]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blame - gdb/ada-lang.c
[Ada] pspace_data->sym_cache is always NULL
[thirdparty/binutils-gdb.git] / gdb / ada-lang.c
CommitLineData
6e681866 1/* Ada language support routines for GDB, the GNU debugger.
10a2c479 2
32d0add0 3 Copyright (C) 1992-2015 Free Software Foundation, Inc.
14f9c5c9 4
a9762ec7 5 This file is part of GDB.
14f9c5c9 6
a9762ec7
JB
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
14f9c5c9 11
a9762ec7
JB
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
14f9c5c9 16
a9762ec7
JB
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
14f9c5c9 19
96d887e8 20
4c4b4cd2 21#include "defs.h"
14f9c5c9 22#include <ctype.h>
14f9c5c9 23#include "demangle.h"
4c4b4cd2
PH
24#include "gdb_regex.h"
25#include "frame.h"
14f9c5c9
AS
26#include "symtab.h"
27#include "gdbtypes.h"
28#include "gdbcmd.h"
29#include "expression.h"
30#include "parser-defs.h"
31#include "language.h"
a53b64ea 32#include "varobj.h"
14f9c5c9
AS
33#include "c-lang.h"
34#include "inferior.h"
35#include "symfile.h"
36#include "objfiles.h"
37#include "breakpoint.h"
38#include "gdbcore.h"
4c4b4cd2
PH
39#include "hashtab.h"
40#include "gdb_obstack.h"
14f9c5c9 41#include "ada-lang.h"
4c4b4cd2 42#include "completer.h"
53ce3c39 43#include <sys/stat.h>
14f9c5c9 44#include "ui-out.h"
fe898f56 45#include "block.h"
04714b91 46#include "infcall.h"
de4f826b 47#include "dictionary.h"
f7f9143b
JB
48#include "annotate.h"
49#include "valprint.h"
9bbc9174 50#include "source.h"
0259addd 51#include "observer.h"
2ba95b9b 52#include "vec.h"
692465f1 53#include "stack.h"
fa864999 54#include "gdb_vecs.h"
79d43c61 55#include "typeprint.h"
14f9c5c9 56
ccefe4c4 57#include "psymtab.h"
40bc484c 58#include "value.h"
956a9fb9 59#include "mi/mi-common.h"
9ac4176b 60#include "arch-utils.h"
0fcd72ba 61#include "cli/cli-utils.h"
ccefe4c4 62
4c4b4cd2 63/* Define whether or not the C operator '/' truncates towards zero for
0963b4bd 64 differently signed operands (truncation direction is undefined in C).
4c4b4cd2
PH
65 Copied from valarith.c. */
66
67#ifndef TRUNCATION_TOWARDS_ZERO
68#define TRUNCATION_TOWARDS_ZERO ((-5 / 2) == -2)
69#endif
70
d2e4a39e 71static struct type *desc_base_type (struct type *);
14f9c5c9 72
d2e4a39e 73static struct type *desc_bounds_type (struct type *);
14f9c5c9 74
d2e4a39e 75static struct value *desc_bounds (struct value *);
14f9c5c9 76
d2e4a39e 77static int fat_pntr_bounds_bitpos (struct type *);
14f9c5c9 78
d2e4a39e 79static int fat_pntr_bounds_bitsize (struct type *);
14f9c5c9 80
556bdfd4 81static struct type *desc_data_target_type (struct type *);
14f9c5c9 82
d2e4a39e 83static struct value *desc_data (struct value *);
14f9c5c9 84
d2e4a39e 85static int fat_pntr_data_bitpos (struct type *);
14f9c5c9 86
d2e4a39e 87static int fat_pntr_data_bitsize (struct type *);
14f9c5c9 88
d2e4a39e 89static struct value *desc_one_bound (struct value *, int, int);
14f9c5c9 90
d2e4a39e 91static int desc_bound_bitpos (struct type *, int, int);
14f9c5c9 92
d2e4a39e 93static int desc_bound_bitsize (struct type *, int, int);
14f9c5c9 94
d2e4a39e 95static struct type *desc_index_type (struct type *, int);
14f9c5c9 96
d2e4a39e 97static int desc_arity (struct type *);
14f9c5c9 98
d2e4a39e 99static int ada_type_match (struct type *, struct type *, int);
14f9c5c9 100
d2e4a39e 101static int ada_args_match (struct symbol *, struct value **, int);
14f9c5c9 102
40658b94
PH
103static int full_match (const char *, const char *);
104
40bc484c 105static struct value *make_array_descriptor (struct type *, struct value *);
14f9c5c9 106
4c4b4cd2 107static void ada_add_block_symbols (struct obstack *,
f0c5f9b2 108 const struct block *, const char *,
2570f2b7 109 domain_enum, struct objfile *, int);
14f9c5c9 110
4c4b4cd2 111static int is_nonfunction (struct ada_symbol_info *, int);
14f9c5c9 112
76a01679 113static void add_defn_to_vec (struct obstack *, struct symbol *,
f0c5f9b2 114 const struct block *);
14f9c5c9 115
4c4b4cd2
PH
116static int num_defns_collected (struct obstack *);
117
118static struct ada_symbol_info *defns_collected (struct obstack *, int);
14f9c5c9 119
4c4b4cd2 120static struct value *resolve_subexp (struct expression **, int *, int,
76a01679 121 struct type *);
14f9c5c9 122
d2e4a39e 123static void replace_operator_with_call (struct expression **, int, int, int,
270140bd 124 struct symbol *, const struct block *);
14f9c5c9 125
d2e4a39e 126static int possible_user_operator_p (enum exp_opcode, struct value **);
14f9c5c9 127
4c4b4cd2
PH
128static char *ada_op_name (enum exp_opcode);
129
130static const char *ada_decoded_op_name (enum exp_opcode);
14f9c5c9 131
d2e4a39e 132static int numeric_type_p (struct type *);
14f9c5c9 133
d2e4a39e 134static int integer_type_p (struct type *);
14f9c5c9 135
d2e4a39e 136static int scalar_type_p (struct type *);
14f9c5c9 137
d2e4a39e 138static int discrete_type_p (struct type *);
14f9c5c9 139
aeb5907d
JB
140static enum ada_renaming_category parse_old_style_renaming (struct type *,
141 const char **,
142 int *,
143 const char **);
144
145static struct symbol *find_old_style_renaming_symbol (const char *,
270140bd 146 const struct block *);
aeb5907d 147
4c4b4cd2 148static struct type *ada_lookup_struct_elt_type (struct type *, char *,
76a01679 149 int, int, int *);
4c4b4cd2 150
d2e4a39e 151static struct value *evaluate_subexp_type (struct expression *, int *);
14f9c5c9 152
b4ba55a1
JB
153static struct type *ada_find_parallel_type_with_name (struct type *,
154 const char *);
155
d2e4a39e 156static int is_dynamic_field (struct type *, int);
14f9c5c9 157
10a2c479 158static struct type *to_fixed_variant_branch_type (struct type *,
fc1a4b47 159 const gdb_byte *,
4c4b4cd2
PH
160 CORE_ADDR, struct value *);
161
162static struct type *to_fixed_array_type (struct type *, struct value *, int);
14f9c5c9 163
28c85d6c 164static struct type *to_fixed_range_type (struct type *, struct value *);
14f9c5c9 165
d2e4a39e 166static struct type *to_static_fixed_type (struct type *);
f192137b 167static struct type *static_unwrap_type (struct type *type);
14f9c5c9 168
d2e4a39e 169static struct value *unwrap_value (struct value *);
14f9c5c9 170
ad82864c 171static struct type *constrained_packed_array_type (struct type *, long *);
14f9c5c9 172
ad82864c 173static struct type *decode_constrained_packed_array_type (struct type *);
14f9c5c9 174
ad82864c
JB
175static long decode_packed_array_bitsize (struct type *);
176
177static struct value *decode_constrained_packed_array (struct value *);
178
179static int ada_is_packed_array_type (struct type *);
180
181static int ada_is_unconstrained_packed_array_type (struct type *);
14f9c5c9 182
d2e4a39e 183static struct value *value_subscript_packed (struct value *, int,
4c4b4cd2 184 struct value **);
14f9c5c9 185
50810684 186static void move_bits (gdb_byte *, int, const gdb_byte *, int, int, int);
52ce6436 187
4c4b4cd2
PH
188static struct value *coerce_unspec_val_to_type (struct value *,
189 struct type *);
14f9c5c9 190
d2e4a39e 191static struct value *get_var_value (char *, char *);
14f9c5c9 192
d2e4a39e 193static int lesseq_defined_than (struct symbol *, struct symbol *);
14f9c5c9 194
d2e4a39e 195static int equiv_types (struct type *, struct type *);
14f9c5c9 196
d2e4a39e 197static int is_name_suffix (const char *);
14f9c5c9 198
73589123
PH
199static int advance_wild_match (const char **, const char *, int);
200
201static int wild_match (const char *, const char *);
14f9c5c9 202
d2e4a39e 203static struct value *ada_coerce_ref (struct value *);
14f9c5c9 204
4c4b4cd2
PH
205static LONGEST pos_atr (struct value *);
206
3cb382c9 207static struct value *value_pos_atr (struct type *, struct value *);
14f9c5c9 208
d2e4a39e 209static struct value *value_val_atr (struct type *, struct value *);
14f9c5c9 210
4c4b4cd2
PH
211static struct symbol *standard_lookup (const char *, const struct block *,
212 domain_enum);
14f9c5c9 213
4c4b4cd2
PH
214static struct value *ada_search_struct_field (char *, struct value *, int,
215 struct type *);
216
217static struct value *ada_value_primitive_field (struct value *, int, int,
218 struct type *);
219
0d5cff50 220static int find_struct_field (const char *, struct type *, int,
52ce6436 221 struct type **, int *, int *, int *, int *);
4c4b4cd2
PH
222
223static struct value *ada_to_fixed_value_create (struct type *, CORE_ADDR,
224 struct value *);
225
4c4b4cd2
PH
226static int ada_resolve_function (struct ada_symbol_info *, int,
227 struct value **, int, const char *,
228 struct type *);
229
4c4b4cd2
PH
230static int ada_is_direct_array_type (struct type *);
231
72d5681a
PH
232static void ada_language_arch_info (struct gdbarch *,
233 struct language_arch_info *);
714e53ab 234
52ce6436
PH
235static struct value *ada_index_struct_field (int, struct value *, int,
236 struct type *);
237
238static struct value *assign_aggregate (struct value *, struct value *,
0963b4bd
MS
239 struct expression *,
240 int *, enum noside);
52ce6436
PH
241
242static void aggregate_assign_from_choices (struct value *, struct value *,
243 struct expression *,
244 int *, LONGEST *, int *,
245 int, LONGEST, LONGEST);
246
247static void aggregate_assign_positional (struct value *, struct value *,
248 struct expression *,
249 int *, LONGEST *, int *, int,
250 LONGEST, LONGEST);
251
252
253static void aggregate_assign_others (struct value *, struct value *,
254 struct expression *,
255 int *, LONGEST *, int, LONGEST, LONGEST);
256
257
258static void add_component_interval (LONGEST, LONGEST, LONGEST *, int *, int);
259
260
261static struct value *ada_evaluate_subexp (struct type *, struct expression *,
262 int *, enum noside);
263
264static void ada_forward_operator_length (struct expression *, int, int *,
265 int *);
852dff6c
JB
266
267static struct type *ada_find_any_type (const char *name);
4c4b4cd2
PH
268\f
269
ee01b665
JB
270/* The result of a symbol lookup to be stored in our symbol cache. */
271
272struct cache_entry
273{
274 /* The name used to perform the lookup. */
275 const char *name;
276 /* The namespace used during the lookup. */
277 domain_enum namespace;
278 /* The symbol returned by the lookup, or NULL if no matching symbol
279 was found. */
280 struct symbol *sym;
281 /* The block where the symbol was found, or NULL if no matching
282 symbol was found. */
283 const struct block *block;
284 /* A pointer to the next entry with the same hash. */
285 struct cache_entry *next;
286};
287
288/* The Ada symbol cache, used to store the result of Ada-mode symbol
289 lookups in the course of executing the user's commands.
290
291 The cache is implemented using a simple, fixed-sized hash.
292 The size is fixed on the grounds that there are not likely to be
293 all that many symbols looked up during any given session, regardless
294 of the size of the symbol table. If we decide to go to a resizable
295 table, let's just use the stuff from libiberty instead. */
296
297#define HASH_SIZE 1009
298
299struct ada_symbol_cache
300{
301 /* An obstack used to store the entries in our cache. */
302 struct obstack cache_space;
303
304 /* The root of the hash table used to implement our symbol cache. */
305 struct cache_entry *root[HASH_SIZE];
306};
307
308static void ada_free_symbol_cache (struct ada_symbol_cache *sym_cache);
76a01679 309
4c4b4cd2 310/* Maximum-sized dynamic type. */
14f9c5c9
AS
311static unsigned int varsize_limit;
312
4c4b4cd2
PH
313/* FIXME: brobecker/2003-09-17: No longer a const because it is
314 returned by a function that does not return a const char *. */
315static char *ada_completer_word_break_characters =
316#ifdef VMS
317 " \t\n!@#%^&*()+=|~`}{[]\";:?/,-";
318#else
14f9c5c9 319 " \t\n!@#$%^&*()+=|~`}{[]\";:?/,-";
4c4b4cd2 320#endif
14f9c5c9 321
4c4b4cd2 322/* The name of the symbol to use to get the name of the main subprogram. */
76a01679 323static const char ADA_MAIN_PROGRAM_SYMBOL_NAME[]
4c4b4cd2 324 = "__gnat_ada_main_program_name";
14f9c5c9 325
4c4b4cd2
PH
326/* Limit on the number of warnings to raise per expression evaluation. */
327static int warning_limit = 2;
328
329/* Number of warning messages issued; reset to 0 by cleanups after
330 expression evaluation. */
331static int warnings_issued = 0;
332
333static const char *known_runtime_file_name_patterns[] = {
334 ADA_KNOWN_RUNTIME_FILE_NAME_PATTERNS NULL
335};
336
337static const char *known_auxiliary_function_name_patterns[] = {
338 ADA_KNOWN_AUXILIARY_FUNCTION_NAME_PATTERNS NULL
339};
340
341/* Space for allocating results of ada_lookup_symbol_list. */
342static struct obstack symbol_list_obstack;
343
c6044dd1
JB
344/* Maintenance-related settings for this module. */
345
346static struct cmd_list_element *maint_set_ada_cmdlist;
347static struct cmd_list_element *maint_show_ada_cmdlist;
348
349/* Implement the "maintenance set ada" (prefix) command. */
350
351static void
352maint_set_ada_cmd (char *args, int from_tty)
353{
635c7e8a
TT
354 help_list (maint_set_ada_cmdlist, "maintenance set ada ", all_commands,
355 gdb_stdout);
c6044dd1
JB
356}
357
358/* Implement the "maintenance show ada" (prefix) command. */
359
360static void
361maint_show_ada_cmd (char *args, int from_tty)
362{
363 cmd_show_list (maint_show_ada_cmdlist, from_tty, "");
364}
365
366/* The "maintenance ada set/show ignore-descriptive-type" value. */
367
368static int ada_ignore_descriptive_types_p = 0;
369
e802dbe0
JB
370 /* Inferior-specific data. */
371
372/* Per-inferior data for this module. */
373
374struct ada_inferior_data
375{
376 /* The ada__tags__type_specific_data type, which is used when decoding
377 tagged types. With older versions of GNAT, this type was directly
378 accessible through a component ("tsd") in the object tag. But this
379 is no longer the case, so we cache it for each inferior. */
380 struct type *tsd_type;
3eecfa55
JB
381
382 /* The exception_support_info data. This data is used to determine
383 how to implement support for Ada exception catchpoints in a given
384 inferior. */
385 const struct exception_support_info *exception_info;
e802dbe0
JB
386};
387
388/* Our key to this module's inferior data. */
389static const struct inferior_data *ada_inferior_data;
390
391/* A cleanup routine for our inferior data. */
392static void
393ada_inferior_data_cleanup (struct inferior *inf, void *arg)
394{
395 struct ada_inferior_data *data;
396
397 data = inferior_data (inf, ada_inferior_data);
398 if (data != NULL)
399 xfree (data);
400}
401
402/* Return our inferior data for the given inferior (INF).
403
404 This function always returns a valid pointer to an allocated
405 ada_inferior_data structure. If INF's inferior data has not
406 been previously set, this functions creates a new one with all
407 fields set to zero, sets INF's inferior to it, and then returns
408 a pointer to that newly allocated ada_inferior_data. */
409
410static struct ada_inferior_data *
411get_ada_inferior_data (struct inferior *inf)
412{
413 struct ada_inferior_data *data;
414
415 data = inferior_data (inf, ada_inferior_data);
416 if (data == NULL)
417 {
41bf6aca 418 data = XCNEW (struct ada_inferior_data);
e802dbe0
JB
419 set_inferior_data (inf, ada_inferior_data, data);
420 }
421
422 return data;
423}
424
425/* Perform all necessary cleanups regarding our module's inferior data
426 that is required after the inferior INF just exited. */
427
428static void
429ada_inferior_exit (struct inferior *inf)
430{
431 ada_inferior_data_cleanup (inf, NULL);
432 set_inferior_data (inf, ada_inferior_data, NULL);
433}
434
ee01b665
JB
435
436 /* program-space-specific data. */
437
438/* This module's per-program-space data. */
439struct ada_pspace_data
440{
441 /* The Ada symbol cache. */
442 struct ada_symbol_cache *sym_cache;
443};
444
445/* Key to our per-program-space data. */
446static const struct program_space_data *ada_pspace_data_handle;
447
448/* Return this module's data for the given program space (PSPACE).
449 If not is found, add a zero'ed one now.
450
451 This function always returns a valid object. */
452
453static struct ada_pspace_data *
454get_ada_pspace_data (struct program_space *pspace)
455{
456 struct ada_pspace_data *data;
457
458 data = program_space_data (pspace, ada_pspace_data_handle);
459 if (data == NULL)
460 {
461 data = XCNEW (struct ada_pspace_data);
462 set_program_space_data (pspace, ada_pspace_data_handle, data);
463 }
464
465 return data;
466}
467
468/* The cleanup callback for this module's per-program-space data. */
469
470static void
471ada_pspace_data_cleanup (struct program_space *pspace, void *data)
472{
473 struct ada_pspace_data *pspace_data = data;
474
475 if (pspace_data->sym_cache != NULL)
476 ada_free_symbol_cache (pspace_data->sym_cache);
477 xfree (pspace_data);
478}
479
4c4b4cd2
PH
480 /* Utilities */
481
720d1a40 482/* If TYPE is a TYPE_CODE_TYPEDEF type, return the target type after
eed9788b 483 all typedef layers have been peeled. Otherwise, return TYPE.
720d1a40
JB
484
485 Normally, we really expect a typedef type to only have 1 typedef layer.
486 In other words, we really expect the target type of a typedef type to be
487 a non-typedef type. This is particularly true for Ada units, because
488 the language does not have a typedef vs not-typedef distinction.
489 In that respect, the Ada compiler has been trying to eliminate as many
490 typedef definitions in the debugging information, since they generally
491 do not bring any extra information (we still use typedef under certain
492 circumstances related mostly to the GNAT encoding).
493
494 Unfortunately, we have seen situations where the debugging information
495 generated by the compiler leads to such multiple typedef layers. For
496 instance, consider the following example with stabs:
497
498 .stabs "pck__float_array___XUP:Tt(0,46)=s16P_ARRAY:(0,47)=[...]"[...]
499 .stabs "pck__float_array___XUP:t(0,36)=(0,46)",128,0,6,0
500
501 This is an error in the debugging information which causes type
502 pck__float_array___XUP to be defined twice, and the second time,
503 it is defined as a typedef of a typedef.
504
505 This is on the fringe of legality as far as debugging information is
506 concerned, and certainly unexpected. But it is easy to handle these
507 situations correctly, so we can afford to be lenient in this case. */
508
509static struct type *
510ada_typedef_target_type (struct type *type)
511{
512 while (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
513 type = TYPE_TARGET_TYPE (type);
514 return type;
515}
516
41d27058
JB
517/* Given DECODED_NAME a string holding a symbol name in its
518 decoded form (ie using the Ada dotted notation), returns
519 its unqualified name. */
520
521static const char *
522ada_unqualified_name (const char *decoded_name)
523{
2b0f535a
JB
524 const char *result;
525
526 /* If the decoded name starts with '<', it means that the encoded
527 name does not follow standard naming conventions, and thus that
528 it is not your typical Ada symbol name. Trying to unqualify it
529 is therefore pointless and possibly erroneous. */
530 if (decoded_name[0] == '<')
531 return decoded_name;
532
533 result = strrchr (decoded_name, '.');
41d27058
JB
534 if (result != NULL)
535 result++; /* Skip the dot... */
536 else
537 result = decoded_name;
538
539 return result;
540}
541
542/* Return a string starting with '<', followed by STR, and '>'.
543 The result is good until the next call. */
544
545static char *
546add_angle_brackets (const char *str)
547{
548 static char *result = NULL;
549
550 xfree (result);
88c15c34 551 result = xstrprintf ("<%s>", str);
41d27058
JB
552 return result;
553}
96d887e8 554
4c4b4cd2
PH
555static char *
556ada_get_gdb_completer_word_break_characters (void)
557{
558 return ada_completer_word_break_characters;
559}
560
e79af960
JB
561/* Print an array element index using the Ada syntax. */
562
563static void
564ada_print_array_index (struct value *index_value, struct ui_file *stream,
79a45b7d 565 const struct value_print_options *options)
e79af960 566{
79a45b7d 567 LA_VALUE_PRINT (index_value, stream, options);
e79af960
JB
568 fprintf_filtered (stream, " => ");
569}
570
f27cf670 571/* Assuming VECT points to an array of *SIZE objects of size
14f9c5c9 572 ELEMENT_SIZE, grow it to contain at least MIN_SIZE objects,
f27cf670 573 updating *SIZE as necessary and returning the (new) array. */
14f9c5c9 574
f27cf670
AS
575void *
576grow_vect (void *vect, size_t *size, size_t min_size, int element_size)
14f9c5c9 577{
d2e4a39e
AS
578 if (*size < min_size)
579 {
580 *size *= 2;
581 if (*size < min_size)
4c4b4cd2 582 *size = min_size;
f27cf670 583 vect = xrealloc (vect, *size * element_size);
d2e4a39e 584 }
f27cf670 585 return vect;
14f9c5c9
AS
586}
587
588/* True (non-zero) iff TARGET matches FIELD_NAME up to any trailing
4c4b4cd2 589 suffix of FIELD_NAME beginning "___". */
14f9c5c9
AS
590
591static int
ebf56fd3 592field_name_match (const char *field_name, const char *target)
14f9c5c9
AS
593{
594 int len = strlen (target);
5b4ee69b 595
d2e4a39e 596 return
4c4b4cd2
PH
597 (strncmp (field_name, target, len) == 0
598 && (field_name[len] == '\0'
599 || (strncmp (field_name + len, "___", 3) == 0
76a01679
JB
600 && strcmp (field_name + strlen (field_name) - 6,
601 "___XVN") != 0)));
14f9c5c9
AS
602}
603
604
872c8b51
JB
605/* Assuming TYPE is a TYPE_CODE_STRUCT or a TYPE_CODE_TYPDEF to
606 a TYPE_CODE_STRUCT, find the field whose name matches FIELD_NAME,
607 and return its index. This function also handles fields whose name
608 have ___ suffixes because the compiler sometimes alters their name
609 by adding such a suffix to represent fields with certain constraints.
610 If the field could not be found, return a negative number if
611 MAYBE_MISSING is set. Otherwise raise an error. */
4c4b4cd2
PH
612
613int
614ada_get_field_index (const struct type *type, const char *field_name,
615 int maybe_missing)
616{
617 int fieldno;
872c8b51
JB
618 struct type *struct_type = check_typedef ((struct type *) type);
619
620 for (fieldno = 0; fieldno < TYPE_NFIELDS (struct_type); fieldno++)
621 if (field_name_match (TYPE_FIELD_NAME (struct_type, fieldno), field_name))
4c4b4cd2
PH
622 return fieldno;
623
624 if (!maybe_missing)
323e0a4a 625 error (_("Unable to find field %s in struct %s. Aborting"),
872c8b51 626 field_name, TYPE_NAME (struct_type));
4c4b4cd2
PH
627
628 return -1;
629}
630
631/* The length of the prefix of NAME prior to any "___" suffix. */
14f9c5c9
AS
632
633int
d2e4a39e 634ada_name_prefix_len (const char *name)
14f9c5c9
AS
635{
636 if (name == NULL)
637 return 0;
d2e4a39e 638 else
14f9c5c9 639 {
d2e4a39e 640 const char *p = strstr (name, "___");
5b4ee69b 641
14f9c5c9 642 if (p == NULL)
4c4b4cd2 643 return strlen (name);
14f9c5c9 644 else
4c4b4cd2 645 return p - name;
14f9c5c9
AS
646 }
647}
648
4c4b4cd2
PH
649/* Return non-zero if SUFFIX is a suffix of STR.
650 Return zero if STR is null. */
651
14f9c5c9 652static int
d2e4a39e 653is_suffix (const char *str, const char *suffix)
14f9c5c9
AS
654{
655 int len1, len2;
5b4ee69b 656
14f9c5c9
AS
657 if (str == NULL)
658 return 0;
659 len1 = strlen (str);
660 len2 = strlen (suffix);
4c4b4cd2 661 return (len1 >= len2 && strcmp (str + len1 - len2, suffix) == 0);
14f9c5c9
AS
662}
663
4c4b4cd2
PH
664/* The contents of value VAL, treated as a value of type TYPE. The
665 result is an lval in memory if VAL is. */
14f9c5c9 666
d2e4a39e 667static struct value *
4c4b4cd2 668coerce_unspec_val_to_type (struct value *val, struct type *type)
14f9c5c9 669{
61ee279c 670 type = ada_check_typedef (type);
df407dfe 671 if (value_type (val) == type)
4c4b4cd2 672 return val;
d2e4a39e 673 else
14f9c5c9 674 {
4c4b4cd2
PH
675 struct value *result;
676
677 /* Make sure that the object size is not unreasonable before
678 trying to allocate some memory for it. */
c1b5a1a6 679 ada_ensure_varsize_limit (type);
4c4b4cd2 680
41e8491f
JK
681 if (value_lazy (val)
682 || TYPE_LENGTH (type) > TYPE_LENGTH (value_type (val)))
683 result = allocate_value_lazy (type);
684 else
685 {
686 result = allocate_value (type);
9a0dc9e3 687 value_contents_copy_raw (result, 0, val, 0, TYPE_LENGTH (type));
41e8491f 688 }
74bcbdf3 689 set_value_component_location (result, val);
9bbda503
AC
690 set_value_bitsize (result, value_bitsize (val));
691 set_value_bitpos (result, value_bitpos (val));
42ae5230 692 set_value_address (result, value_address (val));
14f9c5c9
AS
693 return result;
694 }
695}
696
fc1a4b47
AC
697static const gdb_byte *
698cond_offset_host (const gdb_byte *valaddr, long offset)
14f9c5c9
AS
699{
700 if (valaddr == NULL)
701 return NULL;
702 else
703 return valaddr + offset;
704}
705
706static CORE_ADDR
ebf56fd3 707cond_offset_target (CORE_ADDR address, long offset)
14f9c5c9
AS
708{
709 if (address == 0)
710 return 0;
d2e4a39e 711 else
14f9c5c9
AS
712 return address + offset;
713}
714
4c4b4cd2
PH
715/* Issue a warning (as for the definition of warning in utils.c, but
716 with exactly one argument rather than ...), unless the limit on the
717 number of warnings has passed during the evaluation of the current
718 expression. */
a2249542 719
77109804
AC
720/* FIXME: cagney/2004-10-10: This function is mimicking the behavior
721 provided by "complaint". */
a0b31db1 722static void lim_warning (const char *format, ...) ATTRIBUTE_PRINTF (1, 2);
77109804 723
14f9c5c9 724static void
a2249542 725lim_warning (const char *format, ...)
14f9c5c9 726{
a2249542 727 va_list args;
a2249542 728
5b4ee69b 729 va_start (args, format);
4c4b4cd2
PH
730 warnings_issued += 1;
731 if (warnings_issued <= warning_limit)
a2249542
MK
732 vwarning (format, args);
733
734 va_end (args);
4c4b4cd2
PH
735}
736
714e53ab
PH
737/* Issue an error if the size of an object of type T is unreasonable,
738 i.e. if it would be a bad idea to allocate a value of this type in
739 GDB. */
740
c1b5a1a6
JB
741void
742ada_ensure_varsize_limit (const struct type *type)
714e53ab
PH
743{
744 if (TYPE_LENGTH (type) > varsize_limit)
323e0a4a 745 error (_("object size is larger than varsize-limit"));
714e53ab
PH
746}
747
0963b4bd 748/* Maximum value of a SIZE-byte signed integer type. */
4c4b4cd2 749static LONGEST
c3e5cd34 750max_of_size (int size)
4c4b4cd2 751{
76a01679 752 LONGEST top_bit = (LONGEST) 1 << (size * 8 - 2);
5b4ee69b 753
76a01679 754 return top_bit | (top_bit - 1);
4c4b4cd2
PH
755}
756
0963b4bd 757/* Minimum value of a SIZE-byte signed integer type. */
4c4b4cd2 758static LONGEST
c3e5cd34 759min_of_size (int size)
4c4b4cd2 760{
c3e5cd34 761 return -max_of_size (size) - 1;
4c4b4cd2
PH
762}
763
0963b4bd 764/* Maximum value of a SIZE-byte unsigned integer type. */
4c4b4cd2 765static ULONGEST
c3e5cd34 766umax_of_size (int size)
4c4b4cd2 767{
76a01679 768 ULONGEST top_bit = (ULONGEST) 1 << (size * 8 - 1);
5b4ee69b 769
76a01679 770 return top_bit | (top_bit - 1);
4c4b4cd2
PH
771}
772
0963b4bd 773/* Maximum value of integral type T, as a signed quantity. */
c3e5cd34
PH
774static LONGEST
775max_of_type (struct type *t)
4c4b4cd2 776{
c3e5cd34
PH
777 if (TYPE_UNSIGNED (t))
778 return (LONGEST) umax_of_size (TYPE_LENGTH (t));
779 else
780 return max_of_size (TYPE_LENGTH (t));
781}
782
0963b4bd 783/* Minimum value of integral type T, as a signed quantity. */
c3e5cd34
PH
784static LONGEST
785min_of_type (struct type *t)
786{
787 if (TYPE_UNSIGNED (t))
788 return 0;
789 else
790 return min_of_size (TYPE_LENGTH (t));
4c4b4cd2
PH
791}
792
793/* The largest value in the domain of TYPE, a discrete type, as an integer. */
43bbcdc2
PH
794LONGEST
795ada_discrete_type_high_bound (struct type *type)
4c4b4cd2 796{
8739bc53 797 type = resolve_dynamic_type (type, 0);
76a01679 798 switch (TYPE_CODE (type))
4c4b4cd2
PH
799 {
800 case TYPE_CODE_RANGE:
690cc4eb 801 return TYPE_HIGH_BOUND (type);
4c4b4cd2 802 case TYPE_CODE_ENUM:
14e75d8e 803 return TYPE_FIELD_ENUMVAL (type, TYPE_NFIELDS (type) - 1);
690cc4eb
PH
804 case TYPE_CODE_BOOL:
805 return 1;
806 case TYPE_CODE_CHAR:
76a01679 807 case TYPE_CODE_INT:
690cc4eb 808 return max_of_type (type);
4c4b4cd2 809 default:
43bbcdc2 810 error (_("Unexpected type in ada_discrete_type_high_bound."));
4c4b4cd2
PH
811 }
812}
813
14e75d8e 814/* The smallest value in the domain of TYPE, a discrete type, as an integer. */
43bbcdc2
PH
815LONGEST
816ada_discrete_type_low_bound (struct type *type)
4c4b4cd2 817{
8739bc53 818 type = resolve_dynamic_type (type, 0);
76a01679 819 switch (TYPE_CODE (type))
4c4b4cd2
PH
820 {
821 case TYPE_CODE_RANGE:
690cc4eb 822 return TYPE_LOW_BOUND (type);
4c4b4cd2 823 case TYPE_CODE_ENUM:
14e75d8e 824 return TYPE_FIELD_ENUMVAL (type, 0);
690cc4eb
PH
825 case TYPE_CODE_BOOL:
826 return 0;
827 case TYPE_CODE_CHAR:
76a01679 828 case TYPE_CODE_INT:
690cc4eb 829 return min_of_type (type);
4c4b4cd2 830 default:
43bbcdc2 831 error (_("Unexpected type in ada_discrete_type_low_bound."));
4c4b4cd2
PH
832 }
833}
834
835/* The identity on non-range types. For range types, the underlying
76a01679 836 non-range scalar type. */
4c4b4cd2
PH
837
838static struct type *
18af8284 839get_base_type (struct type *type)
4c4b4cd2
PH
840{
841 while (type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE)
842 {
76a01679
JB
843 if (type == TYPE_TARGET_TYPE (type) || TYPE_TARGET_TYPE (type) == NULL)
844 return type;
4c4b4cd2
PH
845 type = TYPE_TARGET_TYPE (type);
846 }
847 return type;
14f9c5c9 848}
41246937
JB
849
850/* Return a decoded version of the given VALUE. This means returning
851 a value whose type is obtained by applying all the GNAT-specific
852 encondings, making the resulting type a static but standard description
853 of the initial type. */
854
855struct value *
856ada_get_decoded_value (struct value *value)
857{
858 struct type *type = ada_check_typedef (value_type (value));
859
860 if (ada_is_array_descriptor_type (type)
861 || (ada_is_constrained_packed_array_type (type)
862 && TYPE_CODE (type) != TYPE_CODE_PTR))
863 {
864 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF) /* array access type. */
865 value = ada_coerce_to_simple_array_ptr (value);
866 else
867 value = ada_coerce_to_simple_array (value);
868 }
869 else
870 value = ada_to_fixed_value (value);
871
872 return value;
873}
874
875/* Same as ada_get_decoded_value, but with the given TYPE.
876 Because there is no associated actual value for this type,
877 the resulting type might be a best-effort approximation in
878 the case of dynamic types. */
879
880struct type *
881ada_get_decoded_type (struct type *type)
882{
883 type = to_static_fixed_type (type);
884 if (ada_is_constrained_packed_array_type (type))
885 type = ada_coerce_to_simple_array_type (type);
886 return type;
887}
888
4c4b4cd2 889\f
76a01679 890
4c4b4cd2 891 /* Language Selection */
14f9c5c9
AS
892
893/* If the main program is in Ada, return language_ada, otherwise return LANG
ccefe4c4 894 (the main program is in Ada iif the adainit symbol is found). */
d2e4a39e 895
14f9c5c9 896enum language
ccefe4c4 897ada_update_initial_language (enum language lang)
14f9c5c9 898{
d2e4a39e 899 if (lookup_minimal_symbol ("adainit", (const char *) NULL,
3b7344d5 900 (struct objfile *) NULL).minsym != NULL)
4c4b4cd2 901 return language_ada;
14f9c5c9
AS
902
903 return lang;
904}
96d887e8
PH
905
906/* If the main procedure is written in Ada, then return its name.
907 The result is good until the next call. Return NULL if the main
908 procedure doesn't appear to be in Ada. */
909
910char *
911ada_main_name (void)
912{
3b7344d5 913 struct bound_minimal_symbol msym;
f9bc20b9 914 static char *main_program_name = NULL;
6c038f32 915
96d887e8
PH
916 /* For Ada, the name of the main procedure is stored in a specific
917 string constant, generated by the binder. Look for that symbol,
918 extract its address, and then read that string. If we didn't find
919 that string, then most probably the main procedure is not written
920 in Ada. */
921 msym = lookup_minimal_symbol (ADA_MAIN_PROGRAM_SYMBOL_NAME, NULL, NULL);
922
3b7344d5 923 if (msym.minsym != NULL)
96d887e8 924 {
f9bc20b9
JB
925 CORE_ADDR main_program_name_addr;
926 int err_code;
927
77e371c0 928 main_program_name_addr = BMSYMBOL_VALUE_ADDRESS (msym);
96d887e8 929 if (main_program_name_addr == 0)
323e0a4a 930 error (_("Invalid address for Ada main program name."));
96d887e8 931
f9bc20b9
JB
932 xfree (main_program_name);
933 target_read_string (main_program_name_addr, &main_program_name,
934 1024, &err_code);
935
936 if (err_code != 0)
937 return NULL;
96d887e8
PH
938 return main_program_name;
939 }
940
941 /* The main procedure doesn't seem to be in Ada. */
942 return NULL;
943}
14f9c5c9 944\f
4c4b4cd2 945 /* Symbols */
d2e4a39e 946
4c4b4cd2
PH
947/* Table of Ada operators and their GNAT-encoded names. Last entry is pair
948 of NULLs. */
14f9c5c9 949
d2e4a39e
AS
950const struct ada_opname_map ada_opname_table[] = {
951 {"Oadd", "\"+\"", BINOP_ADD},
952 {"Osubtract", "\"-\"", BINOP_SUB},
953 {"Omultiply", "\"*\"", BINOP_MUL},
954 {"Odivide", "\"/\"", BINOP_DIV},
955 {"Omod", "\"mod\"", BINOP_MOD},
956 {"Orem", "\"rem\"", BINOP_REM},
957 {"Oexpon", "\"**\"", BINOP_EXP},
958 {"Olt", "\"<\"", BINOP_LESS},
959 {"Ole", "\"<=\"", BINOP_LEQ},
960 {"Ogt", "\">\"", BINOP_GTR},
961 {"Oge", "\">=\"", BINOP_GEQ},
962 {"Oeq", "\"=\"", BINOP_EQUAL},
963 {"One", "\"/=\"", BINOP_NOTEQUAL},
964 {"Oand", "\"and\"", BINOP_BITWISE_AND},
965 {"Oor", "\"or\"", BINOP_BITWISE_IOR},
966 {"Oxor", "\"xor\"", BINOP_BITWISE_XOR},
967 {"Oconcat", "\"&\"", BINOP_CONCAT},
968 {"Oabs", "\"abs\"", UNOP_ABS},
969 {"Onot", "\"not\"", UNOP_LOGICAL_NOT},
970 {"Oadd", "\"+\"", UNOP_PLUS},
971 {"Osubtract", "\"-\"", UNOP_NEG},
972 {NULL, NULL}
14f9c5c9
AS
973};
974
4c4b4cd2
PH
975/* The "encoded" form of DECODED, according to GNAT conventions.
976 The result is valid until the next call to ada_encode. */
977
14f9c5c9 978char *
4c4b4cd2 979ada_encode (const char *decoded)
14f9c5c9 980{
4c4b4cd2
PH
981 static char *encoding_buffer = NULL;
982 static size_t encoding_buffer_size = 0;
d2e4a39e 983 const char *p;
14f9c5c9 984 int k;
d2e4a39e 985
4c4b4cd2 986 if (decoded == NULL)
14f9c5c9
AS
987 return NULL;
988
4c4b4cd2
PH
989 GROW_VECT (encoding_buffer, encoding_buffer_size,
990 2 * strlen (decoded) + 10);
14f9c5c9
AS
991
992 k = 0;
4c4b4cd2 993 for (p = decoded; *p != '\0'; p += 1)
14f9c5c9 994 {
cdc7bb92 995 if (*p == '.')
4c4b4cd2
PH
996 {
997 encoding_buffer[k] = encoding_buffer[k + 1] = '_';
998 k += 2;
999 }
14f9c5c9 1000 else if (*p == '"')
4c4b4cd2
PH
1001 {
1002 const struct ada_opname_map *mapping;
1003
1004 for (mapping = ada_opname_table;
1265e4aa
JB
1005 mapping->encoded != NULL
1006 && strncmp (mapping->decoded, p,
1007 strlen (mapping->decoded)) != 0; mapping += 1)
4c4b4cd2
PH
1008 ;
1009 if (mapping->encoded == NULL)
323e0a4a 1010 error (_("invalid Ada operator name: %s"), p);
4c4b4cd2
PH
1011 strcpy (encoding_buffer + k, mapping->encoded);
1012 k += strlen (mapping->encoded);
1013 break;
1014 }
d2e4a39e 1015 else
4c4b4cd2
PH
1016 {
1017 encoding_buffer[k] = *p;
1018 k += 1;
1019 }
14f9c5c9
AS
1020 }
1021
4c4b4cd2
PH
1022 encoding_buffer[k] = '\0';
1023 return encoding_buffer;
14f9c5c9
AS
1024}
1025
1026/* Return NAME folded to lower case, or, if surrounded by single
4c4b4cd2
PH
1027 quotes, unfolded, but with the quotes stripped away. Result good
1028 to next call. */
1029
d2e4a39e
AS
1030char *
1031ada_fold_name (const char *name)
14f9c5c9 1032{
d2e4a39e 1033 static char *fold_buffer = NULL;
14f9c5c9
AS
1034 static size_t fold_buffer_size = 0;
1035
1036 int len = strlen (name);
d2e4a39e 1037 GROW_VECT (fold_buffer, fold_buffer_size, len + 1);
14f9c5c9
AS
1038
1039 if (name[0] == '\'')
1040 {
d2e4a39e
AS
1041 strncpy (fold_buffer, name + 1, len - 2);
1042 fold_buffer[len - 2] = '\000';
14f9c5c9
AS
1043 }
1044 else
1045 {
1046 int i;
5b4ee69b 1047
14f9c5c9 1048 for (i = 0; i <= len; i += 1)
4c4b4cd2 1049 fold_buffer[i] = tolower (name[i]);
14f9c5c9
AS
1050 }
1051
1052 return fold_buffer;
1053}
1054
529cad9c
PH
1055/* Return nonzero if C is either a digit or a lowercase alphabet character. */
1056
1057static int
1058is_lower_alphanum (const char c)
1059{
1060 return (isdigit (c) || (isalpha (c) && islower (c)));
1061}
1062
c90092fe
JB
1063/* ENCODED is the linkage name of a symbol and LEN contains its length.
1064 This function saves in LEN the length of that same symbol name but
1065 without either of these suffixes:
29480c32
JB
1066 . .{DIGIT}+
1067 . ${DIGIT}+
1068 . ___{DIGIT}+
1069 . __{DIGIT}+.
c90092fe 1070
29480c32
JB
1071 These are suffixes introduced by the compiler for entities such as
1072 nested subprogram for instance, in order to avoid name clashes.
1073 They do not serve any purpose for the debugger. */
1074
1075static void
1076ada_remove_trailing_digits (const char *encoded, int *len)
1077{
1078 if (*len > 1 && isdigit (encoded[*len - 1]))
1079 {
1080 int i = *len - 2;
5b4ee69b 1081
29480c32
JB
1082 while (i > 0 && isdigit (encoded[i]))
1083 i--;
1084 if (i >= 0 && encoded[i] == '.')
1085 *len = i;
1086 else if (i >= 0 && encoded[i] == '$')
1087 *len = i;
1088 else if (i >= 2 && strncmp (encoded + i - 2, "___", 3) == 0)
1089 *len = i - 2;
1090 else if (i >= 1 && strncmp (encoded + i - 1, "__", 2) == 0)
1091 *len = i - 1;
1092 }
1093}
1094
1095/* Remove the suffix introduced by the compiler for protected object
1096 subprograms. */
1097
1098static void
1099ada_remove_po_subprogram_suffix (const char *encoded, int *len)
1100{
1101 /* Remove trailing N. */
1102
1103 /* Protected entry subprograms are broken into two
1104 separate subprograms: The first one is unprotected, and has
1105 a 'N' suffix; the second is the protected version, and has
0963b4bd 1106 the 'P' suffix. The second calls the first one after handling
29480c32
JB
1107 the protection. Since the P subprograms are internally generated,
1108 we leave these names undecoded, giving the user a clue that this
1109 entity is internal. */
1110
1111 if (*len > 1
1112 && encoded[*len - 1] == 'N'
1113 && (isdigit (encoded[*len - 2]) || islower (encoded[*len - 2])))
1114 *len = *len - 1;
1115}
1116
69fadcdf
JB
1117/* Remove trailing X[bn]* suffixes (indicating names in package bodies). */
1118
1119static void
1120ada_remove_Xbn_suffix (const char *encoded, int *len)
1121{
1122 int i = *len - 1;
1123
1124 while (i > 0 && (encoded[i] == 'b' || encoded[i] == 'n'))
1125 i--;
1126
1127 if (encoded[i] != 'X')
1128 return;
1129
1130 if (i == 0)
1131 return;
1132
1133 if (isalnum (encoded[i-1]))
1134 *len = i;
1135}
1136
29480c32
JB
1137/* If ENCODED follows the GNAT entity encoding conventions, then return
1138 the decoded form of ENCODED. Otherwise, return "<%s>" where "%s" is
1139 replaced by ENCODED.
14f9c5c9 1140
4c4b4cd2 1141 The resulting string is valid until the next call of ada_decode.
29480c32 1142 If the string is unchanged by decoding, the original string pointer
4c4b4cd2
PH
1143 is returned. */
1144
1145const char *
1146ada_decode (const char *encoded)
14f9c5c9
AS
1147{
1148 int i, j;
1149 int len0;
d2e4a39e 1150 const char *p;
4c4b4cd2 1151 char *decoded;
14f9c5c9 1152 int at_start_name;
4c4b4cd2
PH
1153 static char *decoding_buffer = NULL;
1154 static size_t decoding_buffer_size = 0;
d2e4a39e 1155
29480c32
JB
1156 /* The name of the Ada main procedure starts with "_ada_".
1157 This prefix is not part of the decoded name, so skip this part
1158 if we see this prefix. */
4c4b4cd2
PH
1159 if (strncmp (encoded, "_ada_", 5) == 0)
1160 encoded += 5;
14f9c5c9 1161
29480c32
JB
1162 /* If the name starts with '_', then it is not a properly encoded
1163 name, so do not attempt to decode it. Similarly, if the name
1164 starts with '<', the name should not be decoded. */
4c4b4cd2 1165 if (encoded[0] == '_' || encoded[0] == '<')
14f9c5c9
AS
1166 goto Suppress;
1167
4c4b4cd2 1168 len0 = strlen (encoded);
4c4b4cd2 1169
29480c32
JB
1170 ada_remove_trailing_digits (encoded, &len0);
1171 ada_remove_po_subprogram_suffix (encoded, &len0);
529cad9c 1172
4c4b4cd2
PH
1173 /* Remove the ___X.* suffix if present. Do not forget to verify that
1174 the suffix is located before the current "end" of ENCODED. We want
1175 to avoid re-matching parts of ENCODED that have previously been
1176 marked as discarded (by decrementing LEN0). */
1177 p = strstr (encoded, "___");
1178 if (p != NULL && p - encoded < len0 - 3)
14f9c5c9
AS
1179 {
1180 if (p[3] == 'X')
4c4b4cd2 1181 len0 = p - encoded;
14f9c5c9 1182 else
4c4b4cd2 1183 goto Suppress;
14f9c5c9 1184 }
4c4b4cd2 1185
29480c32
JB
1186 /* Remove any trailing TKB suffix. It tells us that this symbol
1187 is for the body of a task, but that information does not actually
1188 appear in the decoded name. */
1189
4c4b4cd2 1190 if (len0 > 3 && strncmp (encoded + len0 - 3, "TKB", 3) == 0)
14f9c5c9 1191 len0 -= 3;
76a01679 1192
a10967fa
JB
1193 /* Remove any trailing TB suffix. The TB suffix is slightly different
1194 from the TKB suffix because it is used for non-anonymous task
1195 bodies. */
1196
1197 if (len0 > 2 && strncmp (encoded + len0 - 2, "TB", 2) == 0)
1198 len0 -= 2;
1199
29480c32
JB
1200 /* Remove trailing "B" suffixes. */
1201 /* FIXME: brobecker/2006-04-19: Not sure what this are used for... */
1202
4c4b4cd2 1203 if (len0 > 1 && strncmp (encoded + len0 - 1, "B", 1) == 0)
14f9c5c9
AS
1204 len0 -= 1;
1205
4c4b4cd2 1206 /* Make decoded big enough for possible expansion by operator name. */
29480c32 1207
4c4b4cd2
PH
1208 GROW_VECT (decoding_buffer, decoding_buffer_size, 2 * len0 + 1);
1209 decoded = decoding_buffer;
14f9c5c9 1210
29480c32
JB
1211 /* Remove trailing __{digit}+ or trailing ${digit}+. */
1212
4c4b4cd2 1213 if (len0 > 1 && isdigit (encoded[len0 - 1]))
d2e4a39e 1214 {
4c4b4cd2
PH
1215 i = len0 - 2;
1216 while ((i >= 0 && isdigit (encoded[i]))
1217 || (i >= 1 && encoded[i] == '_' && isdigit (encoded[i - 1])))
1218 i -= 1;
1219 if (i > 1 && encoded[i] == '_' && encoded[i - 1] == '_')
1220 len0 = i - 1;
1221 else if (encoded[i] == '$')
1222 len0 = i;
d2e4a39e 1223 }
14f9c5c9 1224
29480c32
JB
1225 /* The first few characters that are not alphabetic are not part
1226 of any encoding we use, so we can copy them over verbatim. */
1227
4c4b4cd2
PH
1228 for (i = 0, j = 0; i < len0 && !isalpha (encoded[i]); i += 1, j += 1)
1229 decoded[j] = encoded[i];
14f9c5c9
AS
1230
1231 at_start_name = 1;
1232 while (i < len0)
1233 {
29480c32 1234 /* Is this a symbol function? */
4c4b4cd2
PH
1235 if (at_start_name && encoded[i] == 'O')
1236 {
1237 int k;
5b4ee69b 1238
4c4b4cd2
PH
1239 for (k = 0; ada_opname_table[k].encoded != NULL; k += 1)
1240 {
1241 int op_len = strlen (ada_opname_table[k].encoded);
06d5cf63
JB
1242 if ((strncmp (ada_opname_table[k].encoded + 1, encoded + i + 1,
1243 op_len - 1) == 0)
1244 && !isalnum (encoded[i + op_len]))
4c4b4cd2
PH
1245 {
1246 strcpy (decoded + j, ada_opname_table[k].decoded);
1247 at_start_name = 0;
1248 i += op_len;
1249 j += strlen (ada_opname_table[k].decoded);
1250 break;
1251 }
1252 }
1253 if (ada_opname_table[k].encoded != NULL)
1254 continue;
1255 }
14f9c5c9
AS
1256 at_start_name = 0;
1257
529cad9c
PH
1258 /* Replace "TK__" with "__", which will eventually be translated
1259 into "." (just below). */
1260
4c4b4cd2
PH
1261 if (i < len0 - 4 && strncmp (encoded + i, "TK__", 4) == 0)
1262 i += 2;
529cad9c 1263
29480c32
JB
1264 /* Replace "__B_{DIGITS}+__" sequences by "__", which will eventually
1265 be translated into "." (just below). These are internal names
1266 generated for anonymous blocks inside which our symbol is nested. */
1267
1268 if (len0 - i > 5 && encoded [i] == '_' && encoded [i+1] == '_'
1269 && encoded [i+2] == 'B' && encoded [i+3] == '_'
1270 && isdigit (encoded [i+4]))
1271 {
1272 int k = i + 5;
1273
1274 while (k < len0 && isdigit (encoded[k]))
1275 k++; /* Skip any extra digit. */
1276
1277 /* Double-check that the "__B_{DIGITS}+" sequence we found
1278 is indeed followed by "__". */
1279 if (len0 - k > 2 && encoded [k] == '_' && encoded [k+1] == '_')
1280 i = k;
1281 }
1282
529cad9c
PH
1283 /* Remove _E{DIGITS}+[sb] */
1284
1285 /* Just as for protected object subprograms, there are 2 categories
0963b4bd 1286 of subprograms created by the compiler for each entry. The first
529cad9c
PH
1287 one implements the actual entry code, and has a suffix following
1288 the convention above; the second one implements the barrier and
1289 uses the same convention as above, except that the 'E' is replaced
1290 by a 'B'.
1291
1292 Just as above, we do not decode the name of barrier functions
1293 to give the user a clue that the code he is debugging has been
1294 internally generated. */
1295
1296 if (len0 - i > 3 && encoded [i] == '_' && encoded[i+1] == 'E'
1297 && isdigit (encoded[i+2]))
1298 {
1299 int k = i + 3;
1300
1301 while (k < len0 && isdigit (encoded[k]))
1302 k++;
1303
1304 if (k < len0
1305 && (encoded[k] == 'b' || encoded[k] == 's'))
1306 {
1307 k++;
1308 /* Just as an extra precaution, make sure that if this
1309 suffix is followed by anything else, it is a '_'.
1310 Otherwise, we matched this sequence by accident. */
1311 if (k == len0
1312 || (k < len0 && encoded[k] == '_'))
1313 i = k;
1314 }
1315 }
1316
1317 /* Remove trailing "N" in [a-z0-9]+N__. The N is added by
1318 the GNAT front-end in protected object subprograms. */
1319
1320 if (i < len0 + 3
1321 && encoded[i] == 'N' && encoded[i+1] == '_' && encoded[i+2] == '_')
1322 {
1323 /* Backtrack a bit up until we reach either the begining of
1324 the encoded name, or "__". Make sure that we only find
1325 digits or lowercase characters. */
1326 const char *ptr = encoded + i - 1;
1327
1328 while (ptr >= encoded && is_lower_alphanum (ptr[0]))
1329 ptr--;
1330 if (ptr < encoded
1331 || (ptr > encoded && ptr[0] == '_' && ptr[-1] == '_'))
1332 i++;
1333 }
1334
4c4b4cd2
PH
1335 if (encoded[i] == 'X' && i != 0 && isalnum (encoded[i - 1]))
1336 {
29480c32
JB
1337 /* This is a X[bn]* sequence not separated from the previous
1338 part of the name with a non-alpha-numeric character (in other
1339 words, immediately following an alpha-numeric character), then
1340 verify that it is placed at the end of the encoded name. If
1341 not, then the encoding is not valid and we should abort the
1342 decoding. Otherwise, just skip it, it is used in body-nested
1343 package names. */
4c4b4cd2
PH
1344 do
1345 i += 1;
1346 while (i < len0 && (encoded[i] == 'b' || encoded[i] == 'n'));
1347 if (i < len0)
1348 goto Suppress;
1349 }
cdc7bb92 1350 else if (i < len0 - 2 && encoded[i] == '_' && encoded[i + 1] == '_')
4c4b4cd2 1351 {
29480c32 1352 /* Replace '__' by '.'. */
4c4b4cd2
PH
1353 decoded[j] = '.';
1354 at_start_name = 1;
1355 i += 2;
1356 j += 1;
1357 }
14f9c5c9 1358 else
4c4b4cd2 1359 {
29480c32
JB
1360 /* It's a character part of the decoded name, so just copy it
1361 over. */
4c4b4cd2
PH
1362 decoded[j] = encoded[i];
1363 i += 1;
1364 j += 1;
1365 }
14f9c5c9 1366 }
4c4b4cd2 1367 decoded[j] = '\000';
14f9c5c9 1368
29480c32
JB
1369 /* Decoded names should never contain any uppercase character.
1370 Double-check this, and abort the decoding if we find one. */
1371
4c4b4cd2
PH
1372 for (i = 0; decoded[i] != '\0'; i += 1)
1373 if (isupper (decoded[i]) || decoded[i] == ' ')
14f9c5c9
AS
1374 goto Suppress;
1375
4c4b4cd2
PH
1376 if (strcmp (decoded, encoded) == 0)
1377 return encoded;
1378 else
1379 return decoded;
14f9c5c9
AS
1380
1381Suppress:
4c4b4cd2
PH
1382 GROW_VECT (decoding_buffer, decoding_buffer_size, strlen (encoded) + 3);
1383 decoded = decoding_buffer;
1384 if (encoded[0] == '<')
1385 strcpy (decoded, encoded);
14f9c5c9 1386 else
88c15c34 1387 xsnprintf (decoded, decoding_buffer_size, "<%s>", encoded);
4c4b4cd2
PH
1388 return decoded;
1389
1390}
1391
1392/* Table for keeping permanent unique copies of decoded names. Once
1393 allocated, names in this table are never released. While this is a
1394 storage leak, it should not be significant unless there are massive
1395 changes in the set of decoded names in successive versions of a
1396 symbol table loaded during a single session. */
1397static struct htab *decoded_names_store;
1398
1399/* Returns the decoded name of GSYMBOL, as for ada_decode, caching it
1400 in the language-specific part of GSYMBOL, if it has not been
1401 previously computed. Tries to save the decoded name in the same
1402 obstack as GSYMBOL, if possible, and otherwise on the heap (so that,
1403 in any case, the decoded symbol has a lifetime at least that of
0963b4bd 1404 GSYMBOL).
4c4b4cd2
PH
1405 The GSYMBOL parameter is "mutable" in the C++ sense: logically
1406 const, but nevertheless modified to a semantically equivalent form
0963b4bd 1407 when a decoded name is cached in it. */
4c4b4cd2 1408
45e6c716 1409const char *
f85f34ed 1410ada_decode_symbol (const struct general_symbol_info *arg)
4c4b4cd2 1411{
f85f34ed
TT
1412 struct general_symbol_info *gsymbol = (struct general_symbol_info *) arg;
1413 const char **resultp =
1414 &gsymbol->language_specific.mangled_lang.demangled_name;
5b4ee69b 1415
f85f34ed 1416 if (!gsymbol->ada_mangled)
4c4b4cd2
PH
1417 {
1418 const char *decoded = ada_decode (gsymbol->name);
f85f34ed 1419 struct obstack *obstack = gsymbol->language_specific.obstack;
5b4ee69b 1420
f85f34ed 1421 gsymbol->ada_mangled = 1;
5b4ee69b 1422
f85f34ed
TT
1423 if (obstack != NULL)
1424 *resultp = obstack_copy0 (obstack, decoded, strlen (decoded));
1425 else
76a01679 1426 {
f85f34ed
TT
1427 /* Sometimes, we can't find a corresponding objfile, in
1428 which case, we put the result on the heap. Since we only
1429 decode when needed, we hope this usually does not cause a
1430 significant memory leak (FIXME). */
1431
76a01679
JB
1432 char **slot = (char **) htab_find_slot (decoded_names_store,
1433 decoded, INSERT);
5b4ee69b 1434
76a01679
JB
1435 if (*slot == NULL)
1436 *slot = xstrdup (decoded);
1437 *resultp = *slot;
1438 }
4c4b4cd2 1439 }
14f9c5c9 1440
4c4b4cd2
PH
1441 return *resultp;
1442}
76a01679 1443
2c0b251b 1444static char *
76a01679 1445ada_la_decode (const char *encoded, int options)
4c4b4cd2
PH
1446{
1447 return xstrdup (ada_decode (encoded));
14f9c5c9
AS
1448}
1449
1450/* Returns non-zero iff SYM_NAME matches NAME, ignoring any trailing
4c4b4cd2
PH
1451 suffixes that encode debugging information or leading _ada_ on
1452 SYM_NAME (see is_name_suffix commentary for the debugging
1453 information that is ignored). If WILD, then NAME need only match a
1454 suffix of SYM_NAME minus the same suffixes. Also returns 0 if
1455 either argument is NULL. */
14f9c5c9 1456
2c0b251b 1457static int
40658b94 1458match_name (const char *sym_name, const char *name, int wild)
14f9c5c9
AS
1459{
1460 if (sym_name == NULL || name == NULL)
1461 return 0;
1462 else if (wild)
73589123 1463 return wild_match (sym_name, name) == 0;
d2e4a39e
AS
1464 else
1465 {
1466 int len_name = strlen (name);
5b4ee69b 1467
4c4b4cd2
PH
1468 return (strncmp (sym_name, name, len_name) == 0
1469 && is_name_suffix (sym_name + len_name))
1470 || (strncmp (sym_name, "_ada_", 5) == 0
1471 && strncmp (sym_name + 5, name, len_name) == 0
1472 && is_name_suffix (sym_name + len_name + 5));
d2e4a39e 1473 }
14f9c5c9 1474}
14f9c5c9 1475\f
d2e4a39e 1476
4c4b4cd2 1477 /* Arrays */
14f9c5c9 1478
28c85d6c
JB
1479/* Assuming that INDEX_DESC_TYPE is an ___XA structure, a structure
1480 generated by the GNAT compiler to describe the index type used
1481 for each dimension of an array, check whether it follows the latest
1482 known encoding. If not, fix it up to conform to the latest encoding.
1483 Otherwise, do nothing. This function also does nothing if
1484 INDEX_DESC_TYPE is NULL.
1485
1486 The GNAT encoding used to describle the array index type evolved a bit.
1487 Initially, the information would be provided through the name of each
1488 field of the structure type only, while the type of these fields was
1489 described as unspecified and irrelevant. The debugger was then expected
1490 to perform a global type lookup using the name of that field in order
1491 to get access to the full index type description. Because these global
1492 lookups can be very expensive, the encoding was later enhanced to make
1493 the global lookup unnecessary by defining the field type as being
1494 the full index type description.
1495
1496 The purpose of this routine is to allow us to support older versions
1497 of the compiler by detecting the use of the older encoding, and by
1498 fixing up the INDEX_DESC_TYPE to follow the new one (at this point,
1499 we essentially replace each field's meaningless type by the associated
1500 index subtype). */
1501
1502void
1503ada_fixup_array_indexes_type (struct type *index_desc_type)
1504{
1505 int i;
1506
1507 if (index_desc_type == NULL)
1508 return;
1509 gdb_assert (TYPE_NFIELDS (index_desc_type) > 0);
1510
1511 /* Check if INDEX_DESC_TYPE follows the older encoding (it is sufficient
1512 to check one field only, no need to check them all). If not, return
1513 now.
1514
1515 If our INDEX_DESC_TYPE was generated using the older encoding,
1516 the field type should be a meaningless integer type whose name
1517 is not equal to the field name. */
1518 if (TYPE_NAME (TYPE_FIELD_TYPE (index_desc_type, 0)) != NULL
1519 && strcmp (TYPE_NAME (TYPE_FIELD_TYPE (index_desc_type, 0)),
1520 TYPE_FIELD_NAME (index_desc_type, 0)) == 0)
1521 return;
1522
1523 /* Fixup each field of INDEX_DESC_TYPE. */
1524 for (i = 0; i < TYPE_NFIELDS (index_desc_type); i++)
1525 {
0d5cff50 1526 const char *name = TYPE_FIELD_NAME (index_desc_type, i);
28c85d6c
JB
1527 struct type *raw_type = ada_check_typedef (ada_find_any_type (name));
1528
1529 if (raw_type)
1530 TYPE_FIELD_TYPE (index_desc_type, i) = raw_type;
1531 }
1532}
1533
4c4b4cd2 1534/* Names of MAX_ADA_DIMENS bounds in P_BOUNDS fields of array descriptors. */
14f9c5c9 1535
d2e4a39e
AS
1536static char *bound_name[] = {
1537 "LB0", "UB0", "LB1", "UB1", "LB2", "UB2", "LB3", "UB3",
14f9c5c9
AS
1538 "LB4", "UB4", "LB5", "UB5", "LB6", "UB6", "LB7", "UB7"
1539};
1540
1541/* Maximum number of array dimensions we are prepared to handle. */
1542
4c4b4cd2 1543#define MAX_ADA_DIMENS (sizeof(bound_name) / (2*sizeof(char *)))
14f9c5c9 1544
14f9c5c9 1545
4c4b4cd2
PH
1546/* The desc_* routines return primitive portions of array descriptors
1547 (fat pointers). */
14f9c5c9
AS
1548
1549/* The descriptor or array type, if any, indicated by TYPE; removes
4c4b4cd2
PH
1550 level of indirection, if needed. */
1551
d2e4a39e
AS
1552static struct type *
1553desc_base_type (struct type *type)
14f9c5c9
AS
1554{
1555 if (type == NULL)
1556 return NULL;
61ee279c 1557 type = ada_check_typedef (type);
720d1a40
JB
1558 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
1559 type = ada_typedef_target_type (type);
1560
1265e4aa
JB
1561 if (type != NULL
1562 && (TYPE_CODE (type) == TYPE_CODE_PTR
1563 || TYPE_CODE (type) == TYPE_CODE_REF))
61ee279c 1564 return ada_check_typedef (TYPE_TARGET_TYPE (type));
14f9c5c9
AS
1565 else
1566 return type;
1567}
1568
4c4b4cd2
PH
1569/* True iff TYPE indicates a "thin" array pointer type. */
1570
14f9c5c9 1571static int
d2e4a39e 1572is_thin_pntr (struct type *type)
14f9c5c9 1573{
d2e4a39e 1574 return
14f9c5c9
AS
1575 is_suffix (ada_type_name (desc_base_type (type)), "___XUT")
1576 || is_suffix (ada_type_name (desc_base_type (type)), "___XUT___XVE");
1577}
1578
4c4b4cd2
PH
1579/* The descriptor type for thin pointer type TYPE. */
1580
d2e4a39e
AS
1581static struct type *
1582thin_descriptor_type (struct type *type)
14f9c5c9 1583{
d2e4a39e 1584 struct type *base_type = desc_base_type (type);
5b4ee69b 1585
14f9c5c9
AS
1586 if (base_type == NULL)
1587 return NULL;
1588 if (is_suffix (ada_type_name (base_type), "___XVE"))
1589 return base_type;
d2e4a39e 1590 else
14f9c5c9 1591 {
d2e4a39e 1592 struct type *alt_type = ada_find_parallel_type (base_type, "___XVE");
5b4ee69b 1593
14f9c5c9 1594 if (alt_type == NULL)
4c4b4cd2 1595 return base_type;
14f9c5c9 1596 else
4c4b4cd2 1597 return alt_type;
14f9c5c9
AS
1598 }
1599}
1600
4c4b4cd2
PH
1601/* A pointer to the array data for thin-pointer value VAL. */
1602
d2e4a39e
AS
1603static struct value *
1604thin_data_pntr (struct value *val)
14f9c5c9 1605{
828292f2 1606 struct type *type = ada_check_typedef (value_type (val));
556bdfd4 1607 struct type *data_type = desc_data_target_type (thin_descriptor_type (type));
5b4ee69b 1608
556bdfd4
UW
1609 data_type = lookup_pointer_type (data_type);
1610
14f9c5c9 1611 if (TYPE_CODE (type) == TYPE_CODE_PTR)
556bdfd4 1612 return value_cast (data_type, value_copy (val));
d2e4a39e 1613 else
42ae5230 1614 return value_from_longest (data_type, value_address (val));
14f9c5c9
AS
1615}
1616
4c4b4cd2
PH
1617/* True iff TYPE indicates a "thick" array pointer type. */
1618
14f9c5c9 1619static int
d2e4a39e 1620is_thick_pntr (struct type *type)
14f9c5c9
AS
1621{
1622 type = desc_base_type (type);
1623 return (type != NULL && TYPE_CODE (type) == TYPE_CODE_STRUCT
4c4b4cd2 1624 && lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL);
14f9c5c9
AS
1625}
1626
4c4b4cd2
PH
1627/* If TYPE is the type of an array descriptor (fat or thin pointer) or a
1628 pointer to one, the type of its bounds data; otherwise, NULL. */
76a01679 1629
d2e4a39e
AS
1630static struct type *
1631desc_bounds_type (struct type *type)
14f9c5c9 1632{
d2e4a39e 1633 struct type *r;
14f9c5c9
AS
1634
1635 type = desc_base_type (type);
1636
1637 if (type == NULL)
1638 return NULL;
1639 else if (is_thin_pntr (type))
1640 {
1641 type = thin_descriptor_type (type);
1642 if (type == NULL)
4c4b4cd2 1643 return NULL;
14f9c5c9
AS
1644 r = lookup_struct_elt_type (type, "BOUNDS", 1);
1645 if (r != NULL)
61ee279c 1646 return ada_check_typedef (r);
14f9c5c9
AS
1647 }
1648 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
1649 {
1650 r = lookup_struct_elt_type (type, "P_BOUNDS", 1);
1651 if (r != NULL)
61ee279c 1652 return ada_check_typedef (TYPE_TARGET_TYPE (ada_check_typedef (r)));
14f9c5c9
AS
1653 }
1654 return NULL;
1655}
1656
1657/* If ARR is an array descriptor (fat or thin pointer), or pointer to
4c4b4cd2
PH
1658 one, a pointer to its bounds data. Otherwise NULL. */
1659
d2e4a39e
AS
1660static struct value *
1661desc_bounds (struct value *arr)
14f9c5c9 1662{
df407dfe 1663 struct type *type = ada_check_typedef (value_type (arr));
5b4ee69b 1664
d2e4a39e 1665 if (is_thin_pntr (type))
14f9c5c9 1666 {
d2e4a39e 1667 struct type *bounds_type =
4c4b4cd2 1668 desc_bounds_type (thin_descriptor_type (type));
14f9c5c9
AS
1669 LONGEST addr;
1670
4cdfadb1 1671 if (bounds_type == NULL)
323e0a4a 1672 error (_("Bad GNAT array descriptor"));
14f9c5c9
AS
1673
1674 /* NOTE: The following calculation is not really kosher, but
d2e4a39e 1675 since desc_type is an XVE-encoded type (and shouldn't be),
4c4b4cd2 1676 the correct calculation is a real pain. FIXME (and fix GCC). */
14f9c5c9 1677 if (TYPE_CODE (type) == TYPE_CODE_PTR)
4c4b4cd2 1678 addr = value_as_long (arr);
d2e4a39e 1679 else
42ae5230 1680 addr = value_address (arr);
14f9c5c9 1681
d2e4a39e 1682 return
4c4b4cd2
PH
1683 value_from_longest (lookup_pointer_type (bounds_type),
1684 addr - TYPE_LENGTH (bounds_type));
14f9c5c9
AS
1685 }
1686
1687 else if (is_thick_pntr (type))
05e522ef
JB
1688 {
1689 struct value *p_bounds = value_struct_elt (&arr, NULL, "P_BOUNDS", NULL,
1690 _("Bad GNAT array descriptor"));
1691 struct type *p_bounds_type = value_type (p_bounds);
1692
1693 if (p_bounds_type
1694 && TYPE_CODE (p_bounds_type) == TYPE_CODE_PTR)
1695 {
1696 struct type *target_type = TYPE_TARGET_TYPE (p_bounds_type);
1697
1698 if (TYPE_STUB (target_type))
1699 p_bounds = value_cast (lookup_pointer_type
1700 (ada_check_typedef (target_type)),
1701 p_bounds);
1702 }
1703 else
1704 error (_("Bad GNAT array descriptor"));
1705
1706 return p_bounds;
1707 }
14f9c5c9
AS
1708 else
1709 return NULL;
1710}
1711
4c4b4cd2
PH
1712/* If TYPE is the type of an array-descriptor (fat pointer), the bit
1713 position of the field containing the address of the bounds data. */
1714
14f9c5c9 1715static int
d2e4a39e 1716fat_pntr_bounds_bitpos (struct type *type)
14f9c5c9
AS
1717{
1718 return TYPE_FIELD_BITPOS (desc_base_type (type), 1);
1719}
1720
1721/* If TYPE is the type of an array-descriptor (fat pointer), the bit
4c4b4cd2
PH
1722 size of the field containing the address of the bounds data. */
1723
14f9c5c9 1724static int
d2e4a39e 1725fat_pntr_bounds_bitsize (struct type *type)
14f9c5c9
AS
1726{
1727 type = desc_base_type (type);
1728
d2e4a39e 1729 if (TYPE_FIELD_BITSIZE (type, 1) > 0)
14f9c5c9
AS
1730 return TYPE_FIELD_BITSIZE (type, 1);
1731 else
61ee279c 1732 return 8 * TYPE_LENGTH (ada_check_typedef (TYPE_FIELD_TYPE (type, 1)));
14f9c5c9
AS
1733}
1734
4c4b4cd2 1735/* If TYPE is the type of an array descriptor (fat or thin pointer) or a
556bdfd4
UW
1736 pointer to one, the type of its array data (a array-with-no-bounds type);
1737 otherwise, NULL. Use ada_type_of_array to get an array type with bounds
1738 data. */
4c4b4cd2 1739
d2e4a39e 1740static struct type *
556bdfd4 1741desc_data_target_type (struct type *type)
14f9c5c9
AS
1742{
1743 type = desc_base_type (type);
1744
4c4b4cd2 1745 /* NOTE: The following is bogus; see comment in desc_bounds. */
14f9c5c9 1746 if (is_thin_pntr (type))
556bdfd4 1747 return desc_base_type (TYPE_FIELD_TYPE (thin_descriptor_type (type), 1));
14f9c5c9 1748 else if (is_thick_pntr (type))
556bdfd4
UW
1749 {
1750 struct type *data_type = lookup_struct_elt_type (type, "P_ARRAY", 1);
1751
1752 if (data_type
1753 && TYPE_CODE (ada_check_typedef (data_type)) == TYPE_CODE_PTR)
05e522ef 1754 return ada_check_typedef (TYPE_TARGET_TYPE (data_type));
556bdfd4
UW
1755 }
1756
1757 return NULL;
14f9c5c9
AS
1758}
1759
1760/* If ARR is an array descriptor (fat or thin pointer), a pointer to
1761 its array data. */
4c4b4cd2 1762
d2e4a39e
AS
1763static struct value *
1764desc_data (struct value *arr)
14f9c5c9 1765{
df407dfe 1766 struct type *type = value_type (arr);
5b4ee69b 1767
14f9c5c9
AS
1768 if (is_thin_pntr (type))
1769 return thin_data_pntr (arr);
1770 else if (is_thick_pntr (type))
d2e4a39e 1771 return value_struct_elt (&arr, NULL, "P_ARRAY", NULL,
323e0a4a 1772 _("Bad GNAT array descriptor"));
14f9c5c9
AS
1773 else
1774 return NULL;
1775}
1776
1777
1778/* If TYPE is the type of an array-descriptor (fat pointer), the bit
4c4b4cd2
PH
1779 position of the field containing the address of the data. */
1780
14f9c5c9 1781static int
d2e4a39e 1782fat_pntr_data_bitpos (struct type *type)
14f9c5c9
AS
1783{
1784 return TYPE_FIELD_BITPOS (desc_base_type (type), 0);
1785}
1786
1787/* If TYPE is the type of an array-descriptor (fat pointer), the bit
4c4b4cd2
PH
1788 size of the field containing the address of the data. */
1789
14f9c5c9 1790static int
d2e4a39e 1791fat_pntr_data_bitsize (struct type *type)
14f9c5c9
AS
1792{
1793 type = desc_base_type (type);
1794
1795 if (TYPE_FIELD_BITSIZE (type, 0) > 0)
1796 return TYPE_FIELD_BITSIZE (type, 0);
d2e4a39e 1797 else
14f9c5c9
AS
1798 return TARGET_CHAR_BIT * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 0));
1799}
1800
4c4b4cd2 1801/* If BOUNDS is an array-bounds structure (or pointer to one), return
14f9c5c9 1802 the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
4c4b4cd2
PH
1803 bound, if WHICH is 1. The first bound is I=1. */
1804
d2e4a39e
AS
1805static struct value *
1806desc_one_bound (struct value *bounds, int i, int which)
14f9c5c9 1807{
d2e4a39e 1808 return value_struct_elt (&bounds, NULL, bound_name[2 * i + which - 2], NULL,
323e0a4a 1809 _("Bad GNAT array descriptor bounds"));
14f9c5c9
AS
1810}
1811
1812/* If BOUNDS is an array-bounds structure type, return the bit position
1813 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
4c4b4cd2
PH
1814 bound, if WHICH is 1. The first bound is I=1. */
1815
14f9c5c9 1816static int
d2e4a39e 1817desc_bound_bitpos (struct type *type, int i, int which)
14f9c5c9 1818{
d2e4a39e 1819 return TYPE_FIELD_BITPOS (desc_base_type (type), 2 * i + which - 2);
14f9c5c9
AS
1820}
1821
1822/* If BOUNDS is an array-bounds structure type, return the bit field size
1823 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
4c4b4cd2
PH
1824 bound, if WHICH is 1. The first bound is I=1. */
1825
76a01679 1826static int
d2e4a39e 1827desc_bound_bitsize (struct type *type, int i, int which)
14f9c5c9
AS
1828{
1829 type = desc_base_type (type);
1830
d2e4a39e
AS
1831 if (TYPE_FIELD_BITSIZE (type, 2 * i + which - 2) > 0)
1832 return TYPE_FIELD_BITSIZE (type, 2 * i + which - 2);
1833 else
1834 return 8 * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 2 * i + which - 2));
14f9c5c9
AS
1835}
1836
1837/* If TYPE is the type of an array-bounds structure, the type of its
4c4b4cd2
PH
1838 Ith bound (numbering from 1). Otherwise, NULL. */
1839
d2e4a39e
AS
1840static struct type *
1841desc_index_type (struct type *type, int i)
14f9c5c9
AS
1842{
1843 type = desc_base_type (type);
1844
1845 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
d2e4a39e
AS
1846 return lookup_struct_elt_type (type, bound_name[2 * i - 2], 1);
1847 else
14f9c5c9
AS
1848 return NULL;
1849}
1850
4c4b4cd2
PH
1851/* The number of index positions in the array-bounds type TYPE.
1852 Return 0 if TYPE is NULL. */
1853
14f9c5c9 1854static int
d2e4a39e 1855desc_arity (struct type *type)
14f9c5c9
AS
1856{
1857 type = desc_base_type (type);
1858
1859 if (type != NULL)
1860 return TYPE_NFIELDS (type) / 2;
1861 return 0;
1862}
1863
4c4b4cd2
PH
1864/* Non-zero iff TYPE is a simple array type (not a pointer to one) or
1865 an array descriptor type (representing an unconstrained array
1866 type). */
1867
76a01679
JB
1868static int
1869ada_is_direct_array_type (struct type *type)
4c4b4cd2
PH
1870{
1871 if (type == NULL)
1872 return 0;
61ee279c 1873 type = ada_check_typedef (type);
4c4b4cd2 1874 return (TYPE_CODE (type) == TYPE_CODE_ARRAY
76a01679 1875 || ada_is_array_descriptor_type (type));
4c4b4cd2
PH
1876}
1877
52ce6436 1878/* Non-zero iff TYPE represents any kind of array in Ada, or a pointer
0963b4bd 1879 * to one. */
52ce6436 1880
2c0b251b 1881static int
52ce6436
PH
1882ada_is_array_type (struct type *type)
1883{
1884 while (type != NULL
1885 && (TYPE_CODE (type) == TYPE_CODE_PTR
1886 || TYPE_CODE (type) == TYPE_CODE_REF))
1887 type = TYPE_TARGET_TYPE (type);
1888 return ada_is_direct_array_type (type);
1889}
1890
4c4b4cd2 1891/* Non-zero iff TYPE is a simple array type or pointer to one. */
14f9c5c9 1892
14f9c5c9 1893int
4c4b4cd2 1894ada_is_simple_array_type (struct type *type)
14f9c5c9
AS
1895{
1896 if (type == NULL)
1897 return 0;
61ee279c 1898 type = ada_check_typedef (type);
14f9c5c9 1899 return (TYPE_CODE (type) == TYPE_CODE_ARRAY
4c4b4cd2 1900 || (TYPE_CODE (type) == TYPE_CODE_PTR
b0dd7688
JB
1901 && TYPE_CODE (ada_check_typedef (TYPE_TARGET_TYPE (type)))
1902 == TYPE_CODE_ARRAY));
14f9c5c9
AS
1903}
1904
4c4b4cd2
PH
1905/* Non-zero iff TYPE belongs to a GNAT array descriptor. */
1906
14f9c5c9 1907int
4c4b4cd2 1908ada_is_array_descriptor_type (struct type *type)
14f9c5c9 1909{
556bdfd4 1910 struct type *data_type = desc_data_target_type (type);
14f9c5c9
AS
1911
1912 if (type == NULL)
1913 return 0;
61ee279c 1914 type = ada_check_typedef (type);
556bdfd4
UW
1915 return (data_type != NULL
1916 && TYPE_CODE (data_type) == TYPE_CODE_ARRAY
1917 && desc_arity (desc_bounds_type (type)) > 0);
14f9c5c9
AS
1918}
1919
1920/* Non-zero iff type is a partially mal-formed GNAT array
4c4b4cd2 1921 descriptor. FIXME: This is to compensate for some problems with
14f9c5c9 1922 debugging output from GNAT. Re-examine periodically to see if it
4c4b4cd2
PH
1923 is still needed. */
1924
14f9c5c9 1925int
ebf56fd3 1926ada_is_bogus_array_descriptor (struct type *type)
14f9c5c9 1927{
d2e4a39e 1928 return
14f9c5c9
AS
1929 type != NULL
1930 && TYPE_CODE (type) == TYPE_CODE_STRUCT
1931 && (lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL
4c4b4cd2
PH
1932 || lookup_struct_elt_type (type, "P_ARRAY", 1) != NULL)
1933 && !ada_is_array_descriptor_type (type);
14f9c5c9
AS
1934}
1935
1936
4c4b4cd2 1937/* If ARR has a record type in the form of a standard GNAT array descriptor,
14f9c5c9 1938 (fat pointer) returns the type of the array data described---specifically,
4c4b4cd2 1939 a pointer-to-array type. If BOUNDS is non-zero, the bounds data are filled
14f9c5c9 1940 in from the descriptor; otherwise, they are left unspecified. If
4c4b4cd2
PH
1941 the ARR denotes a null array descriptor and BOUNDS is non-zero,
1942 returns NULL. The result is simply the type of ARR if ARR is not
14f9c5c9 1943 a descriptor. */
d2e4a39e
AS
1944struct type *
1945ada_type_of_array (struct value *arr, int bounds)
14f9c5c9 1946{
ad82864c
JB
1947 if (ada_is_constrained_packed_array_type (value_type (arr)))
1948 return decode_constrained_packed_array_type (value_type (arr));
14f9c5c9 1949
df407dfe
AC
1950 if (!ada_is_array_descriptor_type (value_type (arr)))
1951 return value_type (arr);
d2e4a39e
AS
1952
1953 if (!bounds)
ad82864c
JB
1954 {
1955 struct type *array_type =
1956 ada_check_typedef (desc_data_target_type (value_type (arr)));
1957
1958 if (ada_is_unconstrained_packed_array_type (value_type (arr)))
1959 TYPE_FIELD_BITSIZE (array_type, 0) =
1960 decode_packed_array_bitsize (value_type (arr));
1961
1962 return array_type;
1963 }
14f9c5c9
AS
1964 else
1965 {
d2e4a39e 1966 struct type *elt_type;
14f9c5c9 1967 int arity;
d2e4a39e 1968 struct value *descriptor;
14f9c5c9 1969
df407dfe
AC
1970 elt_type = ada_array_element_type (value_type (arr), -1);
1971 arity = ada_array_arity (value_type (arr));
14f9c5c9 1972
d2e4a39e 1973 if (elt_type == NULL || arity == 0)
df407dfe 1974 return ada_check_typedef (value_type (arr));
14f9c5c9
AS
1975
1976 descriptor = desc_bounds (arr);
d2e4a39e 1977 if (value_as_long (descriptor) == 0)
4c4b4cd2 1978 return NULL;
d2e4a39e 1979 while (arity > 0)
4c4b4cd2 1980 {
e9bb382b
UW
1981 struct type *range_type = alloc_type_copy (value_type (arr));
1982 struct type *array_type = alloc_type_copy (value_type (arr));
4c4b4cd2
PH
1983 struct value *low = desc_one_bound (descriptor, arity, 0);
1984 struct value *high = desc_one_bound (descriptor, arity, 1);
4c4b4cd2 1985
5b4ee69b 1986 arity -= 1;
0c9c3474
SA
1987 create_static_range_type (range_type, value_type (low),
1988 longest_to_int (value_as_long (low)),
1989 longest_to_int (value_as_long (high)));
4c4b4cd2 1990 elt_type = create_array_type (array_type, elt_type, range_type);
ad82864c
JB
1991
1992 if (ada_is_unconstrained_packed_array_type (value_type (arr)))
e67ad678
JB
1993 {
1994 /* We need to store the element packed bitsize, as well as
1995 recompute the array size, because it was previously
1996 computed based on the unpacked element size. */
1997 LONGEST lo = value_as_long (low);
1998 LONGEST hi = value_as_long (high);
1999
2000 TYPE_FIELD_BITSIZE (elt_type, 0) =
2001 decode_packed_array_bitsize (value_type (arr));
2002 /* If the array has no element, then the size is already
2003 zero, and does not need to be recomputed. */
2004 if (lo < hi)
2005 {
2006 int array_bitsize =
2007 (hi - lo + 1) * TYPE_FIELD_BITSIZE (elt_type, 0);
2008
2009 TYPE_LENGTH (array_type) = (array_bitsize + 7) / 8;
2010 }
2011 }
4c4b4cd2 2012 }
14f9c5c9
AS
2013
2014 return lookup_pointer_type (elt_type);
2015 }
2016}
2017
2018/* If ARR does not represent an array, returns ARR unchanged.
4c4b4cd2
PH
2019 Otherwise, returns either a standard GDB array with bounds set
2020 appropriately or, if ARR is a non-null fat pointer, a pointer to a standard
2021 GDB array. Returns NULL if ARR is a null fat pointer. */
2022
d2e4a39e
AS
2023struct value *
2024ada_coerce_to_simple_array_ptr (struct value *arr)
14f9c5c9 2025{
df407dfe 2026 if (ada_is_array_descriptor_type (value_type (arr)))
14f9c5c9 2027 {
d2e4a39e 2028 struct type *arrType = ada_type_of_array (arr, 1);
5b4ee69b 2029
14f9c5c9 2030 if (arrType == NULL)
4c4b4cd2 2031 return NULL;
14f9c5c9
AS
2032 return value_cast (arrType, value_copy (desc_data (arr)));
2033 }
ad82864c
JB
2034 else if (ada_is_constrained_packed_array_type (value_type (arr)))
2035 return decode_constrained_packed_array (arr);
14f9c5c9
AS
2036 else
2037 return arr;
2038}
2039
2040/* If ARR does not represent an array, returns ARR unchanged.
2041 Otherwise, returns a standard GDB array describing ARR (which may
4c4b4cd2
PH
2042 be ARR itself if it already is in the proper form). */
2043
720d1a40 2044struct value *
d2e4a39e 2045ada_coerce_to_simple_array (struct value *arr)
14f9c5c9 2046{
df407dfe 2047 if (ada_is_array_descriptor_type (value_type (arr)))
14f9c5c9 2048 {
d2e4a39e 2049 struct value *arrVal = ada_coerce_to_simple_array_ptr (arr);
5b4ee69b 2050
14f9c5c9 2051 if (arrVal == NULL)
323e0a4a 2052 error (_("Bounds unavailable for null array pointer."));
c1b5a1a6 2053 ada_ensure_varsize_limit (TYPE_TARGET_TYPE (value_type (arrVal)));
14f9c5c9
AS
2054 return value_ind (arrVal);
2055 }
ad82864c
JB
2056 else if (ada_is_constrained_packed_array_type (value_type (arr)))
2057 return decode_constrained_packed_array (arr);
d2e4a39e 2058 else
14f9c5c9
AS
2059 return arr;
2060}
2061
2062/* If TYPE represents a GNAT array type, return it translated to an
2063 ordinary GDB array type (possibly with BITSIZE fields indicating
4c4b4cd2
PH
2064 packing). For other types, is the identity. */
2065
d2e4a39e
AS
2066struct type *
2067ada_coerce_to_simple_array_type (struct type *type)
14f9c5c9 2068{
ad82864c
JB
2069 if (ada_is_constrained_packed_array_type (type))
2070 return decode_constrained_packed_array_type (type);
17280b9f
UW
2071
2072 if (ada_is_array_descriptor_type (type))
556bdfd4 2073 return ada_check_typedef (desc_data_target_type (type));
17280b9f
UW
2074
2075 return type;
14f9c5c9
AS
2076}
2077
4c4b4cd2
PH
2078/* Non-zero iff TYPE represents a standard GNAT packed-array type. */
2079
ad82864c
JB
2080static int
2081ada_is_packed_array_type (struct type *type)
14f9c5c9
AS
2082{
2083 if (type == NULL)
2084 return 0;
4c4b4cd2 2085 type = desc_base_type (type);
61ee279c 2086 type = ada_check_typedef (type);
d2e4a39e 2087 return
14f9c5c9
AS
2088 ada_type_name (type) != NULL
2089 && strstr (ada_type_name (type), "___XP") != NULL;
2090}
2091
ad82864c
JB
2092/* Non-zero iff TYPE represents a standard GNAT constrained
2093 packed-array type. */
2094
2095int
2096ada_is_constrained_packed_array_type (struct type *type)
2097{
2098 return ada_is_packed_array_type (type)
2099 && !ada_is_array_descriptor_type (type);
2100}
2101
2102/* Non-zero iff TYPE represents an array descriptor for a
2103 unconstrained packed-array type. */
2104
2105static int
2106ada_is_unconstrained_packed_array_type (struct type *type)
2107{
2108 return ada_is_packed_array_type (type)
2109 && ada_is_array_descriptor_type (type);
2110}
2111
2112/* Given that TYPE encodes a packed array type (constrained or unconstrained),
2113 return the size of its elements in bits. */
2114
2115static long
2116decode_packed_array_bitsize (struct type *type)
2117{
0d5cff50
DE
2118 const char *raw_name;
2119 const char *tail;
ad82864c
JB
2120 long bits;
2121
720d1a40
JB
2122 /* Access to arrays implemented as fat pointers are encoded as a typedef
2123 of the fat pointer type. We need the name of the fat pointer type
2124 to do the decoding, so strip the typedef layer. */
2125 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
2126 type = ada_typedef_target_type (type);
2127
2128 raw_name = ada_type_name (ada_check_typedef (type));
ad82864c
JB
2129 if (!raw_name)
2130 raw_name = ada_type_name (desc_base_type (type));
2131
2132 if (!raw_name)
2133 return 0;
2134
2135 tail = strstr (raw_name, "___XP");
720d1a40 2136 gdb_assert (tail != NULL);
ad82864c
JB
2137
2138 if (sscanf (tail + sizeof ("___XP") - 1, "%ld", &bits) != 1)
2139 {
2140 lim_warning
2141 (_("could not understand bit size information on packed array"));
2142 return 0;
2143 }
2144
2145 return bits;
2146}
2147
14f9c5c9
AS
2148/* Given that TYPE is a standard GDB array type with all bounds filled
2149 in, and that the element size of its ultimate scalar constituents
2150 (that is, either its elements, or, if it is an array of arrays, its
2151 elements' elements, etc.) is *ELT_BITS, return an identical type,
2152 but with the bit sizes of its elements (and those of any
2153 constituent arrays) recorded in the BITSIZE components of its
4c4b4cd2 2154 TYPE_FIELD_BITSIZE values, and with *ELT_BITS set to its total size
4a46959e
JB
2155 in bits.
2156
2157 Note that, for arrays whose index type has an XA encoding where
2158 a bound references a record discriminant, getting that discriminant,
2159 and therefore the actual value of that bound, is not possible
2160 because none of the given parameters gives us access to the record.
2161 This function assumes that it is OK in the context where it is being
2162 used to return an array whose bounds are still dynamic and where
2163 the length is arbitrary. */
4c4b4cd2 2164
d2e4a39e 2165static struct type *
ad82864c 2166constrained_packed_array_type (struct type *type, long *elt_bits)
14f9c5c9 2167{
d2e4a39e
AS
2168 struct type *new_elt_type;
2169 struct type *new_type;
99b1c762
JB
2170 struct type *index_type_desc;
2171 struct type *index_type;
14f9c5c9
AS
2172 LONGEST low_bound, high_bound;
2173
61ee279c 2174 type = ada_check_typedef (type);
14f9c5c9
AS
2175 if (TYPE_CODE (type) != TYPE_CODE_ARRAY)
2176 return type;
2177
99b1c762
JB
2178 index_type_desc = ada_find_parallel_type (type, "___XA");
2179 if (index_type_desc)
2180 index_type = to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, 0),
2181 NULL);
2182 else
2183 index_type = TYPE_INDEX_TYPE (type);
2184
e9bb382b 2185 new_type = alloc_type_copy (type);
ad82864c
JB
2186 new_elt_type =
2187 constrained_packed_array_type (ada_check_typedef (TYPE_TARGET_TYPE (type)),
2188 elt_bits);
99b1c762 2189 create_array_type (new_type, new_elt_type, index_type);
14f9c5c9
AS
2190 TYPE_FIELD_BITSIZE (new_type, 0) = *elt_bits;
2191 TYPE_NAME (new_type) = ada_type_name (type);
2192
4a46959e
JB
2193 if ((TYPE_CODE (check_typedef (index_type)) == TYPE_CODE_RANGE
2194 && is_dynamic_type (check_typedef (index_type)))
2195 || get_discrete_bounds (index_type, &low_bound, &high_bound) < 0)
14f9c5c9
AS
2196 low_bound = high_bound = 0;
2197 if (high_bound < low_bound)
2198 *elt_bits = TYPE_LENGTH (new_type) = 0;
d2e4a39e 2199 else
14f9c5c9
AS
2200 {
2201 *elt_bits *= (high_bound - low_bound + 1);
d2e4a39e 2202 TYPE_LENGTH (new_type) =
4c4b4cd2 2203 (*elt_bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
14f9c5c9
AS
2204 }
2205
876cecd0 2206 TYPE_FIXED_INSTANCE (new_type) = 1;
14f9c5c9
AS
2207 return new_type;
2208}
2209
ad82864c
JB
2210/* The array type encoded by TYPE, where
2211 ada_is_constrained_packed_array_type (TYPE). */
4c4b4cd2 2212
d2e4a39e 2213static struct type *
ad82864c 2214decode_constrained_packed_array_type (struct type *type)
d2e4a39e 2215{
0d5cff50 2216 const char *raw_name = ada_type_name (ada_check_typedef (type));
727e3d2e 2217 char *name;
0d5cff50 2218 const char *tail;
d2e4a39e 2219 struct type *shadow_type;
14f9c5c9 2220 long bits;
14f9c5c9 2221
727e3d2e
JB
2222 if (!raw_name)
2223 raw_name = ada_type_name (desc_base_type (type));
2224
2225 if (!raw_name)
2226 return NULL;
2227
2228 name = (char *) alloca (strlen (raw_name) + 1);
2229 tail = strstr (raw_name, "___XP");
4c4b4cd2
PH
2230 type = desc_base_type (type);
2231
14f9c5c9
AS
2232 memcpy (name, raw_name, tail - raw_name);
2233 name[tail - raw_name] = '\000';
2234
b4ba55a1
JB
2235 shadow_type = ada_find_parallel_type_with_name (type, name);
2236
2237 if (shadow_type == NULL)
14f9c5c9 2238 {
323e0a4a 2239 lim_warning (_("could not find bounds information on packed array"));
14f9c5c9
AS
2240 return NULL;
2241 }
cb249c71 2242 CHECK_TYPEDEF (shadow_type);
14f9c5c9
AS
2243
2244 if (TYPE_CODE (shadow_type) != TYPE_CODE_ARRAY)
2245 {
0963b4bd
MS
2246 lim_warning (_("could not understand bounds "
2247 "information on packed array"));
14f9c5c9
AS
2248 return NULL;
2249 }
d2e4a39e 2250
ad82864c
JB
2251 bits = decode_packed_array_bitsize (type);
2252 return constrained_packed_array_type (shadow_type, &bits);
14f9c5c9
AS
2253}
2254
ad82864c
JB
2255/* Given that ARR is a struct value *indicating a GNAT constrained packed
2256 array, returns a simple array that denotes that array. Its type is a
14f9c5c9
AS
2257 standard GDB array type except that the BITSIZEs of the array
2258 target types are set to the number of bits in each element, and the
4c4b4cd2 2259 type length is set appropriately. */
14f9c5c9 2260
d2e4a39e 2261static struct value *
ad82864c 2262decode_constrained_packed_array (struct value *arr)
14f9c5c9 2263{
4c4b4cd2 2264 struct type *type;
14f9c5c9 2265
11aa919a
PMR
2266 /* If our value is a pointer, then dereference it. Likewise if
2267 the value is a reference. Make sure that this operation does not
2268 cause the target type to be fixed, as this would indirectly cause
2269 this array to be decoded. The rest of the routine assumes that
2270 the array hasn't been decoded yet, so we use the basic "coerce_ref"
2271 and "value_ind" routines to perform the dereferencing, as opposed
2272 to using "ada_coerce_ref" or "ada_value_ind". */
2273 arr = coerce_ref (arr);
828292f2 2274 if (TYPE_CODE (ada_check_typedef (value_type (arr))) == TYPE_CODE_PTR)
284614f0 2275 arr = value_ind (arr);
4c4b4cd2 2276
ad82864c 2277 type = decode_constrained_packed_array_type (value_type (arr));
14f9c5c9
AS
2278 if (type == NULL)
2279 {
323e0a4a 2280 error (_("can't unpack array"));
14f9c5c9
AS
2281 return NULL;
2282 }
61ee279c 2283
50810684 2284 if (gdbarch_bits_big_endian (get_type_arch (value_type (arr)))
32c9a795 2285 && ada_is_modular_type (value_type (arr)))
61ee279c
PH
2286 {
2287 /* This is a (right-justified) modular type representing a packed
2288 array with no wrapper. In order to interpret the value through
2289 the (left-justified) packed array type we just built, we must
2290 first left-justify it. */
2291 int bit_size, bit_pos;
2292 ULONGEST mod;
2293
df407dfe 2294 mod = ada_modulus (value_type (arr)) - 1;
61ee279c
PH
2295 bit_size = 0;
2296 while (mod > 0)
2297 {
2298 bit_size += 1;
2299 mod >>= 1;
2300 }
df407dfe 2301 bit_pos = HOST_CHAR_BIT * TYPE_LENGTH (value_type (arr)) - bit_size;
61ee279c
PH
2302 arr = ada_value_primitive_packed_val (arr, NULL,
2303 bit_pos / HOST_CHAR_BIT,
2304 bit_pos % HOST_CHAR_BIT,
2305 bit_size,
2306 type);
2307 }
2308
4c4b4cd2 2309 return coerce_unspec_val_to_type (arr, type);
14f9c5c9
AS
2310}
2311
2312
2313/* The value of the element of packed array ARR at the ARITY indices
4c4b4cd2 2314 given in IND. ARR must be a simple array. */
14f9c5c9 2315
d2e4a39e
AS
2316static struct value *
2317value_subscript_packed (struct value *arr, int arity, struct value **ind)
14f9c5c9
AS
2318{
2319 int i;
2320 int bits, elt_off, bit_off;
2321 long elt_total_bit_offset;
d2e4a39e
AS
2322 struct type *elt_type;
2323 struct value *v;
14f9c5c9
AS
2324
2325 bits = 0;
2326 elt_total_bit_offset = 0;
df407dfe 2327 elt_type = ada_check_typedef (value_type (arr));
d2e4a39e 2328 for (i = 0; i < arity; i += 1)
14f9c5c9 2329 {
d2e4a39e 2330 if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY
4c4b4cd2
PH
2331 || TYPE_FIELD_BITSIZE (elt_type, 0) == 0)
2332 error
0963b4bd
MS
2333 (_("attempt to do packed indexing of "
2334 "something other than a packed array"));
14f9c5c9 2335 else
4c4b4cd2
PH
2336 {
2337 struct type *range_type = TYPE_INDEX_TYPE (elt_type);
2338 LONGEST lowerbound, upperbound;
2339 LONGEST idx;
2340
2341 if (get_discrete_bounds (range_type, &lowerbound, &upperbound) < 0)
2342 {
323e0a4a 2343 lim_warning (_("don't know bounds of array"));
4c4b4cd2
PH
2344 lowerbound = upperbound = 0;
2345 }
2346
3cb382c9 2347 idx = pos_atr (ind[i]);
4c4b4cd2 2348 if (idx < lowerbound || idx > upperbound)
0963b4bd
MS
2349 lim_warning (_("packed array index %ld out of bounds"),
2350 (long) idx);
4c4b4cd2
PH
2351 bits = TYPE_FIELD_BITSIZE (elt_type, 0);
2352 elt_total_bit_offset += (idx - lowerbound) * bits;
61ee279c 2353 elt_type = ada_check_typedef (TYPE_TARGET_TYPE (elt_type));
4c4b4cd2 2354 }
14f9c5c9
AS
2355 }
2356 elt_off = elt_total_bit_offset / HOST_CHAR_BIT;
2357 bit_off = elt_total_bit_offset % HOST_CHAR_BIT;
d2e4a39e
AS
2358
2359 v = ada_value_primitive_packed_val (arr, NULL, elt_off, bit_off,
4c4b4cd2 2360 bits, elt_type);
14f9c5c9
AS
2361 return v;
2362}
2363
4c4b4cd2 2364/* Non-zero iff TYPE includes negative integer values. */
14f9c5c9
AS
2365
2366static int
d2e4a39e 2367has_negatives (struct type *type)
14f9c5c9 2368{
d2e4a39e
AS
2369 switch (TYPE_CODE (type))
2370 {
2371 default:
2372 return 0;
2373 case TYPE_CODE_INT:
2374 return !TYPE_UNSIGNED (type);
2375 case TYPE_CODE_RANGE:
2376 return TYPE_LOW_BOUND (type) < 0;
2377 }
14f9c5c9 2378}
d2e4a39e 2379
14f9c5c9
AS
2380
2381/* Create a new value of type TYPE from the contents of OBJ starting
2382 at byte OFFSET, and bit offset BIT_OFFSET within that byte,
2383 proceeding for BIT_SIZE bits. If OBJ is an lval in memory, then
0963b4bd 2384 assigning through the result will set the field fetched from.
4c4b4cd2
PH
2385 VALADDR is ignored unless OBJ is NULL, in which case,
2386 VALADDR+OFFSET must address the start of storage containing the
2387 packed value. The value returned in this case is never an lval.
2388 Assumes 0 <= BIT_OFFSET < HOST_CHAR_BIT. */
14f9c5c9 2389
d2e4a39e 2390struct value *
fc1a4b47 2391ada_value_primitive_packed_val (struct value *obj, const gdb_byte *valaddr,
a2bd3dcd 2392 long offset, int bit_offset, int bit_size,
4c4b4cd2 2393 struct type *type)
14f9c5c9 2394{
d2e4a39e 2395 struct value *v;
4c4b4cd2
PH
2396 int src, /* Index into the source area */
2397 targ, /* Index into the target area */
2398 srcBitsLeft, /* Number of source bits left to move */
2399 nsrc, ntarg, /* Number of source and target bytes */
2400 unusedLS, /* Number of bits in next significant
2401 byte of source that are unused */
2402 accumSize; /* Number of meaningful bits in accum */
2403 unsigned char *bytes; /* First byte containing data to unpack */
d2e4a39e 2404 unsigned char *unpacked;
4c4b4cd2 2405 unsigned long accum; /* Staging area for bits being transferred */
14f9c5c9
AS
2406 unsigned char sign;
2407 int len = (bit_size + bit_offset + HOST_CHAR_BIT - 1) / 8;
4c4b4cd2
PH
2408 /* Transmit bytes from least to most significant; delta is the direction
2409 the indices move. */
50810684 2410 int delta = gdbarch_bits_big_endian (get_type_arch (type)) ? -1 : 1;
14f9c5c9 2411
61ee279c 2412 type = ada_check_typedef (type);
14f9c5c9
AS
2413
2414 if (obj == NULL)
2415 {
2416 v = allocate_value (type);
d2e4a39e 2417 bytes = (unsigned char *) (valaddr + offset);
14f9c5c9 2418 }
9214ee5f 2419 else if (VALUE_LVAL (obj) == lval_memory && value_lazy (obj))
14f9c5c9 2420 {
53ba8333 2421 v = value_at (type, value_address (obj));
9f1f738a 2422 type = value_type (v);
d2e4a39e 2423 bytes = (unsigned char *) alloca (len);
53ba8333 2424 read_memory (value_address (v) + offset, bytes, len);
14f9c5c9 2425 }
d2e4a39e 2426 else
14f9c5c9
AS
2427 {
2428 v = allocate_value (type);
0fd88904 2429 bytes = (unsigned char *) value_contents (obj) + offset;
14f9c5c9 2430 }
d2e4a39e
AS
2431
2432 if (obj != NULL)
14f9c5c9 2433 {
53ba8333 2434 long new_offset = offset;
5b4ee69b 2435
74bcbdf3 2436 set_value_component_location (v, obj);
9bbda503
AC
2437 set_value_bitpos (v, bit_offset + value_bitpos (obj));
2438 set_value_bitsize (v, bit_size);
df407dfe 2439 if (value_bitpos (v) >= HOST_CHAR_BIT)
4c4b4cd2 2440 {
53ba8333 2441 ++new_offset;
9bbda503 2442 set_value_bitpos (v, value_bitpos (v) - HOST_CHAR_BIT);
4c4b4cd2 2443 }
53ba8333
JB
2444 set_value_offset (v, new_offset);
2445
2446 /* Also set the parent value. This is needed when trying to
2447 assign a new value (in inferior memory). */
2448 set_value_parent (v, obj);
14f9c5c9
AS
2449 }
2450 else
9bbda503 2451 set_value_bitsize (v, bit_size);
0fd88904 2452 unpacked = (unsigned char *) value_contents (v);
14f9c5c9
AS
2453
2454 srcBitsLeft = bit_size;
2455 nsrc = len;
2456 ntarg = TYPE_LENGTH (type);
2457 sign = 0;
2458 if (bit_size == 0)
2459 {
2460 memset (unpacked, 0, TYPE_LENGTH (type));
2461 return v;
2462 }
50810684 2463 else if (gdbarch_bits_big_endian (get_type_arch (type)))
14f9c5c9 2464 {
d2e4a39e 2465 src = len - 1;
1265e4aa
JB
2466 if (has_negatives (type)
2467 && ((bytes[0] << bit_offset) & (1 << (HOST_CHAR_BIT - 1))))
4c4b4cd2 2468 sign = ~0;
d2e4a39e
AS
2469
2470 unusedLS =
4c4b4cd2
PH
2471 (HOST_CHAR_BIT - (bit_size + bit_offset) % HOST_CHAR_BIT)
2472 % HOST_CHAR_BIT;
14f9c5c9
AS
2473
2474 switch (TYPE_CODE (type))
4c4b4cd2
PH
2475 {
2476 case TYPE_CODE_ARRAY:
2477 case TYPE_CODE_UNION:
2478 case TYPE_CODE_STRUCT:
2479 /* Non-scalar values must be aligned at a byte boundary... */
2480 accumSize =
2481 (HOST_CHAR_BIT - bit_size % HOST_CHAR_BIT) % HOST_CHAR_BIT;
2482 /* ... And are placed at the beginning (most-significant) bytes
2483 of the target. */
529cad9c 2484 targ = (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT - 1;
0056e4d5 2485 ntarg = targ + 1;
4c4b4cd2
PH
2486 break;
2487 default:
2488 accumSize = 0;
2489 targ = TYPE_LENGTH (type) - 1;
2490 break;
2491 }
14f9c5c9 2492 }
d2e4a39e 2493 else
14f9c5c9
AS
2494 {
2495 int sign_bit_offset = (bit_size + bit_offset - 1) % 8;
2496
2497 src = targ = 0;
2498 unusedLS = bit_offset;
2499 accumSize = 0;
2500
d2e4a39e 2501 if (has_negatives (type) && (bytes[len - 1] & (1 << sign_bit_offset)))
4c4b4cd2 2502 sign = ~0;
14f9c5c9 2503 }
d2e4a39e 2504
14f9c5c9
AS
2505 accum = 0;
2506 while (nsrc > 0)
2507 {
2508 /* Mask for removing bits of the next source byte that are not
4c4b4cd2 2509 part of the value. */
d2e4a39e 2510 unsigned int unusedMSMask =
4c4b4cd2
PH
2511 (1 << (srcBitsLeft >= HOST_CHAR_BIT ? HOST_CHAR_BIT : srcBitsLeft)) -
2512 1;
2513 /* Sign-extend bits for this byte. */
14f9c5c9 2514 unsigned int signMask = sign & ~unusedMSMask;
5b4ee69b 2515
d2e4a39e 2516 accum |=
4c4b4cd2 2517 (((bytes[src] >> unusedLS) & unusedMSMask) | signMask) << accumSize;
14f9c5c9 2518 accumSize += HOST_CHAR_BIT - unusedLS;
d2e4a39e 2519 if (accumSize >= HOST_CHAR_BIT)
4c4b4cd2
PH
2520 {
2521 unpacked[targ] = accum & ~(~0L << HOST_CHAR_BIT);
2522 accumSize -= HOST_CHAR_BIT;
2523 accum >>= HOST_CHAR_BIT;
2524 ntarg -= 1;
2525 targ += delta;
2526 }
14f9c5c9
AS
2527 srcBitsLeft -= HOST_CHAR_BIT - unusedLS;
2528 unusedLS = 0;
2529 nsrc -= 1;
2530 src += delta;
2531 }
2532 while (ntarg > 0)
2533 {
2534 accum |= sign << accumSize;
2535 unpacked[targ] = accum & ~(~0L << HOST_CHAR_BIT);
2536 accumSize -= HOST_CHAR_BIT;
2537 accum >>= HOST_CHAR_BIT;
2538 ntarg -= 1;
2539 targ += delta;
2540 }
2541
2542 return v;
2543}
d2e4a39e 2544
14f9c5c9
AS
2545/* Move N bits from SOURCE, starting at bit offset SRC_OFFSET to
2546 TARGET, starting at bit offset TARG_OFFSET. SOURCE and TARGET must
4c4b4cd2 2547 not overlap. */
14f9c5c9 2548static void
fc1a4b47 2549move_bits (gdb_byte *target, int targ_offset, const gdb_byte *source,
50810684 2550 int src_offset, int n, int bits_big_endian_p)
14f9c5c9
AS
2551{
2552 unsigned int accum, mask;
2553 int accum_bits, chunk_size;
2554
2555 target += targ_offset / HOST_CHAR_BIT;
2556 targ_offset %= HOST_CHAR_BIT;
2557 source += src_offset / HOST_CHAR_BIT;
2558 src_offset %= HOST_CHAR_BIT;
50810684 2559 if (bits_big_endian_p)
14f9c5c9
AS
2560 {
2561 accum = (unsigned char) *source;
2562 source += 1;
2563 accum_bits = HOST_CHAR_BIT - src_offset;
2564
d2e4a39e 2565 while (n > 0)
4c4b4cd2
PH
2566 {
2567 int unused_right;
5b4ee69b 2568
4c4b4cd2
PH
2569 accum = (accum << HOST_CHAR_BIT) + (unsigned char) *source;
2570 accum_bits += HOST_CHAR_BIT;
2571 source += 1;
2572 chunk_size = HOST_CHAR_BIT - targ_offset;
2573 if (chunk_size > n)
2574 chunk_size = n;
2575 unused_right = HOST_CHAR_BIT - (chunk_size + targ_offset);
2576 mask = ((1 << chunk_size) - 1) << unused_right;
2577 *target =
2578 (*target & ~mask)
2579 | ((accum >> (accum_bits - chunk_size - unused_right)) & mask);
2580 n -= chunk_size;
2581 accum_bits -= chunk_size;
2582 target += 1;
2583 targ_offset = 0;
2584 }
14f9c5c9
AS
2585 }
2586 else
2587 {
2588 accum = (unsigned char) *source >> src_offset;
2589 source += 1;
2590 accum_bits = HOST_CHAR_BIT - src_offset;
2591
d2e4a39e 2592 while (n > 0)
4c4b4cd2
PH
2593 {
2594 accum = accum + ((unsigned char) *source << accum_bits);
2595 accum_bits += HOST_CHAR_BIT;
2596 source += 1;
2597 chunk_size = HOST_CHAR_BIT - targ_offset;
2598 if (chunk_size > n)
2599 chunk_size = n;
2600 mask = ((1 << chunk_size) - 1) << targ_offset;
2601 *target = (*target & ~mask) | ((accum << targ_offset) & mask);
2602 n -= chunk_size;
2603 accum_bits -= chunk_size;
2604 accum >>= chunk_size;
2605 target += 1;
2606 targ_offset = 0;
2607 }
14f9c5c9
AS
2608 }
2609}
2610
14f9c5c9
AS
2611/* Store the contents of FROMVAL into the location of TOVAL.
2612 Return a new value with the location of TOVAL and contents of
2613 FROMVAL. Handles assignment into packed fields that have
4c4b4cd2 2614 floating-point or non-scalar types. */
14f9c5c9 2615
d2e4a39e
AS
2616static struct value *
2617ada_value_assign (struct value *toval, struct value *fromval)
14f9c5c9 2618{
df407dfe
AC
2619 struct type *type = value_type (toval);
2620 int bits = value_bitsize (toval);
14f9c5c9 2621
52ce6436
PH
2622 toval = ada_coerce_ref (toval);
2623 fromval = ada_coerce_ref (fromval);
2624
2625 if (ada_is_direct_array_type (value_type (toval)))
2626 toval = ada_coerce_to_simple_array (toval);
2627 if (ada_is_direct_array_type (value_type (fromval)))
2628 fromval = ada_coerce_to_simple_array (fromval);
2629
88e3b34b 2630 if (!deprecated_value_modifiable (toval))
323e0a4a 2631 error (_("Left operand of assignment is not a modifiable lvalue."));
14f9c5c9 2632
d2e4a39e 2633 if (VALUE_LVAL (toval) == lval_memory
14f9c5c9 2634 && bits > 0
d2e4a39e 2635 && (TYPE_CODE (type) == TYPE_CODE_FLT
4c4b4cd2 2636 || TYPE_CODE (type) == TYPE_CODE_STRUCT))
14f9c5c9 2637 {
df407dfe
AC
2638 int len = (value_bitpos (toval)
2639 + bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
aced2898 2640 int from_size;
948f8e3d 2641 gdb_byte *buffer = alloca (len);
d2e4a39e 2642 struct value *val;
42ae5230 2643 CORE_ADDR to_addr = value_address (toval);
14f9c5c9
AS
2644
2645 if (TYPE_CODE (type) == TYPE_CODE_FLT)
4c4b4cd2 2646 fromval = value_cast (type, fromval);
14f9c5c9 2647
52ce6436 2648 read_memory (to_addr, buffer, len);
aced2898
PH
2649 from_size = value_bitsize (fromval);
2650 if (from_size == 0)
2651 from_size = TYPE_LENGTH (value_type (fromval)) * TARGET_CHAR_BIT;
50810684 2652 if (gdbarch_bits_big_endian (get_type_arch (type)))
df407dfe 2653 move_bits (buffer, value_bitpos (toval),
50810684 2654 value_contents (fromval), from_size - bits, bits, 1);
14f9c5c9 2655 else
50810684
UW
2656 move_bits (buffer, value_bitpos (toval),
2657 value_contents (fromval), 0, bits, 0);
972daa01 2658 write_memory_with_notification (to_addr, buffer, len);
8cebebb9 2659
14f9c5c9 2660 val = value_copy (toval);
0fd88904 2661 memcpy (value_contents_raw (val), value_contents (fromval),
4c4b4cd2 2662 TYPE_LENGTH (type));
04624583 2663 deprecated_set_value_type (val, type);
d2e4a39e 2664
14f9c5c9
AS
2665 return val;
2666 }
2667
2668 return value_assign (toval, fromval);
2669}
2670
2671
52ce6436
PH
2672/* Given that COMPONENT is a memory lvalue that is part of the lvalue
2673 * CONTAINER, assign the contents of VAL to COMPONENTS's place in
2674 * CONTAINER. Modifies the VALUE_CONTENTS of CONTAINER only, not
2675 * COMPONENT, and not the inferior's memory. The current contents
2676 * of COMPONENT are ignored. */
2677static void
2678value_assign_to_component (struct value *container, struct value *component,
2679 struct value *val)
2680{
2681 LONGEST offset_in_container =
42ae5230 2682 (LONGEST) (value_address (component) - value_address (container));
52ce6436
PH
2683 int bit_offset_in_container =
2684 value_bitpos (component) - value_bitpos (container);
2685 int bits;
2686
2687 val = value_cast (value_type (component), val);
2688
2689 if (value_bitsize (component) == 0)
2690 bits = TARGET_CHAR_BIT * TYPE_LENGTH (value_type (component));
2691 else
2692 bits = value_bitsize (component);
2693
50810684 2694 if (gdbarch_bits_big_endian (get_type_arch (value_type (container))))
52ce6436
PH
2695 move_bits (value_contents_writeable (container) + offset_in_container,
2696 value_bitpos (container) + bit_offset_in_container,
2697 value_contents (val),
2698 TYPE_LENGTH (value_type (component)) * TARGET_CHAR_BIT - bits,
50810684 2699 bits, 1);
52ce6436
PH
2700 else
2701 move_bits (value_contents_writeable (container) + offset_in_container,
2702 value_bitpos (container) + bit_offset_in_container,
50810684 2703 value_contents (val), 0, bits, 0);
52ce6436
PH
2704}
2705
4c4b4cd2
PH
2706/* The value of the element of array ARR at the ARITY indices given in IND.
2707 ARR may be either a simple array, GNAT array descriptor, or pointer
14f9c5c9
AS
2708 thereto. */
2709
d2e4a39e
AS
2710struct value *
2711ada_value_subscript (struct value *arr, int arity, struct value **ind)
14f9c5c9
AS
2712{
2713 int k;
d2e4a39e
AS
2714 struct value *elt;
2715 struct type *elt_type;
14f9c5c9
AS
2716
2717 elt = ada_coerce_to_simple_array (arr);
2718
df407dfe 2719 elt_type = ada_check_typedef (value_type (elt));
d2e4a39e 2720 if (TYPE_CODE (elt_type) == TYPE_CODE_ARRAY
14f9c5c9
AS
2721 && TYPE_FIELD_BITSIZE (elt_type, 0) > 0)
2722 return value_subscript_packed (elt, arity, ind);
2723
2724 for (k = 0; k < arity; k += 1)
2725 {
2726 if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY)
323e0a4a 2727 error (_("too many subscripts (%d expected)"), k);
2497b498 2728 elt = value_subscript (elt, pos_atr (ind[k]));
14f9c5c9
AS
2729 }
2730 return elt;
2731}
2732
deede10c
JB
2733/* Assuming ARR is a pointer to a GDB array, the value of the element
2734 of *ARR at the ARITY indices given in IND.
2735 Does not read the entire array into memory. */
14f9c5c9 2736
2c0b251b 2737static struct value *
deede10c 2738ada_value_ptr_subscript (struct value *arr, int arity, struct value **ind)
14f9c5c9
AS
2739{
2740 int k;
deede10c
JB
2741 struct type *type
2742 = check_typedef (value_enclosing_type (ada_value_ind (arr)));
14f9c5c9
AS
2743
2744 for (k = 0; k < arity; k += 1)
2745 {
2746 LONGEST lwb, upb;
14f9c5c9
AS
2747
2748 if (TYPE_CODE (type) != TYPE_CODE_ARRAY)
323e0a4a 2749 error (_("too many subscripts (%d expected)"), k);
d2e4a39e 2750 arr = value_cast (lookup_pointer_type (TYPE_TARGET_TYPE (type)),
4c4b4cd2 2751 value_copy (arr));
14f9c5c9 2752 get_discrete_bounds (TYPE_INDEX_TYPE (type), &lwb, &upb);
2497b498 2753 arr = value_ptradd (arr, pos_atr (ind[k]) - lwb);
14f9c5c9
AS
2754 type = TYPE_TARGET_TYPE (type);
2755 }
2756
2757 return value_ind (arr);
2758}
2759
0b5d8877 2760/* Given that ARRAY_PTR is a pointer or reference to an array of type TYPE (the
f5938064
JG
2761 actual type of ARRAY_PTR is ignored), returns the Ada slice of HIGH-LOW+1
2762 elements starting at index LOW. The lower bound of this array is LOW, as
0963b4bd 2763 per Ada rules. */
0b5d8877 2764static struct value *
f5938064
JG
2765ada_value_slice_from_ptr (struct value *array_ptr, struct type *type,
2766 int low, int high)
0b5d8877 2767{
b0dd7688 2768 struct type *type0 = ada_check_typedef (type);
6c038f32 2769 CORE_ADDR base = value_as_address (array_ptr)
b0dd7688
JB
2770 + ((low - ada_discrete_type_low_bound (TYPE_INDEX_TYPE (type0)))
2771 * TYPE_LENGTH (TYPE_TARGET_TYPE (type0)));
0c9c3474
SA
2772 struct type *index_type
2773 = create_static_range_type (NULL,
2774 TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type0)),
2775 low, high);
6c038f32 2776 struct type *slice_type =
b0dd7688 2777 create_array_type (NULL, TYPE_TARGET_TYPE (type0), index_type);
5b4ee69b 2778
f5938064 2779 return value_at_lazy (slice_type, base);
0b5d8877
PH
2780}
2781
2782
2783static struct value *
2784ada_value_slice (struct value *array, int low, int high)
2785{
b0dd7688 2786 struct type *type = ada_check_typedef (value_type (array));
0c9c3474
SA
2787 struct type *index_type
2788 = create_static_range_type (NULL, TYPE_INDEX_TYPE (type), low, high);
6c038f32 2789 struct type *slice_type =
0b5d8877 2790 create_array_type (NULL, TYPE_TARGET_TYPE (type), index_type);
5b4ee69b 2791
6c038f32 2792 return value_cast (slice_type, value_slice (array, low, high - low + 1));
0b5d8877
PH
2793}
2794
14f9c5c9
AS
2795/* If type is a record type in the form of a standard GNAT array
2796 descriptor, returns the number of dimensions for type. If arr is a
2797 simple array, returns the number of "array of"s that prefix its
4c4b4cd2 2798 type designation. Otherwise, returns 0. */
14f9c5c9
AS
2799
2800int
d2e4a39e 2801ada_array_arity (struct type *type)
14f9c5c9
AS
2802{
2803 int arity;
2804
2805 if (type == NULL)
2806 return 0;
2807
2808 type = desc_base_type (type);
2809
2810 arity = 0;
d2e4a39e 2811 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
14f9c5c9 2812 return desc_arity (desc_bounds_type (type));
d2e4a39e
AS
2813 else
2814 while (TYPE_CODE (type) == TYPE_CODE_ARRAY)
14f9c5c9 2815 {
4c4b4cd2 2816 arity += 1;
61ee279c 2817 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
14f9c5c9 2818 }
d2e4a39e 2819
14f9c5c9
AS
2820 return arity;
2821}
2822
2823/* If TYPE is a record type in the form of a standard GNAT array
2824 descriptor or a simple array type, returns the element type for
2825 TYPE after indexing by NINDICES indices, or by all indices if
4c4b4cd2 2826 NINDICES is -1. Otherwise, returns NULL. */
14f9c5c9 2827
d2e4a39e
AS
2828struct type *
2829ada_array_element_type (struct type *type, int nindices)
14f9c5c9
AS
2830{
2831 type = desc_base_type (type);
2832
d2e4a39e 2833 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
14f9c5c9
AS
2834 {
2835 int k;
d2e4a39e 2836 struct type *p_array_type;
14f9c5c9 2837
556bdfd4 2838 p_array_type = desc_data_target_type (type);
14f9c5c9
AS
2839
2840 k = ada_array_arity (type);
2841 if (k == 0)
4c4b4cd2 2842 return NULL;
d2e4a39e 2843
4c4b4cd2 2844 /* Initially p_array_type = elt_type(*)[]...(k times)...[]. */
14f9c5c9 2845 if (nindices >= 0 && k > nindices)
4c4b4cd2 2846 k = nindices;
d2e4a39e 2847 while (k > 0 && p_array_type != NULL)
4c4b4cd2 2848 {
61ee279c 2849 p_array_type = ada_check_typedef (TYPE_TARGET_TYPE (p_array_type));
4c4b4cd2
PH
2850 k -= 1;
2851 }
14f9c5c9
AS
2852 return p_array_type;
2853 }
2854 else if (TYPE_CODE (type) == TYPE_CODE_ARRAY)
2855 {
2856 while (nindices != 0 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
4c4b4cd2
PH
2857 {
2858 type = TYPE_TARGET_TYPE (type);
2859 nindices -= 1;
2860 }
14f9c5c9
AS
2861 return type;
2862 }
2863
2864 return NULL;
2865}
2866
4c4b4cd2 2867/* The type of nth index in arrays of given type (n numbering from 1).
dd19d49e
UW
2868 Does not examine memory. Throws an error if N is invalid or TYPE
2869 is not an array type. NAME is the name of the Ada attribute being
2870 evaluated ('range, 'first, 'last, or 'length); it is used in building
2871 the error message. */
14f9c5c9 2872
1eea4ebd
UW
2873static struct type *
2874ada_index_type (struct type *type, int n, const char *name)
14f9c5c9 2875{
4c4b4cd2
PH
2876 struct type *result_type;
2877
14f9c5c9
AS
2878 type = desc_base_type (type);
2879
1eea4ebd
UW
2880 if (n < 0 || n > ada_array_arity (type))
2881 error (_("invalid dimension number to '%s"), name);
14f9c5c9 2882
4c4b4cd2 2883 if (ada_is_simple_array_type (type))
14f9c5c9
AS
2884 {
2885 int i;
2886
2887 for (i = 1; i < n; i += 1)
4c4b4cd2 2888 type = TYPE_TARGET_TYPE (type);
262452ec 2889 result_type = TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type));
4c4b4cd2
PH
2890 /* FIXME: The stabs type r(0,0);bound;bound in an array type
2891 has a target type of TYPE_CODE_UNDEF. We compensate here, but
76a01679 2892 perhaps stabsread.c would make more sense. */
1eea4ebd
UW
2893 if (result_type && TYPE_CODE (result_type) == TYPE_CODE_UNDEF)
2894 result_type = NULL;
14f9c5c9 2895 }
d2e4a39e 2896 else
1eea4ebd
UW
2897 {
2898 result_type = desc_index_type (desc_bounds_type (type), n);
2899 if (result_type == NULL)
2900 error (_("attempt to take bound of something that is not an array"));
2901 }
2902
2903 return result_type;
14f9c5c9
AS
2904}
2905
2906/* Given that arr is an array type, returns the lower bound of the
2907 Nth index (numbering from 1) if WHICH is 0, and the upper bound if
4c4b4cd2 2908 WHICH is 1. This returns bounds 0 .. -1 if ARR_TYPE is an
1eea4ebd
UW
2909 array-descriptor type. It works for other arrays with bounds supplied
2910 by run-time quantities other than discriminants. */
14f9c5c9 2911
abb68b3e 2912static LONGEST
fb5e3d5c 2913ada_array_bound_from_type (struct type *arr_type, int n, int which)
14f9c5c9 2914{
8a48ac95 2915 struct type *type, *index_type_desc, *index_type;
1ce677a4 2916 int i;
262452ec
JK
2917
2918 gdb_assert (which == 0 || which == 1);
14f9c5c9 2919
ad82864c
JB
2920 if (ada_is_constrained_packed_array_type (arr_type))
2921 arr_type = decode_constrained_packed_array_type (arr_type);
14f9c5c9 2922
4c4b4cd2 2923 if (arr_type == NULL || !ada_is_simple_array_type (arr_type))
1eea4ebd 2924 return (LONGEST) - which;
14f9c5c9
AS
2925
2926 if (TYPE_CODE (arr_type) == TYPE_CODE_PTR)
2927 type = TYPE_TARGET_TYPE (arr_type);
2928 else
2929 type = arr_type;
2930
bafffb51
JB
2931 if (TYPE_FIXED_INSTANCE (type))
2932 {
2933 /* The array has already been fixed, so we do not need to
2934 check the parallel ___XA type again. That encoding has
2935 already been applied, so ignore it now. */
2936 index_type_desc = NULL;
2937 }
2938 else
2939 {
2940 index_type_desc = ada_find_parallel_type (type, "___XA");
2941 ada_fixup_array_indexes_type (index_type_desc);
2942 }
2943
262452ec 2944 if (index_type_desc != NULL)
28c85d6c
JB
2945 index_type = to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, n - 1),
2946 NULL);
262452ec 2947 else
8a48ac95
JB
2948 {
2949 struct type *elt_type = check_typedef (type);
2950
2951 for (i = 1; i < n; i++)
2952 elt_type = check_typedef (TYPE_TARGET_TYPE (elt_type));
2953
2954 index_type = TYPE_INDEX_TYPE (elt_type);
2955 }
262452ec 2956
43bbcdc2
PH
2957 return
2958 (LONGEST) (which == 0
2959 ? ada_discrete_type_low_bound (index_type)
2960 : ada_discrete_type_high_bound (index_type));
14f9c5c9
AS
2961}
2962
2963/* Given that arr is an array value, returns the lower bound of the
abb68b3e
JB
2964 nth index (numbering from 1) if WHICH is 0, and the upper bound if
2965 WHICH is 1. This routine will also work for arrays with bounds
4c4b4cd2 2966 supplied by run-time quantities other than discriminants. */
14f9c5c9 2967
1eea4ebd 2968static LONGEST
4dc81987 2969ada_array_bound (struct value *arr, int n, int which)
14f9c5c9 2970{
eb479039
JB
2971 struct type *arr_type;
2972
2973 if (TYPE_CODE (check_typedef (value_type (arr))) == TYPE_CODE_PTR)
2974 arr = value_ind (arr);
2975 arr_type = value_enclosing_type (arr);
14f9c5c9 2976
ad82864c
JB
2977 if (ada_is_constrained_packed_array_type (arr_type))
2978 return ada_array_bound (decode_constrained_packed_array (arr), n, which);
4c4b4cd2 2979 else if (ada_is_simple_array_type (arr_type))
1eea4ebd 2980 return ada_array_bound_from_type (arr_type, n, which);
14f9c5c9 2981 else
1eea4ebd 2982 return value_as_long (desc_one_bound (desc_bounds (arr), n, which));
14f9c5c9
AS
2983}
2984
2985/* Given that arr is an array value, returns the length of the
2986 nth index. This routine will also work for arrays with bounds
4c4b4cd2
PH
2987 supplied by run-time quantities other than discriminants.
2988 Does not work for arrays indexed by enumeration types with representation
2989 clauses at the moment. */
14f9c5c9 2990
1eea4ebd 2991static LONGEST
d2e4a39e 2992ada_array_length (struct value *arr, int n)
14f9c5c9 2993{
eb479039
JB
2994 struct type *arr_type;
2995
2996 if (TYPE_CODE (check_typedef (value_type (arr))) == TYPE_CODE_PTR)
2997 arr = value_ind (arr);
2998 arr_type = value_enclosing_type (arr);
14f9c5c9 2999
ad82864c
JB
3000 if (ada_is_constrained_packed_array_type (arr_type))
3001 return ada_array_length (decode_constrained_packed_array (arr), n);
14f9c5c9 3002
4c4b4cd2 3003 if (ada_is_simple_array_type (arr_type))
1eea4ebd
UW
3004 return (ada_array_bound_from_type (arr_type, n, 1)
3005 - ada_array_bound_from_type (arr_type, n, 0) + 1);
14f9c5c9 3006 else
1eea4ebd
UW
3007 return (value_as_long (desc_one_bound (desc_bounds (arr), n, 1))
3008 - value_as_long (desc_one_bound (desc_bounds (arr), n, 0)) + 1);
4c4b4cd2
PH
3009}
3010
3011/* An empty array whose type is that of ARR_TYPE (an array type),
3012 with bounds LOW to LOW-1. */
3013
3014static struct value *
3015empty_array (struct type *arr_type, int low)
3016{
b0dd7688 3017 struct type *arr_type0 = ada_check_typedef (arr_type);
0c9c3474
SA
3018 struct type *index_type
3019 = create_static_range_type
3020 (NULL, TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (arr_type0)), low, low - 1);
b0dd7688 3021 struct type *elt_type = ada_array_element_type (arr_type0, 1);
5b4ee69b 3022
0b5d8877 3023 return allocate_value (create_array_type (NULL, elt_type, index_type));
14f9c5c9 3024}
14f9c5c9 3025\f
d2e4a39e 3026
4c4b4cd2 3027 /* Name resolution */
14f9c5c9 3028
4c4b4cd2
PH
3029/* The "decoded" name for the user-definable Ada operator corresponding
3030 to OP. */
14f9c5c9 3031
d2e4a39e 3032static const char *
4c4b4cd2 3033ada_decoded_op_name (enum exp_opcode op)
14f9c5c9
AS
3034{
3035 int i;
3036
4c4b4cd2 3037 for (i = 0; ada_opname_table[i].encoded != NULL; i += 1)
14f9c5c9
AS
3038 {
3039 if (ada_opname_table[i].op == op)
4c4b4cd2 3040 return ada_opname_table[i].decoded;
14f9c5c9 3041 }
323e0a4a 3042 error (_("Could not find operator name for opcode"));
14f9c5c9
AS
3043}
3044
3045
4c4b4cd2
PH
3046/* Same as evaluate_type (*EXP), but resolves ambiguous symbol
3047 references (marked by OP_VAR_VALUE nodes in which the symbol has an
3048 undefined namespace) and converts operators that are
3049 user-defined into appropriate function calls. If CONTEXT_TYPE is
14f9c5c9
AS
3050 non-null, it provides a preferred result type [at the moment, only
3051 type void has any effect---causing procedures to be preferred over
3052 functions in calls]. A null CONTEXT_TYPE indicates that a non-void
4c4b4cd2 3053 return type is preferred. May change (expand) *EXP. */
14f9c5c9 3054
4c4b4cd2
PH
3055static void
3056resolve (struct expression **expp, int void_context_p)
14f9c5c9 3057{
30b15541
UW
3058 struct type *context_type = NULL;
3059 int pc = 0;
3060
3061 if (void_context_p)
3062 context_type = builtin_type ((*expp)->gdbarch)->builtin_void;
3063
3064 resolve_subexp (expp, &pc, 1, context_type);
14f9c5c9
AS
3065}
3066
4c4b4cd2
PH
3067/* Resolve the operator of the subexpression beginning at
3068 position *POS of *EXPP. "Resolving" consists of replacing
3069 the symbols that have undefined namespaces in OP_VAR_VALUE nodes
3070 with their resolutions, replacing built-in operators with
3071 function calls to user-defined operators, where appropriate, and,
3072 when DEPROCEDURE_P is non-zero, converting function-valued variables
3073 into parameterless calls. May expand *EXPP. The CONTEXT_TYPE functions
3074 are as in ada_resolve, above. */
14f9c5c9 3075
d2e4a39e 3076static struct value *
4c4b4cd2 3077resolve_subexp (struct expression **expp, int *pos, int deprocedure_p,
76a01679 3078 struct type *context_type)
14f9c5c9
AS
3079{
3080 int pc = *pos;
3081 int i;
4c4b4cd2 3082 struct expression *exp; /* Convenience: == *expp. */
14f9c5c9 3083 enum exp_opcode op = (*expp)->elts[pc].opcode;
4c4b4cd2
PH
3084 struct value **argvec; /* Vector of operand types (alloca'ed). */
3085 int nargs; /* Number of operands. */
52ce6436 3086 int oplen;
14f9c5c9
AS
3087
3088 argvec = NULL;
3089 nargs = 0;
3090 exp = *expp;
3091
52ce6436
PH
3092 /* Pass one: resolve operands, saving their types and updating *pos,
3093 if needed. */
14f9c5c9
AS
3094 switch (op)
3095 {
4c4b4cd2
PH
3096 case OP_FUNCALL:
3097 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
76a01679
JB
3098 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
3099 *pos += 7;
4c4b4cd2
PH
3100 else
3101 {
3102 *pos += 3;
3103 resolve_subexp (expp, pos, 0, NULL);
3104 }
3105 nargs = longest_to_int (exp->elts[pc + 1].longconst);
14f9c5c9
AS
3106 break;
3107
14f9c5c9 3108 case UNOP_ADDR:
4c4b4cd2
PH
3109 *pos += 1;
3110 resolve_subexp (expp, pos, 0, NULL);
3111 break;
3112
52ce6436
PH
3113 case UNOP_QUAL:
3114 *pos += 3;
17466c1a 3115 resolve_subexp (expp, pos, 1, check_typedef (exp->elts[pc + 1].type));
4c4b4cd2
PH
3116 break;
3117
52ce6436 3118 case OP_ATR_MODULUS:
4c4b4cd2
PH
3119 case OP_ATR_SIZE:
3120 case OP_ATR_TAG:
4c4b4cd2
PH
3121 case OP_ATR_FIRST:
3122 case OP_ATR_LAST:
3123 case OP_ATR_LENGTH:
3124 case OP_ATR_POS:
3125 case OP_ATR_VAL:
4c4b4cd2
PH
3126 case OP_ATR_MIN:
3127 case OP_ATR_MAX:
52ce6436
PH
3128 case TERNOP_IN_RANGE:
3129 case BINOP_IN_BOUNDS:
3130 case UNOP_IN_RANGE:
3131 case OP_AGGREGATE:
3132 case OP_OTHERS:
3133 case OP_CHOICES:
3134 case OP_POSITIONAL:
3135 case OP_DISCRETE_RANGE:
3136 case OP_NAME:
3137 ada_forward_operator_length (exp, pc, &oplen, &nargs);
3138 *pos += oplen;
14f9c5c9
AS
3139 break;
3140
3141 case BINOP_ASSIGN:
3142 {
4c4b4cd2
PH
3143 struct value *arg1;
3144
3145 *pos += 1;
3146 arg1 = resolve_subexp (expp, pos, 0, NULL);
3147 if (arg1 == NULL)
3148 resolve_subexp (expp, pos, 1, NULL);
3149 else
df407dfe 3150 resolve_subexp (expp, pos, 1, value_type (arg1));
4c4b4cd2 3151 break;
14f9c5c9
AS
3152 }
3153
4c4b4cd2 3154 case UNOP_CAST:
4c4b4cd2
PH
3155 *pos += 3;
3156 nargs = 1;
3157 break;
14f9c5c9 3158
4c4b4cd2
PH
3159 case BINOP_ADD:
3160 case BINOP_SUB:
3161 case BINOP_MUL:
3162 case BINOP_DIV:
3163 case BINOP_REM:
3164 case BINOP_MOD:
3165 case BINOP_EXP:
3166 case BINOP_CONCAT:
3167 case BINOP_LOGICAL_AND:
3168 case BINOP_LOGICAL_OR:
3169 case BINOP_BITWISE_AND:
3170 case BINOP_BITWISE_IOR:
3171 case BINOP_BITWISE_XOR:
14f9c5c9 3172
4c4b4cd2
PH
3173 case BINOP_EQUAL:
3174 case BINOP_NOTEQUAL:
3175 case BINOP_LESS:
3176 case BINOP_GTR:
3177 case BINOP_LEQ:
3178 case BINOP_GEQ:
14f9c5c9 3179
4c4b4cd2
PH
3180 case BINOP_REPEAT:
3181 case BINOP_SUBSCRIPT:
3182 case BINOP_COMMA:
40c8aaa9
JB
3183 *pos += 1;
3184 nargs = 2;
3185 break;
14f9c5c9 3186
4c4b4cd2
PH
3187 case UNOP_NEG:
3188 case UNOP_PLUS:
3189 case UNOP_LOGICAL_NOT:
3190 case UNOP_ABS:
3191 case UNOP_IND:
3192 *pos += 1;
3193 nargs = 1;
3194 break;
14f9c5c9 3195
4c4b4cd2
PH
3196 case OP_LONG:
3197 case OP_DOUBLE:
3198 case OP_VAR_VALUE:
3199 *pos += 4;
3200 break;
14f9c5c9 3201
4c4b4cd2
PH
3202 case OP_TYPE:
3203 case OP_BOOL:
3204 case OP_LAST:
4c4b4cd2
PH
3205 case OP_INTERNALVAR:
3206 *pos += 3;
3207 break;
14f9c5c9 3208
4c4b4cd2
PH
3209 case UNOP_MEMVAL:
3210 *pos += 3;
3211 nargs = 1;
3212 break;
3213
67f3407f
DJ
3214 case OP_REGISTER:
3215 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
3216 break;
3217
4c4b4cd2
PH
3218 case STRUCTOP_STRUCT:
3219 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
3220 nargs = 1;
3221 break;
3222
4c4b4cd2 3223 case TERNOP_SLICE:
4c4b4cd2
PH
3224 *pos += 1;
3225 nargs = 3;
3226 break;
3227
52ce6436 3228 case OP_STRING:
14f9c5c9 3229 break;
4c4b4cd2
PH
3230
3231 default:
323e0a4a 3232 error (_("Unexpected operator during name resolution"));
14f9c5c9
AS
3233 }
3234
76a01679 3235 argvec = (struct value * *) alloca (sizeof (struct value *) * (nargs + 1));
4c4b4cd2
PH
3236 for (i = 0; i < nargs; i += 1)
3237 argvec[i] = resolve_subexp (expp, pos, 1, NULL);
3238 argvec[i] = NULL;
3239 exp = *expp;
3240
3241 /* Pass two: perform any resolution on principal operator. */
14f9c5c9
AS
3242 switch (op)
3243 {
3244 default:
3245 break;
3246
14f9c5c9 3247 case OP_VAR_VALUE:
4c4b4cd2 3248 if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
76a01679
JB
3249 {
3250 struct ada_symbol_info *candidates;
3251 int n_candidates;
3252
3253 n_candidates =
3254 ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME
3255 (exp->elts[pc + 2].symbol),
3256 exp->elts[pc + 1].block, VAR_DOMAIN,
4eeaa230 3257 &candidates);
76a01679
JB
3258
3259 if (n_candidates > 1)
3260 {
3261 /* Types tend to get re-introduced locally, so if there
3262 are any local symbols that are not types, first filter
3263 out all types. */
3264 int j;
3265 for (j = 0; j < n_candidates; j += 1)
3266 switch (SYMBOL_CLASS (candidates[j].sym))
3267 {
3268 case LOC_REGISTER:
3269 case LOC_ARG:
3270 case LOC_REF_ARG:
76a01679
JB
3271 case LOC_REGPARM_ADDR:
3272 case LOC_LOCAL:
76a01679 3273 case LOC_COMPUTED:
76a01679
JB
3274 goto FoundNonType;
3275 default:
3276 break;
3277 }
3278 FoundNonType:
3279 if (j < n_candidates)
3280 {
3281 j = 0;
3282 while (j < n_candidates)
3283 {
3284 if (SYMBOL_CLASS (candidates[j].sym) == LOC_TYPEDEF)
3285 {
3286 candidates[j] = candidates[n_candidates - 1];
3287 n_candidates -= 1;
3288 }
3289 else
3290 j += 1;
3291 }
3292 }
3293 }
3294
3295 if (n_candidates == 0)
323e0a4a 3296 error (_("No definition found for %s"),
76a01679
JB
3297 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
3298 else if (n_candidates == 1)
3299 i = 0;
3300 else if (deprocedure_p
3301 && !is_nonfunction (candidates, n_candidates))
3302 {
06d5cf63
JB
3303 i = ada_resolve_function
3304 (candidates, n_candidates, NULL, 0,
3305 SYMBOL_LINKAGE_NAME (exp->elts[pc + 2].symbol),
3306 context_type);
76a01679 3307 if (i < 0)
323e0a4a 3308 error (_("Could not find a match for %s"),
76a01679
JB
3309 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
3310 }
3311 else
3312 {
323e0a4a 3313 printf_filtered (_("Multiple matches for %s\n"),
76a01679
JB
3314 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
3315 user_select_syms (candidates, n_candidates, 1);
3316 i = 0;
3317 }
3318
3319 exp->elts[pc + 1].block = candidates[i].block;
3320 exp->elts[pc + 2].symbol = candidates[i].sym;
1265e4aa
JB
3321 if (innermost_block == NULL
3322 || contained_in (candidates[i].block, innermost_block))
76a01679
JB
3323 innermost_block = candidates[i].block;
3324 }
3325
3326 if (deprocedure_p
3327 && (TYPE_CODE (SYMBOL_TYPE (exp->elts[pc + 2].symbol))
3328 == TYPE_CODE_FUNC))
3329 {
3330 replace_operator_with_call (expp, pc, 0, 0,
3331 exp->elts[pc + 2].symbol,
3332 exp->elts[pc + 1].block);
3333 exp = *expp;
3334 }
14f9c5c9
AS
3335 break;
3336
3337 case OP_FUNCALL:
3338 {
4c4b4cd2 3339 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
76a01679 3340 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
4c4b4cd2
PH
3341 {
3342 struct ada_symbol_info *candidates;
3343 int n_candidates;
3344
3345 n_candidates =
76a01679
JB
3346 ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME
3347 (exp->elts[pc + 5].symbol),
3348 exp->elts[pc + 4].block, VAR_DOMAIN,
4eeaa230 3349 &candidates);
4c4b4cd2
PH
3350 if (n_candidates == 1)
3351 i = 0;
3352 else
3353 {
06d5cf63
JB
3354 i = ada_resolve_function
3355 (candidates, n_candidates,
3356 argvec, nargs,
3357 SYMBOL_LINKAGE_NAME (exp->elts[pc + 5].symbol),
3358 context_type);
4c4b4cd2 3359 if (i < 0)
323e0a4a 3360 error (_("Could not find a match for %s"),
4c4b4cd2
PH
3361 SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol));
3362 }
3363
3364 exp->elts[pc + 4].block = candidates[i].block;
3365 exp->elts[pc + 5].symbol = candidates[i].sym;
1265e4aa
JB
3366 if (innermost_block == NULL
3367 || contained_in (candidates[i].block, innermost_block))
4c4b4cd2
PH
3368 innermost_block = candidates[i].block;
3369 }
14f9c5c9
AS
3370 }
3371 break;
3372 case BINOP_ADD:
3373 case BINOP_SUB:
3374 case BINOP_MUL:
3375 case BINOP_DIV:
3376 case BINOP_REM:
3377 case BINOP_MOD:
3378 case BINOP_CONCAT:
3379 case BINOP_BITWISE_AND:
3380 case BINOP_BITWISE_IOR:
3381 case BINOP_BITWISE_XOR:
3382 case BINOP_EQUAL:
3383 case BINOP_NOTEQUAL:
3384 case BINOP_LESS:
3385 case BINOP_GTR:
3386 case BINOP_LEQ:
3387 case BINOP_GEQ:
3388 case BINOP_EXP:
3389 case UNOP_NEG:
3390 case UNOP_PLUS:
3391 case UNOP_LOGICAL_NOT:
3392 case UNOP_ABS:
3393 if (possible_user_operator_p (op, argvec))
4c4b4cd2
PH
3394 {
3395 struct ada_symbol_info *candidates;
3396 int n_candidates;
3397
3398 n_candidates =
3399 ada_lookup_symbol_list (ada_encode (ada_decoded_op_name (op)),
3400 (struct block *) NULL, VAR_DOMAIN,
4eeaa230 3401 &candidates);
4c4b4cd2 3402 i = ada_resolve_function (candidates, n_candidates, argvec, nargs,
76a01679 3403 ada_decoded_op_name (op), NULL);
4c4b4cd2
PH
3404 if (i < 0)
3405 break;
3406
76a01679
JB
3407 replace_operator_with_call (expp, pc, nargs, 1,
3408 candidates[i].sym, candidates[i].block);
4c4b4cd2
PH
3409 exp = *expp;
3410 }
14f9c5c9 3411 break;
4c4b4cd2
PH
3412
3413 case OP_TYPE:
b3dbf008 3414 case OP_REGISTER:
4c4b4cd2 3415 return NULL;
14f9c5c9
AS
3416 }
3417
3418 *pos = pc;
3419 return evaluate_subexp_type (exp, pos);
3420}
3421
3422/* Return non-zero if formal type FTYPE matches actual type ATYPE. If
4c4b4cd2 3423 MAY_DEREF is non-zero, the formal may be a pointer and the actual
5b3d5b7d 3424 a non-pointer. */
14f9c5c9 3425/* The term "match" here is rather loose. The match is heuristic and
5b3d5b7d 3426 liberal. */
14f9c5c9
AS
3427
3428static int
4dc81987 3429ada_type_match (struct type *ftype, struct type *atype, int may_deref)
14f9c5c9 3430{
61ee279c
PH
3431 ftype = ada_check_typedef (ftype);
3432 atype = ada_check_typedef (atype);
14f9c5c9
AS
3433
3434 if (TYPE_CODE (ftype) == TYPE_CODE_REF)
3435 ftype = TYPE_TARGET_TYPE (ftype);
3436 if (TYPE_CODE (atype) == TYPE_CODE_REF)
3437 atype = TYPE_TARGET_TYPE (atype);
3438
d2e4a39e 3439 switch (TYPE_CODE (ftype))
14f9c5c9
AS
3440 {
3441 default:
5b3d5b7d 3442 return TYPE_CODE (ftype) == TYPE_CODE (atype);
14f9c5c9
AS
3443 case TYPE_CODE_PTR:
3444 if (TYPE_CODE (atype) == TYPE_CODE_PTR)
4c4b4cd2
PH
3445 return ada_type_match (TYPE_TARGET_TYPE (ftype),
3446 TYPE_TARGET_TYPE (atype), 0);
d2e4a39e 3447 else
1265e4aa
JB
3448 return (may_deref
3449 && ada_type_match (TYPE_TARGET_TYPE (ftype), atype, 0));
14f9c5c9
AS
3450 case TYPE_CODE_INT:
3451 case TYPE_CODE_ENUM:
3452 case TYPE_CODE_RANGE:
3453 switch (TYPE_CODE (atype))
4c4b4cd2
PH
3454 {
3455 case TYPE_CODE_INT:
3456 case TYPE_CODE_ENUM:
3457 case TYPE_CODE_RANGE:
3458 return 1;
3459 default:
3460 return 0;
3461 }
14f9c5c9
AS
3462
3463 case TYPE_CODE_ARRAY:
d2e4a39e 3464 return (TYPE_CODE (atype) == TYPE_CODE_ARRAY
4c4b4cd2 3465 || ada_is_array_descriptor_type (atype));
14f9c5c9
AS
3466
3467 case TYPE_CODE_STRUCT:
4c4b4cd2
PH
3468 if (ada_is_array_descriptor_type (ftype))
3469 return (TYPE_CODE (atype) == TYPE_CODE_ARRAY
3470 || ada_is_array_descriptor_type (atype));
14f9c5c9 3471 else
4c4b4cd2
PH
3472 return (TYPE_CODE (atype) == TYPE_CODE_STRUCT
3473 && !ada_is_array_descriptor_type (atype));
14f9c5c9
AS
3474
3475 case TYPE_CODE_UNION:
3476 case TYPE_CODE_FLT:
3477 return (TYPE_CODE (atype) == TYPE_CODE (ftype));
3478 }
3479}
3480
3481/* Return non-zero if the formals of FUNC "sufficiently match" the
3482 vector of actual argument types ACTUALS of size N_ACTUALS. FUNC
3483 may also be an enumeral, in which case it is treated as a 0-
4c4b4cd2 3484 argument function. */
14f9c5c9
AS
3485
3486static int
d2e4a39e 3487ada_args_match (struct symbol *func, struct value **actuals, int n_actuals)
14f9c5c9
AS
3488{
3489 int i;
d2e4a39e 3490 struct type *func_type = SYMBOL_TYPE (func);
14f9c5c9 3491
1265e4aa
JB
3492 if (SYMBOL_CLASS (func) == LOC_CONST
3493 && TYPE_CODE (func_type) == TYPE_CODE_ENUM)
14f9c5c9
AS
3494 return (n_actuals == 0);
3495 else if (func_type == NULL || TYPE_CODE (func_type) != TYPE_CODE_FUNC)
3496 return 0;
3497
3498 if (TYPE_NFIELDS (func_type) != n_actuals)
3499 return 0;
3500
3501 for (i = 0; i < n_actuals; i += 1)
3502 {
4c4b4cd2 3503 if (actuals[i] == NULL)
76a01679
JB
3504 return 0;
3505 else
3506 {
5b4ee69b
MS
3507 struct type *ftype = ada_check_typedef (TYPE_FIELD_TYPE (func_type,
3508 i));
df407dfe 3509 struct type *atype = ada_check_typedef (value_type (actuals[i]));
4c4b4cd2 3510
76a01679
JB
3511 if (!ada_type_match (ftype, atype, 1))
3512 return 0;
3513 }
14f9c5c9
AS
3514 }
3515 return 1;
3516}
3517
3518/* False iff function type FUNC_TYPE definitely does not produce a value
3519 compatible with type CONTEXT_TYPE. Conservatively returns 1 if
3520 FUNC_TYPE is not a valid function type with a non-null return type
3521 or an enumerated type. A null CONTEXT_TYPE indicates any non-void type. */
3522
3523static int
d2e4a39e 3524return_match (struct type *func_type, struct type *context_type)
14f9c5c9 3525{
d2e4a39e 3526 struct type *return_type;
14f9c5c9
AS
3527
3528 if (func_type == NULL)
3529 return 1;
3530
4c4b4cd2 3531 if (TYPE_CODE (func_type) == TYPE_CODE_FUNC)
18af8284 3532 return_type = get_base_type (TYPE_TARGET_TYPE (func_type));
4c4b4cd2 3533 else
18af8284 3534 return_type = get_base_type (func_type);
14f9c5c9
AS
3535 if (return_type == NULL)
3536 return 1;
3537
18af8284 3538 context_type = get_base_type (context_type);
14f9c5c9
AS
3539
3540 if (TYPE_CODE (return_type) == TYPE_CODE_ENUM)
3541 return context_type == NULL || return_type == context_type;
3542 else if (context_type == NULL)
3543 return TYPE_CODE (return_type) != TYPE_CODE_VOID;
3544 else
3545 return TYPE_CODE (return_type) == TYPE_CODE (context_type);
3546}
3547
3548
4c4b4cd2 3549/* Returns the index in SYMS[0..NSYMS-1] that contains the symbol for the
14f9c5c9 3550 function (if any) that matches the types of the NARGS arguments in
4c4b4cd2
PH
3551 ARGS. If CONTEXT_TYPE is non-null and there is at least one match
3552 that returns that type, then eliminate matches that don't. If
3553 CONTEXT_TYPE is void and there is at least one match that does not
3554 return void, eliminate all matches that do.
3555
14f9c5c9
AS
3556 Asks the user if there is more than one match remaining. Returns -1
3557 if there is no such symbol or none is selected. NAME is used
4c4b4cd2
PH
3558 solely for messages. May re-arrange and modify SYMS in
3559 the process; the index returned is for the modified vector. */
14f9c5c9 3560
4c4b4cd2
PH
3561static int
3562ada_resolve_function (struct ada_symbol_info syms[],
3563 int nsyms, struct value **args, int nargs,
3564 const char *name, struct type *context_type)
14f9c5c9 3565{
30b15541 3566 int fallback;
14f9c5c9 3567 int k;
4c4b4cd2 3568 int m; /* Number of hits */
14f9c5c9 3569
d2e4a39e 3570 m = 0;
30b15541
UW
3571 /* In the first pass of the loop, we only accept functions matching
3572 context_type. If none are found, we add a second pass of the loop
3573 where every function is accepted. */
3574 for (fallback = 0; m == 0 && fallback < 2; fallback++)
14f9c5c9
AS
3575 {
3576 for (k = 0; k < nsyms; k += 1)
4c4b4cd2 3577 {
61ee279c 3578 struct type *type = ada_check_typedef (SYMBOL_TYPE (syms[k].sym));
4c4b4cd2
PH
3579
3580 if (ada_args_match (syms[k].sym, args, nargs)
30b15541 3581 && (fallback || return_match (type, context_type)))
4c4b4cd2
PH
3582 {
3583 syms[m] = syms[k];
3584 m += 1;
3585 }
3586 }
14f9c5c9
AS
3587 }
3588
3589 if (m == 0)
3590 return -1;
3591 else if (m > 1)
3592 {
323e0a4a 3593 printf_filtered (_("Multiple matches for %s\n"), name);
4c4b4cd2 3594 user_select_syms (syms, m, 1);
14f9c5c9
AS
3595 return 0;
3596 }
3597 return 0;
3598}
3599
4c4b4cd2
PH
3600/* Returns true (non-zero) iff decoded name N0 should appear before N1
3601 in a listing of choices during disambiguation (see sort_choices, below).
3602 The idea is that overloadings of a subprogram name from the
3603 same package should sort in their source order. We settle for ordering
3604 such symbols by their trailing number (__N or $N). */
3605
14f9c5c9 3606static int
0d5cff50 3607encoded_ordered_before (const char *N0, const char *N1)
14f9c5c9
AS
3608{
3609 if (N1 == NULL)
3610 return 0;
3611 else if (N0 == NULL)
3612 return 1;
3613 else
3614 {
3615 int k0, k1;
5b4ee69b 3616
d2e4a39e 3617 for (k0 = strlen (N0) - 1; k0 > 0 && isdigit (N0[k0]); k0 -= 1)
4c4b4cd2 3618 ;
d2e4a39e 3619 for (k1 = strlen (N1) - 1; k1 > 0 && isdigit (N1[k1]); k1 -= 1)
4c4b4cd2 3620 ;
d2e4a39e 3621 if ((N0[k0] == '_' || N0[k0] == '$') && N0[k0 + 1] != '\000'
4c4b4cd2
PH
3622 && (N1[k1] == '_' || N1[k1] == '$') && N1[k1 + 1] != '\000')
3623 {
3624 int n0, n1;
5b4ee69b 3625
4c4b4cd2
PH
3626 n0 = k0;
3627 while (N0[n0] == '_' && n0 > 0 && N0[n0 - 1] == '_')
3628 n0 -= 1;
3629 n1 = k1;
3630 while (N1[n1] == '_' && n1 > 0 && N1[n1 - 1] == '_')
3631 n1 -= 1;
3632 if (n0 == n1 && strncmp (N0, N1, n0) == 0)
3633 return (atoi (N0 + k0 + 1) < atoi (N1 + k1 + 1));
3634 }
14f9c5c9
AS
3635 return (strcmp (N0, N1) < 0);
3636 }
3637}
d2e4a39e 3638
4c4b4cd2
PH
3639/* Sort SYMS[0..NSYMS-1] to put the choices in a canonical order by the
3640 encoded names. */
3641
d2e4a39e 3642static void
4c4b4cd2 3643sort_choices (struct ada_symbol_info syms[], int nsyms)
14f9c5c9 3644{
4c4b4cd2 3645 int i;
5b4ee69b 3646
d2e4a39e 3647 for (i = 1; i < nsyms; i += 1)
14f9c5c9 3648 {
4c4b4cd2 3649 struct ada_symbol_info sym = syms[i];
14f9c5c9
AS
3650 int j;
3651
d2e4a39e 3652 for (j = i - 1; j >= 0; j -= 1)
4c4b4cd2
PH
3653 {
3654 if (encoded_ordered_before (SYMBOL_LINKAGE_NAME (syms[j].sym),
3655 SYMBOL_LINKAGE_NAME (sym.sym)))
3656 break;
3657 syms[j + 1] = syms[j];
3658 }
d2e4a39e 3659 syms[j + 1] = sym;
14f9c5c9
AS
3660 }
3661}
3662
4c4b4cd2
PH
3663/* Given a list of NSYMS symbols in SYMS, select up to MAX_RESULTS>0
3664 by asking the user (if necessary), returning the number selected,
3665 and setting the first elements of SYMS items. Error if no symbols
3666 selected. */
14f9c5c9
AS
3667
3668/* NOTE: Adapted from decode_line_2 in symtab.c, with which it ought
4c4b4cd2 3669 to be re-integrated one of these days. */
14f9c5c9
AS
3670
3671int
4c4b4cd2 3672user_select_syms (struct ada_symbol_info *syms, int nsyms, int max_results)
14f9c5c9
AS
3673{
3674 int i;
d2e4a39e 3675 int *chosen = (int *) alloca (sizeof (int) * nsyms);
14f9c5c9
AS
3676 int n_chosen;
3677 int first_choice = (max_results == 1) ? 1 : 2;
717d2f5a 3678 const char *select_mode = multiple_symbols_select_mode ();
14f9c5c9
AS
3679
3680 if (max_results < 1)
323e0a4a 3681 error (_("Request to select 0 symbols!"));
14f9c5c9
AS
3682 if (nsyms <= 1)
3683 return nsyms;
3684
717d2f5a
JB
3685 if (select_mode == multiple_symbols_cancel)
3686 error (_("\
3687canceled because the command is ambiguous\n\
3688See set/show multiple-symbol."));
3689
3690 /* If select_mode is "all", then return all possible symbols.
3691 Only do that if more than one symbol can be selected, of course.
3692 Otherwise, display the menu as usual. */
3693 if (select_mode == multiple_symbols_all && max_results > 1)
3694 return nsyms;
3695
323e0a4a 3696 printf_unfiltered (_("[0] cancel\n"));
14f9c5c9 3697 if (max_results > 1)
323e0a4a 3698 printf_unfiltered (_("[1] all\n"));
14f9c5c9 3699
4c4b4cd2 3700 sort_choices (syms, nsyms);
14f9c5c9
AS
3701
3702 for (i = 0; i < nsyms; i += 1)
3703 {
4c4b4cd2
PH
3704 if (syms[i].sym == NULL)
3705 continue;
3706
3707 if (SYMBOL_CLASS (syms[i].sym) == LOC_BLOCK)
3708 {
76a01679
JB
3709 struct symtab_and_line sal =
3710 find_function_start_sal (syms[i].sym, 1);
5b4ee69b 3711
323e0a4a
AC
3712 if (sal.symtab == NULL)
3713 printf_unfiltered (_("[%d] %s at <no source file available>:%d\n"),
3714 i + first_choice,
3715 SYMBOL_PRINT_NAME (syms[i].sym),
3716 sal.line);
3717 else
3718 printf_unfiltered (_("[%d] %s at %s:%d\n"), i + first_choice,
3719 SYMBOL_PRINT_NAME (syms[i].sym),
05cba821
JK
3720 symtab_to_filename_for_display (sal.symtab),
3721 sal.line);
4c4b4cd2
PH
3722 continue;
3723 }
d2e4a39e 3724 else
4c4b4cd2
PH
3725 {
3726 int is_enumeral =
3727 (SYMBOL_CLASS (syms[i].sym) == LOC_CONST
3728 && SYMBOL_TYPE (syms[i].sym) != NULL
3729 && TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) == TYPE_CODE_ENUM);
1994afbf
DE
3730 struct symtab *symtab = NULL;
3731
3732 if (SYMBOL_OBJFILE_OWNED (syms[i].sym))
3733 symtab = symbol_symtab (syms[i].sym);
4c4b4cd2
PH
3734
3735 if (SYMBOL_LINE (syms[i].sym) != 0 && symtab != NULL)
323e0a4a 3736 printf_unfiltered (_("[%d] %s at %s:%d\n"),
4c4b4cd2
PH
3737 i + first_choice,
3738 SYMBOL_PRINT_NAME (syms[i].sym),
05cba821
JK
3739 symtab_to_filename_for_display (symtab),
3740 SYMBOL_LINE (syms[i].sym));
76a01679
JB
3741 else if (is_enumeral
3742 && TYPE_NAME (SYMBOL_TYPE (syms[i].sym)) != NULL)
4c4b4cd2 3743 {
a3f17187 3744 printf_unfiltered (("[%d] "), i + first_choice);
76a01679 3745 ada_print_type (SYMBOL_TYPE (syms[i].sym), NULL,
79d43c61 3746 gdb_stdout, -1, 0, &type_print_raw_options);
323e0a4a 3747 printf_unfiltered (_("'(%s) (enumeral)\n"),
4c4b4cd2
PH
3748 SYMBOL_PRINT_NAME (syms[i].sym));
3749 }
3750 else if (symtab != NULL)
3751 printf_unfiltered (is_enumeral
323e0a4a
AC
3752 ? _("[%d] %s in %s (enumeral)\n")
3753 : _("[%d] %s at %s:?\n"),
4c4b4cd2
PH
3754 i + first_choice,
3755 SYMBOL_PRINT_NAME (syms[i].sym),
05cba821 3756 symtab_to_filename_for_display (symtab));
4c4b4cd2
PH
3757 else
3758 printf_unfiltered (is_enumeral
323e0a4a
AC
3759 ? _("[%d] %s (enumeral)\n")
3760 : _("[%d] %s at ?\n"),
4c4b4cd2
PH
3761 i + first_choice,
3762 SYMBOL_PRINT_NAME (syms[i].sym));
3763 }
14f9c5c9 3764 }
d2e4a39e 3765
14f9c5c9 3766 n_chosen = get_selections (chosen, nsyms, max_results, max_results > 1,
4c4b4cd2 3767 "overload-choice");
14f9c5c9
AS
3768
3769 for (i = 0; i < n_chosen; i += 1)
4c4b4cd2 3770 syms[i] = syms[chosen[i]];
14f9c5c9
AS
3771
3772 return n_chosen;
3773}
3774
3775/* Read and validate a set of numeric choices from the user in the
4c4b4cd2 3776 range 0 .. N_CHOICES-1. Place the results in increasing
14f9c5c9
AS
3777 order in CHOICES[0 .. N-1], and return N.
3778
3779 The user types choices as a sequence of numbers on one line
3780 separated by blanks, encoding them as follows:
3781
4c4b4cd2 3782 + A choice of 0 means to cancel the selection, throwing an error.
14f9c5c9
AS
3783 + If IS_ALL_CHOICE, a choice of 1 selects the entire set 0 .. N_CHOICES-1.
3784 + The user chooses k by typing k+IS_ALL_CHOICE+1.
3785
4c4b4cd2 3786 The user is not allowed to choose more than MAX_RESULTS values.
14f9c5c9
AS
3787
3788 ANNOTATION_SUFFIX, if present, is used to annotate the input
4c4b4cd2 3789 prompts (for use with the -f switch). */
14f9c5c9
AS
3790
3791int
d2e4a39e 3792get_selections (int *choices, int n_choices, int max_results,
4c4b4cd2 3793 int is_all_choice, char *annotation_suffix)
14f9c5c9 3794{
d2e4a39e 3795 char *args;
0bcd0149 3796 char *prompt;
14f9c5c9
AS
3797 int n_chosen;
3798 int first_choice = is_all_choice ? 2 : 1;
d2e4a39e 3799
14f9c5c9
AS
3800 prompt = getenv ("PS2");
3801 if (prompt == NULL)
0bcd0149 3802 prompt = "> ";
14f9c5c9 3803
0bcd0149 3804 args = command_line_input (prompt, 0, annotation_suffix);
d2e4a39e 3805
14f9c5c9 3806 if (args == NULL)
323e0a4a 3807 error_no_arg (_("one or more choice numbers"));
14f9c5c9
AS
3808
3809 n_chosen = 0;
76a01679 3810
4c4b4cd2
PH
3811 /* Set choices[0 .. n_chosen-1] to the users' choices in ascending
3812 order, as given in args. Choices are validated. */
14f9c5c9
AS
3813 while (1)
3814 {
d2e4a39e 3815 char *args2;
14f9c5c9
AS
3816 int choice, j;
3817
0fcd72ba 3818 args = skip_spaces (args);
14f9c5c9 3819 if (*args == '\0' && n_chosen == 0)
323e0a4a 3820 error_no_arg (_("one or more choice numbers"));
14f9c5c9 3821 else if (*args == '\0')
4c4b4cd2 3822 break;
14f9c5c9
AS
3823
3824 choice = strtol (args, &args2, 10);
d2e4a39e 3825 if (args == args2 || choice < 0
4c4b4cd2 3826 || choice > n_choices + first_choice - 1)
323e0a4a 3827 error (_("Argument must be choice number"));
14f9c5c9
AS
3828 args = args2;
3829
d2e4a39e 3830 if (choice == 0)
323e0a4a 3831 error (_("cancelled"));
14f9c5c9
AS
3832
3833 if (choice < first_choice)
4c4b4cd2
PH
3834 {
3835 n_chosen = n_choices;
3836 for (j = 0; j < n_choices; j += 1)
3837 choices[j] = j;
3838 break;
3839 }
14f9c5c9
AS
3840 choice -= first_choice;
3841
d2e4a39e 3842 for (j = n_chosen - 1; j >= 0 && choice < choices[j]; j -= 1)
4c4b4cd2
PH
3843 {
3844 }
14f9c5c9
AS
3845
3846 if (j < 0 || choice != choices[j])
4c4b4cd2
PH
3847 {
3848 int k;
5b4ee69b 3849
4c4b4cd2
PH
3850 for (k = n_chosen - 1; k > j; k -= 1)
3851 choices[k + 1] = choices[k];
3852 choices[j + 1] = choice;
3853 n_chosen += 1;
3854 }
14f9c5c9
AS
3855 }
3856
3857 if (n_chosen > max_results)
323e0a4a 3858 error (_("Select no more than %d of the above"), max_results);
d2e4a39e 3859
14f9c5c9
AS
3860 return n_chosen;
3861}
3862
4c4b4cd2
PH
3863/* Replace the operator of length OPLEN at position PC in *EXPP with a call
3864 on the function identified by SYM and BLOCK, and taking NARGS
3865 arguments. Update *EXPP as needed to hold more space. */
14f9c5c9
AS
3866
3867static void
d2e4a39e 3868replace_operator_with_call (struct expression **expp, int pc, int nargs,
4c4b4cd2 3869 int oplen, struct symbol *sym,
270140bd 3870 const struct block *block)
14f9c5c9
AS
3871{
3872 /* A new expression, with 6 more elements (3 for funcall, 4 for function
4c4b4cd2 3873 symbol, -oplen for operator being replaced). */
d2e4a39e 3874 struct expression *newexp = (struct expression *)
8c1a34e7 3875 xzalloc (sizeof (struct expression)
4c4b4cd2 3876 + EXP_ELEM_TO_BYTES ((*expp)->nelts + 7 - oplen));
d2e4a39e 3877 struct expression *exp = *expp;
14f9c5c9
AS
3878
3879 newexp->nelts = exp->nelts + 7 - oplen;
3880 newexp->language_defn = exp->language_defn;
3489610d 3881 newexp->gdbarch = exp->gdbarch;
14f9c5c9 3882 memcpy (newexp->elts, exp->elts, EXP_ELEM_TO_BYTES (pc));
d2e4a39e 3883 memcpy (newexp->elts + pc + 7, exp->elts + pc + oplen,
4c4b4cd2 3884 EXP_ELEM_TO_BYTES (exp->nelts - pc - oplen));
14f9c5c9
AS
3885
3886 newexp->elts[pc].opcode = newexp->elts[pc + 2].opcode = OP_FUNCALL;
3887 newexp->elts[pc + 1].longconst = (LONGEST) nargs;
3888
3889 newexp->elts[pc + 3].opcode = newexp->elts[pc + 6].opcode = OP_VAR_VALUE;
3890 newexp->elts[pc + 4].block = block;
3891 newexp->elts[pc + 5].symbol = sym;
3892
3893 *expp = newexp;
aacb1f0a 3894 xfree (exp);
d2e4a39e 3895}
14f9c5c9
AS
3896
3897/* Type-class predicates */
3898
4c4b4cd2
PH
3899/* True iff TYPE is numeric (i.e., an INT, RANGE (of numeric type),
3900 or FLOAT). */
14f9c5c9
AS
3901
3902static int
d2e4a39e 3903numeric_type_p (struct type *type)
14f9c5c9
AS
3904{
3905 if (type == NULL)
3906 return 0;
d2e4a39e
AS
3907 else
3908 {
3909 switch (TYPE_CODE (type))
4c4b4cd2
PH
3910 {
3911 case TYPE_CODE_INT:
3912 case TYPE_CODE_FLT:
3913 return 1;
3914 case TYPE_CODE_RANGE:
3915 return (type == TYPE_TARGET_TYPE (type)
3916 || numeric_type_p (TYPE_TARGET_TYPE (type)));
3917 default:
3918 return 0;
3919 }
d2e4a39e 3920 }
14f9c5c9
AS
3921}
3922
4c4b4cd2 3923/* True iff TYPE is integral (an INT or RANGE of INTs). */
14f9c5c9
AS
3924
3925static int
d2e4a39e 3926integer_type_p (struct type *type)
14f9c5c9
AS
3927{
3928 if (type == NULL)
3929 return 0;
d2e4a39e
AS
3930 else
3931 {
3932 switch (TYPE_CODE (type))
4c4b4cd2
PH
3933 {
3934 case TYPE_CODE_INT:
3935 return 1;
3936 case TYPE_CODE_RANGE:
3937 return (type == TYPE_TARGET_TYPE (type)
3938 || integer_type_p (TYPE_TARGET_TYPE (type)));
3939 default:
3940 return 0;
3941 }
d2e4a39e 3942 }
14f9c5c9
AS
3943}
3944
4c4b4cd2 3945/* True iff TYPE is scalar (INT, RANGE, FLOAT, ENUM). */
14f9c5c9
AS
3946
3947static int
d2e4a39e 3948scalar_type_p (struct type *type)
14f9c5c9
AS
3949{
3950 if (type == NULL)
3951 return 0;
d2e4a39e
AS
3952 else
3953 {
3954 switch (TYPE_CODE (type))
4c4b4cd2
PH
3955 {
3956 case TYPE_CODE_INT:
3957 case TYPE_CODE_RANGE:
3958 case TYPE_CODE_ENUM:
3959 case TYPE_CODE_FLT:
3960 return 1;
3961 default:
3962 return 0;
3963 }
d2e4a39e 3964 }
14f9c5c9
AS
3965}
3966
4c4b4cd2 3967/* True iff TYPE is discrete (INT, RANGE, ENUM). */
14f9c5c9
AS
3968
3969static int
d2e4a39e 3970discrete_type_p (struct type *type)
14f9c5c9
AS
3971{
3972 if (type == NULL)
3973 return 0;
d2e4a39e
AS
3974 else
3975 {
3976 switch (TYPE_CODE (type))
4c4b4cd2
PH
3977 {
3978 case TYPE_CODE_INT:
3979 case TYPE_CODE_RANGE:
3980 case TYPE_CODE_ENUM:
872f0337 3981 case TYPE_CODE_BOOL:
4c4b4cd2
PH
3982 return 1;
3983 default:
3984 return 0;
3985 }
d2e4a39e 3986 }
14f9c5c9
AS
3987}
3988
4c4b4cd2
PH
3989/* Returns non-zero if OP with operands in the vector ARGS could be
3990 a user-defined function. Errs on the side of pre-defined operators
3991 (i.e., result 0). */
14f9c5c9
AS
3992
3993static int
d2e4a39e 3994possible_user_operator_p (enum exp_opcode op, struct value *args[])
14f9c5c9 3995{
76a01679 3996 struct type *type0 =
df407dfe 3997 (args[0] == NULL) ? NULL : ada_check_typedef (value_type (args[0]));
d2e4a39e 3998 struct type *type1 =
df407dfe 3999 (args[1] == NULL) ? NULL : ada_check_typedef (value_type (args[1]));
d2e4a39e 4000
4c4b4cd2
PH
4001 if (type0 == NULL)
4002 return 0;
4003
14f9c5c9
AS
4004 switch (op)
4005 {
4006 default:
4007 return 0;
4008
4009 case BINOP_ADD:
4010 case BINOP_SUB:
4011 case BINOP_MUL:
4012 case BINOP_DIV:
d2e4a39e 4013 return (!(numeric_type_p (type0) && numeric_type_p (type1)));
14f9c5c9
AS
4014
4015 case BINOP_REM:
4016 case BINOP_MOD:
4017 case BINOP_BITWISE_AND:
4018 case BINOP_BITWISE_IOR:
4019 case BINOP_BITWISE_XOR:
d2e4a39e 4020 return (!(integer_type_p (type0) && integer_type_p (type1)));
14f9c5c9
AS
4021
4022 case BINOP_EQUAL:
4023 case BINOP_NOTEQUAL:
4024 case BINOP_LESS:
4025 case BINOP_GTR:
4026 case BINOP_LEQ:
4027 case BINOP_GEQ:
d2e4a39e 4028 return (!(scalar_type_p (type0) && scalar_type_p (type1)));
14f9c5c9
AS
4029
4030 case BINOP_CONCAT:
ee90b9ab 4031 return !ada_is_array_type (type0) || !ada_is_array_type (type1);
14f9c5c9
AS
4032
4033 case BINOP_EXP:
d2e4a39e 4034 return (!(numeric_type_p (type0) && integer_type_p (type1)));
14f9c5c9
AS
4035
4036 case UNOP_NEG:
4037 case UNOP_PLUS:
4038 case UNOP_LOGICAL_NOT:
d2e4a39e
AS
4039 case UNOP_ABS:
4040 return (!numeric_type_p (type0));
14f9c5c9
AS
4041
4042 }
4043}
4044\f
4c4b4cd2 4045 /* Renaming */
14f9c5c9 4046
aeb5907d
JB
4047/* NOTES:
4048
4049 1. In the following, we assume that a renaming type's name may
4050 have an ___XD suffix. It would be nice if this went away at some
4051 point.
4052 2. We handle both the (old) purely type-based representation of
4053 renamings and the (new) variable-based encoding. At some point,
4054 it is devoutly to be hoped that the former goes away
4055 (FIXME: hilfinger-2007-07-09).
4056 3. Subprogram renamings are not implemented, although the XRS
4057 suffix is recognized (FIXME: hilfinger-2007-07-09). */
4058
4059/* If SYM encodes a renaming,
4060
4061 <renaming> renames <renamed entity>,
4062
4063 sets *LEN to the length of the renamed entity's name,
4064 *RENAMED_ENTITY to that name (not null-terminated), and *RENAMING_EXPR to
4065 the string describing the subcomponent selected from the renamed
0963b4bd 4066 entity. Returns ADA_NOT_RENAMING if SYM does not encode a renaming
aeb5907d
JB
4067 (in which case, the values of *RENAMED_ENTITY, *LEN, and *RENAMING_EXPR
4068 are undefined). Otherwise, returns a value indicating the category
4069 of entity renamed: an object (ADA_OBJECT_RENAMING), exception
4070 (ADA_EXCEPTION_RENAMING), package (ADA_PACKAGE_RENAMING), or
4071 subprogram (ADA_SUBPROGRAM_RENAMING). Does no allocation; the
4072 strings returned in *RENAMED_ENTITY and *RENAMING_EXPR should not be
4073 deallocated. The values of RENAMED_ENTITY, LEN, or RENAMING_EXPR
4074 may be NULL, in which case they are not assigned.
4075
4076 [Currently, however, GCC does not generate subprogram renamings.] */
4077
4078enum ada_renaming_category
4079ada_parse_renaming (struct symbol *sym,
4080 const char **renamed_entity, int *len,
4081 const char **renaming_expr)
4082{
4083 enum ada_renaming_category kind;
4084 const char *info;
4085 const char *suffix;
4086
4087 if (sym == NULL)
4088 return ADA_NOT_RENAMING;
4089 switch (SYMBOL_CLASS (sym))
14f9c5c9 4090 {
aeb5907d
JB
4091 default:
4092 return ADA_NOT_RENAMING;
4093 case LOC_TYPEDEF:
4094 return parse_old_style_renaming (SYMBOL_TYPE (sym),
4095 renamed_entity, len, renaming_expr);
4096 case LOC_LOCAL:
4097 case LOC_STATIC:
4098 case LOC_COMPUTED:
4099 case LOC_OPTIMIZED_OUT:
4100 info = strstr (SYMBOL_LINKAGE_NAME (sym), "___XR");
4101 if (info == NULL)
4102 return ADA_NOT_RENAMING;
4103 switch (info[5])
4104 {
4105 case '_':
4106 kind = ADA_OBJECT_RENAMING;
4107 info += 6;
4108 break;
4109 case 'E':
4110 kind = ADA_EXCEPTION_RENAMING;
4111 info += 7;
4112 break;
4113 case 'P':
4114 kind = ADA_PACKAGE_RENAMING;
4115 info += 7;
4116 break;
4117 case 'S':
4118 kind = ADA_SUBPROGRAM_RENAMING;
4119 info += 7;
4120 break;
4121 default:
4122 return ADA_NOT_RENAMING;
4123 }
14f9c5c9 4124 }
4c4b4cd2 4125
aeb5907d
JB
4126 if (renamed_entity != NULL)
4127 *renamed_entity = info;
4128 suffix = strstr (info, "___XE");
4129 if (suffix == NULL || suffix == info)
4130 return ADA_NOT_RENAMING;
4131 if (len != NULL)
4132 *len = strlen (info) - strlen (suffix);
4133 suffix += 5;
4134 if (renaming_expr != NULL)
4135 *renaming_expr = suffix;
4136 return kind;
4137}
4138
4139/* Assuming TYPE encodes a renaming according to the old encoding in
4140 exp_dbug.ads, returns details of that renaming in *RENAMED_ENTITY,
4141 *LEN, and *RENAMING_EXPR, as for ada_parse_renaming, above. Returns
4142 ADA_NOT_RENAMING otherwise. */
4143static enum ada_renaming_category
4144parse_old_style_renaming (struct type *type,
4145 const char **renamed_entity, int *len,
4146 const char **renaming_expr)
4147{
4148 enum ada_renaming_category kind;
4149 const char *name;
4150 const char *info;
4151 const char *suffix;
14f9c5c9 4152
aeb5907d
JB
4153 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM
4154 || TYPE_NFIELDS (type) != 1)
4155 return ADA_NOT_RENAMING;
14f9c5c9 4156
aeb5907d
JB
4157 name = type_name_no_tag (type);
4158 if (name == NULL)
4159 return ADA_NOT_RENAMING;
4160
4161 name = strstr (name, "___XR");
4162 if (name == NULL)
4163 return ADA_NOT_RENAMING;
4164 switch (name[5])
4165 {
4166 case '\0':
4167 case '_':
4168 kind = ADA_OBJECT_RENAMING;
4169 break;
4170 case 'E':
4171 kind = ADA_EXCEPTION_RENAMING;
4172 break;
4173 case 'P':
4174 kind = ADA_PACKAGE_RENAMING;
4175 break;
4176 case 'S':
4177 kind = ADA_SUBPROGRAM_RENAMING;
4178 break;
4179 default:
4180 return ADA_NOT_RENAMING;
4181 }
14f9c5c9 4182
aeb5907d
JB
4183 info = TYPE_FIELD_NAME (type, 0);
4184 if (info == NULL)
4185 return ADA_NOT_RENAMING;
4186 if (renamed_entity != NULL)
4187 *renamed_entity = info;
4188 suffix = strstr (info, "___XE");
4189 if (renaming_expr != NULL)
4190 *renaming_expr = suffix + 5;
4191 if (suffix == NULL || suffix == info)
4192 return ADA_NOT_RENAMING;
4193 if (len != NULL)
4194 *len = suffix - info;
4195 return kind;
a5ee536b
JB
4196}
4197
4198/* Compute the value of the given RENAMING_SYM, which is expected to
4199 be a symbol encoding a renaming expression. BLOCK is the block
4200 used to evaluate the renaming. */
52ce6436 4201
a5ee536b
JB
4202static struct value *
4203ada_read_renaming_var_value (struct symbol *renaming_sym,
3977b71f 4204 const struct block *block)
a5ee536b 4205{
bbc13ae3 4206 const char *sym_name;
a5ee536b
JB
4207 struct expression *expr;
4208 struct value *value;
4209 struct cleanup *old_chain = NULL;
4210
bbc13ae3 4211 sym_name = SYMBOL_LINKAGE_NAME (renaming_sym);
1bb9788d 4212 expr = parse_exp_1 (&sym_name, 0, block, 0);
bbc13ae3 4213 old_chain = make_cleanup (free_current_contents, &expr);
a5ee536b
JB
4214 value = evaluate_expression (expr);
4215
4216 do_cleanups (old_chain);
4217 return value;
4218}
14f9c5c9 4219\f
d2e4a39e 4220
4c4b4cd2 4221 /* Evaluation: Function Calls */
14f9c5c9 4222
4c4b4cd2 4223/* Return an lvalue containing the value VAL. This is the identity on
40bc484c
JB
4224 lvalues, and otherwise has the side-effect of allocating memory
4225 in the inferior where a copy of the value contents is copied. */
14f9c5c9 4226
d2e4a39e 4227static struct value *
40bc484c 4228ensure_lval (struct value *val)
14f9c5c9 4229{
40bc484c
JB
4230 if (VALUE_LVAL (val) == not_lval
4231 || VALUE_LVAL (val) == lval_internalvar)
c3e5cd34 4232 {
df407dfe 4233 int len = TYPE_LENGTH (ada_check_typedef (value_type (val)));
40bc484c
JB
4234 const CORE_ADDR addr =
4235 value_as_long (value_allocate_space_in_inferior (len));
c3e5cd34 4236
40bc484c 4237 set_value_address (val, addr);
a84a8a0d 4238 VALUE_LVAL (val) = lval_memory;
40bc484c 4239 write_memory (addr, value_contents (val), len);
c3e5cd34 4240 }
14f9c5c9
AS
4241
4242 return val;
4243}
4244
4245/* Return the value ACTUAL, converted to be an appropriate value for a
4246 formal of type FORMAL_TYPE. Use *SP as a stack pointer for
4247 allocating any necessary descriptors (fat pointers), or copies of
4c4b4cd2 4248 values not residing in memory, updating it as needed. */
14f9c5c9 4249
a93c0eb6 4250struct value *
40bc484c 4251ada_convert_actual (struct value *actual, struct type *formal_type0)
14f9c5c9 4252{
df407dfe 4253 struct type *actual_type = ada_check_typedef (value_type (actual));
61ee279c 4254 struct type *formal_type = ada_check_typedef (formal_type0);
d2e4a39e
AS
4255 struct type *formal_target =
4256 TYPE_CODE (formal_type) == TYPE_CODE_PTR
61ee279c 4257 ? ada_check_typedef (TYPE_TARGET_TYPE (formal_type)) : formal_type;
d2e4a39e
AS
4258 struct type *actual_target =
4259 TYPE_CODE (actual_type) == TYPE_CODE_PTR
61ee279c 4260 ? ada_check_typedef (TYPE_TARGET_TYPE (actual_type)) : actual_type;
14f9c5c9 4261
4c4b4cd2 4262 if (ada_is_array_descriptor_type (formal_target)
14f9c5c9 4263 && TYPE_CODE (actual_target) == TYPE_CODE_ARRAY)
40bc484c 4264 return make_array_descriptor (formal_type, actual);
a84a8a0d
JB
4265 else if (TYPE_CODE (formal_type) == TYPE_CODE_PTR
4266 || TYPE_CODE (formal_type) == TYPE_CODE_REF)
14f9c5c9 4267 {
a84a8a0d 4268 struct value *result;
5b4ee69b 4269
14f9c5c9 4270 if (TYPE_CODE (formal_target) == TYPE_CODE_ARRAY
4c4b4cd2 4271 && ada_is_array_descriptor_type (actual_target))
a84a8a0d 4272 result = desc_data (actual);
14f9c5c9 4273 else if (TYPE_CODE (actual_type) != TYPE_CODE_PTR)
4c4b4cd2
PH
4274 {
4275 if (VALUE_LVAL (actual) != lval_memory)
4276 {
4277 struct value *val;
5b4ee69b 4278
df407dfe 4279 actual_type = ada_check_typedef (value_type (actual));
4c4b4cd2 4280 val = allocate_value (actual_type);
990a07ab 4281 memcpy ((char *) value_contents_raw (val),
0fd88904 4282 (char *) value_contents (actual),
4c4b4cd2 4283 TYPE_LENGTH (actual_type));
40bc484c 4284 actual = ensure_lval (val);
4c4b4cd2 4285 }
a84a8a0d 4286 result = value_addr (actual);
4c4b4cd2 4287 }
a84a8a0d
JB
4288 else
4289 return actual;
b1af9e97 4290 return value_cast_pointers (formal_type, result, 0);
14f9c5c9
AS
4291 }
4292 else if (TYPE_CODE (actual_type) == TYPE_CODE_PTR)
4293 return ada_value_ind (actual);
4294
4295 return actual;
4296}
4297
438c98a1
JB
4298/* Convert VALUE (which must be an address) to a CORE_ADDR that is a pointer of
4299 type TYPE. This is usually an inefficient no-op except on some targets
4300 (such as AVR) where the representation of a pointer and an address
4301 differs. */
4302
4303static CORE_ADDR
4304value_pointer (struct value *value, struct type *type)
4305{
4306 struct gdbarch *gdbarch = get_type_arch (type);
4307 unsigned len = TYPE_LENGTH (type);
4308 gdb_byte *buf = alloca (len);
4309 CORE_ADDR addr;
4310
4311 addr = value_address (value);
4312 gdbarch_address_to_pointer (gdbarch, type, buf, addr);
4313 addr = extract_unsigned_integer (buf, len, gdbarch_byte_order (gdbarch));
4314 return addr;
4315}
4316
14f9c5c9 4317
4c4b4cd2
PH
4318/* Push a descriptor of type TYPE for array value ARR on the stack at
4319 *SP, updating *SP to reflect the new descriptor. Return either
14f9c5c9 4320 an lvalue representing the new descriptor, or (if TYPE is a pointer-
4c4b4cd2
PH
4321 to-descriptor type rather than a descriptor type), a struct value *
4322 representing a pointer to this descriptor. */
14f9c5c9 4323
d2e4a39e 4324static struct value *
40bc484c 4325make_array_descriptor (struct type *type, struct value *arr)
14f9c5c9 4326{
d2e4a39e
AS
4327 struct type *bounds_type = desc_bounds_type (type);
4328 struct type *desc_type = desc_base_type (type);
4329 struct value *descriptor = allocate_value (desc_type);
4330 struct value *bounds = allocate_value (bounds_type);
14f9c5c9 4331 int i;
d2e4a39e 4332
0963b4bd
MS
4333 for (i = ada_array_arity (ada_check_typedef (value_type (arr)));
4334 i > 0; i -= 1)
14f9c5c9 4335 {
19f220c3
JK
4336 modify_field (value_type (bounds), value_contents_writeable (bounds),
4337 ada_array_bound (arr, i, 0),
4338 desc_bound_bitpos (bounds_type, i, 0),
4339 desc_bound_bitsize (bounds_type, i, 0));
4340 modify_field (value_type (bounds), value_contents_writeable (bounds),
4341 ada_array_bound (arr, i, 1),
4342 desc_bound_bitpos (bounds_type, i, 1),
4343 desc_bound_bitsize (bounds_type, i, 1));
14f9c5c9 4344 }
d2e4a39e 4345
40bc484c 4346 bounds = ensure_lval (bounds);
d2e4a39e 4347
19f220c3
JK
4348 modify_field (value_type (descriptor),
4349 value_contents_writeable (descriptor),
4350 value_pointer (ensure_lval (arr),
4351 TYPE_FIELD_TYPE (desc_type, 0)),
4352 fat_pntr_data_bitpos (desc_type),
4353 fat_pntr_data_bitsize (desc_type));
4354
4355 modify_field (value_type (descriptor),
4356 value_contents_writeable (descriptor),
4357 value_pointer (bounds,
4358 TYPE_FIELD_TYPE (desc_type, 1)),
4359 fat_pntr_bounds_bitpos (desc_type),
4360 fat_pntr_bounds_bitsize (desc_type));
14f9c5c9 4361
40bc484c 4362 descriptor = ensure_lval (descriptor);
14f9c5c9
AS
4363
4364 if (TYPE_CODE (type) == TYPE_CODE_PTR)
4365 return value_addr (descriptor);
4366 else
4367 return descriptor;
4368}
14f9c5c9 4369\f
3d9434b5
JB
4370 /* Symbol Cache Module */
4371
3d9434b5 4372/* Performance measurements made as of 2010-01-15 indicate that
ee01b665 4373 this cache does bring some noticeable improvements. Depending
3d9434b5
JB
4374 on the type of entity being printed, the cache can make it as much
4375 as an order of magnitude faster than without it.
4376
4377 The descriptive type DWARF extension has significantly reduced
4378 the need for this cache, at least when DWARF is being used. However,
4379 even in this case, some expensive name-based symbol searches are still
4380 sometimes necessary - to find an XVZ variable, mostly. */
4381
ee01b665 4382/* Initialize the contents of SYM_CACHE. */
3d9434b5 4383
ee01b665
JB
4384static void
4385ada_init_symbol_cache (struct ada_symbol_cache *sym_cache)
4386{
4387 obstack_init (&sym_cache->cache_space);
4388 memset (sym_cache->root, '\000', sizeof (sym_cache->root));
4389}
3d9434b5 4390
ee01b665
JB
4391/* Free the memory used by SYM_CACHE. */
4392
4393static void
4394ada_free_symbol_cache (struct ada_symbol_cache *sym_cache)
3d9434b5 4395{
ee01b665
JB
4396 obstack_free (&sym_cache->cache_space, NULL);
4397 xfree (sym_cache);
4398}
3d9434b5 4399
ee01b665
JB
4400/* Return the symbol cache associated to the given program space PSPACE.
4401 If not allocated for this PSPACE yet, allocate and initialize one. */
3d9434b5 4402
ee01b665
JB
4403static struct ada_symbol_cache *
4404ada_get_symbol_cache (struct program_space *pspace)
4405{
4406 struct ada_pspace_data *pspace_data = get_ada_pspace_data (pspace);
ee01b665 4407
66c168ae 4408 if (pspace_data->sym_cache == NULL)
ee01b665 4409 {
66c168ae
JB
4410 pspace_data->sym_cache = XCNEW (struct ada_symbol_cache);
4411 ada_init_symbol_cache (pspace_data->sym_cache);
ee01b665
JB
4412 }
4413
66c168ae 4414 return pspace_data->sym_cache;
ee01b665 4415}
3d9434b5
JB
4416
4417/* Clear all entries from the symbol cache. */
4418
4419static void
4420ada_clear_symbol_cache (void)
4421{
ee01b665
JB
4422 struct ada_symbol_cache *sym_cache
4423 = ada_get_symbol_cache (current_program_space);
4424
4425 obstack_free (&sym_cache->cache_space, NULL);
4426 ada_init_symbol_cache (sym_cache);
3d9434b5
JB
4427}
4428
4429/* Search our cache for an entry matching NAME and NAMESPACE.
4430 Return it if found, or NULL otherwise. */
4431
4432static struct cache_entry **
4433find_entry (const char *name, domain_enum namespace)
4434{
ee01b665
JB
4435 struct ada_symbol_cache *sym_cache
4436 = ada_get_symbol_cache (current_program_space);
3d9434b5
JB
4437 int h = msymbol_hash (name) % HASH_SIZE;
4438 struct cache_entry **e;
4439
ee01b665 4440 for (e = &sym_cache->root[h]; *e != NULL; e = &(*e)->next)
3d9434b5
JB
4441 {
4442 if (namespace == (*e)->namespace && strcmp (name, (*e)->name) == 0)
4443 return e;
4444 }
4445 return NULL;
4446}
4447
4448/* Search the symbol cache for an entry matching NAME and NAMESPACE.
4449 Return 1 if found, 0 otherwise.
4450
4451 If an entry was found and SYM is not NULL, set *SYM to the entry's
4452 SYM. Same principle for BLOCK if not NULL. */
96d887e8 4453
96d887e8
PH
4454static int
4455lookup_cached_symbol (const char *name, domain_enum namespace,
f0c5f9b2 4456 struct symbol **sym, const struct block **block)
96d887e8 4457{
3d9434b5
JB
4458 struct cache_entry **e = find_entry (name, namespace);
4459
4460 if (e == NULL)
4461 return 0;
4462 if (sym != NULL)
4463 *sym = (*e)->sym;
4464 if (block != NULL)
4465 *block = (*e)->block;
4466 return 1;
96d887e8
PH
4467}
4468
3d9434b5
JB
4469/* Assuming that (SYM, BLOCK) is the result of the lookup of NAME
4470 in domain NAMESPACE, save this result in our symbol cache. */
4471
96d887e8
PH
4472static void
4473cache_symbol (const char *name, domain_enum namespace, struct symbol *sym,
270140bd 4474 const struct block *block)
96d887e8 4475{
ee01b665
JB
4476 struct ada_symbol_cache *sym_cache
4477 = ada_get_symbol_cache (current_program_space);
3d9434b5
JB
4478 int h;
4479 char *copy;
4480 struct cache_entry *e;
4481
1994afbf
DE
4482 /* Symbols for builtin types don't have a block.
4483 For now don't cache such symbols. */
4484 if (sym != NULL && !SYMBOL_OBJFILE_OWNED (sym))
4485 return;
4486
3d9434b5
JB
4487 /* If the symbol is a local symbol, then do not cache it, as a search
4488 for that symbol depends on the context. To determine whether
4489 the symbol is local or not, we check the block where we found it
4490 against the global and static blocks of its associated symtab. */
4491 if (sym
08be3fe3 4492 && BLOCKVECTOR_BLOCK (SYMTAB_BLOCKVECTOR (symbol_symtab (sym)),
439247b6 4493 GLOBAL_BLOCK) != block
08be3fe3 4494 && BLOCKVECTOR_BLOCK (SYMTAB_BLOCKVECTOR (symbol_symtab (sym)),
439247b6 4495 STATIC_BLOCK) != block)
3d9434b5
JB
4496 return;
4497
4498 h = msymbol_hash (name) % HASH_SIZE;
ee01b665
JB
4499 e = (struct cache_entry *) obstack_alloc (&sym_cache->cache_space,
4500 sizeof (*e));
4501 e->next = sym_cache->root[h];
4502 sym_cache->root[h] = e;
4503 e->name = copy = obstack_alloc (&sym_cache->cache_space, strlen (name) + 1);
3d9434b5
JB
4504 strcpy (copy, name);
4505 e->sym = sym;
4506 e->namespace = namespace;
4507 e->block = block;
96d887e8 4508}
4c4b4cd2
PH
4509\f
4510 /* Symbol Lookup */
4511
c0431670
JB
4512/* Return nonzero if wild matching should be used when searching for
4513 all symbols matching LOOKUP_NAME.
4514
4515 LOOKUP_NAME is expected to be a symbol name after transformation
4516 for Ada lookups (see ada_name_for_lookup). */
4517
4518static int
4519should_use_wild_match (const char *lookup_name)
4520{
4521 return (strstr (lookup_name, "__") == NULL);
4522}
4523
4c4b4cd2
PH
4524/* Return the result of a standard (literal, C-like) lookup of NAME in
4525 given DOMAIN, visible from lexical block BLOCK. */
4526
4527static struct symbol *
4528standard_lookup (const char *name, const struct block *block,
4529 domain_enum domain)
4530{
acbd605d
MGD
4531 /* Initialize it just to avoid a GCC false warning. */
4532 struct symbol *sym = NULL;
4c4b4cd2 4533
2570f2b7 4534 if (lookup_cached_symbol (name, domain, &sym, NULL))
4c4b4cd2 4535 return sym;
2570f2b7
UW
4536 sym = lookup_symbol_in_language (name, block, domain, language_c, 0);
4537 cache_symbol (name, domain, sym, block_found);
4c4b4cd2
PH
4538 return sym;
4539}
4540
4541
4542/* Non-zero iff there is at least one non-function/non-enumeral symbol
4543 in the symbol fields of SYMS[0..N-1]. We treat enumerals as functions,
4544 since they contend in overloading in the same way. */
4545static int
4546is_nonfunction (struct ada_symbol_info syms[], int n)
4547{
4548 int i;
4549
4550 for (i = 0; i < n; i += 1)
4551 if (TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) != TYPE_CODE_FUNC
4552 && (TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) != TYPE_CODE_ENUM
4553 || SYMBOL_CLASS (syms[i].sym) != LOC_CONST))
14f9c5c9
AS
4554 return 1;
4555
4556 return 0;
4557}
4558
4559/* If true (non-zero), then TYPE0 and TYPE1 represent equivalent
4c4b4cd2 4560 struct types. Otherwise, they may not. */
14f9c5c9
AS
4561
4562static int
d2e4a39e 4563equiv_types (struct type *type0, struct type *type1)
14f9c5c9 4564{
d2e4a39e 4565 if (type0 == type1)
14f9c5c9 4566 return 1;
d2e4a39e 4567 if (type0 == NULL || type1 == NULL
14f9c5c9
AS
4568 || TYPE_CODE (type0) != TYPE_CODE (type1))
4569 return 0;
d2e4a39e 4570 if ((TYPE_CODE (type0) == TYPE_CODE_STRUCT
14f9c5c9
AS
4571 || TYPE_CODE (type0) == TYPE_CODE_ENUM)
4572 && ada_type_name (type0) != NULL && ada_type_name (type1) != NULL
4c4b4cd2 4573 && strcmp (ada_type_name (type0), ada_type_name (type1)) == 0)
14f9c5c9 4574 return 1;
d2e4a39e 4575
14f9c5c9
AS
4576 return 0;
4577}
4578
4579/* True iff SYM0 represents the same entity as SYM1, or one that is
4c4b4cd2 4580 no more defined than that of SYM1. */
14f9c5c9
AS
4581
4582static int
d2e4a39e 4583lesseq_defined_than (struct symbol *sym0, struct symbol *sym1)
14f9c5c9
AS
4584{
4585 if (sym0 == sym1)
4586 return 1;
176620f1 4587 if (SYMBOL_DOMAIN (sym0) != SYMBOL_DOMAIN (sym1)
14f9c5c9
AS
4588 || SYMBOL_CLASS (sym0) != SYMBOL_CLASS (sym1))
4589 return 0;
4590
d2e4a39e 4591 switch (SYMBOL_CLASS (sym0))
14f9c5c9
AS
4592 {
4593 case LOC_UNDEF:
4594 return 1;
4595 case LOC_TYPEDEF:
4596 {
4c4b4cd2
PH
4597 struct type *type0 = SYMBOL_TYPE (sym0);
4598 struct type *type1 = SYMBOL_TYPE (sym1);
0d5cff50
DE
4599 const char *name0 = SYMBOL_LINKAGE_NAME (sym0);
4600 const char *name1 = SYMBOL_LINKAGE_NAME (sym1);
4c4b4cd2 4601 int len0 = strlen (name0);
5b4ee69b 4602
4c4b4cd2
PH
4603 return
4604 TYPE_CODE (type0) == TYPE_CODE (type1)
4605 && (equiv_types (type0, type1)
4606 || (len0 < strlen (name1) && strncmp (name0, name1, len0) == 0
4607 && strncmp (name1 + len0, "___XV", 5) == 0));
14f9c5c9
AS
4608 }
4609 case LOC_CONST:
4610 return SYMBOL_VALUE (sym0) == SYMBOL_VALUE (sym1)
4c4b4cd2 4611 && equiv_types (SYMBOL_TYPE (sym0), SYMBOL_TYPE (sym1));
d2e4a39e
AS
4612 default:
4613 return 0;
14f9c5c9
AS
4614 }
4615}
4616
4c4b4cd2
PH
4617/* Append (SYM,BLOCK,SYMTAB) to the end of the array of struct ada_symbol_info
4618 records in OBSTACKP. Do nothing if SYM is a duplicate. */
14f9c5c9
AS
4619
4620static void
76a01679
JB
4621add_defn_to_vec (struct obstack *obstackp,
4622 struct symbol *sym,
f0c5f9b2 4623 const struct block *block)
14f9c5c9
AS
4624{
4625 int i;
4c4b4cd2 4626 struct ada_symbol_info *prevDefns = defns_collected (obstackp, 0);
14f9c5c9 4627
529cad9c
PH
4628 /* Do not try to complete stub types, as the debugger is probably
4629 already scanning all symbols matching a certain name at the
4630 time when this function is called. Trying to replace the stub
4631 type by its associated full type will cause us to restart a scan
4632 which may lead to an infinite recursion. Instead, the client
4633 collecting the matching symbols will end up collecting several
4634 matches, with at least one of them complete. It can then filter
4635 out the stub ones if needed. */
4636
4c4b4cd2
PH
4637 for (i = num_defns_collected (obstackp) - 1; i >= 0; i -= 1)
4638 {
4639 if (lesseq_defined_than (sym, prevDefns[i].sym))
4640 return;
4641 else if (lesseq_defined_than (prevDefns[i].sym, sym))
4642 {
4643 prevDefns[i].sym = sym;
4644 prevDefns[i].block = block;
4c4b4cd2 4645 return;
76a01679 4646 }
4c4b4cd2
PH
4647 }
4648
4649 {
4650 struct ada_symbol_info info;
4651
4652 info.sym = sym;
4653 info.block = block;
4c4b4cd2
PH
4654 obstack_grow (obstackp, &info, sizeof (struct ada_symbol_info));
4655 }
4656}
4657
4658/* Number of ada_symbol_info structures currently collected in
4659 current vector in *OBSTACKP. */
4660
76a01679
JB
4661static int
4662num_defns_collected (struct obstack *obstackp)
4c4b4cd2
PH
4663{
4664 return obstack_object_size (obstackp) / sizeof (struct ada_symbol_info);
4665}
4666
4667/* Vector of ada_symbol_info structures currently collected in current
4668 vector in *OBSTACKP. If FINISH, close off the vector and return
4669 its final address. */
4670
76a01679 4671static struct ada_symbol_info *
4c4b4cd2
PH
4672defns_collected (struct obstack *obstackp, int finish)
4673{
4674 if (finish)
4675 return obstack_finish (obstackp);
4676 else
4677 return (struct ada_symbol_info *) obstack_base (obstackp);
4678}
4679
7c7b6655
TT
4680/* Return a bound minimal symbol matching NAME according to Ada
4681 decoding rules. Returns an invalid symbol if there is no such
4682 minimal symbol. Names prefixed with "standard__" are handled
4683 specially: "standard__" is first stripped off, and only static and
4684 global symbols are searched. */
4c4b4cd2 4685
7c7b6655 4686struct bound_minimal_symbol
96d887e8 4687ada_lookup_simple_minsym (const char *name)
4c4b4cd2 4688{
7c7b6655 4689 struct bound_minimal_symbol result;
4c4b4cd2 4690 struct objfile *objfile;
96d887e8 4691 struct minimal_symbol *msymbol;
dc4024cd 4692 const int wild_match_p = should_use_wild_match (name);
4c4b4cd2 4693
7c7b6655
TT
4694 memset (&result, 0, sizeof (result));
4695
c0431670
JB
4696 /* Special case: If the user specifies a symbol name inside package
4697 Standard, do a non-wild matching of the symbol name without
4698 the "standard__" prefix. This was primarily introduced in order
4699 to allow the user to specifically access the standard exceptions
4700 using, for instance, Standard.Constraint_Error when Constraint_Error
4701 is ambiguous (due to the user defining its own Constraint_Error
4702 entity inside its program). */
96d887e8 4703 if (strncmp (name, "standard__", sizeof ("standard__") - 1) == 0)
c0431670 4704 name += sizeof ("standard__") - 1;
4c4b4cd2 4705
96d887e8
PH
4706 ALL_MSYMBOLS (objfile, msymbol)
4707 {
efd66ac6 4708 if (match_name (MSYMBOL_LINKAGE_NAME (msymbol), name, wild_match_p)
96d887e8 4709 && MSYMBOL_TYPE (msymbol) != mst_solib_trampoline)
7c7b6655
TT
4710 {
4711 result.minsym = msymbol;
4712 result.objfile = objfile;
4713 break;
4714 }
96d887e8 4715 }
4c4b4cd2 4716
7c7b6655 4717 return result;
96d887e8 4718}
4c4b4cd2 4719
96d887e8
PH
4720/* For all subprograms that statically enclose the subprogram of the
4721 selected frame, add symbols matching identifier NAME in DOMAIN
4722 and their blocks to the list of data in OBSTACKP, as for
48b78332
JB
4723 ada_add_block_symbols (q.v.). If WILD_MATCH_P, treat as NAME
4724 with a wildcard prefix. */
4c4b4cd2 4725
96d887e8
PH
4726static void
4727add_symbols_from_enclosing_procs (struct obstack *obstackp,
76a01679 4728 const char *name, domain_enum namespace,
48b78332 4729 int wild_match_p)
96d887e8 4730{
96d887e8 4731}
14f9c5c9 4732
96d887e8
PH
4733/* True if TYPE is definitely an artificial type supplied to a symbol
4734 for which no debugging information was given in the symbol file. */
14f9c5c9 4735
96d887e8
PH
4736static int
4737is_nondebugging_type (struct type *type)
4738{
0d5cff50 4739 const char *name = ada_type_name (type);
5b4ee69b 4740
96d887e8
PH
4741 return (name != NULL && strcmp (name, "<variable, no debug info>") == 0);
4742}
4c4b4cd2 4743
8f17729f
JB
4744/* Return nonzero if TYPE1 and TYPE2 are two enumeration types
4745 that are deemed "identical" for practical purposes.
4746
4747 This function assumes that TYPE1 and TYPE2 are both TYPE_CODE_ENUM
4748 types and that their number of enumerals is identical (in other
4749 words, TYPE_NFIELDS (type1) == TYPE_NFIELDS (type2)). */
4750
4751static int
4752ada_identical_enum_types_p (struct type *type1, struct type *type2)
4753{
4754 int i;
4755
4756 /* The heuristic we use here is fairly conservative. We consider
4757 that 2 enumerate types are identical if they have the same
4758 number of enumerals and that all enumerals have the same
4759 underlying value and name. */
4760
4761 /* All enums in the type should have an identical underlying value. */
4762 for (i = 0; i < TYPE_NFIELDS (type1); i++)
14e75d8e 4763 if (TYPE_FIELD_ENUMVAL (type1, i) != TYPE_FIELD_ENUMVAL (type2, i))
8f17729f
JB
4764 return 0;
4765
4766 /* All enumerals should also have the same name (modulo any numerical
4767 suffix). */
4768 for (i = 0; i < TYPE_NFIELDS (type1); i++)
4769 {
0d5cff50
DE
4770 const char *name_1 = TYPE_FIELD_NAME (type1, i);
4771 const char *name_2 = TYPE_FIELD_NAME (type2, i);
8f17729f
JB
4772 int len_1 = strlen (name_1);
4773 int len_2 = strlen (name_2);
4774
4775 ada_remove_trailing_digits (TYPE_FIELD_NAME (type1, i), &len_1);
4776 ada_remove_trailing_digits (TYPE_FIELD_NAME (type2, i), &len_2);
4777 if (len_1 != len_2
4778 || strncmp (TYPE_FIELD_NAME (type1, i),
4779 TYPE_FIELD_NAME (type2, i),
4780 len_1) != 0)
4781 return 0;
4782 }
4783
4784 return 1;
4785}
4786
4787/* Return nonzero if all the symbols in SYMS are all enumeral symbols
4788 that are deemed "identical" for practical purposes. Sometimes,
4789 enumerals are not strictly identical, but their types are so similar
4790 that they can be considered identical.
4791
4792 For instance, consider the following code:
4793
4794 type Color is (Black, Red, Green, Blue, White);
4795 type RGB_Color is new Color range Red .. Blue;
4796
4797 Type RGB_Color is a subrange of an implicit type which is a copy
4798 of type Color. If we call that implicit type RGB_ColorB ("B" is
4799 for "Base Type"), then type RGB_ColorB is a copy of type Color.
4800 As a result, when an expression references any of the enumeral
4801 by name (Eg. "print green"), the expression is technically
4802 ambiguous and the user should be asked to disambiguate. But
4803 doing so would only hinder the user, since it wouldn't matter
4804 what choice he makes, the outcome would always be the same.
4805 So, for practical purposes, we consider them as the same. */
4806
4807static int
4808symbols_are_identical_enums (struct ada_symbol_info *syms, int nsyms)
4809{
4810 int i;
4811
4812 /* Before performing a thorough comparison check of each type,
4813 we perform a series of inexpensive checks. We expect that these
4814 checks will quickly fail in the vast majority of cases, and thus
4815 help prevent the unnecessary use of a more expensive comparison.
4816 Said comparison also expects us to make some of these checks
4817 (see ada_identical_enum_types_p). */
4818
4819 /* Quick check: All symbols should have an enum type. */
4820 for (i = 0; i < nsyms; i++)
4821 if (TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) != TYPE_CODE_ENUM)
4822 return 0;
4823
4824 /* Quick check: They should all have the same value. */
4825 for (i = 1; i < nsyms; i++)
4826 if (SYMBOL_VALUE (syms[i].sym) != SYMBOL_VALUE (syms[0].sym))
4827 return 0;
4828
4829 /* Quick check: They should all have the same number of enumerals. */
4830 for (i = 1; i < nsyms; i++)
4831 if (TYPE_NFIELDS (SYMBOL_TYPE (syms[i].sym))
4832 != TYPE_NFIELDS (SYMBOL_TYPE (syms[0].sym)))
4833 return 0;
4834
4835 /* All the sanity checks passed, so we might have a set of
4836 identical enumeration types. Perform a more complete
4837 comparison of the type of each symbol. */
4838 for (i = 1; i < nsyms; i++)
4839 if (!ada_identical_enum_types_p (SYMBOL_TYPE (syms[i].sym),
4840 SYMBOL_TYPE (syms[0].sym)))
4841 return 0;
4842
4843 return 1;
4844}
4845
96d887e8
PH
4846/* Remove any non-debugging symbols in SYMS[0 .. NSYMS-1] that definitely
4847 duplicate other symbols in the list (The only case I know of where
4848 this happens is when object files containing stabs-in-ecoff are
4849 linked with files containing ordinary ecoff debugging symbols (or no
4850 debugging symbols)). Modifies SYMS to squeeze out deleted entries.
4851 Returns the number of items in the modified list. */
4c4b4cd2 4852
96d887e8
PH
4853static int
4854remove_extra_symbols (struct ada_symbol_info *syms, int nsyms)
4855{
4856 int i, j;
4c4b4cd2 4857
8f17729f
JB
4858 /* We should never be called with less than 2 symbols, as there
4859 cannot be any extra symbol in that case. But it's easy to
4860 handle, since we have nothing to do in that case. */
4861 if (nsyms < 2)
4862 return nsyms;
4863
96d887e8
PH
4864 i = 0;
4865 while (i < nsyms)
4866 {
a35ddb44 4867 int remove_p = 0;
339c13b6
JB
4868
4869 /* If two symbols have the same name and one of them is a stub type,
4870 the get rid of the stub. */
4871
4872 if (TYPE_STUB (SYMBOL_TYPE (syms[i].sym))
4873 && SYMBOL_LINKAGE_NAME (syms[i].sym) != NULL)
4874 {
4875 for (j = 0; j < nsyms; j++)
4876 {
4877 if (j != i
4878 && !TYPE_STUB (SYMBOL_TYPE (syms[j].sym))
4879 && SYMBOL_LINKAGE_NAME (syms[j].sym) != NULL
4880 && strcmp (SYMBOL_LINKAGE_NAME (syms[i].sym),
4881 SYMBOL_LINKAGE_NAME (syms[j].sym)) == 0)
a35ddb44 4882 remove_p = 1;
339c13b6
JB
4883 }
4884 }
4885
4886 /* Two symbols with the same name, same class and same address
4887 should be identical. */
4888
4889 else if (SYMBOL_LINKAGE_NAME (syms[i].sym) != NULL
96d887e8
PH
4890 && SYMBOL_CLASS (syms[i].sym) == LOC_STATIC
4891 && is_nondebugging_type (SYMBOL_TYPE (syms[i].sym)))
4892 {
4893 for (j = 0; j < nsyms; j += 1)
4894 {
4895 if (i != j
4896 && SYMBOL_LINKAGE_NAME (syms[j].sym) != NULL
4897 && strcmp (SYMBOL_LINKAGE_NAME (syms[i].sym),
76a01679 4898 SYMBOL_LINKAGE_NAME (syms[j].sym)) == 0
96d887e8
PH
4899 && SYMBOL_CLASS (syms[i].sym) == SYMBOL_CLASS (syms[j].sym)
4900 && SYMBOL_VALUE_ADDRESS (syms[i].sym)
4901 == SYMBOL_VALUE_ADDRESS (syms[j].sym))
a35ddb44 4902 remove_p = 1;
4c4b4cd2 4903 }
4c4b4cd2 4904 }
339c13b6 4905
a35ddb44 4906 if (remove_p)
339c13b6
JB
4907 {
4908 for (j = i + 1; j < nsyms; j += 1)
4909 syms[j - 1] = syms[j];
4910 nsyms -= 1;
4911 }
4912
96d887e8 4913 i += 1;
14f9c5c9 4914 }
8f17729f
JB
4915
4916 /* If all the remaining symbols are identical enumerals, then
4917 just keep the first one and discard the rest.
4918
4919 Unlike what we did previously, we do not discard any entry
4920 unless they are ALL identical. This is because the symbol
4921 comparison is not a strict comparison, but rather a practical
4922 comparison. If all symbols are considered identical, then
4923 we can just go ahead and use the first one and discard the rest.
4924 But if we cannot reduce the list to a single element, we have
4925 to ask the user to disambiguate anyways. And if we have to
4926 present a multiple-choice menu, it's less confusing if the list
4927 isn't missing some choices that were identical and yet distinct. */
4928 if (symbols_are_identical_enums (syms, nsyms))
4929 nsyms = 1;
4930
96d887e8 4931 return nsyms;
14f9c5c9
AS
4932}
4933
96d887e8
PH
4934/* Given a type that corresponds to a renaming entity, use the type name
4935 to extract the scope (package name or function name, fully qualified,
4936 and following the GNAT encoding convention) where this renaming has been
4937 defined. The string returned needs to be deallocated after use. */
4c4b4cd2 4938
96d887e8
PH
4939static char *
4940xget_renaming_scope (struct type *renaming_type)
14f9c5c9 4941{
96d887e8 4942 /* The renaming types adhere to the following convention:
0963b4bd 4943 <scope>__<rename>___<XR extension>.
96d887e8
PH
4944 So, to extract the scope, we search for the "___XR" extension,
4945 and then backtrack until we find the first "__". */
76a01679 4946
96d887e8
PH
4947 const char *name = type_name_no_tag (renaming_type);
4948 char *suffix = strstr (name, "___XR");
4949 char *last;
4950 int scope_len;
4951 char *scope;
14f9c5c9 4952
96d887e8
PH
4953 /* Now, backtrack a bit until we find the first "__". Start looking
4954 at suffix - 3, as the <rename> part is at least one character long. */
14f9c5c9 4955
96d887e8
PH
4956 for (last = suffix - 3; last > name; last--)
4957 if (last[0] == '_' && last[1] == '_')
4958 break;
76a01679 4959
96d887e8 4960 /* Make a copy of scope and return it. */
14f9c5c9 4961
96d887e8
PH
4962 scope_len = last - name;
4963 scope = (char *) xmalloc ((scope_len + 1) * sizeof (char));
14f9c5c9 4964
96d887e8
PH
4965 strncpy (scope, name, scope_len);
4966 scope[scope_len] = '\0';
4c4b4cd2 4967
96d887e8 4968 return scope;
4c4b4cd2
PH
4969}
4970
96d887e8 4971/* Return nonzero if NAME corresponds to a package name. */
4c4b4cd2 4972
96d887e8
PH
4973static int
4974is_package_name (const char *name)
4c4b4cd2 4975{
96d887e8
PH
4976 /* Here, We take advantage of the fact that no symbols are generated
4977 for packages, while symbols are generated for each function.
4978 So the condition for NAME represent a package becomes equivalent
4979 to NAME not existing in our list of symbols. There is only one
4980 small complication with library-level functions (see below). */
4c4b4cd2 4981
96d887e8 4982 char *fun_name;
76a01679 4983
96d887e8
PH
4984 /* If it is a function that has not been defined at library level,
4985 then we should be able to look it up in the symbols. */
4986 if (standard_lookup (name, NULL, VAR_DOMAIN) != NULL)
4987 return 0;
14f9c5c9 4988
96d887e8
PH
4989 /* Library-level function names start with "_ada_". See if function
4990 "_ada_" followed by NAME can be found. */
14f9c5c9 4991
96d887e8 4992 /* Do a quick check that NAME does not contain "__", since library-level
e1d5a0d2 4993 functions names cannot contain "__" in them. */
96d887e8
PH
4994 if (strstr (name, "__") != NULL)
4995 return 0;
4c4b4cd2 4996
b435e160 4997 fun_name = xstrprintf ("_ada_%s", name);
14f9c5c9 4998
96d887e8
PH
4999 return (standard_lookup (fun_name, NULL, VAR_DOMAIN) == NULL);
5000}
14f9c5c9 5001
96d887e8 5002/* Return nonzero if SYM corresponds to a renaming entity that is
aeb5907d 5003 not visible from FUNCTION_NAME. */
14f9c5c9 5004
96d887e8 5005static int
0d5cff50 5006old_renaming_is_invisible (const struct symbol *sym, const char *function_name)
96d887e8 5007{
aeb5907d 5008 char *scope;
1509e573 5009 struct cleanup *old_chain;
aeb5907d
JB
5010
5011 if (SYMBOL_CLASS (sym) != LOC_TYPEDEF)
5012 return 0;
5013
5014 scope = xget_renaming_scope (SYMBOL_TYPE (sym));
1509e573 5015 old_chain = make_cleanup (xfree, scope);
14f9c5c9 5016
96d887e8
PH
5017 /* If the rename has been defined in a package, then it is visible. */
5018 if (is_package_name (scope))
1509e573
JB
5019 {
5020 do_cleanups (old_chain);
5021 return 0;
5022 }
14f9c5c9 5023
96d887e8
PH
5024 /* Check that the rename is in the current function scope by checking
5025 that its name starts with SCOPE. */
76a01679 5026
96d887e8
PH
5027 /* If the function name starts with "_ada_", it means that it is
5028 a library-level function. Strip this prefix before doing the
5029 comparison, as the encoding for the renaming does not contain
5030 this prefix. */
5031 if (strncmp (function_name, "_ada_", 5) == 0)
5032 function_name += 5;
f26caa11 5033
1509e573
JB
5034 {
5035 int is_invisible = strncmp (function_name, scope, strlen (scope)) != 0;
5036
5037 do_cleanups (old_chain);
5038 return is_invisible;
5039 }
f26caa11
PH
5040}
5041
aeb5907d
JB
5042/* Remove entries from SYMS that corresponds to a renaming entity that
5043 is not visible from the function associated with CURRENT_BLOCK or
5044 that is superfluous due to the presence of more specific renaming
5045 information. Places surviving symbols in the initial entries of
5046 SYMS and returns the number of surviving symbols.
96d887e8
PH
5047
5048 Rationale:
aeb5907d
JB
5049 First, in cases where an object renaming is implemented as a
5050 reference variable, GNAT may produce both the actual reference
5051 variable and the renaming encoding. In this case, we discard the
5052 latter.
5053
5054 Second, GNAT emits a type following a specified encoding for each renaming
96d887e8
PH
5055 entity. Unfortunately, STABS currently does not support the definition
5056 of types that are local to a given lexical block, so all renamings types
5057 are emitted at library level. As a consequence, if an application
5058 contains two renaming entities using the same name, and a user tries to
5059 print the value of one of these entities, the result of the ada symbol
5060 lookup will also contain the wrong renaming type.
f26caa11 5061
96d887e8
PH
5062 This function partially covers for this limitation by attempting to
5063 remove from the SYMS list renaming symbols that should be visible
5064 from CURRENT_BLOCK. However, there does not seem be a 100% reliable
5065 method with the current information available. The implementation
5066 below has a couple of limitations (FIXME: brobecker-2003-05-12):
5067
5068 - When the user tries to print a rename in a function while there
5069 is another rename entity defined in a package: Normally, the
5070 rename in the function has precedence over the rename in the
5071 package, so the latter should be removed from the list. This is
5072 currently not the case.
5073
5074 - This function will incorrectly remove valid renames if
5075 the CURRENT_BLOCK corresponds to a function which symbol name
5076 has been changed by an "Export" pragma. As a consequence,
5077 the user will be unable to print such rename entities. */
4c4b4cd2 5078
14f9c5c9 5079static int
aeb5907d
JB
5080remove_irrelevant_renamings (struct ada_symbol_info *syms,
5081 int nsyms, const struct block *current_block)
4c4b4cd2
PH
5082{
5083 struct symbol *current_function;
0d5cff50 5084 const char *current_function_name;
4c4b4cd2 5085 int i;
aeb5907d
JB
5086 int is_new_style_renaming;
5087
5088 /* If there is both a renaming foo___XR... encoded as a variable and
5089 a simple variable foo in the same block, discard the latter.
0963b4bd 5090 First, zero out such symbols, then compress. */
aeb5907d
JB
5091 is_new_style_renaming = 0;
5092 for (i = 0; i < nsyms; i += 1)
5093 {
5094 struct symbol *sym = syms[i].sym;
270140bd 5095 const struct block *block = syms[i].block;
aeb5907d
JB
5096 const char *name;
5097 const char *suffix;
5098
5099 if (sym == NULL || SYMBOL_CLASS (sym) == LOC_TYPEDEF)
5100 continue;
5101 name = SYMBOL_LINKAGE_NAME (sym);
5102 suffix = strstr (name, "___XR");
5103
5104 if (suffix != NULL)
5105 {
5106 int name_len = suffix - name;
5107 int j;
5b4ee69b 5108
aeb5907d
JB
5109 is_new_style_renaming = 1;
5110 for (j = 0; j < nsyms; j += 1)
5111 if (i != j && syms[j].sym != NULL
5112 && strncmp (name, SYMBOL_LINKAGE_NAME (syms[j].sym),
5113 name_len) == 0
5114 && block == syms[j].block)
5115 syms[j].sym = NULL;
5116 }
5117 }
5118 if (is_new_style_renaming)
5119 {
5120 int j, k;
5121
5122 for (j = k = 0; j < nsyms; j += 1)
5123 if (syms[j].sym != NULL)
5124 {
5125 syms[k] = syms[j];
5126 k += 1;
5127 }
5128 return k;
5129 }
4c4b4cd2
PH
5130
5131 /* Extract the function name associated to CURRENT_BLOCK.
5132 Abort if unable to do so. */
76a01679 5133
4c4b4cd2
PH
5134 if (current_block == NULL)
5135 return nsyms;
76a01679 5136
7f0df278 5137 current_function = block_linkage_function (current_block);
4c4b4cd2
PH
5138 if (current_function == NULL)
5139 return nsyms;
5140
5141 current_function_name = SYMBOL_LINKAGE_NAME (current_function);
5142 if (current_function_name == NULL)
5143 return nsyms;
5144
5145 /* Check each of the symbols, and remove it from the list if it is
5146 a type corresponding to a renaming that is out of the scope of
5147 the current block. */
5148
5149 i = 0;
5150 while (i < nsyms)
5151 {
aeb5907d
JB
5152 if (ada_parse_renaming (syms[i].sym, NULL, NULL, NULL)
5153 == ADA_OBJECT_RENAMING
5154 && old_renaming_is_invisible (syms[i].sym, current_function_name))
4c4b4cd2
PH
5155 {
5156 int j;
5b4ee69b 5157
aeb5907d 5158 for (j = i + 1; j < nsyms; j += 1)
76a01679 5159 syms[j - 1] = syms[j];
4c4b4cd2
PH
5160 nsyms -= 1;
5161 }
5162 else
5163 i += 1;
5164 }
5165
5166 return nsyms;
5167}
5168
339c13b6
JB
5169/* Add to OBSTACKP all symbols from BLOCK (and its super-blocks)
5170 whose name and domain match NAME and DOMAIN respectively.
5171 If no match was found, then extend the search to "enclosing"
5172 routines (in other words, if we're inside a nested function,
5173 search the symbols defined inside the enclosing functions).
d0a8ab18
JB
5174 If WILD_MATCH_P is nonzero, perform the naming matching in
5175 "wild" mode (see function "wild_match" for more info).
339c13b6
JB
5176
5177 Note: This function assumes that OBSTACKP has 0 (zero) element in it. */
5178
5179static void
5180ada_add_local_symbols (struct obstack *obstackp, const char *name,
f0c5f9b2 5181 const struct block *block, domain_enum domain,
d0a8ab18 5182 int wild_match_p)
339c13b6
JB
5183{
5184 int block_depth = 0;
5185
5186 while (block != NULL)
5187 {
5188 block_depth += 1;
d0a8ab18
JB
5189 ada_add_block_symbols (obstackp, block, name, domain, NULL,
5190 wild_match_p);
339c13b6
JB
5191
5192 /* If we found a non-function match, assume that's the one. */
5193 if (is_nonfunction (defns_collected (obstackp, 0),
5194 num_defns_collected (obstackp)))
5195 return;
5196
5197 block = BLOCK_SUPERBLOCK (block);
5198 }
5199
5200 /* If no luck so far, try to find NAME as a local symbol in some lexically
5201 enclosing subprogram. */
5202 if (num_defns_collected (obstackp) == 0 && block_depth > 2)
d0a8ab18 5203 add_symbols_from_enclosing_procs (obstackp, name, domain, wild_match_p);
339c13b6
JB
5204}
5205
ccefe4c4 5206/* An object of this type is used as the user_data argument when
40658b94 5207 calling the map_matching_symbols method. */
ccefe4c4 5208
40658b94 5209struct match_data
ccefe4c4 5210{
40658b94 5211 struct objfile *objfile;
ccefe4c4 5212 struct obstack *obstackp;
40658b94
PH
5213 struct symbol *arg_sym;
5214 int found_sym;
ccefe4c4
TT
5215};
5216
40658b94
PH
5217/* A callback for add_matching_symbols that adds SYM, found in BLOCK,
5218 to a list of symbols. DATA0 is a pointer to a struct match_data *
5219 containing the obstack that collects the symbol list, the file that SYM
5220 must come from, a flag indicating whether a non-argument symbol has
5221 been found in the current block, and the last argument symbol
5222 passed in SYM within the current block (if any). When SYM is null,
5223 marking the end of a block, the argument symbol is added if no
5224 other has been found. */
ccefe4c4 5225
40658b94
PH
5226static int
5227aux_add_nonlocal_symbols (struct block *block, struct symbol *sym, void *data0)
ccefe4c4 5228{
40658b94
PH
5229 struct match_data *data = (struct match_data *) data0;
5230
5231 if (sym == NULL)
5232 {
5233 if (!data->found_sym && data->arg_sym != NULL)
5234 add_defn_to_vec (data->obstackp,
5235 fixup_symbol_section (data->arg_sym, data->objfile),
5236 block);
5237 data->found_sym = 0;
5238 data->arg_sym = NULL;
5239 }
5240 else
5241 {
5242 if (SYMBOL_CLASS (sym) == LOC_UNRESOLVED)
5243 return 0;
5244 else if (SYMBOL_IS_ARGUMENT (sym))
5245 data->arg_sym = sym;
5246 else
5247 {
5248 data->found_sym = 1;
5249 add_defn_to_vec (data->obstackp,
5250 fixup_symbol_section (sym, data->objfile),
5251 block);
5252 }
5253 }
5254 return 0;
5255}
5256
db230ce3
JB
5257/* Implements compare_names, but only applying the comparision using
5258 the given CASING. */
5b4ee69b 5259
40658b94 5260static int
db230ce3
JB
5261compare_names_with_case (const char *string1, const char *string2,
5262 enum case_sensitivity casing)
40658b94
PH
5263{
5264 while (*string1 != '\0' && *string2 != '\0')
5265 {
db230ce3
JB
5266 char c1, c2;
5267
40658b94
PH
5268 if (isspace (*string1) || isspace (*string2))
5269 return strcmp_iw_ordered (string1, string2);
db230ce3
JB
5270
5271 if (casing == case_sensitive_off)
5272 {
5273 c1 = tolower (*string1);
5274 c2 = tolower (*string2);
5275 }
5276 else
5277 {
5278 c1 = *string1;
5279 c2 = *string2;
5280 }
5281 if (c1 != c2)
40658b94 5282 break;
db230ce3 5283
40658b94
PH
5284 string1 += 1;
5285 string2 += 1;
5286 }
db230ce3 5287
40658b94
PH
5288 switch (*string1)
5289 {
5290 case '(':
5291 return strcmp_iw_ordered (string1, string2);
5292 case '_':
5293 if (*string2 == '\0')
5294 {
052874e8 5295 if (is_name_suffix (string1))
40658b94
PH
5296 return 0;
5297 else
1a1d5513 5298 return 1;
40658b94 5299 }
dbb8534f 5300 /* FALLTHROUGH */
40658b94
PH
5301 default:
5302 if (*string2 == '(')
5303 return strcmp_iw_ordered (string1, string2);
5304 else
db230ce3
JB
5305 {
5306 if (casing == case_sensitive_off)
5307 return tolower (*string1) - tolower (*string2);
5308 else
5309 return *string1 - *string2;
5310 }
40658b94 5311 }
ccefe4c4
TT
5312}
5313
db230ce3
JB
5314/* Compare STRING1 to STRING2, with results as for strcmp.
5315 Compatible with strcmp_iw_ordered in that...
5316
5317 strcmp_iw_ordered (STRING1, STRING2) <= 0
5318
5319 ... implies...
5320
5321 compare_names (STRING1, STRING2) <= 0
5322
5323 (they may differ as to what symbols compare equal). */
5324
5325static int
5326compare_names (const char *string1, const char *string2)
5327{
5328 int result;
5329
5330 /* Similar to what strcmp_iw_ordered does, we need to perform
5331 a case-insensitive comparison first, and only resort to
5332 a second, case-sensitive, comparison if the first one was
5333 not sufficient to differentiate the two strings. */
5334
5335 result = compare_names_with_case (string1, string2, case_sensitive_off);
5336 if (result == 0)
5337 result = compare_names_with_case (string1, string2, case_sensitive_on);
5338
5339 return result;
5340}
5341
339c13b6
JB
5342/* Add to OBSTACKP all non-local symbols whose name and domain match
5343 NAME and DOMAIN respectively. The search is performed on GLOBAL_BLOCK
5344 symbols if GLOBAL is non-zero, or on STATIC_BLOCK symbols otherwise. */
5345
5346static void
40658b94
PH
5347add_nonlocal_symbols (struct obstack *obstackp, const char *name,
5348 domain_enum domain, int global,
5349 int is_wild_match)
339c13b6
JB
5350{
5351 struct objfile *objfile;
40658b94 5352 struct match_data data;
339c13b6 5353
6475f2fe 5354 memset (&data, 0, sizeof data);
ccefe4c4 5355 data.obstackp = obstackp;
339c13b6 5356
ccefe4c4 5357 ALL_OBJFILES (objfile)
40658b94
PH
5358 {
5359 data.objfile = objfile;
5360
5361 if (is_wild_match)
4186eb54
KS
5362 objfile->sf->qf->map_matching_symbols (objfile, name, domain, global,
5363 aux_add_nonlocal_symbols, &data,
5364 wild_match, NULL);
40658b94 5365 else
4186eb54
KS
5366 objfile->sf->qf->map_matching_symbols (objfile, name, domain, global,
5367 aux_add_nonlocal_symbols, &data,
5368 full_match, compare_names);
40658b94
PH
5369 }
5370
5371 if (num_defns_collected (obstackp) == 0 && global && !is_wild_match)
5372 {
5373 ALL_OBJFILES (objfile)
5374 {
5375 char *name1 = alloca (strlen (name) + sizeof ("_ada_"));
5376 strcpy (name1, "_ada_");
5377 strcpy (name1 + sizeof ("_ada_") - 1, name);
5378 data.objfile = objfile;
ade7ed9e
DE
5379 objfile->sf->qf->map_matching_symbols (objfile, name1, domain,
5380 global,
0963b4bd
MS
5381 aux_add_nonlocal_symbols,
5382 &data,
40658b94
PH
5383 full_match, compare_names);
5384 }
5385 }
339c13b6
JB
5386}
5387
4eeaa230
DE
5388/* Find symbols in DOMAIN matching NAME0, in BLOCK0 and, if full_search is
5389 non-zero, enclosing scope and in global scopes, returning the number of
5390 matches.
9f88c959 5391 Sets *RESULTS to point to a vector of (SYM,BLOCK) tuples,
4c4b4cd2 5392 indicating the symbols found and the blocks and symbol tables (if
4eeaa230
DE
5393 any) in which they were found. This vector is transient---good only to
5394 the next call of ada_lookup_symbol_list.
5395
5396 When full_search is non-zero, any non-function/non-enumeral
4c4b4cd2
PH
5397 symbol match within the nest of blocks whose innermost member is BLOCK0,
5398 is the one match returned (no other matches in that or
d9680e73 5399 enclosing blocks is returned). If there are any matches in or
4eeaa230
DE
5400 surrounding BLOCK0, then these alone are returned.
5401
9f88c959 5402 Names prefixed with "standard__" are handled specially: "standard__"
4c4b4cd2 5403 is first stripped off, and only static and global symbols are searched. */
14f9c5c9 5404
4eeaa230
DE
5405static int
5406ada_lookup_symbol_list_worker (const char *name0, const struct block *block0,
5407 domain_enum namespace,
5408 struct ada_symbol_info **results,
5409 int full_search)
14f9c5c9
AS
5410{
5411 struct symbol *sym;
f0c5f9b2 5412 const struct block *block;
4c4b4cd2 5413 const char *name;
82ccd55e 5414 const int wild_match_p = should_use_wild_match (name0);
14f9c5c9 5415 int cacheIfUnique;
4c4b4cd2 5416 int ndefns;
14f9c5c9 5417
4c4b4cd2
PH
5418 obstack_free (&symbol_list_obstack, NULL);
5419 obstack_init (&symbol_list_obstack);
14f9c5c9 5420
14f9c5c9
AS
5421 cacheIfUnique = 0;
5422
5423 /* Search specified block and its superiors. */
5424
4c4b4cd2 5425 name = name0;
f0c5f9b2 5426 block = block0;
339c13b6
JB
5427
5428 /* Special case: If the user specifies a symbol name inside package
5429 Standard, do a non-wild matching of the symbol name without
5430 the "standard__" prefix. This was primarily introduced in order
5431 to allow the user to specifically access the standard exceptions
5432 using, for instance, Standard.Constraint_Error when Constraint_Error
5433 is ambiguous (due to the user defining its own Constraint_Error
5434 entity inside its program). */
4c4b4cd2
PH
5435 if (strncmp (name0, "standard__", sizeof ("standard__") - 1) == 0)
5436 {
4c4b4cd2
PH
5437 block = NULL;
5438 name = name0 + sizeof ("standard__") - 1;
5439 }
5440
339c13b6 5441 /* Check the non-global symbols. If we have ANY match, then we're done. */
14f9c5c9 5442
4eeaa230
DE
5443 if (block != NULL)
5444 {
5445 if (full_search)
5446 {
5447 ada_add_local_symbols (&symbol_list_obstack, name, block,
5448 namespace, wild_match_p);
5449 }
5450 else
5451 {
5452 /* In the !full_search case we're are being called by
5453 ada_iterate_over_symbols, and we don't want to search
5454 superblocks. */
5455 ada_add_block_symbols (&symbol_list_obstack, block, name,
5456 namespace, NULL, wild_match_p);
5457 }
5458 if (num_defns_collected (&symbol_list_obstack) > 0 || !full_search)
5459 goto done;
5460 }
d2e4a39e 5461
339c13b6
JB
5462 /* No non-global symbols found. Check our cache to see if we have
5463 already performed this search before. If we have, then return
5464 the same result. */
5465
14f9c5c9 5466 cacheIfUnique = 1;
2570f2b7 5467 if (lookup_cached_symbol (name0, namespace, &sym, &block))
4c4b4cd2
PH
5468 {
5469 if (sym != NULL)
2570f2b7 5470 add_defn_to_vec (&symbol_list_obstack, sym, block);
4c4b4cd2
PH
5471 goto done;
5472 }
14f9c5c9 5473
339c13b6
JB
5474 /* Search symbols from all global blocks. */
5475
40658b94 5476 add_nonlocal_symbols (&symbol_list_obstack, name, namespace, 1,
82ccd55e 5477 wild_match_p);
d2e4a39e 5478
4c4b4cd2 5479 /* Now add symbols from all per-file blocks if we've gotten no hits
339c13b6 5480 (not strictly correct, but perhaps better than an error). */
d2e4a39e 5481
4c4b4cd2 5482 if (num_defns_collected (&symbol_list_obstack) == 0)
40658b94 5483 add_nonlocal_symbols (&symbol_list_obstack, name, namespace, 0,
82ccd55e 5484 wild_match_p);
14f9c5c9 5485
4c4b4cd2
PH
5486done:
5487 ndefns = num_defns_collected (&symbol_list_obstack);
5488 *results = defns_collected (&symbol_list_obstack, 1);
5489
5490 ndefns = remove_extra_symbols (*results, ndefns);
5491
2ad01556 5492 if (ndefns == 0 && full_search)
2570f2b7 5493 cache_symbol (name0, namespace, NULL, NULL);
14f9c5c9 5494
2ad01556 5495 if (ndefns == 1 && full_search && cacheIfUnique)
2570f2b7 5496 cache_symbol (name0, namespace, (*results)[0].sym, (*results)[0].block);
14f9c5c9 5497
aeb5907d 5498 ndefns = remove_irrelevant_renamings (*results, ndefns, block0);
14f9c5c9 5499
14f9c5c9
AS
5500 return ndefns;
5501}
5502
4eeaa230
DE
5503/* Find symbols in DOMAIN matching NAME0, in BLOCK0 and enclosing scope and
5504 in global scopes, returning the number of matches, and setting *RESULTS
5505 to a vector of (SYM,BLOCK) tuples.
5506 See ada_lookup_symbol_list_worker for further details. */
5507
5508int
5509ada_lookup_symbol_list (const char *name0, const struct block *block0,
5510 domain_enum domain, struct ada_symbol_info **results)
5511{
5512 return ada_lookup_symbol_list_worker (name0, block0, domain, results, 1);
5513}
5514
5515/* Implementation of the la_iterate_over_symbols method. */
5516
5517static void
5518ada_iterate_over_symbols (const struct block *block,
5519 const char *name, domain_enum domain,
5520 symbol_found_callback_ftype *callback,
5521 void *data)
5522{
5523 int ndefs, i;
5524 struct ada_symbol_info *results;
5525
5526 ndefs = ada_lookup_symbol_list_worker (name, block, domain, &results, 0);
5527 for (i = 0; i < ndefs; ++i)
5528 {
5529 if (! (*callback) (results[i].sym, data))
5530 break;
5531 }
5532}
5533
f8eba3c6
TT
5534/* If NAME is the name of an entity, return a string that should
5535 be used to look that entity up in Ada units. This string should
5536 be deallocated after use using xfree.
5537
5538 NAME can have any form that the "break" or "print" commands might
5539 recognize. In other words, it does not have to be the "natural"
5540 name, or the "encoded" name. */
5541
5542char *
5543ada_name_for_lookup (const char *name)
5544{
5545 char *canon;
5546 int nlen = strlen (name);
5547
5548 if (name[0] == '<' && name[nlen - 1] == '>')
5549 {
5550 canon = xmalloc (nlen - 1);
5551 memcpy (canon, name + 1, nlen - 2);
5552 canon[nlen - 2] = '\0';
5553 }
5554 else
5555 canon = xstrdup (ada_encode (ada_fold_name (name)));
5556 return canon;
5557}
5558
4e5c77fe
JB
5559/* The result is as for ada_lookup_symbol_list with FULL_SEARCH set
5560 to 1, but choosing the first symbol found if there are multiple
5561 choices.
5562
5e2336be
JB
5563 The result is stored in *INFO, which must be non-NULL.
5564 If no match is found, INFO->SYM is set to NULL. */
4e5c77fe
JB
5565
5566void
5567ada_lookup_encoded_symbol (const char *name, const struct block *block,
5568 domain_enum namespace,
5e2336be 5569 struct ada_symbol_info *info)
14f9c5c9 5570{
4c4b4cd2 5571 struct ada_symbol_info *candidates;
14f9c5c9
AS
5572 int n_candidates;
5573
5e2336be
JB
5574 gdb_assert (info != NULL);
5575 memset (info, 0, sizeof (struct ada_symbol_info));
4e5c77fe 5576
4eeaa230 5577 n_candidates = ada_lookup_symbol_list (name, block, namespace, &candidates);
14f9c5c9 5578 if (n_candidates == 0)
4e5c77fe 5579 return;
4c4b4cd2 5580
5e2336be
JB
5581 *info = candidates[0];
5582 info->sym = fixup_symbol_section (info->sym, NULL);
4e5c77fe 5583}
aeb5907d
JB
5584
5585/* Return a symbol in DOMAIN matching NAME, in BLOCK0 and enclosing
5586 scope and in global scopes, or NULL if none. NAME is folded and
5587 encoded first. Otherwise, the result is as for ada_lookup_symbol_list,
0963b4bd 5588 choosing the first symbol if there are multiple choices.
4e5c77fe
JB
5589 If IS_A_FIELD_OF_THIS is not NULL, it is set to zero. */
5590
aeb5907d
JB
5591struct symbol *
5592ada_lookup_symbol (const char *name, const struct block *block0,
21b556f4 5593 domain_enum namespace, int *is_a_field_of_this)
aeb5907d 5594{
5e2336be 5595 struct ada_symbol_info info;
4e5c77fe 5596
aeb5907d
JB
5597 if (is_a_field_of_this != NULL)
5598 *is_a_field_of_this = 0;
5599
4e5c77fe 5600 ada_lookup_encoded_symbol (ada_encode (ada_fold_name (name)),
5e2336be
JB
5601 block0, namespace, &info);
5602 return info.sym;
4c4b4cd2 5603}
14f9c5c9 5604
4c4b4cd2 5605static struct symbol *
f606139a
DE
5606ada_lookup_symbol_nonlocal (const struct language_defn *langdef,
5607 const char *name,
76a01679 5608 const struct block *block,
21b556f4 5609 const domain_enum domain)
4c4b4cd2 5610{
04dccad0
JB
5611 struct symbol *sym;
5612
5613 sym = ada_lookup_symbol (name, block_static_block (block), domain, NULL);
5614 if (sym != NULL)
5615 return sym;
5616
5617 /* If we haven't found a match at this point, try the primitive
5618 types. In other languages, this search is performed before
5619 searching for global symbols in order to short-circuit that
5620 global-symbol search if it happens that the name corresponds
5621 to a primitive type. But we cannot do the same in Ada, because
5622 it is perfectly legitimate for a program to declare a type which
5623 has the same name as a standard type. If looking up a type in
5624 that situation, we have traditionally ignored the primitive type
5625 in favor of user-defined types. This is why, unlike most other
5626 languages, we search the primitive types this late and only after
5627 having searched the global symbols without success. */
5628
5629 if (domain == VAR_DOMAIN)
5630 {
5631 struct gdbarch *gdbarch;
5632
5633 if (block == NULL)
5634 gdbarch = target_gdbarch ();
5635 else
5636 gdbarch = block_gdbarch (block);
5637 sym = language_lookup_primitive_type_as_symbol (langdef, gdbarch, name);
5638 if (sym != NULL)
5639 return sym;
5640 }
5641
5642 return NULL;
14f9c5c9
AS
5643}
5644
5645
4c4b4cd2
PH
5646/* True iff STR is a possible encoded suffix of a normal Ada name
5647 that is to be ignored for matching purposes. Suffixes of parallel
5648 names (e.g., XVE) are not included here. Currently, the possible suffixes
5823c3ef 5649 are given by any of the regular expressions:
4c4b4cd2 5650
babe1480
JB
5651 [.$][0-9]+ [nested subprogram suffix, on platforms such as GNU/Linux]
5652 ___[0-9]+ [nested subprogram suffix, on platforms such as HP/UX]
9ac7f98e 5653 TKB [subprogram suffix for task bodies]
babe1480 5654 _E[0-9]+[bs]$ [protected object entry suffixes]
61ee279c 5655 (X[nb]*)?((\$|__)[0-9](_?[0-9]+)|___(JM|LJM|X([FDBUP].*|R[^T]?)))?$
babe1480
JB
5656
5657 Also, any leading "__[0-9]+" sequence is skipped before the suffix
5658 match is performed. This sequence is used to differentiate homonyms,
5659 is an optional part of a valid name suffix. */
4c4b4cd2 5660
14f9c5c9 5661static int
d2e4a39e 5662is_name_suffix (const char *str)
14f9c5c9
AS
5663{
5664 int k;
4c4b4cd2
PH
5665 const char *matching;
5666 const int len = strlen (str);
5667
babe1480
JB
5668 /* Skip optional leading __[0-9]+. */
5669
4c4b4cd2
PH
5670 if (len > 3 && str[0] == '_' && str[1] == '_' && isdigit (str[2]))
5671 {
babe1480
JB
5672 str += 3;
5673 while (isdigit (str[0]))
5674 str += 1;
4c4b4cd2 5675 }
babe1480
JB
5676
5677 /* [.$][0-9]+ */
4c4b4cd2 5678
babe1480 5679 if (str[0] == '.' || str[0] == '$')
4c4b4cd2 5680 {
babe1480 5681 matching = str + 1;
4c4b4cd2
PH
5682 while (isdigit (matching[0]))
5683 matching += 1;
5684 if (matching[0] == '\0')
5685 return 1;
5686 }
5687
5688 /* ___[0-9]+ */
babe1480 5689
4c4b4cd2
PH
5690 if (len > 3 && str[0] == '_' && str[1] == '_' && str[2] == '_')
5691 {
5692 matching = str + 3;
5693 while (isdigit (matching[0]))
5694 matching += 1;
5695 if (matching[0] == '\0')
5696 return 1;
5697 }
5698
9ac7f98e
JB
5699 /* "TKB" suffixes are used for subprograms implementing task bodies. */
5700
5701 if (strcmp (str, "TKB") == 0)
5702 return 1;
5703
529cad9c
PH
5704#if 0
5705 /* FIXME: brobecker/2005-09-23: Protected Object subprograms end
0963b4bd
MS
5706 with a N at the end. Unfortunately, the compiler uses the same
5707 convention for other internal types it creates. So treating
529cad9c 5708 all entity names that end with an "N" as a name suffix causes
0963b4bd
MS
5709 some regressions. For instance, consider the case of an enumerated
5710 type. To support the 'Image attribute, it creates an array whose
529cad9c
PH
5711 name ends with N.
5712 Having a single character like this as a suffix carrying some
0963b4bd 5713 information is a bit risky. Perhaps we should change the encoding
529cad9c
PH
5714 to be something like "_N" instead. In the meantime, do not do
5715 the following check. */
5716 /* Protected Object Subprograms */
5717 if (len == 1 && str [0] == 'N')
5718 return 1;
5719#endif
5720
5721 /* _E[0-9]+[bs]$ */
5722 if (len > 3 && str[0] == '_' && str [1] == 'E' && isdigit (str[2]))
5723 {
5724 matching = str + 3;
5725 while (isdigit (matching[0]))
5726 matching += 1;
5727 if ((matching[0] == 'b' || matching[0] == 's')
5728 && matching [1] == '\0')
5729 return 1;
5730 }
5731
4c4b4cd2
PH
5732 /* ??? We should not modify STR directly, as we are doing below. This
5733 is fine in this case, but may become problematic later if we find
5734 that this alternative did not work, and want to try matching
5735 another one from the begining of STR. Since we modified it, we
5736 won't be able to find the begining of the string anymore! */
14f9c5c9
AS
5737 if (str[0] == 'X')
5738 {
5739 str += 1;
d2e4a39e 5740 while (str[0] != '_' && str[0] != '\0')
4c4b4cd2
PH
5741 {
5742 if (str[0] != 'n' && str[0] != 'b')
5743 return 0;
5744 str += 1;
5745 }
14f9c5c9 5746 }
babe1480 5747
14f9c5c9
AS
5748 if (str[0] == '\000')
5749 return 1;
babe1480 5750
d2e4a39e 5751 if (str[0] == '_')
14f9c5c9
AS
5752 {
5753 if (str[1] != '_' || str[2] == '\000')
4c4b4cd2 5754 return 0;
d2e4a39e 5755 if (str[2] == '_')
4c4b4cd2 5756 {
61ee279c
PH
5757 if (strcmp (str + 3, "JM") == 0)
5758 return 1;
5759 /* FIXME: brobecker/2004-09-30: GNAT will soon stop using
5760 the LJM suffix in favor of the JM one. But we will
5761 still accept LJM as a valid suffix for a reasonable
5762 amount of time, just to allow ourselves to debug programs
5763 compiled using an older version of GNAT. */
4c4b4cd2
PH
5764 if (strcmp (str + 3, "LJM") == 0)
5765 return 1;
5766 if (str[3] != 'X')
5767 return 0;
1265e4aa
JB
5768 if (str[4] == 'F' || str[4] == 'D' || str[4] == 'B'
5769 || str[4] == 'U' || str[4] == 'P')
4c4b4cd2
PH
5770 return 1;
5771 if (str[4] == 'R' && str[5] != 'T')
5772 return 1;
5773 return 0;
5774 }
5775 if (!isdigit (str[2]))
5776 return 0;
5777 for (k = 3; str[k] != '\0'; k += 1)
5778 if (!isdigit (str[k]) && str[k] != '_')
5779 return 0;
14f9c5c9
AS
5780 return 1;
5781 }
4c4b4cd2 5782 if (str[0] == '$' && isdigit (str[1]))
14f9c5c9 5783 {
4c4b4cd2
PH
5784 for (k = 2; str[k] != '\0'; k += 1)
5785 if (!isdigit (str[k]) && str[k] != '_')
5786 return 0;
14f9c5c9
AS
5787 return 1;
5788 }
5789 return 0;
5790}
d2e4a39e 5791
aeb5907d
JB
5792/* Return non-zero if the string starting at NAME and ending before
5793 NAME_END contains no capital letters. */
529cad9c
PH
5794
5795static int
5796is_valid_name_for_wild_match (const char *name0)
5797{
5798 const char *decoded_name = ada_decode (name0);
5799 int i;
5800
5823c3ef
JB
5801 /* If the decoded name starts with an angle bracket, it means that
5802 NAME0 does not follow the GNAT encoding format. It should then
5803 not be allowed as a possible wild match. */
5804 if (decoded_name[0] == '<')
5805 return 0;
5806
529cad9c
PH
5807 for (i=0; decoded_name[i] != '\0'; i++)
5808 if (isalpha (decoded_name[i]) && !islower (decoded_name[i]))
5809 return 0;
5810
5811 return 1;
5812}
5813
73589123
PH
5814/* Advance *NAMEP to next occurrence of TARGET0 in the string NAME0
5815 that could start a simple name. Assumes that *NAMEP points into
5816 the string beginning at NAME0. */
4c4b4cd2 5817
14f9c5c9 5818static int
73589123 5819advance_wild_match (const char **namep, const char *name0, int target0)
14f9c5c9 5820{
73589123 5821 const char *name = *namep;
5b4ee69b 5822
5823c3ef 5823 while (1)
14f9c5c9 5824 {
aa27d0b3 5825 int t0, t1;
73589123
PH
5826
5827 t0 = *name;
5828 if (t0 == '_')
5829 {
5830 t1 = name[1];
5831 if ((t1 >= 'a' && t1 <= 'z') || (t1 >= '0' && t1 <= '9'))
5832 {
5833 name += 1;
5834 if (name == name0 + 5 && strncmp (name0, "_ada", 4) == 0)
5835 break;
5836 else
5837 name += 1;
5838 }
aa27d0b3
JB
5839 else if (t1 == '_' && ((name[2] >= 'a' && name[2] <= 'z')
5840 || name[2] == target0))
73589123
PH
5841 {
5842 name += 2;
5843 break;
5844 }
5845 else
5846 return 0;
5847 }
5848 else if ((t0 >= 'a' && t0 <= 'z') || (t0 >= '0' && t0 <= '9'))
5849 name += 1;
5850 else
5823c3ef 5851 return 0;
73589123
PH
5852 }
5853
5854 *namep = name;
5855 return 1;
5856}
5857
5858/* Return 0 iff NAME encodes a name of the form prefix.PATN. Ignores any
5859 informational suffixes of NAME (i.e., for which is_name_suffix is
5860 true). Assumes that PATN is a lower-cased Ada simple name. */
5861
5862static int
5863wild_match (const char *name, const char *patn)
5864{
22e048c9 5865 const char *p;
73589123
PH
5866 const char *name0 = name;
5867
5868 while (1)
5869 {
5870 const char *match = name;
5871
5872 if (*name == *patn)
5873 {
5874 for (name += 1, p = patn + 1; *p != '\0'; name += 1, p += 1)
5875 if (*p != *name)
5876 break;
5877 if (*p == '\0' && is_name_suffix (name))
5878 return match != name0 && !is_valid_name_for_wild_match (name0);
5879
5880 if (name[-1] == '_')
5881 name -= 1;
5882 }
5883 if (!advance_wild_match (&name, name0, *patn))
5884 return 1;
96d887e8 5885 }
96d887e8
PH
5886}
5887
40658b94
PH
5888/* Returns 0 iff symbol name SYM_NAME matches SEARCH_NAME, apart from
5889 informational suffix. */
5890
c4d840bd
PH
5891static int
5892full_match (const char *sym_name, const char *search_name)
5893{
40658b94 5894 return !match_name (sym_name, search_name, 0);
c4d840bd
PH
5895}
5896
5897
96d887e8
PH
5898/* Add symbols from BLOCK matching identifier NAME in DOMAIN to
5899 vector *defn_symbols, updating the list of symbols in OBSTACKP
0963b4bd 5900 (if necessary). If WILD, treat as NAME with a wildcard prefix.
4eeaa230 5901 OBJFILE is the section containing BLOCK. */
96d887e8
PH
5902
5903static void
5904ada_add_block_symbols (struct obstack *obstackp,
f0c5f9b2 5905 const struct block *block, const char *name,
96d887e8 5906 domain_enum domain, struct objfile *objfile,
2570f2b7 5907 int wild)
96d887e8 5908{
8157b174 5909 struct block_iterator iter;
96d887e8
PH
5910 int name_len = strlen (name);
5911 /* A matching argument symbol, if any. */
5912 struct symbol *arg_sym;
5913 /* Set true when we find a matching non-argument symbol. */
5914 int found_sym;
5915 struct symbol *sym;
5916
5917 arg_sym = NULL;
5918 found_sym = 0;
5919 if (wild)
5920 {
8157b174
TT
5921 for (sym = block_iter_match_first (block, name, wild_match, &iter);
5922 sym != NULL; sym = block_iter_match_next (name, wild_match, &iter))
76a01679 5923 {
4186eb54
KS
5924 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
5925 SYMBOL_DOMAIN (sym), domain)
73589123 5926 && wild_match (SYMBOL_LINKAGE_NAME (sym), name) == 0)
76a01679 5927 {
2a2d4dc3
AS
5928 if (SYMBOL_CLASS (sym) == LOC_UNRESOLVED)
5929 continue;
5930 else if (SYMBOL_IS_ARGUMENT (sym))
5931 arg_sym = sym;
5932 else
5933 {
76a01679
JB
5934 found_sym = 1;
5935 add_defn_to_vec (obstackp,
5936 fixup_symbol_section (sym, objfile),
2570f2b7 5937 block);
76a01679
JB
5938 }
5939 }
5940 }
96d887e8
PH
5941 }
5942 else
5943 {
8157b174
TT
5944 for (sym = block_iter_match_first (block, name, full_match, &iter);
5945 sym != NULL; sym = block_iter_match_next (name, full_match, &iter))
76a01679 5946 {
4186eb54
KS
5947 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
5948 SYMBOL_DOMAIN (sym), domain))
76a01679 5949 {
c4d840bd
PH
5950 if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED)
5951 {
5952 if (SYMBOL_IS_ARGUMENT (sym))
5953 arg_sym = sym;
5954 else
2a2d4dc3 5955 {
c4d840bd
PH
5956 found_sym = 1;
5957 add_defn_to_vec (obstackp,
5958 fixup_symbol_section (sym, objfile),
5959 block);
2a2d4dc3 5960 }
c4d840bd 5961 }
76a01679
JB
5962 }
5963 }
96d887e8
PH
5964 }
5965
5966 if (!found_sym && arg_sym != NULL)
5967 {
76a01679
JB
5968 add_defn_to_vec (obstackp,
5969 fixup_symbol_section (arg_sym, objfile),
2570f2b7 5970 block);
96d887e8
PH
5971 }
5972
5973 if (!wild)
5974 {
5975 arg_sym = NULL;
5976 found_sym = 0;
5977
5978 ALL_BLOCK_SYMBOLS (block, iter, sym)
76a01679 5979 {
4186eb54
KS
5980 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
5981 SYMBOL_DOMAIN (sym), domain))
76a01679
JB
5982 {
5983 int cmp;
5984
5985 cmp = (int) '_' - (int) SYMBOL_LINKAGE_NAME (sym)[0];
5986 if (cmp == 0)
5987 {
5988 cmp = strncmp ("_ada_", SYMBOL_LINKAGE_NAME (sym), 5);
5989 if (cmp == 0)
5990 cmp = strncmp (name, SYMBOL_LINKAGE_NAME (sym) + 5,
5991 name_len);
5992 }
5993
5994 if (cmp == 0
5995 && is_name_suffix (SYMBOL_LINKAGE_NAME (sym) + name_len + 5))
5996 {
2a2d4dc3
AS
5997 if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED)
5998 {
5999 if (SYMBOL_IS_ARGUMENT (sym))
6000 arg_sym = sym;
6001 else
6002 {
6003 found_sym = 1;
6004 add_defn_to_vec (obstackp,
6005 fixup_symbol_section (sym, objfile),
6006 block);
6007 }
6008 }
76a01679
JB
6009 }
6010 }
76a01679 6011 }
96d887e8
PH
6012
6013 /* NOTE: This really shouldn't be needed for _ada_ symbols.
6014 They aren't parameters, right? */
6015 if (!found_sym && arg_sym != NULL)
6016 {
6017 add_defn_to_vec (obstackp,
76a01679 6018 fixup_symbol_section (arg_sym, objfile),
2570f2b7 6019 block);
96d887e8
PH
6020 }
6021 }
6022}
6023\f
41d27058
JB
6024
6025 /* Symbol Completion */
6026
6027/* If SYM_NAME is a completion candidate for TEXT, return this symbol
6028 name in a form that's appropriate for the completion. The result
6029 does not need to be deallocated, but is only good until the next call.
6030
6031 TEXT_LEN is equal to the length of TEXT.
e701b3c0 6032 Perform a wild match if WILD_MATCH_P is set.
6ea35997 6033 ENCODED_P should be set if TEXT represents the start of a symbol name
41d27058
JB
6034 in its encoded form. */
6035
6036static const char *
6037symbol_completion_match (const char *sym_name,
6038 const char *text, int text_len,
6ea35997 6039 int wild_match_p, int encoded_p)
41d27058 6040{
41d27058
JB
6041 const int verbatim_match = (text[0] == '<');
6042 int match = 0;
6043
6044 if (verbatim_match)
6045 {
6046 /* Strip the leading angle bracket. */
6047 text = text + 1;
6048 text_len--;
6049 }
6050
6051 /* First, test against the fully qualified name of the symbol. */
6052
6053 if (strncmp (sym_name, text, text_len) == 0)
6054 match = 1;
6055
6ea35997 6056 if (match && !encoded_p)
41d27058
JB
6057 {
6058 /* One needed check before declaring a positive match is to verify
6059 that iff we are doing a verbatim match, the decoded version
6060 of the symbol name starts with '<'. Otherwise, this symbol name
6061 is not a suitable completion. */
6062 const char *sym_name_copy = sym_name;
6063 int has_angle_bracket;
6064
6065 sym_name = ada_decode (sym_name);
6066 has_angle_bracket = (sym_name[0] == '<');
6067 match = (has_angle_bracket == verbatim_match);
6068 sym_name = sym_name_copy;
6069 }
6070
6071 if (match && !verbatim_match)
6072 {
6073 /* When doing non-verbatim match, another check that needs to
6074 be done is to verify that the potentially matching symbol name
6075 does not include capital letters, because the ada-mode would
6076 not be able to understand these symbol names without the
6077 angle bracket notation. */
6078 const char *tmp;
6079
6080 for (tmp = sym_name; *tmp != '\0' && !isupper (*tmp); tmp++);
6081 if (*tmp != '\0')
6082 match = 0;
6083 }
6084
6085 /* Second: Try wild matching... */
6086
e701b3c0 6087 if (!match && wild_match_p)
41d27058
JB
6088 {
6089 /* Since we are doing wild matching, this means that TEXT
6090 may represent an unqualified symbol name. We therefore must
6091 also compare TEXT against the unqualified name of the symbol. */
6092 sym_name = ada_unqualified_name (ada_decode (sym_name));
6093
6094 if (strncmp (sym_name, text, text_len) == 0)
6095 match = 1;
6096 }
6097
6098 /* Finally: If we found a mach, prepare the result to return. */
6099
6100 if (!match)
6101 return NULL;
6102
6103 if (verbatim_match)
6104 sym_name = add_angle_brackets (sym_name);
6105
6ea35997 6106 if (!encoded_p)
41d27058
JB
6107 sym_name = ada_decode (sym_name);
6108
6109 return sym_name;
6110}
6111
6112/* A companion function to ada_make_symbol_completion_list().
6113 Check if SYM_NAME represents a symbol which name would be suitable
6114 to complete TEXT (TEXT_LEN is the length of TEXT), in which case
6115 it is appended at the end of the given string vector SV.
6116
6117 ORIG_TEXT is the string original string from the user command
6118 that needs to be completed. WORD is the entire command on which
6119 completion should be performed. These two parameters are used to
6120 determine which part of the symbol name should be added to the
6121 completion vector.
c0af1706 6122 if WILD_MATCH_P is set, then wild matching is performed.
cb8e9b97 6123 ENCODED_P should be set if TEXT represents a symbol name in its
41d27058
JB
6124 encoded formed (in which case the completion should also be
6125 encoded). */
6126
6127static void
d6565258 6128symbol_completion_add (VEC(char_ptr) **sv,
41d27058
JB
6129 const char *sym_name,
6130 const char *text, int text_len,
6131 const char *orig_text, const char *word,
cb8e9b97 6132 int wild_match_p, int encoded_p)
41d27058
JB
6133{
6134 const char *match = symbol_completion_match (sym_name, text, text_len,
cb8e9b97 6135 wild_match_p, encoded_p);
41d27058
JB
6136 char *completion;
6137
6138 if (match == NULL)
6139 return;
6140
6141 /* We found a match, so add the appropriate completion to the given
6142 string vector. */
6143
6144 if (word == orig_text)
6145 {
6146 completion = xmalloc (strlen (match) + 5);
6147 strcpy (completion, match);
6148 }
6149 else if (word > orig_text)
6150 {
6151 /* Return some portion of sym_name. */
6152 completion = xmalloc (strlen (match) + 5);
6153 strcpy (completion, match + (word - orig_text));
6154 }
6155 else
6156 {
6157 /* Return some of ORIG_TEXT plus sym_name. */
6158 completion = xmalloc (strlen (match) + (orig_text - word) + 5);
6159 strncpy (completion, word, orig_text - word);
6160 completion[orig_text - word] = '\0';
6161 strcat (completion, match);
6162 }
6163
d6565258 6164 VEC_safe_push (char_ptr, *sv, completion);
41d27058
JB
6165}
6166
ccefe4c4 6167/* An object of this type is passed as the user_data argument to the
bb4142cf 6168 expand_symtabs_matching method. */
ccefe4c4
TT
6169struct add_partial_datum
6170{
6171 VEC(char_ptr) **completions;
6f937416 6172 const char *text;
ccefe4c4 6173 int text_len;
6f937416
PA
6174 const char *text0;
6175 const char *word;
ccefe4c4
TT
6176 int wild_match;
6177 int encoded;
6178};
6179
bb4142cf
DE
6180/* A callback for expand_symtabs_matching. */
6181
7b08b9eb 6182static int
bb4142cf 6183ada_complete_symbol_matcher (const char *name, void *user_data)
ccefe4c4
TT
6184{
6185 struct add_partial_datum *data = user_data;
7b08b9eb
JK
6186
6187 return symbol_completion_match (name, data->text, data->text_len,
6188 data->wild_match, data->encoded) != NULL;
ccefe4c4
TT
6189}
6190
49c4e619
TT
6191/* Return a list of possible symbol names completing TEXT0. WORD is
6192 the entire command on which completion is made. */
41d27058 6193
49c4e619 6194static VEC (char_ptr) *
6f937416
PA
6195ada_make_symbol_completion_list (const char *text0, const char *word,
6196 enum type_code code)
41d27058
JB
6197{
6198 char *text;
6199 int text_len;
b1ed564a
JB
6200 int wild_match_p;
6201 int encoded_p;
2ba95b9b 6202 VEC(char_ptr) *completions = VEC_alloc (char_ptr, 128);
41d27058 6203 struct symbol *sym;
43f3e411 6204 struct compunit_symtab *s;
41d27058
JB
6205 struct minimal_symbol *msymbol;
6206 struct objfile *objfile;
3977b71f 6207 const struct block *b, *surrounding_static_block = 0;
41d27058 6208 int i;
8157b174 6209 struct block_iterator iter;
b8fea896 6210 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
41d27058 6211
2f68a895
TT
6212 gdb_assert (code == TYPE_CODE_UNDEF);
6213
41d27058
JB
6214 if (text0[0] == '<')
6215 {
6216 text = xstrdup (text0);
6217 make_cleanup (xfree, text);
6218 text_len = strlen (text);
b1ed564a
JB
6219 wild_match_p = 0;
6220 encoded_p = 1;
41d27058
JB
6221 }
6222 else
6223 {
6224 text = xstrdup (ada_encode (text0));
6225 make_cleanup (xfree, text);
6226 text_len = strlen (text);
6227 for (i = 0; i < text_len; i++)
6228 text[i] = tolower (text[i]);
6229
b1ed564a 6230 encoded_p = (strstr (text0, "__") != NULL);
41d27058
JB
6231 /* If the name contains a ".", then the user is entering a fully
6232 qualified entity name, and the match must not be done in wild
6233 mode. Similarly, if the user wants to complete what looks like
6234 an encoded name, the match must not be done in wild mode. */
b1ed564a 6235 wild_match_p = (strchr (text0, '.') == NULL && !encoded_p);
41d27058
JB
6236 }
6237
6238 /* First, look at the partial symtab symbols. */
41d27058 6239 {
ccefe4c4
TT
6240 struct add_partial_datum data;
6241
6242 data.completions = &completions;
6243 data.text = text;
6244 data.text_len = text_len;
6245 data.text0 = text0;
6246 data.word = word;
b1ed564a
JB
6247 data.wild_match = wild_match_p;
6248 data.encoded = encoded_p;
276d885b
GB
6249 expand_symtabs_matching (NULL, ada_complete_symbol_matcher, NULL,
6250 ALL_DOMAIN, &data);
41d27058
JB
6251 }
6252
6253 /* At this point scan through the misc symbol vectors and add each
6254 symbol you find to the list. Eventually we want to ignore
6255 anything that isn't a text symbol (everything else will be
6256 handled by the psymtab code above). */
6257
6258 ALL_MSYMBOLS (objfile, msymbol)
6259 {
6260 QUIT;
efd66ac6 6261 symbol_completion_add (&completions, MSYMBOL_LINKAGE_NAME (msymbol),
b1ed564a
JB
6262 text, text_len, text0, word, wild_match_p,
6263 encoded_p);
41d27058
JB
6264 }
6265
6266 /* Search upwards from currently selected frame (so that we can
6267 complete on local vars. */
6268
6269 for (b = get_selected_block (0); b != NULL; b = BLOCK_SUPERBLOCK (b))
6270 {
6271 if (!BLOCK_SUPERBLOCK (b))
6272 surrounding_static_block = b; /* For elmin of dups */
6273
6274 ALL_BLOCK_SYMBOLS (b, iter, sym)
6275 {
d6565258 6276 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym),
41d27058 6277 text, text_len, text0, word,
b1ed564a 6278 wild_match_p, encoded_p);
41d27058
JB
6279 }
6280 }
6281
6282 /* Go through the symtabs and check the externs and statics for
43f3e411 6283 symbols which match. */
41d27058 6284
43f3e411 6285 ALL_COMPUNITS (objfile, s)
41d27058
JB
6286 {
6287 QUIT;
43f3e411 6288 b = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (s), GLOBAL_BLOCK);
41d27058
JB
6289 ALL_BLOCK_SYMBOLS (b, iter, sym)
6290 {
d6565258 6291 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym),
41d27058 6292 text, text_len, text0, word,
b1ed564a 6293 wild_match_p, encoded_p);
41d27058
JB
6294 }
6295 }
6296
43f3e411 6297 ALL_COMPUNITS (objfile, s)
41d27058
JB
6298 {
6299 QUIT;
43f3e411 6300 b = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (s), STATIC_BLOCK);
41d27058
JB
6301 /* Don't do this block twice. */
6302 if (b == surrounding_static_block)
6303 continue;
6304 ALL_BLOCK_SYMBOLS (b, iter, sym)
6305 {
d6565258 6306 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym),
41d27058 6307 text, text_len, text0, word,
b1ed564a 6308 wild_match_p, encoded_p);
41d27058
JB
6309 }
6310 }
6311
b8fea896 6312 do_cleanups (old_chain);
49c4e619 6313 return completions;
41d27058
JB
6314}
6315
963a6417 6316 /* Field Access */
96d887e8 6317
73fb9985
JB
6318/* Return non-zero if TYPE is a pointer to the GNAT dispatch table used
6319 for tagged types. */
6320
6321static int
6322ada_is_dispatch_table_ptr_type (struct type *type)
6323{
0d5cff50 6324 const char *name;
73fb9985
JB
6325
6326 if (TYPE_CODE (type) != TYPE_CODE_PTR)
6327 return 0;
6328
6329 name = TYPE_NAME (TYPE_TARGET_TYPE (type));
6330 if (name == NULL)
6331 return 0;
6332
6333 return (strcmp (name, "ada__tags__dispatch_table") == 0);
6334}
6335
ac4a2da4
JG
6336/* Return non-zero if TYPE is an interface tag. */
6337
6338static int
6339ada_is_interface_tag (struct type *type)
6340{
6341 const char *name = TYPE_NAME (type);
6342
6343 if (name == NULL)
6344 return 0;
6345
6346 return (strcmp (name, "ada__tags__interface_tag") == 0);
6347}
6348
963a6417
PH
6349/* True if field number FIELD_NUM in struct or union type TYPE is supposed
6350 to be invisible to users. */
96d887e8 6351
963a6417
PH
6352int
6353ada_is_ignored_field (struct type *type, int field_num)
96d887e8 6354{
963a6417
PH
6355 if (field_num < 0 || field_num > TYPE_NFIELDS (type))
6356 return 1;
ffde82bf 6357
73fb9985
JB
6358 /* Check the name of that field. */
6359 {
6360 const char *name = TYPE_FIELD_NAME (type, field_num);
6361
6362 /* Anonymous field names should not be printed.
6363 brobecker/2007-02-20: I don't think this can actually happen
6364 but we don't want to print the value of annonymous fields anyway. */
6365 if (name == NULL)
6366 return 1;
6367
ffde82bf
JB
6368 /* Normally, fields whose name start with an underscore ("_")
6369 are fields that have been internally generated by the compiler,
6370 and thus should not be printed. The "_parent" field is special,
6371 however: This is a field internally generated by the compiler
6372 for tagged types, and it contains the components inherited from
6373 the parent type. This field should not be printed as is, but
6374 should not be ignored either. */
73fb9985
JB
6375 if (name[0] == '_' && strncmp (name, "_parent", 7) != 0)
6376 return 1;
6377 }
6378
ac4a2da4
JG
6379 /* If this is the dispatch table of a tagged type or an interface tag,
6380 then ignore. */
73fb9985 6381 if (ada_is_tagged_type (type, 1)
ac4a2da4
JG
6382 && (ada_is_dispatch_table_ptr_type (TYPE_FIELD_TYPE (type, field_num))
6383 || ada_is_interface_tag (TYPE_FIELD_TYPE (type, field_num))))
73fb9985
JB
6384 return 1;
6385
6386 /* Not a special field, so it should not be ignored. */
6387 return 0;
963a6417 6388}
96d887e8 6389
963a6417 6390/* True iff TYPE has a tag field. If REFOK, then TYPE may also be a
0963b4bd 6391 pointer or reference type whose ultimate target has a tag field. */
96d887e8 6392
963a6417
PH
6393int
6394ada_is_tagged_type (struct type *type, int refok)
6395{
6396 return (ada_lookup_struct_elt_type (type, "_tag", refok, 1, NULL) != NULL);
6397}
96d887e8 6398
963a6417 6399/* True iff TYPE represents the type of X'Tag */
96d887e8 6400
963a6417
PH
6401int
6402ada_is_tag_type (struct type *type)
6403{
6404 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_PTR)
6405 return 0;
6406 else
96d887e8 6407 {
963a6417 6408 const char *name = ada_type_name (TYPE_TARGET_TYPE (type));
5b4ee69b 6409
963a6417
PH
6410 return (name != NULL
6411 && strcmp (name, "ada__tags__dispatch_table") == 0);
96d887e8 6412 }
96d887e8
PH
6413}
6414
963a6417 6415/* The type of the tag on VAL. */
76a01679 6416
963a6417
PH
6417struct type *
6418ada_tag_type (struct value *val)
96d887e8 6419{
df407dfe 6420 return ada_lookup_struct_elt_type (value_type (val), "_tag", 1, 0, NULL);
963a6417 6421}
96d887e8 6422
b50d69b5
JG
6423/* Return 1 if TAG follows the old scheme for Ada tags (used for Ada 95,
6424 retired at Ada 05). */
6425
6426static int
6427is_ada95_tag (struct value *tag)
6428{
6429 return ada_value_struct_elt (tag, "tsd", 1) != NULL;
6430}
6431
963a6417 6432/* The value of the tag on VAL. */
96d887e8 6433
963a6417
PH
6434struct value *
6435ada_value_tag (struct value *val)
6436{
03ee6b2e 6437 return ada_value_struct_elt (val, "_tag", 0);
96d887e8
PH
6438}
6439
963a6417
PH
6440/* The value of the tag on the object of type TYPE whose contents are
6441 saved at VALADDR, if it is non-null, or is at memory address
0963b4bd 6442 ADDRESS. */
96d887e8 6443
963a6417 6444static struct value *
10a2c479 6445value_tag_from_contents_and_address (struct type *type,
fc1a4b47 6446 const gdb_byte *valaddr,
963a6417 6447 CORE_ADDR address)
96d887e8 6448{
b5385fc0 6449 int tag_byte_offset;
963a6417 6450 struct type *tag_type;
5b4ee69b 6451
963a6417 6452 if (find_struct_field ("_tag", type, 0, &tag_type, &tag_byte_offset,
52ce6436 6453 NULL, NULL, NULL))
96d887e8 6454 {
fc1a4b47 6455 const gdb_byte *valaddr1 = ((valaddr == NULL)
10a2c479
AC
6456 ? NULL
6457 : valaddr + tag_byte_offset);
963a6417 6458 CORE_ADDR address1 = (address == 0) ? 0 : address + tag_byte_offset;
96d887e8 6459
963a6417 6460 return value_from_contents_and_address (tag_type, valaddr1, address1);
96d887e8 6461 }
963a6417
PH
6462 return NULL;
6463}
96d887e8 6464
963a6417
PH
6465static struct type *
6466type_from_tag (struct value *tag)
6467{
6468 const char *type_name = ada_tag_name (tag);
5b4ee69b 6469
963a6417
PH
6470 if (type_name != NULL)
6471 return ada_find_any_type (ada_encode (type_name));
6472 return NULL;
6473}
96d887e8 6474
b50d69b5
JG
6475/* Given a value OBJ of a tagged type, return a value of this
6476 type at the base address of the object. The base address, as
6477 defined in Ada.Tags, it is the address of the primary tag of
6478 the object, and therefore where the field values of its full
6479 view can be fetched. */
6480
6481struct value *
6482ada_tag_value_at_base_address (struct value *obj)
6483{
6484 volatile struct gdb_exception e;
6485 struct value *val;
6486 LONGEST offset_to_top = 0;
6487 struct type *ptr_type, *obj_type;
6488 struct value *tag;
6489 CORE_ADDR base_address;
6490
6491 obj_type = value_type (obj);
6492
6493 /* It is the responsability of the caller to deref pointers. */
6494
6495 if (TYPE_CODE (obj_type) == TYPE_CODE_PTR
6496 || TYPE_CODE (obj_type) == TYPE_CODE_REF)
6497 return obj;
6498
6499 tag = ada_value_tag (obj);
6500 if (!tag)
6501 return obj;
6502
6503 /* Base addresses only appeared with Ada 05 and multiple inheritance. */
6504
6505 if (is_ada95_tag (tag))
6506 return obj;
6507
6508 ptr_type = builtin_type (target_gdbarch ())->builtin_data_ptr;
6509 ptr_type = lookup_pointer_type (ptr_type);
6510 val = value_cast (ptr_type, tag);
6511 if (!val)
6512 return obj;
6513
6514 /* It is perfectly possible that an exception be raised while
6515 trying to determine the base address, just like for the tag;
6516 see ada_tag_name for more details. We do not print the error
6517 message for the same reason. */
6518
6519 TRY_CATCH (e, RETURN_MASK_ERROR)
6520 {
6521 offset_to_top = value_as_long (value_ind (value_ptradd (val, -2)));
6522 }
6523
6524 if (e.reason < 0)
6525 return obj;
6526
6527 /* If offset is null, nothing to do. */
6528
6529 if (offset_to_top == 0)
6530 return obj;
6531
6532 /* -1 is a special case in Ada.Tags; however, what should be done
6533 is not quite clear from the documentation. So do nothing for
6534 now. */
6535
6536 if (offset_to_top == -1)
6537 return obj;
6538
6539 base_address = value_address (obj) - offset_to_top;
6540 tag = value_tag_from_contents_and_address (obj_type, NULL, base_address);
6541
6542 /* Make sure that we have a proper tag at the new address.
6543 Otherwise, offset_to_top is bogus (which can happen when
6544 the object is not initialized yet). */
6545
6546 if (!tag)
6547 return obj;
6548
6549 obj_type = type_from_tag (tag);
6550
6551 if (!obj_type)
6552 return obj;
6553
6554 return value_from_contents_and_address (obj_type, NULL, base_address);
6555}
6556
1b611343
JB
6557/* Return the "ada__tags__type_specific_data" type. */
6558
6559static struct type *
6560ada_get_tsd_type (struct inferior *inf)
963a6417 6561{
1b611343 6562 struct ada_inferior_data *data = get_ada_inferior_data (inf);
4c4b4cd2 6563
1b611343
JB
6564 if (data->tsd_type == 0)
6565 data->tsd_type = ada_find_any_type ("ada__tags__type_specific_data");
6566 return data->tsd_type;
6567}
529cad9c 6568
1b611343
JB
6569/* Return the TSD (type-specific data) associated to the given TAG.
6570 TAG is assumed to be the tag of a tagged-type entity.
529cad9c 6571
1b611343 6572 May return NULL if we are unable to get the TSD. */
4c4b4cd2 6573
1b611343
JB
6574static struct value *
6575ada_get_tsd_from_tag (struct value *tag)
4c4b4cd2 6576{
4c4b4cd2 6577 struct value *val;
1b611343 6578 struct type *type;
5b4ee69b 6579
1b611343
JB
6580 /* First option: The TSD is simply stored as a field of our TAG.
6581 Only older versions of GNAT would use this format, but we have
6582 to test it first, because there are no visible markers for
6583 the current approach except the absence of that field. */
529cad9c 6584
1b611343
JB
6585 val = ada_value_struct_elt (tag, "tsd", 1);
6586 if (val)
6587 return val;
e802dbe0 6588
1b611343
JB
6589 /* Try the second representation for the dispatch table (in which
6590 there is no explicit 'tsd' field in the referent of the tag pointer,
6591 and instead the tsd pointer is stored just before the dispatch
6592 table. */
e802dbe0 6593
1b611343
JB
6594 type = ada_get_tsd_type (current_inferior());
6595 if (type == NULL)
6596 return NULL;
6597 type = lookup_pointer_type (lookup_pointer_type (type));
6598 val = value_cast (type, tag);
6599 if (val == NULL)
6600 return NULL;
6601 return value_ind (value_ptradd (val, -1));
e802dbe0
JB
6602}
6603
1b611343
JB
6604/* Given the TSD of a tag (type-specific data), return a string
6605 containing the name of the associated type.
6606
6607 The returned value is good until the next call. May return NULL
6608 if we are unable to determine the tag name. */
6609
6610static char *
6611ada_tag_name_from_tsd (struct value *tsd)
529cad9c 6612{
529cad9c
PH
6613 static char name[1024];
6614 char *p;
1b611343 6615 struct value *val;
529cad9c 6616
1b611343 6617 val = ada_value_struct_elt (tsd, "expanded_name", 1);
4c4b4cd2 6618 if (val == NULL)
1b611343 6619 return NULL;
4c4b4cd2
PH
6620 read_memory_string (value_as_address (val), name, sizeof (name) - 1);
6621 for (p = name; *p != '\0'; p += 1)
6622 if (isalpha (*p))
6623 *p = tolower (*p);
1b611343 6624 return name;
4c4b4cd2
PH
6625}
6626
6627/* The type name of the dynamic type denoted by the 'tag value TAG, as
1b611343
JB
6628 a C string.
6629
6630 Return NULL if the TAG is not an Ada tag, or if we were unable to
6631 determine the name of that tag. The result is good until the next
6632 call. */
4c4b4cd2
PH
6633
6634const char *
6635ada_tag_name (struct value *tag)
6636{
1b611343
JB
6637 volatile struct gdb_exception e;
6638 char *name = NULL;
5b4ee69b 6639
df407dfe 6640 if (!ada_is_tag_type (value_type (tag)))
4c4b4cd2 6641 return NULL;
1b611343
JB
6642
6643 /* It is perfectly possible that an exception be raised while trying
6644 to determine the TAG's name, even under normal circumstances:
6645 The associated variable may be uninitialized or corrupted, for
6646 instance. We do not let any exception propagate past this point.
6647 instead we return NULL.
6648
6649 We also do not print the error message either (which often is very
6650 low-level (Eg: "Cannot read memory at 0x[...]"), but instead let
6651 the caller print a more meaningful message if necessary. */
6652 TRY_CATCH (e, RETURN_MASK_ERROR)
6653 {
6654 struct value *tsd = ada_get_tsd_from_tag (tag);
6655
6656 if (tsd != NULL)
6657 name = ada_tag_name_from_tsd (tsd);
6658 }
6659
6660 return name;
4c4b4cd2
PH
6661}
6662
6663/* The parent type of TYPE, or NULL if none. */
14f9c5c9 6664
d2e4a39e 6665struct type *
ebf56fd3 6666ada_parent_type (struct type *type)
14f9c5c9
AS
6667{
6668 int i;
6669
61ee279c 6670 type = ada_check_typedef (type);
14f9c5c9
AS
6671
6672 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT)
6673 return NULL;
6674
6675 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
6676 if (ada_is_parent_field (type, i))
0c1f74cf
JB
6677 {
6678 struct type *parent_type = TYPE_FIELD_TYPE (type, i);
6679
6680 /* If the _parent field is a pointer, then dereference it. */
6681 if (TYPE_CODE (parent_type) == TYPE_CODE_PTR)
6682 parent_type = TYPE_TARGET_TYPE (parent_type);
6683 /* If there is a parallel XVS type, get the actual base type. */
6684 parent_type = ada_get_base_type (parent_type);
6685
6686 return ada_check_typedef (parent_type);
6687 }
14f9c5c9
AS
6688
6689 return NULL;
6690}
6691
4c4b4cd2
PH
6692/* True iff field number FIELD_NUM of structure type TYPE contains the
6693 parent-type (inherited) fields of a derived type. Assumes TYPE is
6694 a structure type with at least FIELD_NUM+1 fields. */
14f9c5c9
AS
6695
6696int
ebf56fd3 6697ada_is_parent_field (struct type *type, int field_num)
14f9c5c9 6698{
61ee279c 6699 const char *name = TYPE_FIELD_NAME (ada_check_typedef (type), field_num);
5b4ee69b 6700
4c4b4cd2
PH
6701 return (name != NULL
6702 && (strncmp (name, "PARENT", 6) == 0
6703 || strncmp (name, "_parent", 7) == 0));
14f9c5c9
AS
6704}
6705
4c4b4cd2 6706/* True iff field number FIELD_NUM of structure type TYPE is a
14f9c5c9 6707 transparent wrapper field (which should be silently traversed when doing
4c4b4cd2 6708 field selection and flattened when printing). Assumes TYPE is a
14f9c5c9 6709 structure type with at least FIELD_NUM+1 fields. Such fields are always
4c4b4cd2 6710 structures. */
14f9c5c9
AS
6711
6712int
ebf56fd3 6713ada_is_wrapper_field (struct type *type, int field_num)
14f9c5c9 6714{
d2e4a39e 6715 const char *name = TYPE_FIELD_NAME (type, field_num);
5b4ee69b 6716
d2e4a39e 6717 return (name != NULL
4c4b4cd2
PH
6718 && (strncmp (name, "PARENT", 6) == 0
6719 || strcmp (name, "REP") == 0
6720 || strncmp (name, "_parent", 7) == 0
6721 || name[0] == 'S' || name[0] == 'R' || name[0] == 'O'));
14f9c5c9
AS
6722}
6723
4c4b4cd2
PH
6724/* True iff field number FIELD_NUM of structure or union type TYPE
6725 is a variant wrapper. Assumes TYPE is a structure type with at least
6726 FIELD_NUM+1 fields. */
14f9c5c9
AS
6727
6728int
ebf56fd3 6729ada_is_variant_part (struct type *type, int field_num)
14f9c5c9 6730{
d2e4a39e 6731 struct type *field_type = TYPE_FIELD_TYPE (type, field_num);
5b4ee69b 6732
14f9c5c9 6733 return (TYPE_CODE (field_type) == TYPE_CODE_UNION
4c4b4cd2 6734 || (is_dynamic_field (type, field_num)
c3e5cd34
PH
6735 && (TYPE_CODE (TYPE_TARGET_TYPE (field_type))
6736 == TYPE_CODE_UNION)));
14f9c5c9
AS
6737}
6738
6739/* Assuming that VAR_TYPE is a variant wrapper (type of the variant part)
4c4b4cd2 6740 whose discriminants are contained in the record type OUTER_TYPE,
7c964f07
UW
6741 returns the type of the controlling discriminant for the variant.
6742 May return NULL if the type could not be found. */
14f9c5c9 6743
d2e4a39e 6744struct type *
ebf56fd3 6745ada_variant_discrim_type (struct type *var_type, struct type *outer_type)
14f9c5c9 6746{
d2e4a39e 6747 char *name = ada_variant_discrim_name (var_type);
5b4ee69b 6748
7c964f07 6749 return ada_lookup_struct_elt_type (outer_type, name, 1, 1, NULL);
14f9c5c9
AS
6750}
6751
4c4b4cd2 6752/* Assuming that TYPE is the type of a variant wrapper, and FIELD_NUM is a
14f9c5c9 6753 valid field number within it, returns 1 iff field FIELD_NUM of TYPE
4c4b4cd2 6754 represents a 'when others' clause; otherwise 0. */
14f9c5c9
AS
6755
6756int
ebf56fd3 6757ada_is_others_clause (struct type *type, int field_num)
14f9c5c9 6758{
d2e4a39e 6759 const char *name = TYPE_FIELD_NAME (type, field_num);
5b4ee69b 6760
14f9c5c9
AS
6761 return (name != NULL && name[0] == 'O');
6762}
6763
6764/* Assuming that TYPE0 is the type of the variant part of a record,
4c4b4cd2
PH
6765 returns the name of the discriminant controlling the variant.
6766 The value is valid until the next call to ada_variant_discrim_name. */
14f9c5c9 6767
d2e4a39e 6768char *
ebf56fd3 6769ada_variant_discrim_name (struct type *type0)
14f9c5c9 6770{
d2e4a39e 6771 static char *result = NULL;
14f9c5c9 6772 static size_t result_len = 0;
d2e4a39e
AS
6773 struct type *type;
6774 const char *name;
6775 const char *discrim_end;
6776 const char *discrim_start;
14f9c5c9
AS
6777
6778 if (TYPE_CODE (type0) == TYPE_CODE_PTR)
6779 type = TYPE_TARGET_TYPE (type0);
6780 else
6781 type = type0;
6782
6783 name = ada_type_name (type);
6784
6785 if (name == NULL || name[0] == '\000')
6786 return "";
6787
6788 for (discrim_end = name + strlen (name) - 6; discrim_end != name;
6789 discrim_end -= 1)
6790 {
4c4b4cd2
PH
6791 if (strncmp (discrim_end, "___XVN", 6) == 0)
6792 break;
14f9c5c9
AS
6793 }
6794 if (discrim_end == name)
6795 return "";
6796
d2e4a39e 6797 for (discrim_start = discrim_end; discrim_start != name + 3;
14f9c5c9
AS
6798 discrim_start -= 1)
6799 {
d2e4a39e 6800 if (discrim_start == name + 1)
4c4b4cd2 6801 return "";
76a01679 6802 if ((discrim_start > name + 3
4c4b4cd2
PH
6803 && strncmp (discrim_start - 3, "___", 3) == 0)
6804 || discrim_start[-1] == '.')
6805 break;
14f9c5c9
AS
6806 }
6807
6808 GROW_VECT (result, result_len, discrim_end - discrim_start + 1);
6809 strncpy (result, discrim_start, discrim_end - discrim_start);
d2e4a39e 6810 result[discrim_end - discrim_start] = '\0';
14f9c5c9
AS
6811 return result;
6812}
6813
4c4b4cd2
PH
6814/* Scan STR for a subtype-encoded number, beginning at position K.
6815 Put the position of the character just past the number scanned in
6816 *NEW_K, if NEW_K!=NULL. Put the scanned number in *R, if R!=NULL.
6817 Return 1 if there was a valid number at the given position, and 0
6818 otherwise. A "subtype-encoded" number consists of the absolute value
6819 in decimal, followed by the letter 'm' to indicate a negative number.
6820 Assumes 0m does not occur. */
14f9c5c9
AS
6821
6822int
d2e4a39e 6823ada_scan_number (const char str[], int k, LONGEST * R, int *new_k)
14f9c5c9
AS
6824{
6825 ULONGEST RU;
6826
d2e4a39e 6827 if (!isdigit (str[k]))
14f9c5c9
AS
6828 return 0;
6829
4c4b4cd2 6830 /* Do it the hard way so as not to make any assumption about
14f9c5c9 6831 the relationship of unsigned long (%lu scan format code) and
4c4b4cd2 6832 LONGEST. */
14f9c5c9
AS
6833 RU = 0;
6834 while (isdigit (str[k]))
6835 {
d2e4a39e 6836 RU = RU * 10 + (str[k] - '0');
14f9c5c9
AS
6837 k += 1;
6838 }
6839
d2e4a39e 6840 if (str[k] == 'm')
14f9c5c9
AS
6841 {
6842 if (R != NULL)
4c4b4cd2 6843 *R = (-(LONGEST) (RU - 1)) - 1;
14f9c5c9
AS
6844 k += 1;
6845 }
6846 else if (R != NULL)
6847 *R = (LONGEST) RU;
6848
4c4b4cd2 6849 /* NOTE on the above: Technically, C does not say what the results of
14f9c5c9
AS
6850 - (LONGEST) RU or (LONGEST) -RU are for RU == largest positive
6851 number representable as a LONGEST (although either would probably work
6852 in most implementations). When RU>0, the locution in the then branch
4c4b4cd2 6853 above is always equivalent to the negative of RU. */
14f9c5c9
AS
6854
6855 if (new_k != NULL)
6856 *new_k = k;
6857 return 1;
6858}
6859
4c4b4cd2
PH
6860/* Assuming that TYPE is a variant part wrapper type (a VARIANTS field),
6861 and FIELD_NUM is a valid field number within it, returns 1 iff VAL is
6862 in the range encoded by field FIELD_NUM of TYPE; otherwise 0. */
14f9c5c9 6863
d2e4a39e 6864int
ebf56fd3 6865ada_in_variant (LONGEST val, struct type *type, int field_num)
14f9c5c9 6866{
d2e4a39e 6867 const char *name = TYPE_FIELD_NAME (type, field_num);
14f9c5c9
AS
6868 int p;
6869
6870 p = 0;
6871 while (1)
6872 {
d2e4a39e 6873 switch (name[p])
4c4b4cd2
PH
6874 {
6875 case '\0':
6876 return 0;
6877 case 'S':
6878 {
6879 LONGEST W;
5b4ee69b 6880
4c4b4cd2
PH
6881 if (!ada_scan_number (name, p + 1, &W, &p))
6882 return 0;
6883 if (val == W)
6884 return 1;
6885 break;
6886 }
6887 case 'R':
6888 {
6889 LONGEST L, U;
5b4ee69b 6890
4c4b4cd2
PH
6891 if (!ada_scan_number (name, p + 1, &L, &p)
6892 || name[p] != 'T' || !ada_scan_number (name, p + 1, &U, &p))
6893 return 0;
6894 if (val >= L && val <= U)
6895 return 1;
6896 break;
6897 }
6898 case 'O':
6899 return 1;
6900 default:
6901 return 0;
6902 }
6903 }
6904}
6905
0963b4bd 6906/* FIXME: Lots of redundancy below. Try to consolidate. */
4c4b4cd2
PH
6907
6908/* Given a value ARG1 (offset by OFFSET bytes) of a struct or union type
6909 ARG_TYPE, extract and return the value of one of its (non-static)
6910 fields. FIELDNO says which field. Differs from value_primitive_field
6911 only in that it can handle packed values of arbitrary type. */
14f9c5c9 6912
4c4b4cd2 6913static struct value *
d2e4a39e 6914ada_value_primitive_field (struct value *arg1, int offset, int fieldno,
4c4b4cd2 6915 struct type *arg_type)
14f9c5c9 6916{
14f9c5c9
AS
6917 struct type *type;
6918
61ee279c 6919 arg_type = ada_check_typedef (arg_type);
14f9c5c9
AS
6920 type = TYPE_FIELD_TYPE (arg_type, fieldno);
6921
4c4b4cd2 6922 /* Handle packed fields. */
14f9c5c9
AS
6923
6924 if (TYPE_FIELD_BITSIZE (arg_type, fieldno) != 0)
6925 {
6926 int bit_pos = TYPE_FIELD_BITPOS (arg_type, fieldno);
6927 int bit_size = TYPE_FIELD_BITSIZE (arg_type, fieldno);
d2e4a39e 6928
0fd88904 6929 return ada_value_primitive_packed_val (arg1, value_contents (arg1),
4c4b4cd2
PH
6930 offset + bit_pos / 8,
6931 bit_pos % 8, bit_size, type);
14f9c5c9
AS
6932 }
6933 else
6934 return value_primitive_field (arg1, offset, fieldno, arg_type);
6935}
6936
52ce6436
PH
6937/* Find field with name NAME in object of type TYPE. If found,
6938 set the following for each argument that is non-null:
6939 - *FIELD_TYPE_P to the field's type;
6940 - *BYTE_OFFSET_P to OFFSET + the byte offset of the field within
6941 an object of that type;
6942 - *BIT_OFFSET_P to the bit offset modulo byte size of the field;
6943 - *BIT_SIZE_P to its size in bits if the field is packed, and
6944 0 otherwise;
6945 If INDEX_P is non-null, increment *INDEX_P by the number of source-visible
6946 fields up to but not including the desired field, or by the total
6947 number of fields if not found. A NULL value of NAME never
6948 matches; the function just counts visible fields in this case.
6949
0963b4bd 6950 Returns 1 if found, 0 otherwise. */
52ce6436 6951
4c4b4cd2 6952static int
0d5cff50 6953find_struct_field (const char *name, struct type *type, int offset,
76a01679 6954 struct type **field_type_p,
52ce6436
PH
6955 int *byte_offset_p, int *bit_offset_p, int *bit_size_p,
6956 int *index_p)
4c4b4cd2
PH
6957{
6958 int i;
6959
61ee279c 6960 type = ada_check_typedef (type);
76a01679 6961
52ce6436
PH
6962 if (field_type_p != NULL)
6963 *field_type_p = NULL;
6964 if (byte_offset_p != NULL)
d5d6fca5 6965 *byte_offset_p = 0;
52ce6436
PH
6966 if (bit_offset_p != NULL)
6967 *bit_offset_p = 0;
6968 if (bit_size_p != NULL)
6969 *bit_size_p = 0;
6970
6971 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
4c4b4cd2
PH
6972 {
6973 int bit_pos = TYPE_FIELD_BITPOS (type, i);
6974 int fld_offset = offset + bit_pos / 8;
0d5cff50 6975 const char *t_field_name = TYPE_FIELD_NAME (type, i);
76a01679 6976
4c4b4cd2
PH
6977 if (t_field_name == NULL)
6978 continue;
6979
52ce6436 6980 else if (name != NULL && field_name_match (t_field_name, name))
76a01679
JB
6981 {
6982 int bit_size = TYPE_FIELD_BITSIZE (type, i);
5b4ee69b 6983
52ce6436
PH
6984 if (field_type_p != NULL)
6985 *field_type_p = TYPE_FIELD_TYPE (type, i);
6986 if (byte_offset_p != NULL)
6987 *byte_offset_p = fld_offset;
6988 if (bit_offset_p != NULL)
6989 *bit_offset_p = bit_pos % 8;
6990 if (bit_size_p != NULL)
6991 *bit_size_p = bit_size;
76a01679
JB
6992 return 1;
6993 }
4c4b4cd2
PH
6994 else if (ada_is_wrapper_field (type, i))
6995 {
52ce6436
PH
6996 if (find_struct_field (name, TYPE_FIELD_TYPE (type, i), fld_offset,
6997 field_type_p, byte_offset_p, bit_offset_p,
6998 bit_size_p, index_p))
76a01679
JB
6999 return 1;
7000 }
4c4b4cd2
PH
7001 else if (ada_is_variant_part (type, i))
7002 {
52ce6436
PH
7003 /* PNH: Wait. Do we ever execute this section, or is ARG always of
7004 fixed type?? */
4c4b4cd2 7005 int j;
52ce6436
PH
7006 struct type *field_type
7007 = ada_check_typedef (TYPE_FIELD_TYPE (type, i));
4c4b4cd2 7008
52ce6436 7009 for (j = 0; j < TYPE_NFIELDS (field_type); j += 1)
4c4b4cd2 7010 {
76a01679
JB
7011 if (find_struct_field (name, TYPE_FIELD_TYPE (field_type, j),
7012 fld_offset
7013 + TYPE_FIELD_BITPOS (field_type, j) / 8,
7014 field_type_p, byte_offset_p,
52ce6436 7015 bit_offset_p, bit_size_p, index_p))
76a01679 7016 return 1;
4c4b4cd2
PH
7017 }
7018 }
52ce6436
PH
7019 else if (index_p != NULL)
7020 *index_p += 1;
4c4b4cd2
PH
7021 }
7022 return 0;
7023}
7024
0963b4bd 7025/* Number of user-visible fields in record type TYPE. */
4c4b4cd2 7026
52ce6436
PH
7027static int
7028num_visible_fields (struct type *type)
7029{
7030 int n;
5b4ee69b 7031
52ce6436
PH
7032 n = 0;
7033 find_struct_field (NULL, type, 0, NULL, NULL, NULL, NULL, &n);
7034 return n;
7035}
14f9c5c9 7036
4c4b4cd2 7037/* Look for a field NAME in ARG. Adjust the address of ARG by OFFSET bytes,
14f9c5c9
AS
7038 and search in it assuming it has (class) type TYPE.
7039 If found, return value, else return NULL.
7040
4c4b4cd2 7041 Searches recursively through wrapper fields (e.g., '_parent'). */
14f9c5c9 7042
4c4b4cd2 7043static struct value *
d2e4a39e 7044ada_search_struct_field (char *name, struct value *arg, int offset,
4c4b4cd2 7045 struct type *type)
14f9c5c9
AS
7046{
7047 int i;
14f9c5c9 7048
5b4ee69b 7049 type = ada_check_typedef (type);
52ce6436 7050 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
14f9c5c9 7051 {
0d5cff50 7052 const char *t_field_name = TYPE_FIELD_NAME (type, i);
14f9c5c9
AS
7053
7054 if (t_field_name == NULL)
4c4b4cd2 7055 continue;
14f9c5c9
AS
7056
7057 else if (field_name_match (t_field_name, name))
4c4b4cd2 7058 return ada_value_primitive_field (arg, offset, i, type);
14f9c5c9
AS
7059
7060 else if (ada_is_wrapper_field (type, i))
4c4b4cd2 7061 {
0963b4bd 7062 struct value *v = /* Do not let indent join lines here. */
06d5cf63
JB
7063 ada_search_struct_field (name, arg,
7064 offset + TYPE_FIELD_BITPOS (type, i) / 8,
7065 TYPE_FIELD_TYPE (type, i));
5b4ee69b 7066
4c4b4cd2
PH
7067 if (v != NULL)
7068 return v;
7069 }
14f9c5c9
AS
7070
7071 else if (ada_is_variant_part (type, i))
4c4b4cd2 7072 {
0963b4bd 7073 /* PNH: Do we ever get here? See find_struct_field. */
4c4b4cd2 7074 int j;
5b4ee69b
MS
7075 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type,
7076 i));
4c4b4cd2
PH
7077 int var_offset = offset + TYPE_FIELD_BITPOS (type, i) / 8;
7078
52ce6436 7079 for (j = 0; j < TYPE_NFIELDS (field_type); j += 1)
4c4b4cd2 7080 {
0963b4bd
MS
7081 struct value *v = ada_search_struct_field /* Force line
7082 break. */
06d5cf63
JB
7083 (name, arg,
7084 var_offset + TYPE_FIELD_BITPOS (field_type, j) / 8,
7085 TYPE_FIELD_TYPE (field_type, j));
5b4ee69b 7086
4c4b4cd2
PH
7087 if (v != NULL)
7088 return v;
7089 }
7090 }
14f9c5c9
AS
7091 }
7092 return NULL;
7093}
d2e4a39e 7094
52ce6436
PH
7095static struct value *ada_index_struct_field_1 (int *, struct value *,
7096 int, struct type *);
7097
7098
7099/* Return field #INDEX in ARG, where the index is that returned by
7100 * find_struct_field through its INDEX_P argument. Adjust the address
7101 * of ARG by OFFSET bytes, and search in it assuming it has (class) type TYPE.
0963b4bd 7102 * If found, return value, else return NULL. */
52ce6436
PH
7103
7104static struct value *
7105ada_index_struct_field (int index, struct value *arg, int offset,
7106 struct type *type)
7107{
7108 return ada_index_struct_field_1 (&index, arg, offset, type);
7109}
7110
7111
7112/* Auxiliary function for ada_index_struct_field. Like
7113 * ada_index_struct_field, but takes index from *INDEX_P and modifies
0963b4bd 7114 * *INDEX_P. */
52ce6436
PH
7115
7116static struct value *
7117ada_index_struct_field_1 (int *index_p, struct value *arg, int offset,
7118 struct type *type)
7119{
7120 int i;
7121 type = ada_check_typedef (type);
7122
7123 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
7124 {
7125 if (TYPE_FIELD_NAME (type, i) == NULL)
7126 continue;
7127 else if (ada_is_wrapper_field (type, i))
7128 {
0963b4bd 7129 struct value *v = /* Do not let indent join lines here. */
52ce6436
PH
7130 ada_index_struct_field_1 (index_p, arg,
7131 offset + TYPE_FIELD_BITPOS (type, i) / 8,
7132 TYPE_FIELD_TYPE (type, i));
5b4ee69b 7133
52ce6436
PH
7134 if (v != NULL)
7135 return v;
7136 }
7137
7138 else if (ada_is_variant_part (type, i))
7139 {
7140 /* PNH: Do we ever get here? See ada_search_struct_field,
0963b4bd 7141 find_struct_field. */
52ce6436
PH
7142 error (_("Cannot assign this kind of variant record"));
7143 }
7144 else if (*index_p == 0)
7145 return ada_value_primitive_field (arg, offset, i, type);
7146 else
7147 *index_p -= 1;
7148 }
7149 return NULL;
7150}
7151
4c4b4cd2
PH
7152/* Given ARG, a value of type (pointer or reference to a)*
7153 structure/union, extract the component named NAME from the ultimate
7154 target structure/union and return it as a value with its
f5938064 7155 appropriate type.
14f9c5c9 7156
4c4b4cd2
PH
7157 The routine searches for NAME among all members of the structure itself
7158 and (recursively) among all members of any wrapper members
14f9c5c9
AS
7159 (e.g., '_parent').
7160
03ee6b2e
PH
7161 If NO_ERR, then simply return NULL in case of error, rather than
7162 calling error. */
14f9c5c9 7163
d2e4a39e 7164struct value *
03ee6b2e 7165ada_value_struct_elt (struct value *arg, char *name, int no_err)
14f9c5c9 7166{
4c4b4cd2 7167 struct type *t, *t1;
d2e4a39e 7168 struct value *v;
14f9c5c9 7169
4c4b4cd2 7170 v = NULL;
df407dfe 7171 t1 = t = ada_check_typedef (value_type (arg));
4c4b4cd2
PH
7172 if (TYPE_CODE (t) == TYPE_CODE_REF)
7173 {
7174 t1 = TYPE_TARGET_TYPE (t);
7175 if (t1 == NULL)
03ee6b2e 7176 goto BadValue;
61ee279c 7177 t1 = ada_check_typedef (t1);
4c4b4cd2 7178 if (TYPE_CODE (t1) == TYPE_CODE_PTR)
76a01679 7179 {
994b9211 7180 arg = coerce_ref (arg);
76a01679
JB
7181 t = t1;
7182 }
4c4b4cd2 7183 }
14f9c5c9 7184
4c4b4cd2
PH
7185 while (TYPE_CODE (t) == TYPE_CODE_PTR)
7186 {
7187 t1 = TYPE_TARGET_TYPE (t);
7188 if (t1 == NULL)
03ee6b2e 7189 goto BadValue;
61ee279c 7190 t1 = ada_check_typedef (t1);
4c4b4cd2 7191 if (TYPE_CODE (t1) == TYPE_CODE_PTR)
76a01679
JB
7192 {
7193 arg = value_ind (arg);
7194 t = t1;
7195 }
4c4b4cd2 7196 else
76a01679 7197 break;
4c4b4cd2 7198 }
14f9c5c9 7199
4c4b4cd2 7200 if (TYPE_CODE (t1) != TYPE_CODE_STRUCT && TYPE_CODE (t1) != TYPE_CODE_UNION)
03ee6b2e 7201 goto BadValue;
14f9c5c9 7202
4c4b4cd2
PH
7203 if (t1 == t)
7204 v = ada_search_struct_field (name, arg, 0, t);
7205 else
7206 {
7207 int bit_offset, bit_size, byte_offset;
7208 struct type *field_type;
7209 CORE_ADDR address;
7210
76a01679 7211 if (TYPE_CODE (t) == TYPE_CODE_PTR)
b50d69b5 7212 address = value_address (ada_value_ind (arg));
4c4b4cd2 7213 else
b50d69b5 7214 address = value_address (ada_coerce_ref (arg));
14f9c5c9 7215
1ed6ede0 7216 t1 = ada_to_fixed_type (ada_get_base_type (t1), NULL, address, NULL, 1);
76a01679
JB
7217 if (find_struct_field (name, t1, 0,
7218 &field_type, &byte_offset, &bit_offset,
52ce6436 7219 &bit_size, NULL))
76a01679
JB
7220 {
7221 if (bit_size != 0)
7222 {
714e53ab
PH
7223 if (TYPE_CODE (t) == TYPE_CODE_REF)
7224 arg = ada_coerce_ref (arg);
7225 else
7226 arg = ada_value_ind (arg);
76a01679
JB
7227 v = ada_value_primitive_packed_val (arg, NULL, byte_offset,
7228 bit_offset, bit_size,
7229 field_type);
7230 }
7231 else
f5938064 7232 v = value_at_lazy (field_type, address + byte_offset);
76a01679
JB
7233 }
7234 }
7235
03ee6b2e
PH
7236 if (v != NULL || no_err)
7237 return v;
7238 else
323e0a4a 7239 error (_("There is no member named %s."), name);
14f9c5c9 7240
03ee6b2e
PH
7241 BadValue:
7242 if (no_err)
7243 return NULL;
7244 else
0963b4bd
MS
7245 error (_("Attempt to extract a component of "
7246 "a value that is not a record."));
14f9c5c9
AS
7247}
7248
7249/* Given a type TYPE, look up the type of the component of type named NAME.
4c4b4cd2
PH
7250 If DISPP is non-null, add its byte displacement from the beginning of a
7251 structure (pointed to by a value) of type TYPE to *DISPP (does not
14f9c5c9
AS
7252 work for packed fields).
7253
7254 Matches any field whose name has NAME as a prefix, possibly
4c4b4cd2 7255 followed by "___".
14f9c5c9 7256
0963b4bd 7257 TYPE can be either a struct or union. If REFOK, TYPE may also
4c4b4cd2
PH
7258 be a (pointer or reference)+ to a struct or union, and the
7259 ultimate target type will be searched.
14f9c5c9
AS
7260
7261 Looks recursively into variant clauses and parent types.
7262
4c4b4cd2
PH
7263 If NOERR is nonzero, return NULL if NAME is not suitably defined or
7264 TYPE is not a type of the right kind. */
14f9c5c9 7265
4c4b4cd2 7266static struct type *
76a01679
JB
7267ada_lookup_struct_elt_type (struct type *type, char *name, int refok,
7268 int noerr, int *dispp)
14f9c5c9
AS
7269{
7270 int i;
7271
7272 if (name == NULL)
7273 goto BadName;
7274
76a01679 7275 if (refok && type != NULL)
4c4b4cd2
PH
7276 while (1)
7277 {
61ee279c 7278 type = ada_check_typedef (type);
76a01679
JB
7279 if (TYPE_CODE (type) != TYPE_CODE_PTR
7280 && TYPE_CODE (type) != TYPE_CODE_REF)
7281 break;
7282 type = TYPE_TARGET_TYPE (type);
4c4b4cd2 7283 }
14f9c5c9 7284
76a01679 7285 if (type == NULL
1265e4aa
JB
7286 || (TYPE_CODE (type) != TYPE_CODE_STRUCT
7287 && TYPE_CODE (type) != TYPE_CODE_UNION))
14f9c5c9 7288 {
4c4b4cd2 7289 if (noerr)
76a01679 7290 return NULL;
4c4b4cd2 7291 else
76a01679
JB
7292 {
7293 target_terminal_ours ();
7294 gdb_flush (gdb_stdout);
323e0a4a
AC
7295 if (type == NULL)
7296 error (_("Type (null) is not a structure or union type"));
7297 else
7298 {
7299 /* XXX: type_sprint */
7300 fprintf_unfiltered (gdb_stderr, _("Type "));
7301 type_print (type, "", gdb_stderr, -1);
7302 error (_(" is not a structure or union type"));
7303 }
76a01679 7304 }
14f9c5c9
AS
7305 }
7306
7307 type = to_static_fixed_type (type);
7308
7309 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
7310 {
0d5cff50 7311 const char *t_field_name = TYPE_FIELD_NAME (type, i);
14f9c5c9
AS
7312 struct type *t;
7313 int disp;
d2e4a39e 7314
14f9c5c9 7315 if (t_field_name == NULL)
4c4b4cd2 7316 continue;
14f9c5c9
AS
7317
7318 else if (field_name_match (t_field_name, name))
4c4b4cd2
PH
7319 {
7320 if (dispp != NULL)
7321 *dispp += TYPE_FIELD_BITPOS (type, i) / 8;
61ee279c 7322 return ada_check_typedef (TYPE_FIELD_TYPE (type, i));
4c4b4cd2 7323 }
14f9c5c9
AS
7324
7325 else if (ada_is_wrapper_field (type, i))
4c4b4cd2
PH
7326 {
7327 disp = 0;
7328 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (type, i), name,
7329 0, 1, &disp);
7330 if (t != NULL)
7331 {
7332 if (dispp != NULL)
7333 *dispp += disp + TYPE_FIELD_BITPOS (type, i) / 8;
7334 return t;
7335 }
7336 }
14f9c5c9
AS
7337
7338 else if (ada_is_variant_part (type, i))
4c4b4cd2
PH
7339 {
7340 int j;
5b4ee69b
MS
7341 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type,
7342 i));
4c4b4cd2
PH
7343
7344 for (j = TYPE_NFIELDS (field_type) - 1; j >= 0; j -= 1)
7345 {
b1f33ddd
JB
7346 /* FIXME pnh 2008/01/26: We check for a field that is
7347 NOT wrapped in a struct, since the compiler sometimes
7348 generates these for unchecked variant types. Revisit
0963b4bd 7349 if the compiler changes this practice. */
0d5cff50 7350 const char *v_field_name = TYPE_FIELD_NAME (field_type, j);
4c4b4cd2 7351 disp = 0;
b1f33ddd
JB
7352 if (v_field_name != NULL
7353 && field_name_match (v_field_name, name))
7354 t = ada_check_typedef (TYPE_FIELD_TYPE (field_type, j));
7355 else
0963b4bd
MS
7356 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (field_type,
7357 j),
b1f33ddd
JB
7358 name, 0, 1, &disp);
7359
4c4b4cd2
PH
7360 if (t != NULL)
7361 {
7362 if (dispp != NULL)
7363 *dispp += disp + TYPE_FIELD_BITPOS (type, i) / 8;
7364 return t;
7365 }
7366 }
7367 }
14f9c5c9
AS
7368
7369 }
7370
7371BadName:
d2e4a39e 7372 if (!noerr)
14f9c5c9
AS
7373 {
7374 target_terminal_ours ();
7375 gdb_flush (gdb_stdout);
323e0a4a
AC
7376 if (name == NULL)
7377 {
7378 /* XXX: type_sprint */
7379 fprintf_unfiltered (gdb_stderr, _("Type "));
7380 type_print (type, "", gdb_stderr, -1);
7381 error (_(" has no component named <null>"));
7382 }
7383 else
7384 {
7385 /* XXX: type_sprint */
7386 fprintf_unfiltered (gdb_stderr, _("Type "));
7387 type_print (type, "", gdb_stderr, -1);
7388 error (_(" has no component named %s"), name);
7389 }
14f9c5c9
AS
7390 }
7391
7392 return NULL;
7393}
7394
b1f33ddd
JB
7395/* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
7396 within a value of type OUTER_TYPE, return true iff VAR_TYPE
7397 represents an unchecked union (that is, the variant part of a
0963b4bd 7398 record that is named in an Unchecked_Union pragma). */
b1f33ddd
JB
7399
7400static int
7401is_unchecked_variant (struct type *var_type, struct type *outer_type)
7402{
7403 char *discrim_name = ada_variant_discrim_name (var_type);
5b4ee69b 7404
b1f33ddd
JB
7405 return (ada_lookup_struct_elt_type (outer_type, discrim_name, 0, 1, NULL)
7406 == NULL);
7407}
7408
7409
14f9c5c9
AS
7410/* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
7411 within a value of type OUTER_TYPE that is stored in GDB at
4c4b4cd2
PH
7412 OUTER_VALADDR, determine which variant clause (field number in VAR_TYPE,
7413 numbering from 0) is applicable. Returns -1 if none are. */
14f9c5c9 7414
d2e4a39e 7415int
ebf56fd3 7416ada_which_variant_applies (struct type *var_type, struct type *outer_type,
fc1a4b47 7417 const gdb_byte *outer_valaddr)
14f9c5c9
AS
7418{
7419 int others_clause;
7420 int i;
d2e4a39e 7421 char *discrim_name = ada_variant_discrim_name (var_type);
0c281816
JB
7422 struct value *outer;
7423 struct value *discrim;
14f9c5c9
AS
7424 LONGEST discrim_val;
7425
012370f6
TT
7426 /* Using plain value_from_contents_and_address here causes problems
7427 because we will end up trying to resolve a type that is currently
7428 being constructed. */
7429 outer = value_from_contents_and_address_unresolved (outer_type,
7430 outer_valaddr, 0);
0c281816
JB
7431 discrim = ada_value_struct_elt (outer, discrim_name, 1);
7432 if (discrim == NULL)
14f9c5c9 7433 return -1;
0c281816 7434 discrim_val = value_as_long (discrim);
14f9c5c9
AS
7435
7436 others_clause = -1;
7437 for (i = 0; i < TYPE_NFIELDS (var_type); i += 1)
7438 {
7439 if (ada_is_others_clause (var_type, i))
4c4b4cd2 7440 others_clause = i;
14f9c5c9 7441 else if (ada_in_variant (discrim_val, var_type, i))
4c4b4cd2 7442 return i;
14f9c5c9
AS
7443 }
7444
7445 return others_clause;
7446}
d2e4a39e 7447\f
14f9c5c9
AS
7448
7449
4c4b4cd2 7450 /* Dynamic-Sized Records */
14f9c5c9
AS
7451
7452/* Strategy: The type ostensibly attached to a value with dynamic size
7453 (i.e., a size that is not statically recorded in the debugging
7454 data) does not accurately reflect the size or layout of the value.
7455 Our strategy is to convert these values to values with accurate,
4c4b4cd2 7456 conventional types that are constructed on the fly. */
14f9c5c9
AS
7457
7458/* There is a subtle and tricky problem here. In general, we cannot
7459 determine the size of dynamic records without its data. However,
7460 the 'struct value' data structure, which GDB uses to represent
7461 quantities in the inferior process (the target), requires the size
7462 of the type at the time of its allocation in order to reserve space
7463 for GDB's internal copy of the data. That's why the
7464 'to_fixed_xxx_type' routines take (target) addresses as parameters,
4c4b4cd2 7465 rather than struct value*s.
14f9c5c9
AS
7466
7467 However, GDB's internal history variables ($1, $2, etc.) are
7468 struct value*s containing internal copies of the data that are not, in
7469 general, the same as the data at their corresponding addresses in
7470 the target. Fortunately, the types we give to these values are all
7471 conventional, fixed-size types (as per the strategy described
7472 above), so that we don't usually have to perform the
7473 'to_fixed_xxx_type' conversions to look at their values.
7474 Unfortunately, there is one exception: if one of the internal
7475 history variables is an array whose elements are unconstrained
7476 records, then we will need to create distinct fixed types for each
7477 element selected. */
7478
7479/* The upshot of all of this is that many routines take a (type, host
7480 address, target address) triple as arguments to represent a value.
7481 The host address, if non-null, is supposed to contain an internal
7482 copy of the relevant data; otherwise, the program is to consult the
4c4b4cd2 7483 target at the target address. */
14f9c5c9
AS
7484
7485/* Assuming that VAL0 represents a pointer value, the result of
7486 dereferencing it. Differs from value_ind in its treatment of
4c4b4cd2 7487 dynamic-sized types. */
14f9c5c9 7488
d2e4a39e
AS
7489struct value *
7490ada_value_ind (struct value *val0)
14f9c5c9 7491{
c48db5ca 7492 struct value *val = value_ind (val0);
5b4ee69b 7493
b50d69b5
JG
7494 if (ada_is_tagged_type (value_type (val), 0))
7495 val = ada_tag_value_at_base_address (val);
7496
4c4b4cd2 7497 return ada_to_fixed_value (val);
14f9c5c9
AS
7498}
7499
7500/* The value resulting from dereferencing any "reference to"
4c4b4cd2
PH
7501 qualifiers on VAL0. */
7502
d2e4a39e
AS
7503static struct value *
7504ada_coerce_ref (struct value *val0)
7505{
df407dfe 7506 if (TYPE_CODE (value_type (val0)) == TYPE_CODE_REF)
d2e4a39e
AS
7507 {
7508 struct value *val = val0;
5b4ee69b 7509
994b9211 7510 val = coerce_ref (val);
b50d69b5
JG
7511
7512 if (ada_is_tagged_type (value_type (val), 0))
7513 val = ada_tag_value_at_base_address (val);
7514
4c4b4cd2 7515 return ada_to_fixed_value (val);
d2e4a39e
AS
7516 }
7517 else
14f9c5c9
AS
7518 return val0;
7519}
7520
7521/* Return OFF rounded upward if necessary to a multiple of
4c4b4cd2 7522 ALIGNMENT (a power of 2). */
14f9c5c9
AS
7523
7524static unsigned int
ebf56fd3 7525align_value (unsigned int off, unsigned int alignment)
14f9c5c9
AS
7526{
7527 return (off + alignment - 1) & ~(alignment - 1);
7528}
7529
4c4b4cd2 7530/* Return the bit alignment required for field #F of template type TYPE. */
14f9c5c9
AS
7531
7532static unsigned int
ebf56fd3 7533field_alignment (struct type *type, int f)
14f9c5c9 7534{
d2e4a39e 7535 const char *name = TYPE_FIELD_NAME (type, f);
64a1bf19 7536 int len;
14f9c5c9
AS
7537 int align_offset;
7538
64a1bf19
JB
7539 /* The field name should never be null, unless the debugging information
7540 is somehow malformed. In this case, we assume the field does not
7541 require any alignment. */
7542 if (name == NULL)
7543 return 1;
7544
7545 len = strlen (name);
7546
4c4b4cd2
PH
7547 if (!isdigit (name[len - 1]))
7548 return 1;
14f9c5c9 7549
d2e4a39e 7550 if (isdigit (name[len - 2]))
14f9c5c9
AS
7551 align_offset = len - 2;
7552 else
7553 align_offset = len - 1;
7554
4c4b4cd2 7555 if (align_offset < 7 || strncmp ("___XV", name + align_offset - 6, 5) != 0)
14f9c5c9
AS
7556 return TARGET_CHAR_BIT;
7557
4c4b4cd2
PH
7558 return atoi (name + align_offset) * TARGET_CHAR_BIT;
7559}
7560
852dff6c 7561/* Find a typedef or tag symbol named NAME. Ignores ambiguity. */
4c4b4cd2 7562
852dff6c
JB
7563static struct symbol *
7564ada_find_any_type_symbol (const char *name)
4c4b4cd2
PH
7565{
7566 struct symbol *sym;
7567
7568 sym = standard_lookup (name, get_selected_block (NULL), VAR_DOMAIN);
4186eb54 7569 if (sym != NULL && SYMBOL_CLASS (sym) == LOC_TYPEDEF)
4c4b4cd2
PH
7570 return sym;
7571
4186eb54
KS
7572 sym = standard_lookup (name, NULL, STRUCT_DOMAIN);
7573 return sym;
14f9c5c9
AS
7574}
7575
dddfab26
UW
7576/* Find a type named NAME. Ignores ambiguity. This routine will look
7577 solely for types defined by debug info, it will not search the GDB
7578 primitive types. */
4c4b4cd2 7579
852dff6c 7580static struct type *
ebf56fd3 7581ada_find_any_type (const char *name)
14f9c5c9 7582{
852dff6c 7583 struct symbol *sym = ada_find_any_type_symbol (name);
14f9c5c9 7584
14f9c5c9 7585 if (sym != NULL)
dddfab26 7586 return SYMBOL_TYPE (sym);
14f9c5c9 7587
dddfab26 7588 return NULL;
14f9c5c9
AS
7589}
7590
739593e0
JB
7591/* Given NAME_SYM and an associated BLOCK, find a "renaming" symbol
7592 associated with NAME_SYM's name. NAME_SYM may itself be a renaming
7593 symbol, in which case it is returned. Otherwise, this looks for
7594 symbols whose name is that of NAME_SYM suffixed with "___XR".
7595 Return symbol if found, and NULL otherwise. */
4c4b4cd2
PH
7596
7597struct symbol *
270140bd 7598ada_find_renaming_symbol (struct symbol *name_sym, const struct block *block)
aeb5907d 7599{
739593e0 7600 const char *name = SYMBOL_LINKAGE_NAME (name_sym);
aeb5907d
JB
7601 struct symbol *sym;
7602
739593e0
JB
7603 if (strstr (name, "___XR") != NULL)
7604 return name_sym;
7605
aeb5907d
JB
7606 sym = find_old_style_renaming_symbol (name, block);
7607
7608 if (sym != NULL)
7609 return sym;
7610
0963b4bd 7611 /* Not right yet. FIXME pnh 7/20/2007. */
852dff6c 7612 sym = ada_find_any_type_symbol (name);
aeb5907d
JB
7613 if (sym != NULL && strstr (SYMBOL_LINKAGE_NAME (sym), "___XR") != NULL)
7614 return sym;
7615 else
7616 return NULL;
7617}
7618
7619static struct symbol *
270140bd 7620find_old_style_renaming_symbol (const char *name, const struct block *block)
4c4b4cd2 7621{
7f0df278 7622 const struct symbol *function_sym = block_linkage_function (block);
4c4b4cd2
PH
7623 char *rename;
7624
7625 if (function_sym != NULL)
7626 {
7627 /* If the symbol is defined inside a function, NAME is not fully
7628 qualified. This means we need to prepend the function name
7629 as well as adding the ``___XR'' suffix to build the name of
7630 the associated renaming symbol. */
0d5cff50 7631 const char *function_name = SYMBOL_LINKAGE_NAME (function_sym);
529cad9c
PH
7632 /* Function names sometimes contain suffixes used
7633 for instance to qualify nested subprograms. When building
7634 the XR type name, we need to make sure that this suffix is
7635 not included. So do not include any suffix in the function
7636 name length below. */
69fadcdf 7637 int function_name_len = ada_name_prefix_len (function_name);
76a01679
JB
7638 const int rename_len = function_name_len + 2 /* "__" */
7639 + strlen (name) + 6 /* "___XR\0" */ ;
4c4b4cd2 7640
529cad9c 7641 /* Strip the suffix if necessary. */
69fadcdf
JB
7642 ada_remove_trailing_digits (function_name, &function_name_len);
7643 ada_remove_po_subprogram_suffix (function_name, &function_name_len);
7644 ada_remove_Xbn_suffix (function_name, &function_name_len);
529cad9c 7645
4c4b4cd2
PH
7646 /* Library-level functions are a special case, as GNAT adds
7647 a ``_ada_'' prefix to the function name to avoid namespace
aeb5907d 7648 pollution. However, the renaming symbols themselves do not
4c4b4cd2
PH
7649 have this prefix, so we need to skip this prefix if present. */
7650 if (function_name_len > 5 /* "_ada_" */
7651 && strstr (function_name, "_ada_") == function_name)
69fadcdf
JB
7652 {
7653 function_name += 5;
7654 function_name_len -= 5;
7655 }
4c4b4cd2
PH
7656
7657 rename = (char *) alloca (rename_len * sizeof (char));
69fadcdf
JB
7658 strncpy (rename, function_name, function_name_len);
7659 xsnprintf (rename + function_name_len, rename_len - function_name_len,
7660 "__%s___XR", name);
4c4b4cd2
PH
7661 }
7662 else
7663 {
7664 const int rename_len = strlen (name) + 6;
5b4ee69b 7665
4c4b4cd2 7666 rename = (char *) alloca (rename_len * sizeof (char));
88c15c34 7667 xsnprintf (rename, rename_len * sizeof (char), "%s___XR", name);
4c4b4cd2
PH
7668 }
7669
852dff6c 7670 return ada_find_any_type_symbol (rename);
4c4b4cd2
PH
7671}
7672
14f9c5c9 7673/* Because of GNAT encoding conventions, several GDB symbols may match a
4c4b4cd2 7674 given type name. If the type denoted by TYPE0 is to be preferred to
14f9c5c9 7675 that of TYPE1 for purposes of type printing, return non-zero;
4c4b4cd2
PH
7676 otherwise return 0. */
7677
14f9c5c9 7678int
d2e4a39e 7679ada_prefer_type (struct type *type0, struct type *type1)
14f9c5c9
AS
7680{
7681 if (type1 == NULL)
7682 return 1;
7683 else if (type0 == NULL)
7684 return 0;
7685 else if (TYPE_CODE (type1) == TYPE_CODE_VOID)
7686 return 1;
7687 else if (TYPE_CODE (type0) == TYPE_CODE_VOID)
7688 return 0;
4c4b4cd2
PH
7689 else if (TYPE_NAME (type1) == NULL && TYPE_NAME (type0) != NULL)
7690 return 1;
ad82864c 7691 else if (ada_is_constrained_packed_array_type (type0))
14f9c5c9 7692 return 1;
4c4b4cd2
PH
7693 else if (ada_is_array_descriptor_type (type0)
7694 && !ada_is_array_descriptor_type (type1))
14f9c5c9 7695 return 1;
aeb5907d
JB
7696 else
7697 {
7698 const char *type0_name = type_name_no_tag (type0);
7699 const char *type1_name = type_name_no_tag (type1);
7700
7701 if (type0_name != NULL && strstr (type0_name, "___XR") != NULL
7702 && (type1_name == NULL || strstr (type1_name, "___XR") == NULL))
7703 return 1;
7704 }
14f9c5c9
AS
7705 return 0;
7706}
7707
7708/* The name of TYPE, which is either its TYPE_NAME, or, if that is
4c4b4cd2
PH
7709 null, its TYPE_TAG_NAME. Null if TYPE is null. */
7710
0d5cff50 7711const char *
d2e4a39e 7712ada_type_name (struct type *type)
14f9c5c9 7713{
d2e4a39e 7714 if (type == NULL)
14f9c5c9
AS
7715 return NULL;
7716 else if (TYPE_NAME (type) != NULL)
7717 return TYPE_NAME (type);
7718 else
7719 return TYPE_TAG_NAME (type);
7720}
7721
b4ba55a1
JB
7722/* Search the list of "descriptive" types associated to TYPE for a type
7723 whose name is NAME. */
7724
7725static struct type *
7726find_parallel_type_by_descriptive_type (struct type *type, const char *name)
7727{
7728 struct type *result;
7729
c6044dd1
JB
7730 if (ada_ignore_descriptive_types_p)
7731 return NULL;
7732
b4ba55a1
JB
7733 /* If there no descriptive-type info, then there is no parallel type
7734 to be found. */
7735 if (!HAVE_GNAT_AUX_INFO (type))
7736 return NULL;
7737
7738 result = TYPE_DESCRIPTIVE_TYPE (type);
7739 while (result != NULL)
7740 {
0d5cff50 7741 const char *result_name = ada_type_name (result);
b4ba55a1
JB
7742
7743 if (result_name == NULL)
7744 {
7745 warning (_("unexpected null name on descriptive type"));
7746 return NULL;
7747 }
7748
7749 /* If the names match, stop. */
7750 if (strcmp (result_name, name) == 0)
7751 break;
7752
7753 /* Otherwise, look at the next item on the list, if any. */
7754 if (HAVE_GNAT_AUX_INFO (result))
7755 result = TYPE_DESCRIPTIVE_TYPE (result);
7756 else
7757 result = NULL;
7758 }
7759
7760 /* If we didn't find a match, see whether this is a packed array. With
7761 older compilers, the descriptive type information is either absent or
7762 irrelevant when it comes to packed arrays so the above lookup fails.
7763 Fall back to using a parallel lookup by name in this case. */
12ab9e09 7764 if (result == NULL && ada_is_constrained_packed_array_type (type))
b4ba55a1
JB
7765 return ada_find_any_type (name);
7766
7767 return result;
7768}
7769
7770/* Find a parallel type to TYPE with the specified NAME, using the
7771 descriptive type taken from the debugging information, if available,
7772 and otherwise using the (slower) name-based method. */
7773
7774static struct type *
7775ada_find_parallel_type_with_name (struct type *type, const char *name)
7776{
7777 struct type *result = NULL;
7778
7779 if (HAVE_GNAT_AUX_INFO (type))
7780 result = find_parallel_type_by_descriptive_type (type, name);
7781 else
7782 result = ada_find_any_type (name);
7783
7784 return result;
7785}
7786
7787/* Same as above, but specify the name of the parallel type by appending
4c4b4cd2 7788 SUFFIX to the name of TYPE. */
14f9c5c9 7789
d2e4a39e 7790struct type *
ebf56fd3 7791ada_find_parallel_type (struct type *type, const char *suffix)
14f9c5c9 7792{
0d5cff50
DE
7793 char *name;
7794 const char *typename = ada_type_name (type);
14f9c5c9 7795 int len;
d2e4a39e 7796
14f9c5c9
AS
7797 if (typename == NULL)
7798 return NULL;
7799
7800 len = strlen (typename);
7801
b4ba55a1 7802 name = (char *) alloca (len + strlen (suffix) + 1);
14f9c5c9
AS
7803
7804 strcpy (name, typename);
7805 strcpy (name + len, suffix);
7806
b4ba55a1 7807 return ada_find_parallel_type_with_name (type, name);
14f9c5c9
AS
7808}
7809
14f9c5c9 7810/* If TYPE is a variable-size record type, return the corresponding template
4c4b4cd2 7811 type describing its fields. Otherwise, return NULL. */
14f9c5c9 7812
d2e4a39e
AS
7813static struct type *
7814dynamic_template_type (struct type *type)
14f9c5c9 7815{
61ee279c 7816 type = ada_check_typedef (type);
14f9c5c9
AS
7817
7818 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT
d2e4a39e 7819 || ada_type_name (type) == NULL)
14f9c5c9 7820 return NULL;
d2e4a39e 7821 else
14f9c5c9
AS
7822 {
7823 int len = strlen (ada_type_name (type));
5b4ee69b 7824
4c4b4cd2
PH
7825 if (len > 6 && strcmp (ada_type_name (type) + len - 6, "___XVE") == 0)
7826 return type;
14f9c5c9 7827 else
4c4b4cd2 7828 return ada_find_parallel_type (type, "___XVE");
14f9c5c9
AS
7829 }
7830}
7831
7832/* Assuming that TEMPL_TYPE is a union or struct type, returns
4c4b4cd2 7833 non-zero iff field FIELD_NUM of TEMPL_TYPE has dynamic size. */
14f9c5c9 7834
d2e4a39e
AS
7835static int
7836is_dynamic_field (struct type *templ_type, int field_num)
14f9c5c9
AS
7837{
7838 const char *name = TYPE_FIELD_NAME (templ_type, field_num);
5b4ee69b 7839
d2e4a39e 7840 return name != NULL
14f9c5c9
AS
7841 && TYPE_CODE (TYPE_FIELD_TYPE (templ_type, field_num)) == TYPE_CODE_PTR
7842 && strstr (name, "___XVL") != NULL;
7843}
7844
4c4b4cd2
PH
7845/* The index of the variant field of TYPE, or -1 if TYPE does not
7846 represent a variant record type. */
14f9c5c9 7847
d2e4a39e 7848static int
4c4b4cd2 7849variant_field_index (struct type *type)
14f9c5c9
AS
7850{
7851 int f;
7852
4c4b4cd2
PH
7853 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT)
7854 return -1;
7855
7856 for (f = 0; f < TYPE_NFIELDS (type); f += 1)
7857 {
7858 if (ada_is_variant_part (type, f))
7859 return f;
7860 }
7861 return -1;
14f9c5c9
AS
7862}
7863
4c4b4cd2
PH
7864/* A record type with no fields. */
7865
d2e4a39e 7866static struct type *
e9bb382b 7867empty_record (struct type *template)
14f9c5c9 7868{
e9bb382b 7869 struct type *type = alloc_type_copy (template);
5b4ee69b 7870
14f9c5c9
AS
7871 TYPE_CODE (type) = TYPE_CODE_STRUCT;
7872 TYPE_NFIELDS (type) = 0;
7873 TYPE_FIELDS (type) = NULL;
b1f33ddd 7874 INIT_CPLUS_SPECIFIC (type);
14f9c5c9
AS
7875 TYPE_NAME (type) = "<empty>";
7876 TYPE_TAG_NAME (type) = NULL;
14f9c5c9
AS
7877 TYPE_LENGTH (type) = 0;
7878 return type;
7879}
7880
7881/* An ordinary record type (with fixed-length fields) that describes
4c4b4cd2
PH
7882 the value of type TYPE at VALADDR or ADDRESS (see comments at
7883 the beginning of this section) VAL according to GNAT conventions.
7884 DVAL0 should describe the (portion of a) record that contains any
df407dfe 7885 necessary discriminants. It should be NULL if value_type (VAL) is
14f9c5c9
AS
7886 an outer-level type (i.e., as opposed to a branch of a variant.) A
7887 variant field (unless unchecked) is replaced by a particular branch
4c4b4cd2 7888 of the variant.
14f9c5c9 7889
4c4b4cd2
PH
7890 If not KEEP_DYNAMIC_FIELDS, then all fields whose position or
7891 length are not statically known are discarded. As a consequence,
7892 VALADDR, ADDRESS and DVAL0 are ignored.
7893
7894 NOTE: Limitations: For now, we assume that dynamic fields and
7895 variants occupy whole numbers of bytes. However, they need not be
7896 byte-aligned. */
7897
7898struct type *
10a2c479 7899ada_template_to_fixed_record_type_1 (struct type *type,
fc1a4b47 7900 const gdb_byte *valaddr,
4c4b4cd2
PH
7901 CORE_ADDR address, struct value *dval0,
7902 int keep_dynamic_fields)
14f9c5c9 7903{
d2e4a39e
AS
7904 struct value *mark = value_mark ();
7905 struct value *dval;
7906 struct type *rtype;
14f9c5c9 7907 int nfields, bit_len;
4c4b4cd2 7908 int variant_field;
14f9c5c9 7909 long off;
d94e4f4f 7910 int fld_bit_len;
14f9c5c9
AS
7911 int f;
7912
4c4b4cd2
PH
7913 /* Compute the number of fields in this record type that are going
7914 to be processed: unless keep_dynamic_fields, this includes only
7915 fields whose position and length are static will be processed. */
7916 if (keep_dynamic_fields)
7917 nfields = TYPE_NFIELDS (type);
7918 else
7919 {
7920 nfields = 0;
76a01679 7921 while (nfields < TYPE_NFIELDS (type)
4c4b4cd2
PH
7922 && !ada_is_variant_part (type, nfields)
7923 && !is_dynamic_field (type, nfields))
7924 nfields++;
7925 }
7926
e9bb382b 7927 rtype = alloc_type_copy (type);
14f9c5c9
AS
7928 TYPE_CODE (rtype) = TYPE_CODE_STRUCT;
7929 INIT_CPLUS_SPECIFIC (rtype);
7930 TYPE_NFIELDS (rtype) = nfields;
d2e4a39e 7931 TYPE_FIELDS (rtype) = (struct field *)
14f9c5c9
AS
7932 TYPE_ALLOC (rtype, nfields * sizeof (struct field));
7933 memset (TYPE_FIELDS (rtype), 0, sizeof (struct field) * nfields);
7934 TYPE_NAME (rtype) = ada_type_name (type);
7935 TYPE_TAG_NAME (rtype) = NULL;
876cecd0 7936 TYPE_FIXED_INSTANCE (rtype) = 1;
14f9c5c9 7937
d2e4a39e
AS
7938 off = 0;
7939 bit_len = 0;
4c4b4cd2
PH
7940 variant_field = -1;
7941
14f9c5c9
AS
7942 for (f = 0; f < nfields; f += 1)
7943 {
6c038f32
PH
7944 off = align_value (off, field_alignment (type, f))
7945 + TYPE_FIELD_BITPOS (type, f);
945b3a32 7946 SET_FIELD_BITPOS (TYPE_FIELD (rtype, f), off);
d2e4a39e 7947 TYPE_FIELD_BITSIZE (rtype, f) = 0;
14f9c5c9 7948
d2e4a39e 7949 if (ada_is_variant_part (type, f))
4c4b4cd2
PH
7950 {
7951 variant_field = f;
d94e4f4f 7952 fld_bit_len = 0;
4c4b4cd2 7953 }
14f9c5c9 7954 else if (is_dynamic_field (type, f))
4c4b4cd2 7955 {
284614f0
JB
7956 const gdb_byte *field_valaddr = valaddr;
7957 CORE_ADDR field_address = address;
7958 struct type *field_type =
7959 TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type, f));
7960
4c4b4cd2 7961 if (dval0 == NULL)
b5304971
JG
7962 {
7963 /* rtype's length is computed based on the run-time
7964 value of discriminants. If the discriminants are not
7965 initialized, the type size may be completely bogus and
0963b4bd 7966 GDB may fail to allocate a value for it. So check the
b5304971 7967 size first before creating the value. */
c1b5a1a6 7968 ada_ensure_varsize_limit (rtype);
012370f6
TT
7969 /* Using plain value_from_contents_and_address here
7970 causes problems because we will end up trying to
7971 resolve a type that is currently being
7972 constructed. */
7973 dval = value_from_contents_and_address_unresolved (rtype,
7974 valaddr,
7975 address);
9f1f738a 7976 rtype = value_type (dval);
b5304971 7977 }
4c4b4cd2
PH
7978 else
7979 dval = dval0;
7980
284614f0
JB
7981 /* If the type referenced by this field is an aligner type, we need
7982 to unwrap that aligner type, because its size might not be set.
7983 Keeping the aligner type would cause us to compute the wrong
7984 size for this field, impacting the offset of the all the fields
7985 that follow this one. */
7986 if (ada_is_aligner_type (field_type))
7987 {
7988 long field_offset = TYPE_FIELD_BITPOS (field_type, f);
7989
7990 field_valaddr = cond_offset_host (field_valaddr, field_offset);
7991 field_address = cond_offset_target (field_address, field_offset);
7992 field_type = ada_aligned_type (field_type);
7993 }
7994
7995 field_valaddr = cond_offset_host (field_valaddr,
7996 off / TARGET_CHAR_BIT);
7997 field_address = cond_offset_target (field_address,
7998 off / TARGET_CHAR_BIT);
7999
8000 /* Get the fixed type of the field. Note that, in this case,
8001 we do not want to get the real type out of the tag: if
8002 the current field is the parent part of a tagged record,
8003 we will get the tag of the object. Clearly wrong: the real
8004 type of the parent is not the real type of the child. We
8005 would end up in an infinite loop. */
8006 field_type = ada_get_base_type (field_type);
8007 field_type = ada_to_fixed_type (field_type, field_valaddr,
8008 field_address, dval, 0);
27f2a97b
JB
8009 /* If the field size is already larger than the maximum
8010 object size, then the record itself will necessarily
8011 be larger than the maximum object size. We need to make
8012 this check now, because the size might be so ridiculously
8013 large (due to an uninitialized variable in the inferior)
8014 that it would cause an overflow when adding it to the
8015 record size. */
c1b5a1a6 8016 ada_ensure_varsize_limit (field_type);
284614f0
JB
8017
8018 TYPE_FIELD_TYPE (rtype, f) = field_type;
4c4b4cd2 8019 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
27f2a97b
JB
8020 /* The multiplication can potentially overflow. But because
8021 the field length has been size-checked just above, and
8022 assuming that the maximum size is a reasonable value,
8023 an overflow should not happen in practice. So rather than
8024 adding overflow recovery code to this already complex code,
8025 we just assume that it's not going to happen. */
d94e4f4f 8026 fld_bit_len =
4c4b4cd2
PH
8027 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, f)) * TARGET_CHAR_BIT;
8028 }
14f9c5c9 8029 else
4c4b4cd2 8030 {
5ded5331
JB
8031 /* Note: If this field's type is a typedef, it is important
8032 to preserve the typedef layer.
8033
8034 Otherwise, we might be transforming a typedef to a fat
8035 pointer (encoding a pointer to an unconstrained array),
8036 into a basic fat pointer (encoding an unconstrained
8037 array). As both types are implemented using the same
8038 structure, the typedef is the only clue which allows us
8039 to distinguish between the two options. Stripping it
8040 would prevent us from printing this field appropriately. */
8041 TYPE_FIELD_TYPE (rtype, f) = TYPE_FIELD_TYPE (type, f);
4c4b4cd2
PH
8042 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
8043 if (TYPE_FIELD_BITSIZE (type, f) > 0)
d94e4f4f 8044 fld_bit_len =
4c4b4cd2
PH
8045 TYPE_FIELD_BITSIZE (rtype, f) = TYPE_FIELD_BITSIZE (type, f);
8046 else
5ded5331
JB
8047 {
8048 struct type *field_type = TYPE_FIELD_TYPE (type, f);
8049
8050 /* We need to be careful of typedefs when computing
8051 the length of our field. If this is a typedef,
8052 get the length of the target type, not the length
8053 of the typedef. */
8054 if (TYPE_CODE (field_type) == TYPE_CODE_TYPEDEF)
8055 field_type = ada_typedef_target_type (field_type);
8056
8057 fld_bit_len =
8058 TYPE_LENGTH (ada_check_typedef (field_type)) * TARGET_CHAR_BIT;
8059 }
4c4b4cd2 8060 }
14f9c5c9 8061 if (off + fld_bit_len > bit_len)
4c4b4cd2 8062 bit_len = off + fld_bit_len;
d94e4f4f 8063 off += fld_bit_len;
4c4b4cd2
PH
8064 TYPE_LENGTH (rtype) =
8065 align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
14f9c5c9 8066 }
4c4b4cd2
PH
8067
8068 /* We handle the variant part, if any, at the end because of certain
b1f33ddd 8069 odd cases in which it is re-ordered so as NOT to be the last field of
4c4b4cd2
PH
8070 the record. This can happen in the presence of representation
8071 clauses. */
8072 if (variant_field >= 0)
8073 {
8074 struct type *branch_type;
8075
8076 off = TYPE_FIELD_BITPOS (rtype, variant_field);
8077
8078 if (dval0 == NULL)
9f1f738a 8079 {
012370f6
TT
8080 /* Using plain value_from_contents_and_address here causes
8081 problems because we will end up trying to resolve a type
8082 that is currently being constructed. */
8083 dval = value_from_contents_and_address_unresolved (rtype, valaddr,
8084 address);
9f1f738a
SA
8085 rtype = value_type (dval);
8086 }
4c4b4cd2
PH
8087 else
8088 dval = dval0;
8089
8090 branch_type =
8091 to_fixed_variant_branch_type
8092 (TYPE_FIELD_TYPE (type, variant_field),
8093 cond_offset_host (valaddr, off / TARGET_CHAR_BIT),
8094 cond_offset_target (address, off / TARGET_CHAR_BIT), dval);
8095 if (branch_type == NULL)
8096 {
8097 for (f = variant_field + 1; f < TYPE_NFIELDS (rtype); f += 1)
8098 TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f];
8099 TYPE_NFIELDS (rtype) -= 1;
8100 }
8101 else
8102 {
8103 TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
8104 TYPE_FIELD_NAME (rtype, variant_field) = "S";
8105 fld_bit_len =
8106 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, variant_field)) *
8107 TARGET_CHAR_BIT;
8108 if (off + fld_bit_len > bit_len)
8109 bit_len = off + fld_bit_len;
8110 TYPE_LENGTH (rtype) =
8111 align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
8112 }
8113 }
8114
714e53ab
PH
8115 /* According to exp_dbug.ads, the size of TYPE for variable-size records
8116 should contain the alignment of that record, which should be a strictly
8117 positive value. If null or negative, then something is wrong, most
8118 probably in the debug info. In that case, we don't round up the size
0963b4bd 8119 of the resulting type. If this record is not part of another structure,
714e53ab
PH
8120 the current RTYPE length might be good enough for our purposes. */
8121 if (TYPE_LENGTH (type) <= 0)
8122 {
323e0a4a
AC
8123 if (TYPE_NAME (rtype))
8124 warning (_("Invalid type size for `%s' detected: %d."),
8125 TYPE_NAME (rtype), TYPE_LENGTH (type));
8126 else
8127 warning (_("Invalid type size for <unnamed> detected: %d."),
8128 TYPE_LENGTH (type));
714e53ab
PH
8129 }
8130 else
8131 {
8132 TYPE_LENGTH (rtype) = align_value (TYPE_LENGTH (rtype),
8133 TYPE_LENGTH (type));
8134 }
14f9c5c9
AS
8135
8136 value_free_to_mark (mark);
d2e4a39e 8137 if (TYPE_LENGTH (rtype) > varsize_limit)
323e0a4a 8138 error (_("record type with dynamic size is larger than varsize-limit"));
14f9c5c9
AS
8139 return rtype;
8140}
8141
4c4b4cd2
PH
8142/* As for ada_template_to_fixed_record_type_1 with KEEP_DYNAMIC_FIELDS
8143 of 1. */
14f9c5c9 8144
d2e4a39e 8145static struct type *
fc1a4b47 8146template_to_fixed_record_type (struct type *type, const gdb_byte *valaddr,
4c4b4cd2
PH
8147 CORE_ADDR address, struct value *dval0)
8148{
8149 return ada_template_to_fixed_record_type_1 (type, valaddr,
8150 address, dval0, 1);
8151}
8152
8153/* An ordinary record type in which ___XVL-convention fields and
8154 ___XVU- and ___XVN-convention field types in TYPE0 are replaced with
8155 static approximations, containing all possible fields. Uses
8156 no runtime values. Useless for use in values, but that's OK,
8157 since the results are used only for type determinations. Works on both
8158 structs and unions. Representation note: to save space, we memorize
8159 the result of this function in the TYPE_TARGET_TYPE of the
8160 template type. */
8161
8162static struct type *
8163template_to_static_fixed_type (struct type *type0)
14f9c5c9
AS
8164{
8165 struct type *type;
8166 int nfields;
8167 int f;
8168
4c4b4cd2
PH
8169 if (TYPE_TARGET_TYPE (type0) != NULL)
8170 return TYPE_TARGET_TYPE (type0);
8171
8172 nfields = TYPE_NFIELDS (type0);
8173 type = type0;
14f9c5c9
AS
8174
8175 for (f = 0; f < nfields; f += 1)
8176 {
61ee279c 8177 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type0, f));
4c4b4cd2 8178 struct type *new_type;
14f9c5c9 8179
4c4b4cd2
PH
8180 if (is_dynamic_field (type0, f))
8181 new_type = to_static_fixed_type (TYPE_TARGET_TYPE (field_type));
14f9c5c9 8182 else
f192137b 8183 new_type = static_unwrap_type (field_type);
4c4b4cd2
PH
8184 if (type == type0 && new_type != field_type)
8185 {
e9bb382b 8186 TYPE_TARGET_TYPE (type0) = type = alloc_type_copy (type0);
4c4b4cd2
PH
8187 TYPE_CODE (type) = TYPE_CODE (type0);
8188 INIT_CPLUS_SPECIFIC (type);
8189 TYPE_NFIELDS (type) = nfields;
8190 TYPE_FIELDS (type) = (struct field *)
8191 TYPE_ALLOC (type, nfields * sizeof (struct field));
8192 memcpy (TYPE_FIELDS (type), TYPE_FIELDS (type0),
8193 sizeof (struct field) * nfields);
8194 TYPE_NAME (type) = ada_type_name (type0);
8195 TYPE_TAG_NAME (type) = NULL;
876cecd0 8196 TYPE_FIXED_INSTANCE (type) = 1;
4c4b4cd2
PH
8197 TYPE_LENGTH (type) = 0;
8198 }
8199 TYPE_FIELD_TYPE (type, f) = new_type;
8200 TYPE_FIELD_NAME (type, f) = TYPE_FIELD_NAME (type0, f);
14f9c5c9 8201 }
14f9c5c9
AS
8202 return type;
8203}
8204
4c4b4cd2 8205/* Given an object of type TYPE whose contents are at VALADDR and
5823c3ef
JB
8206 whose address in memory is ADDRESS, returns a revision of TYPE,
8207 which should be a non-dynamic-sized record, in which the variant
8208 part, if any, is replaced with the appropriate branch. Looks
4c4b4cd2
PH
8209 for discriminant values in DVAL0, which can be NULL if the record
8210 contains the necessary discriminant values. */
8211
d2e4a39e 8212static struct type *
fc1a4b47 8213to_record_with_fixed_variant_part (struct type *type, const gdb_byte *valaddr,
4c4b4cd2 8214 CORE_ADDR address, struct value *dval0)
14f9c5c9 8215{
d2e4a39e 8216 struct value *mark = value_mark ();
4c4b4cd2 8217 struct value *dval;
d2e4a39e 8218 struct type *rtype;
14f9c5c9
AS
8219 struct type *branch_type;
8220 int nfields = TYPE_NFIELDS (type);
4c4b4cd2 8221 int variant_field = variant_field_index (type);
14f9c5c9 8222
4c4b4cd2 8223 if (variant_field == -1)
14f9c5c9
AS
8224 return type;
8225
4c4b4cd2 8226 if (dval0 == NULL)
9f1f738a
SA
8227 {
8228 dval = value_from_contents_and_address (type, valaddr, address);
8229 type = value_type (dval);
8230 }
4c4b4cd2
PH
8231 else
8232 dval = dval0;
8233
e9bb382b 8234 rtype = alloc_type_copy (type);
14f9c5c9 8235 TYPE_CODE (rtype) = TYPE_CODE_STRUCT;
4c4b4cd2
PH
8236 INIT_CPLUS_SPECIFIC (rtype);
8237 TYPE_NFIELDS (rtype) = nfields;
d2e4a39e
AS
8238 TYPE_FIELDS (rtype) =
8239 (struct field *) TYPE_ALLOC (rtype, nfields * sizeof (struct field));
8240 memcpy (TYPE_FIELDS (rtype), TYPE_FIELDS (type),
4c4b4cd2 8241 sizeof (struct field) * nfields);
14f9c5c9
AS
8242 TYPE_NAME (rtype) = ada_type_name (type);
8243 TYPE_TAG_NAME (rtype) = NULL;
876cecd0 8244 TYPE_FIXED_INSTANCE (rtype) = 1;
14f9c5c9
AS
8245 TYPE_LENGTH (rtype) = TYPE_LENGTH (type);
8246
4c4b4cd2
PH
8247 branch_type = to_fixed_variant_branch_type
8248 (TYPE_FIELD_TYPE (type, variant_field),
d2e4a39e 8249 cond_offset_host (valaddr,
4c4b4cd2
PH
8250 TYPE_FIELD_BITPOS (type, variant_field)
8251 / TARGET_CHAR_BIT),
d2e4a39e 8252 cond_offset_target (address,
4c4b4cd2
PH
8253 TYPE_FIELD_BITPOS (type, variant_field)
8254 / TARGET_CHAR_BIT), dval);
d2e4a39e 8255 if (branch_type == NULL)
14f9c5c9 8256 {
4c4b4cd2 8257 int f;
5b4ee69b 8258
4c4b4cd2
PH
8259 for (f = variant_field + 1; f < nfields; f += 1)
8260 TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f];
14f9c5c9 8261 TYPE_NFIELDS (rtype) -= 1;
14f9c5c9
AS
8262 }
8263 else
8264 {
4c4b4cd2
PH
8265 TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
8266 TYPE_FIELD_NAME (rtype, variant_field) = "S";
8267 TYPE_FIELD_BITSIZE (rtype, variant_field) = 0;
14f9c5c9 8268 TYPE_LENGTH (rtype) += TYPE_LENGTH (branch_type);
14f9c5c9 8269 }
4c4b4cd2 8270 TYPE_LENGTH (rtype) -= TYPE_LENGTH (TYPE_FIELD_TYPE (type, variant_field));
d2e4a39e 8271
4c4b4cd2 8272 value_free_to_mark (mark);
14f9c5c9
AS
8273 return rtype;
8274}
8275
8276/* An ordinary record type (with fixed-length fields) that describes
8277 the value at (TYPE0, VALADDR, ADDRESS) [see explanation at
8278 beginning of this section]. Any necessary discriminants' values
4c4b4cd2
PH
8279 should be in DVAL, a record value; it may be NULL if the object
8280 at ADDR itself contains any necessary discriminant values.
8281 Additionally, VALADDR and ADDRESS may also be NULL if no discriminant
8282 values from the record are needed. Except in the case that DVAL,
8283 VALADDR, and ADDRESS are all 0 or NULL, a variant field (unless
8284 unchecked) is replaced by a particular branch of the variant.
8285
8286 NOTE: the case in which DVAL and VALADDR are NULL and ADDRESS is 0
8287 is questionable and may be removed. It can arise during the
8288 processing of an unconstrained-array-of-record type where all the
8289 variant branches have exactly the same size. This is because in
8290 such cases, the compiler does not bother to use the XVS convention
8291 when encoding the record. I am currently dubious of this
8292 shortcut and suspect the compiler should be altered. FIXME. */
14f9c5c9 8293
d2e4a39e 8294static struct type *
fc1a4b47 8295to_fixed_record_type (struct type *type0, const gdb_byte *valaddr,
4c4b4cd2 8296 CORE_ADDR address, struct value *dval)
14f9c5c9 8297{
d2e4a39e 8298 struct type *templ_type;
14f9c5c9 8299
876cecd0 8300 if (TYPE_FIXED_INSTANCE (type0))
4c4b4cd2
PH
8301 return type0;
8302
d2e4a39e 8303 templ_type = dynamic_template_type (type0);
14f9c5c9
AS
8304
8305 if (templ_type != NULL)
8306 return template_to_fixed_record_type (templ_type, valaddr, address, dval);
4c4b4cd2
PH
8307 else if (variant_field_index (type0) >= 0)
8308 {
8309 if (dval == NULL && valaddr == NULL && address == 0)
8310 return type0;
8311 return to_record_with_fixed_variant_part (type0, valaddr, address,
8312 dval);
8313 }
14f9c5c9
AS
8314 else
8315 {
876cecd0 8316 TYPE_FIXED_INSTANCE (type0) = 1;
14f9c5c9
AS
8317 return type0;
8318 }
8319
8320}
8321
8322/* An ordinary record type (with fixed-length fields) that describes
8323 the value at (VAR_TYPE0, VALADDR, ADDRESS), where VAR_TYPE0 is a
8324 union type. Any necessary discriminants' values should be in DVAL,
8325 a record value. That is, this routine selects the appropriate
8326 branch of the union at ADDR according to the discriminant value
b1f33ddd 8327 indicated in the union's type name. Returns VAR_TYPE0 itself if
0963b4bd 8328 it represents a variant subject to a pragma Unchecked_Union. */
14f9c5c9 8329
d2e4a39e 8330static struct type *
fc1a4b47 8331to_fixed_variant_branch_type (struct type *var_type0, const gdb_byte *valaddr,
4c4b4cd2 8332 CORE_ADDR address, struct value *dval)
14f9c5c9
AS
8333{
8334 int which;
d2e4a39e
AS
8335 struct type *templ_type;
8336 struct type *var_type;
14f9c5c9
AS
8337
8338 if (TYPE_CODE (var_type0) == TYPE_CODE_PTR)
8339 var_type = TYPE_TARGET_TYPE (var_type0);
d2e4a39e 8340 else
14f9c5c9
AS
8341 var_type = var_type0;
8342
8343 templ_type = ada_find_parallel_type (var_type, "___XVU");
8344
8345 if (templ_type != NULL)
8346 var_type = templ_type;
8347
b1f33ddd
JB
8348 if (is_unchecked_variant (var_type, value_type (dval)))
8349 return var_type0;
d2e4a39e
AS
8350 which =
8351 ada_which_variant_applies (var_type,
0fd88904 8352 value_type (dval), value_contents (dval));
14f9c5c9
AS
8353
8354 if (which < 0)
e9bb382b 8355 return empty_record (var_type);
14f9c5c9 8356 else if (is_dynamic_field (var_type, which))
4c4b4cd2 8357 return to_fixed_record_type
d2e4a39e
AS
8358 (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (var_type, which)),
8359 valaddr, address, dval);
4c4b4cd2 8360 else if (variant_field_index (TYPE_FIELD_TYPE (var_type, which)) >= 0)
d2e4a39e
AS
8361 return
8362 to_fixed_record_type
8363 (TYPE_FIELD_TYPE (var_type, which), valaddr, address, dval);
14f9c5c9
AS
8364 else
8365 return TYPE_FIELD_TYPE (var_type, which);
8366}
8367
8908fca5
JB
8368/* Assuming RANGE_TYPE is a TYPE_CODE_RANGE, return nonzero if
8369 ENCODING_TYPE, a type following the GNAT conventions for discrete
8370 type encodings, only carries redundant information. */
8371
8372static int
8373ada_is_redundant_range_encoding (struct type *range_type,
8374 struct type *encoding_type)
8375{
8376 struct type *fixed_range_type;
8377 char *bounds_str;
8378 int n;
8379 LONGEST lo, hi;
8380
8381 gdb_assert (TYPE_CODE (range_type) == TYPE_CODE_RANGE);
8382
005e2509
JB
8383 if (TYPE_CODE (get_base_type (range_type))
8384 != TYPE_CODE (get_base_type (encoding_type)))
8385 {
8386 /* The compiler probably used a simple base type to describe
8387 the range type instead of the range's actual base type,
8388 expecting us to get the real base type from the encoding
8389 anyway. In this situation, the encoding cannot be ignored
8390 as redundant. */
8391 return 0;
8392 }
8393
8908fca5
JB
8394 if (is_dynamic_type (range_type))
8395 return 0;
8396
8397 if (TYPE_NAME (encoding_type) == NULL)
8398 return 0;
8399
8400 bounds_str = strstr (TYPE_NAME (encoding_type), "___XDLU_");
8401 if (bounds_str == NULL)
8402 return 0;
8403
8404 n = 8; /* Skip "___XDLU_". */
8405 if (!ada_scan_number (bounds_str, n, &lo, &n))
8406 return 0;
8407 if (TYPE_LOW_BOUND (range_type) != lo)
8408 return 0;
8409
8410 n += 2; /* Skip the "__" separator between the two bounds. */
8411 if (!ada_scan_number (bounds_str, n, &hi, &n))
8412 return 0;
8413 if (TYPE_HIGH_BOUND (range_type) != hi)
8414 return 0;
8415
8416 return 1;
8417}
8418
8419/* Given the array type ARRAY_TYPE, return nonzero if DESC_TYPE,
8420 a type following the GNAT encoding for describing array type
8421 indices, only carries redundant information. */
8422
8423static int
8424ada_is_redundant_index_type_desc (struct type *array_type,
8425 struct type *desc_type)
8426{
8427 struct type *this_layer = check_typedef (array_type);
8428 int i;
8429
8430 for (i = 0; i < TYPE_NFIELDS (desc_type); i++)
8431 {
8432 if (!ada_is_redundant_range_encoding (TYPE_INDEX_TYPE (this_layer),
8433 TYPE_FIELD_TYPE (desc_type, i)))
8434 return 0;
8435 this_layer = check_typedef (TYPE_TARGET_TYPE (this_layer));
8436 }
8437
8438 return 1;
8439}
8440
14f9c5c9
AS
8441/* Assuming that TYPE0 is an array type describing the type of a value
8442 at ADDR, and that DVAL describes a record containing any
8443 discriminants used in TYPE0, returns a type for the value that
8444 contains no dynamic components (that is, no components whose sizes
8445 are determined by run-time quantities). Unless IGNORE_TOO_BIG is
8446 true, gives an error message if the resulting type's size is over
4c4b4cd2 8447 varsize_limit. */
14f9c5c9 8448
d2e4a39e
AS
8449static struct type *
8450to_fixed_array_type (struct type *type0, struct value *dval,
4c4b4cd2 8451 int ignore_too_big)
14f9c5c9 8452{
d2e4a39e
AS
8453 struct type *index_type_desc;
8454 struct type *result;
ad82864c 8455 int constrained_packed_array_p;
14f9c5c9 8456
b0dd7688 8457 type0 = ada_check_typedef (type0);
284614f0 8458 if (TYPE_FIXED_INSTANCE (type0))
4c4b4cd2 8459 return type0;
14f9c5c9 8460
ad82864c
JB
8461 constrained_packed_array_p = ada_is_constrained_packed_array_type (type0);
8462 if (constrained_packed_array_p)
8463 type0 = decode_constrained_packed_array_type (type0);
284614f0 8464
14f9c5c9 8465 index_type_desc = ada_find_parallel_type (type0, "___XA");
28c85d6c 8466 ada_fixup_array_indexes_type (index_type_desc);
8908fca5
JB
8467 if (index_type_desc != NULL
8468 && ada_is_redundant_index_type_desc (type0, index_type_desc))
8469 {
8470 /* Ignore this ___XA parallel type, as it does not bring any
8471 useful information. This allows us to avoid creating fixed
8472 versions of the array's index types, which would be identical
8473 to the original ones. This, in turn, can also help avoid
8474 the creation of fixed versions of the array itself. */
8475 index_type_desc = NULL;
8476 }
8477
14f9c5c9
AS
8478 if (index_type_desc == NULL)
8479 {
61ee279c 8480 struct type *elt_type0 = ada_check_typedef (TYPE_TARGET_TYPE (type0));
5b4ee69b 8481
14f9c5c9 8482 /* NOTE: elt_type---the fixed version of elt_type0---should never
4c4b4cd2
PH
8483 depend on the contents of the array in properly constructed
8484 debugging data. */
529cad9c
PH
8485 /* Create a fixed version of the array element type.
8486 We're not providing the address of an element here,
e1d5a0d2 8487 and thus the actual object value cannot be inspected to do
529cad9c
PH
8488 the conversion. This should not be a problem, since arrays of
8489 unconstrained objects are not allowed. In particular, all
8490 the elements of an array of a tagged type should all be of
8491 the same type specified in the debugging info. No need to
8492 consult the object tag. */
1ed6ede0 8493 struct type *elt_type = ada_to_fixed_type (elt_type0, 0, 0, dval, 1);
14f9c5c9 8494
284614f0
JB
8495 /* Make sure we always create a new array type when dealing with
8496 packed array types, since we're going to fix-up the array
8497 type length and element bitsize a little further down. */
ad82864c 8498 if (elt_type0 == elt_type && !constrained_packed_array_p)
4c4b4cd2 8499 result = type0;
14f9c5c9 8500 else
e9bb382b 8501 result = create_array_type (alloc_type_copy (type0),
4c4b4cd2 8502 elt_type, TYPE_INDEX_TYPE (type0));
14f9c5c9
AS
8503 }
8504 else
8505 {
8506 int i;
8507 struct type *elt_type0;
8508
8509 elt_type0 = type0;
8510 for (i = TYPE_NFIELDS (index_type_desc); i > 0; i -= 1)
4c4b4cd2 8511 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
14f9c5c9
AS
8512
8513 /* NOTE: result---the fixed version of elt_type0---should never
4c4b4cd2
PH
8514 depend on the contents of the array in properly constructed
8515 debugging data. */
529cad9c
PH
8516 /* Create a fixed version of the array element type.
8517 We're not providing the address of an element here,
e1d5a0d2 8518 and thus the actual object value cannot be inspected to do
529cad9c
PH
8519 the conversion. This should not be a problem, since arrays of
8520 unconstrained objects are not allowed. In particular, all
8521 the elements of an array of a tagged type should all be of
8522 the same type specified in the debugging info. No need to
8523 consult the object tag. */
1ed6ede0
JB
8524 result =
8525 ada_to_fixed_type (ada_check_typedef (elt_type0), 0, 0, dval, 1);
1ce677a4
UW
8526
8527 elt_type0 = type0;
14f9c5c9 8528 for (i = TYPE_NFIELDS (index_type_desc) - 1; i >= 0; i -= 1)
4c4b4cd2
PH
8529 {
8530 struct type *range_type =
28c85d6c 8531 to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, i), dval);
5b4ee69b 8532
e9bb382b 8533 result = create_array_type (alloc_type_copy (elt_type0),
4c4b4cd2 8534 result, range_type);
1ce677a4 8535 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
4c4b4cd2 8536 }
d2e4a39e 8537 if (!ignore_too_big && TYPE_LENGTH (result) > varsize_limit)
323e0a4a 8538 error (_("array type with dynamic size is larger than varsize-limit"));
14f9c5c9
AS
8539 }
8540
2e6fda7d
JB
8541 /* We want to preserve the type name. This can be useful when
8542 trying to get the type name of a value that has already been
8543 printed (for instance, if the user did "print VAR; whatis $". */
8544 TYPE_NAME (result) = TYPE_NAME (type0);
8545
ad82864c 8546 if (constrained_packed_array_p)
284614f0
JB
8547 {
8548 /* So far, the resulting type has been created as if the original
8549 type was a regular (non-packed) array type. As a result, the
8550 bitsize of the array elements needs to be set again, and the array
8551 length needs to be recomputed based on that bitsize. */
8552 int len = TYPE_LENGTH (result) / TYPE_LENGTH (TYPE_TARGET_TYPE (result));
8553 int elt_bitsize = TYPE_FIELD_BITSIZE (type0, 0);
8554
8555 TYPE_FIELD_BITSIZE (result, 0) = TYPE_FIELD_BITSIZE (type0, 0);
8556 TYPE_LENGTH (result) = len * elt_bitsize / HOST_CHAR_BIT;
8557 if (TYPE_LENGTH (result) * HOST_CHAR_BIT < len * elt_bitsize)
8558 TYPE_LENGTH (result)++;
8559 }
8560
876cecd0 8561 TYPE_FIXED_INSTANCE (result) = 1;
14f9c5c9 8562 return result;
d2e4a39e 8563}
14f9c5c9
AS
8564
8565
8566/* A standard type (containing no dynamically sized components)
8567 corresponding to TYPE for the value (TYPE, VALADDR, ADDRESS)
8568 DVAL describes a record containing any discriminants used in TYPE0,
4c4b4cd2 8569 and may be NULL if there are none, or if the object of type TYPE at
529cad9c
PH
8570 ADDRESS or in VALADDR contains these discriminants.
8571
1ed6ede0
JB
8572 If CHECK_TAG is not null, in the case of tagged types, this function
8573 attempts to locate the object's tag and use it to compute the actual
8574 type. However, when ADDRESS is null, we cannot use it to determine the
8575 location of the tag, and therefore compute the tagged type's actual type.
8576 So we return the tagged type without consulting the tag. */
529cad9c 8577
f192137b
JB
8578static struct type *
8579ada_to_fixed_type_1 (struct type *type, const gdb_byte *valaddr,
1ed6ede0 8580 CORE_ADDR address, struct value *dval, int check_tag)
14f9c5c9 8581{
61ee279c 8582 type = ada_check_typedef (type);
d2e4a39e
AS
8583 switch (TYPE_CODE (type))
8584 {
8585 default:
14f9c5c9 8586 return type;
d2e4a39e 8587 case TYPE_CODE_STRUCT:
4c4b4cd2 8588 {
76a01679 8589 struct type *static_type = to_static_fixed_type (type);
1ed6ede0
JB
8590 struct type *fixed_record_type =
8591 to_fixed_record_type (type, valaddr, address, NULL);
5b4ee69b 8592
529cad9c
PH
8593 /* If STATIC_TYPE is a tagged type and we know the object's address,
8594 then we can determine its tag, and compute the object's actual
0963b4bd 8595 type from there. Note that we have to use the fixed record
1ed6ede0
JB
8596 type (the parent part of the record may have dynamic fields
8597 and the way the location of _tag is expressed may depend on
8598 them). */
529cad9c 8599
1ed6ede0 8600 if (check_tag && address != 0 && ada_is_tagged_type (static_type, 0))
76a01679 8601 {
b50d69b5
JG
8602 struct value *tag =
8603 value_tag_from_contents_and_address
8604 (fixed_record_type,
8605 valaddr,
8606 address);
8607 struct type *real_type = type_from_tag (tag);
8608 struct value *obj =
8609 value_from_contents_and_address (fixed_record_type,
8610 valaddr,
8611 address);
9f1f738a 8612 fixed_record_type = value_type (obj);
76a01679 8613 if (real_type != NULL)
b50d69b5
JG
8614 return to_fixed_record_type
8615 (real_type, NULL,
8616 value_address (ada_tag_value_at_base_address (obj)), NULL);
76a01679 8617 }
4af88198
JB
8618
8619 /* Check to see if there is a parallel ___XVZ variable.
8620 If there is, then it provides the actual size of our type. */
8621 else if (ada_type_name (fixed_record_type) != NULL)
8622 {
0d5cff50 8623 const char *name = ada_type_name (fixed_record_type);
4af88198
JB
8624 char *xvz_name = alloca (strlen (name) + 7 /* "___XVZ\0" */);
8625 int xvz_found = 0;
8626 LONGEST size;
8627
88c15c34 8628 xsnprintf (xvz_name, strlen (name) + 7, "%s___XVZ", name);
4af88198
JB
8629 size = get_int_var_value (xvz_name, &xvz_found);
8630 if (xvz_found && TYPE_LENGTH (fixed_record_type) != size)
8631 {
8632 fixed_record_type = copy_type (fixed_record_type);
8633 TYPE_LENGTH (fixed_record_type) = size;
8634
8635 /* The FIXED_RECORD_TYPE may have be a stub. We have
8636 observed this when the debugging info is STABS, and
8637 apparently it is something that is hard to fix.
8638
8639 In practice, we don't need the actual type definition
8640 at all, because the presence of the XVZ variable allows us
8641 to assume that there must be a XVS type as well, which we
8642 should be able to use later, when we need the actual type
8643 definition.
8644
8645 In the meantime, pretend that the "fixed" type we are
8646 returning is NOT a stub, because this can cause trouble
8647 when using this type to create new types targeting it.
8648 Indeed, the associated creation routines often check
8649 whether the target type is a stub and will try to replace
0963b4bd 8650 it, thus using a type with the wrong size. This, in turn,
4af88198
JB
8651 might cause the new type to have the wrong size too.
8652 Consider the case of an array, for instance, where the size
8653 of the array is computed from the number of elements in
8654 our array multiplied by the size of its element. */
8655 TYPE_STUB (fixed_record_type) = 0;
8656 }
8657 }
1ed6ede0 8658 return fixed_record_type;
4c4b4cd2 8659 }
d2e4a39e 8660 case TYPE_CODE_ARRAY:
4c4b4cd2 8661 return to_fixed_array_type (type, dval, 1);
d2e4a39e
AS
8662 case TYPE_CODE_UNION:
8663 if (dval == NULL)
4c4b4cd2 8664 return type;
d2e4a39e 8665 else
4c4b4cd2 8666 return to_fixed_variant_branch_type (type, valaddr, address, dval);
d2e4a39e 8667 }
14f9c5c9
AS
8668}
8669
f192137b
JB
8670/* The same as ada_to_fixed_type_1, except that it preserves the type
8671 if it is a TYPE_CODE_TYPEDEF of a type that is already fixed.
96dbd2c1
JB
8672
8673 The typedef layer needs be preserved in order to differentiate between
8674 arrays and array pointers when both types are implemented using the same
8675 fat pointer. In the array pointer case, the pointer is encoded as
8676 a typedef of the pointer type. For instance, considering:
8677
8678 type String_Access is access String;
8679 S1 : String_Access := null;
8680
8681 To the debugger, S1 is defined as a typedef of type String. But
8682 to the user, it is a pointer. So if the user tries to print S1,
8683 we should not dereference the array, but print the array address
8684 instead.
8685
8686 If we didn't preserve the typedef layer, we would lose the fact that
8687 the type is to be presented as a pointer (needs de-reference before
8688 being printed). And we would also use the source-level type name. */
f192137b
JB
8689
8690struct type *
8691ada_to_fixed_type (struct type *type, const gdb_byte *valaddr,
8692 CORE_ADDR address, struct value *dval, int check_tag)
8693
8694{
8695 struct type *fixed_type =
8696 ada_to_fixed_type_1 (type, valaddr, address, dval, check_tag);
8697
96dbd2c1
JB
8698 /* If TYPE is a typedef and its target type is the same as the FIXED_TYPE,
8699 then preserve the typedef layer.
8700
8701 Implementation note: We can only check the main-type portion of
8702 the TYPE and FIXED_TYPE, because eliminating the typedef layer
8703 from TYPE now returns a type that has the same instance flags
8704 as TYPE. For instance, if TYPE is a "typedef const", and its
8705 target type is a "struct", then the typedef elimination will return
8706 a "const" version of the target type. See check_typedef for more
8707 details about how the typedef layer elimination is done.
8708
8709 brobecker/2010-11-19: It seems to me that the only case where it is
8710 useful to preserve the typedef layer is when dealing with fat pointers.
8711 Perhaps, we could add a check for that and preserve the typedef layer
8712 only in that situation. But this seems unecessary so far, probably
8713 because we call check_typedef/ada_check_typedef pretty much everywhere.
8714 */
f192137b 8715 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF
720d1a40 8716 && (TYPE_MAIN_TYPE (ada_typedef_target_type (type))
96dbd2c1 8717 == TYPE_MAIN_TYPE (fixed_type)))
f192137b
JB
8718 return type;
8719
8720 return fixed_type;
8721}
8722
14f9c5c9 8723/* A standard (static-sized) type corresponding as well as possible to
4c4b4cd2 8724 TYPE0, but based on no runtime data. */
14f9c5c9 8725
d2e4a39e
AS
8726static struct type *
8727to_static_fixed_type (struct type *type0)
14f9c5c9 8728{
d2e4a39e 8729 struct type *type;
14f9c5c9
AS
8730
8731 if (type0 == NULL)
8732 return NULL;
8733
876cecd0 8734 if (TYPE_FIXED_INSTANCE (type0))
4c4b4cd2
PH
8735 return type0;
8736
61ee279c 8737 type0 = ada_check_typedef (type0);
d2e4a39e 8738
14f9c5c9
AS
8739 switch (TYPE_CODE (type0))
8740 {
8741 default:
8742 return type0;
8743 case TYPE_CODE_STRUCT:
8744 type = dynamic_template_type (type0);
d2e4a39e 8745 if (type != NULL)
4c4b4cd2
PH
8746 return template_to_static_fixed_type (type);
8747 else
8748 return template_to_static_fixed_type (type0);
14f9c5c9
AS
8749 case TYPE_CODE_UNION:
8750 type = ada_find_parallel_type (type0, "___XVU");
8751 if (type != NULL)
4c4b4cd2
PH
8752 return template_to_static_fixed_type (type);
8753 else
8754 return template_to_static_fixed_type (type0);
14f9c5c9
AS
8755 }
8756}
8757
4c4b4cd2
PH
8758/* A static approximation of TYPE with all type wrappers removed. */
8759
d2e4a39e
AS
8760static struct type *
8761static_unwrap_type (struct type *type)
14f9c5c9
AS
8762{
8763 if (ada_is_aligner_type (type))
8764 {
61ee279c 8765 struct type *type1 = TYPE_FIELD_TYPE (ada_check_typedef (type), 0);
14f9c5c9 8766 if (ada_type_name (type1) == NULL)
4c4b4cd2 8767 TYPE_NAME (type1) = ada_type_name (type);
14f9c5c9
AS
8768
8769 return static_unwrap_type (type1);
8770 }
d2e4a39e 8771 else
14f9c5c9 8772 {
d2e4a39e 8773 struct type *raw_real_type = ada_get_base_type (type);
5b4ee69b 8774
d2e4a39e 8775 if (raw_real_type == type)
4c4b4cd2 8776 return type;
14f9c5c9 8777 else
4c4b4cd2 8778 return to_static_fixed_type (raw_real_type);
14f9c5c9
AS
8779 }
8780}
8781
8782/* In some cases, incomplete and private types require
4c4b4cd2 8783 cross-references that are not resolved as records (for example,
14f9c5c9
AS
8784 type Foo;
8785 type FooP is access Foo;
8786 V: FooP;
8787 type Foo is array ...;
4c4b4cd2 8788 ). In these cases, since there is no mechanism for producing
14f9c5c9
AS
8789 cross-references to such types, we instead substitute for FooP a
8790 stub enumeration type that is nowhere resolved, and whose tag is
4c4b4cd2 8791 the name of the actual type. Call these types "non-record stubs". */
14f9c5c9
AS
8792
8793/* A type equivalent to TYPE that is not a non-record stub, if one
4c4b4cd2
PH
8794 exists, otherwise TYPE. */
8795
d2e4a39e 8796struct type *
61ee279c 8797ada_check_typedef (struct type *type)
14f9c5c9 8798{
727e3d2e
JB
8799 if (type == NULL)
8800 return NULL;
8801
720d1a40
JB
8802 /* If our type is a typedef type of a fat pointer, then we're done.
8803 We don't want to strip the TYPE_CODE_TYPDEF layer, because this is
8804 what allows us to distinguish between fat pointers that represent
8805 array types, and fat pointers that represent array access types
8806 (in both cases, the compiler implements them as fat pointers). */
8807 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF
8808 && is_thick_pntr (ada_typedef_target_type (type)))
8809 return type;
8810
14f9c5c9
AS
8811 CHECK_TYPEDEF (type);
8812 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM
529cad9c 8813 || !TYPE_STUB (type)
14f9c5c9
AS
8814 || TYPE_TAG_NAME (type) == NULL)
8815 return type;
d2e4a39e 8816 else
14f9c5c9 8817 {
0d5cff50 8818 const char *name = TYPE_TAG_NAME (type);
d2e4a39e 8819 struct type *type1 = ada_find_any_type (name);
5b4ee69b 8820
05e522ef
JB
8821 if (type1 == NULL)
8822 return type;
8823
8824 /* TYPE1 might itself be a TYPE_CODE_TYPEDEF (this can happen with
8825 stubs pointing to arrays, as we don't create symbols for array
3a867c22
JB
8826 types, only for the typedef-to-array types). If that's the case,
8827 strip the typedef layer. */
8828 if (TYPE_CODE (type1) == TYPE_CODE_TYPEDEF)
8829 type1 = ada_check_typedef (type1);
8830
8831 return type1;
14f9c5c9
AS
8832 }
8833}
8834
8835/* A value representing the data at VALADDR/ADDRESS as described by
8836 type TYPE0, but with a standard (static-sized) type that correctly
8837 describes it. If VAL0 is not NULL and TYPE0 already is a standard
8838 type, then return VAL0 [this feature is simply to avoid redundant
4c4b4cd2 8839 creation of struct values]. */
14f9c5c9 8840
4c4b4cd2
PH
8841static struct value *
8842ada_to_fixed_value_create (struct type *type0, CORE_ADDR address,
8843 struct value *val0)
14f9c5c9 8844{
1ed6ede0 8845 struct type *type = ada_to_fixed_type (type0, 0, address, NULL, 1);
5b4ee69b 8846
14f9c5c9
AS
8847 if (type == type0 && val0 != NULL)
8848 return val0;
d2e4a39e 8849 else
4c4b4cd2
PH
8850 return value_from_contents_and_address (type, 0, address);
8851}
8852
8853/* A value representing VAL, but with a standard (static-sized) type
8854 that correctly describes it. Does not necessarily create a new
8855 value. */
8856
0c3acc09 8857struct value *
4c4b4cd2
PH
8858ada_to_fixed_value (struct value *val)
8859{
c48db5ca
JB
8860 val = unwrap_value (val);
8861 val = ada_to_fixed_value_create (value_type (val),
8862 value_address (val),
8863 val);
8864 return val;
14f9c5c9 8865}
d2e4a39e 8866\f
14f9c5c9 8867
14f9c5c9
AS
8868/* Attributes */
8869
4c4b4cd2
PH
8870/* Table mapping attribute numbers to names.
8871 NOTE: Keep up to date with enum ada_attribute definition in ada-lang.h. */
14f9c5c9 8872
d2e4a39e 8873static const char *attribute_names[] = {
14f9c5c9
AS
8874 "<?>",
8875
d2e4a39e 8876 "first",
14f9c5c9
AS
8877 "last",
8878 "length",
8879 "image",
14f9c5c9
AS
8880 "max",
8881 "min",
4c4b4cd2
PH
8882 "modulus",
8883 "pos",
8884 "size",
8885 "tag",
14f9c5c9 8886 "val",
14f9c5c9
AS
8887 0
8888};
8889
d2e4a39e 8890const char *
4c4b4cd2 8891ada_attribute_name (enum exp_opcode n)
14f9c5c9 8892{
4c4b4cd2
PH
8893 if (n >= OP_ATR_FIRST && n <= (int) OP_ATR_VAL)
8894 return attribute_names[n - OP_ATR_FIRST + 1];
14f9c5c9
AS
8895 else
8896 return attribute_names[0];
8897}
8898
4c4b4cd2 8899/* Evaluate the 'POS attribute applied to ARG. */
14f9c5c9 8900
4c4b4cd2
PH
8901static LONGEST
8902pos_atr (struct value *arg)
14f9c5c9 8903{
24209737
PH
8904 struct value *val = coerce_ref (arg);
8905 struct type *type = value_type (val);
14f9c5c9 8906
d2e4a39e 8907 if (!discrete_type_p (type))
323e0a4a 8908 error (_("'POS only defined on discrete types"));
14f9c5c9
AS
8909
8910 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
8911 {
8912 int i;
24209737 8913 LONGEST v = value_as_long (val);
14f9c5c9 8914
d2e4a39e 8915 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
4c4b4cd2 8916 {
14e75d8e 8917 if (v == TYPE_FIELD_ENUMVAL (type, i))
4c4b4cd2
PH
8918 return i;
8919 }
323e0a4a 8920 error (_("enumeration value is invalid: can't find 'POS"));
14f9c5c9
AS
8921 }
8922 else
24209737 8923 return value_as_long (val);
4c4b4cd2
PH
8924}
8925
8926static struct value *
3cb382c9 8927value_pos_atr (struct type *type, struct value *arg)
4c4b4cd2 8928{
3cb382c9 8929 return value_from_longest (type, pos_atr (arg));
14f9c5c9
AS
8930}
8931
4c4b4cd2 8932/* Evaluate the TYPE'VAL attribute applied to ARG. */
14f9c5c9 8933
d2e4a39e
AS
8934static struct value *
8935value_val_atr (struct type *type, struct value *arg)
14f9c5c9 8936{
d2e4a39e 8937 if (!discrete_type_p (type))
323e0a4a 8938 error (_("'VAL only defined on discrete types"));
df407dfe 8939 if (!integer_type_p (value_type (arg)))
323e0a4a 8940 error (_("'VAL requires integral argument"));
14f9c5c9
AS
8941
8942 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
8943 {
8944 long pos = value_as_long (arg);
5b4ee69b 8945
14f9c5c9 8946 if (pos < 0 || pos >= TYPE_NFIELDS (type))
323e0a4a 8947 error (_("argument to 'VAL out of range"));
14e75d8e 8948 return value_from_longest (type, TYPE_FIELD_ENUMVAL (type, pos));
14f9c5c9
AS
8949 }
8950 else
8951 return value_from_longest (type, value_as_long (arg));
8952}
14f9c5c9 8953\f
d2e4a39e 8954
4c4b4cd2 8955 /* Evaluation */
14f9c5c9 8956
4c4b4cd2
PH
8957/* True if TYPE appears to be an Ada character type.
8958 [At the moment, this is true only for Character and Wide_Character;
8959 It is a heuristic test that could stand improvement]. */
14f9c5c9 8960
d2e4a39e
AS
8961int
8962ada_is_character_type (struct type *type)
14f9c5c9 8963{
7b9f71f2
JB
8964 const char *name;
8965
8966 /* If the type code says it's a character, then assume it really is,
8967 and don't check any further. */
8968 if (TYPE_CODE (type) == TYPE_CODE_CHAR)
8969 return 1;
8970
8971 /* Otherwise, assume it's a character type iff it is a discrete type
8972 with a known character type name. */
8973 name = ada_type_name (type);
8974 return (name != NULL
8975 && (TYPE_CODE (type) == TYPE_CODE_INT
8976 || TYPE_CODE (type) == TYPE_CODE_RANGE)
8977 && (strcmp (name, "character") == 0
8978 || strcmp (name, "wide_character") == 0
5a517ebd 8979 || strcmp (name, "wide_wide_character") == 0
7b9f71f2 8980 || strcmp (name, "unsigned char") == 0));
14f9c5c9
AS
8981}
8982
4c4b4cd2 8983/* True if TYPE appears to be an Ada string type. */
14f9c5c9
AS
8984
8985int
ebf56fd3 8986ada_is_string_type (struct type *type)
14f9c5c9 8987{
61ee279c 8988 type = ada_check_typedef (type);
d2e4a39e 8989 if (type != NULL
14f9c5c9 8990 && TYPE_CODE (type) != TYPE_CODE_PTR
76a01679
JB
8991 && (ada_is_simple_array_type (type)
8992 || ada_is_array_descriptor_type (type))
14f9c5c9
AS
8993 && ada_array_arity (type) == 1)
8994 {
8995 struct type *elttype = ada_array_element_type (type, 1);
8996
8997 return ada_is_character_type (elttype);
8998 }
d2e4a39e 8999 else
14f9c5c9
AS
9000 return 0;
9001}
9002
5bf03f13
JB
9003/* The compiler sometimes provides a parallel XVS type for a given
9004 PAD type. Normally, it is safe to follow the PAD type directly,
9005 but older versions of the compiler have a bug that causes the offset
9006 of its "F" field to be wrong. Following that field in that case
9007 would lead to incorrect results, but this can be worked around
9008 by ignoring the PAD type and using the associated XVS type instead.
9009
9010 Set to True if the debugger should trust the contents of PAD types.
9011 Otherwise, ignore the PAD type if there is a parallel XVS type. */
9012static int trust_pad_over_xvs = 1;
14f9c5c9
AS
9013
9014/* True if TYPE is a struct type introduced by the compiler to force the
9015 alignment of a value. Such types have a single field with a
4c4b4cd2 9016 distinctive name. */
14f9c5c9
AS
9017
9018int
ebf56fd3 9019ada_is_aligner_type (struct type *type)
14f9c5c9 9020{
61ee279c 9021 type = ada_check_typedef (type);
714e53ab 9022
5bf03f13 9023 if (!trust_pad_over_xvs && ada_find_parallel_type (type, "___XVS") != NULL)
714e53ab
PH
9024 return 0;
9025
14f9c5c9 9026 return (TYPE_CODE (type) == TYPE_CODE_STRUCT
4c4b4cd2
PH
9027 && TYPE_NFIELDS (type) == 1
9028 && strcmp (TYPE_FIELD_NAME (type, 0), "F") == 0);
14f9c5c9
AS
9029}
9030
9031/* If there is an ___XVS-convention type parallel to SUBTYPE, return
4c4b4cd2 9032 the parallel type. */
14f9c5c9 9033
d2e4a39e
AS
9034struct type *
9035ada_get_base_type (struct type *raw_type)
14f9c5c9 9036{
d2e4a39e
AS
9037 struct type *real_type_namer;
9038 struct type *raw_real_type;
14f9c5c9
AS
9039
9040 if (raw_type == NULL || TYPE_CODE (raw_type) != TYPE_CODE_STRUCT)
9041 return raw_type;
9042
284614f0
JB
9043 if (ada_is_aligner_type (raw_type))
9044 /* The encoding specifies that we should always use the aligner type.
9045 So, even if this aligner type has an associated XVS type, we should
9046 simply ignore it.
9047
9048 According to the compiler gurus, an XVS type parallel to an aligner
9049 type may exist because of a stabs limitation. In stabs, aligner
9050 types are empty because the field has a variable-sized type, and
9051 thus cannot actually be used as an aligner type. As a result,
9052 we need the associated parallel XVS type to decode the type.
9053 Since the policy in the compiler is to not change the internal
9054 representation based on the debugging info format, we sometimes
9055 end up having a redundant XVS type parallel to the aligner type. */
9056 return raw_type;
9057
14f9c5c9 9058 real_type_namer = ada_find_parallel_type (raw_type, "___XVS");
d2e4a39e 9059 if (real_type_namer == NULL
14f9c5c9
AS
9060 || TYPE_CODE (real_type_namer) != TYPE_CODE_STRUCT
9061 || TYPE_NFIELDS (real_type_namer) != 1)
9062 return raw_type;
9063
f80d3ff2
JB
9064 if (TYPE_CODE (TYPE_FIELD_TYPE (real_type_namer, 0)) != TYPE_CODE_REF)
9065 {
9066 /* This is an older encoding form where the base type needs to be
9067 looked up by name. We prefer the newer enconding because it is
9068 more efficient. */
9069 raw_real_type = ada_find_any_type (TYPE_FIELD_NAME (real_type_namer, 0));
9070 if (raw_real_type == NULL)
9071 return raw_type;
9072 else
9073 return raw_real_type;
9074 }
9075
9076 /* The field in our XVS type is a reference to the base type. */
9077 return TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (real_type_namer, 0));
d2e4a39e 9078}
14f9c5c9 9079
4c4b4cd2 9080/* The type of value designated by TYPE, with all aligners removed. */
14f9c5c9 9081
d2e4a39e
AS
9082struct type *
9083ada_aligned_type (struct type *type)
14f9c5c9
AS
9084{
9085 if (ada_is_aligner_type (type))
9086 return ada_aligned_type (TYPE_FIELD_TYPE (type, 0));
9087 else
9088 return ada_get_base_type (type);
9089}
9090
9091
9092/* The address of the aligned value in an object at address VALADDR
4c4b4cd2 9093 having type TYPE. Assumes ada_is_aligner_type (TYPE). */
14f9c5c9 9094
fc1a4b47
AC
9095const gdb_byte *
9096ada_aligned_value_addr (struct type *type, const gdb_byte *valaddr)
14f9c5c9 9097{
d2e4a39e 9098 if (ada_is_aligner_type (type))
14f9c5c9 9099 return ada_aligned_value_addr (TYPE_FIELD_TYPE (type, 0),
4c4b4cd2
PH
9100 valaddr +
9101 TYPE_FIELD_BITPOS (type,
9102 0) / TARGET_CHAR_BIT);
14f9c5c9
AS
9103 else
9104 return valaddr;
9105}
9106
4c4b4cd2
PH
9107
9108
14f9c5c9 9109/* The printed representation of an enumeration literal with encoded
4c4b4cd2 9110 name NAME. The value is good to the next call of ada_enum_name. */
d2e4a39e
AS
9111const char *
9112ada_enum_name (const char *name)
14f9c5c9 9113{
4c4b4cd2
PH
9114 static char *result;
9115 static size_t result_len = 0;
d2e4a39e 9116 char *tmp;
14f9c5c9 9117
4c4b4cd2
PH
9118 /* First, unqualify the enumeration name:
9119 1. Search for the last '.' character. If we find one, then skip
177b42fe 9120 all the preceding characters, the unqualified name starts
76a01679 9121 right after that dot.
4c4b4cd2 9122 2. Otherwise, we may be debugging on a target where the compiler
76a01679
JB
9123 translates dots into "__". Search forward for double underscores,
9124 but stop searching when we hit an overloading suffix, which is
9125 of the form "__" followed by digits. */
4c4b4cd2 9126
c3e5cd34
PH
9127 tmp = strrchr (name, '.');
9128 if (tmp != NULL)
4c4b4cd2
PH
9129 name = tmp + 1;
9130 else
14f9c5c9 9131 {
4c4b4cd2
PH
9132 while ((tmp = strstr (name, "__")) != NULL)
9133 {
9134 if (isdigit (tmp[2]))
9135 break;
9136 else
9137 name = tmp + 2;
9138 }
14f9c5c9
AS
9139 }
9140
9141 if (name[0] == 'Q')
9142 {
14f9c5c9 9143 int v;
5b4ee69b 9144
14f9c5c9 9145 if (name[1] == 'U' || name[1] == 'W')
4c4b4cd2
PH
9146 {
9147 if (sscanf (name + 2, "%x", &v) != 1)
9148 return name;
9149 }
14f9c5c9 9150 else
4c4b4cd2 9151 return name;
14f9c5c9 9152
4c4b4cd2 9153 GROW_VECT (result, result_len, 16);
14f9c5c9 9154 if (isascii (v) && isprint (v))
88c15c34 9155 xsnprintf (result, result_len, "'%c'", v);
14f9c5c9 9156 else if (name[1] == 'U')
88c15c34 9157 xsnprintf (result, result_len, "[\"%02x\"]", v);
14f9c5c9 9158 else
88c15c34 9159 xsnprintf (result, result_len, "[\"%04x\"]", v);
14f9c5c9
AS
9160
9161 return result;
9162 }
d2e4a39e 9163 else
4c4b4cd2 9164 {
c3e5cd34
PH
9165 tmp = strstr (name, "__");
9166 if (tmp == NULL)
9167 tmp = strstr (name, "$");
9168 if (tmp != NULL)
4c4b4cd2
PH
9169 {
9170 GROW_VECT (result, result_len, tmp - name + 1);
9171 strncpy (result, name, tmp - name);
9172 result[tmp - name] = '\0';
9173 return result;
9174 }
9175
9176 return name;
9177 }
14f9c5c9
AS
9178}
9179
14f9c5c9
AS
9180/* Evaluate the subexpression of EXP starting at *POS as for
9181 evaluate_type, updating *POS to point just past the evaluated
4c4b4cd2 9182 expression. */
14f9c5c9 9183
d2e4a39e
AS
9184static struct value *
9185evaluate_subexp_type (struct expression *exp, int *pos)
14f9c5c9 9186{
4b27a620 9187 return evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
14f9c5c9
AS
9188}
9189
9190/* If VAL is wrapped in an aligner or subtype wrapper, return the
4c4b4cd2 9191 value it wraps. */
14f9c5c9 9192
d2e4a39e
AS
9193static struct value *
9194unwrap_value (struct value *val)
14f9c5c9 9195{
df407dfe 9196 struct type *type = ada_check_typedef (value_type (val));
5b4ee69b 9197
14f9c5c9
AS
9198 if (ada_is_aligner_type (type))
9199 {
de4d072f 9200 struct value *v = ada_value_struct_elt (val, "F", 0);
df407dfe 9201 struct type *val_type = ada_check_typedef (value_type (v));
5b4ee69b 9202
14f9c5c9 9203 if (ada_type_name (val_type) == NULL)
4c4b4cd2 9204 TYPE_NAME (val_type) = ada_type_name (type);
14f9c5c9
AS
9205
9206 return unwrap_value (v);
9207 }
d2e4a39e 9208 else
14f9c5c9 9209 {
d2e4a39e 9210 struct type *raw_real_type =
61ee279c 9211 ada_check_typedef (ada_get_base_type (type));
d2e4a39e 9212
5bf03f13
JB
9213 /* If there is no parallel XVS or XVE type, then the value is
9214 already unwrapped. Return it without further modification. */
9215 if ((type == raw_real_type)
9216 && ada_find_parallel_type (type, "___XVE") == NULL)
9217 return val;
14f9c5c9 9218
d2e4a39e 9219 return
4c4b4cd2
PH
9220 coerce_unspec_val_to_type
9221 (val, ada_to_fixed_type (raw_real_type, 0,
42ae5230 9222 value_address (val),
1ed6ede0 9223 NULL, 1));
14f9c5c9
AS
9224 }
9225}
d2e4a39e
AS
9226
9227static struct value *
9228cast_to_fixed (struct type *type, struct value *arg)
14f9c5c9
AS
9229{
9230 LONGEST val;
9231
df407dfe 9232 if (type == value_type (arg))
14f9c5c9 9233 return arg;
df407dfe 9234 else if (ada_is_fixed_point_type (value_type (arg)))
d2e4a39e 9235 val = ada_float_to_fixed (type,
df407dfe 9236 ada_fixed_to_float (value_type (arg),
4c4b4cd2 9237 value_as_long (arg)));
d2e4a39e 9238 else
14f9c5c9 9239 {
a53b7a21 9240 DOUBLEST argd = value_as_double (arg);
5b4ee69b 9241
14f9c5c9
AS
9242 val = ada_float_to_fixed (type, argd);
9243 }
9244
9245 return value_from_longest (type, val);
9246}
9247
d2e4a39e 9248static struct value *
a53b7a21 9249cast_from_fixed (struct type *type, struct value *arg)
14f9c5c9 9250{
df407dfe 9251 DOUBLEST val = ada_fixed_to_float (value_type (arg),
4c4b4cd2 9252 value_as_long (arg));
5b4ee69b 9253
a53b7a21 9254 return value_from_double (type, val);
14f9c5c9
AS
9255}
9256
d99dcf51
JB
9257/* Given two array types T1 and T2, return nonzero iff both arrays
9258 contain the same number of elements. */
9259
9260static int
9261ada_same_array_size_p (struct type *t1, struct type *t2)
9262{
9263 LONGEST lo1, hi1, lo2, hi2;
9264
9265 /* Get the array bounds in order to verify that the size of
9266 the two arrays match. */
9267 if (!get_array_bounds (t1, &lo1, &hi1)
9268 || !get_array_bounds (t2, &lo2, &hi2))
9269 error (_("unable to determine array bounds"));
9270
9271 /* To make things easier for size comparison, normalize a bit
9272 the case of empty arrays by making sure that the difference
9273 between upper bound and lower bound is always -1. */
9274 if (lo1 > hi1)
9275 hi1 = lo1 - 1;
9276 if (lo2 > hi2)
9277 hi2 = lo2 - 1;
9278
9279 return (hi1 - lo1 == hi2 - lo2);
9280}
9281
9282/* Assuming that VAL is an array of integrals, and TYPE represents
9283 an array with the same number of elements, but with wider integral
9284 elements, return an array "casted" to TYPE. In practice, this
9285 means that the returned array is built by casting each element
9286 of the original array into TYPE's (wider) element type. */
9287
9288static struct value *
9289ada_promote_array_of_integrals (struct type *type, struct value *val)
9290{
9291 struct type *elt_type = TYPE_TARGET_TYPE (type);
9292 LONGEST lo, hi;
9293 struct value *res;
9294 LONGEST i;
9295
9296 /* Verify that both val and type are arrays of scalars, and
9297 that the size of val's elements is smaller than the size
9298 of type's element. */
9299 gdb_assert (TYPE_CODE (type) == TYPE_CODE_ARRAY);
9300 gdb_assert (is_integral_type (TYPE_TARGET_TYPE (type)));
9301 gdb_assert (TYPE_CODE (value_type (val)) == TYPE_CODE_ARRAY);
9302 gdb_assert (is_integral_type (TYPE_TARGET_TYPE (value_type (val))));
9303 gdb_assert (TYPE_LENGTH (TYPE_TARGET_TYPE (type))
9304 > TYPE_LENGTH (TYPE_TARGET_TYPE (value_type (val))));
9305
9306 if (!get_array_bounds (type, &lo, &hi))
9307 error (_("unable to determine array bounds"));
9308
9309 res = allocate_value (type);
9310
9311 /* Promote each array element. */
9312 for (i = 0; i < hi - lo + 1; i++)
9313 {
9314 struct value *elt = value_cast (elt_type, value_subscript (val, lo + i));
9315
9316 memcpy (value_contents_writeable (res) + (i * TYPE_LENGTH (elt_type)),
9317 value_contents_all (elt), TYPE_LENGTH (elt_type));
9318 }
9319
9320 return res;
9321}
9322
4c4b4cd2
PH
9323/* Coerce VAL as necessary for assignment to an lval of type TYPE, and
9324 return the converted value. */
9325
d2e4a39e
AS
9326static struct value *
9327coerce_for_assign (struct type *type, struct value *val)
14f9c5c9 9328{
df407dfe 9329 struct type *type2 = value_type (val);
5b4ee69b 9330
14f9c5c9
AS
9331 if (type == type2)
9332 return val;
9333
61ee279c
PH
9334 type2 = ada_check_typedef (type2);
9335 type = ada_check_typedef (type);
14f9c5c9 9336
d2e4a39e
AS
9337 if (TYPE_CODE (type2) == TYPE_CODE_PTR
9338 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
14f9c5c9
AS
9339 {
9340 val = ada_value_ind (val);
df407dfe 9341 type2 = value_type (val);
14f9c5c9
AS
9342 }
9343
d2e4a39e 9344 if (TYPE_CODE (type2) == TYPE_CODE_ARRAY
14f9c5c9
AS
9345 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
9346 {
d99dcf51
JB
9347 if (!ada_same_array_size_p (type, type2))
9348 error (_("cannot assign arrays of different length"));
9349
9350 if (is_integral_type (TYPE_TARGET_TYPE (type))
9351 && is_integral_type (TYPE_TARGET_TYPE (type2))
9352 && TYPE_LENGTH (TYPE_TARGET_TYPE (type2))
9353 < TYPE_LENGTH (TYPE_TARGET_TYPE (type)))
9354 {
9355 /* Allow implicit promotion of the array elements to
9356 a wider type. */
9357 return ada_promote_array_of_integrals (type, val);
9358 }
9359
9360 if (TYPE_LENGTH (TYPE_TARGET_TYPE (type2))
9361 != TYPE_LENGTH (TYPE_TARGET_TYPE (type)))
323e0a4a 9362 error (_("Incompatible types in assignment"));
04624583 9363 deprecated_set_value_type (val, type);
14f9c5c9 9364 }
d2e4a39e 9365 return val;
14f9c5c9
AS
9366}
9367
4c4b4cd2
PH
9368static struct value *
9369ada_value_binop (struct value *arg1, struct value *arg2, enum exp_opcode op)
9370{
9371 struct value *val;
9372 struct type *type1, *type2;
9373 LONGEST v, v1, v2;
9374
994b9211
AC
9375 arg1 = coerce_ref (arg1);
9376 arg2 = coerce_ref (arg2);
18af8284
JB
9377 type1 = get_base_type (ada_check_typedef (value_type (arg1)));
9378 type2 = get_base_type (ada_check_typedef (value_type (arg2)));
4c4b4cd2 9379
76a01679
JB
9380 if (TYPE_CODE (type1) != TYPE_CODE_INT
9381 || TYPE_CODE (type2) != TYPE_CODE_INT)
4c4b4cd2
PH
9382 return value_binop (arg1, arg2, op);
9383
76a01679 9384 switch (op)
4c4b4cd2
PH
9385 {
9386 case BINOP_MOD:
9387 case BINOP_DIV:
9388 case BINOP_REM:
9389 break;
9390 default:
9391 return value_binop (arg1, arg2, op);
9392 }
9393
9394 v2 = value_as_long (arg2);
9395 if (v2 == 0)
323e0a4a 9396 error (_("second operand of %s must not be zero."), op_string (op));
4c4b4cd2
PH
9397
9398 if (TYPE_UNSIGNED (type1) || op == BINOP_MOD)
9399 return value_binop (arg1, arg2, op);
9400
9401 v1 = value_as_long (arg1);
9402 switch (op)
9403 {
9404 case BINOP_DIV:
9405 v = v1 / v2;
76a01679
JB
9406 if (!TRUNCATION_TOWARDS_ZERO && v1 * (v1 % v2) < 0)
9407 v += v > 0 ? -1 : 1;
4c4b4cd2
PH
9408 break;
9409 case BINOP_REM:
9410 v = v1 % v2;
76a01679
JB
9411 if (v * v1 < 0)
9412 v -= v2;
4c4b4cd2
PH
9413 break;
9414 default:
9415 /* Should not reach this point. */
9416 v = 0;
9417 }
9418
9419 val = allocate_value (type1);
990a07ab 9420 store_unsigned_integer (value_contents_raw (val),
e17a4113
UW
9421 TYPE_LENGTH (value_type (val)),
9422 gdbarch_byte_order (get_type_arch (type1)), v);
4c4b4cd2
PH
9423 return val;
9424}
9425
9426static int
9427ada_value_equal (struct value *arg1, struct value *arg2)
9428{
df407dfe
AC
9429 if (ada_is_direct_array_type (value_type (arg1))
9430 || ada_is_direct_array_type (value_type (arg2)))
4c4b4cd2 9431 {
f58b38bf
JB
9432 /* Automatically dereference any array reference before
9433 we attempt to perform the comparison. */
9434 arg1 = ada_coerce_ref (arg1);
9435 arg2 = ada_coerce_ref (arg2);
9436
4c4b4cd2
PH
9437 arg1 = ada_coerce_to_simple_array (arg1);
9438 arg2 = ada_coerce_to_simple_array (arg2);
df407dfe
AC
9439 if (TYPE_CODE (value_type (arg1)) != TYPE_CODE_ARRAY
9440 || TYPE_CODE (value_type (arg2)) != TYPE_CODE_ARRAY)
323e0a4a 9441 error (_("Attempt to compare array with non-array"));
4c4b4cd2 9442 /* FIXME: The following works only for types whose
76a01679
JB
9443 representations use all bits (no padding or undefined bits)
9444 and do not have user-defined equality. */
9445 return
df407dfe 9446 TYPE_LENGTH (value_type (arg1)) == TYPE_LENGTH (value_type (arg2))
0fd88904 9447 && memcmp (value_contents (arg1), value_contents (arg2),
df407dfe 9448 TYPE_LENGTH (value_type (arg1))) == 0;
4c4b4cd2
PH
9449 }
9450 return value_equal (arg1, arg2);
9451}
9452
52ce6436
PH
9453/* Total number of component associations in the aggregate starting at
9454 index PC in EXP. Assumes that index PC is the start of an
0963b4bd 9455 OP_AGGREGATE. */
52ce6436
PH
9456
9457static int
9458num_component_specs (struct expression *exp, int pc)
9459{
9460 int n, m, i;
5b4ee69b 9461
52ce6436
PH
9462 m = exp->elts[pc + 1].longconst;
9463 pc += 3;
9464 n = 0;
9465 for (i = 0; i < m; i += 1)
9466 {
9467 switch (exp->elts[pc].opcode)
9468 {
9469 default:
9470 n += 1;
9471 break;
9472 case OP_CHOICES:
9473 n += exp->elts[pc + 1].longconst;
9474 break;
9475 }
9476 ada_evaluate_subexp (NULL, exp, &pc, EVAL_SKIP);
9477 }
9478 return n;
9479}
9480
9481/* Assign the result of evaluating EXP starting at *POS to the INDEXth
9482 component of LHS (a simple array or a record), updating *POS past
9483 the expression, assuming that LHS is contained in CONTAINER. Does
9484 not modify the inferior's memory, nor does it modify LHS (unless
9485 LHS == CONTAINER). */
9486
9487static void
9488assign_component (struct value *container, struct value *lhs, LONGEST index,
9489 struct expression *exp, int *pos)
9490{
9491 struct value *mark = value_mark ();
9492 struct value *elt;
5b4ee69b 9493
52ce6436
PH
9494 if (TYPE_CODE (value_type (lhs)) == TYPE_CODE_ARRAY)
9495 {
22601c15
UW
9496 struct type *index_type = builtin_type (exp->gdbarch)->builtin_int;
9497 struct value *index_val = value_from_longest (index_type, index);
5b4ee69b 9498
52ce6436
PH
9499 elt = unwrap_value (ada_value_subscript (lhs, 1, &index_val));
9500 }
9501 else
9502 {
9503 elt = ada_index_struct_field (index, lhs, 0, value_type (lhs));
c48db5ca 9504 elt = ada_to_fixed_value (elt);
52ce6436
PH
9505 }
9506
9507 if (exp->elts[*pos].opcode == OP_AGGREGATE)
9508 assign_aggregate (container, elt, exp, pos, EVAL_NORMAL);
9509 else
9510 value_assign_to_component (container, elt,
9511 ada_evaluate_subexp (NULL, exp, pos,
9512 EVAL_NORMAL));
9513
9514 value_free_to_mark (mark);
9515}
9516
9517/* Assuming that LHS represents an lvalue having a record or array
9518 type, and EXP->ELTS[*POS] is an OP_AGGREGATE, evaluate an assignment
9519 of that aggregate's value to LHS, advancing *POS past the
9520 aggregate. NOSIDE is as for evaluate_subexp. CONTAINER is an
9521 lvalue containing LHS (possibly LHS itself). Does not modify
9522 the inferior's memory, nor does it modify the contents of
0963b4bd 9523 LHS (unless == CONTAINER). Returns the modified CONTAINER. */
52ce6436
PH
9524
9525static struct value *
9526assign_aggregate (struct value *container,
9527 struct value *lhs, struct expression *exp,
9528 int *pos, enum noside noside)
9529{
9530 struct type *lhs_type;
9531 int n = exp->elts[*pos+1].longconst;
9532 LONGEST low_index, high_index;
9533 int num_specs;
9534 LONGEST *indices;
9535 int max_indices, num_indices;
52ce6436 9536 int i;
52ce6436
PH
9537
9538 *pos += 3;
9539 if (noside != EVAL_NORMAL)
9540 {
52ce6436
PH
9541 for (i = 0; i < n; i += 1)
9542 ada_evaluate_subexp (NULL, exp, pos, noside);
9543 return container;
9544 }
9545
9546 container = ada_coerce_ref (container);
9547 if (ada_is_direct_array_type (value_type (container)))
9548 container = ada_coerce_to_simple_array (container);
9549 lhs = ada_coerce_ref (lhs);
9550 if (!deprecated_value_modifiable (lhs))
9551 error (_("Left operand of assignment is not a modifiable lvalue."));
9552
9553 lhs_type = value_type (lhs);
9554 if (ada_is_direct_array_type (lhs_type))
9555 {
9556 lhs = ada_coerce_to_simple_array (lhs);
9557 lhs_type = value_type (lhs);
9558 low_index = TYPE_ARRAY_LOWER_BOUND_VALUE (lhs_type);
9559 high_index = TYPE_ARRAY_UPPER_BOUND_VALUE (lhs_type);
52ce6436
PH
9560 }
9561 else if (TYPE_CODE (lhs_type) == TYPE_CODE_STRUCT)
9562 {
9563 low_index = 0;
9564 high_index = num_visible_fields (lhs_type) - 1;
52ce6436
PH
9565 }
9566 else
9567 error (_("Left-hand side must be array or record."));
9568
9569 num_specs = num_component_specs (exp, *pos - 3);
9570 max_indices = 4 * num_specs + 4;
9571 indices = alloca (max_indices * sizeof (indices[0]));
9572 indices[0] = indices[1] = low_index - 1;
9573 indices[2] = indices[3] = high_index + 1;
9574 num_indices = 4;
9575
9576 for (i = 0; i < n; i += 1)
9577 {
9578 switch (exp->elts[*pos].opcode)
9579 {
1fbf5ada
JB
9580 case OP_CHOICES:
9581 aggregate_assign_from_choices (container, lhs, exp, pos, indices,
9582 &num_indices, max_indices,
9583 low_index, high_index);
9584 break;
9585 case OP_POSITIONAL:
9586 aggregate_assign_positional (container, lhs, exp, pos, indices,
52ce6436
PH
9587 &num_indices, max_indices,
9588 low_index, high_index);
1fbf5ada
JB
9589 break;
9590 case OP_OTHERS:
9591 if (i != n-1)
9592 error (_("Misplaced 'others' clause"));
9593 aggregate_assign_others (container, lhs, exp, pos, indices,
9594 num_indices, low_index, high_index);
9595 break;
9596 default:
9597 error (_("Internal error: bad aggregate clause"));
52ce6436
PH
9598 }
9599 }
9600
9601 return container;
9602}
9603
9604/* Assign into the component of LHS indexed by the OP_POSITIONAL
9605 construct at *POS, updating *POS past the construct, given that
9606 the positions are relative to lower bound LOW, where HIGH is the
9607 upper bound. Record the position in INDICES[0 .. MAX_INDICES-1]
9608 updating *NUM_INDICES as needed. CONTAINER is as for
0963b4bd 9609 assign_aggregate. */
52ce6436
PH
9610static void
9611aggregate_assign_positional (struct value *container,
9612 struct value *lhs, struct expression *exp,
9613 int *pos, LONGEST *indices, int *num_indices,
9614 int max_indices, LONGEST low, LONGEST high)
9615{
9616 LONGEST ind = longest_to_int (exp->elts[*pos + 1].longconst) + low;
9617
9618 if (ind - 1 == high)
e1d5a0d2 9619 warning (_("Extra components in aggregate ignored."));
52ce6436
PH
9620 if (ind <= high)
9621 {
9622 add_component_interval (ind, ind, indices, num_indices, max_indices);
9623 *pos += 3;
9624 assign_component (container, lhs, ind, exp, pos);
9625 }
9626 else
9627 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
9628}
9629
9630/* Assign into the components of LHS indexed by the OP_CHOICES
9631 construct at *POS, updating *POS past the construct, given that
9632 the allowable indices are LOW..HIGH. Record the indices assigned
9633 to in INDICES[0 .. MAX_INDICES-1], updating *NUM_INDICES as
0963b4bd 9634 needed. CONTAINER is as for assign_aggregate. */
52ce6436
PH
9635static void
9636aggregate_assign_from_choices (struct value *container,
9637 struct value *lhs, struct expression *exp,
9638 int *pos, LONGEST *indices, int *num_indices,
9639 int max_indices, LONGEST low, LONGEST high)
9640{
9641 int j;
9642 int n_choices = longest_to_int (exp->elts[*pos+1].longconst);
9643 int choice_pos, expr_pc;
9644 int is_array = ada_is_direct_array_type (value_type (lhs));
9645
9646 choice_pos = *pos += 3;
9647
9648 for (j = 0; j < n_choices; j += 1)
9649 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
9650 expr_pc = *pos;
9651 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
9652
9653 for (j = 0; j < n_choices; j += 1)
9654 {
9655 LONGEST lower, upper;
9656 enum exp_opcode op = exp->elts[choice_pos].opcode;
5b4ee69b 9657
52ce6436
PH
9658 if (op == OP_DISCRETE_RANGE)
9659 {
9660 choice_pos += 1;
9661 lower = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
9662 EVAL_NORMAL));
9663 upper = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
9664 EVAL_NORMAL));
9665 }
9666 else if (is_array)
9667 {
9668 lower = value_as_long (ada_evaluate_subexp (NULL, exp, &choice_pos,
9669 EVAL_NORMAL));
9670 upper = lower;
9671 }
9672 else
9673 {
9674 int ind;
0d5cff50 9675 const char *name;
5b4ee69b 9676
52ce6436
PH
9677 switch (op)
9678 {
9679 case OP_NAME:
9680 name = &exp->elts[choice_pos + 2].string;
9681 break;
9682 case OP_VAR_VALUE:
9683 name = SYMBOL_NATURAL_NAME (exp->elts[choice_pos + 2].symbol);
9684 break;
9685 default:
9686 error (_("Invalid record component association."));
9687 }
9688 ada_evaluate_subexp (NULL, exp, &choice_pos, EVAL_SKIP);
9689 ind = 0;
9690 if (! find_struct_field (name, value_type (lhs), 0,
9691 NULL, NULL, NULL, NULL, &ind))
9692 error (_("Unknown component name: %s."), name);
9693 lower = upper = ind;
9694 }
9695
9696 if (lower <= upper && (lower < low || upper > high))
9697 error (_("Index in component association out of bounds."));
9698
9699 add_component_interval (lower, upper, indices, num_indices,
9700 max_indices);
9701 while (lower <= upper)
9702 {
9703 int pos1;
5b4ee69b 9704
52ce6436
PH
9705 pos1 = expr_pc;
9706 assign_component (container, lhs, lower, exp, &pos1);
9707 lower += 1;
9708 }
9709 }
9710}
9711
9712/* Assign the value of the expression in the OP_OTHERS construct in
9713 EXP at *POS into the components of LHS indexed from LOW .. HIGH that
9714 have not been previously assigned. The index intervals already assigned
9715 are in INDICES[0 .. NUM_INDICES-1]. Updates *POS to after the
0963b4bd 9716 OP_OTHERS clause. CONTAINER is as for assign_aggregate. */
52ce6436
PH
9717static void
9718aggregate_assign_others (struct value *container,
9719 struct value *lhs, struct expression *exp,
9720 int *pos, LONGEST *indices, int num_indices,
9721 LONGEST low, LONGEST high)
9722{
9723 int i;
5ce64950 9724 int expr_pc = *pos + 1;
52ce6436
PH
9725
9726 for (i = 0; i < num_indices - 2; i += 2)
9727 {
9728 LONGEST ind;
5b4ee69b 9729
52ce6436
PH
9730 for (ind = indices[i + 1] + 1; ind < indices[i + 2]; ind += 1)
9731 {
5ce64950 9732 int localpos;
5b4ee69b 9733
5ce64950
MS
9734 localpos = expr_pc;
9735 assign_component (container, lhs, ind, exp, &localpos);
52ce6436
PH
9736 }
9737 }
9738 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
9739}
9740
9741/* Add the interval [LOW .. HIGH] to the sorted set of intervals
9742 [ INDICES[0] .. INDICES[1] ],..., [ INDICES[*SIZE-2] .. INDICES[*SIZE-1] ],
9743 modifying *SIZE as needed. It is an error if *SIZE exceeds
9744 MAX_SIZE. The resulting intervals do not overlap. */
9745static void
9746add_component_interval (LONGEST low, LONGEST high,
9747 LONGEST* indices, int *size, int max_size)
9748{
9749 int i, j;
5b4ee69b 9750
52ce6436
PH
9751 for (i = 0; i < *size; i += 2) {
9752 if (high >= indices[i] && low <= indices[i + 1])
9753 {
9754 int kh;
5b4ee69b 9755
52ce6436
PH
9756 for (kh = i + 2; kh < *size; kh += 2)
9757 if (high < indices[kh])
9758 break;
9759 if (low < indices[i])
9760 indices[i] = low;
9761 indices[i + 1] = indices[kh - 1];
9762 if (high > indices[i + 1])
9763 indices[i + 1] = high;
9764 memcpy (indices + i + 2, indices + kh, *size - kh);
9765 *size -= kh - i - 2;
9766 return;
9767 }
9768 else if (high < indices[i])
9769 break;
9770 }
9771
9772 if (*size == max_size)
9773 error (_("Internal error: miscounted aggregate components."));
9774 *size += 2;
9775 for (j = *size-1; j >= i+2; j -= 1)
9776 indices[j] = indices[j - 2];
9777 indices[i] = low;
9778 indices[i + 1] = high;
9779}
9780
6e48bd2c
JB
9781/* Perform and Ada cast of ARG2 to type TYPE if the type of ARG2
9782 is different. */
9783
9784static struct value *
9785ada_value_cast (struct type *type, struct value *arg2, enum noside noside)
9786{
9787 if (type == ada_check_typedef (value_type (arg2)))
9788 return arg2;
9789
9790 if (ada_is_fixed_point_type (type))
9791 return (cast_to_fixed (type, arg2));
9792
9793 if (ada_is_fixed_point_type (value_type (arg2)))
a53b7a21 9794 return cast_from_fixed (type, arg2);
6e48bd2c
JB
9795
9796 return value_cast (type, arg2);
9797}
9798
284614f0
JB
9799/* Evaluating Ada expressions, and printing their result.
9800 ------------------------------------------------------
9801
21649b50
JB
9802 1. Introduction:
9803 ----------------
9804
284614f0
JB
9805 We usually evaluate an Ada expression in order to print its value.
9806 We also evaluate an expression in order to print its type, which
9807 happens during the EVAL_AVOID_SIDE_EFFECTS phase of the evaluation,
9808 but we'll focus mostly on the EVAL_NORMAL phase. In practice, the
9809 EVAL_AVOID_SIDE_EFFECTS phase allows us to simplify certain aspects of
9810 the evaluation compared to the EVAL_NORMAL, but is otherwise very
9811 similar.
9812
9813 Evaluating expressions is a little more complicated for Ada entities
9814 than it is for entities in languages such as C. The main reason for
9815 this is that Ada provides types whose definition might be dynamic.
9816 One example of such types is variant records. Or another example
9817 would be an array whose bounds can only be known at run time.
9818
9819 The following description is a general guide as to what should be
9820 done (and what should NOT be done) in order to evaluate an expression
9821 involving such types, and when. This does not cover how the semantic
9822 information is encoded by GNAT as this is covered separatly. For the
9823 document used as the reference for the GNAT encoding, see exp_dbug.ads
9824 in the GNAT sources.
9825
9826 Ideally, we should embed each part of this description next to its
9827 associated code. Unfortunately, the amount of code is so vast right
9828 now that it's hard to see whether the code handling a particular
9829 situation might be duplicated or not. One day, when the code is
9830 cleaned up, this guide might become redundant with the comments
9831 inserted in the code, and we might want to remove it.
9832
21649b50
JB
9833 2. ``Fixing'' an Entity, the Simple Case:
9834 -----------------------------------------
9835
284614f0
JB
9836 When evaluating Ada expressions, the tricky issue is that they may
9837 reference entities whose type contents and size are not statically
9838 known. Consider for instance a variant record:
9839
9840 type Rec (Empty : Boolean := True) is record
9841 case Empty is
9842 when True => null;
9843 when False => Value : Integer;
9844 end case;
9845 end record;
9846 Yes : Rec := (Empty => False, Value => 1);
9847 No : Rec := (empty => True);
9848
9849 The size and contents of that record depends on the value of the
9850 descriminant (Rec.Empty). At this point, neither the debugging
9851 information nor the associated type structure in GDB are able to
9852 express such dynamic types. So what the debugger does is to create
9853 "fixed" versions of the type that applies to the specific object.
9854 We also informally refer to this opperation as "fixing" an object,
9855 which means creating its associated fixed type.
9856
9857 Example: when printing the value of variable "Yes" above, its fixed
9858 type would look like this:
9859
9860 type Rec is record
9861 Empty : Boolean;
9862 Value : Integer;
9863 end record;
9864
9865 On the other hand, if we printed the value of "No", its fixed type
9866 would become:
9867
9868 type Rec is record
9869 Empty : Boolean;
9870 end record;
9871
9872 Things become a little more complicated when trying to fix an entity
9873 with a dynamic type that directly contains another dynamic type,
9874 such as an array of variant records, for instance. There are
9875 two possible cases: Arrays, and records.
9876
21649b50
JB
9877 3. ``Fixing'' Arrays:
9878 ---------------------
9879
9880 The type structure in GDB describes an array in terms of its bounds,
9881 and the type of its elements. By design, all elements in the array
9882 have the same type and we cannot represent an array of variant elements
9883 using the current type structure in GDB. When fixing an array,
9884 we cannot fix the array element, as we would potentially need one
9885 fixed type per element of the array. As a result, the best we can do
9886 when fixing an array is to produce an array whose bounds and size
9887 are correct (allowing us to read it from memory), but without having
9888 touched its element type. Fixing each element will be done later,
9889 when (if) necessary.
9890
9891 Arrays are a little simpler to handle than records, because the same
9892 amount of memory is allocated for each element of the array, even if
1b536f04 9893 the amount of space actually used by each element differs from element
21649b50 9894 to element. Consider for instance the following array of type Rec:
284614f0
JB
9895
9896 type Rec_Array is array (1 .. 2) of Rec;
9897
1b536f04
JB
9898 The actual amount of memory occupied by each element might be different
9899 from element to element, depending on the value of their discriminant.
21649b50 9900 But the amount of space reserved for each element in the array remains
1b536f04 9901 fixed regardless. So we simply need to compute that size using
21649b50
JB
9902 the debugging information available, from which we can then determine
9903 the array size (we multiply the number of elements of the array by
9904 the size of each element).
9905
9906 The simplest case is when we have an array of a constrained element
9907 type. For instance, consider the following type declarations:
9908
9909 type Bounded_String (Max_Size : Integer) is
9910 Length : Integer;
9911 Buffer : String (1 .. Max_Size);
9912 end record;
9913 type Bounded_String_Array is array (1 ..2) of Bounded_String (80);
9914
9915 In this case, the compiler describes the array as an array of
9916 variable-size elements (identified by its XVS suffix) for which
9917 the size can be read in the parallel XVZ variable.
9918
9919 In the case of an array of an unconstrained element type, the compiler
9920 wraps the array element inside a private PAD type. This type should not
9921 be shown to the user, and must be "unwrap"'ed before printing. Note
284614f0
JB
9922 that we also use the adjective "aligner" in our code to designate
9923 these wrapper types.
9924
1b536f04 9925 In some cases, the size allocated for each element is statically
21649b50
JB
9926 known. In that case, the PAD type already has the correct size,
9927 and the array element should remain unfixed.
9928
9929 But there are cases when this size is not statically known.
9930 For instance, assuming that "Five" is an integer variable:
284614f0
JB
9931
9932 type Dynamic is array (1 .. Five) of Integer;
9933 type Wrapper (Has_Length : Boolean := False) is record
9934 Data : Dynamic;
9935 case Has_Length is
9936 when True => Length : Integer;
9937 when False => null;
9938 end case;
9939 end record;
9940 type Wrapper_Array is array (1 .. 2) of Wrapper;
9941
9942 Hello : Wrapper_Array := (others => (Has_Length => True,
9943 Data => (others => 17),
9944 Length => 1));
9945
9946
9947 The debugging info would describe variable Hello as being an
9948 array of a PAD type. The size of that PAD type is not statically
9949 known, but can be determined using a parallel XVZ variable.
9950 In that case, a copy of the PAD type with the correct size should
9951 be used for the fixed array.
9952
21649b50
JB
9953 3. ``Fixing'' record type objects:
9954 ----------------------------------
9955
9956 Things are slightly different from arrays in the case of dynamic
284614f0
JB
9957 record types. In this case, in order to compute the associated
9958 fixed type, we need to determine the size and offset of each of
9959 its components. This, in turn, requires us to compute the fixed
9960 type of each of these components.
9961
9962 Consider for instance the example:
9963
9964 type Bounded_String (Max_Size : Natural) is record
9965 Str : String (1 .. Max_Size);
9966 Length : Natural;
9967 end record;
9968 My_String : Bounded_String (Max_Size => 10);
9969
9970 In that case, the position of field "Length" depends on the size
9971 of field Str, which itself depends on the value of the Max_Size
21649b50 9972 discriminant. In order to fix the type of variable My_String,
284614f0
JB
9973 we need to fix the type of field Str. Therefore, fixing a variant
9974 record requires us to fix each of its components.
9975
9976 However, if a component does not have a dynamic size, the component
9977 should not be fixed. In particular, fields that use a PAD type
9978 should not fixed. Here is an example where this might happen
9979 (assuming type Rec above):
9980
9981 type Container (Big : Boolean) is record
9982 First : Rec;
9983 After : Integer;
9984 case Big is
9985 when True => Another : Integer;
9986 when False => null;
9987 end case;
9988 end record;
9989 My_Container : Container := (Big => False,
9990 First => (Empty => True),
9991 After => 42);
9992
9993 In that example, the compiler creates a PAD type for component First,
9994 whose size is constant, and then positions the component After just
9995 right after it. The offset of component After is therefore constant
9996 in this case.
9997
9998 The debugger computes the position of each field based on an algorithm
9999 that uses, among other things, the actual position and size of the field
21649b50
JB
10000 preceding it. Let's now imagine that the user is trying to print
10001 the value of My_Container. If the type fixing was recursive, we would
284614f0
JB
10002 end up computing the offset of field After based on the size of the
10003 fixed version of field First. And since in our example First has
10004 only one actual field, the size of the fixed type is actually smaller
10005 than the amount of space allocated to that field, and thus we would
10006 compute the wrong offset of field After.
10007
21649b50
JB
10008 To make things more complicated, we need to watch out for dynamic
10009 components of variant records (identified by the ___XVL suffix in
10010 the component name). Even if the target type is a PAD type, the size
10011 of that type might not be statically known. So the PAD type needs
10012 to be unwrapped and the resulting type needs to be fixed. Otherwise,
10013 we might end up with the wrong size for our component. This can be
10014 observed with the following type declarations:
284614f0
JB
10015
10016 type Octal is new Integer range 0 .. 7;
10017 type Octal_Array is array (Positive range <>) of Octal;
10018 pragma Pack (Octal_Array);
10019
10020 type Octal_Buffer (Size : Positive) is record
10021 Buffer : Octal_Array (1 .. Size);
10022 Length : Integer;
10023 end record;
10024
10025 In that case, Buffer is a PAD type whose size is unset and needs
10026 to be computed by fixing the unwrapped type.
10027
21649b50
JB
10028 4. When to ``Fix'' un-``Fixed'' sub-elements of an entity:
10029 ----------------------------------------------------------
10030
10031 Lastly, when should the sub-elements of an entity that remained unfixed
284614f0
JB
10032 thus far, be actually fixed?
10033
10034 The answer is: Only when referencing that element. For instance
10035 when selecting one component of a record, this specific component
10036 should be fixed at that point in time. Or when printing the value
10037 of a record, each component should be fixed before its value gets
10038 printed. Similarly for arrays, the element of the array should be
10039 fixed when printing each element of the array, or when extracting
10040 one element out of that array. On the other hand, fixing should
10041 not be performed on the elements when taking a slice of an array!
10042
10043 Note that one of the side-effects of miscomputing the offset and
10044 size of each field is that we end up also miscomputing the size
10045 of the containing type. This can have adverse results when computing
10046 the value of an entity. GDB fetches the value of an entity based
10047 on the size of its type, and thus a wrong size causes GDB to fetch
10048 the wrong amount of memory. In the case where the computed size is
10049 too small, GDB fetches too little data to print the value of our
10050 entiry. Results in this case as unpredicatble, as we usually read
10051 past the buffer containing the data =:-o. */
10052
10053/* Implement the evaluate_exp routine in the exp_descriptor structure
10054 for the Ada language. */
10055
52ce6436 10056static struct value *
ebf56fd3 10057ada_evaluate_subexp (struct type *expect_type, struct expression *exp,
4c4b4cd2 10058 int *pos, enum noside noside)
14f9c5c9
AS
10059{
10060 enum exp_opcode op;
b5385fc0 10061 int tem;
14f9c5c9 10062 int pc;
5ec18f2b 10063 int preeval_pos;
14f9c5c9
AS
10064 struct value *arg1 = NULL, *arg2 = NULL, *arg3;
10065 struct type *type;
52ce6436 10066 int nargs, oplen;
d2e4a39e 10067 struct value **argvec;
14f9c5c9 10068
d2e4a39e
AS
10069 pc = *pos;
10070 *pos += 1;
14f9c5c9
AS
10071 op = exp->elts[pc].opcode;
10072
d2e4a39e 10073 switch (op)
14f9c5c9
AS
10074 {
10075 default:
10076 *pos -= 1;
6e48bd2c 10077 arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside);
ca1f964d
JG
10078
10079 if (noside == EVAL_NORMAL)
10080 arg1 = unwrap_value (arg1);
6e48bd2c
JB
10081
10082 /* If evaluating an OP_DOUBLE and an EXPECT_TYPE was provided,
10083 then we need to perform the conversion manually, because
10084 evaluate_subexp_standard doesn't do it. This conversion is
10085 necessary in Ada because the different kinds of float/fixed
10086 types in Ada have different representations.
10087
10088 Similarly, we need to perform the conversion from OP_LONG
10089 ourselves. */
10090 if ((op == OP_DOUBLE || op == OP_LONG) && expect_type != NULL)
10091 arg1 = ada_value_cast (expect_type, arg1, noside);
10092
10093 return arg1;
4c4b4cd2
PH
10094
10095 case OP_STRING:
10096 {
76a01679 10097 struct value *result;
5b4ee69b 10098
76a01679
JB
10099 *pos -= 1;
10100 result = evaluate_subexp_standard (expect_type, exp, pos, noside);
10101 /* The result type will have code OP_STRING, bashed there from
10102 OP_ARRAY. Bash it back. */
df407dfe
AC
10103 if (TYPE_CODE (value_type (result)) == TYPE_CODE_STRING)
10104 TYPE_CODE (value_type (result)) = TYPE_CODE_ARRAY;
76a01679 10105 return result;
4c4b4cd2 10106 }
14f9c5c9
AS
10107
10108 case UNOP_CAST:
10109 (*pos) += 2;
10110 type = exp->elts[pc + 1].type;
10111 arg1 = evaluate_subexp (type, exp, pos, noside);
10112 if (noside == EVAL_SKIP)
4c4b4cd2 10113 goto nosideret;
6e48bd2c 10114 arg1 = ada_value_cast (type, arg1, noside);
14f9c5c9
AS
10115 return arg1;
10116
4c4b4cd2
PH
10117 case UNOP_QUAL:
10118 (*pos) += 2;
10119 type = exp->elts[pc + 1].type;
10120 return ada_evaluate_subexp (type, exp, pos, noside);
10121
14f9c5c9
AS
10122 case BINOP_ASSIGN:
10123 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
52ce6436
PH
10124 if (exp->elts[*pos].opcode == OP_AGGREGATE)
10125 {
10126 arg1 = assign_aggregate (arg1, arg1, exp, pos, noside);
10127 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
10128 return arg1;
10129 return ada_value_assign (arg1, arg1);
10130 }
003f3813
JB
10131 /* Force the evaluation of the rhs ARG2 to the type of the lhs ARG1,
10132 except if the lhs of our assignment is a convenience variable.
10133 In the case of assigning to a convenience variable, the lhs
10134 should be exactly the result of the evaluation of the rhs. */
10135 type = value_type (arg1);
10136 if (VALUE_LVAL (arg1) == lval_internalvar)
10137 type = NULL;
10138 arg2 = evaluate_subexp (type, exp, pos, noside);
14f9c5c9 10139 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
4c4b4cd2 10140 return arg1;
df407dfe
AC
10141 if (ada_is_fixed_point_type (value_type (arg1)))
10142 arg2 = cast_to_fixed (value_type (arg1), arg2);
10143 else if (ada_is_fixed_point_type (value_type (arg2)))
76a01679 10144 error
323e0a4a 10145 (_("Fixed-point values must be assigned to fixed-point variables"));
d2e4a39e 10146 else
df407dfe 10147 arg2 = coerce_for_assign (value_type (arg1), arg2);
4c4b4cd2 10148 return ada_value_assign (arg1, arg2);
14f9c5c9
AS
10149
10150 case BINOP_ADD:
10151 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
10152 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
10153 if (noside == EVAL_SKIP)
4c4b4cd2 10154 goto nosideret;
2ac8a782
JB
10155 if (TYPE_CODE (value_type (arg1)) == TYPE_CODE_PTR)
10156 return (value_from_longest
10157 (value_type (arg1),
10158 value_as_long (arg1) + value_as_long (arg2)));
c40cc657
JB
10159 if (TYPE_CODE (value_type (arg2)) == TYPE_CODE_PTR)
10160 return (value_from_longest
10161 (value_type (arg2),
10162 value_as_long (arg1) + value_as_long (arg2)));
df407dfe
AC
10163 if ((ada_is_fixed_point_type (value_type (arg1))
10164 || ada_is_fixed_point_type (value_type (arg2)))
10165 && value_type (arg1) != value_type (arg2))
323e0a4a 10166 error (_("Operands of fixed-point addition must have the same type"));
b7789565
JB
10167 /* Do the addition, and cast the result to the type of the first
10168 argument. We cannot cast the result to a reference type, so if
10169 ARG1 is a reference type, find its underlying type. */
10170 type = value_type (arg1);
10171 while (TYPE_CODE (type) == TYPE_CODE_REF)
10172 type = TYPE_TARGET_TYPE (type);
f44316fa 10173 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
89eef114 10174 return value_cast (type, value_binop (arg1, arg2, BINOP_ADD));
14f9c5c9
AS
10175
10176 case BINOP_SUB:
10177 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
10178 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
10179 if (noside == EVAL_SKIP)
4c4b4cd2 10180 goto nosideret;
2ac8a782
JB
10181 if (TYPE_CODE (value_type (arg1)) == TYPE_CODE_PTR)
10182 return (value_from_longest
10183 (value_type (arg1),
10184 value_as_long (arg1) - value_as_long (arg2)));
c40cc657
JB
10185 if (TYPE_CODE (value_type (arg2)) == TYPE_CODE_PTR)
10186 return (value_from_longest
10187 (value_type (arg2),
10188 value_as_long (arg1) - value_as_long (arg2)));
df407dfe
AC
10189 if ((ada_is_fixed_point_type (value_type (arg1))
10190 || ada_is_fixed_point_type (value_type (arg2)))
10191 && value_type (arg1) != value_type (arg2))
0963b4bd
MS
10192 error (_("Operands of fixed-point subtraction "
10193 "must have the same type"));
b7789565
JB
10194 /* Do the substraction, and cast the result to the type of the first
10195 argument. We cannot cast the result to a reference type, so if
10196 ARG1 is a reference type, find its underlying type. */
10197 type = value_type (arg1);
10198 while (TYPE_CODE (type) == TYPE_CODE_REF)
10199 type = TYPE_TARGET_TYPE (type);
f44316fa 10200 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
89eef114 10201 return value_cast (type, value_binop (arg1, arg2, BINOP_SUB));
14f9c5c9
AS
10202
10203 case BINOP_MUL:
10204 case BINOP_DIV:
e1578042
JB
10205 case BINOP_REM:
10206 case BINOP_MOD:
14f9c5c9
AS
10207 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10208 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10209 if (noside == EVAL_SKIP)
4c4b4cd2 10210 goto nosideret;
e1578042 10211 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
9c2be529
JB
10212 {
10213 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10214 return value_zero (value_type (arg1), not_lval);
10215 }
14f9c5c9 10216 else
4c4b4cd2 10217 {
a53b7a21 10218 type = builtin_type (exp->gdbarch)->builtin_double;
df407dfe 10219 if (ada_is_fixed_point_type (value_type (arg1)))
a53b7a21 10220 arg1 = cast_from_fixed (type, arg1);
df407dfe 10221 if (ada_is_fixed_point_type (value_type (arg2)))
a53b7a21 10222 arg2 = cast_from_fixed (type, arg2);
f44316fa 10223 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
4c4b4cd2
PH
10224 return ada_value_binop (arg1, arg2, op);
10225 }
10226
4c4b4cd2
PH
10227 case BINOP_EQUAL:
10228 case BINOP_NOTEQUAL:
14f9c5c9 10229 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
df407dfe 10230 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
14f9c5c9 10231 if (noside == EVAL_SKIP)
76a01679 10232 goto nosideret;
4c4b4cd2 10233 if (noside == EVAL_AVOID_SIDE_EFFECTS)
76a01679 10234 tem = 0;
4c4b4cd2 10235 else
f44316fa
UW
10236 {
10237 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10238 tem = ada_value_equal (arg1, arg2);
10239 }
4c4b4cd2 10240 if (op == BINOP_NOTEQUAL)
76a01679 10241 tem = !tem;
fbb06eb1
UW
10242 type = language_bool_type (exp->language_defn, exp->gdbarch);
10243 return value_from_longest (type, (LONGEST) tem);
4c4b4cd2
PH
10244
10245 case UNOP_NEG:
10246 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10247 if (noside == EVAL_SKIP)
10248 goto nosideret;
df407dfe
AC
10249 else if (ada_is_fixed_point_type (value_type (arg1)))
10250 return value_cast (value_type (arg1), value_neg (arg1));
14f9c5c9 10251 else
f44316fa
UW
10252 {
10253 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
10254 return value_neg (arg1);
10255 }
4c4b4cd2 10256
2330c6c6
JB
10257 case BINOP_LOGICAL_AND:
10258 case BINOP_LOGICAL_OR:
10259 case UNOP_LOGICAL_NOT:
000d5124
JB
10260 {
10261 struct value *val;
10262
10263 *pos -= 1;
10264 val = evaluate_subexp_standard (expect_type, exp, pos, noside);
fbb06eb1
UW
10265 type = language_bool_type (exp->language_defn, exp->gdbarch);
10266 return value_cast (type, val);
000d5124 10267 }
2330c6c6
JB
10268
10269 case BINOP_BITWISE_AND:
10270 case BINOP_BITWISE_IOR:
10271 case BINOP_BITWISE_XOR:
000d5124
JB
10272 {
10273 struct value *val;
10274
10275 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
10276 *pos = pc;
10277 val = evaluate_subexp_standard (expect_type, exp, pos, noside);
10278
10279 return value_cast (value_type (arg1), val);
10280 }
2330c6c6 10281
14f9c5c9
AS
10282 case OP_VAR_VALUE:
10283 *pos -= 1;
6799def4 10284
14f9c5c9 10285 if (noside == EVAL_SKIP)
4c4b4cd2
PH
10286 {
10287 *pos += 4;
10288 goto nosideret;
10289 }
da5c522f
JB
10290
10291 if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
76a01679
JB
10292 /* Only encountered when an unresolved symbol occurs in a
10293 context other than a function call, in which case, it is
52ce6436 10294 invalid. */
323e0a4a 10295 error (_("Unexpected unresolved symbol, %s, during evaluation"),
4c4b4cd2 10296 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
da5c522f
JB
10297
10298 if (noside == EVAL_AVOID_SIDE_EFFECTS)
4c4b4cd2 10299 {
0c1f74cf 10300 type = static_unwrap_type (SYMBOL_TYPE (exp->elts[pc + 2].symbol));
31dbc1c5
JB
10301 /* Check to see if this is a tagged type. We also need to handle
10302 the case where the type is a reference to a tagged type, but
10303 we have to be careful to exclude pointers to tagged types.
10304 The latter should be shown as usual (as a pointer), whereas
10305 a reference should mostly be transparent to the user. */
10306 if (ada_is_tagged_type (type, 0)
023db19c 10307 || (TYPE_CODE (type) == TYPE_CODE_REF
31dbc1c5 10308 && ada_is_tagged_type (TYPE_TARGET_TYPE (type), 0)))
0d72a7c3
JB
10309 {
10310 /* Tagged types are a little special in the fact that the real
10311 type is dynamic and can only be determined by inspecting the
10312 object's tag. This means that we need to get the object's
10313 value first (EVAL_NORMAL) and then extract the actual object
10314 type from its tag.
10315
10316 Note that we cannot skip the final step where we extract
10317 the object type from its tag, because the EVAL_NORMAL phase
10318 results in dynamic components being resolved into fixed ones.
10319 This can cause problems when trying to print the type
10320 description of tagged types whose parent has a dynamic size:
10321 We use the type name of the "_parent" component in order
10322 to print the name of the ancestor type in the type description.
10323 If that component had a dynamic size, the resolution into
10324 a fixed type would result in the loss of that type name,
10325 thus preventing us from printing the name of the ancestor
10326 type in the type description. */
10327 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_NORMAL);
10328
10329 if (TYPE_CODE (type) != TYPE_CODE_REF)
10330 {
10331 struct type *actual_type;
10332
10333 actual_type = type_from_tag (ada_value_tag (arg1));
10334 if (actual_type == NULL)
10335 /* If, for some reason, we were unable to determine
10336 the actual type from the tag, then use the static
10337 approximation that we just computed as a fallback.
10338 This can happen if the debugging information is
10339 incomplete, for instance. */
10340 actual_type = type;
10341 return value_zero (actual_type, not_lval);
10342 }
10343 else
10344 {
10345 /* In the case of a ref, ada_coerce_ref takes care
10346 of determining the actual type. But the evaluation
10347 should return a ref as it should be valid to ask
10348 for its address; so rebuild a ref after coerce. */
10349 arg1 = ada_coerce_ref (arg1);
10350 return value_ref (arg1);
10351 }
10352 }
0c1f74cf 10353
84754697
JB
10354 /* Records and unions for which GNAT encodings have been
10355 generated need to be statically fixed as well.
10356 Otherwise, non-static fixing produces a type where
10357 all dynamic properties are removed, which prevents "ptype"
10358 from being able to completely describe the type.
10359 For instance, a case statement in a variant record would be
10360 replaced by the relevant components based on the actual
10361 value of the discriminants. */
10362 if ((TYPE_CODE (type) == TYPE_CODE_STRUCT
10363 && dynamic_template_type (type) != NULL)
10364 || (TYPE_CODE (type) == TYPE_CODE_UNION
10365 && ada_find_parallel_type (type, "___XVU") != NULL))
10366 {
10367 *pos += 4;
10368 return value_zero (to_static_fixed_type (type), not_lval);
10369 }
4c4b4cd2 10370 }
da5c522f
JB
10371
10372 arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside);
10373 return ada_to_fixed_value (arg1);
4c4b4cd2
PH
10374
10375 case OP_FUNCALL:
10376 (*pos) += 2;
10377
10378 /* Allocate arg vector, including space for the function to be
10379 called in argvec[0] and a terminating NULL. */
10380 nargs = longest_to_int (exp->elts[pc + 1].longconst);
10381 argvec =
10382 (struct value **) alloca (sizeof (struct value *) * (nargs + 2));
10383
10384 if (exp->elts[*pos].opcode == OP_VAR_VALUE
76a01679 10385 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
323e0a4a 10386 error (_("Unexpected unresolved symbol, %s, during evaluation"),
4c4b4cd2
PH
10387 SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol));
10388 else
10389 {
10390 for (tem = 0; tem <= nargs; tem += 1)
10391 argvec[tem] = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10392 argvec[tem] = 0;
10393
10394 if (noside == EVAL_SKIP)
10395 goto nosideret;
10396 }
10397
ad82864c
JB
10398 if (ada_is_constrained_packed_array_type
10399 (desc_base_type (value_type (argvec[0]))))
4c4b4cd2 10400 argvec[0] = ada_coerce_to_simple_array (argvec[0]);
284614f0
JB
10401 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_ARRAY
10402 && TYPE_FIELD_BITSIZE (value_type (argvec[0]), 0) != 0)
10403 /* This is a packed array that has already been fixed, and
10404 therefore already coerced to a simple array. Nothing further
10405 to do. */
10406 ;
df407dfe
AC
10407 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_REF
10408 || (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_ARRAY
76a01679 10409 && VALUE_LVAL (argvec[0]) == lval_memory))
4c4b4cd2
PH
10410 argvec[0] = value_addr (argvec[0]);
10411
df407dfe 10412 type = ada_check_typedef (value_type (argvec[0]));
720d1a40
JB
10413
10414 /* Ada allows us to implicitly dereference arrays when subscripting
8f465ea7
JB
10415 them. So, if this is an array typedef (encoding use for array
10416 access types encoded as fat pointers), strip it now. */
720d1a40
JB
10417 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
10418 type = ada_typedef_target_type (type);
10419
4c4b4cd2
PH
10420 if (TYPE_CODE (type) == TYPE_CODE_PTR)
10421 {
61ee279c 10422 switch (TYPE_CODE (ada_check_typedef (TYPE_TARGET_TYPE (type))))
4c4b4cd2
PH
10423 {
10424 case TYPE_CODE_FUNC:
61ee279c 10425 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
4c4b4cd2
PH
10426 break;
10427 case TYPE_CODE_ARRAY:
10428 break;
10429 case TYPE_CODE_STRUCT:
10430 if (noside != EVAL_AVOID_SIDE_EFFECTS)
10431 argvec[0] = ada_value_ind (argvec[0]);
61ee279c 10432 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
4c4b4cd2
PH
10433 break;
10434 default:
323e0a4a 10435 error (_("cannot subscript or call something of type `%s'"),
df407dfe 10436 ada_type_name (value_type (argvec[0])));
4c4b4cd2
PH
10437 break;
10438 }
10439 }
10440
10441 switch (TYPE_CODE (type))
10442 {
10443 case TYPE_CODE_FUNC:
10444 if (noside == EVAL_AVOID_SIDE_EFFECTS)
c8ea1972
PH
10445 {
10446 struct type *rtype = TYPE_TARGET_TYPE (type);
10447
10448 if (TYPE_GNU_IFUNC (type))
10449 return allocate_value (TYPE_TARGET_TYPE (rtype));
10450 return allocate_value (rtype);
10451 }
4c4b4cd2 10452 return call_function_by_hand (argvec[0], nargs, argvec + 1);
c8ea1972
PH
10453 case TYPE_CODE_INTERNAL_FUNCTION:
10454 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10455 /* We don't know anything about what the internal
10456 function might return, but we have to return
10457 something. */
10458 return value_zero (builtin_type (exp->gdbarch)->builtin_int,
10459 not_lval);
10460 else
10461 return call_internal_function (exp->gdbarch, exp->language_defn,
10462 argvec[0], nargs, argvec + 1);
10463
4c4b4cd2
PH
10464 case TYPE_CODE_STRUCT:
10465 {
10466 int arity;
10467
4c4b4cd2
PH
10468 arity = ada_array_arity (type);
10469 type = ada_array_element_type (type, nargs);
10470 if (type == NULL)
323e0a4a 10471 error (_("cannot subscript or call a record"));
4c4b4cd2 10472 if (arity != nargs)
323e0a4a 10473 error (_("wrong number of subscripts; expecting %d"), arity);
4c4b4cd2 10474 if (noside == EVAL_AVOID_SIDE_EFFECTS)
0a07e705 10475 return value_zero (ada_aligned_type (type), lval_memory);
4c4b4cd2
PH
10476 return
10477 unwrap_value (ada_value_subscript
10478 (argvec[0], nargs, argvec + 1));
10479 }
10480 case TYPE_CODE_ARRAY:
10481 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10482 {
10483 type = ada_array_element_type (type, nargs);
10484 if (type == NULL)
323e0a4a 10485 error (_("element type of array unknown"));
4c4b4cd2 10486 else
0a07e705 10487 return value_zero (ada_aligned_type (type), lval_memory);
4c4b4cd2
PH
10488 }
10489 return
10490 unwrap_value (ada_value_subscript
10491 (ada_coerce_to_simple_array (argvec[0]),
10492 nargs, argvec + 1));
10493 case TYPE_CODE_PTR: /* Pointer to array */
4c4b4cd2
PH
10494 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10495 {
deede10c 10496 type = to_fixed_array_type (TYPE_TARGET_TYPE (type), NULL, 1);
4c4b4cd2
PH
10497 type = ada_array_element_type (type, nargs);
10498 if (type == NULL)
323e0a4a 10499 error (_("element type of array unknown"));
4c4b4cd2 10500 else
0a07e705 10501 return value_zero (ada_aligned_type (type), lval_memory);
4c4b4cd2
PH
10502 }
10503 return
deede10c
JB
10504 unwrap_value (ada_value_ptr_subscript (argvec[0],
10505 nargs, argvec + 1));
4c4b4cd2
PH
10506
10507 default:
e1d5a0d2
PH
10508 error (_("Attempt to index or call something other than an "
10509 "array or function"));
4c4b4cd2
PH
10510 }
10511
10512 case TERNOP_SLICE:
10513 {
10514 struct value *array = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10515 struct value *low_bound_val =
10516 evaluate_subexp (NULL_TYPE, exp, pos, noside);
714e53ab
PH
10517 struct value *high_bound_val =
10518 evaluate_subexp (NULL_TYPE, exp, pos, noside);
10519 LONGEST low_bound;
10520 LONGEST high_bound;
5b4ee69b 10521
994b9211
AC
10522 low_bound_val = coerce_ref (low_bound_val);
10523 high_bound_val = coerce_ref (high_bound_val);
714e53ab
PH
10524 low_bound = pos_atr (low_bound_val);
10525 high_bound = pos_atr (high_bound_val);
963a6417 10526
4c4b4cd2
PH
10527 if (noside == EVAL_SKIP)
10528 goto nosideret;
10529
4c4b4cd2
PH
10530 /* If this is a reference to an aligner type, then remove all
10531 the aligners. */
df407dfe
AC
10532 if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF
10533 && ada_is_aligner_type (TYPE_TARGET_TYPE (value_type (array))))
10534 TYPE_TARGET_TYPE (value_type (array)) =
10535 ada_aligned_type (TYPE_TARGET_TYPE (value_type (array)));
4c4b4cd2 10536
ad82864c 10537 if (ada_is_constrained_packed_array_type (value_type (array)))
323e0a4a 10538 error (_("cannot slice a packed array"));
4c4b4cd2
PH
10539
10540 /* If this is a reference to an array or an array lvalue,
10541 convert to a pointer. */
df407dfe
AC
10542 if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF
10543 || (TYPE_CODE (value_type (array)) == TYPE_CODE_ARRAY
4c4b4cd2
PH
10544 && VALUE_LVAL (array) == lval_memory))
10545 array = value_addr (array);
10546
1265e4aa 10547 if (noside == EVAL_AVOID_SIDE_EFFECTS
61ee279c 10548 && ada_is_array_descriptor_type (ada_check_typedef
df407dfe 10549 (value_type (array))))
0b5d8877 10550 return empty_array (ada_type_of_array (array, 0), low_bound);
4c4b4cd2
PH
10551
10552 array = ada_coerce_to_simple_array_ptr (array);
10553
714e53ab
PH
10554 /* If we have more than one level of pointer indirection,
10555 dereference the value until we get only one level. */
df407dfe
AC
10556 while (TYPE_CODE (value_type (array)) == TYPE_CODE_PTR
10557 && (TYPE_CODE (TYPE_TARGET_TYPE (value_type (array)))
714e53ab
PH
10558 == TYPE_CODE_PTR))
10559 array = value_ind (array);
10560
10561 /* Make sure we really do have an array type before going further,
10562 to avoid a SEGV when trying to get the index type or the target
10563 type later down the road if the debug info generated by
10564 the compiler is incorrect or incomplete. */
df407dfe 10565 if (!ada_is_simple_array_type (value_type (array)))
323e0a4a 10566 error (_("cannot take slice of non-array"));
714e53ab 10567
828292f2
JB
10568 if (TYPE_CODE (ada_check_typedef (value_type (array)))
10569 == TYPE_CODE_PTR)
4c4b4cd2 10570 {
828292f2
JB
10571 struct type *type0 = ada_check_typedef (value_type (array));
10572
0b5d8877 10573 if (high_bound < low_bound || noside == EVAL_AVOID_SIDE_EFFECTS)
828292f2 10574 return empty_array (TYPE_TARGET_TYPE (type0), low_bound);
4c4b4cd2
PH
10575 else
10576 {
10577 struct type *arr_type0 =
828292f2 10578 to_fixed_array_type (TYPE_TARGET_TYPE (type0), NULL, 1);
5b4ee69b 10579
f5938064
JG
10580 return ada_value_slice_from_ptr (array, arr_type0,
10581 longest_to_int (low_bound),
10582 longest_to_int (high_bound));
4c4b4cd2
PH
10583 }
10584 }
10585 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
10586 return array;
10587 else if (high_bound < low_bound)
df407dfe 10588 return empty_array (value_type (array), low_bound);
4c4b4cd2 10589 else
529cad9c
PH
10590 return ada_value_slice (array, longest_to_int (low_bound),
10591 longest_to_int (high_bound));
4c4b4cd2 10592 }
14f9c5c9 10593
4c4b4cd2
PH
10594 case UNOP_IN_RANGE:
10595 (*pos) += 2;
10596 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8008e265 10597 type = check_typedef (exp->elts[pc + 1].type);
14f9c5c9 10598
14f9c5c9 10599 if (noside == EVAL_SKIP)
4c4b4cd2 10600 goto nosideret;
14f9c5c9 10601
4c4b4cd2
PH
10602 switch (TYPE_CODE (type))
10603 {
10604 default:
e1d5a0d2
PH
10605 lim_warning (_("Membership test incompletely implemented; "
10606 "always returns true"));
fbb06eb1
UW
10607 type = language_bool_type (exp->language_defn, exp->gdbarch);
10608 return value_from_longest (type, (LONGEST) 1);
4c4b4cd2
PH
10609
10610 case TYPE_CODE_RANGE:
030b4912
UW
10611 arg2 = value_from_longest (type, TYPE_LOW_BOUND (type));
10612 arg3 = value_from_longest (type, TYPE_HIGH_BOUND (type));
f44316fa
UW
10613 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10614 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
fbb06eb1
UW
10615 type = language_bool_type (exp->language_defn, exp->gdbarch);
10616 return
10617 value_from_longest (type,
4c4b4cd2
PH
10618 (value_less (arg1, arg3)
10619 || value_equal (arg1, arg3))
10620 && (value_less (arg2, arg1)
10621 || value_equal (arg2, arg1)));
10622 }
10623
10624 case BINOP_IN_BOUNDS:
14f9c5c9 10625 (*pos) += 2;
4c4b4cd2
PH
10626 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10627 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
14f9c5c9 10628
4c4b4cd2
PH
10629 if (noside == EVAL_SKIP)
10630 goto nosideret;
14f9c5c9 10631
4c4b4cd2 10632 if (noside == EVAL_AVOID_SIDE_EFFECTS)
fbb06eb1
UW
10633 {
10634 type = language_bool_type (exp->language_defn, exp->gdbarch);
10635 return value_zero (type, not_lval);
10636 }
14f9c5c9 10637
4c4b4cd2 10638 tem = longest_to_int (exp->elts[pc + 1].longconst);
14f9c5c9 10639
1eea4ebd
UW
10640 type = ada_index_type (value_type (arg2), tem, "range");
10641 if (!type)
10642 type = value_type (arg1);
14f9c5c9 10643
1eea4ebd
UW
10644 arg3 = value_from_longest (type, ada_array_bound (arg2, tem, 1));
10645 arg2 = value_from_longest (type, ada_array_bound (arg2, tem, 0));
d2e4a39e 10646
f44316fa
UW
10647 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10648 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
fbb06eb1 10649 type = language_bool_type (exp->language_defn, exp->gdbarch);
4c4b4cd2 10650 return
fbb06eb1 10651 value_from_longest (type,
4c4b4cd2
PH
10652 (value_less (arg1, arg3)
10653 || value_equal (arg1, arg3))
10654 && (value_less (arg2, arg1)
10655 || value_equal (arg2, arg1)));
10656
10657 case TERNOP_IN_RANGE:
10658 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10659 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10660 arg3 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10661
10662 if (noside == EVAL_SKIP)
10663 goto nosideret;
10664
f44316fa
UW
10665 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10666 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
fbb06eb1 10667 type = language_bool_type (exp->language_defn, exp->gdbarch);
4c4b4cd2 10668 return
fbb06eb1 10669 value_from_longest (type,
4c4b4cd2
PH
10670 (value_less (arg1, arg3)
10671 || value_equal (arg1, arg3))
10672 && (value_less (arg2, arg1)
10673 || value_equal (arg2, arg1)));
10674
10675 case OP_ATR_FIRST:
10676 case OP_ATR_LAST:
10677 case OP_ATR_LENGTH:
10678 {
76a01679 10679 struct type *type_arg;
5b4ee69b 10680
76a01679
JB
10681 if (exp->elts[*pos].opcode == OP_TYPE)
10682 {
10683 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
10684 arg1 = NULL;
5bc23cb3 10685 type_arg = check_typedef (exp->elts[pc + 2].type);
76a01679
JB
10686 }
10687 else
10688 {
10689 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10690 type_arg = NULL;
10691 }
10692
10693 if (exp->elts[*pos].opcode != OP_LONG)
323e0a4a 10694 error (_("Invalid operand to '%s"), ada_attribute_name (op));
76a01679
JB
10695 tem = longest_to_int (exp->elts[*pos + 2].longconst);
10696 *pos += 4;
10697
10698 if (noside == EVAL_SKIP)
10699 goto nosideret;
10700
10701 if (type_arg == NULL)
10702 {
10703 arg1 = ada_coerce_ref (arg1);
10704
ad82864c 10705 if (ada_is_constrained_packed_array_type (value_type (arg1)))
76a01679
JB
10706 arg1 = ada_coerce_to_simple_array (arg1);
10707
aa4fb036 10708 if (op == OP_ATR_LENGTH)
1eea4ebd 10709 type = builtin_type (exp->gdbarch)->builtin_int;
aa4fb036
JB
10710 else
10711 {
10712 type = ada_index_type (value_type (arg1), tem,
10713 ada_attribute_name (op));
10714 if (type == NULL)
10715 type = builtin_type (exp->gdbarch)->builtin_int;
10716 }
76a01679
JB
10717
10718 if (noside == EVAL_AVOID_SIDE_EFFECTS)
1eea4ebd 10719 return allocate_value (type);
76a01679
JB
10720
10721 switch (op)
10722 {
10723 default: /* Should never happen. */
323e0a4a 10724 error (_("unexpected attribute encountered"));
76a01679 10725 case OP_ATR_FIRST:
1eea4ebd
UW
10726 return value_from_longest
10727 (type, ada_array_bound (arg1, tem, 0));
76a01679 10728 case OP_ATR_LAST:
1eea4ebd
UW
10729 return value_from_longest
10730 (type, ada_array_bound (arg1, tem, 1));
76a01679 10731 case OP_ATR_LENGTH:
1eea4ebd
UW
10732 return value_from_longest
10733 (type, ada_array_length (arg1, tem));
76a01679
JB
10734 }
10735 }
10736 else if (discrete_type_p (type_arg))
10737 {
10738 struct type *range_type;
0d5cff50 10739 const char *name = ada_type_name (type_arg);
5b4ee69b 10740
76a01679
JB
10741 range_type = NULL;
10742 if (name != NULL && TYPE_CODE (type_arg) != TYPE_CODE_ENUM)
28c85d6c 10743 range_type = to_fixed_range_type (type_arg, NULL);
76a01679
JB
10744 if (range_type == NULL)
10745 range_type = type_arg;
10746 switch (op)
10747 {
10748 default:
323e0a4a 10749 error (_("unexpected attribute encountered"));
76a01679 10750 case OP_ATR_FIRST:
690cc4eb 10751 return value_from_longest
43bbcdc2 10752 (range_type, ada_discrete_type_low_bound (range_type));
76a01679 10753 case OP_ATR_LAST:
690cc4eb 10754 return value_from_longest
43bbcdc2 10755 (range_type, ada_discrete_type_high_bound (range_type));
76a01679 10756 case OP_ATR_LENGTH:
323e0a4a 10757 error (_("the 'length attribute applies only to array types"));
76a01679
JB
10758 }
10759 }
10760 else if (TYPE_CODE (type_arg) == TYPE_CODE_FLT)
323e0a4a 10761 error (_("unimplemented type attribute"));
76a01679
JB
10762 else
10763 {
10764 LONGEST low, high;
10765
ad82864c
JB
10766 if (ada_is_constrained_packed_array_type (type_arg))
10767 type_arg = decode_constrained_packed_array_type (type_arg);
76a01679 10768
aa4fb036 10769 if (op == OP_ATR_LENGTH)
1eea4ebd 10770 type = builtin_type (exp->gdbarch)->builtin_int;
aa4fb036
JB
10771 else
10772 {
10773 type = ada_index_type (type_arg, tem, ada_attribute_name (op));
10774 if (type == NULL)
10775 type = builtin_type (exp->gdbarch)->builtin_int;
10776 }
1eea4ebd 10777
76a01679
JB
10778 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10779 return allocate_value (type);
10780
10781 switch (op)
10782 {
10783 default:
323e0a4a 10784 error (_("unexpected attribute encountered"));
76a01679 10785 case OP_ATR_FIRST:
1eea4ebd 10786 low = ada_array_bound_from_type (type_arg, tem, 0);
76a01679
JB
10787 return value_from_longest (type, low);
10788 case OP_ATR_LAST:
1eea4ebd 10789 high = ada_array_bound_from_type (type_arg, tem, 1);
76a01679
JB
10790 return value_from_longest (type, high);
10791 case OP_ATR_LENGTH:
1eea4ebd
UW
10792 low = ada_array_bound_from_type (type_arg, tem, 0);
10793 high = ada_array_bound_from_type (type_arg, tem, 1);
76a01679
JB
10794 return value_from_longest (type, high - low + 1);
10795 }
10796 }
14f9c5c9
AS
10797 }
10798
4c4b4cd2
PH
10799 case OP_ATR_TAG:
10800 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10801 if (noside == EVAL_SKIP)
76a01679 10802 goto nosideret;
4c4b4cd2
PH
10803
10804 if (noside == EVAL_AVOID_SIDE_EFFECTS)
76a01679 10805 return value_zero (ada_tag_type (arg1), not_lval);
4c4b4cd2
PH
10806
10807 return ada_value_tag (arg1);
10808
10809 case OP_ATR_MIN:
10810 case OP_ATR_MAX:
10811 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
14f9c5c9
AS
10812 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10813 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10814 if (noside == EVAL_SKIP)
76a01679 10815 goto nosideret;
d2e4a39e 10816 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
df407dfe 10817 return value_zero (value_type (arg1), not_lval);
14f9c5c9 10818 else
f44316fa
UW
10819 {
10820 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10821 return value_binop (arg1, arg2,
10822 op == OP_ATR_MIN ? BINOP_MIN : BINOP_MAX);
10823 }
14f9c5c9 10824
4c4b4cd2
PH
10825 case OP_ATR_MODULUS:
10826 {
31dedfee 10827 struct type *type_arg = check_typedef (exp->elts[pc + 2].type);
4c4b4cd2 10828
5b4ee69b 10829 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
76a01679
JB
10830 if (noside == EVAL_SKIP)
10831 goto nosideret;
4c4b4cd2 10832
76a01679 10833 if (!ada_is_modular_type (type_arg))
323e0a4a 10834 error (_("'modulus must be applied to modular type"));
4c4b4cd2 10835
76a01679
JB
10836 return value_from_longest (TYPE_TARGET_TYPE (type_arg),
10837 ada_modulus (type_arg));
4c4b4cd2
PH
10838 }
10839
10840
10841 case OP_ATR_POS:
10842 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
14f9c5c9
AS
10843 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10844 if (noside == EVAL_SKIP)
76a01679 10845 goto nosideret;
3cb382c9
UW
10846 type = builtin_type (exp->gdbarch)->builtin_int;
10847 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10848 return value_zero (type, not_lval);
14f9c5c9 10849 else
3cb382c9 10850 return value_pos_atr (type, arg1);
14f9c5c9 10851
4c4b4cd2
PH
10852 case OP_ATR_SIZE:
10853 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8c1c099f
JB
10854 type = value_type (arg1);
10855
10856 /* If the argument is a reference, then dereference its type, since
10857 the user is really asking for the size of the actual object,
10858 not the size of the pointer. */
10859 if (TYPE_CODE (type) == TYPE_CODE_REF)
10860 type = TYPE_TARGET_TYPE (type);
10861
4c4b4cd2 10862 if (noside == EVAL_SKIP)
76a01679 10863 goto nosideret;
4c4b4cd2 10864 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
22601c15 10865 return value_zero (builtin_type (exp->gdbarch)->builtin_int, not_lval);
4c4b4cd2 10866 else
22601c15 10867 return value_from_longest (builtin_type (exp->gdbarch)->builtin_int,
8c1c099f 10868 TARGET_CHAR_BIT * TYPE_LENGTH (type));
4c4b4cd2
PH
10869
10870 case OP_ATR_VAL:
10871 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
14f9c5c9 10872 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
4c4b4cd2 10873 type = exp->elts[pc + 2].type;
14f9c5c9 10874 if (noside == EVAL_SKIP)
76a01679 10875 goto nosideret;
4c4b4cd2 10876 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
76a01679 10877 return value_zero (type, not_lval);
4c4b4cd2 10878 else
76a01679 10879 return value_val_atr (type, arg1);
4c4b4cd2
PH
10880
10881 case BINOP_EXP:
10882 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10883 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10884 if (noside == EVAL_SKIP)
10885 goto nosideret;
10886 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
df407dfe 10887 return value_zero (value_type (arg1), not_lval);
4c4b4cd2 10888 else
f44316fa
UW
10889 {
10890 /* For integer exponentiation operations,
10891 only promote the first argument. */
10892 if (is_integral_type (value_type (arg2)))
10893 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
10894 else
10895 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10896
10897 return value_binop (arg1, arg2, op);
10898 }
4c4b4cd2
PH
10899
10900 case UNOP_PLUS:
10901 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10902 if (noside == EVAL_SKIP)
10903 goto nosideret;
10904 else
10905 return arg1;
10906
10907 case UNOP_ABS:
10908 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10909 if (noside == EVAL_SKIP)
10910 goto nosideret;
f44316fa 10911 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
df407dfe 10912 if (value_less (arg1, value_zero (value_type (arg1), not_lval)))
4c4b4cd2 10913 return value_neg (arg1);
14f9c5c9 10914 else
4c4b4cd2 10915 return arg1;
14f9c5c9
AS
10916
10917 case UNOP_IND:
5ec18f2b 10918 preeval_pos = *pos;
6b0d7253 10919 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
14f9c5c9 10920 if (noside == EVAL_SKIP)
4c4b4cd2 10921 goto nosideret;
df407dfe 10922 type = ada_check_typedef (value_type (arg1));
14f9c5c9 10923 if (noside == EVAL_AVOID_SIDE_EFFECTS)
4c4b4cd2
PH
10924 {
10925 if (ada_is_array_descriptor_type (type))
10926 /* GDB allows dereferencing GNAT array descriptors. */
10927 {
10928 struct type *arrType = ada_type_of_array (arg1, 0);
5b4ee69b 10929
4c4b4cd2 10930 if (arrType == NULL)
323e0a4a 10931 error (_("Attempt to dereference null array pointer."));
00a4c844 10932 return value_at_lazy (arrType, 0);
4c4b4cd2
PH
10933 }
10934 else if (TYPE_CODE (type) == TYPE_CODE_PTR
10935 || TYPE_CODE (type) == TYPE_CODE_REF
10936 /* In C you can dereference an array to get the 1st elt. */
10937 || TYPE_CODE (type) == TYPE_CODE_ARRAY)
714e53ab 10938 {
5ec18f2b
JG
10939 /* As mentioned in the OP_VAR_VALUE case, tagged types can
10940 only be determined by inspecting the object's tag.
10941 This means that we need to evaluate completely the
10942 expression in order to get its type. */
10943
023db19c
JB
10944 if ((TYPE_CODE (type) == TYPE_CODE_REF
10945 || TYPE_CODE (type) == TYPE_CODE_PTR)
5ec18f2b
JG
10946 && ada_is_tagged_type (TYPE_TARGET_TYPE (type), 0))
10947 {
10948 arg1 = evaluate_subexp (NULL_TYPE, exp, &preeval_pos,
10949 EVAL_NORMAL);
10950 type = value_type (ada_value_ind (arg1));
10951 }
10952 else
10953 {
10954 type = to_static_fixed_type
10955 (ada_aligned_type
10956 (ada_check_typedef (TYPE_TARGET_TYPE (type))));
10957 }
c1b5a1a6 10958 ada_ensure_varsize_limit (type);
714e53ab
PH
10959 return value_zero (type, lval_memory);
10960 }
4c4b4cd2 10961 else if (TYPE_CODE (type) == TYPE_CODE_INT)
6b0d7253
JB
10962 {
10963 /* GDB allows dereferencing an int. */
10964 if (expect_type == NULL)
10965 return value_zero (builtin_type (exp->gdbarch)->builtin_int,
10966 lval_memory);
10967 else
10968 {
10969 expect_type =
10970 to_static_fixed_type (ada_aligned_type (expect_type));
10971 return value_zero (expect_type, lval_memory);
10972 }
10973 }
4c4b4cd2 10974 else
323e0a4a 10975 error (_("Attempt to take contents of a non-pointer value."));
4c4b4cd2 10976 }
0963b4bd 10977 arg1 = ada_coerce_ref (arg1); /* FIXME: What is this for?? */
df407dfe 10978 type = ada_check_typedef (value_type (arg1));
d2e4a39e 10979
96967637
JB
10980 if (TYPE_CODE (type) == TYPE_CODE_INT)
10981 /* GDB allows dereferencing an int. If we were given
10982 the expect_type, then use that as the target type.
10983 Otherwise, assume that the target type is an int. */
10984 {
10985 if (expect_type != NULL)
10986 return ada_value_ind (value_cast (lookup_pointer_type (expect_type),
10987 arg1));
10988 else
10989 return value_at_lazy (builtin_type (exp->gdbarch)->builtin_int,
10990 (CORE_ADDR) value_as_address (arg1));
10991 }
6b0d7253 10992
4c4b4cd2
PH
10993 if (ada_is_array_descriptor_type (type))
10994 /* GDB allows dereferencing GNAT array descriptors. */
10995 return ada_coerce_to_simple_array (arg1);
14f9c5c9 10996 else
4c4b4cd2 10997 return ada_value_ind (arg1);
14f9c5c9
AS
10998
10999 case STRUCTOP_STRUCT:
11000 tem = longest_to_int (exp->elts[pc + 1].longconst);
11001 (*pos) += 3 + BYTES_TO_EXP_ELEM (tem + 1);
5ec18f2b 11002 preeval_pos = *pos;
14f9c5c9
AS
11003 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11004 if (noside == EVAL_SKIP)
4c4b4cd2 11005 goto nosideret;
14f9c5c9 11006 if (noside == EVAL_AVOID_SIDE_EFFECTS)
76a01679 11007 {
df407dfe 11008 struct type *type1 = value_type (arg1);
5b4ee69b 11009
76a01679
JB
11010 if (ada_is_tagged_type (type1, 1))
11011 {
11012 type = ada_lookup_struct_elt_type (type1,
11013 &exp->elts[pc + 2].string,
11014 1, 1, NULL);
5ec18f2b
JG
11015
11016 /* If the field is not found, check if it exists in the
11017 extension of this object's type. This means that we
11018 need to evaluate completely the expression. */
11019
76a01679 11020 if (type == NULL)
5ec18f2b
JG
11021 {
11022 arg1 = evaluate_subexp (NULL_TYPE, exp, &preeval_pos,
11023 EVAL_NORMAL);
11024 arg1 = ada_value_struct_elt (arg1,
11025 &exp->elts[pc + 2].string,
11026 0);
11027 arg1 = unwrap_value (arg1);
11028 type = value_type (ada_to_fixed_value (arg1));
11029 }
76a01679
JB
11030 }
11031 else
11032 type =
11033 ada_lookup_struct_elt_type (type1, &exp->elts[pc + 2].string, 1,
11034 0, NULL);
11035
11036 return value_zero (ada_aligned_type (type), lval_memory);
11037 }
14f9c5c9 11038 else
284614f0
JB
11039 arg1 = ada_value_struct_elt (arg1, &exp->elts[pc + 2].string, 0);
11040 arg1 = unwrap_value (arg1);
11041 return ada_to_fixed_value (arg1);
11042
14f9c5c9 11043 case OP_TYPE:
4c4b4cd2
PH
11044 /* The value is not supposed to be used. This is here to make it
11045 easier to accommodate expressions that contain types. */
14f9c5c9
AS
11046 (*pos) += 2;
11047 if (noside == EVAL_SKIP)
4c4b4cd2 11048 goto nosideret;
14f9c5c9 11049 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
a6cfbe68 11050 return allocate_value (exp->elts[pc + 1].type);
14f9c5c9 11051 else
323e0a4a 11052 error (_("Attempt to use a type name as an expression"));
52ce6436
PH
11053
11054 case OP_AGGREGATE:
11055 case OP_CHOICES:
11056 case OP_OTHERS:
11057 case OP_DISCRETE_RANGE:
11058 case OP_POSITIONAL:
11059 case OP_NAME:
11060 if (noside == EVAL_NORMAL)
11061 switch (op)
11062 {
11063 case OP_NAME:
11064 error (_("Undefined name, ambiguous name, or renaming used in "
e1d5a0d2 11065 "component association: %s."), &exp->elts[pc+2].string);
52ce6436
PH
11066 case OP_AGGREGATE:
11067 error (_("Aggregates only allowed on the right of an assignment"));
11068 default:
0963b4bd
MS
11069 internal_error (__FILE__, __LINE__,
11070 _("aggregate apparently mangled"));
52ce6436
PH
11071 }
11072
11073 ada_forward_operator_length (exp, pc, &oplen, &nargs);
11074 *pos += oplen - 1;
11075 for (tem = 0; tem < nargs; tem += 1)
11076 ada_evaluate_subexp (NULL, exp, pos, noside);
11077 goto nosideret;
14f9c5c9
AS
11078 }
11079
11080nosideret:
22601c15 11081 return value_from_longest (builtin_type (exp->gdbarch)->builtin_int, 1);
14f9c5c9 11082}
14f9c5c9 11083\f
d2e4a39e 11084
4c4b4cd2 11085 /* Fixed point */
14f9c5c9
AS
11086
11087/* If TYPE encodes an Ada fixed-point type, return the suffix of the
11088 type name that encodes the 'small and 'delta information.
4c4b4cd2 11089 Otherwise, return NULL. */
14f9c5c9 11090
d2e4a39e 11091static const char *
ebf56fd3 11092fixed_type_info (struct type *type)
14f9c5c9 11093{
d2e4a39e 11094 const char *name = ada_type_name (type);
14f9c5c9
AS
11095 enum type_code code = (type == NULL) ? TYPE_CODE_UNDEF : TYPE_CODE (type);
11096
d2e4a39e
AS
11097 if ((code == TYPE_CODE_INT || code == TYPE_CODE_RANGE) && name != NULL)
11098 {
14f9c5c9 11099 const char *tail = strstr (name, "___XF_");
5b4ee69b 11100
14f9c5c9 11101 if (tail == NULL)
4c4b4cd2 11102 return NULL;
d2e4a39e 11103 else
4c4b4cd2 11104 return tail + 5;
14f9c5c9
AS
11105 }
11106 else if (code == TYPE_CODE_RANGE && TYPE_TARGET_TYPE (type) != type)
11107 return fixed_type_info (TYPE_TARGET_TYPE (type));
11108 else
11109 return NULL;
11110}
11111
4c4b4cd2 11112/* Returns non-zero iff TYPE represents an Ada fixed-point type. */
14f9c5c9
AS
11113
11114int
ebf56fd3 11115ada_is_fixed_point_type (struct type *type)
14f9c5c9
AS
11116{
11117 return fixed_type_info (type) != NULL;
11118}
11119
4c4b4cd2
PH
11120/* Return non-zero iff TYPE represents a System.Address type. */
11121
11122int
11123ada_is_system_address_type (struct type *type)
11124{
11125 return (TYPE_NAME (type)
11126 && strcmp (TYPE_NAME (type), "system__address") == 0);
11127}
11128
14f9c5c9
AS
11129/* Assuming that TYPE is the representation of an Ada fixed-point
11130 type, return its delta, or -1 if the type is malformed and the
4c4b4cd2 11131 delta cannot be determined. */
14f9c5c9
AS
11132
11133DOUBLEST
ebf56fd3 11134ada_delta (struct type *type)
14f9c5c9
AS
11135{
11136 const char *encoding = fixed_type_info (type);
facc390f 11137 DOUBLEST num, den;
14f9c5c9 11138
facc390f
JB
11139 /* Strictly speaking, num and den are encoded as integer. However,
11140 they may not fit into a long, and they will have to be converted
11141 to DOUBLEST anyway. So scan them as DOUBLEST. */
11142 if (sscanf (encoding, "_%" DOUBLEST_SCAN_FORMAT "_%" DOUBLEST_SCAN_FORMAT,
11143 &num, &den) < 2)
14f9c5c9 11144 return -1.0;
d2e4a39e 11145 else
facc390f 11146 return num / den;
14f9c5c9
AS
11147}
11148
11149/* Assuming that ada_is_fixed_point_type (TYPE), return the scaling
4c4b4cd2 11150 factor ('SMALL value) associated with the type. */
14f9c5c9
AS
11151
11152static DOUBLEST
ebf56fd3 11153scaling_factor (struct type *type)
14f9c5c9
AS
11154{
11155 const char *encoding = fixed_type_info (type);
facc390f 11156 DOUBLEST num0, den0, num1, den1;
14f9c5c9 11157 int n;
d2e4a39e 11158
facc390f
JB
11159 /* Strictly speaking, num's and den's are encoded as integer. However,
11160 they may not fit into a long, and they will have to be converted
11161 to DOUBLEST anyway. So scan them as DOUBLEST. */
11162 n = sscanf (encoding,
11163 "_%" DOUBLEST_SCAN_FORMAT "_%" DOUBLEST_SCAN_FORMAT
11164 "_%" DOUBLEST_SCAN_FORMAT "_%" DOUBLEST_SCAN_FORMAT,
11165 &num0, &den0, &num1, &den1);
14f9c5c9
AS
11166
11167 if (n < 2)
11168 return 1.0;
11169 else if (n == 4)
facc390f 11170 return num1 / den1;
d2e4a39e 11171 else
facc390f 11172 return num0 / den0;
14f9c5c9
AS
11173}
11174
11175
11176/* Assuming that X is the representation of a value of fixed-point
4c4b4cd2 11177 type TYPE, return its floating-point equivalent. */
14f9c5c9
AS
11178
11179DOUBLEST
ebf56fd3 11180ada_fixed_to_float (struct type *type, LONGEST x)
14f9c5c9 11181{
d2e4a39e 11182 return (DOUBLEST) x *scaling_factor (type);
14f9c5c9
AS
11183}
11184
4c4b4cd2
PH
11185/* The representation of a fixed-point value of type TYPE
11186 corresponding to the value X. */
14f9c5c9
AS
11187
11188LONGEST
ebf56fd3 11189ada_float_to_fixed (struct type *type, DOUBLEST x)
14f9c5c9
AS
11190{
11191 return (LONGEST) (x / scaling_factor (type) + 0.5);
11192}
11193
14f9c5c9 11194\f
d2e4a39e 11195
4c4b4cd2 11196 /* Range types */
14f9c5c9
AS
11197
11198/* Scan STR beginning at position K for a discriminant name, and
11199 return the value of that discriminant field of DVAL in *PX. If
11200 PNEW_K is not null, put the position of the character beyond the
11201 name scanned in *PNEW_K. Return 1 if successful; return 0 and do
4c4b4cd2 11202 not alter *PX and *PNEW_K if unsuccessful. */
14f9c5c9
AS
11203
11204static int
07d8f827 11205scan_discrim_bound (char *str, int k, struct value *dval, LONGEST * px,
76a01679 11206 int *pnew_k)
14f9c5c9
AS
11207{
11208 static char *bound_buffer = NULL;
11209 static size_t bound_buffer_len = 0;
11210 char *bound;
11211 char *pend;
d2e4a39e 11212 struct value *bound_val;
14f9c5c9
AS
11213
11214 if (dval == NULL || str == NULL || str[k] == '\0')
11215 return 0;
11216
d2e4a39e 11217 pend = strstr (str + k, "__");
14f9c5c9
AS
11218 if (pend == NULL)
11219 {
d2e4a39e 11220 bound = str + k;
14f9c5c9
AS
11221 k += strlen (bound);
11222 }
d2e4a39e 11223 else
14f9c5c9 11224 {
d2e4a39e 11225 GROW_VECT (bound_buffer, bound_buffer_len, pend - (str + k) + 1);
14f9c5c9 11226 bound = bound_buffer;
d2e4a39e
AS
11227 strncpy (bound_buffer, str + k, pend - (str + k));
11228 bound[pend - (str + k)] = '\0';
11229 k = pend - str;
14f9c5c9 11230 }
d2e4a39e 11231
df407dfe 11232 bound_val = ada_search_struct_field (bound, dval, 0, value_type (dval));
14f9c5c9
AS
11233 if (bound_val == NULL)
11234 return 0;
11235
11236 *px = value_as_long (bound_val);
11237 if (pnew_k != NULL)
11238 *pnew_k = k;
11239 return 1;
11240}
11241
11242/* Value of variable named NAME in the current environment. If
11243 no such variable found, then if ERR_MSG is null, returns 0, and
4c4b4cd2
PH
11244 otherwise causes an error with message ERR_MSG. */
11245
d2e4a39e
AS
11246static struct value *
11247get_var_value (char *name, char *err_msg)
14f9c5c9 11248{
4c4b4cd2 11249 struct ada_symbol_info *syms;
14f9c5c9
AS
11250 int nsyms;
11251
4c4b4cd2 11252 nsyms = ada_lookup_symbol_list (name, get_selected_block (0), VAR_DOMAIN,
4eeaa230 11253 &syms);
14f9c5c9
AS
11254
11255 if (nsyms != 1)
11256 {
11257 if (err_msg == NULL)
4c4b4cd2 11258 return 0;
14f9c5c9 11259 else
8a3fe4f8 11260 error (("%s"), err_msg);
14f9c5c9
AS
11261 }
11262
4c4b4cd2 11263 return value_of_variable (syms[0].sym, syms[0].block);
14f9c5c9 11264}
d2e4a39e 11265
14f9c5c9 11266/* Value of integer variable named NAME in the current environment. If
4c4b4cd2
PH
11267 no such variable found, returns 0, and sets *FLAG to 0. If
11268 successful, sets *FLAG to 1. */
11269
14f9c5c9 11270LONGEST
4c4b4cd2 11271get_int_var_value (char *name, int *flag)
14f9c5c9 11272{
4c4b4cd2 11273 struct value *var_val = get_var_value (name, 0);
d2e4a39e 11274
14f9c5c9
AS
11275 if (var_val == 0)
11276 {
11277 if (flag != NULL)
4c4b4cd2 11278 *flag = 0;
14f9c5c9
AS
11279 return 0;
11280 }
11281 else
11282 {
11283 if (flag != NULL)
4c4b4cd2 11284 *flag = 1;
14f9c5c9
AS
11285 return value_as_long (var_val);
11286 }
11287}
d2e4a39e 11288
14f9c5c9
AS
11289
11290/* Return a range type whose base type is that of the range type named
11291 NAME in the current environment, and whose bounds are calculated
4c4b4cd2 11292 from NAME according to the GNAT range encoding conventions.
1ce677a4
UW
11293 Extract discriminant values, if needed, from DVAL. ORIG_TYPE is the
11294 corresponding range type from debug information; fall back to using it
11295 if symbol lookup fails. If a new type must be created, allocate it
11296 like ORIG_TYPE was. The bounds information, in general, is encoded
11297 in NAME, the base type given in the named range type. */
14f9c5c9 11298
d2e4a39e 11299static struct type *
28c85d6c 11300to_fixed_range_type (struct type *raw_type, struct value *dval)
14f9c5c9 11301{
0d5cff50 11302 const char *name;
14f9c5c9 11303 struct type *base_type;
d2e4a39e 11304 char *subtype_info;
14f9c5c9 11305
28c85d6c
JB
11306 gdb_assert (raw_type != NULL);
11307 gdb_assert (TYPE_NAME (raw_type) != NULL);
dddfab26 11308
1ce677a4 11309 if (TYPE_CODE (raw_type) == TYPE_CODE_RANGE)
14f9c5c9
AS
11310 base_type = TYPE_TARGET_TYPE (raw_type);
11311 else
11312 base_type = raw_type;
11313
28c85d6c 11314 name = TYPE_NAME (raw_type);
14f9c5c9
AS
11315 subtype_info = strstr (name, "___XD");
11316 if (subtype_info == NULL)
690cc4eb 11317 {
43bbcdc2
PH
11318 LONGEST L = ada_discrete_type_low_bound (raw_type);
11319 LONGEST U = ada_discrete_type_high_bound (raw_type);
5b4ee69b 11320
690cc4eb
PH
11321 if (L < INT_MIN || U > INT_MAX)
11322 return raw_type;
11323 else
0c9c3474
SA
11324 return create_static_range_type (alloc_type_copy (raw_type), raw_type,
11325 L, U);
690cc4eb 11326 }
14f9c5c9
AS
11327 else
11328 {
11329 static char *name_buf = NULL;
11330 static size_t name_len = 0;
11331 int prefix_len = subtype_info - name;
11332 LONGEST L, U;
11333 struct type *type;
11334 char *bounds_str;
11335 int n;
11336
11337 GROW_VECT (name_buf, name_len, prefix_len + 5);
11338 strncpy (name_buf, name, prefix_len);
11339 name_buf[prefix_len] = '\0';
11340
11341 subtype_info += 5;
11342 bounds_str = strchr (subtype_info, '_');
11343 n = 1;
11344
d2e4a39e 11345 if (*subtype_info == 'L')
4c4b4cd2
PH
11346 {
11347 if (!ada_scan_number (bounds_str, n, &L, &n)
11348 && !scan_discrim_bound (bounds_str, n, dval, &L, &n))
11349 return raw_type;
11350 if (bounds_str[n] == '_')
11351 n += 2;
0963b4bd 11352 else if (bounds_str[n] == '.') /* FIXME? SGI Workshop kludge. */
4c4b4cd2
PH
11353 n += 1;
11354 subtype_info += 1;
11355 }
d2e4a39e 11356 else
4c4b4cd2
PH
11357 {
11358 int ok;
5b4ee69b 11359
4c4b4cd2
PH
11360 strcpy (name_buf + prefix_len, "___L");
11361 L = get_int_var_value (name_buf, &ok);
11362 if (!ok)
11363 {
323e0a4a 11364 lim_warning (_("Unknown lower bound, using 1."));
4c4b4cd2
PH
11365 L = 1;
11366 }
11367 }
14f9c5c9 11368
d2e4a39e 11369 if (*subtype_info == 'U')
4c4b4cd2
PH
11370 {
11371 if (!ada_scan_number (bounds_str, n, &U, &n)
11372 && !scan_discrim_bound (bounds_str, n, dval, &U, &n))
11373 return raw_type;
11374 }
d2e4a39e 11375 else
4c4b4cd2
PH
11376 {
11377 int ok;
5b4ee69b 11378
4c4b4cd2
PH
11379 strcpy (name_buf + prefix_len, "___U");
11380 U = get_int_var_value (name_buf, &ok);
11381 if (!ok)
11382 {
323e0a4a 11383 lim_warning (_("Unknown upper bound, using %ld."), (long) L);
4c4b4cd2
PH
11384 U = L;
11385 }
11386 }
14f9c5c9 11387
0c9c3474
SA
11388 type = create_static_range_type (alloc_type_copy (raw_type),
11389 base_type, L, U);
d2e4a39e 11390 TYPE_NAME (type) = name;
14f9c5c9
AS
11391 return type;
11392 }
11393}
11394
4c4b4cd2
PH
11395/* True iff NAME is the name of a range type. */
11396
14f9c5c9 11397int
d2e4a39e 11398ada_is_range_type_name (const char *name)
14f9c5c9
AS
11399{
11400 return (name != NULL && strstr (name, "___XD"));
d2e4a39e 11401}
14f9c5c9 11402\f
d2e4a39e 11403
4c4b4cd2
PH
11404 /* Modular types */
11405
11406/* True iff TYPE is an Ada modular type. */
14f9c5c9 11407
14f9c5c9 11408int
d2e4a39e 11409ada_is_modular_type (struct type *type)
14f9c5c9 11410{
18af8284 11411 struct type *subranged_type = get_base_type (type);
14f9c5c9
AS
11412
11413 return (subranged_type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE
690cc4eb 11414 && TYPE_CODE (subranged_type) == TYPE_CODE_INT
4c4b4cd2 11415 && TYPE_UNSIGNED (subranged_type));
14f9c5c9
AS
11416}
11417
4c4b4cd2
PH
11418/* Assuming ada_is_modular_type (TYPE), the modulus of TYPE. */
11419
61ee279c 11420ULONGEST
0056e4d5 11421ada_modulus (struct type *type)
14f9c5c9 11422{
43bbcdc2 11423 return (ULONGEST) TYPE_HIGH_BOUND (type) + 1;
14f9c5c9 11424}
d2e4a39e 11425\f
f7f9143b
JB
11426
11427/* Ada exception catchpoint support:
11428 ---------------------------------
11429
11430 We support 3 kinds of exception catchpoints:
11431 . catchpoints on Ada exceptions
11432 . catchpoints on unhandled Ada exceptions
11433 . catchpoints on failed assertions
11434
11435 Exceptions raised during failed assertions, or unhandled exceptions
11436 could perfectly be caught with the general catchpoint on Ada exceptions.
11437 However, we can easily differentiate these two special cases, and having
11438 the option to distinguish these two cases from the rest can be useful
11439 to zero-in on certain situations.
11440
11441 Exception catchpoints are a specialized form of breakpoint,
11442 since they rely on inserting breakpoints inside known routines
11443 of the GNAT runtime. The implementation therefore uses a standard
11444 breakpoint structure of the BP_BREAKPOINT type, but with its own set
11445 of breakpoint_ops.
11446
0259addd
JB
11447 Support in the runtime for exception catchpoints have been changed
11448 a few times already, and these changes affect the implementation
11449 of these catchpoints. In order to be able to support several
11450 variants of the runtime, we use a sniffer that will determine
28010a5d 11451 the runtime variant used by the program being debugged. */
f7f9143b 11452
82eacd52
JB
11453/* Ada's standard exceptions.
11454
11455 The Ada 83 standard also defined Numeric_Error. But there so many
11456 situations where it was unclear from the Ada 83 Reference Manual
11457 (RM) whether Constraint_Error or Numeric_Error should be raised,
11458 that the ARG (Ada Rapporteur Group) eventually issued a Binding
11459 Interpretation saying that anytime the RM says that Numeric_Error
11460 should be raised, the implementation may raise Constraint_Error.
11461 Ada 95 went one step further and pretty much removed Numeric_Error
11462 from the list of standard exceptions (it made it a renaming of
11463 Constraint_Error, to help preserve compatibility when compiling
11464 an Ada83 compiler). As such, we do not include Numeric_Error from
11465 this list of standard exceptions. */
3d0b0fa3
JB
11466
11467static char *standard_exc[] = {
11468 "constraint_error",
11469 "program_error",
11470 "storage_error",
11471 "tasking_error"
11472};
11473
0259addd
JB
11474typedef CORE_ADDR (ada_unhandled_exception_name_addr_ftype) (void);
11475
11476/* A structure that describes how to support exception catchpoints
11477 for a given executable. */
11478
11479struct exception_support_info
11480{
11481 /* The name of the symbol to break on in order to insert
11482 a catchpoint on exceptions. */
11483 const char *catch_exception_sym;
11484
11485 /* The name of the symbol to break on in order to insert
11486 a catchpoint on unhandled exceptions. */
11487 const char *catch_exception_unhandled_sym;
11488
11489 /* The name of the symbol to break on in order to insert
11490 a catchpoint on failed assertions. */
11491 const char *catch_assert_sym;
11492
11493 /* Assuming that the inferior just triggered an unhandled exception
11494 catchpoint, this function is responsible for returning the address
11495 in inferior memory where the name of that exception is stored.
11496 Return zero if the address could not be computed. */
11497 ada_unhandled_exception_name_addr_ftype *unhandled_exception_name_addr;
11498};
11499
11500static CORE_ADDR ada_unhandled_exception_name_addr (void);
11501static CORE_ADDR ada_unhandled_exception_name_addr_from_raise (void);
11502
11503/* The following exception support info structure describes how to
11504 implement exception catchpoints with the latest version of the
11505 Ada runtime (as of 2007-03-06). */
11506
11507static const struct exception_support_info default_exception_support_info =
11508{
11509 "__gnat_debug_raise_exception", /* catch_exception_sym */
11510 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
11511 "__gnat_debug_raise_assert_failure", /* catch_assert_sym */
11512 ada_unhandled_exception_name_addr
11513};
11514
11515/* The following exception support info structure describes how to
11516 implement exception catchpoints with a slightly older version
11517 of the Ada runtime. */
11518
11519static const struct exception_support_info exception_support_info_fallback =
11520{
11521 "__gnat_raise_nodefer_with_msg", /* catch_exception_sym */
11522 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
11523 "system__assertions__raise_assert_failure", /* catch_assert_sym */
11524 ada_unhandled_exception_name_addr_from_raise
11525};
11526
f17011e0
JB
11527/* Return nonzero if we can detect the exception support routines
11528 described in EINFO.
11529
11530 This function errors out if an abnormal situation is detected
11531 (for instance, if we find the exception support routines, but
11532 that support is found to be incomplete). */
11533
11534static int
11535ada_has_this_exception_support (const struct exception_support_info *einfo)
11536{
11537 struct symbol *sym;
11538
11539 /* The symbol we're looking up is provided by a unit in the GNAT runtime
11540 that should be compiled with debugging information. As a result, we
11541 expect to find that symbol in the symtabs. */
11542
11543 sym = standard_lookup (einfo->catch_exception_sym, NULL, VAR_DOMAIN);
11544 if (sym == NULL)
a6af7abe
JB
11545 {
11546 /* Perhaps we did not find our symbol because the Ada runtime was
11547 compiled without debugging info, or simply stripped of it.
11548 It happens on some GNU/Linux distributions for instance, where
11549 users have to install a separate debug package in order to get
11550 the runtime's debugging info. In that situation, let the user
11551 know why we cannot insert an Ada exception catchpoint.
11552
11553 Note: Just for the purpose of inserting our Ada exception
11554 catchpoint, we could rely purely on the associated minimal symbol.
11555 But we would be operating in degraded mode anyway, since we are
11556 still lacking the debugging info needed later on to extract
11557 the name of the exception being raised (this name is printed in
11558 the catchpoint message, and is also used when trying to catch
11559 a specific exception). We do not handle this case for now. */
3b7344d5 11560 struct bound_minimal_symbol msym
1c8e84b0
JB
11561 = lookup_minimal_symbol (einfo->catch_exception_sym, NULL, NULL);
11562
3b7344d5 11563 if (msym.minsym && MSYMBOL_TYPE (msym.minsym) != mst_solib_trampoline)
a6af7abe
JB
11564 error (_("Your Ada runtime appears to be missing some debugging "
11565 "information.\nCannot insert Ada exception catchpoint "
11566 "in this configuration."));
11567
11568 return 0;
11569 }
f17011e0
JB
11570
11571 /* Make sure that the symbol we found corresponds to a function. */
11572
11573 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
11574 error (_("Symbol \"%s\" is not a function (class = %d)"),
11575 SYMBOL_LINKAGE_NAME (sym), SYMBOL_CLASS (sym));
11576
11577 return 1;
11578}
11579
0259addd
JB
11580/* Inspect the Ada runtime and determine which exception info structure
11581 should be used to provide support for exception catchpoints.
11582
3eecfa55
JB
11583 This function will always set the per-inferior exception_info,
11584 or raise an error. */
0259addd
JB
11585
11586static void
11587ada_exception_support_info_sniffer (void)
11588{
3eecfa55 11589 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
0259addd
JB
11590
11591 /* If the exception info is already known, then no need to recompute it. */
3eecfa55 11592 if (data->exception_info != NULL)
0259addd
JB
11593 return;
11594
11595 /* Check the latest (default) exception support info. */
f17011e0 11596 if (ada_has_this_exception_support (&default_exception_support_info))
0259addd 11597 {
3eecfa55 11598 data->exception_info = &default_exception_support_info;
0259addd
JB
11599 return;
11600 }
11601
11602 /* Try our fallback exception suport info. */
f17011e0 11603 if (ada_has_this_exception_support (&exception_support_info_fallback))
0259addd 11604 {
3eecfa55 11605 data->exception_info = &exception_support_info_fallback;
0259addd
JB
11606 return;
11607 }
11608
11609 /* Sometimes, it is normal for us to not be able to find the routine
11610 we are looking for. This happens when the program is linked with
11611 the shared version of the GNAT runtime, and the program has not been
11612 started yet. Inform the user of these two possible causes if
11613 applicable. */
11614
ccefe4c4 11615 if (ada_update_initial_language (language_unknown) != language_ada)
0259addd
JB
11616 error (_("Unable to insert catchpoint. Is this an Ada main program?"));
11617
11618 /* If the symbol does not exist, then check that the program is
11619 already started, to make sure that shared libraries have been
11620 loaded. If it is not started, this may mean that the symbol is
11621 in a shared library. */
11622
11623 if (ptid_get_pid (inferior_ptid) == 0)
11624 error (_("Unable to insert catchpoint. Try to start the program first."));
11625
11626 /* At this point, we know that we are debugging an Ada program and
11627 that the inferior has been started, but we still are not able to
0963b4bd 11628 find the run-time symbols. That can mean that we are in
0259addd
JB
11629 configurable run time mode, or that a-except as been optimized
11630 out by the linker... In any case, at this point it is not worth
11631 supporting this feature. */
11632
7dda8cff 11633 error (_("Cannot insert Ada exception catchpoints in this configuration."));
0259addd
JB
11634}
11635
f7f9143b
JB
11636/* True iff FRAME is very likely to be that of a function that is
11637 part of the runtime system. This is all very heuristic, but is
11638 intended to be used as advice as to what frames are uninteresting
11639 to most users. */
11640
11641static int
11642is_known_support_routine (struct frame_info *frame)
11643{
4ed6b5be 11644 struct symtab_and_line sal;
55b87a52 11645 char *func_name;
692465f1 11646 enum language func_lang;
f7f9143b 11647 int i;
f35a17b5 11648 const char *fullname;
f7f9143b 11649
4ed6b5be
JB
11650 /* If this code does not have any debugging information (no symtab),
11651 This cannot be any user code. */
f7f9143b 11652
4ed6b5be 11653 find_frame_sal (frame, &sal);
f7f9143b
JB
11654 if (sal.symtab == NULL)
11655 return 1;
11656
4ed6b5be
JB
11657 /* If there is a symtab, but the associated source file cannot be
11658 located, then assume this is not user code: Selecting a frame
11659 for which we cannot display the code would not be very helpful
11660 for the user. This should also take care of case such as VxWorks
11661 where the kernel has some debugging info provided for a few units. */
f7f9143b 11662
f35a17b5
JK
11663 fullname = symtab_to_fullname (sal.symtab);
11664 if (access (fullname, R_OK) != 0)
f7f9143b
JB
11665 return 1;
11666
4ed6b5be
JB
11667 /* Check the unit filename againt the Ada runtime file naming.
11668 We also check the name of the objfile against the name of some
11669 known system libraries that sometimes come with debugging info
11670 too. */
11671
f7f9143b
JB
11672 for (i = 0; known_runtime_file_name_patterns[i] != NULL; i += 1)
11673 {
11674 re_comp (known_runtime_file_name_patterns[i]);
f69c91ad 11675 if (re_exec (lbasename (sal.symtab->filename)))
f7f9143b 11676 return 1;
eb822aa6
DE
11677 if (SYMTAB_OBJFILE (sal.symtab) != NULL
11678 && re_exec (objfile_name (SYMTAB_OBJFILE (sal.symtab))))
4ed6b5be 11679 return 1;
f7f9143b
JB
11680 }
11681
4ed6b5be 11682 /* Check whether the function is a GNAT-generated entity. */
f7f9143b 11683
e9e07ba6 11684 find_frame_funname (frame, &func_name, &func_lang, NULL);
f7f9143b
JB
11685 if (func_name == NULL)
11686 return 1;
11687
11688 for (i = 0; known_auxiliary_function_name_patterns[i] != NULL; i += 1)
11689 {
11690 re_comp (known_auxiliary_function_name_patterns[i]);
11691 if (re_exec (func_name))
55b87a52
KS
11692 {
11693 xfree (func_name);
11694 return 1;
11695 }
f7f9143b
JB
11696 }
11697
55b87a52 11698 xfree (func_name);
f7f9143b
JB
11699 return 0;
11700}
11701
11702/* Find the first frame that contains debugging information and that is not
11703 part of the Ada run-time, starting from FI and moving upward. */
11704
0ef643c8 11705void
f7f9143b
JB
11706ada_find_printable_frame (struct frame_info *fi)
11707{
11708 for (; fi != NULL; fi = get_prev_frame (fi))
11709 {
11710 if (!is_known_support_routine (fi))
11711 {
11712 select_frame (fi);
11713 break;
11714 }
11715 }
11716
11717}
11718
11719/* Assuming that the inferior just triggered an unhandled exception
11720 catchpoint, return the address in inferior memory where the name
11721 of the exception is stored.
11722
11723 Return zero if the address could not be computed. */
11724
11725static CORE_ADDR
11726ada_unhandled_exception_name_addr (void)
0259addd
JB
11727{
11728 return parse_and_eval_address ("e.full_name");
11729}
11730
11731/* Same as ada_unhandled_exception_name_addr, except that this function
11732 should be used when the inferior uses an older version of the runtime,
11733 where the exception name needs to be extracted from a specific frame
11734 several frames up in the callstack. */
11735
11736static CORE_ADDR
11737ada_unhandled_exception_name_addr_from_raise (void)
f7f9143b
JB
11738{
11739 int frame_level;
11740 struct frame_info *fi;
3eecfa55 11741 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
55b87a52 11742 struct cleanup *old_chain;
f7f9143b
JB
11743
11744 /* To determine the name of this exception, we need to select
11745 the frame corresponding to RAISE_SYM_NAME. This frame is
11746 at least 3 levels up, so we simply skip the first 3 frames
11747 without checking the name of their associated function. */
11748 fi = get_current_frame ();
11749 for (frame_level = 0; frame_level < 3; frame_level += 1)
11750 if (fi != NULL)
11751 fi = get_prev_frame (fi);
11752
55b87a52 11753 old_chain = make_cleanup (null_cleanup, NULL);
f7f9143b
JB
11754 while (fi != NULL)
11755 {
55b87a52 11756 char *func_name;
692465f1
JB
11757 enum language func_lang;
11758
e9e07ba6 11759 find_frame_funname (fi, &func_name, &func_lang, NULL);
55b87a52
KS
11760 if (func_name != NULL)
11761 {
11762 make_cleanup (xfree, func_name);
11763
11764 if (strcmp (func_name,
11765 data->exception_info->catch_exception_sym) == 0)
11766 break; /* We found the frame we were looking for... */
11767 fi = get_prev_frame (fi);
11768 }
f7f9143b 11769 }
55b87a52 11770 do_cleanups (old_chain);
f7f9143b
JB
11771
11772 if (fi == NULL)
11773 return 0;
11774
11775 select_frame (fi);
11776 return parse_and_eval_address ("id.full_name");
11777}
11778
11779/* Assuming the inferior just triggered an Ada exception catchpoint
11780 (of any type), return the address in inferior memory where the name
11781 of the exception is stored, if applicable.
11782
11783 Return zero if the address could not be computed, or if not relevant. */
11784
11785static CORE_ADDR
761269c8 11786ada_exception_name_addr_1 (enum ada_exception_catchpoint_kind ex,
f7f9143b
JB
11787 struct breakpoint *b)
11788{
3eecfa55
JB
11789 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
11790
f7f9143b
JB
11791 switch (ex)
11792 {
761269c8 11793 case ada_catch_exception:
f7f9143b
JB
11794 return (parse_and_eval_address ("e.full_name"));
11795 break;
11796
761269c8 11797 case ada_catch_exception_unhandled:
3eecfa55 11798 return data->exception_info->unhandled_exception_name_addr ();
f7f9143b
JB
11799 break;
11800
761269c8 11801 case ada_catch_assert:
f7f9143b
JB
11802 return 0; /* Exception name is not relevant in this case. */
11803 break;
11804
11805 default:
11806 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
11807 break;
11808 }
11809
11810 return 0; /* Should never be reached. */
11811}
11812
11813/* Same as ada_exception_name_addr_1, except that it intercepts and contains
11814 any error that ada_exception_name_addr_1 might cause to be thrown.
11815 When an error is intercepted, a warning with the error message is printed,
11816 and zero is returned. */
11817
11818static CORE_ADDR
761269c8 11819ada_exception_name_addr (enum ada_exception_catchpoint_kind ex,
f7f9143b
JB
11820 struct breakpoint *b)
11821{
bfd189b1 11822 volatile struct gdb_exception e;
f7f9143b
JB
11823 CORE_ADDR result = 0;
11824
11825 TRY_CATCH (e, RETURN_MASK_ERROR)
11826 {
11827 result = ada_exception_name_addr_1 (ex, b);
11828 }
11829
11830 if (e.reason < 0)
11831 {
11832 warning (_("failed to get exception name: %s"), e.message);
11833 return 0;
11834 }
11835
11836 return result;
11837}
11838
28010a5d
PA
11839static char *ada_exception_catchpoint_cond_string (const char *excep_string);
11840
11841/* Ada catchpoints.
11842
11843 In the case of catchpoints on Ada exceptions, the catchpoint will
11844 stop the target on every exception the program throws. When a user
11845 specifies the name of a specific exception, we translate this
11846 request into a condition expression (in text form), and then parse
11847 it into an expression stored in each of the catchpoint's locations.
11848 We then use this condition to check whether the exception that was
11849 raised is the one the user is interested in. If not, then the
11850 target is resumed again. We store the name of the requested
11851 exception, in order to be able to re-set the condition expression
11852 when symbols change. */
11853
11854/* An instance of this type is used to represent an Ada catchpoint
11855 breakpoint location. It includes a "struct bp_location" as a kind
11856 of base class; users downcast to "struct bp_location *" when
11857 needed. */
11858
11859struct ada_catchpoint_location
11860{
11861 /* The base class. */
11862 struct bp_location base;
11863
11864 /* The condition that checks whether the exception that was raised
11865 is the specific exception the user specified on catchpoint
11866 creation. */
11867 struct expression *excep_cond_expr;
11868};
11869
11870/* Implement the DTOR method in the bp_location_ops structure for all
11871 Ada exception catchpoint kinds. */
11872
11873static void
11874ada_catchpoint_location_dtor (struct bp_location *bl)
11875{
11876 struct ada_catchpoint_location *al = (struct ada_catchpoint_location *) bl;
11877
11878 xfree (al->excep_cond_expr);
11879}
11880
11881/* The vtable to be used in Ada catchpoint locations. */
11882
11883static const struct bp_location_ops ada_catchpoint_location_ops =
11884{
11885 ada_catchpoint_location_dtor
11886};
11887
11888/* An instance of this type is used to represent an Ada catchpoint.
11889 It includes a "struct breakpoint" as a kind of base class; users
11890 downcast to "struct breakpoint *" when needed. */
11891
11892struct ada_catchpoint
11893{
11894 /* The base class. */
11895 struct breakpoint base;
11896
11897 /* The name of the specific exception the user specified. */
11898 char *excep_string;
11899};
11900
11901/* Parse the exception condition string in the context of each of the
11902 catchpoint's locations, and store them for later evaluation. */
11903
11904static void
11905create_excep_cond_exprs (struct ada_catchpoint *c)
11906{
11907 struct cleanup *old_chain;
11908 struct bp_location *bl;
11909 char *cond_string;
11910
11911 /* Nothing to do if there's no specific exception to catch. */
11912 if (c->excep_string == NULL)
11913 return;
11914
11915 /* Same if there are no locations... */
11916 if (c->base.loc == NULL)
11917 return;
11918
11919 /* Compute the condition expression in text form, from the specific
11920 expection we want to catch. */
11921 cond_string = ada_exception_catchpoint_cond_string (c->excep_string);
11922 old_chain = make_cleanup (xfree, cond_string);
11923
11924 /* Iterate over all the catchpoint's locations, and parse an
11925 expression for each. */
11926 for (bl = c->base.loc; bl != NULL; bl = bl->next)
11927 {
11928 struct ada_catchpoint_location *ada_loc
11929 = (struct ada_catchpoint_location *) bl;
11930 struct expression *exp = NULL;
11931
11932 if (!bl->shlib_disabled)
11933 {
11934 volatile struct gdb_exception e;
bbc13ae3 11935 const char *s;
28010a5d
PA
11936
11937 s = cond_string;
11938 TRY_CATCH (e, RETURN_MASK_ERROR)
11939 {
1bb9788d
TT
11940 exp = parse_exp_1 (&s, bl->address,
11941 block_for_pc (bl->address), 0);
28010a5d
PA
11942 }
11943 if (e.reason < 0)
849f2b52
JB
11944 {
11945 warning (_("failed to reevaluate internal exception condition "
11946 "for catchpoint %d: %s"),
11947 c->base.number, e.message);
11948 /* There is a bug in GCC on sparc-solaris when building with
11949 optimization which causes EXP to change unexpectedly
11950 (http://gcc.gnu.org/bugzilla/show_bug.cgi?id=56982).
11951 The problem should be fixed starting with GCC 4.9.
11952 In the meantime, work around it by forcing EXP back
11953 to NULL. */
11954 exp = NULL;
11955 }
28010a5d
PA
11956 }
11957
11958 ada_loc->excep_cond_expr = exp;
11959 }
11960
11961 do_cleanups (old_chain);
11962}
11963
11964/* Implement the DTOR method in the breakpoint_ops structure for all
11965 exception catchpoint kinds. */
11966
11967static void
761269c8 11968dtor_exception (enum ada_exception_catchpoint_kind ex, struct breakpoint *b)
28010a5d
PA
11969{
11970 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
11971
11972 xfree (c->excep_string);
348d480f 11973
2060206e 11974 bkpt_breakpoint_ops.dtor (b);
28010a5d
PA
11975}
11976
11977/* Implement the ALLOCATE_LOCATION method in the breakpoint_ops
11978 structure for all exception catchpoint kinds. */
11979
11980static struct bp_location *
761269c8 11981allocate_location_exception (enum ada_exception_catchpoint_kind ex,
28010a5d
PA
11982 struct breakpoint *self)
11983{
11984 struct ada_catchpoint_location *loc;
11985
11986 loc = XNEW (struct ada_catchpoint_location);
11987 init_bp_location (&loc->base, &ada_catchpoint_location_ops, self);
11988 loc->excep_cond_expr = NULL;
11989 return &loc->base;
11990}
11991
11992/* Implement the RE_SET method in the breakpoint_ops structure for all
11993 exception catchpoint kinds. */
11994
11995static void
761269c8 11996re_set_exception (enum ada_exception_catchpoint_kind ex, struct breakpoint *b)
28010a5d
PA
11997{
11998 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
11999
12000 /* Call the base class's method. This updates the catchpoint's
12001 locations. */
2060206e 12002 bkpt_breakpoint_ops.re_set (b);
28010a5d
PA
12003
12004 /* Reparse the exception conditional expressions. One for each
12005 location. */
12006 create_excep_cond_exprs (c);
12007}
12008
12009/* Returns true if we should stop for this breakpoint hit. If the
12010 user specified a specific exception, we only want to cause a stop
12011 if the program thrown that exception. */
12012
12013static int
12014should_stop_exception (const struct bp_location *bl)
12015{
12016 struct ada_catchpoint *c = (struct ada_catchpoint *) bl->owner;
12017 const struct ada_catchpoint_location *ada_loc
12018 = (const struct ada_catchpoint_location *) bl;
12019 volatile struct gdb_exception ex;
12020 int stop;
12021
12022 /* With no specific exception, should always stop. */
12023 if (c->excep_string == NULL)
12024 return 1;
12025
12026 if (ada_loc->excep_cond_expr == NULL)
12027 {
12028 /* We will have a NULL expression if back when we were creating
12029 the expressions, this location's had failed to parse. */
12030 return 1;
12031 }
12032
12033 stop = 1;
12034 TRY_CATCH (ex, RETURN_MASK_ALL)
12035 {
12036 struct value *mark;
12037
12038 mark = value_mark ();
12039 stop = value_true (evaluate_expression (ada_loc->excep_cond_expr));
12040 value_free_to_mark (mark);
12041 }
12042 if (ex.reason < 0)
12043 exception_fprintf (gdb_stderr, ex,
12044 _("Error in testing exception condition:\n"));
12045 return stop;
12046}
12047
12048/* Implement the CHECK_STATUS method in the breakpoint_ops structure
12049 for all exception catchpoint kinds. */
12050
12051static void
761269c8 12052check_status_exception (enum ada_exception_catchpoint_kind ex, bpstat bs)
28010a5d
PA
12053{
12054 bs->stop = should_stop_exception (bs->bp_location_at);
12055}
12056
f7f9143b
JB
12057/* Implement the PRINT_IT method in the breakpoint_ops structure
12058 for all exception catchpoint kinds. */
12059
12060static enum print_stop_action
761269c8 12061print_it_exception (enum ada_exception_catchpoint_kind ex, bpstat bs)
f7f9143b 12062{
79a45e25 12063 struct ui_out *uiout = current_uiout;
348d480f
PA
12064 struct breakpoint *b = bs->breakpoint_at;
12065
956a9fb9 12066 annotate_catchpoint (b->number);
f7f9143b 12067
956a9fb9 12068 if (ui_out_is_mi_like_p (uiout))
f7f9143b 12069 {
956a9fb9
JB
12070 ui_out_field_string (uiout, "reason",
12071 async_reason_lookup (EXEC_ASYNC_BREAKPOINT_HIT));
12072 ui_out_field_string (uiout, "disp", bpdisp_text (b->disposition));
f7f9143b
JB
12073 }
12074
00eb2c4a
JB
12075 ui_out_text (uiout,
12076 b->disposition == disp_del ? "\nTemporary catchpoint "
12077 : "\nCatchpoint ");
956a9fb9
JB
12078 ui_out_field_int (uiout, "bkptno", b->number);
12079 ui_out_text (uiout, ", ");
f7f9143b 12080
f7f9143b
JB
12081 switch (ex)
12082 {
761269c8
JB
12083 case ada_catch_exception:
12084 case ada_catch_exception_unhandled:
956a9fb9
JB
12085 {
12086 const CORE_ADDR addr = ada_exception_name_addr (ex, b);
12087 char exception_name[256];
12088
12089 if (addr != 0)
12090 {
c714b426
PA
12091 read_memory (addr, (gdb_byte *) exception_name,
12092 sizeof (exception_name) - 1);
956a9fb9
JB
12093 exception_name [sizeof (exception_name) - 1] = '\0';
12094 }
12095 else
12096 {
12097 /* For some reason, we were unable to read the exception
12098 name. This could happen if the Runtime was compiled
12099 without debugging info, for instance. In that case,
12100 just replace the exception name by the generic string
12101 "exception" - it will read as "an exception" in the
12102 notification we are about to print. */
967cff16 12103 memcpy (exception_name, "exception", sizeof ("exception"));
956a9fb9
JB
12104 }
12105 /* In the case of unhandled exception breakpoints, we print
12106 the exception name as "unhandled EXCEPTION_NAME", to make
12107 it clearer to the user which kind of catchpoint just got
12108 hit. We used ui_out_text to make sure that this extra
12109 info does not pollute the exception name in the MI case. */
761269c8 12110 if (ex == ada_catch_exception_unhandled)
956a9fb9
JB
12111 ui_out_text (uiout, "unhandled ");
12112 ui_out_field_string (uiout, "exception-name", exception_name);
12113 }
12114 break;
761269c8 12115 case ada_catch_assert:
956a9fb9
JB
12116 /* In this case, the name of the exception is not really
12117 important. Just print "failed assertion" to make it clearer
12118 that his program just hit an assertion-failure catchpoint.
12119 We used ui_out_text because this info does not belong in
12120 the MI output. */
12121 ui_out_text (uiout, "failed assertion");
12122 break;
f7f9143b 12123 }
956a9fb9
JB
12124 ui_out_text (uiout, " at ");
12125 ada_find_printable_frame (get_current_frame ());
f7f9143b
JB
12126
12127 return PRINT_SRC_AND_LOC;
12128}
12129
12130/* Implement the PRINT_ONE method in the breakpoint_ops structure
12131 for all exception catchpoint kinds. */
12132
12133static void
761269c8 12134print_one_exception (enum ada_exception_catchpoint_kind ex,
a6d9a66e 12135 struct breakpoint *b, struct bp_location **last_loc)
f7f9143b 12136{
79a45e25 12137 struct ui_out *uiout = current_uiout;
28010a5d 12138 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
79a45b7d
TT
12139 struct value_print_options opts;
12140
12141 get_user_print_options (&opts);
12142 if (opts.addressprint)
f7f9143b
JB
12143 {
12144 annotate_field (4);
5af949e3 12145 ui_out_field_core_addr (uiout, "addr", b->loc->gdbarch, b->loc->address);
f7f9143b
JB
12146 }
12147
12148 annotate_field (5);
a6d9a66e 12149 *last_loc = b->loc;
f7f9143b
JB
12150 switch (ex)
12151 {
761269c8 12152 case ada_catch_exception:
28010a5d 12153 if (c->excep_string != NULL)
f7f9143b 12154 {
28010a5d
PA
12155 char *msg = xstrprintf (_("`%s' Ada exception"), c->excep_string);
12156
f7f9143b
JB
12157 ui_out_field_string (uiout, "what", msg);
12158 xfree (msg);
12159 }
12160 else
12161 ui_out_field_string (uiout, "what", "all Ada exceptions");
12162
12163 break;
12164
761269c8 12165 case ada_catch_exception_unhandled:
f7f9143b
JB
12166 ui_out_field_string (uiout, "what", "unhandled Ada exceptions");
12167 break;
12168
761269c8 12169 case ada_catch_assert:
f7f9143b
JB
12170 ui_out_field_string (uiout, "what", "failed Ada assertions");
12171 break;
12172
12173 default:
12174 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12175 break;
12176 }
12177}
12178
12179/* Implement the PRINT_MENTION method in the breakpoint_ops structure
12180 for all exception catchpoint kinds. */
12181
12182static void
761269c8 12183print_mention_exception (enum ada_exception_catchpoint_kind ex,
f7f9143b
JB
12184 struct breakpoint *b)
12185{
28010a5d 12186 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
79a45e25 12187 struct ui_out *uiout = current_uiout;
28010a5d 12188
00eb2c4a
JB
12189 ui_out_text (uiout, b->disposition == disp_del ? _("Temporary catchpoint ")
12190 : _("Catchpoint "));
12191 ui_out_field_int (uiout, "bkptno", b->number);
12192 ui_out_text (uiout, ": ");
12193
f7f9143b
JB
12194 switch (ex)
12195 {
761269c8 12196 case ada_catch_exception:
28010a5d 12197 if (c->excep_string != NULL)
00eb2c4a
JB
12198 {
12199 char *info = xstrprintf (_("`%s' Ada exception"), c->excep_string);
12200 struct cleanup *old_chain = make_cleanup (xfree, info);
12201
12202 ui_out_text (uiout, info);
12203 do_cleanups (old_chain);
12204 }
f7f9143b 12205 else
00eb2c4a 12206 ui_out_text (uiout, _("all Ada exceptions"));
f7f9143b
JB
12207 break;
12208
761269c8 12209 case ada_catch_exception_unhandled:
00eb2c4a 12210 ui_out_text (uiout, _("unhandled Ada exceptions"));
f7f9143b
JB
12211 break;
12212
761269c8 12213 case ada_catch_assert:
00eb2c4a 12214 ui_out_text (uiout, _("failed Ada assertions"));
f7f9143b
JB
12215 break;
12216
12217 default:
12218 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12219 break;
12220 }
12221}
12222
6149aea9
PA
12223/* Implement the PRINT_RECREATE method in the breakpoint_ops structure
12224 for all exception catchpoint kinds. */
12225
12226static void
761269c8 12227print_recreate_exception (enum ada_exception_catchpoint_kind ex,
6149aea9
PA
12228 struct breakpoint *b, struct ui_file *fp)
12229{
28010a5d
PA
12230 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
12231
6149aea9
PA
12232 switch (ex)
12233 {
761269c8 12234 case ada_catch_exception:
6149aea9 12235 fprintf_filtered (fp, "catch exception");
28010a5d
PA
12236 if (c->excep_string != NULL)
12237 fprintf_filtered (fp, " %s", c->excep_string);
6149aea9
PA
12238 break;
12239
761269c8 12240 case ada_catch_exception_unhandled:
78076abc 12241 fprintf_filtered (fp, "catch exception unhandled");
6149aea9
PA
12242 break;
12243
761269c8 12244 case ada_catch_assert:
6149aea9
PA
12245 fprintf_filtered (fp, "catch assert");
12246 break;
12247
12248 default:
12249 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12250 }
d9b3f62e 12251 print_recreate_thread (b, fp);
6149aea9
PA
12252}
12253
f7f9143b
JB
12254/* Virtual table for "catch exception" breakpoints. */
12255
28010a5d
PA
12256static void
12257dtor_catch_exception (struct breakpoint *b)
12258{
761269c8 12259 dtor_exception (ada_catch_exception, b);
28010a5d
PA
12260}
12261
12262static struct bp_location *
12263allocate_location_catch_exception (struct breakpoint *self)
12264{
761269c8 12265 return allocate_location_exception (ada_catch_exception, self);
28010a5d
PA
12266}
12267
12268static void
12269re_set_catch_exception (struct breakpoint *b)
12270{
761269c8 12271 re_set_exception (ada_catch_exception, b);
28010a5d
PA
12272}
12273
12274static void
12275check_status_catch_exception (bpstat bs)
12276{
761269c8 12277 check_status_exception (ada_catch_exception, bs);
28010a5d
PA
12278}
12279
f7f9143b 12280static enum print_stop_action
348d480f 12281print_it_catch_exception (bpstat bs)
f7f9143b 12282{
761269c8 12283 return print_it_exception (ada_catch_exception, bs);
f7f9143b
JB
12284}
12285
12286static void
a6d9a66e 12287print_one_catch_exception (struct breakpoint *b, struct bp_location **last_loc)
f7f9143b 12288{
761269c8 12289 print_one_exception (ada_catch_exception, b, last_loc);
f7f9143b
JB
12290}
12291
12292static void
12293print_mention_catch_exception (struct breakpoint *b)
12294{
761269c8 12295 print_mention_exception (ada_catch_exception, b);
f7f9143b
JB
12296}
12297
6149aea9
PA
12298static void
12299print_recreate_catch_exception (struct breakpoint *b, struct ui_file *fp)
12300{
761269c8 12301 print_recreate_exception (ada_catch_exception, b, fp);
6149aea9
PA
12302}
12303
2060206e 12304static struct breakpoint_ops catch_exception_breakpoint_ops;
f7f9143b
JB
12305
12306/* Virtual table for "catch exception unhandled" breakpoints. */
12307
28010a5d
PA
12308static void
12309dtor_catch_exception_unhandled (struct breakpoint *b)
12310{
761269c8 12311 dtor_exception (ada_catch_exception_unhandled, b);
28010a5d
PA
12312}
12313
12314static struct bp_location *
12315allocate_location_catch_exception_unhandled (struct breakpoint *self)
12316{
761269c8 12317 return allocate_location_exception (ada_catch_exception_unhandled, self);
28010a5d
PA
12318}
12319
12320static void
12321re_set_catch_exception_unhandled (struct breakpoint *b)
12322{
761269c8 12323 re_set_exception (ada_catch_exception_unhandled, b);
28010a5d
PA
12324}
12325
12326static void
12327check_status_catch_exception_unhandled (bpstat bs)
12328{
761269c8 12329 check_status_exception (ada_catch_exception_unhandled, bs);
28010a5d
PA
12330}
12331
f7f9143b 12332static enum print_stop_action
348d480f 12333print_it_catch_exception_unhandled (bpstat bs)
f7f9143b 12334{
761269c8 12335 return print_it_exception (ada_catch_exception_unhandled, bs);
f7f9143b
JB
12336}
12337
12338static void
a6d9a66e
UW
12339print_one_catch_exception_unhandled (struct breakpoint *b,
12340 struct bp_location **last_loc)
f7f9143b 12341{
761269c8 12342 print_one_exception (ada_catch_exception_unhandled, b, last_loc);
f7f9143b
JB
12343}
12344
12345static void
12346print_mention_catch_exception_unhandled (struct breakpoint *b)
12347{
761269c8 12348 print_mention_exception (ada_catch_exception_unhandled, b);
f7f9143b
JB
12349}
12350
6149aea9
PA
12351static void
12352print_recreate_catch_exception_unhandled (struct breakpoint *b,
12353 struct ui_file *fp)
12354{
761269c8 12355 print_recreate_exception (ada_catch_exception_unhandled, b, fp);
6149aea9
PA
12356}
12357
2060206e 12358static struct breakpoint_ops catch_exception_unhandled_breakpoint_ops;
f7f9143b
JB
12359
12360/* Virtual table for "catch assert" breakpoints. */
12361
28010a5d
PA
12362static void
12363dtor_catch_assert (struct breakpoint *b)
12364{
761269c8 12365 dtor_exception (ada_catch_assert, b);
28010a5d
PA
12366}
12367
12368static struct bp_location *
12369allocate_location_catch_assert (struct breakpoint *self)
12370{
761269c8 12371 return allocate_location_exception (ada_catch_assert, self);
28010a5d
PA
12372}
12373
12374static void
12375re_set_catch_assert (struct breakpoint *b)
12376{
761269c8 12377 re_set_exception (ada_catch_assert, b);
28010a5d
PA
12378}
12379
12380static void
12381check_status_catch_assert (bpstat bs)
12382{
761269c8 12383 check_status_exception (ada_catch_assert, bs);
28010a5d
PA
12384}
12385
f7f9143b 12386static enum print_stop_action
348d480f 12387print_it_catch_assert (bpstat bs)
f7f9143b 12388{
761269c8 12389 return print_it_exception (ada_catch_assert, bs);
f7f9143b
JB
12390}
12391
12392static void
a6d9a66e 12393print_one_catch_assert (struct breakpoint *b, struct bp_location **last_loc)
f7f9143b 12394{
761269c8 12395 print_one_exception (ada_catch_assert, b, last_loc);
f7f9143b
JB
12396}
12397
12398static void
12399print_mention_catch_assert (struct breakpoint *b)
12400{
761269c8 12401 print_mention_exception (ada_catch_assert, b);
f7f9143b
JB
12402}
12403
6149aea9
PA
12404static void
12405print_recreate_catch_assert (struct breakpoint *b, struct ui_file *fp)
12406{
761269c8 12407 print_recreate_exception (ada_catch_assert, b, fp);
6149aea9
PA
12408}
12409
2060206e 12410static struct breakpoint_ops catch_assert_breakpoint_ops;
f7f9143b 12411
f7f9143b
JB
12412/* Return a newly allocated copy of the first space-separated token
12413 in ARGSP, and then adjust ARGSP to point immediately after that
12414 token.
12415
12416 Return NULL if ARGPS does not contain any more tokens. */
12417
12418static char *
12419ada_get_next_arg (char **argsp)
12420{
12421 char *args = *argsp;
12422 char *end;
12423 char *result;
12424
0fcd72ba 12425 args = skip_spaces (args);
f7f9143b
JB
12426 if (args[0] == '\0')
12427 return NULL; /* No more arguments. */
12428
12429 /* Find the end of the current argument. */
12430
0fcd72ba 12431 end = skip_to_space (args);
f7f9143b
JB
12432
12433 /* Adjust ARGSP to point to the start of the next argument. */
12434
12435 *argsp = end;
12436
12437 /* Make a copy of the current argument and return it. */
12438
12439 result = xmalloc (end - args + 1);
12440 strncpy (result, args, end - args);
12441 result[end - args] = '\0';
12442
12443 return result;
12444}
12445
12446/* Split the arguments specified in a "catch exception" command.
12447 Set EX to the appropriate catchpoint type.
28010a5d 12448 Set EXCEP_STRING to the name of the specific exception if
5845583d
JB
12449 specified by the user.
12450 If a condition is found at the end of the arguments, the condition
12451 expression is stored in COND_STRING (memory must be deallocated
12452 after use). Otherwise COND_STRING is set to NULL. */
f7f9143b
JB
12453
12454static void
12455catch_ada_exception_command_split (char *args,
761269c8 12456 enum ada_exception_catchpoint_kind *ex,
5845583d
JB
12457 char **excep_string,
12458 char **cond_string)
f7f9143b
JB
12459{
12460 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
12461 char *exception_name;
5845583d 12462 char *cond = NULL;
f7f9143b
JB
12463
12464 exception_name = ada_get_next_arg (&args);
5845583d
JB
12465 if (exception_name != NULL && strcmp (exception_name, "if") == 0)
12466 {
12467 /* This is not an exception name; this is the start of a condition
12468 expression for a catchpoint on all exceptions. So, "un-get"
12469 this token, and set exception_name to NULL. */
12470 xfree (exception_name);
12471 exception_name = NULL;
12472 args -= 2;
12473 }
f7f9143b
JB
12474 make_cleanup (xfree, exception_name);
12475
5845583d 12476 /* Check to see if we have a condition. */
f7f9143b 12477
0fcd72ba 12478 args = skip_spaces (args);
5845583d
JB
12479 if (strncmp (args, "if", 2) == 0
12480 && (isspace (args[2]) || args[2] == '\0'))
12481 {
12482 args += 2;
12483 args = skip_spaces (args);
12484
12485 if (args[0] == '\0')
12486 error (_("Condition missing after `if' keyword"));
12487 cond = xstrdup (args);
12488 make_cleanup (xfree, cond);
12489
12490 args += strlen (args);
12491 }
12492
12493 /* Check that we do not have any more arguments. Anything else
12494 is unexpected. */
f7f9143b
JB
12495
12496 if (args[0] != '\0')
12497 error (_("Junk at end of expression"));
12498
12499 discard_cleanups (old_chain);
12500
12501 if (exception_name == NULL)
12502 {
12503 /* Catch all exceptions. */
761269c8 12504 *ex = ada_catch_exception;
28010a5d 12505 *excep_string = NULL;
f7f9143b
JB
12506 }
12507 else if (strcmp (exception_name, "unhandled") == 0)
12508 {
12509 /* Catch unhandled exceptions. */
761269c8 12510 *ex = ada_catch_exception_unhandled;
28010a5d 12511 *excep_string = NULL;
f7f9143b
JB
12512 }
12513 else
12514 {
12515 /* Catch a specific exception. */
761269c8 12516 *ex = ada_catch_exception;
28010a5d 12517 *excep_string = exception_name;
f7f9143b 12518 }
5845583d 12519 *cond_string = cond;
f7f9143b
JB
12520}
12521
12522/* Return the name of the symbol on which we should break in order to
12523 implement a catchpoint of the EX kind. */
12524
12525static const char *
761269c8 12526ada_exception_sym_name (enum ada_exception_catchpoint_kind ex)
f7f9143b 12527{
3eecfa55
JB
12528 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
12529
12530 gdb_assert (data->exception_info != NULL);
0259addd 12531
f7f9143b
JB
12532 switch (ex)
12533 {
761269c8 12534 case ada_catch_exception:
3eecfa55 12535 return (data->exception_info->catch_exception_sym);
f7f9143b 12536 break;
761269c8 12537 case ada_catch_exception_unhandled:
3eecfa55 12538 return (data->exception_info->catch_exception_unhandled_sym);
f7f9143b 12539 break;
761269c8 12540 case ada_catch_assert:
3eecfa55 12541 return (data->exception_info->catch_assert_sym);
f7f9143b
JB
12542 break;
12543 default:
12544 internal_error (__FILE__, __LINE__,
12545 _("unexpected catchpoint kind (%d)"), ex);
12546 }
12547}
12548
12549/* Return the breakpoint ops "virtual table" used for catchpoints
12550 of the EX kind. */
12551
c0a91b2b 12552static const struct breakpoint_ops *
761269c8 12553ada_exception_breakpoint_ops (enum ada_exception_catchpoint_kind ex)
f7f9143b
JB
12554{
12555 switch (ex)
12556 {
761269c8 12557 case ada_catch_exception:
f7f9143b
JB
12558 return (&catch_exception_breakpoint_ops);
12559 break;
761269c8 12560 case ada_catch_exception_unhandled:
f7f9143b
JB
12561 return (&catch_exception_unhandled_breakpoint_ops);
12562 break;
761269c8 12563 case ada_catch_assert:
f7f9143b
JB
12564 return (&catch_assert_breakpoint_ops);
12565 break;
12566 default:
12567 internal_error (__FILE__, __LINE__,
12568 _("unexpected catchpoint kind (%d)"), ex);
12569 }
12570}
12571
12572/* Return the condition that will be used to match the current exception
12573 being raised with the exception that the user wants to catch. This
12574 assumes that this condition is used when the inferior just triggered
12575 an exception catchpoint.
12576
12577 The string returned is a newly allocated string that needs to be
12578 deallocated later. */
12579
12580static char *
28010a5d 12581ada_exception_catchpoint_cond_string (const char *excep_string)
f7f9143b 12582{
3d0b0fa3
JB
12583 int i;
12584
0963b4bd 12585 /* The standard exceptions are a special case. They are defined in
3d0b0fa3 12586 runtime units that have been compiled without debugging info; if
28010a5d 12587 EXCEP_STRING is the not-fully-qualified name of a standard
3d0b0fa3
JB
12588 exception (e.g. "constraint_error") then, during the evaluation
12589 of the condition expression, the symbol lookup on this name would
0963b4bd 12590 *not* return this standard exception. The catchpoint condition
3d0b0fa3
JB
12591 may then be set only on user-defined exceptions which have the
12592 same not-fully-qualified name (e.g. my_package.constraint_error).
12593
12594 To avoid this unexcepted behavior, these standard exceptions are
0963b4bd 12595 systematically prefixed by "standard". This means that "catch
3d0b0fa3
JB
12596 exception constraint_error" is rewritten into "catch exception
12597 standard.constraint_error".
12598
12599 If an exception named contraint_error is defined in another package of
12600 the inferior program, then the only way to specify this exception as a
12601 breakpoint condition is to use its fully-qualified named:
12602 e.g. my_package.constraint_error. */
12603
12604 for (i = 0; i < sizeof (standard_exc) / sizeof (char *); i++)
12605 {
28010a5d 12606 if (strcmp (standard_exc [i], excep_string) == 0)
3d0b0fa3
JB
12607 {
12608 return xstrprintf ("long_integer (e) = long_integer (&standard.%s)",
28010a5d 12609 excep_string);
3d0b0fa3
JB
12610 }
12611 }
28010a5d 12612 return xstrprintf ("long_integer (e) = long_integer (&%s)", excep_string);
f7f9143b
JB
12613}
12614
12615/* Return the symtab_and_line that should be used to insert an exception
12616 catchpoint of the TYPE kind.
12617
28010a5d
PA
12618 EXCEP_STRING should contain the name of a specific exception that
12619 the catchpoint should catch, or NULL otherwise.
f7f9143b 12620
28010a5d
PA
12621 ADDR_STRING returns the name of the function where the real
12622 breakpoint that implements the catchpoints is set, depending on the
12623 type of catchpoint we need to create. */
f7f9143b
JB
12624
12625static struct symtab_and_line
761269c8 12626ada_exception_sal (enum ada_exception_catchpoint_kind ex, char *excep_string,
c0a91b2b 12627 char **addr_string, const struct breakpoint_ops **ops)
f7f9143b
JB
12628{
12629 const char *sym_name;
12630 struct symbol *sym;
f7f9143b 12631
0259addd
JB
12632 /* First, find out which exception support info to use. */
12633 ada_exception_support_info_sniffer ();
12634
12635 /* Then lookup the function on which we will break in order to catch
f7f9143b 12636 the Ada exceptions requested by the user. */
f7f9143b
JB
12637 sym_name = ada_exception_sym_name (ex);
12638 sym = standard_lookup (sym_name, NULL, VAR_DOMAIN);
12639
f17011e0
JB
12640 /* We can assume that SYM is not NULL at this stage. If the symbol
12641 did not exist, ada_exception_support_info_sniffer would have
12642 raised an exception.
f7f9143b 12643
f17011e0
JB
12644 Also, ada_exception_support_info_sniffer should have already
12645 verified that SYM is a function symbol. */
12646 gdb_assert (sym != NULL);
12647 gdb_assert (SYMBOL_CLASS (sym) == LOC_BLOCK);
f7f9143b
JB
12648
12649 /* Set ADDR_STRING. */
f7f9143b
JB
12650 *addr_string = xstrdup (sym_name);
12651
f7f9143b 12652 /* Set OPS. */
4b9eee8c 12653 *ops = ada_exception_breakpoint_ops (ex);
f7f9143b 12654
f17011e0 12655 return find_function_start_sal (sym, 1);
f7f9143b
JB
12656}
12657
b4a5b78b 12658/* Create an Ada exception catchpoint.
f7f9143b 12659
b4a5b78b 12660 EX_KIND is the kind of exception catchpoint to be created.
5845583d 12661
2df4d1d5
JB
12662 If EXCEPT_STRING is NULL, this catchpoint is expected to trigger
12663 for all exceptions. Otherwise, EXCEPT_STRING indicates the name
12664 of the exception to which this catchpoint applies. When not NULL,
12665 the string must be allocated on the heap, and its deallocation
12666 is no longer the responsibility of the caller.
12667
12668 COND_STRING, if not NULL, is the catchpoint condition. This string
12669 must be allocated on the heap, and its deallocation is no longer
12670 the responsibility of the caller.
f7f9143b 12671
b4a5b78b
JB
12672 TEMPFLAG, if nonzero, means that the underlying breakpoint
12673 should be temporary.
28010a5d 12674
b4a5b78b 12675 FROM_TTY is the usual argument passed to all commands implementations. */
28010a5d 12676
349774ef 12677void
28010a5d 12678create_ada_exception_catchpoint (struct gdbarch *gdbarch,
761269c8 12679 enum ada_exception_catchpoint_kind ex_kind,
28010a5d 12680 char *excep_string,
5845583d 12681 char *cond_string,
28010a5d 12682 int tempflag,
349774ef 12683 int disabled,
28010a5d
PA
12684 int from_tty)
12685{
12686 struct ada_catchpoint *c;
b4a5b78b
JB
12687 char *addr_string = NULL;
12688 const struct breakpoint_ops *ops = NULL;
12689 struct symtab_and_line sal
12690 = ada_exception_sal (ex_kind, excep_string, &addr_string, &ops);
28010a5d
PA
12691
12692 c = XNEW (struct ada_catchpoint);
12693 init_ada_exception_breakpoint (&c->base, gdbarch, sal, addr_string,
349774ef 12694 ops, tempflag, disabled, from_tty);
28010a5d
PA
12695 c->excep_string = excep_string;
12696 create_excep_cond_exprs (c);
5845583d
JB
12697 if (cond_string != NULL)
12698 set_breakpoint_condition (&c->base, cond_string, from_tty);
3ea46bff 12699 install_breakpoint (0, &c->base, 1);
f7f9143b
JB
12700}
12701
9ac4176b
PA
12702/* Implement the "catch exception" command. */
12703
12704static void
12705catch_ada_exception_command (char *arg, int from_tty,
12706 struct cmd_list_element *command)
12707{
12708 struct gdbarch *gdbarch = get_current_arch ();
12709 int tempflag;
761269c8 12710 enum ada_exception_catchpoint_kind ex_kind;
28010a5d 12711 char *excep_string = NULL;
5845583d 12712 char *cond_string = NULL;
9ac4176b
PA
12713
12714 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
12715
12716 if (!arg)
12717 arg = "";
b4a5b78b
JB
12718 catch_ada_exception_command_split (arg, &ex_kind, &excep_string,
12719 &cond_string);
12720 create_ada_exception_catchpoint (gdbarch, ex_kind,
12721 excep_string, cond_string,
349774ef
JB
12722 tempflag, 1 /* enabled */,
12723 from_tty);
9ac4176b
PA
12724}
12725
b4a5b78b 12726/* Split the arguments specified in a "catch assert" command.
5845583d 12727
b4a5b78b
JB
12728 ARGS contains the command's arguments (or the empty string if
12729 no arguments were passed).
5845583d
JB
12730
12731 If ARGS contains a condition, set COND_STRING to that condition
b4a5b78b 12732 (the memory needs to be deallocated after use). */
5845583d 12733
b4a5b78b
JB
12734static void
12735catch_ada_assert_command_split (char *args, char **cond_string)
f7f9143b 12736{
5845583d 12737 args = skip_spaces (args);
f7f9143b 12738
5845583d
JB
12739 /* Check whether a condition was provided. */
12740 if (strncmp (args, "if", 2) == 0
12741 && (isspace (args[2]) || args[2] == '\0'))
f7f9143b 12742 {
5845583d 12743 args += 2;
0fcd72ba 12744 args = skip_spaces (args);
5845583d
JB
12745 if (args[0] == '\0')
12746 error (_("condition missing after `if' keyword"));
12747 *cond_string = xstrdup (args);
f7f9143b
JB
12748 }
12749
5845583d
JB
12750 /* Otherwise, there should be no other argument at the end of
12751 the command. */
12752 else if (args[0] != '\0')
12753 error (_("Junk at end of arguments."));
f7f9143b
JB
12754}
12755
9ac4176b
PA
12756/* Implement the "catch assert" command. */
12757
12758static void
12759catch_assert_command (char *arg, int from_tty,
12760 struct cmd_list_element *command)
12761{
12762 struct gdbarch *gdbarch = get_current_arch ();
12763 int tempflag;
5845583d 12764 char *cond_string = NULL;
9ac4176b
PA
12765
12766 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
12767
12768 if (!arg)
12769 arg = "";
b4a5b78b 12770 catch_ada_assert_command_split (arg, &cond_string);
761269c8 12771 create_ada_exception_catchpoint (gdbarch, ada_catch_assert,
b4a5b78b 12772 NULL, cond_string,
349774ef
JB
12773 tempflag, 1 /* enabled */,
12774 from_tty);
9ac4176b 12775}
778865d3
JB
12776
12777/* Return non-zero if the symbol SYM is an Ada exception object. */
12778
12779static int
12780ada_is_exception_sym (struct symbol *sym)
12781{
12782 const char *type_name = type_name_no_tag (SYMBOL_TYPE (sym));
12783
12784 return (SYMBOL_CLASS (sym) != LOC_TYPEDEF
12785 && SYMBOL_CLASS (sym) != LOC_BLOCK
12786 && SYMBOL_CLASS (sym) != LOC_CONST
12787 && SYMBOL_CLASS (sym) != LOC_UNRESOLVED
12788 && type_name != NULL && strcmp (type_name, "exception") == 0);
12789}
12790
12791/* Given a global symbol SYM, return non-zero iff SYM is a non-standard
12792 Ada exception object. This matches all exceptions except the ones
12793 defined by the Ada language. */
12794
12795static int
12796ada_is_non_standard_exception_sym (struct symbol *sym)
12797{
12798 int i;
12799
12800 if (!ada_is_exception_sym (sym))
12801 return 0;
12802
12803 for (i = 0; i < ARRAY_SIZE (standard_exc); i++)
12804 if (strcmp (SYMBOL_LINKAGE_NAME (sym), standard_exc[i]) == 0)
12805 return 0; /* A standard exception. */
12806
12807 /* Numeric_Error is also a standard exception, so exclude it.
12808 See the STANDARD_EXC description for more details as to why
12809 this exception is not listed in that array. */
12810 if (strcmp (SYMBOL_LINKAGE_NAME (sym), "numeric_error") == 0)
12811 return 0;
12812
12813 return 1;
12814}
12815
12816/* A helper function for qsort, comparing two struct ada_exc_info
12817 objects.
12818
12819 The comparison is determined first by exception name, and then
12820 by exception address. */
12821
12822static int
12823compare_ada_exception_info (const void *a, const void *b)
12824{
12825 const struct ada_exc_info *exc_a = (struct ada_exc_info *) a;
12826 const struct ada_exc_info *exc_b = (struct ada_exc_info *) b;
12827 int result;
12828
12829 result = strcmp (exc_a->name, exc_b->name);
12830 if (result != 0)
12831 return result;
12832
12833 if (exc_a->addr < exc_b->addr)
12834 return -1;
12835 if (exc_a->addr > exc_b->addr)
12836 return 1;
12837
12838 return 0;
12839}
12840
12841/* Sort EXCEPTIONS using compare_ada_exception_info as the comparison
12842 routine, but keeping the first SKIP elements untouched.
12843
12844 All duplicates are also removed. */
12845
12846static void
12847sort_remove_dups_ada_exceptions_list (VEC(ada_exc_info) **exceptions,
12848 int skip)
12849{
12850 struct ada_exc_info *to_sort
12851 = VEC_address (ada_exc_info, *exceptions) + skip;
12852 int to_sort_len
12853 = VEC_length (ada_exc_info, *exceptions) - skip;
12854 int i, j;
12855
12856 qsort (to_sort, to_sort_len, sizeof (struct ada_exc_info),
12857 compare_ada_exception_info);
12858
12859 for (i = 1, j = 1; i < to_sort_len; i++)
12860 if (compare_ada_exception_info (&to_sort[i], &to_sort[j - 1]) != 0)
12861 to_sort[j++] = to_sort[i];
12862 to_sort_len = j;
12863 VEC_truncate(ada_exc_info, *exceptions, skip + to_sort_len);
12864}
12865
12866/* A function intended as the "name_matcher" callback in the struct
12867 quick_symbol_functions' expand_symtabs_matching method.
12868
12869 SEARCH_NAME is the symbol's search name.
12870
12871 If USER_DATA is not NULL, it is a pointer to a regext_t object
12872 used to match the symbol (by natural name). Otherwise, when USER_DATA
12873 is null, no filtering is performed, and all symbols are a positive
12874 match. */
12875
12876static int
12877ada_exc_search_name_matches (const char *search_name, void *user_data)
12878{
12879 regex_t *preg = user_data;
12880
12881 if (preg == NULL)
12882 return 1;
12883
12884 /* In Ada, the symbol "search name" is a linkage name, whereas
12885 the regular expression used to do the matching refers to
12886 the natural name. So match against the decoded name. */
12887 return (regexec (preg, ada_decode (search_name), 0, NULL, 0) == 0);
12888}
12889
12890/* Add all exceptions defined by the Ada standard whose name match
12891 a regular expression.
12892
12893 If PREG is not NULL, then this regexp_t object is used to
12894 perform the symbol name matching. Otherwise, no name-based
12895 filtering is performed.
12896
12897 EXCEPTIONS is a vector of exceptions to which matching exceptions
12898 gets pushed. */
12899
12900static void
12901ada_add_standard_exceptions (regex_t *preg, VEC(ada_exc_info) **exceptions)
12902{
12903 int i;
12904
12905 for (i = 0; i < ARRAY_SIZE (standard_exc); i++)
12906 {
12907 if (preg == NULL
12908 || regexec (preg, standard_exc[i], 0, NULL, 0) == 0)
12909 {
12910 struct bound_minimal_symbol msymbol
12911 = ada_lookup_simple_minsym (standard_exc[i]);
12912
12913 if (msymbol.minsym != NULL)
12914 {
12915 struct ada_exc_info info
77e371c0 12916 = {standard_exc[i], BMSYMBOL_VALUE_ADDRESS (msymbol)};
778865d3
JB
12917
12918 VEC_safe_push (ada_exc_info, *exceptions, &info);
12919 }
12920 }
12921 }
12922}
12923
12924/* Add all Ada exceptions defined locally and accessible from the given
12925 FRAME.
12926
12927 If PREG is not NULL, then this regexp_t object is used to
12928 perform the symbol name matching. Otherwise, no name-based
12929 filtering is performed.
12930
12931 EXCEPTIONS is a vector of exceptions to which matching exceptions
12932 gets pushed. */
12933
12934static void
12935ada_add_exceptions_from_frame (regex_t *preg, struct frame_info *frame,
12936 VEC(ada_exc_info) **exceptions)
12937{
3977b71f 12938 const struct block *block = get_frame_block (frame, 0);
778865d3
JB
12939
12940 while (block != 0)
12941 {
12942 struct block_iterator iter;
12943 struct symbol *sym;
12944
12945 ALL_BLOCK_SYMBOLS (block, iter, sym)
12946 {
12947 switch (SYMBOL_CLASS (sym))
12948 {
12949 case LOC_TYPEDEF:
12950 case LOC_BLOCK:
12951 case LOC_CONST:
12952 break;
12953 default:
12954 if (ada_is_exception_sym (sym))
12955 {
12956 struct ada_exc_info info = {SYMBOL_PRINT_NAME (sym),
12957 SYMBOL_VALUE_ADDRESS (sym)};
12958
12959 VEC_safe_push (ada_exc_info, *exceptions, &info);
12960 }
12961 }
12962 }
12963 if (BLOCK_FUNCTION (block) != NULL)
12964 break;
12965 block = BLOCK_SUPERBLOCK (block);
12966 }
12967}
12968
12969/* Add all exceptions defined globally whose name name match
12970 a regular expression, excluding standard exceptions.
12971
12972 The reason we exclude standard exceptions is that they need
12973 to be handled separately: Standard exceptions are defined inside
12974 a runtime unit which is normally not compiled with debugging info,
12975 and thus usually do not show up in our symbol search. However,
12976 if the unit was in fact built with debugging info, we need to
12977 exclude them because they would duplicate the entry we found
12978 during the special loop that specifically searches for those
12979 standard exceptions.
12980
12981 If PREG is not NULL, then this regexp_t object is used to
12982 perform the symbol name matching. Otherwise, no name-based
12983 filtering is performed.
12984
12985 EXCEPTIONS is a vector of exceptions to which matching exceptions
12986 gets pushed. */
12987
12988static void
12989ada_add_global_exceptions (regex_t *preg, VEC(ada_exc_info) **exceptions)
12990{
12991 struct objfile *objfile;
43f3e411 12992 struct compunit_symtab *s;
778865d3 12993
276d885b 12994 expand_symtabs_matching (NULL, ada_exc_search_name_matches, NULL,
bb4142cf 12995 VARIABLES_DOMAIN, preg);
778865d3 12996
43f3e411 12997 ALL_COMPUNITS (objfile, s)
778865d3 12998 {
43f3e411 12999 const struct blockvector *bv = COMPUNIT_BLOCKVECTOR (s);
778865d3
JB
13000 int i;
13001
13002 for (i = GLOBAL_BLOCK; i <= STATIC_BLOCK; i++)
13003 {
13004 struct block *b = BLOCKVECTOR_BLOCK (bv, i);
13005 struct block_iterator iter;
13006 struct symbol *sym;
13007
13008 ALL_BLOCK_SYMBOLS (b, iter, sym)
13009 if (ada_is_non_standard_exception_sym (sym)
13010 && (preg == NULL
13011 || regexec (preg, SYMBOL_NATURAL_NAME (sym),
13012 0, NULL, 0) == 0))
13013 {
13014 struct ada_exc_info info
13015 = {SYMBOL_PRINT_NAME (sym), SYMBOL_VALUE_ADDRESS (sym)};
13016
13017 VEC_safe_push (ada_exc_info, *exceptions, &info);
13018 }
13019 }
13020 }
13021}
13022
13023/* Implements ada_exceptions_list with the regular expression passed
13024 as a regex_t, rather than a string.
13025
13026 If not NULL, PREG is used to filter out exceptions whose names
13027 do not match. Otherwise, all exceptions are listed. */
13028
13029static VEC(ada_exc_info) *
13030ada_exceptions_list_1 (regex_t *preg)
13031{
13032 VEC(ada_exc_info) *result = NULL;
13033 struct cleanup *old_chain
13034 = make_cleanup (VEC_cleanup (ada_exc_info), &result);
13035 int prev_len;
13036
13037 /* First, list the known standard exceptions. These exceptions
13038 need to be handled separately, as they are usually defined in
13039 runtime units that have been compiled without debugging info. */
13040
13041 ada_add_standard_exceptions (preg, &result);
13042
13043 /* Next, find all exceptions whose scope is local and accessible
13044 from the currently selected frame. */
13045
13046 if (has_stack_frames ())
13047 {
13048 prev_len = VEC_length (ada_exc_info, result);
13049 ada_add_exceptions_from_frame (preg, get_selected_frame (NULL),
13050 &result);
13051 if (VEC_length (ada_exc_info, result) > prev_len)
13052 sort_remove_dups_ada_exceptions_list (&result, prev_len);
13053 }
13054
13055 /* Add all exceptions whose scope is global. */
13056
13057 prev_len = VEC_length (ada_exc_info, result);
13058 ada_add_global_exceptions (preg, &result);
13059 if (VEC_length (ada_exc_info, result) > prev_len)
13060 sort_remove_dups_ada_exceptions_list (&result, prev_len);
13061
13062 discard_cleanups (old_chain);
13063 return result;
13064}
13065
13066/* Return a vector of ada_exc_info.
13067
13068 If REGEXP is NULL, all exceptions are included in the result.
13069 Otherwise, it should contain a valid regular expression,
13070 and only the exceptions whose names match that regular expression
13071 are included in the result.
13072
13073 The exceptions are sorted in the following order:
13074 - Standard exceptions (defined by the Ada language), in
13075 alphabetical order;
13076 - Exceptions only visible from the current frame, in
13077 alphabetical order;
13078 - Exceptions whose scope is global, in alphabetical order. */
13079
13080VEC(ada_exc_info) *
13081ada_exceptions_list (const char *regexp)
13082{
13083 VEC(ada_exc_info) *result = NULL;
13084 struct cleanup *old_chain = NULL;
13085 regex_t reg;
13086
13087 if (regexp != NULL)
13088 old_chain = compile_rx_or_error (&reg, regexp,
13089 _("invalid regular expression"));
13090
13091 result = ada_exceptions_list_1 (regexp != NULL ? &reg : NULL);
13092
13093 if (old_chain != NULL)
13094 do_cleanups (old_chain);
13095 return result;
13096}
13097
13098/* Implement the "info exceptions" command. */
13099
13100static void
13101info_exceptions_command (char *regexp, int from_tty)
13102{
13103 VEC(ada_exc_info) *exceptions;
13104 struct cleanup *cleanup;
13105 struct gdbarch *gdbarch = get_current_arch ();
13106 int ix;
13107 struct ada_exc_info *info;
13108
13109 exceptions = ada_exceptions_list (regexp);
13110 cleanup = make_cleanup (VEC_cleanup (ada_exc_info), &exceptions);
13111
13112 if (regexp != NULL)
13113 printf_filtered
13114 (_("All Ada exceptions matching regular expression \"%s\":\n"), regexp);
13115 else
13116 printf_filtered (_("All defined Ada exceptions:\n"));
13117
13118 for (ix = 0; VEC_iterate(ada_exc_info, exceptions, ix, info); ix++)
13119 printf_filtered ("%s: %s\n", info->name, paddress (gdbarch, info->addr));
13120
13121 do_cleanups (cleanup);
13122}
13123
4c4b4cd2
PH
13124 /* Operators */
13125/* Information about operators given special treatment in functions
13126 below. */
13127/* Format: OP_DEFN (<operator>, <operator length>, <# args>, <binop>). */
13128
13129#define ADA_OPERATORS \
13130 OP_DEFN (OP_VAR_VALUE, 4, 0, 0) \
13131 OP_DEFN (BINOP_IN_BOUNDS, 3, 2, 0) \
13132 OP_DEFN (TERNOP_IN_RANGE, 1, 3, 0) \
13133 OP_DEFN (OP_ATR_FIRST, 1, 2, 0) \
13134 OP_DEFN (OP_ATR_LAST, 1, 2, 0) \
13135 OP_DEFN (OP_ATR_LENGTH, 1, 2, 0) \
13136 OP_DEFN (OP_ATR_IMAGE, 1, 2, 0) \
13137 OP_DEFN (OP_ATR_MAX, 1, 3, 0) \
13138 OP_DEFN (OP_ATR_MIN, 1, 3, 0) \
13139 OP_DEFN (OP_ATR_MODULUS, 1, 1, 0) \
13140 OP_DEFN (OP_ATR_POS, 1, 2, 0) \
13141 OP_DEFN (OP_ATR_SIZE, 1, 1, 0) \
13142 OP_DEFN (OP_ATR_TAG, 1, 1, 0) \
13143 OP_DEFN (OP_ATR_VAL, 1, 2, 0) \
13144 OP_DEFN (UNOP_QUAL, 3, 1, 0) \
52ce6436
PH
13145 OP_DEFN (UNOP_IN_RANGE, 3, 1, 0) \
13146 OP_DEFN (OP_OTHERS, 1, 1, 0) \
13147 OP_DEFN (OP_POSITIONAL, 3, 1, 0) \
13148 OP_DEFN (OP_DISCRETE_RANGE, 1, 2, 0)
4c4b4cd2
PH
13149
13150static void
554794dc
SDJ
13151ada_operator_length (const struct expression *exp, int pc, int *oplenp,
13152 int *argsp)
4c4b4cd2
PH
13153{
13154 switch (exp->elts[pc - 1].opcode)
13155 {
76a01679 13156 default:
4c4b4cd2
PH
13157 operator_length_standard (exp, pc, oplenp, argsp);
13158 break;
13159
13160#define OP_DEFN(op, len, args, binop) \
13161 case op: *oplenp = len; *argsp = args; break;
13162 ADA_OPERATORS;
13163#undef OP_DEFN
52ce6436
PH
13164
13165 case OP_AGGREGATE:
13166 *oplenp = 3;
13167 *argsp = longest_to_int (exp->elts[pc - 2].longconst);
13168 break;
13169
13170 case OP_CHOICES:
13171 *oplenp = 3;
13172 *argsp = longest_to_int (exp->elts[pc - 2].longconst) + 1;
13173 break;
4c4b4cd2
PH
13174 }
13175}
13176
c0201579
JK
13177/* Implementation of the exp_descriptor method operator_check. */
13178
13179static int
13180ada_operator_check (struct expression *exp, int pos,
13181 int (*objfile_func) (struct objfile *objfile, void *data),
13182 void *data)
13183{
13184 const union exp_element *const elts = exp->elts;
13185 struct type *type = NULL;
13186
13187 switch (elts[pos].opcode)
13188 {
13189 case UNOP_IN_RANGE:
13190 case UNOP_QUAL:
13191 type = elts[pos + 1].type;
13192 break;
13193
13194 default:
13195 return operator_check_standard (exp, pos, objfile_func, data);
13196 }
13197
13198 /* Invoke callbacks for TYPE and OBJFILE if they were set as non-NULL. */
13199
13200 if (type && TYPE_OBJFILE (type)
13201 && (*objfile_func) (TYPE_OBJFILE (type), data))
13202 return 1;
13203
13204 return 0;
13205}
13206
4c4b4cd2
PH
13207static char *
13208ada_op_name (enum exp_opcode opcode)
13209{
13210 switch (opcode)
13211 {
76a01679 13212 default:
4c4b4cd2 13213 return op_name_standard (opcode);
52ce6436 13214
4c4b4cd2
PH
13215#define OP_DEFN(op, len, args, binop) case op: return #op;
13216 ADA_OPERATORS;
13217#undef OP_DEFN
52ce6436
PH
13218
13219 case OP_AGGREGATE:
13220 return "OP_AGGREGATE";
13221 case OP_CHOICES:
13222 return "OP_CHOICES";
13223 case OP_NAME:
13224 return "OP_NAME";
4c4b4cd2
PH
13225 }
13226}
13227
13228/* As for operator_length, but assumes PC is pointing at the first
13229 element of the operator, and gives meaningful results only for the
52ce6436 13230 Ada-specific operators, returning 0 for *OPLENP and *ARGSP otherwise. */
4c4b4cd2
PH
13231
13232static void
76a01679
JB
13233ada_forward_operator_length (struct expression *exp, int pc,
13234 int *oplenp, int *argsp)
4c4b4cd2 13235{
76a01679 13236 switch (exp->elts[pc].opcode)
4c4b4cd2
PH
13237 {
13238 default:
13239 *oplenp = *argsp = 0;
13240 break;
52ce6436 13241
4c4b4cd2
PH
13242#define OP_DEFN(op, len, args, binop) \
13243 case op: *oplenp = len; *argsp = args; break;
13244 ADA_OPERATORS;
13245#undef OP_DEFN
52ce6436
PH
13246
13247 case OP_AGGREGATE:
13248 *oplenp = 3;
13249 *argsp = longest_to_int (exp->elts[pc + 1].longconst);
13250 break;
13251
13252 case OP_CHOICES:
13253 *oplenp = 3;
13254 *argsp = longest_to_int (exp->elts[pc + 1].longconst) + 1;
13255 break;
13256
13257 case OP_STRING:
13258 case OP_NAME:
13259 {
13260 int len = longest_to_int (exp->elts[pc + 1].longconst);
5b4ee69b 13261
52ce6436
PH
13262 *oplenp = 4 + BYTES_TO_EXP_ELEM (len + 1);
13263 *argsp = 0;
13264 break;
13265 }
4c4b4cd2
PH
13266 }
13267}
13268
13269static int
13270ada_dump_subexp_body (struct expression *exp, struct ui_file *stream, int elt)
13271{
13272 enum exp_opcode op = exp->elts[elt].opcode;
13273 int oplen, nargs;
13274 int pc = elt;
13275 int i;
76a01679 13276
4c4b4cd2
PH
13277 ada_forward_operator_length (exp, elt, &oplen, &nargs);
13278
76a01679 13279 switch (op)
4c4b4cd2 13280 {
76a01679 13281 /* Ada attributes ('Foo). */
4c4b4cd2
PH
13282 case OP_ATR_FIRST:
13283 case OP_ATR_LAST:
13284 case OP_ATR_LENGTH:
13285 case OP_ATR_IMAGE:
13286 case OP_ATR_MAX:
13287 case OP_ATR_MIN:
13288 case OP_ATR_MODULUS:
13289 case OP_ATR_POS:
13290 case OP_ATR_SIZE:
13291 case OP_ATR_TAG:
13292 case OP_ATR_VAL:
13293 break;
13294
13295 case UNOP_IN_RANGE:
13296 case UNOP_QUAL:
323e0a4a
AC
13297 /* XXX: gdb_sprint_host_address, type_sprint */
13298 fprintf_filtered (stream, _("Type @"));
4c4b4cd2
PH
13299 gdb_print_host_address (exp->elts[pc + 1].type, stream);
13300 fprintf_filtered (stream, " (");
13301 type_print (exp->elts[pc + 1].type, NULL, stream, 0);
13302 fprintf_filtered (stream, ")");
13303 break;
13304 case BINOP_IN_BOUNDS:
52ce6436
PH
13305 fprintf_filtered (stream, " (%d)",
13306 longest_to_int (exp->elts[pc + 2].longconst));
4c4b4cd2
PH
13307 break;
13308 case TERNOP_IN_RANGE:
13309 break;
13310
52ce6436
PH
13311 case OP_AGGREGATE:
13312 case OP_OTHERS:
13313 case OP_DISCRETE_RANGE:
13314 case OP_POSITIONAL:
13315 case OP_CHOICES:
13316 break;
13317
13318 case OP_NAME:
13319 case OP_STRING:
13320 {
13321 char *name = &exp->elts[elt + 2].string;
13322 int len = longest_to_int (exp->elts[elt + 1].longconst);
5b4ee69b 13323
52ce6436
PH
13324 fprintf_filtered (stream, "Text: `%.*s'", len, name);
13325 break;
13326 }
13327
4c4b4cd2
PH
13328 default:
13329 return dump_subexp_body_standard (exp, stream, elt);
13330 }
13331
13332 elt += oplen;
13333 for (i = 0; i < nargs; i += 1)
13334 elt = dump_subexp (exp, stream, elt);
13335
13336 return elt;
13337}
13338
13339/* The Ada extension of print_subexp (q.v.). */
13340
76a01679
JB
13341static void
13342ada_print_subexp (struct expression *exp, int *pos,
13343 struct ui_file *stream, enum precedence prec)
4c4b4cd2 13344{
52ce6436 13345 int oplen, nargs, i;
4c4b4cd2
PH
13346 int pc = *pos;
13347 enum exp_opcode op = exp->elts[pc].opcode;
13348
13349 ada_forward_operator_length (exp, pc, &oplen, &nargs);
13350
52ce6436 13351 *pos += oplen;
4c4b4cd2
PH
13352 switch (op)
13353 {
13354 default:
52ce6436 13355 *pos -= oplen;
4c4b4cd2
PH
13356 print_subexp_standard (exp, pos, stream, prec);
13357 return;
13358
13359 case OP_VAR_VALUE:
4c4b4cd2
PH
13360 fputs_filtered (SYMBOL_NATURAL_NAME (exp->elts[pc + 2].symbol), stream);
13361 return;
13362
13363 case BINOP_IN_BOUNDS:
323e0a4a 13364 /* XXX: sprint_subexp */
4c4b4cd2 13365 print_subexp (exp, pos, stream, PREC_SUFFIX);
0b48a291 13366 fputs_filtered (" in ", stream);
4c4b4cd2 13367 print_subexp (exp, pos, stream, PREC_SUFFIX);
0b48a291 13368 fputs_filtered ("'range", stream);
4c4b4cd2 13369 if (exp->elts[pc + 1].longconst > 1)
76a01679
JB
13370 fprintf_filtered (stream, "(%ld)",
13371 (long) exp->elts[pc + 1].longconst);
4c4b4cd2
PH
13372 return;
13373
13374 case TERNOP_IN_RANGE:
4c4b4cd2 13375 if (prec >= PREC_EQUAL)
76a01679 13376 fputs_filtered ("(", stream);
323e0a4a 13377 /* XXX: sprint_subexp */
4c4b4cd2 13378 print_subexp (exp, pos, stream, PREC_SUFFIX);
0b48a291 13379 fputs_filtered (" in ", stream);
4c4b4cd2
PH
13380 print_subexp (exp, pos, stream, PREC_EQUAL);
13381 fputs_filtered (" .. ", stream);
13382 print_subexp (exp, pos, stream, PREC_EQUAL);
13383 if (prec >= PREC_EQUAL)
76a01679
JB
13384 fputs_filtered (")", stream);
13385 return;
4c4b4cd2
PH
13386
13387 case OP_ATR_FIRST:
13388 case OP_ATR_LAST:
13389 case OP_ATR_LENGTH:
13390 case OP_ATR_IMAGE:
13391 case OP_ATR_MAX:
13392 case OP_ATR_MIN:
13393 case OP_ATR_MODULUS:
13394 case OP_ATR_POS:
13395 case OP_ATR_SIZE:
13396 case OP_ATR_TAG:
13397 case OP_ATR_VAL:
4c4b4cd2 13398 if (exp->elts[*pos].opcode == OP_TYPE)
76a01679
JB
13399 {
13400 if (TYPE_CODE (exp->elts[*pos + 1].type) != TYPE_CODE_VOID)
79d43c61
TT
13401 LA_PRINT_TYPE (exp->elts[*pos + 1].type, "", stream, 0, 0,
13402 &type_print_raw_options);
76a01679
JB
13403 *pos += 3;
13404 }
4c4b4cd2 13405 else
76a01679 13406 print_subexp (exp, pos, stream, PREC_SUFFIX);
4c4b4cd2
PH
13407 fprintf_filtered (stream, "'%s", ada_attribute_name (op));
13408 if (nargs > 1)
76a01679
JB
13409 {
13410 int tem;
5b4ee69b 13411
76a01679
JB
13412 for (tem = 1; tem < nargs; tem += 1)
13413 {
13414 fputs_filtered ((tem == 1) ? " (" : ", ", stream);
13415 print_subexp (exp, pos, stream, PREC_ABOVE_COMMA);
13416 }
13417 fputs_filtered (")", stream);
13418 }
4c4b4cd2 13419 return;
14f9c5c9 13420
4c4b4cd2 13421 case UNOP_QUAL:
4c4b4cd2
PH
13422 type_print (exp->elts[pc + 1].type, "", stream, 0);
13423 fputs_filtered ("'(", stream);
13424 print_subexp (exp, pos, stream, PREC_PREFIX);
13425 fputs_filtered (")", stream);
13426 return;
14f9c5c9 13427
4c4b4cd2 13428 case UNOP_IN_RANGE:
323e0a4a 13429 /* XXX: sprint_subexp */
4c4b4cd2 13430 print_subexp (exp, pos, stream, PREC_SUFFIX);
0b48a291 13431 fputs_filtered (" in ", stream);
79d43c61
TT
13432 LA_PRINT_TYPE (exp->elts[pc + 1].type, "", stream, 1, 0,
13433 &type_print_raw_options);
4c4b4cd2 13434 return;
52ce6436
PH
13435
13436 case OP_DISCRETE_RANGE:
13437 print_subexp (exp, pos, stream, PREC_SUFFIX);
13438 fputs_filtered ("..", stream);
13439 print_subexp (exp, pos, stream, PREC_SUFFIX);
13440 return;
13441
13442 case OP_OTHERS:
13443 fputs_filtered ("others => ", stream);
13444 print_subexp (exp, pos, stream, PREC_SUFFIX);
13445 return;
13446
13447 case OP_CHOICES:
13448 for (i = 0; i < nargs-1; i += 1)
13449 {
13450 if (i > 0)
13451 fputs_filtered ("|", stream);
13452 print_subexp (exp, pos, stream, PREC_SUFFIX);
13453 }
13454 fputs_filtered (" => ", stream);
13455 print_subexp (exp, pos, stream, PREC_SUFFIX);
13456 return;
13457
13458 case OP_POSITIONAL:
13459 print_subexp (exp, pos, stream, PREC_SUFFIX);
13460 return;
13461
13462 case OP_AGGREGATE:
13463 fputs_filtered ("(", stream);
13464 for (i = 0; i < nargs; i += 1)
13465 {
13466 if (i > 0)
13467 fputs_filtered (", ", stream);
13468 print_subexp (exp, pos, stream, PREC_SUFFIX);
13469 }
13470 fputs_filtered (")", stream);
13471 return;
4c4b4cd2
PH
13472 }
13473}
14f9c5c9
AS
13474
13475/* Table mapping opcodes into strings for printing operators
13476 and precedences of the operators. */
13477
d2e4a39e
AS
13478static const struct op_print ada_op_print_tab[] = {
13479 {":=", BINOP_ASSIGN, PREC_ASSIGN, 1},
13480 {"or else", BINOP_LOGICAL_OR, PREC_LOGICAL_OR, 0},
13481 {"and then", BINOP_LOGICAL_AND, PREC_LOGICAL_AND, 0},
13482 {"or", BINOP_BITWISE_IOR, PREC_BITWISE_IOR, 0},
13483 {"xor", BINOP_BITWISE_XOR, PREC_BITWISE_XOR, 0},
13484 {"and", BINOP_BITWISE_AND, PREC_BITWISE_AND, 0},
13485 {"=", BINOP_EQUAL, PREC_EQUAL, 0},
13486 {"/=", BINOP_NOTEQUAL, PREC_EQUAL, 0},
13487 {"<=", BINOP_LEQ, PREC_ORDER, 0},
13488 {">=", BINOP_GEQ, PREC_ORDER, 0},
13489 {">", BINOP_GTR, PREC_ORDER, 0},
13490 {"<", BINOP_LESS, PREC_ORDER, 0},
13491 {">>", BINOP_RSH, PREC_SHIFT, 0},
13492 {"<<", BINOP_LSH, PREC_SHIFT, 0},
13493 {"+", BINOP_ADD, PREC_ADD, 0},
13494 {"-", BINOP_SUB, PREC_ADD, 0},
13495 {"&", BINOP_CONCAT, PREC_ADD, 0},
13496 {"*", BINOP_MUL, PREC_MUL, 0},
13497 {"/", BINOP_DIV, PREC_MUL, 0},
13498 {"rem", BINOP_REM, PREC_MUL, 0},
13499 {"mod", BINOP_MOD, PREC_MUL, 0},
13500 {"**", BINOP_EXP, PREC_REPEAT, 0},
13501 {"@", BINOP_REPEAT, PREC_REPEAT, 0},
13502 {"-", UNOP_NEG, PREC_PREFIX, 0},
13503 {"+", UNOP_PLUS, PREC_PREFIX, 0},
13504 {"not ", UNOP_LOGICAL_NOT, PREC_PREFIX, 0},
13505 {"not ", UNOP_COMPLEMENT, PREC_PREFIX, 0},
13506 {"abs ", UNOP_ABS, PREC_PREFIX, 0},
4c4b4cd2
PH
13507 {".all", UNOP_IND, PREC_SUFFIX, 1},
13508 {"'access", UNOP_ADDR, PREC_SUFFIX, 1},
13509 {"'size", OP_ATR_SIZE, PREC_SUFFIX, 1},
d2e4a39e 13510 {NULL, 0, 0, 0}
14f9c5c9
AS
13511};
13512\f
72d5681a
PH
13513enum ada_primitive_types {
13514 ada_primitive_type_int,
13515 ada_primitive_type_long,
13516 ada_primitive_type_short,
13517 ada_primitive_type_char,
13518 ada_primitive_type_float,
13519 ada_primitive_type_double,
13520 ada_primitive_type_void,
13521 ada_primitive_type_long_long,
13522 ada_primitive_type_long_double,
13523 ada_primitive_type_natural,
13524 ada_primitive_type_positive,
13525 ada_primitive_type_system_address,
13526 nr_ada_primitive_types
13527};
6c038f32
PH
13528
13529static void
d4a9a881 13530ada_language_arch_info (struct gdbarch *gdbarch,
72d5681a
PH
13531 struct language_arch_info *lai)
13532{
d4a9a881 13533 const struct builtin_type *builtin = builtin_type (gdbarch);
5b4ee69b 13534
72d5681a 13535 lai->primitive_type_vector
d4a9a881 13536 = GDBARCH_OBSTACK_CALLOC (gdbarch, nr_ada_primitive_types + 1,
72d5681a 13537 struct type *);
e9bb382b
UW
13538
13539 lai->primitive_type_vector [ada_primitive_type_int]
13540 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
13541 0, "integer");
13542 lai->primitive_type_vector [ada_primitive_type_long]
13543 = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
13544 0, "long_integer");
13545 lai->primitive_type_vector [ada_primitive_type_short]
13546 = arch_integer_type (gdbarch, gdbarch_short_bit (gdbarch),
13547 0, "short_integer");
13548 lai->string_char_type
13549 = lai->primitive_type_vector [ada_primitive_type_char]
13550 = arch_integer_type (gdbarch, TARGET_CHAR_BIT, 0, "character");
13551 lai->primitive_type_vector [ada_primitive_type_float]
13552 = arch_float_type (gdbarch, gdbarch_float_bit (gdbarch),
13553 "float", NULL);
13554 lai->primitive_type_vector [ada_primitive_type_double]
13555 = arch_float_type (gdbarch, gdbarch_double_bit (gdbarch),
13556 "long_float", NULL);
13557 lai->primitive_type_vector [ada_primitive_type_long_long]
13558 = arch_integer_type (gdbarch, gdbarch_long_long_bit (gdbarch),
13559 0, "long_long_integer");
13560 lai->primitive_type_vector [ada_primitive_type_long_double]
13561 = arch_float_type (gdbarch, gdbarch_double_bit (gdbarch),
13562 "long_long_float", NULL);
13563 lai->primitive_type_vector [ada_primitive_type_natural]
13564 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
13565 0, "natural");
13566 lai->primitive_type_vector [ada_primitive_type_positive]
13567 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
13568 0, "positive");
13569 lai->primitive_type_vector [ada_primitive_type_void]
13570 = builtin->builtin_void;
13571
13572 lai->primitive_type_vector [ada_primitive_type_system_address]
13573 = lookup_pointer_type (arch_type (gdbarch, TYPE_CODE_VOID, 1, "void"));
72d5681a
PH
13574 TYPE_NAME (lai->primitive_type_vector [ada_primitive_type_system_address])
13575 = "system__address";
fbb06eb1 13576
47e729a8 13577 lai->bool_type_symbol = NULL;
fbb06eb1 13578 lai->bool_type_default = builtin->builtin_bool;
6c038f32 13579}
6c038f32
PH
13580\f
13581 /* Language vector */
13582
13583/* Not really used, but needed in the ada_language_defn. */
13584
13585static void
6c7a06a3 13586emit_char (int c, struct type *type, struct ui_file *stream, int quoter)
6c038f32 13587{
6c7a06a3 13588 ada_emit_char (c, type, stream, quoter, 1);
6c038f32
PH
13589}
13590
13591static int
410a0ff2 13592parse (struct parser_state *ps)
6c038f32
PH
13593{
13594 warnings_issued = 0;
410a0ff2 13595 return ada_parse (ps);
6c038f32
PH
13596}
13597
13598static const struct exp_descriptor ada_exp_descriptor = {
13599 ada_print_subexp,
13600 ada_operator_length,
c0201579 13601 ada_operator_check,
6c038f32
PH
13602 ada_op_name,
13603 ada_dump_subexp_body,
13604 ada_evaluate_subexp
13605};
13606
1a119f36 13607/* Implement the "la_get_symbol_name_cmp" language_defn method
74ccd7f5
JB
13608 for Ada. */
13609
1a119f36
JB
13610static symbol_name_cmp_ftype
13611ada_get_symbol_name_cmp (const char *lookup_name)
74ccd7f5
JB
13612{
13613 if (should_use_wild_match (lookup_name))
13614 return wild_match;
13615 else
13616 return compare_names;
13617}
13618
a5ee536b
JB
13619/* Implement the "la_read_var_value" language_defn method for Ada. */
13620
13621static struct value *
13622ada_read_var_value (struct symbol *var, struct frame_info *frame)
13623{
3977b71f 13624 const struct block *frame_block = NULL;
a5ee536b
JB
13625 struct symbol *renaming_sym = NULL;
13626
13627 /* The only case where default_read_var_value is not sufficient
13628 is when VAR is a renaming... */
13629 if (frame)
13630 frame_block = get_frame_block (frame, NULL);
13631 if (frame_block)
13632 renaming_sym = ada_find_renaming_symbol (var, frame_block);
13633 if (renaming_sym != NULL)
13634 return ada_read_renaming_var_value (renaming_sym, frame_block);
13635
13636 /* This is a typical case where we expect the default_read_var_value
13637 function to work. */
13638 return default_read_var_value (var, frame);
13639}
13640
6c038f32
PH
13641const struct language_defn ada_language_defn = {
13642 "ada", /* Language name */
6abde28f 13643 "Ada",
6c038f32 13644 language_ada,
6c038f32 13645 range_check_off,
6c038f32
PH
13646 case_sensitive_on, /* Yes, Ada is case-insensitive, but
13647 that's not quite what this means. */
6c038f32 13648 array_row_major,
9a044a89 13649 macro_expansion_no,
6c038f32
PH
13650 &ada_exp_descriptor,
13651 parse,
13652 ada_error,
13653 resolve,
13654 ada_printchar, /* Print a character constant */
13655 ada_printstr, /* Function to print string constant */
13656 emit_char, /* Function to print single char (not used) */
6c038f32 13657 ada_print_type, /* Print a type using appropriate syntax */
be942545 13658 ada_print_typedef, /* Print a typedef using appropriate syntax */
6c038f32
PH
13659 ada_val_print, /* Print a value using appropriate syntax */
13660 ada_value_print, /* Print a top-level value */
a5ee536b 13661 ada_read_var_value, /* la_read_var_value */
6c038f32 13662 NULL, /* Language specific skip_trampoline */
2b2d9e11 13663 NULL, /* name_of_this */
6c038f32
PH
13664 ada_lookup_symbol_nonlocal, /* Looking up non-local symbols. */
13665 basic_lookup_transparent_type, /* lookup_transparent_type */
13666 ada_la_decode, /* Language specific symbol demangler */
0963b4bd
MS
13667 NULL, /* Language specific
13668 class_name_from_physname */
6c038f32
PH
13669 ada_op_print_tab, /* expression operators for printing */
13670 0, /* c-style arrays */
13671 1, /* String lower bound */
6c038f32 13672 ada_get_gdb_completer_word_break_characters,
41d27058 13673 ada_make_symbol_completion_list,
72d5681a 13674 ada_language_arch_info,
e79af960 13675 ada_print_array_index,
41f1b697 13676 default_pass_by_reference,
ae6a3a4c 13677 c_get_string,
1a119f36 13678 ada_get_symbol_name_cmp, /* la_get_symbol_name_cmp */
f8eba3c6 13679 ada_iterate_over_symbols,
a53b64ea 13680 &ada_varobj_ops,
bb2ec1b3
TT
13681 NULL,
13682 NULL,
6c038f32
PH
13683 LANG_MAGIC
13684};
13685
2c0b251b
PA
13686/* Provide a prototype to silence -Wmissing-prototypes. */
13687extern initialize_file_ftype _initialize_ada_language;
13688
5bf03f13
JB
13689/* Command-list for the "set/show ada" prefix command. */
13690static struct cmd_list_element *set_ada_list;
13691static struct cmd_list_element *show_ada_list;
13692
13693/* Implement the "set ada" prefix command. */
13694
13695static void
13696set_ada_command (char *arg, int from_tty)
13697{
13698 printf_unfiltered (_(\
13699"\"set ada\" must be followed by the name of a setting.\n"));
635c7e8a 13700 help_list (set_ada_list, "set ada ", all_commands, gdb_stdout);
5bf03f13
JB
13701}
13702
13703/* Implement the "show ada" prefix command. */
13704
13705static void
13706show_ada_command (char *args, int from_tty)
13707{
13708 cmd_show_list (show_ada_list, from_tty, "");
13709}
13710
2060206e
PA
13711static void
13712initialize_ada_catchpoint_ops (void)
13713{
13714 struct breakpoint_ops *ops;
13715
13716 initialize_breakpoint_ops ();
13717
13718 ops = &catch_exception_breakpoint_ops;
13719 *ops = bkpt_breakpoint_ops;
13720 ops->dtor = dtor_catch_exception;
13721 ops->allocate_location = allocate_location_catch_exception;
13722 ops->re_set = re_set_catch_exception;
13723 ops->check_status = check_status_catch_exception;
13724 ops->print_it = print_it_catch_exception;
13725 ops->print_one = print_one_catch_exception;
13726 ops->print_mention = print_mention_catch_exception;
13727 ops->print_recreate = print_recreate_catch_exception;
13728
13729 ops = &catch_exception_unhandled_breakpoint_ops;
13730 *ops = bkpt_breakpoint_ops;
13731 ops->dtor = dtor_catch_exception_unhandled;
13732 ops->allocate_location = allocate_location_catch_exception_unhandled;
13733 ops->re_set = re_set_catch_exception_unhandled;
13734 ops->check_status = check_status_catch_exception_unhandled;
13735 ops->print_it = print_it_catch_exception_unhandled;
13736 ops->print_one = print_one_catch_exception_unhandled;
13737 ops->print_mention = print_mention_catch_exception_unhandled;
13738 ops->print_recreate = print_recreate_catch_exception_unhandled;
13739
13740 ops = &catch_assert_breakpoint_ops;
13741 *ops = bkpt_breakpoint_ops;
13742 ops->dtor = dtor_catch_assert;
13743 ops->allocate_location = allocate_location_catch_assert;
13744 ops->re_set = re_set_catch_assert;
13745 ops->check_status = check_status_catch_assert;
13746 ops->print_it = print_it_catch_assert;
13747 ops->print_one = print_one_catch_assert;
13748 ops->print_mention = print_mention_catch_assert;
13749 ops->print_recreate = print_recreate_catch_assert;
13750}
13751
3d9434b5
JB
13752/* This module's 'new_objfile' observer. */
13753
13754static void
13755ada_new_objfile_observer (struct objfile *objfile)
13756{
13757 ada_clear_symbol_cache ();
13758}
13759
13760/* This module's 'free_objfile' observer. */
13761
13762static void
13763ada_free_objfile_observer (struct objfile *objfile)
13764{
13765 ada_clear_symbol_cache ();
13766}
13767
d2e4a39e 13768void
6c038f32 13769_initialize_ada_language (void)
14f9c5c9 13770{
6c038f32
PH
13771 add_language (&ada_language_defn);
13772
2060206e
PA
13773 initialize_ada_catchpoint_ops ();
13774
5bf03f13
JB
13775 add_prefix_cmd ("ada", no_class, set_ada_command,
13776 _("Prefix command for changing Ada-specfic settings"),
13777 &set_ada_list, "set ada ", 0, &setlist);
13778
13779 add_prefix_cmd ("ada", no_class, show_ada_command,
13780 _("Generic command for showing Ada-specific settings."),
13781 &show_ada_list, "show ada ", 0, &showlist);
13782
13783 add_setshow_boolean_cmd ("trust-PAD-over-XVS", class_obscure,
13784 &trust_pad_over_xvs, _("\
13785Enable or disable an optimization trusting PAD types over XVS types"), _("\
13786Show whether an optimization trusting PAD types over XVS types is activated"),
13787 _("\
13788This is related to the encoding used by the GNAT compiler. The debugger\n\
13789should normally trust the contents of PAD types, but certain older versions\n\
13790of GNAT have a bug that sometimes causes the information in the PAD type\n\
13791to be incorrect. Turning this setting \"off\" allows the debugger to\n\
13792work around this bug. It is always safe to turn this option \"off\", but\n\
13793this incurs a slight performance penalty, so it is recommended to NOT change\n\
13794this option to \"off\" unless necessary."),
13795 NULL, NULL, &set_ada_list, &show_ada_list);
13796
9ac4176b
PA
13797 add_catch_command ("exception", _("\
13798Catch Ada exceptions, when raised.\n\
13799With an argument, catch only exceptions with the given name."),
13800 catch_ada_exception_command,
13801 NULL,
13802 CATCH_PERMANENT,
13803 CATCH_TEMPORARY);
13804 add_catch_command ("assert", _("\
13805Catch failed Ada assertions, when raised.\n\
13806With an argument, catch only exceptions with the given name."),
13807 catch_assert_command,
13808 NULL,
13809 CATCH_PERMANENT,
13810 CATCH_TEMPORARY);
13811
6c038f32 13812 varsize_limit = 65536;
6c038f32 13813
778865d3
JB
13814 add_info ("exceptions", info_exceptions_command,
13815 _("\
13816List all Ada exception names.\n\
13817If a regular expression is passed as an argument, only those matching\n\
13818the regular expression are listed."));
13819
c6044dd1
JB
13820 add_prefix_cmd ("ada", class_maintenance, maint_set_ada_cmd,
13821 _("Set Ada maintenance-related variables."),
13822 &maint_set_ada_cmdlist, "maintenance set ada ",
13823 0/*allow-unknown*/, &maintenance_set_cmdlist);
13824
13825 add_prefix_cmd ("ada", class_maintenance, maint_show_ada_cmd,
13826 _("Show Ada maintenance-related variables"),
13827 &maint_show_ada_cmdlist, "maintenance show ada ",
13828 0/*allow-unknown*/, &maintenance_show_cmdlist);
13829
13830 add_setshow_boolean_cmd
13831 ("ignore-descriptive-types", class_maintenance,
13832 &ada_ignore_descriptive_types_p,
13833 _("Set whether descriptive types generated by GNAT should be ignored."),
13834 _("Show whether descriptive types generated by GNAT should be ignored."),
13835 _("\
13836When enabled, the debugger will stop using the DW_AT_GNAT_descriptive_type\n\
13837DWARF attribute."),
13838 NULL, NULL, &maint_set_ada_cmdlist, &maint_show_ada_cmdlist);
13839
6c038f32
PH
13840 obstack_init (&symbol_list_obstack);
13841
13842 decoded_names_store = htab_create_alloc
13843 (256, htab_hash_string, (int (*)(const void *, const void *)) streq,
13844 NULL, xcalloc, xfree);
6b69afc4 13845
3d9434b5
JB
13846 /* The ada-lang observers. */
13847 observer_attach_new_objfile (ada_new_objfile_observer);
13848 observer_attach_free_objfile (ada_free_objfile_observer);
e802dbe0 13849 observer_attach_inferior_exit (ada_inferior_exit);
ee01b665
JB
13850
13851 /* Setup various context-specific data. */
e802dbe0 13852 ada_inferior_data
8e260fc0 13853 = register_inferior_data_with_cleanup (NULL, ada_inferior_data_cleanup);
ee01b665
JB
13854 ada_pspace_data_handle
13855 = register_program_space_data_with_cleanup (NULL, ada_pspace_data_cleanup);
14f9c5c9 13856}