |
4793 | since they contend in overloading in the same way. */ | |
4794 | static int | |
d12307c1 | 4795 | is_nonfunction (struct block_symbol syms[], int n) |
4c4b4cd2 PH |
4796 | { |
4797 | int i; | |
4798 | ||
4799 | for (i = 0; i < n; i += 1) | |
d12307c1 PMR |
4800 | if (TYPE_CODE (SYMBOL_TYPE (syms[i].symbol)) != TYPE_CODE_FUNC |
4801 | && (TYPE_CODE (SYMBOL_TYPE (syms[i].symbol)) != TYPE_CODE_ENUM | |
4802 | || SYMBOL_CLASS (syms[i].symbol) != LOC_CONST)) | |
14f9c5c9 AS |
4803 | return 1; |
4804 | ||
4805 | return 0; | |
4806 | } | |
4807 | ||
4808 | /* If true (non-zero), then TYPE0 and TYPE1 represent equivalent | |
4c4b4cd2 | 4809 | struct types. Otherwise, they may not. */ |
14f9c5c9 AS |
4810 | |
4811 | static int | |
d2e4a39e | 4812 | equiv_types (struct type *type0, struct type *type1) |
14f9c5c9 | 4813 | { |
d2e4a39e | 4814 | if (type0 == type1) |
14f9c5c9 | 4815 | return 1; |
d2e4a39e | 4816 | if (type0 == NULL || type1 == NULL |
14f9c5c9 AS |
4817 | || TYPE_CODE (type0) != TYPE_CODE (type1)) |
4818 | return 0; | |
d2e4a39e | 4819 | if ((TYPE_CODE (type0) == TYPE_CODE_STRUCT |
14f9c5c9 AS |
4820 | || TYPE_CODE (type0) == TYPE_CODE_ENUM) |
4821 | && ada_type_name (type0) != NULL && ada_type_name (type1) != NULL | |
4c4b4cd2 | 4822 | && strcmp (ada_type_name (type0), ada_type_name (type1)) == 0) |
14f9c5c9 | 4823 | return 1; |
d2e4a39e | 4824 | |
14f9c5c9 AS |
4825 | return 0; |
4826 | } | |
4827 | ||
4828 | /* True iff SYM0 represents the same entity as SYM1, or one that is | |
4c4b4cd2 | 4829 | no more defined than that of SYM1. */ |
14f9c5c9 AS |
4830 | |
4831 | static int | |
d2e4a39e | 4832 | lesseq_defined_than (struct symbol *sym0, struct symbol *sym1) |
14f9c5c9 AS |
4833 | { |
4834 | if (sym0 == sym1) | |
4835 | return 1; | |
176620f1 | 4836 | if (SYMBOL_DOMAIN (sym0) != SYMBOL_DOMAIN (sym1) |
14f9c5c9 AS |
4837 | || SYMBOL_CLASS (sym0) != SYMBOL_CLASS (sym1)) |
4838 | return 0; | |
4839 | ||
d2e4a39e | 4840 | switch (SYMBOL_CLASS (sym0)) |
14f9c5c9 AS |
4841 | { |
4842 | case LOC_UNDEF: | |
4843 | return 1; | |
4844 | case LOC_TYPEDEF: | |
4845 | { | |
4c4b4cd2 PH |
4846 | struct type *type0 = SYMBOL_TYPE (sym0); |
4847 | struct type *type1 = SYMBOL_TYPE (sym1); | |
0d5cff50 DE |
4848 | const char *name0 = SYMBOL_LINKAGE_NAME (sym0); |
4849 | const char *name1 = SYMBOL_LINKAGE_NAME (sym1); | |
4c4b4cd2 | 4850 | int len0 = strlen (name0); |
5b4ee69b | 4851 | |
4c4b4cd2 PH |
4852 | return |
4853 | TYPE_CODE (type0) == TYPE_CODE (type1) | |
4854 | && (equiv_types (type0, type1) | |
4855 | || (len0 < strlen (name1) && strncmp (name0, name1, len0) == 0 | |
61012eef | 4856 | && startswith (name1 + len0, "___XV"))); |
14f9c5c9 AS |
4857 | } |
4858 | case LOC_CONST: | |
4859 | return SYMBOL_VALUE (sym0) == SYMBOL_VALUE (sym1) | |
4c4b4cd2 | 4860 | && equiv_types (SYMBOL_TYPE (sym0), SYMBOL_TYPE (sym1)); |
d2e4a39e AS |
4861 | default: |
4862 | return 0; | |
14f9c5c9 AS |
4863 | } |
4864 | } | |
4865 | ||
d12307c1 | 4866 | /* Append (SYM,BLOCK,SYMTAB) to the end of the array of struct block_symbol |
4c4b4cd2 | 4867 | records in OBSTACKP. Do nothing if SYM is a duplicate. */ |
14f9c5c9 AS |
4868 | |
4869 | static void | |
76a01679 JB |
4870 | add_defn_to_vec (struct obstack *obstackp, |
4871 | struct symbol *sym, | |
f0c5f9b2 | 4872 | const struct block *block) |
14f9c5c9 AS |
4873 | { |
4874 | int i; | |
d12307c1 | 4875 | struct block_symbol *prevDefns = defns_collected (obstackp, 0); |
14f9c5c9 | 4876 | |
529cad9c PH |
4877 | /* Do not try to complete stub types, as the debugger is probably |
4878 | already scanning all symbols matching a certain name at the | |
4879 | time when this function is called. Trying to replace the stub | |
4880 | type by its associated full type will cause us to restart a scan | |
4881 | which may lead to an infinite recursion. Instead, the client | |
4882 | collecting the matching symbols will end up collecting several | |
4883 | matches, with at least one of them complete. It can then filter | |
4884 | out the stub ones if needed. */ | |
4885 | ||
4c4b4cd2 PH |
4886 | for (i = num_defns_collected (obstackp) - 1; i >= 0; i -= 1) |
4887 | { | |
d12307c1 | 4888 | if (lesseq_defined_than (sym, prevDefns[i].symbol)) |
4c4b4cd2 | 4889 | return; |
d12307c1 | 4890 | else if (lesseq_defined_than (prevDefns[i].symbol, sym)) |
4c4b4cd2 | 4891 | { |
d12307c1 | 4892 | prevDefns[i].symbol = sym; |
4c4b4cd2 | 4893 | prevDefns[i].block = block; |
4c4b4cd2 | 4894 | return; |
76a01679 | 4895 | } |
4c4b4cd2 PH |
4896 | } |
4897 | ||
4898 | { | |
d12307c1 | 4899 | struct block_symbol info; |
4c4b4cd2 | 4900 | |
d12307c1 | 4901 | info.symbol = sym; |
4c4b4cd2 | 4902 | info.block = block; |
d12307c1 | 4903 | obstack_grow (obstackp, &info, sizeof (struct block_symbol)); |
4c4b4cd2 PH |
4904 | } |
4905 | } | |
4906 | ||
d12307c1 PMR |
4907 | /* Number of block_symbol structures currently collected in current vector in |
4908 | OBSTACKP. */ | |
4c4b4cd2 | 4909 | |
76a01679 JB |
4910 | static int |
4911 | num_defns_collected (struct obstack *obstackp) | |
4c4b4cd2 | 4912 | { |
d12307c1 | 4913 | return obstack_object_size (obstackp) / sizeof (struct block_symbol); |
4c4b4cd2 PH |
4914 | } |
4915 | ||
d12307c1 PMR |
4916 | /* Vector of block_symbol structures currently collected in current vector in |
4917 | OBSTACKP. If FINISH, close off the vector and return its final address. */ | |
4c4b4cd2 | 4918 | |
d12307c1 | 4919 | static struct block_symbol * |
4c4b4cd2 PH |
4920 | defns_collected (struct obstack *obstackp, int finish) |
4921 | { | |
4922 | if (finish) | |
224c3ddb | 4923 | return (struct block_symbol *) obstack_finish (obstackp); |
4c4b4cd2 | 4924 | else |
d12307c1 | 4925 | return (struct block_symbol *) obstack_base (obstackp); |
4c4b4cd2 PH |
4926 | } |
4927 | ||
7c7b6655 TT |
4928 | /* Return a bound minimal symbol matching NAME according to Ada |
4929 | decoding rules. Returns an invalid symbol if there is no such | |
4930 | minimal symbol. Names prefixed with "standard__" are handled | |
4931 | specially: "standard__" is first stripped off, and only static and | |
4932 | global symbols are searched. */ | |
4c4b4cd2 | 4933 | |
7c7b6655 | 4934 | struct bound_minimal_symbol |
96d887e8 | 4935 | ada_lookup_simple_minsym (const char *name) |
4c4b4cd2 | 4936 | { |
7c7b6655 | 4937 | struct bound_minimal_symbol result; |
4c4b4cd2 | 4938 | struct objfile *objfile; |
96d887e8 | 4939 | struct minimal_symbol *msymbol; |
dc4024cd | 4940 | const int wild_match_p = should_use_wild_match (name); |
4c4b4cd2 | 4941 | |
7c7b6655 TT |
4942 | memset (&result, 0, sizeof (result)); |
4943 | ||
c0431670 JB |
4944 | /* Special case: If the user specifies a symbol name inside package |
4945 | Standard, do a non-wild matching of the symbol name without | |
4946 | the "standard__" prefix. This was primarily introduced in order | |
4947 | to allow the user to specifically access the standard exceptions | |
4948 | using, for instance, Standard.Constraint_Error when Constraint_Error | |
4949 | is ambiguous (due to the user defining its own Constraint_Error | |
4950 | entity inside its program). */ | |
61012eef | 4951 | if (startswith (name, "standard__")) |
c0431670 | 4952 | name += sizeof ("standard__") - 1; |
4c4b4cd2 | 4953 | |
96d887e8 PH |
4954 | ALL_MSYMBOLS (objfile, msymbol) |
4955 | { | |
efd66ac6 | 4956 | if (match_name (MSYMBOL_LINKAGE_NAME (msymbol), name, wild_match_p) |
96d887e8 | 4957 | && MSYMBOL_TYPE (msymbol) != mst_solib_trampoline) |
7c7b6655 TT |
4958 | { |
4959 | result.minsym = msymbol; | |
4960 | result.objfile = objfile; | |
4961 | break; | |
4962 | } | |
96d887e8 | 4963 | } |
4c4b4cd2 | 4964 | |
7c7b6655 | 4965 | return result; |
96d887e8 | 4966 | } |
4c4b4cd2 | 4967 | |
96d887e8 PH |
4968 | /* For all subprograms that statically enclose the subprogram of the |
4969 | selected frame, add symbols matching identifier NAME in DOMAIN | |
4970 | and their blocks to the list of data in OBSTACKP, as for | |
48b78332 JB |
4971 | ada_add_block_symbols (q.v.). If WILD_MATCH_P, treat as NAME |
4972 | with a wildcard prefix. */ | |
4c4b4cd2 | 4973 | |
96d887e8 PH |
4974 | static void |
4975 | add_symbols_from_enclosing_procs (struct obstack *obstackp, | |
fe978cb0 | 4976 | const char *name, domain_enum domain, |
48b78332 | 4977 | int wild_match_p) |
96d887e8 | 4978 | { |
96d887e8 | 4979 | } |
14f9c5c9 | 4980 | |
96d887e8 PH |
4981 | /* True if TYPE is definitely an artificial type supplied to a symbol |
4982 | for which no debugging information was given in the symbol file. */ | |
14f9c5c9 | 4983 | |
96d887e8 PH |
4984 | static int |
4985 | is_nondebugging_type (struct type *type) | |
4986 | { | |
0d5cff50 | 4987 | const char *name = ada_type_name (type); |
5b4ee69b | 4988 | |
96d887e8 PH |
4989 | return (name != NULL && strcmp (name, "<variable, no debug info>") == 0); |
4990 | } | |
4c4b4cd2 | 4991 | |
8f17729f JB |
4992 | /* Return nonzero if TYPE1 and TYPE2 are two enumeration types |
4993 | that are deemed "identical" for practical purposes. | |
4994 | ||
4995 | This function assumes that TYPE1 and TYPE2 are both TYPE_CODE_ENUM | |
4996 | types and that their number of enumerals is identical (in other | |
4997 | words, TYPE_NFIELDS (type1) == TYPE_NFIELDS (type2)). */ | |
4998 | ||
4999 | static int | |
5000 | ada_identical_enum_types_p (struct type *type1, struct type *type2) | |
5001 | { | |
5002 | int i; | |
5003 | ||
5004 | /* The heuristic we use here is fairly conservative. We consider | |
5005 | that 2 enumerate types are identical if they have the same | |
5006 | number of enumerals and that all enumerals have the same | |
5007 | underlying value and name. */ | |
5008 | ||
5009 | /* All enums in the type should have an identical underlying value. */ | |
5010 | for (i = 0; i < TYPE_NFIELDS (type1); i++) | |
14e75d8e | 5011 | if (TYPE_FIELD_ENUMVAL (type1, i) != TYPE_FIELD_ENUMVAL (type2, i)) |
8f17729f JB |
5012 | return 0; |
5013 | ||
5014 | /* All enumerals should also have the same name (modulo any numerical | |
5015 | suffix). */ | |
5016 | for (i = 0; i < TYPE_NFIELDS (type1); i++) | |
5017 | { | |
0d5cff50 DE |
5018 | const char *name_1 = TYPE_FIELD_NAME (type1, i); |
5019 | const char *name_2 = TYPE_FIELD_NAME (type2, i); | |
8f17729f JB |
5020 | int len_1 = strlen (name_1); |
5021 | int len_2 = strlen (name_2); | |
5022 | ||
5023 | ada_remove_trailing_digits (TYPE_FIELD_NAME (type1, i), &len_1); | |
5024 | ada_remove_trailing_digits (TYPE_FIELD_NAME (type2, i), &len_2); | |
5025 | if (len_1 != len_2 | |
5026 | || strncmp (TYPE_FIELD_NAME (type1, i), | |
5027 | TYPE_FIELD_NAME (type2, i), | |
5028 | len_1) != 0) | |
5029 | return 0; | |
5030 | } | |
5031 | ||
5032 | return 1; | |
5033 | } | |
5034 | ||
5035 | /* Return nonzero if all the symbols in SYMS are all enumeral symbols | |
5036 | that are deemed "identical" for practical purposes. Sometimes, | |
5037 | enumerals are not strictly identical, but their types are so similar | |
5038 | that they can be considered identical. | |
5039 | ||
5040 | For instance, consider the following code: | |
5041 | ||
5042 | type Color is (Black, Red, Green, Blue, White); | |
5043 | type RGB_Color is new Color range Red .. Blue; | |
5044 | ||
5045 | Type RGB_Color is a subrange of an implicit type which is a copy | |
5046 | of type Color. If we call that implicit type RGB_ColorB ("B" is | |
5047 | for "Base Type"), then type RGB_ColorB is a copy of type Color. | |
5048 | As a result, when an expression references any of the enumeral | |
5049 | by name (Eg. "print green"), the expression is technically | |
5050 | ambiguous and the user should be asked to disambiguate. But | |
5051 | doing so would only hinder the user, since it wouldn't matter | |
5052 | what choice he makes, the outcome would always be the same. | |
5053 | So, for practical purposes, we consider them as the same. */ | |
5054 | ||
5055 | static int | |
d12307c1 | 5056 | symbols_are_identical_enums (struct block_symbol *syms, int nsyms) |
8f17729f JB |
5057 | { |
5058 | int i; | |
5059 | ||
5060 | /* Before performing a thorough comparison check of each type, | |
5061 | we perform a series of inexpensive checks. We expect that these | |
5062 | checks will quickly fail in the vast majority of cases, and thus | |
5063 | help prevent the unnecessary use of a more expensive comparison. | |
5064 | Said comparison also expects us to make some of these checks | |
5065 | (see ada_identical_enum_types_p). */ | |
5066 | ||
5067 | /* Quick check: All symbols should have an enum type. */ | |
5068 | for (i = 0; i < nsyms; i++) | |
d12307c1 | 5069 | if (TYPE_CODE (SYMBOL_TYPE (syms[i].symbol)) != TYPE_CODE_ENUM) |
8f17729f JB |
5070 | return 0; |
5071 | ||
5072 | /* Quick check: They should all have the same value. */ | |
5073 | for (i = 1; i < nsyms; i++) | |
d12307c1 | 5074 | if (SYMBOL_VALUE (syms[i].symbol) != SYMBOL_VALUE (syms[0].symbol)) |
8f17729f JB |
5075 | return 0; |
5076 | ||
5077 | /* Quick check: They should all have the same number of enumerals. */ | |
5078 | for (i = 1; i < nsyms; i++) | |
d12307c1 PMR |
5079 | if (TYPE_NFIELDS (SYMBOL_TYPE (syms[i].symbol)) |
5080 | != TYPE_NFIELDS (SYMBOL_TYPE (syms[0].symbol))) | |
8f17729f JB |
5081 | return 0; |
5082 | ||
5083 | /* All the sanity checks passed, so we might have a set of | |
5084 | identical enumeration types. Perform a more complete | |
5085 | comparison of the type of each symbol. */ | |
5086 | for (i = 1; i < nsyms; i++) | |
d12307c1 PMR |
5087 | if (!ada_identical_enum_types_p (SYMBOL_TYPE (syms[i].symbol), |
5088 | SYMBOL_TYPE (syms[0].symbol))) | |
8f17729f JB |
5089 | return 0; |
5090 | ||
5091 | return 1; | |
5092 | } | |
5093 | ||
96d887e8 PH |
5094 | /* Remove any non-debugging symbols in SYMS[0 .. NSYMS-1] that definitely |
5095 | duplicate other symbols in the list (The only case I know of where | |
5096 | this happens is when object files containing stabs-in-ecoff are | |
5097 | linked with files containing ordinary ecoff debugging symbols (or no | |
5098 | debugging symbols)). Modifies SYMS to squeeze out deleted entries. | |
5099 | Returns the number of items in the modified list. */ | |
4c4b4cd2 | 5100 | |
96d887e8 | 5101 | static int |
d12307c1 | 5102 | remove_extra_symbols (struct block_symbol *syms, int nsyms) |
96d887e8 PH |
5103 | { |
5104 | int i, j; | |
4c4b4cd2 | 5105 | |
8f17729f JB |
5106 | /* We should never be called with less than 2 symbols, as there |
5107 | cannot be any extra symbol in that case. But it's easy to | |
5108 | handle, since we have nothing to do in that case. */ | |
5109 | if (nsyms < 2) | |
5110 | return nsyms; | |
5111 | ||
96d887e8 PH |
5112 | i = 0; |
5113 | while (i < nsyms) | |
5114 | { | |
a35ddb44 | 5115 | int remove_p = 0; |
339c13b6 JB |
5116 | |
5117 | /* If two symbols have the same name and one of them is a stub type, | |
5118 | the get rid of the stub. */ | |
5119 | ||
d12307c1 PMR |
5120 | if (TYPE_STUB (SYMBOL_TYPE (syms[i].symbol)) |
5121 | && SYMBOL_LINKAGE_NAME (syms[i].symbol) != NULL) | |
339c13b6 JB |
5122 | { |
5123 | for (j = 0; j < nsyms; j++) | |
5124 | { | |
5125 | if (j != i | |
d12307c1 PMR |
5126 | && !TYPE_STUB (SYMBOL_TYPE (syms[j].symbol)) |
5127 | && SYMBOL_LINKAGE_NAME (syms[j].symbol) != NULL | |
5128 | && strcmp (SYMBOL_LINKAGE_NAME (syms[i].symbol), | |
5129 | SYMBOL_LINKAGE_NAME (syms[j].symbol)) == 0) | |
a35ddb44 | 5130 | remove_p = 1; |
339c13b6 JB |
5131 | } |
5132 | } | |
5133 | ||
5134 | /* Two symbols with the same name, same class and same address | |
5135 | should be identical. */ | |
5136 | ||
d12307c1 PMR |
5137 | else if (SYMBOL_LINKAGE_NAME (syms[i].symbol) != NULL |
5138 | && SYMBOL_CLASS (syms[i].symbol) == LOC_STATIC | |
5139 | && is_nondebugging_type (SYMBOL_TYPE (syms[i].symbol))) | |
96d887e8 PH |
5140 | { |
5141 | for (j = 0; j < nsyms; j += 1) | |
5142 | { | |
5143 | if (i != j | |
d12307c1 PMR |
5144 | && SYMBOL_LINKAGE_NAME (syms[j].symbol) != NULL |
5145 | && strcmp (SYMBOL_LINKAGE_NAME (syms[i].symbol), | |
5146 | SYMBOL_LINKAGE_NAME (syms[j].symbol)) == 0 | |
5147 | && SYMBOL_CLASS (syms[i].symbol) | |
5148 | == SYMBOL_CLASS (syms[j].symbol) | |
5149 | && SYMBOL_VALUE_ADDRESS (syms[i].symbol) | |
5150 | == SYMBOL_VALUE_ADDRESS (syms[j].symbol)) | |
a35ddb44 | 5151 | remove_p = 1; |
4c4b4cd2 | 5152 | } |
4c4b4cd2 | 5153 | } |
339c13b6 | 5154 | |
a35ddb44 | 5155 | if (remove_p) |
339c13b6 JB |
5156 | { |
5157 | for (j = i + 1; j < nsyms; j += 1) | |
5158 | syms[j - 1] = syms[j]; | |
5159 | nsyms -= 1; | |
5160 | } | |
5161 | ||
96d887e8 | 5162 | i += 1; |
14f9c5c9 | 5163 | } |
8f17729f JB |
5164 | |
5165 | /* If all the remaining symbols are identical enumerals, then | |
5166 | just keep the first one and discard the rest. | |
5167 | ||
5168 | Unlike what we did previously, we do not discard any entry | |
5169 | unless they are ALL identical. This is because the symbol | |
5170 | comparison is not a strict comparison, but rather a practical | |
5171 | comparison. If all symbols are considered identical, then | |
5172 | we can just go ahead and use the first one and discard the rest. | |
5173 | But if we cannot reduce the list to a single element, we have | |
5174 | to ask the user to disambiguate anyways. And if we have to | |
5175 | present a multiple-choice menu, it's less confusing if the list | |
5176 | isn't missing some choices that were identical and yet distinct. */ | |
5177 | if (symbols_are_identical_enums (syms, nsyms)) | |
5178 | nsyms = 1; | |
5179 | ||
96d887e8 | 5180 | return nsyms; |
14f9c5c9 AS |
5181 | } |
5182 | ||
96d887e8 PH |
5183 | /* Given a type that corresponds to a renaming entity, use the type name |
5184 | to extract the scope (package name or function name, fully qualified, | |
5185 | and following the GNAT encoding convention) where this renaming has been | |
5186 | defined. The string returned needs to be deallocated after use. */ | |
4c4b4cd2 | 5187 | |
96d887e8 PH |
5188 | static char * |
5189 | xget_renaming_scope (struct type *renaming_type) | |
14f9c5c9 | 5190 | { |
96d887e8 | 5191 | /* The renaming types adhere to the following convention: |
0963b4bd | 5192 | <scope>__<rename>___<XR extension>. |
96d887e8 PH |
5193 | So, to extract the scope, we search for the "___XR" extension, |
5194 | and then backtrack until we find the first "__". */ | |
76a01679 | 5195 | |
96d887e8 | 5196 | const char *name = type_name_no_tag (renaming_type); |
108d56a4 SM |
5197 | const char *suffix = strstr (name, "___XR"); |
5198 | const char *last; | |
96d887e8 PH |
5199 | int scope_len; |
5200 | char *scope; | |
14f9c5c9 | 5201 | |
96d887e8 PH |
5202 | /* Now, backtrack a bit until we find the first "__". Start looking |
5203 | at suffix - 3, as the <rename> part is at least one character long. */ | |
14f9c5c9 | 5204 | |
96d887e8 PH |
5205 | for (last = suffix - 3; last > name; last--) |
5206 | if (last[0] == '_' && last[1] == '_') | |
5207 | break; | |
76a01679 | 5208 | |
96d887e8 | 5209 | /* Make a copy of scope and return it. */ |
14f9c5c9 | 5210 | |
96d887e8 PH |
5211 | scope_len = last - name; |
5212 | scope = (char *) xmalloc ((scope_len + 1) * sizeof (char)); | |
14f9c5c9 | 5213 | |
96d887e8 PH |
5214 | strncpy (scope, name, scope_len); |
5215 | scope[scope_len] = '\0'; | |
4c4b4cd2 | 5216 | |
96d887e8 | 5217 | return scope; |
4c4b4cd2 PH |
5218 | } |
5219 | ||
96d887e8 | 5220 | /* Return nonzero if NAME corresponds to a package name. */ |
4c4b4cd2 | 5221 | |
96d887e8 PH |
5222 | static int |
5223 | is_package_name (const char *name) | |
4c4b4cd2 | 5224 | { |
96d887e8 PH |
5225 | /* Here, We take advantage of the fact that no symbols are generated |
5226 | for packages, while symbols are generated for each function. | |
5227 | So the condition for NAME represent a package becomes equivalent | |
5228 | to NAME not existing in our list of symbols. There is only one | |
5229 | small complication with library-level functions (see below). */ | |
4c4b4cd2 | 5230 | |
96d887e8 | 5231 | char *fun_name; |
76a01679 | 5232 | |
96d887e8 PH |
5233 | /* If it is a function that has not been defined at library level, |
5234 | then we should be able to look it up in the symbols. */ | |
5235 | if (standard_lookup (name, NULL, VAR_DOMAIN) != NULL) | |
5236 | return 0; | |
14f9c5c9 | 5237 | |
96d887e8 PH |
5238 | /* Library-level function names start with "_ada_". See if function |
5239 | "_ada_" followed by NAME can be found. */ | |
14f9c5c9 | 5240 | |
96d887e8 | 5241 | /* Do a quick check that NAME does not contain "__", since library-level |
e1d5a0d2 | 5242 | functions names cannot contain "__" in them. */ |
96d887e8 PH |
5243 | if (strstr (name, "__") != NULL) |
5244 | return 0; | |
4c4b4cd2 | 5245 | |
b435e160 | 5246 | fun_name = xstrprintf ("_ada_%s", name); |
14f9c5c9 | 5247 | |
96d887e8 PH |
5248 | return (standard_lookup (fun_name, NULL, VAR_DOMAIN) == NULL); |
5249 | } | |
14f9c5c9 | 5250 | |
96d887e8 | 5251 | /* Return nonzero if SYM corresponds to a renaming entity that is |
aeb5907d | 5252 | not visible from FUNCTION_NAME. */ |
14f9c5c9 | 5253 | |
96d887e8 | 5254 | static int |
0d5cff50 | 5255 | old_renaming_is_invisible (const struct symbol *sym, const char *function_name) |
96d887e8 | 5256 | { |
aeb5907d | 5257 | char *scope; |
1509e573 | 5258 | struct cleanup *old_chain; |
aeb5907d JB |
5259 | |
5260 | if (SYMBOL_CLASS (sym) != LOC_TYPEDEF) | |
5261 | return 0; | |
5262 | ||
5263 | scope = xget_renaming_scope (SYMBOL_TYPE (sym)); | |
1509e573 | 5264 | old_chain = make_cleanup (xfree, scope); |
14f9c5c9 | 5265 | |
96d887e8 PH |
5266 | /* If the rename has been defined in a package, then it is visible. */ |
5267 | if (is_package_name (scope)) | |
1509e573 JB |
5268 | { |
5269 | do_cleanups (old_chain); | |
5270 | return 0; | |
5271 | } | |
14f9c5c9 | 5272 | |
96d887e8 PH |
5273 | /* Check that the rename is in the current function scope by checking |
5274 | that its name starts with SCOPE. */ | |
76a01679 | 5275 | |
96d887e8 PH |
5276 | /* If the function name starts with "_ada_", it means that it is |
5277 | a library-level function. Strip this prefix before doing the | |
5278 | comparison, as the encoding for the renaming does not contain | |
5279 | this prefix. */ | |
61012eef | 5280 | if (startswith (function_name, "_ada_")) |
96d887e8 | 5281 | function_name += 5; |
f26caa11 | 5282 | |
1509e573 | 5283 | { |
61012eef | 5284 | int is_invisible = !startswith (function_name, scope); |
1509e573 JB |
5285 | |
5286 | do_cleanups (old_chain); | |
5287 | return is_invisible; | |
5288 | } | |
f26caa11 PH |
5289 | } |
5290 | ||
aeb5907d JB |
5291 | /* Remove entries from SYMS that corresponds to a renaming entity that |
5292 | is not visible from the function associated with CURRENT_BLOCK or | |
5293 | that is superfluous due to the presence of more specific renaming | |
5294 | information. Places surviving symbols in the initial entries of | |
5295 | SYMS and returns the number of surviving symbols. | |
96d887e8 PH |
5296 | |
5297 | Rationale: | |
aeb5907d JB |
5298 | First, in cases where an object renaming is implemented as a |
5299 | reference variable, GNAT may produce both the actual reference | |
5300 | variable and the renaming encoding. In this case, we discard the | |
5301 | latter. | |
5302 | ||
5303 | Second, GNAT emits a type following a specified encoding for each renaming | |
96d887e8 PH |
5304 | entity. Unfortunately, STABS currently does not support the definition |
5305 | of types that are local to a given lexical block, so all renamings types | |
5306 | are emitted at library level. As a consequence, if an application | |
5307 | contains two renaming entities using the same name, and a user tries to | |
5308 | print the value of one of these entities, the result of the ada symbol | |
5309 | lookup will also contain the wrong renaming type. | |
f26caa11 | 5310 | |
96d887e8 PH |
5311 | This function partially covers for this limitation by attempting to |
5312 | remove from the SYMS list renaming symbols that should be visible | |
5313 | from CURRENT_BLOCK. However, there does not seem be a 100% reliable | |
5314 | method with the current information available. The implementation | |
5315 | below has a couple of limitations (FIXME: brobecker-2003-05-12): | |
5316 | ||
5317 | - When the user tries to print a rename in a function while there | |
5318 | is another rename entity defined in a package: Normally, the | |
5319 | rename in the function has precedence over the rename in the | |
5320 | package, so the latter should be removed from the list. This is | |
5321 | currently not the case. | |
5322 | ||
5323 | - This function will incorrectly remove valid renames if | |
5324 | the CURRENT_BLOCK corresponds to a function which symbol name | |
5325 | has been changed by an "Export" pragma. As a consequence, | |
5326 | the user will be unable to print such rename entities. */ | |
4c4b4cd2 | 5327 | |
14f9c5c9 | 5328 | static int |
d12307c1 | 5329 | remove_irrelevant_renamings (struct block_symbol *syms, |
aeb5907d | 5330 | int nsyms, const struct block *current_block) |
4c4b4cd2 PH |
5331 | { |
5332 | struct symbol *current_function; | |
0d5cff50 | 5333 | const char *current_function_name; |
4c4b4cd2 | 5334 | int i; |
aeb5907d JB |
5335 | int is_new_style_renaming; |
5336 | ||
5337 | /* If there is both a renaming foo___XR... encoded as a variable and | |
5338 | a simple variable foo in the same block, discard the latter. | |
0963b4bd | 5339 | First, zero out such symbols, then compress. */ |
aeb5907d JB |
5340 | is_new_style_renaming = 0; |
5341 | for (i = 0; i < nsyms; i += 1) | |
5342 | { | |
d12307c1 | 5343 | struct symbol *sym = syms[i].symbol; |
270140bd | 5344 | const struct block *block = syms[i].block; |
aeb5907d JB |
5345 | const char *name; |
5346 | const char *suffix; | |
5347 | ||
5348 | if (sym == NULL || SYMBOL_CLASS (sym) == LOC_TYPEDEF) | |
5349 | continue; | |
5350 | name = SYMBOL_LINKAGE_NAME (sym); | |
5351 | suffix = strstr (name, "___XR"); | |
5352 | ||
5353 | if (suffix != NULL) | |
5354 | { | |
5355 | int name_len = suffix - name; | |
5356 | int j; | |
5b4ee69b | 5357 | |
aeb5907d JB |
5358 | is_new_style_renaming = 1; |
5359 | for (j = 0; j < nsyms; j += 1) | |
d12307c1 PMR |
5360 | if (i != j && syms[j].symbol != NULL |
5361 | && strncmp (name, SYMBOL_LINKAGE_NAME (syms[j].symbol), | |
aeb5907d JB |
5362 | name_len) == 0 |
5363 | && block == syms[j].block) | |
d12307c1 | 5364 | syms[j].symbol = NULL; |
aeb5907d JB |
5365 | } |
5366 | } | |
5367 | if (is_new_style_renaming) | |
5368 | { | |
5369 | int j, k; | |
5370 | ||
5371 | for (j = k = 0; j < nsyms; j += 1) | |
d12307c1 | 5372 | if (syms[j].symbol != NULL) |
aeb5907d JB |
5373 | { |
5374 | syms[k] = syms[j]; | |
5375 | k += 1; | |
5376 | } | |
5377 | return k; | |
5378 | } | |
4c4b4cd2 PH |
5379 | |
5380 | /* Extract the function name associated to CURRENT_BLOCK. | |
5381 | Abort if unable to do so. */ | |
76a01679 | 5382 | |
4c4b4cd2 PH |
5383 | if (current_block == NULL) |
5384 | return nsyms; | |
76a01679 | 5385 | |
7f0df278 | 5386 | current_function = block_linkage_function (current_block); |
4c4b4cd2 PH |
5387 | if (current_function == NULL) |
5388 | return nsyms; | |
5389 | ||
5390 | current_function_name = SYMBOL_LINKAGE_NAME (current_function); | |
5391 | if (current_function_name == NULL) | |
5392 | return nsyms; | |
5393 | ||
5394 | /* Check each of the symbols, and remove it from the list if it is | |
5395 | a type corresponding to a renaming that is out of the scope of | |
5396 | the current block. */ | |
5397 | ||
5398 | i = 0; | |
5399 | while (i < nsyms) | |
5400 | { | |
d12307c1 | 5401 | if (ada_parse_renaming (syms[i].symbol, NULL, NULL, NULL) |
aeb5907d | 5402 | == ADA_OBJECT_RENAMING |
d12307c1 | 5403 | && old_renaming_is_invisible (syms[i].symbol, current_function_name)) |
4c4b4cd2 PH |
5404 | { |
5405 | int j; | |
5b4ee69b | 5406 | |
aeb5907d | 5407 | for (j = i + 1; j < nsyms; j += 1) |
76a01679 | 5408 | syms[j - 1] = syms[j]; |
4c4b4cd2 PH |
5409 | nsyms -= 1; |
5410 | } | |
5411 | else | |
5412 | i += 1; | |
5413 | } | |
5414 | ||
5415 | return nsyms; | |
5416 | } | |
5417 | ||
339c13b6 JB |
5418 | /* Add to OBSTACKP all symbols from BLOCK (and its super-blocks) |
5419 | whose name and domain match NAME and DOMAIN respectively. | |
5420 | If no match was found, then extend the search to "enclosing" | |
5421 | routines (in other words, if we're inside a nested function, | |
5422 | search the symbols defined inside the enclosing functions). | |
d0a8ab18 JB |
5423 | If WILD_MATCH_P is nonzero, perform the naming matching in |
5424 | "wild" mode (see function "wild_match" for more info). | |
339c13b6 JB |
5425 | |
5426 | Note: This function assumes that OBSTACKP has 0 (zero) element in it. */ | |
5427 | ||
5428 | static void | |
5429 | ada_add_local_symbols (struct obstack *obstackp, const char *name, | |
f0c5f9b2 | 5430 | const struct block *block, domain_enum domain, |
d0a8ab18 | 5431 | int wild_match_p) |
339c13b6 JB |
5432 | { |
5433 | int block_depth = 0; | |
5434 | ||
5435 | while (block != NULL) | |
5436 | { | |
5437 | block_depth += 1; | |
d0a8ab18 JB |
5438 | ada_add_block_symbols (obstackp, block, name, domain, NULL, |
5439 | wild_match_p); | |
339c13b6 JB |
5440 | |
5441 | /* If we found a non-function match, assume that's the one. */ | |
5442 | if (is_nonfunction (defns_collected (obstackp, 0), | |
5443 | num_defns_collected (obstackp))) | |
5444 | return; | |
5445 | ||
5446 | block = BLOCK_SUPERBLOCK (block); | |
5447 | } | |
5448 | ||
5449 | /* If no luck so far, try to find NAME as a local symbol in some lexically | |
5450 | enclosing subprogram. */ | |
5451 | if (num_defns_collected (obstackp) == 0 && block_depth > 2) | |
d0a8ab18 | 5452 | add_symbols_from_enclosing_procs (obstackp, name, domain, wild_match_p); |
339c13b6 JB |
5453 | } |
5454 | ||
ccefe4c4 | 5455 | /* An object of this type is used as the user_data argument when |
40658b94 | 5456 | calling the map_matching_symbols method. */ |
ccefe4c4 | 5457 | |
40658b94 | 5458 | struct match_data |
ccefe4c4 | 5459 | { |
40658b94 | 5460 | struct objfile *objfile; |
ccefe4c4 | 5461 | struct obstack *obstackp; |
40658b94 PH |
5462 | struct symbol *arg_sym; |
5463 | int found_sym; | |
ccefe4c4 TT |
5464 | }; |
5465 | ||
22cee43f | 5466 | /* A callback for add_nonlocal_symbols that adds SYM, found in BLOCK, |
40658b94 PH |
5467 | to a list of symbols. DATA0 is a pointer to a struct match_data * |
5468 | containing the obstack that collects the symbol list, the file that SYM | |
5469 | must come from, a flag indicating whether a non-argument symbol has | |
5470 | been found in the current block, and the last argument symbol | |
5471 | passed in SYM within the current block (if any). When SYM is null, | |
5472 | marking the end of a block, the argument symbol is added if no | |
5473 | other has been found. */ | |
ccefe4c4 | 5474 | |
40658b94 PH |
5475 | static int |
5476 | aux_add_nonlocal_symbols (struct block *block, struct symbol *sym, void *data0) | |
ccefe4c4 | 5477 | { |
40658b94 PH |
5478 | struct match_data *data = (struct match_data *) data0; |
5479 | ||
5480 | if (sym == NULL) | |
5481 | { | |
5482 | if (!data->found_sym && data->arg_sym != NULL) | |
5483 | add_defn_to_vec (data->obstackp, | |
5484 | fixup_symbol_section (data->arg_sym, data->objfile), | |
5485 | block); | |
5486 | data->found_sym = 0; | |
5487 | data->arg_sym = NULL; | |
5488 | } | |
5489 | else | |
5490 | { | |
5491 | if (SYMBOL_CLASS (sym) == LOC_UNRESOLVED) | |
5492 | return 0; | |
5493 | else if (SYMBOL_IS_ARGUMENT (sym)) | |
5494 | data->arg_sym = sym; | |
5495 | else | |
5496 | { | |
5497 | data->found_sym = 1; | |
5498 | add_defn_to_vec (data->obstackp, | |
5499 | fixup_symbol_section (sym, data->objfile), | |
5500 | block); | |
5501 | } | |
5502 | } | |
5503 | return 0; | |
5504 | } | |
5505 | ||
22cee43f PMR |
5506 | /* Helper for add_nonlocal_symbols. Find symbols in DOMAIN which are targetted |
5507 | by renamings matching NAME in BLOCK. Add these symbols to OBSTACKP. If | |
5508 | WILD_MATCH_P is nonzero, perform the naming matching in "wild" mode (see | |
5509 | function "wild_match" for more information). Return whether we found such | |
5510 | symbols. */ | |
5511 | ||
5512 | static int | |
5513 | ada_add_block_renamings (struct obstack *obstackp, | |
5514 | const struct block *block, | |
5515 | const char *name, | |
5516 | domain_enum domain, | |
5517 | int wild_match_p) | |
5518 | { | |
5519 | struct using_direct *renaming; | |
5520 | int defns_mark = num_defns_collected (obstackp); | |
5521 | ||
5522 | for (renaming = block_using (block); | |
5523 | renaming != NULL; | |
5524 | renaming = renaming->next) | |
5525 | { | |
5526 | const char *r_name; | |
5527 | int name_match; | |
5528 | ||
5529 | /* Avoid infinite recursions: skip this renaming if we are actually | |
5530 | already traversing it. | |
5531 | ||
5532 | Currently, symbol lookup in Ada don't use the namespace machinery from | |
5533 | C++/Fortran support: skip namespace imports that use them. */ | |
5534 | if (renaming->searched | |
5535 | || (renaming->import_src != NULL | |
5536 | && renaming->import_src[0] != '\0') | |
5537 | || (renaming->import_dest != NULL | |
5538 | && renaming->import_dest[0] != '\0')) | |
5539 | continue; | |
5540 | renaming->searched = 1; | |
5541 | ||
5542 | /* TODO: here, we perform another name-based symbol lookup, which can | |
5543 | pull its own multiple overloads. In theory, we should be able to do | |
5544 | better in this case since, in DWARF, DW_AT_import is a DIE reference, | |
5545 | not a simple name. But in order to do this, we would need to enhance | |
5546 | the DWARF reader to associate a symbol to this renaming, instead of a | |
5547 | name. So, for now, we do something simpler: re-use the C++/Fortran | |
5548 | namespace machinery. */ | |
5549 | r_name = (renaming->alias != NULL | |
5550 | ? renaming->alias | |
5551 | : renaming->declaration); | |
5552 | name_match | |
5553 | = wild_match_p ? wild_match (r_name, name) : strcmp (r_name, name); | |
5554 | if (name_match == 0) | |
5555 | ada_add_all_symbols (obstackp, block, renaming->declaration, domain, | |
5556 | 1, NULL); | |
5557 | renaming->searched = 0; | |
5558 | } | |
5559 | return num_defns_collected (obstackp) != defns_mark; | |
5560 | } | |
5561 | ||
db230ce3 JB |
5562 | /* Implements compare_names, but only applying the comparision using |
5563 | the given CASING. */ | |
5b4ee69b | 5564 | |
40658b94 | 5565 | static int |
db230ce3 JB |
5566 | compare_names_with_case (const char *string1, const char *string2, |
5567 | enum case_sensitivity casing) | |
40658b94 PH |
5568 | { |
5569 | while (*string1 != '\0' && *string2 != '\0') | |
5570 | { | |
db230ce3 JB |
5571 | char c1, c2; |
5572 | ||
40658b94 PH |
5573 | if (isspace (*string1) || isspace (*string2)) |
5574 | return strcmp_iw_ordered (string1, string2); | |
db230ce3 JB |
5575 | |
5576 | if (casing == case_sensitive_off) | |
5577 | { | |
5578 | c1 = tolower (*string1); | |
5579 | c2 = tolower (*string2); | |
5580 | } | |
5581 | else | |
5582 | { | |
5583 | c1 = *string1; | |
5584 | c2 = *string2; | |
5585 | } | |
5586 | if (c1 != c2) | |
40658b94 | 5587 | break; |
db230ce3 | 5588 | |
40658b94 PH |
5589 | string1 += 1; |
5590 | string2 += 1; | |
5591 | } | |
db230ce3 | 5592 | |
40658b94 PH |
5593 | switch (*string1) |
5594 | { | |
5595 | case '(': | |
5596 | return strcmp_iw_ordered (string1, string2); | |
5597 | case '_': | |
5598 | if (*string2 == '\0') | |
5599 | { | |
052874e8 | 5600 | if (is_name_suffix (string1)) |
40658b94 PH |
5601 | return 0; |
5602 | else | |
1a1d5513 | 5603 | return 1; |
40658b94 | 5604 | } |
dbb8534f | 5605 | /* FALLTHROUGH */ |
40658b94 PH |
5606 | default: |
5607 | if (*string2 == '(') | |
5608 | return strcmp_iw_ordered (string1, string2); | |
5609 | else | |
db230ce3 JB |
5610 | { |
5611 | if (casing == case_sensitive_off) | |
5612 | return tolower (*string1) - tolower (*string2); | |
5613 | else | |
5614 | return *string1 - *string2; | |
5615 | } | |
40658b94 | 5616 | } |
ccefe4c4 TT |
5617 | } |
5618 | ||
db230ce3 JB |
5619 | /* Compare STRING1 to STRING2, with results as for strcmp. |
5620 | Compatible with strcmp_iw_ordered in that... | |
5621 | ||
5622 | strcmp_iw_ordered (STRING1, STRING2) <= 0 | |
5623 | ||
5624 | ... implies... | |
5625 | ||
5626 | compare_names (STRING1, STRING2) <= 0 | |
5627 | ||
5628 | (they may differ as to what symbols compare equal). */ | |
5629 | ||
5630 | static int | |
5631 | compare_names (const char *string1, const char *string2) | |
5632 | { | |
5633 | int result; | |
5634 | ||
5635 | /* Similar to what strcmp_iw_ordered does, we need to perform | |
5636 | a case-insensitive comparison first, and only resort to | |
5637 | a second, case-sensitive, comparison if the first one was | |
5638 | not sufficient to differentiate the two strings. */ | |
5639 | ||
5640 | result = compare_names_with_case (string1, string2, case_sensitive_off); | |
5641 | if (result == 0) | |
5642 | result = compare_names_with_case (string1, string2, case_sensitive_on); | |
5643 | ||
5644 | return result; | |
5645 | } | |
5646 | ||
339c13b6 JB |
5647 | /* Add to OBSTACKP all non-local symbols whose name and domain match |
5648 | NAME and DOMAIN respectively. The search is performed on GLOBAL_BLOCK | |
5649 | symbols if GLOBAL is non-zero, or on STATIC_BLOCK symbols otherwise. */ | |
5650 | ||
5651 | static void | |
40658b94 PH |
5652 | add_nonlocal_symbols (struct obstack *obstackp, const char *name, |
5653 | domain_enum domain, int global, | |
5654 | int is_wild_match) | |
339c13b6 JB |
5655 | { |
5656 | struct objfile *objfile; | |
22cee43f | 5657 | struct compunit_symtab *cu; |
40658b94 | 5658 | struct match_data data; |
339c13b6 | 5659 | |
6475f2fe | 5660 | memset (&data, 0, sizeof data); |
ccefe4c4 | 5661 | data.obstackp = obstackp; |
339c13b6 | 5662 | |
ccefe4c4 | 5663 | ALL_OBJFILES (objfile) |
40658b94 PH |
5664 | { |
5665 | data.objfile = objfile; | |
5666 | ||
5667 | if (is_wild_match) | |
4186eb54 KS |
5668 | objfile->sf->qf->map_matching_symbols (objfile, name, domain, global, |
5669 | aux_add_nonlocal_symbols, &data, | |
5670 | wild_match, NULL); | |
40658b94 | 5671 | else |
4186eb54 KS |
5672 | objfile->sf->qf->map_matching_symbols (objfile, name, domain, global, |
5673 | aux_add_nonlocal_symbols, &data, | |
5674 | full_match, compare_names); | |
22cee43f PMR |
5675 | |
5676 | ALL_OBJFILE_COMPUNITS (objfile, cu) | |
5677 | { | |
5678 | const struct block *global_block | |
5679 | = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (cu), GLOBAL_BLOCK); | |
5680 | ||
5681 | if (ada_add_block_renamings (obstackp, global_block , name, domain, | |
5682 | is_wild_match)) | |
5683 | data.found_sym = 1; | |
5684 | } | |
40658b94 PH |
5685 | } |
5686 | ||
5687 | if (num_defns_collected (obstackp) == 0 && global && !is_wild_match) | |
5688 | { | |
5689 | ALL_OBJFILES (objfile) | |
5690 | { | |
224c3ddb | 5691 | char *name1 = (char *) alloca (strlen (name) + sizeof ("_ada_")); |
40658b94 PH |
5692 | strcpy (name1, "_ada_"); |
5693 | strcpy (name1 + sizeof ("_ada_") - 1, name); | |
5694 | data.objfile = objfile; | |
ade7ed9e DE |
5695 | objfile->sf->qf->map_matching_symbols (objfile, name1, domain, |
5696 | global, | |
0963b4bd MS |
5697 | aux_add_nonlocal_symbols, |
5698 | &data, | |
40658b94 PH |
5699 | full_match, compare_names); |
5700 | } | |
5701 | } | |
339c13b6 JB |
5702 | } |
5703 | ||
22cee43f | 5704 | /* Find symbols in DOMAIN matching NAME, in BLOCK and, if FULL_SEARCH is |
4eeaa230 | 5705 | non-zero, enclosing scope and in global scopes, returning the number of |
22cee43f | 5706 | matches. Add these to OBSTACKP. |
4eeaa230 | 5707 | |
22cee43f PMR |
5708 | When FULL_SEARCH is non-zero, any non-function/non-enumeral |
5709 | symbol match within the nest of blocks whose innermost member is BLOCK, | |
4c4b4cd2 | 5710 | is the one match returned (no other matches in that or |
d9680e73 | 5711 | enclosing blocks is returned). If there are any matches in or |
22cee43f | 5712 | surrounding BLOCK, then these alone are returned. |
4eeaa230 | 5713 | |
9f88c959 | 5714 | Names prefixed with "standard__" are handled specially: "standard__" |
22cee43f | 5715 | is first stripped off, and only static and global symbols are searched. |
14f9c5c9 | 5716 | |
22cee43f PMR |
5717 | If MADE_GLOBAL_LOOKUP_P is non-null, set it before return to whether we had |
5718 | to lookup global symbols. */ | |
5719 | ||
5720 | static void | |
5721 | ada_add_all_symbols (struct obstack *obstackp, | |
5722 | const struct block *block, | |
5723 | const char *name, | |
5724 | domain_enum domain, | |
5725 | int full_search, | |
5726 | int *made_global_lookup_p) | |
14f9c5c9 AS |
5727 | { |
5728 | struct symbol *sym; | |
22cee43f | 5729 | const int wild_match_p = should_use_wild_match (name); |
14f9c5c9 | 5730 | |
22cee43f PMR |
5731 | if (made_global_lookup_p) |
5732 | *made_global_lookup_p = 0; | |
339c13b6 JB |
5733 | |
5734 | /* Special case: If the user specifies a symbol name inside package | |
5735 | Standard, do a non-wild matching of the symbol name without | |
5736 | the "standard__" prefix. This was primarily introduced in order | |
5737 | to allow the user to specifically access the standard exceptions | |
5738 | using, for instance, Standard.Constraint_Error when Constraint_Error | |
5739 | is ambiguous (due to the user defining its own Constraint_Error | |
5740 | entity inside its program). */ | |
22cee43f | 5741 | if (startswith (name, "standard__")) |
4c4b4cd2 | 5742 | { |
4c4b4cd2 | 5743 | block = NULL; |
22cee43f | 5744 | name = name + sizeof ("standard__") - 1; |
4c4b4cd2 PH |
5745 | } |
5746 | ||
339c13b6 | 5747 | /* Check the non-global symbols. If we have ANY match, then we're done. */ |
14f9c5c9 | 5748 | |
4eeaa230 DE |
5749 | if (block != NULL) |
5750 | { | |
5751 | if (full_search) | |
22cee43f | 5752 | ada_add_local_symbols (obstackp, name, block, domain, wild_match_p); |
4eeaa230 DE |
5753 | else |
5754 | { | |
5755 | /* In the !full_search case we're are being called by | |
5756 | ada_iterate_over_symbols, and we don't want to search | |
5757 | superblocks. */ | |
22cee43f PMR |
5758 | ada_add_block_symbols (obstackp, block, name, domain, NULL, |
5759 | wild_match_p); | |
4eeaa230 | 5760 | } |
22cee43f PMR |
5761 | if (num_defns_collected (obstackp) > 0 || !full_search) |
5762 | return; | |
4eeaa230 | 5763 | } |
d2e4a39e | 5764 | |
339c13b6 JB |
5765 | /* No non-global symbols found. Check our cache to see if we have |
5766 | already performed this search before. If we have, then return | |
5767 | the same result. */ | |
5768 | ||
22cee43f | 5769 | if (lookup_cached_symbol (name, domain, &sym, &block)) |
4c4b4cd2 PH |
5770 | { |
5771 | if (sym != NULL) | |
22cee43f PMR |
5772 | add_defn_to_vec (obstackp, sym, block); |
5773 | return; | |
4c4b4cd2 | 5774 | } |
14f9c5c9 | 5775 | |
22cee43f PMR |
5776 | if (made_global_lookup_p) |
5777 | *made_global_lookup_p = 1; | |
b1eedac9 | 5778 | |
339c13b6 JB |
5779 | /* Search symbols from all global blocks. */ |
5780 | ||
22cee43f | 5781 | add_nonlocal_symbols (obstackp, name, domain, 1, wild_match_p); |
d2e4a39e | 5782 | |
4c4b4cd2 | 5783 | /* Now add symbols from all per-file blocks if we've gotten no hits |
339c13b6 | 5784 | (not strictly correct, but perhaps better than an error). */ |
d2e4a39e | 5785 | |
22cee43f PMR |
5786 | if (num_defns_collected (obstackp) == 0) |
5787 | add_nonlocal_symbols (obstackp, name, domain, 0, wild_match_p); | |
5788 | } | |
5789 | ||
5790 | /* Find symbols in DOMAIN matching NAME, in BLOCK and, if full_search is | |
5791 | non-zero, enclosing scope and in global scopes, returning the number of | |
5792 | matches. | |
5793 | Sets *RESULTS to point to a vector of (SYM,BLOCK) tuples, | |
5794 | indicating the symbols found and the blocks and symbol tables (if | |
5795 | any) in which they were found. This vector is transient---good only to | |
5796 | the next call of ada_lookup_symbol_list. | |
5797 | ||
5798 | When full_search is non-zero, any non-function/non-enumeral | |
5799 | symbol match within the nest of blocks whose innermost member is BLOCK, | |
5800 | is the one match returned (no other matches in that or | |
5801 | enclosing blocks is returned). If there are any matches in or | |
5802 | surrounding BLOCK, then these alone are returned. | |
5803 | ||
5804 | Names prefixed with "standard__" are handled specially: "standard__" | |
5805 | is first stripped off, and only static and global symbols are searched. */ | |
5806 | ||
5807 | static int | |
5808 | ada_lookup_symbol_list_worker (const char *name, const struct block *block, | |
5809 | domain_enum domain, | |
5810 | struct block_symbol **results, | |
5811 | int full_search) | |
5812 | { | |
5813 | const int wild_match_p = should_use_wild_match (name); | |
5814 | int syms_from_global_search; | |
5815 | int ndefns; | |
5816 | ||
5817 | obstack_free (&symbol_list_obstack, NULL); | |
5818 | obstack_init (&symbol_list_obstack); | |
5819 | ada_add_all_symbols (&symbol_list_obstack, block, name, domain, | |
5820 | full_search, &syms_from_global_search); | |
14f9c5c9 | 5821 | |
4c4b4cd2 PH |
5822 | ndefns = num_defns_collected (&symbol_list_obstack); |
5823 | *results = defns_collected (&symbol_list_obstack, 1); | |
5824 | ||
5825 | ndefns = remove_extra_symbols (*results, ndefns); | |
5826 | ||
b1eedac9 | 5827 | if (ndefns == 0 && full_search && syms_from_global_search) |
22cee43f | 5828 | cache_symbol (name, domain, NULL, NULL); |
14f9c5c9 | 5829 | |
b1eedac9 | 5830 | if (ndefns == 1 && full_search && syms_from_global_search) |
22cee43f | 5831 | cache_symbol (name, domain, (*results)[0].symbol, (*results)[0].block); |
14f9c5c9 | 5832 | |
22cee43f | 5833 | ndefns = remove_irrelevant_renamings (*results, ndefns, block); |
14f9c5c9 AS |
5834 | return ndefns; |
5835 | } | |
5836 | ||
4eeaa230 DE |
5837 | /* Find symbols in DOMAIN matching NAME0, in BLOCK0 and enclosing scope and |
5838 | in global scopes, returning the number of matches, and setting *RESULTS | |
5839 | to a vector of (SYM,BLOCK) tuples. | |
5840 | See ada_lookup_symbol_list_worker for further details. */ | |
5841 | ||
5842 | int | |
5843 | ada_lookup_symbol_list (const char *name0, const struct block *block0, | |
d12307c1 | 5844 | domain_enum domain, struct block_symbol **results) |
4eeaa230 DE |
5845 | { |
5846 | return ada_lookup_symbol_list_worker (name0, block0, domain, results, 1); | |
5847 | } | |
5848 | ||
5849 | /* Implementation of the la_iterate_over_symbols method. */ | |
5850 | ||
5851 | static void | |
14bc53a8 PA |
5852 | ada_iterate_over_symbols |
5853 | (const struct block *block, const char *name, domain_enum domain, | |
5854 | gdb::function_view<symbol_found_callback_ftype> callback) | |
4eeaa230 DE |
5855 | { |
5856 | int ndefs, i; | |
d12307c1 | 5857 | struct block_symbol *results; |
4eeaa230 DE |
5858 | |
5859 | ndefs = ada_lookup_symbol_list_worker (name, block, domain, &results, 0); | |
5860 | for (i = 0; i < ndefs; ++i) | |
5861 | { | |
14bc53a8 | 5862 | if (!callback (results[i].symbol)) |
4eeaa230 DE |
5863 | break; |
5864 | } | |
5865 | } | |
5866 | ||
f8eba3c6 | 5867 | /* If NAME is the name of an entity, return a string that should |
2f408ecb | 5868 | be used to look that entity up in Ada units. |
f8eba3c6 TT |
5869 | |
5870 | NAME can have any form that the "break" or "print" commands might | |
5871 | recognize. In other words, it does not have to be the "natural" | |
5872 | name, or the "encoded" name. */ | |
5873 | ||
2f408ecb | 5874 | std::string |
f8eba3c6 TT |
5875 | ada_name_for_lookup (const char *name) |
5876 | { | |
f8eba3c6 TT |
5877 | int nlen = strlen (name); |
5878 | ||
5879 | if (name[0] == '<' && name[nlen - 1] == '>') | |
2f408ecb | 5880 | return std::string (name + 1, nlen - 2); |
f8eba3c6 | 5881 | else |
2f408ecb | 5882 | return ada_encode (ada_fold_name (name)); |
f8eba3c6 TT |
5883 | } |
5884 | ||
4e5c77fe JB |
5885 | /* The result is as for ada_lookup_symbol_list with FULL_SEARCH set |
5886 | to 1, but choosing the first symbol found if there are multiple | |
5887 | choices. | |
5888 | ||
5e2336be JB |
5889 | The result is stored in *INFO, which must be non-NULL. |
5890 | If no match is found, INFO->SYM is set to NULL. */ | |
4e5c77fe JB |
5891 | |
5892 | void | |
5893 | ada_lookup_encoded_symbol (const char *name, const struct block *block, | |
fe978cb0 | 5894 | domain_enum domain, |
d12307c1 | 5895 | struct block_symbol *info) |
14f9c5c9 | 5896 | { |
d12307c1 | 5897 | struct block_symbol *candidates; |
14f9c5c9 AS |
5898 | int n_candidates; |
5899 | ||
5e2336be | 5900 | gdb_assert (info != NULL); |
d12307c1 | 5901 | memset (info, 0, sizeof (struct block_symbol)); |
4e5c77fe | 5902 | |
fe978cb0 | 5903 | n_candidates = ada_lookup_symbol_list (name, block, domain, &candidates); |
14f9c5c9 | 5904 | if (n_candidates == 0) |
4e5c77fe | 5905 | return; |
4c4b4cd2 | 5906 | |
5e2336be | 5907 | *info = candidates[0]; |
d12307c1 | 5908 | info->symbol = fixup_symbol_section (info->symbol, NULL); |
4e5c77fe | 5909 | } |
aeb5907d JB |
5910 | |
5911 | /* Return a symbol in DOMAIN matching NAME, in BLOCK0 and enclosing | |
5912 | scope and in global scopes, or NULL if none. NAME is folded and | |
5913 | encoded first. Otherwise, the result is as for ada_lookup_symbol_list, | |
0963b4bd | 5914 | choosing the first symbol if there are multiple choices. |
4e5c77fe JB |
5915 | If IS_A_FIELD_OF_THIS is not NULL, it is set to zero. */ |
5916 | ||
d12307c1 | 5917 | struct block_symbol |
aeb5907d | 5918 | ada_lookup_symbol (const char *name, const struct block *block0, |
fe978cb0 | 5919 | domain_enum domain, int *is_a_field_of_this) |
aeb5907d | 5920 | { |
d12307c1 | 5921 | struct block_symbol info; |
4e5c77fe | 5922 | |
aeb5907d JB |
5923 | if (is_a_field_of_this != NULL) |
5924 | *is_a_field_of_this = 0; | |
5925 | ||
4e5c77fe | 5926 | ada_lookup_encoded_symbol (ada_encode (ada_fold_name (name)), |
fe978cb0 | 5927 | block0, domain, &info); |
d12307c1 | 5928 | return info; |
4c4b4cd2 | 5929 | } |
14f9c5c9 | 5930 | |
d12307c1 | 5931 | static struct block_symbol |
f606139a DE |
5932 | ada_lookup_symbol_nonlocal (const struct language_defn *langdef, |
5933 | const char *name, | |
76a01679 | 5934 | const struct block *block, |
21b556f4 | 5935 | const domain_enum domain) |
4c4b4cd2 | 5936 | { |
d12307c1 | 5937 | struct block_symbol sym; |
04dccad0 JB |
5938 | |
5939 | sym = ada_lookup_symbol (name, block_static_block (block), domain, NULL); | |
d12307c1 | 5940 | if (sym.symbol != NULL) |
04dccad0 JB |
5941 | return sym; |
5942 | ||
5943 | /* If we haven't found a match at this point, try the primitive | |
5944 | types. In other languages, this search is performed before | |
5945 | searching for global symbols in order to short-circuit that | |
5946 | global-symbol search if it happens that the name corresponds | |
5947 | to a primitive type. But we cannot do the same in Ada, because | |
5948 | it is perfectly legitimate for a program to declare a type which | |
5949 | has the same name as a standard type. If looking up a type in | |
5950 | that situation, we have traditionally ignored the primitive type | |
5951 | in favor of user-defined types. This is why, unlike most other | |
5952 | languages, we search the primitive types this late and only after | |
5953 | having searched the global symbols without success. */ | |
5954 | ||
5955 | if (domain == VAR_DOMAIN) | |
5956 | { | |
5957 | struct gdbarch *gdbarch; | |
5958 | ||
5959 | if (block == NULL) | |
5960 | gdbarch = target_gdbarch (); | |
5961 | else | |
5962 | gdbarch = block_gdbarch (block); | |
d12307c1 PMR |
5963 | sym.symbol = language_lookup_primitive_type_as_symbol (langdef, gdbarch, name); |
5964 | if (sym.symbol != NULL) | |
04dccad0 JB |
5965 | return sym; |
5966 | } | |
5967 | ||
d12307c1 | 5968 | return (struct block_symbol) {NULL, NULL}; |
14f9c5c9 AS |
5969 | } |
5970 | ||
5971 | ||
4c4b4cd2 PH |
5972 | /* True iff STR is a possible encoded suffix of a normal Ada name |
5973 | that is to be ignored for matching purposes. Suffixes of parallel | |
5974 | names (e.g., XVE) are not included here. Currently, the possible suffixes | |
5823c3ef | 5975 | are given by any of the regular expressions: |
4c4b4cd2 | 5976 | |
babe1480 JB |
5977 | [.$][0-9]+ [nested subprogram suffix, on platforms such as GNU/Linux] |
5978 | ___[0-9]+ [nested subprogram suffix, on platforms such as HP/UX] | |
9ac7f98e | 5979 | TKB [subprogram suffix for task bodies] |
babe1480 | 5980 | _E[0-9]+[bs]$ [protected object entry suffixes] |
61ee279c | 5981 | (X[nb]*)?((\$|__)[0-9](_?[0-9]+)|___(JM|LJM|X([FDBUP].*|R[^T]?)))?$ |
babe1480 JB |
5982 | |
5983 | Also, any leading "__[0-9]+" sequence is skipped before the suffix | |
5984 | match is performed. This sequence is used to differentiate homonyms, | |
5985 | is an optional part of a valid name suffix. */ | |
4c4b4cd2 | 5986 | |
14f9c5c9 | 5987 | static int |
d2e4a39e | 5988 | is_name_suffix (const char *str) |
14f9c5c9 AS |
5989 | { |
5990 | int k; | |
4c4b4cd2 PH |
5991 | const char *matching; |
5992 | const int len = strlen (str); | |
5993 | ||
babe1480 JB |
5994 | /* Skip optional leading __[0-9]+. */ |
5995 | ||
4c4b4cd2 PH |
5996 | if (len > 3 && str[0] == '_' && str[1] == '_' && isdigit (str[2])) |
5997 | { | |
babe1480 JB |
5998 | str += 3; |
5999 | while (isdigit (str[0])) | |
6000 | str += 1; | |
4c4b4cd2 | 6001 | } |
babe1480 JB |
6002 | |
6003 | /* [.$][0-9]+ */ | |
4c4b4cd2 | 6004 | |
babe1480 | 6005 | if (str[0] == '.' || str[0] == '$') |
4c4b4cd2 | 6006 | { |
babe1480 | 6007 | matching = str + 1; |
4c4b4cd2 PH |
6008 | while (isdigit (matching[0])) |
6009 | matching += 1; | |
6010 | if (matching[0] == '\0') | |
6011 | return 1; | |
6012 | } | |
6013 | ||
6014 | /* ___[0-9]+ */ | |
babe1480 | 6015 | |
4c4b4cd2 PH |
6016 | if (len > 3 && str[0] == '_' && str[1] == '_' && str[2] == '_') |
6017 | { | |
6018 | matching = str + 3; | |
6019 | while (isdigit (matching[0])) | |
6020 | matching += 1; | |
6021 | if (matching[0] == '\0') | |
6022 | return 1; | |
6023 | } | |
6024 | ||
9ac7f98e JB |
6025 | /* "TKB" suffixes are used for subprograms implementing task bodies. */ |
6026 | ||
6027 | if (strcmp (str, "TKB") == 0) | |
6028 | return 1; | |
6029 | ||
529cad9c PH |
6030 | #if 0 |
6031 | /* FIXME: brobecker/2005-09-23: Protected Object subprograms end | |
0963b4bd MS |
6032 | with a N at the end. Unfortunately, the compiler uses the same |
6033 | convention for other internal types it creates. So treating | |
529cad9c | 6034 | all entity names that end with an "N" as a name suffix causes |
0963b4bd MS |
6035 | some regressions. For instance, consider the case of an enumerated |
6036 | type. To support the 'Image attribute, it creates an array whose | |
529cad9c PH |
6037 | name ends with N. |
6038 | Having a single character like this as a suffix carrying some | |
0963b4bd | 6039 | information is a bit risky. Perhaps we should change the encoding |
529cad9c PH |
6040 | to be something like "_N" instead. In the meantime, do not do |
6041 | the following check. */ | |
6042 | /* Protected Object Subprograms */ | |
6043 | if (len == 1 && str [0] == 'N') | |
6044 | return 1; | |
6045 | #endif | |
6046 | ||
6047 | /* _E[0-9]+[bs]$ */ | |
6048 | if (len > 3 && str[0] == '_' && str [1] == 'E' && isdigit (str[2])) | |
6049 | { | |
6050 | matching = str + 3; | |
6051 | while (isdigit (matching[0])) | |
6052 | matching += 1; | |
6053 | if ((matching[0] == 'b' || matching[0] == 's') | |
6054 | && matching [1] == '\0') | |
6055 | return 1; | |
6056 | } | |
6057 | ||
4c4b4cd2 PH |
6058 | /* ??? We should not modify STR directly, as we are doing below. This |
6059 | is fine in this case, but may become problematic later if we find | |
6060 | that this alternative did not work, and want to try matching | |
6061 | another one from the begining of STR. Since we modified it, we | |
6062 | won't be able to find the begining of the string anymore! */ | |
14f9c5c9 AS |
6063 | if (str[0] == 'X') |
6064 | { | |
6065 | str += 1; | |
d2e4a39e | 6066 | while (str[0] != '_' && str[0] != '\0') |
4c4b4cd2 PH |
6067 | { |
6068 | if (str[0] != 'n' && str[0] != 'b') | |
6069 | return 0; | |
6070 | str += 1; | |
6071 | } | |
14f9c5c9 | 6072 | } |
babe1480 | 6073 | |
14f9c5c9 AS |
6074 | if (str[0] == '\000') |
6075 | return 1; | |
babe1480 | 6076 | |
d2e4a39e | 6077 | if (str[0] == '_') |
14f9c5c9 AS |
6078 | { |
6079 | if (str[1] != '_' || str[2] == '\000') | |
4c4b4cd2 | 6080 | return 0; |
d2e4a39e | 6081 | if (str[2] == '_') |
4c4b4cd2 | 6082 | { |
61ee279c PH |
6083 | if (strcmp (str + 3, "JM") == 0) |
6084 | return 1; | |
6085 | /* FIXME: brobecker/2004-09-30: GNAT will soon stop using | |
6086 | the LJM suffix in favor of the JM one. But we will | |
6087 | still accept LJM as a valid suffix for a reasonable | |
6088 | amount of time, just to allow ourselves to debug programs | |
6089 | compiled using an older version of GNAT. */ | |
4c4b4cd2 PH |
6090 | if (strcmp (str + 3, "LJM") == 0) |
6091 | return 1; | |
6092 | if (str[3] != 'X') | |
6093 | return 0; | |
1265e4aa JB |
6094 | if (str[4] == 'F' || str[4] == 'D' || str[4] == 'B' |
6095 | || str[4] == 'U' || str[4] == 'P') | |
4c4b4cd2 PH |
6096 | return 1; |
6097 | if (str[4] == 'R' && str[5] != 'T') | |
6098 | return 1; | |
6099 | return 0; | |
6100 | } | |
6101 | if (!isdigit (str[2])) | |
6102 | return 0; | |
6103 | for (k = 3; str[k] != '\0'; k += 1) | |
6104 | if (!isdigit (str[k]) && str[k] != '_') | |
6105 | return 0; | |
14f9c5c9 AS |
6106 | return 1; |
6107 | } | |
4c4b4cd2 | 6108 | if (str[0] == '$' && isdigit (str[1])) |
14f9c5c9 | 6109 | { |
4c4b4cd2 PH |
6110 | for (k = 2; str[k] != '\0'; k += 1) |
6111 | if (!isdigit (str[k]) && str[k] != '_') | |
6112 | return 0; | |
14f9c5c9 AS |
6113 | return 1; |
6114 | } | |
6115 | return 0; | |
6116 | } | |
d2e4a39e | 6117 | |
aeb5907d JB |
6118 | /* Return non-zero if the string starting at NAME and ending before |
6119 | NAME_END contains no capital letters. */ | |
529cad9c PH |
6120 | |
6121 | static int | |
6122 | is_valid_name_for_wild_match (const char *name0) | |
6123 | { | |
6124 | const char *decoded_name = ada_decode (name0); | |
6125 | int i; | |
6126 | ||
5823c3ef JB |
6127 | /* If the decoded name starts with an angle bracket, it means that |
6128 | NAME0 does not follow the GNAT encoding format. It should then | |
6129 | not be allowed as a possible wild match. */ | |
6130 | if (decoded_name[0] == '<') | |
6131 | return 0; | |
6132 | ||
529cad9c PH |
6133 | for (i=0; decoded_name[i] != '\0'; i++) |
6134 | if (isalpha (decoded_name[i]) && !islower (decoded_name[i])) | |
6135 | return 0; | |
6136 | ||
6137 | return 1; | |
6138 | } | |
6139 | ||
73589123 PH |
6140 | /* Advance *NAMEP to next occurrence of TARGET0 in the string NAME0 |
6141 | that could start a simple name. Assumes that *NAMEP points into | |
6142 | the string beginning at NAME0. */ | |
4c4b4cd2 | 6143 | |
14f9c5c9 | 6144 | static int |
73589123 | 6145 | advance_wild_match (const char **namep, const char *name0, int target0) |
14f9c5c9 | 6146 | { |
73589123 | 6147 | const char *name = *namep; |
5b4ee69b | 6148 | |
5823c3ef | 6149 | while (1) |
14f9c5c9 | 6150 | { |
aa27d0b3 | 6151 | int t0, t1; |
73589123 PH |
6152 | |
6153 | t0 = *name; | |
6154 | if (t0 == '_') | |
6155 | { | |
6156 | t1 = name[1]; | |
6157 | if ((t1 >= 'a' && t1 <= 'z') || (t1 >= '0' && t1 <= '9')) | |
6158 | { | |
6159 | name += 1; | |
61012eef | 6160 | if (name == name0 + 5 && startswith (name0, "_ada")) |
73589123 PH |
6161 | break; |
6162 | else | |
6163 | name += 1; | |
6164 | } | |
aa27d0b3 JB |
6165 | else if (t1 == '_' && ((name[2] >= 'a' && name[2] <= 'z') |
6166 | || name[2] == target0)) | |
73589123 PH |
6167 | { |
6168 | name += 2; | |
6169 | break; | |
6170 | } | |
6171 | else | |
6172 | return 0; | |
6173 | } | |
6174 | else if ((t0 >= 'a' && t0 <= 'z') || (t0 >= '0' && t0 <= '9')) | |
6175 | name += 1; | |
6176 | else | |
5823c3ef | 6177 | return 0; |
73589123 PH |
6178 | } |
6179 | ||
6180 | *namep = name; | |
6181 | return 1; | |
6182 | } | |
6183 | ||
6184 | /* Return 0 iff NAME encodes a name of the form prefix.PATN. Ignores any | |
6185 | informational suffixes of NAME (i.e., for which is_name_suffix is | |
6186 | true). Assumes that PATN is a lower-cased Ada simple name. */ | |
6187 | ||
6188 | static int | |
6189 | wild_match (const char *name, const char *patn) | |
6190 | { | |
22e048c9 | 6191 | const char *p; |
73589123 PH |
6192 | const char *name0 = name; |
6193 | ||
6194 | while (1) | |
6195 | { | |
6196 | const char *match = name; | |
6197 | ||
6198 | if (*name == *patn) | |
6199 | { | |
6200 | for (name += 1, p = patn + 1; *p != '\0'; name += 1, p += 1) | |
6201 | if (*p != *name) | |
6202 | break; | |
6203 | if (*p == '\0' && is_name_suffix (name)) | |
6204 | return match != name0 && !is_valid_name_for_wild_match (name0); | |
6205 | ||
6206 | if (name[-1] == '_') | |
6207 | name -= 1; | |
6208 | } | |
6209 | if (!advance_wild_match (&name, name0, *patn)) | |
6210 | return 1; | |
96d887e8 | 6211 | } |
96d887e8 PH |
6212 | } |
6213 | ||
40658b94 PH |
6214 | /* Returns 0 iff symbol name SYM_NAME matches SEARCH_NAME, apart from |
6215 | informational suffix. */ | |
6216 | ||
c4d840bd PH |
6217 | static int |
6218 | full_match (const char *sym_name, const char *search_name) | |
6219 | { | |
40658b94 | 6220 | return !match_name (sym_name, search_name, 0); |
c4d840bd PH |
6221 | } |
6222 | ||
6223 | ||
96d887e8 PH |
6224 | /* Add symbols from BLOCK matching identifier NAME in DOMAIN to |
6225 | vector *defn_symbols, updating the list of symbols in OBSTACKP | |
0963b4bd | 6226 | (if necessary). If WILD, treat as NAME with a wildcard prefix. |
4eeaa230 | 6227 | OBJFILE is the section containing BLOCK. */ |
96d887e8 PH |
6228 | |
6229 | static void | |
6230 | ada_add_block_symbols (struct obstack *obstackp, | |
f0c5f9b2 | 6231 | const struct block *block, const char *name, |
96d887e8 | 6232 | domain_enum domain, struct objfile *objfile, |
2570f2b7 | 6233 | int wild) |
96d887e8 | 6234 | { |
8157b174 | 6235 | struct block_iterator iter; |
96d887e8 PH |
6236 | int name_len = strlen (name); |
6237 | /* A matching argument symbol, if any. */ | |
6238 | struct symbol *arg_sym; | |
6239 | /* Set true when we find a matching non-argument symbol. */ | |
6240 | int found_sym; | |
6241 | struct symbol *sym; | |
6242 | ||
6243 | arg_sym = NULL; | |
6244 | found_sym = 0; | |
6245 | if (wild) | |
6246 | { | |
8157b174 TT |
6247 | for (sym = block_iter_match_first (block, name, wild_match, &iter); |
6248 | sym != NULL; sym = block_iter_match_next (name, wild_match, &iter)) | |
76a01679 | 6249 | { |
4186eb54 KS |
6250 | if (symbol_matches_domain (SYMBOL_LANGUAGE (sym), |
6251 | SYMBOL_DOMAIN (sym), domain) | |
73589123 | 6252 | && wild_match (SYMBOL_LINKAGE_NAME (sym), name) == 0) |
76a01679 | 6253 | { |
2a2d4dc3 AS |
6254 | if (SYMBOL_CLASS (sym) == LOC_UNRESOLVED) |
6255 | continue; | |
6256 | else if (SYMBOL_IS_ARGUMENT (sym)) | |
6257 | arg_sym = sym; | |
6258 | else | |
6259 | { | |
76a01679 JB |
6260 | found_sym = 1; |
6261 | add_defn_to_vec (obstackp, | |
6262 | fixup_symbol_section (sym, objfile), | |
2570f2b7 | 6263 | block); |
76a01679 JB |
6264 | } |
6265 | } | |
6266 | } | |
96d887e8 PH |
6267 | } |
6268 | else | |
6269 | { | |
8157b174 TT |
6270 | for (sym = block_iter_match_first (block, name, full_match, &iter); |
6271 | sym != NULL; sym = block_iter_match_next (name, full_match, &iter)) | |
76a01679 | 6272 | { |
4186eb54 KS |
6273 | if (symbol_matches_domain (SYMBOL_LANGUAGE (sym), |
6274 | SYMBOL_DOMAIN (sym), domain)) | |
76a01679 | 6275 | { |
c4d840bd PH |
6276 | if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED) |
6277 | { | |
6278 | if (SYMBOL_IS_ARGUMENT (sym)) | |
6279 | arg_sym = sym; | |
6280 | else | |
2a2d4dc3 | 6281 | { |
c4d840bd PH |
6282 | found_sym = 1; |
6283 | add_defn_to_vec (obstackp, | |
6284 | fixup_symbol_section (sym, objfile), | |
6285 | block); | |
2a2d4dc3 | 6286 | } |
c4d840bd | 6287 | } |
76a01679 JB |
6288 | } |
6289 | } | |
96d887e8 PH |
6290 | } |
6291 | ||
22cee43f PMR |
6292 | /* Handle renamings. */ |
6293 | ||
6294 | if (ada_add_block_renamings (obstackp, block, name, domain, wild)) | |
6295 | found_sym = 1; | |
6296 | ||
96d887e8 PH |
6297 | if (!found_sym && arg_sym != NULL) |
6298 | { | |
76a01679 JB |
6299 | add_defn_to_vec (obstackp, |
6300 | fixup_symbol_section (arg_sym, objfile), | |
2570f2b7 | 6301 | block); |
96d887e8 PH |
6302 | } |
6303 | ||
6304 | if (!wild) | |
6305 | { | |
6306 | arg_sym = NULL; | |
6307 | found_sym = 0; | |
6308 | ||
6309 | ALL_BLOCK_SYMBOLS (block, iter, sym) | |
76a01679 | 6310 | { |
4186eb54 KS |
6311 | if (symbol_matches_domain (SYMBOL_LANGUAGE (sym), |
6312 | SYMBOL_DOMAIN (sym), domain)) | |
76a01679 JB |
6313 | { |
6314 | int cmp; | |
6315 | ||
6316 | cmp = (int) '_' - (int) SYMBOL_LINKAGE_NAME (sym)[0]; | |
6317 | if (cmp == 0) | |
6318 | { | |
61012eef | 6319 | cmp = !startswith (SYMBOL_LINKAGE_NAME (sym), "_ada_"); |
76a01679 JB |
6320 | if (cmp == 0) |
6321 | cmp = strncmp (name, SYMBOL_LINKAGE_NAME (sym) + 5, | |
6322 | name_len); | |
6323 | } | |
6324 | ||
6325 | if (cmp == 0 | |
6326 | && is_name_suffix (SYMBOL_LINKAGE_NAME (sym) + name_len + 5)) | |
6327 | { | |
2a2d4dc3 AS |
6328 | if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED) |
6329 | { | |
6330 | if (SYMBOL_IS_ARGUMENT (sym)) | |
6331 | arg_sym = sym; | |
6332 | else | |
6333 | { | |
6334 | found_sym = 1; | |
6335 | add_defn_to_vec (obstackp, | |
6336 | fixup_symbol_section (sym, objfile), | |
6337 | block); | |
6338 | } | |
6339 | } | |
76a01679 JB |
6340 | } |
6341 | } | |
76a01679 | 6342 | } |
96d887e8 PH |
6343 | |
6344 | /* NOTE: This really shouldn't be needed for _ada_ symbols. | |
6345 | They aren't parameters, right? */ | |
6346 | if (!found_sym && arg_sym != NULL) | |
6347 | { | |
6348 | add_defn_to_vec (obstackp, | |
76a01679 | 6349 | fixup_symbol_section (arg_sym, objfile), |
2570f2b7 | 6350 | block); |
96d887e8 PH |
6351 | } |
6352 | } | |
6353 | } | |
6354 | \f | |
41d27058 JB |
6355 | |
6356 | /* Symbol Completion */ | |
6357 | ||
6358 | /* If SYM_NAME is a completion candidate for TEXT, return this symbol | |
6359 | name in a form that's appropriate for the completion. The result | |
6360 | does not need to be deallocated, but is only good until the next call. | |
6361 | ||
6362 | TEXT_LEN is equal to the length of TEXT. | |
e701b3c0 | 6363 | Perform a wild match if WILD_MATCH_P is set. |
6ea35997 | 6364 | ENCODED_P should be set if TEXT represents the start of a symbol name |
41d27058 JB |
6365 | in its encoded form. */ |
6366 | ||
6367 | static const char * | |
6368 | symbol_completion_match (const char *sym_name, | |
6369 | const char *text, int text_len, | |
6ea35997 | 6370 | int wild_match_p, int encoded_p) |
41d27058 | 6371 | { |
41d27058 JB |
6372 | const int verbatim_match = (text[0] == '<'); |
6373 | int match = 0; | |
6374 | ||
6375 | if (verbatim_match) | |
6376 | { | |
6377 | /* Strip the leading angle bracket. */ | |
6378 | text = text + 1; | |
6379 | text_len--; | |
6380 | } | |
6381 | ||
6382 | /* First, test against the fully qualified name of the symbol. */ | |
6383 | ||
6384 | if (strncmp (sym_name, text, text_len) == 0) | |
6385 | match = 1; | |
6386 | ||
6ea35997 | 6387 | if (match && !encoded_p) |
41d27058 JB |
6388 | { |
6389 | /* One needed check before declaring a positive match is to verify | |
6390 | that iff we are doing a verbatim match, the decoded version | |
6391 | of the symbol name starts with '<'. Otherwise, this symbol name | |
6392 | is not a suitable completion. */ | |
6393 | const char *sym_name_copy = sym_name; | |
6394 | int has_angle_bracket; | |
6395 | ||
6396 | sym_name = ada_decode (sym_name); | |
6397 | has_angle_bracket = (sym_name[0] == '<'); | |
6398 | match = (has_angle_bracket == verbatim_match); | |
6399 | sym_name = sym_name_copy; | |
6400 | } | |
6401 | ||
6402 | if (match && !verbatim_match) | |
6403 | { | |
6404 | /* When doing non-verbatim match, another check that needs to | |
6405 | be done is to verify that the potentially matching symbol name | |
6406 | does not include capital letters, because the ada-mode would | |
6407 | not be able to understand these symbol names without the | |
6408 | angle bracket notation. */ | |
6409 | const char *tmp; | |
6410 | ||
6411 | for (tmp = sym_name; *tmp != '\0' && !isupper (*tmp); tmp++); | |
6412 | if (*tmp != '\0') | |
6413 | match = 0; | |
6414 | } | |
6415 | ||
6416 | /* Second: Try wild matching... */ | |
6417 | ||
e701b3c0 | 6418 | if (!match && wild_match_p) |
41d27058 JB |
6419 | { |
6420 | /* Since we are doing wild matching, this means that TEXT | |
6421 | may represent an unqualified symbol name. We therefore must | |
6422 | also compare TEXT against the unqualified name of the symbol. */ | |
6423 | sym_name = ada_unqualified_name (ada_decode (sym_name)); | |
6424 | ||
6425 | if (strncmp (sym_name, text, text_len) == 0) | |
6426 | match = 1; | |
6427 | } | |
6428 | ||
6429 | /* Finally: If we found a mach, prepare the result to return. */ | |
6430 | ||
6431 | if (!match) | |
6432 | return NULL; | |
6433 | ||
6434 | if (verbatim_match) | |
6435 | sym_name = add_angle_brackets (sym_name); | |
6436 | ||
6ea35997 | 6437 | if (!encoded_p) |
41d27058 JB |
6438 | sym_name = ada_decode (sym_name); |
6439 | ||
6440 | return sym_name; | |
6441 | } | |
6442 | ||
eb3ff9a5 | 6443 | /* A companion function to ada_collect_symbol_completion_matches(). |
41d27058 | 6444 | Check if SYM_NAME represents a symbol which name would be suitable |
eb3ff9a5 PA |
6445 | to complete TEXT (TEXT_LEN is the length of TEXT), in which case it |
6446 | is added as a completion match to TRACKER. | |
41d27058 JB |
6447 | |
6448 | ORIG_TEXT is the string original string from the user command | |
6449 | that needs to be completed. WORD is the entire command on which | |
6450 | completion should be performed. These two parameters are used to | |
6451 | determine which part of the symbol name should be added to the | |
6452 | completion vector. | |
c0af1706 | 6453 | if WILD_MATCH_P is set, then wild matching is performed. |
cb8e9b97 | 6454 | ENCODED_P should be set if TEXT represents a symbol name in its |
41d27058 JB |
6455 | encoded formed (in which case the completion should also be |
6456 | encoded). */ | |
6457 | ||
6458 | static void | |
eb3ff9a5 PA |
6459 | symbol_completion_add (completion_tracker &tracker, |
6460 | const char *sym_name, | |
41d27058 JB |
6461 | const char *text, int text_len, |
6462 | const char *orig_text, const char *word, | |
cb8e9b97 | 6463 | int wild_match_p, int encoded_p) |
41d27058 JB |
6464 | { |
6465 | const char *match = symbol_completion_match (sym_name, text, text_len, | |
cb8e9b97 | 6466 | wild_match_p, encoded_p); |
41d27058 JB |
6467 | char *completion; |
6468 | ||
6469 | if (match == NULL) | |
6470 | return; | |
6471 | ||
6472 | /* We found a match, so add the appropriate completion to the given | |
6473 | string vector. */ | |
6474 | ||
6475 | if (word == orig_text) | |
6476 | { | |
224c3ddb | 6477 | completion = (char *) xmalloc (strlen (match) + 5); |
41d27058 JB |
6478 | strcpy (completion, match); |
6479 | } | |
6480 | else if (word > orig_text) | |
6481 | { | |
6482 | /* Return some portion of sym_name. */ | |
224c3ddb | 6483 | completion = (char *) xmalloc (strlen (match) + 5); |
41d27058 JB |
6484 | strcpy (completion, match + (word - orig_text)); |
6485 | } | |
6486 | else | |
6487 | { | |
6488 | /* Return some of ORIG_TEXT plus sym_name. */ | |
224c3ddb | 6489 | completion = (char *) xmalloc (strlen (match) + (orig_text - word) + 5); |
41d27058 JB |
6490 | strncpy (completion, word, orig_text - word); |
6491 | completion[orig_text - word] = '\0'; | |
6492 | strcat (completion, match); | |
6493 | } | |
6494 | ||
eb3ff9a5 | 6495 | tracker.add_completion (gdb::unique_xmalloc_ptr<char> (completion)); |
41d27058 JB |
6496 | } |
6497 | ||
eb3ff9a5 PA |
6498 | /* Add the list of possible symbol names completing TEXT0 to TRACKER. |
6499 | WORD is the entire command on which completion is made. */ | |
41d27058 | 6500 | |
eb3ff9a5 PA |
6501 | static void |
6502 | ada_collect_symbol_completion_matches (completion_tracker &tracker, | |
c6756f62 | 6503 | complete_symbol_mode mode, |
eb3ff9a5 PA |
6504 | const char *text0, const char *word, |
6505 | enum type_code code) | |
41d27058 JB |
6506 | { |
6507 | char *text; | |
6508 | int text_len; | |
b1ed564a JB |
6509 | int wild_match_p; |
6510 | int encoded_p; | |
41d27058 | 6511 | struct symbol *sym; |
43f3e411 | 6512 | struct compunit_symtab *s; |
41d27058 JB |
6513 | struct minimal_symbol *msymbol; |
6514 | struct objfile *objfile; | |
3977b71f | 6515 | const struct block *b, *surrounding_static_block = 0; |
41d27058 | 6516 | int i; |
8157b174 | 6517 | struct block_iterator iter; |
b8fea896 | 6518 | struct cleanup *old_chain = make_cleanup (null_cleanup, NULL); |
41d27058 | 6519 | |
2f68a895 TT |
6520 | gdb_assert (code == TYPE_CODE_UNDEF); |
6521 | ||
41d27058 JB |
6522 | if (text0[0] == '<') |
6523 | { | |
6524 | text = xstrdup (text0); | |
6525 | make_cleanup (xfree, text); | |
6526 | text_len = strlen (text); | |
b1ed564a JB |
6527 | wild_match_p = 0; |
6528 | encoded_p = 1; | |
41d27058 JB |
6529 | } |
6530 | else | |
6531 | { | |
6532 | text = xstrdup (ada_encode (text0)); | |
6533 | make_cleanup (xfree, text); | |
6534 | text_len = strlen (text); | |
6535 | for (i = 0; i < text_len; i++) | |
6536 | text[i] = tolower (text[i]); | |
6537 | ||
b1ed564a | 6538 | encoded_p = (strstr (text0, "__") != NULL); |
41d27058 JB |
6539 | /* If the name contains a ".", then the user is entering a fully |
6540 | qualified entity name, and the match must not be done in wild | |
6541 | mode. Similarly, if the user wants to complete what looks like | |
6542 | an encoded name, the match must not be done in wild mode. */ | |
b1ed564a | 6543 | wild_match_p = (strchr (text0, '.') == NULL && !encoded_p); |
41d27058 JB |
6544 | } |
6545 | ||
6546 | /* First, look at the partial symtab symbols. */ | |
14bc53a8 PA |
6547 | expand_symtabs_matching (NULL, |
6548 | [&] (const char *symname) | |
6549 | { | |
6550 | return symbol_completion_match (symname, | |
6551 | text, text_len, | |
6552 | wild_match_p, | |
6553 | encoded_p); | |
6554 | }, | |
6555 | NULL, | |
6556 | ALL_DOMAIN); | |
41d27058 JB |
6557 | |
6558 | /* At this point scan through the misc symbol vectors and add each | |
6559 | symbol you find to the list. Eventually we want to ignore | |
6560 | anything that isn't a text symbol (everything else will be | |
6561 | handled by the psymtab code above). */ | |
6562 | ||
6563 | ALL_MSYMBOLS (objfile, msymbol) | |
6564 | { | |
6565 | QUIT; | |
eb3ff9a5 | 6566 | symbol_completion_add (tracker, MSYMBOL_LINKAGE_NAME (msymbol), |
b1ed564a JB |
6567 | text, text_len, text0, word, wild_match_p, |
6568 | encoded_p); | |
41d27058 JB |
6569 | } |
6570 | ||
6571 | /* Search upwards from currently selected frame (so that we can | |
6572 | complete on local vars. */ | |
6573 | ||
6574 | for (b = get_selected_block (0); b != NULL; b = BLOCK_SUPERBLOCK (b)) | |
6575 | { | |
6576 | if (!BLOCK_SUPERBLOCK (b)) | |
6577 | surrounding_static_block = b; /* For elmin of dups */ | |
6578 | ||
6579 | ALL_BLOCK_SYMBOLS (b, iter, sym) | |
6580 | { | |
eb3ff9a5 | 6581 | symbol_completion_add (tracker, SYMBOL_LINKAGE_NAME (sym), |
41d27058 | 6582 | text, text_len, text0, word, |
b1ed564a | 6583 | wild_match_p, encoded_p); |
41d27058 JB |
6584 | } |
6585 | } | |
6586 | ||
6587 | /* Go through the symtabs and check the externs and statics for | |
43f3e411 | 6588 | symbols which match. */ |
41d27058 | 6589 | |
43f3e411 | 6590 | ALL_COMPUNITS (objfile, s) |
41d27058 JB |
6591 | { |
6592 | QUIT; | |
43f3e411 | 6593 | b = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (s), GLOBAL_BLOCK); |
41d27058 JB |
6594 | ALL_BLOCK_SYMBOLS (b, iter, sym) |
6595 | { | |
eb3ff9a5 | 6596 | symbol_completion_add (tracker, SYMBOL_LINKAGE_NAME (sym), |
41d27058 | 6597 | text, text_len, text0, word, |
b1ed564a | 6598 | wild_match_p, encoded_p); |
41d27058 JB |
6599 | } |
6600 | } | |
6601 | ||
43f3e411 | 6602 | ALL_COMPUNITS (objfile, s) |
41d27058 JB |
6603 | { |
6604 | QUIT; | |
43f3e411 | 6605 | b = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (s), STATIC_BLOCK); |
41d27058 JB |
6606 | /* Don't do this block twice. */ |
6607 | if (b == surrounding_static_block) | |
6608 | continue; | |
6609 | ALL_BLOCK_SYMBOLS (b, iter, sym) | |
6610 | { | |
eb3ff9a5 | 6611 | symbol_completion_add (tracker, SYMBOL_LINKAGE_NAME (sym), |
41d27058 | 6612 | text, text_len, text0, word, |
b1ed564a | 6613 | wild_match_p, encoded_p); |
41d27058 JB |
6614 | } |
6615 | } | |
6616 | ||
b8fea896 | 6617 | do_cleanups (old_chain); |
41d27058 JB |
6618 | } |
6619 | ||
963a6417 | 6620 | /* Field Access */ |
96d887e8 | 6621 | |
73fb9985 JB |
6622 | /* Return non-zero if TYPE is a pointer to the GNAT dispatch table used |
6623 | for tagged types. */ | |
6624 | ||
6625 | static int | |
6626 | ada_is_dispatch_table_ptr_type (struct type *type) | |
6627 | { | |
0d5cff50 | 6628 | const char *name; |
73fb9985 JB |
6629 | |
6630 | if (TYPE_CODE (type) != TYPE_CODE_PTR) | |
6631 | return 0; | |
6632 | ||
6633 | name = TYPE_NAME (TYPE_TARGET_TYPE (type)); | |
6634 | if (name == NULL) | |
6635 | return 0; | |
6636 | ||
6637 | return (strcmp (name, "ada__tags__dispatch_table") == 0); | |
6638 | } | |
6639 | ||
ac4a2da4 JG |
6640 | /* Return non-zero if TYPE is an interface tag. */ |
6641 | ||
6642 | static int | |
6643 | ada_is_interface_tag (struct type *type) | |
6644 | { | |
6645 | const char *name = TYPE_NAME (type); | |
6646 | ||
6647 | if (name == NULL) | |
6648 | return 0; | |
6649 | ||
6650 | return (strcmp (name, "ada__tags__interface_tag") == 0); | |
6651 | } | |
6652 | ||
963a6417 PH |
6653 | /* True if field number FIELD_NUM in struct or union type TYPE is supposed |
6654 | to be invisible to users. */ | |
96d887e8 | 6655 | |
963a6417 PH |
6656 | int |
6657 | ada_is_ignored_field (struct type *type, int field_num) | |
96d887e8 | 6658 | { |
963a6417 PH |
6659 | if (field_num < 0 || field_num > TYPE_NFIELDS (type)) |
6660 | return 1; | |
ffde82bf | 6661 | |
73fb9985 JB |
6662 | /* Check the name of that field. */ |
6663 | { | |
6664 | const char *name = TYPE_FIELD_NAME (type, field_num); | |
6665 | ||
6666 | /* Anonymous field names should not be printed. | |
6667 | brobecker/2007-02-20: I don't think this can actually happen | |
6668 | but we don't want to print the value of annonymous fields anyway. */ | |
6669 | if (name == NULL) | |
6670 | return 1; | |
6671 | ||
ffde82bf JB |
6672 | /* Normally, fields whose name start with an underscore ("_") |
6673 | are fields that have been internally generated by the compiler, | |
6674 | and thus should not be printed. The "_parent" field is special, | |
6675 | however: This is a field internally generated by the compiler | |
6676 | for tagged types, and it contains the components inherited from | |
6677 | the parent type. This field should not be printed as is, but | |
6678 | should not be ignored either. */ | |
61012eef | 6679 | if (name[0] == '_' && !startswith (name, "_parent")) |
73fb9985 JB |
6680 | return 1; |
6681 | } | |
6682 | ||
ac4a2da4 JG |
6683 | /* If this is the dispatch table of a tagged type or an interface tag, |
6684 | then ignore. */ | |
73fb9985 | 6685 | if (ada_is_tagged_type (type, 1) |
ac4a2da4 JG |
6686 | && (ada_is_dispatch_table_ptr_type (TYPE_FIELD_TYPE (type, field_num)) |
6687 | || ada_is_interface_tag (TYPE_FIELD_TYPE (type, field_num)))) | |
73fb9985 JB |
6688 | return 1; |
6689 | ||
6690 | /* Not a special field, so it should not be ignored. */ | |
6691 | return 0; | |
963a6417 | 6692 | } |
96d887e8 | 6693 | |
963a6417 | 6694 | /* True iff TYPE has a tag field. If REFOK, then TYPE may also be a |
0963b4bd | 6695 | pointer or reference type whose ultimate target has a tag field. */ |
96d887e8 | 6696 | |
963a6417 PH |
6697 | int |
6698 | ada_is_tagged_type (struct type *type, int refok) | |
6699 | { | |
988f6b3d | 6700 | return (ada_lookup_struct_elt_type (type, "_tag", refok, 1) != NULL); |
963a6417 | 6701 | } |
96d887e8 | 6702 | |
963a6417 | 6703 | /* True iff TYPE represents the type of X'Tag */ |
96d887e8 | 6704 | |
963a6417 PH |
6705 | int |
6706 | ada_is_tag_type (struct type *type) | |
6707 | { | |
460efde1 JB |
6708 | type = ada_check_typedef (type); |
6709 | ||
963a6417 PH |
6710 | if (type == NULL || TYPE_CODE (type) != TYPE_CODE_PTR) |
6711 | return 0; | |
6712 | else | |
96d887e8 | 6713 | { |
963a6417 | 6714 | const char *name = ada_type_name (TYPE_TARGET_TYPE (type)); |
5b4ee69b | 6715 | |
963a6417 PH |
6716 | return (name != NULL |
6717 | && strcmp (name, "ada__tags__dispatch_table") == 0); | |
96d887e8 | 6718 | } |
96d887e8 PH |
6719 | } |
6720 | ||
963a6417 | 6721 | /* The type of the tag on VAL. */ |
76a01679 | 6722 | |
963a6417 PH |
6723 | struct type * |
6724 | ada_tag_type (struct value *val) | |
96d887e8 | 6725 | { |
988f6b3d | 6726 | return ada_lookup_struct_elt_type (value_type (val), "_tag", 1, 0); |
963a6417 | 6727 | } |
96d887e8 | 6728 | |
b50d69b5 JG |
6729 | /* Return 1 if TAG follows the old scheme for Ada tags (used for Ada 95, |
6730 | retired at Ada 05). */ | |
6731 | ||
6732 | static int | |
6733 | is_ada95_tag (struct value *tag) | |
6734 | { | |
6735 | return ada_value_struct_elt (tag, "tsd", 1) != NULL; | |
6736 | } | |
6737 | ||
963a6417 | 6738 | /* The value of the tag on VAL. */ |
96d887e8 | 6739 | |
963a6417 PH |
6740 | struct value * |
6741 | ada_value_tag (struct value *val) | |
6742 | { | |
03ee6b2e | 6743 | return ada_value_struct_elt (val, "_tag", 0); |
96d887e8 PH |
6744 | } |
6745 | ||
963a6417 PH |
6746 | /* The value of the tag on the object of type TYPE whose contents are |
6747 | saved at VALADDR, if it is non-null, or is at memory address | |
0963b4bd | 6748 | ADDRESS. */ |
96d887e8 | 6749 | |
963a6417 | 6750 | static struct value * |
10a2c479 | 6751 | value_tag_from_contents_and_address (struct type *type, |
fc1a4b47 | 6752 | const gdb_byte *valaddr, |
963a6417 | 6753 | CORE_ADDR address) |
96d887e8 | 6754 | { |
b5385fc0 | 6755 | int tag_byte_offset; |
963a6417 | 6756 | struct type *tag_type; |
5b4ee69b | 6757 | |
963a6417 | 6758 | if (find_struct_field ("_tag", type, 0, &tag_type, &tag_byte_offset, |
52ce6436 | 6759 | NULL, NULL, NULL)) |
96d887e8 | 6760 | { |
fc1a4b47 | 6761 | const gdb_byte *valaddr1 = ((valaddr == NULL) |
10a2c479 AC |
6762 | ? NULL |
6763 | : valaddr + tag_byte_offset); | |
963a6417 | 6764 | CORE_ADDR address1 = (address == 0) ? 0 : address + tag_byte_offset; |
96d887e8 | 6765 | |
963a6417 | 6766 | return value_from_contents_and_address (tag_type, valaddr1, address1); |
96d887e8 | 6767 | } |
963a6417 PH |
6768 | return NULL; |
6769 | } | |
96d887e8 | 6770 | |
963a6417 PH |
6771 | static struct type * |
6772 | type_from_tag (struct value *tag) | |
6773 | { | |
6774 | const char *type_name = ada_tag_name (tag); | |
5b4ee69b | 6775 | |
963a6417 PH |
6776 | if (type_name != NULL) |
6777 | return ada_find_any_type (ada_encode (type_name)); | |
6778 | return NULL; | |
6779 | } | |
96d887e8 | 6780 | |
b50d69b5 JG |
6781 | /* Given a value OBJ of a tagged type, return a value of this |
6782 | type at the base address of the object. The base address, as | |
6783 | defined in Ada.Tags, it is the address of the primary tag of | |
6784 | the object, and therefore where the field values of its full | |
6785 | view can be fetched. */ | |
6786 | ||
6787 | struct value * | |
6788 | ada_tag_value_at_base_address (struct value *obj) | |
6789 | { | |
b50d69b5 JG |
6790 | struct value *val; |
6791 | LONGEST offset_to_top = 0; | |
6792 | struct type *ptr_type, *obj_type; | |
6793 | struct value *tag; | |
6794 | CORE_ADDR base_address; | |
6795 | ||
6796 | obj_type = value_type (obj); | |
6797 | ||
6798 | /* It is the responsability of the caller to deref pointers. */ | |
6799 | ||
6800 | if (TYPE_CODE (obj_type) == TYPE_CODE_PTR | |
6801 | || TYPE_CODE (obj_type) == TYPE_CODE_REF) | |
6802 | return obj; | |
6803 | ||
6804 | tag = ada_value_tag (obj); | |
6805 | if (!tag) | |
6806 | return obj; | |
6807 | ||
6808 | /* Base addresses only appeared with Ada 05 and multiple inheritance. */ | |
6809 | ||
6810 | if (is_ada95_tag (tag)) | |
6811 | return obj; | |
6812 | ||
6813 | ptr_type = builtin_type (target_gdbarch ())->builtin_data_ptr; | |
6814 | ptr_type = lookup_pointer_type (ptr_type); | |
6815 | val = value_cast (ptr_type, tag); | |
6816 | if (!val) | |
6817 | return obj; | |
6818 | ||
6819 | /* It is perfectly possible that an exception be raised while | |
6820 | trying to determine the base address, just like for the tag; | |
6821 | see ada_tag_name for more details. We do not print the error | |
6822 | message for the same reason. */ | |
6823 | ||
492d29ea | 6824 | TRY |
b50d69b5 JG |
6825 | { |
6826 | offset_to_top = value_as_long (value_ind (value_ptradd (val, -2))); | |
6827 | } | |
6828 | ||
492d29ea PA |
6829 | CATCH (e, RETURN_MASK_ERROR) |
6830 | { | |
6831 | return obj; | |
6832 | } | |
6833 | END_CATCH | |
b50d69b5 JG |
6834 | |
6835 | /* If offset is null, nothing to do. */ | |
6836 | ||
6837 | if (offset_to_top == 0) | |
6838 | return obj; | |
6839 | ||
6840 | /* -1 is a special case in Ada.Tags; however, what should be done | |
6841 | is not quite clear from the documentation. So do nothing for | |
6842 | now. */ | |
6843 | ||
6844 | if (offset_to_top == -1) | |
6845 | return obj; | |
6846 | ||
6847 | base_address = value_address (obj) - offset_to_top; | |
6848 | tag = value_tag_from_contents_and_address (obj_type, NULL, base_address); | |
6849 | ||
6850 | /* Make sure that we have a proper tag at the new address. | |
6851 | Otherwise, offset_to_top is bogus (which can happen when | |
6852 | the object is not initialized yet). */ | |
6853 | ||
6854 | if (!tag) | |
6855 | return obj; | |
6856 | ||
6857 | obj_type = type_from_tag (tag); | |
6858 | ||
6859 | if (!obj_type) | |
6860 | return obj; | |
6861 | ||
6862 | return value_from_contents_and_address (obj_type, NULL, base_address); | |
6863 | } | |
6864 | ||
1b611343 JB |
6865 | /* Return the "ada__tags__type_specific_data" type. */ |
6866 | ||
6867 | static struct type * | |
6868 | ada_get_tsd_type (struct inferior *inf) | |
963a6417 | 6869 | { |
1b611343 | 6870 | struct ada_inferior_data *data = get_ada_inferior_data (inf); |
4c4b4cd2 | 6871 | |
1b611343 JB |
6872 | if (data->tsd_type == 0) |
6873 | data->tsd_type = ada_find_any_type ("ada__tags__type_specific_data"); | |
6874 | return data->tsd_type; | |
6875 | } | |
529cad9c | 6876 | |
1b611343 JB |
6877 | /* Return the TSD (type-specific data) associated to the given TAG. |
6878 | TAG is assumed to be the tag of a tagged-type entity. | |
529cad9c | 6879 | |
1b611343 | 6880 | May return NULL if we are unable to get the TSD. */ |
4c4b4cd2 | 6881 | |
1b611343 JB |
6882 | static struct value * |
6883 | ada_get_tsd_from_tag (struct value *tag) | |
4c4b4cd2 | 6884 | { |
4c4b4cd2 | 6885 | struct value *val; |
1b611343 | 6886 | struct type *type; |
5b4ee69b | 6887 | |
1b611343 JB |
6888 | /* First option: The TSD is simply stored as a field of our TAG. |
6889 | Only older versions of GNAT would use this format, but we have | |
6890 | to test it first, because there are no visible markers for | |
6891 | the current approach except the absence of that field. */ | |
529cad9c | 6892 | |
1b611343 JB |
6893 | val = ada_value_struct_elt (tag, "tsd", 1); |
6894 | if (val) | |
6895 | return val; | |
e802dbe0 | 6896 | |
1b611343 JB |
6897 | /* Try the second representation for the dispatch table (in which |
6898 | there is no explicit 'tsd' field in the referent of the tag pointer, | |
6899 | and instead the tsd pointer is stored just before the dispatch | |
6900 | table. */ | |
e802dbe0 | 6901 | |
1b611343 JB |
6902 | type = ada_get_tsd_type (current_inferior()); |
6903 | if (type == NULL) | |
6904 | return NULL; | |
6905 | type = lookup_pointer_type (lookup_pointer_type (type)); | |
6906 | val = value_cast (type, tag); | |
6907 | if (val == NULL) | |
6908 | return NULL; | |
6909 | return value_ind (value_ptradd (val, -1)); | |
e802dbe0 JB |
6910 | } |
6911 | ||
1b611343 JB |
6912 | /* Given the TSD of a tag (type-specific data), return a string |
6913 | containing the name of the associated type. | |
6914 | ||
6915 | The returned value is good until the next call. May return NULL | |
6916 | if we are unable to determine the tag name. */ | |
6917 | ||
6918 | static char * | |
6919 | ada_tag_name_from_tsd (struct value *tsd) | |
529cad9c | 6920 | { |
529cad9c PH |
6921 | static char name[1024]; |
6922 | char *p; | |
1b611343 | 6923 | struct value *val; |
529cad9c | 6924 | |
1b611343 | 6925 | val = ada_value_struct_elt (tsd, "expanded_name", 1); |
4c4b4cd2 | 6926 | if (val == NULL) |
1b611343 | 6927 | return NULL; |
4c4b4cd2 PH |
6928 | read_memory_string (value_as_address (val), name, sizeof (name) - 1); |
6929 | for (p = name; *p != '\0'; p += 1) | |
6930 | if (isalpha (*p)) | |
6931 | *p = tolower (*p); | |
1b611343 | 6932 | return name; |
4c4b4cd2 PH |
6933 | } |
6934 | ||
6935 | /* The type name of the dynamic type denoted by the 'tag value TAG, as | |
1b611343 JB |
6936 | a C string. |
6937 | ||
6938 | Return NULL if the TAG is not an Ada tag, or if we were unable to | |
6939 | determine the name of that tag. The result is good until the next | |
6940 | call. */ | |
4c4b4cd2 PH |
6941 | |
6942 | const char * | |
6943 | ada_tag_name (struct value *tag) | |
6944 | { | |
1b611343 | 6945 | char *name = NULL; |
5b4ee69b | 6946 | |
df407dfe | 6947 | if (!ada_is_tag_type (value_type (tag))) |
4c4b4cd2 | 6948 | return NULL; |
1b611343 JB |
6949 | |
6950 | /* It is perfectly possible that an exception be raised while trying | |
6951 | to determine the TAG's name, even under normal circumstances: | |
6952 | The associated variable may be uninitialized or corrupted, for | |
6953 | instance. We do not let any exception propagate past this point. | |
6954 | instead we return NULL. | |
6955 | ||
6956 | We also do not print the error message either (which often is very | |
6957 | low-level (Eg: "Cannot read memory at 0x[...]"), but instead let | |
6958 | the caller print a more meaningful message if necessary. */ | |
492d29ea | 6959 | TRY |
1b611343 JB |
6960 | { |
6961 | struct value *tsd = ada_get_tsd_from_tag (tag); | |
6962 | ||
6963 | if (tsd != NULL) | |
6964 | name = ada_tag_name_from_tsd (tsd); | |
6965 | } | |
492d29ea PA |
6966 | CATCH (e, RETURN_MASK_ERROR) |
6967 | { | |
6968 | } | |
6969 | END_CATCH | |
1b611343 JB |
6970 | |
6971 | return name; | |
4c4b4cd2 PH |
6972 | } |
6973 | ||
6974 | /* The parent type of TYPE, or NULL if none. */ | |
14f9c5c9 | 6975 | |
d2e4a39e | 6976 | struct type * |
ebf56fd3 | 6977 | ada_parent_type (struct type *type) |
14f9c5c9 AS |
6978 | { |
6979 | int i; | |
6980 | ||
61ee279c | 6981 | type = ada_check_typedef (type); |
14f9c5c9 AS |
6982 | |
6983 | if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT) | |
6984 | return NULL; | |
6985 | ||
6986 | for (i = 0; i < TYPE_NFIELDS (type); i += 1) | |
6987 | if (ada_is_parent_field (type, i)) | |
0c1f74cf JB |
6988 | { |
6989 | struct type *parent_type = TYPE_FIELD_TYPE (type, i); | |
6990 | ||
6991 | /* If the _parent field is a pointer, then dereference it. */ | |
6992 | if (TYPE_CODE (parent_type) == TYPE_CODE_PTR) | |
6993 | parent_type = TYPE_TARGET_TYPE (parent_type); | |
6994 | /* If there is a parallel XVS type, get the actual base type. */ | |
6995 | parent_type = ada_get_base_type (parent_type); | |
6996 | ||
6997 | return ada_check_typedef (parent_type); | |
6998 | } | |
14f9c5c9 AS |
6999 | |
7000 | return NULL; | |
7001 | } | |
7002 | ||
4c4b4cd2 PH |
7003 | /* True iff field number FIELD_NUM of structure type TYPE contains the |
7004 | parent-type (inherited) fields of a derived type. Assumes TYPE is | |
7005 | a structure type with at least FIELD_NUM+1 fields. */ | |
14f9c5c9 AS |
7006 | |
7007 | int | |
ebf56fd3 | 7008 | ada_is_parent_field (struct type *type, int field_num) |
14f9c5c9 | 7009 | { |
61ee279c | 7010 | const char *name = TYPE_FIELD_NAME (ada_check_typedef (type), field_num); |
5b4ee69b | 7011 | |
4c4b4cd2 | 7012 | return (name != NULL |
61012eef GB |
7013 | && (startswith (name, "PARENT") |
7014 | || startswith (name, "_parent"))); | |
14f9c5c9 AS |
7015 | } |
7016 | ||
4c4b4cd2 | 7017 | /* True iff field number FIELD_NUM of structure type TYPE is a |
14f9c5c9 | 7018 | transparent wrapper field (which should be silently traversed when doing |
4c4b4cd2 | 7019 | field selection and flattened when printing). Assumes TYPE is a |
14f9c5c9 | 7020 | structure type with at least FIELD_NUM+1 fields. Such fields are always |
4c4b4cd2 | 7021 | structures. */ |
14f9c5c9 AS |
7022 | |
7023 | int | |
ebf56fd3 | 7024 | ada_is_wrapper_field (struct type *type, int field_num) |
14f9c5c9 | 7025 | { |
d2e4a39e | 7026 | const char *name = TYPE_FIELD_NAME (type, field_num); |
5b4ee69b | 7027 | |
dddc0e16 JB |
7028 | if (name != NULL && strcmp (name, "RETVAL") == 0) |
7029 | { | |
7030 | /* This happens in functions with "out" or "in out" parameters | |
7031 | which are passed by copy. For such functions, GNAT describes | |
7032 | the function's return type as being a struct where the return | |
7033 | value is in a field called RETVAL, and where the other "out" | |
7034 | or "in out" parameters are fields of that struct. This is not | |
7035 | a wrapper. */ | |
7036 | return 0; | |
7037 | } | |
7038 | ||
d2e4a39e | 7039 | return (name != NULL |
61012eef | 7040 | && (startswith (name, "PARENT") |
4c4b4cd2 | 7041 | || strcmp (name, "REP") == 0 |
61012eef | 7042 | || startswith (name, "_parent") |
4c4b4cd2 | 7043 | || name[0] == 'S' || name[0] == 'R' || name[0] == 'O')); |
14f9c5c9 AS |
7044 | } |
7045 | ||
4c4b4cd2 PH |
7046 | /* True iff field number FIELD_NUM of structure or union type TYPE |
7047 | is a variant wrapper. Assumes TYPE is a structure type with at least | |
7048 | FIELD_NUM+1 fields. */ | |
14f9c5c9 AS |
7049 | |
7050 | int | |
ebf56fd3 | 7051 | ada_is_variant_part (struct type *type, int field_num) |
14f9c5c9 | 7052 | { |
d2e4a39e | 7053 | struct type *field_type = TYPE_FIELD_TYPE (type, field_num); |
5b4ee69b | 7054 | |
14f9c5c9 | 7055 | return (TYPE_CODE (field_type) == TYPE_CODE_UNION |
4c4b4cd2 | 7056 | || (is_dynamic_field (type, field_num) |
c3e5cd34 PH |
7057 | && (TYPE_CODE (TYPE_TARGET_TYPE (field_type)) |
7058 | == TYPE_CODE_UNION))); | |
14f9c5c9 AS |
7059 | } |
7060 | ||
7061 | /* Assuming that VAR_TYPE is a variant wrapper (type of the variant part) | |
4c4b4cd2 | 7062 | whose discriminants are contained in the record type OUTER_TYPE, |
7c964f07 UW |
7063 | returns the type of the controlling discriminant for the variant. |
7064 | May return NULL if the type could not be found. */ | |
14f9c5c9 | 7065 | |
d2e4a39e | 7066 | struct type * |
ebf56fd3 | 7067 | ada_variant_discrim_type (struct type *var_type, struct type *outer_type) |
14f9c5c9 | 7068 | { |
a121b7c1 | 7069 | const char *name = ada_variant_discrim_name (var_type); |
5b4ee69b | 7070 | |
988f6b3d | 7071 | return ada_lookup_struct_elt_type (outer_type, name, 1, 1); |
14f9c5c9 AS |
7072 | } |
7073 | ||
4c4b4cd2 | 7074 | /* Assuming that TYPE is the type of a variant wrapper, and FIELD_NUM is a |
14f9c5c9 | 7075 | valid field number within it, returns 1 iff field FIELD_NUM of TYPE |
4c4b4cd2 | 7076 | represents a 'when others' clause; otherwise 0. */ |
14f9c5c9 AS |
7077 | |
7078 | int | |
ebf56fd3 | 7079 | ada_is_others_clause (struct type *type, int field_num) |
14f9c5c9 | 7080 | { |
d2e4a39e | 7081 | const char *name = TYPE_FIELD_NAME (type, field_num); |
5b4ee69b | 7082 | |
14f9c5c9 AS |
7083 | return (name != NULL && name[0] == 'O'); |
7084 | } | |
7085 | ||
7086 | /* Assuming that TYPE0 is the type of the variant part of a record, | |
4c4b4cd2 PH |
7087 | returns the name of the discriminant controlling the variant. |
7088 | The value is valid until the next call to ada_variant_discrim_name. */ | |
14f9c5c9 | 7089 | |
a121b7c1 | 7090 | const char * |
ebf56fd3 | 7091 | ada_variant_discrim_name (struct type *type0) |
14f9c5c9 | 7092 | { |
d2e4a39e | 7093 | static char *result = NULL; |
14f9c5c9 | 7094 | static size_t result_len = 0; |
d2e4a39e AS |
7095 | struct type *type; |
7096 | const char *name; | |
7097 | const char *discrim_end; | |
7098 | const char *discrim_start; | |
14f9c5c9 AS |
7099 | |
7100 | if (TYPE_CODE (type0) == TYPE_CODE_PTR) | |
7101 | type = TYPE_TARGET_TYPE (type0); | |
7102 | else | |
7103 | type = type0; | |
7104 | ||
7105 | name = ada_type_name (type); | |
7106 | ||
7107 | if (name == NULL || name[0] == '\000') | |
7108 | return ""; | |
7109 | ||
7110 | for (discrim_end = name + strlen (name) - 6; discrim_end != name; | |
7111 | discrim_end -= 1) | |
7112 | { | |
61012eef | 7113 | if (startswith (discrim_end, "___XVN")) |
4c4b4cd2 | 7114 | break; |
14f9c5c9 AS |
7115 | } |
7116 | if (discrim_end == name) | |
7117 | return ""; | |
7118 | ||
d2e4a39e | 7119 | for (discrim_start = discrim_end; discrim_start != name + 3; |
14f9c5c9 AS |
7120 | discrim_start -= 1) |
7121 | { | |
d2e4a39e | 7122 | if (discrim_start == name + 1) |
4c4b4cd2 | 7123 | return ""; |
76a01679 | 7124 | if ((discrim_start > name + 3 |
61012eef | 7125 | && startswith (discrim_start - 3, "___")) |
4c4b4cd2 PH |
7126 | || discrim_start[-1] == '.') |
7127 | break; | |
14f9c5c9 AS |
7128 | } |
7129 | ||
7130 | GROW_VECT (result, result_len, discrim_end - discrim_start + 1); | |
7131 | strncpy (result, discrim_start, discrim_end - discrim_start); | |
d2e4a39e | 7132 | result[discrim_end - discrim_start] = '\0'; |
14f9c5c9 AS |
7133 | return result; |
7134 | } | |
7135 | ||
4c4b4cd2 PH |
7136 | /* Scan STR for a subtype-encoded number, beginning at position K. |
7137 | Put the position of the character just past the number scanned in | |
7138 | *NEW_K, if NEW_K!=NULL. Put the scanned number in *R, if R!=NULL. | |
7139 | Return 1 if there was a valid number at the given position, and 0 | |
7140 | otherwise. A "subtype-encoded" number consists of the absolute value | |
7141 | in decimal, followed by the letter 'm' to indicate a negative number. | |
7142 | Assumes 0m does not occur. */ | |
14f9c5c9 AS |
7143 | |
7144 | int | |
d2e4a39e | 7145 | ada_scan_number (const char str[], int k, LONGEST * R, int *new_k) |
14f9c5c9 AS |
7146 | { |
7147 | ULONGEST RU; | |
7148 | ||
d2e4a39e | 7149 | if (!isdigit (str[k])) |
14f9c5c9 AS |
7150 | return 0; |
7151 | ||
4c4b4cd2 | 7152 | /* Do it the hard way so as not to make any assumption about |
14f9c5c9 | 7153 | the relationship of unsigned long (%lu scan format code) and |
4c4b4cd2 | 7154 | LONGEST. */ |
14f9c5c9 AS |
7155 | RU = 0; |
7156 | while (isdigit (str[k])) | |
7157 | { | |
d2e4a39e | 7158 | RU = RU * 10 + (str[k] - '0'); |
14f9c5c9 AS |
7159 | k += 1; |
7160 | } | |
7161 | ||
d2e4a39e | 7162 | if (str[k] == 'm') |
14f9c5c9 AS |
7163 | { |
7164 | if (R != NULL) | |
4c4b4cd2 | 7165 | *R = (-(LONGEST) (RU - 1)) - 1; |
14f9c5c9 AS |
7166 | k += 1; |
7167 | } | |
7168 | else if (R != NULL) | |
7169 | *R = (LONGEST) RU; | |
7170 | ||
4c4b4cd2 | 7171 | /* NOTE on the above: Technically, C does not say what the results of |
14f9c5c9 AS |
7172 | - (LONGEST) RU or (LONGEST) -RU are for RU == largest positive |
7173 | number representable as a LONGEST (although either would probably work | |
7174 | in most implementations). When RU>0, the locution in the then branch | |
4c4b4cd2 | 7175 | above is always equivalent to the negative of RU. */ |
14f9c5c9 AS |
7176 | |
7177 | if (new_k != NULL) | |
7178 | *new_k = k; | |
7179 | return 1; | |
7180 | } | |
7181 | ||
4c4b4cd2 PH |
7182 | /* Assuming that TYPE is a variant part wrapper type (a VARIANTS field), |
7183 | and FIELD_NUM is a valid field number within it, returns 1 iff VAL is | |
7184 | in the range encoded by field FIELD_NUM of TYPE; otherwise 0. */ | |
14f9c5c9 | 7185 | |
d2e4a39e | 7186 | int |
ebf56fd3 | 7187 | ada_in_variant (LONGEST val, struct type *type, int field_num) |
14f9c5c9 | 7188 | { |
d2e4a39e | 7189 | const char *name = TYPE_FIELD_NAME (type, field_num); |
14f9c5c9 AS |
7190 | int p; |
7191 | ||
7192 | p = 0; | |
7193 | while (1) | |
7194 | { | |
d2e4a39e | 7195 | switch (name[p]) |
4c4b4cd2 PH |
7196 | { |
7197 | case '\0': | |
7198 | return 0; | |
7199 | case 'S': | |
7200 | { | |
7201 | LONGEST W; | |
5b4ee69b | 7202 | |
4c4b4cd2 PH |
7203 | if (!ada_scan_number (name, p + 1, &W, &p)) |
7204 | return 0; | |
7205 | if (val == W) | |
7206 | return 1; | |
7207 | break; | |
7208 | } | |
7209 | case 'R': | |
7210 | { | |
7211 | LONGEST L, U; | |
5b4ee69b | 7212 | |
4c4b4cd2 PH |
7213 | if (!ada_scan_number (name, p + 1, &L, &p) |
7214 | || name[p] != 'T' || !ada_scan_number (name, p + 1, &U, &p)) | |
7215 | return 0; | |
7216 | if (val >= L && val <= U) | |
7217 | return 1; | |
7218 | break; | |
7219 | } | |
7220 | case 'O': | |
7221 | return 1; | |
7222 | default: | |
7223 | return 0; | |
7224 | } | |
7225 | } | |
7226 | } | |
7227 | ||
0963b4bd | 7228 | /* FIXME: Lots of redundancy below. Try to consolidate. */ |
4c4b4cd2 PH |
7229 | |
7230 | /* Given a value ARG1 (offset by OFFSET bytes) of a struct or union type | |
7231 | ARG_TYPE, extract and return the value of one of its (non-static) | |
7232 | fields. FIELDNO says which field. Differs from value_primitive_field | |
7233 | only in that it can handle packed values of arbitrary type. */ | |
14f9c5c9 | 7234 | |
4c4b4cd2 | 7235 | static struct value * |
d2e4a39e | 7236 | ada_value_primitive_field (struct value *arg1, int offset, int fieldno, |
4c4b4cd2 | 7237 | struct type *arg_type) |
14f9c5c9 | 7238 | { |
14f9c5c9 AS |
7239 | struct type *type; |
7240 | ||
61ee279c | 7241 | arg_type = ada_check_typedef (arg_type); |
14f9c5c9 AS |
7242 | type = TYPE_FIELD_TYPE (arg_type, fieldno); |
7243 | ||
4c4b4cd2 | 7244 | /* Handle packed fields. */ |
14f9c5c9 AS |
7245 | |
7246 | if (TYPE_FIELD_BITSIZE (arg_type, fieldno) != 0) | |
7247 | { | |
7248 | int bit_pos = TYPE_FIELD_BITPOS (arg_type, fieldno); | |
7249 | int bit_size = TYPE_FIELD_BITSIZE (arg_type, fieldno); | |
d2e4a39e | 7250 | |
0fd88904 | 7251 | return ada_value_primitive_packed_val (arg1, value_contents (arg1), |
4c4b4cd2 PH |
7252 | offset + bit_pos / 8, |
7253 | bit_pos % 8, bit_size, type); | |
14f9c5c9 AS |
7254 | } |
7255 | else | |
7256 | return value_primitive_field (arg1, offset, fieldno, arg_type); | |
7257 | } | |
7258 | ||
52ce6436 PH |
7259 | /* Find field with name NAME in object of type TYPE. If found, |
7260 | set the following for each argument that is non-null: | |
7261 | - *FIELD_TYPE_P to the field's type; | |
7262 | - *BYTE_OFFSET_P to OFFSET + the byte offset of the field within | |
7263 | an object of that type; | |
7264 | - *BIT_OFFSET_P to the bit offset modulo byte size of the field; | |
7265 | - *BIT_SIZE_P to its size in bits if the field is packed, and | |
7266 | 0 otherwise; | |
7267 | If INDEX_P is non-null, increment *INDEX_P by the number of source-visible | |
7268 | fields up to but not including the desired field, or by the total | |
7269 | number of fields if not found. A NULL value of NAME never | |
7270 | matches; the function just counts visible fields in this case. | |
7271 | ||
0963b4bd | 7272 | Returns 1 if found, 0 otherwise. */ |
52ce6436 | 7273 | |
4c4b4cd2 | 7274 | static int |
0d5cff50 | 7275 | find_struct_field (const char *name, struct type *type, int offset, |
76a01679 | 7276 | struct type **field_type_p, |
52ce6436 PH |
7277 | int *byte_offset_p, int *bit_offset_p, int *bit_size_p, |
7278 | int *index_p) | |
4c4b4cd2 PH |
7279 | { |
7280 | int i; | |
7281 | ||
61ee279c | 7282 | type = ada_check_typedef (type); |
76a01679 | 7283 | |
52ce6436 PH |
7284 | if (field_type_p != NULL) |
7285 | *field_type_p = NULL; | |
7286 | if (byte_offset_p != NULL) | |
d5d6fca5 | 7287 | *byte_offset_p = 0; |
52ce6436 PH |
7288 | if (bit_offset_p != NULL) |
7289 | *bit_offset_p = 0; | |
7290 | if (bit_size_p != NULL) | |
7291 | *bit_size_p = 0; | |
7292 | ||
7293 | for (i = 0; i < TYPE_NFIELDS (type); i += 1) | |
4c4b4cd2 PH |
7294 | { |
7295 | int bit_pos = TYPE_FIELD_BITPOS (type, i); | |
7296 | int fld_offset = offset + bit_pos / 8; | |
0d5cff50 | 7297 | const char *t_field_name = TYPE_FIELD_NAME (type, i); |
76a01679 | 7298 | |
4c4b4cd2 PH |
7299 | if (t_field_name == NULL) |
7300 | continue; | |
7301 | ||
52ce6436 | 7302 | else if (name != NULL && field_name_match (t_field_name, name)) |
76a01679 JB |
7303 | { |
7304 | int bit_size = TYPE_FIELD_BITSIZE (type, i); | |
5b4ee69b | 7305 | |
52ce6436 PH |
7306 | if (field_type_p != NULL) |
7307 | *field_type_p = TYPE_FIELD_TYPE (type, i); | |
7308 | if (byte_offset_p != NULL) | |
7309 | *byte_offset_p = fld_offset; | |
7310 | if (bit_offset_p != NULL) | |
7311 | *bit_offset_p = bit_pos % 8; | |
7312 | if (bit_size_p != NULL) | |
7313 | *bit_size_p = bit_size; | |
76a01679 JB |
7314 | return 1; |
7315 | } | |
4c4b4cd2 PH |
7316 | else if (ada_is_wrapper_field (type, i)) |
7317 | { | |
52ce6436 PH |
7318 | if (find_struct_field (name, TYPE_FIELD_TYPE (type, i), fld_offset, |
7319 | field_type_p, byte_offset_p, bit_offset_p, | |
7320 | bit_size_p, index_p)) | |
76a01679 JB |
7321 | return 1; |
7322 | } | |
4c4b4cd2 PH |
7323 | else if (ada_is_variant_part (type, i)) |
7324 | { | |
52ce6436 PH |
7325 | /* PNH: Wait. Do we ever execute this section, or is ARG always of |
7326 | fixed type?? */ | |
4c4b4cd2 | 7327 | int j; |
52ce6436 PH |
7328 | struct type *field_type |
7329 | = ada_check_typedef (TYPE_FIELD_TYPE (type, i)); | |
4c4b4cd2 | 7330 | |
52ce6436 | 7331 | for (j = 0; j < TYPE_NFIELDS (field_type); j += 1) |
4c4b4cd2 | 7332 | { |
76a01679 JB |
7333 | if (find_struct_field (name, TYPE_FIELD_TYPE (field_type, j), |
7334 | fld_offset | |
7335 | + TYPE_FIELD_BITPOS (field_type, j) / 8, | |
7336 | field_type_p, byte_offset_p, | |
52ce6436 | 7337 | bit_offset_p, bit_size_p, index_p)) |
76a01679 | 7338 | return 1; |
4c4b4cd2 PH |
7339 | } |
7340 | } | |
52ce6436 PH |
7341 | else if (index_p != NULL) |
7342 | *index_p += 1; | |
4c4b4cd2 PH |
7343 | } |
7344 | return 0; | |
7345 | } | |
7346 | ||
0963b4bd | 7347 | /* Number of user-visible fields in record type TYPE. */ |
4c4b4cd2 | 7348 | |
52ce6436 PH |
7349 | static int |
7350 | num_visible_fields (struct type *type) | |
7351 | { | |
7352 | int n; | |
5b4ee69b | 7353 | |
52ce6436 PH |
7354 | n = 0; |
7355 | find_struct_field (NULL, type, 0, NULL, NULL, NULL, NULL, &n); | |
7356 | return n; | |
7357 | } | |
14f9c5c9 | 7358 | |
4c4b4cd2 | 7359 | /* Look for a field NAME in ARG. Adjust the address of ARG by OFFSET bytes, |
14f9c5c9 AS |
7360 | and search in it assuming it has (class) type TYPE. |
7361 | If found, return value, else return NULL. | |
7362 | ||
4c4b4cd2 | 7363 | Searches recursively through wrapper fields (e.g., '_parent'). */ |
14f9c5c9 | 7364 | |
4c4b4cd2 | 7365 | static struct value * |
108d56a4 | 7366 | ada_search_struct_field (const char *name, struct value *arg, int offset, |
4c4b4cd2 | 7367 | struct type *type) |
14f9c5c9 AS |
7368 | { |
7369 | int i; | |
14f9c5c9 | 7370 | |
5b4ee69b | 7371 | type = ada_check_typedef (type); |
52ce6436 | 7372 | for (i = 0; i < TYPE_NFIELDS (type); i += 1) |
14f9c5c9 | 7373 | { |
0d5cff50 | 7374 | const char *t_field_name = TYPE_FIELD_NAME (type, i); |
14f9c5c9 AS |
7375 | |
7376 | if (t_field_name == NULL) | |
4c4b4cd2 | 7377 | continue; |
14f9c5c9 AS |
7378 | |
7379 | else if (field_name_match (t_field_name, name)) | |
4c4b4cd2 | 7380 | return ada_value_primitive_field (arg, offset, i, type); |
14f9c5c9 AS |
7381 | |
7382 | else if (ada_is_wrapper_field (type, i)) | |
4c4b4cd2 | 7383 | { |
0963b4bd | 7384 | struct value *v = /* Do not let indent join lines here. */ |
06d5cf63 JB |
7385 | ada_search_struct_field (name, arg, |
7386 | offset + TYPE_FIELD_BITPOS (type, i) / 8, | |
7387 | TYPE_FIELD_TYPE (type, i)); | |
5b4ee69b | 7388 | |
4c4b4cd2 PH |
7389 | if (v != NULL) |
7390 | return v; | |
7391 | } | |
14f9c5c9 AS |
7392 | |
7393 | else if (ada_is_variant_part (type, i)) | |
4c4b4cd2 | 7394 | { |
0963b4bd | 7395 | /* PNH: Do we ever get here? See find_struct_field. */ |
4c4b4cd2 | 7396 | int j; |
5b4ee69b MS |
7397 | struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type, |
7398 | i)); | |
4c4b4cd2 PH |
7399 | int var_offset = offset + TYPE_FIELD_BITPOS (type, i) / 8; |
7400 | ||
52ce6436 | 7401 | for (j = 0; j < TYPE_NFIELDS (field_type); j += 1) |
4c4b4cd2 | 7402 | { |
0963b4bd MS |
7403 | struct value *v = ada_search_struct_field /* Force line |
7404 | break. */ | |
06d5cf63 JB |
7405 | (name, arg, |
7406 | var_offset + TYPE_FIELD_BITPOS (field_type, j) / 8, | |
7407 | TYPE_FIELD_TYPE (field_type, j)); | |
5b4ee69b | 7408 | |
4c4b4cd2 PH |
7409 | if (v != NULL) |
7410 | return v; | |
7411 | } | |
7412 | } | |
14f9c5c9 AS |
7413 | } |
7414 | return NULL; | |
7415 | } | |
d2e4a39e | 7416 | |
52ce6436 PH |
7417 | static struct value *ada_index_struct_field_1 (int *, struct value *, |
7418 | int, struct type *); | |
7419 | ||
7420 | ||
7421 | /* Return field #INDEX in ARG, where the index is that returned by | |
7422 | * find_struct_field through its INDEX_P argument. Adjust the address | |
7423 | * of ARG by OFFSET bytes, and search in it assuming it has (class) type TYPE. | |
0963b4bd | 7424 | * If found, return value, else return NULL. */ |
52ce6436 PH |
7425 | |
7426 | static struct value * | |
7427 | ada_index_struct_field (int index, struct value *arg, int offset, | |
7428 | struct type *type) | |
7429 | { | |
7430 | return ada_index_struct_field_1 (&index, arg, offset, type); | |
7431 | } | |
7432 | ||
7433 | ||
7434 | /* Auxiliary function for ada_index_struct_field. Like | |
7435 | * ada_index_struct_field, but takes index from *INDEX_P and modifies | |
0963b4bd | 7436 | * *INDEX_P. */ |
52ce6436 PH |
7437 | |
7438 | static struct value * | |
7439 | ada_index_struct_field_1 (int *index_p, struct value *arg, int offset, | |
7440 | struct type *type) | |
7441 | { | |
7442 | int i; | |
7443 | type = ada_check_typedef (type); | |
7444 | ||
7445 | for (i = 0; i < TYPE_NFIELDS (type); i += 1) | |
7446 | { | |
7447 | if (TYPE_FIELD_NAME (type, i) == NULL) | |
7448 | continue; | |
7449 | else if (ada_is_wrapper_field (type, i)) | |
7450 | { | |
0963b4bd | 7451 | struct value *v = /* Do not let indent join lines here. */ |
52ce6436 PH |
7452 | ada_index_struct_field_1 (index_p, arg, |
7453 | offset + TYPE_FIELD_BITPOS (type, i) / 8, | |
7454 | TYPE_FIELD_TYPE (type, i)); | |
5b4ee69b | 7455 | |
52ce6436 PH |
7456 | if (v != NULL) |
7457 | return v; | |
7458 | } | |
7459 | ||
7460 | else if (ada_is_variant_part (type, i)) | |
7461 | { | |
7462 | /* PNH: Do we ever get here? See ada_search_struct_field, | |
0963b4bd | 7463 | find_struct_field. */ |
52ce6436 PH |
7464 | error (_("Cannot assign this kind of variant record")); |
7465 | } | |
7466 | else if (*index_p == 0) | |
7467 | return ada_value_primitive_field (arg, offset, i, type); | |
7468 | else | |
7469 | *index_p -= 1; | |
7470 | } | |
7471 | return NULL; | |
7472 | } | |
7473 | ||
4c4b4cd2 PH |
7474 | /* Given ARG, a value of type (pointer or reference to a)* |
7475 | structure/union, extract the component named NAME from the ultimate | |
7476 | target structure/union and return it as a value with its | |
f5938064 | 7477 | appropriate type. |
14f9c5c9 | 7478 | |
4c4b4cd2 PH |
7479 | The routine searches for NAME among all members of the structure itself |
7480 | and (recursively) among all members of any wrapper members | |
14f9c5c9 AS |
7481 | (e.g., '_parent'). |
7482 | ||
03ee6b2e PH |
7483 | If NO_ERR, then simply return NULL in case of error, rather than |
7484 | calling error. */ | |
14f9c5c9 | 7485 | |
d2e4a39e | 7486 | struct value * |
a121b7c1 | 7487 | ada_value_struct_elt (struct value *arg, const char *name, int no_err) |
14f9c5c9 | 7488 | { |
4c4b4cd2 | 7489 | struct type *t, *t1; |
d2e4a39e | 7490 | struct value *v; |
14f9c5c9 | 7491 | |
4c4b4cd2 | 7492 | v = NULL; |
df407dfe | 7493 | t1 = t = ada_check_typedef (value_type (arg)); |
4c4b4cd2 PH |
7494 | if (TYPE_CODE (t) == TYPE_CODE_REF) |
7495 | { | |
7496 | t1 = TYPE_TARGET_TYPE (t); | |
7497 | if (t1 == NULL) | |
03ee6b2e | 7498 | goto BadValue; |
61ee279c | 7499 | t1 = ada_check_typedef (t1); |
4c4b4cd2 | 7500 | if (TYPE_CODE (t1) == TYPE_CODE_PTR) |
76a01679 | 7501 | { |
994b9211 | 7502 | arg = coerce_ref (arg); |
76a01679 JB |
7503 | t = t1; |
7504 | } | |
4c4b4cd2 | 7505 | } |
14f9c5c9 | 7506 | |
4c4b4cd2 PH |
7507 | while (TYPE_CODE (t) == TYPE_CODE_PTR) |
7508 | { | |
7509 | t1 = TYPE_TARGET_TYPE (t); | |
7510 | if (t1 == NULL) | |
03ee6b2e | 7511 | goto BadValue; |
61ee279c | 7512 | t1 = ada_check_typedef (t1); |
4c4b4cd2 | 7513 | if (TYPE_CODE (t1) == TYPE_CODE_PTR) |
76a01679 JB |
7514 | { |
7515 | arg = value_ind (arg); | |
7516 | t = t1; | |
7517 | } | |
4c4b4cd2 | 7518 | else |
76a01679 | 7519 | break; |
4c4b4cd2 | 7520 | } |
14f9c5c9 | 7521 | |
4c4b4cd2 | 7522 | if (TYPE_CODE (t1) != TYPE_CODE_STRUCT && TYPE_CODE (t1) != TYPE_CODE_UNION) |
03ee6b2e | 7523 | goto BadValue; |
14f9c5c9 | 7524 | |
4c4b4cd2 PH |
7525 | if (t1 == t) |
7526 | v = ada_search_struct_field (name, arg, 0, t); | |
7527 | else | |
7528 | { | |
7529 | int bit_offset, bit_size, byte_offset; | |
7530 | struct type *field_type; | |
7531 | CORE_ADDR address; | |
7532 | ||
76a01679 | 7533 | if (TYPE_CODE (t) == TYPE_CODE_PTR) |
b50d69b5 | 7534 | address = value_address (ada_value_ind (arg)); |
4c4b4cd2 | 7535 | else |
b50d69b5 | 7536 | address = value_address (ada_coerce_ref (arg)); |
14f9c5c9 | 7537 | |
1ed6ede0 | 7538 | t1 = ada_to_fixed_type (ada_get_base_type (t1), NULL, address, NULL, 1); |
76a01679 JB |
7539 | if (find_struct_field (name, t1, 0, |
7540 | &field_type, &byte_offset, &bit_offset, | |
52ce6436 | 7541 | &bit_size, NULL)) |
76a01679 JB |
7542 | { |
7543 | if (bit_size != 0) | |
7544 | { | |
714e53ab PH |
7545 | if (TYPE_CODE (t) == TYPE_CODE_REF) |
7546 | arg = ada_coerce_ref (arg); | |
7547 | else | |
7548 | arg = ada_value_ind (arg); | |
76a01679 JB |
7549 | v = ada_value_primitive_packed_val (arg, NULL, byte_offset, |
7550 | bit_offset, bit_size, | |
7551 | field_type); | |
7552 | } | |
7553 | else | |
f5938064 | 7554 | v = value_at_lazy (field_type, address + byte_offset); |
76a01679 JB |
7555 | } |
7556 | } | |
7557 | ||
03ee6b2e PH |
7558 | if (v != NULL || no_err) |
7559 | return v; | |
7560 | else | |
323e0a4a | 7561 | error (_("There is no member named %s."), name); |
14f9c5c9 | 7562 | |
03ee6b2e PH |
7563 | BadValue: |
7564 | if (no_err) | |
7565 | return NULL; | |
7566 | else | |
0963b4bd MS |
7567 | error (_("Attempt to extract a component of " |
7568 | "a value that is not a record.")); | |
14f9c5c9 AS |
7569 | } |
7570 | ||
3b4de39c | 7571 | /* Return a string representation of type TYPE. */ |
99bbb428 | 7572 | |
3b4de39c | 7573 | static std::string |
99bbb428 PA |
7574 | type_as_string (struct type *type) |
7575 | { | |
d7e74731 | 7576 | string_file tmp_stream; |
99bbb428 | 7577 | |
d7e74731 | 7578 | type_print (type, "", &tmp_stream, -1); |
99bbb428 | 7579 | |
d7e74731 | 7580 | return std::move (tmp_stream.string ()); |
99bbb428 PA |
7581 | } |
7582 | ||
14f9c5c9 | 7583 | /* Given a type TYPE, look up the type of the component of type named NAME. |
4c4b4cd2 PH |
7584 | If DISPP is non-null, add its byte displacement from the beginning of a |
7585 | structure (pointed to by a value) of type TYPE to *DISPP (does not | |
14f9c5c9 AS |
7586 | work for packed fields). |
7587 | ||
7588 | Matches any field whose name has NAME as a prefix, possibly | |
4c4b4cd2 | 7589 | followed by "___". |
14f9c5c9 | 7590 | |
0963b4bd | 7591 | TYPE can be either a struct or union. If REFOK, TYPE may also |
4c4b4cd2 PH |
7592 | be a (pointer or reference)+ to a struct or union, and the |
7593 | ultimate target type will be searched. | |
14f9c5c9 AS |
7594 | |
7595 | Looks recursively into variant clauses and parent types. | |
7596 | ||
4c4b4cd2 PH |
7597 | If NOERR is nonzero, return NULL if NAME is not suitably defined or |
7598 | TYPE is not a type of the right kind. */ | |
14f9c5c9 | 7599 | |
4c4b4cd2 | 7600 | static struct type * |
a121b7c1 | 7601 | ada_lookup_struct_elt_type (struct type *type, const char *name, int refok, |
988f6b3d | 7602 | int noerr) |
14f9c5c9 AS |
7603 | { |
7604 | int i; | |
7605 | ||
7606 | if (name == NULL) | |
7607 | goto BadName; | |
7608 | ||
76a01679 | 7609 | if (refok && type != NULL) |
4c4b4cd2 PH |
7610 | while (1) |
7611 | { | |
61ee279c | 7612 | type = ada_check_typedef (type); |
76a01679 JB |
7613 | if (TYPE_CODE (type) != TYPE_CODE_PTR |
7614 | && TYPE_CODE (type) != TYPE_CODE_REF) | |
7615 | break; | |
7616 | type = TYPE_TARGET_TYPE (type); | |
4c4b4cd2 | 7617 | } |
14f9c5c9 | 7618 | |
76a01679 | 7619 | if (type == NULL |
1265e4aa JB |
7620 | || (TYPE_CODE (type) != TYPE_CODE_STRUCT |
7621 | && TYPE_CODE (type) != TYPE_CODE_UNION)) | |
14f9c5c9 | 7622 | { |
4c4b4cd2 | 7623 | if (noerr) |
76a01679 | 7624 | return NULL; |
99bbb428 | 7625 | |
3b4de39c PA |
7626 | error (_("Type %s is not a structure or union type"), |
7627 | type != NULL ? type_as_string (type).c_str () : _("(null)")); | |
14f9c5c9 AS |
7628 | } |
7629 | ||
7630 | type = to_static_fixed_type (type); | |
7631 | ||
7632 | for (i = 0; i < TYPE_NFIELDS (type); i += 1) | |
7633 | { | |
0d5cff50 | 7634 | const char *t_field_name = TYPE_FIELD_NAME (type, i); |
14f9c5c9 | 7635 | struct type *t; |
d2e4a39e | 7636 | |
14f9c5c9 | 7637 | if (t_field_name == NULL) |
4c4b4cd2 | 7638 | continue; |
14f9c5c9 AS |
7639 | |
7640 | else if (field_name_match (t_field_name, name)) | |
988f6b3d | 7641 | return TYPE_FIELD_TYPE (type, i); |
14f9c5c9 AS |
7642 | |
7643 | else if (ada_is_wrapper_field (type, i)) | |
4c4b4cd2 | 7644 | { |
4c4b4cd2 | 7645 | t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (type, i), name, |
988f6b3d | 7646 | 0, 1); |
4c4b4cd2 | 7647 | if (t != NULL) |
988f6b3d | 7648 | return t; |
4c4b4cd2 | 7649 | } |
14f9c5c9 AS |
7650 | |
7651 | else if (ada_is_variant_part (type, i)) | |
4c4b4cd2 PH |
7652 | { |
7653 | int j; | |
5b4ee69b MS |
7654 | struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type, |
7655 | i)); | |
4c4b4cd2 PH |
7656 | |
7657 | for (j = TYPE_NFIELDS (field_type) - 1; j >= 0; j -= 1) | |
7658 | { | |
b1f33ddd JB |
7659 | /* FIXME pnh 2008/01/26: We check for a field that is |
7660 | NOT wrapped in a struct, since the compiler sometimes | |
7661 | generates these for unchecked variant types. Revisit | |
0963b4bd | 7662 | if the compiler changes this practice. */ |
0d5cff50 | 7663 | const char *v_field_name = TYPE_FIELD_NAME (field_type, j); |
988f6b3d | 7664 | |
b1f33ddd JB |
7665 | if (v_field_name != NULL |
7666 | && field_name_match (v_field_name, name)) | |
460efde1 | 7667 | t = TYPE_FIELD_TYPE (field_type, j); |
b1f33ddd | 7668 | else |
0963b4bd MS |
7669 | t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (field_type, |
7670 | j), | |
988f6b3d | 7671 | name, 0, 1); |
b1f33ddd | 7672 | |
4c4b4cd2 | 7673 | if (t != NULL) |
988f6b3d | 7674 | return t; |
4c4b4cd2 PH |
7675 | } |
7676 | } | |
14f9c5c9 AS |
7677 | |
7678 | } | |
7679 | ||
7680 | BadName: | |
d2e4a39e | 7681 | if (!noerr) |
14f9c5c9 | 7682 | { |
2b2798cc | 7683 | const char *name_str = name != NULL ? name : _("<null>"); |
99bbb428 PA |
7684 | |
7685 | error (_("Type %s has no component named %s"), | |
3b4de39c | 7686 | type_as_string (type).c_str (), name_str); |
14f9c5c9 AS |
7687 | } |
7688 | ||
7689 | return NULL; | |
7690 | } | |
7691 | ||
b1f33ddd JB |
7692 | /* Assuming that VAR_TYPE is the type of a variant part of a record (a union), |
7693 | within a value of type OUTER_TYPE, return true iff VAR_TYPE | |
7694 | represents an unchecked union (that is, the variant part of a | |
0963b4bd | 7695 | record that is named in an Unchecked_Union pragma). */ |
b1f33ddd JB |
7696 | |
7697 | static int | |
7698 | is_unchecked_variant (struct type *var_type, struct type *outer_type) | |
7699 | { | |
a121b7c1 | 7700 | const char *discrim_name = ada_variant_discrim_name (var_type); |
5b4ee69b | 7701 | |
988f6b3d | 7702 | return (ada_lookup_struct_elt_type (outer_type, discrim_name, 0, 1) == NULL); |
b1f33ddd JB |
7703 | } |
7704 | ||
7705 | ||
14f9c5c9 AS |
7706 | /* Assuming that VAR_TYPE is the type of a variant part of a record (a union), |
7707 | within a value of type OUTER_TYPE that is stored in GDB at | |
4c4b4cd2 PH |
7708 | OUTER_VALADDR, determine which variant clause (field number in VAR_TYPE, |
7709 | numbering from 0) is applicable. Returns -1 if none are. */ | |
14f9c5c9 | 7710 | |
d2e4a39e | 7711 | int |
ebf56fd3 | 7712 | ada_which_variant_applies (struct type *var_type, struct type *outer_type, |
fc1a4b47 | 7713 | const gdb_byte *outer_valaddr) |
14f9c5c9 AS |
7714 | { |
7715 | int others_clause; | |
7716 | int i; | |
a121b7c1 | 7717 | const char *discrim_name = ada_variant_discrim_name (var_type); |
0c281816 JB |
7718 | struct value *outer; |
7719 | struct value *discrim; | |
14f9c5c9 AS |
7720 | LONGEST discrim_val; |
7721 | ||
012370f6 TT |
7722 | /* Using plain value_from_contents_and_address here causes problems |
7723 | because we will end up trying to resolve a type that is currently | |
7724 | being constructed. */ | |
7725 | outer = value_from_contents_and_address_unresolved (outer_type, | |
7726 | outer_valaddr, 0); | |
0c281816 JB |
7727 | discrim = ada_value_struct_elt (outer, discrim_name, 1); |
7728 | if (discrim == NULL) | |
14f9c5c9 | 7729 | return -1; |
0c281816 | 7730 | discrim_val = value_as_long (discrim); |
14f9c5c9 AS |
7731 | |
7732 | others_clause = -1; | |
7733 | for (i = 0; i < TYPE_NFIELDS (var_type); i += 1) | |
7734 | { | |
7735 | if (ada_is_others_clause (var_type, i)) | |
4c4b4cd2 | 7736 | others_clause = i; |
14f9c5c9 | 7737 | else if (ada_in_variant (discrim_val, var_type, i)) |
4c4b4cd2 | 7738 | return i; |
14f9c5c9 AS |
7739 | } |
7740 | ||
7741 | return others_clause; | |
7742 | } | |
d2e4a39e | 7743 | \f |
14f9c5c9 AS |
7744 | |
7745 | ||
4c4b4cd2 | 7746 | /* Dynamic-Sized Records */ |
14f9c5c9 AS |
7747 | |
7748 | /* Strategy: The type ostensibly attached to a value with dynamic size | |
7749 | (i.e., a size that is not statically recorded in the debugging | |
7750 | data) does not accurately reflect the size or layout of the value. | |
7751 | Our strategy is to convert these values to values with accurate, | |
4c4b4cd2 | 7752 | conventional types that are constructed on the fly. */ |
14f9c5c9 AS |
7753 | |
7754 | /* There is a subtle and tricky problem here. In general, we cannot | |
7755 | determine the size of dynamic records without its data. However, | |
7756 | the 'struct value' data structure, which GDB uses to represent | |
7757 | quantities in the inferior process (the target), requires the size | |
7758 | of the type at the time of its allocation in order to reserve space | |
7759 | for GDB's internal copy of the data. That's why the | |
7760 | 'to_fixed_xxx_type' routines take (target) addresses as parameters, | |
4c4b4cd2 | 7761 | rather than struct value*s. |
14f9c5c9 AS |
7762 | |
7763 | However, GDB's internal history variables ($1, $2, etc.) are | |
7764 | struct value*s containing internal copies of the data that are not, in | |
7765 | general, the same as the data at their corresponding addresses in | |
7766 | the target. Fortunately, the types we give to these values are all | |
7767 | conventional, fixed-size types (as per the strategy described | |
7768 | above), so that we don't usually have to perform the | |
7769 | 'to_fixed_xxx_type' conversions to look at their values. | |
7770 | Unfortunately, there is one exception: if one of the internal | |
7771 | history variables is an array whose elements are unconstrained | |
7772 | records, then we will need to create distinct fixed types for each | |
7773 | element selected. */ | |
7774 | ||
7775 | /* The upshot of all of this is that many routines take a (type, host | |
7776 | address, target address) triple as arguments to represent a value. | |
7777 | The host address, if non-null, is supposed to contain an internal | |
7778 | copy of the relevant data; otherwise, the program is to consult the | |
4c4b4cd2 | 7779 | target at the target address. */ |
14f9c5c9 AS |
7780 | |
7781 | /* Assuming that VAL0 represents a pointer value, the result of | |
7782 | dereferencing it. Differs from value_ind in its treatment of | |
4c4b4cd2 | 7783 | dynamic-sized types. */ |
14f9c5c9 | 7784 | |
d2e4a39e AS |
7785 | struct value * |
7786 | ada_value_ind (struct value *val0) | |
14f9c5c9 | 7787 | { |
c48db5ca | 7788 | struct value *val = value_ind (val0); |
5b4ee69b | 7789 | |
b50d69b5 JG |
7790 | if (ada_is_tagged_type (value_type (val), 0)) |
7791 | val = ada_tag_value_at_base_address (val); | |
7792 | ||
4c4b4cd2 | 7793 | return ada_to_fixed_value (val); |
14f9c5c9 AS |
7794 | } |
7795 | ||
7796 | /* The value resulting from dereferencing any "reference to" | |
4c4b4cd2 PH |
7797 | qualifiers on VAL0. */ |
7798 | ||
d2e4a39e AS |
7799 | static struct value * |
7800 | ada_coerce_ref (struct value *val0) | |
7801 | { | |
df407dfe | 7802 | if (TYPE_CODE (value_type (val0)) == TYPE_CODE_REF) |
d2e4a39e AS |
7803 | { |
7804 | struct value *val = val0; | |
5b4ee69b | 7805 | |
994b9211 | 7806 | val = coerce_ref (val); |
b50d69b5 JG |
7807 | |
7808 | if (ada_is_tagged_type (value_type (val), 0)) | |
7809 | val = ada_tag_value_at_base_address (val); | |
7810 | ||
4c4b4cd2 | 7811 | return ada_to_fixed_value (val); |
d2e4a39e AS |
7812 | } |
7813 | else | |
14f9c5c9 AS |
7814 | return val0; |
7815 | } | |
7816 | ||
7817 | /* Return OFF rounded upward if necessary to a multiple of | |
4c4b4cd2 | 7818 | ALIGNMENT (a power of 2). */ |
14f9c5c9 AS |
7819 | |
7820 | static unsigned int | |
ebf56fd3 | 7821 | align_value (unsigned int off, unsigned int alignment) |
14f9c5c9 AS |
7822 | { |
7823 | return (off + alignment - 1) & ~(alignment - 1); | |
7824 | } | |
7825 | ||
4c4b4cd2 | 7826 | /* Return the bit alignment required for field #F of template type TYPE. */ |
14f9c5c9 AS |
7827 | |
7828 | static unsigned int | |
ebf56fd3 | 7829 | field_alignment (struct type *type, int f) |
14f9c5c9 | 7830 | { |
d2e4a39e | 7831 | const char *name = TYPE_FIELD_NAME (type, f); |
64a1bf19 | 7832 | int len; |
14f9c5c9 AS |
7833 | int align_offset; |
7834 | ||
64a1bf19 JB |
7835 | /* The field name should never be null, unless the debugging information |
7836 | is somehow malformed. In this case, we assume the field does not | |
7837 | require any alignment. */ | |
7838 | if (name == NULL) | |
7839 | return 1; | |
7840 | ||
7841 | len = strlen (name); | |
7842 | ||
4c4b4cd2 PH |
7843 | if (!isdigit (name[len - 1])) |
7844 | return 1; | |
14f9c5c9 | 7845 | |
d2e4a39e | 7846 | if (isdigit (name[len - 2])) |
14f9c5c9 AS |
7847 | align_offset = len - 2; |
7848 | else | |
7849 | align_offset = len - 1; | |
7850 | ||
61012eef | 7851 | if (align_offset < 7 || !startswith (name + align_offset - 6, "___XV")) |
14f9c5c9 AS |
7852 | return TARGET_CHAR_BIT; |
7853 | ||
4c4b4cd2 PH |
7854 | return atoi (name + align_offset) * TARGET_CHAR_BIT; |
7855 | } | |
7856 | ||
852dff6c | 7857 | /* Find a typedef or tag symbol named NAME. Ignores ambiguity. */ |
4c4b4cd2 | 7858 | |
852dff6c JB |
7859 | static struct symbol * |
7860 | ada_find_any_type_symbol (const char *name) | |
4c4b4cd2 PH |
7861 | { |
7862 | struct symbol *sym; | |
7863 | ||
7864 | sym = standard_lookup (name, get_selected_block (NULL), VAR_DOMAIN); | |
4186eb54 | 7865 | if (sym != NULL && SYMBOL_CLASS (sym) == LOC_TYPEDEF) |
4c4b4cd2 PH |
7866 | return sym; |
7867 | ||
4186eb54 KS |
7868 | sym = standard_lookup (name, NULL, STRUCT_DOMAIN); |
7869 | return sym; | |
14f9c5c9 AS |
7870 | } |
7871 | ||
dddfab26 UW |
7872 | /* Find a type named NAME. Ignores ambiguity. This routine will look |
7873 | solely for types defined by debug info, it will not search the GDB | |
7874 | primitive types. */ | |
4c4b4cd2 | 7875 | |
852dff6c | 7876 | static struct type * |
ebf56fd3 | 7877 | ada_find_any_type (const char *name) |
14f9c5c9 | 7878 | { |
852dff6c | 7879 | struct symbol *sym = ada_find_any_type_symbol (name); |
14f9c5c9 | 7880 | |
14f9c5c9 | 7881 | if (sym != NULL) |
dddfab26 | 7882 | return SYMBOL_TYPE (sym); |
14f9c5c9 | 7883 | |
dddfab26 | 7884 | return NULL; |
14f9c5c9 AS |
7885 | } |
7886 | ||
739593e0 JB |
7887 | /* Given NAME_SYM and an associated BLOCK, find a "renaming" symbol |
7888 | associated with NAME_SYM's name. NAME_SYM may itself be a renaming | |
7889 | symbol, in which case it is returned. Otherwise, this looks for | |
7890 | symbols whose name is that of NAME_SYM suffixed with "___XR". | |
7891 | Return symbol if found, and NULL otherwise. */ | |
4c4b4cd2 PH |
7892 | |
7893 | struct symbol * | |
270140bd | 7894 | ada_find_renaming_symbol (struct symbol *name_sym, const struct block *block) |
aeb5907d | 7895 | { |
739593e0 | 7896 | const char *name = SYMBOL_LINKAGE_NAME (name_sym); |
aeb5907d JB |
7897 | struct symbol *sym; |
7898 | ||
739593e0 JB |
7899 | if (strstr (name, "___XR") != NULL) |
7900 | return name_sym; | |
7901 | ||
aeb5907d JB |
7902 | sym = find_old_style_renaming_symbol (name, block); |
7903 | ||
7904 | if (sym != NULL) | |
7905 | return sym; | |
7906 | ||
0963b4bd | 7907 | /* Not right yet. FIXME pnh 7/20/2007. */ |
852dff6c | 7908 | sym = ada_find_any_type_symbol (name); |
aeb5907d JB |
7909 | if (sym != NULL && strstr (SYMBOL_LINKAGE_NAME (sym), "___XR") != NULL) |
7910 | return sym; | |
7911 | else | |
7912 | return NULL; | |
7913 | } | |
7914 | ||
7915 | static struct symbol * | |
270140bd | 7916 | find_old_style_renaming_symbol (const char *name, const struct block *block) |
4c4b4cd2 | 7917 | { |
7f0df278 | 7918 | const struct symbol *function_sym = block_linkage_function (block); |
4c4b4cd2 PH |
7919 | char *rename; |
7920 | ||
7921 | if (function_sym != NULL) | |
7922 | { | |
7923 | /* If the symbol is defined inside a function, NAME is not fully | |
7924 | qualified. This means we need to prepend the function name | |
7925 | as well as adding the ``___XR'' suffix to build the name of | |
7926 | the associated renaming symbol. */ | |
0d5cff50 | 7927 | const char *function_name = SYMBOL_LINKAGE_NAME (function_sym); |
529cad9c PH |
7928 | /* Function names sometimes contain suffixes used |
7929 | for instance to qualify nested subprograms. When building | |
7930 | the XR type name, we need to make sure that this suffix is | |
7931 | not included. So do not include any suffix in the function | |
7932 | name length below. */ | |
69fadcdf | 7933 | int function_name_len = ada_name_prefix_len (function_name); |
76a01679 JB |
7934 | const int rename_len = function_name_len + 2 /* "__" */ |
7935 | + strlen (name) + 6 /* "___XR\0" */ ; | |
4c4b4cd2 | 7936 | |
529cad9c | 7937 | /* Strip the suffix if necessary. */ |
69fadcdf JB |
7938 | ada_remove_trailing_digits (function_name, &function_name_len); |
7939 | ada_remove_po_subprogram_suffix (function_name, &function_name_len); | |
7940 | ada_remove_Xbn_suffix (function_name, &function_name_len); | |
529cad9c | 7941 | |
4c4b4cd2 PH |
7942 | /* Library-level functions are a special case, as GNAT adds |
7943 | a ``_ada_'' prefix to the function name to avoid namespace | |
aeb5907d | 7944 | pollution. However, the renaming symbols themselves do not |
4c4b4cd2 PH |
7945 | have this prefix, so we need to skip this prefix if present. */ |
7946 | if (function_name_len > 5 /* "_ada_" */ | |
7947 | && strstr (function_name, "_ada_") == function_name) | |
69fadcdf JB |
7948 | { |
7949 | function_name += 5; | |
7950 | function_name_len -= 5; | |
7951 | } | |
4c4b4cd2 PH |
7952 | |
7953 | rename = (char *) alloca (rename_len * sizeof (char)); | |
69fadcdf JB |
7954 | strncpy (rename, function_name, function_name_len); |
7955 | xsnprintf (rename + function_name_len, rename_len - function_name_len, | |
7956 | "__%s___XR", name); | |
4c4b4cd2 PH |
7957 | } |
7958 | else | |
7959 | { | |
7960 | const int rename_len = strlen (name) + 6; | |
5b4ee69b | 7961 | |
4c4b4cd2 | 7962 | rename = (char *) alloca (rename_len * sizeof (char)); |
88c15c34 | 7963 | xsnprintf (rename, rename_len * sizeof (char), "%s___XR", name); |
4c4b4cd2 PH |
7964 | } |
7965 | ||
852dff6c | 7966 | return ada_find_any_type_symbol (rename); |
4c4b4cd2 PH |
7967 | } |
7968 | ||
14f9c5c9 | 7969 | /* Because of GNAT encoding conventions, several GDB symbols may match a |
4c4b4cd2 | 7970 | given type name. If the type denoted by TYPE0 is to be preferred to |
14f9c5c9 | 7971 | that of TYPE1 for purposes of type printing, return non-zero; |
4c4b4cd2 PH |
7972 | otherwise return 0. */ |
7973 | ||
14f9c5c9 | 7974 | int |
d2e4a39e | 7975 | ada_prefer_type (struct type *type0, struct type *type1) |
14f9c5c9 AS |
7976 | { |
7977 | if (type1 == NULL) | |
7978 | return 1; | |
7979 | else if (type0 == NULL) | |
7980 | return 0; | |
7981 | else if (TYPE_CODE (type1) == TYPE_CODE_VOID) | |
7982 | return 1; | |
7983 | else if (TYPE_CODE (type0) == TYPE_CODE_VOID) | |
7984 | return 0; | |
4c4b4cd2 PH |
7985 | else if (TYPE_NAME (type1) == NULL && TYPE_NAME (type0) != NULL) |
7986 | return 1; | |
ad82864c | 7987 | else if (ada_is_constrained_packed_array_type (type0)) |
14f9c5c9 | 7988 | return 1; |
4c4b4cd2 PH |
7989 | else if (ada_is_array_descriptor_type (type0) |
7990 | && !ada_is_array_descriptor_type (type1)) | |
14f9c5c9 | 7991 | return 1; |
aeb5907d JB |
7992 | else |
7993 | { | |
7994 | const char *type0_name = type_name_no_tag (type0); | |
7995 | const char *type1_name = type_name_no_tag (type1); | |
7996 | ||
7997 | if (type0_name != NULL && strstr (type0_name, "___XR") != NULL | |
7998 | && (type1_name == NULL || strstr (type1_name, "___XR") == NULL)) | |
7999 | return 1; | |
8000 | } | |
14f9c5c9 AS |
8001 | return 0; |
8002 | } | |
8003 | ||
8004 | /* The name of TYPE, which is either its TYPE_NAME, or, if that is | |
4c4b4cd2 PH |
8005 | null, its TYPE_TAG_NAME. Null if TYPE is null. */ |
8006 | ||
0d5cff50 | 8007 | const char * |
d2e4a39e | 8008 | ada_type_name (struct type *type) |
14f9c5c9 | 8009 | { |
d2e4a39e | 8010 | if (type == NULL) |
14f9c5c9 AS |
8011 | return NULL; |
8012 | else if (TYPE_NAME (type) != NULL) | |
8013 | return TYPE_NAME (type); | |
8014 | else | |
8015 | return TYPE_TAG_NAME (type); | |
8016 | } | |
8017 | ||
b4ba55a1 JB |
8018 | /* Search the list of "descriptive" types associated to TYPE for a type |
8019 | whose name is NAME. */ | |
8020 | ||
8021 | static struct type * | |
8022 | find_parallel_type_by_descriptive_type (struct type *type, const char *name) | |
8023 | { | |
931e5bc3 | 8024 | struct type *result, *tmp; |
b4ba55a1 | 8025 | |
c6044dd1 JB |
8026 | if (ada_ignore_descriptive_types_p) |
8027 | return NULL; | |
8028 | ||
b4ba55a1 JB |
8029 | /* If there no descriptive-type info, then there is no parallel type |
8030 | to be found. */ | |
8031 | if (!HAVE_GNAT_AUX_INFO (type)) | |
8032 | return NULL; | |
8033 | ||
8034 | result = TYPE_DESCRIPTIVE_TYPE (type); | |
8035 | while (result != NULL) | |
8036 | { | |
0d5cff50 | 8037 | const char *result_name = ada_type_name (result); |
b4ba55a1 JB |
8038 | |
8039 | if (result_name == NULL) | |
8040 | { | |
8041 | warning (_("unexpected null name on descriptive type")); | |
8042 | return NULL; | |
8043 | } | |
8044 | ||
8045 | /* If the names match, stop. */ | |
8046 | if (strcmp (result_name, name) == 0) | |
8047 | break; | |
8048 | ||
8049 | /* Otherwise, look at the next item on the list, if any. */ | |
8050 | if (HAVE_GNAT_AUX_INFO (result)) | |
931e5bc3 JG |
8051 | tmp = TYPE_DESCRIPTIVE_TYPE (result); |
8052 | else | |
8053 | tmp = NULL; | |
8054 | ||
8055 | /* If not found either, try after having resolved the typedef. */ | |
8056 | if (tmp != NULL) | |
8057 | result = tmp; | |
b4ba55a1 | 8058 | else |
931e5bc3 | 8059 | { |
f168693b | 8060 | result = check_typedef (result); |
931e5bc3 JG |
8061 | if (HAVE_GNAT_AUX_INFO (result)) |
8062 | result = TYPE_DESCRIPTIVE_TYPE (result); | |
8063 | else | |
8064 | result = NULL; | |
8065 | } | |
b4ba55a1 JB |
8066 | } |
8067 | ||
8068 | /* If we didn't find a match, see whether this is a packed array. With | |
8069 | older compilers, the descriptive type information is either absent or | |
8070 | irrelevant when it comes to packed arrays so the above lookup fails. | |
8071 | Fall back to using a parallel lookup by name in this case. */ | |
12ab9e09 | 8072 | if (result == NULL && ada_is_constrained_packed_array_type (type)) |
b4ba55a1 JB |
8073 | return ada_find_any_type (name); |
8074 | ||
8075 | return result; | |
8076 | } | |
8077 | ||
8078 | /* Find a parallel type to TYPE with the specified NAME, using the | |
8079 | descriptive type taken from the debugging information, if available, | |
8080 | and otherwise using the (slower) name-based method. */ | |
8081 | ||
8082 | static struct type * | |
8083 | ada_find_parallel_type_with_name (struct type *type, const char *name) | |
8084 | { | |
8085 | struct type *result = NULL; | |
8086 | ||
8087 | if (HAVE_GNAT_AUX_INFO (type)) | |
8088 | result = find_parallel_type_by_descriptive_type (type, name); | |
8089 | else | |
8090 | result = ada_find_any_type (name); | |
8091 | ||
8092 | return result; | |
8093 | } | |
8094 | ||
8095 | /* Same as above, but specify the name of the parallel type by appending | |
4c4b4cd2 | 8096 | SUFFIX to the name of TYPE. */ |
14f9c5c9 | 8097 | |
d2e4a39e | 8098 | struct type * |
ebf56fd3 | 8099 | ada_find_parallel_type (struct type *type, const char *suffix) |
14f9c5c9 | 8100 | { |
0d5cff50 | 8101 | char *name; |
fe978cb0 | 8102 | const char *type_name = ada_type_name (type); |
14f9c5c9 | 8103 | int len; |
d2e4a39e | 8104 | |
fe978cb0 | 8105 | if (type_name == NULL) |
14f9c5c9 AS |
8106 | return NULL; |
8107 | ||
fe978cb0 | 8108 | len = strlen (type_name); |
14f9c5c9 | 8109 | |
b4ba55a1 | 8110 | name = (char *) alloca (len + strlen (suffix) + 1); |
14f9c5c9 | 8111 | |
fe978cb0 | 8112 | strcpy (name, type_name); |
14f9c5c9 AS |
8113 | strcpy (name + len, suffix); |
8114 | ||
b4ba55a1 | 8115 | return ada_find_parallel_type_with_name (type, name); |
14f9c5c9 AS |
8116 | } |
8117 | ||
14f9c5c9 | 8118 | /* If TYPE is a variable-size record type, return the corresponding template |
4c4b4cd2 | 8119 | type describing its fields. Otherwise, return NULL. */ |
14f9c5c9 | 8120 | |
d2e4a39e AS |
8121 | static struct type * |
8122 | dynamic_template_type (struct type *type) | |
14f9c5c9 | 8123 | { |
61ee279c | 8124 | type = ada_check_typedef (type); |
14f9c5c9 AS |
8125 | |
8126 | if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT | |
d2e4a39e | 8127 | || ada_type_name (type) == NULL) |
14f9c5c9 | 8128 | return NULL; |
d2e4a39e | 8129 | else |
14f9c5c9 AS |
8130 | { |
8131 | int len = strlen (ada_type_name (type)); | |
5b4ee69b | 8132 | |
4c4b4cd2 PH |
8133 | if (len > 6 && strcmp (ada_type_name (type) + len - 6, "___XVE") == 0) |
8134 | return type; | |
14f9c5c9 | 8135 | else |
4c4b4cd2 | 8136 | return ada_find_parallel_type (type, "___XVE"); |
14f9c5c9 AS |
8137 | } |
8138 | } | |
8139 | ||
8140 | /* Assuming that TEMPL_TYPE is a union or struct type, returns | |
4c4b4cd2 | 8141 | non-zero iff field FIELD_NUM of TEMPL_TYPE has dynamic size. */ |
14f9c5c9 | 8142 | |
d2e4a39e AS |
8143 | static int |
8144 | is_dynamic_field (struct type *templ_type, int field_num) | |
14f9c5c9 AS |
8145 | { |
8146 | const char *name = TYPE_FIELD_NAME (templ_type, field_num); | |
5b4ee69b | 8147 | |
d2e4a39e | 8148 | return name != NULL |
14f9c5c9 AS |
8149 | && TYPE_CODE (TYPE_FIELD_TYPE (templ_type, field_num)) == TYPE_CODE_PTR |
8150 | && strstr (name, "___XVL") != NULL; | |
8151 | } | |
8152 | ||
4c4b4cd2 PH |
8153 | /* The index of the variant field of TYPE, or -1 if TYPE does not |
8154 | represent a variant record type. */ | |
14f9c5c9 | 8155 | |
d2e4a39e | 8156 | static int |
4c4b4cd2 | 8157 | variant_field_index (struct type *type) |
14f9c5c9 AS |
8158 | { |
8159 | int f; | |
8160 | ||
4c4b4cd2 PH |
8161 | if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT) |
8162 | return -1; | |
8163 | ||
8164 | for (f = 0; f < TYPE_NFIELDS (type); f += 1) | |
8165 | { | |
8166 | if (ada_is_variant_part (type, f)) | |
8167 | return f; | |
8168 | } | |
8169 | return -1; | |
14f9c5c9 AS |
8170 | } |
8171 | ||
4c4b4cd2 PH |
8172 | /* A record type with no fields. */ |
8173 | ||
d2e4a39e | 8174 | static struct type * |
fe978cb0 | 8175 | empty_record (struct type *templ) |
14f9c5c9 | 8176 | { |
fe978cb0 | 8177 | struct type *type = alloc_type_copy (templ); |
5b4ee69b | 8178 | |
14f9c5c9 AS |
8179 | TYPE_CODE (type) = TYPE_CODE_STRUCT; |
8180 | TYPE_NFIELDS (type) = 0; | |
8181 | TYPE_FIELDS (type) = NULL; | |
b1f33ddd | 8182 | INIT_CPLUS_SPECIFIC (type); |
14f9c5c9 AS |
8183 | TYPE_NAME (type) = "<empty>"; |
8184 | TYPE_TAG_NAME (type) = NULL; | |
14f9c5c9 AS |
8185 | TYPE_LENGTH (type) = 0; |
8186 | return type; | |
8187 | } | |
8188 | ||
8189 | /* An ordinary record type (with fixed-length fields) that describes | |
4c4b4cd2 PH |
8190 | the value of type TYPE at VALADDR or ADDRESS (see comments at |
8191 | the beginning of this section) VAL according to GNAT conventions. | |
8192 | DVAL0 should describe the (portion of a) record that contains any | |
df407dfe | 8193 | necessary discriminants. It should be NULL if value_type (VAL) is |
14f9c5c9 AS |
8194 | an outer-level type (i.e., as opposed to a branch of a variant.) A |
8195 | variant field (unless unchecked) is replaced by a particular branch | |
4c4b4cd2 | 8196 | of the variant. |
14f9c5c9 | 8197 | |
4c4b4cd2 PH |
8198 | If not KEEP_DYNAMIC_FIELDS, then all fields whose position or |
8199 | length are not statically known are discarded. As a consequence, | |
8200 | VALADDR, ADDRESS and DVAL0 are ignored. | |
8201 | ||
8202 | NOTE: Limitations: For now, we assume that dynamic fields and | |
8203 | variants occupy whole numbers of bytes. However, they need not be | |
8204 | byte-aligned. */ | |
8205 | ||
8206 | struct type * | |
10a2c479 | 8207 | ada_template_to_fixed_record_type_1 (struct type *type, |
fc1a4b47 | 8208 | const gdb_byte *valaddr, |
4c4b4cd2 PH |
8209 | CORE_ADDR address, struct value *dval0, |
8210 | int keep_dynamic_fields) | |
14f9c5c9 | 8211 | { |
d2e4a39e AS |
8212 | struct value *mark = value_mark (); |
8213 | struct value *dval; | |
8214 | struct type *rtype; | |
14f9c5c9 | 8215 | int nfields, bit_len; |
4c4b4cd2 | 8216 | int variant_field; |
14f9c5c9 | 8217 | long off; |
d94e4f4f | 8218 | int fld_bit_len; |
14f9c5c9 AS |
8219 | int f; |
8220 | ||
4c4b4cd2 PH |
8221 | /* Compute the number of fields in this record type that are going |
8222 | to be processed: unless keep_dynamic_fields, this includes only | |
8223 | fields whose position and length are static will be processed. */ | |
8224 | if (keep_dynamic_fields) | |
8225 | nfields = TYPE_NFIELDS (type); | |
8226 | else | |
8227 | { | |
8228 | nfields = 0; | |
76a01679 | 8229 | while (nfields < TYPE_NFIELDS (type) |
4c4b4cd2 PH |
8230 | && !ada_is_variant_part (type, nfields) |
8231 | && !is_dynamic_field (type, nfields)) | |
8232 | nfields++; | |
8233 | } | |
8234 | ||
e9bb382b | 8235 | rtype = alloc_type_copy (type); |
14f9c5c9 AS |
8236 | TYPE_CODE (rtype) = TYPE_CODE_STRUCT; |
8237 | INIT_CPLUS_SPECIFIC (rtype); | |
8238 | TYPE_NFIELDS (rtype) = nfields; | |
d2e4a39e | 8239 | TYPE_FIELDS (rtype) = (struct field *) |
14f9c5c9 AS |
8240 | TYPE_ALLOC (rtype, nfields * sizeof (struct field)); |
8241 | memset (TYPE_FIELDS (rtype), 0, sizeof (struct field) * nfields); | |
8242 | TYPE_NAME (rtype) = ada_type_name (type); | |
8243 | TYPE_TAG_NAME (rtype) = NULL; | |
876cecd0 | 8244 | TYPE_FIXED_INSTANCE (rtype) = 1; |
14f9c5c9 | 8245 | |
d2e4a39e AS |
8246 | off = 0; |
8247 | bit_len = 0; | |
4c4b4cd2 PH |
8248 | variant_field = -1; |
8249 | ||
14f9c5c9 AS |
8250 | for (f = 0; f < nfields; f += 1) |
8251 | { | |
6c038f32 PH |
8252 | off = align_value (off, field_alignment (type, f)) |
8253 | + TYPE_FIELD_BITPOS (type, f); | |
945b3a32 | 8254 | SET_FIELD_BITPOS (TYPE_FIELD (rtype, f), off); |
d2e4a39e | 8255 | TYPE_FIELD_BITSIZE (rtype, f) = 0; |
14f9c5c9 | 8256 | |
d2e4a39e | 8257 | if (ada_is_variant_part (type, f)) |
4c4b4cd2 PH |
8258 | { |
8259 | variant_field = f; | |
d94e4f4f | 8260 | fld_bit_len = 0; |
4c4b4cd2 | 8261 | } |
14f9c5c9 | 8262 | else if (is_dynamic_field (type, f)) |
4c4b4cd2 | 8263 | { |
284614f0 JB |
8264 | const gdb_byte *field_valaddr = valaddr; |
8265 | CORE_ADDR field_address = address; | |
8266 | struct type *field_type = | |
8267 | TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type, f)); | |
8268 | ||
4c4b4cd2 | 8269 | if (dval0 == NULL) |
b5304971 JG |
8270 | { |
8271 | /* rtype's length is computed based on the run-time | |
8272 | value of discriminants. If the discriminants are not | |
8273 | initialized, the type size may be completely bogus and | |
0963b4bd | 8274 | GDB may fail to allocate a value for it. So check the |
b5304971 | 8275 | size first before creating the value. */ |
c1b5a1a6 | 8276 | ada_ensure_varsize_limit (rtype); |
012370f6 TT |
8277 | /* Using plain value_from_contents_and_address here |
8278 | causes problems because we will end up trying to | |
8279 | resolve a type that is currently being | |
8280 | constructed. */ | |
8281 | dval = value_from_contents_and_address_unresolved (rtype, | |
8282 | valaddr, | |
8283 | address); | |
9f1f738a | 8284 | rtype = value_type (dval); |
b5304971 | 8285 | } |
4c4b4cd2 PH |
8286 | else |
8287 | dval = dval0; | |
8288 | ||
284614f0 JB |
8289 | /* If the type referenced by this field is an aligner type, we need |
8290 | to unwrap that aligner type, because its size might not be set. | |
8291 | Keeping the aligner type would cause us to compute the wrong | |
8292 | size for this field, impacting the offset of the all the fields | |
8293 | that follow this one. */ | |
8294 | if (ada_is_aligner_type (field_type)) | |
8295 | { | |
8296 | long field_offset = TYPE_FIELD_BITPOS (field_type, f); | |
8297 | ||
8298 | field_valaddr = cond_offset_host (field_valaddr, field_offset); | |
8299 | field_address = cond_offset_target (field_address, field_offset); | |
8300 | field_type = ada_aligned_type (field_type); | |
8301 | } | |
8302 | ||
8303 | field_valaddr = cond_offset_host (field_valaddr, | |
8304 | off / TARGET_CHAR_BIT); | |
8305 | field_address = cond_offset_target (field_address, | |
8306 | off / TARGET_CHAR_BIT); | |
8307 | ||
8308 | /* Get the fixed type of the field. Note that, in this case, | |
8309 | we do not want to get the real type out of the tag: if | |
8310 | the current field is the parent part of a tagged record, | |
8311 | we will get the tag of the object. Clearly wrong: the real | |
8312 | type of the parent is not the real type of the child. We | |
8313 | would end up in an infinite loop. */ | |
8314 | field_type = ada_get_base_type (field_type); | |
8315 | field_type = ada_to_fixed_type (field_type, field_valaddr, | |
8316 | field_address, dval, 0); | |
27f2a97b JB |
8317 | /* If the field size is already larger than the maximum |
8318 | object size, then the record itself will necessarily | |
8319 | be larger than the maximum object size. We need to make | |
8320 | this check now, because the size might be so ridiculously | |
8321 | large (due to an uninitialized variable in the inferior) | |
8322 | that it would cause an overflow when adding it to the | |
8323 | record size. */ | |
c1b5a1a6 | 8324 | ada_ensure_varsize_limit (field_type); |
284614f0 JB |
8325 | |
8326 | TYPE_FIELD_TYPE (rtype, f) = field_type; | |
4c4b4cd2 | 8327 | TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f); |
27f2a97b JB |
8328 | /* The multiplication can potentially overflow. But because |
8329 | the field length has been size-checked just above, and | |
8330 | assuming that the maximum size is a reasonable value, | |
8331 | an overflow should not happen in practice. So rather than | |
8332 | adding overflow recovery code to this already complex code, | |
8333 | we just assume that it's not going to happen. */ | |
d94e4f4f | 8334 | fld_bit_len = |
4c4b4cd2 PH |
8335 | TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, f)) * TARGET_CHAR_BIT; |
8336 | } | |
14f9c5c9 | 8337 | else |
4c4b4cd2 | 8338 | { |
5ded5331 JB |
8339 | /* Note: If this field's type is a typedef, it is important |
8340 | to preserve the typedef layer. | |
8341 | ||
8342 | Otherwise, we might be transforming a typedef to a fat | |
8343 | pointer (encoding a pointer to an unconstrained array), | |
8344 | into a basic fat pointer (encoding an unconstrained | |
8345 | array). As both types are implemented using the same | |
8346 | structure, the typedef is the only clue which allows us | |
8347 | to distinguish between the two options. Stripping it | |
8348 | would prevent us from printing this field appropriately. */ | |
8349 | TYPE_FIELD_TYPE (rtype, f) = TYPE_FIELD_TYPE (type, f); | |
4c4b4cd2 PH |
8350 | TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f); |
8351 | if (TYPE_FIELD_BITSIZE (type, f) > 0) | |
d94e4f4f | 8352 | fld_bit_len = |
4c4b4cd2 PH |
8353 | TYPE_FIELD_BITSIZE (rtype, f) = TYPE_FIELD_BITSIZE (type, f); |
8354 | else | |
5ded5331 JB |
8355 | { |
8356 | struct type *field_type = TYPE_FIELD_TYPE (type, f); | |
8357 | ||
8358 | /* We need to be careful of typedefs when computing | |
8359 | the length of our field. If this is a typedef, | |
8360 | get the length of the target type, not the length | |
8361 | of the typedef. */ | |
8362 | if (TYPE_CODE (field_type) == TYPE_CODE_TYPEDEF) | |
8363 | field_type = ada_typedef_target_type (field_type); | |
8364 | ||
8365 | fld_bit_len = | |
8366 | TYPE_LENGTH (ada_check_typedef (field_type)) * TARGET_CHAR_BIT; | |
8367 | } | |
4c4b4cd2 | 8368 | } |
14f9c5c9 | 8369 | if (off + fld_bit_len > bit_len) |
4c4b4cd2 | 8370 | bit_len = off + fld_bit_len; |
d94e4f4f | 8371 | off += fld_bit_len; |
4c4b4cd2 PH |
8372 | TYPE_LENGTH (rtype) = |
8373 | align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT; | |
14f9c5c9 | 8374 | } |
4c4b4cd2 PH |
8375 | |
8376 | /* We handle the variant part, if any, at the end because of certain | |
b1f33ddd | 8377 | odd cases in which it is re-ordered so as NOT to be the last field of |
4c4b4cd2 PH |
8378 | the record. This can happen in the presence of representation |
8379 | clauses. */ | |
8380 | if (variant_field >= 0) | |
8381 | { | |
8382 | struct type *branch_type; | |
8383 | ||
8384 | off = TYPE_FIELD_BITPOS (rtype, variant_field); | |
8385 | ||
8386 | if (dval0 == NULL) | |
9f1f738a | 8387 | { |
012370f6 TT |
8388 | /* Using plain value_from_contents_and_address here causes |
8389 | problems because we will end up trying to resolve a type | |
8390 | that is currently being constructed. */ | |
8391 | dval = value_from_contents_and_address_unresolved (rtype, valaddr, | |
8392 | address); | |
9f1f738a SA |
8393 | rtype = value_type (dval); |
8394 | } | |
4c4b4cd2 PH |
8395 | else |
8396 | dval = dval0; | |
8397 | ||
8398 | branch_type = | |
8399 | to_fixed_variant_branch_type | |
8400 | (TYPE_FIELD_TYPE (type, variant_field), | |
8401 | cond_offset_host (valaddr, off / TARGET_CHAR_BIT), | |
8402 | cond_offset_target (address, off / TARGET_CHAR_BIT), dval); | |
8403 | if (branch_type == NULL) | |
8404 | { | |
8405 | for (f = variant_field + 1; f < TYPE_NFIELDS (rtype); f += 1) | |
8406 | TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f]; | |
8407 | TYPE_NFIELDS (rtype) -= 1; | |
8408 | } | |
8409 | else | |
8410 | { | |
8411 | TYPE_FIELD_TYPE (rtype, variant_field) = branch_type; | |
8412 | TYPE_FIELD_NAME (rtype, variant_field) = "S"; | |
8413 | fld_bit_len = | |
8414 | TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, variant_field)) * | |
8415 | TARGET_CHAR_BIT; | |
8416 | if (off + fld_bit_len > bit_len) | |
8417 | bit_len = off + fld_bit_len; | |
8418 | TYPE_LENGTH (rtype) = | |
8419 | align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT; | |
8420 | } | |
8421 | } | |
8422 | ||
714e53ab PH |
8423 | /* According to exp_dbug.ads, the size of TYPE for variable-size records |
8424 | should contain the alignment of that record, which should be a strictly | |
8425 | positive value. If null or negative, then something is wrong, most | |
8426 | probably in the debug info. In that case, we don't round up the size | |
0963b4bd | 8427 | of the resulting type. If this record is not part of another structure, |
714e53ab PH |
8428 | the current RTYPE length might be good enough for our purposes. */ |
8429 | if (TYPE_LENGTH (type) <= 0) | |
8430 | { | |
323e0a4a AC |
8431 | if (TYPE_NAME (rtype)) |
8432 | warning (_("Invalid type size for `%s' detected: %d."), | |
8433 | TYPE_NAME (rtype), TYPE_LENGTH (type)); | |
8434 | else | |
8435 | warning (_("Invalid type size for <unnamed> detected: %d."), | |
8436 | TYPE_LENGTH (type)); | |
714e53ab PH |
8437 | } |
8438 | else | |
8439 | { | |
8440 | TYPE_LENGTH (rtype) = align_value (TYPE_LENGTH (rtype), | |
8441 | TYPE_LENGTH (type)); | |
8442 | } | |
14f9c5c9 AS |
8443 | |
8444 | value_free_to_mark (mark); | |
d2e4a39e | 8445 | if (TYPE_LENGTH (rtype) > varsize_limit) |
323e0a4a | 8446 | error (_("record type with dynamic size is larger than varsize-limit")); |
14f9c5c9 AS |
8447 | return rtype; |
8448 | } | |
8449 | ||
4c4b4cd2 PH |
8450 | /* As for ada_template_to_fixed_record_type_1 with KEEP_DYNAMIC_FIELDS |
8451 | of 1. */ | |
14f9c5c9 | 8452 | |
d2e4a39e | 8453 | static struct type * |
fc1a4b47 | 8454 | template_to_fixed_record_type (struct type *type, const gdb_byte *valaddr, |
4c4b4cd2 PH |
8455 | CORE_ADDR address, struct value *dval0) |
8456 | { | |
8457 | return ada_template_to_fixed_record_type_1 (type, valaddr, | |
8458 | address, dval0, 1); | |
8459 | } | |
8460 | ||
8461 | /* An ordinary record type in which ___XVL-convention fields and | |
8462 | ___XVU- and ___XVN-convention field types in TYPE0 are replaced with | |
8463 | static approximations, containing all possible fields. Uses | |
8464 | no runtime values. Useless for use in values, but that's OK, | |
8465 | since the results are used only for type determinations. Works on both | |
8466 | structs and unions. Representation note: to save space, we memorize | |
8467 | the result of this function in the TYPE_TARGET_TYPE of the | |
8468 | template type. */ | |
8469 | ||
8470 | static struct type * | |
8471 | template_to_static_fixed_type (struct type *type0) | |
14f9c5c9 AS |
8472 | { |
8473 | struct type *type; | |
8474 | int nfields; | |
8475 | int f; | |
8476 | ||
9e195661 PMR |
8477 | /* No need no do anything if the input type is already fixed. */ |
8478 | if (TYPE_FIXED_INSTANCE (type0)) | |
8479 | return type0; | |
8480 | ||
8481 | /* Likewise if we already have computed the static approximation. */ | |
4c4b4cd2 PH |
8482 | if (TYPE_TARGET_TYPE (type0) != NULL) |
8483 | return TYPE_TARGET_TYPE (type0); | |
8484 | ||
9e195661 | 8485 | /* Don't clone TYPE0 until we are sure we are going to need a copy. */ |
4c4b4cd2 | 8486 | type = type0; |
9e195661 PMR |
8487 | nfields = TYPE_NFIELDS (type0); |
8488 | ||
8489 | /* Whether or not we cloned TYPE0, cache the result so that we don't do | |
8490 | recompute all over next time. */ | |
8491 | TYPE_TARGET_TYPE (type0) = type; | |
14f9c5c9 AS |
8492 | |
8493 | for (f = 0; f < nfields; f += 1) | |
8494 | { | |
460efde1 | 8495 | struct type *field_type = TYPE_FIELD_TYPE (type0, f); |
4c4b4cd2 | 8496 | struct type *new_type; |
14f9c5c9 | 8497 | |
4c4b4cd2 | 8498 | if (is_dynamic_field (type0, f)) |
460efde1 JB |
8499 | { |
8500 | field_type = ada_check_typedef (field_type); | |
8501 | new_type = to_static_fixed_type (TYPE_TARGET_TYPE (field_type)); | |
8502 | } | |
14f9c5c9 | 8503 | else |
f192137b | 8504 | new_type = static_unwrap_type (field_type); |
9e195661 PMR |
8505 | |
8506 | if (new_type != field_type) | |
8507 | { | |
8508 | /* Clone TYPE0 only the first time we get a new field type. */ | |
8509 | if (type == type0) | |
8510 | { | |
8511 | TYPE_TARGET_TYPE (type0) = type = alloc_type_copy (type0); | |
8512 | TYPE_CODE (type) = TYPE_CODE (type0); | |
8513 | INIT_CPLUS_SPECIFIC (type); | |
8514 | TYPE_NFIELDS (type) = nfields; | |
8515 | TYPE_FIELDS (type) = (struct field *) | |
8516 | TYPE_ALLOC (type, nfields * sizeof (struct field)); | |
8517 | memcpy (TYPE_FIELDS (type), TYPE_FIELDS (type0), | |
8518 | sizeof (struct field) * nfields); | |
8519 | TYPE_NAME (type) = ada_type_name (type0); | |
8520 | TYPE_TAG_NAME (type) = NULL; | |
8521 | TYPE_FIXED_INSTANCE (type) = 1; | |
8522 | TYPE_LENGTH (type) = 0; | |
8523 | } | |
8524 | TYPE_FIELD_TYPE (type, f) = new_type; | |
8525 | TYPE_FIELD_NAME (type, f) = TYPE_FIELD_NAME (type0, f); | |
8526 | } | |
14f9c5c9 | 8527 | } |
9e195661 | 8528 | |
14f9c5c9 AS |
8529 | return type; |
8530 | } | |
8531 | ||
4c4b4cd2 | 8532 | /* Given an object of type TYPE whose contents are at VALADDR and |
5823c3ef JB |
8533 | whose address in memory is ADDRESS, returns a revision of TYPE, |
8534 | which should be a non-dynamic-sized record, in which the variant | |
8535 | part, if any, is replaced with the appropriate branch. Looks | |
4c4b4cd2 PH |
8536 | for discriminant values in DVAL0, which can be NULL if the record |
8537 | contains the necessary discriminant values. */ | |
8538 | ||
d2e4a39e | 8539 | static struct type * |
fc1a4b47 | 8540 | to_record_with_fixed_variant_part (struct type *type, const gdb_byte *valaddr, |
4c4b4cd2 | 8541 | CORE_ADDR address, struct value *dval0) |
14f9c5c9 | 8542 | { |
d2e4a39e | 8543 | struct value *mark = value_mark (); |
4c4b4cd2 | 8544 | struct value *dval; |
d2e4a39e | 8545 | struct type *rtype; |
14f9c5c9 AS |
8546 | struct type *branch_type; |
8547 | int nfields = TYPE_NFIELDS (type); | |
4c4b4cd2 | 8548 | int variant_field = variant_field_index (type); |
14f9c5c9 | 8549 | |
4c4b4cd2 | 8550 | if (variant_field == -1) |
14f9c5c9 AS |
8551 | return type; |
8552 | ||
4c4b4cd2 | 8553 | if (dval0 == NULL) |
9f1f738a SA |
8554 | { |
8555 | dval = value_from_contents_and_address (type, valaddr, address); | |
8556 | type = value_type (dval); | |
8557 | } | |
4c4b4cd2 PH |
8558 | else |
8559 | dval = dval0; | |
8560 | ||
e9bb382b | 8561 | rtype = alloc_type_copy (type); |
14f9c5c9 | 8562 | TYPE_CODE (rtype) = TYPE_CODE_STRUCT; |
4c4b4cd2 PH |
8563 | INIT_CPLUS_SPECIFIC (rtype); |
8564 | TYPE_NFIELDS (rtype) = nfields; | |
d2e4a39e AS |
8565 | TYPE_FIELDS (rtype) = |
8566 | (struct field *) TYPE_ALLOC (rtype, nfields * sizeof (struct field)); | |
8567 | memcpy (TYPE_FIELDS (rtype), TYPE_FIELDS (type), | |
4c4b4cd2 | 8568 | sizeof (struct field) * nfields); |
14f9c5c9 AS |
8569 | TYPE_NAME (rtype) = ada_type_name (type); |
8570 | TYPE_TAG_NAME (rtype) = NULL; | |
876cecd0 | 8571 | TYPE_FIXED_INSTANCE (rtype) = 1; |
14f9c5c9 AS |
8572 | TYPE_LENGTH (rtype) = TYPE_LENGTH (type); |
8573 | ||
4c4b4cd2 PH |
8574 | branch_type = to_fixed_variant_branch_type |
8575 | (TYPE_FIELD_TYPE (type, variant_field), | |
d2e4a39e | 8576 | cond_offset_host (valaddr, |
4c4b4cd2 PH |
8577 | TYPE_FIELD_BITPOS (type, variant_field) |
8578 | / TARGET_CHAR_BIT), | |
d2e4a39e | 8579 | cond_offset_target (address, |
4c4b4cd2 PH |
8580 | TYPE_FIELD_BITPOS (type, variant_field) |
8581 | / TARGET_CHAR_BIT), dval); | |
d2e4a39e | 8582 | if (branch_type == NULL) |
14f9c5c9 | 8583 | { |
4c4b4cd2 | 8584 | int f; |
5b4ee69b | 8585 | |
4c4b4cd2 PH |
8586 | for (f = variant_field + 1; f < nfields; f += 1) |
8587 | TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f]; | |
14f9c5c9 | 8588 | TYPE_NFIELDS (rtype) -= 1; |
14f9c5c9 AS |
8589 | } |
8590 | else | |
8591 | { | |
4c4b4cd2 PH |
8592 | TYPE_FIELD_TYPE (rtype, variant_field) = branch_type; |
8593 | TYPE_FIELD_NAME (rtype, variant_field) = "S"; | |
8594 | TYPE_FIELD_BITSIZE (rtype, variant_field) = 0; | |
14f9c5c9 | 8595 | TYPE_LENGTH (rtype) += TYPE_LENGTH (branch_type); |
14f9c5c9 | 8596 | } |
4c4b4cd2 | 8597 | TYPE_LENGTH (rtype) -= TYPE_LENGTH (TYPE_FIELD_TYPE (type, variant_field)); |
d2e4a39e | 8598 | |
4c4b4cd2 | 8599 | value_free_to_mark (mark); |
14f9c5c9 AS |
8600 | return rtype; |
8601 | } | |
8602 | ||
8603 | /* An ordinary record type (with fixed-length fields) that describes | |
8604 | the value at (TYPE0, VALADDR, ADDRESS) [see explanation at | |
8605 | beginning of this section]. Any necessary discriminants' values | |
4c4b4cd2 PH |
8606 | should be in DVAL, a record value; it may be NULL if the object |
8607 | at ADDR itself contains any necessary discriminant values. | |
8608 | Additionally, VALADDR and ADDRESS may also be NULL if no discriminant | |
8609 | values from the record are needed. Except in the case that DVAL, | |
8610 | VALADDR, and ADDRESS are all 0 or NULL, a variant field (unless | |
8611 | unchecked) is replaced by a particular branch of the variant. | |
8612 | ||
8613 | NOTE: the case in which DVAL and VALADDR are NULL and ADDRESS is 0 | |
8614 | is questionable and may be removed. It can arise during the | |
8615 | processing of an unconstrained-array-of-record type where all the | |
8616 | variant branches have exactly the same size. This is because in | |
8617 | such cases, the compiler does not bother to use the XVS convention | |
8618 | when encoding the record. I am currently dubious of this | |
8619 | shortcut and suspect the compiler should be altered. FIXME. */ | |
14f9c5c9 | 8620 | |
d2e4a39e | 8621 | static struct type * |
fc1a4b47 | 8622 | to_fixed_record_type (struct type *type0, const gdb_byte *valaddr, |
4c4b4cd2 | 8623 | CORE_ADDR address, struct value *dval) |
14f9c5c9 | 8624 | { |
d2e4a39e | 8625 | struct type *templ_type; |
14f9c5c9 | 8626 | |
876cecd0 | 8627 | if (TYPE_FIXED_INSTANCE (type0)) |
4c4b4cd2 PH |
8628 | return type0; |
8629 | ||
d2e4a39e | 8630 | templ_type = dynamic_template_type (type0); |
14f9c5c9 AS |
8631 | |
8632 | if (templ_type != NULL) | |
8633 | return template_to_fixed_record_type (templ_type, valaddr, address, dval); | |
4c4b4cd2 PH |
8634 | else if (variant_field_index (type0) >= 0) |
8635 | { | |
8636 | if (dval == NULL && valaddr == NULL && address == 0) | |
8637 | return type0; | |
8638 | return to_record_with_fixed_variant_part (type0, valaddr, address, | |
8639 | dval); | |
8640 | } | |
14f9c5c9 AS |
8641 | else |
8642 | { | |
876cecd0 | 8643 | TYPE_FIXED_INSTANCE (type0) = 1; |
14f9c5c9 AS |
8644 | return type0; |
8645 | } | |
8646 | ||
8647 | } | |
8648 | ||
8649 | /* An ordinary record type (with fixed-length fields) that describes | |
8650 | the value at (VAR_TYPE0, VALADDR, ADDRESS), where VAR_TYPE0 is a | |
8651 | union type. Any necessary discriminants' values should be in DVAL, | |
8652 | a record value. That is, this routine selects the appropriate | |
8653 | branch of the union at ADDR according to the discriminant value | |
b1f33ddd | 8654 | indicated in the union's type name. Returns VAR_TYPE0 itself if |
0963b4bd | 8655 | it represents a variant subject to a pragma Unchecked_Union. */ |
14f9c5c9 | 8656 | |
d2e4a39e | 8657 | static struct type * |
fc1a4b47 | 8658 | to_fixed_variant_branch_type (struct type *var_type0, const gdb_byte *valaddr, |
4c4b4cd2 | 8659 | CORE_ADDR address, struct value *dval) |
14f9c5c9 AS |
8660 | { |
8661 | int which; | |
d2e4a39e AS |
8662 | struct type *templ_type; |
8663 | struct type *var_type; | |
14f9c5c9 AS |
8664 | |
8665 | if (TYPE_CODE (var_type0) == TYPE_CODE_PTR) | |
8666 | var_type = TYPE_TARGET_TYPE (var_type0); | |
d2e4a39e | 8667 | else |
14f9c5c9 AS |
8668 | var_type = var_type0; |
8669 | ||
8670 | templ_type = ada_find_parallel_type (var_type, "___XVU"); | |
8671 | ||
8672 | if (templ_type != NULL) | |
8673 | var_type = templ_type; | |
8674 | ||
b1f33ddd JB |
8675 | if (is_unchecked_variant (var_type, value_type (dval))) |
8676 | return var_type0; | |
d2e4a39e AS |
8677 | which = |
8678 | ada_which_variant_applies (var_type, | |
0fd88904 | 8679 | value_type (dval), value_contents (dval)); |
14f9c5c9 AS |
8680 | |
8681 | if (which < 0) | |
e9bb382b | 8682 | return empty_record (var_type); |
14f9c5c9 | 8683 | else if (is_dynamic_field (var_type, which)) |
4c4b4cd2 | 8684 | return to_fixed_record_type |
d2e4a39e AS |
8685 | (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (var_type, which)), |
8686 | valaddr, address, dval); | |
4c4b4cd2 | 8687 | else if (variant_field_index (TYPE_FIELD_TYPE (var_type, which)) >= 0) |
d2e4a39e AS |
8688 | return |
8689 | to_fixed_record_type | |
8690 | (TYPE_FIELD_TYPE (var_type, which), valaddr, address, dval); | |
14f9c5c9 AS |
8691 | else |
8692 | return TYPE_FIELD_TYPE (var_type, which); | |
8693 | } | |
8694 | ||
8908fca5 JB |
8695 | /* Assuming RANGE_TYPE is a TYPE_CODE_RANGE, return nonzero if |
8696 | ENCODING_TYPE, a type following the GNAT conventions for discrete | |
8697 | type encodings, only carries redundant information. */ | |
8698 | ||
8699 | static int | |
8700 | ada_is_redundant_range_encoding (struct type *range_type, | |
8701 | struct type *encoding_type) | |
8702 | { | |
8703 | struct type *fixed_range_type; | |
108d56a4 | 8704 | const char *bounds_str; |
8908fca5 JB |
8705 | int n; |
8706 | LONGEST lo, hi; | |
8707 | ||
8708 | gdb_assert (TYPE_CODE (range_type) == TYPE_CODE_RANGE); | |
8709 | ||
005e2509 JB |
8710 | if (TYPE_CODE (get_base_type (range_type)) |
8711 | != TYPE_CODE (get_base_type (encoding_type))) | |
8712 | { | |
8713 | /* The compiler probably used a simple base type to describe | |
8714 | the range type instead of the range's actual base type, | |
8715 | expecting us to get the real base type from the encoding | |
8716 | anyway. In this situation, the encoding cannot be ignored | |
8717 | as redundant. */ | |
8718 | return 0; | |
8719 | } | |
8720 | ||
8908fca5 JB |
8721 | if (is_dynamic_type (range_type)) |
8722 | return 0; | |
8723 | ||
8724 | if (TYPE_NAME (encoding_type) == NULL) | |
8725 | return 0; | |
8726 | ||
8727 | bounds_str = strstr (TYPE_NAME (encoding_type), "___XDLU_"); | |
8728 | if (bounds_str == NULL) | |
8729 | return 0; | |
8730 | ||
8731 | n = 8; /* Skip "___XDLU_". */ | |
8732 | if (!ada_scan_number (bounds_str, n, &lo, &n)) | |
8733 | return 0; | |
8734 | if (TYPE_LOW_BOUND (range_type) != lo) | |
8735 | return 0; | |
8736 | ||
8737 | n += 2; /* Skip the "__" separator between the two bounds. */ | |
8738 | if (!ada_scan_number (bounds_str, n, &hi, &n)) | |
8739 | return 0; | |
8740 | if (TYPE_HIGH_BOUND (range_type) != hi) | |
8741 | return 0; | |
8742 | ||
8743 | return 1; | |
8744 | } | |
8745 | ||
8746 | /* Given the array type ARRAY_TYPE, return nonzero if DESC_TYPE, | |
8747 | a type following the GNAT encoding for describing array type | |
8748 | indices, only carries redundant information. */ | |
8749 | ||
8750 | static int | |
8751 | ada_is_redundant_index_type_desc (struct type *array_type, | |
8752 | struct type *desc_type) | |
8753 | { | |
8754 | struct type *this_layer = check_typedef (array_type); | |
8755 | int i; | |
8756 | ||
8757 | for (i = 0; i < TYPE_NFIELDS (desc_type); i++) | |
8758 | { | |
8759 | if (!ada_is_redundant_range_encoding (TYPE_INDEX_TYPE (this_layer), | |
8760 | TYPE_FIELD_TYPE (desc_type, i))) | |
8761 | return 0; | |
8762 | this_layer = check_typedef (TYPE_TARGET_TYPE (this_layer)); | |
8763 | } | |
8764 | ||
8765 | return 1; | |
8766 | } | |
8767 | ||
14f9c5c9 AS |
8768 | /* Assuming that TYPE0 is an array type describing the type of a value |
8769 | at ADDR, and that DVAL describes a record containing any | |
8770 | discriminants used in TYPE0, returns a type for the value that | |
8771 | contains no dynamic components (that is, no components whose sizes | |
8772 | are determined by run-time quantities). Unless IGNORE_TOO_BIG is | |
8773 | true, gives an error message if the resulting type's size is over | |
4c4b4cd2 | 8774 | varsize_limit. */ |
14f9c5c9 | 8775 | |
d2e4a39e AS |
8776 | static struct type * |
8777 | to_fixed_array_type (struct type *type0, struct value *dval, | |
4c4b4cd2 | 8778 | int ignore_too_big) |
14f9c5c9 | 8779 | { |
d2e4a39e AS |
8780 | struct type *index_type_desc; |
8781 | struct type *result; | |
ad82864c | 8782 | int constrained_packed_array_p; |
931e5bc3 | 8783 | static const char *xa_suffix = "___XA"; |
14f9c5c9 | 8784 | |
b0dd7688 | 8785 | type0 = ada_check_typedef (type0); |
284614f0 | 8786 | if (TYPE_FIXED_INSTANCE (type0)) |
4c4b4cd2 | 8787 | return type0; |
14f9c5c9 | 8788 | |
ad82864c JB |
8789 | constrained_packed_array_p = ada_is_constrained_packed_array_type (type0); |
8790 | if (constrained_packed_array_p) | |
8791 | type0 = decode_constrained_packed_array_type (type0); | |
284614f0 | 8792 | |
931e5bc3 JG |
8793 | index_type_desc = ada_find_parallel_type (type0, xa_suffix); |
8794 | ||
8795 | /* As mentioned in exp_dbug.ads, for non bit-packed arrays an | |
8796 | encoding suffixed with 'P' may still be generated. If so, | |
8797 | it should be used to find the XA type. */ | |
8798 | ||
8799 | if (index_type_desc == NULL) | |
8800 | { | |
1da0522e | 8801 | const char *type_name = ada_type_name (type0); |
931e5bc3 | 8802 | |
1da0522e | 8803 | if (type_name != NULL) |
931e5bc3 | 8804 | { |
1da0522e | 8805 | const int len = strlen (type_name); |
931e5bc3 JG |
8806 | char *name = (char *) alloca (len + strlen (xa_suffix)); |
8807 | ||
1da0522e | 8808 | if (type_name[len - 1] == 'P') |
931e5bc3 | 8809 | { |
1da0522e | 8810 | strcpy (name, type_name); |
931e5bc3 JG |
8811 | strcpy (name + len - 1, xa_suffix); |
8812 | index_type_desc = ada_find_parallel_type_with_name (type0, name); | |
8813 | } | |
8814 | } | |
8815 | } | |
8816 | ||
28c85d6c | 8817 | ada_fixup_array_indexes_type (index_type_desc); |
8908fca5 JB |
8818 | if (index_type_desc != NULL |
8819 | && ada_is_redundant_index_type_desc (type0, index_type_desc)) | |
8820 | { | |
8821 | /* Ignore this ___XA parallel type, as it does not bring any | |
8822 | useful information. This allows us to avoid creating fixed | |
8823 | versions of the array's index types, which would be identical | |
8824 | to the original ones. This, in turn, can also help avoid | |
8825 | the creation of fixed versions of the array itself. */ | |
8826 | index_type_desc = NULL; | |
8827 | } | |
8828 | ||
14f9c5c9 AS |
8829 | if (index_type_desc == NULL) |
8830 | { | |
61ee279c | 8831 | struct type *elt_type0 = ada_check_typedef (TYPE_TARGET_TYPE (type0)); |
5b4ee69b | 8832 | |
14f9c5c9 | 8833 | /* NOTE: elt_type---the fixed version of elt_type0---should never |
4c4b4cd2 PH |
8834 | depend on the contents of the array in properly constructed |
8835 | debugging data. */ | |
529cad9c PH |
8836 | /* Create a fixed version of the array element type. |
8837 | We're not providing the address of an element here, | |
e1d5a0d2 | 8838 | and thus the actual object value cannot be inspected to do |
529cad9c PH |
8839 | the conversion. This should not be a problem, since arrays of |
8840 | unconstrained objects are not allowed. In particular, all | |
8841 | the elements of an array of a tagged type should all be of | |
8842 | the same type specified in the debugging info. No need to | |
8843 | consult the object tag. */ | |
1ed6ede0 | 8844 | struct type *elt_type = ada_to_fixed_type (elt_type0, 0, 0, dval, 1); |
14f9c5c9 | 8845 | |
284614f0 JB |
8846 | /* Make sure we always create a new array type when dealing with |
8847 | packed array types, since we're going to fix-up the array | |
8848 | type length and element bitsize a little further down. */ | |
ad82864c | 8849 | if (elt_type0 == elt_type && !constrained_packed_array_p) |
4c4b4cd2 | 8850 | result = type0; |
14f9c5c9 | 8851 | else |
e9bb382b | 8852 | result = create_array_type (alloc_type_copy (type0), |
4c4b4cd2 | 8853 | elt_type, TYPE_INDEX_TYPE (type0)); |
14f9c5c9 AS |
8854 | } |
8855 | else | |
8856 | { | |
8857 | int i; | |
8858 | struct type *elt_type0; | |
8859 | ||
8860 | elt_type0 = type0; | |
8861 | for (i = TYPE_NFIELDS (index_type_desc); i > 0; i -= 1) | |
4c4b4cd2 | 8862 | elt_type0 = TYPE_TARGET_TYPE (elt_type0); |
14f9c5c9 AS |
8863 | |
8864 | /* NOTE: result---the fixed version of elt_type0---should never | |
4c4b4cd2 PH |
8865 | depend on the contents of the array in properly constructed |
8866 | debugging data. */ | |
529cad9c PH |
8867 | /* Create a fixed version of the array element type. |
8868 | We're not providing the address of an element here, | |
e1d5a0d2 | 8869 | and thus the actual object value cannot be inspected to do |
529cad9c PH |
8870 | the conversion. This should not be a problem, since arrays of |
8871 | unconstrained objects are not allowed. In particular, all | |
8872 | the elements of an array of a tagged type should all be of | |
8873 | the same type specified in the debugging info. No need to | |
8874 | consult the object tag. */ | |
1ed6ede0 JB |
8875 | result = |
8876 | ada_to_fixed_type (ada_check_typedef (elt_type0), 0, 0, dval, 1); | |
1ce677a4 UW |
8877 | |
8878 | elt_type0 = type0; | |
14f9c5c9 | 8879 | for (i = TYPE_NFIELDS (index_type_desc) - 1; i >= 0; i -= 1) |
4c4b4cd2 PH |
8880 | { |
8881 | struct type *range_type = | |
28c85d6c | 8882 | to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, i), dval); |
5b4ee69b | 8883 | |
e9bb382b | 8884 | result = create_array_type (alloc_type_copy (elt_type0), |
4c4b4cd2 | 8885 | result, range_type); |
1ce677a4 | 8886 | elt_type0 = TYPE_TARGET_TYPE (elt_type0); |
4c4b4cd2 | 8887 | } |
d2e4a39e | 8888 | if (!ignore_too_big && TYPE_LENGTH (result) > varsize_limit) |
323e0a4a | 8889 | error (_("array type with dynamic size is larger than varsize-limit")); |
14f9c5c9 AS |
8890 | } |
8891 | ||
2e6fda7d JB |
8892 | /* We want to preserve the type name. This can be useful when |
8893 | trying to get the type name of a value that has already been | |
8894 | printed (for instance, if the user did "print VAR; whatis $". */ | |
8895 | TYPE_NAME (result) = TYPE_NAME (type0); | |
8896 | ||
ad82864c | 8897 | if (constrained_packed_array_p) |
284614f0 JB |
8898 | { |
8899 | /* So far, the resulting type has been created as if the original | |
8900 | type was a regular (non-packed) array type. As a result, the | |
8901 | bitsize of the array elements needs to be set again, and the array | |
8902 | length needs to be recomputed based on that bitsize. */ | |
8903 | int len = TYPE_LENGTH (result) / TYPE_LENGTH (TYPE_TARGET_TYPE (result)); | |
8904 | int elt_bitsize = TYPE_FIELD_BITSIZE (type0, 0); | |
8905 | ||
8906 | TYPE_FIELD_BITSIZE (result, 0) = TYPE_FIELD_BITSIZE (type0, 0); | |
8907 | TYPE_LENGTH (result) = len * elt_bitsize / HOST_CHAR_BIT; | |
8908 | if (TYPE_LENGTH (result) * HOST_CHAR_BIT < len * elt_bitsize) | |
8909 | TYPE_LENGTH (result)++; | |
8910 | } | |
8911 | ||
876cecd0 | 8912 | TYPE_FIXED_INSTANCE (result) = 1; |
14f9c5c9 | 8913 | return result; |
d2e4a39e | 8914 | } |
14f9c5c9 AS |
8915 | |
8916 | ||
8917 | /* A standard type (containing no dynamically sized components) | |
8918 | corresponding to TYPE for the value (TYPE, VALADDR, ADDRESS) | |
8919 | DVAL describes a record containing any discriminants used in TYPE0, | |
4c4b4cd2 | 8920 | and may be NULL if there are none, or if the object of type TYPE at |
529cad9c PH |
8921 | ADDRESS or in VALADDR contains these discriminants. |
8922 | ||
1ed6ede0 JB |
8923 | If CHECK_TAG is not null, in the case of tagged types, this function |
8924 | attempts to locate the object's tag and use it to compute the actual | |
8925 | type. However, when ADDRESS is null, we cannot use it to determine the | |
8926 | location of the tag, and therefore compute the tagged type's actual type. | |
8927 | So we return the tagged type without consulting the tag. */ | |
529cad9c | 8928 | |
f192137b JB |
8929 | static struct type * |
8930 | ada_to_fixed_type_1 (struct type *type, const gdb_byte *valaddr, | |
1ed6ede0 | 8931 | CORE_ADDR address, struct value *dval, int check_tag) |
14f9c5c9 | 8932 | { |
61ee279c | 8933 | type = ada_check_typedef (type); |
d2e4a39e AS |
8934 | switch (TYPE_CODE (type)) |
8935 | { | |
8936 | default: | |
14f9c5c9 | 8937 | return type; |
d2e4a39e | 8938 | case TYPE_CODE_STRUCT: |
4c4b4cd2 | 8939 | { |
76a01679 | 8940 | struct type *static_type = to_static_fixed_type (type); |
1ed6ede0 JB |
8941 | struct type *fixed_record_type = |
8942 | to_fixed_record_type (type, valaddr, address, NULL); | |
5b4ee69b | 8943 | |
529cad9c PH |
8944 | /* If STATIC_TYPE is a tagged type and we know the object's address, |
8945 | then we can determine its tag, and compute the object's actual | |
0963b4bd | 8946 | type from there. Note that we have to use the fixed record |
1ed6ede0 JB |
8947 | type (the parent part of the record may have dynamic fields |
8948 | and the way the location of _tag is expressed may depend on | |
8949 | them). */ | |
529cad9c | 8950 | |
1ed6ede0 | 8951 | if (check_tag && address != 0 && ada_is_tagged_type (static_type, 0)) |
76a01679 | 8952 | { |
b50d69b5 JG |
8953 | struct value *tag = |
8954 | value_tag_from_contents_and_address | |
8955 | (fixed_record_type, | |
8956 | valaddr, | |
8957 | address); | |
8958 | struct type *real_type = type_from_tag (tag); | |
8959 | struct value *obj = | |
8960 | value_from_contents_and_address (fixed_record_type, | |
8961 | valaddr, | |
8962 | address); | |
9f1f738a | 8963 | fixed_record_type = value_type (obj); |
76a01679 | 8964 | if (real_type != NULL) |
b50d69b5 JG |
8965 | return to_fixed_record_type |
8966 | (real_type, NULL, | |
8967 | value_address (ada_tag_value_at_base_address (obj)), NULL); | |
76a01679 | 8968 | } |
4af88198 JB |
8969 | |
8970 | /* Check to see if there is a parallel ___XVZ variable. | |
8971 | If there is, then it provides the actual size of our type. */ | |
8972 | else if (ada_type_name (fixed_record_type) != NULL) | |
8973 | { | |
0d5cff50 | 8974 | const char *name = ada_type_name (fixed_record_type); |
224c3ddb SM |
8975 | char *xvz_name |
8976 | = (char *) alloca (strlen (name) + 7 /* "___XVZ\0" */); | |
4af88198 JB |
8977 | LONGEST size; |
8978 | ||
88c15c34 | 8979 | xsnprintf (xvz_name, strlen (name) + 7, "%s___XVZ", name); |
edb0c9cb PA |
8980 | if (get_int_var_value (xvz_name, size) |
8981 | && TYPE_LENGTH (fixed_record_type) != size) | |
4af88198 JB |
8982 | { |
8983 | fixed_record_type = copy_type (fixed_record_type); | |
8984 | TYPE_LENGTH (fixed_record_type) = size; | |
8985 | ||
8986 | /* The FIXED_RECORD_TYPE may have be a stub. We have | |
8987 | observed this when the debugging info is STABS, and | |
8988 | apparently it is something that is hard to fix. | |
8989 | ||
8990 | In practice, we don't need the actual type definition | |
8991 | at all, because the presence of the XVZ variable allows us | |
8992 | to assume that there must be a XVS type as well, which we | |
8993 | should be able to use later, when we need the actual type | |
8994 | definition. | |
8995 | ||
8996 | In the meantime, pretend that the "fixed" type we are | |
8997 | returning is NOT a stub, because this can cause trouble | |
8998 | when using this type to create new types targeting it. | |
8999 | Indeed, the associated creation routines often check | |
9000 | whether the target type is a stub and will try to replace | |
0963b4bd | 9001 | it, thus using a type with the wrong size. This, in turn, |
4af88198 JB |
9002 | might cause the new type to have the wrong size too. |
9003 | Consider the case of an array, for instance, where the size | |
9004 | of the array is computed from the number of elements in | |
9005 | our array multiplied by the size of its element. */ | |
9006 | TYPE_STUB (fixed_record_type) = 0; | |
9007 | } | |
9008 | } | |
1ed6ede0 | 9009 | return fixed_record_type; |
4c4b4cd2 | 9010 | } |
d2e4a39e | 9011 | case TYPE_CODE_ARRAY: |
4c4b4cd2 | 9012 | return to_fixed_array_type (type, dval, 1); |
d2e4a39e AS |
9013 | case TYPE_CODE_UNION: |
9014 | if (dval == NULL) | |
4c4b4cd2 | 9015 | return type; |
d2e4a39e | 9016 | else |
4c4b4cd2 | 9017 | return to_fixed_variant_branch_type (type, valaddr, address, dval); |
d2e4a39e | 9018 | } |
14f9c5c9 AS |
9019 | } |
9020 | ||
f192137b JB |
9021 | /* The same as ada_to_fixed_type_1, except that it preserves the type |
9022 | if it is a TYPE_CODE_TYPEDEF of a type that is already fixed. | |
96dbd2c1 JB |
9023 | |
9024 | The typedef layer needs be preserved in order to differentiate between | |
9025 | arrays and array pointers when both types are implemented using the same | |
9026 | fat pointer. In the array pointer case, the pointer is encoded as | |
9027 | a typedef of the pointer type. For instance, considering: | |
9028 | ||
9029 | type String_Access is access String; | |
9030 | S1 : String_Access := null; | |
9031 | ||
9032 | To the debugger, S1 is defined as a typedef of type String. But | |
9033 | to the user, it is a pointer. So if the user tries to print S1, | |
9034 | we should not dereference the array, but print the array address | |
9035 | instead. | |
9036 | ||
9037 | If we didn't preserve the typedef layer, we would lose the fact that | |
9038 | the type is to be presented as a pointer (needs de-reference before | |
9039 | being printed). And we would also use the source-level type name. */ | |
f192137b JB |
9040 | |
9041 | struct type * | |
9042 | ada_to_fixed_type (struct type *type, const gdb_byte *valaddr, | |
9043 | CORE_ADDR address, struct value *dval, int check_tag) | |
9044 | ||
9045 | { | |
9046 | struct type *fixed_type = | |
9047 | ada_to_fixed_type_1 (type, valaddr, address, dval, check_tag); | |
9048 | ||
96dbd2c1 JB |
9049 | /* If TYPE is a typedef and its target type is the same as the FIXED_TYPE, |
9050 | then preserve the typedef layer. | |
9051 | ||
9052 | Implementation note: We can only check the main-type portion of | |
9053 | the TYPE and FIXED_TYPE, because eliminating the typedef layer | |
9054 | from TYPE now returns a type that has the same instance flags | |
9055 | as TYPE. For instance, if TYPE is a "typedef const", and its | |
9056 | target type is a "struct", then the typedef elimination will return | |
9057 | a "const" version of the target type. See check_typedef for more | |
9058 | details about how the typedef layer elimination is done. | |
9059 | ||
9060 | brobecker/2010-11-19: It seems to me that the only case where it is | |
9061 | useful to preserve the typedef layer is when dealing with fat pointers. | |
9062 | Perhaps, we could add a check for that and preserve the typedef layer | |
9063 | only in that situation. But this seems unecessary so far, probably | |
9064 | because we call check_typedef/ada_check_typedef pretty much everywhere. | |
9065 | */ | |
f192137b | 9066 | if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF |
720d1a40 | 9067 | && (TYPE_MAIN_TYPE (ada_typedef_target_type (type)) |
96dbd2c1 | 9068 | == TYPE_MAIN_TYPE (fixed_type))) |
f192137b JB |
9069 | return type; |
9070 | ||
9071 | return fixed_type; | |
9072 | } | |
9073 | ||
14f9c5c9 | 9074 | /* A standard (static-sized) type corresponding as well as possible to |
4c4b4cd2 | 9075 | TYPE0, but based on no runtime data. */ |
14f9c5c9 | 9076 | |
d2e4a39e AS |
9077 | static struct type * |
9078 | to_static_fixed_type (struct type *type0) | |
14f9c5c9 | 9079 | { |
d2e4a39e | 9080 | struct type *type; |
14f9c5c9 AS |
9081 | |
9082 | if (type0 == NULL) | |
9083 | return NULL; | |
9084 | ||
876cecd0 | 9085 | if (TYPE_FIXED_INSTANCE (type0)) |
4c4b4cd2 PH |
9086 | return type0; |
9087 | ||
61ee279c | 9088 | type0 = ada_check_typedef (type0); |
d2e4a39e | 9089 | |
14f9c5c9 AS |
9090 | switch (TYPE_CODE (type0)) |
9091 | { | |
9092 | default: | |
9093 | return type0; | |
9094 | case TYPE_CODE_STRUCT: | |
9095 | type = dynamic_template_type (type0); | |
d2e4a39e | 9096 | if (type != NULL) |
4c4b4cd2 PH |
9097 | return template_to_static_fixed_type (type); |
9098 | else | |
9099 | return template_to_static_fixed_type (type0); | |
14f9c5c9 AS |
9100 | case TYPE_CODE_UNION: |
9101 | type = ada_find_parallel_type (type0, "___XVU"); | |
9102 | if (type != NULL) | |
4c4b4cd2 PH |
9103 | return template_to_static_fixed_type (type); |
9104 | else | |
9105 | return template_to_static_fixed_type (type0); | |
14f9c5c9 AS |
9106 | } |
9107 | } | |
9108 | ||
4c4b4cd2 PH |
9109 | /* A static approximation of TYPE with all type wrappers removed. */ |
9110 | ||
d2e4a39e AS |
9111 | static struct type * |
9112 | static_unwrap_type (struct type *type) | |
14f9c5c9 AS |
9113 | { |
9114 | if (ada_is_aligner_type (type)) | |
9115 | { | |
61ee279c | 9116 | struct type *type1 = TYPE_FIELD_TYPE (ada_check_typedef (type), 0); |
14f9c5c9 | 9117 | if (ada_type_name (type1) == NULL) |
4c4b4cd2 | 9118 | TYPE_NAME (type1) = ada_type_name (type); |
14f9c5c9 AS |
9119 | |
9120 | return static_unwrap_type (type1); | |
9121 | } | |
d2e4a39e | 9122 | else |
14f9c5c9 | 9123 | { |
d2e4a39e | 9124 | struct type *raw_real_type = ada_get_base_type (type); |
5b4ee69b | 9125 | |
d2e4a39e | 9126 | if (raw_real_type == type) |
4c4b4cd2 | 9127 | return type; |
14f9c5c9 | 9128 | else |
4c4b4cd2 | 9129 | return to_static_fixed_type (raw_real_type); |
14f9c5c9 AS |
9130 | } |
9131 | } | |
9132 | ||
9133 | /* In some cases, incomplete and private types require | |
4c4b4cd2 | 9134 | cross-references that are not resolved as records (for example, |
14f9c5c9 AS |
9135 | type Foo; |
9136 | type FooP is access Foo; | |
9137 | V: FooP; | |
9138 | type Foo is array ...; | |
4c4b4cd2 | 9139 | ). In these cases, since there is no mechanism for producing |
14f9c5c9 AS |
9140 | cross-references to such types, we instead substitute for FooP a |
9141 | stub enumeration type that is nowhere resolved, and whose tag is | |
4c4b4cd2 | 9142 | the name of the actual type. Call these types "non-record stubs". */ |
14f9c5c9 AS |
9143 | |
9144 | /* A type equivalent to TYPE that is not a non-record stub, if one | |
4c4b4cd2 PH |
9145 | exists, otherwise TYPE. */ |
9146 | ||
d2e4a39e | 9147 | struct type * |
61ee279c | 9148 | ada_check_typedef (struct type *type) |
14f9c5c9 | 9149 | { |
727e3d2e JB |
9150 | if (type == NULL) |
9151 | return NULL; | |
9152 | ||
720d1a40 JB |
9153 | /* If our type is a typedef type of a fat pointer, then we're done. |
9154 | We don't want to strip the TYPE_CODE_TYPDEF layer, because this is | |
9155 | what allows us to distinguish between fat pointers that represent | |
9156 | array types, and fat pointers that represent array access types | |
9157 | (in both cases, the compiler implements them as fat pointers). */ | |
9158 | if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF | |
9159 | && is_thick_pntr (ada_typedef_target_type (type))) | |
9160 | return type; | |
9161 | ||
f168693b | 9162 | type = check_typedef (type); |
14f9c5c9 | 9163 | if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM |
529cad9c | 9164 | || !TYPE_STUB (type) |
14f9c5c9 AS |
9165 | || TYPE_TAG_NAME (type) == NULL) |
9166 | return type; | |
d2e4a39e | 9167 | else |
14f9c5c9 | 9168 | { |
0d5cff50 | 9169 | const char *name = TYPE_TAG_NAME (type); |
d2e4a39e | 9170 | struct type *type1 = ada_find_any_type (name); |
5b4ee69b | 9171 | |
05e522ef JB |
9172 | if (type1 == NULL) |
9173 | return type; | |
9174 | ||
9175 | /* TYPE1 might itself be a TYPE_CODE_TYPEDEF (this can happen with | |
9176 | stubs pointing to arrays, as we don't create symbols for array | |
3a867c22 JB |
9177 | types, only for the typedef-to-array types). If that's the case, |
9178 | strip the typedef layer. */ | |
9179 | if (TYPE_CODE (type1) == TYPE_CODE_TYPEDEF) | |
9180 | type1 = ada_check_typedef (type1); | |
9181 | ||
9182 | return type1; | |
14f9c5c9 AS |
9183 | } |
9184 | } | |
9185 | ||
9186 | /* A value representing the data at VALADDR/ADDRESS as described by | |
9187 | type TYPE0, but with a standard (static-sized) type that correctly | |
9188 | describes it. If VAL0 is not NULL and TYPE0 already is a standard | |
9189 | type, then return VAL0 [this feature is simply to avoid redundant | |
4c4b4cd2 | 9190 | creation of struct values]. */ |
14f9c5c9 | 9191 | |
4c4b4cd2 PH |
9192 | static struct value * |
9193 | ada_to_fixed_value_create (struct type *type0, CORE_ADDR address, | |
9194 | struct value *val0) | |
14f9c5c9 | 9195 | { |
1ed6ede0 | 9196 | struct type *type = ada_to_fixed_type (type0, 0, address, NULL, 1); |
5b4ee69b | 9197 | |
14f9c5c9 AS |
9198 | if (type == type0 && val0 != NULL) |
9199 | return val0; | |
d2e4a39e | 9200 | else |
4c4b4cd2 PH |
9201 | return value_from_contents_and_address (type, 0, address); |
9202 | } | |
9203 | ||
9204 | /* A value representing VAL, but with a standard (static-sized) type | |
9205 | that correctly describes it. Does not necessarily create a new | |
9206 | value. */ | |
9207 | ||
0c3acc09 | 9208 | struct value * |
4c4b4cd2 PH |
9209 | ada_to_fixed_value (struct value *val) |
9210 | { | |
c48db5ca JB |
9211 | val = unwrap_value (val); |
9212 | val = ada_to_fixed_value_create (value_type (val), | |
9213 | value_address (val), | |
9214 | val); | |
9215 | return val; | |
14f9c5c9 | 9216 | } |
d2e4a39e | 9217 | \f |
14f9c5c9 | 9218 | |
14f9c5c9 AS |
9219 | /* Attributes */ |
9220 | ||
4c4b4cd2 PH |
9221 | /* Table mapping attribute numbers to names. |
9222 | NOTE: Keep up to date with enum ada_attribute definition in ada-lang.h. */ | |
14f9c5c9 | 9223 | |
d2e4a39e | 9224 | static const char *attribute_names[] = { |
14f9c5c9 AS |
9225 | "<?>", |
9226 | ||
d2e4a39e | 9227 | "first", |
14f9c5c9 AS |
9228 | "last", |
9229 | "length", | |
9230 | "image", | |
14f9c5c9 AS |
9231 | "max", |
9232 | "min", | |
4c4b4cd2 PH |
9233 | "modulus", |
9234 | "pos", | |
9235 | "size", | |
9236 | "tag", | |
14f9c5c9 | 9237 | "val", |
14f9c5c9 AS |
9238 | 0 |
9239 | }; | |
9240 | ||
d2e4a39e | 9241 | const char * |
4c4b4cd2 | 9242 | ada_attribute_name (enum exp_opcode n) |
14f9c5c9 | 9243 | { |
4c4b4cd2 PH |
9244 | if (n >= OP_ATR_FIRST && n <= (int) OP_ATR_VAL) |
9245 | return attribute_names[n - OP_ATR_FIRST + 1]; | |
14f9c5c9 AS |
9246 | else |
9247 | return attribute_names[0]; | |
9248 | } | |
9249 | ||
4c4b4cd2 | 9250 | /* Evaluate the 'POS attribute applied to ARG. */ |
14f9c5c9 | 9251 | |
4c4b4cd2 PH |
9252 | static LONGEST |
9253 | pos_atr (struct value *arg) | |
14f9c5c9 | 9254 | { |
24209737 PH |
9255 | struct value *val = coerce_ref (arg); |
9256 | struct type *type = value_type (val); | |
aa715135 | 9257 | LONGEST result; |
14f9c5c9 | 9258 | |
d2e4a39e | 9259 | if (!discrete_type_p (type)) |
323e0a4a | 9260 | error (_("'POS only defined on discrete types")); |
14f9c5c9 | 9261 | |
aa715135 JG |
9262 | if (!discrete_position (type, value_as_long (val), &result)) |
9263 | error (_("enumeration value is invalid: can't find 'POS")); | |
14f9c5c9 | 9264 | |
aa715135 | 9265 | return result; |
4c4b4cd2 PH |
9266 | } |
9267 | ||
9268 | static struct value * | |
3cb382c9 | 9269 | value_pos_atr (struct type *type, struct value *arg) |
4c4b4cd2 | 9270 | { |
3cb382c9 | 9271 | return value_from_longest (type, pos_atr (arg)); |
14f9c5c9 AS |
9272 | } |
9273 | ||
4c4b4cd2 | 9274 | /* Evaluate the TYPE'VAL attribute applied to ARG. */ |
14f9c5c9 | 9275 | |
d2e4a39e AS |
9276 | static struct value * |
9277 | value_val_atr (struct type *type, struct value *arg) | |
14f9c5c9 | 9278 | { |
d2e4a39e | 9279 | if (!discrete_type_p (type)) |
323e0a4a | 9280 | error (_("'VAL only defined on discrete types")); |
df407dfe | 9281 | if (!integer_type_p (value_type (arg))) |
323e0a4a | 9282 | error (_("'VAL requires integral argument")); |
14f9c5c9 AS |
9283 | |
9284 | if (TYPE_CODE (type) == TYPE_CODE_ENUM) | |
9285 | { | |
9286 | long pos = value_as_long (arg); | |
5b4ee69b | 9287 | |
14f9c5c9 | 9288 | if (pos < 0 || pos >= TYPE_NFIELDS (type)) |
323e0a4a | 9289 | error (_("argument to 'VAL out of range")); |
14e75d8e | 9290 | return value_from_longest (type, TYPE_FIELD_ENUMVAL (type, pos)); |
14f9c5c9 AS |
9291 | } |
9292 | else | |
9293 | return value_from_longest (type, value_as_long (arg)); | |
9294 | } | |
14f9c5c9 | 9295 | \f |
d2e4a39e | 9296 | |
4c4b4cd2 | 9297 | /* Evaluation */ |
14f9c5c9 | 9298 | |
4c4b4cd2 PH |
9299 | /* True if TYPE appears to be an Ada character type. |
9300 | [At the moment, this is true only for Character and Wide_Character; | |
9301 | It is a heuristic test that could stand improvement]. */ | |
14f9c5c9 | 9302 | |
d2e4a39e AS |
9303 | int |
9304 | ada_is_character_type (struct type *type) | |
14f9c5c9 | 9305 | { |
7b9f71f2 JB |
9306 | const char *name; |
9307 | ||
9308 | /* If the type code says it's a character, then assume it really is, | |
9309 | and don't check any further. */ | |
9310 | if (TYPE_CODE (type) == TYPE_CODE_CHAR) | |
9311 | return 1; | |
9312 | ||
9313 | /* Otherwise, assume it's a character type iff it is a discrete type | |
9314 | with a known character type name. */ | |
9315 | name = ada_type_name (type); | |
9316 | return (name != NULL | |
9317 | && (TYPE_CODE (type) == TYPE_CODE_INT | |
9318 | || TYPE_CODE (type) == TYPE_CODE_RANGE) | |
9319 | && (strcmp (name, "character") == 0 | |
9320 | || strcmp (name, "wide_character") == 0 | |
5a517ebd | 9321 | || strcmp (name, "wide_wide_character") == 0 |
7b9f71f2 | 9322 | || strcmp (name, "unsigned char") == 0)); |
14f9c5c9 AS |
9323 | } |
9324 | ||
4c4b4cd2 | 9325 | /* True if TYPE appears to be an Ada string type. */ |
14f9c5c9 AS |
9326 | |
9327 | int | |
ebf56fd3 | 9328 | ada_is_string_type (struct type *type) |
14f9c5c9 | 9329 | { |
61ee279c | 9330 | type = ada_check_typedef (type); |
d2e4a39e | 9331 | if (type != NULL |
14f9c5c9 | 9332 | && TYPE_CODE (type) != TYPE_CODE_PTR |
76a01679 JB |
9333 | && (ada_is_simple_array_type (type) |
9334 | || ada_is_array_descriptor_type (type)) | |
14f9c5c9 AS |
9335 | && ada_array_arity (type) == 1) |
9336 | { | |
9337 | struct type *elttype = ada_array_element_type (type, 1); | |
9338 | ||
9339 | return ada_is_character_type (elttype); | |
9340 | } | |
d2e4a39e | 9341 | else |
14f9c5c9 AS |
9342 | return 0; |
9343 | } | |
9344 | ||
5bf03f13 JB |
9345 | /* The compiler sometimes provides a parallel XVS type for a given |
9346 | PAD type. Normally, it is safe to follow the PAD type directly, | |
9347 | but older versions of the compiler have a bug that causes the offset | |
9348 | of its "F" field to be wrong. Following that field in that case | |
9349 | would lead to incorrect results, but this can be worked around | |
9350 | by ignoring the PAD type and using the associated XVS type instead. | |
9351 | ||
9352 | Set to True if the debugger should trust the contents of PAD types. | |
9353 | Otherwise, ignore the PAD type if there is a parallel XVS type. */ | |
9354 | static int trust_pad_over_xvs = 1; | |
14f9c5c9 AS |
9355 | |
9356 | /* True if TYPE is a struct type introduced by the compiler to force the | |
9357 | alignment of a value. Such types have a single field with a | |
4c4b4cd2 | 9358 | distinctive name. */ |
14f9c5c9 AS |
9359 | |
9360 | int | |
ebf56fd3 | 9361 | ada_is_aligner_type (struct type *type) |
14f9c5c9 | 9362 | { |
61ee279c | 9363 | type = ada_check_typedef (type); |
714e53ab | 9364 | |
5bf03f13 | 9365 | if (!trust_pad_over_xvs && ada_find_parallel_type (type, "___XVS") != NULL) |
714e53ab PH |
9366 | return 0; |
9367 | ||
14f9c5c9 | 9368 | return (TYPE_CODE (type) == TYPE_CODE_STRUCT |
4c4b4cd2 PH |
9369 | && TYPE_NFIELDS (type) == 1 |
9370 | && strcmp (TYPE_FIELD_NAME (type, 0), "F") == 0); | |
14f9c5c9 AS |
9371 | } |
9372 | ||
9373 | /* If there is an ___XVS-convention type parallel to SUBTYPE, return | |
4c4b4cd2 | 9374 | the parallel type. */ |
14f9c5c9 | 9375 | |
d2e4a39e AS |
9376 | struct type * |
9377 | ada_get_base_type (struct type *raw_type) | |
14f9c5c9 | 9378 | { |
d2e4a39e AS |
9379 | struct type *real_type_namer; |
9380 | struct type *raw_real_type; | |
14f9c5c9 AS |
9381 | |
9382 | if (raw_type == NULL || TYPE_CODE (raw_type) != TYPE_CODE_STRUCT) | |
9383 | return raw_type; | |
9384 | ||
284614f0 JB |
9385 | if (ada_is_aligner_type (raw_type)) |
9386 | /* The encoding specifies that we should always use the aligner type. | |
9387 | So, even if this aligner type has an associated XVS type, we should | |
9388 | simply ignore it. | |
9389 | ||
9390 | According to the compiler gurus, an XVS type parallel to an aligner | |
9391 | type may exist because of a stabs limitation. In stabs, aligner | |
9392 | types are empty because the field has a variable-sized type, and | |
9393 | thus cannot actually be used as an aligner type. As a result, | |
9394 | we need the associated parallel XVS type to decode the type. | |
9395 | Since the policy in the compiler is to not change the internal | |
9396 | representation based on the debugging info format, we sometimes | |
9397 | end up having a redundant XVS type parallel to the aligner type. */ | |
9398 | return raw_type; | |
9399 | ||
14f9c5c9 | 9400 | real_type_namer = ada_find_parallel_type (raw_type, "___XVS"); |
d2e4a39e | 9401 | if (real_type_namer == NULL |
14f9c5c9 AS |
9402 | || TYPE_CODE (real_type_namer) != TYPE_CODE_STRUCT |
9403 | || TYPE_NFIELDS (real_type_namer) != 1) | |
9404 | return raw_type; | |
9405 | ||
f80d3ff2 JB |
9406 | if (TYPE_CODE (TYPE_FIELD_TYPE (real_type_namer, 0)) != TYPE_CODE_REF) |
9407 | { | |
9408 | /* This is an older encoding form where the base type needs to be | |
9409 | looked up by name. We prefer the newer enconding because it is | |
9410 | more efficient. */ | |
9411 | raw_real_type = ada_find_any_type (TYPE_FIELD_NAME (real_type_namer, 0)); | |
9412 | if (raw_real_type == NULL) | |
9413 | return raw_type; | |
9414 | else | |
9415 | return raw_real_type; | |
9416 | } | |
9417 | ||
9418 | /* The field in our XVS type is a reference to the base type. */ | |
9419 | return TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (real_type_namer, 0)); | |
d2e4a39e | 9420 | } |
14f9c5c9 | 9421 | |
4c4b4cd2 | 9422 | /* The type of value designated by TYPE, with all aligners removed. */ |
14f9c5c9 | 9423 | |
d2e4a39e AS |
9424 | struct type * |
9425 | ada_aligned_type (struct type *type) | |
14f9c5c9 AS |
9426 | { |
9427 | if (ada_is_aligner_type (type)) | |
9428 | return ada_aligned_type (TYPE_FIELD_TYPE (type, 0)); | |
9429 | else | |
9430 | return ada_get_base_type (type); | |
9431 | } | |
9432 | ||
9433 | ||
9434 | /* The address of the aligned value in an object at address VALADDR | |
4c4b4cd2 | 9435 | having type TYPE. Assumes ada_is_aligner_type (TYPE). */ |
14f9c5c9 | 9436 | |
fc1a4b47 AC |
9437 | const gdb_byte * |
9438 | ada_aligned_value_addr (struct type *type, const gdb_byte *valaddr) | |
14f9c5c9 | 9439 | { |
d2e4a39e | 9440 | if (ada_is_aligner_type (type)) |
14f9c5c9 | 9441 | return ada_aligned_value_addr (TYPE_FIELD_TYPE (type, 0), |
4c4b4cd2 PH |
9442 | valaddr + |
9443 | TYPE_FIELD_BITPOS (type, | |
9444 | 0) / TARGET_CHAR_BIT); | |
14f9c5c9 AS |
9445 | else |
9446 | return valaddr; | |
9447 | } | |
9448 | ||
4c4b4cd2 PH |
9449 | |
9450 | ||
14f9c5c9 | 9451 | /* The printed representation of an enumeration literal with encoded |
4c4b4cd2 | 9452 | name NAME. The value is good to the next call of ada_enum_name. */ |
d2e4a39e AS |
9453 | const char * |
9454 | ada_enum_name (const char *name) | |
14f9c5c9 | 9455 | { |
4c4b4cd2 PH |
9456 | static char *result; |
9457 | static size_t result_len = 0; | |
e6a959d6 | 9458 | const char *tmp; |
14f9c5c9 | 9459 | |
4c4b4cd2 PH |
9460 | /* First, unqualify the enumeration name: |
9461 | 1. Search for the last '.' character. If we find one, then skip | |
177b42fe | 9462 | all the preceding characters, the unqualified name starts |
76a01679 | 9463 | right after that dot. |
4c4b4cd2 | 9464 | 2. Otherwise, we may be debugging on a target where the compiler |
76a01679 JB |
9465 | translates dots into "__". Search forward for double underscores, |
9466 | but stop searching when we hit an overloading suffix, which is | |
9467 | of the form "__" followed by digits. */ | |
4c4b4cd2 | 9468 | |
c3e5cd34 PH |
9469 | tmp = strrchr (name, '.'); |
9470 | if (tmp != NULL) | |
4c4b4cd2 PH |
9471 | name = tmp + 1; |
9472 | else | |
14f9c5c9 | 9473 | { |
4c4b4cd2 PH |
9474 | while ((tmp = strstr (name, "__")) != NULL) |
9475 | { | |
9476 | if (isdigit (tmp[2])) | |
9477 | break; | |
9478 | else | |
9479 | name = tmp + 2; | |
9480 | } | |
14f9c5c9 AS |
9481 | } |
9482 | ||
9483 | if (name[0] == 'Q') | |
9484 | { | |
14f9c5c9 | 9485 | int v; |
5b4ee69b | 9486 | |
14f9c5c9 | 9487 | if (name[1] == 'U' || name[1] == 'W') |
4c4b4cd2 PH |
9488 | { |
9489 | if (sscanf (name + 2, "%x", &v) != 1) | |
9490 | return name; | |
9491 | } | |
14f9c5c9 | 9492 | else |
4c4b4cd2 | 9493 | return name; |
14f9c5c9 | 9494 | |
4c4b4cd2 | 9495 | GROW_VECT (result, result_len, 16); |
14f9c5c9 | 9496 | if (isascii (v) && isprint (v)) |
88c15c34 | 9497 | xsnprintf (result, result_len, "'%c'", v); |
14f9c5c9 | 9498 | else if (name[1] == 'U') |
88c15c34 | 9499 | xsnprintf (result, result_len, "[\"%02x\"]", v); |
14f9c5c9 | 9500 | else |
88c15c34 | 9501 | xsnprintf (result, result_len, "[\"%04x\"]", v); |
14f9c5c9 AS |
9502 | |
9503 | return result; | |
9504 | } | |
d2e4a39e | 9505 | else |
4c4b4cd2 | 9506 | { |
c3e5cd34 PH |
9507 | tmp = strstr (name, "__"); |
9508 | if (tmp == NULL) | |
9509 | tmp = strstr (name, "$"); | |
9510 | if (tmp != NULL) | |
4c4b4cd2 PH |
9511 | { |
9512 | GROW_VECT (result, result_len, tmp - name + 1); | |
9513 | strncpy (result, name, tmp - name); | |
9514 | result[tmp - name] = '\0'; | |
9515 | return result; | |
9516 | } | |
9517 | ||
9518 | return name; | |
9519 | } | |
14f9c5c9 AS |
9520 | } |
9521 | ||
14f9c5c9 AS |
9522 | /* Evaluate the subexpression of EXP starting at *POS as for |
9523 | evaluate_type, updating *POS to point just past the evaluated | |
4c4b4cd2 | 9524 | expression. */ |
14f9c5c9 | 9525 | |
d2e4a39e AS |
9526 | static struct value * |
9527 | evaluate_subexp_type (struct expression *exp, int *pos) | |
14f9c5c9 | 9528 | { |
4b27a620 | 9529 | return evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS); |
14f9c5c9 AS |
9530 | } |
9531 | ||
9532 | /* If VAL is wrapped in an aligner or subtype wrapper, return the | |
4c4b4cd2 | 9533 | value it wraps. */ |
14f9c5c9 | 9534 | |
d2e4a39e AS |
9535 | static struct value * |
9536 | unwrap_value (struct value *val) | |
14f9c5c9 | 9537 | { |
df407dfe | 9538 | struct type *type = ada_check_typedef (value_type (val)); |
5b4ee69b | 9539 | |
14f9c5c9 AS |
9540 | if (ada_is_aligner_type (type)) |
9541 | { | |
de4d072f | 9542 | struct value *v = ada_value_struct_elt (val, "F", 0); |
df407dfe | 9543 | struct type *val_type = ada_check_typedef (value_type (v)); |
5b4ee69b | 9544 | |
14f9c5c9 | 9545 | if (ada_type_name (val_type) == NULL) |
4c4b4cd2 | 9546 | TYPE_NAME (val_type) = ada_type_name (type); |
14f9c5c9 AS |
9547 | |
9548 | return unwrap_value (v); | |
9549 | } | |
d2e4a39e | 9550 | else |
14f9c5c9 | 9551 | { |
d2e4a39e | 9552 | struct type *raw_real_type = |
61ee279c | 9553 | ada_check_typedef (ada_get_base_type (type)); |
d2e4a39e | 9554 | |
5bf03f13 JB |
9555 | /* If there is no parallel XVS or XVE type, then the value is |
9556 | already unwrapped. Return it without further modification. */ | |
9557 | if ((type == raw_real_type) | |
9558 | && ada_find_parallel_type (type, "___XVE") == NULL) | |
9559 | return val; | |
14f9c5c9 | 9560 | |
d2e4a39e | 9561 | return |
4c4b4cd2 PH |
9562 | coerce_unspec_val_to_type |
9563 | (val, ada_to_fixed_type (raw_real_type, 0, | |
42ae5230 | 9564 | value_address (val), |
1ed6ede0 | 9565 | NULL, 1)); |
14f9c5c9 AS |
9566 | } |
9567 | } | |
d2e4a39e AS |
9568 | |
9569 | static struct value * | |
50eff16b | 9570 | cast_from_fixed (struct type *type, struct value *arg) |
14f9c5c9 | 9571 | { |
50eff16b UW |
9572 | struct value *scale = ada_scaling_factor (value_type (arg)); |
9573 | arg = value_cast (value_type (scale), arg); | |
14f9c5c9 | 9574 | |
50eff16b UW |
9575 | arg = value_binop (arg, scale, BINOP_MUL); |
9576 | return value_cast (type, arg); | |
14f9c5c9 AS |
9577 | } |
9578 | ||
d2e4a39e | 9579 | static struct value * |
50eff16b | 9580 | cast_to_fixed (struct type *type, struct value *arg) |
14f9c5c9 | 9581 | { |
50eff16b UW |
9582 | if (type == value_type (arg)) |
9583 | return arg; | |
5b4ee69b | 9584 | |
50eff16b UW |
9585 | struct value *scale = ada_scaling_factor (type); |
9586 | if (ada_is_fixed_point_type (value_type (arg))) | |
9587 | arg = cast_from_fixed (value_type (scale), arg); | |
9588 | else | |
9589 | arg = value_cast (value_type (scale), arg); | |
9590 | ||
9591 | arg = value_binop (arg, scale, BINOP_DIV); | |
9592 | return value_cast (type, arg); | |
14f9c5c9 AS |
9593 | } |
9594 | ||
d99dcf51 JB |
9595 | /* Given two array types T1 and T2, return nonzero iff both arrays |
9596 | contain the same number of elements. */ | |
9597 | ||
9598 | static int | |
9599 | ada_same_array_size_p (struct type *t1, struct type *t2) | |
9600 | { | |
9601 | LONGEST lo1, hi1, lo2, hi2; | |
9602 | ||
9603 | /* Get the array bounds in order to verify that the size of | |
9604 | the two arrays match. */ | |
9605 | if (!get_array_bounds (t1, &lo1, &hi1) | |
9606 | || !get_array_bounds (t2, &lo2, &hi2)) | |
9607 | error (_("unable to determine array bounds")); | |
9608 | ||
9609 | /* To make things easier for size comparison, normalize a bit | |
9610 | the case of empty arrays by making sure that the difference | |
9611 | between upper bound and lower bound is always -1. */ | |
9612 | if (lo1 > hi1) | |
9613 | hi1 = lo1 - 1; | |
9614 | if (lo2 > hi2) | |
9615 | hi2 = lo2 - 1; | |
9616 | ||
9617 | return (hi1 - lo1 == hi2 - lo2); | |
9618 | } | |
9619 | ||
9620 | /* Assuming that VAL is an array of integrals, and TYPE represents | |
9621 | an array with the same number of elements, but with wider integral | |
9622 | elements, return an array "casted" to TYPE. In practice, this | |
9623 | means that the returned array is built by casting each element | |
9624 | of the original array into TYPE's (wider) element type. */ | |
9625 | ||
9626 | static struct value * | |
9627 | ada_promote_array_of_integrals (struct type *type, struct value *val) | |
9628 | { | |
9629 | struct type *elt_type = TYPE_TARGET_TYPE (type); | |
9630 | LONGEST lo, hi; | |
9631 | struct value *res; | |
9632 | LONGEST i; | |
9633 | ||
9634 | /* Verify that both val and type are arrays of scalars, and | |
9635 | that the size of val's elements is smaller than the size | |
9636 | of type's element. */ | |
9637 | gdb_assert (TYPE_CODE (type) == TYPE_CODE_ARRAY); | |
9638 | gdb_assert (is_integral_type (TYPE_TARGET_TYPE (type))); | |
9639 | gdb_assert (TYPE_CODE (value_type (val)) == TYPE_CODE_ARRAY); | |
9640 | gdb_assert (is_integral_type (TYPE_TARGET_TYPE (value_type (val)))); | |
9641 | gdb_assert (TYPE_LENGTH (TYPE_TARGET_TYPE (type)) | |
9642 | > TYPE_LENGTH (TYPE_TARGET_TYPE (value_type (val)))); | |
9643 | ||
9644 | if (!get_array_bounds (type, &lo, &hi)) | |
9645 | error (_("unable to determine array bounds")); | |
9646 | ||
9647 | res = allocate_value (type); | |
9648 | ||
9649 | /* Promote each array element. */ | |
9650 | for (i = 0; i < hi - lo + 1; i++) | |
9651 | { | |
9652 | struct value *elt = value_cast (elt_type, value_subscript (val, lo + i)); | |
9653 | ||
9654 | memcpy (value_contents_writeable (res) + (i * TYPE_LENGTH (elt_type)), | |
9655 | value_contents_all (elt), TYPE_LENGTH (elt_type)); | |
9656 | } | |
9657 | ||
9658 | return res; | |
9659 | } | |
9660 | ||
4c4b4cd2 PH |
9661 | /* Coerce VAL as necessary for assignment to an lval of type TYPE, and |
9662 | return the converted value. */ | |
9663 | ||
d2e4a39e AS |
9664 | static struct value * |
9665 | coerce_for_assign (struct type *type, struct value *val) | |
14f9c5c9 | 9666 | { |
df407dfe | 9667 | struct type *type2 = value_type (val); |
5b4ee69b | 9668 | |
14f9c5c9 AS |
9669 | if (type == type2) |
9670 | return val; | |
9671 | ||
61ee279c PH |
9672 | type2 = ada_check_typedef (type2); |
9673 | type = ada_check_typedef (type); | |
14f9c5c9 | 9674 | |
d2e4a39e AS |
9675 | if (TYPE_CODE (type2) == TYPE_CODE_PTR |
9676 | && TYPE_CODE (type) == TYPE_CODE_ARRAY) | |
14f9c5c9 AS |
9677 | { |
9678 | val = ada_value_ind (val); | |
df407dfe | 9679 | type2 = value_type (val); |
14f9c5c9 AS |
9680 | } |
9681 | ||
d2e4a39e | 9682 | if (TYPE_CODE (type2) == TYPE_CODE_ARRAY |
14f9c5c9 AS |
9683 | && TYPE_CODE (type) == TYPE_CODE_ARRAY) |
9684 | { | |
d99dcf51 JB |
9685 | if (!ada_same_array_size_p (type, type2)) |
9686 | error (_("cannot assign arrays of different length")); | |
9687 | ||
9688 | if (is_integral_type (TYPE_TARGET_TYPE (type)) | |
9689 | && is_integral_type (TYPE_TARGET_TYPE (type2)) | |
9690 | && TYPE_LENGTH (TYPE_TARGET_TYPE (type2)) | |
9691 | < TYPE_LENGTH (TYPE_TARGET_TYPE (type))) | |
9692 | { | |
9693 | /* Allow implicit promotion of the array elements to | |
9694 | a wider type. */ | |
9695 | return ada_promote_array_of_integrals (type, val); | |
9696 | } | |
9697 | ||
9698 | if (TYPE_LENGTH (TYPE_TARGET_TYPE (type2)) | |
9699 | != TYPE_LENGTH (TYPE_TARGET_TYPE (type))) | |
323e0a4a | 9700 | error (_("Incompatible types in assignment")); |
04624583 | 9701 | deprecated_set_value_type (val, type); |
14f9c5c9 | 9702 | } |
d2e4a39e | 9703 | return val; |
14f9c5c9 AS |
9704 | } |
9705 | ||
4c4b4cd2 PH |
9706 | static struct value * |
9707 | ada_value_binop (struct value *arg1, struct value *arg2, enum exp_opcode op) | |
9708 | { | |
9709 | struct value *val; | |
9710 | struct type *type1, *type2; | |
9711 | LONGEST v, v1, v2; | |
9712 | ||
994b9211 AC |
9713 | arg1 = coerce_ref (arg1); |
9714 | arg2 = coerce_ref (arg2); | |
18af8284 JB |
9715 | type1 = get_base_type (ada_check_typedef (value_type (arg1))); |
9716 | type2 = get_base_type (ada_check_typedef (value_type (arg2))); | |
4c4b4cd2 | 9717 | |
76a01679 JB |
9718 | if (TYPE_CODE (type1) != TYPE_CODE_INT |
9719 | || TYPE_CODE (type2) != TYPE_CODE_INT) | |
4c4b4cd2 PH |
9720 | return value_binop (arg1, arg2, op); |
9721 | ||
76a01679 | 9722 | switch (op) |
4c4b4cd2 PH |
9723 | { |
9724 | case BINOP_MOD: | |
9725 | case BINOP_DIV: | |
9726 | case BINOP_REM: | |
9727 | break; | |
9728 | default: | |
9729 | return value_binop (arg1, arg2, op); | |
9730 | } | |
9731 | ||
9732 | v2 = value_as_long (arg2); | |
9733 | if (v2 == 0) | |
323e0a4a | 9734 | error (_("second operand of %s must not be zero."), op_string (op)); |
4c4b4cd2 PH |
9735 | |
9736 | if (TYPE_UNSIGNED (type1) || op == BINOP_MOD) | |
9737 | return value_binop (arg1, arg2, op); | |
9738 | ||
9739 | v1 = value_as_long (arg1); | |
9740 | switch (op) | |
9741 | { | |
9742 | case BINOP_DIV: | |
9743 | v = v1 / v2; | |
76a01679 JB |
9744 | if (!TRUNCATION_TOWARDS_ZERO && v1 * (v1 % v2) < 0) |
9745 | v += v > 0 ? -1 : 1; | |
4c4b4cd2 PH |
9746 | break; |
9747 | case BINOP_REM: | |
9748 | v = v1 % v2; | |
76a01679 JB |
9749 | if (v * v1 < 0) |
9750 | v -= v2; | |
4c4b4cd2 PH |
9751 | break; |
9752 | default: | |
9753 | /* Should not reach this point. */ | |
9754 | v = 0; | |
9755 | } | |
9756 | ||
9757 | val = allocate_value (type1); | |
990a07ab | 9758 | store_unsigned_integer (value_contents_raw (val), |
e17a4113 UW |
9759 | TYPE_LENGTH (value_type (val)), |
9760 | gdbarch_byte_order (get_type_arch (type1)), v); | |
4c4b4cd2 PH |
9761 | return val; |
9762 | } | |
9763 | ||
9764 | static int | |
9765 | ada_value_equal (struct value *arg1, struct value *arg2) | |
9766 | { | |
df407dfe AC |
9767 | if (ada_is_direct_array_type (value_type (arg1)) |
9768 | || ada_is_direct_array_type (value_type (arg2))) | |
4c4b4cd2 | 9769 | { |
f58b38bf JB |
9770 | /* Automatically dereference any array reference before |
9771 | we attempt to perform the comparison. */ | |
9772 | arg1 = ada_coerce_ref (arg1); | |
9773 | arg2 = ada_coerce_ref (arg2); | |
9774 | ||
4c4b4cd2 PH |
9775 | arg1 = ada_coerce_to_simple_array (arg1); |
9776 | arg2 = ada_coerce_to_simple_array (arg2); | |
df407dfe AC |
9777 | if (TYPE_CODE (value_type (arg1)) != TYPE_CODE_ARRAY |
9778 | || TYPE_CODE (value_type (arg2)) != TYPE_CODE_ARRAY) | |
323e0a4a | 9779 | error (_("Attempt to compare array with non-array")); |
4c4b4cd2 | 9780 | /* FIXME: The following works only for types whose |
76a01679 JB |
9781 | representations use all bits (no padding or undefined bits) |
9782 | and do not have user-defined equality. */ | |
9783 | return | |
df407dfe | 9784 | TYPE_LENGTH (value_type (arg1)) == TYPE_LENGTH (value_type (arg2)) |
0fd88904 | 9785 | && memcmp (value_contents (arg1), value_contents (arg2), |
df407dfe | 9786 | TYPE_LENGTH (value_type (arg1))) == 0; |
4c4b4cd2 PH |
9787 | } |
9788 | return value_equal (arg1, arg2); | |
9789 | } | |
9790 | ||
52ce6436 PH |
9791 | /* Total number of component associations in the aggregate starting at |
9792 | index PC in EXP. Assumes that index PC is the start of an | |
0963b4bd | 9793 | OP_AGGREGATE. */ |
52ce6436 PH |
9794 | |
9795 | static int | |
9796 | num_component_specs (struct expression *exp, int pc) | |
9797 | { | |
9798 | int n, m, i; | |
5b4ee69b | 9799 | |
52ce6436 PH |
9800 | m = exp->elts[pc + 1].longconst; |
9801 | pc += 3; | |
9802 | n = 0; | |
9803 | for (i = 0; i < m; i += 1) | |
9804 | { | |
9805 | switch (exp->elts[pc].opcode) | |
9806 | { | |
9807 | default: | |
9808 | n += 1; | |
9809 | break; | |
9810 | case OP_CHOICES: | |
9811 | n += exp->elts[pc + 1].longconst; | |
9812 | break; | |
9813 | } | |
9814 | ada_evaluate_subexp (NULL, exp, &pc, EVAL_SKIP); | |
9815 | } | |
9816 | return n; | |
9817 | } | |
9818 | ||
9819 | /* Assign the result of evaluating EXP starting at *POS to the INDEXth | |
9820 | component of LHS (a simple array or a record), updating *POS past | |
9821 | the expression, assuming that LHS is contained in CONTAINER. Does | |
9822 | not modify the inferior's memory, nor does it modify LHS (unless | |
9823 | LHS == CONTAINER). */ | |
9824 | ||
9825 | static void | |
9826 | assign_component (struct value *container, struct value *lhs, LONGEST index, | |
9827 | struct expression *exp, int *pos) | |
9828 | { | |
9829 | struct value *mark = value_mark (); | |
9830 | struct value *elt; | |
5b4ee69b | 9831 | |
52ce6436 PH |
9832 | if (TYPE_CODE (value_type (lhs)) == TYPE_CODE_ARRAY) |
9833 | { | |
22601c15 UW |
9834 | struct type *index_type = builtin_type (exp->gdbarch)->builtin_int; |
9835 | struct value *index_val = value_from_longest (index_type, index); | |
5b4ee69b | 9836 | |
52ce6436 PH |
9837 | elt = unwrap_value (ada_value_subscript (lhs, 1, &index_val)); |
9838 | } | |
9839 | else | |
9840 | { | |
9841 | elt = ada_index_struct_field (index, lhs, 0, value_type (lhs)); | |
c48db5ca | 9842 | elt = ada_to_fixed_value (elt); |
52ce6436 PH |
9843 | } |
9844 | ||
9845 | if (exp->elts[*pos].opcode == OP_AGGREGATE) | |
9846 | assign_aggregate (container, elt, exp, pos, EVAL_NORMAL); | |
9847 | else | |
9848 | value_assign_to_component (container, elt, | |
9849 | ada_evaluate_subexp (NULL, exp, pos, | |
9850 | EVAL_NORMAL)); | |
9851 | ||
9852 | value_free_to_mark (mark); | |
9853 | } | |
9854 | ||
9855 | /* Assuming that LHS represents an lvalue having a record or array | |
9856 | type, and EXP->ELTS[*POS] is an OP_AGGREGATE, evaluate an assignment | |
9857 | of that aggregate's value to LHS, advancing *POS past the | |
9858 | aggregate. NOSIDE is as for evaluate_subexp. CONTAINER is an | |
9859 | lvalue containing LHS (possibly LHS itself). Does not modify | |
9860 | the inferior's memory, nor does it modify the contents of | |
0963b4bd | 9861 | LHS (unless == CONTAINER). Returns the modified CONTAINER. */ |
52ce6436 PH |
9862 | |
9863 | static struct value * | |
9864 | assign_aggregate (struct value *container, | |
9865 | struct value *lhs, struct expression *exp, | |
9866 | int *pos, enum noside noside) | |
9867 | { | |
9868 | struct type *lhs_type; | |
9869 | int n = exp->elts[*pos+1].longconst; | |
9870 | LONGEST low_index, high_index; | |
9871 | int num_specs; | |
9872 | LONGEST *indices; | |
9873 | int max_indices, num_indices; | |
52ce6436 | 9874 | int i; |
52ce6436 PH |
9875 | |
9876 | *pos += 3; | |
9877 | if (noside != EVAL_NORMAL) | |
9878 | { | |
52ce6436 PH |
9879 | for (i = 0; i < n; i += 1) |
9880 | ada_evaluate_subexp (NULL, exp, pos, noside); | |
9881 | return container; | |
9882 | } | |
9883 | ||
9884 | container = ada_coerce_ref (container); | |
9885 | if (ada_is_direct_array_type (value_type (container))) | |
9886 | container = ada_coerce_to_simple_array (container); | |
9887 | lhs = ada_coerce_ref (lhs); | |
9888 | if (!deprecated_value_modifiable (lhs)) | |
9889 | error (_("Left operand of assignment is not a modifiable lvalue.")); | |
9890 | ||
9891 | lhs_type = value_type (lhs); | |
9892 | if (ada_is_direct_array_type (lhs_type)) | |
9893 | { | |
9894 | lhs = ada_coerce_to_simple_array (lhs); | |
9895 | lhs_type = value_type (lhs); | |
9896 | low_index = TYPE_ARRAY_LOWER_BOUND_VALUE (lhs_type); | |
9897 | high_index = TYPE_ARRAY_UPPER_BOUND_VALUE (lhs_type); | |
52ce6436 PH |
9898 | } |
9899 | else if (TYPE_CODE (lhs_type) == TYPE_CODE_STRUCT) | |
9900 | { | |
9901 | low_index = 0; | |
9902 | high_index = num_visible_fields (lhs_type) - 1; | |
52ce6436 PH |
9903 | } |
9904 | else | |
9905 | error (_("Left-hand side must be array or record.")); | |
9906 | ||
9907 | num_specs = num_component_specs (exp, *pos - 3); | |
9908 | max_indices = 4 * num_specs + 4; | |
8d749320 | 9909 | indices = XALLOCAVEC (LONGEST, max_indices); |
52ce6436 PH |
9910 | indices[0] = indices[1] = low_index - 1; |
9911 | indices[2] = indices[3] = high_index + 1; | |
9912 | num_indices = 4; | |
9913 | ||
9914 | for (i = 0; i < n; i += 1) | |
9915 | { | |
9916 | switch (exp->elts[*pos].opcode) | |
9917 | { | |
1fbf5ada JB |
9918 | case OP_CHOICES: |
9919 | aggregate_assign_from_choices (container, lhs, exp, pos, indices, | |
9920 | &num_indices, max_indices, | |
9921 | low_index, high_index); | |
9922 | break; | |
9923 | case OP_POSITIONAL: | |
9924 | aggregate_assign_positional (container, lhs, exp, pos, indices, | |
52ce6436 PH |
9925 | &num_indices, max_indices, |
9926 | low_index, high_index); | |
1fbf5ada JB |
9927 | break; |
9928 | case OP_OTHERS: | |
9929 | if (i != n-1) | |
9930 | error (_("Misplaced 'others' clause")); | |
9931 | aggregate_assign_others (container, lhs, exp, pos, indices, | |
9932 | num_indices, low_index, high_index); | |
9933 | break; | |
9934 | default: | |
9935 | error (_("Internal error: bad aggregate clause")); | |
52ce6436 PH |
9936 | } |
9937 | } | |
9938 | ||
9939 | return container; | |
9940 | } | |
9941 | ||
9942 | /* Assign into the component of LHS indexed by the OP_POSITIONAL | |
9943 | construct at *POS, updating *POS past the construct, given that | |
9944 | the positions are relative to lower bound LOW, where HIGH is the | |
9945 | upper bound. Record the position in INDICES[0 .. MAX_INDICES-1] | |
9946 | updating *NUM_INDICES as needed. CONTAINER is as for | |
0963b4bd | 9947 | assign_aggregate. */ |
52ce6436 PH |
9948 | static void |
9949 | aggregate_assign_positional (struct value *container, | |
9950 | struct value *lhs, struct expression *exp, | |
9951 | int *pos, LONGEST *indices, int *num_indices, | |
9952 | int max_indices, LONGEST low, LONGEST high) | |
9953 | { | |
9954 | LONGEST ind = longest_to_int (exp->elts[*pos + 1].longconst) + low; | |
9955 | ||
9956 | if (ind - 1 == high) | |
e1d5a0d2 | 9957 | warning (_("Extra components in aggregate ignored.")); |
52ce6436 PH |
9958 | if (ind <= high) |
9959 | { | |
9960 | add_component_interval (ind, ind, indices, num_indices, max_indices); | |
9961 | *pos += 3; | |
9962 | assign_component (container, lhs, ind, exp, pos); | |
9963 | } | |
9964 | else | |
9965 | ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP); | |
9966 | } | |
9967 | ||
9968 | /* Assign into the components of LHS indexed by the OP_CHOICES | |
9969 | construct at *POS, updating *POS past the construct, given that | |
9970 | the allowable indices are LOW..HIGH. Record the indices assigned | |
9971 | to in INDICES[0 .. MAX_INDICES-1], updating *NUM_INDICES as | |
0963b4bd | 9972 | needed. CONTAINER is as for assign_aggregate. */ |
52ce6436 PH |
9973 | static void |
9974 | aggregate_assign_from_choices (struct value *container, | |
9975 | struct value *lhs, struct expression *exp, | |
9976 | int *pos, LONGEST *indices, int *num_indices, | |
9977 | int max_indices, LONGEST low, LONGEST high) | |
9978 | { | |
9979 | int j; | |
9980 | int n_choices = longest_to_int (exp->elts[*pos+1].longconst); | |
9981 | int choice_pos, expr_pc; | |
9982 | int is_array = ada_is_direct_array_type (value_type (lhs)); | |
9983 | ||
9984 | choice_pos = *pos += 3; | |
9985 | ||
9986 | for (j = 0; j < n_choices; j += 1) | |
9987 | ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP); | |
9988 | expr_pc = *pos; | |
9989 | ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP); | |
9990 | ||
9991 | for (j = 0; j < n_choices; j += 1) | |
9992 | { | |
9993 | LONGEST lower, upper; | |
9994 | enum exp_opcode op = exp->elts[choice_pos].opcode; | |
5b4ee69b | 9995 | |
52ce6436 PH |
9996 | if (op == OP_DISCRETE_RANGE) |
9997 | { | |
9998 | choice_pos += 1; | |
9999 | lower = value_as_long (ada_evaluate_subexp (NULL, exp, pos, | |
10000 | EVAL_NORMAL)); | |
10001 | upper = value_as_long (ada_evaluate_subexp (NULL, exp, pos, | |
10002 | EVAL_NORMAL)); | |
10003 | } | |
10004 | else if (is_array) | |
10005 | { | |
10006 | lower = value_as_long (ada_evaluate_subexp (NULL, exp, &choice_pos, | |
10007 | EVAL_NORMAL)); | |
10008 | upper = lower; | |
10009 | } | |
10010 | else | |
10011 | { | |
10012 | int ind; | |
0d5cff50 | 10013 | const char *name; |
5b4ee69b | 10014 | |
52ce6436 PH |
10015 | switch (op) |
10016 | { | |
10017 | case OP_NAME: | |
10018 | name = &exp->elts[choice_pos + 2].string; | |
10019 | break; | |
10020 | case OP_VAR_VALUE: | |
10021 | name = SYMBOL_NATURAL_NAME (exp->elts[choice_pos + 2].symbol); | |
10022 | break; | |
10023 | default: | |
10024 | error (_("Invalid record component association.")); | |
10025 | } | |
10026 | ada_evaluate_subexp (NULL, exp, &choice_pos, EVAL_SKIP); | |
10027 | ind = 0; | |
10028 | if (! find_struct_field (name, value_type (lhs), 0, | |
10029 | NULL, NULL, NULL, NULL, &ind)) | |
10030 | error (_("Unknown component name: %s."), name); | |
10031 | lower = upper = ind; | |
10032 | } | |
10033 | ||
10034 | if (lower <= upper && (lower < low || upper > high)) | |
10035 | error (_("Index in component association out of bounds.")); | |
10036 | ||
10037 | add_component_interval (lower, upper, indices, num_indices, | |
10038 | max_indices); | |
10039 | while (lower <= upper) | |
10040 | { | |
10041 | int pos1; | |
5b4ee69b | 10042 | |
52ce6436 PH |
10043 | pos1 = expr_pc; |
10044 | assign_component (container, lhs, lower, exp, &pos1); | |
10045 | lower += 1; | |
10046 | } | |
10047 | } | |
10048 | } | |
10049 | ||
10050 | /* Assign the value of the expression in the OP_OTHERS construct in | |
10051 | EXP at *POS into the components of LHS indexed from LOW .. HIGH that | |
10052 | have not been previously assigned. The index intervals already assigned | |
10053 | are in INDICES[0 .. NUM_INDICES-1]. Updates *POS to after the | |
0963b4bd | 10054 | OP_OTHERS clause. CONTAINER is as for assign_aggregate. */ |
52ce6436 PH |
10055 | static void |
10056 | aggregate_assign_others (struct value *container, | |
10057 | struct value *lhs, struct expression *exp, | |
10058 | int *pos, LONGEST *indices, int num_indices, | |
10059 | LONGEST low, LONGEST high) | |
10060 | { | |
10061 | int i; | |
5ce64950 | 10062 | int expr_pc = *pos + 1; |
52ce6436 PH |
10063 | |
10064 | for (i = 0; i < num_indices - 2; i += 2) | |
10065 | { | |
10066 | LONGEST ind; | |
5b4ee69b | 10067 | |
52ce6436 PH |
10068 | for (ind = indices[i + 1] + 1; ind < indices[i + 2]; ind += 1) |
10069 | { | |
5ce64950 | 10070 | int localpos; |
5b4ee69b | 10071 | |
5ce64950 MS |
10072 | localpos = expr_pc; |
10073 | assign_component (container, lhs, ind, exp, &localpos); | |
52ce6436 PH |
10074 | } |
10075 | } | |
10076 | ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP); | |
10077 | } | |
10078 | ||
10079 | /* Add the interval [LOW .. HIGH] to the sorted set of intervals | |
10080 | [ INDICES[0] .. INDICES[1] ],..., [ INDICES[*SIZE-2] .. INDICES[*SIZE-1] ], | |
10081 | modifying *SIZE as needed. It is an error if *SIZE exceeds | |
10082 | MAX_SIZE. The resulting intervals do not overlap. */ | |
10083 | static void | |
10084 | add_component_interval (LONGEST low, LONGEST high, | |
10085 | LONGEST* indices, int *size, int max_size) | |
10086 | { | |
10087 | int i, j; | |
5b4ee69b | 10088 | |
52ce6436 PH |
10089 | for (i = 0; i < *size; i += 2) { |
10090 | if (high >= indices[i] && low <= indices[i + 1]) | |
10091 | { | |
10092 | int kh; | |
5b4ee69b | 10093 | |
52ce6436 PH |
10094 | for (kh = i + 2; kh < *size; kh += 2) |
10095 | if (high < indices[kh]) | |
10096 | break; | |
10097 | if (low < indices[i]) | |
10098 | indices[i] = low; | |
10099 | indices[i + 1] = indices[kh - 1]; | |
10100 | if (high > indices[i + 1]) | |
10101 | indices[i + 1] = high; | |
10102 | memcpy (indices + i + 2, indices + kh, *size - kh); | |
10103 | *size -= kh - i - 2; | |
10104 | return; | |
10105 | } | |
10106 | else if (high < indices[i]) | |
10107 | break; | |
10108 | } | |
10109 | ||
10110 | if (*size == max_size) | |
10111 | error (_("Internal error: miscounted aggregate components.")); | |
10112 | *size += 2; | |
10113 | for (j = *size-1; j >= i+2; j -= 1) | |
10114 | indices[j] = indices[j - 2]; | |
10115 | indices[i] = low; | |
10116 | indices[i + 1] = high; | |
10117 | } | |
10118 | ||
6e48bd2c JB |
10119 | /* Perform and Ada cast of ARG2 to type TYPE if the type of ARG2 |
10120 | is different. */ | |
10121 | ||
10122 | static struct value * | |
10123 | ada_value_cast (struct type *type, struct value *arg2, enum noside noside) | |
10124 | { | |
10125 | if (type == ada_check_typedef (value_type (arg2))) | |
10126 | return arg2; | |
10127 | ||
10128 | if (ada_is_fixed_point_type (type)) | |
10129 | return (cast_to_fixed (type, arg2)); | |
10130 | ||
10131 | if (ada_is_fixed_point_type (value_type (arg2))) | |
a53b7a21 | 10132 | return cast_from_fixed (type, arg2); |
6e48bd2c JB |
10133 | |
10134 | return value_cast (type, arg2); | |
10135 | } | |
10136 | ||
284614f0 JB |
10137 | /* Evaluating Ada expressions, and printing their result. |
10138 | ------------------------------------------------------ | |
10139 | ||
21649b50 JB |
10140 | 1. Introduction: |
10141 | ---------------- | |
10142 | ||
284614f0 JB |
10143 | We usually evaluate an Ada expression in order to print its value. |
10144 | We also evaluate an expression in order to print its type, which | |
10145 | happens during the EVAL_AVOID_SIDE_EFFECTS phase of the evaluation, | |
10146 | but we'll focus mostly on the EVAL_NORMAL phase. In practice, the | |
10147 | EVAL_AVOID_SIDE_EFFECTS phase allows us to simplify certain aspects of | |
10148 | the evaluation compared to the EVAL_NORMAL, but is otherwise very | |
10149 | similar. | |
10150 | ||
10151 | Evaluating expressions is a little more complicated for Ada entities | |
10152 | than it is for entities in languages such as C. The main reason for | |
10153 | this is that Ada provides types whose definition might be dynamic. | |
10154 | One example of such types is variant records. Or another example | |
10155 | would be an array whose bounds can only be known at run time. | |
10156 | ||
10157 | The following description is a general guide as to what should be | |
10158 | done (and what should NOT be done) in order to evaluate an expression | |
10159 | involving such types, and when. This does not cover how the semantic | |
10160 | information is encoded by GNAT as this is covered separatly. For the | |
10161 | document used as the reference for the GNAT encoding, see exp_dbug.ads | |
10162 | in the GNAT sources. | |
10163 | ||
10164 | Ideally, we should embed each part of this description next to its | |
10165 | associated code. Unfortunately, the amount of code is so vast right | |
10166 | now that it's hard to see whether the code handling a particular | |
10167 | situation might be duplicated or not. One day, when the code is | |
10168 | cleaned up, this guide might become redundant with the comments | |
10169 | inserted in the code, and we might want to remove it. | |
10170 | ||
21649b50 JB |
10171 | 2. ``Fixing'' an Entity, the Simple Case: |
10172 | ----------------------------------------- | |
10173 | ||
284614f0 JB |
10174 | When evaluating Ada expressions, the tricky issue is that they may |
10175 | reference entities whose type contents and size are not statically | |
10176 | known. Consider for instance a variant record: | |
10177 | ||
10178 | type Rec (Empty : Boolean := True) is record | |
10179 | case Empty is | |
10180 | when True => null; | |
10181 | when False => Value : Integer; | |
10182 | end case; | |
10183 | end record; | |
10184 | Yes : Rec := (Empty => False, Value => 1); | |
10185 | No : Rec := (empty => True); | |
10186 | ||
10187 | The size and contents of that record depends on the value of the | |
10188 | descriminant (Rec.Empty). At this point, neither the debugging | |
10189 | information nor the associated type structure in GDB are able to | |
10190 | express such dynamic types. So what the debugger does is to create | |
10191 | "fixed" versions of the type that applies to the specific object. | |
10192 | We also informally refer to this opperation as "fixing" an object, | |
10193 | which means creating its associated fixed type. | |
10194 | ||
10195 | Example: when printing the value of variable "Yes" above, its fixed | |
10196 | type would look like this: | |
10197 | ||
10198 | type Rec is record | |
10199 | Empty : Boolean; | |
10200 | Value : Integer; | |
10201 | end record; | |
10202 | ||
10203 | On the other hand, if we printed the value of "No", its fixed type | |
10204 | would become: | |
10205 | ||
10206 | type Rec is record | |
10207 | Empty : Boolean; | |
10208 | end record; | |
10209 | ||
10210 | Things become a little more complicated when trying to fix an entity | |
10211 | with a dynamic type that directly contains another dynamic type, | |
10212 | such as an array of variant records, for instance. There are | |
10213 | two possible cases: Arrays, and records. | |
10214 | ||
21649b50 JB |
10215 | 3. ``Fixing'' Arrays: |
10216 | --------------------- | |
10217 | ||
10218 | The type structure in GDB describes an array in terms of its bounds, | |
10219 | and the type of its elements. By design, all elements in the array | |
10220 | have the same type and we cannot represent an array of variant elements | |
10221 | using the current type structure in GDB. When fixing an array, | |
10222 | we cannot fix the array element, as we would potentially need one | |
10223 | fixed type per element of the array. As a result, the best we can do | |
10224 | when fixing an array is to produce an array whose bounds and size | |
10225 | are correct (allowing us to read it from memory), but without having | |
10226 | touched its element type. Fixing each element will be done later, | |
10227 | when (if) necessary. | |
10228 | ||
10229 | Arrays are a little simpler to handle than records, because the same | |
10230 | amount of memory is allocated for each element of the array, even if | |
1b536f04 | 10231 | the amount of space actually used by each element differs from element |
21649b50 | 10232 | to element. Consider for instance the following array of type Rec: |
284614f0 JB |
10233 | |
10234 | type Rec_Array is array (1 .. 2) of Rec; | |
10235 | ||
1b536f04 JB |
10236 | The actual amount of memory occupied by each element might be different |
10237 | from element to element, depending on the value of their discriminant. | |
21649b50 | 10238 | But the amount of space reserved for each element in the array remains |
1b536f04 | 10239 | fixed regardless. So we simply need to compute that size using |
21649b50 JB |
10240 | the debugging information available, from which we can then determine |
10241 | the array size (we multiply the number of elements of the array by | |
10242 | the size of each element). | |
10243 | ||
10244 | The simplest case is when we have an array of a constrained element | |
10245 | type. For instance, consider the following type declarations: | |
10246 | ||
10247 | type Bounded_String (Max_Size : Integer) is | |
10248 | Length : Integer; | |
10249 | Buffer : String (1 .. Max_Size); | |
10250 | end record; | |
10251 | type Bounded_String_Array is array (1 ..2) of Bounded_String (80); | |
10252 | ||
10253 | In this case, the compiler describes the array as an array of | |
10254 | variable-size elements (identified by its XVS suffix) for which | |
10255 | the size can be read in the parallel XVZ variable. | |
10256 | ||
10257 | In the case of an array of an unconstrained element type, the compiler | |
10258 | wraps the array element inside a private PAD type. This type should not | |
10259 | be shown to the user, and must be "unwrap"'ed before printing. Note | |
284614f0 JB |
10260 | that we also use the adjective "aligner" in our code to designate |
10261 | these wrapper types. | |
10262 | ||
1b536f04 | 10263 | In some cases, the size allocated for each element is statically |
21649b50 JB |
10264 | known. In that case, the PAD type already has the correct size, |
10265 | and the array element should remain unfixed. | |
10266 | ||
10267 | But there are cases when this size is not statically known. | |
10268 | For instance, assuming that "Five" is an integer variable: | |
284614f0 JB |
10269 | |
10270 | type Dynamic is array (1 .. Five) of Integer; | |
10271 | type Wrapper (Has_Length : Boolean := False) is record | |
10272 | Data : Dynamic; | |
10273 | case Has_Length is | |
10274 | when True => Length : Integer; | |
10275 | when False => null; | |
10276 | end case; | |
10277 | end record; | |
10278 | type Wrapper_Array is array (1 .. 2) of Wrapper; | |
10279 | ||
10280 | Hello : Wrapper_Array := (others => (Has_Length => True, | |
10281 | Data => (others => 17), | |
10282 | Length => 1)); | |
10283 | ||
10284 | ||
10285 | The debugging info would describe variable Hello as being an | |
10286 | array of a PAD type. The size of that PAD type is not statically | |
10287 | known, but can be determined using a parallel XVZ variable. | |
10288 | In that case, a copy of the PAD type with the correct size should | |
10289 | be used for the fixed array. | |
10290 | ||
21649b50 JB |
10291 | 3. ``Fixing'' record type objects: |
10292 | ---------------------------------- | |
10293 | ||
10294 | Things are slightly different from arrays in the case of dynamic | |
284614f0 JB |
10295 | record types. In this case, in order to compute the associated |
10296 | fixed type, we need to determine the size and offset of each of | |
10297 | its components. This, in turn, requires us to compute the fixed | |
10298 | type of each of these components. | |
10299 | ||
10300 | Consider for instance the example: | |
10301 | ||
10302 | type Bounded_String (Max_Size : Natural) is record | |
10303 | Str : String (1 .. Max_Size); | |
10304 | Length : Natural; | |
10305 | end record; | |
10306 | My_String : Bounded_String (Max_Size => 10); | |
10307 | ||
10308 | In that case, the position of field "Length" depends on the size | |
10309 | of field Str, which itself depends on the value of the Max_Size | |
21649b50 | 10310 | discriminant. In order to fix the type of variable My_String, |
284614f0 JB |
10311 | we need to fix the type of field Str. Therefore, fixing a variant |
10312 | record requires us to fix each of its components. | |
10313 | ||
10314 | However, if a component does not have a dynamic size, the component | |
10315 | should not be fixed. In particular, fields that use a PAD type | |
10316 | should not fixed. Here is an example where this might happen | |
10317 | (assuming type Rec above): | |
10318 | ||
10319 | type Container (Big : Boolean) is record | |
10320 | First : Rec; | |
10321 | After : Integer; | |
10322 | case Big is | |
10323 | when True => Another : Integer; | |
10324 | when False => null; | |
10325 | end case; | |
10326 | end record; | |
10327 | My_Container : Container := (Big => False, | |
10328 | First => (Empty => True), | |
10329 | After => 42); | |
10330 | ||
10331 | In that example, the compiler creates a PAD type for component First, | |
10332 | whose size is constant, and then positions the component After just | |
10333 | right after it. The offset of component After is therefore constant | |
10334 | in this case. | |
10335 | ||
10336 | The debugger computes the position of each field based on an algorithm | |
10337 | that uses, among other things, the actual position and size of the field | |
21649b50 JB |
10338 | preceding it. Let's now imagine that the user is trying to print |
10339 | the value of My_Container. If the type fixing was recursive, we would | |
284614f0 JB |
10340 | end up computing the offset of field After based on the size of the |
10341 | fixed version of field First. And since in our example First has | |
10342 | only one actual field, the size of the fixed type is actually smaller | |
10343 | than the amount of space allocated to that field, and thus we would | |
10344 | compute the wrong offset of field After. | |
10345 | ||
21649b50 JB |
10346 | To make things more complicated, we need to watch out for dynamic |
10347 | components of variant records (identified by the ___XVL suffix in | |
10348 | the component name). Even if the target type is a PAD type, the size | |
10349 | of that type might not be statically known. So the PAD type needs | |
10350 | to be unwrapped and the resulting type needs to be fixed. Otherwise, | |
10351 | we might end up with the wrong size for our component. This can be | |
10352 | observed with the following type declarations: | |
284614f0 JB |
10353 | |
10354 | type Octal is new Integer range 0 .. 7; | |
10355 | type Octal_Array is array (Positive range <>) of Octal; | |
10356 | pragma Pack (Octal_Array); | |
10357 | ||
10358 | type Octal_Buffer (Size : Positive) is record | |
10359 | Buffer : Octal_Array (1 .. Size); | |
10360 | Length : Integer; | |
10361 | end record; | |
10362 | ||
10363 | In that case, Buffer is a PAD type whose size is unset and needs | |
10364 | to be computed by fixing the unwrapped type. | |
10365 | ||
21649b50 JB |
10366 | 4. When to ``Fix'' un-``Fixed'' sub-elements of an entity: |
10367 | ---------------------------------------------------------- | |
10368 | ||
10369 | Lastly, when should the sub-elements of an entity that remained unfixed | |
284614f0 JB |
10370 | thus far, be actually fixed? |
10371 | ||
10372 | The answer is: Only when referencing that element. For instance | |
10373 | when selecting one component of a record, this specific component | |
10374 | should be fixed at that point in time. Or when printing the value | |
10375 | of a record, each component should be fixed before its value gets | |
10376 | printed. Similarly for arrays, the element of the array should be | |
10377 | fixed when printing each element of the array, or when extracting | |
10378 | one element out of that array. On the other hand, fixing should | |
10379 | not be performed on the elements when taking a slice of an array! | |
10380 | ||
10381 | Note that one of the side-effects of miscomputing the offset and | |
10382 | size of each field is that we end up also miscomputing the size | |
10383 | of the containing type. This can have adverse results when computing | |
10384 | the value of an entity. GDB fetches the value of an entity based | |
10385 | on the size of its type, and thus a wrong size causes GDB to fetch | |
10386 | the wrong amount of memory. In the case where the computed size is | |
10387 | too small, GDB fetches too little data to print the value of our | |
10388 | entiry. Results in this case as unpredicatble, as we usually read | |
10389 | past the buffer containing the data =:-o. */ | |
10390 | ||
10391 | /* Implement the evaluate_exp routine in the exp_descriptor structure | |
10392 | for the Ada language. */ | |
10393 | ||
52ce6436 | 10394 | static struct value * |
ebf56fd3 | 10395 | ada_evaluate_subexp (struct type *expect_type, struct expression *exp, |
4c4b4cd2 | 10396 | int *pos, enum noside noside) |
14f9c5c9 AS |
10397 | { |
10398 | enum exp_opcode op; | |
b5385fc0 | 10399 | int tem; |
14f9c5c9 | 10400 | int pc; |
5ec18f2b | 10401 | int preeval_pos; |
14f9c5c9 AS |
10402 | struct value *arg1 = NULL, *arg2 = NULL, *arg3; |
10403 | struct type *type; | |
52ce6436 | 10404 | int nargs, oplen; |
d2e4a39e | 10405 | struct value **argvec; |
14f9c5c9 | 10406 | |
d2e4a39e AS |
10407 | pc = *pos; |
10408 | *pos += 1; | |
14f9c5c9 AS |
10409 | op = exp->elts[pc].opcode; |
10410 | ||
d2e4a39e | 10411 | switch (op) |
14f9c5c9 AS |
10412 | { |
10413 | default: | |
10414 | *pos -= 1; | |
6e48bd2c | 10415 | arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside); |
ca1f964d JG |
10416 | |
10417 | if (noside == EVAL_NORMAL) | |
10418 | arg1 = unwrap_value (arg1); | |
6e48bd2c | 10419 | |
edd079d9 | 10420 | /* If evaluating an OP_FLOAT and an EXPECT_TYPE was provided, |
6e48bd2c JB |
10421 | then we need to perform the conversion manually, because |
10422 | evaluate_subexp_standard doesn't do it. This conversion is | |
10423 | necessary in Ada because the different kinds of float/fixed | |
10424 | types in Ada have different representations. | |
10425 | ||
10426 | Similarly, we need to perform the conversion from OP_LONG | |
10427 | ourselves. */ | |
edd079d9 | 10428 | if ((op == OP_FLOAT || op == OP_LONG) && expect_type != NULL) |
6e48bd2c JB |
10429 | arg1 = ada_value_cast (expect_type, arg1, noside); |
10430 | ||
10431 | return arg1; | |
4c4b4cd2 PH |
10432 | |
10433 | case OP_STRING: | |
10434 | { | |
76a01679 | 10435 | struct value *result; |
5b4ee69b | 10436 | |
76a01679 JB |
10437 | *pos -= 1; |
10438 | result = evaluate_subexp_standard (expect_type, exp, pos, noside); | |
10439 | /* The result type will have code OP_STRING, bashed there from | |
10440 | OP_ARRAY. Bash it back. */ | |
df407dfe AC |
10441 | if (TYPE_CODE (value_type (result)) == TYPE_CODE_STRING) |
10442 | TYPE_CODE (value_type (result)) = TYPE_CODE_ARRAY; | |
76a01679 | 10443 | return result; |
4c4b4cd2 | 10444 | } |
14f9c5c9 AS |
10445 | |
10446 | case UNOP_CAST: | |
10447 | (*pos) += 2; | |
10448 | type = exp->elts[pc + 1].type; | |
10449 | arg1 = evaluate_subexp (type, exp, pos, noside); | |
10450 | if (noside == EVAL_SKIP) | |
4c4b4cd2 | 10451 | goto nosideret; |
6e48bd2c | 10452 | arg1 = ada_value_cast (type, arg1, noside); |
14f9c5c9 AS |
10453 | return arg1; |
10454 | ||
4c4b4cd2 PH |
10455 | case UNOP_QUAL: |
10456 | (*pos) += 2; | |
10457 | type = exp->elts[pc + 1].type; | |
10458 | return ada_evaluate_subexp (type, exp, pos, noside); | |
10459 | ||
14f9c5c9 AS |
10460 | case BINOP_ASSIGN: |
10461 | arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside); | |
52ce6436 PH |
10462 | if (exp->elts[*pos].opcode == OP_AGGREGATE) |
10463 | { | |
10464 | arg1 = assign_aggregate (arg1, arg1, exp, pos, noside); | |
10465 | if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS) | |
10466 | return arg1; | |
10467 | return ada_value_assign (arg1, arg1); | |
10468 | } | |
003f3813 JB |
10469 | /* Force the evaluation of the rhs ARG2 to the type of the lhs ARG1, |
10470 | except if the lhs of our assignment is a convenience variable. | |
10471 | In the case of assigning to a convenience variable, the lhs | |
10472 | should be exactly the result of the evaluation of the rhs. */ | |
10473 | type = value_type (arg1); | |
10474 | if (VALUE_LVAL (arg1) == lval_internalvar) | |
10475 | type = NULL; | |
10476 | arg2 = evaluate_subexp (type, exp, pos, noside); | |
14f9c5c9 | 10477 | if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS) |
4c4b4cd2 | 10478 | return arg1; |
df407dfe AC |
10479 | if (ada_is_fixed_point_type (value_type (arg1))) |
10480 | arg2 = cast_to_fixed (value_type (arg1), arg2); | |
10481 | else if (ada_is_fixed_point_type (value_type (arg2))) | |
76a01679 | 10482 | error |
323e0a4a | 10483 | (_("Fixed-point values must be assigned to fixed-point variables")); |
d2e4a39e | 10484 | else |
df407dfe | 10485 | arg2 = coerce_for_assign (value_type (arg1), arg2); |
4c4b4cd2 | 10486 | return ada_value_assign (arg1, arg2); |
14f9c5c9 AS |
10487 | |
10488 | case BINOP_ADD: | |
10489 | arg1 = evaluate_subexp_with_coercion (exp, pos, noside); | |
10490 | arg2 = evaluate_subexp_with_coercion (exp, pos, noside); | |
10491 | if (noside == EVAL_SKIP) | |
4c4b4cd2 | 10492 | goto nosideret; |
2ac8a782 JB |
10493 | if (TYPE_CODE (value_type (arg1)) == TYPE_CODE_PTR) |
10494 | return (value_from_longest | |
10495 | (value_type (arg1), | |
10496 | value_as_long (arg1) + value_as_long (arg2))); | |
c40cc657 JB |
10497 | if (TYPE_CODE (value_type (arg2)) == TYPE_CODE_PTR) |
10498 | return (value_from_longest | |
10499 | (value_type (arg2), | |
10500 | value_as_long (arg1) + value_as_long (arg2))); | |
df407dfe AC |
10501 | if ((ada_is_fixed_point_type (value_type (arg1)) |
10502 | || ada_is_fixed_point_type (value_type (arg2))) | |
10503 | && value_type (arg1) != value_type (arg2)) | |
323e0a4a | 10504 | error (_("Operands of fixed-point addition must have the same type")); |
b7789565 JB |
10505 | /* Do the addition, and cast the result to the type of the first |
10506 | argument. We cannot cast the result to a reference type, so if | |
10507 | ARG1 is a reference type, find its underlying type. */ | |
10508 | type = value_type (arg1); | |
10509 | while (TYPE_CODE (type) == TYPE_CODE_REF) | |
10510 | type = TYPE_TARGET_TYPE (type); | |
f44316fa | 10511 | binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2); |
89eef114 | 10512 | return value_cast (type, value_binop (arg1, arg2, BINOP_ADD)); |
14f9c5c9 AS |
10513 | |
10514 | case BINOP_SUB: | |
10515 | arg1 = evaluate_subexp_with_coercion (exp, pos, noside); | |
10516 | arg2 = evaluate_subexp_with_coercion (exp, pos, noside); | |
10517 | if (noside == EVAL_SKIP) | |
4c4b4cd2 | 10518 | goto nosideret; |
2ac8a782 JB |
10519 | if (TYPE_CODE (value_type (arg1)) == TYPE_CODE_PTR) |
10520 | return (value_from_longest | |
10521 | (value_type (arg1), | |
10522 | value_as_long (arg1) - value_as_long (arg2))); | |
c40cc657 JB |
10523 | if (TYPE_CODE (value_type (arg2)) == TYPE_CODE_PTR) |
10524 | return (value_from_longest | |
10525 | (value_type (arg2), | |
10526 | value_as_long (arg1) - value_as_long (arg2))); | |
df407dfe AC |
10527 | if ((ada_is_fixed_point_type (value_type (arg1)) |
10528 | || ada_is_fixed_point_type (value_type (arg2))) | |
10529 | && value_type (arg1) != value_type (arg2)) | |
0963b4bd MS |
10530 | error (_("Operands of fixed-point subtraction " |
10531 | "must have the same type")); | |
b7789565 JB |
10532 | /* Do the substraction, and cast the result to the type of the first |
10533 | argument. We cannot cast the result to a reference type, so if | |
10534 | ARG1 is a reference type, find its underlying type. */ | |
10535 | type = value_type (arg1); | |
10536 | while (TYPE_CODE (type) == TYPE_CODE_REF) | |
10537 | type = TYPE_TARGET_TYPE (type); | |
f44316fa | 10538 | binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2); |
89eef114 | 10539 | return value_cast (type, value_binop (arg1, arg2, BINOP_SUB)); |
14f9c5c9 AS |
10540 | |
10541 | case BINOP_MUL: | |
10542 | case BINOP_DIV: | |
e1578042 JB |
10543 | case BINOP_REM: |
10544 | case BINOP_MOD: | |
14f9c5c9 AS |
10545 | arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside); |
10546 | arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside); | |
10547 | if (noside == EVAL_SKIP) | |
4c4b4cd2 | 10548 | goto nosideret; |
e1578042 | 10549 | else if (noside == EVAL_AVOID_SIDE_EFFECTS) |
9c2be529 JB |
10550 | { |
10551 | binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2); | |
10552 | return value_zero (value_type (arg1), not_lval); | |
10553 | } | |
14f9c5c9 | 10554 | else |
4c4b4cd2 | 10555 | { |
a53b7a21 | 10556 | type = builtin_type (exp->gdbarch)->builtin_double; |
df407dfe | 10557 | if (ada_is_fixed_point_type (value_type (arg1))) |
a53b7a21 | 10558 | arg1 = cast_from_fixed (type, arg1); |
df407dfe | 10559 | if (ada_is_fixed_point_type (value_type (arg2))) |
a53b7a21 | 10560 | arg2 = cast_from_fixed (type, arg2); |
f44316fa | 10561 | binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2); |
4c4b4cd2 PH |
10562 | return ada_value_binop (arg1, arg2, op); |
10563 | } | |
10564 | ||
4c4b4cd2 PH |
10565 | case BINOP_EQUAL: |
10566 | case BINOP_NOTEQUAL: | |
14f9c5c9 | 10567 | arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside); |
df407dfe | 10568 | arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside); |
14f9c5c9 | 10569 | if (noside == EVAL_SKIP) |
76a01679 | 10570 | goto nosideret; |
4c4b4cd2 | 10571 | if (noside == EVAL_AVOID_SIDE_EFFECTS) |
76a01679 | 10572 | tem = 0; |
4c4b4cd2 | 10573 | else |
f44316fa UW |
10574 | { |
10575 | binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2); | |
10576 | tem = ada_value_equal (arg1, arg2); | |
10577 | } | |
4c4b4cd2 | 10578 | if (op == BINOP_NOTEQUAL) |
76a01679 | 10579 | tem = !tem; |
fbb06eb1 UW |
10580 | type = language_bool_type (exp->language_defn, exp->gdbarch); |
10581 | return value_from_longest (type, (LONGEST) tem); | |
4c4b4cd2 PH |
10582 | |
10583 | case UNOP_NEG: | |
10584 | arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside); | |
10585 | if (noside == EVAL_SKIP) | |
10586 | goto nosideret; | |
df407dfe AC |
10587 | else if (ada_is_fixed_point_type (value_type (arg1))) |
10588 | return value_cast (value_type (arg1), value_neg (arg1)); | |
14f9c5c9 | 10589 | else |
f44316fa UW |
10590 | { |
10591 | unop_promote (exp->language_defn, exp->gdbarch, &arg1); | |
10592 | return value_neg (arg1); | |
10593 | } | |
4c4b4cd2 | 10594 | |
2330c6c6 JB |
10595 | case BINOP_LOGICAL_AND: |
10596 | case BINOP_LOGICAL_OR: | |
10597 | case UNOP_LOGICAL_NOT: | |
000d5124 JB |
10598 | { |
10599 | struct value *val; | |
10600 | ||
10601 | *pos -= 1; | |
10602 | val = evaluate_subexp_standard (expect_type, exp, pos, noside); | |
fbb06eb1 UW |
10603 | type = language_bool_type (exp->language_defn, exp->gdbarch); |
10604 | return value_cast (type, val); | |
000d5124 | 10605 | } |
2330c6c6 JB |
10606 | |
10607 | case BINOP_BITWISE_AND: | |
10608 | case BINOP_BITWISE_IOR: | |
10609 | case BINOP_BITWISE_XOR: | |
000d5124 JB |
10610 | { |
10611 | struct value *val; | |
10612 | ||
10613 | arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS); | |
10614 | *pos = pc; | |
10615 | val = evaluate_subexp_standard (expect_type, exp, pos, noside); | |
10616 | ||
10617 | return value_cast (value_type (arg1), val); | |
10618 | } | |
2330c6c6 | 10619 | |
14f9c5c9 AS |
10620 | case OP_VAR_VALUE: |
10621 | *pos -= 1; | |
6799def4 | 10622 | |
14f9c5c9 | 10623 | if (noside == EVAL_SKIP) |
4c4b4cd2 PH |
10624 | { |
10625 | *pos += 4; | |
10626 | goto nosideret; | |
10627 | } | |
da5c522f JB |
10628 | |
10629 | if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN) | |
76a01679 JB |
10630 | /* Only encountered when an unresolved symbol occurs in a |
10631 | context other than a function call, in which case, it is | |
52ce6436 | 10632 | invalid. */ |
323e0a4a | 10633 | error (_("Unexpected unresolved symbol, %s, during evaluation"), |
4c4b4cd2 | 10634 | SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol)); |
da5c522f JB |
10635 | |
10636 | if (noside == EVAL_AVOID_SIDE_EFFECTS) | |
4c4b4cd2 | 10637 | { |
0c1f74cf | 10638 | type = static_unwrap_type (SYMBOL_TYPE (exp->elts[pc + 2].symbol)); |
31dbc1c5 JB |
10639 | /* Check to see if this is a tagged type. We also need to handle |
10640 | the case where the type is a reference to a tagged type, but | |
10641 | we have to be careful to exclude pointers to tagged types. | |
10642 | The latter should be shown as usual (as a pointer), whereas | |
10643 | a reference should mostly be transparent to the user. */ | |
10644 | if (ada_is_tagged_type (type, 0) | |
023db19c | 10645 | || (TYPE_CODE (type) == TYPE_CODE_REF |
31dbc1c5 | 10646 | && ada_is_tagged_type (TYPE_TARGET_TYPE (type), 0))) |
0d72a7c3 JB |
10647 | { |
10648 | /* Tagged types are a little special in the fact that the real | |
10649 | type is dynamic and can only be determined by inspecting the | |
10650 | object's tag. This means that we need to get the object's | |
10651 | value first (EVAL_NORMAL) and then extract the actual object | |
10652 | type from its tag. | |
10653 | ||
10654 | Note that we cannot skip the final step where we extract | |
10655 | the object type from its tag, because the EVAL_NORMAL phase | |
10656 | results in dynamic components being resolved into fixed ones. | |
10657 | This can cause problems when trying to print the type | |
10658 | description of tagged types whose parent has a dynamic size: | |
10659 | We use the type name of the "_parent" component in order | |
10660 | to print the name of the ancestor type in the type description. | |
10661 | If that component had a dynamic size, the resolution into | |
10662 | a fixed type would result in the loss of that type name, | |
10663 | thus preventing us from printing the name of the ancestor | |
10664 | type in the type description. */ | |
10665 | arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_NORMAL); | |
10666 | ||
10667 | if (TYPE_CODE (type) != TYPE_CODE_REF) | |
10668 | { | |
10669 | struct type *actual_type; | |
10670 | ||
10671 | actual_type = type_from_tag (ada_value_tag (arg1)); | |
10672 | if (actual_type == NULL) | |
10673 | /* If, for some reason, we were unable to determine | |
10674 | the actual type from the tag, then use the static | |
10675 | approximation that we just computed as a fallback. | |
10676 | This can happen if the debugging information is | |
10677 | incomplete, for instance. */ | |
10678 | actual_type = type; | |
10679 | return value_zero (actual_type, not_lval); | |
10680 | } | |
10681 | else | |
10682 | { | |
10683 | /* In the case of a ref, ada_coerce_ref takes care | |
10684 | of determining the actual type. But the evaluation | |
10685 | should return a ref as it should be valid to ask | |
10686 | for its address; so rebuild a ref after coerce. */ | |
10687 | arg1 = ada_coerce_ref (arg1); | |
a65cfae5 | 10688 | return value_ref (arg1, TYPE_CODE_REF); |
0d72a7c3 JB |
10689 | } |
10690 | } | |
0c1f74cf | 10691 | |
84754697 JB |
10692 | /* Records and unions for which GNAT encodings have been |
10693 | generated need to be statically fixed as well. | |
10694 | Otherwise, non-static fixing produces a type where | |
10695 | all dynamic properties are removed, which prevents "ptype" | |
10696 | from being able to completely describe the type. | |
10697 | For instance, a case statement in a variant record would be | |
10698 | replaced by the relevant components based on the actual | |
10699 | value of the discriminants. */ | |
10700 | if ((TYPE_CODE (type) == TYPE_CODE_STRUCT | |
10701 | && dynamic_template_type (type) != NULL) | |
10702 | || (TYPE_CODE (type) == TYPE_CODE_UNION | |
10703 | && ada_find_parallel_type (type, "___XVU") != NULL)) | |
10704 | { | |
10705 | *pos += 4; | |
10706 | return value_zero (to_static_fixed_type (type), not_lval); | |
10707 | } | |
4c4b4cd2 | 10708 | } |
da5c522f JB |
10709 | |
10710 | arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside); | |
10711 | return ada_to_fixed_value (arg1); | |
4c4b4cd2 PH |
10712 | |
10713 | case OP_FUNCALL: | |
10714 | (*pos) += 2; | |
10715 | ||
10716 | /* Allocate arg vector, including space for the function to be | |
10717 | called in argvec[0] and a terminating NULL. */ | |
10718 | nargs = longest_to_int (exp->elts[pc + 1].longconst); | |
8d749320 | 10719 | argvec = XALLOCAVEC (struct value *, nargs + 2); |
4c4b4cd2 PH |
10720 | |
10721 | if (exp->elts[*pos].opcode == OP_VAR_VALUE | |
76a01679 | 10722 | && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN) |
323e0a4a | 10723 | error (_("Unexpected unresolved symbol, %s, during evaluation"), |
4c4b4cd2 PH |
10724 | SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol)); |
10725 | else | |
10726 | { | |
10727 | for (tem = 0; tem <= nargs; tem += 1) | |
10728 | argvec[tem] = evaluate_subexp (NULL_TYPE, exp, pos, noside); | |
10729 | argvec[tem] = 0; | |
10730 | ||
10731 | if (noside == EVAL_SKIP) | |
10732 | goto nosideret; | |
10733 | } | |
10734 | ||
ad82864c JB |
10735 | if (ada_is_constrained_packed_array_type |
10736 | (desc_base_type (value_type (argvec[0])))) | |
4c4b4cd2 | 10737 | argvec[0] = ada_coerce_to_simple_array (argvec[0]); |
284614f0 JB |
10738 | else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_ARRAY |
10739 | && TYPE_FIELD_BITSIZE (value_type (argvec[0]), 0) != 0) | |
10740 | /* This is a packed array that has already been fixed, and | |
10741 | therefore already coerced to a simple array. Nothing further | |
10742 | to do. */ | |
10743 | ; | |
e6c2c623 PMR |
10744 | else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_REF) |
10745 | { | |
10746 | /* Make sure we dereference references so that all the code below | |
10747 | feels like it's really handling the referenced value. Wrapping | |
10748 | types (for alignment) may be there, so make sure we strip them as | |
10749 | well. */ | |
10750 | argvec[0] = ada_to_fixed_value (coerce_ref (argvec[0])); | |
10751 | } | |
10752 | else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_ARRAY | |
10753 | && VALUE_LVAL (argvec[0]) == lval_memory) | |
10754 | argvec[0] = value_addr (argvec[0]); | |
4c4b4cd2 | 10755 | |
df407dfe | 10756 | type = ada_check_typedef (value_type (argvec[0])); |
720d1a40 JB |
10757 | |
10758 | /* Ada allows us to implicitly dereference arrays when subscripting | |
8f465ea7 JB |
10759 | them. So, if this is an array typedef (encoding use for array |
10760 | access types encoded as fat pointers), strip it now. */ | |
720d1a40 JB |
10761 | if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF) |
10762 | type = ada_typedef_target_type (type); | |
10763 | ||
4c4b4cd2 PH |
10764 | if (TYPE_CODE (type) == TYPE_CODE_PTR) |
10765 | { | |
61ee279c | 10766 | switch (TYPE_CODE (ada_check_typedef (TYPE_TARGET_TYPE (type)))) |
4c4b4cd2 PH |
10767 | { |
10768 | case TYPE_CODE_FUNC: | |
61ee279c | 10769 | type = ada_check_typedef (TYPE_TARGET_TYPE (type)); |
4c4b4cd2 PH |
10770 | break; |
10771 | case TYPE_CODE_ARRAY: | |
10772 | break; | |
10773 | case TYPE_CODE_STRUCT: | |
10774 | if (noside != EVAL_AVOID_SIDE_EFFECTS) | |
10775 | argvec[0] = ada_value_ind (argvec[0]); | |
61ee279c | 10776 | type = ada_check_typedef (TYPE_TARGET_TYPE (type)); |
4c4b4cd2 PH |
10777 | break; |
10778 | default: | |
323e0a4a | 10779 | error (_("cannot subscript or call something of type `%s'"), |
df407dfe | 10780 | ada_type_name (value_type (argvec[0]))); |
4c4b4cd2 PH |
10781 | break; |
10782 | } | |
10783 | } | |
10784 | ||
10785 | switch (TYPE_CODE (type)) | |
10786 | { | |
10787 | case TYPE_CODE_FUNC: | |
10788 | if (noside == EVAL_AVOID_SIDE_EFFECTS) | |
c8ea1972 | 10789 | { |
7022349d PA |
10790 | if (TYPE_TARGET_TYPE (type) == NULL) |
10791 | error_call_unknown_return_type (NULL); | |
10792 | return allocate_value (TYPE_TARGET_TYPE (type)); | |
c8ea1972 | 10793 | } |
7022349d | 10794 | return call_function_by_hand (argvec[0], NULL, nargs, argvec + 1); |
c8ea1972 PH |
10795 | case TYPE_CODE_INTERNAL_FUNCTION: |
10796 | if (noside == EVAL_AVOID_SIDE_EFFECTS) | |
10797 | /* We don't know anything about what the internal | |
10798 | function might return, but we have to return | |
10799 | something. */ | |
10800 | return value_zero (builtin_type (exp->gdbarch)->builtin_int, | |
10801 | not_lval); | |
10802 | else | |
10803 | return call_internal_function (exp->gdbarch, exp->language_defn, | |
10804 | argvec[0], nargs, argvec + 1); | |
10805 | ||
4c4b4cd2 PH |
10806 | case TYPE_CODE_STRUCT: |
10807 | { | |
10808 | int arity; | |
10809 | ||
4c4b4cd2 PH |
10810 | arity = ada_array_arity (type); |
10811 | type = ada_array_element_type (type, nargs); | |
10812 | if (type == NULL) | |
323e0a4a | 10813 | error (_("cannot subscript or call a record")); |
4c4b4cd2 | 10814 | if (arity != nargs) |
323e0a4a | 10815 | error (_("wrong number of subscripts; expecting %d"), arity); |
4c4b4cd2 | 10816 | if (noside == EVAL_AVOID_SIDE_EFFECTS) |
0a07e705 | 10817 | return value_zero (ada_aligned_type (type), lval_memory); |
4c4b4cd2 PH |
10818 | return |
10819 | unwrap_value (ada_value_subscript | |
10820 | (argvec[0], nargs, argvec + 1)); | |
10821 | } | |
10822 | case TYPE_CODE_ARRAY: | |
10823 | if (noside == EVAL_AVOID_SIDE_EFFECTS) | |
10824 | { | |
10825 | type = ada_array_element_type (type, nargs); | |
10826 | if (type == NULL) | |
323e0a4a | 10827 | error (_("element type of array unknown")); |
4c4b4cd2 | 10828 | else |
0a07e705 | 10829 | return value_zero (ada_aligned_type (type), lval_memory); |
4c4b4cd2 PH |
10830 | } |
10831 | return | |
10832 | unwrap_value (ada_value_subscript | |
10833 | (ada_coerce_to_simple_array (argvec[0]), | |
10834 | nargs, argvec + 1)); | |
10835 | case TYPE_CODE_PTR: /* Pointer to array */ | |
4c4b4cd2 PH |
10836 | if (noside == EVAL_AVOID_SIDE_EFFECTS) |
10837 | { | |
deede10c | 10838 | type = to_fixed_array_type (TYPE_TARGET_TYPE (type), NULL, 1); |
4c4b4cd2 PH |
10839 | type = ada_array_element_type (type, nargs); |
10840 | if (type == NULL) | |
323e0a4a | 10841 | error (_("element type of array unknown")); |
4c4b4cd2 | 10842 | else |
0a07e705 | 10843 | return value_zero (ada_aligned_type (type), lval_memory); |
4c4b4cd2 PH |
10844 | } |
10845 | return | |
deede10c JB |
10846 | unwrap_value (ada_value_ptr_subscript (argvec[0], |
10847 | nargs, argvec + 1)); | |
4c4b4cd2 PH |
10848 | |
10849 | default: | |
e1d5a0d2 PH |
10850 | error (_("Attempt to index or call something other than an " |
10851 | "array or function")); | |
4c4b4cd2 PH |
10852 | } |
10853 | ||
10854 | case TERNOP_SLICE: | |
10855 | { | |
10856 | struct value *array = evaluate_subexp (NULL_TYPE, exp, pos, noside); | |
10857 | struct value *low_bound_val = | |
10858 | evaluate_subexp (NULL_TYPE, exp, pos, noside); | |
714e53ab PH |
10859 | struct value *high_bound_val = |
10860 | evaluate_subexp (NULL_TYPE, exp, pos, noside); | |
10861 | LONGEST low_bound; | |
10862 | LONGEST high_bound; | |
5b4ee69b | 10863 | |
994b9211 AC |
10864 | low_bound_val = coerce_ref (low_bound_val); |
10865 | high_bound_val = coerce_ref (high_bound_val); | |
aa715135 JG |
10866 | low_bound = value_as_long (low_bound_val); |
10867 | high_bound = value_as_long (high_bound_val); | |
963a6417 | 10868 | |
4c4b4cd2 PH |
10869 | if (noside == EVAL_SKIP) |
10870 | goto nosideret; | |
10871 | ||
4c4b4cd2 PH |
10872 | /* If this is a reference to an aligner type, then remove all |
10873 | the aligners. */ | |
df407dfe AC |
10874 | if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF |
10875 | && ada_is_aligner_type (TYPE_TARGET_TYPE (value_type (array)))) | |
10876 | TYPE_TARGET_TYPE (value_type (array)) = | |
10877 | ada_aligned_type (TYPE_TARGET_TYPE (value_type (array))); | |
4c4b4cd2 | 10878 | |
ad82864c | 10879 | if (ada_is_constrained_packed_array_type (value_type (array))) |
323e0a4a | 10880 | error (_("cannot slice a packed array")); |
4c4b4cd2 PH |
10881 | |
10882 | /* If this is a reference to an array or an array lvalue, | |
10883 | convert to a pointer. */ | |
df407dfe AC |
10884 | if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF |
10885 | || (TYPE_CODE (value_type (array)) == TYPE_CODE_ARRAY | |
4c4b4cd2 PH |
10886 | && VALUE_LVAL (array) == lval_memory)) |
10887 | array = value_addr (array); | |
10888 | ||
1265e4aa | 10889 | if (noside == EVAL_AVOID_SIDE_EFFECTS |
61ee279c | 10890 | && ada_is_array_descriptor_type (ada_check_typedef |
df407dfe | 10891 | (value_type (array)))) |
0b5d8877 | 10892 | return empty_array (ada_type_of_array (array, 0), low_bound); |
4c4b4cd2 PH |
10893 | |
10894 | array = ada_coerce_to_simple_array_ptr (array); | |
10895 | ||
714e53ab PH |
10896 | /* If we have more than one level of pointer indirection, |
10897 | dereference the value until we get only one level. */ | |
df407dfe AC |
10898 | while (TYPE_CODE (value_type (array)) == TYPE_CODE_PTR |
10899 | && (TYPE_CODE (TYPE_TARGET_TYPE (value_type (array))) | |
714e53ab PH |
10900 | == TYPE_CODE_PTR)) |
10901 | array = value_ind (array); | |
10902 | ||
10903 | /* Make sure we really do have an array type before going further, | |
10904 | to avoid a SEGV when trying to get the index type or the target | |
10905 | type later down the road if the debug info generated by | |
10906 | the compiler is incorrect or incomplete. */ | |
df407dfe | 10907 | if (!ada_is_simple_array_type (value_type (array))) |
323e0a4a | 10908 | error (_("cannot take slice of non-array")); |
714e53ab | 10909 | |
828292f2 JB |
10910 | if (TYPE_CODE (ada_check_typedef (value_type (array))) |
10911 | == TYPE_CODE_PTR) | |
4c4b4cd2 | 10912 | { |
828292f2 JB |
10913 | struct type *type0 = ada_check_typedef (value_type (array)); |
10914 | ||
0b5d8877 | 10915 | if (high_bound < low_bound || noside == EVAL_AVOID_SIDE_EFFECTS) |
828292f2 | 10916 | return empty_array (TYPE_TARGET_TYPE (type0), low_bound); |
4c4b4cd2 PH |
10917 | else |
10918 | { | |
10919 | struct type *arr_type0 = | |
828292f2 | 10920 | to_fixed_array_type (TYPE_TARGET_TYPE (type0), NULL, 1); |
5b4ee69b | 10921 | |
f5938064 JG |
10922 | return ada_value_slice_from_ptr (array, arr_type0, |
10923 | longest_to_int (low_bound), | |
10924 | longest_to_int (high_bound)); | |
4c4b4cd2 PH |
10925 | } |
10926 | } | |
10927 | else if (noside == EVAL_AVOID_SIDE_EFFECTS) | |
10928 | return array; | |
10929 | else if (high_bound < low_bound) | |
df407dfe | 10930 | return empty_array (value_type (array), low_bound); |
4c4b4cd2 | 10931 | else |
529cad9c PH |
10932 | return ada_value_slice (array, longest_to_int (low_bound), |
10933 | longest_to_int (high_bound)); | |
4c4b4cd2 | 10934 | } |
14f9c5c9 | 10935 | |
4c4b4cd2 PH |
10936 | case UNOP_IN_RANGE: |
10937 | (*pos) += 2; | |
10938 | arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside); | |
8008e265 | 10939 | type = check_typedef (exp->elts[pc + 1].type); |
14f9c5c9 | 10940 | |
14f9c5c9 | 10941 | if (noside == EVAL_SKIP) |
4c4b4cd2 | 10942 | goto nosideret; |
14f9c5c9 | 10943 | |
4c4b4cd2 PH |
10944 | switch (TYPE_CODE (type)) |
10945 | { | |
10946 | default: | |
e1d5a0d2 PH |
10947 | lim_warning (_("Membership test incompletely implemented; " |
10948 | "always returns true")); | |
fbb06eb1 UW |
10949 | type = language_bool_type (exp->language_defn, exp->gdbarch); |
10950 | return value_from_longest (type, (LONGEST) 1); | |
4c4b4cd2 PH |
10951 | |
10952 | case TYPE_CODE_RANGE: | |
030b4912 UW |
10953 | arg2 = value_from_longest (type, TYPE_LOW_BOUND (type)); |
10954 | arg3 = value_from_longest (type, TYPE_HIGH_BOUND (type)); | |
f44316fa UW |
10955 | binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2); |
10956 | binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3); | |
fbb06eb1 UW |
10957 | type = language_bool_type (exp->language_defn, exp->gdbarch); |
10958 | return | |
10959 | value_from_longest (type, | |
4c4b4cd2 PH |
10960 | (value_less (arg1, arg3) |
10961 | || value_equal (arg1, arg3)) | |
10962 | && (value_less (arg2, arg1) | |
10963 | || value_equal (arg2, arg1))); | |
10964 | } | |
10965 | ||
10966 | case BINOP_IN_BOUNDS: | |
14f9c5c9 | 10967 | (*pos) += 2; |
4c4b4cd2 PH |
10968 | arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside); |
10969 | arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside); | |
14f9c5c9 | 10970 | |
4c4b4cd2 PH |
10971 | if (noside == EVAL_SKIP) |
10972 | goto nosideret; | |
14f9c5c9 | 10973 | |
4c4b4cd2 | 10974 | if (noside == EVAL_AVOID_SIDE_EFFECTS) |
fbb06eb1 UW |
10975 | { |
10976 | type = language_bool_type (exp->language_defn, exp->gdbarch); | |
10977 | return value_zero (type, not_lval); | |
10978 | } | |
14f9c5c9 | 10979 | |
4c4b4cd2 | 10980 | tem = longest_to_int (exp->elts[pc + 1].longconst); |
14f9c5c9 | 10981 | |
1eea4ebd UW |
10982 | type = ada_index_type (value_type (arg2), tem, "range"); |
10983 | if (!type) | |
10984 | type = value_type (arg1); | |
14f9c5c9 | 10985 | |
1eea4ebd UW |
10986 | arg3 = value_from_longest (type, ada_array_bound (arg2, tem, 1)); |
10987 | arg2 = value_from_longest (type, ada_array_bound (arg2, tem, 0)); | |
d2e4a39e | 10988 | |
f44316fa UW |
10989 | binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2); |
10990 | binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3); | |
fbb06eb1 | 10991 | type = language_bool_type (exp->language_defn, exp->gdbarch); |
4c4b4cd2 | 10992 | return |
fbb06eb1 | 10993 | value_from_longest (type, |
4c4b4cd2 PH |
10994 | (value_less (arg1, arg3) |
10995 | || value_equal (arg1, arg3)) | |
10996 | && (value_less (arg2, arg1) | |
10997 | || value_equal (arg2, arg1))); | |
10998 | ||
10999 | case TERNOP_IN_RANGE: | |
11000 | arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside); | |
11001 | arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside); | |
11002 | arg3 = evaluate_subexp (NULL_TYPE, exp, pos, noside); | |
11003 | ||
11004 | if (noside == EVAL_SKIP) | |
11005 | goto nosideret; | |
11006 | ||
f44316fa UW |
11007 | binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2); |
11008 | binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3); | |
fbb06eb1 | 11009 | type = language_bool_type (exp->language_defn, exp->gdbarch); |
4c4b4cd2 | 11010 | return |
fbb06eb1 | 11011 | value_from_longest (type, |
4c4b4cd2 PH |
11012 | (value_less (arg1, arg3) |
11013 | || value_equal (arg1, arg3)) | |
11014 | && (value_less (arg2, arg1) | |
11015 | || value_equal (arg2, arg1))); | |
11016 | ||
11017 | case OP_ATR_FIRST: | |
11018 | case OP_ATR_LAST: | |
11019 | case OP_ATR_LENGTH: | |
11020 | { | |
76a01679 | 11021 | struct type *type_arg; |
5b4ee69b | 11022 | |
76a01679 JB |
11023 | if (exp->elts[*pos].opcode == OP_TYPE) |
11024 | { | |
11025 | evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP); | |
11026 | arg1 = NULL; | |
5bc23cb3 | 11027 | type_arg = check_typedef (exp->elts[pc + 2].type); |
76a01679 JB |
11028 | } |
11029 | else | |
11030 | { | |
11031 | arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside); | |
11032 | type_arg = NULL; | |
11033 | } | |
11034 | ||
11035 | if (exp->elts[*pos].opcode != OP_LONG) | |
323e0a4a | 11036 | error (_("Invalid operand to '%s"), ada_attribute_name (op)); |
76a01679 JB |
11037 | tem = longest_to_int (exp->elts[*pos + 2].longconst); |
11038 | *pos += 4; | |
11039 | ||
11040 | if (noside == EVAL_SKIP) | |
11041 | goto nosideret; | |
11042 | ||
11043 | if (type_arg == NULL) | |
11044 | { | |
11045 | arg1 = ada_coerce_ref (arg1); | |
11046 | ||
ad82864c | 11047 | if (ada_is_constrained_packed_array_type (value_type (arg1))) |
76a01679 JB |
11048 | arg1 = ada_coerce_to_simple_array (arg1); |
11049 | ||
aa4fb036 | 11050 | if (op == OP_ATR_LENGTH) |
1eea4ebd | 11051 | type = builtin_type (exp->gdbarch)->builtin_int; |
aa4fb036 JB |
11052 | else |
11053 | { | |
11054 | type = ada_index_type (value_type (arg1), tem, | |
11055 | ada_attribute_name (op)); | |
11056 | if (type == NULL) | |
11057 | type = builtin_type (exp->gdbarch)->builtin_int; | |
11058 | } | |
76a01679 JB |
11059 | |
11060 | if (noside == EVAL_AVOID_SIDE_EFFECTS) | |
1eea4ebd | 11061 | return allocate_value (type); |
76a01679 JB |
11062 | |
11063 | switch (op) | |
11064 | { | |
11065 | default: /* Should never happen. */ | |
323e0a4a | 11066 | error (_("unexpected attribute encountered")); |
76a01679 | 11067 | case OP_ATR_FIRST: |
1eea4ebd UW |
11068 | return value_from_longest |
11069 | (type, ada_array_bound (arg1, tem, 0)); | |
76a01679 | 11070 | case OP_ATR_LAST: |
1eea4ebd UW |
11071 | return value_from_longest |
11072 | (type, ada_array_bound (arg1, tem, 1)); | |
76a01679 | 11073 | case OP_ATR_LENGTH: |
1eea4ebd UW |
11074 | return value_from_longest |
11075 | (type, ada_array_length (arg1, tem)); | |
76a01679 JB |
11076 | } |
11077 | } | |
11078 | else if (discrete_type_p (type_arg)) | |
11079 | { | |
11080 | struct type *range_type; | |
0d5cff50 | 11081 | const char *name = ada_type_name (type_arg); |
5b4ee69b | 11082 | |
76a01679 JB |
11083 | range_type = NULL; |
11084 | if (name != NULL && TYPE_CODE (type_arg) != TYPE_CODE_ENUM) | |
28c85d6c | 11085 | range_type = to_fixed_range_type (type_arg, NULL); |
76a01679 JB |
11086 | if (range_type == NULL) |
11087 | range_type = type_arg; | |
11088 | switch (op) | |
11089 | { | |
11090 | default: | |
323e0a4a | 11091 | error (_("unexpected attribute encountered")); |
76a01679 | 11092 | case OP_ATR_FIRST: |
690cc4eb | 11093 | return value_from_longest |
43bbcdc2 | 11094 | (range_type, ada_discrete_type_low_bound (range_type)); |
76a01679 | 11095 | case OP_ATR_LAST: |
690cc4eb | 11096 | return value_from_longest |
43bbcdc2 | 11097 | (range_type, ada_discrete_type_high_bound (range_type)); |
76a01679 | 11098 | case OP_ATR_LENGTH: |
323e0a4a | 11099 | error (_("the 'length attribute applies only to array types")); |
76a01679 JB |
11100 | } |
11101 | } | |
11102 | else if (TYPE_CODE (type_arg) == TYPE_CODE_FLT) | |
323e0a4a | 11103 | error (_("unimplemented type attribute")); |
76a01679 JB |
11104 | else |
11105 | { | |
11106 | LONGEST low, high; | |
11107 | ||
ad82864c JB |
11108 | if (ada_is_constrained_packed_array_type (type_arg)) |
11109 | type_arg = decode_constrained_packed_array_type (type_arg); | |
76a01679 | 11110 | |
aa4fb036 | 11111 | if (op == OP_ATR_LENGTH) |
1eea4ebd | 11112 | type = builtin_type (exp->gdbarch)->builtin_int; |
aa4fb036 JB |
11113 | else |
11114 | { | |
11115 | type = ada_index_type (type_arg, tem, ada_attribute_name (op)); | |
11116 | if (type == NULL) | |
11117 | type = builtin_type (exp->gdbarch)->builtin_int; | |
11118 | } | |
1eea4ebd | 11119 | |
76a01679 JB |
11120 | if (noside == EVAL_AVOID_SIDE_EFFECTS) |
11121 | return allocate_value (type); | |
11122 | ||
11123 | switch (op) | |
11124 | { | |
11125 | default: | |
323e0a4a | 11126 | error (_("unexpected attribute encountered")); |
76a01679 | 11127 | case OP_ATR_FIRST: |
1eea4ebd | 11128 | low = ada_array_bound_from_type (type_arg, tem, 0); |
76a01679 JB |
11129 | return value_from_longest (type, low); |
11130 | case OP_ATR_LAST: | |
1eea4ebd | 11131 | high = ada_array_bound_from_type (type_arg, tem, 1); |
76a01679 JB |
11132 | return value_from_longest (type, high); |
11133 | case OP_ATR_LENGTH: | |
1eea4ebd UW |
11134 | low = ada_array_bound_from_type (type_arg, tem, 0); |
11135 | high = ada_array_bound_from_type (type_arg, tem, 1); | |
76a01679 JB |
11136 | return value_from_longest (type, high - low + 1); |
11137 | } | |
11138 | } | |
14f9c5c9 AS |
11139 | } |
11140 | ||
4c4b4cd2 PH |
11141 | case OP_ATR_TAG: |
11142 | arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside); | |
11143 | if (noside == EVAL_SKIP) | |
76a01679 | 11144 | goto nosideret; |
4c4b4cd2 PH |
11145 | |
11146 | if (noside == EVAL_AVOID_SIDE_EFFECTS) | |
76a01679 | 11147 | return value_zero (ada_tag_type (arg1), not_lval); |
4c4b4cd2 PH |
11148 | |
11149 | return ada_value_tag (arg1); | |
11150 | ||
11151 | case OP_ATR_MIN: | |
11152 | case OP_ATR_MAX: | |
11153 | evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP); | |
14f9c5c9 AS |
11154 | arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside); |
11155 | arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside); | |
11156 | if (noside == EVAL_SKIP) | |
76a01679 | 11157 | goto nosideret; |
d2e4a39e | 11158 | else if (noside == EVAL_AVOID_SIDE_EFFECTS) |
df407dfe | 11159 | return value_zero (value_type (arg1), not_lval); |
14f9c5c9 | 11160 | else |
f44316fa UW |
11161 | { |
11162 | binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2); | |
11163 | return value_binop (arg1, arg2, | |
11164 | op == OP_ATR_MIN ? BINOP_MIN : BINOP_MAX); | |
11165 | } | |
14f9c5c9 | 11166 | |
4c4b4cd2 PH |
11167 | case OP_ATR_MODULUS: |
11168 | { | |
31dedfee | 11169 | struct type *type_arg = check_typedef (exp->elts[pc + 2].type); |
4c4b4cd2 | 11170 | |
5b4ee69b | 11171 | evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP); |
76a01679 JB |
11172 | if (noside == EVAL_SKIP) |
11173 | goto nosideret; | |
4c4b4cd2 | 11174 | |
76a01679 | 11175 | if (!ada_is_modular_type (type_arg)) |
323e0a4a | 11176 | error (_("'modulus must be applied to modular type")); |
4c4b4cd2 | 11177 | |
76a01679 JB |
11178 | return value_from_longest (TYPE_TARGET_TYPE (type_arg), |
11179 | ada_modulus (type_arg)); | |
4c4b4cd2 PH |
11180 | } |
11181 | ||
11182 | ||
11183 | case OP_ATR_POS: | |
11184 | evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP); | |
14f9c5c9 AS |
11185 | arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside); |
11186 | if (noside == EVAL_SKIP) | |
76a01679 | 11187 | goto nosideret; |
3cb382c9 UW |
11188 | type = builtin_type (exp->gdbarch)->builtin_int; |
11189 | if (noside == EVAL_AVOID_SIDE_EFFECTS) | |
11190 | return value_zero (type, not_lval); | |
14f9c5c9 | 11191 | else |
3cb382c9 | 11192 | return value_pos_atr (type, arg1); |
14f9c5c9 | 11193 | |
4c4b4cd2 PH |
11194 | case OP_ATR_SIZE: |
11195 | arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside); | |
8c1c099f JB |
11196 | type = value_type (arg1); |
11197 | ||
11198 | /* If the argument is a reference, then dereference its type, since | |
11199 | the user is really asking for the size of the actual object, | |
11200 | not the size of the pointer. */ | |
11201 | if (TYPE_CODE (type) == TYPE_CODE_REF) | |
11202 | type = TYPE_TARGET_TYPE (type); | |
11203 | ||
4c4b4cd2 | 11204 | if (noside == EVAL_SKIP) |
76a01679 | 11205 | goto nosideret; |
4c4b4cd2 | 11206 | else if (noside == EVAL_AVOID_SIDE_EFFECTS) |
22601c15 | 11207 | return value_zero (builtin_type (exp->gdbarch)->builtin_int, not_lval); |
4c4b4cd2 | 11208 | else |
22601c15 | 11209 | return value_from_longest (builtin_type (exp->gdbarch)->builtin_int, |
8c1c099f | 11210 | TARGET_CHAR_BIT * TYPE_LENGTH (type)); |
4c4b4cd2 PH |
11211 | |
11212 | case OP_ATR_VAL: | |
11213 | evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP); | |
14f9c5c9 | 11214 | arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside); |
4c4b4cd2 | 11215 | type = exp->elts[pc + 2].type; |
14f9c5c9 | 11216 | if (noside == EVAL_SKIP) |
76a01679 | 11217 | goto nosideret; |
4c4b4cd2 | 11218 | else if (noside == EVAL_AVOID_SIDE_EFFECTS) |
76a01679 | 11219 | return value_zero (type, not_lval); |
4c4b4cd2 | 11220 | else |
76a01679 | 11221 | return value_val_atr (type, arg1); |
4c4b4cd2 PH |
11222 | |
11223 | case BINOP_EXP: | |
11224 | arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside); | |
11225 | arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside); | |
11226 | if (noside == EVAL_SKIP) | |
11227 | goto nosideret; | |
11228 | else if (noside == EVAL_AVOID_SIDE_EFFECTS) | |
df407dfe | 11229 | return value_zero (value_type (arg1), not_lval); |
4c4b4cd2 | 11230 | else |
f44316fa UW |
11231 | { |
11232 | /* For integer exponentiation operations, | |
11233 | only promote the first argument. */ | |
11234 | if (is_integral_type (value_type (arg2))) | |
11235 | unop_promote (exp->language_defn, exp->gdbarch, &arg1); | |
11236 | else | |
11237 | binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2); | |
11238 | ||
11239 | return value_binop (arg1, arg2, op); | |
11240 | } | |
4c4b4cd2 PH |
11241 | |
11242 | case UNOP_PLUS: | |
11243 | arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside); | |
11244 | if (noside == EVAL_SKIP) | |
11245 | goto nosideret; | |
11246 | else | |
11247 | return arg1; | |
11248 | ||
11249 | case UNOP_ABS: | |
11250 | arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside); | |
11251 | if (noside == EVAL_SKIP) | |
11252 | goto nosideret; | |
f44316fa | 11253 | unop_promote (exp->language_defn, exp->gdbarch, &arg1); |
df407dfe | 11254 | if (value_less (arg1, value_zero (value_type (arg1), not_lval))) |
4c4b4cd2 | 11255 | return value_neg (arg1); |
14f9c5c9 | 11256 | else |
4c4b4cd2 | 11257 | return arg1; |
14f9c5c9 AS |
11258 | |
11259 | case UNOP_IND: | |
5ec18f2b | 11260 | preeval_pos = *pos; |
6b0d7253 | 11261 | arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside); |
14f9c5c9 | 11262 | if (noside == EVAL_SKIP) |
4c4b4cd2 | 11263 | goto nosideret; |
df407dfe | 11264 | type = ada_check_typedef (value_type (arg1)); |
14f9c5c9 | 11265 | if (noside == EVAL_AVOID_SIDE_EFFECTS) |
4c4b4cd2 PH |
11266 | { |
11267 | if (ada_is_array_descriptor_type (type)) | |
11268 | /* GDB allows dereferencing GNAT array descriptors. */ | |
11269 | { | |
11270 | struct type *arrType = ada_type_of_array (arg1, 0); | |
5b4ee69b | 11271 | |
4c4b4cd2 | 11272 | if (arrType == NULL) |
323e0a4a | 11273 | error (_("Attempt to dereference null array pointer.")); |
00a4c844 | 11274 | return value_at_lazy (arrType, 0); |
4c4b4cd2 PH |
11275 | } |
11276 | else if (TYPE_CODE (type) == TYPE_CODE_PTR | |
11277 | || TYPE_CODE (type) == TYPE_CODE_REF | |
11278 | /* In C you can dereference an array to get the 1st elt. */ | |
11279 | || TYPE_CODE (type) == TYPE_CODE_ARRAY) | |
714e53ab | 11280 | { |
5ec18f2b JG |
11281 | /* As mentioned in the OP_VAR_VALUE case, tagged types can |
11282 | only be determined by inspecting the object's tag. | |
11283 | This means that we need to evaluate completely the | |
11284 | expression in order to get its type. */ | |
11285 | ||
023db19c JB |
11286 | if ((TYPE_CODE (type) == TYPE_CODE_REF |
11287 | || TYPE_CODE (type) == TYPE_CODE_PTR) | |
5ec18f2b JG |
11288 | && ada_is_tagged_type (TYPE_TARGET_TYPE (type), 0)) |
11289 | { | |
11290 | arg1 = evaluate_subexp (NULL_TYPE, exp, &preeval_pos, | |
11291 | EVAL_NORMAL); | |
11292 | type = value_type (ada_value_ind (arg1)); | |
11293 | } | |
11294 | else | |
11295 | { | |
11296 | type = to_static_fixed_type | |
11297 | (ada_aligned_type | |
11298 | (ada_check_typedef (TYPE_TARGET_TYPE (type)))); | |
11299 | } | |
c1b5a1a6 | 11300 | ada_ensure_varsize_limit (type); |
714e53ab PH |
11301 | return value_zero (type, lval_memory); |
11302 | } | |
4c4b4cd2 | 11303 | else if (TYPE_CODE (type) == TYPE_CODE_INT) |
6b0d7253 JB |
11304 | { |
11305 | /* GDB allows dereferencing an int. */ | |
11306 | if (expect_type == NULL) | |
11307 | return value_zero (builtin_type (exp->gdbarch)->builtin_int, | |
11308 | lval_memory); | |
11309 | else | |
11310 | { | |
11311 | expect_type = | |
11312 | to_static_fixed_type (ada_aligned_type (expect_type)); | |
11313 | return value_zero (expect_type, lval_memory); | |
11314 | } | |
11315 | } | |
4c4b4cd2 | 11316 | else |
323e0a4a | 11317 | error (_("Attempt to take contents of a non-pointer value.")); |
4c4b4cd2 | 11318 | } |
0963b4bd | 11319 | arg1 = ada_coerce_ref (arg1); /* FIXME: What is this for?? */ |
df407dfe | 11320 | type = ada_check_typedef (value_type (arg1)); |
d2e4a39e | 11321 | |
96967637 JB |
11322 | if (TYPE_CODE (type) == TYPE_CODE_INT) |
11323 | /* GDB allows dereferencing an int. If we were given | |
11324 | the expect_type, then use that as the target type. | |
11325 | Otherwise, assume that the target type is an int. */ | |
11326 | { | |
11327 | if (expect_type != NULL) | |
11328 | return ada_value_ind (value_cast (lookup_pointer_type (expect_type), | |
11329 | arg1)); | |
11330 | else | |
11331 | return value_at_lazy (builtin_type (exp->gdbarch)->builtin_int, | |
11332 | (CORE_ADDR) value_as_address (arg1)); | |
11333 | } | |
6b0d7253 | 11334 | |
4c4b4cd2 PH |
11335 | if (ada_is_array_descriptor_type (type)) |
11336 | /* GDB allows dereferencing GNAT array descriptors. */ | |
11337 | return ada_coerce_to_simple_array (arg1); | |
14f9c5c9 | 11338 | else |
4c4b4cd2 | 11339 | return ada_value_ind (arg1); |
14f9c5c9 AS |
11340 | |
11341 | case STRUCTOP_STRUCT: | |
11342 | tem = longest_to_int (exp->elts[pc + 1].longconst); | |
11343 | (*pos) += 3 + BYTES_TO_EXP_ELEM (tem + 1); | |
5ec18f2b | 11344 | preeval_pos = *pos; |
14f9c5c9 AS |
11345 | arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside); |
11346 | if (noside == EVAL_SKIP) | |
4c4b4cd2 | 11347 | goto nosideret; |
14f9c5c9 | 11348 | if (noside == EVAL_AVOID_SIDE_EFFECTS) |
76a01679 | 11349 | { |
df407dfe | 11350 | struct type *type1 = value_type (arg1); |
5b4ee69b | 11351 | |
76a01679 JB |
11352 | if (ada_is_tagged_type (type1, 1)) |
11353 | { | |
11354 | type = ada_lookup_struct_elt_type (type1, | |
11355 | &exp->elts[pc + 2].string, | |
988f6b3d | 11356 | 1, 1); |
5ec18f2b JG |
11357 | |
11358 | /* If the field is not found, check if it exists in the | |
11359 | extension of this object's type. This means that we | |
11360 | need to evaluate completely the expression. */ | |
11361 | ||
76a01679 | 11362 | if (type == NULL) |
5ec18f2b JG |
11363 | { |
11364 | arg1 = evaluate_subexp (NULL_TYPE, exp, &preeval_pos, | |
11365 | EVAL_NORMAL); | |
11366 | arg1 = ada_value_struct_elt (arg1, | |
11367 | &exp->elts[pc + 2].string, | |
11368 | 0); | |
11369 | arg1 = unwrap_value (arg1); | |
11370 | type = value_type (ada_to_fixed_value (arg1)); | |
11371 | } | |
76a01679 JB |
11372 | } |
11373 | else | |
11374 | type = | |
11375 | ada_lookup_struct_elt_type (type1, &exp->elts[pc + 2].string, 1, | |
988f6b3d | 11376 | 0); |
76a01679 JB |
11377 | |
11378 | return value_zero (ada_aligned_type (type), lval_memory); | |
11379 | } | |
14f9c5c9 | 11380 | else |
a579cd9a MW |
11381 | { |
11382 | arg1 = ada_value_struct_elt (arg1, &exp->elts[pc + 2].string, 0); | |
11383 | arg1 = unwrap_value (arg1); | |
11384 | return ada_to_fixed_value (arg1); | |
11385 | } | |
284614f0 | 11386 | |
14f9c5c9 | 11387 | case OP_TYPE: |
4c4b4cd2 PH |
11388 | /* The value is not supposed to be used. This is here to make it |
11389 | easier to accommodate expressions that contain types. */ | |
14f9c5c9 AS |
11390 | (*pos) += 2; |
11391 | if (noside == EVAL_SKIP) | |
4c4b4cd2 | 11392 | goto nosideret; |
14f9c5c9 | 11393 | else if (noside == EVAL_AVOID_SIDE_EFFECTS) |
a6cfbe68 | 11394 | return allocate_value (exp->elts[pc + 1].type); |
14f9c5c9 | 11395 | else |
323e0a4a | 11396 | error (_("Attempt to use a type name as an expression")); |
52ce6436 PH |
11397 | |
11398 | case OP_AGGREGATE: | |
11399 | case OP_CHOICES: | |
11400 | case OP_OTHERS: | |
11401 | case OP_DISCRETE_RANGE: | |
11402 | case OP_POSITIONAL: | |
11403 | case OP_NAME: | |
11404 | if (noside == EVAL_NORMAL) | |
11405 | switch (op) | |
11406 | { | |
11407 | case OP_NAME: | |
11408 | error (_("Undefined name, ambiguous name, or renaming used in " | |
e1d5a0d2 | 11409 | "component association: %s."), &exp->elts[pc+2].string); |
52ce6436 PH |
11410 | case OP_AGGREGATE: |
11411 | error (_("Aggregates only allowed on the right of an assignment")); | |
11412 | default: | |
0963b4bd MS |
11413 | internal_error (__FILE__, __LINE__, |
11414 | _("aggregate apparently mangled")); | |
52ce6436 PH |
11415 | } |
11416 | ||
11417 | ada_forward_operator_length (exp, pc, &oplen, &nargs); | |
11418 | *pos += oplen - 1; | |
11419 | for (tem = 0; tem < nargs; tem += 1) | |
11420 | ada_evaluate_subexp (NULL, exp, pos, noside); | |
11421 | goto nosideret; | |
14f9c5c9 AS |
11422 | } |
11423 | ||
11424 | nosideret: | |
22601c15 | 11425 | return value_from_longest (builtin_type (exp->gdbarch)->builtin_int, 1); |
14f9c5c9 | 11426 | } |
14f9c5c9 | 11427 | \f |
d2e4a39e | 11428 | |
4c4b4cd2 | 11429 | /* Fixed point */ |
14f9c5c9 AS |
11430 | |
11431 | /* If TYPE encodes an Ada fixed-point type, return the suffix of the | |
11432 | type name that encodes the 'small and 'delta information. | |
4c4b4cd2 | 11433 | Otherwise, return NULL. */ |
14f9c5c9 | 11434 | |
d2e4a39e | 11435 | static const char * |
ebf56fd3 | 11436 | fixed_type_info (struct type *type) |
14f9c5c9 | 11437 | { |
d2e4a39e | 11438 | const char *name = ada_type_name (type); |
14f9c5c9 AS |
11439 | enum type_code code = (type == NULL) ? TYPE_CODE_UNDEF : TYPE_CODE (type); |
11440 | ||
d2e4a39e AS |
11441 | if ((code == TYPE_CODE_INT || code == TYPE_CODE_RANGE) && name != NULL) |
11442 | { | |
14f9c5c9 | 11443 | const char *tail = strstr (name, "___XF_"); |
5b4ee69b | 11444 | |
14f9c5c9 | 11445 | if (tail == NULL) |
4c4b4cd2 | 11446 | return NULL; |
d2e4a39e | 11447 | else |
4c4b4cd2 | 11448 | return tail + 5; |
14f9c5c9 AS |
11449 | } |
11450 | else if (code == TYPE_CODE_RANGE && TYPE_TARGET_TYPE (type) != type) | |
11451 | return fixed_type_info (TYPE_TARGET_TYPE (type)); | |
11452 | else | |
11453 | return NULL; | |
11454 | } | |
11455 | ||
4c4b4cd2 | 11456 | /* Returns non-zero iff TYPE represents an Ada fixed-point type. */ |
14f9c5c9 AS |
11457 | |
11458 | int | |
ebf56fd3 | 11459 | ada_is_fixed_point_type (struct type *type) |
14f9c5c9 AS |
11460 | { |
11461 | return fixed_type_info (type) != NULL; | |
11462 | } | |
11463 | ||
4c4b4cd2 PH |
11464 | /* Return non-zero iff TYPE represents a System.Address type. */ |
11465 | ||
11466 | int | |
11467 | ada_is_system_address_type (struct type *type) | |
11468 | { | |
11469 | return (TYPE_NAME (type) | |
11470 | && strcmp (TYPE_NAME (type), "system__address") == 0); | |
11471 | } | |
11472 | ||
14f9c5c9 | 11473 | /* Assuming that TYPE is the representation of an Ada fixed-point |
50eff16b UW |
11474 | type, return the target floating-point type to be used to represent |
11475 | of this type during internal computation. */ | |
11476 | ||
11477 | static struct type * | |
11478 | ada_scaling_type (struct type *type) | |
11479 | { | |
11480 | return builtin_type (get_type_arch (type))->builtin_long_double; | |
11481 | } | |
11482 | ||
11483 | /* Assuming that TYPE is the representation of an Ada fixed-point | |
11484 | type, return its delta, or NULL if the type is malformed and the | |
4c4b4cd2 | 11485 | delta cannot be determined. */ |
14f9c5c9 | 11486 | |
50eff16b | 11487 | struct value * |
ebf56fd3 | 11488 | ada_delta (struct type *type) |
14f9c5c9 AS |
11489 | { |
11490 | const char *encoding = fixed_type_info (type); | |
50eff16b UW |
11491 | struct type *scale_type = ada_scaling_type (type); |
11492 | ||
11493 | long long num, den; | |
11494 | ||
11495 | if (sscanf (encoding, "_%lld_%lld", &num, &den) < 2) | |
11496 | return nullptr; | |
d2e4a39e | 11497 | else |
50eff16b UW |
11498 | return value_binop (value_from_longest (scale_type, num), |
11499 | value_from_longest (scale_type, den), BINOP_DIV); | |
14f9c5c9 AS |
11500 | } |
11501 | ||
11502 | /* Assuming that ada_is_fixed_point_type (TYPE), return the scaling | |
4c4b4cd2 | 11503 | factor ('SMALL value) associated with the type. */ |
14f9c5c9 | 11504 | |
50eff16b UW |
11505 | struct value * |
11506 | ada_scaling_factor (struct type *type) | |
14f9c5c9 AS |
11507 | { |
11508 | const char *encoding = fixed_type_info (type); | |
50eff16b UW |
11509 | struct type *scale_type = ada_scaling_type (type); |
11510 | ||
11511 | long long num0, den0, num1, den1; | |
14f9c5c9 | 11512 | int n; |
d2e4a39e | 11513 | |
50eff16b | 11514 | n = sscanf (encoding, "_%lld_%lld_%lld_%lld", |
facc390f | 11515 | &num0, &den0, &num1, &den1); |
14f9c5c9 AS |
11516 | |
11517 | if (n < 2) | |
50eff16b | 11518 | return value_from_longest (scale_type, 1); |
14f9c5c9 | 11519 | else if (n == 4) |
50eff16b UW |
11520 | return value_binop (value_from_longest (scale_type, num1), |
11521 | value_from_longest (scale_type, den1), BINOP_DIV); | |
d2e4a39e | 11522 | else |
50eff16b UW |
11523 | return value_binop (value_from_longest (scale_type, num0), |
11524 | value_from_longest (scale_type, den0), BINOP_DIV); | |
14f9c5c9 AS |
11525 | } |
11526 | ||
14f9c5c9 | 11527 | \f |
d2e4a39e | 11528 | |
4c4b4cd2 | 11529 | /* Range types */ |
14f9c5c9 AS |
11530 | |
11531 | /* Scan STR beginning at position K for a discriminant name, and | |
11532 | return the value of that discriminant field of DVAL in *PX. If | |
11533 | PNEW_K is not null, put the position of the character beyond the | |
11534 | name scanned in *PNEW_K. Return 1 if successful; return 0 and do | |
4c4b4cd2 | 11535 | not alter *PX and *PNEW_K if unsuccessful. */ |
14f9c5c9 AS |
11536 | |
11537 | static int | |
108d56a4 | 11538 | scan_discrim_bound (const char *str, int k, struct value *dval, LONGEST * px, |
76a01679 | 11539 | int *pnew_k) |
14f9c5c9 AS |
11540 | { |
11541 | static char *bound_buffer = NULL; | |
11542 | static size_t bound_buffer_len = 0; | |
5da1a4d3 | 11543 | const char *pstart, *pend, *bound; |
d2e4a39e | 11544 | struct value *bound_val; |
14f9c5c9 AS |
11545 | |
11546 | if (dval == NULL || str == NULL || str[k] == '\0') | |
11547 | return 0; | |
11548 | ||
5da1a4d3 SM |
11549 | pstart = str + k; |
11550 | pend = strstr (pstart, "__"); | |
14f9c5c9 AS |
11551 | if (pend == NULL) |
11552 | { | |
5da1a4d3 | 11553 | bound = pstart; |
14f9c5c9 AS |
11554 | k += strlen (bound); |
11555 | } | |
d2e4a39e | 11556 | else |
14f9c5c9 | 11557 | { |
5da1a4d3 SM |
11558 | int len = pend - pstart; |
11559 | ||
11560 | /* Strip __ and beyond. */ | |
11561 | GROW_VECT (bound_buffer, bound_buffer_len, len + 1); | |
11562 | strncpy (bound_buffer, pstart, len); | |
11563 | bound_buffer[len] = '\0'; | |
11564 | ||
14f9c5c9 | 11565 | bound = bound_buffer; |
d2e4a39e | 11566 | k = pend - str; |
14f9c5c9 | 11567 | } |
d2e4a39e | 11568 | |
df407dfe | 11569 | bound_val = ada_search_struct_field (bound, dval, 0, value_type (dval)); |
14f9c5c9 AS |
11570 | if (bound_val == NULL) |
11571 | return 0; | |
11572 | ||
11573 | *px = value_as_long (bound_val); | |
11574 | if (pnew_k != NULL) | |
11575 | *pnew_k = k; | |
11576 | return 1; | |
11577 | } | |
11578 | ||
11579 | /* Value of variable named NAME in the current environment. If | |
11580 | no such variable found, then if ERR_MSG is null, returns 0, and | |
4c4b4cd2 PH |
11581 | otherwise causes an error with message ERR_MSG. */ |
11582 | ||
d2e4a39e | 11583 | static struct value * |
edb0c9cb | 11584 | get_var_value (const char *name, const char *err_msg) |
14f9c5c9 | 11585 | { |
d12307c1 | 11586 | struct block_symbol *syms; |
14f9c5c9 AS |
11587 | int nsyms; |
11588 | ||
4c4b4cd2 | 11589 | nsyms = ada_lookup_symbol_list (name, get_selected_block (0), VAR_DOMAIN, |
4eeaa230 | 11590 | &syms); |
14f9c5c9 AS |
11591 | |
11592 | if (nsyms != 1) | |
11593 | { | |
11594 | if (err_msg == NULL) | |
4c4b4cd2 | 11595 | return 0; |
14f9c5c9 | 11596 | else |
8a3fe4f8 | 11597 | error (("%s"), err_msg); |
14f9c5c9 AS |
11598 | } |
11599 | ||
d12307c1 | 11600 | return value_of_variable (syms[0].symbol, syms[0].block); |
14f9c5c9 | 11601 | } |
d2e4a39e | 11602 | |
edb0c9cb PA |
11603 | /* Value of integer variable named NAME in the current environment. |
11604 | If no such variable is found, returns false. Otherwise, sets VALUE | |
11605 | to the variable's value and returns true. */ | |
4c4b4cd2 | 11606 | |
edb0c9cb PA |
11607 | bool |
11608 | get_int_var_value (const char *name, LONGEST &value) | |
14f9c5c9 | 11609 | { |
4c4b4cd2 | 11610 | struct value *var_val = get_var_value (name, 0); |
d2e4a39e | 11611 | |
14f9c5c9 | 11612 | if (var_val == 0) |
edb0c9cb PA |
11613 | return false; |
11614 | ||
11615 | value = value_as_long (var_val); | |
11616 | return true; | |
14f9c5c9 | 11617 | } |
d2e4a39e | 11618 | |
14f9c5c9 AS |
11619 | |
11620 | /* Return a range type whose base type is that of the range type named | |
11621 | NAME in the current environment, and whose bounds are calculated | |
4c4b4cd2 | 11622 | from NAME according to the GNAT range encoding conventions. |
1ce677a4 UW |
11623 | Extract discriminant values, if needed, from DVAL. ORIG_TYPE is the |
11624 | corresponding range type from debug information; fall back to using it | |
11625 | if symbol lookup fails. If a new type must be created, allocate it | |
11626 | like ORIG_TYPE was. The bounds information, in general, is encoded | |
11627 | in NAME, the base type given in the named range type. */ | |
14f9c5c9 | 11628 | |
d2e4a39e | 11629 | static struct type * |
28c85d6c | 11630 | to_fixed_range_type (struct type *raw_type, struct value *dval) |
14f9c5c9 | 11631 | { |
0d5cff50 | 11632 | const char *name; |
14f9c5c9 | 11633 | struct type *base_type; |
108d56a4 | 11634 | const char *subtype_info; |
14f9c5c9 | 11635 | |
28c85d6c JB |
11636 | gdb_assert (raw_type != NULL); |
11637 | gdb_assert (TYPE_NAME (raw_type) != NULL); | |
dddfab26 | 11638 | |
1ce677a4 | 11639 | if (TYPE_CODE (raw_type) == TYPE_CODE_RANGE) |
14f9c5c9 AS |
11640 | base_type = TYPE_TARGET_TYPE (raw_type); |
11641 | else | |
11642 | base_type = raw_type; | |
11643 | ||
28c85d6c | 11644 | name = TYPE_NAME (raw_type); |
14f9c5c9 AS |
11645 | subtype_info = strstr (name, "___XD"); |
11646 | if (subtype_info == NULL) | |
690cc4eb | 11647 | { |
43bbcdc2 PH |
11648 | LONGEST L = ada_discrete_type_low_bound (raw_type); |
11649 | LONGEST U = ada_discrete_type_high_bound (raw_type); | |
5b4ee69b | 11650 | |
690cc4eb PH |
11651 | if (L < INT_MIN || U > INT_MAX) |
11652 | return raw_type; | |
11653 | else | |
0c9c3474 SA |
11654 | return create_static_range_type (alloc_type_copy (raw_type), raw_type, |
11655 | L, U); | |
690cc4eb | 11656 | } |
14f9c5c9 AS |
11657 | else |
11658 | { | |
11659 | static char *name_buf = NULL; | |
11660 | static size_t name_len = 0; | |
11661 | int prefix_len = subtype_info - name; | |
11662 | LONGEST L, U; | |
11663 | struct type *type; | |
108d56a4 | 11664 | const char *bounds_str; |
14f9c5c9 AS |
11665 | int n; |
11666 | ||
11667 | GROW_VECT (name_buf, name_len, prefix_len + 5); | |
11668 | strncpy (name_buf, name, prefix_len); | |
11669 | name_buf[prefix_len] = '\0'; | |
11670 | ||
11671 | subtype_info += 5; | |
11672 | bounds_str = strchr (subtype_info, '_'); | |
11673 | n = 1; | |
11674 | ||
d2e4a39e | 11675 | if (*subtype_info == 'L') |
4c4b4cd2 PH |
11676 | { |
11677 | if (!ada_scan_number (bounds_str, n, &L, &n) | |
11678 | && !scan_discrim_bound (bounds_str, n, dval, &L, &n)) | |
11679 | return raw_type; | |
11680 | if (bounds_str[n] == '_') | |
11681 | n += 2; | |
0963b4bd | 11682 | else if (bounds_str[n] == '.') /* FIXME? SGI Workshop kludge. */ |
4c4b4cd2 PH |
11683 | n += 1; |
11684 | subtype_info += 1; | |
11685 | } | |
d2e4a39e | 11686 | else |
4c4b4cd2 | 11687 | { |
4c4b4cd2 | 11688 | strcpy (name_buf + prefix_len, "___L"); |
edb0c9cb | 11689 | if (!get_int_var_value (name_buf, L)) |
4c4b4cd2 | 11690 | { |
323e0a4a | 11691 | lim_warning (_("Unknown lower bound, using 1.")); |
4c4b4cd2 PH |
11692 | L = 1; |
11693 | } | |
11694 | } | |
14f9c5c9 | 11695 | |
d2e4a39e | 11696 | if (*subtype_info == 'U') |
4c4b4cd2 PH |
11697 | { |
11698 | if (!ada_scan_number (bounds_str, n, &U, &n) | |
11699 | && !scan_discrim_bound (bounds_str, n, dval, &U, &n)) | |
11700 | return raw_type; | |
11701 | } | |
d2e4a39e | 11702 | else |
4c4b4cd2 | 11703 | { |
4c4b4cd2 | 11704 | strcpy (name_buf + prefix_len, "___U"); |
edb0c9cb | 11705 | if (!get_int_var_value (name_buf, U)) |
4c4b4cd2 | 11706 | { |
323e0a4a | 11707 | lim_warning (_("Unknown upper bound, using %ld."), (long) L); |
4c4b4cd2 PH |
11708 | U = L; |
11709 | } | |
11710 | } | |
14f9c5c9 | 11711 | |
0c9c3474 SA |
11712 | type = create_static_range_type (alloc_type_copy (raw_type), |
11713 | base_type, L, U); | |
d2e4a39e | 11714 | TYPE_NAME (type) = name; |
14f9c5c9 AS |
11715 | return type; |
11716 | } | |
11717 | } | |
11718 | ||
4c4b4cd2 PH |
11719 | /* True iff NAME is the name of a range type. */ |
11720 | ||
14f9c5c9 | 11721 | int |
d2e4a39e | 11722 | ada_is_range_type_name (const char *name) |
14f9c5c9 AS |
11723 | { |
11724 | return (name != NULL && strstr (name, "___XD")); | |
d2e4a39e | 11725 | } |
14f9c5c9 | 11726 | \f |
d2e4a39e | 11727 | |
4c4b4cd2 PH |
11728 | /* Modular types */ |
11729 | ||
11730 | /* True iff TYPE is an Ada modular type. */ | |
14f9c5c9 | 11731 | |
14f9c5c9 | 11732 | int |
d2e4a39e | 11733 | ada_is_modular_type (struct type *type) |
14f9c5c9 | 11734 | { |
18af8284 | 11735 | struct type *subranged_type = get_base_type (type); |
14f9c5c9 AS |
11736 | |
11737 | return (subranged_type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE | |
690cc4eb | 11738 | && TYPE_CODE (subranged_type) == TYPE_CODE_INT |
4c4b4cd2 | 11739 | && TYPE_UNSIGNED (subranged_type)); |
14f9c5c9 AS |
11740 | } |
11741 | ||
4c4b4cd2 PH |
11742 | /* Assuming ada_is_modular_type (TYPE), the modulus of TYPE. */ |
11743 | ||
61ee279c | 11744 | ULONGEST |
0056e4d5 | 11745 | ada_modulus (struct type *type) |
14f9c5c9 | 11746 | { |
43bbcdc2 | 11747 | return (ULONGEST) TYPE_HIGH_BOUND (type) + 1; |
14f9c5c9 | 11748 | } |
d2e4a39e | 11749 | \f |
f7f9143b JB |
11750 | |
11751 | /* Ada exception catchpoint support: | |
11752 | --------------------------------- | |
11753 | ||
11754 | We support 3 kinds of exception catchpoints: | |
11755 | . catchpoints on Ada exceptions | |
11756 | . catchpoints on unhandled Ada exceptions | |
11757 | . catchpoints on failed assertions | |
11758 | ||
11759 | Exceptions raised during failed assertions, or unhandled exceptions | |
11760 | could perfectly be caught with the general catchpoint on Ada exceptions. | |
11761 | However, we can easily differentiate these two special cases, and having | |
11762 | the option to distinguish these two cases from the rest can be useful | |
11763 | to zero-in on certain situations. | |
11764 | ||
11765 | Exception catchpoints are a specialized form of breakpoint, | |
11766 | since they rely on inserting breakpoints inside known routines | |
11767 | of the GNAT runtime. The implementation therefore uses a standard | |
11768 | breakpoint structure of the BP_BREAKPOINT type, but with its own set | |
11769 | of breakpoint_ops. | |
11770 | ||
0259addd JB |
11771 | Support in the runtime for exception catchpoints have been changed |
11772 | a few times already, and these changes affect the implementation | |
11773 | of these catchpoints. In order to be able to support several | |
11774 | variants of the runtime, we use a sniffer that will determine | |
28010a5d | 11775 | the runtime variant used by the program being debugged. */ |
f7f9143b | 11776 | |
82eacd52 JB |
11777 | /* Ada's standard exceptions. |
11778 | ||
11779 | The Ada 83 standard also defined Numeric_Error. But there so many | |
11780 | situations where it was unclear from the Ada 83 Reference Manual | |
11781 | (RM) whether Constraint_Error or Numeric_Error should be raised, | |
11782 | that the ARG (Ada Rapporteur Group) eventually issued a Binding | |
11783 | Interpretation saying that anytime the RM says that Numeric_Error | |
11784 | should be raised, the implementation may raise Constraint_Error. | |
11785 | Ada 95 went one step further and pretty much removed Numeric_Error | |
11786 | from the list of standard exceptions (it made it a renaming of | |
11787 | Constraint_Error, to help preserve compatibility when compiling | |
11788 | an Ada83 compiler). As such, we do not include Numeric_Error from | |
11789 | this list of standard exceptions. */ | |
3d0b0fa3 | 11790 | |
a121b7c1 | 11791 | static const char *standard_exc[] = { |
3d0b0fa3 JB |
11792 | "constraint_error", |
11793 | "program_error", | |
11794 | "storage_error", | |
11795 | "tasking_error" | |
11796 | }; | |
11797 | ||
0259addd JB |
11798 | typedef CORE_ADDR (ada_unhandled_exception_name_addr_ftype) (void); |
11799 | ||
11800 | /* A structure that describes how to support exception catchpoints | |
11801 | for a given executable. */ | |
11802 | ||
11803 | struct exception_support_info | |
11804 | { | |
11805 | /* The name of the symbol to break on in order to insert | |
11806 | a catchpoint on exceptions. */ | |
11807 | const char *catch_exception_sym; | |
11808 | ||
11809 | /* The name of the symbol to break on in order to insert | |
11810 | a catchpoint on unhandled exceptions. */ | |
11811 | const char *catch_exception_unhandled_sym; | |
11812 | ||
11813 | /* The name of the symbol to break on in order to insert | |
11814 | a catchpoint on failed assertions. */ | |
11815 | const char *catch_assert_sym; | |
11816 | ||
11817 | /* Assuming that the inferior just triggered an unhandled exception | |
11818 | catchpoint, this function is responsible for returning the address | |
11819 | in inferior memory where the name of that exception is stored. | |
11820 | Return zero if the address could not be computed. */ | |
11821 | ada_unhandled_exception_name_addr_ftype *unhandled_exception_name_addr; | |
11822 | }; | |
11823 | ||
11824 | static CORE_ADDR ada_unhandled_exception_name_addr (void); | |
11825 | static CORE_ADDR ada_unhandled_exception_name_addr_from_raise (void); | |
11826 | ||
11827 | /* The following exception support info structure describes how to | |
11828 | implement exception catchpoints with the latest version of the | |
11829 | Ada runtime (as of 2007-03-06). */ | |
11830 | ||
11831 | static const struct exception_support_info default_exception_support_info = | |
11832 | { | |
11833 | "__gnat_debug_raise_exception", /* catch_exception_sym */ | |
11834 | "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */ | |
11835 | "__gnat_debug_raise_assert_failure", /* catch_assert_sym */ | |
11836 | ada_unhandled_exception_name_addr | |
11837 | }; | |
11838 | ||
11839 | /* The following exception support info structure describes how to | |
11840 | implement exception catchpoints with a slightly older version | |
11841 | of the Ada runtime. */ | |
11842 | ||
11843 | static const struct exception_support_info exception_support_info_fallback = | |
11844 | { | |
11845 | "__gnat_raise_nodefer_with_msg", /* catch_exception_sym */ | |
11846 | "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */ | |
11847 | "system__assertions__raise_assert_failure", /* catch_assert_sym */ | |
11848 | ada_unhandled_exception_name_addr_from_raise | |
11849 | }; | |
11850 | ||
f17011e0 JB |
11851 | /* Return nonzero if we can detect the exception support routines |
11852 | described in EINFO. | |
11853 | ||
11854 | This function errors out if an abnormal situation is detected | |
11855 | (for instance, if we find the exception support routines, but | |
11856 | that support is found to be incomplete). */ | |
11857 | ||
11858 | static int | |
11859 | ada_has_this_exception_support (const struct exception_support_info *einfo) | |
11860 | { | |
11861 | struct symbol *sym; | |
11862 | ||
11863 | /* The symbol we're looking up is provided by a unit in the GNAT runtime | |
11864 | that should be compiled with debugging information. As a result, we | |
11865 | expect to find that symbol in the symtabs. */ | |
11866 | ||
11867 | sym = standard_lookup (einfo->catch_exception_sym, NULL, VAR_DOMAIN); | |
11868 | if (sym == NULL) | |
a6af7abe JB |
11869 | { |
11870 | /* Perhaps we did not find our symbol because the Ada runtime was | |
11871 | compiled without debugging info, or simply stripped of it. | |
11872 | It happens on some GNU/Linux distributions for instance, where | |
11873 | users have to install a separate debug package in order to get | |
11874 | the runtime's debugging info. In that situation, let the user | |
11875 | know why we cannot insert an Ada exception catchpoint. | |
11876 | ||
11877 | Note: Just for the purpose of inserting our Ada exception | |
11878 | catchpoint, we could rely purely on the associated minimal symbol. | |
11879 | But we would be operating in degraded mode anyway, since we are | |
11880 | still lacking the debugging info needed later on to extract | |
11881 | the name of the exception being raised (this name is printed in | |
11882 | the catchpoint message, and is also used when trying to catch | |
11883 | a specific exception). We do not handle this case for now. */ | |
3b7344d5 | 11884 | struct bound_minimal_symbol msym |
1c8e84b0 JB |
11885 | = lookup_minimal_symbol (einfo->catch_exception_sym, NULL, NULL); |
11886 | ||
3b7344d5 | 11887 | if (msym.minsym && MSYMBOL_TYPE (msym.minsym) != mst_solib_trampoline) |
a6af7abe JB |
11888 | error (_("Your Ada runtime appears to be missing some debugging " |
11889 | "information.\nCannot insert Ada exception catchpoint " | |
11890 | "in this configuration.")); | |
11891 | ||
11892 | return 0; | |
11893 | } | |
f17011e0 JB |
11894 | |
11895 | /* Make sure that the symbol we found corresponds to a function. */ | |
11896 | ||
11897 | if (SYMBOL_CLASS (sym) != LOC_BLOCK) | |
11898 | error (_("Symbol \"%s\" is not a function (class = %d)"), | |
11899 | SYMBOL_LINKAGE_NAME (sym), SYMBOL_CLASS (sym)); | |
11900 | ||
11901 | return 1; | |
11902 | } | |
11903 | ||
0259addd JB |
11904 | /* Inspect the Ada runtime and determine which exception info structure |
11905 | should be used to provide support for exception catchpoints. | |
11906 | ||
3eecfa55 JB |
11907 | This function will always set the per-inferior exception_info, |
11908 | or raise an error. */ | |
0259addd JB |
11909 | |
11910 | static void | |
11911 | ada_exception_support_info_sniffer (void) | |
11912 | { | |
3eecfa55 | 11913 | struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ()); |
0259addd JB |
11914 | |
11915 | /* If the exception info is already known, then no need to recompute it. */ | |
3eecfa55 | 11916 | if (data->exception_info != NULL) |
0259addd JB |
11917 | return; |
11918 | ||
11919 | /* Check the latest (default) exception support info. */ | |
f17011e0 | 11920 | if (ada_has_this_exception_support (&default_exception_support_info)) |
0259addd | 11921 | { |
3eecfa55 | 11922 | data->exception_info = &default_exception_support_info; |
0259addd JB |
11923 | return; |
11924 | } | |
11925 | ||
11926 | /* Try our fallback exception suport info. */ | |
f17011e0 | 11927 | if (ada_has_this_exception_support (&exception_support_info_fallback)) |
0259addd | 11928 | { |
3eecfa55 | 11929 | data->exception_info = &exception_support_info_fallback; |
0259addd JB |
11930 | return; |
11931 | } | |
11932 | ||
11933 | /* Sometimes, it is normal for us to not be able to find the routine | |
11934 | we are looking for. This happens when the program is linked with | |
11935 | the shared version of the GNAT runtime, and the program has not been | |
11936 | started yet. Inform the user of these two possible causes if | |
11937 | applicable. */ | |
11938 | ||
ccefe4c4 | 11939 | if (ada_update_initial_language (language_unknown) != language_ada) |
0259addd JB |
11940 | error (_("Unable to insert catchpoint. Is this an Ada main program?")); |
11941 | ||
11942 | /* If the symbol does not exist, then check that the program is | |
11943 | already started, to make sure that shared libraries have been | |
11944 | loaded. If it is not started, this may mean that the symbol is | |
11945 | in a shared library. */ | |
11946 | ||
11947 | if (ptid_get_pid (inferior_ptid) == 0) | |
11948 | error (_("Unable to insert catchpoint. Try to start the program first.")); | |
11949 | ||
11950 | /* At this point, we know that we are debugging an Ada program and | |
11951 | that the inferior has been started, but we still are not able to | |
0963b4bd | 11952 | find the run-time symbols. That can mean that we are in |
0259addd JB |
11953 | configurable run time mode, or that a-except as been optimized |
11954 | out by the linker... In any case, at this point it is not worth | |
11955 | supporting this feature. */ | |
11956 | ||
7dda8cff | 11957 | error (_("Cannot insert Ada exception catchpoints in this configuration.")); |
0259addd JB |
11958 | } |
11959 | ||
f7f9143b JB |
11960 | /* True iff FRAME is very likely to be that of a function that is |
11961 | part of the runtime system. This is all very heuristic, but is | |
11962 | intended to be used as advice as to what frames are uninteresting | |
11963 | to most users. */ | |
11964 | ||
11965 | static int | |
11966 | is_known_support_routine (struct frame_info *frame) | |
11967 | { | |
692465f1 | 11968 | enum language func_lang; |
f7f9143b | 11969 | int i; |
f35a17b5 | 11970 | const char *fullname; |
f7f9143b | 11971 | |
4ed6b5be JB |
11972 | /* If this code does not have any debugging information (no symtab), |
11973 | This cannot be any user code. */ | |
f7f9143b | 11974 | |
51abb421 | 11975 | symtab_and_line sal = find_frame_sal (frame); |
f7f9143b JB |
11976 | if (sal.symtab == NULL) |
11977 | return 1; | |
11978 | ||
4ed6b5be JB |
11979 | /* If there is a symtab, but the associated source file cannot be |
11980 | located, then assume this is not user code: Selecting a frame | |
11981 | for which we cannot display the code would not be very helpful | |
11982 | for the user. This should also take care of case such as VxWorks | |
11983 | where the kernel has some debugging info provided for a few units. */ | |
f7f9143b | 11984 | |
f35a17b5 JK |
11985 | fullname = symtab_to_fullname (sal.symtab); |
11986 | if (access (fullname, R_OK) != 0) | |
f7f9143b JB |
11987 | return 1; |
11988 | ||
4ed6b5be JB |
11989 | /* Check the unit filename againt the Ada runtime file naming. |
11990 | We also check the name of the objfile against the name of some | |
11991 | known system libraries that sometimes come with debugging info | |
11992 | too. */ | |
11993 | ||
f7f9143b JB |
11994 | for (i = 0; known_runtime_file_name_patterns[i] != NULL; i += 1) |
11995 | { | |
11996 | re_comp (known_runtime_file_name_patterns[i]); | |
f69c91ad | 11997 | if (re_exec (lbasename (sal.symtab->filename))) |
f7f9143b | 11998 | return 1; |
eb822aa6 DE |
11999 | if (SYMTAB_OBJFILE (sal.symtab) != NULL |
12000 | && re_exec (objfile_name (SYMTAB_OBJFILE (sal.symtab)))) | |
4ed6b5be | 12001 | return 1; |
f7f9143b JB |
12002 | } |
12003 | ||
4ed6b5be | 12004 | /* Check whether the function is a GNAT-generated entity. */ |
f7f9143b | 12005 | |
c6dc63a1 TT |
12006 | gdb::unique_xmalloc_ptr<char> func_name |
12007 | = find_frame_funname (frame, &func_lang, NULL); | |
f7f9143b JB |
12008 | if (func_name == NULL) |
12009 | return 1; | |
12010 | ||
12011 | for (i = 0; known_auxiliary_function_name_patterns[i] != NULL; i += 1) | |
12012 | { | |
12013 | re_comp (known_auxiliary_function_name_patterns[i]); | |
c6dc63a1 TT |
12014 | if (re_exec (func_name.get ())) |
12015 | return 1; | |
f7f9143b JB |
12016 | } |
12017 | ||
12018 | return 0; | |
12019 | } | |
12020 | ||
12021 | /* Find the first frame that contains debugging information and that is not | |
12022 | part of the Ada run-time, starting from FI and moving upward. */ | |
12023 | ||
0ef643c8 | 12024 | void |
f7f9143b JB |
12025 | ada_find_printable_frame (struct frame_info *fi) |
12026 | { | |
12027 | for (; fi != NULL; fi = get_prev_frame (fi)) | |
12028 | { | |
12029 | if (!is_known_support_routine (fi)) | |
12030 | { | |
12031 | select_frame (fi); | |
12032 | break; | |
12033 | } | |
12034 | } | |
12035 | ||
12036 | } | |
12037 | ||
12038 | /* Assuming that the inferior just triggered an unhandled exception | |
12039 | catchpoint, return the address in inferior memory where the name | |
12040 | of the exception is stored. | |
12041 | ||
12042 | Return zero if the address could not be computed. */ | |
12043 | ||
12044 | static CORE_ADDR | |
12045 | ada_unhandled_exception_name_addr (void) | |
0259addd JB |
12046 | { |
12047 | return parse_and_eval_address ("e.full_name"); | |
12048 | } | |
12049 | ||
12050 | /* Same as ada_unhandled_exception_name_addr, except that this function | |
12051 | should be used when the inferior uses an older version of the runtime, | |
12052 | where the exception name needs to be extracted from a specific frame | |
12053 | several frames up in the callstack. */ | |
12054 | ||
12055 | static CORE_ADDR | |
12056 | ada_unhandled_exception_name_addr_from_raise (void) | |
f7f9143b JB |
12057 | { |
12058 | int frame_level; | |
12059 | struct frame_info *fi; | |
3eecfa55 | 12060 | struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ()); |
f7f9143b JB |
12061 | |
12062 | /* To determine the name of this exception, we need to select | |
12063 | the frame corresponding to RAISE_SYM_NAME. This frame is | |
12064 | at least 3 levels up, so we simply skip the first 3 frames | |
12065 | without checking the name of their associated function. */ | |
12066 | fi = get_current_frame (); | |
12067 | for (frame_level = 0; frame_level < 3; frame_level += 1) | |
12068 | if (fi != NULL) | |
12069 | fi = get_prev_frame (fi); | |
12070 | ||
12071 | while (fi != NULL) | |
12072 | { | |
692465f1 JB |
12073 | enum language func_lang; |
12074 | ||
c6dc63a1 TT |
12075 | gdb::unique_xmalloc_ptr<char> func_name |
12076 | = find_frame_funname (fi, &func_lang, NULL); | |
55b87a52 KS |
12077 | if (func_name != NULL) |
12078 | { | |
c6dc63a1 | 12079 | if (strcmp (func_name.get (), |
55b87a52 KS |
12080 | data->exception_info->catch_exception_sym) == 0) |
12081 | break; /* We found the frame we were looking for... */ | |
12082 | fi = get_prev_frame (fi); | |
12083 | } | |
f7f9143b JB |
12084 | } |
12085 | ||
12086 | if (fi == NULL) | |
12087 | return 0; | |
12088 | ||
12089 | select_frame (fi); | |
12090 | return parse_and_eval_address ("id.full_name"); | |
12091 | } | |
12092 | ||
12093 | /* Assuming the inferior just triggered an Ada exception catchpoint | |
12094 | (of any type), return the address in inferior memory where the name | |
12095 | of the exception is stored, if applicable. | |
12096 | ||
45db7c09 PA |
12097 | Assumes the selected frame is the current frame. |
12098 | ||
f7f9143b JB |
12099 | Return zero if the address could not be computed, or if not relevant. */ |
12100 | ||
12101 | static CORE_ADDR | |
761269c8 | 12102 | ada_exception_name_addr_1 (enum ada_exception_catchpoint_kind ex, |
f7f9143b JB |
12103 | struct breakpoint *b) |
12104 | { | |
3eecfa55 JB |
12105 | struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ()); |
12106 | ||
f7f9143b JB |
12107 | switch (ex) |
12108 | { | |
761269c8 | 12109 | case ada_catch_exception: |
f7f9143b JB |
12110 | return (parse_and_eval_address ("e.full_name")); |
12111 | break; | |
12112 | ||
761269c8 | 12113 | case ada_catch_exception_unhandled: |
3eecfa55 | 12114 | return data->exception_info->unhandled_exception_name_addr (); |
f7f9143b JB |
12115 | break; |
12116 | ||
761269c8 | 12117 | case ada_catch_assert: |
f7f9143b JB |
12118 | return 0; /* Exception name is not relevant in this case. */ |
12119 | break; | |
12120 | ||
12121 | default: | |
12122 | internal_error (__FILE__, __LINE__, _("unexpected catchpoint type")); | |
12123 | break; | |
12124 | } | |
12125 | ||
12126 | return 0; /* Should never be reached. */ | |
12127 | } | |
12128 | ||
12129 | /* Same as ada_exception_name_addr_1, except that it intercepts and contains | |
12130 | any error that ada_exception_name_addr_1 might cause to be thrown. | |
12131 | When an error is intercepted, a warning with the error message is printed, | |
12132 | and zero is returned. */ | |
12133 | ||
12134 | static CORE_ADDR | |
761269c8 | 12135 | ada_exception_name_addr (enum ada_exception_catchpoint_kind ex, |
f7f9143b JB |
12136 | struct breakpoint *b) |
12137 | { | |
f7f9143b JB |
12138 | CORE_ADDR result = 0; |
12139 | ||
492d29ea | 12140 | TRY |
f7f9143b JB |
12141 | { |
12142 | result = ada_exception_name_addr_1 (ex, b); | |
12143 | } | |
12144 | ||
492d29ea | 12145 | CATCH (e, RETURN_MASK_ERROR) |
f7f9143b JB |
12146 | { |
12147 | warning (_("failed to get exception name: %s"), e.message); | |
12148 | return 0; | |
12149 | } | |
492d29ea | 12150 | END_CATCH |
f7f9143b JB |
12151 | |
12152 | return result; | |
12153 | } | |
12154 | ||
28010a5d PA |
12155 | static char *ada_exception_catchpoint_cond_string (const char *excep_string); |
12156 | ||
12157 | /* Ada catchpoints. | |
12158 | ||
12159 | In the case of catchpoints on Ada exceptions, the catchpoint will | |
12160 | stop the target on every exception the program throws. When a user | |
12161 | specifies the name of a specific exception, we translate this | |
12162 | request into a condition expression (in text form), and then parse | |
12163 | it into an expression stored in each of the catchpoint's locations. | |
12164 | We then use this condition to check whether the exception that was | |
12165 | raised is the one the user is interested in. If not, then the | |
12166 | target is resumed again. We store the name of the requested | |
12167 | exception, in order to be able to re-set the condition expression | |
12168 | when symbols change. */ | |
12169 | ||
12170 | /* An instance of this type is used to represent an Ada catchpoint | |
5625a286 | 12171 | breakpoint location. */ |
28010a5d | 12172 | |
5625a286 | 12173 | class ada_catchpoint_location : public bp_location |
28010a5d | 12174 | { |
5625a286 PA |
12175 | public: |
12176 | ada_catchpoint_location (const bp_location_ops *ops, breakpoint *owner) | |
12177 | : bp_location (ops, owner) | |
12178 | {} | |
28010a5d PA |
12179 | |
12180 | /* The condition that checks whether the exception that was raised | |
12181 | is the specific exception the user specified on catchpoint | |
12182 | creation. */ | |
4d01a485 | 12183 | expression_up excep_cond_expr; |
28010a5d PA |
12184 | }; |
12185 | ||
12186 | /* Implement the DTOR method in the bp_location_ops structure for all | |
12187 | Ada exception catchpoint kinds. */ | |
12188 | ||
12189 | static void | |
12190 | ada_catchpoint_location_dtor (struct bp_location *bl) | |
12191 | { | |
12192 | struct ada_catchpoint_location *al = (struct ada_catchpoint_location *) bl; | |
12193 | ||
4d01a485 | 12194 | al->excep_cond_expr.reset (); |
28010a5d PA |
12195 | } |
12196 | ||
12197 | /* The vtable to be used in Ada catchpoint locations. */ | |
12198 | ||
12199 | static const struct bp_location_ops ada_catchpoint_location_ops = | |
12200 | { | |
12201 | ada_catchpoint_location_dtor | |
12202 | }; | |
12203 | ||
c1fc2657 | 12204 | /* An instance of this type is used to represent an Ada catchpoint. */ |
28010a5d | 12205 | |
c1fc2657 | 12206 | struct ada_catchpoint : public breakpoint |
28010a5d | 12207 | { |
c1fc2657 | 12208 | ~ada_catchpoint () override; |
28010a5d PA |
12209 | |
12210 | /* The name of the specific exception the user specified. */ | |
12211 | char *excep_string; | |
12212 | }; | |
12213 | ||
12214 | /* Parse the exception condition string in the context of each of the | |
12215 | catchpoint's locations, and store them for later evaluation. */ | |
12216 | ||
12217 | static void | |
12218 | create_excep_cond_exprs (struct ada_catchpoint *c) | |
12219 | { | |
12220 | struct cleanup *old_chain; | |
12221 | struct bp_location *bl; | |
12222 | char *cond_string; | |
12223 | ||
12224 | /* Nothing to do if there's no specific exception to catch. */ | |
12225 | if (c->excep_string == NULL) | |
12226 | return; | |
12227 | ||
12228 | /* Same if there are no locations... */ | |
c1fc2657 | 12229 | if (c->loc == NULL) |
28010a5d PA |
12230 | return; |
12231 | ||
12232 | /* Compute the condition expression in text form, from the specific | |
12233 | expection we want to catch. */ | |
12234 | cond_string = ada_exception_catchpoint_cond_string (c->excep_string); | |
12235 | old_chain = make_cleanup (xfree, cond_string); | |
12236 | ||
12237 | /* Iterate over all the catchpoint's locations, and parse an | |
12238 | expression for each. */ | |
c1fc2657 | 12239 | for (bl = c->loc; bl != NULL; bl = bl->next) |
28010a5d PA |
12240 | { |
12241 | struct ada_catchpoint_location *ada_loc | |
12242 | = (struct ada_catchpoint_location *) bl; | |
4d01a485 | 12243 | expression_up exp; |
28010a5d PA |
12244 | |
12245 | if (!bl->shlib_disabled) | |
12246 | { | |
bbc13ae3 | 12247 | const char *s; |
28010a5d PA |
12248 | |
12249 | s = cond_string; | |
492d29ea | 12250 | TRY |
28010a5d | 12251 | { |
036e657b JB |
12252 | exp = parse_exp_1 (&s, bl->address, |
12253 | block_for_pc (bl->address), | |
12254 | 0); | |
28010a5d | 12255 | } |
492d29ea | 12256 | CATCH (e, RETURN_MASK_ERROR) |
849f2b52 JB |
12257 | { |
12258 | warning (_("failed to reevaluate internal exception condition " | |
12259 | "for catchpoint %d: %s"), | |
c1fc2657 | 12260 | c->number, e.message); |
849f2b52 | 12261 | } |
492d29ea | 12262 | END_CATCH |
28010a5d PA |
12263 | } |
12264 | ||
b22e99fd | 12265 | ada_loc->excep_cond_expr = std::move (exp); |
28010a5d PA |
12266 | } |
12267 | ||
12268 | do_cleanups (old_chain); | |
12269 | } | |
12270 | ||
c1fc2657 | 12271 | /* ada_catchpoint destructor. */ |
28010a5d | 12272 | |
c1fc2657 | 12273 | ada_catchpoint::~ada_catchpoint () |
28010a5d | 12274 | { |
c1fc2657 | 12275 | xfree (this->excep_string); |
28010a5d PA |
12276 | } |
12277 | ||
12278 | /* Implement the ALLOCATE_LOCATION method in the breakpoint_ops | |
12279 | structure for all exception catchpoint kinds. */ | |
12280 | ||
12281 | static struct bp_location * | |
761269c8 | 12282 | allocate_location_exception (enum ada_exception_catchpoint_kind ex, |
28010a5d PA |
12283 | struct breakpoint *self) |
12284 | { | |
5625a286 | 12285 | return new ada_catchpoint_location (&ada_catchpoint_location_ops, self); |
28010a5d PA |
12286 | } |
12287 | ||
12288 | /* Implement the RE_SET method in the breakpoint_ops structure for all | |
12289 | exception catchpoint kinds. */ | |
12290 | ||
12291 | static void | |
761269c8 | 12292 | re_set_exception (enum ada_exception_catchpoint_kind ex, struct breakpoint *b) |
28010a5d PA |
12293 | { |
12294 | struct ada_catchpoint *c = (struct ada_catchpoint *) b; | |
12295 | ||
12296 | /* Call the base class's method. This updates the catchpoint's | |
12297 | locations. */ | |
2060206e | 12298 | bkpt_breakpoint_ops.re_set (b); |
28010a5d PA |
12299 | |
12300 | /* Reparse the exception conditional expressions. One for each | |
12301 | location. */ | |
12302 | create_excep_cond_exprs (c); | |
12303 | } | |
12304 | ||
12305 | /* Returns true if we should stop for this breakpoint hit. If the | |
12306 | user specified a specific exception, we only want to cause a stop | |
12307 | if the program thrown that exception. */ | |
12308 | ||
12309 | static int | |
12310 | should_stop_exception (const struct bp_location *bl) | |
12311 | { | |
12312 | struct ada_catchpoint *c = (struct ada_catchpoint *) bl->owner; | |
12313 | const struct ada_catchpoint_location *ada_loc | |
12314 | = (const struct ada_catchpoint_location *) bl; | |
28010a5d PA |
12315 | int stop; |
12316 | ||
12317 | /* With no specific exception, should always stop. */ | |
12318 | if (c->excep_string == NULL) | |
12319 | return 1; | |
12320 | ||
12321 | if (ada_loc->excep_cond_expr == NULL) | |
12322 | { | |
12323 | /* We will have a NULL expression if back when we were creating | |
12324 | the expressions, this location's had failed to parse. */ | |
12325 | return 1; | |
12326 | } | |
12327 | ||
12328 | stop = 1; | |
492d29ea | 12329 | TRY |
28010a5d PA |
12330 | { |
12331 | struct value *mark; | |
12332 | ||
12333 | mark = value_mark (); | |
4d01a485 | 12334 | stop = value_true (evaluate_expression (ada_loc->excep_cond_expr.get ())); |
28010a5d PA |
12335 | value_free_to_mark (mark); |
12336 | } | |
492d29ea PA |
12337 | CATCH (ex, RETURN_MASK_ALL) |
12338 | { | |
12339 | exception_fprintf (gdb_stderr, ex, | |
12340 | _("Error in testing exception condition:\n")); | |
12341 | } | |
12342 | END_CATCH | |
12343 | ||
28010a5d PA |
12344 | return stop; |
12345 | } | |
12346 | ||
12347 | /* Implement the CHECK_STATUS method in the breakpoint_ops structure | |
12348 | for all exception catchpoint kinds. */ | |
12349 | ||
12350 | static void | |
761269c8 | 12351 | check_status_exception (enum ada_exception_catchpoint_kind ex, bpstat bs) |
28010a5d PA |
12352 | { |
12353 | bs->stop = should_stop_exception (bs->bp_location_at); | |
12354 | } | |
12355 | ||
f7f9143b JB |
12356 | /* Implement the PRINT_IT method in the breakpoint_ops structure |
12357 | for all exception catchpoint kinds. */ | |
12358 | ||
12359 | static enum print_stop_action | |
761269c8 | 12360 | print_it_exception (enum ada_exception_catchpoint_kind ex, bpstat bs) |
f7f9143b | 12361 | { |
79a45e25 | 12362 | struct ui_out *uiout = current_uiout; |
348d480f PA |
12363 | struct breakpoint *b = bs->breakpoint_at; |
12364 | ||
956a9fb9 | 12365 | annotate_catchpoint (b->number); |
f7f9143b | 12366 | |
112e8700 | 12367 | if (uiout->is_mi_like_p ()) |
f7f9143b | 12368 | { |
112e8700 | 12369 | uiout->field_string ("reason", |
956a9fb9 | 12370 | async_reason_lookup (EXEC_ASYNC_BREAKPOINT_HIT)); |
112e8700 | 12371 | uiout->field_string ("disp", bpdisp_text (b->disposition)); |
f7f9143b JB |
12372 | } |
12373 | ||
112e8700 SM |
12374 | uiout->text (b->disposition == disp_del |
12375 | ? "\nTemporary catchpoint " : "\nCatchpoint "); | |
12376 | uiout->field_int ("bkptno", b->number); | |
12377 | uiout->text (", "); | |
f7f9143b | 12378 | |
45db7c09 PA |
12379 | /* ada_exception_name_addr relies on the selected frame being the |
12380 | current frame. Need to do this here because this function may be | |
12381 | called more than once when printing a stop, and below, we'll | |
12382 | select the first frame past the Ada run-time (see | |
12383 | ada_find_printable_frame). */ | |
12384 | select_frame (get_current_frame ()); | |
12385 | ||
f7f9143b JB |
12386 | switch (ex) |
12387 | { | |
761269c8 JB |
12388 | case ada_catch_exception: |
12389 | case ada_catch_exception_unhandled: | |
956a9fb9 JB |
12390 | { |
12391 | const CORE_ADDR addr = ada_exception_name_addr (ex, b); | |
12392 | char exception_name[256]; | |
12393 | ||
12394 | if (addr != 0) | |
12395 | { | |
c714b426 PA |
12396 | read_memory (addr, (gdb_byte *) exception_name, |
12397 | sizeof (exception_name) - 1); | |
956a9fb9 JB |
12398 | exception_name [sizeof (exception_name) - 1] = '\0'; |
12399 | } | |
12400 | else | |
12401 | { | |
12402 | /* For some reason, we were unable to read the exception | |
12403 | name. This could happen if the Runtime was compiled | |
12404 | without debugging info, for instance. In that case, | |
12405 | just replace the exception name by the generic string | |
12406 | "exception" - it will read as "an exception" in the | |
12407 | notification we are about to print. */ | |
967cff16 | 12408 | memcpy (exception_name, "exception", sizeof ("exception")); |
956a9fb9 JB |
12409 | } |
12410 | /* In the case of unhandled exception breakpoints, we print | |
12411 | the exception name as "unhandled EXCEPTION_NAME", to make | |
12412 | it clearer to the user which kind of catchpoint just got | |
12413 | hit. We used ui_out_text to make sure that this extra | |
12414 | info does not pollute the exception name in the MI case. */ | |
761269c8 | 12415 | if (ex == ada_catch_exception_unhandled) |
112e8700 SM |
12416 | uiout->text ("unhandled "); |
12417 | uiout->field_string ("exception-name", exception_name); | |
956a9fb9 JB |
12418 | } |
12419 | break; | |
761269c8 | 12420 | case ada_catch_assert: |
956a9fb9 JB |
12421 | /* In this case, the name of the exception is not really |
12422 | important. Just print "failed assertion" to make it clearer | |
12423 | that his program just hit an assertion-failure catchpoint. | |
12424 | We used ui_out_text because this info does not belong in | |
12425 | the MI output. */ | |
112e8700 | 12426 | uiout->text ("failed assertion"); |
956a9fb9 | 12427 | break; |
f7f9143b | 12428 | } |
112e8700 | 12429 | uiout->text (" at "); |
956a9fb9 | 12430 | ada_find_printable_frame (get_current_frame ()); |
f7f9143b JB |
12431 | |
12432 | return PRINT_SRC_AND_LOC; | |
12433 | } | |
12434 | ||
12435 | /* Implement the PRINT_ONE method in the breakpoint_ops structure | |
12436 | for all exception catchpoint kinds. */ | |
12437 | ||
12438 | static void | |
761269c8 | 12439 | print_one_exception (enum ada_exception_catchpoint_kind ex, |
a6d9a66e | 12440 | struct breakpoint *b, struct bp_location **last_loc) |
f7f9143b | 12441 | { |
79a45e25 | 12442 | struct ui_out *uiout = current_uiout; |
28010a5d | 12443 | struct ada_catchpoint *c = (struct ada_catchpoint *) b; |
79a45b7d TT |
12444 | struct value_print_options opts; |
12445 | ||
12446 | get_user_print_options (&opts); | |
12447 | if (opts.addressprint) | |
f7f9143b JB |
12448 | { |
12449 | annotate_field (4); | |
112e8700 | 12450 | uiout->field_core_addr ("addr", b->loc->gdbarch, b->loc->address); |
f7f9143b JB |
12451 | } |
12452 | ||
12453 | annotate_field (5); | |
a6d9a66e | 12454 | *last_loc = b->loc; |
f7f9143b JB |
12455 | switch (ex) |
12456 | { | |
761269c8 | 12457 | case ada_catch_exception: |
28010a5d | 12458 | if (c->excep_string != NULL) |
f7f9143b | 12459 | { |
28010a5d PA |
12460 | char *msg = xstrprintf (_("`%s' Ada exception"), c->excep_string); |
12461 | ||
112e8700 | 12462 | uiout->field_string ("what", msg); |
f7f9143b JB |
12463 | xfree (msg); |
12464 | } | |
12465 | else | |
112e8700 | 12466 | uiout->field_string ("what", "all Ada exceptions"); |
f7f9143b JB |
12467 | |
12468 | break; | |
12469 | ||
761269c8 | 12470 | case ada_catch_exception_unhandled: |
112e8700 | 12471 | uiout->field_string ("what", "unhandled Ada exceptions"); |
f7f9143b JB |
12472 | break; |
12473 | ||
761269c8 | 12474 | case ada_catch_assert: |
112e8700 | 12475 | uiout->field_string ("what", "failed Ada assertions"); |
f7f9143b JB |
12476 | break; |
12477 | ||
12478 | default: | |
12479 | internal_error (__FILE__, __LINE__, _("unexpected catchpoint type")); | |
12480 | break; | |
12481 | } | |
12482 | } | |
12483 | ||
12484 | /* Implement the PRINT_MENTION method in the breakpoint_ops structure | |
12485 | for all exception catchpoint kinds. */ | |
12486 | ||
12487 | static void | |
761269c8 | 12488 | print_mention_exception (enum ada_exception_catchpoint_kind ex, |
f7f9143b JB |
12489 | struct breakpoint *b) |
12490 | { | |
28010a5d | 12491 | struct ada_catchpoint *c = (struct ada_catchpoint *) b; |
79a45e25 | 12492 | struct ui_out *uiout = current_uiout; |
28010a5d | 12493 | |
112e8700 | 12494 | uiout->text (b->disposition == disp_del ? _("Temporary catchpoint ") |
00eb2c4a | 12495 | : _("Catchpoint ")); |
112e8700 SM |
12496 | uiout->field_int ("bkptno", b->number); |
12497 | uiout->text (": "); | |
00eb2c4a | 12498 | |
f7f9143b JB |
12499 | switch (ex) |
12500 | { | |
761269c8 | 12501 | case ada_catch_exception: |
28010a5d | 12502 | if (c->excep_string != NULL) |
00eb2c4a JB |
12503 | { |
12504 | char *info = xstrprintf (_("`%s' Ada exception"), c->excep_string); | |
12505 | struct cleanup *old_chain = make_cleanup (xfree, info); | |
12506 | ||
112e8700 | 12507 | uiout->text (info); |
00eb2c4a JB |
12508 | do_cleanups (old_chain); |
12509 | } | |
f7f9143b | 12510 | else |
112e8700 | 12511 | uiout->text (_("all Ada exceptions")); |
f7f9143b JB |
12512 | break; |
12513 | ||
761269c8 | 12514 | case ada_catch_exception_unhandled: |
112e8700 | 12515 | uiout->text (_("unhandled Ada exceptions")); |
f7f9143b JB |
12516 | break; |
12517 | ||
761269c8 | 12518 | case ada_catch_assert: |
112e8700 | 12519 | uiout->text (_("failed Ada assertions")); |
f7f9143b JB |
12520 | break; |
12521 | ||
12522 | default: | |
12523 | internal_error (__FILE__, __LINE__, _("unexpected catchpoint type")); | |
12524 | break; | |
12525 | } | |
12526 | } | |
12527 | ||
6149aea9 PA |
12528 | /* Implement the PRINT_RECREATE method in the breakpoint_ops structure |
12529 | for all exception catchpoint kinds. */ | |
12530 | ||
12531 | static void | |
761269c8 | 12532 | print_recreate_exception (enum ada_exception_catchpoint_kind ex, |
6149aea9 PA |
12533 | struct breakpoint *b, struct ui_file *fp) |
12534 | { | |
28010a5d PA |
12535 | struct ada_catchpoint *c = (struct ada_catchpoint *) b; |
12536 | ||
6149aea9 PA |
12537 | switch (ex) |
12538 | { | |
761269c8 | 12539 | case ada_catch_exception: |
6149aea9 | 12540 | fprintf_filtered (fp, "catch exception"); |
28010a5d PA |
12541 | if (c->excep_string != NULL) |
12542 | fprintf_filtered (fp, " %s", c->excep_string); | |
6149aea9 PA |
12543 | break; |
12544 | ||
761269c8 | 12545 | case ada_catch_exception_unhandled: |
78076abc | 12546 | fprintf_filtered (fp, "catch exception unhandled"); |
6149aea9 PA |
12547 | break; |
12548 | ||
761269c8 | 12549 | case ada_catch_assert: |
6149aea9 PA |
12550 | fprintf_filtered (fp, "catch assert"); |
12551 | break; | |
12552 | ||
12553 | default: | |
12554 | internal_error (__FILE__, __LINE__, _("unexpected catchpoint type")); | |
12555 | } | |
d9b3f62e | 12556 | print_recreate_thread (b, fp); |
6149aea9 PA |
12557 | } |
12558 | ||
f7f9143b JB |
12559 | /* Virtual table for "catch exception" breakpoints. */ |
12560 | ||
28010a5d PA |
12561 | static struct bp_location * |
12562 | allocate_location_catch_exception (struct breakpoint *self) | |
12563 | { | |
761269c8 | 12564 | return allocate_location_exception (ada_catch_exception, self); |
28010a5d PA |
12565 | } |
12566 | ||
12567 | static void | |
12568 | re_set_catch_exception (struct breakpoint *b) | |
12569 | { | |
761269c8 | 12570 | re_set_exception (ada_catch_exception, b); |
28010a5d PA |
12571 | } |
12572 | ||
12573 | static void | |
12574 | check_status_catch_exception (bpstat bs) | |
12575 | { | |
761269c8 | 12576 | check_status_exception (ada_catch_exception, bs); |
28010a5d PA |
12577 | } |
12578 | ||
f7f9143b | 12579 | static enum print_stop_action |
348d480f | 12580 | print_it_catch_exception (bpstat bs) |
f7f9143b | 12581 | { |
761269c8 | 12582 | return print_it_exception (ada_catch_exception, bs); |
f7f9143b JB |
12583 | } |
12584 | ||
12585 | static void | |
a6d9a66e | 12586 | print_one_catch_exception (struct breakpoint *b, struct bp_location **last_loc) |
f7f9143b | 12587 | { |
761269c8 | 12588 | print_one_exception (ada_catch_exception, b, last_loc); |
f7f9143b JB |
12589 | } |
12590 | ||
12591 | static void | |
12592 | print_mention_catch_exception (struct breakpoint *b) | |
12593 | { | |
761269c8 | 12594 | print_mention_exception (ada_catch_exception, b); |
f7f9143b JB |
12595 | } |
12596 | ||
6149aea9 PA |
12597 | static void |
12598 | print_recreate_catch_exception (struct breakpoint *b, struct ui_file *fp) | |
12599 | { | |
761269c8 | 12600 | print_recreate_exception (ada_catch_exception, b, fp); |
6149aea9 PA |
12601 | } |
12602 | ||
2060206e | 12603 | static struct breakpoint_ops catch_exception_breakpoint_ops; |
f7f9143b JB |
12604 | |
12605 | /* Virtual table for "catch exception unhandled" breakpoints. */ | |
12606 | ||
28010a5d PA |
12607 | static struct bp_location * |
12608 | allocate_location_catch_exception_unhandled (struct breakpoint *self) | |
12609 | { | |
761269c8 | 12610 | return allocate_location_exception (ada_catch_exception_unhandled, self); |
28010a5d PA |
12611 | } |
12612 | ||
12613 | static void | |
12614 | re_set_catch_exception_unhandled (struct breakpoint *b) | |
12615 | { | |
761269c8 | 12616 | re_set_exception (ada_catch_exception_unhandled, b); |
28010a5d PA |
12617 | } |
12618 | ||
12619 | static void | |
12620 | check_status_catch_exception_unhandled (bpstat bs) | |
12621 | { | |
761269c8 | 12622 | check_status_exception (ada_catch_exception_unhandled, bs); |
28010a5d PA |
12623 | } |
12624 | ||
f7f9143b | 12625 | static enum print_stop_action |
348d480f | 12626 | print_it_catch_exception_unhandled (bpstat bs) |
f7f9143b | 12627 | { |
761269c8 | 12628 | return print_it_exception (ada_catch_exception_unhandled, bs); |
f7f9143b JB |
12629 | } |
12630 | ||
12631 | static void | |
a6d9a66e UW |
12632 | print_one_catch_exception_unhandled (struct breakpoint *b, |
12633 | struct bp_location **last_loc) | |
f7f9143b | 12634 | { |
761269c8 | 12635 | print_one_exception (ada_catch_exception_unhandled, b, last_loc); |
f7f9143b JB |
12636 | } |
12637 | ||
12638 | static void | |
12639 | print_mention_catch_exception_unhandled (struct breakpoint *b) | |
12640 | { | |
761269c8 | 12641 | print_mention_exception (ada_catch_exception_unhandled, b); |
f7f9143b JB |
12642 | } |
12643 | ||
6149aea9 PA |
12644 | static void |
12645 | print_recreate_catch_exception_unhandled (struct breakpoint *b, | |
12646 | struct ui_file *fp) | |
12647 | { | |
761269c8 | 12648 | print_recreate_exception (ada_catch_exception_unhandled, b, fp); |
6149aea9 PA |
12649 | } |
12650 | ||
2060206e | 12651 | static struct breakpoint_ops catch_exception_unhandled_breakpoint_ops; |
f7f9143b JB |
12652 | |
12653 | /* Virtual table for "catch assert" breakpoints. */ | |
12654 | ||
28010a5d PA |
12655 | static struct bp_location * |
12656 | allocate_location_catch_assert (struct breakpoint *self) | |
12657 | { | |
761269c8 | 12658 | return allocate_location_exception (ada_catch_assert, self); |
28010a5d PA |
12659 | } |
12660 | ||
12661 | static void | |
12662 | re_set_catch_assert (struct breakpoint *b) | |
12663 | { | |
761269c8 | 12664 | re_set_exception (ada_catch_assert, b); |
28010a5d PA |
12665 | } |
12666 | ||
12667 | static void | |
12668 | check_status_catch_assert (bpstat bs) | |
12669 | { | |
761269c8 | 12670 | check_status_exception (ada_catch_assert, bs); |
28010a5d PA |
12671 | } |
12672 | ||
f7f9143b | 12673 | static enum print_stop_action |
348d480f | 12674 | print_it_catch_assert (bpstat bs) |
f7f9143b | 12675 | { |
761269c8 | 12676 | return print_it_exception (ada_catch_assert, bs); |
f7f9143b JB |
12677 | } |
12678 | ||
12679 | static void | |
a6d9a66e | 12680 | print_one_catch_assert (struct breakpoint *b, struct bp_location **last_loc) |
f7f9143b | 12681 | { |
761269c8 | 12682 | print_one_exception (ada_catch_assert, b, last_loc); |
f7f9143b JB |
12683 | } |
12684 | ||
12685 | static void | |
12686 | print_mention_catch_assert (struct breakpoint *b) | |
12687 | { | |
761269c8 | 12688 | print_mention_exception (ada_catch_assert, b); |
f7f9143b JB |
12689 | } |
12690 | ||
6149aea9 PA |
12691 | static void |
12692 | print_recreate_catch_assert (struct breakpoint *b, struct ui_file *fp) | |
12693 | { | |
761269c8 | 12694 | print_recreate_exception (ada_catch_assert, b, fp); |
6149aea9 PA |
12695 | } |
12696 | ||
2060206e | 12697 | static struct breakpoint_ops catch_assert_breakpoint_ops; |
f7f9143b | 12698 | |
f7f9143b JB |
12699 | /* Return a newly allocated copy of the first space-separated token |
12700 | in ARGSP, and then adjust ARGSP to point immediately after that | |
12701 | token. | |
12702 | ||
12703 | Return NULL if ARGPS does not contain any more tokens. */ | |
12704 | ||
12705 | static char * | |
a121b7c1 | 12706 | ada_get_next_arg (const char **argsp) |
f7f9143b | 12707 | { |
a121b7c1 PA |
12708 | const char *args = *argsp; |
12709 | const char *end; | |
f7f9143b JB |
12710 | char *result; |
12711 | ||
f1735a53 | 12712 | args = skip_spaces (args); |
f7f9143b JB |
12713 | if (args[0] == '\0') |
12714 | return NULL; /* No more arguments. */ | |
12715 | ||
12716 | /* Find the end of the current argument. */ | |
12717 | ||
f1735a53 | 12718 | end = skip_to_space (args); |
f7f9143b JB |
12719 | |
12720 | /* Adjust ARGSP to point to the start of the next argument. */ | |
12721 | ||
12722 | *argsp = end; | |
12723 | ||
12724 | /* Make a copy of the current argument and return it. */ | |
12725 | ||
224c3ddb | 12726 | result = (char *) xmalloc (end - args + 1); |
f7f9143b JB |
12727 | strncpy (result, args, end - args); |
12728 | result[end - args] = '\0'; | |
12729 | ||
12730 | return result; | |
12731 | } | |
12732 | ||
12733 | /* Split the arguments specified in a "catch exception" command. | |
12734 | Set EX to the appropriate catchpoint type. | |
28010a5d | 12735 | Set EXCEP_STRING to the name of the specific exception if |
5845583d JB |
12736 | specified by the user. |
12737 | If a condition is found at the end of the arguments, the condition | |
12738 | expression is stored in COND_STRING (memory must be deallocated | |
12739 | after use). Otherwise COND_STRING is set to NULL. */ | |
f7f9143b JB |
12740 | |
12741 | static void | |
a121b7c1 | 12742 | catch_ada_exception_command_split (const char *args, |
761269c8 | 12743 | enum ada_exception_catchpoint_kind *ex, |
5845583d JB |
12744 | char **excep_string, |
12745 | char **cond_string) | |
f7f9143b JB |
12746 | { |
12747 | struct cleanup *old_chain = make_cleanup (null_cleanup, NULL); | |
12748 | char *exception_name; | |
5845583d | 12749 | char *cond = NULL; |
f7f9143b JB |
12750 | |
12751 | exception_name = ada_get_next_arg (&args); | |
5845583d JB |
12752 | if (exception_name != NULL && strcmp (exception_name, "if") == 0) |
12753 | { | |
12754 | /* This is not an exception name; this is the start of a condition | |
12755 | expression for a catchpoint on all exceptions. So, "un-get" | |
12756 | this token, and set exception_name to NULL. */ | |
12757 | xfree (exception_name); | |
12758 | exception_name = NULL; | |
12759 | args -= 2; | |
12760 | } | |
f7f9143b JB |
12761 | make_cleanup (xfree, exception_name); |
12762 | ||
5845583d | 12763 | /* Check to see if we have a condition. */ |
f7f9143b | 12764 | |
f1735a53 | 12765 | args = skip_spaces (args); |
61012eef | 12766 | if (startswith (args, "if") |
5845583d JB |
12767 | && (isspace (args[2]) || args[2] == '\0')) |
12768 | { | |
12769 | args += 2; | |
f1735a53 | 12770 | args = skip_spaces (args); |
5845583d JB |
12771 | |
12772 | if (args[0] == '\0') | |
12773 | error (_("Condition missing after `if' keyword")); | |
12774 | cond = xstrdup (args); | |
12775 | make_cleanup (xfree, cond); | |
12776 | ||
12777 | args += strlen (args); | |
12778 | } | |
12779 | ||
12780 | /* Check that we do not have any more arguments. Anything else | |
12781 | is unexpected. */ | |
f7f9143b JB |
12782 | |
12783 | if (args[0] != '\0') | |
12784 | error (_("Junk at end of expression")); | |
12785 | ||
12786 | discard_cleanups (old_chain); | |
12787 | ||
12788 | if (exception_name == NULL) | |
12789 | { | |
12790 | /* Catch all exceptions. */ | |
761269c8 | 12791 | *ex = ada_catch_exception; |
28010a5d | 12792 | *excep_string = NULL; |
f7f9143b JB |
12793 | } |
12794 | else if (strcmp (exception_name, "unhandled") == 0) | |
12795 | { | |
12796 | /* Catch unhandled exceptions. */ | |
761269c8 | 12797 | *ex = ada_catch_exception_unhandled; |
28010a5d | 12798 | *excep_string = NULL; |
f7f9143b JB |
12799 | } |
12800 | else | |
12801 | { | |
12802 | /* Catch a specific exception. */ | |
761269c8 | 12803 | *ex = ada_catch_exception; |
28010a5d | 12804 | *excep_string = exception_name; |
f7f9143b | 12805 | } |
5845583d | 12806 | *cond_string = cond; |
f7f9143b JB |
12807 | } |
12808 | ||
12809 | /* Return the name of the symbol on which we should break in order to | |
12810 | implement a catchpoint of the EX kind. */ | |
12811 | ||
12812 | static const char * | |
761269c8 | 12813 | ada_exception_sym_name (enum ada_exception_catchpoint_kind ex) |
f7f9143b | 12814 | { |
3eecfa55 JB |
12815 | struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ()); |
12816 | ||
12817 | gdb_assert (data->exception_info != NULL); | |
0259addd | 12818 | |
f7f9143b JB |
12819 | switch (ex) |
12820 | { | |
761269c8 | 12821 | case ada_catch_exception: |
3eecfa55 | 12822 | return (data->exception_info->catch_exception_sym); |
f7f9143b | 12823 | break; |
761269c8 | 12824 | case ada_catch_exception_unhandled: |
3eecfa55 | 12825 | return (data->exception_info->catch_exception_unhandled_sym); |
f7f9143b | 12826 | break; |
761269c8 | 12827 | case ada_catch_assert: |
3eecfa55 | 12828 | return (data->exception_info->catch_assert_sym); |
f7f9143b JB |
12829 | break; |
12830 | default: | |
12831 | internal_error (__FILE__, __LINE__, | |
12832 | _("unexpected catchpoint kind (%d)"), ex); | |
12833 | } | |
12834 | } | |
12835 | ||
12836 | /* Return the breakpoint ops "virtual table" used for catchpoints | |
12837 | of the EX kind. */ | |
12838 | ||
c0a91b2b | 12839 | static const struct breakpoint_ops * |
761269c8 | 12840 | ada_exception_breakpoint_ops (enum ada_exception_catchpoint_kind ex) |
f7f9143b JB |
12841 | { |
12842 | switch (ex) | |
12843 | { | |
761269c8 | 12844 | case ada_catch_exception: |
f7f9143b JB |
12845 | return (&catch_exception_breakpoint_ops); |
12846 | break; | |
761269c8 | 12847 | case ada_catch_exception_unhandled: |
f7f9143b JB |
12848 | return (&catch_exception_unhandled_breakpoint_ops); |
12849 | break; | |
761269c8 | 12850 | case ada_catch_assert: |
f7f9143b JB |
12851 | return (&catch_assert_breakpoint_ops); |
12852 | break; | |
12853 | default: | |
12854 | internal_error (__FILE__, __LINE__, | |
12855 | _("unexpected catchpoint kind (%d)"), ex); | |
12856 | } | |
12857 | } | |
12858 | ||
12859 | /* Return the condition that will be used to match the current exception | |
12860 | being raised with the exception that the user wants to catch. This | |
12861 | assumes that this condition is used when the inferior just triggered | |
12862 | an exception catchpoint. | |
12863 | ||
12864 | The string returned is a newly allocated string that needs to be | |
12865 | deallocated later. */ | |
12866 | ||
12867 | static char * | |
28010a5d | 12868 | ada_exception_catchpoint_cond_string (const char *excep_string) |
f7f9143b | 12869 | { |
3d0b0fa3 JB |
12870 | int i; |
12871 | ||
0963b4bd | 12872 | /* The standard exceptions are a special case. They are defined in |
3d0b0fa3 | 12873 | runtime units that have been compiled without debugging info; if |
28010a5d | 12874 | EXCEP_STRING is the not-fully-qualified name of a standard |
3d0b0fa3 JB |
12875 | exception (e.g. "constraint_error") then, during the evaluation |
12876 | of the condition expression, the symbol lookup on this name would | |
0963b4bd | 12877 | *not* return this standard exception. The catchpoint condition |
3d0b0fa3 JB |
12878 | may then be set only on user-defined exceptions which have the |
12879 | same not-fully-qualified name (e.g. my_package.constraint_error). | |
12880 | ||
12881 | To avoid this unexcepted behavior, these standard exceptions are | |
0963b4bd | 12882 | systematically prefixed by "standard". This means that "catch |
3d0b0fa3 JB |
12883 | exception constraint_error" is rewritten into "catch exception |
12884 | standard.constraint_error". | |
12885 | ||
12886 | If an exception named contraint_error is defined in another package of | |
12887 | the inferior program, then the only way to specify this exception as a | |
12888 | breakpoint condition is to use its fully-qualified named: | |
12889 | e.g. my_package.constraint_error. */ | |
12890 | ||
12891 | for (i = 0; i < sizeof (standard_exc) / sizeof (char *); i++) | |
12892 | { | |
28010a5d | 12893 | if (strcmp (standard_exc [i], excep_string) == 0) |
3d0b0fa3 JB |
12894 | { |
12895 | return xstrprintf ("long_integer (e) = long_integer (&standard.%s)", | |
28010a5d | 12896 | excep_string); |
3d0b0fa3 JB |
12897 | } |
12898 | } | |
28010a5d | 12899 | return xstrprintf ("long_integer (e) = long_integer (&%s)", excep_string); |
f7f9143b JB |
12900 | } |
12901 | ||
12902 | /* Return the symtab_and_line that should be used to insert an exception | |
12903 | catchpoint of the TYPE kind. | |
12904 | ||
28010a5d PA |
12905 | EXCEP_STRING should contain the name of a specific exception that |
12906 | the catchpoint should catch, or NULL otherwise. | |
f7f9143b | 12907 | |
28010a5d PA |
12908 | ADDR_STRING returns the name of the function where the real |
12909 | breakpoint that implements the catchpoints is set, depending on the | |
12910 | type of catchpoint we need to create. */ | |
f7f9143b JB |
12911 | |
12912 | static struct symtab_and_line | |
761269c8 | 12913 | ada_exception_sal (enum ada_exception_catchpoint_kind ex, char *excep_string, |
f2fc3015 | 12914 | const char **addr_string, const struct breakpoint_ops **ops) |
f7f9143b JB |
12915 | { |
12916 | const char *sym_name; | |
12917 | struct symbol *sym; | |
f7f9143b | 12918 | |
0259addd JB |
12919 | /* First, find out which exception support info to use. */ |
12920 | ada_exception_support_info_sniffer (); | |
12921 | ||
12922 | /* Then lookup the function on which we will break in order to catch | |
f7f9143b | 12923 | the Ada exceptions requested by the user. */ |
f7f9143b JB |
12924 | sym_name = ada_exception_sym_name (ex); |
12925 | sym = standard_lookup (sym_name, NULL, VAR_DOMAIN); | |
12926 | ||
f17011e0 JB |
12927 | /* We can assume that SYM is not NULL at this stage. If the symbol |
12928 | did not exist, ada_exception_support_info_sniffer would have | |
12929 | raised an exception. | |
f7f9143b | 12930 | |
f17011e0 JB |
12931 | Also, ada_exception_support_info_sniffer should have already |
12932 | verified that SYM is a function symbol. */ | |
12933 | gdb_assert (sym != NULL); | |
12934 | gdb_assert (SYMBOL_CLASS (sym) == LOC_BLOCK); | |
f7f9143b JB |
12935 | |
12936 | /* Set ADDR_STRING. */ | |
f7f9143b JB |
12937 | *addr_string = xstrdup (sym_name); |
12938 | ||
f7f9143b | 12939 | /* Set OPS. */ |
4b9eee8c | 12940 | *ops = ada_exception_breakpoint_ops (ex); |
f7f9143b | 12941 | |
f17011e0 | 12942 | return find_function_start_sal (sym, 1); |
f7f9143b JB |
12943 | } |
12944 | ||
b4a5b78b | 12945 | /* Create an Ada exception catchpoint. |
f7f9143b | 12946 | |
b4a5b78b | 12947 | EX_KIND is the kind of exception catchpoint to be created. |
5845583d | 12948 | |
2df4d1d5 JB |
12949 | If EXCEPT_STRING is NULL, this catchpoint is expected to trigger |
12950 | for all exceptions. Otherwise, EXCEPT_STRING indicates the name | |
12951 | of the exception to which this catchpoint applies. When not NULL, | |
12952 | the string must be allocated on the heap, and its deallocation | |
12953 | is no longer the responsibility of the caller. | |
12954 | ||
12955 | COND_STRING, if not NULL, is the catchpoint condition. This string | |
12956 | must be allocated on the heap, and its deallocation is no longer | |
12957 | the responsibility of the caller. | |
f7f9143b | 12958 | |
b4a5b78b JB |
12959 | TEMPFLAG, if nonzero, means that the underlying breakpoint |
12960 | should be temporary. | |
28010a5d | 12961 | |
b4a5b78b | 12962 | FROM_TTY is the usual argument passed to all commands implementations. */ |
28010a5d | 12963 | |
349774ef | 12964 | void |
28010a5d | 12965 | create_ada_exception_catchpoint (struct gdbarch *gdbarch, |
761269c8 | 12966 | enum ada_exception_catchpoint_kind ex_kind, |
28010a5d | 12967 | char *excep_string, |
5845583d | 12968 | char *cond_string, |
28010a5d | 12969 | int tempflag, |
349774ef | 12970 | int disabled, |
28010a5d PA |
12971 | int from_tty) |
12972 | { | |
f2fc3015 | 12973 | const char *addr_string = NULL; |
b4a5b78b JB |
12974 | const struct breakpoint_ops *ops = NULL; |
12975 | struct symtab_and_line sal | |
12976 | = ada_exception_sal (ex_kind, excep_string, &addr_string, &ops); | |
28010a5d | 12977 | |
b270e6f9 TT |
12978 | std::unique_ptr<ada_catchpoint> c (new ada_catchpoint ()); |
12979 | init_ada_exception_breakpoint (c.get (), gdbarch, sal, addr_string, | |
349774ef | 12980 | ops, tempflag, disabled, from_tty); |
28010a5d | 12981 | c->excep_string = excep_string; |
b270e6f9 | 12982 | create_excep_cond_exprs (c.get ()); |
5845583d | 12983 | if (cond_string != NULL) |
b270e6f9 TT |
12984 | set_breakpoint_condition (c.get (), cond_string, from_tty); |
12985 | install_breakpoint (0, std::move (c), 1); | |
f7f9143b JB |
12986 | } |
12987 | ||
9ac4176b PA |
12988 | /* Implement the "catch exception" command. */ |
12989 | ||
12990 | static void | |
a121b7c1 | 12991 | catch_ada_exception_command (char *arg_entry, int from_tty, |
9ac4176b PA |
12992 | struct cmd_list_element *command) |
12993 | { | |
a121b7c1 | 12994 | const char *arg = arg_entry; |
9ac4176b PA |
12995 | struct gdbarch *gdbarch = get_current_arch (); |
12996 | int tempflag; | |
761269c8 | 12997 | enum ada_exception_catchpoint_kind ex_kind; |
28010a5d | 12998 | char *excep_string = NULL; |
5845583d | 12999 | char *cond_string = NULL; |
9ac4176b PA |
13000 | |
13001 | tempflag = get_cmd_context (command) == CATCH_TEMPORARY; | |
13002 | ||
13003 | if (!arg) | |
13004 | arg = ""; | |
b4a5b78b JB |
13005 | catch_ada_exception_command_split (arg, &ex_kind, &excep_string, |
13006 | &cond_string); | |
13007 | create_ada_exception_catchpoint (gdbarch, ex_kind, | |
13008 | excep_string, cond_string, | |
349774ef JB |
13009 | tempflag, 1 /* enabled */, |
13010 | from_tty); | |
9ac4176b PA |
13011 | } |
13012 | ||
b4a5b78b | 13013 | /* Split the arguments specified in a "catch assert" command. |
5845583d | 13014 | |
b4a5b78b JB |
13015 | ARGS contains the command's arguments (or the empty string if |
13016 | no arguments were passed). | |
5845583d JB |
13017 | |
13018 | If ARGS contains a condition, set COND_STRING to that condition | |
b4a5b78b | 13019 | (the memory needs to be deallocated after use). */ |
5845583d | 13020 | |
b4a5b78b | 13021 | static void |
a121b7c1 | 13022 | catch_ada_assert_command_split (const char *args, char **cond_string) |
f7f9143b | 13023 | { |
f1735a53 | 13024 | args = skip_spaces (args); |
f7f9143b | 13025 | |
5845583d | 13026 | /* Check whether a condition was provided. */ |
61012eef | 13027 | if (startswith (args, "if") |
5845583d | 13028 | && (isspace (args[2]) || args[2] == '\0')) |
f7f9143b | 13029 | { |
5845583d | 13030 | args += 2; |
f1735a53 | 13031 | args = skip_spaces (args); |
5845583d JB |
13032 | if (args[0] == '\0') |
13033 | error (_("condition missing after `if' keyword")); | |
13034 | *cond_string = xstrdup (args); | |
f7f9143b JB |
13035 | } |
13036 | ||
5845583d JB |
13037 | /* Otherwise, there should be no other argument at the end of |
13038 | the command. */ | |
13039 | else if (args[0] != '\0') | |
13040 | error (_("Junk at end of arguments.")); | |
f7f9143b JB |
13041 | } |
13042 | ||
9ac4176b PA |
13043 | /* Implement the "catch assert" command. */ |
13044 | ||
13045 | static void | |
a121b7c1 | 13046 | catch_assert_command (char *arg_entry, int from_tty, |
9ac4176b PA |
13047 | struct cmd_list_element *command) |
13048 | { | |
a121b7c1 | 13049 | const char *arg = arg_entry; |
9ac4176b PA |
13050 | struct gdbarch *gdbarch = get_current_arch (); |
13051 | int tempflag; | |
5845583d | 13052 | char *cond_string = NULL; |
9ac4176b PA |
13053 | |
13054 | tempflag = get_cmd_context (command) == CATCH_TEMPORARY; | |
13055 | ||
13056 | if (!arg) | |
13057 | arg = ""; | |
b4a5b78b | 13058 | catch_ada_assert_command_split (arg, &cond_string); |
761269c8 | 13059 | create_ada_exception_catchpoint (gdbarch, ada_catch_assert, |
b4a5b78b | 13060 | NULL, cond_string, |
349774ef JB |
13061 | tempflag, 1 /* enabled */, |
13062 | from_tty); | |
9ac4176b | 13063 | } |
778865d3 JB |
13064 | |
13065 | /* Return non-zero if the symbol SYM is an Ada exception object. */ | |
13066 | ||
13067 | static int | |
13068 | ada_is_exception_sym (struct symbol *sym) | |
13069 | { | |
13070 | const char *type_name = type_name_no_tag (SYMBOL_TYPE (sym)); | |
13071 | ||
13072 | return (SYMBOL_CLASS (sym) != LOC_TYPEDEF | |
13073 | && SYMBOL_CLASS (sym) != LOC_BLOCK | |
13074 | && SYMBOL_CLASS (sym) != LOC_CONST | |
13075 | && SYMBOL_CLASS (sym) != LOC_UNRESOLVED | |
13076 | && type_name != NULL && strcmp (type_name, "exception") == 0); | |
13077 | } | |
13078 | ||
13079 | /* Given a global symbol SYM, return non-zero iff SYM is a non-standard | |
13080 | Ada exception object. This matches all exceptions except the ones | |
13081 | defined by the Ada language. */ | |
13082 | ||
13083 | static int | |
13084 | ada_is_non_standard_exception_sym (struct symbol *sym) | |
13085 | { | |
13086 | int i; | |
13087 | ||
13088 | if (!ada_is_exception_sym (sym)) | |
13089 | return 0; | |
13090 | ||
13091 | for (i = 0; i < ARRAY_SIZE (standard_exc); i++) | |
13092 | if (strcmp (SYMBOL_LINKAGE_NAME (sym), standard_exc[i]) == 0) | |
13093 | return 0; /* A standard exception. */ | |
13094 | ||
13095 | /* Numeric_Error is also a standard exception, so exclude it. | |
13096 | See the STANDARD_EXC description for more details as to why | |
13097 | this exception is not listed in that array. */ | |
13098 | if (strcmp (SYMBOL_LINKAGE_NAME (sym), "numeric_error") == 0) | |
13099 | return 0; | |
13100 | ||
13101 | return 1; | |
13102 | } | |
13103 | ||
ab816a27 | 13104 | /* A helper function for std::sort, comparing two struct ada_exc_info |
778865d3 JB |
13105 | objects. |
13106 | ||
13107 | The comparison is determined first by exception name, and then | |
13108 | by exception address. */ | |
13109 | ||
ab816a27 | 13110 | bool |
cc536b21 | 13111 | ada_exc_info::operator< (const ada_exc_info &other) const |
778865d3 | 13112 | { |
778865d3 JB |
13113 | int result; |
13114 | ||
ab816a27 TT |
13115 | result = strcmp (name, other.name); |
13116 | if (result < 0) | |
13117 | return true; | |
13118 | if (result == 0 && addr < other.addr) | |
13119 | return true; | |
13120 | return false; | |
13121 | } | |
778865d3 | 13122 | |
ab816a27 | 13123 | bool |
cc536b21 | 13124 | ada_exc_info::operator== (const ada_exc_info &other) const |
ab816a27 TT |
13125 | { |
13126 | return addr == other.addr && strcmp (name, other.name) == 0; | |
778865d3 JB |
13127 | } |
13128 | ||
13129 | /* Sort EXCEPTIONS using compare_ada_exception_info as the comparison | |
13130 | routine, but keeping the first SKIP elements untouched. | |
13131 | ||
13132 | All duplicates are also removed. */ | |
13133 | ||
13134 | static void | |
ab816a27 | 13135 | sort_remove_dups_ada_exceptions_list (std::vector<ada_exc_info> *exceptions, |
778865d3 JB |
13136 | int skip) |
13137 | { | |
ab816a27 TT |
13138 | std::sort (exceptions->begin () + skip, exceptions->end ()); |
13139 | exceptions->erase (std::unique (exceptions->begin () + skip, exceptions->end ()), | |
13140 | exceptions->end ()); | |
778865d3 JB |
13141 | } |
13142 | ||
778865d3 JB |
13143 | /* Add all exceptions defined by the Ada standard whose name match |
13144 | a regular expression. | |
13145 | ||
13146 | If PREG is not NULL, then this regexp_t object is used to | |
13147 | perform the symbol name matching. Otherwise, no name-based | |
13148 | filtering is performed. | |
13149 | ||
13150 | EXCEPTIONS is a vector of exceptions to which matching exceptions | |
13151 | gets pushed. */ | |
13152 | ||
13153 | static void | |
2d7cc5c7 | 13154 | ada_add_standard_exceptions (compiled_regex *preg, |
ab816a27 | 13155 | std::vector<ada_exc_info> *exceptions) |
778865d3 JB |
13156 | { |
13157 | int i; | |
13158 | ||
13159 | for (i = 0; i < ARRAY_SIZE (standard_exc); i++) | |
13160 | { | |
13161 | if (preg == NULL | |
2d7cc5c7 | 13162 | || preg->exec (standard_exc[i], 0, NULL, 0) == 0) |
778865d3 JB |
13163 | { |
13164 | struct bound_minimal_symbol msymbol | |
13165 | = ada_lookup_simple_minsym (standard_exc[i]); | |
13166 | ||
13167 | if (msymbol.minsym != NULL) | |
13168 | { | |
13169 | struct ada_exc_info info | |
77e371c0 | 13170 | = {standard_exc[i], BMSYMBOL_VALUE_ADDRESS (msymbol)}; |
778865d3 | 13171 | |
ab816a27 | 13172 | exceptions->push_back (info); |
778865d3 JB |
13173 | } |
13174 | } | |
13175 | } | |
13176 | } | |
13177 | ||
13178 | /* Add all Ada exceptions defined locally and accessible from the given | |
13179 | FRAME. | |
13180 | ||
13181 | If PREG is not NULL, then this regexp_t object is used to | |
13182 | perform the symbol name matching. Otherwise, no name-based | |
13183 | filtering is performed. | |
13184 | ||
13185 | EXCEPTIONS is a vector of exceptions to which matching exceptions | |
13186 | gets pushed. */ | |
13187 | ||
13188 | static void | |
2d7cc5c7 PA |
13189 | ada_add_exceptions_from_frame (compiled_regex *preg, |
13190 | struct frame_info *frame, | |
ab816a27 | 13191 | std::vector<ada_exc_info> *exceptions) |
778865d3 | 13192 | { |
3977b71f | 13193 | const struct block *block = get_frame_block (frame, 0); |
778865d3 JB |
13194 | |
13195 | while (block != 0) | |
13196 | { | |
13197 | struct block_iterator iter; | |
13198 | struct symbol *sym; | |
13199 | ||
13200 | ALL_BLOCK_SYMBOLS (block, iter, sym) | |
13201 | { | |
13202 | switch (SYMBOL_CLASS (sym)) | |
13203 | { | |
13204 | case LOC_TYPEDEF: | |
13205 | case LOC_BLOCK: | |
13206 | case LOC_CONST: | |
13207 | break; | |
13208 | default: | |
13209 | if (ada_is_exception_sym (sym)) | |
13210 | { | |
13211 | struct ada_exc_info info = {SYMBOL_PRINT_NAME (sym), | |
13212 | SYMBOL_VALUE_ADDRESS (sym)}; | |
13213 | ||
ab816a27 | 13214 | exceptions->push_back (info); |
778865d3 JB |
13215 | } |
13216 | } | |
13217 | } | |
13218 | if (BLOCK_FUNCTION (block) != NULL) | |
13219 | break; | |
13220 | block = BLOCK_SUPERBLOCK (block); | |
13221 | } | |
13222 | } | |
13223 | ||
14bc53a8 PA |
13224 | /* Return true if NAME matches PREG or if PREG is NULL. */ |
13225 | ||
13226 | static bool | |
2d7cc5c7 | 13227 | name_matches_regex (const char *name, compiled_regex *preg) |
14bc53a8 PA |
13228 | { |
13229 | return (preg == NULL | |
2d7cc5c7 | 13230 | || preg->exec (ada_decode (name), 0, NULL, 0) == 0); |
14bc53a8 PA |
13231 | } |
13232 | ||
778865d3 JB |
13233 | /* Add all exceptions defined globally whose name name match |
13234 | a regular expression, excluding standard exceptions. | |
13235 | ||
13236 | The reason we exclude standard exceptions is that they need | |
13237 | to be handled separately: Standard exceptions are defined inside | |
13238 | a runtime unit which is normally not compiled with debugging info, | |
13239 | and thus usually do not show up in our symbol search. However, | |
13240 | if the unit was in fact built with debugging info, we need to | |
13241 | exclude them because they would duplicate the entry we found | |
13242 | during the special loop that specifically searches for those | |
13243 | standard exceptions. | |
13244 | ||
13245 | If PREG is not NULL, then this regexp_t object is used to | |
13246 | perform the symbol name matching. Otherwise, no name-based | |
13247 | filtering is performed. | |
13248 | ||
13249 | EXCEPTIONS is a vector of exceptions to which matching exceptions | |
13250 | gets pushed. */ | |
13251 | ||
13252 | static void | |
2d7cc5c7 | 13253 | ada_add_global_exceptions (compiled_regex *preg, |
ab816a27 | 13254 | std::vector<ada_exc_info> *exceptions) |
778865d3 JB |
13255 | { |
13256 | struct objfile *objfile; | |
43f3e411 | 13257 | struct compunit_symtab *s; |
778865d3 | 13258 | |
14bc53a8 PA |
13259 | /* In Ada, the symbol "search name" is a linkage name, whereas the |
13260 | regular expression used to do the matching refers to the natural | |
13261 | name. So match against the decoded name. */ | |
13262 | expand_symtabs_matching (NULL, | |
13263 | [&] (const char *search_name) | |
13264 | { | |
13265 | const char *decoded = ada_decode (search_name); | |
13266 | return name_matches_regex (decoded, preg); | |
13267 | }, | |
13268 | NULL, | |
13269 | VARIABLES_DOMAIN); | |
778865d3 | 13270 | |
43f3e411 | 13271 | ALL_COMPUNITS (objfile, s) |
778865d3 | 13272 | { |
43f3e411 | 13273 | const struct blockvector *bv = COMPUNIT_BLOCKVECTOR (s); |
778865d3 JB |
13274 | int i; |
13275 | ||
13276 | for (i = GLOBAL_BLOCK; i <= STATIC_BLOCK; i++) | |
13277 | { | |
13278 | struct block *b = BLOCKVECTOR_BLOCK (bv, i); | |
13279 | struct block_iterator iter; | |
13280 | struct symbol *sym; | |
13281 | ||
13282 | ALL_BLOCK_SYMBOLS (b, iter, sym) | |
13283 | if (ada_is_non_standard_exception_sym (sym) | |
14bc53a8 | 13284 | && name_matches_regex (SYMBOL_NATURAL_NAME (sym), preg)) |
778865d3 JB |
13285 | { |
13286 | struct ada_exc_info info | |
13287 | = {SYMBOL_PRINT_NAME (sym), SYMBOL_VALUE_ADDRESS (sym)}; | |
13288 | ||
ab816a27 | 13289 | exceptions->push_back (info); |
778865d3 JB |
13290 | } |
13291 | } | |
13292 | } | |
13293 | } | |
13294 | ||
13295 | /* Implements ada_exceptions_list with the regular expression passed | |
13296 | as a regex_t, rather than a string. | |
13297 | ||
13298 | If not NULL, PREG is used to filter out exceptions whose names | |
13299 | do not match. Otherwise, all exceptions are listed. */ | |
13300 | ||
ab816a27 | 13301 | static std::vector<ada_exc_info> |
2d7cc5c7 | 13302 | ada_exceptions_list_1 (compiled_regex *preg) |
778865d3 | 13303 | { |
ab816a27 | 13304 | std::vector<ada_exc_info> result; |
778865d3 JB |
13305 | int prev_len; |
13306 | ||
13307 | /* First, list the known standard exceptions. These exceptions | |
13308 | need to be handled separately, as they are usually defined in | |
13309 | runtime units that have been compiled without debugging info. */ | |
13310 | ||
13311 | ada_add_standard_exceptions (preg, &result); | |
13312 | ||
13313 | /* Next, find all exceptions whose scope is local and accessible | |
13314 | from the currently selected frame. */ | |
13315 | ||
13316 | if (has_stack_frames ()) | |
13317 | { | |
ab816a27 | 13318 | prev_len = result.size (); |
778865d3 JB |
13319 | ada_add_exceptions_from_frame (preg, get_selected_frame (NULL), |
13320 | &result); | |
ab816a27 | 13321 | if (result.size () > prev_len) |
778865d3 JB |
13322 | sort_remove_dups_ada_exceptions_list (&result, prev_len); |
13323 | } | |
13324 | ||
13325 | /* Add all exceptions whose scope is global. */ | |
13326 | ||
ab816a27 | 13327 | prev_len = result.size (); |
778865d3 | 13328 | ada_add_global_exceptions (preg, &result); |
ab816a27 | 13329 | if (result.size () > prev_len) |
778865d3 JB |
13330 | sort_remove_dups_ada_exceptions_list (&result, prev_len); |
13331 | ||
778865d3 JB |
13332 | return result; |
13333 | } | |
13334 | ||
13335 | /* Return a vector of ada_exc_info. | |
13336 | ||
13337 | If REGEXP is NULL, all exceptions are included in the result. | |
13338 | Otherwise, it should contain a valid regular expression, | |
13339 | and only the exceptions whose names match that regular expression | |
13340 | are included in the result. | |
13341 | ||
13342 | The exceptions are sorted in the following order: | |
13343 | - Standard exceptions (defined by the Ada language), in | |
13344 | alphabetical order; | |
13345 | - Exceptions only visible from the current frame, in | |
13346 | alphabetical order; | |
13347 | - Exceptions whose scope is global, in alphabetical order. */ | |
13348 | ||
ab816a27 | 13349 | std::vector<ada_exc_info> |
778865d3 JB |
13350 | ada_exceptions_list (const char *regexp) |
13351 | { | |
2d7cc5c7 PA |
13352 | if (regexp == NULL) |
13353 | return ada_exceptions_list_1 (NULL); | |
778865d3 | 13354 | |
2d7cc5c7 PA |
13355 | compiled_regex reg (regexp, REG_NOSUB, _("invalid regular expression")); |
13356 | return ada_exceptions_list_1 (®); | |
778865d3 JB |
13357 | } |
13358 | ||
13359 | /* Implement the "info exceptions" command. */ | |
13360 | ||
13361 | static void | |
1d12d88f | 13362 | info_exceptions_command (const char *regexp, int from_tty) |
778865d3 | 13363 | { |
778865d3 | 13364 | struct gdbarch *gdbarch = get_current_arch (); |
778865d3 | 13365 | |
ab816a27 | 13366 | std::vector<ada_exc_info> exceptions = ada_exceptions_list (regexp); |
778865d3 JB |
13367 | |
13368 | if (regexp != NULL) | |
13369 | printf_filtered | |
13370 | (_("All Ada exceptions matching regular expression \"%s\":\n"), regexp); | |
13371 | else | |
13372 | printf_filtered (_("All defined Ada exceptions:\n")); | |
13373 | ||
ab816a27 TT |
13374 | for (const ada_exc_info &info : exceptions) |
13375 | printf_filtered ("%s: %s\n", info.name, paddress (gdbarch, info.addr)); | |
778865d3 JB |
13376 | } |
13377 | ||
4c4b4cd2 PH |
13378 | /* Operators */ |
13379 | /* Information about operators given special treatment in functions | |
13380 | below. */ | |
13381 | /* Format: OP_DEFN (<operator>, <operator length>, <# args>, <binop>). */ | |
13382 | ||
13383 | #define ADA_OPERATORS \ | |
13384 | OP_DEFN (OP_VAR_VALUE, 4, 0, 0) \ | |
13385 | OP_DEFN (BINOP_IN_BOUNDS, 3, 2, 0) \ | |
13386 | OP_DEFN (TERNOP_IN_RANGE, 1, 3, 0) \ | |
13387 | OP_DEFN (OP_ATR_FIRST, 1, 2, 0) \ | |
13388 | OP_DEFN (OP_ATR_LAST, 1, 2, 0) \ | |
13389 | OP_DEFN (OP_ATR_LENGTH, 1, 2, 0) \ | |
13390 | OP_DEFN (OP_ATR_IMAGE, 1, 2, 0) \ | |
13391 | OP_DEFN (OP_ATR_MAX, 1, 3, 0) \ | |
13392 | OP_DEFN (OP_ATR_MIN, 1, 3, 0) \ | |
13393 | OP_DEFN (OP_ATR_MODULUS, 1, 1, 0) \ | |
13394 | OP_DEFN (OP_ATR_POS, 1, 2, 0) \ | |
13395 | OP_DEFN (OP_ATR_SIZE, 1, 1, 0) \ | |
13396 | OP_DEFN (OP_ATR_TAG, 1, 1, 0) \ | |
13397 | OP_DEFN (OP_ATR_VAL, 1, 2, 0) \ | |
13398 | OP_DEFN (UNOP_QUAL, 3, 1, 0) \ | |
52ce6436 PH |
13399 | OP_DEFN (UNOP_IN_RANGE, 3, 1, 0) \ |
13400 | OP_DEFN (OP_OTHERS, 1, 1, 0) \ | |
13401 | OP_DEFN (OP_POSITIONAL, 3, 1, 0) \ | |
13402 | OP_DEFN (OP_DISCRETE_RANGE, 1, 2, 0) | |
4c4b4cd2 PH |
13403 | |
13404 | static void | |
554794dc SDJ |
13405 | ada_operator_length (const struct expression *exp, int pc, int *oplenp, |
13406 | int *argsp) | |
4c4b4cd2 PH |
13407 | { |
13408 | switch (exp->elts[pc - 1].opcode) | |
13409 | { | |
76a01679 | 13410 | default: |
4c4b4cd2 PH |
13411 | operator_length_standard (exp, pc, oplenp, argsp); |
13412 | break; | |
13413 | ||
13414 | #define OP_DEFN(op, len, args, binop) \ | |
13415 | case op: *oplenp = len; *argsp = args; break; | |
13416 | ADA_OPERATORS; | |
13417 | #undef OP_DEFN | |
52ce6436 PH |
13418 | |
13419 | case OP_AGGREGATE: | |
13420 | *oplenp = 3; | |
13421 | *argsp = longest_to_int (exp->elts[pc - 2].longconst); | |
13422 | break; | |
13423 | ||
13424 | case OP_CHOICES: | |
13425 | *oplenp = 3; | |
13426 | *argsp = longest_to_int (exp->elts[pc - 2].longconst) + 1; | |
13427 | break; | |
4c4b4cd2 PH |
13428 | } |
13429 | } | |
13430 | ||
c0201579 JK |
13431 | /* Implementation of the exp_descriptor method operator_check. */ |
13432 | ||
13433 | static int | |
13434 | ada_operator_check (struct expression *exp, int pos, | |
13435 | int (*objfile_func) (struct objfile *objfile, void *data), | |
13436 | void *data) | |
13437 | { | |
13438 | const union exp_element *const elts = exp->elts; | |
13439 | struct type *type = NULL; | |
13440 | ||
13441 | switch (elts[pos].opcode) | |
13442 | { | |
13443 | case UNOP_IN_RANGE: | |
13444 | case UNOP_QUAL: | |
13445 | type = elts[pos + 1].type; | |
13446 | break; | |
13447 | ||
13448 | default: | |
13449 | return operator_check_standard (exp, pos, objfile_func, data); | |
13450 | } | |
13451 | ||
13452 | /* Invoke callbacks for TYPE and OBJFILE if they were set as non-NULL. */ | |
13453 | ||
13454 | if (type && TYPE_OBJFILE (type) | |
13455 | && (*objfile_func) (TYPE_OBJFILE (type), data)) | |
13456 | return 1; | |
13457 | ||
13458 | return 0; | |
13459 | } | |
13460 | ||
a121b7c1 | 13461 | static const char * |
4c4b4cd2 PH |
13462 | ada_op_name (enum exp_opcode opcode) |
13463 | { | |
13464 | switch (opcode) | |
13465 | { | |
76a01679 | 13466 | default: |
4c4b4cd2 | 13467 | return op_name_standard (opcode); |
52ce6436 | 13468 | |
4c4b4cd2 PH |
13469 | #define OP_DEFN(op, len, args, binop) case op: return #op; |
13470 | ADA_OPERATORS; | |
13471 | #undef OP_DEFN | |
52ce6436 PH |
13472 | |
13473 | case OP_AGGREGATE: | |
13474 | return "OP_AGGREGATE"; | |
13475 | case OP_CHOICES: | |
13476 | return "OP_CHOICES"; | |
13477 | case OP_NAME: | |
13478 | return "OP_NAME"; | |
4c4b4cd2 PH |
13479 | } |
13480 | } | |
13481 | ||
13482 | /* As for operator_length, but assumes PC is pointing at the first | |
13483 | element of the operator, and gives meaningful results only for the | |
52ce6436 | 13484 | Ada-specific operators, returning 0 for *OPLENP and *ARGSP otherwise. */ |
4c4b4cd2 PH |
13485 | |
13486 | static void | |
76a01679 JB |
13487 | ada_forward_operator_length (struct expression *exp, int pc, |
13488 | int *oplenp, int *argsp) | |
4c4b4cd2 | 13489 | { |
76a01679 | 13490 | switch (exp->elts[pc].opcode) |
4c4b4cd2 PH |
13491 | { |
13492 | default: | |
13493 | *oplenp = *argsp = 0; | |
13494 | break; | |
52ce6436 | 13495 | |
4c4b4cd2 PH |
13496 | #define OP_DEFN(op, len, args, binop) \ |
13497 | case op: *oplenp = len; *argsp = args; break; | |
13498 | ADA_OPERATORS; | |
13499 | #undef OP_DEFN | |
52ce6436 PH |
13500 | |
13501 | case OP_AGGREGATE: | |
13502 | *oplenp = 3; | |
13503 | *argsp = longest_to_int (exp->elts[pc + 1].longconst); | |
13504 | break; | |
13505 | ||
13506 | case OP_CHOICES: | |
13507 | *oplenp = 3; | |
13508 | *argsp = longest_to_int (exp->elts[pc + 1].longconst) + 1; | |
13509 | break; | |
13510 | ||
13511 | case OP_STRING: | |
13512 | case OP_NAME: | |
13513 | { | |
13514 | int len = longest_to_int (exp->elts[pc + 1].longconst); | |
5b4ee69b | 13515 | |
52ce6436 PH |
13516 | *oplenp = 4 + BYTES_TO_EXP_ELEM (len + 1); |
13517 | *argsp = 0; | |
13518 | break; | |
13519 | } | |
4c4b4cd2 PH |
13520 | } |
13521 | } | |
13522 | ||
13523 | static int | |
13524 | ada_dump_subexp_body (struct expression *exp, struct ui_file *stream, int elt) | |
13525 | { | |
13526 | enum exp_opcode op = exp->elts[elt].opcode; | |
13527 | int oplen, nargs; | |
13528 | int pc = elt; | |
13529 | int i; | |
76a01679 | 13530 | |
4c4b4cd2 PH |
13531 | ada_forward_operator_length (exp, elt, &oplen, &nargs); |
13532 | ||
76a01679 | 13533 | switch (op) |
4c4b4cd2 | 13534 | { |
76a01679 | 13535 | /* Ada attributes ('Foo). */ |
4c4b4cd2 PH |
13536 | case OP_ATR_FIRST: |
13537 | case OP_ATR_LAST: | |
13538 | case OP_ATR_LENGTH: | |
13539 | case OP_ATR_IMAGE: | |
13540 | case OP_ATR_MAX: | |
13541 | case OP_ATR_MIN: | |
13542 | case OP_ATR_MODULUS: | |
13543 | case OP_ATR_POS: | |
13544 | case OP_ATR_SIZE: | |
13545 | case OP_ATR_TAG: | |
13546 | case OP_ATR_VAL: | |
13547 | break; | |
13548 | ||
13549 | case UNOP_IN_RANGE: | |
13550 | case UNOP_QUAL: | |
323e0a4a AC |
13551 | /* XXX: gdb_sprint_host_address, type_sprint */ |
13552 | fprintf_filtered (stream, _("Type @")); | |
4c4b4cd2 PH |
13553 | gdb_print_host_address (exp->elts[pc + 1].type, stream); |
13554 | fprintf_filtered (stream, " ("); | |
13555 | type_print (exp->elts[pc + 1].type, NULL, stream, 0); | |
13556 | fprintf_filtered (stream, ")"); | |
13557 | break; | |
13558 | case BINOP_IN_BOUNDS: | |
52ce6436 PH |
13559 | fprintf_filtered (stream, " (%d)", |
13560 | longest_to_int (exp->elts[pc + 2].longconst)); | |
4c4b4cd2 PH |
13561 | break; |
13562 | case TERNOP_IN_RANGE: | |
13563 | break; | |
13564 | ||
52ce6436 PH |
13565 | case OP_AGGREGATE: |
13566 | case OP_OTHERS: | |
13567 | case OP_DISCRETE_RANGE: | |
13568 | case OP_POSITIONAL: | |
13569 | case OP_CHOICES: | |
13570 | break; | |
13571 | ||
13572 | case OP_NAME: | |
13573 | case OP_STRING: | |
13574 | { | |
13575 | char *name = &exp->elts[elt + 2].string; | |
13576 | int len = longest_to_int (exp->elts[elt + 1].longconst); | |
5b4ee69b | 13577 | |
52ce6436 PH |
13578 | fprintf_filtered (stream, "Text: `%.*s'", len, name); |
13579 | break; | |
13580 | } | |
13581 | ||
4c4b4cd2 PH |
13582 | default: |
13583 | return dump_subexp_body_standard (exp, stream, elt); | |
13584 | } | |
13585 | ||
13586 | elt += oplen; | |
13587 | for (i = 0; i < nargs; i += 1) | |
13588 | elt = dump_subexp (exp, stream, elt); | |
13589 | ||
13590 | return elt; | |
13591 | } | |
13592 | ||
13593 | /* The Ada extension of print_subexp (q.v.). */ | |
13594 | ||
76a01679 JB |
13595 | static void |
13596 | ada_print_subexp (struct expression *exp, int *pos, | |
13597 | struct ui_file *stream, enum precedence prec) | |
4c4b4cd2 | 13598 | { |
52ce6436 | 13599 | int oplen, nargs, i; |
4c4b4cd2 PH |
13600 | int pc = *pos; |
13601 | enum exp_opcode op = exp->elts[pc].opcode; | |
13602 | ||
13603 | ada_forward_operator_length (exp, pc, &oplen, &nargs); | |
13604 | ||
52ce6436 | 13605 | *pos += oplen; |
4c4b4cd2 PH |
13606 | switch (op) |
13607 | { | |
13608 | default: | |
52ce6436 | 13609 | *pos -= oplen; |
4c4b4cd2 PH |
13610 | print_subexp_standard (exp, pos, stream, prec); |
13611 | return; | |
13612 | ||
13613 | case OP_VAR_VALUE: | |
4c4b4cd2 PH |
13614 | fputs_filtered (SYMBOL_NATURAL_NAME (exp->elts[pc + 2].symbol), stream); |
13615 | return; | |
13616 | ||
13617 | case BINOP_IN_BOUNDS: | |
323e0a4a | 13618 | /* XXX: sprint_subexp */ |
4c4b4cd2 | 13619 | print_subexp (exp, pos, stream, PREC_SUFFIX); |
0b48a291 | 13620 | fputs_filtered (" in ", stream); |
4c4b4cd2 | 13621 | print_subexp (exp, pos, stream, PREC_SUFFIX); |
0b48a291 | 13622 | fputs_filtered ("'range", stream); |
4c4b4cd2 | 13623 | if (exp->elts[pc + 1].longconst > 1) |
76a01679 JB |
13624 | fprintf_filtered (stream, "(%ld)", |
13625 | (long) exp->elts[pc + 1].longconst); | |
4c4b4cd2 PH |
13626 | return; |
13627 | ||
13628 | case TERNOP_IN_RANGE: | |
4c4b4cd2 | 13629 | if (prec >= PREC_EQUAL) |
76a01679 | 13630 | fputs_filtered ("(", stream); |
323e0a4a | 13631 | /* XXX: sprint_subexp */ |
4c4b4cd2 | 13632 | print_subexp (exp, pos, stream, PREC_SUFFIX); |
0b48a291 | 13633 | fputs_filtered (" in ", stream); |
4c4b4cd2 PH |
13634 | print_subexp (exp, pos, stream, PREC_EQUAL); |
13635 | fputs_filtered (" .. ", stream); | |
13636 | print_subexp (exp, pos, stream, PREC_EQUAL); | |
13637 | if (prec >= PREC_EQUAL) | |
76a01679 JB |
13638 | fputs_filtered (")", stream); |
13639 | return; | |
4c4b4cd2 PH |
13640 | |
13641 | case OP_ATR_FIRST: | |
13642 | case OP_ATR_LAST: | |
13643 | case OP_ATR_LENGTH: | |
13644 | case OP_ATR_IMAGE: | |
13645 | case OP_ATR_MAX: | |
13646 | case OP_ATR_MIN: | |
13647 | case OP_ATR_MODULUS: | |
13648 | case OP_ATR_POS: | |
13649 | case OP_ATR_SIZE: | |
13650 | case OP_ATR_TAG: | |
13651 | case OP_ATR_VAL: | |
4c4b4cd2 | 13652 | if (exp->elts[*pos].opcode == OP_TYPE) |
76a01679 JB |
13653 | { |
13654 | if (TYPE_CODE (exp->elts[*pos + 1].type) != TYPE_CODE_VOID) | |
79d43c61 TT |
13655 | LA_PRINT_TYPE (exp->elts[*pos + 1].type, "", stream, 0, 0, |
13656 | &type_print_raw_options); | |
76a01679 JB |
13657 | *pos += 3; |
13658 | } | |
4c4b4cd2 | 13659 | else |
76a01679 | 13660 | print_subexp (exp, pos, stream, PREC_SUFFIX); |
4c4b4cd2 PH |
13661 | fprintf_filtered (stream, "'%s", ada_attribute_name (op)); |
13662 | if (nargs > 1) | |
76a01679 JB |
13663 | { |
13664 | int tem; | |
5b4ee69b | 13665 | |
76a01679 JB |
13666 | for (tem = 1; tem < nargs; tem += 1) |
13667 | { | |
13668 | fputs_filtered ((tem == 1) ? " (" : ", ", stream); | |
13669 | print_subexp (exp, pos, stream, PREC_ABOVE_COMMA); | |
13670 | } | |
13671 | fputs_filtered (")", stream); | |
13672 | } | |
4c4b4cd2 | 13673 | return; |
14f9c5c9 | 13674 | |
4c4b4cd2 | 13675 | case UNOP_QUAL: |
4c4b4cd2 PH |
13676 | type_print (exp->elts[pc + 1].type, "", stream, 0); |
13677 | fputs_filtered ("'(", stream); | |
13678 | print_subexp (exp, pos, stream, PREC_PREFIX); | |
13679 | fputs_filtered (")", stream); | |
13680 | return; | |
14f9c5c9 | 13681 | |
4c4b4cd2 | 13682 | case UNOP_IN_RANGE: |
323e0a4a | 13683 | /* XXX: sprint_subexp */ |
4c4b4cd2 | 13684 | print_subexp (exp, pos, stream, PREC_SUFFIX); |
0b48a291 | 13685 | fputs_filtered (" in ", stream); |
79d43c61 TT |
13686 | LA_PRINT_TYPE (exp->elts[pc + 1].type, "", stream, 1, 0, |
13687 | &type_print_raw_options); | |
4c4b4cd2 | 13688 | return; |
52ce6436 PH |
13689 | |
13690 | case OP_DISCRETE_RANGE: | |
13691 | print_subexp (exp, pos, stream, PREC_SUFFIX); | |
13692 | fputs_filtered ("..", stream); | |
13693 | print_subexp (exp, pos, stream, PREC_SUFFIX); | |
13694 | return; | |
13695 | ||
13696 | case OP_OTHERS: | |
13697 | fputs_filtered ("others => ", stream); | |
13698 | print_subexp (exp, pos, stream, PREC_SUFFIX); | |
13699 | return; | |
13700 | ||
13701 | case OP_CHOICES: | |
13702 | for (i = 0; i < nargs-1; i += 1) | |
13703 | { | |
13704 | if (i > 0) | |
13705 | fputs_filtered ("|", stream); | |
13706 | print_subexp (exp, pos, stream, PREC_SUFFIX); | |
13707 | } | |
13708 | fputs_filtered (" => ", stream); | |
13709 | print_subexp (exp, pos, stream, PREC_SUFFIX); | |
13710 | return; | |
13711 | ||
13712 | case OP_POSITIONAL: | |
13713 | print_subexp (exp, pos, stream, PREC_SUFFIX); | |
13714 | return; | |
13715 | ||
13716 | case OP_AGGREGATE: | |
13717 | fputs_filtered ("(", stream); | |
13718 | for (i = 0; i < nargs; i += 1) | |
13719 | { | |
13720 | if (i > 0) | |
13721 | fputs_filtered (", ", stream); | |
13722 | print_subexp (exp, pos, stream, PREC_SUFFIX); | |
13723 | } | |
13724 | fputs_filtered (")", stream); | |
13725 | return; | |
4c4b4cd2 PH |
13726 | } |
13727 | } | |
14f9c5c9 AS |
13728 | |
13729 | /* Table mapping opcodes into strings for printing operators | |
13730 | and precedences of the operators. */ | |
13731 | ||
d2e4a39e AS |
13732 | static const struct op_print ada_op_print_tab[] = { |
13733 | {":=", BINOP_ASSIGN, PREC_ASSIGN, 1}, | |
13734 | {"or else", BINOP_LOGICAL_OR, PREC_LOGICAL_OR, 0}, | |
13735 | {"and then", BINOP_LOGICAL_AND, PREC_LOGICAL_AND, 0}, | |
13736 | {"or", BINOP_BITWISE_IOR, PREC_BITWISE_IOR, 0}, | |
13737 | {"xor", BINOP_BITWISE_XOR, PREC_BITWISE_XOR, 0}, | |
13738 | {"and", BINOP_BITWISE_AND, PREC_BITWISE_AND, 0}, | |
13739 | {"=", BINOP_EQUAL, PREC_EQUAL, 0}, | |
13740 | {"/=", BINOP_NOTEQUAL, PREC_EQUAL, 0}, | |
13741 | {"<=", BINOP_LEQ, PREC_ORDER, 0}, | |
13742 | {">=", BINOP_GEQ, PREC_ORDER, 0}, | |
13743 | {">", BINOP_GTR, PREC_ORDER, 0}, | |
13744 | {"<", BINOP_LESS, PREC_ORDER, 0}, | |
13745 | {">>", BINOP_RSH, PREC_SHIFT, 0}, | |
13746 | {"<<", BINOP_LSH, PREC_SHIFT, 0}, | |
13747 | {"+", BINOP_ADD, PREC_ADD, 0}, | |
13748 | {"-", BINOP_SUB, PREC_ADD, 0}, | |
13749 | {"&", BINOP_CONCAT, PREC_ADD, 0}, | |
13750 | {"*", BINOP_MUL, PREC_MUL, 0}, | |
13751 | {"/", BINOP_DIV, PREC_MUL, 0}, | |
13752 | {"rem", BINOP_REM, PREC_MUL, 0}, | |
13753 | {"mod", BINOP_MOD, PREC_MUL, 0}, | |
13754 | {"**", BINOP_EXP, PREC_REPEAT, 0}, | |
13755 | {"@", BINOP_REPEAT, PREC_REPEAT, 0}, | |
13756 | {"-", UNOP_NEG, PREC_PREFIX, 0}, | |
13757 | {"+", UNOP_PLUS, PREC_PREFIX, 0}, | |
13758 | {"not ", UNOP_LOGICAL_NOT, PREC_PREFIX, 0}, | |
13759 | {"not ", UNOP_COMPLEMENT, PREC_PREFIX, 0}, | |
13760 | {"abs ", UNOP_ABS, PREC_PREFIX, 0}, | |
4c4b4cd2 PH |
13761 | {".all", UNOP_IND, PREC_SUFFIX, 1}, |
13762 | {"'access", UNOP_ADDR, PREC_SUFFIX, 1}, | |
13763 | {"'size", OP_ATR_SIZE, PREC_SUFFIX, 1}, | |
f486487f | 13764 | {NULL, OP_NULL, PREC_SUFFIX, 0} |
14f9c5c9 AS |
13765 | }; |
13766 | \f | |
72d5681a PH |
13767 | enum ada_primitive_types { |
13768 | ada_primitive_type_int, | |
13769 | ada_primitive_type_long, | |
13770 | ada_primitive_type_short, | |
13771 | ada_primitive_type_char, | |
13772 | ada_primitive_type_float, | |
13773 | ada_primitive_type_double, | |
13774 | ada_primitive_type_void, | |
13775 | ada_primitive_type_long_long, | |
13776 | ada_primitive_type_long_double, | |
13777 | ada_primitive_type_natural, | |
13778 | ada_primitive_type_positive, | |
13779 | ada_primitive_type_system_address, | |
13780 | nr_ada_primitive_types | |
13781 | }; | |
6c038f32 PH |
13782 | |
13783 | static void | |
d4a9a881 | 13784 | ada_language_arch_info (struct gdbarch *gdbarch, |
72d5681a PH |
13785 | struct language_arch_info *lai) |
13786 | { | |
d4a9a881 | 13787 | const struct builtin_type *builtin = builtin_type (gdbarch); |
5b4ee69b | 13788 | |
72d5681a | 13789 | lai->primitive_type_vector |
d4a9a881 | 13790 | = GDBARCH_OBSTACK_CALLOC (gdbarch, nr_ada_primitive_types + 1, |
72d5681a | 13791 | struct type *); |
e9bb382b UW |
13792 | |
13793 | lai->primitive_type_vector [ada_primitive_type_int] | |
13794 | = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch), | |
13795 | 0, "integer"); | |
13796 | lai->primitive_type_vector [ada_primitive_type_long] | |
13797 | = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch), | |
13798 | 0, "long_integer"); | |
13799 | lai->primitive_type_vector [ada_primitive_type_short] | |
13800 | = arch_integer_type (gdbarch, gdbarch_short_bit (gdbarch), | |
13801 | 0, "short_integer"); | |
13802 | lai->string_char_type | |
13803 | = lai->primitive_type_vector [ada_primitive_type_char] | |
cd7c1778 | 13804 | = arch_character_type (gdbarch, TARGET_CHAR_BIT, 0, "character"); |
e9bb382b UW |
13805 | lai->primitive_type_vector [ada_primitive_type_float] |
13806 | = arch_float_type (gdbarch, gdbarch_float_bit (gdbarch), | |
49f190bc | 13807 | "float", gdbarch_float_format (gdbarch)); |
e9bb382b UW |
13808 | lai->primitive_type_vector [ada_primitive_type_double] |
13809 | = arch_float_type (gdbarch, gdbarch_double_bit (gdbarch), | |
49f190bc | 13810 | "long_float", gdbarch_double_format (gdbarch)); |
e9bb382b UW |
13811 | lai->primitive_type_vector [ada_primitive_type_long_long] |
13812 | = arch_integer_type (gdbarch, gdbarch_long_long_bit (gdbarch), | |
13813 | 0, "long_long_integer"); | |
13814 | lai->primitive_type_vector [ada_primitive_type_long_double] | |
5f3bceb6 | 13815 | = arch_float_type (gdbarch, gdbarch_long_double_bit (gdbarch), |
49f190bc | 13816 | "long_long_float", gdbarch_long_double_format (gdbarch)); |
e9bb382b UW |
13817 | lai->primitive_type_vector [ada_primitive_type_natural] |
13818 | = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch), | |
13819 | 0, "natural"); | |
13820 | lai->primitive_type_vector [ada_primitive_type_positive] | |
13821 | = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch), | |
13822 | 0, "positive"); | |
13823 | lai->primitive_type_vector [ada_primitive_type_void] | |
13824 | = builtin->builtin_void; | |
13825 | ||
13826 | lai->primitive_type_vector [ada_primitive_type_system_address] | |
77b7c781 UW |
13827 | = lookup_pointer_type (arch_type (gdbarch, TYPE_CODE_VOID, TARGET_CHAR_BIT, |
13828 | "void")); | |
72d5681a PH |
13829 | TYPE_NAME (lai->primitive_type_vector [ada_primitive_type_system_address]) |
13830 | = "system__address"; | |
fbb06eb1 | 13831 | |
47e729a8 | 13832 | lai->bool_type_symbol = NULL; |
fbb06eb1 | 13833 | lai->bool_type_default = builtin->builtin_bool; |
6c038f32 | 13834 | } |
6c038f32 PH |
13835 | \f |
13836 | /* Language vector */ | |
13837 | ||
13838 | /* Not really used, but needed in the ada_language_defn. */ | |
13839 | ||
13840 | static void | |
6c7a06a3 | 13841 | emit_char (int c, struct type *type, struct ui_file *stream, int quoter) |
6c038f32 | 13842 | { |
6c7a06a3 | 13843 | ada_emit_char (c, type, stream, quoter, 1); |
6c038f32 PH |
13844 | } |
13845 | ||
13846 | static int | |
410a0ff2 | 13847 | parse (struct parser_state *ps) |
6c038f32 PH |
13848 | { |
13849 | warnings_issued = 0; | |
410a0ff2 | 13850 | return ada_parse (ps); |
6c038f32 PH |
13851 | } |
13852 | ||
13853 | static const struct exp_descriptor ada_exp_descriptor = { | |
13854 | ada_print_subexp, | |
13855 | ada_operator_length, | |
c0201579 | 13856 | ada_operator_check, |
6c038f32 PH |
13857 | ada_op_name, |
13858 | ada_dump_subexp_body, | |
13859 | ada_evaluate_subexp | |
13860 | }; | |
13861 | ||
1a119f36 | 13862 | /* Implement the "la_get_symbol_name_cmp" language_defn method |
74ccd7f5 JB |
13863 | for Ada. */ |
13864 | ||
1a119f36 JB |
13865 | static symbol_name_cmp_ftype |
13866 | ada_get_symbol_name_cmp (const char *lookup_name) | |
74ccd7f5 JB |
13867 | { |
13868 | if (should_use_wild_match (lookup_name)) | |
13869 | return wild_match; | |
13870 | else | |
13871 | return compare_names; | |
13872 | } | |
13873 | ||
a5ee536b JB |
13874 | /* Implement the "la_read_var_value" language_defn method for Ada. */ |
13875 | ||
13876 | static struct value * | |
63e43d3a PMR |
13877 | ada_read_var_value (struct symbol *var, const struct block *var_block, |
13878 | struct frame_info *frame) | |
a5ee536b | 13879 | { |
3977b71f | 13880 | const struct block *frame_block = NULL; |
a5ee536b JB |
13881 | struct symbol *renaming_sym = NULL; |
13882 | ||
13883 | /* The only case where default_read_var_value is not sufficient | |
13884 | is when VAR is a renaming... */ | |
13885 | if (frame) | |
13886 | frame_block = get_frame_block (frame, NULL); | |
13887 | if (frame_block) | |
13888 | renaming_sym = ada_find_renaming_symbol (var, frame_block); | |
13889 | if (renaming_sym != NULL) | |
13890 | return ada_read_renaming_var_value (renaming_sym, frame_block); | |
13891 | ||
13892 | /* This is a typical case where we expect the default_read_var_value | |
13893 | function to work. */ | |
63e43d3a | 13894 | return default_read_var_value (var, var_block, frame); |
a5ee536b JB |
13895 | } |
13896 | ||
56618e20 TT |
13897 | static const char *ada_extensions[] = |
13898 | { | |
13899 | ".adb", ".ads", ".a", ".ada", ".dg", NULL | |
13900 | }; | |
13901 | ||
47e77640 | 13902 | extern const struct language_defn ada_language_defn = { |
6c038f32 | 13903 | "ada", /* Language name */ |
6abde28f | 13904 | "Ada", |
6c038f32 | 13905 | language_ada, |
6c038f32 | 13906 | range_check_off, |
6c038f32 PH |
13907 | case_sensitive_on, /* Yes, Ada is case-insensitive, but |
13908 | that's not quite what this means. */ | |
6c038f32 | 13909 | array_row_major, |
9a044a89 | 13910 | macro_expansion_no, |
56618e20 | 13911 | ada_extensions, |
6c038f32 PH |
13912 | &ada_exp_descriptor, |
13913 | parse, | |
b3f11165 | 13914 | ada_yyerror, |
6c038f32 PH |
13915 | resolve, |
13916 | ada_printchar, /* Print a character constant */ | |
13917 | ada_printstr, /* Function to print string constant */ | |
13918 | emit_char, /* Function to print single char (not used) */ | |
6c038f32 | 13919 | ada_print_type, /* Print a type using appropriate syntax */ |
be942545 | 13920 | ada_print_typedef, /* Print a typedef using appropriate syntax */ |
6c038f32 PH |
13921 | ada_val_print, /* Print a value using appropriate syntax */ |
13922 | ada_value_print, /* Print a top-level value */ | |
a5ee536b | 13923 | ada_read_var_value, /* la_read_var_value */ |
6c038f32 | 13924 | NULL, /* Language specific skip_trampoline */ |
2b2d9e11 | 13925 | NULL, /* name_of_this */ |
6c038f32 PH |
13926 | ada_lookup_symbol_nonlocal, /* Looking up non-local symbols. */ |
13927 | basic_lookup_transparent_type, /* lookup_transparent_type */ | |
13928 | ada_la_decode, /* Language specific symbol demangler */ | |
8b302db8 | 13929 | ada_sniff_from_mangled_name, |
0963b4bd MS |
13930 | NULL, /* Language specific |
13931 | class_name_from_physname */ | |
6c038f32 PH |
13932 | ada_op_print_tab, /* expression operators for printing */ |
13933 | 0, /* c-style arrays */ | |
13934 | 1, /* String lower bound */ | |
6c038f32 | 13935 | ada_get_gdb_completer_word_break_characters, |
eb3ff9a5 | 13936 | ada_collect_symbol_completion_matches, |
72d5681a | 13937 | ada_language_arch_info, |
e79af960 | 13938 | ada_print_array_index, |
41f1b697 | 13939 | default_pass_by_reference, |
ae6a3a4c | 13940 | c_get_string, |
43cc5389 | 13941 | c_watch_location_expression, |
1a119f36 | 13942 | ada_get_symbol_name_cmp, /* la_get_symbol_name_cmp */ |
f8eba3c6 | 13943 | ada_iterate_over_symbols, |
a53b64ea | 13944 | &ada_varobj_ops, |
bb2ec1b3 TT |
13945 | NULL, |
13946 | NULL, | |
6c038f32 PH |
13947 | LANG_MAGIC |
13948 | }; | |
13949 | ||
5bf03f13 JB |
13950 | /* Command-list for the "set/show ada" prefix command. */ |
13951 | static struct cmd_list_element *set_ada_list; | |
13952 | static struct cmd_list_element *show_ada_list; | |
13953 | ||
13954 | /* Implement the "set ada" prefix command. */ | |
13955 | ||
13956 | static void | |
981a3fb3 | 13957 | set_ada_command (const char *arg, int from_tty) |
5bf03f13 JB |
13958 | { |
13959 | printf_unfiltered (_(\ | |
13960 | "\"set ada\" must be followed by the name of a setting.\n")); | |
635c7e8a | 13961 | help_list (set_ada_list, "set ada ", all_commands, gdb_stdout); |
5bf03f13 JB |
13962 | } |
13963 | ||
13964 | /* Implement the "show ada" prefix command. */ | |
13965 | ||
13966 | static void | |
981a3fb3 | 13967 | show_ada_command (const char *args, int from_tty) |
5bf03f13 JB |
13968 | { |
13969 | cmd_show_list (show_ada_list, from_tty, ""); | |
13970 | } | |
13971 | ||
2060206e PA |
13972 | static void |
13973 | initialize_ada_catchpoint_ops (void) | |
13974 | { | |
13975 | struct breakpoint_ops *ops; | |
13976 | ||
13977 | initialize_breakpoint_ops (); | |
13978 | ||
13979 | ops = &catch_exception_breakpoint_ops; | |
13980 | *ops = bkpt_breakpoint_ops; | |
2060206e PA |
13981 | ops->allocate_location = allocate_location_catch_exception; |
13982 | ops->re_set = re_set_catch_exception; | |
13983 | ops->check_status = check_status_catch_exception; | |
13984 | ops->print_it = print_it_catch_exception; | |
13985 | ops->print_one = print_one_catch_exception; | |
13986 | ops->print_mention = print_mention_catch_exception; | |
13987 | ops->print_recreate = print_recreate_catch_exception; | |
13988 | ||
13989 | ops = &catch_exception_unhandled_breakpoint_ops; | |
13990 | *ops = bkpt_breakpoint_ops; | |
2060206e PA |
13991 | ops->allocate_location = allocate_location_catch_exception_unhandled; |
13992 | ops->re_set = re_set_catch_exception_unhandled; | |
13993 | ops->check_status = check_status_catch_exception_unhandled; | |
13994 | ops->print_it = print_it_catch_exception_unhandled; | |
13995 | ops->print_one = print_one_catch_exception_unhandled; | |
13996 | ops->print_mention = print_mention_catch_exception_unhandled; | |
13997 | ops->print_recreate = print_recreate_catch_exception_unhandled; | |
13998 | ||
13999 | ops = &catch_assert_breakpoint_ops; | |
14000 | *ops = bkpt_breakpoint_ops; | |
2060206e PA |
14001 | ops->allocate_location = allocate_location_catch_assert; |
14002 | ops->re_set = re_set_catch_assert; | |
14003 | ops->check_status = check_status_catch_assert; | |
14004 | ops->print_it = print_it_catch_assert; | |
14005 | ops->print_one = print_one_catch_assert; | |
14006 | ops->print_mention = print_mention_catch_assert; | |
14007 | ops->print_recreate = print_recreate_catch_assert; | |
14008 | } | |
14009 | ||
3d9434b5 JB |
14010 | /* This module's 'new_objfile' observer. */ |
14011 | ||
14012 | static void | |
14013 | ada_new_objfile_observer (struct objfile *objfile) | |
14014 | { | |
14015 | ada_clear_symbol_cache (); | |
14016 | } | |
14017 | ||
14018 | /* This module's 'free_objfile' observer. */ | |
14019 | ||
14020 | static void | |
14021 | ada_free_objfile_observer (struct objfile *objfile) | |
14022 | { | |
14023 | ada_clear_symbol_cache (); | |
14024 | } | |
14025 | ||
d2e4a39e | 14026 | void |
6c038f32 | 14027 | _initialize_ada_language (void) |
14f9c5c9 | 14028 | { |
2060206e PA |
14029 | initialize_ada_catchpoint_ops (); |
14030 | ||
5bf03f13 JB |
14031 | add_prefix_cmd ("ada", no_class, set_ada_command, |
14032 | _("Prefix command for changing Ada-specfic settings"), | |
14033 | &set_ada_list, "set ada ", 0, &setlist); | |
14034 | ||
14035 | add_prefix_cmd ("ada", no_class, show_ada_command, | |
14036 | _("Generic command for showing Ada-specific settings."), | |
14037 | &show_ada_list, "show ada ", 0, &showlist); | |
14038 | ||
14039 | add_setshow_boolean_cmd ("trust-PAD-over-XVS", class_obscure, | |
14040 | &trust_pad_over_xvs, _("\ | |
14041 | Enable or disable an optimization trusting PAD types over XVS types"), _("\ | |
14042 | Show whether an optimization trusting PAD types over XVS types is activated"), | |
14043 | _("\ | |
14044 | This is related to the encoding used by the GNAT compiler. The debugger\n\ | |
14045 | should normally trust the contents of PAD types, but certain older versions\n\ | |
14046 | of GNAT have a bug that sometimes causes the information in the PAD type\n\ | |
14047 | to be incorrect. Turning this setting \"off\" allows the debugger to\n\ | |
14048 | work around this bug. It is always safe to turn this option \"off\", but\n\ | |
14049 | this incurs a slight performance penalty, so it is recommended to NOT change\n\ | |
14050 | this option to \"off\" unless necessary."), | |
14051 | NULL, NULL, &set_ada_list, &show_ada_list); | |
14052 | ||
d72413e6 PMR |
14053 | add_setshow_boolean_cmd ("print-signatures", class_vars, |
14054 | &print_signatures, _("\ | |
14055 | Enable or disable the output of formal and return types for functions in the \ | |
14056 | overloads selection menu"), _("\ | |
14057 | Show whether the output of formal and return types for functions in the \ | |
14058 | overloads selection menu is activated"), | |
14059 | NULL, NULL, NULL, &set_ada_list, &show_ada_list); | |
14060 | ||
9ac4176b PA |
14061 | add_catch_command ("exception", _("\ |
14062 | Catch Ada exceptions, when raised.\n\ | |
14063 | With an argument, catch only exceptions with the given name."), | |
14064 | catch_ada_exception_command, | |
14065 | NULL, | |
14066 | CATCH_PERMANENT, | |
14067 | CATCH_TEMPORARY); | |
14068 | add_catch_command ("assert", _("\ | |
14069 | Catch failed Ada assertions, when raised.\n\ | |
14070 | With an argument, catch only exceptions with the given name."), | |
14071 | catch_assert_command, | |
14072 | NULL, | |
14073 | CATCH_PERMANENT, | |
14074 | CATCH_TEMPORARY); | |
14075 | ||
6c038f32 | 14076 | varsize_limit = 65536; |
6c038f32 | 14077 | |
778865d3 JB |
14078 | add_info ("exceptions", info_exceptions_command, |
14079 | _("\ | |
14080 | List all Ada exception names.\n\ | |
14081 | If a regular expression is passed as an argument, only those matching\n\ | |
14082 | the regular expression are listed.")); | |
14083 | ||
c6044dd1 JB |
14084 | add_prefix_cmd ("ada", class_maintenance, maint_set_ada_cmd, |
14085 | _("Set Ada maintenance-related variables."), | |
14086 | &maint_set_ada_cmdlist, "maintenance set ada ", | |
14087 | 0/*allow-unknown*/, &maintenance_set_cmdlist); | |
14088 | ||
14089 | add_prefix_cmd ("ada", class_maintenance, maint_show_ada_cmd, | |
14090 | _("Show Ada maintenance-related variables"), | |
14091 | &maint_show_ada_cmdlist, "maintenance show ada ", | |
14092 | 0/*allow-unknown*/, &maintenance_show_cmdlist); | |
14093 | ||
14094 | add_setshow_boolean_cmd | |
14095 | ("ignore-descriptive-types", class_maintenance, | |
14096 | &ada_ignore_descriptive_types_p, | |
14097 | _("Set whether descriptive types generated by GNAT should be ignored."), | |
14098 | _("Show whether descriptive types generated by GNAT should be ignored."), | |
14099 | _("\ | |
14100 | When enabled, the debugger will stop using the DW_AT_GNAT_descriptive_type\n\ | |
14101 | DWARF attribute."), | |
14102 | NULL, NULL, &maint_set_ada_cmdlist, &maint_show_ada_cmdlist); | |
14103 | ||
6c038f32 PH |
14104 | obstack_init (&symbol_list_obstack); |
14105 | ||
14106 | decoded_names_store = htab_create_alloc | |
14107 | (256, htab_hash_string, (int (*)(const void *, const void *)) streq, | |
14108 | NULL, xcalloc, xfree); | |
6b69afc4 | 14109 | |
3d9434b5 JB |
14110 | /* The ada-lang observers. */ |
14111 | observer_attach_new_objfile (ada_new_objfile_observer); | |
14112 | observer_attach_free_objfile (ada_free_objfile_observer); | |
e802dbe0 | 14113 | observer_attach_inferior_exit (ada_inferior_exit); |
ee01b665 JB |
14114 | |
14115 | /* Setup various context-specific data. */ | |
e802dbe0 | 14116 | ada_inferior_data |
8e260fc0 | 14117 | = register_inferior_data_with_cleanup (NULL, ada_inferior_data_cleanup); |
ee01b665 JB |
14118 | ada_pspace_data_handle |
14119 | = register_program_space_data_with_cleanup (NULL, ada_pspace_data_cleanup); | |
14f9c5c9 | 14120 | } |