]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blame - gdb/ada-lang.c
S/390: z13 use GNU attribute to indicate vector ABI
[thirdparty/binutils-gdb.git] / gdb / ada-lang.c
CommitLineData
6e681866 1/* Ada language support routines for GDB, the GNU debugger.
10a2c479 2
32d0add0 3 Copyright (C) 1992-2015 Free Software Foundation, Inc.
14f9c5c9 4
a9762ec7 5 This file is part of GDB.
14f9c5c9 6
a9762ec7
JB
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
14f9c5c9 11
a9762ec7
JB
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
14f9c5c9 16
a9762ec7
JB
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
14f9c5c9 19
96d887e8 20
4c4b4cd2 21#include "defs.h"
14f9c5c9 22#include <ctype.h>
14f9c5c9 23#include "demangle.h"
4c4b4cd2
PH
24#include "gdb_regex.h"
25#include "frame.h"
14f9c5c9
AS
26#include "symtab.h"
27#include "gdbtypes.h"
28#include "gdbcmd.h"
29#include "expression.h"
30#include "parser-defs.h"
31#include "language.h"
a53b64ea 32#include "varobj.h"
14f9c5c9
AS
33#include "c-lang.h"
34#include "inferior.h"
35#include "symfile.h"
36#include "objfiles.h"
37#include "breakpoint.h"
38#include "gdbcore.h"
4c4b4cd2
PH
39#include "hashtab.h"
40#include "gdb_obstack.h"
14f9c5c9 41#include "ada-lang.h"
4c4b4cd2 42#include "completer.h"
53ce3c39 43#include <sys/stat.h>
14f9c5c9 44#include "ui-out.h"
fe898f56 45#include "block.h"
04714b91 46#include "infcall.h"
de4f826b 47#include "dictionary.h"
f7f9143b
JB
48#include "annotate.h"
49#include "valprint.h"
9bbc9174 50#include "source.h"
0259addd 51#include "observer.h"
2ba95b9b 52#include "vec.h"
692465f1 53#include "stack.h"
fa864999 54#include "gdb_vecs.h"
79d43c61 55#include "typeprint.h"
14f9c5c9 56
ccefe4c4 57#include "psymtab.h"
40bc484c 58#include "value.h"
956a9fb9 59#include "mi/mi-common.h"
9ac4176b 60#include "arch-utils.h"
0fcd72ba 61#include "cli/cli-utils.h"
ccefe4c4 62
4c4b4cd2 63/* Define whether or not the C operator '/' truncates towards zero for
0963b4bd 64 differently signed operands (truncation direction is undefined in C).
4c4b4cd2
PH
65 Copied from valarith.c. */
66
67#ifndef TRUNCATION_TOWARDS_ZERO
68#define TRUNCATION_TOWARDS_ZERO ((-5 / 2) == -2)
69#endif
70
d2e4a39e 71static struct type *desc_base_type (struct type *);
14f9c5c9 72
d2e4a39e 73static struct type *desc_bounds_type (struct type *);
14f9c5c9 74
d2e4a39e 75static struct value *desc_bounds (struct value *);
14f9c5c9 76
d2e4a39e 77static int fat_pntr_bounds_bitpos (struct type *);
14f9c5c9 78
d2e4a39e 79static int fat_pntr_bounds_bitsize (struct type *);
14f9c5c9 80
556bdfd4 81static struct type *desc_data_target_type (struct type *);
14f9c5c9 82
d2e4a39e 83static struct value *desc_data (struct value *);
14f9c5c9 84
d2e4a39e 85static int fat_pntr_data_bitpos (struct type *);
14f9c5c9 86
d2e4a39e 87static int fat_pntr_data_bitsize (struct type *);
14f9c5c9 88
d2e4a39e 89static struct value *desc_one_bound (struct value *, int, int);
14f9c5c9 90
d2e4a39e 91static int desc_bound_bitpos (struct type *, int, int);
14f9c5c9 92
d2e4a39e 93static int desc_bound_bitsize (struct type *, int, int);
14f9c5c9 94
d2e4a39e 95static struct type *desc_index_type (struct type *, int);
14f9c5c9 96
d2e4a39e 97static int desc_arity (struct type *);
14f9c5c9 98
d2e4a39e 99static int ada_type_match (struct type *, struct type *, int);
14f9c5c9 100
d2e4a39e 101static int ada_args_match (struct symbol *, struct value **, int);
14f9c5c9 102
40658b94
PH
103static int full_match (const char *, const char *);
104
40bc484c 105static struct value *make_array_descriptor (struct type *, struct value *);
14f9c5c9 106
4c4b4cd2 107static void ada_add_block_symbols (struct obstack *,
f0c5f9b2 108 const struct block *, const char *,
2570f2b7 109 domain_enum, struct objfile *, int);
14f9c5c9 110
4c4b4cd2 111static int is_nonfunction (struct ada_symbol_info *, int);
14f9c5c9 112
76a01679 113static void add_defn_to_vec (struct obstack *, struct symbol *,
f0c5f9b2 114 const struct block *);
14f9c5c9 115
4c4b4cd2
PH
116static int num_defns_collected (struct obstack *);
117
118static struct ada_symbol_info *defns_collected (struct obstack *, int);
14f9c5c9 119
4c4b4cd2 120static struct value *resolve_subexp (struct expression **, int *, int,
76a01679 121 struct type *);
14f9c5c9 122
d2e4a39e 123static void replace_operator_with_call (struct expression **, int, int, int,
270140bd 124 struct symbol *, const struct block *);
14f9c5c9 125
d2e4a39e 126static int possible_user_operator_p (enum exp_opcode, struct value **);
14f9c5c9 127
4c4b4cd2
PH
128static char *ada_op_name (enum exp_opcode);
129
130static const char *ada_decoded_op_name (enum exp_opcode);
14f9c5c9 131
d2e4a39e 132static int numeric_type_p (struct type *);
14f9c5c9 133
d2e4a39e 134static int integer_type_p (struct type *);
14f9c5c9 135
d2e4a39e 136static int scalar_type_p (struct type *);
14f9c5c9 137
d2e4a39e 138static int discrete_type_p (struct type *);
14f9c5c9 139
aeb5907d
JB
140static enum ada_renaming_category parse_old_style_renaming (struct type *,
141 const char **,
142 int *,
143 const char **);
144
145static struct symbol *find_old_style_renaming_symbol (const char *,
270140bd 146 const struct block *);
aeb5907d 147
4c4b4cd2 148static struct type *ada_lookup_struct_elt_type (struct type *, char *,
76a01679 149 int, int, int *);
4c4b4cd2 150
d2e4a39e 151static struct value *evaluate_subexp_type (struct expression *, int *);
14f9c5c9 152
b4ba55a1
JB
153static struct type *ada_find_parallel_type_with_name (struct type *,
154 const char *);
155
d2e4a39e 156static int is_dynamic_field (struct type *, int);
14f9c5c9 157
10a2c479 158static struct type *to_fixed_variant_branch_type (struct type *,
fc1a4b47 159 const gdb_byte *,
4c4b4cd2
PH
160 CORE_ADDR, struct value *);
161
162static struct type *to_fixed_array_type (struct type *, struct value *, int);
14f9c5c9 163
28c85d6c 164static struct type *to_fixed_range_type (struct type *, struct value *);
14f9c5c9 165
d2e4a39e 166static struct type *to_static_fixed_type (struct type *);
f192137b 167static struct type *static_unwrap_type (struct type *type);
14f9c5c9 168
d2e4a39e 169static struct value *unwrap_value (struct value *);
14f9c5c9 170
ad82864c 171static struct type *constrained_packed_array_type (struct type *, long *);
14f9c5c9 172
ad82864c 173static struct type *decode_constrained_packed_array_type (struct type *);
14f9c5c9 174
ad82864c
JB
175static long decode_packed_array_bitsize (struct type *);
176
177static struct value *decode_constrained_packed_array (struct value *);
178
179static int ada_is_packed_array_type (struct type *);
180
181static int ada_is_unconstrained_packed_array_type (struct type *);
14f9c5c9 182
d2e4a39e 183static struct value *value_subscript_packed (struct value *, int,
4c4b4cd2 184 struct value **);
14f9c5c9 185
50810684 186static void move_bits (gdb_byte *, int, const gdb_byte *, int, int, int);
52ce6436 187
4c4b4cd2
PH
188static struct value *coerce_unspec_val_to_type (struct value *,
189 struct type *);
14f9c5c9 190
d2e4a39e 191static struct value *get_var_value (char *, char *);
14f9c5c9 192
d2e4a39e 193static int lesseq_defined_than (struct symbol *, struct symbol *);
14f9c5c9 194
d2e4a39e 195static int equiv_types (struct type *, struct type *);
14f9c5c9 196
d2e4a39e 197static int is_name_suffix (const char *);
14f9c5c9 198
73589123
PH
199static int advance_wild_match (const char **, const char *, int);
200
201static int wild_match (const char *, const char *);
14f9c5c9 202
d2e4a39e 203static struct value *ada_coerce_ref (struct value *);
14f9c5c9 204
4c4b4cd2
PH
205static LONGEST pos_atr (struct value *);
206
3cb382c9 207static struct value *value_pos_atr (struct type *, struct value *);
14f9c5c9 208
d2e4a39e 209static struct value *value_val_atr (struct type *, struct value *);
14f9c5c9 210
4c4b4cd2
PH
211static struct symbol *standard_lookup (const char *, const struct block *,
212 domain_enum);
14f9c5c9 213
4c4b4cd2
PH
214static struct value *ada_search_struct_field (char *, struct value *, int,
215 struct type *);
216
217static struct value *ada_value_primitive_field (struct value *, int, int,
218 struct type *);
219
0d5cff50 220static int find_struct_field (const char *, struct type *, int,
52ce6436 221 struct type **, int *, int *, int *, int *);
4c4b4cd2
PH
222
223static struct value *ada_to_fixed_value_create (struct type *, CORE_ADDR,
224 struct value *);
225
4c4b4cd2
PH
226static int ada_resolve_function (struct ada_symbol_info *, int,
227 struct value **, int, const char *,
228 struct type *);
229
4c4b4cd2
PH
230static int ada_is_direct_array_type (struct type *);
231
72d5681a
PH
232static void ada_language_arch_info (struct gdbarch *,
233 struct language_arch_info *);
714e53ab 234
52ce6436
PH
235static struct value *ada_index_struct_field (int, struct value *, int,
236 struct type *);
237
238static struct value *assign_aggregate (struct value *, struct value *,
0963b4bd
MS
239 struct expression *,
240 int *, enum noside);
52ce6436
PH
241
242static void aggregate_assign_from_choices (struct value *, struct value *,
243 struct expression *,
244 int *, LONGEST *, int *,
245 int, LONGEST, LONGEST);
246
247static void aggregate_assign_positional (struct value *, struct value *,
248 struct expression *,
249 int *, LONGEST *, int *, int,
250 LONGEST, LONGEST);
251
252
253static void aggregate_assign_others (struct value *, struct value *,
254 struct expression *,
255 int *, LONGEST *, int, LONGEST, LONGEST);
256
257
258static void add_component_interval (LONGEST, LONGEST, LONGEST *, int *, int);
259
260
261static struct value *ada_evaluate_subexp (struct type *, struct expression *,
262 int *, enum noside);
263
264static void ada_forward_operator_length (struct expression *, int, int *,
265 int *);
852dff6c
JB
266
267static struct type *ada_find_any_type (const char *name);
4c4b4cd2
PH
268\f
269
ee01b665
JB
270/* The result of a symbol lookup to be stored in our symbol cache. */
271
272struct cache_entry
273{
274 /* The name used to perform the lookup. */
275 const char *name;
276 /* The namespace used during the lookup. */
fe978cb0 277 domain_enum domain;
ee01b665
JB
278 /* The symbol returned by the lookup, or NULL if no matching symbol
279 was found. */
280 struct symbol *sym;
281 /* The block where the symbol was found, or NULL if no matching
282 symbol was found. */
283 const struct block *block;
284 /* A pointer to the next entry with the same hash. */
285 struct cache_entry *next;
286};
287
288/* The Ada symbol cache, used to store the result of Ada-mode symbol
289 lookups in the course of executing the user's commands.
290
291 The cache is implemented using a simple, fixed-sized hash.
292 The size is fixed on the grounds that there are not likely to be
293 all that many symbols looked up during any given session, regardless
294 of the size of the symbol table. If we decide to go to a resizable
295 table, let's just use the stuff from libiberty instead. */
296
297#define HASH_SIZE 1009
298
299struct ada_symbol_cache
300{
301 /* An obstack used to store the entries in our cache. */
302 struct obstack cache_space;
303
304 /* The root of the hash table used to implement our symbol cache. */
305 struct cache_entry *root[HASH_SIZE];
306};
307
308static void ada_free_symbol_cache (struct ada_symbol_cache *sym_cache);
76a01679 309
4c4b4cd2 310/* Maximum-sized dynamic type. */
14f9c5c9
AS
311static unsigned int varsize_limit;
312
4c4b4cd2
PH
313/* FIXME: brobecker/2003-09-17: No longer a const because it is
314 returned by a function that does not return a const char *. */
315static char *ada_completer_word_break_characters =
316#ifdef VMS
317 " \t\n!@#%^&*()+=|~`}{[]\";:?/,-";
318#else
14f9c5c9 319 " \t\n!@#$%^&*()+=|~`}{[]\";:?/,-";
4c4b4cd2 320#endif
14f9c5c9 321
4c4b4cd2 322/* The name of the symbol to use to get the name of the main subprogram. */
76a01679 323static const char ADA_MAIN_PROGRAM_SYMBOL_NAME[]
4c4b4cd2 324 = "__gnat_ada_main_program_name";
14f9c5c9 325
4c4b4cd2
PH
326/* Limit on the number of warnings to raise per expression evaluation. */
327static int warning_limit = 2;
328
329/* Number of warning messages issued; reset to 0 by cleanups after
330 expression evaluation. */
331static int warnings_issued = 0;
332
333static const char *known_runtime_file_name_patterns[] = {
334 ADA_KNOWN_RUNTIME_FILE_NAME_PATTERNS NULL
335};
336
337static const char *known_auxiliary_function_name_patterns[] = {
338 ADA_KNOWN_AUXILIARY_FUNCTION_NAME_PATTERNS NULL
339};
340
341/* Space for allocating results of ada_lookup_symbol_list. */
342static struct obstack symbol_list_obstack;
343
c6044dd1
JB
344/* Maintenance-related settings for this module. */
345
346static struct cmd_list_element *maint_set_ada_cmdlist;
347static struct cmd_list_element *maint_show_ada_cmdlist;
348
349/* Implement the "maintenance set ada" (prefix) command. */
350
351static void
352maint_set_ada_cmd (char *args, int from_tty)
353{
635c7e8a
TT
354 help_list (maint_set_ada_cmdlist, "maintenance set ada ", all_commands,
355 gdb_stdout);
c6044dd1
JB
356}
357
358/* Implement the "maintenance show ada" (prefix) command. */
359
360static void
361maint_show_ada_cmd (char *args, int from_tty)
362{
363 cmd_show_list (maint_show_ada_cmdlist, from_tty, "");
364}
365
366/* The "maintenance ada set/show ignore-descriptive-type" value. */
367
368static int ada_ignore_descriptive_types_p = 0;
369
e802dbe0
JB
370 /* Inferior-specific data. */
371
372/* Per-inferior data for this module. */
373
374struct ada_inferior_data
375{
376 /* The ada__tags__type_specific_data type, which is used when decoding
377 tagged types. With older versions of GNAT, this type was directly
378 accessible through a component ("tsd") in the object tag. But this
379 is no longer the case, so we cache it for each inferior. */
380 struct type *tsd_type;
3eecfa55
JB
381
382 /* The exception_support_info data. This data is used to determine
383 how to implement support for Ada exception catchpoints in a given
384 inferior. */
385 const struct exception_support_info *exception_info;
e802dbe0
JB
386};
387
388/* Our key to this module's inferior data. */
389static const struct inferior_data *ada_inferior_data;
390
391/* A cleanup routine for our inferior data. */
392static void
393ada_inferior_data_cleanup (struct inferior *inf, void *arg)
394{
395 struct ada_inferior_data *data;
396
397 data = inferior_data (inf, ada_inferior_data);
398 if (data != NULL)
399 xfree (data);
400}
401
402/* Return our inferior data for the given inferior (INF).
403
404 This function always returns a valid pointer to an allocated
405 ada_inferior_data structure. If INF's inferior data has not
406 been previously set, this functions creates a new one with all
407 fields set to zero, sets INF's inferior to it, and then returns
408 a pointer to that newly allocated ada_inferior_data. */
409
410static struct ada_inferior_data *
411get_ada_inferior_data (struct inferior *inf)
412{
413 struct ada_inferior_data *data;
414
415 data = inferior_data (inf, ada_inferior_data);
416 if (data == NULL)
417 {
41bf6aca 418 data = XCNEW (struct ada_inferior_data);
e802dbe0
JB
419 set_inferior_data (inf, ada_inferior_data, data);
420 }
421
422 return data;
423}
424
425/* Perform all necessary cleanups regarding our module's inferior data
426 that is required after the inferior INF just exited. */
427
428static void
429ada_inferior_exit (struct inferior *inf)
430{
431 ada_inferior_data_cleanup (inf, NULL);
432 set_inferior_data (inf, ada_inferior_data, NULL);
433}
434
ee01b665
JB
435
436 /* program-space-specific data. */
437
438/* This module's per-program-space data. */
439struct ada_pspace_data
440{
441 /* The Ada symbol cache. */
442 struct ada_symbol_cache *sym_cache;
443};
444
445/* Key to our per-program-space data. */
446static const struct program_space_data *ada_pspace_data_handle;
447
448/* Return this module's data for the given program space (PSPACE).
449 If not is found, add a zero'ed one now.
450
451 This function always returns a valid object. */
452
453static struct ada_pspace_data *
454get_ada_pspace_data (struct program_space *pspace)
455{
456 struct ada_pspace_data *data;
457
458 data = program_space_data (pspace, ada_pspace_data_handle);
459 if (data == NULL)
460 {
461 data = XCNEW (struct ada_pspace_data);
462 set_program_space_data (pspace, ada_pspace_data_handle, data);
463 }
464
465 return data;
466}
467
468/* The cleanup callback for this module's per-program-space data. */
469
470static void
471ada_pspace_data_cleanup (struct program_space *pspace, void *data)
472{
473 struct ada_pspace_data *pspace_data = data;
474
475 if (pspace_data->sym_cache != NULL)
476 ada_free_symbol_cache (pspace_data->sym_cache);
477 xfree (pspace_data);
478}
479
4c4b4cd2
PH
480 /* Utilities */
481
720d1a40 482/* If TYPE is a TYPE_CODE_TYPEDEF type, return the target type after
eed9788b 483 all typedef layers have been peeled. Otherwise, return TYPE.
720d1a40
JB
484
485 Normally, we really expect a typedef type to only have 1 typedef layer.
486 In other words, we really expect the target type of a typedef type to be
487 a non-typedef type. This is particularly true for Ada units, because
488 the language does not have a typedef vs not-typedef distinction.
489 In that respect, the Ada compiler has been trying to eliminate as many
490 typedef definitions in the debugging information, since they generally
491 do not bring any extra information (we still use typedef under certain
492 circumstances related mostly to the GNAT encoding).
493
494 Unfortunately, we have seen situations where the debugging information
495 generated by the compiler leads to such multiple typedef layers. For
496 instance, consider the following example with stabs:
497
498 .stabs "pck__float_array___XUP:Tt(0,46)=s16P_ARRAY:(0,47)=[...]"[...]
499 .stabs "pck__float_array___XUP:t(0,36)=(0,46)",128,0,6,0
500
501 This is an error in the debugging information which causes type
502 pck__float_array___XUP to be defined twice, and the second time,
503 it is defined as a typedef of a typedef.
504
505 This is on the fringe of legality as far as debugging information is
506 concerned, and certainly unexpected. But it is easy to handle these
507 situations correctly, so we can afford to be lenient in this case. */
508
509static struct type *
510ada_typedef_target_type (struct type *type)
511{
512 while (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
513 type = TYPE_TARGET_TYPE (type);
514 return type;
515}
516
41d27058
JB
517/* Given DECODED_NAME a string holding a symbol name in its
518 decoded form (ie using the Ada dotted notation), returns
519 its unqualified name. */
520
521static const char *
522ada_unqualified_name (const char *decoded_name)
523{
2b0f535a
JB
524 const char *result;
525
526 /* If the decoded name starts with '<', it means that the encoded
527 name does not follow standard naming conventions, and thus that
528 it is not your typical Ada symbol name. Trying to unqualify it
529 is therefore pointless and possibly erroneous. */
530 if (decoded_name[0] == '<')
531 return decoded_name;
532
533 result = strrchr (decoded_name, '.');
41d27058
JB
534 if (result != NULL)
535 result++; /* Skip the dot... */
536 else
537 result = decoded_name;
538
539 return result;
540}
541
542/* Return a string starting with '<', followed by STR, and '>'.
543 The result is good until the next call. */
544
545static char *
546add_angle_brackets (const char *str)
547{
548 static char *result = NULL;
549
550 xfree (result);
88c15c34 551 result = xstrprintf ("<%s>", str);
41d27058
JB
552 return result;
553}
96d887e8 554
4c4b4cd2
PH
555static char *
556ada_get_gdb_completer_word_break_characters (void)
557{
558 return ada_completer_word_break_characters;
559}
560
e79af960
JB
561/* Print an array element index using the Ada syntax. */
562
563static void
564ada_print_array_index (struct value *index_value, struct ui_file *stream,
79a45b7d 565 const struct value_print_options *options)
e79af960 566{
79a45b7d 567 LA_VALUE_PRINT (index_value, stream, options);
e79af960
JB
568 fprintf_filtered (stream, " => ");
569}
570
f27cf670 571/* Assuming VECT points to an array of *SIZE objects of size
14f9c5c9 572 ELEMENT_SIZE, grow it to contain at least MIN_SIZE objects,
f27cf670 573 updating *SIZE as necessary and returning the (new) array. */
14f9c5c9 574
f27cf670
AS
575void *
576grow_vect (void *vect, size_t *size, size_t min_size, int element_size)
14f9c5c9 577{
d2e4a39e
AS
578 if (*size < min_size)
579 {
580 *size *= 2;
581 if (*size < min_size)
4c4b4cd2 582 *size = min_size;
f27cf670 583 vect = xrealloc (vect, *size * element_size);
d2e4a39e 584 }
f27cf670 585 return vect;
14f9c5c9
AS
586}
587
588/* True (non-zero) iff TARGET matches FIELD_NAME up to any trailing
4c4b4cd2 589 suffix of FIELD_NAME beginning "___". */
14f9c5c9
AS
590
591static int
ebf56fd3 592field_name_match (const char *field_name, const char *target)
14f9c5c9
AS
593{
594 int len = strlen (target);
5b4ee69b 595
d2e4a39e 596 return
4c4b4cd2
PH
597 (strncmp (field_name, target, len) == 0
598 && (field_name[len] == '\0'
61012eef 599 || (startswith (field_name + len, "___")
76a01679
JB
600 && strcmp (field_name + strlen (field_name) - 6,
601 "___XVN") != 0)));
14f9c5c9
AS
602}
603
604
872c8b51
JB
605/* Assuming TYPE is a TYPE_CODE_STRUCT or a TYPE_CODE_TYPDEF to
606 a TYPE_CODE_STRUCT, find the field whose name matches FIELD_NAME,
607 and return its index. This function also handles fields whose name
608 have ___ suffixes because the compiler sometimes alters their name
609 by adding such a suffix to represent fields with certain constraints.
610 If the field could not be found, return a negative number if
611 MAYBE_MISSING is set. Otherwise raise an error. */
4c4b4cd2
PH
612
613int
614ada_get_field_index (const struct type *type, const char *field_name,
615 int maybe_missing)
616{
617 int fieldno;
872c8b51
JB
618 struct type *struct_type = check_typedef ((struct type *) type);
619
620 for (fieldno = 0; fieldno < TYPE_NFIELDS (struct_type); fieldno++)
621 if (field_name_match (TYPE_FIELD_NAME (struct_type, fieldno), field_name))
4c4b4cd2
PH
622 return fieldno;
623
624 if (!maybe_missing)
323e0a4a 625 error (_("Unable to find field %s in struct %s. Aborting"),
872c8b51 626 field_name, TYPE_NAME (struct_type));
4c4b4cd2
PH
627
628 return -1;
629}
630
631/* The length of the prefix of NAME prior to any "___" suffix. */
14f9c5c9
AS
632
633int
d2e4a39e 634ada_name_prefix_len (const char *name)
14f9c5c9
AS
635{
636 if (name == NULL)
637 return 0;
d2e4a39e 638 else
14f9c5c9 639 {
d2e4a39e 640 const char *p = strstr (name, "___");
5b4ee69b 641
14f9c5c9 642 if (p == NULL)
4c4b4cd2 643 return strlen (name);
14f9c5c9 644 else
4c4b4cd2 645 return p - name;
14f9c5c9
AS
646 }
647}
648
4c4b4cd2
PH
649/* Return non-zero if SUFFIX is a suffix of STR.
650 Return zero if STR is null. */
651
14f9c5c9 652static int
d2e4a39e 653is_suffix (const char *str, const char *suffix)
14f9c5c9
AS
654{
655 int len1, len2;
5b4ee69b 656
14f9c5c9
AS
657 if (str == NULL)
658 return 0;
659 len1 = strlen (str);
660 len2 = strlen (suffix);
4c4b4cd2 661 return (len1 >= len2 && strcmp (str + len1 - len2, suffix) == 0);
14f9c5c9
AS
662}
663
4c4b4cd2
PH
664/* The contents of value VAL, treated as a value of type TYPE. The
665 result is an lval in memory if VAL is. */
14f9c5c9 666
d2e4a39e 667static struct value *
4c4b4cd2 668coerce_unspec_val_to_type (struct value *val, struct type *type)
14f9c5c9 669{
61ee279c 670 type = ada_check_typedef (type);
df407dfe 671 if (value_type (val) == type)
4c4b4cd2 672 return val;
d2e4a39e 673 else
14f9c5c9 674 {
4c4b4cd2
PH
675 struct value *result;
676
677 /* Make sure that the object size is not unreasonable before
678 trying to allocate some memory for it. */
c1b5a1a6 679 ada_ensure_varsize_limit (type);
4c4b4cd2 680
41e8491f
JK
681 if (value_lazy (val)
682 || TYPE_LENGTH (type) > TYPE_LENGTH (value_type (val)))
683 result = allocate_value_lazy (type);
684 else
685 {
686 result = allocate_value (type);
9a0dc9e3 687 value_contents_copy_raw (result, 0, val, 0, TYPE_LENGTH (type));
41e8491f 688 }
74bcbdf3 689 set_value_component_location (result, val);
9bbda503
AC
690 set_value_bitsize (result, value_bitsize (val));
691 set_value_bitpos (result, value_bitpos (val));
42ae5230 692 set_value_address (result, value_address (val));
14f9c5c9
AS
693 return result;
694 }
695}
696
fc1a4b47
AC
697static const gdb_byte *
698cond_offset_host (const gdb_byte *valaddr, long offset)
14f9c5c9
AS
699{
700 if (valaddr == NULL)
701 return NULL;
702 else
703 return valaddr + offset;
704}
705
706static CORE_ADDR
ebf56fd3 707cond_offset_target (CORE_ADDR address, long offset)
14f9c5c9
AS
708{
709 if (address == 0)
710 return 0;
d2e4a39e 711 else
14f9c5c9
AS
712 return address + offset;
713}
714
4c4b4cd2
PH
715/* Issue a warning (as for the definition of warning in utils.c, but
716 with exactly one argument rather than ...), unless the limit on the
717 number of warnings has passed during the evaluation of the current
718 expression. */
a2249542 719
77109804
AC
720/* FIXME: cagney/2004-10-10: This function is mimicking the behavior
721 provided by "complaint". */
a0b31db1 722static void lim_warning (const char *format, ...) ATTRIBUTE_PRINTF (1, 2);
77109804 723
14f9c5c9 724static void
a2249542 725lim_warning (const char *format, ...)
14f9c5c9 726{
a2249542 727 va_list args;
a2249542 728
5b4ee69b 729 va_start (args, format);
4c4b4cd2
PH
730 warnings_issued += 1;
731 if (warnings_issued <= warning_limit)
a2249542
MK
732 vwarning (format, args);
733
734 va_end (args);
4c4b4cd2
PH
735}
736
714e53ab
PH
737/* Issue an error if the size of an object of type T is unreasonable,
738 i.e. if it would be a bad idea to allocate a value of this type in
739 GDB. */
740
c1b5a1a6
JB
741void
742ada_ensure_varsize_limit (const struct type *type)
714e53ab
PH
743{
744 if (TYPE_LENGTH (type) > varsize_limit)
323e0a4a 745 error (_("object size is larger than varsize-limit"));
714e53ab
PH
746}
747
0963b4bd 748/* Maximum value of a SIZE-byte signed integer type. */
4c4b4cd2 749static LONGEST
c3e5cd34 750max_of_size (int size)
4c4b4cd2 751{
76a01679 752 LONGEST top_bit = (LONGEST) 1 << (size * 8 - 2);
5b4ee69b 753
76a01679 754 return top_bit | (top_bit - 1);
4c4b4cd2
PH
755}
756
0963b4bd 757/* Minimum value of a SIZE-byte signed integer type. */
4c4b4cd2 758static LONGEST
c3e5cd34 759min_of_size (int size)
4c4b4cd2 760{
c3e5cd34 761 return -max_of_size (size) - 1;
4c4b4cd2
PH
762}
763
0963b4bd 764/* Maximum value of a SIZE-byte unsigned integer type. */
4c4b4cd2 765static ULONGEST
c3e5cd34 766umax_of_size (int size)
4c4b4cd2 767{
76a01679 768 ULONGEST top_bit = (ULONGEST) 1 << (size * 8 - 1);
5b4ee69b 769
76a01679 770 return top_bit | (top_bit - 1);
4c4b4cd2
PH
771}
772
0963b4bd 773/* Maximum value of integral type T, as a signed quantity. */
c3e5cd34
PH
774static LONGEST
775max_of_type (struct type *t)
4c4b4cd2 776{
c3e5cd34
PH
777 if (TYPE_UNSIGNED (t))
778 return (LONGEST) umax_of_size (TYPE_LENGTH (t));
779 else
780 return max_of_size (TYPE_LENGTH (t));
781}
782
0963b4bd 783/* Minimum value of integral type T, as a signed quantity. */
c3e5cd34
PH
784static LONGEST
785min_of_type (struct type *t)
786{
787 if (TYPE_UNSIGNED (t))
788 return 0;
789 else
790 return min_of_size (TYPE_LENGTH (t));
4c4b4cd2
PH
791}
792
793/* The largest value in the domain of TYPE, a discrete type, as an integer. */
43bbcdc2
PH
794LONGEST
795ada_discrete_type_high_bound (struct type *type)
4c4b4cd2 796{
8739bc53 797 type = resolve_dynamic_type (type, 0);
76a01679 798 switch (TYPE_CODE (type))
4c4b4cd2
PH
799 {
800 case TYPE_CODE_RANGE:
690cc4eb 801 return TYPE_HIGH_BOUND (type);
4c4b4cd2 802 case TYPE_CODE_ENUM:
14e75d8e 803 return TYPE_FIELD_ENUMVAL (type, TYPE_NFIELDS (type) - 1);
690cc4eb
PH
804 case TYPE_CODE_BOOL:
805 return 1;
806 case TYPE_CODE_CHAR:
76a01679 807 case TYPE_CODE_INT:
690cc4eb 808 return max_of_type (type);
4c4b4cd2 809 default:
43bbcdc2 810 error (_("Unexpected type in ada_discrete_type_high_bound."));
4c4b4cd2
PH
811 }
812}
813
14e75d8e 814/* The smallest value in the domain of TYPE, a discrete type, as an integer. */
43bbcdc2
PH
815LONGEST
816ada_discrete_type_low_bound (struct type *type)
4c4b4cd2 817{
8739bc53 818 type = resolve_dynamic_type (type, 0);
76a01679 819 switch (TYPE_CODE (type))
4c4b4cd2
PH
820 {
821 case TYPE_CODE_RANGE:
690cc4eb 822 return TYPE_LOW_BOUND (type);
4c4b4cd2 823 case TYPE_CODE_ENUM:
14e75d8e 824 return TYPE_FIELD_ENUMVAL (type, 0);
690cc4eb
PH
825 case TYPE_CODE_BOOL:
826 return 0;
827 case TYPE_CODE_CHAR:
76a01679 828 case TYPE_CODE_INT:
690cc4eb 829 return min_of_type (type);
4c4b4cd2 830 default:
43bbcdc2 831 error (_("Unexpected type in ada_discrete_type_low_bound."));
4c4b4cd2
PH
832 }
833}
834
835/* The identity on non-range types. For range types, the underlying
76a01679 836 non-range scalar type. */
4c4b4cd2
PH
837
838static struct type *
18af8284 839get_base_type (struct type *type)
4c4b4cd2
PH
840{
841 while (type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE)
842 {
76a01679
JB
843 if (type == TYPE_TARGET_TYPE (type) || TYPE_TARGET_TYPE (type) == NULL)
844 return type;
4c4b4cd2
PH
845 type = TYPE_TARGET_TYPE (type);
846 }
847 return type;
14f9c5c9 848}
41246937
JB
849
850/* Return a decoded version of the given VALUE. This means returning
851 a value whose type is obtained by applying all the GNAT-specific
852 encondings, making the resulting type a static but standard description
853 of the initial type. */
854
855struct value *
856ada_get_decoded_value (struct value *value)
857{
858 struct type *type = ada_check_typedef (value_type (value));
859
860 if (ada_is_array_descriptor_type (type)
861 || (ada_is_constrained_packed_array_type (type)
862 && TYPE_CODE (type) != TYPE_CODE_PTR))
863 {
864 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF) /* array access type. */
865 value = ada_coerce_to_simple_array_ptr (value);
866 else
867 value = ada_coerce_to_simple_array (value);
868 }
869 else
870 value = ada_to_fixed_value (value);
871
872 return value;
873}
874
875/* Same as ada_get_decoded_value, but with the given TYPE.
876 Because there is no associated actual value for this type,
877 the resulting type might be a best-effort approximation in
878 the case of dynamic types. */
879
880struct type *
881ada_get_decoded_type (struct type *type)
882{
883 type = to_static_fixed_type (type);
884 if (ada_is_constrained_packed_array_type (type))
885 type = ada_coerce_to_simple_array_type (type);
886 return type;
887}
888
4c4b4cd2 889\f
76a01679 890
4c4b4cd2 891 /* Language Selection */
14f9c5c9
AS
892
893/* If the main program is in Ada, return language_ada, otherwise return LANG
ccefe4c4 894 (the main program is in Ada iif the adainit symbol is found). */
d2e4a39e 895
14f9c5c9 896enum language
ccefe4c4 897ada_update_initial_language (enum language lang)
14f9c5c9 898{
d2e4a39e 899 if (lookup_minimal_symbol ("adainit", (const char *) NULL,
3b7344d5 900 (struct objfile *) NULL).minsym != NULL)
4c4b4cd2 901 return language_ada;
14f9c5c9
AS
902
903 return lang;
904}
96d887e8
PH
905
906/* If the main procedure is written in Ada, then return its name.
907 The result is good until the next call. Return NULL if the main
908 procedure doesn't appear to be in Ada. */
909
910char *
911ada_main_name (void)
912{
3b7344d5 913 struct bound_minimal_symbol msym;
f9bc20b9 914 static char *main_program_name = NULL;
6c038f32 915
96d887e8
PH
916 /* For Ada, the name of the main procedure is stored in a specific
917 string constant, generated by the binder. Look for that symbol,
918 extract its address, and then read that string. If we didn't find
919 that string, then most probably the main procedure is not written
920 in Ada. */
921 msym = lookup_minimal_symbol (ADA_MAIN_PROGRAM_SYMBOL_NAME, NULL, NULL);
922
3b7344d5 923 if (msym.minsym != NULL)
96d887e8 924 {
f9bc20b9
JB
925 CORE_ADDR main_program_name_addr;
926 int err_code;
927
77e371c0 928 main_program_name_addr = BMSYMBOL_VALUE_ADDRESS (msym);
96d887e8 929 if (main_program_name_addr == 0)
323e0a4a 930 error (_("Invalid address for Ada main program name."));
96d887e8 931
f9bc20b9
JB
932 xfree (main_program_name);
933 target_read_string (main_program_name_addr, &main_program_name,
934 1024, &err_code);
935
936 if (err_code != 0)
937 return NULL;
96d887e8
PH
938 return main_program_name;
939 }
940
941 /* The main procedure doesn't seem to be in Ada. */
942 return NULL;
943}
14f9c5c9 944\f
4c4b4cd2 945 /* Symbols */
d2e4a39e 946
4c4b4cd2
PH
947/* Table of Ada operators and their GNAT-encoded names. Last entry is pair
948 of NULLs. */
14f9c5c9 949
d2e4a39e
AS
950const struct ada_opname_map ada_opname_table[] = {
951 {"Oadd", "\"+\"", BINOP_ADD},
952 {"Osubtract", "\"-\"", BINOP_SUB},
953 {"Omultiply", "\"*\"", BINOP_MUL},
954 {"Odivide", "\"/\"", BINOP_DIV},
955 {"Omod", "\"mod\"", BINOP_MOD},
956 {"Orem", "\"rem\"", BINOP_REM},
957 {"Oexpon", "\"**\"", BINOP_EXP},
958 {"Olt", "\"<\"", BINOP_LESS},
959 {"Ole", "\"<=\"", BINOP_LEQ},
960 {"Ogt", "\">\"", BINOP_GTR},
961 {"Oge", "\">=\"", BINOP_GEQ},
962 {"Oeq", "\"=\"", BINOP_EQUAL},
963 {"One", "\"/=\"", BINOP_NOTEQUAL},
964 {"Oand", "\"and\"", BINOP_BITWISE_AND},
965 {"Oor", "\"or\"", BINOP_BITWISE_IOR},
966 {"Oxor", "\"xor\"", BINOP_BITWISE_XOR},
967 {"Oconcat", "\"&\"", BINOP_CONCAT},
968 {"Oabs", "\"abs\"", UNOP_ABS},
969 {"Onot", "\"not\"", UNOP_LOGICAL_NOT},
970 {"Oadd", "\"+\"", UNOP_PLUS},
971 {"Osubtract", "\"-\"", UNOP_NEG},
972 {NULL, NULL}
14f9c5c9
AS
973};
974
4c4b4cd2
PH
975/* The "encoded" form of DECODED, according to GNAT conventions.
976 The result is valid until the next call to ada_encode. */
977
14f9c5c9 978char *
4c4b4cd2 979ada_encode (const char *decoded)
14f9c5c9 980{
4c4b4cd2
PH
981 static char *encoding_buffer = NULL;
982 static size_t encoding_buffer_size = 0;
d2e4a39e 983 const char *p;
14f9c5c9 984 int k;
d2e4a39e 985
4c4b4cd2 986 if (decoded == NULL)
14f9c5c9
AS
987 return NULL;
988
4c4b4cd2
PH
989 GROW_VECT (encoding_buffer, encoding_buffer_size,
990 2 * strlen (decoded) + 10);
14f9c5c9
AS
991
992 k = 0;
4c4b4cd2 993 for (p = decoded; *p != '\0'; p += 1)
14f9c5c9 994 {
cdc7bb92 995 if (*p == '.')
4c4b4cd2
PH
996 {
997 encoding_buffer[k] = encoding_buffer[k + 1] = '_';
998 k += 2;
999 }
14f9c5c9 1000 else if (*p == '"')
4c4b4cd2
PH
1001 {
1002 const struct ada_opname_map *mapping;
1003
1004 for (mapping = ada_opname_table;
1265e4aa 1005 mapping->encoded != NULL
61012eef 1006 && !startswith (p, mapping->decoded); mapping += 1)
4c4b4cd2
PH
1007 ;
1008 if (mapping->encoded == NULL)
323e0a4a 1009 error (_("invalid Ada operator name: %s"), p);
4c4b4cd2
PH
1010 strcpy (encoding_buffer + k, mapping->encoded);
1011 k += strlen (mapping->encoded);
1012 break;
1013 }
d2e4a39e 1014 else
4c4b4cd2
PH
1015 {
1016 encoding_buffer[k] = *p;
1017 k += 1;
1018 }
14f9c5c9
AS
1019 }
1020
4c4b4cd2
PH
1021 encoding_buffer[k] = '\0';
1022 return encoding_buffer;
14f9c5c9
AS
1023}
1024
1025/* Return NAME folded to lower case, or, if surrounded by single
4c4b4cd2
PH
1026 quotes, unfolded, but with the quotes stripped away. Result good
1027 to next call. */
1028
d2e4a39e
AS
1029char *
1030ada_fold_name (const char *name)
14f9c5c9 1031{
d2e4a39e 1032 static char *fold_buffer = NULL;
14f9c5c9
AS
1033 static size_t fold_buffer_size = 0;
1034
1035 int len = strlen (name);
d2e4a39e 1036 GROW_VECT (fold_buffer, fold_buffer_size, len + 1);
14f9c5c9
AS
1037
1038 if (name[0] == '\'')
1039 {
d2e4a39e
AS
1040 strncpy (fold_buffer, name + 1, len - 2);
1041 fold_buffer[len - 2] = '\000';
14f9c5c9
AS
1042 }
1043 else
1044 {
1045 int i;
5b4ee69b 1046
14f9c5c9 1047 for (i = 0; i <= len; i += 1)
4c4b4cd2 1048 fold_buffer[i] = tolower (name[i]);
14f9c5c9
AS
1049 }
1050
1051 return fold_buffer;
1052}
1053
529cad9c
PH
1054/* Return nonzero if C is either a digit or a lowercase alphabet character. */
1055
1056static int
1057is_lower_alphanum (const char c)
1058{
1059 return (isdigit (c) || (isalpha (c) && islower (c)));
1060}
1061
c90092fe
JB
1062/* ENCODED is the linkage name of a symbol and LEN contains its length.
1063 This function saves in LEN the length of that same symbol name but
1064 without either of these suffixes:
29480c32
JB
1065 . .{DIGIT}+
1066 . ${DIGIT}+
1067 . ___{DIGIT}+
1068 . __{DIGIT}+.
c90092fe 1069
29480c32
JB
1070 These are suffixes introduced by the compiler for entities such as
1071 nested subprogram for instance, in order to avoid name clashes.
1072 They do not serve any purpose for the debugger. */
1073
1074static void
1075ada_remove_trailing_digits (const char *encoded, int *len)
1076{
1077 if (*len > 1 && isdigit (encoded[*len - 1]))
1078 {
1079 int i = *len - 2;
5b4ee69b 1080
29480c32
JB
1081 while (i > 0 && isdigit (encoded[i]))
1082 i--;
1083 if (i >= 0 && encoded[i] == '.')
1084 *len = i;
1085 else if (i >= 0 && encoded[i] == '$')
1086 *len = i;
61012eef 1087 else if (i >= 2 && startswith (encoded + i - 2, "___"))
29480c32 1088 *len = i - 2;
61012eef 1089 else if (i >= 1 && startswith (encoded + i - 1, "__"))
29480c32
JB
1090 *len = i - 1;
1091 }
1092}
1093
1094/* Remove the suffix introduced by the compiler for protected object
1095 subprograms. */
1096
1097static void
1098ada_remove_po_subprogram_suffix (const char *encoded, int *len)
1099{
1100 /* Remove trailing N. */
1101
1102 /* Protected entry subprograms are broken into two
1103 separate subprograms: The first one is unprotected, and has
1104 a 'N' suffix; the second is the protected version, and has
0963b4bd 1105 the 'P' suffix. The second calls the first one after handling
29480c32
JB
1106 the protection. Since the P subprograms are internally generated,
1107 we leave these names undecoded, giving the user a clue that this
1108 entity is internal. */
1109
1110 if (*len > 1
1111 && encoded[*len - 1] == 'N'
1112 && (isdigit (encoded[*len - 2]) || islower (encoded[*len - 2])))
1113 *len = *len - 1;
1114}
1115
69fadcdf
JB
1116/* Remove trailing X[bn]* suffixes (indicating names in package bodies). */
1117
1118static void
1119ada_remove_Xbn_suffix (const char *encoded, int *len)
1120{
1121 int i = *len - 1;
1122
1123 while (i > 0 && (encoded[i] == 'b' || encoded[i] == 'n'))
1124 i--;
1125
1126 if (encoded[i] != 'X')
1127 return;
1128
1129 if (i == 0)
1130 return;
1131
1132 if (isalnum (encoded[i-1]))
1133 *len = i;
1134}
1135
29480c32
JB
1136/* If ENCODED follows the GNAT entity encoding conventions, then return
1137 the decoded form of ENCODED. Otherwise, return "<%s>" where "%s" is
1138 replaced by ENCODED.
14f9c5c9 1139
4c4b4cd2 1140 The resulting string is valid until the next call of ada_decode.
29480c32 1141 If the string is unchanged by decoding, the original string pointer
4c4b4cd2
PH
1142 is returned. */
1143
1144const char *
1145ada_decode (const char *encoded)
14f9c5c9
AS
1146{
1147 int i, j;
1148 int len0;
d2e4a39e 1149 const char *p;
4c4b4cd2 1150 char *decoded;
14f9c5c9 1151 int at_start_name;
4c4b4cd2
PH
1152 static char *decoding_buffer = NULL;
1153 static size_t decoding_buffer_size = 0;
d2e4a39e 1154
29480c32
JB
1155 /* The name of the Ada main procedure starts with "_ada_".
1156 This prefix is not part of the decoded name, so skip this part
1157 if we see this prefix. */
61012eef 1158 if (startswith (encoded, "_ada_"))
4c4b4cd2 1159 encoded += 5;
14f9c5c9 1160
29480c32
JB
1161 /* If the name starts with '_', then it is not a properly encoded
1162 name, so do not attempt to decode it. Similarly, if the name
1163 starts with '<', the name should not be decoded. */
4c4b4cd2 1164 if (encoded[0] == '_' || encoded[0] == '<')
14f9c5c9
AS
1165 goto Suppress;
1166
4c4b4cd2 1167 len0 = strlen (encoded);
4c4b4cd2 1168
29480c32
JB
1169 ada_remove_trailing_digits (encoded, &len0);
1170 ada_remove_po_subprogram_suffix (encoded, &len0);
529cad9c 1171
4c4b4cd2
PH
1172 /* Remove the ___X.* suffix if present. Do not forget to verify that
1173 the suffix is located before the current "end" of ENCODED. We want
1174 to avoid re-matching parts of ENCODED that have previously been
1175 marked as discarded (by decrementing LEN0). */
1176 p = strstr (encoded, "___");
1177 if (p != NULL && p - encoded < len0 - 3)
14f9c5c9
AS
1178 {
1179 if (p[3] == 'X')
4c4b4cd2 1180 len0 = p - encoded;
14f9c5c9 1181 else
4c4b4cd2 1182 goto Suppress;
14f9c5c9 1183 }
4c4b4cd2 1184
29480c32
JB
1185 /* Remove any trailing TKB suffix. It tells us that this symbol
1186 is for the body of a task, but that information does not actually
1187 appear in the decoded name. */
1188
61012eef 1189 if (len0 > 3 && startswith (encoded + len0 - 3, "TKB"))
14f9c5c9 1190 len0 -= 3;
76a01679 1191
a10967fa
JB
1192 /* Remove any trailing TB suffix. The TB suffix is slightly different
1193 from the TKB suffix because it is used for non-anonymous task
1194 bodies. */
1195
61012eef 1196 if (len0 > 2 && startswith (encoded + len0 - 2, "TB"))
a10967fa
JB
1197 len0 -= 2;
1198
29480c32
JB
1199 /* Remove trailing "B" suffixes. */
1200 /* FIXME: brobecker/2006-04-19: Not sure what this are used for... */
1201
61012eef 1202 if (len0 > 1 && startswith (encoded + len0 - 1, "B"))
14f9c5c9
AS
1203 len0 -= 1;
1204
4c4b4cd2 1205 /* Make decoded big enough for possible expansion by operator name. */
29480c32 1206
4c4b4cd2
PH
1207 GROW_VECT (decoding_buffer, decoding_buffer_size, 2 * len0 + 1);
1208 decoded = decoding_buffer;
14f9c5c9 1209
29480c32
JB
1210 /* Remove trailing __{digit}+ or trailing ${digit}+. */
1211
4c4b4cd2 1212 if (len0 > 1 && isdigit (encoded[len0 - 1]))
d2e4a39e 1213 {
4c4b4cd2
PH
1214 i = len0 - 2;
1215 while ((i >= 0 && isdigit (encoded[i]))
1216 || (i >= 1 && encoded[i] == '_' && isdigit (encoded[i - 1])))
1217 i -= 1;
1218 if (i > 1 && encoded[i] == '_' && encoded[i - 1] == '_')
1219 len0 = i - 1;
1220 else if (encoded[i] == '$')
1221 len0 = i;
d2e4a39e 1222 }
14f9c5c9 1223
29480c32
JB
1224 /* The first few characters that are not alphabetic are not part
1225 of any encoding we use, so we can copy them over verbatim. */
1226
4c4b4cd2
PH
1227 for (i = 0, j = 0; i < len0 && !isalpha (encoded[i]); i += 1, j += 1)
1228 decoded[j] = encoded[i];
14f9c5c9
AS
1229
1230 at_start_name = 1;
1231 while (i < len0)
1232 {
29480c32 1233 /* Is this a symbol function? */
4c4b4cd2
PH
1234 if (at_start_name && encoded[i] == 'O')
1235 {
1236 int k;
5b4ee69b 1237
4c4b4cd2
PH
1238 for (k = 0; ada_opname_table[k].encoded != NULL; k += 1)
1239 {
1240 int op_len = strlen (ada_opname_table[k].encoded);
06d5cf63
JB
1241 if ((strncmp (ada_opname_table[k].encoded + 1, encoded + i + 1,
1242 op_len - 1) == 0)
1243 && !isalnum (encoded[i + op_len]))
4c4b4cd2
PH
1244 {
1245 strcpy (decoded + j, ada_opname_table[k].decoded);
1246 at_start_name = 0;
1247 i += op_len;
1248 j += strlen (ada_opname_table[k].decoded);
1249 break;
1250 }
1251 }
1252 if (ada_opname_table[k].encoded != NULL)
1253 continue;
1254 }
14f9c5c9
AS
1255 at_start_name = 0;
1256
529cad9c
PH
1257 /* Replace "TK__" with "__", which will eventually be translated
1258 into "." (just below). */
1259
61012eef 1260 if (i < len0 - 4 && startswith (encoded + i, "TK__"))
4c4b4cd2 1261 i += 2;
529cad9c 1262
29480c32
JB
1263 /* Replace "__B_{DIGITS}+__" sequences by "__", which will eventually
1264 be translated into "." (just below). These are internal names
1265 generated for anonymous blocks inside which our symbol is nested. */
1266
1267 if (len0 - i > 5 && encoded [i] == '_' && encoded [i+1] == '_'
1268 && encoded [i+2] == 'B' && encoded [i+3] == '_'
1269 && isdigit (encoded [i+4]))
1270 {
1271 int k = i + 5;
1272
1273 while (k < len0 && isdigit (encoded[k]))
1274 k++; /* Skip any extra digit. */
1275
1276 /* Double-check that the "__B_{DIGITS}+" sequence we found
1277 is indeed followed by "__". */
1278 if (len0 - k > 2 && encoded [k] == '_' && encoded [k+1] == '_')
1279 i = k;
1280 }
1281
529cad9c
PH
1282 /* Remove _E{DIGITS}+[sb] */
1283
1284 /* Just as for protected object subprograms, there are 2 categories
0963b4bd 1285 of subprograms created by the compiler for each entry. The first
529cad9c
PH
1286 one implements the actual entry code, and has a suffix following
1287 the convention above; the second one implements the barrier and
1288 uses the same convention as above, except that the 'E' is replaced
1289 by a 'B'.
1290
1291 Just as above, we do not decode the name of barrier functions
1292 to give the user a clue that the code he is debugging has been
1293 internally generated. */
1294
1295 if (len0 - i > 3 && encoded [i] == '_' && encoded[i+1] == 'E'
1296 && isdigit (encoded[i+2]))
1297 {
1298 int k = i + 3;
1299
1300 while (k < len0 && isdigit (encoded[k]))
1301 k++;
1302
1303 if (k < len0
1304 && (encoded[k] == 'b' || encoded[k] == 's'))
1305 {
1306 k++;
1307 /* Just as an extra precaution, make sure that if this
1308 suffix is followed by anything else, it is a '_'.
1309 Otherwise, we matched this sequence by accident. */
1310 if (k == len0
1311 || (k < len0 && encoded[k] == '_'))
1312 i = k;
1313 }
1314 }
1315
1316 /* Remove trailing "N" in [a-z0-9]+N__. The N is added by
1317 the GNAT front-end in protected object subprograms. */
1318
1319 if (i < len0 + 3
1320 && encoded[i] == 'N' && encoded[i+1] == '_' && encoded[i+2] == '_')
1321 {
1322 /* Backtrack a bit up until we reach either the begining of
1323 the encoded name, or "__". Make sure that we only find
1324 digits or lowercase characters. */
1325 const char *ptr = encoded + i - 1;
1326
1327 while (ptr >= encoded && is_lower_alphanum (ptr[0]))
1328 ptr--;
1329 if (ptr < encoded
1330 || (ptr > encoded && ptr[0] == '_' && ptr[-1] == '_'))
1331 i++;
1332 }
1333
4c4b4cd2
PH
1334 if (encoded[i] == 'X' && i != 0 && isalnum (encoded[i - 1]))
1335 {
29480c32
JB
1336 /* This is a X[bn]* sequence not separated from the previous
1337 part of the name with a non-alpha-numeric character (in other
1338 words, immediately following an alpha-numeric character), then
1339 verify that it is placed at the end of the encoded name. If
1340 not, then the encoding is not valid and we should abort the
1341 decoding. Otherwise, just skip it, it is used in body-nested
1342 package names. */
4c4b4cd2
PH
1343 do
1344 i += 1;
1345 while (i < len0 && (encoded[i] == 'b' || encoded[i] == 'n'));
1346 if (i < len0)
1347 goto Suppress;
1348 }
cdc7bb92 1349 else if (i < len0 - 2 && encoded[i] == '_' && encoded[i + 1] == '_')
4c4b4cd2 1350 {
29480c32 1351 /* Replace '__' by '.'. */
4c4b4cd2
PH
1352 decoded[j] = '.';
1353 at_start_name = 1;
1354 i += 2;
1355 j += 1;
1356 }
14f9c5c9 1357 else
4c4b4cd2 1358 {
29480c32
JB
1359 /* It's a character part of the decoded name, so just copy it
1360 over. */
4c4b4cd2
PH
1361 decoded[j] = encoded[i];
1362 i += 1;
1363 j += 1;
1364 }
14f9c5c9 1365 }
4c4b4cd2 1366 decoded[j] = '\000';
14f9c5c9 1367
29480c32
JB
1368 /* Decoded names should never contain any uppercase character.
1369 Double-check this, and abort the decoding if we find one. */
1370
4c4b4cd2
PH
1371 for (i = 0; decoded[i] != '\0'; i += 1)
1372 if (isupper (decoded[i]) || decoded[i] == ' ')
14f9c5c9
AS
1373 goto Suppress;
1374
4c4b4cd2
PH
1375 if (strcmp (decoded, encoded) == 0)
1376 return encoded;
1377 else
1378 return decoded;
14f9c5c9
AS
1379
1380Suppress:
4c4b4cd2
PH
1381 GROW_VECT (decoding_buffer, decoding_buffer_size, strlen (encoded) + 3);
1382 decoded = decoding_buffer;
1383 if (encoded[0] == '<')
1384 strcpy (decoded, encoded);
14f9c5c9 1385 else
88c15c34 1386 xsnprintf (decoded, decoding_buffer_size, "<%s>", encoded);
4c4b4cd2
PH
1387 return decoded;
1388
1389}
1390
1391/* Table for keeping permanent unique copies of decoded names. Once
1392 allocated, names in this table are never released. While this is a
1393 storage leak, it should not be significant unless there are massive
1394 changes in the set of decoded names in successive versions of a
1395 symbol table loaded during a single session. */
1396static struct htab *decoded_names_store;
1397
1398/* Returns the decoded name of GSYMBOL, as for ada_decode, caching it
1399 in the language-specific part of GSYMBOL, if it has not been
1400 previously computed. Tries to save the decoded name in the same
1401 obstack as GSYMBOL, if possible, and otherwise on the heap (so that,
1402 in any case, the decoded symbol has a lifetime at least that of
0963b4bd 1403 GSYMBOL).
4c4b4cd2
PH
1404 The GSYMBOL parameter is "mutable" in the C++ sense: logically
1405 const, but nevertheless modified to a semantically equivalent form
0963b4bd 1406 when a decoded name is cached in it. */
4c4b4cd2 1407
45e6c716 1408const char *
f85f34ed 1409ada_decode_symbol (const struct general_symbol_info *arg)
4c4b4cd2 1410{
f85f34ed
TT
1411 struct general_symbol_info *gsymbol = (struct general_symbol_info *) arg;
1412 const char **resultp =
1413 &gsymbol->language_specific.mangled_lang.demangled_name;
5b4ee69b 1414
f85f34ed 1415 if (!gsymbol->ada_mangled)
4c4b4cd2
PH
1416 {
1417 const char *decoded = ada_decode (gsymbol->name);
f85f34ed 1418 struct obstack *obstack = gsymbol->language_specific.obstack;
5b4ee69b 1419
f85f34ed 1420 gsymbol->ada_mangled = 1;
5b4ee69b 1421
f85f34ed
TT
1422 if (obstack != NULL)
1423 *resultp = obstack_copy0 (obstack, decoded, strlen (decoded));
1424 else
76a01679 1425 {
f85f34ed
TT
1426 /* Sometimes, we can't find a corresponding objfile, in
1427 which case, we put the result on the heap. Since we only
1428 decode when needed, we hope this usually does not cause a
1429 significant memory leak (FIXME). */
1430
76a01679
JB
1431 char **slot = (char **) htab_find_slot (decoded_names_store,
1432 decoded, INSERT);
5b4ee69b 1433
76a01679
JB
1434 if (*slot == NULL)
1435 *slot = xstrdup (decoded);
1436 *resultp = *slot;
1437 }
4c4b4cd2 1438 }
14f9c5c9 1439
4c4b4cd2
PH
1440 return *resultp;
1441}
76a01679 1442
2c0b251b 1443static char *
76a01679 1444ada_la_decode (const char *encoded, int options)
4c4b4cd2
PH
1445{
1446 return xstrdup (ada_decode (encoded));
14f9c5c9
AS
1447}
1448
1449/* Returns non-zero iff SYM_NAME matches NAME, ignoring any trailing
4c4b4cd2
PH
1450 suffixes that encode debugging information or leading _ada_ on
1451 SYM_NAME (see is_name_suffix commentary for the debugging
1452 information that is ignored). If WILD, then NAME need only match a
1453 suffix of SYM_NAME minus the same suffixes. Also returns 0 if
1454 either argument is NULL. */
14f9c5c9 1455
2c0b251b 1456static int
40658b94 1457match_name (const char *sym_name, const char *name, int wild)
14f9c5c9
AS
1458{
1459 if (sym_name == NULL || name == NULL)
1460 return 0;
1461 else if (wild)
73589123 1462 return wild_match (sym_name, name) == 0;
d2e4a39e
AS
1463 else
1464 {
1465 int len_name = strlen (name);
5b4ee69b 1466
4c4b4cd2
PH
1467 return (strncmp (sym_name, name, len_name) == 0
1468 && is_name_suffix (sym_name + len_name))
61012eef 1469 || (startswith (sym_name, "_ada_")
4c4b4cd2
PH
1470 && strncmp (sym_name + 5, name, len_name) == 0
1471 && is_name_suffix (sym_name + len_name + 5));
d2e4a39e 1472 }
14f9c5c9 1473}
14f9c5c9 1474\f
d2e4a39e 1475
4c4b4cd2 1476 /* Arrays */
14f9c5c9 1477
28c85d6c
JB
1478/* Assuming that INDEX_DESC_TYPE is an ___XA structure, a structure
1479 generated by the GNAT compiler to describe the index type used
1480 for each dimension of an array, check whether it follows the latest
1481 known encoding. If not, fix it up to conform to the latest encoding.
1482 Otherwise, do nothing. This function also does nothing if
1483 INDEX_DESC_TYPE is NULL.
1484
1485 The GNAT encoding used to describle the array index type evolved a bit.
1486 Initially, the information would be provided through the name of each
1487 field of the structure type only, while the type of these fields was
1488 described as unspecified and irrelevant. The debugger was then expected
1489 to perform a global type lookup using the name of that field in order
1490 to get access to the full index type description. Because these global
1491 lookups can be very expensive, the encoding was later enhanced to make
1492 the global lookup unnecessary by defining the field type as being
1493 the full index type description.
1494
1495 The purpose of this routine is to allow us to support older versions
1496 of the compiler by detecting the use of the older encoding, and by
1497 fixing up the INDEX_DESC_TYPE to follow the new one (at this point,
1498 we essentially replace each field's meaningless type by the associated
1499 index subtype). */
1500
1501void
1502ada_fixup_array_indexes_type (struct type *index_desc_type)
1503{
1504 int i;
1505
1506 if (index_desc_type == NULL)
1507 return;
1508 gdb_assert (TYPE_NFIELDS (index_desc_type) > 0);
1509
1510 /* Check if INDEX_DESC_TYPE follows the older encoding (it is sufficient
1511 to check one field only, no need to check them all). If not, return
1512 now.
1513
1514 If our INDEX_DESC_TYPE was generated using the older encoding,
1515 the field type should be a meaningless integer type whose name
1516 is not equal to the field name. */
1517 if (TYPE_NAME (TYPE_FIELD_TYPE (index_desc_type, 0)) != NULL
1518 && strcmp (TYPE_NAME (TYPE_FIELD_TYPE (index_desc_type, 0)),
1519 TYPE_FIELD_NAME (index_desc_type, 0)) == 0)
1520 return;
1521
1522 /* Fixup each field of INDEX_DESC_TYPE. */
1523 for (i = 0; i < TYPE_NFIELDS (index_desc_type); i++)
1524 {
0d5cff50 1525 const char *name = TYPE_FIELD_NAME (index_desc_type, i);
28c85d6c
JB
1526 struct type *raw_type = ada_check_typedef (ada_find_any_type (name));
1527
1528 if (raw_type)
1529 TYPE_FIELD_TYPE (index_desc_type, i) = raw_type;
1530 }
1531}
1532
4c4b4cd2 1533/* Names of MAX_ADA_DIMENS bounds in P_BOUNDS fields of array descriptors. */
14f9c5c9 1534
d2e4a39e
AS
1535static char *bound_name[] = {
1536 "LB0", "UB0", "LB1", "UB1", "LB2", "UB2", "LB3", "UB3",
14f9c5c9
AS
1537 "LB4", "UB4", "LB5", "UB5", "LB6", "UB6", "LB7", "UB7"
1538};
1539
1540/* Maximum number of array dimensions we are prepared to handle. */
1541
4c4b4cd2 1542#define MAX_ADA_DIMENS (sizeof(bound_name) / (2*sizeof(char *)))
14f9c5c9 1543
14f9c5c9 1544
4c4b4cd2
PH
1545/* The desc_* routines return primitive portions of array descriptors
1546 (fat pointers). */
14f9c5c9
AS
1547
1548/* The descriptor or array type, if any, indicated by TYPE; removes
4c4b4cd2
PH
1549 level of indirection, if needed. */
1550
d2e4a39e
AS
1551static struct type *
1552desc_base_type (struct type *type)
14f9c5c9
AS
1553{
1554 if (type == NULL)
1555 return NULL;
61ee279c 1556 type = ada_check_typedef (type);
720d1a40
JB
1557 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
1558 type = ada_typedef_target_type (type);
1559
1265e4aa
JB
1560 if (type != NULL
1561 && (TYPE_CODE (type) == TYPE_CODE_PTR
1562 || TYPE_CODE (type) == TYPE_CODE_REF))
61ee279c 1563 return ada_check_typedef (TYPE_TARGET_TYPE (type));
14f9c5c9
AS
1564 else
1565 return type;
1566}
1567
4c4b4cd2
PH
1568/* True iff TYPE indicates a "thin" array pointer type. */
1569
14f9c5c9 1570static int
d2e4a39e 1571is_thin_pntr (struct type *type)
14f9c5c9 1572{
d2e4a39e 1573 return
14f9c5c9
AS
1574 is_suffix (ada_type_name (desc_base_type (type)), "___XUT")
1575 || is_suffix (ada_type_name (desc_base_type (type)), "___XUT___XVE");
1576}
1577
4c4b4cd2
PH
1578/* The descriptor type for thin pointer type TYPE. */
1579
d2e4a39e
AS
1580static struct type *
1581thin_descriptor_type (struct type *type)
14f9c5c9 1582{
d2e4a39e 1583 struct type *base_type = desc_base_type (type);
5b4ee69b 1584
14f9c5c9
AS
1585 if (base_type == NULL)
1586 return NULL;
1587 if (is_suffix (ada_type_name (base_type), "___XVE"))
1588 return base_type;
d2e4a39e 1589 else
14f9c5c9 1590 {
d2e4a39e 1591 struct type *alt_type = ada_find_parallel_type (base_type, "___XVE");
5b4ee69b 1592
14f9c5c9 1593 if (alt_type == NULL)
4c4b4cd2 1594 return base_type;
14f9c5c9 1595 else
4c4b4cd2 1596 return alt_type;
14f9c5c9
AS
1597 }
1598}
1599
4c4b4cd2
PH
1600/* A pointer to the array data for thin-pointer value VAL. */
1601
d2e4a39e
AS
1602static struct value *
1603thin_data_pntr (struct value *val)
14f9c5c9 1604{
828292f2 1605 struct type *type = ada_check_typedef (value_type (val));
556bdfd4 1606 struct type *data_type = desc_data_target_type (thin_descriptor_type (type));
5b4ee69b 1607
556bdfd4
UW
1608 data_type = lookup_pointer_type (data_type);
1609
14f9c5c9 1610 if (TYPE_CODE (type) == TYPE_CODE_PTR)
556bdfd4 1611 return value_cast (data_type, value_copy (val));
d2e4a39e 1612 else
42ae5230 1613 return value_from_longest (data_type, value_address (val));
14f9c5c9
AS
1614}
1615
4c4b4cd2
PH
1616/* True iff TYPE indicates a "thick" array pointer type. */
1617
14f9c5c9 1618static int
d2e4a39e 1619is_thick_pntr (struct type *type)
14f9c5c9
AS
1620{
1621 type = desc_base_type (type);
1622 return (type != NULL && TYPE_CODE (type) == TYPE_CODE_STRUCT
4c4b4cd2 1623 && lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL);
14f9c5c9
AS
1624}
1625
4c4b4cd2
PH
1626/* If TYPE is the type of an array descriptor (fat or thin pointer) or a
1627 pointer to one, the type of its bounds data; otherwise, NULL. */
76a01679 1628
d2e4a39e
AS
1629static struct type *
1630desc_bounds_type (struct type *type)
14f9c5c9 1631{
d2e4a39e 1632 struct type *r;
14f9c5c9
AS
1633
1634 type = desc_base_type (type);
1635
1636 if (type == NULL)
1637 return NULL;
1638 else if (is_thin_pntr (type))
1639 {
1640 type = thin_descriptor_type (type);
1641 if (type == NULL)
4c4b4cd2 1642 return NULL;
14f9c5c9
AS
1643 r = lookup_struct_elt_type (type, "BOUNDS", 1);
1644 if (r != NULL)
61ee279c 1645 return ada_check_typedef (r);
14f9c5c9
AS
1646 }
1647 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
1648 {
1649 r = lookup_struct_elt_type (type, "P_BOUNDS", 1);
1650 if (r != NULL)
61ee279c 1651 return ada_check_typedef (TYPE_TARGET_TYPE (ada_check_typedef (r)));
14f9c5c9
AS
1652 }
1653 return NULL;
1654}
1655
1656/* If ARR is an array descriptor (fat or thin pointer), or pointer to
4c4b4cd2
PH
1657 one, a pointer to its bounds data. Otherwise NULL. */
1658
d2e4a39e
AS
1659static struct value *
1660desc_bounds (struct value *arr)
14f9c5c9 1661{
df407dfe 1662 struct type *type = ada_check_typedef (value_type (arr));
5b4ee69b 1663
d2e4a39e 1664 if (is_thin_pntr (type))
14f9c5c9 1665 {
d2e4a39e 1666 struct type *bounds_type =
4c4b4cd2 1667 desc_bounds_type (thin_descriptor_type (type));
14f9c5c9
AS
1668 LONGEST addr;
1669
4cdfadb1 1670 if (bounds_type == NULL)
323e0a4a 1671 error (_("Bad GNAT array descriptor"));
14f9c5c9
AS
1672
1673 /* NOTE: The following calculation is not really kosher, but
d2e4a39e 1674 since desc_type is an XVE-encoded type (and shouldn't be),
4c4b4cd2 1675 the correct calculation is a real pain. FIXME (and fix GCC). */
14f9c5c9 1676 if (TYPE_CODE (type) == TYPE_CODE_PTR)
4c4b4cd2 1677 addr = value_as_long (arr);
d2e4a39e 1678 else
42ae5230 1679 addr = value_address (arr);
14f9c5c9 1680
d2e4a39e 1681 return
4c4b4cd2
PH
1682 value_from_longest (lookup_pointer_type (bounds_type),
1683 addr - TYPE_LENGTH (bounds_type));
14f9c5c9
AS
1684 }
1685
1686 else if (is_thick_pntr (type))
05e522ef
JB
1687 {
1688 struct value *p_bounds = value_struct_elt (&arr, NULL, "P_BOUNDS", NULL,
1689 _("Bad GNAT array descriptor"));
1690 struct type *p_bounds_type = value_type (p_bounds);
1691
1692 if (p_bounds_type
1693 && TYPE_CODE (p_bounds_type) == TYPE_CODE_PTR)
1694 {
1695 struct type *target_type = TYPE_TARGET_TYPE (p_bounds_type);
1696
1697 if (TYPE_STUB (target_type))
1698 p_bounds = value_cast (lookup_pointer_type
1699 (ada_check_typedef (target_type)),
1700 p_bounds);
1701 }
1702 else
1703 error (_("Bad GNAT array descriptor"));
1704
1705 return p_bounds;
1706 }
14f9c5c9
AS
1707 else
1708 return NULL;
1709}
1710
4c4b4cd2
PH
1711/* If TYPE is the type of an array-descriptor (fat pointer), the bit
1712 position of the field containing the address of the bounds data. */
1713
14f9c5c9 1714static int
d2e4a39e 1715fat_pntr_bounds_bitpos (struct type *type)
14f9c5c9
AS
1716{
1717 return TYPE_FIELD_BITPOS (desc_base_type (type), 1);
1718}
1719
1720/* If TYPE is the type of an array-descriptor (fat pointer), the bit
4c4b4cd2
PH
1721 size of the field containing the address of the bounds data. */
1722
14f9c5c9 1723static int
d2e4a39e 1724fat_pntr_bounds_bitsize (struct type *type)
14f9c5c9
AS
1725{
1726 type = desc_base_type (type);
1727
d2e4a39e 1728 if (TYPE_FIELD_BITSIZE (type, 1) > 0)
14f9c5c9
AS
1729 return TYPE_FIELD_BITSIZE (type, 1);
1730 else
61ee279c 1731 return 8 * TYPE_LENGTH (ada_check_typedef (TYPE_FIELD_TYPE (type, 1)));
14f9c5c9
AS
1732}
1733
4c4b4cd2 1734/* If TYPE is the type of an array descriptor (fat or thin pointer) or a
556bdfd4
UW
1735 pointer to one, the type of its array data (a array-with-no-bounds type);
1736 otherwise, NULL. Use ada_type_of_array to get an array type with bounds
1737 data. */
4c4b4cd2 1738
d2e4a39e 1739static struct type *
556bdfd4 1740desc_data_target_type (struct type *type)
14f9c5c9
AS
1741{
1742 type = desc_base_type (type);
1743
4c4b4cd2 1744 /* NOTE: The following is bogus; see comment in desc_bounds. */
14f9c5c9 1745 if (is_thin_pntr (type))
556bdfd4 1746 return desc_base_type (TYPE_FIELD_TYPE (thin_descriptor_type (type), 1));
14f9c5c9 1747 else if (is_thick_pntr (type))
556bdfd4
UW
1748 {
1749 struct type *data_type = lookup_struct_elt_type (type, "P_ARRAY", 1);
1750
1751 if (data_type
1752 && TYPE_CODE (ada_check_typedef (data_type)) == TYPE_CODE_PTR)
05e522ef 1753 return ada_check_typedef (TYPE_TARGET_TYPE (data_type));
556bdfd4
UW
1754 }
1755
1756 return NULL;
14f9c5c9
AS
1757}
1758
1759/* If ARR is an array descriptor (fat or thin pointer), a pointer to
1760 its array data. */
4c4b4cd2 1761
d2e4a39e
AS
1762static struct value *
1763desc_data (struct value *arr)
14f9c5c9 1764{
df407dfe 1765 struct type *type = value_type (arr);
5b4ee69b 1766
14f9c5c9
AS
1767 if (is_thin_pntr (type))
1768 return thin_data_pntr (arr);
1769 else if (is_thick_pntr (type))
d2e4a39e 1770 return value_struct_elt (&arr, NULL, "P_ARRAY", NULL,
323e0a4a 1771 _("Bad GNAT array descriptor"));
14f9c5c9
AS
1772 else
1773 return NULL;
1774}
1775
1776
1777/* If TYPE is the type of an array-descriptor (fat pointer), the bit
4c4b4cd2
PH
1778 position of the field containing the address of the data. */
1779
14f9c5c9 1780static int
d2e4a39e 1781fat_pntr_data_bitpos (struct type *type)
14f9c5c9
AS
1782{
1783 return TYPE_FIELD_BITPOS (desc_base_type (type), 0);
1784}
1785
1786/* If TYPE is the type of an array-descriptor (fat pointer), the bit
4c4b4cd2
PH
1787 size of the field containing the address of the data. */
1788
14f9c5c9 1789static int
d2e4a39e 1790fat_pntr_data_bitsize (struct type *type)
14f9c5c9
AS
1791{
1792 type = desc_base_type (type);
1793
1794 if (TYPE_FIELD_BITSIZE (type, 0) > 0)
1795 return TYPE_FIELD_BITSIZE (type, 0);
d2e4a39e 1796 else
14f9c5c9
AS
1797 return TARGET_CHAR_BIT * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 0));
1798}
1799
4c4b4cd2 1800/* If BOUNDS is an array-bounds structure (or pointer to one), return
14f9c5c9 1801 the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
4c4b4cd2
PH
1802 bound, if WHICH is 1. The first bound is I=1. */
1803
d2e4a39e
AS
1804static struct value *
1805desc_one_bound (struct value *bounds, int i, int which)
14f9c5c9 1806{
d2e4a39e 1807 return value_struct_elt (&bounds, NULL, bound_name[2 * i + which - 2], NULL,
323e0a4a 1808 _("Bad GNAT array descriptor bounds"));
14f9c5c9
AS
1809}
1810
1811/* If BOUNDS is an array-bounds structure type, return the bit position
1812 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
4c4b4cd2
PH
1813 bound, if WHICH is 1. The first bound is I=1. */
1814
14f9c5c9 1815static int
d2e4a39e 1816desc_bound_bitpos (struct type *type, int i, int which)
14f9c5c9 1817{
d2e4a39e 1818 return TYPE_FIELD_BITPOS (desc_base_type (type), 2 * i + which - 2);
14f9c5c9
AS
1819}
1820
1821/* If BOUNDS is an array-bounds structure type, return the bit field size
1822 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
4c4b4cd2
PH
1823 bound, if WHICH is 1. The first bound is I=1. */
1824
76a01679 1825static int
d2e4a39e 1826desc_bound_bitsize (struct type *type, int i, int which)
14f9c5c9
AS
1827{
1828 type = desc_base_type (type);
1829
d2e4a39e
AS
1830 if (TYPE_FIELD_BITSIZE (type, 2 * i + which - 2) > 0)
1831 return TYPE_FIELD_BITSIZE (type, 2 * i + which - 2);
1832 else
1833 return 8 * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 2 * i + which - 2));
14f9c5c9
AS
1834}
1835
1836/* If TYPE is the type of an array-bounds structure, the type of its
4c4b4cd2
PH
1837 Ith bound (numbering from 1). Otherwise, NULL. */
1838
d2e4a39e
AS
1839static struct type *
1840desc_index_type (struct type *type, int i)
14f9c5c9
AS
1841{
1842 type = desc_base_type (type);
1843
1844 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
d2e4a39e
AS
1845 return lookup_struct_elt_type (type, bound_name[2 * i - 2], 1);
1846 else
14f9c5c9
AS
1847 return NULL;
1848}
1849
4c4b4cd2
PH
1850/* The number of index positions in the array-bounds type TYPE.
1851 Return 0 if TYPE is NULL. */
1852
14f9c5c9 1853static int
d2e4a39e 1854desc_arity (struct type *type)
14f9c5c9
AS
1855{
1856 type = desc_base_type (type);
1857
1858 if (type != NULL)
1859 return TYPE_NFIELDS (type) / 2;
1860 return 0;
1861}
1862
4c4b4cd2
PH
1863/* Non-zero iff TYPE is a simple array type (not a pointer to one) or
1864 an array descriptor type (representing an unconstrained array
1865 type). */
1866
76a01679
JB
1867static int
1868ada_is_direct_array_type (struct type *type)
4c4b4cd2
PH
1869{
1870 if (type == NULL)
1871 return 0;
61ee279c 1872 type = ada_check_typedef (type);
4c4b4cd2 1873 return (TYPE_CODE (type) == TYPE_CODE_ARRAY
76a01679 1874 || ada_is_array_descriptor_type (type));
4c4b4cd2
PH
1875}
1876
52ce6436 1877/* Non-zero iff TYPE represents any kind of array in Ada, or a pointer
0963b4bd 1878 * to one. */
52ce6436 1879
2c0b251b 1880static int
52ce6436
PH
1881ada_is_array_type (struct type *type)
1882{
1883 while (type != NULL
1884 && (TYPE_CODE (type) == TYPE_CODE_PTR
1885 || TYPE_CODE (type) == TYPE_CODE_REF))
1886 type = TYPE_TARGET_TYPE (type);
1887 return ada_is_direct_array_type (type);
1888}
1889
4c4b4cd2 1890/* Non-zero iff TYPE is a simple array type or pointer to one. */
14f9c5c9 1891
14f9c5c9 1892int
4c4b4cd2 1893ada_is_simple_array_type (struct type *type)
14f9c5c9
AS
1894{
1895 if (type == NULL)
1896 return 0;
61ee279c 1897 type = ada_check_typedef (type);
14f9c5c9 1898 return (TYPE_CODE (type) == TYPE_CODE_ARRAY
4c4b4cd2 1899 || (TYPE_CODE (type) == TYPE_CODE_PTR
b0dd7688
JB
1900 && TYPE_CODE (ada_check_typedef (TYPE_TARGET_TYPE (type)))
1901 == TYPE_CODE_ARRAY));
14f9c5c9
AS
1902}
1903
4c4b4cd2
PH
1904/* Non-zero iff TYPE belongs to a GNAT array descriptor. */
1905
14f9c5c9 1906int
4c4b4cd2 1907ada_is_array_descriptor_type (struct type *type)
14f9c5c9 1908{
556bdfd4 1909 struct type *data_type = desc_data_target_type (type);
14f9c5c9
AS
1910
1911 if (type == NULL)
1912 return 0;
61ee279c 1913 type = ada_check_typedef (type);
556bdfd4
UW
1914 return (data_type != NULL
1915 && TYPE_CODE (data_type) == TYPE_CODE_ARRAY
1916 && desc_arity (desc_bounds_type (type)) > 0);
14f9c5c9
AS
1917}
1918
1919/* Non-zero iff type is a partially mal-formed GNAT array
4c4b4cd2 1920 descriptor. FIXME: This is to compensate for some problems with
14f9c5c9 1921 debugging output from GNAT. Re-examine periodically to see if it
4c4b4cd2
PH
1922 is still needed. */
1923
14f9c5c9 1924int
ebf56fd3 1925ada_is_bogus_array_descriptor (struct type *type)
14f9c5c9 1926{
d2e4a39e 1927 return
14f9c5c9
AS
1928 type != NULL
1929 && TYPE_CODE (type) == TYPE_CODE_STRUCT
1930 && (lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL
4c4b4cd2
PH
1931 || lookup_struct_elt_type (type, "P_ARRAY", 1) != NULL)
1932 && !ada_is_array_descriptor_type (type);
14f9c5c9
AS
1933}
1934
1935
4c4b4cd2 1936/* If ARR has a record type in the form of a standard GNAT array descriptor,
14f9c5c9 1937 (fat pointer) returns the type of the array data described---specifically,
4c4b4cd2 1938 a pointer-to-array type. If BOUNDS is non-zero, the bounds data are filled
14f9c5c9 1939 in from the descriptor; otherwise, they are left unspecified. If
4c4b4cd2
PH
1940 the ARR denotes a null array descriptor and BOUNDS is non-zero,
1941 returns NULL. The result is simply the type of ARR if ARR is not
14f9c5c9 1942 a descriptor. */
d2e4a39e
AS
1943struct type *
1944ada_type_of_array (struct value *arr, int bounds)
14f9c5c9 1945{
ad82864c
JB
1946 if (ada_is_constrained_packed_array_type (value_type (arr)))
1947 return decode_constrained_packed_array_type (value_type (arr));
14f9c5c9 1948
df407dfe
AC
1949 if (!ada_is_array_descriptor_type (value_type (arr)))
1950 return value_type (arr);
d2e4a39e
AS
1951
1952 if (!bounds)
ad82864c
JB
1953 {
1954 struct type *array_type =
1955 ada_check_typedef (desc_data_target_type (value_type (arr)));
1956
1957 if (ada_is_unconstrained_packed_array_type (value_type (arr)))
1958 TYPE_FIELD_BITSIZE (array_type, 0) =
1959 decode_packed_array_bitsize (value_type (arr));
1960
1961 return array_type;
1962 }
14f9c5c9
AS
1963 else
1964 {
d2e4a39e 1965 struct type *elt_type;
14f9c5c9 1966 int arity;
d2e4a39e 1967 struct value *descriptor;
14f9c5c9 1968
df407dfe
AC
1969 elt_type = ada_array_element_type (value_type (arr), -1);
1970 arity = ada_array_arity (value_type (arr));
14f9c5c9 1971
d2e4a39e 1972 if (elt_type == NULL || arity == 0)
df407dfe 1973 return ada_check_typedef (value_type (arr));
14f9c5c9
AS
1974
1975 descriptor = desc_bounds (arr);
d2e4a39e 1976 if (value_as_long (descriptor) == 0)
4c4b4cd2 1977 return NULL;
d2e4a39e 1978 while (arity > 0)
4c4b4cd2 1979 {
e9bb382b
UW
1980 struct type *range_type = alloc_type_copy (value_type (arr));
1981 struct type *array_type = alloc_type_copy (value_type (arr));
4c4b4cd2
PH
1982 struct value *low = desc_one_bound (descriptor, arity, 0);
1983 struct value *high = desc_one_bound (descriptor, arity, 1);
4c4b4cd2 1984
5b4ee69b 1985 arity -= 1;
0c9c3474
SA
1986 create_static_range_type (range_type, value_type (low),
1987 longest_to_int (value_as_long (low)),
1988 longest_to_int (value_as_long (high)));
4c4b4cd2 1989 elt_type = create_array_type (array_type, elt_type, range_type);
ad82864c
JB
1990
1991 if (ada_is_unconstrained_packed_array_type (value_type (arr)))
e67ad678
JB
1992 {
1993 /* We need to store the element packed bitsize, as well as
1994 recompute the array size, because it was previously
1995 computed based on the unpacked element size. */
1996 LONGEST lo = value_as_long (low);
1997 LONGEST hi = value_as_long (high);
1998
1999 TYPE_FIELD_BITSIZE (elt_type, 0) =
2000 decode_packed_array_bitsize (value_type (arr));
2001 /* If the array has no element, then the size is already
2002 zero, and does not need to be recomputed. */
2003 if (lo < hi)
2004 {
2005 int array_bitsize =
2006 (hi - lo + 1) * TYPE_FIELD_BITSIZE (elt_type, 0);
2007
2008 TYPE_LENGTH (array_type) = (array_bitsize + 7) / 8;
2009 }
2010 }
4c4b4cd2 2011 }
14f9c5c9
AS
2012
2013 return lookup_pointer_type (elt_type);
2014 }
2015}
2016
2017/* If ARR does not represent an array, returns ARR unchanged.
4c4b4cd2
PH
2018 Otherwise, returns either a standard GDB array with bounds set
2019 appropriately or, if ARR is a non-null fat pointer, a pointer to a standard
2020 GDB array. Returns NULL if ARR is a null fat pointer. */
2021
d2e4a39e
AS
2022struct value *
2023ada_coerce_to_simple_array_ptr (struct value *arr)
14f9c5c9 2024{
df407dfe 2025 if (ada_is_array_descriptor_type (value_type (arr)))
14f9c5c9 2026 {
d2e4a39e 2027 struct type *arrType = ada_type_of_array (arr, 1);
5b4ee69b 2028
14f9c5c9 2029 if (arrType == NULL)
4c4b4cd2 2030 return NULL;
14f9c5c9
AS
2031 return value_cast (arrType, value_copy (desc_data (arr)));
2032 }
ad82864c
JB
2033 else if (ada_is_constrained_packed_array_type (value_type (arr)))
2034 return decode_constrained_packed_array (arr);
14f9c5c9
AS
2035 else
2036 return arr;
2037}
2038
2039/* If ARR does not represent an array, returns ARR unchanged.
2040 Otherwise, returns a standard GDB array describing ARR (which may
4c4b4cd2
PH
2041 be ARR itself if it already is in the proper form). */
2042
720d1a40 2043struct value *
d2e4a39e 2044ada_coerce_to_simple_array (struct value *arr)
14f9c5c9 2045{
df407dfe 2046 if (ada_is_array_descriptor_type (value_type (arr)))
14f9c5c9 2047 {
d2e4a39e 2048 struct value *arrVal = ada_coerce_to_simple_array_ptr (arr);
5b4ee69b 2049
14f9c5c9 2050 if (arrVal == NULL)
323e0a4a 2051 error (_("Bounds unavailable for null array pointer."));
c1b5a1a6 2052 ada_ensure_varsize_limit (TYPE_TARGET_TYPE (value_type (arrVal)));
14f9c5c9
AS
2053 return value_ind (arrVal);
2054 }
ad82864c
JB
2055 else if (ada_is_constrained_packed_array_type (value_type (arr)))
2056 return decode_constrained_packed_array (arr);
d2e4a39e 2057 else
14f9c5c9
AS
2058 return arr;
2059}
2060
2061/* If TYPE represents a GNAT array type, return it translated to an
2062 ordinary GDB array type (possibly with BITSIZE fields indicating
4c4b4cd2
PH
2063 packing). For other types, is the identity. */
2064
d2e4a39e
AS
2065struct type *
2066ada_coerce_to_simple_array_type (struct type *type)
14f9c5c9 2067{
ad82864c
JB
2068 if (ada_is_constrained_packed_array_type (type))
2069 return decode_constrained_packed_array_type (type);
17280b9f
UW
2070
2071 if (ada_is_array_descriptor_type (type))
556bdfd4 2072 return ada_check_typedef (desc_data_target_type (type));
17280b9f
UW
2073
2074 return type;
14f9c5c9
AS
2075}
2076
4c4b4cd2
PH
2077/* Non-zero iff TYPE represents a standard GNAT packed-array type. */
2078
ad82864c
JB
2079static int
2080ada_is_packed_array_type (struct type *type)
14f9c5c9
AS
2081{
2082 if (type == NULL)
2083 return 0;
4c4b4cd2 2084 type = desc_base_type (type);
61ee279c 2085 type = ada_check_typedef (type);
d2e4a39e 2086 return
14f9c5c9
AS
2087 ada_type_name (type) != NULL
2088 && strstr (ada_type_name (type), "___XP") != NULL;
2089}
2090
ad82864c
JB
2091/* Non-zero iff TYPE represents a standard GNAT constrained
2092 packed-array type. */
2093
2094int
2095ada_is_constrained_packed_array_type (struct type *type)
2096{
2097 return ada_is_packed_array_type (type)
2098 && !ada_is_array_descriptor_type (type);
2099}
2100
2101/* Non-zero iff TYPE represents an array descriptor for a
2102 unconstrained packed-array type. */
2103
2104static int
2105ada_is_unconstrained_packed_array_type (struct type *type)
2106{
2107 return ada_is_packed_array_type (type)
2108 && ada_is_array_descriptor_type (type);
2109}
2110
2111/* Given that TYPE encodes a packed array type (constrained or unconstrained),
2112 return the size of its elements in bits. */
2113
2114static long
2115decode_packed_array_bitsize (struct type *type)
2116{
0d5cff50
DE
2117 const char *raw_name;
2118 const char *tail;
ad82864c
JB
2119 long bits;
2120
720d1a40
JB
2121 /* Access to arrays implemented as fat pointers are encoded as a typedef
2122 of the fat pointer type. We need the name of the fat pointer type
2123 to do the decoding, so strip the typedef layer. */
2124 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
2125 type = ada_typedef_target_type (type);
2126
2127 raw_name = ada_type_name (ada_check_typedef (type));
ad82864c
JB
2128 if (!raw_name)
2129 raw_name = ada_type_name (desc_base_type (type));
2130
2131 if (!raw_name)
2132 return 0;
2133
2134 tail = strstr (raw_name, "___XP");
720d1a40 2135 gdb_assert (tail != NULL);
ad82864c
JB
2136
2137 if (sscanf (tail + sizeof ("___XP") - 1, "%ld", &bits) != 1)
2138 {
2139 lim_warning
2140 (_("could not understand bit size information on packed array"));
2141 return 0;
2142 }
2143
2144 return bits;
2145}
2146
14f9c5c9
AS
2147/* Given that TYPE is a standard GDB array type with all bounds filled
2148 in, and that the element size of its ultimate scalar constituents
2149 (that is, either its elements, or, if it is an array of arrays, its
2150 elements' elements, etc.) is *ELT_BITS, return an identical type,
2151 but with the bit sizes of its elements (and those of any
2152 constituent arrays) recorded in the BITSIZE components of its
4c4b4cd2 2153 TYPE_FIELD_BITSIZE values, and with *ELT_BITS set to its total size
4a46959e
JB
2154 in bits.
2155
2156 Note that, for arrays whose index type has an XA encoding where
2157 a bound references a record discriminant, getting that discriminant,
2158 and therefore the actual value of that bound, is not possible
2159 because none of the given parameters gives us access to the record.
2160 This function assumes that it is OK in the context where it is being
2161 used to return an array whose bounds are still dynamic and where
2162 the length is arbitrary. */
4c4b4cd2 2163
d2e4a39e 2164static struct type *
ad82864c 2165constrained_packed_array_type (struct type *type, long *elt_bits)
14f9c5c9 2166{
d2e4a39e
AS
2167 struct type *new_elt_type;
2168 struct type *new_type;
99b1c762
JB
2169 struct type *index_type_desc;
2170 struct type *index_type;
14f9c5c9
AS
2171 LONGEST low_bound, high_bound;
2172
61ee279c 2173 type = ada_check_typedef (type);
14f9c5c9
AS
2174 if (TYPE_CODE (type) != TYPE_CODE_ARRAY)
2175 return type;
2176
99b1c762
JB
2177 index_type_desc = ada_find_parallel_type (type, "___XA");
2178 if (index_type_desc)
2179 index_type = to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, 0),
2180 NULL);
2181 else
2182 index_type = TYPE_INDEX_TYPE (type);
2183
e9bb382b 2184 new_type = alloc_type_copy (type);
ad82864c
JB
2185 new_elt_type =
2186 constrained_packed_array_type (ada_check_typedef (TYPE_TARGET_TYPE (type)),
2187 elt_bits);
99b1c762 2188 create_array_type (new_type, new_elt_type, index_type);
14f9c5c9
AS
2189 TYPE_FIELD_BITSIZE (new_type, 0) = *elt_bits;
2190 TYPE_NAME (new_type) = ada_type_name (type);
2191
4a46959e
JB
2192 if ((TYPE_CODE (check_typedef (index_type)) == TYPE_CODE_RANGE
2193 && is_dynamic_type (check_typedef (index_type)))
2194 || get_discrete_bounds (index_type, &low_bound, &high_bound) < 0)
14f9c5c9
AS
2195 low_bound = high_bound = 0;
2196 if (high_bound < low_bound)
2197 *elt_bits = TYPE_LENGTH (new_type) = 0;
d2e4a39e 2198 else
14f9c5c9
AS
2199 {
2200 *elt_bits *= (high_bound - low_bound + 1);
d2e4a39e 2201 TYPE_LENGTH (new_type) =
4c4b4cd2 2202 (*elt_bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
14f9c5c9
AS
2203 }
2204
876cecd0 2205 TYPE_FIXED_INSTANCE (new_type) = 1;
14f9c5c9
AS
2206 return new_type;
2207}
2208
ad82864c
JB
2209/* The array type encoded by TYPE, where
2210 ada_is_constrained_packed_array_type (TYPE). */
4c4b4cd2 2211
d2e4a39e 2212static struct type *
ad82864c 2213decode_constrained_packed_array_type (struct type *type)
d2e4a39e 2214{
0d5cff50 2215 const char *raw_name = ada_type_name (ada_check_typedef (type));
727e3d2e 2216 char *name;
0d5cff50 2217 const char *tail;
d2e4a39e 2218 struct type *shadow_type;
14f9c5c9 2219 long bits;
14f9c5c9 2220
727e3d2e
JB
2221 if (!raw_name)
2222 raw_name = ada_type_name (desc_base_type (type));
2223
2224 if (!raw_name)
2225 return NULL;
2226
2227 name = (char *) alloca (strlen (raw_name) + 1);
2228 tail = strstr (raw_name, "___XP");
4c4b4cd2
PH
2229 type = desc_base_type (type);
2230
14f9c5c9
AS
2231 memcpy (name, raw_name, tail - raw_name);
2232 name[tail - raw_name] = '\000';
2233
b4ba55a1
JB
2234 shadow_type = ada_find_parallel_type_with_name (type, name);
2235
2236 if (shadow_type == NULL)
14f9c5c9 2237 {
323e0a4a 2238 lim_warning (_("could not find bounds information on packed array"));
14f9c5c9
AS
2239 return NULL;
2240 }
cb249c71 2241 CHECK_TYPEDEF (shadow_type);
14f9c5c9
AS
2242
2243 if (TYPE_CODE (shadow_type) != TYPE_CODE_ARRAY)
2244 {
0963b4bd
MS
2245 lim_warning (_("could not understand bounds "
2246 "information on packed array"));
14f9c5c9
AS
2247 return NULL;
2248 }
d2e4a39e 2249
ad82864c
JB
2250 bits = decode_packed_array_bitsize (type);
2251 return constrained_packed_array_type (shadow_type, &bits);
14f9c5c9
AS
2252}
2253
ad82864c
JB
2254/* Given that ARR is a struct value *indicating a GNAT constrained packed
2255 array, returns a simple array that denotes that array. Its type is a
14f9c5c9
AS
2256 standard GDB array type except that the BITSIZEs of the array
2257 target types are set to the number of bits in each element, and the
4c4b4cd2 2258 type length is set appropriately. */
14f9c5c9 2259
d2e4a39e 2260static struct value *
ad82864c 2261decode_constrained_packed_array (struct value *arr)
14f9c5c9 2262{
4c4b4cd2 2263 struct type *type;
14f9c5c9 2264
11aa919a
PMR
2265 /* If our value is a pointer, then dereference it. Likewise if
2266 the value is a reference. Make sure that this operation does not
2267 cause the target type to be fixed, as this would indirectly cause
2268 this array to be decoded. The rest of the routine assumes that
2269 the array hasn't been decoded yet, so we use the basic "coerce_ref"
2270 and "value_ind" routines to perform the dereferencing, as opposed
2271 to using "ada_coerce_ref" or "ada_value_ind". */
2272 arr = coerce_ref (arr);
828292f2 2273 if (TYPE_CODE (ada_check_typedef (value_type (arr))) == TYPE_CODE_PTR)
284614f0 2274 arr = value_ind (arr);
4c4b4cd2 2275
ad82864c 2276 type = decode_constrained_packed_array_type (value_type (arr));
14f9c5c9
AS
2277 if (type == NULL)
2278 {
323e0a4a 2279 error (_("can't unpack array"));
14f9c5c9
AS
2280 return NULL;
2281 }
61ee279c 2282
50810684 2283 if (gdbarch_bits_big_endian (get_type_arch (value_type (arr)))
32c9a795 2284 && ada_is_modular_type (value_type (arr)))
61ee279c
PH
2285 {
2286 /* This is a (right-justified) modular type representing a packed
2287 array with no wrapper. In order to interpret the value through
2288 the (left-justified) packed array type we just built, we must
2289 first left-justify it. */
2290 int bit_size, bit_pos;
2291 ULONGEST mod;
2292
df407dfe 2293 mod = ada_modulus (value_type (arr)) - 1;
61ee279c
PH
2294 bit_size = 0;
2295 while (mod > 0)
2296 {
2297 bit_size += 1;
2298 mod >>= 1;
2299 }
df407dfe 2300 bit_pos = HOST_CHAR_BIT * TYPE_LENGTH (value_type (arr)) - bit_size;
61ee279c
PH
2301 arr = ada_value_primitive_packed_val (arr, NULL,
2302 bit_pos / HOST_CHAR_BIT,
2303 bit_pos % HOST_CHAR_BIT,
2304 bit_size,
2305 type);
2306 }
2307
4c4b4cd2 2308 return coerce_unspec_val_to_type (arr, type);
14f9c5c9
AS
2309}
2310
2311
2312/* The value of the element of packed array ARR at the ARITY indices
4c4b4cd2 2313 given in IND. ARR must be a simple array. */
14f9c5c9 2314
d2e4a39e
AS
2315static struct value *
2316value_subscript_packed (struct value *arr, int arity, struct value **ind)
14f9c5c9
AS
2317{
2318 int i;
2319 int bits, elt_off, bit_off;
2320 long elt_total_bit_offset;
d2e4a39e
AS
2321 struct type *elt_type;
2322 struct value *v;
14f9c5c9
AS
2323
2324 bits = 0;
2325 elt_total_bit_offset = 0;
df407dfe 2326 elt_type = ada_check_typedef (value_type (arr));
d2e4a39e 2327 for (i = 0; i < arity; i += 1)
14f9c5c9 2328 {
d2e4a39e 2329 if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY
4c4b4cd2
PH
2330 || TYPE_FIELD_BITSIZE (elt_type, 0) == 0)
2331 error
0963b4bd
MS
2332 (_("attempt to do packed indexing of "
2333 "something other than a packed array"));
14f9c5c9 2334 else
4c4b4cd2
PH
2335 {
2336 struct type *range_type = TYPE_INDEX_TYPE (elt_type);
2337 LONGEST lowerbound, upperbound;
2338 LONGEST idx;
2339
2340 if (get_discrete_bounds (range_type, &lowerbound, &upperbound) < 0)
2341 {
323e0a4a 2342 lim_warning (_("don't know bounds of array"));
4c4b4cd2
PH
2343 lowerbound = upperbound = 0;
2344 }
2345
3cb382c9 2346 idx = pos_atr (ind[i]);
4c4b4cd2 2347 if (idx < lowerbound || idx > upperbound)
0963b4bd
MS
2348 lim_warning (_("packed array index %ld out of bounds"),
2349 (long) idx);
4c4b4cd2
PH
2350 bits = TYPE_FIELD_BITSIZE (elt_type, 0);
2351 elt_total_bit_offset += (idx - lowerbound) * bits;
61ee279c 2352 elt_type = ada_check_typedef (TYPE_TARGET_TYPE (elt_type));
4c4b4cd2 2353 }
14f9c5c9
AS
2354 }
2355 elt_off = elt_total_bit_offset / HOST_CHAR_BIT;
2356 bit_off = elt_total_bit_offset % HOST_CHAR_BIT;
d2e4a39e
AS
2357
2358 v = ada_value_primitive_packed_val (arr, NULL, elt_off, bit_off,
4c4b4cd2 2359 bits, elt_type);
14f9c5c9
AS
2360 return v;
2361}
2362
4c4b4cd2 2363/* Non-zero iff TYPE includes negative integer values. */
14f9c5c9
AS
2364
2365static int
d2e4a39e 2366has_negatives (struct type *type)
14f9c5c9 2367{
d2e4a39e
AS
2368 switch (TYPE_CODE (type))
2369 {
2370 default:
2371 return 0;
2372 case TYPE_CODE_INT:
2373 return !TYPE_UNSIGNED (type);
2374 case TYPE_CODE_RANGE:
2375 return TYPE_LOW_BOUND (type) < 0;
2376 }
14f9c5c9 2377}
d2e4a39e 2378
14f9c5c9
AS
2379
2380/* Create a new value of type TYPE from the contents of OBJ starting
2381 at byte OFFSET, and bit offset BIT_OFFSET within that byte,
2382 proceeding for BIT_SIZE bits. If OBJ is an lval in memory, then
0963b4bd 2383 assigning through the result will set the field fetched from.
4c4b4cd2
PH
2384 VALADDR is ignored unless OBJ is NULL, in which case,
2385 VALADDR+OFFSET must address the start of storage containing the
2386 packed value. The value returned in this case is never an lval.
2387 Assumes 0 <= BIT_OFFSET < HOST_CHAR_BIT. */
14f9c5c9 2388
d2e4a39e 2389struct value *
fc1a4b47 2390ada_value_primitive_packed_val (struct value *obj, const gdb_byte *valaddr,
a2bd3dcd 2391 long offset, int bit_offset, int bit_size,
4c4b4cd2 2392 struct type *type)
14f9c5c9 2393{
d2e4a39e 2394 struct value *v;
4c4b4cd2
PH
2395 int src, /* Index into the source area */
2396 targ, /* Index into the target area */
2397 srcBitsLeft, /* Number of source bits left to move */
2398 nsrc, ntarg, /* Number of source and target bytes */
2399 unusedLS, /* Number of bits in next significant
2400 byte of source that are unused */
2401 accumSize; /* Number of meaningful bits in accum */
2402 unsigned char *bytes; /* First byte containing data to unpack */
d2e4a39e 2403 unsigned char *unpacked;
4c4b4cd2 2404 unsigned long accum; /* Staging area for bits being transferred */
14f9c5c9
AS
2405 unsigned char sign;
2406 int len = (bit_size + bit_offset + HOST_CHAR_BIT - 1) / 8;
4c4b4cd2
PH
2407 /* Transmit bytes from least to most significant; delta is the direction
2408 the indices move. */
50810684 2409 int delta = gdbarch_bits_big_endian (get_type_arch (type)) ? -1 : 1;
14f9c5c9 2410
61ee279c 2411 type = ada_check_typedef (type);
14f9c5c9
AS
2412
2413 if (obj == NULL)
2414 {
2415 v = allocate_value (type);
d2e4a39e 2416 bytes = (unsigned char *) (valaddr + offset);
14f9c5c9 2417 }
9214ee5f 2418 else if (VALUE_LVAL (obj) == lval_memory && value_lazy (obj))
14f9c5c9 2419 {
53ba8333 2420 v = value_at (type, value_address (obj));
9f1f738a 2421 type = value_type (v);
d2e4a39e 2422 bytes = (unsigned char *) alloca (len);
53ba8333 2423 read_memory (value_address (v) + offset, bytes, len);
14f9c5c9 2424 }
d2e4a39e 2425 else
14f9c5c9
AS
2426 {
2427 v = allocate_value (type);
0fd88904 2428 bytes = (unsigned char *) value_contents (obj) + offset;
14f9c5c9 2429 }
d2e4a39e
AS
2430
2431 if (obj != NULL)
14f9c5c9 2432 {
53ba8333 2433 long new_offset = offset;
5b4ee69b 2434
74bcbdf3 2435 set_value_component_location (v, obj);
9bbda503
AC
2436 set_value_bitpos (v, bit_offset + value_bitpos (obj));
2437 set_value_bitsize (v, bit_size);
df407dfe 2438 if (value_bitpos (v) >= HOST_CHAR_BIT)
4c4b4cd2 2439 {
53ba8333 2440 ++new_offset;
9bbda503 2441 set_value_bitpos (v, value_bitpos (v) - HOST_CHAR_BIT);
4c4b4cd2 2442 }
53ba8333
JB
2443 set_value_offset (v, new_offset);
2444
2445 /* Also set the parent value. This is needed when trying to
2446 assign a new value (in inferior memory). */
2447 set_value_parent (v, obj);
14f9c5c9
AS
2448 }
2449 else
9bbda503 2450 set_value_bitsize (v, bit_size);
0fd88904 2451 unpacked = (unsigned char *) value_contents (v);
14f9c5c9
AS
2452
2453 srcBitsLeft = bit_size;
2454 nsrc = len;
2455 ntarg = TYPE_LENGTH (type);
2456 sign = 0;
2457 if (bit_size == 0)
2458 {
2459 memset (unpacked, 0, TYPE_LENGTH (type));
2460 return v;
2461 }
50810684 2462 else if (gdbarch_bits_big_endian (get_type_arch (type)))
14f9c5c9 2463 {
d2e4a39e 2464 src = len - 1;
1265e4aa
JB
2465 if (has_negatives (type)
2466 && ((bytes[0] << bit_offset) & (1 << (HOST_CHAR_BIT - 1))))
4c4b4cd2 2467 sign = ~0;
d2e4a39e
AS
2468
2469 unusedLS =
4c4b4cd2
PH
2470 (HOST_CHAR_BIT - (bit_size + bit_offset) % HOST_CHAR_BIT)
2471 % HOST_CHAR_BIT;
14f9c5c9
AS
2472
2473 switch (TYPE_CODE (type))
4c4b4cd2
PH
2474 {
2475 case TYPE_CODE_ARRAY:
2476 case TYPE_CODE_UNION:
2477 case TYPE_CODE_STRUCT:
2478 /* Non-scalar values must be aligned at a byte boundary... */
2479 accumSize =
2480 (HOST_CHAR_BIT - bit_size % HOST_CHAR_BIT) % HOST_CHAR_BIT;
2481 /* ... And are placed at the beginning (most-significant) bytes
2482 of the target. */
529cad9c 2483 targ = (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT - 1;
0056e4d5 2484 ntarg = targ + 1;
4c4b4cd2
PH
2485 break;
2486 default:
2487 accumSize = 0;
2488 targ = TYPE_LENGTH (type) - 1;
2489 break;
2490 }
14f9c5c9 2491 }
d2e4a39e 2492 else
14f9c5c9
AS
2493 {
2494 int sign_bit_offset = (bit_size + bit_offset - 1) % 8;
2495
2496 src = targ = 0;
2497 unusedLS = bit_offset;
2498 accumSize = 0;
2499
d2e4a39e 2500 if (has_negatives (type) && (bytes[len - 1] & (1 << sign_bit_offset)))
4c4b4cd2 2501 sign = ~0;
14f9c5c9 2502 }
d2e4a39e 2503
14f9c5c9
AS
2504 accum = 0;
2505 while (nsrc > 0)
2506 {
2507 /* Mask for removing bits of the next source byte that are not
4c4b4cd2 2508 part of the value. */
d2e4a39e 2509 unsigned int unusedMSMask =
4c4b4cd2
PH
2510 (1 << (srcBitsLeft >= HOST_CHAR_BIT ? HOST_CHAR_BIT : srcBitsLeft)) -
2511 1;
2512 /* Sign-extend bits for this byte. */
14f9c5c9 2513 unsigned int signMask = sign & ~unusedMSMask;
5b4ee69b 2514
d2e4a39e 2515 accum |=
4c4b4cd2 2516 (((bytes[src] >> unusedLS) & unusedMSMask) | signMask) << accumSize;
14f9c5c9 2517 accumSize += HOST_CHAR_BIT - unusedLS;
d2e4a39e 2518 if (accumSize >= HOST_CHAR_BIT)
4c4b4cd2
PH
2519 {
2520 unpacked[targ] = accum & ~(~0L << HOST_CHAR_BIT);
2521 accumSize -= HOST_CHAR_BIT;
2522 accum >>= HOST_CHAR_BIT;
2523 ntarg -= 1;
2524 targ += delta;
2525 }
14f9c5c9
AS
2526 srcBitsLeft -= HOST_CHAR_BIT - unusedLS;
2527 unusedLS = 0;
2528 nsrc -= 1;
2529 src += delta;
2530 }
2531 while (ntarg > 0)
2532 {
2533 accum |= sign << accumSize;
2534 unpacked[targ] = accum & ~(~0L << HOST_CHAR_BIT);
2535 accumSize -= HOST_CHAR_BIT;
2536 accum >>= HOST_CHAR_BIT;
2537 ntarg -= 1;
2538 targ += delta;
2539 }
2540
2541 return v;
2542}
d2e4a39e 2543
14f9c5c9
AS
2544/* Move N bits from SOURCE, starting at bit offset SRC_OFFSET to
2545 TARGET, starting at bit offset TARG_OFFSET. SOURCE and TARGET must
4c4b4cd2 2546 not overlap. */
14f9c5c9 2547static void
fc1a4b47 2548move_bits (gdb_byte *target, int targ_offset, const gdb_byte *source,
50810684 2549 int src_offset, int n, int bits_big_endian_p)
14f9c5c9
AS
2550{
2551 unsigned int accum, mask;
2552 int accum_bits, chunk_size;
2553
2554 target += targ_offset / HOST_CHAR_BIT;
2555 targ_offset %= HOST_CHAR_BIT;
2556 source += src_offset / HOST_CHAR_BIT;
2557 src_offset %= HOST_CHAR_BIT;
50810684 2558 if (bits_big_endian_p)
14f9c5c9
AS
2559 {
2560 accum = (unsigned char) *source;
2561 source += 1;
2562 accum_bits = HOST_CHAR_BIT - src_offset;
2563
d2e4a39e 2564 while (n > 0)
4c4b4cd2
PH
2565 {
2566 int unused_right;
5b4ee69b 2567
4c4b4cd2
PH
2568 accum = (accum << HOST_CHAR_BIT) + (unsigned char) *source;
2569 accum_bits += HOST_CHAR_BIT;
2570 source += 1;
2571 chunk_size = HOST_CHAR_BIT - targ_offset;
2572 if (chunk_size > n)
2573 chunk_size = n;
2574 unused_right = HOST_CHAR_BIT - (chunk_size + targ_offset);
2575 mask = ((1 << chunk_size) - 1) << unused_right;
2576 *target =
2577 (*target & ~mask)
2578 | ((accum >> (accum_bits - chunk_size - unused_right)) & mask);
2579 n -= chunk_size;
2580 accum_bits -= chunk_size;
2581 target += 1;
2582 targ_offset = 0;
2583 }
14f9c5c9
AS
2584 }
2585 else
2586 {
2587 accum = (unsigned char) *source >> src_offset;
2588 source += 1;
2589 accum_bits = HOST_CHAR_BIT - src_offset;
2590
d2e4a39e 2591 while (n > 0)
4c4b4cd2
PH
2592 {
2593 accum = accum + ((unsigned char) *source << accum_bits);
2594 accum_bits += HOST_CHAR_BIT;
2595 source += 1;
2596 chunk_size = HOST_CHAR_BIT - targ_offset;
2597 if (chunk_size > n)
2598 chunk_size = n;
2599 mask = ((1 << chunk_size) - 1) << targ_offset;
2600 *target = (*target & ~mask) | ((accum << targ_offset) & mask);
2601 n -= chunk_size;
2602 accum_bits -= chunk_size;
2603 accum >>= chunk_size;
2604 target += 1;
2605 targ_offset = 0;
2606 }
14f9c5c9
AS
2607 }
2608}
2609
14f9c5c9
AS
2610/* Store the contents of FROMVAL into the location of TOVAL.
2611 Return a new value with the location of TOVAL and contents of
2612 FROMVAL. Handles assignment into packed fields that have
4c4b4cd2 2613 floating-point or non-scalar types. */
14f9c5c9 2614
d2e4a39e
AS
2615static struct value *
2616ada_value_assign (struct value *toval, struct value *fromval)
14f9c5c9 2617{
df407dfe
AC
2618 struct type *type = value_type (toval);
2619 int bits = value_bitsize (toval);
14f9c5c9 2620
52ce6436
PH
2621 toval = ada_coerce_ref (toval);
2622 fromval = ada_coerce_ref (fromval);
2623
2624 if (ada_is_direct_array_type (value_type (toval)))
2625 toval = ada_coerce_to_simple_array (toval);
2626 if (ada_is_direct_array_type (value_type (fromval)))
2627 fromval = ada_coerce_to_simple_array (fromval);
2628
88e3b34b 2629 if (!deprecated_value_modifiable (toval))
323e0a4a 2630 error (_("Left operand of assignment is not a modifiable lvalue."));
14f9c5c9 2631
d2e4a39e 2632 if (VALUE_LVAL (toval) == lval_memory
14f9c5c9 2633 && bits > 0
d2e4a39e 2634 && (TYPE_CODE (type) == TYPE_CODE_FLT
4c4b4cd2 2635 || TYPE_CODE (type) == TYPE_CODE_STRUCT))
14f9c5c9 2636 {
df407dfe
AC
2637 int len = (value_bitpos (toval)
2638 + bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
aced2898 2639 int from_size;
948f8e3d 2640 gdb_byte *buffer = alloca (len);
d2e4a39e 2641 struct value *val;
42ae5230 2642 CORE_ADDR to_addr = value_address (toval);
14f9c5c9
AS
2643
2644 if (TYPE_CODE (type) == TYPE_CODE_FLT)
4c4b4cd2 2645 fromval = value_cast (type, fromval);
14f9c5c9 2646
52ce6436 2647 read_memory (to_addr, buffer, len);
aced2898
PH
2648 from_size = value_bitsize (fromval);
2649 if (from_size == 0)
2650 from_size = TYPE_LENGTH (value_type (fromval)) * TARGET_CHAR_BIT;
50810684 2651 if (gdbarch_bits_big_endian (get_type_arch (type)))
df407dfe 2652 move_bits (buffer, value_bitpos (toval),
50810684 2653 value_contents (fromval), from_size - bits, bits, 1);
14f9c5c9 2654 else
50810684
UW
2655 move_bits (buffer, value_bitpos (toval),
2656 value_contents (fromval), 0, bits, 0);
972daa01 2657 write_memory_with_notification (to_addr, buffer, len);
8cebebb9 2658
14f9c5c9 2659 val = value_copy (toval);
0fd88904 2660 memcpy (value_contents_raw (val), value_contents (fromval),
4c4b4cd2 2661 TYPE_LENGTH (type));
04624583 2662 deprecated_set_value_type (val, type);
d2e4a39e 2663
14f9c5c9
AS
2664 return val;
2665 }
2666
2667 return value_assign (toval, fromval);
2668}
2669
2670
52ce6436
PH
2671/* Given that COMPONENT is a memory lvalue that is part of the lvalue
2672 * CONTAINER, assign the contents of VAL to COMPONENTS's place in
2673 * CONTAINER. Modifies the VALUE_CONTENTS of CONTAINER only, not
2674 * COMPONENT, and not the inferior's memory. The current contents
2675 * of COMPONENT are ignored. */
2676static void
2677value_assign_to_component (struct value *container, struct value *component,
2678 struct value *val)
2679{
2680 LONGEST offset_in_container =
42ae5230 2681 (LONGEST) (value_address (component) - value_address (container));
52ce6436
PH
2682 int bit_offset_in_container =
2683 value_bitpos (component) - value_bitpos (container);
2684 int bits;
2685
2686 val = value_cast (value_type (component), val);
2687
2688 if (value_bitsize (component) == 0)
2689 bits = TARGET_CHAR_BIT * TYPE_LENGTH (value_type (component));
2690 else
2691 bits = value_bitsize (component);
2692
50810684 2693 if (gdbarch_bits_big_endian (get_type_arch (value_type (container))))
52ce6436
PH
2694 move_bits (value_contents_writeable (container) + offset_in_container,
2695 value_bitpos (container) + bit_offset_in_container,
2696 value_contents (val),
2697 TYPE_LENGTH (value_type (component)) * TARGET_CHAR_BIT - bits,
50810684 2698 bits, 1);
52ce6436
PH
2699 else
2700 move_bits (value_contents_writeable (container) + offset_in_container,
2701 value_bitpos (container) + bit_offset_in_container,
50810684 2702 value_contents (val), 0, bits, 0);
52ce6436
PH
2703}
2704
4c4b4cd2
PH
2705/* The value of the element of array ARR at the ARITY indices given in IND.
2706 ARR may be either a simple array, GNAT array descriptor, or pointer
14f9c5c9
AS
2707 thereto. */
2708
d2e4a39e
AS
2709struct value *
2710ada_value_subscript (struct value *arr, int arity, struct value **ind)
14f9c5c9
AS
2711{
2712 int k;
d2e4a39e
AS
2713 struct value *elt;
2714 struct type *elt_type;
14f9c5c9
AS
2715
2716 elt = ada_coerce_to_simple_array (arr);
2717
df407dfe 2718 elt_type = ada_check_typedef (value_type (elt));
d2e4a39e 2719 if (TYPE_CODE (elt_type) == TYPE_CODE_ARRAY
14f9c5c9
AS
2720 && TYPE_FIELD_BITSIZE (elt_type, 0) > 0)
2721 return value_subscript_packed (elt, arity, ind);
2722
2723 for (k = 0; k < arity; k += 1)
2724 {
2725 if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY)
323e0a4a 2726 error (_("too many subscripts (%d expected)"), k);
2497b498 2727 elt = value_subscript (elt, pos_atr (ind[k]));
14f9c5c9
AS
2728 }
2729 return elt;
2730}
2731
deede10c
JB
2732/* Assuming ARR is a pointer to a GDB array, the value of the element
2733 of *ARR at the ARITY indices given in IND.
2734 Does not read the entire array into memory. */
14f9c5c9 2735
2c0b251b 2736static struct value *
deede10c 2737ada_value_ptr_subscript (struct value *arr, int arity, struct value **ind)
14f9c5c9
AS
2738{
2739 int k;
deede10c
JB
2740 struct type *type
2741 = check_typedef (value_enclosing_type (ada_value_ind (arr)));
14f9c5c9
AS
2742
2743 for (k = 0; k < arity; k += 1)
2744 {
2745 LONGEST lwb, upb;
14f9c5c9
AS
2746
2747 if (TYPE_CODE (type) != TYPE_CODE_ARRAY)
323e0a4a 2748 error (_("too many subscripts (%d expected)"), k);
d2e4a39e 2749 arr = value_cast (lookup_pointer_type (TYPE_TARGET_TYPE (type)),
4c4b4cd2 2750 value_copy (arr));
14f9c5c9 2751 get_discrete_bounds (TYPE_INDEX_TYPE (type), &lwb, &upb);
2497b498 2752 arr = value_ptradd (arr, pos_atr (ind[k]) - lwb);
14f9c5c9
AS
2753 type = TYPE_TARGET_TYPE (type);
2754 }
2755
2756 return value_ind (arr);
2757}
2758
0b5d8877 2759/* Given that ARRAY_PTR is a pointer or reference to an array of type TYPE (the
f5938064
JG
2760 actual type of ARRAY_PTR is ignored), returns the Ada slice of HIGH-LOW+1
2761 elements starting at index LOW. The lower bound of this array is LOW, as
0963b4bd 2762 per Ada rules. */
0b5d8877 2763static struct value *
f5938064
JG
2764ada_value_slice_from_ptr (struct value *array_ptr, struct type *type,
2765 int low, int high)
0b5d8877 2766{
b0dd7688 2767 struct type *type0 = ada_check_typedef (type);
6c038f32 2768 CORE_ADDR base = value_as_address (array_ptr)
b0dd7688
JB
2769 + ((low - ada_discrete_type_low_bound (TYPE_INDEX_TYPE (type0)))
2770 * TYPE_LENGTH (TYPE_TARGET_TYPE (type0)));
0c9c3474
SA
2771 struct type *index_type
2772 = create_static_range_type (NULL,
2773 TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type0)),
2774 low, high);
6c038f32 2775 struct type *slice_type =
b0dd7688 2776 create_array_type (NULL, TYPE_TARGET_TYPE (type0), index_type);
5b4ee69b 2777
f5938064 2778 return value_at_lazy (slice_type, base);
0b5d8877
PH
2779}
2780
2781
2782static struct value *
2783ada_value_slice (struct value *array, int low, int high)
2784{
b0dd7688 2785 struct type *type = ada_check_typedef (value_type (array));
0c9c3474
SA
2786 struct type *index_type
2787 = create_static_range_type (NULL, TYPE_INDEX_TYPE (type), low, high);
6c038f32 2788 struct type *slice_type =
0b5d8877 2789 create_array_type (NULL, TYPE_TARGET_TYPE (type), index_type);
5b4ee69b 2790
6c038f32 2791 return value_cast (slice_type, value_slice (array, low, high - low + 1));
0b5d8877
PH
2792}
2793
14f9c5c9
AS
2794/* If type is a record type in the form of a standard GNAT array
2795 descriptor, returns the number of dimensions for type. If arr is a
2796 simple array, returns the number of "array of"s that prefix its
4c4b4cd2 2797 type designation. Otherwise, returns 0. */
14f9c5c9
AS
2798
2799int
d2e4a39e 2800ada_array_arity (struct type *type)
14f9c5c9
AS
2801{
2802 int arity;
2803
2804 if (type == NULL)
2805 return 0;
2806
2807 type = desc_base_type (type);
2808
2809 arity = 0;
d2e4a39e 2810 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
14f9c5c9 2811 return desc_arity (desc_bounds_type (type));
d2e4a39e
AS
2812 else
2813 while (TYPE_CODE (type) == TYPE_CODE_ARRAY)
14f9c5c9 2814 {
4c4b4cd2 2815 arity += 1;
61ee279c 2816 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
14f9c5c9 2817 }
d2e4a39e 2818
14f9c5c9
AS
2819 return arity;
2820}
2821
2822/* If TYPE is a record type in the form of a standard GNAT array
2823 descriptor or a simple array type, returns the element type for
2824 TYPE after indexing by NINDICES indices, or by all indices if
4c4b4cd2 2825 NINDICES is -1. Otherwise, returns NULL. */
14f9c5c9 2826
d2e4a39e
AS
2827struct type *
2828ada_array_element_type (struct type *type, int nindices)
14f9c5c9
AS
2829{
2830 type = desc_base_type (type);
2831
d2e4a39e 2832 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
14f9c5c9
AS
2833 {
2834 int k;
d2e4a39e 2835 struct type *p_array_type;
14f9c5c9 2836
556bdfd4 2837 p_array_type = desc_data_target_type (type);
14f9c5c9
AS
2838
2839 k = ada_array_arity (type);
2840 if (k == 0)
4c4b4cd2 2841 return NULL;
d2e4a39e 2842
4c4b4cd2 2843 /* Initially p_array_type = elt_type(*)[]...(k times)...[]. */
14f9c5c9 2844 if (nindices >= 0 && k > nindices)
4c4b4cd2 2845 k = nindices;
d2e4a39e 2846 while (k > 0 && p_array_type != NULL)
4c4b4cd2 2847 {
61ee279c 2848 p_array_type = ada_check_typedef (TYPE_TARGET_TYPE (p_array_type));
4c4b4cd2
PH
2849 k -= 1;
2850 }
14f9c5c9
AS
2851 return p_array_type;
2852 }
2853 else if (TYPE_CODE (type) == TYPE_CODE_ARRAY)
2854 {
2855 while (nindices != 0 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
4c4b4cd2
PH
2856 {
2857 type = TYPE_TARGET_TYPE (type);
2858 nindices -= 1;
2859 }
14f9c5c9
AS
2860 return type;
2861 }
2862
2863 return NULL;
2864}
2865
4c4b4cd2 2866/* The type of nth index in arrays of given type (n numbering from 1).
dd19d49e
UW
2867 Does not examine memory. Throws an error if N is invalid or TYPE
2868 is not an array type. NAME is the name of the Ada attribute being
2869 evaluated ('range, 'first, 'last, or 'length); it is used in building
2870 the error message. */
14f9c5c9 2871
1eea4ebd
UW
2872static struct type *
2873ada_index_type (struct type *type, int n, const char *name)
14f9c5c9 2874{
4c4b4cd2
PH
2875 struct type *result_type;
2876
14f9c5c9
AS
2877 type = desc_base_type (type);
2878
1eea4ebd
UW
2879 if (n < 0 || n > ada_array_arity (type))
2880 error (_("invalid dimension number to '%s"), name);
14f9c5c9 2881
4c4b4cd2 2882 if (ada_is_simple_array_type (type))
14f9c5c9
AS
2883 {
2884 int i;
2885
2886 for (i = 1; i < n; i += 1)
4c4b4cd2 2887 type = TYPE_TARGET_TYPE (type);
262452ec 2888 result_type = TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type));
4c4b4cd2
PH
2889 /* FIXME: The stabs type r(0,0);bound;bound in an array type
2890 has a target type of TYPE_CODE_UNDEF. We compensate here, but
76a01679 2891 perhaps stabsread.c would make more sense. */
1eea4ebd
UW
2892 if (result_type && TYPE_CODE (result_type) == TYPE_CODE_UNDEF)
2893 result_type = NULL;
14f9c5c9 2894 }
d2e4a39e 2895 else
1eea4ebd
UW
2896 {
2897 result_type = desc_index_type (desc_bounds_type (type), n);
2898 if (result_type == NULL)
2899 error (_("attempt to take bound of something that is not an array"));
2900 }
2901
2902 return result_type;
14f9c5c9
AS
2903}
2904
2905/* Given that arr is an array type, returns the lower bound of the
2906 Nth index (numbering from 1) if WHICH is 0, and the upper bound if
4c4b4cd2 2907 WHICH is 1. This returns bounds 0 .. -1 if ARR_TYPE is an
1eea4ebd
UW
2908 array-descriptor type. It works for other arrays with bounds supplied
2909 by run-time quantities other than discriminants. */
14f9c5c9 2910
abb68b3e 2911static LONGEST
fb5e3d5c 2912ada_array_bound_from_type (struct type *arr_type, int n, int which)
14f9c5c9 2913{
8a48ac95 2914 struct type *type, *index_type_desc, *index_type;
1ce677a4 2915 int i;
262452ec
JK
2916
2917 gdb_assert (which == 0 || which == 1);
14f9c5c9 2918
ad82864c
JB
2919 if (ada_is_constrained_packed_array_type (arr_type))
2920 arr_type = decode_constrained_packed_array_type (arr_type);
14f9c5c9 2921
4c4b4cd2 2922 if (arr_type == NULL || !ada_is_simple_array_type (arr_type))
1eea4ebd 2923 return (LONGEST) - which;
14f9c5c9
AS
2924
2925 if (TYPE_CODE (arr_type) == TYPE_CODE_PTR)
2926 type = TYPE_TARGET_TYPE (arr_type);
2927 else
2928 type = arr_type;
2929
bafffb51
JB
2930 if (TYPE_FIXED_INSTANCE (type))
2931 {
2932 /* The array has already been fixed, so we do not need to
2933 check the parallel ___XA type again. That encoding has
2934 already been applied, so ignore it now. */
2935 index_type_desc = NULL;
2936 }
2937 else
2938 {
2939 index_type_desc = ada_find_parallel_type (type, "___XA");
2940 ada_fixup_array_indexes_type (index_type_desc);
2941 }
2942
262452ec 2943 if (index_type_desc != NULL)
28c85d6c
JB
2944 index_type = to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, n - 1),
2945 NULL);
262452ec 2946 else
8a48ac95
JB
2947 {
2948 struct type *elt_type = check_typedef (type);
2949
2950 for (i = 1; i < n; i++)
2951 elt_type = check_typedef (TYPE_TARGET_TYPE (elt_type));
2952
2953 index_type = TYPE_INDEX_TYPE (elt_type);
2954 }
262452ec 2955
43bbcdc2
PH
2956 return
2957 (LONGEST) (which == 0
2958 ? ada_discrete_type_low_bound (index_type)
2959 : ada_discrete_type_high_bound (index_type));
14f9c5c9
AS
2960}
2961
2962/* Given that arr is an array value, returns the lower bound of the
abb68b3e
JB
2963 nth index (numbering from 1) if WHICH is 0, and the upper bound if
2964 WHICH is 1. This routine will also work for arrays with bounds
4c4b4cd2 2965 supplied by run-time quantities other than discriminants. */
14f9c5c9 2966
1eea4ebd 2967static LONGEST
4dc81987 2968ada_array_bound (struct value *arr, int n, int which)
14f9c5c9 2969{
eb479039
JB
2970 struct type *arr_type;
2971
2972 if (TYPE_CODE (check_typedef (value_type (arr))) == TYPE_CODE_PTR)
2973 arr = value_ind (arr);
2974 arr_type = value_enclosing_type (arr);
14f9c5c9 2975
ad82864c
JB
2976 if (ada_is_constrained_packed_array_type (arr_type))
2977 return ada_array_bound (decode_constrained_packed_array (arr), n, which);
4c4b4cd2 2978 else if (ada_is_simple_array_type (arr_type))
1eea4ebd 2979 return ada_array_bound_from_type (arr_type, n, which);
14f9c5c9 2980 else
1eea4ebd 2981 return value_as_long (desc_one_bound (desc_bounds (arr), n, which));
14f9c5c9
AS
2982}
2983
2984/* Given that arr is an array value, returns the length of the
2985 nth index. This routine will also work for arrays with bounds
4c4b4cd2
PH
2986 supplied by run-time quantities other than discriminants.
2987 Does not work for arrays indexed by enumeration types with representation
2988 clauses at the moment. */
14f9c5c9 2989
1eea4ebd 2990static LONGEST
d2e4a39e 2991ada_array_length (struct value *arr, int n)
14f9c5c9 2992{
eb479039
JB
2993 struct type *arr_type;
2994
2995 if (TYPE_CODE (check_typedef (value_type (arr))) == TYPE_CODE_PTR)
2996 arr = value_ind (arr);
2997 arr_type = value_enclosing_type (arr);
14f9c5c9 2998
ad82864c
JB
2999 if (ada_is_constrained_packed_array_type (arr_type))
3000 return ada_array_length (decode_constrained_packed_array (arr), n);
14f9c5c9 3001
4c4b4cd2 3002 if (ada_is_simple_array_type (arr_type))
1eea4ebd
UW
3003 return (ada_array_bound_from_type (arr_type, n, 1)
3004 - ada_array_bound_from_type (arr_type, n, 0) + 1);
14f9c5c9 3005 else
1eea4ebd
UW
3006 return (value_as_long (desc_one_bound (desc_bounds (arr), n, 1))
3007 - value_as_long (desc_one_bound (desc_bounds (arr), n, 0)) + 1);
4c4b4cd2
PH
3008}
3009
3010/* An empty array whose type is that of ARR_TYPE (an array type),
3011 with bounds LOW to LOW-1. */
3012
3013static struct value *
3014empty_array (struct type *arr_type, int low)
3015{
b0dd7688 3016 struct type *arr_type0 = ada_check_typedef (arr_type);
0c9c3474
SA
3017 struct type *index_type
3018 = create_static_range_type
3019 (NULL, TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (arr_type0)), low, low - 1);
b0dd7688 3020 struct type *elt_type = ada_array_element_type (arr_type0, 1);
5b4ee69b 3021
0b5d8877 3022 return allocate_value (create_array_type (NULL, elt_type, index_type));
14f9c5c9 3023}
14f9c5c9 3024\f
d2e4a39e 3025
4c4b4cd2 3026 /* Name resolution */
14f9c5c9 3027
4c4b4cd2
PH
3028/* The "decoded" name for the user-definable Ada operator corresponding
3029 to OP. */
14f9c5c9 3030
d2e4a39e 3031static const char *
4c4b4cd2 3032ada_decoded_op_name (enum exp_opcode op)
14f9c5c9
AS
3033{
3034 int i;
3035
4c4b4cd2 3036 for (i = 0; ada_opname_table[i].encoded != NULL; i += 1)
14f9c5c9
AS
3037 {
3038 if (ada_opname_table[i].op == op)
4c4b4cd2 3039 return ada_opname_table[i].decoded;
14f9c5c9 3040 }
323e0a4a 3041 error (_("Could not find operator name for opcode"));
14f9c5c9
AS
3042}
3043
3044
4c4b4cd2
PH
3045/* Same as evaluate_type (*EXP), but resolves ambiguous symbol
3046 references (marked by OP_VAR_VALUE nodes in which the symbol has an
3047 undefined namespace) and converts operators that are
3048 user-defined into appropriate function calls. If CONTEXT_TYPE is
14f9c5c9
AS
3049 non-null, it provides a preferred result type [at the moment, only
3050 type void has any effect---causing procedures to be preferred over
3051 functions in calls]. A null CONTEXT_TYPE indicates that a non-void
4c4b4cd2 3052 return type is preferred. May change (expand) *EXP. */
14f9c5c9 3053
4c4b4cd2
PH
3054static void
3055resolve (struct expression **expp, int void_context_p)
14f9c5c9 3056{
30b15541
UW
3057 struct type *context_type = NULL;
3058 int pc = 0;
3059
3060 if (void_context_p)
3061 context_type = builtin_type ((*expp)->gdbarch)->builtin_void;
3062
3063 resolve_subexp (expp, &pc, 1, context_type);
14f9c5c9
AS
3064}
3065
4c4b4cd2
PH
3066/* Resolve the operator of the subexpression beginning at
3067 position *POS of *EXPP. "Resolving" consists of replacing
3068 the symbols that have undefined namespaces in OP_VAR_VALUE nodes
3069 with their resolutions, replacing built-in operators with
3070 function calls to user-defined operators, where appropriate, and,
3071 when DEPROCEDURE_P is non-zero, converting function-valued variables
3072 into parameterless calls. May expand *EXPP. The CONTEXT_TYPE functions
3073 are as in ada_resolve, above. */
14f9c5c9 3074
d2e4a39e 3075static struct value *
4c4b4cd2 3076resolve_subexp (struct expression **expp, int *pos, int deprocedure_p,
76a01679 3077 struct type *context_type)
14f9c5c9
AS
3078{
3079 int pc = *pos;
3080 int i;
4c4b4cd2 3081 struct expression *exp; /* Convenience: == *expp. */
14f9c5c9 3082 enum exp_opcode op = (*expp)->elts[pc].opcode;
4c4b4cd2
PH
3083 struct value **argvec; /* Vector of operand types (alloca'ed). */
3084 int nargs; /* Number of operands. */
52ce6436 3085 int oplen;
14f9c5c9
AS
3086
3087 argvec = NULL;
3088 nargs = 0;
3089 exp = *expp;
3090
52ce6436
PH
3091 /* Pass one: resolve operands, saving their types and updating *pos,
3092 if needed. */
14f9c5c9
AS
3093 switch (op)
3094 {
4c4b4cd2
PH
3095 case OP_FUNCALL:
3096 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
76a01679
JB
3097 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
3098 *pos += 7;
4c4b4cd2
PH
3099 else
3100 {
3101 *pos += 3;
3102 resolve_subexp (expp, pos, 0, NULL);
3103 }
3104 nargs = longest_to_int (exp->elts[pc + 1].longconst);
14f9c5c9
AS
3105 break;
3106
14f9c5c9 3107 case UNOP_ADDR:
4c4b4cd2
PH
3108 *pos += 1;
3109 resolve_subexp (expp, pos, 0, NULL);
3110 break;
3111
52ce6436
PH
3112 case UNOP_QUAL:
3113 *pos += 3;
17466c1a 3114 resolve_subexp (expp, pos, 1, check_typedef (exp->elts[pc + 1].type));
4c4b4cd2
PH
3115 break;
3116
52ce6436 3117 case OP_ATR_MODULUS:
4c4b4cd2
PH
3118 case OP_ATR_SIZE:
3119 case OP_ATR_TAG:
4c4b4cd2
PH
3120 case OP_ATR_FIRST:
3121 case OP_ATR_LAST:
3122 case OP_ATR_LENGTH:
3123 case OP_ATR_POS:
3124 case OP_ATR_VAL:
4c4b4cd2
PH
3125 case OP_ATR_MIN:
3126 case OP_ATR_MAX:
52ce6436
PH
3127 case TERNOP_IN_RANGE:
3128 case BINOP_IN_BOUNDS:
3129 case UNOP_IN_RANGE:
3130 case OP_AGGREGATE:
3131 case OP_OTHERS:
3132 case OP_CHOICES:
3133 case OP_POSITIONAL:
3134 case OP_DISCRETE_RANGE:
3135 case OP_NAME:
3136 ada_forward_operator_length (exp, pc, &oplen, &nargs);
3137 *pos += oplen;
14f9c5c9
AS
3138 break;
3139
3140 case BINOP_ASSIGN:
3141 {
4c4b4cd2
PH
3142 struct value *arg1;
3143
3144 *pos += 1;
3145 arg1 = resolve_subexp (expp, pos, 0, NULL);
3146 if (arg1 == NULL)
3147 resolve_subexp (expp, pos, 1, NULL);
3148 else
df407dfe 3149 resolve_subexp (expp, pos, 1, value_type (arg1));
4c4b4cd2 3150 break;
14f9c5c9
AS
3151 }
3152
4c4b4cd2 3153 case UNOP_CAST:
4c4b4cd2
PH
3154 *pos += 3;
3155 nargs = 1;
3156 break;
14f9c5c9 3157
4c4b4cd2
PH
3158 case BINOP_ADD:
3159 case BINOP_SUB:
3160 case BINOP_MUL:
3161 case BINOP_DIV:
3162 case BINOP_REM:
3163 case BINOP_MOD:
3164 case BINOP_EXP:
3165 case BINOP_CONCAT:
3166 case BINOP_LOGICAL_AND:
3167 case BINOP_LOGICAL_OR:
3168 case BINOP_BITWISE_AND:
3169 case BINOP_BITWISE_IOR:
3170 case BINOP_BITWISE_XOR:
14f9c5c9 3171
4c4b4cd2
PH
3172 case BINOP_EQUAL:
3173 case BINOP_NOTEQUAL:
3174 case BINOP_LESS:
3175 case BINOP_GTR:
3176 case BINOP_LEQ:
3177 case BINOP_GEQ:
14f9c5c9 3178
4c4b4cd2
PH
3179 case BINOP_REPEAT:
3180 case BINOP_SUBSCRIPT:
3181 case BINOP_COMMA:
40c8aaa9
JB
3182 *pos += 1;
3183 nargs = 2;
3184 break;
14f9c5c9 3185
4c4b4cd2
PH
3186 case UNOP_NEG:
3187 case UNOP_PLUS:
3188 case UNOP_LOGICAL_NOT:
3189 case UNOP_ABS:
3190 case UNOP_IND:
3191 *pos += 1;
3192 nargs = 1;
3193 break;
14f9c5c9 3194
4c4b4cd2
PH
3195 case OP_LONG:
3196 case OP_DOUBLE:
3197 case OP_VAR_VALUE:
3198 *pos += 4;
3199 break;
14f9c5c9 3200
4c4b4cd2
PH
3201 case OP_TYPE:
3202 case OP_BOOL:
3203 case OP_LAST:
4c4b4cd2
PH
3204 case OP_INTERNALVAR:
3205 *pos += 3;
3206 break;
14f9c5c9 3207
4c4b4cd2
PH
3208 case UNOP_MEMVAL:
3209 *pos += 3;
3210 nargs = 1;
3211 break;
3212
67f3407f
DJ
3213 case OP_REGISTER:
3214 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
3215 break;
3216
4c4b4cd2
PH
3217 case STRUCTOP_STRUCT:
3218 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
3219 nargs = 1;
3220 break;
3221
4c4b4cd2 3222 case TERNOP_SLICE:
4c4b4cd2
PH
3223 *pos += 1;
3224 nargs = 3;
3225 break;
3226
52ce6436 3227 case OP_STRING:
14f9c5c9 3228 break;
4c4b4cd2
PH
3229
3230 default:
323e0a4a 3231 error (_("Unexpected operator during name resolution"));
14f9c5c9
AS
3232 }
3233
76a01679 3234 argvec = (struct value * *) alloca (sizeof (struct value *) * (nargs + 1));
4c4b4cd2
PH
3235 for (i = 0; i < nargs; i += 1)
3236 argvec[i] = resolve_subexp (expp, pos, 1, NULL);
3237 argvec[i] = NULL;
3238 exp = *expp;
3239
3240 /* Pass two: perform any resolution on principal operator. */
14f9c5c9
AS
3241 switch (op)
3242 {
3243 default:
3244 break;
3245
14f9c5c9 3246 case OP_VAR_VALUE:
4c4b4cd2 3247 if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
76a01679
JB
3248 {
3249 struct ada_symbol_info *candidates;
3250 int n_candidates;
3251
3252 n_candidates =
3253 ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME
3254 (exp->elts[pc + 2].symbol),
3255 exp->elts[pc + 1].block, VAR_DOMAIN,
4eeaa230 3256 &candidates);
76a01679
JB
3257
3258 if (n_candidates > 1)
3259 {
3260 /* Types tend to get re-introduced locally, so if there
3261 are any local symbols that are not types, first filter
3262 out all types. */
3263 int j;
3264 for (j = 0; j < n_candidates; j += 1)
3265 switch (SYMBOL_CLASS (candidates[j].sym))
3266 {
3267 case LOC_REGISTER:
3268 case LOC_ARG:
3269 case LOC_REF_ARG:
76a01679
JB
3270 case LOC_REGPARM_ADDR:
3271 case LOC_LOCAL:
76a01679 3272 case LOC_COMPUTED:
76a01679
JB
3273 goto FoundNonType;
3274 default:
3275 break;
3276 }
3277 FoundNonType:
3278 if (j < n_candidates)
3279 {
3280 j = 0;
3281 while (j < n_candidates)
3282 {
3283 if (SYMBOL_CLASS (candidates[j].sym) == LOC_TYPEDEF)
3284 {
3285 candidates[j] = candidates[n_candidates - 1];
3286 n_candidates -= 1;
3287 }
3288 else
3289 j += 1;
3290 }
3291 }
3292 }
3293
3294 if (n_candidates == 0)
323e0a4a 3295 error (_("No definition found for %s"),
76a01679
JB
3296 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
3297 else if (n_candidates == 1)
3298 i = 0;
3299 else if (deprocedure_p
3300 && !is_nonfunction (candidates, n_candidates))
3301 {
06d5cf63
JB
3302 i = ada_resolve_function
3303 (candidates, n_candidates, NULL, 0,
3304 SYMBOL_LINKAGE_NAME (exp->elts[pc + 2].symbol),
3305 context_type);
76a01679 3306 if (i < 0)
323e0a4a 3307 error (_("Could not find a match for %s"),
76a01679
JB
3308 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
3309 }
3310 else
3311 {
323e0a4a 3312 printf_filtered (_("Multiple matches for %s\n"),
76a01679
JB
3313 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
3314 user_select_syms (candidates, n_candidates, 1);
3315 i = 0;
3316 }
3317
3318 exp->elts[pc + 1].block = candidates[i].block;
3319 exp->elts[pc + 2].symbol = candidates[i].sym;
1265e4aa
JB
3320 if (innermost_block == NULL
3321 || contained_in (candidates[i].block, innermost_block))
76a01679
JB
3322 innermost_block = candidates[i].block;
3323 }
3324
3325 if (deprocedure_p
3326 && (TYPE_CODE (SYMBOL_TYPE (exp->elts[pc + 2].symbol))
3327 == TYPE_CODE_FUNC))
3328 {
3329 replace_operator_with_call (expp, pc, 0, 0,
3330 exp->elts[pc + 2].symbol,
3331 exp->elts[pc + 1].block);
3332 exp = *expp;
3333 }
14f9c5c9
AS
3334 break;
3335
3336 case OP_FUNCALL:
3337 {
4c4b4cd2 3338 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
76a01679 3339 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
4c4b4cd2
PH
3340 {
3341 struct ada_symbol_info *candidates;
3342 int n_candidates;
3343
3344 n_candidates =
76a01679
JB
3345 ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME
3346 (exp->elts[pc + 5].symbol),
3347 exp->elts[pc + 4].block, VAR_DOMAIN,
4eeaa230 3348 &candidates);
4c4b4cd2
PH
3349 if (n_candidates == 1)
3350 i = 0;
3351 else
3352 {
06d5cf63
JB
3353 i = ada_resolve_function
3354 (candidates, n_candidates,
3355 argvec, nargs,
3356 SYMBOL_LINKAGE_NAME (exp->elts[pc + 5].symbol),
3357 context_type);
4c4b4cd2 3358 if (i < 0)
323e0a4a 3359 error (_("Could not find a match for %s"),
4c4b4cd2
PH
3360 SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol));
3361 }
3362
3363 exp->elts[pc + 4].block = candidates[i].block;
3364 exp->elts[pc + 5].symbol = candidates[i].sym;
1265e4aa
JB
3365 if (innermost_block == NULL
3366 || contained_in (candidates[i].block, innermost_block))
4c4b4cd2
PH
3367 innermost_block = candidates[i].block;
3368 }
14f9c5c9
AS
3369 }
3370 break;
3371 case BINOP_ADD:
3372 case BINOP_SUB:
3373 case BINOP_MUL:
3374 case BINOP_DIV:
3375 case BINOP_REM:
3376 case BINOP_MOD:
3377 case BINOP_CONCAT:
3378 case BINOP_BITWISE_AND:
3379 case BINOP_BITWISE_IOR:
3380 case BINOP_BITWISE_XOR:
3381 case BINOP_EQUAL:
3382 case BINOP_NOTEQUAL:
3383 case BINOP_LESS:
3384 case BINOP_GTR:
3385 case BINOP_LEQ:
3386 case BINOP_GEQ:
3387 case BINOP_EXP:
3388 case UNOP_NEG:
3389 case UNOP_PLUS:
3390 case UNOP_LOGICAL_NOT:
3391 case UNOP_ABS:
3392 if (possible_user_operator_p (op, argvec))
4c4b4cd2
PH
3393 {
3394 struct ada_symbol_info *candidates;
3395 int n_candidates;
3396
3397 n_candidates =
3398 ada_lookup_symbol_list (ada_encode (ada_decoded_op_name (op)),
3399 (struct block *) NULL, VAR_DOMAIN,
4eeaa230 3400 &candidates);
4c4b4cd2 3401 i = ada_resolve_function (candidates, n_candidates, argvec, nargs,
76a01679 3402 ada_decoded_op_name (op), NULL);
4c4b4cd2
PH
3403 if (i < 0)
3404 break;
3405
76a01679
JB
3406 replace_operator_with_call (expp, pc, nargs, 1,
3407 candidates[i].sym, candidates[i].block);
4c4b4cd2
PH
3408 exp = *expp;
3409 }
14f9c5c9 3410 break;
4c4b4cd2
PH
3411
3412 case OP_TYPE:
b3dbf008 3413 case OP_REGISTER:
4c4b4cd2 3414 return NULL;
14f9c5c9
AS
3415 }
3416
3417 *pos = pc;
3418 return evaluate_subexp_type (exp, pos);
3419}
3420
3421/* Return non-zero if formal type FTYPE matches actual type ATYPE. If
4c4b4cd2 3422 MAY_DEREF is non-zero, the formal may be a pointer and the actual
5b3d5b7d 3423 a non-pointer. */
14f9c5c9 3424/* The term "match" here is rather loose. The match is heuristic and
5b3d5b7d 3425 liberal. */
14f9c5c9
AS
3426
3427static int
4dc81987 3428ada_type_match (struct type *ftype, struct type *atype, int may_deref)
14f9c5c9 3429{
61ee279c
PH
3430 ftype = ada_check_typedef (ftype);
3431 atype = ada_check_typedef (atype);
14f9c5c9
AS
3432
3433 if (TYPE_CODE (ftype) == TYPE_CODE_REF)
3434 ftype = TYPE_TARGET_TYPE (ftype);
3435 if (TYPE_CODE (atype) == TYPE_CODE_REF)
3436 atype = TYPE_TARGET_TYPE (atype);
3437
d2e4a39e 3438 switch (TYPE_CODE (ftype))
14f9c5c9
AS
3439 {
3440 default:
5b3d5b7d 3441 return TYPE_CODE (ftype) == TYPE_CODE (atype);
14f9c5c9
AS
3442 case TYPE_CODE_PTR:
3443 if (TYPE_CODE (atype) == TYPE_CODE_PTR)
4c4b4cd2
PH
3444 return ada_type_match (TYPE_TARGET_TYPE (ftype),
3445 TYPE_TARGET_TYPE (atype), 0);
d2e4a39e 3446 else
1265e4aa
JB
3447 return (may_deref
3448 && ada_type_match (TYPE_TARGET_TYPE (ftype), atype, 0));
14f9c5c9
AS
3449 case TYPE_CODE_INT:
3450 case TYPE_CODE_ENUM:
3451 case TYPE_CODE_RANGE:
3452 switch (TYPE_CODE (atype))
4c4b4cd2
PH
3453 {
3454 case TYPE_CODE_INT:
3455 case TYPE_CODE_ENUM:
3456 case TYPE_CODE_RANGE:
3457 return 1;
3458 default:
3459 return 0;
3460 }
14f9c5c9
AS
3461
3462 case TYPE_CODE_ARRAY:
d2e4a39e 3463 return (TYPE_CODE (atype) == TYPE_CODE_ARRAY
4c4b4cd2 3464 || ada_is_array_descriptor_type (atype));
14f9c5c9
AS
3465
3466 case TYPE_CODE_STRUCT:
4c4b4cd2
PH
3467 if (ada_is_array_descriptor_type (ftype))
3468 return (TYPE_CODE (atype) == TYPE_CODE_ARRAY
3469 || ada_is_array_descriptor_type (atype));
14f9c5c9 3470 else
4c4b4cd2
PH
3471 return (TYPE_CODE (atype) == TYPE_CODE_STRUCT
3472 && !ada_is_array_descriptor_type (atype));
14f9c5c9
AS
3473
3474 case TYPE_CODE_UNION:
3475 case TYPE_CODE_FLT:
3476 return (TYPE_CODE (atype) == TYPE_CODE (ftype));
3477 }
3478}
3479
3480/* Return non-zero if the formals of FUNC "sufficiently match" the
3481 vector of actual argument types ACTUALS of size N_ACTUALS. FUNC
3482 may also be an enumeral, in which case it is treated as a 0-
4c4b4cd2 3483 argument function. */
14f9c5c9
AS
3484
3485static int
d2e4a39e 3486ada_args_match (struct symbol *func, struct value **actuals, int n_actuals)
14f9c5c9
AS
3487{
3488 int i;
d2e4a39e 3489 struct type *func_type = SYMBOL_TYPE (func);
14f9c5c9 3490
1265e4aa
JB
3491 if (SYMBOL_CLASS (func) == LOC_CONST
3492 && TYPE_CODE (func_type) == TYPE_CODE_ENUM)
14f9c5c9
AS
3493 return (n_actuals == 0);
3494 else if (func_type == NULL || TYPE_CODE (func_type) != TYPE_CODE_FUNC)
3495 return 0;
3496
3497 if (TYPE_NFIELDS (func_type) != n_actuals)
3498 return 0;
3499
3500 for (i = 0; i < n_actuals; i += 1)
3501 {
4c4b4cd2 3502 if (actuals[i] == NULL)
76a01679
JB
3503 return 0;
3504 else
3505 {
5b4ee69b
MS
3506 struct type *ftype = ada_check_typedef (TYPE_FIELD_TYPE (func_type,
3507 i));
df407dfe 3508 struct type *atype = ada_check_typedef (value_type (actuals[i]));
4c4b4cd2 3509
76a01679
JB
3510 if (!ada_type_match (ftype, atype, 1))
3511 return 0;
3512 }
14f9c5c9
AS
3513 }
3514 return 1;
3515}
3516
3517/* False iff function type FUNC_TYPE definitely does not produce a value
3518 compatible with type CONTEXT_TYPE. Conservatively returns 1 if
3519 FUNC_TYPE is not a valid function type with a non-null return type
3520 or an enumerated type. A null CONTEXT_TYPE indicates any non-void type. */
3521
3522static int
d2e4a39e 3523return_match (struct type *func_type, struct type *context_type)
14f9c5c9 3524{
d2e4a39e 3525 struct type *return_type;
14f9c5c9
AS
3526
3527 if (func_type == NULL)
3528 return 1;
3529
4c4b4cd2 3530 if (TYPE_CODE (func_type) == TYPE_CODE_FUNC)
18af8284 3531 return_type = get_base_type (TYPE_TARGET_TYPE (func_type));
4c4b4cd2 3532 else
18af8284 3533 return_type = get_base_type (func_type);
14f9c5c9
AS
3534 if (return_type == NULL)
3535 return 1;
3536
18af8284 3537 context_type = get_base_type (context_type);
14f9c5c9
AS
3538
3539 if (TYPE_CODE (return_type) == TYPE_CODE_ENUM)
3540 return context_type == NULL || return_type == context_type;
3541 else if (context_type == NULL)
3542 return TYPE_CODE (return_type) != TYPE_CODE_VOID;
3543 else
3544 return TYPE_CODE (return_type) == TYPE_CODE (context_type);
3545}
3546
3547
4c4b4cd2 3548/* Returns the index in SYMS[0..NSYMS-1] that contains the symbol for the
14f9c5c9 3549 function (if any) that matches the types of the NARGS arguments in
4c4b4cd2
PH
3550 ARGS. If CONTEXT_TYPE is non-null and there is at least one match
3551 that returns that type, then eliminate matches that don't. If
3552 CONTEXT_TYPE is void and there is at least one match that does not
3553 return void, eliminate all matches that do.
3554
14f9c5c9
AS
3555 Asks the user if there is more than one match remaining. Returns -1
3556 if there is no such symbol or none is selected. NAME is used
4c4b4cd2
PH
3557 solely for messages. May re-arrange and modify SYMS in
3558 the process; the index returned is for the modified vector. */
14f9c5c9 3559
4c4b4cd2
PH
3560static int
3561ada_resolve_function (struct ada_symbol_info syms[],
3562 int nsyms, struct value **args, int nargs,
3563 const char *name, struct type *context_type)
14f9c5c9 3564{
30b15541 3565 int fallback;
14f9c5c9 3566 int k;
4c4b4cd2 3567 int m; /* Number of hits */
14f9c5c9 3568
d2e4a39e 3569 m = 0;
30b15541
UW
3570 /* In the first pass of the loop, we only accept functions matching
3571 context_type. If none are found, we add a second pass of the loop
3572 where every function is accepted. */
3573 for (fallback = 0; m == 0 && fallback < 2; fallback++)
14f9c5c9
AS
3574 {
3575 for (k = 0; k < nsyms; k += 1)
4c4b4cd2 3576 {
61ee279c 3577 struct type *type = ada_check_typedef (SYMBOL_TYPE (syms[k].sym));
4c4b4cd2
PH
3578
3579 if (ada_args_match (syms[k].sym, args, nargs)
30b15541 3580 && (fallback || return_match (type, context_type)))
4c4b4cd2
PH
3581 {
3582 syms[m] = syms[k];
3583 m += 1;
3584 }
3585 }
14f9c5c9
AS
3586 }
3587
3588 if (m == 0)
3589 return -1;
3590 else if (m > 1)
3591 {
323e0a4a 3592 printf_filtered (_("Multiple matches for %s\n"), name);
4c4b4cd2 3593 user_select_syms (syms, m, 1);
14f9c5c9
AS
3594 return 0;
3595 }
3596 return 0;
3597}
3598
4c4b4cd2
PH
3599/* Returns true (non-zero) iff decoded name N0 should appear before N1
3600 in a listing of choices during disambiguation (see sort_choices, below).
3601 The idea is that overloadings of a subprogram name from the
3602 same package should sort in their source order. We settle for ordering
3603 such symbols by their trailing number (__N or $N). */
3604
14f9c5c9 3605static int
0d5cff50 3606encoded_ordered_before (const char *N0, const char *N1)
14f9c5c9
AS
3607{
3608 if (N1 == NULL)
3609 return 0;
3610 else if (N0 == NULL)
3611 return 1;
3612 else
3613 {
3614 int k0, k1;
5b4ee69b 3615
d2e4a39e 3616 for (k0 = strlen (N0) - 1; k0 > 0 && isdigit (N0[k0]); k0 -= 1)
4c4b4cd2 3617 ;
d2e4a39e 3618 for (k1 = strlen (N1) - 1; k1 > 0 && isdigit (N1[k1]); k1 -= 1)
4c4b4cd2 3619 ;
d2e4a39e 3620 if ((N0[k0] == '_' || N0[k0] == '$') && N0[k0 + 1] != '\000'
4c4b4cd2
PH
3621 && (N1[k1] == '_' || N1[k1] == '$') && N1[k1 + 1] != '\000')
3622 {
3623 int n0, n1;
5b4ee69b 3624
4c4b4cd2
PH
3625 n0 = k0;
3626 while (N0[n0] == '_' && n0 > 0 && N0[n0 - 1] == '_')
3627 n0 -= 1;
3628 n1 = k1;
3629 while (N1[n1] == '_' && n1 > 0 && N1[n1 - 1] == '_')
3630 n1 -= 1;
3631 if (n0 == n1 && strncmp (N0, N1, n0) == 0)
3632 return (atoi (N0 + k0 + 1) < atoi (N1 + k1 + 1));
3633 }
14f9c5c9
AS
3634 return (strcmp (N0, N1) < 0);
3635 }
3636}
d2e4a39e 3637
4c4b4cd2
PH
3638/* Sort SYMS[0..NSYMS-1] to put the choices in a canonical order by the
3639 encoded names. */
3640
d2e4a39e 3641static void
4c4b4cd2 3642sort_choices (struct ada_symbol_info syms[], int nsyms)
14f9c5c9 3643{
4c4b4cd2 3644 int i;
5b4ee69b 3645
d2e4a39e 3646 for (i = 1; i < nsyms; i += 1)
14f9c5c9 3647 {
4c4b4cd2 3648 struct ada_symbol_info sym = syms[i];
14f9c5c9
AS
3649 int j;
3650
d2e4a39e 3651 for (j = i - 1; j >= 0; j -= 1)
4c4b4cd2
PH
3652 {
3653 if (encoded_ordered_before (SYMBOL_LINKAGE_NAME (syms[j].sym),
3654 SYMBOL_LINKAGE_NAME (sym.sym)))
3655 break;
3656 syms[j + 1] = syms[j];
3657 }
d2e4a39e 3658 syms[j + 1] = sym;
14f9c5c9
AS
3659 }
3660}
3661
4c4b4cd2
PH
3662/* Given a list of NSYMS symbols in SYMS, select up to MAX_RESULTS>0
3663 by asking the user (if necessary), returning the number selected,
3664 and setting the first elements of SYMS items. Error if no symbols
3665 selected. */
14f9c5c9
AS
3666
3667/* NOTE: Adapted from decode_line_2 in symtab.c, with which it ought
4c4b4cd2 3668 to be re-integrated one of these days. */
14f9c5c9
AS
3669
3670int
4c4b4cd2 3671user_select_syms (struct ada_symbol_info *syms, int nsyms, int max_results)
14f9c5c9
AS
3672{
3673 int i;
d2e4a39e 3674 int *chosen = (int *) alloca (sizeof (int) * nsyms);
14f9c5c9
AS
3675 int n_chosen;
3676 int first_choice = (max_results == 1) ? 1 : 2;
717d2f5a 3677 const char *select_mode = multiple_symbols_select_mode ();
14f9c5c9
AS
3678
3679 if (max_results < 1)
323e0a4a 3680 error (_("Request to select 0 symbols!"));
14f9c5c9
AS
3681 if (nsyms <= 1)
3682 return nsyms;
3683
717d2f5a
JB
3684 if (select_mode == multiple_symbols_cancel)
3685 error (_("\
3686canceled because the command is ambiguous\n\
3687See set/show multiple-symbol."));
3688
3689 /* If select_mode is "all", then return all possible symbols.
3690 Only do that if more than one symbol can be selected, of course.
3691 Otherwise, display the menu as usual. */
3692 if (select_mode == multiple_symbols_all && max_results > 1)
3693 return nsyms;
3694
323e0a4a 3695 printf_unfiltered (_("[0] cancel\n"));
14f9c5c9 3696 if (max_results > 1)
323e0a4a 3697 printf_unfiltered (_("[1] all\n"));
14f9c5c9 3698
4c4b4cd2 3699 sort_choices (syms, nsyms);
14f9c5c9
AS
3700
3701 for (i = 0; i < nsyms; i += 1)
3702 {
4c4b4cd2
PH
3703 if (syms[i].sym == NULL)
3704 continue;
3705
3706 if (SYMBOL_CLASS (syms[i].sym) == LOC_BLOCK)
3707 {
76a01679
JB
3708 struct symtab_and_line sal =
3709 find_function_start_sal (syms[i].sym, 1);
5b4ee69b 3710
323e0a4a
AC
3711 if (sal.symtab == NULL)
3712 printf_unfiltered (_("[%d] %s at <no source file available>:%d\n"),
3713 i + first_choice,
3714 SYMBOL_PRINT_NAME (syms[i].sym),
3715 sal.line);
3716 else
3717 printf_unfiltered (_("[%d] %s at %s:%d\n"), i + first_choice,
3718 SYMBOL_PRINT_NAME (syms[i].sym),
05cba821
JK
3719 symtab_to_filename_for_display (sal.symtab),
3720 sal.line);
4c4b4cd2
PH
3721 continue;
3722 }
d2e4a39e 3723 else
4c4b4cd2
PH
3724 {
3725 int is_enumeral =
3726 (SYMBOL_CLASS (syms[i].sym) == LOC_CONST
3727 && SYMBOL_TYPE (syms[i].sym) != NULL
3728 && TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) == TYPE_CODE_ENUM);
1994afbf
DE
3729 struct symtab *symtab = NULL;
3730
3731 if (SYMBOL_OBJFILE_OWNED (syms[i].sym))
3732 symtab = symbol_symtab (syms[i].sym);
4c4b4cd2
PH
3733
3734 if (SYMBOL_LINE (syms[i].sym) != 0 && symtab != NULL)
323e0a4a 3735 printf_unfiltered (_("[%d] %s at %s:%d\n"),
4c4b4cd2
PH
3736 i + first_choice,
3737 SYMBOL_PRINT_NAME (syms[i].sym),
05cba821
JK
3738 symtab_to_filename_for_display (symtab),
3739 SYMBOL_LINE (syms[i].sym));
76a01679
JB
3740 else if (is_enumeral
3741 && TYPE_NAME (SYMBOL_TYPE (syms[i].sym)) != NULL)
4c4b4cd2 3742 {
a3f17187 3743 printf_unfiltered (("[%d] "), i + first_choice);
76a01679 3744 ada_print_type (SYMBOL_TYPE (syms[i].sym), NULL,
79d43c61 3745 gdb_stdout, -1, 0, &type_print_raw_options);
323e0a4a 3746 printf_unfiltered (_("'(%s) (enumeral)\n"),
4c4b4cd2
PH
3747 SYMBOL_PRINT_NAME (syms[i].sym));
3748 }
3749 else if (symtab != NULL)
3750 printf_unfiltered (is_enumeral
323e0a4a
AC
3751 ? _("[%d] %s in %s (enumeral)\n")
3752 : _("[%d] %s at %s:?\n"),
4c4b4cd2
PH
3753 i + first_choice,
3754 SYMBOL_PRINT_NAME (syms[i].sym),
05cba821 3755 symtab_to_filename_for_display (symtab));
4c4b4cd2
PH
3756 else
3757 printf_unfiltered (is_enumeral
323e0a4a
AC
3758 ? _("[%d] %s (enumeral)\n")
3759 : _("[%d] %s at ?\n"),
4c4b4cd2
PH
3760 i + first_choice,
3761 SYMBOL_PRINT_NAME (syms[i].sym));
3762 }
14f9c5c9 3763 }
d2e4a39e 3764
14f9c5c9 3765 n_chosen = get_selections (chosen, nsyms, max_results, max_results > 1,
4c4b4cd2 3766 "overload-choice");
14f9c5c9
AS
3767
3768 for (i = 0; i < n_chosen; i += 1)
4c4b4cd2 3769 syms[i] = syms[chosen[i]];
14f9c5c9
AS
3770
3771 return n_chosen;
3772}
3773
3774/* Read and validate a set of numeric choices from the user in the
4c4b4cd2 3775 range 0 .. N_CHOICES-1. Place the results in increasing
14f9c5c9
AS
3776 order in CHOICES[0 .. N-1], and return N.
3777
3778 The user types choices as a sequence of numbers on one line
3779 separated by blanks, encoding them as follows:
3780
4c4b4cd2 3781 + A choice of 0 means to cancel the selection, throwing an error.
14f9c5c9
AS
3782 + If IS_ALL_CHOICE, a choice of 1 selects the entire set 0 .. N_CHOICES-1.
3783 + The user chooses k by typing k+IS_ALL_CHOICE+1.
3784
4c4b4cd2 3785 The user is not allowed to choose more than MAX_RESULTS values.
14f9c5c9
AS
3786
3787 ANNOTATION_SUFFIX, if present, is used to annotate the input
4c4b4cd2 3788 prompts (for use with the -f switch). */
14f9c5c9
AS
3789
3790int
d2e4a39e 3791get_selections (int *choices, int n_choices, int max_results,
4c4b4cd2 3792 int is_all_choice, char *annotation_suffix)
14f9c5c9 3793{
d2e4a39e 3794 char *args;
0bcd0149 3795 char *prompt;
14f9c5c9
AS
3796 int n_chosen;
3797 int first_choice = is_all_choice ? 2 : 1;
d2e4a39e 3798
14f9c5c9
AS
3799 prompt = getenv ("PS2");
3800 if (prompt == NULL)
0bcd0149 3801 prompt = "> ";
14f9c5c9 3802
0bcd0149 3803 args = command_line_input (prompt, 0, annotation_suffix);
d2e4a39e 3804
14f9c5c9 3805 if (args == NULL)
323e0a4a 3806 error_no_arg (_("one or more choice numbers"));
14f9c5c9
AS
3807
3808 n_chosen = 0;
76a01679 3809
4c4b4cd2
PH
3810 /* Set choices[0 .. n_chosen-1] to the users' choices in ascending
3811 order, as given in args. Choices are validated. */
14f9c5c9
AS
3812 while (1)
3813 {
d2e4a39e 3814 char *args2;
14f9c5c9
AS
3815 int choice, j;
3816
0fcd72ba 3817 args = skip_spaces (args);
14f9c5c9 3818 if (*args == '\0' && n_chosen == 0)
323e0a4a 3819 error_no_arg (_("one or more choice numbers"));
14f9c5c9 3820 else if (*args == '\0')
4c4b4cd2 3821 break;
14f9c5c9
AS
3822
3823 choice = strtol (args, &args2, 10);
d2e4a39e 3824 if (args == args2 || choice < 0
4c4b4cd2 3825 || choice > n_choices + first_choice - 1)
323e0a4a 3826 error (_("Argument must be choice number"));
14f9c5c9
AS
3827 args = args2;
3828
d2e4a39e 3829 if (choice == 0)
323e0a4a 3830 error (_("cancelled"));
14f9c5c9
AS
3831
3832 if (choice < first_choice)
4c4b4cd2
PH
3833 {
3834 n_chosen = n_choices;
3835 for (j = 0; j < n_choices; j += 1)
3836 choices[j] = j;
3837 break;
3838 }
14f9c5c9
AS
3839 choice -= first_choice;
3840
d2e4a39e 3841 for (j = n_chosen - 1; j >= 0 && choice < choices[j]; j -= 1)
4c4b4cd2
PH
3842 {
3843 }
14f9c5c9
AS
3844
3845 if (j < 0 || choice != choices[j])
4c4b4cd2
PH
3846 {
3847 int k;
5b4ee69b 3848
4c4b4cd2
PH
3849 for (k = n_chosen - 1; k > j; k -= 1)
3850 choices[k + 1] = choices[k];
3851 choices[j + 1] = choice;
3852 n_chosen += 1;
3853 }
14f9c5c9
AS
3854 }
3855
3856 if (n_chosen > max_results)
323e0a4a 3857 error (_("Select no more than %d of the above"), max_results);
d2e4a39e 3858
14f9c5c9
AS
3859 return n_chosen;
3860}
3861
4c4b4cd2
PH
3862/* Replace the operator of length OPLEN at position PC in *EXPP with a call
3863 on the function identified by SYM and BLOCK, and taking NARGS
3864 arguments. Update *EXPP as needed to hold more space. */
14f9c5c9
AS
3865
3866static void
d2e4a39e 3867replace_operator_with_call (struct expression **expp, int pc, int nargs,
4c4b4cd2 3868 int oplen, struct symbol *sym,
270140bd 3869 const struct block *block)
14f9c5c9
AS
3870{
3871 /* A new expression, with 6 more elements (3 for funcall, 4 for function
4c4b4cd2 3872 symbol, -oplen for operator being replaced). */
d2e4a39e 3873 struct expression *newexp = (struct expression *)
8c1a34e7 3874 xzalloc (sizeof (struct expression)
4c4b4cd2 3875 + EXP_ELEM_TO_BYTES ((*expp)->nelts + 7 - oplen));
d2e4a39e 3876 struct expression *exp = *expp;
14f9c5c9
AS
3877
3878 newexp->nelts = exp->nelts + 7 - oplen;
3879 newexp->language_defn = exp->language_defn;
3489610d 3880 newexp->gdbarch = exp->gdbarch;
14f9c5c9 3881 memcpy (newexp->elts, exp->elts, EXP_ELEM_TO_BYTES (pc));
d2e4a39e 3882 memcpy (newexp->elts + pc + 7, exp->elts + pc + oplen,
4c4b4cd2 3883 EXP_ELEM_TO_BYTES (exp->nelts - pc - oplen));
14f9c5c9
AS
3884
3885 newexp->elts[pc].opcode = newexp->elts[pc + 2].opcode = OP_FUNCALL;
3886 newexp->elts[pc + 1].longconst = (LONGEST) nargs;
3887
3888 newexp->elts[pc + 3].opcode = newexp->elts[pc + 6].opcode = OP_VAR_VALUE;
3889 newexp->elts[pc + 4].block = block;
3890 newexp->elts[pc + 5].symbol = sym;
3891
3892 *expp = newexp;
aacb1f0a 3893 xfree (exp);
d2e4a39e 3894}
14f9c5c9
AS
3895
3896/* Type-class predicates */
3897
4c4b4cd2
PH
3898/* True iff TYPE is numeric (i.e., an INT, RANGE (of numeric type),
3899 or FLOAT). */
14f9c5c9
AS
3900
3901static int
d2e4a39e 3902numeric_type_p (struct type *type)
14f9c5c9
AS
3903{
3904 if (type == NULL)
3905 return 0;
d2e4a39e
AS
3906 else
3907 {
3908 switch (TYPE_CODE (type))
4c4b4cd2
PH
3909 {
3910 case TYPE_CODE_INT:
3911 case TYPE_CODE_FLT:
3912 return 1;
3913 case TYPE_CODE_RANGE:
3914 return (type == TYPE_TARGET_TYPE (type)
3915 || numeric_type_p (TYPE_TARGET_TYPE (type)));
3916 default:
3917 return 0;
3918 }
d2e4a39e 3919 }
14f9c5c9
AS
3920}
3921
4c4b4cd2 3922/* True iff TYPE is integral (an INT or RANGE of INTs). */
14f9c5c9
AS
3923
3924static int
d2e4a39e 3925integer_type_p (struct type *type)
14f9c5c9
AS
3926{
3927 if (type == NULL)
3928 return 0;
d2e4a39e
AS
3929 else
3930 {
3931 switch (TYPE_CODE (type))
4c4b4cd2
PH
3932 {
3933 case TYPE_CODE_INT:
3934 return 1;
3935 case TYPE_CODE_RANGE:
3936 return (type == TYPE_TARGET_TYPE (type)
3937 || integer_type_p (TYPE_TARGET_TYPE (type)));
3938 default:
3939 return 0;
3940 }
d2e4a39e 3941 }
14f9c5c9
AS
3942}
3943
4c4b4cd2 3944/* True iff TYPE is scalar (INT, RANGE, FLOAT, ENUM). */
14f9c5c9
AS
3945
3946static int
d2e4a39e 3947scalar_type_p (struct type *type)
14f9c5c9
AS
3948{
3949 if (type == NULL)
3950 return 0;
d2e4a39e
AS
3951 else
3952 {
3953 switch (TYPE_CODE (type))
4c4b4cd2
PH
3954 {
3955 case TYPE_CODE_INT:
3956 case TYPE_CODE_RANGE:
3957 case TYPE_CODE_ENUM:
3958 case TYPE_CODE_FLT:
3959 return 1;
3960 default:
3961 return 0;
3962 }
d2e4a39e 3963 }
14f9c5c9
AS
3964}
3965
4c4b4cd2 3966/* True iff TYPE is discrete (INT, RANGE, ENUM). */
14f9c5c9
AS
3967
3968static int
d2e4a39e 3969discrete_type_p (struct type *type)
14f9c5c9
AS
3970{
3971 if (type == NULL)
3972 return 0;
d2e4a39e
AS
3973 else
3974 {
3975 switch (TYPE_CODE (type))
4c4b4cd2
PH
3976 {
3977 case TYPE_CODE_INT:
3978 case TYPE_CODE_RANGE:
3979 case TYPE_CODE_ENUM:
872f0337 3980 case TYPE_CODE_BOOL:
4c4b4cd2
PH
3981 return 1;
3982 default:
3983 return 0;
3984 }
d2e4a39e 3985 }
14f9c5c9
AS
3986}
3987
4c4b4cd2
PH
3988/* Returns non-zero if OP with operands in the vector ARGS could be
3989 a user-defined function. Errs on the side of pre-defined operators
3990 (i.e., result 0). */
14f9c5c9
AS
3991
3992static int
d2e4a39e 3993possible_user_operator_p (enum exp_opcode op, struct value *args[])
14f9c5c9 3994{
76a01679 3995 struct type *type0 =
df407dfe 3996 (args[0] == NULL) ? NULL : ada_check_typedef (value_type (args[0]));
d2e4a39e 3997 struct type *type1 =
df407dfe 3998 (args[1] == NULL) ? NULL : ada_check_typedef (value_type (args[1]));
d2e4a39e 3999
4c4b4cd2
PH
4000 if (type0 == NULL)
4001 return 0;
4002
14f9c5c9
AS
4003 switch (op)
4004 {
4005 default:
4006 return 0;
4007
4008 case BINOP_ADD:
4009 case BINOP_SUB:
4010 case BINOP_MUL:
4011 case BINOP_DIV:
d2e4a39e 4012 return (!(numeric_type_p (type0) && numeric_type_p (type1)));
14f9c5c9
AS
4013
4014 case BINOP_REM:
4015 case BINOP_MOD:
4016 case BINOP_BITWISE_AND:
4017 case BINOP_BITWISE_IOR:
4018 case BINOP_BITWISE_XOR:
d2e4a39e 4019 return (!(integer_type_p (type0) && integer_type_p (type1)));
14f9c5c9
AS
4020
4021 case BINOP_EQUAL:
4022 case BINOP_NOTEQUAL:
4023 case BINOP_LESS:
4024 case BINOP_GTR:
4025 case BINOP_LEQ:
4026 case BINOP_GEQ:
d2e4a39e 4027 return (!(scalar_type_p (type0) && scalar_type_p (type1)));
14f9c5c9
AS
4028
4029 case BINOP_CONCAT:
ee90b9ab 4030 return !ada_is_array_type (type0) || !ada_is_array_type (type1);
14f9c5c9
AS
4031
4032 case BINOP_EXP:
d2e4a39e 4033 return (!(numeric_type_p (type0) && integer_type_p (type1)));
14f9c5c9
AS
4034
4035 case UNOP_NEG:
4036 case UNOP_PLUS:
4037 case UNOP_LOGICAL_NOT:
d2e4a39e
AS
4038 case UNOP_ABS:
4039 return (!numeric_type_p (type0));
14f9c5c9
AS
4040
4041 }
4042}
4043\f
4c4b4cd2 4044 /* Renaming */
14f9c5c9 4045
aeb5907d
JB
4046/* NOTES:
4047
4048 1. In the following, we assume that a renaming type's name may
4049 have an ___XD suffix. It would be nice if this went away at some
4050 point.
4051 2. We handle both the (old) purely type-based representation of
4052 renamings and the (new) variable-based encoding. At some point,
4053 it is devoutly to be hoped that the former goes away
4054 (FIXME: hilfinger-2007-07-09).
4055 3. Subprogram renamings are not implemented, although the XRS
4056 suffix is recognized (FIXME: hilfinger-2007-07-09). */
4057
4058/* If SYM encodes a renaming,
4059
4060 <renaming> renames <renamed entity>,
4061
4062 sets *LEN to the length of the renamed entity's name,
4063 *RENAMED_ENTITY to that name (not null-terminated), and *RENAMING_EXPR to
4064 the string describing the subcomponent selected from the renamed
0963b4bd 4065 entity. Returns ADA_NOT_RENAMING if SYM does not encode a renaming
aeb5907d
JB
4066 (in which case, the values of *RENAMED_ENTITY, *LEN, and *RENAMING_EXPR
4067 are undefined). Otherwise, returns a value indicating the category
4068 of entity renamed: an object (ADA_OBJECT_RENAMING), exception
4069 (ADA_EXCEPTION_RENAMING), package (ADA_PACKAGE_RENAMING), or
4070 subprogram (ADA_SUBPROGRAM_RENAMING). Does no allocation; the
4071 strings returned in *RENAMED_ENTITY and *RENAMING_EXPR should not be
4072 deallocated. The values of RENAMED_ENTITY, LEN, or RENAMING_EXPR
4073 may be NULL, in which case they are not assigned.
4074
4075 [Currently, however, GCC does not generate subprogram renamings.] */
4076
4077enum ada_renaming_category
4078ada_parse_renaming (struct symbol *sym,
4079 const char **renamed_entity, int *len,
4080 const char **renaming_expr)
4081{
4082 enum ada_renaming_category kind;
4083 const char *info;
4084 const char *suffix;
4085
4086 if (sym == NULL)
4087 return ADA_NOT_RENAMING;
4088 switch (SYMBOL_CLASS (sym))
14f9c5c9 4089 {
aeb5907d
JB
4090 default:
4091 return ADA_NOT_RENAMING;
4092 case LOC_TYPEDEF:
4093 return parse_old_style_renaming (SYMBOL_TYPE (sym),
4094 renamed_entity, len, renaming_expr);
4095 case LOC_LOCAL:
4096 case LOC_STATIC:
4097 case LOC_COMPUTED:
4098 case LOC_OPTIMIZED_OUT:
4099 info = strstr (SYMBOL_LINKAGE_NAME (sym), "___XR");
4100 if (info == NULL)
4101 return ADA_NOT_RENAMING;
4102 switch (info[5])
4103 {
4104 case '_':
4105 kind = ADA_OBJECT_RENAMING;
4106 info += 6;
4107 break;
4108 case 'E':
4109 kind = ADA_EXCEPTION_RENAMING;
4110 info += 7;
4111 break;
4112 case 'P':
4113 kind = ADA_PACKAGE_RENAMING;
4114 info += 7;
4115 break;
4116 case 'S':
4117 kind = ADA_SUBPROGRAM_RENAMING;
4118 info += 7;
4119 break;
4120 default:
4121 return ADA_NOT_RENAMING;
4122 }
14f9c5c9 4123 }
4c4b4cd2 4124
aeb5907d
JB
4125 if (renamed_entity != NULL)
4126 *renamed_entity = info;
4127 suffix = strstr (info, "___XE");
4128 if (suffix == NULL || suffix == info)
4129 return ADA_NOT_RENAMING;
4130 if (len != NULL)
4131 *len = strlen (info) - strlen (suffix);
4132 suffix += 5;
4133 if (renaming_expr != NULL)
4134 *renaming_expr = suffix;
4135 return kind;
4136}
4137
4138/* Assuming TYPE encodes a renaming according to the old encoding in
4139 exp_dbug.ads, returns details of that renaming in *RENAMED_ENTITY,
4140 *LEN, and *RENAMING_EXPR, as for ada_parse_renaming, above. Returns
4141 ADA_NOT_RENAMING otherwise. */
4142static enum ada_renaming_category
4143parse_old_style_renaming (struct type *type,
4144 const char **renamed_entity, int *len,
4145 const char **renaming_expr)
4146{
4147 enum ada_renaming_category kind;
4148 const char *name;
4149 const char *info;
4150 const char *suffix;
14f9c5c9 4151
aeb5907d
JB
4152 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM
4153 || TYPE_NFIELDS (type) != 1)
4154 return ADA_NOT_RENAMING;
14f9c5c9 4155
aeb5907d
JB
4156 name = type_name_no_tag (type);
4157 if (name == NULL)
4158 return ADA_NOT_RENAMING;
4159
4160 name = strstr (name, "___XR");
4161 if (name == NULL)
4162 return ADA_NOT_RENAMING;
4163 switch (name[5])
4164 {
4165 case '\0':
4166 case '_':
4167 kind = ADA_OBJECT_RENAMING;
4168 break;
4169 case 'E':
4170 kind = ADA_EXCEPTION_RENAMING;
4171 break;
4172 case 'P':
4173 kind = ADA_PACKAGE_RENAMING;
4174 break;
4175 case 'S':
4176 kind = ADA_SUBPROGRAM_RENAMING;
4177 break;
4178 default:
4179 return ADA_NOT_RENAMING;
4180 }
14f9c5c9 4181
aeb5907d
JB
4182 info = TYPE_FIELD_NAME (type, 0);
4183 if (info == NULL)
4184 return ADA_NOT_RENAMING;
4185 if (renamed_entity != NULL)
4186 *renamed_entity = info;
4187 suffix = strstr (info, "___XE");
4188 if (renaming_expr != NULL)
4189 *renaming_expr = suffix + 5;
4190 if (suffix == NULL || suffix == info)
4191 return ADA_NOT_RENAMING;
4192 if (len != NULL)
4193 *len = suffix - info;
4194 return kind;
a5ee536b
JB
4195}
4196
4197/* Compute the value of the given RENAMING_SYM, which is expected to
4198 be a symbol encoding a renaming expression. BLOCK is the block
4199 used to evaluate the renaming. */
52ce6436 4200
a5ee536b
JB
4201static struct value *
4202ada_read_renaming_var_value (struct symbol *renaming_sym,
3977b71f 4203 const struct block *block)
a5ee536b 4204{
bbc13ae3 4205 const char *sym_name;
a5ee536b
JB
4206 struct expression *expr;
4207 struct value *value;
4208 struct cleanup *old_chain = NULL;
4209
bbc13ae3 4210 sym_name = SYMBOL_LINKAGE_NAME (renaming_sym);
1bb9788d 4211 expr = parse_exp_1 (&sym_name, 0, block, 0);
bbc13ae3 4212 old_chain = make_cleanup (free_current_contents, &expr);
a5ee536b
JB
4213 value = evaluate_expression (expr);
4214
4215 do_cleanups (old_chain);
4216 return value;
4217}
14f9c5c9 4218\f
d2e4a39e 4219
4c4b4cd2 4220 /* Evaluation: Function Calls */
14f9c5c9 4221
4c4b4cd2 4222/* Return an lvalue containing the value VAL. This is the identity on
40bc484c
JB
4223 lvalues, and otherwise has the side-effect of allocating memory
4224 in the inferior where a copy of the value contents is copied. */
14f9c5c9 4225
d2e4a39e 4226static struct value *
40bc484c 4227ensure_lval (struct value *val)
14f9c5c9 4228{
40bc484c
JB
4229 if (VALUE_LVAL (val) == not_lval
4230 || VALUE_LVAL (val) == lval_internalvar)
c3e5cd34 4231 {
df407dfe 4232 int len = TYPE_LENGTH (ada_check_typedef (value_type (val)));
40bc484c
JB
4233 const CORE_ADDR addr =
4234 value_as_long (value_allocate_space_in_inferior (len));
c3e5cd34 4235
40bc484c 4236 set_value_address (val, addr);
a84a8a0d 4237 VALUE_LVAL (val) = lval_memory;
40bc484c 4238 write_memory (addr, value_contents (val), len);
c3e5cd34 4239 }
14f9c5c9
AS
4240
4241 return val;
4242}
4243
4244/* Return the value ACTUAL, converted to be an appropriate value for a
4245 formal of type FORMAL_TYPE. Use *SP as a stack pointer for
4246 allocating any necessary descriptors (fat pointers), or copies of
4c4b4cd2 4247 values not residing in memory, updating it as needed. */
14f9c5c9 4248
a93c0eb6 4249struct value *
40bc484c 4250ada_convert_actual (struct value *actual, struct type *formal_type0)
14f9c5c9 4251{
df407dfe 4252 struct type *actual_type = ada_check_typedef (value_type (actual));
61ee279c 4253 struct type *formal_type = ada_check_typedef (formal_type0);
d2e4a39e
AS
4254 struct type *formal_target =
4255 TYPE_CODE (formal_type) == TYPE_CODE_PTR
61ee279c 4256 ? ada_check_typedef (TYPE_TARGET_TYPE (formal_type)) : formal_type;
d2e4a39e
AS
4257 struct type *actual_target =
4258 TYPE_CODE (actual_type) == TYPE_CODE_PTR
61ee279c 4259 ? ada_check_typedef (TYPE_TARGET_TYPE (actual_type)) : actual_type;
14f9c5c9 4260
4c4b4cd2 4261 if (ada_is_array_descriptor_type (formal_target)
14f9c5c9 4262 && TYPE_CODE (actual_target) == TYPE_CODE_ARRAY)
40bc484c 4263 return make_array_descriptor (formal_type, actual);
a84a8a0d
JB
4264 else if (TYPE_CODE (formal_type) == TYPE_CODE_PTR
4265 || TYPE_CODE (formal_type) == TYPE_CODE_REF)
14f9c5c9 4266 {
a84a8a0d 4267 struct value *result;
5b4ee69b 4268
14f9c5c9 4269 if (TYPE_CODE (formal_target) == TYPE_CODE_ARRAY
4c4b4cd2 4270 && ada_is_array_descriptor_type (actual_target))
a84a8a0d 4271 result = desc_data (actual);
14f9c5c9 4272 else if (TYPE_CODE (actual_type) != TYPE_CODE_PTR)
4c4b4cd2
PH
4273 {
4274 if (VALUE_LVAL (actual) != lval_memory)
4275 {
4276 struct value *val;
5b4ee69b 4277
df407dfe 4278 actual_type = ada_check_typedef (value_type (actual));
4c4b4cd2 4279 val = allocate_value (actual_type);
990a07ab 4280 memcpy ((char *) value_contents_raw (val),
0fd88904 4281 (char *) value_contents (actual),
4c4b4cd2 4282 TYPE_LENGTH (actual_type));
40bc484c 4283 actual = ensure_lval (val);
4c4b4cd2 4284 }
a84a8a0d 4285 result = value_addr (actual);
4c4b4cd2 4286 }
a84a8a0d
JB
4287 else
4288 return actual;
b1af9e97 4289 return value_cast_pointers (formal_type, result, 0);
14f9c5c9
AS
4290 }
4291 else if (TYPE_CODE (actual_type) == TYPE_CODE_PTR)
4292 return ada_value_ind (actual);
4293
4294 return actual;
4295}
4296
438c98a1
JB
4297/* Convert VALUE (which must be an address) to a CORE_ADDR that is a pointer of
4298 type TYPE. This is usually an inefficient no-op except on some targets
4299 (such as AVR) where the representation of a pointer and an address
4300 differs. */
4301
4302static CORE_ADDR
4303value_pointer (struct value *value, struct type *type)
4304{
4305 struct gdbarch *gdbarch = get_type_arch (type);
4306 unsigned len = TYPE_LENGTH (type);
4307 gdb_byte *buf = alloca (len);
4308 CORE_ADDR addr;
4309
4310 addr = value_address (value);
4311 gdbarch_address_to_pointer (gdbarch, type, buf, addr);
4312 addr = extract_unsigned_integer (buf, len, gdbarch_byte_order (gdbarch));
4313 return addr;
4314}
4315
14f9c5c9 4316
4c4b4cd2
PH
4317/* Push a descriptor of type TYPE for array value ARR on the stack at
4318 *SP, updating *SP to reflect the new descriptor. Return either
14f9c5c9 4319 an lvalue representing the new descriptor, or (if TYPE is a pointer-
4c4b4cd2
PH
4320 to-descriptor type rather than a descriptor type), a struct value *
4321 representing a pointer to this descriptor. */
14f9c5c9 4322
d2e4a39e 4323static struct value *
40bc484c 4324make_array_descriptor (struct type *type, struct value *arr)
14f9c5c9 4325{
d2e4a39e
AS
4326 struct type *bounds_type = desc_bounds_type (type);
4327 struct type *desc_type = desc_base_type (type);
4328 struct value *descriptor = allocate_value (desc_type);
4329 struct value *bounds = allocate_value (bounds_type);
14f9c5c9 4330 int i;
d2e4a39e 4331
0963b4bd
MS
4332 for (i = ada_array_arity (ada_check_typedef (value_type (arr)));
4333 i > 0; i -= 1)
14f9c5c9 4334 {
19f220c3
JK
4335 modify_field (value_type (bounds), value_contents_writeable (bounds),
4336 ada_array_bound (arr, i, 0),
4337 desc_bound_bitpos (bounds_type, i, 0),
4338 desc_bound_bitsize (bounds_type, i, 0));
4339 modify_field (value_type (bounds), value_contents_writeable (bounds),
4340 ada_array_bound (arr, i, 1),
4341 desc_bound_bitpos (bounds_type, i, 1),
4342 desc_bound_bitsize (bounds_type, i, 1));
14f9c5c9 4343 }
d2e4a39e 4344
40bc484c 4345 bounds = ensure_lval (bounds);
d2e4a39e 4346
19f220c3
JK
4347 modify_field (value_type (descriptor),
4348 value_contents_writeable (descriptor),
4349 value_pointer (ensure_lval (arr),
4350 TYPE_FIELD_TYPE (desc_type, 0)),
4351 fat_pntr_data_bitpos (desc_type),
4352 fat_pntr_data_bitsize (desc_type));
4353
4354 modify_field (value_type (descriptor),
4355 value_contents_writeable (descriptor),
4356 value_pointer (bounds,
4357 TYPE_FIELD_TYPE (desc_type, 1)),
4358 fat_pntr_bounds_bitpos (desc_type),
4359 fat_pntr_bounds_bitsize (desc_type));
14f9c5c9 4360
40bc484c 4361 descriptor = ensure_lval (descriptor);
14f9c5c9
AS
4362
4363 if (TYPE_CODE (type) == TYPE_CODE_PTR)
4364 return value_addr (descriptor);
4365 else
4366 return descriptor;
4367}
14f9c5c9 4368\f
3d9434b5
JB
4369 /* Symbol Cache Module */
4370
3d9434b5 4371/* Performance measurements made as of 2010-01-15 indicate that
ee01b665 4372 this cache does bring some noticeable improvements. Depending
3d9434b5
JB
4373 on the type of entity being printed, the cache can make it as much
4374 as an order of magnitude faster than without it.
4375
4376 The descriptive type DWARF extension has significantly reduced
4377 the need for this cache, at least when DWARF is being used. However,
4378 even in this case, some expensive name-based symbol searches are still
4379 sometimes necessary - to find an XVZ variable, mostly. */
4380
ee01b665 4381/* Initialize the contents of SYM_CACHE. */
3d9434b5 4382
ee01b665
JB
4383static void
4384ada_init_symbol_cache (struct ada_symbol_cache *sym_cache)
4385{
4386 obstack_init (&sym_cache->cache_space);
4387 memset (sym_cache->root, '\000', sizeof (sym_cache->root));
4388}
3d9434b5 4389
ee01b665
JB
4390/* Free the memory used by SYM_CACHE. */
4391
4392static void
4393ada_free_symbol_cache (struct ada_symbol_cache *sym_cache)
3d9434b5 4394{
ee01b665
JB
4395 obstack_free (&sym_cache->cache_space, NULL);
4396 xfree (sym_cache);
4397}
3d9434b5 4398
ee01b665
JB
4399/* Return the symbol cache associated to the given program space PSPACE.
4400 If not allocated for this PSPACE yet, allocate and initialize one. */
3d9434b5 4401
ee01b665
JB
4402static struct ada_symbol_cache *
4403ada_get_symbol_cache (struct program_space *pspace)
4404{
4405 struct ada_pspace_data *pspace_data = get_ada_pspace_data (pspace);
ee01b665 4406
66c168ae 4407 if (pspace_data->sym_cache == NULL)
ee01b665 4408 {
66c168ae
JB
4409 pspace_data->sym_cache = XCNEW (struct ada_symbol_cache);
4410 ada_init_symbol_cache (pspace_data->sym_cache);
ee01b665
JB
4411 }
4412
66c168ae 4413 return pspace_data->sym_cache;
ee01b665 4414}
3d9434b5
JB
4415
4416/* Clear all entries from the symbol cache. */
4417
4418static void
4419ada_clear_symbol_cache (void)
4420{
ee01b665
JB
4421 struct ada_symbol_cache *sym_cache
4422 = ada_get_symbol_cache (current_program_space);
4423
4424 obstack_free (&sym_cache->cache_space, NULL);
4425 ada_init_symbol_cache (sym_cache);
3d9434b5
JB
4426}
4427
fe978cb0 4428/* Search our cache for an entry matching NAME and DOMAIN.
3d9434b5
JB
4429 Return it if found, or NULL otherwise. */
4430
4431static struct cache_entry **
fe978cb0 4432find_entry (const char *name, domain_enum domain)
3d9434b5 4433{
ee01b665
JB
4434 struct ada_symbol_cache *sym_cache
4435 = ada_get_symbol_cache (current_program_space);
3d9434b5
JB
4436 int h = msymbol_hash (name) % HASH_SIZE;
4437 struct cache_entry **e;
4438
ee01b665 4439 for (e = &sym_cache->root[h]; *e != NULL; e = &(*e)->next)
3d9434b5 4440 {
fe978cb0 4441 if (domain == (*e)->domain && strcmp (name, (*e)->name) == 0)
3d9434b5
JB
4442 return e;
4443 }
4444 return NULL;
4445}
4446
fe978cb0 4447/* Search the symbol cache for an entry matching NAME and DOMAIN.
3d9434b5
JB
4448 Return 1 if found, 0 otherwise.
4449
4450 If an entry was found and SYM is not NULL, set *SYM to the entry's
4451 SYM. Same principle for BLOCK if not NULL. */
96d887e8 4452
96d887e8 4453static int
fe978cb0 4454lookup_cached_symbol (const char *name, domain_enum domain,
f0c5f9b2 4455 struct symbol **sym, const struct block **block)
96d887e8 4456{
fe978cb0 4457 struct cache_entry **e = find_entry (name, domain);
3d9434b5
JB
4458
4459 if (e == NULL)
4460 return 0;
4461 if (sym != NULL)
4462 *sym = (*e)->sym;
4463 if (block != NULL)
4464 *block = (*e)->block;
4465 return 1;
96d887e8
PH
4466}
4467
3d9434b5 4468/* Assuming that (SYM, BLOCK) is the result of the lookup of NAME
fe978cb0 4469 in domain DOMAIN, save this result in our symbol cache. */
3d9434b5 4470
96d887e8 4471static void
fe978cb0 4472cache_symbol (const char *name, domain_enum domain, struct symbol *sym,
270140bd 4473 const struct block *block)
96d887e8 4474{
ee01b665
JB
4475 struct ada_symbol_cache *sym_cache
4476 = ada_get_symbol_cache (current_program_space);
3d9434b5
JB
4477 int h;
4478 char *copy;
4479 struct cache_entry *e;
4480
1994afbf
DE
4481 /* Symbols for builtin types don't have a block.
4482 For now don't cache such symbols. */
4483 if (sym != NULL && !SYMBOL_OBJFILE_OWNED (sym))
4484 return;
4485
3d9434b5
JB
4486 /* If the symbol is a local symbol, then do not cache it, as a search
4487 for that symbol depends on the context. To determine whether
4488 the symbol is local or not, we check the block where we found it
4489 against the global and static blocks of its associated symtab. */
4490 if (sym
08be3fe3 4491 && BLOCKVECTOR_BLOCK (SYMTAB_BLOCKVECTOR (symbol_symtab (sym)),
439247b6 4492 GLOBAL_BLOCK) != block
08be3fe3 4493 && BLOCKVECTOR_BLOCK (SYMTAB_BLOCKVECTOR (symbol_symtab (sym)),
439247b6 4494 STATIC_BLOCK) != block)
3d9434b5
JB
4495 return;
4496
4497 h = msymbol_hash (name) % HASH_SIZE;
ee01b665
JB
4498 e = (struct cache_entry *) obstack_alloc (&sym_cache->cache_space,
4499 sizeof (*e));
4500 e->next = sym_cache->root[h];
4501 sym_cache->root[h] = e;
4502 e->name = copy = obstack_alloc (&sym_cache->cache_space, strlen (name) + 1);
3d9434b5
JB
4503 strcpy (copy, name);
4504 e->sym = sym;
fe978cb0 4505 e->domain = domain;
3d9434b5 4506 e->block = block;
96d887e8 4507}
4c4b4cd2
PH
4508\f
4509 /* Symbol Lookup */
4510
c0431670
JB
4511/* Return nonzero if wild matching should be used when searching for
4512 all symbols matching LOOKUP_NAME.
4513
4514 LOOKUP_NAME is expected to be a symbol name after transformation
4515 for Ada lookups (see ada_name_for_lookup). */
4516
4517static int
4518should_use_wild_match (const char *lookup_name)
4519{
4520 return (strstr (lookup_name, "__") == NULL);
4521}
4522
4c4b4cd2
PH
4523/* Return the result of a standard (literal, C-like) lookup of NAME in
4524 given DOMAIN, visible from lexical block BLOCK. */
4525
4526static struct symbol *
4527standard_lookup (const char *name, const struct block *block,
4528 domain_enum domain)
4529{
acbd605d
MGD
4530 /* Initialize it just to avoid a GCC false warning. */
4531 struct symbol *sym = NULL;
4c4b4cd2 4532
2570f2b7 4533 if (lookup_cached_symbol (name, domain, &sym, NULL))
4c4b4cd2 4534 return sym;
2570f2b7
UW
4535 sym = lookup_symbol_in_language (name, block, domain, language_c, 0);
4536 cache_symbol (name, domain, sym, block_found);
4c4b4cd2
PH
4537 return sym;
4538}
4539
4540
4541/* Non-zero iff there is at least one non-function/non-enumeral symbol
4542 in the symbol fields of SYMS[0..N-1]. We treat enumerals as functions,
4543 since they contend in overloading in the same way. */
4544static int
4545is_nonfunction (struct ada_symbol_info syms[], int n)
4546{
4547 int i;
4548
4549 for (i = 0; i < n; i += 1)
4550 if (TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) != TYPE_CODE_FUNC
4551 && (TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) != TYPE_CODE_ENUM
4552 || SYMBOL_CLASS (syms[i].sym) != LOC_CONST))
14f9c5c9
AS
4553 return 1;
4554
4555 return 0;
4556}
4557
4558/* If true (non-zero), then TYPE0 and TYPE1 represent equivalent
4c4b4cd2 4559 struct types. Otherwise, they may not. */
14f9c5c9
AS
4560
4561static int
d2e4a39e 4562equiv_types (struct type *type0, struct type *type1)
14f9c5c9 4563{
d2e4a39e 4564 if (type0 == type1)
14f9c5c9 4565 return 1;
d2e4a39e 4566 if (type0 == NULL || type1 == NULL
14f9c5c9
AS
4567 || TYPE_CODE (type0) != TYPE_CODE (type1))
4568 return 0;
d2e4a39e 4569 if ((TYPE_CODE (type0) == TYPE_CODE_STRUCT
14f9c5c9
AS
4570 || TYPE_CODE (type0) == TYPE_CODE_ENUM)
4571 && ada_type_name (type0) != NULL && ada_type_name (type1) != NULL
4c4b4cd2 4572 && strcmp (ada_type_name (type0), ada_type_name (type1)) == 0)
14f9c5c9 4573 return 1;
d2e4a39e 4574
14f9c5c9
AS
4575 return 0;
4576}
4577
4578/* True iff SYM0 represents the same entity as SYM1, or one that is
4c4b4cd2 4579 no more defined than that of SYM1. */
14f9c5c9
AS
4580
4581static int
d2e4a39e 4582lesseq_defined_than (struct symbol *sym0, struct symbol *sym1)
14f9c5c9
AS
4583{
4584 if (sym0 == sym1)
4585 return 1;
176620f1 4586 if (SYMBOL_DOMAIN (sym0) != SYMBOL_DOMAIN (sym1)
14f9c5c9
AS
4587 || SYMBOL_CLASS (sym0) != SYMBOL_CLASS (sym1))
4588 return 0;
4589
d2e4a39e 4590 switch (SYMBOL_CLASS (sym0))
14f9c5c9
AS
4591 {
4592 case LOC_UNDEF:
4593 return 1;
4594 case LOC_TYPEDEF:
4595 {
4c4b4cd2
PH
4596 struct type *type0 = SYMBOL_TYPE (sym0);
4597 struct type *type1 = SYMBOL_TYPE (sym1);
0d5cff50
DE
4598 const char *name0 = SYMBOL_LINKAGE_NAME (sym0);
4599 const char *name1 = SYMBOL_LINKAGE_NAME (sym1);
4c4b4cd2 4600 int len0 = strlen (name0);
5b4ee69b 4601
4c4b4cd2
PH
4602 return
4603 TYPE_CODE (type0) == TYPE_CODE (type1)
4604 && (equiv_types (type0, type1)
4605 || (len0 < strlen (name1) && strncmp (name0, name1, len0) == 0
61012eef 4606 && startswith (name1 + len0, "___XV")));
14f9c5c9
AS
4607 }
4608 case LOC_CONST:
4609 return SYMBOL_VALUE (sym0) == SYMBOL_VALUE (sym1)
4c4b4cd2 4610 && equiv_types (SYMBOL_TYPE (sym0), SYMBOL_TYPE (sym1));
d2e4a39e
AS
4611 default:
4612 return 0;
14f9c5c9
AS
4613 }
4614}
4615
4c4b4cd2
PH
4616/* Append (SYM,BLOCK,SYMTAB) to the end of the array of struct ada_symbol_info
4617 records in OBSTACKP. Do nothing if SYM is a duplicate. */
14f9c5c9
AS
4618
4619static void
76a01679
JB
4620add_defn_to_vec (struct obstack *obstackp,
4621 struct symbol *sym,
f0c5f9b2 4622 const struct block *block)
14f9c5c9
AS
4623{
4624 int i;
4c4b4cd2 4625 struct ada_symbol_info *prevDefns = defns_collected (obstackp, 0);
14f9c5c9 4626
529cad9c
PH
4627 /* Do not try to complete stub types, as the debugger is probably
4628 already scanning all symbols matching a certain name at the
4629 time when this function is called. Trying to replace the stub
4630 type by its associated full type will cause us to restart a scan
4631 which may lead to an infinite recursion. Instead, the client
4632 collecting the matching symbols will end up collecting several
4633 matches, with at least one of them complete. It can then filter
4634 out the stub ones if needed. */
4635
4c4b4cd2
PH
4636 for (i = num_defns_collected (obstackp) - 1; i >= 0; i -= 1)
4637 {
4638 if (lesseq_defined_than (sym, prevDefns[i].sym))
4639 return;
4640 else if (lesseq_defined_than (prevDefns[i].sym, sym))
4641 {
4642 prevDefns[i].sym = sym;
4643 prevDefns[i].block = block;
4c4b4cd2 4644 return;
76a01679 4645 }
4c4b4cd2
PH
4646 }
4647
4648 {
4649 struct ada_symbol_info info;
4650
4651 info.sym = sym;
4652 info.block = block;
4c4b4cd2
PH
4653 obstack_grow (obstackp, &info, sizeof (struct ada_symbol_info));
4654 }
4655}
4656
4657/* Number of ada_symbol_info structures currently collected in
4658 current vector in *OBSTACKP. */
4659
76a01679
JB
4660static int
4661num_defns_collected (struct obstack *obstackp)
4c4b4cd2
PH
4662{
4663 return obstack_object_size (obstackp) / sizeof (struct ada_symbol_info);
4664}
4665
4666/* Vector of ada_symbol_info structures currently collected in current
4667 vector in *OBSTACKP. If FINISH, close off the vector and return
4668 its final address. */
4669
76a01679 4670static struct ada_symbol_info *
4c4b4cd2
PH
4671defns_collected (struct obstack *obstackp, int finish)
4672{
4673 if (finish)
4674 return obstack_finish (obstackp);
4675 else
4676 return (struct ada_symbol_info *) obstack_base (obstackp);
4677}
4678
7c7b6655
TT
4679/* Return a bound minimal symbol matching NAME according to Ada
4680 decoding rules. Returns an invalid symbol if there is no such
4681 minimal symbol. Names prefixed with "standard__" are handled
4682 specially: "standard__" is first stripped off, and only static and
4683 global symbols are searched. */
4c4b4cd2 4684
7c7b6655 4685struct bound_minimal_symbol
96d887e8 4686ada_lookup_simple_minsym (const char *name)
4c4b4cd2 4687{
7c7b6655 4688 struct bound_minimal_symbol result;
4c4b4cd2 4689 struct objfile *objfile;
96d887e8 4690 struct minimal_symbol *msymbol;
dc4024cd 4691 const int wild_match_p = should_use_wild_match (name);
4c4b4cd2 4692
7c7b6655
TT
4693 memset (&result, 0, sizeof (result));
4694
c0431670
JB
4695 /* Special case: If the user specifies a symbol name inside package
4696 Standard, do a non-wild matching of the symbol name without
4697 the "standard__" prefix. This was primarily introduced in order
4698 to allow the user to specifically access the standard exceptions
4699 using, for instance, Standard.Constraint_Error when Constraint_Error
4700 is ambiguous (due to the user defining its own Constraint_Error
4701 entity inside its program). */
61012eef 4702 if (startswith (name, "standard__"))
c0431670 4703 name += sizeof ("standard__") - 1;
4c4b4cd2 4704
96d887e8
PH
4705 ALL_MSYMBOLS (objfile, msymbol)
4706 {
efd66ac6 4707 if (match_name (MSYMBOL_LINKAGE_NAME (msymbol), name, wild_match_p)
96d887e8 4708 && MSYMBOL_TYPE (msymbol) != mst_solib_trampoline)
7c7b6655
TT
4709 {
4710 result.minsym = msymbol;
4711 result.objfile = objfile;
4712 break;
4713 }
96d887e8 4714 }
4c4b4cd2 4715
7c7b6655 4716 return result;
96d887e8 4717}
4c4b4cd2 4718
96d887e8
PH
4719/* For all subprograms that statically enclose the subprogram of the
4720 selected frame, add symbols matching identifier NAME in DOMAIN
4721 and their blocks to the list of data in OBSTACKP, as for
48b78332
JB
4722 ada_add_block_symbols (q.v.). If WILD_MATCH_P, treat as NAME
4723 with a wildcard prefix. */
4c4b4cd2 4724
96d887e8
PH
4725static void
4726add_symbols_from_enclosing_procs (struct obstack *obstackp,
fe978cb0 4727 const char *name, domain_enum domain,
48b78332 4728 int wild_match_p)
96d887e8 4729{
96d887e8 4730}
14f9c5c9 4731
96d887e8
PH
4732/* True if TYPE is definitely an artificial type supplied to a symbol
4733 for which no debugging information was given in the symbol file. */
14f9c5c9 4734
96d887e8
PH
4735static int
4736is_nondebugging_type (struct type *type)
4737{
0d5cff50 4738 const char *name = ada_type_name (type);
5b4ee69b 4739
96d887e8
PH
4740 return (name != NULL && strcmp (name, "<variable, no debug info>") == 0);
4741}
4c4b4cd2 4742
8f17729f
JB
4743/* Return nonzero if TYPE1 and TYPE2 are two enumeration types
4744 that are deemed "identical" for practical purposes.
4745
4746 This function assumes that TYPE1 and TYPE2 are both TYPE_CODE_ENUM
4747 types and that their number of enumerals is identical (in other
4748 words, TYPE_NFIELDS (type1) == TYPE_NFIELDS (type2)). */
4749
4750static int
4751ada_identical_enum_types_p (struct type *type1, struct type *type2)
4752{
4753 int i;
4754
4755 /* The heuristic we use here is fairly conservative. We consider
4756 that 2 enumerate types are identical if they have the same
4757 number of enumerals and that all enumerals have the same
4758 underlying value and name. */
4759
4760 /* All enums in the type should have an identical underlying value. */
4761 for (i = 0; i < TYPE_NFIELDS (type1); i++)
14e75d8e 4762 if (TYPE_FIELD_ENUMVAL (type1, i) != TYPE_FIELD_ENUMVAL (type2, i))
8f17729f
JB
4763 return 0;
4764
4765 /* All enumerals should also have the same name (modulo any numerical
4766 suffix). */
4767 for (i = 0; i < TYPE_NFIELDS (type1); i++)
4768 {
0d5cff50
DE
4769 const char *name_1 = TYPE_FIELD_NAME (type1, i);
4770 const char *name_2 = TYPE_FIELD_NAME (type2, i);
8f17729f
JB
4771 int len_1 = strlen (name_1);
4772 int len_2 = strlen (name_2);
4773
4774 ada_remove_trailing_digits (TYPE_FIELD_NAME (type1, i), &len_1);
4775 ada_remove_trailing_digits (TYPE_FIELD_NAME (type2, i), &len_2);
4776 if (len_1 != len_2
4777 || strncmp (TYPE_FIELD_NAME (type1, i),
4778 TYPE_FIELD_NAME (type2, i),
4779 len_1) != 0)
4780 return 0;
4781 }
4782
4783 return 1;
4784}
4785
4786/* Return nonzero if all the symbols in SYMS are all enumeral symbols
4787 that are deemed "identical" for practical purposes. Sometimes,
4788 enumerals are not strictly identical, but their types are so similar
4789 that they can be considered identical.
4790
4791 For instance, consider the following code:
4792
4793 type Color is (Black, Red, Green, Blue, White);
4794 type RGB_Color is new Color range Red .. Blue;
4795
4796 Type RGB_Color is a subrange of an implicit type which is a copy
4797 of type Color. If we call that implicit type RGB_ColorB ("B" is
4798 for "Base Type"), then type RGB_ColorB is a copy of type Color.
4799 As a result, when an expression references any of the enumeral
4800 by name (Eg. "print green"), the expression is technically
4801 ambiguous and the user should be asked to disambiguate. But
4802 doing so would only hinder the user, since it wouldn't matter
4803 what choice he makes, the outcome would always be the same.
4804 So, for practical purposes, we consider them as the same. */
4805
4806static int
4807symbols_are_identical_enums (struct ada_symbol_info *syms, int nsyms)
4808{
4809 int i;
4810
4811 /* Before performing a thorough comparison check of each type,
4812 we perform a series of inexpensive checks. We expect that these
4813 checks will quickly fail in the vast majority of cases, and thus
4814 help prevent the unnecessary use of a more expensive comparison.
4815 Said comparison also expects us to make some of these checks
4816 (see ada_identical_enum_types_p). */
4817
4818 /* Quick check: All symbols should have an enum type. */
4819 for (i = 0; i < nsyms; i++)
4820 if (TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) != TYPE_CODE_ENUM)
4821 return 0;
4822
4823 /* Quick check: They should all have the same value. */
4824 for (i = 1; i < nsyms; i++)
4825 if (SYMBOL_VALUE (syms[i].sym) != SYMBOL_VALUE (syms[0].sym))
4826 return 0;
4827
4828 /* Quick check: They should all have the same number of enumerals. */
4829 for (i = 1; i < nsyms; i++)
4830 if (TYPE_NFIELDS (SYMBOL_TYPE (syms[i].sym))
4831 != TYPE_NFIELDS (SYMBOL_TYPE (syms[0].sym)))
4832 return 0;
4833
4834 /* All the sanity checks passed, so we might have a set of
4835 identical enumeration types. Perform a more complete
4836 comparison of the type of each symbol. */
4837 for (i = 1; i < nsyms; i++)
4838 if (!ada_identical_enum_types_p (SYMBOL_TYPE (syms[i].sym),
4839 SYMBOL_TYPE (syms[0].sym)))
4840 return 0;
4841
4842 return 1;
4843}
4844
96d887e8
PH
4845/* Remove any non-debugging symbols in SYMS[0 .. NSYMS-1] that definitely
4846 duplicate other symbols in the list (The only case I know of where
4847 this happens is when object files containing stabs-in-ecoff are
4848 linked with files containing ordinary ecoff debugging symbols (or no
4849 debugging symbols)). Modifies SYMS to squeeze out deleted entries.
4850 Returns the number of items in the modified list. */
4c4b4cd2 4851
96d887e8
PH
4852static int
4853remove_extra_symbols (struct ada_symbol_info *syms, int nsyms)
4854{
4855 int i, j;
4c4b4cd2 4856
8f17729f
JB
4857 /* We should never be called with less than 2 symbols, as there
4858 cannot be any extra symbol in that case. But it's easy to
4859 handle, since we have nothing to do in that case. */
4860 if (nsyms < 2)
4861 return nsyms;
4862
96d887e8
PH
4863 i = 0;
4864 while (i < nsyms)
4865 {
a35ddb44 4866 int remove_p = 0;
339c13b6
JB
4867
4868 /* If two symbols have the same name and one of them is a stub type,
4869 the get rid of the stub. */
4870
4871 if (TYPE_STUB (SYMBOL_TYPE (syms[i].sym))
4872 && SYMBOL_LINKAGE_NAME (syms[i].sym) != NULL)
4873 {
4874 for (j = 0; j < nsyms; j++)
4875 {
4876 if (j != i
4877 && !TYPE_STUB (SYMBOL_TYPE (syms[j].sym))
4878 && SYMBOL_LINKAGE_NAME (syms[j].sym) != NULL
4879 && strcmp (SYMBOL_LINKAGE_NAME (syms[i].sym),
4880 SYMBOL_LINKAGE_NAME (syms[j].sym)) == 0)
a35ddb44 4881 remove_p = 1;
339c13b6
JB
4882 }
4883 }
4884
4885 /* Two symbols with the same name, same class and same address
4886 should be identical. */
4887
4888 else if (SYMBOL_LINKAGE_NAME (syms[i].sym) != NULL
96d887e8
PH
4889 && SYMBOL_CLASS (syms[i].sym) == LOC_STATIC
4890 && is_nondebugging_type (SYMBOL_TYPE (syms[i].sym)))
4891 {
4892 for (j = 0; j < nsyms; j += 1)
4893 {
4894 if (i != j
4895 && SYMBOL_LINKAGE_NAME (syms[j].sym) != NULL
4896 && strcmp (SYMBOL_LINKAGE_NAME (syms[i].sym),
76a01679 4897 SYMBOL_LINKAGE_NAME (syms[j].sym)) == 0
96d887e8
PH
4898 && SYMBOL_CLASS (syms[i].sym) == SYMBOL_CLASS (syms[j].sym)
4899 && SYMBOL_VALUE_ADDRESS (syms[i].sym)
4900 == SYMBOL_VALUE_ADDRESS (syms[j].sym))
a35ddb44 4901 remove_p = 1;
4c4b4cd2 4902 }
4c4b4cd2 4903 }
339c13b6 4904
a35ddb44 4905 if (remove_p)
339c13b6
JB
4906 {
4907 for (j = i + 1; j < nsyms; j += 1)
4908 syms[j - 1] = syms[j];
4909 nsyms -= 1;
4910 }
4911
96d887e8 4912 i += 1;
14f9c5c9 4913 }
8f17729f
JB
4914
4915 /* If all the remaining symbols are identical enumerals, then
4916 just keep the first one and discard the rest.
4917
4918 Unlike what we did previously, we do not discard any entry
4919 unless they are ALL identical. This is because the symbol
4920 comparison is not a strict comparison, but rather a practical
4921 comparison. If all symbols are considered identical, then
4922 we can just go ahead and use the first one and discard the rest.
4923 But if we cannot reduce the list to a single element, we have
4924 to ask the user to disambiguate anyways. And if we have to
4925 present a multiple-choice menu, it's less confusing if the list
4926 isn't missing some choices that were identical and yet distinct. */
4927 if (symbols_are_identical_enums (syms, nsyms))
4928 nsyms = 1;
4929
96d887e8 4930 return nsyms;
14f9c5c9
AS
4931}
4932
96d887e8
PH
4933/* Given a type that corresponds to a renaming entity, use the type name
4934 to extract the scope (package name or function name, fully qualified,
4935 and following the GNAT encoding convention) where this renaming has been
4936 defined. The string returned needs to be deallocated after use. */
4c4b4cd2 4937
96d887e8
PH
4938static char *
4939xget_renaming_scope (struct type *renaming_type)
14f9c5c9 4940{
96d887e8 4941 /* The renaming types adhere to the following convention:
0963b4bd 4942 <scope>__<rename>___<XR extension>.
96d887e8
PH
4943 So, to extract the scope, we search for the "___XR" extension,
4944 and then backtrack until we find the first "__". */
76a01679 4945
96d887e8
PH
4946 const char *name = type_name_no_tag (renaming_type);
4947 char *suffix = strstr (name, "___XR");
4948 char *last;
4949 int scope_len;
4950 char *scope;
14f9c5c9 4951
96d887e8
PH
4952 /* Now, backtrack a bit until we find the first "__". Start looking
4953 at suffix - 3, as the <rename> part is at least one character long. */
14f9c5c9 4954
96d887e8
PH
4955 for (last = suffix - 3; last > name; last--)
4956 if (last[0] == '_' && last[1] == '_')
4957 break;
76a01679 4958
96d887e8 4959 /* Make a copy of scope and return it. */
14f9c5c9 4960
96d887e8
PH
4961 scope_len = last - name;
4962 scope = (char *) xmalloc ((scope_len + 1) * sizeof (char));
14f9c5c9 4963
96d887e8
PH
4964 strncpy (scope, name, scope_len);
4965 scope[scope_len] = '\0';
4c4b4cd2 4966
96d887e8 4967 return scope;
4c4b4cd2
PH
4968}
4969
96d887e8 4970/* Return nonzero if NAME corresponds to a package name. */
4c4b4cd2 4971
96d887e8
PH
4972static int
4973is_package_name (const char *name)
4c4b4cd2 4974{
96d887e8
PH
4975 /* Here, We take advantage of the fact that no symbols are generated
4976 for packages, while symbols are generated for each function.
4977 So the condition for NAME represent a package becomes equivalent
4978 to NAME not existing in our list of symbols. There is only one
4979 small complication with library-level functions (see below). */
4c4b4cd2 4980
96d887e8 4981 char *fun_name;
76a01679 4982
96d887e8
PH
4983 /* If it is a function that has not been defined at library level,
4984 then we should be able to look it up in the symbols. */
4985 if (standard_lookup (name, NULL, VAR_DOMAIN) != NULL)
4986 return 0;
14f9c5c9 4987
96d887e8
PH
4988 /* Library-level function names start with "_ada_". See if function
4989 "_ada_" followed by NAME can be found. */
14f9c5c9 4990
96d887e8 4991 /* Do a quick check that NAME does not contain "__", since library-level
e1d5a0d2 4992 functions names cannot contain "__" in them. */
96d887e8
PH
4993 if (strstr (name, "__") != NULL)
4994 return 0;
4c4b4cd2 4995
b435e160 4996 fun_name = xstrprintf ("_ada_%s", name);
14f9c5c9 4997
96d887e8
PH
4998 return (standard_lookup (fun_name, NULL, VAR_DOMAIN) == NULL);
4999}
14f9c5c9 5000
96d887e8 5001/* Return nonzero if SYM corresponds to a renaming entity that is
aeb5907d 5002 not visible from FUNCTION_NAME. */
14f9c5c9 5003
96d887e8 5004static int
0d5cff50 5005old_renaming_is_invisible (const struct symbol *sym, const char *function_name)
96d887e8 5006{
aeb5907d 5007 char *scope;
1509e573 5008 struct cleanup *old_chain;
aeb5907d
JB
5009
5010 if (SYMBOL_CLASS (sym) != LOC_TYPEDEF)
5011 return 0;
5012
5013 scope = xget_renaming_scope (SYMBOL_TYPE (sym));
1509e573 5014 old_chain = make_cleanup (xfree, scope);
14f9c5c9 5015
96d887e8
PH
5016 /* If the rename has been defined in a package, then it is visible. */
5017 if (is_package_name (scope))
1509e573
JB
5018 {
5019 do_cleanups (old_chain);
5020 return 0;
5021 }
14f9c5c9 5022
96d887e8
PH
5023 /* Check that the rename is in the current function scope by checking
5024 that its name starts with SCOPE. */
76a01679 5025
96d887e8
PH
5026 /* If the function name starts with "_ada_", it means that it is
5027 a library-level function. Strip this prefix before doing the
5028 comparison, as the encoding for the renaming does not contain
5029 this prefix. */
61012eef 5030 if (startswith (function_name, "_ada_"))
96d887e8 5031 function_name += 5;
f26caa11 5032
1509e573 5033 {
61012eef 5034 int is_invisible = !startswith (function_name, scope);
1509e573
JB
5035
5036 do_cleanups (old_chain);
5037 return is_invisible;
5038 }
f26caa11
PH
5039}
5040
aeb5907d
JB
5041/* Remove entries from SYMS that corresponds to a renaming entity that
5042 is not visible from the function associated with CURRENT_BLOCK or
5043 that is superfluous due to the presence of more specific renaming
5044 information. Places surviving symbols in the initial entries of
5045 SYMS and returns the number of surviving symbols.
96d887e8
PH
5046
5047 Rationale:
aeb5907d
JB
5048 First, in cases where an object renaming is implemented as a
5049 reference variable, GNAT may produce both the actual reference
5050 variable and the renaming encoding. In this case, we discard the
5051 latter.
5052
5053 Second, GNAT emits a type following a specified encoding for each renaming
96d887e8
PH
5054 entity. Unfortunately, STABS currently does not support the definition
5055 of types that are local to a given lexical block, so all renamings types
5056 are emitted at library level. As a consequence, if an application
5057 contains two renaming entities using the same name, and a user tries to
5058 print the value of one of these entities, the result of the ada symbol
5059 lookup will also contain the wrong renaming type.
f26caa11 5060
96d887e8
PH
5061 This function partially covers for this limitation by attempting to
5062 remove from the SYMS list renaming symbols that should be visible
5063 from CURRENT_BLOCK. However, there does not seem be a 100% reliable
5064 method with the current information available. The implementation
5065 below has a couple of limitations (FIXME: brobecker-2003-05-12):
5066
5067 - When the user tries to print a rename in a function while there
5068 is another rename entity defined in a package: Normally, the
5069 rename in the function has precedence over the rename in the
5070 package, so the latter should be removed from the list. This is
5071 currently not the case.
5072
5073 - This function will incorrectly remove valid renames if
5074 the CURRENT_BLOCK corresponds to a function which symbol name
5075 has been changed by an "Export" pragma. As a consequence,
5076 the user will be unable to print such rename entities. */
4c4b4cd2 5077
14f9c5c9 5078static int
aeb5907d
JB
5079remove_irrelevant_renamings (struct ada_symbol_info *syms,
5080 int nsyms, const struct block *current_block)
4c4b4cd2
PH
5081{
5082 struct symbol *current_function;
0d5cff50 5083 const char *current_function_name;
4c4b4cd2 5084 int i;
aeb5907d
JB
5085 int is_new_style_renaming;
5086
5087 /* If there is both a renaming foo___XR... encoded as a variable and
5088 a simple variable foo in the same block, discard the latter.
0963b4bd 5089 First, zero out such symbols, then compress. */
aeb5907d
JB
5090 is_new_style_renaming = 0;
5091 for (i = 0; i < nsyms; i += 1)
5092 {
5093 struct symbol *sym = syms[i].sym;
270140bd 5094 const struct block *block = syms[i].block;
aeb5907d
JB
5095 const char *name;
5096 const char *suffix;
5097
5098 if (sym == NULL || SYMBOL_CLASS (sym) == LOC_TYPEDEF)
5099 continue;
5100 name = SYMBOL_LINKAGE_NAME (sym);
5101 suffix = strstr (name, "___XR");
5102
5103 if (suffix != NULL)
5104 {
5105 int name_len = suffix - name;
5106 int j;
5b4ee69b 5107
aeb5907d
JB
5108 is_new_style_renaming = 1;
5109 for (j = 0; j < nsyms; j += 1)
5110 if (i != j && syms[j].sym != NULL
5111 && strncmp (name, SYMBOL_LINKAGE_NAME (syms[j].sym),
5112 name_len) == 0
5113 && block == syms[j].block)
5114 syms[j].sym = NULL;
5115 }
5116 }
5117 if (is_new_style_renaming)
5118 {
5119 int j, k;
5120
5121 for (j = k = 0; j < nsyms; j += 1)
5122 if (syms[j].sym != NULL)
5123 {
5124 syms[k] = syms[j];
5125 k += 1;
5126 }
5127 return k;
5128 }
4c4b4cd2
PH
5129
5130 /* Extract the function name associated to CURRENT_BLOCK.
5131 Abort if unable to do so. */
76a01679 5132
4c4b4cd2
PH
5133 if (current_block == NULL)
5134 return nsyms;
76a01679 5135
7f0df278 5136 current_function = block_linkage_function (current_block);
4c4b4cd2
PH
5137 if (current_function == NULL)
5138 return nsyms;
5139
5140 current_function_name = SYMBOL_LINKAGE_NAME (current_function);
5141 if (current_function_name == NULL)
5142 return nsyms;
5143
5144 /* Check each of the symbols, and remove it from the list if it is
5145 a type corresponding to a renaming that is out of the scope of
5146 the current block. */
5147
5148 i = 0;
5149 while (i < nsyms)
5150 {
aeb5907d
JB
5151 if (ada_parse_renaming (syms[i].sym, NULL, NULL, NULL)
5152 == ADA_OBJECT_RENAMING
5153 && old_renaming_is_invisible (syms[i].sym, current_function_name))
4c4b4cd2
PH
5154 {
5155 int j;
5b4ee69b 5156
aeb5907d 5157 for (j = i + 1; j < nsyms; j += 1)
76a01679 5158 syms[j - 1] = syms[j];
4c4b4cd2
PH
5159 nsyms -= 1;
5160 }
5161 else
5162 i += 1;
5163 }
5164
5165 return nsyms;
5166}
5167
339c13b6
JB
5168/* Add to OBSTACKP all symbols from BLOCK (and its super-blocks)
5169 whose name and domain match NAME and DOMAIN respectively.
5170 If no match was found, then extend the search to "enclosing"
5171 routines (in other words, if we're inside a nested function,
5172 search the symbols defined inside the enclosing functions).
d0a8ab18
JB
5173 If WILD_MATCH_P is nonzero, perform the naming matching in
5174 "wild" mode (see function "wild_match" for more info).
339c13b6
JB
5175
5176 Note: This function assumes that OBSTACKP has 0 (zero) element in it. */
5177
5178static void
5179ada_add_local_symbols (struct obstack *obstackp, const char *name,
f0c5f9b2 5180 const struct block *block, domain_enum domain,
d0a8ab18 5181 int wild_match_p)
339c13b6
JB
5182{
5183 int block_depth = 0;
5184
5185 while (block != NULL)
5186 {
5187 block_depth += 1;
d0a8ab18
JB
5188 ada_add_block_symbols (obstackp, block, name, domain, NULL,
5189 wild_match_p);
339c13b6
JB
5190
5191 /* If we found a non-function match, assume that's the one. */
5192 if (is_nonfunction (defns_collected (obstackp, 0),
5193 num_defns_collected (obstackp)))
5194 return;
5195
5196 block = BLOCK_SUPERBLOCK (block);
5197 }
5198
5199 /* If no luck so far, try to find NAME as a local symbol in some lexically
5200 enclosing subprogram. */
5201 if (num_defns_collected (obstackp) == 0 && block_depth > 2)
d0a8ab18 5202 add_symbols_from_enclosing_procs (obstackp, name, domain, wild_match_p);
339c13b6
JB
5203}
5204
ccefe4c4 5205/* An object of this type is used as the user_data argument when
40658b94 5206 calling the map_matching_symbols method. */
ccefe4c4 5207
40658b94 5208struct match_data
ccefe4c4 5209{
40658b94 5210 struct objfile *objfile;
ccefe4c4 5211 struct obstack *obstackp;
40658b94
PH
5212 struct symbol *arg_sym;
5213 int found_sym;
ccefe4c4
TT
5214};
5215
40658b94
PH
5216/* A callback for add_matching_symbols that adds SYM, found in BLOCK,
5217 to a list of symbols. DATA0 is a pointer to a struct match_data *
5218 containing the obstack that collects the symbol list, the file that SYM
5219 must come from, a flag indicating whether a non-argument symbol has
5220 been found in the current block, and the last argument symbol
5221 passed in SYM within the current block (if any). When SYM is null,
5222 marking the end of a block, the argument symbol is added if no
5223 other has been found. */
ccefe4c4 5224
40658b94
PH
5225static int
5226aux_add_nonlocal_symbols (struct block *block, struct symbol *sym, void *data0)
ccefe4c4 5227{
40658b94
PH
5228 struct match_data *data = (struct match_data *) data0;
5229
5230 if (sym == NULL)
5231 {
5232 if (!data->found_sym && data->arg_sym != NULL)
5233 add_defn_to_vec (data->obstackp,
5234 fixup_symbol_section (data->arg_sym, data->objfile),
5235 block);
5236 data->found_sym = 0;
5237 data->arg_sym = NULL;
5238 }
5239 else
5240 {
5241 if (SYMBOL_CLASS (sym) == LOC_UNRESOLVED)
5242 return 0;
5243 else if (SYMBOL_IS_ARGUMENT (sym))
5244 data->arg_sym = sym;
5245 else
5246 {
5247 data->found_sym = 1;
5248 add_defn_to_vec (data->obstackp,
5249 fixup_symbol_section (sym, data->objfile),
5250 block);
5251 }
5252 }
5253 return 0;
5254}
5255
db230ce3
JB
5256/* Implements compare_names, but only applying the comparision using
5257 the given CASING. */
5b4ee69b 5258
40658b94 5259static int
db230ce3
JB
5260compare_names_with_case (const char *string1, const char *string2,
5261 enum case_sensitivity casing)
40658b94
PH
5262{
5263 while (*string1 != '\0' && *string2 != '\0')
5264 {
db230ce3
JB
5265 char c1, c2;
5266
40658b94
PH
5267 if (isspace (*string1) || isspace (*string2))
5268 return strcmp_iw_ordered (string1, string2);
db230ce3
JB
5269
5270 if (casing == case_sensitive_off)
5271 {
5272 c1 = tolower (*string1);
5273 c2 = tolower (*string2);
5274 }
5275 else
5276 {
5277 c1 = *string1;
5278 c2 = *string2;
5279 }
5280 if (c1 != c2)
40658b94 5281 break;
db230ce3 5282
40658b94
PH
5283 string1 += 1;
5284 string2 += 1;
5285 }
db230ce3 5286
40658b94
PH
5287 switch (*string1)
5288 {
5289 case '(':
5290 return strcmp_iw_ordered (string1, string2);
5291 case '_':
5292 if (*string2 == '\0')
5293 {
052874e8 5294 if (is_name_suffix (string1))
40658b94
PH
5295 return 0;
5296 else
1a1d5513 5297 return 1;
40658b94 5298 }
dbb8534f 5299 /* FALLTHROUGH */
40658b94
PH
5300 default:
5301 if (*string2 == '(')
5302 return strcmp_iw_ordered (string1, string2);
5303 else
db230ce3
JB
5304 {
5305 if (casing == case_sensitive_off)
5306 return tolower (*string1) - tolower (*string2);
5307 else
5308 return *string1 - *string2;
5309 }
40658b94 5310 }
ccefe4c4
TT
5311}
5312
db230ce3
JB
5313/* Compare STRING1 to STRING2, with results as for strcmp.
5314 Compatible with strcmp_iw_ordered in that...
5315
5316 strcmp_iw_ordered (STRING1, STRING2) <= 0
5317
5318 ... implies...
5319
5320 compare_names (STRING1, STRING2) <= 0
5321
5322 (they may differ as to what symbols compare equal). */
5323
5324static int
5325compare_names (const char *string1, const char *string2)
5326{
5327 int result;
5328
5329 /* Similar to what strcmp_iw_ordered does, we need to perform
5330 a case-insensitive comparison first, and only resort to
5331 a second, case-sensitive, comparison if the first one was
5332 not sufficient to differentiate the two strings. */
5333
5334 result = compare_names_with_case (string1, string2, case_sensitive_off);
5335 if (result == 0)
5336 result = compare_names_with_case (string1, string2, case_sensitive_on);
5337
5338 return result;
5339}
5340
339c13b6
JB
5341/* Add to OBSTACKP all non-local symbols whose name and domain match
5342 NAME and DOMAIN respectively. The search is performed on GLOBAL_BLOCK
5343 symbols if GLOBAL is non-zero, or on STATIC_BLOCK symbols otherwise. */
5344
5345static void
40658b94
PH
5346add_nonlocal_symbols (struct obstack *obstackp, const char *name,
5347 domain_enum domain, int global,
5348 int is_wild_match)
339c13b6
JB
5349{
5350 struct objfile *objfile;
40658b94 5351 struct match_data data;
339c13b6 5352
6475f2fe 5353 memset (&data, 0, sizeof data);
ccefe4c4 5354 data.obstackp = obstackp;
339c13b6 5355
ccefe4c4 5356 ALL_OBJFILES (objfile)
40658b94
PH
5357 {
5358 data.objfile = objfile;
5359
5360 if (is_wild_match)
4186eb54
KS
5361 objfile->sf->qf->map_matching_symbols (objfile, name, domain, global,
5362 aux_add_nonlocal_symbols, &data,
5363 wild_match, NULL);
40658b94 5364 else
4186eb54
KS
5365 objfile->sf->qf->map_matching_symbols (objfile, name, domain, global,
5366 aux_add_nonlocal_symbols, &data,
5367 full_match, compare_names);
40658b94
PH
5368 }
5369
5370 if (num_defns_collected (obstackp) == 0 && global && !is_wild_match)
5371 {
5372 ALL_OBJFILES (objfile)
5373 {
5374 char *name1 = alloca (strlen (name) + sizeof ("_ada_"));
5375 strcpy (name1, "_ada_");
5376 strcpy (name1 + sizeof ("_ada_") - 1, name);
5377 data.objfile = objfile;
ade7ed9e
DE
5378 objfile->sf->qf->map_matching_symbols (objfile, name1, domain,
5379 global,
0963b4bd
MS
5380 aux_add_nonlocal_symbols,
5381 &data,
40658b94
PH
5382 full_match, compare_names);
5383 }
5384 }
339c13b6
JB
5385}
5386
4eeaa230
DE
5387/* Find symbols in DOMAIN matching NAME0, in BLOCK0 and, if full_search is
5388 non-zero, enclosing scope and in global scopes, returning the number of
5389 matches.
9f88c959 5390 Sets *RESULTS to point to a vector of (SYM,BLOCK) tuples,
4c4b4cd2 5391 indicating the symbols found and the blocks and symbol tables (if
4eeaa230
DE
5392 any) in which they were found. This vector is transient---good only to
5393 the next call of ada_lookup_symbol_list.
5394
5395 When full_search is non-zero, any non-function/non-enumeral
4c4b4cd2
PH
5396 symbol match within the nest of blocks whose innermost member is BLOCK0,
5397 is the one match returned (no other matches in that or
d9680e73 5398 enclosing blocks is returned). If there are any matches in or
4eeaa230
DE
5399 surrounding BLOCK0, then these alone are returned.
5400
9f88c959 5401 Names prefixed with "standard__" are handled specially: "standard__"
4c4b4cd2 5402 is first stripped off, and only static and global symbols are searched. */
14f9c5c9 5403
4eeaa230
DE
5404static int
5405ada_lookup_symbol_list_worker (const char *name0, const struct block *block0,
fe978cb0 5406 domain_enum domain,
4eeaa230
DE
5407 struct ada_symbol_info **results,
5408 int full_search)
14f9c5c9
AS
5409{
5410 struct symbol *sym;
f0c5f9b2 5411 const struct block *block;
4c4b4cd2 5412 const char *name;
82ccd55e 5413 const int wild_match_p = should_use_wild_match (name0);
b1eedac9 5414 int syms_from_global_search = 0;
4c4b4cd2 5415 int ndefns;
14f9c5c9 5416
4c4b4cd2
PH
5417 obstack_free (&symbol_list_obstack, NULL);
5418 obstack_init (&symbol_list_obstack);
14f9c5c9 5419
14f9c5c9
AS
5420 /* Search specified block and its superiors. */
5421
4c4b4cd2 5422 name = name0;
f0c5f9b2 5423 block = block0;
339c13b6
JB
5424
5425 /* Special case: If the user specifies a symbol name inside package
5426 Standard, do a non-wild matching of the symbol name without
5427 the "standard__" prefix. This was primarily introduced in order
5428 to allow the user to specifically access the standard exceptions
5429 using, for instance, Standard.Constraint_Error when Constraint_Error
5430 is ambiguous (due to the user defining its own Constraint_Error
5431 entity inside its program). */
61012eef 5432 if (startswith (name0, "standard__"))
4c4b4cd2 5433 {
4c4b4cd2
PH
5434 block = NULL;
5435 name = name0 + sizeof ("standard__") - 1;
5436 }
5437
339c13b6 5438 /* Check the non-global symbols. If we have ANY match, then we're done. */
14f9c5c9 5439
4eeaa230
DE
5440 if (block != NULL)
5441 {
5442 if (full_search)
5443 {
5444 ada_add_local_symbols (&symbol_list_obstack, name, block,
fe978cb0 5445 domain, wild_match_p);
4eeaa230
DE
5446 }
5447 else
5448 {
5449 /* In the !full_search case we're are being called by
5450 ada_iterate_over_symbols, and we don't want to search
5451 superblocks. */
5452 ada_add_block_symbols (&symbol_list_obstack, block, name,
fe978cb0 5453 domain, NULL, wild_match_p);
4eeaa230
DE
5454 }
5455 if (num_defns_collected (&symbol_list_obstack) > 0 || !full_search)
5456 goto done;
5457 }
d2e4a39e 5458
339c13b6
JB
5459 /* No non-global symbols found. Check our cache to see if we have
5460 already performed this search before. If we have, then return
5461 the same result. */
5462
fe978cb0 5463 if (lookup_cached_symbol (name0, domain, &sym, &block))
4c4b4cd2
PH
5464 {
5465 if (sym != NULL)
2570f2b7 5466 add_defn_to_vec (&symbol_list_obstack, sym, block);
4c4b4cd2
PH
5467 goto done;
5468 }
14f9c5c9 5469
b1eedac9
JB
5470 syms_from_global_search = 1;
5471
339c13b6
JB
5472 /* Search symbols from all global blocks. */
5473
fe978cb0 5474 add_nonlocal_symbols (&symbol_list_obstack, name, domain, 1,
82ccd55e 5475 wild_match_p);
d2e4a39e 5476
4c4b4cd2 5477 /* Now add symbols from all per-file blocks if we've gotten no hits
339c13b6 5478 (not strictly correct, but perhaps better than an error). */
d2e4a39e 5479
4c4b4cd2 5480 if (num_defns_collected (&symbol_list_obstack) == 0)
fe978cb0 5481 add_nonlocal_symbols (&symbol_list_obstack, name, domain, 0,
82ccd55e 5482 wild_match_p);
14f9c5c9 5483
4c4b4cd2
PH
5484done:
5485 ndefns = num_defns_collected (&symbol_list_obstack);
5486 *results = defns_collected (&symbol_list_obstack, 1);
5487
5488 ndefns = remove_extra_symbols (*results, ndefns);
5489
b1eedac9 5490 if (ndefns == 0 && full_search && syms_from_global_search)
fe978cb0 5491 cache_symbol (name0, domain, NULL, NULL);
14f9c5c9 5492
b1eedac9 5493 if (ndefns == 1 && full_search && syms_from_global_search)
fe978cb0 5494 cache_symbol (name0, domain, (*results)[0].sym, (*results)[0].block);
14f9c5c9 5495
aeb5907d 5496 ndefns = remove_irrelevant_renamings (*results, ndefns, block0);
14f9c5c9 5497
14f9c5c9
AS
5498 return ndefns;
5499}
5500
4eeaa230
DE
5501/* Find symbols in DOMAIN matching NAME0, in BLOCK0 and enclosing scope and
5502 in global scopes, returning the number of matches, and setting *RESULTS
5503 to a vector of (SYM,BLOCK) tuples.
5504 See ada_lookup_symbol_list_worker for further details. */
5505
5506int
5507ada_lookup_symbol_list (const char *name0, const struct block *block0,
5508 domain_enum domain, struct ada_symbol_info **results)
5509{
5510 return ada_lookup_symbol_list_worker (name0, block0, domain, results, 1);
5511}
5512
5513/* Implementation of the la_iterate_over_symbols method. */
5514
5515static void
5516ada_iterate_over_symbols (const struct block *block,
5517 const char *name, domain_enum domain,
5518 symbol_found_callback_ftype *callback,
5519 void *data)
5520{
5521 int ndefs, i;
5522 struct ada_symbol_info *results;
5523
5524 ndefs = ada_lookup_symbol_list_worker (name, block, domain, &results, 0);
5525 for (i = 0; i < ndefs; ++i)
5526 {
5527 if (! (*callback) (results[i].sym, data))
5528 break;
5529 }
5530}
5531
f8eba3c6
TT
5532/* If NAME is the name of an entity, return a string that should
5533 be used to look that entity up in Ada units. This string should
5534 be deallocated after use using xfree.
5535
5536 NAME can have any form that the "break" or "print" commands might
5537 recognize. In other words, it does not have to be the "natural"
5538 name, or the "encoded" name. */
5539
5540char *
5541ada_name_for_lookup (const char *name)
5542{
5543 char *canon;
5544 int nlen = strlen (name);
5545
5546 if (name[0] == '<' && name[nlen - 1] == '>')
5547 {
5548 canon = xmalloc (nlen - 1);
5549 memcpy (canon, name + 1, nlen - 2);
5550 canon[nlen - 2] = '\0';
5551 }
5552 else
5553 canon = xstrdup (ada_encode (ada_fold_name (name)));
5554 return canon;
5555}
5556
4e5c77fe
JB
5557/* The result is as for ada_lookup_symbol_list with FULL_SEARCH set
5558 to 1, but choosing the first symbol found if there are multiple
5559 choices.
5560
5e2336be
JB
5561 The result is stored in *INFO, which must be non-NULL.
5562 If no match is found, INFO->SYM is set to NULL. */
4e5c77fe
JB
5563
5564void
5565ada_lookup_encoded_symbol (const char *name, const struct block *block,
fe978cb0 5566 domain_enum domain,
5e2336be 5567 struct ada_symbol_info *info)
14f9c5c9 5568{
4c4b4cd2 5569 struct ada_symbol_info *candidates;
14f9c5c9
AS
5570 int n_candidates;
5571
5e2336be
JB
5572 gdb_assert (info != NULL);
5573 memset (info, 0, sizeof (struct ada_symbol_info));
4e5c77fe 5574
fe978cb0 5575 n_candidates = ada_lookup_symbol_list (name, block, domain, &candidates);
14f9c5c9 5576 if (n_candidates == 0)
4e5c77fe 5577 return;
4c4b4cd2 5578
5e2336be
JB
5579 *info = candidates[0];
5580 info->sym = fixup_symbol_section (info->sym, NULL);
4e5c77fe 5581}
aeb5907d
JB
5582
5583/* Return a symbol in DOMAIN matching NAME, in BLOCK0 and enclosing
5584 scope and in global scopes, or NULL if none. NAME is folded and
5585 encoded first. Otherwise, the result is as for ada_lookup_symbol_list,
0963b4bd 5586 choosing the first symbol if there are multiple choices.
4e5c77fe
JB
5587 If IS_A_FIELD_OF_THIS is not NULL, it is set to zero. */
5588
aeb5907d
JB
5589struct symbol *
5590ada_lookup_symbol (const char *name, const struct block *block0,
fe978cb0 5591 domain_enum domain, int *is_a_field_of_this)
aeb5907d 5592{
5e2336be 5593 struct ada_symbol_info info;
4e5c77fe 5594
aeb5907d
JB
5595 if (is_a_field_of_this != NULL)
5596 *is_a_field_of_this = 0;
5597
4e5c77fe 5598 ada_lookup_encoded_symbol (ada_encode (ada_fold_name (name)),
fe978cb0 5599 block0, domain, &info);
5e2336be 5600 return info.sym;
4c4b4cd2 5601}
14f9c5c9 5602
4c4b4cd2 5603static struct symbol *
f606139a
DE
5604ada_lookup_symbol_nonlocal (const struct language_defn *langdef,
5605 const char *name,
76a01679 5606 const struct block *block,
21b556f4 5607 const domain_enum domain)
4c4b4cd2 5608{
04dccad0
JB
5609 struct symbol *sym;
5610
5611 sym = ada_lookup_symbol (name, block_static_block (block), domain, NULL);
5612 if (sym != NULL)
5613 return sym;
5614
5615 /* If we haven't found a match at this point, try the primitive
5616 types. In other languages, this search is performed before
5617 searching for global symbols in order to short-circuit that
5618 global-symbol search if it happens that the name corresponds
5619 to a primitive type. But we cannot do the same in Ada, because
5620 it is perfectly legitimate for a program to declare a type which
5621 has the same name as a standard type. If looking up a type in
5622 that situation, we have traditionally ignored the primitive type
5623 in favor of user-defined types. This is why, unlike most other
5624 languages, we search the primitive types this late and only after
5625 having searched the global symbols without success. */
5626
5627 if (domain == VAR_DOMAIN)
5628 {
5629 struct gdbarch *gdbarch;
5630
5631 if (block == NULL)
5632 gdbarch = target_gdbarch ();
5633 else
5634 gdbarch = block_gdbarch (block);
5635 sym = language_lookup_primitive_type_as_symbol (langdef, gdbarch, name);
5636 if (sym != NULL)
5637 return sym;
5638 }
5639
5640 return NULL;
14f9c5c9
AS
5641}
5642
5643
4c4b4cd2
PH
5644/* True iff STR is a possible encoded suffix of a normal Ada name
5645 that is to be ignored for matching purposes. Suffixes of parallel
5646 names (e.g., XVE) are not included here. Currently, the possible suffixes
5823c3ef 5647 are given by any of the regular expressions:
4c4b4cd2 5648
babe1480
JB
5649 [.$][0-9]+ [nested subprogram suffix, on platforms such as GNU/Linux]
5650 ___[0-9]+ [nested subprogram suffix, on platforms such as HP/UX]
9ac7f98e 5651 TKB [subprogram suffix for task bodies]
babe1480 5652 _E[0-9]+[bs]$ [protected object entry suffixes]
61ee279c 5653 (X[nb]*)?((\$|__)[0-9](_?[0-9]+)|___(JM|LJM|X([FDBUP].*|R[^T]?)))?$
babe1480
JB
5654
5655 Also, any leading "__[0-9]+" sequence is skipped before the suffix
5656 match is performed. This sequence is used to differentiate homonyms,
5657 is an optional part of a valid name suffix. */
4c4b4cd2 5658
14f9c5c9 5659static int
d2e4a39e 5660is_name_suffix (const char *str)
14f9c5c9
AS
5661{
5662 int k;
4c4b4cd2
PH
5663 const char *matching;
5664 const int len = strlen (str);
5665
babe1480
JB
5666 /* Skip optional leading __[0-9]+. */
5667
4c4b4cd2
PH
5668 if (len > 3 && str[0] == '_' && str[1] == '_' && isdigit (str[2]))
5669 {
babe1480
JB
5670 str += 3;
5671 while (isdigit (str[0]))
5672 str += 1;
4c4b4cd2 5673 }
babe1480
JB
5674
5675 /* [.$][0-9]+ */
4c4b4cd2 5676
babe1480 5677 if (str[0] == '.' || str[0] == '$')
4c4b4cd2 5678 {
babe1480 5679 matching = str + 1;
4c4b4cd2
PH
5680 while (isdigit (matching[0]))
5681 matching += 1;
5682 if (matching[0] == '\0')
5683 return 1;
5684 }
5685
5686 /* ___[0-9]+ */
babe1480 5687
4c4b4cd2
PH
5688 if (len > 3 && str[0] == '_' && str[1] == '_' && str[2] == '_')
5689 {
5690 matching = str + 3;
5691 while (isdigit (matching[0]))
5692 matching += 1;
5693 if (matching[0] == '\0')
5694 return 1;
5695 }
5696
9ac7f98e
JB
5697 /* "TKB" suffixes are used for subprograms implementing task bodies. */
5698
5699 if (strcmp (str, "TKB") == 0)
5700 return 1;
5701
529cad9c
PH
5702#if 0
5703 /* FIXME: brobecker/2005-09-23: Protected Object subprograms end
0963b4bd
MS
5704 with a N at the end. Unfortunately, the compiler uses the same
5705 convention for other internal types it creates. So treating
529cad9c 5706 all entity names that end with an "N" as a name suffix causes
0963b4bd
MS
5707 some regressions. For instance, consider the case of an enumerated
5708 type. To support the 'Image attribute, it creates an array whose
529cad9c
PH
5709 name ends with N.
5710 Having a single character like this as a suffix carrying some
0963b4bd 5711 information is a bit risky. Perhaps we should change the encoding
529cad9c
PH
5712 to be something like "_N" instead. In the meantime, do not do
5713 the following check. */
5714 /* Protected Object Subprograms */
5715 if (len == 1 && str [0] == 'N')
5716 return 1;
5717#endif
5718
5719 /* _E[0-9]+[bs]$ */
5720 if (len > 3 && str[0] == '_' && str [1] == 'E' && isdigit (str[2]))
5721 {
5722 matching = str + 3;
5723 while (isdigit (matching[0]))
5724 matching += 1;
5725 if ((matching[0] == 'b' || matching[0] == 's')
5726 && matching [1] == '\0')
5727 return 1;
5728 }
5729
4c4b4cd2
PH
5730 /* ??? We should not modify STR directly, as we are doing below. This
5731 is fine in this case, but may become problematic later if we find
5732 that this alternative did not work, and want to try matching
5733 another one from the begining of STR. Since we modified it, we
5734 won't be able to find the begining of the string anymore! */
14f9c5c9
AS
5735 if (str[0] == 'X')
5736 {
5737 str += 1;
d2e4a39e 5738 while (str[0] != '_' && str[0] != '\0')
4c4b4cd2
PH
5739 {
5740 if (str[0] != 'n' && str[0] != 'b')
5741 return 0;
5742 str += 1;
5743 }
14f9c5c9 5744 }
babe1480 5745
14f9c5c9
AS
5746 if (str[0] == '\000')
5747 return 1;
babe1480 5748
d2e4a39e 5749 if (str[0] == '_')
14f9c5c9
AS
5750 {
5751 if (str[1] != '_' || str[2] == '\000')
4c4b4cd2 5752 return 0;
d2e4a39e 5753 if (str[2] == '_')
4c4b4cd2 5754 {
61ee279c
PH
5755 if (strcmp (str + 3, "JM") == 0)
5756 return 1;
5757 /* FIXME: brobecker/2004-09-30: GNAT will soon stop using
5758 the LJM suffix in favor of the JM one. But we will
5759 still accept LJM as a valid suffix for a reasonable
5760 amount of time, just to allow ourselves to debug programs
5761 compiled using an older version of GNAT. */
4c4b4cd2
PH
5762 if (strcmp (str + 3, "LJM") == 0)
5763 return 1;
5764 if (str[3] != 'X')
5765 return 0;
1265e4aa
JB
5766 if (str[4] == 'F' || str[4] == 'D' || str[4] == 'B'
5767 || str[4] == 'U' || str[4] == 'P')
4c4b4cd2
PH
5768 return 1;
5769 if (str[4] == 'R' && str[5] != 'T')
5770 return 1;
5771 return 0;
5772 }
5773 if (!isdigit (str[2]))
5774 return 0;
5775 for (k = 3; str[k] != '\0'; k += 1)
5776 if (!isdigit (str[k]) && str[k] != '_')
5777 return 0;
14f9c5c9
AS
5778 return 1;
5779 }
4c4b4cd2 5780 if (str[0] == '$' && isdigit (str[1]))
14f9c5c9 5781 {
4c4b4cd2
PH
5782 for (k = 2; str[k] != '\0'; k += 1)
5783 if (!isdigit (str[k]) && str[k] != '_')
5784 return 0;
14f9c5c9
AS
5785 return 1;
5786 }
5787 return 0;
5788}
d2e4a39e 5789
aeb5907d
JB
5790/* Return non-zero if the string starting at NAME and ending before
5791 NAME_END contains no capital letters. */
529cad9c
PH
5792
5793static int
5794is_valid_name_for_wild_match (const char *name0)
5795{
5796 const char *decoded_name = ada_decode (name0);
5797 int i;
5798
5823c3ef
JB
5799 /* If the decoded name starts with an angle bracket, it means that
5800 NAME0 does not follow the GNAT encoding format. It should then
5801 not be allowed as a possible wild match. */
5802 if (decoded_name[0] == '<')
5803 return 0;
5804
529cad9c
PH
5805 for (i=0; decoded_name[i] != '\0'; i++)
5806 if (isalpha (decoded_name[i]) && !islower (decoded_name[i]))
5807 return 0;
5808
5809 return 1;
5810}
5811
73589123
PH
5812/* Advance *NAMEP to next occurrence of TARGET0 in the string NAME0
5813 that could start a simple name. Assumes that *NAMEP points into
5814 the string beginning at NAME0. */
4c4b4cd2 5815
14f9c5c9 5816static int
73589123 5817advance_wild_match (const char **namep, const char *name0, int target0)
14f9c5c9 5818{
73589123 5819 const char *name = *namep;
5b4ee69b 5820
5823c3ef 5821 while (1)
14f9c5c9 5822 {
aa27d0b3 5823 int t0, t1;
73589123
PH
5824
5825 t0 = *name;
5826 if (t0 == '_')
5827 {
5828 t1 = name[1];
5829 if ((t1 >= 'a' && t1 <= 'z') || (t1 >= '0' && t1 <= '9'))
5830 {
5831 name += 1;
61012eef 5832 if (name == name0 + 5 && startswith (name0, "_ada"))
73589123
PH
5833 break;
5834 else
5835 name += 1;
5836 }
aa27d0b3
JB
5837 else if (t1 == '_' && ((name[2] >= 'a' && name[2] <= 'z')
5838 || name[2] == target0))
73589123
PH
5839 {
5840 name += 2;
5841 break;
5842 }
5843 else
5844 return 0;
5845 }
5846 else if ((t0 >= 'a' && t0 <= 'z') || (t0 >= '0' && t0 <= '9'))
5847 name += 1;
5848 else
5823c3ef 5849 return 0;
73589123
PH
5850 }
5851
5852 *namep = name;
5853 return 1;
5854}
5855
5856/* Return 0 iff NAME encodes a name of the form prefix.PATN. Ignores any
5857 informational suffixes of NAME (i.e., for which is_name_suffix is
5858 true). Assumes that PATN is a lower-cased Ada simple name. */
5859
5860static int
5861wild_match (const char *name, const char *patn)
5862{
22e048c9 5863 const char *p;
73589123
PH
5864 const char *name0 = name;
5865
5866 while (1)
5867 {
5868 const char *match = name;
5869
5870 if (*name == *patn)
5871 {
5872 for (name += 1, p = patn + 1; *p != '\0'; name += 1, p += 1)
5873 if (*p != *name)
5874 break;
5875 if (*p == '\0' && is_name_suffix (name))
5876 return match != name0 && !is_valid_name_for_wild_match (name0);
5877
5878 if (name[-1] == '_')
5879 name -= 1;
5880 }
5881 if (!advance_wild_match (&name, name0, *patn))
5882 return 1;
96d887e8 5883 }
96d887e8
PH
5884}
5885
40658b94
PH
5886/* Returns 0 iff symbol name SYM_NAME matches SEARCH_NAME, apart from
5887 informational suffix. */
5888
c4d840bd
PH
5889static int
5890full_match (const char *sym_name, const char *search_name)
5891{
40658b94 5892 return !match_name (sym_name, search_name, 0);
c4d840bd
PH
5893}
5894
5895
96d887e8
PH
5896/* Add symbols from BLOCK matching identifier NAME in DOMAIN to
5897 vector *defn_symbols, updating the list of symbols in OBSTACKP
0963b4bd 5898 (if necessary). If WILD, treat as NAME with a wildcard prefix.
4eeaa230 5899 OBJFILE is the section containing BLOCK. */
96d887e8
PH
5900
5901static void
5902ada_add_block_symbols (struct obstack *obstackp,
f0c5f9b2 5903 const struct block *block, const char *name,
96d887e8 5904 domain_enum domain, struct objfile *objfile,
2570f2b7 5905 int wild)
96d887e8 5906{
8157b174 5907 struct block_iterator iter;
96d887e8
PH
5908 int name_len = strlen (name);
5909 /* A matching argument symbol, if any. */
5910 struct symbol *arg_sym;
5911 /* Set true when we find a matching non-argument symbol. */
5912 int found_sym;
5913 struct symbol *sym;
5914
5915 arg_sym = NULL;
5916 found_sym = 0;
5917 if (wild)
5918 {
8157b174
TT
5919 for (sym = block_iter_match_first (block, name, wild_match, &iter);
5920 sym != NULL; sym = block_iter_match_next (name, wild_match, &iter))
76a01679 5921 {
4186eb54
KS
5922 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
5923 SYMBOL_DOMAIN (sym), domain)
73589123 5924 && wild_match (SYMBOL_LINKAGE_NAME (sym), name) == 0)
76a01679 5925 {
2a2d4dc3
AS
5926 if (SYMBOL_CLASS (sym) == LOC_UNRESOLVED)
5927 continue;
5928 else if (SYMBOL_IS_ARGUMENT (sym))
5929 arg_sym = sym;
5930 else
5931 {
76a01679
JB
5932 found_sym = 1;
5933 add_defn_to_vec (obstackp,
5934 fixup_symbol_section (sym, objfile),
2570f2b7 5935 block);
76a01679
JB
5936 }
5937 }
5938 }
96d887e8
PH
5939 }
5940 else
5941 {
8157b174
TT
5942 for (sym = block_iter_match_first (block, name, full_match, &iter);
5943 sym != NULL; sym = block_iter_match_next (name, full_match, &iter))
76a01679 5944 {
4186eb54
KS
5945 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
5946 SYMBOL_DOMAIN (sym), domain))
76a01679 5947 {
c4d840bd
PH
5948 if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED)
5949 {
5950 if (SYMBOL_IS_ARGUMENT (sym))
5951 arg_sym = sym;
5952 else
2a2d4dc3 5953 {
c4d840bd
PH
5954 found_sym = 1;
5955 add_defn_to_vec (obstackp,
5956 fixup_symbol_section (sym, objfile),
5957 block);
2a2d4dc3 5958 }
c4d840bd 5959 }
76a01679
JB
5960 }
5961 }
96d887e8
PH
5962 }
5963
5964 if (!found_sym && arg_sym != NULL)
5965 {
76a01679
JB
5966 add_defn_to_vec (obstackp,
5967 fixup_symbol_section (arg_sym, objfile),
2570f2b7 5968 block);
96d887e8
PH
5969 }
5970
5971 if (!wild)
5972 {
5973 arg_sym = NULL;
5974 found_sym = 0;
5975
5976 ALL_BLOCK_SYMBOLS (block, iter, sym)
76a01679 5977 {
4186eb54
KS
5978 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
5979 SYMBOL_DOMAIN (sym), domain))
76a01679
JB
5980 {
5981 int cmp;
5982
5983 cmp = (int) '_' - (int) SYMBOL_LINKAGE_NAME (sym)[0];
5984 if (cmp == 0)
5985 {
61012eef 5986 cmp = !startswith (SYMBOL_LINKAGE_NAME (sym), "_ada_");
76a01679
JB
5987 if (cmp == 0)
5988 cmp = strncmp (name, SYMBOL_LINKAGE_NAME (sym) + 5,
5989 name_len);
5990 }
5991
5992 if (cmp == 0
5993 && is_name_suffix (SYMBOL_LINKAGE_NAME (sym) + name_len + 5))
5994 {
2a2d4dc3
AS
5995 if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED)
5996 {
5997 if (SYMBOL_IS_ARGUMENT (sym))
5998 arg_sym = sym;
5999 else
6000 {
6001 found_sym = 1;
6002 add_defn_to_vec (obstackp,
6003 fixup_symbol_section (sym, objfile),
6004 block);
6005 }
6006 }
76a01679
JB
6007 }
6008 }
76a01679 6009 }
96d887e8
PH
6010
6011 /* NOTE: This really shouldn't be needed for _ada_ symbols.
6012 They aren't parameters, right? */
6013 if (!found_sym && arg_sym != NULL)
6014 {
6015 add_defn_to_vec (obstackp,
76a01679 6016 fixup_symbol_section (arg_sym, objfile),
2570f2b7 6017 block);
96d887e8
PH
6018 }
6019 }
6020}
6021\f
41d27058
JB
6022
6023 /* Symbol Completion */
6024
6025/* If SYM_NAME is a completion candidate for TEXT, return this symbol
6026 name in a form that's appropriate for the completion. The result
6027 does not need to be deallocated, but is only good until the next call.
6028
6029 TEXT_LEN is equal to the length of TEXT.
e701b3c0 6030 Perform a wild match if WILD_MATCH_P is set.
6ea35997 6031 ENCODED_P should be set if TEXT represents the start of a symbol name
41d27058
JB
6032 in its encoded form. */
6033
6034static const char *
6035symbol_completion_match (const char *sym_name,
6036 const char *text, int text_len,
6ea35997 6037 int wild_match_p, int encoded_p)
41d27058 6038{
41d27058
JB
6039 const int verbatim_match = (text[0] == '<');
6040 int match = 0;
6041
6042 if (verbatim_match)
6043 {
6044 /* Strip the leading angle bracket. */
6045 text = text + 1;
6046 text_len--;
6047 }
6048
6049 /* First, test against the fully qualified name of the symbol. */
6050
6051 if (strncmp (sym_name, text, text_len) == 0)
6052 match = 1;
6053
6ea35997 6054 if (match && !encoded_p)
41d27058
JB
6055 {
6056 /* One needed check before declaring a positive match is to verify
6057 that iff we are doing a verbatim match, the decoded version
6058 of the symbol name starts with '<'. Otherwise, this symbol name
6059 is not a suitable completion. */
6060 const char *sym_name_copy = sym_name;
6061 int has_angle_bracket;
6062
6063 sym_name = ada_decode (sym_name);
6064 has_angle_bracket = (sym_name[0] == '<');
6065 match = (has_angle_bracket == verbatim_match);
6066 sym_name = sym_name_copy;
6067 }
6068
6069 if (match && !verbatim_match)
6070 {
6071 /* When doing non-verbatim match, another check that needs to
6072 be done is to verify that the potentially matching symbol name
6073 does not include capital letters, because the ada-mode would
6074 not be able to understand these symbol names without the
6075 angle bracket notation. */
6076 const char *tmp;
6077
6078 for (tmp = sym_name; *tmp != '\0' && !isupper (*tmp); tmp++);
6079 if (*tmp != '\0')
6080 match = 0;
6081 }
6082
6083 /* Second: Try wild matching... */
6084
e701b3c0 6085 if (!match && wild_match_p)
41d27058
JB
6086 {
6087 /* Since we are doing wild matching, this means that TEXT
6088 may represent an unqualified symbol name. We therefore must
6089 also compare TEXT against the unqualified name of the symbol. */
6090 sym_name = ada_unqualified_name (ada_decode (sym_name));
6091
6092 if (strncmp (sym_name, text, text_len) == 0)
6093 match = 1;
6094 }
6095
6096 /* Finally: If we found a mach, prepare the result to return. */
6097
6098 if (!match)
6099 return NULL;
6100
6101 if (verbatim_match)
6102 sym_name = add_angle_brackets (sym_name);
6103
6ea35997 6104 if (!encoded_p)
41d27058
JB
6105 sym_name = ada_decode (sym_name);
6106
6107 return sym_name;
6108}
6109
6110/* A companion function to ada_make_symbol_completion_list().
6111 Check if SYM_NAME represents a symbol which name would be suitable
6112 to complete TEXT (TEXT_LEN is the length of TEXT), in which case
6113 it is appended at the end of the given string vector SV.
6114
6115 ORIG_TEXT is the string original string from the user command
6116 that needs to be completed. WORD is the entire command on which
6117 completion should be performed. These two parameters are used to
6118 determine which part of the symbol name should be added to the
6119 completion vector.
c0af1706 6120 if WILD_MATCH_P is set, then wild matching is performed.
cb8e9b97 6121 ENCODED_P should be set if TEXT represents a symbol name in its
41d27058
JB
6122 encoded formed (in which case the completion should also be
6123 encoded). */
6124
6125static void
d6565258 6126symbol_completion_add (VEC(char_ptr) **sv,
41d27058
JB
6127 const char *sym_name,
6128 const char *text, int text_len,
6129 const char *orig_text, const char *word,
cb8e9b97 6130 int wild_match_p, int encoded_p)
41d27058
JB
6131{
6132 const char *match = symbol_completion_match (sym_name, text, text_len,
cb8e9b97 6133 wild_match_p, encoded_p);
41d27058
JB
6134 char *completion;
6135
6136 if (match == NULL)
6137 return;
6138
6139 /* We found a match, so add the appropriate completion to the given
6140 string vector. */
6141
6142 if (word == orig_text)
6143 {
6144 completion = xmalloc (strlen (match) + 5);
6145 strcpy (completion, match);
6146 }
6147 else if (word > orig_text)
6148 {
6149 /* Return some portion of sym_name. */
6150 completion = xmalloc (strlen (match) + 5);
6151 strcpy (completion, match + (word - orig_text));
6152 }
6153 else
6154 {
6155 /* Return some of ORIG_TEXT plus sym_name. */
6156 completion = xmalloc (strlen (match) + (orig_text - word) + 5);
6157 strncpy (completion, word, orig_text - word);
6158 completion[orig_text - word] = '\0';
6159 strcat (completion, match);
6160 }
6161
d6565258 6162 VEC_safe_push (char_ptr, *sv, completion);
41d27058
JB
6163}
6164
ccefe4c4 6165/* An object of this type is passed as the user_data argument to the
bb4142cf 6166 expand_symtabs_matching method. */
ccefe4c4
TT
6167struct add_partial_datum
6168{
6169 VEC(char_ptr) **completions;
6f937416 6170 const char *text;
ccefe4c4 6171 int text_len;
6f937416
PA
6172 const char *text0;
6173 const char *word;
ccefe4c4
TT
6174 int wild_match;
6175 int encoded;
6176};
6177
bb4142cf
DE
6178/* A callback for expand_symtabs_matching. */
6179
7b08b9eb 6180static int
bb4142cf 6181ada_complete_symbol_matcher (const char *name, void *user_data)
ccefe4c4
TT
6182{
6183 struct add_partial_datum *data = user_data;
7b08b9eb
JK
6184
6185 return symbol_completion_match (name, data->text, data->text_len,
6186 data->wild_match, data->encoded) != NULL;
ccefe4c4
TT
6187}
6188
49c4e619
TT
6189/* Return a list of possible symbol names completing TEXT0. WORD is
6190 the entire command on which completion is made. */
41d27058 6191
49c4e619 6192static VEC (char_ptr) *
6f937416
PA
6193ada_make_symbol_completion_list (const char *text0, const char *word,
6194 enum type_code code)
41d27058
JB
6195{
6196 char *text;
6197 int text_len;
b1ed564a
JB
6198 int wild_match_p;
6199 int encoded_p;
2ba95b9b 6200 VEC(char_ptr) *completions = VEC_alloc (char_ptr, 128);
41d27058 6201 struct symbol *sym;
43f3e411 6202 struct compunit_symtab *s;
41d27058
JB
6203 struct minimal_symbol *msymbol;
6204 struct objfile *objfile;
3977b71f 6205 const struct block *b, *surrounding_static_block = 0;
41d27058 6206 int i;
8157b174 6207 struct block_iterator iter;
b8fea896 6208 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
41d27058 6209
2f68a895
TT
6210 gdb_assert (code == TYPE_CODE_UNDEF);
6211
41d27058
JB
6212 if (text0[0] == '<')
6213 {
6214 text = xstrdup (text0);
6215 make_cleanup (xfree, text);
6216 text_len = strlen (text);
b1ed564a
JB
6217 wild_match_p = 0;
6218 encoded_p = 1;
41d27058
JB
6219 }
6220 else
6221 {
6222 text = xstrdup (ada_encode (text0));
6223 make_cleanup (xfree, text);
6224 text_len = strlen (text);
6225 for (i = 0; i < text_len; i++)
6226 text[i] = tolower (text[i]);
6227
b1ed564a 6228 encoded_p = (strstr (text0, "__") != NULL);
41d27058
JB
6229 /* If the name contains a ".", then the user is entering a fully
6230 qualified entity name, and the match must not be done in wild
6231 mode. Similarly, if the user wants to complete what looks like
6232 an encoded name, the match must not be done in wild mode. */
b1ed564a 6233 wild_match_p = (strchr (text0, '.') == NULL && !encoded_p);
41d27058
JB
6234 }
6235
6236 /* First, look at the partial symtab symbols. */
41d27058 6237 {
ccefe4c4
TT
6238 struct add_partial_datum data;
6239
6240 data.completions = &completions;
6241 data.text = text;
6242 data.text_len = text_len;
6243 data.text0 = text0;
6244 data.word = word;
b1ed564a
JB
6245 data.wild_match = wild_match_p;
6246 data.encoded = encoded_p;
276d885b
GB
6247 expand_symtabs_matching (NULL, ada_complete_symbol_matcher, NULL,
6248 ALL_DOMAIN, &data);
41d27058
JB
6249 }
6250
6251 /* At this point scan through the misc symbol vectors and add each
6252 symbol you find to the list. Eventually we want to ignore
6253 anything that isn't a text symbol (everything else will be
6254 handled by the psymtab code above). */
6255
6256 ALL_MSYMBOLS (objfile, msymbol)
6257 {
6258 QUIT;
efd66ac6 6259 symbol_completion_add (&completions, MSYMBOL_LINKAGE_NAME (msymbol),
b1ed564a
JB
6260 text, text_len, text0, word, wild_match_p,
6261 encoded_p);
41d27058
JB
6262 }
6263
6264 /* Search upwards from currently selected frame (so that we can
6265 complete on local vars. */
6266
6267 for (b = get_selected_block (0); b != NULL; b = BLOCK_SUPERBLOCK (b))
6268 {
6269 if (!BLOCK_SUPERBLOCK (b))
6270 surrounding_static_block = b; /* For elmin of dups */
6271
6272 ALL_BLOCK_SYMBOLS (b, iter, sym)
6273 {
d6565258 6274 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym),
41d27058 6275 text, text_len, text0, word,
b1ed564a 6276 wild_match_p, encoded_p);
41d27058
JB
6277 }
6278 }
6279
6280 /* Go through the symtabs and check the externs and statics for
43f3e411 6281 symbols which match. */
41d27058 6282
43f3e411 6283 ALL_COMPUNITS (objfile, s)
41d27058
JB
6284 {
6285 QUIT;
43f3e411 6286 b = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (s), GLOBAL_BLOCK);
41d27058
JB
6287 ALL_BLOCK_SYMBOLS (b, iter, sym)
6288 {
d6565258 6289 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym),
41d27058 6290 text, text_len, text0, word,
b1ed564a 6291 wild_match_p, encoded_p);
41d27058
JB
6292 }
6293 }
6294
43f3e411 6295 ALL_COMPUNITS (objfile, s)
41d27058
JB
6296 {
6297 QUIT;
43f3e411 6298 b = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (s), STATIC_BLOCK);
41d27058
JB
6299 /* Don't do this block twice. */
6300 if (b == surrounding_static_block)
6301 continue;
6302 ALL_BLOCK_SYMBOLS (b, iter, sym)
6303 {
d6565258 6304 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym),
41d27058 6305 text, text_len, text0, word,
b1ed564a 6306 wild_match_p, encoded_p);
41d27058
JB
6307 }
6308 }
6309
b8fea896 6310 do_cleanups (old_chain);
49c4e619 6311 return completions;
41d27058
JB
6312}
6313
963a6417 6314 /* Field Access */
96d887e8 6315
73fb9985
JB
6316/* Return non-zero if TYPE is a pointer to the GNAT dispatch table used
6317 for tagged types. */
6318
6319static int
6320ada_is_dispatch_table_ptr_type (struct type *type)
6321{
0d5cff50 6322 const char *name;
73fb9985
JB
6323
6324 if (TYPE_CODE (type) != TYPE_CODE_PTR)
6325 return 0;
6326
6327 name = TYPE_NAME (TYPE_TARGET_TYPE (type));
6328 if (name == NULL)
6329 return 0;
6330
6331 return (strcmp (name, "ada__tags__dispatch_table") == 0);
6332}
6333
ac4a2da4
JG
6334/* Return non-zero if TYPE is an interface tag. */
6335
6336static int
6337ada_is_interface_tag (struct type *type)
6338{
6339 const char *name = TYPE_NAME (type);
6340
6341 if (name == NULL)
6342 return 0;
6343
6344 return (strcmp (name, "ada__tags__interface_tag") == 0);
6345}
6346
963a6417
PH
6347/* True if field number FIELD_NUM in struct or union type TYPE is supposed
6348 to be invisible to users. */
96d887e8 6349
963a6417
PH
6350int
6351ada_is_ignored_field (struct type *type, int field_num)
96d887e8 6352{
963a6417
PH
6353 if (field_num < 0 || field_num > TYPE_NFIELDS (type))
6354 return 1;
ffde82bf 6355
73fb9985
JB
6356 /* Check the name of that field. */
6357 {
6358 const char *name = TYPE_FIELD_NAME (type, field_num);
6359
6360 /* Anonymous field names should not be printed.
6361 brobecker/2007-02-20: I don't think this can actually happen
6362 but we don't want to print the value of annonymous fields anyway. */
6363 if (name == NULL)
6364 return 1;
6365
ffde82bf
JB
6366 /* Normally, fields whose name start with an underscore ("_")
6367 are fields that have been internally generated by the compiler,
6368 and thus should not be printed. The "_parent" field is special,
6369 however: This is a field internally generated by the compiler
6370 for tagged types, and it contains the components inherited from
6371 the parent type. This field should not be printed as is, but
6372 should not be ignored either. */
61012eef 6373 if (name[0] == '_' && !startswith (name, "_parent"))
73fb9985
JB
6374 return 1;
6375 }
6376
ac4a2da4
JG
6377 /* If this is the dispatch table of a tagged type or an interface tag,
6378 then ignore. */
73fb9985 6379 if (ada_is_tagged_type (type, 1)
ac4a2da4
JG
6380 && (ada_is_dispatch_table_ptr_type (TYPE_FIELD_TYPE (type, field_num))
6381 || ada_is_interface_tag (TYPE_FIELD_TYPE (type, field_num))))
73fb9985
JB
6382 return 1;
6383
6384 /* Not a special field, so it should not be ignored. */
6385 return 0;
963a6417 6386}
96d887e8 6387
963a6417 6388/* True iff TYPE has a tag field. If REFOK, then TYPE may also be a
0963b4bd 6389 pointer or reference type whose ultimate target has a tag field. */
96d887e8 6390
963a6417
PH
6391int
6392ada_is_tagged_type (struct type *type, int refok)
6393{
6394 return (ada_lookup_struct_elt_type (type, "_tag", refok, 1, NULL) != NULL);
6395}
96d887e8 6396
963a6417 6397/* True iff TYPE represents the type of X'Tag */
96d887e8 6398
963a6417
PH
6399int
6400ada_is_tag_type (struct type *type)
6401{
6402 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_PTR)
6403 return 0;
6404 else
96d887e8 6405 {
963a6417 6406 const char *name = ada_type_name (TYPE_TARGET_TYPE (type));
5b4ee69b 6407
963a6417
PH
6408 return (name != NULL
6409 && strcmp (name, "ada__tags__dispatch_table") == 0);
96d887e8 6410 }
96d887e8
PH
6411}
6412
963a6417 6413/* The type of the tag on VAL. */
76a01679 6414
963a6417
PH
6415struct type *
6416ada_tag_type (struct value *val)
96d887e8 6417{
df407dfe 6418 return ada_lookup_struct_elt_type (value_type (val), "_tag", 1, 0, NULL);
963a6417 6419}
96d887e8 6420
b50d69b5
JG
6421/* Return 1 if TAG follows the old scheme for Ada tags (used for Ada 95,
6422 retired at Ada 05). */
6423
6424static int
6425is_ada95_tag (struct value *tag)
6426{
6427 return ada_value_struct_elt (tag, "tsd", 1) != NULL;
6428}
6429
963a6417 6430/* The value of the tag on VAL. */
96d887e8 6431
963a6417
PH
6432struct value *
6433ada_value_tag (struct value *val)
6434{
03ee6b2e 6435 return ada_value_struct_elt (val, "_tag", 0);
96d887e8
PH
6436}
6437
963a6417
PH
6438/* The value of the tag on the object of type TYPE whose contents are
6439 saved at VALADDR, if it is non-null, or is at memory address
0963b4bd 6440 ADDRESS. */
96d887e8 6441
963a6417 6442static struct value *
10a2c479 6443value_tag_from_contents_and_address (struct type *type,
fc1a4b47 6444 const gdb_byte *valaddr,
963a6417 6445 CORE_ADDR address)
96d887e8 6446{
b5385fc0 6447 int tag_byte_offset;
963a6417 6448 struct type *tag_type;
5b4ee69b 6449
963a6417 6450 if (find_struct_field ("_tag", type, 0, &tag_type, &tag_byte_offset,
52ce6436 6451 NULL, NULL, NULL))
96d887e8 6452 {
fc1a4b47 6453 const gdb_byte *valaddr1 = ((valaddr == NULL)
10a2c479
AC
6454 ? NULL
6455 : valaddr + tag_byte_offset);
963a6417 6456 CORE_ADDR address1 = (address == 0) ? 0 : address + tag_byte_offset;
96d887e8 6457
963a6417 6458 return value_from_contents_and_address (tag_type, valaddr1, address1);
96d887e8 6459 }
963a6417
PH
6460 return NULL;
6461}
96d887e8 6462
963a6417
PH
6463static struct type *
6464type_from_tag (struct value *tag)
6465{
6466 const char *type_name = ada_tag_name (tag);
5b4ee69b 6467
963a6417
PH
6468 if (type_name != NULL)
6469 return ada_find_any_type (ada_encode (type_name));
6470 return NULL;
6471}
96d887e8 6472
b50d69b5
JG
6473/* Given a value OBJ of a tagged type, return a value of this
6474 type at the base address of the object. The base address, as
6475 defined in Ada.Tags, it is the address of the primary tag of
6476 the object, and therefore where the field values of its full
6477 view can be fetched. */
6478
6479struct value *
6480ada_tag_value_at_base_address (struct value *obj)
6481{
b50d69b5
JG
6482 struct value *val;
6483 LONGEST offset_to_top = 0;
6484 struct type *ptr_type, *obj_type;
6485 struct value *tag;
6486 CORE_ADDR base_address;
6487
6488 obj_type = value_type (obj);
6489
6490 /* It is the responsability of the caller to deref pointers. */
6491
6492 if (TYPE_CODE (obj_type) == TYPE_CODE_PTR
6493 || TYPE_CODE (obj_type) == TYPE_CODE_REF)
6494 return obj;
6495
6496 tag = ada_value_tag (obj);
6497 if (!tag)
6498 return obj;
6499
6500 /* Base addresses only appeared with Ada 05 and multiple inheritance. */
6501
6502 if (is_ada95_tag (tag))
6503 return obj;
6504
6505 ptr_type = builtin_type (target_gdbarch ())->builtin_data_ptr;
6506 ptr_type = lookup_pointer_type (ptr_type);
6507 val = value_cast (ptr_type, tag);
6508 if (!val)
6509 return obj;
6510
6511 /* It is perfectly possible that an exception be raised while
6512 trying to determine the base address, just like for the tag;
6513 see ada_tag_name for more details. We do not print the error
6514 message for the same reason. */
6515
492d29ea 6516 TRY
b50d69b5
JG
6517 {
6518 offset_to_top = value_as_long (value_ind (value_ptradd (val, -2)));
6519 }
6520
492d29ea
PA
6521 CATCH (e, RETURN_MASK_ERROR)
6522 {
6523 return obj;
6524 }
6525 END_CATCH
b50d69b5
JG
6526
6527 /* If offset is null, nothing to do. */
6528
6529 if (offset_to_top == 0)
6530 return obj;
6531
6532 /* -1 is a special case in Ada.Tags; however, what should be done
6533 is not quite clear from the documentation. So do nothing for
6534 now. */
6535
6536 if (offset_to_top == -1)
6537 return obj;
6538
6539 base_address = value_address (obj) - offset_to_top;
6540 tag = value_tag_from_contents_and_address (obj_type, NULL, base_address);
6541
6542 /* Make sure that we have a proper tag at the new address.
6543 Otherwise, offset_to_top is bogus (which can happen when
6544 the object is not initialized yet). */
6545
6546 if (!tag)
6547 return obj;
6548
6549 obj_type = type_from_tag (tag);
6550
6551 if (!obj_type)
6552 return obj;
6553
6554 return value_from_contents_and_address (obj_type, NULL, base_address);
6555}
6556
1b611343
JB
6557/* Return the "ada__tags__type_specific_data" type. */
6558
6559static struct type *
6560ada_get_tsd_type (struct inferior *inf)
963a6417 6561{
1b611343 6562 struct ada_inferior_data *data = get_ada_inferior_data (inf);
4c4b4cd2 6563
1b611343
JB
6564 if (data->tsd_type == 0)
6565 data->tsd_type = ada_find_any_type ("ada__tags__type_specific_data");
6566 return data->tsd_type;
6567}
529cad9c 6568
1b611343
JB
6569/* Return the TSD (type-specific data) associated to the given TAG.
6570 TAG is assumed to be the tag of a tagged-type entity.
529cad9c 6571
1b611343 6572 May return NULL if we are unable to get the TSD. */
4c4b4cd2 6573
1b611343
JB
6574static struct value *
6575ada_get_tsd_from_tag (struct value *tag)
4c4b4cd2 6576{
4c4b4cd2 6577 struct value *val;
1b611343 6578 struct type *type;
5b4ee69b 6579
1b611343
JB
6580 /* First option: The TSD is simply stored as a field of our TAG.
6581 Only older versions of GNAT would use this format, but we have
6582 to test it first, because there are no visible markers for
6583 the current approach except the absence of that field. */
529cad9c 6584
1b611343
JB
6585 val = ada_value_struct_elt (tag, "tsd", 1);
6586 if (val)
6587 return val;
e802dbe0 6588
1b611343
JB
6589 /* Try the second representation for the dispatch table (in which
6590 there is no explicit 'tsd' field in the referent of the tag pointer,
6591 and instead the tsd pointer is stored just before the dispatch
6592 table. */
e802dbe0 6593
1b611343
JB
6594 type = ada_get_tsd_type (current_inferior());
6595 if (type == NULL)
6596 return NULL;
6597 type = lookup_pointer_type (lookup_pointer_type (type));
6598 val = value_cast (type, tag);
6599 if (val == NULL)
6600 return NULL;
6601 return value_ind (value_ptradd (val, -1));
e802dbe0
JB
6602}
6603
1b611343
JB
6604/* Given the TSD of a tag (type-specific data), return a string
6605 containing the name of the associated type.
6606
6607 The returned value is good until the next call. May return NULL
6608 if we are unable to determine the tag name. */
6609
6610static char *
6611ada_tag_name_from_tsd (struct value *tsd)
529cad9c 6612{
529cad9c
PH
6613 static char name[1024];
6614 char *p;
1b611343 6615 struct value *val;
529cad9c 6616
1b611343 6617 val = ada_value_struct_elt (tsd, "expanded_name", 1);
4c4b4cd2 6618 if (val == NULL)
1b611343 6619 return NULL;
4c4b4cd2
PH
6620 read_memory_string (value_as_address (val), name, sizeof (name) - 1);
6621 for (p = name; *p != '\0'; p += 1)
6622 if (isalpha (*p))
6623 *p = tolower (*p);
1b611343 6624 return name;
4c4b4cd2
PH
6625}
6626
6627/* The type name of the dynamic type denoted by the 'tag value TAG, as
1b611343
JB
6628 a C string.
6629
6630 Return NULL if the TAG is not an Ada tag, or if we were unable to
6631 determine the name of that tag. The result is good until the next
6632 call. */
4c4b4cd2
PH
6633
6634const char *
6635ada_tag_name (struct value *tag)
6636{
1b611343 6637 char *name = NULL;
5b4ee69b 6638
df407dfe 6639 if (!ada_is_tag_type (value_type (tag)))
4c4b4cd2 6640 return NULL;
1b611343
JB
6641
6642 /* It is perfectly possible that an exception be raised while trying
6643 to determine the TAG's name, even under normal circumstances:
6644 The associated variable may be uninitialized or corrupted, for
6645 instance. We do not let any exception propagate past this point.
6646 instead we return NULL.
6647
6648 We also do not print the error message either (which often is very
6649 low-level (Eg: "Cannot read memory at 0x[...]"), but instead let
6650 the caller print a more meaningful message if necessary. */
492d29ea 6651 TRY
1b611343
JB
6652 {
6653 struct value *tsd = ada_get_tsd_from_tag (tag);
6654
6655 if (tsd != NULL)
6656 name = ada_tag_name_from_tsd (tsd);
6657 }
492d29ea
PA
6658 CATCH (e, RETURN_MASK_ERROR)
6659 {
6660 }
6661 END_CATCH
1b611343
JB
6662
6663 return name;
4c4b4cd2
PH
6664}
6665
6666/* The parent type of TYPE, or NULL if none. */
14f9c5c9 6667
d2e4a39e 6668struct type *
ebf56fd3 6669ada_parent_type (struct type *type)
14f9c5c9
AS
6670{
6671 int i;
6672
61ee279c 6673 type = ada_check_typedef (type);
14f9c5c9
AS
6674
6675 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT)
6676 return NULL;
6677
6678 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
6679 if (ada_is_parent_field (type, i))
0c1f74cf
JB
6680 {
6681 struct type *parent_type = TYPE_FIELD_TYPE (type, i);
6682
6683 /* If the _parent field is a pointer, then dereference it. */
6684 if (TYPE_CODE (parent_type) == TYPE_CODE_PTR)
6685 parent_type = TYPE_TARGET_TYPE (parent_type);
6686 /* If there is a parallel XVS type, get the actual base type. */
6687 parent_type = ada_get_base_type (parent_type);
6688
6689 return ada_check_typedef (parent_type);
6690 }
14f9c5c9
AS
6691
6692 return NULL;
6693}
6694
4c4b4cd2
PH
6695/* True iff field number FIELD_NUM of structure type TYPE contains the
6696 parent-type (inherited) fields of a derived type. Assumes TYPE is
6697 a structure type with at least FIELD_NUM+1 fields. */
14f9c5c9
AS
6698
6699int
ebf56fd3 6700ada_is_parent_field (struct type *type, int field_num)
14f9c5c9 6701{
61ee279c 6702 const char *name = TYPE_FIELD_NAME (ada_check_typedef (type), field_num);
5b4ee69b 6703
4c4b4cd2 6704 return (name != NULL
61012eef
GB
6705 && (startswith (name, "PARENT")
6706 || startswith (name, "_parent")));
14f9c5c9
AS
6707}
6708
4c4b4cd2 6709/* True iff field number FIELD_NUM of structure type TYPE is a
14f9c5c9 6710 transparent wrapper field (which should be silently traversed when doing
4c4b4cd2 6711 field selection and flattened when printing). Assumes TYPE is a
14f9c5c9 6712 structure type with at least FIELD_NUM+1 fields. Such fields are always
4c4b4cd2 6713 structures. */
14f9c5c9
AS
6714
6715int
ebf56fd3 6716ada_is_wrapper_field (struct type *type, int field_num)
14f9c5c9 6717{
d2e4a39e 6718 const char *name = TYPE_FIELD_NAME (type, field_num);
5b4ee69b 6719
d2e4a39e 6720 return (name != NULL
61012eef 6721 && (startswith (name, "PARENT")
4c4b4cd2 6722 || strcmp (name, "REP") == 0
61012eef 6723 || startswith (name, "_parent")
4c4b4cd2 6724 || name[0] == 'S' || name[0] == 'R' || name[0] == 'O'));
14f9c5c9
AS
6725}
6726
4c4b4cd2
PH
6727/* True iff field number FIELD_NUM of structure or union type TYPE
6728 is a variant wrapper. Assumes TYPE is a structure type with at least
6729 FIELD_NUM+1 fields. */
14f9c5c9
AS
6730
6731int
ebf56fd3 6732ada_is_variant_part (struct type *type, int field_num)
14f9c5c9 6733{
d2e4a39e 6734 struct type *field_type = TYPE_FIELD_TYPE (type, field_num);
5b4ee69b 6735
14f9c5c9 6736 return (TYPE_CODE (field_type) == TYPE_CODE_UNION
4c4b4cd2 6737 || (is_dynamic_field (type, field_num)
c3e5cd34
PH
6738 && (TYPE_CODE (TYPE_TARGET_TYPE (field_type))
6739 == TYPE_CODE_UNION)));
14f9c5c9
AS
6740}
6741
6742/* Assuming that VAR_TYPE is a variant wrapper (type of the variant part)
4c4b4cd2 6743 whose discriminants are contained in the record type OUTER_TYPE,
7c964f07
UW
6744 returns the type of the controlling discriminant for the variant.
6745 May return NULL if the type could not be found. */
14f9c5c9 6746
d2e4a39e 6747struct type *
ebf56fd3 6748ada_variant_discrim_type (struct type *var_type, struct type *outer_type)
14f9c5c9 6749{
d2e4a39e 6750 char *name = ada_variant_discrim_name (var_type);
5b4ee69b 6751
7c964f07 6752 return ada_lookup_struct_elt_type (outer_type, name, 1, 1, NULL);
14f9c5c9
AS
6753}
6754
4c4b4cd2 6755/* Assuming that TYPE is the type of a variant wrapper, and FIELD_NUM is a
14f9c5c9 6756 valid field number within it, returns 1 iff field FIELD_NUM of TYPE
4c4b4cd2 6757 represents a 'when others' clause; otherwise 0. */
14f9c5c9
AS
6758
6759int
ebf56fd3 6760ada_is_others_clause (struct type *type, int field_num)
14f9c5c9 6761{
d2e4a39e 6762 const char *name = TYPE_FIELD_NAME (type, field_num);
5b4ee69b 6763
14f9c5c9
AS
6764 return (name != NULL && name[0] == 'O');
6765}
6766
6767/* Assuming that TYPE0 is the type of the variant part of a record,
4c4b4cd2
PH
6768 returns the name of the discriminant controlling the variant.
6769 The value is valid until the next call to ada_variant_discrim_name. */
14f9c5c9 6770
d2e4a39e 6771char *
ebf56fd3 6772ada_variant_discrim_name (struct type *type0)
14f9c5c9 6773{
d2e4a39e 6774 static char *result = NULL;
14f9c5c9 6775 static size_t result_len = 0;
d2e4a39e
AS
6776 struct type *type;
6777 const char *name;
6778 const char *discrim_end;
6779 const char *discrim_start;
14f9c5c9
AS
6780
6781 if (TYPE_CODE (type0) == TYPE_CODE_PTR)
6782 type = TYPE_TARGET_TYPE (type0);
6783 else
6784 type = type0;
6785
6786 name = ada_type_name (type);
6787
6788 if (name == NULL || name[0] == '\000')
6789 return "";
6790
6791 for (discrim_end = name + strlen (name) - 6; discrim_end != name;
6792 discrim_end -= 1)
6793 {
61012eef 6794 if (startswith (discrim_end, "___XVN"))
4c4b4cd2 6795 break;
14f9c5c9
AS
6796 }
6797 if (discrim_end == name)
6798 return "";
6799
d2e4a39e 6800 for (discrim_start = discrim_end; discrim_start != name + 3;
14f9c5c9
AS
6801 discrim_start -= 1)
6802 {
d2e4a39e 6803 if (discrim_start == name + 1)
4c4b4cd2 6804 return "";
76a01679 6805 if ((discrim_start > name + 3
61012eef 6806 && startswith (discrim_start - 3, "___"))
4c4b4cd2
PH
6807 || discrim_start[-1] == '.')
6808 break;
14f9c5c9
AS
6809 }
6810
6811 GROW_VECT (result, result_len, discrim_end - discrim_start + 1);
6812 strncpy (result, discrim_start, discrim_end - discrim_start);
d2e4a39e 6813 result[discrim_end - discrim_start] = '\0';
14f9c5c9
AS
6814 return result;
6815}
6816
4c4b4cd2
PH
6817/* Scan STR for a subtype-encoded number, beginning at position K.
6818 Put the position of the character just past the number scanned in
6819 *NEW_K, if NEW_K!=NULL. Put the scanned number in *R, if R!=NULL.
6820 Return 1 if there was a valid number at the given position, and 0
6821 otherwise. A "subtype-encoded" number consists of the absolute value
6822 in decimal, followed by the letter 'm' to indicate a negative number.
6823 Assumes 0m does not occur. */
14f9c5c9
AS
6824
6825int
d2e4a39e 6826ada_scan_number (const char str[], int k, LONGEST * R, int *new_k)
14f9c5c9
AS
6827{
6828 ULONGEST RU;
6829
d2e4a39e 6830 if (!isdigit (str[k]))
14f9c5c9
AS
6831 return 0;
6832
4c4b4cd2 6833 /* Do it the hard way so as not to make any assumption about
14f9c5c9 6834 the relationship of unsigned long (%lu scan format code) and
4c4b4cd2 6835 LONGEST. */
14f9c5c9
AS
6836 RU = 0;
6837 while (isdigit (str[k]))
6838 {
d2e4a39e 6839 RU = RU * 10 + (str[k] - '0');
14f9c5c9
AS
6840 k += 1;
6841 }
6842
d2e4a39e 6843 if (str[k] == 'm')
14f9c5c9
AS
6844 {
6845 if (R != NULL)
4c4b4cd2 6846 *R = (-(LONGEST) (RU - 1)) - 1;
14f9c5c9
AS
6847 k += 1;
6848 }
6849 else if (R != NULL)
6850 *R = (LONGEST) RU;
6851
4c4b4cd2 6852 /* NOTE on the above: Technically, C does not say what the results of
14f9c5c9
AS
6853 - (LONGEST) RU or (LONGEST) -RU are for RU == largest positive
6854 number representable as a LONGEST (although either would probably work
6855 in most implementations). When RU>0, the locution in the then branch
4c4b4cd2 6856 above is always equivalent to the negative of RU. */
14f9c5c9
AS
6857
6858 if (new_k != NULL)
6859 *new_k = k;
6860 return 1;
6861}
6862
4c4b4cd2
PH
6863/* Assuming that TYPE is a variant part wrapper type (a VARIANTS field),
6864 and FIELD_NUM is a valid field number within it, returns 1 iff VAL is
6865 in the range encoded by field FIELD_NUM of TYPE; otherwise 0. */
14f9c5c9 6866
d2e4a39e 6867int
ebf56fd3 6868ada_in_variant (LONGEST val, struct type *type, int field_num)
14f9c5c9 6869{
d2e4a39e 6870 const char *name = TYPE_FIELD_NAME (type, field_num);
14f9c5c9
AS
6871 int p;
6872
6873 p = 0;
6874 while (1)
6875 {
d2e4a39e 6876 switch (name[p])
4c4b4cd2
PH
6877 {
6878 case '\0':
6879 return 0;
6880 case 'S':
6881 {
6882 LONGEST W;
5b4ee69b 6883
4c4b4cd2
PH
6884 if (!ada_scan_number (name, p + 1, &W, &p))
6885 return 0;
6886 if (val == W)
6887 return 1;
6888 break;
6889 }
6890 case 'R':
6891 {
6892 LONGEST L, U;
5b4ee69b 6893
4c4b4cd2
PH
6894 if (!ada_scan_number (name, p + 1, &L, &p)
6895 || name[p] != 'T' || !ada_scan_number (name, p + 1, &U, &p))
6896 return 0;
6897 if (val >= L && val <= U)
6898 return 1;
6899 break;
6900 }
6901 case 'O':
6902 return 1;
6903 default:
6904 return 0;
6905 }
6906 }
6907}
6908
0963b4bd 6909/* FIXME: Lots of redundancy below. Try to consolidate. */
4c4b4cd2
PH
6910
6911/* Given a value ARG1 (offset by OFFSET bytes) of a struct or union type
6912 ARG_TYPE, extract and return the value of one of its (non-static)
6913 fields. FIELDNO says which field. Differs from value_primitive_field
6914 only in that it can handle packed values of arbitrary type. */
14f9c5c9 6915
4c4b4cd2 6916static struct value *
d2e4a39e 6917ada_value_primitive_field (struct value *arg1, int offset, int fieldno,
4c4b4cd2 6918 struct type *arg_type)
14f9c5c9 6919{
14f9c5c9
AS
6920 struct type *type;
6921
61ee279c 6922 arg_type = ada_check_typedef (arg_type);
14f9c5c9
AS
6923 type = TYPE_FIELD_TYPE (arg_type, fieldno);
6924
4c4b4cd2 6925 /* Handle packed fields. */
14f9c5c9
AS
6926
6927 if (TYPE_FIELD_BITSIZE (arg_type, fieldno) != 0)
6928 {
6929 int bit_pos = TYPE_FIELD_BITPOS (arg_type, fieldno);
6930 int bit_size = TYPE_FIELD_BITSIZE (arg_type, fieldno);
d2e4a39e 6931
0fd88904 6932 return ada_value_primitive_packed_val (arg1, value_contents (arg1),
4c4b4cd2
PH
6933 offset + bit_pos / 8,
6934 bit_pos % 8, bit_size, type);
14f9c5c9
AS
6935 }
6936 else
6937 return value_primitive_field (arg1, offset, fieldno, arg_type);
6938}
6939
52ce6436
PH
6940/* Find field with name NAME in object of type TYPE. If found,
6941 set the following for each argument that is non-null:
6942 - *FIELD_TYPE_P to the field's type;
6943 - *BYTE_OFFSET_P to OFFSET + the byte offset of the field within
6944 an object of that type;
6945 - *BIT_OFFSET_P to the bit offset modulo byte size of the field;
6946 - *BIT_SIZE_P to its size in bits if the field is packed, and
6947 0 otherwise;
6948 If INDEX_P is non-null, increment *INDEX_P by the number of source-visible
6949 fields up to but not including the desired field, or by the total
6950 number of fields if not found. A NULL value of NAME never
6951 matches; the function just counts visible fields in this case.
6952
0963b4bd 6953 Returns 1 if found, 0 otherwise. */
52ce6436 6954
4c4b4cd2 6955static int
0d5cff50 6956find_struct_field (const char *name, struct type *type, int offset,
76a01679 6957 struct type **field_type_p,
52ce6436
PH
6958 int *byte_offset_p, int *bit_offset_p, int *bit_size_p,
6959 int *index_p)
4c4b4cd2
PH
6960{
6961 int i;
6962
61ee279c 6963 type = ada_check_typedef (type);
76a01679 6964
52ce6436
PH
6965 if (field_type_p != NULL)
6966 *field_type_p = NULL;
6967 if (byte_offset_p != NULL)
d5d6fca5 6968 *byte_offset_p = 0;
52ce6436
PH
6969 if (bit_offset_p != NULL)
6970 *bit_offset_p = 0;
6971 if (bit_size_p != NULL)
6972 *bit_size_p = 0;
6973
6974 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
4c4b4cd2
PH
6975 {
6976 int bit_pos = TYPE_FIELD_BITPOS (type, i);
6977 int fld_offset = offset + bit_pos / 8;
0d5cff50 6978 const char *t_field_name = TYPE_FIELD_NAME (type, i);
76a01679 6979
4c4b4cd2
PH
6980 if (t_field_name == NULL)
6981 continue;
6982
52ce6436 6983 else if (name != NULL && field_name_match (t_field_name, name))
76a01679
JB
6984 {
6985 int bit_size = TYPE_FIELD_BITSIZE (type, i);
5b4ee69b 6986
52ce6436
PH
6987 if (field_type_p != NULL)
6988 *field_type_p = TYPE_FIELD_TYPE (type, i);
6989 if (byte_offset_p != NULL)
6990 *byte_offset_p = fld_offset;
6991 if (bit_offset_p != NULL)
6992 *bit_offset_p = bit_pos % 8;
6993 if (bit_size_p != NULL)
6994 *bit_size_p = bit_size;
76a01679
JB
6995 return 1;
6996 }
4c4b4cd2
PH
6997 else if (ada_is_wrapper_field (type, i))
6998 {
52ce6436
PH
6999 if (find_struct_field (name, TYPE_FIELD_TYPE (type, i), fld_offset,
7000 field_type_p, byte_offset_p, bit_offset_p,
7001 bit_size_p, index_p))
76a01679
JB
7002 return 1;
7003 }
4c4b4cd2
PH
7004 else if (ada_is_variant_part (type, i))
7005 {
52ce6436
PH
7006 /* PNH: Wait. Do we ever execute this section, or is ARG always of
7007 fixed type?? */
4c4b4cd2 7008 int j;
52ce6436
PH
7009 struct type *field_type
7010 = ada_check_typedef (TYPE_FIELD_TYPE (type, i));
4c4b4cd2 7011
52ce6436 7012 for (j = 0; j < TYPE_NFIELDS (field_type); j += 1)
4c4b4cd2 7013 {
76a01679
JB
7014 if (find_struct_field (name, TYPE_FIELD_TYPE (field_type, j),
7015 fld_offset
7016 + TYPE_FIELD_BITPOS (field_type, j) / 8,
7017 field_type_p, byte_offset_p,
52ce6436 7018 bit_offset_p, bit_size_p, index_p))
76a01679 7019 return 1;
4c4b4cd2
PH
7020 }
7021 }
52ce6436
PH
7022 else if (index_p != NULL)
7023 *index_p += 1;
4c4b4cd2
PH
7024 }
7025 return 0;
7026}
7027
0963b4bd 7028/* Number of user-visible fields in record type TYPE. */
4c4b4cd2 7029
52ce6436
PH
7030static int
7031num_visible_fields (struct type *type)
7032{
7033 int n;
5b4ee69b 7034
52ce6436
PH
7035 n = 0;
7036 find_struct_field (NULL, type, 0, NULL, NULL, NULL, NULL, &n);
7037 return n;
7038}
14f9c5c9 7039
4c4b4cd2 7040/* Look for a field NAME in ARG. Adjust the address of ARG by OFFSET bytes,
14f9c5c9
AS
7041 and search in it assuming it has (class) type TYPE.
7042 If found, return value, else return NULL.
7043
4c4b4cd2 7044 Searches recursively through wrapper fields (e.g., '_parent'). */
14f9c5c9 7045
4c4b4cd2 7046static struct value *
d2e4a39e 7047ada_search_struct_field (char *name, struct value *arg, int offset,
4c4b4cd2 7048 struct type *type)
14f9c5c9
AS
7049{
7050 int i;
14f9c5c9 7051
5b4ee69b 7052 type = ada_check_typedef (type);
52ce6436 7053 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
14f9c5c9 7054 {
0d5cff50 7055 const char *t_field_name = TYPE_FIELD_NAME (type, i);
14f9c5c9
AS
7056
7057 if (t_field_name == NULL)
4c4b4cd2 7058 continue;
14f9c5c9
AS
7059
7060 else if (field_name_match (t_field_name, name))
4c4b4cd2 7061 return ada_value_primitive_field (arg, offset, i, type);
14f9c5c9
AS
7062
7063 else if (ada_is_wrapper_field (type, i))
4c4b4cd2 7064 {
0963b4bd 7065 struct value *v = /* Do not let indent join lines here. */
06d5cf63
JB
7066 ada_search_struct_field (name, arg,
7067 offset + TYPE_FIELD_BITPOS (type, i) / 8,
7068 TYPE_FIELD_TYPE (type, i));
5b4ee69b 7069
4c4b4cd2
PH
7070 if (v != NULL)
7071 return v;
7072 }
14f9c5c9
AS
7073
7074 else if (ada_is_variant_part (type, i))
4c4b4cd2 7075 {
0963b4bd 7076 /* PNH: Do we ever get here? See find_struct_field. */
4c4b4cd2 7077 int j;
5b4ee69b
MS
7078 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type,
7079 i));
4c4b4cd2
PH
7080 int var_offset = offset + TYPE_FIELD_BITPOS (type, i) / 8;
7081
52ce6436 7082 for (j = 0; j < TYPE_NFIELDS (field_type); j += 1)
4c4b4cd2 7083 {
0963b4bd
MS
7084 struct value *v = ada_search_struct_field /* Force line
7085 break. */
06d5cf63
JB
7086 (name, arg,
7087 var_offset + TYPE_FIELD_BITPOS (field_type, j) / 8,
7088 TYPE_FIELD_TYPE (field_type, j));
5b4ee69b 7089
4c4b4cd2
PH
7090 if (v != NULL)
7091 return v;
7092 }
7093 }
14f9c5c9
AS
7094 }
7095 return NULL;
7096}
d2e4a39e 7097
52ce6436
PH
7098static struct value *ada_index_struct_field_1 (int *, struct value *,
7099 int, struct type *);
7100
7101
7102/* Return field #INDEX in ARG, where the index is that returned by
7103 * find_struct_field through its INDEX_P argument. Adjust the address
7104 * of ARG by OFFSET bytes, and search in it assuming it has (class) type TYPE.
0963b4bd 7105 * If found, return value, else return NULL. */
52ce6436
PH
7106
7107static struct value *
7108ada_index_struct_field (int index, struct value *arg, int offset,
7109 struct type *type)
7110{
7111 return ada_index_struct_field_1 (&index, arg, offset, type);
7112}
7113
7114
7115/* Auxiliary function for ada_index_struct_field. Like
7116 * ada_index_struct_field, but takes index from *INDEX_P and modifies
0963b4bd 7117 * *INDEX_P. */
52ce6436
PH
7118
7119static struct value *
7120ada_index_struct_field_1 (int *index_p, struct value *arg, int offset,
7121 struct type *type)
7122{
7123 int i;
7124 type = ada_check_typedef (type);
7125
7126 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
7127 {
7128 if (TYPE_FIELD_NAME (type, i) == NULL)
7129 continue;
7130 else if (ada_is_wrapper_field (type, i))
7131 {
0963b4bd 7132 struct value *v = /* Do not let indent join lines here. */
52ce6436
PH
7133 ada_index_struct_field_1 (index_p, arg,
7134 offset + TYPE_FIELD_BITPOS (type, i) / 8,
7135 TYPE_FIELD_TYPE (type, i));
5b4ee69b 7136
52ce6436
PH
7137 if (v != NULL)
7138 return v;
7139 }
7140
7141 else if (ada_is_variant_part (type, i))
7142 {
7143 /* PNH: Do we ever get here? See ada_search_struct_field,
0963b4bd 7144 find_struct_field. */
52ce6436
PH
7145 error (_("Cannot assign this kind of variant record"));
7146 }
7147 else if (*index_p == 0)
7148 return ada_value_primitive_field (arg, offset, i, type);
7149 else
7150 *index_p -= 1;
7151 }
7152 return NULL;
7153}
7154
4c4b4cd2
PH
7155/* Given ARG, a value of type (pointer or reference to a)*
7156 structure/union, extract the component named NAME from the ultimate
7157 target structure/union and return it as a value with its
f5938064 7158 appropriate type.
14f9c5c9 7159
4c4b4cd2
PH
7160 The routine searches for NAME among all members of the structure itself
7161 and (recursively) among all members of any wrapper members
14f9c5c9
AS
7162 (e.g., '_parent').
7163
03ee6b2e
PH
7164 If NO_ERR, then simply return NULL in case of error, rather than
7165 calling error. */
14f9c5c9 7166
d2e4a39e 7167struct value *
03ee6b2e 7168ada_value_struct_elt (struct value *arg, char *name, int no_err)
14f9c5c9 7169{
4c4b4cd2 7170 struct type *t, *t1;
d2e4a39e 7171 struct value *v;
14f9c5c9 7172
4c4b4cd2 7173 v = NULL;
df407dfe 7174 t1 = t = ada_check_typedef (value_type (arg));
4c4b4cd2
PH
7175 if (TYPE_CODE (t) == TYPE_CODE_REF)
7176 {
7177 t1 = TYPE_TARGET_TYPE (t);
7178 if (t1 == NULL)
03ee6b2e 7179 goto BadValue;
61ee279c 7180 t1 = ada_check_typedef (t1);
4c4b4cd2 7181 if (TYPE_CODE (t1) == TYPE_CODE_PTR)
76a01679 7182 {
994b9211 7183 arg = coerce_ref (arg);
76a01679
JB
7184 t = t1;
7185 }
4c4b4cd2 7186 }
14f9c5c9 7187
4c4b4cd2
PH
7188 while (TYPE_CODE (t) == TYPE_CODE_PTR)
7189 {
7190 t1 = TYPE_TARGET_TYPE (t);
7191 if (t1 == NULL)
03ee6b2e 7192 goto BadValue;
61ee279c 7193 t1 = ada_check_typedef (t1);
4c4b4cd2 7194 if (TYPE_CODE (t1) == TYPE_CODE_PTR)
76a01679
JB
7195 {
7196 arg = value_ind (arg);
7197 t = t1;
7198 }
4c4b4cd2 7199 else
76a01679 7200 break;
4c4b4cd2 7201 }
14f9c5c9 7202
4c4b4cd2 7203 if (TYPE_CODE (t1) != TYPE_CODE_STRUCT && TYPE_CODE (t1) != TYPE_CODE_UNION)
03ee6b2e 7204 goto BadValue;
14f9c5c9 7205
4c4b4cd2
PH
7206 if (t1 == t)
7207 v = ada_search_struct_field (name, arg, 0, t);
7208 else
7209 {
7210 int bit_offset, bit_size, byte_offset;
7211 struct type *field_type;
7212 CORE_ADDR address;
7213
76a01679 7214 if (TYPE_CODE (t) == TYPE_CODE_PTR)
b50d69b5 7215 address = value_address (ada_value_ind (arg));
4c4b4cd2 7216 else
b50d69b5 7217 address = value_address (ada_coerce_ref (arg));
14f9c5c9 7218
1ed6ede0 7219 t1 = ada_to_fixed_type (ada_get_base_type (t1), NULL, address, NULL, 1);
76a01679
JB
7220 if (find_struct_field (name, t1, 0,
7221 &field_type, &byte_offset, &bit_offset,
52ce6436 7222 &bit_size, NULL))
76a01679
JB
7223 {
7224 if (bit_size != 0)
7225 {
714e53ab
PH
7226 if (TYPE_CODE (t) == TYPE_CODE_REF)
7227 arg = ada_coerce_ref (arg);
7228 else
7229 arg = ada_value_ind (arg);
76a01679
JB
7230 v = ada_value_primitive_packed_val (arg, NULL, byte_offset,
7231 bit_offset, bit_size,
7232 field_type);
7233 }
7234 else
f5938064 7235 v = value_at_lazy (field_type, address + byte_offset);
76a01679
JB
7236 }
7237 }
7238
03ee6b2e
PH
7239 if (v != NULL || no_err)
7240 return v;
7241 else
323e0a4a 7242 error (_("There is no member named %s."), name);
14f9c5c9 7243
03ee6b2e
PH
7244 BadValue:
7245 if (no_err)
7246 return NULL;
7247 else
0963b4bd
MS
7248 error (_("Attempt to extract a component of "
7249 "a value that is not a record."));
14f9c5c9
AS
7250}
7251
7252/* Given a type TYPE, look up the type of the component of type named NAME.
4c4b4cd2
PH
7253 If DISPP is non-null, add its byte displacement from the beginning of a
7254 structure (pointed to by a value) of type TYPE to *DISPP (does not
14f9c5c9
AS
7255 work for packed fields).
7256
7257 Matches any field whose name has NAME as a prefix, possibly
4c4b4cd2 7258 followed by "___".
14f9c5c9 7259
0963b4bd 7260 TYPE can be either a struct or union. If REFOK, TYPE may also
4c4b4cd2
PH
7261 be a (pointer or reference)+ to a struct or union, and the
7262 ultimate target type will be searched.
14f9c5c9
AS
7263
7264 Looks recursively into variant clauses and parent types.
7265
4c4b4cd2
PH
7266 If NOERR is nonzero, return NULL if NAME is not suitably defined or
7267 TYPE is not a type of the right kind. */
14f9c5c9 7268
4c4b4cd2 7269static struct type *
76a01679
JB
7270ada_lookup_struct_elt_type (struct type *type, char *name, int refok,
7271 int noerr, int *dispp)
14f9c5c9
AS
7272{
7273 int i;
7274
7275 if (name == NULL)
7276 goto BadName;
7277
76a01679 7278 if (refok && type != NULL)
4c4b4cd2
PH
7279 while (1)
7280 {
61ee279c 7281 type = ada_check_typedef (type);
76a01679
JB
7282 if (TYPE_CODE (type) != TYPE_CODE_PTR
7283 && TYPE_CODE (type) != TYPE_CODE_REF)
7284 break;
7285 type = TYPE_TARGET_TYPE (type);
4c4b4cd2 7286 }
14f9c5c9 7287
76a01679 7288 if (type == NULL
1265e4aa
JB
7289 || (TYPE_CODE (type) != TYPE_CODE_STRUCT
7290 && TYPE_CODE (type) != TYPE_CODE_UNION))
14f9c5c9 7291 {
4c4b4cd2 7292 if (noerr)
76a01679 7293 return NULL;
4c4b4cd2 7294 else
76a01679
JB
7295 {
7296 target_terminal_ours ();
7297 gdb_flush (gdb_stdout);
323e0a4a
AC
7298 if (type == NULL)
7299 error (_("Type (null) is not a structure or union type"));
7300 else
7301 {
7302 /* XXX: type_sprint */
7303 fprintf_unfiltered (gdb_stderr, _("Type "));
7304 type_print (type, "", gdb_stderr, -1);
7305 error (_(" is not a structure or union type"));
7306 }
76a01679 7307 }
14f9c5c9
AS
7308 }
7309
7310 type = to_static_fixed_type (type);
7311
7312 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
7313 {
0d5cff50 7314 const char *t_field_name = TYPE_FIELD_NAME (type, i);
14f9c5c9
AS
7315 struct type *t;
7316 int disp;
d2e4a39e 7317
14f9c5c9 7318 if (t_field_name == NULL)
4c4b4cd2 7319 continue;
14f9c5c9
AS
7320
7321 else if (field_name_match (t_field_name, name))
4c4b4cd2
PH
7322 {
7323 if (dispp != NULL)
7324 *dispp += TYPE_FIELD_BITPOS (type, i) / 8;
61ee279c 7325 return ada_check_typedef (TYPE_FIELD_TYPE (type, i));
4c4b4cd2 7326 }
14f9c5c9
AS
7327
7328 else if (ada_is_wrapper_field (type, i))
4c4b4cd2
PH
7329 {
7330 disp = 0;
7331 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (type, i), name,
7332 0, 1, &disp);
7333 if (t != NULL)
7334 {
7335 if (dispp != NULL)
7336 *dispp += disp + TYPE_FIELD_BITPOS (type, i) / 8;
7337 return t;
7338 }
7339 }
14f9c5c9
AS
7340
7341 else if (ada_is_variant_part (type, i))
4c4b4cd2
PH
7342 {
7343 int j;
5b4ee69b
MS
7344 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type,
7345 i));
4c4b4cd2
PH
7346
7347 for (j = TYPE_NFIELDS (field_type) - 1; j >= 0; j -= 1)
7348 {
b1f33ddd
JB
7349 /* FIXME pnh 2008/01/26: We check for a field that is
7350 NOT wrapped in a struct, since the compiler sometimes
7351 generates these for unchecked variant types. Revisit
0963b4bd 7352 if the compiler changes this practice. */
0d5cff50 7353 const char *v_field_name = TYPE_FIELD_NAME (field_type, j);
4c4b4cd2 7354 disp = 0;
b1f33ddd
JB
7355 if (v_field_name != NULL
7356 && field_name_match (v_field_name, name))
7357 t = ada_check_typedef (TYPE_FIELD_TYPE (field_type, j));
7358 else
0963b4bd
MS
7359 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (field_type,
7360 j),
b1f33ddd
JB
7361 name, 0, 1, &disp);
7362
4c4b4cd2
PH
7363 if (t != NULL)
7364 {
7365 if (dispp != NULL)
7366 *dispp += disp + TYPE_FIELD_BITPOS (type, i) / 8;
7367 return t;
7368 }
7369 }
7370 }
14f9c5c9
AS
7371
7372 }
7373
7374BadName:
d2e4a39e 7375 if (!noerr)
14f9c5c9
AS
7376 {
7377 target_terminal_ours ();
7378 gdb_flush (gdb_stdout);
323e0a4a
AC
7379 if (name == NULL)
7380 {
7381 /* XXX: type_sprint */
7382 fprintf_unfiltered (gdb_stderr, _("Type "));
7383 type_print (type, "", gdb_stderr, -1);
7384 error (_(" has no component named <null>"));
7385 }
7386 else
7387 {
7388 /* XXX: type_sprint */
7389 fprintf_unfiltered (gdb_stderr, _("Type "));
7390 type_print (type, "", gdb_stderr, -1);
7391 error (_(" has no component named %s"), name);
7392 }
14f9c5c9
AS
7393 }
7394
7395 return NULL;
7396}
7397
b1f33ddd
JB
7398/* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
7399 within a value of type OUTER_TYPE, return true iff VAR_TYPE
7400 represents an unchecked union (that is, the variant part of a
0963b4bd 7401 record that is named in an Unchecked_Union pragma). */
b1f33ddd
JB
7402
7403static int
7404is_unchecked_variant (struct type *var_type, struct type *outer_type)
7405{
7406 char *discrim_name = ada_variant_discrim_name (var_type);
5b4ee69b 7407
b1f33ddd
JB
7408 return (ada_lookup_struct_elt_type (outer_type, discrim_name, 0, 1, NULL)
7409 == NULL);
7410}
7411
7412
14f9c5c9
AS
7413/* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
7414 within a value of type OUTER_TYPE that is stored in GDB at
4c4b4cd2
PH
7415 OUTER_VALADDR, determine which variant clause (field number in VAR_TYPE,
7416 numbering from 0) is applicable. Returns -1 if none are. */
14f9c5c9 7417
d2e4a39e 7418int
ebf56fd3 7419ada_which_variant_applies (struct type *var_type, struct type *outer_type,
fc1a4b47 7420 const gdb_byte *outer_valaddr)
14f9c5c9
AS
7421{
7422 int others_clause;
7423 int i;
d2e4a39e 7424 char *discrim_name = ada_variant_discrim_name (var_type);
0c281816
JB
7425 struct value *outer;
7426 struct value *discrim;
14f9c5c9
AS
7427 LONGEST discrim_val;
7428
012370f6
TT
7429 /* Using plain value_from_contents_and_address here causes problems
7430 because we will end up trying to resolve a type that is currently
7431 being constructed. */
7432 outer = value_from_contents_and_address_unresolved (outer_type,
7433 outer_valaddr, 0);
0c281816
JB
7434 discrim = ada_value_struct_elt (outer, discrim_name, 1);
7435 if (discrim == NULL)
14f9c5c9 7436 return -1;
0c281816 7437 discrim_val = value_as_long (discrim);
14f9c5c9
AS
7438
7439 others_clause = -1;
7440 for (i = 0; i < TYPE_NFIELDS (var_type); i += 1)
7441 {
7442 if (ada_is_others_clause (var_type, i))
4c4b4cd2 7443 others_clause = i;
14f9c5c9 7444 else if (ada_in_variant (discrim_val, var_type, i))
4c4b4cd2 7445 return i;
14f9c5c9
AS
7446 }
7447
7448 return others_clause;
7449}
d2e4a39e 7450\f
14f9c5c9
AS
7451
7452
4c4b4cd2 7453 /* Dynamic-Sized Records */
14f9c5c9
AS
7454
7455/* Strategy: The type ostensibly attached to a value with dynamic size
7456 (i.e., a size that is not statically recorded in the debugging
7457 data) does not accurately reflect the size or layout of the value.
7458 Our strategy is to convert these values to values with accurate,
4c4b4cd2 7459 conventional types that are constructed on the fly. */
14f9c5c9
AS
7460
7461/* There is a subtle and tricky problem here. In general, we cannot
7462 determine the size of dynamic records without its data. However,
7463 the 'struct value' data structure, which GDB uses to represent
7464 quantities in the inferior process (the target), requires the size
7465 of the type at the time of its allocation in order to reserve space
7466 for GDB's internal copy of the data. That's why the
7467 'to_fixed_xxx_type' routines take (target) addresses as parameters,
4c4b4cd2 7468 rather than struct value*s.
14f9c5c9
AS
7469
7470 However, GDB's internal history variables ($1, $2, etc.) are
7471 struct value*s containing internal copies of the data that are not, in
7472 general, the same as the data at their corresponding addresses in
7473 the target. Fortunately, the types we give to these values are all
7474 conventional, fixed-size types (as per the strategy described
7475 above), so that we don't usually have to perform the
7476 'to_fixed_xxx_type' conversions to look at their values.
7477 Unfortunately, there is one exception: if one of the internal
7478 history variables is an array whose elements are unconstrained
7479 records, then we will need to create distinct fixed types for each
7480 element selected. */
7481
7482/* The upshot of all of this is that many routines take a (type, host
7483 address, target address) triple as arguments to represent a value.
7484 The host address, if non-null, is supposed to contain an internal
7485 copy of the relevant data; otherwise, the program is to consult the
4c4b4cd2 7486 target at the target address. */
14f9c5c9
AS
7487
7488/* Assuming that VAL0 represents a pointer value, the result of
7489 dereferencing it. Differs from value_ind in its treatment of
4c4b4cd2 7490 dynamic-sized types. */
14f9c5c9 7491
d2e4a39e
AS
7492struct value *
7493ada_value_ind (struct value *val0)
14f9c5c9 7494{
c48db5ca 7495 struct value *val = value_ind (val0);
5b4ee69b 7496
b50d69b5
JG
7497 if (ada_is_tagged_type (value_type (val), 0))
7498 val = ada_tag_value_at_base_address (val);
7499
4c4b4cd2 7500 return ada_to_fixed_value (val);
14f9c5c9
AS
7501}
7502
7503/* The value resulting from dereferencing any "reference to"
4c4b4cd2
PH
7504 qualifiers on VAL0. */
7505
d2e4a39e
AS
7506static struct value *
7507ada_coerce_ref (struct value *val0)
7508{
df407dfe 7509 if (TYPE_CODE (value_type (val0)) == TYPE_CODE_REF)
d2e4a39e
AS
7510 {
7511 struct value *val = val0;
5b4ee69b 7512
994b9211 7513 val = coerce_ref (val);
b50d69b5
JG
7514
7515 if (ada_is_tagged_type (value_type (val), 0))
7516 val = ada_tag_value_at_base_address (val);
7517
4c4b4cd2 7518 return ada_to_fixed_value (val);
d2e4a39e
AS
7519 }
7520 else
14f9c5c9
AS
7521 return val0;
7522}
7523
7524/* Return OFF rounded upward if necessary to a multiple of
4c4b4cd2 7525 ALIGNMENT (a power of 2). */
14f9c5c9
AS
7526
7527static unsigned int
ebf56fd3 7528align_value (unsigned int off, unsigned int alignment)
14f9c5c9
AS
7529{
7530 return (off + alignment - 1) & ~(alignment - 1);
7531}
7532
4c4b4cd2 7533/* Return the bit alignment required for field #F of template type TYPE. */
14f9c5c9
AS
7534
7535static unsigned int
ebf56fd3 7536field_alignment (struct type *type, int f)
14f9c5c9 7537{
d2e4a39e 7538 const char *name = TYPE_FIELD_NAME (type, f);
64a1bf19 7539 int len;
14f9c5c9
AS
7540 int align_offset;
7541
64a1bf19
JB
7542 /* The field name should never be null, unless the debugging information
7543 is somehow malformed. In this case, we assume the field does not
7544 require any alignment. */
7545 if (name == NULL)
7546 return 1;
7547
7548 len = strlen (name);
7549
4c4b4cd2
PH
7550 if (!isdigit (name[len - 1]))
7551 return 1;
14f9c5c9 7552
d2e4a39e 7553 if (isdigit (name[len - 2]))
14f9c5c9
AS
7554 align_offset = len - 2;
7555 else
7556 align_offset = len - 1;
7557
61012eef 7558 if (align_offset < 7 || !startswith (name + align_offset - 6, "___XV"))
14f9c5c9
AS
7559 return TARGET_CHAR_BIT;
7560
4c4b4cd2
PH
7561 return atoi (name + align_offset) * TARGET_CHAR_BIT;
7562}
7563
852dff6c 7564/* Find a typedef or tag symbol named NAME. Ignores ambiguity. */
4c4b4cd2 7565
852dff6c
JB
7566static struct symbol *
7567ada_find_any_type_symbol (const char *name)
4c4b4cd2
PH
7568{
7569 struct symbol *sym;
7570
7571 sym = standard_lookup (name, get_selected_block (NULL), VAR_DOMAIN);
4186eb54 7572 if (sym != NULL && SYMBOL_CLASS (sym) == LOC_TYPEDEF)
4c4b4cd2
PH
7573 return sym;
7574
4186eb54
KS
7575 sym = standard_lookup (name, NULL, STRUCT_DOMAIN);
7576 return sym;
14f9c5c9
AS
7577}
7578
dddfab26
UW
7579/* Find a type named NAME. Ignores ambiguity. This routine will look
7580 solely for types defined by debug info, it will not search the GDB
7581 primitive types. */
4c4b4cd2 7582
852dff6c 7583static struct type *
ebf56fd3 7584ada_find_any_type (const char *name)
14f9c5c9 7585{
852dff6c 7586 struct symbol *sym = ada_find_any_type_symbol (name);
14f9c5c9 7587
14f9c5c9 7588 if (sym != NULL)
dddfab26 7589 return SYMBOL_TYPE (sym);
14f9c5c9 7590
dddfab26 7591 return NULL;
14f9c5c9
AS
7592}
7593
739593e0
JB
7594/* Given NAME_SYM and an associated BLOCK, find a "renaming" symbol
7595 associated with NAME_SYM's name. NAME_SYM may itself be a renaming
7596 symbol, in which case it is returned. Otherwise, this looks for
7597 symbols whose name is that of NAME_SYM suffixed with "___XR".
7598 Return symbol if found, and NULL otherwise. */
4c4b4cd2
PH
7599
7600struct symbol *
270140bd 7601ada_find_renaming_symbol (struct symbol *name_sym, const struct block *block)
aeb5907d 7602{
739593e0 7603 const char *name = SYMBOL_LINKAGE_NAME (name_sym);
aeb5907d
JB
7604 struct symbol *sym;
7605
739593e0
JB
7606 if (strstr (name, "___XR") != NULL)
7607 return name_sym;
7608
aeb5907d
JB
7609 sym = find_old_style_renaming_symbol (name, block);
7610
7611 if (sym != NULL)
7612 return sym;
7613
0963b4bd 7614 /* Not right yet. FIXME pnh 7/20/2007. */
852dff6c 7615 sym = ada_find_any_type_symbol (name);
aeb5907d
JB
7616 if (sym != NULL && strstr (SYMBOL_LINKAGE_NAME (sym), "___XR") != NULL)
7617 return sym;
7618 else
7619 return NULL;
7620}
7621
7622static struct symbol *
270140bd 7623find_old_style_renaming_symbol (const char *name, const struct block *block)
4c4b4cd2 7624{
7f0df278 7625 const struct symbol *function_sym = block_linkage_function (block);
4c4b4cd2
PH
7626 char *rename;
7627
7628 if (function_sym != NULL)
7629 {
7630 /* If the symbol is defined inside a function, NAME is not fully
7631 qualified. This means we need to prepend the function name
7632 as well as adding the ``___XR'' suffix to build the name of
7633 the associated renaming symbol. */
0d5cff50 7634 const char *function_name = SYMBOL_LINKAGE_NAME (function_sym);
529cad9c
PH
7635 /* Function names sometimes contain suffixes used
7636 for instance to qualify nested subprograms. When building
7637 the XR type name, we need to make sure that this suffix is
7638 not included. So do not include any suffix in the function
7639 name length below. */
69fadcdf 7640 int function_name_len = ada_name_prefix_len (function_name);
76a01679
JB
7641 const int rename_len = function_name_len + 2 /* "__" */
7642 + strlen (name) + 6 /* "___XR\0" */ ;
4c4b4cd2 7643
529cad9c 7644 /* Strip the suffix if necessary. */
69fadcdf
JB
7645 ada_remove_trailing_digits (function_name, &function_name_len);
7646 ada_remove_po_subprogram_suffix (function_name, &function_name_len);
7647 ada_remove_Xbn_suffix (function_name, &function_name_len);
529cad9c 7648
4c4b4cd2
PH
7649 /* Library-level functions are a special case, as GNAT adds
7650 a ``_ada_'' prefix to the function name to avoid namespace
aeb5907d 7651 pollution. However, the renaming symbols themselves do not
4c4b4cd2
PH
7652 have this prefix, so we need to skip this prefix if present. */
7653 if (function_name_len > 5 /* "_ada_" */
7654 && strstr (function_name, "_ada_") == function_name)
69fadcdf
JB
7655 {
7656 function_name += 5;
7657 function_name_len -= 5;
7658 }
4c4b4cd2
PH
7659
7660 rename = (char *) alloca (rename_len * sizeof (char));
69fadcdf
JB
7661 strncpy (rename, function_name, function_name_len);
7662 xsnprintf (rename + function_name_len, rename_len - function_name_len,
7663 "__%s___XR", name);
4c4b4cd2
PH
7664 }
7665 else
7666 {
7667 const int rename_len = strlen (name) + 6;
5b4ee69b 7668
4c4b4cd2 7669 rename = (char *) alloca (rename_len * sizeof (char));
88c15c34 7670 xsnprintf (rename, rename_len * sizeof (char), "%s___XR", name);
4c4b4cd2
PH
7671 }
7672
852dff6c 7673 return ada_find_any_type_symbol (rename);
4c4b4cd2
PH
7674}
7675
14f9c5c9 7676/* Because of GNAT encoding conventions, several GDB symbols may match a
4c4b4cd2 7677 given type name. If the type denoted by TYPE0 is to be preferred to
14f9c5c9 7678 that of TYPE1 for purposes of type printing, return non-zero;
4c4b4cd2
PH
7679 otherwise return 0. */
7680
14f9c5c9 7681int
d2e4a39e 7682ada_prefer_type (struct type *type0, struct type *type1)
14f9c5c9
AS
7683{
7684 if (type1 == NULL)
7685 return 1;
7686 else if (type0 == NULL)
7687 return 0;
7688 else if (TYPE_CODE (type1) == TYPE_CODE_VOID)
7689 return 1;
7690 else if (TYPE_CODE (type0) == TYPE_CODE_VOID)
7691 return 0;
4c4b4cd2
PH
7692 else if (TYPE_NAME (type1) == NULL && TYPE_NAME (type0) != NULL)
7693 return 1;
ad82864c 7694 else if (ada_is_constrained_packed_array_type (type0))
14f9c5c9 7695 return 1;
4c4b4cd2
PH
7696 else if (ada_is_array_descriptor_type (type0)
7697 && !ada_is_array_descriptor_type (type1))
14f9c5c9 7698 return 1;
aeb5907d
JB
7699 else
7700 {
7701 const char *type0_name = type_name_no_tag (type0);
7702 const char *type1_name = type_name_no_tag (type1);
7703
7704 if (type0_name != NULL && strstr (type0_name, "___XR") != NULL
7705 && (type1_name == NULL || strstr (type1_name, "___XR") == NULL))
7706 return 1;
7707 }
14f9c5c9
AS
7708 return 0;
7709}
7710
7711/* The name of TYPE, which is either its TYPE_NAME, or, if that is
4c4b4cd2
PH
7712 null, its TYPE_TAG_NAME. Null if TYPE is null. */
7713
0d5cff50 7714const char *
d2e4a39e 7715ada_type_name (struct type *type)
14f9c5c9 7716{
d2e4a39e 7717 if (type == NULL)
14f9c5c9
AS
7718 return NULL;
7719 else if (TYPE_NAME (type) != NULL)
7720 return TYPE_NAME (type);
7721 else
7722 return TYPE_TAG_NAME (type);
7723}
7724
b4ba55a1
JB
7725/* Search the list of "descriptive" types associated to TYPE for a type
7726 whose name is NAME. */
7727
7728static struct type *
7729find_parallel_type_by_descriptive_type (struct type *type, const char *name)
7730{
7731 struct type *result;
7732
c6044dd1
JB
7733 if (ada_ignore_descriptive_types_p)
7734 return NULL;
7735
b4ba55a1
JB
7736 /* If there no descriptive-type info, then there is no parallel type
7737 to be found. */
7738 if (!HAVE_GNAT_AUX_INFO (type))
7739 return NULL;
7740
7741 result = TYPE_DESCRIPTIVE_TYPE (type);
7742 while (result != NULL)
7743 {
0d5cff50 7744 const char *result_name = ada_type_name (result);
b4ba55a1
JB
7745
7746 if (result_name == NULL)
7747 {
7748 warning (_("unexpected null name on descriptive type"));
7749 return NULL;
7750 }
7751
7752 /* If the names match, stop. */
7753 if (strcmp (result_name, name) == 0)
7754 break;
7755
7756 /* Otherwise, look at the next item on the list, if any. */
7757 if (HAVE_GNAT_AUX_INFO (result))
7758 result = TYPE_DESCRIPTIVE_TYPE (result);
7759 else
7760 result = NULL;
7761 }
7762
7763 /* If we didn't find a match, see whether this is a packed array. With
7764 older compilers, the descriptive type information is either absent or
7765 irrelevant when it comes to packed arrays so the above lookup fails.
7766 Fall back to using a parallel lookup by name in this case. */
12ab9e09 7767 if (result == NULL && ada_is_constrained_packed_array_type (type))
b4ba55a1
JB
7768 return ada_find_any_type (name);
7769
7770 return result;
7771}
7772
7773/* Find a parallel type to TYPE with the specified NAME, using the
7774 descriptive type taken from the debugging information, if available,
7775 and otherwise using the (slower) name-based method. */
7776
7777static struct type *
7778ada_find_parallel_type_with_name (struct type *type, const char *name)
7779{
7780 struct type *result = NULL;
7781
7782 if (HAVE_GNAT_AUX_INFO (type))
7783 result = find_parallel_type_by_descriptive_type (type, name);
7784 else
7785 result = ada_find_any_type (name);
7786
7787 return result;
7788}
7789
7790/* Same as above, but specify the name of the parallel type by appending
4c4b4cd2 7791 SUFFIX to the name of TYPE. */
14f9c5c9 7792
d2e4a39e 7793struct type *
ebf56fd3 7794ada_find_parallel_type (struct type *type, const char *suffix)
14f9c5c9 7795{
0d5cff50 7796 char *name;
fe978cb0 7797 const char *type_name = ada_type_name (type);
14f9c5c9 7798 int len;
d2e4a39e 7799
fe978cb0 7800 if (type_name == NULL)
14f9c5c9
AS
7801 return NULL;
7802
fe978cb0 7803 len = strlen (type_name);
14f9c5c9 7804
b4ba55a1 7805 name = (char *) alloca (len + strlen (suffix) + 1);
14f9c5c9 7806
fe978cb0 7807 strcpy (name, type_name);
14f9c5c9
AS
7808 strcpy (name + len, suffix);
7809
b4ba55a1 7810 return ada_find_parallel_type_with_name (type, name);
14f9c5c9
AS
7811}
7812
14f9c5c9 7813/* If TYPE is a variable-size record type, return the corresponding template
4c4b4cd2 7814 type describing its fields. Otherwise, return NULL. */
14f9c5c9 7815
d2e4a39e
AS
7816static struct type *
7817dynamic_template_type (struct type *type)
14f9c5c9 7818{
61ee279c 7819 type = ada_check_typedef (type);
14f9c5c9
AS
7820
7821 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT
d2e4a39e 7822 || ada_type_name (type) == NULL)
14f9c5c9 7823 return NULL;
d2e4a39e 7824 else
14f9c5c9
AS
7825 {
7826 int len = strlen (ada_type_name (type));
5b4ee69b 7827
4c4b4cd2
PH
7828 if (len > 6 && strcmp (ada_type_name (type) + len - 6, "___XVE") == 0)
7829 return type;
14f9c5c9 7830 else
4c4b4cd2 7831 return ada_find_parallel_type (type, "___XVE");
14f9c5c9
AS
7832 }
7833}
7834
7835/* Assuming that TEMPL_TYPE is a union or struct type, returns
4c4b4cd2 7836 non-zero iff field FIELD_NUM of TEMPL_TYPE has dynamic size. */
14f9c5c9 7837
d2e4a39e
AS
7838static int
7839is_dynamic_field (struct type *templ_type, int field_num)
14f9c5c9
AS
7840{
7841 const char *name = TYPE_FIELD_NAME (templ_type, field_num);
5b4ee69b 7842
d2e4a39e 7843 return name != NULL
14f9c5c9
AS
7844 && TYPE_CODE (TYPE_FIELD_TYPE (templ_type, field_num)) == TYPE_CODE_PTR
7845 && strstr (name, "___XVL") != NULL;
7846}
7847
4c4b4cd2
PH
7848/* The index of the variant field of TYPE, or -1 if TYPE does not
7849 represent a variant record type. */
14f9c5c9 7850
d2e4a39e 7851static int
4c4b4cd2 7852variant_field_index (struct type *type)
14f9c5c9
AS
7853{
7854 int f;
7855
4c4b4cd2
PH
7856 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT)
7857 return -1;
7858
7859 for (f = 0; f < TYPE_NFIELDS (type); f += 1)
7860 {
7861 if (ada_is_variant_part (type, f))
7862 return f;
7863 }
7864 return -1;
14f9c5c9
AS
7865}
7866
4c4b4cd2
PH
7867/* A record type with no fields. */
7868
d2e4a39e 7869static struct type *
fe978cb0 7870empty_record (struct type *templ)
14f9c5c9 7871{
fe978cb0 7872 struct type *type = alloc_type_copy (templ);
5b4ee69b 7873
14f9c5c9
AS
7874 TYPE_CODE (type) = TYPE_CODE_STRUCT;
7875 TYPE_NFIELDS (type) = 0;
7876 TYPE_FIELDS (type) = NULL;
b1f33ddd 7877 INIT_CPLUS_SPECIFIC (type);
14f9c5c9
AS
7878 TYPE_NAME (type) = "<empty>";
7879 TYPE_TAG_NAME (type) = NULL;
14f9c5c9
AS
7880 TYPE_LENGTH (type) = 0;
7881 return type;
7882}
7883
7884/* An ordinary record type (with fixed-length fields) that describes
4c4b4cd2
PH
7885 the value of type TYPE at VALADDR or ADDRESS (see comments at
7886 the beginning of this section) VAL according to GNAT conventions.
7887 DVAL0 should describe the (portion of a) record that contains any
df407dfe 7888 necessary discriminants. It should be NULL if value_type (VAL) is
14f9c5c9
AS
7889 an outer-level type (i.e., as opposed to a branch of a variant.) A
7890 variant field (unless unchecked) is replaced by a particular branch
4c4b4cd2 7891 of the variant.
14f9c5c9 7892
4c4b4cd2
PH
7893 If not KEEP_DYNAMIC_FIELDS, then all fields whose position or
7894 length are not statically known are discarded. As a consequence,
7895 VALADDR, ADDRESS and DVAL0 are ignored.
7896
7897 NOTE: Limitations: For now, we assume that dynamic fields and
7898 variants occupy whole numbers of bytes. However, they need not be
7899 byte-aligned. */
7900
7901struct type *
10a2c479 7902ada_template_to_fixed_record_type_1 (struct type *type,
fc1a4b47 7903 const gdb_byte *valaddr,
4c4b4cd2
PH
7904 CORE_ADDR address, struct value *dval0,
7905 int keep_dynamic_fields)
14f9c5c9 7906{
d2e4a39e
AS
7907 struct value *mark = value_mark ();
7908 struct value *dval;
7909 struct type *rtype;
14f9c5c9 7910 int nfields, bit_len;
4c4b4cd2 7911 int variant_field;
14f9c5c9 7912 long off;
d94e4f4f 7913 int fld_bit_len;
14f9c5c9
AS
7914 int f;
7915
4c4b4cd2
PH
7916 /* Compute the number of fields in this record type that are going
7917 to be processed: unless keep_dynamic_fields, this includes only
7918 fields whose position and length are static will be processed. */
7919 if (keep_dynamic_fields)
7920 nfields = TYPE_NFIELDS (type);
7921 else
7922 {
7923 nfields = 0;
76a01679 7924 while (nfields < TYPE_NFIELDS (type)
4c4b4cd2
PH
7925 && !ada_is_variant_part (type, nfields)
7926 && !is_dynamic_field (type, nfields))
7927 nfields++;
7928 }
7929
e9bb382b 7930 rtype = alloc_type_copy (type);
14f9c5c9
AS
7931 TYPE_CODE (rtype) = TYPE_CODE_STRUCT;
7932 INIT_CPLUS_SPECIFIC (rtype);
7933 TYPE_NFIELDS (rtype) = nfields;
d2e4a39e 7934 TYPE_FIELDS (rtype) = (struct field *)
14f9c5c9
AS
7935 TYPE_ALLOC (rtype, nfields * sizeof (struct field));
7936 memset (TYPE_FIELDS (rtype), 0, sizeof (struct field) * nfields);
7937 TYPE_NAME (rtype) = ada_type_name (type);
7938 TYPE_TAG_NAME (rtype) = NULL;
876cecd0 7939 TYPE_FIXED_INSTANCE (rtype) = 1;
14f9c5c9 7940
d2e4a39e
AS
7941 off = 0;
7942 bit_len = 0;
4c4b4cd2
PH
7943 variant_field = -1;
7944
14f9c5c9
AS
7945 for (f = 0; f < nfields; f += 1)
7946 {
6c038f32
PH
7947 off = align_value (off, field_alignment (type, f))
7948 + TYPE_FIELD_BITPOS (type, f);
945b3a32 7949 SET_FIELD_BITPOS (TYPE_FIELD (rtype, f), off);
d2e4a39e 7950 TYPE_FIELD_BITSIZE (rtype, f) = 0;
14f9c5c9 7951
d2e4a39e 7952 if (ada_is_variant_part (type, f))
4c4b4cd2
PH
7953 {
7954 variant_field = f;
d94e4f4f 7955 fld_bit_len = 0;
4c4b4cd2 7956 }
14f9c5c9 7957 else if (is_dynamic_field (type, f))
4c4b4cd2 7958 {
284614f0
JB
7959 const gdb_byte *field_valaddr = valaddr;
7960 CORE_ADDR field_address = address;
7961 struct type *field_type =
7962 TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type, f));
7963
4c4b4cd2 7964 if (dval0 == NULL)
b5304971
JG
7965 {
7966 /* rtype's length is computed based on the run-time
7967 value of discriminants. If the discriminants are not
7968 initialized, the type size may be completely bogus and
0963b4bd 7969 GDB may fail to allocate a value for it. So check the
b5304971 7970 size first before creating the value. */
c1b5a1a6 7971 ada_ensure_varsize_limit (rtype);
012370f6
TT
7972 /* Using plain value_from_contents_and_address here
7973 causes problems because we will end up trying to
7974 resolve a type that is currently being
7975 constructed. */
7976 dval = value_from_contents_and_address_unresolved (rtype,
7977 valaddr,
7978 address);
9f1f738a 7979 rtype = value_type (dval);
b5304971 7980 }
4c4b4cd2
PH
7981 else
7982 dval = dval0;
7983
284614f0
JB
7984 /* If the type referenced by this field is an aligner type, we need
7985 to unwrap that aligner type, because its size might not be set.
7986 Keeping the aligner type would cause us to compute the wrong
7987 size for this field, impacting the offset of the all the fields
7988 that follow this one. */
7989 if (ada_is_aligner_type (field_type))
7990 {
7991 long field_offset = TYPE_FIELD_BITPOS (field_type, f);
7992
7993 field_valaddr = cond_offset_host (field_valaddr, field_offset);
7994 field_address = cond_offset_target (field_address, field_offset);
7995 field_type = ada_aligned_type (field_type);
7996 }
7997
7998 field_valaddr = cond_offset_host (field_valaddr,
7999 off / TARGET_CHAR_BIT);
8000 field_address = cond_offset_target (field_address,
8001 off / TARGET_CHAR_BIT);
8002
8003 /* Get the fixed type of the field. Note that, in this case,
8004 we do not want to get the real type out of the tag: if
8005 the current field is the parent part of a tagged record,
8006 we will get the tag of the object. Clearly wrong: the real
8007 type of the parent is not the real type of the child. We
8008 would end up in an infinite loop. */
8009 field_type = ada_get_base_type (field_type);
8010 field_type = ada_to_fixed_type (field_type, field_valaddr,
8011 field_address, dval, 0);
27f2a97b
JB
8012 /* If the field size is already larger than the maximum
8013 object size, then the record itself will necessarily
8014 be larger than the maximum object size. We need to make
8015 this check now, because the size might be so ridiculously
8016 large (due to an uninitialized variable in the inferior)
8017 that it would cause an overflow when adding it to the
8018 record size. */
c1b5a1a6 8019 ada_ensure_varsize_limit (field_type);
284614f0
JB
8020
8021 TYPE_FIELD_TYPE (rtype, f) = field_type;
4c4b4cd2 8022 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
27f2a97b
JB
8023 /* The multiplication can potentially overflow. But because
8024 the field length has been size-checked just above, and
8025 assuming that the maximum size is a reasonable value,
8026 an overflow should not happen in practice. So rather than
8027 adding overflow recovery code to this already complex code,
8028 we just assume that it's not going to happen. */
d94e4f4f 8029 fld_bit_len =
4c4b4cd2
PH
8030 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, f)) * TARGET_CHAR_BIT;
8031 }
14f9c5c9 8032 else
4c4b4cd2 8033 {
5ded5331
JB
8034 /* Note: If this field's type is a typedef, it is important
8035 to preserve the typedef layer.
8036
8037 Otherwise, we might be transforming a typedef to a fat
8038 pointer (encoding a pointer to an unconstrained array),
8039 into a basic fat pointer (encoding an unconstrained
8040 array). As both types are implemented using the same
8041 structure, the typedef is the only clue which allows us
8042 to distinguish between the two options. Stripping it
8043 would prevent us from printing this field appropriately. */
8044 TYPE_FIELD_TYPE (rtype, f) = TYPE_FIELD_TYPE (type, f);
4c4b4cd2
PH
8045 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
8046 if (TYPE_FIELD_BITSIZE (type, f) > 0)
d94e4f4f 8047 fld_bit_len =
4c4b4cd2
PH
8048 TYPE_FIELD_BITSIZE (rtype, f) = TYPE_FIELD_BITSIZE (type, f);
8049 else
5ded5331
JB
8050 {
8051 struct type *field_type = TYPE_FIELD_TYPE (type, f);
8052
8053 /* We need to be careful of typedefs when computing
8054 the length of our field. If this is a typedef,
8055 get the length of the target type, not the length
8056 of the typedef. */
8057 if (TYPE_CODE (field_type) == TYPE_CODE_TYPEDEF)
8058 field_type = ada_typedef_target_type (field_type);
8059
8060 fld_bit_len =
8061 TYPE_LENGTH (ada_check_typedef (field_type)) * TARGET_CHAR_BIT;
8062 }
4c4b4cd2 8063 }
14f9c5c9 8064 if (off + fld_bit_len > bit_len)
4c4b4cd2 8065 bit_len = off + fld_bit_len;
d94e4f4f 8066 off += fld_bit_len;
4c4b4cd2
PH
8067 TYPE_LENGTH (rtype) =
8068 align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
14f9c5c9 8069 }
4c4b4cd2
PH
8070
8071 /* We handle the variant part, if any, at the end because of certain
b1f33ddd 8072 odd cases in which it is re-ordered so as NOT to be the last field of
4c4b4cd2
PH
8073 the record. This can happen in the presence of representation
8074 clauses. */
8075 if (variant_field >= 0)
8076 {
8077 struct type *branch_type;
8078
8079 off = TYPE_FIELD_BITPOS (rtype, variant_field);
8080
8081 if (dval0 == NULL)
9f1f738a 8082 {
012370f6
TT
8083 /* Using plain value_from_contents_and_address here causes
8084 problems because we will end up trying to resolve a type
8085 that is currently being constructed. */
8086 dval = value_from_contents_and_address_unresolved (rtype, valaddr,
8087 address);
9f1f738a
SA
8088 rtype = value_type (dval);
8089 }
4c4b4cd2
PH
8090 else
8091 dval = dval0;
8092
8093 branch_type =
8094 to_fixed_variant_branch_type
8095 (TYPE_FIELD_TYPE (type, variant_field),
8096 cond_offset_host (valaddr, off / TARGET_CHAR_BIT),
8097 cond_offset_target (address, off / TARGET_CHAR_BIT), dval);
8098 if (branch_type == NULL)
8099 {
8100 for (f = variant_field + 1; f < TYPE_NFIELDS (rtype); f += 1)
8101 TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f];
8102 TYPE_NFIELDS (rtype) -= 1;
8103 }
8104 else
8105 {
8106 TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
8107 TYPE_FIELD_NAME (rtype, variant_field) = "S";
8108 fld_bit_len =
8109 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, variant_field)) *
8110 TARGET_CHAR_BIT;
8111 if (off + fld_bit_len > bit_len)
8112 bit_len = off + fld_bit_len;
8113 TYPE_LENGTH (rtype) =
8114 align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
8115 }
8116 }
8117
714e53ab
PH
8118 /* According to exp_dbug.ads, the size of TYPE for variable-size records
8119 should contain the alignment of that record, which should be a strictly
8120 positive value. If null or negative, then something is wrong, most
8121 probably in the debug info. In that case, we don't round up the size
0963b4bd 8122 of the resulting type. If this record is not part of another structure,
714e53ab
PH
8123 the current RTYPE length might be good enough for our purposes. */
8124 if (TYPE_LENGTH (type) <= 0)
8125 {
323e0a4a
AC
8126 if (TYPE_NAME (rtype))
8127 warning (_("Invalid type size for `%s' detected: %d."),
8128 TYPE_NAME (rtype), TYPE_LENGTH (type));
8129 else
8130 warning (_("Invalid type size for <unnamed> detected: %d."),
8131 TYPE_LENGTH (type));
714e53ab
PH
8132 }
8133 else
8134 {
8135 TYPE_LENGTH (rtype) = align_value (TYPE_LENGTH (rtype),
8136 TYPE_LENGTH (type));
8137 }
14f9c5c9
AS
8138
8139 value_free_to_mark (mark);
d2e4a39e 8140 if (TYPE_LENGTH (rtype) > varsize_limit)
323e0a4a 8141 error (_("record type with dynamic size is larger than varsize-limit"));
14f9c5c9
AS
8142 return rtype;
8143}
8144
4c4b4cd2
PH
8145/* As for ada_template_to_fixed_record_type_1 with KEEP_DYNAMIC_FIELDS
8146 of 1. */
14f9c5c9 8147
d2e4a39e 8148static struct type *
fc1a4b47 8149template_to_fixed_record_type (struct type *type, const gdb_byte *valaddr,
4c4b4cd2
PH
8150 CORE_ADDR address, struct value *dval0)
8151{
8152 return ada_template_to_fixed_record_type_1 (type, valaddr,
8153 address, dval0, 1);
8154}
8155
8156/* An ordinary record type in which ___XVL-convention fields and
8157 ___XVU- and ___XVN-convention field types in TYPE0 are replaced with
8158 static approximations, containing all possible fields. Uses
8159 no runtime values. Useless for use in values, but that's OK,
8160 since the results are used only for type determinations. Works on both
8161 structs and unions. Representation note: to save space, we memorize
8162 the result of this function in the TYPE_TARGET_TYPE of the
8163 template type. */
8164
8165static struct type *
8166template_to_static_fixed_type (struct type *type0)
14f9c5c9
AS
8167{
8168 struct type *type;
8169 int nfields;
8170 int f;
8171
4c4b4cd2
PH
8172 if (TYPE_TARGET_TYPE (type0) != NULL)
8173 return TYPE_TARGET_TYPE (type0);
8174
8175 nfields = TYPE_NFIELDS (type0);
8176 type = type0;
14f9c5c9
AS
8177
8178 for (f = 0; f < nfields; f += 1)
8179 {
61ee279c 8180 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type0, f));
4c4b4cd2 8181 struct type *new_type;
14f9c5c9 8182
4c4b4cd2
PH
8183 if (is_dynamic_field (type0, f))
8184 new_type = to_static_fixed_type (TYPE_TARGET_TYPE (field_type));
14f9c5c9 8185 else
f192137b 8186 new_type = static_unwrap_type (field_type);
4c4b4cd2
PH
8187 if (type == type0 && new_type != field_type)
8188 {
e9bb382b 8189 TYPE_TARGET_TYPE (type0) = type = alloc_type_copy (type0);
4c4b4cd2
PH
8190 TYPE_CODE (type) = TYPE_CODE (type0);
8191 INIT_CPLUS_SPECIFIC (type);
8192 TYPE_NFIELDS (type) = nfields;
8193 TYPE_FIELDS (type) = (struct field *)
8194 TYPE_ALLOC (type, nfields * sizeof (struct field));
8195 memcpy (TYPE_FIELDS (type), TYPE_FIELDS (type0),
8196 sizeof (struct field) * nfields);
8197 TYPE_NAME (type) = ada_type_name (type0);
8198 TYPE_TAG_NAME (type) = NULL;
876cecd0 8199 TYPE_FIXED_INSTANCE (type) = 1;
4c4b4cd2
PH
8200 TYPE_LENGTH (type) = 0;
8201 }
8202 TYPE_FIELD_TYPE (type, f) = new_type;
8203 TYPE_FIELD_NAME (type, f) = TYPE_FIELD_NAME (type0, f);
14f9c5c9 8204 }
14f9c5c9
AS
8205 return type;
8206}
8207
4c4b4cd2 8208/* Given an object of type TYPE whose contents are at VALADDR and
5823c3ef
JB
8209 whose address in memory is ADDRESS, returns a revision of TYPE,
8210 which should be a non-dynamic-sized record, in which the variant
8211 part, if any, is replaced with the appropriate branch. Looks
4c4b4cd2
PH
8212 for discriminant values in DVAL0, which can be NULL if the record
8213 contains the necessary discriminant values. */
8214
d2e4a39e 8215static struct type *
fc1a4b47 8216to_record_with_fixed_variant_part (struct type *type, const gdb_byte *valaddr,
4c4b4cd2 8217 CORE_ADDR address, struct value *dval0)
14f9c5c9 8218{
d2e4a39e 8219 struct value *mark = value_mark ();
4c4b4cd2 8220 struct value *dval;
d2e4a39e 8221 struct type *rtype;
14f9c5c9
AS
8222 struct type *branch_type;
8223 int nfields = TYPE_NFIELDS (type);
4c4b4cd2 8224 int variant_field = variant_field_index (type);
14f9c5c9 8225
4c4b4cd2 8226 if (variant_field == -1)
14f9c5c9
AS
8227 return type;
8228
4c4b4cd2 8229 if (dval0 == NULL)
9f1f738a
SA
8230 {
8231 dval = value_from_contents_and_address (type, valaddr, address);
8232 type = value_type (dval);
8233 }
4c4b4cd2
PH
8234 else
8235 dval = dval0;
8236
e9bb382b 8237 rtype = alloc_type_copy (type);
14f9c5c9 8238 TYPE_CODE (rtype) = TYPE_CODE_STRUCT;
4c4b4cd2
PH
8239 INIT_CPLUS_SPECIFIC (rtype);
8240 TYPE_NFIELDS (rtype) = nfields;
d2e4a39e
AS
8241 TYPE_FIELDS (rtype) =
8242 (struct field *) TYPE_ALLOC (rtype, nfields * sizeof (struct field));
8243 memcpy (TYPE_FIELDS (rtype), TYPE_FIELDS (type),
4c4b4cd2 8244 sizeof (struct field) * nfields);
14f9c5c9
AS
8245 TYPE_NAME (rtype) = ada_type_name (type);
8246 TYPE_TAG_NAME (rtype) = NULL;
876cecd0 8247 TYPE_FIXED_INSTANCE (rtype) = 1;
14f9c5c9
AS
8248 TYPE_LENGTH (rtype) = TYPE_LENGTH (type);
8249
4c4b4cd2
PH
8250 branch_type = to_fixed_variant_branch_type
8251 (TYPE_FIELD_TYPE (type, variant_field),
d2e4a39e 8252 cond_offset_host (valaddr,
4c4b4cd2
PH
8253 TYPE_FIELD_BITPOS (type, variant_field)
8254 / TARGET_CHAR_BIT),
d2e4a39e 8255 cond_offset_target (address,
4c4b4cd2
PH
8256 TYPE_FIELD_BITPOS (type, variant_field)
8257 / TARGET_CHAR_BIT), dval);
d2e4a39e 8258 if (branch_type == NULL)
14f9c5c9 8259 {
4c4b4cd2 8260 int f;
5b4ee69b 8261
4c4b4cd2
PH
8262 for (f = variant_field + 1; f < nfields; f += 1)
8263 TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f];
14f9c5c9 8264 TYPE_NFIELDS (rtype) -= 1;
14f9c5c9
AS
8265 }
8266 else
8267 {
4c4b4cd2
PH
8268 TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
8269 TYPE_FIELD_NAME (rtype, variant_field) = "S";
8270 TYPE_FIELD_BITSIZE (rtype, variant_field) = 0;
14f9c5c9 8271 TYPE_LENGTH (rtype) += TYPE_LENGTH (branch_type);
14f9c5c9 8272 }
4c4b4cd2 8273 TYPE_LENGTH (rtype) -= TYPE_LENGTH (TYPE_FIELD_TYPE (type, variant_field));
d2e4a39e 8274
4c4b4cd2 8275 value_free_to_mark (mark);
14f9c5c9
AS
8276 return rtype;
8277}
8278
8279/* An ordinary record type (with fixed-length fields) that describes
8280 the value at (TYPE0, VALADDR, ADDRESS) [see explanation at
8281 beginning of this section]. Any necessary discriminants' values
4c4b4cd2
PH
8282 should be in DVAL, a record value; it may be NULL if the object
8283 at ADDR itself contains any necessary discriminant values.
8284 Additionally, VALADDR and ADDRESS may also be NULL if no discriminant
8285 values from the record are needed. Except in the case that DVAL,
8286 VALADDR, and ADDRESS are all 0 or NULL, a variant field (unless
8287 unchecked) is replaced by a particular branch of the variant.
8288
8289 NOTE: the case in which DVAL and VALADDR are NULL and ADDRESS is 0
8290 is questionable and may be removed. It can arise during the
8291 processing of an unconstrained-array-of-record type where all the
8292 variant branches have exactly the same size. This is because in
8293 such cases, the compiler does not bother to use the XVS convention
8294 when encoding the record. I am currently dubious of this
8295 shortcut and suspect the compiler should be altered. FIXME. */
14f9c5c9 8296
d2e4a39e 8297static struct type *
fc1a4b47 8298to_fixed_record_type (struct type *type0, const gdb_byte *valaddr,
4c4b4cd2 8299 CORE_ADDR address, struct value *dval)
14f9c5c9 8300{
d2e4a39e 8301 struct type *templ_type;
14f9c5c9 8302
876cecd0 8303 if (TYPE_FIXED_INSTANCE (type0))
4c4b4cd2
PH
8304 return type0;
8305
d2e4a39e 8306 templ_type = dynamic_template_type (type0);
14f9c5c9
AS
8307
8308 if (templ_type != NULL)
8309 return template_to_fixed_record_type (templ_type, valaddr, address, dval);
4c4b4cd2
PH
8310 else if (variant_field_index (type0) >= 0)
8311 {
8312 if (dval == NULL && valaddr == NULL && address == 0)
8313 return type0;
8314 return to_record_with_fixed_variant_part (type0, valaddr, address,
8315 dval);
8316 }
14f9c5c9
AS
8317 else
8318 {
876cecd0 8319 TYPE_FIXED_INSTANCE (type0) = 1;
14f9c5c9
AS
8320 return type0;
8321 }
8322
8323}
8324
8325/* An ordinary record type (with fixed-length fields) that describes
8326 the value at (VAR_TYPE0, VALADDR, ADDRESS), where VAR_TYPE0 is a
8327 union type. Any necessary discriminants' values should be in DVAL,
8328 a record value. That is, this routine selects the appropriate
8329 branch of the union at ADDR according to the discriminant value
b1f33ddd 8330 indicated in the union's type name. Returns VAR_TYPE0 itself if
0963b4bd 8331 it represents a variant subject to a pragma Unchecked_Union. */
14f9c5c9 8332
d2e4a39e 8333static struct type *
fc1a4b47 8334to_fixed_variant_branch_type (struct type *var_type0, const gdb_byte *valaddr,
4c4b4cd2 8335 CORE_ADDR address, struct value *dval)
14f9c5c9
AS
8336{
8337 int which;
d2e4a39e
AS
8338 struct type *templ_type;
8339 struct type *var_type;
14f9c5c9
AS
8340
8341 if (TYPE_CODE (var_type0) == TYPE_CODE_PTR)
8342 var_type = TYPE_TARGET_TYPE (var_type0);
d2e4a39e 8343 else
14f9c5c9
AS
8344 var_type = var_type0;
8345
8346 templ_type = ada_find_parallel_type (var_type, "___XVU");
8347
8348 if (templ_type != NULL)
8349 var_type = templ_type;
8350
b1f33ddd
JB
8351 if (is_unchecked_variant (var_type, value_type (dval)))
8352 return var_type0;
d2e4a39e
AS
8353 which =
8354 ada_which_variant_applies (var_type,
0fd88904 8355 value_type (dval), value_contents (dval));
14f9c5c9
AS
8356
8357 if (which < 0)
e9bb382b 8358 return empty_record (var_type);
14f9c5c9 8359 else if (is_dynamic_field (var_type, which))
4c4b4cd2 8360 return to_fixed_record_type
d2e4a39e
AS
8361 (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (var_type, which)),
8362 valaddr, address, dval);
4c4b4cd2 8363 else if (variant_field_index (TYPE_FIELD_TYPE (var_type, which)) >= 0)
d2e4a39e
AS
8364 return
8365 to_fixed_record_type
8366 (TYPE_FIELD_TYPE (var_type, which), valaddr, address, dval);
14f9c5c9
AS
8367 else
8368 return TYPE_FIELD_TYPE (var_type, which);
8369}
8370
8908fca5
JB
8371/* Assuming RANGE_TYPE is a TYPE_CODE_RANGE, return nonzero if
8372 ENCODING_TYPE, a type following the GNAT conventions for discrete
8373 type encodings, only carries redundant information. */
8374
8375static int
8376ada_is_redundant_range_encoding (struct type *range_type,
8377 struct type *encoding_type)
8378{
8379 struct type *fixed_range_type;
8380 char *bounds_str;
8381 int n;
8382 LONGEST lo, hi;
8383
8384 gdb_assert (TYPE_CODE (range_type) == TYPE_CODE_RANGE);
8385
005e2509
JB
8386 if (TYPE_CODE (get_base_type (range_type))
8387 != TYPE_CODE (get_base_type (encoding_type)))
8388 {
8389 /* The compiler probably used a simple base type to describe
8390 the range type instead of the range's actual base type,
8391 expecting us to get the real base type from the encoding
8392 anyway. In this situation, the encoding cannot be ignored
8393 as redundant. */
8394 return 0;
8395 }
8396
8908fca5
JB
8397 if (is_dynamic_type (range_type))
8398 return 0;
8399
8400 if (TYPE_NAME (encoding_type) == NULL)
8401 return 0;
8402
8403 bounds_str = strstr (TYPE_NAME (encoding_type), "___XDLU_");
8404 if (bounds_str == NULL)
8405 return 0;
8406
8407 n = 8; /* Skip "___XDLU_". */
8408 if (!ada_scan_number (bounds_str, n, &lo, &n))
8409 return 0;
8410 if (TYPE_LOW_BOUND (range_type) != lo)
8411 return 0;
8412
8413 n += 2; /* Skip the "__" separator between the two bounds. */
8414 if (!ada_scan_number (bounds_str, n, &hi, &n))
8415 return 0;
8416 if (TYPE_HIGH_BOUND (range_type) != hi)
8417 return 0;
8418
8419 return 1;
8420}
8421
8422/* Given the array type ARRAY_TYPE, return nonzero if DESC_TYPE,
8423 a type following the GNAT encoding for describing array type
8424 indices, only carries redundant information. */
8425
8426static int
8427ada_is_redundant_index_type_desc (struct type *array_type,
8428 struct type *desc_type)
8429{
8430 struct type *this_layer = check_typedef (array_type);
8431 int i;
8432
8433 for (i = 0; i < TYPE_NFIELDS (desc_type); i++)
8434 {
8435 if (!ada_is_redundant_range_encoding (TYPE_INDEX_TYPE (this_layer),
8436 TYPE_FIELD_TYPE (desc_type, i)))
8437 return 0;
8438 this_layer = check_typedef (TYPE_TARGET_TYPE (this_layer));
8439 }
8440
8441 return 1;
8442}
8443
14f9c5c9
AS
8444/* Assuming that TYPE0 is an array type describing the type of a value
8445 at ADDR, and that DVAL describes a record containing any
8446 discriminants used in TYPE0, returns a type for the value that
8447 contains no dynamic components (that is, no components whose sizes
8448 are determined by run-time quantities). Unless IGNORE_TOO_BIG is
8449 true, gives an error message if the resulting type's size is over
4c4b4cd2 8450 varsize_limit. */
14f9c5c9 8451
d2e4a39e
AS
8452static struct type *
8453to_fixed_array_type (struct type *type0, struct value *dval,
4c4b4cd2 8454 int ignore_too_big)
14f9c5c9 8455{
d2e4a39e
AS
8456 struct type *index_type_desc;
8457 struct type *result;
ad82864c 8458 int constrained_packed_array_p;
14f9c5c9 8459
b0dd7688 8460 type0 = ada_check_typedef (type0);
284614f0 8461 if (TYPE_FIXED_INSTANCE (type0))
4c4b4cd2 8462 return type0;
14f9c5c9 8463
ad82864c
JB
8464 constrained_packed_array_p = ada_is_constrained_packed_array_type (type0);
8465 if (constrained_packed_array_p)
8466 type0 = decode_constrained_packed_array_type (type0);
284614f0 8467
14f9c5c9 8468 index_type_desc = ada_find_parallel_type (type0, "___XA");
28c85d6c 8469 ada_fixup_array_indexes_type (index_type_desc);
8908fca5
JB
8470 if (index_type_desc != NULL
8471 && ada_is_redundant_index_type_desc (type0, index_type_desc))
8472 {
8473 /* Ignore this ___XA parallel type, as it does not bring any
8474 useful information. This allows us to avoid creating fixed
8475 versions of the array's index types, which would be identical
8476 to the original ones. This, in turn, can also help avoid
8477 the creation of fixed versions of the array itself. */
8478 index_type_desc = NULL;
8479 }
8480
14f9c5c9
AS
8481 if (index_type_desc == NULL)
8482 {
61ee279c 8483 struct type *elt_type0 = ada_check_typedef (TYPE_TARGET_TYPE (type0));
5b4ee69b 8484
14f9c5c9 8485 /* NOTE: elt_type---the fixed version of elt_type0---should never
4c4b4cd2
PH
8486 depend on the contents of the array in properly constructed
8487 debugging data. */
529cad9c
PH
8488 /* Create a fixed version of the array element type.
8489 We're not providing the address of an element here,
e1d5a0d2 8490 and thus the actual object value cannot be inspected to do
529cad9c
PH
8491 the conversion. This should not be a problem, since arrays of
8492 unconstrained objects are not allowed. In particular, all
8493 the elements of an array of a tagged type should all be of
8494 the same type specified in the debugging info. No need to
8495 consult the object tag. */
1ed6ede0 8496 struct type *elt_type = ada_to_fixed_type (elt_type0, 0, 0, dval, 1);
14f9c5c9 8497
284614f0
JB
8498 /* Make sure we always create a new array type when dealing with
8499 packed array types, since we're going to fix-up the array
8500 type length and element bitsize a little further down. */
ad82864c 8501 if (elt_type0 == elt_type && !constrained_packed_array_p)
4c4b4cd2 8502 result = type0;
14f9c5c9 8503 else
e9bb382b 8504 result = create_array_type (alloc_type_copy (type0),
4c4b4cd2 8505 elt_type, TYPE_INDEX_TYPE (type0));
14f9c5c9
AS
8506 }
8507 else
8508 {
8509 int i;
8510 struct type *elt_type0;
8511
8512 elt_type0 = type0;
8513 for (i = TYPE_NFIELDS (index_type_desc); i > 0; i -= 1)
4c4b4cd2 8514 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
14f9c5c9
AS
8515
8516 /* NOTE: result---the fixed version of elt_type0---should never
4c4b4cd2
PH
8517 depend on the contents of the array in properly constructed
8518 debugging data. */
529cad9c
PH
8519 /* Create a fixed version of the array element type.
8520 We're not providing the address of an element here,
e1d5a0d2 8521 and thus the actual object value cannot be inspected to do
529cad9c
PH
8522 the conversion. This should not be a problem, since arrays of
8523 unconstrained objects are not allowed. In particular, all
8524 the elements of an array of a tagged type should all be of
8525 the same type specified in the debugging info. No need to
8526 consult the object tag. */
1ed6ede0
JB
8527 result =
8528 ada_to_fixed_type (ada_check_typedef (elt_type0), 0, 0, dval, 1);
1ce677a4
UW
8529
8530 elt_type0 = type0;
14f9c5c9 8531 for (i = TYPE_NFIELDS (index_type_desc) - 1; i >= 0; i -= 1)
4c4b4cd2
PH
8532 {
8533 struct type *range_type =
28c85d6c 8534 to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, i), dval);
5b4ee69b 8535
e9bb382b 8536 result = create_array_type (alloc_type_copy (elt_type0),
4c4b4cd2 8537 result, range_type);
1ce677a4 8538 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
4c4b4cd2 8539 }
d2e4a39e 8540 if (!ignore_too_big && TYPE_LENGTH (result) > varsize_limit)
323e0a4a 8541 error (_("array type with dynamic size is larger than varsize-limit"));
14f9c5c9
AS
8542 }
8543
2e6fda7d
JB
8544 /* We want to preserve the type name. This can be useful when
8545 trying to get the type name of a value that has already been
8546 printed (for instance, if the user did "print VAR; whatis $". */
8547 TYPE_NAME (result) = TYPE_NAME (type0);
8548
ad82864c 8549 if (constrained_packed_array_p)
284614f0
JB
8550 {
8551 /* So far, the resulting type has been created as if the original
8552 type was a regular (non-packed) array type. As a result, the
8553 bitsize of the array elements needs to be set again, and the array
8554 length needs to be recomputed based on that bitsize. */
8555 int len = TYPE_LENGTH (result) / TYPE_LENGTH (TYPE_TARGET_TYPE (result));
8556 int elt_bitsize = TYPE_FIELD_BITSIZE (type0, 0);
8557
8558 TYPE_FIELD_BITSIZE (result, 0) = TYPE_FIELD_BITSIZE (type0, 0);
8559 TYPE_LENGTH (result) = len * elt_bitsize / HOST_CHAR_BIT;
8560 if (TYPE_LENGTH (result) * HOST_CHAR_BIT < len * elt_bitsize)
8561 TYPE_LENGTH (result)++;
8562 }
8563
876cecd0 8564 TYPE_FIXED_INSTANCE (result) = 1;
14f9c5c9 8565 return result;
d2e4a39e 8566}
14f9c5c9
AS
8567
8568
8569/* A standard type (containing no dynamically sized components)
8570 corresponding to TYPE for the value (TYPE, VALADDR, ADDRESS)
8571 DVAL describes a record containing any discriminants used in TYPE0,
4c4b4cd2 8572 and may be NULL if there are none, or if the object of type TYPE at
529cad9c
PH
8573 ADDRESS or in VALADDR contains these discriminants.
8574
1ed6ede0
JB
8575 If CHECK_TAG is not null, in the case of tagged types, this function
8576 attempts to locate the object's tag and use it to compute the actual
8577 type. However, when ADDRESS is null, we cannot use it to determine the
8578 location of the tag, and therefore compute the tagged type's actual type.
8579 So we return the tagged type without consulting the tag. */
529cad9c 8580
f192137b
JB
8581static struct type *
8582ada_to_fixed_type_1 (struct type *type, const gdb_byte *valaddr,
1ed6ede0 8583 CORE_ADDR address, struct value *dval, int check_tag)
14f9c5c9 8584{
61ee279c 8585 type = ada_check_typedef (type);
d2e4a39e
AS
8586 switch (TYPE_CODE (type))
8587 {
8588 default:
14f9c5c9 8589 return type;
d2e4a39e 8590 case TYPE_CODE_STRUCT:
4c4b4cd2 8591 {
76a01679 8592 struct type *static_type = to_static_fixed_type (type);
1ed6ede0
JB
8593 struct type *fixed_record_type =
8594 to_fixed_record_type (type, valaddr, address, NULL);
5b4ee69b 8595
529cad9c
PH
8596 /* If STATIC_TYPE is a tagged type and we know the object's address,
8597 then we can determine its tag, and compute the object's actual
0963b4bd 8598 type from there. Note that we have to use the fixed record
1ed6ede0
JB
8599 type (the parent part of the record may have dynamic fields
8600 and the way the location of _tag is expressed may depend on
8601 them). */
529cad9c 8602
1ed6ede0 8603 if (check_tag && address != 0 && ada_is_tagged_type (static_type, 0))
76a01679 8604 {
b50d69b5
JG
8605 struct value *tag =
8606 value_tag_from_contents_and_address
8607 (fixed_record_type,
8608 valaddr,
8609 address);
8610 struct type *real_type = type_from_tag (tag);
8611 struct value *obj =
8612 value_from_contents_and_address (fixed_record_type,
8613 valaddr,
8614 address);
9f1f738a 8615 fixed_record_type = value_type (obj);
76a01679 8616 if (real_type != NULL)
b50d69b5
JG
8617 return to_fixed_record_type
8618 (real_type, NULL,
8619 value_address (ada_tag_value_at_base_address (obj)), NULL);
76a01679 8620 }
4af88198
JB
8621
8622 /* Check to see if there is a parallel ___XVZ variable.
8623 If there is, then it provides the actual size of our type. */
8624 else if (ada_type_name (fixed_record_type) != NULL)
8625 {
0d5cff50 8626 const char *name = ada_type_name (fixed_record_type);
4af88198
JB
8627 char *xvz_name = alloca (strlen (name) + 7 /* "___XVZ\0" */);
8628 int xvz_found = 0;
8629 LONGEST size;
8630
88c15c34 8631 xsnprintf (xvz_name, strlen (name) + 7, "%s___XVZ", name);
4af88198
JB
8632 size = get_int_var_value (xvz_name, &xvz_found);
8633 if (xvz_found && TYPE_LENGTH (fixed_record_type) != size)
8634 {
8635 fixed_record_type = copy_type (fixed_record_type);
8636 TYPE_LENGTH (fixed_record_type) = size;
8637
8638 /* The FIXED_RECORD_TYPE may have be a stub. We have
8639 observed this when the debugging info is STABS, and
8640 apparently it is something that is hard to fix.
8641
8642 In practice, we don't need the actual type definition
8643 at all, because the presence of the XVZ variable allows us
8644 to assume that there must be a XVS type as well, which we
8645 should be able to use later, when we need the actual type
8646 definition.
8647
8648 In the meantime, pretend that the "fixed" type we are
8649 returning is NOT a stub, because this can cause trouble
8650 when using this type to create new types targeting it.
8651 Indeed, the associated creation routines often check
8652 whether the target type is a stub and will try to replace
0963b4bd 8653 it, thus using a type with the wrong size. This, in turn,
4af88198
JB
8654 might cause the new type to have the wrong size too.
8655 Consider the case of an array, for instance, where the size
8656 of the array is computed from the number of elements in
8657 our array multiplied by the size of its element. */
8658 TYPE_STUB (fixed_record_type) = 0;
8659 }
8660 }
1ed6ede0 8661 return fixed_record_type;
4c4b4cd2 8662 }
d2e4a39e 8663 case TYPE_CODE_ARRAY:
4c4b4cd2 8664 return to_fixed_array_type (type, dval, 1);
d2e4a39e
AS
8665 case TYPE_CODE_UNION:
8666 if (dval == NULL)
4c4b4cd2 8667 return type;
d2e4a39e 8668 else
4c4b4cd2 8669 return to_fixed_variant_branch_type (type, valaddr, address, dval);
d2e4a39e 8670 }
14f9c5c9
AS
8671}
8672
f192137b
JB
8673/* The same as ada_to_fixed_type_1, except that it preserves the type
8674 if it is a TYPE_CODE_TYPEDEF of a type that is already fixed.
96dbd2c1
JB
8675
8676 The typedef layer needs be preserved in order to differentiate between
8677 arrays and array pointers when both types are implemented using the same
8678 fat pointer. In the array pointer case, the pointer is encoded as
8679 a typedef of the pointer type. For instance, considering:
8680
8681 type String_Access is access String;
8682 S1 : String_Access := null;
8683
8684 To the debugger, S1 is defined as a typedef of type String. But
8685 to the user, it is a pointer. So if the user tries to print S1,
8686 we should not dereference the array, but print the array address
8687 instead.
8688
8689 If we didn't preserve the typedef layer, we would lose the fact that
8690 the type is to be presented as a pointer (needs de-reference before
8691 being printed). And we would also use the source-level type name. */
f192137b
JB
8692
8693struct type *
8694ada_to_fixed_type (struct type *type, const gdb_byte *valaddr,
8695 CORE_ADDR address, struct value *dval, int check_tag)
8696
8697{
8698 struct type *fixed_type =
8699 ada_to_fixed_type_1 (type, valaddr, address, dval, check_tag);
8700
96dbd2c1
JB
8701 /* If TYPE is a typedef and its target type is the same as the FIXED_TYPE,
8702 then preserve the typedef layer.
8703
8704 Implementation note: We can only check the main-type portion of
8705 the TYPE and FIXED_TYPE, because eliminating the typedef layer
8706 from TYPE now returns a type that has the same instance flags
8707 as TYPE. For instance, if TYPE is a "typedef const", and its
8708 target type is a "struct", then the typedef elimination will return
8709 a "const" version of the target type. See check_typedef for more
8710 details about how the typedef layer elimination is done.
8711
8712 brobecker/2010-11-19: It seems to me that the only case where it is
8713 useful to preserve the typedef layer is when dealing with fat pointers.
8714 Perhaps, we could add a check for that and preserve the typedef layer
8715 only in that situation. But this seems unecessary so far, probably
8716 because we call check_typedef/ada_check_typedef pretty much everywhere.
8717 */
f192137b 8718 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF
720d1a40 8719 && (TYPE_MAIN_TYPE (ada_typedef_target_type (type))
96dbd2c1 8720 == TYPE_MAIN_TYPE (fixed_type)))
f192137b
JB
8721 return type;
8722
8723 return fixed_type;
8724}
8725
14f9c5c9 8726/* A standard (static-sized) type corresponding as well as possible to
4c4b4cd2 8727 TYPE0, but based on no runtime data. */
14f9c5c9 8728
d2e4a39e
AS
8729static struct type *
8730to_static_fixed_type (struct type *type0)
14f9c5c9 8731{
d2e4a39e 8732 struct type *type;
14f9c5c9
AS
8733
8734 if (type0 == NULL)
8735 return NULL;
8736
876cecd0 8737 if (TYPE_FIXED_INSTANCE (type0))
4c4b4cd2
PH
8738 return type0;
8739
61ee279c 8740 type0 = ada_check_typedef (type0);
d2e4a39e 8741
14f9c5c9
AS
8742 switch (TYPE_CODE (type0))
8743 {
8744 default:
8745 return type0;
8746 case TYPE_CODE_STRUCT:
8747 type = dynamic_template_type (type0);
d2e4a39e 8748 if (type != NULL)
4c4b4cd2
PH
8749 return template_to_static_fixed_type (type);
8750 else
8751 return template_to_static_fixed_type (type0);
14f9c5c9
AS
8752 case TYPE_CODE_UNION:
8753 type = ada_find_parallel_type (type0, "___XVU");
8754 if (type != NULL)
4c4b4cd2
PH
8755 return template_to_static_fixed_type (type);
8756 else
8757 return template_to_static_fixed_type (type0);
14f9c5c9
AS
8758 }
8759}
8760
4c4b4cd2
PH
8761/* A static approximation of TYPE with all type wrappers removed. */
8762
d2e4a39e
AS
8763static struct type *
8764static_unwrap_type (struct type *type)
14f9c5c9
AS
8765{
8766 if (ada_is_aligner_type (type))
8767 {
61ee279c 8768 struct type *type1 = TYPE_FIELD_TYPE (ada_check_typedef (type), 0);
14f9c5c9 8769 if (ada_type_name (type1) == NULL)
4c4b4cd2 8770 TYPE_NAME (type1) = ada_type_name (type);
14f9c5c9
AS
8771
8772 return static_unwrap_type (type1);
8773 }
d2e4a39e 8774 else
14f9c5c9 8775 {
d2e4a39e 8776 struct type *raw_real_type = ada_get_base_type (type);
5b4ee69b 8777
d2e4a39e 8778 if (raw_real_type == type)
4c4b4cd2 8779 return type;
14f9c5c9 8780 else
4c4b4cd2 8781 return to_static_fixed_type (raw_real_type);
14f9c5c9
AS
8782 }
8783}
8784
8785/* In some cases, incomplete and private types require
4c4b4cd2 8786 cross-references that are not resolved as records (for example,
14f9c5c9
AS
8787 type Foo;
8788 type FooP is access Foo;
8789 V: FooP;
8790 type Foo is array ...;
4c4b4cd2 8791 ). In these cases, since there is no mechanism for producing
14f9c5c9
AS
8792 cross-references to such types, we instead substitute for FooP a
8793 stub enumeration type that is nowhere resolved, and whose tag is
4c4b4cd2 8794 the name of the actual type. Call these types "non-record stubs". */
14f9c5c9
AS
8795
8796/* A type equivalent to TYPE that is not a non-record stub, if one
4c4b4cd2
PH
8797 exists, otherwise TYPE. */
8798
d2e4a39e 8799struct type *
61ee279c 8800ada_check_typedef (struct type *type)
14f9c5c9 8801{
727e3d2e
JB
8802 if (type == NULL)
8803 return NULL;
8804
720d1a40
JB
8805 /* If our type is a typedef type of a fat pointer, then we're done.
8806 We don't want to strip the TYPE_CODE_TYPDEF layer, because this is
8807 what allows us to distinguish between fat pointers that represent
8808 array types, and fat pointers that represent array access types
8809 (in both cases, the compiler implements them as fat pointers). */
8810 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF
8811 && is_thick_pntr (ada_typedef_target_type (type)))
8812 return type;
8813
14f9c5c9
AS
8814 CHECK_TYPEDEF (type);
8815 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM
529cad9c 8816 || !TYPE_STUB (type)
14f9c5c9
AS
8817 || TYPE_TAG_NAME (type) == NULL)
8818 return type;
d2e4a39e 8819 else
14f9c5c9 8820 {
0d5cff50 8821 const char *name = TYPE_TAG_NAME (type);
d2e4a39e 8822 struct type *type1 = ada_find_any_type (name);
5b4ee69b 8823
05e522ef
JB
8824 if (type1 == NULL)
8825 return type;
8826
8827 /* TYPE1 might itself be a TYPE_CODE_TYPEDEF (this can happen with
8828 stubs pointing to arrays, as we don't create symbols for array
3a867c22
JB
8829 types, only for the typedef-to-array types). If that's the case,
8830 strip the typedef layer. */
8831 if (TYPE_CODE (type1) == TYPE_CODE_TYPEDEF)
8832 type1 = ada_check_typedef (type1);
8833
8834 return type1;
14f9c5c9
AS
8835 }
8836}
8837
8838/* A value representing the data at VALADDR/ADDRESS as described by
8839 type TYPE0, but with a standard (static-sized) type that correctly
8840 describes it. If VAL0 is not NULL and TYPE0 already is a standard
8841 type, then return VAL0 [this feature is simply to avoid redundant
4c4b4cd2 8842 creation of struct values]. */
14f9c5c9 8843
4c4b4cd2
PH
8844static struct value *
8845ada_to_fixed_value_create (struct type *type0, CORE_ADDR address,
8846 struct value *val0)
14f9c5c9 8847{
1ed6ede0 8848 struct type *type = ada_to_fixed_type (type0, 0, address, NULL, 1);
5b4ee69b 8849
14f9c5c9
AS
8850 if (type == type0 && val0 != NULL)
8851 return val0;
d2e4a39e 8852 else
4c4b4cd2
PH
8853 return value_from_contents_and_address (type, 0, address);
8854}
8855
8856/* A value representing VAL, but with a standard (static-sized) type
8857 that correctly describes it. Does not necessarily create a new
8858 value. */
8859
0c3acc09 8860struct value *
4c4b4cd2
PH
8861ada_to_fixed_value (struct value *val)
8862{
c48db5ca
JB
8863 val = unwrap_value (val);
8864 val = ada_to_fixed_value_create (value_type (val),
8865 value_address (val),
8866 val);
8867 return val;
14f9c5c9 8868}
d2e4a39e 8869\f
14f9c5c9 8870
14f9c5c9
AS
8871/* Attributes */
8872
4c4b4cd2
PH
8873/* Table mapping attribute numbers to names.
8874 NOTE: Keep up to date with enum ada_attribute definition in ada-lang.h. */
14f9c5c9 8875
d2e4a39e 8876static const char *attribute_names[] = {
14f9c5c9
AS
8877 "<?>",
8878
d2e4a39e 8879 "first",
14f9c5c9
AS
8880 "last",
8881 "length",
8882 "image",
14f9c5c9
AS
8883 "max",
8884 "min",
4c4b4cd2
PH
8885 "modulus",
8886 "pos",
8887 "size",
8888 "tag",
14f9c5c9 8889 "val",
14f9c5c9
AS
8890 0
8891};
8892
d2e4a39e 8893const char *
4c4b4cd2 8894ada_attribute_name (enum exp_opcode n)
14f9c5c9 8895{
4c4b4cd2
PH
8896 if (n >= OP_ATR_FIRST && n <= (int) OP_ATR_VAL)
8897 return attribute_names[n - OP_ATR_FIRST + 1];
14f9c5c9
AS
8898 else
8899 return attribute_names[0];
8900}
8901
4c4b4cd2 8902/* Evaluate the 'POS attribute applied to ARG. */
14f9c5c9 8903
4c4b4cd2
PH
8904static LONGEST
8905pos_atr (struct value *arg)
14f9c5c9 8906{
24209737
PH
8907 struct value *val = coerce_ref (arg);
8908 struct type *type = value_type (val);
14f9c5c9 8909
d2e4a39e 8910 if (!discrete_type_p (type))
323e0a4a 8911 error (_("'POS only defined on discrete types"));
14f9c5c9
AS
8912
8913 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
8914 {
8915 int i;
24209737 8916 LONGEST v = value_as_long (val);
14f9c5c9 8917
d2e4a39e 8918 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
4c4b4cd2 8919 {
14e75d8e 8920 if (v == TYPE_FIELD_ENUMVAL (type, i))
4c4b4cd2
PH
8921 return i;
8922 }
323e0a4a 8923 error (_("enumeration value is invalid: can't find 'POS"));
14f9c5c9
AS
8924 }
8925 else
24209737 8926 return value_as_long (val);
4c4b4cd2
PH
8927}
8928
8929static struct value *
3cb382c9 8930value_pos_atr (struct type *type, struct value *arg)
4c4b4cd2 8931{
3cb382c9 8932 return value_from_longest (type, pos_atr (arg));
14f9c5c9
AS
8933}
8934
4c4b4cd2 8935/* Evaluate the TYPE'VAL attribute applied to ARG. */
14f9c5c9 8936
d2e4a39e
AS
8937static struct value *
8938value_val_atr (struct type *type, struct value *arg)
14f9c5c9 8939{
d2e4a39e 8940 if (!discrete_type_p (type))
323e0a4a 8941 error (_("'VAL only defined on discrete types"));
df407dfe 8942 if (!integer_type_p (value_type (arg)))
323e0a4a 8943 error (_("'VAL requires integral argument"));
14f9c5c9
AS
8944
8945 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
8946 {
8947 long pos = value_as_long (arg);
5b4ee69b 8948
14f9c5c9 8949 if (pos < 0 || pos >= TYPE_NFIELDS (type))
323e0a4a 8950 error (_("argument to 'VAL out of range"));
14e75d8e 8951 return value_from_longest (type, TYPE_FIELD_ENUMVAL (type, pos));
14f9c5c9
AS
8952 }
8953 else
8954 return value_from_longest (type, value_as_long (arg));
8955}
14f9c5c9 8956\f
d2e4a39e 8957
4c4b4cd2 8958 /* Evaluation */
14f9c5c9 8959
4c4b4cd2
PH
8960/* True if TYPE appears to be an Ada character type.
8961 [At the moment, this is true only for Character and Wide_Character;
8962 It is a heuristic test that could stand improvement]. */
14f9c5c9 8963
d2e4a39e
AS
8964int
8965ada_is_character_type (struct type *type)
14f9c5c9 8966{
7b9f71f2
JB
8967 const char *name;
8968
8969 /* If the type code says it's a character, then assume it really is,
8970 and don't check any further. */
8971 if (TYPE_CODE (type) == TYPE_CODE_CHAR)
8972 return 1;
8973
8974 /* Otherwise, assume it's a character type iff it is a discrete type
8975 with a known character type name. */
8976 name = ada_type_name (type);
8977 return (name != NULL
8978 && (TYPE_CODE (type) == TYPE_CODE_INT
8979 || TYPE_CODE (type) == TYPE_CODE_RANGE)
8980 && (strcmp (name, "character") == 0
8981 || strcmp (name, "wide_character") == 0
5a517ebd 8982 || strcmp (name, "wide_wide_character") == 0
7b9f71f2 8983 || strcmp (name, "unsigned char") == 0));
14f9c5c9
AS
8984}
8985
4c4b4cd2 8986/* True if TYPE appears to be an Ada string type. */
14f9c5c9
AS
8987
8988int
ebf56fd3 8989ada_is_string_type (struct type *type)
14f9c5c9 8990{
61ee279c 8991 type = ada_check_typedef (type);
d2e4a39e 8992 if (type != NULL
14f9c5c9 8993 && TYPE_CODE (type) != TYPE_CODE_PTR
76a01679
JB
8994 && (ada_is_simple_array_type (type)
8995 || ada_is_array_descriptor_type (type))
14f9c5c9
AS
8996 && ada_array_arity (type) == 1)
8997 {
8998 struct type *elttype = ada_array_element_type (type, 1);
8999
9000 return ada_is_character_type (elttype);
9001 }
d2e4a39e 9002 else
14f9c5c9
AS
9003 return 0;
9004}
9005
5bf03f13
JB
9006/* The compiler sometimes provides a parallel XVS type for a given
9007 PAD type. Normally, it is safe to follow the PAD type directly,
9008 but older versions of the compiler have a bug that causes the offset
9009 of its "F" field to be wrong. Following that field in that case
9010 would lead to incorrect results, but this can be worked around
9011 by ignoring the PAD type and using the associated XVS type instead.
9012
9013 Set to True if the debugger should trust the contents of PAD types.
9014 Otherwise, ignore the PAD type if there is a parallel XVS type. */
9015static int trust_pad_over_xvs = 1;
14f9c5c9
AS
9016
9017/* True if TYPE is a struct type introduced by the compiler to force the
9018 alignment of a value. Such types have a single field with a
4c4b4cd2 9019 distinctive name. */
14f9c5c9
AS
9020
9021int
ebf56fd3 9022ada_is_aligner_type (struct type *type)
14f9c5c9 9023{
61ee279c 9024 type = ada_check_typedef (type);
714e53ab 9025
5bf03f13 9026 if (!trust_pad_over_xvs && ada_find_parallel_type (type, "___XVS") != NULL)
714e53ab
PH
9027 return 0;
9028
14f9c5c9 9029 return (TYPE_CODE (type) == TYPE_CODE_STRUCT
4c4b4cd2
PH
9030 && TYPE_NFIELDS (type) == 1
9031 && strcmp (TYPE_FIELD_NAME (type, 0), "F") == 0);
14f9c5c9
AS
9032}
9033
9034/* If there is an ___XVS-convention type parallel to SUBTYPE, return
4c4b4cd2 9035 the parallel type. */
14f9c5c9 9036
d2e4a39e
AS
9037struct type *
9038ada_get_base_type (struct type *raw_type)
14f9c5c9 9039{
d2e4a39e
AS
9040 struct type *real_type_namer;
9041 struct type *raw_real_type;
14f9c5c9
AS
9042
9043 if (raw_type == NULL || TYPE_CODE (raw_type) != TYPE_CODE_STRUCT)
9044 return raw_type;
9045
284614f0
JB
9046 if (ada_is_aligner_type (raw_type))
9047 /* The encoding specifies that we should always use the aligner type.
9048 So, even if this aligner type has an associated XVS type, we should
9049 simply ignore it.
9050
9051 According to the compiler gurus, an XVS type parallel to an aligner
9052 type may exist because of a stabs limitation. In stabs, aligner
9053 types are empty because the field has a variable-sized type, and
9054 thus cannot actually be used as an aligner type. As a result,
9055 we need the associated parallel XVS type to decode the type.
9056 Since the policy in the compiler is to not change the internal
9057 representation based on the debugging info format, we sometimes
9058 end up having a redundant XVS type parallel to the aligner type. */
9059 return raw_type;
9060
14f9c5c9 9061 real_type_namer = ada_find_parallel_type (raw_type, "___XVS");
d2e4a39e 9062 if (real_type_namer == NULL
14f9c5c9
AS
9063 || TYPE_CODE (real_type_namer) != TYPE_CODE_STRUCT
9064 || TYPE_NFIELDS (real_type_namer) != 1)
9065 return raw_type;
9066
f80d3ff2
JB
9067 if (TYPE_CODE (TYPE_FIELD_TYPE (real_type_namer, 0)) != TYPE_CODE_REF)
9068 {
9069 /* This is an older encoding form where the base type needs to be
9070 looked up by name. We prefer the newer enconding because it is
9071 more efficient. */
9072 raw_real_type = ada_find_any_type (TYPE_FIELD_NAME (real_type_namer, 0));
9073 if (raw_real_type == NULL)
9074 return raw_type;
9075 else
9076 return raw_real_type;
9077 }
9078
9079 /* The field in our XVS type is a reference to the base type. */
9080 return TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (real_type_namer, 0));
d2e4a39e 9081}
14f9c5c9 9082
4c4b4cd2 9083/* The type of value designated by TYPE, with all aligners removed. */
14f9c5c9 9084
d2e4a39e
AS
9085struct type *
9086ada_aligned_type (struct type *type)
14f9c5c9
AS
9087{
9088 if (ada_is_aligner_type (type))
9089 return ada_aligned_type (TYPE_FIELD_TYPE (type, 0));
9090 else
9091 return ada_get_base_type (type);
9092}
9093
9094
9095/* The address of the aligned value in an object at address VALADDR
4c4b4cd2 9096 having type TYPE. Assumes ada_is_aligner_type (TYPE). */
14f9c5c9 9097
fc1a4b47
AC
9098const gdb_byte *
9099ada_aligned_value_addr (struct type *type, const gdb_byte *valaddr)
14f9c5c9 9100{
d2e4a39e 9101 if (ada_is_aligner_type (type))
14f9c5c9 9102 return ada_aligned_value_addr (TYPE_FIELD_TYPE (type, 0),
4c4b4cd2
PH
9103 valaddr +
9104 TYPE_FIELD_BITPOS (type,
9105 0) / TARGET_CHAR_BIT);
14f9c5c9
AS
9106 else
9107 return valaddr;
9108}
9109
4c4b4cd2
PH
9110
9111
14f9c5c9 9112/* The printed representation of an enumeration literal with encoded
4c4b4cd2 9113 name NAME. The value is good to the next call of ada_enum_name. */
d2e4a39e
AS
9114const char *
9115ada_enum_name (const char *name)
14f9c5c9 9116{
4c4b4cd2
PH
9117 static char *result;
9118 static size_t result_len = 0;
d2e4a39e 9119 char *tmp;
14f9c5c9 9120
4c4b4cd2
PH
9121 /* First, unqualify the enumeration name:
9122 1. Search for the last '.' character. If we find one, then skip
177b42fe 9123 all the preceding characters, the unqualified name starts
76a01679 9124 right after that dot.
4c4b4cd2 9125 2. Otherwise, we may be debugging on a target where the compiler
76a01679
JB
9126 translates dots into "__". Search forward for double underscores,
9127 but stop searching when we hit an overloading suffix, which is
9128 of the form "__" followed by digits. */
4c4b4cd2 9129
c3e5cd34
PH
9130 tmp = strrchr (name, '.');
9131 if (tmp != NULL)
4c4b4cd2
PH
9132 name = tmp + 1;
9133 else
14f9c5c9 9134 {
4c4b4cd2
PH
9135 while ((tmp = strstr (name, "__")) != NULL)
9136 {
9137 if (isdigit (tmp[2]))
9138 break;
9139 else
9140 name = tmp + 2;
9141 }
14f9c5c9
AS
9142 }
9143
9144 if (name[0] == 'Q')
9145 {
14f9c5c9 9146 int v;
5b4ee69b 9147
14f9c5c9 9148 if (name[1] == 'U' || name[1] == 'W')
4c4b4cd2
PH
9149 {
9150 if (sscanf (name + 2, "%x", &v) != 1)
9151 return name;
9152 }
14f9c5c9 9153 else
4c4b4cd2 9154 return name;
14f9c5c9 9155
4c4b4cd2 9156 GROW_VECT (result, result_len, 16);
14f9c5c9 9157 if (isascii (v) && isprint (v))
88c15c34 9158 xsnprintf (result, result_len, "'%c'", v);
14f9c5c9 9159 else if (name[1] == 'U')
88c15c34 9160 xsnprintf (result, result_len, "[\"%02x\"]", v);
14f9c5c9 9161 else
88c15c34 9162 xsnprintf (result, result_len, "[\"%04x\"]", v);
14f9c5c9
AS
9163
9164 return result;
9165 }
d2e4a39e 9166 else
4c4b4cd2 9167 {
c3e5cd34
PH
9168 tmp = strstr (name, "__");
9169 if (tmp == NULL)
9170 tmp = strstr (name, "$");
9171 if (tmp != NULL)
4c4b4cd2
PH
9172 {
9173 GROW_VECT (result, result_len, tmp - name + 1);
9174 strncpy (result, name, tmp - name);
9175 result[tmp - name] = '\0';
9176 return result;
9177 }
9178
9179 return name;
9180 }
14f9c5c9
AS
9181}
9182
14f9c5c9
AS
9183/* Evaluate the subexpression of EXP starting at *POS as for
9184 evaluate_type, updating *POS to point just past the evaluated
4c4b4cd2 9185 expression. */
14f9c5c9 9186
d2e4a39e
AS
9187static struct value *
9188evaluate_subexp_type (struct expression *exp, int *pos)
14f9c5c9 9189{
4b27a620 9190 return evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
14f9c5c9
AS
9191}
9192
9193/* If VAL is wrapped in an aligner or subtype wrapper, return the
4c4b4cd2 9194 value it wraps. */
14f9c5c9 9195
d2e4a39e
AS
9196static struct value *
9197unwrap_value (struct value *val)
14f9c5c9 9198{
df407dfe 9199 struct type *type = ada_check_typedef (value_type (val));
5b4ee69b 9200
14f9c5c9
AS
9201 if (ada_is_aligner_type (type))
9202 {
de4d072f 9203 struct value *v = ada_value_struct_elt (val, "F", 0);
df407dfe 9204 struct type *val_type = ada_check_typedef (value_type (v));
5b4ee69b 9205
14f9c5c9 9206 if (ada_type_name (val_type) == NULL)
4c4b4cd2 9207 TYPE_NAME (val_type) = ada_type_name (type);
14f9c5c9
AS
9208
9209 return unwrap_value (v);
9210 }
d2e4a39e 9211 else
14f9c5c9 9212 {
d2e4a39e 9213 struct type *raw_real_type =
61ee279c 9214 ada_check_typedef (ada_get_base_type (type));
d2e4a39e 9215
5bf03f13
JB
9216 /* If there is no parallel XVS or XVE type, then the value is
9217 already unwrapped. Return it without further modification. */
9218 if ((type == raw_real_type)
9219 && ada_find_parallel_type (type, "___XVE") == NULL)
9220 return val;
14f9c5c9 9221
d2e4a39e 9222 return
4c4b4cd2
PH
9223 coerce_unspec_val_to_type
9224 (val, ada_to_fixed_type (raw_real_type, 0,
42ae5230 9225 value_address (val),
1ed6ede0 9226 NULL, 1));
14f9c5c9
AS
9227 }
9228}
d2e4a39e
AS
9229
9230static struct value *
9231cast_to_fixed (struct type *type, struct value *arg)
14f9c5c9
AS
9232{
9233 LONGEST val;
9234
df407dfe 9235 if (type == value_type (arg))
14f9c5c9 9236 return arg;
df407dfe 9237 else if (ada_is_fixed_point_type (value_type (arg)))
d2e4a39e 9238 val = ada_float_to_fixed (type,
df407dfe 9239 ada_fixed_to_float (value_type (arg),
4c4b4cd2 9240 value_as_long (arg)));
d2e4a39e 9241 else
14f9c5c9 9242 {
a53b7a21 9243 DOUBLEST argd = value_as_double (arg);
5b4ee69b 9244
14f9c5c9
AS
9245 val = ada_float_to_fixed (type, argd);
9246 }
9247
9248 return value_from_longest (type, val);
9249}
9250
d2e4a39e 9251static struct value *
a53b7a21 9252cast_from_fixed (struct type *type, struct value *arg)
14f9c5c9 9253{
df407dfe 9254 DOUBLEST val = ada_fixed_to_float (value_type (arg),
4c4b4cd2 9255 value_as_long (arg));
5b4ee69b 9256
a53b7a21 9257 return value_from_double (type, val);
14f9c5c9
AS
9258}
9259
d99dcf51
JB
9260/* Given two array types T1 and T2, return nonzero iff both arrays
9261 contain the same number of elements. */
9262
9263static int
9264ada_same_array_size_p (struct type *t1, struct type *t2)
9265{
9266 LONGEST lo1, hi1, lo2, hi2;
9267
9268 /* Get the array bounds in order to verify that the size of
9269 the two arrays match. */
9270 if (!get_array_bounds (t1, &lo1, &hi1)
9271 || !get_array_bounds (t2, &lo2, &hi2))
9272 error (_("unable to determine array bounds"));
9273
9274 /* To make things easier for size comparison, normalize a bit
9275 the case of empty arrays by making sure that the difference
9276 between upper bound and lower bound is always -1. */
9277 if (lo1 > hi1)
9278 hi1 = lo1 - 1;
9279 if (lo2 > hi2)
9280 hi2 = lo2 - 1;
9281
9282 return (hi1 - lo1 == hi2 - lo2);
9283}
9284
9285/* Assuming that VAL is an array of integrals, and TYPE represents
9286 an array with the same number of elements, but with wider integral
9287 elements, return an array "casted" to TYPE. In practice, this
9288 means that the returned array is built by casting each element
9289 of the original array into TYPE's (wider) element type. */
9290
9291static struct value *
9292ada_promote_array_of_integrals (struct type *type, struct value *val)
9293{
9294 struct type *elt_type = TYPE_TARGET_TYPE (type);
9295 LONGEST lo, hi;
9296 struct value *res;
9297 LONGEST i;
9298
9299 /* Verify that both val and type are arrays of scalars, and
9300 that the size of val's elements is smaller than the size
9301 of type's element. */
9302 gdb_assert (TYPE_CODE (type) == TYPE_CODE_ARRAY);
9303 gdb_assert (is_integral_type (TYPE_TARGET_TYPE (type)));
9304 gdb_assert (TYPE_CODE (value_type (val)) == TYPE_CODE_ARRAY);
9305 gdb_assert (is_integral_type (TYPE_TARGET_TYPE (value_type (val))));
9306 gdb_assert (TYPE_LENGTH (TYPE_TARGET_TYPE (type))
9307 > TYPE_LENGTH (TYPE_TARGET_TYPE (value_type (val))));
9308
9309 if (!get_array_bounds (type, &lo, &hi))
9310 error (_("unable to determine array bounds"));
9311
9312 res = allocate_value (type);
9313
9314 /* Promote each array element. */
9315 for (i = 0; i < hi - lo + 1; i++)
9316 {
9317 struct value *elt = value_cast (elt_type, value_subscript (val, lo + i));
9318
9319 memcpy (value_contents_writeable (res) + (i * TYPE_LENGTH (elt_type)),
9320 value_contents_all (elt), TYPE_LENGTH (elt_type));
9321 }
9322
9323 return res;
9324}
9325
4c4b4cd2
PH
9326/* Coerce VAL as necessary for assignment to an lval of type TYPE, and
9327 return the converted value. */
9328
d2e4a39e
AS
9329static struct value *
9330coerce_for_assign (struct type *type, struct value *val)
14f9c5c9 9331{
df407dfe 9332 struct type *type2 = value_type (val);
5b4ee69b 9333
14f9c5c9
AS
9334 if (type == type2)
9335 return val;
9336
61ee279c
PH
9337 type2 = ada_check_typedef (type2);
9338 type = ada_check_typedef (type);
14f9c5c9 9339
d2e4a39e
AS
9340 if (TYPE_CODE (type2) == TYPE_CODE_PTR
9341 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
14f9c5c9
AS
9342 {
9343 val = ada_value_ind (val);
df407dfe 9344 type2 = value_type (val);
14f9c5c9
AS
9345 }
9346
d2e4a39e 9347 if (TYPE_CODE (type2) == TYPE_CODE_ARRAY
14f9c5c9
AS
9348 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
9349 {
d99dcf51
JB
9350 if (!ada_same_array_size_p (type, type2))
9351 error (_("cannot assign arrays of different length"));
9352
9353 if (is_integral_type (TYPE_TARGET_TYPE (type))
9354 && is_integral_type (TYPE_TARGET_TYPE (type2))
9355 && TYPE_LENGTH (TYPE_TARGET_TYPE (type2))
9356 < TYPE_LENGTH (TYPE_TARGET_TYPE (type)))
9357 {
9358 /* Allow implicit promotion of the array elements to
9359 a wider type. */
9360 return ada_promote_array_of_integrals (type, val);
9361 }
9362
9363 if (TYPE_LENGTH (TYPE_TARGET_TYPE (type2))
9364 != TYPE_LENGTH (TYPE_TARGET_TYPE (type)))
323e0a4a 9365 error (_("Incompatible types in assignment"));
04624583 9366 deprecated_set_value_type (val, type);
14f9c5c9 9367 }
d2e4a39e 9368 return val;
14f9c5c9
AS
9369}
9370
4c4b4cd2
PH
9371static struct value *
9372ada_value_binop (struct value *arg1, struct value *arg2, enum exp_opcode op)
9373{
9374 struct value *val;
9375 struct type *type1, *type2;
9376 LONGEST v, v1, v2;
9377
994b9211
AC
9378 arg1 = coerce_ref (arg1);
9379 arg2 = coerce_ref (arg2);
18af8284
JB
9380 type1 = get_base_type (ada_check_typedef (value_type (arg1)));
9381 type2 = get_base_type (ada_check_typedef (value_type (arg2)));
4c4b4cd2 9382
76a01679
JB
9383 if (TYPE_CODE (type1) != TYPE_CODE_INT
9384 || TYPE_CODE (type2) != TYPE_CODE_INT)
4c4b4cd2
PH
9385 return value_binop (arg1, arg2, op);
9386
76a01679 9387 switch (op)
4c4b4cd2
PH
9388 {
9389 case BINOP_MOD:
9390 case BINOP_DIV:
9391 case BINOP_REM:
9392 break;
9393 default:
9394 return value_binop (arg1, arg2, op);
9395 }
9396
9397 v2 = value_as_long (arg2);
9398 if (v2 == 0)
323e0a4a 9399 error (_("second operand of %s must not be zero."), op_string (op));
4c4b4cd2
PH
9400
9401 if (TYPE_UNSIGNED (type1) || op == BINOP_MOD)
9402 return value_binop (arg1, arg2, op);
9403
9404 v1 = value_as_long (arg1);
9405 switch (op)
9406 {
9407 case BINOP_DIV:
9408 v = v1 / v2;
76a01679
JB
9409 if (!TRUNCATION_TOWARDS_ZERO && v1 * (v1 % v2) < 0)
9410 v += v > 0 ? -1 : 1;
4c4b4cd2
PH
9411 break;
9412 case BINOP_REM:
9413 v = v1 % v2;
76a01679
JB
9414 if (v * v1 < 0)
9415 v -= v2;
4c4b4cd2
PH
9416 break;
9417 default:
9418 /* Should not reach this point. */
9419 v = 0;
9420 }
9421
9422 val = allocate_value (type1);
990a07ab 9423 store_unsigned_integer (value_contents_raw (val),
e17a4113
UW
9424 TYPE_LENGTH (value_type (val)),
9425 gdbarch_byte_order (get_type_arch (type1)), v);
4c4b4cd2
PH
9426 return val;
9427}
9428
9429static int
9430ada_value_equal (struct value *arg1, struct value *arg2)
9431{
df407dfe
AC
9432 if (ada_is_direct_array_type (value_type (arg1))
9433 || ada_is_direct_array_type (value_type (arg2)))
4c4b4cd2 9434 {
f58b38bf
JB
9435 /* Automatically dereference any array reference before
9436 we attempt to perform the comparison. */
9437 arg1 = ada_coerce_ref (arg1);
9438 arg2 = ada_coerce_ref (arg2);
9439
4c4b4cd2
PH
9440 arg1 = ada_coerce_to_simple_array (arg1);
9441 arg2 = ada_coerce_to_simple_array (arg2);
df407dfe
AC
9442 if (TYPE_CODE (value_type (arg1)) != TYPE_CODE_ARRAY
9443 || TYPE_CODE (value_type (arg2)) != TYPE_CODE_ARRAY)
323e0a4a 9444 error (_("Attempt to compare array with non-array"));
4c4b4cd2 9445 /* FIXME: The following works only for types whose
76a01679
JB
9446 representations use all bits (no padding or undefined bits)
9447 and do not have user-defined equality. */
9448 return
df407dfe 9449 TYPE_LENGTH (value_type (arg1)) == TYPE_LENGTH (value_type (arg2))
0fd88904 9450 && memcmp (value_contents (arg1), value_contents (arg2),
df407dfe 9451 TYPE_LENGTH (value_type (arg1))) == 0;
4c4b4cd2
PH
9452 }
9453 return value_equal (arg1, arg2);
9454}
9455
52ce6436
PH
9456/* Total number of component associations in the aggregate starting at
9457 index PC in EXP. Assumes that index PC is the start of an
0963b4bd 9458 OP_AGGREGATE. */
52ce6436
PH
9459
9460static int
9461num_component_specs (struct expression *exp, int pc)
9462{
9463 int n, m, i;
5b4ee69b 9464
52ce6436
PH
9465 m = exp->elts[pc + 1].longconst;
9466 pc += 3;
9467 n = 0;
9468 for (i = 0; i < m; i += 1)
9469 {
9470 switch (exp->elts[pc].opcode)
9471 {
9472 default:
9473 n += 1;
9474 break;
9475 case OP_CHOICES:
9476 n += exp->elts[pc + 1].longconst;
9477 break;
9478 }
9479 ada_evaluate_subexp (NULL, exp, &pc, EVAL_SKIP);
9480 }
9481 return n;
9482}
9483
9484/* Assign the result of evaluating EXP starting at *POS to the INDEXth
9485 component of LHS (a simple array or a record), updating *POS past
9486 the expression, assuming that LHS is contained in CONTAINER. Does
9487 not modify the inferior's memory, nor does it modify LHS (unless
9488 LHS == CONTAINER). */
9489
9490static void
9491assign_component (struct value *container, struct value *lhs, LONGEST index,
9492 struct expression *exp, int *pos)
9493{
9494 struct value *mark = value_mark ();
9495 struct value *elt;
5b4ee69b 9496
52ce6436
PH
9497 if (TYPE_CODE (value_type (lhs)) == TYPE_CODE_ARRAY)
9498 {
22601c15
UW
9499 struct type *index_type = builtin_type (exp->gdbarch)->builtin_int;
9500 struct value *index_val = value_from_longest (index_type, index);
5b4ee69b 9501
52ce6436
PH
9502 elt = unwrap_value (ada_value_subscript (lhs, 1, &index_val));
9503 }
9504 else
9505 {
9506 elt = ada_index_struct_field (index, lhs, 0, value_type (lhs));
c48db5ca 9507 elt = ada_to_fixed_value (elt);
52ce6436
PH
9508 }
9509
9510 if (exp->elts[*pos].opcode == OP_AGGREGATE)
9511 assign_aggregate (container, elt, exp, pos, EVAL_NORMAL);
9512 else
9513 value_assign_to_component (container, elt,
9514 ada_evaluate_subexp (NULL, exp, pos,
9515 EVAL_NORMAL));
9516
9517 value_free_to_mark (mark);
9518}
9519
9520/* Assuming that LHS represents an lvalue having a record or array
9521 type, and EXP->ELTS[*POS] is an OP_AGGREGATE, evaluate an assignment
9522 of that aggregate's value to LHS, advancing *POS past the
9523 aggregate. NOSIDE is as for evaluate_subexp. CONTAINER is an
9524 lvalue containing LHS (possibly LHS itself). Does not modify
9525 the inferior's memory, nor does it modify the contents of
0963b4bd 9526 LHS (unless == CONTAINER). Returns the modified CONTAINER. */
52ce6436
PH
9527
9528static struct value *
9529assign_aggregate (struct value *container,
9530 struct value *lhs, struct expression *exp,
9531 int *pos, enum noside noside)
9532{
9533 struct type *lhs_type;
9534 int n = exp->elts[*pos+1].longconst;
9535 LONGEST low_index, high_index;
9536 int num_specs;
9537 LONGEST *indices;
9538 int max_indices, num_indices;
52ce6436 9539 int i;
52ce6436
PH
9540
9541 *pos += 3;
9542 if (noside != EVAL_NORMAL)
9543 {
52ce6436
PH
9544 for (i = 0; i < n; i += 1)
9545 ada_evaluate_subexp (NULL, exp, pos, noside);
9546 return container;
9547 }
9548
9549 container = ada_coerce_ref (container);
9550 if (ada_is_direct_array_type (value_type (container)))
9551 container = ada_coerce_to_simple_array (container);
9552 lhs = ada_coerce_ref (lhs);
9553 if (!deprecated_value_modifiable (lhs))
9554 error (_("Left operand of assignment is not a modifiable lvalue."));
9555
9556 lhs_type = value_type (lhs);
9557 if (ada_is_direct_array_type (lhs_type))
9558 {
9559 lhs = ada_coerce_to_simple_array (lhs);
9560 lhs_type = value_type (lhs);
9561 low_index = TYPE_ARRAY_LOWER_BOUND_VALUE (lhs_type);
9562 high_index = TYPE_ARRAY_UPPER_BOUND_VALUE (lhs_type);
52ce6436
PH
9563 }
9564 else if (TYPE_CODE (lhs_type) == TYPE_CODE_STRUCT)
9565 {
9566 low_index = 0;
9567 high_index = num_visible_fields (lhs_type) - 1;
52ce6436
PH
9568 }
9569 else
9570 error (_("Left-hand side must be array or record."));
9571
9572 num_specs = num_component_specs (exp, *pos - 3);
9573 max_indices = 4 * num_specs + 4;
9574 indices = alloca (max_indices * sizeof (indices[0]));
9575 indices[0] = indices[1] = low_index - 1;
9576 indices[2] = indices[3] = high_index + 1;
9577 num_indices = 4;
9578
9579 for (i = 0; i < n; i += 1)
9580 {
9581 switch (exp->elts[*pos].opcode)
9582 {
1fbf5ada
JB
9583 case OP_CHOICES:
9584 aggregate_assign_from_choices (container, lhs, exp, pos, indices,
9585 &num_indices, max_indices,
9586 low_index, high_index);
9587 break;
9588 case OP_POSITIONAL:
9589 aggregate_assign_positional (container, lhs, exp, pos, indices,
52ce6436
PH
9590 &num_indices, max_indices,
9591 low_index, high_index);
1fbf5ada
JB
9592 break;
9593 case OP_OTHERS:
9594 if (i != n-1)
9595 error (_("Misplaced 'others' clause"));
9596 aggregate_assign_others (container, lhs, exp, pos, indices,
9597 num_indices, low_index, high_index);
9598 break;
9599 default:
9600 error (_("Internal error: bad aggregate clause"));
52ce6436
PH
9601 }
9602 }
9603
9604 return container;
9605}
9606
9607/* Assign into the component of LHS indexed by the OP_POSITIONAL
9608 construct at *POS, updating *POS past the construct, given that
9609 the positions are relative to lower bound LOW, where HIGH is the
9610 upper bound. Record the position in INDICES[0 .. MAX_INDICES-1]
9611 updating *NUM_INDICES as needed. CONTAINER is as for
0963b4bd 9612 assign_aggregate. */
52ce6436
PH
9613static void
9614aggregate_assign_positional (struct value *container,
9615 struct value *lhs, struct expression *exp,
9616 int *pos, LONGEST *indices, int *num_indices,
9617 int max_indices, LONGEST low, LONGEST high)
9618{
9619 LONGEST ind = longest_to_int (exp->elts[*pos + 1].longconst) + low;
9620
9621 if (ind - 1 == high)
e1d5a0d2 9622 warning (_("Extra components in aggregate ignored."));
52ce6436
PH
9623 if (ind <= high)
9624 {
9625 add_component_interval (ind, ind, indices, num_indices, max_indices);
9626 *pos += 3;
9627 assign_component (container, lhs, ind, exp, pos);
9628 }
9629 else
9630 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
9631}
9632
9633/* Assign into the components of LHS indexed by the OP_CHOICES
9634 construct at *POS, updating *POS past the construct, given that
9635 the allowable indices are LOW..HIGH. Record the indices assigned
9636 to in INDICES[0 .. MAX_INDICES-1], updating *NUM_INDICES as
0963b4bd 9637 needed. CONTAINER is as for assign_aggregate. */
52ce6436
PH
9638static void
9639aggregate_assign_from_choices (struct value *container,
9640 struct value *lhs, struct expression *exp,
9641 int *pos, LONGEST *indices, int *num_indices,
9642 int max_indices, LONGEST low, LONGEST high)
9643{
9644 int j;
9645 int n_choices = longest_to_int (exp->elts[*pos+1].longconst);
9646 int choice_pos, expr_pc;
9647 int is_array = ada_is_direct_array_type (value_type (lhs));
9648
9649 choice_pos = *pos += 3;
9650
9651 for (j = 0; j < n_choices; j += 1)
9652 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
9653 expr_pc = *pos;
9654 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
9655
9656 for (j = 0; j < n_choices; j += 1)
9657 {
9658 LONGEST lower, upper;
9659 enum exp_opcode op = exp->elts[choice_pos].opcode;
5b4ee69b 9660
52ce6436
PH
9661 if (op == OP_DISCRETE_RANGE)
9662 {
9663 choice_pos += 1;
9664 lower = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
9665 EVAL_NORMAL));
9666 upper = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
9667 EVAL_NORMAL));
9668 }
9669 else if (is_array)
9670 {
9671 lower = value_as_long (ada_evaluate_subexp (NULL, exp, &choice_pos,
9672 EVAL_NORMAL));
9673 upper = lower;
9674 }
9675 else
9676 {
9677 int ind;
0d5cff50 9678 const char *name;
5b4ee69b 9679
52ce6436
PH
9680 switch (op)
9681 {
9682 case OP_NAME:
9683 name = &exp->elts[choice_pos + 2].string;
9684 break;
9685 case OP_VAR_VALUE:
9686 name = SYMBOL_NATURAL_NAME (exp->elts[choice_pos + 2].symbol);
9687 break;
9688 default:
9689 error (_("Invalid record component association."));
9690 }
9691 ada_evaluate_subexp (NULL, exp, &choice_pos, EVAL_SKIP);
9692 ind = 0;
9693 if (! find_struct_field (name, value_type (lhs), 0,
9694 NULL, NULL, NULL, NULL, &ind))
9695 error (_("Unknown component name: %s."), name);
9696 lower = upper = ind;
9697 }
9698
9699 if (lower <= upper && (lower < low || upper > high))
9700 error (_("Index in component association out of bounds."));
9701
9702 add_component_interval (lower, upper, indices, num_indices,
9703 max_indices);
9704 while (lower <= upper)
9705 {
9706 int pos1;
5b4ee69b 9707
52ce6436
PH
9708 pos1 = expr_pc;
9709 assign_component (container, lhs, lower, exp, &pos1);
9710 lower += 1;
9711 }
9712 }
9713}
9714
9715/* Assign the value of the expression in the OP_OTHERS construct in
9716 EXP at *POS into the components of LHS indexed from LOW .. HIGH that
9717 have not been previously assigned. The index intervals already assigned
9718 are in INDICES[0 .. NUM_INDICES-1]. Updates *POS to after the
0963b4bd 9719 OP_OTHERS clause. CONTAINER is as for assign_aggregate. */
52ce6436
PH
9720static void
9721aggregate_assign_others (struct value *container,
9722 struct value *lhs, struct expression *exp,
9723 int *pos, LONGEST *indices, int num_indices,
9724 LONGEST low, LONGEST high)
9725{
9726 int i;
5ce64950 9727 int expr_pc = *pos + 1;
52ce6436
PH
9728
9729 for (i = 0; i < num_indices - 2; i += 2)
9730 {
9731 LONGEST ind;
5b4ee69b 9732
52ce6436
PH
9733 for (ind = indices[i + 1] + 1; ind < indices[i + 2]; ind += 1)
9734 {
5ce64950 9735 int localpos;
5b4ee69b 9736
5ce64950
MS
9737 localpos = expr_pc;
9738 assign_component (container, lhs, ind, exp, &localpos);
52ce6436
PH
9739 }
9740 }
9741 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
9742}
9743
9744/* Add the interval [LOW .. HIGH] to the sorted set of intervals
9745 [ INDICES[0] .. INDICES[1] ],..., [ INDICES[*SIZE-2] .. INDICES[*SIZE-1] ],
9746 modifying *SIZE as needed. It is an error if *SIZE exceeds
9747 MAX_SIZE. The resulting intervals do not overlap. */
9748static void
9749add_component_interval (LONGEST low, LONGEST high,
9750 LONGEST* indices, int *size, int max_size)
9751{
9752 int i, j;
5b4ee69b 9753
52ce6436
PH
9754 for (i = 0; i < *size; i += 2) {
9755 if (high >= indices[i] && low <= indices[i + 1])
9756 {
9757 int kh;
5b4ee69b 9758
52ce6436
PH
9759 for (kh = i + 2; kh < *size; kh += 2)
9760 if (high < indices[kh])
9761 break;
9762 if (low < indices[i])
9763 indices[i] = low;
9764 indices[i + 1] = indices[kh - 1];
9765 if (high > indices[i + 1])
9766 indices[i + 1] = high;
9767 memcpy (indices + i + 2, indices + kh, *size - kh);
9768 *size -= kh - i - 2;
9769 return;
9770 }
9771 else if (high < indices[i])
9772 break;
9773 }
9774
9775 if (*size == max_size)
9776 error (_("Internal error: miscounted aggregate components."));
9777 *size += 2;
9778 for (j = *size-1; j >= i+2; j -= 1)
9779 indices[j] = indices[j - 2];
9780 indices[i] = low;
9781 indices[i + 1] = high;
9782}
9783
6e48bd2c
JB
9784/* Perform and Ada cast of ARG2 to type TYPE if the type of ARG2
9785 is different. */
9786
9787static struct value *
9788ada_value_cast (struct type *type, struct value *arg2, enum noside noside)
9789{
9790 if (type == ada_check_typedef (value_type (arg2)))
9791 return arg2;
9792
9793 if (ada_is_fixed_point_type (type))
9794 return (cast_to_fixed (type, arg2));
9795
9796 if (ada_is_fixed_point_type (value_type (arg2)))
a53b7a21 9797 return cast_from_fixed (type, arg2);
6e48bd2c
JB
9798
9799 return value_cast (type, arg2);
9800}
9801
284614f0
JB
9802/* Evaluating Ada expressions, and printing their result.
9803 ------------------------------------------------------
9804
21649b50
JB
9805 1. Introduction:
9806 ----------------
9807
284614f0
JB
9808 We usually evaluate an Ada expression in order to print its value.
9809 We also evaluate an expression in order to print its type, which
9810 happens during the EVAL_AVOID_SIDE_EFFECTS phase of the evaluation,
9811 but we'll focus mostly on the EVAL_NORMAL phase. In practice, the
9812 EVAL_AVOID_SIDE_EFFECTS phase allows us to simplify certain aspects of
9813 the evaluation compared to the EVAL_NORMAL, but is otherwise very
9814 similar.
9815
9816 Evaluating expressions is a little more complicated for Ada entities
9817 than it is for entities in languages such as C. The main reason for
9818 this is that Ada provides types whose definition might be dynamic.
9819 One example of such types is variant records. Or another example
9820 would be an array whose bounds can only be known at run time.
9821
9822 The following description is a general guide as to what should be
9823 done (and what should NOT be done) in order to evaluate an expression
9824 involving such types, and when. This does not cover how the semantic
9825 information is encoded by GNAT as this is covered separatly. For the
9826 document used as the reference for the GNAT encoding, see exp_dbug.ads
9827 in the GNAT sources.
9828
9829 Ideally, we should embed each part of this description next to its
9830 associated code. Unfortunately, the amount of code is so vast right
9831 now that it's hard to see whether the code handling a particular
9832 situation might be duplicated or not. One day, when the code is
9833 cleaned up, this guide might become redundant with the comments
9834 inserted in the code, and we might want to remove it.
9835
21649b50
JB
9836 2. ``Fixing'' an Entity, the Simple Case:
9837 -----------------------------------------
9838
284614f0
JB
9839 When evaluating Ada expressions, the tricky issue is that they may
9840 reference entities whose type contents and size are not statically
9841 known. Consider for instance a variant record:
9842
9843 type Rec (Empty : Boolean := True) is record
9844 case Empty is
9845 when True => null;
9846 when False => Value : Integer;
9847 end case;
9848 end record;
9849 Yes : Rec := (Empty => False, Value => 1);
9850 No : Rec := (empty => True);
9851
9852 The size and contents of that record depends on the value of the
9853 descriminant (Rec.Empty). At this point, neither the debugging
9854 information nor the associated type structure in GDB are able to
9855 express such dynamic types. So what the debugger does is to create
9856 "fixed" versions of the type that applies to the specific object.
9857 We also informally refer to this opperation as "fixing" an object,
9858 which means creating its associated fixed type.
9859
9860 Example: when printing the value of variable "Yes" above, its fixed
9861 type would look like this:
9862
9863 type Rec is record
9864 Empty : Boolean;
9865 Value : Integer;
9866 end record;
9867
9868 On the other hand, if we printed the value of "No", its fixed type
9869 would become:
9870
9871 type Rec is record
9872 Empty : Boolean;
9873 end record;
9874
9875 Things become a little more complicated when trying to fix an entity
9876 with a dynamic type that directly contains another dynamic type,
9877 such as an array of variant records, for instance. There are
9878 two possible cases: Arrays, and records.
9879
21649b50
JB
9880 3. ``Fixing'' Arrays:
9881 ---------------------
9882
9883 The type structure in GDB describes an array in terms of its bounds,
9884 and the type of its elements. By design, all elements in the array
9885 have the same type and we cannot represent an array of variant elements
9886 using the current type structure in GDB. When fixing an array,
9887 we cannot fix the array element, as we would potentially need one
9888 fixed type per element of the array. As a result, the best we can do
9889 when fixing an array is to produce an array whose bounds and size
9890 are correct (allowing us to read it from memory), but without having
9891 touched its element type. Fixing each element will be done later,
9892 when (if) necessary.
9893
9894 Arrays are a little simpler to handle than records, because the same
9895 amount of memory is allocated for each element of the array, even if
1b536f04 9896 the amount of space actually used by each element differs from element
21649b50 9897 to element. Consider for instance the following array of type Rec:
284614f0
JB
9898
9899 type Rec_Array is array (1 .. 2) of Rec;
9900
1b536f04
JB
9901 The actual amount of memory occupied by each element might be different
9902 from element to element, depending on the value of their discriminant.
21649b50 9903 But the amount of space reserved for each element in the array remains
1b536f04 9904 fixed regardless. So we simply need to compute that size using
21649b50
JB
9905 the debugging information available, from which we can then determine
9906 the array size (we multiply the number of elements of the array by
9907 the size of each element).
9908
9909 The simplest case is when we have an array of a constrained element
9910 type. For instance, consider the following type declarations:
9911
9912 type Bounded_String (Max_Size : Integer) is
9913 Length : Integer;
9914 Buffer : String (1 .. Max_Size);
9915 end record;
9916 type Bounded_String_Array is array (1 ..2) of Bounded_String (80);
9917
9918 In this case, the compiler describes the array as an array of
9919 variable-size elements (identified by its XVS suffix) for which
9920 the size can be read in the parallel XVZ variable.
9921
9922 In the case of an array of an unconstrained element type, the compiler
9923 wraps the array element inside a private PAD type. This type should not
9924 be shown to the user, and must be "unwrap"'ed before printing. Note
284614f0
JB
9925 that we also use the adjective "aligner" in our code to designate
9926 these wrapper types.
9927
1b536f04 9928 In some cases, the size allocated for each element is statically
21649b50
JB
9929 known. In that case, the PAD type already has the correct size,
9930 and the array element should remain unfixed.
9931
9932 But there are cases when this size is not statically known.
9933 For instance, assuming that "Five" is an integer variable:
284614f0
JB
9934
9935 type Dynamic is array (1 .. Five) of Integer;
9936 type Wrapper (Has_Length : Boolean := False) is record
9937 Data : Dynamic;
9938 case Has_Length is
9939 when True => Length : Integer;
9940 when False => null;
9941 end case;
9942 end record;
9943 type Wrapper_Array is array (1 .. 2) of Wrapper;
9944
9945 Hello : Wrapper_Array := (others => (Has_Length => True,
9946 Data => (others => 17),
9947 Length => 1));
9948
9949
9950 The debugging info would describe variable Hello as being an
9951 array of a PAD type. The size of that PAD type is not statically
9952 known, but can be determined using a parallel XVZ variable.
9953 In that case, a copy of the PAD type with the correct size should
9954 be used for the fixed array.
9955
21649b50
JB
9956 3. ``Fixing'' record type objects:
9957 ----------------------------------
9958
9959 Things are slightly different from arrays in the case of dynamic
284614f0
JB
9960 record types. In this case, in order to compute the associated
9961 fixed type, we need to determine the size and offset of each of
9962 its components. This, in turn, requires us to compute the fixed
9963 type of each of these components.
9964
9965 Consider for instance the example:
9966
9967 type Bounded_String (Max_Size : Natural) is record
9968 Str : String (1 .. Max_Size);
9969 Length : Natural;
9970 end record;
9971 My_String : Bounded_String (Max_Size => 10);
9972
9973 In that case, the position of field "Length" depends on the size
9974 of field Str, which itself depends on the value of the Max_Size
21649b50 9975 discriminant. In order to fix the type of variable My_String,
284614f0
JB
9976 we need to fix the type of field Str. Therefore, fixing a variant
9977 record requires us to fix each of its components.
9978
9979 However, if a component does not have a dynamic size, the component
9980 should not be fixed. In particular, fields that use a PAD type
9981 should not fixed. Here is an example where this might happen
9982 (assuming type Rec above):
9983
9984 type Container (Big : Boolean) is record
9985 First : Rec;
9986 After : Integer;
9987 case Big is
9988 when True => Another : Integer;
9989 when False => null;
9990 end case;
9991 end record;
9992 My_Container : Container := (Big => False,
9993 First => (Empty => True),
9994 After => 42);
9995
9996 In that example, the compiler creates a PAD type for component First,
9997 whose size is constant, and then positions the component After just
9998 right after it. The offset of component After is therefore constant
9999 in this case.
10000
10001 The debugger computes the position of each field based on an algorithm
10002 that uses, among other things, the actual position and size of the field
21649b50
JB
10003 preceding it. Let's now imagine that the user is trying to print
10004 the value of My_Container. If the type fixing was recursive, we would
284614f0
JB
10005 end up computing the offset of field After based on the size of the
10006 fixed version of field First. And since in our example First has
10007 only one actual field, the size of the fixed type is actually smaller
10008 than the amount of space allocated to that field, and thus we would
10009 compute the wrong offset of field After.
10010
21649b50
JB
10011 To make things more complicated, we need to watch out for dynamic
10012 components of variant records (identified by the ___XVL suffix in
10013 the component name). Even if the target type is a PAD type, the size
10014 of that type might not be statically known. So the PAD type needs
10015 to be unwrapped and the resulting type needs to be fixed. Otherwise,
10016 we might end up with the wrong size for our component. This can be
10017 observed with the following type declarations:
284614f0
JB
10018
10019 type Octal is new Integer range 0 .. 7;
10020 type Octal_Array is array (Positive range <>) of Octal;
10021 pragma Pack (Octal_Array);
10022
10023 type Octal_Buffer (Size : Positive) is record
10024 Buffer : Octal_Array (1 .. Size);
10025 Length : Integer;
10026 end record;
10027
10028 In that case, Buffer is a PAD type whose size is unset and needs
10029 to be computed by fixing the unwrapped type.
10030
21649b50
JB
10031 4. When to ``Fix'' un-``Fixed'' sub-elements of an entity:
10032 ----------------------------------------------------------
10033
10034 Lastly, when should the sub-elements of an entity that remained unfixed
284614f0
JB
10035 thus far, be actually fixed?
10036
10037 The answer is: Only when referencing that element. For instance
10038 when selecting one component of a record, this specific component
10039 should be fixed at that point in time. Or when printing the value
10040 of a record, each component should be fixed before its value gets
10041 printed. Similarly for arrays, the element of the array should be
10042 fixed when printing each element of the array, or when extracting
10043 one element out of that array. On the other hand, fixing should
10044 not be performed on the elements when taking a slice of an array!
10045
10046 Note that one of the side-effects of miscomputing the offset and
10047 size of each field is that we end up also miscomputing the size
10048 of the containing type. This can have adverse results when computing
10049 the value of an entity. GDB fetches the value of an entity based
10050 on the size of its type, and thus a wrong size causes GDB to fetch
10051 the wrong amount of memory. In the case where the computed size is
10052 too small, GDB fetches too little data to print the value of our
10053 entiry. Results in this case as unpredicatble, as we usually read
10054 past the buffer containing the data =:-o. */
10055
10056/* Implement the evaluate_exp routine in the exp_descriptor structure
10057 for the Ada language. */
10058
52ce6436 10059static struct value *
ebf56fd3 10060ada_evaluate_subexp (struct type *expect_type, struct expression *exp,
4c4b4cd2 10061 int *pos, enum noside noside)
14f9c5c9
AS
10062{
10063 enum exp_opcode op;
b5385fc0 10064 int tem;
14f9c5c9 10065 int pc;
5ec18f2b 10066 int preeval_pos;
14f9c5c9
AS
10067 struct value *arg1 = NULL, *arg2 = NULL, *arg3;
10068 struct type *type;
52ce6436 10069 int nargs, oplen;
d2e4a39e 10070 struct value **argvec;
14f9c5c9 10071
d2e4a39e
AS
10072 pc = *pos;
10073 *pos += 1;
14f9c5c9
AS
10074 op = exp->elts[pc].opcode;
10075
d2e4a39e 10076 switch (op)
14f9c5c9
AS
10077 {
10078 default:
10079 *pos -= 1;
6e48bd2c 10080 arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside);
ca1f964d
JG
10081
10082 if (noside == EVAL_NORMAL)
10083 arg1 = unwrap_value (arg1);
6e48bd2c
JB
10084
10085 /* If evaluating an OP_DOUBLE and an EXPECT_TYPE was provided,
10086 then we need to perform the conversion manually, because
10087 evaluate_subexp_standard doesn't do it. This conversion is
10088 necessary in Ada because the different kinds of float/fixed
10089 types in Ada have different representations.
10090
10091 Similarly, we need to perform the conversion from OP_LONG
10092 ourselves. */
10093 if ((op == OP_DOUBLE || op == OP_LONG) && expect_type != NULL)
10094 arg1 = ada_value_cast (expect_type, arg1, noside);
10095
10096 return arg1;
4c4b4cd2
PH
10097
10098 case OP_STRING:
10099 {
76a01679 10100 struct value *result;
5b4ee69b 10101
76a01679
JB
10102 *pos -= 1;
10103 result = evaluate_subexp_standard (expect_type, exp, pos, noside);
10104 /* The result type will have code OP_STRING, bashed there from
10105 OP_ARRAY. Bash it back. */
df407dfe
AC
10106 if (TYPE_CODE (value_type (result)) == TYPE_CODE_STRING)
10107 TYPE_CODE (value_type (result)) = TYPE_CODE_ARRAY;
76a01679 10108 return result;
4c4b4cd2 10109 }
14f9c5c9
AS
10110
10111 case UNOP_CAST:
10112 (*pos) += 2;
10113 type = exp->elts[pc + 1].type;
10114 arg1 = evaluate_subexp (type, exp, pos, noside);
10115 if (noside == EVAL_SKIP)
4c4b4cd2 10116 goto nosideret;
6e48bd2c 10117 arg1 = ada_value_cast (type, arg1, noside);
14f9c5c9
AS
10118 return arg1;
10119
4c4b4cd2
PH
10120 case UNOP_QUAL:
10121 (*pos) += 2;
10122 type = exp->elts[pc + 1].type;
10123 return ada_evaluate_subexp (type, exp, pos, noside);
10124
14f9c5c9
AS
10125 case BINOP_ASSIGN:
10126 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
52ce6436
PH
10127 if (exp->elts[*pos].opcode == OP_AGGREGATE)
10128 {
10129 arg1 = assign_aggregate (arg1, arg1, exp, pos, noside);
10130 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
10131 return arg1;
10132 return ada_value_assign (arg1, arg1);
10133 }
003f3813
JB
10134 /* Force the evaluation of the rhs ARG2 to the type of the lhs ARG1,
10135 except if the lhs of our assignment is a convenience variable.
10136 In the case of assigning to a convenience variable, the lhs
10137 should be exactly the result of the evaluation of the rhs. */
10138 type = value_type (arg1);
10139 if (VALUE_LVAL (arg1) == lval_internalvar)
10140 type = NULL;
10141 arg2 = evaluate_subexp (type, exp, pos, noside);
14f9c5c9 10142 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
4c4b4cd2 10143 return arg1;
df407dfe
AC
10144 if (ada_is_fixed_point_type (value_type (arg1)))
10145 arg2 = cast_to_fixed (value_type (arg1), arg2);
10146 else if (ada_is_fixed_point_type (value_type (arg2)))
76a01679 10147 error
323e0a4a 10148 (_("Fixed-point values must be assigned to fixed-point variables"));
d2e4a39e 10149 else
df407dfe 10150 arg2 = coerce_for_assign (value_type (arg1), arg2);
4c4b4cd2 10151 return ada_value_assign (arg1, arg2);
14f9c5c9
AS
10152
10153 case BINOP_ADD:
10154 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
10155 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
10156 if (noside == EVAL_SKIP)
4c4b4cd2 10157 goto nosideret;
2ac8a782
JB
10158 if (TYPE_CODE (value_type (arg1)) == TYPE_CODE_PTR)
10159 return (value_from_longest
10160 (value_type (arg1),
10161 value_as_long (arg1) + value_as_long (arg2)));
c40cc657
JB
10162 if (TYPE_CODE (value_type (arg2)) == TYPE_CODE_PTR)
10163 return (value_from_longest
10164 (value_type (arg2),
10165 value_as_long (arg1) + value_as_long (arg2)));
df407dfe
AC
10166 if ((ada_is_fixed_point_type (value_type (arg1))
10167 || ada_is_fixed_point_type (value_type (arg2)))
10168 && value_type (arg1) != value_type (arg2))
323e0a4a 10169 error (_("Operands of fixed-point addition must have the same type"));
b7789565
JB
10170 /* Do the addition, and cast the result to the type of the first
10171 argument. We cannot cast the result to a reference type, so if
10172 ARG1 is a reference type, find its underlying type. */
10173 type = value_type (arg1);
10174 while (TYPE_CODE (type) == TYPE_CODE_REF)
10175 type = TYPE_TARGET_TYPE (type);
f44316fa 10176 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
89eef114 10177 return value_cast (type, value_binop (arg1, arg2, BINOP_ADD));
14f9c5c9
AS
10178
10179 case BINOP_SUB:
10180 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
10181 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
10182 if (noside == EVAL_SKIP)
4c4b4cd2 10183 goto nosideret;
2ac8a782
JB
10184 if (TYPE_CODE (value_type (arg1)) == TYPE_CODE_PTR)
10185 return (value_from_longest
10186 (value_type (arg1),
10187 value_as_long (arg1) - value_as_long (arg2)));
c40cc657
JB
10188 if (TYPE_CODE (value_type (arg2)) == TYPE_CODE_PTR)
10189 return (value_from_longest
10190 (value_type (arg2),
10191 value_as_long (arg1) - value_as_long (arg2)));
df407dfe
AC
10192 if ((ada_is_fixed_point_type (value_type (arg1))
10193 || ada_is_fixed_point_type (value_type (arg2)))
10194 && value_type (arg1) != value_type (arg2))
0963b4bd
MS
10195 error (_("Operands of fixed-point subtraction "
10196 "must have the same type"));
b7789565
JB
10197 /* Do the substraction, and cast the result to the type of the first
10198 argument. We cannot cast the result to a reference type, so if
10199 ARG1 is a reference type, find its underlying type. */
10200 type = value_type (arg1);
10201 while (TYPE_CODE (type) == TYPE_CODE_REF)
10202 type = TYPE_TARGET_TYPE (type);
f44316fa 10203 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
89eef114 10204 return value_cast (type, value_binop (arg1, arg2, BINOP_SUB));
14f9c5c9
AS
10205
10206 case BINOP_MUL:
10207 case BINOP_DIV:
e1578042
JB
10208 case BINOP_REM:
10209 case BINOP_MOD:
14f9c5c9
AS
10210 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10211 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10212 if (noside == EVAL_SKIP)
4c4b4cd2 10213 goto nosideret;
e1578042 10214 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
9c2be529
JB
10215 {
10216 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10217 return value_zero (value_type (arg1), not_lval);
10218 }
14f9c5c9 10219 else
4c4b4cd2 10220 {
a53b7a21 10221 type = builtin_type (exp->gdbarch)->builtin_double;
df407dfe 10222 if (ada_is_fixed_point_type (value_type (arg1)))
a53b7a21 10223 arg1 = cast_from_fixed (type, arg1);
df407dfe 10224 if (ada_is_fixed_point_type (value_type (arg2)))
a53b7a21 10225 arg2 = cast_from_fixed (type, arg2);
f44316fa 10226 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
4c4b4cd2
PH
10227 return ada_value_binop (arg1, arg2, op);
10228 }
10229
4c4b4cd2
PH
10230 case BINOP_EQUAL:
10231 case BINOP_NOTEQUAL:
14f9c5c9 10232 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
df407dfe 10233 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
14f9c5c9 10234 if (noside == EVAL_SKIP)
76a01679 10235 goto nosideret;
4c4b4cd2 10236 if (noside == EVAL_AVOID_SIDE_EFFECTS)
76a01679 10237 tem = 0;
4c4b4cd2 10238 else
f44316fa
UW
10239 {
10240 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10241 tem = ada_value_equal (arg1, arg2);
10242 }
4c4b4cd2 10243 if (op == BINOP_NOTEQUAL)
76a01679 10244 tem = !tem;
fbb06eb1
UW
10245 type = language_bool_type (exp->language_defn, exp->gdbarch);
10246 return value_from_longest (type, (LONGEST) tem);
4c4b4cd2
PH
10247
10248 case UNOP_NEG:
10249 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10250 if (noside == EVAL_SKIP)
10251 goto nosideret;
df407dfe
AC
10252 else if (ada_is_fixed_point_type (value_type (arg1)))
10253 return value_cast (value_type (arg1), value_neg (arg1));
14f9c5c9 10254 else
f44316fa
UW
10255 {
10256 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
10257 return value_neg (arg1);
10258 }
4c4b4cd2 10259
2330c6c6
JB
10260 case BINOP_LOGICAL_AND:
10261 case BINOP_LOGICAL_OR:
10262 case UNOP_LOGICAL_NOT:
000d5124
JB
10263 {
10264 struct value *val;
10265
10266 *pos -= 1;
10267 val = evaluate_subexp_standard (expect_type, exp, pos, noside);
fbb06eb1
UW
10268 type = language_bool_type (exp->language_defn, exp->gdbarch);
10269 return value_cast (type, val);
000d5124 10270 }
2330c6c6
JB
10271
10272 case BINOP_BITWISE_AND:
10273 case BINOP_BITWISE_IOR:
10274 case BINOP_BITWISE_XOR:
000d5124
JB
10275 {
10276 struct value *val;
10277
10278 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
10279 *pos = pc;
10280 val = evaluate_subexp_standard (expect_type, exp, pos, noside);
10281
10282 return value_cast (value_type (arg1), val);
10283 }
2330c6c6 10284
14f9c5c9
AS
10285 case OP_VAR_VALUE:
10286 *pos -= 1;
6799def4 10287
14f9c5c9 10288 if (noside == EVAL_SKIP)
4c4b4cd2
PH
10289 {
10290 *pos += 4;
10291 goto nosideret;
10292 }
da5c522f
JB
10293
10294 if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
76a01679
JB
10295 /* Only encountered when an unresolved symbol occurs in a
10296 context other than a function call, in which case, it is
52ce6436 10297 invalid. */
323e0a4a 10298 error (_("Unexpected unresolved symbol, %s, during evaluation"),
4c4b4cd2 10299 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
da5c522f
JB
10300
10301 if (noside == EVAL_AVOID_SIDE_EFFECTS)
4c4b4cd2 10302 {
0c1f74cf 10303 type = static_unwrap_type (SYMBOL_TYPE (exp->elts[pc + 2].symbol));
31dbc1c5
JB
10304 /* Check to see if this is a tagged type. We also need to handle
10305 the case where the type is a reference to a tagged type, but
10306 we have to be careful to exclude pointers to tagged types.
10307 The latter should be shown as usual (as a pointer), whereas
10308 a reference should mostly be transparent to the user. */
10309 if (ada_is_tagged_type (type, 0)
023db19c 10310 || (TYPE_CODE (type) == TYPE_CODE_REF
31dbc1c5 10311 && ada_is_tagged_type (TYPE_TARGET_TYPE (type), 0)))
0d72a7c3
JB
10312 {
10313 /* Tagged types are a little special in the fact that the real
10314 type is dynamic and can only be determined by inspecting the
10315 object's tag. This means that we need to get the object's
10316 value first (EVAL_NORMAL) and then extract the actual object
10317 type from its tag.
10318
10319 Note that we cannot skip the final step where we extract
10320 the object type from its tag, because the EVAL_NORMAL phase
10321 results in dynamic components being resolved into fixed ones.
10322 This can cause problems when trying to print the type
10323 description of tagged types whose parent has a dynamic size:
10324 We use the type name of the "_parent" component in order
10325 to print the name of the ancestor type in the type description.
10326 If that component had a dynamic size, the resolution into
10327 a fixed type would result in the loss of that type name,
10328 thus preventing us from printing the name of the ancestor
10329 type in the type description. */
10330 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_NORMAL);
10331
10332 if (TYPE_CODE (type) != TYPE_CODE_REF)
10333 {
10334 struct type *actual_type;
10335
10336 actual_type = type_from_tag (ada_value_tag (arg1));
10337 if (actual_type == NULL)
10338 /* If, for some reason, we were unable to determine
10339 the actual type from the tag, then use the static
10340 approximation that we just computed as a fallback.
10341 This can happen if the debugging information is
10342 incomplete, for instance. */
10343 actual_type = type;
10344 return value_zero (actual_type, not_lval);
10345 }
10346 else
10347 {
10348 /* In the case of a ref, ada_coerce_ref takes care
10349 of determining the actual type. But the evaluation
10350 should return a ref as it should be valid to ask
10351 for its address; so rebuild a ref after coerce. */
10352 arg1 = ada_coerce_ref (arg1);
10353 return value_ref (arg1);
10354 }
10355 }
0c1f74cf 10356
84754697
JB
10357 /* Records and unions for which GNAT encodings have been
10358 generated need to be statically fixed as well.
10359 Otherwise, non-static fixing produces a type where
10360 all dynamic properties are removed, which prevents "ptype"
10361 from being able to completely describe the type.
10362 For instance, a case statement in a variant record would be
10363 replaced by the relevant components based on the actual
10364 value of the discriminants. */
10365 if ((TYPE_CODE (type) == TYPE_CODE_STRUCT
10366 && dynamic_template_type (type) != NULL)
10367 || (TYPE_CODE (type) == TYPE_CODE_UNION
10368 && ada_find_parallel_type (type, "___XVU") != NULL))
10369 {
10370 *pos += 4;
10371 return value_zero (to_static_fixed_type (type), not_lval);
10372 }
4c4b4cd2 10373 }
da5c522f
JB
10374
10375 arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside);
10376 return ada_to_fixed_value (arg1);
4c4b4cd2
PH
10377
10378 case OP_FUNCALL:
10379 (*pos) += 2;
10380
10381 /* Allocate arg vector, including space for the function to be
10382 called in argvec[0] and a terminating NULL. */
10383 nargs = longest_to_int (exp->elts[pc + 1].longconst);
10384 argvec =
10385 (struct value **) alloca (sizeof (struct value *) * (nargs + 2));
10386
10387 if (exp->elts[*pos].opcode == OP_VAR_VALUE
76a01679 10388 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
323e0a4a 10389 error (_("Unexpected unresolved symbol, %s, during evaluation"),
4c4b4cd2
PH
10390 SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol));
10391 else
10392 {
10393 for (tem = 0; tem <= nargs; tem += 1)
10394 argvec[tem] = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10395 argvec[tem] = 0;
10396
10397 if (noside == EVAL_SKIP)
10398 goto nosideret;
10399 }
10400
ad82864c
JB
10401 if (ada_is_constrained_packed_array_type
10402 (desc_base_type (value_type (argvec[0]))))
4c4b4cd2 10403 argvec[0] = ada_coerce_to_simple_array (argvec[0]);
284614f0
JB
10404 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_ARRAY
10405 && TYPE_FIELD_BITSIZE (value_type (argvec[0]), 0) != 0)
10406 /* This is a packed array that has already been fixed, and
10407 therefore already coerced to a simple array. Nothing further
10408 to do. */
10409 ;
df407dfe
AC
10410 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_REF
10411 || (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_ARRAY
76a01679 10412 && VALUE_LVAL (argvec[0]) == lval_memory))
4c4b4cd2
PH
10413 argvec[0] = value_addr (argvec[0]);
10414
df407dfe 10415 type = ada_check_typedef (value_type (argvec[0]));
720d1a40
JB
10416
10417 /* Ada allows us to implicitly dereference arrays when subscripting
8f465ea7
JB
10418 them. So, if this is an array typedef (encoding use for array
10419 access types encoded as fat pointers), strip it now. */
720d1a40
JB
10420 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
10421 type = ada_typedef_target_type (type);
10422
4c4b4cd2
PH
10423 if (TYPE_CODE (type) == TYPE_CODE_PTR)
10424 {
61ee279c 10425 switch (TYPE_CODE (ada_check_typedef (TYPE_TARGET_TYPE (type))))
4c4b4cd2
PH
10426 {
10427 case TYPE_CODE_FUNC:
61ee279c 10428 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
4c4b4cd2
PH
10429 break;
10430 case TYPE_CODE_ARRAY:
10431 break;
10432 case TYPE_CODE_STRUCT:
10433 if (noside != EVAL_AVOID_SIDE_EFFECTS)
10434 argvec[0] = ada_value_ind (argvec[0]);
61ee279c 10435 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
4c4b4cd2
PH
10436 break;
10437 default:
323e0a4a 10438 error (_("cannot subscript or call something of type `%s'"),
df407dfe 10439 ada_type_name (value_type (argvec[0])));
4c4b4cd2
PH
10440 break;
10441 }
10442 }
10443
10444 switch (TYPE_CODE (type))
10445 {
10446 case TYPE_CODE_FUNC:
10447 if (noside == EVAL_AVOID_SIDE_EFFECTS)
c8ea1972
PH
10448 {
10449 struct type *rtype = TYPE_TARGET_TYPE (type);
10450
10451 if (TYPE_GNU_IFUNC (type))
10452 return allocate_value (TYPE_TARGET_TYPE (rtype));
10453 return allocate_value (rtype);
10454 }
4c4b4cd2 10455 return call_function_by_hand (argvec[0], nargs, argvec + 1);
c8ea1972
PH
10456 case TYPE_CODE_INTERNAL_FUNCTION:
10457 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10458 /* We don't know anything about what the internal
10459 function might return, but we have to return
10460 something. */
10461 return value_zero (builtin_type (exp->gdbarch)->builtin_int,
10462 not_lval);
10463 else
10464 return call_internal_function (exp->gdbarch, exp->language_defn,
10465 argvec[0], nargs, argvec + 1);
10466
4c4b4cd2
PH
10467 case TYPE_CODE_STRUCT:
10468 {
10469 int arity;
10470
4c4b4cd2
PH
10471 arity = ada_array_arity (type);
10472 type = ada_array_element_type (type, nargs);
10473 if (type == NULL)
323e0a4a 10474 error (_("cannot subscript or call a record"));
4c4b4cd2 10475 if (arity != nargs)
323e0a4a 10476 error (_("wrong number of subscripts; expecting %d"), arity);
4c4b4cd2 10477 if (noside == EVAL_AVOID_SIDE_EFFECTS)
0a07e705 10478 return value_zero (ada_aligned_type (type), lval_memory);
4c4b4cd2
PH
10479 return
10480 unwrap_value (ada_value_subscript
10481 (argvec[0], nargs, argvec + 1));
10482 }
10483 case TYPE_CODE_ARRAY:
10484 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10485 {
10486 type = ada_array_element_type (type, nargs);
10487 if (type == NULL)
323e0a4a 10488 error (_("element type of array unknown"));
4c4b4cd2 10489 else
0a07e705 10490 return value_zero (ada_aligned_type (type), lval_memory);
4c4b4cd2
PH
10491 }
10492 return
10493 unwrap_value (ada_value_subscript
10494 (ada_coerce_to_simple_array (argvec[0]),
10495 nargs, argvec + 1));
10496 case TYPE_CODE_PTR: /* Pointer to array */
4c4b4cd2
PH
10497 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10498 {
deede10c 10499 type = to_fixed_array_type (TYPE_TARGET_TYPE (type), NULL, 1);
4c4b4cd2
PH
10500 type = ada_array_element_type (type, nargs);
10501 if (type == NULL)
323e0a4a 10502 error (_("element type of array unknown"));
4c4b4cd2 10503 else
0a07e705 10504 return value_zero (ada_aligned_type (type), lval_memory);
4c4b4cd2
PH
10505 }
10506 return
deede10c
JB
10507 unwrap_value (ada_value_ptr_subscript (argvec[0],
10508 nargs, argvec + 1));
4c4b4cd2
PH
10509
10510 default:
e1d5a0d2
PH
10511 error (_("Attempt to index or call something other than an "
10512 "array or function"));
4c4b4cd2
PH
10513 }
10514
10515 case TERNOP_SLICE:
10516 {
10517 struct value *array = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10518 struct value *low_bound_val =
10519 evaluate_subexp (NULL_TYPE, exp, pos, noside);
714e53ab
PH
10520 struct value *high_bound_val =
10521 evaluate_subexp (NULL_TYPE, exp, pos, noside);
10522 LONGEST low_bound;
10523 LONGEST high_bound;
5b4ee69b 10524
994b9211
AC
10525 low_bound_val = coerce_ref (low_bound_val);
10526 high_bound_val = coerce_ref (high_bound_val);
714e53ab
PH
10527 low_bound = pos_atr (low_bound_val);
10528 high_bound = pos_atr (high_bound_val);
963a6417 10529
4c4b4cd2
PH
10530 if (noside == EVAL_SKIP)
10531 goto nosideret;
10532
4c4b4cd2
PH
10533 /* If this is a reference to an aligner type, then remove all
10534 the aligners. */
df407dfe
AC
10535 if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF
10536 && ada_is_aligner_type (TYPE_TARGET_TYPE (value_type (array))))
10537 TYPE_TARGET_TYPE (value_type (array)) =
10538 ada_aligned_type (TYPE_TARGET_TYPE (value_type (array)));
4c4b4cd2 10539
ad82864c 10540 if (ada_is_constrained_packed_array_type (value_type (array)))
323e0a4a 10541 error (_("cannot slice a packed array"));
4c4b4cd2
PH
10542
10543 /* If this is a reference to an array or an array lvalue,
10544 convert to a pointer. */
df407dfe
AC
10545 if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF
10546 || (TYPE_CODE (value_type (array)) == TYPE_CODE_ARRAY
4c4b4cd2
PH
10547 && VALUE_LVAL (array) == lval_memory))
10548 array = value_addr (array);
10549
1265e4aa 10550 if (noside == EVAL_AVOID_SIDE_EFFECTS
61ee279c 10551 && ada_is_array_descriptor_type (ada_check_typedef
df407dfe 10552 (value_type (array))))
0b5d8877 10553 return empty_array (ada_type_of_array (array, 0), low_bound);
4c4b4cd2
PH
10554
10555 array = ada_coerce_to_simple_array_ptr (array);
10556
714e53ab
PH
10557 /* If we have more than one level of pointer indirection,
10558 dereference the value until we get only one level. */
df407dfe
AC
10559 while (TYPE_CODE (value_type (array)) == TYPE_CODE_PTR
10560 && (TYPE_CODE (TYPE_TARGET_TYPE (value_type (array)))
714e53ab
PH
10561 == TYPE_CODE_PTR))
10562 array = value_ind (array);
10563
10564 /* Make sure we really do have an array type before going further,
10565 to avoid a SEGV when trying to get the index type or the target
10566 type later down the road if the debug info generated by
10567 the compiler is incorrect or incomplete. */
df407dfe 10568 if (!ada_is_simple_array_type (value_type (array)))
323e0a4a 10569 error (_("cannot take slice of non-array"));
714e53ab 10570
828292f2
JB
10571 if (TYPE_CODE (ada_check_typedef (value_type (array)))
10572 == TYPE_CODE_PTR)
4c4b4cd2 10573 {
828292f2
JB
10574 struct type *type0 = ada_check_typedef (value_type (array));
10575
0b5d8877 10576 if (high_bound < low_bound || noside == EVAL_AVOID_SIDE_EFFECTS)
828292f2 10577 return empty_array (TYPE_TARGET_TYPE (type0), low_bound);
4c4b4cd2
PH
10578 else
10579 {
10580 struct type *arr_type0 =
828292f2 10581 to_fixed_array_type (TYPE_TARGET_TYPE (type0), NULL, 1);
5b4ee69b 10582
f5938064
JG
10583 return ada_value_slice_from_ptr (array, arr_type0,
10584 longest_to_int (low_bound),
10585 longest_to_int (high_bound));
4c4b4cd2
PH
10586 }
10587 }
10588 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
10589 return array;
10590 else if (high_bound < low_bound)
df407dfe 10591 return empty_array (value_type (array), low_bound);
4c4b4cd2 10592 else
529cad9c
PH
10593 return ada_value_slice (array, longest_to_int (low_bound),
10594 longest_to_int (high_bound));
4c4b4cd2 10595 }
14f9c5c9 10596
4c4b4cd2
PH
10597 case UNOP_IN_RANGE:
10598 (*pos) += 2;
10599 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8008e265 10600 type = check_typedef (exp->elts[pc + 1].type);
14f9c5c9 10601
14f9c5c9 10602 if (noside == EVAL_SKIP)
4c4b4cd2 10603 goto nosideret;
14f9c5c9 10604
4c4b4cd2
PH
10605 switch (TYPE_CODE (type))
10606 {
10607 default:
e1d5a0d2
PH
10608 lim_warning (_("Membership test incompletely implemented; "
10609 "always returns true"));
fbb06eb1
UW
10610 type = language_bool_type (exp->language_defn, exp->gdbarch);
10611 return value_from_longest (type, (LONGEST) 1);
4c4b4cd2
PH
10612
10613 case TYPE_CODE_RANGE:
030b4912
UW
10614 arg2 = value_from_longest (type, TYPE_LOW_BOUND (type));
10615 arg3 = value_from_longest (type, TYPE_HIGH_BOUND (type));
f44316fa
UW
10616 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10617 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
fbb06eb1
UW
10618 type = language_bool_type (exp->language_defn, exp->gdbarch);
10619 return
10620 value_from_longest (type,
4c4b4cd2
PH
10621 (value_less (arg1, arg3)
10622 || value_equal (arg1, arg3))
10623 && (value_less (arg2, arg1)
10624 || value_equal (arg2, arg1)));
10625 }
10626
10627 case BINOP_IN_BOUNDS:
14f9c5c9 10628 (*pos) += 2;
4c4b4cd2
PH
10629 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10630 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
14f9c5c9 10631
4c4b4cd2
PH
10632 if (noside == EVAL_SKIP)
10633 goto nosideret;
14f9c5c9 10634
4c4b4cd2 10635 if (noside == EVAL_AVOID_SIDE_EFFECTS)
fbb06eb1
UW
10636 {
10637 type = language_bool_type (exp->language_defn, exp->gdbarch);
10638 return value_zero (type, not_lval);
10639 }
14f9c5c9 10640
4c4b4cd2 10641 tem = longest_to_int (exp->elts[pc + 1].longconst);
14f9c5c9 10642
1eea4ebd
UW
10643 type = ada_index_type (value_type (arg2), tem, "range");
10644 if (!type)
10645 type = value_type (arg1);
14f9c5c9 10646
1eea4ebd
UW
10647 arg3 = value_from_longest (type, ada_array_bound (arg2, tem, 1));
10648 arg2 = value_from_longest (type, ada_array_bound (arg2, tem, 0));
d2e4a39e 10649
f44316fa
UW
10650 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10651 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
fbb06eb1 10652 type = language_bool_type (exp->language_defn, exp->gdbarch);
4c4b4cd2 10653 return
fbb06eb1 10654 value_from_longest (type,
4c4b4cd2
PH
10655 (value_less (arg1, arg3)
10656 || value_equal (arg1, arg3))
10657 && (value_less (arg2, arg1)
10658 || value_equal (arg2, arg1)));
10659
10660 case TERNOP_IN_RANGE:
10661 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10662 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10663 arg3 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10664
10665 if (noside == EVAL_SKIP)
10666 goto nosideret;
10667
f44316fa
UW
10668 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10669 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
fbb06eb1 10670 type = language_bool_type (exp->language_defn, exp->gdbarch);
4c4b4cd2 10671 return
fbb06eb1 10672 value_from_longest (type,
4c4b4cd2
PH
10673 (value_less (arg1, arg3)
10674 || value_equal (arg1, arg3))
10675 && (value_less (arg2, arg1)
10676 || value_equal (arg2, arg1)));
10677
10678 case OP_ATR_FIRST:
10679 case OP_ATR_LAST:
10680 case OP_ATR_LENGTH:
10681 {
76a01679 10682 struct type *type_arg;
5b4ee69b 10683
76a01679
JB
10684 if (exp->elts[*pos].opcode == OP_TYPE)
10685 {
10686 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
10687 arg1 = NULL;
5bc23cb3 10688 type_arg = check_typedef (exp->elts[pc + 2].type);
76a01679
JB
10689 }
10690 else
10691 {
10692 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10693 type_arg = NULL;
10694 }
10695
10696 if (exp->elts[*pos].opcode != OP_LONG)
323e0a4a 10697 error (_("Invalid operand to '%s"), ada_attribute_name (op));
76a01679
JB
10698 tem = longest_to_int (exp->elts[*pos + 2].longconst);
10699 *pos += 4;
10700
10701 if (noside == EVAL_SKIP)
10702 goto nosideret;
10703
10704 if (type_arg == NULL)
10705 {
10706 arg1 = ada_coerce_ref (arg1);
10707
ad82864c 10708 if (ada_is_constrained_packed_array_type (value_type (arg1)))
76a01679
JB
10709 arg1 = ada_coerce_to_simple_array (arg1);
10710
aa4fb036 10711 if (op == OP_ATR_LENGTH)
1eea4ebd 10712 type = builtin_type (exp->gdbarch)->builtin_int;
aa4fb036
JB
10713 else
10714 {
10715 type = ada_index_type (value_type (arg1), tem,
10716 ada_attribute_name (op));
10717 if (type == NULL)
10718 type = builtin_type (exp->gdbarch)->builtin_int;
10719 }
76a01679
JB
10720
10721 if (noside == EVAL_AVOID_SIDE_EFFECTS)
1eea4ebd 10722 return allocate_value (type);
76a01679
JB
10723
10724 switch (op)
10725 {
10726 default: /* Should never happen. */
323e0a4a 10727 error (_("unexpected attribute encountered"));
76a01679 10728 case OP_ATR_FIRST:
1eea4ebd
UW
10729 return value_from_longest
10730 (type, ada_array_bound (arg1, tem, 0));
76a01679 10731 case OP_ATR_LAST:
1eea4ebd
UW
10732 return value_from_longest
10733 (type, ada_array_bound (arg1, tem, 1));
76a01679 10734 case OP_ATR_LENGTH:
1eea4ebd
UW
10735 return value_from_longest
10736 (type, ada_array_length (arg1, tem));
76a01679
JB
10737 }
10738 }
10739 else if (discrete_type_p (type_arg))
10740 {
10741 struct type *range_type;
0d5cff50 10742 const char *name = ada_type_name (type_arg);
5b4ee69b 10743
76a01679
JB
10744 range_type = NULL;
10745 if (name != NULL && TYPE_CODE (type_arg) != TYPE_CODE_ENUM)
28c85d6c 10746 range_type = to_fixed_range_type (type_arg, NULL);
76a01679
JB
10747 if (range_type == NULL)
10748 range_type = type_arg;
10749 switch (op)
10750 {
10751 default:
323e0a4a 10752 error (_("unexpected attribute encountered"));
76a01679 10753 case OP_ATR_FIRST:
690cc4eb 10754 return value_from_longest
43bbcdc2 10755 (range_type, ada_discrete_type_low_bound (range_type));
76a01679 10756 case OP_ATR_LAST:
690cc4eb 10757 return value_from_longest
43bbcdc2 10758 (range_type, ada_discrete_type_high_bound (range_type));
76a01679 10759 case OP_ATR_LENGTH:
323e0a4a 10760 error (_("the 'length attribute applies only to array types"));
76a01679
JB
10761 }
10762 }
10763 else if (TYPE_CODE (type_arg) == TYPE_CODE_FLT)
323e0a4a 10764 error (_("unimplemented type attribute"));
76a01679
JB
10765 else
10766 {
10767 LONGEST low, high;
10768
ad82864c
JB
10769 if (ada_is_constrained_packed_array_type (type_arg))
10770 type_arg = decode_constrained_packed_array_type (type_arg);
76a01679 10771
aa4fb036 10772 if (op == OP_ATR_LENGTH)
1eea4ebd 10773 type = builtin_type (exp->gdbarch)->builtin_int;
aa4fb036
JB
10774 else
10775 {
10776 type = ada_index_type (type_arg, tem, ada_attribute_name (op));
10777 if (type == NULL)
10778 type = builtin_type (exp->gdbarch)->builtin_int;
10779 }
1eea4ebd 10780
76a01679
JB
10781 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10782 return allocate_value (type);
10783
10784 switch (op)
10785 {
10786 default:
323e0a4a 10787 error (_("unexpected attribute encountered"));
76a01679 10788 case OP_ATR_FIRST:
1eea4ebd 10789 low = ada_array_bound_from_type (type_arg, tem, 0);
76a01679
JB
10790 return value_from_longest (type, low);
10791 case OP_ATR_LAST:
1eea4ebd 10792 high = ada_array_bound_from_type (type_arg, tem, 1);
76a01679
JB
10793 return value_from_longest (type, high);
10794 case OP_ATR_LENGTH:
1eea4ebd
UW
10795 low = ada_array_bound_from_type (type_arg, tem, 0);
10796 high = ada_array_bound_from_type (type_arg, tem, 1);
76a01679
JB
10797 return value_from_longest (type, high - low + 1);
10798 }
10799 }
14f9c5c9
AS
10800 }
10801
4c4b4cd2
PH
10802 case OP_ATR_TAG:
10803 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10804 if (noside == EVAL_SKIP)
76a01679 10805 goto nosideret;
4c4b4cd2
PH
10806
10807 if (noside == EVAL_AVOID_SIDE_EFFECTS)
76a01679 10808 return value_zero (ada_tag_type (arg1), not_lval);
4c4b4cd2
PH
10809
10810 return ada_value_tag (arg1);
10811
10812 case OP_ATR_MIN:
10813 case OP_ATR_MAX:
10814 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
14f9c5c9
AS
10815 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10816 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10817 if (noside == EVAL_SKIP)
76a01679 10818 goto nosideret;
d2e4a39e 10819 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
df407dfe 10820 return value_zero (value_type (arg1), not_lval);
14f9c5c9 10821 else
f44316fa
UW
10822 {
10823 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10824 return value_binop (arg1, arg2,
10825 op == OP_ATR_MIN ? BINOP_MIN : BINOP_MAX);
10826 }
14f9c5c9 10827
4c4b4cd2
PH
10828 case OP_ATR_MODULUS:
10829 {
31dedfee 10830 struct type *type_arg = check_typedef (exp->elts[pc + 2].type);
4c4b4cd2 10831
5b4ee69b 10832 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
76a01679
JB
10833 if (noside == EVAL_SKIP)
10834 goto nosideret;
4c4b4cd2 10835
76a01679 10836 if (!ada_is_modular_type (type_arg))
323e0a4a 10837 error (_("'modulus must be applied to modular type"));
4c4b4cd2 10838
76a01679
JB
10839 return value_from_longest (TYPE_TARGET_TYPE (type_arg),
10840 ada_modulus (type_arg));
4c4b4cd2
PH
10841 }
10842
10843
10844 case OP_ATR_POS:
10845 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
14f9c5c9
AS
10846 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10847 if (noside == EVAL_SKIP)
76a01679 10848 goto nosideret;
3cb382c9
UW
10849 type = builtin_type (exp->gdbarch)->builtin_int;
10850 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10851 return value_zero (type, not_lval);
14f9c5c9 10852 else
3cb382c9 10853 return value_pos_atr (type, arg1);
14f9c5c9 10854
4c4b4cd2
PH
10855 case OP_ATR_SIZE:
10856 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8c1c099f
JB
10857 type = value_type (arg1);
10858
10859 /* If the argument is a reference, then dereference its type, since
10860 the user is really asking for the size of the actual object,
10861 not the size of the pointer. */
10862 if (TYPE_CODE (type) == TYPE_CODE_REF)
10863 type = TYPE_TARGET_TYPE (type);
10864
4c4b4cd2 10865 if (noside == EVAL_SKIP)
76a01679 10866 goto nosideret;
4c4b4cd2 10867 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
22601c15 10868 return value_zero (builtin_type (exp->gdbarch)->builtin_int, not_lval);
4c4b4cd2 10869 else
22601c15 10870 return value_from_longest (builtin_type (exp->gdbarch)->builtin_int,
8c1c099f 10871 TARGET_CHAR_BIT * TYPE_LENGTH (type));
4c4b4cd2
PH
10872
10873 case OP_ATR_VAL:
10874 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
14f9c5c9 10875 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
4c4b4cd2 10876 type = exp->elts[pc + 2].type;
14f9c5c9 10877 if (noside == EVAL_SKIP)
76a01679 10878 goto nosideret;
4c4b4cd2 10879 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
76a01679 10880 return value_zero (type, not_lval);
4c4b4cd2 10881 else
76a01679 10882 return value_val_atr (type, arg1);
4c4b4cd2
PH
10883
10884 case BINOP_EXP:
10885 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10886 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10887 if (noside == EVAL_SKIP)
10888 goto nosideret;
10889 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
df407dfe 10890 return value_zero (value_type (arg1), not_lval);
4c4b4cd2 10891 else
f44316fa
UW
10892 {
10893 /* For integer exponentiation operations,
10894 only promote the first argument. */
10895 if (is_integral_type (value_type (arg2)))
10896 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
10897 else
10898 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10899
10900 return value_binop (arg1, arg2, op);
10901 }
4c4b4cd2
PH
10902
10903 case UNOP_PLUS:
10904 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10905 if (noside == EVAL_SKIP)
10906 goto nosideret;
10907 else
10908 return arg1;
10909
10910 case UNOP_ABS:
10911 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10912 if (noside == EVAL_SKIP)
10913 goto nosideret;
f44316fa 10914 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
df407dfe 10915 if (value_less (arg1, value_zero (value_type (arg1), not_lval)))
4c4b4cd2 10916 return value_neg (arg1);
14f9c5c9 10917 else
4c4b4cd2 10918 return arg1;
14f9c5c9
AS
10919
10920 case UNOP_IND:
5ec18f2b 10921 preeval_pos = *pos;
6b0d7253 10922 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
14f9c5c9 10923 if (noside == EVAL_SKIP)
4c4b4cd2 10924 goto nosideret;
df407dfe 10925 type = ada_check_typedef (value_type (arg1));
14f9c5c9 10926 if (noside == EVAL_AVOID_SIDE_EFFECTS)
4c4b4cd2
PH
10927 {
10928 if (ada_is_array_descriptor_type (type))
10929 /* GDB allows dereferencing GNAT array descriptors. */
10930 {
10931 struct type *arrType = ada_type_of_array (arg1, 0);
5b4ee69b 10932
4c4b4cd2 10933 if (arrType == NULL)
323e0a4a 10934 error (_("Attempt to dereference null array pointer."));
00a4c844 10935 return value_at_lazy (arrType, 0);
4c4b4cd2
PH
10936 }
10937 else if (TYPE_CODE (type) == TYPE_CODE_PTR
10938 || TYPE_CODE (type) == TYPE_CODE_REF
10939 /* In C you can dereference an array to get the 1st elt. */
10940 || TYPE_CODE (type) == TYPE_CODE_ARRAY)
714e53ab 10941 {
5ec18f2b
JG
10942 /* As mentioned in the OP_VAR_VALUE case, tagged types can
10943 only be determined by inspecting the object's tag.
10944 This means that we need to evaluate completely the
10945 expression in order to get its type. */
10946
023db19c
JB
10947 if ((TYPE_CODE (type) == TYPE_CODE_REF
10948 || TYPE_CODE (type) == TYPE_CODE_PTR)
5ec18f2b
JG
10949 && ada_is_tagged_type (TYPE_TARGET_TYPE (type), 0))
10950 {
10951 arg1 = evaluate_subexp (NULL_TYPE, exp, &preeval_pos,
10952 EVAL_NORMAL);
10953 type = value_type (ada_value_ind (arg1));
10954 }
10955 else
10956 {
10957 type = to_static_fixed_type
10958 (ada_aligned_type
10959 (ada_check_typedef (TYPE_TARGET_TYPE (type))));
10960 }
c1b5a1a6 10961 ada_ensure_varsize_limit (type);
714e53ab
PH
10962 return value_zero (type, lval_memory);
10963 }
4c4b4cd2 10964 else if (TYPE_CODE (type) == TYPE_CODE_INT)
6b0d7253
JB
10965 {
10966 /* GDB allows dereferencing an int. */
10967 if (expect_type == NULL)
10968 return value_zero (builtin_type (exp->gdbarch)->builtin_int,
10969 lval_memory);
10970 else
10971 {
10972 expect_type =
10973 to_static_fixed_type (ada_aligned_type (expect_type));
10974 return value_zero (expect_type, lval_memory);
10975 }
10976 }
4c4b4cd2 10977 else
323e0a4a 10978 error (_("Attempt to take contents of a non-pointer value."));
4c4b4cd2 10979 }
0963b4bd 10980 arg1 = ada_coerce_ref (arg1); /* FIXME: What is this for?? */
df407dfe 10981 type = ada_check_typedef (value_type (arg1));
d2e4a39e 10982
96967637
JB
10983 if (TYPE_CODE (type) == TYPE_CODE_INT)
10984 /* GDB allows dereferencing an int. If we were given
10985 the expect_type, then use that as the target type.
10986 Otherwise, assume that the target type is an int. */
10987 {
10988 if (expect_type != NULL)
10989 return ada_value_ind (value_cast (lookup_pointer_type (expect_type),
10990 arg1));
10991 else
10992 return value_at_lazy (builtin_type (exp->gdbarch)->builtin_int,
10993 (CORE_ADDR) value_as_address (arg1));
10994 }
6b0d7253 10995
4c4b4cd2
PH
10996 if (ada_is_array_descriptor_type (type))
10997 /* GDB allows dereferencing GNAT array descriptors. */
10998 return ada_coerce_to_simple_array (arg1);
14f9c5c9 10999 else
4c4b4cd2 11000 return ada_value_ind (arg1);
14f9c5c9
AS
11001
11002 case STRUCTOP_STRUCT:
11003 tem = longest_to_int (exp->elts[pc + 1].longconst);
11004 (*pos) += 3 + BYTES_TO_EXP_ELEM (tem + 1);
5ec18f2b 11005 preeval_pos = *pos;
14f9c5c9
AS
11006 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11007 if (noside == EVAL_SKIP)
4c4b4cd2 11008 goto nosideret;
14f9c5c9 11009 if (noside == EVAL_AVOID_SIDE_EFFECTS)
76a01679 11010 {
df407dfe 11011 struct type *type1 = value_type (arg1);
5b4ee69b 11012
76a01679
JB
11013 if (ada_is_tagged_type (type1, 1))
11014 {
11015 type = ada_lookup_struct_elt_type (type1,
11016 &exp->elts[pc + 2].string,
11017 1, 1, NULL);
5ec18f2b
JG
11018
11019 /* If the field is not found, check if it exists in the
11020 extension of this object's type. This means that we
11021 need to evaluate completely the expression. */
11022
76a01679 11023 if (type == NULL)
5ec18f2b
JG
11024 {
11025 arg1 = evaluate_subexp (NULL_TYPE, exp, &preeval_pos,
11026 EVAL_NORMAL);
11027 arg1 = ada_value_struct_elt (arg1,
11028 &exp->elts[pc + 2].string,
11029 0);
11030 arg1 = unwrap_value (arg1);
11031 type = value_type (ada_to_fixed_value (arg1));
11032 }
76a01679
JB
11033 }
11034 else
11035 type =
11036 ada_lookup_struct_elt_type (type1, &exp->elts[pc + 2].string, 1,
11037 0, NULL);
11038
11039 return value_zero (ada_aligned_type (type), lval_memory);
11040 }
14f9c5c9 11041 else
284614f0
JB
11042 arg1 = ada_value_struct_elt (arg1, &exp->elts[pc + 2].string, 0);
11043 arg1 = unwrap_value (arg1);
11044 return ada_to_fixed_value (arg1);
11045
14f9c5c9 11046 case OP_TYPE:
4c4b4cd2
PH
11047 /* The value is not supposed to be used. This is here to make it
11048 easier to accommodate expressions that contain types. */
14f9c5c9
AS
11049 (*pos) += 2;
11050 if (noside == EVAL_SKIP)
4c4b4cd2 11051 goto nosideret;
14f9c5c9 11052 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
a6cfbe68 11053 return allocate_value (exp->elts[pc + 1].type);
14f9c5c9 11054 else
323e0a4a 11055 error (_("Attempt to use a type name as an expression"));
52ce6436
PH
11056
11057 case OP_AGGREGATE:
11058 case OP_CHOICES:
11059 case OP_OTHERS:
11060 case OP_DISCRETE_RANGE:
11061 case OP_POSITIONAL:
11062 case OP_NAME:
11063 if (noside == EVAL_NORMAL)
11064 switch (op)
11065 {
11066 case OP_NAME:
11067 error (_("Undefined name, ambiguous name, or renaming used in "
e1d5a0d2 11068 "component association: %s."), &exp->elts[pc+2].string);
52ce6436
PH
11069 case OP_AGGREGATE:
11070 error (_("Aggregates only allowed on the right of an assignment"));
11071 default:
0963b4bd
MS
11072 internal_error (__FILE__, __LINE__,
11073 _("aggregate apparently mangled"));
52ce6436
PH
11074 }
11075
11076 ada_forward_operator_length (exp, pc, &oplen, &nargs);
11077 *pos += oplen - 1;
11078 for (tem = 0; tem < nargs; tem += 1)
11079 ada_evaluate_subexp (NULL, exp, pos, noside);
11080 goto nosideret;
14f9c5c9
AS
11081 }
11082
11083nosideret:
22601c15 11084 return value_from_longest (builtin_type (exp->gdbarch)->builtin_int, 1);
14f9c5c9 11085}
14f9c5c9 11086\f
d2e4a39e 11087
4c4b4cd2 11088 /* Fixed point */
14f9c5c9
AS
11089
11090/* If TYPE encodes an Ada fixed-point type, return the suffix of the
11091 type name that encodes the 'small and 'delta information.
4c4b4cd2 11092 Otherwise, return NULL. */
14f9c5c9 11093
d2e4a39e 11094static const char *
ebf56fd3 11095fixed_type_info (struct type *type)
14f9c5c9 11096{
d2e4a39e 11097 const char *name = ada_type_name (type);
14f9c5c9
AS
11098 enum type_code code = (type == NULL) ? TYPE_CODE_UNDEF : TYPE_CODE (type);
11099
d2e4a39e
AS
11100 if ((code == TYPE_CODE_INT || code == TYPE_CODE_RANGE) && name != NULL)
11101 {
14f9c5c9 11102 const char *tail = strstr (name, "___XF_");
5b4ee69b 11103
14f9c5c9 11104 if (tail == NULL)
4c4b4cd2 11105 return NULL;
d2e4a39e 11106 else
4c4b4cd2 11107 return tail + 5;
14f9c5c9
AS
11108 }
11109 else if (code == TYPE_CODE_RANGE && TYPE_TARGET_TYPE (type) != type)
11110 return fixed_type_info (TYPE_TARGET_TYPE (type));
11111 else
11112 return NULL;
11113}
11114
4c4b4cd2 11115/* Returns non-zero iff TYPE represents an Ada fixed-point type. */
14f9c5c9
AS
11116
11117int
ebf56fd3 11118ada_is_fixed_point_type (struct type *type)
14f9c5c9
AS
11119{
11120 return fixed_type_info (type) != NULL;
11121}
11122
4c4b4cd2
PH
11123/* Return non-zero iff TYPE represents a System.Address type. */
11124
11125int
11126ada_is_system_address_type (struct type *type)
11127{
11128 return (TYPE_NAME (type)
11129 && strcmp (TYPE_NAME (type), "system__address") == 0);
11130}
11131
14f9c5c9
AS
11132/* Assuming that TYPE is the representation of an Ada fixed-point
11133 type, return its delta, or -1 if the type is malformed and the
4c4b4cd2 11134 delta cannot be determined. */
14f9c5c9
AS
11135
11136DOUBLEST
ebf56fd3 11137ada_delta (struct type *type)
14f9c5c9
AS
11138{
11139 const char *encoding = fixed_type_info (type);
facc390f 11140 DOUBLEST num, den;
14f9c5c9 11141
facc390f
JB
11142 /* Strictly speaking, num and den are encoded as integer. However,
11143 they may not fit into a long, and they will have to be converted
11144 to DOUBLEST anyway. So scan them as DOUBLEST. */
11145 if (sscanf (encoding, "_%" DOUBLEST_SCAN_FORMAT "_%" DOUBLEST_SCAN_FORMAT,
11146 &num, &den) < 2)
14f9c5c9 11147 return -1.0;
d2e4a39e 11148 else
facc390f 11149 return num / den;
14f9c5c9
AS
11150}
11151
11152/* Assuming that ada_is_fixed_point_type (TYPE), return the scaling
4c4b4cd2 11153 factor ('SMALL value) associated with the type. */
14f9c5c9
AS
11154
11155static DOUBLEST
ebf56fd3 11156scaling_factor (struct type *type)
14f9c5c9
AS
11157{
11158 const char *encoding = fixed_type_info (type);
facc390f 11159 DOUBLEST num0, den0, num1, den1;
14f9c5c9 11160 int n;
d2e4a39e 11161
facc390f
JB
11162 /* Strictly speaking, num's and den's are encoded as integer. However,
11163 they may not fit into a long, and they will have to be converted
11164 to DOUBLEST anyway. So scan them as DOUBLEST. */
11165 n = sscanf (encoding,
11166 "_%" DOUBLEST_SCAN_FORMAT "_%" DOUBLEST_SCAN_FORMAT
11167 "_%" DOUBLEST_SCAN_FORMAT "_%" DOUBLEST_SCAN_FORMAT,
11168 &num0, &den0, &num1, &den1);
14f9c5c9
AS
11169
11170 if (n < 2)
11171 return 1.0;
11172 else if (n == 4)
facc390f 11173 return num1 / den1;
d2e4a39e 11174 else
facc390f 11175 return num0 / den0;
14f9c5c9
AS
11176}
11177
11178
11179/* Assuming that X is the representation of a value of fixed-point
4c4b4cd2 11180 type TYPE, return its floating-point equivalent. */
14f9c5c9
AS
11181
11182DOUBLEST
ebf56fd3 11183ada_fixed_to_float (struct type *type, LONGEST x)
14f9c5c9 11184{
d2e4a39e 11185 return (DOUBLEST) x *scaling_factor (type);
14f9c5c9
AS
11186}
11187
4c4b4cd2
PH
11188/* The representation of a fixed-point value of type TYPE
11189 corresponding to the value X. */
14f9c5c9
AS
11190
11191LONGEST
ebf56fd3 11192ada_float_to_fixed (struct type *type, DOUBLEST x)
14f9c5c9
AS
11193{
11194 return (LONGEST) (x / scaling_factor (type) + 0.5);
11195}
11196
14f9c5c9 11197\f
d2e4a39e 11198
4c4b4cd2 11199 /* Range types */
14f9c5c9
AS
11200
11201/* Scan STR beginning at position K for a discriminant name, and
11202 return the value of that discriminant field of DVAL in *PX. If
11203 PNEW_K is not null, put the position of the character beyond the
11204 name scanned in *PNEW_K. Return 1 if successful; return 0 and do
4c4b4cd2 11205 not alter *PX and *PNEW_K if unsuccessful. */
14f9c5c9
AS
11206
11207static int
07d8f827 11208scan_discrim_bound (char *str, int k, struct value *dval, LONGEST * px,
76a01679 11209 int *pnew_k)
14f9c5c9
AS
11210{
11211 static char *bound_buffer = NULL;
11212 static size_t bound_buffer_len = 0;
11213 char *bound;
11214 char *pend;
d2e4a39e 11215 struct value *bound_val;
14f9c5c9
AS
11216
11217 if (dval == NULL || str == NULL || str[k] == '\0')
11218 return 0;
11219
d2e4a39e 11220 pend = strstr (str + k, "__");
14f9c5c9
AS
11221 if (pend == NULL)
11222 {
d2e4a39e 11223 bound = str + k;
14f9c5c9
AS
11224 k += strlen (bound);
11225 }
d2e4a39e 11226 else
14f9c5c9 11227 {
d2e4a39e 11228 GROW_VECT (bound_buffer, bound_buffer_len, pend - (str + k) + 1);
14f9c5c9 11229 bound = bound_buffer;
d2e4a39e
AS
11230 strncpy (bound_buffer, str + k, pend - (str + k));
11231 bound[pend - (str + k)] = '\0';
11232 k = pend - str;
14f9c5c9 11233 }
d2e4a39e 11234
df407dfe 11235 bound_val = ada_search_struct_field (bound, dval, 0, value_type (dval));
14f9c5c9
AS
11236 if (bound_val == NULL)
11237 return 0;
11238
11239 *px = value_as_long (bound_val);
11240 if (pnew_k != NULL)
11241 *pnew_k = k;
11242 return 1;
11243}
11244
11245/* Value of variable named NAME in the current environment. If
11246 no such variable found, then if ERR_MSG is null, returns 0, and
4c4b4cd2
PH
11247 otherwise causes an error with message ERR_MSG. */
11248
d2e4a39e
AS
11249static struct value *
11250get_var_value (char *name, char *err_msg)
14f9c5c9 11251{
4c4b4cd2 11252 struct ada_symbol_info *syms;
14f9c5c9
AS
11253 int nsyms;
11254
4c4b4cd2 11255 nsyms = ada_lookup_symbol_list (name, get_selected_block (0), VAR_DOMAIN,
4eeaa230 11256 &syms);
14f9c5c9
AS
11257
11258 if (nsyms != 1)
11259 {
11260 if (err_msg == NULL)
4c4b4cd2 11261 return 0;
14f9c5c9 11262 else
8a3fe4f8 11263 error (("%s"), err_msg);
14f9c5c9
AS
11264 }
11265
4c4b4cd2 11266 return value_of_variable (syms[0].sym, syms[0].block);
14f9c5c9 11267}
d2e4a39e 11268
14f9c5c9 11269/* Value of integer variable named NAME in the current environment. If
4c4b4cd2
PH
11270 no such variable found, returns 0, and sets *FLAG to 0. If
11271 successful, sets *FLAG to 1. */
11272
14f9c5c9 11273LONGEST
4c4b4cd2 11274get_int_var_value (char *name, int *flag)
14f9c5c9 11275{
4c4b4cd2 11276 struct value *var_val = get_var_value (name, 0);
d2e4a39e 11277
14f9c5c9
AS
11278 if (var_val == 0)
11279 {
11280 if (flag != NULL)
4c4b4cd2 11281 *flag = 0;
14f9c5c9
AS
11282 return 0;
11283 }
11284 else
11285 {
11286 if (flag != NULL)
4c4b4cd2 11287 *flag = 1;
14f9c5c9
AS
11288 return value_as_long (var_val);
11289 }
11290}
d2e4a39e 11291
14f9c5c9
AS
11292
11293/* Return a range type whose base type is that of the range type named
11294 NAME in the current environment, and whose bounds are calculated
4c4b4cd2 11295 from NAME according to the GNAT range encoding conventions.
1ce677a4
UW
11296 Extract discriminant values, if needed, from DVAL. ORIG_TYPE is the
11297 corresponding range type from debug information; fall back to using it
11298 if symbol lookup fails. If a new type must be created, allocate it
11299 like ORIG_TYPE was. The bounds information, in general, is encoded
11300 in NAME, the base type given in the named range type. */
14f9c5c9 11301
d2e4a39e 11302static struct type *
28c85d6c 11303to_fixed_range_type (struct type *raw_type, struct value *dval)
14f9c5c9 11304{
0d5cff50 11305 const char *name;
14f9c5c9 11306 struct type *base_type;
d2e4a39e 11307 char *subtype_info;
14f9c5c9 11308
28c85d6c
JB
11309 gdb_assert (raw_type != NULL);
11310 gdb_assert (TYPE_NAME (raw_type) != NULL);
dddfab26 11311
1ce677a4 11312 if (TYPE_CODE (raw_type) == TYPE_CODE_RANGE)
14f9c5c9
AS
11313 base_type = TYPE_TARGET_TYPE (raw_type);
11314 else
11315 base_type = raw_type;
11316
28c85d6c 11317 name = TYPE_NAME (raw_type);
14f9c5c9
AS
11318 subtype_info = strstr (name, "___XD");
11319 if (subtype_info == NULL)
690cc4eb 11320 {
43bbcdc2
PH
11321 LONGEST L = ada_discrete_type_low_bound (raw_type);
11322 LONGEST U = ada_discrete_type_high_bound (raw_type);
5b4ee69b 11323
690cc4eb
PH
11324 if (L < INT_MIN || U > INT_MAX)
11325 return raw_type;
11326 else
0c9c3474
SA
11327 return create_static_range_type (alloc_type_copy (raw_type), raw_type,
11328 L, U);
690cc4eb 11329 }
14f9c5c9
AS
11330 else
11331 {
11332 static char *name_buf = NULL;
11333 static size_t name_len = 0;
11334 int prefix_len = subtype_info - name;
11335 LONGEST L, U;
11336 struct type *type;
11337 char *bounds_str;
11338 int n;
11339
11340 GROW_VECT (name_buf, name_len, prefix_len + 5);
11341 strncpy (name_buf, name, prefix_len);
11342 name_buf[prefix_len] = '\0';
11343
11344 subtype_info += 5;
11345 bounds_str = strchr (subtype_info, '_');
11346 n = 1;
11347
d2e4a39e 11348 if (*subtype_info == 'L')
4c4b4cd2
PH
11349 {
11350 if (!ada_scan_number (bounds_str, n, &L, &n)
11351 && !scan_discrim_bound (bounds_str, n, dval, &L, &n))
11352 return raw_type;
11353 if (bounds_str[n] == '_')
11354 n += 2;
0963b4bd 11355 else if (bounds_str[n] == '.') /* FIXME? SGI Workshop kludge. */
4c4b4cd2
PH
11356 n += 1;
11357 subtype_info += 1;
11358 }
d2e4a39e 11359 else
4c4b4cd2
PH
11360 {
11361 int ok;
5b4ee69b 11362
4c4b4cd2
PH
11363 strcpy (name_buf + prefix_len, "___L");
11364 L = get_int_var_value (name_buf, &ok);
11365 if (!ok)
11366 {
323e0a4a 11367 lim_warning (_("Unknown lower bound, using 1."));
4c4b4cd2
PH
11368 L = 1;
11369 }
11370 }
14f9c5c9 11371
d2e4a39e 11372 if (*subtype_info == 'U')
4c4b4cd2
PH
11373 {
11374 if (!ada_scan_number (bounds_str, n, &U, &n)
11375 && !scan_discrim_bound (bounds_str, n, dval, &U, &n))
11376 return raw_type;
11377 }
d2e4a39e 11378 else
4c4b4cd2
PH
11379 {
11380 int ok;
5b4ee69b 11381
4c4b4cd2
PH
11382 strcpy (name_buf + prefix_len, "___U");
11383 U = get_int_var_value (name_buf, &ok);
11384 if (!ok)
11385 {
323e0a4a 11386 lim_warning (_("Unknown upper bound, using %ld."), (long) L);
4c4b4cd2
PH
11387 U = L;
11388 }
11389 }
14f9c5c9 11390
0c9c3474
SA
11391 type = create_static_range_type (alloc_type_copy (raw_type),
11392 base_type, L, U);
d2e4a39e 11393 TYPE_NAME (type) = name;
14f9c5c9
AS
11394 return type;
11395 }
11396}
11397
4c4b4cd2
PH
11398/* True iff NAME is the name of a range type. */
11399
14f9c5c9 11400int
d2e4a39e 11401ada_is_range_type_name (const char *name)
14f9c5c9
AS
11402{
11403 return (name != NULL && strstr (name, "___XD"));
d2e4a39e 11404}
14f9c5c9 11405\f
d2e4a39e 11406
4c4b4cd2
PH
11407 /* Modular types */
11408
11409/* True iff TYPE is an Ada modular type. */
14f9c5c9 11410
14f9c5c9 11411int
d2e4a39e 11412ada_is_modular_type (struct type *type)
14f9c5c9 11413{
18af8284 11414 struct type *subranged_type = get_base_type (type);
14f9c5c9
AS
11415
11416 return (subranged_type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE
690cc4eb 11417 && TYPE_CODE (subranged_type) == TYPE_CODE_INT
4c4b4cd2 11418 && TYPE_UNSIGNED (subranged_type));
14f9c5c9
AS
11419}
11420
4c4b4cd2
PH
11421/* Assuming ada_is_modular_type (TYPE), the modulus of TYPE. */
11422
61ee279c 11423ULONGEST
0056e4d5 11424ada_modulus (struct type *type)
14f9c5c9 11425{
43bbcdc2 11426 return (ULONGEST) TYPE_HIGH_BOUND (type) + 1;
14f9c5c9 11427}
d2e4a39e 11428\f
f7f9143b
JB
11429
11430/* Ada exception catchpoint support:
11431 ---------------------------------
11432
11433 We support 3 kinds of exception catchpoints:
11434 . catchpoints on Ada exceptions
11435 . catchpoints on unhandled Ada exceptions
11436 . catchpoints on failed assertions
11437
11438 Exceptions raised during failed assertions, or unhandled exceptions
11439 could perfectly be caught with the general catchpoint on Ada exceptions.
11440 However, we can easily differentiate these two special cases, and having
11441 the option to distinguish these two cases from the rest can be useful
11442 to zero-in on certain situations.
11443
11444 Exception catchpoints are a specialized form of breakpoint,
11445 since they rely on inserting breakpoints inside known routines
11446 of the GNAT runtime. The implementation therefore uses a standard
11447 breakpoint structure of the BP_BREAKPOINT type, but with its own set
11448 of breakpoint_ops.
11449
0259addd
JB
11450 Support in the runtime for exception catchpoints have been changed
11451 a few times already, and these changes affect the implementation
11452 of these catchpoints. In order to be able to support several
11453 variants of the runtime, we use a sniffer that will determine
28010a5d 11454 the runtime variant used by the program being debugged. */
f7f9143b 11455
82eacd52
JB
11456/* Ada's standard exceptions.
11457
11458 The Ada 83 standard also defined Numeric_Error. But there so many
11459 situations where it was unclear from the Ada 83 Reference Manual
11460 (RM) whether Constraint_Error or Numeric_Error should be raised,
11461 that the ARG (Ada Rapporteur Group) eventually issued a Binding
11462 Interpretation saying that anytime the RM says that Numeric_Error
11463 should be raised, the implementation may raise Constraint_Error.
11464 Ada 95 went one step further and pretty much removed Numeric_Error
11465 from the list of standard exceptions (it made it a renaming of
11466 Constraint_Error, to help preserve compatibility when compiling
11467 an Ada83 compiler). As such, we do not include Numeric_Error from
11468 this list of standard exceptions. */
3d0b0fa3
JB
11469
11470static char *standard_exc[] = {
11471 "constraint_error",
11472 "program_error",
11473 "storage_error",
11474 "tasking_error"
11475};
11476
0259addd
JB
11477typedef CORE_ADDR (ada_unhandled_exception_name_addr_ftype) (void);
11478
11479/* A structure that describes how to support exception catchpoints
11480 for a given executable. */
11481
11482struct exception_support_info
11483{
11484 /* The name of the symbol to break on in order to insert
11485 a catchpoint on exceptions. */
11486 const char *catch_exception_sym;
11487
11488 /* The name of the symbol to break on in order to insert
11489 a catchpoint on unhandled exceptions. */
11490 const char *catch_exception_unhandled_sym;
11491
11492 /* The name of the symbol to break on in order to insert
11493 a catchpoint on failed assertions. */
11494 const char *catch_assert_sym;
11495
11496 /* Assuming that the inferior just triggered an unhandled exception
11497 catchpoint, this function is responsible for returning the address
11498 in inferior memory where the name of that exception is stored.
11499 Return zero if the address could not be computed. */
11500 ada_unhandled_exception_name_addr_ftype *unhandled_exception_name_addr;
11501};
11502
11503static CORE_ADDR ada_unhandled_exception_name_addr (void);
11504static CORE_ADDR ada_unhandled_exception_name_addr_from_raise (void);
11505
11506/* The following exception support info structure describes how to
11507 implement exception catchpoints with the latest version of the
11508 Ada runtime (as of 2007-03-06). */
11509
11510static const struct exception_support_info default_exception_support_info =
11511{
11512 "__gnat_debug_raise_exception", /* catch_exception_sym */
11513 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
11514 "__gnat_debug_raise_assert_failure", /* catch_assert_sym */
11515 ada_unhandled_exception_name_addr
11516};
11517
11518/* The following exception support info structure describes how to
11519 implement exception catchpoints with a slightly older version
11520 of the Ada runtime. */
11521
11522static const struct exception_support_info exception_support_info_fallback =
11523{
11524 "__gnat_raise_nodefer_with_msg", /* catch_exception_sym */
11525 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
11526 "system__assertions__raise_assert_failure", /* catch_assert_sym */
11527 ada_unhandled_exception_name_addr_from_raise
11528};
11529
f17011e0
JB
11530/* Return nonzero if we can detect the exception support routines
11531 described in EINFO.
11532
11533 This function errors out if an abnormal situation is detected
11534 (for instance, if we find the exception support routines, but
11535 that support is found to be incomplete). */
11536
11537static int
11538ada_has_this_exception_support (const struct exception_support_info *einfo)
11539{
11540 struct symbol *sym;
11541
11542 /* The symbol we're looking up is provided by a unit in the GNAT runtime
11543 that should be compiled with debugging information. As a result, we
11544 expect to find that symbol in the symtabs. */
11545
11546 sym = standard_lookup (einfo->catch_exception_sym, NULL, VAR_DOMAIN);
11547 if (sym == NULL)
a6af7abe
JB
11548 {
11549 /* Perhaps we did not find our symbol because the Ada runtime was
11550 compiled without debugging info, or simply stripped of it.
11551 It happens on some GNU/Linux distributions for instance, where
11552 users have to install a separate debug package in order to get
11553 the runtime's debugging info. In that situation, let the user
11554 know why we cannot insert an Ada exception catchpoint.
11555
11556 Note: Just for the purpose of inserting our Ada exception
11557 catchpoint, we could rely purely on the associated minimal symbol.
11558 But we would be operating in degraded mode anyway, since we are
11559 still lacking the debugging info needed later on to extract
11560 the name of the exception being raised (this name is printed in
11561 the catchpoint message, and is also used when trying to catch
11562 a specific exception). We do not handle this case for now. */
3b7344d5 11563 struct bound_minimal_symbol msym
1c8e84b0
JB
11564 = lookup_minimal_symbol (einfo->catch_exception_sym, NULL, NULL);
11565
3b7344d5 11566 if (msym.minsym && MSYMBOL_TYPE (msym.minsym) != mst_solib_trampoline)
a6af7abe
JB
11567 error (_("Your Ada runtime appears to be missing some debugging "
11568 "information.\nCannot insert Ada exception catchpoint "
11569 "in this configuration."));
11570
11571 return 0;
11572 }
f17011e0
JB
11573
11574 /* Make sure that the symbol we found corresponds to a function. */
11575
11576 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
11577 error (_("Symbol \"%s\" is not a function (class = %d)"),
11578 SYMBOL_LINKAGE_NAME (sym), SYMBOL_CLASS (sym));
11579
11580 return 1;
11581}
11582
0259addd
JB
11583/* Inspect the Ada runtime and determine which exception info structure
11584 should be used to provide support for exception catchpoints.
11585
3eecfa55
JB
11586 This function will always set the per-inferior exception_info,
11587 or raise an error. */
0259addd
JB
11588
11589static void
11590ada_exception_support_info_sniffer (void)
11591{
3eecfa55 11592 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
0259addd
JB
11593
11594 /* If the exception info is already known, then no need to recompute it. */
3eecfa55 11595 if (data->exception_info != NULL)
0259addd
JB
11596 return;
11597
11598 /* Check the latest (default) exception support info. */
f17011e0 11599 if (ada_has_this_exception_support (&default_exception_support_info))
0259addd 11600 {
3eecfa55 11601 data->exception_info = &default_exception_support_info;
0259addd
JB
11602 return;
11603 }
11604
11605 /* Try our fallback exception suport info. */
f17011e0 11606 if (ada_has_this_exception_support (&exception_support_info_fallback))
0259addd 11607 {
3eecfa55 11608 data->exception_info = &exception_support_info_fallback;
0259addd
JB
11609 return;
11610 }
11611
11612 /* Sometimes, it is normal for us to not be able to find the routine
11613 we are looking for. This happens when the program is linked with
11614 the shared version of the GNAT runtime, and the program has not been
11615 started yet. Inform the user of these two possible causes if
11616 applicable. */
11617
ccefe4c4 11618 if (ada_update_initial_language (language_unknown) != language_ada)
0259addd
JB
11619 error (_("Unable to insert catchpoint. Is this an Ada main program?"));
11620
11621 /* If the symbol does not exist, then check that the program is
11622 already started, to make sure that shared libraries have been
11623 loaded. If it is not started, this may mean that the symbol is
11624 in a shared library. */
11625
11626 if (ptid_get_pid (inferior_ptid) == 0)
11627 error (_("Unable to insert catchpoint. Try to start the program first."));
11628
11629 /* At this point, we know that we are debugging an Ada program and
11630 that the inferior has been started, but we still are not able to
0963b4bd 11631 find the run-time symbols. That can mean that we are in
0259addd
JB
11632 configurable run time mode, or that a-except as been optimized
11633 out by the linker... In any case, at this point it is not worth
11634 supporting this feature. */
11635
7dda8cff 11636 error (_("Cannot insert Ada exception catchpoints in this configuration."));
0259addd
JB
11637}
11638
f7f9143b
JB
11639/* True iff FRAME is very likely to be that of a function that is
11640 part of the runtime system. This is all very heuristic, but is
11641 intended to be used as advice as to what frames are uninteresting
11642 to most users. */
11643
11644static int
11645is_known_support_routine (struct frame_info *frame)
11646{
4ed6b5be 11647 struct symtab_and_line sal;
55b87a52 11648 char *func_name;
692465f1 11649 enum language func_lang;
f7f9143b 11650 int i;
f35a17b5 11651 const char *fullname;
f7f9143b 11652
4ed6b5be
JB
11653 /* If this code does not have any debugging information (no symtab),
11654 This cannot be any user code. */
f7f9143b 11655
4ed6b5be 11656 find_frame_sal (frame, &sal);
f7f9143b
JB
11657 if (sal.symtab == NULL)
11658 return 1;
11659
4ed6b5be
JB
11660 /* If there is a symtab, but the associated source file cannot be
11661 located, then assume this is not user code: Selecting a frame
11662 for which we cannot display the code would not be very helpful
11663 for the user. This should also take care of case such as VxWorks
11664 where the kernel has some debugging info provided for a few units. */
f7f9143b 11665
f35a17b5
JK
11666 fullname = symtab_to_fullname (sal.symtab);
11667 if (access (fullname, R_OK) != 0)
f7f9143b
JB
11668 return 1;
11669
4ed6b5be
JB
11670 /* Check the unit filename againt the Ada runtime file naming.
11671 We also check the name of the objfile against the name of some
11672 known system libraries that sometimes come with debugging info
11673 too. */
11674
f7f9143b
JB
11675 for (i = 0; known_runtime_file_name_patterns[i] != NULL; i += 1)
11676 {
11677 re_comp (known_runtime_file_name_patterns[i]);
f69c91ad 11678 if (re_exec (lbasename (sal.symtab->filename)))
f7f9143b 11679 return 1;
eb822aa6
DE
11680 if (SYMTAB_OBJFILE (sal.symtab) != NULL
11681 && re_exec (objfile_name (SYMTAB_OBJFILE (sal.symtab))))
4ed6b5be 11682 return 1;
f7f9143b
JB
11683 }
11684
4ed6b5be 11685 /* Check whether the function is a GNAT-generated entity. */
f7f9143b 11686
e9e07ba6 11687 find_frame_funname (frame, &func_name, &func_lang, NULL);
f7f9143b
JB
11688 if (func_name == NULL)
11689 return 1;
11690
11691 for (i = 0; known_auxiliary_function_name_patterns[i] != NULL; i += 1)
11692 {
11693 re_comp (known_auxiliary_function_name_patterns[i]);
11694 if (re_exec (func_name))
55b87a52
KS
11695 {
11696 xfree (func_name);
11697 return 1;
11698 }
f7f9143b
JB
11699 }
11700
55b87a52 11701 xfree (func_name);
f7f9143b
JB
11702 return 0;
11703}
11704
11705/* Find the first frame that contains debugging information and that is not
11706 part of the Ada run-time, starting from FI and moving upward. */
11707
0ef643c8 11708void
f7f9143b
JB
11709ada_find_printable_frame (struct frame_info *fi)
11710{
11711 for (; fi != NULL; fi = get_prev_frame (fi))
11712 {
11713 if (!is_known_support_routine (fi))
11714 {
11715 select_frame (fi);
11716 break;
11717 }
11718 }
11719
11720}
11721
11722/* Assuming that the inferior just triggered an unhandled exception
11723 catchpoint, return the address in inferior memory where the name
11724 of the exception is stored.
11725
11726 Return zero if the address could not be computed. */
11727
11728static CORE_ADDR
11729ada_unhandled_exception_name_addr (void)
0259addd
JB
11730{
11731 return parse_and_eval_address ("e.full_name");
11732}
11733
11734/* Same as ada_unhandled_exception_name_addr, except that this function
11735 should be used when the inferior uses an older version of the runtime,
11736 where the exception name needs to be extracted from a specific frame
11737 several frames up in the callstack. */
11738
11739static CORE_ADDR
11740ada_unhandled_exception_name_addr_from_raise (void)
f7f9143b
JB
11741{
11742 int frame_level;
11743 struct frame_info *fi;
3eecfa55 11744 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
55b87a52 11745 struct cleanup *old_chain;
f7f9143b
JB
11746
11747 /* To determine the name of this exception, we need to select
11748 the frame corresponding to RAISE_SYM_NAME. This frame is
11749 at least 3 levels up, so we simply skip the first 3 frames
11750 without checking the name of their associated function. */
11751 fi = get_current_frame ();
11752 for (frame_level = 0; frame_level < 3; frame_level += 1)
11753 if (fi != NULL)
11754 fi = get_prev_frame (fi);
11755
55b87a52 11756 old_chain = make_cleanup (null_cleanup, NULL);
f7f9143b
JB
11757 while (fi != NULL)
11758 {
55b87a52 11759 char *func_name;
692465f1
JB
11760 enum language func_lang;
11761
e9e07ba6 11762 find_frame_funname (fi, &func_name, &func_lang, NULL);
55b87a52
KS
11763 if (func_name != NULL)
11764 {
11765 make_cleanup (xfree, func_name);
11766
11767 if (strcmp (func_name,
11768 data->exception_info->catch_exception_sym) == 0)
11769 break; /* We found the frame we were looking for... */
11770 fi = get_prev_frame (fi);
11771 }
f7f9143b 11772 }
55b87a52 11773 do_cleanups (old_chain);
f7f9143b
JB
11774
11775 if (fi == NULL)
11776 return 0;
11777
11778 select_frame (fi);
11779 return parse_and_eval_address ("id.full_name");
11780}
11781
11782/* Assuming the inferior just triggered an Ada exception catchpoint
11783 (of any type), return the address in inferior memory where the name
11784 of the exception is stored, if applicable.
11785
11786 Return zero if the address could not be computed, or if not relevant. */
11787
11788static CORE_ADDR
761269c8 11789ada_exception_name_addr_1 (enum ada_exception_catchpoint_kind ex,
f7f9143b
JB
11790 struct breakpoint *b)
11791{
3eecfa55
JB
11792 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
11793
f7f9143b
JB
11794 switch (ex)
11795 {
761269c8 11796 case ada_catch_exception:
f7f9143b
JB
11797 return (parse_and_eval_address ("e.full_name"));
11798 break;
11799
761269c8 11800 case ada_catch_exception_unhandled:
3eecfa55 11801 return data->exception_info->unhandled_exception_name_addr ();
f7f9143b
JB
11802 break;
11803
761269c8 11804 case ada_catch_assert:
f7f9143b
JB
11805 return 0; /* Exception name is not relevant in this case. */
11806 break;
11807
11808 default:
11809 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
11810 break;
11811 }
11812
11813 return 0; /* Should never be reached. */
11814}
11815
11816/* Same as ada_exception_name_addr_1, except that it intercepts and contains
11817 any error that ada_exception_name_addr_1 might cause to be thrown.
11818 When an error is intercepted, a warning with the error message is printed,
11819 and zero is returned. */
11820
11821static CORE_ADDR
761269c8 11822ada_exception_name_addr (enum ada_exception_catchpoint_kind ex,
f7f9143b
JB
11823 struct breakpoint *b)
11824{
f7f9143b
JB
11825 CORE_ADDR result = 0;
11826
492d29ea 11827 TRY
f7f9143b
JB
11828 {
11829 result = ada_exception_name_addr_1 (ex, b);
11830 }
11831
492d29ea 11832 CATCH (e, RETURN_MASK_ERROR)
f7f9143b
JB
11833 {
11834 warning (_("failed to get exception name: %s"), e.message);
11835 return 0;
11836 }
492d29ea 11837 END_CATCH
f7f9143b
JB
11838
11839 return result;
11840}
11841
28010a5d
PA
11842static char *ada_exception_catchpoint_cond_string (const char *excep_string);
11843
11844/* Ada catchpoints.
11845
11846 In the case of catchpoints on Ada exceptions, the catchpoint will
11847 stop the target on every exception the program throws. When a user
11848 specifies the name of a specific exception, we translate this
11849 request into a condition expression (in text form), and then parse
11850 it into an expression stored in each of the catchpoint's locations.
11851 We then use this condition to check whether the exception that was
11852 raised is the one the user is interested in. If not, then the
11853 target is resumed again. We store the name of the requested
11854 exception, in order to be able to re-set the condition expression
11855 when symbols change. */
11856
11857/* An instance of this type is used to represent an Ada catchpoint
11858 breakpoint location. It includes a "struct bp_location" as a kind
11859 of base class; users downcast to "struct bp_location *" when
11860 needed. */
11861
11862struct ada_catchpoint_location
11863{
11864 /* The base class. */
11865 struct bp_location base;
11866
11867 /* The condition that checks whether the exception that was raised
11868 is the specific exception the user specified on catchpoint
11869 creation. */
11870 struct expression *excep_cond_expr;
11871};
11872
11873/* Implement the DTOR method in the bp_location_ops structure for all
11874 Ada exception catchpoint kinds. */
11875
11876static void
11877ada_catchpoint_location_dtor (struct bp_location *bl)
11878{
11879 struct ada_catchpoint_location *al = (struct ada_catchpoint_location *) bl;
11880
11881 xfree (al->excep_cond_expr);
11882}
11883
11884/* The vtable to be used in Ada catchpoint locations. */
11885
11886static const struct bp_location_ops ada_catchpoint_location_ops =
11887{
11888 ada_catchpoint_location_dtor
11889};
11890
11891/* An instance of this type is used to represent an Ada catchpoint.
11892 It includes a "struct breakpoint" as a kind of base class; users
11893 downcast to "struct breakpoint *" when needed. */
11894
11895struct ada_catchpoint
11896{
11897 /* The base class. */
11898 struct breakpoint base;
11899
11900 /* The name of the specific exception the user specified. */
11901 char *excep_string;
11902};
11903
11904/* Parse the exception condition string in the context of each of the
11905 catchpoint's locations, and store them for later evaluation. */
11906
11907static void
11908create_excep_cond_exprs (struct ada_catchpoint *c)
11909{
11910 struct cleanup *old_chain;
11911 struct bp_location *bl;
11912 char *cond_string;
11913
11914 /* Nothing to do if there's no specific exception to catch. */
11915 if (c->excep_string == NULL)
11916 return;
11917
11918 /* Same if there are no locations... */
11919 if (c->base.loc == NULL)
11920 return;
11921
11922 /* Compute the condition expression in text form, from the specific
11923 expection we want to catch. */
11924 cond_string = ada_exception_catchpoint_cond_string (c->excep_string);
11925 old_chain = make_cleanup (xfree, cond_string);
11926
11927 /* Iterate over all the catchpoint's locations, and parse an
11928 expression for each. */
11929 for (bl = c->base.loc; bl != NULL; bl = bl->next)
11930 {
11931 struct ada_catchpoint_location *ada_loc
11932 = (struct ada_catchpoint_location *) bl;
11933 struct expression *exp = NULL;
11934
11935 if (!bl->shlib_disabled)
11936 {
bbc13ae3 11937 const char *s;
28010a5d
PA
11938
11939 s = cond_string;
492d29ea 11940 TRY
28010a5d 11941 {
1bb9788d
TT
11942 exp = parse_exp_1 (&s, bl->address,
11943 block_for_pc (bl->address), 0);
28010a5d 11944 }
492d29ea 11945 CATCH (e, RETURN_MASK_ERROR)
849f2b52
JB
11946 {
11947 warning (_("failed to reevaluate internal exception condition "
11948 "for catchpoint %d: %s"),
11949 c->base.number, e.message);
11950 /* There is a bug in GCC on sparc-solaris when building with
11951 optimization which causes EXP to change unexpectedly
11952 (http://gcc.gnu.org/bugzilla/show_bug.cgi?id=56982).
11953 The problem should be fixed starting with GCC 4.9.
11954 In the meantime, work around it by forcing EXP back
11955 to NULL. */
11956 exp = NULL;
11957 }
492d29ea 11958 END_CATCH
28010a5d
PA
11959 }
11960
11961 ada_loc->excep_cond_expr = exp;
11962 }
11963
11964 do_cleanups (old_chain);
11965}
11966
11967/* Implement the DTOR method in the breakpoint_ops structure for all
11968 exception catchpoint kinds. */
11969
11970static void
761269c8 11971dtor_exception (enum ada_exception_catchpoint_kind ex, struct breakpoint *b)
28010a5d
PA
11972{
11973 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
11974
11975 xfree (c->excep_string);
348d480f 11976
2060206e 11977 bkpt_breakpoint_ops.dtor (b);
28010a5d
PA
11978}
11979
11980/* Implement the ALLOCATE_LOCATION method in the breakpoint_ops
11981 structure for all exception catchpoint kinds. */
11982
11983static struct bp_location *
761269c8 11984allocate_location_exception (enum ada_exception_catchpoint_kind ex,
28010a5d
PA
11985 struct breakpoint *self)
11986{
11987 struct ada_catchpoint_location *loc;
11988
11989 loc = XNEW (struct ada_catchpoint_location);
11990 init_bp_location (&loc->base, &ada_catchpoint_location_ops, self);
11991 loc->excep_cond_expr = NULL;
11992 return &loc->base;
11993}
11994
11995/* Implement the RE_SET method in the breakpoint_ops structure for all
11996 exception catchpoint kinds. */
11997
11998static void
761269c8 11999re_set_exception (enum ada_exception_catchpoint_kind ex, struct breakpoint *b)
28010a5d
PA
12000{
12001 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
12002
12003 /* Call the base class's method. This updates the catchpoint's
12004 locations. */
2060206e 12005 bkpt_breakpoint_ops.re_set (b);
28010a5d
PA
12006
12007 /* Reparse the exception conditional expressions. One for each
12008 location. */
12009 create_excep_cond_exprs (c);
12010}
12011
12012/* Returns true if we should stop for this breakpoint hit. If the
12013 user specified a specific exception, we only want to cause a stop
12014 if the program thrown that exception. */
12015
12016static int
12017should_stop_exception (const struct bp_location *bl)
12018{
12019 struct ada_catchpoint *c = (struct ada_catchpoint *) bl->owner;
12020 const struct ada_catchpoint_location *ada_loc
12021 = (const struct ada_catchpoint_location *) bl;
28010a5d
PA
12022 int stop;
12023
12024 /* With no specific exception, should always stop. */
12025 if (c->excep_string == NULL)
12026 return 1;
12027
12028 if (ada_loc->excep_cond_expr == NULL)
12029 {
12030 /* We will have a NULL expression if back when we were creating
12031 the expressions, this location's had failed to parse. */
12032 return 1;
12033 }
12034
12035 stop = 1;
492d29ea 12036 TRY
28010a5d
PA
12037 {
12038 struct value *mark;
12039
12040 mark = value_mark ();
12041 stop = value_true (evaluate_expression (ada_loc->excep_cond_expr));
12042 value_free_to_mark (mark);
12043 }
492d29ea
PA
12044 CATCH (ex, RETURN_MASK_ALL)
12045 {
12046 exception_fprintf (gdb_stderr, ex,
12047 _("Error in testing exception condition:\n"));
12048 }
12049 END_CATCH
12050
28010a5d
PA
12051 return stop;
12052}
12053
12054/* Implement the CHECK_STATUS method in the breakpoint_ops structure
12055 for all exception catchpoint kinds. */
12056
12057static void
761269c8 12058check_status_exception (enum ada_exception_catchpoint_kind ex, bpstat bs)
28010a5d
PA
12059{
12060 bs->stop = should_stop_exception (bs->bp_location_at);
12061}
12062
f7f9143b
JB
12063/* Implement the PRINT_IT method in the breakpoint_ops structure
12064 for all exception catchpoint kinds. */
12065
12066static enum print_stop_action
761269c8 12067print_it_exception (enum ada_exception_catchpoint_kind ex, bpstat bs)
f7f9143b 12068{
79a45e25 12069 struct ui_out *uiout = current_uiout;
348d480f
PA
12070 struct breakpoint *b = bs->breakpoint_at;
12071
956a9fb9 12072 annotate_catchpoint (b->number);
f7f9143b 12073
956a9fb9 12074 if (ui_out_is_mi_like_p (uiout))
f7f9143b 12075 {
956a9fb9
JB
12076 ui_out_field_string (uiout, "reason",
12077 async_reason_lookup (EXEC_ASYNC_BREAKPOINT_HIT));
12078 ui_out_field_string (uiout, "disp", bpdisp_text (b->disposition));
f7f9143b
JB
12079 }
12080
00eb2c4a
JB
12081 ui_out_text (uiout,
12082 b->disposition == disp_del ? "\nTemporary catchpoint "
12083 : "\nCatchpoint ");
956a9fb9
JB
12084 ui_out_field_int (uiout, "bkptno", b->number);
12085 ui_out_text (uiout, ", ");
f7f9143b 12086
f7f9143b
JB
12087 switch (ex)
12088 {
761269c8
JB
12089 case ada_catch_exception:
12090 case ada_catch_exception_unhandled:
956a9fb9
JB
12091 {
12092 const CORE_ADDR addr = ada_exception_name_addr (ex, b);
12093 char exception_name[256];
12094
12095 if (addr != 0)
12096 {
c714b426
PA
12097 read_memory (addr, (gdb_byte *) exception_name,
12098 sizeof (exception_name) - 1);
956a9fb9
JB
12099 exception_name [sizeof (exception_name) - 1] = '\0';
12100 }
12101 else
12102 {
12103 /* For some reason, we were unable to read the exception
12104 name. This could happen if the Runtime was compiled
12105 without debugging info, for instance. In that case,
12106 just replace the exception name by the generic string
12107 "exception" - it will read as "an exception" in the
12108 notification we are about to print. */
967cff16 12109 memcpy (exception_name, "exception", sizeof ("exception"));
956a9fb9
JB
12110 }
12111 /* In the case of unhandled exception breakpoints, we print
12112 the exception name as "unhandled EXCEPTION_NAME", to make
12113 it clearer to the user which kind of catchpoint just got
12114 hit. We used ui_out_text to make sure that this extra
12115 info does not pollute the exception name in the MI case. */
761269c8 12116 if (ex == ada_catch_exception_unhandled)
956a9fb9
JB
12117 ui_out_text (uiout, "unhandled ");
12118 ui_out_field_string (uiout, "exception-name", exception_name);
12119 }
12120 break;
761269c8 12121 case ada_catch_assert:
956a9fb9
JB
12122 /* In this case, the name of the exception is not really
12123 important. Just print "failed assertion" to make it clearer
12124 that his program just hit an assertion-failure catchpoint.
12125 We used ui_out_text because this info does not belong in
12126 the MI output. */
12127 ui_out_text (uiout, "failed assertion");
12128 break;
f7f9143b 12129 }
956a9fb9
JB
12130 ui_out_text (uiout, " at ");
12131 ada_find_printable_frame (get_current_frame ());
f7f9143b
JB
12132
12133 return PRINT_SRC_AND_LOC;
12134}
12135
12136/* Implement the PRINT_ONE method in the breakpoint_ops structure
12137 for all exception catchpoint kinds. */
12138
12139static void
761269c8 12140print_one_exception (enum ada_exception_catchpoint_kind ex,
a6d9a66e 12141 struct breakpoint *b, struct bp_location **last_loc)
f7f9143b 12142{
79a45e25 12143 struct ui_out *uiout = current_uiout;
28010a5d 12144 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
79a45b7d
TT
12145 struct value_print_options opts;
12146
12147 get_user_print_options (&opts);
12148 if (opts.addressprint)
f7f9143b
JB
12149 {
12150 annotate_field (4);
5af949e3 12151 ui_out_field_core_addr (uiout, "addr", b->loc->gdbarch, b->loc->address);
f7f9143b
JB
12152 }
12153
12154 annotate_field (5);
a6d9a66e 12155 *last_loc = b->loc;
f7f9143b
JB
12156 switch (ex)
12157 {
761269c8 12158 case ada_catch_exception:
28010a5d 12159 if (c->excep_string != NULL)
f7f9143b 12160 {
28010a5d
PA
12161 char *msg = xstrprintf (_("`%s' Ada exception"), c->excep_string);
12162
f7f9143b
JB
12163 ui_out_field_string (uiout, "what", msg);
12164 xfree (msg);
12165 }
12166 else
12167 ui_out_field_string (uiout, "what", "all Ada exceptions");
12168
12169 break;
12170
761269c8 12171 case ada_catch_exception_unhandled:
f7f9143b
JB
12172 ui_out_field_string (uiout, "what", "unhandled Ada exceptions");
12173 break;
12174
761269c8 12175 case ada_catch_assert:
f7f9143b
JB
12176 ui_out_field_string (uiout, "what", "failed Ada assertions");
12177 break;
12178
12179 default:
12180 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12181 break;
12182 }
12183}
12184
12185/* Implement the PRINT_MENTION method in the breakpoint_ops structure
12186 for all exception catchpoint kinds. */
12187
12188static void
761269c8 12189print_mention_exception (enum ada_exception_catchpoint_kind ex,
f7f9143b
JB
12190 struct breakpoint *b)
12191{
28010a5d 12192 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
79a45e25 12193 struct ui_out *uiout = current_uiout;
28010a5d 12194
00eb2c4a
JB
12195 ui_out_text (uiout, b->disposition == disp_del ? _("Temporary catchpoint ")
12196 : _("Catchpoint "));
12197 ui_out_field_int (uiout, "bkptno", b->number);
12198 ui_out_text (uiout, ": ");
12199
f7f9143b
JB
12200 switch (ex)
12201 {
761269c8 12202 case ada_catch_exception:
28010a5d 12203 if (c->excep_string != NULL)
00eb2c4a
JB
12204 {
12205 char *info = xstrprintf (_("`%s' Ada exception"), c->excep_string);
12206 struct cleanup *old_chain = make_cleanup (xfree, info);
12207
12208 ui_out_text (uiout, info);
12209 do_cleanups (old_chain);
12210 }
f7f9143b 12211 else
00eb2c4a 12212 ui_out_text (uiout, _("all Ada exceptions"));
f7f9143b
JB
12213 break;
12214
761269c8 12215 case ada_catch_exception_unhandled:
00eb2c4a 12216 ui_out_text (uiout, _("unhandled Ada exceptions"));
f7f9143b
JB
12217 break;
12218
761269c8 12219 case ada_catch_assert:
00eb2c4a 12220 ui_out_text (uiout, _("failed Ada assertions"));
f7f9143b
JB
12221 break;
12222
12223 default:
12224 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12225 break;
12226 }
12227}
12228
6149aea9
PA
12229/* Implement the PRINT_RECREATE method in the breakpoint_ops structure
12230 for all exception catchpoint kinds. */
12231
12232static void
761269c8 12233print_recreate_exception (enum ada_exception_catchpoint_kind ex,
6149aea9
PA
12234 struct breakpoint *b, struct ui_file *fp)
12235{
28010a5d
PA
12236 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
12237
6149aea9
PA
12238 switch (ex)
12239 {
761269c8 12240 case ada_catch_exception:
6149aea9 12241 fprintf_filtered (fp, "catch exception");
28010a5d
PA
12242 if (c->excep_string != NULL)
12243 fprintf_filtered (fp, " %s", c->excep_string);
6149aea9
PA
12244 break;
12245
761269c8 12246 case ada_catch_exception_unhandled:
78076abc 12247 fprintf_filtered (fp, "catch exception unhandled");
6149aea9
PA
12248 break;
12249
761269c8 12250 case ada_catch_assert:
6149aea9
PA
12251 fprintf_filtered (fp, "catch assert");
12252 break;
12253
12254 default:
12255 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12256 }
d9b3f62e 12257 print_recreate_thread (b, fp);
6149aea9
PA
12258}
12259
f7f9143b
JB
12260/* Virtual table for "catch exception" breakpoints. */
12261
28010a5d
PA
12262static void
12263dtor_catch_exception (struct breakpoint *b)
12264{
761269c8 12265 dtor_exception (ada_catch_exception, b);
28010a5d
PA
12266}
12267
12268static struct bp_location *
12269allocate_location_catch_exception (struct breakpoint *self)
12270{
761269c8 12271 return allocate_location_exception (ada_catch_exception, self);
28010a5d
PA
12272}
12273
12274static void
12275re_set_catch_exception (struct breakpoint *b)
12276{
761269c8 12277 re_set_exception (ada_catch_exception, b);
28010a5d
PA
12278}
12279
12280static void
12281check_status_catch_exception (bpstat bs)
12282{
761269c8 12283 check_status_exception (ada_catch_exception, bs);
28010a5d
PA
12284}
12285
f7f9143b 12286static enum print_stop_action
348d480f 12287print_it_catch_exception (bpstat bs)
f7f9143b 12288{
761269c8 12289 return print_it_exception (ada_catch_exception, bs);
f7f9143b
JB
12290}
12291
12292static void
a6d9a66e 12293print_one_catch_exception (struct breakpoint *b, struct bp_location **last_loc)
f7f9143b 12294{
761269c8 12295 print_one_exception (ada_catch_exception, b, last_loc);
f7f9143b
JB
12296}
12297
12298static void
12299print_mention_catch_exception (struct breakpoint *b)
12300{
761269c8 12301 print_mention_exception (ada_catch_exception, b);
f7f9143b
JB
12302}
12303
6149aea9
PA
12304static void
12305print_recreate_catch_exception (struct breakpoint *b, struct ui_file *fp)
12306{
761269c8 12307 print_recreate_exception (ada_catch_exception, b, fp);
6149aea9
PA
12308}
12309
2060206e 12310static struct breakpoint_ops catch_exception_breakpoint_ops;
f7f9143b
JB
12311
12312/* Virtual table for "catch exception unhandled" breakpoints. */
12313
28010a5d
PA
12314static void
12315dtor_catch_exception_unhandled (struct breakpoint *b)
12316{
761269c8 12317 dtor_exception (ada_catch_exception_unhandled, b);
28010a5d
PA
12318}
12319
12320static struct bp_location *
12321allocate_location_catch_exception_unhandled (struct breakpoint *self)
12322{
761269c8 12323 return allocate_location_exception (ada_catch_exception_unhandled, self);
28010a5d
PA
12324}
12325
12326static void
12327re_set_catch_exception_unhandled (struct breakpoint *b)
12328{
761269c8 12329 re_set_exception (ada_catch_exception_unhandled, b);
28010a5d
PA
12330}
12331
12332static void
12333check_status_catch_exception_unhandled (bpstat bs)
12334{
761269c8 12335 check_status_exception (ada_catch_exception_unhandled, bs);
28010a5d
PA
12336}
12337
f7f9143b 12338static enum print_stop_action
348d480f 12339print_it_catch_exception_unhandled (bpstat bs)
f7f9143b 12340{
761269c8 12341 return print_it_exception (ada_catch_exception_unhandled, bs);
f7f9143b
JB
12342}
12343
12344static void
a6d9a66e
UW
12345print_one_catch_exception_unhandled (struct breakpoint *b,
12346 struct bp_location **last_loc)
f7f9143b 12347{
761269c8 12348 print_one_exception (ada_catch_exception_unhandled, b, last_loc);
f7f9143b
JB
12349}
12350
12351static void
12352print_mention_catch_exception_unhandled (struct breakpoint *b)
12353{
761269c8 12354 print_mention_exception (ada_catch_exception_unhandled, b);
f7f9143b
JB
12355}
12356
6149aea9
PA
12357static void
12358print_recreate_catch_exception_unhandled (struct breakpoint *b,
12359 struct ui_file *fp)
12360{
761269c8 12361 print_recreate_exception (ada_catch_exception_unhandled, b, fp);
6149aea9
PA
12362}
12363
2060206e 12364static struct breakpoint_ops catch_exception_unhandled_breakpoint_ops;
f7f9143b
JB
12365
12366/* Virtual table for "catch assert" breakpoints. */
12367
28010a5d
PA
12368static void
12369dtor_catch_assert (struct breakpoint *b)
12370{
761269c8 12371 dtor_exception (ada_catch_assert, b);
28010a5d
PA
12372}
12373
12374static struct bp_location *
12375allocate_location_catch_assert (struct breakpoint *self)
12376{
761269c8 12377 return allocate_location_exception (ada_catch_assert, self);
28010a5d
PA
12378}
12379
12380static void
12381re_set_catch_assert (struct breakpoint *b)
12382{
761269c8 12383 re_set_exception (ada_catch_assert, b);
28010a5d
PA
12384}
12385
12386static void
12387check_status_catch_assert (bpstat bs)
12388{
761269c8 12389 check_status_exception (ada_catch_assert, bs);
28010a5d
PA
12390}
12391
f7f9143b 12392static enum print_stop_action
348d480f 12393print_it_catch_assert (bpstat bs)
f7f9143b 12394{
761269c8 12395 return print_it_exception (ada_catch_assert, bs);
f7f9143b
JB
12396}
12397
12398static void
a6d9a66e 12399print_one_catch_assert (struct breakpoint *b, struct bp_location **last_loc)
f7f9143b 12400{
761269c8 12401 print_one_exception (ada_catch_assert, b, last_loc);
f7f9143b
JB
12402}
12403
12404static void
12405print_mention_catch_assert (struct breakpoint *b)
12406{
761269c8 12407 print_mention_exception (ada_catch_assert, b);
f7f9143b
JB
12408}
12409
6149aea9
PA
12410static void
12411print_recreate_catch_assert (struct breakpoint *b, struct ui_file *fp)
12412{
761269c8 12413 print_recreate_exception (ada_catch_assert, b, fp);
6149aea9
PA
12414}
12415
2060206e 12416static struct breakpoint_ops catch_assert_breakpoint_ops;
f7f9143b 12417
f7f9143b
JB
12418/* Return a newly allocated copy of the first space-separated token
12419 in ARGSP, and then adjust ARGSP to point immediately after that
12420 token.
12421
12422 Return NULL if ARGPS does not contain any more tokens. */
12423
12424static char *
12425ada_get_next_arg (char **argsp)
12426{
12427 char *args = *argsp;
12428 char *end;
12429 char *result;
12430
0fcd72ba 12431 args = skip_spaces (args);
f7f9143b
JB
12432 if (args[0] == '\0')
12433 return NULL; /* No more arguments. */
12434
12435 /* Find the end of the current argument. */
12436
0fcd72ba 12437 end = skip_to_space (args);
f7f9143b
JB
12438
12439 /* Adjust ARGSP to point to the start of the next argument. */
12440
12441 *argsp = end;
12442
12443 /* Make a copy of the current argument and return it. */
12444
12445 result = xmalloc (end - args + 1);
12446 strncpy (result, args, end - args);
12447 result[end - args] = '\0';
12448
12449 return result;
12450}
12451
12452/* Split the arguments specified in a "catch exception" command.
12453 Set EX to the appropriate catchpoint type.
28010a5d 12454 Set EXCEP_STRING to the name of the specific exception if
5845583d
JB
12455 specified by the user.
12456 If a condition is found at the end of the arguments, the condition
12457 expression is stored in COND_STRING (memory must be deallocated
12458 after use). Otherwise COND_STRING is set to NULL. */
f7f9143b
JB
12459
12460static void
12461catch_ada_exception_command_split (char *args,
761269c8 12462 enum ada_exception_catchpoint_kind *ex,
5845583d
JB
12463 char **excep_string,
12464 char **cond_string)
f7f9143b
JB
12465{
12466 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
12467 char *exception_name;
5845583d 12468 char *cond = NULL;
f7f9143b
JB
12469
12470 exception_name = ada_get_next_arg (&args);
5845583d
JB
12471 if (exception_name != NULL && strcmp (exception_name, "if") == 0)
12472 {
12473 /* This is not an exception name; this is the start of a condition
12474 expression for a catchpoint on all exceptions. So, "un-get"
12475 this token, and set exception_name to NULL. */
12476 xfree (exception_name);
12477 exception_name = NULL;
12478 args -= 2;
12479 }
f7f9143b
JB
12480 make_cleanup (xfree, exception_name);
12481
5845583d 12482 /* Check to see if we have a condition. */
f7f9143b 12483
0fcd72ba 12484 args = skip_spaces (args);
61012eef 12485 if (startswith (args, "if")
5845583d
JB
12486 && (isspace (args[2]) || args[2] == '\0'))
12487 {
12488 args += 2;
12489 args = skip_spaces (args);
12490
12491 if (args[0] == '\0')
12492 error (_("Condition missing after `if' keyword"));
12493 cond = xstrdup (args);
12494 make_cleanup (xfree, cond);
12495
12496 args += strlen (args);
12497 }
12498
12499 /* Check that we do not have any more arguments. Anything else
12500 is unexpected. */
f7f9143b
JB
12501
12502 if (args[0] != '\0')
12503 error (_("Junk at end of expression"));
12504
12505 discard_cleanups (old_chain);
12506
12507 if (exception_name == NULL)
12508 {
12509 /* Catch all exceptions. */
761269c8 12510 *ex = ada_catch_exception;
28010a5d 12511 *excep_string = NULL;
f7f9143b
JB
12512 }
12513 else if (strcmp (exception_name, "unhandled") == 0)
12514 {
12515 /* Catch unhandled exceptions. */
761269c8 12516 *ex = ada_catch_exception_unhandled;
28010a5d 12517 *excep_string = NULL;
f7f9143b
JB
12518 }
12519 else
12520 {
12521 /* Catch a specific exception. */
761269c8 12522 *ex = ada_catch_exception;
28010a5d 12523 *excep_string = exception_name;
f7f9143b 12524 }
5845583d 12525 *cond_string = cond;
f7f9143b
JB
12526}
12527
12528/* Return the name of the symbol on which we should break in order to
12529 implement a catchpoint of the EX kind. */
12530
12531static const char *
761269c8 12532ada_exception_sym_name (enum ada_exception_catchpoint_kind ex)
f7f9143b 12533{
3eecfa55
JB
12534 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
12535
12536 gdb_assert (data->exception_info != NULL);
0259addd 12537
f7f9143b
JB
12538 switch (ex)
12539 {
761269c8 12540 case ada_catch_exception:
3eecfa55 12541 return (data->exception_info->catch_exception_sym);
f7f9143b 12542 break;
761269c8 12543 case ada_catch_exception_unhandled:
3eecfa55 12544 return (data->exception_info->catch_exception_unhandled_sym);
f7f9143b 12545 break;
761269c8 12546 case ada_catch_assert:
3eecfa55 12547 return (data->exception_info->catch_assert_sym);
f7f9143b
JB
12548 break;
12549 default:
12550 internal_error (__FILE__, __LINE__,
12551 _("unexpected catchpoint kind (%d)"), ex);
12552 }
12553}
12554
12555/* Return the breakpoint ops "virtual table" used for catchpoints
12556 of the EX kind. */
12557
c0a91b2b 12558static const struct breakpoint_ops *
761269c8 12559ada_exception_breakpoint_ops (enum ada_exception_catchpoint_kind ex)
f7f9143b
JB
12560{
12561 switch (ex)
12562 {
761269c8 12563 case ada_catch_exception:
f7f9143b
JB
12564 return (&catch_exception_breakpoint_ops);
12565 break;
761269c8 12566 case ada_catch_exception_unhandled:
f7f9143b
JB
12567 return (&catch_exception_unhandled_breakpoint_ops);
12568 break;
761269c8 12569 case ada_catch_assert:
f7f9143b
JB
12570 return (&catch_assert_breakpoint_ops);
12571 break;
12572 default:
12573 internal_error (__FILE__, __LINE__,
12574 _("unexpected catchpoint kind (%d)"), ex);
12575 }
12576}
12577
12578/* Return the condition that will be used to match the current exception
12579 being raised with the exception that the user wants to catch. This
12580 assumes that this condition is used when the inferior just triggered
12581 an exception catchpoint.
12582
12583 The string returned is a newly allocated string that needs to be
12584 deallocated later. */
12585
12586static char *
28010a5d 12587ada_exception_catchpoint_cond_string (const char *excep_string)
f7f9143b 12588{
3d0b0fa3
JB
12589 int i;
12590
0963b4bd 12591 /* The standard exceptions are a special case. They are defined in
3d0b0fa3 12592 runtime units that have been compiled without debugging info; if
28010a5d 12593 EXCEP_STRING is the not-fully-qualified name of a standard
3d0b0fa3
JB
12594 exception (e.g. "constraint_error") then, during the evaluation
12595 of the condition expression, the symbol lookup on this name would
0963b4bd 12596 *not* return this standard exception. The catchpoint condition
3d0b0fa3
JB
12597 may then be set only on user-defined exceptions which have the
12598 same not-fully-qualified name (e.g. my_package.constraint_error).
12599
12600 To avoid this unexcepted behavior, these standard exceptions are
0963b4bd 12601 systematically prefixed by "standard". This means that "catch
3d0b0fa3
JB
12602 exception constraint_error" is rewritten into "catch exception
12603 standard.constraint_error".
12604
12605 If an exception named contraint_error is defined in another package of
12606 the inferior program, then the only way to specify this exception as a
12607 breakpoint condition is to use its fully-qualified named:
12608 e.g. my_package.constraint_error. */
12609
12610 for (i = 0; i < sizeof (standard_exc) / sizeof (char *); i++)
12611 {
28010a5d 12612 if (strcmp (standard_exc [i], excep_string) == 0)
3d0b0fa3
JB
12613 {
12614 return xstrprintf ("long_integer (e) = long_integer (&standard.%s)",
28010a5d 12615 excep_string);
3d0b0fa3
JB
12616 }
12617 }
28010a5d 12618 return xstrprintf ("long_integer (e) = long_integer (&%s)", excep_string);
f7f9143b
JB
12619}
12620
12621/* Return the symtab_and_line that should be used to insert an exception
12622 catchpoint of the TYPE kind.
12623
28010a5d
PA
12624 EXCEP_STRING should contain the name of a specific exception that
12625 the catchpoint should catch, or NULL otherwise.
f7f9143b 12626
28010a5d
PA
12627 ADDR_STRING returns the name of the function where the real
12628 breakpoint that implements the catchpoints is set, depending on the
12629 type of catchpoint we need to create. */
f7f9143b
JB
12630
12631static struct symtab_and_line
761269c8 12632ada_exception_sal (enum ada_exception_catchpoint_kind ex, char *excep_string,
c0a91b2b 12633 char **addr_string, const struct breakpoint_ops **ops)
f7f9143b
JB
12634{
12635 const char *sym_name;
12636 struct symbol *sym;
f7f9143b 12637
0259addd
JB
12638 /* First, find out which exception support info to use. */
12639 ada_exception_support_info_sniffer ();
12640
12641 /* Then lookup the function on which we will break in order to catch
f7f9143b 12642 the Ada exceptions requested by the user. */
f7f9143b
JB
12643 sym_name = ada_exception_sym_name (ex);
12644 sym = standard_lookup (sym_name, NULL, VAR_DOMAIN);
12645
f17011e0
JB
12646 /* We can assume that SYM is not NULL at this stage. If the symbol
12647 did not exist, ada_exception_support_info_sniffer would have
12648 raised an exception.
f7f9143b 12649
f17011e0
JB
12650 Also, ada_exception_support_info_sniffer should have already
12651 verified that SYM is a function symbol. */
12652 gdb_assert (sym != NULL);
12653 gdb_assert (SYMBOL_CLASS (sym) == LOC_BLOCK);
f7f9143b
JB
12654
12655 /* Set ADDR_STRING. */
f7f9143b
JB
12656 *addr_string = xstrdup (sym_name);
12657
f7f9143b 12658 /* Set OPS. */
4b9eee8c 12659 *ops = ada_exception_breakpoint_ops (ex);
f7f9143b 12660
f17011e0 12661 return find_function_start_sal (sym, 1);
f7f9143b
JB
12662}
12663
b4a5b78b 12664/* Create an Ada exception catchpoint.
f7f9143b 12665
b4a5b78b 12666 EX_KIND is the kind of exception catchpoint to be created.
5845583d 12667
2df4d1d5
JB
12668 If EXCEPT_STRING is NULL, this catchpoint is expected to trigger
12669 for all exceptions. Otherwise, EXCEPT_STRING indicates the name
12670 of the exception to which this catchpoint applies. When not NULL,
12671 the string must be allocated on the heap, and its deallocation
12672 is no longer the responsibility of the caller.
12673
12674 COND_STRING, if not NULL, is the catchpoint condition. This string
12675 must be allocated on the heap, and its deallocation is no longer
12676 the responsibility of the caller.
f7f9143b 12677
b4a5b78b
JB
12678 TEMPFLAG, if nonzero, means that the underlying breakpoint
12679 should be temporary.
28010a5d 12680
b4a5b78b 12681 FROM_TTY is the usual argument passed to all commands implementations. */
28010a5d 12682
349774ef 12683void
28010a5d 12684create_ada_exception_catchpoint (struct gdbarch *gdbarch,
761269c8 12685 enum ada_exception_catchpoint_kind ex_kind,
28010a5d 12686 char *excep_string,
5845583d 12687 char *cond_string,
28010a5d 12688 int tempflag,
349774ef 12689 int disabled,
28010a5d
PA
12690 int from_tty)
12691{
12692 struct ada_catchpoint *c;
b4a5b78b
JB
12693 char *addr_string = NULL;
12694 const struct breakpoint_ops *ops = NULL;
12695 struct symtab_and_line sal
12696 = ada_exception_sal (ex_kind, excep_string, &addr_string, &ops);
28010a5d
PA
12697
12698 c = XNEW (struct ada_catchpoint);
12699 init_ada_exception_breakpoint (&c->base, gdbarch, sal, addr_string,
349774ef 12700 ops, tempflag, disabled, from_tty);
28010a5d
PA
12701 c->excep_string = excep_string;
12702 create_excep_cond_exprs (c);
5845583d
JB
12703 if (cond_string != NULL)
12704 set_breakpoint_condition (&c->base, cond_string, from_tty);
3ea46bff 12705 install_breakpoint (0, &c->base, 1);
f7f9143b
JB
12706}
12707
9ac4176b
PA
12708/* Implement the "catch exception" command. */
12709
12710static void
12711catch_ada_exception_command (char *arg, int from_tty,
12712 struct cmd_list_element *command)
12713{
12714 struct gdbarch *gdbarch = get_current_arch ();
12715 int tempflag;
761269c8 12716 enum ada_exception_catchpoint_kind ex_kind;
28010a5d 12717 char *excep_string = NULL;
5845583d 12718 char *cond_string = NULL;
9ac4176b
PA
12719
12720 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
12721
12722 if (!arg)
12723 arg = "";
b4a5b78b
JB
12724 catch_ada_exception_command_split (arg, &ex_kind, &excep_string,
12725 &cond_string);
12726 create_ada_exception_catchpoint (gdbarch, ex_kind,
12727 excep_string, cond_string,
349774ef
JB
12728 tempflag, 1 /* enabled */,
12729 from_tty);
9ac4176b
PA
12730}
12731
b4a5b78b 12732/* Split the arguments specified in a "catch assert" command.
5845583d 12733
b4a5b78b
JB
12734 ARGS contains the command's arguments (or the empty string if
12735 no arguments were passed).
5845583d
JB
12736
12737 If ARGS contains a condition, set COND_STRING to that condition
b4a5b78b 12738 (the memory needs to be deallocated after use). */
5845583d 12739
b4a5b78b
JB
12740static void
12741catch_ada_assert_command_split (char *args, char **cond_string)
f7f9143b 12742{
5845583d 12743 args = skip_spaces (args);
f7f9143b 12744
5845583d 12745 /* Check whether a condition was provided. */
61012eef 12746 if (startswith (args, "if")
5845583d 12747 && (isspace (args[2]) || args[2] == '\0'))
f7f9143b 12748 {
5845583d 12749 args += 2;
0fcd72ba 12750 args = skip_spaces (args);
5845583d
JB
12751 if (args[0] == '\0')
12752 error (_("condition missing after `if' keyword"));
12753 *cond_string = xstrdup (args);
f7f9143b
JB
12754 }
12755
5845583d
JB
12756 /* Otherwise, there should be no other argument at the end of
12757 the command. */
12758 else if (args[0] != '\0')
12759 error (_("Junk at end of arguments."));
f7f9143b
JB
12760}
12761
9ac4176b
PA
12762/* Implement the "catch assert" command. */
12763
12764static void
12765catch_assert_command (char *arg, int from_tty,
12766 struct cmd_list_element *command)
12767{
12768 struct gdbarch *gdbarch = get_current_arch ();
12769 int tempflag;
5845583d 12770 char *cond_string = NULL;
9ac4176b
PA
12771
12772 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
12773
12774 if (!arg)
12775 arg = "";
b4a5b78b 12776 catch_ada_assert_command_split (arg, &cond_string);
761269c8 12777 create_ada_exception_catchpoint (gdbarch, ada_catch_assert,
b4a5b78b 12778 NULL, cond_string,
349774ef
JB
12779 tempflag, 1 /* enabled */,
12780 from_tty);
9ac4176b 12781}
778865d3
JB
12782
12783/* Return non-zero if the symbol SYM is an Ada exception object. */
12784
12785static int
12786ada_is_exception_sym (struct symbol *sym)
12787{
12788 const char *type_name = type_name_no_tag (SYMBOL_TYPE (sym));
12789
12790 return (SYMBOL_CLASS (sym) != LOC_TYPEDEF
12791 && SYMBOL_CLASS (sym) != LOC_BLOCK
12792 && SYMBOL_CLASS (sym) != LOC_CONST
12793 && SYMBOL_CLASS (sym) != LOC_UNRESOLVED
12794 && type_name != NULL && strcmp (type_name, "exception") == 0);
12795}
12796
12797/* Given a global symbol SYM, return non-zero iff SYM is a non-standard
12798 Ada exception object. This matches all exceptions except the ones
12799 defined by the Ada language. */
12800
12801static int
12802ada_is_non_standard_exception_sym (struct symbol *sym)
12803{
12804 int i;
12805
12806 if (!ada_is_exception_sym (sym))
12807 return 0;
12808
12809 for (i = 0; i < ARRAY_SIZE (standard_exc); i++)
12810 if (strcmp (SYMBOL_LINKAGE_NAME (sym), standard_exc[i]) == 0)
12811 return 0; /* A standard exception. */
12812
12813 /* Numeric_Error is also a standard exception, so exclude it.
12814 See the STANDARD_EXC description for more details as to why
12815 this exception is not listed in that array. */
12816 if (strcmp (SYMBOL_LINKAGE_NAME (sym), "numeric_error") == 0)
12817 return 0;
12818
12819 return 1;
12820}
12821
12822/* A helper function for qsort, comparing two struct ada_exc_info
12823 objects.
12824
12825 The comparison is determined first by exception name, and then
12826 by exception address. */
12827
12828static int
12829compare_ada_exception_info (const void *a, const void *b)
12830{
12831 const struct ada_exc_info *exc_a = (struct ada_exc_info *) a;
12832 const struct ada_exc_info *exc_b = (struct ada_exc_info *) b;
12833 int result;
12834
12835 result = strcmp (exc_a->name, exc_b->name);
12836 if (result != 0)
12837 return result;
12838
12839 if (exc_a->addr < exc_b->addr)
12840 return -1;
12841 if (exc_a->addr > exc_b->addr)
12842 return 1;
12843
12844 return 0;
12845}
12846
12847/* Sort EXCEPTIONS using compare_ada_exception_info as the comparison
12848 routine, but keeping the first SKIP elements untouched.
12849
12850 All duplicates are also removed. */
12851
12852static void
12853sort_remove_dups_ada_exceptions_list (VEC(ada_exc_info) **exceptions,
12854 int skip)
12855{
12856 struct ada_exc_info *to_sort
12857 = VEC_address (ada_exc_info, *exceptions) + skip;
12858 int to_sort_len
12859 = VEC_length (ada_exc_info, *exceptions) - skip;
12860 int i, j;
12861
12862 qsort (to_sort, to_sort_len, sizeof (struct ada_exc_info),
12863 compare_ada_exception_info);
12864
12865 for (i = 1, j = 1; i < to_sort_len; i++)
12866 if (compare_ada_exception_info (&to_sort[i], &to_sort[j - 1]) != 0)
12867 to_sort[j++] = to_sort[i];
12868 to_sort_len = j;
12869 VEC_truncate(ada_exc_info, *exceptions, skip + to_sort_len);
12870}
12871
12872/* A function intended as the "name_matcher" callback in the struct
12873 quick_symbol_functions' expand_symtabs_matching method.
12874
12875 SEARCH_NAME is the symbol's search name.
12876
12877 If USER_DATA is not NULL, it is a pointer to a regext_t object
12878 used to match the symbol (by natural name). Otherwise, when USER_DATA
12879 is null, no filtering is performed, and all symbols are a positive
12880 match. */
12881
12882static int
12883ada_exc_search_name_matches (const char *search_name, void *user_data)
12884{
12885 regex_t *preg = user_data;
12886
12887 if (preg == NULL)
12888 return 1;
12889
12890 /* In Ada, the symbol "search name" is a linkage name, whereas
12891 the regular expression used to do the matching refers to
12892 the natural name. So match against the decoded name. */
12893 return (regexec (preg, ada_decode (search_name), 0, NULL, 0) == 0);
12894}
12895
12896/* Add all exceptions defined by the Ada standard whose name match
12897 a regular expression.
12898
12899 If PREG is not NULL, then this regexp_t object is used to
12900 perform the symbol name matching. Otherwise, no name-based
12901 filtering is performed.
12902
12903 EXCEPTIONS is a vector of exceptions to which matching exceptions
12904 gets pushed. */
12905
12906static void
12907ada_add_standard_exceptions (regex_t *preg, VEC(ada_exc_info) **exceptions)
12908{
12909 int i;
12910
12911 for (i = 0; i < ARRAY_SIZE (standard_exc); i++)
12912 {
12913 if (preg == NULL
12914 || regexec (preg, standard_exc[i], 0, NULL, 0) == 0)
12915 {
12916 struct bound_minimal_symbol msymbol
12917 = ada_lookup_simple_minsym (standard_exc[i]);
12918
12919 if (msymbol.minsym != NULL)
12920 {
12921 struct ada_exc_info info
77e371c0 12922 = {standard_exc[i], BMSYMBOL_VALUE_ADDRESS (msymbol)};
778865d3
JB
12923
12924 VEC_safe_push (ada_exc_info, *exceptions, &info);
12925 }
12926 }
12927 }
12928}
12929
12930/* Add all Ada exceptions defined locally and accessible from the given
12931 FRAME.
12932
12933 If PREG is not NULL, then this regexp_t object is used to
12934 perform the symbol name matching. Otherwise, no name-based
12935 filtering is performed.
12936
12937 EXCEPTIONS is a vector of exceptions to which matching exceptions
12938 gets pushed. */
12939
12940static void
12941ada_add_exceptions_from_frame (regex_t *preg, struct frame_info *frame,
12942 VEC(ada_exc_info) **exceptions)
12943{
3977b71f 12944 const struct block *block = get_frame_block (frame, 0);
778865d3
JB
12945
12946 while (block != 0)
12947 {
12948 struct block_iterator iter;
12949 struct symbol *sym;
12950
12951 ALL_BLOCK_SYMBOLS (block, iter, sym)
12952 {
12953 switch (SYMBOL_CLASS (sym))
12954 {
12955 case LOC_TYPEDEF:
12956 case LOC_BLOCK:
12957 case LOC_CONST:
12958 break;
12959 default:
12960 if (ada_is_exception_sym (sym))
12961 {
12962 struct ada_exc_info info = {SYMBOL_PRINT_NAME (sym),
12963 SYMBOL_VALUE_ADDRESS (sym)};
12964
12965 VEC_safe_push (ada_exc_info, *exceptions, &info);
12966 }
12967 }
12968 }
12969 if (BLOCK_FUNCTION (block) != NULL)
12970 break;
12971 block = BLOCK_SUPERBLOCK (block);
12972 }
12973}
12974
12975/* Add all exceptions defined globally whose name name match
12976 a regular expression, excluding standard exceptions.
12977
12978 The reason we exclude standard exceptions is that they need
12979 to be handled separately: Standard exceptions are defined inside
12980 a runtime unit which is normally not compiled with debugging info,
12981 and thus usually do not show up in our symbol search. However,
12982 if the unit was in fact built with debugging info, we need to
12983 exclude them because they would duplicate the entry we found
12984 during the special loop that specifically searches for those
12985 standard exceptions.
12986
12987 If PREG is not NULL, then this regexp_t object is used to
12988 perform the symbol name matching. Otherwise, no name-based
12989 filtering is performed.
12990
12991 EXCEPTIONS is a vector of exceptions to which matching exceptions
12992 gets pushed. */
12993
12994static void
12995ada_add_global_exceptions (regex_t *preg, VEC(ada_exc_info) **exceptions)
12996{
12997 struct objfile *objfile;
43f3e411 12998 struct compunit_symtab *s;
778865d3 12999
276d885b 13000 expand_symtabs_matching (NULL, ada_exc_search_name_matches, NULL,
bb4142cf 13001 VARIABLES_DOMAIN, preg);
778865d3 13002
43f3e411 13003 ALL_COMPUNITS (objfile, s)
778865d3 13004 {
43f3e411 13005 const struct blockvector *bv = COMPUNIT_BLOCKVECTOR (s);
778865d3
JB
13006 int i;
13007
13008 for (i = GLOBAL_BLOCK; i <= STATIC_BLOCK; i++)
13009 {
13010 struct block *b = BLOCKVECTOR_BLOCK (bv, i);
13011 struct block_iterator iter;
13012 struct symbol *sym;
13013
13014 ALL_BLOCK_SYMBOLS (b, iter, sym)
13015 if (ada_is_non_standard_exception_sym (sym)
13016 && (preg == NULL
13017 || regexec (preg, SYMBOL_NATURAL_NAME (sym),
13018 0, NULL, 0) == 0))
13019 {
13020 struct ada_exc_info info
13021 = {SYMBOL_PRINT_NAME (sym), SYMBOL_VALUE_ADDRESS (sym)};
13022
13023 VEC_safe_push (ada_exc_info, *exceptions, &info);
13024 }
13025 }
13026 }
13027}
13028
13029/* Implements ada_exceptions_list with the regular expression passed
13030 as a regex_t, rather than a string.
13031
13032 If not NULL, PREG is used to filter out exceptions whose names
13033 do not match. Otherwise, all exceptions are listed. */
13034
13035static VEC(ada_exc_info) *
13036ada_exceptions_list_1 (regex_t *preg)
13037{
13038 VEC(ada_exc_info) *result = NULL;
13039 struct cleanup *old_chain
13040 = make_cleanup (VEC_cleanup (ada_exc_info), &result);
13041 int prev_len;
13042
13043 /* First, list the known standard exceptions. These exceptions
13044 need to be handled separately, as they are usually defined in
13045 runtime units that have been compiled without debugging info. */
13046
13047 ada_add_standard_exceptions (preg, &result);
13048
13049 /* Next, find all exceptions whose scope is local and accessible
13050 from the currently selected frame. */
13051
13052 if (has_stack_frames ())
13053 {
13054 prev_len = VEC_length (ada_exc_info, result);
13055 ada_add_exceptions_from_frame (preg, get_selected_frame (NULL),
13056 &result);
13057 if (VEC_length (ada_exc_info, result) > prev_len)
13058 sort_remove_dups_ada_exceptions_list (&result, prev_len);
13059 }
13060
13061 /* Add all exceptions whose scope is global. */
13062
13063 prev_len = VEC_length (ada_exc_info, result);
13064 ada_add_global_exceptions (preg, &result);
13065 if (VEC_length (ada_exc_info, result) > prev_len)
13066 sort_remove_dups_ada_exceptions_list (&result, prev_len);
13067
13068 discard_cleanups (old_chain);
13069 return result;
13070}
13071
13072/* Return a vector of ada_exc_info.
13073
13074 If REGEXP is NULL, all exceptions are included in the result.
13075 Otherwise, it should contain a valid regular expression,
13076 and only the exceptions whose names match that regular expression
13077 are included in the result.
13078
13079 The exceptions are sorted in the following order:
13080 - Standard exceptions (defined by the Ada language), in
13081 alphabetical order;
13082 - Exceptions only visible from the current frame, in
13083 alphabetical order;
13084 - Exceptions whose scope is global, in alphabetical order. */
13085
13086VEC(ada_exc_info) *
13087ada_exceptions_list (const char *regexp)
13088{
13089 VEC(ada_exc_info) *result = NULL;
13090 struct cleanup *old_chain = NULL;
13091 regex_t reg;
13092
13093 if (regexp != NULL)
13094 old_chain = compile_rx_or_error (&reg, regexp,
13095 _("invalid regular expression"));
13096
13097 result = ada_exceptions_list_1 (regexp != NULL ? &reg : NULL);
13098
13099 if (old_chain != NULL)
13100 do_cleanups (old_chain);
13101 return result;
13102}
13103
13104/* Implement the "info exceptions" command. */
13105
13106static void
13107info_exceptions_command (char *regexp, int from_tty)
13108{
13109 VEC(ada_exc_info) *exceptions;
13110 struct cleanup *cleanup;
13111 struct gdbarch *gdbarch = get_current_arch ();
13112 int ix;
13113 struct ada_exc_info *info;
13114
13115 exceptions = ada_exceptions_list (regexp);
13116 cleanup = make_cleanup (VEC_cleanup (ada_exc_info), &exceptions);
13117
13118 if (regexp != NULL)
13119 printf_filtered
13120 (_("All Ada exceptions matching regular expression \"%s\":\n"), regexp);
13121 else
13122 printf_filtered (_("All defined Ada exceptions:\n"));
13123
13124 for (ix = 0; VEC_iterate(ada_exc_info, exceptions, ix, info); ix++)
13125 printf_filtered ("%s: %s\n", info->name, paddress (gdbarch, info->addr));
13126
13127 do_cleanups (cleanup);
13128}
13129
4c4b4cd2
PH
13130 /* Operators */
13131/* Information about operators given special treatment in functions
13132 below. */
13133/* Format: OP_DEFN (<operator>, <operator length>, <# args>, <binop>). */
13134
13135#define ADA_OPERATORS \
13136 OP_DEFN (OP_VAR_VALUE, 4, 0, 0) \
13137 OP_DEFN (BINOP_IN_BOUNDS, 3, 2, 0) \
13138 OP_DEFN (TERNOP_IN_RANGE, 1, 3, 0) \
13139 OP_DEFN (OP_ATR_FIRST, 1, 2, 0) \
13140 OP_DEFN (OP_ATR_LAST, 1, 2, 0) \
13141 OP_DEFN (OP_ATR_LENGTH, 1, 2, 0) \
13142 OP_DEFN (OP_ATR_IMAGE, 1, 2, 0) \
13143 OP_DEFN (OP_ATR_MAX, 1, 3, 0) \
13144 OP_DEFN (OP_ATR_MIN, 1, 3, 0) \
13145 OP_DEFN (OP_ATR_MODULUS, 1, 1, 0) \
13146 OP_DEFN (OP_ATR_POS, 1, 2, 0) \
13147 OP_DEFN (OP_ATR_SIZE, 1, 1, 0) \
13148 OP_DEFN (OP_ATR_TAG, 1, 1, 0) \
13149 OP_DEFN (OP_ATR_VAL, 1, 2, 0) \
13150 OP_DEFN (UNOP_QUAL, 3, 1, 0) \
52ce6436
PH
13151 OP_DEFN (UNOP_IN_RANGE, 3, 1, 0) \
13152 OP_DEFN (OP_OTHERS, 1, 1, 0) \
13153 OP_DEFN (OP_POSITIONAL, 3, 1, 0) \
13154 OP_DEFN (OP_DISCRETE_RANGE, 1, 2, 0)
4c4b4cd2
PH
13155
13156static void
554794dc
SDJ
13157ada_operator_length (const struct expression *exp, int pc, int *oplenp,
13158 int *argsp)
4c4b4cd2
PH
13159{
13160 switch (exp->elts[pc - 1].opcode)
13161 {
76a01679 13162 default:
4c4b4cd2
PH
13163 operator_length_standard (exp, pc, oplenp, argsp);
13164 break;
13165
13166#define OP_DEFN(op, len, args, binop) \
13167 case op: *oplenp = len; *argsp = args; break;
13168 ADA_OPERATORS;
13169#undef OP_DEFN
52ce6436
PH
13170
13171 case OP_AGGREGATE:
13172 *oplenp = 3;
13173 *argsp = longest_to_int (exp->elts[pc - 2].longconst);
13174 break;
13175
13176 case OP_CHOICES:
13177 *oplenp = 3;
13178 *argsp = longest_to_int (exp->elts[pc - 2].longconst) + 1;
13179 break;
4c4b4cd2
PH
13180 }
13181}
13182
c0201579
JK
13183/* Implementation of the exp_descriptor method operator_check. */
13184
13185static int
13186ada_operator_check (struct expression *exp, int pos,
13187 int (*objfile_func) (struct objfile *objfile, void *data),
13188 void *data)
13189{
13190 const union exp_element *const elts = exp->elts;
13191 struct type *type = NULL;
13192
13193 switch (elts[pos].opcode)
13194 {
13195 case UNOP_IN_RANGE:
13196 case UNOP_QUAL:
13197 type = elts[pos + 1].type;
13198 break;
13199
13200 default:
13201 return operator_check_standard (exp, pos, objfile_func, data);
13202 }
13203
13204 /* Invoke callbacks for TYPE and OBJFILE if they were set as non-NULL. */
13205
13206 if (type && TYPE_OBJFILE (type)
13207 && (*objfile_func) (TYPE_OBJFILE (type), data))
13208 return 1;
13209
13210 return 0;
13211}
13212
4c4b4cd2
PH
13213static char *
13214ada_op_name (enum exp_opcode opcode)
13215{
13216 switch (opcode)
13217 {
76a01679 13218 default:
4c4b4cd2 13219 return op_name_standard (opcode);
52ce6436 13220
4c4b4cd2
PH
13221#define OP_DEFN(op, len, args, binop) case op: return #op;
13222 ADA_OPERATORS;
13223#undef OP_DEFN
52ce6436
PH
13224
13225 case OP_AGGREGATE:
13226 return "OP_AGGREGATE";
13227 case OP_CHOICES:
13228 return "OP_CHOICES";
13229 case OP_NAME:
13230 return "OP_NAME";
4c4b4cd2
PH
13231 }
13232}
13233
13234/* As for operator_length, but assumes PC is pointing at the first
13235 element of the operator, and gives meaningful results only for the
52ce6436 13236 Ada-specific operators, returning 0 for *OPLENP and *ARGSP otherwise. */
4c4b4cd2
PH
13237
13238static void
76a01679
JB
13239ada_forward_operator_length (struct expression *exp, int pc,
13240 int *oplenp, int *argsp)
4c4b4cd2 13241{
76a01679 13242 switch (exp->elts[pc].opcode)
4c4b4cd2
PH
13243 {
13244 default:
13245 *oplenp = *argsp = 0;
13246 break;
52ce6436 13247
4c4b4cd2
PH
13248#define OP_DEFN(op, len, args, binop) \
13249 case op: *oplenp = len; *argsp = args; break;
13250 ADA_OPERATORS;
13251#undef OP_DEFN
52ce6436
PH
13252
13253 case OP_AGGREGATE:
13254 *oplenp = 3;
13255 *argsp = longest_to_int (exp->elts[pc + 1].longconst);
13256 break;
13257
13258 case OP_CHOICES:
13259 *oplenp = 3;
13260 *argsp = longest_to_int (exp->elts[pc + 1].longconst) + 1;
13261 break;
13262
13263 case OP_STRING:
13264 case OP_NAME:
13265 {
13266 int len = longest_to_int (exp->elts[pc + 1].longconst);
5b4ee69b 13267
52ce6436
PH
13268 *oplenp = 4 + BYTES_TO_EXP_ELEM (len + 1);
13269 *argsp = 0;
13270 break;
13271 }
4c4b4cd2
PH
13272 }
13273}
13274
13275static int
13276ada_dump_subexp_body (struct expression *exp, struct ui_file *stream, int elt)
13277{
13278 enum exp_opcode op = exp->elts[elt].opcode;
13279 int oplen, nargs;
13280 int pc = elt;
13281 int i;
76a01679 13282
4c4b4cd2
PH
13283 ada_forward_operator_length (exp, elt, &oplen, &nargs);
13284
76a01679 13285 switch (op)
4c4b4cd2 13286 {
76a01679 13287 /* Ada attributes ('Foo). */
4c4b4cd2
PH
13288 case OP_ATR_FIRST:
13289 case OP_ATR_LAST:
13290 case OP_ATR_LENGTH:
13291 case OP_ATR_IMAGE:
13292 case OP_ATR_MAX:
13293 case OP_ATR_MIN:
13294 case OP_ATR_MODULUS:
13295 case OP_ATR_POS:
13296 case OP_ATR_SIZE:
13297 case OP_ATR_TAG:
13298 case OP_ATR_VAL:
13299 break;
13300
13301 case UNOP_IN_RANGE:
13302 case UNOP_QUAL:
323e0a4a
AC
13303 /* XXX: gdb_sprint_host_address, type_sprint */
13304 fprintf_filtered (stream, _("Type @"));
4c4b4cd2
PH
13305 gdb_print_host_address (exp->elts[pc + 1].type, stream);
13306 fprintf_filtered (stream, " (");
13307 type_print (exp->elts[pc + 1].type, NULL, stream, 0);
13308 fprintf_filtered (stream, ")");
13309 break;
13310 case BINOP_IN_BOUNDS:
52ce6436
PH
13311 fprintf_filtered (stream, " (%d)",
13312 longest_to_int (exp->elts[pc + 2].longconst));
4c4b4cd2
PH
13313 break;
13314 case TERNOP_IN_RANGE:
13315 break;
13316
52ce6436
PH
13317 case OP_AGGREGATE:
13318 case OP_OTHERS:
13319 case OP_DISCRETE_RANGE:
13320 case OP_POSITIONAL:
13321 case OP_CHOICES:
13322 break;
13323
13324 case OP_NAME:
13325 case OP_STRING:
13326 {
13327 char *name = &exp->elts[elt + 2].string;
13328 int len = longest_to_int (exp->elts[elt + 1].longconst);
5b4ee69b 13329
52ce6436
PH
13330 fprintf_filtered (stream, "Text: `%.*s'", len, name);
13331 break;
13332 }
13333
4c4b4cd2
PH
13334 default:
13335 return dump_subexp_body_standard (exp, stream, elt);
13336 }
13337
13338 elt += oplen;
13339 for (i = 0; i < nargs; i += 1)
13340 elt = dump_subexp (exp, stream, elt);
13341
13342 return elt;
13343}
13344
13345/* The Ada extension of print_subexp (q.v.). */
13346
76a01679
JB
13347static void
13348ada_print_subexp (struct expression *exp, int *pos,
13349 struct ui_file *stream, enum precedence prec)
4c4b4cd2 13350{
52ce6436 13351 int oplen, nargs, i;
4c4b4cd2
PH
13352 int pc = *pos;
13353 enum exp_opcode op = exp->elts[pc].opcode;
13354
13355 ada_forward_operator_length (exp, pc, &oplen, &nargs);
13356
52ce6436 13357 *pos += oplen;
4c4b4cd2
PH
13358 switch (op)
13359 {
13360 default:
52ce6436 13361 *pos -= oplen;
4c4b4cd2
PH
13362 print_subexp_standard (exp, pos, stream, prec);
13363 return;
13364
13365 case OP_VAR_VALUE:
4c4b4cd2
PH
13366 fputs_filtered (SYMBOL_NATURAL_NAME (exp->elts[pc + 2].symbol), stream);
13367 return;
13368
13369 case BINOP_IN_BOUNDS:
323e0a4a 13370 /* XXX: sprint_subexp */
4c4b4cd2 13371 print_subexp (exp, pos, stream, PREC_SUFFIX);
0b48a291 13372 fputs_filtered (" in ", stream);
4c4b4cd2 13373 print_subexp (exp, pos, stream, PREC_SUFFIX);
0b48a291 13374 fputs_filtered ("'range", stream);
4c4b4cd2 13375 if (exp->elts[pc + 1].longconst > 1)
76a01679
JB
13376 fprintf_filtered (stream, "(%ld)",
13377 (long) exp->elts[pc + 1].longconst);
4c4b4cd2
PH
13378 return;
13379
13380 case TERNOP_IN_RANGE:
4c4b4cd2 13381 if (prec >= PREC_EQUAL)
76a01679 13382 fputs_filtered ("(", stream);
323e0a4a 13383 /* XXX: sprint_subexp */
4c4b4cd2 13384 print_subexp (exp, pos, stream, PREC_SUFFIX);
0b48a291 13385 fputs_filtered (" in ", stream);
4c4b4cd2
PH
13386 print_subexp (exp, pos, stream, PREC_EQUAL);
13387 fputs_filtered (" .. ", stream);
13388 print_subexp (exp, pos, stream, PREC_EQUAL);
13389 if (prec >= PREC_EQUAL)
76a01679
JB
13390 fputs_filtered (")", stream);
13391 return;
4c4b4cd2
PH
13392
13393 case OP_ATR_FIRST:
13394 case OP_ATR_LAST:
13395 case OP_ATR_LENGTH:
13396 case OP_ATR_IMAGE:
13397 case OP_ATR_MAX:
13398 case OP_ATR_MIN:
13399 case OP_ATR_MODULUS:
13400 case OP_ATR_POS:
13401 case OP_ATR_SIZE:
13402 case OP_ATR_TAG:
13403 case OP_ATR_VAL:
4c4b4cd2 13404 if (exp->elts[*pos].opcode == OP_TYPE)
76a01679
JB
13405 {
13406 if (TYPE_CODE (exp->elts[*pos + 1].type) != TYPE_CODE_VOID)
79d43c61
TT
13407 LA_PRINT_TYPE (exp->elts[*pos + 1].type, "", stream, 0, 0,
13408 &type_print_raw_options);
76a01679
JB
13409 *pos += 3;
13410 }
4c4b4cd2 13411 else
76a01679 13412 print_subexp (exp, pos, stream, PREC_SUFFIX);
4c4b4cd2
PH
13413 fprintf_filtered (stream, "'%s", ada_attribute_name (op));
13414 if (nargs > 1)
76a01679
JB
13415 {
13416 int tem;
5b4ee69b 13417
76a01679
JB
13418 for (tem = 1; tem < nargs; tem += 1)
13419 {
13420 fputs_filtered ((tem == 1) ? " (" : ", ", stream);
13421 print_subexp (exp, pos, stream, PREC_ABOVE_COMMA);
13422 }
13423 fputs_filtered (")", stream);
13424 }
4c4b4cd2 13425 return;
14f9c5c9 13426
4c4b4cd2 13427 case UNOP_QUAL:
4c4b4cd2
PH
13428 type_print (exp->elts[pc + 1].type, "", stream, 0);
13429 fputs_filtered ("'(", stream);
13430 print_subexp (exp, pos, stream, PREC_PREFIX);
13431 fputs_filtered (")", stream);
13432 return;
14f9c5c9 13433
4c4b4cd2 13434 case UNOP_IN_RANGE:
323e0a4a 13435 /* XXX: sprint_subexp */
4c4b4cd2 13436 print_subexp (exp, pos, stream, PREC_SUFFIX);
0b48a291 13437 fputs_filtered (" in ", stream);
79d43c61
TT
13438 LA_PRINT_TYPE (exp->elts[pc + 1].type, "", stream, 1, 0,
13439 &type_print_raw_options);
4c4b4cd2 13440 return;
52ce6436
PH
13441
13442 case OP_DISCRETE_RANGE:
13443 print_subexp (exp, pos, stream, PREC_SUFFIX);
13444 fputs_filtered ("..", stream);
13445 print_subexp (exp, pos, stream, PREC_SUFFIX);
13446 return;
13447
13448 case OP_OTHERS:
13449 fputs_filtered ("others => ", stream);
13450 print_subexp (exp, pos, stream, PREC_SUFFIX);
13451 return;
13452
13453 case OP_CHOICES:
13454 for (i = 0; i < nargs-1; i += 1)
13455 {
13456 if (i > 0)
13457 fputs_filtered ("|", stream);
13458 print_subexp (exp, pos, stream, PREC_SUFFIX);
13459 }
13460 fputs_filtered (" => ", stream);
13461 print_subexp (exp, pos, stream, PREC_SUFFIX);
13462 return;
13463
13464 case OP_POSITIONAL:
13465 print_subexp (exp, pos, stream, PREC_SUFFIX);
13466 return;
13467
13468 case OP_AGGREGATE:
13469 fputs_filtered ("(", stream);
13470 for (i = 0; i < nargs; i += 1)
13471 {
13472 if (i > 0)
13473 fputs_filtered (", ", stream);
13474 print_subexp (exp, pos, stream, PREC_SUFFIX);
13475 }
13476 fputs_filtered (")", stream);
13477 return;
4c4b4cd2
PH
13478 }
13479}
14f9c5c9
AS
13480
13481/* Table mapping opcodes into strings for printing operators
13482 and precedences of the operators. */
13483
d2e4a39e
AS
13484static const struct op_print ada_op_print_tab[] = {
13485 {":=", BINOP_ASSIGN, PREC_ASSIGN, 1},
13486 {"or else", BINOP_LOGICAL_OR, PREC_LOGICAL_OR, 0},
13487 {"and then", BINOP_LOGICAL_AND, PREC_LOGICAL_AND, 0},
13488 {"or", BINOP_BITWISE_IOR, PREC_BITWISE_IOR, 0},
13489 {"xor", BINOP_BITWISE_XOR, PREC_BITWISE_XOR, 0},
13490 {"and", BINOP_BITWISE_AND, PREC_BITWISE_AND, 0},
13491 {"=", BINOP_EQUAL, PREC_EQUAL, 0},
13492 {"/=", BINOP_NOTEQUAL, PREC_EQUAL, 0},
13493 {"<=", BINOP_LEQ, PREC_ORDER, 0},
13494 {">=", BINOP_GEQ, PREC_ORDER, 0},
13495 {">", BINOP_GTR, PREC_ORDER, 0},
13496 {"<", BINOP_LESS, PREC_ORDER, 0},
13497 {">>", BINOP_RSH, PREC_SHIFT, 0},
13498 {"<<", BINOP_LSH, PREC_SHIFT, 0},
13499 {"+", BINOP_ADD, PREC_ADD, 0},
13500 {"-", BINOP_SUB, PREC_ADD, 0},
13501 {"&", BINOP_CONCAT, PREC_ADD, 0},
13502 {"*", BINOP_MUL, PREC_MUL, 0},
13503 {"/", BINOP_DIV, PREC_MUL, 0},
13504 {"rem", BINOP_REM, PREC_MUL, 0},
13505 {"mod", BINOP_MOD, PREC_MUL, 0},
13506 {"**", BINOP_EXP, PREC_REPEAT, 0},
13507 {"@", BINOP_REPEAT, PREC_REPEAT, 0},
13508 {"-", UNOP_NEG, PREC_PREFIX, 0},
13509 {"+", UNOP_PLUS, PREC_PREFIX, 0},
13510 {"not ", UNOP_LOGICAL_NOT, PREC_PREFIX, 0},
13511 {"not ", UNOP_COMPLEMENT, PREC_PREFIX, 0},
13512 {"abs ", UNOP_ABS, PREC_PREFIX, 0},
4c4b4cd2
PH
13513 {".all", UNOP_IND, PREC_SUFFIX, 1},
13514 {"'access", UNOP_ADDR, PREC_SUFFIX, 1},
13515 {"'size", OP_ATR_SIZE, PREC_SUFFIX, 1},
d2e4a39e 13516 {NULL, 0, 0, 0}
14f9c5c9
AS
13517};
13518\f
72d5681a
PH
13519enum ada_primitive_types {
13520 ada_primitive_type_int,
13521 ada_primitive_type_long,
13522 ada_primitive_type_short,
13523 ada_primitive_type_char,
13524 ada_primitive_type_float,
13525 ada_primitive_type_double,
13526 ada_primitive_type_void,
13527 ada_primitive_type_long_long,
13528 ada_primitive_type_long_double,
13529 ada_primitive_type_natural,
13530 ada_primitive_type_positive,
13531 ada_primitive_type_system_address,
13532 nr_ada_primitive_types
13533};
6c038f32
PH
13534
13535static void
d4a9a881 13536ada_language_arch_info (struct gdbarch *gdbarch,
72d5681a
PH
13537 struct language_arch_info *lai)
13538{
d4a9a881 13539 const struct builtin_type *builtin = builtin_type (gdbarch);
5b4ee69b 13540
72d5681a 13541 lai->primitive_type_vector
d4a9a881 13542 = GDBARCH_OBSTACK_CALLOC (gdbarch, nr_ada_primitive_types + 1,
72d5681a 13543 struct type *);
e9bb382b
UW
13544
13545 lai->primitive_type_vector [ada_primitive_type_int]
13546 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
13547 0, "integer");
13548 lai->primitive_type_vector [ada_primitive_type_long]
13549 = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
13550 0, "long_integer");
13551 lai->primitive_type_vector [ada_primitive_type_short]
13552 = arch_integer_type (gdbarch, gdbarch_short_bit (gdbarch),
13553 0, "short_integer");
13554 lai->string_char_type
13555 = lai->primitive_type_vector [ada_primitive_type_char]
13556 = arch_integer_type (gdbarch, TARGET_CHAR_BIT, 0, "character");
13557 lai->primitive_type_vector [ada_primitive_type_float]
13558 = arch_float_type (gdbarch, gdbarch_float_bit (gdbarch),
13559 "float", NULL);
13560 lai->primitive_type_vector [ada_primitive_type_double]
13561 = arch_float_type (gdbarch, gdbarch_double_bit (gdbarch),
13562 "long_float", NULL);
13563 lai->primitive_type_vector [ada_primitive_type_long_long]
13564 = arch_integer_type (gdbarch, gdbarch_long_long_bit (gdbarch),
13565 0, "long_long_integer");
13566 lai->primitive_type_vector [ada_primitive_type_long_double]
13567 = arch_float_type (gdbarch, gdbarch_double_bit (gdbarch),
13568 "long_long_float", NULL);
13569 lai->primitive_type_vector [ada_primitive_type_natural]
13570 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
13571 0, "natural");
13572 lai->primitive_type_vector [ada_primitive_type_positive]
13573 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
13574 0, "positive");
13575 lai->primitive_type_vector [ada_primitive_type_void]
13576 = builtin->builtin_void;
13577
13578 lai->primitive_type_vector [ada_primitive_type_system_address]
13579 = lookup_pointer_type (arch_type (gdbarch, TYPE_CODE_VOID, 1, "void"));
72d5681a
PH
13580 TYPE_NAME (lai->primitive_type_vector [ada_primitive_type_system_address])
13581 = "system__address";
fbb06eb1 13582
47e729a8 13583 lai->bool_type_symbol = NULL;
fbb06eb1 13584 lai->bool_type_default = builtin->builtin_bool;
6c038f32 13585}
6c038f32
PH
13586\f
13587 /* Language vector */
13588
13589/* Not really used, but needed in the ada_language_defn. */
13590
13591static void
6c7a06a3 13592emit_char (int c, struct type *type, struct ui_file *stream, int quoter)
6c038f32 13593{
6c7a06a3 13594 ada_emit_char (c, type, stream, quoter, 1);
6c038f32
PH
13595}
13596
13597static int
410a0ff2 13598parse (struct parser_state *ps)
6c038f32
PH
13599{
13600 warnings_issued = 0;
410a0ff2 13601 return ada_parse (ps);
6c038f32
PH
13602}
13603
13604static const struct exp_descriptor ada_exp_descriptor = {
13605 ada_print_subexp,
13606 ada_operator_length,
c0201579 13607 ada_operator_check,
6c038f32
PH
13608 ada_op_name,
13609 ada_dump_subexp_body,
13610 ada_evaluate_subexp
13611};
13612
1a119f36 13613/* Implement the "la_get_symbol_name_cmp" language_defn method
74ccd7f5
JB
13614 for Ada. */
13615
1a119f36
JB
13616static symbol_name_cmp_ftype
13617ada_get_symbol_name_cmp (const char *lookup_name)
74ccd7f5
JB
13618{
13619 if (should_use_wild_match (lookup_name))
13620 return wild_match;
13621 else
13622 return compare_names;
13623}
13624
a5ee536b
JB
13625/* Implement the "la_read_var_value" language_defn method for Ada. */
13626
13627static struct value *
13628ada_read_var_value (struct symbol *var, struct frame_info *frame)
13629{
3977b71f 13630 const struct block *frame_block = NULL;
a5ee536b
JB
13631 struct symbol *renaming_sym = NULL;
13632
13633 /* The only case where default_read_var_value is not sufficient
13634 is when VAR is a renaming... */
13635 if (frame)
13636 frame_block = get_frame_block (frame, NULL);
13637 if (frame_block)
13638 renaming_sym = ada_find_renaming_symbol (var, frame_block);
13639 if (renaming_sym != NULL)
13640 return ada_read_renaming_var_value (renaming_sym, frame_block);
13641
13642 /* This is a typical case where we expect the default_read_var_value
13643 function to work. */
13644 return default_read_var_value (var, frame);
13645}
13646
6c038f32
PH
13647const struct language_defn ada_language_defn = {
13648 "ada", /* Language name */
6abde28f 13649 "Ada",
6c038f32 13650 language_ada,
6c038f32 13651 range_check_off,
6c038f32
PH
13652 case_sensitive_on, /* Yes, Ada is case-insensitive, but
13653 that's not quite what this means. */
6c038f32 13654 array_row_major,
9a044a89 13655 macro_expansion_no,
6c038f32
PH
13656 &ada_exp_descriptor,
13657 parse,
13658 ada_error,
13659 resolve,
13660 ada_printchar, /* Print a character constant */
13661 ada_printstr, /* Function to print string constant */
13662 emit_char, /* Function to print single char (not used) */
6c038f32 13663 ada_print_type, /* Print a type using appropriate syntax */
be942545 13664 ada_print_typedef, /* Print a typedef using appropriate syntax */
6c038f32
PH
13665 ada_val_print, /* Print a value using appropriate syntax */
13666 ada_value_print, /* Print a top-level value */
a5ee536b 13667 ada_read_var_value, /* la_read_var_value */
6c038f32 13668 NULL, /* Language specific skip_trampoline */
2b2d9e11 13669 NULL, /* name_of_this */
6c038f32
PH
13670 ada_lookup_symbol_nonlocal, /* Looking up non-local symbols. */
13671 basic_lookup_transparent_type, /* lookup_transparent_type */
13672 ada_la_decode, /* Language specific symbol demangler */
0963b4bd
MS
13673 NULL, /* Language specific
13674 class_name_from_physname */
6c038f32
PH
13675 ada_op_print_tab, /* expression operators for printing */
13676 0, /* c-style arrays */
13677 1, /* String lower bound */
6c038f32 13678 ada_get_gdb_completer_word_break_characters,
41d27058 13679 ada_make_symbol_completion_list,
72d5681a 13680 ada_language_arch_info,
e79af960 13681 ada_print_array_index,
41f1b697 13682 default_pass_by_reference,
ae6a3a4c 13683 c_get_string,
1a119f36 13684 ada_get_symbol_name_cmp, /* la_get_symbol_name_cmp */
f8eba3c6 13685 ada_iterate_over_symbols,
a53b64ea 13686 &ada_varobj_ops,
bb2ec1b3
TT
13687 NULL,
13688 NULL,
6c038f32
PH
13689 LANG_MAGIC
13690};
13691
2c0b251b
PA
13692/* Provide a prototype to silence -Wmissing-prototypes. */
13693extern initialize_file_ftype _initialize_ada_language;
13694
5bf03f13
JB
13695/* Command-list for the "set/show ada" prefix command. */
13696static struct cmd_list_element *set_ada_list;
13697static struct cmd_list_element *show_ada_list;
13698
13699/* Implement the "set ada" prefix command. */
13700
13701static void
13702set_ada_command (char *arg, int from_tty)
13703{
13704 printf_unfiltered (_(\
13705"\"set ada\" must be followed by the name of a setting.\n"));
635c7e8a 13706 help_list (set_ada_list, "set ada ", all_commands, gdb_stdout);
5bf03f13
JB
13707}
13708
13709/* Implement the "show ada" prefix command. */
13710
13711static void
13712show_ada_command (char *args, int from_tty)
13713{
13714 cmd_show_list (show_ada_list, from_tty, "");
13715}
13716
2060206e
PA
13717static void
13718initialize_ada_catchpoint_ops (void)
13719{
13720 struct breakpoint_ops *ops;
13721
13722 initialize_breakpoint_ops ();
13723
13724 ops = &catch_exception_breakpoint_ops;
13725 *ops = bkpt_breakpoint_ops;
13726 ops->dtor = dtor_catch_exception;
13727 ops->allocate_location = allocate_location_catch_exception;
13728 ops->re_set = re_set_catch_exception;
13729 ops->check_status = check_status_catch_exception;
13730 ops->print_it = print_it_catch_exception;
13731 ops->print_one = print_one_catch_exception;
13732 ops->print_mention = print_mention_catch_exception;
13733 ops->print_recreate = print_recreate_catch_exception;
13734
13735 ops = &catch_exception_unhandled_breakpoint_ops;
13736 *ops = bkpt_breakpoint_ops;
13737 ops->dtor = dtor_catch_exception_unhandled;
13738 ops->allocate_location = allocate_location_catch_exception_unhandled;
13739 ops->re_set = re_set_catch_exception_unhandled;
13740 ops->check_status = check_status_catch_exception_unhandled;
13741 ops->print_it = print_it_catch_exception_unhandled;
13742 ops->print_one = print_one_catch_exception_unhandled;
13743 ops->print_mention = print_mention_catch_exception_unhandled;
13744 ops->print_recreate = print_recreate_catch_exception_unhandled;
13745
13746 ops = &catch_assert_breakpoint_ops;
13747 *ops = bkpt_breakpoint_ops;
13748 ops->dtor = dtor_catch_assert;
13749 ops->allocate_location = allocate_location_catch_assert;
13750 ops->re_set = re_set_catch_assert;
13751 ops->check_status = check_status_catch_assert;
13752 ops->print_it = print_it_catch_assert;
13753 ops->print_one = print_one_catch_assert;
13754 ops->print_mention = print_mention_catch_assert;
13755 ops->print_recreate = print_recreate_catch_assert;
13756}
13757
3d9434b5
JB
13758/* This module's 'new_objfile' observer. */
13759
13760static void
13761ada_new_objfile_observer (struct objfile *objfile)
13762{
13763 ada_clear_symbol_cache ();
13764}
13765
13766/* This module's 'free_objfile' observer. */
13767
13768static void
13769ada_free_objfile_observer (struct objfile *objfile)
13770{
13771 ada_clear_symbol_cache ();
13772}
13773
d2e4a39e 13774void
6c038f32 13775_initialize_ada_language (void)
14f9c5c9 13776{
6c038f32
PH
13777 add_language (&ada_language_defn);
13778
2060206e
PA
13779 initialize_ada_catchpoint_ops ();
13780
5bf03f13
JB
13781 add_prefix_cmd ("ada", no_class, set_ada_command,
13782 _("Prefix command for changing Ada-specfic settings"),
13783 &set_ada_list, "set ada ", 0, &setlist);
13784
13785 add_prefix_cmd ("ada", no_class, show_ada_command,
13786 _("Generic command for showing Ada-specific settings."),
13787 &show_ada_list, "show ada ", 0, &showlist);
13788
13789 add_setshow_boolean_cmd ("trust-PAD-over-XVS", class_obscure,
13790 &trust_pad_over_xvs, _("\
13791Enable or disable an optimization trusting PAD types over XVS types"), _("\
13792Show whether an optimization trusting PAD types over XVS types is activated"),
13793 _("\
13794This is related to the encoding used by the GNAT compiler. The debugger\n\
13795should normally trust the contents of PAD types, but certain older versions\n\
13796of GNAT have a bug that sometimes causes the information in the PAD type\n\
13797to be incorrect. Turning this setting \"off\" allows the debugger to\n\
13798work around this bug. It is always safe to turn this option \"off\", but\n\
13799this incurs a slight performance penalty, so it is recommended to NOT change\n\
13800this option to \"off\" unless necessary."),
13801 NULL, NULL, &set_ada_list, &show_ada_list);
13802
9ac4176b
PA
13803 add_catch_command ("exception", _("\
13804Catch Ada exceptions, when raised.\n\
13805With an argument, catch only exceptions with the given name."),
13806 catch_ada_exception_command,
13807 NULL,
13808 CATCH_PERMANENT,
13809 CATCH_TEMPORARY);
13810 add_catch_command ("assert", _("\
13811Catch failed Ada assertions, when raised.\n\
13812With an argument, catch only exceptions with the given name."),
13813 catch_assert_command,
13814 NULL,
13815 CATCH_PERMANENT,
13816 CATCH_TEMPORARY);
13817
6c038f32 13818 varsize_limit = 65536;
6c038f32 13819
778865d3
JB
13820 add_info ("exceptions", info_exceptions_command,
13821 _("\
13822List all Ada exception names.\n\
13823If a regular expression is passed as an argument, only those matching\n\
13824the regular expression are listed."));
13825
c6044dd1
JB
13826 add_prefix_cmd ("ada", class_maintenance, maint_set_ada_cmd,
13827 _("Set Ada maintenance-related variables."),
13828 &maint_set_ada_cmdlist, "maintenance set ada ",
13829 0/*allow-unknown*/, &maintenance_set_cmdlist);
13830
13831 add_prefix_cmd ("ada", class_maintenance, maint_show_ada_cmd,
13832 _("Show Ada maintenance-related variables"),
13833 &maint_show_ada_cmdlist, "maintenance show ada ",
13834 0/*allow-unknown*/, &maintenance_show_cmdlist);
13835
13836 add_setshow_boolean_cmd
13837 ("ignore-descriptive-types", class_maintenance,
13838 &ada_ignore_descriptive_types_p,
13839 _("Set whether descriptive types generated by GNAT should be ignored."),
13840 _("Show whether descriptive types generated by GNAT should be ignored."),
13841 _("\
13842When enabled, the debugger will stop using the DW_AT_GNAT_descriptive_type\n\
13843DWARF attribute."),
13844 NULL, NULL, &maint_set_ada_cmdlist, &maint_show_ada_cmdlist);
13845
6c038f32
PH
13846 obstack_init (&symbol_list_obstack);
13847
13848 decoded_names_store = htab_create_alloc
13849 (256, htab_hash_string, (int (*)(const void *, const void *)) streq,
13850 NULL, xcalloc, xfree);
6b69afc4 13851
3d9434b5
JB
13852 /* The ada-lang observers. */
13853 observer_attach_new_objfile (ada_new_objfile_observer);
13854 observer_attach_free_objfile (ada_free_objfile_observer);
e802dbe0 13855 observer_attach_inferior_exit (ada_inferior_exit);
ee01b665
JB
13856
13857 /* Setup various context-specific data. */
e802dbe0 13858 ada_inferior_data
8e260fc0 13859 = register_inferior_data_with_cleanup (NULL, ada_inferior_data_cleanup);
ee01b665
JB
13860 ada_pspace_data_handle
13861 = register_program_space_data_with_cleanup (NULL, ada_pspace_data_cleanup);
14f9c5c9 13862}