]>
Commit | Line | Data |
---|---|---|
6e681866 | 1 | /* Ada language support routines for GDB, the GNU debugger. |
10a2c479 | 2 | |
28e7fd62 | 3 | Copyright (C) 1992-2013 Free Software Foundation, Inc. |
14f9c5c9 | 4 | |
a9762ec7 | 5 | This file is part of GDB. |
14f9c5c9 | 6 | |
a9762ec7 JB |
7 | This program is free software; you can redistribute it and/or modify |
8 | it under the terms of the GNU General Public License as published by | |
9 | the Free Software Foundation; either version 3 of the License, or | |
10 | (at your option) any later version. | |
14f9c5c9 | 11 | |
a9762ec7 JB |
12 | This program is distributed in the hope that it will be useful, |
13 | but WITHOUT ANY WARRANTY; without even the implied warranty of | |
14 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
15 | GNU General Public License for more details. | |
14f9c5c9 | 16 | |
a9762ec7 JB |
17 | You should have received a copy of the GNU General Public License |
18 | along with this program. If not, see <http://www.gnu.org/licenses/>. */ | |
14f9c5c9 | 19 | |
96d887e8 | 20 | |
4c4b4cd2 | 21 | #include "defs.h" |
14f9c5c9 | 22 | #include <stdio.h> |
0c30c098 | 23 | #include "gdb_string.h" |
14f9c5c9 AS |
24 | #include <ctype.h> |
25 | #include <stdarg.h> | |
26 | #include "demangle.h" | |
4c4b4cd2 PH |
27 | #include "gdb_regex.h" |
28 | #include "frame.h" | |
14f9c5c9 AS |
29 | #include "symtab.h" |
30 | #include "gdbtypes.h" | |
31 | #include "gdbcmd.h" | |
32 | #include "expression.h" | |
33 | #include "parser-defs.h" | |
34 | #include "language.h" | |
35 | #include "c-lang.h" | |
36 | #include "inferior.h" | |
37 | #include "symfile.h" | |
38 | #include "objfiles.h" | |
39 | #include "breakpoint.h" | |
40 | #include "gdbcore.h" | |
4c4b4cd2 PH |
41 | #include "hashtab.h" |
42 | #include "gdb_obstack.h" | |
14f9c5c9 | 43 | #include "ada-lang.h" |
4c4b4cd2 PH |
44 | #include "completer.h" |
45 | #include "gdb_stat.h" | |
46 | #ifdef UI_OUT | |
14f9c5c9 | 47 | #include "ui-out.h" |
4c4b4cd2 | 48 | #endif |
fe898f56 | 49 | #include "block.h" |
04714b91 | 50 | #include "infcall.h" |
de4f826b | 51 | #include "dictionary.h" |
60250e8b | 52 | #include "exceptions.h" |
f7f9143b JB |
53 | #include "annotate.h" |
54 | #include "valprint.h" | |
9bbc9174 | 55 | #include "source.h" |
0259addd | 56 | #include "observer.h" |
2ba95b9b | 57 | #include "vec.h" |
692465f1 | 58 | #include "stack.h" |
fa864999 | 59 | #include "gdb_vecs.h" |
79d43c61 | 60 | #include "typeprint.h" |
14f9c5c9 | 61 | |
ccefe4c4 | 62 | #include "psymtab.h" |
40bc484c | 63 | #include "value.h" |
956a9fb9 | 64 | #include "mi/mi-common.h" |
9ac4176b | 65 | #include "arch-utils.h" |
28010a5d | 66 | #include "exceptions.h" |
0fcd72ba | 67 | #include "cli/cli-utils.h" |
ccefe4c4 | 68 | |
4c4b4cd2 | 69 | /* Define whether or not the C operator '/' truncates towards zero for |
0963b4bd | 70 | differently signed operands (truncation direction is undefined in C). |
4c4b4cd2 PH |
71 | Copied from valarith.c. */ |
72 | ||
73 | #ifndef TRUNCATION_TOWARDS_ZERO | |
74 | #define TRUNCATION_TOWARDS_ZERO ((-5 / 2) == -2) | |
75 | #endif | |
76 | ||
d2e4a39e | 77 | static struct type *desc_base_type (struct type *); |
14f9c5c9 | 78 | |
d2e4a39e | 79 | static struct type *desc_bounds_type (struct type *); |
14f9c5c9 | 80 | |
d2e4a39e | 81 | static struct value *desc_bounds (struct value *); |
14f9c5c9 | 82 | |
d2e4a39e | 83 | static int fat_pntr_bounds_bitpos (struct type *); |
14f9c5c9 | 84 | |
d2e4a39e | 85 | static int fat_pntr_bounds_bitsize (struct type *); |
14f9c5c9 | 86 | |
556bdfd4 | 87 | static struct type *desc_data_target_type (struct type *); |
14f9c5c9 | 88 | |
d2e4a39e | 89 | static struct value *desc_data (struct value *); |
14f9c5c9 | 90 | |
d2e4a39e | 91 | static int fat_pntr_data_bitpos (struct type *); |
14f9c5c9 | 92 | |
d2e4a39e | 93 | static int fat_pntr_data_bitsize (struct type *); |
14f9c5c9 | 94 | |
d2e4a39e | 95 | static struct value *desc_one_bound (struct value *, int, int); |
14f9c5c9 | 96 | |
d2e4a39e | 97 | static int desc_bound_bitpos (struct type *, int, int); |
14f9c5c9 | 98 | |
d2e4a39e | 99 | static int desc_bound_bitsize (struct type *, int, int); |
14f9c5c9 | 100 | |
d2e4a39e | 101 | static struct type *desc_index_type (struct type *, int); |
14f9c5c9 | 102 | |
d2e4a39e | 103 | static int desc_arity (struct type *); |
14f9c5c9 | 104 | |
d2e4a39e | 105 | static int ada_type_match (struct type *, struct type *, int); |
14f9c5c9 | 106 | |
d2e4a39e | 107 | static int ada_args_match (struct symbol *, struct value **, int); |
14f9c5c9 | 108 | |
40658b94 PH |
109 | static int full_match (const char *, const char *); |
110 | ||
40bc484c | 111 | static struct value *make_array_descriptor (struct type *, struct value *); |
14f9c5c9 | 112 | |
4c4b4cd2 | 113 | static void ada_add_block_symbols (struct obstack *, |
76a01679 | 114 | struct block *, const char *, |
2570f2b7 | 115 | domain_enum, struct objfile *, int); |
14f9c5c9 | 116 | |
4c4b4cd2 | 117 | static int is_nonfunction (struct ada_symbol_info *, int); |
14f9c5c9 | 118 | |
76a01679 | 119 | static void add_defn_to_vec (struct obstack *, struct symbol *, |
2570f2b7 | 120 | struct block *); |
14f9c5c9 | 121 | |
4c4b4cd2 PH |
122 | static int num_defns_collected (struct obstack *); |
123 | ||
124 | static struct ada_symbol_info *defns_collected (struct obstack *, int); | |
14f9c5c9 | 125 | |
4c4b4cd2 | 126 | static struct value *resolve_subexp (struct expression **, int *, int, |
76a01679 | 127 | struct type *); |
14f9c5c9 | 128 | |
d2e4a39e | 129 | static void replace_operator_with_call (struct expression **, int, int, int, |
270140bd | 130 | struct symbol *, const struct block *); |
14f9c5c9 | 131 | |
d2e4a39e | 132 | static int possible_user_operator_p (enum exp_opcode, struct value **); |
14f9c5c9 | 133 | |
4c4b4cd2 PH |
134 | static char *ada_op_name (enum exp_opcode); |
135 | ||
136 | static const char *ada_decoded_op_name (enum exp_opcode); | |
14f9c5c9 | 137 | |
d2e4a39e | 138 | static int numeric_type_p (struct type *); |
14f9c5c9 | 139 | |
d2e4a39e | 140 | static int integer_type_p (struct type *); |
14f9c5c9 | 141 | |
d2e4a39e | 142 | static int scalar_type_p (struct type *); |
14f9c5c9 | 143 | |
d2e4a39e | 144 | static int discrete_type_p (struct type *); |
14f9c5c9 | 145 | |
aeb5907d JB |
146 | static enum ada_renaming_category parse_old_style_renaming (struct type *, |
147 | const char **, | |
148 | int *, | |
149 | const char **); | |
150 | ||
151 | static struct symbol *find_old_style_renaming_symbol (const char *, | |
270140bd | 152 | const struct block *); |
aeb5907d | 153 | |
4c4b4cd2 | 154 | static struct type *ada_lookup_struct_elt_type (struct type *, char *, |
76a01679 | 155 | int, int, int *); |
4c4b4cd2 | 156 | |
d2e4a39e | 157 | static struct value *evaluate_subexp_type (struct expression *, int *); |
14f9c5c9 | 158 | |
b4ba55a1 JB |
159 | static struct type *ada_find_parallel_type_with_name (struct type *, |
160 | const char *); | |
161 | ||
d2e4a39e | 162 | static int is_dynamic_field (struct type *, int); |
14f9c5c9 | 163 | |
10a2c479 | 164 | static struct type *to_fixed_variant_branch_type (struct type *, |
fc1a4b47 | 165 | const gdb_byte *, |
4c4b4cd2 PH |
166 | CORE_ADDR, struct value *); |
167 | ||
168 | static struct type *to_fixed_array_type (struct type *, struct value *, int); | |
14f9c5c9 | 169 | |
28c85d6c | 170 | static struct type *to_fixed_range_type (struct type *, struct value *); |
14f9c5c9 | 171 | |
d2e4a39e | 172 | static struct type *to_static_fixed_type (struct type *); |
f192137b | 173 | static struct type *static_unwrap_type (struct type *type); |
14f9c5c9 | 174 | |
d2e4a39e | 175 | static struct value *unwrap_value (struct value *); |
14f9c5c9 | 176 | |
ad82864c | 177 | static struct type *constrained_packed_array_type (struct type *, long *); |
14f9c5c9 | 178 | |
ad82864c | 179 | static struct type *decode_constrained_packed_array_type (struct type *); |
14f9c5c9 | 180 | |
ad82864c JB |
181 | static long decode_packed_array_bitsize (struct type *); |
182 | ||
183 | static struct value *decode_constrained_packed_array (struct value *); | |
184 | ||
185 | static int ada_is_packed_array_type (struct type *); | |
186 | ||
187 | static int ada_is_unconstrained_packed_array_type (struct type *); | |
14f9c5c9 | 188 | |
d2e4a39e | 189 | static struct value *value_subscript_packed (struct value *, int, |
4c4b4cd2 | 190 | struct value **); |
14f9c5c9 | 191 | |
50810684 | 192 | static void move_bits (gdb_byte *, int, const gdb_byte *, int, int, int); |
52ce6436 | 193 | |
4c4b4cd2 PH |
194 | static struct value *coerce_unspec_val_to_type (struct value *, |
195 | struct type *); | |
14f9c5c9 | 196 | |
d2e4a39e | 197 | static struct value *get_var_value (char *, char *); |
14f9c5c9 | 198 | |
d2e4a39e | 199 | static int lesseq_defined_than (struct symbol *, struct symbol *); |
14f9c5c9 | 200 | |
d2e4a39e | 201 | static int equiv_types (struct type *, struct type *); |
14f9c5c9 | 202 | |
d2e4a39e | 203 | static int is_name_suffix (const char *); |
14f9c5c9 | 204 | |
73589123 PH |
205 | static int advance_wild_match (const char **, const char *, int); |
206 | ||
207 | static int wild_match (const char *, const char *); | |
14f9c5c9 | 208 | |
d2e4a39e | 209 | static struct value *ada_coerce_ref (struct value *); |
14f9c5c9 | 210 | |
4c4b4cd2 PH |
211 | static LONGEST pos_atr (struct value *); |
212 | ||
3cb382c9 | 213 | static struct value *value_pos_atr (struct type *, struct value *); |
14f9c5c9 | 214 | |
d2e4a39e | 215 | static struct value *value_val_atr (struct type *, struct value *); |
14f9c5c9 | 216 | |
4c4b4cd2 PH |
217 | static struct symbol *standard_lookup (const char *, const struct block *, |
218 | domain_enum); | |
14f9c5c9 | 219 | |
4c4b4cd2 PH |
220 | static struct value *ada_search_struct_field (char *, struct value *, int, |
221 | struct type *); | |
222 | ||
223 | static struct value *ada_value_primitive_field (struct value *, int, int, | |
224 | struct type *); | |
225 | ||
0d5cff50 | 226 | static int find_struct_field (const char *, struct type *, int, |
52ce6436 | 227 | struct type **, int *, int *, int *, int *); |
4c4b4cd2 PH |
228 | |
229 | static struct value *ada_to_fixed_value_create (struct type *, CORE_ADDR, | |
230 | struct value *); | |
231 | ||
4c4b4cd2 PH |
232 | static int ada_resolve_function (struct ada_symbol_info *, int, |
233 | struct value **, int, const char *, | |
234 | struct type *); | |
235 | ||
4c4b4cd2 PH |
236 | static int ada_is_direct_array_type (struct type *); |
237 | ||
72d5681a PH |
238 | static void ada_language_arch_info (struct gdbarch *, |
239 | struct language_arch_info *); | |
714e53ab PH |
240 | |
241 | static void check_size (const struct type *); | |
52ce6436 PH |
242 | |
243 | static struct value *ada_index_struct_field (int, struct value *, int, | |
244 | struct type *); | |
245 | ||
246 | static struct value *assign_aggregate (struct value *, struct value *, | |
0963b4bd MS |
247 | struct expression *, |
248 | int *, enum noside); | |
52ce6436 PH |
249 | |
250 | static void aggregate_assign_from_choices (struct value *, struct value *, | |
251 | struct expression *, | |
252 | int *, LONGEST *, int *, | |
253 | int, LONGEST, LONGEST); | |
254 | ||
255 | static void aggregate_assign_positional (struct value *, struct value *, | |
256 | struct expression *, | |
257 | int *, LONGEST *, int *, int, | |
258 | LONGEST, LONGEST); | |
259 | ||
260 | ||
261 | static void aggregate_assign_others (struct value *, struct value *, | |
262 | struct expression *, | |
263 | int *, LONGEST *, int, LONGEST, LONGEST); | |
264 | ||
265 | ||
266 | static void add_component_interval (LONGEST, LONGEST, LONGEST *, int *, int); | |
267 | ||
268 | ||
269 | static struct value *ada_evaluate_subexp (struct type *, struct expression *, | |
270 | int *, enum noside); | |
271 | ||
272 | static void ada_forward_operator_length (struct expression *, int, int *, | |
273 | int *); | |
852dff6c JB |
274 | |
275 | static struct type *ada_find_any_type (const char *name); | |
4c4b4cd2 PH |
276 | \f |
277 | ||
76a01679 | 278 | |
4c4b4cd2 | 279 | /* Maximum-sized dynamic type. */ |
14f9c5c9 AS |
280 | static unsigned int varsize_limit; |
281 | ||
4c4b4cd2 PH |
282 | /* FIXME: brobecker/2003-09-17: No longer a const because it is |
283 | returned by a function that does not return a const char *. */ | |
284 | static char *ada_completer_word_break_characters = | |
285 | #ifdef VMS | |
286 | " \t\n!@#%^&*()+=|~`}{[]\";:?/,-"; | |
287 | #else | |
14f9c5c9 | 288 | " \t\n!@#$%^&*()+=|~`}{[]\";:?/,-"; |
4c4b4cd2 | 289 | #endif |
14f9c5c9 | 290 | |
4c4b4cd2 | 291 | /* The name of the symbol to use to get the name of the main subprogram. */ |
76a01679 | 292 | static const char ADA_MAIN_PROGRAM_SYMBOL_NAME[] |
4c4b4cd2 | 293 | = "__gnat_ada_main_program_name"; |
14f9c5c9 | 294 | |
4c4b4cd2 PH |
295 | /* Limit on the number of warnings to raise per expression evaluation. */ |
296 | static int warning_limit = 2; | |
297 | ||
298 | /* Number of warning messages issued; reset to 0 by cleanups after | |
299 | expression evaluation. */ | |
300 | static int warnings_issued = 0; | |
301 | ||
302 | static const char *known_runtime_file_name_patterns[] = { | |
303 | ADA_KNOWN_RUNTIME_FILE_NAME_PATTERNS NULL | |
304 | }; | |
305 | ||
306 | static const char *known_auxiliary_function_name_patterns[] = { | |
307 | ADA_KNOWN_AUXILIARY_FUNCTION_NAME_PATTERNS NULL | |
308 | }; | |
309 | ||
310 | /* Space for allocating results of ada_lookup_symbol_list. */ | |
311 | static struct obstack symbol_list_obstack; | |
312 | ||
e802dbe0 JB |
313 | /* Inferior-specific data. */ |
314 | ||
315 | /* Per-inferior data for this module. */ | |
316 | ||
317 | struct ada_inferior_data | |
318 | { | |
319 | /* The ada__tags__type_specific_data type, which is used when decoding | |
320 | tagged types. With older versions of GNAT, this type was directly | |
321 | accessible through a component ("tsd") in the object tag. But this | |
322 | is no longer the case, so we cache it for each inferior. */ | |
323 | struct type *tsd_type; | |
3eecfa55 JB |
324 | |
325 | /* The exception_support_info data. This data is used to determine | |
326 | how to implement support for Ada exception catchpoints in a given | |
327 | inferior. */ | |
328 | const struct exception_support_info *exception_info; | |
e802dbe0 JB |
329 | }; |
330 | ||
331 | /* Our key to this module's inferior data. */ | |
332 | static const struct inferior_data *ada_inferior_data; | |
333 | ||
334 | /* A cleanup routine for our inferior data. */ | |
335 | static void | |
336 | ada_inferior_data_cleanup (struct inferior *inf, void *arg) | |
337 | { | |
338 | struct ada_inferior_data *data; | |
339 | ||
340 | data = inferior_data (inf, ada_inferior_data); | |
341 | if (data != NULL) | |
342 | xfree (data); | |
343 | } | |
344 | ||
345 | /* Return our inferior data for the given inferior (INF). | |
346 | ||
347 | This function always returns a valid pointer to an allocated | |
348 | ada_inferior_data structure. If INF's inferior data has not | |
349 | been previously set, this functions creates a new one with all | |
350 | fields set to zero, sets INF's inferior to it, and then returns | |
351 | a pointer to that newly allocated ada_inferior_data. */ | |
352 | ||
353 | static struct ada_inferior_data * | |
354 | get_ada_inferior_data (struct inferior *inf) | |
355 | { | |
356 | struct ada_inferior_data *data; | |
357 | ||
358 | data = inferior_data (inf, ada_inferior_data); | |
359 | if (data == NULL) | |
360 | { | |
361 | data = XZALLOC (struct ada_inferior_data); | |
362 | set_inferior_data (inf, ada_inferior_data, data); | |
363 | } | |
364 | ||
365 | return data; | |
366 | } | |
367 | ||
368 | /* Perform all necessary cleanups regarding our module's inferior data | |
369 | that is required after the inferior INF just exited. */ | |
370 | ||
371 | static void | |
372 | ada_inferior_exit (struct inferior *inf) | |
373 | { | |
374 | ada_inferior_data_cleanup (inf, NULL); | |
375 | set_inferior_data (inf, ada_inferior_data, NULL); | |
376 | } | |
377 | ||
4c4b4cd2 PH |
378 | /* Utilities */ |
379 | ||
720d1a40 | 380 | /* If TYPE is a TYPE_CODE_TYPEDEF type, return the target type after |
eed9788b | 381 | all typedef layers have been peeled. Otherwise, return TYPE. |
720d1a40 JB |
382 | |
383 | Normally, we really expect a typedef type to only have 1 typedef layer. | |
384 | In other words, we really expect the target type of a typedef type to be | |
385 | a non-typedef type. This is particularly true for Ada units, because | |
386 | the language does not have a typedef vs not-typedef distinction. | |
387 | In that respect, the Ada compiler has been trying to eliminate as many | |
388 | typedef definitions in the debugging information, since they generally | |
389 | do not bring any extra information (we still use typedef under certain | |
390 | circumstances related mostly to the GNAT encoding). | |
391 | ||
392 | Unfortunately, we have seen situations where the debugging information | |
393 | generated by the compiler leads to such multiple typedef layers. For | |
394 | instance, consider the following example with stabs: | |
395 | ||
396 | .stabs "pck__float_array___XUP:Tt(0,46)=s16P_ARRAY:(0,47)=[...]"[...] | |
397 | .stabs "pck__float_array___XUP:t(0,36)=(0,46)",128,0,6,0 | |
398 | ||
399 | This is an error in the debugging information which causes type | |
400 | pck__float_array___XUP to be defined twice, and the second time, | |
401 | it is defined as a typedef of a typedef. | |
402 | ||
403 | This is on the fringe of legality as far as debugging information is | |
404 | concerned, and certainly unexpected. But it is easy to handle these | |
405 | situations correctly, so we can afford to be lenient in this case. */ | |
406 | ||
407 | static struct type * | |
408 | ada_typedef_target_type (struct type *type) | |
409 | { | |
410 | while (TYPE_CODE (type) == TYPE_CODE_TYPEDEF) | |
411 | type = TYPE_TARGET_TYPE (type); | |
412 | return type; | |
413 | } | |
414 | ||
41d27058 JB |
415 | /* Given DECODED_NAME a string holding a symbol name in its |
416 | decoded form (ie using the Ada dotted notation), returns | |
417 | its unqualified name. */ | |
418 | ||
419 | static const char * | |
420 | ada_unqualified_name (const char *decoded_name) | |
421 | { | |
422 | const char *result = strrchr (decoded_name, '.'); | |
423 | ||
424 | if (result != NULL) | |
425 | result++; /* Skip the dot... */ | |
426 | else | |
427 | result = decoded_name; | |
428 | ||
429 | return result; | |
430 | } | |
431 | ||
432 | /* Return a string starting with '<', followed by STR, and '>'. | |
433 | The result is good until the next call. */ | |
434 | ||
435 | static char * | |
436 | add_angle_brackets (const char *str) | |
437 | { | |
438 | static char *result = NULL; | |
439 | ||
440 | xfree (result); | |
88c15c34 | 441 | result = xstrprintf ("<%s>", str); |
41d27058 JB |
442 | return result; |
443 | } | |
96d887e8 | 444 | |
4c4b4cd2 PH |
445 | static char * |
446 | ada_get_gdb_completer_word_break_characters (void) | |
447 | { | |
448 | return ada_completer_word_break_characters; | |
449 | } | |
450 | ||
e79af960 JB |
451 | /* Print an array element index using the Ada syntax. */ |
452 | ||
453 | static void | |
454 | ada_print_array_index (struct value *index_value, struct ui_file *stream, | |
79a45b7d | 455 | const struct value_print_options *options) |
e79af960 | 456 | { |
79a45b7d | 457 | LA_VALUE_PRINT (index_value, stream, options); |
e79af960 JB |
458 | fprintf_filtered (stream, " => "); |
459 | } | |
460 | ||
f27cf670 | 461 | /* Assuming VECT points to an array of *SIZE objects of size |
14f9c5c9 | 462 | ELEMENT_SIZE, grow it to contain at least MIN_SIZE objects, |
f27cf670 | 463 | updating *SIZE as necessary and returning the (new) array. */ |
14f9c5c9 | 464 | |
f27cf670 AS |
465 | void * |
466 | grow_vect (void *vect, size_t *size, size_t min_size, int element_size) | |
14f9c5c9 | 467 | { |
d2e4a39e AS |
468 | if (*size < min_size) |
469 | { | |
470 | *size *= 2; | |
471 | if (*size < min_size) | |
4c4b4cd2 | 472 | *size = min_size; |
f27cf670 | 473 | vect = xrealloc (vect, *size * element_size); |
d2e4a39e | 474 | } |
f27cf670 | 475 | return vect; |
14f9c5c9 AS |
476 | } |
477 | ||
478 | /* True (non-zero) iff TARGET matches FIELD_NAME up to any trailing | |
4c4b4cd2 | 479 | suffix of FIELD_NAME beginning "___". */ |
14f9c5c9 AS |
480 | |
481 | static int | |
ebf56fd3 | 482 | field_name_match (const char *field_name, const char *target) |
14f9c5c9 AS |
483 | { |
484 | int len = strlen (target); | |
5b4ee69b | 485 | |
d2e4a39e | 486 | return |
4c4b4cd2 PH |
487 | (strncmp (field_name, target, len) == 0 |
488 | && (field_name[len] == '\0' | |
489 | || (strncmp (field_name + len, "___", 3) == 0 | |
76a01679 JB |
490 | && strcmp (field_name + strlen (field_name) - 6, |
491 | "___XVN") != 0))); | |
14f9c5c9 AS |
492 | } |
493 | ||
494 | ||
872c8b51 JB |
495 | /* Assuming TYPE is a TYPE_CODE_STRUCT or a TYPE_CODE_TYPDEF to |
496 | a TYPE_CODE_STRUCT, find the field whose name matches FIELD_NAME, | |
497 | and return its index. This function also handles fields whose name | |
498 | have ___ suffixes because the compiler sometimes alters their name | |
499 | by adding such a suffix to represent fields with certain constraints. | |
500 | If the field could not be found, return a negative number if | |
501 | MAYBE_MISSING is set. Otherwise raise an error. */ | |
4c4b4cd2 PH |
502 | |
503 | int | |
504 | ada_get_field_index (const struct type *type, const char *field_name, | |
505 | int maybe_missing) | |
506 | { | |
507 | int fieldno; | |
872c8b51 JB |
508 | struct type *struct_type = check_typedef ((struct type *) type); |
509 | ||
510 | for (fieldno = 0; fieldno < TYPE_NFIELDS (struct_type); fieldno++) | |
511 | if (field_name_match (TYPE_FIELD_NAME (struct_type, fieldno), field_name)) | |
4c4b4cd2 PH |
512 | return fieldno; |
513 | ||
514 | if (!maybe_missing) | |
323e0a4a | 515 | error (_("Unable to find field %s in struct %s. Aborting"), |
872c8b51 | 516 | field_name, TYPE_NAME (struct_type)); |
4c4b4cd2 PH |
517 | |
518 | return -1; | |
519 | } | |
520 | ||
521 | /* The length of the prefix of NAME prior to any "___" suffix. */ | |
14f9c5c9 AS |
522 | |
523 | int | |
d2e4a39e | 524 | ada_name_prefix_len (const char *name) |
14f9c5c9 AS |
525 | { |
526 | if (name == NULL) | |
527 | return 0; | |
d2e4a39e | 528 | else |
14f9c5c9 | 529 | { |
d2e4a39e | 530 | const char *p = strstr (name, "___"); |
5b4ee69b | 531 | |
14f9c5c9 | 532 | if (p == NULL) |
4c4b4cd2 | 533 | return strlen (name); |
14f9c5c9 | 534 | else |
4c4b4cd2 | 535 | return p - name; |
14f9c5c9 AS |
536 | } |
537 | } | |
538 | ||
4c4b4cd2 PH |
539 | /* Return non-zero if SUFFIX is a suffix of STR. |
540 | Return zero if STR is null. */ | |
541 | ||
14f9c5c9 | 542 | static int |
d2e4a39e | 543 | is_suffix (const char *str, const char *suffix) |
14f9c5c9 AS |
544 | { |
545 | int len1, len2; | |
5b4ee69b | 546 | |
14f9c5c9 AS |
547 | if (str == NULL) |
548 | return 0; | |
549 | len1 = strlen (str); | |
550 | len2 = strlen (suffix); | |
4c4b4cd2 | 551 | return (len1 >= len2 && strcmp (str + len1 - len2, suffix) == 0); |
14f9c5c9 AS |
552 | } |
553 | ||
4c4b4cd2 PH |
554 | /* The contents of value VAL, treated as a value of type TYPE. The |
555 | result is an lval in memory if VAL is. */ | |
14f9c5c9 | 556 | |
d2e4a39e | 557 | static struct value * |
4c4b4cd2 | 558 | coerce_unspec_val_to_type (struct value *val, struct type *type) |
14f9c5c9 | 559 | { |
61ee279c | 560 | type = ada_check_typedef (type); |
df407dfe | 561 | if (value_type (val) == type) |
4c4b4cd2 | 562 | return val; |
d2e4a39e | 563 | else |
14f9c5c9 | 564 | { |
4c4b4cd2 PH |
565 | struct value *result; |
566 | ||
567 | /* Make sure that the object size is not unreasonable before | |
568 | trying to allocate some memory for it. */ | |
714e53ab | 569 | check_size (type); |
4c4b4cd2 | 570 | |
41e8491f JK |
571 | if (value_lazy (val) |
572 | || TYPE_LENGTH (type) > TYPE_LENGTH (value_type (val))) | |
573 | result = allocate_value_lazy (type); | |
574 | else | |
575 | { | |
576 | result = allocate_value (type); | |
577 | memcpy (value_contents_raw (result), value_contents (val), | |
578 | TYPE_LENGTH (type)); | |
579 | } | |
74bcbdf3 | 580 | set_value_component_location (result, val); |
9bbda503 AC |
581 | set_value_bitsize (result, value_bitsize (val)); |
582 | set_value_bitpos (result, value_bitpos (val)); | |
42ae5230 | 583 | set_value_address (result, value_address (val)); |
2fa15f23 | 584 | set_value_optimized_out (result, value_optimized_out (val)); |
14f9c5c9 AS |
585 | return result; |
586 | } | |
587 | } | |
588 | ||
fc1a4b47 AC |
589 | static const gdb_byte * |
590 | cond_offset_host (const gdb_byte *valaddr, long offset) | |
14f9c5c9 AS |
591 | { |
592 | if (valaddr == NULL) | |
593 | return NULL; | |
594 | else | |
595 | return valaddr + offset; | |
596 | } | |
597 | ||
598 | static CORE_ADDR | |
ebf56fd3 | 599 | cond_offset_target (CORE_ADDR address, long offset) |
14f9c5c9 AS |
600 | { |
601 | if (address == 0) | |
602 | return 0; | |
d2e4a39e | 603 | else |
14f9c5c9 AS |
604 | return address + offset; |
605 | } | |
606 | ||
4c4b4cd2 PH |
607 | /* Issue a warning (as for the definition of warning in utils.c, but |
608 | with exactly one argument rather than ...), unless the limit on the | |
609 | number of warnings has passed during the evaluation of the current | |
610 | expression. */ | |
a2249542 | 611 | |
77109804 AC |
612 | /* FIXME: cagney/2004-10-10: This function is mimicking the behavior |
613 | provided by "complaint". */ | |
a0b31db1 | 614 | static void lim_warning (const char *format, ...) ATTRIBUTE_PRINTF (1, 2); |
77109804 | 615 | |
14f9c5c9 | 616 | static void |
a2249542 | 617 | lim_warning (const char *format, ...) |
14f9c5c9 | 618 | { |
a2249542 | 619 | va_list args; |
a2249542 | 620 | |
5b4ee69b | 621 | va_start (args, format); |
4c4b4cd2 PH |
622 | warnings_issued += 1; |
623 | if (warnings_issued <= warning_limit) | |
a2249542 MK |
624 | vwarning (format, args); |
625 | ||
626 | va_end (args); | |
4c4b4cd2 PH |
627 | } |
628 | ||
714e53ab PH |
629 | /* Issue an error if the size of an object of type T is unreasonable, |
630 | i.e. if it would be a bad idea to allocate a value of this type in | |
631 | GDB. */ | |
632 | ||
633 | static void | |
634 | check_size (const struct type *type) | |
635 | { | |
636 | if (TYPE_LENGTH (type) > varsize_limit) | |
323e0a4a | 637 | error (_("object size is larger than varsize-limit")); |
714e53ab PH |
638 | } |
639 | ||
0963b4bd | 640 | /* Maximum value of a SIZE-byte signed integer type. */ |
4c4b4cd2 | 641 | static LONGEST |
c3e5cd34 | 642 | max_of_size (int size) |
4c4b4cd2 | 643 | { |
76a01679 | 644 | LONGEST top_bit = (LONGEST) 1 << (size * 8 - 2); |
5b4ee69b | 645 | |
76a01679 | 646 | return top_bit | (top_bit - 1); |
4c4b4cd2 PH |
647 | } |
648 | ||
0963b4bd | 649 | /* Minimum value of a SIZE-byte signed integer type. */ |
4c4b4cd2 | 650 | static LONGEST |
c3e5cd34 | 651 | min_of_size (int size) |
4c4b4cd2 | 652 | { |
c3e5cd34 | 653 | return -max_of_size (size) - 1; |
4c4b4cd2 PH |
654 | } |
655 | ||
0963b4bd | 656 | /* Maximum value of a SIZE-byte unsigned integer type. */ |
4c4b4cd2 | 657 | static ULONGEST |
c3e5cd34 | 658 | umax_of_size (int size) |
4c4b4cd2 | 659 | { |
76a01679 | 660 | ULONGEST top_bit = (ULONGEST) 1 << (size * 8 - 1); |
5b4ee69b | 661 | |
76a01679 | 662 | return top_bit | (top_bit - 1); |
4c4b4cd2 PH |
663 | } |
664 | ||
0963b4bd | 665 | /* Maximum value of integral type T, as a signed quantity. */ |
c3e5cd34 PH |
666 | static LONGEST |
667 | max_of_type (struct type *t) | |
4c4b4cd2 | 668 | { |
c3e5cd34 PH |
669 | if (TYPE_UNSIGNED (t)) |
670 | return (LONGEST) umax_of_size (TYPE_LENGTH (t)); | |
671 | else | |
672 | return max_of_size (TYPE_LENGTH (t)); | |
673 | } | |
674 | ||
0963b4bd | 675 | /* Minimum value of integral type T, as a signed quantity. */ |
c3e5cd34 PH |
676 | static LONGEST |
677 | min_of_type (struct type *t) | |
678 | { | |
679 | if (TYPE_UNSIGNED (t)) | |
680 | return 0; | |
681 | else | |
682 | return min_of_size (TYPE_LENGTH (t)); | |
4c4b4cd2 PH |
683 | } |
684 | ||
685 | /* The largest value in the domain of TYPE, a discrete type, as an integer. */ | |
43bbcdc2 PH |
686 | LONGEST |
687 | ada_discrete_type_high_bound (struct type *type) | |
4c4b4cd2 | 688 | { |
76a01679 | 689 | switch (TYPE_CODE (type)) |
4c4b4cd2 PH |
690 | { |
691 | case TYPE_CODE_RANGE: | |
690cc4eb | 692 | return TYPE_HIGH_BOUND (type); |
4c4b4cd2 | 693 | case TYPE_CODE_ENUM: |
14e75d8e | 694 | return TYPE_FIELD_ENUMVAL (type, TYPE_NFIELDS (type) - 1); |
690cc4eb PH |
695 | case TYPE_CODE_BOOL: |
696 | return 1; | |
697 | case TYPE_CODE_CHAR: | |
76a01679 | 698 | case TYPE_CODE_INT: |
690cc4eb | 699 | return max_of_type (type); |
4c4b4cd2 | 700 | default: |
43bbcdc2 | 701 | error (_("Unexpected type in ada_discrete_type_high_bound.")); |
4c4b4cd2 PH |
702 | } |
703 | } | |
704 | ||
14e75d8e | 705 | /* The smallest value in the domain of TYPE, a discrete type, as an integer. */ |
43bbcdc2 PH |
706 | LONGEST |
707 | ada_discrete_type_low_bound (struct type *type) | |
4c4b4cd2 | 708 | { |
76a01679 | 709 | switch (TYPE_CODE (type)) |
4c4b4cd2 PH |
710 | { |
711 | case TYPE_CODE_RANGE: | |
690cc4eb | 712 | return TYPE_LOW_BOUND (type); |
4c4b4cd2 | 713 | case TYPE_CODE_ENUM: |
14e75d8e | 714 | return TYPE_FIELD_ENUMVAL (type, 0); |
690cc4eb PH |
715 | case TYPE_CODE_BOOL: |
716 | return 0; | |
717 | case TYPE_CODE_CHAR: | |
76a01679 | 718 | case TYPE_CODE_INT: |
690cc4eb | 719 | return min_of_type (type); |
4c4b4cd2 | 720 | default: |
43bbcdc2 | 721 | error (_("Unexpected type in ada_discrete_type_low_bound.")); |
4c4b4cd2 PH |
722 | } |
723 | } | |
724 | ||
725 | /* The identity on non-range types. For range types, the underlying | |
76a01679 | 726 | non-range scalar type. */ |
4c4b4cd2 PH |
727 | |
728 | static struct type * | |
18af8284 | 729 | get_base_type (struct type *type) |
4c4b4cd2 PH |
730 | { |
731 | while (type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE) | |
732 | { | |
76a01679 JB |
733 | if (type == TYPE_TARGET_TYPE (type) || TYPE_TARGET_TYPE (type) == NULL) |
734 | return type; | |
4c4b4cd2 PH |
735 | type = TYPE_TARGET_TYPE (type); |
736 | } | |
737 | return type; | |
14f9c5c9 | 738 | } |
41246937 JB |
739 | |
740 | /* Return a decoded version of the given VALUE. This means returning | |
741 | a value whose type is obtained by applying all the GNAT-specific | |
742 | encondings, making the resulting type a static but standard description | |
743 | of the initial type. */ | |
744 | ||
745 | struct value * | |
746 | ada_get_decoded_value (struct value *value) | |
747 | { | |
748 | struct type *type = ada_check_typedef (value_type (value)); | |
749 | ||
750 | if (ada_is_array_descriptor_type (type) | |
751 | || (ada_is_constrained_packed_array_type (type) | |
752 | && TYPE_CODE (type) != TYPE_CODE_PTR)) | |
753 | { | |
754 | if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF) /* array access type. */ | |
755 | value = ada_coerce_to_simple_array_ptr (value); | |
756 | else | |
757 | value = ada_coerce_to_simple_array (value); | |
758 | } | |
759 | else | |
760 | value = ada_to_fixed_value (value); | |
761 | ||
762 | return value; | |
763 | } | |
764 | ||
765 | /* Same as ada_get_decoded_value, but with the given TYPE. | |
766 | Because there is no associated actual value for this type, | |
767 | the resulting type might be a best-effort approximation in | |
768 | the case of dynamic types. */ | |
769 | ||
770 | struct type * | |
771 | ada_get_decoded_type (struct type *type) | |
772 | { | |
773 | type = to_static_fixed_type (type); | |
774 | if (ada_is_constrained_packed_array_type (type)) | |
775 | type = ada_coerce_to_simple_array_type (type); | |
776 | return type; | |
777 | } | |
778 | ||
4c4b4cd2 | 779 | \f |
76a01679 | 780 | |
4c4b4cd2 | 781 | /* Language Selection */ |
14f9c5c9 AS |
782 | |
783 | /* If the main program is in Ada, return language_ada, otherwise return LANG | |
ccefe4c4 | 784 | (the main program is in Ada iif the adainit symbol is found). */ |
d2e4a39e | 785 | |
14f9c5c9 | 786 | enum language |
ccefe4c4 | 787 | ada_update_initial_language (enum language lang) |
14f9c5c9 | 788 | { |
d2e4a39e | 789 | if (lookup_minimal_symbol ("adainit", (const char *) NULL, |
4c4b4cd2 PH |
790 | (struct objfile *) NULL) != NULL) |
791 | return language_ada; | |
14f9c5c9 AS |
792 | |
793 | return lang; | |
794 | } | |
96d887e8 PH |
795 | |
796 | /* If the main procedure is written in Ada, then return its name. | |
797 | The result is good until the next call. Return NULL if the main | |
798 | procedure doesn't appear to be in Ada. */ | |
799 | ||
800 | char * | |
801 | ada_main_name (void) | |
802 | { | |
803 | struct minimal_symbol *msym; | |
f9bc20b9 | 804 | static char *main_program_name = NULL; |
6c038f32 | 805 | |
96d887e8 PH |
806 | /* For Ada, the name of the main procedure is stored in a specific |
807 | string constant, generated by the binder. Look for that symbol, | |
808 | extract its address, and then read that string. If we didn't find | |
809 | that string, then most probably the main procedure is not written | |
810 | in Ada. */ | |
811 | msym = lookup_minimal_symbol (ADA_MAIN_PROGRAM_SYMBOL_NAME, NULL, NULL); | |
812 | ||
813 | if (msym != NULL) | |
814 | { | |
f9bc20b9 JB |
815 | CORE_ADDR main_program_name_addr; |
816 | int err_code; | |
817 | ||
96d887e8 PH |
818 | main_program_name_addr = SYMBOL_VALUE_ADDRESS (msym); |
819 | if (main_program_name_addr == 0) | |
323e0a4a | 820 | error (_("Invalid address for Ada main program name.")); |
96d887e8 | 821 | |
f9bc20b9 JB |
822 | xfree (main_program_name); |
823 | target_read_string (main_program_name_addr, &main_program_name, | |
824 | 1024, &err_code); | |
825 | ||
826 | if (err_code != 0) | |
827 | return NULL; | |
96d887e8 PH |
828 | return main_program_name; |
829 | } | |
830 | ||
831 | /* The main procedure doesn't seem to be in Ada. */ | |
832 | return NULL; | |
833 | } | |
14f9c5c9 | 834 | \f |
4c4b4cd2 | 835 | /* Symbols */ |
d2e4a39e | 836 | |
4c4b4cd2 PH |
837 | /* Table of Ada operators and their GNAT-encoded names. Last entry is pair |
838 | of NULLs. */ | |
14f9c5c9 | 839 | |
d2e4a39e AS |
840 | const struct ada_opname_map ada_opname_table[] = { |
841 | {"Oadd", "\"+\"", BINOP_ADD}, | |
842 | {"Osubtract", "\"-\"", BINOP_SUB}, | |
843 | {"Omultiply", "\"*\"", BINOP_MUL}, | |
844 | {"Odivide", "\"/\"", BINOP_DIV}, | |
845 | {"Omod", "\"mod\"", BINOP_MOD}, | |
846 | {"Orem", "\"rem\"", BINOP_REM}, | |
847 | {"Oexpon", "\"**\"", BINOP_EXP}, | |
848 | {"Olt", "\"<\"", BINOP_LESS}, | |
849 | {"Ole", "\"<=\"", BINOP_LEQ}, | |
850 | {"Ogt", "\">\"", BINOP_GTR}, | |
851 | {"Oge", "\">=\"", BINOP_GEQ}, | |
852 | {"Oeq", "\"=\"", BINOP_EQUAL}, | |
853 | {"One", "\"/=\"", BINOP_NOTEQUAL}, | |
854 | {"Oand", "\"and\"", BINOP_BITWISE_AND}, | |
855 | {"Oor", "\"or\"", BINOP_BITWISE_IOR}, | |
856 | {"Oxor", "\"xor\"", BINOP_BITWISE_XOR}, | |
857 | {"Oconcat", "\"&\"", BINOP_CONCAT}, | |
858 | {"Oabs", "\"abs\"", UNOP_ABS}, | |
859 | {"Onot", "\"not\"", UNOP_LOGICAL_NOT}, | |
860 | {"Oadd", "\"+\"", UNOP_PLUS}, | |
861 | {"Osubtract", "\"-\"", UNOP_NEG}, | |
862 | {NULL, NULL} | |
14f9c5c9 AS |
863 | }; |
864 | ||
4c4b4cd2 PH |
865 | /* The "encoded" form of DECODED, according to GNAT conventions. |
866 | The result is valid until the next call to ada_encode. */ | |
867 | ||
14f9c5c9 | 868 | char * |
4c4b4cd2 | 869 | ada_encode (const char *decoded) |
14f9c5c9 | 870 | { |
4c4b4cd2 PH |
871 | static char *encoding_buffer = NULL; |
872 | static size_t encoding_buffer_size = 0; | |
d2e4a39e | 873 | const char *p; |
14f9c5c9 | 874 | int k; |
d2e4a39e | 875 | |
4c4b4cd2 | 876 | if (decoded == NULL) |
14f9c5c9 AS |
877 | return NULL; |
878 | ||
4c4b4cd2 PH |
879 | GROW_VECT (encoding_buffer, encoding_buffer_size, |
880 | 2 * strlen (decoded) + 10); | |
14f9c5c9 AS |
881 | |
882 | k = 0; | |
4c4b4cd2 | 883 | for (p = decoded; *p != '\0'; p += 1) |
14f9c5c9 | 884 | { |
cdc7bb92 | 885 | if (*p == '.') |
4c4b4cd2 PH |
886 | { |
887 | encoding_buffer[k] = encoding_buffer[k + 1] = '_'; | |
888 | k += 2; | |
889 | } | |
14f9c5c9 | 890 | else if (*p == '"') |
4c4b4cd2 PH |
891 | { |
892 | const struct ada_opname_map *mapping; | |
893 | ||
894 | for (mapping = ada_opname_table; | |
1265e4aa JB |
895 | mapping->encoded != NULL |
896 | && strncmp (mapping->decoded, p, | |
897 | strlen (mapping->decoded)) != 0; mapping += 1) | |
4c4b4cd2 PH |
898 | ; |
899 | if (mapping->encoded == NULL) | |
323e0a4a | 900 | error (_("invalid Ada operator name: %s"), p); |
4c4b4cd2 PH |
901 | strcpy (encoding_buffer + k, mapping->encoded); |
902 | k += strlen (mapping->encoded); | |
903 | break; | |
904 | } | |
d2e4a39e | 905 | else |
4c4b4cd2 PH |
906 | { |
907 | encoding_buffer[k] = *p; | |
908 | k += 1; | |
909 | } | |
14f9c5c9 AS |
910 | } |
911 | ||
4c4b4cd2 PH |
912 | encoding_buffer[k] = '\0'; |
913 | return encoding_buffer; | |
14f9c5c9 AS |
914 | } |
915 | ||
916 | /* Return NAME folded to lower case, or, if surrounded by single | |
4c4b4cd2 PH |
917 | quotes, unfolded, but with the quotes stripped away. Result good |
918 | to next call. */ | |
919 | ||
d2e4a39e AS |
920 | char * |
921 | ada_fold_name (const char *name) | |
14f9c5c9 | 922 | { |
d2e4a39e | 923 | static char *fold_buffer = NULL; |
14f9c5c9 AS |
924 | static size_t fold_buffer_size = 0; |
925 | ||
926 | int len = strlen (name); | |
d2e4a39e | 927 | GROW_VECT (fold_buffer, fold_buffer_size, len + 1); |
14f9c5c9 AS |
928 | |
929 | if (name[0] == '\'') | |
930 | { | |
d2e4a39e AS |
931 | strncpy (fold_buffer, name + 1, len - 2); |
932 | fold_buffer[len - 2] = '\000'; | |
14f9c5c9 AS |
933 | } |
934 | else | |
935 | { | |
936 | int i; | |
5b4ee69b | 937 | |
14f9c5c9 | 938 | for (i = 0; i <= len; i += 1) |
4c4b4cd2 | 939 | fold_buffer[i] = tolower (name[i]); |
14f9c5c9 AS |
940 | } |
941 | ||
942 | return fold_buffer; | |
943 | } | |
944 | ||
529cad9c PH |
945 | /* Return nonzero if C is either a digit or a lowercase alphabet character. */ |
946 | ||
947 | static int | |
948 | is_lower_alphanum (const char c) | |
949 | { | |
950 | return (isdigit (c) || (isalpha (c) && islower (c))); | |
951 | } | |
952 | ||
c90092fe JB |
953 | /* ENCODED is the linkage name of a symbol and LEN contains its length. |
954 | This function saves in LEN the length of that same symbol name but | |
955 | without either of these suffixes: | |
29480c32 JB |
956 | . .{DIGIT}+ |
957 | . ${DIGIT}+ | |
958 | . ___{DIGIT}+ | |
959 | . __{DIGIT}+. | |
c90092fe | 960 | |
29480c32 JB |
961 | These are suffixes introduced by the compiler for entities such as |
962 | nested subprogram for instance, in order to avoid name clashes. | |
963 | They do not serve any purpose for the debugger. */ | |
964 | ||
965 | static void | |
966 | ada_remove_trailing_digits (const char *encoded, int *len) | |
967 | { | |
968 | if (*len > 1 && isdigit (encoded[*len - 1])) | |
969 | { | |
970 | int i = *len - 2; | |
5b4ee69b | 971 | |
29480c32 JB |
972 | while (i > 0 && isdigit (encoded[i])) |
973 | i--; | |
974 | if (i >= 0 && encoded[i] == '.') | |
975 | *len = i; | |
976 | else if (i >= 0 && encoded[i] == '$') | |
977 | *len = i; | |
978 | else if (i >= 2 && strncmp (encoded + i - 2, "___", 3) == 0) | |
979 | *len = i - 2; | |
980 | else if (i >= 1 && strncmp (encoded + i - 1, "__", 2) == 0) | |
981 | *len = i - 1; | |
982 | } | |
983 | } | |
984 | ||
985 | /* Remove the suffix introduced by the compiler for protected object | |
986 | subprograms. */ | |
987 | ||
988 | static void | |
989 | ada_remove_po_subprogram_suffix (const char *encoded, int *len) | |
990 | { | |
991 | /* Remove trailing N. */ | |
992 | ||
993 | /* Protected entry subprograms are broken into two | |
994 | separate subprograms: The first one is unprotected, and has | |
995 | a 'N' suffix; the second is the protected version, and has | |
0963b4bd | 996 | the 'P' suffix. The second calls the first one after handling |
29480c32 JB |
997 | the protection. Since the P subprograms are internally generated, |
998 | we leave these names undecoded, giving the user a clue that this | |
999 | entity is internal. */ | |
1000 | ||
1001 | if (*len > 1 | |
1002 | && encoded[*len - 1] == 'N' | |
1003 | && (isdigit (encoded[*len - 2]) || islower (encoded[*len - 2]))) | |
1004 | *len = *len - 1; | |
1005 | } | |
1006 | ||
69fadcdf JB |
1007 | /* Remove trailing X[bn]* suffixes (indicating names in package bodies). */ |
1008 | ||
1009 | static void | |
1010 | ada_remove_Xbn_suffix (const char *encoded, int *len) | |
1011 | { | |
1012 | int i = *len - 1; | |
1013 | ||
1014 | while (i > 0 && (encoded[i] == 'b' || encoded[i] == 'n')) | |
1015 | i--; | |
1016 | ||
1017 | if (encoded[i] != 'X') | |
1018 | return; | |
1019 | ||
1020 | if (i == 0) | |
1021 | return; | |
1022 | ||
1023 | if (isalnum (encoded[i-1])) | |
1024 | *len = i; | |
1025 | } | |
1026 | ||
29480c32 JB |
1027 | /* If ENCODED follows the GNAT entity encoding conventions, then return |
1028 | the decoded form of ENCODED. Otherwise, return "<%s>" where "%s" is | |
1029 | replaced by ENCODED. | |
14f9c5c9 | 1030 | |
4c4b4cd2 | 1031 | The resulting string is valid until the next call of ada_decode. |
29480c32 | 1032 | If the string is unchanged by decoding, the original string pointer |
4c4b4cd2 PH |
1033 | is returned. */ |
1034 | ||
1035 | const char * | |
1036 | ada_decode (const char *encoded) | |
14f9c5c9 AS |
1037 | { |
1038 | int i, j; | |
1039 | int len0; | |
d2e4a39e | 1040 | const char *p; |
4c4b4cd2 | 1041 | char *decoded; |
14f9c5c9 | 1042 | int at_start_name; |
4c4b4cd2 PH |
1043 | static char *decoding_buffer = NULL; |
1044 | static size_t decoding_buffer_size = 0; | |
d2e4a39e | 1045 | |
29480c32 JB |
1046 | /* The name of the Ada main procedure starts with "_ada_". |
1047 | This prefix is not part of the decoded name, so skip this part | |
1048 | if we see this prefix. */ | |
4c4b4cd2 PH |
1049 | if (strncmp (encoded, "_ada_", 5) == 0) |
1050 | encoded += 5; | |
14f9c5c9 | 1051 | |
29480c32 JB |
1052 | /* If the name starts with '_', then it is not a properly encoded |
1053 | name, so do not attempt to decode it. Similarly, if the name | |
1054 | starts with '<', the name should not be decoded. */ | |
4c4b4cd2 | 1055 | if (encoded[0] == '_' || encoded[0] == '<') |
14f9c5c9 AS |
1056 | goto Suppress; |
1057 | ||
4c4b4cd2 | 1058 | len0 = strlen (encoded); |
4c4b4cd2 | 1059 | |
29480c32 JB |
1060 | ada_remove_trailing_digits (encoded, &len0); |
1061 | ada_remove_po_subprogram_suffix (encoded, &len0); | |
529cad9c | 1062 | |
4c4b4cd2 PH |
1063 | /* Remove the ___X.* suffix if present. Do not forget to verify that |
1064 | the suffix is located before the current "end" of ENCODED. We want | |
1065 | to avoid re-matching parts of ENCODED that have previously been | |
1066 | marked as discarded (by decrementing LEN0). */ | |
1067 | p = strstr (encoded, "___"); | |
1068 | if (p != NULL && p - encoded < len0 - 3) | |
14f9c5c9 AS |
1069 | { |
1070 | if (p[3] == 'X') | |
4c4b4cd2 | 1071 | len0 = p - encoded; |
14f9c5c9 | 1072 | else |
4c4b4cd2 | 1073 | goto Suppress; |
14f9c5c9 | 1074 | } |
4c4b4cd2 | 1075 | |
29480c32 JB |
1076 | /* Remove any trailing TKB suffix. It tells us that this symbol |
1077 | is for the body of a task, but that information does not actually | |
1078 | appear in the decoded name. */ | |
1079 | ||
4c4b4cd2 | 1080 | if (len0 > 3 && strncmp (encoded + len0 - 3, "TKB", 3) == 0) |
14f9c5c9 | 1081 | len0 -= 3; |
76a01679 | 1082 | |
a10967fa JB |
1083 | /* Remove any trailing TB suffix. The TB suffix is slightly different |
1084 | from the TKB suffix because it is used for non-anonymous task | |
1085 | bodies. */ | |
1086 | ||
1087 | if (len0 > 2 && strncmp (encoded + len0 - 2, "TB", 2) == 0) | |
1088 | len0 -= 2; | |
1089 | ||
29480c32 JB |
1090 | /* Remove trailing "B" suffixes. */ |
1091 | /* FIXME: brobecker/2006-04-19: Not sure what this are used for... */ | |
1092 | ||
4c4b4cd2 | 1093 | if (len0 > 1 && strncmp (encoded + len0 - 1, "B", 1) == 0) |
14f9c5c9 AS |
1094 | len0 -= 1; |
1095 | ||
4c4b4cd2 | 1096 | /* Make decoded big enough for possible expansion by operator name. */ |
29480c32 | 1097 | |
4c4b4cd2 PH |
1098 | GROW_VECT (decoding_buffer, decoding_buffer_size, 2 * len0 + 1); |
1099 | decoded = decoding_buffer; | |
14f9c5c9 | 1100 | |
29480c32 JB |
1101 | /* Remove trailing __{digit}+ or trailing ${digit}+. */ |
1102 | ||
4c4b4cd2 | 1103 | if (len0 > 1 && isdigit (encoded[len0 - 1])) |
d2e4a39e | 1104 | { |
4c4b4cd2 PH |
1105 | i = len0 - 2; |
1106 | while ((i >= 0 && isdigit (encoded[i])) | |
1107 | || (i >= 1 && encoded[i] == '_' && isdigit (encoded[i - 1]))) | |
1108 | i -= 1; | |
1109 | if (i > 1 && encoded[i] == '_' && encoded[i - 1] == '_') | |
1110 | len0 = i - 1; | |
1111 | else if (encoded[i] == '$') | |
1112 | len0 = i; | |
d2e4a39e | 1113 | } |
14f9c5c9 | 1114 | |
29480c32 JB |
1115 | /* The first few characters that are not alphabetic are not part |
1116 | of any encoding we use, so we can copy them over verbatim. */ | |
1117 | ||
4c4b4cd2 PH |
1118 | for (i = 0, j = 0; i < len0 && !isalpha (encoded[i]); i += 1, j += 1) |
1119 | decoded[j] = encoded[i]; | |
14f9c5c9 AS |
1120 | |
1121 | at_start_name = 1; | |
1122 | while (i < len0) | |
1123 | { | |
29480c32 | 1124 | /* Is this a symbol function? */ |
4c4b4cd2 PH |
1125 | if (at_start_name && encoded[i] == 'O') |
1126 | { | |
1127 | int k; | |
5b4ee69b | 1128 | |
4c4b4cd2 PH |
1129 | for (k = 0; ada_opname_table[k].encoded != NULL; k += 1) |
1130 | { | |
1131 | int op_len = strlen (ada_opname_table[k].encoded); | |
06d5cf63 JB |
1132 | if ((strncmp (ada_opname_table[k].encoded + 1, encoded + i + 1, |
1133 | op_len - 1) == 0) | |
1134 | && !isalnum (encoded[i + op_len])) | |
4c4b4cd2 PH |
1135 | { |
1136 | strcpy (decoded + j, ada_opname_table[k].decoded); | |
1137 | at_start_name = 0; | |
1138 | i += op_len; | |
1139 | j += strlen (ada_opname_table[k].decoded); | |
1140 | break; | |
1141 | } | |
1142 | } | |
1143 | if (ada_opname_table[k].encoded != NULL) | |
1144 | continue; | |
1145 | } | |
14f9c5c9 AS |
1146 | at_start_name = 0; |
1147 | ||
529cad9c PH |
1148 | /* Replace "TK__" with "__", which will eventually be translated |
1149 | into "." (just below). */ | |
1150 | ||
4c4b4cd2 PH |
1151 | if (i < len0 - 4 && strncmp (encoded + i, "TK__", 4) == 0) |
1152 | i += 2; | |
529cad9c | 1153 | |
29480c32 JB |
1154 | /* Replace "__B_{DIGITS}+__" sequences by "__", which will eventually |
1155 | be translated into "." (just below). These are internal names | |
1156 | generated for anonymous blocks inside which our symbol is nested. */ | |
1157 | ||
1158 | if (len0 - i > 5 && encoded [i] == '_' && encoded [i+1] == '_' | |
1159 | && encoded [i+2] == 'B' && encoded [i+3] == '_' | |
1160 | && isdigit (encoded [i+4])) | |
1161 | { | |
1162 | int k = i + 5; | |
1163 | ||
1164 | while (k < len0 && isdigit (encoded[k])) | |
1165 | k++; /* Skip any extra digit. */ | |
1166 | ||
1167 | /* Double-check that the "__B_{DIGITS}+" sequence we found | |
1168 | is indeed followed by "__". */ | |
1169 | if (len0 - k > 2 && encoded [k] == '_' && encoded [k+1] == '_') | |
1170 | i = k; | |
1171 | } | |
1172 | ||
529cad9c PH |
1173 | /* Remove _E{DIGITS}+[sb] */ |
1174 | ||
1175 | /* Just as for protected object subprograms, there are 2 categories | |
0963b4bd | 1176 | of subprograms created by the compiler for each entry. The first |
529cad9c PH |
1177 | one implements the actual entry code, and has a suffix following |
1178 | the convention above; the second one implements the barrier and | |
1179 | uses the same convention as above, except that the 'E' is replaced | |
1180 | by a 'B'. | |
1181 | ||
1182 | Just as above, we do not decode the name of barrier functions | |
1183 | to give the user a clue that the code he is debugging has been | |
1184 | internally generated. */ | |
1185 | ||
1186 | if (len0 - i > 3 && encoded [i] == '_' && encoded[i+1] == 'E' | |
1187 | && isdigit (encoded[i+2])) | |
1188 | { | |
1189 | int k = i + 3; | |
1190 | ||
1191 | while (k < len0 && isdigit (encoded[k])) | |
1192 | k++; | |
1193 | ||
1194 | if (k < len0 | |
1195 | && (encoded[k] == 'b' || encoded[k] == 's')) | |
1196 | { | |
1197 | k++; | |
1198 | /* Just as an extra precaution, make sure that if this | |
1199 | suffix is followed by anything else, it is a '_'. | |
1200 | Otherwise, we matched this sequence by accident. */ | |
1201 | if (k == len0 | |
1202 | || (k < len0 && encoded[k] == '_')) | |
1203 | i = k; | |
1204 | } | |
1205 | } | |
1206 | ||
1207 | /* Remove trailing "N" in [a-z0-9]+N__. The N is added by | |
1208 | the GNAT front-end in protected object subprograms. */ | |
1209 | ||
1210 | if (i < len0 + 3 | |
1211 | && encoded[i] == 'N' && encoded[i+1] == '_' && encoded[i+2] == '_') | |
1212 | { | |
1213 | /* Backtrack a bit up until we reach either the begining of | |
1214 | the encoded name, or "__". Make sure that we only find | |
1215 | digits or lowercase characters. */ | |
1216 | const char *ptr = encoded + i - 1; | |
1217 | ||
1218 | while (ptr >= encoded && is_lower_alphanum (ptr[0])) | |
1219 | ptr--; | |
1220 | if (ptr < encoded | |
1221 | || (ptr > encoded && ptr[0] == '_' && ptr[-1] == '_')) | |
1222 | i++; | |
1223 | } | |
1224 | ||
4c4b4cd2 PH |
1225 | if (encoded[i] == 'X' && i != 0 && isalnum (encoded[i - 1])) |
1226 | { | |
29480c32 JB |
1227 | /* This is a X[bn]* sequence not separated from the previous |
1228 | part of the name with a non-alpha-numeric character (in other | |
1229 | words, immediately following an alpha-numeric character), then | |
1230 | verify that it is placed at the end of the encoded name. If | |
1231 | not, then the encoding is not valid and we should abort the | |
1232 | decoding. Otherwise, just skip it, it is used in body-nested | |
1233 | package names. */ | |
4c4b4cd2 PH |
1234 | do |
1235 | i += 1; | |
1236 | while (i < len0 && (encoded[i] == 'b' || encoded[i] == 'n')); | |
1237 | if (i < len0) | |
1238 | goto Suppress; | |
1239 | } | |
cdc7bb92 | 1240 | else if (i < len0 - 2 && encoded[i] == '_' && encoded[i + 1] == '_') |
4c4b4cd2 | 1241 | { |
29480c32 | 1242 | /* Replace '__' by '.'. */ |
4c4b4cd2 PH |
1243 | decoded[j] = '.'; |
1244 | at_start_name = 1; | |
1245 | i += 2; | |
1246 | j += 1; | |
1247 | } | |
14f9c5c9 | 1248 | else |
4c4b4cd2 | 1249 | { |
29480c32 JB |
1250 | /* It's a character part of the decoded name, so just copy it |
1251 | over. */ | |
4c4b4cd2 PH |
1252 | decoded[j] = encoded[i]; |
1253 | i += 1; | |
1254 | j += 1; | |
1255 | } | |
14f9c5c9 | 1256 | } |
4c4b4cd2 | 1257 | decoded[j] = '\000'; |
14f9c5c9 | 1258 | |
29480c32 JB |
1259 | /* Decoded names should never contain any uppercase character. |
1260 | Double-check this, and abort the decoding if we find one. */ | |
1261 | ||
4c4b4cd2 PH |
1262 | for (i = 0; decoded[i] != '\0'; i += 1) |
1263 | if (isupper (decoded[i]) || decoded[i] == ' ') | |
14f9c5c9 AS |
1264 | goto Suppress; |
1265 | ||
4c4b4cd2 PH |
1266 | if (strcmp (decoded, encoded) == 0) |
1267 | return encoded; | |
1268 | else | |
1269 | return decoded; | |
14f9c5c9 AS |
1270 | |
1271 | Suppress: | |
4c4b4cd2 PH |
1272 | GROW_VECT (decoding_buffer, decoding_buffer_size, strlen (encoded) + 3); |
1273 | decoded = decoding_buffer; | |
1274 | if (encoded[0] == '<') | |
1275 | strcpy (decoded, encoded); | |
14f9c5c9 | 1276 | else |
88c15c34 | 1277 | xsnprintf (decoded, decoding_buffer_size, "<%s>", encoded); |
4c4b4cd2 PH |
1278 | return decoded; |
1279 | ||
1280 | } | |
1281 | ||
1282 | /* Table for keeping permanent unique copies of decoded names. Once | |
1283 | allocated, names in this table are never released. While this is a | |
1284 | storage leak, it should not be significant unless there are massive | |
1285 | changes in the set of decoded names in successive versions of a | |
1286 | symbol table loaded during a single session. */ | |
1287 | static struct htab *decoded_names_store; | |
1288 | ||
1289 | /* Returns the decoded name of GSYMBOL, as for ada_decode, caching it | |
1290 | in the language-specific part of GSYMBOL, if it has not been | |
1291 | previously computed. Tries to save the decoded name in the same | |
1292 | obstack as GSYMBOL, if possible, and otherwise on the heap (so that, | |
1293 | in any case, the decoded symbol has a lifetime at least that of | |
0963b4bd | 1294 | GSYMBOL). |
4c4b4cd2 PH |
1295 | The GSYMBOL parameter is "mutable" in the C++ sense: logically |
1296 | const, but nevertheless modified to a semantically equivalent form | |
0963b4bd | 1297 | when a decoded name is cached in it. */ |
4c4b4cd2 | 1298 | |
45e6c716 | 1299 | const char * |
76a01679 | 1300 | ada_decode_symbol (const struct general_symbol_info *gsymbol) |
4c4b4cd2 | 1301 | { |
45e6c716 TT |
1302 | const char **resultp = |
1303 | (const char **) &gsymbol->language_specific.mangled_lang.demangled_name; | |
5b4ee69b | 1304 | |
4c4b4cd2 PH |
1305 | if (*resultp == NULL) |
1306 | { | |
1307 | const char *decoded = ada_decode (gsymbol->name); | |
5b4ee69b | 1308 | |
714835d5 | 1309 | if (gsymbol->obj_section != NULL) |
76a01679 | 1310 | { |
714835d5 | 1311 | struct objfile *objf = gsymbol->obj_section->objfile; |
5b4ee69b | 1312 | |
10f0c4bb TT |
1313 | *resultp = obstack_copy0 (&objf->objfile_obstack, |
1314 | decoded, strlen (decoded)); | |
76a01679 | 1315 | } |
4c4b4cd2 | 1316 | /* Sometimes, we can't find a corresponding objfile, in which |
76a01679 JB |
1317 | case, we put the result on the heap. Since we only decode |
1318 | when needed, we hope this usually does not cause a | |
1319 | significant memory leak (FIXME). */ | |
4c4b4cd2 | 1320 | if (*resultp == NULL) |
76a01679 JB |
1321 | { |
1322 | char **slot = (char **) htab_find_slot (decoded_names_store, | |
1323 | decoded, INSERT); | |
5b4ee69b | 1324 | |
76a01679 JB |
1325 | if (*slot == NULL) |
1326 | *slot = xstrdup (decoded); | |
1327 | *resultp = *slot; | |
1328 | } | |
4c4b4cd2 | 1329 | } |
14f9c5c9 | 1330 | |
4c4b4cd2 PH |
1331 | return *resultp; |
1332 | } | |
76a01679 | 1333 | |
2c0b251b | 1334 | static char * |
76a01679 | 1335 | ada_la_decode (const char *encoded, int options) |
4c4b4cd2 PH |
1336 | { |
1337 | return xstrdup (ada_decode (encoded)); | |
14f9c5c9 AS |
1338 | } |
1339 | ||
1340 | /* Returns non-zero iff SYM_NAME matches NAME, ignoring any trailing | |
4c4b4cd2 PH |
1341 | suffixes that encode debugging information or leading _ada_ on |
1342 | SYM_NAME (see is_name_suffix commentary for the debugging | |
1343 | information that is ignored). If WILD, then NAME need only match a | |
1344 | suffix of SYM_NAME minus the same suffixes. Also returns 0 if | |
1345 | either argument is NULL. */ | |
14f9c5c9 | 1346 | |
2c0b251b | 1347 | static int |
40658b94 | 1348 | match_name (const char *sym_name, const char *name, int wild) |
14f9c5c9 AS |
1349 | { |
1350 | if (sym_name == NULL || name == NULL) | |
1351 | return 0; | |
1352 | else if (wild) | |
73589123 | 1353 | return wild_match (sym_name, name) == 0; |
d2e4a39e AS |
1354 | else |
1355 | { | |
1356 | int len_name = strlen (name); | |
5b4ee69b | 1357 | |
4c4b4cd2 PH |
1358 | return (strncmp (sym_name, name, len_name) == 0 |
1359 | && is_name_suffix (sym_name + len_name)) | |
1360 | || (strncmp (sym_name, "_ada_", 5) == 0 | |
1361 | && strncmp (sym_name + 5, name, len_name) == 0 | |
1362 | && is_name_suffix (sym_name + len_name + 5)); | |
d2e4a39e | 1363 | } |
14f9c5c9 | 1364 | } |
14f9c5c9 | 1365 | \f |
d2e4a39e | 1366 | |
4c4b4cd2 | 1367 | /* Arrays */ |
14f9c5c9 | 1368 | |
28c85d6c JB |
1369 | /* Assuming that INDEX_DESC_TYPE is an ___XA structure, a structure |
1370 | generated by the GNAT compiler to describe the index type used | |
1371 | for each dimension of an array, check whether it follows the latest | |
1372 | known encoding. If not, fix it up to conform to the latest encoding. | |
1373 | Otherwise, do nothing. This function also does nothing if | |
1374 | INDEX_DESC_TYPE is NULL. | |
1375 | ||
1376 | The GNAT encoding used to describle the array index type evolved a bit. | |
1377 | Initially, the information would be provided through the name of each | |
1378 | field of the structure type only, while the type of these fields was | |
1379 | described as unspecified and irrelevant. The debugger was then expected | |
1380 | to perform a global type lookup using the name of that field in order | |
1381 | to get access to the full index type description. Because these global | |
1382 | lookups can be very expensive, the encoding was later enhanced to make | |
1383 | the global lookup unnecessary by defining the field type as being | |
1384 | the full index type description. | |
1385 | ||
1386 | The purpose of this routine is to allow us to support older versions | |
1387 | of the compiler by detecting the use of the older encoding, and by | |
1388 | fixing up the INDEX_DESC_TYPE to follow the new one (at this point, | |
1389 | we essentially replace each field's meaningless type by the associated | |
1390 | index subtype). */ | |
1391 | ||
1392 | void | |
1393 | ada_fixup_array_indexes_type (struct type *index_desc_type) | |
1394 | { | |
1395 | int i; | |
1396 | ||
1397 | if (index_desc_type == NULL) | |
1398 | return; | |
1399 | gdb_assert (TYPE_NFIELDS (index_desc_type) > 0); | |
1400 | ||
1401 | /* Check if INDEX_DESC_TYPE follows the older encoding (it is sufficient | |
1402 | to check one field only, no need to check them all). If not, return | |
1403 | now. | |
1404 | ||
1405 | If our INDEX_DESC_TYPE was generated using the older encoding, | |
1406 | the field type should be a meaningless integer type whose name | |
1407 | is not equal to the field name. */ | |
1408 | if (TYPE_NAME (TYPE_FIELD_TYPE (index_desc_type, 0)) != NULL | |
1409 | && strcmp (TYPE_NAME (TYPE_FIELD_TYPE (index_desc_type, 0)), | |
1410 | TYPE_FIELD_NAME (index_desc_type, 0)) == 0) | |
1411 | return; | |
1412 | ||
1413 | /* Fixup each field of INDEX_DESC_TYPE. */ | |
1414 | for (i = 0; i < TYPE_NFIELDS (index_desc_type); i++) | |
1415 | { | |
0d5cff50 | 1416 | const char *name = TYPE_FIELD_NAME (index_desc_type, i); |
28c85d6c JB |
1417 | struct type *raw_type = ada_check_typedef (ada_find_any_type (name)); |
1418 | ||
1419 | if (raw_type) | |
1420 | TYPE_FIELD_TYPE (index_desc_type, i) = raw_type; | |
1421 | } | |
1422 | } | |
1423 | ||
4c4b4cd2 | 1424 | /* Names of MAX_ADA_DIMENS bounds in P_BOUNDS fields of array descriptors. */ |
14f9c5c9 | 1425 | |
d2e4a39e AS |
1426 | static char *bound_name[] = { |
1427 | "LB0", "UB0", "LB1", "UB1", "LB2", "UB2", "LB3", "UB3", | |
14f9c5c9 AS |
1428 | "LB4", "UB4", "LB5", "UB5", "LB6", "UB6", "LB7", "UB7" |
1429 | }; | |
1430 | ||
1431 | /* Maximum number of array dimensions we are prepared to handle. */ | |
1432 | ||
4c4b4cd2 | 1433 | #define MAX_ADA_DIMENS (sizeof(bound_name) / (2*sizeof(char *))) |
14f9c5c9 | 1434 | |
14f9c5c9 | 1435 | |
4c4b4cd2 PH |
1436 | /* The desc_* routines return primitive portions of array descriptors |
1437 | (fat pointers). */ | |
14f9c5c9 AS |
1438 | |
1439 | /* The descriptor or array type, if any, indicated by TYPE; removes | |
4c4b4cd2 PH |
1440 | level of indirection, if needed. */ |
1441 | ||
d2e4a39e AS |
1442 | static struct type * |
1443 | desc_base_type (struct type *type) | |
14f9c5c9 AS |
1444 | { |
1445 | if (type == NULL) | |
1446 | return NULL; | |
61ee279c | 1447 | type = ada_check_typedef (type); |
720d1a40 JB |
1448 | if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF) |
1449 | type = ada_typedef_target_type (type); | |
1450 | ||
1265e4aa JB |
1451 | if (type != NULL |
1452 | && (TYPE_CODE (type) == TYPE_CODE_PTR | |
1453 | || TYPE_CODE (type) == TYPE_CODE_REF)) | |
61ee279c | 1454 | return ada_check_typedef (TYPE_TARGET_TYPE (type)); |
14f9c5c9 AS |
1455 | else |
1456 | return type; | |
1457 | } | |
1458 | ||
4c4b4cd2 PH |
1459 | /* True iff TYPE indicates a "thin" array pointer type. */ |
1460 | ||
14f9c5c9 | 1461 | static int |
d2e4a39e | 1462 | is_thin_pntr (struct type *type) |
14f9c5c9 | 1463 | { |
d2e4a39e | 1464 | return |
14f9c5c9 AS |
1465 | is_suffix (ada_type_name (desc_base_type (type)), "___XUT") |
1466 | || is_suffix (ada_type_name (desc_base_type (type)), "___XUT___XVE"); | |
1467 | } | |
1468 | ||
4c4b4cd2 PH |
1469 | /* The descriptor type for thin pointer type TYPE. */ |
1470 | ||
d2e4a39e AS |
1471 | static struct type * |
1472 | thin_descriptor_type (struct type *type) | |
14f9c5c9 | 1473 | { |
d2e4a39e | 1474 | struct type *base_type = desc_base_type (type); |
5b4ee69b | 1475 | |
14f9c5c9 AS |
1476 | if (base_type == NULL) |
1477 | return NULL; | |
1478 | if (is_suffix (ada_type_name (base_type), "___XVE")) | |
1479 | return base_type; | |
d2e4a39e | 1480 | else |
14f9c5c9 | 1481 | { |
d2e4a39e | 1482 | struct type *alt_type = ada_find_parallel_type (base_type, "___XVE"); |
5b4ee69b | 1483 | |
14f9c5c9 | 1484 | if (alt_type == NULL) |
4c4b4cd2 | 1485 | return base_type; |
14f9c5c9 | 1486 | else |
4c4b4cd2 | 1487 | return alt_type; |
14f9c5c9 AS |
1488 | } |
1489 | } | |
1490 | ||
4c4b4cd2 PH |
1491 | /* A pointer to the array data for thin-pointer value VAL. */ |
1492 | ||
d2e4a39e AS |
1493 | static struct value * |
1494 | thin_data_pntr (struct value *val) | |
14f9c5c9 | 1495 | { |
828292f2 | 1496 | struct type *type = ada_check_typedef (value_type (val)); |
556bdfd4 | 1497 | struct type *data_type = desc_data_target_type (thin_descriptor_type (type)); |
5b4ee69b | 1498 | |
556bdfd4 UW |
1499 | data_type = lookup_pointer_type (data_type); |
1500 | ||
14f9c5c9 | 1501 | if (TYPE_CODE (type) == TYPE_CODE_PTR) |
556bdfd4 | 1502 | return value_cast (data_type, value_copy (val)); |
d2e4a39e | 1503 | else |
42ae5230 | 1504 | return value_from_longest (data_type, value_address (val)); |
14f9c5c9 AS |
1505 | } |
1506 | ||
4c4b4cd2 PH |
1507 | /* True iff TYPE indicates a "thick" array pointer type. */ |
1508 | ||
14f9c5c9 | 1509 | static int |
d2e4a39e | 1510 | is_thick_pntr (struct type *type) |
14f9c5c9 AS |
1511 | { |
1512 | type = desc_base_type (type); | |
1513 | return (type != NULL && TYPE_CODE (type) == TYPE_CODE_STRUCT | |
4c4b4cd2 | 1514 | && lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL); |
14f9c5c9 AS |
1515 | } |
1516 | ||
4c4b4cd2 PH |
1517 | /* If TYPE is the type of an array descriptor (fat or thin pointer) or a |
1518 | pointer to one, the type of its bounds data; otherwise, NULL. */ | |
76a01679 | 1519 | |
d2e4a39e AS |
1520 | static struct type * |
1521 | desc_bounds_type (struct type *type) | |
14f9c5c9 | 1522 | { |
d2e4a39e | 1523 | struct type *r; |
14f9c5c9 AS |
1524 | |
1525 | type = desc_base_type (type); | |
1526 | ||
1527 | if (type == NULL) | |
1528 | return NULL; | |
1529 | else if (is_thin_pntr (type)) | |
1530 | { | |
1531 | type = thin_descriptor_type (type); | |
1532 | if (type == NULL) | |
4c4b4cd2 | 1533 | return NULL; |
14f9c5c9 AS |
1534 | r = lookup_struct_elt_type (type, "BOUNDS", 1); |
1535 | if (r != NULL) | |
61ee279c | 1536 | return ada_check_typedef (r); |
14f9c5c9 AS |
1537 | } |
1538 | else if (TYPE_CODE (type) == TYPE_CODE_STRUCT) | |
1539 | { | |
1540 | r = lookup_struct_elt_type (type, "P_BOUNDS", 1); | |
1541 | if (r != NULL) | |
61ee279c | 1542 | return ada_check_typedef (TYPE_TARGET_TYPE (ada_check_typedef (r))); |
14f9c5c9 AS |
1543 | } |
1544 | return NULL; | |
1545 | } | |
1546 | ||
1547 | /* If ARR is an array descriptor (fat or thin pointer), or pointer to | |
4c4b4cd2 PH |
1548 | one, a pointer to its bounds data. Otherwise NULL. */ |
1549 | ||
d2e4a39e AS |
1550 | static struct value * |
1551 | desc_bounds (struct value *arr) | |
14f9c5c9 | 1552 | { |
df407dfe | 1553 | struct type *type = ada_check_typedef (value_type (arr)); |
5b4ee69b | 1554 | |
d2e4a39e | 1555 | if (is_thin_pntr (type)) |
14f9c5c9 | 1556 | { |
d2e4a39e | 1557 | struct type *bounds_type = |
4c4b4cd2 | 1558 | desc_bounds_type (thin_descriptor_type (type)); |
14f9c5c9 AS |
1559 | LONGEST addr; |
1560 | ||
4cdfadb1 | 1561 | if (bounds_type == NULL) |
323e0a4a | 1562 | error (_("Bad GNAT array descriptor")); |
14f9c5c9 AS |
1563 | |
1564 | /* NOTE: The following calculation is not really kosher, but | |
d2e4a39e | 1565 | since desc_type is an XVE-encoded type (and shouldn't be), |
4c4b4cd2 | 1566 | the correct calculation is a real pain. FIXME (and fix GCC). */ |
14f9c5c9 | 1567 | if (TYPE_CODE (type) == TYPE_CODE_PTR) |
4c4b4cd2 | 1568 | addr = value_as_long (arr); |
d2e4a39e | 1569 | else |
42ae5230 | 1570 | addr = value_address (arr); |
14f9c5c9 | 1571 | |
d2e4a39e | 1572 | return |
4c4b4cd2 PH |
1573 | value_from_longest (lookup_pointer_type (bounds_type), |
1574 | addr - TYPE_LENGTH (bounds_type)); | |
14f9c5c9 AS |
1575 | } |
1576 | ||
1577 | else if (is_thick_pntr (type)) | |
05e522ef JB |
1578 | { |
1579 | struct value *p_bounds = value_struct_elt (&arr, NULL, "P_BOUNDS", NULL, | |
1580 | _("Bad GNAT array descriptor")); | |
1581 | struct type *p_bounds_type = value_type (p_bounds); | |
1582 | ||
1583 | if (p_bounds_type | |
1584 | && TYPE_CODE (p_bounds_type) == TYPE_CODE_PTR) | |
1585 | { | |
1586 | struct type *target_type = TYPE_TARGET_TYPE (p_bounds_type); | |
1587 | ||
1588 | if (TYPE_STUB (target_type)) | |
1589 | p_bounds = value_cast (lookup_pointer_type | |
1590 | (ada_check_typedef (target_type)), | |
1591 | p_bounds); | |
1592 | } | |
1593 | else | |
1594 | error (_("Bad GNAT array descriptor")); | |
1595 | ||
1596 | return p_bounds; | |
1597 | } | |
14f9c5c9 AS |
1598 | else |
1599 | return NULL; | |
1600 | } | |
1601 | ||
4c4b4cd2 PH |
1602 | /* If TYPE is the type of an array-descriptor (fat pointer), the bit |
1603 | position of the field containing the address of the bounds data. */ | |
1604 | ||
14f9c5c9 | 1605 | static int |
d2e4a39e | 1606 | fat_pntr_bounds_bitpos (struct type *type) |
14f9c5c9 AS |
1607 | { |
1608 | return TYPE_FIELD_BITPOS (desc_base_type (type), 1); | |
1609 | } | |
1610 | ||
1611 | /* If TYPE is the type of an array-descriptor (fat pointer), the bit | |
4c4b4cd2 PH |
1612 | size of the field containing the address of the bounds data. */ |
1613 | ||
14f9c5c9 | 1614 | static int |
d2e4a39e | 1615 | fat_pntr_bounds_bitsize (struct type *type) |
14f9c5c9 AS |
1616 | { |
1617 | type = desc_base_type (type); | |
1618 | ||
d2e4a39e | 1619 | if (TYPE_FIELD_BITSIZE (type, 1) > 0) |
14f9c5c9 AS |
1620 | return TYPE_FIELD_BITSIZE (type, 1); |
1621 | else | |
61ee279c | 1622 | return 8 * TYPE_LENGTH (ada_check_typedef (TYPE_FIELD_TYPE (type, 1))); |
14f9c5c9 AS |
1623 | } |
1624 | ||
4c4b4cd2 | 1625 | /* If TYPE is the type of an array descriptor (fat or thin pointer) or a |
556bdfd4 UW |
1626 | pointer to one, the type of its array data (a array-with-no-bounds type); |
1627 | otherwise, NULL. Use ada_type_of_array to get an array type with bounds | |
1628 | data. */ | |
4c4b4cd2 | 1629 | |
d2e4a39e | 1630 | static struct type * |
556bdfd4 | 1631 | desc_data_target_type (struct type *type) |
14f9c5c9 AS |
1632 | { |
1633 | type = desc_base_type (type); | |
1634 | ||
4c4b4cd2 | 1635 | /* NOTE: The following is bogus; see comment in desc_bounds. */ |
14f9c5c9 | 1636 | if (is_thin_pntr (type)) |
556bdfd4 | 1637 | return desc_base_type (TYPE_FIELD_TYPE (thin_descriptor_type (type), 1)); |
14f9c5c9 | 1638 | else if (is_thick_pntr (type)) |
556bdfd4 UW |
1639 | { |
1640 | struct type *data_type = lookup_struct_elt_type (type, "P_ARRAY", 1); | |
1641 | ||
1642 | if (data_type | |
1643 | && TYPE_CODE (ada_check_typedef (data_type)) == TYPE_CODE_PTR) | |
05e522ef | 1644 | return ada_check_typedef (TYPE_TARGET_TYPE (data_type)); |
556bdfd4 UW |
1645 | } |
1646 | ||
1647 | return NULL; | |
14f9c5c9 AS |
1648 | } |
1649 | ||
1650 | /* If ARR is an array descriptor (fat or thin pointer), a pointer to | |
1651 | its array data. */ | |
4c4b4cd2 | 1652 | |
d2e4a39e AS |
1653 | static struct value * |
1654 | desc_data (struct value *arr) | |
14f9c5c9 | 1655 | { |
df407dfe | 1656 | struct type *type = value_type (arr); |
5b4ee69b | 1657 | |
14f9c5c9 AS |
1658 | if (is_thin_pntr (type)) |
1659 | return thin_data_pntr (arr); | |
1660 | else if (is_thick_pntr (type)) | |
d2e4a39e | 1661 | return value_struct_elt (&arr, NULL, "P_ARRAY", NULL, |
323e0a4a | 1662 | _("Bad GNAT array descriptor")); |
14f9c5c9 AS |
1663 | else |
1664 | return NULL; | |
1665 | } | |
1666 | ||
1667 | ||
1668 | /* If TYPE is the type of an array-descriptor (fat pointer), the bit | |
4c4b4cd2 PH |
1669 | position of the field containing the address of the data. */ |
1670 | ||
14f9c5c9 | 1671 | static int |
d2e4a39e | 1672 | fat_pntr_data_bitpos (struct type *type) |
14f9c5c9 AS |
1673 | { |
1674 | return TYPE_FIELD_BITPOS (desc_base_type (type), 0); | |
1675 | } | |
1676 | ||
1677 | /* If TYPE is the type of an array-descriptor (fat pointer), the bit | |
4c4b4cd2 PH |
1678 | size of the field containing the address of the data. */ |
1679 | ||
14f9c5c9 | 1680 | static int |
d2e4a39e | 1681 | fat_pntr_data_bitsize (struct type *type) |
14f9c5c9 AS |
1682 | { |
1683 | type = desc_base_type (type); | |
1684 | ||
1685 | if (TYPE_FIELD_BITSIZE (type, 0) > 0) | |
1686 | return TYPE_FIELD_BITSIZE (type, 0); | |
d2e4a39e | 1687 | else |
14f9c5c9 AS |
1688 | return TARGET_CHAR_BIT * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 0)); |
1689 | } | |
1690 | ||
4c4b4cd2 | 1691 | /* If BOUNDS is an array-bounds structure (or pointer to one), return |
14f9c5c9 | 1692 | the Ith lower bound stored in it, if WHICH is 0, and the Ith upper |
4c4b4cd2 PH |
1693 | bound, if WHICH is 1. The first bound is I=1. */ |
1694 | ||
d2e4a39e AS |
1695 | static struct value * |
1696 | desc_one_bound (struct value *bounds, int i, int which) | |
14f9c5c9 | 1697 | { |
d2e4a39e | 1698 | return value_struct_elt (&bounds, NULL, bound_name[2 * i + which - 2], NULL, |
323e0a4a | 1699 | _("Bad GNAT array descriptor bounds")); |
14f9c5c9 AS |
1700 | } |
1701 | ||
1702 | /* If BOUNDS is an array-bounds structure type, return the bit position | |
1703 | of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper | |
4c4b4cd2 PH |
1704 | bound, if WHICH is 1. The first bound is I=1. */ |
1705 | ||
14f9c5c9 | 1706 | static int |
d2e4a39e | 1707 | desc_bound_bitpos (struct type *type, int i, int which) |
14f9c5c9 | 1708 | { |
d2e4a39e | 1709 | return TYPE_FIELD_BITPOS (desc_base_type (type), 2 * i + which - 2); |
14f9c5c9 AS |
1710 | } |
1711 | ||
1712 | /* If BOUNDS is an array-bounds structure type, return the bit field size | |
1713 | of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper | |
4c4b4cd2 PH |
1714 | bound, if WHICH is 1. The first bound is I=1. */ |
1715 | ||
76a01679 | 1716 | static int |
d2e4a39e | 1717 | desc_bound_bitsize (struct type *type, int i, int which) |
14f9c5c9 AS |
1718 | { |
1719 | type = desc_base_type (type); | |
1720 | ||
d2e4a39e AS |
1721 | if (TYPE_FIELD_BITSIZE (type, 2 * i + which - 2) > 0) |
1722 | return TYPE_FIELD_BITSIZE (type, 2 * i + which - 2); | |
1723 | else | |
1724 | return 8 * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 2 * i + which - 2)); | |
14f9c5c9 AS |
1725 | } |
1726 | ||
1727 | /* If TYPE is the type of an array-bounds structure, the type of its | |
4c4b4cd2 PH |
1728 | Ith bound (numbering from 1). Otherwise, NULL. */ |
1729 | ||
d2e4a39e AS |
1730 | static struct type * |
1731 | desc_index_type (struct type *type, int i) | |
14f9c5c9 AS |
1732 | { |
1733 | type = desc_base_type (type); | |
1734 | ||
1735 | if (TYPE_CODE (type) == TYPE_CODE_STRUCT) | |
d2e4a39e AS |
1736 | return lookup_struct_elt_type (type, bound_name[2 * i - 2], 1); |
1737 | else | |
14f9c5c9 AS |
1738 | return NULL; |
1739 | } | |
1740 | ||
4c4b4cd2 PH |
1741 | /* The number of index positions in the array-bounds type TYPE. |
1742 | Return 0 if TYPE is NULL. */ | |
1743 | ||
14f9c5c9 | 1744 | static int |
d2e4a39e | 1745 | desc_arity (struct type *type) |
14f9c5c9 AS |
1746 | { |
1747 | type = desc_base_type (type); | |
1748 | ||
1749 | if (type != NULL) | |
1750 | return TYPE_NFIELDS (type) / 2; | |
1751 | return 0; | |
1752 | } | |
1753 | ||
4c4b4cd2 PH |
1754 | /* Non-zero iff TYPE is a simple array type (not a pointer to one) or |
1755 | an array descriptor type (representing an unconstrained array | |
1756 | type). */ | |
1757 | ||
76a01679 JB |
1758 | static int |
1759 | ada_is_direct_array_type (struct type *type) | |
4c4b4cd2 PH |
1760 | { |
1761 | if (type == NULL) | |
1762 | return 0; | |
61ee279c | 1763 | type = ada_check_typedef (type); |
4c4b4cd2 | 1764 | return (TYPE_CODE (type) == TYPE_CODE_ARRAY |
76a01679 | 1765 | || ada_is_array_descriptor_type (type)); |
4c4b4cd2 PH |
1766 | } |
1767 | ||
52ce6436 | 1768 | /* Non-zero iff TYPE represents any kind of array in Ada, or a pointer |
0963b4bd | 1769 | * to one. */ |
52ce6436 | 1770 | |
2c0b251b | 1771 | static int |
52ce6436 PH |
1772 | ada_is_array_type (struct type *type) |
1773 | { | |
1774 | while (type != NULL | |
1775 | && (TYPE_CODE (type) == TYPE_CODE_PTR | |
1776 | || TYPE_CODE (type) == TYPE_CODE_REF)) | |
1777 | type = TYPE_TARGET_TYPE (type); | |
1778 | return ada_is_direct_array_type (type); | |
1779 | } | |
1780 | ||
4c4b4cd2 | 1781 | /* Non-zero iff TYPE is a simple array type or pointer to one. */ |
14f9c5c9 | 1782 | |
14f9c5c9 | 1783 | int |
4c4b4cd2 | 1784 | ada_is_simple_array_type (struct type *type) |
14f9c5c9 AS |
1785 | { |
1786 | if (type == NULL) | |
1787 | return 0; | |
61ee279c | 1788 | type = ada_check_typedef (type); |
14f9c5c9 | 1789 | return (TYPE_CODE (type) == TYPE_CODE_ARRAY |
4c4b4cd2 | 1790 | || (TYPE_CODE (type) == TYPE_CODE_PTR |
b0dd7688 JB |
1791 | && TYPE_CODE (ada_check_typedef (TYPE_TARGET_TYPE (type))) |
1792 | == TYPE_CODE_ARRAY)); | |
14f9c5c9 AS |
1793 | } |
1794 | ||
4c4b4cd2 PH |
1795 | /* Non-zero iff TYPE belongs to a GNAT array descriptor. */ |
1796 | ||
14f9c5c9 | 1797 | int |
4c4b4cd2 | 1798 | ada_is_array_descriptor_type (struct type *type) |
14f9c5c9 | 1799 | { |
556bdfd4 | 1800 | struct type *data_type = desc_data_target_type (type); |
14f9c5c9 AS |
1801 | |
1802 | if (type == NULL) | |
1803 | return 0; | |
61ee279c | 1804 | type = ada_check_typedef (type); |
556bdfd4 UW |
1805 | return (data_type != NULL |
1806 | && TYPE_CODE (data_type) == TYPE_CODE_ARRAY | |
1807 | && desc_arity (desc_bounds_type (type)) > 0); | |
14f9c5c9 AS |
1808 | } |
1809 | ||
1810 | /* Non-zero iff type is a partially mal-formed GNAT array | |
4c4b4cd2 | 1811 | descriptor. FIXME: This is to compensate for some problems with |
14f9c5c9 | 1812 | debugging output from GNAT. Re-examine periodically to see if it |
4c4b4cd2 PH |
1813 | is still needed. */ |
1814 | ||
14f9c5c9 | 1815 | int |
ebf56fd3 | 1816 | ada_is_bogus_array_descriptor (struct type *type) |
14f9c5c9 | 1817 | { |
d2e4a39e | 1818 | return |
14f9c5c9 AS |
1819 | type != NULL |
1820 | && TYPE_CODE (type) == TYPE_CODE_STRUCT | |
1821 | && (lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL | |
4c4b4cd2 PH |
1822 | || lookup_struct_elt_type (type, "P_ARRAY", 1) != NULL) |
1823 | && !ada_is_array_descriptor_type (type); | |
14f9c5c9 AS |
1824 | } |
1825 | ||
1826 | ||
4c4b4cd2 | 1827 | /* If ARR has a record type in the form of a standard GNAT array descriptor, |
14f9c5c9 | 1828 | (fat pointer) returns the type of the array data described---specifically, |
4c4b4cd2 | 1829 | a pointer-to-array type. If BOUNDS is non-zero, the bounds data are filled |
14f9c5c9 | 1830 | in from the descriptor; otherwise, they are left unspecified. If |
4c4b4cd2 PH |
1831 | the ARR denotes a null array descriptor and BOUNDS is non-zero, |
1832 | returns NULL. The result is simply the type of ARR if ARR is not | |
14f9c5c9 | 1833 | a descriptor. */ |
d2e4a39e AS |
1834 | struct type * |
1835 | ada_type_of_array (struct value *arr, int bounds) | |
14f9c5c9 | 1836 | { |
ad82864c JB |
1837 | if (ada_is_constrained_packed_array_type (value_type (arr))) |
1838 | return decode_constrained_packed_array_type (value_type (arr)); | |
14f9c5c9 | 1839 | |
df407dfe AC |
1840 | if (!ada_is_array_descriptor_type (value_type (arr))) |
1841 | return value_type (arr); | |
d2e4a39e AS |
1842 | |
1843 | if (!bounds) | |
ad82864c JB |
1844 | { |
1845 | struct type *array_type = | |
1846 | ada_check_typedef (desc_data_target_type (value_type (arr))); | |
1847 | ||
1848 | if (ada_is_unconstrained_packed_array_type (value_type (arr))) | |
1849 | TYPE_FIELD_BITSIZE (array_type, 0) = | |
1850 | decode_packed_array_bitsize (value_type (arr)); | |
1851 | ||
1852 | return array_type; | |
1853 | } | |
14f9c5c9 AS |
1854 | else |
1855 | { | |
d2e4a39e | 1856 | struct type *elt_type; |
14f9c5c9 | 1857 | int arity; |
d2e4a39e | 1858 | struct value *descriptor; |
14f9c5c9 | 1859 | |
df407dfe AC |
1860 | elt_type = ada_array_element_type (value_type (arr), -1); |
1861 | arity = ada_array_arity (value_type (arr)); | |
14f9c5c9 | 1862 | |
d2e4a39e | 1863 | if (elt_type == NULL || arity == 0) |
df407dfe | 1864 | return ada_check_typedef (value_type (arr)); |
14f9c5c9 AS |
1865 | |
1866 | descriptor = desc_bounds (arr); | |
d2e4a39e | 1867 | if (value_as_long (descriptor) == 0) |
4c4b4cd2 | 1868 | return NULL; |
d2e4a39e | 1869 | while (arity > 0) |
4c4b4cd2 | 1870 | { |
e9bb382b UW |
1871 | struct type *range_type = alloc_type_copy (value_type (arr)); |
1872 | struct type *array_type = alloc_type_copy (value_type (arr)); | |
4c4b4cd2 PH |
1873 | struct value *low = desc_one_bound (descriptor, arity, 0); |
1874 | struct value *high = desc_one_bound (descriptor, arity, 1); | |
4c4b4cd2 | 1875 | |
5b4ee69b | 1876 | arity -= 1; |
df407dfe | 1877 | create_range_type (range_type, value_type (low), |
529cad9c PH |
1878 | longest_to_int (value_as_long (low)), |
1879 | longest_to_int (value_as_long (high))); | |
4c4b4cd2 | 1880 | elt_type = create_array_type (array_type, elt_type, range_type); |
ad82864c JB |
1881 | |
1882 | if (ada_is_unconstrained_packed_array_type (value_type (arr))) | |
e67ad678 JB |
1883 | { |
1884 | /* We need to store the element packed bitsize, as well as | |
1885 | recompute the array size, because it was previously | |
1886 | computed based on the unpacked element size. */ | |
1887 | LONGEST lo = value_as_long (low); | |
1888 | LONGEST hi = value_as_long (high); | |
1889 | ||
1890 | TYPE_FIELD_BITSIZE (elt_type, 0) = | |
1891 | decode_packed_array_bitsize (value_type (arr)); | |
1892 | /* If the array has no element, then the size is already | |
1893 | zero, and does not need to be recomputed. */ | |
1894 | if (lo < hi) | |
1895 | { | |
1896 | int array_bitsize = | |
1897 | (hi - lo + 1) * TYPE_FIELD_BITSIZE (elt_type, 0); | |
1898 | ||
1899 | TYPE_LENGTH (array_type) = (array_bitsize + 7) / 8; | |
1900 | } | |
1901 | } | |
4c4b4cd2 | 1902 | } |
14f9c5c9 AS |
1903 | |
1904 | return lookup_pointer_type (elt_type); | |
1905 | } | |
1906 | } | |
1907 | ||
1908 | /* If ARR does not represent an array, returns ARR unchanged. | |
4c4b4cd2 PH |
1909 | Otherwise, returns either a standard GDB array with bounds set |
1910 | appropriately or, if ARR is a non-null fat pointer, a pointer to a standard | |
1911 | GDB array. Returns NULL if ARR is a null fat pointer. */ | |
1912 | ||
d2e4a39e AS |
1913 | struct value * |
1914 | ada_coerce_to_simple_array_ptr (struct value *arr) | |
14f9c5c9 | 1915 | { |
df407dfe | 1916 | if (ada_is_array_descriptor_type (value_type (arr))) |
14f9c5c9 | 1917 | { |
d2e4a39e | 1918 | struct type *arrType = ada_type_of_array (arr, 1); |
5b4ee69b | 1919 | |
14f9c5c9 | 1920 | if (arrType == NULL) |
4c4b4cd2 | 1921 | return NULL; |
14f9c5c9 AS |
1922 | return value_cast (arrType, value_copy (desc_data (arr))); |
1923 | } | |
ad82864c JB |
1924 | else if (ada_is_constrained_packed_array_type (value_type (arr))) |
1925 | return decode_constrained_packed_array (arr); | |
14f9c5c9 AS |
1926 | else |
1927 | return arr; | |
1928 | } | |
1929 | ||
1930 | /* If ARR does not represent an array, returns ARR unchanged. | |
1931 | Otherwise, returns a standard GDB array describing ARR (which may | |
4c4b4cd2 PH |
1932 | be ARR itself if it already is in the proper form). */ |
1933 | ||
720d1a40 | 1934 | struct value * |
d2e4a39e | 1935 | ada_coerce_to_simple_array (struct value *arr) |
14f9c5c9 | 1936 | { |
df407dfe | 1937 | if (ada_is_array_descriptor_type (value_type (arr))) |
14f9c5c9 | 1938 | { |
d2e4a39e | 1939 | struct value *arrVal = ada_coerce_to_simple_array_ptr (arr); |
5b4ee69b | 1940 | |
14f9c5c9 | 1941 | if (arrVal == NULL) |
323e0a4a | 1942 | error (_("Bounds unavailable for null array pointer.")); |
529cad9c | 1943 | check_size (TYPE_TARGET_TYPE (value_type (arrVal))); |
14f9c5c9 AS |
1944 | return value_ind (arrVal); |
1945 | } | |
ad82864c JB |
1946 | else if (ada_is_constrained_packed_array_type (value_type (arr))) |
1947 | return decode_constrained_packed_array (arr); | |
d2e4a39e | 1948 | else |
14f9c5c9 AS |
1949 | return arr; |
1950 | } | |
1951 | ||
1952 | /* If TYPE represents a GNAT array type, return it translated to an | |
1953 | ordinary GDB array type (possibly with BITSIZE fields indicating | |
4c4b4cd2 PH |
1954 | packing). For other types, is the identity. */ |
1955 | ||
d2e4a39e AS |
1956 | struct type * |
1957 | ada_coerce_to_simple_array_type (struct type *type) | |
14f9c5c9 | 1958 | { |
ad82864c JB |
1959 | if (ada_is_constrained_packed_array_type (type)) |
1960 | return decode_constrained_packed_array_type (type); | |
17280b9f UW |
1961 | |
1962 | if (ada_is_array_descriptor_type (type)) | |
556bdfd4 | 1963 | return ada_check_typedef (desc_data_target_type (type)); |
17280b9f UW |
1964 | |
1965 | return type; | |
14f9c5c9 AS |
1966 | } |
1967 | ||
4c4b4cd2 PH |
1968 | /* Non-zero iff TYPE represents a standard GNAT packed-array type. */ |
1969 | ||
ad82864c JB |
1970 | static int |
1971 | ada_is_packed_array_type (struct type *type) | |
14f9c5c9 AS |
1972 | { |
1973 | if (type == NULL) | |
1974 | return 0; | |
4c4b4cd2 | 1975 | type = desc_base_type (type); |
61ee279c | 1976 | type = ada_check_typedef (type); |
d2e4a39e | 1977 | return |
14f9c5c9 AS |
1978 | ada_type_name (type) != NULL |
1979 | && strstr (ada_type_name (type), "___XP") != NULL; | |
1980 | } | |
1981 | ||
ad82864c JB |
1982 | /* Non-zero iff TYPE represents a standard GNAT constrained |
1983 | packed-array type. */ | |
1984 | ||
1985 | int | |
1986 | ada_is_constrained_packed_array_type (struct type *type) | |
1987 | { | |
1988 | return ada_is_packed_array_type (type) | |
1989 | && !ada_is_array_descriptor_type (type); | |
1990 | } | |
1991 | ||
1992 | /* Non-zero iff TYPE represents an array descriptor for a | |
1993 | unconstrained packed-array type. */ | |
1994 | ||
1995 | static int | |
1996 | ada_is_unconstrained_packed_array_type (struct type *type) | |
1997 | { | |
1998 | return ada_is_packed_array_type (type) | |
1999 | && ada_is_array_descriptor_type (type); | |
2000 | } | |
2001 | ||
2002 | /* Given that TYPE encodes a packed array type (constrained or unconstrained), | |
2003 | return the size of its elements in bits. */ | |
2004 | ||
2005 | static long | |
2006 | decode_packed_array_bitsize (struct type *type) | |
2007 | { | |
0d5cff50 DE |
2008 | const char *raw_name; |
2009 | const char *tail; | |
ad82864c JB |
2010 | long bits; |
2011 | ||
720d1a40 JB |
2012 | /* Access to arrays implemented as fat pointers are encoded as a typedef |
2013 | of the fat pointer type. We need the name of the fat pointer type | |
2014 | to do the decoding, so strip the typedef layer. */ | |
2015 | if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF) | |
2016 | type = ada_typedef_target_type (type); | |
2017 | ||
2018 | raw_name = ada_type_name (ada_check_typedef (type)); | |
ad82864c JB |
2019 | if (!raw_name) |
2020 | raw_name = ada_type_name (desc_base_type (type)); | |
2021 | ||
2022 | if (!raw_name) | |
2023 | return 0; | |
2024 | ||
2025 | tail = strstr (raw_name, "___XP"); | |
720d1a40 | 2026 | gdb_assert (tail != NULL); |
ad82864c JB |
2027 | |
2028 | if (sscanf (tail + sizeof ("___XP") - 1, "%ld", &bits) != 1) | |
2029 | { | |
2030 | lim_warning | |
2031 | (_("could not understand bit size information on packed array")); | |
2032 | return 0; | |
2033 | } | |
2034 | ||
2035 | return bits; | |
2036 | } | |
2037 | ||
14f9c5c9 AS |
2038 | /* Given that TYPE is a standard GDB array type with all bounds filled |
2039 | in, and that the element size of its ultimate scalar constituents | |
2040 | (that is, either its elements, or, if it is an array of arrays, its | |
2041 | elements' elements, etc.) is *ELT_BITS, return an identical type, | |
2042 | but with the bit sizes of its elements (and those of any | |
2043 | constituent arrays) recorded in the BITSIZE components of its | |
4c4b4cd2 PH |
2044 | TYPE_FIELD_BITSIZE values, and with *ELT_BITS set to its total size |
2045 | in bits. */ | |
2046 | ||
d2e4a39e | 2047 | static struct type * |
ad82864c | 2048 | constrained_packed_array_type (struct type *type, long *elt_bits) |
14f9c5c9 | 2049 | { |
d2e4a39e AS |
2050 | struct type *new_elt_type; |
2051 | struct type *new_type; | |
99b1c762 JB |
2052 | struct type *index_type_desc; |
2053 | struct type *index_type; | |
14f9c5c9 AS |
2054 | LONGEST low_bound, high_bound; |
2055 | ||
61ee279c | 2056 | type = ada_check_typedef (type); |
14f9c5c9 AS |
2057 | if (TYPE_CODE (type) != TYPE_CODE_ARRAY) |
2058 | return type; | |
2059 | ||
99b1c762 JB |
2060 | index_type_desc = ada_find_parallel_type (type, "___XA"); |
2061 | if (index_type_desc) | |
2062 | index_type = to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, 0), | |
2063 | NULL); | |
2064 | else | |
2065 | index_type = TYPE_INDEX_TYPE (type); | |
2066 | ||
e9bb382b | 2067 | new_type = alloc_type_copy (type); |
ad82864c JB |
2068 | new_elt_type = |
2069 | constrained_packed_array_type (ada_check_typedef (TYPE_TARGET_TYPE (type)), | |
2070 | elt_bits); | |
99b1c762 | 2071 | create_array_type (new_type, new_elt_type, index_type); |
14f9c5c9 AS |
2072 | TYPE_FIELD_BITSIZE (new_type, 0) = *elt_bits; |
2073 | TYPE_NAME (new_type) = ada_type_name (type); | |
2074 | ||
99b1c762 | 2075 | if (get_discrete_bounds (index_type, &low_bound, &high_bound) < 0) |
14f9c5c9 AS |
2076 | low_bound = high_bound = 0; |
2077 | if (high_bound < low_bound) | |
2078 | *elt_bits = TYPE_LENGTH (new_type) = 0; | |
d2e4a39e | 2079 | else |
14f9c5c9 AS |
2080 | { |
2081 | *elt_bits *= (high_bound - low_bound + 1); | |
d2e4a39e | 2082 | TYPE_LENGTH (new_type) = |
4c4b4cd2 | 2083 | (*elt_bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT; |
14f9c5c9 AS |
2084 | } |
2085 | ||
876cecd0 | 2086 | TYPE_FIXED_INSTANCE (new_type) = 1; |
14f9c5c9 AS |
2087 | return new_type; |
2088 | } | |
2089 | ||
ad82864c JB |
2090 | /* The array type encoded by TYPE, where |
2091 | ada_is_constrained_packed_array_type (TYPE). */ | |
4c4b4cd2 | 2092 | |
d2e4a39e | 2093 | static struct type * |
ad82864c | 2094 | decode_constrained_packed_array_type (struct type *type) |
d2e4a39e | 2095 | { |
0d5cff50 | 2096 | const char *raw_name = ada_type_name (ada_check_typedef (type)); |
727e3d2e | 2097 | char *name; |
0d5cff50 | 2098 | const char *tail; |
d2e4a39e | 2099 | struct type *shadow_type; |
14f9c5c9 | 2100 | long bits; |
14f9c5c9 | 2101 | |
727e3d2e JB |
2102 | if (!raw_name) |
2103 | raw_name = ada_type_name (desc_base_type (type)); | |
2104 | ||
2105 | if (!raw_name) | |
2106 | return NULL; | |
2107 | ||
2108 | name = (char *) alloca (strlen (raw_name) + 1); | |
2109 | tail = strstr (raw_name, "___XP"); | |
4c4b4cd2 PH |
2110 | type = desc_base_type (type); |
2111 | ||
14f9c5c9 AS |
2112 | memcpy (name, raw_name, tail - raw_name); |
2113 | name[tail - raw_name] = '\000'; | |
2114 | ||
b4ba55a1 JB |
2115 | shadow_type = ada_find_parallel_type_with_name (type, name); |
2116 | ||
2117 | if (shadow_type == NULL) | |
14f9c5c9 | 2118 | { |
323e0a4a | 2119 | lim_warning (_("could not find bounds information on packed array")); |
14f9c5c9 AS |
2120 | return NULL; |
2121 | } | |
cb249c71 | 2122 | CHECK_TYPEDEF (shadow_type); |
14f9c5c9 AS |
2123 | |
2124 | if (TYPE_CODE (shadow_type) != TYPE_CODE_ARRAY) | |
2125 | { | |
0963b4bd MS |
2126 | lim_warning (_("could not understand bounds " |
2127 | "information on packed array")); | |
14f9c5c9 AS |
2128 | return NULL; |
2129 | } | |
d2e4a39e | 2130 | |
ad82864c JB |
2131 | bits = decode_packed_array_bitsize (type); |
2132 | return constrained_packed_array_type (shadow_type, &bits); | |
14f9c5c9 AS |
2133 | } |
2134 | ||
ad82864c JB |
2135 | /* Given that ARR is a struct value *indicating a GNAT constrained packed |
2136 | array, returns a simple array that denotes that array. Its type is a | |
14f9c5c9 AS |
2137 | standard GDB array type except that the BITSIZEs of the array |
2138 | target types are set to the number of bits in each element, and the | |
4c4b4cd2 | 2139 | type length is set appropriately. */ |
14f9c5c9 | 2140 | |
d2e4a39e | 2141 | static struct value * |
ad82864c | 2142 | decode_constrained_packed_array (struct value *arr) |
14f9c5c9 | 2143 | { |
4c4b4cd2 | 2144 | struct type *type; |
14f9c5c9 | 2145 | |
4c4b4cd2 | 2146 | arr = ada_coerce_ref (arr); |
284614f0 JB |
2147 | |
2148 | /* If our value is a pointer, then dererence it. Make sure that | |
2149 | this operation does not cause the target type to be fixed, as | |
2150 | this would indirectly cause this array to be decoded. The rest | |
2151 | of the routine assumes that the array hasn't been decoded yet, | |
2152 | so we use the basic "value_ind" routine to perform the dereferencing, | |
2153 | as opposed to using "ada_value_ind". */ | |
828292f2 | 2154 | if (TYPE_CODE (ada_check_typedef (value_type (arr))) == TYPE_CODE_PTR) |
284614f0 | 2155 | arr = value_ind (arr); |
4c4b4cd2 | 2156 | |
ad82864c | 2157 | type = decode_constrained_packed_array_type (value_type (arr)); |
14f9c5c9 AS |
2158 | if (type == NULL) |
2159 | { | |
323e0a4a | 2160 | error (_("can't unpack array")); |
14f9c5c9 AS |
2161 | return NULL; |
2162 | } | |
61ee279c | 2163 | |
50810684 | 2164 | if (gdbarch_bits_big_endian (get_type_arch (value_type (arr))) |
32c9a795 | 2165 | && ada_is_modular_type (value_type (arr))) |
61ee279c PH |
2166 | { |
2167 | /* This is a (right-justified) modular type representing a packed | |
2168 | array with no wrapper. In order to interpret the value through | |
2169 | the (left-justified) packed array type we just built, we must | |
2170 | first left-justify it. */ | |
2171 | int bit_size, bit_pos; | |
2172 | ULONGEST mod; | |
2173 | ||
df407dfe | 2174 | mod = ada_modulus (value_type (arr)) - 1; |
61ee279c PH |
2175 | bit_size = 0; |
2176 | while (mod > 0) | |
2177 | { | |
2178 | bit_size += 1; | |
2179 | mod >>= 1; | |
2180 | } | |
df407dfe | 2181 | bit_pos = HOST_CHAR_BIT * TYPE_LENGTH (value_type (arr)) - bit_size; |
61ee279c PH |
2182 | arr = ada_value_primitive_packed_val (arr, NULL, |
2183 | bit_pos / HOST_CHAR_BIT, | |
2184 | bit_pos % HOST_CHAR_BIT, | |
2185 | bit_size, | |
2186 | type); | |
2187 | } | |
2188 | ||
4c4b4cd2 | 2189 | return coerce_unspec_val_to_type (arr, type); |
14f9c5c9 AS |
2190 | } |
2191 | ||
2192 | ||
2193 | /* The value of the element of packed array ARR at the ARITY indices | |
4c4b4cd2 | 2194 | given in IND. ARR must be a simple array. */ |
14f9c5c9 | 2195 | |
d2e4a39e AS |
2196 | static struct value * |
2197 | value_subscript_packed (struct value *arr, int arity, struct value **ind) | |
14f9c5c9 AS |
2198 | { |
2199 | int i; | |
2200 | int bits, elt_off, bit_off; | |
2201 | long elt_total_bit_offset; | |
d2e4a39e AS |
2202 | struct type *elt_type; |
2203 | struct value *v; | |
14f9c5c9 AS |
2204 | |
2205 | bits = 0; | |
2206 | elt_total_bit_offset = 0; | |
df407dfe | 2207 | elt_type = ada_check_typedef (value_type (arr)); |
d2e4a39e | 2208 | for (i = 0; i < arity; i += 1) |
14f9c5c9 | 2209 | { |
d2e4a39e | 2210 | if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY |
4c4b4cd2 PH |
2211 | || TYPE_FIELD_BITSIZE (elt_type, 0) == 0) |
2212 | error | |
0963b4bd MS |
2213 | (_("attempt to do packed indexing of " |
2214 | "something other than a packed array")); | |
14f9c5c9 | 2215 | else |
4c4b4cd2 PH |
2216 | { |
2217 | struct type *range_type = TYPE_INDEX_TYPE (elt_type); | |
2218 | LONGEST lowerbound, upperbound; | |
2219 | LONGEST idx; | |
2220 | ||
2221 | if (get_discrete_bounds (range_type, &lowerbound, &upperbound) < 0) | |
2222 | { | |
323e0a4a | 2223 | lim_warning (_("don't know bounds of array")); |
4c4b4cd2 PH |
2224 | lowerbound = upperbound = 0; |
2225 | } | |
2226 | ||
3cb382c9 | 2227 | idx = pos_atr (ind[i]); |
4c4b4cd2 | 2228 | if (idx < lowerbound || idx > upperbound) |
0963b4bd MS |
2229 | lim_warning (_("packed array index %ld out of bounds"), |
2230 | (long) idx); | |
4c4b4cd2 PH |
2231 | bits = TYPE_FIELD_BITSIZE (elt_type, 0); |
2232 | elt_total_bit_offset += (idx - lowerbound) * bits; | |
61ee279c | 2233 | elt_type = ada_check_typedef (TYPE_TARGET_TYPE (elt_type)); |
4c4b4cd2 | 2234 | } |
14f9c5c9 AS |
2235 | } |
2236 | elt_off = elt_total_bit_offset / HOST_CHAR_BIT; | |
2237 | bit_off = elt_total_bit_offset % HOST_CHAR_BIT; | |
d2e4a39e AS |
2238 | |
2239 | v = ada_value_primitive_packed_val (arr, NULL, elt_off, bit_off, | |
4c4b4cd2 | 2240 | bits, elt_type); |
14f9c5c9 AS |
2241 | return v; |
2242 | } | |
2243 | ||
4c4b4cd2 | 2244 | /* Non-zero iff TYPE includes negative integer values. */ |
14f9c5c9 AS |
2245 | |
2246 | static int | |
d2e4a39e | 2247 | has_negatives (struct type *type) |
14f9c5c9 | 2248 | { |
d2e4a39e AS |
2249 | switch (TYPE_CODE (type)) |
2250 | { | |
2251 | default: | |
2252 | return 0; | |
2253 | case TYPE_CODE_INT: | |
2254 | return !TYPE_UNSIGNED (type); | |
2255 | case TYPE_CODE_RANGE: | |
2256 | return TYPE_LOW_BOUND (type) < 0; | |
2257 | } | |
14f9c5c9 | 2258 | } |
d2e4a39e | 2259 | |
14f9c5c9 AS |
2260 | |
2261 | /* Create a new value of type TYPE from the contents of OBJ starting | |
2262 | at byte OFFSET, and bit offset BIT_OFFSET within that byte, | |
2263 | proceeding for BIT_SIZE bits. If OBJ is an lval in memory, then | |
0963b4bd | 2264 | assigning through the result will set the field fetched from. |
4c4b4cd2 PH |
2265 | VALADDR is ignored unless OBJ is NULL, in which case, |
2266 | VALADDR+OFFSET must address the start of storage containing the | |
2267 | packed value. The value returned in this case is never an lval. | |
2268 | Assumes 0 <= BIT_OFFSET < HOST_CHAR_BIT. */ | |
14f9c5c9 | 2269 | |
d2e4a39e | 2270 | struct value * |
fc1a4b47 | 2271 | ada_value_primitive_packed_val (struct value *obj, const gdb_byte *valaddr, |
a2bd3dcd | 2272 | long offset, int bit_offset, int bit_size, |
4c4b4cd2 | 2273 | struct type *type) |
14f9c5c9 | 2274 | { |
d2e4a39e | 2275 | struct value *v; |
4c4b4cd2 PH |
2276 | int src, /* Index into the source area */ |
2277 | targ, /* Index into the target area */ | |
2278 | srcBitsLeft, /* Number of source bits left to move */ | |
2279 | nsrc, ntarg, /* Number of source and target bytes */ | |
2280 | unusedLS, /* Number of bits in next significant | |
2281 | byte of source that are unused */ | |
2282 | accumSize; /* Number of meaningful bits in accum */ | |
2283 | unsigned char *bytes; /* First byte containing data to unpack */ | |
d2e4a39e | 2284 | unsigned char *unpacked; |
4c4b4cd2 | 2285 | unsigned long accum; /* Staging area for bits being transferred */ |
14f9c5c9 AS |
2286 | unsigned char sign; |
2287 | int len = (bit_size + bit_offset + HOST_CHAR_BIT - 1) / 8; | |
4c4b4cd2 PH |
2288 | /* Transmit bytes from least to most significant; delta is the direction |
2289 | the indices move. */ | |
50810684 | 2290 | int delta = gdbarch_bits_big_endian (get_type_arch (type)) ? -1 : 1; |
14f9c5c9 | 2291 | |
61ee279c | 2292 | type = ada_check_typedef (type); |
14f9c5c9 AS |
2293 | |
2294 | if (obj == NULL) | |
2295 | { | |
2296 | v = allocate_value (type); | |
d2e4a39e | 2297 | bytes = (unsigned char *) (valaddr + offset); |
14f9c5c9 | 2298 | } |
9214ee5f | 2299 | else if (VALUE_LVAL (obj) == lval_memory && value_lazy (obj)) |
14f9c5c9 | 2300 | { |
53ba8333 | 2301 | v = value_at (type, value_address (obj)); |
d2e4a39e | 2302 | bytes = (unsigned char *) alloca (len); |
53ba8333 | 2303 | read_memory (value_address (v) + offset, bytes, len); |
14f9c5c9 | 2304 | } |
d2e4a39e | 2305 | else |
14f9c5c9 AS |
2306 | { |
2307 | v = allocate_value (type); | |
0fd88904 | 2308 | bytes = (unsigned char *) value_contents (obj) + offset; |
14f9c5c9 | 2309 | } |
d2e4a39e AS |
2310 | |
2311 | if (obj != NULL) | |
14f9c5c9 | 2312 | { |
53ba8333 | 2313 | long new_offset = offset; |
5b4ee69b | 2314 | |
74bcbdf3 | 2315 | set_value_component_location (v, obj); |
9bbda503 AC |
2316 | set_value_bitpos (v, bit_offset + value_bitpos (obj)); |
2317 | set_value_bitsize (v, bit_size); | |
df407dfe | 2318 | if (value_bitpos (v) >= HOST_CHAR_BIT) |
4c4b4cd2 | 2319 | { |
53ba8333 | 2320 | ++new_offset; |
9bbda503 | 2321 | set_value_bitpos (v, value_bitpos (v) - HOST_CHAR_BIT); |
4c4b4cd2 | 2322 | } |
53ba8333 JB |
2323 | set_value_offset (v, new_offset); |
2324 | ||
2325 | /* Also set the parent value. This is needed when trying to | |
2326 | assign a new value (in inferior memory). */ | |
2327 | set_value_parent (v, obj); | |
2328 | value_incref (obj); | |
14f9c5c9 AS |
2329 | } |
2330 | else | |
9bbda503 | 2331 | set_value_bitsize (v, bit_size); |
0fd88904 | 2332 | unpacked = (unsigned char *) value_contents (v); |
14f9c5c9 AS |
2333 | |
2334 | srcBitsLeft = bit_size; | |
2335 | nsrc = len; | |
2336 | ntarg = TYPE_LENGTH (type); | |
2337 | sign = 0; | |
2338 | if (bit_size == 0) | |
2339 | { | |
2340 | memset (unpacked, 0, TYPE_LENGTH (type)); | |
2341 | return v; | |
2342 | } | |
50810684 | 2343 | else if (gdbarch_bits_big_endian (get_type_arch (type))) |
14f9c5c9 | 2344 | { |
d2e4a39e | 2345 | src = len - 1; |
1265e4aa JB |
2346 | if (has_negatives (type) |
2347 | && ((bytes[0] << bit_offset) & (1 << (HOST_CHAR_BIT - 1)))) | |
4c4b4cd2 | 2348 | sign = ~0; |
d2e4a39e AS |
2349 | |
2350 | unusedLS = | |
4c4b4cd2 PH |
2351 | (HOST_CHAR_BIT - (bit_size + bit_offset) % HOST_CHAR_BIT) |
2352 | % HOST_CHAR_BIT; | |
14f9c5c9 AS |
2353 | |
2354 | switch (TYPE_CODE (type)) | |
4c4b4cd2 PH |
2355 | { |
2356 | case TYPE_CODE_ARRAY: | |
2357 | case TYPE_CODE_UNION: | |
2358 | case TYPE_CODE_STRUCT: | |
2359 | /* Non-scalar values must be aligned at a byte boundary... */ | |
2360 | accumSize = | |
2361 | (HOST_CHAR_BIT - bit_size % HOST_CHAR_BIT) % HOST_CHAR_BIT; | |
2362 | /* ... And are placed at the beginning (most-significant) bytes | |
2363 | of the target. */ | |
529cad9c | 2364 | targ = (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT - 1; |
0056e4d5 | 2365 | ntarg = targ + 1; |
4c4b4cd2 PH |
2366 | break; |
2367 | default: | |
2368 | accumSize = 0; | |
2369 | targ = TYPE_LENGTH (type) - 1; | |
2370 | break; | |
2371 | } | |
14f9c5c9 | 2372 | } |
d2e4a39e | 2373 | else |
14f9c5c9 AS |
2374 | { |
2375 | int sign_bit_offset = (bit_size + bit_offset - 1) % 8; | |
2376 | ||
2377 | src = targ = 0; | |
2378 | unusedLS = bit_offset; | |
2379 | accumSize = 0; | |
2380 | ||
d2e4a39e | 2381 | if (has_negatives (type) && (bytes[len - 1] & (1 << sign_bit_offset))) |
4c4b4cd2 | 2382 | sign = ~0; |
14f9c5c9 | 2383 | } |
d2e4a39e | 2384 | |
14f9c5c9 AS |
2385 | accum = 0; |
2386 | while (nsrc > 0) | |
2387 | { | |
2388 | /* Mask for removing bits of the next source byte that are not | |
4c4b4cd2 | 2389 | part of the value. */ |
d2e4a39e | 2390 | unsigned int unusedMSMask = |
4c4b4cd2 PH |
2391 | (1 << (srcBitsLeft >= HOST_CHAR_BIT ? HOST_CHAR_BIT : srcBitsLeft)) - |
2392 | 1; | |
2393 | /* Sign-extend bits for this byte. */ | |
14f9c5c9 | 2394 | unsigned int signMask = sign & ~unusedMSMask; |
5b4ee69b | 2395 | |
d2e4a39e | 2396 | accum |= |
4c4b4cd2 | 2397 | (((bytes[src] >> unusedLS) & unusedMSMask) | signMask) << accumSize; |
14f9c5c9 | 2398 | accumSize += HOST_CHAR_BIT - unusedLS; |
d2e4a39e | 2399 | if (accumSize >= HOST_CHAR_BIT) |
4c4b4cd2 PH |
2400 | { |
2401 | unpacked[targ] = accum & ~(~0L << HOST_CHAR_BIT); | |
2402 | accumSize -= HOST_CHAR_BIT; | |
2403 | accum >>= HOST_CHAR_BIT; | |
2404 | ntarg -= 1; | |
2405 | targ += delta; | |
2406 | } | |
14f9c5c9 AS |
2407 | srcBitsLeft -= HOST_CHAR_BIT - unusedLS; |
2408 | unusedLS = 0; | |
2409 | nsrc -= 1; | |
2410 | src += delta; | |
2411 | } | |
2412 | while (ntarg > 0) | |
2413 | { | |
2414 | accum |= sign << accumSize; | |
2415 | unpacked[targ] = accum & ~(~0L << HOST_CHAR_BIT); | |
2416 | accumSize -= HOST_CHAR_BIT; | |
2417 | accum >>= HOST_CHAR_BIT; | |
2418 | ntarg -= 1; | |
2419 | targ += delta; | |
2420 | } | |
2421 | ||
2422 | return v; | |
2423 | } | |
d2e4a39e | 2424 | |
14f9c5c9 AS |
2425 | /* Move N bits from SOURCE, starting at bit offset SRC_OFFSET to |
2426 | TARGET, starting at bit offset TARG_OFFSET. SOURCE and TARGET must | |
4c4b4cd2 | 2427 | not overlap. */ |
14f9c5c9 | 2428 | static void |
fc1a4b47 | 2429 | move_bits (gdb_byte *target, int targ_offset, const gdb_byte *source, |
50810684 | 2430 | int src_offset, int n, int bits_big_endian_p) |
14f9c5c9 AS |
2431 | { |
2432 | unsigned int accum, mask; | |
2433 | int accum_bits, chunk_size; | |
2434 | ||
2435 | target += targ_offset / HOST_CHAR_BIT; | |
2436 | targ_offset %= HOST_CHAR_BIT; | |
2437 | source += src_offset / HOST_CHAR_BIT; | |
2438 | src_offset %= HOST_CHAR_BIT; | |
50810684 | 2439 | if (bits_big_endian_p) |
14f9c5c9 AS |
2440 | { |
2441 | accum = (unsigned char) *source; | |
2442 | source += 1; | |
2443 | accum_bits = HOST_CHAR_BIT - src_offset; | |
2444 | ||
d2e4a39e | 2445 | while (n > 0) |
4c4b4cd2 PH |
2446 | { |
2447 | int unused_right; | |
5b4ee69b | 2448 | |
4c4b4cd2 PH |
2449 | accum = (accum << HOST_CHAR_BIT) + (unsigned char) *source; |
2450 | accum_bits += HOST_CHAR_BIT; | |
2451 | source += 1; | |
2452 | chunk_size = HOST_CHAR_BIT - targ_offset; | |
2453 | if (chunk_size > n) | |
2454 | chunk_size = n; | |
2455 | unused_right = HOST_CHAR_BIT - (chunk_size + targ_offset); | |
2456 | mask = ((1 << chunk_size) - 1) << unused_right; | |
2457 | *target = | |
2458 | (*target & ~mask) | |
2459 | | ((accum >> (accum_bits - chunk_size - unused_right)) & mask); | |
2460 | n -= chunk_size; | |
2461 | accum_bits -= chunk_size; | |
2462 | target += 1; | |
2463 | targ_offset = 0; | |
2464 | } | |
14f9c5c9 AS |
2465 | } |
2466 | else | |
2467 | { | |
2468 | accum = (unsigned char) *source >> src_offset; | |
2469 | source += 1; | |
2470 | accum_bits = HOST_CHAR_BIT - src_offset; | |
2471 | ||
d2e4a39e | 2472 | while (n > 0) |
4c4b4cd2 PH |
2473 | { |
2474 | accum = accum + ((unsigned char) *source << accum_bits); | |
2475 | accum_bits += HOST_CHAR_BIT; | |
2476 | source += 1; | |
2477 | chunk_size = HOST_CHAR_BIT - targ_offset; | |
2478 | if (chunk_size > n) | |
2479 | chunk_size = n; | |
2480 | mask = ((1 << chunk_size) - 1) << targ_offset; | |
2481 | *target = (*target & ~mask) | ((accum << targ_offset) & mask); | |
2482 | n -= chunk_size; | |
2483 | accum_bits -= chunk_size; | |
2484 | accum >>= chunk_size; | |
2485 | target += 1; | |
2486 | targ_offset = 0; | |
2487 | } | |
14f9c5c9 AS |
2488 | } |
2489 | } | |
2490 | ||
14f9c5c9 AS |
2491 | /* Store the contents of FROMVAL into the location of TOVAL. |
2492 | Return a new value with the location of TOVAL and contents of | |
2493 | FROMVAL. Handles assignment into packed fields that have | |
4c4b4cd2 | 2494 | floating-point or non-scalar types. */ |
14f9c5c9 | 2495 | |
d2e4a39e AS |
2496 | static struct value * |
2497 | ada_value_assign (struct value *toval, struct value *fromval) | |
14f9c5c9 | 2498 | { |
df407dfe AC |
2499 | struct type *type = value_type (toval); |
2500 | int bits = value_bitsize (toval); | |
14f9c5c9 | 2501 | |
52ce6436 PH |
2502 | toval = ada_coerce_ref (toval); |
2503 | fromval = ada_coerce_ref (fromval); | |
2504 | ||
2505 | if (ada_is_direct_array_type (value_type (toval))) | |
2506 | toval = ada_coerce_to_simple_array (toval); | |
2507 | if (ada_is_direct_array_type (value_type (fromval))) | |
2508 | fromval = ada_coerce_to_simple_array (fromval); | |
2509 | ||
88e3b34b | 2510 | if (!deprecated_value_modifiable (toval)) |
323e0a4a | 2511 | error (_("Left operand of assignment is not a modifiable lvalue.")); |
14f9c5c9 | 2512 | |
d2e4a39e | 2513 | if (VALUE_LVAL (toval) == lval_memory |
14f9c5c9 | 2514 | && bits > 0 |
d2e4a39e | 2515 | && (TYPE_CODE (type) == TYPE_CODE_FLT |
4c4b4cd2 | 2516 | || TYPE_CODE (type) == TYPE_CODE_STRUCT)) |
14f9c5c9 | 2517 | { |
df407dfe AC |
2518 | int len = (value_bitpos (toval) |
2519 | + bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT; | |
aced2898 | 2520 | int from_size; |
d2e4a39e AS |
2521 | char *buffer = (char *) alloca (len); |
2522 | struct value *val; | |
42ae5230 | 2523 | CORE_ADDR to_addr = value_address (toval); |
14f9c5c9 AS |
2524 | |
2525 | if (TYPE_CODE (type) == TYPE_CODE_FLT) | |
4c4b4cd2 | 2526 | fromval = value_cast (type, fromval); |
14f9c5c9 | 2527 | |
52ce6436 | 2528 | read_memory (to_addr, buffer, len); |
aced2898 PH |
2529 | from_size = value_bitsize (fromval); |
2530 | if (from_size == 0) | |
2531 | from_size = TYPE_LENGTH (value_type (fromval)) * TARGET_CHAR_BIT; | |
50810684 | 2532 | if (gdbarch_bits_big_endian (get_type_arch (type))) |
df407dfe | 2533 | move_bits (buffer, value_bitpos (toval), |
50810684 | 2534 | value_contents (fromval), from_size - bits, bits, 1); |
14f9c5c9 | 2535 | else |
50810684 UW |
2536 | move_bits (buffer, value_bitpos (toval), |
2537 | value_contents (fromval), 0, bits, 0); | |
972daa01 | 2538 | write_memory_with_notification (to_addr, buffer, len); |
8cebebb9 | 2539 | |
14f9c5c9 | 2540 | val = value_copy (toval); |
0fd88904 | 2541 | memcpy (value_contents_raw (val), value_contents (fromval), |
4c4b4cd2 | 2542 | TYPE_LENGTH (type)); |
04624583 | 2543 | deprecated_set_value_type (val, type); |
d2e4a39e | 2544 | |
14f9c5c9 AS |
2545 | return val; |
2546 | } | |
2547 | ||
2548 | return value_assign (toval, fromval); | |
2549 | } | |
2550 | ||
2551 | ||
52ce6436 PH |
2552 | /* Given that COMPONENT is a memory lvalue that is part of the lvalue |
2553 | * CONTAINER, assign the contents of VAL to COMPONENTS's place in | |
2554 | * CONTAINER. Modifies the VALUE_CONTENTS of CONTAINER only, not | |
2555 | * COMPONENT, and not the inferior's memory. The current contents | |
2556 | * of COMPONENT are ignored. */ | |
2557 | static void | |
2558 | value_assign_to_component (struct value *container, struct value *component, | |
2559 | struct value *val) | |
2560 | { | |
2561 | LONGEST offset_in_container = | |
42ae5230 | 2562 | (LONGEST) (value_address (component) - value_address (container)); |
52ce6436 PH |
2563 | int bit_offset_in_container = |
2564 | value_bitpos (component) - value_bitpos (container); | |
2565 | int bits; | |
2566 | ||
2567 | val = value_cast (value_type (component), val); | |
2568 | ||
2569 | if (value_bitsize (component) == 0) | |
2570 | bits = TARGET_CHAR_BIT * TYPE_LENGTH (value_type (component)); | |
2571 | else | |
2572 | bits = value_bitsize (component); | |
2573 | ||
50810684 | 2574 | if (gdbarch_bits_big_endian (get_type_arch (value_type (container)))) |
52ce6436 PH |
2575 | move_bits (value_contents_writeable (container) + offset_in_container, |
2576 | value_bitpos (container) + bit_offset_in_container, | |
2577 | value_contents (val), | |
2578 | TYPE_LENGTH (value_type (component)) * TARGET_CHAR_BIT - bits, | |
50810684 | 2579 | bits, 1); |
52ce6436 PH |
2580 | else |
2581 | move_bits (value_contents_writeable (container) + offset_in_container, | |
2582 | value_bitpos (container) + bit_offset_in_container, | |
50810684 | 2583 | value_contents (val), 0, bits, 0); |
52ce6436 PH |
2584 | } |
2585 | ||
4c4b4cd2 PH |
2586 | /* The value of the element of array ARR at the ARITY indices given in IND. |
2587 | ARR may be either a simple array, GNAT array descriptor, or pointer | |
14f9c5c9 AS |
2588 | thereto. */ |
2589 | ||
d2e4a39e AS |
2590 | struct value * |
2591 | ada_value_subscript (struct value *arr, int arity, struct value **ind) | |
14f9c5c9 AS |
2592 | { |
2593 | int k; | |
d2e4a39e AS |
2594 | struct value *elt; |
2595 | struct type *elt_type; | |
14f9c5c9 AS |
2596 | |
2597 | elt = ada_coerce_to_simple_array (arr); | |
2598 | ||
df407dfe | 2599 | elt_type = ada_check_typedef (value_type (elt)); |
d2e4a39e | 2600 | if (TYPE_CODE (elt_type) == TYPE_CODE_ARRAY |
14f9c5c9 AS |
2601 | && TYPE_FIELD_BITSIZE (elt_type, 0) > 0) |
2602 | return value_subscript_packed (elt, arity, ind); | |
2603 | ||
2604 | for (k = 0; k < arity; k += 1) | |
2605 | { | |
2606 | if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY) | |
323e0a4a | 2607 | error (_("too many subscripts (%d expected)"), k); |
2497b498 | 2608 | elt = value_subscript (elt, pos_atr (ind[k])); |
14f9c5c9 AS |
2609 | } |
2610 | return elt; | |
2611 | } | |
2612 | ||
2613 | /* Assuming ARR is a pointer to a standard GDB array of type TYPE, the | |
2614 | value of the element of *ARR at the ARITY indices given in | |
4c4b4cd2 | 2615 | IND. Does not read the entire array into memory. */ |
14f9c5c9 | 2616 | |
2c0b251b | 2617 | static struct value * |
d2e4a39e | 2618 | ada_value_ptr_subscript (struct value *arr, struct type *type, int arity, |
4c4b4cd2 | 2619 | struct value **ind) |
14f9c5c9 AS |
2620 | { |
2621 | int k; | |
2622 | ||
2623 | for (k = 0; k < arity; k += 1) | |
2624 | { | |
2625 | LONGEST lwb, upb; | |
14f9c5c9 AS |
2626 | |
2627 | if (TYPE_CODE (type) != TYPE_CODE_ARRAY) | |
323e0a4a | 2628 | error (_("too many subscripts (%d expected)"), k); |
d2e4a39e | 2629 | arr = value_cast (lookup_pointer_type (TYPE_TARGET_TYPE (type)), |
4c4b4cd2 | 2630 | value_copy (arr)); |
14f9c5c9 | 2631 | get_discrete_bounds (TYPE_INDEX_TYPE (type), &lwb, &upb); |
2497b498 | 2632 | arr = value_ptradd (arr, pos_atr (ind[k]) - lwb); |
14f9c5c9 AS |
2633 | type = TYPE_TARGET_TYPE (type); |
2634 | } | |
2635 | ||
2636 | return value_ind (arr); | |
2637 | } | |
2638 | ||
0b5d8877 | 2639 | /* Given that ARRAY_PTR is a pointer or reference to an array of type TYPE (the |
f5938064 JG |
2640 | actual type of ARRAY_PTR is ignored), returns the Ada slice of HIGH-LOW+1 |
2641 | elements starting at index LOW. The lower bound of this array is LOW, as | |
0963b4bd | 2642 | per Ada rules. */ |
0b5d8877 | 2643 | static struct value * |
f5938064 JG |
2644 | ada_value_slice_from_ptr (struct value *array_ptr, struct type *type, |
2645 | int low, int high) | |
0b5d8877 | 2646 | { |
b0dd7688 | 2647 | struct type *type0 = ada_check_typedef (type); |
6c038f32 | 2648 | CORE_ADDR base = value_as_address (array_ptr) |
b0dd7688 JB |
2649 | + ((low - ada_discrete_type_low_bound (TYPE_INDEX_TYPE (type0))) |
2650 | * TYPE_LENGTH (TYPE_TARGET_TYPE (type0))); | |
6c038f32 | 2651 | struct type *index_type = |
b0dd7688 | 2652 | create_range_type (NULL, TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type0)), |
0b5d8877 | 2653 | low, high); |
6c038f32 | 2654 | struct type *slice_type = |
b0dd7688 | 2655 | create_array_type (NULL, TYPE_TARGET_TYPE (type0), index_type); |
5b4ee69b | 2656 | |
f5938064 | 2657 | return value_at_lazy (slice_type, base); |
0b5d8877 PH |
2658 | } |
2659 | ||
2660 | ||
2661 | static struct value * | |
2662 | ada_value_slice (struct value *array, int low, int high) | |
2663 | { | |
b0dd7688 | 2664 | struct type *type = ada_check_typedef (value_type (array)); |
6c038f32 | 2665 | struct type *index_type = |
0b5d8877 | 2666 | create_range_type (NULL, TYPE_INDEX_TYPE (type), low, high); |
6c038f32 | 2667 | struct type *slice_type = |
0b5d8877 | 2668 | create_array_type (NULL, TYPE_TARGET_TYPE (type), index_type); |
5b4ee69b | 2669 | |
6c038f32 | 2670 | return value_cast (slice_type, value_slice (array, low, high - low + 1)); |
0b5d8877 PH |
2671 | } |
2672 | ||
14f9c5c9 AS |
2673 | /* If type is a record type in the form of a standard GNAT array |
2674 | descriptor, returns the number of dimensions for type. If arr is a | |
2675 | simple array, returns the number of "array of"s that prefix its | |
4c4b4cd2 | 2676 | type designation. Otherwise, returns 0. */ |
14f9c5c9 AS |
2677 | |
2678 | int | |
d2e4a39e | 2679 | ada_array_arity (struct type *type) |
14f9c5c9 AS |
2680 | { |
2681 | int arity; | |
2682 | ||
2683 | if (type == NULL) | |
2684 | return 0; | |
2685 | ||
2686 | type = desc_base_type (type); | |
2687 | ||
2688 | arity = 0; | |
d2e4a39e | 2689 | if (TYPE_CODE (type) == TYPE_CODE_STRUCT) |
14f9c5c9 | 2690 | return desc_arity (desc_bounds_type (type)); |
d2e4a39e AS |
2691 | else |
2692 | while (TYPE_CODE (type) == TYPE_CODE_ARRAY) | |
14f9c5c9 | 2693 | { |
4c4b4cd2 | 2694 | arity += 1; |
61ee279c | 2695 | type = ada_check_typedef (TYPE_TARGET_TYPE (type)); |
14f9c5c9 | 2696 | } |
d2e4a39e | 2697 | |
14f9c5c9 AS |
2698 | return arity; |
2699 | } | |
2700 | ||
2701 | /* If TYPE is a record type in the form of a standard GNAT array | |
2702 | descriptor or a simple array type, returns the element type for | |
2703 | TYPE after indexing by NINDICES indices, or by all indices if | |
4c4b4cd2 | 2704 | NINDICES is -1. Otherwise, returns NULL. */ |
14f9c5c9 | 2705 | |
d2e4a39e AS |
2706 | struct type * |
2707 | ada_array_element_type (struct type *type, int nindices) | |
14f9c5c9 AS |
2708 | { |
2709 | type = desc_base_type (type); | |
2710 | ||
d2e4a39e | 2711 | if (TYPE_CODE (type) == TYPE_CODE_STRUCT) |
14f9c5c9 AS |
2712 | { |
2713 | int k; | |
d2e4a39e | 2714 | struct type *p_array_type; |
14f9c5c9 | 2715 | |
556bdfd4 | 2716 | p_array_type = desc_data_target_type (type); |
14f9c5c9 AS |
2717 | |
2718 | k = ada_array_arity (type); | |
2719 | if (k == 0) | |
4c4b4cd2 | 2720 | return NULL; |
d2e4a39e | 2721 | |
4c4b4cd2 | 2722 | /* Initially p_array_type = elt_type(*)[]...(k times)...[]. */ |
14f9c5c9 | 2723 | if (nindices >= 0 && k > nindices) |
4c4b4cd2 | 2724 | k = nindices; |
d2e4a39e | 2725 | while (k > 0 && p_array_type != NULL) |
4c4b4cd2 | 2726 | { |
61ee279c | 2727 | p_array_type = ada_check_typedef (TYPE_TARGET_TYPE (p_array_type)); |
4c4b4cd2 PH |
2728 | k -= 1; |
2729 | } | |
14f9c5c9 AS |
2730 | return p_array_type; |
2731 | } | |
2732 | else if (TYPE_CODE (type) == TYPE_CODE_ARRAY) | |
2733 | { | |
2734 | while (nindices != 0 && TYPE_CODE (type) == TYPE_CODE_ARRAY) | |
4c4b4cd2 PH |
2735 | { |
2736 | type = TYPE_TARGET_TYPE (type); | |
2737 | nindices -= 1; | |
2738 | } | |
14f9c5c9 AS |
2739 | return type; |
2740 | } | |
2741 | ||
2742 | return NULL; | |
2743 | } | |
2744 | ||
4c4b4cd2 | 2745 | /* The type of nth index in arrays of given type (n numbering from 1). |
dd19d49e UW |
2746 | Does not examine memory. Throws an error if N is invalid or TYPE |
2747 | is not an array type. NAME is the name of the Ada attribute being | |
2748 | evaluated ('range, 'first, 'last, or 'length); it is used in building | |
2749 | the error message. */ | |
14f9c5c9 | 2750 | |
1eea4ebd UW |
2751 | static struct type * |
2752 | ada_index_type (struct type *type, int n, const char *name) | |
14f9c5c9 | 2753 | { |
4c4b4cd2 PH |
2754 | struct type *result_type; |
2755 | ||
14f9c5c9 AS |
2756 | type = desc_base_type (type); |
2757 | ||
1eea4ebd UW |
2758 | if (n < 0 || n > ada_array_arity (type)) |
2759 | error (_("invalid dimension number to '%s"), name); | |
14f9c5c9 | 2760 | |
4c4b4cd2 | 2761 | if (ada_is_simple_array_type (type)) |
14f9c5c9 AS |
2762 | { |
2763 | int i; | |
2764 | ||
2765 | for (i = 1; i < n; i += 1) | |
4c4b4cd2 | 2766 | type = TYPE_TARGET_TYPE (type); |
262452ec | 2767 | result_type = TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type)); |
4c4b4cd2 PH |
2768 | /* FIXME: The stabs type r(0,0);bound;bound in an array type |
2769 | has a target type of TYPE_CODE_UNDEF. We compensate here, but | |
76a01679 | 2770 | perhaps stabsread.c would make more sense. */ |
1eea4ebd UW |
2771 | if (result_type && TYPE_CODE (result_type) == TYPE_CODE_UNDEF) |
2772 | result_type = NULL; | |
14f9c5c9 | 2773 | } |
d2e4a39e | 2774 | else |
1eea4ebd UW |
2775 | { |
2776 | result_type = desc_index_type (desc_bounds_type (type), n); | |
2777 | if (result_type == NULL) | |
2778 | error (_("attempt to take bound of something that is not an array")); | |
2779 | } | |
2780 | ||
2781 | return result_type; | |
14f9c5c9 AS |
2782 | } |
2783 | ||
2784 | /* Given that arr is an array type, returns the lower bound of the | |
2785 | Nth index (numbering from 1) if WHICH is 0, and the upper bound if | |
4c4b4cd2 | 2786 | WHICH is 1. This returns bounds 0 .. -1 if ARR_TYPE is an |
1eea4ebd UW |
2787 | array-descriptor type. It works for other arrays with bounds supplied |
2788 | by run-time quantities other than discriminants. */ | |
14f9c5c9 | 2789 | |
abb68b3e | 2790 | static LONGEST |
1eea4ebd | 2791 | ada_array_bound_from_type (struct type * arr_type, int n, int which) |
14f9c5c9 | 2792 | { |
1ce677a4 | 2793 | struct type *type, *elt_type, *index_type_desc, *index_type; |
1ce677a4 | 2794 | int i; |
262452ec JK |
2795 | |
2796 | gdb_assert (which == 0 || which == 1); | |
14f9c5c9 | 2797 | |
ad82864c JB |
2798 | if (ada_is_constrained_packed_array_type (arr_type)) |
2799 | arr_type = decode_constrained_packed_array_type (arr_type); | |
14f9c5c9 | 2800 | |
4c4b4cd2 | 2801 | if (arr_type == NULL || !ada_is_simple_array_type (arr_type)) |
1eea4ebd | 2802 | return (LONGEST) - which; |
14f9c5c9 AS |
2803 | |
2804 | if (TYPE_CODE (arr_type) == TYPE_CODE_PTR) | |
2805 | type = TYPE_TARGET_TYPE (arr_type); | |
2806 | else | |
2807 | type = arr_type; | |
2808 | ||
1ce677a4 UW |
2809 | elt_type = type; |
2810 | for (i = n; i > 1; i--) | |
2811 | elt_type = TYPE_TARGET_TYPE (type); | |
2812 | ||
14f9c5c9 | 2813 | index_type_desc = ada_find_parallel_type (type, "___XA"); |
28c85d6c | 2814 | ada_fixup_array_indexes_type (index_type_desc); |
262452ec | 2815 | if (index_type_desc != NULL) |
28c85d6c JB |
2816 | index_type = to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, n - 1), |
2817 | NULL); | |
262452ec | 2818 | else |
1ce677a4 | 2819 | index_type = TYPE_INDEX_TYPE (elt_type); |
262452ec | 2820 | |
43bbcdc2 PH |
2821 | return |
2822 | (LONGEST) (which == 0 | |
2823 | ? ada_discrete_type_low_bound (index_type) | |
2824 | : ada_discrete_type_high_bound (index_type)); | |
14f9c5c9 AS |
2825 | } |
2826 | ||
2827 | /* Given that arr is an array value, returns the lower bound of the | |
abb68b3e JB |
2828 | nth index (numbering from 1) if WHICH is 0, and the upper bound if |
2829 | WHICH is 1. This routine will also work for arrays with bounds | |
4c4b4cd2 | 2830 | supplied by run-time quantities other than discriminants. */ |
14f9c5c9 | 2831 | |
1eea4ebd | 2832 | static LONGEST |
4dc81987 | 2833 | ada_array_bound (struct value *arr, int n, int which) |
14f9c5c9 | 2834 | { |
df407dfe | 2835 | struct type *arr_type = value_type (arr); |
14f9c5c9 | 2836 | |
ad82864c JB |
2837 | if (ada_is_constrained_packed_array_type (arr_type)) |
2838 | return ada_array_bound (decode_constrained_packed_array (arr), n, which); | |
4c4b4cd2 | 2839 | else if (ada_is_simple_array_type (arr_type)) |
1eea4ebd | 2840 | return ada_array_bound_from_type (arr_type, n, which); |
14f9c5c9 | 2841 | else |
1eea4ebd | 2842 | return value_as_long (desc_one_bound (desc_bounds (arr), n, which)); |
14f9c5c9 AS |
2843 | } |
2844 | ||
2845 | /* Given that arr is an array value, returns the length of the | |
2846 | nth index. This routine will also work for arrays with bounds | |
4c4b4cd2 PH |
2847 | supplied by run-time quantities other than discriminants. |
2848 | Does not work for arrays indexed by enumeration types with representation | |
2849 | clauses at the moment. */ | |
14f9c5c9 | 2850 | |
1eea4ebd | 2851 | static LONGEST |
d2e4a39e | 2852 | ada_array_length (struct value *arr, int n) |
14f9c5c9 | 2853 | { |
df407dfe | 2854 | struct type *arr_type = ada_check_typedef (value_type (arr)); |
14f9c5c9 | 2855 | |
ad82864c JB |
2856 | if (ada_is_constrained_packed_array_type (arr_type)) |
2857 | return ada_array_length (decode_constrained_packed_array (arr), n); | |
14f9c5c9 | 2858 | |
4c4b4cd2 | 2859 | if (ada_is_simple_array_type (arr_type)) |
1eea4ebd UW |
2860 | return (ada_array_bound_from_type (arr_type, n, 1) |
2861 | - ada_array_bound_from_type (arr_type, n, 0) + 1); | |
14f9c5c9 | 2862 | else |
1eea4ebd UW |
2863 | return (value_as_long (desc_one_bound (desc_bounds (arr), n, 1)) |
2864 | - value_as_long (desc_one_bound (desc_bounds (arr), n, 0)) + 1); | |
4c4b4cd2 PH |
2865 | } |
2866 | ||
2867 | /* An empty array whose type is that of ARR_TYPE (an array type), | |
2868 | with bounds LOW to LOW-1. */ | |
2869 | ||
2870 | static struct value * | |
2871 | empty_array (struct type *arr_type, int low) | |
2872 | { | |
b0dd7688 | 2873 | struct type *arr_type0 = ada_check_typedef (arr_type); |
6c038f32 | 2874 | struct type *index_type = |
b0dd7688 | 2875 | create_range_type (NULL, TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (arr_type0)), |
0b5d8877 | 2876 | low, low - 1); |
b0dd7688 | 2877 | struct type *elt_type = ada_array_element_type (arr_type0, 1); |
5b4ee69b | 2878 | |
0b5d8877 | 2879 | return allocate_value (create_array_type (NULL, elt_type, index_type)); |
14f9c5c9 | 2880 | } |
14f9c5c9 | 2881 | \f |
d2e4a39e | 2882 | |
4c4b4cd2 | 2883 | /* Name resolution */ |
14f9c5c9 | 2884 | |
4c4b4cd2 PH |
2885 | /* The "decoded" name for the user-definable Ada operator corresponding |
2886 | to OP. */ | |
14f9c5c9 | 2887 | |
d2e4a39e | 2888 | static const char * |
4c4b4cd2 | 2889 | ada_decoded_op_name (enum exp_opcode op) |
14f9c5c9 AS |
2890 | { |
2891 | int i; | |
2892 | ||
4c4b4cd2 | 2893 | for (i = 0; ada_opname_table[i].encoded != NULL; i += 1) |
14f9c5c9 AS |
2894 | { |
2895 | if (ada_opname_table[i].op == op) | |
4c4b4cd2 | 2896 | return ada_opname_table[i].decoded; |
14f9c5c9 | 2897 | } |
323e0a4a | 2898 | error (_("Could not find operator name for opcode")); |
14f9c5c9 AS |
2899 | } |
2900 | ||
2901 | ||
4c4b4cd2 PH |
2902 | /* Same as evaluate_type (*EXP), but resolves ambiguous symbol |
2903 | references (marked by OP_VAR_VALUE nodes in which the symbol has an | |
2904 | undefined namespace) and converts operators that are | |
2905 | user-defined into appropriate function calls. If CONTEXT_TYPE is | |
14f9c5c9 AS |
2906 | non-null, it provides a preferred result type [at the moment, only |
2907 | type void has any effect---causing procedures to be preferred over | |
2908 | functions in calls]. A null CONTEXT_TYPE indicates that a non-void | |
4c4b4cd2 | 2909 | return type is preferred. May change (expand) *EXP. */ |
14f9c5c9 | 2910 | |
4c4b4cd2 PH |
2911 | static void |
2912 | resolve (struct expression **expp, int void_context_p) | |
14f9c5c9 | 2913 | { |
30b15541 UW |
2914 | struct type *context_type = NULL; |
2915 | int pc = 0; | |
2916 | ||
2917 | if (void_context_p) | |
2918 | context_type = builtin_type ((*expp)->gdbarch)->builtin_void; | |
2919 | ||
2920 | resolve_subexp (expp, &pc, 1, context_type); | |
14f9c5c9 AS |
2921 | } |
2922 | ||
4c4b4cd2 PH |
2923 | /* Resolve the operator of the subexpression beginning at |
2924 | position *POS of *EXPP. "Resolving" consists of replacing | |
2925 | the symbols that have undefined namespaces in OP_VAR_VALUE nodes | |
2926 | with their resolutions, replacing built-in operators with | |
2927 | function calls to user-defined operators, where appropriate, and, | |
2928 | when DEPROCEDURE_P is non-zero, converting function-valued variables | |
2929 | into parameterless calls. May expand *EXPP. The CONTEXT_TYPE functions | |
2930 | are as in ada_resolve, above. */ | |
14f9c5c9 | 2931 | |
d2e4a39e | 2932 | static struct value * |
4c4b4cd2 | 2933 | resolve_subexp (struct expression **expp, int *pos, int deprocedure_p, |
76a01679 | 2934 | struct type *context_type) |
14f9c5c9 AS |
2935 | { |
2936 | int pc = *pos; | |
2937 | int i; | |
4c4b4cd2 | 2938 | struct expression *exp; /* Convenience: == *expp. */ |
14f9c5c9 | 2939 | enum exp_opcode op = (*expp)->elts[pc].opcode; |
4c4b4cd2 PH |
2940 | struct value **argvec; /* Vector of operand types (alloca'ed). */ |
2941 | int nargs; /* Number of operands. */ | |
52ce6436 | 2942 | int oplen; |
14f9c5c9 AS |
2943 | |
2944 | argvec = NULL; | |
2945 | nargs = 0; | |
2946 | exp = *expp; | |
2947 | ||
52ce6436 PH |
2948 | /* Pass one: resolve operands, saving their types and updating *pos, |
2949 | if needed. */ | |
14f9c5c9 AS |
2950 | switch (op) |
2951 | { | |
4c4b4cd2 PH |
2952 | case OP_FUNCALL: |
2953 | if (exp->elts[pc + 3].opcode == OP_VAR_VALUE | |
76a01679 JB |
2954 | && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN) |
2955 | *pos += 7; | |
4c4b4cd2 PH |
2956 | else |
2957 | { | |
2958 | *pos += 3; | |
2959 | resolve_subexp (expp, pos, 0, NULL); | |
2960 | } | |
2961 | nargs = longest_to_int (exp->elts[pc + 1].longconst); | |
14f9c5c9 AS |
2962 | break; |
2963 | ||
14f9c5c9 | 2964 | case UNOP_ADDR: |
4c4b4cd2 PH |
2965 | *pos += 1; |
2966 | resolve_subexp (expp, pos, 0, NULL); | |
2967 | break; | |
2968 | ||
52ce6436 PH |
2969 | case UNOP_QUAL: |
2970 | *pos += 3; | |
17466c1a | 2971 | resolve_subexp (expp, pos, 1, check_typedef (exp->elts[pc + 1].type)); |
4c4b4cd2 PH |
2972 | break; |
2973 | ||
52ce6436 | 2974 | case OP_ATR_MODULUS: |
4c4b4cd2 PH |
2975 | case OP_ATR_SIZE: |
2976 | case OP_ATR_TAG: | |
4c4b4cd2 PH |
2977 | case OP_ATR_FIRST: |
2978 | case OP_ATR_LAST: | |
2979 | case OP_ATR_LENGTH: | |
2980 | case OP_ATR_POS: | |
2981 | case OP_ATR_VAL: | |
4c4b4cd2 PH |
2982 | case OP_ATR_MIN: |
2983 | case OP_ATR_MAX: | |
52ce6436 PH |
2984 | case TERNOP_IN_RANGE: |
2985 | case BINOP_IN_BOUNDS: | |
2986 | case UNOP_IN_RANGE: | |
2987 | case OP_AGGREGATE: | |
2988 | case OP_OTHERS: | |
2989 | case OP_CHOICES: | |
2990 | case OP_POSITIONAL: | |
2991 | case OP_DISCRETE_RANGE: | |
2992 | case OP_NAME: | |
2993 | ada_forward_operator_length (exp, pc, &oplen, &nargs); | |
2994 | *pos += oplen; | |
14f9c5c9 AS |
2995 | break; |
2996 | ||
2997 | case BINOP_ASSIGN: | |
2998 | { | |
4c4b4cd2 PH |
2999 | struct value *arg1; |
3000 | ||
3001 | *pos += 1; | |
3002 | arg1 = resolve_subexp (expp, pos, 0, NULL); | |
3003 | if (arg1 == NULL) | |
3004 | resolve_subexp (expp, pos, 1, NULL); | |
3005 | else | |
df407dfe | 3006 | resolve_subexp (expp, pos, 1, value_type (arg1)); |
4c4b4cd2 | 3007 | break; |
14f9c5c9 AS |
3008 | } |
3009 | ||
4c4b4cd2 | 3010 | case UNOP_CAST: |
4c4b4cd2 PH |
3011 | *pos += 3; |
3012 | nargs = 1; | |
3013 | break; | |
14f9c5c9 | 3014 | |
4c4b4cd2 PH |
3015 | case BINOP_ADD: |
3016 | case BINOP_SUB: | |
3017 | case BINOP_MUL: | |
3018 | case BINOP_DIV: | |
3019 | case BINOP_REM: | |
3020 | case BINOP_MOD: | |
3021 | case BINOP_EXP: | |
3022 | case BINOP_CONCAT: | |
3023 | case BINOP_LOGICAL_AND: | |
3024 | case BINOP_LOGICAL_OR: | |
3025 | case BINOP_BITWISE_AND: | |
3026 | case BINOP_BITWISE_IOR: | |
3027 | case BINOP_BITWISE_XOR: | |
14f9c5c9 | 3028 | |
4c4b4cd2 PH |
3029 | case BINOP_EQUAL: |
3030 | case BINOP_NOTEQUAL: | |
3031 | case BINOP_LESS: | |
3032 | case BINOP_GTR: | |
3033 | case BINOP_LEQ: | |
3034 | case BINOP_GEQ: | |
14f9c5c9 | 3035 | |
4c4b4cd2 PH |
3036 | case BINOP_REPEAT: |
3037 | case BINOP_SUBSCRIPT: | |
3038 | case BINOP_COMMA: | |
40c8aaa9 JB |
3039 | *pos += 1; |
3040 | nargs = 2; | |
3041 | break; | |
14f9c5c9 | 3042 | |
4c4b4cd2 PH |
3043 | case UNOP_NEG: |
3044 | case UNOP_PLUS: | |
3045 | case UNOP_LOGICAL_NOT: | |
3046 | case UNOP_ABS: | |
3047 | case UNOP_IND: | |
3048 | *pos += 1; | |
3049 | nargs = 1; | |
3050 | break; | |
14f9c5c9 | 3051 | |
4c4b4cd2 PH |
3052 | case OP_LONG: |
3053 | case OP_DOUBLE: | |
3054 | case OP_VAR_VALUE: | |
3055 | *pos += 4; | |
3056 | break; | |
14f9c5c9 | 3057 | |
4c4b4cd2 PH |
3058 | case OP_TYPE: |
3059 | case OP_BOOL: | |
3060 | case OP_LAST: | |
4c4b4cd2 PH |
3061 | case OP_INTERNALVAR: |
3062 | *pos += 3; | |
3063 | break; | |
14f9c5c9 | 3064 | |
4c4b4cd2 PH |
3065 | case UNOP_MEMVAL: |
3066 | *pos += 3; | |
3067 | nargs = 1; | |
3068 | break; | |
3069 | ||
67f3407f DJ |
3070 | case OP_REGISTER: |
3071 | *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1); | |
3072 | break; | |
3073 | ||
4c4b4cd2 PH |
3074 | case STRUCTOP_STRUCT: |
3075 | *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1); | |
3076 | nargs = 1; | |
3077 | break; | |
3078 | ||
4c4b4cd2 | 3079 | case TERNOP_SLICE: |
4c4b4cd2 PH |
3080 | *pos += 1; |
3081 | nargs = 3; | |
3082 | break; | |
3083 | ||
52ce6436 | 3084 | case OP_STRING: |
14f9c5c9 | 3085 | break; |
4c4b4cd2 PH |
3086 | |
3087 | default: | |
323e0a4a | 3088 | error (_("Unexpected operator during name resolution")); |
14f9c5c9 AS |
3089 | } |
3090 | ||
76a01679 | 3091 | argvec = (struct value * *) alloca (sizeof (struct value *) * (nargs + 1)); |
4c4b4cd2 PH |
3092 | for (i = 0; i < nargs; i += 1) |
3093 | argvec[i] = resolve_subexp (expp, pos, 1, NULL); | |
3094 | argvec[i] = NULL; | |
3095 | exp = *expp; | |
3096 | ||
3097 | /* Pass two: perform any resolution on principal operator. */ | |
14f9c5c9 AS |
3098 | switch (op) |
3099 | { | |
3100 | default: | |
3101 | break; | |
3102 | ||
14f9c5c9 | 3103 | case OP_VAR_VALUE: |
4c4b4cd2 | 3104 | if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN) |
76a01679 JB |
3105 | { |
3106 | struct ada_symbol_info *candidates; | |
3107 | int n_candidates; | |
3108 | ||
3109 | n_candidates = | |
3110 | ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME | |
3111 | (exp->elts[pc + 2].symbol), | |
3112 | exp->elts[pc + 1].block, VAR_DOMAIN, | |
d9680e73 | 3113 | &candidates, 1); |
76a01679 JB |
3114 | |
3115 | if (n_candidates > 1) | |
3116 | { | |
3117 | /* Types tend to get re-introduced locally, so if there | |
3118 | are any local symbols that are not types, first filter | |
3119 | out all types. */ | |
3120 | int j; | |
3121 | for (j = 0; j < n_candidates; j += 1) | |
3122 | switch (SYMBOL_CLASS (candidates[j].sym)) | |
3123 | { | |
3124 | case LOC_REGISTER: | |
3125 | case LOC_ARG: | |
3126 | case LOC_REF_ARG: | |
76a01679 JB |
3127 | case LOC_REGPARM_ADDR: |
3128 | case LOC_LOCAL: | |
76a01679 | 3129 | case LOC_COMPUTED: |
76a01679 JB |
3130 | goto FoundNonType; |
3131 | default: | |
3132 | break; | |
3133 | } | |
3134 | FoundNonType: | |
3135 | if (j < n_candidates) | |
3136 | { | |
3137 | j = 0; | |
3138 | while (j < n_candidates) | |
3139 | { | |
3140 | if (SYMBOL_CLASS (candidates[j].sym) == LOC_TYPEDEF) | |
3141 | { | |
3142 | candidates[j] = candidates[n_candidates - 1]; | |
3143 | n_candidates -= 1; | |
3144 | } | |
3145 | else | |
3146 | j += 1; | |
3147 | } | |
3148 | } | |
3149 | } | |
3150 | ||
3151 | if (n_candidates == 0) | |
323e0a4a | 3152 | error (_("No definition found for %s"), |
76a01679 JB |
3153 | SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol)); |
3154 | else if (n_candidates == 1) | |
3155 | i = 0; | |
3156 | else if (deprocedure_p | |
3157 | && !is_nonfunction (candidates, n_candidates)) | |
3158 | { | |
06d5cf63 JB |
3159 | i = ada_resolve_function |
3160 | (candidates, n_candidates, NULL, 0, | |
3161 | SYMBOL_LINKAGE_NAME (exp->elts[pc + 2].symbol), | |
3162 | context_type); | |
76a01679 | 3163 | if (i < 0) |
323e0a4a | 3164 | error (_("Could not find a match for %s"), |
76a01679 JB |
3165 | SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol)); |
3166 | } | |
3167 | else | |
3168 | { | |
323e0a4a | 3169 | printf_filtered (_("Multiple matches for %s\n"), |
76a01679 JB |
3170 | SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol)); |
3171 | user_select_syms (candidates, n_candidates, 1); | |
3172 | i = 0; | |
3173 | } | |
3174 | ||
3175 | exp->elts[pc + 1].block = candidates[i].block; | |
3176 | exp->elts[pc + 2].symbol = candidates[i].sym; | |
1265e4aa JB |
3177 | if (innermost_block == NULL |
3178 | || contained_in (candidates[i].block, innermost_block)) | |
76a01679 JB |
3179 | innermost_block = candidates[i].block; |
3180 | } | |
3181 | ||
3182 | if (deprocedure_p | |
3183 | && (TYPE_CODE (SYMBOL_TYPE (exp->elts[pc + 2].symbol)) | |
3184 | == TYPE_CODE_FUNC)) | |
3185 | { | |
3186 | replace_operator_with_call (expp, pc, 0, 0, | |
3187 | exp->elts[pc + 2].symbol, | |
3188 | exp->elts[pc + 1].block); | |
3189 | exp = *expp; | |
3190 | } | |
14f9c5c9 AS |
3191 | break; |
3192 | ||
3193 | case OP_FUNCALL: | |
3194 | { | |
4c4b4cd2 | 3195 | if (exp->elts[pc + 3].opcode == OP_VAR_VALUE |
76a01679 | 3196 | && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN) |
4c4b4cd2 PH |
3197 | { |
3198 | struct ada_symbol_info *candidates; | |
3199 | int n_candidates; | |
3200 | ||
3201 | n_candidates = | |
76a01679 JB |
3202 | ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME |
3203 | (exp->elts[pc + 5].symbol), | |
3204 | exp->elts[pc + 4].block, VAR_DOMAIN, | |
d9680e73 | 3205 | &candidates, 1); |
4c4b4cd2 PH |
3206 | if (n_candidates == 1) |
3207 | i = 0; | |
3208 | else | |
3209 | { | |
06d5cf63 JB |
3210 | i = ada_resolve_function |
3211 | (candidates, n_candidates, | |
3212 | argvec, nargs, | |
3213 | SYMBOL_LINKAGE_NAME (exp->elts[pc + 5].symbol), | |
3214 | context_type); | |
4c4b4cd2 | 3215 | if (i < 0) |
323e0a4a | 3216 | error (_("Could not find a match for %s"), |
4c4b4cd2 PH |
3217 | SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol)); |
3218 | } | |
3219 | ||
3220 | exp->elts[pc + 4].block = candidates[i].block; | |
3221 | exp->elts[pc + 5].symbol = candidates[i].sym; | |
1265e4aa JB |
3222 | if (innermost_block == NULL |
3223 | || contained_in (candidates[i].block, innermost_block)) | |
4c4b4cd2 PH |
3224 | innermost_block = candidates[i].block; |
3225 | } | |
14f9c5c9 AS |
3226 | } |
3227 | break; | |
3228 | case BINOP_ADD: | |
3229 | case BINOP_SUB: | |
3230 | case BINOP_MUL: | |
3231 | case BINOP_DIV: | |
3232 | case BINOP_REM: | |
3233 | case BINOP_MOD: | |
3234 | case BINOP_CONCAT: | |
3235 | case BINOP_BITWISE_AND: | |
3236 | case BINOP_BITWISE_IOR: | |
3237 | case BINOP_BITWISE_XOR: | |
3238 | case BINOP_EQUAL: | |
3239 | case BINOP_NOTEQUAL: | |
3240 | case BINOP_LESS: | |
3241 | case BINOP_GTR: | |
3242 | case BINOP_LEQ: | |
3243 | case BINOP_GEQ: | |
3244 | case BINOP_EXP: | |
3245 | case UNOP_NEG: | |
3246 | case UNOP_PLUS: | |
3247 | case UNOP_LOGICAL_NOT: | |
3248 | case UNOP_ABS: | |
3249 | if (possible_user_operator_p (op, argvec)) | |
4c4b4cd2 PH |
3250 | { |
3251 | struct ada_symbol_info *candidates; | |
3252 | int n_candidates; | |
3253 | ||
3254 | n_candidates = | |
3255 | ada_lookup_symbol_list (ada_encode (ada_decoded_op_name (op)), | |
3256 | (struct block *) NULL, VAR_DOMAIN, | |
d9680e73 | 3257 | &candidates, 1); |
4c4b4cd2 | 3258 | i = ada_resolve_function (candidates, n_candidates, argvec, nargs, |
76a01679 | 3259 | ada_decoded_op_name (op), NULL); |
4c4b4cd2 PH |
3260 | if (i < 0) |
3261 | break; | |
3262 | ||
76a01679 JB |
3263 | replace_operator_with_call (expp, pc, nargs, 1, |
3264 | candidates[i].sym, candidates[i].block); | |
4c4b4cd2 PH |
3265 | exp = *expp; |
3266 | } | |
14f9c5c9 | 3267 | break; |
4c4b4cd2 PH |
3268 | |
3269 | case OP_TYPE: | |
b3dbf008 | 3270 | case OP_REGISTER: |
4c4b4cd2 | 3271 | return NULL; |
14f9c5c9 AS |
3272 | } |
3273 | ||
3274 | *pos = pc; | |
3275 | return evaluate_subexp_type (exp, pos); | |
3276 | } | |
3277 | ||
3278 | /* Return non-zero if formal type FTYPE matches actual type ATYPE. If | |
4c4b4cd2 | 3279 | MAY_DEREF is non-zero, the formal may be a pointer and the actual |
5b3d5b7d | 3280 | a non-pointer. */ |
14f9c5c9 | 3281 | /* The term "match" here is rather loose. The match is heuristic and |
5b3d5b7d | 3282 | liberal. */ |
14f9c5c9 AS |
3283 | |
3284 | static int | |
4dc81987 | 3285 | ada_type_match (struct type *ftype, struct type *atype, int may_deref) |
14f9c5c9 | 3286 | { |
61ee279c PH |
3287 | ftype = ada_check_typedef (ftype); |
3288 | atype = ada_check_typedef (atype); | |
14f9c5c9 AS |
3289 | |
3290 | if (TYPE_CODE (ftype) == TYPE_CODE_REF) | |
3291 | ftype = TYPE_TARGET_TYPE (ftype); | |
3292 | if (TYPE_CODE (atype) == TYPE_CODE_REF) | |
3293 | atype = TYPE_TARGET_TYPE (atype); | |
3294 | ||
d2e4a39e | 3295 | switch (TYPE_CODE (ftype)) |
14f9c5c9 AS |
3296 | { |
3297 | default: | |
5b3d5b7d | 3298 | return TYPE_CODE (ftype) == TYPE_CODE (atype); |
14f9c5c9 AS |
3299 | case TYPE_CODE_PTR: |
3300 | if (TYPE_CODE (atype) == TYPE_CODE_PTR) | |
4c4b4cd2 PH |
3301 | return ada_type_match (TYPE_TARGET_TYPE (ftype), |
3302 | TYPE_TARGET_TYPE (atype), 0); | |
d2e4a39e | 3303 | else |
1265e4aa JB |
3304 | return (may_deref |
3305 | && ada_type_match (TYPE_TARGET_TYPE (ftype), atype, 0)); | |
14f9c5c9 AS |
3306 | case TYPE_CODE_INT: |
3307 | case TYPE_CODE_ENUM: | |
3308 | case TYPE_CODE_RANGE: | |
3309 | switch (TYPE_CODE (atype)) | |
4c4b4cd2 PH |
3310 | { |
3311 | case TYPE_CODE_INT: | |
3312 | case TYPE_CODE_ENUM: | |
3313 | case TYPE_CODE_RANGE: | |
3314 | return 1; | |
3315 | default: | |
3316 | return 0; | |
3317 | } | |
14f9c5c9 AS |
3318 | |
3319 | case TYPE_CODE_ARRAY: | |
d2e4a39e | 3320 | return (TYPE_CODE (atype) == TYPE_CODE_ARRAY |
4c4b4cd2 | 3321 | || ada_is_array_descriptor_type (atype)); |
14f9c5c9 AS |
3322 | |
3323 | case TYPE_CODE_STRUCT: | |
4c4b4cd2 PH |
3324 | if (ada_is_array_descriptor_type (ftype)) |
3325 | return (TYPE_CODE (atype) == TYPE_CODE_ARRAY | |
3326 | || ada_is_array_descriptor_type (atype)); | |
14f9c5c9 | 3327 | else |
4c4b4cd2 PH |
3328 | return (TYPE_CODE (atype) == TYPE_CODE_STRUCT |
3329 | && !ada_is_array_descriptor_type (atype)); | |
14f9c5c9 AS |
3330 | |
3331 | case TYPE_CODE_UNION: | |
3332 | case TYPE_CODE_FLT: | |
3333 | return (TYPE_CODE (atype) == TYPE_CODE (ftype)); | |
3334 | } | |
3335 | } | |
3336 | ||
3337 | /* Return non-zero if the formals of FUNC "sufficiently match" the | |
3338 | vector of actual argument types ACTUALS of size N_ACTUALS. FUNC | |
3339 | may also be an enumeral, in which case it is treated as a 0- | |
4c4b4cd2 | 3340 | argument function. */ |
14f9c5c9 AS |
3341 | |
3342 | static int | |
d2e4a39e | 3343 | ada_args_match (struct symbol *func, struct value **actuals, int n_actuals) |
14f9c5c9 AS |
3344 | { |
3345 | int i; | |
d2e4a39e | 3346 | struct type *func_type = SYMBOL_TYPE (func); |
14f9c5c9 | 3347 | |
1265e4aa JB |
3348 | if (SYMBOL_CLASS (func) == LOC_CONST |
3349 | && TYPE_CODE (func_type) == TYPE_CODE_ENUM) | |
14f9c5c9 AS |
3350 | return (n_actuals == 0); |
3351 | else if (func_type == NULL || TYPE_CODE (func_type) != TYPE_CODE_FUNC) | |
3352 | return 0; | |
3353 | ||
3354 | if (TYPE_NFIELDS (func_type) != n_actuals) | |
3355 | return 0; | |
3356 | ||
3357 | for (i = 0; i < n_actuals; i += 1) | |
3358 | { | |
4c4b4cd2 | 3359 | if (actuals[i] == NULL) |
76a01679 JB |
3360 | return 0; |
3361 | else | |
3362 | { | |
5b4ee69b MS |
3363 | struct type *ftype = ada_check_typedef (TYPE_FIELD_TYPE (func_type, |
3364 | i)); | |
df407dfe | 3365 | struct type *atype = ada_check_typedef (value_type (actuals[i])); |
4c4b4cd2 | 3366 | |
76a01679 JB |
3367 | if (!ada_type_match (ftype, atype, 1)) |
3368 | return 0; | |
3369 | } | |
14f9c5c9 AS |
3370 | } |
3371 | return 1; | |
3372 | } | |
3373 | ||
3374 | /* False iff function type FUNC_TYPE definitely does not produce a value | |
3375 | compatible with type CONTEXT_TYPE. Conservatively returns 1 if | |
3376 | FUNC_TYPE is not a valid function type with a non-null return type | |
3377 | or an enumerated type. A null CONTEXT_TYPE indicates any non-void type. */ | |
3378 | ||
3379 | static int | |
d2e4a39e | 3380 | return_match (struct type *func_type, struct type *context_type) |
14f9c5c9 | 3381 | { |
d2e4a39e | 3382 | struct type *return_type; |
14f9c5c9 AS |
3383 | |
3384 | if (func_type == NULL) | |
3385 | return 1; | |
3386 | ||
4c4b4cd2 | 3387 | if (TYPE_CODE (func_type) == TYPE_CODE_FUNC) |
18af8284 | 3388 | return_type = get_base_type (TYPE_TARGET_TYPE (func_type)); |
4c4b4cd2 | 3389 | else |
18af8284 | 3390 | return_type = get_base_type (func_type); |
14f9c5c9 AS |
3391 | if (return_type == NULL) |
3392 | return 1; | |
3393 | ||
18af8284 | 3394 | context_type = get_base_type (context_type); |
14f9c5c9 AS |
3395 | |
3396 | if (TYPE_CODE (return_type) == TYPE_CODE_ENUM) | |
3397 | return context_type == NULL || return_type == context_type; | |
3398 | else if (context_type == NULL) | |
3399 | return TYPE_CODE (return_type) != TYPE_CODE_VOID; | |
3400 | else | |
3401 | return TYPE_CODE (return_type) == TYPE_CODE (context_type); | |
3402 | } | |
3403 | ||
3404 | ||
4c4b4cd2 | 3405 | /* Returns the index in SYMS[0..NSYMS-1] that contains the symbol for the |
14f9c5c9 | 3406 | function (if any) that matches the types of the NARGS arguments in |
4c4b4cd2 PH |
3407 | ARGS. If CONTEXT_TYPE is non-null and there is at least one match |
3408 | that returns that type, then eliminate matches that don't. If | |
3409 | CONTEXT_TYPE is void and there is at least one match that does not | |
3410 | return void, eliminate all matches that do. | |
3411 | ||
14f9c5c9 AS |
3412 | Asks the user if there is more than one match remaining. Returns -1 |
3413 | if there is no such symbol or none is selected. NAME is used | |
4c4b4cd2 PH |
3414 | solely for messages. May re-arrange and modify SYMS in |
3415 | the process; the index returned is for the modified vector. */ | |
14f9c5c9 | 3416 | |
4c4b4cd2 PH |
3417 | static int |
3418 | ada_resolve_function (struct ada_symbol_info syms[], | |
3419 | int nsyms, struct value **args, int nargs, | |
3420 | const char *name, struct type *context_type) | |
14f9c5c9 | 3421 | { |
30b15541 | 3422 | int fallback; |
14f9c5c9 | 3423 | int k; |
4c4b4cd2 | 3424 | int m; /* Number of hits */ |
14f9c5c9 | 3425 | |
d2e4a39e | 3426 | m = 0; |
30b15541 UW |
3427 | /* In the first pass of the loop, we only accept functions matching |
3428 | context_type. If none are found, we add a second pass of the loop | |
3429 | where every function is accepted. */ | |
3430 | for (fallback = 0; m == 0 && fallback < 2; fallback++) | |
14f9c5c9 AS |
3431 | { |
3432 | for (k = 0; k < nsyms; k += 1) | |
4c4b4cd2 | 3433 | { |
61ee279c | 3434 | struct type *type = ada_check_typedef (SYMBOL_TYPE (syms[k].sym)); |
4c4b4cd2 PH |
3435 | |
3436 | if (ada_args_match (syms[k].sym, args, nargs) | |
30b15541 | 3437 | && (fallback || return_match (type, context_type))) |
4c4b4cd2 PH |
3438 | { |
3439 | syms[m] = syms[k]; | |
3440 | m += 1; | |
3441 | } | |
3442 | } | |
14f9c5c9 AS |
3443 | } |
3444 | ||
3445 | if (m == 0) | |
3446 | return -1; | |
3447 | else if (m > 1) | |
3448 | { | |
323e0a4a | 3449 | printf_filtered (_("Multiple matches for %s\n"), name); |
4c4b4cd2 | 3450 | user_select_syms (syms, m, 1); |
14f9c5c9 AS |
3451 | return 0; |
3452 | } | |
3453 | return 0; | |
3454 | } | |
3455 | ||
4c4b4cd2 PH |
3456 | /* Returns true (non-zero) iff decoded name N0 should appear before N1 |
3457 | in a listing of choices during disambiguation (see sort_choices, below). | |
3458 | The idea is that overloadings of a subprogram name from the | |
3459 | same package should sort in their source order. We settle for ordering | |
3460 | such symbols by their trailing number (__N or $N). */ | |
3461 | ||
14f9c5c9 | 3462 | static int |
0d5cff50 | 3463 | encoded_ordered_before (const char *N0, const char *N1) |
14f9c5c9 AS |
3464 | { |
3465 | if (N1 == NULL) | |
3466 | return 0; | |
3467 | else if (N0 == NULL) | |
3468 | return 1; | |
3469 | else | |
3470 | { | |
3471 | int k0, k1; | |
5b4ee69b | 3472 | |
d2e4a39e | 3473 | for (k0 = strlen (N0) - 1; k0 > 0 && isdigit (N0[k0]); k0 -= 1) |
4c4b4cd2 | 3474 | ; |
d2e4a39e | 3475 | for (k1 = strlen (N1) - 1; k1 > 0 && isdigit (N1[k1]); k1 -= 1) |
4c4b4cd2 | 3476 | ; |
d2e4a39e | 3477 | if ((N0[k0] == '_' || N0[k0] == '$') && N0[k0 + 1] != '\000' |
4c4b4cd2 PH |
3478 | && (N1[k1] == '_' || N1[k1] == '$') && N1[k1 + 1] != '\000') |
3479 | { | |
3480 | int n0, n1; | |
5b4ee69b | 3481 | |
4c4b4cd2 PH |
3482 | n0 = k0; |
3483 | while (N0[n0] == '_' && n0 > 0 && N0[n0 - 1] == '_') | |
3484 | n0 -= 1; | |
3485 | n1 = k1; | |
3486 | while (N1[n1] == '_' && n1 > 0 && N1[n1 - 1] == '_') | |
3487 | n1 -= 1; | |
3488 | if (n0 == n1 && strncmp (N0, N1, n0) == 0) | |
3489 | return (atoi (N0 + k0 + 1) < atoi (N1 + k1 + 1)); | |
3490 | } | |
14f9c5c9 AS |
3491 | return (strcmp (N0, N1) < 0); |
3492 | } | |
3493 | } | |
d2e4a39e | 3494 | |
4c4b4cd2 PH |
3495 | /* Sort SYMS[0..NSYMS-1] to put the choices in a canonical order by the |
3496 | encoded names. */ | |
3497 | ||
d2e4a39e | 3498 | static void |
4c4b4cd2 | 3499 | sort_choices (struct ada_symbol_info syms[], int nsyms) |
14f9c5c9 | 3500 | { |
4c4b4cd2 | 3501 | int i; |
5b4ee69b | 3502 | |
d2e4a39e | 3503 | for (i = 1; i < nsyms; i += 1) |
14f9c5c9 | 3504 | { |
4c4b4cd2 | 3505 | struct ada_symbol_info sym = syms[i]; |
14f9c5c9 AS |
3506 | int j; |
3507 | ||
d2e4a39e | 3508 | for (j = i - 1; j >= 0; j -= 1) |
4c4b4cd2 PH |
3509 | { |
3510 | if (encoded_ordered_before (SYMBOL_LINKAGE_NAME (syms[j].sym), | |
3511 | SYMBOL_LINKAGE_NAME (sym.sym))) | |
3512 | break; | |
3513 | syms[j + 1] = syms[j]; | |
3514 | } | |
d2e4a39e | 3515 | syms[j + 1] = sym; |
14f9c5c9 AS |
3516 | } |
3517 | } | |
3518 | ||
4c4b4cd2 PH |
3519 | /* Given a list of NSYMS symbols in SYMS, select up to MAX_RESULTS>0 |
3520 | by asking the user (if necessary), returning the number selected, | |
3521 | and setting the first elements of SYMS items. Error if no symbols | |
3522 | selected. */ | |
14f9c5c9 AS |
3523 | |
3524 | /* NOTE: Adapted from decode_line_2 in symtab.c, with which it ought | |
4c4b4cd2 | 3525 | to be re-integrated one of these days. */ |
14f9c5c9 AS |
3526 | |
3527 | int | |
4c4b4cd2 | 3528 | user_select_syms (struct ada_symbol_info *syms, int nsyms, int max_results) |
14f9c5c9 AS |
3529 | { |
3530 | int i; | |
d2e4a39e | 3531 | int *chosen = (int *) alloca (sizeof (int) * nsyms); |
14f9c5c9 AS |
3532 | int n_chosen; |
3533 | int first_choice = (max_results == 1) ? 1 : 2; | |
717d2f5a | 3534 | const char *select_mode = multiple_symbols_select_mode (); |
14f9c5c9 AS |
3535 | |
3536 | if (max_results < 1) | |
323e0a4a | 3537 | error (_("Request to select 0 symbols!")); |
14f9c5c9 AS |
3538 | if (nsyms <= 1) |
3539 | return nsyms; | |
3540 | ||
717d2f5a JB |
3541 | if (select_mode == multiple_symbols_cancel) |
3542 | error (_("\ | |
3543 | canceled because the command is ambiguous\n\ | |
3544 | See set/show multiple-symbol.")); | |
3545 | ||
3546 | /* If select_mode is "all", then return all possible symbols. | |
3547 | Only do that if more than one symbol can be selected, of course. | |
3548 | Otherwise, display the menu as usual. */ | |
3549 | if (select_mode == multiple_symbols_all && max_results > 1) | |
3550 | return nsyms; | |
3551 | ||
323e0a4a | 3552 | printf_unfiltered (_("[0] cancel\n")); |
14f9c5c9 | 3553 | if (max_results > 1) |
323e0a4a | 3554 | printf_unfiltered (_("[1] all\n")); |
14f9c5c9 | 3555 | |
4c4b4cd2 | 3556 | sort_choices (syms, nsyms); |
14f9c5c9 AS |
3557 | |
3558 | for (i = 0; i < nsyms; i += 1) | |
3559 | { | |
4c4b4cd2 PH |
3560 | if (syms[i].sym == NULL) |
3561 | continue; | |
3562 | ||
3563 | if (SYMBOL_CLASS (syms[i].sym) == LOC_BLOCK) | |
3564 | { | |
76a01679 JB |
3565 | struct symtab_and_line sal = |
3566 | find_function_start_sal (syms[i].sym, 1); | |
5b4ee69b | 3567 | |
323e0a4a AC |
3568 | if (sal.symtab == NULL) |
3569 | printf_unfiltered (_("[%d] %s at <no source file available>:%d\n"), | |
3570 | i + first_choice, | |
3571 | SYMBOL_PRINT_NAME (syms[i].sym), | |
3572 | sal.line); | |
3573 | else | |
3574 | printf_unfiltered (_("[%d] %s at %s:%d\n"), i + first_choice, | |
3575 | SYMBOL_PRINT_NAME (syms[i].sym), | |
05cba821 JK |
3576 | symtab_to_filename_for_display (sal.symtab), |
3577 | sal.line); | |
4c4b4cd2 PH |
3578 | continue; |
3579 | } | |
d2e4a39e | 3580 | else |
4c4b4cd2 PH |
3581 | { |
3582 | int is_enumeral = | |
3583 | (SYMBOL_CLASS (syms[i].sym) == LOC_CONST | |
3584 | && SYMBOL_TYPE (syms[i].sym) != NULL | |
3585 | && TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) == TYPE_CODE_ENUM); | |
210bbc17 | 3586 | struct symtab *symtab = SYMBOL_SYMTAB (syms[i].sym); |
4c4b4cd2 PH |
3587 | |
3588 | if (SYMBOL_LINE (syms[i].sym) != 0 && symtab != NULL) | |
323e0a4a | 3589 | printf_unfiltered (_("[%d] %s at %s:%d\n"), |
4c4b4cd2 PH |
3590 | i + first_choice, |
3591 | SYMBOL_PRINT_NAME (syms[i].sym), | |
05cba821 JK |
3592 | symtab_to_filename_for_display (symtab), |
3593 | SYMBOL_LINE (syms[i].sym)); | |
76a01679 JB |
3594 | else if (is_enumeral |
3595 | && TYPE_NAME (SYMBOL_TYPE (syms[i].sym)) != NULL) | |
4c4b4cd2 | 3596 | { |
a3f17187 | 3597 | printf_unfiltered (("[%d] "), i + first_choice); |
76a01679 | 3598 | ada_print_type (SYMBOL_TYPE (syms[i].sym), NULL, |
79d43c61 | 3599 | gdb_stdout, -1, 0, &type_print_raw_options); |
323e0a4a | 3600 | printf_unfiltered (_("'(%s) (enumeral)\n"), |
4c4b4cd2 PH |
3601 | SYMBOL_PRINT_NAME (syms[i].sym)); |
3602 | } | |
3603 | else if (symtab != NULL) | |
3604 | printf_unfiltered (is_enumeral | |
323e0a4a AC |
3605 | ? _("[%d] %s in %s (enumeral)\n") |
3606 | : _("[%d] %s at %s:?\n"), | |
4c4b4cd2 PH |
3607 | i + first_choice, |
3608 | SYMBOL_PRINT_NAME (syms[i].sym), | |
05cba821 | 3609 | symtab_to_filename_for_display (symtab)); |
4c4b4cd2 PH |
3610 | else |
3611 | printf_unfiltered (is_enumeral | |
323e0a4a AC |
3612 | ? _("[%d] %s (enumeral)\n") |
3613 | : _("[%d] %s at ?\n"), | |
4c4b4cd2 PH |
3614 | i + first_choice, |
3615 | SYMBOL_PRINT_NAME (syms[i].sym)); | |
3616 | } | |
14f9c5c9 | 3617 | } |
d2e4a39e | 3618 | |
14f9c5c9 | 3619 | n_chosen = get_selections (chosen, nsyms, max_results, max_results > 1, |
4c4b4cd2 | 3620 | "overload-choice"); |
14f9c5c9 AS |
3621 | |
3622 | for (i = 0; i < n_chosen; i += 1) | |
4c4b4cd2 | 3623 | syms[i] = syms[chosen[i]]; |
14f9c5c9 AS |
3624 | |
3625 | return n_chosen; | |
3626 | } | |
3627 | ||
3628 | /* Read and validate a set of numeric choices from the user in the | |
4c4b4cd2 | 3629 | range 0 .. N_CHOICES-1. Place the results in increasing |
14f9c5c9 AS |
3630 | order in CHOICES[0 .. N-1], and return N. |
3631 | ||
3632 | The user types choices as a sequence of numbers on one line | |
3633 | separated by blanks, encoding them as follows: | |
3634 | ||
4c4b4cd2 | 3635 | + A choice of 0 means to cancel the selection, throwing an error. |
14f9c5c9 AS |
3636 | + If IS_ALL_CHOICE, a choice of 1 selects the entire set 0 .. N_CHOICES-1. |
3637 | + The user chooses k by typing k+IS_ALL_CHOICE+1. | |
3638 | ||
4c4b4cd2 | 3639 | The user is not allowed to choose more than MAX_RESULTS values. |
14f9c5c9 AS |
3640 | |
3641 | ANNOTATION_SUFFIX, if present, is used to annotate the input | |
4c4b4cd2 | 3642 | prompts (for use with the -f switch). */ |
14f9c5c9 AS |
3643 | |
3644 | int | |
d2e4a39e | 3645 | get_selections (int *choices, int n_choices, int max_results, |
4c4b4cd2 | 3646 | int is_all_choice, char *annotation_suffix) |
14f9c5c9 | 3647 | { |
d2e4a39e | 3648 | char *args; |
0bcd0149 | 3649 | char *prompt; |
14f9c5c9 AS |
3650 | int n_chosen; |
3651 | int first_choice = is_all_choice ? 2 : 1; | |
d2e4a39e | 3652 | |
14f9c5c9 AS |
3653 | prompt = getenv ("PS2"); |
3654 | if (prompt == NULL) | |
0bcd0149 | 3655 | prompt = "> "; |
14f9c5c9 | 3656 | |
0bcd0149 | 3657 | args = command_line_input (prompt, 0, annotation_suffix); |
d2e4a39e | 3658 | |
14f9c5c9 | 3659 | if (args == NULL) |
323e0a4a | 3660 | error_no_arg (_("one or more choice numbers")); |
14f9c5c9 AS |
3661 | |
3662 | n_chosen = 0; | |
76a01679 | 3663 | |
4c4b4cd2 PH |
3664 | /* Set choices[0 .. n_chosen-1] to the users' choices in ascending |
3665 | order, as given in args. Choices are validated. */ | |
14f9c5c9 AS |
3666 | while (1) |
3667 | { | |
d2e4a39e | 3668 | char *args2; |
14f9c5c9 AS |
3669 | int choice, j; |
3670 | ||
0fcd72ba | 3671 | args = skip_spaces (args); |
14f9c5c9 | 3672 | if (*args == '\0' && n_chosen == 0) |
323e0a4a | 3673 | error_no_arg (_("one or more choice numbers")); |
14f9c5c9 | 3674 | else if (*args == '\0') |
4c4b4cd2 | 3675 | break; |
14f9c5c9 AS |
3676 | |
3677 | choice = strtol (args, &args2, 10); | |
d2e4a39e | 3678 | if (args == args2 || choice < 0 |
4c4b4cd2 | 3679 | || choice > n_choices + first_choice - 1) |
323e0a4a | 3680 | error (_("Argument must be choice number")); |
14f9c5c9 AS |
3681 | args = args2; |
3682 | ||
d2e4a39e | 3683 | if (choice == 0) |
323e0a4a | 3684 | error (_("cancelled")); |
14f9c5c9 AS |
3685 | |
3686 | if (choice < first_choice) | |
4c4b4cd2 PH |
3687 | { |
3688 | n_chosen = n_choices; | |
3689 | for (j = 0; j < n_choices; j += 1) | |
3690 | choices[j] = j; | |
3691 | break; | |
3692 | } | |
14f9c5c9 AS |
3693 | choice -= first_choice; |
3694 | ||
d2e4a39e | 3695 | for (j = n_chosen - 1; j >= 0 && choice < choices[j]; j -= 1) |
4c4b4cd2 PH |
3696 | { |
3697 | } | |
14f9c5c9 AS |
3698 | |
3699 | if (j < 0 || choice != choices[j]) | |
4c4b4cd2 PH |
3700 | { |
3701 | int k; | |
5b4ee69b | 3702 | |
4c4b4cd2 PH |
3703 | for (k = n_chosen - 1; k > j; k -= 1) |
3704 | choices[k + 1] = choices[k]; | |
3705 | choices[j + 1] = choice; | |
3706 | n_chosen += 1; | |
3707 | } | |
14f9c5c9 AS |
3708 | } |
3709 | ||
3710 | if (n_chosen > max_results) | |
323e0a4a | 3711 | error (_("Select no more than %d of the above"), max_results); |
d2e4a39e | 3712 | |
14f9c5c9 AS |
3713 | return n_chosen; |
3714 | } | |
3715 | ||
4c4b4cd2 PH |
3716 | /* Replace the operator of length OPLEN at position PC in *EXPP with a call |
3717 | on the function identified by SYM and BLOCK, and taking NARGS | |
3718 | arguments. Update *EXPP as needed to hold more space. */ | |
14f9c5c9 AS |
3719 | |
3720 | static void | |
d2e4a39e | 3721 | replace_operator_with_call (struct expression **expp, int pc, int nargs, |
4c4b4cd2 | 3722 | int oplen, struct symbol *sym, |
270140bd | 3723 | const struct block *block) |
14f9c5c9 AS |
3724 | { |
3725 | /* A new expression, with 6 more elements (3 for funcall, 4 for function | |
4c4b4cd2 | 3726 | symbol, -oplen for operator being replaced). */ |
d2e4a39e | 3727 | struct expression *newexp = (struct expression *) |
8c1a34e7 | 3728 | xzalloc (sizeof (struct expression) |
4c4b4cd2 | 3729 | + EXP_ELEM_TO_BYTES ((*expp)->nelts + 7 - oplen)); |
d2e4a39e | 3730 | struct expression *exp = *expp; |
14f9c5c9 AS |
3731 | |
3732 | newexp->nelts = exp->nelts + 7 - oplen; | |
3733 | newexp->language_defn = exp->language_defn; | |
3489610d | 3734 | newexp->gdbarch = exp->gdbarch; |
14f9c5c9 | 3735 | memcpy (newexp->elts, exp->elts, EXP_ELEM_TO_BYTES (pc)); |
d2e4a39e | 3736 | memcpy (newexp->elts + pc + 7, exp->elts + pc + oplen, |
4c4b4cd2 | 3737 | EXP_ELEM_TO_BYTES (exp->nelts - pc - oplen)); |
14f9c5c9 AS |
3738 | |
3739 | newexp->elts[pc].opcode = newexp->elts[pc + 2].opcode = OP_FUNCALL; | |
3740 | newexp->elts[pc + 1].longconst = (LONGEST) nargs; | |
3741 | ||
3742 | newexp->elts[pc + 3].opcode = newexp->elts[pc + 6].opcode = OP_VAR_VALUE; | |
3743 | newexp->elts[pc + 4].block = block; | |
3744 | newexp->elts[pc + 5].symbol = sym; | |
3745 | ||
3746 | *expp = newexp; | |
aacb1f0a | 3747 | xfree (exp); |
d2e4a39e | 3748 | } |
14f9c5c9 AS |
3749 | |
3750 | /* Type-class predicates */ | |
3751 | ||
4c4b4cd2 PH |
3752 | /* True iff TYPE is numeric (i.e., an INT, RANGE (of numeric type), |
3753 | or FLOAT). */ | |
14f9c5c9 AS |
3754 | |
3755 | static int | |
d2e4a39e | 3756 | numeric_type_p (struct type *type) |
14f9c5c9 AS |
3757 | { |
3758 | if (type == NULL) | |
3759 | return 0; | |
d2e4a39e AS |
3760 | else |
3761 | { | |
3762 | switch (TYPE_CODE (type)) | |
4c4b4cd2 PH |
3763 | { |
3764 | case TYPE_CODE_INT: | |
3765 | case TYPE_CODE_FLT: | |
3766 | return 1; | |
3767 | case TYPE_CODE_RANGE: | |
3768 | return (type == TYPE_TARGET_TYPE (type) | |
3769 | || numeric_type_p (TYPE_TARGET_TYPE (type))); | |
3770 | default: | |
3771 | return 0; | |
3772 | } | |
d2e4a39e | 3773 | } |
14f9c5c9 AS |
3774 | } |
3775 | ||
4c4b4cd2 | 3776 | /* True iff TYPE is integral (an INT or RANGE of INTs). */ |
14f9c5c9 AS |
3777 | |
3778 | static int | |
d2e4a39e | 3779 | integer_type_p (struct type *type) |
14f9c5c9 AS |
3780 | { |
3781 | if (type == NULL) | |
3782 | return 0; | |
d2e4a39e AS |
3783 | else |
3784 | { | |
3785 | switch (TYPE_CODE (type)) | |
4c4b4cd2 PH |
3786 | { |
3787 | case TYPE_CODE_INT: | |
3788 | return 1; | |
3789 | case TYPE_CODE_RANGE: | |
3790 | return (type == TYPE_TARGET_TYPE (type) | |
3791 | || integer_type_p (TYPE_TARGET_TYPE (type))); | |
3792 | default: | |
3793 | return 0; | |
3794 | } | |
d2e4a39e | 3795 | } |
14f9c5c9 AS |
3796 | } |
3797 | ||
4c4b4cd2 | 3798 | /* True iff TYPE is scalar (INT, RANGE, FLOAT, ENUM). */ |
14f9c5c9 AS |
3799 | |
3800 | static int | |
d2e4a39e | 3801 | scalar_type_p (struct type *type) |
14f9c5c9 AS |
3802 | { |
3803 | if (type == NULL) | |
3804 | return 0; | |
d2e4a39e AS |
3805 | else |
3806 | { | |
3807 | switch (TYPE_CODE (type)) | |
4c4b4cd2 PH |
3808 | { |
3809 | case TYPE_CODE_INT: | |
3810 | case TYPE_CODE_RANGE: | |
3811 | case TYPE_CODE_ENUM: | |
3812 | case TYPE_CODE_FLT: | |
3813 | return 1; | |
3814 | default: | |
3815 | return 0; | |
3816 | } | |
d2e4a39e | 3817 | } |
14f9c5c9 AS |
3818 | } |
3819 | ||
4c4b4cd2 | 3820 | /* True iff TYPE is discrete (INT, RANGE, ENUM). */ |
14f9c5c9 AS |
3821 | |
3822 | static int | |
d2e4a39e | 3823 | discrete_type_p (struct type *type) |
14f9c5c9 AS |
3824 | { |
3825 | if (type == NULL) | |
3826 | return 0; | |
d2e4a39e AS |
3827 | else |
3828 | { | |
3829 | switch (TYPE_CODE (type)) | |
4c4b4cd2 PH |
3830 | { |
3831 | case TYPE_CODE_INT: | |
3832 | case TYPE_CODE_RANGE: | |
3833 | case TYPE_CODE_ENUM: | |
872f0337 | 3834 | case TYPE_CODE_BOOL: |
4c4b4cd2 PH |
3835 | return 1; |
3836 | default: | |
3837 | return 0; | |
3838 | } | |
d2e4a39e | 3839 | } |
14f9c5c9 AS |
3840 | } |
3841 | ||
4c4b4cd2 PH |
3842 | /* Returns non-zero if OP with operands in the vector ARGS could be |
3843 | a user-defined function. Errs on the side of pre-defined operators | |
3844 | (i.e., result 0). */ | |
14f9c5c9 AS |
3845 | |
3846 | static int | |
d2e4a39e | 3847 | possible_user_operator_p (enum exp_opcode op, struct value *args[]) |
14f9c5c9 | 3848 | { |
76a01679 | 3849 | struct type *type0 = |
df407dfe | 3850 | (args[0] == NULL) ? NULL : ada_check_typedef (value_type (args[0])); |
d2e4a39e | 3851 | struct type *type1 = |
df407dfe | 3852 | (args[1] == NULL) ? NULL : ada_check_typedef (value_type (args[1])); |
d2e4a39e | 3853 | |
4c4b4cd2 PH |
3854 | if (type0 == NULL) |
3855 | return 0; | |
3856 | ||
14f9c5c9 AS |
3857 | switch (op) |
3858 | { | |
3859 | default: | |
3860 | return 0; | |
3861 | ||
3862 | case BINOP_ADD: | |
3863 | case BINOP_SUB: | |
3864 | case BINOP_MUL: | |
3865 | case BINOP_DIV: | |
d2e4a39e | 3866 | return (!(numeric_type_p (type0) && numeric_type_p (type1))); |
14f9c5c9 AS |
3867 | |
3868 | case BINOP_REM: | |
3869 | case BINOP_MOD: | |
3870 | case BINOP_BITWISE_AND: | |
3871 | case BINOP_BITWISE_IOR: | |
3872 | case BINOP_BITWISE_XOR: | |
d2e4a39e | 3873 | return (!(integer_type_p (type0) && integer_type_p (type1))); |
14f9c5c9 AS |
3874 | |
3875 | case BINOP_EQUAL: | |
3876 | case BINOP_NOTEQUAL: | |
3877 | case BINOP_LESS: | |
3878 | case BINOP_GTR: | |
3879 | case BINOP_LEQ: | |
3880 | case BINOP_GEQ: | |
d2e4a39e | 3881 | return (!(scalar_type_p (type0) && scalar_type_p (type1))); |
14f9c5c9 AS |
3882 | |
3883 | case BINOP_CONCAT: | |
ee90b9ab | 3884 | return !ada_is_array_type (type0) || !ada_is_array_type (type1); |
14f9c5c9 AS |
3885 | |
3886 | case BINOP_EXP: | |
d2e4a39e | 3887 | return (!(numeric_type_p (type0) && integer_type_p (type1))); |
14f9c5c9 AS |
3888 | |
3889 | case UNOP_NEG: | |
3890 | case UNOP_PLUS: | |
3891 | case UNOP_LOGICAL_NOT: | |
d2e4a39e AS |
3892 | case UNOP_ABS: |
3893 | return (!numeric_type_p (type0)); | |
14f9c5c9 AS |
3894 | |
3895 | } | |
3896 | } | |
3897 | \f | |
4c4b4cd2 | 3898 | /* Renaming */ |
14f9c5c9 | 3899 | |
aeb5907d JB |
3900 | /* NOTES: |
3901 | ||
3902 | 1. In the following, we assume that a renaming type's name may | |
3903 | have an ___XD suffix. It would be nice if this went away at some | |
3904 | point. | |
3905 | 2. We handle both the (old) purely type-based representation of | |
3906 | renamings and the (new) variable-based encoding. At some point, | |
3907 | it is devoutly to be hoped that the former goes away | |
3908 | (FIXME: hilfinger-2007-07-09). | |
3909 | 3. Subprogram renamings are not implemented, although the XRS | |
3910 | suffix is recognized (FIXME: hilfinger-2007-07-09). */ | |
3911 | ||
3912 | /* If SYM encodes a renaming, | |
3913 | ||
3914 | <renaming> renames <renamed entity>, | |
3915 | ||
3916 | sets *LEN to the length of the renamed entity's name, | |
3917 | *RENAMED_ENTITY to that name (not null-terminated), and *RENAMING_EXPR to | |
3918 | the string describing the subcomponent selected from the renamed | |
0963b4bd | 3919 | entity. Returns ADA_NOT_RENAMING if SYM does not encode a renaming |
aeb5907d JB |
3920 | (in which case, the values of *RENAMED_ENTITY, *LEN, and *RENAMING_EXPR |
3921 | are undefined). Otherwise, returns a value indicating the category | |
3922 | of entity renamed: an object (ADA_OBJECT_RENAMING), exception | |
3923 | (ADA_EXCEPTION_RENAMING), package (ADA_PACKAGE_RENAMING), or | |
3924 | subprogram (ADA_SUBPROGRAM_RENAMING). Does no allocation; the | |
3925 | strings returned in *RENAMED_ENTITY and *RENAMING_EXPR should not be | |
3926 | deallocated. The values of RENAMED_ENTITY, LEN, or RENAMING_EXPR | |
3927 | may be NULL, in which case they are not assigned. | |
3928 | ||
3929 | [Currently, however, GCC does not generate subprogram renamings.] */ | |
3930 | ||
3931 | enum ada_renaming_category | |
3932 | ada_parse_renaming (struct symbol *sym, | |
3933 | const char **renamed_entity, int *len, | |
3934 | const char **renaming_expr) | |
3935 | { | |
3936 | enum ada_renaming_category kind; | |
3937 | const char *info; | |
3938 | const char *suffix; | |
3939 | ||
3940 | if (sym == NULL) | |
3941 | return ADA_NOT_RENAMING; | |
3942 | switch (SYMBOL_CLASS (sym)) | |
14f9c5c9 | 3943 | { |
aeb5907d JB |
3944 | default: |
3945 | return ADA_NOT_RENAMING; | |
3946 | case LOC_TYPEDEF: | |
3947 | return parse_old_style_renaming (SYMBOL_TYPE (sym), | |
3948 | renamed_entity, len, renaming_expr); | |
3949 | case LOC_LOCAL: | |
3950 | case LOC_STATIC: | |
3951 | case LOC_COMPUTED: | |
3952 | case LOC_OPTIMIZED_OUT: | |
3953 | info = strstr (SYMBOL_LINKAGE_NAME (sym), "___XR"); | |
3954 | if (info == NULL) | |
3955 | return ADA_NOT_RENAMING; | |
3956 | switch (info[5]) | |
3957 | { | |
3958 | case '_': | |
3959 | kind = ADA_OBJECT_RENAMING; | |
3960 | info += 6; | |
3961 | break; | |
3962 | case 'E': | |
3963 | kind = ADA_EXCEPTION_RENAMING; | |
3964 | info += 7; | |
3965 | break; | |
3966 | case 'P': | |
3967 | kind = ADA_PACKAGE_RENAMING; | |
3968 | info += 7; | |
3969 | break; | |
3970 | case 'S': | |
3971 | kind = ADA_SUBPROGRAM_RENAMING; | |
3972 | info += 7; | |
3973 | break; | |
3974 | default: | |
3975 | return ADA_NOT_RENAMING; | |
3976 | } | |
14f9c5c9 | 3977 | } |
4c4b4cd2 | 3978 | |
aeb5907d JB |
3979 | if (renamed_entity != NULL) |
3980 | *renamed_entity = info; | |
3981 | suffix = strstr (info, "___XE"); | |
3982 | if (suffix == NULL || suffix == info) | |
3983 | return ADA_NOT_RENAMING; | |
3984 | if (len != NULL) | |
3985 | *len = strlen (info) - strlen (suffix); | |
3986 | suffix += 5; | |
3987 | if (renaming_expr != NULL) | |
3988 | *renaming_expr = suffix; | |
3989 | return kind; | |
3990 | } | |
3991 | ||
3992 | /* Assuming TYPE encodes a renaming according to the old encoding in | |
3993 | exp_dbug.ads, returns details of that renaming in *RENAMED_ENTITY, | |
3994 | *LEN, and *RENAMING_EXPR, as for ada_parse_renaming, above. Returns | |
3995 | ADA_NOT_RENAMING otherwise. */ | |
3996 | static enum ada_renaming_category | |
3997 | parse_old_style_renaming (struct type *type, | |
3998 | const char **renamed_entity, int *len, | |
3999 | const char **renaming_expr) | |
4000 | { | |
4001 | enum ada_renaming_category kind; | |
4002 | const char *name; | |
4003 | const char *info; | |
4004 | const char *suffix; | |
14f9c5c9 | 4005 | |
aeb5907d JB |
4006 | if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM |
4007 | || TYPE_NFIELDS (type) != 1) | |
4008 | return ADA_NOT_RENAMING; | |
14f9c5c9 | 4009 | |
aeb5907d JB |
4010 | name = type_name_no_tag (type); |
4011 | if (name == NULL) | |
4012 | return ADA_NOT_RENAMING; | |
4013 | ||
4014 | name = strstr (name, "___XR"); | |
4015 | if (name == NULL) | |
4016 | return ADA_NOT_RENAMING; | |
4017 | switch (name[5]) | |
4018 | { | |
4019 | case '\0': | |
4020 | case '_': | |
4021 | kind = ADA_OBJECT_RENAMING; | |
4022 | break; | |
4023 | case 'E': | |
4024 | kind = ADA_EXCEPTION_RENAMING; | |
4025 | break; | |
4026 | case 'P': | |
4027 | kind = ADA_PACKAGE_RENAMING; | |
4028 | break; | |
4029 | case 'S': | |
4030 | kind = ADA_SUBPROGRAM_RENAMING; | |
4031 | break; | |
4032 | default: | |
4033 | return ADA_NOT_RENAMING; | |
4034 | } | |
14f9c5c9 | 4035 | |
aeb5907d JB |
4036 | info = TYPE_FIELD_NAME (type, 0); |
4037 | if (info == NULL) | |
4038 | return ADA_NOT_RENAMING; | |
4039 | if (renamed_entity != NULL) | |
4040 | *renamed_entity = info; | |
4041 | suffix = strstr (info, "___XE"); | |
4042 | if (renaming_expr != NULL) | |
4043 | *renaming_expr = suffix + 5; | |
4044 | if (suffix == NULL || suffix == info) | |
4045 | return ADA_NOT_RENAMING; | |
4046 | if (len != NULL) | |
4047 | *len = suffix - info; | |
4048 | return kind; | |
a5ee536b JB |
4049 | } |
4050 | ||
4051 | /* Compute the value of the given RENAMING_SYM, which is expected to | |
4052 | be a symbol encoding a renaming expression. BLOCK is the block | |
4053 | used to evaluate the renaming. */ | |
52ce6436 | 4054 | |
a5ee536b JB |
4055 | static struct value * |
4056 | ada_read_renaming_var_value (struct symbol *renaming_sym, | |
4057 | struct block *block) | |
4058 | { | |
4059 | char *sym_name; | |
4060 | struct expression *expr; | |
4061 | struct value *value; | |
4062 | struct cleanup *old_chain = NULL; | |
4063 | ||
4064 | sym_name = xstrdup (SYMBOL_LINKAGE_NAME (renaming_sym)); | |
4065 | old_chain = make_cleanup (xfree, sym_name); | |
1bb9788d | 4066 | expr = parse_exp_1 (&sym_name, 0, block, 0); |
a5ee536b JB |
4067 | make_cleanup (free_current_contents, &expr); |
4068 | value = evaluate_expression (expr); | |
4069 | ||
4070 | do_cleanups (old_chain); | |
4071 | return value; | |
4072 | } | |
14f9c5c9 | 4073 | \f |
d2e4a39e | 4074 | |
4c4b4cd2 | 4075 | /* Evaluation: Function Calls */ |
14f9c5c9 | 4076 | |
4c4b4cd2 | 4077 | /* Return an lvalue containing the value VAL. This is the identity on |
40bc484c JB |
4078 | lvalues, and otherwise has the side-effect of allocating memory |
4079 | in the inferior where a copy of the value contents is copied. */ | |
14f9c5c9 | 4080 | |
d2e4a39e | 4081 | static struct value * |
40bc484c | 4082 | ensure_lval (struct value *val) |
14f9c5c9 | 4083 | { |
40bc484c JB |
4084 | if (VALUE_LVAL (val) == not_lval |
4085 | || VALUE_LVAL (val) == lval_internalvar) | |
c3e5cd34 | 4086 | { |
df407dfe | 4087 | int len = TYPE_LENGTH (ada_check_typedef (value_type (val))); |
40bc484c JB |
4088 | const CORE_ADDR addr = |
4089 | value_as_long (value_allocate_space_in_inferior (len)); | |
c3e5cd34 | 4090 | |
40bc484c | 4091 | set_value_address (val, addr); |
a84a8a0d | 4092 | VALUE_LVAL (val) = lval_memory; |
40bc484c | 4093 | write_memory (addr, value_contents (val), len); |
c3e5cd34 | 4094 | } |
14f9c5c9 AS |
4095 | |
4096 | return val; | |
4097 | } | |
4098 | ||
4099 | /* Return the value ACTUAL, converted to be an appropriate value for a | |
4100 | formal of type FORMAL_TYPE. Use *SP as a stack pointer for | |
4101 | allocating any necessary descriptors (fat pointers), or copies of | |
4c4b4cd2 | 4102 | values not residing in memory, updating it as needed. */ |
14f9c5c9 | 4103 | |
a93c0eb6 | 4104 | struct value * |
40bc484c | 4105 | ada_convert_actual (struct value *actual, struct type *formal_type0) |
14f9c5c9 | 4106 | { |
df407dfe | 4107 | struct type *actual_type = ada_check_typedef (value_type (actual)); |
61ee279c | 4108 | struct type *formal_type = ada_check_typedef (formal_type0); |
d2e4a39e AS |
4109 | struct type *formal_target = |
4110 | TYPE_CODE (formal_type) == TYPE_CODE_PTR | |
61ee279c | 4111 | ? ada_check_typedef (TYPE_TARGET_TYPE (formal_type)) : formal_type; |
d2e4a39e AS |
4112 | struct type *actual_target = |
4113 | TYPE_CODE (actual_type) == TYPE_CODE_PTR | |
61ee279c | 4114 | ? ada_check_typedef (TYPE_TARGET_TYPE (actual_type)) : actual_type; |
14f9c5c9 | 4115 | |
4c4b4cd2 | 4116 | if (ada_is_array_descriptor_type (formal_target) |
14f9c5c9 | 4117 | && TYPE_CODE (actual_target) == TYPE_CODE_ARRAY) |
40bc484c | 4118 | return make_array_descriptor (formal_type, actual); |
a84a8a0d JB |
4119 | else if (TYPE_CODE (formal_type) == TYPE_CODE_PTR |
4120 | || TYPE_CODE (formal_type) == TYPE_CODE_REF) | |
14f9c5c9 | 4121 | { |
a84a8a0d | 4122 | struct value *result; |
5b4ee69b | 4123 | |
14f9c5c9 | 4124 | if (TYPE_CODE (formal_target) == TYPE_CODE_ARRAY |
4c4b4cd2 | 4125 | && ada_is_array_descriptor_type (actual_target)) |
a84a8a0d | 4126 | result = desc_data (actual); |
14f9c5c9 | 4127 | else if (TYPE_CODE (actual_type) != TYPE_CODE_PTR) |
4c4b4cd2 PH |
4128 | { |
4129 | if (VALUE_LVAL (actual) != lval_memory) | |
4130 | { | |
4131 | struct value *val; | |
5b4ee69b | 4132 | |
df407dfe | 4133 | actual_type = ada_check_typedef (value_type (actual)); |
4c4b4cd2 | 4134 | val = allocate_value (actual_type); |
990a07ab | 4135 | memcpy ((char *) value_contents_raw (val), |
0fd88904 | 4136 | (char *) value_contents (actual), |
4c4b4cd2 | 4137 | TYPE_LENGTH (actual_type)); |
40bc484c | 4138 | actual = ensure_lval (val); |
4c4b4cd2 | 4139 | } |
a84a8a0d | 4140 | result = value_addr (actual); |
4c4b4cd2 | 4141 | } |
a84a8a0d JB |
4142 | else |
4143 | return actual; | |
b1af9e97 | 4144 | return value_cast_pointers (formal_type, result, 0); |
14f9c5c9 AS |
4145 | } |
4146 | else if (TYPE_CODE (actual_type) == TYPE_CODE_PTR) | |
4147 | return ada_value_ind (actual); | |
4148 | ||
4149 | return actual; | |
4150 | } | |
4151 | ||
438c98a1 JB |
4152 | /* Convert VALUE (which must be an address) to a CORE_ADDR that is a pointer of |
4153 | type TYPE. This is usually an inefficient no-op except on some targets | |
4154 | (such as AVR) where the representation of a pointer and an address | |
4155 | differs. */ | |
4156 | ||
4157 | static CORE_ADDR | |
4158 | value_pointer (struct value *value, struct type *type) | |
4159 | { | |
4160 | struct gdbarch *gdbarch = get_type_arch (type); | |
4161 | unsigned len = TYPE_LENGTH (type); | |
4162 | gdb_byte *buf = alloca (len); | |
4163 | CORE_ADDR addr; | |
4164 | ||
4165 | addr = value_address (value); | |
4166 | gdbarch_address_to_pointer (gdbarch, type, buf, addr); | |
4167 | addr = extract_unsigned_integer (buf, len, gdbarch_byte_order (gdbarch)); | |
4168 | return addr; | |
4169 | } | |
4170 | ||
14f9c5c9 | 4171 | |
4c4b4cd2 PH |
4172 | /* Push a descriptor of type TYPE for array value ARR on the stack at |
4173 | *SP, updating *SP to reflect the new descriptor. Return either | |
14f9c5c9 | 4174 | an lvalue representing the new descriptor, or (if TYPE is a pointer- |
4c4b4cd2 PH |
4175 | to-descriptor type rather than a descriptor type), a struct value * |
4176 | representing a pointer to this descriptor. */ | |
14f9c5c9 | 4177 | |
d2e4a39e | 4178 | static struct value * |
40bc484c | 4179 | make_array_descriptor (struct type *type, struct value *arr) |
14f9c5c9 | 4180 | { |
d2e4a39e AS |
4181 | struct type *bounds_type = desc_bounds_type (type); |
4182 | struct type *desc_type = desc_base_type (type); | |
4183 | struct value *descriptor = allocate_value (desc_type); | |
4184 | struct value *bounds = allocate_value (bounds_type); | |
14f9c5c9 | 4185 | int i; |
d2e4a39e | 4186 | |
0963b4bd MS |
4187 | for (i = ada_array_arity (ada_check_typedef (value_type (arr))); |
4188 | i > 0; i -= 1) | |
14f9c5c9 | 4189 | { |
19f220c3 JK |
4190 | modify_field (value_type (bounds), value_contents_writeable (bounds), |
4191 | ada_array_bound (arr, i, 0), | |
4192 | desc_bound_bitpos (bounds_type, i, 0), | |
4193 | desc_bound_bitsize (bounds_type, i, 0)); | |
4194 | modify_field (value_type (bounds), value_contents_writeable (bounds), | |
4195 | ada_array_bound (arr, i, 1), | |
4196 | desc_bound_bitpos (bounds_type, i, 1), | |
4197 | desc_bound_bitsize (bounds_type, i, 1)); | |
14f9c5c9 | 4198 | } |
d2e4a39e | 4199 | |
40bc484c | 4200 | bounds = ensure_lval (bounds); |
d2e4a39e | 4201 | |
19f220c3 JK |
4202 | modify_field (value_type (descriptor), |
4203 | value_contents_writeable (descriptor), | |
4204 | value_pointer (ensure_lval (arr), | |
4205 | TYPE_FIELD_TYPE (desc_type, 0)), | |
4206 | fat_pntr_data_bitpos (desc_type), | |
4207 | fat_pntr_data_bitsize (desc_type)); | |
4208 | ||
4209 | modify_field (value_type (descriptor), | |
4210 | value_contents_writeable (descriptor), | |
4211 | value_pointer (bounds, | |
4212 | TYPE_FIELD_TYPE (desc_type, 1)), | |
4213 | fat_pntr_bounds_bitpos (desc_type), | |
4214 | fat_pntr_bounds_bitsize (desc_type)); | |
14f9c5c9 | 4215 | |
40bc484c | 4216 | descriptor = ensure_lval (descriptor); |
14f9c5c9 AS |
4217 | |
4218 | if (TYPE_CODE (type) == TYPE_CODE_PTR) | |
4219 | return value_addr (descriptor); | |
4220 | else | |
4221 | return descriptor; | |
4222 | } | |
14f9c5c9 | 4223 | \f |
963a6417 | 4224 | /* Dummy definitions for an experimental caching module that is not |
0963b4bd | 4225 | * used in the public sources. */ |
96d887e8 | 4226 | |
96d887e8 PH |
4227 | static int |
4228 | lookup_cached_symbol (const char *name, domain_enum namespace, | |
2570f2b7 | 4229 | struct symbol **sym, struct block **block) |
96d887e8 PH |
4230 | { |
4231 | return 0; | |
4232 | } | |
4233 | ||
4234 | static void | |
4235 | cache_symbol (const char *name, domain_enum namespace, struct symbol *sym, | |
270140bd | 4236 | const struct block *block) |
96d887e8 PH |
4237 | { |
4238 | } | |
4c4b4cd2 PH |
4239 | \f |
4240 | /* Symbol Lookup */ | |
4241 | ||
c0431670 JB |
4242 | /* Return nonzero if wild matching should be used when searching for |
4243 | all symbols matching LOOKUP_NAME. | |
4244 | ||
4245 | LOOKUP_NAME is expected to be a symbol name after transformation | |
4246 | for Ada lookups (see ada_name_for_lookup). */ | |
4247 | ||
4248 | static int | |
4249 | should_use_wild_match (const char *lookup_name) | |
4250 | { | |
4251 | return (strstr (lookup_name, "__") == NULL); | |
4252 | } | |
4253 | ||
4c4b4cd2 PH |
4254 | /* Return the result of a standard (literal, C-like) lookup of NAME in |
4255 | given DOMAIN, visible from lexical block BLOCK. */ | |
4256 | ||
4257 | static struct symbol * | |
4258 | standard_lookup (const char *name, const struct block *block, | |
4259 | domain_enum domain) | |
4260 | { | |
acbd605d MGD |
4261 | /* Initialize it just to avoid a GCC false warning. */ |
4262 | struct symbol *sym = NULL; | |
4c4b4cd2 | 4263 | |
2570f2b7 | 4264 | if (lookup_cached_symbol (name, domain, &sym, NULL)) |
4c4b4cd2 | 4265 | return sym; |
2570f2b7 UW |
4266 | sym = lookup_symbol_in_language (name, block, domain, language_c, 0); |
4267 | cache_symbol (name, domain, sym, block_found); | |
4c4b4cd2 PH |
4268 | return sym; |
4269 | } | |
4270 | ||
4271 | ||
4272 | /* Non-zero iff there is at least one non-function/non-enumeral symbol | |
4273 | in the symbol fields of SYMS[0..N-1]. We treat enumerals as functions, | |
4274 | since they contend in overloading in the same way. */ | |
4275 | static int | |
4276 | is_nonfunction (struct ada_symbol_info syms[], int n) | |
4277 | { | |
4278 | int i; | |
4279 | ||
4280 | for (i = 0; i < n; i += 1) | |
4281 | if (TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) != TYPE_CODE_FUNC | |
4282 | && (TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) != TYPE_CODE_ENUM | |
4283 | || SYMBOL_CLASS (syms[i].sym) != LOC_CONST)) | |
14f9c5c9 AS |
4284 | return 1; |
4285 | ||
4286 | return 0; | |
4287 | } | |
4288 | ||
4289 | /* If true (non-zero), then TYPE0 and TYPE1 represent equivalent | |
4c4b4cd2 | 4290 | struct types. Otherwise, they may not. */ |
14f9c5c9 AS |
4291 | |
4292 | static int | |
d2e4a39e | 4293 | equiv_types (struct type *type0, struct type *type1) |
14f9c5c9 | 4294 | { |
d2e4a39e | 4295 | if (type0 == type1) |
14f9c5c9 | 4296 | return 1; |
d2e4a39e | 4297 | if (type0 == NULL || type1 == NULL |
14f9c5c9 AS |
4298 | || TYPE_CODE (type0) != TYPE_CODE (type1)) |
4299 | return 0; | |
d2e4a39e | 4300 | if ((TYPE_CODE (type0) == TYPE_CODE_STRUCT |
14f9c5c9 AS |
4301 | || TYPE_CODE (type0) == TYPE_CODE_ENUM) |
4302 | && ada_type_name (type0) != NULL && ada_type_name (type1) != NULL | |
4c4b4cd2 | 4303 | && strcmp (ada_type_name (type0), ada_type_name (type1)) == 0) |
14f9c5c9 | 4304 | return 1; |
d2e4a39e | 4305 | |
14f9c5c9 AS |
4306 | return 0; |
4307 | } | |
4308 | ||
4309 | /* True iff SYM0 represents the same entity as SYM1, or one that is | |
4c4b4cd2 | 4310 | no more defined than that of SYM1. */ |
14f9c5c9 AS |
4311 | |
4312 | static int | |
d2e4a39e | 4313 | lesseq_defined_than (struct symbol *sym0, struct symbol *sym1) |
14f9c5c9 AS |
4314 | { |
4315 | if (sym0 == sym1) | |
4316 | return 1; | |
176620f1 | 4317 | if (SYMBOL_DOMAIN (sym0) != SYMBOL_DOMAIN (sym1) |
14f9c5c9 AS |
4318 | || SYMBOL_CLASS (sym0) != SYMBOL_CLASS (sym1)) |
4319 | return 0; | |
4320 | ||
d2e4a39e | 4321 | switch (SYMBOL_CLASS (sym0)) |
14f9c5c9 AS |
4322 | { |
4323 | case LOC_UNDEF: | |
4324 | return 1; | |
4325 | case LOC_TYPEDEF: | |
4326 | { | |
4c4b4cd2 PH |
4327 | struct type *type0 = SYMBOL_TYPE (sym0); |
4328 | struct type *type1 = SYMBOL_TYPE (sym1); | |
0d5cff50 DE |
4329 | const char *name0 = SYMBOL_LINKAGE_NAME (sym0); |
4330 | const char *name1 = SYMBOL_LINKAGE_NAME (sym1); | |
4c4b4cd2 | 4331 | int len0 = strlen (name0); |
5b4ee69b | 4332 | |
4c4b4cd2 PH |
4333 | return |
4334 | TYPE_CODE (type0) == TYPE_CODE (type1) | |
4335 | && (equiv_types (type0, type1) | |
4336 | || (len0 < strlen (name1) && strncmp (name0, name1, len0) == 0 | |
4337 | && strncmp (name1 + len0, "___XV", 5) == 0)); | |
14f9c5c9 AS |
4338 | } |
4339 | case LOC_CONST: | |
4340 | return SYMBOL_VALUE (sym0) == SYMBOL_VALUE (sym1) | |
4c4b4cd2 | 4341 | && equiv_types (SYMBOL_TYPE (sym0), SYMBOL_TYPE (sym1)); |
d2e4a39e AS |
4342 | default: |
4343 | return 0; | |
14f9c5c9 AS |
4344 | } |
4345 | } | |
4346 | ||
4c4b4cd2 PH |
4347 | /* Append (SYM,BLOCK,SYMTAB) to the end of the array of struct ada_symbol_info |
4348 | records in OBSTACKP. Do nothing if SYM is a duplicate. */ | |
14f9c5c9 AS |
4349 | |
4350 | static void | |
76a01679 JB |
4351 | add_defn_to_vec (struct obstack *obstackp, |
4352 | struct symbol *sym, | |
2570f2b7 | 4353 | struct block *block) |
14f9c5c9 AS |
4354 | { |
4355 | int i; | |
4c4b4cd2 | 4356 | struct ada_symbol_info *prevDefns = defns_collected (obstackp, 0); |
14f9c5c9 | 4357 | |
529cad9c PH |
4358 | /* Do not try to complete stub types, as the debugger is probably |
4359 | already scanning all symbols matching a certain name at the | |
4360 | time when this function is called. Trying to replace the stub | |
4361 | type by its associated full type will cause us to restart a scan | |
4362 | which may lead to an infinite recursion. Instead, the client | |
4363 | collecting the matching symbols will end up collecting several | |
4364 | matches, with at least one of them complete. It can then filter | |
4365 | out the stub ones if needed. */ | |
4366 | ||
4c4b4cd2 PH |
4367 | for (i = num_defns_collected (obstackp) - 1; i >= 0; i -= 1) |
4368 | { | |
4369 | if (lesseq_defined_than (sym, prevDefns[i].sym)) | |
4370 | return; | |
4371 | else if (lesseq_defined_than (prevDefns[i].sym, sym)) | |
4372 | { | |
4373 | prevDefns[i].sym = sym; | |
4374 | prevDefns[i].block = block; | |
4c4b4cd2 | 4375 | return; |
76a01679 | 4376 | } |
4c4b4cd2 PH |
4377 | } |
4378 | ||
4379 | { | |
4380 | struct ada_symbol_info info; | |
4381 | ||
4382 | info.sym = sym; | |
4383 | info.block = block; | |
4c4b4cd2 PH |
4384 | obstack_grow (obstackp, &info, sizeof (struct ada_symbol_info)); |
4385 | } | |
4386 | } | |
4387 | ||
4388 | /* Number of ada_symbol_info structures currently collected in | |
4389 | current vector in *OBSTACKP. */ | |
4390 | ||
76a01679 JB |
4391 | static int |
4392 | num_defns_collected (struct obstack *obstackp) | |
4c4b4cd2 PH |
4393 | { |
4394 | return obstack_object_size (obstackp) / sizeof (struct ada_symbol_info); | |
4395 | } | |
4396 | ||
4397 | /* Vector of ada_symbol_info structures currently collected in current | |
4398 | vector in *OBSTACKP. If FINISH, close off the vector and return | |
4399 | its final address. */ | |
4400 | ||
76a01679 | 4401 | static struct ada_symbol_info * |
4c4b4cd2 PH |
4402 | defns_collected (struct obstack *obstackp, int finish) |
4403 | { | |
4404 | if (finish) | |
4405 | return obstack_finish (obstackp); | |
4406 | else | |
4407 | return (struct ada_symbol_info *) obstack_base (obstackp); | |
4408 | } | |
4409 | ||
96d887e8 | 4410 | /* Return a minimal symbol matching NAME according to Ada decoding |
2e6e0353 JB |
4411 | rules. Returns NULL if there is no such minimal symbol. Names |
4412 | prefixed with "standard__" are handled specially: "standard__" is | |
96d887e8 | 4413 | first stripped off, and only static and global symbols are searched. */ |
4c4b4cd2 | 4414 | |
96d887e8 PH |
4415 | struct minimal_symbol * |
4416 | ada_lookup_simple_minsym (const char *name) | |
4c4b4cd2 | 4417 | { |
4c4b4cd2 | 4418 | struct objfile *objfile; |
96d887e8 | 4419 | struct minimal_symbol *msymbol; |
dc4024cd | 4420 | const int wild_match_p = should_use_wild_match (name); |
4c4b4cd2 | 4421 | |
c0431670 JB |
4422 | /* Special case: If the user specifies a symbol name inside package |
4423 | Standard, do a non-wild matching of the symbol name without | |
4424 | the "standard__" prefix. This was primarily introduced in order | |
4425 | to allow the user to specifically access the standard exceptions | |
4426 | using, for instance, Standard.Constraint_Error when Constraint_Error | |
4427 | is ambiguous (due to the user defining its own Constraint_Error | |
4428 | entity inside its program). */ | |
96d887e8 | 4429 | if (strncmp (name, "standard__", sizeof ("standard__") - 1) == 0) |
c0431670 | 4430 | name += sizeof ("standard__") - 1; |
4c4b4cd2 | 4431 | |
96d887e8 PH |
4432 | ALL_MSYMBOLS (objfile, msymbol) |
4433 | { | |
dc4024cd | 4434 | if (match_name (SYMBOL_LINKAGE_NAME (msymbol), name, wild_match_p) |
96d887e8 PH |
4435 | && MSYMBOL_TYPE (msymbol) != mst_solib_trampoline) |
4436 | return msymbol; | |
4437 | } | |
4c4b4cd2 | 4438 | |
96d887e8 PH |
4439 | return NULL; |
4440 | } | |
4c4b4cd2 | 4441 | |
96d887e8 PH |
4442 | /* For all subprograms that statically enclose the subprogram of the |
4443 | selected frame, add symbols matching identifier NAME in DOMAIN | |
4444 | and their blocks to the list of data in OBSTACKP, as for | |
48b78332 JB |
4445 | ada_add_block_symbols (q.v.). If WILD_MATCH_P, treat as NAME |
4446 | with a wildcard prefix. */ | |
4c4b4cd2 | 4447 | |
96d887e8 PH |
4448 | static void |
4449 | add_symbols_from_enclosing_procs (struct obstack *obstackp, | |
76a01679 | 4450 | const char *name, domain_enum namespace, |
48b78332 | 4451 | int wild_match_p) |
96d887e8 | 4452 | { |
96d887e8 | 4453 | } |
14f9c5c9 | 4454 | |
96d887e8 PH |
4455 | /* True if TYPE is definitely an artificial type supplied to a symbol |
4456 | for which no debugging information was given in the symbol file. */ | |
14f9c5c9 | 4457 | |
96d887e8 PH |
4458 | static int |
4459 | is_nondebugging_type (struct type *type) | |
4460 | { | |
0d5cff50 | 4461 | const char *name = ada_type_name (type); |
5b4ee69b | 4462 | |
96d887e8 PH |
4463 | return (name != NULL && strcmp (name, "<variable, no debug info>") == 0); |
4464 | } | |
4c4b4cd2 | 4465 | |
8f17729f JB |
4466 | /* Return nonzero if TYPE1 and TYPE2 are two enumeration types |
4467 | that are deemed "identical" for practical purposes. | |
4468 | ||
4469 | This function assumes that TYPE1 and TYPE2 are both TYPE_CODE_ENUM | |
4470 | types and that their number of enumerals is identical (in other | |
4471 | words, TYPE_NFIELDS (type1) == TYPE_NFIELDS (type2)). */ | |
4472 | ||
4473 | static int | |
4474 | ada_identical_enum_types_p (struct type *type1, struct type *type2) | |
4475 | { | |
4476 | int i; | |
4477 | ||
4478 | /* The heuristic we use here is fairly conservative. We consider | |
4479 | that 2 enumerate types are identical if they have the same | |
4480 | number of enumerals and that all enumerals have the same | |
4481 | underlying value and name. */ | |
4482 | ||
4483 | /* All enums in the type should have an identical underlying value. */ | |
4484 | for (i = 0; i < TYPE_NFIELDS (type1); i++) | |
14e75d8e | 4485 | if (TYPE_FIELD_ENUMVAL (type1, i) != TYPE_FIELD_ENUMVAL (type2, i)) |
8f17729f JB |
4486 | return 0; |
4487 | ||
4488 | /* All enumerals should also have the same name (modulo any numerical | |
4489 | suffix). */ | |
4490 | for (i = 0; i < TYPE_NFIELDS (type1); i++) | |
4491 | { | |
0d5cff50 DE |
4492 | const char *name_1 = TYPE_FIELD_NAME (type1, i); |
4493 | const char *name_2 = TYPE_FIELD_NAME (type2, i); | |
8f17729f JB |
4494 | int len_1 = strlen (name_1); |
4495 | int len_2 = strlen (name_2); | |
4496 | ||
4497 | ada_remove_trailing_digits (TYPE_FIELD_NAME (type1, i), &len_1); | |
4498 | ada_remove_trailing_digits (TYPE_FIELD_NAME (type2, i), &len_2); | |
4499 | if (len_1 != len_2 | |
4500 | || strncmp (TYPE_FIELD_NAME (type1, i), | |
4501 | TYPE_FIELD_NAME (type2, i), | |
4502 | len_1) != 0) | |
4503 | return 0; | |
4504 | } | |
4505 | ||
4506 | return 1; | |
4507 | } | |
4508 | ||
4509 | /* Return nonzero if all the symbols in SYMS are all enumeral symbols | |
4510 | that are deemed "identical" for practical purposes. Sometimes, | |
4511 | enumerals are not strictly identical, but their types are so similar | |
4512 | that they can be considered identical. | |
4513 | ||
4514 | For instance, consider the following code: | |
4515 | ||
4516 | type Color is (Black, Red, Green, Blue, White); | |
4517 | type RGB_Color is new Color range Red .. Blue; | |
4518 | ||
4519 | Type RGB_Color is a subrange of an implicit type which is a copy | |
4520 | of type Color. If we call that implicit type RGB_ColorB ("B" is | |
4521 | for "Base Type"), then type RGB_ColorB is a copy of type Color. | |
4522 | As a result, when an expression references any of the enumeral | |
4523 | by name (Eg. "print green"), the expression is technically | |
4524 | ambiguous and the user should be asked to disambiguate. But | |
4525 | doing so would only hinder the user, since it wouldn't matter | |
4526 | what choice he makes, the outcome would always be the same. | |
4527 | So, for practical purposes, we consider them as the same. */ | |
4528 | ||
4529 | static int | |
4530 | symbols_are_identical_enums (struct ada_symbol_info *syms, int nsyms) | |
4531 | { | |
4532 | int i; | |
4533 | ||
4534 | /* Before performing a thorough comparison check of each type, | |
4535 | we perform a series of inexpensive checks. We expect that these | |
4536 | checks will quickly fail in the vast majority of cases, and thus | |
4537 | help prevent the unnecessary use of a more expensive comparison. | |
4538 | Said comparison also expects us to make some of these checks | |
4539 | (see ada_identical_enum_types_p). */ | |
4540 | ||
4541 | /* Quick check: All symbols should have an enum type. */ | |
4542 | for (i = 0; i < nsyms; i++) | |
4543 | if (TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) != TYPE_CODE_ENUM) | |
4544 | return 0; | |
4545 | ||
4546 | /* Quick check: They should all have the same value. */ | |
4547 | for (i = 1; i < nsyms; i++) | |
4548 | if (SYMBOL_VALUE (syms[i].sym) != SYMBOL_VALUE (syms[0].sym)) | |
4549 | return 0; | |
4550 | ||
4551 | /* Quick check: They should all have the same number of enumerals. */ | |
4552 | for (i = 1; i < nsyms; i++) | |
4553 | if (TYPE_NFIELDS (SYMBOL_TYPE (syms[i].sym)) | |
4554 | != TYPE_NFIELDS (SYMBOL_TYPE (syms[0].sym))) | |
4555 | return 0; | |
4556 | ||
4557 | /* All the sanity checks passed, so we might have a set of | |
4558 | identical enumeration types. Perform a more complete | |
4559 | comparison of the type of each symbol. */ | |
4560 | for (i = 1; i < nsyms; i++) | |
4561 | if (!ada_identical_enum_types_p (SYMBOL_TYPE (syms[i].sym), | |
4562 | SYMBOL_TYPE (syms[0].sym))) | |
4563 | return 0; | |
4564 | ||
4565 | return 1; | |
4566 | } | |
4567 | ||
96d887e8 PH |
4568 | /* Remove any non-debugging symbols in SYMS[0 .. NSYMS-1] that definitely |
4569 | duplicate other symbols in the list (The only case I know of where | |
4570 | this happens is when object files containing stabs-in-ecoff are | |
4571 | linked with files containing ordinary ecoff debugging symbols (or no | |
4572 | debugging symbols)). Modifies SYMS to squeeze out deleted entries. | |
4573 | Returns the number of items in the modified list. */ | |
4c4b4cd2 | 4574 | |
96d887e8 PH |
4575 | static int |
4576 | remove_extra_symbols (struct ada_symbol_info *syms, int nsyms) | |
4577 | { | |
4578 | int i, j; | |
4c4b4cd2 | 4579 | |
8f17729f JB |
4580 | /* We should never be called with less than 2 symbols, as there |
4581 | cannot be any extra symbol in that case. But it's easy to | |
4582 | handle, since we have nothing to do in that case. */ | |
4583 | if (nsyms < 2) | |
4584 | return nsyms; | |
4585 | ||
96d887e8 PH |
4586 | i = 0; |
4587 | while (i < nsyms) | |
4588 | { | |
a35ddb44 | 4589 | int remove_p = 0; |
339c13b6 JB |
4590 | |
4591 | /* If two symbols have the same name and one of them is a stub type, | |
4592 | the get rid of the stub. */ | |
4593 | ||
4594 | if (TYPE_STUB (SYMBOL_TYPE (syms[i].sym)) | |
4595 | && SYMBOL_LINKAGE_NAME (syms[i].sym) != NULL) | |
4596 | { | |
4597 | for (j = 0; j < nsyms; j++) | |
4598 | { | |
4599 | if (j != i | |
4600 | && !TYPE_STUB (SYMBOL_TYPE (syms[j].sym)) | |
4601 | && SYMBOL_LINKAGE_NAME (syms[j].sym) != NULL | |
4602 | && strcmp (SYMBOL_LINKAGE_NAME (syms[i].sym), | |
4603 | SYMBOL_LINKAGE_NAME (syms[j].sym)) == 0) | |
a35ddb44 | 4604 | remove_p = 1; |
339c13b6 JB |
4605 | } |
4606 | } | |
4607 | ||
4608 | /* Two symbols with the same name, same class and same address | |
4609 | should be identical. */ | |
4610 | ||
4611 | else if (SYMBOL_LINKAGE_NAME (syms[i].sym) != NULL | |
96d887e8 PH |
4612 | && SYMBOL_CLASS (syms[i].sym) == LOC_STATIC |
4613 | && is_nondebugging_type (SYMBOL_TYPE (syms[i].sym))) | |
4614 | { | |
4615 | for (j = 0; j < nsyms; j += 1) | |
4616 | { | |
4617 | if (i != j | |
4618 | && SYMBOL_LINKAGE_NAME (syms[j].sym) != NULL | |
4619 | && strcmp (SYMBOL_LINKAGE_NAME (syms[i].sym), | |
76a01679 | 4620 | SYMBOL_LINKAGE_NAME (syms[j].sym)) == 0 |
96d887e8 PH |
4621 | && SYMBOL_CLASS (syms[i].sym) == SYMBOL_CLASS (syms[j].sym) |
4622 | && SYMBOL_VALUE_ADDRESS (syms[i].sym) | |
4623 | == SYMBOL_VALUE_ADDRESS (syms[j].sym)) | |
a35ddb44 | 4624 | remove_p = 1; |
4c4b4cd2 | 4625 | } |
4c4b4cd2 | 4626 | } |
339c13b6 | 4627 | |
a35ddb44 | 4628 | if (remove_p) |
339c13b6 JB |
4629 | { |
4630 | for (j = i + 1; j < nsyms; j += 1) | |
4631 | syms[j - 1] = syms[j]; | |
4632 | nsyms -= 1; | |
4633 | } | |
4634 | ||
96d887e8 | 4635 | i += 1; |
14f9c5c9 | 4636 | } |
8f17729f JB |
4637 | |
4638 | /* If all the remaining symbols are identical enumerals, then | |
4639 | just keep the first one and discard the rest. | |
4640 | ||
4641 | Unlike what we did previously, we do not discard any entry | |
4642 | unless they are ALL identical. This is because the symbol | |
4643 | comparison is not a strict comparison, but rather a practical | |
4644 | comparison. If all symbols are considered identical, then | |
4645 | we can just go ahead and use the first one and discard the rest. | |
4646 | But if we cannot reduce the list to a single element, we have | |
4647 | to ask the user to disambiguate anyways. And if we have to | |
4648 | present a multiple-choice menu, it's less confusing if the list | |
4649 | isn't missing some choices that were identical and yet distinct. */ | |
4650 | if (symbols_are_identical_enums (syms, nsyms)) | |
4651 | nsyms = 1; | |
4652 | ||
96d887e8 | 4653 | return nsyms; |
14f9c5c9 AS |
4654 | } |
4655 | ||
96d887e8 PH |
4656 | /* Given a type that corresponds to a renaming entity, use the type name |
4657 | to extract the scope (package name or function name, fully qualified, | |
4658 | and following the GNAT encoding convention) where this renaming has been | |
4659 | defined. The string returned needs to be deallocated after use. */ | |
4c4b4cd2 | 4660 | |
96d887e8 PH |
4661 | static char * |
4662 | xget_renaming_scope (struct type *renaming_type) | |
14f9c5c9 | 4663 | { |
96d887e8 | 4664 | /* The renaming types adhere to the following convention: |
0963b4bd | 4665 | <scope>__<rename>___<XR extension>. |
96d887e8 PH |
4666 | So, to extract the scope, we search for the "___XR" extension, |
4667 | and then backtrack until we find the first "__". */ | |
76a01679 | 4668 | |
96d887e8 PH |
4669 | const char *name = type_name_no_tag (renaming_type); |
4670 | char *suffix = strstr (name, "___XR"); | |
4671 | char *last; | |
4672 | int scope_len; | |
4673 | char *scope; | |
14f9c5c9 | 4674 | |
96d887e8 PH |
4675 | /* Now, backtrack a bit until we find the first "__". Start looking |
4676 | at suffix - 3, as the <rename> part is at least one character long. */ | |
14f9c5c9 | 4677 | |
96d887e8 PH |
4678 | for (last = suffix - 3; last > name; last--) |
4679 | if (last[0] == '_' && last[1] == '_') | |
4680 | break; | |
76a01679 | 4681 | |
96d887e8 | 4682 | /* Make a copy of scope and return it. */ |
14f9c5c9 | 4683 | |
96d887e8 PH |
4684 | scope_len = last - name; |
4685 | scope = (char *) xmalloc ((scope_len + 1) * sizeof (char)); | |
14f9c5c9 | 4686 | |
96d887e8 PH |
4687 | strncpy (scope, name, scope_len); |
4688 | scope[scope_len] = '\0'; | |
4c4b4cd2 | 4689 | |
96d887e8 | 4690 | return scope; |
4c4b4cd2 PH |
4691 | } |
4692 | ||
96d887e8 | 4693 | /* Return nonzero if NAME corresponds to a package name. */ |
4c4b4cd2 | 4694 | |
96d887e8 PH |
4695 | static int |
4696 | is_package_name (const char *name) | |
4c4b4cd2 | 4697 | { |
96d887e8 PH |
4698 | /* Here, We take advantage of the fact that no symbols are generated |
4699 | for packages, while symbols are generated for each function. | |
4700 | So the condition for NAME represent a package becomes equivalent | |
4701 | to NAME not existing in our list of symbols. There is only one | |
4702 | small complication with library-level functions (see below). */ | |
4c4b4cd2 | 4703 | |
96d887e8 | 4704 | char *fun_name; |
76a01679 | 4705 | |
96d887e8 PH |
4706 | /* If it is a function that has not been defined at library level, |
4707 | then we should be able to look it up in the symbols. */ | |
4708 | if (standard_lookup (name, NULL, VAR_DOMAIN) != NULL) | |
4709 | return 0; | |
14f9c5c9 | 4710 | |
96d887e8 PH |
4711 | /* Library-level function names start with "_ada_". See if function |
4712 | "_ada_" followed by NAME can be found. */ | |
14f9c5c9 | 4713 | |
96d887e8 | 4714 | /* Do a quick check that NAME does not contain "__", since library-level |
e1d5a0d2 | 4715 | functions names cannot contain "__" in them. */ |
96d887e8 PH |
4716 | if (strstr (name, "__") != NULL) |
4717 | return 0; | |
4c4b4cd2 | 4718 | |
b435e160 | 4719 | fun_name = xstrprintf ("_ada_%s", name); |
14f9c5c9 | 4720 | |
96d887e8 PH |
4721 | return (standard_lookup (fun_name, NULL, VAR_DOMAIN) == NULL); |
4722 | } | |
14f9c5c9 | 4723 | |
96d887e8 | 4724 | /* Return nonzero if SYM corresponds to a renaming entity that is |
aeb5907d | 4725 | not visible from FUNCTION_NAME. */ |
14f9c5c9 | 4726 | |
96d887e8 | 4727 | static int |
0d5cff50 | 4728 | old_renaming_is_invisible (const struct symbol *sym, const char *function_name) |
96d887e8 | 4729 | { |
aeb5907d JB |
4730 | char *scope; |
4731 | ||
4732 | if (SYMBOL_CLASS (sym) != LOC_TYPEDEF) | |
4733 | return 0; | |
4734 | ||
4735 | scope = xget_renaming_scope (SYMBOL_TYPE (sym)); | |
d2e4a39e | 4736 | |
96d887e8 | 4737 | make_cleanup (xfree, scope); |
14f9c5c9 | 4738 | |
96d887e8 PH |
4739 | /* If the rename has been defined in a package, then it is visible. */ |
4740 | if (is_package_name (scope)) | |
aeb5907d | 4741 | return 0; |
14f9c5c9 | 4742 | |
96d887e8 PH |
4743 | /* Check that the rename is in the current function scope by checking |
4744 | that its name starts with SCOPE. */ | |
76a01679 | 4745 | |
96d887e8 PH |
4746 | /* If the function name starts with "_ada_", it means that it is |
4747 | a library-level function. Strip this prefix before doing the | |
4748 | comparison, as the encoding for the renaming does not contain | |
4749 | this prefix. */ | |
4750 | if (strncmp (function_name, "_ada_", 5) == 0) | |
4751 | function_name += 5; | |
f26caa11 | 4752 | |
aeb5907d | 4753 | return (strncmp (function_name, scope, strlen (scope)) != 0); |
f26caa11 PH |
4754 | } |
4755 | ||
aeb5907d JB |
4756 | /* Remove entries from SYMS that corresponds to a renaming entity that |
4757 | is not visible from the function associated with CURRENT_BLOCK or | |
4758 | that is superfluous due to the presence of more specific renaming | |
4759 | information. Places surviving symbols in the initial entries of | |
4760 | SYMS and returns the number of surviving symbols. | |
96d887e8 PH |
4761 | |
4762 | Rationale: | |
aeb5907d JB |
4763 | First, in cases where an object renaming is implemented as a |
4764 | reference variable, GNAT may produce both the actual reference | |
4765 | variable and the renaming encoding. In this case, we discard the | |
4766 | latter. | |
4767 | ||
4768 | Second, GNAT emits a type following a specified encoding for each renaming | |
96d887e8 PH |
4769 | entity. Unfortunately, STABS currently does not support the definition |
4770 | of types that are local to a given lexical block, so all renamings types | |
4771 | are emitted at library level. As a consequence, if an application | |
4772 | contains two renaming entities using the same name, and a user tries to | |
4773 | print the value of one of these entities, the result of the ada symbol | |
4774 | lookup will also contain the wrong renaming type. | |
f26caa11 | 4775 | |
96d887e8 PH |
4776 | This function partially covers for this limitation by attempting to |
4777 | remove from the SYMS list renaming symbols that should be visible | |
4778 | from CURRENT_BLOCK. However, there does not seem be a 100% reliable | |
4779 | method with the current information available. The implementation | |
4780 | below has a couple of limitations (FIXME: brobecker-2003-05-12): | |
4781 | ||
4782 | - When the user tries to print a rename in a function while there | |
4783 | is another rename entity defined in a package: Normally, the | |
4784 | rename in the function has precedence over the rename in the | |
4785 | package, so the latter should be removed from the list. This is | |
4786 | currently not the case. | |
4787 | ||
4788 | - This function will incorrectly remove valid renames if | |
4789 | the CURRENT_BLOCK corresponds to a function which symbol name | |
4790 | has been changed by an "Export" pragma. As a consequence, | |
4791 | the user will be unable to print such rename entities. */ | |
4c4b4cd2 | 4792 | |
14f9c5c9 | 4793 | static int |
aeb5907d JB |
4794 | remove_irrelevant_renamings (struct ada_symbol_info *syms, |
4795 | int nsyms, const struct block *current_block) | |
4c4b4cd2 PH |
4796 | { |
4797 | struct symbol *current_function; | |
0d5cff50 | 4798 | const char *current_function_name; |
4c4b4cd2 | 4799 | int i; |
aeb5907d JB |
4800 | int is_new_style_renaming; |
4801 | ||
4802 | /* If there is both a renaming foo___XR... encoded as a variable and | |
4803 | a simple variable foo in the same block, discard the latter. | |
0963b4bd | 4804 | First, zero out such symbols, then compress. */ |
aeb5907d JB |
4805 | is_new_style_renaming = 0; |
4806 | for (i = 0; i < nsyms; i += 1) | |
4807 | { | |
4808 | struct symbol *sym = syms[i].sym; | |
270140bd | 4809 | const struct block *block = syms[i].block; |
aeb5907d JB |
4810 | const char *name; |
4811 | const char *suffix; | |
4812 | ||
4813 | if (sym == NULL || SYMBOL_CLASS (sym) == LOC_TYPEDEF) | |
4814 | continue; | |
4815 | name = SYMBOL_LINKAGE_NAME (sym); | |
4816 | suffix = strstr (name, "___XR"); | |
4817 | ||
4818 | if (suffix != NULL) | |
4819 | { | |
4820 | int name_len = suffix - name; | |
4821 | int j; | |
5b4ee69b | 4822 | |
aeb5907d JB |
4823 | is_new_style_renaming = 1; |
4824 | for (j = 0; j < nsyms; j += 1) | |
4825 | if (i != j && syms[j].sym != NULL | |
4826 | && strncmp (name, SYMBOL_LINKAGE_NAME (syms[j].sym), | |
4827 | name_len) == 0 | |
4828 | && block == syms[j].block) | |
4829 | syms[j].sym = NULL; | |
4830 | } | |
4831 | } | |
4832 | if (is_new_style_renaming) | |
4833 | { | |
4834 | int j, k; | |
4835 | ||
4836 | for (j = k = 0; j < nsyms; j += 1) | |
4837 | if (syms[j].sym != NULL) | |
4838 | { | |
4839 | syms[k] = syms[j]; | |
4840 | k += 1; | |
4841 | } | |
4842 | return k; | |
4843 | } | |
4c4b4cd2 PH |
4844 | |
4845 | /* Extract the function name associated to CURRENT_BLOCK. | |
4846 | Abort if unable to do so. */ | |
76a01679 | 4847 | |
4c4b4cd2 PH |
4848 | if (current_block == NULL) |
4849 | return nsyms; | |
76a01679 | 4850 | |
7f0df278 | 4851 | current_function = block_linkage_function (current_block); |
4c4b4cd2 PH |
4852 | if (current_function == NULL) |
4853 | return nsyms; | |
4854 | ||
4855 | current_function_name = SYMBOL_LINKAGE_NAME (current_function); | |
4856 | if (current_function_name == NULL) | |
4857 | return nsyms; | |
4858 | ||
4859 | /* Check each of the symbols, and remove it from the list if it is | |
4860 | a type corresponding to a renaming that is out of the scope of | |
4861 | the current block. */ | |
4862 | ||
4863 | i = 0; | |
4864 | while (i < nsyms) | |
4865 | { | |
aeb5907d JB |
4866 | if (ada_parse_renaming (syms[i].sym, NULL, NULL, NULL) |
4867 | == ADA_OBJECT_RENAMING | |
4868 | && old_renaming_is_invisible (syms[i].sym, current_function_name)) | |
4c4b4cd2 PH |
4869 | { |
4870 | int j; | |
5b4ee69b | 4871 | |
aeb5907d | 4872 | for (j = i + 1; j < nsyms; j += 1) |
76a01679 | 4873 | syms[j - 1] = syms[j]; |
4c4b4cd2 PH |
4874 | nsyms -= 1; |
4875 | } | |
4876 | else | |
4877 | i += 1; | |
4878 | } | |
4879 | ||
4880 | return nsyms; | |
4881 | } | |
4882 | ||
339c13b6 JB |
4883 | /* Add to OBSTACKP all symbols from BLOCK (and its super-blocks) |
4884 | whose name and domain match NAME and DOMAIN respectively. | |
4885 | If no match was found, then extend the search to "enclosing" | |
4886 | routines (in other words, if we're inside a nested function, | |
4887 | search the symbols defined inside the enclosing functions). | |
d0a8ab18 JB |
4888 | If WILD_MATCH_P is nonzero, perform the naming matching in |
4889 | "wild" mode (see function "wild_match" for more info). | |
339c13b6 JB |
4890 | |
4891 | Note: This function assumes that OBSTACKP has 0 (zero) element in it. */ | |
4892 | ||
4893 | static void | |
4894 | ada_add_local_symbols (struct obstack *obstackp, const char *name, | |
4895 | struct block *block, domain_enum domain, | |
d0a8ab18 | 4896 | int wild_match_p) |
339c13b6 JB |
4897 | { |
4898 | int block_depth = 0; | |
4899 | ||
4900 | while (block != NULL) | |
4901 | { | |
4902 | block_depth += 1; | |
d0a8ab18 JB |
4903 | ada_add_block_symbols (obstackp, block, name, domain, NULL, |
4904 | wild_match_p); | |
339c13b6 JB |
4905 | |
4906 | /* If we found a non-function match, assume that's the one. */ | |
4907 | if (is_nonfunction (defns_collected (obstackp, 0), | |
4908 | num_defns_collected (obstackp))) | |
4909 | return; | |
4910 | ||
4911 | block = BLOCK_SUPERBLOCK (block); | |
4912 | } | |
4913 | ||
4914 | /* If no luck so far, try to find NAME as a local symbol in some lexically | |
4915 | enclosing subprogram. */ | |
4916 | if (num_defns_collected (obstackp) == 0 && block_depth > 2) | |
d0a8ab18 | 4917 | add_symbols_from_enclosing_procs (obstackp, name, domain, wild_match_p); |
339c13b6 JB |
4918 | } |
4919 | ||
ccefe4c4 | 4920 | /* An object of this type is used as the user_data argument when |
40658b94 | 4921 | calling the map_matching_symbols method. */ |
ccefe4c4 | 4922 | |
40658b94 | 4923 | struct match_data |
ccefe4c4 | 4924 | { |
40658b94 | 4925 | struct objfile *objfile; |
ccefe4c4 | 4926 | struct obstack *obstackp; |
40658b94 PH |
4927 | struct symbol *arg_sym; |
4928 | int found_sym; | |
ccefe4c4 TT |
4929 | }; |
4930 | ||
40658b94 PH |
4931 | /* A callback for add_matching_symbols that adds SYM, found in BLOCK, |
4932 | to a list of symbols. DATA0 is a pointer to a struct match_data * | |
4933 | containing the obstack that collects the symbol list, the file that SYM | |
4934 | must come from, a flag indicating whether a non-argument symbol has | |
4935 | been found in the current block, and the last argument symbol | |
4936 | passed in SYM within the current block (if any). When SYM is null, | |
4937 | marking the end of a block, the argument symbol is added if no | |
4938 | other has been found. */ | |
ccefe4c4 | 4939 | |
40658b94 PH |
4940 | static int |
4941 | aux_add_nonlocal_symbols (struct block *block, struct symbol *sym, void *data0) | |
ccefe4c4 | 4942 | { |
40658b94 PH |
4943 | struct match_data *data = (struct match_data *) data0; |
4944 | ||
4945 | if (sym == NULL) | |
4946 | { | |
4947 | if (!data->found_sym && data->arg_sym != NULL) | |
4948 | add_defn_to_vec (data->obstackp, | |
4949 | fixup_symbol_section (data->arg_sym, data->objfile), | |
4950 | block); | |
4951 | data->found_sym = 0; | |
4952 | data->arg_sym = NULL; | |
4953 | } | |
4954 | else | |
4955 | { | |
4956 | if (SYMBOL_CLASS (sym) == LOC_UNRESOLVED) | |
4957 | return 0; | |
4958 | else if (SYMBOL_IS_ARGUMENT (sym)) | |
4959 | data->arg_sym = sym; | |
4960 | else | |
4961 | { | |
4962 | data->found_sym = 1; | |
4963 | add_defn_to_vec (data->obstackp, | |
4964 | fixup_symbol_section (sym, data->objfile), | |
4965 | block); | |
4966 | } | |
4967 | } | |
4968 | return 0; | |
4969 | } | |
4970 | ||
4971 | /* Compare STRING1 to STRING2, with results as for strcmp. | |
4972 | Compatible with strcmp_iw in that strcmp_iw (STRING1, STRING2) <= 0 | |
4973 | implies compare_names (STRING1, STRING2) (they may differ as to | |
4974 | what symbols compare equal). */ | |
5b4ee69b | 4975 | |
40658b94 PH |
4976 | static int |
4977 | compare_names (const char *string1, const char *string2) | |
4978 | { | |
4979 | while (*string1 != '\0' && *string2 != '\0') | |
4980 | { | |
4981 | if (isspace (*string1) || isspace (*string2)) | |
4982 | return strcmp_iw_ordered (string1, string2); | |
4983 | if (*string1 != *string2) | |
4984 | break; | |
4985 | string1 += 1; | |
4986 | string2 += 1; | |
4987 | } | |
4988 | switch (*string1) | |
4989 | { | |
4990 | case '(': | |
4991 | return strcmp_iw_ordered (string1, string2); | |
4992 | case '_': | |
4993 | if (*string2 == '\0') | |
4994 | { | |
052874e8 | 4995 | if (is_name_suffix (string1)) |
40658b94 PH |
4996 | return 0; |
4997 | else | |
1a1d5513 | 4998 | return 1; |
40658b94 | 4999 | } |
dbb8534f | 5000 | /* FALLTHROUGH */ |
40658b94 PH |
5001 | default: |
5002 | if (*string2 == '(') | |
5003 | return strcmp_iw_ordered (string1, string2); | |
5004 | else | |
5005 | return *string1 - *string2; | |
5006 | } | |
ccefe4c4 TT |
5007 | } |
5008 | ||
339c13b6 JB |
5009 | /* Add to OBSTACKP all non-local symbols whose name and domain match |
5010 | NAME and DOMAIN respectively. The search is performed on GLOBAL_BLOCK | |
5011 | symbols if GLOBAL is non-zero, or on STATIC_BLOCK symbols otherwise. */ | |
5012 | ||
5013 | static void | |
40658b94 PH |
5014 | add_nonlocal_symbols (struct obstack *obstackp, const char *name, |
5015 | domain_enum domain, int global, | |
5016 | int is_wild_match) | |
339c13b6 JB |
5017 | { |
5018 | struct objfile *objfile; | |
40658b94 | 5019 | struct match_data data; |
339c13b6 | 5020 | |
6475f2fe | 5021 | memset (&data, 0, sizeof data); |
ccefe4c4 | 5022 | data.obstackp = obstackp; |
339c13b6 | 5023 | |
ccefe4c4 | 5024 | ALL_OBJFILES (objfile) |
40658b94 PH |
5025 | { |
5026 | data.objfile = objfile; | |
5027 | ||
5028 | if (is_wild_match) | |
5029 | objfile->sf->qf->map_matching_symbols (name, domain, objfile, global, | |
5030 | aux_add_nonlocal_symbols, &data, | |
5031 | wild_match, NULL); | |
5032 | else | |
5033 | objfile->sf->qf->map_matching_symbols (name, domain, objfile, global, | |
5034 | aux_add_nonlocal_symbols, &data, | |
5035 | full_match, compare_names); | |
5036 | } | |
5037 | ||
5038 | if (num_defns_collected (obstackp) == 0 && global && !is_wild_match) | |
5039 | { | |
5040 | ALL_OBJFILES (objfile) | |
5041 | { | |
5042 | char *name1 = alloca (strlen (name) + sizeof ("_ada_")); | |
5043 | strcpy (name1, "_ada_"); | |
5044 | strcpy (name1 + sizeof ("_ada_") - 1, name); | |
5045 | data.objfile = objfile; | |
0963b4bd MS |
5046 | objfile->sf->qf->map_matching_symbols (name1, domain, |
5047 | objfile, global, | |
5048 | aux_add_nonlocal_symbols, | |
5049 | &data, | |
40658b94 PH |
5050 | full_match, compare_names); |
5051 | } | |
5052 | } | |
339c13b6 JB |
5053 | } |
5054 | ||
4c4b4cd2 | 5055 | /* Find symbols in DOMAIN matching NAME0, in BLOCK0 and enclosing |
9f88c959 JB |
5056 | scope and in global scopes, returning the number of matches. |
5057 | Sets *RESULTS to point to a vector of (SYM,BLOCK) tuples, | |
4c4b4cd2 | 5058 | indicating the symbols found and the blocks and symbol tables (if |
9f88c959 JB |
5059 | any) in which they were found. This vector are transient---good only to |
5060 | the next call of ada_lookup_symbol_list. Any non-function/non-enumeral | |
4c4b4cd2 PH |
5061 | symbol match within the nest of blocks whose innermost member is BLOCK0, |
5062 | is the one match returned (no other matches in that or | |
d9680e73 TT |
5063 | enclosing blocks is returned). If there are any matches in or |
5064 | surrounding BLOCK0, then these alone are returned. Otherwise, if | |
5065 | FULL_SEARCH is non-zero, then the search extends to global and | |
5066 | file-scope (static) symbol tables. | |
9f88c959 | 5067 | Names prefixed with "standard__" are handled specially: "standard__" |
4c4b4cd2 | 5068 | is first stripped off, and only static and global symbols are searched. */ |
14f9c5c9 AS |
5069 | |
5070 | int | |
4c4b4cd2 | 5071 | ada_lookup_symbol_list (const char *name0, const struct block *block0, |
d9680e73 TT |
5072 | domain_enum namespace, |
5073 | struct ada_symbol_info **results, | |
5074 | int full_search) | |
14f9c5c9 AS |
5075 | { |
5076 | struct symbol *sym; | |
14f9c5c9 | 5077 | struct block *block; |
4c4b4cd2 | 5078 | const char *name; |
82ccd55e | 5079 | const int wild_match_p = should_use_wild_match (name0); |
14f9c5c9 | 5080 | int cacheIfUnique; |
4c4b4cd2 | 5081 | int ndefns; |
14f9c5c9 | 5082 | |
4c4b4cd2 PH |
5083 | obstack_free (&symbol_list_obstack, NULL); |
5084 | obstack_init (&symbol_list_obstack); | |
14f9c5c9 | 5085 | |
14f9c5c9 AS |
5086 | cacheIfUnique = 0; |
5087 | ||
5088 | /* Search specified block and its superiors. */ | |
5089 | ||
4c4b4cd2 | 5090 | name = name0; |
76a01679 JB |
5091 | block = (struct block *) block0; /* FIXME: No cast ought to be |
5092 | needed, but adding const will | |
5093 | have a cascade effect. */ | |
339c13b6 JB |
5094 | |
5095 | /* Special case: If the user specifies a symbol name inside package | |
5096 | Standard, do a non-wild matching of the symbol name without | |
5097 | the "standard__" prefix. This was primarily introduced in order | |
5098 | to allow the user to specifically access the standard exceptions | |
5099 | using, for instance, Standard.Constraint_Error when Constraint_Error | |
5100 | is ambiguous (due to the user defining its own Constraint_Error | |
5101 | entity inside its program). */ | |
4c4b4cd2 PH |
5102 | if (strncmp (name0, "standard__", sizeof ("standard__") - 1) == 0) |
5103 | { | |
4c4b4cd2 PH |
5104 | block = NULL; |
5105 | name = name0 + sizeof ("standard__") - 1; | |
5106 | } | |
5107 | ||
339c13b6 | 5108 | /* Check the non-global symbols. If we have ANY match, then we're done. */ |
14f9c5c9 | 5109 | |
339c13b6 | 5110 | ada_add_local_symbols (&symbol_list_obstack, name, block, namespace, |
82ccd55e | 5111 | wild_match_p); |
d9680e73 | 5112 | if (num_defns_collected (&symbol_list_obstack) > 0 || !full_search) |
14f9c5c9 | 5113 | goto done; |
d2e4a39e | 5114 | |
339c13b6 JB |
5115 | /* No non-global symbols found. Check our cache to see if we have |
5116 | already performed this search before. If we have, then return | |
5117 | the same result. */ | |
5118 | ||
14f9c5c9 | 5119 | cacheIfUnique = 1; |
2570f2b7 | 5120 | if (lookup_cached_symbol (name0, namespace, &sym, &block)) |
4c4b4cd2 PH |
5121 | { |
5122 | if (sym != NULL) | |
2570f2b7 | 5123 | add_defn_to_vec (&symbol_list_obstack, sym, block); |
4c4b4cd2 PH |
5124 | goto done; |
5125 | } | |
14f9c5c9 | 5126 | |
339c13b6 JB |
5127 | /* Search symbols from all global blocks. */ |
5128 | ||
40658b94 | 5129 | add_nonlocal_symbols (&symbol_list_obstack, name, namespace, 1, |
82ccd55e | 5130 | wild_match_p); |
d2e4a39e | 5131 | |
4c4b4cd2 | 5132 | /* Now add symbols from all per-file blocks if we've gotten no hits |
339c13b6 | 5133 | (not strictly correct, but perhaps better than an error). */ |
d2e4a39e | 5134 | |
4c4b4cd2 | 5135 | if (num_defns_collected (&symbol_list_obstack) == 0) |
40658b94 | 5136 | add_nonlocal_symbols (&symbol_list_obstack, name, namespace, 0, |
82ccd55e | 5137 | wild_match_p); |
14f9c5c9 | 5138 | |
4c4b4cd2 PH |
5139 | done: |
5140 | ndefns = num_defns_collected (&symbol_list_obstack); | |
5141 | *results = defns_collected (&symbol_list_obstack, 1); | |
5142 | ||
5143 | ndefns = remove_extra_symbols (*results, ndefns); | |
5144 | ||
2ad01556 | 5145 | if (ndefns == 0 && full_search) |
2570f2b7 | 5146 | cache_symbol (name0, namespace, NULL, NULL); |
14f9c5c9 | 5147 | |
2ad01556 | 5148 | if (ndefns == 1 && full_search && cacheIfUnique) |
2570f2b7 | 5149 | cache_symbol (name0, namespace, (*results)[0].sym, (*results)[0].block); |
14f9c5c9 | 5150 | |
aeb5907d | 5151 | ndefns = remove_irrelevant_renamings (*results, ndefns, block0); |
14f9c5c9 | 5152 | |
14f9c5c9 AS |
5153 | return ndefns; |
5154 | } | |
5155 | ||
f8eba3c6 TT |
5156 | /* If NAME is the name of an entity, return a string that should |
5157 | be used to look that entity up in Ada units. This string should | |
5158 | be deallocated after use using xfree. | |
5159 | ||
5160 | NAME can have any form that the "break" or "print" commands might | |
5161 | recognize. In other words, it does not have to be the "natural" | |
5162 | name, or the "encoded" name. */ | |
5163 | ||
5164 | char * | |
5165 | ada_name_for_lookup (const char *name) | |
5166 | { | |
5167 | char *canon; | |
5168 | int nlen = strlen (name); | |
5169 | ||
5170 | if (name[0] == '<' && name[nlen - 1] == '>') | |
5171 | { | |
5172 | canon = xmalloc (nlen - 1); | |
5173 | memcpy (canon, name + 1, nlen - 2); | |
5174 | canon[nlen - 2] = '\0'; | |
5175 | } | |
5176 | else | |
5177 | canon = xstrdup (ada_encode (ada_fold_name (name))); | |
5178 | return canon; | |
5179 | } | |
5180 | ||
5181 | /* Implementation of the la_iterate_over_symbols method. */ | |
5182 | ||
5183 | static void | |
5184 | ada_iterate_over_symbols (const struct block *block, | |
5185 | const char *name, domain_enum domain, | |
8e704927 | 5186 | symbol_found_callback_ftype *callback, |
f8eba3c6 TT |
5187 | void *data) |
5188 | { | |
5189 | int ndefs, i; | |
5190 | struct ada_symbol_info *results; | |
5191 | ||
d9680e73 | 5192 | ndefs = ada_lookup_symbol_list (name, block, domain, &results, 0); |
f8eba3c6 TT |
5193 | for (i = 0; i < ndefs; ++i) |
5194 | { | |
5195 | if (! (*callback) (results[i].sym, data)) | |
5196 | break; | |
5197 | } | |
5198 | } | |
5199 | ||
4e5c77fe JB |
5200 | /* The result is as for ada_lookup_symbol_list with FULL_SEARCH set |
5201 | to 1, but choosing the first symbol found if there are multiple | |
5202 | choices. | |
5203 | ||
5e2336be JB |
5204 | The result is stored in *INFO, which must be non-NULL. |
5205 | If no match is found, INFO->SYM is set to NULL. */ | |
4e5c77fe JB |
5206 | |
5207 | void | |
5208 | ada_lookup_encoded_symbol (const char *name, const struct block *block, | |
5209 | domain_enum namespace, | |
5e2336be | 5210 | struct ada_symbol_info *info) |
14f9c5c9 | 5211 | { |
4c4b4cd2 | 5212 | struct ada_symbol_info *candidates; |
14f9c5c9 AS |
5213 | int n_candidates; |
5214 | ||
5e2336be JB |
5215 | gdb_assert (info != NULL); |
5216 | memset (info, 0, sizeof (struct ada_symbol_info)); | |
4e5c77fe JB |
5217 | |
5218 | n_candidates = ada_lookup_symbol_list (name, block, namespace, &candidates, | |
d9680e73 | 5219 | 1); |
14f9c5c9 AS |
5220 | |
5221 | if (n_candidates == 0) | |
4e5c77fe | 5222 | return; |
4c4b4cd2 | 5223 | |
5e2336be JB |
5224 | *info = candidates[0]; |
5225 | info->sym = fixup_symbol_section (info->sym, NULL); | |
4e5c77fe | 5226 | } |
aeb5907d JB |
5227 | |
5228 | /* Return a symbol in DOMAIN matching NAME, in BLOCK0 and enclosing | |
5229 | scope and in global scopes, or NULL if none. NAME is folded and | |
5230 | encoded first. Otherwise, the result is as for ada_lookup_symbol_list, | |
0963b4bd | 5231 | choosing the first symbol if there are multiple choices. |
4e5c77fe JB |
5232 | If IS_A_FIELD_OF_THIS is not NULL, it is set to zero. */ |
5233 | ||
aeb5907d JB |
5234 | struct symbol * |
5235 | ada_lookup_symbol (const char *name, const struct block *block0, | |
21b556f4 | 5236 | domain_enum namespace, int *is_a_field_of_this) |
aeb5907d | 5237 | { |
5e2336be | 5238 | struct ada_symbol_info info; |
4e5c77fe | 5239 | |
aeb5907d JB |
5240 | if (is_a_field_of_this != NULL) |
5241 | *is_a_field_of_this = 0; | |
5242 | ||
4e5c77fe | 5243 | ada_lookup_encoded_symbol (ada_encode (ada_fold_name (name)), |
5e2336be JB |
5244 | block0, namespace, &info); |
5245 | return info.sym; | |
4c4b4cd2 | 5246 | } |
14f9c5c9 | 5247 | |
4c4b4cd2 PH |
5248 | static struct symbol * |
5249 | ada_lookup_symbol_nonlocal (const char *name, | |
76a01679 | 5250 | const struct block *block, |
21b556f4 | 5251 | const domain_enum domain) |
4c4b4cd2 | 5252 | { |
94af9270 | 5253 | return ada_lookup_symbol (name, block_static_block (block), domain, NULL); |
14f9c5c9 AS |
5254 | } |
5255 | ||
5256 | ||
4c4b4cd2 PH |
5257 | /* True iff STR is a possible encoded suffix of a normal Ada name |
5258 | that is to be ignored for matching purposes. Suffixes of parallel | |
5259 | names (e.g., XVE) are not included here. Currently, the possible suffixes | |
5823c3ef | 5260 | are given by any of the regular expressions: |
4c4b4cd2 | 5261 | |
babe1480 JB |
5262 | [.$][0-9]+ [nested subprogram suffix, on platforms such as GNU/Linux] |
5263 | ___[0-9]+ [nested subprogram suffix, on platforms such as HP/UX] | |
9ac7f98e | 5264 | TKB [subprogram suffix for task bodies] |
babe1480 | 5265 | _E[0-9]+[bs]$ [protected object entry suffixes] |
61ee279c | 5266 | (X[nb]*)?((\$|__)[0-9](_?[0-9]+)|___(JM|LJM|X([FDBUP].*|R[^T]?)))?$ |
babe1480 JB |
5267 | |
5268 | Also, any leading "__[0-9]+" sequence is skipped before the suffix | |
5269 | match is performed. This sequence is used to differentiate homonyms, | |
5270 | is an optional part of a valid name suffix. */ | |
4c4b4cd2 | 5271 | |
14f9c5c9 | 5272 | static int |
d2e4a39e | 5273 | is_name_suffix (const char *str) |
14f9c5c9 AS |
5274 | { |
5275 | int k; | |
4c4b4cd2 PH |
5276 | const char *matching; |
5277 | const int len = strlen (str); | |
5278 | ||
babe1480 JB |
5279 | /* Skip optional leading __[0-9]+. */ |
5280 | ||
4c4b4cd2 PH |
5281 | if (len > 3 && str[0] == '_' && str[1] == '_' && isdigit (str[2])) |
5282 | { | |
babe1480 JB |
5283 | str += 3; |
5284 | while (isdigit (str[0])) | |
5285 | str += 1; | |
4c4b4cd2 | 5286 | } |
babe1480 JB |
5287 | |
5288 | /* [.$][0-9]+ */ | |
4c4b4cd2 | 5289 | |
babe1480 | 5290 | if (str[0] == '.' || str[0] == '$') |
4c4b4cd2 | 5291 | { |
babe1480 | 5292 | matching = str + 1; |
4c4b4cd2 PH |
5293 | while (isdigit (matching[0])) |
5294 | matching += 1; | |
5295 | if (matching[0] == '\0') | |
5296 | return 1; | |
5297 | } | |
5298 | ||
5299 | /* ___[0-9]+ */ | |
babe1480 | 5300 | |
4c4b4cd2 PH |
5301 | if (len > 3 && str[0] == '_' && str[1] == '_' && str[2] == '_') |
5302 | { | |
5303 | matching = str + 3; | |
5304 | while (isdigit (matching[0])) | |
5305 | matching += 1; | |
5306 | if (matching[0] == '\0') | |
5307 | return 1; | |
5308 | } | |
5309 | ||
9ac7f98e JB |
5310 | /* "TKB" suffixes are used for subprograms implementing task bodies. */ |
5311 | ||
5312 | if (strcmp (str, "TKB") == 0) | |
5313 | return 1; | |
5314 | ||
529cad9c PH |
5315 | #if 0 |
5316 | /* FIXME: brobecker/2005-09-23: Protected Object subprograms end | |
0963b4bd MS |
5317 | with a N at the end. Unfortunately, the compiler uses the same |
5318 | convention for other internal types it creates. So treating | |
529cad9c | 5319 | all entity names that end with an "N" as a name suffix causes |
0963b4bd MS |
5320 | some regressions. For instance, consider the case of an enumerated |
5321 | type. To support the 'Image attribute, it creates an array whose | |
529cad9c PH |
5322 | name ends with N. |
5323 | Having a single character like this as a suffix carrying some | |
0963b4bd | 5324 | information is a bit risky. Perhaps we should change the encoding |
529cad9c PH |
5325 | to be something like "_N" instead. In the meantime, do not do |
5326 | the following check. */ | |
5327 | /* Protected Object Subprograms */ | |
5328 | if (len == 1 && str [0] == 'N') | |
5329 | return 1; | |
5330 | #endif | |
5331 | ||
5332 | /* _E[0-9]+[bs]$ */ | |
5333 | if (len > 3 && str[0] == '_' && str [1] == 'E' && isdigit (str[2])) | |
5334 | { | |
5335 | matching = str + 3; | |
5336 | while (isdigit (matching[0])) | |
5337 | matching += 1; | |
5338 | if ((matching[0] == 'b' || matching[0] == 's') | |
5339 | && matching [1] == '\0') | |
5340 | return 1; | |
5341 | } | |
5342 | ||
4c4b4cd2 PH |
5343 | /* ??? We should not modify STR directly, as we are doing below. This |
5344 | is fine in this case, but may become problematic later if we find | |
5345 | that this alternative did not work, and want to try matching | |
5346 | another one from the begining of STR. Since we modified it, we | |
5347 | won't be able to find the begining of the string anymore! */ | |
14f9c5c9 AS |
5348 | if (str[0] == 'X') |
5349 | { | |
5350 | str += 1; | |
d2e4a39e | 5351 | while (str[0] != '_' && str[0] != '\0') |
4c4b4cd2 PH |
5352 | { |
5353 | if (str[0] != 'n' && str[0] != 'b') | |
5354 | return 0; | |
5355 | str += 1; | |
5356 | } | |
14f9c5c9 | 5357 | } |
babe1480 | 5358 | |
14f9c5c9 AS |
5359 | if (str[0] == '\000') |
5360 | return 1; | |
babe1480 | 5361 | |
d2e4a39e | 5362 | if (str[0] == '_') |
14f9c5c9 AS |
5363 | { |
5364 | if (str[1] != '_' || str[2] == '\000') | |
4c4b4cd2 | 5365 | return 0; |
d2e4a39e | 5366 | if (str[2] == '_') |
4c4b4cd2 | 5367 | { |
61ee279c PH |
5368 | if (strcmp (str + 3, "JM") == 0) |
5369 | return 1; | |
5370 | /* FIXME: brobecker/2004-09-30: GNAT will soon stop using | |
5371 | the LJM suffix in favor of the JM one. But we will | |
5372 | still accept LJM as a valid suffix for a reasonable | |
5373 | amount of time, just to allow ourselves to debug programs | |
5374 | compiled using an older version of GNAT. */ | |
4c4b4cd2 PH |
5375 | if (strcmp (str + 3, "LJM") == 0) |
5376 | return 1; | |
5377 | if (str[3] != 'X') | |
5378 | return 0; | |
1265e4aa JB |
5379 | if (str[4] == 'F' || str[4] == 'D' || str[4] == 'B' |
5380 | || str[4] == 'U' || str[4] == 'P') | |
4c4b4cd2 PH |
5381 | return 1; |
5382 | if (str[4] == 'R' && str[5] != 'T') | |
5383 | return 1; | |
5384 | return 0; | |
5385 | } | |
5386 | if (!isdigit (str[2])) | |
5387 | return 0; | |
5388 | for (k = 3; str[k] != '\0'; k += 1) | |
5389 | if (!isdigit (str[k]) && str[k] != '_') | |
5390 | return 0; | |
14f9c5c9 AS |
5391 | return 1; |
5392 | } | |
4c4b4cd2 | 5393 | if (str[0] == '$' && isdigit (str[1])) |
14f9c5c9 | 5394 | { |
4c4b4cd2 PH |
5395 | for (k = 2; str[k] != '\0'; k += 1) |
5396 | if (!isdigit (str[k]) && str[k] != '_') | |
5397 | return 0; | |
14f9c5c9 AS |
5398 | return 1; |
5399 | } | |
5400 | return 0; | |
5401 | } | |
d2e4a39e | 5402 | |
aeb5907d JB |
5403 | /* Return non-zero if the string starting at NAME and ending before |
5404 | NAME_END contains no capital letters. */ | |
529cad9c PH |
5405 | |
5406 | static int | |
5407 | is_valid_name_for_wild_match (const char *name0) | |
5408 | { | |
5409 | const char *decoded_name = ada_decode (name0); | |
5410 | int i; | |
5411 | ||
5823c3ef JB |
5412 | /* If the decoded name starts with an angle bracket, it means that |
5413 | NAME0 does not follow the GNAT encoding format. It should then | |
5414 | not be allowed as a possible wild match. */ | |
5415 | if (decoded_name[0] == '<') | |
5416 | return 0; | |
5417 | ||
529cad9c PH |
5418 | for (i=0; decoded_name[i] != '\0'; i++) |
5419 | if (isalpha (decoded_name[i]) && !islower (decoded_name[i])) | |
5420 | return 0; | |
5421 | ||
5422 | return 1; | |
5423 | } | |
5424 | ||
73589123 PH |
5425 | /* Advance *NAMEP to next occurrence of TARGET0 in the string NAME0 |
5426 | that could start a simple name. Assumes that *NAMEP points into | |
5427 | the string beginning at NAME0. */ | |
4c4b4cd2 | 5428 | |
14f9c5c9 | 5429 | static int |
73589123 | 5430 | advance_wild_match (const char **namep, const char *name0, int target0) |
14f9c5c9 | 5431 | { |
73589123 | 5432 | const char *name = *namep; |
5b4ee69b | 5433 | |
5823c3ef | 5434 | while (1) |
14f9c5c9 | 5435 | { |
aa27d0b3 | 5436 | int t0, t1; |
73589123 PH |
5437 | |
5438 | t0 = *name; | |
5439 | if (t0 == '_') | |
5440 | { | |
5441 | t1 = name[1]; | |
5442 | if ((t1 >= 'a' && t1 <= 'z') || (t1 >= '0' && t1 <= '9')) | |
5443 | { | |
5444 | name += 1; | |
5445 | if (name == name0 + 5 && strncmp (name0, "_ada", 4) == 0) | |
5446 | break; | |
5447 | else | |
5448 | name += 1; | |
5449 | } | |
aa27d0b3 JB |
5450 | else if (t1 == '_' && ((name[2] >= 'a' && name[2] <= 'z') |
5451 | || name[2] == target0)) | |
73589123 PH |
5452 | { |
5453 | name += 2; | |
5454 | break; | |
5455 | } | |
5456 | else | |
5457 | return 0; | |
5458 | } | |
5459 | else if ((t0 >= 'a' && t0 <= 'z') || (t0 >= '0' && t0 <= '9')) | |
5460 | name += 1; | |
5461 | else | |
5823c3ef | 5462 | return 0; |
73589123 PH |
5463 | } |
5464 | ||
5465 | *namep = name; | |
5466 | return 1; | |
5467 | } | |
5468 | ||
5469 | /* Return 0 iff NAME encodes a name of the form prefix.PATN. Ignores any | |
5470 | informational suffixes of NAME (i.e., for which is_name_suffix is | |
5471 | true). Assumes that PATN is a lower-cased Ada simple name. */ | |
5472 | ||
5473 | static int | |
5474 | wild_match (const char *name, const char *patn) | |
5475 | { | |
22e048c9 | 5476 | const char *p; |
73589123 PH |
5477 | const char *name0 = name; |
5478 | ||
5479 | while (1) | |
5480 | { | |
5481 | const char *match = name; | |
5482 | ||
5483 | if (*name == *patn) | |
5484 | { | |
5485 | for (name += 1, p = patn + 1; *p != '\0'; name += 1, p += 1) | |
5486 | if (*p != *name) | |
5487 | break; | |
5488 | if (*p == '\0' && is_name_suffix (name)) | |
5489 | return match != name0 && !is_valid_name_for_wild_match (name0); | |
5490 | ||
5491 | if (name[-1] == '_') | |
5492 | name -= 1; | |
5493 | } | |
5494 | if (!advance_wild_match (&name, name0, *patn)) | |
5495 | return 1; | |
96d887e8 | 5496 | } |
96d887e8 PH |
5497 | } |
5498 | ||
40658b94 PH |
5499 | /* Returns 0 iff symbol name SYM_NAME matches SEARCH_NAME, apart from |
5500 | informational suffix. */ | |
5501 | ||
c4d840bd PH |
5502 | static int |
5503 | full_match (const char *sym_name, const char *search_name) | |
5504 | { | |
40658b94 | 5505 | return !match_name (sym_name, search_name, 0); |
c4d840bd PH |
5506 | } |
5507 | ||
5508 | ||
96d887e8 PH |
5509 | /* Add symbols from BLOCK matching identifier NAME in DOMAIN to |
5510 | vector *defn_symbols, updating the list of symbols in OBSTACKP | |
0963b4bd | 5511 | (if necessary). If WILD, treat as NAME with a wildcard prefix. |
96d887e8 PH |
5512 | OBJFILE is the section containing BLOCK. |
5513 | SYMTAB is recorded with each symbol added. */ | |
5514 | ||
5515 | static void | |
5516 | ada_add_block_symbols (struct obstack *obstackp, | |
76a01679 | 5517 | struct block *block, const char *name, |
96d887e8 | 5518 | domain_enum domain, struct objfile *objfile, |
2570f2b7 | 5519 | int wild) |
96d887e8 | 5520 | { |
8157b174 | 5521 | struct block_iterator iter; |
96d887e8 PH |
5522 | int name_len = strlen (name); |
5523 | /* A matching argument symbol, if any. */ | |
5524 | struct symbol *arg_sym; | |
5525 | /* Set true when we find a matching non-argument symbol. */ | |
5526 | int found_sym; | |
5527 | struct symbol *sym; | |
5528 | ||
5529 | arg_sym = NULL; | |
5530 | found_sym = 0; | |
5531 | if (wild) | |
5532 | { | |
8157b174 TT |
5533 | for (sym = block_iter_match_first (block, name, wild_match, &iter); |
5534 | sym != NULL; sym = block_iter_match_next (name, wild_match, &iter)) | |
76a01679 | 5535 | { |
5eeb2539 AR |
5536 | if (symbol_matches_domain (SYMBOL_LANGUAGE (sym), |
5537 | SYMBOL_DOMAIN (sym), domain) | |
73589123 | 5538 | && wild_match (SYMBOL_LINKAGE_NAME (sym), name) == 0) |
76a01679 | 5539 | { |
2a2d4dc3 AS |
5540 | if (SYMBOL_CLASS (sym) == LOC_UNRESOLVED) |
5541 | continue; | |
5542 | else if (SYMBOL_IS_ARGUMENT (sym)) | |
5543 | arg_sym = sym; | |
5544 | else | |
5545 | { | |
76a01679 JB |
5546 | found_sym = 1; |
5547 | add_defn_to_vec (obstackp, | |
5548 | fixup_symbol_section (sym, objfile), | |
2570f2b7 | 5549 | block); |
76a01679 JB |
5550 | } |
5551 | } | |
5552 | } | |
96d887e8 PH |
5553 | } |
5554 | else | |
5555 | { | |
8157b174 TT |
5556 | for (sym = block_iter_match_first (block, name, full_match, &iter); |
5557 | sym != NULL; sym = block_iter_match_next (name, full_match, &iter)) | |
76a01679 | 5558 | { |
5eeb2539 AR |
5559 | if (symbol_matches_domain (SYMBOL_LANGUAGE (sym), |
5560 | SYMBOL_DOMAIN (sym), domain)) | |
76a01679 | 5561 | { |
c4d840bd PH |
5562 | if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED) |
5563 | { | |
5564 | if (SYMBOL_IS_ARGUMENT (sym)) | |
5565 | arg_sym = sym; | |
5566 | else | |
2a2d4dc3 | 5567 | { |
c4d840bd PH |
5568 | found_sym = 1; |
5569 | add_defn_to_vec (obstackp, | |
5570 | fixup_symbol_section (sym, objfile), | |
5571 | block); | |
2a2d4dc3 | 5572 | } |
c4d840bd | 5573 | } |
76a01679 JB |
5574 | } |
5575 | } | |
96d887e8 PH |
5576 | } |
5577 | ||
5578 | if (!found_sym && arg_sym != NULL) | |
5579 | { | |
76a01679 JB |
5580 | add_defn_to_vec (obstackp, |
5581 | fixup_symbol_section (arg_sym, objfile), | |
2570f2b7 | 5582 | block); |
96d887e8 PH |
5583 | } |
5584 | ||
5585 | if (!wild) | |
5586 | { | |
5587 | arg_sym = NULL; | |
5588 | found_sym = 0; | |
5589 | ||
5590 | ALL_BLOCK_SYMBOLS (block, iter, sym) | |
76a01679 | 5591 | { |
5eeb2539 AR |
5592 | if (symbol_matches_domain (SYMBOL_LANGUAGE (sym), |
5593 | SYMBOL_DOMAIN (sym), domain)) | |
76a01679 JB |
5594 | { |
5595 | int cmp; | |
5596 | ||
5597 | cmp = (int) '_' - (int) SYMBOL_LINKAGE_NAME (sym)[0]; | |
5598 | if (cmp == 0) | |
5599 | { | |
5600 | cmp = strncmp ("_ada_", SYMBOL_LINKAGE_NAME (sym), 5); | |
5601 | if (cmp == 0) | |
5602 | cmp = strncmp (name, SYMBOL_LINKAGE_NAME (sym) + 5, | |
5603 | name_len); | |
5604 | } | |
5605 | ||
5606 | if (cmp == 0 | |
5607 | && is_name_suffix (SYMBOL_LINKAGE_NAME (sym) + name_len + 5)) | |
5608 | { | |
2a2d4dc3 AS |
5609 | if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED) |
5610 | { | |
5611 | if (SYMBOL_IS_ARGUMENT (sym)) | |
5612 | arg_sym = sym; | |
5613 | else | |
5614 | { | |
5615 | found_sym = 1; | |
5616 | add_defn_to_vec (obstackp, | |
5617 | fixup_symbol_section (sym, objfile), | |
5618 | block); | |
5619 | } | |
5620 | } | |
76a01679 JB |
5621 | } |
5622 | } | |
76a01679 | 5623 | } |
96d887e8 PH |
5624 | |
5625 | /* NOTE: This really shouldn't be needed for _ada_ symbols. | |
5626 | They aren't parameters, right? */ | |
5627 | if (!found_sym && arg_sym != NULL) | |
5628 | { | |
5629 | add_defn_to_vec (obstackp, | |
76a01679 | 5630 | fixup_symbol_section (arg_sym, objfile), |
2570f2b7 | 5631 | block); |
96d887e8 PH |
5632 | } |
5633 | } | |
5634 | } | |
5635 | \f | |
41d27058 JB |
5636 | |
5637 | /* Symbol Completion */ | |
5638 | ||
5639 | /* If SYM_NAME is a completion candidate for TEXT, return this symbol | |
5640 | name in a form that's appropriate for the completion. The result | |
5641 | does not need to be deallocated, but is only good until the next call. | |
5642 | ||
5643 | TEXT_LEN is equal to the length of TEXT. | |
e701b3c0 | 5644 | Perform a wild match if WILD_MATCH_P is set. |
6ea35997 | 5645 | ENCODED_P should be set if TEXT represents the start of a symbol name |
41d27058 JB |
5646 | in its encoded form. */ |
5647 | ||
5648 | static const char * | |
5649 | symbol_completion_match (const char *sym_name, | |
5650 | const char *text, int text_len, | |
6ea35997 | 5651 | int wild_match_p, int encoded_p) |
41d27058 | 5652 | { |
41d27058 JB |
5653 | const int verbatim_match = (text[0] == '<'); |
5654 | int match = 0; | |
5655 | ||
5656 | if (verbatim_match) | |
5657 | { | |
5658 | /* Strip the leading angle bracket. */ | |
5659 | text = text + 1; | |
5660 | text_len--; | |
5661 | } | |
5662 | ||
5663 | /* First, test against the fully qualified name of the symbol. */ | |
5664 | ||
5665 | if (strncmp (sym_name, text, text_len) == 0) | |
5666 | match = 1; | |
5667 | ||
6ea35997 | 5668 | if (match && !encoded_p) |
41d27058 JB |
5669 | { |
5670 | /* One needed check before declaring a positive match is to verify | |
5671 | that iff we are doing a verbatim match, the decoded version | |
5672 | of the symbol name starts with '<'. Otherwise, this symbol name | |
5673 | is not a suitable completion. */ | |
5674 | const char *sym_name_copy = sym_name; | |
5675 | int has_angle_bracket; | |
5676 | ||
5677 | sym_name = ada_decode (sym_name); | |
5678 | has_angle_bracket = (sym_name[0] == '<'); | |
5679 | match = (has_angle_bracket == verbatim_match); | |
5680 | sym_name = sym_name_copy; | |
5681 | } | |
5682 | ||
5683 | if (match && !verbatim_match) | |
5684 | { | |
5685 | /* When doing non-verbatim match, another check that needs to | |
5686 | be done is to verify that the potentially matching symbol name | |
5687 | does not include capital letters, because the ada-mode would | |
5688 | not be able to understand these symbol names without the | |
5689 | angle bracket notation. */ | |
5690 | const char *tmp; | |
5691 | ||
5692 | for (tmp = sym_name; *tmp != '\0' && !isupper (*tmp); tmp++); | |
5693 | if (*tmp != '\0') | |
5694 | match = 0; | |
5695 | } | |
5696 | ||
5697 | /* Second: Try wild matching... */ | |
5698 | ||
e701b3c0 | 5699 | if (!match && wild_match_p) |
41d27058 JB |
5700 | { |
5701 | /* Since we are doing wild matching, this means that TEXT | |
5702 | may represent an unqualified symbol name. We therefore must | |
5703 | also compare TEXT against the unqualified name of the symbol. */ | |
5704 | sym_name = ada_unqualified_name (ada_decode (sym_name)); | |
5705 | ||
5706 | if (strncmp (sym_name, text, text_len) == 0) | |
5707 | match = 1; | |
5708 | } | |
5709 | ||
5710 | /* Finally: If we found a mach, prepare the result to return. */ | |
5711 | ||
5712 | if (!match) | |
5713 | return NULL; | |
5714 | ||
5715 | if (verbatim_match) | |
5716 | sym_name = add_angle_brackets (sym_name); | |
5717 | ||
6ea35997 | 5718 | if (!encoded_p) |
41d27058 JB |
5719 | sym_name = ada_decode (sym_name); |
5720 | ||
5721 | return sym_name; | |
5722 | } | |
5723 | ||
5724 | /* A companion function to ada_make_symbol_completion_list(). | |
5725 | Check if SYM_NAME represents a symbol which name would be suitable | |
5726 | to complete TEXT (TEXT_LEN is the length of TEXT), in which case | |
5727 | it is appended at the end of the given string vector SV. | |
5728 | ||
5729 | ORIG_TEXT is the string original string from the user command | |
5730 | that needs to be completed. WORD is the entire command on which | |
5731 | completion should be performed. These two parameters are used to | |
5732 | determine which part of the symbol name should be added to the | |
5733 | completion vector. | |
c0af1706 | 5734 | if WILD_MATCH_P is set, then wild matching is performed. |
cb8e9b97 | 5735 | ENCODED_P should be set if TEXT represents a symbol name in its |
41d27058 JB |
5736 | encoded formed (in which case the completion should also be |
5737 | encoded). */ | |
5738 | ||
5739 | static void | |
d6565258 | 5740 | symbol_completion_add (VEC(char_ptr) **sv, |
41d27058 JB |
5741 | const char *sym_name, |
5742 | const char *text, int text_len, | |
5743 | const char *orig_text, const char *word, | |
cb8e9b97 | 5744 | int wild_match_p, int encoded_p) |
41d27058 JB |
5745 | { |
5746 | const char *match = symbol_completion_match (sym_name, text, text_len, | |
cb8e9b97 | 5747 | wild_match_p, encoded_p); |
41d27058 JB |
5748 | char *completion; |
5749 | ||
5750 | if (match == NULL) | |
5751 | return; | |
5752 | ||
5753 | /* We found a match, so add the appropriate completion to the given | |
5754 | string vector. */ | |
5755 | ||
5756 | if (word == orig_text) | |
5757 | { | |
5758 | completion = xmalloc (strlen (match) + 5); | |
5759 | strcpy (completion, match); | |
5760 | } | |
5761 | else if (word > orig_text) | |
5762 | { | |
5763 | /* Return some portion of sym_name. */ | |
5764 | completion = xmalloc (strlen (match) + 5); | |
5765 | strcpy (completion, match + (word - orig_text)); | |
5766 | } | |
5767 | else | |
5768 | { | |
5769 | /* Return some of ORIG_TEXT plus sym_name. */ | |
5770 | completion = xmalloc (strlen (match) + (orig_text - word) + 5); | |
5771 | strncpy (completion, word, orig_text - word); | |
5772 | completion[orig_text - word] = '\0'; | |
5773 | strcat (completion, match); | |
5774 | } | |
5775 | ||
d6565258 | 5776 | VEC_safe_push (char_ptr, *sv, completion); |
41d27058 JB |
5777 | } |
5778 | ||
ccefe4c4 | 5779 | /* An object of this type is passed as the user_data argument to the |
7b08b9eb | 5780 | expand_partial_symbol_names method. */ |
ccefe4c4 TT |
5781 | struct add_partial_datum |
5782 | { | |
5783 | VEC(char_ptr) **completions; | |
5784 | char *text; | |
5785 | int text_len; | |
5786 | char *text0; | |
5787 | char *word; | |
5788 | int wild_match; | |
5789 | int encoded; | |
5790 | }; | |
5791 | ||
7b08b9eb JK |
5792 | /* A callback for expand_partial_symbol_names. */ |
5793 | static int | |
e078317b | 5794 | ada_expand_partial_symbol_name (const char *name, void *user_data) |
ccefe4c4 TT |
5795 | { |
5796 | struct add_partial_datum *data = user_data; | |
7b08b9eb JK |
5797 | |
5798 | return symbol_completion_match (name, data->text, data->text_len, | |
5799 | data->wild_match, data->encoded) != NULL; | |
ccefe4c4 TT |
5800 | } |
5801 | ||
49c4e619 TT |
5802 | /* Return a list of possible symbol names completing TEXT0. WORD is |
5803 | the entire command on which completion is made. */ | |
41d27058 | 5804 | |
49c4e619 | 5805 | static VEC (char_ptr) * |
2f68a895 | 5806 | ada_make_symbol_completion_list (char *text0, char *word, enum type_code code) |
41d27058 JB |
5807 | { |
5808 | char *text; | |
5809 | int text_len; | |
b1ed564a JB |
5810 | int wild_match_p; |
5811 | int encoded_p; | |
2ba95b9b | 5812 | VEC(char_ptr) *completions = VEC_alloc (char_ptr, 128); |
41d27058 JB |
5813 | struct symbol *sym; |
5814 | struct symtab *s; | |
41d27058 JB |
5815 | struct minimal_symbol *msymbol; |
5816 | struct objfile *objfile; | |
5817 | struct block *b, *surrounding_static_block = 0; | |
5818 | int i; | |
8157b174 | 5819 | struct block_iterator iter; |
41d27058 | 5820 | |
2f68a895 TT |
5821 | gdb_assert (code == TYPE_CODE_UNDEF); |
5822 | ||
41d27058 JB |
5823 | if (text0[0] == '<') |
5824 | { | |
5825 | text = xstrdup (text0); | |
5826 | make_cleanup (xfree, text); | |
5827 | text_len = strlen (text); | |
b1ed564a JB |
5828 | wild_match_p = 0; |
5829 | encoded_p = 1; | |
41d27058 JB |
5830 | } |
5831 | else | |
5832 | { | |
5833 | text = xstrdup (ada_encode (text0)); | |
5834 | make_cleanup (xfree, text); | |
5835 | text_len = strlen (text); | |
5836 | for (i = 0; i < text_len; i++) | |
5837 | text[i] = tolower (text[i]); | |
5838 | ||
b1ed564a | 5839 | encoded_p = (strstr (text0, "__") != NULL); |
41d27058 JB |
5840 | /* If the name contains a ".", then the user is entering a fully |
5841 | qualified entity name, and the match must not be done in wild | |
5842 | mode. Similarly, if the user wants to complete what looks like | |
5843 | an encoded name, the match must not be done in wild mode. */ | |
b1ed564a | 5844 | wild_match_p = (strchr (text0, '.') == NULL && !encoded_p); |
41d27058 JB |
5845 | } |
5846 | ||
5847 | /* First, look at the partial symtab symbols. */ | |
41d27058 | 5848 | { |
ccefe4c4 TT |
5849 | struct add_partial_datum data; |
5850 | ||
5851 | data.completions = &completions; | |
5852 | data.text = text; | |
5853 | data.text_len = text_len; | |
5854 | data.text0 = text0; | |
5855 | data.word = word; | |
b1ed564a JB |
5856 | data.wild_match = wild_match_p; |
5857 | data.encoded = encoded_p; | |
7b08b9eb | 5858 | expand_partial_symbol_names (ada_expand_partial_symbol_name, &data); |
41d27058 JB |
5859 | } |
5860 | ||
5861 | /* At this point scan through the misc symbol vectors and add each | |
5862 | symbol you find to the list. Eventually we want to ignore | |
5863 | anything that isn't a text symbol (everything else will be | |
5864 | handled by the psymtab code above). */ | |
5865 | ||
5866 | ALL_MSYMBOLS (objfile, msymbol) | |
5867 | { | |
5868 | QUIT; | |
d6565258 | 5869 | symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (msymbol), |
b1ed564a JB |
5870 | text, text_len, text0, word, wild_match_p, |
5871 | encoded_p); | |
41d27058 JB |
5872 | } |
5873 | ||
5874 | /* Search upwards from currently selected frame (so that we can | |
5875 | complete on local vars. */ | |
5876 | ||
5877 | for (b = get_selected_block (0); b != NULL; b = BLOCK_SUPERBLOCK (b)) | |
5878 | { | |
5879 | if (!BLOCK_SUPERBLOCK (b)) | |
5880 | surrounding_static_block = b; /* For elmin of dups */ | |
5881 | ||
5882 | ALL_BLOCK_SYMBOLS (b, iter, sym) | |
5883 | { | |
d6565258 | 5884 | symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym), |
41d27058 | 5885 | text, text_len, text0, word, |
b1ed564a | 5886 | wild_match_p, encoded_p); |
41d27058 JB |
5887 | } |
5888 | } | |
5889 | ||
5890 | /* Go through the symtabs and check the externs and statics for | |
5891 | symbols which match. */ | |
5892 | ||
5893 | ALL_SYMTABS (objfile, s) | |
5894 | { | |
5895 | QUIT; | |
5896 | b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), GLOBAL_BLOCK); | |
5897 | ALL_BLOCK_SYMBOLS (b, iter, sym) | |
5898 | { | |
d6565258 | 5899 | symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym), |
41d27058 | 5900 | text, text_len, text0, word, |
b1ed564a | 5901 | wild_match_p, encoded_p); |
41d27058 JB |
5902 | } |
5903 | } | |
5904 | ||
5905 | ALL_SYMTABS (objfile, s) | |
5906 | { | |
5907 | QUIT; | |
5908 | b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), STATIC_BLOCK); | |
5909 | /* Don't do this block twice. */ | |
5910 | if (b == surrounding_static_block) | |
5911 | continue; | |
5912 | ALL_BLOCK_SYMBOLS (b, iter, sym) | |
5913 | { | |
d6565258 | 5914 | symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym), |
41d27058 | 5915 | text, text_len, text0, word, |
b1ed564a | 5916 | wild_match_p, encoded_p); |
41d27058 JB |
5917 | } |
5918 | } | |
5919 | ||
49c4e619 | 5920 | return completions; |
41d27058 JB |
5921 | } |
5922 | ||
963a6417 | 5923 | /* Field Access */ |
96d887e8 | 5924 | |
73fb9985 JB |
5925 | /* Return non-zero if TYPE is a pointer to the GNAT dispatch table used |
5926 | for tagged types. */ | |
5927 | ||
5928 | static int | |
5929 | ada_is_dispatch_table_ptr_type (struct type *type) | |
5930 | { | |
0d5cff50 | 5931 | const char *name; |
73fb9985 JB |
5932 | |
5933 | if (TYPE_CODE (type) != TYPE_CODE_PTR) | |
5934 | return 0; | |
5935 | ||
5936 | name = TYPE_NAME (TYPE_TARGET_TYPE (type)); | |
5937 | if (name == NULL) | |
5938 | return 0; | |
5939 | ||
5940 | return (strcmp (name, "ada__tags__dispatch_table") == 0); | |
5941 | } | |
5942 | ||
ac4a2da4 JG |
5943 | /* Return non-zero if TYPE is an interface tag. */ |
5944 | ||
5945 | static int | |
5946 | ada_is_interface_tag (struct type *type) | |
5947 | { | |
5948 | const char *name = TYPE_NAME (type); | |
5949 | ||
5950 | if (name == NULL) | |
5951 | return 0; | |
5952 | ||
5953 | return (strcmp (name, "ada__tags__interface_tag") == 0); | |
5954 | } | |
5955 | ||
963a6417 PH |
5956 | /* True if field number FIELD_NUM in struct or union type TYPE is supposed |
5957 | to be invisible to users. */ | |
96d887e8 | 5958 | |
963a6417 PH |
5959 | int |
5960 | ada_is_ignored_field (struct type *type, int field_num) | |
96d887e8 | 5961 | { |
963a6417 PH |
5962 | if (field_num < 0 || field_num > TYPE_NFIELDS (type)) |
5963 | return 1; | |
ffde82bf | 5964 | |
73fb9985 JB |
5965 | /* Check the name of that field. */ |
5966 | { | |
5967 | const char *name = TYPE_FIELD_NAME (type, field_num); | |
5968 | ||
5969 | /* Anonymous field names should not be printed. | |
5970 | brobecker/2007-02-20: I don't think this can actually happen | |
5971 | but we don't want to print the value of annonymous fields anyway. */ | |
5972 | if (name == NULL) | |
5973 | return 1; | |
5974 | ||
ffde82bf JB |
5975 | /* Normally, fields whose name start with an underscore ("_") |
5976 | are fields that have been internally generated by the compiler, | |
5977 | and thus should not be printed. The "_parent" field is special, | |
5978 | however: This is a field internally generated by the compiler | |
5979 | for tagged types, and it contains the components inherited from | |
5980 | the parent type. This field should not be printed as is, but | |
5981 | should not be ignored either. */ | |
73fb9985 JB |
5982 | if (name[0] == '_' && strncmp (name, "_parent", 7) != 0) |
5983 | return 1; | |
5984 | } | |
5985 | ||
ac4a2da4 JG |
5986 | /* If this is the dispatch table of a tagged type or an interface tag, |
5987 | then ignore. */ | |
73fb9985 | 5988 | if (ada_is_tagged_type (type, 1) |
ac4a2da4 JG |
5989 | && (ada_is_dispatch_table_ptr_type (TYPE_FIELD_TYPE (type, field_num)) |
5990 | || ada_is_interface_tag (TYPE_FIELD_TYPE (type, field_num)))) | |
73fb9985 JB |
5991 | return 1; |
5992 | ||
5993 | /* Not a special field, so it should not be ignored. */ | |
5994 | return 0; | |
963a6417 | 5995 | } |
96d887e8 | 5996 | |
963a6417 | 5997 | /* True iff TYPE has a tag field. If REFOK, then TYPE may also be a |
0963b4bd | 5998 | pointer or reference type whose ultimate target has a tag field. */ |
96d887e8 | 5999 | |
963a6417 PH |
6000 | int |
6001 | ada_is_tagged_type (struct type *type, int refok) | |
6002 | { | |
6003 | return (ada_lookup_struct_elt_type (type, "_tag", refok, 1, NULL) != NULL); | |
6004 | } | |
96d887e8 | 6005 | |
963a6417 | 6006 | /* True iff TYPE represents the type of X'Tag */ |
96d887e8 | 6007 | |
963a6417 PH |
6008 | int |
6009 | ada_is_tag_type (struct type *type) | |
6010 | { | |
6011 | if (type == NULL || TYPE_CODE (type) != TYPE_CODE_PTR) | |
6012 | return 0; | |
6013 | else | |
96d887e8 | 6014 | { |
963a6417 | 6015 | const char *name = ada_type_name (TYPE_TARGET_TYPE (type)); |
5b4ee69b | 6016 | |
963a6417 PH |
6017 | return (name != NULL |
6018 | && strcmp (name, "ada__tags__dispatch_table") == 0); | |
96d887e8 | 6019 | } |
96d887e8 PH |
6020 | } |
6021 | ||
963a6417 | 6022 | /* The type of the tag on VAL. */ |
76a01679 | 6023 | |
963a6417 PH |
6024 | struct type * |
6025 | ada_tag_type (struct value *val) | |
96d887e8 | 6026 | { |
df407dfe | 6027 | return ada_lookup_struct_elt_type (value_type (val), "_tag", 1, 0, NULL); |
963a6417 | 6028 | } |
96d887e8 | 6029 | |
b50d69b5 JG |
6030 | /* Return 1 if TAG follows the old scheme for Ada tags (used for Ada 95, |
6031 | retired at Ada 05). */ | |
6032 | ||
6033 | static int | |
6034 | is_ada95_tag (struct value *tag) | |
6035 | { | |
6036 | return ada_value_struct_elt (tag, "tsd", 1) != NULL; | |
6037 | } | |
6038 | ||
963a6417 | 6039 | /* The value of the tag on VAL. */ |
96d887e8 | 6040 | |
963a6417 PH |
6041 | struct value * |
6042 | ada_value_tag (struct value *val) | |
6043 | { | |
03ee6b2e | 6044 | return ada_value_struct_elt (val, "_tag", 0); |
96d887e8 PH |
6045 | } |
6046 | ||
963a6417 PH |
6047 | /* The value of the tag on the object of type TYPE whose contents are |
6048 | saved at VALADDR, if it is non-null, or is at memory address | |
0963b4bd | 6049 | ADDRESS. */ |
96d887e8 | 6050 | |
963a6417 | 6051 | static struct value * |
10a2c479 | 6052 | value_tag_from_contents_and_address (struct type *type, |
fc1a4b47 | 6053 | const gdb_byte *valaddr, |
963a6417 | 6054 | CORE_ADDR address) |
96d887e8 | 6055 | { |
b5385fc0 | 6056 | int tag_byte_offset; |
963a6417 | 6057 | struct type *tag_type; |
5b4ee69b | 6058 | |
963a6417 | 6059 | if (find_struct_field ("_tag", type, 0, &tag_type, &tag_byte_offset, |
52ce6436 | 6060 | NULL, NULL, NULL)) |
96d887e8 | 6061 | { |
fc1a4b47 | 6062 | const gdb_byte *valaddr1 = ((valaddr == NULL) |
10a2c479 AC |
6063 | ? NULL |
6064 | : valaddr + tag_byte_offset); | |
963a6417 | 6065 | CORE_ADDR address1 = (address == 0) ? 0 : address + tag_byte_offset; |
96d887e8 | 6066 | |
963a6417 | 6067 | return value_from_contents_and_address (tag_type, valaddr1, address1); |
96d887e8 | 6068 | } |
963a6417 PH |
6069 | return NULL; |
6070 | } | |
96d887e8 | 6071 | |
963a6417 PH |
6072 | static struct type * |
6073 | type_from_tag (struct value *tag) | |
6074 | { | |
6075 | const char *type_name = ada_tag_name (tag); | |
5b4ee69b | 6076 | |
963a6417 PH |
6077 | if (type_name != NULL) |
6078 | return ada_find_any_type (ada_encode (type_name)); | |
6079 | return NULL; | |
6080 | } | |
96d887e8 | 6081 | |
b50d69b5 JG |
6082 | /* Given a value OBJ of a tagged type, return a value of this |
6083 | type at the base address of the object. The base address, as | |
6084 | defined in Ada.Tags, it is the address of the primary tag of | |
6085 | the object, and therefore where the field values of its full | |
6086 | view can be fetched. */ | |
6087 | ||
6088 | struct value * | |
6089 | ada_tag_value_at_base_address (struct value *obj) | |
6090 | { | |
6091 | volatile struct gdb_exception e; | |
6092 | struct value *val; | |
6093 | LONGEST offset_to_top = 0; | |
6094 | struct type *ptr_type, *obj_type; | |
6095 | struct value *tag; | |
6096 | CORE_ADDR base_address; | |
6097 | ||
6098 | obj_type = value_type (obj); | |
6099 | ||
6100 | /* It is the responsability of the caller to deref pointers. */ | |
6101 | ||
6102 | if (TYPE_CODE (obj_type) == TYPE_CODE_PTR | |
6103 | || TYPE_CODE (obj_type) == TYPE_CODE_REF) | |
6104 | return obj; | |
6105 | ||
6106 | tag = ada_value_tag (obj); | |
6107 | if (!tag) | |
6108 | return obj; | |
6109 | ||
6110 | /* Base addresses only appeared with Ada 05 and multiple inheritance. */ | |
6111 | ||
6112 | if (is_ada95_tag (tag)) | |
6113 | return obj; | |
6114 | ||
6115 | ptr_type = builtin_type (target_gdbarch ())->builtin_data_ptr; | |
6116 | ptr_type = lookup_pointer_type (ptr_type); | |
6117 | val = value_cast (ptr_type, tag); | |
6118 | if (!val) | |
6119 | return obj; | |
6120 | ||
6121 | /* It is perfectly possible that an exception be raised while | |
6122 | trying to determine the base address, just like for the tag; | |
6123 | see ada_tag_name for more details. We do not print the error | |
6124 | message for the same reason. */ | |
6125 | ||
6126 | TRY_CATCH (e, RETURN_MASK_ERROR) | |
6127 | { | |
6128 | offset_to_top = value_as_long (value_ind (value_ptradd (val, -2))); | |
6129 | } | |
6130 | ||
6131 | if (e.reason < 0) | |
6132 | return obj; | |
6133 | ||
6134 | /* If offset is null, nothing to do. */ | |
6135 | ||
6136 | if (offset_to_top == 0) | |
6137 | return obj; | |
6138 | ||
6139 | /* -1 is a special case in Ada.Tags; however, what should be done | |
6140 | is not quite clear from the documentation. So do nothing for | |
6141 | now. */ | |
6142 | ||
6143 | if (offset_to_top == -1) | |
6144 | return obj; | |
6145 | ||
6146 | base_address = value_address (obj) - offset_to_top; | |
6147 | tag = value_tag_from_contents_and_address (obj_type, NULL, base_address); | |
6148 | ||
6149 | /* Make sure that we have a proper tag at the new address. | |
6150 | Otherwise, offset_to_top is bogus (which can happen when | |
6151 | the object is not initialized yet). */ | |
6152 | ||
6153 | if (!tag) | |
6154 | return obj; | |
6155 | ||
6156 | obj_type = type_from_tag (tag); | |
6157 | ||
6158 | if (!obj_type) | |
6159 | return obj; | |
6160 | ||
6161 | return value_from_contents_and_address (obj_type, NULL, base_address); | |
6162 | } | |
6163 | ||
1b611343 JB |
6164 | /* Return the "ada__tags__type_specific_data" type. */ |
6165 | ||
6166 | static struct type * | |
6167 | ada_get_tsd_type (struct inferior *inf) | |
963a6417 | 6168 | { |
1b611343 | 6169 | struct ada_inferior_data *data = get_ada_inferior_data (inf); |
4c4b4cd2 | 6170 | |
1b611343 JB |
6171 | if (data->tsd_type == 0) |
6172 | data->tsd_type = ada_find_any_type ("ada__tags__type_specific_data"); | |
6173 | return data->tsd_type; | |
6174 | } | |
529cad9c | 6175 | |
1b611343 JB |
6176 | /* Return the TSD (type-specific data) associated to the given TAG. |
6177 | TAG is assumed to be the tag of a tagged-type entity. | |
529cad9c | 6178 | |
1b611343 | 6179 | May return NULL if we are unable to get the TSD. */ |
4c4b4cd2 | 6180 | |
1b611343 JB |
6181 | static struct value * |
6182 | ada_get_tsd_from_tag (struct value *tag) | |
4c4b4cd2 | 6183 | { |
4c4b4cd2 | 6184 | struct value *val; |
1b611343 | 6185 | struct type *type; |
5b4ee69b | 6186 | |
1b611343 JB |
6187 | /* First option: The TSD is simply stored as a field of our TAG. |
6188 | Only older versions of GNAT would use this format, but we have | |
6189 | to test it first, because there are no visible markers for | |
6190 | the current approach except the absence of that field. */ | |
529cad9c | 6191 | |
1b611343 JB |
6192 | val = ada_value_struct_elt (tag, "tsd", 1); |
6193 | if (val) | |
6194 | return val; | |
e802dbe0 | 6195 | |
1b611343 JB |
6196 | /* Try the second representation for the dispatch table (in which |
6197 | there is no explicit 'tsd' field in the referent of the tag pointer, | |
6198 | and instead the tsd pointer is stored just before the dispatch | |
6199 | table. */ | |
e802dbe0 | 6200 | |
1b611343 JB |
6201 | type = ada_get_tsd_type (current_inferior()); |
6202 | if (type == NULL) | |
6203 | return NULL; | |
6204 | type = lookup_pointer_type (lookup_pointer_type (type)); | |
6205 | val = value_cast (type, tag); | |
6206 | if (val == NULL) | |
6207 | return NULL; | |
6208 | return value_ind (value_ptradd (val, -1)); | |
e802dbe0 JB |
6209 | } |
6210 | ||
1b611343 JB |
6211 | /* Given the TSD of a tag (type-specific data), return a string |
6212 | containing the name of the associated type. | |
6213 | ||
6214 | The returned value is good until the next call. May return NULL | |
6215 | if we are unable to determine the tag name. */ | |
6216 | ||
6217 | static char * | |
6218 | ada_tag_name_from_tsd (struct value *tsd) | |
529cad9c | 6219 | { |
529cad9c PH |
6220 | static char name[1024]; |
6221 | char *p; | |
1b611343 | 6222 | struct value *val; |
529cad9c | 6223 | |
1b611343 | 6224 | val = ada_value_struct_elt (tsd, "expanded_name", 1); |
4c4b4cd2 | 6225 | if (val == NULL) |
1b611343 | 6226 | return NULL; |
4c4b4cd2 PH |
6227 | read_memory_string (value_as_address (val), name, sizeof (name) - 1); |
6228 | for (p = name; *p != '\0'; p += 1) | |
6229 | if (isalpha (*p)) | |
6230 | *p = tolower (*p); | |
1b611343 | 6231 | return name; |
4c4b4cd2 PH |
6232 | } |
6233 | ||
6234 | /* The type name of the dynamic type denoted by the 'tag value TAG, as | |
1b611343 JB |
6235 | a C string. |
6236 | ||
6237 | Return NULL if the TAG is not an Ada tag, or if we were unable to | |
6238 | determine the name of that tag. The result is good until the next | |
6239 | call. */ | |
4c4b4cd2 PH |
6240 | |
6241 | const char * | |
6242 | ada_tag_name (struct value *tag) | |
6243 | { | |
1b611343 JB |
6244 | volatile struct gdb_exception e; |
6245 | char *name = NULL; | |
5b4ee69b | 6246 | |
df407dfe | 6247 | if (!ada_is_tag_type (value_type (tag))) |
4c4b4cd2 | 6248 | return NULL; |
1b611343 JB |
6249 | |
6250 | /* It is perfectly possible that an exception be raised while trying | |
6251 | to determine the TAG's name, even under normal circumstances: | |
6252 | The associated variable may be uninitialized or corrupted, for | |
6253 | instance. We do not let any exception propagate past this point. | |
6254 | instead we return NULL. | |
6255 | ||
6256 | We also do not print the error message either (which often is very | |
6257 | low-level (Eg: "Cannot read memory at 0x[...]"), but instead let | |
6258 | the caller print a more meaningful message if necessary. */ | |
6259 | TRY_CATCH (e, RETURN_MASK_ERROR) | |
6260 | { | |
6261 | struct value *tsd = ada_get_tsd_from_tag (tag); | |
6262 | ||
6263 | if (tsd != NULL) | |
6264 | name = ada_tag_name_from_tsd (tsd); | |
6265 | } | |
6266 | ||
6267 | return name; | |
4c4b4cd2 PH |
6268 | } |
6269 | ||
6270 | /* The parent type of TYPE, or NULL if none. */ | |
14f9c5c9 | 6271 | |
d2e4a39e | 6272 | struct type * |
ebf56fd3 | 6273 | ada_parent_type (struct type *type) |
14f9c5c9 AS |
6274 | { |
6275 | int i; | |
6276 | ||
61ee279c | 6277 | type = ada_check_typedef (type); |
14f9c5c9 AS |
6278 | |
6279 | if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT) | |
6280 | return NULL; | |
6281 | ||
6282 | for (i = 0; i < TYPE_NFIELDS (type); i += 1) | |
6283 | if (ada_is_parent_field (type, i)) | |
0c1f74cf JB |
6284 | { |
6285 | struct type *parent_type = TYPE_FIELD_TYPE (type, i); | |
6286 | ||
6287 | /* If the _parent field is a pointer, then dereference it. */ | |
6288 | if (TYPE_CODE (parent_type) == TYPE_CODE_PTR) | |
6289 | parent_type = TYPE_TARGET_TYPE (parent_type); | |
6290 | /* If there is a parallel XVS type, get the actual base type. */ | |
6291 | parent_type = ada_get_base_type (parent_type); | |
6292 | ||
6293 | return ada_check_typedef (parent_type); | |
6294 | } | |
14f9c5c9 AS |
6295 | |
6296 | return NULL; | |
6297 | } | |
6298 | ||
4c4b4cd2 PH |
6299 | /* True iff field number FIELD_NUM of structure type TYPE contains the |
6300 | parent-type (inherited) fields of a derived type. Assumes TYPE is | |
6301 | a structure type with at least FIELD_NUM+1 fields. */ | |
14f9c5c9 AS |
6302 | |
6303 | int | |
ebf56fd3 | 6304 | ada_is_parent_field (struct type *type, int field_num) |
14f9c5c9 | 6305 | { |
61ee279c | 6306 | const char *name = TYPE_FIELD_NAME (ada_check_typedef (type), field_num); |
5b4ee69b | 6307 | |
4c4b4cd2 PH |
6308 | return (name != NULL |
6309 | && (strncmp (name, "PARENT", 6) == 0 | |
6310 | || strncmp (name, "_parent", 7) == 0)); | |
14f9c5c9 AS |
6311 | } |
6312 | ||
4c4b4cd2 | 6313 | /* True iff field number FIELD_NUM of structure type TYPE is a |
14f9c5c9 | 6314 | transparent wrapper field (which should be silently traversed when doing |
4c4b4cd2 | 6315 | field selection and flattened when printing). Assumes TYPE is a |
14f9c5c9 | 6316 | structure type with at least FIELD_NUM+1 fields. Such fields are always |
4c4b4cd2 | 6317 | structures. */ |
14f9c5c9 AS |
6318 | |
6319 | int | |
ebf56fd3 | 6320 | ada_is_wrapper_field (struct type *type, int field_num) |
14f9c5c9 | 6321 | { |
d2e4a39e | 6322 | const char *name = TYPE_FIELD_NAME (type, field_num); |
5b4ee69b | 6323 | |
d2e4a39e | 6324 | return (name != NULL |
4c4b4cd2 PH |
6325 | && (strncmp (name, "PARENT", 6) == 0 |
6326 | || strcmp (name, "REP") == 0 | |
6327 | || strncmp (name, "_parent", 7) == 0 | |
6328 | || name[0] == 'S' || name[0] == 'R' || name[0] == 'O')); | |
14f9c5c9 AS |
6329 | } |
6330 | ||
4c4b4cd2 PH |
6331 | /* True iff field number FIELD_NUM of structure or union type TYPE |
6332 | is a variant wrapper. Assumes TYPE is a structure type with at least | |
6333 | FIELD_NUM+1 fields. */ | |
14f9c5c9 AS |
6334 | |
6335 | int | |
ebf56fd3 | 6336 | ada_is_variant_part (struct type *type, int field_num) |
14f9c5c9 | 6337 | { |
d2e4a39e | 6338 | struct type *field_type = TYPE_FIELD_TYPE (type, field_num); |
5b4ee69b | 6339 | |
14f9c5c9 | 6340 | return (TYPE_CODE (field_type) == TYPE_CODE_UNION |
4c4b4cd2 | 6341 | || (is_dynamic_field (type, field_num) |
c3e5cd34 PH |
6342 | && (TYPE_CODE (TYPE_TARGET_TYPE (field_type)) |
6343 | == TYPE_CODE_UNION))); | |
14f9c5c9 AS |
6344 | } |
6345 | ||
6346 | /* Assuming that VAR_TYPE is a variant wrapper (type of the variant part) | |
4c4b4cd2 | 6347 | whose discriminants are contained in the record type OUTER_TYPE, |
7c964f07 UW |
6348 | returns the type of the controlling discriminant for the variant. |
6349 | May return NULL if the type could not be found. */ | |
14f9c5c9 | 6350 | |
d2e4a39e | 6351 | struct type * |
ebf56fd3 | 6352 | ada_variant_discrim_type (struct type *var_type, struct type *outer_type) |
14f9c5c9 | 6353 | { |
d2e4a39e | 6354 | char *name = ada_variant_discrim_name (var_type); |
5b4ee69b | 6355 | |
7c964f07 | 6356 | return ada_lookup_struct_elt_type (outer_type, name, 1, 1, NULL); |
14f9c5c9 AS |
6357 | } |
6358 | ||
4c4b4cd2 | 6359 | /* Assuming that TYPE is the type of a variant wrapper, and FIELD_NUM is a |
14f9c5c9 | 6360 | valid field number within it, returns 1 iff field FIELD_NUM of TYPE |
4c4b4cd2 | 6361 | represents a 'when others' clause; otherwise 0. */ |
14f9c5c9 AS |
6362 | |
6363 | int | |
ebf56fd3 | 6364 | ada_is_others_clause (struct type *type, int field_num) |
14f9c5c9 | 6365 | { |
d2e4a39e | 6366 | const char *name = TYPE_FIELD_NAME (type, field_num); |
5b4ee69b | 6367 | |
14f9c5c9 AS |
6368 | return (name != NULL && name[0] == 'O'); |
6369 | } | |
6370 | ||
6371 | /* Assuming that TYPE0 is the type of the variant part of a record, | |
4c4b4cd2 PH |
6372 | returns the name of the discriminant controlling the variant. |
6373 | The value is valid until the next call to ada_variant_discrim_name. */ | |
14f9c5c9 | 6374 | |
d2e4a39e | 6375 | char * |
ebf56fd3 | 6376 | ada_variant_discrim_name (struct type *type0) |
14f9c5c9 | 6377 | { |
d2e4a39e | 6378 | static char *result = NULL; |
14f9c5c9 | 6379 | static size_t result_len = 0; |
d2e4a39e AS |
6380 | struct type *type; |
6381 | const char *name; | |
6382 | const char *discrim_end; | |
6383 | const char *discrim_start; | |
14f9c5c9 AS |
6384 | |
6385 | if (TYPE_CODE (type0) == TYPE_CODE_PTR) | |
6386 | type = TYPE_TARGET_TYPE (type0); | |
6387 | else | |
6388 | type = type0; | |
6389 | ||
6390 | name = ada_type_name (type); | |
6391 | ||
6392 | if (name == NULL || name[0] == '\000') | |
6393 | return ""; | |
6394 | ||
6395 | for (discrim_end = name + strlen (name) - 6; discrim_end != name; | |
6396 | discrim_end -= 1) | |
6397 | { | |
4c4b4cd2 PH |
6398 | if (strncmp (discrim_end, "___XVN", 6) == 0) |
6399 | break; | |
14f9c5c9 AS |
6400 | } |
6401 | if (discrim_end == name) | |
6402 | return ""; | |
6403 | ||
d2e4a39e | 6404 | for (discrim_start = discrim_end; discrim_start != name + 3; |
14f9c5c9 AS |
6405 | discrim_start -= 1) |
6406 | { | |
d2e4a39e | 6407 | if (discrim_start == name + 1) |
4c4b4cd2 | 6408 | return ""; |
76a01679 | 6409 | if ((discrim_start > name + 3 |
4c4b4cd2 PH |
6410 | && strncmp (discrim_start - 3, "___", 3) == 0) |
6411 | || discrim_start[-1] == '.') | |
6412 | break; | |
14f9c5c9 AS |
6413 | } |
6414 | ||
6415 | GROW_VECT (result, result_len, discrim_end - discrim_start + 1); | |
6416 | strncpy (result, discrim_start, discrim_end - discrim_start); | |
d2e4a39e | 6417 | result[discrim_end - discrim_start] = '\0'; |
14f9c5c9 AS |
6418 | return result; |
6419 | } | |
6420 | ||
4c4b4cd2 PH |
6421 | /* Scan STR for a subtype-encoded number, beginning at position K. |
6422 | Put the position of the character just past the number scanned in | |
6423 | *NEW_K, if NEW_K!=NULL. Put the scanned number in *R, if R!=NULL. | |
6424 | Return 1 if there was a valid number at the given position, and 0 | |
6425 | otherwise. A "subtype-encoded" number consists of the absolute value | |
6426 | in decimal, followed by the letter 'm' to indicate a negative number. | |
6427 | Assumes 0m does not occur. */ | |
14f9c5c9 AS |
6428 | |
6429 | int | |
d2e4a39e | 6430 | ada_scan_number (const char str[], int k, LONGEST * R, int *new_k) |
14f9c5c9 AS |
6431 | { |
6432 | ULONGEST RU; | |
6433 | ||
d2e4a39e | 6434 | if (!isdigit (str[k])) |
14f9c5c9 AS |
6435 | return 0; |
6436 | ||
4c4b4cd2 | 6437 | /* Do it the hard way so as not to make any assumption about |
14f9c5c9 | 6438 | the relationship of unsigned long (%lu scan format code) and |
4c4b4cd2 | 6439 | LONGEST. */ |
14f9c5c9 AS |
6440 | RU = 0; |
6441 | while (isdigit (str[k])) | |
6442 | { | |
d2e4a39e | 6443 | RU = RU * 10 + (str[k] - '0'); |
14f9c5c9 AS |
6444 | k += 1; |
6445 | } | |
6446 | ||
d2e4a39e | 6447 | if (str[k] == 'm') |
14f9c5c9 AS |
6448 | { |
6449 | if (R != NULL) | |
4c4b4cd2 | 6450 | *R = (-(LONGEST) (RU - 1)) - 1; |
14f9c5c9 AS |
6451 | k += 1; |
6452 | } | |
6453 | else if (R != NULL) | |
6454 | *R = (LONGEST) RU; | |
6455 | ||
4c4b4cd2 | 6456 | /* NOTE on the above: Technically, C does not say what the results of |
14f9c5c9 AS |
6457 | - (LONGEST) RU or (LONGEST) -RU are for RU == largest positive |
6458 | number representable as a LONGEST (although either would probably work | |
6459 | in most implementations). When RU>0, the locution in the then branch | |
4c4b4cd2 | 6460 | above is always equivalent to the negative of RU. */ |
14f9c5c9 AS |
6461 | |
6462 | if (new_k != NULL) | |
6463 | *new_k = k; | |
6464 | return 1; | |
6465 | } | |
6466 | ||
4c4b4cd2 PH |
6467 | /* Assuming that TYPE is a variant part wrapper type (a VARIANTS field), |
6468 | and FIELD_NUM is a valid field number within it, returns 1 iff VAL is | |
6469 | in the range encoded by field FIELD_NUM of TYPE; otherwise 0. */ | |
14f9c5c9 | 6470 | |
d2e4a39e | 6471 | int |
ebf56fd3 | 6472 | ada_in_variant (LONGEST val, struct type *type, int field_num) |
14f9c5c9 | 6473 | { |
d2e4a39e | 6474 | const char *name = TYPE_FIELD_NAME (type, field_num); |
14f9c5c9 AS |
6475 | int p; |
6476 | ||
6477 | p = 0; | |
6478 | while (1) | |
6479 | { | |
d2e4a39e | 6480 | switch (name[p]) |
4c4b4cd2 PH |
6481 | { |
6482 | case '\0': | |
6483 | return 0; | |
6484 | case 'S': | |
6485 | { | |
6486 | LONGEST W; | |
5b4ee69b | 6487 | |
4c4b4cd2 PH |
6488 | if (!ada_scan_number (name, p + 1, &W, &p)) |
6489 | return 0; | |
6490 | if (val == W) | |
6491 | return 1; | |
6492 | break; | |
6493 | } | |
6494 | case 'R': | |
6495 | { | |
6496 | LONGEST L, U; | |
5b4ee69b | 6497 | |
4c4b4cd2 PH |
6498 | if (!ada_scan_number (name, p + 1, &L, &p) |
6499 | || name[p] != 'T' || !ada_scan_number (name, p + 1, &U, &p)) | |
6500 | return 0; | |
6501 | if (val >= L && val <= U) | |
6502 | return 1; | |
6503 | break; | |
6504 | } | |
6505 | case 'O': | |
6506 | return 1; | |
6507 | default: | |
6508 | return 0; | |
6509 | } | |
6510 | } | |
6511 | } | |
6512 | ||
0963b4bd | 6513 | /* FIXME: Lots of redundancy below. Try to consolidate. */ |
4c4b4cd2 PH |
6514 | |
6515 | /* Given a value ARG1 (offset by OFFSET bytes) of a struct or union type | |
6516 | ARG_TYPE, extract and return the value of one of its (non-static) | |
6517 | fields. FIELDNO says which field. Differs from value_primitive_field | |
6518 | only in that it can handle packed values of arbitrary type. */ | |
14f9c5c9 | 6519 | |
4c4b4cd2 | 6520 | static struct value * |
d2e4a39e | 6521 | ada_value_primitive_field (struct value *arg1, int offset, int fieldno, |
4c4b4cd2 | 6522 | struct type *arg_type) |
14f9c5c9 | 6523 | { |
14f9c5c9 AS |
6524 | struct type *type; |
6525 | ||
61ee279c | 6526 | arg_type = ada_check_typedef (arg_type); |
14f9c5c9 AS |
6527 | type = TYPE_FIELD_TYPE (arg_type, fieldno); |
6528 | ||
4c4b4cd2 | 6529 | /* Handle packed fields. */ |
14f9c5c9 AS |
6530 | |
6531 | if (TYPE_FIELD_BITSIZE (arg_type, fieldno) != 0) | |
6532 | { | |
6533 | int bit_pos = TYPE_FIELD_BITPOS (arg_type, fieldno); | |
6534 | int bit_size = TYPE_FIELD_BITSIZE (arg_type, fieldno); | |
d2e4a39e | 6535 | |
0fd88904 | 6536 | return ada_value_primitive_packed_val (arg1, value_contents (arg1), |
4c4b4cd2 PH |
6537 | offset + bit_pos / 8, |
6538 | bit_pos % 8, bit_size, type); | |
14f9c5c9 AS |
6539 | } |
6540 | else | |
6541 | return value_primitive_field (arg1, offset, fieldno, arg_type); | |
6542 | } | |
6543 | ||
52ce6436 PH |
6544 | /* Find field with name NAME in object of type TYPE. If found, |
6545 | set the following for each argument that is non-null: | |
6546 | - *FIELD_TYPE_P to the field's type; | |
6547 | - *BYTE_OFFSET_P to OFFSET + the byte offset of the field within | |
6548 | an object of that type; | |
6549 | - *BIT_OFFSET_P to the bit offset modulo byte size of the field; | |
6550 | - *BIT_SIZE_P to its size in bits if the field is packed, and | |
6551 | 0 otherwise; | |
6552 | If INDEX_P is non-null, increment *INDEX_P by the number of source-visible | |
6553 | fields up to but not including the desired field, or by the total | |
6554 | number of fields if not found. A NULL value of NAME never | |
6555 | matches; the function just counts visible fields in this case. | |
6556 | ||
0963b4bd | 6557 | Returns 1 if found, 0 otherwise. */ |
52ce6436 | 6558 | |
4c4b4cd2 | 6559 | static int |
0d5cff50 | 6560 | find_struct_field (const char *name, struct type *type, int offset, |
76a01679 | 6561 | struct type **field_type_p, |
52ce6436 PH |
6562 | int *byte_offset_p, int *bit_offset_p, int *bit_size_p, |
6563 | int *index_p) | |
4c4b4cd2 PH |
6564 | { |
6565 | int i; | |
6566 | ||
61ee279c | 6567 | type = ada_check_typedef (type); |
76a01679 | 6568 | |
52ce6436 PH |
6569 | if (field_type_p != NULL) |
6570 | *field_type_p = NULL; | |
6571 | if (byte_offset_p != NULL) | |
d5d6fca5 | 6572 | *byte_offset_p = 0; |
52ce6436 PH |
6573 | if (bit_offset_p != NULL) |
6574 | *bit_offset_p = 0; | |
6575 | if (bit_size_p != NULL) | |
6576 | *bit_size_p = 0; | |
6577 | ||
6578 | for (i = 0; i < TYPE_NFIELDS (type); i += 1) | |
4c4b4cd2 PH |
6579 | { |
6580 | int bit_pos = TYPE_FIELD_BITPOS (type, i); | |
6581 | int fld_offset = offset + bit_pos / 8; | |
0d5cff50 | 6582 | const char *t_field_name = TYPE_FIELD_NAME (type, i); |
76a01679 | 6583 | |
4c4b4cd2 PH |
6584 | if (t_field_name == NULL) |
6585 | continue; | |
6586 | ||
52ce6436 | 6587 | else if (name != NULL && field_name_match (t_field_name, name)) |
76a01679 JB |
6588 | { |
6589 | int bit_size = TYPE_FIELD_BITSIZE (type, i); | |
5b4ee69b | 6590 | |
52ce6436 PH |
6591 | if (field_type_p != NULL) |
6592 | *field_type_p = TYPE_FIELD_TYPE (type, i); | |
6593 | if (byte_offset_p != NULL) | |
6594 | *byte_offset_p = fld_offset; | |
6595 | if (bit_offset_p != NULL) | |
6596 | *bit_offset_p = bit_pos % 8; | |
6597 | if (bit_size_p != NULL) | |
6598 | *bit_size_p = bit_size; | |
76a01679 JB |
6599 | return 1; |
6600 | } | |
4c4b4cd2 PH |
6601 | else if (ada_is_wrapper_field (type, i)) |
6602 | { | |
52ce6436 PH |
6603 | if (find_struct_field (name, TYPE_FIELD_TYPE (type, i), fld_offset, |
6604 | field_type_p, byte_offset_p, bit_offset_p, | |
6605 | bit_size_p, index_p)) | |
76a01679 JB |
6606 | return 1; |
6607 | } | |
4c4b4cd2 PH |
6608 | else if (ada_is_variant_part (type, i)) |
6609 | { | |
52ce6436 PH |
6610 | /* PNH: Wait. Do we ever execute this section, or is ARG always of |
6611 | fixed type?? */ | |
4c4b4cd2 | 6612 | int j; |
52ce6436 PH |
6613 | struct type *field_type |
6614 | = ada_check_typedef (TYPE_FIELD_TYPE (type, i)); | |
4c4b4cd2 | 6615 | |
52ce6436 | 6616 | for (j = 0; j < TYPE_NFIELDS (field_type); j += 1) |
4c4b4cd2 | 6617 | { |
76a01679 JB |
6618 | if (find_struct_field (name, TYPE_FIELD_TYPE (field_type, j), |
6619 | fld_offset | |
6620 | + TYPE_FIELD_BITPOS (field_type, j) / 8, | |
6621 | field_type_p, byte_offset_p, | |
52ce6436 | 6622 | bit_offset_p, bit_size_p, index_p)) |
76a01679 | 6623 | return 1; |
4c4b4cd2 PH |
6624 | } |
6625 | } | |
52ce6436 PH |
6626 | else if (index_p != NULL) |
6627 | *index_p += 1; | |
4c4b4cd2 PH |
6628 | } |
6629 | return 0; | |
6630 | } | |
6631 | ||
0963b4bd | 6632 | /* Number of user-visible fields in record type TYPE. */ |
4c4b4cd2 | 6633 | |
52ce6436 PH |
6634 | static int |
6635 | num_visible_fields (struct type *type) | |
6636 | { | |
6637 | int n; | |
5b4ee69b | 6638 | |
52ce6436 PH |
6639 | n = 0; |
6640 | find_struct_field (NULL, type, 0, NULL, NULL, NULL, NULL, &n); | |
6641 | return n; | |
6642 | } | |
14f9c5c9 | 6643 | |
4c4b4cd2 | 6644 | /* Look for a field NAME in ARG. Adjust the address of ARG by OFFSET bytes, |
14f9c5c9 AS |
6645 | and search in it assuming it has (class) type TYPE. |
6646 | If found, return value, else return NULL. | |
6647 | ||
4c4b4cd2 | 6648 | Searches recursively through wrapper fields (e.g., '_parent'). */ |
14f9c5c9 | 6649 | |
4c4b4cd2 | 6650 | static struct value * |
d2e4a39e | 6651 | ada_search_struct_field (char *name, struct value *arg, int offset, |
4c4b4cd2 | 6652 | struct type *type) |
14f9c5c9 AS |
6653 | { |
6654 | int i; | |
14f9c5c9 | 6655 | |
5b4ee69b | 6656 | type = ada_check_typedef (type); |
52ce6436 | 6657 | for (i = 0; i < TYPE_NFIELDS (type); i += 1) |
14f9c5c9 | 6658 | { |
0d5cff50 | 6659 | const char *t_field_name = TYPE_FIELD_NAME (type, i); |
14f9c5c9 AS |
6660 | |
6661 | if (t_field_name == NULL) | |
4c4b4cd2 | 6662 | continue; |
14f9c5c9 AS |
6663 | |
6664 | else if (field_name_match (t_field_name, name)) | |
4c4b4cd2 | 6665 | return ada_value_primitive_field (arg, offset, i, type); |
14f9c5c9 AS |
6666 | |
6667 | else if (ada_is_wrapper_field (type, i)) | |
4c4b4cd2 | 6668 | { |
0963b4bd | 6669 | struct value *v = /* Do not let indent join lines here. */ |
06d5cf63 JB |
6670 | ada_search_struct_field (name, arg, |
6671 | offset + TYPE_FIELD_BITPOS (type, i) / 8, | |
6672 | TYPE_FIELD_TYPE (type, i)); | |
5b4ee69b | 6673 | |
4c4b4cd2 PH |
6674 | if (v != NULL) |
6675 | return v; | |
6676 | } | |
14f9c5c9 AS |
6677 | |
6678 | else if (ada_is_variant_part (type, i)) | |
4c4b4cd2 | 6679 | { |
0963b4bd | 6680 | /* PNH: Do we ever get here? See find_struct_field. */ |
4c4b4cd2 | 6681 | int j; |
5b4ee69b MS |
6682 | struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type, |
6683 | i)); | |
4c4b4cd2 PH |
6684 | int var_offset = offset + TYPE_FIELD_BITPOS (type, i) / 8; |
6685 | ||
52ce6436 | 6686 | for (j = 0; j < TYPE_NFIELDS (field_type); j += 1) |
4c4b4cd2 | 6687 | { |
0963b4bd MS |
6688 | struct value *v = ada_search_struct_field /* Force line |
6689 | break. */ | |
06d5cf63 JB |
6690 | (name, arg, |
6691 | var_offset + TYPE_FIELD_BITPOS (field_type, j) / 8, | |
6692 | TYPE_FIELD_TYPE (field_type, j)); | |
5b4ee69b | 6693 | |
4c4b4cd2 PH |
6694 | if (v != NULL) |
6695 | return v; | |
6696 | } | |
6697 | } | |
14f9c5c9 AS |
6698 | } |
6699 | return NULL; | |
6700 | } | |
d2e4a39e | 6701 | |
52ce6436 PH |
6702 | static struct value *ada_index_struct_field_1 (int *, struct value *, |
6703 | int, struct type *); | |
6704 | ||
6705 | ||
6706 | /* Return field #INDEX in ARG, where the index is that returned by | |
6707 | * find_struct_field through its INDEX_P argument. Adjust the address | |
6708 | * of ARG by OFFSET bytes, and search in it assuming it has (class) type TYPE. | |
0963b4bd | 6709 | * If found, return value, else return NULL. */ |
52ce6436 PH |
6710 | |
6711 | static struct value * | |
6712 | ada_index_struct_field (int index, struct value *arg, int offset, | |
6713 | struct type *type) | |
6714 | { | |
6715 | return ada_index_struct_field_1 (&index, arg, offset, type); | |
6716 | } | |
6717 | ||
6718 | ||
6719 | /* Auxiliary function for ada_index_struct_field. Like | |
6720 | * ada_index_struct_field, but takes index from *INDEX_P and modifies | |
0963b4bd | 6721 | * *INDEX_P. */ |
52ce6436 PH |
6722 | |
6723 | static struct value * | |
6724 | ada_index_struct_field_1 (int *index_p, struct value *arg, int offset, | |
6725 | struct type *type) | |
6726 | { | |
6727 | int i; | |
6728 | type = ada_check_typedef (type); | |
6729 | ||
6730 | for (i = 0; i < TYPE_NFIELDS (type); i += 1) | |
6731 | { | |
6732 | if (TYPE_FIELD_NAME (type, i) == NULL) | |
6733 | continue; | |
6734 | else if (ada_is_wrapper_field (type, i)) | |
6735 | { | |
0963b4bd | 6736 | struct value *v = /* Do not let indent join lines here. */ |
52ce6436 PH |
6737 | ada_index_struct_field_1 (index_p, arg, |
6738 | offset + TYPE_FIELD_BITPOS (type, i) / 8, | |
6739 | TYPE_FIELD_TYPE (type, i)); | |
5b4ee69b | 6740 | |
52ce6436 PH |
6741 | if (v != NULL) |
6742 | return v; | |
6743 | } | |
6744 | ||
6745 | else if (ada_is_variant_part (type, i)) | |
6746 | { | |
6747 | /* PNH: Do we ever get here? See ada_search_struct_field, | |
0963b4bd | 6748 | find_struct_field. */ |
52ce6436 PH |
6749 | error (_("Cannot assign this kind of variant record")); |
6750 | } | |
6751 | else if (*index_p == 0) | |
6752 | return ada_value_primitive_field (arg, offset, i, type); | |
6753 | else | |
6754 | *index_p -= 1; | |
6755 | } | |
6756 | return NULL; | |
6757 | } | |
6758 | ||
4c4b4cd2 PH |
6759 | /* Given ARG, a value of type (pointer or reference to a)* |
6760 | structure/union, extract the component named NAME from the ultimate | |
6761 | target structure/union and return it as a value with its | |
f5938064 | 6762 | appropriate type. |
14f9c5c9 | 6763 | |
4c4b4cd2 PH |
6764 | The routine searches for NAME among all members of the structure itself |
6765 | and (recursively) among all members of any wrapper members | |
14f9c5c9 AS |
6766 | (e.g., '_parent'). |
6767 | ||
03ee6b2e PH |
6768 | If NO_ERR, then simply return NULL in case of error, rather than |
6769 | calling error. */ | |
14f9c5c9 | 6770 | |
d2e4a39e | 6771 | struct value * |
03ee6b2e | 6772 | ada_value_struct_elt (struct value *arg, char *name, int no_err) |
14f9c5c9 | 6773 | { |
4c4b4cd2 | 6774 | struct type *t, *t1; |
d2e4a39e | 6775 | struct value *v; |
14f9c5c9 | 6776 | |
4c4b4cd2 | 6777 | v = NULL; |
df407dfe | 6778 | t1 = t = ada_check_typedef (value_type (arg)); |
4c4b4cd2 PH |
6779 | if (TYPE_CODE (t) == TYPE_CODE_REF) |
6780 | { | |
6781 | t1 = TYPE_TARGET_TYPE (t); | |
6782 | if (t1 == NULL) | |
03ee6b2e | 6783 | goto BadValue; |
61ee279c | 6784 | t1 = ada_check_typedef (t1); |
4c4b4cd2 | 6785 | if (TYPE_CODE (t1) == TYPE_CODE_PTR) |
76a01679 | 6786 | { |
994b9211 | 6787 | arg = coerce_ref (arg); |
76a01679 JB |
6788 | t = t1; |
6789 | } | |
4c4b4cd2 | 6790 | } |
14f9c5c9 | 6791 | |
4c4b4cd2 PH |
6792 | while (TYPE_CODE (t) == TYPE_CODE_PTR) |
6793 | { | |
6794 | t1 = TYPE_TARGET_TYPE (t); | |
6795 | if (t1 == NULL) | |
03ee6b2e | 6796 | goto BadValue; |
61ee279c | 6797 | t1 = ada_check_typedef (t1); |
4c4b4cd2 | 6798 | if (TYPE_CODE (t1) == TYPE_CODE_PTR) |
76a01679 JB |
6799 | { |
6800 | arg = value_ind (arg); | |
6801 | t = t1; | |
6802 | } | |
4c4b4cd2 | 6803 | else |
76a01679 | 6804 | break; |
4c4b4cd2 | 6805 | } |
14f9c5c9 | 6806 | |
4c4b4cd2 | 6807 | if (TYPE_CODE (t1) != TYPE_CODE_STRUCT && TYPE_CODE (t1) != TYPE_CODE_UNION) |
03ee6b2e | 6808 | goto BadValue; |
14f9c5c9 | 6809 | |
4c4b4cd2 PH |
6810 | if (t1 == t) |
6811 | v = ada_search_struct_field (name, arg, 0, t); | |
6812 | else | |
6813 | { | |
6814 | int bit_offset, bit_size, byte_offset; | |
6815 | struct type *field_type; | |
6816 | CORE_ADDR address; | |
6817 | ||
76a01679 | 6818 | if (TYPE_CODE (t) == TYPE_CODE_PTR) |
b50d69b5 | 6819 | address = value_address (ada_value_ind (arg)); |
4c4b4cd2 | 6820 | else |
b50d69b5 | 6821 | address = value_address (ada_coerce_ref (arg)); |
14f9c5c9 | 6822 | |
1ed6ede0 | 6823 | t1 = ada_to_fixed_type (ada_get_base_type (t1), NULL, address, NULL, 1); |
76a01679 JB |
6824 | if (find_struct_field (name, t1, 0, |
6825 | &field_type, &byte_offset, &bit_offset, | |
52ce6436 | 6826 | &bit_size, NULL)) |
76a01679 JB |
6827 | { |
6828 | if (bit_size != 0) | |
6829 | { | |
714e53ab PH |
6830 | if (TYPE_CODE (t) == TYPE_CODE_REF) |
6831 | arg = ada_coerce_ref (arg); | |
6832 | else | |
6833 | arg = ada_value_ind (arg); | |
76a01679 JB |
6834 | v = ada_value_primitive_packed_val (arg, NULL, byte_offset, |
6835 | bit_offset, bit_size, | |
6836 | field_type); | |
6837 | } | |
6838 | else | |
f5938064 | 6839 | v = value_at_lazy (field_type, address + byte_offset); |
76a01679 JB |
6840 | } |
6841 | } | |
6842 | ||
03ee6b2e PH |
6843 | if (v != NULL || no_err) |
6844 | return v; | |
6845 | else | |
323e0a4a | 6846 | error (_("There is no member named %s."), name); |
14f9c5c9 | 6847 | |
03ee6b2e PH |
6848 | BadValue: |
6849 | if (no_err) | |
6850 | return NULL; | |
6851 | else | |
0963b4bd MS |
6852 | error (_("Attempt to extract a component of " |
6853 | "a value that is not a record.")); | |
14f9c5c9 AS |
6854 | } |
6855 | ||
6856 | /* Given a type TYPE, look up the type of the component of type named NAME. | |
4c4b4cd2 PH |
6857 | If DISPP is non-null, add its byte displacement from the beginning of a |
6858 | structure (pointed to by a value) of type TYPE to *DISPP (does not | |
14f9c5c9 AS |
6859 | work for packed fields). |
6860 | ||
6861 | Matches any field whose name has NAME as a prefix, possibly | |
4c4b4cd2 | 6862 | followed by "___". |
14f9c5c9 | 6863 | |
0963b4bd | 6864 | TYPE can be either a struct or union. If REFOK, TYPE may also |
4c4b4cd2 PH |
6865 | be a (pointer or reference)+ to a struct or union, and the |
6866 | ultimate target type will be searched. | |
14f9c5c9 AS |
6867 | |
6868 | Looks recursively into variant clauses and parent types. | |
6869 | ||
4c4b4cd2 PH |
6870 | If NOERR is nonzero, return NULL if NAME is not suitably defined or |
6871 | TYPE is not a type of the right kind. */ | |
14f9c5c9 | 6872 | |
4c4b4cd2 | 6873 | static struct type * |
76a01679 JB |
6874 | ada_lookup_struct_elt_type (struct type *type, char *name, int refok, |
6875 | int noerr, int *dispp) | |
14f9c5c9 AS |
6876 | { |
6877 | int i; | |
6878 | ||
6879 | if (name == NULL) | |
6880 | goto BadName; | |
6881 | ||
76a01679 | 6882 | if (refok && type != NULL) |
4c4b4cd2 PH |
6883 | while (1) |
6884 | { | |
61ee279c | 6885 | type = ada_check_typedef (type); |
76a01679 JB |
6886 | if (TYPE_CODE (type) != TYPE_CODE_PTR |
6887 | && TYPE_CODE (type) != TYPE_CODE_REF) | |
6888 | break; | |
6889 | type = TYPE_TARGET_TYPE (type); | |
4c4b4cd2 | 6890 | } |
14f9c5c9 | 6891 | |
76a01679 | 6892 | if (type == NULL |
1265e4aa JB |
6893 | || (TYPE_CODE (type) != TYPE_CODE_STRUCT |
6894 | && TYPE_CODE (type) != TYPE_CODE_UNION)) | |
14f9c5c9 | 6895 | { |
4c4b4cd2 | 6896 | if (noerr) |
76a01679 | 6897 | return NULL; |
4c4b4cd2 | 6898 | else |
76a01679 JB |
6899 | { |
6900 | target_terminal_ours (); | |
6901 | gdb_flush (gdb_stdout); | |
323e0a4a AC |
6902 | if (type == NULL) |
6903 | error (_("Type (null) is not a structure or union type")); | |
6904 | else | |
6905 | { | |
6906 | /* XXX: type_sprint */ | |
6907 | fprintf_unfiltered (gdb_stderr, _("Type ")); | |
6908 | type_print (type, "", gdb_stderr, -1); | |
6909 | error (_(" is not a structure or union type")); | |
6910 | } | |
76a01679 | 6911 | } |
14f9c5c9 AS |
6912 | } |
6913 | ||
6914 | type = to_static_fixed_type (type); | |
6915 | ||
6916 | for (i = 0; i < TYPE_NFIELDS (type); i += 1) | |
6917 | { | |
0d5cff50 | 6918 | const char *t_field_name = TYPE_FIELD_NAME (type, i); |
14f9c5c9 AS |
6919 | struct type *t; |
6920 | int disp; | |
d2e4a39e | 6921 | |
14f9c5c9 | 6922 | if (t_field_name == NULL) |
4c4b4cd2 | 6923 | continue; |
14f9c5c9 AS |
6924 | |
6925 | else if (field_name_match (t_field_name, name)) | |
4c4b4cd2 PH |
6926 | { |
6927 | if (dispp != NULL) | |
6928 | *dispp += TYPE_FIELD_BITPOS (type, i) / 8; | |
61ee279c | 6929 | return ada_check_typedef (TYPE_FIELD_TYPE (type, i)); |
4c4b4cd2 | 6930 | } |
14f9c5c9 AS |
6931 | |
6932 | else if (ada_is_wrapper_field (type, i)) | |
4c4b4cd2 PH |
6933 | { |
6934 | disp = 0; | |
6935 | t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (type, i), name, | |
6936 | 0, 1, &disp); | |
6937 | if (t != NULL) | |
6938 | { | |
6939 | if (dispp != NULL) | |
6940 | *dispp += disp + TYPE_FIELD_BITPOS (type, i) / 8; | |
6941 | return t; | |
6942 | } | |
6943 | } | |
14f9c5c9 AS |
6944 | |
6945 | else if (ada_is_variant_part (type, i)) | |
4c4b4cd2 PH |
6946 | { |
6947 | int j; | |
5b4ee69b MS |
6948 | struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type, |
6949 | i)); | |
4c4b4cd2 PH |
6950 | |
6951 | for (j = TYPE_NFIELDS (field_type) - 1; j >= 0; j -= 1) | |
6952 | { | |
b1f33ddd JB |
6953 | /* FIXME pnh 2008/01/26: We check for a field that is |
6954 | NOT wrapped in a struct, since the compiler sometimes | |
6955 | generates these for unchecked variant types. Revisit | |
0963b4bd | 6956 | if the compiler changes this practice. */ |
0d5cff50 | 6957 | const char *v_field_name = TYPE_FIELD_NAME (field_type, j); |
4c4b4cd2 | 6958 | disp = 0; |
b1f33ddd JB |
6959 | if (v_field_name != NULL |
6960 | && field_name_match (v_field_name, name)) | |
6961 | t = ada_check_typedef (TYPE_FIELD_TYPE (field_type, j)); | |
6962 | else | |
0963b4bd MS |
6963 | t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (field_type, |
6964 | j), | |
b1f33ddd JB |
6965 | name, 0, 1, &disp); |
6966 | ||
4c4b4cd2 PH |
6967 | if (t != NULL) |
6968 | { | |
6969 | if (dispp != NULL) | |
6970 | *dispp += disp + TYPE_FIELD_BITPOS (type, i) / 8; | |
6971 | return t; | |
6972 | } | |
6973 | } | |
6974 | } | |
14f9c5c9 AS |
6975 | |
6976 | } | |
6977 | ||
6978 | BadName: | |
d2e4a39e | 6979 | if (!noerr) |
14f9c5c9 AS |
6980 | { |
6981 | target_terminal_ours (); | |
6982 | gdb_flush (gdb_stdout); | |
323e0a4a AC |
6983 | if (name == NULL) |
6984 | { | |
6985 | /* XXX: type_sprint */ | |
6986 | fprintf_unfiltered (gdb_stderr, _("Type ")); | |
6987 | type_print (type, "", gdb_stderr, -1); | |
6988 | error (_(" has no component named <null>")); | |
6989 | } | |
6990 | else | |
6991 | { | |
6992 | /* XXX: type_sprint */ | |
6993 | fprintf_unfiltered (gdb_stderr, _("Type ")); | |
6994 | type_print (type, "", gdb_stderr, -1); | |
6995 | error (_(" has no component named %s"), name); | |
6996 | } | |
14f9c5c9 AS |
6997 | } |
6998 | ||
6999 | return NULL; | |
7000 | } | |
7001 | ||
b1f33ddd JB |
7002 | /* Assuming that VAR_TYPE is the type of a variant part of a record (a union), |
7003 | within a value of type OUTER_TYPE, return true iff VAR_TYPE | |
7004 | represents an unchecked union (that is, the variant part of a | |
0963b4bd | 7005 | record that is named in an Unchecked_Union pragma). */ |
b1f33ddd JB |
7006 | |
7007 | static int | |
7008 | is_unchecked_variant (struct type *var_type, struct type *outer_type) | |
7009 | { | |
7010 | char *discrim_name = ada_variant_discrim_name (var_type); | |
5b4ee69b | 7011 | |
b1f33ddd JB |
7012 | return (ada_lookup_struct_elt_type (outer_type, discrim_name, 0, 1, NULL) |
7013 | == NULL); | |
7014 | } | |
7015 | ||
7016 | ||
14f9c5c9 AS |
7017 | /* Assuming that VAR_TYPE is the type of a variant part of a record (a union), |
7018 | within a value of type OUTER_TYPE that is stored in GDB at | |
4c4b4cd2 PH |
7019 | OUTER_VALADDR, determine which variant clause (field number in VAR_TYPE, |
7020 | numbering from 0) is applicable. Returns -1 if none are. */ | |
14f9c5c9 | 7021 | |
d2e4a39e | 7022 | int |
ebf56fd3 | 7023 | ada_which_variant_applies (struct type *var_type, struct type *outer_type, |
fc1a4b47 | 7024 | const gdb_byte *outer_valaddr) |
14f9c5c9 AS |
7025 | { |
7026 | int others_clause; | |
7027 | int i; | |
d2e4a39e | 7028 | char *discrim_name = ada_variant_discrim_name (var_type); |
0c281816 JB |
7029 | struct value *outer; |
7030 | struct value *discrim; | |
14f9c5c9 AS |
7031 | LONGEST discrim_val; |
7032 | ||
0c281816 JB |
7033 | outer = value_from_contents_and_address (outer_type, outer_valaddr, 0); |
7034 | discrim = ada_value_struct_elt (outer, discrim_name, 1); | |
7035 | if (discrim == NULL) | |
14f9c5c9 | 7036 | return -1; |
0c281816 | 7037 | discrim_val = value_as_long (discrim); |
14f9c5c9 AS |
7038 | |
7039 | others_clause = -1; | |
7040 | for (i = 0; i < TYPE_NFIELDS (var_type); i += 1) | |
7041 | { | |
7042 | if (ada_is_others_clause (var_type, i)) | |
4c4b4cd2 | 7043 | others_clause = i; |
14f9c5c9 | 7044 | else if (ada_in_variant (discrim_val, var_type, i)) |
4c4b4cd2 | 7045 | return i; |
14f9c5c9 AS |
7046 | } |
7047 | ||
7048 | return others_clause; | |
7049 | } | |
d2e4a39e | 7050 | \f |
14f9c5c9 AS |
7051 | |
7052 | ||
4c4b4cd2 | 7053 | /* Dynamic-Sized Records */ |
14f9c5c9 AS |
7054 | |
7055 | /* Strategy: The type ostensibly attached to a value with dynamic size | |
7056 | (i.e., a size that is not statically recorded in the debugging | |
7057 | data) does not accurately reflect the size or layout of the value. | |
7058 | Our strategy is to convert these values to values with accurate, | |
4c4b4cd2 | 7059 | conventional types that are constructed on the fly. */ |
14f9c5c9 AS |
7060 | |
7061 | /* There is a subtle and tricky problem here. In general, we cannot | |
7062 | determine the size of dynamic records without its data. However, | |
7063 | the 'struct value' data structure, which GDB uses to represent | |
7064 | quantities in the inferior process (the target), requires the size | |
7065 | of the type at the time of its allocation in order to reserve space | |
7066 | for GDB's internal copy of the data. That's why the | |
7067 | 'to_fixed_xxx_type' routines take (target) addresses as parameters, | |
4c4b4cd2 | 7068 | rather than struct value*s. |
14f9c5c9 AS |
7069 | |
7070 | However, GDB's internal history variables ($1, $2, etc.) are | |
7071 | struct value*s containing internal copies of the data that are not, in | |
7072 | general, the same as the data at their corresponding addresses in | |
7073 | the target. Fortunately, the types we give to these values are all | |
7074 | conventional, fixed-size types (as per the strategy described | |
7075 | above), so that we don't usually have to perform the | |
7076 | 'to_fixed_xxx_type' conversions to look at their values. | |
7077 | Unfortunately, there is one exception: if one of the internal | |
7078 | history variables is an array whose elements are unconstrained | |
7079 | records, then we will need to create distinct fixed types for each | |
7080 | element selected. */ | |
7081 | ||
7082 | /* The upshot of all of this is that many routines take a (type, host | |
7083 | address, target address) triple as arguments to represent a value. | |
7084 | The host address, if non-null, is supposed to contain an internal | |
7085 | copy of the relevant data; otherwise, the program is to consult the | |
4c4b4cd2 | 7086 | target at the target address. */ |
14f9c5c9 AS |
7087 | |
7088 | /* Assuming that VAL0 represents a pointer value, the result of | |
7089 | dereferencing it. Differs from value_ind in its treatment of | |
4c4b4cd2 | 7090 | dynamic-sized types. */ |
14f9c5c9 | 7091 | |
d2e4a39e AS |
7092 | struct value * |
7093 | ada_value_ind (struct value *val0) | |
14f9c5c9 | 7094 | { |
c48db5ca | 7095 | struct value *val = value_ind (val0); |
5b4ee69b | 7096 | |
b50d69b5 JG |
7097 | if (ada_is_tagged_type (value_type (val), 0)) |
7098 | val = ada_tag_value_at_base_address (val); | |
7099 | ||
4c4b4cd2 | 7100 | return ada_to_fixed_value (val); |
14f9c5c9 AS |
7101 | } |
7102 | ||
7103 | /* The value resulting from dereferencing any "reference to" | |
4c4b4cd2 PH |
7104 | qualifiers on VAL0. */ |
7105 | ||
d2e4a39e AS |
7106 | static struct value * |
7107 | ada_coerce_ref (struct value *val0) | |
7108 | { | |
df407dfe | 7109 | if (TYPE_CODE (value_type (val0)) == TYPE_CODE_REF) |
d2e4a39e AS |
7110 | { |
7111 | struct value *val = val0; | |
5b4ee69b | 7112 | |
994b9211 | 7113 | val = coerce_ref (val); |
b50d69b5 JG |
7114 | |
7115 | if (ada_is_tagged_type (value_type (val), 0)) | |
7116 | val = ada_tag_value_at_base_address (val); | |
7117 | ||
4c4b4cd2 | 7118 | return ada_to_fixed_value (val); |
d2e4a39e AS |
7119 | } |
7120 | else | |
14f9c5c9 AS |
7121 | return val0; |
7122 | } | |
7123 | ||
7124 | /* Return OFF rounded upward if necessary to a multiple of | |
4c4b4cd2 | 7125 | ALIGNMENT (a power of 2). */ |
14f9c5c9 AS |
7126 | |
7127 | static unsigned int | |
ebf56fd3 | 7128 | align_value (unsigned int off, unsigned int alignment) |
14f9c5c9 AS |
7129 | { |
7130 | return (off + alignment - 1) & ~(alignment - 1); | |
7131 | } | |
7132 | ||
4c4b4cd2 | 7133 | /* Return the bit alignment required for field #F of template type TYPE. */ |
14f9c5c9 AS |
7134 | |
7135 | static unsigned int | |
ebf56fd3 | 7136 | field_alignment (struct type *type, int f) |
14f9c5c9 | 7137 | { |
d2e4a39e | 7138 | const char *name = TYPE_FIELD_NAME (type, f); |
64a1bf19 | 7139 | int len; |
14f9c5c9 AS |
7140 | int align_offset; |
7141 | ||
64a1bf19 JB |
7142 | /* The field name should never be null, unless the debugging information |
7143 | is somehow malformed. In this case, we assume the field does not | |
7144 | require any alignment. */ | |
7145 | if (name == NULL) | |
7146 | return 1; | |
7147 | ||
7148 | len = strlen (name); | |
7149 | ||
4c4b4cd2 PH |
7150 | if (!isdigit (name[len - 1])) |
7151 | return 1; | |
14f9c5c9 | 7152 | |
d2e4a39e | 7153 | if (isdigit (name[len - 2])) |
14f9c5c9 AS |
7154 | align_offset = len - 2; |
7155 | else | |
7156 | align_offset = len - 1; | |
7157 | ||
4c4b4cd2 | 7158 | if (align_offset < 7 || strncmp ("___XV", name + align_offset - 6, 5) != 0) |
14f9c5c9 AS |
7159 | return TARGET_CHAR_BIT; |
7160 | ||
4c4b4cd2 PH |
7161 | return atoi (name + align_offset) * TARGET_CHAR_BIT; |
7162 | } | |
7163 | ||
852dff6c | 7164 | /* Find a typedef or tag symbol named NAME. Ignores ambiguity. */ |
4c4b4cd2 | 7165 | |
852dff6c JB |
7166 | static struct symbol * |
7167 | ada_find_any_type_symbol (const char *name) | |
4c4b4cd2 PH |
7168 | { |
7169 | struct symbol *sym; | |
7170 | ||
7171 | sym = standard_lookup (name, get_selected_block (NULL), VAR_DOMAIN); | |
7172 | if (sym != NULL && SYMBOL_CLASS (sym) == LOC_TYPEDEF) | |
7173 | return sym; | |
7174 | ||
7175 | sym = standard_lookup (name, NULL, STRUCT_DOMAIN); | |
7176 | return sym; | |
14f9c5c9 AS |
7177 | } |
7178 | ||
dddfab26 UW |
7179 | /* Find a type named NAME. Ignores ambiguity. This routine will look |
7180 | solely for types defined by debug info, it will not search the GDB | |
7181 | primitive types. */ | |
4c4b4cd2 | 7182 | |
852dff6c | 7183 | static struct type * |
ebf56fd3 | 7184 | ada_find_any_type (const char *name) |
14f9c5c9 | 7185 | { |
852dff6c | 7186 | struct symbol *sym = ada_find_any_type_symbol (name); |
14f9c5c9 | 7187 | |
14f9c5c9 | 7188 | if (sym != NULL) |
dddfab26 | 7189 | return SYMBOL_TYPE (sym); |
14f9c5c9 | 7190 | |
dddfab26 | 7191 | return NULL; |
14f9c5c9 AS |
7192 | } |
7193 | ||
739593e0 JB |
7194 | /* Given NAME_SYM and an associated BLOCK, find a "renaming" symbol |
7195 | associated with NAME_SYM's name. NAME_SYM may itself be a renaming | |
7196 | symbol, in which case it is returned. Otherwise, this looks for | |
7197 | symbols whose name is that of NAME_SYM suffixed with "___XR". | |
7198 | Return symbol if found, and NULL otherwise. */ | |
4c4b4cd2 PH |
7199 | |
7200 | struct symbol * | |
270140bd | 7201 | ada_find_renaming_symbol (struct symbol *name_sym, const struct block *block) |
aeb5907d | 7202 | { |
739593e0 | 7203 | const char *name = SYMBOL_LINKAGE_NAME (name_sym); |
aeb5907d JB |
7204 | struct symbol *sym; |
7205 | ||
739593e0 JB |
7206 | if (strstr (name, "___XR") != NULL) |
7207 | return name_sym; | |
7208 | ||
aeb5907d JB |
7209 | sym = find_old_style_renaming_symbol (name, block); |
7210 | ||
7211 | if (sym != NULL) | |
7212 | return sym; | |
7213 | ||
0963b4bd | 7214 | /* Not right yet. FIXME pnh 7/20/2007. */ |
852dff6c | 7215 | sym = ada_find_any_type_symbol (name); |
aeb5907d JB |
7216 | if (sym != NULL && strstr (SYMBOL_LINKAGE_NAME (sym), "___XR") != NULL) |
7217 | return sym; | |
7218 | else | |
7219 | return NULL; | |
7220 | } | |
7221 | ||
7222 | static struct symbol * | |
270140bd | 7223 | find_old_style_renaming_symbol (const char *name, const struct block *block) |
4c4b4cd2 | 7224 | { |
7f0df278 | 7225 | const struct symbol *function_sym = block_linkage_function (block); |
4c4b4cd2 PH |
7226 | char *rename; |
7227 | ||
7228 | if (function_sym != NULL) | |
7229 | { | |
7230 | /* If the symbol is defined inside a function, NAME is not fully | |
7231 | qualified. This means we need to prepend the function name | |
7232 | as well as adding the ``___XR'' suffix to build the name of | |
7233 | the associated renaming symbol. */ | |
0d5cff50 | 7234 | const char *function_name = SYMBOL_LINKAGE_NAME (function_sym); |
529cad9c PH |
7235 | /* Function names sometimes contain suffixes used |
7236 | for instance to qualify nested subprograms. When building | |
7237 | the XR type name, we need to make sure that this suffix is | |
7238 | not included. So do not include any suffix in the function | |
7239 | name length below. */ | |
69fadcdf | 7240 | int function_name_len = ada_name_prefix_len (function_name); |
76a01679 JB |
7241 | const int rename_len = function_name_len + 2 /* "__" */ |
7242 | + strlen (name) + 6 /* "___XR\0" */ ; | |
4c4b4cd2 | 7243 | |
529cad9c | 7244 | /* Strip the suffix if necessary. */ |
69fadcdf JB |
7245 | ada_remove_trailing_digits (function_name, &function_name_len); |
7246 | ada_remove_po_subprogram_suffix (function_name, &function_name_len); | |
7247 | ada_remove_Xbn_suffix (function_name, &function_name_len); | |
529cad9c | 7248 | |
4c4b4cd2 PH |
7249 | /* Library-level functions are a special case, as GNAT adds |
7250 | a ``_ada_'' prefix to the function name to avoid namespace | |
aeb5907d | 7251 | pollution. However, the renaming symbols themselves do not |
4c4b4cd2 PH |
7252 | have this prefix, so we need to skip this prefix if present. */ |
7253 | if (function_name_len > 5 /* "_ada_" */ | |
7254 | && strstr (function_name, "_ada_") == function_name) | |
69fadcdf JB |
7255 | { |
7256 | function_name += 5; | |
7257 | function_name_len -= 5; | |
7258 | } | |
4c4b4cd2 PH |
7259 | |
7260 | rename = (char *) alloca (rename_len * sizeof (char)); | |
69fadcdf JB |
7261 | strncpy (rename, function_name, function_name_len); |
7262 | xsnprintf (rename + function_name_len, rename_len - function_name_len, | |
7263 | "__%s___XR", name); | |
4c4b4cd2 PH |
7264 | } |
7265 | else | |
7266 | { | |
7267 | const int rename_len = strlen (name) + 6; | |
5b4ee69b | 7268 | |
4c4b4cd2 | 7269 | rename = (char *) alloca (rename_len * sizeof (char)); |
88c15c34 | 7270 | xsnprintf (rename, rename_len * sizeof (char), "%s___XR", name); |
4c4b4cd2 PH |
7271 | } |
7272 | ||
852dff6c | 7273 | return ada_find_any_type_symbol (rename); |
4c4b4cd2 PH |
7274 | } |
7275 | ||
14f9c5c9 | 7276 | /* Because of GNAT encoding conventions, several GDB symbols may match a |
4c4b4cd2 | 7277 | given type name. If the type denoted by TYPE0 is to be preferred to |
14f9c5c9 | 7278 | that of TYPE1 for purposes of type printing, return non-zero; |
4c4b4cd2 PH |
7279 | otherwise return 0. */ |
7280 | ||
14f9c5c9 | 7281 | int |
d2e4a39e | 7282 | ada_prefer_type (struct type *type0, struct type *type1) |
14f9c5c9 AS |
7283 | { |
7284 | if (type1 == NULL) | |
7285 | return 1; | |
7286 | else if (type0 == NULL) | |
7287 | return 0; | |
7288 | else if (TYPE_CODE (type1) == TYPE_CODE_VOID) | |
7289 | return 1; | |
7290 | else if (TYPE_CODE (type0) == TYPE_CODE_VOID) | |
7291 | return 0; | |
4c4b4cd2 PH |
7292 | else if (TYPE_NAME (type1) == NULL && TYPE_NAME (type0) != NULL) |
7293 | return 1; | |
ad82864c | 7294 | else if (ada_is_constrained_packed_array_type (type0)) |
14f9c5c9 | 7295 | return 1; |
4c4b4cd2 PH |
7296 | else if (ada_is_array_descriptor_type (type0) |
7297 | && !ada_is_array_descriptor_type (type1)) | |
14f9c5c9 | 7298 | return 1; |
aeb5907d JB |
7299 | else |
7300 | { | |
7301 | const char *type0_name = type_name_no_tag (type0); | |
7302 | const char *type1_name = type_name_no_tag (type1); | |
7303 | ||
7304 | if (type0_name != NULL && strstr (type0_name, "___XR") != NULL | |
7305 | && (type1_name == NULL || strstr (type1_name, "___XR") == NULL)) | |
7306 | return 1; | |
7307 | } | |
14f9c5c9 AS |
7308 | return 0; |
7309 | } | |
7310 | ||
7311 | /* The name of TYPE, which is either its TYPE_NAME, or, if that is | |
4c4b4cd2 PH |
7312 | null, its TYPE_TAG_NAME. Null if TYPE is null. */ |
7313 | ||
0d5cff50 | 7314 | const char * |
d2e4a39e | 7315 | ada_type_name (struct type *type) |
14f9c5c9 | 7316 | { |
d2e4a39e | 7317 | if (type == NULL) |
14f9c5c9 AS |
7318 | return NULL; |
7319 | else if (TYPE_NAME (type) != NULL) | |
7320 | return TYPE_NAME (type); | |
7321 | else | |
7322 | return TYPE_TAG_NAME (type); | |
7323 | } | |
7324 | ||
b4ba55a1 JB |
7325 | /* Search the list of "descriptive" types associated to TYPE for a type |
7326 | whose name is NAME. */ | |
7327 | ||
7328 | static struct type * | |
7329 | find_parallel_type_by_descriptive_type (struct type *type, const char *name) | |
7330 | { | |
7331 | struct type *result; | |
7332 | ||
7333 | /* If there no descriptive-type info, then there is no parallel type | |
7334 | to be found. */ | |
7335 | if (!HAVE_GNAT_AUX_INFO (type)) | |
7336 | return NULL; | |
7337 | ||
7338 | result = TYPE_DESCRIPTIVE_TYPE (type); | |
7339 | while (result != NULL) | |
7340 | { | |
0d5cff50 | 7341 | const char *result_name = ada_type_name (result); |
b4ba55a1 JB |
7342 | |
7343 | if (result_name == NULL) | |
7344 | { | |
7345 | warning (_("unexpected null name on descriptive type")); | |
7346 | return NULL; | |
7347 | } | |
7348 | ||
7349 | /* If the names match, stop. */ | |
7350 | if (strcmp (result_name, name) == 0) | |
7351 | break; | |
7352 | ||
7353 | /* Otherwise, look at the next item on the list, if any. */ | |
7354 | if (HAVE_GNAT_AUX_INFO (result)) | |
7355 | result = TYPE_DESCRIPTIVE_TYPE (result); | |
7356 | else | |
7357 | result = NULL; | |
7358 | } | |
7359 | ||
7360 | /* If we didn't find a match, see whether this is a packed array. With | |
7361 | older compilers, the descriptive type information is either absent or | |
7362 | irrelevant when it comes to packed arrays so the above lookup fails. | |
7363 | Fall back to using a parallel lookup by name in this case. */ | |
12ab9e09 | 7364 | if (result == NULL && ada_is_constrained_packed_array_type (type)) |
b4ba55a1 JB |
7365 | return ada_find_any_type (name); |
7366 | ||
7367 | return result; | |
7368 | } | |
7369 | ||
7370 | /* Find a parallel type to TYPE with the specified NAME, using the | |
7371 | descriptive type taken from the debugging information, if available, | |
7372 | and otherwise using the (slower) name-based method. */ | |
7373 | ||
7374 | static struct type * | |
7375 | ada_find_parallel_type_with_name (struct type *type, const char *name) | |
7376 | { | |
7377 | struct type *result = NULL; | |
7378 | ||
7379 | if (HAVE_GNAT_AUX_INFO (type)) | |
7380 | result = find_parallel_type_by_descriptive_type (type, name); | |
7381 | else | |
7382 | result = ada_find_any_type (name); | |
7383 | ||
7384 | return result; | |
7385 | } | |
7386 | ||
7387 | /* Same as above, but specify the name of the parallel type by appending | |
4c4b4cd2 | 7388 | SUFFIX to the name of TYPE. */ |
14f9c5c9 | 7389 | |
d2e4a39e | 7390 | struct type * |
ebf56fd3 | 7391 | ada_find_parallel_type (struct type *type, const char *suffix) |
14f9c5c9 | 7392 | { |
0d5cff50 DE |
7393 | char *name; |
7394 | const char *typename = ada_type_name (type); | |
14f9c5c9 | 7395 | int len; |
d2e4a39e | 7396 | |
14f9c5c9 AS |
7397 | if (typename == NULL) |
7398 | return NULL; | |
7399 | ||
7400 | len = strlen (typename); | |
7401 | ||
b4ba55a1 | 7402 | name = (char *) alloca (len + strlen (suffix) + 1); |
14f9c5c9 AS |
7403 | |
7404 | strcpy (name, typename); | |
7405 | strcpy (name + len, suffix); | |
7406 | ||
b4ba55a1 | 7407 | return ada_find_parallel_type_with_name (type, name); |
14f9c5c9 AS |
7408 | } |
7409 | ||
14f9c5c9 | 7410 | /* If TYPE is a variable-size record type, return the corresponding template |
4c4b4cd2 | 7411 | type describing its fields. Otherwise, return NULL. */ |
14f9c5c9 | 7412 | |
d2e4a39e AS |
7413 | static struct type * |
7414 | dynamic_template_type (struct type *type) | |
14f9c5c9 | 7415 | { |
61ee279c | 7416 | type = ada_check_typedef (type); |
14f9c5c9 AS |
7417 | |
7418 | if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT | |
d2e4a39e | 7419 | || ada_type_name (type) == NULL) |
14f9c5c9 | 7420 | return NULL; |
d2e4a39e | 7421 | else |
14f9c5c9 AS |
7422 | { |
7423 | int len = strlen (ada_type_name (type)); | |
5b4ee69b | 7424 | |
4c4b4cd2 PH |
7425 | if (len > 6 && strcmp (ada_type_name (type) + len - 6, "___XVE") == 0) |
7426 | return type; | |
14f9c5c9 | 7427 | else |
4c4b4cd2 | 7428 | return ada_find_parallel_type (type, "___XVE"); |
14f9c5c9 AS |
7429 | } |
7430 | } | |
7431 | ||
7432 | /* Assuming that TEMPL_TYPE is a union or struct type, returns | |
4c4b4cd2 | 7433 | non-zero iff field FIELD_NUM of TEMPL_TYPE has dynamic size. */ |
14f9c5c9 | 7434 | |
d2e4a39e AS |
7435 | static int |
7436 | is_dynamic_field (struct type *templ_type, int field_num) | |
14f9c5c9 AS |
7437 | { |
7438 | const char *name = TYPE_FIELD_NAME (templ_type, field_num); | |
5b4ee69b | 7439 | |
d2e4a39e | 7440 | return name != NULL |
14f9c5c9 AS |
7441 | && TYPE_CODE (TYPE_FIELD_TYPE (templ_type, field_num)) == TYPE_CODE_PTR |
7442 | && strstr (name, "___XVL") != NULL; | |
7443 | } | |
7444 | ||
4c4b4cd2 PH |
7445 | /* The index of the variant field of TYPE, or -1 if TYPE does not |
7446 | represent a variant record type. */ | |
14f9c5c9 | 7447 | |
d2e4a39e | 7448 | static int |
4c4b4cd2 | 7449 | variant_field_index (struct type *type) |
14f9c5c9 AS |
7450 | { |
7451 | int f; | |
7452 | ||
4c4b4cd2 PH |
7453 | if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT) |
7454 | return -1; | |
7455 | ||
7456 | for (f = 0; f < TYPE_NFIELDS (type); f += 1) | |
7457 | { | |
7458 | if (ada_is_variant_part (type, f)) | |
7459 | return f; | |
7460 | } | |
7461 | return -1; | |
14f9c5c9 AS |
7462 | } |
7463 | ||
4c4b4cd2 PH |
7464 | /* A record type with no fields. */ |
7465 | ||
d2e4a39e | 7466 | static struct type * |
e9bb382b | 7467 | empty_record (struct type *template) |
14f9c5c9 | 7468 | { |
e9bb382b | 7469 | struct type *type = alloc_type_copy (template); |
5b4ee69b | 7470 | |
14f9c5c9 AS |
7471 | TYPE_CODE (type) = TYPE_CODE_STRUCT; |
7472 | TYPE_NFIELDS (type) = 0; | |
7473 | TYPE_FIELDS (type) = NULL; | |
b1f33ddd | 7474 | INIT_CPLUS_SPECIFIC (type); |
14f9c5c9 AS |
7475 | TYPE_NAME (type) = "<empty>"; |
7476 | TYPE_TAG_NAME (type) = NULL; | |
14f9c5c9 AS |
7477 | TYPE_LENGTH (type) = 0; |
7478 | return type; | |
7479 | } | |
7480 | ||
7481 | /* An ordinary record type (with fixed-length fields) that describes | |
4c4b4cd2 PH |
7482 | the value of type TYPE at VALADDR or ADDRESS (see comments at |
7483 | the beginning of this section) VAL according to GNAT conventions. | |
7484 | DVAL0 should describe the (portion of a) record that contains any | |
df407dfe | 7485 | necessary discriminants. It should be NULL if value_type (VAL) is |
14f9c5c9 AS |
7486 | an outer-level type (i.e., as opposed to a branch of a variant.) A |
7487 | variant field (unless unchecked) is replaced by a particular branch | |
4c4b4cd2 | 7488 | of the variant. |
14f9c5c9 | 7489 | |
4c4b4cd2 PH |
7490 | If not KEEP_DYNAMIC_FIELDS, then all fields whose position or |
7491 | length are not statically known are discarded. As a consequence, | |
7492 | VALADDR, ADDRESS and DVAL0 are ignored. | |
7493 | ||
7494 | NOTE: Limitations: For now, we assume that dynamic fields and | |
7495 | variants occupy whole numbers of bytes. However, they need not be | |
7496 | byte-aligned. */ | |
7497 | ||
7498 | struct type * | |
10a2c479 | 7499 | ada_template_to_fixed_record_type_1 (struct type *type, |
fc1a4b47 | 7500 | const gdb_byte *valaddr, |
4c4b4cd2 PH |
7501 | CORE_ADDR address, struct value *dval0, |
7502 | int keep_dynamic_fields) | |
14f9c5c9 | 7503 | { |
d2e4a39e AS |
7504 | struct value *mark = value_mark (); |
7505 | struct value *dval; | |
7506 | struct type *rtype; | |
14f9c5c9 | 7507 | int nfields, bit_len; |
4c4b4cd2 | 7508 | int variant_field; |
14f9c5c9 | 7509 | long off; |
d94e4f4f | 7510 | int fld_bit_len; |
14f9c5c9 AS |
7511 | int f; |
7512 | ||
4c4b4cd2 PH |
7513 | /* Compute the number of fields in this record type that are going |
7514 | to be processed: unless keep_dynamic_fields, this includes only | |
7515 | fields whose position and length are static will be processed. */ | |
7516 | if (keep_dynamic_fields) | |
7517 | nfields = TYPE_NFIELDS (type); | |
7518 | else | |
7519 | { | |
7520 | nfields = 0; | |
76a01679 | 7521 | while (nfields < TYPE_NFIELDS (type) |
4c4b4cd2 PH |
7522 | && !ada_is_variant_part (type, nfields) |
7523 | && !is_dynamic_field (type, nfields)) | |
7524 | nfields++; | |
7525 | } | |
7526 | ||
e9bb382b | 7527 | rtype = alloc_type_copy (type); |
14f9c5c9 AS |
7528 | TYPE_CODE (rtype) = TYPE_CODE_STRUCT; |
7529 | INIT_CPLUS_SPECIFIC (rtype); | |
7530 | TYPE_NFIELDS (rtype) = nfields; | |
d2e4a39e | 7531 | TYPE_FIELDS (rtype) = (struct field *) |
14f9c5c9 AS |
7532 | TYPE_ALLOC (rtype, nfields * sizeof (struct field)); |
7533 | memset (TYPE_FIELDS (rtype), 0, sizeof (struct field) * nfields); | |
7534 | TYPE_NAME (rtype) = ada_type_name (type); | |
7535 | TYPE_TAG_NAME (rtype) = NULL; | |
876cecd0 | 7536 | TYPE_FIXED_INSTANCE (rtype) = 1; |
14f9c5c9 | 7537 | |
d2e4a39e AS |
7538 | off = 0; |
7539 | bit_len = 0; | |
4c4b4cd2 PH |
7540 | variant_field = -1; |
7541 | ||
14f9c5c9 AS |
7542 | for (f = 0; f < nfields; f += 1) |
7543 | { | |
6c038f32 PH |
7544 | off = align_value (off, field_alignment (type, f)) |
7545 | + TYPE_FIELD_BITPOS (type, f); | |
945b3a32 | 7546 | SET_FIELD_BITPOS (TYPE_FIELD (rtype, f), off); |
d2e4a39e | 7547 | TYPE_FIELD_BITSIZE (rtype, f) = 0; |
14f9c5c9 | 7548 | |
d2e4a39e | 7549 | if (ada_is_variant_part (type, f)) |
4c4b4cd2 PH |
7550 | { |
7551 | variant_field = f; | |
d94e4f4f | 7552 | fld_bit_len = 0; |
4c4b4cd2 | 7553 | } |
14f9c5c9 | 7554 | else if (is_dynamic_field (type, f)) |
4c4b4cd2 | 7555 | { |
284614f0 JB |
7556 | const gdb_byte *field_valaddr = valaddr; |
7557 | CORE_ADDR field_address = address; | |
7558 | struct type *field_type = | |
7559 | TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type, f)); | |
7560 | ||
4c4b4cd2 | 7561 | if (dval0 == NULL) |
b5304971 JG |
7562 | { |
7563 | /* rtype's length is computed based on the run-time | |
7564 | value of discriminants. If the discriminants are not | |
7565 | initialized, the type size may be completely bogus and | |
0963b4bd | 7566 | GDB may fail to allocate a value for it. So check the |
b5304971 JG |
7567 | size first before creating the value. */ |
7568 | check_size (rtype); | |
7569 | dval = value_from_contents_and_address (rtype, valaddr, address); | |
7570 | } | |
4c4b4cd2 PH |
7571 | else |
7572 | dval = dval0; | |
7573 | ||
284614f0 JB |
7574 | /* If the type referenced by this field is an aligner type, we need |
7575 | to unwrap that aligner type, because its size might not be set. | |
7576 | Keeping the aligner type would cause us to compute the wrong | |
7577 | size for this field, impacting the offset of the all the fields | |
7578 | that follow this one. */ | |
7579 | if (ada_is_aligner_type (field_type)) | |
7580 | { | |
7581 | long field_offset = TYPE_FIELD_BITPOS (field_type, f); | |
7582 | ||
7583 | field_valaddr = cond_offset_host (field_valaddr, field_offset); | |
7584 | field_address = cond_offset_target (field_address, field_offset); | |
7585 | field_type = ada_aligned_type (field_type); | |
7586 | } | |
7587 | ||
7588 | field_valaddr = cond_offset_host (field_valaddr, | |
7589 | off / TARGET_CHAR_BIT); | |
7590 | field_address = cond_offset_target (field_address, | |
7591 | off / TARGET_CHAR_BIT); | |
7592 | ||
7593 | /* Get the fixed type of the field. Note that, in this case, | |
7594 | we do not want to get the real type out of the tag: if | |
7595 | the current field is the parent part of a tagged record, | |
7596 | we will get the tag of the object. Clearly wrong: the real | |
7597 | type of the parent is not the real type of the child. We | |
7598 | would end up in an infinite loop. */ | |
7599 | field_type = ada_get_base_type (field_type); | |
7600 | field_type = ada_to_fixed_type (field_type, field_valaddr, | |
7601 | field_address, dval, 0); | |
27f2a97b JB |
7602 | /* If the field size is already larger than the maximum |
7603 | object size, then the record itself will necessarily | |
7604 | be larger than the maximum object size. We need to make | |
7605 | this check now, because the size might be so ridiculously | |
7606 | large (due to an uninitialized variable in the inferior) | |
7607 | that it would cause an overflow when adding it to the | |
7608 | record size. */ | |
7609 | check_size (field_type); | |
284614f0 JB |
7610 | |
7611 | TYPE_FIELD_TYPE (rtype, f) = field_type; | |
4c4b4cd2 | 7612 | TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f); |
27f2a97b JB |
7613 | /* The multiplication can potentially overflow. But because |
7614 | the field length has been size-checked just above, and | |
7615 | assuming that the maximum size is a reasonable value, | |
7616 | an overflow should not happen in practice. So rather than | |
7617 | adding overflow recovery code to this already complex code, | |
7618 | we just assume that it's not going to happen. */ | |
d94e4f4f | 7619 | fld_bit_len = |
4c4b4cd2 PH |
7620 | TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, f)) * TARGET_CHAR_BIT; |
7621 | } | |
14f9c5c9 | 7622 | else |
4c4b4cd2 | 7623 | { |
5ded5331 JB |
7624 | /* Note: If this field's type is a typedef, it is important |
7625 | to preserve the typedef layer. | |
7626 | ||
7627 | Otherwise, we might be transforming a typedef to a fat | |
7628 | pointer (encoding a pointer to an unconstrained array), | |
7629 | into a basic fat pointer (encoding an unconstrained | |
7630 | array). As both types are implemented using the same | |
7631 | structure, the typedef is the only clue which allows us | |
7632 | to distinguish between the two options. Stripping it | |
7633 | would prevent us from printing this field appropriately. */ | |
7634 | TYPE_FIELD_TYPE (rtype, f) = TYPE_FIELD_TYPE (type, f); | |
4c4b4cd2 PH |
7635 | TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f); |
7636 | if (TYPE_FIELD_BITSIZE (type, f) > 0) | |
d94e4f4f | 7637 | fld_bit_len = |
4c4b4cd2 PH |
7638 | TYPE_FIELD_BITSIZE (rtype, f) = TYPE_FIELD_BITSIZE (type, f); |
7639 | else | |
5ded5331 JB |
7640 | { |
7641 | struct type *field_type = TYPE_FIELD_TYPE (type, f); | |
7642 | ||
7643 | /* We need to be careful of typedefs when computing | |
7644 | the length of our field. If this is a typedef, | |
7645 | get the length of the target type, not the length | |
7646 | of the typedef. */ | |
7647 | if (TYPE_CODE (field_type) == TYPE_CODE_TYPEDEF) | |
7648 | field_type = ada_typedef_target_type (field_type); | |
7649 | ||
7650 | fld_bit_len = | |
7651 | TYPE_LENGTH (ada_check_typedef (field_type)) * TARGET_CHAR_BIT; | |
7652 | } | |
4c4b4cd2 | 7653 | } |
14f9c5c9 | 7654 | if (off + fld_bit_len > bit_len) |
4c4b4cd2 | 7655 | bit_len = off + fld_bit_len; |
d94e4f4f | 7656 | off += fld_bit_len; |
4c4b4cd2 PH |
7657 | TYPE_LENGTH (rtype) = |
7658 | align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT; | |
14f9c5c9 | 7659 | } |
4c4b4cd2 PH |
7660 | |
7661 | /* We handle the variant part, if any, at the end because of certain | |
b1f33ddd | 7662 | odd cases in which it is re-ordered so as NOT to be the last field of |
4c4b4cd2 PH |
7663 | the record. This can happen in the presence of representation |
7664 | clauses. */ | |
7665 | if (variant_field >= 0) | |
7666 | { | |
7667 | struct type *branch_type; | |
7668 | ||
7669 | off = TYPE_FIELD_BITPOS (rtype, variant_field); | |
7670 | ||
7671 | if (dval0 == NULL) | |
7672 | dval = value_from_contents_and_address (rtype, valaddr, address); | |
7673 | else | |
7674 | dval = dval0; | |
7675 | ||
7676 | branch_type = | |
7677 | to_fixed_variant_branch_type | |
7678 | (TYPE_FIELD_TYPE (type, variant_field), | |
7679 | cond_offset_host (valaddr, off / TARGET_CHAR_BIT), | |
7680 | cond_offset_target (address, off / TARGET_CHAR_BIT), dval); | |
7681 | if (branch_type == NULL) | |
7682 | { | |
7683 | for (f = variant_field + 1; f < TYPE_NFIELDS (rtype); f += 1) | |
7684 | TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f]; | |
7685 | TYPE_NFIELDS (rtype) -= 1; | |
7686 | } | |
7687 | else | |
7688 | { | |
7689 | TYPE_FIELD_TYPE (rtype, variant_field) = branch_type; | |
7690 | TYPE_FIELD_NAME (rtype, variant_field) = "S"; | |
7691 | fld_bit_len = | |
7692 | TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, variant_field)) * | |
7693 | TARGET_CHAR_BIT; | |
7694 | if (off + fld_bit_len > bit_len) | |
7695 | bit_len = off + fld_bit_len; | |
7696 | TYPE_LENGTH (rtype) = | |
7697 | align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT; | |
7698 | } | |
7699 | } | |
7700 | ||
714e53ab PH |
7701 | /* According to exp_dbug.ads, the size of TYPE for variable-size records |
7702 | should contain the alignment of that record, which should be a strictly | |
7703 | positive value. If null or negative, then something is wrong, most | |
7704 | probably in the debug info. In that case, we don't round up the size | |
0963b4bd | 7705 | of the resulting type. If this record is not part of another structure, |
714e53ab PH |
7706 | the current RTYPE length might be good enough for our purposes. */ |
7707 | if (TYPE_LENGTH (type) <= 0) | |
7708 | { | |
323e0a4a AC |
7709 | if (TYPE_NAME (rtype)) |
7710 | warning (_("Invalid type size for `%s' detected: %d."), | |
7711 | TYPE_NAME (rtype), TYPE_LENGTH (type)); | |
7712 | else | |
7713 | warning (_("Invalid type size for <unnamed> detected: %d."), | |
7714 | TYPE_LENGTH (type)); | |
714e53ab PH |
7715 | } |
7716 | else | |
7717 | { | |
7718 | TYPE_LENGTH (rtype) = align_value (TYPE_LENGTH (rtype), | |
7719 | TYPE_LENGTH (type)); | |
7720 | } | |
14f9c5c9 AS |
7721 | |
7722 | value_free_to_mark (mark); | |
d2e4a39e | 7723 | if (TYPE_LENGTH (rtype) > varsize_limit) |
323e0a4a | 7724 | error (_("record type with dynamic size is larger than varsize-limit")); |
14f9c5c9 AS |
7725 | return rtype; |
7726 | } | |
7727 | ||
4c4b4cd2 PH |
7728 | /* As for ada_template_to_fixed_record_type_1 with KEEP_DYNAMIC_FIELDS |
7729 | of 1. */ | |
14f9c5c9 | 7730 | |
d2e4a39e | 7731 | static struct type * |
fc1a4b47 | 7732 | template_to_fixed_record_type (struct type *type, const gdb_byte *valaddr, |
4c4b4cd2 PH |
7733 | CORE_ADDR address, struct value *dval0) |
7734 | { | |
7735 | return ada_template_to_fixed_record_type_1 (type, valaddr, | |
7736 | address, dval0, 1); | |
7737 | } | |
7738 | ||
7739 | /* An ordinary record type in which ___XVL-convention fields and | |
7740 | ___XVU- and ___XVN-convention field types in TYPE0 are replaced with | |
7741 | static approximations, containing all possible fields. Uses | |
7742 | no runtime values. Useless for use in values, but that's OK, | |
7743 | since the results are used only for type determinations. Works on both | |
7744 | structs and unions. Representation note: to save space, we memorize | |
7745 | the result of this function in the TYPE_TARGET_TYPE of the | |
7746 | template type. */ | |
7747 | ||
7748 | static struct type * | |
7749 | template_to_static_fixed_type (struct type *type0) | |
14f9c5c9 AS |
7750 | { |
7751 | struct type *type; | |
7752 | int nfields; | |
7753 | int f; | |
7754 | ||
4c4b4cd2 PH |
7755 | if (TYPE_TARGET_TYPE (type0) != NULL) |
7756 | return TYPE_TARGET_TYPE (type0); | |
7757 | ||
7758 | nfields = TYPE_NFIELDS (type0); | |
7759 | type = type0; | |
14f9c5c9 AS |
7760 | |
7761 | for (f = 0; f < nfields; f += 1) | |
7762 | { | |
61ee279c | 7763 | struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type0, f)); |
4c4b4cd2 | 7764 | struct type *new_type; |
14f9c5c9 | 7765 | |
4c4b4cd2 PH |
7766 | if (is_dynamic_field (type0, f)) |
7767 | new_type = to_static_fixed_type (TYPE_TARGET_TYPE (field_type)); | |
14f9c5c9 | 7768 | else |
f192137b | 7769 | new_type = static_unwrap_type (field_type); |
4c4b4cd2 PH |
7770 | if (type == type0 && new_type != field_type) |
7771 | { | |
e9bb382b | 7772 | TYPE_TARGET_TYPE (type0) = type = alloc_type_copy (type0); |
4c4b4cd2 PH |
7773 | TYPE_CODE (type) = TYPE_CODE (type0); |
7774 | INIT_CPLUS_SPECIFIC (type); | |
7775 | TYPE_NFIELDS (type) = nfields; | |
7776 | TYPE_FIELDS (type) = (struct field *) | |
7777 | TYPE_ALLOC (type, nfields * sizeof (struct field)); | |
7778 | memcpy (TYPE_FIELDS (type), TYPE_FIELDS (type0), | |
7779 | sizeof (struct field) * nfields); | |
7780 | TYPE_NAME (type) = ada_type_name (type0); | |
7781 | TYPE_TAG_NAME (type) = NULL; | |
876cecd0 | 7782 | TYPE_FIXED_INSTANCE (type) = 1; |
4c4b4cd2 PH |
7783 | TYPE_LENGTH (type) = 0; |
7784 | } | |
7785 | TYPE_FIELD_TYPE (type, f) = new_type; | |
7786 | TYPE_FIELD_NAME (type, f) = TYPE_FIELD_NAME (type0, f); | |
14f9c5c9 | 7787 | } |
14f9c5c9 AS |
7788 | return type; |
7789 | } | |
7790 | ||
4c4b4cd2 | 7791 | /* Given an object of type TYPE whose contents are at VALADDR and |
5823c3ef JB |
7792 | whose address in memory is ADDRESS, returns a revision of TYPE, |
7793 | which should be a non-dynamic-sized record, in which the variant | |
7794 | part, if any, is replaced with the appropriate branch. Looks | |
4c4b4cd2 PH |
7795 | for discriminant values in DVAL0, which can be NULL if the record |
7796 | contains the necessary discriminant values. */ | |
7797 | ||
d2e4a39e | 7798 | static struct type * |
fc1a4b47 | 7799 | to_record_with_fixed_variant_part (struct type *type, const gdb_byte *valaddr, |
4c4b4cd2 | 7800 | CORE_ADDR address, struct value *dval0) |
14f9c5c9 | 7801 | { |
d2e4a39e | 7802 | struct value *mark = value_mark (); |
4c4b4cd2 | 7803 | struct value *dval; |
d2e4a39e | 7804 | struct type *rtype; |
14f9c5c9 AS |
7805 | struct type *branch_type; |
7806 | int nfields = TYPE_NFIELDS (type); | |
4c4b4cd2 | 7807 | int variant_field = variant_field_index (type); |
14f9c5c9 | 7808 | |
4c4b4cd2 | 7809 | if (variant_field == -1) |
14f9c5c9 AS |
7810 | return type; |
7811 | ||
4c4b4cd2 PH |
7812 | if (dval0 == NULL) |
7813 | dval = value_from_contents_and_address (type, valaddr, address); | |
7814 | else | |
7815 | dval = dval0; | |
7816 | ||
e9bb382b | 7817 | rtype = alloc_type_copy (type); |
14f9c5c9 | 7818 | TYPE_CODE (rtype) = TYPE_CODE_STRUCT; |
4c4b4cd2 PH |
7819 | INIT_CPLUS_SPECIFIC (rtype); |
7820 | TYPE_NFIELDS (rtype) = nfields; | |
d2e4a39e AS |
7821 | TYPE_FIELDS (rtype) = |
7822 | (struct field *) TYPE_ALLOC (rtype, nfields * sizeof (struct field)); | |
7823 | memcpy (TYPE_FIELDS (rtype), TYPE_FIELDS (type), | |
4c4b4cd2 | 7824 | sizeof (struct field) * nfields); |
14f9c5c9 AS |
7825 | TYPE_NAME (rtype) = ada_type_name (type); |
7826 | TYPE_TAG_NAME (rtype) = NULL; | |
876cecd0 | 7827 | TYPE_FIXED_INSTANCE (rtype) = 1; |
14f9c5c9 AS |
7828 | TYPE_LENGTH (rtype) = TYPE_LENGTH (type); |
7829 | ||
4c4b4cd2 PH |
7830 | branch_type = to_fixed_variant_branch_type |
7831 | (TYPE_FIELD_TYPE (type, variant_field), | |
d2e4a39e | 7832 | cond_offset_host (valaddr, |
4c4b4cd2 PH |
7833 | TYPE_FIELD_BITPOS (type, variant_field) |
7834 | / TARGET_CHAR_BIT), | |
d2e4a39e | 7835 | cond_offset_target (address, |
4c4b4cd2 PH |
7836 | TYPE_FIELD_BITPOS (type, variant_field) |
7837 | / TARGET_CHAR_BIT), dval); | |
d2e4a39e | 7838 | if (branch_type == NULL) |
14f9c5c9 | 7839 | { |
4c4b4cd2 | 7840 | int f; |
5b4ee69b | 7841 | |
4c4b4cd2 PH |
7842 | for (f = variant_field + 1; f < nfields; f += 1) |
7843 | TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f]; | |
14f9c5c9 | 7844 | TYPE_NFIELDS (rtype) -= 1; |
14f9c5c9 AS |
7845 | } |
7846 | else | |
7847 | { | |
4c4b4cd2 PH |
7848 | TYPE_FIELD_TYPE (rtype, variant_field) = branch_type; |
7849 | TYPE_FIELD_NAME (rtype, variant_field) = "S"; | |
7850 | TYPE_FIELD_BITSIZE (rtype, variant_field) = 0; | |
14f9c5c9 | 7851 | TYPE_LENGTH (rtype) += TYPE_LENGTH (branch_type); |
14f9c5c9 | 7852 | } |
4c4b4cd2 | 7853 | TYPE_LENGTH (rtype) -= TYPE_LENGTH (TYPE_FIELD_TYPE (type, variant_field)); |
d2e4a39e | 7854 | |
4c4b4cd2 | 7855 | value_free_to_mark (mark); |
14f9c5c9 AS |
7856 | return rtype; |
7857 | } | |
7858 | ||
7859 | /* An ordinary record type (with fixed-length fields) that describes | |
7860 | the value at (TYPE0, VALADDR, ADDRESS) [see explanation at | |
7861 | beginning of this section]. Any necessary discriminants' values | |
4c4b4cd2 PH |
7862 | should be in DVAL, a record value; it may be NULL if the object |
7863 | at ADDR itself contains any necessary discriminant values. | |
7864 | Additionally, VALADDR and ADDRESS may also be NULL if no discriminant | |
7865 | values from the record are needed. Except in the case that DVAL, | |
7866 | VALADDR, and ADDRESS are all 0 or NULL, a variant field (unless | |
7867 | unchecked) is replaced by a particular branch of the variant. | |
7868 | ||
7869 | NOTE: the case in which DVAL and VALADDR are NULL and ADDRESS is 0 | |
7870 | is questionable and may be removed. It can arise during the | |
7871 | processing of an unconstrained-array-of-record type where all the | |
7872 | variant branches have exactly the same size. This is because in | |
7873 | such cases, the compiler does not bother to use the XVS convention | |
7874 | when encoding the record. I am currently dubious of this | |
7875 | shortcut and suspect the compiler should be altered. FIXME. */ | |
14f9c5c9 | 7876 | |
d2e4a39e | 7877 | static struct type * |
fc1a4b47 | 7878 | to_fixed_record_type (struct type *type0, const gdb_byte *valaddr, |
4c4b4cd2 | 7879 | CORE_ADDR address, struct value *dval) |
14f9c5c9 | 7880 | { |
d2e4a39e | 7881 | struct type *templ_type; |
14f9c5c9 | 7882 | |
876cecd0 | 7883 | if (TYPE_FIXED_INSTANCE (type0)) |
4c4b4cd2 PH |
7884 | return type0; |
7885 | ||
d2e4a39e | 7886 | templ_type = dynamic_template_type (type0); |
14f9c5c9 AS |
7887 | |
7888 | if (templ_type != NULL) | |
7889 | return template_to_fixed_record_type (templ_type, valaddr, address, dval); | |
4c4b4cd2 PH |
7890 | else if (variant_field_index (type0) >= 0) |
7891 | { | |
7892 | if (dval == NULL && valaddr == NULL && address == 0) | |
7893 | return type0; | |
7894 | return to_record_with_fixed_variant_part (type0, valaddr, address, | |
7895 | dval); | |
7896 | } | |
14f9c5c9 AS |
7897 | else |
7898 | { | |
876cecd0 | 7899 | TYPE_FIXED_INSTANCE (type0) = 1; |
14f9c5c9 AS |
7900 | return type0; |
7901 | } | |
7902 | ||
7903 | } | |
7904 | ||
7905 | /* An ordinary record type (with fixed-length fields) that describes | |
7906 | the value at (VAR_TYPE0, VALADDR, ADDRESS), where VAR_TYPE0 is a | |
7907 | union type. Any necessary discriminants' values should be in DVAL, | |
7908 | a record value. That is, this routine selects the appropriate | |
7909 | branch of the union at ADDR according to the discriminant value | |
b1f33ddd | 7910 | indicated in the union's type name. Returns VAR_TYPE0 itself if |
0963b4bd | 7911 | it represents a variant subject to a pragma Unchecked_Union. */ |
14f9c5c9 | 7912 | |
d2e4a39e | 7913 | static struct type * |
fc1a4b47 | 7914 | to_fixed_variant_branch_type (struct type *var_type0, const gdb_byte *valaddr, |
4c4b4cd2 | 7915 | CORE_ADDR address, struct value *dval) |
14f9c5c9 AS |
7916 | { |
7917 | int which; | |
d2e4a39e AS |
7918 | struct type *templ_type; |
7919 | struct type *var_type; | |
14f9c5c9 AS |
7920 | |
7921 | if (TYPE_CODE (var_type0) == TYPE_CODE_PTR) | |
7922 | var_type = TYPE_TARGET_TYPE (var_type0); | |
d2e4a39e | 7923 | else |
14f9c5c9 AS |
7924 | var_type = var_type0; |
7925 | ||
7926 | templ_type = ada_find_parallel_type (var_type, "___XVU"); | |
7927 | ||
7928 | if (templ_type != NULL) | |
7929 | var_type = templ_type; | |
7930 | ||
b1f33ddd JB |
7931 | if (is_unchecked_variant (var_type, value_type (dval))) |
7932 | return var_type0; | |
d2e4a39e AS |
7933 | which = |
7934 | ada_which_variant_applies (var_type, | |
0fd88904 | 7935 | value_type (dval), value_contents (dval)); |
14f9c5c9 AS |
7936 | |
7937 | if (which < 0) | |
e9bb382b | 7938 | return empty_record (var_type); |
14f9c5c9 | 7939 | else if (is_dynamic_field (var_type, which)) |
4c4b4cd2 | 7940 | return to_fixed_record_type |
d2e4a39e AS |
7941 | (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (var_type, which)), |
7942 | valaddr, address, dval); | |
4c4b4cd2 | 7943 | else if (variant_field_index (TYPE_FIELD_TYPE (var_type, which)) >= 0) |
d2e4a39e AS |
7944 | return |
7945 | to_fixed_record_type | |
7946 | (TYPE_FIELD_TYPE (var_type, which), valaddr, address, dval); | |
14f9c5c9 AS |
7947 | else |
7948 | return TYPE_FIELD_TYPE (var_type, which); | |
7949 | } | |
7950 | ||
7951 | /* Assuming that TYPE0 is an array type describing the type of a value | |
7952 | at ADDR, and that DVAL describes a record containing any | |
7953 | discriminants used in TYPE0, returns a type for the value that | |
7954 | contains no dynamic components (that is, no components whose sizes | |
7955 | are determined by run-time quantities). Unless IGNORE_TOO_BIG is | |
7956 | true, gives an error message if the resulting type's size is over | |
4c4b4cd2 | 7957 | varsize_limit. */ |
14f9c5c9 | 7958 | |
d2e4a39e AS |
7959 | static struct type * |
7960 | to_fixed_array_type (struct type *type0, struct value *dval, | |
4c4b4cd2 | 7961 | int ignore_too_big) |
14f9c5c9 | 7962 | { |
d2e4a39e AS |
7963 | struct type *index_type_desc; |
7964 | struct type *result; | |
ad82864c | 7965 | int constrained_packed_array_p; |
14f9c5c9 | 7966 | |
b0dd7688 | 7967 | type0 = ada_check_typedef (type0); |
284614f0 | 7968 | if (TYPE_FIXED_INSTANCE (type0)) |
4c4b4cd2 | 7969 | return type0; |
14f9c5c9 | 7970 | |
ad82864c JB |
7971 | constrained_packed_array_p = ada_is_constrained_packed_array_type (type0); |
7972 | if (constrained_packed_array_p) | |
7973 | type0 = decode_constrained_packed_array_type (type0); | |
284614f0 | 7974 | |
14f9c5c9 | 7975 | index_type_desc = ada_find_parallel_type (type0, "___XA"); |
28c85d6c | 7976 | ada_fixup_array_indexes_type (index_type_desc); |
14f9c5c9 AS |
7977 | if (index_type_desc == NULL) |
7978 | { | |
61ee279c | 7979 | struct type *elt_type0 = ada_check_typedef (TYPE_TARGET_TYPE (type0)); |
5b4ee69b | 7980 | |
14f9c5c9 | 7981 | /* NOTE: elt_type---the fixed version of elt_type0---should never |
4c4b4cd2 PH |
7982 | depend on the contents of the array in properly constructed |
7983 | debugging data. */ | |
529cad9c PH |
7984 | /* Create a fixed version of the array element type. |
7985 | We're not providing the address of an element here, | |
e1d5a0d2 | 7986 | and thus the actual object value cannot be inspected to do |
529cad9c PH |
7987 | the conversion. This should not be a problem, since arrays of |
7988 | unconstrained objects are not allowed. In particular, all | |
7989 | the elements of an array of a tagged type should all be of | |
7990 | the same type specified in the debugging info. No need to | |
7991 | consult the object tag. */ | |
1ed6ede0 | 7992 | struct type *elt_type = ada_to_fixed_type (elt_type0, 0, 0, dval, 1); |
14f9c5c9 | 7993 | |
284614f0 JB |
7994 | /* Make sure we always create a new array type when dealing with |
7995 | packed array types, since we're going to fix-up the array | |
7996 | type length and element bitsize a little further down. */ | |
ad82864c | 7997 | if (elt_type0 == elt_type && !constrained_packed_array_p) |
4c4b4cd2 | 7998 | result = type0; |
14f9c5c9 | 7999 | else |
e9bb382b | 8000 | result = create_array_type (alloc_type_copy (type0), |
4c4b4cd2 | 8001 | elt_type, TYPE_INDEX_TYPE (type0)); |
14f9c5c9 AS |
8002 | } |
8003 | else | |
8004 | { | |
8005 | int i; | |
8006 | struct type *elt_type0; | |
8007 | ||
8008 | elt_type0 = type0; | |
8009 | for (i = TYPE_NFIELDS (index_type_desc); i > 0; i -= 1) | |
4c4b4cd2 | 8010 | elt_type0 = TYPE_TARGET_TYPE (elt_type0); |
14f9c5c9 AS |
8011 | |
8012 | /* NOTE: result---the fixed version of elt_type0---should never | |
4c4b4cd2 PH |
8013 | depend on the contents of the array in properly constructed |
8014 | debugging data. */ | |
529cad9c PH |
8015 | /* Create a fixed version of the array element type. |
8016 | We're not providing the address of an element here, | |
e1d5a0d2 | 8017 | and thus the actual object value cannot be inspected to do |
529cad9c PH |
8018 | the conversion. This should not be a problem, since arrays of |
8019 | unconstrained objects are not allowed. In particular, all | |
8020 | the elements of an array of a tagged type should all be of | |
8021 | the same type specified in the debugging info. No need to | |
8022 | consult the object tag. */ | |
1ed6ede0 JB |
8023 | result = |
8024 | ada_to_fixed_type (ada_check_typedef (elt_type0), 0, 0, dval, 1); | |
1ce677a4 UW |
8025 | |
8026 | elt_type0 = type0; | |
14f9c5c9 | 8027 | for (i = TYPE_NFIELDS (index_type_desc) - 1; i >= 0; i -= 1) |
4c4b4cd2 PH |
8028 | { |
8029 | struct type *range_type = | |
28c85d6c | 8030 | to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, i), dval); |
5b4ee69b | 8031 | |
e9bb382b | 8032 | result = create_array_type (alloc_type_copy (elt_type0), |
4c4b4cd2 | 8033 | result, range_type); |
1ce677a4 | 8034 | elt_type0 = TYPE_TARGET_TYPE (elt_type0); |
4c4b4cd2 | 8035 | } |
d2e4a39e | 8036 | if (!ignore_too_big && TYPE_LENGTH (result) > varsize_limit) |
323e0a4a | 8037 | error (_("array type with dynamic size is larger than varsize-limit")); |
14f9c5c9 AS |
8038 | } |
8039 | ||
2e6fda7d JB |
8040 | /* We want to preserve the type name. This can be useful when |
8041 | trying to get the type name of a value that has already been | |
8042 | printed (for instance, if the user did "print VAR; whatis $". */ | |
8043 | TYPE_NAME (result) = TYPE_NAME (type0); | |
8044 | ||
ad82864c | 8045 | if (constrained_packed_array_p) |
284614f0 JB |
8046 | { |
8047 | /* So far, the resulting type has been created as if the original | |
8048 | type was a regular (non-packed) array type. As a result, the | |
8049 | bitsize of the array elements needs to be set again, and the array | |
8050 | length needs to be recomputed based on that bitsize. */ | |
8051 | int len = TYPE_LENGTH (result) / TYPE_LENGTH (TYPE_TARGET_TYPE (result)); | |
8052 | int elt_bitsize = TYPE_FIELD_BITSIZE (type0, 0); | |
8053 | ||
8054 | TYPE_FIELD_BITSIZE (result, 0) = TYPE_FIELD_BITSIZE (type0, 0); | |
8055 | TYPE_LENGTH (result) = len * elt_bitsize / HOST_CHAR_BIT; | |
8056 | if (TYPE_LENGTH (result) * HOST_CHAR_BIT < len * elt_bitsize) | |
8057 | TYPE_LENGTH (result)++; | |
8058 | } | |
8059 | ||
876cecd0 | 8060 | TYPE_FIXED_INSTANCE (result) = 1; |
14f9c5c9 | 8061 | return result; |
d2e4a39e | 8062 | } |
14f9c5c9 AS |
8063 | |
8064 | ||
8065 | /* A standard type (containing no dynamically sized components) | |
8066 | corresponding to TYPE for the value (TYPE, VALADDR, ADDRESS) | |
8067 | DVAL describes a record containing any discriminants used in TYPE0, | |
4c4b4cd2 | 8068 | and may be NULL if there are none, or if the object of type TYPE at |
529cad9c PH |
8069 | ADDRESS or in VALADDR contains these discriminants. |
8070 | ||
1ed6ede0 JB |
8071 | If CHECK_TAG is not null, in the case of tagged types, this function |
8072 | attempts to locate the object's tag and use it to compute the actual | |
8073 | type. However, when ADDRESS is null, we cannot use it to determine the | |
8074 | location of the tag, and therefore compute the tagged type's actual type. | |
8075 | So we return the tagged type without consulting the tag. */ | |
529cad9c | 8076 | |
f192137b JB |
8077 | static struct type * |
8078 | ada_to_fixed_type_1 (struct type *type, const gdb_byte *valaddr, | |
1ed6ede0 | 8079 | CORE_ADDR address, struct value *dval, int check_tag) |
14f9c5c9 | 8080 | { |
61ee279c | 8081 | type = ada_check_typedef (type); |
d2e4a39e AS |
8082 | switch (TYPE_CODE (type)) |
8083 | { | |
8084 | default: | |
14f9c5c9 | 8085 | return type; |
d2e4a39e | 8086 | case TYPE_CODE_STRUCT: |
4c4b4cd2 | 8087 | { |
76a01679 | 8088 | struct type *static_type = to_static_fixed_type (type); |
1ed6ede0 JB |
8089 | struct type *fixed_record_type = |
8090 | to_fixed_record_type (type, valaddr, address, NULL); | |
5b4ee69b | 8091 | |
529cad9c PH |
8092 | /* If STATIC_TYPE is a tagged type and we know the object's address, |
8093 | then we can determine its tag, and compute the object's actual | |
0963b4bd | 8094 | type from there. Note that we have to use the fixed record |
1ed6ede0 JB |
8095 | type (the parent part of the record may have dynamic fields |
8096 | and the way the location of _tag is expressed may depend on | |
8097 | them). */ | |
529cad9c | 8098 | |
1ed6ede0 | 8099 | if (check_tag && address != 0 && ada_is_tagged_type (static_type, 0)) |
76a01679 | 8100 | { |
b50d69b5 JG |
8101 | struct value *tag = |
8102 | value_tag_from_contents_and_address | |
8103 | (fixed_record_type, | |
8104 | valaddr, | |
8105 | address); | |
8106 | struct type *real_type = type_from_tag (tag); | |
8107 | struct value *obj = | |
8108 | value_from_contents_and_address (fixed_record_type, | |
8109 | valaddr, | |
8110 | address); | |
76a01679 | 8111 | if (real_type != NULL) |
b50d69b5 JG |
8112 | return to_fixed_record_type |
8113 | (real_type, NULL, | |
8114 | value_address (ada_tag_value_at_base_address (obj)), NULL); | |
76a01679 | 8115 | } |
4af88198 JB |
8116 | |
8117 | /* Check to see if there is a parallel ___XVZ variable. | |
8118 | If there is, then it provides the actual size of our type. */ | |
8119 | else if (ada_type_name (fixed_record_type) != NULL) | |
8120 | { | |
0d5cff50 | 8121 | const char *name = ada_type_name (fixed_record_type); |
4af88198 JB |
8122 | char *xvz_name = alloca (strlen (name) + 7 /* "___XVZ\0" */); |
8123 | int xvz_found = 0; | |
8124 | LONGEST size; | |
8125 | ||
88c15c34 | 8126 | xsnprintf (xvz_name, strlen (name) + 7, "%s___XVZ", name); |
4af88198 JB |
8127 | size = get_int_var_value (xvz_name, &xvz_found); |
8128 | if (xvz_found && TYPE_LENGTH (fixed_record_type) != size) | |
8129 | { | |
8130 | fixed_record_type = copy_type (fixed_record_type); | |
8131 | TYPE_LENGTH (fixed_record_type) = size; | |
8132 | ||
8133 | /* The FIXED_RECORD_TYPE may have be a stub. We have | |
8134 | observed this when the debugging info is STABS, and | |
8135 | apparently it is something that is hard to fix. | |
8136 | ||
8137 | In practice, we don't need the actual type definition | |
8138 | at all, because the presence of the XVZ variable allows us | |
8139 | to assume that there must be a XVS type as well, which we | |
8140 | should be able to use later, when we need the actual type | |
8141 | definition. | |
8142 | ||
8143 | In the meantime, pretend that the "fixed" type we are | |
8144 | returning is NOT a stub, because this can cause trouble | |
8145 | when using this type to create new types targeting it. | |
8146 | Indeed, the associated creation routines often check | |
8147 | whether the target type is a stub and will try to replace | |
0963b4bd | 8148 | it, thus using a type with the wrong size. This, in turn, |
4af88198 JB |
8149 | might cause the new type to have the wrong size too. |
8150 | Consider the case of an array, for instance, where the size | |
8151 | of the array is computed from the number of elements in | |
8152 | our array multiplied by the size of its element. */ | |
8153 | TYPE_STUB (fixed_record_type) = 0; | |
8154 | } | |
8155 | } | |
1ed6ede0 | 8156 | return fixed_record_type; |
4c4b4cd2 | 8157 | } |
d2e4a39e | 8158 | case TYPE_CODE_ARRAY: |
4c4b4cd2 | 8159 | return to_fixed_array_type (type, dval, 1); |
d2e4a39e AS |
8160 | case TYPE_CODE_UNION: |
8161 | if (dval == NULL) | |
4c4b4cd2 | 8162 | return type; |
d2e4a39e | 8163 | else |
4c4b4cd2 | 8164 | return to_fixed_variant_branch_type (type, valaddr, address, dval); |
d2e4a39e | 8165 | } |
14f9c5c9 AS |
8166 | } |
8167 | ||
f192137b JB |
8168 | /* The same as ada_to_fixed_type_1, except that it preserves the type |
8169 | if it is a TYPE_CODE_TYPEDEF of a type that is already fixed. | |
96dbd2c1 JB |
8170 | |
8171 | The typedef layer needs be preserved in order to differentiate between | |
8172 | arrays and array pointers when both types are implemented using the same | |
8173 | fat pointer. In the array pointer case, the pointer is encoded as | |
8174 | a typedef of the pointer type. For instance, considering: | |
8175 | ||
8176 | type String_Access is access String; | |
8177 | S1 : String_Access := null; | |
8178 | ||
8179 | To the debugger, S1 is defined as a typedef of type String. But | |
8180 | to the user, it is a pointer. So if the user tries to print S1, | |
8181 | we should not dereference the array, but print the array address | |
8182 | instead. | |
8183 | ||
8184 | If we didn't preserve the typedef layer, we would lose the fact that | |
8185 | the type is to be presented as a pointer (needs de-reference before | |
8186 | being printed). And we would also use the source-level type name. */ | |
f192137b JB |
8187 | |
8188 | struct type * | |
8189 | ada_to_fixed_type (struct type *type, const gdb_byte *valaddr, | |
8190 | CORE_ADDR address, struct value *dval, int check_tag) | |
8191 | ||
8192 | { | |
8193 | struct type *fixed_type = | |
8194 | ada_to_fixed_type_1 (type, valaddr, address, dval, check_tag); | |
8195 | ||
96dbd2c1 JB |
8196 | /* If TYPE is a typedef and its target type is the same as the FIXED_TYPE, |
8197 | then preserve the typedef layer. | |
8198 | ||
8199 | Implementation note: We can only check the main-type portion of | |
8200 | the TYPE and FIXED_TYPE, because eliminating the typedef layer | |
8201 | from TYPE now returns a type that has the same instance flags | |
8202 | as TYPE. For instance, if TYPE is a "typedef const", and its | |
8203 | target type is a "struct", then the typedef elimination will return | |
8204 | a "const" version of the target type. See check_typedef for more | |
8205 | details about how the typedef layer elimination is done. | |
8206 | ||
8207 | brobecker/2010-11-19: It seems to me that the only case where it is | |
8208 | useful to preserve the typedef layer is when dealing with fat pointers. | |
8209 | Perhaps, we could add a check for that and preserve the typedef layer | |
8210 | only in that situation. But this seems unecessary so far, probably | |
8211 | because we call check_typedef/ada_check_typedef pretty much everywhere. | |
8212 | */ | |
f192137b | 8213 | if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF |
720d1a40 | 8214 | && (TYPE_MAIN_TYPE (ada_typedef_target_type (type)) |
96dbd2c1 | 8215 | == TYPE_MAIN_TYPE (fixed_type))) |
f192137b JB |
8216 | return type; |
8217 | ||
8218 | return fixed_type; | |
8219 | } | |
8220 | ||
14f9c5c9 | 8221 | /* A standard (static-sized) type corresponding as well as possible to |
4c4b4cd2 | 8222 | TYPE0, but based on no runtime data. */ |
14f9c5c9 | 8223 | |
d2e4a39e AS |
8224 | static struct type * |
8225 | to_static_fixed_type (struct type *type0) | |
14f9c5c9 | 8226 | { |
d2e4a39e | 8227 | struct type *type; |
14f9c5c9 AS |
8228 | |
8229 | if (type0 == NULL) | |
8230 | return NULL; | |
8231 | ||
876cecd0 | 8232 | if (TYPE_FIXED_INSTANCE (type0)) |
4c4b4cd2 PH |
8233 | return type0; |
8234 | ||
61ee279c | 8235 | type0 = ada_check_typedef (type0); |
d2e4a39e | 8236 | |
14f9c5c9 AS |
8237 | switch (TYPE_CODE (type0)) |
8238 | { | |
8239 | default: | |
8240 | return type0; | |
8241 | case TYPE_CODE_STRUCT: | |
8242 | type = dynamic_template_type (type0); | |
d2e4a39e | 8243 | if (type != NULL) |
4c4b4cd2 PH |
8244 | return template_to_static_fixed_type (type); |
8245 | else | |
8246 | return template_to_static_fixed_type (type0); | |
14f9c5c9 AS |
8247 | case TYPE_CODE_UNION: |
8248 | type = ada_find_parallel_type (type0, "___XVU"); | |
8249 | if (type != NULL) | |
4c4b4cd2 PH |
8250 | return template_to_static_fixed_type (type); |
8251 | else | |
8252 | return template_to_static_fixed_type (type0); | |
14f9c5c9 AS |
8253 | } |
8254 | } | |
8255 | ||
4c4b4cd2 PH |
8256 | /* A static approximation of TYPE with all type wrappers removed. */ |
8257 | ||
d2e4a39e AS |
8258 | static struct type * |
8259 | static_unwrap_type (struct type *type) | |
14f9c5c9 AS |
8260 | { |
8261 | if (ada_is_aligner_type (type)) | |
8262 | { | |
61ee279c | 8263 | struct type *type1 = TYPE_FIELD_TYPE (ada_check_typedef (type), 0); |
14f9c5c9 | 8264 | if (ada_type_name (type1) == NULL) |
4c4b4cd2 | 8265 | TYPE_NAME (type1) = ada_type_name (type); |
14f9c5c9 AS |
8266 | |
8267 | return static_unwrap_type (type1); | |
8268 | } | |
d2e4a39e | 8269 | else |
14f9c5c9 | 8270 | { |
d2e4a39e | 8271 | struct type *raw_real_type = ada_get_base_type (type); |
5b4ee69b | 8272 | |
d2e4a39e | 8273 | if (raw_real_type == type) |
4c4b4cd2 | 8274 | return type; |
14f9c5c9 | 8275 | else |
4c4b4cd2 | 8276 | return to_static_fixed_type (raw_real_type); |
14f9c5c9 AS |
8277 | } |
8278 | } | |
8279 | ||
8280 | /* In some cases, incomplete and private types require | |
4c4b4cd2 | 8281 | cross-references that are not resolved as records (for example, |
14f9c5c9 AS |
8282 | type Foo; |
8283 | type FooP is access Foo; | |
8284 | V: FooP; | |
8285 | type Foo is array ...; | |
4c4b4cd2 | 8286 | ). In these cases, since there is no mechanism for producing |
14f9c5c9 AS |
8287 | cross-references to such types, we instead substitute for FooP a |
8288 | stub enumeration type that is nowhere resolved, and whose tag is | |
4c4b4cd2 | 8289 | the name of the actual type. Call these types "non-record stubs". */ |
14f9c5c9 AS |
8290 | |
8291 | /* A type equivalent to TYPE that is not a non-record stub, if one | |
4c4b4cd2 PH |
8292 | exists, otherwise TYPE. */ |
8293 | ||
d2e4a39e | 8294 | struct type * |
61ee279c | 8295 | ada_check_typedef (struct type *type) |
14f9c5c9 | 8296 | { |
727e3d2e JB |
8297 | if (type == NULL) |
8298 | return NULL; | |
8299 | ||
720d1a40 JB |
8300 | /* If our type is a typedef type of a fat pointer, then we're done. |
8301 | We don't want to strip the TYPE_CODE_TYPDEF layer, because this is | |
8302 | what allows us to distinguish between fat pointers that represent | |
8303 | array types, and fat pointers that represent array access types | |
8304 | (in both cases, the compiler implements them as fat pointers). */ | |
8305 | if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF | |
8306 | && is_thick_pntr (ada_typedef_target_type (type))) | |
8307 | return type; | |
8308 | ||
14f9c5c9 AS |
8309 | CHECK_TYPEDEF (type); |
8310 | if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM | |
529cad9c | 8311 | || !TYPE_STUB (type) |
14f9c5c9 AS |
8312 | || TYPE_TAG_NAME (type) == NULL) |
8313 | return type; | |
d2e4a39e | 8314 | else |
14f9c5c9 | 8315 | { |
0d5cff50 | 8316 | const char *name = TYPE_TAG_NAME (type); |
d2e4a39e | 8317 | struct type *type1 = ada_find_any_type (name); |
5b4ee69b | 8318 | |
05e522ef JB |
8319 | if (type1 == NULL) |
8320 | return type; | |
8321 | ||
8322 | /* TYPE1 might itself be a TYPE_CODE_TYPEDEF (this can happen with | |
8323 | stubs pointing to arrays, as we don't create symbols for array | |
3a867c22 JB |
8324 | types, only for the typedef-to-array types). If that's the case, |
8325 | strip the typedef layer. */ | |
8326 | if (TYPE_CODE (type1) == TYPE_CODE_TYPEDEF) | |
8327 | type1 = ada_check_typedef (type1); | |
8328 | ||
8329 | return type1; | |
14f9c5c9 AS |
8330 | } |
8331 | } | |
8332 | ||
8333 | /* A value representing the data at VALADDR/ADDRESS as described by | |
8334 | type TYPE0, but with a standard (static-sized) type that correctly | |
8335 | describes it. If VAL0 is not NULL and TYPE0 already is a standard | |
8336 | type, then return VAL0 [this feature is simply to avoid redundant | |
4c4b4cd2 | 8337 | creation of struct values]. */ |
14f9c5c9 | 8338 | |
4c4b4cd2 PH |
8339 | static struct value * |
8340 | ada_to_fixed_value_create (struct type *type0, CORE_ADDR address, | |
8341 | struct value *val0) | |
14f9c5c9 | 8342 | { |
1ed6ede0 | 8343 | struct type *type = ada_to_fixed_type (type0, 0, address, NULL, 1); |
5b4ee69b | 8344 | |
14f9c5c9 AS |
8345 | if (type == type0 && val0 != NULL) |
8346 | return val0; | |
d2e4a39e | 8347 | else |
4c4b4cd2 PH |
8348 | return value_from_contents_and_address (type, 0, address); |
8349 | } | |
8350 | ||
8351 | /* A value representing VAL, but with a standard (static-sized) type | |
8352 | that correctly describes it. Does not necessarily create a new | |
8353 | value. */ | |
8354 | ||
0c3acc09 | 8355 | struct value * |
4c4b4cd2 PH |
8356 | ada_to_fixed_value (struct value *val) |
8357 | { | |
c48db5ca JB |
8358 | val = unwrap_value (val); |
8359 | val = ada_to_fixed_value_create (value_type (val), | |
8360 | value_address (val), | |
8361 | val); | |
8362 | return val; | |
14f9c5c9 | 8363 | } |
d2e4a39e | 8364 | \f |
14f9c5c9 | 8365 | |
14f9c5c9 AS |
8366 | /* Attributes */ |
8367 | ||
4c4b4cd2 PH |
8368 | /* Table mapping attribute numbers to names. |
8369 | NOTE: Keep up to date with enum ada_attribute definition in ada-lang.h. */ | |
14f9c5c9 | 8370 | |
d2e4a39e | 8371 | static const char *attribute_names[] = { |
14f9c5c9 AS |
8372 | "<?>", |
8373 | ||
d2e4a39e | 8374 | "first", |
14f9c5c9 AS |
8375 | "last", |
8376 | "length", | |
8377 | "image", | |
14f9c5c9 AS |
8378 | "max", |
8379 | "min", | |
4c4b4cd2 PH |
8380 | "modulus", |
8381 | "pos", | |
8382 | "size", | |
8383 | "tag", | |
14f9c5c9 | 8384 | "val", |
14f9c5c9 AS |
8385 | 0 |
8386 | }; | |
8387 | ||
d2e4a39e | 8388 | const char * |
4c4b4cd2 | 8389 | ada_attribute_name (enum exp_opcode n) |
14f9c5c9 | 8390 | { |
4c4b4cd2 PH |
8391 | if (n >= OP_ATR_FIRST && n <= (int) OP_ATR_VAL) |
8392 | return attribute_names[n - OP_ATR_FIRST + 1]; | |
14f9c5c9 AS |
8393 | else |
8394 | return attribute_names[0]; | |
8395 | } | |
8396 | ||
4c4b4cd2 | 8397 | /* Evaluate the 'POS attribute applied to ARG. */ |
14f9c5c9 | 8398 | |
4c4b4cd2 PH |
8399 | static LONGEST |
8400 | pos_atr (struct value *arg) | |
14f9c5c9 | 8401 | { |
24209737 PH |
8402 | struct value *val = coerce_ref (arg); |
8403 | struct type *type = value_type (val); | |
14f9c5c9 | 8404 | |
d2e4a39e | 8405 | if (!discrete_type_p (type)) |
323e0a4a | 8406 | error (_("'POS only defined on discrete types")); |
14f9c5c9 AS |
8407 | |
8408 | if (TYPE_CODE (type) == TYPE_CODE_ENUM) | |
8409 | { | |
8410 | int i; | |
24209737 | 8411 | LONGEST v = value_as_long (val); |
14f9c5c9 | 8412 | |
d2e4a39e | 8413 | for (i = 0; i < TYPE_NFIELDS (type); i += 1) |
4c4b4cd2 | 8414 | { |
14e75d8e | 8415 | if (v == TYPE_FIELD_ENUMVAL (type, i)) |
4c4b4cd2 PH |
8416 | return i; |
8417 | } | |
323e0a4a | 8418 | error (_("enumeration value is invalid: can't find 'POS")); |
14f9c5c9 AS |
8419 | } |
8420 | else | |
24209737 | 8421 | return value_as_long (val); |
4c4b4cd2 PH |
8422 | } |
8423 | ||
8424 | static struct value * | |
3cb382c9 | 8425 | value_pos_atr (struct type *type, struct value *arg) |
4c4b4cd2 | 8426 | { |
3cb382c9 | 8427 | return value_from_longest (type, pos_atr (arg)); |
14f9c5c9 AS |
8428 | } |
8429 | ||
4c4b4cd2 | 8430 | /* Evaluate the TYPE'VAL attribute applied to ARG. */ |
14f9c5c9 | 8431 | |
d2e4a39e AS |
8432 | static struct value * |
8433 | value_val_atr (struct type *type, struct value *arg) | |
14f9c5c9 | 8434 | { |
d2e4a39e | 8435 | if (!discrete_type_p (type)) |
323e0a4a | 8436 | error (_("'VAL only defined on discrete types")); |
df407dfe | 8437 | if (!integer_type_p (value_type (arg))) |
323e0a4a | 8438 | error (_("'VAL requires integral argument")); |
14f9c5c9 AS |
8439 | |
8440 | if (TYPE_CODE (type) == TYPE_CODE_ENUM) | |
8441 | { | |
8442 | long pos = value_as_long (arg); | |
5b4ee69b | 8443 | |
14f9c5c9 | 8444 | if (pos < 0 || pos >= TYPE_NFIELDS (type)) |
323e0a4a | 8445 | error (_("argument to 'VAL out of range")); |
14e75d8e | 8446 | return value_from_longest (type, TYPE_FIELD_ENUMVAL (type, pos)); |
14f9c5c9 AS |
8447 | } |
8448 | else | |
8449 | return value_from_longest (type, value_as_long (arg)); | |
8450 | } | |
14f9c5c9 | 8451 | \f |
d2e4a39e | 8452 | |
4c4b4cd2 | 8453 | /* Evaluation */ |
14f9c5c9 | 8454 | |
4c4b4cd2 PH |
8455 | /* True if TYPE appears to be an Ada character type. |
8456 | [At the moment, this is true only for Character and Wide_Character; | |
8457 | It is a heuristic test that could stand improvement]. */ | |
14f9c5c9 | 8458 | |
d2e4a39e AS |
8459 | int |
8460 | ada_is_character_type (struct type *type) | |
14f9c5c9 | 8461 | { |
7b9f71f2 JB |
8462 | const char *name; |
8463 | ||
8464 | /* If the type code says it's a character, then assume it really is, | |
8465 | and don't check any further. */ | |
8466 | if (TYPE_CODE (type) == TYPE_CODE_CHAR) | |
8467 | return 1; | |
8468 | ||
8469 | /* Otherwise, assume it's a character type iff it is a discrete type | |
8470 | with a known character type name. */ | |
8471 | name = ada_type_name (type); | |
8472 | return (name != NULL | |
8473 | && (TYPE_CODE (type) == TYPE_CODE_INT | |
8474 | || TYPE_CODE (type) == TYPE_CODE_RANGE) | |
8475 | && (strcmp (name, "character") == 0 | |
8476 | || strcmp (name, "wide_character") == 0 | |
5a517ebd | 8477 | || strcmp (name, "wide_wide_character") == 0 |
7b9f71f2 | 8478 | || strcmp (name, "unsigned char") == 0)); |
14f9c5c9 AS |
8479 | } |
8480 | ||
4c4b4cd2 | 8481 | /* True if TYPE appears to be an Ada string type. */ |
14f9c5c9 AS |
8482 | |
8483 | int | |
ebf56fd3 | 8484 | ada_is_string_type (struct type *type) |
14f9c5c9 | 8485 | { |
61ee279c | 8486 | type = ada_check_typedef (type); |
d2e4a39e | 8487 | if (type != NULL |
14f9c5c9 | 8488 | && TYPE_CODE (type) != TYPE_CODE_PTR |
76a01679 JB |
8489 | && (ada_is_simple_array_type (type) |
8490 | || ada_is_array_descriptor_type (type)) | |
14f9c5c9 AS |
8491 | && ada_array_arity (type) == 1) |
8492 | { | |
8493 | struct type *elttype = ada_array_element_type (type, 1); | |
8494 | ||
8495 | return ada_is_character_type (elttype); | |
8496 | } | |
d2e4a39e | 8497 | else |
14f9c5c9 AS |
8498 | return 0; |
8499 | } | |
8500 | ||
5bf03f13 JB |
8501 | /* The compiler sometimes provides a parallel XVS type for a given |
8502 | PAD type. Normally, it is safe to follow the PAD type directly, | |
8503 | but older versions of the compiler have a bug that causes the offset | |
8504 | of its "F" field to be wrong. Following that field in that case | |
8505 | would lead to incorrect results, but this can be worked around | |
8506 | by ignoring the PAD type and using the associated XVS type instead. | |
8507 | ||
8508 | Set to True if the debugger should trust the contents of PAD types. | |
8509 | Otherwise, ignore the PAD type if there is a parallel XVS type. */ | |
8510 | static int trust_pad_over_xvs = 1; | |
14f9c5c9 AS |
8511 | |
8512 | /* True if TYPE is a struct type introduced by the compiler to force the | |
8513 | alignment of a value. Such types have a single field with a | |
4c4b4cd2 | 8514 | distinctive name. */ |
14f9c5c9 AS |
8515 | |
8516 | int | |
ebf56fd3 | 8517 | ada_is_aligner_type (struct type *type) |
14f9c5c9 | 8518 | { |
61ee279c | 8519 | type = ada_check_typedef (type); |
714e53ab | 8520 | |
5bf03f13 | 8521 | if (!trust_pad_over_xvs && ada_find_parallel_type (type, "___XVS") != NULL) |
714e53ab PH |
8522 | return 0; |
8523 | ||
14f9c5c9 | 8524 | return (TYPE_CODE (type) == TYPE_CODE_STRUCT |
4c4b4cd2 PH |
8525 | && TYPE_NFIELDS (type) == 1 |
8526 | && strcmp (TYPE_FIELD_NAME (type, 0), "F") == 0); | |
14f9c5c9 AS |
8527 | } |
8528 | ||
8529 | /* If there is an ___XVS-convention type parallel to SUBTYPE, return | |
4c4b4cd2 | 8530 | the parallel type. */ |
14f9c5c9 | 8531 | |
d2e4a39e AS |
8532 | struct type * |
8533 | ada_get_base_type (struct type *raw_type) | |
14f9c5c9 | 8534 | { |
d2e4a39e AS |
8535 | struct type *real_type_namer; |
8536 | struct type *raw_real_type; | |
14f9c5c9 AS |
8537 | |
8538 | if (raw_type == NULL || TYPE_CODE (raw_type) != TYPE_CODE_STRUCT) | |
8539 | return raw_type; | |
8540 | ||
284614f0 JB |
8541 | if (ada_is_aligner_type (raw_type)) |
8542 | /* The encoding specifies that we should always use the aligner type. | |
8543 | So, even if this aligner type has an associated XVS type, we should | |
8544 | simply ignore it. | |
8545 | ||
8546 | According to the compiler gurus, an XVS type parallel to an aligner | |
8547 | type may exist because of a stabs limitation. In stabs, aligner | |
8548 | types are empty because the field has a variable-sized type, and | |
8549 | thus cannot actually be used as an aligner type. As a result, | |
8550 | we need the associated parallel XVS type to decode the type. | |
8551 | Since the policy in the compiler is to not change the internal | |
8552 | representation based on the debugging info format, we sometimes | |
8553 | end up having a redundant XVS type parallel to the aligner type. */ | |
8554 | return raw_type; | |
8555 | ||
14f9c5c9 | 8556 | real_type_namer = ada_find_parallel_type (raw_type, "___XVS"); |
d2e4a39e | 8557 | if (real_type_namer == NULL |
14f9c5c9 AS |
8558 | || TYPE_CODE (real_type_namer) != TYPE_CODE_STRUCT |
8559 | || TYPE_NFIELDS (real_type_namer) != 1) | |
8560 | return raw_type; | |
8561 | ||
f80d3ff2 JB |
8562 | if (TYPE_CODE (TYPE_FIELD_TYPE (real_type_namer, 0)) != TYPE_CODE_REF) |
8563 | { | |
8564 | /* This is an older encoding form where the base type needs to be | |
8565 | looked up by name. We prefer the newer enconding because it is | |
8566 | more efficient. */ | |
8567 | raw_real_type = ada_find_any_type (TYPE_FIELD_NAME (real_type_namer, 0)); | |
8568 | if (raw_real_type == NULL) | |
8569 | return raw_type; | |
8570 | else | |
8571 | return raw_real_type; | |
8572 | } | |
8573 | ||
8574 | /* The field in our XVS type is a reference to the base type. */ | |
8575 | return TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (real_type_namer, 0)); | |
d2e4a39e | 8576 | } |
14f9c5c9 | 8577 | |
4c4b4cd2 | 8578 | /* The type of value designated by TYPE, with all aligners removed. */ |
14f9c5c9 | 8579 | |
d2e4a39e AS |
8580 | struct type * |
8581 | ada_aligned_type (struct type *type) | |
14f9c5c9 AS |
8582 | { |
8583 | if (ada_is_aligner_type (type)) | |
8584 | return ada_aligned_type (TYPE_FIELD_TYPE (type, 0)); | |
8585 | else | |
8586 | return ada_get_base_type (type); | |
8587 | } | |
8588 | ||
8589 | ||
8590 | /* The address of the aligned value in an object at address VALADDR | |
4c4b4cd2 | 8591 | having type TYPE. Assumes ada_is_aligner_type (TYPE). */ |
14f9c5c9 | 8592 | |
fc1a4b47 AC |
8593 | const gdb_byte * |
8594 | ada_aligned_value_addr (struct type *type, const gdb_byte *valaddr) | |
14f9c5c9 | 8595 | { |
d2e4a39e | 8596 | if (ada_is_aligner_type (type)) |
14f9c5c9 | 8597 | return ada_aligned_value_addr (TYPE_FIELD_TYPE (type, 0), |
4c4b4cd2 PH |
8598 | valaddr + |
8599 | TYPE_FIELD_BITPOS (type, | |
8600 | 0) / TARGET_CHAR_BIT); | |
14f9c5c9 AS |
8601 | else |
8602 | return valaddr; | |
8603 | } | |
8604 | ||
4c4b4cd2 PH |
8605 | |
8606 | ||
14f9c5c9 | 8607 | /* The printed representation of an enumeration literal with encoded |
4c4b4cd2 | 8608 | name NAME. The value is good to the next call of ada_enum_name. */ |
d2e4a39e AS |
8609 | const char * |
8610 | ada_enum_name (const char *name) | |
14f9c5c9 | 8611 | { |
4c4b4cd2 PH |
8612 | static char *result; |
8613 | static size_t result_len = 0; | |
d2e4a39e | 8614 | char *tmp; |
14f9c5c9 | 8615 | |
4c4b4cd2 PH |
8616 | /* First, unqualify the enumeration name: |
8617 | 1. Search for the last '.' character. If we find one, then skip | |
177b42fe | 8618 | all the preceding characters, the unqualified name starts |
76a01679 | 8619 | right after that dot. |
4c4b4cd2 | 8620 | 2. Otherwise, we may be debugging on a target where the compiler |
76a01679 JB |
8621 | translates dots into "__". Search forward for double underscores, |
8622 | but stop searching when we hit an overloading suffix, which is | |
8623 | of the form "__" followed by digits. */ | |
4c4b4cd2 | 8624 | |
c3e5cd34 PH |
8625 | tmp = strrchr (name, '.'); |
8626 | if (tmp != NULL) | |
4c4b4cd2 PH |
8627 | name = tmp + 1; |
8628 | else | |
14f9c5c9 | 8629 | { |
4c4b4cd2 PH |
8630 | while ((tmp = strstr (name, "__")) != NULL) |
8631 | { | |
8632 | if (isdigit (tmp[2])) | |
8633 | break; | |
8634 | else | |
8635 | name = tmp + 2; | |
8636 | } | |
14f9c5c9 AS |
8637 | } |
8638 | ||
8639 | if (name[0] == 'Q') | |
8640 | { | |
14f9c5c9 | 8641 | int v; |
5b4ee69b | 8642 | |
14f9c5c9 | 8643 | if (name[1] == 'U' || name[1] == 'W') |
4c4b4cd2 PH |
8644 | { |
8645 | if (sscanf (name + 2, "%x", &v) != 1) | |
8646 | return name; | |
8647 | } | |
14f9c5c9 | 8648 | else |
4c4b4cd2 | 8649 | return name; |
14f9c5c9 | 8650 | |
4c4b4cd2 | 8651 | GROW_VECT (result, result_len, 16); |
14f9c5c9 | 8652 | if (isascii (v) && isprint (v)) |
88c15c34 | 8653 | xsnprintf (result, result_len, "'%c'", v); |
14f9c5c9 | 8654 | else if (name[1] == 'U') |
88c15c34 | 8655 | xsnprintf (result, result_len, "[\"%02x\"]", v); |
14f9c5c9 | 8656 | else |
88c15c34 | 8657 | xsnprintf (result, result_len, "[\"%04x\"]", v); |
14f9c5c9 AS |
8658 | |
8659 | return result; | |
8660 | } | |
d2e4a39e | 8661 | else |
4c4b4cd2 | 8662 | { |
c3e5cd34 PH |
8663 | tmp = strstr (name, "__"); |
8664 | if (tmp == NULL) | |
8665 | tmp = strstr (name, "$"); | |
8666 | if (tmp != NULL) | |
4c4b4cd2 PH |
8667 | { |
8668 | GROW_VECT (result, result_len, tmp - name + 1); | |
8669 | strncpy (result, name, tmp - name); | |
8670 | result[tmp - name] = '\0'; | |
8671 | return result; | |
8672 | } | |
8673 | ||
8674 | return name; | |
8675 | } | |
14f9c5c9 AS |
8676 | } |
8677 | ||
14f9c5c9 AS |
8678 | /* Evaluate the subexpression of EXP starting at *POS as for |
8679 | evaluate_type, updating *POS to point just past the evaluated | |
4c4b4cd2 | 8680 | expression. */ |
14f9c5c9 | 8681 | |
d2e4a39e AS |
8682 | static struct value * |
8683 | evaluate_subexp_type (struct expression *exp, int *pos) | |
14f9c5c9 | 8684 | { |
4b27a620 | 8685 | return evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS); |
14f9c5c9 AS |
8686 | } |
8687 | ||
8688 | /* If VAL is wrapped in an aligner or subtype wrapper, return the | |
4c4b4cd2 | 8689 | value it wraps. */ |
14f9c5c9 | 8690 | |
d2e4a39e AS |
8691 | static struct value * |
8692 | unwrap_value (struct value *val) | |
14f9c5c9 | 8693 | { |
df407dfe | 8694 | struct type *type = ada_check_typedef (value_type (val)); |
5b4ee69b | 8695 | |
14f9c5c9 AS |
8696 | if (ada_is_aligner_type (type)) |
8697 | { | |
de4d072f | 8698 | struct value *v = ada_value_struct_elt (val, "F", 0); |
df407dfe | 8699 | struct type *val_type = ada_check_typedef (value_type (v)); |
5b4ee69b | 8700 | |
14f9c5c9 | 8701 | if (ada_type_name (val_type) == NULL) |
4c4b4cd2 | 8702 | TYPE_NAME (val_type) = ada_type_name (type); |
14f9c5c9 AS |
8703 | |
8704 | return unwrap_value (v); | |
8705 | } | |
d2e4a39e | 8706 | else |
14f9c5c9 | 8707 | { |
d2e4a39e | 8708 | struct type *raw_real_type = |
61ee279c | 8709 | ada_check_typedef (ada_get_base_type (type)); |
d2e4a39e | 8710 | |
5bf03f13 JB |
8711 | /* If there is no parallel XVS or XVE type, then the value is |
8712 | already unwrapped. Return it without further modification. */ | |
8713 | if ((type == raw_real_type) | |
8714 | && ada_find_parallel_type (type, "___XVE") == NULL) | |
8715 | return val; | |
14f9c5c9 | 8716 | |
d2e4a39e | 8717 | return |
4c4b4cd2 PH |
8718 | coerce_unspec_val_to_type |
8719 | (val, ada_to_fixed_type (raw_real_type, 0, | |
42ae5230 | 8720 | value_address (val), |
1ed6ede0 | 8721 | NULL, 1)); |
14f9c5c9 AS |
8722 | } |
8723 | } | |
d2e4a39e AS |
8724 | |
8725 | static struct value * | |
8726 | cast_to_fixed (struct type *type, struct value *arg) | |
14f9c5c9 AS |
8727 | { |
8728 | LONGEST val; | |
8729 | ||
df407dfe | 8730 | if (type == value_type (arg)) |
14f9c5c9 | 8731 | return arg; |
df407dfe | 8732 | else if (ada_is_fixed_point_type (value_type (arg))) |
d2e4a39e | 8733 | val = ada_float_to_fixed (type, |
df407dfe | 8734 | ada_fixed_to_float (value_type (arg), |
4c4b4cd2 | 8735 | value_as_long (arg))); |
d2e4a39e | 8736 | else |
14f9c5c9 | 8737 | { |
a53b7a21 | 8738 | DOUBLEST argd = value_as_double (arg); |
5b4ee69b | 8739 | |
14f9c5c9 AS |
8740 | val = ada_float_to_fixed (type, argd); |
8741 | } | |
8742 | ||
8743 | return value_from_longest (type, val); | |
8744 | } | |
8745 | ||
d2e4a39e | 8746 | static struct value * |
a53b7a21 | 8747 | cast_from_fixed (struct type *type, struct value *arg) |
14f9c5c9 | 8748 | { |
df407dfe | 8749 | DOUBLEST val = ada_fixed_to_float (value_type (arg), |
4c4b4cd2 | 8750 | value_as_long (arg)); |
5b4ee69b | 8751 | |
a53b7a21 | 8752 | return value_from_double (type, val); |
14f9c5c9 AS |
8753 | } |
8754 | ||
d99dcf51 JB |
8755 | /* Given two array types T1 and T2, return nonzero iff both arrays |
8756 | contain the same number of elements. */ | |
8757 | ||
8758 | static int | |
8759 | ada_same_array_size_p (struct type *t1, struct type *t2) | |
8760 | { | |
8761 | LONGEST lo1, hi1, lo2, hi2; | |
8762 | ||
8763 | /* Get the array bounds in order to verify that the size of | |
8764 | the two arrays match. */ | |
8765 | if (!get_array_bounds (t1, &lo1, &hi1) | |
8766 | || !get_array_bounds (t2, &lo2, &hi2)) | |
8767 | error (_("unable to determine array bounds")); | |
8768 | ||
8769 | /* To make things easier for size comparison, normalize a bit | |
8770 | the case of empty arrays by making sure that the difference | |
8771 | between upper bound and lower bound is always -1. */ | |
8772 | if (lo1 > hi1) | |
8773 | hi1 = lo1 - 1; | |
8774 | if (lo2 > hi2) | |
8775 | hi2 = lo2 - 1; | |
8776 | ||
8777 | return (hi1 - lo1 == hi2 - lo2); | |
8778 | } | |
8779 | ||
8780 | /* Assuming that VAL is an array of integrals, and TYPE represents | |
8781 | an array with the same number of elements, but with wider integral | |
8782 | elements, return an array "casted" to TYPE. In practice, this | |
8783 | means that the returned array is built by casting each element | |
8784 | of the original array into TYPE's (wider) element type. */ | |
8785 | ||
8786 | static struct value * | |
8787 | ada_promote_array_of_integrals (struct type *type, struct value *val) | |
8788 | { | |
8789 | struct type *elt_type = TYPE_TARGET_TYPE (type); | |
8790 | LONGEST lo, hi; | |
8791 | struct value *res; | |
8792 | LONGEST i; | |
8793 | ||
8794 | /* Verify that both val and type are arrays of scalars, and | |
8795 | that the size of val's elements is smaller than the size | |
8796 | of type's element. */ | |
8797 | gdb_assert (TYPE_CODE (type) == TYPE_CODE_ARRAY); | |
8798 | gdb_assert (is_integral_type (TYPE_TARGET_TYPE (type))); | |
8799 | gdb_assert (TYPE_CODE (value_type (val)) == TYPE_CODE_ARRAY); | |
8800 | gdb_assert (is_integral_type (TYPE_TARGET_TYPE (value_type (val)))); | |
8801 | gdb_assert (TYPE_LENGTH (TYPE_TARGET_TYPE (type)) | |
8802 | > TYPE_LENGTH (TYPE_TARGET_TYPE (value_type (val)))); | |
8803 | ||
8804 | if (!get_array_bounds (type, &lo, &hi)) | |
8805 | error (_("unable to determine array bounds")); | |
8806 | ||
8807 | res = allocate_value (type); | |
8808 | ||
8809 | /* Promote each array element. */ | |
8810 | for (i = 0; i < hi - lo + 1; i++) | |
8811 | { | |
8812 | struct value *elt = value_cast (elt_type, value_subscript (val, lo + i)); | |
8813 | ||
8814 | memcpy (value_contents_writeable (res) + (i * TYPE_LENGTH (elt_type)), | |
8815 | value_contents_all (elt), TYPE_LENGTH (elt_type)); | |
8816 | } | |
8817 | ||
8818 | return res; | |
8819 | } | |
8820 | ||
4c4b4cd2 PH |
8821 | /* Coerce VAL as necessary for assignment to an lval of type TYPE, and |
8822 | return the converted value. */ | |
8823 | ||
d2e4a39e AS |
8824 | static struct value * |
8825 | coerce_for_assign (struct type *type, struct value *val) | |
14f9c5c9 | 8826 | { |
df407dfe | 8827 | struct type *type2 = value_type (val); |
5b4ee69b | 8828 | |
14f9c5c9 AS |
8829 | if (type == type2) |
8830 | return val; | |
8831 | ||
61ee279c PH |
8832 | type2 = ada_check_typedef (type2); |
8833 | type = ada_check_typedef (type); | |
14f9c5c9 | 8834 | |
d2e4a39e AS |
8835 | if (TYPE_CODE (type2) == TYPE_CODE_PTR |
8836 | && TYPE_CODE (type) == TYPE_CODE_ARRAY) | |
14f9c5c9 AS |
8837 | { |
8838 | val = ada_value_ind (val); | |
df407dfe | 8839 | type2 = value_type (val); |
14f9c5c9 AS |
8840 | } |
8841 | ||
d2e4a39e | 8842 | if (TYPE_CODE (type2) == TYPE_CODE_ARRAY |
14f9c5c9 AS |
8843 | && TYPE_CODE (type) == TYPE_CODE_ARRAY) |
8844 | { | |
d99dcf51 JB |
8845 | if (!ada_same_array_size_p (type, type2)) |
8846 | error (_("cannot assign arrays of different length")); | |
8847 | ||
8848 | if (is_integral_type (TYPE_TARGET_TYPE (type)) | |
8849 | && is_integral_type (TYPE_TARGET_TYPE (type2)) | |
8850 | && TYPE_LENGTH (TYPE_TARGET_TYPE (type2)) | |
8851 | < TYPE_LENGTH (TYPE_TARGET_TYPE (type))) | |
8852 | { | |
8853 | /* Allow implicit promotion of the array elements to | |
8854 | a wider type. */ | |
8855 | return ada_promote_array_of_integrals (type, val); | |
8856 | } | |
8857 | ||
8858 | if (TYPE_LENGTH (TYPE_TARGET_TYPE (type2)) | |
8859 | != TYPE_LENGTH (TYPE_TARGET_TYPE (type))) | |
323e0a4a | 8860 | error (_("Incompatible types in assignment")); |
04624583 | 8861 | deprecated_set_value_type (val, type); |
14f9c5c9 | 8862 | } |
d2e4a39e | 8863 | return val; |
14f9c5c9 AS |
8864 | } |
8865 | ||
4c4b4cd2 PH |
8866 | static struct value * |
8867 | ada_value_binop (struct value *arg1, struct value *arg2, enum exp_opcode op) | |
8868 | { | |
8869 | struct value *val; | |
8870 | struct type *type1, *type2; | |
8871 | LONGEST v, v1, v2; | |
8872 | ||
994b9211 AC |
8873 | arg1 = coerce_ref (arg1); |
8874 | arg2 = coerce_ref (arg2); | |
18af8284 JB |
8875 | type1 = get_base_type (ada_check_typedef (value_type (arg1))); |
8876 | type2 = get_base_type (ada_check_typedef (value_type (arg2))); | |
4c4b4cd2 | 8877 | |
76a01679 JB |
8878 | if (TYPE_CODE (type1) != TYPE_CODE_INT |
8879 | || TYPE_CODE (type2) != TYPE_CODE_INT) | |
4c4b4cd2 PH |
8880 | return value_binop (arg1, arg2, op); |
8881 | ||
76a01679 | 8882 | switch (op) |
4c4b4cd2 PH |
8883 | { |
8884 | case BINOP_MOD: | |
8885 | case BINOP_DIV: | |
8886 | case BINOP_REM: | |
8887 | break; | |
8888 | default: | |
8889 | return value_binop (arg1, arg2, op); | |
8890 | } | |
8891 | ||
8892 | v2 = value_as_long (arg2); | |
8893 | if (v2 == 0) | |
323e0a4a | 8894 | error (_("second operand of %s must not be zero."), op_string (op)); |
4c4b4cd2 PH |
8895 | |
8896 | if (TYPE_UNSIGNED (type1) || op == BINOP_MOD) | |
8897 | return value_binop (arg1, arg2, op); | |
8898 | ||
8899 | v1 = value_as_long (arg1); | |
8900 | switch (op) | |
8901 | { | |
8902 | case BINOP_DIV: | |
8903 | v = v1 / v2; | |
76a01679 JB |
8904 | if (!TRUNCATION_TOWARDS_ZERO && v1 * (v1 % v2) < 0) |
8905 | v += v > 0 ? -1 : 1; | |
4c4b4cd2 PH |
8906 | break; |
8907 | case BINOP_REM: | |
8908 | v = v1 % v2; | |
76a01679 JB |
8909 | if (v * v1 < 0) |
8910 | v -= v2; | |
4c4b4cd2 PH |
8911 | break; |
8912 | default: | |
8913 | /* Should not reach this point. */ | |
8914 | v = 0; | |
8915 | } | |
8916 | ||
8917 | val = allocate_value (type1); | |
990a07ab | 8918 | store_unsigned_integer (value_contents_raw (val), |
e17a4113 UW |
8919 | TYPE_LENGTH (value_type (val)), |
8920 | gdbarch_byte_order (get_type_arch (type1)), v); | |
4c4b4cd2 PH |
8921 | return val; |
8922 | } | |
8923 | ||
8924 | static int | |
8925 | ada_value_equal (struct value *arg1, struct value *arg2) | |
8926 | { | |
df407dfe AC |
8927 | if (ada_is_direct_array_type (value_type (arg1)) |
8928 | || ada_is_direct_array_type (value_type (arg2))) | |
4c4b4cd2 | 8929 | { |
f58b38bf JB |
8930 | /* Automatically dereference any array reference before |
8931 | we attempt to perform the comparison. */ | |
8932 | arg1 = ada_coerce_ref (arg1); | |
8933 | arg2 = ada_coerce_ref (arg2); | |
8934 | ||
4c4b4cd2 PH |
8935 | arg1 = ada_coerce_to_simple_array (arg1); |
8936 | arg2 = ada_coerce_to_simple_array (arg2); | |
df407dfe AC |
8937 | if (TYPE_CODE (value_type (arg1)) != TYPE_CODE_ARRAY |
8938 | || TYPE_CODE (value_type (arg2)) != TYPE_CODE_ARRAY) | |
323e0a4a | 8939 | error (_("Attempt to compare array with non-array")); |
4c4b4cd2 | 8940 | /* FIXME: The following works only for types whose |
76a01679 JB |
8941 | representations use all bits (no padding or undefined bits) |
8942 | and do not have user-defined equality. */ | |
8943 | return | |
df407dfe | 8944 | TYPE_LENGTH (value_type (arg1)) == TYPE_LENGTH (value_type (arg2)) |
0fd88904 | 8945 | && memcmp (value_contents (arg1), value_contents (arg2), |
df407dfe | 8946 | TYPE_LENGTH (value_type (arg1))) == 0; |
4c4b4cd2 PH |
8947 | } |
8948 | return value_equal (arg1, arg2); | |
8949 | } | |
8950 | ||
52ce6436 PH |
8951 | /* Total number of component associations in the aggregate starting at |
8952 | index PC in EXP. Assumes that index PC is the start of an | |
0963b4bd | 8953 | OP_AGGREGATE. */ |
52ce6436 PH |
8954 | |
8955 | static int | |
8956 | num_component_specs (struct expression *exp, int pc) | |
8957 | { | |
8958 | int n, m, i; | |
5b4ee69b | 8959 | |
52ce6436 PH |
8960 | m = exp->elts[pc + 1].longconst; |
8961 | pc += 3; | |
8962 | n = 0; | |
8963 | for (i = 0; i < m; i += 1) | |
8964 | { | |
8965 | switch (exp->elts[pc].opcode) | |
8966 | { | |
8967 | default: | |
8968 | n += 1; | |
8969 | break; | |
8970 | case OP_CHOICES: | |
8971 | n += exp->elts[pc + 1].longconst; | |
8972 | break; | |
8973 | } | |
8974 | ada_evaluate_subexp (NULL, exp, &pc, EVAL_SKIP); | |
8975 | } | |
8976 | return n; | |
8977 | } | |
8978 | ||
8979 | /* Assign the result of evaluating EXP starting at *POS to the INDEXth | |
8980 | component of LHS (a simple array or a record), updating *POS past | |
8981 | the expression, assuming that LHS is contained in CONTAINER. Does | |
8982 | not modify the inferior's memory, nor does it modify LHS (unless | |
8983 | LHS == CONTAINER). */ | |
8984 | ||
8985 | static void | |
8986 | assign_component (struct value *container, struct value *lhs, LONGEST index, | |
8987 | struct expression *exp, int *pos) | |
8988 | { | |
8989 | struct value *mark = value_mark (); | |
8990 | struct value *elt; | |
5b4ee69b | 8991 | |
52ce6436 PH |
8992 | if (TYPE_CODE (value_type (lhs)) == TYPE_CODE_ARRAY) |
8993 | { | |
22601c15 UW |
8994 | struct type *index_type = builtin_type (exp->gdbarch)->builtin_int; |
8995 | struct value *index_val = value_from_longest (index_type, index); | |
5b4ee69b | 8996 | |
52ce6436 PH |
8997 | elt = unwrap_value (ada_value_subscript (lhs, 1, &index_val)); |
8998 | } | |
8999 | else | |
9000 | { | |
9001 | elt = ada_index_struct_field (index, lhs, 0, value_type (lhs)); | |
c48db5ca | 9002 | elt = ada_to_fixed_value (elt); |
52ce6436 PH |
9003 | } |
9004 | ||
9005 | if (exp->elts[*pos].opcode == OP_AGGREGATE) | |
9006 | assign_aggregate (container, elt, exp, pos, EVAL_NORMAL); | |
9007 | else | |
9008 | value_assign_to_component (container, elt, | |
9009 | ada_evaluate_subexp (NULL, exp, pos, | |
9010 | EVAL_NORMAL)); | |
9011 | ||
9012 | value_free_to_mark (mark); | |
9013 | } | |
9014 | ||
9015 | /* Assuming that LHS represents an lvalue having a record or array | |
9016 | type, and EXP->ELTS[*POS] is an OP_AGGREGATE, evaluate an assignment | |
9017 | of that aggregate's value to LHS, advancing *POS past the | |
9018 | aggregate. NOSIDE is as for evaluate_subexp. CONTAINER is an | |
9019 | lvalue containing LHS (possibly LHS itself). Does not modify | |
9020 | the inferior's memory, nor does it modify the contents of | |
0963b4bd | 9021 | LHS (unless == CONTAINER). Returns the modified CONTAINER. */ |
52ce6436 PH |
9022 | |
9023 | static struct value * | |
9024 | assign_aggregate (struct value *container, | |
9025 | struct value *lhs, struct expression *exp, | |
9026 | int *pos, enum noside noside) | |
9027 | { | |
9028 | struct type *lhs_type; | |
9029 | int n = exp->elts[*pos+1].longconst; | |
9030 | LONGEST low_index, high_index; | |
9031 | int num_specs; | |
9032 | LONGEST *indices; | |
9033 | int max_indices, num_indices; | |
52ce6436 | 9034 | int i; |
52ce6436 PH |
9035 | |
9036 | *pos += 3; | |
9037 | if (noside != EVAL_NORMAL) | |
9038 | { | |
52ce6436 PH |
9039 | for (i = 0; i < n; i += 1) |
9040 | ada_evaluate_subexp (NULL, exp, pos, noside); | |
9041 | return container; | |
9042 | } | |
9043 | ||
9044 | container = ada_coerce_ref (container); | |
9045 | if (ada_is_direct_array_type (value_type (container))) | |
9046 | container = ada_coerce_to_simple_array (container); | |
9047 | lhs = ada_coerce_ref (lhs); | |
9048 | if (!deprecated_value_modifiable (lhs)) | |
9049 | error (_("Left operand of assignment is not a modifiable lvalue.")); | |
9050 | ||
9051 | lhs_type = value_type (lhs); | |
9052 | if (ada_is_direct_array_type (lhs_type)) | |
9053 | { | |
9054 | lhs = ada_coerce_to_simple_array (lhs); | |
9055 | lhs_type = value_type (lhs); | |
9056 | low_index = TYPE_ARRAY_LOWER_BOUND_VALUE (lhs_type); | |
9057 | high_index = TYPE_ARRAY_UPPER_BOUND_VALUE (lhs_type); | |
52ce6436 PH |
9058 | } |
9059 | else if (TYPE_CODE (lhs_type) == TYPE_CODE_STRUCT) | |
9060 | { | |
9061 | low_index = 0; | |
9062 | high_index = num_visible_fields (lhs_type) - 1; | |
52ce6436 PH |
9063 | } |
9064 | else | |
9065 | error (_("Left-hand side must be array or record.")); | |
9066 | ||
9067 | num_specs = num_component_specs (exp, *pos - 3); | |
9068 | max_indices = 4 * num_specs + 4; | |
9069 | indices = alloca (max_indices * sizeof (indices[0])); | |
9070 | indices[0] = indices[1] = low_index - 1; | |
9071 | indices[2] = indices[3] = high_index + 1; | |
9072 | num_indices = 4; | |
9073 | ||
9074 | for (i = 0; i < n; i += 1) | |
9075 | { | |
9076 | switch (exp->elts[*pos].opcode) | |
9077 | { | |
1fbf5ada JB |
9078 | case OP_CHOICES: |
9079 | aggregate_assign_from_choices (container, lhs, exp, pos, indices, | |
9080 | &num_indices, max_indices, | |
9081 | low_index, high_index); | |
9082 | break; | |
9083 | case OP_POSITIONAL: | |
9084 | aggregate_assign_positional (container, lhs, exp, pos, indices, | |
52ce6436 PH |
9085 | &num_indices, max_indices, |
9086 | low_index, high_index); | |
1fbf5ada JB |
9087 | break; |
9088 | case OP_OTHERS: | |
9089 | if (i != n-1) | |
9090 | error (_("Misplaced 'others' clause")); | |
9091 | aggregate_assign_others (container, lhs, exp, pos, indices, | |
9092 | num_indices, low_index, high_index); | |
9093 | break; | |
9094 | default: | |
9095 | error (_("Internal error: bad aggregate clause")); | |
52ce6436 PH |
9096 | } |
9097 | } | |
9098 | ||
9099 | return container; | |
9100 | } | |
9101 | ||
9102 | /* Assign into the component of LHS indexed by the OP_POSITIONAL | |
9103 | construct at *POS, updating *POS past the construct, given that | |
9104 | the positions are relative to lower bound LOW, where HIGH is the | |
9105 | upper bound. Record the position in INDICES[0 .. MAX_INDICES-1] | |
9106 | updating *NUM_INDICES as needed. CONTAINER is as for | |
0963b4bd | 9107 | assign_aggregate. */ |
52ce6436 PH |
9108 | static void |
9109 | aggregate_assign_positional (struct value *container, | |
9110 | struct value *lhs, struct expression *exp, | |
9111 | int *pos, LONGEST *indices, int *num_indices, | |
9112 | int max_indices, LONGEST low, LONGEST high) | |
9113 | { | |
9114 | LONGEST ind = longest_to_int (exp->elts[*pos + 1].longconst) + low; | |
9115 | ||
9116 | if (ind - 1 == high) | |
e1d5a0d2 | 9117 | warning (_("Extra components in aggregate ignored.")); |
52ce6436 PH |
9118 | if (ind <= high) |
9119 | { | |
9120 | add_component_interval (ind, ind, indices, num_indices, max_indices); | |
9121 | *pos += 3; | |
9122 | assign_component (container, lhs, ind, exp, pos); | |
9123 | } | |
9124 | else | |
9125 | ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP); | |
9126 | } | |
9127 | ||
9128 | /* Assign into the components of LHS indexed by the OP_CHOICES | |
9129 | construct at *POS, updating *POS past the construct, given that | |
9130 | the allowable indices are LOW..HIGH. Record the indices assigned | |
9131 | to in INDICES[0 .. MAX_INDICES-1], updating *NUM_INDICES as | |
0963b4bd | 9132 | needed. CONTAINER is as for assign_aggregate. */ |
52ce6436 PH |
9133 | static void |
9134 | aggregate_assign_from_choices (struct value *container, | |
9135 | struct value *lhs, struct expression *exp, | |
9136 | int *pos, LONGEST *indices, int *num_indices, | |
9137 | int max_indices, LONGEST low, LONGEST high) | |
9138 | { | |
9139 | int j; | |
9140 | int n_choices = longest_to_int (exp->elts[*pos+1].longconst); | |
9141 | int choice_pos, expr_pc; | |
9142 | int is_array = ada_is_direct_array_type (value_type (lhs)); | |
9143 | ||
9144 | choice_pos = *pos += 3; | |
9145 | ||
9146 | for (j = 0; j < n_choices; j += 1) | |
9147 | ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP); | |
9148 | expr_pc = *pos; | |
9149 | ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP); | |
9150 | ||
9151 | for (j = 0; j < n_choices; j += 1) | |
9152 | { | |
9153 | LONGEST lower, upper; | |
9154 | enum exp_opcode op = exp->elts[choice_pos].opcode; | |
5b4ee69b | 9155 | |
52ce6436 PH |
9156 | if (op == OP_DISCRETE_RANGE) |
9157 | { | |
9158 | choice_pos += 1; | |
9159 | lower = value_as_long (ada_evaluate_subexp (NULL, exp, pos, | |
9160 | EVAL_NORMAL)); | |
9161 | upper = value_as_long (ada_evaluate_subexp (NULL, exp, pos, | |
9162 | EVAL_NORMAL)); | |
9163 | } | |
9164 | else if (is_array) | |
9165 | { | |
9166 | lower = value_as_long (ada_evaluate_subexp (NULL, exp, &choice_pos, | |
9167 | EVAL_NORMAL)); | |
9168 | upper = lower; | |
9169 | } | |
9170 | else | |
9171 | { | |
9172 | int ind; | |
0d5cff50 | 9173 | const char *name; |
5b4ee69b | 9174 | |
52ce6436 PH |
9175 | switch (op) |
9176 | { | |
9177 | case OP_NAME: | |
9178 | name = &exp->elts[choice_pos + 2].string; | |
9179 | break; | |
9180 | case OP_VAR_VALUE: | |
9181 | name = SYMBOL_NATURAL_NAME (exp->elts[choice_pos + 2].symbol); | |
9182 | break; | |
9183 | default: | |
9184 | error (_("Invalid record component association.")); | |
9185 | } | |
9186 | ada_evaluate_subexp (NULL, exp, &choice_pos, EVAL_SKIP); | |
9187 | ind = 0; | |
9188 | if (! find_struct_field (name, value_type (lhs), 0, | |
9189 | NULL, NULL, NULL, NULL, &ind)) | |
9190 | error (_("Unknown component name: %s."), name); | |
9191 | lower = upper = ind; | |
9192 | } | |
9193 | ||
9194 | if (lower <= upper && (lower < low || upper > high)) | |
9195 | error (_("Index in component association out of bounds.")); | |
9196 | ||
9197 | add_component_interval (lower, upper, indices, num_indices, | |
9198 | max_indices); | |
9199 | while (lower <= upper) | |
9200 | { | |
9201 | int pos1; | |
5b4ee69b | 9202 | |
52ce6436 PH |
9203 | pos1 = expr_pc; |
9204 | assign_component (container, lhs, lower, exp, &pos1); | |
9205 | lower += 1; | |
9206 | } | |
9207 | } | |
9208 | } | |
9209 | ||
9210 | /* Assign the value of the expression in the OP_OTHERS construct in | |
9211 | EXP at *POS into the components of LHS indexed from LOW .. HIGH that | |
9212 | have not been previously assigned. The index intervals already assigned | |
9213 | are in INDICES[0 .. NUM_INDICES-1]. Updates *POS to after the | |
0963b4bd | 9214 | OP_OTHERS clause. CONTAINER is as for assign_aggregate. */ |
52ce6436 PH |
9215 | static void |
9216 | aggregate_assign_others (struct value *container, | |
9217 | struct value *lhs, struct expression *exp, | |
9218 | int *pos, LONGEST *indices, int num_indices, | |
9219 | LONGEST low, LONGEST high) | |
9220 | { | |
9221 | int i; | |
5ce64950 | 9222 | int expr_pc = *pos + 1; |
52ce6436 PH |
9223 | |
9224 | for (i = 0; i < num_indices - 2; i += 2) | |
9225 | { | |
9226 | LONGEST ind; | |
5b4ee69b | 9227 | |
52ce6436 PH |
9228 | for (ind = indices[i + 1] + 1; ind < indices[i + 2]; ind += 1) |
9229 | { | |
5ce64950 | 9230 | int localpos; |
5b4ee69b | 9231 | |
5ce64950 MS |
9232 | localpos = expr_pc; |
9233 | assign_component (container, lhs, ind, exp, &localpos); | |
52ce6436 PH |
9234 | } |
9235 | } | |
9236 | ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP); | |
9237 | } | |
9238 | ||
9239 | /* Add the interval [LOW .. HIGH] to the sorted set of intervals | |
9240 | [ INDICES[0] .. INDICES[1] ],..., [ INDICES[*SIZE-2] .. INDICES[*SIZE-1] ], | |
9241 | modifying *SIZE as needed. It is an error if *SIZE exceeds | |
9242 | MAX_SIZE. The resulting intervals do not overlap. */ | |
9243 | static void | |
9244 | add_component_interval (LONGEST low, LONGEST high, | |
9245 | LONGEST* indices, int *size, int max_size) | |
9246 | { | |
9247 | int i, j; | |
5b4ee69b | 9248 | |
52ce6436 PH |
9249 | for (i = 0; i < *size; i += 2) { |
9250 | if (high >= indices[i] && low <= indices[i + 1]) | |
9251 | { | |
9252 | int kh; | |
5b4ee69b | 9253 | |
52ce6436 PH |
9254 | for (kh = i + 2; kh < *size; kh += 2) |
9255 | if (high < indices[kh]) | |
9256 | break; | |
9257 | if (low < indices[i]) | |
9258 | indices[i] = low; | |
9259 | indices[i + 1] = indices[kh - 1]; | |
9260 | if (high > indices[i + 1]) | |
9261 | indices[i + 1] = high; | |
9262 | memcpy (indices + i + 2, indices + kh, *size - kh); | |
9263 | *size -= kh - i - 2; | |
9264 | return; | |
9265 | } | |
9266 | else if (high < indices[i]) | |
9267 | break; | |
9268 | } | |
9269 | ||
9270 | if (*size == max_size) | |
9271 | error (_("Internal error: miscounted aggregate components.")); | |
9272 | *size += 2; | |
9273 | for (j = *size-1; j >= i+2; j -= 1) | |
9274 | indices[j] = indices[j - 2]; | |
9275 | indices[i] = low; | |
9276 | indices[i + 1] = high; | |
9277 | } | |
9278 | ||
6e48bd2c JB |
9279 | /* Perform and Ada cast of ARG2 to type TYPE if the type of ARG2 |
9280 | is different. */ | |
9281 | ||
9282 | static struct value * | |
9283 | ada_value_cast (struct type *type, struct value *arg2, enum noside noside) | |
9284 | { | |
9285 | if (type == ada_check_typedef (value_type (arg2))) | |
9286 | return arg2; | |
9287 | ||
9288 | if (ada_is_fixed_point_type (type)) | |
9289 | return (cast_to_fixed (type, arg2)); | |
9290 | ||
9291 | if (ada_is_fixed_point_type (value_type (arg2))) | |
a53b7a21 | 9292 | return cast_from_fixed (type, arg2); |
6e48bd2c JB |
9293 | |
9294 | return value_cast (type, arg2); | |
9295 | } | |
9296 | ||
284614f0 JB |
9297 | /* Evaluating Ada expressions, and printing their result. |
9298 | ------------------------------------------------------ | |
9299 | ||
21649b50 JB |
9300 | 1. Introduction: |
9301 | ---------------- | |
9302 | ||
284614f0 JB |
9303 | We usually evaluate an Ada expression in order to print its value. |
9304 | We also evaluate an expression in order to print its type, which | |
9305 | happens during the EVAL_AVOID_SIDE_EFFECTS phase of the evaluation, | |
9306 | but we'll focus mostly on the EVAL_NORMAL phase. In practice, the | |
9307 | EVAL_AVOID_SIDE_EFFECTS phase allows us to simplify certain aspects of | |
9308 | the evaluation compared to the EVAL_NORMAL, but is otherwise very | |
9309 | similar. | |
9310 | ||
9311 | Evaluating expressions is a little more complicated for Ada entities | |
9312 | than it is for entities in languages such as C. The main reason for | |
9313 | this is that Ada provides types whose definition might be dynamic. | |
9314 | One example of such types is variant records. Or another example | |
9315 | would be an array whose bounds can only be known at run time. | |
9316 | ||
9317 | The following description is a general guide as to what should be | |
9318 | done (and what should NOT be done) in order to evaluate an expression | |
9319 | involving such types, and when. This does not cover how the semantic | |
9320 | information is encoded by GNAT as this is covered separatly. For the | |
9321 | document used as the reference for the GNAT encoding, see exp_dbug.ads | |
9322 | in the GNAT sources. | |
9323 | ||
9324 | Ideally, we should embed each part of this description next to its | |
9325 | associated code. Unfortunately, the amount of code is so vast right | |
9326 | now that it's hard to see whether the code handling a particular | |
9327 | situation might be duplicated or not. One day, when the code is | |
9328 | cleaned up, this guide might become redundant with the comments | |
9329 | inserted in the code, and we might want to remove it. | |
9330 | ||
21649b50 JB |
9331 | 2. ``Fixing'' an Entity, the Simple Case: |
9332 | ----------------------------------------- | |
9333 | ||
284614f0 JB |
9334 | When evaluating Ada expressions, the tricky issue is that they may |
9335 | reference entities whose type contents and size are not statically | |
9336 | known. Consider for instance a variant record: | |
9337 | ||
9338 | type Rec (Empty : Boolean := True) is record | |
9339 | case Empty is | |
9340 | when True => null; | |
9341 | when False => Value : Integer; | |
9342 | end case; | |
9343 | end record; | |
9344 | Yes : Rec := (Empty => False, Value => 1); | |
9345 | No : Rec := (empty => True); | |
9346 | ||
9347 | The size and contents of that record depends on the value of the | |
9348 | descriminant (Rec.Empty). At this point, neither the debugging | |
9349 | information nor the associated type structure in GDB are able to | |
9350 | express such dynamic types. So what the debugger does is to create | |
9351 | "fixed" versions of the type that applies to the specific object. | |
9352 | We also informally refer to this opperation as "fixing" an object, | |
9353 | which means creating its associated fixed type. | |
9354 | ||
9355 | Example: when printing the value of variable "Yes" above, its fixed | |
9356 | type would look like this: | |
9357 | ||
9358 | type Rec is record | |
9359 | Empty : Boolean; | |
9360 | Value : Integer; | |
9361 | end record; | |
9362 | ||
9363 | On the other hand, if we printed the value of "No", its fixed type | |
9364 | would become: | |
9365 | ||
9366 | type Rec is record | |
9367 | Empty : Boolean; | |
9368 | end record; | |
9369 | ||
9370 | Things become a little more complicated when trying to fix an entity | |
9371 | with a dynamic type that directly contains another dynamic type, | |
9372 | such as an array of variant records, for instance. There are | |
9373 | two possible cases: Arrays, and records. | |
9374 | ||
21649b50 JB |
9375 | 3. ``Fixing'' Arrays: |
9376 | --------------------- | |
9377 | ||
9378 | The type structure in GDB describes an array in terms of its bounds, | |
9379 | and the type of its elements. By design, all elements in the array | |
9380 | have the same type and we cannot represent an array of variant elements | |
9381 | using the current type structure in GDB. When fixing an array, | |
9382 | we cannot fix the array element, as we would potentially need one | |
9383 | fixed type per element of the array. As a result, the best we can do | |
9384 | when fixing an array is to produce an array whose bounds and size | |
9385 | are correct (allowing us to read it from memory), but without having | |
9386 | touched its element type. Fixing each element will be done later, | |
9387 | when (if) necessary. | |
9388 | ||
9389 | Arrays are a little simpler to handle than records, because the same | |
9390 | amount of memory is allocated for each element of the array, even if | |
1b536f04 | 9391 | the amount of space actually used by each element differs from element |
21649b50 | 9392 | to element. Consider for instance the following array of type Rec: |
284614f0 JB |
9393 | |
9394 | type Rec_Array is array (1 .. 2) of Rec; | |
9395 | ||
1b536f04 JB |
9396 | The actual amount of memory occupied by each element might be different |
9397 | from element to element, depending on the value of their discriminant. | |
21649b50 | 9398 | But the amount of space reserved for each element in the array remains |
1b536f04 | 9399 | fixed regardless. So we simply need to compute that size using |
21649b50 JB |
9400 | the debugging information available, from which we can then determine |
9401 | the array size (we multiply the number of elements of the array by | |
9402 | the size of each element). | |
9403 | ||
9404 | The simplest case is when we have an array of a constrained element | |
9405 | type. For instance, consider the following type declarations: | |
9406 | ||
9407 | type Bounded_String (Max_Size : Integer) is | |
9408 | Length : Integer; | |
9409 | Buffer : String (1 .. Max_Size); | |
9410 | end record; | |
9411 | type Bounded_String_Array is array (1 ..2) of Bounded_String (80); | |
9412 | ||
9413 | In this case, the compiler describes the array as an array of | |
9414 | variable-size elements (identified by its XVS suffix) for which | |
9415 | the size can be read in the parallel XVZ variable. | |
9416 | ||
9417 | In the case of an array of an unconstrained element type, the compiler | |
9418 | wraps the array element inside a private PAD type. This type should not | |
9419 | be shown to the user, and must be "unwrap"'ed before printing. Note | |
284614f0 JB |
9420 | that we also use the adjective "aligner" in our code to designate |
9421 | these wrapper types. | |
9422 | ||
1b536f04 | 9423 | In some cases, the size allocated for each element is statically |
21649b50 JB |
9424 | known. In that case, the PAD type already has the correct size, |
9425 | and the array element should remain unfixed. | |
9426 | ||
9427 | But there are cases when this size is not statically known. | |
9428 | For instance, assuming that "Five" is an integer variable: | |
284614f0 JB |
9429 | |
9430 | type Dynamic is array (1 .. Five) of Integer; | |
9431 | type Wrapper (Has_Length : Boolean := False) is record | |
9432 | Data : Dynamic; | |
9433 | case Has_Length is | |
9434 | when True => Length : Integer; | |
9435 | when False => null; | |
9436 | end case; | |
9437 | end record; | |
9438 | type Wrapper_Array is array (1 .. 2) of Wrapper; | |
9439 | ||
9440 | Hello : Wrapper_Array := (others => (Has_Length => True, | |
9441 | Data => (others => 17), | |
9442 | Length => 1)); | |
9443 | ||
9444 | ||
9445 | The debugging info would describe variable Hello as being an | |
9446 | array of a PAD type. The size of that PAD type is not statically | |
9447 | known, but can be determined using a parallel XVZ variable. | |
9448 | In that case, a copy of the PAD type with the correct size should | |
9449 | be used for the fixed array. | |
9450 | ||
21649b50 JB |
9451 | 3. ``Fixing'' record type objects: |
9452 | ---------------------------------- | |
9453 | ||
9454 | Things are slightly different from arrays in the case of dynamic | |
284614f0 JB |
9455 | record types. In this case, in order to compute the associated |
9456 | fixed type, we need to determine the size and offset of each of | |
9457 | its components. This, in turn, requires us to compute the fixed | |
9458 | type of each of these components. | |
9459 | ||
9460 | Consider for instance the example: | |
9461 | ||
9462 | type Bounded_String (Max_Size : Natural) is record | |
9463 | Str : String (1 .. Max_Size); | |
9464 | Length : Natural; | |
9465 | end record; | |
9466 | My_String : Bounded_String (Max_Size => 10); | |
9467 | ||
9468 | In that case, the position of field "Length" depends on the size | |
9469 | of field Str, which itself depends on the value of the Max_Size | |
21649b50 | 9470 | discriminant. In order to fix the type of variable My_String, |
284614f0 JB |
9471 | we need to fix the type of field Str. Therefore, fixing a variant |
9472 | record requires us to fix each of its components. | |
9473 | ||
9474 | However, if a component does not have a dynamic size, the component | |
9475 | should not be fixed. In particular, fields that use a PAD type | |
9476 | should not fixed. Here is an example where this might happen | |
9477 | (assuming type Rec above): | |
9478 | ||
9479 | type Container (Big : Boolean) is record | |
9480 | First : Rec; | |
9481 | After : Integer; | |
9482 | case Big is | |
9483 | when True => Another : Integer; | |
9484 | when False => null; | |
9485 | end case; | |
9486 | end record; | |
9487 | My_Container : Container := (Big => False, | |
9488 | First => (Empty => True), | |
9489 | After => 42); | |
9490 | ||
9491 | In that example, the compiler creates a PAD type for component First, | |
9492 | whose size is constant, and then positions the component After just | |
9493 | right after it. The offset of component After is therefore constant | |
9494 | in this case. | |
9495 | ||
9496 | The debugger computes the position of each field based on an algorithm | |
9497 | that uses, among other things, the actual position and size of the field | |
21649b50 JB |
9498 | preceding it. Let's now imagine that the user is trying to print |
9499 | the value of My_Container. If the type fixing was recursive, we would | |
284614f0 JB |
9500 | end up computing the offset of field After based on the size of the |
9501 | fixed version of field First. And since in our example First has | |
9502 | only one actual field, the size of the fixed type is actually smaller | |
9503 | than the amount of space allocated to that field, and thus we would | |
9504 | compute the wrong offset of field After. | |
9505 | ||
21649b50 JB |
9506 | To make things more complicated, we need to watch out for dynamic |
9507 | components of variant records (identified by the ___XVL suffix in | |
9508 | the component name). Even if the target type is a PAD type, the size | |
9509 | of that type might not be statically known. So the PAD type needs | |
9510 | to be unwrapped and the resulting type needs to be fixed. Otherwise, | |
9511 | we might end up with the wrong size for our component. This can be | |
9512 | observed with the following type declarations: | |
284614f0 JB |
9513 | |
9514 | type Octal is new Integer range 0 .. 7; | |
9515 | type Octal_Array is array (Positive range <>) of Octal; | |
9516 | pragma Pack (Octal_Array); | |
9517 | ||
9518 | type Octal_Buffer (Size : Positive) is record | |
9519 | Buffer : Octal_Array (1 .. Size); | |
9520 | Length : Integer; | |
9521 | end record; | |
9522 | ||
9523 | In that case, Buffer is a PAD type whose size is unset and needs | |
9524 | to be computed by fixing the unwrapped type. | |
9525 | ||
21649b50 JB |
9526 | 4. When to ``Fix'' un-``Fixed'' sub-elements of an entity: |
9527 | ---------------------------------------------------------- | |
9528 | ||
9529 | Lastly, when should the sub-elements of an entity that remained unfixed | |
284614f0 JB |
9530 | thus far, be actually fixed? |
9531 | ||
9532 | The answer is: Only when referencing that element. For instance | |
9533 | when selecting one component of a record, this specific component | |
9534 | should be fixed at that point in time. Or when printing the value | |
9535 | of a record, each component should be fixed before its value gets | |
9536 | printed. Similarly for arrays, the element of the array should be | |
9537 | fixed when printing each element of the array, or when extracting | |
9538 | one element out of that array. On the other hand, fixing should | |
9539 | not be performed on the elements when taking a slice of an array! | |
9540 | ||
9541 | Note that one of the side-effects of miscomputing the offset and | |
9542 | size of each field is that we end up also miscomputing the size | |
9543 | of the containing type. This can have adverse results when computing | |
9544 | the value of an entity. GDB fetches the value of an entity based | |
9545 | on the size of its type, and thus a wrong size causes GDB to fetch | |
9546 | the wrong amount of memory. In the case where the computed size is | |
9547 | too small, GDB fetches too little data to print the value of our | |
9548 | entiry. Results in this case as unpredicatble, as we usually read | |
9549 | past the buffer containing the data =:-o. */ | |
9550 | ||
9551 | /* Implement the evaluate_exp routine in the exp_descriptor structure | |
9552 | for the Ada language. */ | |
9553 | ||
52ce6436 | 9554 | static struct value * |
ebf56fd3 | 9555 | ada_evaluate_subexp (struct type *expect_type, struct expression *exp, |
4c4b4cd2 | 9556 | int *pos, enum noside noside) |
14f9c5c9 AS |
9557 | { |
9558 | enum exp_opcode op; | |
b5385fc0 | 9559 | int tem; |
14f9c5c9 AS |
9560 | int pc; |
9561 | struct value *arg1 = NULL, *arg2 = NULL, *arg3; | |
9562 | struct type *type; | |
52ce6436 | 9563 | int nargs, oplen; |
d2e4a39e | 9564 | struct value **argvec; |
14f9c5c9 | 9565 | |
d2e4a39e AS |
9566 | pc = *pos; |
9567 | *pos += 1; | |
14f9c5c9 AS |
9568 | op = exp->elts[pc].opcode; |
9569 | ||
d2e4a39e | 9570 | switch (op) |
14f9c5c9 AS |
9571 | { |
9572 | default: | |
9573 | *pos -= 1; | |
6e48bd2c | 9574 | arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside); |
ca1f964d JG |
9575 | |
9576 | if (noside == EVAL_NORMAL) | |
9577 | arg1 = unwrap_value (arg1); | |
6e48bd2c JB |
9578 | |
9579 | /* If evaluating an OP_DOUBLE and an EXPECT_TYPE was provided, | |
9580 | then we need to perform the conversion manually, because | |
9581 | evaluate_subexp_standard doesn't do it. This conversion is | |
9582 | necessary in Ada because the different kinds of float/fixed | |
9583 | types in Ada have different representations. | |
9584 | ||
9585 | Similarly, we need to perform the conversion from OP_LONG | |
9586 | ourselves. */ | |
9587 | if ((op == OP_DOUBLE || op == OP_LONG) && expect_type != NULL) | |
9588 | arg1 = ada_value_cast (expect_type, arg1, noside); | |
9589 | ||
9590 | return arg1; | |
4c4b4cd2 PH |
9591 | |
9592 | case OP_STRING: | |
9593 | { | |
76a01679 | 9594 | struct value *result; |
5b4ee69b | 9595 | |
76a01679 JB |
9596 | *pos -= 1; |
9597 | result = evaluate_subexp_standard (expect_type, exp, pos, noside); | |
9598 | /* The result type will have code OP_STRING, bashed there from | |
9599 | OP_ARRAY. Bash it back. */ | |
df407dfe AC |
9600 | if (TYPE_CODE (value_type (result)) == TYPE_CODE_STRING) |
9601 | TYPE_CODE (value_type (result)) = TYPE_CODE_ARRAY; | |
76a01679 | 9602 | return result; |
4c4b4cd2 | 9603 | } |
14f9c5c9 AS |
9604 | |
9605 | case UNOP_CAST: | |
9606 | (*pos) += 2; | |
9607 | type = exp->elts[pc + 1].type; | |
9608 | arg1 = evaluate_subexp (type, exp, pos, noside); | |
9609 | if (noside == EVAL_SKIP) | |
4c4b4cd2 | 9610 | goto nosideret; |
6e48bd2c | 9611 | arg1 = ada_value_cast (type, arg1, noside); |
14f9c5c9 AS |
9612 | return arg1; |
9613 | ||
4c4b4cd2 PH |
9614 | case UNOP_QUAL: |
9615 | (*pos) += 2; | |
9616 | type = exp->elts[pc + 1].type; | |
9617 | return ada_evaluate_subexp (type, exp, pos, noside); | |
9618 | ||
14f9c5c9 AS |
9619 | case BINOP_ASSIGN: |
9620 | arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside); | |
52ce6436 PH |
9621 | if (exp->elts[*pos].opcode == OP_AGGREGATE) |
9622 | { | |
9623 | arg1 = assign_aggregate (arg1, arg1, exp, pos, noside); | |
9624 | if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS) | |
9625 | return arg1; | |
9626 | return ada_value_assign (arg1, arg1); | |
9627 | } | |
003f3813 JB |
9628 | /* Force the evaluation of the rhs ARG2 to the type of the lhs ARG1, |
9629 | except if the lhs of our assignment is a convenience variable. | |
9630 | In the case of assigning to a convenience variable, the lhs | |
9631 | should be exactly the result of the evaluation of the rhs. */ | |
9632 | type = value_type (arg1); | |
9633 | if (VALUE_LVAL (arg1) == lval_internalvar) | |
9634 | type = NULL; | |
9635 | arg2 = evaluate_subexp (type, exp, pos, noside); | |
14f9c5c9 | 9636 | if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS) |
4c4b4cd2 | 9637 | return arg1; |
df407dfe AC |
9638 | if (ada_is_fixed_point_type (value_type (arg1))) |
9639 | arg2 = cast_to_fixed (value_type (arg1), arg2); | |
9640 | else if (ada_is_fixed_point_type (value_type (arg2))) | |
76a01679 | 9641 | error |
323e0a4a | 9642 | (_("Fixed-point values must be assigned to fixed-point variables")); |
d2e4a39e | 9643 | else |
df407dfe | 9644 | arg2 = coerce_for_assign (value_type (arg1), arg2); |
4c4b4cd2 | 9645 | return ada_value_assign (arg1, arg2); |
14f9c5c9 AS |
9646 | |
9647 | case BINOP_ADD: | |
9648 | arg1 = evaluate_subexp_with_coercion (exp, pos, noside); | |
9649 | arg2 = evaluate_subexp_with_coercion (exp, pos, noside); | |
9650 | if (noside == EVAL_SKIP) | |
4c4b4cd2 | 9651 | goto nosideret; |
2ac8a782 JB |
9652 | if (TYPE_CODE (value_type (arg1)) == TYPE_CODE_PTR) |
9653 | return (value_from_longest | |
9654 | (value_type (arg1), | |
9655 | value_as_long (arg1) + value_as_long (arg2))); | |
df407dfe AC |
9656 | if ((ada_is_fixed_point_type (value_type (arg1)) |
9657 | || ada_is_fixed_point_type (value_type (arg2))) | |
9658 | && value_type (arg1) != value_type (arg2)) | |
323e0a4a | 9659 | error (_("Operands of fixed-point addition must have the same type")); |
b7789565 JB |
9660 | /* Do the addition, and cast the result to the type of the first |
9661 | argument. We cannot cast the result to a reference type, so if | |
9662 | ARG1 is a reference type, find its underlying type. */ | |
9663 | type = value_type (arg1); | |
9664 | while (TYPE_CODE (type) == TYPE_CODE_REF) | |
9665 | type = TYPE_TARGET_TYPE (type); | |
f44316fa | 9666 | binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2); |
89eef114 | 9667 | return value_cast (type, value_binop (arg1, arg2, BINOP_ADD)); |
14f9c5c9 AS |
9668 | |
9669 | case BINOP_SUB: | |
9670 | arg1 = evaluate_subexp_with_coercion (exp, pos, noside); | |
9671 | arg2 = evaluate_subexp_with_coercion (exp, pos, noside); | |
9672 | if (noside == EVAL_SKIP) | |
4c4b4cd2 | 9673 | goto nosideret; |
2ac8a782 JB |
9674 | if (TYPE_CODE (value_type (arg1)) == TYPE_CODE_PTR) |
9675 | return (value_from_longest | |
9676 | (value_type (arg1), | |
9677 | value_as_long (arg1) - value_as_long (arg2))); | |
df407dfe AC |
9678 | if ((ada_is_fixed_point_type (value_type (arg1)) |
9679 | || ada_is_fixed_point_type (value_type (arg2))) | |
9680 | && value_type (arg1) != value_type (arg2)) | |
0963b4bd MS |
9681 | error (_("Operands of fixed-point subtraction " |
9682 | "must have the same type")); | |
b7789565 JB |
9683 | /* Do the substraction, and cast the result to the type of the first |
9684 | argument. We cannot cast the result to a reference type, so if | |
9685 | ARG1 is a reference type, find its underlying type. */ | |
9686 | type = value_type (arg1); | |
9687 | while (TYPE_CODE (type) == TYPE_CODE_REF) | |
9688 | type = TYPE_TARGET_TYPE (type); | |
f44316fa | 9689 | binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2); |
89eef114 | 9690 | return value_cast (type, value_binop (arg1, arg2, BINOP_SUB)); |
14f9c5c9 AS |
9691 | |
9692 | case BINOP_MUL: | |
9693 | case BINOP_DIV: | |
e1578042 JB |
9694 | case BINOP_REM: |
9695 | case BINOP_MOD: | |
14f9c5c9 AS |
9696 | arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside); |
9697 | arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside); | |
9698 | if (noside == EVAL_SKIP) | |
4c4b4cd2 | 9699 | goto nosideret; |
e1578042 | 9700 | else if (noside == EVAL_AVOID_SIDE_EFFECTS) |
9c2be529 JB |
9701 | { |
9702 | binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2); | |
9703 | return value_zero (value_type (arg1), not_lval); | |
9704 | } | |
14f9c5c9 | 9705 | else |
4c4b4cd2 | 9706 | { |
a53b7a21 | 9707 | type = builtin_type (exp->gdbarch)->builtin_double; |
df407dfe | 9708 | if (ada_is_fixed_point_type (value_type (arg1))) |
a53b7a21 | 9709 | arg1 = cast_from_fixed (type, arg1); |
df407dfe | 9710 | if (ada_is_fixed_point_type (value_type (arg2))) |
a53b7a21 | 9711 | arg2 = cast_from_fixed (type, arg2); |
f44316fa | 9712 | binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2); |
4c4b4cd2 PH |
9713 | return ada_value_binop (arg1, arg2, op); |
9714 | } | |
9715 | ||
4c4b4cd2 PH |
9716 | case BINOP_EQUAL: |
9717 | case BINOP_NOTEQUAL: | |
14f9c5c9 | 9718 | arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside); |
df407dfe | 9719 | arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside); |
14f9c5c9 | 9720 | if (noside == EVAL_SKIP) |
76a01679 | 9721 | goto nosideret; |
4c4b4cd2 | 9722 | if (noside == EVAL_AVOID_SIDE_EFFECTS) |
76a01679 | 9723 | tem = 0; |
4c4b4cd2 | 9724 | else |
f44316fa UW |
9725 | { |
9726 | binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2); | |
9727 | tem = ada_value_equal (arg1, arg2); | |
9728 | } | |
4c4b4cd2 | 9729 | if (op == BINOP_NOTEQUAL) |
76a01679 | 9730 | tem = !tem; |
fbb06eb1 UW |
9731 | type = language_bool_type (exp->language_defn, exp->gdbarch); |
9732 | return value_from_longest (type, (LONGEST) tem); | |
4c4b4cd2 PH |
9733 | |
9734 | case UNOP_NEG: | |
9735 | arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside); | |
9736 | if (noside == EVAL_SKIP) | |
9737 | goto nosideret; | |
df407dfe AC |
9738 | else if (ada_is_fixed_point_type (value_type (arg1))) |
9739 | return value_cast (value_type (arg1), value_neg (arg1)); | |
14f9c5c9 | 9740 | else |
f44316fa UW |
9741 | { |
9742 | unop_promote (exp->language_defn, exp->gdbarch, &arg1); | |
9743 | return value_neg (arg1); | |
9744 | } | |
4c4b4cd2 | 9745 | |
2330c6c6 JB |
9746 | case BINOP_LOGICAL_AND: |
9747 | case BINOP_LOGICAL_OR: | |
9748 | case UNOP_LOGICAL_NOT: | |
000d5124 JB |
9749 | { |
9750 | struct value *val; | |
9751 | ||
9752 | *pos -= 1; | |
9753 | val = evaluate_subexp_standard (expect_type, exp, pos, noside); | |
fbb06eb1 UW |
9754 | type = language_bool_type (exp->language_defn, exp->gdbarch); |
9755 | return value_cast (type, val); | |
000d5124 | 9756 | } |
2330c6c6 JB |
9757 | |
9758 | case BINOP_BITWISE_AND: | |
9759 | case BINOP_BITWISE_IOR: | |
9760 | case BINOP_BITWISE_XOR: | |
000d5124 JB |
9761 | { |
9762 | struct value *val; | |
9763 | ||
9764 | arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS); | |
9765 | *pos = pc; | |
9766 | val = evaluate_subexp_standard (expect_type, exp, pos, noside); | |
9767 | ||
9768 | return value_cast (value_type (arg1), val); | |
9769 | } | |
2330c6c6 | 9770 | |
14f9c5c9 AS |
9771 | case OP_VAR_VALUE: |
9772 | *pos -= 1; | |
6799def4 | 9773 | |
14f9c5c9 | 9774 | if (noside == EVAL_SKIP) |
4c4b4cd2 PH |
9775 | { |
9776 | *pos += 4; | |
9777 | goto nosideret; | |
9778 | } | |
9779 | else if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN) | |
76a01679 JB |
9780 | /* Only encountered when an unresolved symbol occurs in a |
9781 | context other than a function call, in which case, it is | |
52ce6436 | 9782 | invalid. */ |
323e0a4a | 9783 | error (_("Unexpected unresolved symbol, %s, during evaluation"), |
4c4b4cd2 | 9784 | SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol)); |
14f9c5c9 | 9785 | else if (noside == EVAL_AVOID_SIDE_EFFECTS) |
4c4b4cd2 | 9786 | { |
0c1f74cf | 9787 | type = static_unwrap_type (SYMBOL_TYPE (exp->elts[pc + 2].symbol)); |
31dbc1c5 JB |
9788 | /* Check to see if this is a tagged type. We also need to handle |
9789 | the case where the type is a reference to a tagged type, but | |
9790 | we have to be careful to exclude pointers to tagged types. | |
9791 | The latter should be shown as usual (as a pointer), whereas | |
9792 | a reference should mostly be transparent to the user. */ | |
9793 | if (ada_is_tagged_type (type, 0) | |
9794 | || (TYPE_CODE(type) == TYPE_CODE_REF | |
9795 | && ada_is_tagged_type (TYPE_TARGET_TYPE (type), 0))) | |
0c1f74cf JB |
9796 | { |
9797 | /* Tagged types are a little special in the fact that the real | |
9798 | type is dynamic and can only be determined by inspecting the | |
9799 | object's tag. This means that we need to get the object's | |
9800 | value first (EVAL_NORMAL) and then extract the actual object | |
9801 | type from its tag. | |
9802 | ||
9803 | Note that we cannot skip the final step where we extract | |
9804 | the object type from its tag, because the EVAL_NORMAL phase | |
9805 | results in dynamic components being resolved into fixed ones. | |
9806 | This can cause problems when trying to print the type | |
9807 | description of tagged types whose parent has a dynamic size: | |
9808 | We use the type name of the "_parent" component in order | |
9809 | to print the name of the ancestor type in the type description. | |
9810 | If that component had a dynamic size, the resolution into | |
9811 | a fixed type would result in the loss of that type name, | |
9812 | thus preventing us from printing the name of the ancestor | |
9813 | type in the type description. */ | |
9814 | arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_NORMAL); | |
b50d69b5 JG |
9815 | |
9816 | if (TYPE_CODE (type) != TYPE_CODE_REF) | |
9817 | { | |
9818 | struct type *actual_type; | |
9819 | ||
9820 | actual_type = type_from_tag (ada_value_tag (arg1)); | |
9821 | if (actual_type == NULL) | |
9822 | /* If, for some reason, we were unable to determine | |
9823 | the actual type from the tag, then use the static | |
9824 | approximation that we just computed as a fallback. | |
9825 | This can happen if the debugging information is | |
9826 | incomplete, for instance. */ | |
9827 | actual_type = type; | |
9828 | return value_zero (actual_type, not_lval); | |
9829 | } | |
9830 | else | |
9831 | { | |
9832 | /* In the case of a ref, ada_coerce_ref takes care | |
9833 | of determining the actual type. But the evaluation | |
9834 | should return a ref as it should be valid to ask | |
9835 | for its address; so rebuild a ref after coerce. */ | |
9836 | arg1 = ada_coerce_ref (arg1); | |
9837 | return value_ref (arg1); | |
9838 | } | |
0c1f74cf JB |
9839 | } |
9840 | ||
4c4b4cd2 PH |
9841 | *pos += 4; |
9842 | return value_zero | |
9843 | (to_static_fixed_type | |
9844 | (static_unwrap_type (SYMBOL_TYPE (exp->elts[pc + 2].symbol))), | |
9845 | not_lval); | |
9846 | } | |
d2e4a39e | 9847 | else |
4c4b4cd2 | 9848 | { |
284614f0 | 9849 | arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside); |
4c4b4cd2 PH |
9850 | return ada_to_fixed_value (arg1); |
9851 | } | |
9852 | ||
9853 | case OP_FUNCALL: | |
9854 | (*pos) += 2; | |
9855 | ||
9856 | /* Allocate arg vector, including space for the function to be | |
9857 | called in argvec[0] and a terminating NULL. */ | |
9858 | nargs = longest_to_int (exp->elts[pc + 1].longconst); | |
9859 | argvec = | |
9860 | (struct value **) alloca (sizeof (struct value *) * (nargs + 2)); | |
9861 | ||
9862 | if (exp->elts[*pos].opcode == OP_VAR_VALUE | |
76a01679 | 9863 | && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN) |
323e0a4a | 9864 | error (_("Unexpected unresolved symbol, %s, during evaluation"), |
4c4b4cd2 PH |
9865 | SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol)); |
9866 | else | |
9867 | { | |
9868 | for (tem = 0; tem <= nargs; tem += 1) | |
9869 | argvec[tem] = evaluate_subexp (NULL_TYPE, exp, pos, noside); | |
9870 | argvec[tem] = 0; | |
9871 | ||
9872 | if (noside == EVAL_SKIP) | |
9873 | goto nosideret; | |
9874 | } | |
9875 | ||
ad82864c JB |
9876 | if (ada_is_constrained_packed_array_type |
9877 | (desc_base_type (value_type (argvec[0])))) | |
4c4b4cd2 | 9878 | argvec[0] = ada_coerce_to_simple_array (argvec[0]); |
284614f0 JB |
9879 | else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_ARRAY |
9880 | && TYPE_FIELD_BITSIZE (value_type (argvec[0]), 0) != 0) | |
9881 | /* This is a packed array that has already been fixed, and | |
9882 | therefore already coerced to a simple array. Nothing further | |
9883 | to do. */ | |
9884 | ; | |
df407dfe AC |
9885 | else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_REF |
9886 | || (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_ARRAY | |
76a01679 | 9887 | && VALUE_LVAL (argvec[0]) == lval_memory)) |
4c4b4cd2 PH |
9888 | argvec[0] = value_addr (argvec[0]); |
9889 | ||
df407dfe | 9890 | type = ada_check_typedef (value_type (argvec[0])); |
720d1a40 JB |
9891 | |
9892 | /* Ada allows us to implicitly dereference arrays when subscripting | |
8f465ea7 JB |
9893 | them. So, if this is an array typedef (encoding use for array |
9894 | access types encoded as fat pointers), strip it now. */ | |
720d1a40 JB |
9895 | if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF) |
9896 | type = ada_typedef_target_type (type); | |
9897 | ||
4c4b4cd2 PH |
9898 | if (TYPE_CODE (type) == TYPE_CODE_PTR) |
9899 | { | |
61ee279c | 9900 | switch (TYPE_CODE (ada_check_typedef (TYPE_TARGET_TYPE (type)))) |
4c4b4cd2 PH |
9901 | { |
9902 | case TYPE_CODE_FUNC: | |
61ee279c | 9903 | type = ada_check_typedef (TYPE_TARGET_TYPE (type)); |
4c4b4cd2 PH |
9904 | break; |
9905 | case TYPE_CODE_ARRAY: | |
9906 | break; | |
9907 | case TYPE_CODE_STRUCT: | |
9908 | if (noside != EVAL_AVOID_SIDE_EFFECTS) | |
9909 | argvec[0] = ada_value_ind (argvec[0]); | |
61ee279c | 9910 | type = ada_check_typedef (TYPE_TARGET_TYPE (type)); |
4c4b4cd2 PH |
9911 | break; |
9912 | default: | |
323e0a4a | 9913 | error (_("cannot subscript or call something of type `%s'"), |
df407dfe | 9914 | ada_type_name (value_type (argvec[0]))); |
4c4b4cd2 PH |
9915 | break; |
9916 | } | |
9917 | } | |
9918 | ||
9919 | switch (TYPE_CODE (type)) | |
9920 | { | |
9921 | case TYPE_CODE_FUNC: | |
9922 | if (noside == EVAL_AVOID_SIDE_EFFECTS) | |
c8ea1972 PH |
9923 | { |
9924 | struct type *rtype = TYPE_TARGET_TYPE (type); | |
9925 | ||
9926 | if (TYPE_GNU_IFUNC (type)) | |
9927 | return allocate_value (TYPE_TARGET_TYPE (rtype)); | |
9928 | return allocate_value (rtype); | |
9929 | } | |
4c4b4cd2 | 9930 | return call_function_by_hand (argvec[0], nargs, argvec + 1); |
c8ea1972 PH |
9931 | case TYPE_CODE_INTERNAL_FUNCTION: |
9932 | if (noside == EVAL_AVOID_SIDE_EFFECTS) | |
9933 | /* We don't know anything about what the internal | |
9934 | function might return, but we have to return | |
9935 | something. */ | |
9936 | return value_zero (builtin_type (exp->gdbarch)->builtin_int, | |
9937 | not_lval); | |
9938 | else | |
9939 | return call_internal_function (exp->gdbarch, exp->language_defn, | |
9940 | argvec[0], nargs, argvec + 1); | |
9941 | ||
4c4b4cd2 PH |
9942 | case TYPE_CODE_STRUCT: |
9943 | { | |
9944 | int arity; | |
9945 | ||
4c4b4cd2 PH |
9946 | arity = ada_array_arity (type); |
9947 | type = ada_array_element_type (type, nargs); | |
9948 | if (type == NULL) | |
323e0a4a | 9949 | error (_("cannot subscript or call a record")); |
4c4b4cd2 | 9950 | if (arity != nargs) |
323e0a4a | 9951 | error (_("wrong number of subscripts; expecting %d"), arity); |
4c4b4cd2 | 9952 | if (noside == EVAL_AVOID_SIDE_EFFECTS) |
0a07e705 | 9953 | return value_zero (ada_aligned_type (type), lval_memory); |
4c4b4cd2 PH |
9954 | return |
9955 | unwrap_value (ada_value_subscript | |
9956 | (argvec[0], nargs, argvec + 1)); | |
9957 | } | |
9958 | case TYPE_CODE_ARRAY: | |
9959 | if (noside == EVAL_AVOID_SIDE_EFFECTS) | |
9960 | { | |
9961 | type = ada_array_element_type (type, nargs); | |
9962 | if (type == NULL) | |
323e0a4a | 9963 | error (_("element type of array unknown")); |
4c4b4cd2 | 9964 | else |
0a07e705 | 9965 | return value_zero (ada_aligned_type (type), lval_memory); |
4c4b4cd2 PH |
9966 | } |
9967 | return | |
9968 | unwrap_value (ada_value_subscript | |
9969 | (ada_coerce_to_simple_array (argvec[0]), | |
9970 | nargs, argvec + 1)); | |
9971 | case TYPE_CODE_PTR: /* Pointer to array */ | |
9972 | type = to_fixed_array_type (TYPE_TARGET_TYPE (type), NULL, 1); | |
9973 | if (noside == EVAL_AVOID_SIDE_EFFECTS) | |
9974 | { | |
9975 | type = ada_array_element_type (type, nargs); | |
9976 | if (type == NULL) | |
323e0a4a | 9977 | error (_("element type of array unknown")); |
4c4b4cd2 | 9978 | else |
0a07e705 | 9979 | return value_zero (ada_aligned_type (type), lval_memory); |
4c4b4cd2 PH |
9980 | } |
9981 | return | |
9982 | unwrap_value (ada_value_ptr_subscript (argvec[0], type, | |
9983 | nargs, argvec + 1)); | |
9984 | ||
9985 | default: | |
e1d5a0d2 PH |
9986 | error (_("Attempt to index or call something other than an " |
9987 | "array or function")); | |
4c4b4cd2 PH |
9988 | } |
9989 | ||
9990 | case TERNOP_SLICE: | |
9991 | { | |
9992 | struct value *array = evaluate_subexp (NULL_TYPE, exp, pos, noside); | |
9993 | struct value *low_bound_val = | |
9994 | evaluate_subexp (NULL_TYPE, exp, pos, noside); | |
714e53ab PH |
9995 | struct value *high_bound_val = |
9996 | evaluate_subexp (NULL_TYPE, exp, pos, noside); | |
9997 | LONGEST low_bound; | |
9998 | LONGEST high_bound; | |
5b4ee69b | 9999 | |
994b9211 AC |
10000 | low_bound_val = coerce_ref (low_bound_val); |
10001 | high_bound_val = coerce_ref (high_bound_val); | |
714e53ab PH |
10002 | low_bound = pos_atr (low_bound_val); |
10003 | high_bound = pos_atr (high_bound_val); | |
963a6417 | 10004 | |
4c4b4cd2 PH |
10005 | if (noside == EVAL_SKIP) |
10006 | goto nosideret; | |
10007 | ||
4c4b4cd2 PH |
10008 | /* If this is a reference to an aligner type, then remove all |
10009 | the aligners. */ | |
df407dfe AC |
10010 | if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF |
10011 | && ada_is_aligner_type (TYPE_TARGET_TYPE (value_type (array)))) | |
10012 | TYPE_TARGET_TYPE (value_type (array)) = | |
10013 | ada_aligned_type (TYPE_TARGET_TYPE (value_type (array))); | |
4c4b4cd2 | 10014 | |
ad82864c | 10015 | if (ada_is_constrained_packed_array_type (value_type (array))) |
323e0a4a | 10016 | error (_("cannot slice a packed array")); |
4c4b4cd2 PH |
10017 | |
10018 | /* If this is a reference to an array or an array lvalue, | |
10019 | convert to a pointer. */ | |
df407dfe AC |
10020 | if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF |
10021 | || (TYPE_CODE (value_type (array)) == TYPE_CODE_ARRAY | |
4c4b4cd2 PH |
10022 | && VALUE_LVAL (array) == lval_memory)) |
10023 | array = value_addr (array); | |
10024 | ||
1265e4aa | 10025 | if (noside == EVAL_AVOID_SIDE_EFFECTS |
61ee279c | 10026 | && ada_is_array_descriptor_type (ada_check_typedef |
df407dfe | 10027 | (value_type (array)))) |
0b5d8877 | 10028 | return empty_array (ada_type_of_array (array, 0), low_bound); |
4c4b4cd2 PH |
10029 | |
10030 | array = ada_coerce_to_simple_array_ptr (array); | |
10031 | ||
714e53ab PH |
10032 | /* If we have more than one level of pointer indirection, |
10033 | dereference the value until we get only one level. */ | |
df407dfe AC |
10034 | while (TYPE_CODE (value_type (array)) == TYPE_CODE_PTR |
10035 | && (TYPE_CODE (TYPE_TARGET_TYPE (value_type (array))) | |
714e53ab PH |
10036 | == TYPE_CODE_PTR)) |
10037 | array = value_ind (array); | |
10038 | ||
10039 | /* Make sure we really do have an array type before going further, | |
10040 | to avoid a SEGV when trying to get the index type or the target | |
10041 | type later down the road if the debug info generated by | |
10042 | the compiler is incorrect or incomplete. */ | |
df407dfe | 10043 | if (!ada_is_simple_array_type (value_type (array))) |
323e0a4a | 10044 | error (_("cannot take slice of non-array")); |
714e53ab | 10045 | |
828292f2 JB |
10046 | if (TYPE_CODE (ada_check_typedef (value_type (array))) |
10047 | == TYPE_CODE_PTR) | |
4c4b4cd2 | 10048 | { |
828292f2 JB |
10049 | struct type *type0 = ada_check_typedef (value_type (array)); |
10050 | ||
0b5d8877 | 10051 | if (high_bound < low_bound || noside == EVAL_AVOID_SIDE_EFFECTS) |
828292f2 | 10052 | return empty_array (TYPE_TARGET_TYPE (type0), low_bound); |
4c4b4cd2 PH |
10053 | else |
10054 | { | |
10055 | struct type *arr_type0 = | |
828292f2 | 10056 | to_fixed_array_type (TYPE_TARGET_TYPE (type0), NULL, 1); |
5b4ee69b | 10057 | |
f5938064 JG |
10058 | return ada_value_slice_from_ptr (array, arr_type0, |
10059 | longest_to_int (low_bound), | |
10060 | longest_to_int (high_bound)); | |
4c4b4cd2 PH |
10061 | } |
10062 | } | |
10063 | else if (noside == EVAL_AVOID_SIDE_EFFECTS) | |
10064 | return array; | |
10065 | else if (high_bound < low_bound) | |
df407dfe | 10066 | return empty_array (value_type (array), low_bound); |
4c4b4cd2 | 10067 | else |
529cad9c PH |
10068 | return ada_value_slice (array, longest_to_int (low_bound), |
10069 | longest_to_int (high_bound)); | |
4c4b4cd2 | 10070 | } |
14f9c5c9 | 10071 | |
4c4b4cd2 PH |
10072 | case UNOP_IN_RANGE: |
10073 | (*pos) += 2; | |
10074 | arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside); | |
8008e265 | 10075 | type = check_typedef (exp->elts[pc + 1].type); |
14f9c5c9 | 10076 | |
14f9c5c9 | 10077 | if (noside == EVAL_SKIP) |
4c4b4cd2 | 10078 | goto nosideret; |
14f9c5c9 | 10079 | |
4c4b4cd2 PH |
10080 | switch (TYPE_CODE (type)) |
10081 | { | |
10082 | default: | |
e1d5a0d2 PH |
10083 | lim_warning (_("Membership test incompletely implemented; " |
10084 | "always returns true")); | |
fbb06eb1 UW |
10085 | type = language_bool_type (exp->language_defn, exp->gdbarch); |
10086 | return value_from_longest (type, (LONGEST) 1); | |
4c4b4cd2 PH |
10087 | |
10088 | case TYPE_CODE_RANGE: | |
030b4912 UW |
10089 | arg2 = value_from_longest (type, TYPE_LOW_BOUND (type)); |
10090 | arg3 = value_from_longest (type, TYPE_HIGH_BOUND (type)); | |
f44316fa UW |
10091 | binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2); |
10092 | binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3); | |
fbb06eb1 UW |
10093 | type = language_bool_type (exp->language_defn, exp->gdbarch); |
10094 | return | |
10095 | value_from_longest (type, | |
4c4b4cd2 PH |
10096 | (value_less (arg1, arg3) |
10097 | || value_equal (arg1, arg3)) | |
10098 | && (value_less (arg2, arg1) | |
10099 | || value_equal (arg2, arg1))); | |
10100 | } | |
10101 | ||
10102 | case BINOP_IN_BOUNDS: | |
14f9c5c9 | 10103 | (*pos) += 2; |
4c4b4cd2 PH |
10104 | arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside); |
10105 | arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside); | |
14f9c5c9 | 10106 | |
4c4b4cd2 PH |
10107 | if (noside == EVAL_SKIP) |
10108 | goto nosideret; | |
14f9c5c9 | 10109 | |
4c4b4cd2 | 10110 | if (noside == EVAL_AVOID_SIDE_EFFECTS) |
fbb06eb1 UW |
10111 | { |
10112 | type = language_bool_type (exp->language_defn, exp->gdbarch); | |
10113 | return value_zero (type, not_lval); | |
10114 | } | |
14f9c5c9 | 10115 | |
4c4b4cd2 | 10116 | tem = longest_to_int (exp->elts[pc + 1].longconst); |
14f9c5c9 | 10117 | |
1eea4ebd UW |
10118 | type = ada_index_type (value_type (arg2), tem, "range"); |
10119 | if (!type) | |
10120 | type = value_type (arg1); | |
14f9c5c9 | 10121 | |
1eea4ebd UW |
10122 | arg3 = value_from_longest (type, ada_array_bound (arg2, tem, 1)); |
10123 | arg2 = value_from_longest (type, ada_array_bound (arg2, tem, 0)); | |
d2e4a39e | 10124 | |
f44316fa UW |
10125 | binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2); |
10126 | binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3); | |
fbb06eb1 | 10127 | type = language_bool_type (exp->language_defn, exp->gdbarch); |
4c4b4cd2 | 10128 | return |
fbb06eb1 | 10129 | value_from_longest (type, |
4c4b4cd2 PH |
10130 | (value_less (arg1, arg3) |
10131 | || value_equal (arg1, arg3)) | |
10132 | && (value_less (arg2, arg1) | |
10133 | || value_equal (arg2, arg1))); | |
10134 | ||
10135 | case TERNOP_IN_RANGE: | |
10136 | arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside); | |
10137 | arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside); | |
10138 | arg3 = evaluate_subexp (NULL_TYPE, exp, pos, noside); | |
10139 | ||
10140 | if (noside == EVAL_SKIP) | |
10141 | goto nosideret; | |
10142 | ||
f44316fa UW |
10143 | binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2); |
10144 | binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3); | |
fbb06eb1 | 10145 | type = language_bool_type (exp->language_defn, exp->gdbarch); |
4c4b4cd2 | 10146 | return |
fbb06eb1 | 10147 | value_from_longest (type, |
4c4b4cd2 PH |
10148 | (value_less (arg1, arg3) |
10149 | || value_equal (arg1, arg3)) | |
10150 | && (value_less (arg2, arg1) | |
10151 | || value_equal (arg2, arg1))); | |
10152 | ||
10153 | case OP_ATR_FIRST: | |
10154 | case OP_ATR_LAST: | |
10155 | case OP_ATR_LENGTH: | |
10156 | { | |
76a01679 | 10157 | struct type *type_arg; |
5b4ee69b | 10158 | |
76a01679 JB |
10159 | if (exp->elts[*pos].opcode == OP_TYPE) |
10160 | { | |
10161 | evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP); | |
10162 | arg1 = NULL; | |
5bc23cb3 | 10163 | type_arg = check_typedef (exp->elts[pc + 2].type); |
76a01679 JB |
10164 | } |
10165 | else | |
10166 | { | |
10167 | arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside); | |
10168 | type_arg = NULL; | |
10169 | } | |
10170 | ||
10171 | if (exp->elts[*pos].opcode != OP_LONG) | |
323e0a4a | 10172 | error (_("Invalid operand to '%s"), ada_attribute_name (op)); |
76a01679 JB |
10173 | tem = longest_to_int (exp->elts[*pos + 2].longconst); |
10174 | *pos += 4; | |
10175 | ||
10176 | if (noside == EVAL_SKIP) | |
10177 | goto nosideret; | |
10178 | ||
10179 | if (type_arg == NULL) | |
10180 | { | |
10181 | arg1 = ada_coerce_ref (arg1); | |
10182 | ||
ad82864c | 10183 | if (ada_is_constrained_packed_array_type (value_type (arg1))) |
76a01679 JB |
10184 | arg1 = ada_coerce_to_simple_array (arg1); |
10185 | ||
1eea4ebd UW |
10186 | type = ada_index_type (value_type (arg1), tem, |
10187 | ada_attribute_name (op)); | |
10188 | if (type == NULL) | |
10189 | type = builtin_type (exp->gdbarch)->builtin_int; | |
76a01679 JB |
10190 | |
10191 | if (noside == EVAL_AVOID_SIDE_EFFECTS) | |
1eea4ebd | 10192 | return allocate_value (type); |
76a01679 JB |
10193 | |
10194 | switch (op) | |
10195 | { | |
10196 | default: /* Should never happen. */ | |
323e0a4a | 10197 | error (_("unexpected attribute encountered")); |
76a01679 | 10198 | case OP_ATR_FIRST: |
1eea4ebd UW |
10199 | return value_from_longest |
10200 | (type, ada_array_bound (arg1, tem, 0)); | |
76a01679 | 10201 | case OP_ATR_LAST: |
1eea4ebd UW |
10202 | return value_from_longest |
10203 | (type, ada_array_bound (arg1, tem, 1)); | |
76a01679 | 10204 | case OP_ATR_LENGTH: |
1eea4ebd UW |
10205 | return value_from_longest |
10206 | (type, ada_array_length (arg1, tem)); | |
76a01679 JB |
10207 | } |
10208 | } | |
10209 | else if (discrete_type_p (type_arg)) | |
10210 | { | |
10211 | struct type *range_type; | |
0d5cff50 | 10212 | const char *name = ada_type_name (type_arg); |
5b4ee69b | 10213 | |
76a01679 JB |
10214 | range_type = NULL; |
10215 | if (name != NULL && TYPE_CODE (type_arg) != TYPE_CODE_ENUM) | |
28c85d6c | 10216 | range_type = to_fixed_range_type (type_arg, NULL); |
76a01679 JB |
10217 | if (range_type == NULL) |
10218 | range_type = type_arg; | |
10219 | switch (op) | |
10220 | { | |
10221 | default: | |
323e0a4a | 10222 | error (_("unexpected attribute encountered")); |
76a01679 | 10223 | case OP_ATR_FIRST: |
690cc4eb | 10224 | return value_from_longest |
43bbcdc2 | 10225 | (range_type, ada_discrete_type_low_bound (range_type)); |
76a01679 | 10226 | case OP_ATR_LAST: |
690cc4eb | 10227 | return value_from_longest |
43bbcdc2 | 10228 | (range_type, ada_discrete_type_high_bound (range_type)); |
76a01679 | 10229 | case OP_ATR_LENGTH: |
323e0a4a | 10230 | error (_("the 'length attribute applies only to array types")); |
76a01679 JB |
10231 | } |
10232 | } | |
10233 | else if (TYPE_CODE (type_arg) == TYPE_CODE_FLT) | |
323e0a4a | 10234 | error (_("unimplemented type attribute")); |
76a01679 JB |
10235 | else |
10236 | { | |
10237 | LONGEST low, high; | |
10238 | ||
ad82864c JB |
10239 | if (ada_is_constrained_packed_array_type (type_arg)) |
10240 | type_arg = decode_constrained_packed_array_type (type_arg); | |
76a01679 | 10241 | |
1eea4ebd | 10242 | type = ada_index_type (type_arg, tem, ada_attribute_name (op)); |
76a01679 | 10243 | if (type == NULL) |
1eea4ebd UW |
10244 | type = builtin_type (exp->gdbarch)->builtin_int; |
10245 | ||
76a01679 JB |
10246 | if (noside == EVAL_AVOID_SIDE_EFFECTS) |
10247 | return allocate_value (type); | |
10248 | ||
10249 | switch (op) | |
10250 | { | |
10251 | default: | |
323e0a4a | 10252 | error (_("unexpected attribute encountered")); |
76a01679 | 10253 | case OP_ATR_FIRST: |
1eea4ebd | 10254 | low = ada_array_bound_from_type (type_arg, tem, 0); |
76a01679 JB |
10255 | return value_from_longest (type, low); |
10256 | case OP_ATR_LAST: | |
1eea4ebd | 10257 | high = ada_array_bound_from_type (type_arg, tem, 1); |
76a01679 JB |
10258 | return value_from_longest (type, high); |
10259 | case OP_ATR_LENGTH: | |
1eea4ebd UW |
10260 | low = ada_array_bound_from_type (type_arg, tem, 0); |
10261 | high = ada_array_bound_from_type (type_arg, tem, 1); | |
76a01679 JB |
10262 | return value_from_longest (type, high - low + 1); |
10263 | } | |
10264 | } | |
14f9c5c9 AS |
10265 | } |
10266 | ||
4c4b4cd2 PH |
10267 | case OP_ATR_TAG: |
10268 | arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside); | |
10269 | if (noside == EVAL_SKIP) | |
76a01679 | 10270 | goto nosideret; |
4c4b4cd2 PH |
10271 | |
10272 | if (noside == EVAL_AVOID_SIDE_EFFECTS) | |
76a01679 | 10273 | return value_zero (ada_tag_type (arg1), not_lval); |
4c4b4cd2 PH |
10274 | |
10275 | return ada_value_tag (arg1); | |
10276 | ||
10277 | case OP_ATR_MIN: | |
10278 | case OP_ATR_MAX: | |
10279 | evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP); | |
14f9c5c9 AS |
10280 | arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside); |
10281 | arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside); | |
10282 | if (noside == EVAL_SKIP) | |
76a01679 | 10283 | goto nosideret; |
d2e4a39e | 10284 | else if (noside == EVAL_AVOID_SIDE_EFFECTS) |
df407dfe | 10285 | return value_zero (value_type (arg1), not_lval); |
14f9c5c9 | 10286 | else |
f44316fa UW |
10287 | { |
10288 | binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2); | |
10289 | return value_binop (arg1, arg2, | |
10290 | op == OP_ATR_MIN ? BINOP_MIN : BINOP_MAX); | |
10291 | } | |
14f9c5c9 | 10292 | |
4c4b4cd2 PH |
10293 | case OP_ATR_MODULUS: |
10294 | { | |
31dedfee | 10295 | struct type *type_arg = check_typedef (exp->elts[pc + 2].type); |
4c4b4cd2 | 10296 | |
5b4ee69b | 10297 | evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP); |
76a01679 JB |
10298 | if (noside == EVAL_SKIP) |
10299 | goto nosideret; | |
4c4b4cd2 | 10300 | |
76a01679 | 10301 | if (!ada_is_modular_type (type_arg)) |
323e0a4a | 10302 | error (_("'modulus must be applied to modular type")); |
4c4b4cd2 | 10303 | |
76a01679 JB |
10304 | return value_from_longest (TYPE_TARGET_TYPE (type_arg), |
10305 | ada_modulus (type_arg)); | |
4c4b4cd2 PH |
10306 | } |
10307 | ||
10308 | ||
10309 | case OP_ATR_POS: | |
10310 | evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP); | |
14f9c5c9 AS |
10311 | arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside); |
10312 | if (noside == EVAL_SKIP) | |
76a01679 | 10313 | goto nosideret; |
3cb382c9 UW |
10314 | type = builtin_type (exp->gdbarch)->builtin_int; |
10315 | if (noside == EVAL_AVOID_SIDE_EFFECTS) | |
10316 | return value_zero (type, not_lval); | |
14f9c5c9 | 10317 | else |
3cb382c9 | 10318 | return value_pos_atr (type, arg1); |
14f9c5c9 | 10319 | |
4c4b4cd2 PH |
10320 | case OP_ATR_SIZE: |
10321 | arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside); | |
8c1c099f JB |
10322 | type = value_type (arg1); |
10323 | ||
10324 | /* If the argument is a reference, then dereference its type, since | |
10325 | the user is really asking for the size of the actual object, | |
10326 | not the size of the pointer. */ | |
10327 | if (TYPE_CODE (type) == TYPE_CODE_REF) | |
10328 | type = TYPE_TARGET_TYPE (type); | |
10329 | ||
4c4b4cd2 | 10330 | if (noside == EVAL_SKIP) |
76a01679 | 10331 | goto nosideret; |
4c4b4cd2 | 10332 | else if (noside == EVAL_AVOID_SIDE_EFFECTS) |
22601c15 | 10333 | return value_zero (builtin_type (exp->gdbarch)->builtin_int, not_lval); |
4c4b4cd2 | 10334 | else |
22601c15 | 10335 | return value_from_longest (builtin_type (exp->gdbarch)->builtin_int, |
8c1c099f | 10336 | TARGET_CHAR_BIT * TYPE_LENGTH (type)); |
4c4b4cd2 PH |
10337 | |
10338 | case OP_ATR_VAL: | |
10339 | evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP); | |
14f9c5c9 | 10340 | arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside); |
4c4b4cd2 | 10341 | type = exp->elts[pc + 2].type; |
14f9c5c9 | 10342 | if (noside == EVAL_SKIP) |
76a01679 | 10343 | goto nosideret; |
4c4b4cd2 | 10344 | else if (noside == EVAL_AVOID_SIDE_EFFECTS) |
76a01679 | 10345 | return value_zero (type, not_lval); |
4c4b4cd2 | 10346 | else |
76a01679 | 10347 | return value_val_atr (type, arg1); |
4c4b4cd2 PH |
10348 | |
10349 | case BINOP_EXP: | |
10350 | arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside); | |
10351 | arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside); | |
10352 | if (noside == EVAL_SKIP) | |
10353 | goto nosideret; | |
10354 | else if (noside == EVAL_AVOID_SIDE_EFFECTS) | |
df407dfe | 10355 | return value_zero (value_type (arg1), not_lval); |
4c4b4cd2 | 10356 | else |
f44316fa UW |
10357 | { |
10358 | /* For integer exponentiation operations, | |
10359 | only promote the first argument. */ | |
10360 | if (is_integral_type (value_type (arg2))) | |
10361 | unop_promote (exp->language_defn, exp->gdbarch, &arg1); | |
10362 | else | |
10363 | binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2); | |
10364 | ||
10365 | return value_binop (arg1, arg2, op); | |
10366 | } | |
4c4b4cd2 PH |
10367 | |
10368 | case UNOP_PLUS: | |
10369 | arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside); | |
10370 | if (noside == EVAL_SKIP) | |
10371 | goto nosideret; | |
10372 | else | |
10373 | return arg1; | |
10374 | ||
10375 | case UNOP_ABS: | |
10376 | arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside); | |
10377 | if (noside == EVAL_SKIP) | |
10378 | goto nosideret; | |
f44316fa | 10379 | unop_promote (exp->language_defn, exp->gdbarch, &arg1); |
df407dfe | 10380 | if (value_less (arg1, value_zero (value_type (arg1), not_lval))) |
4c4b4cd2 | 10381 | return value_neg (arg1); |
14f9c5c9 | 10382 | else |
4c4b4cd2 | 10383 | return arg1; |
14f9c5c9 AS |
10384 | |
10385 | case UNOP_IND: | |
6b0d7253 | 10386 | arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside); |
14f9c5c9 | 10387 | if (noside == EVAL_SKIP) |
4c4b4cd2 | 10388 | goto nosideret; |
df407dfe | 10389 | type = ada_check_typedef (value_type (arg1)); |
14f9c5c9 | 10390 | if (noside == EVAL_AVOID_SIDE_EFFECTS) |
4c4b4cd2 PH |
10391 | { |
10392 | if (ada_is_array_descriptor_type (type)) | |
10393 | /* GDB allows dereferencing GNAT array descriptors. */ | |
10394 | { | |
10395 | struct type *arrType = ada_type_of_array (arg1, 0); | |
5b4ee69b | 10396 | |
4c4b4cd2 | 10397 | if (arrType == NULL) |
323e0a4a | 10398 | error (_("Attempt to dereference null array pointer.")); |
00a4c844 | 10399 | return value_at_lazy (arrType, 0); |
4c4b4cd2 PH |
10400 | } |
10401 | else if (TYPE_CODE (type) == TYPE_CODE_PTR | |
10402 | || TYPE_CODE (type) == TYPE_CODE_REF | |
10403 | /* In C you can dereference an array to get the 1st elt. */ | |
10404 | || TYPE_CODE (type) == TYPE_CODE_ARRAY) | |
714e53ab PH |
10405 | { |
10406 | type = to_static_fixed_type | |
10407 | (ada_aligned_type | |
10408 | (ada_check_typedef (TYPE_TARGET_TYPE (type)))); | |
10409 | check_size (type); | |
10410 | return value_zero (type, lval_memory); | |
10411 | } | |
4c4b4cd2 | 10412 | else if (TYPE_CODE (type) == TYPE_CODE_INT) |
6b0d7253 JB |
10413 | { |
10414 | /* GDB allows dereferencing an int. */ | |
10415 | if (expect_type == NULL) | |
10416 | return value_zero (builtin_type (exp->gdbarch)->builtin_int, | |
10417 | lval_memory); | |
10418 | else | |
10419 | { | |
10420 | expect_type = | |
10421 | to_static_fixed_type (ada_aligned_type (expect_type)); | |
10422 | return value_zero (expect_type, lval_memory); | |
10423 | } | |
10424 | } | |
4c4b4cd2 | 10425 | else |
323e0a4a | 10426 | error (_("Attempt to take contents of a non-pointer value.")); |
4c4b4cd2 | 10427 | } |
0963b4bd | 10428 | arg1 = ada_coerce_ref (arg1); /* FIXME: What is this for?? */ |
df407dfe | 10429 | type = ada_check_typedef (value_type (arg1)); |
d2e4a39e | 10430 | |
96967637 JB |
10431 | if (TYPE_CODE (type) == TYPE_CODE_INT) |
10432 | /* GDB allows dereferencing an int. If we were given | |
10433 | the expect_type, then use that as the target type. | |
10434 | Otherwise, assume that the target type is an int. */ | |
10435 | { | |
10436 | if (expect_type != NULL) | |
10437 | return ada_value_ind (value_cast (lookup_pointer_type (expect_type), | |
10438 | arg1)); | |
10439 | else | |
10440 | return value_at_lazy (builtin_type (exp->gdbarch)->builtin_int, | |
10441 | (CORE_ADDR) value_as_address (arg1)); | |
10442 | } | |
6b0d7253 | 10443 | |
4c4b4cd2 PH |
10444 | if (ada_is_array_descriptor_type (type)) |
10445 | /* GDB allows dereferencing GNAT array descriptors. */ | |
10446 | return ada_coerce_to_simple_array (arg1); | |
14f9c5c9 | 10447 | else |
4c4b4cd2 | 10448 | return ada_value_ind (arg1); |
14f9c5c9 AS |
10449 | |
10450 | case STRUCTOP_STRUCT: | |
10451 | tem = longest_to_int (exp->elts[pc + 1].longconst); | |
10452 | (*pos) += 3 + BYTES_TO_EXP_ELEM (tem + 1); | |
10453 | arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside); | |
10454 | if (noside == EVAL_SKIP) | |
4c4b4cd2 | 10455 | goto nosideret; |
14f9c5c9 | 10456 | if (noside == EVAL_AVOID_SIDE_EFFECTS) |
76a01679 | 10457 | { |
df407dfe | 10458 | struct type *type1 = value_type (arg1); |
5b4ee69b | 10459 | |
76a01679 JB |
10460 | if (ada_is_tagged_type (type1, 1)) |
10461 | { | |
10462 | type = ada_lookup_struct_elt_type (type1, | |
10463 | &exp->elts[pc + 2].string, | |
10464 | 1, 1, NULL); | |
10465 | if (type == NULL) | |
10466 | /* In this case, we assume that the field COULD exist | |
10467 | in some extension of the type. Return an object of | |
10468 | "type" void, which will match any formal | |
0963b4bd | 10469 | (see ada_type_match). */ |
30b15541 UW |
10470 | return value_zero (builtin_type (exp->gdbarch)->builtin_void, |
10471 | lval_memory); | |
76a01679 JB |
10472 | } |
10473 | else | |
10474 | type = | |
10475 | ada_lookup_struct_elt_type (type1, &exp->elts[pc + 2].string, 1, | |
10476 | 0, NULL); | |
10477 | ||
10478 | return value_zero (ada_aligned_type (type), lval_memory); | |
10479 | } | |
14f9c5c9 | 10480 | else |
284614f0 JB |
10481 | arg1 = ada_value_struct_elt (arg1, &exp->elts[pc + 2].string, 0); |
10482 | arg1 = unwrap_value (arg1); | |
10483 | return ada_to_fixed_value (arg1); | |
10484 | ||
14f9c5c9 | 10485 | case OP_TYPE: |
4c4b4cd2 PH |
10486 | /* The value is not supposed to be used. This is here to make it |
10487 | easier to accommodate expressions that contain types. */ | |
14f9c5c9 AS |
10488 | (*pos) += 2; |
10489 | if (noside == EVAL_SKIP) | |
4c4b4cd2 | 10490 | goto nosideret; |
14f9c5c9 | 10491 | else if (noside == EVAL_AVOID_SIDE_EFFECTS) |
a6cfbe68 | 10492 | return allocate_value (exp->elts[pc + 1].type); |
14f9c5c9 | 10493 | else |
323e0a4a | 10494 | error (_("Attempt to use a type name as an expression")); |
52ce6436 PH |
10495 | |
10496 | case OP_AGGREGATE: | |
10497 | case OP_CHOICES: | |
10498 | case OP_OTHERS: | |
10499 | case OP_DISCRETE_RANGE: | |
10500 | case OP_POSITIONAL: | |
10501 | case OP_NAME: | |
10502 | if (noside == EVAL_NORMAL) | |
10503 | switch (op) | |
10504 | { | |
10505 | case OP_NAME: | |
10506 | error (_("Undefined name, ambiguous name, or renaming used in " | |
e1d5a0d2 | 10507 | "component association: %s."), &exp->elts[pc+2].string); |
52ce6436 PH |
10508 | case OP_AGGREGATE: |
10509 | error (_("Aggregates only allowed on the right of an assignment")); | |
10510 | default: | |
0963b4bd MS |
10511 | internal_error (__FILE__, __LINE__, |
10512 | _("aggregate apparently mangled")); | |
52ce6436 PH |
10513 | } |
10514 | ||
10515 | ada_forward_operator_length (exp, pc, &oplen, &nargs); | |
10516 | *pos += oplen - 1; | |
10517 | for (tem = 0; tem < nargs; tem += 1) | |
10518 | ada_evaluate_subexp (NULL, exp, pos, noside); | |
10519 | goto nosideret; | |
14f9c5c9 AS |
10520 | } |
10521 | ||
10522 | nosideret: | |
22601c15 | 10523 | return value_from_longest (builtin_type (exp->gdbarch)->builtin_int, 1); |
14f9c5c9 | 10524 | } |
14f9c5c9 | 10525 | \f |
d2e4a39e | 10526 | |
4c4b4cd2 | 10527 | /* Fixed point */ |
14f9c5c9 AS |
10528 | |
10529 | /* If TYPE encodes an Ada fixed-point type, return the suffix of the | |
10530 | type name that encodes the 'small and 'delta information. | |
4c4b4cd2 | 10531 | Otherwise, return NULL. */ |
14f9c5c9 | 10532 | |
d2e4a39e | 10533 | static const char * |
ebf56fd3 | 10534 | fixed_type_info (struct type *type) |
14f9c5c9 | 10535 | { |
d2e4a39e | 10536 | const char *name = ada_type_name (type); |
14f9c5c9 AS |
10537 | enum type_code code = (type == NULL) ? TYPE_CODE_UNDEF : TYPE_CODE (type); |
10538 | ||
d2e4a39e AS |
10539 | if ((code == TYPE_CODE_INT || code == TYPE_CODE_RANGE) && name != NULL) |
10540 | { | |
14f9c5c9 | 10541 | const char *tail = strstr (name, "___XF_"); |
5b4ee69b | 10542 | |
14f9c5c9 | 10543 | if (tail == NULL) |
4c4b4cd2 | 10544 | return NULL; |
d2e4a39e | 10545 | else |
4c4b4cd2 | 10546 | return tail + 5; |
14f9c5c9 AS |
10547 | } |
10548 | else if (code == TYPE_CODE_RANGE && TYPE_TARGET_TYPE (type) != type) | |
10549 | return fixed_type_info (TYPE_TARGET_TYPE (type)); | |
10550 | else | |
10551 | return NULL; | |
10552 | } | |
10553 | ||
4c4b4cd2 | 10554 | /* Returns non-zero iff TYPE represents an Ada fixed-point type. */ |
14f9c5c9 AS |
10555 | |
10556 | int | |
ebf56fd3 | 10557 | ada_is_fixed_point_type (struct type *type) |
14f9c5c9 AS |
10558 | { |
10559 | return fixed_type_info (type) != NULL; | |
10560 | } | |
10561 | ||
4c4b4cd2 PH |
10562 | /* Return non-zero iff TYPE represents a System.Address type. */ |
10563 | ||
10564 | int | |
10565 | ada_is_system_address_type (struct type *type) | |
10566 | { | |
10567 | return (TYPE_NAME (type) | |
10568 | && strcmp (TYPE_NAME (type), "system__address") == 0); | |
10569 | } | |
10570 | ||
14f9c5c9 AS |
10571 | /* Assuming that TYPE is the representation of an Ada fixed-point |
10572 | type, return its delta, or -1 if the type is malformed and the | |
4c4b4cd2 | 10573 | delta cannot be determined. */ |
14f9c5c9 AS |
10574 | |
10575 | DOUBLEST | |
ebf56fd3 | 10576 | ada_delta (struct type *type) |
14f9c5c9 AS |
10577 | { |
10578 | const char *encoding = fixed_type_info (type); | |
facc390f | 10579 | DOUBLEST num, den; |
14f9c5c9 | 10580 | |
facc390f JB |
10581 | /* Strictly speaking, num and den are encoded as integer. However, |
10582 | they may not fit into a long, and they will have to be converted | |
10583 | to DOUBLEST anyway. So scan them as DOUBLEST. */ | |
10584 | if (sscanf (encoding, "_%" DOUBLEST_SCAN_FORMAT "_%" DOUBLEST_SCAN_FORMAT, | |
10585 | &num, &den) < 2) | |
14f9c5c9 | 10586 | return -1.0; |
d2e4a39e | 10587 | else |
facc390f | 10588 | return num / den; |
14f9c5c9 AS |
10589 | } |
10590 | ||
10591 | /* Assuming that ada_is_fixed_point_type (TYPE), return the scaling | |
4c4b4cd2 | 10592 | factor ('SMALL value) associated with the type. */ |
14f9c5c9 AS |
10593 | |
10594 | static DOUBLEST | |
ebf56fd3 | 10595 | scaling_factor (struct type *type) |
14f9c5c9 AS |
10596 | { |
10597 | const char *encoding = fixed_type_info (type); | |
facc390f | 10598 | DOUBLEST num0, den0, num1, den1; |
14f9c5c9 | 10599 | int n; |
d2e4a39e | 10600 | |
facc390f JB |
10601 | /* Strictly speaking, num's and den's are encoded as integer. However, |
10602 | they may not fit into a long, and they will have to be converted | |
10603 | to DOUBLEST anyway. So scan them as DOUBLEST. */ | |
10604 | n = sscanf (encoding, | |
10605 | "_%" DOUBLEST_SCAN_FORMAT "_%" DOUBLEST_SCAN_FORMAT | |
10606 | "_%" DOUBLEST_SCAN_FORMAT "_%" DOUBLEST_SCAN_FORMAT, | |
10607 | &num0, &den0, &num1, &den1); | |
14f9c5c9 AS |
10608 | |
10609 | if (n < 2) | |
10610 | return 1.0; | |
10611 | else if (n == 4) | |
facc390f | 10612 | return num1 / den1; |
d2e4a39e | 10613 | else |
facc390f | 10614 | return num0 / den0; |
14f9c5c9 AS |
10615 | } |
10616 | ||
10617 | ||
10618 | /* Assuming that X is the representation of a value of fixed-point | |
4c4b4cd2 | 10619 | type TYPE, return its floating-point equivalent. */ |
14f9c5c9 AS |
10620 | |
10621 | DOUBLEST | |
ebf56fd3 | 10622 | ada_fixed_to_float (struct type *type, LONGEST x) |
14f9c5c9 | 10623 | { |
d2e4a39e | 10624 | return (DOUBLEST) x *scaling_factor (type); |
14f9c5c9 AS |
10625 | } |
10626 | ||
4c4b4cd2 PH |
10627 | /* The representation of a fixed-point value of type TYPE |
10628 | corresponding to the value X. */ | |
14f9c5c9 AS |
10629 | |
10630 | LONGEST | |
ebf56fd3 | 10631 | ada_float_to_fixed (struct type *type, DOUBLEST x) |
14f9c5c9 AS |
10632 | { |
10633 | return (LONGEST) (x / scaling_factor (type) + 0.5); | |
10634 | } | |
10635 | ||
14f9c5c9 | 10636 | \f |
d2e4a39e | 10637 | |
4c4b4cd2 | 10638 | /* Range types */ |
14f9c5c9 AS |
10639 | |
10640 | /* Scan STR beginning at position K for a discriminant name, and | |
10641 | return the value of that discriminant field of DVAL in *PX. If | |
10642 | PNEW_K is not null, put the position of the character beyond the | |
10643 | name scanned in *PNEW_K. Return 1 if successful; return 0 and do | |
4c4b4cd2 | 10644 | not alter *PX and *PNEW_K if unsuccessful. */ |
14f9c5c9 AS |
10645 | |
10646 | static int | |
07d8f827 | 10647 | scan_discrim_bound (char *str, int k, struct value *dval, LONGEST * px, |
76a01679 | 10648 | int *pnew_k) |
14f9c5c9 AS |
10649 | { |
10650 | static char *bound_buffer = NULL; | |
10651 | static size_t bound_buffer_len = 0; | |
10652 | char *bound; | |
10653 | char *pend; | |
d2e4a39e | 10654 | struct value *bound_val; |
14f9c5c9 AS |
10655 | |
10656 | if (dval == NULL || str == NULL || str[k] == '\0') | |
10657 | return 0; | |
10658 | ||
d2e4a39e | 10659 | pend = strstr (str + k, "__"); |
14f9c5c9 AS |
10660 | if (pend == NULL) |
10661 | { | |
d2e4a39e | 10662 | bound = str + k; |
14f9c5c9 AS |
10663 | k += strlen (bound); |
10664 | } | |
d2e4a39e | 10665 | else |
14f9c5c9 | 10666 | { |
d2e4a39e | 10667 | GROW_VECT (bound_buffer, bound_buffer_len, pend - (str + k) + 1); |
14f9c5c9 | 10668 | bound = bound_buffer; |
d2e4a39e AS |
10669 | strncpy (bound_buffer, str + k, pend - (str + k)); |
10670 | bound[pend - (str + k)] = '\0'; | |
10671 | k = pend - str; | |
14f9c5c9 | 10672 | } |
d2e4a39e | 10673 | |
df407dfe | 10674 | bound_val = ada_search_struct_field (bound, dval, 0, value_type (dval)); |
14f9c5c9 AS |
10675 | if (bound_val == NULL) |
10676 | return 0; | |
10677 | ||
10678 | *px = value_as_long (bound_val); | |
10679 | if (pnew_k != NULL) | |
10680 | *pnew_k = k; | |
10681 | return 1; | |
10682 | } | |
10683 | ||
10684 | /* Value of variable named NAME in the current environment. If | |
10685 | no such variable found, then if ERR_MSG is null, returns 0, and | |
4c4b4cd2 PH |
10686 | otherwise causes an error with message ERR_MSG. */ |
10687 | ||
d2e4a39e AS |
10688 | static struct value * |
10689 | get_var_value (char *name, char *err_msg) | |
14f9c5c9 | 10690 | { |
4c4b4cd2 | 10691 | struct ada_symbol_info *syms; |
14f9c5c9 AS |
10692 | int nsyms; |
10693 | ||
4c4b4cd2 | 10694 | nsyms = ada_lookup_symbol_list (name, get_selected_block (0), VAR_DOMAIN, |
d9680e73 | 10695 | &syms, 1); |
14f9c5c9 AS |
10696 | |
10697 | if (nsyms != 1) | |
10698 | { | |
10699 | if (err_msg == NULL) | |
4c4b4cd2 | 10700 | return 0; |
14f9c5c9 | 10701 | else |
8a3fe4f8 | 10702 | error (("%s"), err_msg); |
14f9c5c9 AS |
10703 | } |
10704 | ||
4c4b4cd2 | 10705 | return value_of_variable (syms[0].sym, syms[0].block); |
14f9c5c9 | 10706 | } |
d2e4a39e | 10707 | |
14f9c5c9 | 10708 | /* Value of integer variable named NAME in the current environment. If |
4c4b4cd2 PH |
10709 | no such variable found, returns 0, and sets *FLAG to 0. If |
10710 | successful, sets *FLAG to 1. */ | |
10711 | ||
14f9c5c9 | 10712 | LONGEST |
4c4b4cd2 | 10713 | get_int_var_value (char *name, int *flag) |
14f9c5c9 | 10714 | { |
4c4b4cd2 | 10715 | struct value *var_val = get_var_value (name, 0); |
d2e4a39e | 10716 | |
14f9c5c9 AS |
10717 | if (var_val == 0) |
10718 | { | |
10719 | if (flag != NULL) | |
4c4b4cd2 | 10720 | *flag = 0; |
14f9c5c9 AS |
10721 | return 0; |
10722 | } | |
10723 | else | |
10724 | { | |
10725 | if (flag != NULL) | |
4c4b4cd2 | 10726 | *flag = 1; |
14f9c5c9 AS |
10727 | return value_as_long (var_val); |
10728 | } | |
10729 | } | |
d2e4a39e | 10730 | |
14f9c5c9 AS |
10731 | |
10732 | /* Return a range type whose base type is that of the range type named | |
10733 | NAME in the current environment, and whose bounds are calculated | |
4c4b4cd2 | 10734 | from NAME according to the GNAT range encoding conventions. |
1ce677a4 UW |
10735 | Extract discriminant values, if needed, from DVAL. ORIG_TYPE is the |
10736 | corresponding range type from debug information; fall back to using it | |
10737 | if symbol lookup fails. If a new type must be created, allocate it | |
10738 | like ORIG_TYPE was. The bounds information, in general, is encoded | |
10739 | in NAME, the base type given in the named range type. */ | |
14f9c5c9 | 10740 | |
d2e4a39e | 10741 | static struct type * |
28c85d6c | 10742 | to_fixed_range_type (struct type *raw_type, struct value *dval) |
14f9c5c9 | 10743 | { |
0d5cff50 | 10744 | const char *name; |
14f9c5c9 | 10745 | struct type *base_type; |
d2e4a39e | 10746 | char *subtype_info; |
14f9c5c9 | 10747 | |
28c85d6c JB |
10748 | gdb_assert (raw_type != NULL); |
10749 | gdb_assert (TYPE_NAME (raw_type) != NULL); | |
dddfab26 | 10750 | |
1ce677a4 | 10751 | if (TYPE_CODE (raw_type) == TYPE_CODE_RANGE) |
14f9c5c9 AS |
10752 | base_type = TYPE_TARGET_TYPE (raw_type); |
10753 | else | |
10754 | base_type = raw_type; | |
10755 | ||
28c85d6c | 10756 | name = TYPE_NAME (raw_type); |
14f9c5c9 AS |
10757 | subtype_info = strstr (name, "___XD"); |
10758 | if (subtype_info == NULL) | |
690cc4eb | 10759 | { |
43bbcdc2 PH |
10760 | LONGEST L = ada_discrete_type_low_bound (raw_type); |
10761 | LONGEST U = ada_discrete_type_high_bound (raw_type); | |
5b4ee69b | 10762 | |
690cc4eb PH |
10763 | if (L < INT_MIN || U > INT_MAX) |
10764 | return raw_type; | |
10765 | else | |
28c85d6c | 10766 | return create_range_type (alloc_type_copy (raw_type), raw_type, |
43bbcdc2 PH |
10767 | ada_discrete_type_low_bound (raw_type), |
10768 | ada_discrete_type_high_bound (raw_type)); | |
690cc4eb | 10769 | } |
14f9c5c9 AS |
10770 | else |
10771 | { | |
10772 | static char *name_buf = NULL; | |
10773 | static size_t name_len = 0; | |
10774 | int prefix_len = subtype_info - name; | |
10775 | LONGEST L, U; | |
10776 | struct type *type; | |
10777 | char *bounds_str; | |
10778 | int n; | |
10779 | ||
10780 | GROW_VECT (name_buf, name_len, prefix_len + 5); | |
10781 | strncpy (name_buf, name, prefix_len); | |
10782 | name_buf[prefix_len] = '\0'; | |
10783 | ||
10784 | subtype_info += 5; | |
10785 | bounds_str = strchr (subtype_info, '_'); | |
10786 | n = 1; | |
10787 | ||
d2e4a39e | 10788 | if (*subtype_info == 'L') |
4c4b4cd2 PH |
10789 | { |
10790 | if (!ada_scan_number (bounds_str, n, &L, &n) | |
10791 | && !scan_discrim_bound (bounds_str, n, dval, &L, &n)) | |
10792 | return raw_type; | |
10793 | if (bounds_str[n] == '_') | |
10794 | n += 2; | |
0963b4bd | 10795 | else if (bounds_str[n] == '.') /* FIXME? SGI Workshop kludge. */ |
4c4b4cd2 PH |
10796 | n += 1; |
10797 | subtype_info += 1; | |
10798 | } | |
d2e4a39e | 10799 | else |
4c4b4cd2 PH |
10800 | { |
10801 | int ok; | |
5b4ee69b | 10802 | |
4c4b4cd2 PH |
10803 | strcpy (name_buf + prefix_len, "___L"); |
10804 | L = get_int_var_value (name_buf, &ok); | |
10805 | if (!ok) | |
10806 | { | |
323e0a4a | 10807 | lim_warning (_("Unknown lower bound, using 1.")); |
4c4b4cd2 PH |
10808 | L = 1; |
10809 | } | |
10810 | } | |
14f9c5c9 | 10811 | |
d2e4a39e | 10812 | if (*subtype_info == 'U') |
4c4b4cd2 PH |
10813 | { |
10814 | if (!ada_scan_number (bounds_str, n, &U, &n) | |
10815 | && !scan_discrim_bound (bounds_str, n, dval, &U, &n)) | |
10816 | return raw_type; | |
10817 | } | |
d2e4a39e | 10818 | else |
4c4b4cd2 PH |
10819 | { |
10820 | int ok; | |
5b4ee69b | 10821 | |
4c4b4cd2 PH |
10822 | strcpy (name_buf + prefix_len, "___U"); |
10823 | U = get_int_var_value (name_buf, &ok); | |
10824 | if (!ok) | |
10825 | { | |
323e0a4a | 10826 | lim_warning (_("Unknown upper bound, using %ld."), (long) L); |
4c4b4cd2 PH |
10827 | U = L; |
10828 | } | |
10829 | } | |
14f9c5c9 | 10830 | |
28c85d6c | 10831 | type = create_range_type (alloc_type_copy (raw_type), base_type, L, U); |
d2e4a39e | 10832 | TYPE_NAME (type) = name; |
14f9c5c9 AS |
10833 | return type; |
10834 | } | |
10835 | } | |
10836 | ||
4c4b4cd2 PH |
10837 | /* True iff NAME is the name of a range type. */ |
10838 | ||
14f9c5c9 | 10839 | int |
d2e4a39e | 10840 | ada_is_range_type_name (const char *name) |
14f9c5c9 AS |
10841 | { |
10842 | return (name != NULL && strstr (name, "___XD")); | |
d2e4a39e | 10843 | } |
14f9c5c9 | 10844 | \f |
d2e4a39e | 10845 | |
4c4b4cd2 PH |
10846 | /* Modular types */ |
10847 | ||
10848 | /* True iff TYPE is an Ada modular type. */ | |
14f9c5c9 | 10849 | |
14f9c5c9 | 10850 | int |
d2e4a39e | 10851 | ada_is_modular_type (struct type *type) |
14f9c5c9 | 10852 | { |
18af8284 | 10853 | struct type *subranged_type = get_base_type (type); |
14f9c5c9 AS |
10854 | |
10855 | return (subranged_type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE | |
690cc4eb | 10856 | && TYPE_CODE (subranged_type) == TYPE_CODE_INT |
4c4b4cd2 | 10857 | && TYPE_UNSIGNED (subranged_type)); |
14f9c5c9 AS |
10858 | } |
10859 | ||
4c4b4cd2 PH |
10860 | /* Assuming ada_is_modular_type (TYPE), the modulus of TYPE. */ |
10861 | ||
61ee279c | 10862 | ULONGEST |
0056e4d5 | 10863 | ada_modulus (struct type *type) |
14f9c5c9 | 10864 | { |
43bbcdc2 | 10865 | return (ULONGEST) TYPE_HIGH_BOUND (type) + 1; |
14f9c5c9 | 10866 | } |
d2e4a39e | 10867 | \f |
f7f9143b JB |
10868 | |
10869 | /* Ada exception catchpoint support: | |
10870 | --------------------------------- | |
10871 | ||
10872 | We support 3 kinds of exception catchpoints: | |
10873 | . catchpoints on Ada exceptions | |
10874 | . catchpoints on unhandled Ada exceptions | |
10875 | . catchpoints on failed assertions | |
10876 | ||
10877 | Exceptions raised during failed assertions, or unhandled exceptions | |
10878 | could perfectly be caught with the general catchpoint on Ada exceptions. | |
10879 | However, we can easily differentiate these two special cases, and having | |
10880 | the option to distinguish these two cases from the rest can be useful | |
10881 | to zero-in on certain situations. | |
10882 | ||
10883 | Exception catchpoints are a specialized form of breakpoint, | |
10884 | since they rely on inserting breakpoints inside known routines | |
10885 | of the GNAT runtime. The implementation therefore uses a standard | |
10886 | breakpoint structure of the BP_BREAKPOINT type, but with its own set | |
10887 | of breakpoint_ops. | |
10888 | ||
0259addd JB |
10889 | Support in the runtime for exception catchpoints have been changed |
10890 | a few times already, and these changes affect the implementation | |
10891 | of these catchpoints. In order to be able to support several | |
10892 | variants of the runtime, we use a sniffer that will determine | |
28010a5d | 10893 | the runtime variant used by the program being debugged. */ |
f7f9143b JB |
10894 | |
10895 | /* The different types of catchpoints that we introduced for catching | |
10896 | Ada exceptions. */ | |
10897 | ||
10898 | enum exception_catchpoint_kind | |
10899 | { | |
10900 | ex_catch_exception, | |
10901 | ex_catch_exception_unhandled, | |
10902 | ex_catch_assert | |
10903 | }; | |
10904 | ||
3d0b0fa3 JB |
10905 | /* Ada's standard exceptions. */ |
10906 | ||
10907 | static char *standard_exc[] = { | |
10908 | "constraint_error", | |
10909 | "program_error", | |
10910 | "storage_error", | |
10911 | "tasking_error" | |
10912 | }; | |
10913 | ||
0259addd JB |
10914 | typedef CORE_ADDR (ada_unhandled_exception_name_addr_ftype) (void); |
10915 | ||
10916 | /* A structure that describes how to support exception catchpoints | |
10917 | for a given executable. */ | |
10918 | ||
10919 | struct exception_support_info | |
10920 | { | |
10921 | /* The name of the symbol to break on in order to insert | |
10922 | a catchpoint on exceptions. */ | |
10923 | const char *catch_exception_sym; | |
10924 | ||
10925 | /* The name of the symbol to break on in order to insert | |
10926 | a catchpoint on unhandled exceptions. */ | |
10927 | const char *catch_exception_unhandled_sym; | |
10928 | ||
10929 | /* The name of the symbol to break on in order to insert | |
10930 | a catchpoint on failed assertions. */ | |
10931 | const char *catch_assert_sym; | |
10932 | ||
10933 | /* Assuming that the inferior just triggered an unhandled exception | |
10934 | catchpoint, this function is responsible for returning the address | |
10935 | in inferior memory where the name of that exception is stored. | |
10936 | Return zero if the address could not be computed. */ | |
10937 | ada_unhandled_exception_name_addr_ftype *unhandled_exception_name_addr; | |
10938 | }; | |
10939 | ||
10940 | static CORE_ADDR ada_unhandled_exception_name_addr (void); | |
10941 | static CORE_ADDR ada_unhandled_exception_name_addr_from_raise (void); | |
10942 | ||
10943 | /* The following exception support info structure describes how to | |
10944 | implement exception catchpoints with the latest version of the | |
10945 | Ada runtime (as of 2007-03-06). */ | |
10946 | ||
10947 | static const struct exception_support_info default_exception_support_info = | |
10948 | { | |
10949 | "__gnat_debug_raise_exception", /* catch_exception_sym */ | |
10950 | "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */ | |
10951 | "__gnat_debug_raise_assert_failure", /* catch_assert_sym */ | |
10952 | ada_unhandled_exception_name_addr | |
10953 | }; | |
10954 | ||
10955 | /* The following exception support info structure describes how to | |
10956 | implement exception catchpoints with a slightly older version | |
10957 | of the Ada runtime. */ | |
10958 | ||
10959 | static const struct exception_support_info exception_support_info_fallback = | |
10960 | { | |
10961 | "__gnat_raise_nodefer_with_msg", /* catch_exception_sym */ | |
10962 | "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */ | |
10963 | "system__assertions__raise_assert_failure", /* catch_assert_sym */ | |
10964 | ada_unhandled_exception_name_addr_from_raise | |
10965 | }; | |
10966 | ||
f17011e0 JB |
10967 | /* Return nonzero if we can detect the exception support routines |
10968 | described in EINFO. | |
10969 | ||
10970 | This function errors out if an abnormal situation is detected | |
10971 | (for instance, if we find the exception support routines, but | |
10972 | that support is found to be incomplete). */ | |
10973 | ||
10974 | static int | |
10975 | ada_has_this_exception_support (const struct exception_support_info *einfo) | |
10976 | { | |
10977 | struct symbol *sym; | |
10978 | ||
10979 | /* The symbol we're looking up is provided by a unit in the GNAT runtime | |
10980 | that should be compiled with debugging information. As a result, we | |
10981 | expect to find that symbol in the symtabs. */ | |
10982 | ||
10983 | sym = standard_lookup (einfo->catch_exception_sym, NULL, VAR_DOMAIN); | |
10984 | if (sym == NULL) | |
a6af7abe JB |
10985 | { |
10986 | /* Perhaps we did not find our symbol because the Ada runtime was | |
10987 | compiled without debugging info, or simply stripped of it. | |
10988 | It happens on some GNU/Linux distributions for instance, where | |
10989 | users have to install a separate debug package in order to get | |
10990 | the runtime's debugging info. In that situation, let the user | |
10991 | know why we cannot insert an Ada exception catchpoint. | |
10992 | ||
10993 | Note: Just for the purpose of inserting our Ada exception | |
10994 | catchpoint, we could rely purely on the associated minimal symbol. | |
10995 | But we would be operating in degraded mode anyway, since we are | |
10996 | still lacking the debugging info needed later on to extract | |
10997 | the name of the exception being raised (this name is printed in | |
10998 | the catchpoint message, and is also used when trying to catch | |
10999 | a specific exception). We do not handle this case for now. */ | |
11000 | if (lookup_minimal_symbol (einfo->catch_exception_sym, NULL, NULL)) | |
11001 | error (_("Your Ada runtime appears to be missing some debugging " | |
11002 | "information.\nCannot insert Ada exception catchpoint " | |
11003 | "in this configuration.")); | |
11004 | ||
11005 | return 0; | |
11006 | } | |
f17011e0 JB |
11007 | |
11008 | /* Make sure that the symbol we found corresponds to a function. */ | |
11009 | ||
11010 | if (SYMBOL_CLASS (sym) != LOC_BLOCK) | |
11011 | error (_("Symbol \"%s\" is not a function (class = %d)"), | |
11012 | SYMBOL_LINKAGE_NAME (sym), SYMBOL_CLASS (sym)); | |
11013 | ||
11014 | return 1; | |
11015 | } | |
11016 | ||
0259addd JB |
11017 | /* Inspect the Ada runtime and determine which exception info structure |
11018 | should be used to provide support for exception catchpoints. | |
11019 | ||
3eecfa55 JB |
11020 | This function will always set the per-inferior exception_info, |
11021 | or raise an error. */ | |
0259addd JB |
11022 | |
11023 | static void | |
11024 | ada_exception_support_info_sniffer (void) | |
11025 | { | |
3eecfa55 | 11026 | struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ()); |
0259addd JB |
11027 | |
11028 | /* If the exception info is already known, then no need to recompute it. */ | |
3eecfa55 | 11029 | if (data->exception_info != NULL) |
0259addd JB |
11030 | return; |
11031 | ||
11032 | /* Check the latest (default) exception support info. */ | |
f17011e0 | 11033 | if (ada_has_this_exception_support (&default_exception_support_info)) |
0259addd | 11034 | { |
3eecfa55 | 11035 | data->exception_info = &default_exception_support_info; |
0259addd JB |
11036 | return; |
11037 | } | |
11038 | ||
11039 | /* Try our fallback exception suport info. */ | |
f17011e0 | 11040 | if (ada_has_this_exception_support (&exception_support_info_fallback)) |
0259addd | 11041 | { |
3eecfa55 | 11042 | data->exception_info = &exception_support_info_fallback; |
0259addd JB |
11043 | return; |
11044 | } | |
11045 | ||
11046 | /* Sometimes, it is normal for us to not be able to find the routine | |
11047 | we are looking for. This happens when the program is linked with | |
11048 | the shared version of the GNAT runtime, and the program has not been | |
11049 | started yet. Inform the user of these two possible causes if | |
11050 | applicable. */ | |
11051 | ||
ccefe4c4 | 11052 | if (ada_update_initial_language (language_unknown) != language_ada) |
0259addd JB |
11053 | error (_("Unable to insert catchpoint. Is this an Ada main program?")); |
11054 | ||
11055 | /* If the symbol does not exist, then check that the program is | |
11056 | already started, to make sure that shared libraries have been | |
11057 | loaded. If it is not started, this may mean that the symbol is | |
11058 | in a shared library. */ | |
11059 | ||
11060 | if (ptid_get_pid (inferior_ptid) == 0) | |
11061 | error (_("Unable to insert catchpoint. Try to start the program first.")); | |
11062 | ||
11063 | /* At this point, we know that we are debugging an Ada program and | |
11064 | that the inferior has been started, but we still are not able to | |
0963b4bd | 11065 | find the run-time symbols. That can mean that we are in |
0259addd JB |
11066 | configurable run time mode, or that a-except as been optimized |
11067 | out by the linker... In any case, at this point it is not worth | |
11068 | supporting this feature. */ | |
11069 | ||
7dda8cff | 11070 | error (_("Cannot insert Ada exception catchpoints in this configuration.")); |
0259addd JB |
11071 | } |
11072 | ||
f7f9143b JB |
11073 | /* True iff FRAME is very likely to be that of a function that is |
11074 | part of the runtime system. This is all very heuristic, but is | |
11075 | intended to be used as advice as to what frames are uninteresting | |
11076 | to most users. */ | |
11077 | ||
11078 | static int | |
11079 | is_known_support_routine (struct frame_info *frame) | |
11080 | { | |
4ed6b5be | 11081 | struct symtab_and_line sal; |
0d5cff50 | 11082 | const char *func_name; |
692465f1 | 11083 | enum language func_lang; |
f7f9143b | 11084 | int i; |
f35a17b5 | 11085 | const char *fullname; |
f7f9143b | 11086 | |
4ed6b5be JB |
11087 | /* If this code does not have any debugging information (no symtab), |
11088 | This cannot be any user code. */ | |
f7f9143b | 11089 | |
4ed6b5be | 11090 | find_frame_sal (frame, &sal); |
f7f9143b JB |
11091 | if (sal.symtab == NULL) |
11092 | return 1; | |
11093 | ||
4ed6b5be JB |
11094 | /* If there is a symtab, but the associated source file cannot be |
11095 | located, then assume this is not user code: Selecting a frame | |
11096 | for which we cannot display the code would not be very helpful | |
11097 | for the user. This should also take care of case such as VxWorks | |
11098 | where the kernel has some debugging info provided for a few units. */ | |
f7f9143b | 11099 | |
f35a17b5 JK |
11100 | fullname = symtab_to_fullname (sal.symtab); |
11101 | if (access (fullname, R_OK) != 0) | |
f7f9143b JB |
11102 | return 1; |
11103 | ||
4ed6b5be JB |
11104 | /* Check the unit filename againt the Ada runtime file naming. |
11105 | We also check the name of the objfile against the name of some | |
11106 | known system libraries that sometimes come with debugging info | |
11107 | too. */ | |
11108 | ||
f7f9143b JB |
11109 | for (i = 0; known_runtime_file_name_patterns[i] != NULL; i += 1) |
11110 | { | |
11111 | re_comp (known_runtime_file_name_patterns[i]); | |
f69c91ad | 11112 | if (re_exec (lbasename (sal.symtab->filename))) |
f7f9143b | 11113 | return 1; |
4ed6b5be JB |
11114 | if (sal.symtab->objfile != NULL |
11115 | && re_exec (sal.symtab->objfile->name)) | |
11116 | return 1; | |
f7f9143b JB |
11117 | } |
11118 | ||
4ed6b5be | 11119 | /* Check whether the function is a GNAT-generated entity. */ |
f7f9143b | 11120 | |
e9e07ba6 | 11121 | find_frame_funname (frame, &func_name, &func_lang, NULL); |
f7f9143b JB |
11122 | if (func_name == NULL) |
11123 | return 1; | |
11124 | ||
11125 | for (i = 0; known_auxiliary_function_name_patterns[i] != NULL; i += 1) | |
11126 | { | |
11127 | re_comp (known_auxiliary_function_name_patterns[i]); | |
11128 | if (re_exec (func_name)) | |
11129 | return 1; | |
11130 | } | |
11131 | ||
11132 | return 0; | |
11133 | } | |
11134 | ||
11135 | /* Find the first frame that contains debugging information and that is not | |
11136 | part of the Ada run-time, starting from FI and moving upward. */ | |
11137 | ||
0ef643c8 | 11138 | void |
f7f9143b JB |
11139 | ada_find_printable_frame (struct frame_info *fi) |
11140 | { | |
11141 | for (; fi != NULL; fi = get_prev_frame (fi)) | |
11142 | { | |
11143 | if (!is_known_support_routine (fi)) | |
11144 | { | |
11145 | select_frame (fi); | |
11146 | break; | |
11147 | } | |
11148 | } | |
11149 | ||
11150 | } | |
11151 | ||
11152 | /* Assuming that the inferior just triggered an unhandled exception | |
11153 | catchpoint, return the address in inferior memory where the name | |
11154 | of the exception is stored. | |
11155 | ||
11156 | Return zero if the address could not be computed. */ | |
11157 | ||
11158 | static CORE_ADDR | |
11159 | ada_unhandled_exception_name_addr (void) | |
0259addd JB |
11160 | { |
11161 | return parse_and_eval_address ("e.full_name"); | |
11162 | } | |
11163 | ||
11164 | /* Same as ada_unhandled_exception_name_addr, except that this function | |
11165 | should be used when the inferior uses an older version of the runtime, | |
11166 | where the exception name needs to be extracted from a specific frame | |
11167 | several frames up in the callstack. */ | |
11168 | ||
11169 | static CORE_ADDR | |
11170 | ada_unhandled_exception_name_addr_from_raise (void) | |
f7f9143b JB |
11171 | { |
11172 | int frame_level; | |
11173 | struct frame_info *fi; | |
3eecfa55 | 11174 | struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ()); |
f7f9143b JB |
11175 | |
11176 | /* To determine the name of this exception, we need to select | |
11177 | the frame corresponding to RAISE_SYM_NAME. This frame is | |
11178 | at least 3 levels up, so we simply skip the first 3 frames | |
11179 | without checking the name of their associated function. */ | |
11180 | fi = get_current_frame (); | |
11181 | for (frame_level = 0; frame_level < 3; frame_level += 1) | |
11182 | if (fi != NULL) | |
11183 | fi = get_prev_frame (fi); | |
11184 | ||
11185 | while (fi != NULL) | |
11186 | { | |
0d5cff50 | 11187 | const char *func_name; |
692465f1 JB |
11188 | enum language func_lang; |
11189 | ||
e9e07ba6 | 11190 | find_frame_funname (fi, &func_name, &func_lang, NULL); |
f7f9143b | 11191 | if (func_name != NULL |
3eecfa55 | 11192 | && strcmp (func_name, data->exception_info->catch_exception_sym) == 0) |
f7f9143b JB |
11193 | break; /* We found the frame we were looking for... */ |
11194 | fi = get_prev_frame (fi); | |
11195 | } | |
11196 | ||
11197 | if (fi == NULL) | |
11198 | return 0; | |
11199 | ||
11200 | select_frame (fi); | |
11201 | return parse_and_eval_address ("id.full_name"); | |
11202 | } | |
11203 | ||
11204 | /* Assuming the inferior just triggered an Ada exception catchpoint | |
11205 | (of any type), return the address in inferior memory where the name | |
11206 | of the exception is stored, if applicable. | |
11207 | ||
11208 | Return zero if the address could not be computed, or if not relevant. */ | |
11209 | ||
11210 | static CORE_ADDR | |
11211 | ada_exception_name_addr_1 (enum exception_catchpoint_kind ex, | |
11212 | struct breakpoint *b) | |
11213 | { | |
3eecfa55 JB |
11214 | struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ()); |
11215 | ||
f7f9143b JB |
11216 | switch (ex) |
11217 | { | |
11218 | case ex_catch_exception: | |
11219 | return (parse_and_eval_address ("e.full_name")); | |
11220 | break; | |
11221 | ||
11222 | case ex_catch_exception_unhandled: | |
3eecfa55 | 11223 | return data->exception_info->unhandled_exception_name_addr (); |
f7f9143b JB |
11224 | break; |
11225 | ||
11226 | case ex_catch_assert: | |
11227 | return 0; /* Exception name is not relevant in this case. */ | |
11228 | break; | |
11229 | ||
11230 | default: | |
11231 | internal_error (__FILE__, __LINE__, _("unexpected catchpoint type")); | |
11232 | break; | |
11233 | } | |
11234 | ||
11235 | return 0; /* Should never be reached. */ | |
11236 | } | |
11237 | ||
11238 | /* Same as ada_exception_name_addr_1, except that it intercepts and contains | |
11239 | any error that ada_exception_name_addr_1 might cause to be thrown. | |
11240 | When an error is intercepted, a warning with the error message is printed, | |
11241 | and zero is returned. */ | |
11242 | ||
11243 | static CORE_ADDR | |
11244 | ada_exception_name_addr (enum exception_catchpoint_kind ex, | |
11245 | struct breakpoint *b) | |
11246 | { | |
bfd189b1 | 11247 | volatile struct gdb_exception e; |
f7f9143b JB |
11248 | CORE_ADDR result = 0; |
11249 | ||
11250 | TRY_CATCH (e, RETURN_MASK_ERROR) | |
11251 | { | |
11252 | result = ada_exception_name_addr_1 (ex, b); | |
11253 | } | |
11254 | ||
11255 | if (e.reason < 0) | |
11256 | { | |
11257 | warning (_("failed to get exception name: %s"), e.message); | |
11258 | return 0; | |
11259 | } | |
11260 | ||
11261 | return result; | |
11262 | } | |
11263 | ||
28010a5d PA |
11264 | static struct symtab_and_line ada_exception_sal (enum exception_catchpoint_kind, |
11265 | char *, char **, | |
c0a91b2b | 11266 | const struct breakpoint_ops **); |
28010a5d PA |
11267 | static char *ada_exception_catchpoint_cond_string (const char *excep_string); |
11268 | ||
11269 | /* Ada catchpoints. | |
11270 | ||
11271 | In the case of catchpoints on Ada exceptions, the catchpoint will | |
11272 | stop the target on every exception the program throws. When a user | |
11273 | specifies the name of a specific exception, we translate this | |
11274 | request into a condition expression (in text form), and then parse | |
11275 | it into an expression stored in each of the catchpoint's locations. | |
11276 | We then use this condition to check whether the exception that was | |
11277 | raised is the one the user is interested in. If not, then the | |
11278 | target is resumed again. We store the name of the requested | |
11279 | exception, in order to be able to re-set the condition expression | |
11280 | when symbols change. */ | |
11281 | ||
11282 | /* An instance of this type is used to represent an Ada catchpoint | |
11283 | breakpoint location. It includes a "struct bp_location" as a kind | |
11284 | of base class; users downcast to "struct bp_location *" when | |
11285 | needed. */ | |
11286 | ||
11287 | struct ada_catchpoint_location | |
11288 | { | |
11289 | /* The base class. */ | |
11290 | struct bp_location base; | |
11291 | ||
11292 | /* The condition that checks whether the exception that was raised | |
11293 | is the specific exception the user specified on catchpoint | |
11294 | creation. */ | |
11295 | struct expression *excep_cond_expr; | |
11296 | }; | |
11297 | ||
11298 | /* Implement the DTOR method in the bp_location_ops structure for all | |
11299 | Ada exception catchpoint kinds. */ | |
11300 | ||
11301 | static void | |
11302 | ada_catchpoint_location_dtor (struct bp_location *bl) | |
11303 | { | |
11304 | struct ada_catchpoint_location *al = (struct ada_catchpoint_location *) bl; | |
11305 | ||
11306 | xfree (al->excep_cond_expr); | |
11307 | } | |
11308 | ||
11309 | /* The vtable to be used in Ada catchpoint locations. */ | |
11310 | ||
11311 | static const struct bp_location_ops ada_catchpoint_location_ops = | |
11312 | { | |
11313 | ada_catchpoint_location_dtor | |
11314 | }; | |
11315 | ||
11316 | /* An instance of this type is used to represent an Ada catchpoint. | |
11317 | It includes a "struct breakpoint" as a kind of base class; users | |
11318 | downcast to "struct breakpoint *" when needed. */ | |
11319 | ||
11320 | struct ada_catchpoint | |
11321 | { | |
11322 | /* The base class. */ | |
11323 | struct breakpoint base; | |
11324 | ||
11325 | /* The name of the specific exception the user specified. */ | |
11326 | char *excep_string; | |
11327 | }; | |
11328 | ||
11329 | /* Parse the exception condition string in the context of each of the | |
11330 | catchpoint's locations, and store them for later evaluation. */ | |
11331 | ||
11332 | static void | |
11333 | create_excep_cond_exprs (struct ada_catchpoint *c) | |
11334 | { | |
11335 | struct cleanup *old_chain; | |
11336 | struct bp_location *bl; | |
11337 | char *cond_string; | |
11338 | ||
11339 | /* Nothing to do if there's no specific exception to catch. */ | |
11340 | if (c->excep_string == NULL) | |
11341 | return; | |
11342 | ||
11343 | /* Same if there are no locations... */ | |
11344 | if (c->base.loc == NULL) | |
11345 | return; | |
11346 | ||
11347 | /* Compute the condition expression in text form, from the specific | |
11348 | expection we want to catch. */ | |
11349 | cond_string = ada_exception_catchpoint_cond_string (c->excep_string); | |
11350 | old_chain = make_cleanup (xfree, cond_string); | |
11351 | ||
11352 | /* Iterate over all the catchpoint's locations, and parse an | |
11353 | expression for each. */ | |
11354 | for (bl = c->base.loc; bl != NULL; bl = bl->next) | |
11355 | { | |
11356 | struct ada_catchpoint_location *ada_loc | |
11357 | = (struct ada_catchpoint_location *) bl; | |
11358 | struct expression *exp = NULL; | |
11359 | ||
11360 | if (!bl->shlib_disabled) | |
11361 | { | |
11362 | volatile struct gdb_exception e; | |
11363 | char *s; | |
11364 | ||
11365 | s = cond_string; | |
11366 | TRY_CATCH (e, RETURN_MASK_ERROR) | |
11367 | { | |
1bb9788d TT |
11368 | exp = parse_exp_1 (&s, bl->address, |
11369 | block_for_pc (bl->address), 0); | |
28010a5d PA |
11370 | } |
11371 | if (e.reason < 0) | |
11372 | warning (_("failed to reevaluate internal exception condition " | |
11373 | "for catchpoint %d: %s"), | |
11374 | c->base.number, e.message); | |
11375 | } | |
11376 | ||
11377 | ada_loc->excep_cond_expr = exp; | |
11378 | } | |
11379 | ||
11380 | do_cleanups (old_chain); | |
11381 | } | |
11382 | ||
11383 | /* Implement the DTOR method in the breakpoint_ops structure for all | |
11384 | exception catchpoint kinds. */ | |
11385 | ||
11386 | static void | |
11387 | dtor_exception (enum exception_catchpoint_kind ex, struct breakpoint *b) | |
11388 | { | |
11389 | struct ada_catchpoint *c = (struct ada_catchpoint *) b; | |
11390 | ||
11391 | xfree (c->excep_string); | |
348d480f | 11392 | |
2060206e | 11393 | bkpt_breakpoint_ops.dtor (b); |
28010a5d PA |
11394 | } |
11395 | ||
11396 | /* Implement the ALLOCATE_LOCATION method in the breakpoint_ops | |
11397 | structure for all exception catchpoint kinds. */ | |
11398 | ||
11399 | static struct bp_location * | |
11400 | allocate_location_exception (enum exception_catchpoint_kind ex, | |
11401 | struct breakpoint *self) | |
11402 | { | |
11403 | struct ada_catchpoint_location *loc; | |
11404 | ||
11405 | loc = XNEW (struct ada_catchpoint_location); | |
11406 | init_bp_location (&loc->base, &ada_catchpoint_location_ops, self); | |
11407 | loc->excep_cond_expr = NULL; | |
11408 | return &loc->base; | |
11409 | } | |
11410 | ||
11411 | /* Implement the RE_SET method in the breakpoint_ops structure for all | |
11412 | exception catchpoint kinds. */ | |
11413 | ||
11414 | static void | |
11415 | re_set_exception (enum exception_catchpoint_kind ex, struct breakpoint *b) | |
11416 | { | |
11417 | struct ada_catchpoint *c = (struct ada_catchpoint *) b; | |
11418 | ||
11419 | /* Call the base class's method. This updates the catchpoint's | |
11420 | locations. */ | |
2060206e | 11421 | bkpt_breakpoint_ops.re_set (b); |
28010a5d PA |
11422 | |
11423 | /* Reparse the exception conditional expressions. One for each | |
11424 | location. */ | |
11425 | create_excep_cond_exprs (c); | |
11426 | } | |
11427 | ||
11428 | /* Returns true if we should stop for this breakpoint hit. If the | |
11429 | user specified a specific exception, we only want to cause a stop | |
11430 | if the program thrown that exception. */ | |
11431 | ||
11432 | static int | |
11433 | should_stop_exception (const struct bp_location *bl) | |
11434 | { | |
11435 | struct ada_catchpoint *c = (struct ada_catchpoint *) bl->owner; | |
11436 | const struct ada_catchpoint_location *ada_loc | |
11437 | = (const struct ada_catchpoint_location *) bl; | |
11438 | volatile struct gdb_exception ex; | |
11439 | int stop; | |
11440 | ||
11441 | /* With no specific exception, should always stop. */ | |
11442 | if (c->excep_string == NULL) | |
11443 | return 1; | |
11444 | ||
11445 | if (ada_loc->excep_cond_expr == NULL) | |
11446 | { | |
11447 | /* We will have a NULL expression if back when we were creating | |
11448 | the expressions, this location's had failed to parse. */ | |
11449 | return 1; | |
11450 | } | |
11451 | ||
11452 | stop = 1; | |
11453 | TRY_CATCH (ex, RETURN_MASK_ALL) | |
11454 | { | |
11455 | struct value *mark; | |
11456 | ||
11457 | mark = value_mark (); | |
11458 | stop = value_true (evaluate_expression (ada_loc->excep_cond_expr)); | |
11459 | value_free_to_mark (mark); | |
11460 | } | |
11461 | if (ex.reason < 0) | |
11462 | exception_fprintf (gdb_stderr, ex, | |
11463 | _("Error in testing exception condition:\n")); | |
11464 | return stop; | |
11465 | } | |
11466 | ||
11467 | /* Implement the CHECK_STATUS method in the breakpoint_ops structure | |
11468 | for all exception catchpoint kinds. */ | |
11469 | ||
11470 | static void | |
11471 | check_status_exception (enum exception_catchpoint_kind ex, bpstat bs) | |
11472 | { | |
11473 | bs->stop = should_stop_exception (bs->bp_location_at); | |
11474 | } | |
11475 | ||
f7f9143b JB |
11476 | /* Implement the PRINT_IT method in the breakpoint_ops structure |
11477 | for all exception catchpoint kinds. */ | |
11478 | ||
11479 | static enum print_stop_action | |
348d480f | 11480 | print_it_exception (enum exception_catchpoint_kind ex, bpstat bs) |
f7f9143b | 11481 | { |
79a45e25 | 11482 | struct ui_out *uiout = current_uiout; |
348d480f PA |
11483 | struct breakpoint *b = bs->breakpoint_at; |
11484 | ||
956a9fb9 | 11485 | annotate_catchpoint (b->number); |
f7f9143b | 11486 | |
956a9fb9 | 11487 | if (ui_out_is_mi_like_p (uiout)) |
f7f9143b | 11488 | { |
956a9fb9 JB |
11489 | ui_out_field_string (uiout, "reason", |
11490 | async_reason_lookup (EXEC_ASYNC_BREAKPOINT_HIT)); | |
11491 | ui_out_field_string (uiout, "disp", bpdisp_text (b->disposition)); | |
f7f9143b JB |
11492 | } |
11493 | ||
00eb2c4a JB |
11494 | ui_out_text (uiout, |
11495 | b->disposition == disp_del ? "\nTemporary catchpoint " | |
11496 | : "\nCatchpoint "); | |
956a9fb9 JB |
11497 | ui_out_field_int (uiout, "bkptno", b->number); |
11498 | ui_out_text (uiout, ", "); | |
f7f9143b | 11499 | |
f7f9143b JB |
11500 | switch (ex) |
11501 | { | |
11502 | case ex_catch_exception: | |
f7f9143b | 11503 | case ex_catch_exception_unhandled: |
956a9fb9 JB |
11504 | { |
11505 | const CORE_ADDR addr = ada_exception_name_addr (ex, b); | |
11506 | char exception_name[256]; | |
11507 | ||
11508 | if (addr != 0) | |
11509 | { | |
11510 | read_memory (addr, exception_name, sizeof (exception_name) - 1); | |
11511 | exception_name [sizeof (exception_name) - 1] = '\0'; | |
11512 | } | |
11513 | else | |
11514 | { | |
11515 | /* For some reason, we were unable to read the exception | |
11516 | name. This could happen if the Runtime was compiled | |
11517 | without debugging info, for instance. In that case, | |
11518 | just replace the exception name by the generic string | |
11519 | "exception" - it will read as "an exception" in the | |
11520 | notification we are about to print. */ | |
967cff16 | 11521 | memcpy (exception_name, "exception", sizeof ("exception")); |
956a9fb9 JB |
11522 | } |
11523 | /* In the case of unhandled exception breakpoints, we print | |
11524 | the exception name as "unhandled EXCEPTION_NAME", to make | |
11525 | it clearer to the user which kind of catchpoint just got | |
11526 | hit. We used ui_out_text to make sure that this extra | |
11527 | info does not pollute the exception name in the MI case. */ | |
11528 | if (ex == ex_catch_exception_unhandled) | |
11529 | ui_out_text (uiout, "unhandled "); | |
11530 | ui_out_field_string (uiout, "exception-name", exception_name); | |
11531 | } | |
11532 | break; | |
f7f9143b | 11533 | case ex_catch_assert: |
956a9fb9 JB |
11534 | /* In this case, the name of the exception is not really |
11535 | important. Just print "failed assertion" to make it clearer | |
11536 | that his program just hit an assertion-failure catchpoint. | |
11537 | We used ui_out_text because this info does not belong in | |
11538 | the MI output. */ | |
11539 | ui_out_text (uiout, "failed assertion"); | |
11540 | break; | |
f7f9143b | 11541 | } |
956a9fb9 JB |
11542 | ui_out_text (uiout, " at "); |
11543 | ada_find_printable_frame (get_current_frame ()); | |
f7f9143b JB |
11544 | |
11545 | return PRINT_SRC_AND_LOC; | |
11546 | } | |
11547 | ||
11548 | /* Implement the PRINT_ONE method in the breakpoint_ops structure | |
11549 | for all exception catchpoint kinds. */ | |
11550 | ||
11551 | static void | |
11552 | print_one_exception (enum exception_catchpoint_kind ex, | |
a6d9a66e | 11553 | struct breakpoint *b, struct bp_location **last_loc) |
f7f9143b | 11554 | { |
79a45e25 | 11555 | struct ui_out *uiout = current_uiout; |
28010a5d | 11556 | struct ada_catchpoint *c = (struct ada_catchpoint *) b; |
79a45b7d TT |
11557 | struct value_print_options opts; |
11558 | ||
11559 | get_user_print_options (&opts); | |
11560 | if (opts.addressprint) | |
f7f9143b JB |
11561 | { |
11562 | annotate_field (4); | |
5af949e3 | 11563 | ui_out_field_core_addr (uiout, "addr", b->loc->gdbarch, b->loc->address); |
f7f9143b JB |
11564 | } |
11565 | ||
11566 | annotate_field (5); | |
a6d9a66e | 11567 | *last_loc = b->loc; |
f7f9143b JB |
11568 | switch (ex) |
11569 | { | |
11570 | case ex_catch_exception: | |
28010a5d | 11571 | if (c->excep_string != NULL) |
f7f9143b | 11572 | { |
28010a5d PA |
11573 | char *msg = xstrprintf (_("`%s' Ada exception"), c->excep_string); |
11574 | ||
f7f9143b JB |
11575 | ui_out_field_string (uiout, "what", msg); |
11576 | xfree (msg); | |
11577 | } | |
11578 | else | |
11579 | ui_out_field_string (uiout, "what", "all Ada exceptions"); | |
11580 | ||
11581 | break; | |
11582 | ||
11583 | case ex_catch_exception_unhandled: | |
11584 | ui_out_field_string (uiout, "what", "unhandled Ada exceptions"); | |
11585 | break; | |
11586 | ||
11587 | case ex_catch_assert: | |
11588 | ui_out_field_string (uiout, "what", "failed Ada assertions"); | |
11589 | break; | |
11590 | ||
11591 | default: | |
11592 | internal_error (__FILE__, __LINE__, _("unexpected catchpoint type")); | |
11593 | break; | |
11594 | } | |
11595 | } | |
11596 | ||
11597 | /* Implement the PRINT_MENTION method in the breakpoint_ops structure | |
11598 | for all exception catchpoint kinds. */ | |
11599 | ||
11600 | static void | |
11601 | print_mention_exception (enum exception_catchpoint_kind ex, | |
11602 | struct breakpoint *b) | |
11603 | { | |
28010a5d | 11604 | struct ada_catchpoint *c = (struct ada_catchpoint *) b; |
79a45e25 | 11605 | struct ui_out *uiout = current_uiout; |
28010a5d | 11606 | |
00eb2c4a JB |
11607 | ui_out_text (uiout, b->disposition == disp_del ? _("Temporary catchpoint ") |
11608 | : _("Catchpoint ")); | |
11609 | ui_out_field_int (uiout, "bkptno", b->number); | |
11610 | ui_out_text (uiout, ": "); | |
11611 | ||
f7f9143b JB |
11612 | switch (ex) |
11613 | { | |
11614 | case ex_catch_exception: | |
28010a5d | 11615 | if (c->excep_string != NULL) |
00eb2c4a JB |
11616 | { |
11617 | char *info = xstrprintf (_("`%s' Ada exception"), c->excep_string); | |
11618 | struct cleanup *old_chain = make_cleanup (xfree, info); | |
11619 | ||
11620 | ui_out_text (uiout, info); | |
11621 | do_cleanups (old_chain); | |
11622 | } | |
f7f9143b | 11623 | else |
00eb2c4a | 11624 | ui_out_text (uiout, _("all Ada exceptions")); |
f7f9143b JB |
11625 | break; |
11626 | ||
11627 | case ex_catch_exception_unhandled: | |
00eb2c4a | 11628 | ui_out_text (uiout, _("unhandled Ada exceptions")); |
f7f9143b JB |
11629 | break; |
11630 | ||
11631 | case ex_catch_assert: | |
00eb2c4a | 11632 | ui_out_text (uiout, _("failed Ada assertions")); |
f7f9143b JB |
11633 | break; |
11634 | ||
11635 | default: | |
11636 | internal_error (__FILE__, __LINE__, _("unexpected catchpoint type")); | |
11637 | break; | |
11638 | } | |
11639 | } | |
11640 | ||
6149aea9 PA |
11641 | /* Implement the PRINT_RECREATE method in the breakpoint_ops structure |
11642 | for all exception catchpoint kinds. */ | |
11643 | ||
11644 | static void | |
11645 | print_recreate_exception (enum exception_catchpoint_kind ex, | |
11646 | struct breakpoint *b, struct ui_file *fp) | |
11647 | { | |
28010a5d PA |
11648 | struct ada_catchpoint *c = (struct ada_catchpoint *) b; |
11649 | ||
6149aea9 PA |
11650 | switch (ex) |
11651 | { | |
11652 | case ex_catch_exception: | |
11653 | fprintf_filtered (fp, "catch exception"); | |
28010a5d PA |
11654 | if (c->excep_string != NULL) |
11655 | fprintf_filtered (fp, " %s", c->excep_string); | |
6149aea9 PA |
11656 | break; |
11657 | ||
11658 | case ex_catch_exception_unhandled: | |
78076abc | 11659 | fprintf_filtered (fp, "catch exception unhandled"); |
6149aea9 PA |
11660 | break; |
11661 | ||
11662 | case ex_catch_assert: | |
11663 | fprintf_filtered (fp, "catch assert"); | |
11664 | break; | |
11665 | ||
11666 | default: | |
11667 | internal_error (__FILE__, __LINE__, _("unexpected catchpoint type")); | |
11668 | } | |
d9b3f62e | 11669 | print_recreate_thread (b, fp); |
6149aea9 PA |
11670 | } |
11671 | ||
f7f9143b JB |
11672 | /* Virtual table for "catch exception" breakpoints. */ |
11673 | ||
28010a5d PA |
11674 | static void |
11675 | dtor_catch_exception (struct breakpoint *b) | |
11676 | { | |
11677 | dtor_exception (ex_catch_exception, b); | |
11678 | } | |
11679 | ||
11680 | static struct bp_location * | |
11681 | allocate_location_catch_exception (struct breakpoint *self) | |
11682 | { | |
11683 | return allocate_location_exception (ex_catch_exception, self); | |
11684 | } | |
11685 | ||
11686 | static void | |
11687 | re_set_catch_exception (struct breakpoint *b) | |
11688 | { | |
11689 | re_set_exception (ex_catch_exception, b); | |
11690 | } | |
11691 | ||
11692 | static void | |
11693 | check_status_catch_exception (bpstat bs) | |
11694 | { | |
11695 | check_status_exception (ex_catch_exception, bs); | |
11696 | } | |
11697 | ||
f7f9143b | 11698 | static enum print_stop_action |
348d480f | 11699 | print_it_catch_exception (bpstat bs) |
f7f9143b | 11700 | { |
348d480f | 11701 | return print_it_exception (ex_catch_exception, bs); |
f7f9143b JB |
11702 | } |
11703 | ||
11704 | static void | |
a6d9a66e | 11705 | print_one_catch_exception (struct breakpoint *b, struct bp_location **last_loc) |
f7f9143b | 11706 | { |
a6d9a66e | 11707 | print_one_exception (ex_catch_exception, b, last_loc); |
f7f9143b JB |
11708 | } |
11709 | ||
11710 | static void | |
11711 | print_mention_catch_exception (struct breakpoint *b) | |
11712 | { | |
11713 | print_mention_exception (ex_catch_exception, b); | |
11714 | } | |
11715 | ||
6149aea9 PA |
11716 | static void |
11717 | print_recreate_catch_exception (struct breakpoint *b, struct ui_file *fp) | |
11718 | { | |
11719 | print_recreate_exception (ex_catch_exception, b, fp); | |
11720 | } | |
11721 | ||
2060206e | 11722 | static struct breakpoint_ops catch_exception_breakpoint_ops; |
f7f9143b JB |
11723 | |
11724 | /* Virtual table for "catch exception unhandled" breakpoints. */ | |
11725 | ||
28010a5d PA |
11726 | static void |
11727 | dtor_catch_exception_unhandled (struct breakpoint *b) | |
11728 | { | |
11729 | dtor_exception (ex_catch_exception_unhandled, b); | |
11730 | } | |
11731 | ||
11732 | static struct bp_location * | |
11733 | allocate_location_catch_exception_unhandled (struct breakpoint *self) | |
11734 | { | |
11735 | return allocate_location_exception (ex_catch_exception_unhandled, self); | |
11736 | } | |
11737 | ||
11738 | static void | |
11739 | re_set_catch_exception_unhandled (struct breakpoint *b) | |
11740 | { | |
11741 | re_set_exception (ex_catch_exception_unhandled, b); | |
11742 | } | |
11743 | ||
11744 | static void | |
11745 | check_status_catch_exception_unhandled (bpstat bs) | |
11746 | { | |
11747 | check_status_exception (ex_catch_exception_unhandled, bs); | |
11748 | } | |
11749 | ||
f7f9143b | 11750 | static enum print_stop_action |
348d480f | 11751 | print_it_catch_exception_unhandled (bpstat bs) |
f7f9143b | 11752 | { |
348d480f | 11753 | return print_it_exception (ex_catch_exception_unhandled, bs); |
f7f9143b JB |
11754 | } |
11755 | ||
11756 | static void | |
a6d9a66e UW |
11757 | print_one_catch_exception_unhandled (struct breakpoint *b, |
11758 | struct bp_location **last_loc) | |
f7f9143b | 11759 | { |
a6d9a66e | 11760 | print_one_exception (ex_catch_exception_unhandled, b, last_loc); |
f7f9143b JB |
11761 | } |
11762 | ||
11763 | static void | |
11764 | print_mention_catch_exception_unhandled (struct breakpoint *b) | |
11765 | { | |
11766 | print_mention_exception (ex_catch_exception_unhandled, b); | |
11767 | } | |
11768 | ||
6149aea9 PA |
11769 | static void |
11770 | print_recreate_catch_exception_unhandled (struct breakpoint *b, | |
11771 | struct ui_file *fp) | |
11772 | { | |
11773 | print_recreate_exception (ex_catch_exception_unhandled, b, fp); | |
11774 | } | |
11775 | ||
2060206e | 11776 | static struct breakpoint_ops catch_exception_unhandled_breakpoint_ops; |
f7f9143b JB |
11777 | |
11778 | /* Virtual table for "catch assert" breakpoints. */ | |
11779 | ||
28010a5d PA |
11780 | static void |
11781 | dtor_catch_assert (struct breakpoint *b) | |
11782 | { | |
11783 | dtor_exception (ex_catch_assert, b); | |
11784 | } | |
11785 | ||
11786 | static struct bp_location * | |
11787 | allocate_location_catch_assert (struct breakpoint *self) | |
11788 | { | |
11789 | return allocate_location_exception (ex_catch_assert, self); | |
11790 | } | |
11791 | ||
11792 | static void | |
11793 | re_set_catch_assert (struct breakpoint *b) | |
11794 | { | |
843e694d | 11795 | re_set_exception (ex_catch_assert, b); |
28010a5d PA |
11796 | } |
11797 | ||
11798 | static void | |
11799 | check_status_catch_assert (bpstat bs) | |
11800 | { | |
11801 | check_status_exception (ex_catch_assert, bs); | |
11802 | } | |
11803 | ||
f7f9143b | 11804 | static enum print_stop_action |
348d480f | 11805 | print_it_catch_assert (bpstat bs) |
f7f9143b | 11806 | { |
348d480f | 11807 | return print_it_exception (ex_catch_assert, bs); |
f7f9143b JB |
11808 | } |
11809 | ||
11810 | static void | |
a6d9a66e | 11811 | print_one_catch_assert (struct breakpoint *b, struct bp_location **last_loc) |
f7f9143b | 11812 | { |
a6d9a66e | 11813 | print_one_exception (ex_catch_assert, b, last_loc); |
f7f9143b JB |
11814 | } |
11815 | ||
11816 | static void | |
11817 | print_mention_catch_assert (struct breakpoint *b) | |
11818 | { | |
11819 | print_mention_exception (ex_catch_assert, b); | |
11820 | } | |
11821 | ||
6149aea9 PA |
11822 | static void |
11823 | print_recreate_catch_assert (struct breakpoint *b, struct ui_file *fp) | |
11824 | { | |
11825 | print_recreate_exception (ex_catch_assert, b, fp); | |
11826 | } | |
11827 | ||
2060206e | 11828 | static struct breakpoint_ops catch_assert_breakpoint_ops; |
f7f9143b | 11829 | |
f7f9143b JB |
11830 | /* Return a newly allocated copy of the first space-separated token |
11831 | in ARGSP, and then adjust ARGSP to point immediately after that | |
11832 | token. | |
11833 | ||
11834 | Return NULL if ARGPS does not contain any more tokens. */ | |
11835 | ||
11836 | static char * | |
11837 | ada_get_next_arg (char **argsp) | |
11838 | { | |
11839 | char *args = *argsp; | |
11840 | char *end; | |
11841 | char *result; | |
11842 | ||
0fcd72ba | 11843 | args = skip_spaces (args); |
f7f9143b JB |
11844 | if (args[0] == '\0') |
11845 | return NULL; /* No more arguments. */ | |
11846 | ||
11847 | /* Find the end of the current argument. */ | |
11848 | ||
0fcd72ba | 11849 | end = skip_to_space (args); |
f7f9143b JB |
11850 | |
11851 | /* Adjust ARGSP to point to the start of the next argument. */ | |
11852 | ||
11853 | *argsp = end; | |
11854 | ||
11855 | /* Make a copy of the current argument and return it. */ | |
11856 | ||
11857 | result = xmalloc (end - args + 1); | |
11858 | strncpy (result, args, end - args); | |
11859 | result[end - args] = '\0'; | |
11860 | ||
11861 | return result; | |
11862 | } | |
11863 | ||
11864 | /* Split the arguments specified in a "catch exception" command. | |
11865 | Set EX to the appropriate catchpoint type. | |
28010a5d | 11866 | Set EXCEP_STRING to the name of the specific exception if |
5845583d JB |
11867 | specified by the user. |
11868 | If a condition is found at the end of the arguments, the condition | |
11869 | expression is stored in COND_STRING (memory must be deallocated | |
11870 | after use). Otherwise COND_STRING is set to NULL. */ | |
f7f9143b JB |
11871 | |
11872 | static void | |
11873 | catch_ada_exception_command_split (char *args, | |
11874 | enum exception_catchpoint_kind *ex, | |
5845583d JB |
11875 | char **excep_string, |
11876 | char **cond_string) | |
f7f9143b JB |
11877 | { |
11878 | struct cleanup *old_chain = make_cleanup (null_cleanup, NULL); | |
11879 | char *exception_name; | |
5845583d | 11880 | char *cond = NULL; |
f7f9143b JB |
11881 | |
11882 | exception_name = ada_get_next_arg (&args); | |
5845583d JB |
11883 | if (exception_name != NULL && strcmp (exception_name, "if") == 0) |
11884 | { | |
11885 | /* This is not an exception name; this is the start of a condition | |
11886 | expression for a catchpoint on all exceptions. So, "un-get" | |
11887 | this token, and set exception_name to NULL. */ | |
11888 | xfree (exception_name); | |
11889 | exception_name = NULL; | |
11890 | args -= 2; | |
11891 | } | |
f7f9143b JB |
11892 | make_cleanup (xfree, exception_name); |
11893 | ||
5845583d | 11894 | /* Check to see if we have a condition. */ |
f7f9143b | 11895 | |
0fcd72ba | 11896 | args = skip_spaces (args); |
5845583d JB |
11897 | if (strncmp (args, "if", 2) == 0 |
11898 | && (isspace (args[2]) || args[2] == '\0')) | |
11899 | { | |
11900 | args += 2; | |
11901 | args = skip_spaces (args); | |
11902 | ||
11903 | if (args[0] == '\0') | |
11904 | error (_("Condition missing after `if' keyword")); | |
11905 | cond = xstrdup (args); | |
11906 | make_cleanup (xfree, cond); | |
11907 | ||
11908 | args += strlen (args); | |
11909 | } | |
11910 | ||
11911 | /* Check that we do not have any more arguments. Anything else | |
11912 | is unexpected. */ | |
f7f9143b JB |
11913 | |
11914 | if (args[0] != '\0') | |
11915 | error (_("Junk at end of expression")); | |
11916 | ||
11917 | discard_cleanups (old_chain); | |
11918 | ||
11919 | if (exception_name == NULL) | |
11920 | { | |
11921 | /* Catch all exceptions. */ | |
11922 | *ex = ex_catch_exception; | |
28010a5d | 11923 | *excep_string = NULL; |
f7f9143b JB |
11924 | } |
11925 | else if (strcmp (exception_name, "unhandled") == 0) | |
11926 | { | |
11927 | /* Catch unhandled exceptions. */ | |
11928 | *ex = ex_catch_exception_unhandled; | |
28010a5d | 11929 | *excep_string = NULL; |
f7f9143b JB |
11930 | } |
11931 | else | |
11932 | { | |
11933 | /* Catch a specific exception. */ | |
11934 | *ex = ex_catch_exception; | |
28010a5d | 11935 | *excep_string = exception_name; |
f7f9143b | 11936 | } |
5845583d | 11937 | *cond_string = cond; |
f7f9143b JB |
11938 | } |
11939 | ||
11940 | /* Return the name of the symbol on which we should break in order to | |
11941 | implement a catchpoint of the EX kind. */ | |
11942 | ||
11943 | static const char * | |
11944 | ada_exception_sym_name (enum exception_catchpoint_kind ex) | |
11945 | { | |
3eecfa55 JB |
11946 | struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ()); |
11947 | ||
11948 | gdb_assert (data->exception_info != NULL); | |
0259addd | 11949 | |
f7f9143b JB |
11950 | switch (ex) |
11951 | { | |
11952 | case ex_catch_exception: | |
3eecfa55 | 11953 | return (data->exception_info->catch_exception_sym); |
f7f9143b JB |
11954 | break; |
11955 | case ex_catch_exception_unhandled: | |
3eecfa55 | 11956 | return (data->exception_info->catch_exception_unhandled_sym); |
f7f9143b JB |
11957 | break; |
11958 | case ex_catch_assert: | |
3eecfa55 | 11959 | return (data->exception_info->catch_assert_sym); |
f7f9143b JB |
11960 | break; |
11961 | default: | |
11962 | internal_error (__FILE__, __LINE__, | |
11963 | _("unexpected catchpoint kind (%d)"), ex); | |
11964 | } | |
11965 | } | |
11966 | ||
11967 | /* Return the breakpoint ops "virtual table" used for catchpoints | |
11968 | of the EX kind. */ | |
11969 | ||
c0a91b2b | 11970 | static const struct breakpoint_ops * |
4b9eee8c | 11971 | ada_exception_breakpoint_ops (enum exception_catchpoint_kind ex) |
f7f9143b JB |
11972 | { |
11973 | switch (ex) | |
11974 | { | |
11975 | case ex_catch_exception: | |
11976 | return (&catch_exception_breakpoint_ops); | |
11977 | break; | |
11978 | case ex_catch_exception_unhandled: | |
11979 | return (&catch_exception_unhandled_breakpoint_ops); | |
11980 | break; | |
11981 | case ex_catch_assert: | |
11982 | return (&catch_assert_breakpoint_ops); | |
11983 | break; | |
11984 | default: | |
11985 | internal_error (__FILE__, __LINE__, | |
11986 | _("unexpected catchpoint kind (%d)"), ex); | |
11987 | } | |
11988 | } | |
11989 | ||
11990 | /* Return the condition that will be used to match the current exception | |
11991 | being raised with the exception that the user wants to catch. This | |
11992 | assumes that this condition is used when the inferior just triggered | |
11993 | an exception catchpoint. | |
11994 | ||
11995 | The string returned is a newly allocated string that needs to be | |
11996 | deallocated later. */ | |
11997 | ||
11998 | static char * | |
28010a5d | 11999 | ada_exception_catchpoint_cond_string (const char *excep_string) |
f7f9143b | 12000 | { |
3d0b0fa3 JB |
12001 | int i; |
12002 | ||
0963b4bd | 12003 | /* The standard exceptions are a special case. They are defined in |
3d0b0fa3 | 12004 | runtime units that have been compiled without debugging info; if |
28010a5d | 12005 | EXCEP_STRING is the not-fully-qualified name of a standard |
3d0b0fa3 JB |
12006 | exception (e.g. "constraint_error") then, during the evaluation |
12007 | of the condition expression, the symbol lookup on this name would | |
0963b4bd | 12008 | *not* return this standard exception. The catchpoint condition |
3d0b0fa3 JB |
12009 | may then be set only on user-defined exceptions which have the |
12010 | same not-fully-qualified name (e.g. my_package.constraint_error). | |
12011 | ||
12012 | To avoid this unexcepted behavior, these standard exceptions are | |
0963b4bd | 12013 | systematically prefixed by "standard". This means that "catch |
3d0b0fa3 JB |
12014 | exception constraint_error" is rewritten into "catch exception |
12015 | standard.constraint_error". | |
12016 | ||
12017 | If an exception named contraint_error is defined in another package of | |
12018 | the inferior program, then the only way to specify this exception as a | |
12019 | breakpoint condition is to use its fully-qualified named: | |
12020 | e.g. my_package.constraint_error. */ | |
12021 | ||
12022 | for (i = 0; i < sizeof (standard_exc) / sizeof (char *); i++) | |
12023 | { | |
28010a5d | 12024 | if (strcmp (standard_exc [i], excep_string) == 0) |
3d0b0fa3 JB |
12025 | { |
12026 | return xstrprintf ("long_integer (e) = long_integer (&standard.%s)", | |
28010a5d | 12027 | excep_string); |
3d0b0fa3 JB |
12028 | } |
12029 | } | |
28010a5d | 12030 | return xstrprintf ("long_integer (e) = long_integer (&%s)", excep_string); |
f7f9143b JB |
12031 | } |
12032 | ||
12033 | /* Return the symtab_and_line that should be used to insert an exception | |
12034 | catchpoint of the TYPE kind. | |
12035 | ||
28010a5d PA |
12036 | EXCEP_STRING should contain the name of a specific exception that |
12037 | the catchpoint should catch, or NULL otherwise. | |
f7f9143b | 12038 | |
28010a5d PA |
12039 | ADDR_STRING returns the name of the function where the real |
12040 | breakpoint that implements the catchpoints is set, depending on the | |
12041 | type of catchpoint we need to create. */ | |
f7f9143b JB |
12042 | |
12043 | static struct symtab_and_line | |
28010a5d | 12044 | ada_exception_sal (enum exception_catchpoint_kind ex, char *excep_string, |
c0a91b2b | 12045 | char **addr_string, const struct breakpoint_ops **ops) |
f7f9143b JB |
12046 | { |
12047 | const char *sym_name; | |
12048 | struct symbol *sym; | |
f7f9143b | 12049 | |
0259addd JB |
12050 | /* First, find out which exception support info to use. */ |
12051 | ada_exception_support_info_sniffer (); | |
12052 | ||
12053 | /* Then lookup the function on which we will break in order to catch | |
f7f9143b | 12054 | the Ada exceptions requested by the user. */ |
f7f9143b JB |
12055 | sym_name = ada_exception_sym_name (ex); |
12056 | sym = standard_lookup (sym_name, NULL, VAR_DOMAIN); | |
12057 | ||
f17011e0 JB |
12058 | /* We can assume that SYM is not NULL at this stage. If the symbol |
12059 | did not exist, ada_exception_support_info_sniffer would have | |
12060 | raised an exception. | |
f7f9143b | 12061 | |
f17011e0 JB |
12062 | Also, ada_exception_support_info_sniffer should have already |
12063 | verified that SYM is a function symbol. */ | |
12064 | gdb_assert (sym != NULL); | |
12065 | gdb_assert (SYMBOL_CLASS (sym) == LOC_BLOCK); | |
f7f9143b JB |
12066 | |
12067 | /* Set ADDR_STRING. */ | |
f7f9143b JB |
12068 | *addr_string = xstrdup (sym_name); |
12069 | ||
f7f9143b | 12070 | /* Set OPS. */ |
4b9eee8c | 12071 | *ops = ada_exception_breakpoint_ops (ex); |
f7f9143b | 12072 | |
f17011e0 | 12073 | return find_function_start_sal (sym, 1); |
f7f9143b JB |
12074 | } |
12075 | ||
12076 | /* Parse the arguments (ARGS) of the "catch exception" command. | |
12077 | ||
f7f9143b JB |
12078 | If the user asked the catchpoint to catch only a specific |
12079 | exception, then save the exception name in ADDR_STRING. | |
12080 | ||
5845583d JB |
12081 | If the user provided a condition, then set COND_STRING to |
12082 | that condition expression (the memory must be deallocated | |
12083 | after use). Otherwise, set COND_STRING to NULL. | |
12084 | ||
f7f9143b JB |
12085 | See ada_exception_sal for a description of all the remaining |
12086 | function arguments of this function. */ | |
12087 | ||
9ac4176b | 12088 | static struct symtab_and_line |
f7f9143b | 12089 | ada_decode_exception_location (char *args, char **addr_string, |
28010a5d | 12090 | char **excep_string, |
5845583d | 12091 | char **cond_string, |
c0a91b2b | 12092 | const struct breakpoint_ops **ops) |
f7f9143b JB |
12093 | { |
12094 | enum exception_catchpoint_kind ex; | |
12095 | ||
5845583d | 12096 | catch_ada_exception_command_split (args, &ex, excep_string, cond_string); |
28010a5d PA |
12097 | return ada_exception_sal (ex, *excep_string, addr_string, ops); |
12098 | } | |
12099 | ||
12100 | /* Create an Ada exception catchpoint. */ | |
12101 | ||
12102 | static void | |
12103 | create_ada_exception_catchpoint (struct gdbarch *gdbarch, | |
12104 | struct symtab_and_line sal, | |
12105 | char *addr_string, | |
12106 | char *excep_string, | |
5845583d | 12107 | char *cond_string, |
c0a91b2b | 12108 | const struct breakpoint_ops *ops, |
28010a5d PA |
12109 | int tempflag, |
12110 | int from_tty) | |
12111 | { | |
12112 | struct ada_catchpoint *c; | |
12113 | ||
12114 | c = XNEW (struct ada_catchpoint); | |
12115 | init_ada_exception_breakpoint (&c->base, gdbarch, sal, addr_string, | |
12116 | ops, tempflag, from_tty); | |
12117 | c->excep_string = excep_string; | |
12118 | create_excep_cond_exprs (c); | |
5845583d JB |
12119 | if (cond_string != NULL) |
12120 | set_breakpoint_condition (&c->base, cond_string, from_tty); | |
3ea46bff | 12121 | install_breakpoint (0, &c->base, 1); |
f7f9143b JB |
12122 | } |
12123 | ||
9ac4176b PA |
12124 | /* Implement the "catch exception" command. */ |
12125 | ||
12126 | static void | |
12127 | catch_ada_exception_command (char *arg, int from_tty, | |
12128 | struct cmd_list_element *command) | |
12129 | { | |
12130 | struct gdbarch *gdbarch = get_current_arch (); | |
12131 | int tempflag; | |
12132 | struct symtab_and_line sal; | |
12133 | char *addr_string = NULL; | |
28010a5d | 12134 | char *excep_string = NULL; |
5845583d | 12135 | char *cond_string = NULL; |
c0a91b2b | 12136 | const struct breakpoint_ops *ops = NULL; |
9ac4176b PA |
12137 | |
12138 | tempflag = get_cmd_context (command) == CATCH_TEMPORARY; | |
12139 | ||
12140 | if (!arg) | |
12141 | arg = ""; | |
5845583d JB |
12142 | sal = ada_decode_exception_location (arg, &addr_string, &excep_string, |
12143 | &cond_string, &ops); | |
28010a5d | 12144 | create_ada_exception_catchpoint (gdbarch, sal, addr_string, |
5845583d JB |
12145 | excep_string, cond_string, ops, |
12146 | tempflag, from_tty); | |
9ac4176b PA |
12147 | } |
12148 | ||
5845583d JB |
12149 | /* Assuming that ARGS contains the arguments of a "catch assert" |
12150 | command, parse those arguments and return a symtab_and_line object | |
12151 | for a failed assertion catchpoint. | |
12152 | ||
12153 | Set ADDR_STRING to the name of the function where the real | |
12154 | breakpoint that implements the catchpoint is set. | |
12155 | ||
12156 | If ARGS contains a condition, set COND_STRING to that condition | |
12157 | (the memory needs to be deallocated after use). Otherwise, set | |
12158 | COND_STRING to NULL. */ | |
12159 | ||
9ac4176b | 12160 | static struct symtab_and_line |
f7f9143b | 12161 | ada_decode_assert_location (char *args, char **addr_string, |
5845583d | 12162 | char **cond_string, |
c0a91b2b | 12163 | const struct breakpoint_ops **ops) |
f7f9143b | 12164 | { |
5845583d | 12165 | args = skip_spaces (args); |
f7f9143b | 12166 | |
5845583d JB |
12167 | /* Check whether a condition was provided. */ |
12168 | if (strncmp (args, "if", 2) == 0 | |
12169 | && (isspace (args[2]) || args[2] == '\0')) | |
f7f9143b | 12170 | { |
5845583d | 12171 | args += 2; |
0fcd72ba | 12172 | args = skip_spaces (args); |
5845583d JB |
12173 | if (args[0] == '\0') |
12174 | error (_("condition missing after `if' keyword")); | |
12175 | *cond_string = xstrdup (args); | |
f7f9143b JB |
12176 | } |
12177 | ||
5845583d JB |
12178 | /* Otherwise, there should be no other argument at the end of |
12179 | the command. */ | |
12180 | else if (args[0] != '\0') | |
12181 | error (_("Junk at end of arguments.")); | |
12182 | ||
28010a5d | 12183 | return ada_exception_sal (ex_catch_assert, NULL, addr_string, ops); |
f7f9143b JB |
12184 | } |
12185 | ||
9ac4176b PA |
12186 | /* Implement the "catch assert" command. */ |
12187 | ||
12188 | static void | |
12189 | catch_assert_command (char *arg, int from_tty, | |
12190 | struct cmd_list_element *command) | |
12191 | { | |
12192 | struct gdbarch *gdbarch = get_current_arch (); | |
12193 | int tempflag; | |
12194 | struct symtab_and_line sal; | |
12195 | char *addr_string = NULL; | |
5845583d | 12196 | char *cond_string = NULL; |
c0a91b2b | 12197 | const struct breakpoint_ops *ops = NULL; |
9ac4176b PA |
12198 | |
12199 | tempflag = get_cmd_context (command) == CATCH_TEMPORARY; | |
12200 | ||
12201 | if (!arg) | |
12202 | arg = ""; | |
5845583d | 12203 | sal = ada_decode_assert_location (arg, &addr_string, &cond_string, &ops); |
28010a5d | 12204 | create_ada_exception_catchpoint (gdbarch, sal, addr_string, |
5845583d JB |
12205 | NULL, cond_string, ops, tempflag, |
12206 | from_tty); | |
9ac4176b | 12207 | } |
4c4b4cd2 PH |
12208 | /* Operators */ |
12209 | /* Information about operators given special treatment in functions | |
12210 | below. */ | |
12211 | /* Format: OP_DEFN (<operator>, <operator length>, <# args>, <binop>). */ | |
12212 | ||
12213 | #define ADA_OPERATORS \ | |
12214 | OP_DEFN (OP_VAR_VALUE, 4, 0, 0) \ | |
12215 | OP_DEFN (BINOP_IN_BOUNDS, 3, 2, 0) \ | |
12216 | OP_DEFN (TERNOP_IN_RANGE, 1, 3, 0) \ | |
12217 | OP_DEFN (OP_ATR_FIRST, 1, 2, 0) \ | |
12218 | OP_DEFN (OP_ATR_LAST, 1, 2, 0) \ | |
12219 | OP_DEFN (OP_ATR_LENGTH, 1, 2, 0) \ | |
12220 | OP_DEFN (OP_ATR_IMAGE, 1, 2, 0) \ | |
12221 | OP_DEFN (OP_ATR_MAX, 1, 3, 0) \ | |
12222 | OP_DEFN (OP_ATR_MIN, 1, 3, 0) \ | |
12223 | OP_DEFN (OP_ATR_MODULUS, 1, 1, 0) \ | |
12224 | OP_DEFN (OP_ATR_POS, 1, 2, 0) \ | |
12225 | OP_DEFN (OP_ATR_SIZE, 1, 1, 0) \ | |
12226 | OP_DEFN (OP_ATR_TAG, 1, 1, 0) \ | |
12227 | OP_DEFN (OP_ATR_VAL, 1, 2, 0) \ | |
12228 | OP_DEFN (UNOP_QUAL, 3, 1, 0) \ | |
52ce6436 PH |
12229 | OP_DEFN (UNOP_IN_RANGE, 3, 1, 0) \ |
12230 | OP_DEFN (OP_OTHERS, 1, 1, 0) \ | |
12231 | OP_DEFN (OP_POSITIONAL, 3, 1, 0) \ | |
12232 | OP_DEFN (OP_DISCRETE_RANGE, 1, 2, 0) | |
4c4b4cd2 PH |
12233 | |
12234 | static void | |
554794dc SDJ |
12235 | ada_operator_length (const struct expression *exp, int pc, int *oplenp, |
12236 | int *argsp) | |
4c4b4cd2 PH |
12237 | { |
12238 | switch (exp->elts[pc - 1].opcode) | |
12239 | { | |
76a01679 | 12240 | default: |
4c4b4cd2 PH |
12241 | operator_length_standard (exp, pc, oplenp, argsp); |
12242 | break; | |
12243 | ||
12244 | #define OP_DEFN(op, len, args, binop) \ | |
12245 | case op: *oplenp = len; *argsp = args; break; | |
12246 | ADA_OPERATORS; | |
12247 | #undef OP_DEFN | |
52ce6436 PH |
12248 | |
12249 | case OP_AGGREGATE: | |
12250 | *oplenp = 3; | |
12251 | *argsp = longest_to_int (exp->elts[pc - 2].longconst); | |
12252 | break; | |
12253 | ||
12254 | case OP_CHOICES: | |
12255 | *oplenp = 3; | |
12256 | *argsp = longest_to_int (exp->elts[pc - 2].longconst) + 1; | |
12257 | break; | |
4c4b4cd2 PH |
12258 | } |
12259 | } | |
12260 | ||
c0201579 JK |
12261 | /* Implementation of the exp_descriptor method operator_check. */ |
12262 | ||
12263 | static int | |
12264 | ada_operator_check (struct expression *exp, int pos, | |
12265 | int (*objfile_func) (struct objfile *objfile, void *data), | |
12266 | void *data) | |
12267 | { | |
12268 | const union exp_element *const elts = exp->elts; | |
12269 | struct type *type = NULL; | |
12270 | ||
12271 | switch (elts[pos].opcode) | |
12272 | { | |
12273 | case UNOP_IN_RANGE: | |
12274 | case UNOP_QUAL: | |
12275 | type = elts[pos + 1].type; | |
12276 | break; | |
12277 | ||
12278 | default: | |
12279 | return operator_check_standard (exp, pos, objfile_func, data); | |
12280 | } | |
12281 | ||
12282 | /* Invoke callbacks for TYPE and OBJFILE if they were set as non-NULL. */ | |
12283 | ||
12284 | if (type && TYPE_OBJFILE (type) | |
12285 | && (*objfile_func) (TYPE_OBJFILE (type), data)) | |
12286 | return 1; | |
12287 | ||
12288 | return 0; | |
12289 | } | |
12290 | ||
4c4b4cd2 PH |
12291 | static char * |
12292 | ada_op_name (enum exp_opcode opcode) | |
12293 | { | |
12294 | switch (opcode) | |
12295 | { | |
76a01679 | 12296 | default: |
4c4b4cd2 | 12297 | return op_name_standard (opcode); |
52ce6436 | 12298 | |
4c4b4cd2 PH |
12299 | #define OP_DEFN(op, len, args, binop) case op: return #op; |
12300 | ADA_OPERATORS; | |
12301 | #undef OP_DEFN | |
52ce6436 PH |
12302 | |
12303 | case OP_AGGREGATE: | |
12304 | return "OP_AGGREGATE"; | |
12305 | case OP_CHOICES: | |
12306 | return "OP_CHOICES"; | |
12307 | case OP_NAME: | |
12308 | return "OP_NAME"; | |
4c4b4cd2 PH |
12309 | } |
12310 | } | |
12311 | ||
12312 | /* As for operator_length, but assumes PC is pointing at the first | |
12313 | element of the operator, and gives meaningful results only for the | |
52ce6436 | 12314 | Ada-specific operators, returning 0 for *OPLENP and *ARGSP otherwise. */ |
4c4b4cd2 PH |
12315 | |
12316 | static void | |
76a01679 JB |
12317 | ada_forward_operator_length (struct expression *exp, int pc, |
12318 | int *oplenp, int *argsp) | |
4c4b4cd2 | 12319 | { |
76a01679 | 12320 | switch (exp->elts[pc].opcode) |
4c4b4cd2 PH |
12321 | { |
12322 | default: | |
12323 | *oplenp = *argsp = 0; | |
12324 | break; | |
52ce6436 | 12325 | |
4c4b4cd2 PH |
12326 | #define OP_DEFN(op, len, args, binop) \ |
12327 | case op: *oplenp = len; *argsp = args; break; | |
12328 | ADA_OPERATORS; | |
12329 | #undef OP_DEFN | |
52ce6436 PH |
12330 | |
12331 | case OP_AGGREGATE: | |
12332 | *oplenp = 3; | |
12333 | *argsp = longest_to_int (exp->elts[pc + 1].longconst); | |
12334 | break; | |
12335 | ||
12336 | case OP_CHOICES: | |
12337 | *oplenp = 3; | |
12338 | *argsp = longest_to_int (exp->elts[pc + 1].longconst) + 1; | |
12339 | break; | |
12340 | ||
12341 | case OP_STRING: | |
12342 | case OP_NAME: | |
12343 | { | |
12344 | int len = longest_to_int (exp->elts[pc + 1].longconst); | |
5b4ee69b | 12345 | |
52ce6436 PH |
12346 | *oplenp = 4 + BYTES_TO_EXP_ELEM (len + 1); |
12347 | *argsp = 0; | |
12348 | break; | |
12349 | } | |
4c4b4cd2 PH |
12350 | } |
12351 | } | |
12352 | ||
12353 | static int | |
12354 | ada_dump_subexp_body (struct expression *exp, struct ui_file *stream, int elt) | |
12355 | { | |
12356 | enum exp_opcode op = exp->elts[elt].opcode; | |
12357 | int oplen, nargs; | |
12358 | int pc = elt; | |
12359 | int i; | |
76a01679 | 12360 | |
4c4b4cd2 PH |
12361 | ada_forward_operator_length (exp, elt, &oplen, &nargs); |
12362 | ||
76a01679 | 12363 | switch (op) |
4c4b4cd2 | 12364 | { |
76a01679 | 12365 | /* Ada attributes ('Foo). */ |
4c4b4cd2 PH |
12366 | case OP_ATR_FIRST: |
12367 | case OP_ATR_LAST: | |
12368 | case OP_ATR_LENGTH: | |
12369 | case OP_ATR_IMAGE: | |
12370 | case OP_ATR_MAX: | |
12371 | case OP_ATR_MIN: | |
12372 | case OP_ATR_MODULUS: | |
12373 | case OP_ATR_POS: | |
12374 | case OP_ATR_SIZE: | |
12375 | case OP_ATR_TAG: | |
12376 | case OP_ATR_VAL: | |
12377 | break; | |
12378 | ||
12379 | case UNOP_IN_RANGE: | |
12380 | case UNOP_QUAL: | |
323e0a4a AC |
12381 | /* XXX: gdb_sprint_host_address, type_sprint */ |
12382 | fprintf_filtered (stream, _("Type @")); | |
4c4b4cd2 PH |
12383 | gdb_print_host_address (exp->elts[pc + 1].type, stream); |
12384 | fprintf_filtered (stream, " ("); | |
12385 | type_print (exp->elts[pc + 1].type, NULL, stream, 0); | |
12386 | fprintf_filtered (stream, ")"); | |
12387 | break; | |
12388 | case BINOP_IN_BOUNDS: | |
52ce6436 PH |
12389 | fprintf_filtered (stream, " (%d)", |
12390 | longest_to_int (exp->elts[pc + 2].longconst)); | |
4c4b4cd2 PH |
12391 | break; |
12392 | case TERNOP_IN_RANGE: | |
12393 | break; | |
12394 | ||
52ce6436 PH |
12395 | case OP_AGGREGATE: |
12396 | case OP_OTHERS: | |
12397 | case OP_DISCRETE_RANGE: | |
12398 | case OP_POSITIONAL: | |
12399 | case OP_CHOICES: | |
12400 | break; | |
12401 | ||
12402 | case OP_NAME: | |
12403 | case OP_STRING: | |
12404 | { | |
12405 | char *name = &exp->elts[elt + 2].string; | |
12406 | int len = longest_to_int (exp->elts[elt + 1].longconst); | |
5b4ee69b | 12407 | |
52ce6436 PH |
12408 | fprintf_filtered (stream, "Text: `%.*s'", len, name); |
12409 | break; | |
12410 | } | |
12411 | ||
4c4b4cd2 PH |
12412 | default: |
12413 | return dump_subexp_body_standard (exp, stream, elt); | |
12414 | } | |
12415 | ||
12416 | elt += oplen; | |
12417 | for (i = 0; i < nargs; i += 1) | |
12418 | elt = dump_subexp (exp, stream, elt); | |
12419 | ||
12420 | return elt; | |
12421 | } | |
12422 | ||
12423 | /* The Ada extension of print_subexp (q.v.). */ | |
12424 | ||
76a01679 JB |
12425 | static void |
12426 | ada_print_subexp (struct expression *exp, int *pos, | |
12427 | struct ui_file *stream, enum precedence prec) | |
4c4b4cd2 | 12428 | { |
52ce6436 | 12429 | int oplen, nargs, i; |
4c4b4cd2 PH |
12430 | int pc = *pos; |
12431 | enum exp_opcode op = exp->elts[pc].opcode; | |
12432 | ||
12433 | ada_forward_operator_length (exp, pc, &oplen, &nargs); | |
12434 | ||
52ce6436 | 12435 | *pos += oplen; |
4c4b4cd2 PH |
12436 | switch (op) |
12437 | { | |
12438 | default: | |
52ce6436 | 12439 | *pos -= oplen; |
4c4b4cd2 PH |
12440 | print_subexp_standard (exp, pos, stream, prec); |
12441 | return; | |
12442 | ||
12443 | case OP_VAR_VALUE: | |
4c4b4cd2 PH |
12444 | fputs_filtered (SYMBOL_NATURAL_NAME (exp->elts[pc + 2].symbol), stream); |
12445 | return; | |
12446 | ||
12447 | case BINOP_IN_BOUNDS: | |
323e0a4a | 12448 | /* XXX: sprint_subexp */ |
4c4b4cd2 | 12449 | print_subexp (exp, pos, stream, PREC_SUFFIX); |
0b48a291 | 12450 | fputs_filtered (" in ", stream); |
4c4b4cd2 | 12451 | print_subexp (exp, pos, stream, PREC_SUFFIX); |
0b48a291 | 12452 | fputs_filtered ("'range", stream); |
4c4b4cd2 | 12453 | if (exp->elts[pc + 1].longconst > 1) |
76a01679 JB |
12454 | fprintf_filtered (stream, "(%ld)", |
12455 | (long) exp->elts[pc + 1].longconst); | |
4c4b4cd2 PH |
12456 | return; |
12457 | ||
12458 | case TERNOP_IN_RANGE: | |
4c4b4cd2 | 12459 | if (prec >= PREC_EQUAL) |
76a01679 | 12460 | fputs_filtered ("(", stream); |
323e0a4a | 12461 | /* XXX: sprint_subexp */ |
4c4b4cd2 | 12462 | print_subexp (exp, pos, stream, PREC_SUFFIX); |
0b48a291 | 12463 | fputs_filtered (" in ", stream); |
4c4b4cd2 PH |
12464 | print_subexp (exp, pos, stream, PREC_EQUAL); |
12465 | fputs_filtered (" .. ", stream); | |
12466 | print_subexp (exp, pos, stream, PREC_EQUAL); | |
12467 | if (prec >= PREC_EQUAL) | |
76a01679 JB |
12468 | fputs_filtered (")", stream); |
12469 | return; | |
4c4b4cd2 PH |
12470 | |
12471 | case OP_ATR_FIRST: | |
12472 | case OP_ATR_LAST: | |
12473 | case OP_ATR_LENGTH: | |
12474 | case OP_ATR_IMAGE: | |
12475 | case OP_ATR_MAX: | |
12476 | case OP_ATR_MIN: | |
12477 | case OP_ATR_MODULUS: | |
12478 | case OP_ATR_POS: | |
12479 | case OP_ATR_SIZE: | |
12480 | case OP_ATR_TAG: | |
12481 | case OP_ATR_VAL: | |
4c4b4cd2 | 12482 | if (exp->elts[*pos].opcode == OP_TYPE) |
76a01679 JB |
12483 | { |
12484 | if (TYPE_CODE (exp->elts[*pos + 1].type) != TYPE_CODE_VOID) | |
79d43c61 TT |
12485 | LA_PRINT_TYPE (exp->elts[*pos + 1].type, "", stream, 0, 0, |
12486 | &type_print_raw_options); | |
76a01679 JB |
12487 | *pos += 3; |
12488 | } | |
4c4b4cd2 | 12489 | else |
76a01679 | 12490 | print_subexp (exp, pos, stream, PREC_SUFFIX); |
4c4b4cd2 PH |
12491 | fprintf_filtered (stream, "'%s", ada_attribute_name (op)); |
12492 | if (nargs > 1) | |
76a01679 JB |
12493 | { |
12494 | int tem; | |
5b4ee69b | 12495 | |
76a01679 JB |
12496 | for (tem = 1; tem < nargs; tem += 1) |
12497 | { | |
12498 | fputs_filtered ((tem == 1) ? " (" : ", ", stream); | |
12499 | print_subexp (exp, pos, stream, PREC_ABOVE_COMMA); | |
12500 | } | |
12501 | fputs_filtered (")", stream); | |
12502 | } | |
4c4b4cd2 | 12503 | return; |
14f9c5c9 | 12504 | |
4c4b4cd2 | 12505 | case UNOP_QUAL: |
4c4b4cd2 PH |
12506 | type_print (exp->elts[pc + 1].type, "", stream, 0); |
12507 | fputs_filtered ("'(", stream); | |
12508 | print_subexp (exp, pos, stream, PREC_PREFIX); | |
12509 | fputs_filtered (")", stream); | |
12510 | return; | |
14f9c5c9 | 12511 | |
4c4b4cd2 | 12512 | case UNOP_IN_RANGE: |
323e0a4a | 12513 | /* XXX: sprint_subexp */ |
4c4b4cd2 | 12514 | print_subexp (exp, pos, stream, PREC_SUFFIX); |
0b48a291 | 12515 | fputs_filtered (" in ", stream); |
79d43c61 TT |
12516 | LA_PRINT_TYPE (exp->elts[pc + 1].type, "", stream, 1, 0, |
12517 | &type_print_raw_options); | |
4c4b4cd2 | 12518 | return; |
52ce6436 PH |
12519 | |
12520 | case OP_DISCRETE_RANGE: | |
12521 | print_subexp (exp, pos, stream, PREC_SUFFIX); | |
12522 | fputs_filtered ("..", stream); | |
12523 | print_subexp (exp, pos, stream, PREC_SUFFIX); | |
12524 | return; | |
12525 | ||
12526 | case OP_OTHERS: | |
12527 | fputs_filtered ("others => ", stream); | |
12528 | print_subexp (exp, pos, stream, PREC_SUFFIX); | |
12529 | return; | |
12530 | ||
12531 | case OP_CHOICES: | |
12532 | for (i = 0; i < nargs-1; i += 1) | |
12533 | { | |
12534 | if (i > 0) | |
12535 | fputs_filtered ("|", stream); | |
12536 | print_subexp (exp, pos, stream, PREC_SUFFIX); | |
12537 | } | |
12538 | fputs_filtered (" => ", stream); | |
12539 | print_subexp (exp, pos, stream, PREC_SUFFIX); | |
12540 | return; | |
12541 | ||
12542 | case OP_POSITIONAL: | |
12543 | print_subexp (exp, pos, stream, PREC_SUFFIX); | |
12544 | return; | |
12545 | ||
12546 | case OP_AGGREGATE: | |
12547 | fputs_filtered ("(", stream); | |
12548 | for (i = 0; i < nargs; i += 1) | |
12549 | { | |
12550 | if (i > 0) | |
12551 | fputs_filtered (", ", stream); | |
12552 | print_subexp (exp, pos, stream, PREC_SUFFIX); | |
12553 | } | |
12554 | fputs_filtered (")", stream); | |
12555 | return; | |
4c4b4cd2 PH |
12556 | } |
12557 | } | |
14f9c5c9 AS |
12558 | |
12559 | /* Table mapping opcodes into strings for printing operators | |
12560 | and precedences of the operators. */ | |
12561 | ||
d2e4a39e AS |
12562 | static const struct op_print ada_op_print_tab[] = { |
12563 | {":=", BINOP_ASSIGN, PREC_ASSIGN, 1}, | |
12564 | {"or else", BINOP_LOGICAL_OR, PREC_LOGICAL_OR, 0}, | |
12565 | {"and then", BINOP_LOGICAL_AND, PREC_LOGICAL_AND, 0}, | |
12566 | {"or", BINOP_BITWISE_IOR, PREC_BITWISE_IOR, 0}, | |
12567 | {"xor", BINOP_BITWISE_XOR, PREC_BITWISE_XOR, 0}, | |
12568 | {"and", BINOP_BITWISE_AND, PREC_BITWISE_AND, 0}, | |
12569 | {"=", BINOP_EQUAL, PREC_EQUAL, 0}, | |
12570 | {"/=", BINOP_NOTEQUAL, PREC_EQUAL, 0}, | |
12571 | {"<=", BINOP_LEQ, PREC_ORDER, 0}, | |
12572 | {">=", BINOP_GEQ, PREC_ORDER, 0}, | |
12573 | {">", BINOP_GTR, PREC_ORDER, 0}, | |
12574 | {"<", BINOP_LESS, PREC_ORDER, 0}, | |
12575 | {">>", BINOP_RSH, PREC_SHIFT, 0}, | |
12576 | {"<<", BINOP_LSH, PREC_SHIFT, 0}, | |
12577 | {"+", BINOP_ADD, PREC_ADD, 0}, | |
12578 | {"-", BINOP_SUB, PREC_ADD, 0}, | |
12579 | {"&", BINOP_CONCAT, PREC_ADD, 0}, | |
12580 | {"*", BINOP_MUL, PREC_MUL, 0}, | |
12581 | {"/", BINOP_DIV, PREC_MUL, 0}, | |
12582 | {"rem", BINOP_REM, PREC_MUL, 0}, | |
12583 | {"mod", BINOP_MOD, PREC_MUL, 0}, | |
12584 | {"**", BINOP_EXP, PREC_REPEAT, 0}, | |
12585 | {"@", BINOP_REPEAT, PREC_REPEAT, 0}, | |
12586 | {"-", UNOP_NEG, PREC_PREFIX, 0}, | |
12587 | {"+", UNOP_PLUS, PREC_PREFIX, 0}, | |
12588 | {"not ", UNOP_LOGICAL_NOT, PREC_PREFIX, 0}, | |
12589 | {"not ", UNOP_COMPLEMENT, PREC_PREFIX, 0}, | |
12590 | {"abs ", UNOP_ABS, PREC_PREFIX, 0}, | |
4c4b4cd2 PH |
12591 | {".all", UNOP_IND, PREC_SUFFIX, 1}, |
12592 | {"'access", UNOP_ADDR, PREC_SUFFIX, 1}, | |
12593 | {"'size", OP_ATR_SIZE, PREC_SUFFIX, 1}, | |
d2e4a39e | 12594 | {NULL, 0, 0, 0} |
14f9c5c9 AS |
12595 | }; |
12596 | \f | |
72d5681a PH |
12597 | enum ada_primitive_types { |
12598 | ada_primitive_type_int, | |
12599 | ada_primitive_type_long, | |
12600 | ada_primitive_type_short, | |
12601 | ada_primitive_type_char, | |
12602 | ada_primitive_type_float, | |
12603 | ada_primitive_type_double, | |
12604 | ada_primitive_type_void, | |
12605 | ada_primitive_type_long_long, | |
12606 | ada_primitive_type_long_double, | |
12607 | ada_primitive_type_natural, | |
12608 | ada_primitive_type_positive, | |
12609 | ada_primitive_type_system_address, | |
12610 | nr_ada_primitive_types | |
12611 | }; | |
6c038f32 PH |
12612 | |
12613 | static void | |
d4a9a881 | 12614 | ada_language_arch_info (struct gdbarch *gdbarch, |
72d5681a PH |
12615 | struct language_arch_info *lai) |
12616 | { | |
d4a9a881 | 12617 | const struct builtin_type *builtin = builtin_type (gdbarch); |
5b4ee69b | 12618 | |
72d5681a | 12619 | lai->primitive_type_vector |
d4a9a881 | 12620 | = GDBARCH_OBSTACK_CALLOC (gdbarch, nr_ada_primitive_types + 1, |
72d5681a | 12621 | struct type *); |
e9bb382b UW |
12622 | |
12623 | lai->primitive_type_vector [ada_primitive_type_int] | |
12624 | = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch), | |
12625 | 0, "integer"); | |
12626 | lai->primitive_type_vector [ada_primitive_type_long] | |
12627 | = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch), | |
12628 | 0, "long_integer"); | |
12629 | lai->primitive_type_vector [ada_primitive_type_short] | |
12630 | = arch_integer_type (gdbarch, gdbarch_short_bit (gdbarch), | |
12631 | 0, "short_integer"); | |
12632 | lai->string_char_type | |
12633 | = lai->primitive_type_vector [ada_primitive_type_char] | |
12634 | = arch_integer_type (gdbarch, TARGET_CHAR_BIT, 0, "character"); | |
12635 | lai->primitive_type_vector [ada_primitive_type_float] | |
12636 | = arch_float_type (gdbarch, gdbarch_float_bit (gdbarch), | |
12637 | "float", NULL); | |
12638 | lai->primitive_type_vector [ada_primitive_type_double] | |
12639 | = arch_float_type (gdbarch, gdbarch_double_bit (gdbarch), | |
12640 | "long_float", NULL); | |
12641 | lai->primitive_type_vector [ada_primitive_type_long_long] | |
12642 | = arch_integer_type (gdbarch, gdbarch_long_long_bit (gdbarch), | |
12643 | 0, "long_long_integer"); | |
12644 | lai->primitive_type_vector [ada_primitive_type_long_double] | |
12645 | = arch_float_type (gdbarch, gdbarch_double_bit (gdbarch), | |
12646 | "long_long_float", NULL); | |
12647 | lai->primitive_type_vector [ada_primitive_type_natural] | |
12648 | = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch), | |
12649 | 0, "natural"); | |
12650 | lai->primitive_type_vector [ada_primitive_type_positive] | |
12651 | = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch), | |
12652 | 0, "positive"); | |
12653 | lai->primitive_type_vector [ada_primitive_type_void] | |
12654 | = builtin->builtin_void; | |
12655 | ||
12656 | lai->primitive_type_vector [ada_primitive_type_system_address] | |
12657 | = lookup_pointer_type (arch_type (gdbarch, TYPE_CODE_VOID, 1, "void")); | |
72d5681a PH |
12658 | TYPE_NAME (lai->primitive_type_vector [ada_primitive_type_system_address]) |
12659 | = "system__address"; | |
fbb06eb1 | 12660 | |
47e729a8 | 12661 | lai->bool_type_symbol = NULL; |
fbb06eb1 | 12662 | lai->bool_type_default = builtin->builtin_bool; |
6c038f32 | 12663 | } |
6c038f32 PH |
12664 | \f |
12665 | /* Language vector */ | |
12666 | ||
12667 | /* Not really used, but needed in the ada_language_defn. */ | |
12668 | ||
12669 | static void | |
6c7a06a3 | 12670 | emit_char (int c, struct type *type, struct ui_file *stream, int quoter) |
6c038f32 | 12671 | { |
6c7a06a3 | 12672 | ada_emit_char (c, type, stream, quoter, 1); |
6c038f32 PH |
12673 | } |
12674 | ||
12675 | static int | |
12676 | parse (void) | |
12677 | { | |
12678 | warnings_issued = 0; | |
12679 | return ada_parse (); | |
12680 | } | |
12681 | ||
12682 | static const struct exp_descriptor ada_exp_descriptor = { | |
12683 | ada_print_subexp, | |
12684 | ada_operator_length, | |
c0201579 | 12685 | ada_operator_check, |
6c038f32 PH |
12686 | ada_op_name, |
12687 | ada_dump_subexp_body, | |
12688 | ada_evaluate_subexp | |
12689 | }; | |
12690 | ||
1a119f36 | 12691 | /* Implement the "la_get_symbol_name_cmp" language_defn method |
74ccd7f5 JB |
12692 | for Ada. */ |
12693 | ||
1a119f36 JB |
12694 | static symbol_name_cmp_ftype |
12695 | ada_get_symbol_name_cmp (const char *lookup_name) | |
74ccd7f5 JB |
12696 | { |
12697 | if (should_use_wild_match (lookup_name)) | |
12698 | return wild_match; | |
12699 | else | |
12700 | return compare_names; | |
12701 | } | |
12702 | ||
a5ee536b JB |
12703 | /* Implement the "la_read_var_value" language_defn method for Ada. */ |
12704 | ||
12705 | static struct value * | |
12706 | ada_read_var_value (struct symbol *var, struct frame_info *frame) | |
12707 | { | |
12708 | struct block *frame_block = NULL; | |
12709 | struct symbol *renaming_sym = NULL; | |
12710 | ||
12711 | /* The only case where default_read_var_value is not sufficient | |
12712 | is when VAR is a renaming... */ | |
12713 | if (frame) | |
12714 | frame_block = get_frame_block (frame, NULL); | |
12715 | if (frame_block) | |
12716 | renaming_sym = ada_find_renaming_symbol (var, frame_block); | |
12717 | if (renaming_sym != NULL) | |
12718 | return ada_read_renaming_var_value (renaming_sym, frame_block); | |
12719 | ||
12720 | /* This is a typical case where we expect the default_read_var_value | |
12721 | function to work. */ | |
12722 | return default_read_var_value (var, frame); | |
12723 | } | |
12724 | ||
6c038f32 PH |
12725 | const struct language_defn ada_language_defn = { |
12726 | "ada", /* Language name */ | |
12727 | language_ada, | |
6c038f32 | 12728 | range_check_off, |
6c038f32 PH |
12729 | case_sensitive_on, /* Yes, Ada is case-insensitive, but |
12730 | that's not quite what this means. */ | |
6c038f32 | 12731 | array_row_major, |
9a044a89 | 12732 | macro_expansion_no, |
6c038f32 PH |
12733 | &ada_exp_descriptor, |
12734 | parse, | |
12735 | ada_error, | |
12736 | resolve, | |
12737 | ada_printchar, /* Print a character constant */ | |
12738 | ada_printstr, /* Function to print string constant */ | |
12739 | emit_char, /* Function to print single char (not used) */ | |
6c038f32 | 12740 | ada_print_type, /* Print a type using appropriate syntax */ |
be942545 | 12741 | ada_print_typedef, /* Print a typedef using appropriate syntax */ |
6c038f32 PH |
12742 | ada_val_print, /* Print a value using appropriate syntax */ |
12743 | ada_value_print, /* Print a top-level value */ | |
a5ee536b | 12744 | ada_read_var_value, /* la_read_var_value */ |
6c038f32 | 12745 | NULL, /* Language specific skip_trampoline */ |
2b2d9e11 | 12746 | NULL, /* name_of_this */ |
6c038f32 PH |
12747 | ada_lookup_symbol_nonlocal, /* Looking up non-local symbols. */ |
12748 | basic_lookup_transparent_type, /* lookup_transparent_type */ | |
12749 | ada_la_decode, /* Language specific symbol demangler */ | |
0963b4bd MS |
12750 | NULL, /* Language specific |
12751 | class_name_from_physname */ | |
6c038f32 PH |
12752 | ada_op_print_tab, /* expression operators for printing */ |
12753 | 0, /* c-style arrays */ | |
12754 | 1, /* String lower bound */ | |
6c038f32 | 12755 | ada_get_gdb_completer_word_break_characters, |
41d27058 | 12756 | ada_make_symbol_completion_list, |
72d5681a | 12757 | ada_language_arch_info, |
e79af960 | 12758 | ada_print_array_index, |
41f1b697 | 12759 | default_pass_by_reference, |
ae6a3a4c | 12760 | c_get_string, |
1a119f36 | 12761 | ada_get_symbol_name_cmp, /* la_get_symbol_name_cmp */ |
f8eba3c6 | 12762 | ada_iterate_over_symbols, |
6c038f32 PH |
12763 | LANG_MAGIC |
12764 | }; | |
12765 | ||
2c0b251b PA |
12766 | /* Provide a prototype to silence -Wmissing-prototypes. */ |
12767 | extern initialize_file_ftype _initialize_ada_language; | |
12768 | ||
5bf03f13 JB |
12769 | /* Command-list for the "set/show ada" prefix command. */ |
12770 | static struct cmd_list_element *set_ada_list; | |
12771 | static struct cmd_list_element *show_ada_list; | |
12772 | ||
12773 | /* Implement the "set ada" prefix command. */ | |
12774 | ||
12775 | static void | |
12776 | set_ada_command (char *arg, int from_tty) | |
12777 | { | |
12778 | printf_unfiltered (_(\ | |
12779 | "\"set ada\" must be followed by the name of a setting.\n")); | |
12780 | help_list (set_ada_list, "set ada ", -1, gdb_stdout); | |
12781 | } | |
12782 | ||
12783 | /* Implement the "show ada" prefix command. */ | |
12784 | ||
12785 | static void | |
12786 | show_ada_command (char *args, int from_tty) | |
12787 | { | |
12788 | cmd_show_list (show_ada_list, from_tty, ""); | |
12789 | } | |
12790 | ||
2060206e PA |
12791 | static void |
12792 | initialize_ada_catchpoint_ops (void) | |
12793 | { | |
12794 | struct breakpoint_ops *ops; | |
12795 | ||
12796 | initialize_breakpoint_ops (); | |
12797 | ||
12798 | ops = &catch_exception_breakpoint_ops; | |
12799 | *ops = bkpt_breakpoint_ops; | |
12800 | ops->dtor = dtor_catch_exception; | |
12801 | ops->allocate_location = allocate_location_catch_exception; | |
12802 | ops->re_set = re_set_catch_exception; | |
12803 | ops->check_status = check_status_catch_exception; | |
12804 | ops->print_it = print_it_catch_exception; | |
12805 | ops->print_one = print_one_catch_exception; | |
12806 | ops->print_mention = print_mention_catch_exception; | |
12807 | ops->print_recreate = print_recreate_catch_exception; | |
12808 | ||
12809 | ops = &catch_exception_unhandled_breakpoint_ops; | |
12810 | *ops = bkpt_breakpoint_ops; | |
12811 | ops->dtor = dtor_catch_exception_unhandled; | |
12812 | ops->allocate_location = allocate_location_catch_exception_unhandled; | |
12813 | ops->re_set = re_set_catch_exception_unhandled; | |
12814 | ops->check_status = check_status_catch_exception_unhandled; | |
12815 | ops->print_it = print_it_catch_exception_unhandled; | |
12816 | ops->print_one = print_one_catch_exception_unhandled; | |
12817 | ops->print_mention = print_mention_catch_exception_unhandled; | |
12818 | ops->print_recreate = print_recreate_catch_exception_unhandled; | |
12819 | ||
12820 | ops = &catch_assert_breakpoint_ops; | |
12821 | *ops = bkpt_breakpoint_ops; | |
12822 | ops->dtor = dtor_catch_assert; | |
12823 | ops->allocate_location = allocate_location_catch_assert; | |
12824 | ops->re_set = re_set_catch_assert; | |
12825 | ops->check_status = check_status_catch_assert; | |
12826 | ops->print_it = print_it_catch_assert; | |
12827 | ops->print_one = print_one_catch_assert; | |
12828 | ops->print_mention = print_mention_catch_assert; | |
12829 | ops->print_recreate = print_recreate_catch_assert; | |
12830 | } | |
12831 | ||
d2e4a39e | 12832 | void |
6c038f32 | 12833 | _initialize_ada_language (void) |
14f9c5c9 | 12834 | { |
6c038f32 PH |
12835 | add_language (&ada_language_defn); |
12836 | ||
2060206e PA |
12837 | initialize_ada_catchpoint_ops (); |
12838 | ||
5bf03f13 JB |
12839 | add_prefix_cmd ("ada", no_class, set_ada_command, |
12840 | _("Prefix command for changing Ada-specfic settings"), | |
12841 | &set_ada_list, "set ada ", 0, &setlist); | |
12842 | ||
12843 | add_prefix_cmd ("ada", no_class, show_ada_command, | |
12844 | _("Generic command for showing Ada-specific settings."), | |
12845 | &show_ada_list, "show ada ", 0, &showlist); | |
12846 | ||
12847 | add_setshow_boolean_cmd ("trust-PAD-over-XVS", class_obscure, | |
12848 | &trust_pad_over_xvs, _("\ | |
12849 | Enable or disable an optimization trusting PAD types over XVS types"), _("\ | |
12850 | Show whether an optimization trusting PAD types over XVS types is activated"), | |
12851 | _("\ | |
12852 | This is related to the encoding used by the GNAT compiler. The debugger\n\ | |
12853 | should normally trust the contents of PAD types, but certain older versions\n\ | |
12854 | of GNAT have a bug that sometimes causes the information in the PAD type\n\ | |
12855 | to be incorrect. Turning this setting \"off\" allows the debugger to\n\ | |
12856 | work around this bug. It is always safe to turn this option \"off\", but\n\ | |
12857 | this incurs a slight performance penalty, so it is recommended to NOT change\n\ | |
12858 | this option to \"off\" unless necessary."), | |
12859 | NULL, NULL, &set_ada_list, &show_ada_list); | |
12860 | ||
9ac4176b PA |
12861 | add_catch_command ("exception", _("\ |
12862 | Catch Ada exceptions, when raised.\n\ | |
12863 | With an argument, catch only exceptions with the given name."), | |
12864 | catch_ada_exception_command, | |
12865 | NULL, | |
12866 | CATCH_PERMANENT, | |
12867 | CATCH_TEMPORARY); | |
12868 | add_catch_command ("assert", _("\ | |
12869 | Catch failed Ada assertions, when raised.\n\ | |
12870 | With an argument, catch only exceptions with the given name."), | |
12871 | catch_assert_command, | |
12872 | NULL, | |
12873 | CATCH_PERMANENT, | |
12874 | CATCH_TEMPORARY); | |
12875 | ||
6c038f32 | 12876 | varsize_limit = 65536; |
6c038f32 PH |
12877 | |
12878 | obstack_init (&symbol_list_obstack); | |
12879 | ||
12880 | decoded_names_store = htab_create_alloc | |
12881 | (256, htab_hash_string, (int (*)(const void *, const void *)) streq, | |
12882 | NULL, xcalloc, xfree); | |
6b69afc4 | 12883 | |
e802dbe0 JB |
12884 | /* Setup per-inferior data. */ |
12885 | observer_attach_inferior_exit (ada_inferior_exit); | |
12886 | ada_inferior_data | |
8e260fc0 | 12887 | = register_inferior_data_with_cleanup (NULL, ada_inferior_data_cleanup); |
14f9c5c9 | 12888 | } |