]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blame - gdb/ada-lang.c
Remove cmd_cfunc_ftype
[thirdparty/binutils-gdb.git] / gdb / ada-lang.c
CommitLineData
6e681866 1/* Ada language support routines for GDB, the GNU debugger.
10a2c479 2
61baf725 3 Copyright (C) 1992-2017 Free Software Foundation, Inc.
14f9c5c9 4
a9762ec7 5 This file is part of GDB.
14f9c5c9 6
a9762ec7
JB
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
14f9c5c9 11
a9762ec7
JB
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
14f9c5c9 16
a9762ec7
JB
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
14f9c5c9 19
96d887e8 20
4c4b4cd2 21#include "defs.h"
14f9c5c9 22#include <ctype.h>
14f9c5c9 23#include "demangle.h"
4c4b4cd2
PH
24#include "gdb_regex.h"
25#include "frame.h"
14f9c5c9
AS
26#include "symtab.h"
27#include "gdbtypes.h"
28#include "gdbcmd.h"
29#include "expression.h"
30#include "parser-defs.h"
31#include "language.h"
a53b64ea 32#include "varobj.h"
14f9c5c9
AS
33#include "c-lang.h"
34#include "inferior.h"
35#include "symfile.h"
36#include "objfiles.h"
37#include "breakpoint.h"
38#include "gdbcore.h"
4c4b4cd2
PH
39#include "hashtab.h"
40#include "gdb_obstack.h"
14f9c5c9 41#include "ada-lang.h"
4c4b4cd2 42#include "completer.h"
53ce3c39 43#include <sys/stat.h>
14f9c5c9 44#include "ui-out.h"
fe898f56 45#include "block.h"
04714b91 46#include "infcall.h"
de4f826b 47#include "dictionary.h"
f7f9143b
JB
48#include "annotate.h"
49#include "valprint.h"
9bbc9174 50#include "source.h"
0259addd 51#include "observer.h"
2ba95b9b 52#include "vec.h"
692465f1 53#include "stack.h"
fa864999 54#include "gdb_vecs.h"
79d43c61 55#include "typeprint.h"
22cee43f 56#include "namespace.h"
14f9c5c9 57
ccefe4c4 58#include "psymtab.h"
40bc484c 59#include "value.h"
956a9fb9 60#include "mi/mi-common.h"
9ac4176b 61#include "arch-utils.h"
0fcd72ba 62#include "cli/cli-utils.h"
14bc53a8 63#include "common/function-view.h"
d5722aa2 64#include "common/byte-vector.h"
ab816a27 65#include <algorithm>
ccefe4c4 66
4c4b4cd2 67/* Define whether or not the C operator '/' truncates towards zero for
0963b4bd 68 differently signed operands (truncation direction is undefined in C).
4c4b4cd2
PH
69 Copied from valarith.c. */
70
71#ifndef TRUNCATION_TOWARDS_ZERO
72#define TRUNCATION_TOWARDS_ZERO ((-5 / 2) == -2)
73#endif
74
d2e4a39e 75static struct type *desc_base_type (struct type *);
14f9c5c9 76
d2e4a39e 77static struct type *desc_bounds_type (struct type *);
14f9c5c9 78
d2e4a39e 79static struct value *desc_bounds (struct value *);
14f9c5c9 80
d2e4a39e 81static int fat_pntr_bounds_bitpos (struct type *);
14f9c5c9 82
d2e4a39e 83static int fat_pntr_bounds_bitsize (struct type *);
14f9c5c9 84
556bdfd4 85static struct type *desc_data_target_type (struct type *);
14f9c5c9 86
d2e4a39e 87static struct value *desc_data (struct value *);
14f9c5c9 88
d2e4a39e 89static int fat_pntr_data_bitpos (struct type *);
14f9c5c9 90
d2e4a39e 91static int fat_pntr_data_bitsize (struct type *);
14f9c5c9 92
d2e4a39e 93static struct value *desc_one_bound (struct value *, int, int);
14f9c5c9 94
d2e4a39e 95static int desc_bound_bitpos (struct type *, int, int);
14f9c5c9 96
d2e4a39e 97static int desc_bound_bitsize (struct type *, int, int);
14f9c5c9 98
d2e4a39e 99static struct type *desc_index_type (struct type *, int);
14f9c5c9 100
d2e4a39e 101static int desc_arity (struct type *);
14f9c5c9 102
d2e4a39e 103static int ada_type_match (struct type *, struct type *, int);
14f9c5c9 104
d2e4a39e 105static int ada_args_match (struct symbol *, struct value **, int);
14f9c5c9 106
40658b94
PH
107static int full_match (const char *, const char *);
108
40bc484c 109static struct value *make_array_descriptor (struct type *, struct value *);
14f9c5c9 110
4c4b4cd2 111static void ada_add_block_symbols (struct obstack *,
f0c5f9b2 112 const struct block *, const char *,
2570f2b7 113 domain_enum, struct objfile *, int);
14f9c5c9 114
22cee43f
PMR
115static void ada_add_all_symbols (struct obstack *, const struct block *,
116 const char *, domain_enum, int, int *);
117
d12307c1 118static int is_nonfunction (struct block_symbol *, int);
14f9c5c9 119
76a01679 120static void add_defn_to_vec (struct obstack *, struct symbol *,
f0c5f9b2 121 const struct block *);
14f9c5c9 122
4c4b4cd2
PH
123static int num_defns_collected (struct obstack *);
124
d12307c1 125static struct block_symbol *defns_collected (struct obstack *, int);
14f9c5c9 126
4c4b4cd2 127static struct value *resolve_subexp (struct expression **, int *, int,
76a01679 128 struct type *);
14f9c5c9 129
d2e4a39e 130static void replace_operator_with_call (struct expression **, int, int, int,
270140bd 131 struct symbol *, const struct block *);
14f9c5c9 132
d2e4a39e 133static int possible_user_operator_p (enum exp_opcode, struct value **);
14f9c5c9 134
a121b7c1 135static const char *ada_op_name (enum exp_opcode);
4c4b4cd2
PH
136
137static const char *ada_decoded_op_name (enum exp_opcode);
14f9c5c9 138
d2e4a39e 139static int numeric_type_p (struct type *);
14f9c5c9 140
d2e4a39e 141static int integer_type_p (struct type *);
14f9c5c9 142
d2e4a39e 143static int scalar_type_p (struct type *);
14f9c5c9 144
d2e4a39e 145static int discrete_type_p (struct type *);
14f9c5c9 146
aeb5907d
JB
147static enum ada_renaming_category parse_old_style_renaming (struct type *,
148 const char **,
149 int *,
150 const char **);
151
152static struct symbol *find_old_style_renaming_symbol (const char *,
270140bd 153 const struct block *);
aeb5907d 154
a121b7c1 155static struct type *ada_lookup_struct_elt_type (struct type *, const char *,
988f6b3d 156 int, int);
4c4b4cd2 157
d2e4a39e 158static struct value *evaluate_subexp_type (struct expression *, int *);
14f9c5c9 159
b4ba55a1
JB
160static struct type *ada_find_parallel_type_with_name (struct type *,
161 const char *);
162
d2e4a39e 163static int is_dynamic_field (struct type *, int);
14f9c5c9 164
10a2c479 165static struct type *to_fixed_variant_branch_type (struct type *,
fc1a4b47 166 const gdb_byte *,
4c4b4cd2
PH
167 CORE_ADDR, struct value *);
168
169static struct type *to_fixed_array_type (struct type *, struct value *, int);
14f9c5c9 170
28c85d6c 171static struct type *to_fixed_range_type (struct type *, struct value *);
14f9c5c9 172
d2e4a39e 173static struct type *to_static_fixed_type (struct type *);
f192137b 174static struct type *static_unwrap_type (struct type *type);
14f9c5c9 175
d2e4a39e 176static struct value *unwrap_value (struct value *);
14f9c5c9 177
ad82864c 178static struct type *constrained_packed_array_type (struct type *, long *);
14f9c5c9 179
ad82864c 180static struct type *decode_constrained_packed_array_type (struct type *);
14f9c5c9 181
ad82864c
JB
182static long decode_packed_array_bitsize (struct type *);
183
184static struct value *decode_constrained_packed_array (struct value *);
185
186static int ada_is_packed_array_type (struct type *);
187
188static int ada_is_unconstrained_packed_array_type (struct type *);
14f9c5c9 189
d2e4a39e 190static struct value *value_subscript_packed (struct value *, int,
4c4b4cd2 191 struct value **);
14f9c5c9 192
50810684 193static void move_bits (gdb_byte *, int, const gdb_byte *, int, int, int);
52ce6436 194
4c4b4cd2
PH
195static struct value *coerce_unspec_val_to_type (struct value *,
196 struct type *);
14f9c5c9 197
d2e4a39e 198static int lesseq_defined_than (struct symbol *, struct symbol *);
14f9c5c9 199
d2e4a39e 200static int equiv_types (struct type *, struct type *);
14f9c5c9 201
d2e4a39e 202static int is_name_suffix (const char *);
14f9c5c9 203
73589123
PH
204static int advance_wild_match (const char **, const char *, int);
205
206static int wild_match (const char *, const char *);
14f9c5c9 207
d2e4a39e 208static struct value *ada_coerce_ref (struct value *);
14f9c5c9 209
4c4b4cd2
PH
210static LONGEST pos_atr (struct value *);
211
3cb382c9 212static struct value *value_pos_atr (struct type *, struct value *);
14f9c5c9 213
d2e4a39e 214static struct value *value_val_atr (struct type *, struct value *);
14f9c5c9 215
4c4b4cd2
PH
216static struct symbol *standard_lookup (const char *, const struct block *,
217 domain_enum);
14f9c5c9 218
108d56a4 219static struct value *ada_search_struct_field (const char *, struct value *, int,
4c4b4cd2
PH
220 struct type *);
221
222static struct value *ada_value_primitive_field (struct value *, int, int,
223 struct type *);
224
0d5cff50 225static int find_struct_field (const char *, struct type *, int,
52ce6436 226 struct type **, int *, int *, int *, int *);
4c4b4cd2
PH
227
228static struct value *ada_to_fixed_value_create (struct type *, CORE_ADDR,
229 struct value *);
230
d12307c1 231static int ada_resolve_function (struct block_symbol *, int,
4c4b4cd2
PH
232 struct value **, int, const char *,
233 struct type *);
234
4c4b4cd2
PH
235static int ada_is_direct_array_type (struct type *);
236
72d5681a
PH
237static void ada_language_arch_info (struct gdbarch *,
238 struct language_arch_info *);
714e53ab 239
52ce6436
PH
240static struct value *ada_index_struct_field (int, struct value *, int,
241 struct type *);
242
243static struct value *assign_aggregate (struct value *, struct value *,
0963b4bd
MS
244 struct expression *,
245 int *, enum noside);
52ce6436
PH
246
247static void aggregate_assign_from_choices (struct value *, struct value *,
248 struct expression *,
249 int *, LONGEST *, int *,
250 int, LONGEST, LONGEST);
251
252static void aggregate_assign_positional (struct value *, struct value *,
253 struct expression *,
254 int *, LONGEST *, int *, int,
255 LONGEST, LONGEST);
256
257
258static void aggregate_assign_others (struct value *, struct value *,
259 struct expression *,
260 int *, LONGEST *, int, LONGEST, LONGEST);
261
262
263static void add_component_interval (LONGEST, LONGEST, LONGEST *, int *, int);
264
265
266static struct value *ada_evaluate_subexp (struct type *, struct expression *,
267 int *, enum noside);
268
269static void ada_forward_operator_length (struct expression *, int, int *,
270 int *);
852dff6c
JB
271
272static struct type *ada_find_any_type (const char *name);
4c4b4cd2
PH
273\f
274
ee01b665
JB
275/* The result of a symbol lookup to be stored in our symbol cache. */
276
277struct cache_entry
278{
279 /* The name used to perform the lookup. */
280 const char *name;
281 /* The namespace used during the lookup. */
fe978cb0 282 domain_enum domain;
ee01b665
JB
283 /* The symbol returned by the lookup, or NULL if no matching symbol
284 was found. */
285 struct symbol *sym;
286 /* The block where the symbol was found, or NULL if no matching
287 symbol was found. */
288 const struct block *block;
289 /* A pointer to the next entry with the same hash. */
290 struct cache_entry *next;
291};
292
293/* The Ada symbol cache, used to store the result of Ada-mode symbol
294 lookups in the course of executing the user's commands.
295
296 The cache is implemented using a simple, fixed-sized hash.
297 The size is fixed on the grounds that there are not likely to be
298 all that many symbols looked up during any given session, regardless
299 of the size of the symbol table. If we decide to go to a resizable
300 table, let's just use the stuff from libiberty instead. */
301
302#define HASH_SIZE 1009
303
304struct ada_symbol_cache
305{
306 /* An obstack used to store the entries in our cache. */
307 struct obstack cache_space;
308
309 /* The root of the hash table used to implement our symbol cache. */
310 struct cache_entry *root[HASH_SIZE];
311};
312
313static void ada_free_symbol_cache (struct ada_symbol_cache *sym_cache);
76a01679 314
4c4b4cd2 315/* Maximum-sized dynamic type. */
14f9c5c9
AS
316static unsigned int varsize_limit;
317
67cb5b2d 318static const char ada_completer_word_break_characters[] =
4c4b4cd2
PH
319#ifdef VMS
320 " \t\n!@#%^&*()+=|~`}{[]\";:?/,-";
321#else
14f9c5c9 322 " \t\n!@#$%^&*()+=|~`}{[]\";:?/,-";
4c4b4cd2 323#endif
14f9c5c9 324
4c4b4cd2 325/* The name of the symbol to use to get the name of the main subprogram. */
76a01679 326static const char ADA_MAIN_PROGRAM_SYMBOL_NAME[]
4c4b4cd2 327 = "__gnat_ada_main_program_name";
14f9c5c9 328
4c4b4cd2
PH
329/* Limit on the number of warnings to raise per expression evaluation. */
330static int warning_limit = 2;
331
332/* Number of warning messages issued; reset to 0 by cleanups after
333 expression evaluation. */
334static int warnings_issued = 0;
335
336static const char *known_runtime_file_name_patterns[] = {
337 ADA_KNOWN_RUNTIME_FILE_NAME_PATTERNS NULL
338};
339
340static const char *known_auxiliary_function_name_patterns[] = {
341 ADA_KNOWN_AUXILIARY_FUNCTION_NAME_PATTERNS NULL
342};
343
344/* Space for allocating results of ada_lookup_symbol_list. */
345static struct obstack symbol_list_obstack;
346
c6044dd1
JB
347/* Maintenance-related settings for this module. */
348
349static struct cmd_list_element *maint_set_ada_cmdlist;
350static struct cmd_list_element *maint_show_ada_cmdlist;
351
352/* Implement the "maintenance set ada" (prefix) command. */
353
354static void
981a3fb3 355maint_set_ada_cmd (const char *args, int from_tty)
c6044dd1 356{
635c7e8a
TT
357 help_list (maint_set_ada_cmdlist, "maintenance set ada ", all_commands,
358 gdb_stdout);
c6044dd1
JB
359}
360
361/* Implement the "maintenance show ada" (prefix) command. */
362
363static void
981a3fb3 364maint_show_ada_cmd (const char *args, int from_tty)
c6044dd1
JB
365{
366 cmd_show_list (maint_show_ada_cmdlist, from_tty, "");
367}
368
369/* The "maintenance ada set/show ignore-descriptive-type" value. */
370
371static int ada_ignore_descriptive_types_p = 0;
372
e802dbe0
JB
373 /* Inferior-specific data. */
374
375/* Per-inferior data for this module. */
376
377struct ada_inferior_data
378{
379 /* The ada__tags__type_specific_data type, which is used when decoding
380 tagged types. With older versions of GNAT, this type was directly
381 accessible through a component ("tsd") in the object tag. But this
382 is no longer the case, so we cache it for each inferior. */
383 struct type *tsd_type;
3eecfa55
JB
384
385 /* The exception_support_info data. This data is used to determine
386 how to implement support for Ada exception catchpoints in a given
387 inferior. */
388 const struct exception_support_info *exception_info;
e802dbe0
JB
389};
390
391/* Our key to this module's inferior data. */
392static const struct inferior_data *ada_inferior_data;
393
394/* A cleanup routine for our inferior data. */
395static void
396ada_inferior_data_cleanup (struct inferior *inf, void *arg)
397{
398 struct ada_inferior_data *data;
399
9a3c8263 400 data = (struct ada_inferior_data *) inferior_data (inf, ada_inferior_data);
e802dbe0
JB
401 if (data != NULL)
402 xfree (data);
403}
404
405/* Return our inferior data for the given inferior (INF).
406
407 This function always returns a valid pointer to an allocated
408 ada_inferior_data structure. If INF's inferior data has not
409 been previously set, this functions creates a new one with all
410 fields set to zero, sets INF's inferior to it, and then returns
411 a pointer to that newly allocated ada_inferior_data. */
412
413static struct ada_inferior_data *
414get_ada_inferior_data (struct inferior *inf)
415{
416 struct ada_inferior_data *data;
417
9a3c8263 418 data = (struct ada_inferior_data *) inferior_data (inf, ada_inferior_data);
e802dbe0
JB
419 if (data == NULL)
420 {
41bf6aca 421 data = XCNEW (struct ada_inferior_data);
e802dbe0
JB
422 set_inferior_data (inf, ada_inferior_data, data);
423 }
424
425 return data;
426}
427
428/* Perform all necessary cleanups regarding our module's inferior data
429 that is required after the inferior INF just exited. */
430
431static void
432ada_inferior_exit (struct inferior *inf)
433{
434 ada_inferior_data_cleanup (inf, NULL);
435 set_inferior_data (inf, ada_inferior_data, NULL);
436}
437
ee01b665
JB
438
439 /* program-space-specific data. */
440
441/* This module's per-program-space data. */
442struct ada_pspace_data
443{
444 /* The Ada symbol cache. */
445 struct ada_symbol_cache *sym_cache;
446};
447
448/* Key to our per-program-space data. */
449static const struct program_space_data *ada_pspace_data_handle;
450
451/* Return this module's data for the given program space (PSPACE).
452 If not is found, add a zero'ed one now.
453
454 This function always returns a valid object. */
455
456static struct ada_pspace_data *
457get_ada_pspace_data (struct program_space *pspace)
458{
459 struct ada_pspace_data *data;
460
9a3c8263
SM
461 data = ((struct ada_pspace_data *)
462 program_space_data (pspace, ada_pspace_data_handle));
ee01b665
JB
463 if (data == NULL)
464 {
465 data = XCNEW (struct ada_pspace_data);
466 set_program_space_data (pspace, ada_pspace_data_handle, data);
467 }
468
469 return data;
470}
471
472/* The cleanup callback for this module's per-program-space data. */
473
474static void
475ada_pspace_data_cleanup (struct program_space *pspace, void *data)
476{
9a3c8263 477 struct ada_pspace_data *pspace_data = (struct ada_pspace_data *) data;
ee01b665
JB
478
479 if (pspace_data->sym_cache != NULL)
480 ada_free_symbol_cache (pspace_data->sym_cache);
481 xfree (pspace_data);
482}
483
4c4b4cd2
PH
484 /* Utilities */
485
720d1a40 486/* If TYPE is a TYPE_CODE_TYPEDEF type, return the target type after
eed9788b 487 all typedef layers have been peeled. Otherwise, return TYPE.
720d1a40
JB
488
489 Normally, we really expect a typedef type to only have 1 typedef layer.
490 In other words, we really expect the target type of a typedef type to be
491 a non-typedef type. This is particularly true for Ada units, because
492 the language does not have a typedef vs not-typedef distinction.
493 In that respect, the Ada compiler has been trying to eliminate as many
494 typedef definitions in the debugging information, since they generally
495 do not bring any extra information (we still use typedef under certain
496 circumstances related mostly to the GNAT encoding).
497
498 Unfortunately, we have seen situations where the debugging information
499 generated by the compiler leads to such multiple typedef layers. For
500 instance, consider the following example with stabs:
501
502 .stabs "pck__float_array___XUP:Tt(0,46)=s16P_ARRAY:(0,47)=[...]"[...]
503 .stabs "pck__float_array___XUP:t(0,36)=(0,46)",128,0,6,0
504
505 This is an error in the debugging information which causes type
506 pck__float_array___XUP to be defined twice, and the second time,
507 it is defined as a typedef of a typedef.
508
509 This is on the fringe of legality as far as debugging information is
510 concerned, and certainly unexpected. But it is easy to handle these
511 situations correctly, so we can afford to be lenient in this case. */
512
513static struct type *
514ada_typedef_target_type (struct type *type)
515{
516 while (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
517 type = TYPE_TARGET_TYPE (type);
518 return type;
519}
520
41d27058
JB
521/* Given DECODED_NAME a string holding a symbol name in its
522 decoded form (ie using the Ada dotted notation), returns
523 its unqualified name. */
524
525static const char *
526ada_unqualified_name (const char *decoded_name)
527{
2b0f535a
JB
528 const char *result;
529
530 /* If the decoded name starts with '<', it means that the encoded
531 name does not follow standard naming conventions, and thus that
532 it is not your typical Ada symbol name. Trying to unqualify it
533 is therefore pointless and possibly erroneous. */
534 if (decoded_name[0] == '<')
535 return decoded_name;
536
537 result = strrchr (decoded_name, '.');
41d27058
JB
538 if (result != NULL)
539 result++; /* Skip the dot... */
540 else
541 result = decoded_name;
542
543 return result;
544}
545
546/* Return a string starting with '<', followed by STR, and '>'.
547 The result is good until the next call. */
548
549static char *
550add_angle_brackets (const char *str)
551{
552 static char *result = NULL;
553
554 xfree (result);
88c15c34 555 result = xstrprintf ("<%s>", str);
41d27058
JB
556 return result;
557}
96d887e8 558
67cb5b2d 559static const char *
4c4b4cd2
PH
560ada_get_gdb_completer_word_break_characters (void)
561{
562 return ada_completer_word_break_characters;
563}
564
e79af960
JB
565/* Print an array element index using the Ada syntax. */
566
567static void
568ada_print_array_index (struct value *index_value, struct ui_file *stream,
79a45b7d 569 const struct value_print_options *options)
e79af960 570{
79a45b7d 571 LA_VALUE_PRINT (index_value, stream, options);
e79af960
JB
572 fprintf_filtered (stream, " => ");
573}
574
f27cf670 575/* Assuming VECT points to an array of *SIZE objects of size
14f9c5c9 576 ELEMENT_SIZE, grow it to contain at least MIN_SIZE objects,
f27cf670 577 updating *SIZE as necessary and returning the (new) array. */
14f9c5c9 578
f27cf670
AS
579void *
580grow_vect (void *vect, size_t *size, size_t min_size, int element_size)
14f9c5c9 581{
d2e4a39e
AS
582 if (*size < min_size)
583 {
584 *size *= 2;
585 if (*size < min_size)
4c4b4cd2 586 *size = min_size;
f27cf670 587 vect = xrealloc (vect, *size * element_size);
d2e4a39e 588 }
f27cf670 589 return vect;
14f9c5c9
AS
590}
591
592/* True (non-zero) iff TARGET matches FIELD_NAME up to any trailing
4c4b4cd2 593 suffix of FIELD_NAME beginning "___". */
14f9c5c9
AS
594
595static int
ebf56fd3 596field_name_match (const char *field_name, const char *target)
14f9c5c9
AS
597{
598 int len = strlen (target);
5b4ee69b 599
d2e4a39e 600 return
4c4b4cd2
PH
601 (strncmp (field_name, target, len) == 0
602 && (field_name[len] == '\0'
61012eef 603 || (startswith (field_name + len, "___")
76a01679
JB
604 && strcmp (field_name + strlen (field_name) - 6,
605 "___XVN") != 0)));
14f9c5c9
AS
606}
607
608
872c8b51
JB
609/* Assuming TYPE is a TYPE_CODE_STRUCT or a TYPE_CODE_TYPDEF to
610 a TYPE_CODE_STRUCT, find the field whose name matches FIELD_NAME,
611 and return its index. This function also handles fields whose name
612 have ___ suffixes because the compiler sometimes alters their name
613 by adding such a suffix to represent fields with certain constraints.
614 If the field could not be found, return a negative number if
615 MAYBE_MISSING is set. Otherwise raise an error. */
4c4b4cd2
PH
616
617int
618ada_get_field_index (const struct type *type, const char *field_name,
619 int maybe_missing)
620{
621 int fieldno;
872c8b51
JB
622 struct type *struct_type = check_typedef ((struct type *) type);
623
624 for (fieldno = 0; fieldno < TYPE_NFIELDS (struct_type); fieldno++)
625 if (field_name_match (TYPE_FIELD_NAME (struct_type, fieldno), field_name))
4c4b4cd2
PH
626 return fieldno;
627
628 if (!maybe_missing)
323e0a4a 629 error (_("Unable to find field %s in struct %s. Aborting"),
872c8b51 630 field_name, TYPE_NAME (struct_type));
4c4b4cd2
PH
631
632 return -1;
633}
634
635/* The length of the prefix of NAME prior to any "___" suffix. */
14f9c5c9
AS
636
637int
d2e4a39e 638ada_name_prefix_len (const char *name)
14f9c5c9
AS
639{
640 if (name == NULL)
641 return 0;
d2e4a39e 642 else
14f9c5c9 643 {
d2e4a39e 644 const char *p = strstr (name, "___");
5b4ee69b 645
14f9c5c9 646 if (p == NULL)
4c4b4cd2 647 return strlen (name);
14f9c5c9 648 else
4c4b4cd2 649 return p - name;
14f9c5c9
AS
650 }
651}
652
4c4b4cd2
PH
653/* Return non-zero if SUFFIX is a suffix of STR.
654 Return zero if STR is null. */
655
14f9c5c9 656static int
d2e4a39e 657is_suffix (const char *str, const char *suffix)
14f9c5c9
AS
658{
659 int len1, len2;
5b4ee69b 660
14f9c5c9
AS
661 if (str == NULL)
662 return 0;
663 len1 = strlen (str);
664 len2 = strlen (suffix);
4c4b4cd2 665 return (len1 >= len2 && strcmp (str + len1 - len2, suffix) == 0);
14f9c5c9
AS
666}
667
4c4b4cd2
PH
668/* The contents of value VAL, treated as a value of type TYPE. The
669 result is an lval in memory if VAL is. */
14f9c5c9 670
d2e4a39e 671static struct value *
4c4b4cd2 672coerce_unspec_val_to_type (struct value *val, struct type *type)
14f9c5c9 673{
61ee279c 674 type = ada_check_typedef (type);
df407dfe 675 if (value_type (val) == type)
4c4b4cd2 676 return val;
d2e4a39e 677 else
14f9c5c9 678 {
4c4b4cd2
PH
679 struct value *result;
680
681 /* Make sure that the object size is not unreasonable before
682 trying to allocate some memory for it. */
c1b5a1a6 683 ada_ensure_varsize_limit (type);
4c4b4cd2 684
41e8491f
JK
685 if (value_lazy (val)
686 || TYPE_LENGTH (type) > TYPE_LENGTH (value_type (val)))
687 result = allocate_value_lazy (type);
688 else
689 {
690 result = allocate_value (type);
9a0dc9e3 691 value_contents_copy_raw (result, 0, val, 0, TYPE_LENGTH (type));
41e8491f 692 }
74bcbdf3 693 set_value_component_location (result, val);
9bbda503
AC
694 set_value_bitsize (result, value_bitsize (val));
695 set_value_bitpos (result, value_bitpos (val));
42ae5230 696 set_value_address (result, value_address (val));
14f9c5c9
AS
697 return result;
698 }
699}
700
fc1a4b47
AC
701static const gdb_byte *
702cond_offset_host (const gdb_byte *valaddr, long offset)
14f9c5c9
AS
703{
704 if (valaddr == NULL)
705 return NULL;
706 else
707 return valaddr + offset;
708}
709
710static CORE_ADDR
ebf56fd3 711cond_offset_target (CORE_ADDR address, long offset)
14f9c5c9
AS
712{
713 if (address == 0)
714 return 0;
d2e4a39e 715 else
14f9c5c9
AS
716 return address + offset;
717}
718
4c4b4cd2
PH
719/* Issue a warning (as for the definition of warning in utils.c, but
720 with exactly one argument rather than ...), unless the limit on the
721 number of warnings has passed during the evaluation of the current
722 expression. */
a2249542 723
77109804
AC
724/* FIXME: cagney/2004-10-10: This function is mimicking the behavior
725 provided by "complaint". */
a0b31db1 726static void lim_warning (const char *format, ...) ATTRIBUTE_PRINTF (1, 2);
77109804 727
14f9c5c9 728static void
a2249542 729lim_warning (const char *format, ...)
14f9c5c9 730{
a2249542 731 va_list args;
a2249542 732
5b4ee69b 733 va_start (args, format);
4c4b4cd2
PH
734 warnings_issued += 1;
735 if (warnings_issued <= warning_limit)
a2249542
MK
736 vwarning (format, args);
737
738 va_end (args);
4c4b4cd2
PH
739}
740
714e53ab
PH
741/* Issue an error if the size of an object of type T is unreasonable,
742 i.e. if it would be a bad idea to allocate a value of this type in
743 GDB. */
744
c1b5a1a6
JB
745void
746ada_ensure_varsize_limit (const struct type *type)
714e53ab
PH
747{
748 if (TYPE_LENGTH (type) > varsize_limit)
323e0a4a 749 error (_("object size is larger than varsize-limit"));
714e53ab
PH
750}
751
0963b4bd 752/* Maximum value of a SIZE-byte signed integer type. */
4c4b4cd2 753static LONGEST
c3e5cd34 754max_of_size (int size)
4c4b4cd2 755{
76a01679 756 LONGEST top_bit = (LONGEST) 1 << (size * 8 - 2);
5b4ee69b 757
76a01679 758 return top_bit | (top_bit - 1);
4c4b4cd2
PH
759}
760
0963b4bd 761/* Minimum value of a SIZE-byte signed integer type. */
4c4b4cd2 762static LONGEST
c3e5cd34 763min_of_size (int size)
4c4b4cd2 764{
c3e5cd34 765 return -max_of_size (size) - 1;
4c4b4cd2
PH
766}
767
0963b4bd 768/* Maximum value of a SIZE-byte unsigned integer type. */
4c4b4cd2 769static ULONGEST
c3e5cd34 770umax_of_size (int size)
4c4b4cd2 771{
76a01679 772 ULONGEST top_bit = (ULONGEST) 1 << (size * 8 - 1);
5b4ee69b 773
76a01679 774 return top_bit | (top_bit - 1);
4c4b4cd2
PH
775}
776
0963b4bd 777/* Maximum value of integral type T, as a signed quantity. */
c3e5cd34
PH
778static LONGEST
779max_of_type (struct type *t)
4c4b4cd2 780{
c3e5cd34
PH
781 if (TYPE_UNSIGNED (t))
782 return (LONGEST) umax_of_size (TYPE_LENGTH (t));
783 else
784 return max_of_size (TYPE_LENGTH (t));
785}
786
0963b4bd 787/* Minimum value of integral type T, as a signed quantity. */
c3e5cd34
PH
788static LONGEST
789min_of_type (struct type *t)
790{
791 if (TYPE_UNSIGNED (t))
792 return 0;
793 else
794 return min_of_size (TYPE_LENGTH (t));
4c4b4cd2
PH
795}
796
797/* The largest value in the domain of TYPE, a discrete type, as an integer. */
43bbcdc2
PH
798LONGEST
799ada_discrete_type_high_bound (struct type *type)
4c4b4cd2 800{
c3345124 801 type = resolve_dynamic_type (type, NULL, 0);
76a01679 802 switch (TYPE_CODE (type))
4c4b4cd2
PH
803 {
804 case TYPE_CODE_RANGE:
690cc4eb 805 return TYPE_HIGH_BOUND (type);
4c4b4cd2 806 case TYPE_CODE_ENUM:
14e75d8e 807 return TYPE_FIELD_ENUMVAL (type, TYPE_NFIELDS (type) - 1);
690cc4eb
PH
808 case TYPE_CODE_BOOL:
809 return 1;
810 case TYPE_CODE_CHAR:
76a01679 811 case TYPE_CODE_INT:
690cc4eb 812 return max_of_type (type);
4c4b4cd2 813 default:
43bbcdc2 814 error (_("Unexpected type in ada_discrete_type_high_bound."));
4c4b4cd2
PH
815 }
816}
817
14e75d8e 818/* The smallest value in the domain of TYPE, a discrete type, as an integer. */
43bbcdc2
PH
819LONGEST
820ada_discrete_type_low_bound (struct type *type)
4c4b4cd2 821{
c3345124 822 type = resolve_dynamic_type (type, NULL, 0);
76a01679 823 switch (TYPE_CODE (type))
4c4b4cd2
PH
824 {
825 case TYPE_CODE_RANGE:
690cc4eb 826 return TYPE_LOW_BOUND (type);
4c4b4cd2 827 case TYPE_CODE_ENUM:
14e75d8e 828 return TYPE_FIELD_ENUMVAL (type, 0);
690cc4eb
PH
829 case TYPE_CODE_BOOL:
830 return 0;
831 case TYPE_CODE_CHAR:
76a01679 832 case TYPE_CODE_INT:
690cc4eb 833 return min_of_type (type);
4c4b4cd2 834 default:
43bbcdc2 835 error (_("Unexpected type in ada_discrete_type_low_bound."));
4c4b4cd2
PH
836 }
837}
838
839/* The identity on non-range types. For range types, the underlying
76a01679 840 non-range scalar type. */
4c4b4cd2
PH
841
842static struct type *
18af8284 843get_base_type (struct type *type)
4c4b4cd2
PH
844{
845 while (type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE)
846 {
76a01679
JB
847 if (type == TYPE_TARGET_TYPE (type) || TYPE_TARGET_TYPE (type) == NULL)
848 return type;
4c4b4cd2
PH
849 type = TYPE_TARGET_TYPE (type);
850 }
851 return type;
14f9c5c9 852}
41246937
JB
853
854/* Return a decoded version of the given VALUE. This means returning
855 a value whose type is obtained by applying all the GNAT-specific
856 encondings, making the resulting type a static but standard description
857 of the initial type. */
858
859struct value *
860ada_get_decoded_value (struct value *value)
861{
862 struct type *type = ada_check_typedef (value_type (value));
863
864 if (ada_is_array_descriptor_type (type)
865 || (ada_is_constrained_packed_array_type (type)
866 && TYPE_CODE (type) != TYPE_CODE_PTR))
867 {
868 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF) /* array access type. */
869 value = ada_coerce_to_simple_array_ptr (value);
870 else
871 value = ada_coerce_to_simple_array (value);
872 }
873 else
874 value = ada_to_fixed_value (value);
875
876 return value;
877}
878
879/* Same as ada_get_decoded_value, but with the given TYPE.
880 Because there is no associated actual value for this type,
881 the resulting type might be a best-effort approximation in
882 the case of dynamic types. */
883
884struct type *
885ada_get_decoded_type (struct type *type)
886{
887 type = to_static_fixed_type (type);
888 if (ada_is_constrained_packed_array_type (type))
889 type = ada_coerce_to_simple_array_type (type);
890 return type;
891}
892
4c4b4cd2 893\f
76a01679 894
4c4b4cd2 895 /* Language Selection */
14f9c5c9
AS
896
897/* If the main program is in Ada, return language_ada, otherwise return LANG
ccefe4c4 898 (the main program is in Ada iif the adainit symbol is found). */
d2e4a39e 899
14f9c5c9 900enum language
ccefe4c4 901ada_update_initial_language (enum language lang)
14f9c5c9 902{
d2e4a39e 903 if (lookup_minimal_symbol ("adainit", (const char *) NULL,
3b7344d5 904 (struct objfile *) NULL).minsym != NULL)
4c4b4cd2 905 return language_ada;
14f9c5c9
AS
906
907 return lang;
908}
96d887e8
PH
909
910/* If the main procedure is written in Ada, then return its name.
911 The result is good until the next call. Return NULL if the main
912 procedure doesn't appear to be in Ada. */
913
914char *
915ada_main_name (void)
916{
3b7344d5 917 struct bound_minimal_symbol msym;
f9bc20b9 918 static char *main_program_name = NULL;
6c038f32 919
96d887e8
PH
920 /* For Ada, the name of the main procedure is stored in a specific
921 string constant, generated by the binder. Look for that symbol,
922 extract its address, and then read that string. If we didn't find
923 that string, then most probably the main procedure is not written
924 in Ada. */
925 msym = lookup_minimal_symbol (ADA_MAIN_PROGRAM_SYMBOL_NAME, NULL, NULL);
926
3b7344d5 927 if (msym.minsym != NULL)
96d887e8 928 {
f9bc20b9
JB
929 CORE_ADDR main_program_name_addr;
930 int err_code;
931
77e371c0 932 main_program_name_addr = BMSYMBOL_VALUE_ADDRESS (msym);
96d887e8 933 if (main_program_name_addr == 0)
323e0a4a 934 error (_("Invalid address for Ada main program name."));
96d887e8 935
f9bc20b9
JB
936 xfree (main_program_name);
937 target_read_string (main_program_name_addr, &main_program_name,
938 1024, &err_code);
939
940 if (err_code != 0)
941 return NULL;
96d887e8
PH
942 return main_program_name;
943 }
944
945 /* The main procedure doesn't seem to be in Ada. */
946 return NULL;
947}
14f9c5c9 948\f
4c4b4cd2 949 /* Symbols */
d2e4a39e 950
4c4b4cd2
PH
951/* Table of Ada operators and their GNAT-encoded names. Last entry is pair
952 of NULLs. */
14f9c5c9 953
d2e4a39e
AS
954const struct ada_opname_map ada_opname_table[] = {
955 {"Oadd", "\"+\"", BINOP_ADD},
956 {"Osubtract", "\"-\"", BINOP_SUB},
957 {"Omultiply", "\"*\"", BINOP_MUL},
958 {"Odivide", "\"/\"", BINOP_DIV},
959 {"Omod", "\"mod\"", BINOP_MOD},
960 {"Orem", "\"rem\"", BINOP_REM},
961 {"Oexpon", "\"**\"", BINOP_EXP},
962 {"Olt", "\"<\"", BINOP_LESS},
963 {"Ole", "\"<=\"", BINOP_LEQ},
964 {"Ogt", "\">\"", BINOP_GTR},
965 {"Oge", "\">=\"", BINOP_GEQ},
966 {"Oeq", "\"=\"", BINOP_EQUAL},
967 {"One", "\"/=\"", BINOP_NOTEQUAL},
968 {"Oand", "\"and\"", BINOP_BITWISE_AND},
969 {"Oor", "\"or\"", BINOP_BITWISE_IOR},
970 {"Oxor", "\"xor\"", BINOP_BITWISE_XOR},
971 {"Oconcat", "\"&\"", BINOP_CONCAT},
972 {"Oabs", "\"abs\"", UNOP_ABS},
973 {"Onot", "\"not\"", UNOP_LOGICAL_NOT},
974 {"Oadd", "\"+\"", UNOP_PLUS},
975 {"Osubtract", "\"-\"", UNOP_NEG},
976 {NULL, NULL}
14f9c5c9
AS
977};
978
4c4b4cd2
PH
979/* The "encoded" form of DECODED, according to GNAT conventions.
980 The result is valid until the next call to ada_encode. */
981
14f9c5c9 982char *
4c4b4cd2 983ada_encode (const char *decoded)
14f9c5c9 984{
4c4b4cd2
PH
985 static char *encoding_buffer = NULL;
986 static size_t encoding_buffer_size = 0;
d2e4a39e 987 const char *p;
14f9c5c9 988 int k;
d2e4a39e 989
4c4b4cd2 990 if (decoded == NULL)
14f9c5c9
AS
991 return NULL;
992
4c4b4cd2
PH
993 GROW_VECT (encoding_buffer, encoding_buffer_size,
994 2 * strlen (decoded) + 10);
14f9c5c9
AS
995
996 k = 0;
4c4b4cd2 997 for (p = decoded; *p != '\0'; p += 1)
14f9c5c9 998 {
cdc7bb92 999 if (*p == '.')
4c4b4cd2
PH
1000 {
1001 encoding_buffer[k] = encoding_buffer[k + 1] = '_';
1002 k += 2;
1003 }
14f9c5c9 1004 else if (*p == '"')
4c4b4cd2
PH
1005 {
1006 const struct ada_opname_map *mapping;
1007
1008 for (mapping = ada_opname_table;
1265e4aa 1009 mapping->encoded != NULL
61012eef 1010 && !startswith (p, mapping->decoded); mapping += 1)
4c4b4cd2
PH
1011 ;
1012 if (mapping->encoded == NULL)
323e0a4a 1013 error (_("invalid Ada operator name: %s"), p);
4c4b4cd2
PH
1014 strcpy (encoding_buffer + k, mapping->encoded);
1015 k += strlen (mapping->encoded);
1016 break;
1017 }
d2e4a39e 1018 else
4c4b4cd2
PH
1019 {
1020 encoding_buffer[k] = *p;
1021 k += 1;
1022 }
14f9c5c9
AS
1023 }
1024
4c4b4cd2
PH
1025 encoding_buffer[k] = '\0';
1026 return encoding_buffer;
14f9c5c9
AS
1027}
1028
1029/* Return NAME folded to lower case, or, if surrounded by single
4c4b4cd2
PH
1030 quotes, unfolded, but with the quotes stripped away. Result good
1031 to next call. */
1032
d2e4a39e
AS
1033char *
1034ada_fold_name (const char *name)
14f9c5c9 1035{
d2e4a39e 1036 static char *fold_buffer = NULL;
14f9c5c9
AS
1037 static size_t fold_buffer_size = 0;
1038
1039 int len = strlen (name);
d2e4a39e 1040 GROW_VECT (fold_buffer, fold_buffer_size, len + 1);
14f9c5c9
AS
1041
1042 if (name[0] == '\'')
1043 {
d2e4a39e
AS
1044 strncpy (fold_buffer, name + 1, len - 2);
1045 fold_buffer[len - 2] = '\000';
14f9c5c9
AS
1046 }
1047 else
1048 {
1049 int i;
5b4ee69b 1050
14f9c5c9 1051 for (i = 0; i <= len; i += 1)
4c4b4cd2 1052 fold_buffer[i] = tolower (name[i]);
14f9c5c9
AS
1053 }
1054
1055 return fold_buffer;
1056}
1057
529cad9c
PH
1058/* Return nonzero if C is either a digit or a lowercase alphabet character. */
1059
1060static int
1061is_lower_alphanum (const char c)
1062{
1063 return (isdigit (c) || (isalpha (c) && islower (c)));
1064}
1065
c90092fe
JB
1066/* ENCODED is the linkage name of a symbol and LEN contains its length.
1067 This function saves in LEN the length of that same symbol name but
1068 without either of these suffixes:
29480c32
JB
1069 . .{DIGIT}+
1070 . ${DIGIT}+
1071 . ___{DIGIT}+
1072 . __{DIGIT}+.
c90092fe 1073
29480c32
JB
1074 These are suffixes introduced by the compiler for entities such as
1075 nested subprogram for instance, in order to avoid name clashes.
1076 They do not serve any purpose for the debugger. */
1077
1078static void
1079ada_remove_trailing_digits (const char *encoded, int *len)
1080{
1081 if (*len > 1 && isdigit (encoded[*len - 1]))
1082 {
1083 int i = *len - 2;
5b4ee69b 1084
29480c32
JB
1085 while (i > 0 && isdigit (encoded[i]))
1086 i--;
1087 if (i >= 0 && encoded[i] == '.')
1088 *len = i;
1089 else if (i >= 0 && encoded[i] == '$')
1090 *len = i;
61012eef 1091 else if (i >= 2 && startswith (encoded + i - 2, "___"))
29480c32 1092 *len = i - 2;
61012eef 1093 else if (i >= 1 && startswith (encoded + i - 1, "__"))
29480c32
JB
1094 *len = i - 1;
1095 }
1096}
1097
1098/* Remove the suffix introduced by the compiler for protected object
1099 subprograms. */
1100
1101static void
1102ada_remove_po_subprogram_suffix (const char *encoded, int *len)
1103{
1104 /* Remove trailing N. */
1105
1106 /* Protected entry subprograms are broken into two
1107 separate subprograms: The first one is unprotected, and has
1108 a 'N' suffix; the second is the protected version, and has
0963b4bd 1109 the 'P' suffix. The second calls the first one after handling
29480c32
JB
1110 the protection. Since the P subprograms are internally generated,
1111 we leave these names undecoded, giving the user a clue that this
1112 entity is internal. */
1113
1114 if (*len > 1
1115 && encoded[*len - 1] == 'N'
1116 && (isdigit (encoded[*len - 2]) || islower (encoded[*len - 2])))
1117 *len = *len - 1;
1118}
1119
69fadcdf
JB
1120/* Remove trailing X[bn]* suffixes (indicating names in package bodies). */
1121
1122static void
1123ada_remove_Xbn_suffix (const char *encoded, int *len)
1124{
1125 int i = *len - 1;
1126
1127 while (i > 0 && (encoded[i] == 'b' || encoded[i] == 'n'))
1128 i--;
1129
1130 if (encoded[i] != 'X')
1131 return;
1132
1133 if (i == 0)
1134 return;
1135
1136 if (isalnum (encoded[i-1]))
1137 *len = i;
1138}
1139
29480c32
JB
1140/* If ENCODED follows the GNAT entity encoding conventions, then return
1141 the decoded form of ENCODED. Otherwise, return "<%s>" where "%s" is
1142 replaced by ENCODED.
14f9c5c9 1143
4c4b4cd2 1144 The resulting string is valid until the next call of ada_decode.
29480c32 1145 If the string is unchanged by decoding, the original string pointer
4c4b4cd2
PH
1146 is returned. */
1147
1148const char *
1149ada_decode (const char *encoded)
14f9c5c9
AS
1150{
1151 int i, j;
1152 int len0;
d2e4a39e 1153 const char *p;
4c4b4cd2 1154 char *decoded;
14f9c5c9 1155 int at_start_name;
4c4b4cd2
PH
1156 static char *decoding_buffer = NULL;
1157 static size_t decoding_buffer_size = 0;
d2e4a39e 1158
29480c32
JB
1159 /* The name of the Ada main procedure starts with "_ada_".
1160 This prefix is not part of the decoded name, so skip this part
1161 if we see this prefix. */
61012eef 1162 if (startswith (encoded, "_ada_"))
4c4b4cd2 1163 encoded += 5;
14f9c5c9 1164
29480c32
JB
1165 /* If the name starts with '_', then it is not a properly encoded
1166 name, so do not attempt to decode it. Similarly, if the name
1167 starts with '<', the name should not be decoded. */
4c4b4cd2 1168 if (encoded[0] == '_' || encoded[0] == '<')
14f9c5c9
AS
1169 goto Suppress;
1170
4c4b4cd2 1171 len0 = strlen (encoded);
4c4b4cd2 1172
29480c32
JB
1173 ada_remove_trailing_digits (encoded, &len0);
1174 ada_remove_po_subprogram_suffix (encoded, &len0);
529cad9c 1175
4c4b4cd2
PH
1176 /* Remove the ___X.* suffix if present. Do not forget to verify that
1177 the suffix is located before the current "end" of ENCODED. We want
1178 to avoid re-matching parts of ENCODED that have previously been
1179 marked as discarded (by decrementing LEN0). */
1180 p = strstr (encoded, "___");
1181 if (p != NULL && p - encoded < len0 - 3)
14f9c5c9
AS
1182 {
1183 if (p[3] == 'X')
4c4b4cd2 1184 len0 = p - encoded;
14f9c5c9 1185 else
4c4b4cd2 1186 goto Suppress;
14f9c5c9 1187 }
4c4b4cd2 1188
29480c32
JB
1189 /* Remove any trailing TKB suffix. It tells us that this symbol
1190 is for the body of a task, but that information does not actually
1191 appear in the decoded name. */
1192
61012eef 1193 if (len0 > 3 && startswith (encoded + len0 - 3, "TKB"))
14f9c5c9 1194 len0 -= 3;
76a01679 1195
a10967fa
JB
1196 /* Remove any trailing TB suffix. The TB suffix is slightly different
1197 from the TKB suffix because it is used for non-anonymous task
1198 bodies. */
1199
61012eef 1200 if (len0 > 2 && startswith (encoded + len0 - 2, "TB"))
a10967fa
JB
1201 len0 -= 2;
1202
29480c32
JB
1203 /* Remove trailing "B" suffixes. */
1204 /* FIXME: brobecker/2006-04-19: Not sure what this are used for... */
1205
61012eef 1206 if (len0 > 1 && startswith (encoded + len0 - 1, "B"))
14f9c5c9
AS
1207 len0 -= 1;
1208
4c4b4cd2 1209 /* Make decoded big enough for possible expansion by operator name. */
29480c32 1210
4c4b4cd2
PH
1211 GROW_VECT (decoding_buffer, decoding_buffer_size, 2 * len0 + 1);
1212 decoded = decoding_buffer;
14f9c5c9 1213
29480c32
JB
1214 /* Remove trailing __{digit}+ or trailing ${digit}+. */
1215
4c4b4cd2 1216 if (len0 > 1 && isdigit (encoded[len0 - 1]))
d2e4a39e 1217 {
4c4b4cd2
PH
1218 i = len0 - 2;
1219 while ((i >= 0 && isdigit (encoded[i]))
1220 || (i >= 1 && encoded[i] == '_' && isdigit (encoded[i - 1])))
1221 i -= 1;
1222 if (i > 1 && encoded[i] == '_' && encoded[i - 1] == '_')
1223 len0 = i - 1;
1224 else if (encoded[i] == '$')
1225 len0 = i;
d2e4a39e 1226 }
14f9c5c9 1227
29480c32
JB
1228 /* The first few characters that are not alphabetic are not part
1229 of any encoding we use, so we can copy them over verbatim. */
1230
4c4b4cd2
PH
1231 for (i = 0, j = 0; i < len0 && !isalpha (encoded[i]); i += 1, j += 1)
1232 decoded[j] = encoded[i];
14f9c5c9
AS
1233
1234 at_start_name = 1;
1235 while (i < len0)
1236 {
29480c32 1237 /* Is this a symbol function? */
4c4b4cd2
PH
1238 if (at_start_name && encoded[i] == 'O')
1239 {
1240 int k;
5b4ee69b 1241
4c4b4cd2
PH
1242 for (k = 0; ada_opname_table[k].encoded != NULL; k += 1)
1243 {
1244 int op_len = strlen (ada_opname_table[k].encoded);
06d5cf63
JB
1245 if ((strncmp (ada_opname_table[k].encoded + 1, encoded + i + 1,
1246 op_len - 1) == 0)
1247 && !isalnum (encoded[i + op_len]))
4c4b4cd2
PH
1248 {
1249 strcpy (decoded + j, ada_opname_table[k].decoded);
1250 at_start_name = 0;
1251 i += op_len;
1252 j += strlen (ada_opname_table[k].decoded);
1253 break;
1254 }
1255 }
1256 if (ada_opname_table[k].encoded != NULL)
1257 continue;
1258 }
14f9c5c9
AS
1259 at_start_name = 0;
1260
529cad9c
PH
1261 /* Replace "TK__" with "__", which will eventually be translated
1262 into "." (just below). */
1263
61012eef 1264 if (i < len0 - 4 && startswith (encoded + i, "TK__"))
4c4b4cd2 1265 i += 2;
529cad9c 1266
29480c32
JB
1267 /* Replace "__B_{DIGITS}+__" sequences by "__", which will eventually
1268 be translated into "." (just below). These are internal names
1269 generated for anonymous blocks inside which our symbol is nested. */
1270
1271 if (len0 - i > 5 && encoded [i] == '_' && encoded [i+1] == '_'
1272 && encoded [i+2] == 'B' && encoded [i+3] == '_'
1273 && isdigit (encoded [i+4]))
1274 {
1275 int k = i + 5;
1276
1277 while (k < len0 && isdigit (encoded[k]))
1278 k++; /* Skip any extra digit. */
1279
1280 /* Double-check that the "__B_{DIGITS}+" sequence we found
1281 is indeed followed by "__". */
1282 if (len0 - k > 2 && encoded [k] == '_' && encoded [k+1] == '_')
1283 i = k;
1284 }
1285
529cad9c
PH
1286 /* Remove _E{DIGITS}+[sb] */
1287
1288 /* Just as for protected object subprograms, there are 2 categories
0963b4bd 1289 of subprograms created by the compiler for each entry. The first
529cad9c
PH
1290 one implements the actual entry code, and has a suffix following
1291 the convention above; the second one implements the barrier and
1292 uses the same convention as above, except that the 'E' is replaced
1293 by a 'B'.
1294
1295 Just as above, we do not decode the name of barrier functions
1296 to give the user a clue that the code he is debugging has been
1297 internally generated. */
1298
1299 if (len0 - i > 3 && encoded [i] == '_' && encoded[i+1] == 'E'
1300 && isdigit (encoded[i+2]))
1301 {
1302 int k = i + 3;
1303
1304 while (k < len0 && isdigit (encoded[k]))
1305 k++;
1306
1307 if (k < len0
1308 && (encoded[k] == 'b' || encoded[k] == 's'))
1309 {
1310 k++;
1311 /* Just as an extra precaution, make sure that if this
1312 suffix is followed by anything else, it is a '_'.
1313 Otherwise, we matched this sequence by accident. */
1314 if (k == len0
1315 || (k < len0 && encoded[k] == '_'))
1316 i = k;
1317 }
1318 }
1319
1320 /* Remove trailing "N" in [a-z0-9]+N__. The N is added by
1321 the GNAT front-end in protected object subprograms. */
1322
1323 if (i < len0 + 3
1324 && encoded[i] == 'N' && encoded[i+1] == '_' && encoded[i+2] == '_')
1325 {
1326 /* Backtrack a bit up until we reach either the begining of
1327 the encoded name, or "__". Make sure that we only find
1328 digits or lowercase characters. */
1329 const char *ptr = encoded + i - 1;
1330
1331 while (ptr >= encoded && is_lower_alphanum (ptr[0]))
1332 ptr--;
1333 if (ptr < encoded
1334 || (ptr > encoded && ptr[0] == '_' && ptr[-1] == '_'))
1335 i++;
1336 }
1337
4c4b4cd2
PH
1338 if (encoded[i] == 'X' && i != 0 && isalnum (encoded[i - 1]))
1339 {
29480c32
JB
1340 /* This is a X[bn]* sequence not separated from the previous
1341 part of the name with a non-alpha-numeric character (in other
1342 words, immediately following an alpha-numeric character), then
1343 verify that it is placed at the end of the encoded name. If
1344 not, then the encoding is not valid and we should abort the
1345 decoding. Otherwise, just skip it, it is used in body-nested
1346 package names. */
4c4b4cd2
PH
1347 do
1348 i += 1;
1349 while (i < len0 && (encoded[i] == 'b' || encoded[i] == 'n'));
1350 if (i < len0)
1351 goto Suppress;
1352 }
cdc7bb92 1353 else if (i < len0 - 2 && encoded[i] == '_' && encoded[i + 1] == '_')
4c4b4cd2 1354 {
29480c32 1355 /* Replace '__' by '.'. */
4c4b4cd2
PH
1356 decoded[j] = '.';
1357 at_start_name = 1;
1358 i += 2;
1359 j += 1;
1360 }
14f9c5c9 1361 else
4c4b4cd2 1362 {
29480c32
JB
1363 /* It's a character part of the decoded name, so just copy it
1364 over. */
4c4b4cd2
PH
1365 decoded[j] = encoded[i];
1366 i += 1;
1367 j += 1;
1368 }
14f9c5c9 1369 }
4c4b4cd2 1370 decoded[j] = '\000';
14f9c5c9 1371
29480c32
JB
1372 /* Decoded names should never contain any uppercase character.
1373 Double-check this, and abort the decoding if we find one. */
1374
4c4b4cd2
PH
1375 for (i = 0; decoded[i] != '\0'; i += 1)
1376 if (isupper (decoded[i]) || decoded[i] == ' ')
14f9c5c9
AS
1377 goto Suppress;
1378
4c4b4cd2
PH
1379 if (strcmp (decoded, encoded) == 0)
1380 return encoded;
1381 else
1382 return decoded;
14f9c5c9
AS
1383
1384Suppress:
4c4b4cd2
PH
1385 GROW_VECT (decoding_buffer, decoding_buffer_size, strlen (encoded) + 3);
1386 decoded = decoding_buffer;
1387 if (encoded[0] == '<')
1388 strcpy (decoded, encoded);
14f9c5c9 1389 else
88c15c34 1390 xsnprintf (decoded, decoding_buffer_size, "<%s>", encoded);
4c4b4cd2
PH
1391 return decoded;
1392
1393}
1394
1395/* Table for keeping permanent unique copies of decoded names. Once
1396 allocated, names in this table are never released. While this is a
1397 storage leak, it should not be significant unless there are massive
1398 changes in the set of decoded names in successive versions of a
1399 symbol table loaded during a single session. */
1400static struct htab *decoded_names_store;
1401
1402/* Returns the decoded name of GSYMBOL, as for ada_decode, caching it
1403 in the language-specific part of GSYMBOL, if it has not been
1404 previously computed. Tries to save the decoded name in the same
1405 obstack as GSYMBOL, if possible, and otherwise on the heap (so that,
1406 in any case, the decoded symbol has a lifetime at least that of
0963b4bd 1407 GSYMBOL).
4c4b4cd2
PH
1408 The GSYMBOL parameter is "mutable" in the C++ sense: logically
1409 const, but nevertheless modified to a semantically equivalent form
0963b4bd 1410 when a decoded name is cached in it. */
4c4b4cd2 1411
45e6c716 1412const char *
f85f34ed 1413ada_decode_symbol (const struct general_symbol_info *arg)
4c4b4cd2 1414{
f85f34ed
TT
1415 struct general_symbol_info *gsymbol = (struct general_symbol_info *) arg;
1416 const char **resultp =
615b3f62 1417 &gsymbol->language_specific.demangled_name;
5b4ee69b 1418
f85f34ed 1419 if (!gsymbol->ada_mangled)
4c4b4cd2
PH
1420 {
1421 const char *decoded = ada_decode (gsymbol->name);
f85f34ed 1422 struct obstack *obstack = gsymbol->language_specific.obstack;
5b4ee69b 1423
f85f34ed 1424 gsymbol->ada_mangled = 1;
5b4ee69b 1425
f85f34ed 1426 if (obstack != NULL)
224c3ddb
SM
1427 *resultp
1428 = (const char *) obstack_copy0 (obstack, decoded, strlen (decoded));
f85f34ed 1429 else
76a01679 1430 {
f85f34ed
TT
1431 /* Sometimes, we can't find a corresponding objfile, in
1432 which case, we put the result on the heap. Since we only
1433 decode when needed, we hope this usually does not cause a
1434 significant memory leak (FIXME). */
1435
76a01679
JB
1436 char **slot = (char **) htab_find_slot (decoded_names_store,
1437 decoded, INSERT);
5b4ee69b 1438
76a01679
JB
1439 if (*slot == NULL)
1440 *slot = xstrdup (decoded);
1441 *resultp = *slot;
1442 }
4c4b4cd2 1443 }
14f9c5c9 1444
4c4b4cd2
PH
1445 return *resultp;
1446}
76a01679 1447
2c0b251b 1448static char *
76a01679 1449ada_la_decode (const char *encoded, int options)
4c4b4cd2
PH
1450{
1451 return xstrdup (ada_decode (encoded));
14f9c5c9
AS
1452}
1453
8b302db8
TT
1454/* Implement la_sniff_from_mangled_name for Ada. */
1455
1456static int
1457ada_sniff_from_mangled_name (const char *mangled, char **out)
1458{
1459 const char *demangled = ada_decode (mangled);
1460
1461 *out = NULL;
1462
1463 if (demangled != mangled && demangled != NULL && demangled[0] != '<')
1464 {
1465 /* Set the gsymbol language to Ada, but still return 0.
1466 Two reasons for that:
1467
1468 1. For Ada, we prefer computing the symbol's decoded name
1469 on the fly rather than pre-compute it, in order to save
1470 memory (Ada projects are typically very large).
1471
1472 2. There are some areas in the definition of the GNAT
1473 encoding where, with a bit of bad luck, we might be able
1474 to decode a non-Ada symbol, generating an incorrect
1475 demangled name (Eg: names ending with "TB" for instance
1476 are identified as task bodies and so stripped from
1477 the decoded name returned).
1478
1479 Returning 1, here, but not setting *DEMANGLED, helps us get a
1480 little bit of the best of both worlds. Because we're last,
1481 we should not affect any of the other languages that were
1482 able to demangle the symbol before us; we get to correctly
1483 tag Ada symbols as such; and even if we incorrectly tagged a
1484 non-Ada symbol, which should be rare, any routing through the
1485 Ada language should be transparent (Ada tries to behave much
1486 like C/C++ with non-Ada symbols). */
1487 return 1;
1488 }
1489
1490 return 0;
1491}
1492
14f9c5c9 1493/* Returns non-zero iff SYM_NAME matches NAME, ignoring any trailing
4c4b4cd2
PH
1494 suffixes that encode debugging information or leading _ada_ on
1495 SYM_NAME (see is_name_suffix commentary for the debugging
1496 information that is ignored). If WILD, then NAME need only match a
1497 suffix of SYM_NAME minus the same suffixes. Also returns 0 if
1498 either argument is NULL. */
14f9c5c9 1499
2c0b251b 1500static int
40658b94 1501match_name (const char *sym_name, const char *name, int wild)
14f9c5c9
AS
1502{
1503 if (sym_name == NULL || name == NULL)
1504 return 0;
1505 else if (wild)
73589123 1506 return wild_match (sym_name, name) == 0;
d2e4a39e
AS
1507 else
1508 {
1509 int len_name = strlen (name);
5b4ee69b 1510
4c4b4cd2
PH
1511 return (strncmp (sym_name, name, len_name) == 0
1512 && is_name_suffix (sym_name + len_name))
61012eef 1513 || (startswith (sym_name, "_ada_")
4c4b4cd2
PH
1514 && strncmp (sym_name + 5, name, len_name) == 0
1515 && is_name_suffix (sym_name + len_name + 5));
d2e4a39e 1516 }
14f9c5c9 1517}
14f9c5c9 1518\f
d2e4a39e 1519
4c4b4cd2 1520 /* Arrays */
14f9c5c9 1521
28c85d6c
JB
1522/* Assuming that INDEX_DESC_TYPE is an ___XA structure, a structure
1523 generated by the GNAT compiler to describe the index type used
1524 for each dimension of an array, check whether it follows the latest
1525 known encoding. If not, fix it up to conform to the latest encoding.
1526 Otherwise, do nothing. This function also does nothing if
1527 INDEX_DESC_TYPE is NULL.
1528
1529 The GNAT encoding used to describle the array index type evolved a bit.
1530 Initially, the information would be provided through the name of each
1531 field of the structure type only, while the type of these fields was
1532 described as unspecified and irrelevant. The debugger was then expected
1533 to perform a global type lookup using the name of that field in order
1534 to get access to the full index type description. Because these global
1535 lookups can be very expensive, the encoding was later enhanced to make
1536 the global lookup unnecessary by defining the field type as being
1537 the full index type description.
1538
1539 The purpose of this routine is to allow us to support older versions
1540 of the compiler by detecting the use of the older encoding, and by
1541 fixing up the INDEX_DESC_TYPE to follow the new one (at this point,
1542 we essentially replace each field's meaningless type by the associated
1543 index subtype). */
1544
1545void
1546ada_fixup_array_indexes_type (struct type *index_desc_type)
1547{
1548 int i;
1549
1550 if (index_desc_type == NULL)
1551 return;
1552 gdb_assert (TYPE_NFIELDS (index_desc_type) > 0);
1553
1554 /* Check if INDEX_DESC_TYPE follows the older encoding (it is sufficient
1555 to check one field only, no need to check them all). If not, return
1556 now.
1557
1558 If our INDEX_DESC_TYPE was generated using the older encoding,
1559 the field type should be a meaningless integer type whose name
1560 is not equal to the field name. */
1561 if (TYPE_NAME (TYPE_FIELD_TYPE (index_desc_type, 0)) != NULL
1562 && strcmp (TYPE_NAME (TYPE_FIELD_TYPE (index_desc_type, 0)),
1563 TYPE_FIELD_NAME (index_desc_type, 0)) == 0)
1564 return;
1565
1566 /* Fixup each field of INDEX_DESC_TYPE. */
1567 for (i = 0; i < TYPE_NFIELDS (index_desc_type); i++)
1568 {
0d5cff50 1569 const char *name = TYPE_FIELD_NAME (index_desc_type, i);
28c85d6c
JB
1570 struct type *raw_type = ada_check_typedef (ada_find_any_type (name));
1571
1572 if (raw_type)
1573 TYPE_FIELD_TYPE (index_desc_type, i) = raw_type;
1574 }
1575}
1576
4c4b4cd2 1577/* Names of MAX_ADA_DIMENS bounds in P_BOUNDS fields of array descriptors. */
14f9c5c9 1578
a121b7c1 1579static const char *bound_name[] = {
d2e4a39e 1580 "LB0", "UB0", "LB1", "UB1", "LB2", "UB2", "LB3", "UB3",
14f9c5c9
AS
1581 "LB4", "UB4", "LB5", "UB5", "LB6", "UB6", "LB7", "UB7"
1582};
1583
1584/* Maximum number of array dimensions we are prepared to handle. */
1585
4c4b4cd2 1586#define MAX_ADA_DIMENS (sizeof(bound_name) / (2*sizeof(char *)))
14f9c5c9 1587
14f9c5c9 1588
4c4b4cd2
PH
1589/* The desc_* routines return primitive portions of array descriptors
1590 (fat pointers). */
14f9c5c9
AS
1591
1592/* The descriptor or array type, if any, indicated by TYPE; removes
4c4b4cd2
PH
1593 level of indirection, if needed. */
1594
d2e4a39e
AS
1595static struct type *
1596desc_base_type (struct type *type)
14f9c5c9
AS
1597{
1598 if (type == NULL)
1599 return NULL;
61ee279c 1600 type = ada_check_typedef (type);
720d1a40
JB
1601 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
1602 type = ada_typedef_target_type (type);
1603
1265e4aa
JB
1604 if (type != NULL
1605 && (TYPE_CODE (type) == TYPE_CODE_PTR
1606 || TYPE_CODE (type) == TYPE_CODE_REF))
61ee279c 1607 return ada_check_typedef (TYPE_TARGET_TYPE (type));
14f9c5c9
AS
1608 else
1609 return type;
1610}
1611
4c4b4cd2
PH
1612/* True iff TYPE indicates a "thin" array pointer type. */
1613
14f9c5c9 1614static int
d2e4a39e 1615is_thin_pntr (struct type *type)
14f9c5c9 1616{
d2e4a39e 1617 return
14f9c5c9
AS
1618 is_suffix (ada_type_name (desc_base_type (type)), "___XUT")
1619 || is_suffix (ada_type_name (desc_base_type (type)), "___XUT___XVE");
1620}
1621
4c4b4cd2
PH
1622/* The descriptor type for thin pointer type TYPE. */
1623
d2e4a39e
AS
1624static struct type *
1625thin_descriptor_type (struct type *type)
14f9c5c9 1626{
d2e4a39e 1627 struct type *base_type = desc_base_type (type);
5b4ee69b 1628
14f9c5c9
AS
1629 if (base_type == NULL)
1630 return NULL;
1631 if (is_suffix (ada_type_name (base_type), "___XVE"))
1632 return base_type;
d2e4a39e 1633 else
14f9c5c9 1634 {
d2e4a39e 1635 struct type *alt_type = ada_find_parallel_type (base_type, "___XVE");
5b4ee69b 1636
14f9c5c9 1637 if (alt_type == NULL)
4c4b4cd2 1638 return base_type;
14f9c5c9 1639 else
4c4b4cd2 1640 return alt_type;
14f9c5c9
AS
1641 }
1642}
1643
4c4b4cd2
PH
1644/* A pointer to the array data for thin-pointer value VAL. */
1645
d2e4a39e
AS
1646static struct value *
1647thin_data_pntr (struct value *val)
14f9c5c9 1648{
828292f2 1649 struct type *type = ada_check_typedef (value_type (val));
556bdfd4 1650 struct type *data_type = desc_data_target_type (thin_descriptor_type (type));
5b4ee69b 1651
556bdfd4
UW
1652 data_type = lookup_pointer_type (data_type);
1653
14f9c5c9 1654 if (TYPE_CODE (type) == TYPE_CODE_PTR)
556bdfd4 1655 return value_cast (data_type, value_copy (val));
d2e4a39e 1656 else
42ae5230 1657 return value_from_longest (data_type, value_address (val));
14f9c5c9
AS
1658}
1659
4c4b4cd2
PH
1660/* True iff TYPE indicates a "thick" array pointer type. */
1661
14f9c5c9 1662static int
d2e4a39e 1663is_thick_pntr (struct type *type)
14f9c5c9
AS
1664{
1665 type = desc_base_type (type);
1666 return (type != NULL && TYPE_CODE (type) == TYPE_CODE_STRUCT
4c4b4cd2 1667 && lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL);
14f9c5c9
AS
1668}
1669
4c4b4cd2
PH
1670/* If TYPE is the type of an array descriptor (fat or thin pointer) or a
1671 pointer to one, the type of its bounds data; otherwise, NULL. */
76a01679 1672
d2e4a39e
AS
1673static struct type *
1674desc_bounds_type (struct type *type)
14f9c5c9 1675{
d2e4a39e 1676 struct type *r;
14f9c5c9
AS
1677
1678 type = desc_base_type (type);
1679
1680 if (type == NULL)
1681 return NULL;
1682 else if (is_thin_pntr (type))
1683 {
1684 type = thin_descriptor_type (type);
1685 if (type == NULL)
4c4b4cd2 1686 return NULL;
14f9c5c9
AS
1687 r = lookup_struct_elt_type (type, "BOUNDS", 1);
1688 if (r != NULL)
61ee279c 1689 return ada_check_typedef (r);
14f9c5c9
AS
1690 }
1691 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
1692 {
1693 r = lookup_struct_elt_type (type, "P_BOUNDS", 1);
1694 if (r != NULL)
61ee279c 1695 return ada_check_typedef (TYPE_TARGET_TYPE (ada_check_typedef (r)));
14f9c5c9
AS
1696 }
1697 return NULL;
1698}
1699
1700/* If ARR is an array descriptor (fat or thin pointer), or pointer to
4c4b4cd2
PH
1701 one, a pointer to its bounds data. Otherwise NULL. */
1702
d2e4a39e
AS
1703static struct value *
1704desc_bounds (struct value *arr)
14f9c5c9 1705{
df407dfe 1706 struct type *type = ada_check_typedef (value_type (arr));
5b4ee69b 1707
d2e4a39e 1708 if (is_thin_pntr (type))
14f9c5c9 1709 {
d2e4a39e 1710 struct type *bounds_type =
4c4b4cd2 1711 desc_bounds_type (thin_descriptor_type (type));
14f9c5c9
AS
1712 LONGEST addr;
1713
4cdfadb1 1714 if (bounds_type == NULL)
323e0a4a 1715 error (_("Bad GNAT array descriptor"));
14f9c5c9
AS
1716
1717 /* NOTE: The following calculation is not really kosher, but
d2e4a39e 1718 since desc_type is an XVE-encoded type (and shouldn't be),
4c4b4cd2 1719 the correct calculation is a real pain. FIXME (and fix GCC). */
14f9c5c9 1720 if (TYPE_CODE (type) == TYPE_CODE_PTR)
4c4b4cd2 1721 addr = value_as_long (arr);
d2e4a39e 1722 else
42ae5230 1723 addr = value_address (arr);
14f9c5c9 1724
d2e4a39e 1725 return
4c4b4cd2
PH
1726 value_from_longest (lookup_pointer_type (bounds_type),
1727 addr - TYPE_LENGTH (bounds_type));
14f9c5c9
AS
1728 }
1729
1730 else if (is_thick_pntr (type))
05e522ef
JB
1731 {
1732 struct value *p_bounds = value_struct_elt (&arr, NULL, "P_BOUNDS", NULL,
1733 _("Bad GNAT array descriptor"));
1734 struct type *p_bounds_type = value_type (p_bounds);
1735
1736 if (p_bounds_type
1737 && TYPE_CODE (p_bounds_type) == TYPE_CODE_PTR)
1738 {
1739 struct type *target_type = TYPE_TARGET_TYPE (p_bounds_type);
1740
1741 if (TYPE_STUB (target_type))
1742 p_bounds = value_cast (lookup_pointer_type
1743 (ada_check_typedef (target_type)),
1744 p_bounds);
1745 }
1746 else
1747 error (_("Bad GNAT array descriptor"));
1748
1749 return p_bounds;
1750 }
14f9c5c9
AS
1751 else
1752 return NULL;
1753}
1754
4c4b4cd2
PH
1755/* If TYPE is the type of an array-descriptor (fat pointer), the bit
1756 position of the field containing the address of the bounds data. */
1757
14f9c5c9 1758static int
d2e4a39e 1759fat_pntr_bounds_bitpos (struct type *type)
14f9c5c9
AS
1760{
1761 return TYPE_FIELD_BITPOS (desc_base_type (type), 1);
1762}
1763
1764/* If TYPE is the type of an array-descriptor (fat pointer), the bit
4c4b4cd2
PH
1765 size of the field containing the address of the bounds data. */
1766
14f9c5c9 1767static int
d2e4a39e 1768fat_pntr_bounds_bitsize (struct type *type)
14f9c5c9
AS
1769{
1770 type = desc_base_type (type);
1771
d2e4a39e 1772 if (TYPE_FIELD_BITSIZE (type, 1) > 0)
14f9c5c9
AS
1773 return TYPE_FIELD_BITSIZE (type, 1);
1774 else
61ee279c 1775 return 8 * TYPE_LENGTH (ada_check_typedef (TYPE_FIELD_TYPE (type, 1)));
14f9c5c9
AS
1776}
1777
4c4b4cd2 1778/* If TYPE is the type of an array descriptor (fat or thin pointer) or a
556bdfd4
UW
1779 pointer to one, the type of its array data (a array-with-no-bounds type);
1780 otherwise, NULL. Use ada_type_of_array to get an array type with bounds
1781 data. */
4c4b4cd2 1782
d2e4a39e 1783static struct type *
556bdfd4 1784desc_data_target_type (struct type *type)
14f9c5c9
AS
1785{
1786 type = desc_base_type (type);
1787
4c4b4cd2 1788 /* NOTE: The following is bogus; see comment in desc_bounds. */
14f9c5c9 1789 if (is_thin_pntr (type))
556bdfd4 1790 return desc_base_type (TYPE_FIELD_TYPE (thin_descriptor_type (type), 1));
14f9c5c9 1791 else if (is_thick_pntr (type))
556bdfd4
UW
1792 {
1793 struct type *data_type = lookup_struct_elt_type (type, "P_ARRAY", 1);
1794
1795 if (data_type
1796 && TYPE_CODE (ada_check_typedef (data_type)) == TYPE_CODE_PTR)
05e522ef 1797 return ada_check_typedef (TYPE_TARGET_TYPE (data_type));
556bdfd4
UW
1798 }
1799
1800 return NULL;
14f9c5c9
AS
1801}
1802
1803/* If ARR is an array descriptor (fat or thin pointer), a pointer to
1804 its array data. */
4c4b4cd2 1805
d2e4a39e
AS
1806static struct value *
1807desc_data (struct value *arr)
14f9c5c9 1808{
df407dfe 1809 struct type *type = value_type (arr);
5b4ee69b 1810
14f9c5c9
AS
1811 if (is_thin_pntr (type))
1812 return thin_data_pntr (arr);
1813 else if (is_thick_pntr (type))
d2e4a39e 1814 return value_struct_elt (&arr, NULL, "P_ARRAY", NULL,
323e0a4a 1815 _("Bad GNAT array descriptor"));
14f9c5c9
AS
1816 else
1817 return NULL;
1818}
1819
1820
1821/* If TYPE is the type of an array-descriptor (fat pointer), the bit
4c4b4cd2
PH
1822 position of the field containing the address of the data. */
1823
14f9c5c9 1824static int
d2e4a39e 1825fat_pntr_data_bitpos (struct type *type)
14f9c5c9
AS
1826{
1827 return TYPE_FIELD_BITPOS (desc_base_type (type), 0);
1828}
1829
1830/* If TYPE is the type of an array-descriptor (fat pointer), the bit
4c4b4cd2
PH
1831 size of the field containing the address of the data. */
1832
14f9c5c9 1833static int
d2e4a39e 1834fat_pntr_data_bitsize (struct type *type)
14f9c5c9
AS
1835{
1836 type = desc_base_type (type);
1837
1838 if (TYPE_FIELD_BITSIZE (type, 0) > 0)
1839 return TYPE_FIELD_BITSIZE (type, 0);
d2e4a39e 1840 else
14f9c5c9
AS
1841 return TARGET_CHAR_BIT * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 0));
1842}
1843
4c4b4cd2 1844/* If BOUNDS is an array-bounds structure (or pointer to one), return
14f9c5c9 1845 the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
4c4b4cd2
PH
1846 bound, if WHICH is 1. The first bound is I=1. */
1847
d2e4a39e
AS
1848static struct value *
1849desc_one_bound (struct value *bounds, int i, int which)
14f9c5c9 1850{
d2e4a39e 1851 return value_struct_elt (&bounds, NULL, bound_name[2 * i + which - 2], NULL,
323e0a4a 1852 _("Bad GNAT array descriptor bounds"));
14f9c5c9
AS
1853}
1854
1855/* If BOUNDS is an array-bounds structure type, return the bit position
1856 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
4c4b4cd2
PH
1857 bound, if WHICH is 1. The first bound is I=1. */
1858
14f9c5c9 1859static int
d2e4a39e 1860desc_bound_bitpos (struct type *type, int i, int which)
14f9c5c9 1861{
d2e4a39e 1862 return TYPE_FIELD_BITPOS (desc_base_type (type), 2 * i + which - 2);
14f9c5c9
AS
1863}
1864
1865/* If BOUNDS is an array-bounds structure type, return the bit field size
1866 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
4c4b4cd2
PH
1867 bound, if WHICH is 1. The first bound is I=1. */
1868
76a01679 1869static int
d2e4a39e 1870desc_bound_bitsize (struct type *type, int i, int which)
14f9c5c9
AS
1871{
1872 type = desc_base_type (type);
1873
d2e4a39e
AS
1874 if (TYPE_FIELD_BITSIZE (type, 2 * i + which - 2) > 0)
1875 return TYPE_FIELD_BITSIZE (type, 2 * i + which - 2);
1876 else
1877 return 8 * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 2 * i + which - 2));
14f9c5c9
AS
1878}
1879
1880/* If TYPE is the type of an array-bounds structure, the type of its
4c4b4cd2
PH
1881 Ith bound (numbering from 1). Otherwise, NULL. */
1882
d2e4a39e
AS
1883static struct type *
1884desc_index_type (struct type *type, int i)
14f9c5c9
AS
1885{
1886 type = desc_base_type (type);
1887
1888 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
d2e4a39e
AS
1889 return lookup_struct_elt_type (type, bound_name[2 * i - 2], 1);
1890 else
14f9c5c9
AS
1891 return NULL;
1892}
1893
4c4b4cd2
PH
1894/* The number of index positions in the array-bounds type TYPE.
1895 Return 0 if TYPE is NULL. */
1896
14f9c5c9 1897static int
d2e4a39e 1898desc_arity (struct type *type)
14f9c5c9
AS
1899{
1900 type = desc_base_type (type);
1901
1902 if (type != NULL)
1903 return TYPE_NFIELDS (type) / 2;
1904 return 0;
1905}
1906
4c4b4cd2
PH
1907/* Non-zero iff TYPE is a simple array type (not a pointer to one) or
1908 an array descriptor type (representing an unconstrained array
1909 type). */
1910
76a01679
JB
1911static int
1912ada_is_direct_array_type (struct type *type)
4c4b4cd2
PH
1913{
1914 if (type == NULL)
1915 return 0;
61ee279c 1916 type = ada_check_typedef (type);
4c4b4cd2 1917 return (TYPE_CODE (type) == TYPE_CODE_ARRAY
76a01679 1918 || ada_is_array_descriptor_type (type));
4c4b4cd2
PH
1919}
1920
52ce6436 1921/* Non-zero iff TYPE represents any kind of array in Ada, or a pointer
0963b4bd 1922 * to one. */
52ce6436 1923
2c0b251b 1924static int
52ce6436
PH
1925ada_is_array_type (struct type *type)
1926{
1927 while (type != NULL
1928 && (TYPE_CODE (type) == TYPE_CODE_PTR
1929 || TYPE_CODE (type) == TYPE_CODE_REF))
1930 type = TYPE_TARGET_TYPE (type);
1931 return ada_is_direct_array_type (type);
1932}
1933
4c4b4cd2 1934/* Non-zero iff TYPE is a simple array type or pointer to one. */
14f9c5c9 1935
14f9c5c9 1936int
4c4b4cd2 1937ada_is_simple_array_type (struct type *type)
14f9c5c9
AS
1938{
1939 if (type == NULL)
1940 return 0;
61ee279c 1941 type = ada_check_typedef (type);
14f9c5c9 1942 return (TYPE_CODE (type) == TYPE_CODE_ARRAY
4c4b4cd2 1943 || (TYPE_CODE (type) == TYPE_CODE_PTR
b0dd7688
JB
1944 && TYPE_CODE (ada_check_typedef (TYPE_TARGET_TYPE (type)))
1945 == TYPE_CODE_ARRAY));
14f9c5c9
AS
1946}
1947
4c4b4cd2
PH
1948/* Non-zero iff TYPE belongs to a GNAT array descriptor. */
1949
14f9c5c9 1950int
4c4b4cd2 1951ada_is_array_descriptor_type (struct type *type)
14f9c5c9 1952{
556bdfd4 1953 struct type *data_type = desc_data_target_type (type);
14f9c5c9
AS
1954
1955 if (type == NULL)
1956 return 0;
61ee279c 1957 type = ada_check_typedef (type);
556bdfd4
UW
1958 return (data_type != NULL
1959 && TYPE_CODE (data_type) == TYPE_CODE_ARRAY
1960 && desc_arity (desc_bounds_type (type)) > 0);
14f9c5c9
AS
1961}
1962
1963/* Non-zero iff type is a partially mal-formed GNAT array
4c4b4cd2 1964 descriptor. FIXME: This is to compensate for some problems with
14f9c5c9 1965 debugging output from GNAT. Re-examine periodically to see if it
4c4b4cd2
PH
1966 is still needed. */
1967
14f9c5c9 1968int
ebf56fd3 1969ada_is_bogus_array_descriptor (struct type *type)
14f9c5c9 1970{
d2e4a39e 1971 return
14f9c5c9
AS
1972 type != NULL
1973 && TYPE_CODE (type) == TYPE_CODE_STRUCT
1974 && (lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL
4c4b4cd2
PH
1975 || lookup_struct_elt_type (type, "P_ARRAY", 1) != NULL)
1976 && !ada_is_array_descriptor_type (type);
14f9c5c9
AS
1977}
1978
1979
4c4b4cd2 1980/* If ARR has a record type in the form of a standard GNAT array descriptor,
14f9c5c9 1981 (fat pointer) returns the type of the array data described---specifically,
4c4b4cd2 1982 a pointer-to-array type. If BOUNDS is non-zero, the bounds data are filled
14f9c5c9 1983 in from the descriptor; otherwise, they are left unspecified. If
4c4b4cd2
PH
1984 the ARR denotes a null array descriptor and BOUNDS is non-zero,
1985 returns NULL. The result is simply the type of ARR if ARR is not
14f9c5c9 1986 a descriptor. */
d2e4a39e
AS
1987struct type *
1988ada_type_of_array (struct value *arr, int bounds)
14f9c5c9 1989{
ad82864c
JB
1990 if (ada_is_constrained_packed_array_type (value_type (arr)))
1991 return decode_constrained_packed_array_type (value_type (arr));
14f9c5c9 1992
df407dfe
AC
1993 if (!ada_is_array_descriptor_type (value_type (arr)))
1994 return value_type (arr);
d2e4a39e
AS
1995
1996 if (!bounds)
ad82864c
JB
1997 {
1998 struct type *array_type =
1999 ada_check_typedef (desc_data_target_type (value_type (arr)));
2000
2001 if (ada_is_unconstrained_packed_array_type (value_type (arr)))
2002 TYPE_FIELD_BITSIZE (array_type, 0) =
2003 decode_packed_array_bitsize (value_type (arr));
2004
2005 return array_type;
2006 }
14f9c5c9
AS
2007 else
2008 {
d2e4a39e 2009 struct type *elt_type;
14f9c5c9 2010 int arity;
d2e4a39e 2011 struct value *descriptor;
14f9c5c9 2012
df407dfe
AC
2013 elt_type = ada_array_element_type (value_type (arr), -1);
2014 arity = ada_array_arity (value_type (arr));
14f9c5c9 2015
d2e4a39e 2016 if (elt_type == NULL || arity == 0)
df407dfe 2017 return ada_check_typedef (value_type (arr));
14f9c5c9
AS
2018
2019 descriptor = desc_bounds (arr);
d2e4a39e 2020 if (value_as_long (descriptor) == 0)
4c4b4cd2 2021 return NULL;
d2e4a39e 2022 while (arity > 0)
4c4b4cd2 2023 {
e9bb382b
UW
2024 struct type *range_type = alloc_type_copy (value_type (arr));
2025 struct type *array_type = alloc_type_copy (value_type (arr));
4c4b4cd2
PH
2026 struct value *low = desc_one_bound (descriptor, arity, 0);
2027 struct value *high = desc_one_bound (descriptor, arity, 1);
4c4b4cd2 2028
5b4ee69b 2029 arity -= 1;
0c9c3474
SA
2030 create_static_range_type (range_type, value_type (low),
2031 longest_to_int (value_as_long (low)),
2032 longest_to_int (value_as_long (high)));
4c4b4cd2 2033 elt_type = create_array_type (array_type, elt_type, range_type);
ad82864c
JB
2034
2035 if (ada_is_unconstrained_packed_array_type (value_type (arr)))
e67ad678
JB
2036 {
2037 /* We need to store the element packed bitsize, as well as
2038 recompute the array size, because it was previously
2039 computed based on the unpacked element size. */
2040 LONGEST lo = value_as_long (low);
2041 LONGEST hi = value_as_long (high);
2042
2043 TYPE_FIELD_BITSIZE (elt_type, 0) =
2044 decode_packed_array_bitsize (value_type (arr));
2045 /* If the array has no element, then the size is already
2046 zero, and does not need to be recomputed. */
2047 if (lo < hi)
2048 {
2049 int array_bitsize =
2050 (hi - lo + 1) * TYPE_FIELD_BITSIZE (elt_type, 0);
2051
2052 TYPE_LENGTH (array_type) = (array_bitsize + 7) / 8;
2053 }
2054 }
4c4b4cd2 2055 }
14f9c5c9
AS
2056
2057 return lookup_pointer_type (elt_type);
2058 }
2059}
2060
2061/* If ARR does not represent an array, returns ARR unchanged.
4c4b4cd2
PH
2062 Otherwise, returns either a standard GDB array with bounds set
2063 appropriately or, if ARR is a non-null fat pointer, a pointer to a standard
2064 GDB array. Returns NULL if ARR is a null fat pointer. */
2065
d2e4a39e
AS
2066struct value *
2067ada_coerce_to_simple_array_ptr (struct value *arr)
14f9c5c9 2068{
df407dfe 2069 if (ada_is_array_descriptor_type (value_type (arr)))
14f9c5c9 2070 {
d2e4a39e 2071 struct type *arrType = ada_type_of_array (arr, 1);
5b4ee69b 2072
14f9c5c9 2073 if (arrType == NULL)
4c4b4cd2 2074 return NULL;
14f9c5c9
AS
2075 return value_cast (arrType, value_copy (desc_data (arr)));
2076 }
ad82864c
JB
2077 else if (ada_is_constrained_packed_array_type (value_type (arr)))
2078 return decode_constrained_packed_array (arr);
14f9c5c9
AS
2079 else
2080 return arr;
2081}
2082
2083/* If ARR does not represent an array, returns ARR unchanged.
2084 Otherwise, returns a standard GDB array describing ARR (which may
4c4b4cd2
PH
2085 be ARR itself if it already is in the proper form). */
2086
720d1a40 2087struct value *
d2e4a39e 2088ada_coerce_to_simple_array (struct value *arr)
14f9c5c9 2089{
df407dfe 2090 if (ada_is_array_descriptor_type (value_type (arr)))
14f9c5c9 2091 {
d2e4a39e 2092 struct value *arrVal = ada_coerce_to_simple_array_ptr (arr);
5b4ee69b 2093
14f9c5c9 2094 if (arrVal == NULL)
323e0a4a 2095 error (_("Bounds unavailable for null array pointer."));
c1b5a1a6 2096 ada_ensure_varsize_limit (TYPE_TARGET_TYPE (value_type (arrVal)));
14f9c5c9
AS
2097 return value_ind (arrVal);
2098 }
ad82864c
JB
2099 else if (ada_is_constrained_packed_array_type (value_type (arr)))
2100 return decode_constrained_packed_array (arr);
d2e4a39e 2101 else
14f9c5c9
AS
2102 return arr;
2103}
2104
2105/* If TYPE represents a GNAT array type, return it translated to an
2106 ordinary GDB array type (possibly with BITSIZE fields indicating
4c4b4cd2
PH
2107 packing). For other types, is the identity. */
2108
d2e4a39e
AS
2109struct type *
2110ada_coerce_to_simple_array_type (struct type *type)
14f9c5c9 2111{
ad82864c
JB
2112 if (ada_is_constrained_packed_array_type (type))
2113 return decode_constrained_packed_array_type (type);
17280b9f
UW
2114
2115 if (ada_is_array_descriptor_type (type))
556bdfd4 2116 return ada_check_typedef (desc_data_target_type (type));
17280b9f
UW
2117
2118 return type;
14f9c5c9
AS
2119}
2120
4c4b4cd2
PH
2121/* Non-zero iff TYPE represents a standard GNAT packed-array type. */
2122
ad82864c
JB
2123static int
2124ada_is_packed_array_type (struct type *type)
14f9c5c9
AS
2125{
2126 if (type == NULL)
2127 return 0;
4c4b4cd2 2128 type = desc_base_type (type);
61ee279c 2129 type = ada_check_typedef (type);
d2e4a39e 2130 return
14f9c5c9
AS
2131 ada_type_name (type) != NULL
2132 && strstr (ada_type_name (type), "___XP") != NULL;
2133}
2134
ad82864c
JB
2135/* Non-zero iff TYPE represents a standard GNAT constrained
2136 packed-array type. */
2137
2138int
2139ada_is_constrained_packed_array_type (struct type *type)
2140{
2141 return ada_is_packed_array_type (type)
2142 && !ada_is_array_descriptor_type (type);
2143}
2144
2145/* Non-zero iff TYPE represents an array descriptor for a
2146 unconstrained packed-array type. */
2147
2148static int
2149ada_is_unconstrained_packed_array_type (struct type *type)
2150{
2151 return ada_is_packed_array_type (type)
2152 && ada_is_array_descriptor_type (type);
2153}
2154
2155/* Given that TYPE encodes a packed array type (constrained or unconstrained),
2156 return the size of its elements in bits. */
2157
2158static long
2159decode_packed_array_bitsize (struct type *type)
2160{
0d5cff50
DE
2161 const char *raw_name;
2162 const char *tail;
ad82864c
JB
2163 long bits;
2164
720d1a40
JB
2165 /* Access to arrays implemented as fat pointers are encoded as a typedef
2166 of the fat pointer type. We need the name of the fat pointer type
2167 to do the decoding, so strip the typedef layer. */
2168 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
2169 type = ada_typedef_target_type (type);
2170
2171 raw_name = ada_type_name (ada_check_typedef (type));
ad82864c
JB
2172 if (!raw_name)
2173 raw_name = ada_type_name (desc_base_type (type));
2174
2175 if (!raw_name)
2176 return 0;
2177
2178 tail = strstr (raw_name, "___XP");
720d1a40 2179 gdb_assert (tail != NULL);
ad82864c
JB
2180
2181 if (sscanf (tail + sizeof ("___XP") - 1, "%ld", &bits) != 1)
2182 {
2183 lim_warning
2184 (_("could not understand bit size information on packed array"));
2185 return 0;
2186 }
2187
2188 return bits;
2189}
2190
14f9c5c9
AS
2191/* Given that TYPE is a standard GDB array type with all bounds filled
2192 in, and that the element size of its ultimate scalar constituents
2193 (that is, either its elements, or, if it is an array of arrays, its
2194 elements' elements, etc.) is *ELT_BITS, return an identical type,
2195 but with the bit sizes of its elements (and those of any
2196 constituent arrays) recorded in the BITSIZE components of its
4c4b4cd2 2197 TYPE_FIELD_BITSIZE values, and with *ELT_BITS set to its total size
4a46959e
JB
2198 in bits.
2199
2200 Note that, for arrays whose index type has an XA encoding where
2201 a bound references a record discriminant, getting that discriminant,
2202 and therefore the actual value of that bound, is not possible
2203 because none of the given parameters gives us access to the record.
2204 This function assumes that it is OK in the context where it is being
2205 used to return an array whose bounds are still dynamic and where
2206 the length is arbitrary. */
4c4b4cd2 2207
d2e4a39e 2208static struct type *
ad82864c 2209constrained_packed_array_type (struct type *type, long *elt_bits)
14f9c5c9 2210{
d2e4a39e
AS
2211 struct type *new_elt_type;
2212 struct type *new_type;
99b1c762
JB
2213 struct type *index_type_desc;
2214 struct type *index_type;
14f9c5c9
AS
2215 LONGEST low_bound, high_bound;
2216
61ee279c 2217 type = ada_check_typedef (type);
14f9c5c9
AS
2218 if (TYPE_CODE (type) != TYPE_CODE_ARRAY)
2219 return type;
2220
99b1c762
JB
2221 index_type_desc = ada_find_parallel_type (type, "___XA");
2222 if (index_type_desc)
2223 index_type = to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, 0),
2224 NULL);
2225 else
2226 index_type = TYPE_INDEX_TYPE (type);
2227
e9bb382b 2228 new_type = alloc_type_copy (type);
ad82864c
JB
2229 new_elt_type =
2230 constrained_packed_array_type (ada_check_typedef (TYPE_TARGET_TYPE (type)),
2231 elt_bits);
99b1c762 2232 create_array_type (new_type, new_elt_type, index_type);
14f9c5c9
AS
2233 TYPE_FIELD_BITSIZE (new_type, 0) = *elt_bits;
2234 TYPE_NAME (new_type) = ada_type_name (type);
2235
4a46959e
JB
2236 if ((TYPE_CODE (check_typedef (index_type)) == TYPE_CODE_RANGE
2237 && is_dynamic_type (check_typedef (index_type)))
2238 || get_discrete_bounds (index_type, &low_bound, &high_bound) < 0)
14f9c5c9
AS
2239 low_bound = high_bound = 0;
2240 if (high_bound < low_bound)
2241 *elt_bits = TYPE_LENGTH (new_type) = 0;
d2e4a39e 2242 else
14f9c5c9
AS
2243 {
2244 *elt_bits *= (high_bound - low_bound + 1);
d2e4a39e 2245 TYPE_LENGTH (new_type) =
4c4b4cd2 2246 (*elt_bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
14f9c5c9
AS
2247 }
2248
876cecd0 2249 TYPE_FIXED_INSTANCE (new_type) = 1;
14f9c5c9
AS
2250 return new_type;
2251}
2252
ad82864c
JB
2253/* The array type encoded by TYPE, where
2254 ada_is_constrained_packed_array_type (TYPE). */
4c4b4cd2 2255
d2e4a39e 2256static struct type *
ad82864c 2257decode_constrained_packed_array_type (struct type *type)
d2e4a39e 2258{
0d5cff50 2259 const char *raw_name = ada_type_name (ada_check_typedef (type));
727e3d2e 2260 char *name;
0d5cff50 2261 const char *tail;
d2e4a39e 2262 struct type *shadow_type;
14f9c5c9 2263 long bits;
14f9c5c9 2264
727e3d2e
JB
2265 if (!raw_name)
2266 raw_name = ada_type_name (desc_base_type (type));
2267
2268 if (!raw_name)
2269 return NULL;
2270
2271 name = (char *) alloca (strlen (raw_name) + 1);
2272 tail = strstr (raw_name, "___XP");
4c4b4cd2
PH
2273 type = desc_base_type (type);
2274
14f9c5c9
AS
2275 memcpy (name, raw_name, tail - raw_name);
2276 name[tail - raw_name] = '\000';
2277
b4ba55a1
JB
2278 shadow_type = ada_find_parallel_type_with_name (type, name);
2279
2280 if (shadow_type == NULL)
14f9c5c9 2281 {
323e0a4a 2282 lim_warning (_("could not find bounds information on packed array"));
14f9c5c9
AS
2283 return NULL;
2284 }
f168693b 2285 shadow_type = check_typedef (shadow_type);
14f9c5c9
AS
2286
2287 if (TYPE_CODE (shadow_type) != TYPE_CODE_ARRAY)
2288 {
0963b4bd
MS
2289 lim_warning (_("could not understand bounds "
2290 "information on packed array"));
14f9c5c9
AS
2291 return NULL;
2292 }
d2e4a39e 2293
ad82864c
JB
2294 bits = decode_packed_array_bitsize (type);
2295 return constrained_packed_array_type (shadow_type, &bits);
14f9c5c9
AS
2296}
2297
ad82864c
JB
2298/* Given that ARR is a struct value *indicating a GNAT constrained packed
2299 array, returns a simple array that denotes that array. Its type is a
14f9c5c9
AS
2300 standard GDB array type except that the BITSIZEs of the array
2301 target types are set to the number of bits in each element, and the
4c4b4cd2 2302 type length is set appropriately. */
14f9c5c9 2303
d2e4a39e 2304static struct value *
ad82864c 2305decode_constrained_packed_array (struct value *arr)
14f9c5c9 2306{
4c4b4cd2 2307 struct type *type;
14f9c5c9 2308
11aa919a
PMR
2309 /* If our value is a pointer, then dereference it. Likewise if
2310 the value is a reference. Make sure that this operation does not
2311 cause the target type to be fixed, as this would indirectly cause
2312 this array to be decoded. The rest of the routine assumes that
2313 the array hasn't been decoded yet, so we use the basic "coerce_ref"
2314 and "value_ind" routines to perform the dereferencing, as opposed
2315 to using "ada_coerce_ref" or "ada_value_ind". */
2316 arr = coerce_ref (arr);
828292f2 2317 if (TYPE_CODE (ada_check_typedef (value_type (arr))) == TYPE_CODE_PTR)
284614f0 2318 arr = value_ind (arr);
4c4b4cd2 2319
ad82864c 2320 type = decode_constrained_packed_array_type (value_type (arr));
14f9c5c9
AS
2321 if (type == NULL)
2322 {
323e0a4a 2323 error (_("can't unpack array"));
14f9c5c9
AS
2324 return NULL;
2325 }
61ee279c 2326
50810684 2327 if (gdbarch_bits_big_endian (get_type_arch (value_type (arr)))
32c9a795 2328 && ada_is_modular_type (value_type (arr)))
61ee279c
PH
2329 {
2330 /* This is a (right-justified) modular type representing a packed
2331 array with no wrapper. In order to interpret the value through
2332 the (left-justified) packed array type we just built, we must
2333 first left-justify it. */
2334 int bit_size, bit_pos;
2335 ULONGEST mod;
2336
df407dfe 2337 mod = ada_modulus (value_type (arr)) - 1;
61ee279c
PH
2338 bit_size = 0;
2339 while (mod > 0)
2340 {
2341 bit_size += 1;
2342 mod >>= 1;
2343 }
df407dfe 2344 bit_pos = HOST_CHAR_BIT * TYPE_LENGTH (value_type (arr)) - bit_size;
61ee279c
PH
2345 arr = ada_value_primitive_packed_val (arr, NULL,
2346 bit_pos / HOST_CHAR_BIT,
2347 bit_pos % HOST_CHAR_BIT,
2348 bit_size,
2349 type);
2350 }
2351
4c4b4cd2 2352 return coerce_unspec_val_to_type (arr, type);
14f9c5c9
AS
2353}
2354
2355
2356/* The value of the element of packed array ARR at the ARITY indices
4c4b4cd2 2357 given in IND. ARR must be a simple array. */
14f9c5c9 2358
d2e4a39e
AS
2359static struct value *
2360value_subscript_packed (struct value *arr, int arity, struct value **ind)
14f9c5c9
AS
2361{
2362 int i;
2363 int bits, elt_off, bit_off;
2364 long elt_total_bit_offset;
d2e4a39e
AS
2365 struct type *elt_type;
2366 struct value *v;
14f9c5c9
AS
2367
2368 bits = 0;
2369 elt_total_bit_offset = 0;
df407dfe 2370 elt_type = ada_check_typedef (value_type (arr));
d2e4a39e 2371 for (i = 0; i < arity; i += 1)
14f9c5c9 2372 {
d2e4a39e 2373 if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY
4c4b4cd2
PH
2374 || TYPE_FIELD_BITSIZE (elt_type, 0) == 0)
2375 error
0963b4bd
MS
2376 (_("attempt to do packed indexing of "
2377 "something other than a packed array"));
14f9c5c9 2378 else
4c4b4cd2
PH
2379 {
2380 struct type *range_type = TYPE_INDEX_TYPE (elt_type);
2381 LONGEST lowerbound, upperbound;
2382 LONGEST idx;
2383
2384 if (get_discrete_bounds (range_type, &lowerbound, &upperbound) < 0)
2385 {
323e0a4a 2386 lim_warning (_("don't know bounds of array"));
4c4b4cd2
PH
2387 lowerbound = upperbound = 0;
2388 }
2389
3cb382c9 2390 idx = pos_atr (ind[i]);
4c4b4cd2 2391 if (idx < lowerbound || idx > upperbound)
0963b4bd
MS
2392 lim_warning (_("packed array index %ld out of bounds"),
2393 (long) idx);
4c4b4cd2
PH
2394 bits = TYPE_FIELD_BITSIZE (elt_type, 0);
2395 elt_total_bit_offset += (idx - lowerbound) * bits;
61ee279c 2396 elt_type = ada_check_typedef (TYPE_TARGET_TYPE (elt_type));
4c4b4cd2 2397 }
14f9c5c9
AS
2398 }
2399 elt_off = elt_total_bit_offset / HOST_CHAR_BIT;
2400 bit_off = elt_total_bit_offset % HOST_CHAR_BIT;
d2e4a39e
AS
2401
2402 v = ada_value_primitive_packed_val (arr, NULL, elt_off, bit_off,
4c4b4cd2 2403 bits, elt_type);
14f9c5c9
AS
2404 return v;
2405}
2406
4c4b4cd2 2407/* Non-zero iff TYPE includes negative integer values. */
14f9c5c9
AS
2408
2409static int
d2e4a39e 2410has_negatives (struct type *type)
14f9c5c9 2411{
d2e4a39e
AS
2412 switch (TYPE_CODE (type))
2413 {
2414 default:
2415 return 0;
2416 case TYPE_CODE_INT:
2417 return !TYPE_UNSIGNED (type);
2418 case TYPE_CODE_RANGE:
2419 return TYPE_LOW_BOUND (type) < 0;
2420 }
14f9c5c9 2421}
d2e4a39e 2422
f93fca70 2423/* With SRC being a buffer containing BIT_SIZE bits of data at BIT_OFFSET,
5b639dea 2424 unpack that data into UNPACKED. UNPACKED_LEN is the size in bytes of
f93fca70 2425 the unpacked buffer.
14f9c5c9 2426
5b639dea
JB
2427 The size of the unpacked buffer (UNPACKED_LEN) is expected to be large
2428 enough to contain at least BIT_OFFSET bits. If not, an error is raised.
2429
f93fca70
JB
2430 IS_BIG_ENDIAN is nonzero if the data is stored in big endian mode,
2431 zero otherwise.
14f9c5c9 2432
f93fca70 2433 IS_SIGNED_TYPE is nonzero if the data corresponds to a signed type.
a1c95e6b 2434
f93fca70
JB
2435 IS_SCALAR is nonzero if the data corresponds to a signed type. */
2436
2437static void
2438ada_unpack_from_contents (const gdb_byte *src, int bit_offset, int bit_size,
2439 gdb_byte *unpacked, int unpacked_len,
2440 int is_big_endian, int is_signed_type,
2441 int is_scalar)
2442{
a1c95e6b
JB
2443 int src_len = (bit_size + bit_offset + HOST_CHAR_BIT - 1) / 8;
2444 int src_idx; /* Index into the source area */
2445 int src_bytes_left; /* Number of source bytes left to process. */
2446 int srcBitsLeft; /* Number of source bits left to move */
2447 int unusedLS; /* Number of bits in next significant
2448 byte of source that are unused */
2449
a1c95e6b
JB
2450 int unpacked_idx; /* Index into the unpacked buffer */
2451 int unpacked_bytes_left; /* Number of bytes left to set in unpacked. */
2452
4c4b4cd2 2453 unsigned long accum; /* Staging area for bits being transferred */
a1c95e6b 2454 int accumSize; /* Number of meaningful bits in accum */
14f9c5c9 2455 unsigned char sign;
a1c95e6b 2456
4c4b4cd2
PH
2457 /* Transmit bytes from least to most significant; delta is the direction
2458 the indices move. */
f93fca70 2459 int delta = is_big_endian ? -1 : 1;
14f9c5c9 2460
5b639dea
JB
2461 /* Make sure that unpacked is large enough to receive the BIT_SIZE
2462 bits from SRC. .*/
2463 if ((bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT > unpacked_len)
2464 error (_("Cannot unpack %d bits into buffer of %d bytes"),
2465 bit_size, unpacked_len);
2466
14f9c5c9 2467 srcBitsLeft = bit_size;
086ca51f 2468 src_bytes_left = src_len;
f93fca70 2469 unpacked_bytes_left = unpacked_len;
14f9c5c9 2470 sign = 0;
f93fca70
JB
2471
2472 if (is_big_endian)
14f9c5c9 2473 {
086ca51f 2474 src_idx = src_len - 1;
f93fca70
JB
2475 if (is_signed_type
2476 && ((src[0] << bit_offset) & (1 << (HOST_CHAR_BIT - 1))))
4c4b4cd2 2477 sign = ~0;
d2e4a39e
AS
2478
2479 unusedLS =
4c4b4cd2
PH
2480 (HOST_CHAR_BIT - (bit_size + bit_offset) % HOST_CHAR_BIT)
2481 % HOST_CHAR_BIT;
14f9c5c9 2482
f93fca70
JB
2483 if (is_scalar)
2484 {
2485 accumSize = 0;
2486 unpacked_idx = unpacked_len - 1;
2487 }
2488 else
2489 {
4c4b4cd2
PH
2490 /* Non-scalar values must be aligned at a byte boundary... */
2491 accumSize =
2492 (HOST_CHAR_BIT - bit_size % HOST_CHAR_BIT) % HOST_CHAR_BIT;
2493 /* ... And are placed at the beginning (most-significant) bytes
2494 of the target. */
086ca51f
JB
2495 unpacked_idx = (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT - 1;
2496 unpacked_bytes_left = unpacked_idx + 1;
f93fca70 2497 }
14f9c5c9 2498 }
d2e4a39e 2499 else
14f9c5c9
AS
2500 {
2501 int sign_bit_offset = (bit_size + bit_offset - 1) % 8;
2502
086ca51f 2503 src_idx = unpacked_idx = 0;
14f9c5c9
AS
2504 unusedLS = bit_offset;
2505 accumSize = 0;
2506
f93fca70 2507 if (is_signed_type && (src[src_len - 1] & (1 << sign_bit_offset)))
4c4b4cd2 2508 sign = ~0;
14f9c5c9 2509 }
d2e4a39e 2510
14f9c5c9 2511 accum = 0;
086ca51f 2512 while (src_bytes_left > 0)
14f9c5c9
AS
2513 {
2514 /* Mask for removing bits of the next source byte that are not
4c4b4cd2 2515 part of the value. */
d2e4a39e 2516 unsigned int unusedMSMask =
4c4b4cd2
PH
2517 (1 << (srcBitsLeft >= HOST_CHAR_BIT ? HOST_CHAR_BIT : srcBitsLeft)) -
2518 1;
2519 /* Sign-extend bits for this byte. */
14f9c5c9 2520 unsigned int signMask = sign & ~unusedMSMask;
5b4ee69b 2521
d2e4a39e 2522 accum |=
086ca51f 2523 (((src[src_idx] >> unusedLS) & unusedMSMask) | signMask) << accumSize;
14f9c5c9 2524 accumSize += HOST_CHAR_BIT - unusedLS;
d2e4a39e 2525 if (accumSize >= HOST_CHAR_BIT)
4c4b4cd2 2526 {
db297a65 2527 unpacked[unpacked_idx] = accum & ~(~0UL << HOST_CHAR_BIT);
4c4b4cd2
PH
2528 accumSize -= HOST_CHAR_BIT;
2529 accum >>= HOST_CHAR_BIT;
086ca51f
JB
2530 unpacked_bytes_left -= 1;
2531 unpacked_idx += delta;
4c4b4cd2 2532 }
14f9c5c9
AS
2533 srcBitsLeft -= HOST_CHAR_BIT - unusedLS;
2534 unusedLS = 0;
086ca51f
JB
2535 src_bytes_left -= 1;
2536 src_idx += delta;
14f9c5c9 2537 }
086ca51f 2538 while (unpacked_bytes_left > 0)
14f9c5c9
AS
2539 {
2540 accum |= sign << accumSize;
db297a65 2541 unpacked[unpacked_idx] = accum & ~(~0UL << HOST_CHAR_BIT);
14f9c5c9 2542 accumSize -= HOST_CHAR_BIT;
9cd4d857
JB
2543 if (accumSize < 0)
2544 accumSize = 0;
14f9c5c9 2545 accum >>= HOST_CHAR_BIT;
086ca51f
JB
2546 unpacked_bytes_left -= 1;
2547 unpacked_idx += delta;
14f9c5c9 2548 }
f93fca70
JB
2549}
2550
2551/* Create a new value of type TYPE from the contents of OBJ starting
2552 at byte OFFSET, and bit offset BIT_OFFSET within that byte,
2553 proceeding for BIT_SIZE bits. If OBJ is an lval in memory, then
2554 assigning through the result will set the field fetched from.
2555 VALADDR is ignored unless OBJ is NULL, in which case,
2556 VALADDR+OFFSET must address the start of storage containing the
2557 packed value. The value returned in this case is never an lval.
2558 Assumes 0 <= BIT_OFFSET < HOST_CHAR_BIT. */
2559
2560struct value *
2561ada_value_primitive_packed_val (struct value *obj, const gdb_byte *valaddr,
2562 long offset, int bit_offset, int bit_size,
2563 struct type *type)
2564{
2565 struct value *v;
bfb1c796 2566 const gdb_byte *src; /* First byte containing data to unpack */
f93fca70 2567 gdb_byte *unpacked;
220475ed 2568 const int is_scalar = is_scalar_type (type);
d0a9e810 2569 const int is_big_endian = gdbarch_bits_big_endian (get_type_arch (type));
d5722aa2 2570 gdb::byte_vector staging;
f93fca70
JB
2571
2572 type = ada_check_typedef (type);
2573
d0a9e810 2574 if (obj == NULL)
bfb1c796 2575 src = valaddr + offset;
d0a9e810 2576 else
bfb1c796 2577 src = value_contents (obj) + offset;
d0a9e810
JB
2578
2579 if (is_dynamic_type (type))
2580 {
2581 /* The length of TYPE might by dynamic, so we need to resolve
2582 TYPE in order to know its actual size, which we then use
2583 to create the contents buffer of the value we return.
2584 The difficulty is that the data containing our object is
2585 packed, and therefore maybe not at a byte boundary. So, what
2586 we do, is unpack the data into a byte-aligned buffer, and then
2587 use that buffer as our object's value for resolving the type. */
d5722aa2
PA
2588 int staging_len = (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
2589 staging.resize (staging_len);
d0a9e810
JB
2590
2591 ada_unpack_from_contents (src, bit_offset, bit_size,
d5722aa2 2592 staging.data (), staging.size (),
d0a9e810
JB
2593 is_big_endian, has_negatives (type),
2594 is_scalar);
d5722aa2 2595 type = resolve_dynamic_type (type, staging.data (), 0);
0cafa88c
JB
2596 if (TYPE_LENGTH (type) < (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT)
2597 {
2598 /* This happens when the length of the object is dynamic,
2599 and is actually smaller than the space reserved for it.
2600 For instance, in an array of variant records, the bit_size
2601 we're given is the array stride, which is constant and
2602 normally equal to the maximum size of its element.
2603 But, in reality, each element only actually spans a portion
2604 of that stride. */
2605 bit_size = TYPE_LENGTH (type) * HOST_CHAR_BIT;
2606 }
d0a9e810
JB
2607 }
2608
f93fca70
JB
2609 if (obj == NULL)
2610 {
2611 v = allocate_value (type);
bfb1c796 2612 src = valaddr + offset;
f93fca70
JB
2613 }
2614 else if (VALUE_LVAL (obj) == lval_memory && value_lazy (obj))
2615 {
0cafa88c 2616 int src_len = (bit_size + bit_offset + HOST_CHAR_BIT - 1) / 8;
bfb1c796 2617 gdb_byte *buf;
0cafa88c 2618
f93fca70 2619 v = value_at (type, value_address (obj) + offset);
bfb1c796
PA
2620 buf = (gdb_byte *) alloca (src_len);
2621 read_memory (value_address (v), buf, src_len);
2622 src = buf;
f93fca70
JB
2623 }
2624 else
2625 {
2626 v = allocate_value (type);
bfb1c796 2627 src = value_contents (obj) + offset;
f93fca70
JB
2628 }
2629
2630 if (obj != NULL)
2631 {
2632 long new_offset = offset;
2633
2634 set_value_component_location (v, obj);
2635 set_value_bitpos (v, bit_offset + value_bitpos (obj));
2636 set_value_bitsize (v, bit_size);
2637 if (value_bitpos (v) >= HOST_CHAR_BIT)
2638 {
2639 ++new_offset;
2640 set_value_bitpos (v, value_bitpos (v) - HOST_CHAR_BIT);
2641 }
2642 set_value_offset (v, new_offset);
2643
2644 /* Also set the parent value. This is needed when trying to
2645 assign a new value (in inferior memory). */
2646 set_value_parent (v, obj);
2647 }
2648 else
2649 set_value_bitsize (v, bit_size);
bfb1c796 2650 unpacked = value_contents_writeable (v);
f93fca70
JB
2651
2652 if (bit_size == 0)
2653 {
2654 memset (unpacked, 0, TYPE_LENGTH (type));
2655 return v;
2656 }
2657
d5722aa2 2658 if (staging.size () == TYPE_LENGTH (type))
f93fca70 2659 {
d0a9e810
JB
2660 /* Small short-cut: If we've unpacked the data into a buffer
2661 of the same size as TYPE's length, then we can reuse that,
2662 instead of doing the unpacking again. */
d5722aa2 2663 memcpy (unpacked, staging.data (), staging.size ());
f93fca70 2664 }
d0a9e810
JB
2665 else
2666 ada_unpack_from_contents (src, bit_offset, bit_size,
2667 unpacked, TYPE_LENGTH (type),
2668 is_big_endian, has_negatives (type), is_scalar);
f93fca70 2669
14f9c5c9
AS
2670 return v;
2671}
d2e4a39e 2672
14f9c5c9
AS
2673/* Move N bits from SOURCE, starting at bit offset SRC_OFFSET to
2674 TARGET, starting at bit offset TARG_OFFSET. SOURCE and TARGET must
4c4b4cd2 2675 not overlap. */
14f9c5c9 2676static void
fc1a4b47 2677move_bits (gdb_byte *target, int targ_offset, const gdb_byte *source,
50810684 2678 int src_offset, int n, int bits_big_endian_p)
14f9c5c9
AS
2679{
2680 unsigned int accum, mask;
2681 int accum_bits, chunk_size;
2682
2683 target += targ_offset / HOST_CHAR_BIT;
2684 targ_offset %= HOST_CHAR_BIT;
2685 source += src_offset / HOST_CHAR_BIT;
2686 src_offset %= HOST_CHAR_BIT;
50810684 2687 if (bits_big_endian_p)
14f9c5c9
AS
2688 {
2689 accum = (unsigned char) *source;
2690 source += 1;
2691 accum_bits = HOST_CHAR_BIT - src_offset;
2692
d2e4a39e 2693 while (n > 0)
4c4b4cd2
PH
2694 {
2695 int unused_right;
5b4ee69b 2696
4c4b4cd2
PH
2697 accum = (accum << HOST_CHAR_BIT) + (unsigned char) *source;
2698 accum_bits += HOST_CHAR_BIT;
2699 source += 1;
2700 chunk_size = HOST_CHAR_BIT - targ_offset;
2701 if (chunk_size > n)
2702 chunk_size = n;
2703 unused_right = HOST_CHAR_BIT - (chunk_size + targ_offset);
2704 mask = ((1 << chunk_size) - 1) << unused_right;
2705 *target =
2706 (*target & ~mask)
2707 | ((accum >> (accum_bits - chunk_size - unused_right)) & mask);
2708 n -= chunk_size;
2709 accum_bits -= chunk_size;
2710 target += 1;
2711 targ_offset = 0;
2712 }
14f9c5c9
AS
2713 }
2714 else
2715 {
2716 accum = (unsigned char) *source >> src_offset;
2717 source += 1;
2718 accum_bits = HOST_CHAR_BIT - src_offset;
2719
d2e4a39e 2720 while (n > 0)
4c4b4cd2
PH
2721 {
2722 accum = accum + ((unsigned char) *source << accum_bits);
2723 accum_bits += HOST_CHAR_BIT;
2724 source += 1;
2725 chunk_size = HOST_CHAR_BIT - targ_offset;
2726 if (chunk_size > n)
2727 chunk_size = n;
2728 mask = ((1 << chunk_size) - 1) << targ_offset;
2729 *target = (*target & ~mask) | ((accum << targ_offset) & mask);
2730 n -= chunk_size;
2731 accum_bits -= chunk_size;
2732 accum >>= chunk_size;
2733 target += 1;
2734 targ_offset = 0;
2735 }
14f9c5c9
AS
2736 }
2737}
2738
14f9c5c9
AS
2739/* Store the contents of FROMVAL into the location of TOVAL.
2740 Return a new value with the location of TOVAL and contents of
2741 FROMVAL. Handles assignment into packed fields that have
4c4b4cd2 2742 floating-point or non-scalar types. */
14f9c5c9 2743
d2e4a39e
AS
2744static struct value *
2745ada_value_assign (struct value *toval, struct value *fromval)
14f9c5c9 2746{
df407dfe
AC
2747 struct type *type = value_type (toval);
2748 int bits = value_bitsize (toval);
14f9c5c9 2749
52ce6436
PH
2750 toval = ada_coerce_ref (toval);
2751 fromval = ada_coerce_ref (fromval);
2752
2753 if (ada_is_direct_array_type (value_type (toval)))
2754 toval = ada_coerce_to_simple_array (toval);
2755 if (ada_is_direct_array_type (value_type (fromval)))
2756 fromval = ada_coerce_to_simple_array (fromval);
2757
88e3b34b 2758 if (!deprecated_value_modifiable (toval))
323e0a4a 2759 error (_("Left operand of assignment is not a modifiable lvalue."));
14f9c5c9 2760
d2e4a39e 2761 if (VALUE_LVAL (toval) == lval_memory
14f9c5c9 2762 && bits > 0
d2e4a39e 2763 && (TYPE_CODE (type) == TYPE_CODE_FLT
4c4b4cd2 2764 || TYPE_CODE (type) == TYPE_CODE_STRUCT))
14f9c5c9 2765 {
df407dfe
AC
2766 int len = (value_bitpos (toval)
2767 + bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
aced2898 2768 int from_size;
224c3ddb 2769 gdb_byte *buffer = (gdb_byte *) alloca (len);
d2e4a39e 2770 struct value *val;
42ae5230 2771 CORE_ADDR to_addr = value_address (toval);
14f9c5c9
AS
2772
2773 if (TYPE_CODE (type) == TYPE_CODE_FLT)
4c4b4cd2 2774 fromval = value_cast (type, fromval);
14f9c5c9 2775
52ce6436 2776 read_memory (to_addr, buffer, len);
aced2898
PH
2777 from_size = value_bitsize (fromval);
2778 if (from_size == 0)
2779 from_size = TYPE_LENGTH (value_type (fromval)) * TARGET_CHAR_BIT;
50810684 2780 if (gdbarch_bits_big_endian (get_type_arch (type)))
df407dfe 2781 move_bits (buffer, value_bitpos (toval),
50810684 2782 value_contents (fromval), from_size - bits, bits, 1);
14f9c5c9 2783 else
50810684
UW
2784 move_bits (buffer, value_bitpos (toval),
2785 value_contents (fromval), 0, bits, 0);
972daa01 2786 write_memory_with_notification (to_addr, buffer, len);
8cebebb9 2787
14f9c5c9 2788 val = value_copy (toval);
0fd88904 2789 memcpy (value_contents_raw (val), value_contents (fromval),
4c4b4cd2 2790 TYPE_LENGTH (type));
04624583 2791 deprecated_set_value_type (val, type);
d2e4a39e 2792
14f9c5c9
AS
2793 return val;
2794 }
2795
2796 return value_assign (toval, fromval);
2797}
2798
2799
7c512744
JB
2800/* Given that COMPONENT is a memory lvalue that is part of the lvalue
2801 CONTAINER, assign the contents of VAL to COMPONENTS's place in
2802 CONTAINER. Modifies the VALUE_CONTENTS of CONTAINER only, not
2803 COMPONENT, and not the inferior's memory. The current contents
2804 of COMPONENT are ignored.
2805
2806 Although not part of the initial design, this function also works
2807 when CONTAINER and COMPONENT are not_lval's: it works as if CONTAINER
2808 had a null address, and COMPONENT had an address which is equal to
2809 its offset inside CONTAINER. */
2810
52ce6436
PH
2811static void
2812value_assign_to_component (struct value *container, struct value *component,
2813 struct value *val)
2814{
2815 LONGEST offset_in_container =
42ae5230 2816 (LONGEST) (value_address (component) - value_address (container));
7c512744 2817 int bit_offset_in_container =
52ce6436
PH
2818 value_bitpos (component) - value_bitpos (container);
2819 int bits;
7c512744 2820
52ce6436
PH
2821 val = value_cast (value_type (component), val);
2822
2823 if (value_bitsize (component) == 0)
2824 bits = TARGET_CHAR_BIT * TYPE_LENGTH (value_type (component));
2825 else
2826 bits = value_bitsize (component);
2827
50810684 2828 if (gdbarch_bits_big_endian (get_type_arch (value_type (container))))
7c512744 2829 move_bits (value_contents_writeable (container) + offset_in_container,
52ce6436
PH
2830 value_bitpos (container) + bit_offset_in_container,
2831 value_contents (val),
2832 TYPE_LENGTH (value_type (component)) * TARGET_CHAR_BIT - bits,
50810684 2833 bits, 1);
52ce6436 2834 else
7c512744 2835 move_bits (value_contents_writeable (container) + offset_in_container,
52ce6436 2836 value_bitpos (container) + bit_offset_in_container,
50810684 2837 value_contents (val), 0, bits, 0);
7c512744
JB
2838}
2839
4c4b4cd2
PH
2840/* The value of the element of array ARR at the ARITY indices given in IND.
2841 ARR may be either a simple array, GNAT array descriptor, or pointer
14f9c5c9
AS
2842 thereto. */
2843
d2e4a39e
AS
2844struct value *
2845ada_value_subscript (struct value *arr, int arity, struct value **ind)
14f9c5c9
AS
2846{
2847 int k;
d2e4a39e
AS
2848 struct value *elt;
2849 struct type *elt_type;
14f9c5c9
AS
2850
2851 elt = ada_coerce_to_simple_array (arr);
2852
df407dfe 2853 elt_type = ada_check_typedef (value_type (elt));
d2e4a39e 2854 if (TYPE_CODE (elt_type) == TYPE_CODE_ARRAY
14f9c5c9
AS
2855 && TYPE_FIELD_BITSIZE (elt_type, 0) > 0)
2856 return value_subscript_packed (elt, arity, ind);
2857
2858 for (k = 0; k < arity; k += 1)
2859 {
2860 if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY)
323e0a4a 2861 error (_("too many subscripts (%d expected)"), k);
2497b498 2862 elt = value_subscript (elt, pos_atr (ind[k]));
14f9c5c9
AS
2863 }
2864 return elt;
2865}
2866
deede10c
JB
2867/* Assuming ARR is a pointer to a GDB array, the value of the element
2868 of *ARR at the ARITY indices given in IND.
919e6dbe
PMR
2869 Does not read the entire array into memory.
2870
2871 Note: Unlike what one would expect, this function is used instead of
2872 ada_value_subscript for basically all non-packed array types. The reason
2873 for this is that a side effect of doing our own pointer arithmetics instead
2874 of relying on value_subscript is that there is no implicit typedef peeling.
2875 This is important for arrays of array accesses, where it allows us to
2876 preserve the fact that the array's element is an array access, where the
2877 access part os encoded in a typedef layer. */
14f9c5c9 2878
2c0b251b 2879static struct value *
deede10c 2880ada_value_ptr_subscript (struct value *arr, int arity, struct value **ind)
14f9c5c9
AS
2881{
2882 int k;
919e6dbe 2883 struct value *array_ind = ada_value_ind (arr);
deede10c 2884 struct type *type
919e6dbe
PMR
2885 = check_typedef (value_enclosing_type (array_ind));
2886
2887 if (TYPE_CODE (type) == TYPE_CODE_ARRAY
2888 && TYPE_FIELD_BITSIZE (type, 0) > 0)
2889 return value_subscript_packed (array_ind, arity, ind);
14f9c5c9
AS
2890
2891 for (k = 0; k < arity; k += 1)
2892 {
2893 LONGEST lwb, upb;
aa715135 2894 struct value *lwb_value;
14f9c5c9
AS
2895
2896 if (TYPE_CODE (type) != TYPE_CODE_ARRAY)
323e0a4a 2897 error (_("too many subscripts (%d expected)"), k);
d2e4a39e 2898 arr = value_cast (lookup_pointer_type (TYPE_TARGET_TYPE (type)),
4c4b4cd2 2899 value_copy (arr));
14f9c5c9 2900 get_discrete_bounds (TYPE_INDEX_TYPE (type), &lwb, &upb);
aa715135
JG
2901 lwb_value = value_from_longest (value_type(ind[k]), lwb);
2902 arr = value_ptradd (arr, pos_atr (ind[k]) - pos_atr (lwb_value));
14f9c5c9
AS
2903 type = TYPE_TARGET_TYPE (type);
2904 }
2905
2906 return value_ind (arr);
2907}
2908
0b5d8877 2909/* Given that ARRAY_PTR is a pointer or reference to an array of type TYPE (the
aa715135
JG
2910 actual type of ARRAY_PTR is ignored), returns the Ada slice of
2911 HIGH'Pos-LOW'Pos+1 elements starting at index LOW. The lower bound of
2912 this array is LOW, as per Ada rules. */
0b5d8877 2913static struct value *
f5938064
JG
2914ada_value_slice_from_ptr (struct value *array_ptr, struct type *type,
2915 int low, int high)
0b5d8877 2916{
b0dd7688 2917 struct type *type0 = ada_check_typedef (type);
aa715135 2918 struct type *base_index_type = TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type0));
0c9c3474 2919 struct type *index_type
aa715135 2920 = create_static_range_type (NULL, base_index_type, low, high);
6c038f32 2921 struct type *slice_type =
b0dd7688 2922 create_array_type (NULL, TYPE_TARGET_TYPE (type0), index_type);
aa715135
JG
2923 int base_low = ada_discrete_type_low_bound (TYPE_INDEX_TYPE (type0));
2924 LONGEST base_low_pos, low_pos;
2925 CORE_ADDR base;
2926
2927 if (!discrete_position (base_index_type, low, &low_pos)
2928 || !discrete_position (base_index_type, base_low, &base_low_pos))
2929 {
2930 warning (_("unable to get positions in slice, use bounds instead"));
2931 low_pos = low;
2932 base_low_pos = base_low;
2933 }
5b4ee69b 2934
aa715135
JG
2935 base = value_as_address (array_ptr)
2936 + ((low_pos - base_low_pos)
2937 * TYPE_LENGTH (TYPE_TARGET_TYPE (type0)));
f5938064 2938 return value_at_lazy (slice_type, base);
0b5d8877
PH
2939}
2940
2941
2942static struct value *
2943ada_value_slice (struct value *array, int low, int high)
2944{
b0dd7688 2945 struct type *type = ada_check_typedef (value_type (array));
aa715135 2946 struct type *base_index_type = TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type));
0c9c3474
SA
2947 struct type *index_type
2948 = create_static_range_type (NULL, TYPE_INDEX_TYPE (type), low, high);
6c038f32 2949 struct type *slice_type =
0b5d8877 2950 create_array_type (NULL, TYPE_TARGET_TYPE (type), index_type);
aa715135 2951 LONGEST low_pos, high_pos;
5b4ee69b 2952
aa715135
JG
2953 if (!discrete_position (base_index_type, low, &low_pos)
2954 || !discrete_position (base_index_type, high, &high_pos))
2955 {
2956 warning (_("unable to get positions in slice, use bounds instead"));
2957 low_pos = low;
2958 high_pos = high;
2959 }
2960
2961 return value_cast (slice_type,
2962 value_slice (array, low, high_pos - low_pos + 1));
0b5d8877
PH
2963}
2964
14f9c5c9
AS
2965/* If type is a record type in the form of a standard GNAT array
2966 descriptor, returns the number of dimensions for type. If arr is a
2967 simple array, returns the number of "array of"s that prefix its
4c4b4cd2 2968 type designation. Otherwise, returns 0. */
14f9c5c9
AS
2969
2970int
d2e4a39e 2971ada_array_arity (struct type *type)
14f9c5c9
AS
2972{
2973 int arity;
2974
2975 if (type == NULL)
2976 return 0;
2977
2978 type = desc_base_type (type);
2979
2980 arity = 0;
d2e4a39e 2981 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
14f9c5c9 2982 return desc_arity (desc_bounds_type (type));
d2e4a39e
AS
2983 else
2984 while (TYPE_CODE (type) == TYPE_CODE_ARRAY)
14f9c5c9 2985 {
4c4b4cd2 2986 arity += 1;
61ee279c 2987 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
14f9c5c9 2988 }
d2e4a39e 2989
14f9c5c9
AS
2990 return arity;
2991}
2992
2993/* If TYPE is a record type in the form of a standard GNAT array
2994 descriptor or a simple array type, returns the element type for
2995 TYPE after indexing by NINDICES indices, or by all indices if
4c4b4cd2 2996 NINDICES is -1. Otherwise, returns NULL. */
14f9c5c9 2997
d2e4a39e
AS
2998struct type *
2999ada_array_element_type (struct type *type, int nindices)
14f9c5c9
AS
3000{
3001 type = desc_base_type (type);
3002
d2e4a39e 3003 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
14f9c5c9
AS
3004 {
3005 int k;
d2e4a39e 3006 struct type *p_array_type;
14f9c5c9 3007
556bdfd4 3008 p_array_type = desc_data_target_type (type);
14f9c5c9
AS
3009
3010 k = ada_array_arity (type);
3011 if (k == 0)
4c4b4cd2 3012 return NULL;
d2e4a39e 3013
4c4b4cd2 3014 /* Initially p_array_type = elt_type(*)[]...(k times)...[]. */
14f9c5c9 3015 if (nindices >= 0 && k > nindices)
4c4b4cd2 3016 k = nindices;
d2e4a39e 3017 while (k > 0 && p_array_type != NULL)
4c4b4cd2 3018 {
61ee279c 3019 p_array_type = ada_check_typedef (TYPE_TARGET_TYPE (p_array_type));
4c4b4cd2
PH
3020 k -= 1;
3021 }
14f9c5c9
AS
3022 return p_array_type;
3023 }
3024 else if (TYPE_CODE (type) == TYPE_CODE_ARRAY)
3025 {
3026 while (nindices != 0 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
4c4b4cd2
PH
3027 {
3028 type = TYPE_TARGET_TYPE (type);
3029 nindices -= 1;
3030 }
14f9c5c9
AS
3031 return type;
3032 }
3033
3034 return NULL;
3035}
3036
4c4b4cd2 3037/* The type of nth index in arrays of given type (n numbering from 1).
dd19d49e
UW
3038 Does not examine memory. Throws an error if N is invalid or TYPE
3039 is not an array type. NAME is the name of the Ada attribute being
3040 evaluated ('range, 'first, 'last, or 'length); it is used in building
3041 the error message. */
14f9c5c9 3042
1eea4ebd
UW
3043static struct type *
3044ada_index_type (struct type *type, int n, const char *name)
14f9c5c9 3045{
4c4b4cd2
PH
3046 struct type *result_type;
3047
14f9c5c9
AS
3048 type = desc_base_type (type);
3049
1eea4ebd
UW
3050 if (n < 0 || n > ada_array_arity (type))
3051 error (_("invalid dimension number to '%s"), name);
14f9c5c9 3052
4c4b4cd2 3053 if (ada_is_simple_array_type (type))
14f9c5c9
AS
3054 {
3055 int i;
3056
3057 for (i = 1; i < n; i += 1)
4c4b4cd2 3058 type = TYPE_TARGET_TYPE (type);
262452ec 3059 result_type = TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type));
4c4b4cd2
PH
3060 /* FIXME: The stabs type r(0,0);bound;bound in an array type
3061 has a target type of TYPE_CODE_UNDEF. We compensate here, but
76a01679 3062 perhaps stabsread.c would make more sense. */
1eea4ebd
UW
3063 if (result_type && TYPE_CODE (result_type) == TYPE_CODE_UNDEF)
3064 result_type = NULL;
14f9c5c9 3065 }
d2e4a39e 3066 else
1eea4ebd
UW
3067 {
3068 result_type = desc_index_type (desc_bounds_type (type), n);
3069 if (result_type == NULL)
3070 error (_("attempt to take bound of something that is not an array"));
3071 }
3072
3073 return result_type;
14f9c5c9
AS
3074}
3075
3076/* Given that arr is an array type, returns the lower bound of the
3077 Nth index (numbering from 1) if WHICH is 0, and the upper bound if
4c4b4cd2 3078 WHICH is 1. This returns bounds 0 .. -1 if ARR_TYPE is an
1eea4ebd
UW
3079 array-descriptor type. It works for other arrays with bounds supplied
3080 by run-time quantities other than discriminants. */
14f9c5c9 3081
abb68b3e 3082static LONGEST
fb5e3d5c 3083ada_array_bound_from_type (struct type *arr_type, int n, int which)
14f9c5c9 3084{
8a48ac95 3085 struct type *type, *index_type_desc, *index_type;
1ce677a4 3086 int i;
262452ec
JK
3087
3088 gdb_assert (which == 0 || which == 1);
14f9c5c9 3089
ad82864c
JB
3090 if (ada_is_constrained_packed_array_type (arr_type))
3091 arr_type = decode_constrained_packed_array_type (arr_type);
14f9c5c9 3092
4c4b4cd2 3093 if (arr_type == NULL || !ada_is_simple_array_type (arr_type))
1eea4ebd 3094 return (LONGEST) - which;
14f9c5c9
AS
3095
3096 if (TYPE_CODE (arr_type) == TYPE_CODE_PTR)
3097 type = TYPE_TARGET_TYPE (arr_type);
3098 else
3099 type = arr_type;
3100
bafffb51
JB
3101 if (TYPE_FIXED_INSTANCE (type))
3102 {
3103 /* The array has already been fixed, so we do not need to
3104 check the parallel ___XA type again. That encoding has
3105 already been applied, so ignore it now. */
3106 index_type_desc = NULL;
3107 }
3108 else
3109 {
3110 index_type_desc = ada_find_parallel_type (type, "___XA");
3111 ada_fixup_array_indexes_type (index_type_desc);
3112 }
3113
262452ec 3114 if (index_type_desc != NULL)
28c85d6c
JB
3115 index_type = to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, n - 1),
3116 NULL);
262452ec 3117 else
8a48ac95
JB
3118 {
3119 struct type *elt_type = check_typedef (type);
3120
3121 for (i = 1; i < n; i++)
3122 elt_type = check_typedef (TYPE_TARGET_TYPE (elt_type));
3123
3124 index_type = TYPE_INDEX_TYPE (elt_type);
3125 }
262452ec 3126
43bbcdc2
PH
3127 return
3128 (LONGEST) (which == 0
3129 ? ada_discrete_type_low_bound (index_type)
3130 : ada_discrete_type_high_bound (index_type));
14f9c5c9
AS
3131}
3132
3133/* Given that arr is an array value, returns the lower bound of the
abb68b3e
JB
3134 nth index (numbering from 1) if WHICH is 0, and the upper bound if
3135 WHICH is 1. This routine will also work for arrays with bounds
4c4b4cd2 3136 supplied by run-time quantities other than discriminants. */
14f9c5c9 3137
1eea4ebd 3138static LONGEST
4dc81987 3139ada_array_bound (struct value *arr, int n, int which)
14f9c5c9 3140{
eb479039
JB
3141 struct type *arr_type;
3142
3143 if (TYPE_CODE (check_typedef (value_type (arr))) == TYPE_CODE_PTR)
3144 arr = value_ind (arr);
3145 arr_type = value_enclosing_type (arr);
14f9c5c9 3146
ad82864c
JB
3147 if (ada_is_constrained_packed_array_type (arr_type))
3148 return ada_array_bound (decode_constrained_packed_array (arr), n, which);
4c4b4cd2 3149 else if (ada_is_simple_array_type (arr_type))
1eea4ebd 3150 return ada_array_bound_from_type (arr_type, n, which);
14f9c5c9 3151 else
1eea4ebd 3152 return value_as_long (desc_one_bound (desc_bounds (arr), n, which));
14f9c5c9
AS
3153}
3154
3155/* Given that arr is an array value, returns the length of the
3156 nth index. This routine will also work for arrays with bounds
4c4b4cd2
PH
3157 supplied by run-time quantities other than discriminants.
3158 Does not work for arrays indexed by enumeration types with representation
3159 clauses at the moment. */
14f9c5c9 3160
1eea4ebd 3161static LONGEST
d2e4a39e 3162ada_array_length (struct value *arr, int n)
14f9c5c9 3163{
aa715135
JG
3164 struct type *arr_type, *index_type;
3165 int low, high;
eb479039
JB
3166
3167 if (TYPE_CODE (check_typedef (value_type (arr))) == TYPE_CODE_PTR)
3168 arr = value_ind (arr);
3169 arr_type = value_enclosing_type (arr);
14f9c5c9 3170
ad82864c
JB
3171 if (ada_is_constrained_packed_array_type (arr_type))
3172 return ada_array_length (decode_constrained_packed_array (arr), n);
14f9c5c9 3173
4c4b4cd2 3174 if (ada_is_simple_array_type (arr_type))
aa715135
JG
3175 {
3176 low = ada_array_bound_from_type (arr_type, n, 0);
3177 high = ada_array_bound_from_type (arr_type, n, 1);
3178 }
14f9c5c9 3179 else
aa715135
JG
3180 {
3181 low = value_as_long (desc_one_bound (desc_bounds (arr), n, 0));
3182 high = value_as_long (desc_one_bound (desc_bounds (arr), n, 1));
3183 }
3184
f168693b 3185 arr_type = check_typedef (arr_type);
aa715135
JG
3186 index_type = TYPE_INDEX_TYPE (arr_type);
3187 if (index_type != NULL)
3188 {
3189 struct type *base_type;
3190 if (TYPE_CODE (index_type) == TYPE_CODE_RANGE)
3191 base_type = TYPE_TARGET_TYPE (index_type);
3192 else
3193 base_type = index_type;
3194
3195 low = pos_atr (value_from_longest (base_type, low));
3196 high = pos_atr (value_from_longest (base_type, high));
3197 }
3198 return high - low + 1;
4c4b4cd2
PH
3199}
3200
3201/* An empty array whose type is that of ARR_TYPE (an array type),
3202 with bounds LOW to LOW-1. */
3203
3204static struct value *
3205empty_array (struct type *arr_type, int low)
3206{
b0dd7688 3207 struct type *arr_type0 = ada_check_typedef (arr_type);
0c9c3474
SA
3208 struct type *index_type
3209 = create_static_range_type
3210 (NULL, TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (arr_type0)), low, low - 1);
b0dd7688 3211 struct type *elt_type = ada_array_element_type (arr_type0, 1);
5b4ee69b 3212
0b5d8877 3213 return allocate_value (create_array_type (NULL, elt_type, index_type));
14f9c5c9 3214}
14f9c5c9 3215\f
d2e4a39e 3216
4c4b4cd2 3217 /* Name resolution */
14f9c5c9 3218
4c4b4cd2
PH
3219/* The "decoded" name for the user-definable Ada operator corresponding
3220 to OP. */
14f9c5c9 3221
d2e4a39e 3222static const char *
4c4b4cd2 3223ada_decoded_op_name (enum exp_opcode op)
14f9c5c9
AS
3224{
3225 int i;
3226
4c4b4cd2 3227 for (i = 0; ada_opname_table[i].encoded != NULL; i += 1)
14f9c5c9
AS
3228 {
3229 if (ada_opname_table[i].op == op)
4c4b4cd2 3230 return ada_opname_table[i].decoded;
14f9c5c9 3231 }
323e0a4a 3232 error (_("Could not find operator name for opcode"));
14f9c5c9
AS
3233}
3234
3235
4c4b4cd2
PH
3236/* Same as evaluate_type (*EXP), but resolves ambiguous symbol
3237 references (marked by OP_VAR_VALUE nodes in which the symbol has an
3238 undefined namespace) and converts operators that are
3239 user-defined into appropriate function calls. If CONTEXT_TYPE is
14f9c5c9
AS
3240 non-null, it provides a preferred result type [at the moment, only
3241 type void has any effect---causing procedures to be preferred over
3242 functions in calls]. A null CONTEXT_TYPE indicates that a non-void
4c4b4cd2 3243 return type is preferred. May change (expand) *EXP. */
14f9c5c9 3244
4c4b4cd2
PH
3245static void
3246resolve (struct expression **expp, int void_context_p)
14f9c5c9 3247{
30b15541
UW
3248 struct type *context_type = NULL;
3249 int pc = 0;
3250
3251 if (void_context_p)
3252 context_type = builtin_type ((*expp)->gdbarch)->builtin_void;
3253
3254 resolve_subexp (expp, &pc, 1, context_type);
14f9c5c9
AS
3255}
3256
4c4b4cd2
PH
3257/* Resolve the operator of the subexpression beginning at
3258 position *POS of *EXPP. "Resolving" consists of replacing
3259 the symbols that have undefined namespaces in OP_VAR_VALUE nodes
3260 with their resolutions, replacing built-in operators with
3261 function calls to user-defined operators, where appropriate, and,
3262 when DEPROCEDURE_P is non-zero, converting function-valued variables
3263 into parameterless calls. May expand *EXPP. The CONTEXT_TYPE functions
3264 are as in ada_resolve, above. */
14f9c5c9 3265
d2e4a39e 3266static struct value *
4c4b4cd2 3267resolve_subexp (struct expression **expp, int *pos, int deprocedure_p,
76a01679 3268 struct type *context_type)
14f9c5c9
AS
3269{
3270 int pc = *pos;
3271 int i;
4c4b4cd2 3272 struct expression *exp; /* Convenience: == *expp. */
14f9c5c9 3273 enum exp_opcode op = (*expp)->elts[pc].opcode;
4c4b4cd2
PH
3274 struct value **argvec; /* Vector of operand types (alloca'ed). */
3275 int nargs; /* Number of operands. */
52ce6436 3276 int oplen;
14f9c5c9
AS
3277
3278 argvec = NULL;
3279 nargs = 0;
3280 exp = *expp;
3281
52ce6436
PH
3282 /* Pass one: resolve operands, saving their types and updating *pos,
3283 if needed. */
14f9c5c9
AS
3284 switch (op)
3285 {
4c4b4cd2
PH
3286 case OP_FUNCALL:
3287 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
76a01679
JB
3288 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
3289 *pos += 7;
4c4b4cd2
PH
3290 else
3291 {
3292 *pos += 3;
3293 resolve_subexp (expp, pos, 0, NULL);
3294 }
3295 nargs = longest_to_int (exp->elts[pc + 1].longconst);
14f9c5c9
AS
3296 break;
3297
14f9c5c9 3298 case UNOP_ADDR:
4c4b4cd2
PH
3299 *pos += 1;
3300 resolve_subexp (expp, pos, 0, NULL);
3301 break;
3302
52ce6436
PH
3303 case UNOP_QUAL:
3304 *pos += 3;
17466c1a 3305 resolve_subexp (expp, pos, 1, check_typedef (exp->elts[pc + 1].type));
4c4b4cd2
PH
3306 break;
3307
52ce6436 3308 case OP_ATR_MODULUS:
4c4b4cd2
PH
3309 case OP_ATR_SIZE:
3310 case OP_ATR_TAG:
4c4b4cd2
PH
3311 case OP_ATR_FIRST:
3312 case OP_ATR_LAST:
3313 case OP_ATR_LENGTH:
3314 case OP_ATR_POS:
3315 case OP_ATR_VAL:
4c4b4cd2
PH
3316 case OP_ATR_MIN:
3317 case OP_ATR_MAX:
52ce6436
PH
3318 case TERNOP_IN_RANGE:
3319 case BINOP_IN_BOUNDS:
3320 case UNOP_IN_RANGE:
3321 case OP_AGGREGATE:
3322 case OP_OTHERS:
3323 case OP_CHOICES:
3324 case OP_POSITIONAL:
3325 case OP_DISCRETE_RANGE:
3326 case OP_NAME:
3327 ada_forward_operator_length (exp, pc, &oplen, &nargs);
3328 *pos += oplen;
14f9c5c9
AS
3329 break;
3330
3331 case BINOP_ASSIGN:
3332 {
4c4b4cd2
PH
3333 struct value *arg1;
3334
3335 *pos += 1;
3336 arg1 = resolve_subexp (expp, pos, 0, NULL);
3337 if (arg1 == NULL)
3338 resolve_subexp (expp, pos, 1, NULL);
3339 else
df407dfe 3340 resolve_subexp (expp, pos, 1, value_type (arg1));
4c4b4cd2 3341 break;
14f9c5c9
AS
3342 }
3343
4c4b4cd2 3344 case UNOP_CAST:
4c4b4cd2
PH
3345 *pos += 3;
3346 nargs = 1;
3347 break;
14f9c5c9 3348
4c4b4cd2
PH
3349 case BINOP_ADD:
3350 case BINOP_SUB:
3351 case BINOP_MUL:
3352 case BINOP_DIV:
3353 case BINOP_REM:
3354 case BINOP_MOD:
3355 case BINOP_EXP:
3356 case BINOP_CONCAT:
3357 case BINOP_LOGICAL_AND:
3358 case BINOP_LOGICAL_OR:
3359 case BINOP_BITWISE_AND:
3360 case BINOP_BITWISE_IOR:
3361 case BINOP_BITWISE_XOR:
14f9c5c9 3362
4c4b4cd2
PH
3363 case BINOP_EQUAL:
3364 case BINOP_NOTEQUAL:
3365 case BINOP_LESS:
3366 case BINOP_GTR:
3367 case BINOP_LEQ:
3368 case BINOP_GEQ:
14f9c5c9 3369
4c4b4cd2
PH
3370 case BINOP_REPEAT:
3371 case BINOP_SUBSCRIPT:
3372 case BINOP_COMMA:
40c8aaa9
JB
3373 *pos += 1;
3374 nargs = 2;
3375 break;
14f9c5c9 3376
4c4b4cd2
PH
3377 case UNOP_NEG:
3378 case UNOP_PLUS:
3379 case UNOP_LOGICAL_NOT:
3380 case UNOP_ABS:
3381 case UNOP_IND:
3382 *pos += 1;
3383 nargs = 1;
3384 break;
14f9c5c9 3385
4c4b4cd2 3386 case OP_LONG:
edd079d9 3387 case OP_FLOAT:
4c4b4cd2 3388 case OP_VAR_VALUE:
74ea4be4 3389 case OP_VAR_MSYM_VALUE:
4c4b4cd2
PH
3390 *pos += 4;
3391 break;
14f9c5c9 3392
4c4b4cd2
PH
3393 case OP_TYPE:
3394 case OP_BOOL:
3395 case OP_LAST:
4c4b4cd2
PH
3396 case OP_INTERNALVAR:
3397 *pos += 3;
3398 break;
14f9c5c9 3399
4c4b4cd2
PH
3400 case UNOP_MEMVAL:
3401 *pos += 3;
3402 nargs = 1;
3403 break;
3404
67f3407f
DJ
3405 case OP_REGISTER:
3406 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
3407 break;
3408
4c4b4cd2
PH
3409 case STRUCTOP_STRUCT:
3410 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
3411 nargs = 1;
3412 break;
3413
4c4b4cd2 3414 case TERNOP_SLICE:
4c4b4cd2
PH
3415 *pos += 1;
3416 nargs = 3;
3417 break;
3418
52ce6436 3419 case OP_STRING:
14f9c5c9 3420 break;
4c4b4cd2
PH
3421
3422 default:
323e0a4a 3423 error (_("Unexpected operator during name resolution"));
14f9c5c9
AS
3424 }
3425
8d749320 3426 argvec = XALLOCAVEC (struct value *, nargs + 1);
4c4b4cd2
PH
3427 for (i = 0; i < nargs; i += 1)
3428 argvec[i] = resolve_subexp (expp, pos, 1, NULL);
3429 argvec[i] = NULL;
3430 exp = *expp;
3431
3432 /* Pass two: perform any resolution on principal operator. */
14f9c5c9
AS
3433 switch (op)
3434 {
3435 default:
3436 break;
3437
14f9c5c9 3438 case OP_VAR_VALUE:
4c4b4cd2 3439 if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
76a01679 3440 {
d12307c1 3441 struct block_symbol *candidates;
76a01679
JB
3442 int n_candidates;
3443
3444 n_candidates =
3445 ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME
3446 (exp->elts[pc + 2].symbol),
3447 exp->elts[pc + 1].block, VAR_DOMAIN,
4eeaa230 3448 &candidates);
76a01679
JB
3449
3450 if (n_candidates > 1)
3451 {
3452 /* Types tend to get re-introduced locally, so if there
3453 are any local symbols that are not types, first filter
3454 out all types. */
3455 int j;
3456 for (j = 0; j < n_candidates; j += 1)
d12307c1 3457 switch (SYMBOL_CLASS (candidates[j].symbol))
76a01679
JB
3458 {
3459 case LOC_REGISTER:
3460 case LOC_ARG:
3461 case LOC_REF_ARG:
76a01679
JB
3462 case LOC_REGPARM_ADDR:
3463 case LOC_LOCAL:
76a01679 3464 case LOC_COMPUTED:
76a01679
JB
3465 goto FoundNonType;
3466 default:
3467 break;
3468 }
3469 FoundNonType:
3470 if (j < n_candidates)
3471 {
3472 j = 0;
3473 while (j < n_candidates)
3474 {
d12307c1 3475 if (SYMBOL_CLASS (candidates[j].symbol) == LOC_TYPEDEF)
76a01679
JB
3476 {
3477 candidates[j] = candidates[n_candidates - 1];
3478 n_candidates -= 1;
3479 }
3480 else
3481 j += 1;
3482 }
3483 }
3484 }
3485
3486 if (n_candidates == 0)
323e0a4a 3487 error (_("No definition found for %s"),
76a01679
JB
3488 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
3489 else if (n_candidates == 1)
3490 i = 0;
3491 else if (deprocedure_p
3492 && !is_nonfunction (candidates, n_candidates))
3493 {
06d5cf63
JB
3494 i = ada_resolve_function
3495 (candidates, n_candidates, NULL, 0,
3496 SYMBOL_LINKAGE_NAME (exp->elts[pc + 2].symbol),
3497 context_type);
76a01679 3498 if (i < 0)
323e0a4a 3499 error (_("Could not find a match for %s"),
76a01679
JB
3500 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
3501 }
3502 else
3503 {
323e0a4a 3504 printf_filtered (_("Multiple matches for %s\n"),
76a01679
JB
3505 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
3506 user_select_syms (candidates, n_candidates, 1);
3507 i = 0;
3508 }
3509
3510 exp->elts[pc + 1].block = candidates[i].block;
d12307c1 3511 exp->elts[pc + 2].symbol = candidates[i].symbol;
1265e4aa
JB
3512 if (innermost_block == NULL
3513 || contained_in (candidates[i].block, innermost_block))
76a01679
JB
3514 innermost_block = candidates[i].block;
3515 }
3516
3517 if (deprocedure_p
3518 && (TYPE_CODE (SYMBOL_TYPE (exp->elts[pc + 2].symbol))
3519 == TYPE_CODE_FUNC))
3520 {
3521 replace_operator_with_call (expp, pc, 0, 0,
3522 exp->elts[pc + 2].symbol,
3523 exp->elts[pc + 1].block);
3524 exp = *expp;
3525 }
14f9c5c9
AS
3526 break;
3527
3528 case OP_FUNCALL:
3529 {
4c4b4cd2 3530 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
76a01679 3531 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
4c4b4cd2 3532 {
d12307c1 3533 struct block_symbol *candidates;
4c4b4cd2
PH
3534 int n_candidates;
3535
3536 n_candidates =
76a01679
JB
3537 ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME
3538 (exp->elts[pc + 5].symbol),
3539 exp->elts[pc + 4].block, VAR_DOMAIN,
4eeaa230 3540 &candidates);
4c4b4cd2
PH
3541 if (n_candidates == 1)
3542 i = 0;
3543 else
3544 {
06d5cf63
JB
3545 i = ada_resolve_function
3546 (candidates, n_candidates,
3547 argvec, nargs,
3548 SYMBOL_LINKAGE_NAME (exp->elts[pc + 5].symbol),
3549 context_type);
4c4b4cd2 3550 if (i < 0)
323e0a4a 3551 error (_("Could not find a match for %s"),
4c4b4cd2
PH
3552 SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol));
3553 }
3554
3555 exp->elts[pc + 4].block = candidates[i].block;
d12307c1 3556 exp->elts[pc + 5].symbol = candidates[i].symbol;
1265e4aa
JB
3557 if (innermost_block == NULL
3558 || contained_in (candidates[i].block, innermost_block))
4c4b4cd2
PH
3559 innermost_block = candidates[i].block;
3560 }
14f9c5c9
AS
3561 }
3562 break;
3563 case BINOP_ADD:
3564 case BINOP_SUB:
3565 case BINOP_MUL:
3566 case BINOP_DIV:
3567 case BINOP_REM:
3568 case BINOP_MOD:
3569 case BINOP_CONCAT:
3570 case BINOP_BITWISE_AND:
3571 case BINOP_BITWISE_IOR:
3572 case BINOP_BITWISE_XOR:
3573 case BINOP_EQUAL:
3574 case BINOP_NOTEQUAL:
3575 case BINOP_LESS:
3576 case BINOP_GTR:
3577 case BINOP_LEQ:
3578 case BINOP_GEQ:
3579 case BINOP_EXP:
3580 case UNOP_NEG:
3581 case UNOP_PLUS:
3582 case UNOP_LOGICAL_NOT:
3583 case UNOP_ABS:
3584 if (possible_user_operator_p (op, argvec))
4c4b4cd2 3585 {
d12307c1 3586 struct block_symbol *candidates;
4c4b4cd2
PH
3587 int n_candidates;
3588
3589 n_candidates =
3590 ada_lookup_symbol_list (ada_encode (ada_decoded_op_name (op)),
3591 (struct block *) NULL, VAR_DOMAIN,
4eeaa230 3592 &candidates);
4c4b4cd2 3593 i = ada_resolve_function (candidates, n_candidates, argvec, nargs,
76a01679 3594 ada_decoded_op_name (op), NULL);
4c4b4cd2
PH
3595 if (i < 0)
3596 break;
3597
d12307c1
PMR
3598 replace_operator_with_call (expp, pc, nargs, 1,
3599 candidates[i].symbol,
3600 candidates[i].block);
4c4b4cd2
PH
3601 exp = *expp;
3602 }
14f9c5c9 3603 break;
4c4b4cd2
PH
3604
3605 case OP_TYPE:
b3dbf008 3606 case OP_REGISTER:
4c4b4cd2 3607 return NULL;
14f9c5c9
AS
3608 }
3609
3610 *pos = pc;
3611 return evaluate_subexp_type (exp, pos);
3612}
3613
3614/* Return non-zero if formal type FTYPE matches actual type ATYPE. If
4c4b4cd2 3615 MAY_DEREF is non-zero, the formal may be a pointer and the actual
5b3d5b7d 3616 a non-pointer. */
14f9c5c9 3617/* The term "match" here is rather loose. The match is heuristic and
5b3d5b7d 3618 liberal. */
14f9c5c9
AS
3619
3620static int
4dc81987 3621ada_type_match (struct type *ftype, struct type *atype, int may_deref)
14f9c5c9 3622{
61ee279c
PH
3623 ftype = ada_check_typedef (ftype);
3624 atype = ada_check_typedef (atype);
14f9c5c9
AS
3625
3626 if (TYPE_CODE (ftype) == TYPE_CODE_REF)
3627 ftype = TYPE_TARGET_TYPE (ftype);
3628 if (TYPE_CODE (atype) == TYPE_CODE_REF)
3629 atype = TYPE_TARGET_TYPE (atype);
3630
d2e4a39e 3631 switch (TYPE_CODE (ftype))
14f9c5c9
AS
3632 {
3633 default:
5b3d5b7d 3634 return TYPE_CODE (ftype) == TYPE_CODE (atype);
14f9c5c9
AS
3635 case TYPE_CODE_PTR:
3636 if (TYPE_CODE (atype) == TYPE_CODE_PTR)
4c4b4cd2
PH
3637 return ada_type_match (TYPE_TARGET_TYPE (ftype),
3638 TYPE_TARGET_TYPE (atype), 0);
d2e4a39e 3639 else
1265e4aa
JB
3640 return (may_deref
3641 && ada_type_match (TYPE_TARGET_TYPE (ftype), atype, 0));
14f9c5c9
AS
3642 case TYPE_CODE_INT:
3643 case TYPE_CODE_ENUM:
3644 case TYPE_CODE_RANGE:
3645 switch (TYPE_CODE (atype))
4c4b4cd2
PH
3646 {
3647 case TYPE_CODE_INT:
3648 case TYPE_CODE_ENUM:
3649 case TYPE_CODE_RANGE:
3650 return 1;
3651 default:
3652 return 0;
3653 }
14f9c5c9
AS
3654
3655 case TYPE_CODE_ARRAY:
d2e4a39e 3656 return (TYPE_CODE (atype) == TYPE_CODE_ARRAY
4c4b4cd2 3657 || ada_is_array_descriptor_type (atype));
14f9c5c9
AS
3658
3659 case TYPE_CODE_STRUCT:
4c4b4cd2
PH
3660 if (ada_is_array_descriptor_type (ftype))
3661 return (TYPE_CODE (atype) == TYPE_CODE_ARRAY
3662 || ada_is_array_descriptor_type (atype));
14f9c5c9 3663 else
4c4b4cd2
PH
3664 return (TYPE_CODE (atype) == TYPE_CODE_STRUCT
3665 && !ada_is_array_descriptor_type (atype));
14f9c5c9
AS
3666
3667 case TYPE_CODE_UNION:
3668 case TYPE_CODE_FLT:
3669 return (TYPE_CODE (atype) == TYPE_CODE (ftype));
3670 }
3671}
3672
3673/* Return non-zero if the formals of FUNC "sufficiently match" the
3674 vector of actual argument types ACTUALS of size N_ACTUALS. FUNC
3675 may also be an enumeral, in which case it is treated as a 0-
4c4b4cd2 3676 argument function. */
14f9c5c9
AS
3677
3678static int
d2e4a39e 3679ada_args_match (struct symbol *func, struct value **actuals, int n_actuals)
14f9c5c9
AS
3680{
3681 int i;
d2e4a39e 3682 struct type *func_type = SYMBOL_TYPE (func);
14f9c5c9 3683
1265e4aa
JB
3684 if (SYMBOL_CLASS (func) == LOC_CONST
3685 && TYPE_CODE (func_type) == TYPE_CODE_ENUM)
14f9c5c9
AS
3686 return (n_actuals == 0);
3687 else if (func_type == NULL || TYPE_CODE (func_type) != TYPE_CODE_FUNC)
3688 return 0;
3689
3690 if (TYPE_NFIELDS (func_type) != n_actuals)
3691 return 0;
3692
3693 for (i = 0; i < n_actuals; i += 1)
3694 {
4c4b4cd2 3695 if (actuals[i] == NULL)
76a01679
JB
3696 return 0;
3697 else
3698 {
5b4ee69b
MS
3699 struct type *ftype = ada_check_typedef (TYPE_FIELD_TYPE (func_type,
3700 i));
df407dfe 3701 struct type *atype = ada_check_typedef (value_type (actuals[i]));
4c4b4cd2 3702
76a01679
JB
3703 if (!ada_type_match (ftype, atype, 1))
3704 return 0;
3705 }
14f9c5c9
AS
3706 }
3707 return 1;
3708}
3709
3710/* False iff function type FUNC_TYPE definitely does not produce a value
3711 compatible with type CONTEXT_TYPE. Conservatively returns 1 if
3712 FUNC_TYPE is not a valid function type with a non-null return type
3713 or an enumerated type. A null CONTEXT_TYPE indicates any non-void type. */
3714
3715static int
d2e4a39e 3716return_match (struct type *func_type, struct type *context_type)
14f9c5c9 3717{
d2e4a39e 3718 struct type *return_type;
14f9c5c9
AS
3719
3720 if (func_type == NULL)
3721 return 1;
3722
4c4b4cd2 3723 if (TYPE_CODE (func_type) == TYPE_CODE_FUNC)
18af8284 3724 return_type = get_base_type (TYPE_TARGET_TYPE (func_type));
4c4b4cd2 3725 else
18af8284 3726 return_type = get_base_type (func_type);
14f9c5c9
AS
3727 if (return_type == NULL)
3728 return 1;
3729
18af8284 3730 context_type = get_base_type (context_type);
14f9c5c9
AS
3731
3732 if (TYPE_CODE (return_type) == TYPE_CODE_ENUM)
3733 return context_type == NULL || return_type == context_type;
3734 else if (context_type == NULL)
3735 return TYPE_CODE (return_type) != TYPE_CODE_VOID;
3736 else
3737 return TYPE_CODE (return_type) == TYPE_CODE (context_type);
3738}
3739
3740
4c4b4cd2 3741/* Returns the index in SYMS[0..NSYMS-1] that contains the symbol for the
14f9c5c9 3742 function (if any) that matches the types of the NARGS arguments in
4c4b4cd2
PH
3743 ARGS. If CONTEXT_TYPE is non-null and there is at least one match
3744 that returns that type, then eliminate matches that don't. If
3745 CONTEXT_TYPE is void and there is at least one match that does not
3746 return void, eliminate all matches that do.
3747
14f9c5c9
AS
3748 Asks the user if there is more than one match remaining. Returns -1
3749 if there is no such symbol or none is selected. NAME is used
4c4b4cd2
PH
3750 solely for messages. May re-arrange and modify SYMS in
3751 the process; the index returned is for the modified vector. */
14f9c5c9 3752
4c4b4cd2 3753static int
d12307c1 3754ada_resolve_function (struct block_symbol syms[],
4c4b4cd2
PH
3755 int nsyms, struct value **args, int nargs,
3756 const char *name, struct type *context_type)
14f9c5c9 3757{
30b15541 3758 int fallback;
14f9c5c9 3759 int k;
4c4b4cd2 3760 int m; /* Number of hits */
14f9c5c9 3761
d2e4a39e 3762 m = 0;
30b15541
UW
3763 /* In the first pass of the loop, we only accept functions matching
3764 context_type. If none are found, we add a second pass of the loop
3765 where every function is accepted. */
3766 for (fallback = 0; m == 0 && fallback < 2; fallback++)
14f9c5c9
AS
3767 {
3768 for (k = 0; k < nsyms; k += 1)
4c4b4cd2 3769 {
d12307c1 3770 struct type *type = ada_check_typedef (SYMBOL_TYPE (syms[k].symbol));
4c4b4cd2 3771
d12307c1 3772 if (ada_args_match (syms[k].symbol, args, nargs)
30b15541 3773 && (fallback || return_match (type, context_type)))
4c4b4cd2
PH
3774 {
3775 syms[m] = syms[k];
3776 m += 1;
3777 }
3778 }
14f9c5c9
AS
3779 }
3780
dc5c8746
PMR
3781 /* If we got multiple matches, ask the user which one to use. Don't do this
3782 interactive thing during completion, though, as the purpose of the
3783 completion is providing a list of all possible matches. Prompting the
3784 user to filter it down would be completely unexpected in this case. */
14f9c5c9
AS
3785 if (m == 0)
3786 return -1;
dc5c8746 3787 else if (m > 1 && !parse_completion)
14f9c5c9 3788 {
323e0a4a 3789 printf_filtered (_("Multiple matches for %s\n"), name);
4c4b4cd2 3790 user_select_syms (syms, m, 1);
14f9c5c9
AS
3791 return 0;
3792 }
3793 return 0;
3794}
3795
4c4b4cd2
PH
3796/* Returns true (non-zero) iff decoded name N0 should appear before N1
3797 in a listing of choices during disambiguation (see sort_choices, below).
3798 The idea is that overloadings of a subprogram name from the
3799 same package should sort in their source order. We settle for ordering
3800 such symbols by their trailing number (__N or $N). */
3801
14f9c5c9 3802static int
0d5cff50 3803encoded_ordered_before (const char *N0, const char *N1)
14f9c5c9
AS
3804{
3805 if (N1 == NULL)
3806 return 0;
3807 else if (N0 == NULL)
3808 return 1;
3809 else
3810 {
3811 int k0, k1;
5b4ee69b 3812
d2e4a39e 3813 for (k0 = strlen (N0) - 1; k0 > 0 && isdigit (N0[k0]); k0 -= 1)
4c4b4cd2 3814 ;
d2e4a39e 3815 for (k1 = strlen (N1) - 1; k1 > 0 && isdigit (N1[k1]); k1 -= 1)
4c4b4cd2 3816 ;
d2e4a39e 3817 if ((N0[k0] == '_' || N0[k0] == '$') && N0[k0 + 1] != '\000'
4c4b4cd2
PH
3818 && (N1[k1] == '_' || N1[k1] == '$') && N1[k1 + 1] != '\000')
3819 {
3820 int n0, n1;
5b4ee69b 3821
4c4b4cd2
PH
3822 n0 = k0;
3823 while (N0[n0] == '_' && n0 > 0 && N0[n0 - 1] == '_')
3824 n0 -= 1;
3825 n1 = k1;
3826 while (N1[n1] == '_' && n1 > 0 && N1[n1 - 1] == '_')
3827 n1 -= 1;
3828 if (n0 == n1 && strncmp (N0, N1, n0) == 0)
3829 return (atoi (N0 + k0 + 1) < atoi (N1 + k1 + 1));
3830 }
14f9c5c9
AS
3831 return (strcmp (N0, N1) < 0);
3832 }
3833}
d2e4a39e 3834
4c4b4cd2
PH
3835/* Sort SYMS[0..NSYMS-1] to put the choices in a canonical order by the
3836 encoded names. */
3837
d2e4a39e 3838static void
d12307c1 3839sort_choices (struct block_symbol syms[], int nsyms)
14f9c5c9 3840{
4c4b4cd2 3841 int i;
5b4ee69b 3842
d2e4a39e 3843 for (i = 1; i < nsyms; i += 1)
14f9c5c9 3844 {
d12307c1 3845 struct block_symbol sym = syms[i];
14f9c5c9
AS
3846 int j;
3847
d2e4a39e 3848 for (j = i - 1; j >= 0; j -= 1)
4c4b4cd2 3849 {
d12307c1
PMR
3850 if (encoded_ordered_before (SYMBOL_LINKAGE_NAME (syms[j].symbol),
3851 SYMBOL_LINKAGE_NAME (sym.symbol)))
4c4b4cd2
PH
3852 break;
3853 syms[j + 1] = syms[j];
3854 }
d2e4a39e 3855 syms[j + 1] = sym;
14f9c5c9
AS
3856 }
3857}
3858
d72413e6
PMR
3859/* Whether GDB should display formals and return types for functions in the
3860 overloads selection menu. */
3861static int print_signatures = 1;
3862
3863/* Print the signature for SYM on STREAM according to the FLAGS options. For
3864 all but functions, the signature is just the name of the symbol. For
3865 functions, this is the name of the function, the list of types for formals
3866 and the return type (if any). */
3867
3868static void
3869ada_print_symbol_signature (struct ui_file *stream, struct symbol *sym,
3870 const struct type_print_options *flags)
3871{
3872 struct type *type = SYMBOL_TYPE (sym);
3873
3874 fprintf_filtered (stream, "%s", SYMBOL_PRINT_NAME (sym));
3875 if (!print_signatures
3876 || type == NULL
3877 || TYPE_CODE (type) != TYPE_CODE_FUNC)
3878 return;
3879
3880 if (TYPE_NFIELDS (type) > 0)
3881 {
3882 int i;
3883
3884 fprintf_filtered (stream, " (");
3885 for (i = 0; i < TYPE_NFIELDS (type); ++i)
3886 {
3887 if (i > 0)
3888 fprintf_filtered (stream, "; ");
3889 ada_print_type (TYPE_FIELD_TYPE (type, i), NULL, stream, -1, 0,
3890 flags);
3891 }
3892 fprintf_filtered (stream, ")");
3893 }
3894 if (TYPE_TARGET_TYPE (type) != NULL
3895 && TYPE_CODE (TYPE_TARGET_TYPE (type)) != TYPE_CODE_VOID)
3896 {
3897 fprintf_filtered (stream, " return ");
3898 ada_print_type (TYPE_TARGET_TYPE (type), NULL, stream, -1, 0, flags);
3899 }
3900}
3901
4c4b4cd2
PH
3902/* Given a list of NSYMS symbols in SYMS, select up to MAX_RESULTS>0
3903 by asking the user (if necessary), returning the number selected,
3904 and setting the first elements of SYMS items. Error if no symbols
3905 selected. */
14f9c5c9
AS
3906
3907/* NOTE: Adapted from decode_line_2 in symtab.c, with which it ought
4c4b4cd2 3908 to be re-integrated one of these days. */
14f9c5c9
AS
3909
3910int
d12307c1 3911user_select_syms (struct block_symbol *syms, int nsyms, int max_results)
14f9c5c9
AS
3912{
3913 int i;
8d749320 3914 int *chosen = XALLOCAVEC (int , nsyms);
14f9c5c9
AS
3915 int n_chosen;
3916 int first_choice = (max_results == 1) ? 1 : 2;
717d2f5a 3917 const char *select_mode = multiple_symbols_select_mode ();
14f9c5c9
AS
3918
3919 if (max_results < 1)
323e0a4a 3920 error (_("Request to select 0 symbols!"));
14f9c5c9
AS
3921 if (nsyms <= 1)
3922 return nsyms;
3923
717d2f5a
JB
3924 if (select_mode == multiple_symbols_cancel)
3925 error (_("\
3926canceled because the command is ambiguous\n\
3927See set/show multiple-symbol."));
3928
3929 /* If select_mode is "all", then return all possible symbols.
3930 Only do that if more than one symbol can be selected, of course.
3931 Otherwise, display the menu as usual. */
3932 if (select_mode == multiple_symbols_all && max_results > 1)
3933 return nsyms;
3934
323e0a4a 3935 printf_unfiltered (_("[0] cancel\n"));
14f9c5c9 3936 if (max_results > 1)
323e0a4a 3937 printf_unfiltered (_("[1] all\n"));
14f9c5c9 3938
4c4b4cd2 3939 sort_choices (syms, nsyms);
14f9c5c9
AS
3940
3941 for (i = 0; i < nsyms; i += 1)
3942 {
d12307c1 3943 if (syms[i].symbol == NULL)
4c4b4cd2
PH
3944 continue;
3945
d12307c1 3946 if (SYMBOL_CLASS (syms[i].symbol) == LOC_BLOCK)
4c4b4cd2 3947 {
76a01679 3948 struct symtab_and_line sal =
d12307c1 3949 find_function_start_sal (syms[i].symbol, 1);
5b4ee69b 3950
d72413e6
PMR
3951 printf_unfiltered ("[%d] ", i + first_choice);
3952 ada_print_symbol_signature (gdb_stdout, syms[i].symbol,
3953 &type_print_raw_options);
323e0a4a 3954 if (sal.symtab == NULL)
d72413e6 3955 printf_unfiltered (_(" at <no source file available>:%d\n"),
323e0a4a
AC
3956 sal.line);
3957 else
d72413e6 3958 printf_unfiltered (_(" at %s:%d\n"),
05cba821
JK
3959 symtab_to_filename_for_display (sal.symtab),
3960 sal.line);
4c4b4cd2
PH
3961 continue;
3962 }
d2e4a39e 3963 else
4c4b4cd2
PH
3964 {
3965 int is_enumeral =
d12307c1
PMR
3966 (SYMBOL_CLASS (syms[i].symbol) == LOC_CONST
3967 && SYMBOL_TYPE (syms[i].symbol) != NULL
3968 && TYPE_CODE (SYMBOL_TYPE (syms[i].symbol)) == TYPE_CODE_ENUM);
1994afbf
DE
3969 struct symtab *symtab = NULL;
3970
d12307c1
PMR
3971 if (SYMBOL_OBJFILE_OWNED (syms[i].symbol))
3972 symtab = symbol_symtab (syms[i].symbol);
4c4b4cd2 3973
d12307c1 3974 if (SYMBOL_LINE (syms[i].symbol) != 0 && symtab != NULL)
d72413e6
PMR
3975 {
3976 printf_unfiltered ("[%d] ", i + first_choice);
3977 ada_print_symbol_signature (gdb_stdout, syms[i].symbol,
3978 &type_print_raw_options);
3979 printf_unfiltered (_(" at %s:%d\n"),
3980 symtab_to_filename_for_display (symtab),
3981 SYMBOL_LINE (syms[i].symbol));
3982 }
76a01679 3983 else if (is_enumeral
d12307c1 3984 && TYPE_NAME (SYMBOL_TYPE (syms[i].symbol)) != NULL)
4c4b4cd2 3985 {
a3f17187 3986 printf_unfiltered (("[%d] "), i + first_choice);
d12307c1 3987 ada_print_type (SYMBOL_TYPE (syms[i].symbol), NULL,
79d43c61 3988 gdb_stdout, -1, 0, &type_print_raw_options);
323e0a4a 3989 printf_unfiltered (_("'(%s) (enumeral)\n"),
d12307c1 3990 SYMBOL_PRINT_NAME (syms[i].symbol));
4c4b4cd2 3991 }
d72413e6
PMR
3992 else
3993 {
3994 printf_unfiltered ("[%d] ", i + first_choice);
3995 ada_print_symbol_signature (gdb_stdout, syms[i].symbol,
3996 &type_print_raw_options);
3997
3998 if (symtab != NULL)
3999 printf_unfiltered (is_enumeral
4000 ? _(" in %s (enumeral)\n")
4001 : _(" at %s:?\n"),
4002 symtab_to_filename_for_display (symtab));
4003 else
4004 printf_unfiltered (is_enumeral
4005 ? _(" (enumeral)\n")
4006 : _(" at ?\n"));
4007 }
4c4b4cd2 4008 }
14f9c5c9 4009 }
d2e4a39e 4010
14f9c5c9 4011 n_chosen = get_selections (chosen, nsyms, max_results, max_results > 1,
4c4b4cd2 4012 "overload-choice");
14f9c5c9
AS
4013
4014 for (i = 0; i < n_chosen; i += 1)
4c4b4cd2 4015 syms[i] = syms[chosen[i]];
14f9c5c9
AS
4016
4017 return n_chosen;
4018}
4019
4020/* Read and validate a set of numeric choices from the user in the
4c4b4cd2 4021 range 0 .. N_CHOICES-1. Place the results in increasing
14f9c5c9
AS
4022 order in CHOICES[0 .. N-1], and return N.
4023
4024 The user types choices as a sequence of numbers on one line
4025 separated by blanks, encoding them as follows:
4026
4c4b4cd2 4027 + A choice of 0 means to cancel the selection, throwing an error.
14f9c5c9
AS
4028 + If IS_ALL_CHOICE, a choice of 1 selects the entire set 0 .. N_CHOICES-1.
4029 + The user chooses k by typing k+IS_ALL_CHOICE+1.
4030
4c4b4cd2 4031 The user is not allowed to choose more than MAX_RESULTS values.
14f9c5c9
AS
4032
4033 ANNOTATION_SUFFIX, if present, is used to annotate the input
4c4b4cd2 4034 prompts (for use with the -f switch). */
14f9c5c9
AS
4035
4036int
d2e4a39e 4037get_selections (int *choices, int n_choices, int max_results,
a121b7c1 4038 int is_all_choice, const char *annotation_suffix)
14f9c5c9 4039{
d2e4a39e 4040 char *args;
a121b7c1 4041 const char *prompt;
14f9c5c9
AS
4042 int n_chosen;
4043 int first_choice = is_all_choice ? 2 : 1;
d2e4a39e 4044
14f9c5c9
AS
4045 prompt = getenv ("PS2");
4046 if (prompt == NULL)
0bcd0149 4047 prompt = "> ";
14f9c5c9 4048
0bcd0149 4049 args = command_line_input (prompt, 0, annotation_suffix);
d2e4a39e 4050
14f9c5c9 4051 if (args == NULL)
323e0a4a 4052 error_no_arg (_("one or more choice numbers"));
14f9c5c9
AS
4053
4054 n_chosen = 0;
76a01679 4055
4c4b4cd2
PH
4056 /* Set choices[0 .. n_chosen-1] to the users' choices in ascending
4057 order, as given in args. Choices are validated. */
14f9c5c9
AS
4058 while (1)
4059 {
d2e4a39e 4060 char *args2;
14f9c5c9
AS
4061 int choice, j;
4062
0fcd72ba 4063 args = skip_spaces (args);
14f9c5c9 4064 if (*args == '\0' && n_chosen == 0)
323e0a4a 4065 error_no_arg (_("one or more choice numbers"));
14f9c5c9 4066 else if (*args == '\0')
4c4b4cd2 4067 break;
14f9c5c9
AS
4068
4069 choice = strtol (args, &args2, 10);
d2e4a39e 4070 if (args == args2 || choice < 0
4c4b4cd2 4071 || choice > n_choices + first_choice - 1)
323e0a4a 4072 error (_("Argument must be choice number"));
14f9c5c9
AS
4073 args = args2;
4074
d2e4a39e 4075 if (choice == 0)
323e0a4a 4076 error (_("cancelled"));
14f9c5c9
AS
4077
4078 if (choice < first_choice)
4c4b4cd2
PH
4079 {
4080 n_chosen = n_choices;
4081 for (j = 0; j < n_choices; j += 1)
4082 choices[j] = j;
4083 break;
4084 }
14f9c5c9
AS
4085 choice -= first_choice;
4086
d2e4a39e 4087 for (j = n_chosen - 1; j >= 0 && choice < choices[j]; j -= 1)
4c4b4cd2
PH
4088 {
4089 }
14f9c5c9
AS
4090
4091 if (j < 0 || choice != choices[j])
4c4b4cd2
PH
4092 {
4093 int k;
5b4ee69b 4094
4c4b4cd2
PH
4095 for (k = n_chosen - 1; k > j; k -= 1)
4096 choices[k + 1] = choices[k];
4097 choices[j + 1] = choice;
4098 n_chosen += 1;
4099 }
14f9c5c9
AS
4100 }
4101
4102 if (n_chosen > max_results)
323e0a4a 4103 error (_("Select no more than %d of the above"), max_results);
d2e4a39e 4104
14f9c5c9
AS
4105 return n_chosen;
4106}
4107
4c4b4cd2
PH
4108/* Replace the operator of length OPLEN at position PC in *EXPP with a call
4109 on the function identified by SYM and BLOCK, and taking NARGS
4110 arguments. Update *EXPP as needed to hold more space. */
14f9c5c9
AS
4111
4112static void
d2e4a39e 4113replace_operator_with_call (struct expression **expp, int pc, int nargs,
4c4b4cd2 4114 int oplen, struct symbol *sym,
270140bd 4115 const struct block *block)
14f9c5c9
AS
4116{
4117 /* A new expression, with 6 more elements (3 for funcall, 4 for function
4c4b4cd2 4118 symbol, -oplen for operator being replaced). */
d2e4a39e 4119 struct expression *newexp = (struct expression *)
8c1a34e7 4120 xzalloc (sizeof (struct expression)
4c4b4cd2 4121 + EXP_ELEM_TO_BYTES ((*expp)->nelts + 7 - oplen));
d2e4a39e 4122 struct expression *exp = *expp;
14f9c5c9
AS
4123
4124 newexp->nelts = exp->nelts + 7 - oplen;
4125 newexp->language_defn = exp->language_defn;
3489610d 4126 newexp->gdbarch = exp->gdbarch;
14f9c5c9 4127 memcpy (newexp->elts, exp->elts, EXP_ELEM_TO_BYTES (pc));
d2e4a39e 4128 memcpy (newexp->elts + pc + 7, exp->elts + pc + oplen,
4c4b4cd2 4129 EXP_ELEM_TO_BYTES (exp->nelts - pc - oplen));
14f9c5c9
AS
4130
4131 newexp->elts[pc].opcode = newexp->elts[pc + 2].opcode = OP_FUNCALL;
4132 newexp->elts[pc + 1].longconst = (LONGEST) nargs;
4133
4134 newexp->elts[pc + 3].opcode = newexp->elts[pc + 6].opcode = OP_VAR_VALUE;
4135 newexp->elts[pc + 4].block = block;
4136 newexp->elts[pc + 5].symbol = sym;
4137
4138 *expp = newexp;
aacb1f0a 4139 xfree (exp);
d2e4a39e 4140}
14f9c5c9
AS
4141
4142/* Type-class predicates */
4143
4c4b4cd2
PH
4144/* True iff TYPE is numeric (i.e., an INT, RANGE (of numeric type),
4145 or FLOAT). */
14f9c5c9
AS
4146
4147static int
d2e4a39e 4148numeric_type_p (struct type *type)
14f9c5c9
AS
4149{
4150 if (type == NULL)
4151 return 0;
d2e4a39e
AS
4152 else
4153 {
4154 switch (TYPE_CODE (type))
4c4b4cd2
PH
4155 {
4156 case TYPE_CODE_INT:
4157 case TYPE_CODE_FLT:
4158 return 1;
4159 case TYPE_CODE_RANGE:
4160 return (type == TYPE_TARGET_TYPE (type)
4161 || numeric_type_p (TYPE_TARGET_TYPE (type)));
4162 default:
4163 return 0;
4164 }
d2e4a39e 4165 }
14f9c5c9
AS
4166}
4167
4c4b4cd2 4168/* True iff TYPE is integral (an INT or RANGE of INTs). */
14f9c5c9
AS
4169
4170static int
d2e4a39e 4171integer_type_p (struct type *type)
14f9c5c9
AS
4172{
4173 if (type == NULL)
4174 return 0;
d2e4a39e
AS
4175 else
4176 {
4177 switch (TYPE_CODE (type))
4c4b4cd2
PH
4178 {
4179 case TYPE_CODE_INT:
4180 return 1;
4181 case TYPE_CODE_RANGE:
4182 return (type == TYPE_TARGET_TYPE (type)
4183 || integer_type_p (TYPE_TARGET_TYPE (type)));
4184 default:
4185 return 0;
4186 }
d2e4a39e 4187 }
14f9c5c9
AS
4188}
4189
4c4b4cd2 4190/* True iff TYPE is scalar (INT, RANGE, FLOAT, ENUM). */
14f9c5c9
AS
4191
4192static int
d2e4a39e 4193scalar_type_p (struct type *type)
14f9c5c9
AS
4194{
4195 if (type == NULL)
4196 return 0;
d2e4a39e
AS
4197 else
4198 {
4199 switch (TYPE_CODE (type))
4c4b4cd2
PH
4200 {
4201 case TYPE_CODE_INT:
4202 case TYPE_CODE_RANGE:
4203 case TYPE_CODE_ENUM:
4204 case TYPE_CODE_FLT:
4205 return 1;
4206 default:
4207 return 0;
4208 }
d2e4a39e 4209 }
14f9c5c9
AS
4210}
4211
4c4b4cd2 4212/* True iff TYPE is discrete (INT, RANGE, ENUM). */
14f9c5c9
AS
4213
4214static int
d2e4a39e 4215discrete_type_p (struct type *type)
14f9c5c9
AS
4216{
4217 if (type == NULL)
4218 return 0;
d2e4a39e
AS
4219 else
4220 {
4221 switch (TYPE_CODE (type))
4c4b4cd2
PH
4222 {
4223 case TYPE_CODE_INT:
4224 case TYPE_CODE_RANGE:
4225 case TYPE_CODE_ENUM:
872f0337 4226 case TYPE_CODE_BOOL:
4c4b4cd2
PH
4227 return 1;
4228 default:
4229 return 0;
4230 }
d2e4a39e 4231 }
14f9c5c9
AS
4232}
4233
4c4b4cd2
PH
4234/* Returns non-zero if OP with operands in the vector ARGS could be
4235 a user-defined function. Errs on the side of pre-defined operators
4236 (i.e., result 0). */
14f9c5c9
AS
4237
4238static int
d2e4a39e 4239possible_user_operator_p (enum exp_opcode op, struct value *args[])
14f9c5c9 4240{
76a01679 4241 struct type *type0 =
df407dfe 4242 (args[0] == NULL) ? NULL : ada_check_typedef (value_type (args[0]));
d2e4a39e 4243 struct type *type1 =
df407dfe 4244 (args[1] == NULL) ? NULL : ada_check_typedef (value_type (args[1]));
d2e4a39e 4245
4c4b4cd2
PH
4246 if (type0 == NULL)
4247 return 0;
4248
14f9c5c9
AS
4249 switch (op)
4250 {
4251 default:
4252 return 0;
4253
4254 case BINOP_ADD:
4255 case BINOP_SUB:
4256 case BINOP_MUL:
4257 case BINOP_DIV:
d2e4a39e 4258 return (!(numeric_type_p (type0) && numeric_type_p (type1)));
14f9c5c9
AS
4259
4260 case BINOP_REM:
4261 case BINOP_MOD:
4262 case BINOP_BITWISE_AND:
4263 case BINOP_BITWISE_IOR:
4264 case BINOP_BITWISE_XOR:
d2e4a39e 4265 return (!(integer_type_p (type0) && integer_type_p (type1)));
14f9c5c9
AS
4266
4267 case BINOP_EQUAL:
4268 case BINOP_NOTEQUAL:
4269 case BINOP_LESS:
4270 case BINOP_GTR:
4271 case BINOP_LEQ:
4272 case BINOP_GEQ:
d2e4a39e 4273 return (!(scalar_type_p (type0) && scalar_type_p (type1)));
14f9c5c9
AS
4274
4275 case BINOP_CONCAT:
ee90b9ab 4276 return !ada_is_array_type (type0) || !ada_is_array_type (type1);
14f9c5c9
AS
4277
4278 case BINOP_EXP:
d2e4a39e 4279 return (!(numeric_type_p (type0) && integer_type_p (type1)));
14f9c5c9
AS
4280
4281 case UNOP_NEG:
4282 case UNOP_PLUS:
4283 case UNOP_LOGICAL_NOT:
d2e4a39e
AS
4284 case UNOP_ABS:
4285 return (!numeric_type_p (type0));
14f9c5c9
AS
4286
4287 }
4288}
4289\f
4c4b4cd2 4290 /* Renaming */
14f9c5c9 4291
aeb5907d
JB
4292/* NOTES:
4293
4294 1. In the following, we assume that a renaming type's name may
4295 have an ___XD suffix. It would be nice if this went away at some
4296 point.
4297 2. We handle both the (old) purely type-based representation of
4298 renamings and the (new) variable-based encoding. At some point,
4299 it is devoutly to be hoped that the former goes away
4300 (FIXME: hilfinger-2007-07-09).
4301 3. Subprogram renamings are not implemented, although the XRS
4302 suffix is recognized (FIXME: hilfinger-2007-07-09). */
4303
4304/* If SYM encodes a renaming,
4305
4306 <renaming> renames <renamed entity>,
4307
4308 sets *LEN to the length of the renamed entity's name,
4309 *RENAMED_ENTITY to that name (not null-terminated), and *RENAMING_EXPR to
4310 the string describing the subcomponent selected from the renamed
0963b4bd 4311 entity. Returns ADA_NOT_RENAMING if SYM does not encode a renaming
aeb5907d
JB
4312 (in which case, the values of *RENAMED_ENTITY, *LEN, and *RENAMING_EXPR
4313 are undefined). Otherwise, returns a value indicating the category
4314 of entity renamed: an object (ADA_OBJECT_RENAMING), exception
4315 (ADA_EXCEPTION_RENAMING), package (ADA_PACKAGE_RENAMING), or
4316 subprogram (ADA_SUBPROGRAM_RENAMING). Does no allocation; the
4317 strings returned in *RENAMED_ENTITY and *RENAMING_EXPR should not be
4318 deallocated. The values of RENAMED_ENTITY, LEN, or RENAMING_EXPR
4319 may be NULL, in which case they are not assigned.
4320
4321 [Currently, however, GCC does not generate subprogram renamings.] */
4322
4323enum ada_renaming_category
4324ada_parse_renaming (struct symbol *sym,
4325 const char **renamed_entity, int *len,
4326 const char **renaming_expr)
4327{
4328 enum ada_renaming_category kind;
4329 const char *info;
4330 const char *suffix;
4331
4332 if (sym == NULL)
4333 return ADA_NOT_RENAMING;
4334 switch (SYMBOL_CLASS (sym))
14f9c5c9 4335 {
aeb5907d
JB
4336 default:
4337 return ADA_NOT_RENAMING;
4338 case LOC_TYPEDEF:
4339 return parse_old_style_renaming (SYMBOL_TYPE (sym),
4340 renamed_entity, len, renaming_expr);
4341 case LOC_LOCAL:
4342 case LOC_STATIC:
4343 case LOC_COMPUTED:
4344 case LOC_OPTIMIZED_OUT:
4345 info = strstr (SYMBOL_LINKAGE_NAME (sym), "___XR");
4346 if (info == NULL)
4347 return ADA_NOT_RENAMING;
4348 switch (info[5])
4349 {
4350 case '_':
4351 kind = ADA_OBJECT_RENAMING;
4352 info += 6;
4353 break;
4354 case 'E':
4355 kind = ADA_EXCEPTION_RENAMING;
4356 info += 7;
4357 break;
4358 case 'P':
4359 kind = ADA_PACKAGE_RENAMING;
4360 info += 7;
4361 break;
4362 case 'S':
4363 kind = ADA_SUBPROGRAM_RENAMING;
4364 info += 7;
4365 break;
4366 default:
4367 return ADA_NOT_RENAMING;
4368 }
14f9c5c9 4369 }
4c4b4cd2 4370
aeb5907d
JB
4371 if (renamed_entity != NULL)
4372 *renamed_entity = info;
4373 suffix = strstr (info, "___XE");
4374 if (suffix == NULL || suffix == info)
4375 return ADA_NOT_RENAMING;
4376 if (len != NULL)
4377 *len = strlen (info) - strlen (suffix);
4378 suffix += 5;
4379 if (renaming_expr != NULL)
4380 *renaming_expr = suffix;
4381 return kind;
4382}
4383
4384/* Assuming TYPE encodes a renaming according to the old encoding in
4385 exp_dbug.ads, returns details of that renaming in *RENAMED_ENTITY,
4386 *LEN, and *RENAMING_EXPR, as for ada_parse_renaming, above. Returns
4387 ADA_NOT_RENAMING otherwise. */
4388static enum ada_renaming_category
4389parse_old_style_renaming (struct type *type,
4390 const char **renamed_entity, int *len,
4391 const char **renaming_expr)
4392{
4393 enum ada_renaming_category kind;
4394 const char *name;
4395 const char *info;
4396 const char *suffix;
14f9c5c9 4397
aeb5907d
JB
4398 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM
4399 || TYPE_NFIELDS (type) != 1)
4400 return ADA_NOT_RENAMING;
14f9c5c9 4401
aeb5907d
JB
4402 name = type_name_no_tag (type);
4403 if (name == NULL)
4404 return ADA_NOT_RENAMING;
4405
4406 name = strstr (name, "___XR");
4407 if (name == NULL)
4408 return ADA_NOT_RENAMING;
4409 switch (name[5])
4410 {
4411 case '\0':
4412 case '_':
4413 kind = ADA_OBJECT_RENAMING;
4414 break;
4415 case 'E':
4416 kind = ADA_EXCEPTION_RENAMING;
4417 break;
4418 case 'P':
4419 kind = ADA_PACKAGE_RENAMING;
4420 break;
4421 case 'S':
4422 kind = ADA_SUBPROGRAM_RENAMING;
4423 break;
4424 default:
4425 return ADA_NOT_RENAMING;
4426 }
14f9c5c9 4427
aeb5907d
JB
4428 info = TYPE_FIELD_NAME (type, 0);
4429 if (info == NULL)
4430 return ADA_NOT_RENAMING;
4431 if (renamed_entity != NULL)
4432 *renamed_entity = info;
4433 suffix = strstr (info, "___XE");
4434 if (renaming_expr != NULL)
4435 *renaming_expr = suffix + 5;
4436 if (suffix == NULL || suffix == info)
4437 return ADA_NOT_RENAMING;
4438 if (len != NULL)
4439 *len = suffix - info;
4440 return kind;
a5ee536b
JB
4441}
4442
4443/* Compute the value of the given RENAMING_SYM, which is expected to
4444 be a symbol encoding a renaming expression. BLOCK is the block
4445 used to evaluate the renaming. */
52ce6436 4446
a5ee536b
JB
4447static struct value *
4448ada_read_renaming_var_value (struct symbol *renaming_sym,
3977b71f 4449 const struct block *block)
a5ee536b 4450{
bbc13ae3 4451 const char *sym_name;
a5ee536b 4452
bbc13ae3 4453 sym_name = SYMBOL_LINKAGE_NAME (renaming_sym);
4d01a485
PA
4454 expression_up expr = parse_exp_1 (&sym_name, 0, block, 0);
4455 return evaluate_expression (expr.get ());
a5ee536b 4456}
14f9c5c9 4457\f
d2e4a39e 4458
4c4b4cd2 4459 /* Evaluation: Function Calls */
14f9c5c9 4460
4c4b4cd2 4461/* Return an lvalue containing the value VAL. This is the identity on
40bc484c
JB
4462 lvalues, and otherwise has the side-effect of allocating memory
4463 in the inferior where a copy of the value contents is copied. */
14f9c5c9 4464
d2e4a39e 4465static struct value *
40bc484c 4466ensure_lval (struct value *val)
14f9c5c9 4467{
40bc484c
JB
4468 if (VALUE_LVAL (val) == not_lval
4469 || VALUE_LVAL (val) == lval_internalvar)
c3e5cd34 4470 {
df407dfe 4471 int len = TYPE_LENGTH (ada_check_typedef (value_type (val)));
40bc484c
JB
4472 const CORE_ADDR addr =
4473 value_as_long (value_allocate_space_in_inferior (len));
c3e5cd34 4474
a84a8a0d 4475 VALUE_LVAL (val) = lval_memory;
1a088441 4476 set_value_address (val, addr);
40bc484c 4477 write_memory (addr, value_contents (val), len);
c3e5cd34 4478 }
14f9c5c9
AS
4479
4480 return val;
4481}
4482
4483/* Return the value ACTUAL, converted to be an appropriate value for a
4484 formal of type FORMAL_TYPE. Use *SP as a stack pointer for
4485 allocating any necessary descriptors (fat pointers), or copies of
4c4b4cd2 4486 values not residing in memory, updating it as needed. */
14f9c5c9 4487
a93c0eb6 4488struct value *
40bc484c 4489ada_convert_actual (struct value *actual, struct type *formal_type0)
14f9c5c9 4490{
df407dfe 4491 struct type *actual_type = ada_check_typedef (value_type (actual));
61ee279c 4492 struct type *formal_type = ada_check_typedef (formal_type0);
d2e4a39e
AS
4493 struct type *formal_target =
4494 TYPE_CODE (formal_type) == TYPE_CODE_PTR
61ee279c 4495 ? ada_check_typedef (TYPE_TARGET_TYPE (formal_type)) : formal_type;
d2e4a39e
AS
4496 struct type *actual_target =
4497 TYPE_CODE (actual_type) == TYPE_CODE_PTR
61ee279c 4498 ? ada_check_typedef (TYPE_TARGET_TYPE (actual_type)) : actual_type;
14f9c5c9 4499
4c4b4cd2 4500 if (ada_is_array_descriptor_type (formal_target)
14f9c5c9 4501 && TYPE_CODE (actual_target) == TYPE_CODE_ARRAY)
40bc484c 4502 return make_array_descriptor (formal_type, actual);
a84a8a0d
JB
4503 else if (TYPE_CODE (formal_type) == TYPE_CODE_PTR
4504 || TYPE_CODE (formal_type) == TYPE_CODE_REF)
14f9c5c9 4505 {
a84a8a0d 4506 struct value *result;
5b4ee69b 4507
14f9c5c9 4508 if (TYPE_CODE (formal_target) == TYPE_CODE_ARRAY
4c4b4cd2 4509 && ada_is_array_descriptor_type (actual_target))
a84a8a0d 4510 result = desc_data (actual);
14f9c5c9 4511 else if (TYPE_CODE (actual_type) != TYPE_CODE_PTR)
4c4b4cd2
PH
4512 {
4513 if (VALUE_LVAL (actual) != lval_memory)
4514 {
4515 struct value *val;
5b4ee69b 4516
df407dfe 4517 actual_type = ada_check_typedef (value_type (actual));
4c4b4cd2 4518 val = allocate_value (actual_type);
990a07ab 4519 memcpy ((char *) value_contents_raw (val),
0fd88904 4520 (char *) value_contents (actual),
4c4b4cd2 4521 TYPE_LENGTH (actual_type));
40bc484c 4522 actual = ensure_lval (val);
4c4b4cd2 4523 }
a84a8a0d 4524 result = value_addr (actual);
4c4b4cd2 4525 }
a84a8a0d
JB
4526 else
4527 return actual;
b1af9e97 4528 return value_cast_pointers (formal_type, result, 0);
14f9c5c9
AS
4529 }
4530 else if (TYPE_CODE (actual_type) == TYPE_CODE_PTR)
4531 return ada_value_ind (actual);
8344af1e
JB
4532 else if (ada_is_aligner_type (formal_type))
4533 {
4534 /* We need to turn this parameter into an aligner type
4535 as well. */
4536 struct value *aligner = allocate_value (formal_type);
4537 struct value *component = ada_value_struct_elt (aligner, "F", 0);
4538
4539 value_assign_to_component (aligner, component, actual);
4540 return aligner;
4541 }
14f9c5c9
AS
4542
4543 return actual;
4544}
4545
438c98a1
JB
4546/* Convert VALUE (which must be an address) to a CORE_ADDR that is a pointer of
4547 type TYPE. This is usually an inefficient no-op except on some targets
4548 (such as AVR) where the representation of a pointer and an address
4549 differs. */
4550
4551static CORE_ADDR
4552value_pointer (struct value *value, struct type *type)
4553{
4554 struct gdbarch *gdbarch = get_type_arch (type);
4555 unsigned len = TYPE_LENGTH (type);
224c3ddb 4556 gdb_byte *buf = (gdb_byte *) alloca (len);
438c98a1
JB
4557 CORE_ADDR addr;
4558
4559 addr = value_address (value);
4560 gdbarch_address_to_pointer (gdbarch, type, buf, addr);
4561 addr = extract_unsigned_integer (buf, len, gdbarch_byte_order (gdbarch));
4562 return addr;
4563}
4564
14f9c5c9 4565
4c4b4cd2
PH
4566/* Push a descriptor of type TYPE for array value ARR on the stack at
4567 *SP, updating *SP to reflect the new descriptor. Return either
14f9c5c9 4568 an lvalue representing the new descriptor, or (if TYPE is a pointer-
4c4b4cd2
PH
4569 to-descriptor type rather than a descriptor type), a struct value *
4570 representing a pointer to this descriptor. */
14f9c5c9 4571
d2e4a39e 4572static struct value *
40bc484c 4573make_array_descriptor (struct type *type, struct value *arr)
14f9c5c9 4574{
d2e4a39e
AS
4575 struct type *bounds_type = desc_bounds_type (type);
4576 struct type *desc_type = desc_base_type (type);
4577 struct value *descriptor = allocate_value (desc_type);
4578 struct value *bounds = allocate_value (bounds_type);
14f9c5c9 4579 int i;
d2e4a39e 4580
0963b4bd
MS
4581 for (i = ada_array_arity (ada_check_typedef (value_type (arr)));
4582 i > 0; i -= 1)
14f9c5c9 4583 {
19f220c3
JK
4584 modify_field (value_type (bounds), value_contents_writeable (bounds),
4585 ada_array_bound (arr, i, 0),
4586 desc_bound_bitpos (bounds_type, i, 0),
4587 desc_bound_bitsize (bounds_type, i, 0));
4588 modify_field (value_type (bounds), value_contents_writeable (bounds),
4589 ada_array_bound (arr, i, 1),
4590 desc_bound_bitpos (bounds_type, i, 1),
4591 desc_bound_bitsize (bounds_type, i, 1));
14f9c5c9 4592 }
d2e4a39e 4593
40bc484c 4594 bounds = ensure_lval (bounds);
d2e4a39e 4595
19f220c3
JK
4596 modify_field (value_type (descriptor),
4597 value_contents_writeable (descriptor),
4598 value_pointer (ensure_lval (arr),
4599 TYPE_FIELD_TYPE (desc_type, 0)),
4600 fat_pntr_data_bitpos (desc_type),
4601 fat_pntr_data_bitsize (desc_type));
4602
4603 modify_field (value_type (descriptor),
4604 value_contents_writeable (descriptor),
4605 value_pointer (bounds,
4606 TYPE_FIELD_TYPE (desc_type, 1)),
4607 fat_pntr_bounds_bitpos (desc_type),
4608 fat_pntr_bounds_bitsize (desc_type));
14f9c5c9 4609
40bc484c 4610 descriptor = ensure_lval (descriptor);
14f9c5c9
AS
4611
4612 if (TYPE_CODE (type) == TYPE_CODE_PTR)
4613 return value_addr (descriptor);
4614 else
4615 return descriptor;
4616}
14f9c5c9 4617\f
3d9434b5
JB
4618 /* Symbol Cache Module */
4619
3d9434b5 4620/* Performance measurements made as of 2010-01-15 indicate that
ee01b665 4621 this cache does bring some noticeable improvements. Depending
3d9434b5
JB
4622 on the type of entity being printed, the cache can make it as much
4623 as an order of magnitude faster than without it.
4624
4625 The descriptive type DWARF extension has significantly reduced
4626 the need for this cache, at least when DWARF is being used. However,
4627 even in this case, some expensive name-based symbol searches are still
4628 sometimes necessary - to find an XVZ variable, mostly. */
4629
ee01b665 4630/* Initialize the contents of SYM_CACHE. */
3d9434b5 4631
ee01b665
JB
4632static void
4633ada_init_symbol_cache (struct ada_symbol_cache *sym_cache)
4634{
4635 obstack_init (&sym_cache->cache_space);
4636 memset (sym_cache->root, '\000', sizeof (sym_cache->root));
4637}
3d9434b5 4638
ee01b665
JB
4639/* Free the memory used by SYM_CACHE. */
4640
4641static void
4642ada_free_symbol_cache (struct ada_symbol_cache *sym_cache)
3d9434b5 4643{
ee01b665
JB
4644 obstack_free (&sym_cache->cache_space, NULL);
4645 xfree (sym_cache);
4646}
3d9434b5 4647
ee01b665
JB
4648/* Return the symbol cache associated to the given program space PSPACE.
4649 If not allocated for this PSPACE yet, allocate and initialize one. */
3d9434b5 4650
ee01b665
JB
4651static struct ada_symbol_cache *
4652ada_get_symbol_cache (struct program_space *pspace)
4653{
4654 struct ada_pspace_data *pspace_data = get_ada_pspace_data (pspace);
ee01b665 4655
66c168ae 4656 if (pspace_data->sym_cache == NULL)
ee01b665 4657 {
66c168ae
JB
4658 pspace_data->sym_cache = XCNEW (struct ada_symbol_cache);
4659 ada_init_symbol_cache (pspace_data->sym_cache);
ee01b665
JB
4660 }
4661
66c168ae 4662 return pspace_data->sym_cache;
ee01b665 4663}
3d9434b5
JB
4664
4665/* Clear all entries from the symbol cache. */
4666
4667static void
4668ada_clear_symbol_cache (void)
4669{
ee01b665
JB
4670 struct ada_symbol_cache *sym_cache
4671 = ada_get_symbol_cache (current_program_space);
4672
4673 obstack_free (&sym_cache->cache_space, NULL);
4674 ada_init_symbol_cache (sym_cache);
3d9434b5
JB
4675}
4676
fe978cb0 4677/* Search our cache for an entry matching NAME and DOMAIN.
3d9434b5
JB
4678 Return it if found, or NULL otherwise. */
4679
4680static struct cache_entry **
fe978cb0 4681find_entry (const char *name, domain_enum domain)
3d9434b5 4682{
ee01b665
JB
4683 struct ada_symbol_cache *sym_cache
4684 = ada_get_symbol_cache (current_program_space);
3d9434b5
JB
4685 int h = msymbol_hash (name) % HASH_SIZE;
4686 struct cache_entry **e;
4687
ee01b665 4688 for (e = &sym_cache->root[h]; *e != NULL; e = &(*e)->next)
3d9434b5 4689 {
fe978cb0 4690 if (domain == (*e)->domain && strcmp (name, (*e)->name) == 0)
3d9434b5
JB
4691 return e;
4692 }
4693 return NULL;
4694}
4695
fe978cb0 4696/* Search the symbol cache for an entry matching NAME and DOMAIN.
3d9434b5
JB
4697 Return 1 if found, 0 otherwise.
4698
4699 If an entry was found and SYM is not NULL, set *SYM to the entry's
4700 SYM. Same principle for BLOCK if not NULL. */
96d887e8 4701
96d887e8 4702static int
fe978cb0 4703lookup_cached_symbol (const char *name, domain_enum domain,
f0c5f9b2 4704 struct symbol **sym, const struct block **block)
96d887e8 4705{
fe978cb0 4706 struct cache_entry **e = find_entry (name, domain);
3d9434b5
JB
4707
4708 if (e == NULL)
4709 return 0;
4710 if (sym != NULL)
4711 *sym = (*e)->sym;
4712 if (block != NULL)
4713 *block = (*e)->block;
4714 return 1;
96d887e8
PH
4715}
4716
3d9434b5 4717/* Assuming that (SYM, BLOCK) is the result of the lookup of NAME
fe978cb0 4718 in domain DOMAIN, save this result in our symbol cache. */
3d9434b5 4719
96d887e8 4720static void
fe978cb0 4721cache_symbol (const char *name, domain_enum domain, struct symbol *sym,
270140bd 4722 const struct block *block)
96d887e8 4723{
ee01b665
JB
4724 struct ada_symbol_cache *sym_cache
4725 = ada_get_symbol_cache (current_program_space);
3d9434b5
JB
4726 int h;
4727 char *copy;
4728 struct cache_entry *e;
4729
1994afbf
DE
4730 /* Symbols for builtin types don't have a block.
4731 For now don't cache such symbols. */
4732 if (sym != NULL && !SYMBOL_OBJFILE_OWNED (sym))
4733 return;
4734
3d9434b5
JB
4735 /* If the symbol is a local symbol, then do not cache it, as a search
4736 for that symbol depends on the context. To determine whether
4737 the symbol is local or not, we check the block where we found it
4738 against the global and static blocks of its associated symtab. */
4739 if (sym
08be3fe3 4740 && BLOCKVECTOR_BLOCK (SYMTAB_BLOCKVECTOR (symbol_symtab (sym)),
439247b6 4741 GLOBAL_BLOCK) != block
08be3fe3 4742 && BLOCKVECTOR_BLOCK (SYMTAB_BLOCKVECTOR (symbol_symtab (sym)),
439247b6 4743 STATIC_BLOCK) != block)
3d9434b5
JB
4744 return;
4745
4746 h = msymbol_hash (name) % HASH_SIZE;
ee01b665
JB
4747 e = (struct cache_entry *) obstack_alloc (&sym_cache->cache_space,
4748 sizeof (*e));
4749 e->next = sym_cache->root[h];
4750 sym_cache->root[h] = e;
224c3ddb
SM
4751 e->name = copy
4752 = (char *) obstack_alloc (&sym_cache->cache_space, strlen (name) + 1);
3d9434b5
JB
4753 strcpy (copy, name);
4754 e->sym = sym;
fe978cb0 4755 e->domain = domain;
3d9434b5 4756 e->block = block;
96d887e8 4757}
4c4b4cd2
PH
4758\f
4759 /* Symbol Lookup */
4760
c0431670
JB
4761/* Return nonzero if wild matching should be used when searching for
4762 all symbols matching LOOKUP_NAME.
4763
4764 LOOKUP_NAME is expected to be a symbol name after transformation
4765 for Ada lookups (see ada_name_for_lookup). */
4766
4767static int
4768should_use_wild_match (const char *lookup_name)
4769{
4770 return (strstr (lookup_name, "__") == NULL);
4771}
4772
4c4b4cd2
PH
4773/* Return the result of a standard (literal, C-like) lookup of NAME in
4774 given DOMAIN, visible from lexical block BLOCK. */
4775
4776static struct symbol *
4777standard_lookup (const char *name, const struct block *block,
4778 domain_enum domain)
4779{
acbd605d 4780 /* Initialize it just to avoid a GCC false warning. */
d12307c1 4781 struct block_symbol sym = {NULL, NULL};
4c4b4cd2 4782
d12307c1
PMR
4783 if (lookup_cached_symbol (name, domain, &sym.symbol, NULL))
4784 return sym.symbol;
2570f2b7 4785 sym = lookup_symbol_in_language (name, block, domain, language_c, 0);
d12307c1
PMR
4786 cache_symbol (name, domain, sym.symbol, sym.block);
4787 return sym.symbol;
4c4b4cd2
PH
4788}
4789
4790
4791/* Non-zero iff there is at least one non-function/non-enumeral symbol
4792 in the symbol fields of SYMS[0..N-1]. We treat enumerals as functions,
4793 since they contend in overloading in the same way. */
4794static int
d12307c1 4795is_nonfunction (struct block_symbol syms[], int n)
4c4b4cd2
PH
4796{
4797 int i;
4798
4799 for (i = 0; i < n; i += 1)
d12307c1
PMR
4800 if (TYPE_CODE (SYMBOL_TYPE (syms[i].symbol)) != TYPE_CODE_FUNC
4801 && (TYPE_CODE (SYMBOL_TYPE (syms[i].symbol)) != TYPE_CODE_ENUM
4802 || SYMBOL_CLASS (syms[i].symbol) != LOC_CONST))
14f9c5c9
AS
4803 return 1;
4804
4805 return 0;
4806}
4807
4808/* If true (non-zero), then TYPE0 and TYPE1 represent equivalent
4c4b4cd2 4809 struct types. Otherwise, they may not. */
14f9c5c9
AS
4810
4811static int
d2e4a39e 4812equiv_types (struct type *type0, struct type *type1)
14f9c5c9 4813{
d2e4a39e 4814 if (type0 == type1)
14f9c5c9 4815 return 1;
d2e4a39e 4816 if (type0 == NULL || type1 == NULL
14f9c5c9
AS
4817 || TYPE_CODE (type0) != TYPE_CODE (type1))
4818 return 0;
d2e4a39e 4819 if ((TYPE_CODE (type0) == TYPE_CODE_STRUCT
14f9c5c9
AS
4820 || TYPE_CODE (type0) == TYPE_CODE_ENUM)
4821 && ada_type_name (type0) != NULL && ada_type_name (type1) != NULL
4c4b4cd2 4822 && strcmp (ada_type_name (type0), ada_type_name (type1)) == 0)
14f9c5c9 4823 return 1;
d2e4a39e 4824
14f9c5c9
AS
4825 return 0;
4826}
4827
4828/* True iff SYM0 represents the same entity as SYM1, or one that is
4c4b4cd2 4829 no more defined than that of SYM1. */
14f9c5c9
AS
4830
4831static int
d2e4a39e 4832lesseq_defined_than (struct symbol *sym0, struct symbol *sym1)
14f9c5c9
AS
4833{
4834 if (sym0 == sym1)
4835 return 1;
176620f1 4836 if (SYMBOL_DOMAIN (sym0) != SYMBOL_DOMAIN (sym1)
14f9c5c9
AS
4837 || SYMBOL_CLASS (sym0) != SYMBOL_CLASS (sym1))
4838 return 0;
4839
d2e4a39e 4840 switch (SYMBOL_CLASS (sym0))
14f9c5c9
AS
4841 {
4842 case LOC_UNDEF:
4843 return 1;
4844 case LOC_TYPEDEF:
4845 {
4c4b4cd2
PH
4846 struct type *type0 = SYMBOL_TYPE (sym0);
4847 struct type *type1 = SYMBOL_TYPE (sym1);
0d5cff50
DE
4848 const char *name0 = SYMBOL_LINKAGE_NAME (sym0);
4849 const char *name1 = SYMBOL_LINKAGE_NAME (sym1);
4c4b4cd2 4850 int len0 = strlen (name0);
5b4ee69b 4851
4c4b4cd2
PH
4852 return
4853 TYPE_CODE (type0) == TYPE_CODE (type1)
4854 && (equiv_types (type0, type1)
4855 || (len0 < strlen (name1) && strncmp (name0, name1, len0) == 0
61012eef 4856 && startswith (name1 + len0, "___XV")));
14f9c5c9
AS
4857 }
4858 case LOC_CONST:
4859 return SYMBOL_VALUE (sym0) == SYMBOL_VALUE (sym1)
4c4b4cd2 4860 && equiv_types (SYMBOL_TYPE (sym0), SYMBOL_TYPE (sym1));
d2e4a39e
AS
4861 default:
4862 return 0;
14f9c5c9
AS
4863 }
4864}
4865
d12307c1 4866/* Append (SYM,BLOCK,SYMTAB) to the end of the array of struct block_symbol
4c4b4cd2 4867 records in OBSTACKP. Do nothing if SYM is a duplicate. */
14f9c5c9
AS
4868
4869static void
76a01679
JB
4870add_defn_to_vec (struct obstack *obstackp,
4871 struct symbol *sym,
f0c5f9b2 4872 const struct block *block)
14f9c5c9
AS
4873{
4874 int i;
d12307c1 4875 struct block_symbol *prevDefns = defns_collected (obstackp, 0);
14f9c5c9 4876
529cad9c
PH
4877 /* Do not try to complete stub types, as the debugger is probably
4878 already scanning all symbols matching a certain name at the
4879 time when this function is called. Trying to replace the stub
4880 type by its associated full type will cause us to restart a scan
4881 which may lead to an infinite recursion. Instead, the client
4882 collecting the matching symbols will end up collecting several
4883 matches, with at least one of them complete. It can then filter
4884 out the stub ones if needed. */
4885
4c4b4cd2
PH
4886 for (i = num_defns_collected (obstackp) - 1; i >= 0; i -= 1)
4887 {
d12307c1 4888 if (lesseq_defined_than (sym, prevDefns[i].symbol))
4c4b4cd2 4889 return;
d12307c1 4890 else if (lesseq_defined_than (prevDefns[i].symbol, sym))
4c4b4cd2 4891 {
d12307c1 4892 prevDefns[i].symbol = sym;
4c4b4cd2 4893 prevDefns[i].block = block;
4c4b4cd2 4894 return;
76a01679 4895 }
4c4b4cd2
PH
4896 }
4897
4898 {
d12307c1 4899 struct block_symbol info;
4c4b4cd2 4900
d12307c1 4901 info.symbol = sym;
4c4b4cd2 4902 info.block = block;
d12307c1 4903 obstack_grow (obstackp, &info, sizeof (struct block_symbol));
4c4b4cd2
PH
4904 }
4905}
4906
d12307c1
PMR
4907/* Number of block_symbol structures currently collected in current vector in
4908 OBSTACKP. */
4c4b4cd2 4909
76a01679
JB
4910static int
4911num_defns_collected (struct obstack *obstackp)
4c4b4cd2 4912{
d12307c1 4913 return obstack_object_size (obstackp) / sizeof (struct block_symbol);
4c4b4cd2
PH
4914}
4915
d12307c1
PMR
4916/* Vector of block_symbol structures currently collected in current vector in
4917 OBSTACKP. If FINISH, close off the vector and return its final address. */
4c4b4cd2 4918
d12307c1 4919static struct block_symbol *
4c4b4cd2
PH
4920defns_collected (struct obstack *obstackp, int finish)
4921{
4922 if (finish)
224c3ddb 4923 return (struct block_symbol *) obstack_finish (obstackp);
4c4b4cd2 4924 else
d12307c1 4925 return (struct block_symbol *) obstack_base (obstackp);
4c4b4cd2
PH
4926}
4927
7c7b6655
TT
4928/* Return a bound minimal symbol matching NAME according to Ada
4929 decoding rules. Returns an invalid symbol if there is no such
4930 minimal symbol. Names prefixed with "standard__" are handled
4931 specially: "standard__" is first stripped off, and only static and
4932 global symbols are searched. */
4c4b4cd2 4933
7c7b6655 4934struct bound_minimal_symbol
96d887e8 4935ada_lookup_simple_minsym (const char *name)
4c4b4cd2 4936{
7c7b6655 4937 struct bound_minimal_symbol result;
4c4b4cd2 4938 struct objfile *objfile;
96d887e8 4939 struct minimal_symbol *msymbol;
dc4024cd 4940 const int wild_match_p = should_use_wild_match (name);
4c4b4cd2 4941
7c7b6655
TT
4942 memset (&result, 0, sizeof (result));
4943
c0431670
JB
4944 /* Special case: If the user specifies a symbol name inside package
4945 Standard, do a non-wild matching of the symbol name without
4946 the "standard__" prefix. This was primarily introduced in order
4947 to allow the user to specifically access the standard exceptions
4948 using, for instance, Standard.Constraint_Error when Constraint_Error
4949 is ambiguous (due to the user defining its own Constraint_Error
4950 entity inside its program). */
61012eef 4951 if (startswith (name, "standard__"))
c0431670 4952 name += sizeof ("standard__") - 1;
4c4b4cd2 4953
96d887e8
PH
4954 ALL_MSYMBOLS (objfile, msymbol)
4955 {
efd66ac6 4956 if (match_name (MSYMBOL_LINKAGE_NAME (msymbol), name, wild_match_p)
96d887e8 4957 && MSYMBOL_TYPE (msymbol) != mst_solib_trampoline)
7c7b6655
TT
4958 {
4959 result.minsym = msymbol;
4960 result.objfile = objfile;
4961 break;
4962 }
96d887e8 4963 }
4c4b4cd2 4964
7c7b6655 4965 return result;
96d887e8 4966}
4c4b4cd2 4967
96d887e8
PH
4968/* For all subprograms that statically enclose the subprogram of the
4969 selected frame, add symbols matching identifier NAME in DOMAIN
4970 and their blocks to the list of data in OBSTACKP, as for
48b78332
JB
4971 ada_add_block_symbols (q.v.). If WILD_MATCH_P, treat as NAME
4972 with a wildcard prefix. */
4c4b4cd2 4973
96d887e8
PH
4974static void
4975add_symbols_from_enclosing_procs (struct obstack *obstackp,
fe978cb0 4976 const char *name, domain_enum domain,
48b78332 4977 int wild_match_p)
96d887e8 4978{
96d887e8 4979}
14f9c5c9 4980
96d887e8
PH
4981/* True if TYPE is definitely an artificial type supplied to a symbol
4982 for which no debugging information was given in the symbol file. */
14f9c5c9 4983
96d887e8
PH
4984static int
4985is_nondebugging_type (struct type *type)
4986{
0d5cff50 4987 const char *name = ada_type_name (type);
5b4ee69b 4988
96d887e8
PH
4989 return (name != NULL && strcmp (name, "<variable, no debug info>") == 0);
4990}
4c4b4cd2 4991
8f17729f
JB
4992/* Return nonzero if TYPE1 and TYPE2 are two enumeration types
4993 that are deemed "identical" for practical purposes.
4994
4995 This function assumes that TYPE1 and TYPE2 are both TYPE_CODE_ENUM
4996 types and that their number of enumerals is identical (in other
4997 words, TYPE_NFIELDS (type1) == TYPE_NFIELDS (type2)). */
4998
4999static int
5000ada_identical_enum_types_p (struct type *type1, struct type *type2)
5001{
5002 int i;
5003
5004 /* The heuristic we use here is fairly conservative. We consider
5005 that 2 enumerate types are identical if they have the same
5006 number of enumerals and that all enumerals have the same
5007 underlying value and name. */
5008
5009 /* All enums in the type should have an identical underlying value. */
5010 for (i = 0; i < TYPE_NFIELDS (type1); i++)
14e75d8e 5011 if (TYPE_FIELD_ENUMVAL (type1, i) != TYPE_FIELD_ENUMVAL (type2, i))
8f17729f
JB
5012 return 0;
5013
5014 /* All enumerals should also have the same name (modulo any numerical
5015 suffix). */
5016 for (i = 0; i < TYPE_NFIELDS (type1); i++)
5017 {
0d5cff50
DE
5018 const char *name_1 = TYPE_FIELD_NAME (type1, i);
5019 const char *name_2 = TYPE_FIELD_NAME (type2, i);
8f17729f
JB
5020 int len_1 = strlen (name_1);
5021 int len_2 = strlen (name_2);
5022
5023 ada_remove_trailing_digits (TYPE_FIELD_NAME (type1, i), &len_1);
5024 ada_remove_trailing_digits (TYPE_FIELD_NAME (type2, i), &len_2);
5025 if (len_1 != len_2
5026 || strncmp (TYPE_FIELD_NAME (type1, i),
5027 TYPE_FIELD_NAME (type2, i),
5028 len_1) != 0)
5029 return 0;
5030 }
5031
5032 return 1;
5033}
5034
5035/* Return nonzero if all the symbols in SYMS are all enumeral symbols
5036 that are deemed "identical" for practical purposes. Sometimes,
5037 enumerals are not strictly identical, but their types are so similar
5038 that they can be considered identical.
5039
5040 For instance, consider the following code:
5041
5042 type Color is (Black, Red, Green, Blue, White);
5043 type RGB_Color is new Color range Red .. Blue;
5044
5045 Type RGB_Color is a subrange of an implicit type which is a copy
5046 of type Color. If we call that implicit type RGB_ColorB ("B" is
5047 for "Base Type"), then type RGB_ColorB is a copy of type Color.
5048 As a result, when an expression references any of the enumeral
5049 by name (Eg. "print green"), the expression is technically
5050 ambiguous and the user should be asked to disambiguate. But
5051 doing so would only hinder the user, since it wouldn't matter
5052 what choice he makes, the outcome would always be the same.
5053 So, for practical purposes, we consider them as the same. */
5054
5055static int
d12307c1 5056symbols_are_identical_enums (struct block_symbol *syms, int nsyms)
8f17729f
JB
5057{
5058 int i;
5059
5060 /* Before performing a thorough comparison check of each type,
5061 we perform a series of inexpensive checks. We expect that these
5062 checks will quickly fail in the vast majority of cases, and thus
5063 help prevent the unnecessary use of a more expensive comparison.
5064 Said comparison also expects us to make some of these checks
5065 (see ada_identical_enum_types_p). */
5066
5067 /* Quick check: All symbols should have an enum type. */
5068 for (i = 0; i < nsyms; i++)
d12307c1 5069 if (TYPE_CODE (SYMBOL_TYPE (syms[i].symbol)) != TYPE_CODE_ENUM)
8f17729f
JB
5070 return 0;
5071
5072 /* Quick check: They should all have the same value. */
5073 for (i = 1; i < nsyms; i++)
d12307c1 5074 if (SYMBOL_VALUE (syms[i].symbol) != SYMBOL_VALUE (syms[0].symbol))
8f17729f
JB
5075 return 0;
5076
5077 /* Quick check: They should all have the same number of enumerals. */
5078 for (i = 1; i < nsyms; i++)
d12307c1
PMR
5079 if (TYPE_NFIELDS (SYMBOL_TYPE (syms[i].symbol))
5080 != TYPE_NFIELDS (SYMBOL_TYPE (syms[0].symbol)))
8f17729f
JB
5081 return 0;
5082
5083 /* All the sanity checks passed, so we might have a set of
5084 identical enumeration types. Perform a more complete
5085 comparison of the type of each symbol. */
5086 for (i = 1; i < nsyms; i++)
d12307c1
PMR
5087 if (!ada_identical_enum_types_p (SYMBOL_TYPE (syms[i].symbol),
5088 SYMBOL_TYPE (syms[0].symbol)))
8f17729f
JB
5089 return 0;
5090
5091 return 1;
5092}
5093
96d887e8
PH
5094/* Remove any non-debugging symbols in SYMS[0 .. NSYMS-1] that definitely
5095 duplicate other symbols in the list (The only case I know of where
5096 this happens is when object files containing stabs-in-ecoff are
5097 linked with files containing ordinary ecoff debugging symbols (or no
5098 debugging symbols)). Modifies SYMS to squeeze out deleted entries.
5099 Returns the number of items in the modified list. */
4c4b4cd2 5100
96d887e8 5101static int
d12307c1 5102remove_extra_symbols (struct block_symbol *syms, int nsyms)
96d887e8
PH
5103{
5104 int i, j;
4c4b4cd2 5105
8f17729f
JB
5106 /* We should never be called with less than 2 symbols, as there
5107 cannot be any extra symbol in that case. But it's easy to
5108 handle, since we have nothing to do in that case. */
5109 if (nsyms < 2)
5110 return nsyms;
5111
96d887e8
PH
5112 i = 0;
5113 while (i < nsyms)
5114 {
a35ddb44 5115 int remove_p = 0;
339c13b6
JB
5116
5117 /* If two symbols have the same name and one of them is a stub type,
5118 the get rid of the stub. */
5119
d12307c1
PMR
5120 if (TYPE_STUB (SYMBOL_TYPE (syms[i].symbol))
5121 && SYMBOL_LINKAGE_NAME (syms[i].symbol) != NULL)
339c13b6
JB
5122 {
5123 for (j = 0; j < nsyms; j++)
5124 {
5125 if (j != i
d12307c1
PMR
5126 && !TYPE_STUB (SYMBOL_TYPE (syms[j].symbol))
5127 && SYMBOL_LINKAGE_NAME (syms[j].symbol) != NULL
5128 && strcmp (SYMBOL_LINKAGE_NAME (syms[i].symbol),
5129 SYMBOL_LINKAGE_NAME (syms[j].symbol)) == 0)
a35ddb44 5130 remove_p = 1;
339c13b6
JB
5131 }
5132 }
5133
5134 /* Two symbols with the same name, same class and same address
5135 should be identical. */
5136
d12307c1
PMR
5137 else if (SYMBOL_LINKAGE_NAME (syms[i].symbol) != NULL
5138 && SYMBOL_CLASS (syms[i].symbol) == LOC_STATIC
5139 && is_nondebugging_type (SYMBOL_TYPE (syms[i].symbol)))
96d887e8
PH
5140 {
5141 for (j = 0; j < nsyms; j += 1)
5142 {
5143 if (i != j
d12307c1
PMR
5144 && SYMBOL_LINKAGE_NAME (syms[j].symbol) != NULL
5145 && strcmp (SYMBOL_LINKAGE_NAME (syms[i].symbol),
5146 SYMBOL_LINKAGE_NAME (syms[j].symbol)) == 0
5147 && SYMBOL_CLASS (syms[i].symbol)
5148 == SYMBOL_CLASS (syms[j].symbol)
5149 && SYMBOL_VALUE_ADDRESS (syms[i].symbol)
5150 == SYMBOL_VALUE_ADDRESS (syms[j].symbol))
a35ddb44 5151 remove_p = 1;
4c4b4cd2 5152 }
4c4b4cd2 5153 }
339c13b6 5154
a35ddb44 5155 if (remove_p)
339c13b6
JB
5156 {
5157 for (j = i + 1; j < nsyms; j += 1)
5158 syms[j - 1] = syms[j];
5159 nsyms -= 1;
5160 }
5161
96d887e8 5162 i += 1;
14f9c5c9 5163 }
8f17729f
JB
5164
5165 /* If all the remaining symbols are identical enumerals, then
5166 just keep the first one and discard the rest.
5167
5168 Unlike what we did previously, we do not discard any entry
5169 unless they are ALL identical. This is because the symbol
5170 comparison is not a strict comparison, but rather a practical
5171 comparison. If all symbols are considered identical, then
5172 we can just go ahead and use the first one and discard the rest.
5173 But if we cannot reduce the list to a single element, we have
5174 to ask the user to disambiguate anyways. And if we have to
5175 present a multiple-choice menu, it's less confusing if the list
5176 isn't missing some choices that were identical and yet distinct. */
5177 if (symbols_are_identical_enums (syms, nsyms))
5178 nsyms = 1;
5179
96d887e8 5180 return nsyms;
14f9c5c9
AS
5181}
5182
96d887e8
PH
5183/* Given a type that corresponds to a renaming entity, use the type name
5184 to extract the scope (package name or function name, fully qualified,
5185 and following the GNAT encoding convention) where this renaming has been
5186 defined. The string returned needs to be deallocated after use. */
4c4b4cd2 5187
96d887e8
PH
5188static char *
5189xget_renaming_scope (struct type *renaming_type)
14f9c5c9 5190{
96d887e8 5191 /* The renaming types adhere to the following convention:
0963b4bd 5192 <scope>__<rename>___<XR extension>.
96d887e8
PH
5193 So, to extract the scope, we search for the "___XR" extension,
5194 and then backtrack until we find the first "__". */
76a01679 5195
96d887e8 5196 const char *name = type_name_no_tag (renaming_type);
108d56a4
SM
5197 const char *suffix = strstr (name, "___XR");
5198 const char *last;
96d887e8
PH
5199 int scope_len;
5200 char *scope;
14f9c5c9 5201
96d887e8
PH
5202 /* Now, backtrack a bit until we find the first "__". Start looking
5203 at suffix - 3, as the <rename> part is at least one character long. */
14f9c5c9 5204
96d887e8
PH
5205 for (last = suffix - 3; last > name; last--)
5206 if (last[0] == '_' && last[1] == '_')
5207 break;
76a01679 5208
96d887e8 5209 /* Make a copy of scope and return it. */
14f9c5c9 5210
96d887e8
PH
5211 scope_len = last - name;
5212 scope = (char *) xmalloc ((scope_len + 1) * sizeof (char));
14f9c5c9 5213
96d887e8
PH
5214 strncpy (scope, name, scope_len);
5215 scope[scope_len] = '\0';
4c4b4cd2 5216
96d887e8 5217 return scope;
4c4b4cd2
PH
5218}
5219
96d887e8 5220/* Return nonzero if NAME corresponds to a package name. */
4c4b4cd2 5221
96d887e8
PH
5222static int
5223is_package_name (const char *name)
4c4b4cd2 5224{
96d887e8
PH
5225 /* Here, We take advantage of the fact that no symbols are generated
5226 for packages, while symbols are generated for each function.
5227 So the condition for NAME represent a package becomes equivalent
5228 to NAME not existing in our list of symbols. There is only one
5229 small complication with library-level functions (see below). */
4c4b4cd2 5230
96d887e8 5231 char *fun_name;
76a01679 5232
96d887e8
PH
5233 /* If it is a function that has not been defined at library level,
5234 then we should be able to look it up in the symbols. */
5235 if (standard_lookup (name, NULL, VAR_DOMAIN) != NULL)
5236 return 0;
14f9c5c9 5237
96d887e8
PH
5238 /* Library-level function names start with "_ada_". See if function
5239 "_ada_" followed by NAME can be found. */
14f9c5c9 5240
96d887e8 5241 /* Do a quick check that NAME does not contain "__", since library-level
e1d5a0d2 5242 functions names cannot contain "__" in them. */
96d887e8
PH
5243 if (strstr (name, "__") != NULL)
5244 return 0;
4c4b4cd2 5245
b435e160 5246 fun_name = xstrprintf ("_ada_%s", name);
14f9c5c9 5247
96d887e8
PH
5248 return (standard_lookup (fun_name, NULL, VAR_DOMAIN) == NULL);
5249}
14f9c5c9 5250
96d887e8 5251/* Return nonzero if SYM corresponds to a renaming entity that is
aeb5907d 5252 not visible from FUNCTION_NAME. */
14f9c5c9 5253
96d887e8 5254static int
0d5cff50 5255old_renaming_is_invisible (const struct symbol *sym, const char *function_name)
96d887e8 5256{
aeb5907d 5257 char *scope;
1509e573 5258 struct cleanup *old_chain;
aeb5907d
JB
5259
5260 if (SYMBOL_CLASS (sym) != LOC_TYPEDEF)
5261 return 0;
5262
5263 scope = xget_renaming_scope (SYMBOL_TYPE (sym));
1509e573 5264 old_chain = make_cleanup (xfree, scope);
14f9c5c9 5265
96d887e8
PH
5266 /* If the rename has been defined in a package, then it is visible. */
5267 if (is_package_name (scope))
1509e573
JB
5268 {
5269 do_cleanups (old_chain);
5270 return 0;
5271 }
14f9c5c9 5272
96d887e8
PH
5273 /* Check that the rename is in the current function scope by checking
5274 that its name starts with SCOPE. */
76a01679 5275
96d887e8
PH
5276 /* If the function name starts with "_ada_", it means that it is
5277 a library-level function. Strip this prefix before doing the
5278 comparison, as the encoding for the renaming does not contain
5279 this prefix. */
61012eef 5280 if (startswith (function_name, "_ada_"))
96d887e8 5281 function_name += 5;
f26caa11 5282
1509e573 5283 {
61012eef 5284 int is_invisible = !startswith (function_name, scope);
1509e573
JB
5285
5286 do_cleanups (old_chain);
5287 return is_invisible;
5288 }
f26caa11
PH
5289}
5290
aeb5907d
JB
5291/* Remove entries from SYMS that corresponds to a renaming entity that
5292 is not visible from the function associated with CURRENT_BLOCK or
5293 that is superfluous due to the presence of more specific renaming
5294 information. Places surviving symbols in the initial entries of
5295 SYMS and returns the number of surviving symbols.
96d887e8
PH
5296
5297 Rationale:
aeb5907d
JB
5298 First, in cases where an object renaming is implemented as a
5299 reference variable, GNAT may produce both the actual reference
5300 variable and the renaming encoding. In this case, we discard the
5301 latter.
5302
5303 Second, GNAT emits a type following a specified encoding for each renaming
96d887e8
PH
5304 entity. Unfortunately, STABS currently does not support the definition
5305 of types that are local to a given lexical block, so all renamings types
5306 are emitted at library level. As a consequence, if an application
5307 contains two renaming entities using the same name, and a user tries to
5308 print the value of one of these entities, the result of the ada symbol
5309 lookup will also contain the wrong renaming type.
f26caa11 5310
96d887e8
PH
5311 This function partially covers for this limitation by attempting to
5312 remove from the SYMS list renaming symbols that should be visible
5313 from CURRENT_BLOCK. However, there does not seem be a 100% reliable
5314 method with the current information available. The implementation
5315 below has a couple of limitations (FIXME: brobecker-2003-05-12):
5316
5317 - When the user tries to print a rename in a function while there
5318 is another rename entity defined in a package: Normally, the
5319 rename in the function has precedence over the rename in the
5320 package, so the latter should be removed from the list. This is
5321 currently not the case.
5322
5323 - This function will incorrectly remove valid renames if
5324 the CURRENT_BLOCK corresponds to a function which symbol name
5325 has been changed by an "Export" pragma. As a consequence,
5326 the user will be unable to print such rename entities. */
4c4b4cd2 5327
14f9c5c9 5328static int
d12307c1 5329remove_irrelevant_renamings (struct block_symbol *syms,
aeb5907d 5330 int nsyms, const struct block *current_block)
4c4b4cd2
PH
5331{
5332 struct symbol *current_function;
0d5cff50 5333 const char *current_function_name;
4c4b4cd2 5334 int i;
aeb5907d
JB
5335 int is_new_style_renaming;
5336
5337 /* If there is both a renaming foo___XR... encoded as a variable and
5338 a simple variable foo in the same block, discard the latter.
0963b4bd 5339 First, zero out such symbols, then compress. */
aeb5907d
JB
5340 is_new_style_renaming = 0;
5341 for (i = 0; i < nsyms; i += 1)
5342 {
d12307c1 5343 struct symbol *sym = syms[i].symbol;
270140bd 5344 const struct block *block = syms[i].block;
aeb5907d
JB
5345 const char *name;
5346 const char *suffix;
5347
5348 if (sym == NULL || SYMBOL_CLASS (sym) == LOC_TYPEDEF)
5349 continue;
5350 name = SYMBOL_LINKAGE_NAME (sym);
5351 suffix = strstr (name, "___XR");
5352
5353 if (suffix != NULL)
5354 {
5355 int name_len = suffix - name;
5356 int j;
5b4ee69b 5357
aeb5907d
JB
5358 is_new_style_renaming = 1;
5359 for (j = 0; j < nsyms; j += 1)
d12307c1
PMR
5360 if (i != j && syms[j].symbol != NULL
5361 && strncmp (name, SYMBOL_LINKAGE_NAME (syms[j].symbol),
aeb5907d
JB
5362 name_len) == 0
5363 && block == syms[j].block)
d12307c1 5364 syms[j].symbol = NULL;
aeb5907d
JB
5365 }
5366 }
5367 if (is_new_style_renaming)
5368 {
5369 int j, k;
5370
5371 for (j = k = 0; j < nsyms; j += 1)
d12307c1 5372 if (syms[j].symbol != NULL)
aeb5907d
JB
5373 {
5374 syms[k] = syms[j];
5375 k += 1;
5376 }
5377 return k;
5378 }
4c4b4cd2
PH
5379
5380 /* Extract the function name associated to CURRENT_BLOCK.
5381 Abort if unable to do so. */
76a01679 5382
4c4b4cd2
PH
5383 if (current_block == NULL)
5384 return nsyms;
76a01679 5385
7f0df278 5386 current_function = block_linkage_function (current_block);
4c4b4cd2
PH
5387 if (current_function == NULL)
5388 return nsyms;
5389
5390 current_function_name = SYMBOL_LINKAGE_NAME (current_function);
5391 if (current_function_name == NULL)
5392 return nsyms;
5393
5394 /* Check each of the symbols, and remove it from the list if it is
5395 a type corresponding to a renaming that is out of the scope of
5396 the current block. */
5397
5398 i = 0;
5399 while (i < nsyms)
5400 {
d12307c1 5401 if (ada_parse_renaming (syms[i].symbol, NULL, NULL, NULL)
aeb5907d 5402 == ADA_OBJECT_RENAMING
d12307c1 5403 && old_renaming_is_invisible (syms[i].symbol, current_function_name))
4c4b4cd2
PH
5404 {
5405 int j;
5b4ee69b 5406
aeb5907d 5407 for (j = i + 1; j < nsyms; j += 1)
76a01679 5408 syms[j - 1] = syms[j];
4c4b4cd2
PH
5409 nsyms -= 1;
5410 }
5411 else
5412 i += 1;
5413 }
5414
5415 return nsyms;
5416}
5417
339c13b6
JB
5418/* Add to OBSTACKP all symbols from BLOCK (and its super-blocks)
5419 whose name and domain match NAME and DOMAIN respectively.
5420 If no match was found, then extend the search to "enclosing"
5421 routines (in other words, if we're inside a nested function,
5422 search the symbols defined inside the enclosing functions).
d0a8ab18
JB
5423 If WILD_MATCH_P is nonzero, perform the naming matching in
5424 "wild" mode (see function "wild_match" for more info).
339c13b6
JB
5425
5426 Note: This function assumes that OBSTACKP has 0 (zero) element in it. */
5427
5428static void
5429ada_add_local_symbols (struct obstack *obstackp, const char *name,
f0c5f9b2 5430 const struct block *block, domain_enum domain,
d0a8ab18 5431 int wild_match_p)
339c13b6
JB
5432{
5433 int block_depth = 0;
5434
5435 while (block != NULL)
5436 {
5437 block_depth += 1;
d0a8ab18
JB
5438 ada_add_block_symbols (obstackp, block, name, domain, NULL,
5439 wild_match_p);
339c13b6
JB
5440
5441 /* If we found a non-function match, assume that's the one. */
5442 if (is_nonfunction (defns_collected (obstackp, 0),
5443 num_defns_collected (obstackp)))
5444 return;
5445
5446 block = BLOCK_SUPERBLOCK (block);
5447 }
5448
5449 /* If no luck so far, try to find NAME as a local symbol in some lexically
5450 enclosing subprogram. */
5451 if (num_defns_collected (obstackp) == 0 && block_depth > 2)
d0a8ab18 5452 add_symbols_from_enclosing_procs (obstackp, name, domain, wild_match_p);
339c13b6
JB
5453}
5454
ccefe4c4 5455/* An object of this type is used as the user_data argument when
40658b94 5456 calling the map_matching_symbols method. */
ccefe4c4 5457
40658b94 5458struct match_data
ccefe4c4 5459{
40658b94 5460 struct objfile *objfile;
ccefe4c4 5461 struct obstack *obstackp;
40658b94
PH
5462 struct symbol *arg_sym;
5463 int found_sym;
ccefe4c4
TT
5464};
5465
22cee43f 5466/* A callback for add_nonlocal_symbols that adds SYM, found in BLOCK,
40658b94
PH
5467 to a list of symbols. DATA0 is a pointer to a struct match_data *
5468 containing the obstack that collects the symbol list, the file that SYM
5469 must come from, a flag indicating whether a non-argument symbol has
5470 been found in the current block, and the last argument symbol
5471 passed in SYM within the current block (if any). When SYM is null,
5472 marking the end of a block, the argument symbol is added if no
5473 other has been found. */
ccefe4c4 5474
40658b94
PH
5475static int
5476aux_add_nonlocal_symbols (struct block *block, struct symbol *sym, void *data0)
ccefe4c4 5477{
40658b94
PH
5478 struct match_data *data = (struct match_data *) data0;
5479
5480 if (sym == NULL)
5481 {
5482 if (!data->found_sym && data->arg_sym != NULL)
5483 add_defn_to_vec (data->obstackp,
5484 fixup_symbol_section (data->arg_sym, data->objfile),
5485 block);
5486 data->found_sym = 0;
5487 data->arg_sym = NULL;
5488 }
5489 else
5490 {
5491 if (SYMBOL_CLASS (sym) == LOC_UNRESOLVED)
5492 return 0;
5493 else if (SYMBOL_IS_ARGUMENT (sym))
5494 data->arg_sym = sym;
5495 else
5496 {
5497 data->found_sym = 1;
5498 add_defn_to_vec (data->obstackp,
5499 fixup_symbol_section (sym, data->objfile),
5500 block);
5501 }
5502 }
5503 return 0;
5504}
5505
22cee43f
PMR
5506/* Helper for add_nonlocal_symbols. Find symbols in DOMAIN which are targetted
5507 by renamings matching NAME in BLOCK. Add these symbols to OBSTACKP. If
5508 WILD_MATCH_P is nonzero, perform the naming matching in "wild" mode (see
5509 function "wild_match" for more information). Return whether we found such
5510 symbols. */
5511
5512static int
5513ada_add_block_renamings (struct obstack *obstackp,
5514 const struct block *block,
5515 const char *name,
5516 domain_enum domain,
5517 int wild_match_p)
5518{
5519 struct using_direct *renaming;
5520 int defns_mark = num_defns_collected (obstackp);
5521
5522 for (renaming = block_using (block);
5523 renaming != NULL;
5524 renaming = renaming->next)
5525 {
5526 const char *r_name;
5527 int name_match;
5528
5529 /* Avoid infinite recursions: skip this renaming if we are actually
5530 already traversing it.
5531
5532 Currently, symbol lookup in Ada don't use the namespace machinery from
5533 C++/Fortran support: skip namespace imports that use them. */
5534 if (renaming->searched
5535 || (renaming->import_src != NULL
5536 && renaming->import_src[0] != '\0')
5537 || (renaming->import_dest != NULL
5538 && renaming->import_dest[0] != '\0'))
5539 continue;
5540 renaming->searched = 1;
5541
5542 /* TODO: here, we perform another name-based symbol lookup, which can
5543 pull its own multiple overloads. In theory, we should be able to do
5544 better in this case since, in DWARF, DW_AT_import is a DIE reference,
5545 not a simple name. But in order to do this, we would need to enhance
5546 the DWARF reader to associate a symbol to this renaming, instead of a
5547 name. So, for now, we do something simpler: re-use the C++/Fortran
5548 namespace machinery. */
5549 r_name = (renaming->alias != NULL
5550 ? renaming->alias
5551 : renaming->declaration);
5552 name_match
5553 = wild_match_p ? wild_match (r_name, name) : strcmp (r_name, name);
5554 if (name_match == 0)
5555 ada_add_all_symbols (obstackp, block, renaming->declaration, domain,
5556 1, NULL);
5557 renaming->searched = 0;
5558 }
5559 return num_defns_collected (obstackp) != defns_mark;
5560}
5561
db230ce3
JB
5562/* Implements compare_names, but only applying the comparision using
5563 the given CASING. */
5b4ee69b 5564
40658b94 5565static int
db230ce3
JB
5566compare_names_with_case (const char *string1, const char *string2,
5567 enum case_sensitivity casing)
40658b94
PH
5568{
5569 while (*string1 != '\0' && *string2 != '\0')
5570 {
db230ce3
JB
5571 char c1, c2;
5572
40658b94
PH
5573 if (isspace (*string1) || isspace (*string2))
5574 return strcmp_iw_ordered (string1, string2);
db230ce3
JB
5575
5576 if (casing == case_sensitive_off)
5577 {
5578 c1 = tolower (*string1);
5579 c2 = tolower (*string2);
5580 }
5581 else
5582 {
5583 c1 = *string1;
5584 c2 = *string2;
5585 }
5586 if (c1 != c2)
40658b94 5587 break;
db230ce3 5588
40658b94
PH
5589 string1 += 1;
5590 string2 += 1;
5591 }
db230ce3 5592
40658b94
PH
5593 switch (*string1)
5594 {
5595 case '(':
5596 return strcmp_iw_ordered (string1, string2);
5597 case '_':
5598 if (*string2 == '\0')
5599 {
052874e8 5600 if (is_name_suffix (string1))
40658b94
PH
5601 return 0;
5602 else
1a1d5513 5603 return 1;
40658b94 5604 }
dbb8534f 5605 /* FALLTHROUGH */
40658b94
PH
5606 default:
5607 if (*string2 == '(')
5608 return strcmp_iw_ordered (string1, string2);
5609 else
db230ce3
JB
5610 {
5611 if (casing == case_sensitive_off)
5612 return tolower (*string1) - tolower (*string2);
5613 else
5614 return *string1 - *string2;
5615 }
40658b94 5616 }
ccefe4c4
TT
5617}
5618
db230ce3
JB
5619/* Compare STRING1 to STRING2, with results as for strcmp.
5620 Compatible with strcmp_iw_ordered in that...
5621
5622 strcmp_iw_ordered (STRING1, STRING2) <= 0
5623
5624 ... implies...
5625
5626 compare_names (STRING1, STRING2) <= 0
5627
5628 (they may differ as to what symbols compare equal). */
5629
5630static int
5631compare_names (const char *string1, const char *string2)
5632{
5633 int result;
5634
5635 /* Similar to what strcmp_iw_ordered does, we need to perform
5636 a case-insensitive comparison first, and only resort to
5637 a second, case-sensitive, comparison if the first one was
5638 not sufficient to differentiate the two strings. */
5639
5640 result = compare_names_with_case (string1, string2, case_sensitive_off);
5641 if (result == 0)
5642 result = compare_names_with_case (string1, string2, case_sensitive_on);
5643
5644 return result;
5645}
5646
339c13b6
JB
5647/* Add to OBSTACKP all non-local symbols whose name and domain match
5648 NAME and DOMAIN respectively. The search is performed on GLOBAL_BLOCK
5649 symbols if GLOBAL is non-zero, or on STATIC_BLOCK symbols otherwise. */
5650
5651static void
40658b94
PH
5652add_nonlocal_symbols (struct obstack *obstackp, const char *name,
5653 domain_enum domain, int global,
5654 int is_wild_match)
339c13b6
JB
5655{
5656 struct objfile *objfile;
22cee43f 5657 struct compunit_symtab *cu;
40658b94 5658 struct match_data data;
339c13b6 5659
6475f2fe 5660 memset (&data, 0, sizeof data);
ccefe4c4 5661 data.obstackp = obstackp;
339c13b6 5662
ccefe4c4 5663 ALL_OBJFILES (objfile)
40658b94
PH
5664 {
5665 data.objfile = objfile;
5666
5667 if (is_wild_match)
4186eb54
KS
5668 objfile->sf->qf->map_matching_symbols (objfile, name, domain, global,
5669 aux_add_nonlocal_symbols, &data,
5670 wild_match, NULL);
40658b94 5671 else
4186eb54
KS
5672 objfile->sf->qf->map_matching_symbols (objfile, name, domain, global,
5673 aux_add_nonlocal_symbols, &data,
5674 full_match, compare_names);
22cee43f
PMR
5675
5676 ALL_OBJFILE_COMPUNITS (objfile, cu)
5677 {
5678 const struct block *global_block
5679 = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (cu), GLOBAL_BLOCK);
5680
5681 if (ada_add_block_renamings (obstackp, global_block , name, domain,
5682 is_wild_match))
5683 data.found_sym = 1;
5684 }
40658b94
PH
5685 }
5686
5687 if (num_defns_collected (obstackp) == 0 && global && !is_wild_match)
5688 {
5689 ALL_OBJFILES (objfile)
5690 {
224c3ddb 5691 char *name1 = (char *) alloca (strlen (name) + sizeof ("_ada_"));
40658b94
PH
5692 strcpy (name1, "_ada_");
5693 strcpy (name1 + sizeof ("_ada_") - 1, name);
5694 data.objfile = objfile;
ade7ed9e
DE
5695 objfile->sf->qf->map_matching_symbols (objfile, name1, domain,
5696 global,
0963b4bd
MS
5697 aux_add_nonlocal_symbols,
5698 &data,
40658b94
PH
5699 full_match, compare_names);
5700 }
5701 }
339c13b6
JB
5702}
5703
22cee43f 5704/* Find symbols in DOMAIN matching NAME, in BLOCK and, if FULL_SEARCH is
4eeaa230 5705 non-zero, enclosing scope and in global scopes, returning the number of
22cee43f 5706 matches. Add these to OBSTACKP.
4eeaa230 5707
22cee43f
PMR
5708 When FULL_SEARCH is non-zero, any non-function/non-enumeral
5709 symbol match within the nest of blocks whose innermost member is BLOCK,
4c4b4cd2 5710 is the one match returned (no other matches in that or
d9680e73 5711 enclosing blocks is returned). If there are any matches in or
22cee43f 5712 surrounding BLOCK, then these alone are returned.
4eeaa230 5713
9f88c959 5714 Names prefixed with "standard__" are handled specially: "standard__"
22cee43f 5715 is first stripped off, and only static and global symbols are searched.
14f9c5c9 5716
22cee43f
PMR
5717 If MADE_GLOBAL_LOOKUP_P is non-null, set it before return to whether we had
5718 to lookup global symbols. */
5719
5720static void
5721ada_add_all_symbols (struct obstack *obstackp,
5722 const struct block *block,
5723 const char *name,
5724 domain_enum domain,
5725 int full_search,
5726 int *made_global_lookup_p)
14f9c5c9
AS
5727{
5728 struct symbol *sym;
22cee43f 5729 const int wild_match_p = should_use_wild_match (name);
14f9c5c9 5730
22cee43f
PMR
5731 if (made_global_lookup_p)
5732 *made_global_lookup_p = 0;
339c13b6
JB
5733
5734 /* Special case: If the user specifies a symbol name inside package
5735 Standard, do a non-wild matching of the symbol name without
5736 the "standard__" prefix. This was primarily introduced in order
5737 to allow the user to specifically access the standard exceptions
5738 using, for instance, Standard.Constraint_Error when Constraint_Error
5739 is ambiguous (due to the user defining its own Constraint_Error
5740 entity inside its program). */
22cee43f 5741 if (startswith (name, "standard__"))
4c4b4cd2 5742 {
4c4b4cd2 5743 block = NULL;
22cee43f 5744 name = name + sizeof ("standard__") - 1;
4c4b4cd2
PH
5745 }
5746
339c13b6 5747 /* Check the non-global symbols. If we have ANY match, then we're done. */
14f9c5c9 5748
4eeaa230
DE
5749 if (block != NULL)
5750 {
5751 if (full_search)
22cee43f 5752 ada_add_local_symbols (obstackp, name, block, domain, wild_match_p);
4eeaa230
DE
5753 else
5754 {
5755 /* In the !full_search case we're are being called by
5756 ada_iterate_over_symbols, and we don't want to search
5757 superblocks. */
22cee43f
PMR
5758 ada_add_block_symbols (obstackp, block, name, domain, NULL,
5759 wild_match_p);
4eeaa230 5760 }
22cee43f
PMR
5761 if (num_defns_collected (obstackp) > 0 || !full_search)
5762 return;
4eeaa230 5763 }
d2e4a39e 5764
339c13b6
JB
5765 /* No non-global symbols found. Check our cache to see if we have
5766 already performed this search before. If we have, then return
5767 the same result. */
5768
22cee43f 5769 if (lookup_cached_symbol (name, domain, &sym, &block))
4c4b4cd2
PH
5770 {
5771 if (sym != NULL)
22cee43f
PMR
5772 add_defn_to_vec (obstackp, sym, block);
5773 return;
4c4b4cd2 5774 }
14f9c5c9 5775
22cee43f
PMR
5776 if (made_global_lookup_p)
5777 *made_global_lookup_p = 1;
b1eedac9 5778
339c13b6
JB
5779 /* Search symbols from all global blocks. */
5780
22cee43f 5781 add_nonlocal_symbols (obstackp, name, domain, 1, wild_match_p);
d2e4a39e 5782
4c4b4cd2 5783 /* Now add symbols from all per-file blocks if we've gotten no hits
339c13b6 5784 (not strictly correct, but perhaps better than an error). */
d2e4a39e 5785
22cee43f
PMR
5786 if (num_defns_collected (obstackp) == 0)
5787 add_nonlocal_symbols (obstackp, name, domain, 0, wild_match_p);
5788}
5789
5790/* Find symbols in DOMAIN matching NAME, in BLOCK and, if full_search is
5791 non-zero, enclosing scope and in global scopes, returning the number of
5792 matches.
5793 Sets *RESULTS to point to a vector of (SYM,BLOCK) tuples,
5794 indicating the symbols found and the blocks and symbol tables (if
5795 any) in which they were found. This vector is transient---good only to
5796 the next call of ada_lookup_symbol_list.
5797
5798 When full_search is non-zero, any non-function/non-enumeral
5799 symbol match within the nest of blocks whose innermost member is BLOCK,
5800 is the one match returned (no other matches in that or
5801 enclosing blocks is returned). If there are any matches in or
5802 surrounding BLOCK, then these alone are returned.
5803
5804 Names prefixed with "standard__" are handled specially: "standard__"
5805 is first stripped off, and only static and global symbols are searched. */
5806
5807static int
5808ada_lookup_symbol_list_worker (const char *name, const struct block *block,
5809 domain_enum domain,
5810 struct block_symbol **results,
5811 int full_search)
5812{
5813 const int wild_match_p = should_use_wild_match (name);
5814 int syms_from_global_search;
5815 int ndefns;
5816
5817 obstack_free (&symbol_list_obstack, NULL);
5818 obstack_init (&symbol_list_obstack);
5819 ada_add_all_symbols (&symbol_list_obstack, block, name, domain,
5820 full_search, &syms_from_global_search);
14f9c5c9 5821
4c4b4cd2
PH
5822 ndefns = num_defns_collected (&symbol_list_obstack);
5823 *results = defns_collected (&symbol_list_obstack, 1);
5824
5825 ndefns = remove_extra_symbols (*results, ndefns);
5826
b1eedac9 5827 if (ndefns == 0 && full_search && syms_from_global_search)
22cee43f 5828 cache_symbol (name, domain, NULL, NULL);
14f9c5c9 5829
b1eedac9 5830 if (ndefns == 1 && full_search && syms_from_global_search)
22cee43f 5831 cache_symbol (name, domain, (*results)[0].symbol, (*results)[0].block);
14f9c5c9 5832
22cee43f 5833 ndefns = remove_irrelevant_renamings (*results, ndefns, block);
14f9c5c9
AS
5834 return ndefns;
5835}
5836
4eeaa230
DE
5837/* Find symbols in DOMAIN matching NAME0, in BLOCK0 and enclosing scope and
5838 in global scopes, returning the number of matches, and setting *RESULTS
5839 to a vector of (SYM,BLOCK) tuples.
5840 See ada_lookup_symbol_list_worker for further details. */
5841
5842int
5843ada_lookup_symbol_list (const char *name0, const struct block *block0,
d12307c1 5844 domain_enum domain, struct block_symbol **results)
4eeaa230
DE
5845{
5846 return ada_lookup_symbol_list_worker (name0, block0, domain, results, 1);
5847}
5848
5849/* Implementation of the la_iterate_over_symbols method. */
5850
5851static void
14bc53a8
PA
5852ada_iterate_over_symbols
5853 (const struct block *block, const char *name, domain_enum domain,
5854 gdb::function_view<symbol_found_callback_ftype> callback)
4eeaa230
DE
5855{
5856 int ndefs, i;
d12307c1 5857 struct block_symbol *results;
4eeaa230
DE
5858
5859 ndefs = ada_lookup_symbol_list_worker (name, block, domain, &results, 0);
5860 for (i = 0; i < ndefs; ++i)
5861 {
14bc53a8 5862 if (!callback (results[i].symbol))
4eeaa230
DE
5863 break;
5864 }
5865}
5866
f8eba3c6 5867/* If NAME is the name of an entity, return a string that should
2f408ecb 5868 be used to look that entity up in Ada units.
f8eba3c6
TT
5869
5870 NAME can have any form that the "break" or "print" commands might
5871 recognize. In other words, it does not have to be the "natural"
5872 name, or the "encoded" name. */
5873
2f408ecb 5874std::string
f8eba3c6
TT
5875ada_name_for_lookup (const char *name)
5876{
f8eba3c6
TT
5877 int nlen = strlen (name);
5878
5879 if (name[0] == '<' && name[nlen - 1] == '>')
2f408ecb 5880 return std::string (name + 1, nlen - 2);
f8eba3c6 5881 else
2f408ecb 5882 return ada_encode (ada_fold_name (name));
f8eba3c6
TT
5883}
5884
4e5c77fe
JB
5885/* The result is as for ada_lookup_symbol_list with FULL_SEARCH set
5886 to 1, but choosing the first symbol found if there are multiple
5887 choices.
5888
5e2336be
JB
5889 The result is stored in *INFO, which must be non-NULL.
5890 If no match is found, INFO->SYM is set to NULL. */
4e5c77fe
JB
5891
5892void
5893ada_lookup_encoded_symbol (const char *name, const struct block *block,
fe978cb0 5894 domain_enum domain,
d12307c1 5895 struct block_symbol *info)
14f9c5c9 5896{
d12307c1 5897 struct block_symbol *candidates;
14f9c5c9
AS
5898 int n_candidates;
5899
5e2336be 5900 gdb_assert (info != NULL);
d12307c1 5901 memset (info, 0, sizeof (struct block_symbol));
4e5c77fe 5902
fe978cb0 5903 n_candidates = ada_lookup_symbol_list (name, block, domain, &candidates);
14f9c5c9 5904 if (n_candidates == 0)
4e5c77fe 5905 return;
4c4b4cd2 5906
5e2336be 5907 *info = candidates[0];
d12307c1 5908 info->symbol = fixup_symbol_section (info->symbol, NULL);
4e5c77fe 5909}
aeb5907d
JB
5910
5911/* Return a symbol in DOMAIN matching NAME, in BLOCK0 and enclosing
5912 scope and in global scopes, or NULL if none. NAME is folded and
5913 encoded first. Otherwise, the result is as for ada_lookup_symbol_list,
0963b4bd 5914 choosing the first symbol if there are multiple choices.
4e5c77fe
JB
5915 If IS_A_FIELD_OF_THIS is not NULL, it is set to zero. */
5916
d12307c1 5917struct block_symbol
aeb5907d 5918ada_lookup_symbol (const char *name, const struct block *block0,
fe978cb0 5919 domain_enum domain, int *is_a_field_of_this)
aeb5907d 5920{
d12307c1 5921 struct block_symbol info;
4e5c77fe 5922
aeb5907d
JB
5923 if (is_a_field_of_this != NULL)
5924 *is_a_field_of_this = 0;
5925
4e5c77fe 5926 ada_lookup_encoded_symbol (ada_encode (ada_fold_name (name)),
fe978cb0 5927 block0, domain, &info);
d12307c1 5928 return info;
4c4b4cd2 5929}
14f9c5c9 5930
d12307c1 5931static struct block_symbol
f606139a
DE
5932ada_lookup_symbol_nonlocal (const struct language_defn *langdef,
5933 const char *name,
76a01679 5934 const struct block *block,
21b556f4 5935 const domain_enum domain)
4c4b4cd2 5936{
d12307c1 5937 struct block_symbol sym;
04dccad0
JB
5938
5939 sym = ada_lookup_symbol (name, block_static_block (block), domain, NULL);
d12307c1 5940 if (sym.symbol != NULL)
04dccad0
JB
5941 return sym;
5942
5943 /* If we haven't found a match at this point, try the primitive
5944 types. In other languages, this search is performed before
5945 searching for global symbols in order to short-circuit that
5946 global-symbol search if it happens that the name corresponds
5947 to a primitive type. But we cannot do the same in Ada, because
5948 it is perfectly legitimate for a program to declare a type which
5949 has the same name as a standard type. If looking up a type in
5950 that situation, we have traditionally ignored the primitive type
5951 in favor of user-defined types. This is why, unlike most other
5952 languages, we search the primitive types this late and only after
5953 having searched the global symbols without success. */
5954
5955 if (domain == VAR_DOMAIN)
5956 {
5957 struct gdbarch *gdbarch;
5958
5959 if (block == NULL)
5960 gdbarch = target_gdbarch ();
5961 else
5962 gdbarch = block_gdbarch (block);
d12307c1
PMR
5963 sym.symbol = language_lookup_primitive_type_as_symbol (langdef, gdbarch, name);
5964 if (sym.symbol != NULL)
04dccad0
JB
5965 return sym;
5966 }
5967
d12307c1 5968 return (struct block_symbol) {NULL, NULL};
14f9c5c9
AS
5969}
5970
5971
4c4b4cd2
PH
5972/* True iff STR is a possible encoded suffix of a normal Ada name
5973 that is to be ignored for matching purposes. Suffixes of parallel
5974 names (e.g., XVE) are not included here. Currently, the possible suffixes
5823c3ef 5975 are given by any of the regular expressions:
4c4b4cd2 5976
babe1480
JB
5977 [.$][0-9]+ [nested subprogram suffix, on platforms such as GNU/Linux]
5978 ___[0-9]+ [nested subprogram suffix, on platforms such as HP/UX]
9ac7f98e 5979 TKB [subprogram suffix for task bodies]
babe1480 5980 _E[0-9]+[bs]$ [protected object entry suffixes]
61ee279c 5981 (X[nb]*)?((\$|__)[0-9](_?[0-9]+)|___(JM|LJM|X([FDBUP].*|R[^T]?)))?$
babe1480
JB
5982
5983 Also, any leading "__[0-9]+" sequence is skipped before the suffix
5984 match is performed. This sequence is used to differentiate homonyms,
5985 is an optional part of a valid name suffix. */
4c4b4cd2 5986
14f9c5c9 5987static int
d2e4a39e 5988is_name_suffix (const char *str)
14f9c5c9
AS
5989{
5990 int k;
4c4b4cd2
PH
5991 const char *matching;
5992 const int len = strlen (str);
5993
babe1480
JB
5994 /* Skip optional leading __[0-9]+. */
5995
4c4b4cd2
PH
5996 if (len > 3 && str[0] == '_' && str[1] == '_' && isdigit (str[2]))
5997 {
babe1480
JB
5998 str += 3;
5999 while (isdigit (str[0]))
6000 str += 1;
4c4b4cd2 6001 }
babe1480
JB
6002
6003 /* [.$][0-9]+ */
4c4b4cd2 6004
babe1480 6005 if (str[0] == '.' || str[0] == '$')
4c4b4cd2 6006 {
babe1480 6007 matching = str + 1;
4c4b4cd2
PH
6008 while (isdigit (matching[0]))
6009 matching += 1;
6010 if (matching[0] == '\0')
6011 return 1;
6012 }
6013
6014 /* ___[0-9]+ */
babe1480 6015
4c4b4cd2
PH
6016 if (len > 3 && str[0] == '_' && str[1] == '_' && str[2] == '_')
6017 {
6018 matching = str + 3;
6019 while (isdigit (matching[0]))
6020 matching += 1;
6021 if (matching[0] == '\0')
6022 return 1;
6023 }
6024
9ac7f98e
JB
6025 /* "TKB" suffixes are used for subprograms implementing task bodies. */
6026
6027 if (strcmp (str, "TKB") == 0)
6028 return 1;
6029
529cad9c
PH
6030#if 0
6031 /* FIXME: brobecker/2005-09-23: Protected Object subprograms end
0963b4bd
MS
6032 with a N at the end. Unfortunately, the compiler uses the same
6033 convention for other internal types it creates. So treating
529cad9c 6034 all entity names that end with an "N" as a name suffix causes
0963b4bd
MS
6035 some regressions. For instance, consider the case of an enumerated
6036 type. To support the 'Image attribute, it creates an array whose
529cad9c
PH
6037 name ends with N.
6038 Having a single character like this as a suffix carrying some
0963b4bd 6039 information is a bit risky. Perhaps we should change the encoding
529cad9c
PH
6040 to be something like "_N" instead. In the meantime, do not do
6041 the following check. */
6042 /* Protected Object Subprograms */
6043 if (len == 1 && str [0] == 'N')
6044 return 1;
6045#endif
6046
6047 /* _E[0-9]+[bs]$ */
6048 if (len > 3 && str[0] == '_' && str [1] == 'E' && isdigit (str[2]))
6049 {
6050 matching = str + 3;
6051 while (isdigit (matching[0]))
6052 matching += 1;
6053 if ((matching[0] == 'b' || matching[0] == 's')
6054 && matching [1] == '\0')
6055 return 1;
6056 }
6057
4c4b4cd2
PH
6058 /* ??? We should not modify STR directly, as we are doing below. This
6059 is fine in this case, but may become problematic later if we find
6060 that this alternative did not work, and want to try matching
6061 another one from the begining of STR. Since we modified it, we
6062 won't be able to find the begining of the string anymore! */
14f9c5c9
AS
6063 if (str[0] == 'X')
6064 {
6065 str += 1;
d2e4a39e 6066 while (str[0] != '_' && str[0] != '\0')
4c4b4cd2
PH
6067 {
6068 if (str[0] != 'n' && str[0] != 'b')
6069 return 0;
6070 str += 1;
6071 }
14f9c5c9 6072 }
babe1480 6073
14f9c5c9
AS
6074 if (str[0] == '\000')
6075 return 1;
babe1480 6076
d2e4a39e 6077 if (str[0] == '_')
14f9c5c9
AS
6078 {
6079 if (str[1] != '_' || str[2] == '\000')
4c4b4cd2 6080 return 0;
d2e4a39e 6081 if (str[2] == '_')
4c4b4cd2 6082 {
61ee279c
PH
6083 if (strcmp (str + 3, "JM") == 0)
6084 return 1;
6085 /* FIXME: brobecker/2004-09-30: GNAT will soon stop using
6086 the LJM suffix in favor of the JM one. But we will
6087 still accept LJM as a valid suffix for a reasonable
6088 amount of time, just to allow ourselves to debug programs
6089 compiled using an older version of GNAT. */
4c4b4cd2
PH
6090 if (strcmp (str + 3, "LJM") == 0)
6091 return 1;
6092 if (str[3] != 'X')
6093 return 0;
1265e4aa
JB
6094 if (str[4] == 'F' || str[4] == 'D' || str[4] == 'B'
6095 || str[4] == 'U' || str[4] == 'P')
4c4b4cd2
PH
6096 return 1;
6097 if (str[4] == 'R' && str[5] != 'T')
6098 return 1;
6099 return 0;
6100 }
6101 if (!isdigit (str[2]))
6102 return 0;
6103 for (k = 3; str[k] != '\0'; k += 1)
6104 if (!isdigit (str[k]) && str[k] != '_')
6105 return 0;
14f9c5c9
AS
6106 return 1;
6107 }
4c4b4cd2 6108 if (str[0] == '$' && isdigit (str[1]))
14f9c5c9 6109 {
4c4b4cd2
PH
6110 for (k = 2; str[k] != '\0'; k += 1)
6111 if (!isdigit (str[k]) && str[k] != '_')
6112 return 0;
14f9c5c9
AS
6113 return 1;
6114 }
6115 return 0;
6116}
d2e4a39e 6117
aeb5907d
JB
6118/* Return non-zero if the string starting at NAME and ending before
6119 NAME_END contains no capital letters. */
529cad9c
PH
6120
6121static int
6122is_valid_name_for_wild_match (const char *name0)
6123{
6124 const char *decoded_name = ada_decode (name0);
6125 int i;
6126
5823c3ef
JB
6127 /* If the decoded name starts with an angle bracket, it means that
6128 NAME0 does not follow the GNAT encoding format. It should then
6129 not be allowed as a possible wild match. */
6130 if (decoded_name[0] == '<')
6131 return 0;
6132
529cad9c
PH
6133 for (i=0; decoded_name[i] != '\0'; i++)
6134 if (isalpha (decoded_name[i]) && !islower (decoded_name[i]))
6135 return 0;
6136
6137 return 1;
6138}
6139
73589123
PH
6140/* Advance *NAMEP to next occurrence of TARGET0 in the string NAME0
6141 that could start a simple name. Assumes that *NAMEP points into
6142 the string beginning at NAME0. */
4c4b4cd2 6143
14f9c5c9 6144static int
73589123 6145advance_wild_match (const char **namep, const char *name0, int target0)
14f9c5c9 6146{
73589123 6147 const char *name = *namep;
5b4ee69b 6148
5823c3ef 6149 while (1)
14f9c5c9 6150 {
aa27d0b3 6151 int t0, t1;
73589123
PH
6152
6153 t0 = *name;
6154 if (t0 == '_')
6155 {
6156 t1 = name[1];
6157 if ((t1 >= 'a' && t1 <= 'z') || (t1 >= '0' && t1 <= '9'))
6158 {
6159 name += 1;
61012eef 6160 if (name == name0 + 5 && startswith (name0, "_ada"))
73589123
PH
6161 break;
6162 else
6163 name += 1;
6164 }
aa27d0b3
JB
6165 else if (t1 == '_' && ((name[2] >= 'a' && name[2] <= 'z')
6166 || name[2] == target0))
73589123
PH
6167 {
6168 name += 2;
6169 break;
6170 }
6171 else
6172 return 0;
6173 }
6174 else if ((t0 >= 'a' && t0 <= 'z') || (t0 >= '0' && t0 <= '9'))
6175 name += 1;
6176 else
5823c3ef 6177 return 0;
73589123
PH
6178 }
6179
6180 *namep = name;
6181 return 1;
6182}
6183
6184/* Return 0 iff NAME encodes a name of the form prefix.PATN. Ignores any
6185 informational suffixes of NAME (i.e., for which is_name_suffix is
6186 true). Assumes that PATN is a lower-cased Ada simple name. */
6187
6188static int
6189wild_match (const char *name, const char *patn)
6190{
22e048c9 6191 const char *p;
73589123
PH
6192 const char *name0 = name;
6193
6194 while (1)
6195 {
6196 const char *match = name;
6197
6198 if (*name == *patn)
6199 {
6200 for (name += 1, p = patn + 1; *p != '\0'; name += 1, p += 1)
6201 if (*p != *name)
6202 break;
6203 if (*p == '\0' && is_name_suffix (name))
6204 return match != name0 && !is_valid_name_for_wild_match (name0);
6205
6206 if (name[-1] == '_')
6207 name -= 1;
6208 }
6209 if (!advance_wild_match (&name, name0, *patn))
6210 return 1;
96d887e8 6211 }
96d887e8
PH
6212}
6213
40658b94
PH
6214/* Returns 0 iff symbol name SYM_NAME matches SEARCH_NAME, apart from
6215 informational suffix. */
6216
c4d840bd
PH
6217static int
6218full_match (const char *sym_name, const char *search_name)
6219{
40658b94 6220 return !match_name (sym_name, search_name, 0);
c4d840bd
PH
6221}
6222
6223
96d887e8
PH
6224/* Add symbols from BLOCK matching identifier NAME in DOMAIN to
6225 vector *defn_symbols, updating the list of symbols in OBSTACKP
0963b4bd 6226 (if necessary). If WILD, treat as NAME with a wildcard prefix.
4eeaa230 6227 OBJFILE is the section containing BLOCK. */
96d887e8
PH
6228
6229static void
6230ada_add_block_symbols (struct obstack *obstackp,
f0c5f9b2 6231 const struct block *block, const char *name,
96d887e8 6232 domain_enum domain, struct objfile *objfile,
2570f2b7 6233 int wild)
96d887e8 6234{
8157b174 6235 struct block_iterator iter;
96d887e8
PH
6236 int name_len = strlen (name);
6237 /* A matching argument symbol, if any. */
6238 struct symbol *arg_sym;
6239 /* Set true when we find a matching non-argument symbol. */
6240 int found_sym;
6241 struct symbol *sym;
6242
6243 arg_sym = NULL;
6244 found_sym = 0;
6245 if (wild)
6246 {
8157b174
TT
6247 for (sym = block_iter_match_first (block, name, wild_match, &iter);
6248 sym != NULL; sym = block_iter_match_next (name, wild_match, &iter))
76a01679 6249 {
4186eb54
KS
6250 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
6251 SYMBOL_DOMAIN (sym), domain)
73589123 6252 && wild_match (SYMBOL_LINKAGE_NAME (sym), name) == 0)
76a01679 6253 {
2a2d4dc3
AS
6254 if (SYMBOL_CLASS (sym) == LOC_UNRESOLVED)
6255 continue;
6256 else if (SYMBOL_IS_ARGUMENT (sym))
6257 arg_sym = sym;
6258 else
6259 {
76a01679
JB
6260 found_sym = 1;
6261 add_defn_to_vec (obstackp,
6262 fixup_symbol_section (sym, objfile),
2570f2b7 6263 block);
76a01679
JB
6264 }
6265 }
6266 }
96d887e8
PH
6267 }
6268 else
6269 {
8157b174
TT
6270 for (sym = block_iter_match_first (block, name, full_match, &iter);
6271 sym != NULL; sym = block_iter_match_next (name, full_match, &iter))
76a01679 6272 {
4186eb54
KS
6273 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
6274 SYMBOL_DOMAIN (sym), domain))
76a01679 6275 {
c4d840bd
PH
6276 if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED)
6277 {
6278 if (SYMBOL_IS_ARGUMENT (sym))
6279 arg_sym = sym;
6280 else
2a2d4dc3 6281 {
c4d840bd
PH
6282 found_sym = 1;
6283 add_defn_to_vec (obstackp,
6284 fixup_symbol_section (sym, objfile),
6285 block);
2a2d4dc3 6286 }
c4d840bd 6287 }
76a01679
JB
6288 }
6289 }
96d887e8
PH
6290 }
6291
22cee43f
PMR
6292 /* Handle renamings. */
6293
6294 if (ada_add_block_renamings (obstackp, block, name, domain, wild))
6295 found_sym = 1;
6296
96d887e8
PH
6297 if (!found_sym && arg_sym != NULL)
6298 {
76a01679
JB
6299 add_defn_to_vec (obstackp,
6300 fixup_symbol_section (arg_sym, objfile),
2570f2b7 6301 block);
96d887e8
PH
6302 }
6303
6304 if (!wild)
6305 {
6306 arg_sym = NULL;
6307 found_sym = 0;
6308
6309 ALL_BLOCK_SYMBOLS (block, iter, sym)
76a01679 6310 {
4186eb54
KS
6311 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
6312 SYMBOL_DOMAIN (sym), domain))
76a01679
JB
6313 {
6314 int cmp;
6315
6316 cmp = (int) '_' - (int) SYMBOL_LINKAGE_NAME (sym)[0];
6317 if (cmp == 0)
6318 {
61012eef 6319 cmp = !startswith (SYMBOL_LINKAGE_NAME (sym), "_ada_");
76a01679
JB
6320 if (cmp == 0)
6321 cmp = strncmp (name, SYMBOL_LINKAGE_NAME (sym) + 5,
6322 name_len);
6323 }
6324
6325 if (cmp == 0
6326 && is_name_suffix (SYMBOL_LINKAGE_NAME (sym) + name_len + 5))
6327 {
2a2d4dc3
AS
6328 if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED)
6329 {
6330 if (SYMBOL_IS_ARGUMENT (sym))
6331 arg_sym = sym;
6332 else
6333 {
6334 found_sym = 1;
6335 add_defn_to_vec (obstackp,
6336 fixup_symbol_section (sym, objfile),
6337 block);
6338 }
6339 }
76a01679
JB
6340 }
6341 }
76a01679 6342 }
96d887e8
PH
6343
6344 /* NOTE: This really shouldn't be needed for _ada_ symbols.
6345 They aren't parameters, right? */
6346 if (!found_sym && arg_sym != NULL)
6347 {
6348 add_defn_to_vec (obstackp,
76a01679 6349 fixup_symbol_section (arg_sym, objfile),
2570f2b7 6350 block);
96d887e8
PH
6351 }
6352 }
6353}
6354\f
41d27058
JB
6355
6356 /* Symbol Completion */
6357
6358/* If SYM_NAME is a completion candidate for TEXT, return this symbol
6359 name in a form that's appropriate for the completion. The result
6360 does not need to be deallocated, but is only good until the next call.
6361
6362 TEXT_LEN is equal to the length of TEXT.
e701b3c0 6363 Perform a wild match if WILD_MATCH_P is set.
6ea35997 6364 ENCODED_P should be set if TEXT represents the start of a symbol name
41d27058
JB
6365 in its encoded form. */
6366
6367static const char *
6368symbol_completion_match (const char *sym_name,
6369 const char *text, int text_len,
6ea35997 6370 int wild_match_p, int encoded_p)
41d27058 6371{
41d27058
JB
6372 const int verbatim_match = (text[0] == '<');
6373 int match = 0;
6374
6375 if (verbatim_match)
6376 {
6377 /* Strip the leading angle bracket. */
6378 text = text + 1;
6379 text_len--;
6380 }
6381
6382 /* First, test against the fully qualified name of the symbol. */
6383
6384 if (strncmp (sym_name, text, text_len) == 0)
6385 match = 1;
6386
6ea35997 6387 if (match && !encoded_p)
41d27058
JB
6388 {
6389 /* One needed check before declaring a positive match is to verify
6390 that iff we are doing a verbatim match, the decoded version
6391 of the symbol name starts with '<'. Otherwise, this symbol name
6392 is not a suitable completion. */
6393 const char *sym_name_copy = sym_name;
6394 int has_angle_bracket;
6395
6396 sym_name = ada_decode (sym_name);
6397 has_angle_bracket = (sym_name[0] == '<');
6398 match = (has_angle_bracket == verbatim_match);
6399 sym_name = sym_name_copy;
6400 }
6401
6402 if (match && !verbatim_match)
6403 {
6404 /* When doing non-verbatim match, another check that needs to
6405 be done is to verify that the potentially matching symbol name
6406 does not include capital letters, because the ada-mode would
6407 not be able to understand these symbol names without the
6408 angle bracket notation. */
6409 const char *tmp;
6410
6411 for (tmp = sym_name; *tmp != '\0' && !isupper (*tmp); tmp++);
6412 if (*tmp != '\0')
6413 match = 0;
6414 }
6415
6416 /* Second: Try wild matching... */
6417
e701b3c0 6418 if (!match && wild_match_p)
41d27058
JB
6419 {
6420 /* Since we are doing wild matching, this means that TEXT
6421 may represent an unqualified symbol name. We therefore must
6422 also compare TEXT against the unqualified name of the symbol. */
6423 sym_name = ada_unqualified_name (ada_decode (sym_name));
6424
6425 if (strncmp (sym_name, text, text_len) == 0)
6426 match = 1;
6427 }
6428
6429 /* Finally: If we found a mach, prepare the result to return. */
6430
6431 if (!match)
6432 return NULL;
6433
6434 if (verbatim_match)
6435 sym_name = add_angle_brackets (sym_name);
6436
6ea35997 6437 if (!encoded_p)
41d27058
JB
6438 sym_name = ada_decode (sym_name);
6439
6440 return sym_name;
6441}
6442
eb3ff9a5 6443/* A companion function to ada_collect_symbol_completion_matches().
41d27058 6444 Check if SYM_NAME represents a symbol which name would be suitable
eb3ff9a5
PA
6445 to complete TEXT (TEXT_LEN is the length of TEXT), in which case it
6446 is added as a completion match to TRACKER.
41d27058
JB
6447
6448 ORIG_TEXT is the string original string from the user command
6449 that needs to be completed. WORD is the entire command on which
6450 completion should be performed. These two parameters are used to
6451 determine which part of the symbol name should be added to the
6452 completion vector.
c0af1706 6453 if WILD_MATCH_P is set, then wild matching is performed.
cb8e9b97 6454 ENCODED_P should be set if TEXT represents a symbol name in its
41d27058
JB
6455 encoded formed (in which case the completion should also be
6456 encoded). */
6457
6458static void
eb3ff9a5
PA
6459symbol_completion_add (completion_tracker &tracker,
6460 const char *sym_name,
41d27058
JB
6461 const char *text, int text_len,
6462 const char *orig_text, const char *word,
cb8e9b97 6463 int wild_match_p, int encoded_p)
41d27058
JB
6464{
6465 const char *match = symbol_completion_match (sym_name, text, text_len,
cb8e9b97 6466 wild_match_p, encoded_p);
41d27058
JB
6467 char *completion;
6468
6469 if (match == NULL)
6470 return;
6471
6472 /* We found a match, so add the appropriate completion to the given
6473 string vector. */
6474
6475 if (word == orig_text)
6476 {
224c3ddb 6477 completion = (char *) xmalloc (strlen (match) + 5);
41d27058
JB
6478 strcpy (completion, match);
6479 }
6480 else if (word > orig_text)
6481 {
6482 /* Return some portion of sym_name. */
224c3ddb 6483 completion = (char *) xmalloc (strlen (match) + 5);
41d27058
JB
6484 strcpy (completion, match + (word - orig_text));
6485 }
6486 else
6487 {
6488 /* Return some of ORIG_TEXT plus sym_name. */
224c3ddb 6489 completion = (char *) xmalloc (strlen (match) + (orig_text - word) + 5);
41d27058
JB
6490 strncpy (completion, word, orig_text - word);
6491 completion[orig_text - word] = '\0';
6492 strcat (completion, match);
6493 }
6494
eb3ff9a5 6495 tracker.add_completion (gdb::unique_xmalloc_ptr<char> (completion));
41d27058
JB
6496}
6497
eb3ff9a5
PA
6498/* Add the list of possible symbol names completing TEXT0 to TRACKER.
6499 WORD is the entire command on which completion is made. */
41d27058 6500
eb3ff9a5
PA
6501static void
6502ada_collect_symbol_completion_matches (completion_tracker &tracker,
c6756f62 6503 complete_symbol_mode mode,
eb3ff9a5
PA
6504 const char *text0, const char *word,
6505 enum type_code code)
41d27058
JB
6506{
6507 char *text;
6508 int text_len;
b1ed564a
JB
6509 int wild_match_p;
6510 int encoded_p;
41d27058 6511 struct symbol *sym;
43f3e411 6512 struct compunit_symtab *s;
41d27058
JB
6513 struct minimal_symbol *msymbol;
6514 struct objfile *objfile;
3977b71f 6515 const struct block *b, *surrounding_static_block = 0;
41d27058 6516 int i;
8157b174 6517 struct block_iterator iter;
b8fea896 6518 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
41d27058 6519
2f68a895
TT
6520 gdb_assert (code == TYPE_CODE_UNDEF);
6521
41d27058
JB
6522 if (text0[0] == '<')
6523 {
6524 text = xstrdup (text0);
6525 make_cleanup (xfree, text);
6526 text_len = strlen (text);
b1ed564a
JB
6527 wild_match_p = 0;
6528 encoded_p = 1;
41d27058
JB
6529 }
6530 else
6531 {
6532 text = xstrdup (ada_encode (text0));
6533 make_cleanup (xfree, text);
6534 text_len = strlen (text);
6535 for (i = 0; i < text_len; i++)
6536 text[i] = tolower (text[i]);
6537
b1ed564a 6538 encoded_p = (strstr (text0, "__") != NULL);
41d27058
JB
6539 /* If the name contains a ".", then the user is entering a fully
6540 qualified entity name, and the match must not be done in wild
6541 mode. Similarly, if the user wants to complete what looks like
6542 an encoded name, the match must not be done in wild mode. */
b1ed564a 6543 wild_match_p = (strchr (text0, '.') == NULL && !encoded_p);
41d27058
JB
6544 }
6545
6546 /* First, look at the partial symtab symbols. */
14bc53a8
PA
6547 expand_symtabs_matching (NULL,
6548 [&] (const char *symname)
6549 {
6550 return symbol_completion_match (symname,
6551 text, text_len,
6552 wild_match_p,
6553 encoded_p);
6554 },
6555 NULL,
6556 ALL_DOMAIN);
41d27058
JB
6557
6558 /* At this point scan through the misc symbol vectors and add each
6559 symbol you find to the list. Eventually we want to ignore
6560 anything that isn't a text symbol (everything else will be
6561 handled by the psymtab code above). */
6562
6563 ALL_MSYMBOLS (objfile, msymbol)
6564 {
6565 QUIT;
eb3ff9a5 6566 symbol_completion_add (tracker, MSYMBOL_LINKAGE_NAME (msymbol),
b1ed564a
JB
6567 text, text_len, text0, word, wild_match_p,
6568 encoded_p);
41d27058
JB
6569 }
6570
6571 /* Search upwards from currently selected frame (so that we can
6572 complete on local vars. */
6573
6574 for (b = get_selected_block (0); b != NULL; b = BLOCK_SUPERBLOCK (b))
6575 {
6576 if (!BLOCK_SUPERBLOCK (b))
6577 surrounding_static_block = b; /* For elmin of dups */
6578
6579 ALL_BLOCK_SYMBOLS (b, iter, sym)
6580 {
eb3ff9a5 6581 symbol_completion_add (tracker, SYMBOL_LINKAGE_NAME (sym),
41d27058 6582 text, text_len, text0, word,
b1ed564a 6583 wild_match_p, encoded_p);
41d27058
JB
6584 }
6585 }
6586
6587 /* Go through the symtabs and check the externs and statics for
43f3e411 6588 symbols which match. */
41d27058 6589
43f3e411 6590 ALL_COMPUNITS (objfile, s)
41d27058
JB
6591 {
6592 QUIT;
43f3e411 6593 b = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (s), GLOBAL_BLOCK);
41d27058
JB
6594 ALL_BLOCK_SYMBOLS (b, iter, sym)
6595 {
eb3ff9a5 6596 symbol_completion_add (tracker, SYMBOL_LINKAGE_NAME (sym),
41d27058 6597 text, text_len, text0, word,
b1ed564a 6598 wild_match_p, encoded_p);
41d27058
JB
6599 }
6600 }
6601
43f3e411 6602 ALL_COMPUNITS (objfile, s)
41d27058
JB
6603 {
6604 QUIT;
43f3e411 6605 b = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (s), STATIC_BLOCK);
41d27058
JB
6606 /* Don't do this block twice. */
6607 if (b == surrounding_static_block)
6608 continue;
6609 ALL_BLOCK_SYMBOLS (b, iter, sym)
6610 {
eb3ff9a5 6611 symbol_completion_add (tracker, SYMBOL_LINKAGE_NAME (sym),
41d27058 6612 text, text_len, text0, word,
b1ed564a 6613 wild_match_p, encoded_p);
41d27058
JB
6614 }
6615 }
6616
b8fea896 6617 do_cleanups (old_chain);
41d27058
JB
6618}
6619
963a6417 6620 /* Field Access */
96d887e8 6621
73fb9985
JB
6622/* Return non-zero if TYPE is a pointer to the GNAT dispatch table used
6623 for tagged types. */
6624
6625static int
6626ada_is_dispatch_table_ptr_type (struct type *type)
6627{
0d5cff50 6628 const char *name;
73fb9985
JB
6629
6630 if (TYPE_CODE (type) != TYPE_CODE_PTR)
6631 return 0;
6632
6633 name = TYPE_NAME (TYPE_TARGET_TYPE (type));
6634 if (name == NULL)
6635 return 0;
6636
6637 return (strcmp (name, "ada__tags__dispatch_table") == 0);
6638}
6639
ac4a2da4
JG
6640/* Return non-zero if TYPE is an interface tag. */
6641
6642static int
6643ada_is_interface_tag (struct type *type)
6644{
6645 const char *name = TYPE_NAME (type);
6646
6647 if (name == NULL)
6648 return 0;
6649
6650 return (strcmp (name, "ada__tags__interface_tag") == 0);
6651}
6652
963a6417
PH
6653/* True if field number FIELD_NUM in struct or union type TYPE is supposed
6654 to be invisible to users. */
96d887e8 6655
963a6417
PH
6656int
6657ada_is_ignored_field (struct type *type, int field_num)
96d887e8 6658{
963a6417
PH
6659 if (field_num < 0 || field_num > TYPE_NFIELDS (type))
6660 return 1;
ffde82bf 6661
73fb9985
JB
6662 /* Check the name of that field. */
6663 {
6664 const char *name = TYPE_FIELD_NAME (type, field_num);
6665
6666 /* Anonymous field names should not be printed.
6667 brobecker/2007-02-20: I don't think this can actually happen
6668 but we don't want to print the value of annonymous fields anyway. */
6669 if (name == NULL)
6670 return 1;
6671
ffde82bf
JB
6672 /* Normally, fields whose name start with an underscore ("_")
6673 are fields that have been internally generated by the compiler,
6674 and thus should not be printed. The "_parent" field is special,
6675 however: This is a field internally generated by the compiler
6676 for tagged types, and it contains the components inherited from
6677 the parent type. This field should not be printed as is, but
6678 should not be ignored either. */
61012eef 6679 if (name[0] == '_' && !startswith (name, "_parent"))
73fb9985
JB
6680 return 1;
6681 }
6682
ac4a2da4
JG
6683 /* If this is the dispatch table of a tagged type or an interface tag,
6684 then ignore. */
73fb9985 6685 if (ada_is_tagged_type (type, 1)
ac4a2da4
JG
6686 && (ada_is_dispatch_table_ptr_type (TYPE_FIELD_TYPE (type, field_num))
6687 || ada_is_interface_tag (TYPE_FIELD_TYPE (type, field_num))))
73fb9985
JB
6688 return 1;
6689
6690 /* Not a special field, so it should not be ignored. */
6691 return 0;
963a6417 6692}
96d887e8 6693
963a6417 6694/* True iff TYPE has a tag field. If REFOK, then TYPE may also be a
0963b4bd 6695 pointer or reference type whose ultimate target has a tag field. */
96d887e8 6696
963a6417
PH
6697int
6698ada_is_tagged_type (struct type *type, int refok)
6699{
988f6b3d 6700 return (ada_lookup_struct_elt_type (type, "_tag", refok, 1) != NULL);
963a6417 6701}
96d887e8 6702
963a6417 6703/* True iff TYPE represents the type of X'Tag */
96d887e8 6704
963a6417
PH
6705int
6706ada_is_tag_type (struct type *type)
6707{
460efde1
JB
6708 type = ada_check_typedef (type);
6709
963a6417
PH
6710 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_PTR)
6711 return 0;
6712 else
96d887e8 6713 {
963a6417 6714 const char *name = ada_type_name (TYPE_TARGET_TYPE (type));
5b4ee69b 6715
963a6417
PH
6716 return (name != NULL
6717 && strcmp (name, "ada__tags__dispatch_table") == 0);
96d887e8 6718 }
96d887e8
PH
6719}
6720
963a6417 6721/* The type of the tag on VAL. */
76a01679 6722
963a6417
PH
6723struct type *
6724ada_tag_type (struct value *val)
96d887e8 6725{
988f6b3d 6726 return ada_lookup_struct_elt_type (value_type (val), "_tag", 1, 0);
963a6417 6727}
96d887e8 6728
b50d69b5
JG
6729/* Return 1 if TAG follows the old scheme for Ada tags (used for Ada 95,
6730 retired at Ada 05). */
6731
6732static int
6733is_ada95_tag (struct value *tag)
6734{
6735 return ada_value_struct_elt (tag, "tsd", 1) != NULL;
6736}
6737
963a6417 6738/* The value of the tag on VAL. */
96d887e8 6739
963a6417
PH
6740struct value *
6741ada_value_tag (struct value *val)
6742{
03ee6b2e 6743 return ada_value_struct_elt (val, "_tag", 0);
96d887e8
PH
6744}
6745
963a6417
PH
6746/* The value of the tag on the object of type TYPE whose contents are
6747 saved at VALADDR, if it is non-null, or is at memory address
0963b4bd 6748 ADDRESS. */
96d887e8 6749
963a6417 6750static struct value *
10a2c479 6751value_tag_from_contents_and_address (struct type *type,
fc1a4b47 6752 const gdb_byte *valaddr,
963a6417 6753 CORE_ADDR address)
96d887e8 6754{
b5385fc0 6755 int tag_byte_offset;
963a6417 6756 struct type *tag_type;
5b4ee69b 6757
963a6417 6758 if (find_struct_field ("_tag", type, 0, &tag_type, &tag_byte_offset,
52ce6436 6759 NULL, NULL, NULL))
96d887e8 6760 {
fc1a4b47 6761 const gdb_byte *valaddr1 = ((valaddr == NULL)
10a2c479
AC
6762 ? NULL
6763 : valaddr + tag_byte_offset);
963a6417 6764 CORE_ADDR address1 = (address == 0) ? 0 : address + tag_byte_offset;
96d887e8 6765
963a6417 6766 return value_from_contents_and_address (tag_type, valaddr1, address1);
96d887e8 6767 }
963a6417
PH
6768 return NULL;
6769}
96d887e8 6770
963a6417
PH
6771static struct type *
6772type_from_tag (struct value *tag)
6773{
6774 const char *type_name = ada_tag_name (tag);
5b4ee69b 6775
963a6417
PH
6776 if (type_name != NULL)
6777 return ada_find_any_type (ada_encode (type_name));
6778 return NULL;
6779}
96d887e8 6780
b50d69b5
JG
6781/* Given a value OBJ of a tagged type, return a value of this
6782 type at the base address of the object. The base address, as
6783 defined in Ada.Tags, it is the address of the primary tag of
6784 the object, and therefore where the field values of its full
6785 view can be fetched. */
6786
6787struct value *
6788ada_tag_value_at_base_address (struct value *obj)
6789{
b50d69b5
JG
6790 struct value *val;
6791 LONGEST offset_to_top = 0;
6792 struct type *ptr_type, *obj_type;
6793 struct value *tag;
6794 CORE_ADDR base_address;
6795
6796 obj_type = value_type (obj);
6797
6798 /* It is the responsability of the caller to deref pointers. */
6799
6800 if (TYPE_CODE (obj_type) == TYPE_CODE_PTR
6801 || TYPE_CODE (obj_type) == TYPE_CODE_REF)
6802 return obj;
6803
6804 tag = ada_value_tag (obj);
6805 if (!tag)
6806 return obj;
6807
6808 /* Base addresses only appeared with Ada 05 and multiple inheritance. */
6809
6810 if (is_ada95_tag (tag))
6811 return obj;
6812
6813 ptr_type = builtin_type (target_gdbarch ())->builtin_data_ptr;
6814 ptr_type = lookup_pointer_type (ptr_type);
6815 val = value_cast (ptr_type, tag);
6816 if (!val)
6817 return obj;
6818
6819 /* It is perfectly possible that an exception be raised while
6820 trying to determine the base address, just like for the tag;
6821 see ada_tag_name for more details. We do not print the error
6822 message for the same reason. */
6823
492d29ea 6824 TRY
b50d69b5
JG
6825 {
6826 offset_to_top = value_as_long (value_ind (value_ptradd (val, -2)));
6827 }
6828
492d29ea
PA
6829 CATCH (e, RETURN_MASK_ERROR)
6830 {
6831 return obj;
6832 }
6833 END_CATCH
b50d69b5
JG
6834
6835 /* If offset is null, nothing to do. */
6836
6837 if (offset_to_top == 0)
6838 return obj;
6839
6840 /* -1 is a special case in Ada.Tags; however, what should be done
6841 is not quite clear from the documentation. So do nothing for
6842 now. */
6843
6844 if (offset_to_top == -1)
6845 return obj;
6846
6847 base_address = value_address (obj) - offset_to_top;
6848 tag = value_tag_from_contents_and_address (obj_type, NULL, base_address);
6849
6850 /* Make sure that we have a proper tag at the new address.
6851 Otherwise, offset_to_top is bogus (which can happen when
6852 the object is not initialized yet). */
6853
6854 if (!tag)
6855 return obj;
6856
6857 obj_type = type_from_tag (tag);
6858
6859 if (!obj_type)
6860 return obj;
6861
6862 return value_from_contents_and_address (obj_type, NULL, base_address);
6863}
6864
1b611343
JB
6865/* Return the "ada__tags__type_specific_data" type. */
6866
6867static struct type *
6868ada_get_tsd_type (struct inferior *inf)
963a6417 6869{
1b611343 6870 struct ada_inferior_data *data = get_ada_inferior_data (inf);
4c4b4cd2 6871
1b611343
JB
6872 if (data->tsd_type == 0)
6873 data->tsd_type = ada_find_any_type ("ada__tags__type_specific_data");
6874 return data->tsd_type;
6875}
529cad9c 6876
1b611343
JB
6877/* Return the TSD (type-specific data) associated to the given TAG.
6878 TAG is assumed to be the tag of a tagged-type entity.
529cad9c 6879
1b611343 6880 May return NULL if we are unable to get the TSD. */
4c4b4cd2 6881
1b611343
JB
6882static struct value *
6883ada_get_tsd_from_tag (struct value *tag)
4c4b4cd2 6884{
4c4b4cd2 6885 struct value *val;
1b611343 6886 struct type *type;
5b4ee69b 6887
1b611343
JB
6888 /* First option: The TSD is simply stored as a field of our TAG.
6889 Only older versions of GNAT would use this format, but we have
6890 to test it first, because there are no visible markers for
6891 the current approach except the absence of that field. */
529cad9c 6892
1b611343
JB
6893 val = ada_value_struct_elt (tag, "tsd", 1);
6894 if (val)
6895 return val;
e802dbe0 6896
1b611343
JB
6897 /* Try the second representation for the dispatch table (in which
6898 there is no explicit 'tsd' field in the referent of the tag pointer,
6899 and instead the tsd pointer is stored just before the dispatch
6900 table. */
e802dbe0 6901
1b611343
JB
6902 type = ada_get_tsd_type (current_inferior());
6903 if (type == NULL)
6904 return NULL;
6905 type = lookup_pointer_type (lookup_pointer_type (type));
6906 val = value_cast (type, tag);
6907 if (val == NULL)
6908 return NULL;
6909 return value_ind (value_ptradd (val, -1));
e802dbe0
JB
6910}
6911
1b611343
JB
6912/* Given the TSD of a tag (type-specific data), return a string
6913 containing the name of the associated type.
6914
6915 The returned value is good until the next call. May return NULL
6916 if we are unable to determine the tag name. */
6917
6918static char *
6919ada_tag_name_from_tsd (struct value *tsd)
529cad9c 6920{
529cad9c
PH
6921 static char name[1024];
6922 char *p;
1b611343 6923 struct value *val;
529cad9c 6924
1b611343 6925 val = ada_value_struct_elt (tsd, "expanded_name", 1);
4c4b4cd2 6926 if (val == NULL)
1b611343 6927 return NULL;
4c4b4cd2
PH
6928 read_memory_string (value_as_address (val), name, sizeof (name) - 1);
6929 for (p = name; *p != '\0'; p += 1)
6930 if (isalpha (*p))
6931 *p = tolower (*p);
1b611343 6932 return name;
4c4b4cd2
PH
6933}
6934
6935/* The type name of the dynamic type denoted by the 'tag value TAG, as
1b611343
JB
6936 a C string.
6937
6938 Return NULL if the TAG is not an Ada tag, or if we were unable to
6939 determine the name of that tag. The result is good until the next
6940 call. */
4c4b4cd2
PH
6941
6942const char *
6943ada_tag_name (struct value *tag)
6944{
1b611343 6945 char *name = NULL;
5b4ee69b 6946
df407dfe 6947 if (!ada_is_tag_type (value_type (tag)))
4c4b4cd2 6948 return NULL;
1b611343
JB
6949
6950 /* It is perfectly possible that an exception be raised while trying
6951 to determine the TAG's name, even under normal circumstances:
6952 The associated variable may be uninitialized or corrupted, for
6953 instance. We do not let any exception propagate past this point.
6954 instead we return NULL.
6955
6956 We also do not print the error message either (which often is very
6957 low-level (Eg: "Cannot read memory at 0x[...]"), but instead let
6958 the caller print a more meaningful message if necessary. */
492d29ea 6959 TRY
1b611343
JB
6960 {
6961 struct value *tsd = ada_get_tsd_from_tag (tag);
6962
6963 if (tsd != NULL)
6964 name = ada_tag_name_from_tsd (tsd);
6965 }
492d29ea
PA
6966 CATCH (e, RETURN_MASK_ERROR)
6967 {
6968 }
6969 END_CATCH
1b611343
JB
6970
6971 return name;
4c4b4cd2
PH
6972}
6973
6974/* The parent type of TYPE, or NULL if none. */
14f9c5c9 6975
d2e4a39e 6976struct type *
ebf56fd3 6977ada_parent_type (struct type *type)
14f9c5c9
AS
6978{
6979 int i;
6980
61ee279c 6981 type = ada_check_typedef (type);
14f9c5c9
AS
6982
6983 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT)
6984 return NULL;
6985
6986 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
6987 if (ada_is_parent_field (type, i))
0c1f74cf
JB
6988 {
6989 struct type *parent_type = TYPE_FIELD_TYPE (type, i);
6990
6991 /* If the _parent field is a pointer, then dereference it. */
6992 if (TYPE_CODE (parent_type) == TYPE_CODE_PTR)
6993 parent_type = TYPE_TARGET_TYPE (parent_type);
6994 /* If there is a parallel XVS type, get the actual base type. */
6995 parent_type = ada_get_base_type (parent_type);
6996
6997 return ada_check_typedef (parent_type);
6998 }
14f9c5c9
AS
6999
7000 return NULL;
7001}
7002
4c4b4cd2
PH
7003/* True iff field number FIELD_NUM of structure type TYPE contains the
7004 parent-type (inherited) fields of a derived type. Assumes TYPE is
7005 a structure type with at least FIELD_NUM+1 fields. */
14f9c5c9
AS
7006
7007int
ebf56fd3 7008ada_is_parent_field (struct type *type, int field_num)
14f9c5c9 7009{
61ee279c 7010 const char *name = TYPE_FIELD_NAME (ada_check_typedef (type), field_num);
5b4ee69b 7011
4c4b4cd2 7012 return (name != NULL
61012eef
GB
7013 && (startswith (name, "PARENT")
7014 || startswith (name, "_parent")));
14f9c5c9
AS
7015}
7016
4c4b4cd2 7017/* True iff field number FIELD_NUM of structure type TYPE is a
14f9c5c9 7018 transparent wrapper field (which should be silently traversed when doing
4c4b4cd2 7019 field selection and flattened when printing). Assumes TYPE is a
14f9c5c9 7020 structure type with at least FIELD_NUM+1 fields. Such fields are always
4c4b4cd2 7021 structures. */
14f9c5c9
AS
7022
7023int
ebf56fd3 7024ada_is_wrapper_field (struct type *type, int field_num)
14f9c5c9 7025{
d2e4a39e 7026 const char *name = TYPE_FIELD_NAME (type, field_num);
5b4ee69b 7027
dddc0e16
JB
7028 if (name != NULL && strcmp (name, "RETVAL") == 0)
7029 {
7030 /* This happens in functions with "out" or "in out" parameters
7031 which are passed by copy. For such functions, GNAT describes
7032 the function's return type as being a struct where the return
7033 value is in a field called RETVAL, and where the other "out"
7034 or "in out" parameters are fields of that struct. This is not
7035 a wrapper. */
7036 return 0;
7037 }
7038
d2e4a39e 7039 return (name != NULL
61012eef 7040 && (startswith (name, "PARENT")
4c4b4cd2 7041 || strcmp (name, "REP") == 0
61012eef 7042 || startswith (name, "_parent")
4c4b4cd2 7043 || name[0] == 'S' || name[0] == 'R' || name[0] == 'O'));
14f9c5c9
AS
7044}
7045
4c4b4cd2
PH
7046/* True iff field number FIELD_NUM of structure or union type TYPE
7047 is a variant wrapper. Assumes TYPE is a structure type with at least
7048 FIELD_NUM+1 fields. */
14f9c5c9
AS
7049
7050int
ebf56fd3 7051ada_is_variant_part (struct type *type, int field_num)
14f9c5c9 7052{
d2e4a39e 7053 struct type *field_type = TYPE_FIELD_TYPE (type, field_num);
5b4ee69b 7054
14f9c5c9 7055 return (TYPE_CODE (field_type) == TYPE_CODE_UNION
4c4b4cd2 7056 || (is_dynamic_field (type, field_num)
c3e5cd34
PH
7057 && (TYPE_CODE (TYPE_TARGET_TYPE (field_type))
7058 == TYPE_CODE_UNION)));
14f9c5c9
AS
7059}
7060
7061/* Assuming that VAR_TYPE is a variant wrapper (type of the variant part)
4c4b4cd2 7062 whose discriminants are contained in the record type OUTER_TYPE,
7c964f07
UW
7063 returns the type of the controlling discriminant for the variant.
7064 May return NULL if the type could not be found. */
14f9c5c9 7065
d2e4a39e 7066struct type *
ebf56fd3 7067ada_variant_discrim_type (struct type *var_type, struct type *outer_type)
14f9c5c9 7068{
a121b7c1 7069 const char *name = ada_variant_discrim_name (var_type);
5b4ee69b 7070
988f6b3d 7071 return ada_lookup_struct_elt_type (outer_type, name, 1, 1);
14f9c5c9
AS
7072}
7073
4c4b4cd2 7074/* Assuming that TYPE is the type of a variant wrapper, and FIELD_NUM is a
14f9c5c9 7075 valid field number within it, returns 1 iff field FIELD_NUM of TYPE
4c4b4cd2 7076 represents a 'when others' clause; otherwise 0. */
14f9c5c9
AS
7077
7078int
ebf56fd3 7079ada_is_others_clause (struct type *type, int field_num)
14f9c5c9 7080{
d2e4a39e 7081 const char *name = TYPE_FIELD_NAME (type, field_num);
5b4ee69b 7082
14f9c5c9
AS
7083 return (name != NULL && name[0] == 'O');
7084}
7085
7086/* Assuming that TYPE0 is the type of the variant part of a record,
4c4b4cd2
PH
7087 returns the name of the discriminant controlling the variant.
7088 The value is valid until the next call to ada_variant_discrim_name. */
14f9c5c9 7089
a121b7c1 7090const char *
ebf56fd3 7091ada_variant_discrim_name (struct type *type0)
14f9c5c9 7092{
d2e4a39e 7093 static char *result = NULL;
14f9c5c9 7094 static size_t result_len = 0;
d2e4a39e
AS
7095 struct type *type;
7096 const char *name;
7097 const char *discrim_end;
7098 const char *discrim_start;
14f9c5c9
AS
7099
7100 if (TYPE_CODE (type0) == TYPE_CODE_PTR)
7101 type = TYPE_TARGET_TYPE (type0);
7102 else
7103 type = type0;
7104
7105 name = ada_type_name (type);
7106
7107 if (name == NULL || name[0] == '\000')
7108 return "";
7109
7110 for (discrim_end = name + strlen (name) - 6; discrim_end != name;
7111 discrim_end -= 1)
7112 {
61012eef 7113 if (startswith (discrim_end, "___XVN"))
4c4b4cd2 7114 break;
14f9c5c9
AS
7115 }
7116 if (discrim_end == name)
7117 return "";
7118
d2e4a39e 7119 for (discrim_start = discrim_end; discrim_start != name + 3;
14f9c5c9
AS
7120 discrim_start -= 1)
7121 {
d2e4a39e 7122 if (discrim_start == name + 1)
4c4b4cd2 7123 return "";
76a01679 7124 if ((discrim_start > name + 3
61012eef 7125 && startswith (discrim_start - 3, "___"))
4c4b4cd2
PH
7126 || discrim_start[-1] == '.')
7127 break;
14f9c5c9
AS
7128 }
7129
7130 GROW_VECT (result, result_len, discrim_end - discrim_start + 1);
7131 strncpy (result, discrim_start, discrim_end - discrim_start);
d2e4a39e 7132 result[discrim_end - discrim_start] = '\0';
14f9c5c9
AS
7133 return result;
7134}
7135
4c4b4cd2
PH
7136/* Scan STR for a subtype-encoded number, beginning at position K.
7137 Put the position of the character just past the number scanned in
7138 *NEW_K, if NEW_K!=NULL. Put the scanned number in *R, if R!=NULL.
7139 Return 1 if there was a valid number at the given position, and 0
7140 otherwise. A "subtype-encoded" number consists of the absolute value
7141 in decimal, followed by the letter 'm' to indicate a negative number.
7142 Assumes 0m does not occur. */
14f9c5c9
AS
7143
7144int
d2e4a39e 7145ada_scan_number (const char str[], int k, LONGEST * R, int *new_k)
14f9c5c9
AS
7146{
7147 ULONGEST RU;
7148
d2e4a39e 7149 if (!isdigit (str[k]))
14f9c5c9
AS
7150 return 0;
7151
4c4b4cd2 7152 /* Do it the hard way so as not to make any assumption about
14f9c5c9 7153 the relationship of unsigned long (%lu scan format code) and
4c4b4cd2 7154 LONGEST. */
14f9c5c9
AS
7155 RU = 0;
7156 while (isdigit (str[k]))
7157 {
d2e4a39e 7158 RU = RU * 10 + (str[k] - '0');
14f9c5c9
AS
7159 k += 1;
7160 }
7161
d2e4a39e 7162 if (str[k] == 'm')
14f9c5c9
AS
7163 {
7164 if (R != NULL)
4c4b4cd2 7165 *R = (-(LONGEST) (RU - 1)) - 1;
14f9c5c9
AS
7166 k += 1;
7167 }
7168 else if (R != NULL)
7169 *R = (LONGEST) RU;
7170
4c4b4cd2 7171 /* NOTE on the above: Technically, C does not say what the results of
14f9c5c9
AS
7172 - (LONGEST) RU or (LONGEST) -RU are for RU == largest positive
7173 number representable as a LONGEST (although either would probably work
7174 in most implementations). When RU>0, the locution in the then branch
4c4b4cd2 7175 above is always equivalent to the negative of RU. */
14f9c5c9
AS
7176
7177 if (new_k != NULL)
7178 *new_k = k;
7179 return 1;
7180}
7181
4c4b4cd2
PH
7182/* Assuming that TYPE is a variant part wrapper type (a VARIANTS field),
7183 and FIELD_NUM is a valid field number within it, returns 1 iff VAL is
7184 in the range encoded by field FIELD_NUM of TYPE; otherwise 0. */
14f9c5c9 7185
d2e4a39e 7186int
ebf56fd3 7187ada_in_variant (LONGEST val, struct type *type, int field_num)
14f9c5c9 7188{
d2e4a39e 7189 const char *name = TYPE_FIELD_NAME (type, field_num);
14f9c5c9
AS
7190 int p;
7191
7192 p = 0;
7193 while (1)
7194 {
d2e4a39e 7195 switch (name[p])
4c4b4cd2
PH
7196 {
7197 case '\0':
7198 return 0;
7199 case 'S':
7200 {
7201 LONGEST W;
5b4ee69b 7202
4c4b4cd2
PH
7203 if (!ada_scan_number (name, p + 1, &W, &p))
7204 return 0;
7205 if (val == W)
7206 return 1;
7207 break;
7208 }
7209 case 'R':
7210 {
7211 LONGEST L, U;
5b4ee69b 7212
4c4b4cd2
PH
7213 if (!ada_scan_number (name, p + 1, &L, &p)
7214 || name[p] != 'T' || !ada_scan_number (name, p + 1, &U, &p))
7215 return 0;
7216 if (val >= L && val <= U)
7217 return 1;
7218 break;
7219 }
7220 case 'O':
7221 return 1;
7222 default:
7223 return 0;
7224 }
7225 }
7226}
7227
0963b4bd 7228/* FIXME: Lots of redundancy below. Try to consolidate. */
4c4b4cd2
PH
7229
7230/* Given a value ARG1 (offset by OFFSET bytes) of a struct or union type
7231 ARG_TYPE, extract and return the value of one of its (non-static)
7232 fields. FIELDNO says which field. Differs from value_primitive_field
7233 only in that it can handle packed values of arbitrary type. */
14f9c5c9 7234
4c4b4cd2 7235static struct value *
d2e4a39e 7236ada_value_primitive_field (struct value *arg1, int offset, int fieldno,
4c4b4cd2 7237 struct type *arg_type)
14f9c5c9 7238{
14f9c5c9
AS
7239 struct type *type;
7240
61ee279c 7241 arg_type = ada_check_typedef (arg_type);
14f9c5c9
AS
7242 type = TYPE_FIELD_TYPE (arg_type, fieldno);
7243
4c4b4cd2 7244 /* Handle packed fields. */
14f9c5c9
AS
7245
7246 if (TYPE_FIELD_BITSIZE (arg_type, fieldno) != 0)
7247 {
7248 int bit_pos = TYPE_FIELD_BITPOS (arg_type, fieldno);
7249 int bit_size = TYPE_FIELD_BITSIZE (arg_type, fieldno);
d2e4a39e 7250
0fd88904 7251 return ada_value_primitive_packed_val (arg1, value_contents (arg1),
4c4b4cd2
PH
7252 offset + bit_pos / 8,
7253 bit_pos % 8, bit_size, type);
14f9c5c9
AS
7254 }
7255 else
7256 return value_primitive_field (arg1, offset, fieldno, arg_type);
7257}
7258
52ce6436
PH
7259/* Find field with name NAME in object of type TYPE. If found,
7260 set the following for each argument that is non-null:
7261 - *FIELD_TYPE_P to the field's type;
7262 - *BYTE_OFFSET_P to OFFSET + the byte offset of the field within
7263 an object of that type;
7264 - *BIT_OFFSET_P to the bit offset modulo byte size of the field;
7265 - *BIT_SIZE_P to its size in bits if the field is packed, and
7266 0 otherwise;
7267 If INDEX_P is non-null, increment *INDEX_P by the number of source-visible
7268 fields up to but not including the desired field, or by the total
7269 number of fields if not found. A NULL value of NAME never
7270 matches; the function just counts visible fields in this case.
7271
0963b4bd 7272 Returns 1 if found, 0 otherwise. */
52ce6436 7273
4c4b4cd2 7274static int
0d5cff50 7275find_struct_field (const char *name, struct type *type, int offset,
76a01679 7276 struct type **field_type_p,
52ce6436
PH
7277 int *byte_offset_p, int *bit_offset_p, int *bit_size_p,
7278 int *index_p)
4c4b4cd2
PH
7279{
7280 int i;
7281
61ee279c 7282 type = ada_check_typedef (type);
76a01679 7283
52ce6436
PH
7284 if (field_type_p != NULL)
7285 *field_type_p = NULL;
7286 if (byte_offset_p != NULL)
d5d6fca5 7287 *byte_offset_p = 0;
52ce6436
PH
7288 if (bit_offset_p != NULL)
7289 *bit_offset_p = 0;
7290 if (bit_size_p != NULL)
7291 *bit_size_p = 0;
7292
7293 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
4c4b4cd2
PH
7294 {
7295 int bit_pos = TYPE_FIELD_BITPOS (type, i);
7296 int fld_offset = offset + bit_pos / 8;
0d5cff50 7297 const char *t_field_name = TYPE_FIELD_NAME (type, i);
76a01679 7298
4c4b4cd2
PH
7299 if (t_field_name == NULL)
7300 continue;
7301
52ce6436 7302 else if (name != NULL && field_name_match (t_field_name, name))
76a01679
JB
7303 {
7304 int bit_size = TYPE_FIELD_BITSIZE (type, i);
5b4ee69b 7305
52ce6436
PH
7306 if (field_type_p != NULL)
7307 *field_type_p = TYPE_FIELD_TYPE (type, i);
7308 if (byte_offset_p != NULL)
7309 *byte_offset_p = fld_offset;
7310 if (bit_offset_p != NULL)
7311 *bit_offset_p = bit_pos % 8;
7312 if (bit_size_p != NULL)
7313 *bit_size_p = bit_size;
76a01679
JB
7314 return 1;
7315 }
4c4b4cd2
PH
7316 else if (ada_is_wrapper_field (type, i))
7317 {
52ce6436
PH
7318 if (find_struct_field (name, TYPE_FIELD_TYPE (type, i), fld_offset,
7319 field_type_p, byte_offset_p, bit_offset_p,
7320 bit_size_p, index_p))
76a01679
JB
7321 return 1;
7322 }
4c4b4cd2
PH
7323 else if (ada_is_variant_part (type, i))
7324 {
52ce6436
PH
7325 /* PNH: Wait. Do we ever execute this section, or is ARG always of
7326 fixed type?? */
4c4b4cd2 7327 int j;
52ce6436
PH
7328 struct type *field_type
7329 = ada_check_typedef (TYPE_FIELD_TYPE (type, i));
4c4b4cd2 7330
52ce6436 7331 for (j = 0; j < TYPE_NFIELDS (field_type); j += 1)
4c4b4cd2 7332 {
76a01679
JB
7333 if (find_struct_field (name, TYPE_FIELD_TYPE (field_type, j),
7334 fld_offset
7335 + TYPE_FIELD_BITPOS (field_type, j) / 8,
7336 field_type_p, byte_offset_p,
52ce6436 7337 bit_offset_p, bit_size_p, index_p))
76a01679 7338 return 1;
4c4b4cd2
PH
7339 }
7340 }
52ce6436
PH
7341 else if (index_p != NULL)
7342 *index_p += 1;
4c4b4cd2
PH
7343 }
7344 return 0;
7345}
7346
0963b4bd 7347/* Number of user-visible fields in record type TYPE. */
4c4b4cd2 7348
52ce6436
PH
7349static int
7350num_visible_fields (struct type *type)
7351{
7352 int n;
5b4ee69b 7353
52ce6436
PH
7354 n = 0;
7355 find_struct_field (NULL, type, 0, NULL, NULL, NULL, NULL, &n);
7356 return n;
7357}
14f9c5c9 7358
4c4b4cd2 7359/* Look for a field NAME in ARG. Adjust the address of ARG by OFFSET bytes,
14f9c5c9
AS
7360 and search in it assuming it has (class) type TYPE.
7361 If found, return value, else return NULL.
7362
4c4b4cd2 7363 Searches recursively through wrapper fields (e.g., '_parent'). */
14f9c5c9 7364
4c4b4cd2 7365static struct value *
108d56a4 7366ada_search_struct_field (const char *name, struct value *arg, int offset,
4c4b4cd2 7367 struct type *type)
14f9c5c9
AS
7368{
7369 int i;
14f9c5c9 7370
5b4ee69b 7371 type = ada_check_typedef (type);
52ce6436 7372 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
14f9c5c9 7373 {
0d5cff50 7374 const char *t_field_name = TYPE_FIELD_NAME (type, i);
14f9c5c9
AS
7375
7376 if (t_field_name == NULL)
4c4b4cd2 7377 continue;
14f9c5c9
AS
7378
7379 else if (field_name_match (t_field_name, name))
4c4b4cd2 7380 return ada_value_primitive_field (arg, offset, i, type);
14f9c5c9
AS
7381
7382 else if (ada_is_wrapper_field (type, i))
4c4b4cd2 7383 {
0963b4bd 7384 struct value *v = /* Do not let indent join lines here. */
06d5cf63
JB
7385 ada_search_struct_field (name, arg,
7386 offset + TYPE_FIELD_BITPOS (type, i) / 8,
7387 TYPE_FIELD_TYPE (type, i));
5b4ee69b 7388
4c4b4cd2
PH
7389 if (v != NULL)
7390 return v;
7391 }
14f9c5c9
AS
7392
7393 else if (ada_is_variant_part (type, i))
4c4b4cd2 7394 {
0963b4bd 7395 /* PNH: Do we ever get here? See find_struct_field. */
4c4b4cd2 7396 int j;
5b4ee69b
MS
7397 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type,
7398 i));
4c4b4cd2
PH
7399 int var_offset = offset + TYPE_FIELD_BITPOS (type, i) / 8;
7400
52ce6436 7401 for (j = 0; j < TYPE_NFIELDS (field_type); j += 1)
4c4b4cd2 7402 {
0963b4bd
MS
7403 struct value *v = ada_search_struct_field /* Force line
7404 break. */
06d5cf63
JB
7405 (name, arg,
7406 var_offset + TYPE_FIELD_BITPOS (field_type, j) / 8,
7407 TYPE_FIELD_TYPE (field_type, j));
5b4ee69b 7408
4c4b4cd2
PH
7409 if (v != NULL)
7410 return v;
7411 }
7412 }
14f9c5c9
AS
7413 }
7414 return NULL;
7415}
d2e4a39e 7416
52ce6436
PH
7417static struct value *ada_index_struct_field_1 (int *, struct value *,
7418 int, struct type *);
7419
7420
7421/* Return field #INDEX in ARG, where the index is that returned by
7422 * find_struct_field through its INDEX_P argument. Adjust the address
7423 * of ARG by OFFSET bytes, and search in it assuming it has (class) type TYPE.
0963b4bd 7424 * If found, return value, else return NULL. */
52ce6436
PH
7425
7426static struct value *
7427ada_index_struct_field (int index, struct value *arg, int offset,
7428 struct type *type)
7429{
7430 return ada_index_struct_field_1 (&index, arg, offset, type);
7431}
7432
7433
7434/* Auxiliary function for ada_index_struct_field. Like
7435 * ada_index_struct_field, but takes index from *INDEX_P and modifies
0963b4bd 7436 * *INDEX_P. */
52ce6436
PH
7437
7438static struct value *
7439ada_index_struct_field_1 (int *index_p, struct value *arg, int offset,
7440 struct type *type)
7441{
7442 int i;
7443 type = ada_check_typedef (type);
7444
7445 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
7446 {
7447 if (TYPE_FIELD_NAME (type, i) == NULL)
7448 continue;
7449 else if (ada_is_wrapper_field (type, i))
7450 {
0963b4bd 7451 struct value *v = /* Do not let indent join lines here. */
52ce6436
PH
7452 ada_index_struct_field_1 (index_p, arg,
7453 offset + TYPE_FIELD_BITPOS (type, i) / 8,
7454 TYPE_FIELD_TYPE (type, i));
5b4ee69b 7455
52ce6436
PH
7456 if (v != NULL)
7457 return v;
7458 }
7459
7460 else if (ada_is_variant_part (type, i))
7461 {
7462 /* PNH: Do we ever get here? See ada_search_struct_field,
0963b4bd 7463 find_struct_field. */
52ce6436
PH
7464 error (_("Cannot assign this kind of variant record"));
7465 }
7466 else if (*index_p == 0)
7467 return ada_value_primitive_field (arg, offset, i, type);
7468 else
7469 *index_p -= 1;
7470 }
7471 return NULL;
7472}
7473
4c4b4cd2
PH
7474/* Given ARG, a value of type (pointer or reference to a)*
7475 structure/union, extract the component named NAME from the ultimate
7476 target structure/union and return it as a value with its
f5938064 7477 appropriate type.
14f9c5c9 7478
4c4b4cd2
PH
7479 The routine searches for NAME among all members of the structure itself
7480 and (recursively) among all members of any wrapper members
14f9c5c9
AS
7481 (e.g., '_parent').
7482
03ee6b2e
PH
7483 If NO_ERR, then simply return NULL in case of error, rather than
7484 calling error. */
14f9c5c9 7485
d2e4a39e 7486struct value *
a121b7c1 7487ada_value_struct_elt (struct value *arg, const char *name, int no_err)
14f9c5c9 7488{
4c4b4cd2 7489 struct type *t, *t1;
d2e4a39e 7490 struct value *v;
14f9c5c9 7491
4c4b4cd2 7492 v = NULL;
df407dfe 7493 t1 = t = ada_check_typedef (value_type (arg));
4c4b4cd2
PH
7494 if (TYPE_CODE (t) == TYPE_CODE_REF)
7495 {
7496 t1 = TYPE_TARGET_TYPE (t);
7497 if (t1 == NULL)
03ee6b2e 7498 goto BadValue;
61ee279c 7499 t1 = ada_check_typedef (t1);
4c4b4cd2 7500 if (TYPE_CODE (t1) == TYPE_CODE_PTR)
76a01679 7501 {
994b9211 7502 arg = coerce_ref (arg);
76a01679
JB
7503 t = t1;
7504 }
4c4b4cd2 7505 }
14f9c5c9 7506
4c4b4cd2
PH
7507 while (TYPE_CODE (t) == TYPE_CODE_PTR)
7508 {
7509 t1 = TYPE_TARGET_TYPE (t);
7510 if (t1 == NULL)
03ee6b2e 7511 goto BadValue;
61ee279c 7512 t1 = ada_check_typedef (t1);
4c4b4cd2 7513 if (TYPE_CODE (t1) == TYPE_CODE_PTR)
76a01679
JB
7514 {
7515 arg = value_ind (arg);
7516 t = t1;
7517 }
4c4b4cd2 7518 else
76a01679 7519 break;
4c4b4cd2 7520 }
14f9c5c9 7521
4c4b4cd2 7522 if (TYPE_CODE (t1) != TYPE_CODE_STRUCT && TYPE_CODE (t1) != TYPE_CODE_UNION)
03ee6b2e 7523 goto BadValue;
14f9c5c9 7524
4c4b4cd2
PH
7525 if (t1 == t)
7526 v = ada_search_struct_field (name, arg, 0, t);
7527 else
7528 {
7529 int bit_offset, bit_size, byte_offset;
7530 struct type *field_type;
7531 CORE_ADDR address;
7532
76a01679 7533 if (TYPE_CODE (t) == TYPE_CODE_PTR)
b50d69b5 7534 address = value_address (ada_value_ind (arg));
4c4b4cd2 7535 else
b50d69b5 7536 address = value_address (ada_coerce_ref (arg));
14f9c5c9 7537
1ed6ede0 7538 t1 = ada_to_fixed_type (ada_get_base_type (t1), NULL, address, NULL, 1);
76a01679
JB
7539 if (find_struct_field (name, t1, 0,
7540 &field_type, &byte_offset, &bit_offset,
52ce6436 7541 &bit_size, NULL))
76a01679
JB
7542 {
7543 if (bit_size != 0)
7544 {
714e53ab
PH
7545 if (TYPE_CODE (t) == TYPE_CODE_REF)
7546 arg = ada_coerce_ref (arg);
7547 else
7548 arg = ada_value_ind (arg);
76a01679
JB
7549 v = ada_value_primitive_packed_val (arg, NULL, byte_offset,
7550 bit_offset, bit_size,
7551 field_type);
7552 }
7553 else
f5938064 7554 v = value_at_lazy (field_type, address + byte_offset);
76a01679
JB
7555 }
7556 }
7557
03ee6b2e
PH
7558 if (v != NULL || no_err)
7559 return v;
7560 else
323e0a4a 7561 error (_("There is no member named %s."), name);
14f9c5c9 7562
03ee6b2e
PH
7563 BadValue:
7564 if (no_err)
7565 return NULL;
7566 else
0963b4bd
MS
7567 error (_("Attempt to extract a component of "
7568 "a value that is not a record."));
14f9c5c9
AS
7569}
7570
3b4de39c 7571/* Return a string representation of type TYPE. */
99bbb428 7572
3b4de39c 7573static std::string
99bbb428
PA
7574type_as_string (struct type *type)
7575{
d7e74731 7576 string_file tmp_stream;
99bbb428 7577
d7e74731 7578 type_print (type, "", &tmp_stream, -1);
99bbb428 7579
d7e74731 7580 return std::move (tmp_stream.string ());
99bbb428
PA
7581}
7582
14f9c5c9 7583/* Given a type TYPE, look up the type of the component of type named NAME.
4c4b4cd2
PH
7584 If DISPP is non-null, add its byte displacement from the beginning of a
7585 structure (pointed to by a value) of type TYPE to *DISPP (does not
14f9c5c9
AS
7586 work for packed fields).
7587
7588 Matches any field whose name has NAME as a prefix, possibly
4c4b4cd2 7589 followed by "___".
14f9c5c9 7590
0963b4bd 7591 TYPE can be either a struct or union. If REFOK, TYPE may also
4c4b4cd2
PH
7592 be a (pointer or reference)+ to a struct or union, and the
7593 ultimate target type will be searched.
14f9c5c9
AS
7594
7595 Looks recursively into variant clauses and parent types.
7596
4c4b4cd2
PH
7597 If NOERR is nonzero, return NULL if NAME is not suitably defined or
7598 TYPE is not a type of the right kind. */
14f9c5c9 7599
4c4b4cd2 7600static struct type *
a121b7c1 7601ada_lookup_struct_elt_type (struct type *type, const char *name, int refok,
988f6b3d 7602 int noerr)
14f9c5c9
AS
7603{
7604 int i;
7605
7606 if (name == NULL)
7607 goto BadName;
7608
76a01679 7609 if (refok && type != NULL)
4c4b4cd2
PH
7610 while (1)
7611 {
61ee279c 7612 type = ada_check_typedef (type);
76a01679
JB
7613 if (TYPE_CODE (type) != TYPE_CODE_PTR
7614 && TYPE_CODE (type) != TYPE_CODE_REF)
7615 break;
7616 type = TYPE_TARGET_TYPE (type);
4c4b4cd2 7617 }
14f9c5c9 7618
76a01679 7619 if (type == NULL
1265e4aa
JB
7620 || (TYPE_CODE (type) != TYPE_CODE_STRUCT
7621 && TYPE_CODE (type) != TYPE_CODE_UNION))
14f9c5c9 7622 {
4c4b4cd2 7623 if (noerr)
76a01679 7624 return NULL;
99bbb428 7625
3b4de39c
PA
7626 error (_("Type %s is not a structure or union type"),
7627 type != NULL ? type_as_string (type).c_str () : _("(null)"));
14f9c5c9
AS
7628 }
7629
7630 type = to_static_fixed_type (type);
7631
7632 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
7633 {
0d5cff50 7634 const char *t_field_name = TYPE_FIELD_NAME (type, i);
14f9c5c9 7635 struct type *t;
d2e4a39e 7636
14f9c5c9 7637 if (t_field_name == NULL)
4c4b4cd2 7638 continue;
14f9c5c9
AS
7639
7640 else if (field_name_match (t_field_name, name))
988f6b3d 7641 return TYPE_FIELD_TYPE (type, i);
14f9c5c9
AS
7642
7643 else if (ada_is_wrapper_field (type, i))
4c4b4cd2 7644 {
4c4b4cd2 7645 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (type, i), name,
988f6b3d 7646 0, 1);
4c4b4cd2 7647 if (t != NULL)
988f6b3d 7648 return t;
4c4b4cd2 7649 }
14f9c5c9
AS
7650
7651 else if (ada_is_variant_part (type, i))
4c4b4cd2
PH
7652 {
7653 int j;
5b4ee69b
MS
7654 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type,
7655 i));
4c4b4cd2
PH
7656
7657 for (j = TYPE_NFIELDS (field_type) - 1; j >= 0; j -= 1)
7658 {
b1f33ddd
JB
7659 /* FIXME pnh 2008/01/26: We check for a field that is
7660 NOT wrapped in a struct, since the compiler sometimes
7661 generates these for unchecked variant types. Revisit
0963b4bd 7662 if the compiler changes this practice. */
0d5cff50 7663 const char *v_field_name = TYPE_FIELD_NAME (field_type, j);
988f6b3d 7664
b1f33ddd
JB
7665 if (v_field_name != NULL
7666 && field_name_match (v_field_name, name))
460efde1 7667 t = TYPE_FIELD_TYPE (field_type, j);
b1f33ddd 7668 else
0963b4bd
MS
7669 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (field_type,
7670 j),
988f6b3d 7671 name, 0, 1);
b1f33ddd 7672
4c4b4cd2 7673 if (t != NULL)
988f6b3d 7674 return t;
4c4b4cd2
PH
7675 }
7676 }
14f9c5c9
AS
7677
7678 }
7679
7680BadName:
d2e4a39e 7681 if (!noerr)
14f9c5c9 7682 {
2b2798cc 7683 const char *name_str = name != NULL ? name : _("<null>");
99bbb428
PA
7684
7685 error (_("Type %s has no component named %s"),
3b4de39c 7686 type_as_string (type).c_str (), name_str);
14f9c5c9
AS
7687 }
7688
7689 return NULL;
7690}
7691
b1f33ddd
JB
7692/* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
7693 within a value of type OUTER_TYPE, return true iff VAR_TYPE
7694 represents an unchecked union (that is, the variant part of a
0963b4bd 7695 record that is named in an Unchecked_Union pragma). */
b1f33ddd
JB
7696
7697static int
7698is_unchecked_variant (struct type *var_type, struct type *outer_type)
7699{
a121b7c1 7700 const char *discrim_name = ada_variant_discrim_name (var_type);
5b4ee69b 7701
988f6b3d 7702 return (ada_lookup_struct_elt_type (outer_type, discrim_name, 0, 1) == NULL);
b1f33ddd
JB
7703}
7704
7705
14f9c5c9
AS
7706/* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
7707 within a value of type OUTER_TYPE that is stored in GDB at
4c4b4cd2
PH
7708 OUTER_VALADDR, determine which variant clause (field number in VAR_TYPE,
7709 numbering from 0) is applicable. Returns -1 if none are. */
14f9c5c9 7710
d2e4a39e 7711int
ebf56fd3 7712ada_which_variant_applies (struct type *var_type, struct type *outer_type,
fc1a4b47 7713 const gdb_byte *outer_valaddr)
14f9c5c9
AS
7714{
7715 int others_clause;
7716 int i;
a121b7c1 7717 const char *discrim_name = ada_variant_discrim_name (var_type);
0c281816
JB
7718 struct value *outer;
7719 struct value *discrim;
14f9c5c9
AS
7720 LONGEST discrim_val;
7721
012370f6
TT
7722 /* Using plain value_from_contents_and_address here causes problems
7723 because we will end up trying to resolve a type that is currently
7724 being constructed. */
7725 outer = value_from_contents_and_address_unresolved (outer_type,
7726 outer_valaddr, 0);
0c281816
JB
7727 discrim = ada_value_struct_elt (outer, discrim_name, 1);
7728 if (discrim == NULL)
14f9c5c9 7729 return -1;
0c281816 7730 discrim_val = value_as_long (discrim);
14f9c5c9
AS
7731
7732 others_clause = -1;
7733 for (i = 0; i < TYPE_NFIELDS (var_type); i += 1)
7734 {
7735 if (ada_is_others_clause (var_type, i))
4c4b4cd2 7736 others_clause = i;
14f9c5c9 7737 else if (ada_in_variant (discrim_val, var_type, i))
4c4b4cd2 7738 return i;
14f9c5c9
AS
7739 }
7740
7741 return others_clause;
7742}
d2e4a39e 7743\f
14f9c5c9
AS
7744
7745
4c4b4cd2 7746 /* Dynamic-Sized Records */
14f9c5c9
AS
7747
7748/* Strategy: The type ostensibly attached to a value with dynamic size
7749 (i.e., a size that is not statically recorded in the debugging
7750 data) does not accurately reflect the size or layout of the value.
7751 Our strategy is to convert these values to values with accurate,
4c4b4cd2 7752 conventional types that are constructed on the fly. */
14f9c5c9
AS
7753
7754/* There is a subtle and tricky problem here. In general, we cannot
7755 determine the size of dynamic records without its data. However,
7756 the 'struct value' data structure, which GDB uses to represent
7757 quantities in the inferior process (the target), requires the size
7758 of the type at the time of its allocation in order to reserve space
7759 for GDB's internal copy of the data. That's why the
7760 'to_fixed_xxx_type' routines take (target) addresses as parameters,
4c4b4cd2 7761 rather than struct value*s.
14f9c5c9
AS
7762
7763 However, GDB's internal history variables ($1, $2, etc.) are
7764 struct value*s containing internal copies of the data that are not, in
7765 general, the same as the data at their corresponding addresses in
7766 the target. Fortunately, the types we give to these values are all
7767 conventional, fixed-size types (as per the strategy described
7768 above), so that we don't usually have to perform the
7769 'to_fixed_xxx_type' conversions to look at their values.
7770 Unfortunately, there is one exception: if one of the internal
7771 history variables is an array whose elements are unconstrained
7772 records, then we will need to create distinct fixed types for each
7773 element selected. */
7774
7775/* The upshot of all of this is that many routines take a (type, host
7776 address, target address) triple as arguments to represent a value.
7777 The host address, if non-null, is supposed to contain an internal
7778 copy of the relevant data; otherwise, the program is to consult the
4c4b4cd2 7779 target at the target address. */
14f9c5c9
AS
7780
7781/* Assuming that VAL0 represents a pointer value, the result of
7782 dereferencing it. Differs from value_ind in its treatment of
4c4b4cd2 7783 dynamic-sized types. */
14f9c5c9 7784
d2e4a39e
AS
7785struct value *
7786ada_value_ind (struct value *val0)
14f9c5c9 7787{
c48db5ca 7788 struct value *val = value_ind (val0);
5b4ee69b 7789
b50d69b5
JG
7790 if (ada_is_tagged_type (value_type (val), 0))
7791 val = ada_tag_value_at_base_address (val);
7792
4c4b4cd2 7793 return ada_to_fixed_value (val);
14f9c5c9
AS
7794}
7795
7796/* The value resulting from dereferencing any "reference to"
4c4b4cd2
PH
7797 qualifiers on VAL0. */
7798
d2e4a39e
AS
7799static struct value *
7800ada_coerce_ref (struct value *val0)
7801{
df407dfe 7802 if (TYPE_CODE (value_type (val0)) == TYPE_CODE_REF)
d2e4a39e
AS
7803 {
7804 struct value *val = val0;
5b4ee69b 7805
994b9211 7806 val = coerce_ref (val);
b50d69b5
JG
7807
7808 if (ada_is_tagged_type (value_type (val), 0))
7809 val = ada_tag_value_at_base_address (val);
7810
4c4b4cd2 7811 return ada_to_fixed_value (val);
d2e4a39e
AS
7812 }
7813 else
14f9c5c9
AS
7814 return val0;
7815}
7816
7817/* Return OFF rounded upward if necessary to a multiple of
4c4b4cd2 7818 ALIGNMENT (a power of 2). */
14f9c5c9
AS
7819
7820static unsigned int
ebf56fd3 7821align_value (unsigned int off, unsigned int alignment)
14f9c5c9
AS
7822{
7823 return (off + alignment - 1) & ~(alignment - 1);
7824}
7825
4c4b4cd2 7826/* Return the bit alignment required for field #F of template type TYPE. */
14f9c5c9
AS
7827
7828static unsigned int
ebf56fd3 7829field_alignment (struct type *type, int f)
14f9c5c9 7830{
d2e4a39e 7831 const char *name = TYPE_FIELD_NAME (type, f);
64a1bf19 7832 int len;
14f9c5c9
AS
7833 int align_offset;
7834
64a1bf19
JB
7835 /* The field name should never be null, unless the debugging information
7836 is somehow malformed. In this case, we assume the field does not
7837 require any alignment. */
7838 if (name == NULL)
7839 return 1;
7840
7841 len = strlen (name);
7842
4c4b4cd2
PH
7843 if (!isdigit (name[len - 1]))
7844 return 1;
14f9c5c9 7845
d2e4a39e 7846 if (isdigit (name[len - 2]))
14f9c5c9
AS
7847 align_offset = len - 2;
7848 else
7849 align_offset = len - 1;
7850
61012eef 7851 if (align_offset < 7 || !startswith (name + align_offset - 6, "___XV"))
14f9c5c9
AS
7852 return TARGET_CHAR_BIT;
7853
4c4b4cd2
PH
7854 return atoi (name + align_offset) * TARGET_CHAR_BIT;
7855}
7856
852dff6c 7857/* Find a typedef or tag symbol named NAME. Ignores ambiguity. */
4c4b4cd2 7858
852dff6c
JB
7859static struct symbol *
7860ada_find_any_type_symbol (const char *name)
4c4b4cd2
PH
7861{
7862 struct symbol *sym;
7863
7864 sym = standard_lookup (name, get_selected_block (NULL), VAR_DOMAIN);
4186eb54 7865 if (sym != NULL && SYMBOL_CLASS (sym) == LOC_TYPEDEF)
4c4b4cd2
PH
7866 return sym;
7867
4186eb54
KS
7868 sym = standard_lookup (name, NULL, STRUCT_DOMAIN);
7869 return sym;
14f9c5c9
AS
7870}
7871
dddfab26
UW
7872/* Find a type named NAME. Ignores ambiguity. This routine will look
7873 solely for types defined by debug info, it will not search the GDB
7874 primitive types. */
4c4b4cd2 7875
852dff6c 7876static struct type *
ebf56fd3 7877ada_find_any_type (const char *name)
14f9c5c9 7878{
852dff6c 7879 struct symbol *sym = ada_find_any_type_symbol (name);
14f9c5c9 7880
14f9c5c9 7881 if (sym != NULL)
dddfab26 7882 return SYMBOL_TYPE (sym);
14f9c5c9 7883
dddfab26 7884 return NULL;
14f9c5c9
AS
7885}
7886
739593e0
JB
7887/* Given NAME_SYM and an associated BLOCK, find a "renaming" symbol
7888 associated with NAME_SYM's name. NAME_SYM may itself be a renaming
7889 symbol, in which case it is returned. Otherwise, this looks for
7890 symbols whose name is that of NAME_SYM suffixed with "___XR".
7891 Return symbol if found, and NULL otherwise. */
4c4b4cd2
PH
7892
7893struct symbol *
270140bd 7894ada_find_renaming_symbol (struct symbol *name_sym, const struct block *block)
aeb5907d 7895{
739593e0 7896 const char *name = SYMBOL_LINKAGE_NAME (name_sym);
aeb5907d
JB
7897 struct symbol *sym;
7898
739593e0
JB
7899 if (strstr (name, "___XR") != NULL)
7900 return name_sym;
7901
aeb5907d
JB
7902 sym = find_old_style_renaming_symbol (name, block);
7903
7904 if (sym != NULL)
7905 return sym;
7906
0963b4bd 7907 /* Not right yet. FIXME pnh 7/20/2007. */
852dff6c 7908 sym = ada_find_any_type_symbol (name);
aeb5907d
JB
7909 if (sym != NULL && strstr (SYMBOL_LINKAGE_NAME (sym), "___XR") != NULL)
7910 return sym;
7911 else
7912 return NULL;
7913}
7914
7915static struct symbol *
270140bd 7916find_old_style_renaming_symbol (const char *name, const struct block *block)
4c4b4cd2 7917{
7f0df278 7918 const struct symbol *function_sym = block_linkage_function (block);
4c4b4cd2
PH
7919 char *rename;
7920
7921 if (function_sym != NULL)
7922 {
7923 /* If the symbol is defined inside a function, NAME is not fully
7924 qualified. This means we need to prepend the function name
7925 as well as adding the ``___XR'' suffix to build the name of
7926 the associated renaming symbol. */
0d5cff50 7927 const char *function_name = SYMBOL_LINKAGE_NAME (function_sym);
529cad9c
PH
7928 /* Function names sometimes contain suffixes used
7929 for instance to qualify nested subprograms. When building
7930 the XR type name, we need to make sure that this suffix is
7931 not included. So do not include any suffix in the function
7932 name length below. */
69fadcdf 7933 int function_name_len = ada_name_prefix_len (function_name);
76a01679
JB
7934 const int rename_len = function_name_len + 2 /* "__" */
7935 + strlen (name) + 6 /* "___XR\0" */ ;
4c4b4cd2 7936
529cad9c 7937 /* Strip the suffix if necessary. */
69fadcdf
JB
7938 ada_remove_trailing_digits (function_name, &function_name_len);
7939 ada_remove_po_subprogram_suffix (function_name, &function_name_len);
7940 ada_remove_Xbn_suffix (function_name, &function_name_len);
529cad9c 7941
4c4b4cd2
PH
7942 /* Library-level functions are a special case, as GNAT adds
7943 a ``_ada_'' prefix to the function name to avoid namespace
aeb5907d 7944 pollution. However, the renaming symbols themselves do not
4c4b4cd2
PH
7945 have this prefix, so we need to skip this prefix if present. */
7946 if (function_name_len > 5 /* "_ada_" */
7947 && strstr (function_name, "_ada_") == function_name)
69fadcdf
JB
7948 {
7949 function_name += 5;
7950 function_name_len -= 5;
7951 }
4c4b4cd2
PH
7952
7953 rename = (char *) alloca (rename_len * sizeof (char));
69fadcdf
JB
7954 strncpy (rename, function_name, function_name_len);
7955 xsnprintf (rename + function_name_len, rename_len - function_name_len,
7956 "__%s___XR", name);
4c4b4cd2
PH
7957 }
7958 else
7959 {
7960 const int rename_len = strlen (name) + 6;
5b4ee69b 7961
4c4b4cd2 7962 rename = (char *) alloca (rename_len * sizeof (char));
88c15c34 7963 xsnprintf (rename, rename_len * sizeof (char), "%s___XR", name);
4c4b4cd2
PH
7964 }
7965
852dff6c 7966 return ada_find_any_type_symbol (rename);
4c4b4cd2
PH
7967}
7968
14f9c5c9 7969/* Because of GNAT encoding conventions, several GDB symbols may match a
4c4b4cd2 7970 given type name. If the type denoted by TYPE0 is to be preferred to
14f9c5c9 7971 that of TYPE1 for purposes of type printing, return non-zero;
4c4b4cd2
PH
7972 otherwise return 0. */
7973
14f9c5c9 7974int
d2e4a39e 7975ada_prefer_type (struct type *type0, struct type *type1)
14f9c5c9
AS
7976{
7977 if (type1 == NULL)
7978 return 1;
7979 else if (type0 == NULL)
7980 return 0;
7981 else if (TYPE_CODE (type1) == TYPE_CODE_VOID)
7982 return 1;
7983 else if (TYPE_CODE (type0) == TYPE_CODE_VOID)
7984 return 0;
4c4b4cd2
PH
7985 else if (TYPE_NAME (type1) == NULL && TYPE_NAME (type0) != NULL)
7986 return 1;
ad82864c 7987 else if (ada_is_constrained_packed_array_type (type0))
14f9c5c9 7988 return 1;
4c4b4cd2
PH
7989 else if (ada_is_array_descriptor_type (type0)
7990 && !ada_is_array_descriptor_type (type1))
14f9c5c9 7991 return 1;
aeb5907d
JB
7992 else
7993 {
7994 const char *type0_name = type_name_no_tag (type0);
7995 const char *type1_name = type_name_no_tag (type1);
7996
7997 if (type0_name != NULL && strstr (type0_name, "___XR") != NULL
7998 && (type1_name == NULL || strstr (type1_name, "___XR") == NULL))
7999 return 1;
8000 }
14f9c5c9
AS
8001 return 0;
8002}
8003
8004/* The name of TYPE, which is either its TYPE_NAME, or, if that is
4c4b4cd2
PH
8005 null, its TYPE_TAG_NAME. Null if TYPE is null. */
8006
0d5cff50 8007const char *
d2e4a39e 8008ada_type_name (struct type *type)
14f9c5c9 8009{
d2e4a39e 8010 if (type == NULL)
14f9c5c9
AS
8011 return NULL;
8012 else if (TYPE_NAME (type) != NULL)
8013 return TYPE_NAME (type);
8014 else
8015 return TYPE_TAG_NAME (type);
8016}
8017
b4ba55a1
JB
8018/* Search the list of "descriptive" types associated to TYPE for a type
8019 whose name is NAME. */
8020
8021static struct type *
8022find_parallel_type_by_descriptive_type (struct type *type, const char *name)
8023{
931e5bc3 8024 struct type *result, *tmp;
b4ba55a1 8025
c6044dd1
JB
8026 if (ada_ignore_descriptive_types_p)
8027 return NULL;
8028
b4ba55a1
JB
8029 /* If there no descriptive-type info, then there is no parallel type
8030 to be found. */
8031 if (!HAVE_GNAT_AUX_INFO (type))
8032 return NULL;
8033
8034 result = TYPE_DESCRIPTIVE_TYPE (type);
8035 while (result != NULL)
8036 {
0d5cff50 8037 const char *result_name = ada_type_name (result);
b4ba55a1
JB
8038
8039 if (result_name == NULL)
8040 {
8041 warning (_("unexpected null name on descriptive type"));
8042 return NULL;
8043 }
8044
8045 /* If the names match, stop. */
8046 if (strcmp (result_name, name) == 0)
8047 break;
8048
8049 /* Otherwise, look at the next item on the list, if any. */
8050 if (HAVE_GNAT_AUX_INFO (result))
931e5bc3
JG
8051 tmp = TYPE_DESCRIPTIVE_TYPE (result);
8052 else
8053 tmp = NULL;
8054
8055 /* If not found either, try after having resolved the typedef. */
8056 if (tmp != NULL)
8057 result = tmp;
b4ba55a1 8058 else
931e5bc3 8059 {
f168693b 8060 result = check_typedef (result);
931e5bc3
JG
8061 if (HAVE_GNAT_AUX_INFO (result))
8062 result = TYPE_DESCRIPTIVE_TYPE (result);
8063 else
8064 result = NULL;
8065 }
b4ba55a1
JB
8066 }
8067
8068 /* If we didn't find a match, see whether this is a packed array. With
8069 older compilers, the descriptive type information is either absent or
8070 irrelevant when it comes to packed arrays so the above lookup fails.
8071 Fall back to using a parallel lookup by name in this case. */
12ab9e09 8072 if (result == NULL && ada_is_constrained_packed_array_type (type))
b4ba55a1
JB
8073 return ada_find_any_type (name);
8074
8075 return result;
8076}
8077
8078/* Find a parallel type to TYPE with the specified NAME, using the
8079 descriptive type taken from the debugging information, if available,
8080 and otherwise using the (slower) name-based method. */
8081
8082static struct type *
8083ada_find_parallel_type_with_name (struct type *type, const char *name)
8084{
8085 struct type *result = NULL;
8086
8087 if (HAVE_GNAT_AUX_INFO (type))
8088 result = find_parallel_type_by_descriptive_type (type, name);
8089 else
8090 result = ada_find_any_type (name);
8091
8092 return result;
8093}
8094
8095/* Same as above, but specify the name of the parallel type by appending
4c4b4cd2 8096 SUFFIX to the name of TYPE. */
14f9c5c9 8097
d2e4a39e 8098struct type *
ebf56fd3 8099ada_find_parallel_type (struct type *type, const char *suffix)
14f9c5c9 8100{
0d5cff50 8101 char *name;
fe978cb0 8102 const char *type_name = ada_type_name (type);
14f9c5c9 8103 int len;
d2e4a39e 8104
fe978cb0 8105 if (type_name == NULL)
14f9c5c9
AS
8106 return NULL;
8107
fe978cb0 8108 len = strlen (type_name);
14f9c5c9 8109
b4ba55a1 8110 name = (char *) alloca (len + strlen (suffix) + 1);
14f9c5c9 8111
fe978cb0 8112 strcpy (name, type_name);
14f9c5c9
AS
8113 strcpy (name + len, suffix);
8114
b4ba55a1 8115 return ada_find_parallel_type_with_name (type, name);
14f9c5c9
AS
8116}
8117
14f9c5c9 8118/* If TYPE is a variable-size record type, return the corresponding template
4c4b4cd2 8119 type describing its fields. Otherwise, return NULL. */
14f9c5c9 8120
d2e4a39e
AS
8121static struct type *
8122dynamic_template_type (struct type *type)
14f9c5c9 8123{
61ee279c 8124 type = ada_check_typedef (type);
14f9c5c9
AS
8125
8126 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT
d2e4a39e 8127 || ada_type_name (type) == NULL)
14f9c5c9 8128 return NULL;
d2e4a39e 8129 else
14f9c5c9
AS
8130 {
8131 int len = strlen (ada_type_name (type));
5b4ee69b 8132
4c4b4cd2
PH
8133 if (len > 6 && strcmp (ada_type_name (type) + len - 6, "___XVE") == 0)
8134 return type;
14f9c5c9 8135 else
4c4b4cd2 8136 return ada_find_parallel_type (type, "___XVE");
14f9c5c9
AS
8137 }
8138}
8139
8140/* Assuming that TEMPL_TYPE is a union or struct type, returns
4c4b4cd2 8141 non-zero iff field FIELD_NUM of TEMPL_TYPE has dynamic size. */
14f9c5c9 8142
d2e4a39e
AS
8143static int
8144is_dynamic_field (struct type *templ_type, int field_num)
14f9c5c9
AS
8145{
8146 const char *name = TYPE_FIELD_NAME (templ_type, field_num);
5b4ee69b 8147
d2e4a39e 8148 return name != NULL
14f9c5c9
AS
8149 && TYPE_CODE (TYPE_FIELD_TYPE (templ_type, field_num)) == TYPE_CODE_PTR
8150 && strstr (name, "___XVL") != NULL;
8151}
8152
4c4b4cd2
PH
8153/* The index of the variant field of TYPE, or -1 if TYPE does not
8154 represent a variant record type. */
14f9c5c9 8155
d2e4a39e 8156static int
4c4b4cd2 8157variant_field_index (struct type *type)
14f9c5c9
AS
8158{
8159 int f;
8160
4c4b4cd2
PH
8161 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT)
8162 return -1;
8163
8164 for (f = 0; f < TYPE_NFIELDS (type); f += 1)
8165 {
8166 if (ada_is_variant_part (type, f))
8167 return f;
8168 }
8169 return -1;
14f9c5c9
AS
8170}
8171
4c4b4cd2
PH
8172/* A record type with no fields. */
8173
d2e4a39e 8174static struct type *
fe978cb0 8175empty_record (struct type *templ)
14f9c5c9 8176{
fe978cb0 8177 struct type *type = alloc_type_copy (templ);
5b4ee69b 8178
14f9c5c9
AS
8179 TYPE_CODE (type) = TYPE_CODE_STRUCT;
8180 TYPE_NFIELDS (type) = 0;
8181 TYPE_FIELDS (type) = NULL;
b1f33ddd 8182 INIT_CPLUS_SPECIFIC (type);
14f9c5c9
AS
8183 TYPE_NAME (type) = "<empty>";
8184 TYPE_TAG_NAME (type) = NULL;
14f9c5c9
AS
8185 TYPE_LENGTH (type) = 0;
8186 return type;
8187}
8188
8189/* An ordinary record type (with fixed-length fields) that describes
4c4b4cd2
PH
8190 the value of type TYPE at VALADDR or ADDRESS (see comments at
8191 the beginning of this section) VAL according to GNAT conventions.
8192 DVAL0 should describe the (portion of a) record that contains any
df407dfe 8193 necessary discriminants. It should be NULL if value_type (VAL) is
14f9c5c9
AS
8194 an outer-level type (i.e., as opposed to a branch of a variant.) A
8195 variant field (unless unchecked) is replaced by a particular branch
4c4b4cd2 8196 of the variant.
14f9c5c9 8197
4c4b4cd2
PH
8198 If not KEEP_DYNAMIC_FIELDS, then all fields whose position or
8199 length are not statically known are discarded. As a consequence,
8200 VALADDR, ADDRESS and DVAL0 are ignored.
8201
8202 NOTE: Limitations: For now, we assume that dynamic fields and
8203 variants occupy whole numbers of bytes. However, they need not be
8204 byte-aligned. */
8205
8206struct type *
10a2c479 8207ada_template_to_fixed_record_type_1 (struct type *type,
fc1a4b47 8208 const gdb_byte *valaddr,
4c4b4cd2
PH
8209 CORE_ADDR address, struct value *dval0,
8210 int keep_dynamic_fields)
14f9c5c9 8211{
d2e4a39e
AS
8212 struct value *mark = value_mark ();
8213 struct value *dval;
8214 struct type *rtype;
14f9c5c9 8215 int nfields, bit_len;
4c4b4cd2 8216 int variant_field;
14f9c5c9 8217 long off;
d94e4f4f 8218 int fld_bit_len;
14f9c5c9
AS
8219 int f;
8220
4c4b4cd2
PH
8221 /* Compute the number of fields in this record type that are going
8222 to be processed: unless keep_dynamic_fields, this includes only
8223 fields whose position and length are static will be processed. */
8224 if (keep_dynamic_fields)
8225 nfields = TYPE_NFIELDS (type);
8226 else
8227 {
8228 nfields = 0;
76a01679 8229 while (nfields < TYPE_NFIELDS (type)
4c4b4cd2
PH
8230 && !ada_is_variant_part (type, nfields)
8231 && !is_dynamic_field (type, nfields))
8232 nfields++;
8233 }
8234
e9bb382b 8235 rtype = alloc_type_copy (type);
14f9c5c9
AS
8236 TYPE_CODE (rtype) = TYPE_CODE_STRUCT;
8237 INIT_CPLUS_SPECIFIC (rtype);
8238 TYPE_NFIELDS (rtype) = nfields;
d2e4a39e 8239 TYPE_FIELDS (rtype) = (struct field *)
14f9c5c9
AS
8240 TYPE_ALLOC (rtype, nfields * sizeof (struct field));
8241 memset (TYPE_FIELDS (rtype), 0, sizeof (struct field) * nfields);
8242 TYPE_NAME (rtype) = ada_type_name (type);
8243 TYPE_TAG_NAME (rtype) = NULL;
876cecd0 8244 TYPE_FIXED_INSTANCE (rtype) = 1;
14f9c5c9 8245
d2e4a39e
AS
8246 off = 0;
8247 bit_len = 0;
4c4b4cd2
PH
8248 variant_field = -1;
8249
14f9c5c9
AS
8250 for (f = 0; f < nfields; f += 1)
8251 {
6c038f32
PH
8252 off = align_value (off, field_alignment (type, f))
8253 + TYPE_FIELD_BITPOS (type, f);
945b3a32 8254 SET_FIELD_BITPOS (TYPE_FIELD (rtype, f), off);
d2e4a39e 8255 TYPE_FIELD_BITSIZE (rtype, f) = 0;
14f9c5c9 8256
d2e4a39e 8257 if (ada_is_variant_part (type, f))
4c4b4cd2
PH
8258 {
8259 variant_field = f;
d94e4f4f 8260 fld_bit_len = 0;
4c4b4cd2 8261 }
14f9c5c9 8262 else if (is_dynamic_field (type, f))
4c4b4cd2 8263 {
284614f0
JB
8264 const gdb_byte *field_valaddr = valaddr;
8265 CORE_ADDR field_address = address;
8266 struct type *field_type =
8267 TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type, f));
8268
4c4b4cd2 8269 if (dval0 == NULL)
b5304971
JG
8270 {
8271 /* rtype's length is computed based on the run-time
8272 value of discriminants. If the discriminants are not
8273 initialized, the type size may be completely bogus and
0963b4bd 8274 GDB may fail to allocate a value for it. So check the
b5304971 8275 size first before creating the value. */
c1b5a1a6 8276 ada_ensure_varsize_limit (rtype);
012370f6
TT
8277 /* Using plain value_from_contents_and_address here
8278 causes problems because we will end up trying to
8279 resolve a type that is currently being
8280 constructed. */
8281 dval = value_from_contents_and_address_unresolved (rtype,
8282 valaddr,
8283 address);
9f1f738a 8284 rtype = value_type (dval);
b5304971 8285 }
4c4b4cd2
PH
8286 else
8287 dval = dval0;
8288
284614f0
JB
8289 /* If the type referenced by this field is an aligner type, we need
8290 to unwrap that aligner type, because its size might not be set.
8291 Keeping the aligner type would cause us to compute the wrong
8292 size for this field, impacting the offset of the all the fields
8293 that follow this one. */
8294 if (ada_is_aligner_type (field_type))
8295 {
8296 long field_offset = TYPE_FIELD_BITPOS (field_type, f);
8297
8298 field_valaddr = cond_offset_host (field_valaddr, field_offset);
8299 field_address = cond_offset_target (field_address, field_offset);
8300 field_type = ada_aligned_type (field_type);
8301 }
8302
8303 field_valaddr = cond_offset_host (field_valaddr,
8304 off / TARGET_CHAR_BIT);
8305 field_address = cond_offset_target (field_address,
8306 off / TARGET_CHAR_BIT);
8307
8308 /* Get the fixed type of the field. Note that, in this case,
8309 we do not want to get the real type out of the tag: if
8310 the current field is the parent part of a tagged record,
8311 we will get the tag of the object. Clearly wrong: the real
8312 type of the parent is not the real type of the child. We
8313 would end up in an infinite loop. */
8314 field_type = ada_get_base_type (field_type);
8315 field_type = ada_to_fixed_type (field_type, field_valaddr,
8316 field_address, dval, 0);
27f2a97b
JB
8317 /* If the field size is already larger than the maximum
8318 object size, then the record itself will necessarily
8319 be larger than the maximum object size. We need to make
8320 this check now, because the size might be so ridiculously
8321 large (due to an uninitialized variable in the inferior)
8322 that it would cause an overflow when adding it to the
8323 record size. */
c1b5a1a6 8324 ada_ensure_varsize_limit (field_type);
284614f0
JB
8325
8326 TYPE_FIELD_TYPE (rtype, f) = field_type;
4c4b4cd2 8327 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
27f2a97b
JB
8328 /* The multiplication can potentially overflow. But because
8329 the field length has been size-checked just above, and
8330 assuming that the maximum size is a reasonable value,
8331 an overflow should not happen in practice. So rather than
8332 adding overflow recovery code to this already complex code,
8333 we just assume that it's not going to happen. */
d94e4f4f 8334 fld_bit_len =
4c4b4cd2
PH
8335 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, f)) * TARGET_CHAR_BIT;
8336 }
14f9c5c9 8337 else
4c4b4cd2 8338 {
5ded5331
JB
8339 /* Note: If this field's type is a typedef, it is important
8340 to preserve the typedef layer.
8341
8342 Otherwise, we might be transforming a typedef to a fat
8343 pointer (encoding a pointer to an unconstrained array),
8344 into a basic fat pointer (encoding an unconstrained
8345 array). As both types are implemented using the same
8346 structure, the typedef is the only clue which allows us
8347 to distinguish between the two options. Stripping it
8348 would prevent us from printing this field appropriately. */
8349 TYPE_FIELD_TYPE (rtype, f) = TYPE_FIELD_TYPE (type, f);
4c4b4cd2
PH
8350 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
8351 if (TYPE_FIELD_BITSIZE (type, f) > 0)
d94e4f4f 8352 fld_bit_len =
4c4b4cd2
PH
8353 TYPE_FIELD_BITSIZE (rtype, f) = TYPE_FIELD_BITSIZE (type, f);
8354 else
5ded5331
JB
8355 {
8356 struct type *field_type = TYPE_FIELD_TYPE (type, f);
8357
8358 /* We need to be careful of typedefs when computing
8359 the length of our field. If this is a typedef,
8360 get the length of the target type, not the length
8361 of the typedef. */
8362 if (TYPE_CODE (field_type) == TYPE_CODE_TYPEDEF)
8363 field_type = ada_typedef_target_type (field_type);
8364
8365 fld_bit_len =
8366 TYPE_LENGTH (ada_check_typedef (field_type)) * TARGET_CHAR_BIT;
8367 }
4c4b4cd2 8368 }
14f9c5c9 8369 if (off + fld_bit_len > bit_len)
4c4b4cd2 8370 bit_len = off + fld_bit_len;
d94e4f4f 8371 off += fld_bit_len;
4c4b4cd2
PH
8372 TYPE_LENGTH (rtype) =
8373 align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
14f9c5c9 8374 }
4c4b4cd2
PH
8375
8376 /* We handle the variant part, if any, at the end because of certain
b1f33ddd 8377 odd cases in which it is re-ordered so as NOT to be the last field of
4c4b4cd2
PH
8378 the record. This can happen in the presence of representation
8379 clauses. */
8380 if (variant_field >= 0)
8381 {
8382 struct type *branch_type;
8383
8384 off = TYPE_FIELD_BITPOS (rtype, variant_field);
8385
8386 if (dval0 == NULL)
9f1f738a 8387 {
012370f6
TT
8388 /* Using plain value_from_contents_and_address here causes
8389 problems because we will end up trying to resolve a type
8390 that is currently being constructed. */
8391 dval = value_from_contents_and_address_unresolved (rtype, valaddr,
8392 address);
9f1f738a
SA
8393 rtype = value_type (dval);
8394 }
4c4b4cd2
PH
8395 else
8396 dval = dval0;
8397
8398 branch_type =
8399 to_fixed_variant_branch_type
8400 (TYPE_FIELD_TYPE (type, variant_field),
8401 cond_offset_host (valaddr, off / TARGET_CHAR_BIT),
8402 cond_offset_target (address, off / TARGET_CHAR_BIT), dval);
8403 if (branch_type == NULL)
8404 {
8405 for (f = variant_field + 1; f < TYPE_NFIELDS (rtype); f += 1)
8406 TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f];
8407 TYPE_NFIELDS (rtype) -= 1;
8408 }
8409 else
8410 {
8411 TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
8412 TYPE_FIELD_NAME (rtype, variant_field) = "S";
8413 fld_bit_len =
8414 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, variant_field)) *
8415 TARGET_CHAR_BIT;
8416 if (off + fld_bit_len > bit_len)
8417 bit_len = off + fld_bit_len;
8418 TYPE_LENGTH (rtype) =
8419 align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
8420 }
8421 }
8422
714e53ab
PH
8423 /* According to exp_dbug.ads, the size of TYPE for variable-size records
8424 should contain the alignment of that record, which should be a strictly
8425 positive value. If null or negative, then something is wrong, most
8426 probably in the debug info. In that case, we don't round up the size
0963b4bd 8427 of the resulting type. If this record is not part of another structure,
714e53ab
PH
8428 the current RTYPE length might be good enough for our purposes. */
8429 if (TYPE_LENGTH (type) <= 0)
8430 {
323e0a4a
AC
8431 if (TYPE_NAME (rtype))
8432 warning (_("Invalid type size for `%s' detected: %d."),
8433 TYPE_NAME (rtype), TYPE_LENGTH (type));
8434 else
8435 warning (_("Invalid type size for <unnamed> detected: %d."),
8436 TYPE_LENGTH (type));
714e53ab
PH
8437 }
8438 else
8439 {
8440 TYPE_LENGTH (rtype) = align_value (TYPE_LENGTH (rtype),
8441 TYPE_LENGTH (type));
8442 }
14f9c5c9
AS
8443
8444 value_free_to_mark (mark);
d2e4a39e 8445 if (TYPE_LENGTH (rtype) > varsize_limit)
323e0a4a 8446 error (_("record type with dynamic size is larger than varsize-limit"));
14f9c5c9
AS
8447 return rtype;
8448}
8449
4c4b4cd2
PH
8450/* As for ada_template_to_fixed_record_type_1 with KEEP_DYNAMIC_FIELDS
8451 of 1. */
14f9c5c9 8452
d2e4a39e 8453static struct type *
fc1a4b47 8454template_to_fixed_record_type (struct type *type, const gdb_byte *valaddr,
4c4b4cd2
PH
8455 CORE_ADDR address, struct value *dval0)
8456{
8457 return ada_template_to_fixed_record_type_1 (type, valaddr,
8458 address, dval0, 1);
8459}
8460
8461/* An ordinary record type in which ___XVL-convention fields and
8462 ___XVU- and ___XVN-convention field types in TYPE0 are replaced with
8463 static approximations, containing all possible fields. Uses
8464 no runtime values. Useless for use in values, but that's OK,
8465 since the results are used only for type determinations. Works on both
8466 structs and unions. Representation note: to save space, we memorize
8467 the result of this function in the TYPE_TARGET_TYPE of the
8468 template type. */
8469
8470static struct type *
8471template_to_static_fixed_type (struct type *type0)
14f9c5c9
AS
8472{
8473 struct type *type;
8474 int nfields;
8475 int f;
8476
9e195661
PMR
8477 /* No need no do anything if the input type is already fixed. */
8478 if (TYPE_FIXED_INSTANCE (type0))
8479 return type0;
8480
8481 /* Likewise if we already have computed the static approximation. */
4c4b4cd2
PH
8482 if (TYPE_TARGET_TYPE (type0) != NULL)
8483 return TYPE_TARGET_TYPE (type0);
8484
9e195661 8485 /* Don't clone TYPE0 until we are sure we are going to need a copy. */
4c4b4cd2 8486 type = type0;
9e195661
PMR
8487 nfields = TYPE_NFIELDS (type0);
8488
8489 /* Whether or not we cloned TYPE0, cache the result so that we don't do
8490 recompute all over next time. */
8491 TYPE_TARGET_TYPE (type0) = type;
14f9c5c9
AS
8492
8493 for (f = 0; f < nfields; f += 1)
8494 {
460efde1 8495 struct type *field_type = TYPE_FIELD_TYPE (type0, f);
4c4b4cd2 8496 struct type *new_type;
14f9c5c9 8497
4c4b4cd2 8498 if (is_dynamic_field (type0, f))
460efde1
JB
8499 {
8500 field_type = ada_check_typedef (field_type);
8501 new_type = to_static_fixed_type (TYPE_TARGET_TYPE (field_type));
8502 }
14f9c5c9 8503 else
f192137b 8504 new_type = static_unwrap_type (field_type);
9e195661
PMR
8505
8506 if (new_type != field_type)
8507 {
8508 /* Clone TYPE0 only the first time we get a new field type. */
8509 if (type == type0)
8510 {
8511 TYPE_TARGET_TYPE (type0) = type = alloc_type_copy (type0);
8512 TYPE_CODE (type) = TYPE_CODE (type0);
8513 INIT_CPLUS_SPECIFIC (type);
8514 TYPE_NFIELDS (type) = nfields;
8515 TYPE_FIELDS (type) = (struct field *)
8516 TYPE_ALLOC (type, nfields * sizeof (struct field));
8517 memcpy (TYPE_FIELDS (type), TYPE_FIELDS (type0),
8518 sizeof (struct field) * nfields);
8519 TYPE_NAME (type) = ada_type_name (type0);
8520 TYPE_TAG_NAME (type) = NULL;
8521 TYPE_FIXED_INSTANCE (type) = 1;
8522 TYPE_LENGTH (type) = 0;
8523 }
8524 TYPE_FIELD_TYPE (type, f) = new_type;
8525 TYPE_FIELD_NAME (type, f) = TYPE_FIELD_NAME (type0, f);
8526 }
14f9c5c9 8527 }
9e195661 8528
14f9c5c9
AS
8529 return type;
8530}
8531
4c4b4cd2 8532/* Given an object of type TYPE whose contents are at VALADDR and
5823c3ef
JB
8533 whose address in memory is ADDRESS, returns a revision of TYPE,
8534 which should be a non-dynamic-sized record, in which the variant
8535 part, if any, is replaced with the appropriate branch. Looks
4c4b4cd2
PH
8536 for discriminant values in DVAL0, which can be NULL if the record
8537 contains the necessary discriminant values. */
8538
d2e4a39e 8539static struct type *
fc1a4b47 8540to_record_with_fixed_variant_part (struct type *type, const gdb_byte *valaddr,
4c4b4cd2 8541 CORE_ADDR address, struct value *dval0)
14f9c5c9 8542{
d2e4a39e 8543 struct value *mark = value_mark ();
4c4b4cd2 8544 struct value *dval;
d2e4a39e 8545 struct type *rtype;
14f9c5c9
AS
8546 struct type *branch_type;
8547 int nfields = TYPE_NFIELDS (type);
4c4b4cd2 8548 int variant_field = variant_field_index (type);
14f9c5c9 8549
4c4b4cd2 8550 if (variant_field == -1)
14f9c5c9
AS
8551 return type;
8552
4c4b4cd2 8553 if (dval0 == NULL)
9f1f738a
SA
8554 {
8555 dval = value_from_contents_and_address (type, valaddr, address);
8556 type = value_type (dval);
8557 }
4c4b4cd2
PH
8558 else
8559 dval = dval0;
8560
e9bb382b 8561 rtype = alloc_type_copy (type);
14f9c5c9 8562 TYPE_CODE (rtype) = TYPE_CODE_STRUCT;
4c4b4cd2
PH
8563 INIT_CPLUS_SPECIFIC (rtype);
8564 TYPE_NFIELDS (rtype) = nfields;
d2e4a39e
AS
8565 TYPE_FIELDS (rtype) =
8566 (struct field *) TYPE_ALLOC (rtype, nfields * sizeof (struct field));
8567 memcpy (TYPE_FIELDS (rtype), TYPE_FIELDS (type),
4c4b4cd2 8568 sizeof (struct field) * nfields);
14f9c5c9
AS
8569 TYPE_NAME (rtype) = ada_type_name (type);
8570 TYPE_TAG_NAME (rtype) = NULL;
876cecd0 8571 TYPE_FIXED_INSTANCE (rtype) = 1;
14f9c5c9
AS
8572 TYPE_LENGTH (rtype) = TYPE_LENGTH (type);
8573
4c4b4cd2
PH
8574 branch_type = to_fixed_variant_branch_type
8575 (TYPE_FIELD_TYPE (type, variant_field),
d2e4a39e 8576 cond_offset_host (valaddr,
4c4b4cd2
PH
8577 TYPE_FIELD_BITPOS (type, variant_field)
8578 / TARGET_CHAR_BIT),
d2e4a39e 8579 cond_offset_target (address,
4c4b4cd2
PH
8580 TYPE_FIELD_BITPOS (type, variant_field)
8581 / TARGET_CHAR_BIT), dval);
d2e4a39e 8582 if (branch_type == NULL)
14f9c5c9 8583 {
4c4b4cd2 8584 int f;
5b4ee69b 8585
4c4b4cd2
PH
8586 for (f = variant_field + 1; f < nfields; f += 1)
8587 TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f];
14f9c5c9 8588 TYPE_NFIELDS (rtype) -= 1;
14f9c5c9
AS
8589 }
8590 else
8591 {
4c4b4cd2
PH
8592 TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
8593 TYPE_FIELD_NAME (rtype, variant_field) = "S";
8594 TYPE_FIELD_BITSIZE (rtype, variant_field) = 0;
14f9c5c9 8595 TYPE_LENGTH (rtype) += TYPE_LENGTH (branch_type);
14f9c5c9 8596 }
4c4b4cd2 8597 TYPE_LENGTH (rtype) -= TYPE_LENGTH (TYPE_FIELD_TYPE (type, variant_field));
d2e4a39e 8598
4c4b4cd2 8599 value_free_to_mark (mark);
14f9c5c9
AS
8600 return rtype;
8601}
8602
8603/* An ordinary record type (with fixed-length fields) that describes
8604 the value at (TYPE0, VALADDR, ADDRESS) [see explanation at
8605 beginning of this section]. Any necessary discriminants' values
4c4b4cd2
PH
8606 should be in DVAL, a record value; it may be NULL if the object
8607 at ADDR itself contains any necessary discriminant values.
8608 Additionally, VALADDR and ADDRESS may also be NULL if no discriminant
8609 values from the record are needed. Except in the case that DVAL,
8610 VALADDR, and ADDRESS are all 0 or NULL, a variant field (unless
8611 unchecked) is replaced by a particular branch of the variant.
8612
8613 NOTE: the case in which DVAL and VALADDR are NULL and ADDRESS is 0
8614 is questionable and may be removed. It can arise during the
8615 processing of an unconstrained-array-of-record type where all the
8616 variant branches have exactly the same size. This is because in
8617 such cases, the compiler does not bother to use the XVS convention
8618 when encoding the record. I am currently dubious of this
8619 shortcut and suspect the compiler should be altered. FIXME. */
14f9c5c9 8620
d2e4a39e 8621static struct type *
fc1a4b47 8622to_fixed_record_type (struct type *type0, const gdb_byte *valaddr,
4c4b4cd2 8623 CORE_ADDR address, struct value *dval)
14f9c5c9 8624{
d2e4a39e 8625 struct type *templ_type;
14f9c5c9 8626
876cecd0 8627 if (TYPE_FIXED_INSTANCE (type0))
4c4b4cd2
PH
8628 return type0;
8629
d2e4a39e 8630 templ_type = dynamic_template_type (type0);
14f9c5c9
AS
8631
8632 if (templ_type != NULL)
8633 return template_to_fixed_record_type (templ_type, valaddr, address, dval);
4c4b4cd2
PH
8634 else if (variant_field_index (type0) >= 0)
8635 {
8636 if (dval == NULL && valaddr == NULL && address == 0)
8637 return type0;
8638 return to_record_with_fixed_variant_part (type0, valaddr, address,
8639 dval);
8640 }
14f9c5c9
AS
8641 else
8642 {
876cecd0 8643 TYPE_FIXED_INSTANCE (type0) = 1;
14f9c5c9
AS
8644 return type0;
8645 }
8646
8647}
8648
8649/* An ordinary record type (with fixed-length fields) that describes
8650 the value at (VAR_TYPE0, VALADDR, ADDRESS), where VAR_TYPE0 is a
8651 union type. Any necessary discriminants' values should be in DVAL,
8652 a record value. That is, this routine selects the appropriate
8653 branch of the union at ADDR according to the discriminant value
b1f33ddd 8654 indicated in the union's type name. Returns VAR_TYPE0 itself if
0963b4bd 8655 it represents a variant subject to a pragma Unchecked_Union. */
14f9c5c9 8656
d2e4a39e 8657static struct type *
fc1a4b47 8658to_fixed_variant_branch_type (struct type *var_type0, const gdb_byte *valaddr,
4c4b4cd2 8659 CORE_ADDR address, struct value *dval)
14f9c5c9
AS
8660{
8661 int which;
d2e4a39e
AS
8662 struct type *templ_type;
8663 struct type *var_type;
14f9c5c9
AS
8664
8665 if (TYPE_CODE (var_type0) == TYPE_CODE_PTR)
8666 var_type = TYPE_TARGET_TYPE (var_type0);
d2e4a39e 8667 else
14f9c5c9
AS
8668 var_type = var_type0;
8669
8670 templ_type = ada_find_parallel_type (var_type, "___XVU");
8671
8672 if (templ_type != NULL)
8673 var_type = templ_type;
8674
b1f33ddd
JB
8675 if (is_unchecked_variant (var_type, value_type (dval)))
8676 return var_type0;
d2e4a39e
AS
8677 which =
8678 ada_which_variant_applies (var_type,
0fd88904 8679 value_type (dval), value_contents (dval));
14f9c5c9
AS
8680
8681 if (which < 0)
e9bb382b 8682 return empty_record (var_type);
14f9c5c9 8683 else if (is_dynamic_field (var_type, which))
4c4b4cd2 8684 return to_fixed_record_type
d2e4a39e
AS
8685 (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (var_type, which)),
8686 valaddr, address, dval);
4c4b4cd2 8687 else if (variant_field_index (TYPE_FIELD_TYPE (var_type, which)) >= 0)
d2e4a39e
AS
8688 return
8689 to_fixed_record_type
8690 (TYPE_FIELD_TYPE (var_type, which), valaddr, address, dval);
14f9c5c9
AS
8691 else
8692 return TYPE_FIELD_TYPE (var_type, which);
8693}
8694
8908fca5
JB
8695/* Assuming RANGE_TYPE is a TYPE_CODE_RANGE, return nonzero if
8696 ENCODING_TYPE, a type following the GNAT conventions for discrete
8697 type encodings, only carries redundant information. */
8698
8699static int
8700ada_is_redundant_range_encoding (struct type *range_type,
8701 struct type *encoding_type)
8702{
8703 struct type *fixed_range_type;
108d56a4 8704 const char *bounds_str;
8908fca5
JB
8705 int n;
8706 LONGEST lo, hi;
8707
8708 gdb_assert (TYPE_CODE (range_type) == TYPE_CODE_RANGE);
8709
005e2509
JB
8710 if (TYPE_CODE (get_base_type (range_type))
8711 != TYPE_CODE (get_base_type (encoding_type)))
8712 {
8713 /* The compiler probably used a simple base type to describe
8714 the range type instead of the range's actual base type,
8715 expecting us to get the real base type from the encoding
8716 anyway. In this situation, the encoding cannot be ignored
8717 as redundant. */
8718 return 0;
8719 }
8720
8908fca5
JB
8721 if (is_dynamic_type (range_type))
8722 return 0;
8723
8724 if (TYPE_NAME (encoding_type) == NULL)
8725 return 0;
8726
8727 bounds_str = strstr (TYPE_NAME (encoding_type), "___XDLU_");
8728 if (bounds_str == NULL)
8729 return 0;
8730
8731 n = 8; /* Skip "___XDLU_". */
8732 if (!ada_scan_number (bounds_str, n, &lo, &n))
8733 return 0;
8734 if (TYPE_LOW_BOUND (range_type) != lo)
8735 return 0;
8736
8737 n += 2; /* Skip the "__" separator between the two bounds. */
8738 if (!ada_scan_number (bounds_str, n, &hi, &n))
8739 return 0;
8740 if (TYPE_HIGH_BOUND (range_type) != hi)
8741 return 0;
8742
8743 return 1;
8744}
8745
8746/* Given the array type ARRAY_TYPE, return nonzero if DESC_TYPE,
8747 a type following the GNAT encoding for describing array type
8748 indices, only carries redundant information. */
8749
8750static int
8751ada_is_redundant_index_type_desc (struct type *array_type,
8752 struct type *desc_type)
8753{
8754 struct type *this_layer = check_typedef (array_type);
8755 int i;
8756
8757 for (i = 0; i < TYPE_NFIELDS (desc_type); i++)
8758 {
8759 if (!ada_is_redundant_range_encoding (TYPE_INDEX_TYPE (this_layer),
8760 TYPE_FIELD_TYPE (desc_type, i)))
8761 return 0;
8762 this_layer = check_typedef (TYPE_TARGET_TYPE (this_layer));
8763 }
8764
8765 return 1;
8766}
8767
14f9c5c9
AS
8768/* Assuming that TYPE0 is an array type describing the type of a value
8769 at ADDR, and that DVAL describes a record containing any
8770 discriminants used in TYPE0, returns a type for the value that
8771 contains no dynamic components (that is, no components whose sizes
8772 are determined by run-time quantities). Unless IGNORE_TOO_BIG is
8773 true, gives an error message if the resulting type's size is over
4c4b4cd2 8774 varsize_limit. */
14f9c5c9 8775
d2e4a39e
AS
8776static struct type *
8777to_fixed_array_type (struct type *type0, struct value *dval,
4c4b4cd2 8778 int ignore_too_big)
14f9c5c9 8779{
d2e4a39e
AS
8780 struct type *index_type_desc;
8781 struct type *result;
ad82864c 8782 int constrained_packed_array_p;
931e5bc3 8783 static const char *xa_suffix = "___XA";
14f9c5c9 8784
b0dd7688 8785 type0 = ada_check_typedef (type0);
284614f0 8786 if (TYPE_FIXED_INSTANCE (type0))
4c4b4cd2 8787 return type0;
14f9c5c9 8788
ad82864c
JB
8789 constrained_packed_array_p = ada_is_constrained_packed_array_type (type0);
8790 if (constrained_packed_array_p)
8791 type0 = decode_constrained_packed_array_type (type0);
284614f0 8792
931e5bc3
JG
8793 index_type_desc = ada_find_parallel_type (type0, xa_suffix);
8794
8795 /* As mentioned in exp_dbug.ads, for non bit-packed arrays an
8796 encoding suffixed with 'P' may still be generated. If so,
8797 it should be used to find the XA type. */
8798
8799 if (index_type_desc == NULL)
8800 {
1da0522e 8801 const char *type_name = ada_type_name (type0);
931e5bc3 8802
1da0522e 8803 if (type_name != NULL)
931e5bc3 8804 {
1da0522e 8805 const int len = strlen (type_name);
931e5bc3
JG
8806 char *name = (char *) alloca (len + strlen (xa_suffix));
8807
1da0522e 8808 if (type_name[len - 1] == 'P')
931e5bc3 8809 {
1da0522e 8810 strcpy (name, type_name);
931e5bc3
JG
8811 strcpy (name + len - 1, xa_suffix);
8812 index_type_desc = ada_find_parallel_type_with_name (type0, name);
8813 }
8814 }
8815 }
8816
28c85d6c 8817 ada_fixup_array_indexes_type (index_type_desc);
8908fca5
JB
8818 if (index_type_desc != NULL
8819 && ada_is_redundant_index_type_desc (type0, index_type_desc))
8820 {
8821 /* Ignore this ___XA parallel type, as it does not bring any
8822 useful information. This allows us to avoid creating fixed
8823 versions of the array's index types, which would be identical
8824 to the original ones. This, in turn, can also help avoid
8825 the creation of fixed versions of the array itself. */
8826 index_type_desc = NULL;
8827 }
8828
14f9c5c9
AS
8829 if (index_type_desc == NULL)
8830 {
61ee279c 8831 struct type *elt_type0 = ada_check_typedef (TYPE_TARGET_TYPE (type0));
5b4ee69b 8832
14f9c5c9 8833 /* NOTE: elt_type---the fixed version of elt_type0---should never
4c4b4cd2
PH
8834 depend on the contents of the array in properly constructed
8835 debugging data. */
529cad9c
PH
8836 /* Create a fixed version of the array element type.
8837 We're not providing the address of an element here,
e1d5a0d2 8838 and thus the actual object value cannot be inspected to do
529cad9c
PH
8839 the conversion. This should not be a problem, since arrays of
8840 unconstrained objects are not allowed. In particular, all
8841 the elements of an array of a tagged type should all be of
8842 the same type specified in the debugging info. No need to
8843 consult the object tag. */
1ed6ede0 8844 struct type *elt_type = ada_to_fixed_type (elt_type0, 0, 0, dval, 1);
14f9c5c9 8845
284614f0
JB
8846 /* Make sure we always create a new array type when dealing with
8847 packed array types, since we're going to fix-up the array
8848 type length and element bitsize a little further down. */
ad82864c 8849 if (elt_type0 == elt_type && !constrained_packed_array_p)
4c4b4cd2 8850 result = type0;
14f9c5c9 8851 else
e9bb382b 8852 result = create_array_type (alloc_type_copy (type0),
4c4b4cd2 8853 elt_type, TYPE_INDEX_TYPE (type0));
14f9c5c9
AS
8854 }
8855 else
8856 {
8857 int i;
8858 struct type *elt_type0;
8859
8860 elt_type0 = type0;
8861 for (i = TYPE_NFIELDS (index_type_desc); i > 0; i -= 1)
4c4b4cd2 8862 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
14f9c5c9
AS
8863
8864 /* NOTE: result---the fixed version of elt_type0---should never
4c4b4cd2
PH
8865 depend on the contents of the array in properly constructed
8866 debugging data. */
529cad9c
PH
8867 /* Create a fixed version of the array element type.
8868 We're not providing the address of an element here,
e1d5a0d2 8869 and thus the actual object value cannot be inspected to do
529cad9c
PH
8870 the conversion. This should not be a problem, since arrays of
8871 unconstrained objects are not allowed. In particular, all
8872 the elements of an array of a tagged type should all be of
8873 the same type specified in the debugging info. No need to
8874 consult the object tag. */
1ed6ede0
JB
8875 result =
8876 ada_to_fixed_type (ada_check_typedef (elt_type0), 0, 0, dval, 1);
1ce677a4
UW
8877
8878 elt_type0 = type0;
14f9c5c9 8879 for (i = TYPE_NFIELDS (index_type_desc) - 1; i >= 0; i -= 1)
4c4b4cd2
PH
8880 {
8881 struct type *range_type =
28c85d6c 8882 to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, i), dval);
5b4ee69b 8883
e9bb382b 8884 result = create_array_type (alloc_type_copy (elt_type0),
4c4b4cd2 8885 result, range_type);
1ce677a4 8886 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
4c4b4cd2 8887 }
d2e4a39e 8888 if (!ignore_too_big && TYPE_LENGTH (result) > varsize_limit)
323e0a4a 8889 error (_("array type with dynamic size is larger than varsize-limit"));
14f9c5c9
AS
8890 }
8891
2e6fda7d
JB
8892 /* We want to preserve the type name. This can be useful when
8893 trying to get the type name of a value that has already been
8894 printed (for instance, if the user did "print VAR; whatis $". */
8895 TYPE_NAME (result) = TYPE_NAME (type0);
8896
ad82864c 8897 if (constrained_packed_array_p)
284614f0
JB
8898 {
8899 /* So far, the resulting type has been created as if the original
8900 type was a regular (non-packed) array type. As a result, the
8901 bitsize of the array elements needs to be set again, and the array
8902 length needs to be recomputed based on that bitsize. */
8903 int len = TYPE_LENGTH (result) / TYPE_LENGTH (TYPE_TARGET_TYPE (result));
8904 int elt_bitsize = TYPE_FIELD_BITSIZE (type0, 0);
8905
8906 TYPE_FIELD_BITSIZE (result, 0) = TYPE_FIELD_BITSIZE (type0, 0);
8907 TYPE_LENGTH (result) = len * elt_bitsize / HOST_CHAR_BIT;
8908 if (TYPE_LENGTH (result) * HOST_CHAR_BIT < len * elt_bitsize)
8909 TYPE_LENGTH (result)++;
8910 }
8911
876cecd0 8912 TYPE_FIXED_INSTANCE (result) = 1;
14f9c5c9 8913 return result;
d2e4a39e 8914}
14f9c5c9
AS
8915
8916
8917/* A standard type (containing no dynamically sized components)
8918 corresponding to TYPE for the value (TYPE, VALADDR, ADDRESS)
8919 DVAL describes a record containing any discriminants used in TYPE0,
4c4b4cd2 8920 and may be NULL if there are none, or if the object of type TYPE at
529cad9c
PH
8921 ADDRESS or in VALADDR contains these discriminants.
8922
1ed6ede0
JB
8923 If CHECK_TAG is not null, in the case of tagged types, this function
8924 attempts to locate the object's tag and use it to compute the actual
8925 type. However, when ADDRESS is null, we cannot use it to determine the
8926 location of the tag, and therefore compute the tagged type's actual type.
8927 So we return the tagged type without consulting the tag. */
529cad9c 8928
f192137b
JB
8929static struct type *
8930ada_to_fixed_type_1 (struct type *type, const gdb_byte *valaddr,
1ed6ede0 8931 CORE_ADDR address, struct value *dval, int check_tag)
14f9c5c9 8932{
61ee279c 8933 type = ada_check_typedef (type);
d2e4a39e
AS
8934 switch (TYPE_CODE (type))
8935 {
8936 default:
14f9c5c9 8937 return type;
d2e4a39e 8938 case TYPE_CODE_STRUCT:
4c4b4cd2 8939 {
76a01679 8940 struct type *static_type = to_static_fixed_type (type);
1ed6ede0
JB
8941 struct type *fixed_record_type =
8942 to_fixed_record_type (type, valaddr, address, NULL);
5b4ee69b 8943
529cad9c
PH
8944 /* If STATIC_TYPE is a tagged type and we know the object's address,
8945 then we can determine its tag, and compute the object's actual
0963b4bd 8946 type from there. Note that we have to use the fixed record
1ed6ede0
JB
8947 type (the parent part of the record may have dynamic fields
8948 and the way the location of _tag is expressed may depend on
8949 them). */
529cad9c 8950
1ed6ede0 8951 if (check_tag && address != 0 && ada_is_tagged_type (static_type, 0))
76a01679 8952 {
b50d69b5
JG
8953 struct value *tag =
8954 value_tag_from_contents_and_address
8955 (fixed_record_type,
8956 valaddr,
8957 address);
8958 struct type *real_type = type_from_tag (tag);
8959 struct value *obj =
8960 value_from_contents_and_address (fixed_record_type,
8961 valaddr,
8962 address);
9f1f738a 8963 fixed_record_type = value_type (obj);
76a01679 8964 if (real_type != NULL)
b50d69b5
JG
8965 return to_fixed_record_type
8966 (real_type, NULL,
8967 value_address (ada_tag_value_at_base_address (obj)), NULL);
76a01679 8968 }
4af88198
JB
8969
8970 /* Check to see if there is a parallel ___XVZ variable.
8971 If there is, then it provides the actual size of our type. */
8972 else if (ada_type_name (fixed_record_type) != NULL)
8973 {
0d5cff50 8974 const char *name = ada_type_name (fixed_record_type);
224c3ddb
SM
8975 char *xvz_name
8976 = (char *) alloca (strlen (name) + 7 /* "___XVZ\0" */);
4af88198
JB
8977 LONGEST size;
8978
88c15c34 8979 xsnprintf (xvz_name, strlen (name) + 7, "%s___XVZ", name);
edb0c9cb
PA
8980 if (get_int_var_value (xvz_name, size)
8981 && TYPE_LENGTH (fixed_record_type) != size)
4af88198
JB
8982 {
8983 fixed_record_type = copy_type (fixed_record_type);
8984 TYPE_LENGTH (fixed_record_type) = size;
8985
8986 /* The FIXED_RECORD_TYPE may have be a stub. We have
8987 observed this when the debugging info is STABS, and
8988 apparently it is something that is hard to fix.
8989
8990 In practice, we don't need the actual type definition
8991 at all, because the presence of the XVZ variable allows us
8992 to assume that there must be a XVS type as well, which we
8993 should be able to use later, when we need the actual type
8994 definition.
8995
8996 In the meantime, pretend that the "fixed" type we are
8997 returning is NOT a stub, because this can cause trouble
8998 when using this type to create new types targeting it.
8999 Indeed, the associated creation routines often check
9000 whether the target type is a stub and will try to replace
0963b4bd 9001 it, thus using a type with the wrong size. This, in turn,
4af88198
JB
9002 might cause the new type to have the wrong size too.
9003 Consider the case of an array, for instance, where the size
9004 of the array is computed from the number of elements in
9005 our array multiplied by the size of its element. */
9006 TYPE_STUB (fixed_record_type) = 0;
9007 }
9008 }
1ed6ede0 9009 return fixed_record_type;
4c4b4cd2 9010 }
d2e4a39e 9011 case TYPE_CODE_ARRAY:
4c4b4cd2 9012 return to_fixed_array_type (type, dval, 1);
d2e4a39e
AS
9013 case TYPE_CODE_UNION:
9014 if (dval == NULL)
4c4b4cd2 9015 return type;
d2e4a39e 9016 else
4c4b4cd2 9017 return to_fixed_variant_branch_type (type, valaddr, address, dval);
d2e4a39e 9018 }
14f9c5c9
AS
9019}
9020
f192137b
JB
9021/* The same as ada_to_fixed_type_1, except that it preserves the type
9022 if it is a TYPE_CODE_TYPEDEF of a type that is already fixed.
96dbd2c1
JB
9023
9024 The typedef layer needs be preserved in order to differentiate between
9025 arrays and array pointers when both types are implemented using the same
9026 fat pointer. In the array pointer case, the pointer is encoded as
9027 a typedef of the pointer type. For instance, considering:
9028
9029 type String_Access is access String;
9030 S1 : String_Access := null;
9031
9032 To the debugger, S1 is defined as a typedef of type String. But
9033 to the user, it is a pointer. So if the user tries to print S1,
9034 we should not dereference the array, but print the array address
9035 instead.
9036
9037 If we didn't preserve the typedef layer, we would lose the fact that
9038 the type is to be presented as a pointer (needs de-reference before
9039 being printed). And we would also use the source-level type name. */
f192137b
JB
9040
9041struct type *
9042ada_to_fixed_type (struct type *type, const gdb_byte *valaddr,
9043 CORE_ADDR address, struct value *dval, int check_tag)
9044
9045{
9046 struct type *fixed_type =
9047 ada_to_fixed_type_1 (type, valaddr, address, dval, check_tag);
9048
96dbd2c1
JB
9049 /* If TYPE is a typedef and its target type is the same as the FIXED_TYPE,
9050 then preserve the typedef layer.
9051
9052 Implementation note: We can only check the main-type portion of
9053 the TYPE and FIXED_TYPE, because eliminating the typedef layer
9054 from TYPE now returns a type that has the same instance flags
9055 as TYPE. For instance, if TYPE is a "typedef const", and its
9056 target type is a "struct", then the typedef elimination will return
9057 a "const" version of the target type. See check_typedef for more
9058 details about how the typedef layer elimination is done.
9059
9060 brobecker/2010-11-19: It seems to me that the only case where it is
9061 useful to preserve the typedef layer is when dealing with fat pointers.
9062 Perhaps, we could add a check for that and preserve the typedef layer
9063 only in that situation. But this seems unecessary so far, probably
9064 because we call check_typedef/ada_check_typedef pretty much everywhere.
9065 */
f192137b 9066 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF
720d1a40 9067 && (TYPE_MAIN_TYPE (ada_typedef_target_type (type))
96dbd2c1 9068 == TYPE_MAIN_TYPE (fixed_type)))
f192137b
JB
9069 return type;
9070
9071 return fixed_type;
9072}
9073
14f9c5c9 9074/* A standard (static-sized) type corresponding as well as possible to
4c4b4cd2 9075 TYPE0, but based on no runtime data. */
14f9c5c9 9076
d2e4a39e
AS
9077static struct type *
9078to_static_fixed_type (struct type *type0)
14f9c5c9 9079{
d2e4a39e 9080 struct type *type;
14f9c5c9
AS
9081
9082 if (type0 == NULL)
9083 return NULL;
9084
876cecd0 9085 if (TYPE_FIXED_INSTANCE (type0))
4c4b4cd2
PH
9086 return type0;
9087
61ee279c 9088 type0 = ada_check_typedef (type0);
d2e4a39e 9089
14f9c5c9
AS
9090 switch (TYPE_CODE (type0))
9091 {
9092 default:
9093 return type0;
9094 case TYPE_CODE_STRUCT:
9095 type = dynamic_template_type (type0);
d2e4a39e 9096 if (type != NULL)
4c4b4cd2
PH
9097 return template_to_static_fixed_type (type);
9098 else
9099 return template_to_static_fixed_type (type0);
14f9c5c9
AS
9100 case TYPE_CODE_UNION:
9101 type = ada_find_parallel_type (type0, "___XVU");
9102 if (type != NULL)
4c4b4cd2
PH
9103 return template_to_static_fixed_type (type);
9104 else
9105 return template_to_static_fixed_type (type0);
14f9c5c9
AS
9106 }
9107}
9108
4c4b4cd2
PH
9109/* A static approximation of TYPE with all type wrappers removed. */
9110
d2e4a39e
AS
9111static struct type *
9112static_unwrap_type (struct type *type)
14f9c5c9
AS
9113{
9114 if (ada_is_aligner_type (type))
9115 {
61ee279c 9116 struct type *type1 = TYPE_FIELD_TYPE (ada_check_typedef (type), 0);
14f9c5c9 9117 if (ada_type_name (type1) == NULL)
4c4b4cd2 9118 TYPE_NAME (type1) = ada_type_name (type);
14f9c5c9
AS
9119
9120 return static_unwrap_type (type1);
9121 }
d2e4a39e 9122 else
14f9c5c9 9123 {
d2e4a39e 9124 struct type *raw_real_type = ada_get_base_type (type);
5b4ee69b 9125
d2e4a39e 9126 if (raw_real_type == type)
4c4b4cd2 9127 return type;
14f9c5c9 9128 else
4c4b4cd2 9129 return to_static_fixed_type (raw_real_type);
14f9c5c9
AS
9130 }
9131}
9132
9133/* In some cases, incomplete and private types require
4c4b4cd2 9134 cross-references that are not resolved as records (for example,
14f9c5c9
AS
9135 type Foo;
9136 type FooP is access Foo;
9137 V: FooP;
9138 type Foo is array ...;
4c4b4cd2 9139 ). In these cases, since there is no mechanism for producing
14f9c5c9
AS
9140 cross-references to such types, we instead substitute for FooP a
9141 stub enumeration type that is nowhere resolved, and whose tag is
4c4b4cd2 9142 the name of the actual type. Call these types "non-record stubs". */
14f9c5c9
AS
9143
9144/* A type equivalent to TYPE that is not a non-record stub, if one
4c4b4cd2
PH
9145 exists, otherwise TYPE. */
9146
d2e4a39e 9147struct type *
61ee279c 9148ada_check_typedef (struct type *type)
14f9c5c9 9149{
727e3d2e
JB
9150 if (type == NULL)
9151 return NULL;
9152
720d1a40
JB
9153 /* If our type is a typedef type of a fat pointer, then we're done.
9154 We don't want to strip the TYPE_CODE_TYPDEF layer, because this is
9155 what allows us to distinguish between fat pointers that represent
9156 array types, and fat pointers that represent array access types
9157 (in both cases, the compiler implements them as fat pointers). */
9158 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF
9159 && is_thick_pntr (ada_typedef_target_type (type)))
9160 return type;
9161
f168693b 9162 type = check_typedef (type);
14f9c5c9 9163 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM
529cad9c 9164 || !TYPE_STUB (type)
14f9c5c9
AS
9165 || TYPE_TAG_NAME (type) == NULL)
9166 return type;
d2e4a39e 9167 else
14f9c5c9 9168 {
0d5cff50 9169 const char *name = TYPE_TAG_NAME (type);
d2e4a39e 9170 struct type *type1 = ada_find_any_type (name);
5b4ee69b 9171
05e522ef
JB
9172 if (type1 == NULL)
9173 return type;
9174
9175 /* TYPE1 might itself be a TYPE_CODE_TYPEDEF (this can happen with
9176 stubs pointing to arrays, as we don't create symbols for array
3a867c22
JB
9177 types, only for the typedef-to-array types). If that's the case,
9178 strip the typedef layer. */
9179 if (TYPE_CODE (type1) == TYPE_CODE_TYPEDEF)
9180 type1 = ada_check_typedef (type1);
9181
9182 return type1;
14f9c5c9
AS
9183 }
9184}
9185
9186/* A value representing the data at VALADDR/ADDRESS as described by
9187 type TYPE0, but with a standard (static-sized) type that correctly
9188 describes it. If VAL0 is not NULL and TYPE0 already is a standard
9189 type, then return VAL0 [this feature is simply to avoid redundant
4c4b4cd2 9190 creation of struct values]. */
14f9c5c9 9191
4c4b4cd2
PH
9192static struct value *
9193ada_to_fixed_value_create (struct type *type0, CORE_ADDR address,
9194 struct value *val0)
14f9c5c9 9195{
1ed6ede0 9196 struct type *type = ada_to_fixed_type (type0, 0, address, NULL, 1);
5b4ee69b 9197
14f9c5c9
AS
9198 if (type == type0 && val0 != NULL)
9199 return val0;
d2e4a39e 9200 else
4c4b4cd2
PH
9201 return value_from_contents_and_address (type, 0, address);
9202}
9203
9204/* A value representing VAL, but with a standard (static-sized) type
9205 that correctly describes it. Does not necessarily create a new
9206 value. */
9207
0c3acc09 9208struct value *
4c4b4cd2
PH
9209ada_to_fixed_value (struct value *val)
9210{
c48db5ca
JB
9211 val = unwrap_value (val);
9212 val = ada_to_fixed_value_create (value_type (val),
9213 value_address (val),
9214 val);
9215 return val;
14f9c5c9 9216}
d2e4a39e 9217\f
14f9c5c9 9218
14f9c5c9
AS
9219/* Attributes */
9220
4c4b4cd2
PH
9221/* Table mapping attribute numbers to names.
9222 NOTE: Keep up to date with enum ada_attribute definition in ada-lang.h. */
14f9c5c9 9223
d2e4a39e 9224static const char *attribute_names[] = {
14f9c5c9
AS
9225 "<?>",
9226
d2e4a39e 9227 "first",
14f9c5c9
AS
9228 "last",
9229 "length",
9230 "image",
14f9c5c9
AS
9231 "max",
9232 "min",
4c4b4cd2
PH
9233 "modulus",
9234 "pos",
9235 "size",
9236 "tag",
14f9c5c9 9237 "val",
14f9c5c9
AS
9238 0
9239};
9240
d2e4a39e 9241const char *
4c4b4cd2 9242ada_attribute_name (enum exp_opcode n)
14f9c5c9 9243{
4c4b4cd2
PH
9244 if (n >= OP_ATR_FIRST && n <= (int) OP_ATR_VAL)
9245 return attribute_names[n - OP_ATR_FIRST + 1];
14f9c5c9
AS
9246 else
9247 return attribute_names[0];
9248}
9249
4c4b4cd2 9250/* Evaluate the 'POS attribute applied to ARG. */
14f9c5c9 9251
4c4b4cd2
PH
9252static LONGEST
9253pos_atr (struct value *arg)
14f9c5c9 9254{
24209737
PH
9255 struct value *val = coerce_ref (arg);
9256 struct type *type = value_type (val);
aa715135 9257 LONGEST result;
14f9c5c9 9258
d2e4a39e 9259 if (!discrete_type_p (type))
323e0a4a 9260 error (_("'POS only defined on discrete types"));
14f9c5c9 9261
aa715135
JG
9262 if (!discrete_position (type, value_as_long (val), &result))
9263 error (_("enumeration value is invalid: can't find 'POS"));
14f9c5c9 9264
aa715135 9265 return result;
4c4b4cd2
PH
9266}
9267
9268static struct value *
3cb382c9 9269value_pos_atr (struct type *type, struct value *arg)
4c4b4cd2 9270{
3cb382c9 9271 return value_from_longest (type, pos_atr (arg));
14f9c5c9
AS
9272}
9273
4c4b4cd2 9274/* Evaluate the TYPE'VAL attribute applied to ARG. */
14f9c5c9 9275
d2e4a39e
AS
9276static struct value *
9277value_val_atr (struct type *type, struct value *arg)
14f9c5c9 9278{
d2e4a39e 9279 if (!discrete_type_p (type))
323e0a4a 9280 error (_("'VAL only defined on discrete types"));
df407dfe 9281 if (!integer_type_p (value_type (arg)))
323e0a4a 9282 error (_("'VAL requires integral argument"));
14f9c5c9
AS
9283
9284 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
9285 {
9286 long pos = value_as_long (arg);
5b4ee69b 9287
14f9c5c9 9288 if (pos < 0 || pos >= TYPE_NFIELDS (type))
323e0a4a 9289 error (_("argument to 'VAL out of range"));
14e75d8e 9290 return value_from_longest (type, TYPE_FIELD_ENUMVAL (type, pos));
14f9c5c9
AS
9291 }
9292 else
9293 return value_from_longest (type, value_as_long (arg));
9294}
14f9c5c9 9295\f
d2e4a39e 9296
4c4b4cd2 9297 /* Evaluation */
14f9c5c9 9298
4c4b4cd2
PH
9299/* True if TYPE appears to be an Ada character type.
9300 [At the moment, this is true only for Character and Wide_Character;
9301 It is a heuristic test that could stand improvement]. */
14f9c5c9 9302
d2e4a39e
AS
9303int
9304ada_is_character_type (struct type *type)
14f9c5c9 9305{
7b9f71f2
JB
9306 const char *name;
9307
9308 /* If the type code says it's a character, then assume it really is,
9309 and don't check any further. */
9310 if (TYPE_CODE (type) == TYPE_CODE_CHAR)
9311 return 1;
9312
9313 /* Otherwise, assume it's a character type iff it is a discrete type
9314 with a known character type name. */
9315 name = ada_type_name (type);
9316 return (name != NULL
9317 && (TYPE_CODE (type) == TYPE_CODE_INT
9318 || TYPE_CODE (type) == TYPE_CODE_RANGE)
9319 && (strcmp (name, "character") == 0
9320 || strcmp (name, "wide_character") == 0
5a517ebd 9321 || strcmp (name, "wide_wide_character") == 0
7b9f71f2 9322 || strcmp (name, "unsigned char") == 0));
14f9c5c9
AS
9323}
9324
4c4b4cd2 9325/* True if TYPE appears to be an Ada string type. */
14f9c5c9
AS
9326
9327int
ebf56fd3 9328ada_is_string_type (struct type *type)
14f9c5c9 9329{
61ee279c 9330 type = ada_check_typedef (type);
d2e4a39e 9331 if (type != NULL
14f9c5c9 9332 && TYPE_CODE (type) != TYPE_CODE_PTR
76a01679
JB
9333 && (ada_is_simple_array_type (type)
9334 || ada_is_array_descriptor_type (type))
14f9c5c9
AS
9335 && ada_array_arity (type) == 1)
9336 {
9337 struct type *elttype = ada_array_element_type (type, 1);
9338
9339 return ada_is_character_type (elttype);
9340 }
d2e4a39e 9341 else
14f9c5c9
AS
9342 return 0;
9343}
9344
5bf03f13
JB
9345/* The compiler sometimes provides a parallel XVS type for a given
9346 PAD type. Normally, it is safe to follow the PAD type directly,
9347 but older versions of the compiler have a bug that causes the offset
9348 of its "F" field to be wrong. Following that field in that case
9349 would lead to incorrect results, but this can be worked around
9350 by ignoring the PAD type and using the associated XVS type instead.
9351
9352 Set to True if the debugger should trust the contents of PAD types.
9353 Otherwise, ignore the PAD type if there is a parallel XVS type. */
9354static int trust_pad_over_xvs = 1;
14f9c5c9
AS
9355
9356/* True if TYPE is a struct type introduced by the compiler to force the
9357 alignment of a value. Such types have a single field with a
4c4b4cd2 9358 distinctive name. */
14f9c5c9
AS
9359
9360int
ebf56fd3 9361ada_is_aligner_type (struct type *type)
14f9c5c9 9362{
61ee279c 9363 type = ada_check_typedef (type);
714e53ab 9364
5bf03f13 9365 if (!trust_pad_over_xvs && ada_find_parallel_type (type, "___XVS") != NULL)
714e53ab
PH
9366 return 0;
9367
14f9c5c9 9368 return (TYPE_CODE (type) == TYPE_CODE_STRUCT
4c4b4cd2
PH
9369 && TYPE_NFIELDS (type) == 1
9370 && strcmp (TYPE_FIELD_NAME (type, 0), "F") == 0);
14f9c5c9
AS
9371}
9372
9373/* If there is an ___XVS-convention type parallel to SUBTYPE, return
4c4b4cd2 9374 the parallel type. */
14f9c5c9 9375
d2e4a39e
AS
9376struct type *
9377ada_get_base_type (struct type *raw_type)
14f9c5c9 9378{
d2e4a39e
AS
9379 struct type *real_type_namer;
9380 struct type *raw_real_type;
14f9c5c9
AS
9381
9382 if (raw_type == NULL || TYPE_CODE (raw_type) != TYPE_CODE_STRUCT)
9383 return raw_type;
9384
284614f0
JB
9385 if (ada_is_aligner_type (raw_type))
9386 /* The encoding specifies that we should always use the aligner type.
9387 So, even if this aligner type has an associated XVS type, we should
9388 simply ignore it.
9389
9390 According to the compiler gurus, an XVS type parallel to an aligner
9391 type may exist because of a stabs limitation. In stabs, aligner
9392 types are empty because the field has a variable-sized type, and
9393 thus cannot actually be used as an aligner type. As a result,
9394 we need the associated parallel XVS type to decode the type.
9395 Since the policy in the compiler is to not change the internal
9396 representation based on the debugging info format, we sometimes
9397 end up having a redundant XVS type parallel to the aligner type. */
9398 return raw_type;
9399
14f9c5c9 9400 real_type_namer = ada_find_parallel_type (raw_type, "___XVS");
d2e4a39e 9401 if (real_type_namer == NULL
14f9c5c9
AS
9402 || TYPE_CODE (real_type_namer) != TYPE_CODE_STRUCT
9403 || TYPE_NFIELDS (real_type_namer) != 1)
9404 return raw_type;
9405
f80d3ff2
JB
9406 if (TYPE_CODE (TYPE_FIELD_TYPE (real_type_namer, 0)) != TYPE_CODE_REF)
9407 {
9408 /* This is an older encoding form where the base type needs to be
9409 looked up by name. We prefer the newer enconding because it is
9410 more efficient. */
9411 raw_real_type = ada_find_any_type (TYPE_FIELD_NAME (real_type_namer, 0));
9412 if (raw_real_type == NULL)
9413 return raw_type;
9414 else
9415 return raw_real_type;
9416 }
9417
9418 /* The field in our XVS type is a reference to the base type. */
9419 return TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (real_type_namer, 0));
d2e4a39e 9420}
14f9c5c9 9421
4c4b4cd2 9422/* The type of value designated by TYPE, with all aligners removed. */
14f9c5c9 9423
d2e4a39e
AS
9424struct type *
9425ada_aligned_type (struct type *type)
14f9c5c9
AS
9426{
9427 if (ada_is_aligner_type (type))
9428 return ada_aligned_type (TYPE_FIELD_TYPE (type, 0));
9429 else
9430 return ada_get_base_type (type);
9431}
9432
9433
9434/* The address of the aligned value in an object at address VALADDR
4c4b4cd2 9435 having type TYPE. Assumes ada_is_aligner_type (TYPE). */
14f9c5c9 9436
fc1a4b47
AC
9437const gdb_byte *
9438ada_aligned_value_addr (struct type *type, const gdb_byte *valaddr)
14f9c5c9 9439{
d2e4a39e 9440 if (ada_is_aligner_type (type))
14f9c5c9 9441 return ada_aligned_value_addr (TYPE_FIELD_TYPE (type, 0),
4c4b4cd2
PH
9442 valaddr +
9443 TYPE_FIELD_BITPOS (type,
9444 0) / TARGET_CHAR_BIT);
14f9c5c9
AS
9445 else
9446 return valaddr;
9447}
9448
4c4b4cd2
PH
9449
9450
14f9c5c9 9451/* The printed representation of an enumeration literal with encoded
4c4b4cd2 9452 name NAME. The value is good to the next call of ada_enum_name. */
d2e4a39e
AS
9453const char *
9454ada_enum_name (const char *name)
14f9c5c9 9455{
4c4b4cd2
PH
9456 static char *result;
9457 static size_t result_len = 0;
e6a959d6 9458 const char *tmp;
14f9c5c9 9459
4c4b4cd2
PH
9460 /* First, unqualify the enumeration name:
9461 1. Search for the last '.' character. If we find one, then skip
177b42fe 9462 all the preceding characters, the unqualified name starts
76a01679 9463 right after that dot.
4c4b4cd2 9464 2. Otherwise, we may be debugging on a target where the compiler
76a01679
JB
9465 translates dots into "__". Search forward for double underscores,
9466 but stop searching when we hit an overloading suffix, which is
9467 of the form "__" followed by digits. */
4c4b4cd2 9468
c3e5cd34
PH
9469 tmp = strrchr (name, '.');
9470 if (tmp != NULL)
4c4b4cd2
PH
9471 name = tmp + 1;
9472 else
14f9c5c9 9473 {
4c4b4cd2
PH
9474 while ((tmp = strstr (name, "__")) != NULL)
9475 {
9476 if (isdigit (tmp[2]))
9477 break;
9478 else
9479 name = tmp + 2;
9480 }
14f9c5c9
AS
9481 }
9482
9483 if (name[0] == 'Q')
9484 {
14f9c5c9 9485 int v;
5b4ee69b 9486
14f9c5c9 9487 if (name[1] == 'U' || name[1] == 'W')
4c4b4cd2
PH
9488 {
9489 if (sscanf (name + 2, "%x", &v) != 1)
9490 return name;
9491 }
14f9c5c9 9492 else
4c4b4cd2 9493 return name;
14f9c5c9 9494
4c4b4cd2 9495 GROW_VECT (result, result_len, 16);
14f9c5c9 9496 if (isascii (v) && isprint (v))
88c15c34 9497 xsnprintf (result, result_len, "'%c'", v);
14f9c5c9 9498 else if (name[1] == 'U')
88c15c34 9499 xsnprintf (result, result_len, "[\"%02x\"]", v);
14f9c5c9 9500 else
88c15c34 9501 xsnprintf (result, result_len, "[\"%04x\"]", v);
14f9c5c9
AS
9502
9503 return result;
9504 }
d2e4a39e 9505 else
4c4b4cd2 9506 {
c3e5cd34
PH
9507 tmp = strstr (name, "__");
9508 if (tmp == NULL)
9509 tmp = strstr (name, "$");
9510 if (tmp != NULL)
4c4b4cd2
PH
9511 {
9512 GROW_VECT (result, result_len, tmp - name + 1);
9513 strncpy (result, name, tmp - name);
9514 result[tmp - name] = '\0';
9515 return result;
9516 }
9517
9518 return name;
9519 }
14f9c5c9
AS
9520}
9521
14f9c5c9
AS
9522/* Evaluate the subexpression of EXP starting at *POS as for
9523 evaluate_type, updating *POS to point just past the evaluated
4c4b4cd2 9524 expression. */
14f9c5c9 9525
d2e4a39e
AS
9526static struct value *
9527evaluate_subexp_type (struct expression *exp, int *pos)
14f9c5c9 9528{
4b27a620 9529 return evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
14f9c5c9
AS
9530}
9531
9532/* If VAL is wrapped in an aligner or subtype wrapper, return the
4c4b4cd2 9533 value it wraps. */
14f9c5c9 9534
d2e4a39e
AS
9535static struct value *
9536unwrap_value (struct value *val)
14f9c5c9 9537{
df407dfe 9538 struct type *type = ada_check_typedef (value_type (val));
5b4ee69b 9539
14f9c5c9
AS
9540 if (ada_is_aligner_type (type))
9541 {
de4d072f 9542 struct value *v = ada_value_struct_elt (val, "F", 0);
df407dfe 9543 struct type *val_type = ada_check_typedef (value_type (v));
5b4ee69b 9544
14f9c5c9 9545 if (ada_type_name (val_type) == NULL)
4c4b4cd2 9546 TYPE_NAME (val_type) = ada_type_name (type);
14f9c5c9
AS
9547
9548 return unwrap_value (v);
9549 }
d2e4a39e 9550 else
14f9c5c9 9551 {
d2e4a39e 9552 struct type *raw_real_type =
61ee279c 9553 ada_check_typedef (ada_get_base_type (type));
d2e4a39e 9554
5bf03f13
JB
9555 /* If there is no parallel XVS or XVE type, then the value is
9556 already unwrapped. Return it without further modification. */
9557 if ((type == raw_real_type)
9558 && ada_find_parallel_type (type, "___XVE") == NULL)
9559 return val;
14f9c5c9 9560
d2e4a39e 9561 return
4c4b4cd2
PH
9562 coerce_unspec_val_to_type
9563 (val, ada_to_fixed_type (raw_real_type, 0,
42ae5230 9564 value_address (val),
1ed6ede0 9565 NULL, 1));
14f9c5c9
AS
9566 }
9567}
d2e4a39e
AS
9568
9569static struct value *
50eff16b 9570cast_from_fixed (struct type *type, struct value *arg)
14f9c5c9 9571{
50eff16b
UW
9572 struct value *scale = ada_scaling_factor (value_type (arg));
9573 arg = value_cast (value_type (scale), arg);
14f9c5c9 9574
50eff16b
UW
9575 arg = value_binop (arg, scale, BINOP_MUL);
9576 return value_cast (type, arg);
14f9c5c9
AS
9577}
9578
d2e4a39e 9579static struct value *
50eff16b 9580cast_to_fixed (struct type *type, struct value *arg)
14f9c5c9 9581{
50eff16b
UW
9582 if (type == value_type (arg))
9583 return arg;
5b4ee69b 9584
50eff16b
UW
9585 struct value *scale = ada_scaling_factor (type);
9586 if (ada_is_fixed_point_type (value_type (arg)))
9587 arg = cast_from_fixed (value_type (scale), arg);
9588 else
9589 arg = value_cast (value_type (scale), arg);
9590
9591 arg = value_binop (arg, scale, BINOP_DIV);
9592 return value_cast (type, arg);
14f9c5c9
AS
9593}
9594
d99dcf51
JB
9595/* Given two array types T1 and T2, return nonzero iff both arrays
9596 contain the same number of elements. */
9597
9598static int
9599ada_same_array_size_p (struct type *t1, struct type *t2)
9600{
9601 LONGEST lo1, hi1, lo2, hi2;
9602
9603 /* Get the array bounds in order to verify that the size of
9604 the two arrays match. */
9605 if (!get_array_bounds (t1, &lo1, &hi1)
9606 || !get_array_bounds (t2, &lo2, &hi2))
9607 error (_("unable to determine array bounds"));
9608
9609 /* To make things easier for size comparison, normalize a bit
9610 the case of empty arrays by making sure that the difference
9611 between upper bound and lower bound is always -1. */
9612 if (lo1 > hi1)
9613 hi1 = lo1 - 1;
9614 if (lo2 > hi2)
9615 hi2 = lo2 - 1;
9616
9617 return (hi1 - lo1 == hi2 - lo2);
9618}
9619
9620/* Assuming that VAL is an array of integrals, and TYPE represents
9621 an array with the same number of elements, but with wider integral
9622 elements, return an array "casted" to TYPE. In practice, this
9623 means that the returned array is built by casting each element
9624 of the original array into TYPE's (wider) element type. */
9625
9626static struct value *
9627ada_promote_array_of_integrals (struct type *type, struct value *val)
9628{
9629 struct type *elt_type = TYPE_TARGET_TYPE (type);
9630 LONGEST lo, hi;
9631 struct value *res;
9632 LONGEST i;
9633
9634 /* Verify that both val and type are arrays of scalars, and
9635 that the size of val's elements is smaller than the size
9636 of type's element. */
9637 gdb_assert (TYPE_CODE (type) == TYPE_CODE_ARRAY);
9638 gdb_assert (is_integral_type (TYPE_TARGET_TYPE (type)));
9639 gdb_assert (TYPE_CODE (value_type (val)) == TYPE_CODE_ARRAY);
9640 gdb_assert (is_integral_type (TYPE_TARGET_TYPE (value_type (val))));
9641 gdb_assert (TYPE_LENGTH (TYPE_TARGET_TYPE (type))
9642 > TYPE_LENGTH (TYPE_TARGET_TYPE (value_type (val))));
9643
9644 if (!get_array_bounds (type, &lo, &hi))
9645 error (_("unable to determine array bounds"));
9646
9647 res = allocate_value (type);
9648
9649 /* Promote each array element. */
9650 for (i = 0; i < hi - lo + 1; i++)
9651 {
9652 struct value *elt = value_cast (elt_type, value_subscript (val, lo + i));
9653
9654 memcpy (value_contents_writeable (res) + (i * TYPE_LENGTH (elt_type)),
9655 value_contents_all (elt), TYPE_LENGTH (elt_type));
9656 }
9657
9658 return res;
9659}
9660
4c4b4cd2
PH
9661/* Coerce VAL as necessary for assignment to an lval of type TYPE, and
9662 return the converted value. */
9663
d2e4a39e
AS
9664static struct value *
9665coerce_for_assign (struct type *type, struct value *val)
14f9c5c9 9666{
df407dfe 9667 struct type *type2 = value_type (val);
5b4ee69b 9668
14f9c5c9
AS
9669 if (type == type2)
9670 return val;
9671
61ee279c
PH
9672 type2 = ada_check_typedef (type2);
9673 type = ada_check_typedef (type);
14f9c5c9 9674
d2e4a39e
AS
9675 if (TYPE_CODE (type2) == TYPE_CODE_PTR
9676 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
14f9c5c9
AS
9677 {
9678 val = ada_value_ind (val);
df407dfe 9679 type2 = value_type (val);
14f9c5c9
AS
9680 }
9681
d2e4a39e 9682 if (TYPE_CODE (type2) == TYPE_CODE_ARRAY
14f9c5c9
AS
9683 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
9684 {
d99dcf51
JB
9685 if (!ada_same_array_size_p (type, type2))
9686 error (_("cannot assign arrays of different length"));
9687
9688 if (is_integral_type (TYPE_TARGET_TYPE (type))
9689 && is_integral_type (TYPE_TARGET_TYPE (type2))
9690 && TYPE_LENGTH (TYPE_TARGET_TYPE (type2))
9691 < TYPE_LENGTH (TYPE_TARGET_TYPE (type)))
9692 {
9693 /* Allow implicit promotion of the array elements to
9694 a wider type. */
9695 return ada_promote_array_of_integrals (type, val);
9696 }
9697
9698 if (TYPE_LENGTH (TYPE_TARGET_TYPE (type2))
9699 != TYPE_LENGTH (TYPE_TARGET_TYPE (type)))
323e0a4a 9700 error (_("Incompatible types in assignment"));
04624583 9701 deprecated_set_value_type (val, type);
14f9c5c9 9702 }
d2e4a39e 9703 return val;
14f9c5c9
AS
9704}
9705
4c4b4cd2
PH
9706static struct value *
9707ada_value_binop (struct value *arg1, struct value *arg2, enum exp_opcode op)
9708{
9709 struct value *val;
9710 struct type *type1, *type2;
9711 LONGEST v, v1, v2;
9712
994b9211
AC
9713 arg1 = coerce_ref (arg1);
9714 arg2 = coerce_ref (arg2);
18af8284
JB
9715 type1 = get_base_type (ada_check_typedef (value_type (arg1)));
9716 type2 = get_base_type (ada_check_typedef (value_type (arg2)));
4c4b4cd2 9717
76a01679
JB
9718 if (TYPE_CODE (type1) != TYPE_CODE_INT
9719 || TYPE_CODE (type2) != TYPE_CODE_INT)
4c4b4cd2
PH
9720 return value_binop (arg1, arg2, op);
9721
76a01679 9722 switch (op)
4c4b4cd2
PH
9723 {
9724 case BINOP_MOD:
9725 case BINOP_DIV:
9726 case BINOP_REM:
9727 break;
9728 default:
9729 return value_binop (arg1, arg2, op);
9730 }
9731
9732 v2 = value_as_long (arg2);
9733 if (v2 == 0)
323e0a4a 9734 error (_("second operand of %s must not be zero."), op_string (op));
4c4b4cd2
PH
9735
9736 if (TYPE_UNSIGNED (type1) || op == BINOP_MOD)
9737 return value_binop (arg1, arg2, op);
9738
9739 v1 = value_as_long (arg1);
9740 switch (op)
9741 {
9742 case BINOP_DIV:
9743 v = v1 / v2;
76a01679
JB
9744 if (!TRUNCATION_TOWARDS_ZERO && v1 * (v1 % v2) < 0)
9745 v += v > 0 ? -1 : 1;
4c4b4cd2
PH
9746 break;
9747 case BINOP_REM:
9748 v = v1 % v2;
76a01679
JB
9749 if (v * v1 < 0)
9750 v -= v2;
4c4b4cd2
PH
9751 break;
9752 default:
9753 /* Should not reach this point. */
9754 v = 0;
9755 }
9756
9757 val = allocate_value (type1);
990a07ab 9758 store_unsigned_integer (value_contents_raw (val),
e17a4113
UW
9759 TYPE_LENGTH (value_type (val)),
9760 gdbarch_byte_order (get_type_arch (type1)), v);
4c4b4cd2
PH
9761 return val;
9762}
9763
9764static int
9765ada_value_equal (struct value *arg1, struct value *arg2)
9766{
df407dfe
AC
9767 if (ada_is_direct_array_type (value_type (arg1))
9768 || ada_is_direct_array_type (value_type (arg2)))
4c4b4cd2 9769 {
f58b38bf
JB
9770 /* Automatically dereference any array reference before
9771 we attempt to perform the comparison. */
9772 arg1 = ada_coerce_ref (arg1);
9773 arg2 = ada_coerce_ref (arg2);
9774
4c4b4cd2
PH
9775 arg1 = ada_coerce_to_simple_array (arg1);
9776 arg2 = ada_coerce_to_simple_array (arg2);
df407dfe
AC
9777 if (TYPE_CODE (value_type (arg1)) != TYPE_CODE_ARRAY
9778 || TYPE_CODE (value_type (arg2)) != TYPE_CODE_ARRAY)
323e0a4a 9779 error (_("Attempt to compare array with non-array"));
4c4b4cd2 9780 /* FIXME: The following works only for types whose
76a01679
JB
9781 representations use all bits (no padding or undefined bits)
9782 and do not have user-defined equality. */
9783 return
df407dfe 9784 TYPE_LENGTH (value_type (arg1)) == TYPE_LENGTH (value_type (arg2))
0fd88904 9785 && memcmp (value_contents (arg1), value_contents (arg2),
df407dfe 9786 TYPE_LENGTH (value_type (arg1))) == 0;
4c4b4cd2
PH
9787 }
9788 return value_equal (arg1, arg2);
9789}
9790
52ce6436
PH
9791/* Total number of component associations in the aggregate starting at
9792 index PC in EXP. Assumes that index PC is the start of an
0963b4bd 9793 OP_AGGREGATE. */
52ce6436
PH
9794
9795static int
9796num_component_specs (struct expression *exp, int pc)
9797{
9798 int n, m, i;
5b4ee69b 9799
52ce6436
PH
9800 m = exp->elts[pc + 1].longconst;
9801 pc += 3;
9802 n = 0;
9803 for (i = 0; i < m; i += 1)
9804 {
9805 switch (exp->elts[pc].opcode)
9806 {
9807 default:
9808 n += 1;
9809 break;
9810 case OP_CHOICES:
9811 n += exp->elts[pc + 1].longconst;
9812 break;
9813 }
9814 ada_evaluate_subexp (NULL, exp, &pc, EVAL_SKIP);
9815 }
9816 return n;
9817}
9818
9819/* Assign the result of evaluating EXP starting at *POS to the INDEXth
9820 component of LHS (a simple array or a record), updating *POS past
9821 the expression, assuming that LHS is contained in CONTAINER. Does
9822 not modify the inferior's memory, nor does it modify LHS (unless
9823 LHS == CONTAINER). */
9824
9825static void
9826assign_component (struct value *container, struct value *lhs, LONGEST index,
9827 struct expression *exp, int *pos)
9828{
9829 struct value *mark = value_mark ();
9830 struct value *elt;
5b4ee69b 9831
52ce6436
PH
9832 if (TYPE_CODE (value_type (lhs)) == TYPE_CODE_ARRAY)
9833 {
22601c15
UW
9834 struct type *index_type = builtin_type (exp->gdbarch)->builtin_int;
9835 struct value *index_val = value_from_longest (index_type, index);
5b4ee69b 9836
52ce6436
PH
9837 elt = unwrap_value (ada_value_subscript (lhs, 1, &index_val));
9838 }
9839 else
9840 {
9841 elt = ada_index_struct_field (index, lhs, 0, value_type (lhs));
c48db5ca 9842 elt = ada_to_fixed_value (elt);
52ce6436
PH
9843 }
9844
9845 if (exp->elts[*pos].opcode == OP_AGGREGATE)
9846 assign_aggregate (container, elt, exp, pos, EVAL_NORMAL);
9847 else
9848 value_assign_to_component (container, elt,
9849 ada_evaluate_subexp (NULL, exp, pos,
9850 EVAL_NORMAL));
9851
9852 value_free_to_mark (mark);
9853}
9854
9855/* Assuming that LHS represents an lvalue having a record or array
9856 type, and EXP->ELTS[*POS] is an OP_AGGREGATE, evaluate an assignment
9857 of that aggregate's value to LHS, advancing *POS past the
9858 aggregate. NOSIDE is as for evaluate_subexp. CONTAINER is an
9859 lvalue containing LHS (possibly LHS itself). Does not modify
9860 the inferior's memory, nor does it modify the contents of
0963b4bd 9861 LHS (unless == CONTAINER). Returns the modified CONTAINER. */
52ce6436
PH
9862
9863static struct value *
9864assign_aggregate (struct value *container,
9865 struct value *lhs, struct expression *exp,
9866 int *pos, enum noside noside)
9867{
9868 struct type *lhs_type;
9869 int n = exp->elts[*pos+1].longconst;
9870 LONGEST low_index, high_index;
9871 int num_specs;
9872 LONGEST *indices;
9873 int max_indices, num_indices;
52ce6436 9874 int i;
52ce6436
PH
9875
9876 *pos += 3;
9877 if (noside != EVAL_NORMAL)
9878 {
52ce6436
PH
9879 for (i = 0; i < n; i += 1)
9880 ada_evaluate_subexp (NULL, exp, pos, noside);
9881 return container;
9882 }
9883
9884 container = ada_coerce_ref (container);
9885 if (ada_is_direct_array_type (value_type (container)))
9886 container = ada_coerce_to_simple_array (container);
9887 lhs = ada_coerce_ref (lhs);
9888 if (!deprecated_value_modifiable (lhs))
9889 error (_("Left operand of assignment is not a modifiable lvalue."));
9890
9891 lhs_type = value_type (lhs);
9892 if (ada_is_direct_array_type (lhs_type))
9893 {
9894 lhs = ada_coerce_to_simple_array (lhs);
9895 lhs_type = value_type (lhs);
9896 low_index = TYPE_ARRAY_LOWER_BOUND_VALUE (lhs_type);
9897 high_index = TYPE_ARRAY_UPPER_BOUND_VALUE (lhs_type);
52ce6436
PH
9898 }
9899 else if (TYPE_CODE (lhs_type) == TYPE_CODE_STRUCT)
9900 {
9901 low_index = 0;
9902 high_index = num_visible_fields (lhs_type) - 1;
52ce6436
PH
9903 }
9904 else
9905 error (_("Left-hand side must be array or record."));
9906
9907 num_specs = num_component_specs (exp, *pos - 3);
9908 max_indices = 4 * num_specs + 4;
8d749320 9909 indices = XALLOCAVEC (LONGEST, max_indices);
52ce6436
PH
9910 indices[0] = indices[1] = low_index - 1;
9911 indices[2] = indices[3] = high_index + 1;
9912 num_indices = 4;
9913
9914 for (i = 0; i < n; i += 1)
9915 {
9916 switch (exp->elts[*pos].opcode)
9917 {
1fbf5ada
JB
9918 case OP_CHOICES:
9919 aggregate_assign_from_choices (container, lhs, exp, pos, indices,
9920 &num_indices, max_indices,
9921 low_index, high_index);
9922 break;
9923 case OP_POSITIONAL:
9924 aggregate_assign_positional (container, lhs, exp, pos, indices,
52ce6436
PH
9925 &num_indices, max_indices,
9926 low_index, high_index);
1fbf5ada
JB
9927 break;
9928 case OP_OTHERS:
9929 if (i != n-1)
9930 error (_("Misplaced 'others' clause"));
9931 aggregate_assign_others (container, lhs, exp, pos, indices,
9932 num_indices, low_index, high_index);
9933 break;
9934 default:
9935 error (_("Internal error: bad aggregate clause"));
52ce6436
PH
9936 }
9937 }
9938
9939 return container;
9940}
9941
9942/* Assign into the component of LHS indexed by the OP_POSITIONAL
9943 construct at *POS, updating *POS past the construct, given that
9944 the positions are relative to lower bound LOW, where HIGH is the
9945 upper bound. Record the position in INDICES[0 .. MAX_INDICES-1]
9946 updating *NUM_INDICES as needed. CONTAINER is as for
0963b4bd 9947 assign_aggregate. */
52ce6436
PH
9948static void
9949aggregate_assign_positional (struct value *container,
9950 struct value *lhs, struct expression *exp,
9951 int *pos, LONGEST *indices, int *num_indices,
9952 int max_indices, LONGEST low, LONGEST high)
9953{
9954 LONGEST ind = longest_to_int (exp->elts[*pos + 1].longconst) + low;
9955
9956 if (ind - 1 == high)
e1d5a0d2 9957 warning (_("Extra components in aggregate ignored."));
52ce6436
PH
9958 if (ind <= high)
9959 {
9960 add_component_interval (ind, ind, indices, num_indices, max_indices);
9961 *pos += 3;
9962 assign_component (container, lhs, ind, exp, pos);
9963 }
9964 else
9965 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
9966}
9967
9968/* Assign into the components of LHS indexed by the OP_CHOICES
9969 construct at *POS, updating *POS past the construct, given that
9970 the allowable indices are LOW..HIGH. Record the indices assigned
9971 to in INDICES[0 .. MAX_INDICES-1], updating *NUM_INDICES as
0963b4bd 9972 needed. CONTAINER is as for assign_aggregate. */
52ce6436
PH
9973static void
9974aggregate_assign_from_choices (struct value *container,
9975 struct value *lhs, struct expression *exp,
9976 int *pos, LONGEST *indices, int *num_indices,
9977 int max_indices, LONGEST low, LONGEST high)
9978{
9979 int j;
9980 int n_choices = longest_to_int (exp->elts[*pos+1].longconst);
9981 int choice_pos, expr_pc;
9982 int is_array = ada_is_direct_array_type (value_type (lhs));
9983
9984 choice_pos = *pos += 3;
9985
9986 for (j = 0; j < n_choices; j += 1)
9987 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
9988 expr_pc = *pos;
9989 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
9990
9991 for (j = 0; j < n_choices; j += 1)
9992 {
9993 LONGEST lower, upper;
9994 enum exp_opcode op = exp->elts[choice_pos].opcode;
5b4ee69b 9995
52ce6436
PH
9996 if (op == OP_DISCRETE_RANGE)
9997 {
9998 choice_pos += 1;
9999 lower = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
10000 EVAL_NORMAL));
10001 upper = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
10002 EVAL_NORMAL));
10003 }
10004 else if (is_array)
10005 {
10006 lower = value_as_long (ada_evaluate_subexp (NULL, exp, &choice_pos,
10007 EVAL_NORMAL));
10008 upper = lower;
10009 }
10010 else
10011 {
10012 int ind;
0d5cff50 10013 const char *name;
5b4ee69b 10014
52ce6436
PH
10015 switch (op)
10016 {
10017 case OP_NAME:
10018 name = &exp->elts[choice_pos + 2].string;
10019 break;
10020 case OP_VAR_VALUE:
10021 name = SYMBOL_NATURAL_NAME (exp->elts[choice_pos + 2].symbol);
10022 break;
10023 default:
10024 error (_("Invalid record component association."));
10025 }
10026 ada_evaluate_subexp (NULL, exp, &choice_pos, EVAL_SKIP);
10027 ind = 0;
10028 if (! find_struct_field (name, value_type (lhs), 0,
10029 NULL, NULL, NULL, NULL, &ind))
10030 error (_("Unknown component name: %s."), name);
10031 lower = upper = ind;
10032 }
10033
10034 if (lower <= upper && (lower < low || upper > high))
10035 error (_("Index in component association out of bounds."));
10036
10037 add_component_interval (lower, upper, indices, num_indices,
10038 max_indices);
10039 while (lower <= upper)
10040 {
10041 int pos1;
5b4ee69b 10042
52ce6436
PH
10043 pos1 = expr_pc;
10044 assign_component (container, lhs, lower, exp, &pos1);
10045 lower += 1;
10046 }
10047 }
10048}
10049
10050/* Assign the value of the expression in the OP_OTHERS construct in
10051 EXP at *POS into the components of LHS indexed from LOW .. HIGH that
10052 have not been previously assigned. The index intervals already assigned
10053 are in INDICES[0 .. NUM_INDICES-1]. Updates *POS to after the
0963b4bd 10054 OP_OTHERS clause. CONTAINER is as for assign_aggregate. */
52ce6436
PH
10055static void
10056aggregate_assign_others (struct value *container,
10057 struct value *lhs, struct expression *exp,
10058 int *pos, LONGEST *indices, int num_indices,
10059 LONGEST low, LONGEST high)
10060{
10061 int i;
5ce64950 10062 int expr_pc = *pos + 1;
52ce6436
PH
10063
10064 for (i = 0; i < num_indices - 2; i += 2)
10065 {
10066 LONGEST ind;
5b4ee69b 10067
52ce6436
PH
10068 for (ind = indices[i + 1] + 1; ind < indices[i + 2]; ind += 1)
10069 {
5ce64950 10070 int localpos;
5b4ee69b 10071
5ce64950
MS
10072 localpos = expr_pc;
10073 assign_component (container, lhs, ind, exp, &localpos);
52ce6436
PH
10074 }
10075 }
10076 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
10077}
10078
10079/* Add the interval [LOW .. HIGH] to the sorted set of intervals
10080 [ INDICES[0] .. INDICES[1] ],..., [ INDICES[*SIZE-2] .. INDICES[*SIZE-1] ],
10081 modifying *SIZE as needed. It is an error if *SIZE exceeds
10082 MAX_SIZE. The resulting intervals do not overlap. */
10083static void
10084add_component_interval (LONGEST low, LONGEST high,
10085 LONGEST* indices, int *size, int max_size)
10086{
10087 int i, j;
5b4ee69b 10088
52ce6436
PH
10089 for (i = 0; i < *size; i += 2) {
10090 if (high >= indices[i] && low <= indices[i + 1])
10091 {
10092 int kh;
5b4ee69b 10093
52ce6436
PH
10094 for (kh = i + 2; kh < *size; kh += 2)
10095 if (high < indices[kh])
10096 break;
10097 if (low < indices[i])
10098 indices[i] = low;
10099 indices[i + 1] = indices[kh - 1];
10100 if (high > indices[i + 1])
10101 indices[i + 1] = high;
10102 memcpy (indices + i + 2, indices + kh, *size - kh);
10103 *size -= kh - i - 2;
10104 return;
10105 }
10106 else if (high < indices[i])
10107 break;
10108 }
10109
10110 if (*size == max_size)
10111 error (_("Internal error: miscounted aggregate components."));
10112 *size += 2;
10113 for (j = *size-1; j >= i+2; j -= 1)
10114 indices[j] = indices[j - 2];
10115 indices[i] = low;
10116 indices[i + 1] = high;
10117}
10118
6e48bd2c
JB
10119/* Perform and Ada cast of ARG2 to type TYPE if the type of ARG2
10120 is different. */
10121
10122static struct value *
10123ada_value_cast (struct type *type, struct value *arg2, enum noside noside)
10124{
10125 if (type == ada_check_typedef (value_type (arg2)))
10126 return arg2;
10127
10128 if (ada_is_fixed_point_type (type))
10129 return (cast_to_fixed (type, arg2));
10130
10131 if (ada_is_fixed_point_type (value_type (arg2)))
a53b7a21 10132 return cast_from_fixed (type, arg2);
6e48bd2c
JB
10133
10134 return value_cast (type, arg2);
10135}
10136
284614f0
JB
10137/* Evaluating Ada expressions, and printing their result.
10138 ------------------------------------------------------
10139
21649b50
JB
10140 1. Introduction:
10141 ----------------
10142
284614f0
JB
10143 We usually evaluate an Ada expression in order to print its value.
10144 We also evaluate an expression in order to print its type, which
10145 happens during the EVAL_AVOID_SIDE_EFFECTS phase of the evaluation,
10146 but we'll focus mostly on the EVAL_NORMAL phase. In practice, the
10147 EVAL_AVOID_SIDE_EFFECTS phase allows us to simplify certain aspects of
10148 the evaluation compared to the EVAL_NORMAL, but is otherwise very
10149 similar.
10150
10151 Evaluating expressions is a little more complicated for Ada entities
10152 than it is for entities in languages such as C. The main reason for
10153 this is that Ada provides types whose definition might be dynamic.
10154 One example of such types is variant records. Or another example
10155 would be an array whose bounds can only be known at run time.
10156
10157 The following description is a general guide as to what should be
10158 done (and what should NOT be done) in order to evaluate an expression
10159 involving such types, and when. This does not cover how the semantic
10160 information is encoded by GNAT as this is covered separatly. For the
10161 document used as the reference for the GNAT encoding, see exp_dbug.ads
10162 in the GNAT sources.
10163
10164 Ideally, we should embed each part of this description next to its
10165 associated code. Unfortunately, the amount of code is so vast right
10166 now that it's hard to see whether the code handling a particular
10167 situation might be duplicated or not. One day, when the code is
10168 cleaned up, this guide might become redundant with the comments
10169 inserted in the code, and we might want to remove it.
10170
21649b50
JB
10171 2. ``Fixing'' an Entity, the Simple Case:
10172 -----------------------------------------
10173
284614f0
JB
10174 When evaluating Ada expressions, the tricky issue is that they may
10175 reference entities whose type contents and size are not statically
10176 known. Consider for instance a variant record:
10177
10178 type Rec (Empty : Boolean := True) is record
10179 case Empty is
10180 when True => null;
10181 when False => Value : Integer;
10182 end case;
10183 end record;
10184 Yes : Rec := (Empty => False, Value => 1);
10185 No : Rec := (empty => True);
10186
10187 The size and contents of that record depends on the value of the
10188 descriminant (Rec.Empty). At this point, neither the debugging
10189 information nor the associated type structure in GDB are able to
10190 express such dynamic types. So what the debugger does is to create
10191 "fixed" versions of the type that applies to the specific object.
10192 We also informally refer to this opperation as "fixing" an object,
10193 which means creating its associated fixed type.
10194
10195 Example: when printing the value of variable "Yes" above, its fixed
10196 type would look like this:
10197
10198 type Rec is record
10199 Empty : Boolean;
10200 Value : Integer;
10201 end record;
10202
10203 On the other hand, if we printed the value of "No", its fixed type
10204 would become:
10205
10206 type Rec is record
10207 Empty : Boolean;
10208 end record;
10209
10210 Things become a little more complicated when trying to fix an entity
10211 with a dynamic type that directly contains another dynamic type,
10212 such as an array of variant records, for instance. There are
10213 two possible cases: Arrays, and records.
10214
21649b50
JB
10215 3. ``Fixing'' Arrays:
10216 ---------------------
10217
10218 The type structure in GDB describes an array in terms of its bounds,
10219 and the type of its elements. By design, all elements in the array
10220 have the same type and we cannot represent an array of variant elements
10221 using the current type structure in GDB. When fixing an array,
10222 we cannot fix the array element, as we would potentially need one
10223 fixed type per element of the array. As a result, the best we can do
10224 when fixing an array is to produce an array whose bounds and size
10225 are correct (allowing us to read it from memory), but without having
10226 touched its element type. Fixing each element will be done later,
10227 when (if) necessary.
10228
10229 Arrays are a little simpler to handle than records, because the same
10230 amount of memory is allocated for each element of the array, even if
1b536f04 10231 the amount of space actually used by each element differs from element
21649b50 10232 to element. Consider for instance the following array of type Rec:
284614f0
JB
10233
10234 type Rec_Array is array (1 .. 2) of Rec;
10235
1b536f04
JB
10236 The actual amount of memory occupied by each element might be different
10237 from element to element, depending on the value of their discriminant.
21649b50 10238 But the amount of space reserved for each element in the array remains
1b536f04 10239 fixed regardless. So we simply need to compute that size using
21649b50
JB
10240 the debugging information available, from which we can then determine
10241 the array size (we multiply the number of elements of the array by
10242 the size of each element).
10243
10244 The simplest case is when we have an array of a constrained element
10245 type. For instance, consider the following type declarations:
10246
10247 type Bounded_String (Max_Size : Integer) is
10248 Length : Integer;
10249 Buffer : String (1 .. Max_Size);
10250 end record;
10251 type Bounded_String_Array is array (1 ..2) of Bounded_String (80);
10252
10253 In this case, the compiler describes the array as an array of
10254 variable-size elements (identified by its XVS suffix) for which
10255 the size can be read in the parallel XVZ variable.
10256
10257 In the case of an array of an unconstrained element type, the compiler
10258 wraps the array element inside a private PAD type. This type should not
10259 be shown to the user, and must be "unwrap"'ed before printing. Note
284614f0
JB
10260 that we also use the adjective "aligner" in our code to designate
10261 these wrapper types.
10262
1b536f04 10263 In some cases, the size allocated for each element is statically
21649b50
JB
10264 known. In that case, the PAD type already has the correct size,
10265 and the array element should remain unfixed.
10266
10267 But there are cases when this size is not statically known.
10268 For instance, assuming that "Five" is an integer variable:
284614f0
JB
10269
10270 type Dynamic is array (1 .. Five) of Integer;
10271 type Wrapper (Has_Length : Boolean := False) is record
10272 Data : Dynamic;
10273 case Has_Length is
10274 when True => Length : Integer;
10275 when False => null;
10276 end case;
10277 end record;
10278 type Wrapper_Array is array (1 .. 2) of Wrapper;
10279
10280 Hello : Wrapper_Array := (others => (Has_Length => True,
10281 Data => (others => 17),
10282 Length => 1));
10283
10284
10285 The debugging info would describe variable Hello as being an
10286 array of a PAD type. The size of that PAD type is not statically
10287 known, but can be determined using a parallel XVZ variable.
10288 In that case, a copy of the PAD type with the correct size should
10289 be used for the fixed array.
10290
21649b50
JB
10291 3. ``Fixing'' record type objects:
10292 ----------------------------------
10293
10294 Things are slightly different from arrays in the case of dynamic
284614f0
JB
10295 record types. In this case, in order to compute the associated
10296 fixed type, we need to determine the size and offset of each of
10297 its components. This, in turn, requires us to compute the fixed
10298 type of each of these components.
10299
10300 Consider for instance the example:
10301
10302 type Bounded_String (Max_Size : Natural) is record
10303 Str : String (1 .. Max_Size);
10304 Length : Natural;
10305 end record;
10306 My_String : Bounded_String (Max_Size => 10);
10307
10308 In that case, the position of field "Length" depends on the size
10309 of field Str, which itself depends on the value of the Max_Size
21649b50 10310 discriminant. In order to fix the type of variable My_String,
284614f0
JB
10311 we need to fix the type of field Str. Therefore, fixing a variant
10312 record requires us to fix each of its components.
10313
10314 However, if a component does not have a dynamic size, the component
10315 should not be fixed. In particular, fields that use a PAD type
10316 should not fixed. Here is an example where this might happen
10317 (assuming type Rec above):
10318
10319 type Container (Big : Boolean) is record
10320 First : Rec;
10321 After : Integer;
10322 case Big is
10323 when True => Another : Integer;
10324 when False => null;
10325 end case;
10326 end record;
10327 My_Container : Container := (Big => False,
10328 First => (Empty => True),
10329 After => 42);
10330
10331 In that example, the compiler creates a PAD type for component First,
10332 whose size is constant, and then positions the component After just
10333 right after it. The offset of component After is therefore constant
10334 in this case.
10335
10336 The debugger computes the position of each field based on an algorithm
10337 that uses, among other things, the actual position and size of the field
21649b50
JB
10338 preceding it. Let's now imagine that the user is trying to print
10339 the value of My_Container. If the type fixing was recursive, we would
284614f0
JB
10340 end up computing the offset of field After based on the size of the
10341 fixed version of field First. And since in our example First has
10342 only one actual field, the size of the fixed type is actually smaller
10343 than the amount of space allocated to that field, and thus we would
10344 compute the wrong offset of field After.
10345
21649b50
JB
10346 To make things more complicated, we need to watch out for dynamic
10347 components of variant records (identified by the ___XVL suffix in
10348 the component name). Even if the target type is a PAD type, the size
10349 of that type might not be statically known. So the PAD type needs
10350 to be unwrapped and the resulting type needs to be fixed. Otherwise,
10351 we might end up with the wrong size for our component. This can be
10352 observed with the following type declarations:
284614f0
JB
10353
10354 type Octal is new Integer range 0 .. 7;
10355 type Octal_Array is array (Positive range <>) of Octal;
10356 pragma Pack (Octal_Array);
10357
10358 type Octal_Buffer (Size : Positive) is record
10359 Buffer : Octal_Array (1 .. Size);
10360 Length : Integer;
10361 end record;
10362
10363 In that case, Buffer is a PAD type whose size is unset and needs
10364 to be computed by fixing the unwrapped type.
10365
21649b50
JB
10366 4. When to ``Fix'' un-``Fixed'' sub-elements of an entity:
10367 ----------------------------------------------------------
10368
10369 Lastly, when should the sub-elements of an entity that remained unfixed
284614f0
JB
10370 thus far, be actually fixed?
10371
10372 The answer is: Only when referencing that element. For instance
10373 when selecting one component of a record, this specific component
10374 should be fixed at that point in time. Or when printing the value
10375 of a record, each component should be fixed before its value gets
10376 printed. Similarly for arrays, the element of the array should be
10377 fixed when printing each element of the array, or when extracting
10378 one element out of that array. On the other hand, fixing should
10379 not be performed on the elements when taking a slice of an array!
10380
10381 Note that one of the side-effects of miscomputing the offset and
10382 size of each field is that we end up also miscomputing the size
10383 of the containing type. This can have adverse results when computing
10384 the value of an entity. GDB fetches the value of an entity based
10385 on the size of its type, and thus a wrong size causes GDB to fetch
10386 the wrong amount of memory. In the case where the computed size is
10387 too small, GDB fetches too little data to print the value of our
10388 entiry. Results in this case as unpredicatble, as we usually read
10389 past the buffer containing the data =:-o. */
10390
10391/* Implement the evaluate_exp routine in the exp_descriptor structure
10392 for the Ada language. */
10393
52ce6436 10394static struct value *
ebf56fd3 10395ada_evaluate_subexp (struct type *expect_type, struct expression *exp,
4c4b4cd2 10396 int *pos, enum noside noside)
14f9c5c9
AS
10397{
10398 enum exp_opcode op;
b5385fc0 10399 int tem;
14f9c5c9 10400 int pc;
5ec18f2b 10401 int preeval_pos;
14f9c5c9
AS
10402 struct value *arg1 = NULL, *arg2 = NULL, *arg3;
10403 struct type *type;
52ce6436 10404 int nargs, oplen;
d2e4a39e 10405 struct value **argvec;
14f9c5c9 10406
d2e4a39e
AS
10407 pc = *pos;
10408 *pos += 1;
14f9c5c9
AS
10409 op = exp->elts[pc].opcode;
10410
d2e4a39e 10411 switch (op)
14f9c5c9
AS
10412 {
10413 default:
10414 *pos -= 1;
6e48bd2c 10415 arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside);
ca1f964d
JG
10416
10417 if (noside == EVAL_NORMAL)
10418 arg1 = unwrap_value (arg1);
6e48bd2c 10419
edd079d9 10420 /* If evaluating an OP_FLOAT and an EXPECT_TYPE was provided,
6e48bd2c
JB
10421 then we need to perform the conversion manually, because
10422 evaluate_subexp_standard doesn't do it. This conversion is
10423 necessary in Ada because the different kinds of float/fixed
10424 types in Ada have different representations.
10425
10426 Similarly, we need to perform the conversion from OP_LONG
10427 ourselves. */
edd079d9 10428 if ((op == OP_FLOAT || op == OP_LONG) && expect_type != NULL)
6e48bd2c
JB
10429 arg1 = ada_value_cast (expect_type, arg1, noside);
10430
10431 return arg1;
4c4b4cd2
PH
10432
10433 case OP_STRING:
10434 {
76a01679 10435 struct value *result;
5b4ee69b 10436
76a01679
JB
10437 *pos -= 1;
10438 result = evaluate_subexp_standard (expect_type, exp, pos, noside);
10439 /* The result type will have code OP_STRING, bashed there from
10440 OP_ARRAY. Bash it back. */
df407dfe
AC
10441 if (TYPE_CODE (value_type (result)) == TYPE_CODE_STRING)
10442 TYPE_CODE (value_type (result)) = TYPE_CODE_ARRAY;
76a01679 10443 return result;
4c4b4cd2 10444 }
14f9c5c9
AS
10445
10446 case UNOP_CAST:
10447 (*pos) += 2;
10448 type = exp->elts[pc + 1].type;
10449 arg1 = evaluate_subexp (type, exp, pos, noside);
10450 if (noside == EVAL_SKIP)
4c4b4cd2 10451 goto nosideret;
6e48bd2c 10452 arg1 = ada_value_cast (type, arg1, noside);
14f9c5c9
AS
10453 return arg1;
10454
4c4b4cd2
PH
10455 case UNOP_QUAL:
10456 (*pos) += 2;
10457 type = exp->elts[pc + 1].type;
10458 return ada_evaluate_subexp (type, exp, pos, noside);
10459
14f9c5c9
AS
10460 case BINOP_ASSIGN:
10461 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
52ce6436
PH
10462 if (exp->elts[*pos].opcode == OP_AGGREGATE)
10463 {
10464 arg1 = assign_aggregate (arg1, arg1, exp, pos, noside);
10465 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
10466 return arg1;
10467 return ada_value_assign (arg1, arg1);
10468 }
003f3813
JB
10469 /* Force the evaluation of the rhs ARG2 to the type of the lhs ARG1,
10470 except if the lhs of our assignment is a convenience variable.
10471 In the case of assigning to a convenience variable, the lhs
10472 should be exactly the result of the evaluation of the rhs. */
10473 type = value_type (arg1);
10474 if (VALUE_LVAL (arg1) == lval_internalvar)
10475 type = NULL;
10476 arg2 = evaluate_subexp (type, exp, pos, noside);
14f9c5c9 10477 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
4c4b4cd2 10478 return arg1;
df407dfe
AC
10479 if (ada_is_fixed_point_type (value_type (arg1)))
10480 arg2 = cast_to_fixed (value_type (arg1), arg2);
10481 else if (ada_is_fixed_point_type (value_type (arg2)))
76a01679 10482 error
323e0a4a 10483 (_("Fixed-point values must be assigned to fixed-point variables"));
d2e4a39e 10484 else
df407dfe 10485 arg2 = coerce_for_assign (value_type (arg1), arg2);
4c4b4cd2 10486 return ada_value_assign (arg1, arg2);
14f9c5c9
AS
10487
10488 case BINOP_ADD:
10489 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
10490 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
10491 if (noside == EVAL_SKIP)
4c4b4cd2 10492 goto nosideret;
2ac8a782
JB
10493 if (TYPE_CODE (value_type (arg1)) == TYPE_CODE_PTR)
10494 return (value_from_longest
10495 (value_type (arg1),
10496 value_as_long (arg1) + value_as_long (arg2)));
c40cc657
JB
10497 if (TYPE_CODE (value_type (arg2)) == TYPE_CODE_PTR)
10498 return (value_from_longest
10499 (value_type (arg2),
10500 value_as_long (arg1) + value_as_long (arg2)));
df407dfe
AC
10501 if ((ada_is_fixed_point_type (value_type (arg1))
10502 || ada_is_fixed_point_type (value_type (arg2)))
10503 && value_type (arg1) != value_type (arg2))
323e0a4a 10504 error (_("Operands of fixed-point addition must have the same type"));
b7789565
JB
10505 /* Do the addition, and cast the result to the type of the first
10506 argument. We cannot cast the result to a reference type, so if
10507 ARG1 is a reference type, find its underlying type. */
10508 type = value_type (arg1);
10509 while (TYPE_CODE (type) == TYPE_CODE_REF)
10510 type = TYPE_TARGET_TYPE (type);
f44316fa 10511 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
89eef114 10512 return value_cast (type, value_binop (arg1, arg2, BINOP_ADD));
14f9c5c9
AS
10513
10514 case BINOP_SUB:
10515 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
10516 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
10517 if (noside == EVAL_SKIP)
4c4b4cd2 10518 goto nosideret;
2ac8a782
JB
10519 if (TYPE_CODE (value_type (arg1)) == TYPE_CODE_PTR)
10520 return (value_from_longest
10521 (value_type (arg1),
10522 value_as_long (arg1) - value_as_long (arg2)));
c40cc657
JB
10523 if (TYPE_CODE (value_type (arg2)) == TYPE_CODE_PTR)
10524 return (value_from_longest
10525 (value_type (arg2),
10526 value_as_long (arg1) - value_as_long (arg2)));
df407dfe
AC
10527 if ((ada_is_fixed_point_type (value_type (arg1))
10528 || ada_is_fixed_point_type (value_type (arg2)))
10529 && value_type (arg1) != value_type (arg2))
0963b4bd
MS
10530 error (_("Operands of fixed-point subtraction "
10531 "must have the same type"));
b7789565
JB
10532 /* Do the substraction, and cast the result to the type of the first
10533 argument. We cannot cast the result to a reference type, so if
10534 ARG1 is a reference type, find its underlying type. */
10535 type = value_type (arg1);
10536 while (TYPE_CODE (type) == TYPE_CODE_REF)
10537 type = TYPE_TARGET_TYPE (type);
f44316fa 10538 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
89eef114 10539 return value_cast (type, value_binop (arg1, arg2, BINOP_SUB));
14f9c5c9
AS
10540
10541 case BINOP_MUL:
10542 case BINOP_DIV:
e1578042
JB
10543 case BINOP_REM:
10544 case BINOP_MOD:
14f9c5c9
AS
10545 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10546 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10547 if (noside == EVAL_SKIP)
4c4b4cd2 10548 goto nosideret;
e1578042 10549 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
9c2be529
JB
10550 {
10551 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10552 return value_zero (value_type (arg1), not_lval);
10553 }
14f9c5c9 10554 else
4c4b4cd2 10555 {
a53b7a21 10556 type = builtin_type (exp->gdbarch)->builtin_double;
df407dfe 10557 if (ada_is_fixed_point_type (value_type (arg1)))
a53b7a21 10558 arg1 = cast_from_fixed (type, arg1);
df407dfe 10559 if (ada_is_fixed_point_type (value_type (arg2)))
a53b7a21 10560 arg2 = cast_from_fixed (type, arg2);
f44316fa 10561 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
4c4b4cd2
PH
10562 return ada_value_binop (arg1, arg2, op);
10563 }
10564
4c4b4cd2
PH
10565 case BINOP_EQUAL:
10566 case BINOP_NOTEQUAL:
14f9c5c9 10567 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
df407dfe 10568 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
14f9c5c9 10569 if (noside == EVAL_SKIP)
76a01679 10570 goto nosideret;
4c4b4cd2 10571 if (noside == EVAL_AVOID_SIDE_EFFECTS)
76a01679 10572 tem = 0;
4c4b4cd2 10573 else
f44316fa
UW
10574 {
10575 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10576 tem = ada_value_equal (arg1, arg2);
10577 }
4c4b4cd2 10578 if (op == BINOP_NOTEQUAL)
76a01679 10579 tem = !tem;
fbb06eb1
UW
10580 type = language_bool_type (exp->language_defn, exp->gdbarch);
10581 return value_from_longest (type, (LONGEST) tem);
4c4b4cd2
PH
10582
10583 case UNOP_NEG:
10584 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10585 if (noside == EVAL_SKIP)
10586 goto nosideret;
df407dfe
AC
10587 else if (ada_is_fixed_point_type (value_type (arg1)))
10588 return value_cast (value_type (arg1), value_neg (arg1));
14f9c5c9 10589 else
f44316fa
UW
10590 {
10591 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
10592 return value_neg (arg1);
10593 }
4c4b4cd2 10594
2330c6c6
JB
10595 case BINOP_LOGICAL_AND:
10596 case BINOP_LOGICAL_OR:
10597 case UNOP_LOGICAL_NOT:
000d5124
JB
10598 {
10599 struct value *val;
10600
10601 *pos -= 1;
10602 val = evaluate_subexp_standard (expect_type, exp, pos, noside);
fbb06eb1
UW
10603 type = language_bool_type (exp->language_defn, exp->gdbarch);
10604 return value_cast (type, val);
000d5124 10605 }
2330c6c6
JB
10606
10607 case BINOP_BITWISE_AND:
10608 case BINOP_BITWISE_IOR:
10609 case BINOP_BITWISE_XOR:
000d5124
JB
10610 {
10611 struct value *val;
10612
10613 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
10614 *pos = pc;
10615 val = evaluate_subexp_standard (expect_type, exp, pos, noside);
10616
10617 return value_cast (value_type (arg1), val);
10618 }
2330c6c6 10619
14f9c5c9
AS
10620 case OP_VAR_VALUE:
10621 *pos -= 1;
6799def4 10622
14f9c5c9 10623 if (noside == EVAL_SKIP)
4c4b4cd2
PH
10624 {
10625 *pos += 4;
10626 goto nosideret;
10627 }
da5c522f
JB
10628
10629 if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
76a01679
JB
10630 /* Only encountered when an unresolved symbol occurs in a
10631 context other than a function call, in which case, it is
52ce6436 10632 invalid. */
323e0a4a 10633 error (_("Unexpected unresolved symbol, %s, during evaluation"),
4c4b4cd2 10634 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
da5c522f
JB
10635
10636 if (noside == EVAL_AVOID_SIDE_EFFECTS)
4c4b4cd2 10637 {
0c1f74cf 10638 type = static_unwrap_type (SYMBOL_TYPE (exp->elts[pc + 2].symbol));
31dbc1c5
JB
10639 /* Check to see if this is a tagged type. We also need to handle
10640 the case where the type is a reference to a tagged type, but
10641 we have to be careful to exclude pointers to tagged types.
10642 The latter should be shown as usual (as a pointer), whereas
10643 a reference should mostly be transparent to the user. */
10644 if (ada_is_tagged_type (type, 0)
023db19c 10645 || (TYPE_CODE (type) == TYPE_CODE_REF
31dbc1c5 10646 && ada_is_tagged_type (TYPE_TARGET_TYPE (type), 0)))
0d72a7c3
JB
10647 {
10648 /* Tagged types are a little special in the fact that the real
10649 type is dynamic and can only be determined by inspecting the
10650 object's tag. This means that we need to get the object's
10651 value first (EVAL_NORMAL) and then extract the actual object
10652 type from its tag.
10653
10654 Note that we cannot skip the final step where we extract
10655 the object type from its tag, because the EVAL_NORMAL phase
10656 results in dynamic components being resolved into fixed ones.
10657 This can cause problems when trying to print the type
10658 description of tagged types whose parent has a dynamic size:
10659 We use the type name of the "_parent" component in order
10660 to print the name of the ancestor type in the type description.
10661 If that component had a dynamic size, the resolution into
10662 a fixed type would result in the loss of that type name,
10663 thus preventing us from printing the name of the ancestor
10664 type in the type description. */
10665 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_NORMAL);
10666
10667 if (TYPE_CODE (type) != TYPE_CODE_REF)
10668 {
10669 struct type *actual_type;
10670
10671 actual_type = type_from_tag (ada_value_tag (arg1));
10672 if (actual_type == NULL)
10673 /* If, for some reason, we were unable to determine
10674 the actual type from the tag, then use the static
10675 approximation that we just computed as a fallback.
10676 This can happen if the debugging information is
10677 incomplete, for instance. */
10678 actual_type = type;
10679 return value_zero (actual_type, not_lval);
10680 }
10681 else
10682 {
10683 /* In the case of a ref, ada_coerce_ref takes care
10684 of determining the actual type. But the evaluation
10685 should return a ref as it should be valid to ask
10686 for its address; so rebuild a ref after coerce. */
10687 arg1 = ada_coerce_ref (arg1);
a65cfae5 10688 return value_ref (arg1, TYPE_CODE_REF);
0d72a7c3
JB
10689 }
10690 }
0c1f74cf 10691
84754697
JB
10692 /* Records and unions for which GNAT encodings have been
10693 generated need to be statically fixed as well.
10694 Otherwise, non-static fixing produces a type where
10695 all dynamic properties are removed, which prevents "ptype"
10696 from being able to completely describe the type.
10697 For instance, a case statement in a variant record would be
10698 replaced by the relevant components based on the actual
10699 value of the discriminants. */
10700 if ((TYPE_CODE (type) == TYPE_CODE_STRUCT
10701 && dynamic_template_type (type) != NULL)
10702 || (TYPE_CODE (type) == TYPE_CODE_UNION
10703 && ada_find_parallel_type (type, "___XVU") != NULL))
10704 {
10705 *pos += 4;
10706 return value_zero (to_static_fixed_type (type), not_lval);
10707 }
4c4b4cd2 10708 }
da5c522f
JB
10709
10710 arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside);
10711 return ada_to_fixed_value (arg1);
4c4b4cd2
PH
10712
10713 case OP_FUNCALL:
10714 (*pos) += 2;
10715
10716 /* Allocate arg vector, including space for the function to be
10717 called in argvec[0] and a terminating NULL. */
10718 nargs = longest_to_int (exp->elts[pc + 1].longconst);
8d749320 10719 argvec = XALLOCAVEC (struct value *, nargs + 2);
4c4b4cd2
PH
10720
10721 if (exp->elts[*pos].opcode == OP_VAR_VALUE
76a01679 10722 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
323e0a4a 10723 error (_("Unexpected unresolved symbol, %s, during evaluation"),
4c4b4cd2
PH
10724 SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol));
10725 else
10726 {
10727 for (tem = 0; tem <= nargs; tem += 1)
10728 argvec[tem] = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10729 argvec[tem] = 0;
10730
10731 if (noside == EVAL_SKIP)
10732 goto nosideret;
10733 }
10734
ad82864c
JB
10735 if (ada_is_constrained_packed_array_type
10736 (desc_base_type (value_type (argvec[0]))))
4c4b4cd2 10737 argvec[0] = ada_coerce_to_simple_array (argvec[0]);
284614f0
JB
10738 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_ARRAY
10739 && TYPE_FIELD_BITSIZE (value_type (argvec[0]), 0) != 0)
10740 /* This is a packed array that has already been fixed, and
10741 therefore already coerced to a simple array. Nothing further
10742 to do. */
10743 ;
e6c2c623
PMR
10744 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_REF)
10745 {
10746 /* Make sure we dereference references so that all the code below
10747 feels like it's really handling the referenced value. Wrapping
10748 types (for alignment) may be there, so make sure we strip them as
10749 well. */
10750 argvec[0] = ada_to_fixed_value (coerce_ref (argvec[0]));
10751 }
10752 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_ARRAY
10753 && VALUE_LVAL (argvec[0]) == lval_memory)
10754 argvec[0] = value_addr (argvec[0]);
4c4b4cd2 10755
df407dfe 10756 type = ada_check_typedef (value_type (argvec[0]));
720d1a40
JB
10757
10758 /* Ada allows us to implicitly dereference arrays when subscripting
8f465ea7
JB
10759 them. So, if this is an array typedef (encoding use for array
10760 access types encoded as fat pointers), strip it now. */
720d1a40
JB
10761 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
10762 type = ada_typedef_target_type (type);
10763
4c4b4cd2
PH
10764 if (TYPE_CODE (type) == TYPE_CODE_PTR)
10765 {
61ee279c 10766 switch (TYPE_CODE (ada_check_typedef (TYPE_TARGET_TYPE (type))))
4c4b4cd2
PH
10767 {
10768 case TYPE_CODE_FUNC:
61ee279c 10769 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
4c4b4cd2
PH
10770 break;
10771 case TYPE_CODE_ARRAY:
10772 break;
10773 case TYPE_CODE_STRUCT:
10774 if (noside != EVAL_AVOID_SIDE_EFFECTS)
10775 argvec[0] = ada_value_ind (argvec[0]);
61ee279c 10776 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
4c4b4cd2
PH
10777 break;
10778 default:
323e0a4a 10779 error (_("cannot subscript or call something of type `%s'"),
df407dfe 10780 ada_type_name (value_type (argvec[0])));
4c4b4cd2
PH
10781 break;
10782 }
10783 }
10784
10785 switch (TYPE_CODE (type))
10786 {
10787 case TYPE_CODE_FUNC:
10788 if (noside == EVAL_AVOID_SIDE_EFFECTS)
c8ea1972 10789 {
7022349d
PA
10790 if (TYPE_TARGET_TYPE (type) == NULL)
10791 error_call_unknown_return_type (NULL);
10792 return allocate_value (TYPE_TARGET_TYPE (type));
c8ea1972 10793 }
7022349d 10794 return call_function_by_hand (argvec[0], NULL, nargs, argvec + 1);
c8ea1972
PH
10795 case TYPE_CODE_INTERNAL_FUNCTION:
10796 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10797 /* We don't know anything about what the internal
10798 function might return, but we have to return
10799 something. */
10800 return value_zero (builtin_type (exp->gdbarch)->builtin_int,
10801 not_lval);
10802 else
10803 return call_internal_function (exp->gdbarch, exp->language_defn,
10804 argvec[0], nargs, argvec + 1);
10805
4c4b4cd2
PH
10806 case TYPE_CODE_STRUCT:
10807 {
10808 int arity;
10809
4c4b4cd2
PH
10810 arity = ada_array_arity (type);
10811 type = ada_array_element_type (type, nargs);
10812 if (type == NULL)
323e0a4a 10813 error (_("cannot subscript or call a record"));
4c4b4cd2 10814 if (arity != nargs)
323e0a4a 10815 error (_("wrong number of subscripts; expecting %d"), arity);
4c4b4cd2 10816 if (noside == EVAL_AVOID_SIDE_EFFECTS)
0a07e705 10817 return value_zero (ada_aligned_type (type), lval_memory);
4c4b4cd2
PH
10818 return
10819 unwrap_value (ada_value_subscript
10820 (argvec[0], nargs, argvec + 1));
10821 }
10822 case TYPE_CODE_ARRAY:
10823 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10824 {
10825 type = ada_array_element_type (type, nargs);
10826 if (type == NULL)
323e0a4a 10827 error (_("element type of array unknown"));
4c4b4cd2 10828 else
0a07e705 10829 return value_zero (ada_aligned_type (type), lval_memory);
4c4b4cd2
PH
10830 }
10831 return
10832 unwrap_value (ada_value_subscript
10833 (ada_coerce_to_simple_array (argvec[0]),
10834 nargs, argvec + 1));
10835 case TYPE_CODE_PTR: /* Pointer to array */
4c4b4cd2
PH
10836 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10837 {
deede10c 10838 type = to_fixed_array_type (TYPE_TARGET_TYPE (type), NULL, 1);
4c4b4cd2
PH
10839 type = ada_array_element_type (type, nargs);
10840 if (type == NULL)
323e0a4a 10841 error (_("element type of array unknown"));
4c4b4cd2 10842 else
0a07e705 10843 return value_zero (ada_aligned_type (type), lval_memory);
4c4b4cd2
PH
10844 }
10845 return
deede10c
JB
10846 unwrap_value (ada_value_ptr_subscript (argvec[0],
10847 nargs, argvec + 1));
4c4b4cd2
PH
10848
10849 default:
e1d5a0d2
PH
10850 error (_("Attempt to index or call something other than an "
10851 "array or function"));
4c4b4cd2
PH
10852 }
10853
10854 case TERNOP_SLICE:
10855 {
10856 struct value *array = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10857 struct value *low_bound_val =
10858 evaluate_subexp (NULL_TYPE, exp, pos, noside);
714e53ab
PH
10859 struct value *high_bound_val =
10860 evaluate_subexp (NULL_TYPE, exp, pos, noside);
10861 LONGEST low_bound;
10862 LONGEST high_bound;
5b4ee69b 10863
994b9211
AC
10864 low_bound_val = coerce_ref (low_bound_val);
10865 high_bound_val = coerce_ref (high_bound_val);
aa715135
JG
10866 low_bound = value_as_long (low_bound_val);
10867 high_bound = value_as_long (high_bound_val);
963a6417 10868
4c4b4cd2
PH
10869 if (noside == EVAL_SKIP)
10870 goto nosideret;
10871
4c4b4cd2
PH
10872 /* If this is a reference to an aligner type, then remove all
10873 the aligners. */
df407dfe
AC
10874 if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF
10875 && ada_is_aligner_type (TYPE_TARGET_TYPE (value_type (array))))
10876 TYPE_TARGET_TYPE (value_type (array)) =
10877 ada_aligned_type (TYPE_TARGET_TYPE (value_type (array)));
4c4b4cd2 10878
ad82864c 10879 if (ada_is_constrained_packed_array_type (value_type (array)))
323e0a4a 10880 error (_("cannot slice a packed array"));
4c4b4cd2
PH
10881
10882 /* If this is a reference to an array or an array lvalue,
10883 convert to a pointer. */
df407dfe
AC
10884 if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF
10885 || (TYPE_CODE (value_type (array)) == TYPE_CODE_ARRAY
4c4b4cd2
PH
10886 && VALUE_LVAL (array) == lval_memory))
10887 array = value_addr (array);
10888
1265e4aa 10889 if (noside == EVAL_AVOID_SIDE_EFFECTS
61ee279c 10890 && ada_is_array_descriptor_type (ada_check_typedef
df407dfe 10891 (value_type (array))))
0b5d8877 10892 return empty_array (ada_type_of_array (array, 0), low_bound);
4c4b4cd2
PH
10893
10894 array = ada_coerce_to_simple_array_ptr (array);
10895
714e53ab
PH
10896 /* If we have more than one level of pointer indirection,
10897 dereference the value until we get only one level. */
df407dfe
AC
10898 while (TYPE_CODE (value_type (array)) == TYPE_CODE_PTR
10899 && (TYPE_CODE (TYPE_TARGET_TYPE (value_type (array)))
714e53ab
PH
10900 == TYPE_CODE_PTR))
10901 array = value_ind (array);
10902
10903 /* Make sure we really do have an array type before going further,
10904 to avoid a SEGV when trying to get the index type or the target
10905 type later down the road if the debug info generated by
10906 the compiler is incorrect or incomplete. */
df407dfe 10907 if (!ada_is_simple_array_type (value_type (array)))
323e0a4a 10908 error (_("cannot take slice of non-array"));
714e53ab 10909
828292f2
JB
10910 if (TYPE_CODE (ada_check_typedef (value_type (array)))
10911 == TYPE_CODE_PTR)
4c4b4cd2 10912 {
828292f2
JB
10913 struct type *type0 = ada_check_typedef (value_type (array));
10914
0b5d8877 10915 if (high_bound < low_bound || noside == EVAL_AVOID_SIDE_EFFECTS)
828292f2 10916 return empty_array (TYPE_TARGET_TYPE (type0), low_bound);
4c4b4cd2
PH
10917 else
10918 {
10919 struct type *arr_type0 =
828292f2 10920 to_fixed_array_type (TYPE_TARGET_TYPE (type0), NULL, 1);
5b4ee69b 10921
f5938064
JG
10922 return ada_value_slice_from_ptr (array, arr_type0,
10923 longest_to_int (low_bound),
10924 longest_to_int (high_bound));
4c4b4cd2
PH
10925 }
10926 }
10927 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
10928 return array;
10929 else if (high_bound < low_bound)
df407dfe 10930 return empty_array (value_type (array), low_bound);
4c4b4cd2 10931 else
529cad9c
PH
10932 return ada_value_slice (array, longest_to_int (low_bound),
10933 longest_to_int (high_bound));
4c4b4cd2 10934 }
14f9c5c9 10935
4c4b4cd2
PH
10936 case UNOP_IN_RANGE:
10937 (*pos) += 2;
10938 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8008e265 10939 type = check_typedef (exp->elts[pc + 1].type);
14f9c5c9 10940
14f9c5c9 10941 if (noside == EVAL_SKIP)
4c4b4cd2 10942 goto nosideret;
14f9c5c9 10943
4c4b4cd2
PH
10944 switch (TYPE_CODE (type))
10945 {
10946 default:
e1d5a0d2
PH
10947 lim_warning (_("Membership test incompletely implemented; "
10948 "always returns true"));
fbb06eb1
UW
10949 type = language_bool_type (exp->language_defn, exp->gdbarch);
10950 return value_from_longest (type, (LONGEST) 1);
4c4b4cd2
PH
10951
10952 case TYPE_CODE_RANGE:
030b4912
UW
10953 arg2 = value_from_longest (type, TYPE_LOW_BOUND (type));
10954 arg3 = value_from_longest (type, TYPE_HIGH_BOUND (type));
f44316fa
UW
10955 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10956 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
fbb06eb1
UW
10957 type = language_bool_type (exp->language_defn, exp->gdbarch);
10958 return
10959 value_from_longest (type,
4c4b4cd2
PH
10960 (value_less (arg1, arg3)
10961 || value_equal (arg1, arg3))
10962 && (value_less (arg2, arg1)
10963 || value_equal (arg2, arg1)));
10964 }
10965
10966 case BINOP_IN_BOUNDS:
14f9c5c9 10967 (*pos) += 2;
4c4b4cd2
PH
10968 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10969 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
14f9c5c9 10970
4c4b4cd2
PH
10971 if (noside == EVAL_SKIP)
10972 goto nosideret;
14f9c5c9 10973
4c4b4cd2 10974 if (noside == EVAL_AVOID_SIDE_EFFECTS)
fbb06eb1
UW
10975 {
10976 type = language_bool_type (exp->language_defn, exp->gdbarch);
10977 return value_zero (type, not_lval);
10978 }
14f9c5c9 10979
4c4b4cd2 10980 tem = longest_to_int (exp->elts[pc + 1].longconst);
14f9c5c9 10981
1eea4ebd
UW
10982 type = ada_index_type (value_type (arg2), tem, "range");
10983 if (!type)
10984 type = value_type (arg1);
14f9c5c9 10985
1eea4ebd
UW
10986 arg3 = value_from_longest (type, ada_array_bound (arg2, tem, 1));
10987 arg2 = value_from_longest (type, ada_array_bound (arg2, tem, 0));
d2e4a39e 10988
f44316fa
UW
10989 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10990 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
fbb06eb1 10991 type = language_bool_type (exp->language_defn, exp->gdbarch);
4c4b4cd2 10992 return
fbb06eb1 10993 value_from_longest (type,
4c4b4cd2
PH
10994 (value_less (arg1, arg3)
10995 || value_equal (arg1, arg3))
10996 && (value_less (arg2, arg1)
10997 || value_equal (arg2, arg1)));
10998
10999 case TERNOP_IN_RANGE:
11000 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11001 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11002 arg3 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11003
11004 if (noside == EVAL_SKIP)
11005 goto nosideret;
11006
f44316fa
UW
11007 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
11008 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
fbb06eb1 11009 type = language_bool_type (exp->language_defn, exp->gdbarch);
4c4b4cd2 11010 return
fbb06eb1 11011 value_from_longest (type,
4c4b4cd2
PH
11012 (value_less (arg1, arg3)
11013 || value_equal (arg1, arg3))
11014 && (value_less (arg2, arg1)
11015 || value_equal (arg2, arg1)));
11016
11017 case OP_ATR_FIRST:
11018 case OP_ATR_LAST:
11019 case OP_ATR_LENGTH:
11020 {
76a01679 11021 struct type *type_arg;
5b4ee69b 11022
76a01679
JB
11023 if (exp->elts[*pos].opcode == OP_TYPE)
11024 {
11025 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
11026 arg1 = NULL;
5bc23cb3 11027 type_arg = check_typedef (exp->elts[pc + 2].type);
76a01679
JB
11028 }
11029 else
11030 {
11031 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11032 type_arg = NULL;
11033 }
11034
11035 if (exp->elts[*pos].opcode != OP_LONG)
323e0a4a 11036 error (_("Invalid operand to '%s"), ada_attribute_name (op));
76a01679
JB
11037 tem = longest_to_int (exp->elts[*pos + 2].longconst);
11038 *pos += 4;
11039
11040 if (noside == EVAL_SKIP)
11041 goto nosideret;
11042
11043 if (type_arg == NULL)
11044 {
11045 arg1 = ada_coerce_ref (arg1);
11046
ad82864c 11047 if (ada_is_constrained_packed_array_type (value_type (arg1)))
76a01679
JB
11048 arg1 = ada_coerce_to_simple_array (arg1);
11049
aa4fb036 11050 if (op == OP_ATR_LENGTH)
1eea4ebd 11051 type = builtin_type (exp->gdbarch)->builtin_int;
aa4fb036
JB
11052 else
11053 {
11054 type = ada_index_type (value_type (arg1), tem,
11055 ada_attribute_name (op));
11056 if (type == NULL)
11057 type = builtin_type (exp->gdbarch)->builtin_int;
11058 }
76a01679
JB
11059
11060 if (noside == EVAL_AVOID_SIDE_EFFECTS)
1eea4ebd 11061 return allocate_value (type);
76a01679
JB
11062
11063 switch (op)
11064 {
11065 default: /* Should never happen. */
323e0a4a 11066 error (_("unexpected attribute encountered"));
76a01679 11067 case OP_ATR_FIRST:
1eea4ebd
UW
11068 return value_from_longest
11069 (type, ada_array_bound (arg1, tem, 0));
76a01679 11070 case OP_ATR_LAST:
1eea4ebd
UW
11071 return value_from_longest
11072 (type, ada_array_bound (arg1, tem, 1));
76a01679 11073 case OP_ATR_LENGTH:
1eea4ebd
UW
11074 return value_from_longest
11075 (type, ada_array_length (arg1, tem));
76a01679
JB
11076 }
11077 }
11078 else if (discrete_type_p (type_arg))
11079 {
11080 struct type *range_type;
0d5cff50 11081 const char *name = ada_type_name (type_arg);
5b4ee69b 11082
76a01679
JB
11083 range_type = NULL;
11084 if (name != NULL && TYPE_CODE (type_arg) != TYPE_CODE_ENUM)
28c85d6c 11085 range_type = to_fixed_range_type (type_arg, NULL);
76a01679
JB
11086 if (range_type == NULL)
11087 range_type = type_arg;
11088 switch (op)
11089 {
11090 default:
323e0a4a 11091 error (_("unexpected attribute encountered"));
76a01679 11092 case OP_ATR_FIRST:
690cc4eb 11093 return value_from_longest
43bbcdc2 11094 (range_type, ada_discrete_type_low_bound (range_type));
76a01679 11095 case OP_ATR_LAST:
690cc4eb 11096 return value_from_longest
43bbcdc2 11097 (range_type, ada_discrete_type_high_bound (range_type));
76a01679 11098 case OP_ATR_LENGTH:
323e0a4a 11099 error (_("the 'length attribute applies only to array types"));
76a01679
JB
11100 }
11101 }
11102 else if (TYPE_CODE (type_arg) == TYPE_CODE_FLT)
323e0a4a 11103 error (_("unimplemented type attribute"));
76a01679
JB
11104 else
11105 {
11106 LONGEST low, high;
11107
ad82864c
JB
11108 if (ada_is_constrained_packed_array_type (type_arg))
11109 type_arg = decode_constrained_packed_array_type (type_arg);
76a01679 11110
aa4fb036 11111 if (op == OP_ATR_LENGTH)
1eea4ebd 11112 type = builtin_type (exp->gdbarch)->builtin_int;
aa4fb036
JB
11113 else
11114 {
11115 type = ada_index_type (type_arg, tem, ada_attribute_name (op));
11116 if (type == NULL)
11117 type = builtin_type (exp->gdbarch)->builtin_int;
11118 }
1eea4ebd 11119
76a01679
JB
11120 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11121 return allocate_value (type);
11122
11123 switch (op)
11124 {
11125 default:
323e0a4a 11126 error (_("unexpected attribute encountered"));
76a01679 11127 case OP_ATR_FIRST:
1eea4ebd 11128 low = ada_array_bound_from_type (type_arg, tem, 0);
76a01679
JB
11129 return value_from_longest (type, low);
11130 case OP_ATR_LAST:
1eea4ebd 11131 high = ada_array_bound_from_type (type_arg, tem, 1);
76a01679
JB
11132 return value_from_longest (type, high);
11133 case OP_ATR_LENGTH:
1eea4ebd
UW
11134 low = ada_array_bound_from_type (type_arg, tem, 0);
11135 high = ada_array_bound_from_type (type_arg, tem, 1);
76a01679
JB
11136 return value_from_longest (type, high - low + 1);
11137 }
11138 }
14f9c5c9
AS
11139 }
11140
4c4b4cd2
PH
11141 case OP_ATR_TAG:
11142 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11143 if (noside == EVAL_SKIP)
76a01679 11144 goto nosideret;
4c4b4cd2
PH
11145
11146 if (noside == EVAL_AVOID_SIDE_EFFECTS)
76a01679 11147 return value_zero (ada_tag_type (arg1), not_lval);
4c4b4cd2
PH
11148
11149 return ada_value_tag (arg1);
11150
11151 case OP_ATR_MIN:
11152 case OP_ATR_MAX:
11153 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
14f9c5c9
AS
11154 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11155 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11156 if (noside == EVAL_SKIP)
76a01679 11157 goto nosideret;
d2e4a39e 11158 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
df407dfe 11159 return value_zero (value_type (arg1), not_lval);
14f9c5c9 11160 else
f44316fa
UW
11161 {
11162 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
11163 return value_binop (arg1, arg2,
11164 op == OP_ATR_MIN ? BINOP_MIN : BINOP_MAX);
11165 }
14f9c5c9 11166
4c4b4cd2
PH
11167 case OP_ATR_MODULUS:
11168 {
31dedfee 11169 struct type *type_arg = check_typedef (exp->elts[pc + 2].type);
4c4b4cd2 11170
5b4ee69b 11171 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
76a01679
JB
11172 if (noside == EVAL_SKIP)
11173 goto nosideret;
4c4b4cd2 11174
76a01679 11175 if (!ada_is_modular_type (type_arg))
323e0a4a 11176 error (_("'modulus must be applied to modular type"));
4c4b4cd2 11177
76a01679
JB
11178 return value_from_longest (TYPE_TARGET_TYPE (type_arg),
11179 ada_modulus (type_arg));
4c4b4cd2
PH
11180 }
11181
11182
11183 case OP_ATR_POS:
11184 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
14f9c5c9
AS
11185 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11186 if (noside == EVAL_SKIP)
76a01679 11187 goto nosideret;
3cb382c9
UW
11188 type = builtin_type (exp->gdbarch)->builtin_int;
11189 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11190 return value_zero (type, not_lval);
14f9c5c9 11191 else
3cb382c9 11192 return value_pos_atr (type, arg1);
14f9c5c9 11193
4c4b4cd2
PH
11194 case OP_ATR_SIZE:
11195 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8c1c099f
JB
11196 type = value_type (arg1);
11197
11198 /* If the argument is a reference, then dereference its type, since
11199 the user is really asking for the size of the actual object,
11200 not the size of the pointer. */
11201 if (TYPE_CODE (type) == TYPE_CODE_REF)
11202 type = TYPE_TARGET_TYPE (type);
11203
4c4b4cd2 11204 if (noside == EVAL_SKIP)
76a01679 11205 goto nosideret;
4c4b4cd2 11206 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
22601c15 11207 return value_zero (builtin_type (exp->gdbarch)->builtin_int, not_lval);
4c4b4cd2 11208 else
22601c15 11209 return value_from_longest (builtin_type (exp->gdbarch)->builtin_int,
8c1c099f 11210 TARGET_CHAR_BIT * TYPE_LENGTH (type));
4c4b4cd2
PH
11211
11212 case OP_ATR_VAL:
11213 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
14f9c5c9 11214 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
4c4b4cd2 11215 type = exp->elts[pc + 2].type;
14f9c5c9 11216 if (noside == EVAL_SKIP)
76a01679 11217 goto nosideret;
4c4b4cd2 11218 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
76a01679 11219 return value_zero (type, not_lval);
4c4b4cd2 11220 else
76a01679 11221 return value_val_atr (type, arg1);
4c4b4cd2
PH
11222
11223 case BINOP_EXP:
11224 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11225 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11226 if (noside == EVAL_SKIP)
11227 goto nosideret;
11228 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
df407dfe 11229 return value_zero (value_type (arg1), not_lval);
4c4b4cd2 11230 else
f44316fa
UW
11231 {
11232 /* For integer exponentiation operations,
11233 only promote the first argument. */
11234 if (is_integral_type (value_type (arg2)))
11235 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
11236 else
11237 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
11238
11239 return value_binop (arg1, arg2, op);
11240 }
4c4b4cd2
PH
11241
11242 case UNOP_PLUS:
11243 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11244 if (noside == EVAL_SKIP)
11245 goto nosideret;
11246 else
11247 return arg1;
11248
11249 case UNOP_ABS:
11250 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11251 if (noside == EVAL_SKIP)
11252 goto nosideret;
f44316fa 11253 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
df407dfe 11254 if (value_less (arg1, value_zero (value_type (arg1), not_lval)))
4c4b4cd2 11255 return value_neg (arg1);
14f9c5c9 11256 else
4c4b4cd2 11257 return arg1;
14f9c5c9
AS
11258
11259 case UNOP_IND:
5ec18f2b 11260 preeval_pos = *pos;
6b0d7253 11261 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
14f9c5c9 11262 if (noside == EVAL_SKIP)
4c4b4cd2 11263 goto nosideret;
df407dfe 11264 type = ada_check_typedef (value_type (arg1));
14f9c5c9 11265 if (noside == EVAL_AVOID_SIDE_EFFECTS)
4c4b4cd2
PH
11266 {
11267 if (ada_is_array_descriptor_type (type))
11268 /* GDB allows dereferencing GNAT array descriptors. */
11269 {
11270 struct type *arrType = ada_type_of_array (arg1, 0);
5b4ee69b 11271
4c4b4cd2 11272 if (arrType == NULL)
323e0a4a 11273 error (_("Attempt to dereference null array pointer."));
00a4c844 11274 return value_at_lazy (arrType, 0);
4c4b4cd2
PH
11275 }
11276 else if (TYPE_CODE (type) == TYPE_CODE_PTR
11277 || TYPE_CODE (type) == TYPE_CODE_REF
11278 /* In C you can dereference an array to get the 1st elt. */
11279 || TYPE_CODE (type) == TYPE_CODE_ARRAY)
714e53ab 11280 {
5ec18f2b
JG
11281 /* As mentioned in the OP_VAR_VALUE case, tagged types can
11282 only be determined by inspecting the object's tag.
11283 This means that we need to evaluate completely the
11284 expression in order to get its type. */
11285
023db19c
JB
11286 if ((TYPE_CODE (type) == TYPE_CODE_REF
11287 || TYPE_CODE (type) == TYPE_CODE_PTR)
5ec18f2b
JG
11288 && ada_is_tagged_type (TYPE_TARGET_TYPE (type), 0))
11289 {
11290 arg1 = evaluate_subexp (NULL_TYPE, exp, &preeval_pos,
11291 EVAL_NORMAL);
11292 type = value_type (ada_value_ind (arg1));
11293 }
11294 else
11295 {
11296 type = to_static_fixed_type
11297 (ada_aligned_type
11298 (ada_check_typedef (TYPE_TARGET_TYPE (type))));
11299 }
c1b5a1a6 11300 ada_ensure_varsize_limit (type);
714e53ab
PH
11301 return value_zero (type, lval_memory);
11302 }
4c4b4cd2 11303 else if (TYPE_CODE (type) == TYPE_CODE_INT)
6b0d7253
JB
11304 {
11305 /* GDB allows dereferencing an int. */
11306 if (expect_type == NULL)
11307 return value_zero (builtin_type (exp->gdbarch)->builtin_int,
11308 lval_memory);
11309 else
11310 {
11311 expect_type =
11312 to_static_fixed_type (ada_aligned_type (expect_type));
11313 return value_zero (expect_type, lval_memory);
11314 }
11315 }
4c4b4cd2 11316 else
323e0a4a 11317 error (_("Attempt to take contents of a non-pointer value."));
4c4b4cd2 11318 }
0963b4bd 11319 arg1 = ada_coerce_ref (arg1); /* FIXME: What is this for?? */
df407dfe 11320 type = ada_check_typedef (value_type (arg1));
d2e4a39e 11321
96967637
JB
11322 if (TYPE_CODE (type) == TYPE_CODE_INT)
11323 /* GDB allows dereferencing an int. If we were given
11324 the expect_type, then use that as the target type.
11325 Otherwise, assume that the target type is an int. */
11326 {
11327 if (expect_type != NULL)
11328 return ada_value_ind (value_cast (lookup_pointer_type (expect_type),
11329 arg1));
11330 else
11331 return value_at_lazy (builtin_type (exp->gdbarch)->builtin_int,
11332 (CORE_ADDR) value_as_address (arg1));
11333 }
6b0d7253 11334
4c4b4cd2
PH
11335 if (ada_is_array_descriptor_type (type))
11336 /* GDB allows dereferencing GNAT array descriptors. */
11337 return ada_coerce_to_simple_array (arg1);
14f9c5c9 11338 else
4c4b4cd2 11339 return ada_value_ind (arg1);
14f9c5c9
AS
11340
11341 case STRUCTOP_STRUCT:
11342 tem = longest_to_int (exp->elts[pc + 1].longconst);
11343 (*pos) += 3 + BYTES_TO_EXP_ELEM (tem + 1);
5ec18f2b 11344 preeval_pos = *pos;
14f9c5c9
AS
11345 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11346 if (noside == EVAL_SKIP)
4c4b4cd2 11347 goto nosideret;
14f9c5c9 11348 if (noside == EVAL_AVOID_SIDE_EFFECTS)
76a01679 11349 {
df407dfe 11350 struct type *type1 = value_type (arg1);
5b4ee69b 11351
76a01679
JB
11352 if (ada_is_tagged_type (type1, 1))
11353 {
11354 type = ada_lookup_struct_elt_type (type1,
11355 &exp->elts[pc + 2].string,
988f6b3d 11356 1, 1);
5ec18f2b
JG
11357
11358 /* If the field is not found, check if it exists in the
11359 extension of this object's type. This means that we
11360 need to evaluate completely the expression. */
11361
76a01679 11362 if (type == NULL)
5ec18f2b
JG
11363 {
11364 arg1 = evaluate_subexp (NULL_TYPE, exp, &preeval_pos,
11365 EVAL_NORMAL);
11366 arg1 = ada_value_struct_elt (arg1,
11367 &exp->elts[pc + 2].string,
11368 0);
11369 arg1 = unwrap_value (arg1);
11370 type = value_type (ada_to_fixed_value (arg1));
11371 }
76a01679
JB
11372 }
11373 else
11374 type =
11375 ada_lookup_struct_elt_type (type1, &exp->elts[pc + 2].string, 1,
988f6b3d 11376 0);
76a01679
JB
11377
11378 return value_zero (ada_aligned_type (type), lval_memory);
11379 }
14f9c5c9 11380 else
a579cd9a
MW
11381 {
11382 arg1 = ada_value_struct_elt (arg1, &exp->elts[pc + 2].string, 0);
11383 arg1 = unwrap_value (arg1);
11384 return ada_to_fixed_value (arg1);
11385 }
284614f0 11386
14f9c5c9 11387 case OP_TYPE:
4c4b4cd2
PH
11388 /* The value is not supposed to be used. This is here to make it
11389 easier to accommodate expressions that contain types. */
14f9c5c9
AS
11390 (*pos) += 2;
11391 if (noside == EVAL_SKIP)
4c4b4cd2 11392 goto nosideret;
14f9c5c9 11393 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
a6cfbe68 11394 return allocate_value (exp->elts[pc + 1].type);
14f9c5c9 11395 else
323e0a4a 11396 error (_("Attempt to use a type name as an expression"));
52ce6436
PH
11397
11398 case OP_AGGREGATE:
11399 case OP_CHOICES:
11400 case OP_OTHERS:
11401 case OP_DISCRETE_RANGE:
11402 case OP_POSITIONAL:
11403 case OP_NAME:
11404 if (noside == EVAL_NORMAL)
11405 switch (op)
11406 {
11407 case OP_NAME:
11408 error (_("Undefined name, ambiguous name, or renaming used in "
e1d5a0d2 11409 "component association: %s."), &exp->elts[pc+2].string);
52ce6436
PH
11410 case OP_AGGREGATE:
11411 error (_("Aggregates only allowed on the right of an assignment"));
11412 default:
0963b4bd
MS
11413 internal_error (__FILE__, __LINE__,
11414 _("aggregate apparently mangled"));
52ce6436
PH
11415 }
11416
11417 ada_forward_operator_length (exp, pc, &oplen, &nargs);
11418 *pos += oplen - 1;
11419 for (tem = 0; tem < nargs; tem += 1)
11420 ada_evaluate_subexp (NULL, exp, pos, noside);
11421 goto nosideret;
14f9c5c9
AS
11422 }
11423
11424nosideret:
22601c15 11425 return value_from_longest (builtin_type (exp->gdbarch)->builtin_int, 1);
14f9c5c9 11426}
14f9c5c9 11427\f
d2e4a39e 11428
4c4b4cd2 11429 /* Fixed point */
14f9c5c9
AS
11430
11431/* If TYPE encodes an Ada fixed-point type, return the suffix of the
11432 type name that encodes the 'small and 'delta information.
4c4b4cd2 11433 Otherwise, return NULL. */
14f9c5c9 11434
d2e4a39e 11435static const char *
ebf56fd3 11436fixed_type_info (struct type *type)
14f9c5c9 11437{
d2e4a39e 11438 const char *name = ada_type_name (type);
14f9c5c9
AS
11439 enum type_code code = (type == NULL) ? TYPE_CODE_UNDEF : TYPE_CODE (type);
11440
d2e4a39e
AS
11441 if ((code == TYPE_CODE_INT || code == TYPE_CODE_RANGE) && name != NULL)
11442 {
14f9c5c9 11443 const char *tail = strstr (name, "___XF_");
5b4ee69b 11444
14f9c5c9 11445 if (tail == NULL)
4c4b4cd2 11446 return NULL;
d2e4a39e 11447 else
4c4b4cd2 11448 return tail + 5;
14f9c5c9
AS
11449 }
11450 else if (code == TYPE_CODE_RANGE && TYPE_TARGET_TYPE (type) != type)
11451 return fixed_type_info (TYPE_TARGET_TYPE (type));
11452 else
11453 return NULL;
11454}
11455
4c4b4cd2 11456/* Returns non-zero iff TYPE represents an Ada fixed-point type. */
14f9c5c9
AS
11457
11458int
ebf56fd3 11459ada_is_fixed_point_type (struct type *type)
14f9c5c9
AS
11460{
11461 return fixed_type_info (type) != NULL;
11462}
11463
4c4b4cd2
PH
11464/* Return non-zero iff TYPE represents a System.Address type. */
11465
11466int
11467ada_is_system_address_type (struct type *type)
11468{
11469 return (TYPE_NAME (type)
11470 && strcmp (TYPE_NAME (type), "system__address") == 0);
11471}
11472
14f9c5c9 11473/* Assuming that TYPE is the representation of an Ada fixed-point
50eff16b
UW
11474 type, return the target floating-point type to be used to represent
11475 of this type during internal computation. */
11476
11477static struct type *
11478ada_scaling_type (struct type *type)
11479{
11480 return builtin_type (get_type_arch (type))->builtin_long_double;
11481}
11482
11483/* Assuming that TYPE is the representation of an Ada fixed-point
11484 type, return its delta, or NULL if the type is malformed and the
4c4b4cd2 11485 delta cannot be determined. */
14f9c5c9 11486
50eff16b 11487struct value *
ebf56fd3 11488ada_delta (struct type *type)
14f9c5c9
AS
11489{
11490 const char *encoding = fixed_type_info (type);
50eff16b
UW
11491 struct type *scale_type = ada_scaling_type (type);
11492
11493 long long num, den;
11494
11495 if (sscanf (encoding, "_%lld_%lld", &num, &den) < 2)
11496 return nullptr;
d2e4a39e 11497 else
50eff16b
UW
11498 return value_binop (value_from_longest (scale_type, num),
11499 value_from_longest (scale_type, den), BINOP_DIV);
14f9c5c9
AS
11500}
11501
11502/* Assuming that ada_is_fixed_point_type (TYPE), return the scaling
4c4b4cd2 11503 factor ('SMALL value) associated with the type. */
14f9c5c9 11504
50eff16b
UW
11505struct value *
11506ada_scaling_factor (struct type *type)
14f9c5c9
AS
11507{
11508 const char *encoding = fixed_type_info (type);
50eff16b
UW
11509 struct type *scale_type = ada_scaling_type (type);
11510
11511 long long num0, den0, num1, den1;
14f9c5c9 11512 int n;
d2e4a39e 11513
50eff16b 11514 n = sscanf (encoding, "_%lld_%lld_%lld_%lld",
facc390f 11515 &num0, &den0, &num1, &den1);
14f9c5c9
AS
11516
11517 if (n < 2)
50eff16b 11518 return value_from_longest (scale_type, 1);
14f9c5c9 11519 else if (n == 4)
50eff16b
UW
11520 return value_binop (value_from_longest (scale_type, num1),
11521 value_from_longest (scale_type, den1), BINOP_DIV);
d2e4a39e 11522 else
50eff16b
UW
11523 return value_binop (value_from_longest (scale_type, num0),
11524 value_from_longest (scale_type, den0), BINOP_DIV);
14f9c5c9
AS
11525}
11526
14f9c5c9 11527\f
d2e4a39e 11528
4c4b4cd2 11529 /* Range types */
14f9c5c9
AS
11530
11531/* Scan STR beginning at position K for a discriminant name, and
11532 return the value of that discriminant field of DVAL in *PX. If
11533 PNEW_K is not null, put the position of the character beyond the
11534 name scanned in *PNEW_K. Return 1 if successful; return 0 and do
4c4b4cd2 11535 not alter *PX and *PNEW_K if unsuccessful. */
14f9c5c9
AS
11536
11537static int
108d56a4 11538scan_discrim_bound (const char *str, int k, struct value *dval, LONGEST * px,
76a01679 11539 int *pnew_k)
14f9c5c9
AS
11540{
11541 static char *bound_buffer = NULL;
11542 static size_t bound_buffer_len = 0;
5da1a4d3 11543 const char *pstart, *pend, *bound;
d2e4a39e 11544 struct value *bound_val;
14f9c5c9
AS
11545
11546 if (dval == NULL || str == NULL || str[k] == '\0')
11547 return 0;
11548
5da1a4d3
SM
11549 pstart = str + k;
11550 pend = strstr (pstart, "__");
14f9c5c9
AS
11551 if (pend == NULL)
11552 {
5da1a4d3 11553 bound = pstart;
14f9c5c9
AS
11554 k += strlen (bound);
11555 }
d2e4a39e 11556 else
14f9c5c9 11557 {
5da1a4d3
SM
11558 int len = pend - pstart;
11559
11560 /* Strip __ and beyond. */
11561 GROW_VECT (bound_buffer, bound_buffer_len, len + 1);
11562 strncpy (bound_buffer, pstart, len);
11563 bound_buffer[len] = '\0';
11564
14f9c5c9 11565 bound = bound_buffer;
d2e4a39e 11566 k = pend - str;
14f9c5c9 11567 }
d2e4a39e 11568
df407dfe 11569 bound_val = ada_search_struct_field (bound, dval, 0, value_type (dval));
14f9c5c9
AS
11570 if (bound_val == NULL)
11571 return 0;
11572
11573 *px = value_as_long (bound_val);
11574 if (pnew_k != NULL)
11575 *pnew_k = k;
11576 return 1;
11577}
11578
11579/* Value of variable named NAME in the current environment. If
11580 no such variable found, then if ERR_MSG is null, returns 0, and
4c4b4cd2
PH
11581 otherwise causes an error with message ERR_MSG. */
11582
d2e4a39e 11583static struct value *
edb0c9cb 11584get_var_value (const char *name, const char *err_msg)
14f9c5c9 11585{
d12307c1 11586 struct block_symbol *syms;
14f9c5c9
AS
11587 int nsyms;
11588
4c4b4cd2 11589 nsyms = ada_lookup_symbol_list (name, get_selected_block (0), VAR_DOMAIN,
4eeaa230 11590 &syms);
14f9c5c9
AS
11591
11592 if (nsyms != 1)
11593 {
11594 if (err_msg == NULL)
4c4b4cd2 11595 return 0;
14f9c5c9 11596 else
8a3fe4f8 11597 error (("%s"), err_msg);
14f9c5c9
AS
11598 }
11599
d12307c1 11600 return value_of_variable (syms[0].symbol, syms[0].block);
14f9c5c9 11601}
d2e4a39e 11602
edb0c9cb
PA
11603/* Value of integer variable named NAME in the current environment.
11604 If no such variable is found, returns false. Otherwise, sets VALUE
11605 to the variable's value and returns true. */
4c4b4cd2 11606
edb0c9cb
PA
11607bool
11608get_int_var_value (const char *name, LONGEST &value)
14f9c5c9 11609{
4c4b4cd2 11610 struct value *var_val = get_var_value (name, 0);
d2e4a39e 11611
14f9c5c9 11612 if (var_val == 0)
edb0c9cb
PA
11613 return false;
11614
11615 value = value_as_long (var_val);
11616 return true;
14f9c5c9 11617}
d2e4a39e 11618
14f9c5c9
AS
11619
11620/* Return a range type whose base type is that of the range type named
11621 NAME in the current environment, and whose bounds are calculated
4c4b4cd2 11622 from NAME according to the GNAT range encoding conventions.
1ce677a4
UW
11623 Extract discriminant values, if needed, from DVAL. ORIG_TYPE is the
11624 corresponding range type from debug information; fall back to using it
11625 if symbol lookup fails. If a new type must be created, allocate it
11626 like ORIG_TYPE was. The bounds information, in general, is encoded
11627 in NAME, the base type given in the named range type. */
14f9c5c9 11628
d2e4a39e 11629static struct type *
28c85d6c 11630to_fixed_range_type (struct type *raw_type, struct value *dval)
14f9c5c9 11631{
0d5cff50 11632 const char *name;
14f9c5c9 11633 struct type *base_type;
108d56a4 11634 const char *subtype_info;
14f9c5c9 11635
28c85d6c
JB
11636 gdb_assert (raw_type != NULL);
11637 gdb_assert (TYPE_NAME (raw_type) != NULL);
dddfab26 11638
1ce677a4 11639 if (TYPE_CODE (raw_type) == TYPE_CODE_RANGE)
14f9c5c9
AS
11640 base_type = TYPE_TARGET_TYPE (raw_type);
11641 else
11642 base_type = raw_type;
11643
28c85d6c 11644 name = TYPE_NAME (raw_type);
14f9c5c9
AS
11645 subtype_info = strstr (name, "___XD");
11646 if (subtype_info == NULL)
690cc4eb 11647 {
43bbcdc2
PH
11648 LONGEST L = ada_discrete_type_low_bound (raw_type);
11649 LONGEST U = ada_discrete_type_high_bound (raw_type);
5b4ee69b 11650
690cc4eb
PH
11651 if (L < INT_MIN || U > INT_MAX)
11652 return raw_type;
11653 else
0c9c3474
SA
11654 return create_static_range_type (alloc_type_copy (raw_type), raw_type,
11655 L, U);
690cc4eb 11656 }
14f9c5c9
AS
11657 else
11658 {
11659 static char *name_buf = NULL;
11660 static size_t name_len = 0;
11661 int prefix_len = subtype_info - name;
11662 LONGEST L, U;
11663 struct type *type;
108d56a4 11664 const char *bounds_str;
14f9c5c9
AS
11665 int n;
11666
11667 GROW_VECT (name_buf, name_len, prefix_len + 5);
11668 strncpy (name_buf, name, prefix_len);
11669 name_buf[prefix_len] = '\0';
11670
11671 subtype_info += 5;
11672 bounds_str = strchr (subtype_info, '_');
11673 n = 1;
11674
d2e4a39e 11675 if (*subtype_info == 'L')
4c4b4cd2
PH
11676 {
11677 if (!ada_scan_number (bounds_str, n, &L, &n)
11678 && !scan_discrim_bound (bounds_str, n, dval, &L, &n))
11679 return raw_type;
11680 if (bounds_str[n] == '_')
11681 n += 2;
0963b4bd 11682 else if (bounds_str[n] == '.') /* FIXME? SGI Workshop kludge. */
4c4b4cd2
PH
11683 n += 1;
11684 subtype_info += 1;
11685 }
d2e4a39e 11686 else
4c4b4cd2 11687 {
4c4b4cd2 11688 strcpy (name_buf + prefix_len, "___L");
edb0c9cb 11689 if (!get_int_var_value (name_buf, L))
4c4b4cd2 11690 {
323e0a4a 11691 lim_warning (_("Unknown lower bound, using 1."));
4c4b4cd2
PH
11692 L = 1;
11693 }
11694 }
14f9c5c9 11695
d2e4a39e 11696 if (*subtype_info == 'U')
4c4b4cd2
PH
11697 {
11698 if (!ada_scan_number (bounds_str, n, &U, &n)
11699 && !scan_discrim_bound (bounds_str, n, dval, &U, &n))
11700 return raw_type;
11701 }
d2e4a39e 11702 else
4c4b4cd2 11703 {
4c4b4cd2 11704 strcpy (name_buf + prefix_len, "___U");
edb0c9cb 11705 if (!get_int_var_value (name_buf, U))
4c4b4cd2 11706 {
323e0a4a 11707 lim_warning (_("Unknown upper bound, using %ld."), (long) L);
4c4b4cd2
PH
11708 U = L;
11709 }
11710 }
14f9c5c9 11711
0c9c3474
SA
11712 type = create_static_range_type (alloc_type_copy (raw_type),
11713 base_type, L, U);
d2e4a39e 11714 TYPE_NAME (type) = name;
14f9c5c9
AS
11715 return type;
11716 }
11717}
11718
4c4b4cd2
PH
11719/* True iff NAME is the name of a range type. */
11720
14f9c5c9 11721int
d2e4a39e 11722ada_is_range_type_name (const char *name)
14f9c5c9
AS
11723{
11724 return (name != NULL && strstr (name, "___XD"));
d2e4a39e 11725}
14f9c5c9 11726\f
d2e4a39e 11727
4c4b4cd2
PH
11728 /* Modular types */
11729
11730/* True iff TYPE is an Ada modular type. */
14f9c5c9 11731
14f9c5c9 11732int
d2e4a39e 11733ada_is_modular_type (struct type *type)
14f9c5c9 11734{
18af8284 11735 struct type *subranged_type = get_base_type (type);
14f9c5c9
AS
11736
11737 return (subranged_type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE
690cc4eb 11738 && TYPE_CODE (subranged_type) == TYPE_CODE_INT
4c4b4cd2 11739 && TYPE_UNSIGNED (subranged_type));
14f9c5c9
AS
11740}
11741
4c4b4cd2
PH
11742/* Assuming ada_is_modular_type (TYPE), the modulus of TYPE. */
11743
61ee279c 11744ULONGEST
0056e4d5 11745ada_modulus (struct type *type)
14f9c5c9 11746{
43bbcdc2 11747 return (ULONGEST) TYPE_HIGH_BOUND (type) + 1;
14f9c5c9 11748}
d2e4a39e 11749\f
f7f9143b
JB
11750
11751/* Ada exception catchpoint support:
11752 ---------------------------------
11753
11754 We support 3 kinds of exception catchpoints:
11755 . catchpoints on Ada exceptions
11756 . catchpoints on unhandled Ada exceptions
11757 . catchpoints on failed assertions
11758
11759 Exceptions raised during failed assertions, or unhandled exceptions
11760 could perfectly be caught with the general catchpoint on Ada exceptions.
11761 However, we can easily differentiate these two special cases, and having
11762 the option to distinguish these two cases from the rest can be useful
11763 to zero-in on certain situations.
11764
11765 Exception catchpoints are a specialized form of breakpoint,
11766 since they rely on inserting breakpoints inside known routines
11767 of the GNAT runtime. The implementation therefore uses a standard
11768 breakpoint structure of the BP_BREAKPOINT type, but with its own set
11769 of breakpoint_ops.
11770
0259addd
JB
11771 Support in the runtime for exception catchpoints have been changed
11772 a few times already, and these changes affect the implementation
11773 of these catchpoints. In order to be able to support several
11774 variants of the runtime, we use a sniffer that will determine
28010a5d 11775 the runtime variant used by the program being debugged. */
f7f9143b 11776
82eacd52
JB
11777/* Ada's standard exceptions.
11778
11779 The Ada 83 standard also defined Numeric_Error. But there so many
11780 situations where it was unclear from the Ada 83 Reference Manual
11781 (RM) whether Constraint_Error or Numeric_Error should be raised,
11782 that the ARG (Ada Rapporteur Group) eventually issued a Binding
11783 Interpretation saying that anytime the RM says that Numeric_Error
11784 should be raised, the implementation may raise Constraint_Error.
11785 Ada 95 went one step further and pretty much removed Numeric_Error
11786 from the list of standard exceptions (it made it a renaming of
11787 Constraint_Error, to help preserve compatibility when compiling
11788 an Ada83 compiler). As such, we do not include Numeric_Error from
11789 this list of standard exceptions. */
3d0b0fa3 11790
a121b7c1 11791static const char *standard_exc[] = {
3d0b0fa3
JB
11792 "constraint_error",
11793 "program_error",
11794 "storage_error",
11795 "tasking_error"
11796};
11797
0259addd
JB
11798typedef CORE_ADDR (ada_unhandled_exception_name_addr_ftype) (void);
11799
11800/* A structure that describes how to support exception catchpoints
11801 for a given executable. */
11802
11803struct exception_support_info
11804{
11805 /* The name of the symbol to break on in order to insert
11806 a catchpoint on exceptions. */
11807 const char *catch_exception_sym;
11808
11809 /* The name of the symbol to break on in order to insert
11810 a catchpoint on unhandled exceptions. */
11811 const char *catch_exception_unhandled_sym;
11812
11813 /* The name of the symbol to break on in order to insert
11814 a catchpoint on failed assertions. */
11815 const char *catch_assert_sym;
11816
11817 /* Assuming that the inferior just triggered an unhandled exception
11818 catchpoint, this function is responsible for returning the address
11819 in inferior memory where the name of that exception is stored.
11820 Return zero if the address could not be computed. */
11821 ada_unhandled_exception_name_addr_ftype *unhandled_exception_name_addr;
11822};
11823
11824static CORE_ADDR ada_unhandled_exception_name_addr (void);
11825static CORE_ADDR ada_unhandled_exception_name_addr_from_raise (void);
11826
11827/* The following exception support info structure describes how to
11828 implement exception catchpoints with the latest version of the
11829 Ada runtime (as of 2007-03-06). */
11830
11831static const struct exception_support_info default_exception_support_info =
11832{
11833 "__gnat_debug_raise_exception", /* catch_exception_sym */
11834 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
11835 "__gnat_debug_raise_assert_failure", /* catch_assert_sym */
11836 ada_unhandled_exception_name_addr
11837};
11838
11839/* The following exception support info structure describes how to
11840 implement exception catchpoints with a slightly older version
11841 of the Ada runtime. */
11842
11843static const struct exception_support_info exception_support_info_fallback =
11844{
11845 "__gnat_raise_nodefer_with_msg", /* catch_exception_sym */
11846 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
11847 "system__assertions__raise_assert_failure", /* catch_assert_sym */
11848 ada_unhandled_exception_name_addr_from_raise
11849};
11850
f17011e0
JB
11851/* Return nonzero if we can detect the exception support routines
11852 described in EINFO.
11853
11854 This function errors out if an abnormal situation is detected
11855 (for instance, if we find the exception support routines, but
11856 that support is found to be incomplete). */
11857
11858static int
11859ada_has_this_exception_support (const struct exception_support_info *einfo)
11860{
11861 struct symbol *sym;
11862
11863 /* The symbol we're looking up is provided by a unit in the GNAT runtime
11864 that should be compiled with debugging information. As a result, we
11865 expect to find that symbol in the symtabs. */
11866
11867 sym = standard_lookup (einfo->catch_exception_sym, NULL, VAR_DOMAIN);
11868 if (sym == NULL)
a6af7abe
JB
11869 {
11870 /* Perhaps we did not find our symbol because the Ada runtime was
11871 compiled without debugging info, or simply stripped of it.
11872 It happens on some GNU/Linux distributions for instance, where
11873 users have to install a separate debug package in order to get
11874 the runtime's debugging info. In that situation, let the user
11875 know why we cannot insert an Ada exception catchpoint.
11876
11877 Note: Just for the purpose of inserting our Ada exception
11878 catchpoint, we could rely purely on the associated minimal symbol.
11879 But we would be operating in degraded mode anyway, since we are
11880 still lacking the debugging info needed later on to extract
11881 the name of the exception being raised (this name is printed in
11882 the catchpoint message, and is also used when trying to catch
11883 a specific exception). We do not handle this case for now. */
3b7344d5 11884 struct bound_minimal_symbol msym
1c8e84b0
JB
11885 = lookup_minimal_symbol (einfo->catch_exception_sym, NULL, NULL);
11886
3b7344d5 11887 if (msym.minsym && MSYMBOL_TYPE (msym.minsym) != mst_solib_trampoline)
a6af7abe
JB
11888 error (_("Your Ada runtime appears to be missing some debugging "
11889 "information.\nCannot insert Ada exception catchpoint "
11890 "in this configuration."));
11891
11892 return 0;
11893 }
f17011e0
JB
11894
11895 /* Make sure that the symbol we found corresponds to a function. */
11896
11897 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
11898 error (_("Symbol \"%s\" is not a function (class = %d)"),
11899 SYMBOL_LINKAGE_NAME (sym), SYMBOL_CLASS (sym));
11900
11901 return 1;
11902}
11903
0259addd
JB
11904/* Inspect the Ada runtime and determine which exception info structure
11905 should be used to provide support for exception catchpoints.
11906
3eecfa55
JB
11907 This function will always set the per-inferior exception_info,
11908 or raise an error. */
0259addd
JB
11909
11910static void
11911ada_exception_support_info_sniffer (void)
11912{
3eecfa55 11913 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
0259addd
JB
11914
11915 /* If the exception info is already known, then no need to recompute it. */
3eecfa55 11916 if (data->exception_info != NULL)
0259addd
JB
11917 return;
11918
11919 /* Check the latest (default) exception support info. */
f17011e0 11920 if (ada_has_this_exception_support (&default_exception_support_info))
0259addd 11921 {
3eecfa55 11922 data->exception_info = &default_exception_support_info;
0259addd
JB
11923 return;
11924 }
11925
11926 /* Try our fallback exception suport info. */
f17011e0 11927 if (ada_has_this_exception_support (&exception_support_info_fallback))
0259addd 11928 {
3eecfa55 11929 data->exception_info = &exception_support_info_fallback;
0259addd
JB
11930 return;
11931 }
11932
11933 /* Sometimes, it is normal for us to not be able to find the routine
11934 we are looking for. This happens when the program is linked with
11935 the shared version of the GNAT runtime, and the program has not been
11936 started yet. Inform the user of these two possible causes if
11937 applicable. */
11938
ccefe4c4 11939 if (ada_update_initial_language (language_unknown) != language_ada)
0259addd
JB
11940 error (_("Unable to insert catchpoint. Is this an Ada main program?"));
11941
11942 /* If the symbol does not exist, then check that the program is
11943 already started, to make sure that shared libraries have been
11944 loaded. If it is not started, this may mean that the symbol is
11945 in a shared library. */
11946
11947 if (ptid_get_pid (inferior_ptid) == 0)
11948 error (_("Unable to insert catchpoint. Try to start the program first."));
11949
11950 /* At this point, we know that we are debugging an Ada program and
11951 that the inferior has been started, but we still are not able to
0963b4bd 11952 find the run-time symbols. That can mean that we are in
0259addd
JB
11953 configurable run time mode, or that a-except as been optimized
11954 out by the linker... In any case, at this point it is not worth
11955 supporting this feature. */
11956
7dda8cff 11957 error (_("Cannot insert Ada exception catchpoints in this configuration."));
0259addd
JB
11958}
11959
f7f9143b
JB
11960/* True iff FRAME is very likely to be that of a function that is
11961 part of the runtime system. This is all very heuristic, but is
11962 intended to be used as advice as to what frames are uninteresting
11963 to most users. */
11964
11965static int
11966is_known_support_routine (struct frame_info *frame)
11967{
692465f1 11968 enum language func_lang;
f7f9143b 11969 int i;
f35a17b5 11970 const char *fullname;
f7f9143b 11971
4ed6b5be
JB
11972 /* If this code does not have any debugging information (no symtab),
11973 This cannot be any user code. */
f7f9143b 11974
51abb421 11975 symtab_and_line sal = find_frame_sal (frame);
f7f9143b
JB
11976 if (sal.symtab == NULL)
11977 return 1;
11978
4ed6b5be
JB
11979 /* If there is a symtab, but the associated source file cannot be
11980 located, then assume this is not user code: Selecting a frame
11981 for which we cannot display the code would not be very helpful
11982 for the user. This should also take care of case such as VxWorks
11983 where the kernel has some debugging info provided for a few units. */
f7f9143b 11984
f35a17b5
JK
11985 fullname = symtab_to_fullname (sal.symtab);
11986 if (access (fullname, R_OK) != 0)
f7f9143b
JB
11987 return 1;
11988
4ed6b5be
JB
11989 /* Check the unit filename againt the Ada runtime file naming.
11990 We also check the name of the objfile against the name of some
11991 known system libraries that sometimes come with debugging info
11992 too. */
11993
f7f9143b
JB
11994 for (i = 0; known_runtime_file_name_patterns[i] != NULL; i += 1)
11995 {
11996 re_comp (known_runtime_file_name_patterns[i]);
f69c91ad 11997 if (re_exec (lbasename (sal.symtab->filename)))
f7f9143b 11998 return 1;
eb822aa6
DE
11999 if (SYMTAB_OBJFILE (sal.symtab) != NULL
12000 && re_exec (objfile_name (SYMTAB_OBJFILE (sal.symtab))))
4ed6b5be 12001 return 1;
f7f9143b
JB
12002 }
12003
4ed6b5be 12004 /* Check whether the function is a GNAT-generated entity. */
f7f9143b 12005
c6dc63a1
TT
12006 gdb::unique_xmalloc_ptr<char> func_name
12007 = find_frame_funname (frame, &func_lang, NULL);
f7f9143b
JB
12008 if (func_name == NULL)
12009 return 1;
12010
12011 for (i = 0; known_auxiliary_function_name_patterns[i] != NULL; i += 1)
12012 {
12013 re_comp (known_auxiliary_function_name_patterns[i]);
c6dc63a1
TT
12014 if (re_exec (func_name.get ()))
12015 return 1;
f7f9143b
JB
12016 }
12017
12018 return 0;
12019}
12020
12021/* Find the first frame that contains debugging information and that is not
12022 part of the Ada run-time, starting from FI and moving upward. */
12023
0ef643c8 12024void
f7f9143b
JB
12025ada_find_printable_frame (struct frame_info *fi)
12026{
12027 for (; fi != NULL; fi = get_prev_frame (fi))
12028 {
12029 if (!is_known_support_routine (fi))
12030 {
12031 select_frame (fi);
12032 break;
12033 }
12034 }
12035
12036}
12037
12038/* Assuming that the inferior just triggered an unhandled exception
12039 catchpoint, return the address in inferior memory where the name
12040 of the exception is stored.
12041
12042 Return zero if the address could not be computed. */
12043
12044static CORE_ADDR
12045ada_unhandled_exception_name_addr (void)
0259addd
JB
12046{
12047 return parse_and_eval_address ("e.full_name");
12048}
12049
12050/* Same as ada_unhandled_exception_name_addr, except that this function
12051 should be used when the inferior uses an older version of the runtime,
12052 where the exception name needs to be extracted from a specific frame
12053 several frames up in the callstack. */
12054
12055static CORE_ADDR
12056ada_unhandled_exception_name_addr_from_raise (void)
f7f9143b
JB
12057{
12058 int frame_level;
12059 struct frame_info *fi;
3eecfa55 12060 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
f7f9143b
JB
12061
12062 /* To determine the name of this exception, we need to select
12063 the frame corresponding to RAISE_SYM_NAME. This frame is
12064 at least 3 levels up, so we simply skip the first 3 frames
12065 without checking the name of their associated function. */
12066 fi = get_current_frame ();
12067 for (frame_level = 0; frame_level < 3; frame_level += 1)
12068 if (fi != NULL)
12069 fi = get_prev_frame (fi);
12070
12071 while (fi != NULL)
12072 {
692465f1
JB
12073 enum language func_lang;
12074
c6dc63a1
TT
12075 gdb::unique_xmalloc_ptr<char> func_name
12076 = find_frame_funname (fi, &func_lang, NULL);
55b87a52
KS
12077 if (func_name != NULL)
12078 {
c6dc63a1 12079 if (strcmp (func_name.get (),
55b87a52
KS
12080 data->exception_info->catch_exception_sym) == 0)
12081 break; /* We found the frame we were looking for... */
12082 fi = get_prev_frame (fi);
12083 }
f7f9143b
JB
12084 }
12085
12086 if (fi == NULL)
12087 return 0;
12088
12089 select_frame (fi);
12090 return parse_and_eval_address ("id.full_name");
12091}
12092
12093/* Assuming the inferior just triggered an Ada exception catchpoint
12094 (of any type), return the address in inferior memory where the name
12095 of the exception is stored, if applicable.
12096
45db7c09
PA
12097 Assumes the selected frame is the current frame.
12098
f7f9143b
JB
12099 Return zero if the address could not be computed, or if not relevant. */
12100
12101static CORE_ADDR
761269c8 12102ada_exception_name_addr_1 (enum ada_exception_catchpoint_kind ex,
f7f9143b
JB
12103 struct breakpoint *b)
12104{
3eecfa55
JB
12105 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
12106
f7f9143b
JB
12107 switch (ex)
12108 {
761269c8 12109 case ada_catch_exception:
f7f9143b
JB
12110 return (parse_and_eval_address ("e.full_name"));
12111 break;
12112
761269c8 12113 case ada_catch_exception_unhandled:
3eecfa55 12114 return data->exception_info->unhandled_exception_name_addr ();
f7f9143b
JB
12115 break;
12116
761269c8 12117 case ada_catch_assert:
f7f9143b
JB
12118 return 0; /* Exception name is not relevant in this case. */
12119 break;
12120
12121 default:
12122 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12123 break;
12124 }
12125
12126 return 0; /* Should never be reached. */
12127}
12128
12129/* Same as ada_exception_name_addr_1, except that it intercepts and contains
12130 any error that ada_exception_name_addr_1 might cause to be thrown.
12131 When an error is intercepted, a warning with the error message is printed,
12132 and zero is returned. */
12133
12134static CORE_ADDR
761269c8 12135ada_exception_name_addr (enum ada_exception_catchpoint_kind ex,
f7f9143b
JB
12136 struct breakpoint *b)
12137{
f7f9143b
JB
12138 CORE_ADDR result = 0;
12139
492d29ea 12140 TRY
f7f9143b
JB
12141 {
12142 result = ada_exception_name_addr_1 (ex, b);
12143 }
12144
492d29ea 12145 CATCH (e, RETURN_MASK_ERROR)
f7f9143b
JB
12146 {
12147 warning (_("failed to get exception name: %s"), e.message);
12148 return 0;
12149 }
492d29ea 12150 END_CATCH
f7f9143b
JB
12151
12152 return result;
12153}
12154
28010a5d
PA
12155static char *ada_exception_catchpoint_cond_string (const char *excep_string);
12156
12157/* Ada catchpoints.
12158
12159 In the case of catchpoints on Ada exceptions, the catchpoint will
12160 stop the target on every exception the program throws. When a user
12161 specifies the name of a specific exception, we translate this
12162 request into a condition expression (in text form), and then parse
12163 it into an expression stored in each of the catchpoint's locations.
12164 We then use this condition to check whether the exception that was
12165 raised is the one the user is interested in. If not, then the
12166 target is resumed again. We store the name of the requested
12167 exception, in order to be able to re-set the condition expression
12168 when symbols change. */
12169
12170/* An instance of this type is used to represent an Ada catchpoint
5625a286 12171 breakpoint location. */
28010a5d 12172
5625a286 12173class ada_catchpoint_location : public bp_location
28010a5d 12174{
5625a286
PA
12175public:
12176 ada_catchpoint_location (const bp_location_ops *ops, breakpoint *owner)
12177 : bp_location (ops, owner)
12178 {}
28010a5d
PA
12179
12180 /* The condition that checks whether the exception that was raised
12181 is the specific exception the user specified on catchpoint
12182 creation. */
4d01a485 12183 expression_up excep_cond_expr;
28010a5d
PA
12184};
12185
12186/* Implement the DTOR method in the bp_location_ops structure for all
12187 Ada exception catchpoint kinds. */
12188
12189static void
12190ada_catchpoint_location_dtor (struct bp_location *bl)
12191{
12192 struct ada_catchpoint_location *al = (struct ada_catchpoint_location *) bl;
12193
4d01a485 12194 al->excep_cond_expr.reset ();
28010a5d
PA
12195}
12196
12197/* The vtable to be used in Ada catchpoint locations. */
12198
12199static const struct bp_location_ops ada_catchpoint_location_ops =
12200{
12201 ada_catchpoint_location_dtor
12202};
12203
c1fc2657 12204/* An instance of this type is used to represent an Ada catchpoint. */
28010a5d 12205
c1fc2657 12206struct ada_catchpoint : public breakpoint
28010a5d 12207{
c1fc2657 12208 ~ada_catchpoint () override;
28010a5d
PA
12209
12210 /* The name of the specific exception the user specified. */
12211 char *excep_string;
12212};
12213
12214/* Parse the exception condition string in the context of each of the
12215 catchpoint's locations, and store them for later evaluation. */
12216
12217static void
12218create_excep_cond_exprs (struct ada_catchpoint *c)
12219{
12220 struct cleanup *old_chain;
12221 struct bp_location *bl;
12222 char *cond_string;
12223
12224 /* Nothing to do if there's no specific exception to catch. */
12225 if (c->excep_string == NULL)
12226 return;
12227
12228 /* Same if there are no locations... */
c1fc2657 12229 if (c->loc == NULL)
28010a5d
PA
12230 return;
12231
12232 /* Compute the condition expression in text form, from the specific
12233 expection we want to catch. */
12234 cond_string = ada_exception_catchpoint_cond_string (c->excep_string);
12235 old_chain = make_cleanup (xfree, cond_string);
12236
12237 /* Iterate over all the catchpoint's locations, and parse an
12238 expression for each. */
c1fc2657 12239 for (bl = c->loc; bl != NULL; bl = bl->next)
28010a5d
PA
12240 {
12241 struct ada_catchpoint_location *ada_loc
12242 = (struct ada_catchpoint_location *) bl;
4d01a485 12243 expression_up exp;
28010a5d
PA
12244
12245 if (!bl->shlib_disabled)
12246 {
bbc13ae3 12247 const char *s;
28010a5d
PA
12248
12249 s = cond_string;
492d29ea 12250 TRY
28010a5d 12251 {
036e657b
JB
12252 exp = parse_exp_1 (&s, bl->address,
12253 block_for_pc (bl->address),
12254 0);
28010a5d 12255 }
492d29ea 12256 CATCH (e, RETURN_MASK_ERROR)
849f2b52
JB
12257 {
12258 warning (_("failed to reevaluate internal exception condition "
12259 "for catchpoint %d: %s"),
c1fc2657 12260 c->number, e.message);
849f2b52 12261 }
492d29ea 12262 END_CATCH
28010a5d
PA
12263 }
12264
b22e99fd 12265 ada_loc->excep_cond_expr = std::move (exp);
28010a5d
PA
12266 }
12267
12268 do_cleanups (old_chain);
12269}
12270
c1fc2657 12271/* ada_catchpoint destructor. */
28010a5d 12272
c1fc2657 12273ada_catchpoint::~ada_catchpoint ()
28010a5d 12274{
c1fc2657 12275 xfree (this->excep_string);
28010a5d
PA
12276}
12277
12278/* Implement the ALLOCATE_LOCATION method in the breakpoint_ops
12279 structure for all exception catchpoint kinds. */
12280
12281static struct bp_location *
761269c8 12282allocate_location_exception (enum ada_exception_catchpoint_kind ex,
28010a5d
PA
12283 struct breakpoint *self)
12284{
5625a286 12285 return new ada_catchpoint_location (&ada_catchpoint_location_ops, self);
28010a5d
PA
12286}
12287
12288/* Implement the RE_SET method in the breakpoint_ops structure for all
12289 exception catchpoint kinds. */
12290
12291static void
761269c8 12292re_set_exception (enum ada_exception_catchpoint_kind ex, struct breakpoint *b)
28010a5d
PA
12293{
12294 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
12295
12296 /* Call the base class's method. This updates the catchpoint's
12297 locations. */
2060206e 12298 bkpt_breakpoint_ops.re_set (b);
28010a5d
PA
12299
12300 /* Reparse the exception conditional expressions. One for each
12301 location. */
12302 create_excep_cond_exprs (c);
12303}
12304
12305/* Returns true if we should stop for this breakpoint hit. If the
12306 user specified a specific exception, we only want to cause a stop
12307 if the program thrown that exception. */
12308
12309static int
12310should_stop_exception (const struct bp_location *bl)
12311{
12312 struct ada_catchpoint *c = (struct ada_catchpoint *) bl->owner;
12313 const struct ada_catchpoint_location *ada_loc
12314 = (const struct ada_catchpoint_location *) bl;
28010a5d
PA
12315 int stop;
12316
12317 /* With no specific exception, should always stop. */
12318 if (c->excep_string == NULL)
12319 return 1;
12320
12321 if (ada_loc->excep_cond_expr == NULL)
12322 {
12323 /* We will have a NULL expression if back when we were creating
12324 the expressions, this location's had failed to parse. */
12325 return 1;
12326 }
12327
12328 stop = 1;
492d29ea 12329 TRY
28010a5d
PA
12330 {
12331 struct value *mark;
12332
12333 mark = value_mark ();
4d01a485 12334 stop = value_true (evaluate_expression (ada_loc->excep_cond_expr.get ()));
28010a5d
PA
12335 value_free_to_mark (mark);
12336 }
492d29ea
PA
12337 CATCH (ex, RETURN_MASK_ALL)
12338 {
12339 exception_fprintf (gdb_stderr, ex,
12340 _("Error in testing exception condition:\n"));
12341 }
12342 END_CATCH
12343
28010a5d
PA
12344 return stop;
12345}
12346
12347/* Implement the CHECK_STATUS method in the breakpoint_ops structure
12348 for all exception catchpoint kinds. */
12349
12350static void
761269c8 12351check_status_exception (enum ada_exception_catchpoint_kind ex, bpstat bs)
28010a5d
PA
12352{
12353 bs->stop = should_stop_exception (bs->bp_location_at);
12354}
12355
f7f9143b
JB
12356/* Implement the PRINT_IT method in the breakpoint_ops structure
12357 for all exception catchpoint kinds. */
12358
12359static enum print_stop_action
761269c8 12360print_it_exception (enum ada_exception_catchpoint_kind ex, bpstat bs)
f7f9143b 12361{
79a45e25 12362 struct ui_out *uiout = current_uiout;
348d480f
PA
12363 struct breakpoint *b = bs->breakpoint_at;
12364
956a9fb9 12365 annotate_catchpoint (b->number);
f7f9143b 12366
112e8700 12367 if (uiout->is_mi_like_p ())
f7f9143b 12368 {
112e8700 12369 uiout->field_string ("reason",
956a9fb9 12370 async_reason_lookup (EXEC_ASYNC_BREAKPOINT_HIT));
112e8700 12371 uiout->field_string ("disp", bpdisp_text (b->disposition));
f7f9143b
JB
12372 }
12373
112e8700
SM
12374 uiout->text (b->disposition == disp_del
12375 ? "\nTemporary catchpoint " : "\nCatchpoint ");
12376 uiout->field_int ("bkptno", b->number);
12377 uiout->text (", ");
f7f9143b 12378
45db7c09
PA
12379 /* ada_exception_name_addr relies on the selected frame being the
12380 current frame. Need to do this here because this function may be
12381 called more than once when printing a stop, and below, we'll
12382 select the first frame past the Ada run-time (see
12383 ada_find_printable_frame). */
12384 select_frame (get_current_frame ());
12385
f7f9143b
JB
12386 switch (ex)
12387 {
761269c8
JB
12388 case ada_catch_exception:
12389 case ada_catch_exception_unhandled:
956a9fb9
JB
12390 {
12391 const CORE_ADDR addr = ada_exception_name_addr (ex, b);
12392 char exception_name[256];
12393
12394 if (addr != 0)
12395 {
c714b426
PA
12396 read_memory (addr, (gdb_byte *) exception_name,
12397 sizeof (exception_name) - 1);
956a9fb9
JB
12398 exception_name [sizeof (exception_name) - 1] = '\0';
12399 }
12400 else
12401 {
12402 /* For some reason, we were unable to read the exception
12403 name. This could happen if the Runtime was compiled
12404 without debugging info, for instance. In that case,
12405 just replace the exception name by the generic string
12406 "exception" - it will read as "an exception" in the
12407 notification we are about to print. */
967cff16 12408 memcpy (exception_name, "exception", sizeof ("exception"));
956a9fb9
JB
12409 }
12410 /* In the case of unhandled exception breakpoints, we print
12411 the exception name as "unhandled EXCEPTION_NAME", to make
12412 it clearer to the user which kind of catchpoint just got
12413 hit. We used ui_out_text to make sure that this extra
12414 info does not pollute the exception name in the MI case. */
761269c8 12415 if (ex == ada_catch_exception_unhandled)
112e8700
SM
12416 uiout->text ("unhandled ");
12417 uiout->field_string ("exception-name", exception_name);
956a9fb9
JB
12418 }
12419 break;
761269c8 12420 case ada_catch_assert:
956a9fb9
JB
12421 /* In this case, the name of the exception is not really
12422 important. Just print "failed assertion" to make it clearer
12423 that his program just hit an assertion-failure catchpoint.
12424 We used ui_out_text because this info does not belong in
12425 the MI output. */
112e8700 12426 uiout->text ("failed assertion");
956a9fb9 12427 break;
f7f9143b 12428 }
112e8700 12429 uiout->text (" at ");
956a9fb9 12430 ada_find_printable_frame (get_current_frame ());
f7f9143b
JB
12431
12432 return PRINT_SRC_AND_LOC;
12433}
12434
12435/* Implement the PRINT_ONE method in the breakpoint_ops structure
12436 for all exception catchpoint kinds. */
12437
12438static void
761269c8 12439print_one_exception (enum ada_exception_catchpoint_kind ex,
a6d9a66e 12440 struct breakpoint *b, struct bp_location **last_loc)
f7f9143b 12441{
79a45e25 12442 struct ui_out *uiout = current_uiout;
28010a5d 12443 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
79a45b7d
TT
12444 struct value_print_options opts;
12445
12446 get_user_print_options (&opts);
12447 if (opts.addressprint)
f7f9143b
JB
12448 {
12449 annotate_field (4);
112e8700 12450 uiout->field_core_addr ("addr", b->loc->gdbarch, b->loc->address);
f7f9143b
JB
12451 }
12452
12453 annotate_field (5);
a6d9a66e 12454 *last_loc = b->loc;
f7f9143b
JB
12455 switch (ex)
12456 {
761269c8 12457 case ada_catch_exception:
28010a5d 12458 if (c->excep_string != NULL)
f7f9143b 12459 {
28010a5d
PA
12460 char *msg = xstrprintf (_("`%s' Ada exception"), c->excep_string);
12461
112e8700 12462 uiout->field_string ("what", msg);
f7f9143b
JB
12463 xfree (msg);
12464 }
12465 else
112e8700 12466 uiout->field_string ("what", "all Ada exceptions");
f7f9143b
JB
12467
12468 break;
12469
761269c8 12470 case ada_catch_exception_unhandled:
112e8700 12471 uiout->field_string ("what", "unhandled Ada exceptions");
f7f9143b
JB
12472 break;
12473
761269c8 12474 case ada_catch_assert:
112e8700 12475 uiout->field_string ("what", "failed Ada assertions");
f7f9143b
JB
12476 break;
12477
12478 default:
12479 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12480 break;
12481 }
12482}
12483
12484/* Implement the PRINT_MENTION method in the breakpoint_ops structure
12485 for all exception catchpoint kinds. */
12486
12487static void
761269c8 12488print_mention_exception (enum ada_exception_catchpoint_kind ex,
f7f9143b
JB
12489 struct breakpoint *b)
12490{
28010a5d 12491 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
79a45e25 12492 struct ui_out *uiout = current_uiout;
28010a5d 12493
112e8700 12494 uiout->text (b->disposition == disp_del ? _("Temporary catchpoint ")
00eb2c4a 12495 : _("Catchpoint "));
112e8700
SM
12496 uiout->field_int ("bkptno", b->number);
12497 uiout->text (": ");
00eb2c4a 12498
f7f9143b
JB
12499 switch (ex)
12500 {
761269c8 12501 case ada_catch_exception:
28010a5d 12502 if (c->excep_string != NULL)
00eb2c4a
JB
12503 {
12504 char *info = xstrprintf (_("`%s' Ada exception"), c->excep_string);
12505 struct cleanup *old_chain = make_cleanup (xfree, info);
12506
112e8700 12507 uiout->text (info);
00eb2c4a
JB
12508 do_cleanups (old_chain);
12509 }
f7f9143b 12510 else
112e8700 12511 uiout->text (_("all Ada exceptions"));
f7f9143b
JB
12512 break;
12513
761269c8 12514 case ada_catch_exception_unhandled:
112e8700 12515 uiout->text (_("unhandled Ada exceptions"));
f7f9143b
JB
12516 break;
12517
761269c8 12518 case ada_catch_assert:
112e8700 12519 uiout->text (_("failed Ada assertions"));
f7f9143b
JB
12520 break;
12521
12522 default:
12523 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12524 break;
12525 }
12526}
12527
6149aea9
PA
12528/* Implement the PRINT_RECREATE method in the breakpoint_ops structure
12529 for all exception catchpoint kinds. */
12530
12531static void
761269c8 12532print_recreate_exception (enum ada_exception_catchpoint_kind ex,
6149aea9
PA
12533 struct breakpoint *b, struct ui_file *fp)
12534{
28010a5d
PA
12535 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
12536
6149aea9
PA
12537 switch (ex)
12538 {
761269c8 12539 case ada_catch_exception:
6149aea9 12540 fprintf_filtered (fp, "catch exception");
28010a5d
PA
12541 if (c->excep_string != NULL)
12542 fprintf_filtered (fp, " %s", c->excep_string);
6149aea9
PA
12543 break;
12544
761269c8 12545 case ada_catch_exception_unhandled:
78076abc 12546 fprintf_filtered (fp, "catch exception unhandled");
6149aea9
PA
12547 break;
12548
761269c8 12549 case ada_catch_assert:
6149aea9
PA
12550 fprintf_filtered (fp, "catch assert");
12551 break;
12552
12553 default:
12554 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12555 }
d9b3f62e 12556 print_recreate_thread (b, fp);
6149aea9
PA
12557}
12558
f7f9143b
JB
12559/* Virtual table for "catch exception" breakpoints. */
12560
28010a5d
PA
12561static struct bp_location *
12562allocate_location_catch_exception (struct breakpoint *self)
12563{
761269c8 12564 return allocate_location_exception (ada_catch_exception, self);
28010a5d
PA
12565}
12566
12567static void
12568re_set_catch_exception (struct breakpoint *b)
12569{
761269c8 12570 re_set_exception (ada_catch_exception, b);
28010a5d
PA
12571}
12572
12573static void
12574check_status_catch_exception (bpstat bs)
12575{
761269c8 12576 check_status_exception (ada_catch_exception, bs);
28010a5d
PA
12577}
12578
f7f9143b 12579static enum print_stop_action
348d480f 12580print_it_catch_exception (bpstat bs)
f7f9143b 12581{
761269c8 12582 return print_it_exception (ada_catch_exception, bs);
f7f9143b
JB
12583}
12584
12585static void
a6d9a66e 12586print_one_catch_exception (struct breakpoint *b, struct bp_location **last_loc)
f7f9143b 12587{
761269c8 12588 print_one_exception (ada_catch_exception, b, last_loc);
f7f9143b
JB
12589}
12590
12591static void
12592print_mention_catch_exception (struct breakpoint *b)
12593{
761269c8 12594 print_mention_exception (ada_catch_exception, b);
f7f9143b
JB
12595}
12596
6149aea9
PA
12597static void
12598print_recreate_catch_exception (struct breakpoint *b, struct ui_file *fp)
12599{
761269c8 12600 print_recreate_exception (ada_catch_exception, b, fp);
6149aea9
PA
12601}
12602
2060206e 12603static struct breakpoint_ops catch_exception_breakpoint_ops;
f7f9143b
JB
12604
12605/* Virtual table for "catch exception unhandled" breakpoints. */
12606
28010a5d
PA
12607static struct bp_location *
12608allocate_location_catch_exception_unhandled (struct breakpoint *self)
12609{
761269c8 12610 return allocate_location_exception (ada_catch_exception_unhandled, self);
28010a5d
PA
12611}
12612
12613static void
12614re_set_catch_exception_unhandled (struct breakpoint *b)
12615{
761269c8 12616 re_set_exception (ada_catch_exception_unhandled, b);
28010a5d
PA
12617}
12618
12619static void
12620check_status_catch_exception_unhandled (bpstat bs)
12621{
761269c8 12622 check_status_exception (ada_catch_exception_unhandled, bs);
28010a5d
PA
12623}
12624
f7f9143b 12625static enum print_stop_action
348d480f 12626print_it_catch_exception_unhandled (bpstat bs)
f7f9143b 12627{
761269c8 12628 return print_it_exception (ada_catch_exception_unhandled, bs);
f7f9143b
JB
12629}
12630
12631static void
a6d9a66e
UW
12632print_one_catch_exception_unhandled (struct breakpoint *b,
12633 struct bp_location **last_loc)
f7f9143b 12634{
761269c8 12635 print_one_exception (ada_catch_exception_unhandled, b, last_loc);
f7f9143b
JB
12636}
12637
12638static void
12639print_mention_catch_exception_unhandled (struct breakpoint *b)
12640{
761269c8 12641 print_mention_exception (ada_catch_exception_unhandled, b);
f7f9143b
JB
12642}
12643
6149aea9
PA
12644static void
12645print_recreate_catch_exception_unhandled (struct breakpoint *b,
12646 struct ui_file *fp)
12647{
761269c8 12648 print_recreate_exception (ada_catch_exception_unhandled, b, fp);
6149aea9
PA
12649}
12650
2060206e 12651static struct breakpoint_ops catch_exception_unhandled_breakpoint_ops;
f7f9143b
JB
12652
12653/* Virtual table for "catch assert" breakpoints. */
12654
28010a5d
PA
12655static struct bp_location *
12656allocate_location_catch_assert (struct breakpoint *self)
12657{
761269c8 12658 return allocate_location_exception (ada_catch_assert, self);
28010a5d
PA
12659}
12660
12661static void
12662re_set_catch_assert (struct breakpoint *b)
12663{
761269c8 12664 re_set_exception (ada_catch_assert, b);
28010a5d
PA
12665}
12666
12667static void
12668check_status_catch_assert (bpstat bs)
12669{
761269c8 12670 check_status_exception (ada_catch_assert, bs);
28010a5d
PA
12671}
12672
f7f9143b 12673static enum print_stop_action
348d480f 12674print_it_catch_assert (bpstat bs)
f7f9143b 12675{
761269c8 12676 return print_it_exception (ada_catch_assert, bs);
f7f9143b
JB
12677}
12678
12679static void
a6d9a66e 12680print_one_catch_assert (struct breakpoint *b, struct bp_location **last_loc)
f7f9143b 12681{
761269c8 12682 print_one_exception (ada_catch_assert, b, last_loc);
f7f9143b
JB
12683}
12684
12685static void
12686print_mention_catch_assert (struct breakpoint *b)
12687{
761269c8 12688 print_mention_exception (ada_catch_assert, b);
f7f9143b
JB
12689}
12690
6149aea9
PA
12691static void
12692print_recreate_catch_assert (struct breakpoint *b, struct ui_file *fp)
12693{
761269c8 12694 print_recreate_exception (ada_catch_assert, b, fp);
6149aea9
PA
12695}
12696
2060206e 12697static struct breakpoint_ops catch_assert_breakpoint_ops;
f7f9143b 12698
f7f9143b
JB
12699/* Return a newly allocated copy of the first space-separated token
12700 in ARGSP, and then adjust ARGSP to point immediately after that
12701 token.
12702
12703 Return NULL if ARGPS does not contain any more tokens. */
12704
12705static char *
a121b7c1 12706ada_get_next_arg (const char **argsp)
f7f9143b 12707{
a121b7c1
PA
12708 const char *args = *argsp;
12709 const char *end;
f7f9143b
JB
12710 char *result;
12711
f1735a53 12712 args = skip_spaces (args);
f7f9143b
JB
12713 if (args[0] == '\0')
12714 return NULL; /* No more arguments. */
12715
12716 /* Find the end of the current argument. */
12717
f1735a53 12718 end = skip_to_space (args);
f7f9143b
JB
12719
12720 /* Adjust ARGSP to point to the start of the next argument. */
12721
12722 *argsp = end;
12723
12724 /* Make a copy of the current argument and return it. */
12725
224c3ddb 12726 result = (char *) xmalloc (end - args + 1);
f7f9143b
JB
12727 strncpy (result, args, end - args);
12728 result[end - args] = '\0';
12729
12730 return result;
12731}
12732
12733/* Split the arguments specified in a "catch exception" command.
12734 Set EX to the appropriate catchpoint type.
28010a5d 12735 Set EXCEP_STRING to the name of the specific exception if
5845583d
JB
12736 specified by the user.
12737 If a condition is found at the end of the arguments, the condition
12738 expression is stored in COND_STRING (memory must be deallocated
12739 after use). Otherwise COND_STRING is set to NULL. */
f7f9143b
JB
12740
12741static void
a121b7c1 12742catch_ada_exception_command_split (const char *args,
761269c8 12743 enum ada_exception_catchpoint_kind *ex,
5845583d
JB
12744 char **excep_string,
12745 char **cond_string)
f7f9143b
JB
12746{
12747 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
12748 char *exception_name;
5845583d 12749 char *cond = NULL;
f7f9143b
JB
12750
12751 exception_name = ada_get_next_arg (&args);
5845583d
JB
12752 if (exception_name != NULL && strcmp (exception_name, "if") == 0)
12753 {
12754 /* This is not an exception name; this is the start of a condition
12755 expression for a catchpoint on all exceptions. So, "un-get"
12756 this token, and set exception_name to NULL. */
12757 xfree (exception_name);
12758 exception_name = NULL;
12759 args -= 2;
12760 }
f7f9143b
JB
12761 make_cleanup (xfree, exception_name);
12762
5845583d 12763 /* Check to see if we have a condition. */
f7f9143b 12764
f1735a53 12765 args = skip_spaces (args);
61012eef 12766 if (startswith (args, "if")
5845583d
JB
12767 && (isspace (args[2]) || args[2] == '\0'))
12768 {
12769 args += 2;
f1735a53 12770 args = skip_spaces (args);
5845583d
JB
12771
12772 if (args[0] == '\0')
12773 error (_("Condition missing after `if' keyword"));
12774 cond = xstrdup (args);
12775 make_cleanup (xfree, cond);
12776
12777 args += strlen (args);
12778 }
12779
12780 /* Check that we do not have any more arguments. Anything else
12781 is unexpected. */
f7f9143b
JB
12782
12783 if (args[0] != '\0')
12784 error (_("Junk at end of expression"));
12785
12786 discard_cleanups (old_chain);
12787
12788 if (exception_name == NULL)
12789 {
12790 /* Catch all exceptions. */
761269c8 12791 *ex = ada_catch_exception;
28010a5d 12792 *excep_string = NULL;
f7f9143b
JB
12793 }
12794 else if (strcmp (exception_name, "unhandled") == 0)
12795 {
12796 /* Catch unhandled exceptions. */
761269c8 12797 *ex = ada_catch_exception_unhandled;
28010a5d 12798 *excep_string = NULL;
f7f9143b
JB
12799 }
12800 else
12801 {
12802 /* Catch a specific exception. */
761269c8 12803 *ex = ada_catch_exception;
28010a5d 12804 *excep_string = exception_name;
f7f9143b 12805 }
5845583d 12806 *cond_string = cond;
f7f9143b
JB
12807}
12808
12809/* Return the name of the symbol on which we should break in order to
12810 implement a catchpoint of the EX kind. */
12811
12812static const char *
761269c8 12813ada_exception_sym_name (enum ada_exception_catchpoint_kind ex)
f7f9143b 12814{
3eecfa55
JB
12815 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
12816
12817 gdb_assert (data->exception_info != NULL);
0259addd 12818
f7f9143b
JB
12819 switch (ex)
12820 {
761269c8 12821 case ada_catch_exception:
3eecfa55 12822 return (data->exception_info->catch_exception_sym);
f7f9143b 12823 break;
761269c8 12824 case ada_catch_exception_unhandled:
3eecfa55 12825 return (data->exception_info->catch_exception_unhandled_sym);
f7f9143b 12826 break;
761269c8 12827 case ada_catch_assert:
3eecfa55 12828 return (data->exception_info->catch_assert_sym);
f7f9143b
JB
12829 break;
12830 default:
12831 internal_error (__FILE__, __LINE__,
12832 _("unexpected catchpoint kind (%d)"), ex);
12833 }
12834}
12835
12836/* Return the breakpoint ops "virtual table" used for catchpoints
12837 of the EX kind. */
12838
c0a91b2b 12839static const struct breakpoint_ops *
761269c8 12840ada_exception_breakpoint_ops (enum ada_exception_catchpoint_kind ex)
f7f9143b
JB
12841{
12842 switch (ex)
12843 {
761269c8 12844 case ada_catch_exception:
f7f9143b
JB
12845 return (&catch_exception_breakpoint_ops);
12846 break;
761269c8 12847 case ada_catch_exception_unhandled:
f7f9143b
JB
12848 return (&catch_exception_unhandled_breakpoint_ops);
12849 break;
761269c8 12850 case ada_catch_assert:
f7f9143b
JB
12851 return (&catch_assert_breakpoint_ops);
12852 break;
12853 default:
12854 internal_error (__FILE__, __LINE__,
12855 _("unexpected catchpoint kind (%d)"), ex);
12856 }
12857}
12858
12859/* Return the condition that will be used to match the current exception
12860 being raised with the exception that the user wants to catch. This
12861 assumes that this condition is used when the inferior just triggered
12862 an exception catchpoint.
12863
12864 The string returned is a newly allocated string that needs to be
12865 deallocated later. */
12866
12867static char *
28010a5d 12868ada_exception_catchpoint_cond_string (const char *excep_string)
f7f9143b 12869{
3d0b0fa3
JB
12870 int i;
12871
0963b4bd 12872 /* The standard exceptions are a special case. They are defined in
3d0b0fa3 12873 runtime units that have been compiled without debugging info; if
28010a5d 12874 EXCEP_STRING is the not-fully-qualified name of a standard
3d0b0fa3
JB
12875 exception (e.g. "constraint_error") then, during the evaluation
12876 of the condition expression, the symbol lookup on this name would
0963b4bd 12877 *not* return this standard exception. The catchpoint condition
3d0b0fa3
JB
12878 may then be set only on user-defined exceptions which have the
12879 same not-fully-qualified name (e.g. my_package.constraint_error).
12880
12881 To avoid this unexcepted behavior, these standard exceptions are
0963b4bd 12882 systematically prefixed by "standard". This means that "catch
3d0b0fa3
JB
12883 exception constraint_error" is rewritten into "catch exception
12884 standard.constraint_error".
12885
12886 If an exception named contraint_error is defined in another package of
12887 the inferior program, then the only way to specify this exception as a
12888 breakpoint condition is to use its fully-qualified named:
12889 e.g. my_package.constraint_error. */
12890
12891 for (i = 0; i < sizeof (standard_exc) / sizeof (char *); i++)
12892 {
28010a5d 12893 if (strcmp (standard_exc [i], excep_string) == 0)
3d0b0fa3
JB
12894 {
12895 return xstrprintf ("long_integer (e) = long_integer (&standard.%s)",
28010a5d 12896 excep_string);
3d0b0fa3
JB
12897 }
12898 }
28010a5d 12899 return xstrprintf ("long_integer (e) = long_integer (&%s)", excep_string);
f7f9143b
JB
12900}
12901
12902/* Return the symtab_and_line that should be used to insert an exception
12903 catchpoint of the TYPE kind.
12904
28010a5d
PA
12905 EXCEP_STRING should contain the name of a specific exception that
12906 the catchpoint should catch, or NULL otherwise.
f7f9143b 12907
28010a5d
PA
12908 ADDR_STRING returns the name of the function where the real
12909 breakpoint that implements the catchpoints is set, depending on the
12910 type of catchpoint we need to create. */
f7f9143b
JB
12911
12912static struct symtab_and_line
761269c8 12913ada_exception_sal (enum ada_exception_catchpoint_kind ex, char *excep_string,
f2fc3015 12914 const char **addr_string, const struct breakpoint_ops **ops)
f7f9143b
JB
12915{
12916 const char *sym_name;
12917 struct symbol *sym;
f7f9143b 12918
0259addd
JB
12919 /* First, find out which exception support info to use. */
12920 ada_exception_support_info_sniffer ();
12921
12922 /* Then lookup the function on which we will break in order to catch
f7f9143b 12923 the Ada exceptions requested by the user. */
f7f9143b
JB
12924 sym_name = ada_exception_sym_name (ex);
12925 sym = standard_lookup (sym_name, NULL, VAR_DOMAIN);
12926
f17011e0
JB
12927 /* We can assume that SYM is not NULL at this stage. If the symbol
12928 did not exist, ada_exception_support_info_sniffer would have
12929 raised an exception.
f7f9143b 12930
f17011e0
JB
12931 Also, ada_exception_support_info_sniffer should have already
12932 verified that SYM is a function symbol. */
12933 gdb_assert (sym != NULL);
12934 gdb_assert (SYMBOL_CLASS (sym) == LOC_BLOCK);
f7f9143b
JB
12935
12936 /* Set ADDR_STRING. */
f7f9143b
JB
12937 *addr_string = xstrdup (sym_name);
12938
f7f9143b 12939 /* Set OPS. */
4b9eee8c 12940 *ops = ada_exception_breakpoint_ops (ex);
f7f9143b 12941
f17011e0 12942 return find_function_start_sal (sym, 1);
f7f9143b
JB
12943}
12944
b4a5b78b 12945/* Create an Ada exception catchpoint.
f7f9143b 12946
b4a5b78b 12947 EX_KIND is the kind of exception catchpoint to be created.
5845583d 12948
2df4d1d5
JB
12949 If EXCEPT_STRING is NULL, this catchpoint is expected to trigger
12950 for all exceptions. Otherwise, EXCEPT_STRING indicates the name
12951 of the exception to which this catchpoint applies. When not NULL,
12952 the string must be allocated on the heap, and its deallocation
12953 is no longer the responsibility of the caller.
12954
12955 COND_STRING, if not NULL, is the catchpoint condition. This string
12956 must be allocated on the heap, and its deallocation is no longer
12957 the responsibility of the caller.
f7f9143b 12958
b4a5b78b
JB
12959 TEMPFLAG, if nonzero, means that the underlying breakpoint
12960 should be temporary.
28010a5d 12961
b4a5b78b 12962 FROM_TTY is the usual argument passed to all commands implementations. */
28010a5d 12963
349774ef 12964void
28010a5d 12965create_ada_exception_catchpoint (struct gdbarch *gdbarch,
761269c8 12966 enum ada_exception_catchpoint_kind ex_kind,
28010a5d 12967 char *excep_string,
5845583d 12968 char *cond_string,
28010a5d 12969 int tempflag,
349774ef 12970 int disabled,
28010a5d
PA
12971 int from_tty)
12972{
f2fc3015 12973 const char *addr_string = NULL;
b4a5b78b
JB
12974 const struct breakpoint_ops *ops = NULL;
12975 struct symtab_and_line sal
12976 = ada_exception_sal (ex_kind, excep_string, &addr_string, &ops);
28010a5d 12977
b270e6f9
TT
12978 std::unique_ptr<ada_catchpoint> c (new ada_catchpoint ());
12979 init_ada_exception_breakpoint (c.get (), gdbarch, sal, addr_string,
349774ef 12980 ops, tempflag, disabled, from_tty);
28010a5d 12981 c->excep_string = excep_string;
b270e6f9 12982 create_excep_cond_exprs (c.get ());
5845583d 12983 if (cond_string != NULL)
b270e6f9
TT
12984 set_breakpoint_condition (c.get (), cond_string, from_tty);
12985 install_breakpoint (0, std::move (c), 1);
f7f9143b
JB
12986}
12987
9ac4176b
PA
12988/* Implement the "catch exception" command. */
12989
12990static void
a121b7c1 12991catch_ada_exception_command (char *arg_entry, int from_tty,
9ac4176b
PA
12992 struct cmd_list_element *command)
12993{
a121b7c1 12994 const char *arg = arg_entry;
9ac4176b
PA
12995 struct gdbarch *gdbarch = get_current_arch ();
12996 int tempflag;
761269c8 12997 enum ada_exception_catchpoint_kind ex_kind;
28010a5d 12998 char *excep_string = NULL;
5845583d 12999 char *cond_string = NULL;
9ac4176b
PA
13000
13001 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
13002
13003 if (!arg)
13004 arg = "";
b4a5b78b
JB
13005 catch_ada_exception_command_split (arg, &ex_kind, &excep_string,
13006 &cond_string);
13007 create_ada_exception_catchpoint (gdbarch, ex_kind,
13008 excep_string, cond_string,
349774ef
JB
13009 tempflag, 1 /* enabled */,
13010 from_tty);
9ac4176b
PA
13011}
13012
b4a5b78b 13013/* Split the arguments specified in a "catch assert" command.
5845583d 13014
b4a5b78b
JB
13015 ARGS contains the command's arguments (or the empty string if
13016 no arguments were passed).
5845583d
JB
13017
13018 If ARGS contains a condition, set COND_STRING to that condition
b4a5b78b 13019 (the memory needs to be deallocated after use). */
5845583d 13020
b4a5b78b 13021static void
a121b7c1 13022catch_ada_assert_command_split (const char *args, char **cond_string)
f7f9143b 13023{
f1735a53 13024 args = skip_spaces (args);
f7f9143b 13025
5845583d 13026 /* Check whether a condition was provided. */
61012eef 13027 if (startswith (args, "if")
5845583d 13028 && (isspace (args[2]) || args[2] == '\0'))
f7f9143b 13029 {
5845583d 13030 args += 2;
f1735a53 13031 args = skip_spaces (args);
5845583d
JB
13032 if (args[0] == '\0')
13033 error (_("condition missing after `if' keyword"));
13034 *cond_string = xstrdup (args);
f7f9143b
JB
13035 }
13036
5845583d
JB
13037 /* Otherwise, there should be no other argument at the end of
13038 the command. */
13039 else if (args[0] != '\0')
13040 error (_("Junk at end of arguments."));
f7f9143b
JB
13041}
13042
9ac4176b
PA
13043/* Implement the "catch assert" command. */
13044
13045static void
a121b7c1 13046catch_assert_command (char *arg_entry, int from_tty,
9ac4176b
PA
13047 struct cmd_list_element *command)
13048{
a121b7c1 13049 const char *arg = arg_entry;
9ac4176b
PA
13050 struct gdbarch *gdbarch = get_current_arch ();
13051 int tempflag;
5845583d 13052 char *cond_string = NULL;
9ac4176b
PA
13053
13054 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
13055
13056 if (!arg)
13057 arg = "";
b4a5b78b 13058 catch_ada_assert_command_split (arg, &cond_string);
761269c8 13059 create_ada_exception_catchpoint (gdbarch, ada_catch_assert,
b4a5b78b 13060 NULL, cond_string,
349774ef
JB
13061 tempflag, 1 /* enabled */,
13062 from_tty);
9ac4176b 13063}
778865d3
JB
13064
13065/* Return non-zero if the symbol SYM is an Ada exception object. */
13066
13067static int
13068ada_is_exception_sym (struct symbol *sym)
13069{
13070 const char *type_name = type_name_no_tag (SYMBOL_TYPE (sym));
13071
13072 return (SYMBOL_CLASS (sym) != LOC_TYPEDEF
13073 && SYMBOL_CLASS (sym) != LOC_BLOCK
13074 && SYMBOL_CLASS (sym) != LOC_CONST
13075 && SYMBOL_CLASS (sym) != LOC_UNRESOLVED
13076 && type_name != NULL && strcmp (type_name, "exception") == 0);
13077}
13078
13079/* Given a global symbol SYM, return non-zero iff SYM is a non-standard
13080 Ada exception object. This matches all exceptions except the ones
13081 defined by the Ada language. */
13082
13083static int
13084ada_is_non_standard_exception_sym (struct symbol *sym)
13085{
13086 int i;
13087
13088 if (!ada_is_exception_sym (sym))
13089 return 0;
13090
13091 for (i = 0; i < ARRAY_SIZE (standard_exc); i++)
13092 if (strcmp (SYMBOL_LINKAGE_NAME (sym), standard_exc[i]) == 0)
13093 return 0; /* A standard exception. */
13094
13095 /* Numeric_Error is also a standard exception, so exclude it.
13096 See the STANDARD_EXC description for more details as to why
13097 this exception is not listed in that array. */
13098 if (strcmp (SYMBOL_LINKAGE_NAME (sym), "numeric_error") == 0)
13099 return 0;
13100
13101 return 1;
13102}
13103
ab816a27 13104/* A helper function for std::sort, comparing two struct ada_exc_info
778865d3
JB
13105 objects.
13106
13107 The comparison is determined first by exception name, and then
13108 by exception address. */
13109
ab816a27 13110bool
cc536b21 13111ada_exc_info::operator< (const ada_exc_info &other) const
778865d3 13112{
778865d3
JB
13113 int result;
13114
ab816a27
TT
13115 result = strcmp (name, other.name);
13116 if (result < 0)
13117 return true;
13118 if (result == 0 && addr < other.addr)
13119 return true;
13120 return false;
13121}
778865d3 13122
ab816a27 13123bool
cc536b21 13124ada_exc_info::operator== (const ada_exc_info &other) const
ab816a27
TT
13125{
13126 return addr == other.addr && strcmp (name, other.name) == 0;
778865d3
JB
13127}
13128
13129/* Sort EXCEPTIONS using compare_ada_exception_info as the comparison
13130 routine, but keeping the first SKIP elements untouched.
13131
13132 All duplicates are also removed. */
13133
13134static void
ab816a27 13135sort_remove_dups_ada_exceptions_list (std::vector<ada_exc_info> *exceptions,
778865d3
JB
13136 int skip)
13137{
ab816a27
TT
13138 std::sort (exceptions->begin () + skip, exceptions->end ());
13139 exceptions->erase (std::unique (exceptions->begin () + skip, exceptions->end ()),
13140 exceptions->end ());
778865d3
JB
13141}
13142
778865d3
JB
13143/* Add all exceptions defined by the Ada standard whose name match
13144 a regular expression.
13145
13146 If PREG is not NULL, then this regexp_t object is used to
13147 perform the symbol name matching. Otherwise, no name-based
13148 filtering is performed.
13149
13150 EXCEPTIONS is a vector of exceptions to which matching exceptions
13151 gets pushed. */
13152
13153static void
2d7cc5c7 13154ada_add_standard_exceptions (compiled_regex *preg,
ab816a27 13155 std::vector<ada_exc_info> *exceptions)
778865d3
JB
13156{
13157 int i;
13158
13159 for (i = 0; i < ARRAY_SIZE (standard_exc); i++)
13160 {
13161 if (preg == NULL
2d7cc5c7 13162 || preg->exec (standard_exc[i], 0, NULL, 0) == 0)
778865d3
JB
13163 {
13164 struct bound_minimal_symbol msymbol
13165 = ada_lookup_simple_minsym (standard_exc[i]);
13166
13167 if (msymbol.minsym != NULL)
13168 {
13169 struct ada_exc_info info
77e371c0 13170 = {standard_exc[i], BMSYMBOL_VALUE_ADDRESS (msymbol)};
778865d3 13171
ab816a27 13172 exceptions->push_back (info);
778865d3
JB
13173 }
13174 }
13175 }
13176}
13177
13178/* Add all Ada exceptions defined locally and accessible from the given
13179 FRAME.
13180
13181 If PREG is not NULL, then this regexp_t object is used to
13182 perform the symbol name matching. Otherwise, no name-based
13183 filtering is performed.
13184
13185 EXCEPTIONS is a vector of exceptions to which matching exceptions
13186 gets pushed. */
13187
13188static void
2d7cc5c7
PA
13189ada_add_exceptions_from_frame (compiled_regex *preg,
13190 struct frame_info *frame,
ab816a27 13191 std::vector<ada_exc_info> *exceptions)
778865d3 13192{
3977b71f 13193 const struct block *block = get_frame_block (frame, 0);
778865d3
JB
13194
13195 while (block != 0)
13196 {
13197 struct block_iterator iter;
13198 struct symbol *sym;
13199
13200 ALL_BLOCK_SYMBOLS (block, iter, sym)
13201 {
13202 switch (SYMBOL_CLASS (sym))
13203 {
13204 case LOC_TYPEDEF:
13205 case LOC_BLOCK:
13206 case LOC_CONST:
13207 break;
13208 default:
13209 if (ada_is_exception_sym (sym))
13210 {
13211 struct ada_exc_info info = {SYMBOL_PRINT_NAME (sym),
13212 SYMBOL_VALUE_ADDRESS (sym)};
13213
ab816a27 13214 exceptions->push_back (info);
778865d3
JB
13215 }
13216 }
13217 }
13218 if (BLOCK_FUNCTION (block) != NULL)
13219 break;
13220 block = BLOCK_SUPERBLOCK (block);
13221 }
13222}
13223
14bc53a8
PA
13224/* Return true if NAME matches PREG or if PREG is NULL. */
13225
13226static bool
2d7cc5c7 13227name_matches_regex (const char *name, compiled_regex *preg)
14bc53a8
PA
13228{
13229 return (preg == NULL
2d7cc5c7 13230 || preg->exec (ada_decode (name), 0, NULL, 0) == 0);
14bc53a8
PA
13231}
13232
778865d3
JB
13233/* Add all exceptions defined globally whose name name match
13234 a regular expression, excluding standard exceptions.
13235
13236 The reason we exclude standard exceptions is that they need
13237 to be handled separately: Standard exceptions are defined inside
13238 a runtime unit which is normally not compiled with debugging info,
13239 and thus usually do not show up in our symbol search. However,
13240 if the unit was in fact built with debugging info, we need to
13241 exclude them because they would duplicate the entry we found
13242 during the special loop that specifically searches for those
13243 standard exceptions.
13244
13245 If PREG is not NULL, then this regexp_t object is used to
13246 perform the symbol name matching. Otherwise, no name-based
13247 filtering is performed.
13248
13249 EXCEPTIONS is a vector of exceptions to which matching exceptions
13250 gets pushed. */
13251
13252static void
2d7cc5c7 13253ada_add_global_exceptions (compiled_regex *preg,
ab816a27 13254 std::vector<ada_exc_info> *exceptions)
778865d3
JB
13255{
13256 struct objfile *objfile;
43f3e411 13257 struct compunit_symtab *s;
778865d3 13258
14bc53a8
PA
13259 /* In Ada, the symbol "search name" is a linkage name, whereas the
13260 regular expression used to do the matching refers to the natural
13261 name. So match against the decoded name. */
13262 expand_symtabs_matching (NULL,
13263 [&] (const char *search_name)
13264 {
13265 const char *decoded = ada_decode (search_name);
13266 return name_matches_regex (decoded, preg);
13267 },
13268 NULL,
13269 VARIABLES_DOMAIN);
778865d3 13270
43f3e411 13271 ALL_COMPUNITS (objfile, s)
778865d3 13272 {
43f3e411 13273 const struct blockvector *bv = COMPUNIT_BLOCKVECTOR (s);
778865d3
JB
13274 int i;
13275
13276 for (i = GLOBAL_BLOCK; i <= STATIC_BLOCK; i++)
13277 {
13278 struct block *b = BLOCKVECTOR_BLOCK (bv, i);
13279 struct block_iterator iter;
13280 struct symbol *sym;
13281
13282 ALL_BLOCK_SYMBOLS (b, iter, sym)
13283 if (ada_is_non_standard_exception_sym (sym)
14bc53a8 13284 && name_matches_regex (SYMBOL_NATURAL_NAME (sym), preg))
778865d3
JB
13285 {
13286 struct ada_exc_info info
13287 = {SYMBOL_PRINT_NAME (sym), SYMBOL_VALUE_ADDRESS (sym)};
13288
ab816a27 13289 exceptions->push_back (info);
778865d3
JB
13290 }
13291 }
13292 }
13293}
13294
13295/* Implements ada_exceptions_list with the regular expression passed
13296 as a regex_t, rather than a string.
13297
13298 If not NULL, PREG is used to filter out exceptions whose names
13299 do not match. Otherwise, all exceptions are listed. */
13300
ab816a27 13301static std::vector<ada_exc_info>
2d7cc5c7 13302ada_exceptions_list_1 (compiled_regex *preg)
778865d3 13303{
ab816a27 13304 std::vector<ada_exc_info> result;
778865d3
JB
13305 int prev_len;
13306
13307 /* First, list the known standard exceptions. These exceptions
13308 need to be handled separately, as they are usually defined in
13309 runtime units that have been compiled without debugging info. */
13310
13311 ada_add_standard_exceptions (preg, &result);
13312
13313 /* Next, find all exceptions whose scope is local and accessible
13314 from the currently selected frame. */
13315
13316 if (has_stack_frames ())
13317 {
ab816a27 13318 prev_len = result.size ();
778865d3
JB
13319 ada_add_exceptions_from_frame (preg, get_selected_frame (NULL),
13320 &result);
ab816a27 13321 if (result.size () > prev_len)
778865d3
JB
13322 sort_remove_dups_ada_exceptions_list (&result, prev_len);
13323 }
13324
13325 /* Add all exceptions whose scope is global. */
13326
ab816a27 13327 prev_len = result.size ();
778865d3 13328 ada_add_global_exceptions (preg, &result);
ab816a27 13329 if (result.size () > prev_len)
778865d3
JB
13330 sort_remove_dups_ada_exceptions_list (&result, prev_len);
13331
778865d3
JB
13332 return result;
13333}
13334
13335/* Return a vector of ada_exc_info.
13336
13337 If REGEXP is NULL, all exceptions are included in the result.
13338 Otherwise, it should contain a valid regular expression,
13339 and only the exceptions whose names match that regular expression
13340 are included in the result.
13341
13342 The exceptions are sorted in the following order:
13343 - Standard exceptions (defined by the Ada language), in
13344 alphabetical order;
13345 - Exceptions only visible from the current frame, in
13346 alphabetical order;
13347 - Exceptions whose scope is global, in alphabetical order. */
13348
ab816a27 13349std::vector<ada_exc_info>
778865d3
JB
13350ada_exceptions_list (const char *regexp)
13351{
2d7cc5c7
PA
13352 if (regexp == NULL)
13353 return ada_exceptions_list_1 (NULL);
778865d3 13354
2d7cc5c7
PA
13355 compiled_regex reg (regexp, REG_NOSUB, _("invalid regular expression"));
13356 return ada_exceptions_list_1 (&reg);
778865d3
JB
13357}
13358
13359/* Implement the "info exceptions" command. */
13360
13361static void
1d12d88f 13362info_exceptions_command (const char *regexp, int from_tty)
778865d3 13363{
778865d3 13364 struct gdbarch *gdbarch = get_current_arch ();
778865d3 13365
ab816a27 13366 std::vector<ada_exc_info> exceptions = ada_exceptions_list (regexp);
778865d3
JB
13367
13368 if (regexp != NULL)
13369 printf_filtered
13370 (_("All Ada exceptions matching regular expression \"%s\":\n"), regexp);
13371 else
13372 printf_filtered (_("All defined Ada exceptions:\n"));
13373
ab816a27
TT
13374 for (const ada_exc_info &info : exceptions)
13375 printf_filtered ("%s: %s\n", info.name, paddress (gdbarch, info.addr));
778865d3
JB
13376}
13377
4c4b4cd2
PH
13378 /* Operators */
13379/* Information about operators given special treatment in functions
13380 below. */
13381/* Format: OP_DEFN (<operator>, <operator length>, <# args>, <binop>). */
13382
13383#define ADA_OPERATORS \
13384 OP_DEFN (OP_VAR_VALUE, 4, 0, 0) \
13385 OP_DEFN (BINOP_IN_BOUNDS, 3, 2, 0) \
13386 OP_DEFN (TERNOP_IN_RANGE, 1, 3, 0) \
13387 OP_DEFN (OP_ATR_FIRST, 1, 2, 0) \
13388 OP_DEFN (OP_ATR_LAST, 1, 2, 0) \
13389 OP_DEFN (OP_ATR_LENGTH, 1, 2, 0) \
13390 OP_DEFN (OP_ATR_IMAGE, 1, 2, 0) \
13391 OP_DEFN (OP_ATR_MAX, 1, 3, 0) \
13392 OP_DEFN (OP_ATR_MIN, 1, 3, 0) \
13393 OP_DEFN (OP_ATR_MODULUS, 1, 1, 0) \
13394 OP_DEFN (OP_ATR_POS, 1, 2, 0) \
13395 OP_DEFN (OP_ATR_SIZE, 1, 1, 0) \
13396 OP_DEFN (OP_ATR_TAG, 1, 1, 0) \
13397 OP_DEFN (OP_ATR_VAL, 1, 2, 0) \
13398 OP_DEFN (UNOP_QUAL, 3, 1, 0) \
52ce6436
PH
13399 OP_DEFN (UNOP_IN_RANGE, 3, 1, 0) \
13400 OP_DEFN (OP_OTHERS, 1, 1, 0) \
13401 OP_DEFN (OP_POSITIONAL, 3, 1, 0) \
13402 OP_DEFN (OP_DISCRETE_RANGE, 1, 2, 0)
4c4b4cd2
PH
13403
13404static void
554794dc
SDJ
13405ada_operator_length (const struct expression *exp, int pc, int *oplenp,
13406 int *argsp)
4c4b4cd2
PH
13407{
13408 switch (exp->elts[pc - 1].opcode)
13409 {
76a01679 13410 default:
4c4b4cd2
PH
13411 operator_length_standard (exp, pc, oplenp, argsp);
13412 break;
13413
13414#define OP_DEFN(op, len, args, binop) \
13415 case op: *oplenp = len; *argsp = args; break;
13416 ADA_OPERATORS;
13417#undef OP_DEFN
52ce6436
PH
13418
13419 case OP_AGGREGATE:
13420 *oplenp = 3;
13421 *argsp = longest_to_int (exp->elts[pc - 2].longconst);
13422 break;
13423
13424 case OP_CHOICES:
13425 *oplenp = 3;
13426 *argsp = longest_to_int (exp->elts[pc - 2].longconst) + 1;
13427 break;
4c4b4cd2
PH
13428 }
13429}
13430
c0201579
JK
13431/* Implementation of the exp_descriptor method operator_check. */
13432
13433static int
13434ada_operator_check (struct expression *exp, int pos,
13435 int (*objfile_func) (struct objfile *objfile, void *data),
13436 void *data)
13437{
13438 const union exp_element *const elts = exp->elts;
13439 struct type *type = NULL;
13440
13441 switch (elts[pos].opcode)
13442 {
13443 case UNOP_IN_RANGE:
13444 case UNOP_QUAL:
13445 type = elts[pos + 1].type;
13446 break;
13447
13448 default:
13449 return operator_check_standard (exp, pos, objfile_func, data);
13450 }
13451
13452 /* Invoke callbacks for TYPE and OBJFILE if they were set as non-NULL. */
13453
13454 if (type && TYPE_OBJFILE (type)
13455 && (*objfile_func) (TYPE_OBJFILE (type), data))
13456 return 1;
13457
13458 return 0;
13459}
13460
a121b7c1 13461static const char *
4c4b4cd2
PH
13462ada_op_name (enum exp_opcode opcode)
13463{
13464 switch (opcode)
13465 {
76a01679 13466 default:
4c4b4cd2 13467 return op_name_standard (opcode);
52ce6436 13468
4c4b4cd2
PH
13469#define OP_DEFN(op, len, args, binop) case op: return #op;
13470 ADA_OPERATORS;
13471#undef OP_DEFN
52ce6436
PH
13472
13473 case OP_AGGREGATE:
13474 return "OP_AGGREGATE";
13475 case OP_CHOICES:
13476 return "OP_CHOICES";
13477 case OP_NAME:
13478 return "OP_NAME";
4c4b4cd2
PH
13479 }
13480}
13481
13482/* As for operator_length, but assumes PC is pointing at the first
13483 element of the operator, and gives meaningful results only for the
52ce6436 13484 Ada-specific operators, returning 0 for *OPLENP and *ARGSP otherwise. */
4c4b4cd2
PH
13485
13486static void
76a01679
JB
13487ada_forward_operator_length (struct expression *exp, int pc,
13488 int *oplenp, int *argsp)
4c4b4cd2 13489{
76a01679 13490 switch (exp->elts[pc].opcode)
4c4b4cd2
PH
13491 {
13492 default:
13493 *oplenp = *argsp = 0;
13494 break;
52ce6436 13495
4c4b4cd2
PH
13496#define OP_DEFN(op, len, args, binop) \
13497 case op: *oplenp = len; *argsp = args; break;
13498 ADA_OPERATORS;
13499#undef OP_DEFN
52ce6436
PH
13500
13501 case OP_AGGREGATE:
13502 *oplenp = 3;
13503 *argsp = longest_to_int (exp->elts[pc + 1].longconst);
13504 break;
13505
13506 case OP_CHOICES:
13507 *oplenp = 3;
13508 *argsp = longest_to_int (exp->elts[pc + 1].longconst) + 1;
13509 break;
13510
13511 case OP_STRING:
13512 case OP_NAME:
13513 {
13514 int len = longest_to_int (exp->elts[pc + 1].longconst);
5b4ee69b 13515
52ce6436
PH
13516 *oplenp = 4 + BYTES_TO_EXP_ELEM (len + 1);
13517 *argsp = 0;
13518 break;
13519 }
4c4b4cd2
PH
13520 }
13521}
13522
13523static int
13524ada_dump_subexp_body (struct expression *exp, struct ui_file *stream, int elt)
13525{
13526 enum exp_opcode op = exp->elts[elt].opcode;
13527 int oplen, nargs;
13528 int pc = elt;
13529 int i;
76a01679 13530
4c4b4cd2
PH
13531 ada_forward_operator_length (exp, elt, &oplen, &nargs);
13532
76a01679 13533 switch (op)
4c4b4cd2 13534 {
76a01679 13535 /* Ada attributes ('Foo). */
4c4b4cd2
PH
13536 case OP_ATR_FIRST:
13537 case OP_ATR_LAST:
13538 case OP_ATR_LENGTH:
13539 case OP_ATR_IMAGE:
13540 case OP_ATR_MAX:
13541 case OP_ATR_MIN:
13542 case OP_ATR_MODULUS:
13543 case OP_ATR_POS:
13544 case OP_ATR_SIZE:
13545 case OP_ATR_TAG:
13546 case OP_ATR_VAL:
13547 break;
13548
13549 case UNOP_IN_RANGE:
13550 case UNOP_QUAL:
323e0a4a
AC
13551 /* XXX: gdb_sprint_host_address, type_sprint */
13552 fprintf_filtered (stream, _("Type @"));
4c4b4cd2
PH
13553 gdb_print_host_address (exp->elts[pc + 1].type, stream);
13554 fprintf_filtered (stream, " (");
13555 type_print (exp->elts[pc + 1].type, NULL, stream, 0);
13556 fprintf_filtered (stream, ")");
13557 break;
13558 case BINOP_IN_BOUNDS:
52ce6436
PH
13559 fprintf_filtered (stream, " (%d)",
13560 longest_to_int (exp->elts[pc + 2].longconst));
4c4b4cd2
PH
13561 break;
13562 case TERNOP_IN_RANGE:
13563 break;
13564
52ce6436
PH
13565 case OP_AGGREGATE:
13566 case OP_OTHERS:
13567 case OP_DISCRETE_RANGE:
13568 case OP_POSITIONAL:
13569 case OP_CHOICES:
13570 break;
13571
13572 case OP_NAME:
13573 case OP_STRING:
13574 {
13575 char *name = &exp->elts[elt + 2].string;
13576 int len = longest_to_int (exp->elts[elt + 1].longconst);
5b4ee69b 13577
52ce6436
PH
13578 fprintf_filtered (stream, "Text: `%.*s'", len, name);
13579 break;
13580 }
13581
4c4b4cd2
PH
13582 default:
13583 return dump_subexp_body_standard (exp, stream, elt);
13584 }
13585
13586 elt += oplen;
13587 for (i = 0; i < nargs; i += 1)
13588 elt = dump_subexp (exp, stream, elt);
13589
13590 return elt;
13591}
13592
13593/* The Ada extension of print_subexp (q.v.). */
13594
76a01679
JB
13595static void
13596ada_print_subexp (struct expression *exp, int *pos,
13597 struct ui_file *stream, enum precedence prec)
4c4b4cd2 13598{
52ce6436 13599 int oplen, nargs, i;
4c4b4cd2
PH
13600 int pc = *pos;
13601 enum exp_opcode op = exp->elts[pc].opcode;
13602
13603 ada_forward_operator_length (exp, pc, &oplen, &nargs);
13604
52ce6436 13605 *pos += oplen;
4c4b4cd2
PH
13606 switch (op)
13607 {
13608 default:
52ce6436 13609 *pos -= oplen;
4c4b4cd2
PH
13610 print_subexp_standard (exp, pos, stream, prec);
13611 return;
13612
13613 case OP_VAR_VALUE:
4c4b4cd2
PH
13614 fputs_filtered (SYMBOL_NATURAL_NAME (exp->elts[pc + 2].symbol), stream);
13615 return;
13616
13617 case BINOP_IN_BOUNDS:
323e0a4a 13618 /* XXX: sprint_subexp */
4c4b4cd2 13619 print_subexp (exp, pos, stream, PREC_SUFFIX);
0b48a291 13620 fputs_filtered (" in ", stream);
4c4b4cd2 13621 print_subexp (exp, pos, stream, PREC_SUFFIX);
0b48a291 13622 fputs_filtered ("'range", stream);
4c4b4cd2 13623 if (exp->elts[pc + 1].longconst > 1)
76a01679
JB
13624 fprintf_filtered (stream, "(%ld)",
13625 (long) exp->elts[pc + 1].longconst);
4c4b4cd2
PH
13626 return;
13627
13628 case TERNOP_IN_RANGE:
4c4b4cd2 13629 if (prec >= PREC_EQUAL)
76a01679 13630 fputs_filtered ("(", stream);
323e0a4a 13631 /* XXX: sprint_subexp */
4c4b4cd2 13632 print_subexp (exp, pos, stream, PREC_SUFFIX);
0b48a291 13633 fputs_filtered (" in ", stream);
4c4b4cd2
PH
13634 print_subexp (exp, pos, stream, PREC_EQUAL);
13635 fputs_filtered (" .. ", stream);
13636 print_subexp (exp, pos, stream, PREC_EQUAL);
13637 if (prec >= PREC_EQUAL)
76a01679
JB
13638 fputs_filtered (")", stream);
13639 return;
4c4b4cd2
PH
13640
13641 case OP_ATR_FIRST:
13642 case OP_ATR_LAST:
13643 case OP_ATR_LENGTH:
13644 case OP_ATR_IMAGE:
13645 case OP_ATR_MAX:
13646 case OP_ATR_MIN:
13647 case OP_ATR_MODULUS:
13648 case OP_ATR_POS:
13649 case OP_ATR_SIZE:
13650 case OP_ATR_TAG:
13651 case OP_ATR_VAL:
4c4b4cd2 13652 if (exp->elts[*pos].opcode == OP_TYPE)
76a01679
JB
13653 {
13654 if (TYPE_CODE (exp->elts[*pos + 1].type) != TYPE_CODE_VOID)
79d43c61
TT
13655 LA_PRINT_TYPE (exp->elts[*pos + 1].type, "", stream, 0, 0,
13656 &type_print_raw_options);
76a01679
JB
13657 *pos += 3;
13658 }
4c4b4cd2 13659 else
76a01679 13660 print_subexp (exp, pos, stream, PREC_SUFFIX);
4c4b4cd2
PH
13661 fprintf_filtered (stream, "'%s", ada_attribute_name (op));
13662 if (nargs > 1)
76a01679
JB
13663 {
13664 int tem;
5b4ee69b 13665
76a01679
JB
13666 for (tem = 1; tem < nargs; tem += 1)
13667 {
13668 fputs_filtered ((tem == 1) ? " (" : ", ", stream);
13669 print_subexp (exp, pos, stream, PREC_ABOVE_COMMA);
13670 }
13671 fputs_filtered (")", stream);
13672 }
4c4b4cd2 13673 return;
14f9c5c9 13674
4c4b4cd2 13675 case UNOP_QUAL:
4c4b4cd2
PH
13676 type_print (exp->elts[pc + 1].type, "", stream, 0);
13677 fputs_filtered ("'(", stream);
13678 print_subexp (exp, pos, stream, PREC_PREFIX);
13679 fputs_filtered (")", stream);
13680 return;
14f9c5c9 13681
4c4b4cd2 13682 case UNOP_IN_RANGE:
323e0a4a 13683 /* XXX: sprint_subexp */
4c4b4cd2 13684 print_subexp (exp, pos, stream, PREC_SUFFIX);
0b48a291 13685 fputs_filtered (" in ", stream);
79d43c61
TT
13686 LA_PRINT_TYPE (exp->elts[pc + 1].type, "", stream, 1, 0,
13687 &type_print_raw_options);
4c4b4cd2 13688 return;
52ce6436
PH
13689
13690 case OP_DISCRETE_RANGE:
13691 print_subexp (exp, pos, stream, PREC_SUFFIX);
13692 fputs_filtered ("..", stream);
13693 print_subexp (exp, pos, stream, PREC_SUFFIX);
13694 return;
13695
13696 case OP_OTHERS:
13697 fputs_filtered ("others => ", stream);
13698 print_subexp (exp, pos, stream, PREC_SUFFIX);
13699 return;
13700
13701 case OP_CHOICES:
13702 for (i = 0; i < nargs-1; i += 1)
13703 {
13704 if (i > 0)
13705 fputs_filtered ("|", stream);
13706 print_subexp (exp, pos, stream, PREC_SUFFIX);
13707 }
13708 fputs_filtered (" => ", stream);
13709 print_subexp (exp, pos, stream, PREC_SUFFIX);
13710 return;
13711
13712 case OP_POSITIONAL:
13713 print_subexp (exp, pos, stream, PREC_SUFFIX);
13714 return;
13715
13716 case OP_AGGREGATE:
13717 fputs_filtered ("(", stream);
13718 for (i = 0; i < nargs; i += 1)
13719 {
13720 if (i > 0)
13721 fputs_filtered (", ", stream);
13722 print_subexp (exp, pos, stream, PREC_SUFFIX);
13723 }
13724 fputs_filtered (")", stream);
13725 return;
4c4b4cd2
PH
13726 }
13727}
14f9c5c9
AS
13728
13729/* Table mapping opcodes into strings for printing operators
13730 and precedences of the operators. */
13731
d2e4a39e
AS
13732static const struct op_print ada_op_print_tab[] = {
13733 {":=", BINOP_ASSIGN, PREC_ASSIGN, 1},
13734 {"or else", BINOP_LOGICAL_OR, PREC_LOGICAL_OR, 0},
13735 {"and then", BINOP_LOGICAL_AND, PREC_LOGICAL_AND, 0},
13736 {"or", BINOP_BITWISE_IOR, PREC_BITWISE_IOR, 0},
13737 {"xor", BINOP_BITWISE_XOR, PREC_BITWISE_XOR, 0},
13738 {"and", BINOP_BITWISE_AND, PREC_BITWISE_AND, 0},
13739 {"=", BINOP_EQUAL, PREC_EQUAL, 0},
13740 {"/=", BINOP_NOTEQUAL, PREC_EQUAL, 0},
13741 {"<=", BINOP_LEQ, PREC_ORDER, 0},
13742 {">=", BINOP_GEQ, PREC_ORDER, 0},
13743 {">", BINOP_GTR, PREC_ORDER, 0},
13744 {"<", BINOP_LESS, PREC_ORDER, 0},
13745 {">>", BINOP_RSH, PREC_SHIFT, 0},
13746 {"<<", BINOP_LSH, PREC_SHIFT, 0},
13747 {"+", BINOP_ADD, PREC_ADD, 0},
13748 {"-", BINOP_SUB, PREC_ADD, 0},
13749 {"&", BINOP_CONCAT, PREC_ADD, 0},
13750 {"*", BINOP_MUL, PREC_MUL, 0},
13751 {"/", BINOP_DIV, PREC_MUL, 0},
13752 {"rem", BINOP_REM, PREC_MUL, 0},
13753 {"mod", BINOP_MOD, PREC_MUL, 0},
13754 {"**", BINOP_EXP, PREC_REPEAT, 0},
13755 {"@", BINOP_REPEAT, PREC_REPEAT, 0},
13756 {"-", UNOP_NEG, PREC_PREFIX, 0},
13757 {"+", UNOP_PLUS, PREC_PREFIX, 0},
13758 {"not ", UNOP_LOGICAL_NOT, PREC_PREFIX, 0},
13759 {"not ", UNOP_COMPLEMENT, PREC_PREFIX, 0},
13760 {"abs ", UNOP_ABS, PREC_PREFIX, 0},
4c4b4cd2
PH
13761 {".all", UNOP_IND, PREC_SUFFIX, 1},
13762 {"'access", UNOP_ADDR, PREC_SUFFIX, 1},
13763 {"'size", OP_ATR_SIZE, PREC_SUFFIX, 1},
f486487f 13764 {NULL, OP_NULL, PREC_SUFFIX, 0}
14f9c5c9
AS
13765};
13766\f
72d5681a
PH
13767enum ada_primitive_types {
13768 ada_primitive_type_int,
13769 ada_primitive_type_long,
13770 ada_primitive_type_short,
13771 ada_primitive_type_char,
13772 ada_primitive_type_float,
13773 ada_primitive_type_double,
13774 ada_primitive_type_void,
13775 ada_primitive_type_long_long,
13776 ada_primitive_type_long_double,
13777 ada_primitive_type_natural,
13778 ada_primitive_type_positive,
13779 ada_primitive_type_system_address,
13780 nr_ada_primitive_types
13781};
6c038f32
PH
13782
13783static void
d4a9a881 13784ada_language_arch_info (struct gdbarch *gdbarch,
72d5681a
PH
13785 struct language_arch_info *lai)
13786{
d4a9a881 13787 const struct builtin_type *builtin = builtin_type (gdbarch);
5b4ee69b 13788
72d5681a 13789 lai->primitive_type_vector
d4a9a881 13790 = GDBARCH_OBSTACK_CALLOC (gdbarch, nr_ada_primitive_types + 1,
72d5681a 13791 struct type *);
e9bb382b
UW
13792
13793 lai->primitive_type_vector [ada_primitive_type_int]
13794 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
13795 0, "integer");
13796 lai->primitive_type_vector [ada_primitive_type_long]
13797 = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
13798 0, "long_integer");
13799 lai->primitive_type_vector [ada_primitive_type_short]
13800 = arch_integer_type (gdbarch, gdbarch_short_bit (gdbarch),
13801 0, "short_integer");
13802 lai->string_char_type
13803 = lai->primitive_type_vector [ada_primitive_type_char]
cd7c1778 13804 = arch_character_type (gdbarch, TARGET_CHAR_BIT, 0, "character");
e9bb382b
UW
13805 lai->primitive_type_vector [ada_primitive_type_float]
13806 = arch_float_type (gdbarch, gdbarch_float_bit (gdbarch),
49f190bc 13807 "float", gdbarch_float_format (gdbarch));
e9bb382b
UW
13808 lai->primitive_type_vector [ada_primitive_type_double]
13809 = arch_float_type (gdbarch, gdbarch_double_bit (gdbarch),
49f190bc 13810 "long_float", gdbarch_double_format (gdbarch));
e9bb382b
UW
13811 lai->primitive_type_vector [ada_primitive_type_long_long]
13812 = arch_integer_type (gdbarch, gdbarch_long_long_bit (gdbarch),
13813 0, "long_long_integer");
13814 lai->primitive_type_vector [ada_primitive_type_long_double]
5f3bceb6 13815 = arch_float_type (gdbarch, gdbarch_long_double_bit (gdbarch),
49f190bc 13816 "long_long_float", gdbarch_long_double_format (gdbarch));
e9bb382b
UW
13817 lai->primitive_type_vector [ada_primitive_type_natural]
13818 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
13819 0, "natural");
13820 lai->primitive_type_vector [ada_primitive_type_positive]
13821 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
13822 0, "positive");
13823 lai->primitive_type_vector [ada_primitive_type_void]
13824 = builtin->builtin_void;
13825
13826 lai->primitive_type_vector [ada_primitive_type_system_address]
77b7c781
UW
13827 = lookup_pointer_type (arch_type (gdbarch, TYPE_CODE_VOID, TARGET_CHAR_BIT,
13828 "void"));
72d5681a
PH
13829 TYPE_NAME (lai->primitive_type_vector [ada_primitive_type_system_address])
13830 = "system__address";
fbb06eb1 13831
47e729a8 13832 lai->bool_type_symbol = NULL;
fbb06eb1 13833 lai->bool_type_default = builtin->builtin_bool;
6c038f32 13834}
6c038f32
PH
13835\f
13836 /* Language vector */
13837
13838/* Not really used, but needed in the ada_language_defn. */
13839
13840static void
6c7a06a3 13841emit_char (int c, struct type *type, struct ui_file *stream, int quoter)
6c038f32 13842{
6c7a06a3 13843 ada_emit_char (c, type, stream, quoter, 1);
6c038f32
PH
13844}
13845
13846static int
410a0ff2 13847parse (struct parser_state *ps)
6c038f32
PH
13848{
13849 warnings_issued = 0;
410a0ff2 13850 return ada_parse (ps);
6c038f32
PH
13851}
13852
13853static const struct exp_descriptor ada_exp_descriptor = {
13854 ada_print_subexp,
13855 ada_operator_length,
c0201579 13856 ada_operator_check,
6c038f32
PH
13857 ada_op_name,
13858 ada_dump_subexp_body,
13859 ada_evaluate_subexp
13860};
13861
1a119f36 13862/* Implement the "la_get_symbol_name_cmp" language_defn method
74ccd7f5
JB
13863 for Ada. */
13864
1a119f36
JB
13865static symbol_name_cmp_ftype
13866ada_get_symbol_name_cmp (const char *lookup_name)
74ccd7f5
JB
13867{
13868 if (should_use_wild_match (lookup_name))
13869 return wild_match;
13870 else
13871 return compare_names;
13872}
13873
a5ee536b
JB
13874/* Implement the "la_read_var_value" language_defn method for Ada. */
13875
13876static struct value *
63e43d3a
PMR
13877ada_read_var_value (struct symbol *var, const struct block *var_block,
13878 struct frame_info *frame)
a5ee536b 13879{
3977b71f 13880 const struct block *frame_block = NULL;
a5ee536b
JB
13881 struct symbol *renaming_sym = NULL;
13882
13883 /* The only case where default_read_var_value is not sufficient
13884 is when VAR is a renaming... */
13885 if (frame)
13886 frame_block = get_frame_block (frame, NULL);
13887 if (frame_block)
13888 renaming_sym = ada_find_renaming_symbol (var, frame_block);
13889 if (renaming_sym != NULL)
13890 return ada_read_renaming_var_value (renaming_sym, frame_block);
13891
13892 /* This is a typical case where we expect the default_read_var_value
13893 function to work. */
63e43d3a 13894 return default_read_var_value (var, var_block, frame);
a5ee536b
JB
13895}
13896
56618e20
TT
13897static const char *ada_extensions[] =
13898{
13899 ".adb", ".ads", ".a", ".ada", ".dg", NULL
13900};
13901
47e77640 13902extern const struct language_defn ada_language_defn = {
6c038f32 13903 "ada", /* Language name */
6abde28f 13904 "Ada",
6c038f32 13905 language_ada,
6c038f32 13906 range_check_off,
6c038f32
PH
13907 case_sensitive_on, /* Yes, Ada is case-insensitive, but
13908 that's not quite what this means. */
6c038f32 13909 array_row_major,
9a044a89 13910 macro_expansion_no,
56618e20 13911 ada_extensions,
6c038f32
PH
13912 &ada_exp_descriptor,
13913 parse,
b3f11165 13914 ada_yyerror,
6c038f32
PH
13915 resolve,
13916 ada_printchar, /* Print a character constant */
13917 ada_printstr, /* Function to print string constant */
13918 emit_char, /* Function to print single char (not used) */
6c038f32 13919 ada_print_type, /* Print a type using appropriate syntax */
be942545 13920 ada_print_typedef, /* Print a typedef using appropriate syntax */
6c038f32
PH
13921 ada_val_print, /* Print a value using appropriate syntax */
13922 ada_value_print, /* Print a top-level value */
a5ee536b 13923 ada_read_var_value, /* la_read_var_value */
6c038f32 13924 NULL, /* Language specific skip_trampoline */
2b2d9e11 13925 NULL, /* name_of_this */
6c038f32
PH
13926 ada_lookup_symbol_nonlocal, /* Looking up non-local symbols. */
13927 basic_lookup_transparent_type, /* lookup_transparent_type */
13928 ada_la_decode, /* Language specific symbol demangler */
8b302db8 13929 ada_sniff_from_mangled_name,
0963b4bd
MS
13930 NULL, /* Language specific
13931 class_name_from_physname */
6c038f32
PH
13932 ada_op_print_tab, /* expression operators for printing */
13933 0, /* c-style arrays */
13934 1, /* String lower bound */
6c038f32 13935 ada_get_gdb_completer_word_break_characters,
eb3ff9a5 13936 ada_collect_symbol_completion_matches,
72d5681a 13937 ada_language_arch_info,
e79af960 13938 ada_print_array_index,
41f1b697 13939 default_pass_by_reference,
ae6a3a4c 13940 c_get_string,
43cc5389 13941 c_watch_location_expression,
1a119f36 13942 ada_get_symbol_name_cmp, /* la_get_symbol_name_cmp */
f8eba3c6 13943 ada_iterate_over_symbols,
a53b64ea 13944 &ada_varobj_ops,
bb2ec1b3
TT
13945 NULL,
13946 NULL,
6c038f32
PH
13947 LANG_MAGIC
13948};
13949
5bf03f13
JB
13950/* Command-list for the "set/show ada" prefix command. */
13951static struct cmd_list_element *set_ada_list;
13952static struct cmd_list_element *show_ada_list;
13953
13954/* Implement the "set ada" prefix command. */
13955
13956static void
981a3fb3 13957set_ada_command (const char *arg, int from_tty)
5bf03f13
JB
13958{
13959 printf_unfiltered (_(\
13960"\"set ada\" must be followed by the name of a setting.\n"));
635c7e8a 13961 help_list (set_ada_list, "set ada ", all_commands, gdb_stdout);
5bf03f13
JB
13962}
13963
13964/* Implement the "show ada" prefix command. */
13965
13966static void
981a3fb3 13967show_ada_command (const char *args, int from_tty)
5bf03f13
JB
13968{
13969 cmd_show_list (show_ada_list, from_tty, "");
13970}
13971
2060206e
PA
13972static void
13973initialize_ada_catchpoint_ops (void)
13974{
13975 struct breakpoint_ops *ops;
13976
13977 initialize_breakpoint_ops ();
13978
13979 ops = &catch_exception_breakpoint_ops;
13980 *ops = bkpt_breakpoint_ops;
2060206e
PA
13981 ops->allocate_location = allocate_location_catch_exception;
13982 ops->re_set = re_set_catch_exception;
13983 ops->check_status = check_status_catch_exception;
13984 ops->print_it = print_it_catch_exception;
13985 ops->print_one = print_one_catch_exception;
13986 ops->print_mention = print_mention_catch_exception;
13987 ops->print_recreate = print_recreate_catch_exception;
13988
13989 ops = &catch_exception_unhandled_breakpoint_ops;
13990 *ops = bkpt_breakpoint_ops;
2060206e
PA
13991 ops->allocate_location = allocate_location_catch_exception_unhandled;
13992 ops->re_set = re_set_catch_exception_unhandled;
13993 ops->check_status = check_status_catch_exception_unhandled;
13994 ops->print_it = print_it_catch_exception_unhandled;
13995 ops->print_one = print_one_catch_exception_unhandled;
13996 ops->print_mention = print_mention_catch_exception_unhandled;
13997 ops->print_recreate = print_recreate_catch_exception_unhandled;
13998
13999 ops = &catch_assert_breakpoint_ops;
14000 *ops = bkpt_breakpoint_ops;
2060206e
PA
14001 ops->allocate_location = allocate_location_catch_assert;
14002 ops->re_set = re_set_catch_assert;
14003 ops->check_status = check_status_catch_assert;
14004 ops->print_it = print_it_catch_assert;
14005 ops->print_one = print_one_catch_assert;
14006 ops->print_mention = print_mention_catch_assert;
14007 ops->print_recreate = print_recreate_catch_assert;
14008}
14009
3d9434b5
JB
14010/* This module's 'new_objfile' observer. */
14011
14012static void
14013ada_new_objfile_observer (struct objfile *objfile)
14014{
14015 ada_clear_symbol_cache ();
14016}
14017
14018/* This module's 'free_objfile' observer. */
14019
14020static void
14021ada_free_objfile_observer (struct objfile *objfile)
14022{
14023 ada_clear_symbol_cache ();
14024}
14025
d2e4a39e 14026void
6c038f32 14027_initialize_ada_language (void)
14f9c5c9 14028{
2060206e
PA
14029 initialize_ada_catchpoint_ops ();
14030
5bf03f13
JB
14031 add_prefix_cmd ("ada", no_class, set_ada_command,
14032 _("Prefix command for changing Ada-specfic settings"),
14033 &set_ada_list, "set ada ", 0, &setlist);
14034
14035 add_prefix_cmd ("ada", no_class, show_ada_command,
14036 _("Generic command for showing Ada-specific settings."),
14037 &show_ada_list, "show ada ", 0, &showlist);
14038
14039 add_setshow_boolean_cmd ("trust-PAD-over-XVS", class_obscure,
14040 &trust_pad_over_xvs, _("\
14041Enable or disable an optimization trusting PAD types over XVS types"), _("\
14042Show whether an optimization trusting PAD types over XVS types is activated"),
14043 _("\
14044This is related to the encoding used by the GNAT compiler. The debugger\n\
14045should normally trust the contents of PAD types, but certain older versions\n\
14046of GNAT have a bug that sometimes causes the information in the PAD type\n\
14047to be incorrect. Turning this setting \"off\" allows the debugger to\n\
14048work around this bug. It is always safe to turn this option \"off\", but\n\
14049this incurs a slight performance penalty, so it is recommended to NOT change\n\
14050this option to \"off\" unless necessary."),
14051 NULL, NULL, &set_ada_list, &show_ada_list);
14052
d72413e6
PMR
14053 add_setshow_boolean_cmd ("print-signatures", class_vars,
14054 &print_signatures, _("\
14055Enable or disable the output of formal and return types for functions in the \
14056overloads selection menu"), _("\
14057Show whether the output of formal and return types for functions in the \
14058overloads selection menu is activated"),
14059 NULL, NULL, NULL, &set_ada_list, &show_ada_list);
14060
9ac4176b
PA
14061 add_catch_command ("exception", _("\
14062Catch Ada exceptions, when raised.\n\
14063With an argument, catch only exceptions with the given name."),
14064 catch_ada_exception_command,
14065 NULL,
14066 CATCH_PERMANENT,
14067 CATCH_TEMPORARY);
14068 add_catch_command ("assert", _("\
14069Catch failed Ada assertions, when raised.\n\
14070With an argument, catch only exceptions with the given name."),
14071 catch_assert_command,
14072 NULL,
14073 CATCH_PERMANENT,
14074 CATCH_TEMPORARY);
14075
6c038f32 14076 varsize_limit = 65536;
6c038f32 14077
778865d3
JB
14078 add_info ("exceptions", info_exceptions_command,
14079 _("\
14080List all Ada exception names.\n\
14081If a regular expression is passed as an argument, only those matching\n\
14082the regular expression are listed."));
14083
c6044dd1
JB
14084 add_prefix_cmd ("ada", class_maintenance, maint_set_ada_cmd,
14085 _("Set Ada maintenance-related variables."),
14086 &maint_set_ada_cmdlist, "maintenance set ada ",
14087 0/*allow-unknown*/, &maintenance_set_cmdlist);
14088
14089 add_prefix_cmd ("ada", class_maintenance, maint_show_ada_cmd,
14090 _("Show Ada maintenance-related variables"),
14091 &maint_show_ada_cmdlist, "maintenance show ada ",
14092 0/*allow-unknown*/, &maintenance_show_cmdlist);
14093
14094 add_setshow_boolean_cmd
14095 ("ignore-descriptive-types", class_maintenance,
14096 &ada_ignore_descriptive_types_p,
14097 _("Set whether descriptive types generated by GNAT should be ignored."),
14098 _("Show whether descriptive types generated by GNAT should be ignored."),
14099 _("\
14100When enabled, the debugger will stop using the DW_AT_GNAT_descriptive_type\n\
14101DWARF attribute."),
14102 NULL, NULL, &maint_set_ada_cmdlist, &maint_show_ada_cmdlist);
14103
6c038f32
PH
14104 obstack_init (&symbol_list_obstack);
14105
14106 decoded_names_store = htab_create_alloc
14107 (256, htab_hash_string, (int (*)(const void *, const void *)) streq,
14108 NULL, xcalloc, xfree);
6b69afc4 14109
3d9434b5
JB
14110 /* The ada-lang observers. */
14111 observer_attach_new_objfile (ada_new_objfile_observer);
14112 observer_attach_free_objfile (ada_free_objfile_observer);
e802dbe0 14113 observer_attach_inferior_exit (ada_inferior_exit);
ee01b665
JB
14114
14115 /* Setup various context-specific data. */
e802dbe0 14116 ada_inferior_data
8e260fc0 14117 = register_inferior_data_with_cleanup (NULL, ada_inferior_data_cleanup);
ee01b665
JB
14118 ada_pspace_data_handle
14119 = register_program_space_data_with_cleanup (NULL, ada_pspace_data_cleanup);
14f9c5c9 14120}