]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blame - gdb/ada-lang.c
Use ui_file_as_string in gdbarch.sh/gdbarch.c
[thirdparty/binutils-gdb.git] / gdb / ada-lang.c
CommitLineData
6e681866 1/* Ada language support routines for GDB, the GNU debugger.
10a2c479 2
618f726f 3 Copyright (C) 1992-2016 Free Software Foundation, Inc.
14f9c5c9 4
a9762ec7 5 This file is part of GDB.
14f9c5c9 6
a9762ec7
JB
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
14f9c5c9 11
a9762ec7
JB
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
14f9c5c9 16
a9762ec7
JB
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
14f9c5c9 19
96d887e8 20
4c4b4cd2 21#include "defs.h"
14f9c5c9 22#include <ctype.h>
14f9c5c9 23#include "demangle.h"
4c4b4cd2
PH
24#include "gdb_regex.h"
25#include "frame.h"
14f9c5c9
AS
26#include "symtab.h"
27#include "gdbtypes.h"
28#include "gdbcmd.h"
29#include "expression.h"
30#include "parser-defs.h"
31#include "language.h"
a53b64ea 32#include "varobj.h"
14f9c5c9
AS
33#include "c-lang.h"
34#include "inferior.h"
35#include "symfile.h"
36#include "objfiles.h"
37#include "breakpoint.h"
38#include "gdbcore.h"
4c4b4cd2
PH
39#include "hashtab.h"
40#include "gdb_obstack.h"
14f9c5c9 41#include "ada-lang.h"
4c4b4cd2 42#include "completer.h"
53ce3c39 43#include <sys/stat.h>
14f9c5c9 44#include "ui-out.h"
fe898f56 45#include "block.h"
04714b91 46#include "infcall.h"
de4f826b 47#include "dictionary.h"
f7f9143b
JB
48#include "annotate.h"
49#include "valprint.h"
9bbc9174 50#include "source.h"
0259addd 51#include "observer.h"
2ba95b9b 52#include "vec.h"
692465f1 53#include "stack.h"
fa864999 54#include "gdb_vecs.h"
79d43c61 55#include "typeprint.h"
22cee43f 56#include "namespace.h"
14f9c5c9 57
ccefe4c4 58#include "psymtab.h"
40bc484c 59#include "value.h"
956a9fb9 60#include "mi/mi-common.h"
9ac4176b 61#include "arch-utils.h"
0fcd72ba 62#include "cli/cli-utils.h"
ccefe4c4 63
4c4b4cd2 64/* Define whether or not the C operator '/' truncates towards zero for
0963b4bd 65 differently signed operands (truncation direction is undefined in C).
4c4b4cd2
PH
66 Copied from valarith.c. */
67
68#ifndef TRUNCATION_TOWARDS_ZERO
69#define TRUNCATION_TOWARDS_ZERO ((-5 / 2) == -2)
70#endif
71
d2e4a39e 72static struct type *desc_base_type (struct type *);
14f9c5c9 73
d2e4a39e 74static struct type *desc_bounds_type (struct type *);
14f9c5c9 75
d2e4a39e 76static struct value *desc_bounds (struct value *);
14f9c5c9 77
d2e4a39e 78static int fat_pntr_bounds_bitpos (struct type *);
14f9c5c9 79
d2e4a39e 80static int fat_pntr_bounds_bitsize (struct type *);
14f9c5c9 81
556bdfd4 82static struct type *desc_data_target_type (struct type *);
14f9c5c9 83
d2e4a39e 84static struct value *desc_data (struct value *);
14f9c5c9 85
d2e4a39e 86static int fat_pntr_data_bitpos (struct type *);
14f9c5c9 87
d2e4a39e 88static int fat_pntr_data_bitsize (struct type *);
14f9c5c9 89
d2e4a39e 90static struct value *desc_one_bound (struct value *, int, int);
14f9c5c9 91
d2e4a39e 92static int desc_bound_bitpos (struct type *, int, int);
14f9c5c9 93
d2e4a39e 94static int desc_bound_bitsize (struct type *, int, int);
14f9c5c9 95
d2e4a39e 96static struct type *desc_index_type (struct type *, int);
14f9c5c9 97
d2e4a39e 98static int desc_arity (struct type *);
14f9c5c9 99
d2e4a39e 100static int ada_type_match (struct type *, struct type *, int);
14f9c5c9 101
d2e4a39e 102static int ada_args_match (struct symbol *, struct value **, int);
14f9c5c9 103
40658b94
PH
104static int full_match (const char *, const char *);
105
40bc484c 106static struct value *make_array_descriptor (struct type *, struct value *);
14f9c5c9 107
4c4b4cd2 108static void ada_add_block_symbols (struct obstack *,
f0c5f9b2 109 const struct block *, const char *,
2570f2b7 110 domain_enum, struct objfile *, int);
14f9c5c9 111
22cee43f
PMR
112static void ada_add_all_symbols (struct obstack *, const struct block *,
113 const char *, domain_enum, int, int *);
114
d12307c1 115static int is_nonfunction (struct block_symbol *, int);
14f9c5c9 116
76a01679 117static void add_defn_to_vec (struct obstack *, struct symbol *,
f0c5f9b2 118 const struct block *);
14f9c5c9 119
4c4b4cd2
PH
120static int num_defns_collected (struct obstack *);
121
d12307c1 122static struct block_symbol *defns_collected (struct obstack *, int);
14f9c5c9 123
4c4b4cd2 124static struct value *resolve_subexp (struct expression **, int *, int,
76a01679 125 struct type *);
14f9c5c9 126
d2e4a39e 127static void replace_operator_with_call (struct expression **, int, int, int,
270140bd 128 struct symbol *, const struct block *);
14f9c5c9 129
d2e4a39e 130static int possible_user_operator_p (enum exp_opcode, struct value **);
14f9c5c9 131
4c4b4cd2
PH
132static char *ada_op_name (enum exp_opcode);
133
134static const char *ada_decoded_op_name (enum exp_opcode);
14f9c5c9 135
d2e4a39e 136static int numeric_type_p (struct type *);
14f9c5c9 137
d2e4a39e 138static int integer_type_p (struct type *);
14f9c5c9 139
d2e4a39e 140static int scalar_type_p (struct type *);
14f9c5c9 141
d2e4a39e 142static int discrete_type_p (struct type *);
14f9c5c9 143
aeb5907d
JB
144static enum ada_renaming_category parse_old_style_renaming (struct type *,
145 const char **,
146 int *,
147 const char **);
148
149static struct symbol *find_old_style_renaming_symbol (const char *,
270140bd 150 const struct block *);
aeb5907d 151
4c4b4cd2 152static struct type *ada_lookup_struct_elt_type (struct type *, char *,
76a01679 153 int, int, int *);
4c4b4cd2 154
d2e4a39e 155static struct value *evaluate_subexp_type (struct expression *, int *);
14f9c5c9 156
b4ba55a1
JB
157static struct type *ada_find_parallel_type_with_name (struct type *,
158 const char *);
159
d2e4a39e 160static int is_dynamic_field (struct type *, int);
14f9c5c9 161
10a2c479 162static struct type *to_fixed_variant_branch_type (struct type *,
fc1a4b47 163 const gdb_byte *,
4c4b4cd2
PH
164 CORE_ADDR, struct value *);
165
166static struct type *to_fixed_array_type (struct type *, struct value *, int);
14f9c5c9 167
28c85d6c 168static struct type *to_fixed_range_type (struct type *, struct value *);
14f9c5c9 169
d2e4a39e 170static struct type *to_static_fixed_type (struct type *);
f192137b 171static struct type *static_unwrap_type (struct type *type);
14f9c5c9 172
d2e4a39e 173static struct value *unwrap_value (struct value *);
14f9c5c9 174
ad82864c 175static struct type *constrained_packed_array_type (struct type *, long *);
14f9c5c9 176
ad82864c 177static struct type *decode_constrained_packed_array_type (struct type *);
14f9c5c9 178
ad82864c
JB
179static long decode_packed_array_bitsize (struct type *);
180
181static struct value *decode_constrained_packed_array (struct value *);
182
183static int ada_is_packed_array_type (struct type *);
184
185static int ada_is_unconstrained_packed_array_type (struct type *);
14f9c5c9 186
d2e4a39e 187static struct value *value_subscript_packed (struct value *, int,
4c4b4cd2 188 struct value **);
14f9c5c9 189
50810684 190static void move_bits (gdb_byte *, int, const gdb_byte *, int, int, int);
52ce6436 191
4c4b4cd2
PH
192static struct value *coerce_unspec_val_to_type (struct value *,
193 struct type *);
14f9c5c9 194
d2e4a39e 195static struct value *get_var_value (char *, char *);
14f9c5c9 196
d2e4a39e 197static int lesseq_defined_than (struct symbol *, struct symbol *);
14f9c5c9 198
d2e4a39e 199static int equiv_types (struct type *, struct type *);
14f9c5c9 200
d2e4a39e 201static int is_name_suffix (const char *);
14f9c5c9 202
73589123
PH
203static int advance_wild_match (const char **, const char *, int);
204
205static int wild_match (const char *, const char *);
14f9c5c9 206
d2e4a39e 207static struct value *ada_coerce_ref (struct value *);
14f9c5c9 208
4c4b4cd2
PH
209static LONGEST pos_atr (struct value *);
210
3cb382c9 211static struct value *value_pos_atr (struct type *, struct value *);
14f9c5c9 212
d2e4a39e 213static struct value *value_val_atr (struct type *, struct value *);
14f9c5c9 214
4c4b4cd2
PH
215static struct symbol *standard_lookup (const char *, const struct block *,
216 domain_enum);
14f9c5c9 217
108d56a4 218static struct value *ada_search_struct_field (const char *, struct value *, int,
4c4b4cd2
PH
219 struct type *);
220
221static struct value *ada_value_primitive_field (struct value *, int, int,
222 struct type *);
223
0d5cff50 224static int find_struct_field (const char *, struct type *, int,
52ce6436 225 struct type **, int *, int *, int *, int *);
4c4b4cd2
PH
226
227static struct value *ada_to_fixed_value_create (struct type *, CORE_ADDR,
228 struct value *);
229
d12307c1 230static int ada_resolve_function (struct block_symbol *, int,
4c4b4cd2
PH
231 struct value **, int, const char *,
232 struct type *);
233
4c4b4cd2
PH
234static int ada_is_direct_array_type (struct type *);
235
72d5681a
PH
236static void ada_language_arch_info (struct gdbarch *,
237 struct language_arch_info *);
714e53ab 238
52ce6436
PH
239static struct value *ada_index_struct_field (int, struct value *, int,
240 struct type *);
241
242static struct value *assign_aggregate (struct value *, struct value *,
0963b4bd
MS
243 struct expression *,
244 int *, enum noside);
52ce6436
PH
245
246static void aggregate_assign_from_choices (struct value *, struct value *,
247 struct expression *,
248 int *, LONGEST *, int *,
249 int, LONGEST, LONGEST);
250
251static void aggregate_assign_positional (struct value *, struct value *,
252 struct expression *,
253 int *, LONGEST *, int *, int,
254 LONGEST, LONGEST);
255
256
257static void aggregate_assign_others (struct value *, struct value *,
258 struct expression *,
259 int *, LONGEST *, int, LONGEST, LONGEST);
260
261
262static void add_component_interval (LONGEST, LONGEST, LONGEST *, int *, int);
263
264
265static struct value *ada_evaluate_subexp (struct type *, struct expression *,
266 int *, enum noside);
267
268static void ada_forward_operator_length (struct expression *, int, int *,
269 int *);
852dff6c
JB
270
271static struct type *ada_find_any_type (const char *name);
4c4b4cd2
PH
272\f
273
ee01b665
JB
274/* The result of a symbol lookup to be stored in our symbol cache. */
275
276struct cache_entry
277{
278 /* The name used to perform the lookup. */
279 const char *name;
280 /* The namespace used during the lookup. */
fe978cb0 281 domain_enum domain;
ee01b665
JB
282 /* The symbol returned by the lookup, or NULL if no matching symbol
283 was found. */
284 struct symbol *sym;
285 /* The block where the symbol was found, or NULL if no matching
286 symbol was found. */
287 const struct block *block;
288 /* A pointer to the next entry with the same hash. */
289 struct cache_entry *next;
290};
291
292/* The Ada symbol cache, used to store the result of Ada-mode symbol
293 lookups in the course of executing the user's commands.
294
295 The cache is implemented using a simple, fixed-sized hash.
296 The size is fixed on the grounds that there are not likely to be
297 all that many symbols looked up during any given session, regardless
298 of the size of the symbol table. If we decide to go to a resizable
299 table, let's just use the stuff from libiberty instead. */
300
301#define HASH_SIZE 1009
302
303struct ada_symbol_cache
304{
305 /* An obstack used to store the entries in our cache. */
306 struct obstack cache_space;
307
308 /* The root of the hash table used to implement our symbol cache. */
309 struct cache_entry *root[HASH_SIZE];
310};
311
312static void ada_free_symbol_cache (struct ada_symbol_cache *sym_cache);
76a01679 313
4c4b4cd2 314/* Maximum-sized dynamic type. */
14f9c5c9
AS
315static unsigned int varsize_limit;
316
4c4b4cd2
PH
317/* FIXME: brobecker/2003-09-17: No longer a const because it is
318 returned by a function that does not return a const char *. */
319static char *ada_completer_word_break_characters =
320#ifdef VMS
321 " \t\n!@#%^&*()+=|~`}{[]\";:?/,-";
322#else
14f9c5c9 323 " \t\n!@#$%^&*()+=|~`}{[]\";:?/,-";
4c4b4cd2 324#endif
14f9c5c9 325
4c4b4cd2 326/* The name of the symbol to use to get the name of the main subprogram. */
76a01679 327static const char ADA_MAIN_PROGRAM_SYMBOL_NAME[]
4c4b4cd2 328 = "__gnat_ada_main_program_name";
14f9c5c9 329
4c4b4cd2
PH
330/* Limit on the number of warnings to raise per expression evaluation. */
331static int warning_limit = 2;
332
333/* Number of warning messages issued; reset to 0 by cleanups after
334 expression evaluation. */
335static int warnings_issued = 0;
336
337static const char *known_runtime_file_name_patterns[] = {
338 ADA_KNOWN_RUNTIME_FILE_NAME_PATTERNS NULL
339};
340
341static const char *known_auxiliary_function_name_patterns[] = {
342 ADA_KNOWN_AUXILIARY_FUNCTION_NAME_PATTERNS NULL
343};
344
345/* Space for allocating results of ada_lookup_symbol_list. */
346static struct obstack symbol_list_obstack;
347
c6044dd1
JB
348/* Maintenance-related settings for this module. */
349
350static struct cmd_list_element *maint_set_ada_cmdlist;
351static struct cmd_list_element *maint_show_ada_cmdlist;
352
353/* Implement the "maintenance set ada" (prefix) command. */
354
355static void
356maint_set_ada_cmd (char *args, int from_tty)
357{
635c7e8a
TT
358 help_list (maint_set_ada_cmdlist, "maintenance set ada ", all_commands,
359 gdb_stdout);
c6044dd1
JB
360}
361
362/* Implement the "maintenance show ada" (prefix) command. */
363
364static void
365maint_show_ada_cmd (char *args, int from_tty)
366{
367 cmd_show_list (maint_show_ada_cmdlist, from_tty, "");
368}
369
370/* The "maintenance ada set/show ignore-descriptive-type" value. */
371
372static int ada_ignore_descriptive_types_p = 0;
373
e802dbe0
JB
374 /* Inferior-specific data. */
375
376/* Per-inferior data for this module. */
377
378struct ada_inferior_data
379{
380 /* The ada__tags__type_specific_data type, which is used when decoding
381 tagged types. With older versions of GNAT, this type was directly
382 accessible through a component ("tsd") in the object tag. But this
383 is no longer the case, so we cache it for each inferior. */
384 struct type *tsd_type;
3eecfa55
JB
385
386 /* The exception_support_info data. This data is used to determine
387 how to implement support for Ada exception catchpoints in a given
388 inferior. */
389 const struct exception_support_info *exception_info;
e802dbe0
JB
390};
391
392/* Our key to this module's inferior data. */
393static const struct inferior_data *ada_inferior_data;
394
395/* A cleanup routine for our inferior data. */
396static void
397ada_inferior_data_cleanup (struct inferior *inf, void *arg)
398{
399 struct ada_inferior_data *data;
400
9a3c8263 401 data = (struct ada_inferior_data *) inferior_data (inf, ada_inferior_data);
e802dbe0
JB
402 if (data != NULL)
403 xfree (data);
404}
405
406/* Return our inferior data for the given inferior (INF).
407
408 This function always returns a valid pointer to an allocated
409 ada_inferior_data structure. If INF's inferior data has not
410 been previously set, this functions creates a new one with all
411 fields set to zero, sets INF's inferior to it, and then returns
412 a pointer to that newly allocated ada_inferior_data. */
413
414static struct ada_inferior_data *
415get_ada_inferior_data (struct inferior *inf)
416{
417 struct ada_inferior_data *data;
418
9a3c8263 419 data = (struct ada_inferior_data *) inferior_data (inf, ada_inferior_data);
e802dbe0
JB
420 if (data == NULL)
421 {
41bf6aca 422 data = XCNEW (struct ada_inferior_data);
e802dbe0
JB
423 set_inferior_data (inf, ada_inferior_data, data);
424 }
425
426 return data;
427}
428
429/* Perform all necessary cleanups regarding our module's inferior data
430 that is required after the inferior INF just exited. */
431
432static void
433ada_inferior_exit (struct inferior *inf)
434{
435 ada_inferior_data_cleanup (inf, NULL);
436 set_inferior_data (inf, ada_inferior_data, NULL);
437}
438
ee01b665
JB
439
440 /* program-space-specific data. */
441
442/* This module's per-program-space data. */
443struct ada_pspace_data
444{
445 /* The Ada symbol cache. */
446 struct ada_symbol_cache *sym_cache;
447};
448
449/* Key to our per-program-space data. */
450static const struct program_space_data *ada_pspace_data_handle;
451
452/* Return this module's data for the given program space (PSPACE).
453 If not is found, add a zero'ed one now.
454
455 This function always returns a valid object. */
456
457static struct ada_pspace_data *
458get_ada_pspace_data (struct program_space *pspace)
459{
460 struct ada_pspace_data *data;
461
9a3c8263
SM
462 data = ((struct ada_pspace_data *)
463 program_space_data (pspace, ada_pspace_data_handle));
ee01b665
JB
464 if (data == NULL)
465 {
466 data = XCNEW (struct ada_pspace_data);
467 set_program_space_data (pspace, ada_pspace_data_handle, data);
468 }
469
470 return data;
471}
472
473/* The cleanup callback for this module's per-program-space data. */
474
475static void
476ada_pspace_data_cleanup (struct program_space *pspace, void *data)
477{
9a3c8263 478 struct ada_pspace_data *pspace_data = (struct ada_pspace_data *) data;
ee01b665
JB
479
480 if (pspace_data->sym_cache != NULL)
481 ada_free_symbol_cache (pspace_data->sym_cache);
482 xfree (pspace_data);
483}
484
4c4b4cd2
PH
485 /* Utilities */
486
720d1a40 487/* If TYPE is a TYPE_CODE_TYPEDEF type, return the target type after
eed9788b 488 all typedef layers have been peeled. Otherwise, return TYPE.
720d1a40
JB
489
490 Normally, we really expect a typedef type to only have 1 typedef layer.
491 In other words, we really expect the target type of a typedef type to be
492 a non-typedef type. This is particularly true for Ada units, because
493 the language does not have a typedef vs not-typedef distinction.
494 In that respect, the Ada compiler has been trying to eliminate as many
495 typedef definitions in the debugging information, since they generally
496 do not bring any extra information (we still use typedef under certain
497 circumstances related mostly to the GNAT encoding).
498
499 Unfortunately, we have seen situations where the debugging information
500 generated by the compiler leads to such multiple typedef layers. For
501 instance, consider the following example with stabs:
502
503 .stabs "pck__float_array___XUP:Tt(0,46)=s16P_ARRAY:(0,47)=[...]"[...]
504 .stabs "pck__float_array___XUP:t(0,36)=(0,46)",128,0,6,0
505
506 This is an error in the debugging information which causes type
507 pck__float_array___XUP to be defined twice, and the second time,
508 it is defined as a typedef of a typedef.
509
510 This is on the fringe of legality as far as debugging information is
511 concerned, and certainly unexpected. But it is easy to handle these
512 situations correctly, so we can afford to be lenient in this case. */
513
514static struct type *
515ada_typedef_target_type (struct type *type)
516{
517 while (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
518 type = TYPE_TARGET_TYPE (type);
519 return type;
520}
521
41d27058
JB
522/* Given DECODED_NAME a string holding a symbol name in its
523 decoded form (ie using the Ada dotted notation), returns
524 its unqualified name. */
525
526static const char *
527ada_unqualified_name (const char *decoded_name)
528{
2b0f535a
JB
529 const char *result;
530
531 /* If the decoded name starts with '<', it means that the encoded
532 name does not follow standard naming conventions, and thus that
533 it is not your typical Ada symbol name. Trying to unqualify it
534 is therefore pointless and possibly erroneous. */
535 if (decoded_name[0] == '<')
536 return decoded_name;
537
538 result = strrchr (decoded_name, '.');
41d27058
JB
539 if (result != NULL)
540 result++; /* Skip the dot... */
541 else
542 result = decoded_name;
543
544 return result;
545}
546
547/* Return a string starting with '<', followed by STR, and '>'.
548 The result is good until the next call. */
549
550static char *
551add_angle_brackets (const char *str)
552{
553 static char *result = NULL;
554
555 xfree (result);
88c15c34 556 result = xstrprintf ("<%s>", str);
41d27058
JB
557 return result;
558}
96d887e8 559
4c4b4cd2
PH
560static char *
561ada_get_gdb_completer_word_break_characters (void)
562{
563 return ada_completer_word_break_characters;
564}
565
e79af960
JB
566/* Print an array element index using the Ada syntax. */
567
568static void
569ada_print_array_index (struct value *index_value, struct ui_file *stream,
79a45b7d 570 const struct value_print_options *options)
e79af960 571{
79a45b7d 572 LA_VALUE_PRINT (index_value, stream, options);
e79af960
JB
573 fprintf_filtered (stream, " => ");
574}
575
f27cf670 576/* Assuming VECT points to an array of *SIZE objects of size
14f9c5c9 577 ELEMENT_SIZE, grow it to contain at least MIN_SIZE objects,
f27cf670 578 updating *SIZE as necessary and returning the (new) array. */
14f9c5c9 579
f27cf670
AS
580void *
581grow_vect (void *vect, size_t *size, size_t min_size, int element_size)
14f9c5c9 582{
d2e4a39e
AS
583 if (*size < min_size)
584 {
585 *size *= 2;
586 if (*size < min_size)
4c4b4cd2 587 *size = min_size;
f27cf670 588 vect = xrealloc (vect, *size * element_size);
d2e4a39e 589 }
f27cf670 590 return vect;
14f9c5c9
AS
591}
592
593/* True (non-zero) iff TARGET matches FIELD_NAME up to any trailing
4c4b4cd2 594 suffix of FIELD_NAME beginning "___". */
14f9c5c9
AS
595
596static int
ebf56fd3 597field_name_match (const char *field_name, const char *target)
14f9c5c9
AS
598{
599 int len = strlen (target);
5b4ee69b 600
d2e4a39e 601 return
4c4b4cd2
PH
602 (strncmp (field_name, target, len) == 0
603 && (field_name[len] == '\0'
61012eef 604 || (startswith (field_name + len, "___")
76a01679
JB
605 && strcmp (field_name + strlen (field_name) - 6,
606 "___XVN") != 0)));
14f9c5c9
AS
607}
608
609
872c8b51
JB
610/* Assuming TYPE is a TYPE_CODE_STRUCT or a TYPE_CODE_TYPDEF to
611 a TYPE_CODE_STRUCT, find the field whose name matches FIELD_NAME,
612 and return its index. This function also handles fields whose name
613 have ___ suffixes because the compiler sometimes alters their name
614 by adding such a suffix to represent fields with certain constraints.
615 If the field could not be found, return a negative number if
616 MAYBE_MISSING is set. Otherwise raise an error. */
4c4b4cd2
PH
617
618int
619ada_get_field_index (const struct type *type, const char *field_name,
620 int maybe_missing)
621{
622 int fieldno;
872c8b51
JB
623 struct type *struct_type = check_typedef ((struct type *) type);
624
625 for (fieldno = 0; fieldno < TYPE_NFIELDS (struct_type); fieldno++)
626 if (field_name_match (TYPE_FIELD_NAME (struct_type, fieldno), field_name))
4c4b4cd2
PH
627 return fieldno;
628
629 if (!maybe_missing)
323e0a4a 630 error (_("Unable to find field %s in struct %s. Aborting"),
872c8b51 631 field_name, TYPE_NAME (struct_type));
4c4b4cd2
PH
632
633 return -1;
634}
635
636/* The length of the prefix of NAME prior to any "___" suffix. */
14f9c5c9
AS
637
638int
d2e4a39e 639ada_name_prefix_len (const char *name)
14f9c5c9
AS
640{
641 if (name == NULL)
642 return 0;
d2e4a39e 643 else
14f9c5c9 644 {
d2e4a39e 645 const char *p = strstr (name, "___");
5b4ee69b 646
14f9c5c9 647 if (p == NULL)
4c4b4cd2 648 return strlen (name);
14f9c5c9 649 else
4c4b4cd2 650 return p - name;
14f9c5c9
AS
651 }
652}
653
4c4b4cd2
PH
654/* Return non-zero if SUFFIX is a suffix of STR.
655 Return zero if STR is null. */
656
14f9c5c9 657static int
d2e4a39e 658is_suffix (const char *str, const char *suffix)
14f9c5c9
AS
659{
660 int len1, len2;
5b4ee69b 661
14f9c5c9
AS
662 if (str == NULL)
663 return 0;
664 len1 = strlen (str);
665 len2 = strlen (suffix);
4c4b4cd2 666 return (len1 >= len2 && strcmp (str + len1 - len2, suffix) == 0);
14f9c5c9
AS
667}
668
4c4b4cd2
PH
669/* The contents of value VAL, treated as a value of type TYPE. The
670 result is an lval in memory if VAL is. */
14f9c5c9 671
d2e4a39e 672static struct value *
4c4b4cd2 673coerce_unspec_val_to_type (struct value *val, struct type *type)
14f9c5c9 674{
61ee279c 675 type = ada_check_typedef (type);
df407dfe 676 if (value_type (val) == type)
4c4b4cd2 677 return val;
d2e4a39e 678 else
14f9c5c9 679 {
4c4b4cd2
PH
680 struct value *result;
681
682 /* Make sure that the object size is not unreasonable before
683 trying to allocate some memory for it. */
c1b5a1a6 684 ada_ensure_varsize_limit (type);
4c4b4cd2 685
41e8491f
JK
686 if (value_lazy (val)
687 || TYPE_LENGTH (type) > TYPE_LENGTH (value_type (val)))
688 result = allocate_value_lazy (type);
689 else
690 {
691 result = allocate_value (type);
9a0dc9e3 692 value_contents_copy_raw (result, 0, val, 0, TYPE_LENGTH (type));
41e8491f 693 }
74bcbdf3 694 set_value_component_location (result, val);
9bbda503
AC
695 set_value_bitsize (result, value_bitsize (val));
696 set_value_bitpos (result, value_bitpos (val));
42ae5230 697 set_value_address (result, value_address (val));
14f9c5c9
AS
698 return result;
699 }
700}
701
fc1a4b47
AC
702static const gdb_byte *
703cond_offset_host (const gdb_byte *valaddr, long offset)
14f9c5c9
AS
704{
705 if (valaddr == NULL)
706 return NULL;
707 else
708 return valaddr + offset;
709}
710
711static CORE_ADDR
ebf56fd3 712cond_offset_target (CORE_ADDR address, long offset)
14f9c5c9
AS
713{
714 if (address == 0)
715 return 0;
d2e4a39e 716 else
14f9c5c9
AS
717 return address + offset;
718}
719
4c4b4cd2
PH
720/* Issue a warning (as for the definition of warning in utils.c, but
721 with exactly one argument rather than ...), unless the limit on the
722 number of warnings has passed during the evaluation of the current
723 expression. */
a2249542 724
77109804
AC
725/* FIXME: cagney/2004-10-10: This function is mimicking the behavior
726 provided by "complaint". */
a0b31db1 727static void lim_warning (const char *format, ...) ATTRIBUTE_PRINTF (1, 2);
77109804 728
14f9c5c9 729static void
a2249542 730lim_warning (const char *format, ...)
14f9c5c9 731{
a2249542 732 va_list args;
a2249542 733
5b4ee69b 734 va_start (args, format);
4c4b4cd2
PH
735 warnings_issued += 1;
736 if (warnings_issued <= warning_limit)
a2249542
MK
737 vwarning (format, args);
738
739 va_end (args);
4c4b4cd2
PH
740}
741
714e53ab
PH
742/* Issue an error if the size of an object of type T is unreasonable,
743 i.e. if it would be a bad idea to allocate a value of this type in
744 GDB. */
745
c1b5a1a6
JB
746void
747ada_ensure_varsize_limit (const struct type *type)
714e53ab
PH
748{
749 if (TYPE_LENGTH (type) > varsize_limit)
323e0a4a 750 error (_("object size is larger than varsize-limit"));
714e53ab
PH
751}
752
0963b4bd 753/* Maximum value of a SIZE-byte signed integer type. */
4c4b4cd2 754static LONGEST
c3e5cd34 755max_of_size (int size)
4c4b4cd2 756{
76a01679 757 LONGEST top_bit = (LONGEST) 1 << (size * 8 - 2);
5b4ee69b 758
76a01679 759 return top_bit | (top_bit - 1);
4c4b4cd2
PH
760}
761
0963b4bd 762/* Minimum value of a SIZE-byte signed integer type. */
4c4b4cd2 763static LONGEST
c3e5cd34 764min_of_size (int size)
4c4b4cd2 765{
c3e5cd34 766 return -max_of_size (size) - 1;
4c4b4cd2
PH
767}
768
0963b4bd 769/* Maximum value of a SIZE-byte unsigned integer type. */
4c4b4cd2 770static ULONGEST
c3e5cd34 771umax_of_size (int size)
4c4b4cd2 772{
76a01679 773 ULONGEST top_bit = (ULONGEST) 1 << (size * 8 - 1);
5b4ee69b 774
76a01679 775 return top_bit | (top_bit - 1);
4c4b4cd2
PH
776}
777
0963b4bd 778/* Maximum value of integral type T, as a signed quantity. */
c3e5cd34
PH
779static LONGEST
780max_of_type (struct type *t)
4c4b4cd2 781{
c3e5cd34
PH
782 if (TYPE_UNSIGNED (t))
783 return (LONGEST) umax_of_size (TYPE_LENGTH (t));
784 else
785 return max_of_size (TYPE_LENGTH (t));
786}
787
0963b4bd 788/* Minimum value of integral type T, as a signed quantity. */
c3e5cd34
PH
789static LONGEST
790min_of_type (struct type *t)
791{
792 if (TYPE_UNSIGNED (t))
793 return 0;
794 else
795 return min_of_size (TYPE_LENGTH (t));
4c4b4cd2
PH
796}
797
798/* The largest value in the domain of TYPE, a discrete type, as an integer. */
43bbcdc2
PH
799LONGEST
800ada_discrete_type_high_bound (struct type *type)
4c4b4cd2 801{
c3345124 802 type = resolve_dynamic_type (type, NULL, 0);
76a01679 803 switch (TYPE_CODE (type))
4c4b4cd2
PH
804 {
805 case TYPE_CODE_RANGE:
690cc4eb 806 return TYPE_HIGH_BOUND (type);
4c4b4cd2 807 case TYPE_CODE_ENUM:
14e75d8e 808 return TYPE_FIELD_ENUMVAL (type, TYPE_NFIELDS (type) - 1);
690cc4eb
PH
809 case TYPE_CODE_BOOL:
810 return 1;
811 case TYPE_CODE_CHAR:
76a01679 812 case TYPE_CODE_INT:
690cc4eb 813 return max_of_type (type);
4c4b4cd2 814 default:
43bbcdc2 815 error (_("Unexpected type in ada_discrete_type_high_bound."));
4c4b4cd2
PH
816 }
817}
818
14e75d8e 819/* The smallest value in the domain of TYPE, a discrete type, as an integer. */
43bbcdc2
PH
820LONGEST
821ada_discrete_type_low_bound (struct type *type)
4c4b4cd2 822{
c3345124 823 type = resolve_dynamic_type (type, NULL, 0);
76a01679 824 switch (TYPE_CODE (type))
4c4b4cd2
PH
825 {
826 case TYPE_CODE_RANGE:
690cc4eb 827 return TYPE_LOW_BOUND (type);
4c4b4cd2 828 case TYPE_CODE_ENUM:
14e75d8e 829 return TYPE_FIELD_ENUMVAL (type, 0);
690cc4eb
PH
830 case TYPE_CODE_BOOL:
831 return 0;
832 case TYPE_CODE_CHAR:
76a01679 833 case TYPE_CODE_INT:
690cc4eb 834 return min_of_type (type);
4c4b4cd2 835 default:
43bbcdc2 836 error (_("Unexpected type in ada_discrete_type_low_bound."));
4c4b4cd2
PH
837 }
838}
839
840/* The identity on non-range types. For range types, the underlying
76a01679 841 non-range scalar type. */
4c4b4cd2
PH
842
843static struct type *
18af8284 844get_base_type (struct type *type)
4c4b4cd2
PH
845{
846 while (type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE)
847 {
76a01679
JB
848 if (type == TYPE_TARGET_TYPE (type) || TYPE_TARGET_TYPE (type) == NULL)
849 return type;
4c4b4cd2
PH
850 type = TYPE_TARGET_TYPE (type);
851 }
852 return type;
14f9c5c9 853}
41246937
JB
854
855/* Return a decoded version of the given VALUE. This means returning
856 a value whose type is obtained by applying all the GNAT-specific
857 encondings, making the resulting type a static but standard description
858 of the initial type. */
859
860struct value *
861ada_get_decoded_value (struct value *value)
862{
863 struct type *type = ada_check_typedef (value_type (value));
864
865 if (ada_is_array_descriptor_type (type)
866 || (ada_is_constrained_packed_array_type (type)
867 && TYPE_CODE (type) != TYPE_CODE_PTR))
868 {
869 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF) /* array access type. */
870 value = ada_coerce_to_simple_array_ptr (value);
871 else
872 value = ada_coerce_to_simple_array (value);
873 }
874 else
875 value = ada_to_fixed_value (value);
876
877 return value;
878}
879
880/* Same as ada_get_decoded_value, but with the given TYPE.
881 Because there is no associated actual value for this type,
882 the resulting type might be a best-effort approximation in
883 the case of dynamic types. */
884
885struct type *
886ada_get_decoded_type (struct type *type)
887{
888 type = to_static_fixed_type (type);
889 if (ada_is_constrained_packed_array_type (type))
890 type = ada_coerce_to_simple_array_type (type);
891 return type;
892}
893
4c4b4cd2 894\f
76a01679 895
4c4b4cd2 896 /* Language Selection */
14f9c5c9
AS
897
898/* If the main program is in Ada, return language_ada, otherwise return LANG
ccefe4c4 899 (the main program is in Ada iif the adainit symbol is found). */
d2e4a39e 900
14f9c5c9 901enum language
ccefe4c4 902ada_update_initial_language (enum language lang)
14f9c5c9 903{
d2e4a39e 904 if (lookup_minimal_symbol ("adainit", (const char *) NULL,
3b7344d5 905 (struct objfile *) NULL).minsym != NULL)
4c4b4cd2 906 return language_ada;
14f9c5c9
AS
907
908 return lang;
909}
96d887e8
PH
910
911/* If the main procedure is written in Ada, then return its name.
912 The result is good until the next call. Return NULL if the main
913 procedure doesn't appear to be in Ada. */
914
915char *
916ada_main_name (void)
917{
3b7344d5 918 struct bound_minimal_symbol msym;
f9bc20b9 919 static char *main_program_name = NULL;
6c038f32 920
96d887e8
PH
921 /* For Ada, the name of the main procedure is stored in a specific
922 string constant, generated by the binder. Look for that symbol,
923 extract its address, and then read that string. If we didn't find
924 that string, then most probably the main procedure is not written
925 in Ada. */
926 msym = lookup_minimal_symbol (ADA_MAIN_PROGRAM_SYMBOL_NAME, NULL, NULL);
927
3b7344d5 928 if (msym.minsym != NULL)
96d887e8 929 {
f9bc20b9
JB
930 CORE_ADDR main_program_name_addr;
931 int err_code;
932
77e371c0 933 main_program_name_addr = BMSYMBOL_VALUE_ADDRESS (msym);
96d887e8 934 if (main_program_name_addr == 0)
323e0a4a 935 error (_("Invalid address for Ada main program name."));
96d887e8 936
f9bc20b9
JB
937 xfree (main_program_name);
938 target_read_string (main_program_name_addr, &main_program_name,
939 1024, &err_code);
940
941 if (err_code != 0)
942 return NULL;
96d887e8
PH
943 return main_program_name;
944 }
945
946 /* The main procedure doesn't seem to be in Ada. */
947 return NULL;
948}
14f9c5c9 949\f
4c4b4cd2 950 /* Symbols */
d2e4a39e 951
4c4b4cd2
PH
952/* Table of Ada operators and their GNAT-encoded names. Last entry is pair
953 of NULLs. */
14f9c5c9 954
d2e4a39e
AS
955const struct ada_opname_map ada_opname_table[] = {
956 {"Oadd", "\"+\"", BINOP_ADD},
957 {"Osubtract", "\"-\"", BINOP_SUB},
958 {"Omultiply", "\"*\"", BINOP_MUL},
959 {"Odivide", "\"/\"", BINOP_DIV},
960 {"Omod", "\"mod\"", BINOP_MOD},
961 {"Orem", "\"rem\"", BINOP_REM},
962 {"Oexpon", "\"**\"", BINOP_EXP},
963 {"Olt", "\"<\"", BINOP_LESS},
964 {"Ole", "\"<=\"", BINOP_LEQ},
965 {"Ogt", "\">\"", BINOP_GTR},
966 {"Oge", "\">=\"", BINOP_GEQ},
967 {"Oeq", "\"=\"", BINOP_EQUAL},
968 {"One", "\"/=\"", BINOP_NOTEQUAL},
969 {"Oand", "\"and\"", BINOP_BITWISE_AND},
970 {"Oor", "\"or\"", BINOP_BITWISE_IOR},
971 {"Oxor", "\"xor\"", BINOP_BITWISE_XOR},
972 {"Oconcat", "\"&\"", BINOP_CONCAT},
973 {"Oabs", "\"abs\"", UNOP_ABS},
974 {"Onot", "\"not\"", UNOP_LOGICAL_NOT},
975 {"Oadd", "\"+\"", UNOP_PLUS},
976 {"Osubtract", "\"-\"", UNOP_NEG},
977 {NULL, NULL}
14f9c5c9
AS
978};
979
4c4b4cd2
PH
980/* The "encoded" form of DECODED, according to GNAT conventions.
981 The result is valid until the next call to ada_encode. */
982
14f9c5c9 983char *
4c4b4cd2 984ada_encode (const char *decoded)
14f9c5c9 985{
4c4b4cd2
PH
986 static char *encoding_buffer = NULL;
987 static size_t encoding_buffer_size = 0;
d2e4a39e 988 const char *p;
14f9c5c9 989 int k;
d2e4a39e 990
4c4b4cd2 991 if (decoded == NULL)
14f9c5c9
AS
992 return NULL;
993
4c4b4cd2
PH
994 GROW_VECT (encoding_buffer, encoding_buffer_size,
995 2 * strlen (decoded) + 10);
14f9c5c9
AS
996
997 k = 0;
4c4b4cd2 998 for (p = decoded; *p != '\0'; p += 1)
14f9c5c9 999 {
cdc7bb92 1000 if (*p == '.')
4c4b4cd2
PH
1001 {
1002 encoding_buffer[k] = encoding_buffer[k + 1] = '_';
1003 k += 2;
1004 }
14f9c5c9 1005 else if (*p == '"')
4c4b4cd2
PH
1006 {
1007 const struct ada_opname_map *mapping;
1008
1009 for (mapping = ada_opname_table;
1265e4aa 1010 mapping->encoded != NULL
61012eef 1011 && !startswith (p, mapping->decoded); mapping += 1)
4c4b4cd2
PH
1012 ;
1013 if (mapping->encoded == NULL)
323e0a4a 1014 error (_("invalid Ada operator name: %s"), p);
4c4b4cd2
PH
1015 strcpy (encoding_buffer + k, mapping->encoded);
1016 k += strlen (mapping->encoded);
1017 break;
1018 }
d2e4a39e 1019 else
4c4b4cd2
PH
1020 {
1021 encoding_buffer[k] = *p;
1022 k += 1;
1023 }
14f9c5c9
AS
1024 }
1025
4c4b4cd2
PH
1026 encoding_buffer[k] = '\0';
1027 return encoding_buffer;
14f9c5c9
AS
1028}
1029
1030/* Return NAME folded to lower case, or, if surrounded by single
4c4b4cd2
PH
1031 quotes, unfolded, but with the quotes stripped away. Result good
1032 to next call. */
1033
d2e4a39e
AS
1034char *
1035ada_fold_name (const char *name)
14f9c5c9 1036{
d2e4a39e 1037 static char *fold_buffer = NULL;
14f9c5c9
AS
1038 static size_t fold_buffer_size = 0;
1039
1040 int len = strlen (name);
d2e4a39e 1041 GROW_VECT (fold_buffer, fold_buffer_size, len + 1);
14f9c5c9
AS
1042
1043 if (name[0] == '\'')
1044 {
d2e4a39e
AS
1045 strncpy (fold_buffer, name + 1, len - 2);
1046 fold_buffer[len - 2] = '\000';
14f9c5c9
AS
1047 }
1048 else
1049 {
1050 int i;
5b4ee69b 1051
14f9c5c9 1052 for (i = 0; i <= len; i += 1)
4c4b4cd2 1053 fold_buffer[i] = tolower (name[i]);
14f9c5c9
AS
1054 }
1055
1056 return fold_buffer;
1057}
1058
529cad9c
PH
1059/* Return nonzero if C is either a digit or a lowercase alphabet character. */
1060
1061static int
1062is_lower_alphanum (const char c)
1063{
1064 return (isdigit (c) || (isalpha (c) && islower (c)));
1065}
1066
c90092fe
JB
1067/* ENCODED is the linkage name of a symbol and LEN contains its length.
1068 This function saves in LEN the length of that same symbol name but
1069 without either of these suffixes:
29480c32
JB
1070 . .{DIGIT}+
1071 . ${DIGIT}+
1072 . ___{DIGIT}+
1073 . __{DIGIT}+.
c90092fe 1074
29480c32
JB
1075 These are suffixes introduced by the compiler for entities such as
1076 nested subprogram for instance, in order to avoid name clashes.
1077 They do not serve any purpose for the debugger. */
1078
1079static void
1080ada_remove_trailing_digits (const char *encoded, int *len)
1081{
1082 if (*len > 1 && isdigit (encoded[*len - 1]))
1083 {
1084 int i = *len - 2;
5b4ee69b 1085
29480c32
JB
1086 while (i > 0 && isdigit (encoded[i]))
1087 i--;
1088 if (i >= 0 && encoded[i] == '.')
1089 *len = i;
1090 else if (i >= 0 && encoded[i] == '$')
1091 *len = i;
61012eef 1092 else if (i >= 2 && startswith (encoded + i - 2, "___"))
29480c32 1093 *len = i - 2;
61012eef 1094 else if (i >= 1 && startswith (encoded + i - 1, "__"))
29480c32
JB
1095 *len = i - 1;
1096 }
1097}
1098
1099/* Remove the suffix introduced by the compiler for protected object
1100 subprograms. */
1101
1102static void
1103ada_remove_po_subprogram_suffix (const char *encoded, int *len)
1104{
1105 /* Remove trailing N. */
1106
1107 /* Protected entry subprograms are broken into two
1108 separate subprograms: The first one is unprotected, and has
1109 a 'N' suffix; the second is the protected version, and has
0963b4bd 1110 the 'P' suffix. The second calls the first one after handling
29480c32
JB
1111 the protection. Since the P subprograms are internally generated,
1112 we leave these names undecoded, giving the user a clue that this
1113 entity is internal. */
1114
1115 if (*len > 1
1116 && encoded[*len - 1] == 'N'
1117 && (isdigit (encoded[*len - 2]) || islower (encoded[*len - 2])))
1118 *len = *len - 1;
1119}
1120
69fadcdf
JB
1121/* Remove trailing X[bn]* suffixes (indicating names in package bodies). */
1122
1123static void
1124ada_remove_Xbn_suffix (const char *encoded, int *len)
1125{
1126 int i = *len - 1;
1127
1128 while (i > 0 && (encoded[i] == 'b' || encoded[i] == 'n'))
1129 i--;
1130
1131 if (encoded[i] != 'X')
1132 return;
1133
1134 if (i == 0)
1135 return;
1136
1137 if (isalnum (encoded[i-1]))
1138 *len = i;
1139}
1140
29480c32
JB
1141/* If ENCODED follows the GNAT entity encoding conventions, then return
1142 the decoded form of ENCODED. Otherwise, return "<%s>" where "%s" is
1143 replaced by ENCODED.
14f9c5c9 1144
4c4b4cd2 1145 The resulting string is valid until the next call of ada_decode.
29480c32 1146 If the string is unchanged by decoding, the original string pointer
4c4b4cd2
PH
1147 is returned. */
1148
1149const char *
1150ada_decode (const char *encoded)
14f9c5c9
AS
1151{
1152 int i, j;
1153 int len0;
d2e4a39e 1154 const char *p;
4c4b4cd2 1155 char *decoded;
14f9c5c9 1156 int at_start_name;
4c4b4cd2
PH
1157 static char *decoding_buffer = NULL;
1158 static size_t decoding_buffer_size = 0;
d2e4a39e 1159
29480c32
JB
1160 /* The name of the Ada main procedure starts with "_ada_".
1161 This prefix is not part of the decoded name, so skip this part
1162 if we see this prefix. */
61012eef 1163 if (startswith (encoded, "_ada_"))
4c4b4cd2 1164 encoded += 5;
14f9c5c9 1165
29480c32
JB
1166 /* If the name starts with '_', then it is not a properly encoded
1167 name, so do not attempt to decode it. Similarly, if the name
1168 starts with '<', the name should not be decoded. */
4c4b4cd2 1169 if (encoded[0] == '_' || encoded[0] == '<')
14f9c5c9
AS
1170 goto Suppress;
1171
4c4b4cd2 1172 len0 = strlen (encoded);
4c4b4cd2 1173
29480c32
JB
1174 ada_remove_trailing_digits (encoded, &len0);
1175 ada_remove_po_subprogram_suffix (encoded, &len0);
529cad9c 1176
4c4b4cd2
PH
1177 /* Remove the ___X.* suffix if present. Do not forget to verify that
1178 the suffix is located before the current "end" of ENCODED. We want
1179 to avoid re-matching parts of ENCODED that have previously been
1180 marked as discarded (by decrementing LEN0). */
1181 p = strstr (encoded, "___");
1182 if (p != NULL && p - encoded < len0 - 3)
14f9c5c9
AS
1183 {
1184 if (p[3] == 'X')
4c4b4cd2 1185 len0 = p - encoded;
14f9c5c9 1186 else
4c4b4cd2 1187 goto Suppress;
14f9c5c9 1188 }
4c4b4cd2 1189
29480c32
JB
1190 /* Remove any trailing TKB suffix. It tells us that this symbol
1191 is for the body of a task, but that information does not actually
1192 appear in the decoded name. */
1193
61012eef 1194 if (len0 > 3 && startswith (encoded + len0 - 3, "TKB"))
14f9c5c9 1195 len0 -= 3;
76a01679 1196
a10967fa
JB
1197 /* Remove any trailing TB suffix. The TB suffix is slightly different
1198 from the TKB suffix because it is used for non-anonymous task
1199 bodies. */
1200
61012eef 1201 if (len0 > 2 && startswith (encoded + len0 - 2, "TB"))
a10967fa
JB
1202 len0 -= 2;
1203
29480c32
JB
1204 /* Remove trailing "B" suffixes. */
1205 /* FIXME: brobecker/2006-04-19: Not sure what this are used for... */
1206
61012eef 1207 if (len0 > 1 && startswith (encoded + len0 - 1, "B"))
14f9c5c9
AS
1208 len0 -= 1;
1209
4c4b4cd2 1210 /* Make decoded big enough for possible expansion by operator name. */
29480c32 1211
4c4b4cd2
PH
1212 GROW_VECT (decoding_buffer, decoding_buffer_size, 2 * len0 + 1);
1213 decoded = decoding_buffer;
14f9c5c9 1214
29480c32
JB
1215 /* Remove trailing __{digit}+ or trailing ${digit}+. */
1216
4c4b4cd2 1217 if (len0 > 1 && isdigit (encoded[len0 - 1]))
d2e4a39e 1218 {
4c4b4cd2
PH
1219 i = len0 - 2;
1220 while ((i >= 0 && isdigit (encoded[i]))
1221 || (i >= 1 && encoded[i] == '_' && isdigit (encoded[i - 1])))
1222 i -= 1;
1223 if (i > 1 && encoded[i] == '_' && encoded[i - 1] == '_')
1224 len0 = i - 1;
1225 else if (encoded[i] == '$')
1226 len0 = i;
d2e4a39e 1227 }
14f9c5c9 1228
29480c32
JB
1229 /* The first few characters that are not alphabetic are not part
1230 of any encoding we use, so we can copy them over verbatim. */
1231
4c4b4cd2
PH
1232 for (i = 0, j = 0; i < len0 && !isalpha (encoded[i]); i += 1, j += 1)
1233 decoded[j] = encoded[i];
14f9c5c9
AS
1234
1235 at_start_name = 1;
1236 while (i < len0)
1237 {
29480c32 1238 /* Is this a symbol function? */
4c4b4cd2
PH
1239 if (at_start_name && encoded[i] == 'O')
1240 {
1241 int k;
5b4ee69b 1242
4c4b4cd2
PH
1243 for (k = 0; ada_opname_table[k].encoded != NULL; k += 1)
1244 {
1245 int op_len = strlen (ada_opname_table[k].encoded);
06d5cf63
JB
1246 if ((strncmp (ada_opname_table[k].encoded + 1, encoded + i + 1,
1247 op_len - 1) == 0)
1248 && !isalnum (encoded[i + op_len]))
4c4b4cd2
PH
1249 {
1250 strcpy (decoded + j, ada_opname_table[k].decoded);
1251 at_start_name = 0;
1252 i += op_len;
1253 j += strlen (ada_opname_table[k].decoded);
1254 break;
1255 }
1256 }
1257 if (ada_opname_table[k].encoded != NULL)
1258 continue;
1259 }
14f9c5c9
AS
1260 at_start_name = 0;
1261
529cad9c
PH
1262 /* Replace "TK__" with "__", which will eventually be translated
1263 into "." (just below). */
1264
61012eef 1265 if (i < len0 - 4 && startswith (encoded + i, "TK__"))
4c4b4cd2 1266 i += 2;
529cad9c 1267
29480c32
JB
1268 /* Replace "__B_{DIGITS}+__" sequences by "__", which will eventually
1269 be translated into "." (just below). These are internal names
1270 generated for anonymous blocks inside which our symbol is nested. */
1271
1272 if (len0 - i > 5 && encoded [i] == '_' && encoded [i+1] == '_'
1273 && encoded [i+2] == 'B' && encoded [i+3] == '_'
1274 && isdigit (encoded [i+4]))
1275 {
1276 int k = i + 5;
1277
1278 while (k < len0 && isdigit (encoded[k]))
1279 k++; /* Skip any extra digit. */
1280
1281 /* Double-check that the "__B_{DIGITS}+" sequence we found
1282 is indeed followed by "__". */
1283 if (len0 - k > 2 && encoded [k] == '_' && encoded [k+1] == '_')
1284 i = k;
1285 }
1286
529cad9c
PH
1287 /* Remove _E{DIGITS}+[sb] */
1288
1289 /* Just as for protected object subprograms, there are 2 categories
0963b4bd 1290 of subprograms created by the compiler for each entry. The first
529cad9c
PH
1291 one implements the actual entry code, and has a suffix following
1292 the convention above; the second one implements the barrier and
1293 uses the same convention as above, except that the 'E' is replaced
1294 by a 'B'.
1295
1296 Just as above, we do not decode the name of barrier functions
1297 to give the user a clue that the code he is debugging has been
1298 internally generated. */
1299
1300 if (len0 - i > 3 && encoded [i] == '_' && encoded[i+1] == 'E'
1301 && isdigit (encoded[i+2]))
1302 {
1303 int k = i + 3;
1304
1305 while (k < len0 && isdigit (encoded[k]))
1306 k++;
1307
1308 if (k < len0
1309 && (encoded[k] == 'b' || encoded[k] == 's'))
1310 {
1311 k++;
1312 /* Just as an extra precaution, make sure that if this
1313 suffix is followed by anything else, it is a '_'.
1314 Otherwise, we matched this sequence by accident. */
1315 if (k == len0
1316 || (k < len0 && encoded[k] == '_'))
1317 i = k;
1318 }
1319 }
1320
1321 /* Remove trailing "N" in [a-z0-9]+N__. The N is added by
1322 the GNAT front-end in protected object subprograms. */
1323
1324 if (i < len0 + 3
1325 && encoded[i] == 'N' && encoded[i+1] == '_' && encoded[i+2] == '_')
1326 {
1327 /* Backtrack a bit up until we reach either the begining of
1328 the encoded name, or "__". Make sure that we only find
1329 digits or lowercase characters. */
1330 const char *ptr = encoded + i - 1;
1331
1332 while (ptr >= encoded && is_lower_alphanum (ptr[0]))
1333 ptr--;
1334 if (ptr < encoded
1335 || (ptr > encoded && ptr[0] == '_' && ptr[-1] == '_'))
1336 i++;
1337 }
1338
4c4b4cd2
PH
1339 if (encoded[i] == 'X' && i != 0 && isalnum (encoded[i - 1]))
1340 {
29480c32
JB
1341 /* This is a X[bn]* sequence not separated from the previous
1342 part of the name with a non-alpha-numeric character (in other
1343 words, immediately following an alpha-numeric character), then
1344 verify that it is placed at the end of the encoded name. If
1345 not, then the encoding is not valid and we should abort the
1346 decoding. Otherwise, just skip it, it is used in body-nested
1347 package names. */
4c4b4cd2
PH
1348 do
1349 i += 1;
1350 while (i < len0 && (encoded[i] == 'b' || encoded[i] == 'n'));
1351 if (i < len0)
1352 goto Suppress;
1353 }
cdc7bb92 1354 else if (i < len0 - 2 && encoded[i] == '_' && encoded[i + 1] == '_')
4c4b4cd2 1355 {
29480c32 1356 /* Replace '__' by '.'. */
4c4b4cd2
PH
1357 decoded[j] = '.';
1358 at_start_name = 1;
1359 i += 2;
1360 j += 1;
1361 }
14f9c5c9 1362 else
4c4b4cd2 1363 {
29480c32
JB
1364 /* It's a character part of the decoded name, so just copy it
1365 over. */
4c4b4cd2
PH
1366 decoded[j] = encoded[i];
1367 i += 1;
1368 j += 1;
1369 }
14f9c5c9 1370 }
4c4b4cd2 1371 decoded[j] = '\000';
14f9c5c9 1372
29480c32
JB
1373 /* Decoded names should never contain any uppercase character.
1374 Double-check this, and abort the decoding if we find one. */
1375
4c4b4cd2
PH
1376 for (i = 0; decoded[i] != '\0'; i += 1)
1377 if (isupper (decoded[i]) || decoded[i] == ' ')
14f9c5c9
AS
1378 goto Suppress;
1379
4c4b4cd2
PH
1380 if (strcmp (decoded, encoded) == 0)
1381 return encoded;
1382 else
1383 return decoded;
14f9c5c9
AS
1384
1385Suppress:
4c4b4cd2
PH
1386 GROW_VECT (decoding_buffer, decoding_buffer_size, strlen (encoded) + 3);
1387 decoded = decoding_buffer;
1388 if (encoded[0] == '<')
1389 strcpy (decoded, encoded);
14f9c5c9 1390 else
88c15c34 1391 xsnprintf (decoded, decoding_buffer_size, "<%s>", encoded);
4c4b4cd2
PH
1392 return decoded;
1393
1394}
1395
1396/* Table for keeping permanent unique copies of decoded names. Once
1397 allocated, names in this table are never released. While this is a
1398 storage leak, it should not be significant unless there are massive
1399 changes in the set of decoded names in successive versions of a
1400 symbol table loaded during a single session. */
1401static struct htab *decoded_names_store;
1402
1403/* Returns the decoded name of GSYMBOL, as for ada_decode, caching it
1404 in the language-specific part of GSYMBOL, if it has not been
1405 previously computed. Tries to save the decoded name in the same
1406 obstack as GSYMBOL, if possible, and otherwise on the heap (so that,
1407 in any case, the decoded symbol has a lifetime at least that of
0963b4bd 1408 GSYMBOL).
4c4b4cd2
PH
1409 The GSYMBOL parameter is "mutable" in the C++ sense: logically
1410 const, but nevertheless modified to a semantically equivalent form
0963b4bd 1411 when a decoded name is cached in it. */
4c4b4cd2 1412
45e6c716 1413const char *
f85f34ed 1414ada_decode_symbol (const struct general_symbol_info *arg)
4c4b4cd2 1415{
f85f34ed
TT
1416 struct general_symbol_info *gsymbol = (struct general_symbol_info *) arg;
1417 const char **resultp =
615b3f62 1418 &gsymbol->language_specific.demangled_name;
5b4ee69b 1419
f85f34ed 1420 if (!gsymbol->ada_mangled)
4c4b4cd2
PH
1421 {
1422 const char *decoded = ada_decode (gsymbol->name);
f85f34ed 1423 struct obstack *obstack = gsymbol->language_specific.obstack;
5b4ee69b 1424
f85f34ed 1425 gsymbol->ada_mangled = 1;
5b4ee69b 1426
f85f34ed 1427 if (obstack != NULL)
224c3ddb
SM
1428 *resultp
1429 = (const char *) obstack_copy0 (obstack, decoded, strlen (decoded));
f85f34ed 1430 else
76a01679 1431 {
f85f34ed
TT
1432 /* Sometimes, we can't find a corresponding objfile, in
1433 which case, we put the result on the heap. Since we only
1434 decode when needed, we hope this usually does not cause a
1435 significant memory leak (FIXME). */
1436
76a01679
JB
1437 char **slot = (char **) htab_find_slot (decoded_names_store,
1438 decoded, INSERT);
5b4ee69b 1439
76a01679
JB
1440 if (*slot == NULL)
1441 *slot = xstrdup (decoded);
1442 *resultp = *slot;
1443 }
4c4b4cd2 1444 }
14f9c5c9 1445
4c4b4cd2
PH
1446 return *resultp;
1447}
76a01679 1448
2c0b251b 1449static char *
76a01679 1450ada_la_decode (const char *encoded, int options)
4c4b4cd2
PH
1451{
1452 return xstrdup (ada_decode (encoded));
14f9c5c9
AS
1453}
1454
8b302db8
TT
1455/* Implement la_sniff_from_mangled_name for Ada. */
1456
1457static int
1458ada_sniff_from_mangled_name (const char *mangled, char **out)
1459{
1460 const char *demangled = ada_decode (mangled);
1461
1462 *out = NULL;
1463
1464 if (demangled != mangled && demangled != NULL && demangled[0] != '<')
1465 {
1466 /* Set the gsymbol language to Ada, but still return 0.
1467 Two reasons for that:
1468
1469 1. For Ada, we prefer computing the symbol's decoded name
1470 on the fly rather than pre-compute it, in order to save
1471 memory (Ada projects are typically very large).
1472
1473 2. There are some areas in the definition of the GNAT
1474 encoding where, with a bit of bad luck, we might be able
1475 to decode a non-Ada symbol, generating an incorrect
1476 demangled name (Eg: names ending with "TB" for instance
1477 are identified as task bodies and so stripped from
1478 the decoded name returned).
1479
1480 Returning 1, here, but not setting *DEMANGLED, helps us get a
1481 little bit of the best of both worlds. Because we're last,
1482 we should not affect any of the other languages that were
1483 able to demangle the symbol before us; we get to correctly
1484 tag Ada symbols as such; and even if we incorrectly tagged a
1485 non-Ada symbol, which should be rare, any routing through the
1486 Ada language should be transparent (Ada tries to behave much
1487 like C/C++ with non-Ada symbols). */
1488 return 1;
1489 }
1490
1491 return 0;
1492}
1493
14f9c5c9 1494/* Returns non-zero iff SYM_NAME matches NAME, ignoring any trailing
4c4b4cd2
PH
1495 suffixes that encode debugging information or leading _ada_ on
1496 SYM_NAME (see is_name_suffix commentary for the debugging
1497 information that is ignored). If WILD, then NAME need only match a
1498 suffix of SYM_NAME minus the same suffixes. Also returns 0 if
1499 either argument is NULL. */
14f9c5c9 1500
2c0b251b 1501static int
40658b94 1502match_name (const char *sym_name, const char *name, int wild)
14f9c5c9
AS
1503{
1504 if (sym_name == NULL || name == NULL)
1505 return 0;
1506 else if (wild)
73589123 1507 return wild_match (sym_name, name) == 0;
d2e4a39e
AS
1508 else
1509 {
1510 int len_name = strlen (name);
5b4ee69b 1511
4c4b4cd2
PH
1512 return (strncmp (sym_name, name, len_name) == 0
1513 && is_name_suffix (sym_name + len_name))
61012eef 1514 || (startswith (sym_name, "_ada_")
4c4b4cd2
PH
1515 && strncmp (sym_name + 5, name, len_name) == 0
1516 && is_name_suffix (sym_name + len_name + 5));
d2e4a39e 1517 }
14f9c5c9 1518}
14f9c5c9 1519\f
d2e4a39e 1520
4c4b4cd2 1521 /* Arrays */
14f9c5c9 1522
28c85d6c
JB
1523/* Assuming that INDEX_DESC_TYPE is an ___XA structure, a structure
1524 generated by the GNAT compiler to describe the index type used
1525 for each dimension of an array, check whether it follows the latest
1526 known encoding. If not, fix it up to conform to the latest encoding.
1527 Otherwise, do nothing. This function also does nothing if
1528 INDEX_DESC_TYPE is NULL.
1529
1530 The GNAT encoding used to describle the array index type evolved a bit.
1531 Initially, the information would be provided through the name of each
1532 field of the structure type only, while the type of these fields was
1533 described as unspecified and irrelevant. The debugger was then expected
1534 to perform a global type lookup using the name of that field in order
1535 to get access to the full index type description. Because these global
1536 lookups can be very expensive, the encoding was later enhanced to make
1537 the global lookup unnecessary by defining the field type as being
1538 the full index type description.
1539
1540 The purpose of this routine is to allow us to support older versions
1541 of the compiler by detecting the use of the older encoding, and by
1542 fixing up the INDEX_DESC_TYPE to follow the new one (at this point,
1543 we essentially replace each field's meaningless type by the associated
1544 index subtype). */
1545
1546void
1547ada_fixup_array_indexes_type (struct type *index_desc_type)
1548{
1549 int i;
1550
1551 if (index_desc_type == NULL)
1552 return;
1553 gdb_assert (TYPE_NFIELDS (index_desc_type) > 0);
1554
1555 /* Check if INDEX_DESC_TYPE follows the older encoding (it is sufficient
1556 to check one field only, no need to check them all). If not, return
1557 now.
1558
1559 If our INDEX_DESC_TYPE was generated using the older encoding,
1560 the field type should be a meaningless integer type whose name
1561 is not equal to the field name. */
1562 if (TYPE_NAME (TYPE_FIELD_TYPE (index_desc_type, 0)) != NULL
1563 && strcmp (TYPE_NAME (TYPE_FIELD_TYPE (index_desc_type, 0)),
1564 TYPE_FIELD_NAME (index_desc_type, 0)) == 0)
1565 return;
1566
1567 /* Fixup each field of INDEX_DESC_TYPE. */
1568 for (i = 0; i < TYPE_NFIELDS (index_desc_type); i++)
1569 {
0d5cff50 1570 const char *name = TYPE_FIELD_NAME (index_desc_type, i);
28c85d6c
JB
1571 struct type *raw_type = ada_check_typedef (ada_find_any_type (name));
1572
1573 if (raw_type)
1574 TYPE_FIELD_TYPE (index_desc_type, i) = raw_type;
1575 }
1576}
1577
4c4b4cd2 1578/* Names of MAX_ADA_DIMENS bounds in P_BOUNDS fields of array descriptors. */
14f9c5c9 1579
d2e4a39e
AS
1580static char *bound_name[] = {
1581 "LB0", "UB0", "LB1", "UB1", "LB2", "UB2", "LB3", "UB3",
14f9c5c9
AS
1582 "LB4", "UB4", "LB5", "UB5", "LB6", "UB6", "LB7", "UB7"
1583};
1584
1585/* Maximum number of array dimensions we are prepared to handle. */
1586
4c4b4cd2 1587#define MAX_ADA_DIMENS (sizeof(bound_name) / (2*sizeof(char *)))
14f9c5c9 1588
14f9c5c9 1589
4c4b4cd2
PH
1590/* The desc_* routines return primitive portions of array descriptors
1591 (fat pointers). */
14f9c5c9
AS
1592
1593/* The descriptor or array type, if any, indicated by TYPE; removes
4c4b4cd2
PH
1594 level of indirection, if needed. */
1595
d2e4a39e
AS
1596static struct type *
1597desc_base_type (struct type *type)
14f9c5c9
AS
1598{
1599 if (type == NULL)
1600 return NULL;
61ee279c 1601 type = ada_check_typedef (type);
720d1a40
JB
1602 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
1603 type = ada_typedef_target_type (type);
1604
1265e4aa
JB
1605 if (type != NULL
1606 && (TYPE_CODE (type) == TYPE_CODE_PTR
1607 || TYPE_CODE (type) == TYPE_CODE_REF))
61ee279c 1608 return ada_check_typedef (TYPE_TARGET_TYPE (type));
14f9c5c9
AS
1609 else
1610 return type;
1611}
1612
4c4b4cd2
PH
1613/* True iff TYPE indicates a "thin" array pointer type. */
1614
14f9c5c9 1615static int
d2e4a39e 1616is_thin_pntr (struct type *type)
14f9c5c9 1617{
d2e4a39e 1618 return
14f9c5c9
AS
1619 is_suffix (ada_type_name (desc_base_type (type)), "___XUT")
1620 || is_suffix (ada_type_name (desc_base_type (type)), "___XUT___XVE");
1621}
1622
4c4b4cd2
PH
1623/* The descriptor type for thin pointer type TYPE. */
1624
d2e4a39e
AS
1625static struct type *
1626thin_descriptor_type (struct type *type)
14f9c5c9 1627{
d2e4a39e 1628 struct type *base_type = desc_base_type (type);
5b4ee69b 1629
14f9c5c9
AS
1630 if (base_type == NULL)
1631 return NULL;
1632 if (is_suffix (ada_type_name (base_type), "___XVE"))
1633 return base_type;
d2e4a39e 1634 else
14f9c5c9 1635 {
d2e4a39e 1636 struct type *alt_type = ada_find_parallel_type (base_type, "___XVE");
5b4ee69b 1637
14f9c5c9 1638 if (alt_type == NULL)
4c4b4cd2 1639 return base_type;
14f9c5c9 1640 else
4c4b4cd2 1641 return alt_type;
14f9c5c9
AS
1642 }
1643}
1644
4c4b4cd2
PH
1645/* A pointer to the array data for thin-pointer value VAL. */
1646
d2e4a39e
AS
1647static struct value *
1648thin_data_pntr (struct value *val)
14f9c5c9 1649{
828292f2 1650 struct type *type = ada_check_typedef (value_type (val));
556bdfd4 1651 struct type *data_type = desc_data_target_type (thin_descriptor_type (type));
5b4ee69b 1652
556bdfd4
UW
1653 data_type = lookup_pointer_type (data_type);
1654
14f9c5c9 1655 if (TYPE_CODE (type) == TYPE_CODE_PTR)
556bdfd4 1656 return value_cast (data_type, value_copy (val));
d2e4a39e 1657 else
42ae5230 1658 return value_from_longest (data_type, value_address (val));
14f9c5c9
AS
1659}
1660
4c4b4cd2
PH
1661/* True iff TYPE indicates a "thick" array pointer type. */
1662
14f9c5c9 1663static int
d2e4a39e 1664is_thick_pntr (struct type *type)
14f9c5c9
AS
1665{
1666 type = desc_base_type (type);
1667 return (type != NULL && TYPE_CODE (type) == TYPE_CODE_STRUCT
4c4b4cd2 1668 && lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL);
14f9c5c9
AS
1669}
1670
4c4b4cd2
PH
1671/* If TYPE is the type of an array descriptor (fat or thin pointer) or a
1672 pointer to one, the type of its bounds data; otherwise, NULL. */
76a01679 1673
d2e4a39e
AS
1674static struct type *
1675desc_bounds_type (struct type *type)
14f9c5c9 1676{
d2e4a39e 1677 struct type *r;
14f9c5c9
AS
1678
1679 type = desc_base_type (type);
1680
1681 if (type == NULL)
1682 return NULL;
1683 else if (is_thin_pntr (type))
1684 {
1685 type = thin_descriptor_type (type);
1686 if (type == NULL)
4c4b4cd2 1687 return NULL;
14f9c5c9
AS
1688 r = lookup_struct_elt_type (type, "BOUNDS", 1);
1689 if (r != NULL)
61ee279c 1690 return ada_check_typedef (r);
14f9c5c9
AS
1691 }
1692 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
1693 {
1694 r = lookup_struct_elt_type (type, "P_BOUNDS", 1);
1695 if (r != NULL)
61ee279c 1696 return ada_check_typedef (TYPE_TARGET_TYPE (ada_check_typedef (r)));
14f9c5c9
AS
1697 }
1698 return NULL;
1699}
1700
1701/* If ARR is an array descriptor (fat or thin pointer), or pointer to
4c4b4cd2
PH
1702 one, a pointer to its bounds data. Otherwise NULL. */
1703
d2e4a39e
AS
1704static struct value *
1705desc_bounds (struct value *arr)
14f9c5c9 1706{
df407dfe 1707 struct type *type = ada_check_typedef (value_type (arr));
5b4ee69b 1708
d2e4a39e 1709 if (is_thin_pntr (type))
14f9c5c9 1710 {
d2e4a39e 1711 struct type *bounds_type =
4c4b4cd2 1712 desc_bounds_type (thin_descriptor_type (type));
14f9c5c9
AS
1713 LONGEST addr;
1714
4cdfadb1 1715 if (bounds_type == NULL)
323e0a4a 1716 error (_("Bad GNAT array descriptor"));
14f9c5c9
AS
1717
1718 /* NOTE: The following calculation is not really kosher, but
d2e4a39e 1719 since desc_type is an XVE-encoded type (and shouldn't be),
4c4b4cd2 1720 the correct calculation is a real pain. FIXME (and fix GCC). */
14f9c5c9 1721 if (TYPE_CODE (type) == TYPE_CODE_PTR)
4c4b4cd2 1722 addr = value_as_long (arr);
d2e4a39e 1723 else
42ae5230 1724 addr = value_address (arr);
14f9c5c9 1725
d2e4a39e 1726 return
4c4b4cd2
PH
1727 value_from_longest (lookup_pointer_type (bounds_type),
1728 addr - TYPE_LENGTH (bounds_type));
14f9c5c9
AS
1729 }
1730
1731 else if (is_thick_pntr (type))
05e522ef
JB
1732 {
1733 struct value *p_bounds = value_struct_elt (&arr, NULL, "P_BOUNDS", NULL,
1734 _("Bad GNAT array descriptor"));
1735 struct type *p_bounds_type = value_type (p_bounds);
1736
1737 if (p_bounds_type
1738 && TYPE_CODE (p_bounds_type) == TYPE_CODE_PTR)
1739 {
1740 struct type *target_type = TYPE_TARGET_TYPE (p_bounds_type);
1741
1742 if (TYPE_STUB (target_type))
1743 p_bounds = value_cast (lookup_pointer_type
1744 (ada_check_typedef (target_type)),
1745 p_bounds);
1746 }
1747 else
1748 error (_("Bad GNAT array descriptor"));
1749
1750 return p_bounds;
1751 }
14f9c5c9
AS
1752 else
1753 return NULL;
1754}
1755
4c4b4cd2
PH
1756/* If TYPE is the type of an array-descriptor (fat pointer), the bit
1757 position of the field containing the address of the bounds data. */
1758
14f9c5c9 1759static int
d2e4a39e 1760fat_pntr_bounds_bitpos (struct type *type)
14f9c5c9
AS
1761{
1762 return TYPE_FIELD_BITPOS (desc_base_type (type), 1);
1763}
1764
1765/* If TYPE is the type of an array-descriptor (fat pointer), the bit
4c4b4cd2
PH
1766 size of the field containing the address of the bounds data. */
1767
14f9c5c9 1768static int
d2e4a39e 1769fat_pntr_bounds_bitsize (struct type *type)
14f9c5c9
AS
1770{
1771 type = desc_base_type (type);
1772
d2e4a39e 1773 if (TYPE_FIELD_BITSIZE (type, 1) > 0)
14f9c5c9
AS
1774 return TYPE_FIELD_BITSIZE (type, 1);
1775 else
61ee279c 1776 return 8 * TYPE_LENGTH (ada_check_typedef (TYPE_FIELD_TYPE (type, 1)));
14f9c5c9
AS
1777}
1778
4c4b4cd2 1779/* If TYPE is the type of an array descriptor (fat or thin pointer) or a
556bdfd4
UW
1780 pointer to one, the type of its array data (a array-with-no-bounds type);
1781 otherwise, NULL. Use ada_type_of_array to get an array type with bounds
1782 data. */
4c4b4cd2 1783
d2e4a39e 1784static struct type *
556bdfd4 1785desc_data_target_type (struct type *type)
14f9c5c9
AS
1786{
1787 type = desc_base_type (type);
1788
4c4b4cd2 1789 /* NOTE: The following is bogus; see comment in desc_bounds. */
14f9c5c9 1790 if (is_thin_pntr (type))
556bdfd4 1791 return desc_base_type (TYPE_FIELD_TYPE (thin_descriptor_type (type), 1));
14f9c5c9 1792 else if (is_thick_pntr (type))
556bdfd4
UW
1793 {
1794 struct type *data_type = lookup_struct_elt_type (type, "P_ARRAY", 1);
1795
1796 if (data_type
1797 && TYPE_CODE (ada_check_typedef (data_type)) == TYPE_CODE_PTR)
05e522ef 1798 return ada_check_typedef (TYPE_TARGET_TYPE (data_type));
556bdfd4
UW
1799 }
1800
1801 return NULL;
14f9c5c9
AS
1802}
1803
1804/* If ARR is an array descriptor (fat or thin pointer), a pointer to
1805 its array data. */
4c4b4cd2 1806
d2e4a39e
AS
1807static struct value *
1808desc_data (struct value *arr)
14f9c5c9 1809{
df407dfe 1810 struct type *type = value_type (arr);
5b4ee69b 1811
14f9c5c9
AS
1812 if (is_thin_pntr (type))
1813 return thin_data_pntr (arr);
1814 else if (is_thick_pntr (type))
d2e4a39e 1815 return value_struct_elt (&arr, NULL, "P_ARRAY", NULL,
323e0a4a 1816 _("Bad GNAT array descriptor"));
14f9c5c9
AS
1817 else
1818 return NULL;
1819}
1820
1821
1822/* If TYPE is the type of an array-descriptor (fat pointer), the bit
4c4b4cd2
PH
1823 position of the field containing the address of the data. */
1824
14f9c5c9 1825static int
d2e4a39e 1826fat_pntr_data_bitpos (struct type *type)
14f9c5c9
AS
1827{
1828 return TYPE_FIELD_BITPOS (desc_base_type (type), 0);
1829}
1830
1831/* If TYPE is the type of an array-descriptor (fat pointer), the bit
4c4b4cd2
PH
1832 size of the field containing the address of the data. */
1833
14f9c5c9 1834static int
d2e4a39e 1835fat_pntr_data_bitsize (struct type *type)
14f9c5c9
AS
1836{
1837 type = desc_base_type (type);
1838
1839 if (TYPE_FIELD_BITSIZE (type, 0) > 0)
1840 return TYPE_FIELD_BITSIZE (type, 0);
d2e4a39e 1841 else
14f9c5c9
AS
1842 return TARGET_CHAR_BIT * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 0));
1843}
1844
4c4b4cd2 1845/* If BOUNDS is an array-bounds structure (or pointer to one), return
14f9c5c9 1846 the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
4c4b4cd2
PH
1847 bound, if WHICH is 1. The first bound is I=1. */
1848
d2e4a39e
AS
1849static struct value *
1850desc_one_bound (struct value *bounds, int i, int which)
14f9c5c9 1851{
d2e4a39e 1852 return value_struct_elt (&bounds, NULL, bound_name[2 * i + which - 2], NULL,
323e0a4a 1853 _("Bad GNAT array descriptor bounds"));
14f9c5c9
AS
1854}
1855
1856/* If BOUNDS is an array-bounds structure type, return the bit position
1857 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
4c4b4cd2
PH
1858 bound, if WHICH is 1. The first bound is I=1. */
1859
14f9c5c9 1860static int
d2e4a39e 1861desc_bound_bitpos (struct type *type, int i, int which)
14f9c5c9 1862{
d2e4a39e 1863 return TYPE_FIELD_BITPOS (desc_base_type (type), 2 * i + which - 2);
14f9c5c9
AS
1864}
1865
1866/* If BOUNDS is an array-bounds structure type, return the bit field size
1867 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
4c4b4cd2
PH
1868 bound, if WHICH is 1. The first bound is I=1. */
1869
76a01679 1870static int
d2e4a39e 1871desc_bound_bitsize (struct type *type, int i, int which)
14f9c5c9
AS
1872{
1873 type = desc_base_type (type);
1874
d2e4a39e
AS
1875 if (TYPE_FIELD_BITSIZE (type, 2 * i + which - 2) > 0)
1876 return TYPE_FIELD_BITSIZE (type, 2 * i + which - 2);
1877 else
1878 return 8 * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 2 * i + which - 2));
14f9c5c9
AS
1879}
1880
1881/* If TYPE is the type of an array-bounds structure, the type of its
4c4b4cd2
PH
1882 Ith bound (numbering from 1). Otherwise, NULL. */
1883
d2e4a39e
AS
1884static struct type *
1885desc_index_type (struct type *type, int i)
14f9c5c9
AS
1886{
1887 type = desc_base_type (type);
1888
1889 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
d2e4a39e
AS
1890 return lookup_struct_elt_type (type, bound_name[2 * i - 2], 1);
1891 else
14f9c5c9
AS
1892 return NULL;
1893}
1894
4c4b4cd2
PH
1895/* The number of index positions in the array-bounds type TYPE.
1896 Return 0 if TYPE is NULL. */
1897
14f9c5c9 1898static int
d2e4a39e 1899desc_arity (struct type *type)
14f9c5c9
AS
1900{
1901 type = desc_base_type (type);
1902
1903 if (type != NULL)
1904 return TYPE_NFIELDS (type) / 2;
1905 return 0;
1906}
1907
4c4b4cd2
PH
1908/* Non-zero iff TYPE is a simple array type (not a pointer to one) or
1909 an array descriptor type (representing an unconstrained array
1910 type). */
1911
76a01679
JB
1912static int
1913ada_is_direct_array_type (struct type *type)
4c4b4cd2
PH
1914{
1915 if (type == NULL)
1916 return 0;
61ee279c 1917 type = ada_check_typedef (type);
4c4b4cd2 1918 return (TYPE_CODE (type) == TYPE_CODE_ARRAY
76a01679 1919 || ada_is_array_descriptor_type (type));
4c4b4cd2
PH
1920}
1921
52ce6436 1922/* Non-zero iff TYPE represents any kind of array in Ada, or a pointer
0963b4bd 1923 * to one. */
52ce6436 1924
2c0b251b 1925static int
52ce6436
PH
1926ada_is_array_type (struct type *type)
1927{
1928 while (type != NULL
1929 && (TYPE_CODE (type) == TYPE_CODE_PTR
1930 || TYPE_CODE (type) == TYPE_CODE_REF))
1931 type = TYPE_TARGET_TYPE (type);
1932 return ada_is_direct_array_type (type);
1933}
1934
4c4b4cd2 1935/* Non-zero iff TYPE is a simple array type or pointer to one. */
14f9c5c9 1936
14f9c5c9 1937int
4c4b4cd2 1938ada_is_simple_array_type (struct type *type)
14f9c5c9
AS
1939{
1940 if (type == NULL)
1941 return 0;
61ee279c 1942 type = ada_check_typedef (type);
14f9c5c9 1943 return (TYPE_CODE (type) == TYPE_CODE_ARRAY
4c4b4cd2 1944 || (TYPE_CODE (type) == TYPE_CODE_PTR
b0dd7688
JB
1945 && TYPE_CODE (ada_check_typedef (TYPE_TARGET_TYPE (type)))
1946 == TYPE_CODE_ARRAY));
14f9c5c9
AS
1947}
1948
4c4b4cd2
PH
1949/* Non-zero iff TYPE belongs to a GNAT array descriptor. */
1950
14f9c5c9 1951int
4c4b4cd2 1952ada_is_array_descriptor_type (struct type *type)
14f9c5c9 1953{
556bdfd4 1954 struct type *data_type = desc_data_target_type (type);
14f9c5c9
AS
1955
1956 if (type == NULL)
1957 return 0;
61ee279c 1958 type = ada_check_typedef (type);
556bdfd4
UW
1959 return (data_type != NULL
1960 && TYPE_CODE (data_type) == TYPE_CODE_ARRAY
1961 && desc_arity (desc_bounds_type (type)) > 0);
14f9c5c9
AS
1962}
1963
1964/* Non-zero iff type is a partially mal-formed GNAT array
4c4b4cd2 1965 descriptor. FIXME: This is to compensate for some problems with
14f9c5c9 1966 debugging output from GNAT. Re-examine periodically to see if it
4c4b4cd2
PH
1967 is still needed. */
1968
14f9c5c9 1969int
ebf56fd3 1970ada_is_bogus_array_descriptor (struct type *type)
14f9c5c9 1971{
d2e4a39e 1972 return
14f9c5c9
AS
1973 type != NULL
1974 && TYPE_CODE (type) == TYPE_CODE_STRUCT
1975 && (lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL
4c4b4cd2
PH
1976 || lookup_struct_elt_type (type, "P_ARRAY", 1) != NULL)
1977 && !ada_is_array_descriptor_type (type);
14f9c5c9
AS
1978}
1979
1980
4c4b4cd2 1981/* If ARR has a record type in the form of a standard GNAT array descriptor,
14f9c5c9 1982 (fat pointer) returns the type of the array data described---specifically,
4c4b4cd2 1983 a pointer-to-array type. If BOUNDS is non-zero, the bounds data are filled
14f9c5c9 1984 in from the descriptor; otherwise, they are left unspecified. If
4c4b4cd2
PH
1985 the ARR denotes a null array descriptor and BOUNDS is non-zero,
1986 returns NULL. The result is simply the type of ARR if ARR is not
14f9c5c9 1987 a descriptor. */
d2e4a39e
AS
1988struct type *
1989ada_type_of_array (struct value *arr, int bounds)
14f9c5c9 1990{
ad82864c
JB
1991 if (ada_is_constrained_packed_array_type (value_type (arr)))
1992 return decode_constrained_packed_array_type (value_type (arr));
14f9c5c9 1993
df407dfe
AC
1994 if (!ada_is_array_descriptor_type (value_type (arr)))
1995 return value_type (arr);
d2e4a39e
AS
1996
1997 if (!bounds)
ad82864c
JB
1998 {
1999 struct type *array_type =
2000 ada_check_typedef (desc_data_target_type (value_type (arr)));
2001
2002 if (ada_is_unconstrained_packed_array_type (value_type (arr)))
2003 TYPE_FIELD_BITSIZE (array_type, 0) =
2004 decode_packed_array_bitsize (value_type (arr));
2005
2006 return array_type;
2007 }
14f9c5c9
AS
2008 else
2009 {
d2e4a39e 2010 struct type *elt_type;
14f9c5c9 2011 int arity;
d2e4a39e 2012 struct value *descriptor;
14f9c5c9 2013
df407dfe
AC
2014 elt_type = ada_array_element_type (value_type (arr), -1);
2015 arity = ada_array_arity (value_type (arr));
14f9c5c9 2016
d2e4a39e 2017 if (elt_type == NULL || arity == 0)
df407dfe 2018 return ada_check_typedef (value_type (arr));
14f9c5c9
AS
2019
2020 descriptor = desc_bounds (arr);
d2e4a39e 2021 if (value_as_long (descriptor) == 0)
4c4b4cd2 2022 return NULL;
d2e4a39e 2023 while (arity > 0)
4c4b4cd2 2024 {
e9bb382b
UW
2025 struct type *range_type = alloc_type_copy (value_type (arr));
2026 struct type *array_type = alloc_type_copy (value_type (arr));
4c4b4cd2
PH
2027 struct value *low = desc_one_bound (descriptor, arity, 0);
2028 struct value *high = desc_one_bound (descriptor, arity, 1);
4c4b4cd2 2029
5b4ee69b 2030 arity -= 1;
0c9c3474
SA
2031 create_static_range_type (range_type, value_type (low),
2032 longest_to_int (value_as_long (low)),
2033 longest_to_int (value_as_long (high)));
4c4b4cd2 2034 elt_type = create_array_type (array_type, elt_type, range_type);
ad82864c
JB
2035
2036 if (ada_is_unconstrained_packed_array_type (value_type (arr)))
e67ad678
JB
2037 {
2038 /* We need to store the element packed bitsize, as well as
2039 recompute the array size, because it was previously
2040 computed based on the unpacked element size. */
2041 LONGEST lo = value_as_long (low);
2042 LONGEST hi = value_as_long (high);
2043
2044 TYPE_FIELD_BITSIZE (elt_type, 0) =
2045 decode_packed_array_bitsize (value_type (arr));
2046 /* If the array has no element, then the size is already
2047 zero, and does not need to be recomputed. */
2048 if (lo < hi)
2049 {
2050 int array_bitsize =
2051 (hi - lo + 1) * TYPE_FIELD_BITSIZE (elt_type, 0);
2052
2053 TYPE_LENGTH (array_type) = (array_bitsize + 7) / 8;
2054 }
2055 }
4c4b4cd2 2056 }
14f9c5c9
AS
2057
2058 return lookup_pointer_type (elt_type);
2059 }
2060}
2061
2062/* If ARR does not represent an array, returns ARR unchanged.
4c4b4cd2
PH
2063 Otherwise, returns either a standard GDB array with bounds set
2064 appropriately or, if ARR is a non-null fat pointer, a pointer to a standard
2065 GDB array. Returns NULL if ARR is a null fat pointer. */
2066
d2e4a39e
AS
2067struct value *
2068ada_coerce_to_simple_array_ptr (struct value *arr)
14f9c5c9 2069{
df407dfe 2070 if (ada_is_array_descriptor_type (value_type (arr)))
14f9c5c9 2071 {
d2e4a39e 2072 struct type *arrType = ada_type_of_array (arr, 1);
5b4ee69b 2073
14f9c5c9 2074 if (arrType == NULL)
4c4b4cd2 2075 return NULL;
14f9c5c9
AS
2076 return value_cast (arrType, value_copy (desc_data (arr)));
2077 }
ad82864c
JB
2078 else if (ada_is_constrained_packed_array_type (value_type (arr)))
2079 return decode_constrained_packed_array (arr);
14f9c5c9
AS
2080 else
2081 return arr;
2082}
2083
2084/* If ARR does not represent an array, returns ARR unchanged.
2085 Otherwise, returns a standard GDB array describing ARR (which may
4c4b4cd2
PH
2086 be ARR itself if it already is in the proper form). */
2087
720d1a40 2088struct value *
d2e4a39e 2089ada_coerce_to_simple_array (struct value *arr)
14f9c5c9 2090{
df407dfe 2091 if (ada_is_array_descriptor_type (value_type (arr)))
14f9c5c9 2092 {
d2e4a39e 2093 struct value *arrVal = ada_coerce_to_simple_array_ptr (arr);
5b4ee69b 2094
14f9c5c9 2095 if (arrVal == NULL)
323e0a4a 2096 error (_("Bounds unavailable for null array pointer."));
c1b5a1a6 2097 ada_ensure_varsize_limit (TYPE_TARGET_TYPE (value_type (arrVal)));
14f9c5c9
AS
2098 return value_ind (arrVal);
2099 }
ad82864c
JB
2100 else if (ada_is_constrained_packed_array_type (value_type (arr)))
2101 return decode_constrained_packed_array (arr);
d2e4a39e 2102 else
14f9c5c9
AS
2103 return arr;
2104}
2105
2106/* If TYPE represents a GNAT array type, return it translated to an
2107 ordinary GDB array type (possibly with BITSIZE fields indicating
4c4b4cd2
PH
2108 packing). For other types, is the identity. */
2109
d2e4a39e
AS
2110struct type *
2111ada_coerce_to_simple_array_type (struct type *type)
14f9c5c9 2112{
ad82864c
JB
2113 if (ada_is_constrained_packed_array_type (type))
2114 return decode_constrained_packed_array_type (type);
17280b9f
UW
2115
2116 if (ada_is_array_descriptor_type (type))
556bdfd4 2117 return ada_check_typedef (desc_data_target_type (type));
17280b9f
UW
2118
2119 return type;
14f9c5c9
AS
2120}
2121
4c4b4cd2
PH
2122/* Non-zero iff TYPE represents a standard GNAT packed-array type. */
2123
ad82864c
JB
2124static int
2125ada_is_packed_array_type (struct type *type)
14f9c5c9
AS
2126{
2127 if (type == NULL)
2128 return 0;
4c4b4cd2 2129 type = desc_base_type (type);
61ee279c 2130 type = ada_check_typedef (type);
d2e4a39e 2131 return
14f9c5c9
AS
2132 ada_type_name (type) != NULL
2133 && strstr (ada_type_name (type), "___XP") != NULL;
2134}
2135
ad82864c
JB
2136/* Non-zero iff TYPE represents a standard GNAT constrained
2137 packed-array type. */
2138
2139int
2140ada_is_constrained_packed_array_type (struct type *type)
2141{
2142 return ada_is_packed_array_type (type)
2143 && !ada_is_array_descriptor_type (type);
2144}
2145
2146/* Non-zero iff TYPE represents an array descriptor for a
2147 unconstrained packed-array type. */
2148
2149static int
2150ada_is_unconstrained_packed_array_type (struct type *type)
2151{
2152 return ada_is_packed_array_type (type)
2153 && ada_is_array_descriptor_type (type);
2154}
2155
2156/* Given that TYPE encodes a packed array type (constrained or unconstrained),
2157 return the size of its elements in bits. */
2158
2159static long
2160decode_packed_array_bitsize (struct type *type)
2161{
0d5cff50
DE
2162 const char *raw_name;
2163 const char *tail;
ad82864c
JB
2164 long bits;
2165
720d1a40
JB
2166 /* Access to arrays implemented as fat pointers are encoded as a typedef
2167 of the fat pointer type. We need the name of the fat pointer type
2168 to do the decoding, so strip the typedef layer. */
2169 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
2170 type = ada_typedef_target_type (type);
2171
2172 raw_name = ada_type_name (ada_check_typedef (type));
ad82864c
JB
2173 if (!raw_name)
2174 raw_name = ada_type_name (desc_base_type (type));
2175
2176 if (!raw_name)
2177 return 0;
2178
2179 tail = strstr (raw_name, "___XP");
720d1a40 2180 gdb_assert (tail != NULL);
ad82864c
JB
2181
2182 if (sscanf (tail + sizeof ("___XP") - 1, "%ld", &bits) != 1)
2183 {
2184 lim_warning
2185 (_("could not understand bit size information on packed array"));
2186 return 0;
2187 }
2188
2189 return bits;
2190}
2191
14f9c5c9
AS
2192/* Given that TYPE is a standard GDB array type with all bounds filled
2193 in, and that the element size of its ultimate scalar constituents
2194 (that is, either its elements, or, if it is an array of arrays, its
2195 elements' elements, etc.) is *ELT_BITS, return an identical type,
2196 but with the bit sizes of its elements (and those of any
2197 constituent arrays) recorded in the BITSIZE components of its
4c4b4cd2 2198 TYPE_FIELD_BITSIZE values, and with *ELT_BITS set to its total size
4a46959e
JB
2199 in bits.
2200
2201 Note that, for arrays whose index type has an XA encoding where
2202 a bound references a record discriminant, getting that discriminant,
2203 and therefore the actual value of that bound, is not possible
2204 because none of the given parameters gives us access to the record.
2205 This function assumes that it is OK in the context where it is being
2206 used to return an array whose bounds are still dynamic and where
2207 the length is arbitrary. */
4c4b4cd2 2208
d2e4a39e 2209static struct type *
ad82864c 2210constrained_packed_array_type (struct type *type, long *elt_bits)
14f9c5c9 2211{
d2e4a39e
AS
2212 struct type *new_elt_type;
2213 struct type *new_type;
99b1c762
JB
2214 struct type *index_type_desc;
2215 struct type *index_type;
14f9c5c9
AS
2216 LONGEST low_bound, high_bound;
2217
61ee279c 2218 type = ada_check_typedef (type);
14f9c5c9
AS
2219 if (TYPE_CODE (type) != TYPE_CODE_ARRAY)
2220 return type;
2221
99b1c762
JB
2222 index_type_desc = ada_find_parallel_type (type, "___XA");
2223 if (index_type_desc)
2224 index_type = to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, 0),
2225 NULL);
2226 else
2227 index_type = TYPE_INDEX_TYPE (type);
2228
e9bb382b 2229 new_type = alloc_type_copy (type);
ad82864c
JB
2230 new_elt_type =
2231 constrained_packed_array_type (ada_check_typedef (TYPE_TARGET_TYPE (type)),
2232 elt_bits);
99b1c762 2233 create_array_type (new_type, new_elt_type, index_type);
14f9c5c9
AS
2234 TYPE_FIELD_BITSIZE (new_type, 0) = *elt_bits;
2235 TYPE_NAME (new_type) = ada_type_name (type);
2236
4a46959e
JB
2237 if ((TYPE_CODE (check_typedef (index_type)) == TYPE_CODE_RANGE
2238 && is_dynamic_type (check_typedef (index_type)))
2239 || get_discrete_bounds (index_type, &low_bound, &high_bound) < 0)
14f9c5c9
AS
2240 low_bound = high_bound = 0;
2241 if (high_bound < low_bound)
2242 *elt_bits = TYPE_LENGTH (new_type) = 0;
d2e4a39e 2243 else
14f9c5c9
AS
2244 {
2245 *elt_bits *= (high_bound - low_bound + 1);
d2e4a39e 2246 TYPE_LENGTH (new_type) =
4c4b4cd2 2247 (*elt_bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
14f9c5c9
AS
2248 }
2249
876cecd0 2250 TYPE_FIXED_INSTANCE (new_type) = 1;
14f9c5c9
AS
2251 return new_type;
2252}
2253
ad82864c
JB
2254/* The array type encoded by TYPE, where
2255 ada_is_constrained_packed_array_type (TYPE). */
4c4b4cd2 2256
d2e4a39e 2257static struct type *
ad82864c 2258decode_constrained_packed_array_type (struct type *type)
d2e4a39e 2259{
0d5cff50 2260 const char *raw_name = ada_type_name (ada_check_typedef (type));
727e3d2e 2261 char *name;
0d5cff50 2262 const char *tail;
d2e4a39e 2263 struct type *shadow_type;
14f9c5c9 2264 long bits;
14f9c5c9 2265
727e3d2e
JB
2266 if (!raw_name)
2267 raw_name = ada_type_name (desc_base_type (type));
2268
2269 if (!raw_name)
2270 return NULL;
2271
2272 name = (char *) alloca (strlen (raw_name) + 1);
2273 tail = strstr (raw_name, "___XP");
4c4b4cd2
PH
2274 type = desc_base_type (type);
2275
14f9c5c9
AS
2276 memcpy (name, raw_name, tail - raw_name);
2277 name[tail - raw_name] = '\000';
2278
b4ba55a1
JB
2279 shadow_type = ada_find_parallel_type_with_name (type, name);
2280
2281 if (shadow_type == NULL)
14f9c5c9 2282 {
323e0a4a 2283 lim_warning (_("could not find bounds information on packed array"));
14f9c5c9
AS
2284 return NULL;
2285 }
f168693b 2286 shadow_type = check_typedef (shadow_type);
14f9c5c9
AS
2287
2288 if (TYPE_CODE (shadow_type) != TYPE_CODE_ARRAY)
2289 {
0963b4bd
MS
2290 lim_warning (_("could not understand bounds "
2291 "information on packed array"));
14f9c5c9
AS
2292 return NULL;
2293 }
d2e4a39e 2294
ad82864c
JB
2295 bits = decode_packed_array_bitsize (type);
2296 return constrained_packed_array_type (shadow_type, &bits);
14f9c5c9
AS
2297}
2298
ad82864c
JB
2299/* Given that ARR is a struct value *indicating a GNAT constrained packed
2300 array, returns a simple array that denotes that array. Its type is a
14f9c5c9
AS
2301 standard GDB array type except that the BITSIZEs of the array
2302 target types are set to the number of bits in each element, and the
4c4b4cd2 2303 type length is set appropriately. */
14f9c5c9 2304
d2e4a39e 2305static struct value *
ad82864c 2306decode_constrained_packed_array (struct value *arr)
14f9c5c9 2307{
4c4b4cd2 2308 struct type *type;
14f9c5c9 2309
11aa919a
PMR
2310 /* If our value is a pointer, then dereference it. Likewise if
2311 the value is a reference. Make sure that this operation does not
2312 cause the target type to be fixed, as this would indirectly cause
2313 this array to be decoded. The rest of the routine assumes that
2314 the array hasn't been decoded yet, so we use the basic "coerce_ref"
2315 and "value_ind" routines to perform the dereferencing, as opposed
2316 to using "ada_coerce_ref" or "ada_value_ind". */
2317 arr = coerce_ref (arr);
828292f2 2318 if (TYPE_CODE (ada_check_typedef (value_type (arr))) == TYPE_CODE_PTR)
284614f0 2319 arr = value_ind (arr);
4c4b4cd2 2320
ad82864c 2321 type = decode_constrained_packed_array_type (value_type (arr));
14f9c5c9
AS
2322 if (type == NULL)
2323 {
323e0a4a 2324 error (_("can't unpack array"));
14f9c5c9
AS
2325 return NULL;
2326 }
61ee279c 2327
50810684 2328 if (gdbarch_bits_big_endian (get_type_arch (value_type (arr)))
32c9a795 2329 && ada_is_modular_type (value_type (arr)))
61ee279c
PH
2330 {
2331 /* This is a (right-justified) modular type representing a packed
2332 array with no wrapper. In order to interpret the value through
2333 the (left-justified) packed array type we just built, we must
2334 first left-justify it. */
2335 int bit_size, bit_pos;
2336 ULONGEST mod;
2337
df407dfe 2338 mod = ada_modulus (value_type (arr)) - 1;
61ee279c
PH
2339 bit_size = 0;
2340 while (mod > 0)
2341 {
2342 bit_size += 1;
2343 mod >>= 1;
2344 }
df407dfe 2345 bit_pos = HOST_CHAR_BIT * TYPE_LENGTH (value_type (arr)) - bit_size;
61ee279c
PH
2346 arr = ada_value_primitive_packed_val (arr, NULL,
2347 bit_pos / HOST_CHAR_BIT,
2348 bit_pos % HOST_CHAR_BIT,
2349 bit_size,
2350 type);
2351 }
2352
4c4b4cd2 2353 return coerce_unspec_val_to_type (arr, type);
14f9c5c9
AS
2354}
2355
2356
2357/* The value of the element of packed array ARR at the ARITY indices
4c4b4cd2 2358 given in IND. ARR must be a simple array. */
14f9c5c9 2359
d2e4a39e
AS
2360static struct value *
2361value_subscript_packed (struct value *arr, int arity, struct value **ind)
14f9c5c9
AS
2362{
2363 int i;
2364 int bits, elt_off, bit_off;
2365 long elt_total_bit_offset;
d2e4a39e
AS
2366 struct type *elt_type;
2367 struct value *v;
14f9c5c9
AS
2368
2369 bits = 0;
2370 elt_total_bit_offset = 0;
df407dfe 2371 elt_type = ada_check_typedef (value_type (arr));
d2e4a39e 2372 for (i = 0; i < arity; i += 1)
14f9c5c9 2373 {
d2e4a39e 2374 if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY
4c4b4cd2
PH
2375 || TYPE_FIELD_BITSIZE (elt_type, 0) == 0)
2376 error
0963b4bd
MS
2377 (_("attempt to do packed indexing of "
2378 "something other than a packed array"));
14f9c5c9 2379 else
4c4b4cd2
PH
2380 {
2381 struct type *range_type = TYPE_INDEX_TYPE (elt_type);
2382 LONGEST lowerbound, upperbound;
2383 LONGEST idx;
2384
2385 if (get_discrete_bounds (range_type, &lowerbound, &upperbound) < 0)
2386 {
323e0a4a 2387 lim_warning (_("don't know bounds of array"));
4c4b4cd2
PH
2388 lowerbound = upperbound = 0;
2389 }
2390
3cb382c9 2391 idx = pos_atr (ind[i]);
4c4b4cd2 2392 if (idx < lowerbound || idx > upperbound)
0963b4bd
MS
2393 lim_warning (_("packed array index %ld out of bounds"),
2394 (long) idx);
4c4b4cd2
PH
2395 bits = TYPE_FIELD_BITSIZE (elt_type, 0);
2396 elt_total_bit_offset += (idx - lowerbound) * bits;
61ee279c 2397 elt_type = ada_check_typedef (TYPE_TARGET_TYPE (elt_type));
4c4b4cd2 2398 }
14f9c5c9
AS
2399 }
2400 elt_off = elt_total_bit_offset / HOST_CHAR_BIT;
2401 bit_off = elt_total_bit_offset % HOST_CHAR_BIT;
d2e4a39e
AS
2402
2403 v = ada_value_primitive_packed_val (arr, NULL, elt_off, bit_off,
4c4b4cd2 2404 bits, elt_type);
14f9c5c9
AS
2405 return v;
2406}
2407
4c4b4cd2 2408/* Non-zero iff TYPE includes negative integer values. */
14f9c5c9
AS
2409
2410static int
d2e4a39e 2411has_negatives (struct type *type)
14f9c5c9 2412{
d2e4a39e
AS
2413 switch (TYPE_CODE (type))
2414 {
2415 default:
2416 return 0;
2417 case TYPE_CODE_INT:
2418 return !TYPE_UNSIGNED (type);
2419 case TYPE_CODE_RANGE:
2420 return TYPE_LOW_BOUND (type) < 0;
2421 }
14f9c5c9 2422}
d2e4a39e 2423
f93fca70 2424/* With SRC being a buffer containing BIT_SIZE bits of data at BIT_OFFSET,
5b639dea 2425 unpack that data into UNPACKED. UNPACKED_LEN is the size in bytes of
f93fca70 2426 the unpacked buffer.
14f9c5c9 2427
5b639dea
JB
2428 The size of the unpacked buffer (UNPACKED_LEN) is expected to be large
2429 enough to contain at least BIT_OFFSET bits. If not, an error is raised.
2430
f93fca70
JB
2431 IS_BIG_ENDIAN is nonzero if the data is stored in big endian mode,
2432 zero otherwise.
14f9c5c9 2433
f93fca70 2434 IS_SIGNED_TYPE is nonzero if the data corresponds to a signed type.
a1c95e6b 2435
f93fca70
JB
2436 IS_SCALAR is nonzero if the data corresponds to a signed type. */
2437
2438static void
2439ada_unpack_from_contents (const gdb_byte *src, int bit_offset, int bit_size,
2440 gdb_byte *unpacked, int unpacked_len,
2441 int is_big_endian, int is_signed_type,
2442 int is_scalar)
2443{
a1c95e6b
JB
2444 int src_len = (bit_size + bit_offset + HOST_CHAR_BIT - 1) / 8;
2445 int src_idx; /* Index into the source area */
2446 int src_bytes_left; /* Number of source bytes left to process. */
2447 int srcBitsLeft; /* Number of source bits left to move */
2448 int unusedLS; /* Number of bits in next significant
2449 byte of source that are unused */
2450
a1c95e6b
JB
2451 int unpacked_idx; /* Index into the unpacked buffer */
2452 int unpacked_bytes_left; /* Number of bytes left to set in unpacked. */
2453
4c4b4cd2 2454 unsigned long accum; /* Staging area for bits being transferred */
a1c95e6b 2455 int accumSize; /* Number of meaningful bits in accum */
14f9c5c9 2456 unsigned char sign;
a1c95e6b 2457
4c4b4cd2
PH
2458 /* Transmit bytes from least to most significant; delta is the direction
2459 the indices move. */
f93fca70 2460 int delta = is_big_endian ? -1 : 1;
14f9c5c9 2461
5b639dea
JB
2462 /* Make sure that unpacked is large enough to receive the BIT_SIZE
2463 bits from SRC. .*/
2464 if ((bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT > unpacked_len)
2465 error (_("Cannot unpack %d bits into buffer of %d bytes"),
2466 bit_size, unpacked_len);
2467
14f9c5c9 2468 srcBitsLeft = bit_size;
086ca51f 2469 src_bytes_left = src_len;
f93fca70 2470 unpacked_bytes_left = unpacked_len;
14f9c5c9 2471 sign = 0;
f93fca70
JB
2472
2473 if (is_big_endian)
14f9c5c9 2474 {
086ca51f 2475 src_idx = src_len - 1;
f93fca70
JB
2476 if (is_signed_type
2477 && ((src[0] << bit_offset) & (1 << (HOST_CHAR_BIT - 1))))
4c4b4cd2 2478 sign = ~0;
d2e4a39e
AS
2479
2480 unusedLS =
4c4b4cd2
PH
2481 (HOST_CHAR_BIT - (bit_size + bit_offset) % HOST_CHAR_BIT)
2482 % HOST_CHAR_BIT;
14f9c5c9 2483
f93fca70
JB
2484 if (is_scalar)
2485 {
2486 accumSize = 0;
2487 unpacked_idx = unpacked_len - 1;
2488 }
2489 else
2490 {
4c4b4cd2
PH
2491 /* Non-scalar values must be aligned at a byte boundary... */
2492 accumSize =
2493 (HOST_CHAR_BIT - bit_size % HOST_CHAR_BIT) % HOST_CHAR_BIT;
2494 /* ... And are placed at the beginning (most-significant) bytes
2495 of the target. */
086ca51f
JB
2496 unpacked_idx = (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT - 1;
2497 unpacked_bytes_left = unpacked_idx + 1;
f93fca70 2498 }
14f9c5c9 2499 }
d2e4a39e 2500 else
14f9c5c9
AS
2501 {
2502 int sign_bit_offset = (bit_size + bit_offset - 1) % 8;
2503
086ca51f 2504 src_idx = unpacked_idx = 0;
14f9c5c9
AS
2505 unusedLS = bit_offset;
2506 accumSize = 0;
2507
f93fca70 2508 if (is_signed_type && (src[src_len - 1] & (1 << sign_bit_offset)))
4c4b4cd2 2509 sign = ~0;
14f9c5c9 2510 }
d2e4a39e 2511
14f9c5c9 2512 accum = 0;
086ca51f 2513 while (src_bytes_left > 0)
14f9c5c9
AS
2514 {
2515 /* Mask for removing bits of the next source byte that are not
4c4b4cd2 2516 part of the value. */
d2e4a39e 2517 unsigned int unusedMSMask =
4c4b4cd2
PH
2518 (1 << (srcBitsLeft >= HOST_CHAR_BIT ? HOST_CHAR_BIT : srcBitsLeft)) -
2519 1;
2520 /* Sign-extend bits for this byte. */
14f9c5c9 2521 unsigned int signMask = sign & ~unusedMSMask;
5b4ee69b 2522
d2e4a39e 2523 accum |=
086ca51f 2524 (((src[src_idx] >> unusedLS) & unusedMSMask) | signMask) << accumSize;
14f9c5c9 2525 accumSize += HOST_CHAR_BIT - unusedLS;
d2e4a39e 2526 if (accumSize >= HOST_CHAR_BIT)
4c4b4cd2 2527 {
db297a65 2528 unpacked[unpacked_idx] = accum & ~(~0UL << HOST_CHAR_BIT);
4c4b4cd2
PH
2529 accumSize -= HOST_CHAR_BIT;
2530 accum >>= HOST_CHAR_BIT;
086ca51f
JB
2531 unpacked_bytes_left -= 1;
2532 unpacked_idx += delta;
4c4b4cd2 2533 }
14f9c5c9
AS
2534 srcBitsLeft -= HOST_CHAR_BIT - unusedLS;
2535 unusedLS = 0;
086ca51f
JB
2536 src_bytes_left -= 1;
2537 src_idx += delta;
14f9c5c9 2538 }
086ca51f 2539 while (unpacked_bytes_left > 0)
14f9c5c9
AS
2540 {
2541 accum |= sign << accumSize;
db297a65 2542 unpacked[unpacked_idx] = accum & ~(~0UL << HOST_CHAR_BIT);
14f9c5c9 2543 accumSize -= HOST_CHAR_BIT;
9cd4d857
JB
2544 if (accumSize < 0)
2545 accumSize = 0;
14f9c5c9 2546 accum >>= HOST_CHAR_BIT;
086ca51f
JB
2547 unpacked_bytes_left -= 1;
2548 unpacked_idx += delta;
14f9c5c9 2549 }
f93fca70
JB
2550}
2551
2552/* Create a new value of type TYPE from the contents of OBJ starting
2553 at byte OFFSET, and bit offset BIT_OFFSET within that byte,
2554 proceeding for BIT_SIZE bits. If OBJ is an lval in memory, then
2555 assigning through the result will set the field fetched from.
2556 VALADDR is ignored unless OBJ is NULL, in which case,
2557 VALADDR+OFFSET must address the start of storage containing the
2558 packed value. The value returned in this case is never an lval.
2559 Assumes 0 <= BIT_OFFSET < HOST_CHAR_BIT. */
2560
2561struct value *
2562ada_value_primitive_packed_val (struct value *obj, const gdb_byte *valaddr,
2563 long offset, int bit_offset, int bit_size,
2564 struct type *type)
2565{
2566 struct value *v;
bfb1c796 2567 const gdb_byte *src; /* First byte containing data to unpack */
f93fca70 2568 gdb_byte *unpacked;
220475ed 2569 const int is_scalar = is_scalar_type (type);
d0a9e810
JB
2570 const int is_big_endian = gdbarch_bits_big_endian (get_type_arch (type));
2571 gdb_byte *staging = NULL;
2572 int staging_len = 0;
2573 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
f93fca70
JB
2574
2575 type = ada_check_typedef (type);
2576
d0a9e810 2577 if (obj == NULL)
bfb1c796 2578 src = valaddr + offset;
d0a9e810 2579 else
bfb1c796 2580 src = value_contents (obj) + offset;
d0a9e810
JB
2581
2582 if (is_dynamic_type (type))
2583 {
2584 /* The length of TYPE might by dynamic, so we need to resolve
2585 TYPE in order to know its actual size, which we then use
2586 to create the contents buffer of the value we return.
2587 The difficulty is that the data containing our object is
2588 packed, and therefore maybe not at a byte boundary. So, what
2589 we do, is unpack the data into a byte-aligned buffer, and then
2590 use that buffer as our object's value for resolving the type. */
2591 staging_len = (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
aa5c10ce 2592 staging = (gdb_byte *) malloc (staging_len);
d0a9e810
JB
2593 make_cleanup (xfree, staging);
2594
2595 ada_unpack_from_contents (src, bit_offset, bit_size,
2596 staging, staging_len,
2597 is_big_endian, has_negatives (type),
2598 is_scalar);
2599 type = resolve_dynamic_type (type, staging, 0);
0cafa88c
JB
2600 if (TYPE_LENGTH (type) < (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT)
2601 {
2602 /* This happens when the length of the object is dynamic,
2603 and is actually smaller than the space reserved for it.
2604 For instance, in an array of variant records, the bit_size
2605 we're given is the array stride, which is constant and
2606 normally equal to the maximum size of its element.
2607 But, in reality, each element only actually spans a portion
2608 of that stride. */
2609 bit_size = TYPE_LENGTH (type) * HOST_CHAR_BIT;
2610 }
d0a9e810
JB
2611 }
2612
f93fca70
JB
2613 if (obj == NULL)
2614 {
2615 v = allocate_value (type);
bfb1c796 2616 src = valaddr + offset;
f93fca70
JB
2617 }
2618 else if (VALUE_LVAL (obj) == lval_memory && value_lazy (obj))
2619 {
0cafa88c 2620 int src_len = (bit_size + bit_offset + HOST_CHAR_BIT - 1) / 8;
bfb1c796 2621 gdb_byte *buf;
0cafa88c 2622
f93fca70 2623 v = value_at (type, value_address (obj) + offset);
bfb1c796
PA
2624 buf = (gdb_byte *) alloca (src_len);
2625 read_memory (value_address (v), buf, src_len);
2626 src = buf;
f93fca70
JB
2627 }
2628 else
2629 {
2630 v = allocate_value (type);
bfb1c796 2631 src = value_contents (obj) + offset;
f93fca70
JB
2632 }
2633
2634 if (obj != NULL)
2635 {
2636 long new_offset = offset;
2637
2638 set_value_component_location (v, obj);
2639 set_value_bitpos (v, bit_offset + value_bitpos (obj));
2640 set_value_bitsize (v, bit_size);
2641 if (value_bitpos (v) >= HOST_CHAR_BIT)
2642 {
2643 ++new_offset;
2644 set_value_bitpos (v, value_bitpos (v) - HOST_CHAR_BIT);
2645 }
2646 set_value_offset (v, new_offset);
2647
2648 /* Also set the parent value. This is needed when trying to
2649 assign a new value (in inferior memory). */
2650 set_value_parent (v, obj);
2651 }
2652 else
2653 set_value_bitsize (v, bit_size);
bfb1c796 2654 unpacked = value_contents_writeable (v);
f93fca70
JB
2655
2656 if (bit_size == 0)
2657 {
2658 memset (unpacked, 0, TYPE_LENGTH (type));
d0a9e810 2659 do_cleanups (old_chain);
f93fca70
JB
2660 return v;
2661 }
2662
d0a9e810 2663 if (staging != NULL && staging_len == TYPE_LENGTH (type))
f93fca70 2664 {
d0a9e810
JB
2665 /* Small short-cut: If we've unpacked the data into a buffer
2666 of the same size as TYPE's length, then we can reuse that,
2667 instead of doing the unpacking again. */
2668 memcpy (unpacked, staging, staging_len);
f93fca70 2669 }
d0a9e810
JB
2670 else
2671 ada_unpack_from_contents (src, bit_offset, bit_size,
2672 unpacked, TYPE_LENGTH (type),
2673 is_big_endian, has_negatives (type), is_scalar);
f93fca70 2674
d0a9e810 2675 do_cleanups (old_chain);
14f9c5c9
AS
2676 return v;
2677}
d2e4a39e 2678
14f9c5c9
AS
2679/* Move N bits from SOURCE, starting at bit offset SRC_OFFSET to
2680 TARGET, starting at bit offset TARG_OFFSET. SOURCE and TARGET must
4c4b4cd2 2681 not overlap. */
14f9c5c9 2682static void
fc1a4b47 2683move_bits (gdb_byte *target, int targ_offset, const gdb_byte *source,
50810684 2684 int src_offset, int n, int bits_big_endian_p)
14f9c5c9
AS
2685{
2686 unsigned int accum, mask;
2687 int accum_bits, chunk_size;
2688
2689 target += targ_offset / HOST_CHAR_BIT;
2690 targ_offset %= HOST_CHAR_BIT;
2691 source += src_offset / HOST_CHAR_BIT;
2692 src_offset %= HOST_CHAR_BIT;
50810684 2693 if (bits_big_endian_p)
14f9c5c9
AS
2694 {
2695 accum = (unsigned char) *source;
2696 source += 1;
2697 accum_bits = HOST_CHAR_BIT - src_offset;
2698
d2e4a39e 2699 while (n > 0)
4c4b4cd2
PH
2700 {
2701 int unused_right;
5b4ee69b 2702
4c4b4cd2
PH
2703 accum = (accum << HOST_CHAR_BIT) + (unsigned char) *source;
2704 accum_bits += HOST_CHAR_BIT;
2705 source += 1;
2706 chunk_size = HOST_CHAR_BIT - targ_offset;
2707 if (chunk_size > n)
2708 chunk_size = n;
2709 unused_right = HOST_CHAR_BIT - (chunk_size + targ_offset);
2710 mask = ((1 << chunk_size) - 1) << unused_right;
2711 *target =
2712 (*target & ~mask)
2713 | ((accum >> (accum_bits - chunk_size - unused_right)) & mask);
2714 n -= chunk_size;
2715 accum_bits -= chunk_size;
2716 target += 1;
2717 targ_offset = 0;
2718 }
14f9c5c9
AS
2719 }
2720 else
2721 {
2722 accum = (unsigned char) *source >> src_offset;
2723 source += 1;
2724 accum_bits = HOST_CHAR_BIT - src_offset;
2725
d2e4a39e 2726 while (n > 0)
4c4b4cd2
PH
2727 {
2728 accum = accum + ((unsigned char) *source << accum_bits);
2729 accum_bits += HOST_CHAR_BIT;
2730 source += 1;
2731 chunk_size = HOST_CHAR_BIT - targ_offset;
2732 if (chunk_size > n)
2733 chunk_size = n;
2734 mask = ((1 << chunk_size) - 1) << targ_offset;
2735 *target = (*target & ~mask) | ((accum << targ_offset) & mask);
2736 n -= chunk_size;
2737 accum_bits -= chunk_size;
2738 accum >>= chunk_size;
2739 target += 1;
2740 targ_offset = 0;
2741 }
14f9c5c9
AS
2742 }
2743}
2744
14f9c5c9
AS
2745/* Store the contents of FROMVAL into the location of TOVAL.
2746 Return a new value with the location of TOVAL and contents of
2747 FROMVAL. Handles assignment into packed fields that have
4c4b4cd2 2748 floating-point or non-scalar types. */
14f9c5c9 2749
d2e4a39e
AS
2750static struct value *
2751ada_value_assign (struct value *toval, struct value *fromval)
14f9c5c9 2752{
df407dfe
AC
2753 struct type *type = value_type (toval);
2754 int bits = value_bitsize (toval);
14f9c5c9 2755
52ce6436
PH
2756 toval = ada_coerce_ref (toval);
2757 fromval = ada_coerce_ref (fromval);
2758
2759 if (ada_is_direct_array_type (value_type (toval)))
2760 toval = ada_coerce_to_simple_array (toval);
2761 if (ada_is_direct_array_type (value_type (fromval)))
2762 fromval = ada_coerce_to_simple_array (fromval);
2763
88e3b34b 2764 if (!deprecated_value_modifiable (toval))
323e0a4a 2765 error (_("Left operand of assignment is not a modifiable lvalue."));
14f9c5c9 2766
d2e4a39e 2767 if (VALUE_LVAL (toval) == lval_memory
14f9c5c9 2768 && bits > 0
d2e4a39e 2769 && (TYPE_CODE (type) == TYPE_CODE_FLT
4c4b4cd2 2770 || TYPE_CODE (type) == TYPE_CODE_STRUCT))
14f9c5c9 2771 {
df407dfe
AC
2772 int len = (value_bitpos (toval)
2773 + bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
aced2898 2774 int from_size;
224c3ddb 2775 gdb_byte *buffer = (gdb_byte *) alloca (len);
d2e4a39e 2776 struct value *val;
42ae5230 2777 CORE_ADDR to_addr = value_address (toval);
14f9c5c9
AS
2778
2779 if (TYPE_CODE (type) == TYPE_CODE_FLT)
4c4b4cd2 2780 fromval = value_cast (type, fromval);
14f9c5c9 2781
52ce6436 2782 read_memory (to_addr, buffer, len);
aced2898
PH
2783 from_size = value_bitsize (fromval);
2784 if (from_size == 0)
2785 from_size = TYPE_LENGTH (value_type (fromval)) * TARGET_CHAR_BIT;
50810684 2786 if (gdbarch_bits_big_endian (get_type_arch (type)))
df407dfe 2787 move_bits (buffer, value_bitpos (toval),
50810684 2788 value_contents (fromval), from_size - bits, bits, 1);
14f9c5c9 2789 else
50810684
UW
2790 move_bits (buffer, value_bitpos (toval),
2791 value_contents (fromval), 0, bits, 0);
972daa01 2792 write_memory_with_notification (to_addr, buffer, len);
8cebebb9 2793
14f9c5c9 2794 val = value_copy (toval);
0fd88904 2795 memcpy (value_contents_raw (val), value_contents (fromval),
4c4b4cd2 2796 TYPE_LENGTH (type));
04624583 2797 deprecated_set_value_type (val, type);
d2e4a39e 2798
14f9c5c9
AS
2799 return val;
2800 }
2801
2802 return value_assign (toval, fromval);
2803}
2804
2805
7c512744
JB
2806/* Given that COMPONENT is a memory lvalue that is part of the lvalue
2807 CONTAINER, assign the contents of VAL to COMPONENTS's place in
2808 CONTAINER. Modifies the VALUE_CONTENTS of CONTAINER only, not
2809 COMPONENT, and not the inferior's memory. The current contents
2810 of COMPONENT are ignored.
2811
2812 Although not part of the initial design, this function also works
2813 when CONTAINER and COMPONENT are not_lval's: it works as if CONTAINER
2814 had a null address, and COMPONENT had an address which is equal to
2815 its offset inside CONTAINER. */
2816
52ce6436
PH
2817static void
2818value_assign_to_component (struct value *container, struct value *component,
2819 struct value *val)
2820{
2821 LONGEST offset_in_container =
42ae5230 2822 (LONGEST) (value_address (component) - value_address (container));
7c512744 2823 int bit_offset_in_container =
52ce6436
PH
2824 value_bitpos (component) - value_bitpos (container);
2825 int bits;
7c512744 2826
52ce6436
PH
2827 val = value_cast (value_type (component), val);
2828
2829 if (value_bitsize (component) == 0)
2830 bits = TARGET_CHAR_BIT * TYPE_LENGTH (value_type (component));
2831 else
2832 bits = value_bitsize (component);
2833
50810684 2834 if (gdbarch_bits_big_endian (get_type_arch (value_type (container))))
7c512744 2835 move_bits (value_contents_writeable (container) + offset_in_container,
52ce6436
PH
2836 value_bitpos (container) + bit_offset_in_container,
2837 value_contents (val),
2838 TYPE_LENGTH (value_type (component)) * TARGET_CHAR_BIT - bits,
50810684 2839 bits, 1);
52ce6436 2840 else
7c512744 2841 move_bits (value_contents_writeable (container) + offset_in_container,
52ce6436 2842 value_bitpos (container) + bit_offset_in_container,
50810684 2843 value_contents (val), 0, bits, 0);
7c512744
JB
2844}
2845
4c4b4cd2
PH
2846/* The value of the element of array ARR at the ARITY indices given in IND.
2847 ARR may be either a simple array, GNAT array descriptor, or pointer
14f9c5c9
AS
2848 thereto. */
2849
d2e4a39e
AS
2850struct value *
2851ada_value_subscript (struct value *arr, int arity, struct value **ind)
14f9c5c9
AS
2852{
2853 int k;
d2e4a39e
AS
2854 struct value *elt;
2855 struct type *elt_type;
14f9c5c9
AS
2856
2857 elt = ada_coerce_to_simple_array (arr);
2858
df407dfe 2859 elt_type = ada_check_typedef (value_type (elt));
d2e4a39e 2860 if (TYPE_CODE (elt_type) == TYPE_CODE_ARRAY
14f9c5c9
AS
2861 && TYPE_FIELD_BITSIZE (elt_type, 0) > 0)
2862 return value_subscript_packed (elt, arity, ind);
2863
2864 for (k = 0; k < arity; k += 1)
2865 {
2866 if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY)
323e0a4a 2867 error (_("too many subscripts (%d expected)"), k);
2497b498 2868 elt = value_subscript (elt, pos_atr (ind[k]));
14f9c5c9
AS
2869 }
2870 return elt;
2871}
2872
deede10c
JB
2873/* Assuming ARR is a pointer to a GDB array, the value of the element
2874 of *ARR at the ARITY indices given in IND.
919e6dbe
PMR
2875 Does not read the entire array into memory.
2876
2877 Note: Unlike what one would expect, this function is used instead of
2878 ada_value_subscript for basically all non-packed array types. The reason
2879 for this is that a side effect of doing our own pointer arithmetics instead
2880 of relying on value_subscript is that there is no implicit typedef peeling.
2881 This is important for arrays of array accesses, where it allows us to
2882 preserve the fact that the array's element is an array access, where the
2883 access part os encoded in a typedef layer. */
14f9c5c9 2884
2c0b251b 2885static struct value *
deede10c 2886ada_value_ptr_subscript (struct value *arr, int arity, struct value **ind)
14f9c5c9
AS
2887{
2888 int k;
919e6dbe 2889 struct value *array_ind = ada_value_ind (arr);
deede10c 2890 struct type *type
919e6dbe
PMR
2891 = check_typedef (value_enclosing_type (array_ind));
2892
2893 if (TYPE_CODE (type) == TYPE_CODE_ARRAY
2894 && TYPE_FIELD_BITSIZE (type, 0) > 0)
2895 return value_subscript_packed (array_ind, arity, ind);
14f9c5c9
AS
2896
2897 for (k = 0; k < arity; k += 1)
2898 {
2899 LONGEST lwb, upb;
aa715135 2900 struct value *lwb_value;
14f9c5c9
AS
2901
2902 if (TYPE_CODE (type) != TYPE_CODE_ARRAY)
323e0a4a 2903 error (_("too many subscripts (%d expected)"), k);
d2e4a39e 2904 arr = value_cast (lookup_pointer_type (TYPE_TARGET_TYPE (type)),
4c4b4cd2 2905 value_copy (arr));
14f9c5c9 2906 get_discrete_bounds (TYPE_INDEX_TYPE (type), &lwb, &upb);
aa715135
JG
2907 lwb_value = value_from_longest (value_type(ind[k]), lwb);
2908 arr = value_ptradd (arr, pos_atr (ind[k]) - pos_atr (lwb_value));
14f9c5c9
AS
2909 type = TYPE_TARGET_TYPE (type);
2910 }
2911
2912 return value_ind (arr);
2913}
2914
0b5d8877 2915/* Given that ARRAY_PTR is a pointer or reference to an array of type TYPE (the
aa715135
JG
2916 actual type of ARRAY_PTR is ignored), returns the Ada slice of
2917 HIGH'Pos-LOW'Pos+1 elements starting at index LOW. The lower bound of
2918 this array is LOW, as per Ada rules. */
0b5d8877 2919static struct value *
f5938064
JG
2920ada_value_slice_from_ptr (struct value *array_ptr, struct type *type,
2921 int low, int high)
0b5d8877 2922{
b0dd7688 2923 struct type *type0 = ada_check_typedef (type);
aa715135 2924 struct type *base_index_type = TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type0));
0c9c3474 2925 struct type *index_type
aa715135 2926 = create_static_range_type (NULL, base_index_type, low, high);
6c038f32 2927 struct type *slice_type =
b0dd7688 2928 create_array_type (NULL, TYPE_TARGET_TYPE (type0), index_type);
aa715135
JG
2929 int base_low = ada_discrete_type_low_bound (TYPE_INDEX_TYPE (type0));
2930 LONGEST base_low_pos, low_pos;
2931 CORE_ADDR base;
2932
2933 if (!discrete_position (base_index_type, low, &low_pos)
2934 || !discrete_position (base_index_type, base_low, &base_low_pos))
2935 {
2936 warning (_("unable to get positions in slice, use bounds instead"));
2937 low_pos = low;
2938 base_low_pos = base_low;
2939 }
5b4ee69b 2940
aa715135
JG
2941 base = value_as_address (array_ptr)
2942 + ((low_pos - base_low_pos)
2943 * TYPE_LENGTH (TYPE_TARGET_TYPE (type0)));
f5938064 2944 return value_at_lazy (slice_type, base);
0b5d8877
PH
2945}
2946
2947
2948static struct value *
2949ada_value_slice (struct value *array, int low, int high)
2950{
b0dd7688 2951 struct type *type = ada_check_typedef (value_type (array));
aa715135 2952 struct type *base_index_type = TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type));
0c9c3474
SA
2953 struct type *index_type
2954 = create_static_range_type (NULL, TYPE_INDEX_TYPE (type), low, high);
6c038f32 2955 struct type *slice_type =
0b5d8877 2956 create_array_type (NULL, TYPE_TARGET_TYPE (type), index_type);
aa715135 2957 LONGEST low_pos, high_pos;
5b4ee69b 2958
aa715135
JG
2959 if (!discrete_position (base_index_type, low, &low_pos)
2960 || !discrete_position (base_index_type, high, &high_pos))
2961 {
2962 warning (_("unable to get positions in slice, use bounds instead"));
2963 low_pos = low;
2964 high_pos = high;
2965 }
2966
2967 return value_cast (slice_type,
2968 value_slice (array, low, high_pos - low_pos + 1));
0b5d8877
PH
2969}
2970
14f9c5c9
AS
2971/* If type is a record type in the form of a standard GNAT array
2972 descriptor, returns the number of dimensions for type. If arr is a
2973 simple array, returns the number of "array of"s that prefix its
4c4b4cd2 2974 type designation. Otherwise, returns 0. */
14f9c5c9
AS
2975
2976int
d2e4a39e 2977ada_array_arity (struct type *type)
14f9c5c9
AS
2978{
2979 int arity;
2980
2981 if (type == NULL)
2982 return 0;
2983
2984 type = desc_base_type (type);
2985
2986 arity = 0;
d2e4a39e 2987 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
14f9c5c9 2988 return desc_arity (desc_bounds_type (type));
d2e4a39e
AS
2989 else
2990 while (TYPE_CODE (type) == TYPE_CODE_ARRAY)
14f9c5c9 2991 {
4c4b4cd2 2992 arity += 1;
61ee279c 2993 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
14f9c5c9 2994 }
d2e4a39e 2995
14f9c5c9
AS
2996 return arity;
2997}
2998
2999/* If TYPE is a record type in the form of a standard GNAT array
3000 descriptor or a simple array type, returns the element type for
3001 TYPE after indexing by NINDICES indices, or by all indices if
4c4b4cd2 3002 NINDICES is -1. Otherwise, returns NULL. */
14f9c5c9 3003
d2e4a39e
AS
3004struct type *
3005ada_array_element_type (struct type *type, int nindices)
14f9c5c9
AS
3006{
3007 type = desc_base_type (type);
3008
d2e4a39e 3009 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
14f9c5c9
AS
3010 {
3011 int k;
d2e4a39e 3012 struct type *p_array_type;
14f9c5c9 3013
556bdfd4 3014 p_array_type = desc_data_target_type (type);
14f9c5c9
AS
3015
3016 k = ada_array_arity (type);
3017 if (k == 0)
4c4b4cd2 3018 return NULL;
d2e4a39e 3019
4c4b4cd2 3020 /* Initially p_array_type = elt_type(*)[]...(k times)...[]. */
14f9c5c9 3021 if (nindices >= 0 && k > nindices)
4c4b4cd2 3022 k = nindices;
d2e4a39e 3023 while (k > 0 && p_array_type != NULL)
4c4b4cd2 3024 {
61ee279c 3025 p_array_type = ada_check_typedef (TYPE_TARGET_TYPE (p_array_type));
4c4b4cd2
PH
3026 k -= 1;
3027 }
14f9c5c9
AS
3028 return p_array_type;
3029 }
3030 else if (TYPE_CODE (type) == TYPE_CODE_ARRAY)
3031 {
3032 while (nindices != 0 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
4c4b4cd2
PH
3033 {
3034 type = TYPE_TARGET_TYPE (type);
3035 nindices -= 1;
3036 }
14f9c5c9
AS
3037 return type;
3038 }
3039
3040 return NULL;
3041}
3042
4c4b4cd2 3043/* The type of nth index in arrays of given type (n numbering from 1).
dd19d49e
UW
3044 Does not examine memory. Throws an error if N is invalid or TYPE
3045 is not an array type. NAME is the name of the Ada attribute being
3046 evaluated ('range, 'first, 'last, or 'length); it is used in building
3047 the error message. */
14f9c5c9 3048
1eea4ebd
UW
3049static struct type *
3050ada_index_type (struct type *type, int n, const char *name)
14f9c5c9 3051{
4c4b4cd2
PH
3052 struct type *result_type;
3053
14f9c5c9
AS
3054 type = desc_base_type (type);
3055
1eea4ebd
UW
3056 if (n < 0 || n > ada_array_arity (type))
3057 error (_("invalid dimension number to '%s"), name);
14f9c5c9 3058
4c4b4cd2 3059 if (ada_is_simple_array_type (type))
14f9c5c9
AS
3060 {
3061 int i;
3062
3063 for (i = 1; i < n; i += 1)
4c4b4cd2 3064 type = TYPE_TARGET_TYPE (type);
262452ec 3065 result_type = TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type));
4c4b4cd2
PH
3066 /* FIXME: The stabs type r(0,0);bound;bound in an array type
3067 has a target type of TYPE_CODE_UNDEF. We compensate here, but
76a01679 3068 perhaps stabsread.c would make more sense. */
1eea4ebd
UW
3069 if (result_type && TYPE_CODE (result_type) == TYPE_CODE_UNDEF)
3070 result_type = NULL;
14f9c5c9 3071 }
d2e4a39e 3072 else
1eea4ebd
UW
3073 {
3074 result_type = desc_index_type (desc_bounds_type (type), n);
3075 if (result_type == NULL)
3076 error (_("attempt to take bound of something that is not an array"));
3077 }
3078
3079 return result_type;
14f9c5c9
AS
3080}
3081
3082/* Given that arr is an array type, returns the lower bound of the
3083 Nth index (numbering from 1) if WHICH is 0, and the upper bound if
4c4b4cd2 3084 WHICH is 1. This returns bounds 0 .. -1 if ARR_TYPE is an
1eea4ebd
UW
3085 array-descriptor type. It works for other arrays with bounds supplied
3086 by run-time quantities other than discriminants. */
14f9c5c9 3087
abb68b3e 3088static LONGEST
fb5e3d5c 3089ada_array_bound_from_type (struct type *arr_type, int n, int which)
14f9c5c9 3090{
8a48ac95 3091 struct type *type, *index_type_desc, *index_type;
1ce677a4 3092 int i;
262452ec
JK
3093
3094 gdb_assert (which == 0 || which == 1);
14f9c5c9 3095
ad82864c
JB
3096 if (ada_is_constrained_packed_array_type (arr_type))
3097 arr_type = decode_constrained_packed_array_type (arr_type);
14f9c5c9 3098
4c4b4cd2 3099 if (arr_type == NULL || !ada_is_simple_array_type (arr_type))
1eea4ebd 3100 return (LONGEST) - which;
14f9c5c9
AS
3101
3102 if (TYPE_CODE (arr_type) == TYPE_CODE_PTR)
3103 type = TYPE_TARGET_TYPE (arr_type);
3104 else
3105 type = arr_type;
3106
bafffb51
JB
3107 if (TYPE_FIXED_INSTANCE (type))
3108 {
3109 /* The array has already been fixed, so we do not need to
3110 check the parallel ___XA type again. That encoding has
3111 already been applied, so ignore it now. */
3112 index_type_desc = NULL;
3113 }
3114 else
3115 {
3116 index_type_desc = ada_find_parallel_type (type, "___XA");
3117 ada_fixup_array_indexes_type (index_type_desc);
3118 }
3119
262452ec 3120 if (index_type_desc != NULL)
28c85d6c
JB
3121 index_type = to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, n - 1),
3122 NULL);
262452ec 3123 else
8a48ac95
JB
3124 {
3125 struct type *elt_type = check_typedef (type);
3126
3127 for (i = 1; i < n; i++)
3128 elt_type = check_typedef (TYPE_TARGET_TYPE (elt_type));
3129
3130 index_type = TYPE_INDEX_TYPE (elt_type);
3131 }
262452ec 3132
43bbcdc2
PH
3133 return
3134 (LONGEST) (which == 0
3135 ? ada_discrete_type_low_bound (index_type)
3136 : ada_discrete_type_high_bound (index_type));
14f9c5c9
AS
3137}
3138
3139/* Given that arr is an array value, returns the lower bound of the
abb68b3e
JB
3140 nth index (numbering from 1) if WHICH is 0, and the upper bound if
3141 WHICH is 1. This routine will also work for arrays with bounds
4c4b4cd2 3142 supplied by run-time quantities other than discriminants. */
14f9c5c9 3143
1eea4ebd 3144static LONGEST
4dc81987 3145ada_array_bound (struct value *arr, int n, int which)
14f9c5c9 3146{
eb479039
JB
3147 struct type *arr_type;
3148
3149 if (TYPE_CODE (check_typedef (value_type (arr))) == TYPE_CODE_PTR)
3150 arr = value_ind (arr);
3151 arr_type = value_enclosing_type (arr);
14f9c5c9 3152
ad82864c
JB
3153 if (ada_is_constrained_packed_array_type (arr_type))
3154 return ada_array_bound (decode_constrained_packed_array (arr), n, which);
4c4b4cd2 3155 else if (ada_is_simple_array_type (arr_type))
1eea4ebd 3156 return ada_array_bound_from_type (arr_type, n, which);
14f9c5c9 3157 else
1eea4ebd 3158 return value_as_long (desc_one_bound (desc_bounds (arr), n, which));
14f9c5c9
AS
3159}
3160
3161/* Given that arr is an array value, returns the length of the
3162 nth index. This routine will also work for arrays with bounds
4c4b4cd2
PH
3163 supplied by run-time quantities other than discriminants.
3164 Does not work for arrays indexed by enumeration types with representation
3165 clauses at the moment. */
14f9c5c9 3166
1eea4ebd 3167static LONGEST
d2e4a39e 3168ada_array_length (struct value *arr, int n)
14f9c5c9 3169{
aa715135
JG
3170 struct type *arr_type, *index_type;
3171 int low, high;
eb479039
JB
3172
3173 if (TYPE_CODE (check_typedef (value_type (arr))) == TYPE_CODE_PTR)
3174 arr = value_ind (arr);
3175 arr_type = value_enclosing_type (arr);
14f9c5c9 3176
ad82864c
JB
3177 if (ada_is_constrained_packed_array_type (arr_type))
3178 return ada_array_length (decode_constrained_packed_array (arr), n);
14f9c5c9 3179
4c4b4cd2 3180 if (ada_is_simple_array_type (arr_type))
aa715135
JG
3181 {
3182 low = ada_array_bound_from_type (arr_type, n, 0);
3183 high = ada_array_bound_from_type (arr_type, n, 1);
3184 }
14f9c5c9 3185 else
aa715135
JG
3186 {
3187 low = value_as_long (desc_one_bound (desc_bounds (arr), n, 0));
3188 high = value_as_long (desc_one_bound (desc_bounds (arr), n, 1));
3189 }
3190
f168693b 3191 arr_type = check_typedef (arr_type);
aa715135
JG
3192 index_type = TYPE_INDEX_TYPE (arr_type);
3193 if (index_type != NULL)
3194 {
3195 struct type *base_type;
3196 if (TYPE_CODE (index_type) == TYPE_CODE_RANGE)
3197 base_type = TYPE_TARGET_TYPE (index_type);
3198 else
3199 base_type = index_type;
3200
3201 low = pos_atr (value_from_longest (base_type, low));
3202 high = pos_atr (value_from_longest (base_type, high));
3203 }
3204 return high - low + 1;
4c4b4cd2
PH
3205}
3206
3207/* An empty array whose type is that of ARR_TYPE (an array type),
3208 with bounds LOW to LOW-1. */
3209
3210static struct value *
3211empty_array (struct type *arr_type, int low)
3212{
b0dd7688 3213 struct type *arr_type0 = ada_check_typedef (arr_type);
0c9c3474
SA
3214 struct type *index_type
3215 = create_static_range_type
3216 (NULL, TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (arr_type0)), low, low - 1);
b0dd7688 3217 struct type *elt_type = ada_array_element_type (arr_type0, 1);
5b4ee69b 3218
0b5d8877 3219 return allocate_value (create_array_type (NULL, elt_type, index_type));
14f9c5c9 3220}
14f9c5c9 3221\f
d2e4a39e 3222
4c4b4cd2 3223 /* Name resolution */
14f9c5c9 3224
4c4b4cd2
PH
3225/* The "decoded" name for the user-definable Ada operator corresponding
3226 to OP. */
14f9c5c9 3227
d2e4a39e 3228static const char *
4c4b4cd2 3229ada_decoded_op_name (enum exp_opcode op)
14f9c5c9
AS
3230{
3231 int i;
3232
4c4b4cd2 3233 for (i = 0; ada_opname_table[i].encoded != NULL; i += 1)
14f9c5c9
AS
3234 {
3235 if (ada_opname_table[i].op == op)
4c4b4cd2 3236 return ada_opname_table[i].decoded;
14f9c5c9 3237 }
323e0a4a 3238 error (_("Could not find operator name for opcode"));
14f9c5c9
AS
3239}
3240
3241
4c4b4cd2
PH
3242/* Same as evaluate_type (*EXP), but resolves ambiguous symbol
3243 references (marked by OP_VAR_VALUE nodes in which the symbol has an
3244 undefined namespace) and converts operators that are
3245 user-defined into appropriate function calls. If CONTEXT_TYPE is
14f9c5c9
AS
3246 non-null, it provides a preferred result type [at the moment, only
3247 type void has any effect---causing procedures to be preferred over
3248 functions in calls]. A null CONTEXT_TYPE indicates that a non-void
4c4b4cd2 3249 return type is preferred. May change (expand) *EXP. */
14f9c5c9 3250
4c4b4cd2
PH
3251static void
3252resolve (struct expression **expp, int void_context_p)
14f9c5c9 3253{
30b15541
UW
3254 struct type *context_type = NULL;
3255 int pc = 0;
3256
3257 if (void_context_p)
3258 context_type = builtin_type ((*expp)->gdbarch)->builtin_void;
3259
3260 resolve_subexp (expp, &pc, 1, context_type);
14f9c5c9
AS
3261}
3262
4c4b4cd2
PH
3263/* Resolve the operator of the subexpression beginning at
3264 position *POS of *EXPP. "Resolving" consists of replacing
3265 the symbols that have undefined namespaces in OP_VAR_VALUE nodes
3266 with their resolutions, replacing built-in operators with
3267 function calls to user-defined operators, where appropriate, and,
3268 when DEPROCEDURE_P is non-zero, converting function-valued variables
3269 into parameterless calls. May expand *EXPP. The CONTEXT_TYPE functions
3270 are as in ada_resolve, above. */
14f9c5c9 3271
d2e4a39e 3272static struct value *
4c4b4cd2 3273resolve_subexp (struct expression **expp, int *pos, int deprocedure_p,
76a01679 3274 struct type *context_type)
14f9c5c9
AS
3275{
3276 int pc = *pos;
3277 int i;
4c4b4cd2 3278 struct expression *exp; /* Convenience: == *expp. */
14f9c5c9 3279 enum exp_opcode op = (*expp)->elts[pc].opcode;
4c4b4cd2
PH
3280 struct value **argvec; /* Vector of operand types (alloca'ed). */
3281 int nargs; /* Number of operands. */
52ce6436 3282 int oplen;
14f9c5c9
AS
3283
3284 argvec = NULL;
3285 nargs = 0;
3286 exp = *expp;
3287
52ce6436
PH
3288 /* Pass one: resolve operands, saving their types and updating *pos,
3289 if needed. */
14f9c5c9
AS
3290 switch (op)
3291 {
4c4b4cd2
PH
3292 case OP_FUNCALL:
3293 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
76a01679
JB
3294 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
3295 *pos += 7;
4c4b4cd2
PH
3296 else
3297 {
3298 *pos += 3;
3299 resolve_subexp (expp, pos, 0, NULL);
3300 }
3301 nargs = longest_to_int (exp->elts[pc + 1].longconst);
14f9c5c9
AS
3302 break;
3303
14f9c5c9 3304 case UNOP_ADDR:
4c4b4cd2
PH
3305 *pos += 1;
3306 resolve_subexp (expp, pos, 0, NULL);
3307 break;
3308
52ce6436
PH
3309 case UNOP_QUAL:
3310 *pos += 3;
17466c1a 3311 resolve_subexp (expp, pos, 1, check_typedef (exp->elts[pc + 1].type));
4c4b4cd2
PH
3312 break;
3313
52ce6436 3314 case OP_ATR_MODULUS:
4c4b4cd2
PH
3315 case OP_ATR_SIZE:
3316 case OP_ATR_TAG:
4c4b4cd2
PH
3317 case OP_ATR_FIRST:
3318 case OP_ATR_LAST:
3319 case OP_ATR_LENGTH:
3320 case OP_ATR_POS:
3321 case OP_ATR_VAL:
4c4b4cd2
PH
3322 case OP_ATR_MIN:
3323 case OP_ATR_MAX:
52ce6436
PH
3324 case TERNOP_IN_RANGE:
3325 case BINOP_IN_BOUNDS:
3326 case UNOP_IN_RANGE:
3327 case OP_AGGREGATE:
3328 case OP_OTHERS:
3329 case OP_CHOICES:
3330 case OP_POSITIONAL:
3331 case OP_DISCRETE_RANGE:
3332 case OP_NAME:
3333 ada_forward_operator_length (exp, pc, &oplen, &nargs);
3334 *pos += oplen;
14f9c5c9
AS
3335 break;
3336
3337 case BINOP_ASSIGN:
3338 {
4c4b4cd2
PH
3339 struct value *arg1;
3340
3341 *pos += 1;
3342 arg1 = resolve_subexp (expp, pos, 0, NULL);
3343 if (arg1 == NULL)
3344 resolve_subexp (expp, pos, 1, NULL);
3345 else
df407dfe 3346 resolve_subexp (expp, pos, 1, value_type (arg1));
4c4b4cd2 3347 break;
14f9c5c9
AS
3348 }
3349
4c4b4cd2 3350 case UNOP_CAST:
4c4b4cd2
PH
3351 *pos += 3;
3352 nargs = 1;
3353 break;
14f9c5c9 3354
4c4b4cd2
PH
3355 case BINOP_ADD:
3356 case BINOP_SUB:
3357 case BINOP_MUL:
3358 case BINOP_DIV:
3359 case BINOP_REM:
3360 case BINOP_MOD:
3361 case BINOP_EXP:
3362 case BINOP_CONCAT:
3363 case BINOP_LOGICAL_AND:
3364 case BINOP_LOGICAL_OR:
3365 case BINOP_BITWISE_AND:
3366 case BINOP_BITWISE_IOR:
3367 case BINOP_BITWISE_XOR:
14f9c5c9 3368
4c4b4cd2
PH
3369 case BINOP_EQUAL:
3370 case BINOP_NOTEQUAL:
3371 case BINOP_LESS:
3372 case BINOP_GTR:
3373 case BINOP_LEQ:
3374 case BINOP_GEQ:
14f9c5c9 3375
4c4b4cd2
PH
3376 case BINOP_REPEAT:
3377 case BINOP_SUBSCRIPT:
3378 case BINOP_COMMA:
40c8aaa9
JB
3379 *pos += 1;
3380 nargs = 2;
3381 break;
14f9c5c9 3382
4c4b4cd2
PH
3383 case UNOP_NEG:
3384 case UNOP_PLUS:
3385 case UNOP_LOGICAL_NOT:
3386 case UNOP_ABS:
3387 case UNOP_IND:
3388 *pos += 1;
3389 nargs = 1;
3390 break;
14f9c5c9 3391
4c4b4cd2
PH
3392 case OP_LONG:
3393 case OP_DOUBLE:
3394 case OP_VAR_VALUE:
3395 *pos += 4;
3396 break;
14f9c5c9 3397
4c4b4cd2
PH
3398 case OP_TYPE:
3399 case OP_BOOL:
3400 case OP_LAST:
4c4b4cd2
PH
3401 case OP_INTERNALVAR:
3402 *pos += 3;
3403 break;
14f9c5c9 3404
4c4b4cd2
PH
3405 case UNOP_MEMVAL:
3406 *pos += 3;
3407 nargs = 1;
3408 break;
3409
67f3407f
DJ
3410 case OP_REGISTER:
3411 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
3412 break;
3413
4c4b4cd2
PH
3414 case STRUCTOP_STRUCT:
3415 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
3416 nargs = 1;
3417 break;
3418
4c4b4cd2 3419 case TERNOP_SLICE:
4c4b4cd2
PH
3420 *pos += 1;
3421 nargs = 3;
3422 break;
3423
52ce6436 3424 case OP_STRING:
14f9c5c9 3425 break;
4c4b4cd2
PH
3426
3427 default:
323e0a4a 3428 error (_("Unexpected operator during name resolution"));
14f9c5c9
AS
3429 }
3430
8d749320 3431 argvec = XALLOCAVEC (struct value *, nargs + 1);
4c4b4cd2
PH
3432 for (i = 0; i < nargs; i += 1)
3433 argvec[i] = resolve_subexp (expp, pos, 1, NULL);
3434 argvec[i] = NULL;
3435 exp = *expp;
3436
3437 /* Pass two: perform any resolution on principal operator. */
14f9c5c9
AS
3438 switch (op)
3439 {
3440 default:
3441 break;
3442
14f9c5c9 3443 case OP_VAR_VALUE:
4c4b4cd2 3444 if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
76a01679 3445 {
d12307c1 3446 struct block_symbol *candidates;
76a01679
JB
3447 int n_candidates;
3448
3449 n_candidates =
3450 ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME
3451 (exp->elts[pc + 2].symbol),
3452 exp->elts[pc + 1].block, VAR_DOMAIN,
4eeaa230 3453 &candidates);
76a01679
JB
3454
3455 if (n_candidates > 1)
3456 {
3457 /* Types tend to get re-introduced locally, so if there
3458 are any local symbols that are not types, first filter
3459 out all types. */
3460 int j;
3461 for (j = 0; j < n_candidates; j += 1)
d12307c1 3462 switch (SYMBOL_CLASS (candidates[j].symbol))
76a01679
JB
3463 {
3464 case LOC_REGISTER:
3465 case LOC_ARG:
3466 case LOC_REF_ARG:
76a01679
JB
3467 case LOC_REGPARM_ADDR:
3468 case LOC_LOCAL:
76a01679 3469 case LOC_COMPUTED:
76a01679
JB
3470 goto FoundNonType;
3471 default:
3472 break;
3473 }
3474 FoundNonType:
3475 if (j < n_candidates)
3476 {
3477 j = 0;
3478 while (j < n_candidates)
3479 {
d12307c1 3480 if (SYMBOL_CLASS (candidates[j].symbol) == LOC_TYPEDEF)
76a01679
JB
3481 {
3482 candidates[j] = candidates[n_candidates - 1];
3483 n_candidates -= 1;
3484 }
3485 else
3486 j += 1;
3487 }
3488 }
3489 }
3490
3491 if (n_candidates == 0)
323e0a4a 3492 error (_("No definition found for %s"),
76a01679
JB
3493 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
3494 else if (n_candidates == 1)
3495 i = 0;
3496 else if (deprocedure_p
3497 && !is_nonfunction (candidates, n_candidates))
3498 {
06d5cf63
JB
3499 i = ada_resolve_function
3500 (candidates, n_candidates, NULL, 0,
3501 SYMBOL_LINKAGE_NAME (exp->elts[pc + 2].symbol),
3502 context_type);
76a01679 3503 if (i < 0)
323e0a4a 3504 error (_("Could not find a match for %s"),
76a01679
JB
3505 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
3506 }
3507 else
3508 {
323e0a4a 3509 printf_filtered (_("Multiple matches for %s\n"),
76a01679
JB
3510 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
3511 user_select_syms (candidates, n_candidates, 1);
3512 i = 0;
3513 }
3514
3515 exp->elts[pc + 1].block = candidates[i].block;
d12307c1 3516 exp->elts[pc + 2].symbol = candidates[i].symbol;
1265e4aa
JB
3517 if (innermost_block == NULL
3518 || contained_in (candidates[i].block, innermost_block))
76a01679
JB
3519 innermost_block = candidates[i].block;
3520 }
3521
3522 if (deprocedure_p
3523 && (TYPE_CODE (SYMBOL_TYPE (exp->elts[pc + 2].symbol))
3524 == TYPE_CODE_FUNC))
3525 {
3526 replace_operator_with_call (expp, pc, 0, 0,
3527 exp->elts[pc + 2].symbol,
3528 exp->elts[pc + 1].block);
3529 exp = *expp;
3530 }
14f9c5c9
AS
3531 break;
3532
3533 case OP_FUNCALL:
3534 {
4c4b4cd2 3535 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
76a01679 3536 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
4c4b4cd2 3537 {
d12307c1 3538 struct block_symbol *candidates;
4c4b4cd2
PH
3539 int n_candidates;
3540
3541 n_candidates =
76a01679
JB
3542 ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME
3543 (exp->elts[pc + 5].symbol),
3544 exp->elts[pc + 4].block, VAR_DOMAIN,
4eeaa230 3545 &candidates);
4c4b4cd2
PH
3546 if (n_candidates == 1)
3547 i = 0;
3548 else
3549 {
06d5cf63
JB
3550 i = ada_resolve_function
3551 (candidates, n_candidates,
3552 argvec, nargs,
3553 SYMBOL_LINKAGE_NAME (exp->elts[pc + 5].symbol),
3554 context_type);
4c4b4cd2 3555 if (i < 0)
323e0a4a 3556 error (_("Could not find a match for %s"),
4c4b4cd2
PH
3557 SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol));
3558 }
3559
3560 exp->elts[pc + 4].block = candidates[i].block;
d12307c1 3561 exp->elts[pc + 5].symbol = candidates[i].symbol;
1265e4aa
JB
3562 if (innermost_block == NULL
3563 || contained_in (candidates[i].block, innermost_block))
4c4b4cd2
PH
3564 innermost_block = candidates[i].block;
3565 }
14f9c5c9
AS
3566 }
3567 break;
3568 case BINOP_ADD:
3569 case BINOP_SUB:
3570 case BINOP_MUL:
3571 case BINOP_DIV:
3572 case BINOP_REM:
3573 case BINOP_MOD:
3574 case BINOP_CONCAT:
3575 case BINOP_BITWISE_AND:
3576 case BINOP_BITWISE_IOR:
3577 case BINOP_BITWISE_XOR:
3578 case BINOP_EQUAL:
3579 case BINOP_NOTEQUAL:
3580 case BINOP_LESS:
3581 case BINOP_GTR:
3582 case BINOP_LEQ:
3583 case BINOP_GEQ:
3584 case BINOP_EXP:
3585 case UNOP_NEG:
3586 case UNOP_PLUS:
3587 case UNOP_LOGICAL_NOT:
3588 case UNOP_ABS:
3589 if (possible_user_operator_p (op, argvec))
4c4b4cd2 3590 {
d12307c1 3591 struct block_symbol *candidates;
4c4b4cd2
PH
3592 int n_candidates;
3593
3594 n_candidates =
3595 ada_lookup_symbol_list (ada_encode (ada_decoded_op_name (op)),
3596 (struct block *) NULL, VAR_DOMAIN,
4eeaa230 3597 &candidates);
4c4b4cd2 3598 i = ada_resolve_function (candidates, n_candidates, argvec, nargs,
76a01679 3599 ada_decoded_op_name (op), NULL);
4c4b4cd2
PH
3600 if (i < 0)
3601 break;
3602
d12307c1
PMR
3603 replace_operator_with_call (expp, pc, nargs, 1,
3604 candidates[i].symbol,
3605 candidates[i].block);
4c4b4cd2
PH
3606 exp = *expp;
3607 }
14f9c5c9 3608 break;
4c4b4cd2
PH
3609
3610 case OP_TYPE:
b3dbf008 3611 case OP_REGISTER:
4c4b4cd2 3612 return NULL;
14f9c5c9
AS
3613 }
3614
3615 *pos = pc;
3616 return evaluate_subexp_type (exp, pos);
3617}
3618
3619/* Return non-zero if formal type FTYPE matches actual type ATYPE. If
4c4b4cd2 3620 MAY_DEREF is non-zero, the formal may be a pointer and the actual
5b3d5b7d 3621 a non-pointer. */
14f9c5c9 3622/* The term "match" here is rather loose. The match is heuristic and
5b3d5b7d 3623 liberal. */
14f9c5c9
AS
3624
3625static int
4dc81987 3626ada_type_match (struct type *ftype, struct type *atype, int may_deref)
14f9c5c9 3627{
61ee279c
PH
3628 ftype = ada_check_typedef (ftype);
3629 atype = ada_check_typedef (atype);
14f9c5c9
AS
3630
3631 if (TYPE_CODE (ftype) == TYPE_CODE_REF)
3632 ftype = TYPE_TARGET_TYPE (ftype);
3633 if (TYPE_CODE (atype) == TYPE_CODE_REF)
3634 atype = TYPE_TARGET_TYPE (atype);
3635
d2e4a39e 3636 switch (TYPE_CODE (ftype))
14f9c5c9
AS
3637 {
3638 default:
5b3d5b7d 3639 return TYPE_CODE (ftype) == TYPE_CODE (atype);
14f9c5c9
AS
3640 case TYPE_CODE_PTR:
3641 if (TYPE_CODE (atype) == TYPE_CODE_PTR)
4c4b4cd2
PH
3642 return ada_type_match (TYPE_TARGET_TYPE (ftype),
3643 TYPE_TARGET_TYPE (atype), 0);
d2e4a39e 3644 else
1265e4aa
JB
3645 return (may_deref
3646 && ada_type_match (TYPE_TARGET_TYPE (ftype), atype, 0));
14f9c5c9
AS
3647 case TYPE_CODE_INT:
3648 case TYPE_CODE_ENUM:
3649 case TYPE_CODE_RANGE:
3650 switch (TYPE_CODE (atype))
4c4b4cd2
PH
3651 {
3652 case TYPE_CODE_INT:
3653 case TYPE_CODE_ENUM:
3654 case TYPE_CODE_RANGE:
3655 return 1;
3656 default:
3657 return 0;
3658 }
14f9c5c9
AS
3659
3660 case TYPE_CODE_ARRAY:
d2e4a39e 3661 return (TYPE_CODE (atype) == TYPE_CODE_ARRAY
4c4b4cd2 3662 || ada_is_array_descriptor_type (atype));
14f9c5c9
AS
3663
3664 case TYPE_CODE_STRUCT:
4c4b4cd2
PH
3665 if (ada_is_array_descriptor_type (ftype))
3666 return (TYPE_CODE (atype) == TYPE_CODE_ARRAY
3667 || ada_is_array_descriptor_type (atype));
14f9c5c9 3668 else
4c4b4cd2
PH
3669 return (TYPE_CODE (atype) == TYPE_CODE_STRUCT
3670 && !ada_is_array_descriptor_type (atype));
14f9c5c9
AS
3671
3672 case TYPE_CODE_UNION:
3673 case TYPE_CODE_FLT:
3674 return (TYPE_CODE (atype) == TYPE_CODE (ftype));
3675 }
3676}
3677
3678/* Return non-zero if the formals of FUNC "sufficiently match" the
3679 vector of actual argument types ACTUALS of size N_ACTUALS. FUNC
3680 may also be an enumeral, in which case it is treated as a 0-
4c4b4cd2 3681 argument function. */
14f9c5c9
AS
3682
3683static int
d2e4a39e 3684ada_args_match (struct symbol *func, struct value **actuals, int n_actuals)
14f9c5c9
AS
3685{
3686 int i;
d2e4a39e 3687 struct type *func_type = SYMBOL_TYPE (func);
14f9c5c9 3688
1265e4aa
JB
3689 if (SYMBOL_CLASS (func) == LOC_CONST
3690 && TYPE_CODE (func_type) == TYPE_CODE_ENUM)
14f9c5c9
AS
3691 return (n_actuals == 0);
3692 else if (func_type == NULL || TYPE_CODE (func_type) != TYPE_CODE_FUNC)
3693 return 0;
3694
3695 if (TYPE_NFIELDS (func_type) != n_actuals)
3696 return 0;
3697
3698 for (i = 0; i < n_actuals; i += 1)
3699 {
4c4b4cd2 3700 if (actuals[i] == NULL)
76a01679
JB
3701 return 0;
3702 else
3703 {
5b4ee69b
MS
3704 struct type *ftype = ada_check_typedef (TYPE_FIELD_TYPE (func_type,
3705 i));
df407dfe 3706 struct type *atype = ada_check_typedef (value_type (actuals[i]));
4c4b4cd2 3707
76a01679
JB
3708 if (!ada_type_match (ftype, atype, 1))
3709 return 0;
3710 }
14f9c5c9
AS
3711 }
3712 return 1;
3713}
3714
3715/* False iff function type FUNC_TYPE definitely does not produce a value
3716 compatible with type CONTEXT_TYPE. Conservatively returns 1 if
3717 FUNC_TYPE is not a valid function type with a non-null return type
3718 or an enumerated type. A null CONTEXT_TYPE indicates any non-void type. */
3719
3720static int
d2e4a39e 3721return_match (struct type *func_type, struct type *context_type)
14f9c5c9 3722{
d2e4a39e 3723 struct type *return_type;
14f9c5c9
AS
3724
3725 if (func_type == NULL)
3726 return 1;
3727
4c4b4cd2 3728 if (TYPE_CODE (func_type) == TYPE_CODE_FUNC)
18af8284 3729 return_type = get_base_type (TYPE_TARGET_TYPE (func_type));
4c4b4cd2 3730 else
18af8284 3731 return_type = get_base_type (func_type);
14f9c5c9
AS
3732 if (return_type == NULL)
3733 return 1;
3734
18af8284 3735 context_type = get_base_type (context_type);
14f9c5c9
AS
3736
3737 if (TYPE_CODE (return_type) == TYPE_CODE_ENUM)
3738 return context_type == NULL || return_type == context_type;
3739 else if (context_type == NULL)
3740 return TYPE_CODE (return_type) != TYPE_CODE_VOID;
3741 else
3742 return TYPE_CODE (return_type) == TYPE_CODE (context_type);
3743}
3744
3745
4c4b4cd2 3746/* Returns the index in SYMS[0..NSYMS-1] that contains the symbol for the
14f9c5c9 3747 function (if any) that matches the types of the NARGS arguments in
4c4b4cd2
PH
3748 ARGS. If CONTEXT_TYPE is non-null and there is at least one match
3749 that returns that type, then eliminate matches that don't. If
3750 CONTEXT_TYPE is void and there is at least one match that does not
3751 return void, eliminate all matches that do.
3752
14f9c5c9
AS
3753 Asks the user if there is more than one match remaining. Returns -1
3754 if there is no such symbol or none is selected. NAME is used
4c4b4cd2
PH
3755 solely for messages. May re-arrange and modify SYMS in
3756 the process; the index returned is for the modified vector. */
14f9c5c9 3757
4c4b4cd2 3758static int
d12307c1 3759ada_resolve_function (struct block_symbol syms[],
4c4b4cd2
PH
3760 int nsyms, struct value **args, int nargs,
3761 const char *name, struct type *context_type)
14f9c5c9 3762{
30b15541 3763 int fallback;
14f9c5c9 3764 int k;
4c4b4cd2 3765 int m; /* Number of hits */
14f9c5c9 3766
d2e4a39e 3767 m = 0;
30b15541
UW
3768 /* In the first pass of the loop, we only accept functions matching
3769 context_type. If none are found, we add a second pass of the loop
3770 where every function is accepted. */
3771 for (fallback = 0; m == 0 && fallback < 2; fallback++)
14f9c5c9
AS
3772 {
3773 for (k = 0; k < nsyms; k += 1)
4c4b4cd2 3774 {
d12307c1 3775 struct type *type = ada_check_typedef (SYMBOL_TYPE (syms[k].symbol));
4c4b4cd2 3776
d12307c1 3777 if (ada_args_match (syms[k].symbol, args, nargs)
30b15541 3778 && (fallback || return_match (type, context_type)))
4c4b4cd2
PH
3779 {
3780 syms[m] = syms[k];
3781 m += 1;
3782 }
3783 }
14f9c5c9
AS
3784 }
3785
dc5c8746
PMR
3786 /* If we got multiple matches, ask the user which one to use. Don't do this
3787 interactive thing during completion, though, as the purpose of the
3788 completion is providing a list of all possible matches. Prompting the
3789 user to filter it down would be completely unexpected in this case. */
14f9c5c9
AS
3790 if (m == 0)
3791 return -1;
dc5c8746 3792 else if (m > 1 && !parse_completion)
14f9c5c9 3793 {
323e0a4a 3794 printf_filtered (_("Multiple matches for %s\n"), name);
4c4b4cd2 3795 user_select_syms (syms, m, 1);
14f9c5c9
AS
3796 return 0;
3797 }
3798 return 0;
3799}
3800
4c4b4cd2
PH
3801/* Returns true (non-zero) iff decoded name N0 should appear before N1
3802 in a listing of choices during disambiguation (see sort_choices, below).
3803 The idea is that overloadings of a subprogram name from the
3804 same package should sort in their source order. We settle for ordering
3805 such symbols by their trailing number (__N or $N). */
3806
14f9c5c9 3807static int
0d5cff50 3808encoded_ordered_before (const char *N0, const char *N1)
14f9c5c9
AS
3809{
3810 if (N1 == NULL)
3811 return 0;
3812 else if (N0 == NULL)
3813 return 1;
3814 else
3815 {
3816 int k0, k1;
5b4ee69b 3817
d2e4a39e 3818 for (k0 = strlen (N0) - 1; k0 > 0 && isdigit (N0[k0]); k0 -= 1)
4c4b4cd2 3819 ;
d2e4a39e 3820 for (k1 = strlen (N1) - 1; k1 > 0 && isdigit (N1[k1]); k1 -= 1)
4c4b4cd2 3821 ;
d2e4a39e 3822 if ((N0[k0] == '_' || N0[k0] == '$') && N0[k0 + 1] != '\000'
4c4b4cd2
PH
3823 && (N1[k1] == '_' || N1[k1] == '$') && N1[k1 + 1] != '\000')
3824 {
3825 int n0, n1;
5b4ee69b 3826
4c4b4cd2
PH
3827 n0 = k0;
3828 while (N0[n0] == '_' && n0 > 0 && N0[n0 - 1] == '_')
3829 n0 -= 1;
3830 n1 = k1;
3831 while (N1[n1] == '_' && n1 > 0 && N1[n1 - 1] == '_')
3832 n1 -= 1;
3833 if (n0 == n1 && strncmp (N0, N1, n0) == 0)
3834 return (atoi (N0 + k0 + 1) < atoi (N1 + k1 + 1));
3835 }
14f9c5c9
AS
3836 return (strcmp (N0, N1) < 0);
3837 }
3838}
d2e4a39e 3839
4c4b4cd2
PH
3840/* Sort SYMS[0..NSYMS-1] to put the choices in a canonical order by the
3841 encoded names. */
3842
d2e4a39e 3843static void
d12307c1 3844sort_choices (struct block_symbol syms[], int nsyms)
14f9c5c9 3845{
4c4b4cd2 3846 int i;
5b4ee69b 3847
d2e4a39e 3848 for (i = 1; i < nsyms; i += 1)
14f9c5c9 3849 {
d12307c1 3850 struct block_symbol sym = syms[i];
14f9c5c9
AS
3851 int j;
3852
d2e4a39e 3853 for (j = i - 1; j >= 0; j -= 1)
4c4b4cd2 3854 {
d12307c1
PMR
3855 if (encoded_ordered_before (SYMBOL_LINKAGE_NAME (syms[j].symbol),
3856 SYMBOL_LINKAGE_NAME (sym.symbol)))
4c4b4cd2
PH
3857 break;
3858 syms[j + 1] = syms[j];
3859 }
d2e4a39e 3860 syms[j + 1] = sym;
14f9c5c9
AS
3861 }
3862}
3863
d72413e6
PMR
3864/* Whether GDB should display formals and return types for functions in the
3865 overloads selection menu. */
3866static int print_signatures = 1;
3867
3868/* Print the signature for SYM on STREAM according to the FLAGS options. For
3869 all but functions, the signature is just the name of the symbol. For
3870 functions, this is the name of the function, the list of types for formals
3871 and the return type (if any). */
3872
3873static void
3874ada_print_symbol_signature (struct ui_file *stream, struct symbol *sym,
3875 const struct type_print_options *flags)
3876{
3877 struct type *type = SYMBOL_TYPE (sym);
3878
3879 fprintf_filtered (stream, "%s", SYMBOL_PRINT_NAME (sym));
3880 if (!print_signatures
3881 || type == NULL
3882 || TYPE_CODE (type) != TYPE_CODE_FUNC)
3883 return;
3884
3885 if (TYPE_NFIELDS (type) > 0)
3886 {
3887 int i;
3888
3889 fprintf_filtered (stream, " (");
3890 for (i = 0; i < TYPE_NFIELDS (type); ++i)
3891 {
3892 if (i > 0)
3893 fprintf_filtered (stream, "; ");
3894 ada_print_type (TYPE_FIELD_TYPE (type, i), NULL, stream, -1, 0,
3895 flags);
3896 }
3897 fprintf_filtered (stream, ")");
3898 }
3899 if (TYPE_TARGET_TYPE (type) != NULL
3900 && TYPE_CODE (TYPE_TARGET_TYPE (type)) != TYPE_CODE_VOID)
3901 {
3902 fprintf_filtered (stream, " return ");
3903 ada_print_type (TYPE_TARGET_TYPE (type), NULL, stream, -1, 0, flags);
3904 }
3905}
3906
4c4b4cd2
PH
3907/* Given a list of NSYMS symbols in SYMS, select up to MAX_RESULTS>0
3908 by asking the user (if necessary), returning the number selected,
3909 and setting the first elements of SYMS items. Error if no symbols
3910 selected. */
14f9c5c9
AS
3911
3912/* NOTE: Adapted from decode_line_2 in symtab.c, with which it ought
4c4b4cd2 3913 to be re-integrated one of these days. */
14f9c5c9
AS
3914
3915int
d12307c1 3916user_select_syms (struct block_symbol *syms, int nsyms, int max_results)
14f9c5c9
AS
3917{
3918 int i;
8d749320 3919 int *chosen = XALLOCAVEC (int , nsyms);
14f9c5c9
AS
3920 int n_chosen;
3921 int first_choice = (max_results == 1) ? 1 : 2;
717d2f5a 3922 const char *select_mode = multiple_symbols_select_mode ();
14f9c5c9
AS
3923
3924 if (max_results < 1)
323e0a4a 3925 error (_("Request to select 0 symbols!"));
14f9c5c9
AS
3926 if (nsyms <= 1)
3927 return nsyms;
3928
717d2f5a
JB
3929 if (select_mode == multiple_symbols_cancel)
3930 error (_("\
3931canceled because the command is ambiguous\n\
3932See set/show multiple-symbol."));
3933
3934 /* If select_mode is "all", then return all possible symbols.
3935 Only do that if more than one symbol can be selected, of course.
3936 Otherwise, display the menu as usual. */
3937 if (select_mode == multiple_symbols_all && max_results > 1)
3938 return nsyms;
3939
323e0a4a 3940 printf_unfiltered (_("[0] cancel\n"));
14f9c5c9 3941 if (max_results > 1)
323e0a4a 3942 printf_unfiltered (_("[1] all\n"));
14f9c5c9 3943
4c4b4cd2 3944 sort_choices (syms, nsyms);
14f9c5c9
AS
3945
3946 for (i = 0; i < nsyms; i += 1)
3947 {
d12307c1 3948 if (syms[i].symbol == NULL)
4c4b4cd2
PH
3949 continue;
3950
d12307c1 3951 if (SYMBOL_CLASS (syms[i].symbol) == LOC_BLOCK)
4c4b4cd2 3952 {
76a01679 3953 struct symtab_and_line sal =
d12307c1 3954 find_function_start_sal (syms[i].symbol, 1);
5b4ee69b 3955
d72413e6
PMR
3956 printf_unfiltered ("[%d] ", i + first_choice);
3957 ada_print_symbol_signature (gdb_stdout, syms[i].symbol,
3958 &type_print_raw_options);
323e0a4a 3959 if (sal.symtab == NULL)
d72413e6 3960 printf_unfiltered (_(" at <no source file available>:%d\n"),
323e0a4a
AC
3961 sal.line);
3962 else
d72413e6 3963 printf_unfiltered (_(" at %s:%d\n"),
05cba821
JK
3964 symtab_to_filename_for_display (sal.symtab),
3965 sal.line);
4c4b4cd2
PH
3966 continue;
3967 }
d2e4a39e 3968 else
4c4b4cd2
PH
3969 {
3970 int is_enumeral =
d12307c1
PMR
3971 (SYMBOL_CLASS (syms[i].symbol) == LOC_CONST
3972 && SYMBOL_TYPE (syms[i].symbol) != NULL
3973 && TYPE_CODE (SYMBOL_TYPE (syms[i].symbol)) == TYPE_CODE_ENUM);
1994afbf
DE
3974 struct symtab *symtab = NULL;
3975
d12307c1
PMR
3976 if (SYMBOL_OBJFILE_OWNED (syms[i].symbol))
3977 symtab = symbol_symtab (syms[i].symbol);
4c4b4cd2 3978
d12307c1 3979 if (SYMBOL_LINE (syms[i].symbol) != 0 && symtab != NULL)
d72413e6
PMR
3980 {
3981 printf_unfiltered ("[%d] ", i + first_choice);
3982 ada_print_symbol_signature (gdb_stdout, syms[i].symbol,
3983 &type_print_raw_options);
3984 printf_unfiltered (_(" at %s:%d\n"),
3985 symtab_to_filename_for_display (symtab),
3986 SYMBOL_LINE (syms[i].symbol));
3987 }
76a01679 3988 else if (is_enumeral
d12307c1 3989 && TYPE_NAME (SYMBOL_TYPE (syms[i].symbol)) != NULL)
4c4b4cd2 3990 {
a3f17187 3991 printf_unfiltered (("[%d] "), i + first_choice);
d12307c1 3992 ada_print_type (SYMBOL_TYPE (syms[i].symbol), NULL,
79d43c61 3993 gdb_stdout, -1, 0, &type_print_raw_options);
323e0a4a 3994 printf_unfiltered (_("'(%s) (enumeral)\n"),
d12307c1 3995 SYMBOL_PRINT_NAME (syms[i].symbol));
4c4b4cd2 3996 }
d72413e6
PMR
3997 else
3998 {
3999 printf_unfiltered ("[%d] ", i + first_choice);
4000 ada_print_symbol_signature (gdb_stdout, syms[i].symbol,
4001 &type_print_raw_options);
4002
4003 if (symtab != NULL)
4004 printf_unfiltered (is_enumeral
4005 ? _(" in %s (enumeral)\n")
4006 : _(" at %s:?\n"),
4007 symtab_to_filename_for_display (symtab));
4008 else
4009 printf_unfiltered (is_enumeral
4010 ? _(" (enumeral)\n")
4011 : _(" at ?\n"));
4012 }
4c4b4cd2 4013 }
14f9c5c9 4014 }
d2e4a39e 4015
14f9c5c9 4016 n_chosen = get_selections (chosen, nsyms, max_results, max_results > 1,
4c4b4cd2 4017 "overload-choice");
14f9c5c9
AS
4018
4019 for (i = 0; i < n_chosen; i += 1)
4c4b4cd2 4020 syms[i] = syms[chosen[i]];
14f9c5c9
AS
4021
4022 return n_chosen;
4023}
4024
4025/* Read and validate a set of numeric choices from the user in the
4c4b4cd2 4026 range 0 .. N_CHOICES-1. Place the results in increasing
14f9c5c9
AS
4027 order in CHOICES[0 .. N-1], and return N.
4028
4029 The user types choices as a sequence of numbers on one line
4030 separated by blanks, encoding them as follows:
4031
4c4b4cd2 4032 + A choice of 0 means to cancel the selection, throwing an error.
14f9c5c9
AS
4033 + If IS_ALL_CHOICE, a choice of 1 selects the entire set 0 .. N_CHOICES-1.
4034 + The user chooses k by typing k+IS_ALL_CHOICE+1.
4035
4c4b4cd2 4036 The user is not allowed to choose more than MAX_RESULTS values.
14f9c5c9
AS
4037
4038 ANNOTATION_SUFFIX, if present, is used to annotate the input
4c4b4cd2 4039 prompts (for use with the -f switch). */
14f9c5c9
AS
4040
4041int
d2e4a39e 4042get_selections (int *choices, int n_choices, int max_results,
4c4b4cd2 4043 int is_all_choice, char *annotation_suffix)
14f9c5c9 4044{
d2e4a39e 4045 char *args;
0bcd0149 4046 char *prompt;
14f9c5c9
AS
4047 int n_chosen;
4048 int first_choice = is_all_choice ? 2 : 1;
d2e4a39e 4049
14f9c5c9
AS
4050 prompt = getenv ("PS2");
4051 if (prompt == NULL)
0bcd0149 4052 prompt = "> ";
14f9c5c9 4053
0bcd0149 4054 args = command_line_input (prompt, 0, annotation_suffix);
d2e4a39e 4055
14f9c5c9 4056 if (args == NULL)
323e0a4a 4057 error_no_arg (_("one or more choice numbers"));
14f9c5c9
AS
4058
4059 n_chosen = 0;
76a01679 4060
4c4b4cd2
PH
4061 /* Set choices[0 .. n_chosen-1] to the users' choices in ascending
4062 order, as given in args. Choices are validated. */
14f9c5c9
AS
4063 while (1)
4064 {
d2e4a39e 4065 char *args2;
14f9c5c9
AS
4066 int choice, j;
4067
0fcd72ba 4068 args = skip_spaces (args);
14f9c5c9 4069 if (*args == '\0' && n_chosen == 0)
323e0a4a 4070 error_no_arg (_("one or more choice numbers"));
14f9c5c9 4071 else if (*args == '\0')
4c4b4cd2 4072 break;
14f9c5c9
AS
4073
4074 choice = strtol (args, &args2, 10);
d2e4a39e 4075 if (args == args2 || choice < 0
4c4b4cd2 4076 || choice > n_choices + first_choice - 1)
323e0a4a 4077 error (_("Argument must be choice number"));
14f9c5c9
AS
4078 args = args2;
4079
d2e4a39e 4080 if (choice == 0)
323e0a4a 4081 error (_("cancelled"));
14f9c5c9
AS
4082
4083 if (choice < first_choice)
4c4b4cd2
PH
4084 {
4085 n_chosen = n_choices;
4086 for (j = 0; j < n_choices; j += 1)
4087 choices[j] = j;
4088 break;
4089 }
14f9c5c9
AS
4090 choice -= first_choice;
4091
d2e4a39e 4092 for (j = n_chosen - 1; j >= 0 && choice < choices[j]; j -= 1)
4c4b4cd2
PH
4093 {
4094 }
14f9c5c9
AS
4095
4096 if (j < 0 || choice != choices[j])
4c4b4cd2
PH
4097 {
4098 int k;
5b4ee69b 4099
4c4b4cd2
PH
4100 for (k = n_chosen - 1; k > j; k -= 1)
4101 choices[k + 1] = choices[k];
4102 choices[j + 1] = choice;
4103 n_chosen += 1;
4104 }
14f9c5c9
AS
4105 }
4106
4107 if (n_chosen > max_results)
323e0a4a 4108 error (_("Select no more than %d of the above"), max_results);
d2e4a39e 4109
14f9c5c9
AS
4110 return n_chosen;
4111}
4112
4c4b4cd2
PH
4113/* Replace the operator of length OPLEN at position PC in *EXPP with a call
4114 on the function identified by SYM and BLOCK, and taking NARGS
4115 arguments. Update *EXPP as needed to hold more space. */
14f9c5c9
AS
4116
4117static void
d2e4a39e 4118replace_operator_with_call (struct expression **expp, int pc, int nargs,
4c4b4cd2 4119 int oplen, struct symbol *sym,
270140bd 4120 const struct block *block)
14f9c5c9
AS
4121{
4122 /* A new expression, with 6 more elements (3 for funcall, 4 for function
4c4b4cd2 4123 symbol, -oplen for operator being replaced). */
d2e4a39e 4124 struct expression *newexp = (struct expression *)
8c1a34e7 4125 xzalloc (sizeof (struct expression)
4c4b4cd2 4126 + EXP_ELEM_TO_BYTES ((*expp)->nelts + 7 - oplen));
d2e4a39e 4127 struct expression *exp = *expp;
14f9c5c9
AS
4128
4129 newexp->nelts = exp->nelts + 7 - oplen;
4130 newexp->language_defn = exp->language_defn;
3489610d 4131 newexp->gdbarch = exp->gdbarch;
14f9c5c9 4132 memcpy (newexp->elts, exp->elts, EXP_ELEM_TO_BYTES (pc));
d2e4a39e 4133 memcpy (newexp->elts + pc + 7, exp->elts + pc + oplen,
4c4b4cd2 4134 EXP_ELEM_TO_BYTES (exp->nelts - pc - oplen));
14f9c5c9
AS
4135
4136 newexp->elts[pc].opcode = newexp->elts[pc + 2].opcode = OP_FUNCALL;
4137 newexp->elts[pc + 1].longconst = (LONGEST) nargs;
4138
4139 newexp->elts[pc + 3].opcode = newexp->elts[pc + 6].opcode = OP_VAR_VALUE;
4140 newexp->elts[pc + 4].block = block;
4141 newexp->elts[pc + 5].symbol = sym;
4142
4143 *expp = newexp;
aacb1f0a 4144 xfree (exp);
d2e4a39e 4145}
14f9c5c9
AS
4146
4147/* Type-class predicates */
4148
4c4b4cd2
PH
4149/* True iff TYPE is numeric (i.e., an INT, RANGE (of numeric type),
4150 or FLOAT). */
14f9c5c9
AS
4151
4152static int
d2e4a39e 4153numeric_type_p (struct type *type)
14f9c5c9
AS
4154{
4155 if (type == NULL)
4156 return 0;
d2e4a39e
AS
4157 else
4158 {
4159 switch (TYPE_CODE (type))
4c4b4cd2
PH
4160 {
4161 case TYPE_CODE_INT:
4162 case TYPE_CODE_FLT:
4163 return 1;
4164 case TYPE_CODE_RANGE:
4165 return (type == TYPE_TARGET_TYPE (type)
4166 || numeric_type_p (TYPE_TARGET_TYPE (type)));
4167 default:
4168 return 0;
4169 }
d2e4a39e 4170 }
14f9c5c9
AS
4171}
4172
4c4b4cd2 4173/* True iff TYPE is integral (an INT or RANGE of INTs). */
14f9c5c9
AS
4174
4175static int
d2e4a39e 4176integer_type_p (struct type *type)
14f9c5c9
AS
4177{
4178 if (type == NULL)
4179 return 0;
d2e4a39e
AS
4180 else
4181 {
4182 switch (TYPE_CODE (type))
4c4b4cd2
PH
4183 {
4184 case TYPE_CODE_INT:
4185 return 1;
4186 case TYPE_CODE_RANGE:
4187 return (type == TYPE_TARGET_TYPE (type)
4188 || integer_type_p (TYPE_TARGET_TYPE (type)));
4189 default:
4190 return 0;
4191 }
d2e4a39e 4192 }
14f9c5c9
AS
4193}
4194
4c4b4cd2 4195/* True iff TYPE is scalar (INT, RANGE, FLOAT, ENUM). */
14f9c5c9
AS
4196
4197static int
d2e4a39e 4198scalar_type_p (struct type *type)
14f9c5c9
AS
4199{
4200 if (type == NULL)
4201 return 0;
d2e4a39e
AS
4202 else
4203 {
4204 switch (TYPE_CODE (type))
4c4b4cd2
PH
4205 {
4206 case TYPE_CODE_INT:
4207 case TYPE_CODE_RANGE:
4208 case TYPE_CODE_ENUM:
4209 case TYPE_CODE_FLT:
4210 return 1;
4211 default:
4212 return 0;
4213 }
d2e4a39e 4214 }
14f9c5c9
AS
4215}
4216
4c4b4cd2 4217/* True iff TYPE is discrete (INT, RANGE, ENUM). */
14f9c5c9
AS
4218
4219static int
d2e4a39e 4220discrete_type_p (struct type *type)
14f9c5c9
AS
4221{
4222 if (type == NULL)
4223 return 0;
d2e4a39e
AS
4224 else
4225 {
4226 switch (TYPE_CODE (type))
4c4b4cd2
PH
4227 {
4228 case TYPE_CODE_INT:
4229 case TYPE_CODE_RANGE:
4230 case TYPE_CODE_ENUM:
872f0337 4231 case TYPE_CODE_BOOL:
4c4b4cd2
PH
4232 return 1;
4233 default:
4234 return 0;
4235 }
d2e4a39e 4236 }
14f9c5c9
AS
4237}
4238
4c4b4cd2
PH
4239/* Returns non-zero if OP with operands in the vector ARGS could be
4240 a user-defined function. Errs on the side of pre-defined operators
4241 (i.e., result 0). */
14f9c5c9
AS
4242
4243static int
d2e4a39e 4244possible_user_operator_p (enum exp_opcode op, struct value *args[])
14f9c5c9 4245{
76a01679 4246 struct type *type0 =
df407dfe 4247 (args[0] == NULL) ? NULL : ada_check_typedef (value_type (args[0]));
d2e4a39e 4248 struct type *type1 =
df407dfe 4249 (args[1] == NULL) ? NULL : ada_check_typedef (value_type (args[1]));
d2e4a39e 4250
4c4b4cd2
PH
4251 if (type0 == NULL)
4252 return 0;
4253
14f9c5c9
AS
4254 switch (op)
4255 {
4256 default:
4257 return 0;
4258
4259 case BINOP_ADD:
4260 case BINOP_SUB:
4261 case BINOP_MUL:
4262 case BINOP_DIV:
d2e4a39e 4263 return (!(numeric_type_p (type0) && numeric_type_p (type1)));
14f9c5c9
AS
4264
4265 case BINOP_REM:
4266 case BINOP_MOD:
4267 case BINOP_BITWISE_AND:
4268 case BINOP_BITWISE_IOR:
4269 case BINOP_BITWISE_XOR:
d2e4a39e 4270 return (!(integer_type_p (type0) && integer_type_p (type1)));
14f9c5c9
AS
4271
4272 case BINOP_EQUAL:
4273 case BINOP_NOTEQUAL:
4274 case BINOP_LESS:
4275 case BINOP_GTR:
4276 case BINOP_LEQ:
4277 case BINOP_GEQ:
d2e4a39e 4278 return (!(scalar_type_p (type0) && scalar_type_p (type1)));
14f9c5c9
AS
4279
4280 case BINOP_CONCAT:
ee90b9ab 4281 return !ada_is_array_type (type0) || !ada_is_array_type (type1);
14f9c5c9
AS
4282
4283 case BINOP_EXP:
d2e4a39e 4284 return (!(numeric_type_p (type0) && integer_type_p (type1)));
14f9c5c9
AS
4285
4286 case UNOP_NEG:
4287 case UNOP_PLUS:
4288 case UNOP_LOGICAL_NOT:
d2e4a39e
AS
4289 case UNOP_ABS:
4290 return (!numeric_type_p (type0));
14f9c5c9
AS
4291
4292 }
4293}
4294\f
4c4b4cd2 4295 /* Renaming */
14f9c5c9 4296
aeb5907d
JB
4297/* NOTES:
4298
4299 1. In the following, we assume that a renaming type's name may
4300 have an ___XD suffix. It would be nice if this went away at some
4301 point.
4302 2. We handle both the (old) purely type-based representation of
4303 renamings and the (new) variable-based encoding. At some point,
4304 it is devoutly to be hoped that the former goes away
4305 (FIXME: hilfinger-2007-07-09).
4306 3. Subprogram renamings are not implemented, although the XRS
4307 suffix is recognized (FIXME: hilfinger-2007-07-09). */
4308
4309/* If SYM encodes a renaming,
4310
4311 <renaming> renames <renamed entity>,
4312
4313 sets *LEN to the length of the renamed entity's name,
4314 *RENAMED_ENTITY to that name (not null-terminated), and *RENAMING_EXPR to
4315 the string describing the subcomponent selected from the renamed
0963b4bd 4316 entity. Returns ADA_NOT_RENAMING if SYM does not encode a renaming
aeb5907d
JB
4317 (in which case, the values of *RENAMED_ENTITY, *LEN, and *RENAMING_EXPR
4318 are undefined). Otherwise, returns a value indicating the category
4319 of entity renamed: an object (ADA_OBJECT_RENAMING), exception
4320 (ADA_EXCEPTION_RENAMING), package (ADA_PACKAGE_RENAMING), or
4321 subprogram (ADA_SUBPROGRAM_RENAMING). Does no allocation; the
4322 strings returned in *RENAMED_ENTITY and *RENAMING_EXPR should not be
4323 deallocated. The values of RENAMED_ENTITY, LEN, or RENAMING_EXPR
4324 may be NULL, in which case they are not assigned.
4325
4326 [Currently, however, GCC does not generate subprogram renamings.] */
4327
4328enum ada_renaming_category
4329ada_parse_renaming (struct symbol *sym,
4330 const char **renamed_entity, int *len,
4331 const char **renaming_expr)
4332{
4333 enum ada_renaming_category kind;
4334 const char *info;
4335 const char *suffix;
4336
4337 if (sym == NULL)
4338 return ADA_NOT_RENAMING;
4339 switch (SYMBOL_CLASS (sym))
14f9c5c9 4340 {
aeb5907d
JB
4341 default:
4342 return ADA_NOT_RENAMING;
4343 case LOC_TYPEDEF:
4344 return parse_old_style_renaming (SYMBOL_TYPE (sym),
4345 renamed_entity, len, renaming_expr);
4346 case LOC_LOCAL:
4347 case LOC_STATIC:
4348 case LOC_COMPUTED:
4349 case LOC_OPTIMIZED_OUT:
4350 info = strstr (SYMBOL_LINKAGE_NAME (sym), "___XR");
4351 if (info == NULL)
4352 return ADA_NOT_RENAMING;
4353 switch (info[5])
4354 {
4355 case '_':
4356 kind = ADA_OBJECT_RENAMING;
4357 info += 6;
4358 break;
4359 case 'E':
4360 kind = ADA_EXCEPTION_RENAMING;
4361 info += 7;
4362 break;
4363 case 'P':
4364 kind = ADA_PACKAGE_RENAMING;
4365 info += 7;
4366 break;
4367 case 'S':
4368 kind = ADA_SUBPROGRAM_RENAMING;
4369 info += 7;
4370 break;
4371 default:
4372 return ADA_NOT_RENAMING;
4373 }
14f9c5c9 4374 }
4c4b4cd2 4375
aeb5907d
JB
4376 if (renamed_entity != NULL)
4377 *renamed_entity = info;
4378 suffix = strstr (info, "___XE");
4379 if (suffix == NULL || suffix == info)
4380 return ADA_NOT_RENAMING;
4381 if (len != NULL)
4382 *len = strlen (info) - strlen (suffix);
4383 suffix += 5;
4384 if (renaming_expr != NULL)
4385 *renaming_expr = suffix;
4386 return kind;
4387}
4388
4389/* Assuming TYPE encodes a renaming according to the old encoding in
4390 exp_dbug.ads, returns details of that renaming in *RENAMED_ENTITY,
4391 *LEN, and *RENAMING_EXPR, as for ada_parse_renaming, above. Returns
4392 ADA_NOT_RENAMING otherwise. */
4393static enum ada_renaming_category
4394parse_old_style_renaming (struct type *type,
4395 const char **renamed_entity, int *len,
4396 const char **renaming_expr)
4397{
4398 enum ada_renaming_category kind;
4399 const char *name;
4400 const char *info;
4401 const char *suffix;
14f9c5c9 4402
aeb5907d
JB
4403 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM
4404 || TYPE_NFIELDS (type) != 1)
4405 return ADA_NOT_RENAMING;
14f9c5c9 4406
aeb5907d
JB
4407 name = type_name_no_tag (type);
4408 if (name == NULL)
4409 return ADA_NOT_RENAMING;
4410
4411 name = strstr (name, "___XR");
4412 if (name == NULL)
4413 return ADA_NOT_RENAMING;
4414 switch (name[5])
4415 {
4416 case '\0':
4417 case '_':
4418 kind = ADA_OBJECT_RENAMING;
4419 break;
4420 case 'E':
4421 kind = ADA_EXCEPTION_RENAMING;
4422 break;
4423 case 'P':
4424 kind = ADA_PACKAGE_RENAMING;
4425 break;
4426 case 'S':
4427 kind = ADA_SUBPROGRAM_RENAMING;
4428 break;
4429 default:
4430 return ADA_NOT_RENAMING;
4431 }
14f9c5c9 4432
aeb5907d
JB
4433 info = TYPE_FIELD_NAME (type, 0);
4434 if (info == NULL)
4435 return ADA_NOT_RENAMING;
4436 if (renamed_entity != NULL)
4437 *renamed_entity = info;
4438 suffix = strstr (info, "___XE");
4439 if (renaming_expr != NULL)
4440 *renaming_expr = suffix + 5;
4441 if (suffix == NULL || suffix == info)
4442 return ADA_NOT_RENAMING;
4443 if (len != NULL)
4444 *len = suffix - info;
4445 return kind;
a5ee536b
JB
4446}
4447
4448/* Compute the value of the given RENAMING_SYM, which is expected to
4449 be a symbol encoding a renaming expression. BLOCK is the block
4450 used to evaluate the renaming. */
52ce6436 4451
a5ee536b
JB
4452static struct value *
4453ada_read_renaming_var_value (struct symbol *renaming_sym,
3977b71f 4454 const struct block *block)
a5ee536b 4455{
bbc13ae3 4456 const char *sym_name;
a5ee536b 4457
bbc13ae3 4458 sym_name = SYMBOL_LINKAGE_NAME (renaming_sym);
4d01a485
PA
4459 expression_up expr = parse_exp_1 (&sym_name, 0, block, 0);
4460 return evaluate_expression (expr.get ());
a5ee536b 4461}
14f9c5c9 4462\f
d2e4a39e 4463
4c4b4cd2 4464 /* Evaluation: Function Calls */
14f9c5c9 4465
4c4b4cd2 4466/* Return an lvalue containing the value VAL. This is the identity on
40bc484c
JB
4467 lvalues, and otherwise has the side-effect of allocating memory
4468 in the inferior where a copy of the value contents is copied. */
14f9c5c9 4469
d2e4a39e 4470static struct value *
40bc484c 4471ensure_lval (struct value *val)
14f9c5c9 4472{
40bc484c
JB
4473 if (VALUE_LVAL (val) == not_lval
4474 || VALUE_LVAL (val) == lval_internalvar)
c3e5cd34 4475 {
df407dfe 4476 int len = TYPE_LENGTH (ada_check_typedef (value_type (val)));
40bc484c
JB
4477 const CORE_ADDR addr =
4478 value_as_long (value_allocate_space_in_inferior (len));
c3e5cd34 4479
40bc484c 4480 set_value_address (val, addr);
a84a8a0d 4481 VALUE_LVAL (val) = lval_memory;
40bc484c 4482 write_memory (addr, value_contents (val), len);
c3e5cd34 4483 }
14f9c5c9
AS
4484
4485 return val;
4486}
4487
4488/* Return the value ACTUAL, converted to be an appropriate value for a
4489 formal of type FORMAL_TYPE. Use *SP as a stack pointer for
4490 allocating any necessary descriptors (fat pointers), or copies of
4c4b4cd2 4491 values not residing in memory, updating it as needed. */
14f9c5c9 4492
a93c0eb6 4493struct value *
40bc484c 4494ada_convert_actual (struct value *actual, struct type *formal_type0)
14f9c5c9 4495{
df407dfe 4496 struct type *actual_type = ada_check_typedef (value_type (actual));
61ee279c 4497 struct type *formal_type = ada_check_typedef (formal_type0);
d2e4a39e
AS
4498 struct type *formal_target =
4499 TYPE_CODE (formal_type) == TYPE_CODE_PTR
61ee279c 4500 ? ada_check_typedef (TYPE_TARGET_TYPE (formal_type)) : formal_type;
d2e4a39e
AS
4501 struct type *actual_target =
4502 TYPE_CODE (actual_type) == TYPE_CODE_PTR
61ee279c 4503 ? ada_check_typedef (TYPE_TARGET_TYPE (actual_type)) : actual_type;
14f9c5c9 4504
4c4b4cd2 4505 if (ada_is_array_descriptor_type (formal_target)
14f9c5c9 4506 && TYPE_CODE (actual_target) == TYPE_CODE_ARRAY)
40bc484c 4507 return make_array_descriptor (formal_type, actual);
a84a8a0d
JB
4508 else if (TYPE_CODE (formal_type) == TYPE_CODE_PTR
4509 || TYPE_CODE (formal_type) == TYPE_CODE_REF)
14f9c5c9 4510 {
a84a8a0d 4511 struct value *result;
5b4ee69b 4512
14f9c5c9 4513 if (TYPE_CODE (formal_target) == TYPE_CODE_ARRAY
4c4b4cd2 4514 && ada_is_array_descriptor_type (actual_target))
a84a8a0d 4515 result = desc_data (actual);
14f9c5c9 4516 else if (TYPE_CODE (actual_type) != TYPE_CODE_PTR)
4c4b4cd2
PH
4517 {
4518 if (VALUE_LVAL (actual) != lval_memory)
4519 {
4520 struct value *val;
5b4ee69b 4521
df407dfe 4522 actual_type = ada_check_typedef (value_type (actual));
4c4b4cd2 4523 val = allocate_value (actual_type);
990a07ab 4524 memcpy ((char *) value_contents_raw (val),
0fd88904 4525 (char *) value_contents (actual),
4c4b4cd2 4526 TYPE_LENGTH (actual_type));
40bc484c 4527 actual = ensure_lval (val);
4c4b4cd2 4528 }
a84a8a0d 4529 result = value_addr (actual);
4c4b4cd2 4530 }
a84a8a0d
JB
4531 else
4532 return actual;
b1af9e97 4533 return value_cast_pointers (formal_type, result, 0);
14f9c5c9
AS
4534 }
4535 else if (TYPE_CODE (actual_type) == TYPE_CODE_PTR)
4536 return ada_value_ind (actual);
8344af1e
JB
4537 else if (ada_is_aligner_type (formal_type))
4538 {
4539 /* We need to turn this parameter into an aligner type
4540 as well. */
4541 struct value *aligner = allocate_value (formal_type);
4542 struct value *component = ada_value_struct_elt (aligner, "F", 0);
4543
4544 value_assign_to_component (aligner, component, actual);
4545 return aligner;
4546 }
14f9c5c9
AS
4547
4548 return actual;
4549}
4550
438c98a1
JB
4551/* Convert VALUE (which must be an address) to a CORE_ADDR that is a pointer of
4552 type TYPE. This is usually an inefficient no-op except on some targets
4553 (such as AVR) where the representation of a pointer and an address
4554 differs. */
4555
4556static CORE_ADDR
4557value_pointer (struct value *value, struct type *type)
4558{
4559 struct gdbarch *gdbarch = get_type_arch (type);
4560 unsigned len = TYPE_LENGTH (type);
224c3ddb 4561 gdb_byte *buf = (gdb_byte *) alloca (len);
438c98a1
JB
4562 CORE_ADDR addr;
4563
4564 addr = value_address (value);
4565 gdbarch_address_to_pointer (gdbarch, type, buf, addr);
4566 addr = extract_unsigned_integer (buf, len, gdbarch_byte_order (gdbarch));
4567 return addr;
4568}
4569
14f9c5c9 4570
4c4b4cd2
PH
4571/* Push a descriptor of type TYPE for array value ARR on the stack at
4572 *SP, updating *SP to reflect the new descriptor. Return either
14f9c5c9 4573 an lvalue representing the new descriptor, or (if TYPE is a pointer-
4c4b4cd2
PH
4574 to-descriptor type rather than a descriptor type), a struct value *
4575 representing a pointer to this descriptor. */
14f9c5c9 4576
d2e4a39e 4577static struct value *
40bc484c 4578make_array_descriptor (struct type *type, struct value *arr)
14f9c5c9 4579{
d2e4a39e
AS
4580 struct type *bounds_type = desc_bounds_type (type);
4581 struct type *desc_type = desc_base_type (type);
4582 struct value *descriptor = allocate_value (desc_type);
4583 struct value *bounds = allocate_value (bounds_type);
14f9c5c9 4584 int i;
d2e4a39e 4585
0963b4bd
MS
4586 for (i = ada_array_arity (ada_check_typedef (value_type (arr)));
4587 i > 0; i -= 1)
14f9c5c9 4588 {
19f220c3
JK
4589 modify_field (value_type (bounds), value_contents_writeable (bounds),
4590 ada_array_bound (arr, i, 0),
4591 desc_bound_bitpos (bounds_type, i, 0),
4592 desc_bound_bitsize (bounds_type, i, 0));
4593 modify_field (value_type (bounds), value_contents_writeable (bounds),
4594 ada_array_bound (arr, i, 1),
4595 desc_bound_bitpos (bounds_type, i, 1),
4596 desc_bound_bitsize (bounds_type, i, 1));
14f9c5c9 4597 }
d2e4a39e 4598
40bc484c 4599 bounds = ensure_lval (bounds);
d2e4a39e 4600
19f220c3
JK
4601 modify_field (value_type (descriptor),
4602 value_contents_writeable (descriptor),
4603 value_pointer (ensure_lval (arr),
4604 TYPE_FIELD_TYPE (desc_type, 0)),
4605 fat_pntr_data_bitpos (desc_type),
4606 fat_pntr_data_bitsize (desc_type));
4607
4608 modify_field (value_type (descriptor),
4609 value_contents_writeable (descriptor),
4610 value_pointer (bounds,
4611 TYPE_FIELD_TYPE (desc_type, 1)),
4612 fat_pntr_bounds_bitpos (desc_type),
4613 fat_pntr_bounds_bitsize (desc_type));
14f9c5c9 4614
40bc484c 4615 descriptor = ensure_lval (descriptor);
14f9c5c9
AS
4616
4617 if (TYPE_CODE (type) == TYPE_CODE_PTR)
4618 return value_addr (descriptor);
4619 else
4620 return descriptor;
4621}
14f9c5c9 4622\f
3d9434b5
JB
4623 /* Symbol Cache Module */
4624
3d9434b5 4625/* Performance measurements made as of 2010-01-15 indicate that
ee01b665 4626 this cache does bring some noticeable improvements. Depending
3d9434b5
JB
4627 on the type of entity being printed, the cache can make it as much
4628 as an order of magnitude faster than without it.
4629
4630 The descriptive type DWARF extension has significantly reduced
4631 the need for this cache, at least when DWARF is being used. However,
4632 even in this case, some expensive name-based symbol searches are still
4633 sometimes necessary - to find an XVZ variable, mostly. */
4634
ee01b665 4635/* Initialize the contents of SYM_CACHE. */
3d9434b5 4636
ee01b665
JB
4637static void
4638ada_init_symbol_cache (struct ada_symbol_cache *sym_cache)
4639{
4640 obstack_init (&sym_cache->cache_space);
4641 memset (sym_cache->root, '\000', sizeof (sym_cache->root));
4642}
3d9434b5 4643
ee01b665
JB
4644/* Free the memory used by SYM_CACHE. */
4645
4646static void
4647ada_free_symbol_cache (struct ada_symbol_cache *sym_cache)
3d9434b5 4648{
ee01b665
JB
4649 obstack_free (&sym_cache->cache_space, NULL);
4650 xfree (sym_cache);
4651}
3d9434b5 4652
ee01b665
JB
4653/* Return the symbol cache associated to the given program space PSPACE.
4654 If not allocated for this PSPACE yet, allocate and initialize one. */
3d9434b5 4655
ee01b665
JB
4656static struct ada_symbol_cache *
4657ada_get_symbol_cache (struct program_space *pspace)
4658{
4659 struct ada_pspace_data *pspace_data = get_ada_pspace_data (pspace);
ee01b665 4660
66c168ae 4661 if (pspace_data->sym_cache == NULL)
ee01b665 4662 {
66c168ae
JB
4663 pspace_data->sym_cache = XCNEW (struct ada_symbol_cache);
4664 ada_init_symbol_cache (pspace_data->sym_cache);
ee01b665
JB
4665 }
4666
66c168ae 4667 return pspace_data->sym_cache;
ee01b665 4668}
3d9434b5
JB
4669
4670/* Clear all entries from the symbol cache. */
4671
4672static void
4673ada_clear_symbol_cache (void)
4674{
ee01b665
JB
4675 struct ada_symbol_cache *sym_cache
4676 = ada_get_symbol_cache (current_program_space);
4677
4678 obstack_free (&sym_cache->cache_space, NULL);
4679 ada_init_symbol_cache (sym_cache);
3d9434b5
JB
4680}
4681
fe978cb0 4682/* Search our cache for an entry matching NAME and DOMAIN.
3d9434b5
JB
4683 Return it if found, or NULL otherwise. */
4684
4685static struct cache_entry **
fe978cb0 4686find_entry (const char *name, domain_enum domain)
3d9434b5 4687{
ee01b665
JB
4688 struct ada_symbol_cache *sym_cache
4689 = ada_get_symbol_cache (current_program_space);
3d9434b5
JB
4690 int h = msymbol_hash (name) % HASH_SIZE;
4691 struct cache_entry **e;
4692
ee01b665 4693 for (e = &sym_cache->root[h]; *e != NULL; e = &(*e)->next)
3d9434b5 4694 {
fe978cb0 4695 if (domain == (*e)->domain && strcmp (name, (*e)->name) == 0)
3d9434b5
JB
4696 return e;
4697 }
4698 return NULL;
4699}
4700
fe978cb0 4701/* Search the symbol cache for an entry matching NAME and DOMAIN.
3d9434b5
JB
4702 Return 1 if found, 0 otherwise.
4703
4704 If an entry was found and SYM is not NULL, set *SYM to the entry's
4705 SYM. Same principle for BLOCK if not NULL. */
96d887e8 4706
96d887e8 4707static int
fe978cb0 4708lookup_cached_symbol (const char *name, domain_enum domain,
f0c5f9b2 4709 struct symbol **sym, const struct block **block)
96d887e8 4710{
fe978cb0 4711 struct cache_entry **e = find_entry (name, domain);
3d9434b5
JB
4712
4713 if (e == NULL)
4714 return 0;
4715 if (sym != NULL)
4716 *sym = (*e)->sym;
4717 if (block != NULL)
4718 *block = (*e)->block;
4719 return 1;
96d887e8
PH
4720}
4721
3d9434b5 4722/* Assuming that (SYM, BLOCK) is the result of the lookup of NAME
fe978cb0 4723 in domain DOMAIN, save this result in our symbol cache. */
3d9434b5 4724
96d887e8 4725static void
fe978cb0 4726cache_symbol (const char *name, domain_enum domain, struct symbol *sym,
270140bd 4727 const struct block *block)
96d887e8 4728{
ee01b665
JB
4729 struct ada_symbol_cache *sym_cache
4730 = ada_get_symbol_cache (current_program_space);
3d9434b5
JB
4731 int h;
4732 char *copy;
4733 struct cache_entry *e;
4734
1994afbf
DE
4735 /* Symbols for builtin types don't have a block.
4736 For now don't cache such symbols. */
4737 if (sym != NULL && !SYMBOL_OBJFILE_OWNED (sym))
4738 return;
4739
3d9434b5
JB
4740 /* If the symbol is a local symbol, then do not cache it, as a search
4741 for that symbol depends on the context. To determine whether
4742 the symbol is local or not, we check the block where we found it
4743 against the global and static blocks of its associated symtab. */
4744 if (sym
08be3fe3 4745 && BLOCKVECTOR_BLOCK (SYMTAB_BLOCKVECTOR (symbol_symtab (sym)),
439247b6 4746 GLOBAL_BLOCK) != block
08be3fe3 4747 && BLOCKVECTOR_BLOCK (SYMTAB_BLOCKVECTOR (symbol_symtab (sym)),
439247b6 4748 STATIC_BLOCK) != block)
3d9434b5
JB
4749 return;
4750
4751 h = msymbol_hash (name) % HASH_SIZE;
ee01b665
JB
4752 e = (struct cache_entry *) obstack_alloc (&sym_cache->cache_space,
4753 sizeof (*e));
4754 e->next = sym_cache->root[h];
4755 sym_cache->root[h] = e;
224c3ddb
SM
4756 e->name = copy
4757 = (char *) obstack_alloc (&sym_cache->cache_space, strlen (name) + 1);
3d9434b5
JB
4758 strcpy (copy, name);
4759 e->sym = sym;
fe978cb0 4760 e->domain = domain;
3d9434b5 4761 e->block = block;
96d887e8 4762}
4c4b4cd2
PH
4763\f
4764 /* Symbol Lookup */
4765
c0431670
JB
4766/* Return nonzero if wild matching should be used when searching for
4767 all symbols matching LOOKUP_NAME.
4768
4769 LOOKUP_NAME is expected to be a symbol name after transformation
4770 for Ada lookups (see ada_name_for_lookup). */
4771
4772static int
4773should_use_wild_match (const char *lookup_name)
4774{
4775 return (strstr (lookup_name, "__") == NULL);
4776}
4777
4c4b4cd2
PH
4778/* Return the result of a standard (literal, C-like) lookup of NAME in
4779 given DOMAIN, visible from lexical block BLOCK. */
4780
4781static struct symbol *
4782standard_lookup (const char *name, const struct block *block,
4783 domain_enum domain)
4784{
acbd605d 4785 /* Initialize it just to avoid a GCC false warning. */
d12307c1 4786 struct block_symbol sym = {NULL, NULL};
4c4b4cd2 4787
d12307c1
PMR
4788 if (lookup_cached_symbol (name, domain, &sym.symbol, NULL))
4789 return sym.symbol;
2570f2b7 4790 sym = lookup_symbol_in_language (name, block, domain, language_c, 0);
d12307c1
PMR
4791 cache_symbol (name, domain, sym.symbol, sym.block);
4792 return sym.symbol;
4c4b4cd2
PH
4793}
4794
4795
4796/* Non-zero iff there is at least one non-function/non-enumeral symbol
4797 in the symbol fields of SYMS[0..N-1]. We treat enumerals as functions,
4798 since they contend in overloading in the same way. */
4799static int
d12307c1 4800is_nonfunction (struct block_symbol syms[], int n)
4c4b4cd2
PH
4801{
4802 int i;
4803
4804 for (i = 0; i < n; i += 1)
d12307c1
PMR
4805 if (TYPE_CODE (SYMBOL_TYPE (syms[i].symbol)) != TYPE_CODE_FUNC
4806 && (TYPE_CODE (SYMBOL_TYPE (syms[i].symbol)) != TYPE_CODE_ENUM
4807 || SYMBOL_CLASS (syms[i].symbol) != LOC_CONST))
14f9c5c9
AS
4808 return 1;
4809
4810 return 0;
4811}
4812
4813/* If true (non-zero), then TYPE0 and TYPE1 represent equivalent
4c4b4cd2 4814 struct types. Otherwise, they may not. */
14f9c5c9
AS
4815
4816static int
d2e4a39e 4817equiv_types (struct type *type0, struct type *type1)
14f9c5c9 4818{
d2e4a39e 4819 if (type0 == type1)
14f9c5c9 4820 return 1;
d2e4a39e 4821 if (type0 == NULL || type1 == NULL
14f9c5c9
AS
4822 || TYPE_CODE (type0) != TYPE_CODE (type1))
4823 return 0;
d2e4a39e 4824 if ((TYPE_CODE (type0) == TYPE_CODE_STRUCT
14f9c5c9
AS
4825 || TYPE_CODE (type0) == TYPE_CODE_ENUM)
4826 && ada_type_name (type0) != NULL && ada_type_name (type1) != NULL
4c4b4cd2 4827 && strcmp (ada_type_name (type0), ada_type_name (type1)) == 0)
14f9c5c9 4828 return 1;
d2e4a39e 4829
14f9c5c9
AS
4830 return 0;
4831}
4832
4833/* True iff SYM0 represents the same entity as SYM1, or one that is
4c4b4cd2 4834 no more defined than that of SYM1. */
14f9c5c9
AS
4835
4836static int
d2e4a39e 4837lesseq_defined_than (struct symbol *sym0, struct symbol *sym1)
14f9c5c9
AS
4838{
4839 if (sym0 == sym1)
4840 return 1;
176620f1 4841 if (SYMBOL_DOMAIN (sym0) != SYMBOL_DOMAIN (sym1)
14f9c5c9
AS
4842 || SYMBOL_CLASS (sym0) != SYMBOL_CLASS (sym1))
4843 return 0;
4844
d2e4a39e 4845 switch (SYMBOL_CLASS (sym0))
14f9c5c9
AS
4846 {
4847 case LOC_UNDEF:
4848 return 1;
4849 case LOC_TYPEDEF:
4850 {
4c4b4cd2
PH
4851 struct type *type0 = SYMBOL_TYPE (sym0);
4852 struct type *type1 = SYMBOL_TYPE (sym1);
0d5cff50
DE
4853 const char *name0 = SYMBOL_LINKAGE_NAME (sym0);
4854 const char *name1 = SYMBOL_LINKAGE_NAME (sym1);
4c4b4cd2 4855 int len0 = strlen (name0);
5b4ee69b 4856
4c4b4cd2
PH
4857 return
4858 TYPE_CODE (type0) == TYPE_CODE (type1)
4859 && (equiv_types (type0, type1)
4860 || (len0 < strlen (name1) && strncmp (name0, name1, len0) == 0
61012eef 4861 && startswith (name1 + len0, "___XV")));
14f9c5c9
AS
4862 }
4863 case LOC_CONST:
4864 return SYMBOL_VALUE (sym0) == SYMBOL_VALUE (sym1)
4c4b4cd2 4865 && equiv_types (SYMBOL_TYPE (sym0), SYMBOL_TYPE (sym1));
d2e4a39e
AS
4866 default:
4867 return 0;
14f9c5c9
AS
4868 }
4869}
4870
d12307c1 4871/* Append (SYM,BLOCK,SYMTAB) to the end of the array of struct block_symbol
4c4b4cd2 4872 records in OBSTACKP. Do nothing if SYM is a duplicate. */
14f9c5c9
AS
4873
4874static void
76a01679
JB
4875add_defn_to_vec (struct obstack *obstackp,
4876 struct symbol *sym,
f0c5f9b2 4877 const struct block *block)
14f9c5c9
AS
4878{
4879 int i;
d12307c1 4880 struct block_symbol *prevDefns = defns_collected (obstackp, 0);
14f9c5c9 4881
529cad9c
PH
4882 /* Do not try to complete stub types, as the debugger is probably
4883 already scanning all symbols matching a certain name at the
4884 time when this function is called. Trying to replace the stub
4885 type by its associated full type will cause us to restart a scan
4886 which may lead to an infinite recursion. Instead, the client
4887 collecting the matching symbols will end up collecting several
4888 matches, with at least one of them complete. It can then filter
4889 out the stub ones if needed. */
4890
4c4b4cd2
PH
4891 for (i = num_defns_collected (obstackp) - 1; i >= 0; i -= 1)
4892 {
d12307c1 4893 if (lesseq_defined_than (sym, prevDefns[i].symbol))
4c4b4cd2 4894 return;
d12307c1 4895 else if (lesseq_defined_than (prevDefns[i].symbol, sym))
4c4b4cd2 4896 {
d12307c1 4897 prevDefns[i].symbol = sym;
4c4b4cd2 4898 prevDefns[i].block = block;
4c4b4cd2 4899 return;
76a01679 4900 }
4c4b4cd2
PH
4901 }
4902
4903 {
d12307c1 4904 struct block_symbol info;
4c4b4cd2 4905
d12307c1 4906 info.symbol = sym;
4c4b4cd2 4907 info.block = block;
d12307c1 4908 obstack_grow (obstackp, &info, sizeof (struct block_symbol));
4c4b4cd2
PH
4909 }
4910}
4911
d12307c1
PMR
4912/* Number of block_symbol structures currently collected in current vector in
4913 OBSTACKP. */
4c4b4cd2 4914
76a01679
JB
4915static int
4916num_defns_collected (struct obstack *obstackp)
4c4b4cd2 4917{
d12307c1 4918 return obstack_object_size (obstackp) / sizeof (struct block_symbol);
4c4b4cd2
PH
4919}
4920
d12307c1
PMR
4921/* Vector of block_symbol structures currently collected in current vector in
4922 OBSTACKP. If FINISH, close off the vector and return its final address. */
4c4b4cd2 4923
d12307c1 4924static struct block_symbol *
4c4b4cd2
PH
4925defns_collected (struct obstack *obstackp, int finish)
4926{
4927 if (finish)
224c3ddb 4928 return (struct block_symbol *) obstack_finish (obstackp);
4c4b4cd2 4929 else
d12307c1 4930 return (struct block_symbol *) obstack_base (obstackp);
4c4b4cd2
PH
4931}
4932
7c7b6655
TT
4933/* Return a bound minimal symbol matching NAME according to Ada
4934 decoding rules. Returns an invalid symbol if there is no such
4935 minimal symbol. Names prefixed with "standard__" are handled
4936 specially: "standard__" is first stripped off, and only static and
4937 global symbols are searched. */
4c4b4cd2 4938
7c7b6655 4939struct bound_minimal_symbol
96d887e8 4940ada_lookup_simple_minsym (const char *name)
4c4b4cd2 4941{
7c7b6655 4942 struct bound_minimal_symbol result;
4c4b4cd2 4943 struct objfile *objfile;
96d887e8 4944 struct minimal_symbol *msymbol;
dc4024cd 4945 const int wild_match_p = should_use_wild_match (name);
4c4b4cd2 4946
7c7b6655
TT
4947 memset (&result, 0, sizeof (result));
4948
c0431670
JB
4949 /* Special case: If the user specifies a symbol name inside package
4950 Standard, do a non-wild matching of the symbol name without
4951 the "standard__" prefix. This was primarily introduced in order
4952 to allow the user to specifically access the standard exceptions
4953 using, for instance, Standard.Constraint_Error when Constraint_Error
4954 is ambiguous (due to the user defining its own Constraint_Error
4955 entity inside its program). */
61012eef 4956 if (startswith (name, "standard__"))
c0431670 4957 name += sizeof ("standard__") - 1;
4c4b4cd2 4958
96d887e8
PH
4959 ALL_MSYMBOLS (objfile, msymbol)
4960 {
efd66ac6 4961 if (match_name (MSYMBOL_LINKAGE_NAME (msymbol), name, wild_match_p)
96d887e8 4962 && MSYMBOL_TYPE (msymbol) != mst_solib_trampoline)
7c7b6655
TT
4963 {
4964 result.minsym = msymbol;
4965 result.objfile = objfile;
4966 break;
4967 }
96d887e8 4968 }
4c4b4cd2 4969
7c7b6655 4970 return result;
96d887e8 4971}
4c4b4cd2 4972
96d887e8
PH
4973/* For all subprograms that statically enclose the subprogram of the
4974 selected frame, add symbols matching identifier NAME in DOMAIN
4975 and their blocks to the list of data in OBSTACKP, as for
48b78332
JB
4976 ada_add_block_symbols (q.v.). If WILD_MATCH_P, treat as NAME
4977 with a wildcard prefix. */
4c4b4cd2 4978
96d887e8
PH
4979static void
4980add_symbols_from_enclosing_procs (struct obstack *obstackp,
fe978cb0 4981 const char *name, domain_enum domain,
48b78332 4982 int wild_match_p)
96d887e8 4983{
96d887e8 4984}
14f9c5c9 4985
96d887e8
PH
4986/* True if TYPE is definitely an artificial type supplied to a symbol
4987 for which no debugging information was given in the symbol file. */
14f9c5c9 4988
96d887e8
PH
4989static int
4990is_nondebugging_type (struct type *type)
4991{
0d5cff50 4992 const char *name = ada_type_name (type);
5b4ee69b 4993
96d887e8
PH
4994 return (name != NULL && strcmp (name, "<variable, no debug info>") == 0);
4995}
4c4b4cd2 4996
8f17729f
JB
4997/* Return nonzero if TYPE1 and TYPE2 are two enumeration types
4998 that are deemed "identical" for practical purposes.
4999
5000 This function assumes that TYPE1 and TYPE2 are both TYPE_CODE_ENUM
5001 types and that their number of enumerals is identical (in other
5002 words, TYPE_NFIELDS (type1) == TYPE_NFIELDS (type2)). */
5003
5004static int
5005ada_identical_enum_types_p (struct type *type1, struct type *type2)
5006{
5007 int i;
5008
5009 /* The heuristic we use here is fairly conservative. We consider
5010 that 2 enumerate types are identical if they have the same
5011 number of enumerals and that all enumerals have the same
5012 underlying value and name. */
5013
5014 /* All enums in the type should have an identical underlying value. */
5015 for (i = 0; i < TYPE_NFIELDS (type1); i++)
14e75d8e 5016 if (TYPE_FIELD_ENUMVAL (type1, i) != TYPE_FIELD_ENUMVAL (type2, i))
8f17729f
JB
5017 return 0;
5018
5019 /* All enumerals should also have the same name (modulo any numerical
5020 suffix). */
5021 for (i = 0; i < TYPE_NFIELDS (type1); i++)
5022 {
0d5cff50
DE
5023 const char *name_1 = TYPE_FIELD_NAME (type1, i);
5024 const char *name_2 = TYPE_FIELD_NAME (type2, i);
8f17729f
JB
5025 int len_1 = strlen (name_1);
5026 int len_2 = strlen (name_2);
5027
5028 ada_remove_trailing_digits (TYPE_FIELD_NAME (type1, i), &len_1);
5029 ada_remove_trailing_digits (TYPE_FIELD_NAME (type2, i), &len_2);
5030 if (len_1 != len_2
5031 || strncmp (TYPE_FIELD_NAME (type1, i),
5032 TYPE_FIELD_NAME (type2, i),
5033 len_1) != 0)
5034 return 0;
5035 }
5036
5037 return 1;
5038}
5039
5040/* Return nonzero if all the symbols in SYMS are all enumeral symbols
5041 that are deemed "identical" for practical purposes. Sometimes,
5042 enumerals are not strictly identical, but their types are so similar
5043 that they can be considered identical.
5044
5045 For instance, consider the following code:
5046
5047 type Color is (Black, Red, Green, Blue, White);
5048 type RGB_Color is new Color range Red .. Blue;
5049
5050 Type RGB_Color is a subrange of an implicit type which is a copy
5051 of type Color. If we call that implicit type RGB_ColorB ("B" is
5052 for "Base Type"), then type RGB_ColorB is a copy of type Color.
5053 As a result, when an expression references any of the enumeral
5054 by name (Eg. "print green"), the expression is technically
5055 ambiguous and the user should be asked to disambiguate. But
5056 doing so would only hinder the user, since it wouldn't matter
5057 what choice he makes, the outcome would always be the same.
5058 So, for practical purposes, we consider them as the same. */
5059
5060static int
d12307c1 5061symbols_are_identical_enums (struct block_symbol *syms, int nsyms)
8f17729f
JB
5062{
5063 int i;
5064
5065 /* Before performing a thorough comparison check of each type,
5066 we perform a series of inexpensive checks. We expect that these
5067 checks will quickly fail in the vast majority of cases, and thus
5068 help prevent the unnecessary use of a more expensive comparison.
5069 Said comparison also expects us to make some of these checks
5070 (see ada_identical_enum_types_p). */
5071
5072 /* Quick check: All symbols should have an enum type. */
5073 for (i = 0; i < nsyms; i++)
d12307c1 5074 if (TYPE_CODE (SYMBOL_TYPE (syms[i].symbol)) != TYPE_CODE_ENUM)
8f17729f
JB
5075 return 0;
5076
5077 /* Quick check: They should all have the same value. */
5078 for (i = 1; i < nsyms; i++)
d12307c1 5079 if (SYMBOL_VALUE (syms[i].symbol) != SYMBOL_VALUE (syms[0].symbol))
8f17729f
JB
5080 return 0;
5081
5082 /* Quick check: They should all have the same number of enumerals. */
5083 for (i = 1; i < nsyms; i++)
d12307c1
PMR
5084 if (TYPE_NFIELDS (SYMBOL_TYPE (syms[i].symbol))
5085 != TYPE_NFIELDS (SYMBOL_TYPE (syms[0].symbol)))
8f17729f
JB
5086 return 0;
5087
5088 /* All the sanity checks passed, so we might have a set of
5089 identical enumeration types. Perform a more complete
5090 comparison of the type of each symbol. */
5091 for (i = 1; i < nsyms; i++)
d12307c1
PMR
5092 if (!ada_identical_enum_types_p (SYMBOL_TYPE (syms[i].symbol),
5093 SYMBOL_TYPE (syms[0].symbol)))
8f17729f
JB
5094 return 0;
5095
5096 return 1;
5097}
5098
96d887e8
PH
5099/* Remove any non-debugging symbols in SYMS[0 .. NSYMS-1] that definitely
5100 duplicate other symbols in the list (The only case I know of where
5101 this happens is when object files containing stabs-in-ecoff are
5102 linked with files containing ordinary ecoff debugging symbols (or no
5103 debugging symbols)). Modifies SYMS to squeeze out deleted entries.
5104 Returns the number of items in the modified list. */
4c4b4cd2 5105
96d887e8 5106static int
d12307c1 5107remove_extra_symbols (struct block_symbol *syms, int nsyms)
96d887e8
PH
5108{
5109 int i, j;
4c4b4cd2 5110
8f17729f
JB
5111 /* We should never be called with less than 2 symbols, as there
5112 cannot be any extra symbol in that case. But it's easy to
5113 handle, since we have nothing to do in that case. */
5114 if (nsyms < 2)
5115 return nsyms;
5116
96d887e8
PH
5117 i = 0;
5118 while (i < nsyms)
5119 {
a35ddb44 5120 int remove_p = 0;
339c13b6
JB
5121
5122 /* If two symbols have the same name and one of them is a stub type,
5123 the get rid of the stub. */
5124
d12307c1
PMR
5125 if (TYPE_STUB (SYMBOL_TYPE (syms[i].symbol))
5126 && SYMBOL_LINKAGE_NAME (syms[i].symbol) != NULL)
339c13b6
JB
5127 {
5128 for (j = 0; j < nsyms; j++)
5129 {
5130 if (j != i
d12307c1
PMR
5131 && !TYPE_STUB (SYMBOL_TYPE (syms[j].symbol))
5132 && SYMBOL_LINKAGE_NAME (syms[j].symbol) != NULL
5133 && strcmp (SYMBOL_LINKAGE_NAME (syms[i].symbol),
5134 SYMBOL_LINKAGE_NAME (syms[j].symbol)) == 0)
a35ddb44 5135 remove_p = 1;
339c13b6
JB
5136 }
5137 }
5138
5139 /* Two symbols with the same name, same class and same address
5140 should be identical. */
5141
d12307c1
PMR
5142 else if (SYMBOL_LINKAGE_NAME (syms[i].symbol) != NULL
5143 && SYMBOL_CLASS (syms[i].symbol) == LOC_STATIC
5144 && is_nondebugging_type (SYMBOL_TYPE (syms[i].symbol)))
96d887e8
PH
5145 {
5146 for (j = 0; j < nsyms; j += 1)
5147 {
5148 if (i != j
d12307c1
PMR
5149 && SYMBOL_LINKAGE_NAME (syms[j].symbol) != NULL
5150 && strcmp (SYMBOL_LINKAGE_NAME (syms[i].symbol),
5151 SYMBOL_LINKAGE_NAME (syms[j].symbol)) == 0
5152 && SYMBOL_CLASS (syms[i].symbol)
5153 == SYMBOL_CLASS (syms[j].symbol)
5154 && SYMBOL_VALUE_ADDRESS (syms[i].symbol)
5155 == SYMBOL_VALUE_ADDRESS (syms[j].symbol))
a35ddb44 5156 remove_p = 1;
4c4b4cd2 5157 }
4c4b4cd2 5158 }
339c13b6 5159
a35ddb44 5160 if (remove_p)
339c13b6
JB
5161 {
5162 for (j = i + 1; j < nsyms; j += 1)
5163 syms[j - 1] = syms[j];
5164 nsyms -= 1;
5165 }
5166
96d887e8 5167 i += 1;
14f9c5c9 5168 }
8f17729f
JB
5169
5170 /* If all the remaining symbols are identical enumerals, then
5171 just keep the first one and discard the rest.
5172
5173 Unlike what we did previously, we do not discard any entry
5174 unless they are ALL identical. This is because the symbol
5175 comparison is not a strict comparison, but rather a practical
5176 comparison. If all symbols are considered identical, then
5177 we can just go ahead and use the first one and discard the rest.
5178 But if we cannot reduce the list to a single element, we have
5179 to ask the user to disambiguate anyways. And if we have to
5180 present a multiple-choice menu, it's less confusing if the list
5181 isn't missing some choices that were identical and yet distinct. */
5182 if (symbols_are_identical_enums (syms, nsyms))
5183 nsyms = 1;
5184
96d887e8 5185 return nsyms;
14f9c5c9
AS
5186}
5187
96d887e8
PH
5188/* Given a type that corresponds to a renaming entity, use the type name
5189 to extract the scope (package name or function name, fully qualified,
5190 and following the GNAT encoding convention) where this renaming has been
5191 defined. The string returned needs to be deallocated after use. */
4c4b4cd2 5192
96d887e8
PH
5193static char *
5194xget_renaming_scope (struct type *renaming_type)
14f9c5c9 5195{
96d887e8 5196 /* The renaming types adhere to the following convention:
0963b4bd 5197 <scope>__<rename>___<XR extension>.
96d887e8
PH
5198 So, to extract the scope, we search for the "___XR" extension,
5199 and then backtrack until we find the first "__". */
76a01679 5200
96d887e8 5201 const char *name = type_name_no_tag (renaming_type);
108d56a4
SM
5202 const char *suffix = strstr (name, "___XR");
5203 const char *last;
96d887e8
PH
5204 int scope_len;
5205 char *scope;
14f9c5c9 5206
96d887e8
PH
5207 /* Now, backtrack a bit until we find the first "__". Start looking
5208 at suffix - 3, as the <rename> part is at least one character long. */
14f9c5c9 5209
96d887e8
PH
5210 for (last = suffix - 3; last > name; last--)
5211 if (last[0] == '_' && last[1] == '_')
5212 break;
76a01679 5213
96d887e8 5214 /* Make a copy of scope and return it. */
14f9c5c9 5215
96d887e8
PH
5216 scope_len = last - name;
5217 scope = (char *) xmalloc ((scope_len + 1) * sizeof (char));
14f9c5c9 5218
96d887e8
PH
5219 strncpy (scope, name, scope_len);
5220 scope[scope_len] = '\0';
4c4b4cd2 5221
96d887e8 5222 return scope;
4c4b4cd2
PH
5223}
5224
96d887e8 5225/* Return nonzero if NAME corresponds to a package name. */
4c4b4cd2 5226
96d887e8
PH
5227static int
5228is_package_name (const char *name)
4c4b4cd2 5229{
96d887e8
PH
5230 /* Here, We take advantage of the fact that no symbols are generated
5231 for packages, while symbols are generated for each function.
5232 So the condition for NAME represent a package becomes equivalent
5233 to NAME not existing in our list of symbols. There is only one
5234 small complication with library-level functions (see below). */
4c4b4cd2 5235
96d887e8 5236 char *fun_name;
76a01679 5237
96d887e8
PH
5238 /* If it is a function that has not been defined at library level,
5239 then we should be able to look it up in the symbols. */
5240 if (standard_lookup (name, NULL, VAR_DOMAIN) != NULL)
5241 return 0;
14f9c5c9 5242
96d887e8
PH
5243 /* Library-level function names start with "_ada_". See if function
5244 "_ada_" followed by NAME can be found. */
14f9c5c9 5245
96d887e8 5246 /* Do a quick check that NAME does not contain "__", since library-level
e1d5a0d2 5247 functions names cannot contain "__" in them. */
96d887e8
PH
5248 if (strstr (name, "__") != NULL)
5249 return 0;
4c4b4cd2 5250
b435e160 5251 fun_name = xstrprintf ("_ada_%s", name);
14f9c5c9 5252
96d887e8
PH
5253 return (standard_lookup (fun_name, NULL, VAR_DOMAIN) == NULL);
5254}
14f9c5c9 5255
96d887e8 5256/* Return nonzero if SYM corresponds to a renaming entity that is
aeb5907d 5257 not visible from FUNCTION_NAME. */
14f9c5c9 5258
96d887e8 5259static int
0d5cff50 5260old_renaming_is_invisible (const struct symbol *sym, const char *function_name)
96d887e8 5261{
aeb5907d 5262 char *scope;
1509e573 5263 struct cleanup *old_chain;
aeb5907d
JB
5264
5265 if (SYMBOL_CLASS (sym) != LOC_TYPEDEF)
5266 return 0;
5267
5268 scope = xget_renaming_scope (SYMBOL_TYPE (sym));
1509e573 5269 old_chain = make_cleanup (xfree, scope);
14f9c5c9 5270
96d887e8
PH
5271 /* If the rename has been defined in a package, then it is visible. */
5272 if (is_package_name (scope))
1509e573
JB
5273 {
5274 do_cleanups (old_chain);
5275 return 0;
5276 }
14f9c5c9 5277
96d887e8
PH
5278 /* Check that the rename is in the current function scope by checking
5279 that its name starts with SCOPE. */
76a01679 5280
96d887e8
PH
5281 /* If the function name starts with "_ada_", it means that it is
5282 a library-level function. Strip this prefix before doing the
5283 comparison, as the encoding for the renaming does not contain
5284 this prefix. */
61012eef 5285 if (startswith (function_name, "_ada_"))
96d887e8 5286 function_name += 5;
f26caa11 5287
1509e573 5288 {
61012eef 5289 int is_invisible = !startswith (function_name, scope);
1509e573
JB
5290
5291 do_cleanups (old_chain);
5292 return is_invisible;
5293 }
f26caa11
PH
5294}
5295
aeb5907d
JB
5296/* Remove entries from SYMS that corresponds to a renaming entity that
5297 is not visible from the function associated with CURRENT_BLOCK or
5298 that is superfluous due to the presence of more specific renaming
5299 information. Places surviving symbols in the initial entries of
5300 SYMS and returns the number of surviving symbols.
96d887e8
PH
5301
5302 Rationale:
aeb5907d
JB
5303 First, in cases where an object renaming is implemented as a
5304 reference variable, GNAT may produce both the actual reference
5305 variable and the renaming encoding. In this case, we discard the
5306 latter.
5307
5308 Second, GNAT emits a type following a specified encoding for each renaming
96d887e8
PH
5309 entity. Unfortunately, STABS currently does not support the definition
5310 of types that are local to a given lexical block, so all renamings types
5311 are emitted at library level. As a consequence, if an application
5312 contains two renaming entities using the same name, and a user tries to
5313 print the value of one of these entities, the result of the ada symbol
5314 lookup will also contain the wrong renaming type.
f26caa11 5315
96d887e8
PH
5316 This function partially covers for this limitation by attempting to
5317 remove from the SYMS list renaming symbols that should be visible
5318 from CURRENT_BLOCK. However, there does not seem be a 100% reliable
5319 method with the current information available. The implementation
5320 below has a couple of limitations (FIXME: brobecker-2003-05-12):
5321
5322 - When the user tries to print a rename in a function while there
5323 is another rename entity defined in a package: Normally, the
5324 rename in the function has precedence over the rename in the
5325 package, so the latter should be removed from the list. This is
5326 currently not the case.
5327
5328 - This function will incorrectly remove valid renames if
5329 the CURRENT_BLOCK corresponds to a function which symbol name
5330 has been changed by an "Export" pragma. As a consequence,
5331 the user will be unable to print such rename entities. */
4c4b4cd2 5332
14f9c5c9 5333static int
d12307c1 5334remove_irrelevant_renamings (struct block_symbol *syms,
aeb5907d 5335 int nsyms, const struct block *current_block)
4c4b4cd2
PH
5336{
5337 struct symbol *current_function;
0d5cff50 5338 const char *current_function_name;
4c4b4cd2 5339 int i;
aeb5907d
JB
5340 int is_new_style_renaming;
5341
5342 /* If there is both a renaming foo___XR... encoded as a variable and
5343 a simple variable foo in the same block, discard the latter.
0963b4bd 5344 First, zero out such symbols, then compress. */
aeb5907d
JB
5345 is_new_style_renaming = 0;
5346 for (i = 0; i < nsyms; i += 1)
5347 {
d12307c1 5348 struct symbol *sym = syms[i].symbol;
270140bd 5349 const struct block *block = syms[i].block;
aeb5907d
JB
5350 const char *name;
5351 const char *suffix;
5352
5353 if (sym == NULL || SYMBOL_CLASS (sym) == LOC_TYPEDEF)
5354 continue;
5355 name = SYMBOL_LINKAGE_NAME (sym);
5356 suffix = strstr (name, "___XR");
5357
5358 if (suffix != NULL)
5359 {
5360 int name_len = suffix - name;
5361 int j;
5b4ee69b 5362
aeb5907d
JB
5363 is_new_style_renaming = 1;
5364 for (j = 0; j < nsyms; j += 1)
d12307c1
PMR
5365 if (i != j && syms[j].symbol != NULL
5366 && strncmp (name, SYMBOL_LINKAGE_NAME (syms[j].symbol),
aeb5907d
JB
5367 name_len) == 0
5368 && block == syms[j].block)
d12307c1 5369 syms[j].symbol = NULL;
aeb5907d
JB
5370 }
5371 }
5372 if (is_new_style_renaming)
5373 {
5374 int j, k;
5375
5376 for (j = k = 0; j < nsyms; j += 1)
d12307c1 5377 if (syms[j].symbol != NULL)
aeb5907d
JB
5378 {
5379 syms[k] = syms[j];
5380 k += 1;
5381 }
5382 return k;
5383 }
4c4b4cd2
PH
5384
5385 /* Extract the function name associated to CURRENT_BLOCK.
5386 Abort if unable to do so. */
76a01679 5387
4c4b4cd2
PH
5388 if (current_block == NULL)
5389 return nsyms;
76a01679 5390
7f0df278 5391 current_function = block_linkage_function (current_block);
4c4b4cd2
PH
5392 if (current_function == NULL)
5393 return nsyms;
5394
5395 current_function_name = SYMBOL_LINKAGE_NAME (current_function);
5396 if (current_function_name == NULL)
5397 return nsyms;
5398
5399 /* Check each of the symbols, and remove it from the list if it is
5400 a type corresponding to a renaming that is out of the scope of
5401 the current block. */
5402
5403 i = 0;
5404 while (i < nsyms)
5405 {
d12307c1 5406 if (ada_parse_renaming (syms[i].symbol, NULL, NULL, NULL)
aeb5907d 5407 == ADA_OBJECT_RENAMING
d12307c1 5408 && old_renaming_is_invisible (syms[i].symbol, current_function_name))
4c4b4cd2
PH
5409 {
5410 int j;
5b4ee69b 5411
aeb5907d 5412 for (j = i + 1; j < nsyms; j += 1)
76a01679 5413 syms[j - 1] = syms[j];
4c4b4cd2
PH
5414 nsyms -= 1;
5415 }
5416 else
5417 i += 1;
5418 }
5419
5420 return nsyms;
5421}
5422
339c13b6
JB
5423/* Add to OBSTACKP all symbols from BLOCK (and its super-blocks)
5424 whose name and domain match NAME and DOMAIN respectively.
5425 If no match was found, then extend the search to "enclosing"
5426 routines (in other words, if we're inside a nested function,
5427 search the symbols defined inside the enclosing functions).
d0a8ab18
JB
5428 If WILD_MATCH_P is nonzero, perform the naming matching in
5429 "wild" mode (see function "wild_match" for more info).
339c13b6
JB
5430
5431 Note: This function assumes that OBSTACKP has 0 (zero) element in it. */
5432
5433static void
5434ada_add_local_symbols (struct obstack *obstackp, const char *name,
f0c5f9b2 5435 const struct block *block, domain_enum domain,
d0a8ab18 5436 int wild_match_p)
339c13b6
JB
5437{
5438 int block_depth = 0;
5439
5440 while (block != NULL)
5441 {
5442 block_depth += 1;
d0a8ab18
JB
5443 ada_add_block_symbols (obstackp, block, name, domain, NULL,
5444 wild_match_p);
339c13b6
JB
5445
5446 /* If we found a non-function match, assume that's the one. */
5447 if (is_nonfunction (defns_collected (obstackp, 0),
5448 num_defns_collected (obstackp)))
5449 return;
5450
5451 block = BLOCK_SUPERBLOCK (block);
5452 }
5453
5454 /* If no luck so far, try to find NAME as a local symbol in some lexically
5455 enclosing subprogram. */
5456 if (num_defns_collected (obstackp) == 0 && block_depth > 2)
d0a8ab18 5457 add_symbols_from_enclosing_procs (obstackp, name, domain, wild_match_p);
339c13b6
JB
5458}
5459
ccefe4c4 5460/* An object of this type is used as the user_data argument when
40658b94 5461 calling the map_matching_symbols method. */
ccefe4c4 5462
40658b94 5463struct match_data
ccefe4c4 5464{
40658b94 5465 struct objfile *objfile;
ccefe4c4 5466 struct obstack *obstackp;
40658b94
PH
5467 struct symbol *arg_sym;
5468 int found_sym;
ccefe4c4
TT
5469};
5470
22cee43f 5471/* A callback for add_nonlocal_symbols that adds SYM, found in BLOCK,
40658b94
PH
5472 to a list of symbols. DATA0 is a pointer to a struct match_data *
5473 containing the obstack that collects the symbol list, the file that SYM
5474 must come from, a flag indicating whether a non-argument symbol has
5475 been found in the current block, and the last argument symbol
5476 passed in SYM within the current block (if any). When SYM is null,
5477 marking the end of a block, the argument symbol is added if no
5478 other has been found. */
ccefe4c4 5479
40658b94
PH
5480static int
5481aux_add_nonlocal_symbols (struct block *block, struct symbol *sym, void *data0)
ccefe4c4 5482{
40658b94
PH
5483 struct match_data *data = (struct match_data *) data0;
5484
5485 if (sym == NULL)
5486 {
5487 if (!data->found_sym && data->arg_sym != NULL)
5488 add_defn_to_vec (data->obstackp,
5489 fixup_symbol_section (data->arg_sym, data->objfile),
5490 block);
5491 data->found_sym = 0;
5492 data->arg_sym = NULL;
5493 }
5494 else
5495 {
5496 if (SYMBOL_CLASS (sym) == LOC_UNRESOLVED)
5497 return 0;
5498 else if (SYMBOL_IS_ARGUMENT (sym))
5499 data->arg_sym = sym;
5500 else
5501 {
5502 data->found_sym = 1;
5503 add_defn_to_vec (data->obstackp,
5504 fixup_symbol_section (sym, data->objfile),
5505 block);
5506 }
5507 }
5508 return 0;
5509}
5510
22cee43f
PMR
5511/* Helper for add_nonlocal_symbols. Find symbols in DOMAIN which are targetted
5512 by renamings matching NAME in BLOCK. Add these symbols to OBSTACKP. If
5513 WILD_MATCH_P is nonzero, perform the naming matching in "wild" mode (see
5514 function "wild_match" for more information). Return whether we found such
5515 symbols. */
5516
5517static int
5518ada_add_block_renamings (struct obstack *obstackp,
5519 const struct block *block,
5520 const char *name,
5521 domain_enum domain,
5522 int wild_match_p)
5523{
5524 struct using_direct *renaming;
5525 int defns_mark = num_defns_collected (obstackp);
5526
5527 for (renaming = block_using (block);
5528 renaming != NULL;
5529 renaming = renaming->next)
5530 {
5531 const char *r_name;
5532 int name_match;
5533
5534 /* Avoid infinite recursions: skip this renaming if we are actually
5535 already traversing it.
5536
5537 Currently, symbol lookup in Ada don't use the namespace machinery from
5538 C++/Fortran support: skip namespace imports that use them. */
5539 if (renaming->searched
5540 || (renaming->import_src != NULL
5541 && renaming->import_src[0] != '\0')
5542 || (renaming->import_dest != NULL
5543 && renaming->import_dest[0] != '\0'))
5544 continue;
5545 renaming->searched = 1;
5546
5547 /* TODO: here, we perform another name-based symbol lookup, which can
5548 pull its own multiple overloads. In theory, we should be able to do
5549 better in this case since, in DWARF, DW_AT_import is a DIE reference,
5550 not a simple name. But in order to do this, we would need to enhance
5551 the DWARF reader to associate a symbol to this renaming, instead of a
5552 name. So, for now, we do something simpler: re-use the C++/Fortran
5553 namespace machinery. */
5554 r_name = (renaming->alias != NULL
5555 ? renaming->alias
5556 : renaming->declaration);
5557 name_match
5558 = wild_match_p ? wild_match (r_name, name) : strcmp (r_name, name);
5559 if (name_match == 0)
5560 ada_add_all_symbols (obstackp, block, renaming->declaration, domain,
5561 1, NULL);
5562 renaming->searched = 0;
5563 }
5564 return num_defns_collected (obstackp) != defns_mark;
5565}
5566
db230ce3
JB
5567/* Implements compare_names, but only applying the comparision using
5568 the given CASING. */
5b4ee69b 5569
40658b94 5570static int
db230ce3
JB
5571compare_names_with_case (const char *string1, const char *string2,
5572 enum case_sensitivity casing)
40658b94
PH
5573{
5574 while (*string1 != '\0' && *string2 != '\0')
5575 {
db230ce3
JB
5576 char c1, c2;
5577
40658b94
PH
5578 if (isspace (*string1) || isspace (*string2))
5579 return strcmp_iw_ordered (string1, string2);
db230ce3
JB
5580
5581 if (casing == case_sensitive_off)
5582 {
5583 c1 = tolower (*string1);
5584 c2 = tolower (*string2);
5585 }
5586 else
5587 {
5588 c1 = *string1;
5589 c2 = *string2;
5590 }
5591 if (c1 != c2)
40658b94 5592 break;
db230ce3 5593
40658b94
PH
5594 string1 += 1;
5595 string2 += 1;
5596 }
db230ce3 5597
40658b94
PH
5598 switch (*string1)
5599 {
5600 case '(':
5601 return strcmp_iw_ordered (string1, string2);
5602 case '_':
5603 if (*string2 == '\0')
5604 {
052874e8 5605 if (is_name_suffix (string1))
40658b94
PH
5606 return 0;
5607 else
1a1d5513 5608 return 1;
40658b94 5609 }
dbb8534f 5610 /* FALLTHROUGH */
40658b94
PH
5611 default:
5612 if (*string2 == '(')
5613 return strcmp_iw_ordered (string1, string2);
5614 else
db230ce3
JB
5615 {
5616 if (casing == case_sensitive_off)
5617 return tolower (*string1) - tolower (*string2);
5618 else
5619 return *string1 - *string2;
5620 }
40658b94 5621 }
ccefe4c4
TT
5622}
5623
db230ce3
JB
5624/* Compare STRING1 to STRING2, with results as for strcmp.
5625 Compatible with strcmp_iw_ordered in that...
5626
5627 strcmp_iw_ordered (STRING1, STRING2) <= 0
5628
5629 ... implies...
5630
5631 compare_names (STRING1, STRING2) <= 0
5632
5633 (they may differ as to what symbols compare equal). */
5634
5635static int
5636compare_names (const char *string1, const char *string2)
5637{
5638 int result;
5639
5640 /* Similar to what strcmp_iw_ordered does, we need to perform
5641 a case-insensitive comparison first, and only resort to
5642 a second, case-sensitive, comparison if the first one was
5643 not sufficient to differentiate the two strings. */
5644
5645 result = compare_names_with_case (string1, string2, case_sensitive_off);
5646 if (result == 0)
5647 result = compare_names_with_case (string1, string2, case_sensitive_on);
5648
5649 return result;
5650}
5651
339c13b6
JB
5652/* Add to OBSTACKP all non-local symbols whose name and domain match
5653 NAME and DOMAIN respectively. The search is performed on GLOBAL_BLOCK
5654 symbols if GLOBAL is non-zero, or on STATIC_BLOCK symbols otherwise. */
5655
5656static void
40658b94
PH
5657add_nonlocal_symbols (struct obstack *obstackp, const char *name,
5658 domain_enum domain, int global,
5659 int is_wild_match)
339c13b6
JB
5660{
5661 struct objfile *objfile;
22cee43f 5662 struct compunit_symtab *cu;
40658b94 5663 struct match_data data;
339c13b6 5664
6475f2fe 5665 memset (&data, 0, sizeof data);
ccefe4c4 5666 data.obstackp = obstackp;
339c13b6 5667
ccefe4c4 5668 ALL_OBJFILES (objfile)
40658b94
PH
5669 {
5670 data.objfile = objfile;
5671
5672 if (is_wild_match)
4186eb54
KS
5673 objfile->sf->qf->map_matching_symbols (objfile, name, domain, global,
5674 aux_add_nonlocal_symbols, &data,
5675 wild_match, NULL);
40658b94 5676 else
4186eb54
KS
5677 objfile->sf->qf->map_matching_symbols (objfile, name, domain, global,
5678 aux_add_nonlocal_symbols, &data,
5679 full_match, compare_names);
22cee43f
PMR
5680
5681 ALL_OBJFILE_COMPUNITS (objfile, cu)
5682 {
5683 const struct block *global_block
5684 = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (cu), GLOBAL_BLOCK);
5685
5686 if (ada_add_block_renamings (obstackp, global_block , name, domain,
5687 is_wild_match))
5688 data.found_sym = 1;
5689 }
40658b94
PH
5690 }
5691
5692 if (num_defns_collected (obstackp) == 0 && global && !is_wild_match)
5693 {
5694 ALL_OBJFILES (objfile)
5695 {
224c3ddb 5696 char *name1 = (char *) alloca (strlen (name) + sizeof ("_ada_"));
40658b94
PH
5697 strcpy (name1, "_ada_");
5698 strcpy (name1 + sizeof ("_ada_") - 1, name);
5699 data.objfile = objfile;
ade7ed9e
DE
5700 objfile->sf->qf->map_matching_symbols (objfile, name1, domain,
5701 global,
0963b4bd
MS
5702 aux_add_nonlocal_symbols,
5703 &data,
40658b94
PH
5704 full_match, compare_names);
5705 }
5706 }
339c13b6
JB
5707}
5708
22cee43f 5709/* Find symbols in DOMAIN matching NAME, in BLOCK and, if FULL_SEARCH is
4eeaa230 5710 non-zero, enclosing scope and in global scopes, returning the number of
22cee43f 5711 matches. Add these to OBSTACKP.
4eeaa230 5712
22cee43f
PMR
5713 When FULL_SEARCH is non-zero, any non-function/non-enumeral
5714 symbol match within the nest of blocks whose innermost member is BLOCK,
4c4b4cd2 5715 is the one match returned (no other matches in that or
d9680e73 5716 enclosing blocks is returned). If there are any matches in or
22cee43f 5717 surrounding BLOCK, then these alone are returned.
4eeaa230 5718
9f88c959 5719 Names prefixed with "standard__" are handled specially: "standard__"
22cee43f 5720 is first stripped off, and only static and global symbols are searched.
14f9c5c9 5721
22cee43f
PMR
5722 If MADE_GLOBAL_LOOKUP_P is non-null, set it before return to whether we had
5723 to lookup global symbols. */
5724
5725static void
5726ada_add_all_symbols (struct obstack *obstackp,
5727 const struct block *block,
5728 const char *name,
5729 domain_enum domain,
5730 int full_search,
5731 int *made_global_lookup_p)
14f9c5c9
AS
5732{
5733 struct symbol *sym;
22cee43f 5734 const int wild_match_p = should_use_wild_match (name);
14f9c5c9 5735
22cee43f
PMR
5736 if (made_global_lookup_p)
5737 *made_global_lookup_p = 0;
339c13b6
JB
5738
5739 /* Special case: If the user specifies a symbol name inside package
5740 Standard, do a non-wild matching of the symbol name without
5741 the "standard__" prefix. This was primarily introduced in order
5742 to allow the user to specifically access the standard exceptions
5743 using, for instance, Standard.Constraint_Error when Constraint_Error
5744 is ambiguous (due to the user defining its own Constraint_Error
5745 entity inside its program). */
22cee43f 5746 if (startswith (name, "standard__"))
4c4b4cd2 5747 {
4c4b4cd2 5748 block = NULL;
22cee43f 5749 name = name + sizeof ("standard__") - 1;
4c4b4cd2
PH
5750 }
5751
339c13b6 5752 /* Check the non-global symbols. If we have ANY match, then we're done. */
14f9c5c9 5753
4eeaa230
DE
5754 if (block != NULL)
5755 {
5756 if (full_search)
22cee43f 5757 ada_add_local_symbols (obstackp, name, block, domain, wild_match_p);
4eeaa230
DE
5758 else
5759 {
5760 /* In the !full_search case we're are being called by
5761 ada_iterate_over_symbols, and we don't want to search
5762 superblocks. */
22cee43f
PMR
5763 ada_add_block_symbols (obstackp, block, name, domain, NULL,
5764 wild_match_p);
4eeaa230 5765 }
22cee43f
PMR
5766 if (num_defns_collected (obstackp) > 0 || !full_search)
5767 return;
4eeaa230 5768 }
d2e4a39e 5769
339c13b6
JB
5770 /* No non-global symbols found. Check our cache to see if we have
5771 already performed this search before. If we have, then return
5772 the same result. */
5773
22cee43f 5774 if (lookup_cached_symbol (name, domain, &sym, &block))
4c4b4cd2
PH
5775 {
5776 if (sym != NULL)
22cee43f
PMR
5777 add_defn_to_vec (obstackp, sym, block);
5778 return;
4c4b4cd2 5779 }
14f9c5c9 5780
22cee43f
PMR
5781 if (made_global_lookup_p)
5782 *made_global_lookup_p = 1;
b1eedac9 5783
339c13b6
JB
5784 /* Search symbols from all global blocks. */
5785
22cee43f 5786 add_nonlocal_symbols (obstackp, name, domain, 1, wild_match_p);
d2e4a39e 5787
4c4b4cd2 5788 /* Now add symbols from all per-file blocks if we've gotten no hits
339c13b6 5789 (not strictly correct, but perhaps better than an error). */
d2e4a39e 5790
22cee43f
PMR
5791 if (num_defns_collected (obstackp) == 0)
5792 add_nonlocal_symbols (obstackp, name, domain, 0, wild_match_p);
5793}
5794
5795/* Find symbols in DOMAIN matching NAME, in BLOCK and, if full_search is
5796 non-zero, enclosing scope and in global scopes, returning the number of
5797 matches.
5798 Sets *RESULTS to point to a vector of (SYM,BLOCK) tuples,
5799 indicating the symbols found and the blocks and symbol tables (if
5800 any) in which they were found. This vector is transient---good only to
5801 the next call of ada_lookup_symbol_list.
5802
5803 When full_search is non-zero, any non-function/non-enumeral
5804 symbol match within the nest of blocks whose innermost member is BLOCK,
5805 is the one match returned (no other matches in that or
5806 enclosing blocks is returned). If there are any matches in or
5807 surrounding BLOCK, then these alone are returned.
5808
5809 Names prefixed with "standard__" are handled specially: "standard__"
5810 is first stripped off, and only static and global symbols are searched. */
5811
5812static int
5813ada_lookup_symbol_list_worker (const char *name, const struct block *block,
5814 domain_enum domain,
5815 struct block_symbol **results,
5816 int full_search)
5817{
5818 const int wild_match_p = should_use_wild_match (name);
5819 int syms_from_global_search;
5820 int ndefns;
5821
5822 obstack_free (&symbol_list_obstack, NULL);
5823 obstack_init (&symbol_list_obstack);
5824 ada_add_all_symbols (&symbol_list_obstack, block, name, domain,
5825 full_search, &syms_from_global_search);
14f9c5c9 5826
4c4b4cd2
PH
5827 ndefns = num_defns_collected (&symbol_list_obstack);
5828 *results = defns_collected (&symbol_list_obstack, 1);
5829
5830 ndefns = remove_extra_symbols (*results, ndefns);
5831
b1eedac9 5832 if (ndefns == 0 && full_search && syms_from_global_search)
22cee43f 5833 cache_symbol (name, domain, NULL, NULL);
14f9c5c9 5834
b1eedac9 5835 if (ndefns == 1 && full_search && syms_from_global_search)
22cee43f 5836 cache_symbol (name, domain, (*results)[0].symbol, (*results)[0].block);
14f9c5c9 5837
22cee43f 5838 ndefns = remove_irrelevant_renamings (*results, ndefns, block);
14f9c5c9
AS
5839 return ndefns;
5840}
5841
4eeaa230
DE
5842/* Find symbols in DOMAIN matching NAME0, in BLOCK0 and enclosing scope and
5843 in global scopes, returning the number of matches, and setting *RESULTS
5844 to a vector of (SYM,BLOCK) tuples.
5845 See ada_lookup_symbol_list_worker for further details. */
5846
5847int
5848ada_lookup_symbol_list (const char *name0, const struct block *block0,
d12307c1 5849 domain_enum domain, struct block_symbol **results)
4eeaa230
DE
5850{
5851 return ada_lookup_symbol_list_worker (name0, block0, domain, results, 1);
5852}
5853
5854/* Implementation of the la_iterate_over_symbols method. */
5855
5856static void
5857ada_iterate_over_symbols (const struct block *block,
5858 const char *name, domain_enum domain,
5859 symbol_found_callback_ftype *callback,
5860 void *data)
5861{
5862 int ndefs, i;
d12307c1 5863 struct block_symbol *results;
4eeaa230
DE
5864
5865 ndefs = ada_lookup_symbol_list_worker (name, block, domain, &results, 0);
5866 for (i = 0; i < ndefs; ++i)
5867 {
d12307c1 5868 if (! (*callback) (results[i].symbol, data))
4eeaa230
DE
5869 break;
5870 }
5871}
5872
f8eba3c6
TT
5873/* If NAME is the name of an entity, return a string that should
5874 be used to look that entity up in Ada units. This string should
5875 be deallocated after use using xfree.
5876
5877 NAME can have any form that the "break" or "print" commands might
5878 recognize. In other words, it does not have to be the "natural"
5879 name, or the "encoded" name. */
5880
5881char *
5882ada_name_for_lookup (const char *name)
5883{
5884 char *canon;
5885 int nlen = strlen (name);
5886
5887 if (name[0] == '<' && name[nlen - 1] == '>')
5888 {
224c3ddb 5889 canon = (char *) xmalloc (nlen - 1);
f8eba3c6
TT
5890 memcpy (canon, name + 1, nlen - 2);
5891 canon[nlen - 2] = '\0';
5892 }
5893 else
5894 canon = xstrdup (ada_encode (ada_fold_name (name)));
5895 return canon;
5896}
5897
4e5c77fe
JB
5898/* The result is as for ada_lookup_symbol_list with FULL_SEARCH set
5899 to 1, but choosing the first symbol found if there are multiple
5900 choices.
5901
5e2336be
JB
5902 The result is stored in *INFO, which must be non-NULL.
5903 If no match is found, INFO->SYM is set to NULL. */
4e5c77fe
JB
5904
5905void
5906ada_lookup_encoded_symbol (const char *name, const struct block *block,
fe978cb0 5907 domain_enum domain,
d12307c1 5908 struct block_symbol *info)
14f9c5c9 5909{
d12307c1 5910 struct block_symbol *candidates;
14f9c5c9
AS
5911 int n_candidates;
5912
5e2336be 5913 gdb_assert (info != NULL);
d12307c1 5914 memset (info, 0, sizeof (struct block_symbol));
4e5c77fe 5915
fe978cb0 5916 n_candidates = ada_lookup_symbol_list (name, block, domain, &candidates);
14f9c5c9 5917 if (n_candidates == 0)
4e5c77fe 5918 return;
4c4b4cd2 5919
5e2336be 5920 *info = candidates[0];
d12307c1 5921 info->symbol = fixup_symbol_section (info->symbol, NULL);
4e5c77fe 5922}
aeb5907d
JB
5923
5924/* Return a symbol in DOMAIN matching NAME, in BLOCK0 and enclosing
5925 scope and in global scopes, or NULL if none. NAME is folded and
5926 encoded first. Otherwise, the result is as for ada_lookup_symbol_list,
0963b4bd 5927 choosing the first symbol if there are multiple choices.
4e5c77fe
JB
5928 If IS_A_FIELD_OF_THIS is not NULL, it is set to zero. */
5929
d12307c1 5930struct block_symbol
aeb5907d 5931ada_lookup_symbol (const char *name, const struct block *block0,
fe978cb0 5932 domain_enum domain, int *is_a_field_of_this)
aeb5907d 5933{
d12307c1 5934 struct block_symbol info;
4e5c77fe 5935
aeb5907d
JB
5936 if (is_a_field_of_this != NULL)
5937 *is_a_field_of_this = 0;
5938
4e5c77fe 5939 ada_lookup_encoded_symbol (ada_encode (ada_fold_name (name)),
fe978cb0 5940 block0, domain, &info);
d12307c1 5941 return info;
4c4b4cd2 5942}
14f9c5c9 5943
d12307c1 5944static struct block_symbol
f606139a
DE
5945ada_lookup_symbol_nonlocal (const struct language_defn *langdef,
5946 const char *name,
76a01679 5947 const struct block *block,
21b556f4 5948 const domain_enum domain)
4c4b4cd2 5949{
d12307c1 5950 struct block_symbol sym;
04dccad0
JB
5951
5952 sym = ada_lookup_symbol (name, block_static_block (block), domain, NULL);
d12307c1 5953 if (sym.symbol != NULL)
04dccad0
JB
5954 return sym;
5955
5956 /* If we haven't found a match at this point, try the primitive
5957 types. In other languages, this search is performed before
5958 searching for global symbols in order to short-circuit that
5959 global-symbol search if it happens that the name corresponds
5960 to a primitive type. But we cannot do the same in Ada, because
5961 it is perfectly legitimate for a program to declare a type which
5962 has the same name as a standard type. If looking up a type in
5963 that situation, we have traditionally ignored the primitive type
5964 in favor of user-defined types. This is why, unlike most other
5965 languages, we search the primitive types this late and only after
5966 having searched the global symbols without success. */
5967
5968 if (domain == VAR_DOMAIN)
5969 {
5970 struct gdbarch *gdbarch;
5971
5972 if (block == NULL)
5973 gdbarch = target_gdbarch ();
5974 else
5975 gdbarch = block_gdbarch (block);
d12307c1
PMR
5976 sym.symbol = language_lookup_primitive_type_as_symbol (langdef, gdbarch, name);
5977 if (sym.symbol != NULL)
04dccad0
JB
5978 return sym;
5979 }
5980
d12307c1 5981 return (struct block_symbol) {NULL, NULL};
14f9c5c9
AS
5982}
5983
5984
4c4b4cd2
PH
5985/* True iff STR is a possible encoded suffix of a normal Ada name
5986 that is to be ignored for matching purposes. Suffixes of parallel
5987 names (e.g., XVE) are not included here. Currently, the possible suffixes
5823c3ef 5988 are given by any of the regular expressions:
4c4b4cd2 5989
babe1480
JB
5990 [.$][0-9]+ [nested subprogram suffix, on platforms such as GNU/Linux]
5991 ___[0-9]+ [nested subprogram suffix, on platforms such as HP/UX]
9ac7f98e 5992 TKB [subprogram suffix for task bodies]
babe1480 5993 _E[0-9]+[bs]$ [protected object entry suffixes]
61ee279c 5994 (X[nb]*)?((\$|__)[0-9](_?[0-9]+)|___(JM|LJM|X([FDBUP].*|R[^T]?)))?$
babe1480
JB
5995
5996 Also, any leading "__[0-9]+" sequence is skipped before the suffix
5997 match is performed. This sequence is used to differentiate homonyms,
5998 is an optional part of a valid name suffix. */
4c4b4cd2 5999
14f9c5c9 6000static int
d2e4a39e 6001is_name_suffix (const char *str)
14f9c5c9
AS
6002{
6003 int k;
4c4b4cd2
PH
6004 const char *matching;
6005 const int len = strlen (str);
6006
babe1480
JB
6007 /* Skip optional leading __[0-9]+. */
6008
4c4b4cd2
PH
6009 if (len > 3 && str[0] == '_' && str[1] == '_' && isdigit (str[2]))
6010 {
babe1480
JB
6011 str += 3;
6012 while (isdigit (str[0]))
6013 str += 1;
4c4b4cd2 6014 }
babe1480
JB
6015
6016 /* [.$][0-9]+ */
4c4b4cd2 6017
babe1480 6018 if (str[0] == '.' || str[0] == '$')
4c4b4cd2 6019 {
babe1480 6020 matching = str + 1;
4c4b4cd2
PH
6021 while (isdigit (matching[0]))
6022 matching += 1;
6023 if (matching[0] == '\0')
6024 return 1;
6025 }
6026
6027 /* ___[0-9]+ */
babe1480 6028
4c4b4cd2
PH
6029 if (len > 3 && str[0] == '_' && str[1] == '_' && str[2] == '_')
6030 {
6031 matching = str + 3;
6032 while (isdigit (matching[0]))
6033 matching += 1;
6034 if (matching[0] == '\0')
6035 return 1;
6036 }
6037
9ac7f98e
JB
6038 /* "TKB" suffixes are used for subprograms implementing task bodies. */
6039
6040 if (strcmp (str, "TKB") == 0)
6041 return 1;
6042
529cad9c
PH
6043#if 0
6044 /* FIXME: brobecker/2005-09-23: Protected Object subprograms end
0963b4bd
MS
6045 with a N at the end. Unfortunately, the compiler uses the same
6046 convention for other internal types it creates. So treating
529cad9c 6047 all entity names that end with an "N" as a name suffix causes
0963b4bd
MS
6048 some regressions. For instance, consider the case of an enumerated
6049 type. To support the 'Image attribute, it creates an array whose
529cad9c
PH
6050 name ends with N.
6051 Having a single character like this as a suffix carrying some
0963b4bd 6052 information is a bit risky. Perhaps we should change the encoding
529cad9c
PH
6053 to be something like "_N" instead. In the meantime, do not do
6054 the following check. */
6055 /* Protected Object Subprograms */
6056 if (len == 1 && str [0] == 'N')
6057 return 1;
6058#endif
6059
6060 /* _E[0-9]+[bs]$ */
6061 if (len > 3 && str[0] == '_' && str [1] == 'E' && isdigit (str[2]))
6062 {
6063 matching = str + 3;
6064 while (isdigit (matching[0]))
6065 matching += 1;
6066 if ((matching[0] == 'b' || matching[0] == 's')
6067 && matching [1] == '\0')
6068 return 1;
6069 }
6070
4c4b4cd2
PH
6071 /* ??? We should not modify STR directly, as we are doing below. This
6072 is fine in this case, but may become problematic later if we find
6073 that this alternative did not work, and want to try matching
6074 another one from the begining of STR. Since we modified it, we
6075 won't be able to find the begining of the string anymore! */
14f9c5c9
AS
6076 if (str[0] == 'X')
6077 {
6078 str += 1;
d2e4a39e 6079 while (str[0] != '_' && str[0] != '\0')
4c4b4cd2
PH
6080 {
6081 if (str[0] != 'n' && str[0] != 'b')
6082 return 0;
6083 str += 1;
6084 }
14f9c5c9 6085 }
babe1480 6086
14f9c5c9
AS
6087 if (str[0] == '\000')
6088 return 1;
babe1480 6089
d2e4a39e 6090 if (str[0] == '_')
14f9c5c9
AS
6091 {
6092 if (str[1] != '_' || str[2] == '\000')
4c4b4cd2 6093 return 0;
d2e4a39e 6094 if (str[2] == '_')
4c4b4cd2 6095 {
61ee279c
PH
6096 if (strcmp (str + 3, "JM") == 0)
6097 return 1;
6098 /* FIXME: brobecker/2004-09-30: GNAT will soon stop using
6099 the LJM suffix in favor of the JM one. But we will
6100 still accept LJM as a valid suffix for a reasonable
6101 amount of time, just to allow ourselves to debug programs
6102 compiled using an older version of GNAT. */
4c4b4cd2
PH
6103 if (strcmp (str + 3, "LJM") == 0)
6104 return 1;
6105 if (str[3] != 'X')
6106 return 0;
1265e4aa
JB
6107 if (str[4] == 'F' || str[4] == 'D' || str[4] == 'B'
6108 || str[4] == 'U' || str[4] == 'P')
4c4b4cd2
PH
6109 return 1;
6110 if (str[4] == 'R' && str[5] != 'T')
6111 return 1;
6112 return 0;
6113 }
6114 if (!isdigit (str[2]))
6115 return 0;
6116 for (k = 3; str[k] != '\0'; k += 1)
6117 if (!isdigit (str[k]) && str[k] != '_')
6118 return 0;
14f9c5c9
AS
6119 return 1;
6120 }
4c4b4cd2 6121 if (str[0] == '$' && isdigit (str[1]))
14f9c5c9 6122 {
4c4b4cd2
PH
6123 for (k = 2; str[k] != '\0'; k += 1)
6124 if (!isdigit (str[k]) && str[k] != '_')
6125 return 0;
14f9c5c9
AS
6126 return 1;
6127 }
6128 return 0;
6129}
d2e4a39e 6130
aeb5907d
JB
6131/* Return non-zero if the string starting at NAME and ending before
6132 NAME_END contains no capital letters. */
529cad9c
PH
6133
6134static int
6135is_valid_name_for_wild_match (const char *name0)
6136{
6137 const char *decoded_name = ada_decode (name0);
6138 int i;
6139
5823c3ef
JB
6140 /* If the decoded name starts with an angle bracket, it means that
6141 NAME0 does not follow the GNAT encoding format. It should then
6142 not be allowed as a possible wild match. */
6143 if (decoded_name[0] == '<')
6144 return 0;
6145
529cad9c
PH
6146 for (i=0; decoded_name[i] != '\0'; i++)
6147 if (isalpha (decoded_name[i]) && !islower (decoded_name[i]))
6148 return 0;
6149
6150 return 1;
6151}
6152
73589123
PH
6153/* Advance *NAMEP to next occurrence of TARGET0 in the string NAME0
6154 that could start a simple name. Assumes that *NAMEP points into
6155 the string beginning at NAME0. */
4c4b4cd2 6156
14f9c5c9 6157static int
73589123 6158advance_wild_match (const char **namep, const char *name0, int target0)
14f9c5c9 6159{
73589123 6160 const char *name = *namep;
5b4ee69b 6161
5823c3ef 6162 while (1)
14f9c5c9 6163 {
aa27d0b3 6164 int t0, t1;
73589123
PH
6165
6166 t0 = *name;
6167 if (t0 == '_')
6168 {
6169 t1 = name[1];
6170 if ((t1 >= 'a' && t1 <= 'z') || (t1 >= '0' && t1 <= '9'))
6171 {
6172 name += 1;
61012eef 6173 if (name == name0 + 5 && startswith (name0, "_ada"))
73589123
PH
6174 break;
6175 else
6176 name += 1;
6177 }
aa27d0b3
JB
6178 else if (t1 == '_' && ((name[2] >= 'a' && name[2] <= 'z')
6179 || name[2] == target0))
73589123
PH
6180 {
6181 name += 2;
6182 break;
6183 }
6184 else
6185 return 0;
6186 }
6187 else if ((t0 >= 'a' && t0 <= 'z') || (t0 >= '0' && t0 <= '9'))
6188 name += 1;
6189 else
5823c3ef 6190 return 0;
73589123
PH
6191 }
6192
6193 *namep = name;
6194 return 1;
6195}
6196
6197/* Return 0 iff NAME encodes a name of the form prefix.PATN. Ignores any
6198 informational suffixes of NAME (i.e., for which is_name_suffix is
6199 true). Assumes that PATN is a lower-cased Ada simple name. */
6200
6201static int
6202wild_match (const char *name, const char *patn)
6203{
22e048c9 6204 const char *p;
73589123
PH
6205 const char *name0 = name;
6206
6207 while (1)
6208 {
6209 const char *match = name;
6210
6211 if (*name == *patn)
6212 {
6213 for (name += 1, p = patn + 1; *p != '\0'; name += 1, p += 1)
6214 if (*p != *name)
6215 break;
6216 if (*p == '\0' && is_name_suffix (name))
6217 return match != name0 && !is_valid_name_for_wild_match (name0);
6218
6219 if (name[-1] == '_')
6220 name -= 1;
6221 }
6222 if (!advance_wild_match (&name, name0, *patn))
6223 return 1;
96d887e8 6224 }
96d887e8
PH
6225}
6226
40658b94
PH
6227/* Returns 0 iff symbol name SYM_NAME matches SEARCH_NAME, apart from
6228 informational suffix. */
6229
c4d840bd
PH
6230static int
6231full_match (const char *sym_name, const char *search_name)
6232{
40658b94 6233 return !match_name (sym_name, search_name, 0);
c4d840bd
PH
6234}
6235
6236
96d887e8
PH
6237/* Add symbols from BLOCK matching identifier NAME in DOMAIN to
6238 vector *defn_symbols, updating the list of symbols in OBSTACKP
0963b4bd 6239 (if necessary). If WILD, treat as NAME with a wildcard prefix.
4eeaa230 6240 OBJFILE is the section containing BLOCK. */
96d887e8
PH
6241
6242static void
6243ada_add_block_symbols (struct obstack *obstackp,
f0c5f9b2 6244 const struct block *block, const char *name,
96d887e8 6245 domain_enum domain, struct objfile *objfile,
2570f2b7 6246 int wild)
96d887e8 6247{
8157b174 6248 struct block_iterator iter;
96d887e8
PH
6249 int name_len = strlen (name);
6250 /* A matching argument symbol, if any. */
6251 struct symbol *arg_sym;
6252 /* Set true when we find a matching non-argument symbol. */
6253 int found_sym;
6254 struct symbol *sym;
6255
6256 arg_sym = NULL;
6257 found_sym = 0;
6258 if (wild)
6259 {
8157b174
TT
6260 for (sym = block_iter_match_first (block, name, wild_match, &iter);
6261 sym != NULL; sym = block_iter_match_next (name, wild_match, &iter))
76a01679 6262 {
4186eb54
KS
6263 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
6264 SYMBOL_DOMAIN (sym), domain)
73589123 6265 && wild_match (SYMBOL_LINKAGE_NAME (sym), name) == 0)
76a01679 6266 {
2a2d4dc3
AS
6267 if (SYMBOL_CLASS (sym) == LOC_UNRESOLVED)
6268 continue;
6269 else if (SYMBOL_IS_ARGUMENT (sym))
6270 arg_sym = sym;
6271 else
6272 {
76a01679
JB
6273 found_sym = 1;
6274 add_defn_to_vec (obstackp,
6275 fixup_symbol_section (sym, objfile),
2570f2b7 6276 block);
76a01679
JB
6277 }
6278 }
6279 }
96d887e8
PH
6280 }
6281 else
6282 {
8157b174
TT
6283 for (sym = block_iter_match_first (block, name, full_match, &iter);
6284 sym != NULL; sym = block_iter_match_next (name, full_match, &iter))
76a01679 6285 {
4186eb54
KS
6286 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
6287 SYMBOL_DOMAIN (sym), domain))
76a01679 6288 {
c4d840bd
PH
6289 if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED)
6290 {
6291 if (SYMBOL_IS_ARGUMENT (sym))
6292 arg_sym = sym;
6293 else
2a2d4dc3 6294 {
c4d840bd
PH
6295 found_sym = 1;
6296 add_defn_to_vec (obstackp,
6297 fixup_symbol_section (sym, objfile),
6298 block);
2a2d4dc3 6299 }
c4d840bd 6300 }
76a01679
JB
6301 }
6302 }
96d887e8
PH
6303 }
6304
22cee43f
PMR
6305 /* Handle renamings. */
6306
6307 if (ada_add_block_renamings (obstackp, block, name, domain, wild))
6308 found_sym = 1;
6309
96d887e8
PH
6310 if (!found_sym && arg_sym != NULL)
6311 {
76a01679
JB
6312 add_defn_to_vec (obstackp,
6313 fixup_symbol_section (arg_sym, objfile),
2570f2b7 6314 block);
96d887e8
PH
6315 }
6316
6317 if (!wild)
6318 {
6319 arg_sym = NULL;
6320 found_sym = 0;
6321
6322 ALL_BLOCK_SYMBOLS (block, iter, sym)
76a01679 6323 {
4186eb54
KS
6324 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
6325 SYMBOL_DOMAIN (sym), domain))
76a01679
JB
6326 {
6327 int cmp;
6328
6329 cmp = (int) '_' - (int) SYMBOL_LINKAGE_NAME (sym)[0];
6330 if (cmp == 0)
6331 {
61012eef 6332 cmp = !startswith (SYMBOL_LINKAGE_NAME (sym), "_ada_");
76a01679
JB
6333 if (cmp == 0)
6334 cmp = strncmp (name, SYMBOL_LINKAGE_NAME (sym) + 5,
6335 name_len);
6336 }
6337
6338 if (cmp == 0
6339 && is_name_suffix (SYMBOL_LINKAGE_NAME (sym) + name_len + 5))
6340 {
2a2d4dc3
AS
6341 if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED)
6342 {
6343 if (SYMBOL_IS_ARGUMENT (sym))
6344 arg_sym = sym;
6345 else
6346 {
6347 found_sym = 1;
6348 add_defn_to_vec (obstackp,
6349 fixup_symbol_section (sym, objfile),
6350 block);
6351 }
6352 }
76a01679
JB
6353 }
6354 }
76a01679 6355 }
96d887e8
PH
6356
6357 /* NOTE: This really shouldn't be needed for _ada_ symbols.
6358 They aren't parameters, right? */
6359 if (!found_sym && arg_sym != NULL)
6360 {
6361 add_defn_to_vec (obstackp,
76a01679 6362 fixup_symbol_section (arg_sym, objfile),
2570f2b7 6363 block);
96d887e8
PH
6364 }
6365 }
6366}
6367\f
41d27058
JB
6368
6369 /* Symbol Completion */
6370
6371/* If SYM_NAME is a completion candidate for TEXT, return this symbol
6372 name in a form that's appropriate for the completion. The result
6373 does not need to be deallocated, but is only good until the next call.
6374
6375 TEXT_LEN is equal to the length of TEXT.
e701b3c0 6376 Perform a wild match if WILD_MATCH_P is set.
6ea35997 6377 ENCODED_P should be set if TEXT represents the start of a symbol name
41d27058
JB
6378 in its encoded form. */
6379
6380static const char *
6381symbol_completion_match (const char *sym_name,
6382 const char *text, int text_len,
6ea35997 6383 int wild_match_p, int encoded_p)
41d27058 6384{
41d27058
JB
6385 const int verbatim_match = (text[0] == '<');
6386 int match = 0;
6387
6388 if (verbatim_match)
6389 {
6390 /* Strip the leading angle bracket. */
6391 text = text + 1;
6392 text_len--;
6393 }
6394
6395 /* First, test against the fully qualified name of the symbol. */
6396
6397 if (strncmp (sym_name, text, text_len) == 0)
6398 match = 1;
6399
6ea35997 6400 if (match && !encoded_p)
41d27058
JB
6401 {
6402 /* One needed check before declaring a positive match is to verify
6403 that iff we are doing a verbatim match, the decoded version
6404 of the symbol name starts with '<'. Otherwise, this symbol name
6405 is not a suitable completion. */
6406 const char *sym_name_copy = sym_name;
6407 int has_angle_bracket;
6408
6409 sym_name = ada_decode (sym_name);
6410 has_angle_bracket = (sym_name[0] == '<');
6411 match = (has_angle_bracket == verbatim_match);
6412 sym_name = sym_name_copy;
6413 }
6414
6415 if (match && !verbatim_match)
6416 {
6417 /* When doing non-verbatim match, another check that needs to
6418 be done is to verify that the potentially matching symbol name
6419 does not include capital letters, because the ada-mode would
6420 not be able to understand these symbol names without the
6421 angle bracket notation. */
6422 const char *tmp;
6423
6424 for (tmp = sym_name; *tmp != '\0' && !isupper (*tmp); tmp++);
6425 if (*tmp != '\0')
6426 match = 0;
6427 }
6428
6429 /* Second: Try wild matching... */
6430
e701b3c0 6431 if (!match && wild_match_p)
41d27058
JB
6432 {
6433 /* Since we are doing wild matching, this means that TEXT
6434 may represent an unqualified symbol name. We therefore must
6435 also compare TEXT against the unqualified name of the symbol. */
6436 sym_name = ada_unqualified_name (ada_decode (sym_name));
6437
6438 if (strncmp (sym_name, text, text_len) == 0)
6439 match = 1;
6440 }
6441
6442 /* Finally: If we found a mach, prepare the result to return. */
6443
6444 if (!match)
6445 return NULL;
6446
6447 if (verbatim_match)
6448 sym_name = add_angle_brackets (sym_name);
6449
6ea35997 6450 if (!encoded_p)
41d27058
JB
6451 sym_name = ada_decode (sym_name);
6452
6453 return sym_name;
6454}
6455
6456/* A companion function to ada_make_symbol_completion_list().
6457 Check if SYM_NAME represents a symbol which name would be suitable
6458 to complete TEXT (TEXT_LEN is the length of TEXT), in which case
6459 it is appended at the end of the given string vector SV.
6460
6461 ORIG_TEXT is the string original string from the user command
6462 that needs to be completed. WORD is the entire command on which
6463 completion should be performed. These two parameters are used to
6464 determine which part of the symbol name should be added to the
6465 completion vector.
c0af1706 6466 if WILD_MATCH_P is set, then wild matching is performed.
cb8e9b97 6467 ENCODED_P should be set if TEXT represents a symbol name in its
41d27058
JB
6468 encoded formed (in which case the completion should also be
6469 encoded). */
6470
6471static void
d6565258 6472symbol_completion_add (VEC(char_ptr) **sv,
41d27058
JB
6473 const char *sym_name,
6474 const char *text, int text_len,
6475 const char *orig_text, const char *word,
cb8e9b97 6476 int wild_match_p, int encoded_p)
41d27058
JB
6477{
6478 const char *match = symbol_completion_match (sym_name, text, text_len,
cb8e9b97 6479 wild_match_p, encoded_p);
41d27058
JB
6480 char *completion;
6481
6482 if (match == NULL)
6483 return;
6484
6485 /* We found a match, so add the appropriate completion to the given
6486 string vector. */
6487
6488 if (word == orig_text)
6489 {
224c3ddb 6490 completion = (char *) xmalloc (strlen (match) + 5);
41d27058
JB
6491 strcpy (completion, match);
6492 }
6493 else if (word > orig_text)
6494 {
6495 /* Return some portion of sym_name. */
224c3ddb 6496 completion = (char *) xmalloc (strlen (match) + 5);
41d27058
JB
6497 strcpy (completion, match + (word - orig_text));
6498 }
6499 else
6500 {
6501 /* Return some of ORIG_TEXT plus sym_name. */
224c3ddb 6502 completion = (char *) xmalloc (strlen (match) + (orig_text - word) + 5);
41d27058
JB
6503 strncpy (completion, word, orig_text - word);
6504 completion[orig_text - word] = '\0';
6505 strcat (completion, match);
6506 }
6507
d6565258 6508 VEC_safe_push (char_ptr, *sv, completion);
41d27058
JB
6509}
6510
ccefe4c4 6511/* An object of this type is passed as the user_data argument to the
bb4142cf 6512 expand_symtabs_matching method. */
ccefe4c4
TT
6513struct add_partial_datum
6514{
6515 VEC(char_ptr) **completions;
6f937416 6516 const char *text;
ccefe4c4 6517 int text_len;
6f937416
PA
6518 const char *text0;
6519 const char *word;
ccefe4c4
TT
6520 int wild_match;
6521 int encoded;
6522};
6523
bb4142cf
DE
6524/* A callback for expand_symtabs_matching. */
6525
7b08b9eb 6526static int
bb4142cf 6527ada_complete_symbol_matcher (const char *name, void *user_data)
ccefe4c4 6528{
9a3c8263 6529 struct add_partial_datum *data = (struct add_partial_datum *) user_data;
7b08b9eb
JK
6530
6531 return symbol_completion_match (name, data->text, data->text_len,
6532 data->wild_match, data->encoded) != NULL;
ccefe4c4
TT
6533}
6534
49c4e619
TT
6535/* Return a list of possible symbol names completing TEXT0. WORD is
6536 the entire command on which completion is made. */
41d27058 6537
49c4e619 6538static VEC (char_ptr) *
6f937416
PA
6539ada_make_symbol_completion_list (const char *text0, const char *word,
6540 enum type_code code)
41d27058
JB
6541{
6542 char *text;
6543 int text_len;
b1ed564a
JB
6544 int wild_match_p;
6545 int encoded_p;
2ba95b9b 6546 VEC(char_ptr) *completions = VEC_alloc (char_ptr, 128);
41d27058 6547 struct symbol *sym;
43f3e411 6548 struct compunit_symtab *s;
41d27058
JB
6549 struct minimal_symbol *msymbol;
6550 struct objfile *objfile;
3977b71f 6551 const struct block *b, *surrounding_static_block = 0;
41d27058 6552 int i;
8157b174 6553 struct block_iterator iter;
b8fea896 6554 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
41d27058 6555
2f68a895
TT
6556 gdb_assert (code == TYPE_CODE_UNDEF);
6557
41d27058
JB
6558 if (text0[0] == '<')
6559 {
6560 text = xstrdup (text0);
6561 make_cleanup (xfree, text);
6562 text_len = strlen (text);
b1ed564a
JB
6563 wild_match_p = 0;
6564 encoded_p = 1;
41d27058
JB
6565 }
6566 else
6567 {
6568 text = xstrdup (ada_encode (text0));
6569 make_cleanup (xfree, text);
6570 text_len = strlen (text);
6571 for (i = 0; i < text_len; i++)
6572 text[i] = tolower (text[i]);
6573
b1ed564a 6574 encoded_p = (strstr (text0, "__") != NULL);
41d27058
JB
6575 /* If the name contains a ".", then the user is entering a fully
6576 qualified entity name, and the match must not be done in wild
6577 mode. Similarly, if the user wants to complete what looks like
6578 an encoded name, the match must not be done in wild mode. */
b1ed564a 6579 wild_match_p = (strchr (text0, '.') == NULL && !encoded_p);
41d27058
JB
6580 }
6581
6582 /* First, look at the partial symtab symbols. */
41d27058 6583 {
ccefe4c4
TT
6584 struct add_partial_datum data;
6585
6586 data.completions = &completions;
6587 data.text = text;
6588 data.text_len = text_len;
6589 data.text0 = text0;
6590 data.word = word;
b1ed564a
JB
6591 data.wild_match = wild_match_p;
6592 data.encoded = encoded_p;
276d885b
GB
6593 expand_symtabs_matching (NULL, ada_complete_symbol_matcher, NULL,
6594 ALL_DOMAIN, &data);
41d27058
JB
6595 }
6596
6597 /* At this point scan through the misc symbol vectors and add each
6598 symbol you find to the list. Eventually we want to ignore
6599 anything that isn't a text symbol (everything else will be
6600 handled by the psymtab code above). */
6601
6602 ALL_MSYMBOLS (objfile, msymbol)
6603 {
6604 QUIT;
efd66ac6 6605 symbol_completion_add (&completions, MSYMBOL_LINKAGE_NAME (msymbol),
b1ed564a
JB
6606 text, text_len, text0, word, wild_match_p,
6607 encoded_p);
41d27058
JB
6608 }
6609
6610 /* Search upwards from currently selected frame (so that we can
6611 complete on local vars. */
6612
6613 for (b = get_selected_block (0); b != NULL; b = BLOCK_SUPERBLOCK (b))
6614 {
6615 if (!BLOCK_SUPERBLOCK (b))
6616 surrounding_static_block = b; /* For elmin of dups */
6617
6618 ALL_BLOCK_SYMBOLS (b, iter, sym)
6619 {
d6565258 6620 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym),
41d27058 6621 text, text_len, text0, word,
b1ed564a 6622 wild_match_p, encoded_p);
41d27058
JB
6623 }
6624 }
6625
6626 /* Go through the symtabs and check the externs and statics for
43f3e411 6627 symbols which match. */
41d27058 6628
43f3e411 6629 ALL_COMPUNITS (objfile, s)
41d27058
JB
6630 {
6631 QUIT;
43f3e411 6632 b = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (s), GLOBAL_BLOCK);
41d27058
JB
6633 ALL_BLOCK_SYMBOLS (b, iter, sym)
6634 {
d6565258 6635 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym),
41d27058 6636 text, text_len, text0, word,
b1ed564a 6637 wild_match_p, encoded_p);
41d27058
JB
6638 }
6639 }
6640
43f3e411 6641 ALL_COMPUNITS (objfile, s)
41d27058
JB
6642 {
6643 QUIT;
43f3e411 6644 b = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (s), STATIC_BLOCK);
41d27058
JB
6645 /* Don't do this block twice. */
6646 if (b == surrounding_static_block)
6647 continue;
6648 ALL_BLOCK_SYMBOLS (b, iter, sym)
6649 {
d6565258 6650 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym),
41d27058 6651 text, text_len, text0, word,
b1ed564a 6652 wild_match_p, encoded_p);
41d27058
JB
6653 }
6654 }
6655
b8fea896 6656 do_cleanups (old_chain);
49c4e619 6657 return completions;
41d27058
JB
6658}
6659
963a6417 6660 /* Field Access */
96d887e8 6661
73fb9985
JB
6662/* Return non-zero if TYPE is a pointer to the GNAT dispatch table used
6663 for tagged types. */
6664
6665static int
6666ada_is_dispatch_table_ptr_type (struct type *type)
6667{
0d5cff50 6668 const char *name;
73fb9985
JB
6669
6670 if (TYPE_CODE (type) != TYPE_CODE_PTR)
6671 return 0;
6672
6673 name = TYPE_NAME (TYPE_TARGET_TYPE (type));
6674 if (name == NULL)
6675 return 0;
6676
6677 return (strcmp (name, "ada__tags__dispatch_table") == 0);
6678}
6679
ac4a2da4
JG
6680/* Return non-zero if TYPE is an interface tag. */
6681
6682static int
6683ada_is_interface_tag (struct type *type)
6684{
6685 const char *name = TYPE_NAME (type);
6686
6687 if (name == NULL)
6688 return 0;
6689
6690 return (strcmp (name, "ada__tags__interface_tag") == 0);
6691}
6692
963a6417
PH
6693/* True if field number FIELD_NUM in struct or union type TYPE is supposed
6694 to be invisible to users. */
96d887e8 6695
963a6417
PH
6696int
6697ada_is_ignored_field (struct type *type, int field_num)
96d887e8 6698{
963a6417
PH
6699 if (field_num < 0 || field_num > TYPE_NFIELDS (type))
6700 return 1;
ffde82bf 6701
73fb9985
JB
6702 /* Check the name of that field. */
6703 {
6704 const char *name = TYPE_FIELD_NAME (type, field_num);
6705
6706 /* Anonymous field names should not be printed.
6707 brobecker/2007-02-20: I don't think this can actually happen
6708 but we don't want to print the value of annonymous fields anyway. */
6709 if (name == NULL)
6710 return 1;
6711
ffde82bf
JB
6712 /* Normally, fields whose name start with an underscore ("_")
6713 are fields that have been internally generated by the compiler,
6714 and thus should not be printed. The "_parent" field is special,
6715 however: This is a field internally generated by the compiler
6716 for tagged types, and it contains the components inherited from
6717 the parent type. This field should not be printed as is, but
6718 should not be ignored either. */
61012eef 6719 if (name[0] == '_' && !startswith (name, "_parent"))
73fb9985
JB
6720 return 1;
6721 }
6722
ac4a2da4
JG
6723 /* If this is the dispatch table of a tagged type or an interface tag,
6724 then ignore. */
73fb9985 6725 if (ada_is_tagged_type (type, 1)
ac4a2da4
JG
6726 && (ada_is_dispatch_table_ptr_type (TYPE_FIELD_TYPE (type, field_num))
6727 || ada_is_interface_tag (TYPE_FIELD_TYPE (type, field_num))))
73fb9985
JB
6728 return 1;
6729
6730 /* Not a special field, so it should not be ignored. */
6731 return 0;
963a6417 6732}
96d887e8 6733
963a6417 6734/* True iff TYPE has a tag field. If REFOK, then TYPE may also be a
0963b4bd 6735 pointer or reference type whose ultimate target has a tag field. */
96d887e8 6736
963a6417
PH
6737int
6738ada_is_tagged_type (struct type *type, int refok)
6739{
6740 return (ada_lookup_struct_elt_type (type, "_tag", refok, 1, NULL) != NULL);
6741}
96d887e8 6742
963a6417 6743/* True iff TYPE represents the type of X'Tag */
96d887e8 6744
963a6417
PH
6745int
6746ada_is_tag_type (struct type *type)
6747{
460efde1
JB
6748 type = ada_check_typedef (type);
6749
963a6417
PH
6750 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_PTR)
6751 return 0;
6752 else
96d887e8 6753 {
963a6417 6754 const char *name = ada_type_name (TYPE_TARGET_TYPE (type));
5b4ee69b 6755
963a6417
PH
6756 return (name != NULL
6757 && strcmp (name, "ada__tags__dispatch_table") == 0);
96d887e8 6758 }
96d887e8
PH
6759}
6760
963a6417 6761/* The type of the tag on VAL. */
76a01679 6762
963a6417
PH
6763struct type *
6764ada_tag_type (struct value *val)
96d887e8 6765{
df407dfe 6766 return ada_lookup_struct_elt_type (value_type (val), "_tag", 1, 0, NULL);
963a6417 6767}
96d887e8 6768
b50d69b5
JG
6769/* Return 1 if TAG follows the old scheme for Ada tags (used for Ada 95,
6770 retired at Ada 05). */
6771
6772static int
6773is_ada95_tag (struct value *tag)
6774{
6775 return ada_value_struct_elt (tag, "tsd", 1) != NULL;
6776}
6777
963a6417 6778/* The value of the tag on VAL. */
96d887e8 6779
963a6417
PH
6780struct value *
6781ada_value_tag (struct value *val)
6782{
03ee6b2e 6783 return ada_value_struct_elt (val, "_tag", 0);
96d887e8
PH
6784}
6785
963a6417
PH
6786/* The value of the tag on the object of type TYPE whose contents are
6787 saved at VALADDR, if it is non-null, or is at memory address
0963b4bd 6788 ADDRESS. */
96d887e8 6789
963a6417 6790static struct value *
10a2c479 6791value_tag_from_contents_and_address (struct type *type,
fc1a4b47 6792 const gdb_byte *valaddr,
963a6417 6793 CORE_ADDR address)
96d887e8 6794{
b5385fc0 6795 int tag_byte_offset;
963a6417 6796 struct type *tag_type;
5b4ee69b 6797
963a6417 6798 if (find_struct_field ("_tag", type, 0, &tag_type, &tag_byte_offset,
52ce6436 6799 NULL, NULL, NULL))
96d887e8 6800 {
fc1a4b47 6801 const gdb_byte *valaddr1 = ((valaddr == NULL)
10a2c479
AC
6802 ? NULL
6803 : valaddr + tag_byte_offset);
963a6417 6804 CORE_ADDR address1 = (address == 0) ? 0 : address + tag_byte_offset;
96d887e8 6805
963a6417 6806 return value_from_contents_and_address (tag_type, valaddr1, address1);
96d887e8 6807 }
963a6417
PH
6808 return NULL;
6809}
96d887e8 6810
963a6417
PH
6811static struct type *
6812type_from_tag (struct value *tag)
6813{
6814 const char *type_name = ada_tag_name (tag);
5b4ee69b 6815
963a6417
PH
6816 if (type_name != NULL)
6817 return ada_find_any_type (ada_encode (type_name));
6818 return NULL;
6819}
96d887e8 6820
b50d69b5
JG
6821/* Given a value OBJ of a tagged type, return a value of this
6822 type at the base address of the object. The base address, as
6823 defined in Ada.Tags, it is the address of the primary tag of
6824 the object, and therefore where the field values of its full
6825 view can be fetched. */
6826
6827struct value *
6828ada_tag_value_at_base_address (struct value *obj)
6829{
b50d69b5
JG
6830 struct value *val;
6831 LONGEST offset_to_top = 0;
6832 struct type *ptr_type, *obj_type;
6833 struct value *tag;
6834 CORE_ADDR base_address;
6835
6836 obj_type = value_type (obj);
6837
6838 /* It is the responsability of the caller to deref pointers. */
6839
6840 if (TYPE_CODE (obj_type) == TYPE_CODE_PTR
6841 || TYPE_CODE (obj_type) == TYPE_CODE_REF)
6842 return obj;
6843
6844 tag = ada_value_tag (obj);
6845 if (!tag)
6846 return obj;
6847
6848 /* Base addresses only appeared with Ada 05 and multiple inheritance. */
6849
6850 if (is_ada95_tag (tag))
6851 return obj;
6852
6853 ptr_type = builtin_type (target_gdbarch ())->builtin_data_ptr;
6854 ptr_type = lookup_pointer_type (ptr_type);
6855 val = value_cast (ptr_type, tag);
6856 if (!val)
6857 return obj;
6858
6859 /* It is perfectly possible that an exception be raised while
6860 trying to determine the base address, just like for the tag;
6861 see ada_tag_name for more details. We do not print the error
6862 message for the same reason. */
6863
492d29ea 6864 TRY
b50d69b5
JG
6865 {
6866 offset_to_top = value_as_long (value_ind (value_ptradd (val, -2)));
6867 }
6868
492d29ea
PA
6869 CATCH (e, RETURN_MASK_ERROR)
6870 {
6871 return obj;
6872 }
6873 END_CATCH
b50d69b5
JG
6874
6875 /* If offset is null, nothing to do. */
6876
6877 if (offset_to_top == 0)
6878 return obj;
6879
6880 /* -1 is a special case in Ada.Tags; however, what should be done
6881 is not quite clear from the documentation. So do nothing for
6882 now. */
6883
6884 if (offset_to_top == -1)
6885 return obj;
6886
6887 base_address = value_address (obj) - offset_to_top;
6888 tag = value_tag_from_contents_and_address (obj_type, NULL, base_address);
6889
6890 /* Make sure that we have a proper tag at the new address.
6891 Otherwise, offset_to_top is bogus (which can happen when
6892 the object is not initialized yet). */
6893
6894 if (!tag)
6895 return obj;
6896
6897 obj_type = type_from_tag (tag);
6898
6899 if (!obj_type)
6900 return obj;
6901
6902 return value_from_contents_and_address (obj_type, NULL, base_address);
6903}
6904
1b611343
JB
6905/* Return the "ada__tags__type_specific_data" type. */
6906
6907static struct type *
6908ada_get_tsd_type (struct inferior *inf)
963a6417 6909{
1b611343 6910 struct ada_inferior_data *data = get_ada_inferior_data (inf);
4c4b4cd2 6911
1b611343
JB
6912 if (data->tsd_type == 0)
6913 data->tsd_type = ada_find_any_type ("ada__tags__type_specific_data");
6914 return data->tsd_type;
6915}
529cad9c 6916
1b611343
JB
6917/* Return the TSD (type-specific data) associated to the given TAG.
6918 TAG is assumed to be the tag of a tagged-type entity.
529cad9c 6919
1b611343 6920 May return NULL if we are unable to get the TSD. */
4c4b4cd2 6921
1b611343
JB
6922static struct value *
6923ada_get_tsd_from_tag (struct value *tag)
4c4b4cd2 6924{
4c4b4cd2 6925 struct value *val;
1b611343 6926 struct type *type;
5b4ee69b 6927
1b611343
JB
6928 /* First option: The TSD is simply stored as a field of our TAG.
6929 Only older versions of GNAT would use this format, but we have
6930 to test it first, because there are no visible markers for
6931 the current approach except the absence of that field. */
529cad9c 6932
1b611343
JB
6933 val = ada_value_struct_elt (tag, "tsd", 1);
6934 if (val)
6935 return val;
e802dbe0 6936
1b611343
JB
6937 /* Try the second representation for the dispatch table (in which
6938 there is no explicit 'tsd' field in the referent of the tag pointer,
6939 and instead the tsd pointer is stored just before the dispatch
6940 table. */
e802dbe0 6941
1b611343
JB
6942 type = ada_get_tsd_type (current_inferior());
6943 if (type == NULL)
6944 return NULL;
6945 type = lookup_pointer_type (lookup_pointer_type (type));
6946 val = value_cast (type, tag);
6947 if (val == NULL)
6948 return NULL;
6949 return value_ind (value_ptradd (val, -1));
e802dbe0
JB
6950}
6951
1b611343
JB
6952/* Given the TSD of a tag (type-specific data), return a string
6953 containing the name of the associated type.
6954
6955 The returned value is good until the next call. May return NULL
6956 if we are unable to determine the tag name. */
6957
6958static char *
6959ada_tag_name_from_tsd (struct value *tsd)
529cad9c 6960{
529cad9c
PH
6961 static char name[1024];
6962 char *p;
1b611343 6963 struct value *val;
529cad9c 6964
1b611343 6965 val = ada_value_struct_elt (tsd, "expanded_name", 1);
4c4b4cd2 6966 if (val == NULL)
1b611343 6967 return NULL;
4c4b4cd2
PH
6968 read_memory_string (value_as_address (val), name, sizeof (name) - 1);
6969 for (p = name; *p != '\0'; p += 1)
6970 if (isalpha (*p))
6971 *p = tolower (*p);
1b611343 6972 return name;
4c4b4cd2
PH
6973}
6974
6975/* The type name of the dynamic type denoted by the 'tag value TAG, as
1b611343
JB
6976 a C string.
6977
6978 Return NULL if the TAG is not an Ada tag, or if we were unable to
6979 determine the name of that tag. The result is good until the next
6980 call. */
4c4b4cd2
PH
6981
6982const char *
6983ada_tag_name (struct value *tag)
6984{
1b611343 6985 char *name = NULL;
5b4ee69b 6986
df407dfe 6987 if (!ada_is_tag_type (value_type (tag)))
4c4b4cd2 6988 return NULL;
1b611343
JB
6989
6990 /* It is perfectly possible that an exception be raised while trying
6991 to determine the TAG's name, even under normal circumstances:
6992 The associated variable may be uninitialized or corrupted, for
6993 instance. We do not let any exception propagate past this point.
6994 instead we return NULL.
6995
6996 We also do not print the error message either (which often is very
6997 low-level (Eg: "Cannot read memory at 0x[...]"), but instead let
6998 the caller print a more meaningful message if necessary. */
492d29ea 6999 TRY
1b611343
JB
7000 {
7001 struct value *tsd = ada_get_tsd_from_tag (tag);
7002
7003 if (tsd != NULL)
7004 name = ada_tag_name_from_tsd (tsd);
7005 }
492d29ea
PA
7006 CATCH (e, RETURN_MASK_ERROR)
7007 {
7008 }
7009 END_CATCH
1b611343
JB
7010
7011 return name;
4c4b4cd2
PH
7012}
7013
7014/* The parent type of TYPE, or NULL if none. */
14f9c5c9 7015
d2e4a39e 7016struct type *
ebf56fd3 7017ada_parent_type (struct type *type)
14f9c5c9
AS
7018{
7019 int i;
7020
61ee279c 7021 type = ada_check_typedef (type);
14f9c5c9
AS
7022
7023 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT)
7024 return NULL;
7025
7026 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
7027 if (ada_is_parent_field (type, i))
0c1f74cf
JB
7028 {
7029 struct type *parent_type = TYPE_FIELD_TYPE (type, i);
7030
7031 /* If the _parent field is a pointer, then dereference it. */
7032 if (TYPE_CODE (parent_type) == TYPE_CODE_PTR)
7033 parent_type = TYPE_TARGET_TYPE (parent_type);
7034 /* If there is a parallel XVS type, get the actual base type. */
7035 parent_type = ada_get_base_type (parent_type);
7036
7037 return ada_check_typedef (parent_type);
7038 }
14f9c5c9
AS
7039
7040 return NULL;
7041}
7042
4c4b4cd2
PH
7043/* True iff field number FIELD_NUM of structure type TYPE contains the
7044 parent-type (inherited) fields of a derived type. Assumes TYPE is
7045 a structure type with at least FIELD_NUM+1 fields. */
14f9c5c9
AS
7046
7047int
ebf56fd3 7048ada_is_parent_field (struct type *type, int field_num)
14f9c5c9 7049{
61ee279c 7050 const char *name = TYPE_FIELD_NAME (ada_check_typedef (type), field_num);
5b4ee69b 7051
4c4b4cd2 7052 return (name != NULL
61012eef
GB
7053 && (startswith (name, "PARENT")
7054 || startswith (name, "_parent")));
14f9c5c9
AS
7055}
7056
4c4b4cd2 7057/* True iff field number FIELD_NUM of structure type TYPE is a
14f9c5c9 7058 transparent wrapper field (which should be silently traversed when doing
4c4b4cd2 7059 field selection and flattened when printing). Assumes TYPE is a
14f9c5c9 7060 structure type with at least FIELD_NUM+1 fields. Such fields are always
4c4b4cd2 7061 structures. */
14f9c5c9
AS
7062
7063int
ebf56fd3 7064ada_is_wrapper_field (struct type *type, int field_num)
14f9c5c9 7065{
d2e4a39e 7066 const char *name = TYPE_FIELD_NAME (type, field_num);
5b4ee69b 7067
dddc0e16
JB
7068 if (name != NULL && strcmp (name, "RETVAL") == 0)
7069 {
7070 /* This happens in functions with "out" or "in out" parameters
7071 which are passed by copy. For such functions, GNAT describes
7072 the function's return type as being a struct where the return
7073 value is in a field called RETVAL, and where the other "out"
7074 or "in out" parameters are fields of that struct. This is not
7075 a wrapper. */
7076 return 0;
7077 }
7078
d2e4a39e 7079 return (name != NULL
61012eef 7080 && (startswith (name, "PARENT")
4c4b4cd2 7081 || strcmp (name, "REP") == 0
61012eef 7082 || startswith (name, "_parent")
4c4b4cd2 7083 || name[0] == 'S' || name[0] == 'R' || name[0] == 'O'));
14f9c5c9
AS
7084}
7085
4c4b4cd2
PH
7086/* True iff field number FIELD_NUM of structure or union type TYPE
7087 is a variant wrapper. Assumes TYPE is a structure type with at least
7088 FIELD_NUM+1 fields. */
14f9c5c9
AS
7089
7090int
ebf56fd3 7091ada_is_variant_part (struct type *type, int field_num)
14f9c5c9 7092{
d2e4a39e 7093 struct type *field_type = TYPE_FIELD_TYPE (type, field_num);
5b4ee69b 7094
14f9c5c9 7095 return (TYPE_CODE (field_type) == TYPE_CODE_UNION
4c4b4cd2 7096 || (is_dynamic_field (type, field_num)
c3e5cd34
PH
7097 && (TYPE_CODE (TYPE_TARGET_TYPE (field_type))
7098 == TYPE_CODE_UNION)));
14f9c5c9
AS
7099}
7100
7101/* Assuming that VAR_TYPE is a variant wrapper (type of the variant part)
4c4b4cd2 7102 whose discriminants are contained in the record type OUTER_TYPE,
7c964f07
UW
7103 returns the type of the controlling discriminant for the variant.
7104 May return NULL if the type could not be found. */
14f9c5c9 7105
d2e4a39e 7106struct type *
ebf56fd3 7107ada_variant_discrim_type (struct type *var_type, struct type *outer_type)
14f9c5c9 7108{
d2e4a39e 7109 char *name = ada_variant_discrim_name (var_type);
5b4ee69b 7110
7c964f07 7111 return ada_lookup_struct_elt_type (outer_type, name, 1, 1, NULL);
14f9c5c9
AS
7112}
7113
4c4b4cd2 7114/* Assuming that TYPE is the type of a variant wrapper, and FIELD_NUM is a
14f9c5c9 7115 valid field number within it, returns 1 iff field FIELD_NUM of TYPE
4c4b4cd2 7116 represents a 'when others' clause; otherwise 0. */
14f9c5c9
AS
7117
7118int
ebf56fd3 7119ada_is_others_clause (struct type *type, int field_num)
14f9c5c9 7120{
d2e4a39e 7121 const char *name = TYPE_FIELD_NAME (type, field_num);
5b4ee69b 7122
14f9c5c9
AS
7123 return (name != NULL && name[0] == 'O');
7124}
7125
7126/* Assuming that TYPE0 is the type of the variant part of a record,
4c4b4cd2
PH
7127 returns the name of the discriminant controlling the variant.
7128 The value is valid until the next call to ada_variant_discrim_name. */
14f9c5c9 7129
d2e4a39e 7130char *
ebf56fd3 7131ada_variant_discrim_name (struct type *type0)
14f9c5c9 7132{
d2e4a39e 7133 static char *result = NULL;
14f9c5c9 7134 static size_t result_len = 0;
d2e4a39e
AS
7135 struct type *type;
7136 const char *name;
7137 const char *discrim_end;
7138 const char *discrim_start;
14f9c5c9
AS
7139
7140 if (TYPE_CODE (type0) == TYPE_CODE_PTR)
7141 type = TYPE_TARGET_TYPE (type0);
7142 else
7143 type = type0;
7144
7145 name = ada_type_name (type);
7146
7147 if (name == NULL || name[0] == '\000')
7148 return "";
7149
7150 for (discrim_end = name + strlen (name) - 6; discrim_end != name;
7151 discrim_end -= 1)
7152 {
61012eef 7153 if (startswith (discrim_end, "___XVN"))
4c4b4cd2 7154 break;
14f9c5c9
AS
7155 }
7156 if (discrim_end == name)
7157 return "";
7158
d2e4a39e 7159 for (discrim_start = discrim_end; discrim_start != name + 3;
14f9c5c9
AS
7160 discrim_start -= 1)
7161 {
d2e4a39e 7162 if (discrim_start == name + 1)
4c4b4cd2 7163 return "";
76a01679 7164 if ((discrim_start > name + 3
61012eef 7165 && startswith (discrim_start - 3, "___"))
4c4b4cd2
PH
7166 || discrim_start[-1] == '.')
7167 break;
14f9c5c9
AS
7168 }
7169
7170 GROW_VECT (result, result_len, discrim_end - discrim_start + 1);
7171 strncpy (result, discrim_start, discrim_end - discrim_start);
d2e4a39e 7172 result[discrim_end - discrim_start] = '\0';
14f9c5c9
AS
7173 return result;
7174}
7175
4c4b4cd2
PH
7176/* Scan STR for a subtype-encoded number, beginning at position K.
7177 Put the position of the character just past the number scanned in
7178 *NEW_K, if NEW_K!=NULL. Put the scanned number in *R, if R!=NULL.
7179 Return 1 if there was a valid number at the given position, and 0
7180 otherwise. A "subtype-encoded" number consists of the absolute value
7181 in decimal, followed by the letter 'm' to indicate a negative number.
7182 Assumes 0m does not occur. */
14f9c5c9
AS
7183
7184int
d2e4a39e 7185ada_scan_number (const char str[], int k, LONGEST * R, int *new_k)
14f9c5c9
AS
7186{
7187 ULONGEST RU;
7188
d2e4a39e 7189 if (!isdigit (str[k]))
14f9c5c9
AS
7190 return 0;
7191
4c4b4cd2 7192 /* Do it the hard way so as not to make any assumption about
14f9c5c9 7193 the relationship of unsigned long (%lu scan format code) and
4c4b4cd2 7194 LONGEST. */
14f9c5c9
AS
7195 RU = 0;
7196 while (isdigit (str[k]))
7197 {
d2e4a39e 7198 RU = RU * 10 + (str[k] - '0');
14f9c5c9
AS
7199 k += 1;
7200 }
7201
d2e4a39e 7202 if (str[k] == 'm')
14f9c5c9
AS
7203 {
7204 if (R != NULL)
4c4b4cd2 7205 *R = (-(LONGEST) (RU - 1)) - 1;
14f9c5c9
AS
7206 k += 1;
7207 }
7208 else if (R != NULL)
7209 *R = (LONGEST) RU;
7210
4c4b4cd2 7211 /* NOTE on the above: Technically, C does not say what the results of
14f9c5c9
AS
7212 - (LONGEST) RU or (LONGEST) -RU are for RU == largest positive
7213 number representable as a LONGEST (although either would probably work
7214 in most implementations). When RU>0, the locution in the then branch
4c4b4cd2 7215 above is always equivalent to the negative of RU. */
14f9c5c9
AS
7216
7217 if (new_k != NULL)
7218 *new_k = k;
7219 return 1;
7220}
7221
4c4b4cd2
PH
7222/* Assuming that TYPE is a variant part wrapper type (a VARIANTS field),
7223 and FIELD_NUM is a valid field number within it, returns 1 iff VAL is
7224 in the range encoded by field FIELD_NUM of TYPE; otherwise 0. */
14f9c5c9 7225
d2e4a39e 7226int
ebf56fd3 7227ada_in_variant (LONGEST val, struct type *type, int field_num)
14f9c5c9 7228{
d2e4a39e 7229 const char *name = TYPE_FIELD_NAME (type, field_num);
14f9c5c9
AS
7230 int p;
7231
7232 p = 0;
7233 while (1)
7234 {
d2e4a39e 7235 switch (name[p])
4c4b4cd2
PH
7236 {
7237 case '\0':
7238 return 0;
7239 case 'S':
7240 {
7241 LONGEST W;
5b4ee69b 7242
4c4b4cd2
PH
7243 if (!ada_scan_number (name, p + 1, &W, &p))
7244 return 0;
7245 if (val == W)
7246 return 1;
7247 break;
7248 }
7249 case 'R':
7250 {
7251 LONGEST L, U;
5b4ee69b 7252
4c4b4cd2
PH
7253 if (!ada_scan_number (name, p + 1, &L, &p)
7254 || name[p] != 'T' || !ada_scan_number (name, p + 1, &U, &p))
7255 return 0;
7256 if (val >= L && val <= U)
7257 return 1;
7258 break;
7259 }
7260 case 'O':
7261 return 1;
7262 default:
7263 return 0;
7264 }
7265 }
7266}
7267
0963b4bd 7268/* FIXME: Lots of redundancy below. Try to consolidate. */
4c4b4cd2
PH
7269
7270/* Given a value ARG1 (offset by OFFSET bytes) of a struct or union type
7271 ARG_TYPE, extract and return the value of one of its (non-static)
7272 fields. FIELDNO says which field. Differs from value_primitive_field
7273 only in that it can handle packed values of arbitrary type. */
14f9c5c9 7274
4c4b4cd2 7275static struct value *
d2e4a39e 7276ada_value_primitive_field (struct value *arg1, int offset, int fieldno,
4c4b4cd2 7277 struct type *arg_type)
14f9c5c9 7278{
14f9c5c9
AS
7279 struct type *type;
7280
61ee279c 7281 arg_type = ada_check_typedef (arg_type);
14f9c5c9
AS
7282 type = TYPE_FIELD_TYPE (arg_type, fieldno);
7283
4c4b4cd2 7284 /* Handle packed fields. */
14f9c5c9
AS
7285
7286 if (TYPE_FIELD_BITSIZE (arg_type, fieldno) != 0)
7287 {
7288 int bit_pos = TYPE_FIELD_BITPOS (arg_type, fieldno);
7289 int bit_size = TYPE_FIELD_BITSIZE (arg_type, fieldno);
d2e4a39e 7290
0fd88904 7291 return ada_value_primitive_packed_val (arg1, value_contents (arg1),
4c4b4cd2
PH
7292 offset + bit_pos / 8,
7293 bit_pos % 8, bit_size, type);
14f9c5c9
AS
7294 }
7295 else
7296 return value_primitive_field (arg1, offset, fieldno, arg_type);
7297}
7298
52ce6436
PH
7299/* Find field with name NAME in object of type TYPE. If found,
7300 set the following for each argument that is non-null:
7301 - *FIELD_TYPE_P to the field's type;
7302 - *BYTE_OFFSET_P to OFFSET + the byte offset of the field within
7303 an object of that type;
7304 - *BIT_OFFSET_P to the bit offset modulo byte size of the field;
7305 - *BIT_SIZE_P to its size in bits if the field is packed, and
7306 0 otherwise;
7307 If INDEX_P is non-null, increment *INDEX_P by the number of source-visible
7308 fields up to but not including the desired field, or by the total
7309 number of fields if not found. A NULL value of NAME never
7310 matches; the function just counts visible fields in this case.
7311
0963b4bd 7312 Returns 1 if found, 0 otherwise. */
52ce6436 7313
4c4b4cd2 7314static int
0d5cff50 7315find_struct_field (const char *name, struct type *type, int offset,
76a01679 7316 struct type **field_type_p,
52ce6436
PH
7317 int *byte_offset_p, int *bit_offset_p, int *bit_size_p,
7318 int *index_p)
4c4b4cd2
PH
7319{
7320 int i;
7321
61ee279c 7322 type = ada_check_typedef (type);
76a01679 7323
52ce6436
PH
7324 if (field_type_p != NULL)
7325 *field_type_p = NULL;
7326 if (byte_offset_p != NULL)
d5d6fca5 7327 *byte_offset_p = 0;
52ce6436
PH
7328 if (bit_offset_p != NULL)
7329 *bit_offset_p = 0;
7330 if (bit_size_p != NULL)
7331 *bit_size_p = 0;
7332
7333 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
4c4b4cd2
PH
7334 {
7335 int bit_pos = TYPE_FIELD_BITPOS (type, i);
7336 int fld_offset = offset + bit_pos / 8;
0d5cff50 7337 const char *t_field_name = TYPE_FIELD_NAME (type, i);
76a01679 7338
4c4b4cd2
PH
7339 if (t_field_name == NULL)
7340 continue;
7341
52ce6436 7342 else if (name != NULL && field_name_match (t_field_name, name))
76a01679
JB
7343 {
7344 int bit_size = TYPE_FIELD_BITSIZE (type, i);
5b4ee69b 7345
52ce6436
PH
7346 if (field_type_p != NULL)
7347 *field_type_p = TYPE_FIELD_TYPE (type, i);
7348 if (byte_offset_p != NULL)
7349 *byte_offset_p = fld_offset;
7350 if (bit_offset_p != NULL)
7351 *bit_offset_p = bit_pos % 8;
7352 if (bit_size_p != NULL)
7353 *bit_size_p = bit_size;
76a01679
JB
7354 return 1;
7355 }
4c4b4cd2
PH
7356 else if (ada_is_wrapper_field (type, i))
7357 {
52ce6436
PH
7358 if (find_struct_field (name, TYPE_FIELD_TYPE (type, i), fld_offset,
7359 field_type_p, byte_offset_p, bit_offset_p,
7360 bit_size_p, index_p))
76a01679
JB
7361 return 1;
7362 }
4c4b4cd2
PH
7363 else if (ada_is_variant_part (type, i))
7364 {
52ce6436
PH
7365 /* PNH: Wait. Do we ever execute this section, or is ARG always of
7366 fixed type?? */
4c4b4cd2 7367 int j;
52ce6436
PH
7368 struct type *field_type
7369 = ada_check_typedef (TYPE_FIELD_TYPE (type, i));
4c4b4cd2 7370
52ce6436 7371 for (j = 0; j < TYPE_NFIELDS (field_type); j += 1)
4c4b4cd2 7372 {
76a01679
JB
7373 if (find_struct_field (name, TYPE_FIELD_TYPE (field_type, j),
7374 fld_offset
7375 + TYPE_FIELD_BITPOS (field_type, j) / 8,
7376 field_type_p, byte_offset_p,
52ce6436 7377 bit_offset_p, bit_size_p, index_p))
76a01679 7378 return 1;
4c4b4cd2
PH
7379 }
7380 }
52ce6436
PH
7381 else if (index_p != NULL)
7382 *index_p += 1;
4c4b4cd2
PH
7383 }
7384 return 0;
7385}
7386
0963b4bd 7387/* Number of user-visible fields in record type TYPE. */
4c4b4cd2 7388
52ce6436
PH
7389static int
7390num_visible_fields (struct type *type)
7391{
7392 int n;
5b4ee69b 7393
52ce6436
PH
7394 n = 0;
7395 find_struct_field (NULL, type, 0, NULL, NULL, NULL, NULL, &n);
7396 return n;
7397}
14f9c5c9 7398
4c4b4cd2 7399/* Look for a field NAME in ARG. Adjust the address of ARG by OFFSET bytes,
14f9c5c9
AS
7400 and search in it assuming it has (class) type TYPE.
7401 If found, return value, else return NULL.
7402
4c4b4cd2 7403 Searches recursively through wrapper fields (e.g., '_parent'). */
14f9c5c9 7404
4c4b4cd2 7405static struct value *
108d56a4 7406ada_search_struct_field (const char *name, struct value *arg, int offset,
4c4b4cd2 7407 struct type *type)
14f9c5c9
AS
7408{
7409 int i;
14f9c5c9 7410
5b4ee69b 7411 type = ada_check_typedef (type);
52ce6436 7412 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
14f9c5c9 7413 {
0d5cff50 7414 const char *t_field_name = TYPE_FIELD_NAME (type, i);
14f9c5c9
AS
7415
7416 if (t_field_name == NULL)
4c4b4cd2 7417 continue;
14f9c5c9
AS
7418
7419 else if (field_name_match (t_field_name, name))
4c4b4cd2 7420 return ada_value_primitive_field (arg, offset, i, type);
14f9c5c9
AS
7421
7422 else if (ada_is_wrapper_field (type, i))
4c4b4cd2 7423 {
0963b4bd 7424 struct value *v = /* Do not let indent join lines here. */
06d5cf63
JB
7425 ada_search_struct_field (name, arg,
7426 offset + TYPE_FIELD_BITPOS (type, i) / 8,
7427 TYPE_FIELD_TYPE (type, i));
5b4ee69b 7428
4c4b4cd2
PH
7429 if (v != NULL)
7430 return v;
7431 }
14f9c5c9
AS
7432
7433 else if (ada_is_variant_part (type, i))
4c4b4cd2 7434 {
0963b4bd 7435 /* PNH: Do we ever get here? See find_struct_field. */
4c4b4cd2 7436 int j;
5b4ee69b
MS
7437 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type,
7438 i));
4c4b4cd2
PH
7439 int var_offset = offset + TYPE_FIELD_BITPOS (type, i) / 8;
7440
52ce6436 7441 for (j = 0; j < TYPE_NFIELDS (field_type); j += 1)
4c4b4cd2 7442 {
0963b4bd
MS
7443 struct value *v = ada_search_struct_field /* Force line
7444 break. */
06d5cf63
JB
7445 (name, arg,
7446 var_offset + TYPE_FIELD_BITPOS (field_type, j) / 8,
7447 TYPE_FIELD_TYPE (field_type, j));
5b4ee69b 7448
4c4b4cd2
PH
7449 if (v != NULL)
7450 return v;
7451 }
7452 }
14f9c5c9
AS
7453 }
7454 return NULL;
7455}
d2e4a39e 7456
52ce6436
PH
7457static struct value *ada_index_struct_field_1 (int *, struct value *,
7458 int, struct type *);
7459
7460
7461/* Return field #INDEX in ARG, where the index is that returned by
7462 * find_struct_field through its INDEX_P argument. Adjust the address
7463 * of ARG by OFFSET bytes, and search in it assuming it has (class) type TYPE.
0963b4bd 7464 * If found, return value, else return NULL. */
52ce6436
PH
7465
7466static struct value *
7467ada_index_struct_field (int index, struct value *arg, int offset,
7468 struct type *type)
7469{
7470 return ada_index_struct_field_1 (&index, arg, offset, type);
7471}
7472
7473
7474/* Auxiliary function for ada_index_struct_field. Like
7475 * ada_index_struct_field, but takes index from *INDEX_P and modifies
0963b4bd 7476 * *INDEX_P. */
52ce6436
PH
7477
7478static struct value *
7479ada_index_struct_field_1 (int *index_p, struct value *arg, int offset,
7480 struct type *type)
7481{
7482 int i;
7483 type = ada_check_typedef (type);
7484
7485 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
7486 {
7487 if (TYPE_FIELD_NAME (type, i) == NULL)
7488 continue;
7489 else if (ada_is_wrapper_field (type, i))
7490 {
0963b4bd 7491 struct value *v = /* Do not let indent join lines here. */
52ce6436
PH
7492 ada_index_struct_field_1 (index_p, arg,
7493 offset + TYPE_FIELD_BITPOS (type, i) / 8,
7494 TYPE_FIELD_TYPE (type, i));
5b4ee69b 7495
52ce6436
PH
7496 if (v != NULL)
7497 return v;
7498 }
7499
7500 else if (ada_is_variant_part (type, i))
7501 {
7502 /* PNH: Do we ever get here? See ada_search_struct_field,
0963b4bd 7503 find_struct_field. */
52ce6436
PH
7504 error (_("Cannot assign this kind of variant record"));
7505 }
7506 else if (*index_p == 0)
7507 return ada_value_primitive_field (arg, offset, i, type);
7508 else
7509 *index_p -= 1;
7510 }
7511 return NULL;
7512}
7513
4c4b4cd2
PH
7514/* Given ARG, a value of type (pointer or reference to a)*
7515 structure/union, extract the component named NAME from the ultimate
7516 target structure/union and return it as a value with its
f5938064 7517 appropriate type.
14f9c5c9 7518
4c4b4cd2
PH
7519 The routine searches for NAME among all members of the structure itself
7520 and (recursively) among all members of any wrapper members
14f9c5c9
AS
7521 (e.g., '_parent').
7522
03ee6b2e
PH
7523 If NO_ERR, then simply return NULL in case of error, rather than
7524 calling error. */
14f9c5c9 7525
d2e4a39e 7526struct value *
03ee6b2e 7527ada_value_struct_elt (struct value *arg, char *name, int no_err)
14f9c5c9 7528{
4c4b4cd2 7529 struct type *t, *t1;
d2e4a39e 7530 struct value *v;
14f9c5c9 7531
4c4b4cd2 7532 v = NULL;
df407dfe 7533 t1 = t = ada_check_typedef (value_type (arg));
4c4b4cd2
PH
7534 if (TYPE_CODE (t) == TYPE_CODE_REF)
7535 {
7536 t1 = TYPE_TARGET_TYPE (t);
7537 if (t1 == NULL)
03ee6b2e 7538 goto BadValue;
61ee279c 7539 t1 = ada_check_typedef (t1);
4c4b4cd2 7540 if (TYPE_CODE (t1) == TYPE_CODE_PTR)
76a01679 7541 {
994b9211 7542 arg = coerce_ref (arg);
76a01679
JB
7543 t = t1;
7544 }
4c4b4cd2 7545 }
14f9c5c9 7546
4c4b4cd2
PH
7547 while (TYPE_CODE (t) == TYPE_CODE_PTR)
7548 {
7549 t1 = TYPE_TARGET_TYPE (t);
7550 if (t1 == NULL)
03ee6b2e 7551 goto BadValue;
61ee279c 7552 t1 = ada_check_typedef (t1);
4c4b4cd2 7553 if (TYPE_CODE (t1) == TYPE_CODE_PTR)
76a01679
JB
7554 {
7555 arg = value_ind (arg);
7556 t = t1;
7557 }
4c4b4cd2 7558 else
76a01679 7559 break;
4c4b4cd2 7560 }
14f9c5c9 7561
4c4b4cd2 7562 if (TYPE_CODE (t1) != TYPE_CODE_STRUCT && TYPE_CODE (t1) != TYPE_CODE_UNION)
03ee6b2e 7563 goto BadValue;
14f9c5c9 7564
4c4b4cd2
PH
7565 if (t1 == t)
7566 v = ada_search_struct_field (name, arg, 0, t);
7567 else
7568 {
7569 int bit_offset, bit_size, byte_offset;
7570 struct type *field_type;
7571 CORE_ADDR address;
7572
76a01679 7573 if (TYPE_CODE (t) == TYPE_CODE_PTR)
b50d69b5 7574 address = value_address (ada_value_ind (arg));
4c4b4cd2 7575 else
b50d69b5 7576 address = value_address (ada_coerce_ref (arg));
14f9c5c9 7577
1ed6ede0 7578 t1 = ada_to_fixed_type (ada_get_base_type (t1), NULL, address, NULL, 1);
76a01679
JB
7579 if (find_struct_field (name, t1, 0,
7580 &field_type, &byte_offset, &bit_offset,
52ce6436 7581 &bit_size, NULL))
76a01679
JB
7582 {
7583 if (bit_size != 0)
7584 {
714e53ab
PH
7585 if (TYPE_CODE (t) == TYPE_CODE_REF)
7586 arg = ada_coerce_ref (arg);
7587 else
7588 arg = ada_value_ind (arg);
76a01679
JB
7589 v = ada_value_primitive_packed_val (arg, NULL, byte_offset,
7590 bit_offset, bit_size,
7591 field_type);
7592 }
7593 else
f5938064 7594 v = value_at_lazy (field_type, address + byte_offset);
76a01679
JB
7595 }
7596 }
7597
03ee6b2e
PH
7598 if (v != NULL || no_err)
7599 return v;
7600 else
323e0a4a 7601 error (_("There is no member named %s."), name);
14f9c5c9 7602
03ee6b2e
PH
7603 BadValue:
7604 if (no_err)
7605 return NULL;
7606 else
0963b4bd
MS
7607 error (_("Attempt to extract a component of "
7608 "a value that is not a record."));
14f9c5c9
AS
7609}
7610
99bbb428
PA
7611/* Return a string representation of type TYPE. Caller must free
7612 result. */
7613
7614static char *
7615type_as_string (struct type *type)
7616{
7617 struct ui_file *tmp_stream = mem_fileopen ();
7618 struct cleanup *old_chain;
7619 char *str;
7620
7621 tmp_stream = mem_fileopen ();
7622 old_chain = make_cleanup_ui_file_delete (tmp_stream);
7623
7624 type_print (type, "", tmp_stream, -1);
7625 str = ui_file_xstrdup (tmp_stream, NULL);
7626
7627 do_cleanups (old_chain);
7628 return str;
7629}
7630
7631/* Return a string representation of type TYPE, and install a cleanup
7632 that releases it. */
7633
7634static char *
7635type_as_string_and_cleanup (struct type *type)
7636{
7637 char *str;
7638
7639 str = type_as_string (type);
7640 make_cleanup (xfree, str);
7641 return str;
7642}
7643
14f9c5c9 7644/* Given a type TYPE, look up the type of the component of type named NAME.
4c4b4cd2
PH
7645 If DISPP is non-null, add its byte displacement from the beginning of a
7646 structure (pointed to by a value) of type TYPE to *DISPP (does not
14f9c5c9
AS
7647 work for packed fields).
7648
7649 Matches any field whose name has NAME as a prefix, possibly
4c4b4cd2 7650 followed by "___".
14f9c5c9 7651
0963b4bd 7652 TYPE can be either a struct or union. If REFOK, TYPE may also
4c4b4cd2
PH
7653 be a (pointer or reference)+ to a struct or union, and the
7654 ultimate target type will be searched.
14f9c5c9
AS
7655
7656 Looks recursively into variant clauses and parent types.
7657
4c4b4cd2
PH
7658 If NOERR is nonzero, return NULL if NAME is not suitably defined or
7659 TYPE is not a type of the right kind. */
14f9c5c9 7660
4c4b4cd2 7661static struct type *
76a01679
JB
7662ada_lookup_struct_elt_type (struct type *type, char *name, int refok,
7663 int noerr, int *dispp)
14f9c5c9
AS
7664{
7665 int i;
7666
7667 if (name == NULL)
7668 goto BadName;
7669
76a01679 7670 if (refok && type != NULL)
4c4b4cd2
PH
7671 while (1)
7672 {
61ee279c 7673 type = ada_check_typedef (type);
76a01679
JB
7674 if (TYPE_CODE (type) != TYPE_CODE_PTR
7675 && TYPE_CODE (type) != TYPE_CODE_REF)
7676 break;
7677 type = TYPE_TARGET_TYPE (type);
4c4b4cd2 7678 }
14f9c5c9 7679
76a01679 7680 if (type == NULL
1265e4aa
JB
7681 || (TYPE_CODE (type) != TYPE_CODE_STRUCT
7682 && TYPE_CODE (type) != TYPE_CODE_UNION))
14f9c5c9 7683 {
2b2798cc 7684 const char *type_str;
99bbb428 7685
4c4b4cd2 7686 if (noerr)
76a01679 7687 return NULL;
99bbb428
PA
7688
7689 type_str = (type != NULL
7690 ? type_as_string_and_cleanup (type)
7691 : _("(null)"));
7692 error (_("Type %s is not a structure or union type"), type_str);
14f9c5c9
AS
7693 }
7694
7695 type = to_static_fixed_type (type);
7696
7697 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
7698 {
0d5cff50 7699 const char *t_field_name = TYPE_FIELD_NAME (type, i);
14f9c5c9
AS
7700 struct type *t;
7701 int disp;
d2e4a39e 7702
14f9c5c9 7703 if (t_field_name == NULL)
4c4b4cd2 7704 continue;
14f9c5c9
AS
7705
7706 else if (field_name_match (t_field_name, name))
4c4b4cd2
PH
7707 {
7708 if (dispp != NULL)
7709 *dispp += TYPE_FIELD_BITPOS (type, i) / 8;
460efde1 7710 return TYPE_FIELD_TYPE (type, i);
4c4b4cd2 7711 }
14f9c5c9
AS
7712
7713 else if (ada_is_wrapper_field (type, i))
4c4b4cd2
PH
7714 {
7715 disp = 0;
7716 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (type, i), name,
7717 0, 1, &disp);
7718 if (t != NULL)
7719 {
7720 if (dispp != NULL)
7721 *dispp += disp + TYPE_FIELD_BITPOS (type, i) / 8;
7722 return t;
7723 }
7724 }
14f9c5c9
AS
7725
7726 else if (ada_is_variant_part (type, i))
4c4b4cd2
PH
7727 {
7728 int j;
5b4ee69b
MS
7729 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type,
7730 i));
4c4b4cd2
PH
7731
7732 for (j = TYPE_NFIELDS (field_type) - 1; j >= 0; j -= 1)
7733 {
b1f33ddd
JB
7734 /* FIXME pnh 2008/01/26: We check for a field that is
7735 NOT wrapped in a struct, since the compiler sometimes
7736 generates these for unchecked variant types. Revisit
0963b4bd 7737 if the compiler changes this practice. */
0d5cff50 7738 const char *v_field_name = TYPE_FIELD_NAME (field_type, j);
4c4b4cd2 7739 disp = 0;
b1f33ddd
JB
7740 if (v_field_name != NULL
7741 && field_name_match (v_field_name, name))
460efde1 7742 t = TYPE_FIELD_TYPE (field_type, j);
b1f33ddd 7743 else
0963b4bd
MS
7744 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (field_type,
7745 j),
b1f33ddd
JB
7746 name, 0, 1, &disp);
7747
4c4b4cd2
PH
7748 if (t != NULL)
7749 {
7750 if (dispp != NULL)
7751 *dispp += disp + TYPE_FIELD_BITPOS (type, i) / 8;
7752 return t;
7753 }
7754 }
7755 }
14f9c5c9
AS
7756
7757 }
7758
7759BadName:
d2e4a39e 7760 if (!noerr)
14f9c5c9 7761 {
2b2798cc 7762 const char *name_str = name != NULL ? name : _("<null>");
99bbb428
PA
7763
7764 error (_("Type %s has no component named %s"),
7765 type_as_string_and_cleanup (type), name_str);
14f9c5c9
AS
7766 }
7767
7768 return NULL;
7769}
7770
b1f33ddd
JB
7771/* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
7772 within a value of type OUTER_TYPE, return true iff VAR_TYPE
7773 represents an unchecked union (that is, the variant part of a
0963b4bd 7774 record that is named in an Unchecked_Union pragma). */
b1f33ddd
JB
7775
7776static int
7777is_unchecked_variant (struct type *var_type, struct type *outer_type)
7778{
7779 char *discrim_name = ada_variant_discrim_name (var_type);
5b4ee69b 7780
b1f33ddd
JB
7781 return (ada_lookup_struct_elt_type (outer_type, discrim_name, 0, 1, NULL)
7782 == NULL);
7783}
7784
7785
14f9c5c9
AS
7786/* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
7787 within a value of type OUTER_TYPE that is stored in GDB at
4c4b4cd2
PH
7788 OUTER_VALADDR, determine which variant clause (field number in VAR_TYPE,
7789 numbering from 0) is applicable. Returns -1 if none are. */
14f9c5c9 7790
d2e4a39e 7791int
ebf56fd3 7792ada_which_variant_applies (struct type *var_type, struct type *outer_type,
fc1a4b47 7793 const gdb_byte *outer_valaddr)
14f9c5c9
AS
7794{
7795 int others_clause;
7796 int i;
d2e4a39e 7797 char *discrim_name = ada_variant_discrim_name (var_type);
0c281816
JB
7798 struct value *outer;
7799 struct value *discrim;
14f9c5c9
AS
7800 LONGEST discrim_val;
7801
012370f6
TT
7802 /* Using plain value_from_contents_and_address here causes problems
7803 because we will end up trying to resolve a type that is currently
7804 being constructed. */
7805 outer = value_from_contents_and_address_unresolved (outer_type,
7806 outer_valaddr, 0);
0c281816
JB
7807 discrim = ada_value_struct_elt (outer, discrim_name, 1);
7808 if (discrim == NULL)
14f9c5c9 7809 return -1;
0c281816 7810 discrim_val = value_as_long (discrim);
14f9c5c9
AS
7811
7812 others_clause = -1;
7813 for (i = 0; i < TYPE_NFIELDS (var_type); i += 1)
7814 {
7815 if (ada_is_others_clause (var_type, i))
4c4b4cd2 7816 others_clause = i;
14f9c5c9 7817 else if (ada_in_variant (discrim_val, var_type, i))
4c4b4cd2 7818 return i;
14f9c5c9
AS
7819 }
7820
7821 return others_clause;
7822}
d2e4a39e 7823\f
14f9c5c9
AS
7824
7825
4c4b4cd2 7826 /* Dynamic-Sized Records */
14f9c5c9
AS
7827
7828/* Strategy: The type ostensibly attached to a value with dynamic size
7829 (i.e., a size that is not statically recorded in the debugging
7830 data) does not accurately reflect the size or layout of the value.
7831 Our strategy is to convert these values to values with accurate,
4c4b4cd2 7832 conventional types that are constructed on the fly. */
14f9c5c9
AS
7833
7834/* There is a subtle and tricky problem here. In general, we cannot
7835 determine the size of dynamic records without its data. However,
7836 the 'struct value' data structure, which GDB uses to represent
7837 quantities in the inferior process (the target), requires the size
7838 of the type at the time of its allocation in order to reserve space
7839 for GDB's internal copy of the data. That's why the
7840 'to_fixed_xxx_type' routines take (target) addresses as parameters,
4c4b4cd2 7841 rather than struct value*s.
14f9c5c9
AS
7842
7843 However, GDB's internal history variables ($1, $2, etc.) are
7844 struct value*s containing internal copies of the data that are not, in
7845 general, the same as the data at their corresponding addresses in
7846 the target. Fortunately, the types we give to these values are all
7847 conventional, fixed-size types (as per the strategy described
7848 above), so that we don't usually have to perform the
7849 'to_fixed_xxx_type' conversions to look at their values.
7850 Unfortunately, there is one exception: if one of the internal
7851 history variables is an array whose elements are unconstrained
7852 records, then we will need to create distinct fixed types for each
7853 element selected. */
7854
7855/* The upshot of all of this is that many routines take a (type, host
7856 address, target address) triple as arguments to represent a value.
7857 The host address, if non-null, is supposed to contain an internal
7858 copy of the relevant data; otherwise, the program is to consult the
4c4b4cd2 7859 target at the target address. */
14f9c5c9
AS
7860
7861/* Assuming that VAL0 represents a pointer value, the result of
7862 dereferencing it. Differs from value_ind in its treatment of
4c4b4cd2 7863 dynamic-sized types. */
14f9c5c9 7864
d2e4a39e
AS
7865struct value *
7866ada_value_ind (struct value *val0)
14f9c5c9 7867{
c48db5ca 7868 struct value *val = value_ind (val0);
5b4ee69b 7869
b50d69b5
JG
7870 if (ada_is_tagged_type (value_type (val), 0))
7871 val = ada_tag_value_at_base_address (val);
7872
4c4b4cd2 7873 return ada_to_fixed_value (val);
14f9c5c9
AS
7874}
7875
7876/* The value resulting from dereferencing any "reference to"
4c4b4cd2
PH
7877 qualifiers on VAL0. */
7878
d2e4a39e
AS
7879static struct value *
7880ada_coerce_ref (struct value *val0)
7881{
df407dfe 7882 if (TYPE_CODE (value_type (val0)) == TYPE_CODE_REF)
d2e4a39e
AS
7883 {
7884 struct value *val = val0;
5b4ee69b 7885
994b9211 7886 val = coerce_ref (val);
b50d69b5
JG
7887
7888 if (ada_is_tagged_type (value_type (val), 0))
7889 val = ada_tag_value_at_base_address (val);
7890
4c4b4cd2 7891 return ada_to_fixed_value (val);
d2e4a39e
AS
7892 }
7893 else
14f9c5c9
AS
7894 return val0;
7895}
7896
7897/* Return OFF rounded upward if necessary to a multiple of
4c4b4cd2 7898 ALIGNMENT (a power of 2). */
14f9c5c9
AS
7899
7900static unsigned int
ebf56fd3 7901align_value (unsigned int off, unsigned int alignment)
14f9c5c9
AS
7902{
7903 return (off + alignment - 1) & ~(alignment - 1);
7904}
7905
4c4b4cd2 7906/* Return the bit alignment required for field #F of template type TYPE. */
14f9c5c9
AS
7907
7908static unsigned int
ebf56fd3 7909field_alignment (struct type *type, int f)
14f9c5c9 7910{
d2e4a39e 7911 const char *name = TYPE_FIELD_NAME (type, f);
64a1bf19 7912 int len;
14f9c5c9
AS
7913 int align_offset;
7914
64a1bf19
JB
7915 /* The field name should never be null, unless the debugging information
7916 is somehow malformed. In this case, we assume the field does not
7917 require any alignment. */
7918 if (name == NULL)
7919 return 1;
7920
7921 len = strlen (name);
7922
4c4b4cd2
PH
7923 if (!isdigit (name[len - 1]))
7924 return 1;
14f9c5c9 7925
d2e4a39e 7926 if (isdigit (name[len - 2]))
14f9c5c9
AS
7927 align_offset = len - 2;
7928 else
7929 align_offset = len - 1;
7930
61012eef 7931 if (align_offset < 7 || !startswith (name + align_offset - 6, "___XV"))
14f9c5c9
AS
7932 return TARGET_CHAR_BIT;
7933
4c4b4cd2
PH
7934 return atoi (name + align_offset) * TARGET_CHAR_BIT;
7935}
7936
852dff6c 7937/* Find a typedef or tag symbol named NAME. Ignores ambiguity. */
4c4b4cd2 7938
852dff6c
JB
7939static struct symbol *
7940ada_find_any_type_symbol (const char *name)
4c4b4cd2
PH
7941{
7942 struct symbol *sym;
7943
7944 sym = standard_lookup (name, get_selected_block (NULL), VAR_DOMAIN);
4186eb54 7945 if (sym != NULL && SYMBOL_CLASS (sym) == LOC_TYPEDEF)
4c4b4cd2
PH
7946 return sym;
7947
4186eb54
KS
7948 sym = standard_lookup (name, NULL, STRUCT_DOMAIN);
7949 return sym;
14f9c5c9
AS
7950}
7951
dddfab26
UW
7952/* Find a type named NAME. Ignores ambiguity. This routine will look
7953 solely for types defined by debug info, it will not search the GDB
7954 primitive types. */
4c4b4cd2 7955
852dff6c 7956static struct type *
ebf56fd3 7957ada_find_any_type (const char *name)
14f9c5c9 7958{
852dff6c 7959 struct symbol *sym = ada_find_any_type_symbol (name);
14f9c5c9 7960
14f9c5c9 7961 if (sym != NULL)
dddfab26 7962 return SYMBOL_TYPE (sym);
14f9c5c9 7963
dddfab26 7964 return NULL;
14f9c5c9
AS
7965}
7966
739593e0
JB
7967/* Given NAME_SYM and an associated BLOCK, find a "renaming" symbol
7968 associated with NAME_SYM's name. NAME_SYM may itself be a renaming
7969 symbol, in which case it is returned. Otherwise, this looks for
7970 symbols whose name is that of NAME_SYM suffixed with "___XR".
7971 Return symbol if found, and NULL otherwise. */
4c4b4cd2
PH
7972
7973struct symbol *
270140bd 7974ada_find_renaming_symbol (struct symbol *name_sym, const struct block *block)
aeb5907d 7975{
739593e0 7976 const char *name = SYMBOL_LINKAGE_NAME (name_sym);
aeb5907d
JB
7977 struct symbol *sym;
7978
739593e0
JB
7979 if (strstr (name, "___XR") != NULL)
7980 return name_sym;
7981
aeb5907d
JB
7982 sym = find_old_style_renaming_symbol (name, block);
7983
7984 if (sym != NULL)
7985 return sym;
7986
0963b4bd 7987 /* Not right yet. FIXME pnh 7/20/2007. */
852dff6c 7988 sym = ada_find_any_type_symbol (name);
aeb5907d
JB
7989 if (sym != NULL && strstr (SYMBOL_LINKAGE_NAME (sym), "___XR") != NULL)
7990 return sym;
7991 else
7992 return NULL;
7993}
7994
7995static struct symbol *
270140bd 7996find_old_style_renaming_symbol (const char *name, const struct block *block)
4c4b4cd2 7997{
7f0df278 7998 const struct symbol *function_sym = block_linkage_function (block);
4c4b4cd2
PH
7999 char *rename;
8000
8001 if (function_sym != NULL)
8002 {
8003 /* If the symbol is defined inside a function, NAME is not fully
8004 qualified. This means we need to prepend the function name
8005 as well as adding the ``___XR'' suffix to build the name of
8006 the associated renaming symbol. */
0d5cff50 8007 const char *function_name = SYMBOL_LINKAGE_NAME (function_sym);
529cad9c
PH
8008 /* Function names sometimes contain suffixes used
8009 for instance to qualify nested subprograms. When building
8010 the XR type name, we need to make sure that this suffix is
8011 not included. So do not include any suffix in the function
8012 name length below. */
69fadcdf 8013 int function_name_len = ada_name_prefix_len (function_name);
76a01679
JB
8014 const int rename_len = function_name_len + 2 /* "__" */
8015 + strlen (name) + 6 /* "___XR\0" */ ;
4c4b4cd2 8016
529cad9c 8017 /* Strip the suffix if necessary. */
69fadcdf
JB
8018 ada_remove_trailing_digits (function_name, &function_name_len);
8019 ada_remove_po_subprogram_suffix (function_name, &function_name_len);
8020 ada_remove_Xbn_suffix (function_name, &function_name_len);
529cad9c 8021
4c4b4cd2
PH
8022 /* Library-level functions are a special case, as GNAT adds
8023 a ``_ada_'' prefix to the function name to avoid namespace
aeb5907d 8024 pollution. However, the renaming symbols themselves do not
4c4b4cd2
PH
8025 have this prefix, so we need to skip this prefix if present. */
8026 if (function_name_len > 5 /* "_ada_" */
8027 && strstr (function_name, "_ada_") == function_name)
69fadcdf
JB
8028 {
8029 function_name += 5;
8030 function_name_len -= 5;
8031 }
4c4b4cd2
PH
8032
8033 rename = (char *) alloca (rename_len * sizeof (char));
69fadcdf
JB
8034 strncpy (rename, function_name, function_name_len);
8035 xsnprintf (rename + function_name_len, rename_len - function_name_len,
8036 "__%s___XR", name);
4c4b4cd2
PH
8037 }
8038 else
8039 {
8040 const int rename_len = strlen (name) + 6;
5b4ee69b 8041
4c4b4cd2 8042 rename = (char *) alloca (rename_len * sizeof (char));
88c15c34 8043 xsnprintf (rename, rename_len * sizeof (char), "%s___XR", name);
4c4b4cd2
PH
8044 }
8045
852dff6c 8046 return ada_find_any_type_symbol (rename);
4c4b4cd2
PH
8047}
8048
14f9c5c9 8049/* Because of GNAT encoding conventions, several GDB symbols may match a
4c4b4cd2 8050 given type name. If the type denoted by TYPE0 is to be preferred to
14f9c5c9 8051 that of TYPE1 for purposes of type printing, return non-zero;
4c4b4cd2
PH
8052 otherwise return 0. */
8053
14f9c5c9 8054int
d2e4a39e 8055ada_prefer_type (struct type *type0, struct type *type1)
14f9c5c9
AS
8056{
8057 if (type1 == NULL)
8058 return 1;
8059 else if (type0 == NULL)
8060 return 0;
8061 else if (TYPE_CODE (type1) == TYPE_CODE_VOID)
8062 return 1;
8063 else if (TYPE_CODE (type0) == TYPE_CODE_VOID)
8064 return 0;
4c4b4cd2
PH
8065 else if (TYPE_NAME (type1) == NULL && TYPE_NAME (type0) != NULL)
8066 return 1;
ad82864c 8067 else if (ada_is_constrained_packed_array_type (type0))
14f9c5c9 8068 return 1;
4c4b4cd2
PH
8069 else if (ada_is_array_descriptor_type (type0)
8070 && !ada_is_array_descriptor_type (type1))
14f9c5c9 8071 return 1;
aeb5907d
JB
8072 else
8073 {
8074 const char *type0_name = type_name_no_tag (type0);
8075 const char *type1_name = type_name_no_tag (type1);
8076
8077 if (type0_name != NULL && strstr (type0_name, "___XR") != NULL
8078 && (type1_name == NULL || strstr (type1_name, "___XR") == NULL))
8079 return 1;
8080 }
14f9c5c9
AS
8081 return 0;
8082}
8083
8084/* The name of TYPE, which is either its TYPE_NAME, or, if that is
4c4b4cd2
PH
8085 null, its TYPE_TAG_NAME. Null if TYPE is null. */
8086
0d5cff50 8087const char *
d2e4a39e 8088ada_type_name (struct type *type)
14f9c5c9 8089{
d2e4a39e 8090 if (type == NULL)
14f9c5c9
AS
8091 return NULL;
8092 else if (TYPE_NAME (type) != NULL)
8093 return TYPE_NAME (type);
8094 else
8095 return TYPE_TAG_NAME (type);
8096}
8097
b4ba55a1
JB
8098/* Search the list of "descriptive" types associated to TYPE for a type
8099 whose name is NAME. */
8100
8101static struct type *
8102find_parallel_type_by_descriptive_type (struct type *type, const char *name)
8103{
931e5bc3 8104 struct type *result, *tmp;
b4ba55a1 8105
c6044dd1
JB
8106 if (ada_ignore_descriptive_types_p)
8107 return NULL;
8108
b4ba55a1
JB
8109 /* If there no descriptive-type info, then there is no parallel type
8110 to be found. */
8111 if (!HAVE_GNAT_AUX_INFO (type))
8112 return NULL;
8113
8114 result = TYPE_DESCRIPTIVE_TYPE (type);
8115 while (result != NULL)
8116 {
0d5cff50 8117 const char *result_name = ada_type_name (result);
b4ba55a1
JB
8118
8119 if (result_name == NULL)
8120 {
8121 warning (_("unexpected null name on descriptive type"));
8122 return NULL;
8123 }
8124
8125 /* If the names match, stop. */
8126 if (strcmp (result_name, name) == 0)
8127 break;
8128
8129 /* Otherwise, look at the next item on the list, if any. */
8130 if (HAVE_GNAT_AUX_INFO (result))
931e5bc3
JG
8131 tmp = TYPE_DESCRIPTIVE_TYPE (result);
8132 else
8133 tmp = NULL;
8134
8135 /* If not found either, try after having resolved the typedef. */
8136 if (tmp != NULL)
8137 result = tmp;
b4ba55a1 8138 else
931e5bc3 8139 {
f168693b 8140 result = check_typedef (result);
931e5bc3
JG
8141 if (HAVE_GNAT_AUX_INFO (result))
8142 result = TYPE_DESCRIPTIVE_TYPE (result);
8143 else
8144 result = NULL;
8145 }
b4ba55a1
JB
8146 }
8147
8148 /* If we didn't find a match, see whether this is a packed array. With
8149 older compilers, the descriptive type information is either absent or
8150 irrelevant when it comes to packed arrays so the above lookup fails.
8151 Fall back to using a parallel lookup by name in this case. */
12ab9e09 8152 if (result == NULL && ada_is_constrained_packed_array_type (type))
b4ba55a1
JB
8153 return ada_find_any_type (name);
8154
8155 return result;
8156}
8157
8158/* Find a parallel type to TYPE with the specified NAME, using the
8159 descriptive type taken from the debugging information, if available,
8160 and otherwise using the (slower) name-based method. */
8161
8162static struct type *
8163ada_find_parallel_type_with_name (struct type *type, const char *name)
8164{
8165 struct type *result = NULL;
8166
8167 if (HAVE_GNAT_AUX_INFO (type))
8168 result = find_parallel_type_by_descriptive_type (type, name);
8169 else
8170 result = ada_find_any_type (name);
8171
8172 return result;
8173}
8174
8175/* Same as above, but specify the name of the parallel type by appending
4c4b4cd2 8176 SUFFIX to the name of TYPE. */
14f9c5c9 8177
d2e4a39e 8178struct type *
ebf56fd3 8179ada_find_parallel_type (struct type *type, const char *suffix)
14f9c5c9 8180{
0d5cff50 8181 char *name;
fe978cb0 8182 const char *type_name = ada_type_name (type);
14f9c5c9 8183 int len;
d2e4a39e 8184
fe978cb0 8185 if (type_name == NULL)
14f9c5c9
AS
8186 return NULL;
8187
fe978cb0 8188 len = strlen (type_name);
14f9c5c9 8189
b4ba55a1 8190 name = (char *) alloca (len + strlen (suffix) + 1);
14f9c5c9 8191
fe978cb0 8192 strcpy (name, type_name);
14f9c5c9
AS
8193 strcpy (name + len, suffix);
8194
b4ba55a1 8195 return ada_find_parallel_type_with_name (type, name);
14f9c5c9
AS
8196}
8197
14f9c5c9 8198/* If TYPE is a variable-size record type, return the corresponding template
4c4b4cd2 8199 type describing its fields. Otherwise, return NULL. */
14f9c5c9 8200
d2e4a39e
AS
8201static struct type *
8202dynamic_template_type (struct type *type)
14f9c5c9 8203{
61ee279c 8204 type = ada_check_typedef (type);
14f9c5c9
AS
8205
8206 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT
d2e4a39e 8207 || ada_type_name (type) == NULL)
14f9c5c9 8208 return NULL;
d2e4a39e 8209 else
14f9c5c9
AS
8210 {
8211 int len = strlen (ada_type_name (type));
5b4ee69b 8212
4c4b4cd2
PH
8213 if (len > 6 && strcmp (ada_type_name (type) + len - 6, "___XVE") == 0)
8214 return type;
14f9c5c9 8215 else
4c4b4cd2 8216 return ada_find_parallel_type (type, "___XVE");
14f9c5c9
AS
8217 }
8218}
8219
8220/* Assuming that TEMPL_TYPE is a union or struct type, returns
4c4b4cd2 8221 non-zero iff field FIELD_NUM of TEMPL_TYPE has dynamic size. */
14f9c5c9 8222
d2e4a39e
AS
8223static int
8224is_dynamic_field (struct type *templ_type, int field_num)
14f9c5c9
AS
8225{
8226 const char *name = TYPE_FIELD_NAME (templ_type, field_num);
5b4ee69b 8227
d2e4a39e 8228 return name != NULL
14f9c5c9
AS
8229 && TYPE_CODE (TYPE_FIELD_TYPE (templ_type, field_num)) == TYPE_CODE_PTR
8230 && strstr (name, "___XVL") != NULL;
8231}
8232
4c4b4cd2
PH
8233/* The index of the variant field of TYPE, or -1 if TYPE does not
8234 represent a variant record type. */
14f9c5c9 8235
d2e4a39e 8236static int
4c4b4cd2 8237variant_field_index (struct type *type)
14f9c5c9
AS
8238{
8239 int f;
8240
4c4b4cd2
PH
8241 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT)
8242 return -1;
8243
8244 for (f = 0; f < TYPE_NFIELDS (type); f += 1)
8245 {
8246 if (ada_is_variant_part (type, f))
8247 return f;
8248 }
8249 return -1;
14f9c5c9
AS
8250}
8251
4c4b4cd2
PH
8252/* A record type with no fields. */
8253
d2e4a39e 8254static struct type *
fe978cb0 8255empty_record (struct type *templ)
14f9c5c9 8256{
fe978cb0 8257 struct type *type = alloc_type_copy (templ);
5b4ee69b 8258
14f9c5c9
AS
8259 TYPE_CODE (type) = TYPE_CODE_STRUCT;
8260 TYPE_NFIELDS (type) = 0;
8261 TYPE_FIELDS (type) = NULL;
b1f33ddd 8262 INIT_CPLUS_SPECIFIC (type);
14f9c5c9
AS
8263 TYPE_NAME (type) = "<empty>";
8264 TYPE_TAG_NAME (type) = NULL;
14f9c5c9
AS
8265 TYPE_LENGTH (type) = 0;
8266 return type;
8267}
8268
8269/* An ordinary record type (with fixed-length fields) that describes
4c4b4cd2
PH
8270 the value of type TYPE at VALADDR or ADDRESS (see comments at
8271 the beginning of this section) VAL according to GNAT conventions.
8272 DVAL0 should describe the (portion of a) record that contains any
df407dfe 8273 necessary discriminants. It should be NULL if value_type (VAL) is
14f9c5c9
AS
8274 an outer-level type (i.e., as opposed to a branch of a variant.) A
8275 variant field (unless unchecked) is replaced by a particular branch
4c4b4cd2 8276 of the variant.
14f9c5c9 8277
4c4b4cd2
PH
8278 If not KEEP_DYNAMIC_FIELDS, then all fields whose position or
8279 length are not statically known are discarded. As a consequence,
8280 VALADDR, ADDRESS and DVAL0 are ignored.
8281
8282 NOTE: Limitations: For now, we assume that dynamic fields and
8283 variants occupy whole numbers of bytes. However, they need not be
8284 byte-aligned. */
8285
8286struct type *
10a2c479 8287ada_template_to_fixed_record_type_1 (struct type *type,
fc1a4b47 8288 const gdb_byte *valaddr,
4c4b4cd2
PH
8289 CORE_ADDR address, struct value *dval0,
8290 int keep_dynamic_fields)
14f9c5c9 8291{
d2e4a39e
AS
8292 struct value *mark = value_mark ();
8293 struct value *dval;
8294 struct type *rtype;
14f9c5c9 8295 int nfields, bit_len;
4c4b4cd2 8296 int variant_field;
14f9c5c9 8297 long off;
d94e4f4f 8298 int fld_bit_len;
14f9c5c9
AS
8299 int f;
8300
4c4b4cd2
PH
8301 /* Compute the number of fields in this record type that are going
8302 to be processed: unless keep_dynamic_fields, this includes only
8303 fields whose position and length are static will be processed. */
8304 if (keep_dynamic_fields)
8305 nfields = TYPE_NFIELDS (type);
8306 else
8307 {
8308 nfields = 0;
76a01679 8309 while (nfields < TYPE_NFIELDS (type)
4c4b4cd2
PH
8310 && !ada_is_variant_part (type, nfields)
8311 && !is_dynamic_field (type, nfields))
8312 nfields++;
8313 }
8314
e9bb382b 8315 rtype = alloc_type_copy (type);
14f9c5c9
AS
8316 TYPE_CODE (rtype) = TYPE_CODE_STRUCT;
8317 INIT_CPLUS_SPECIFIC (rtype);
8318 TYPE_NFIELDS (rtype) = nfields;
d2e4a39e 8319 TYPE_FIELDS (rtype) = (struct field *)
14f9c5c9
AS
8320 TYPE_ALLOC (rtype, nfields * sizeof (struct field));
8321 memset (TYPE_FIELDS (rtype), 0, sizeof (struct field) * nfields);
8322 TYPE_NAME (rtype) = ada_type_name (type);
8323 TYPE_TAG_NAME (rtype) = NULL;
876cecd0 8324 TYPE_FIXED_INSTANCE (rtype) = 1;
14f9c5c9 8325
d2e4a39e
AS
8326 off = 0;
8327 bit_len = 0;
4c4b4cd2
PH
8328 variant_field = -1;
8329
14f9c5c9
AS
8330 for (f = 0; f < nfields; f += 1)
8331 {
6c038f32
PH
8332 off = align_value (off, field_alignment (type, f))
8333 + TYPE_FIELD_BITPOS (type, f);
945b3a32 8334 SET_FIELD_BITPOS (TYPE_FIELD (rtype, f), off);
d2e4a39e 8335 TYPE_FIELD_BITSIZE (rtype, f) = 0;
14f9c5c9 8336
d2e4a39e 8337 if (ada_is_variant_part (type, f))
4c4b4cd2
PH
8338 {
8339 variant_field = f;
d94e4f4f 8340 fld_bit_len = 0;
4c4b4cd2 8341 }
14f9c5c9 8342 else if (is_dynamic_field (type, f))
4c4b4cd2 8343 {
284614f0
JB
8344 const gdb_byte *field_valaddr = valaddr;
8345 CORE_ADDR field_address = address;
8346 struct type *field_type =
8347 TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type, f));
8348
4c4b4cd2 8349 if (dval0 == NULL)
b5304971
JG
8350 {
8351 /* rtype's length is computed based on the run-time
8352 value of discriminants. If the discriminants are not
8353 initialized, the type size may be completely bogus and
0963b4bd 8354 GDB may fail to allocate a value for it. So check the
b5304971 8355 size first before creating the value. */
c1b5a1a6 8356 ada_ensure_varsize_limit (rtype);
012370f6
TT
8357 /* Using plain value_from_contents_and_address here
8358 causes problems because we will end up trying to
8359 resolve a type that is currently being
8360 constructed. */
8361 dval = value_from_contents_and_address_unresolved (rtype,
8362 valaddr,
8363 address);
9f1f738a 8364 rtype = value_type (dval);
b5304971 8365 }
4c4b4cd2
PH
8366 else
8367 dval = dval0;
8368
284614f0
JB
8369 /* If the type referenced by this field is an aligner type, we need
8370 to unwrap that aligner type, because its size might not be set.
8371 Keeping the aligner type would cause us to compute the wrong
8372 size for this field, impacting the offset of the all the fields
8373 that follow this one. */
8374 if (ada_is_aligner_type (field_type))
8375 {
8376 long field_offset = TYPE_FIELD_BITPOS (field_type, f);
8377
8378 field_valaddr = cond_offset_host (field_valaddr, field_offset);
8379 field_address = cond_offset_target (field_address, field_offset);
8380 field_type = ada_aligned_type (field_type);
8381 }
8382
8383 field_valaddr = cond_offset_host (field_valaddr,
8384 off / TARGET_CHAR_BIT);
8385 field_address = cond_offset_target (field_address,
8386 off / TARGET_CHAR_BIT);
8387
8388 /* Get the fixed type of the field. Note that, in this case,
8389 we do not want to get the real type out of the tag: if
8390 the current field is the parent part of a tagged record,
8391 we will get the tag of the object. Clearly wrong: the real
8392 type of the parent is not the real type of the child. We
8393 would end up in an infinite loop. */
8394 field_type = ada_get_base_type (field_type);
8395 field_type = ada_to_fixed_type (field_type, field_valaddr,
8396 field_address, dval, 0);
27f2a97b
JB
8397 /* If the field size is already larger than the maximum
8398 object size, then the record itself will necessarily
8399 be larger than the maximum object size. We need to make
8400 this check now, because the size might be so ridiculously
8401 large (due to an uninitialized variable in the inferior)
8402 that it would cause an overflow when adding it to the
8403 record size. */
c1b5a1a6 8404 ada_ensure_varsize_limit (field_type);
284614f0
JB
8405
8406 TYPE_FIELD_TYPE (rtype, f) = field_type;
4c4b4cd2 8407 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
27f2a97b
JB
8408 /* The multiplication can potentially overflow. But because
8409 the field length has been size-checked just above, and
8410 assuming that the maximum size is a reasonable value,
8411 an overflow should not happen in practice. So rather than
8412 adding overflow recovery code to this already complex code,
8413 we just assume that it's not going to happen. */
d94e4f4f 8414 fld_bit_len =
4c4b4cd2
PH
8415 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, f)) * TARGET_CHAR_BIT;
8416 }
14f9c5c9 8417 else
4c4b4cd2 8418 {
5ded5331
JB
8419 /* Note: If this field's type is a typedef, it is important
8420 to preserve the typedef layer.
8421
8422 Otherwise, we might be transforming a typedef to a fat
8423 pointer (encoding a pointer to an unconstrained array),
8424 into a basic fat pointer (encoding an unconstrained
8425 array). As both types are implemented using the same
8426 structure, the typedef is the only clue which allows us
8427 to distinguish between the two options. Stripping it
8428 would prevent us from printing this field appropriately. */
8429 TYPE_FIELD_TYPE (rtype, f) = TYPE_FIELD_TYPE (type, f);
4c4b4cd2
PH
8430 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
8431 if (TYPE_FIELD_BITSIZE (type, f) > 0)
d94e4f4f 8432 fld_bit_len =
4c4b4cd2
PH
8433 TYPE_FIELD_BITSIZE (rtype, f) = TYPE_FIELD_BITSIZE (type, f);
8434 else
5ded5331
JB
8435 {
8436 struct type *field_type = TYPE_FIELD_TYPE (type, f);
8437
8438 /* We need to be careful of typedefs when computing
8439 the length of our field. If this is a typedef,
8440 get the length of the target type, not the length
8441 of the typedef. */
8442 if (TYPE_CODE (field_type) == TYPE_CODE_TYPEDEF)
8443 field_type = ada_typedef_target_type (field_type);
8444
8445 fld_bit_len =
8446 TYPE_LENGTH (ada_check_typedef (field_type)) * TARGET_CHAR_BIT;
8447 }
4c4b4cd2 8448 }
14f9c5c9 8449 if (off + fld_bit_len > bit_len)
4c4b4cd2 8450 bit_len = off + fld_bit_len;
d94e4f4f 8451 off += fld_bit_len;
4c4b4cd2
PH
8452 TYPE_LENGTH (rtype) =
8453 align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
14f9c5c9 8454 }
4c4b4cd2
PH
8455
8456 /* We handle the variant part, if any, at the end because of certain
b1f33ddd 8457 odd cases in which it is re-ordered so as NOT to be the last field of
4c4b4cd2
PH
8458 the record. This can happen in the presence of representation
8459 clauses. */
8460 if (variant_field >= 0)
8461 {
8462 struct type *branch_type;
8463
8464 off = TYPE_FIELD_BITPOS (rtype, variant_field);
8465
8466 if (dval0 == NULL)
9f1f738a 8467 {
012370f6
TT
8468 /* Using plain value_from_contents_and_address here causes
8469 problems because we will end up trying to resolve a type
8470 that is currently being constructed. */
8471 dval = value_from_contents_and_address_unresolved (rtype, valaddr,
8472 address);
9f1f738a
SA
8473 rtype = value_type (dval);
8474 }
4c4b4cd2
PH
8475 else
8476 dval = dval0;
8477
8478 branch_type =
8479 to_fixed_variant_branch_type
8480 (TYPE_FIELD_TYPE (type, variant_field),
8481 cond_offset_host (valaddr, off / TARGET_CHAR_BIT),
8482 cond_offset_target (address, off / TARGET_CHAR_BIT), dval);
8483 if (branch_type == NULL)
8484 {
8485 for (f = variant_field + 1; f < TYPE_NFIELDS (rtype); f += 1)
8486 TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f];
8487 TYPE_NFIELDS (rtype) -= 1;
8488 }
8489 else
8490 {
8491 TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
8492 TYPE_FIELD_NAME (rtype, variant_field) = "S";
8493 fld_bit_len =
8494 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, variant_field)) *
8495 TARGET_CHAR_BIT;
8496 if (off + fld_bit_len > bit_len)
8497 bit_len = off + fld_bit_len;
8498 TYPE_LENGTH (rtype) =
8499 align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
8500 }
8501 }
8502
714e53ab
PH
8503 /* According to exp_dbug.ads, the size of TYPE for variable-size records
8504 should contain the alignment of that record, which should be a strictly
8505 positive value. If null or negative, then something is wrong, most
8506 probably in the debug info. In that case, we don't round up the size
0963b4bd 8507 of the resulting type. If this record is not part of another structure,
714e53ab
PH
8508 the current RTYPE length might be good enough for our purposes. */
8509 if (TYPE_LENGTH (type) <= 0)
8510 {
323e0a4a
AC
8511 if (TYPE_NAME (rtype))
8512 warning (_("Invalid type size for `%s' detected: %d."),
8513 TYPE_NAME (rtype), TYPE_LENGTH (type));
8514 else
8515 warning (_("Invalid type size for <unnamed> detected: %d."),
8516 TYPE_LENGTH (type));
714e53ab
PH
8517 }
8518 else
8519 {
8520 TYPE_LENGTH (rtype) = align_value (TYPE_LENGTH (rtype),
8521 TYPE_LENGTH (type));
8522 }
14f9c5c9
AS
8523
8524 value_free_to_mark (mark);
d2e4a39e 8525 if (TYPE_LENGTH (rtype) > varsize_limit)
323e0a4a 8526 error (_("record type with dynamic size is larger than varsize-limit"));
14f9c5c9
AS
8527 return rtype;
8528}
8529
4c4b4cd2
PH
8530/* As for ada_template_to_fixed_record_type_1 with KEEP_DYNAMIC_FIELDS
8531 of 1. */
14f9c5c9 8532
d2e4a39e 8533static struct type *
fc1a4b47 8534template_to_fixed_record_type (struct type *type, const gdb_byte *valaddr,
4c4b4cd2
PH
8535 CORE_ADDR address, struct value *dval0)
8536{
8537 return ada_template_to_fixed_record_type_1 (type, valaddr,
8538 address, dval0, 1);
8539}
8540
8541/* An ordinary record type in which ___XVL-convention fields and
8542 ___XVU- and ___XVN-convention field types in TYPE0 are replaced with
8543 static approximations, containing all possible fields. Uses
8544 no runtime values. Useless for use in values, but that's OK,
8545 since the results are used only for type determinations. Works on both
8546 structs and unions. Representation note: to save space, we memorize
8547 the result of this function in the TYPE_TARGET_TYPE of the
8548 template type. */
8549
8550static struct type *
8551template_to_static_fixed_type (struct type *type0)
14f9c5c9
AS
8552{
8553 struct type *type;
8554 int nfields;
8555 int f;
8556
9e195661
PMR
8557 /* No need no do anything if the input type is already fixed. */
8558 if (TYPE_FIXED_INSTANCE (type0))
8559 return type0;
8560
8561 /* Likewise if we already have computed the static approximation. */
4c4b4cd2
PH
8562 if (TYPE_TARGET_TYPE (type0) != NULL)
8563 return TYPE_TARGET_TYPE (type0);
8564
9e195661 8565 /* Don't clone TYPE0 until we are sure we are going to need a copy. */
4c4b4cd2 8566 type = type0;
9e195661
PMR
8567 nfields = TYPE_NFIELDS (type0);
8568
8569 /* Whether or not we cloned TYPE0, cache the result so that we don't do
8570 recompute all over next time. */
8571 TYPE_TARGET_TYPE (type0) = type;
14f9c5c9
AS
8572
8573 for (f = 0; f < nfields; f += 1)
8574 {
460efde1 8575 struct type *field_type = TYPE_FIELD_TYPE (type0, f);
4c4b4cd2 8576 struct type *new_type;
14f9c5c9 8577
4c4b4cd2 8578 if (is_dynamic_field (type0, f))
460efde1
JB
8579 {
8580 field_type = ada_check_typedef (field_type);
8581 new_type = to_static_fixed_type (TYPE_TARGET_TYPE (field_type));
8582 }
14f9c5c9 8583 else
f192137b 8584 new_type = static_unwrap_type (field_type);
9e195661
PMR
8585
8586 if (new_type != field_type)
8587 {
8588 /* Clone TYPE0 only the first time we get a new field type. */
8589 if (type == type0)
8590 {
8591 TYPE_TARGET_TYPE (type0) = type = alloc_type_copy (type0);
8592 TYPE_CODE (type) = TYPE_CODE (type0);
8593 INIT_CPLUS_SPECIFIC (type);
8594 TYPE_NFIELDS (type) = nfields;
8595 TYPE_FIELDS (type) = (struct field *)
8596 TYPE_ALLOC (type, nfields * sizeof (struct field));
8597 memcpy (TYPE_FIELDS (type), TYPE_FIELDS (type0),
8598 sizeof (struct field) * nfields);
8599 TYPE_NAME (type) = ada_type_name (type0);
8600 TYPE_TAG_NAME (type) = NULL;
8601 TYPE_FIXED_INSTANCE (type) = 1;
8602 TYPE_LENGTH (type) = 0;
8603 }
8604 TYPE_FIELD_TYPE (type, f) = new_type;
8605 TYPE_FIELD_NAME (type, f) = TYPE_FIELD_NAME (type0, f);
8606 }
14f9c5c9 8607 }
9e195661 8608
14f9c5c9
AS
8609 return type;
8610}
8611
4c4b4cd2 8612/* Given an object of type TYPE whose contents are at VALADDR and
5823c3ef
JB
8613 whose address in memory is ADDRESS, returns a revision of TYPE,
8614 which should be a non-dynamic-sized record, in which the variant
8615 part, if any, is replaced with the appropriate branch. Looks
4c4b4cd2
PH
8616 for discriminant values in DVAL0, which can be NULL if the record
8617 contains the necessary discriminant values. */
8618
d2e4a39e 8619static struct type *
fc1a4b47 8620to_record_with_fixed_variant_part (struct type *type, const gdb_byte *valaddr,
4c4b4cd2 8621 CORE_ADDR address, struct value *dval0)
14f9c5c9 8622{
d2e4a39e 8623 struct value *mark = value_mark ();
4c4b4cd2 8624 struct value *dval;
d2e4a39e 8625 struct type *rtype;
14f9c5c9
AS
8626 struct type *branch_type;
8627 int nfields = TYPE_NFIELDS (type);
4c4b4cd2 8628 int variant_field = variant_field_index (type);
14f9c5c9 8629
4c4b4cd2 8630 if (variant_field == -1)
14f9c5c9
AS
8631 return type;
8632
4c4b4cd2 8633 if (dval0 == NULL)
9f1f738a
SA
8634 {
8635 dval = value_from_contents_and_address (type, valaddr, address);
8636 type = value_type (dval);
8637 }
4c4b4cd2
PH
8638 else
8639 dval = dval0;
8640
e9bb382b 8641 rtype = alloc_type_copy (type);
14f9c5c9 8642 TYPE_CODE (rtype) = TYPE_CODE_STRUCT;
4c4b4cd2
PH
8643 INIT_CPLUS_SPECIFIC (rtype);
8644 TYPE_NFIELDS (rtype) = nfields;
d2e4a39e
AS
8645 TYPE_FIELDS (rtype) =
8646 (struct field *) TYPE_ALLOC (rtype, nfields * sizeof (struct field));
8647 memcpy (TYPE_FIELDS (rtype), TYPE_FIELDS (type),
4c4b4cd2 8648 sizeof (struct field) * nfields);
14f9c5c9
AS
8649 TYPE_NAME (rtype) = ada_type_name (type);
8650 TYPE_TAG_NAME (rtype) = NULL;
876cecd0 8651 TYPE_FIXED_INSTANCE (rtype) = 1;
14f9c5c9
AS
8652 TYPE_LENGTH (rtype) = TYPE_LENGTH (type);
8653
4c4b4cd2
PH
8654 branch_type = to_fixed_variant_branch_type
8655 (TYPE_FIELD_TYPE (type, variant_field),
d2e4a39e 8656 cond_offset_host (valaddr,
4c4b4cd2
PH
8657 TYPE_FIELD_BITPOS (type, variant_field)
8658 / TARGET_CHAR_BIT),
d2e4a39e 8659 cond_offset_target (address,
4c4b4cd2
PH
8660 TYPE_FIELD_BITPOS (type, variant_field)
8661 / TARGET_CHAR_BIT), dval);
d2e4a39e 8662 if (branch_type == NULL)
14f9c5c9 8663 {
4c4b4cd2 8664 int f;
5b4ee69b 8665
4c4b4cd2
PH
8666 for (f = variant_field + 1; f < nfields; f += 1)
8667 TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f];
14f9c5c9 8668 TYPE_NFIELDS (rtype) -= 1;
14f9c5c9
AS
8669 }
8670 else
8671 {
4c4b4cd2
PH
8672 TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
8673 TYPE_FIELD_NAME (rtype, variant_field) = "S";
8674 TYPE_FIELD_BITSIZE (rtype, variant_field) = 0;
14f9c5c9 8675 TYPE_LENGTH (rtype) += TYPE_LENGTH (branch_type);
14f9c5c9 8676 }
4c4b4cd2 8677 TYPE_LENGTH (rtype) -= TYPE_LENGTH (TYPE_FIELD_TYPE (type, variant_field));
d2e4a39e 8678
4c4b4cd2 8679 value_free_to_mark (mark);
14f9c5c9
AS
8680 return rtype;
8681}
8682
8683/* An ordinary record type (with fixed-length fields) that describes
8684 the value at (TYPE0, VALADDR, ADDRESS) [see explanation at
8685 beginning of this section]. Any necessary discriminants' values
4c4b4cd2
PH
8686 should be in DVAL, a record value; it may be NULL if the object
8687 at ADDR itself contains any necessary discriminant values.
8688 Additionally, VALADDR and ADDRESS may also be NULL if no discriminant
8689 values from the record are needed. Except in the case that DVAL,
8690 VALADDR, and ADDRESS are all 0 or NULL, a variant field (unless
8691 unchecked) is replaced by a particular branch of the variant.
8692
8693 NOTE: the case in which DVAL and VALADDR are NULL and ADDRESS is 0
8694 is questionable and may be removed. It can arise during the
8695 processing of an unconstrained-array-of-record type where all the
8696 variant branches have exactly the same size. This is because in
8697 such cases, the compiler does not bother to use the XVS convention
8698 when encoding the record. I am currently dubious of this
8699 shortcut and suspect the compiler should be altered. FIXME. */
14f9c5c9 8700
d2e4a39e 8701static struct type *
fc1a4b47 8702to_fixed_record_type (struct type *type0, const gdb_byte *valaddr,
4c4b4cd2 8703 CORE_ADDR address, struct value *dval)
14f9c5c9 8704{
d2e4a39e 8705 struct type *templ_type;
14f9c5c9 8706
876cecd0 8707 if (TYPE_FIXED_INSTANCE (type0))
4c4b4cd2
PH
8708 return type0;
8709
d2e4a39e 8710 templ_type = dynamic_template_type (type0);
14f9c5c9
AS
8711
8712 if (templ_type != NULL)
8713 return template_to_fixed_record_type (templ_type, valaddr, address, dval);
4c4b4cd2
PH
8714 else if (variant_field_index (type0) >= 0)
8715 {
8716 if (dval == NULL && valaddr == NULL && address == 0)
8717 return type0;
8718 return to_record_with_fixed_variant_part (type0, valaddr, address,
8719 dval);
8720 }
14f9c5c9
AS
8721 else
8722 {
876cecd0 8723 TYPE_FIXED_INSTANCE (type0) = 1;
14f9c5c9
AS
8724 return type0;
8725 }
8726
8727}
8728
8729/* An ordinary record type (with fixed-length fields) that describes
8730 the value at (VAR_TYPE0, VALADDR, ADDRESS), where VAR_TYPE0 is a
8731 union type. Any necessary discriminants' values should be in DVAL,
8732 a record value. That is, this routine selects the appropriate
8733 branch of the union at ADDR according to the discriminant value
b1f33ddd 8734 indicated in the union's type name. Returns VAR_TYPE0 itself if
0963b4bd 8735 it represents a variant subject to a pragma Unchecked_Union. */
14f9c5c9 8736
d2e4a39e 8737static struct type *
fc1a4b47 8738to_fixed_variant_branch_type (struct type *var_type0, const gdb_byte *valaddr,
4c4b4cd2 8739 CORE_ADDR address, struct value *dval)
14f9c5c9
AS
8740{
8741 int which;
d2e4a39e
AS
8742 struct type *templ_type;
8743 struct type *var_type;
14f9c5c9
AS
8744
8745 if (TYPE_CODE (var_type0) == TYPE_CODE_PTR)
8746 var_type = TYPE_TARGET_TYPE (var_type0);
d2e4a39e 8747 else
14f9c5c9
AS
8748 var_type = var_type0;
8749
8750 templ_type = ada_find_parallel_type (var_type, "___XVU");
8751
8752 if (templ_type != NULL)
8753 var_type = templ_type;
8754
b1f33ddd
JB
8755 if (is_unchecked_variant (var_type, value_type (dval)))
8756 return var_type0;
d2e4a39e
AS
8757 which =
8758 ada_which_variant_applies (var_type,
0fd88904 8759 value_type (dval), value_contents (dval));
14f9c5c9
AS
8760
8761 if (which < 0)
e9bb382b 8762 return empty_record (var_type);
14f9c5c9 8763 else if (is_dynamic_field (var_type, which))
4c4b4cd2 8764 return to_fixed_record_type
d2e4a39e
AS
8765 (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (var_type, which)),
8766 valaddr, address, dval);
4c4b4cd2 8767 else if (variant_field_index (TYPE_FIELD_TYPE (var_type, which)) >= 0)
d2e4a39e
AS
8768 return
8769 to_fixed_record_type
8770 (TYPE_FIELD_TYPE (var_type, which), valaddr, address, dval);
14f9c5c9
AS
8771 else
8772 return TYPE_FIELD_TYPE (var_type, which);
8773}
8774
8908fca5
JB
8775/* Assuming RANGE_TYPE is a TYPE_CODE_RANGE, return nonzero if
8776 ENCODING_TYPE, a type following the GNAT conventions for discrete
8777 type encodings, only carries redundant information. */
8778
8779static int
8780ada_is_redundant_range_encoding (struct type *range_type,
8781 struct type *encoding_type)
8782{
8783 struct type *fixed_range_type;
108d56a4 8784 const char *bounds_str;
8908fca5
JB
8785 int n;
8786 LONGEST lo, hi;
8787
8788 gdb_assert (TYPE_CODE (range_type) == TYPE_CODE_RANGE);
8789
005e2509
JB
8790 if (TYPE_CODE (get_base_type (range_type))
8791 != TYPE_CODE (get_base_type (encoding_type)))
8792 {
8793 /* The compiler probably used a simple base type to describe
8794 the range type instead of the range's actual base type,
8795 expecting us to get the real base type from the encoding
8796 anyway. In this situation, the encoding cannot be ignored
8797 as redundant. */
8798 return 0;
8799 }
8800
8908fca5
JB
8801 if (is_dynamic_type (range_type))
8802 return 0;
8803
8804 if (TYPE_NAME (encoding_type) == NULL)
8805 return 0;
8806
8807 bounds_str = strstr (TYPE_NAME (encoding_type), "___XDLU_");
8808 if (bounds_str == NULL)
8809 return 0;
8810
8811 n = 8; /* Skip "___XDLU_". */
8812 if (!ada_scan_number (bounds_str, n, &lo, &n))
8813 return 0;
8814 if (TYPE_LOW_BOUND (range_type) != lo)
8815 return 0;
8816
8817 n += 2; /* Skip the "__" separator between the two bounds. */
8818 if (!ada_scan_number (bounds_str, n, &hi, &n))
8819 return 0;
8820 if (TYPE_HIGH_BOUND (range_type) != hi)
8821 return 0;
8822
8823 return 1;
8824}
8825
8826/* Given the array type ARRAY_TYPE, return nonzero if DESC_TYPE,
8827 a type following the GNAT encoding for describing array type
8828 indices, only carries redundant information. */
8829
8830static int
8831ada_is_redundant_index_type_desc (struct type *array_type,
8832 struct type *desc_type)
8833{
8834 struct type *this_layer = check_typedef (array_type);
8835 int i;
8836
8837 for (i = 0; i < TYPE_NFIELDS (desc_type); i++)
8838 {
8839 if (!ada_is_redundant_range_encoding (TYPE_INDEX_TYPE (this_layer),
8840 TYPE_FIELD_TYPE (desc_type, i)))
8841 return 0;
8842 this_layer = check_typedef (TYPE_TARGET_TYPE (this_layer));
8843 }
8844
8845 return 1;
8846}
8847
14f9c5c9
AS
8848/* Assuming that TYPE0 is an array type describing the type of a value
8849 at ADDR, and that DVAL describes a record containing any
8850 discriminants used in TYPE0, returns a type for the value that
8851 contains no dynamic components (that is, no components whose sizes
8852 are determined by run-time quantities). Unless IGNORE_TOO_BIG is
8853 true, gives an error message if the resulting type's size is over
4c4b4cd2 8854 varsize_limit. */
14f9c5c9 8855
d2e4a39e
AS
8856static struct type *
8857to_fixed_array_type (struct type *type0, struct value *dval,
4c4b4cd2 8858 int ignore_too_big)
14f9c5c9 8859{
d2e4a39e
AS
8860 struct type *index_type_desc;
8861 struct type *result;
ad82864c 8862 int constrained_packed_array_p;
931e5bc3 8863 static const char *xa_suffix = "___XA";
14f9c5c9 8864
b0dd7688 8865 type0 = ada_check_typedef (type0);
284614f0 8866 if (TYPE_FIXED_INSTANCE (type0))
4c4b4cd2 8867 return type0;
14f9c5c9 8868
ad82864c
JB
8869 constrained_packed_array_p = ada_is_constrained_packed_array_type (type0);
8870 if (constrained_packed_array_p)
8871 type0 = decode_constrained_packed_array_type (type0);
284614f0 8872
931e5bc3
JG
8873 index_type_desc = ada_find_parallel_type (type0, xa_suffix);
8874
8875 /* As mentioned in exp_dbug.ads, for non bit-packed arrays an
8876 encoding suffixed with 'P' may still be generated. If so,
8877 it should be used to find the XA type. */
8878
8879 if (index_type_desc == NULL)
8880 {
1da0522e 8881 const char *type_name = ada_type_name (type0);
931e5bc3 8882
1da0522e 8883 if (type_name != NULL)
931e5bc3 8884 {
1da0522e 8885 const int len = strlen (type_name);
931e5bc3
JG
8886 char *name = (char *) alloca (len + strlen (xa_suffix));
8887
1da0522e 8888 if (type_name[len - 1] == 'P')
931e5bc3 8889 {
1da0522e 8890 strcpy (name, type_name);
931e5bc3
JG
8891 strcpy (name + len - 1, xa_suffix);
8892 index_type_desc = ada_find_parallel_type_with_name (type0, name);
8893 }
8894 }
8895 }
8896
28c85d6c 8897 ada_fixup_array_indexes_type (index_type_desc);
8908fca5
JB
8898 if (index_type_desc != NULL
8899 && ada_is_redundant_index_type_desc (type0, index_type_desc))
8900 {
8901 /* Ignore this ___XA parallel type, as it does not bring any
8902 useful information. This allows us to avoid creating fixed
8903 versions of the array's index types, which would be identical
8904 to the original ones. This, in turn, can also help avoid
8905 the creation of fixed versions of the array itself. */
8906 index_type_desc = NULL;
8907 }
8908
14f9c5c9
AS
8909 if (index_type_desc == NULL)
8910 {
61ee279c 8911 struct type *elt_type0 = ada_check_typedef (TYPE_TARGET_TYPE (type0));
5b4ee69b 8912
14f9c5c9 8913 /* NOTE: elt_type---the fixed version of elt_type0---should never
4c4b4cd2
PH
8914 depend on the contents of the array in properly constructed
8915 debugging data. */
529cad9c
PH
8916 /* Create a fixed version of the array element type.
8917 We're not providing the address of an element here,
e1d5a0d2 8918 and thus the actual object value cannot be inspected to do
529cad9c
PH
8919 the conversion. This should not be a problem, since arrays of
8920 unconstrained objects are not allowed. In particular, all
8921 the elements of an array of a tagged type should all be of
8922 the same type specified in the debugging info. No need to
8923 consult the object tag. */
1ed6ede0 8924 struct type *elt_type = ada_to_fixed_type (elt_type0, 0, 0, dval, 1);
14f9c5c9 8925
284614f0
JB
8926 /* Make sure we always create a new array type when dealing with
8927 packed array types, since we're going to fix-up the array
8928 type length and element bitsize a little further down. */
ad82864c 8929 if (elt_type0 == elt_type && !constrained_packed_array_p)
4c4b4cd2 8930 result = type0;
14f9c5c9 8931 else
e9bb382b 8932 result = create_array_type (alloc_type_copy (type0),
4c4b4cd2 8933 elt_type, TYPE_INDEX_TYPE (type0));
14f9c5c9
AS
8934 }
8935 else
8936 {
8937 int i;
8938 struct type *elt_type0;
8939
8940 elt_type0 = type0;
8941 for (i = TYPE_NFIELDS (index_type_desc); i > 0; i -= 1)
4c4b4cd2 8942 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
14f9c5c9
AS
8943
8944 /* NOTE: result---the fixed version of elt_type0---should never
4c4b4cd2
PH
8945 depend on the contents of the array in properly constructed
8946 debugging data. */
529cad9c
PH
8947 /* Create a fixed version of the array element type.
8948 We're not providing the address of an element here,
e1d5a0d2 8949 and thus the actual object value cannot be inspected to do
529cad9c
PH
8950 the conversion. This should not be a problem, since arrays of
8951 unconstrained objects are not allowed. In particular, all
8952 the elements of an array of a tagged type should all be of
8953 the same type specified in the debugging info. No need to
8954 consult the object tag. */
1ed6ede0
JB
8955 result =
8956 ada_to_fixed_type (ada_check_typedef (elt_type0), 0, 0, dval, 1);
1ce677a4
UW
8957
8958 elt_type0 = type0;
14f9c5c9 8959 for (i = TYPE_NFIELDS (index_type_desc) - 1; i >= 0; i -= 1)
4c4b4cd2
PH
8960 {
8961 struct type *range_type =
28c85d6c 8962 to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, i), dval);
5b4ee69b 8963
e9bb382b 8964 result = create_array_type (alloc_type_copy (elt_type0),
4c4b4cd2 8965 result, range_type);
1ce677a4 8966 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
4c4b4cd2 8967 }
d2e4a39e 8968 if (!ignore_too_big && TYPE_LENGTH (result) > varsize_limit)
323e0a4a 8969 error (_("array type with dynamic size is larger than varsize-limit"));
14f9c5c9
AS
8970 }
8971
2e6fda7d
JB
8972 /* We want to preserve the type name. This can be useful when
8973 trying to get the type name of a value that has already been
8974 printed (for instance, if the user did "print VAR; whatis $". */
8975 TYPE_NAME (result) = TYPE_NAME (type0);
8976
ad82864c 8977 if (constrained_packed_array_p)
284614f0
JB
8978 {
8979 /* So far, the resulting type has been created as if the original
8980 type was a regular (non-packed) array type. As a result, the
8981 bitsize of the array elements needs to be set again, and the array
8982 length needs to be recomputed based on that bitsize. */
8983 int len = TYPE_LENGTH (result) / TYPE_LENGTH (TYPE_TARGET_TYPE (result));
8984 int elt_bitsize = TYPE_FIELD_BITSIZE (type0, 0);
8985
8986 TYPE_FIELD_BITSIZE (result, 0) = TYPE_FIELD_BITSIZE (type0, 0);
8987 TYPE_LENGTH (result) = len * elt_bitsize / HOST_CHAR_BIT;
8988 if (TYPE_LENGTH (result) * HOST_CHAR_BIT < len * elt_bitsize)
8989 TYPE_LENGTH (result)++;
8990 }
8991
876cecd0 8992 TYPE_FIXED_INSTANCE (result) = 1;
14f9c5c9 8993 return result;
d2e4a39e 8994}
14f9c5c9
AS
8995
8996
8997/* A standard type (containing no dynamically sized components)
8998 corresponding to TYPE for the value (TYPE, VALADDR, ADDRESS)
8999 DVAL describes a record containing any discriminants used in TYPE0,
4c4b4cd2 9000 and may be NULL if there are none, or if the object of type TYPE at
529cad9c
PH
9001 ADDRESS or in VALADDR contains these discriminants.
9002
1ed6ede0
JB
9003 If CHECK_TAG is not null, in the case of tagged types, this function
9004 attempts to locate the object's tag and use it to compute the actual
9005 type. However, when ADDRESS is null, we cannot use it to determine the
9006 location of the tag, and therefore compute the tagged type's actual type.
9007 So we return the tagged type without consulting the tag. */
529cad9c 9008
f192137b
JB
9009static struct type *
9010ada_to_fixed_type_1 (struct type *type, const gdb_byte *valaddr,
1ed6ede0 9011 CORE_ADDR address, struct value *dval, int check_tag)
14f9c5c9 9012{
61ee279c 9013 type = ada_check_typedef (type);
d2e4a39e
AS
9014 switch (TYPE_CODE (type))
9015 {
9016 default:
14f9c5c9 9017 return type;
d2e4a39e 9018 case TYPE_CODE_STRUCT:
4c4b4cd2 9019 {
76a01679 9020 struct type *static_type = to_static_fixed_type (type);
1ed6ede0
JB
9021 struct type *fixed_record_type =
9022 to_fixed_record_type (type, valaddr, address, NULL);
5b4ee69b 9023
529cad9c
PH
9024 /* If STATIC_TYPE is a tagged type and we know the object's address,
9025 then we can determine its tag, and compute the object's actual
0963b4bd 9026 type from there. Note that we have to use the fixed record
1ed6ede0
JB
9027 type (the parent part of the record may have dynamic fields
9028 and the way the location of _tag is expressed may depend on
9029 them). */
529cad9c 9030
1ed6ede0 9031 if (check_tag && address != 0 && ada_is_tagged_type (static_type, 0))
76a01679 9032 {
b50d69b5
JG
9033 struct value *tag =
9034 value_tag_from_contents_and_address
9035 (fixed_record_type,
9036 valaddr,
9037 address);
9038 struct type *real_type = type_from_tag (tag);
9039 struct value *obj =
9040 value_from_contents_and_address (fixed_record_type,
9041 valaddr,
9042 address);
9f1f738a 9043 fixed_record_type = value_type (obj);
76a01679 9044 if (real_type != NULL)
b50d69b5
JG
9045 return to_fixed_record_type
9046 (real_type, NULL,
9047 value_address (ada_tag_value_at_base_address (obj)), NULL);
76a01679 9048 }
4af88198
JB
9049
9050 /* Check to see if there is a parallel ___XVZ variable.
9051 If there is, then it provides the actual size of our type. */
9052 else if (ada_type_name (fixed_record_type) != NULL)
9053 {
0d5cff50 9054 const char *name = ada_type_name (fixed_record_type);
224c3ddb
SM
9055 char *xvz_name
9056 = (char *) alloca (strlen (name) + 7 /* "___XVZ\0" */);
4af88198
JB
9057 int xvz_found = 0;
9058 LONGEST size;
9059
88c15c34 9060 xsnprintf (xvz_name, strlen (name) + 7, "%s___XVZ", name);
4af88198
JB
9061 size = get_int_var_value (xvz_name, &xvz_found);
9062 if (xvz_found && TYPE_LENGTH (fixed_record_type) != size)
9063 {
9064 fixed_record_type = copy_type (fixed_record_type);
9065 TYPE_LENGTH (fixed_record_type) = size;
9066
9067 /* The FIXED_RECORD_TYPE may have be a stub. We have
9068 observed this when the debugging info is STABS, and
9069 apparently it is something that is hard to fix.
9070
9071 In practice, we don't need the actual type definition
9072 at all, because the presence of the XVZ variable allows us
9073 to assume that there must be a XVS type as well, which we
9074 should be able to use later, when we need the actual type
9075 definition.
9076
9077 In the meantime, pretend that the "fixed" type we are
9078 returning is NOT a stub, because this can cause trouble
9079 when using this type to create new types targeting it.
9080 Indeed, the associated creation routines often check
9081 whether the target type is a stub and will try to replace
0963b4bd 9082 it, thus using a type with the wrong size. This, in turn,
4af88198
JB
9083 might cause the new type to have the wrong size too.
9084 Consider the case of an array, for instance, where the size
9085 of the array is computed from the number of elements in
9086 our array multiplied by the size of its element. */
9087 TYPE_STUB (fixed_record_type) = 0;
9088 }
9089 }
1ed6ede0 9090 return fixed_record_type;
4c4b4cd2 9091 }
d2e4a39e 9092 case TYPE_CODE_ARRAY:
4c4b4cd2 9093 return to_fixed_array_type (type, dval, 1);
d2e4a39e
AS
9094 case TYPE_CODE_UNION:
9095 if (dval == NULL)
4c4b4cd2 9096 return type;
d2e4a39e 9097 else
4c4b4cd2 9098 return to_fixed_variant_branch_type (type, valaddr, address, dval);
d2e4a39e 9099 }
14f9c5c9
AS
9100}
9101
f192137b
JB
9102/* The same as ada_to_fixed_type_1, except that it preserves the type
9103 if it is a TYPE_CODE_TYPEDEF of a type that is already fixed.
96dbd2c1
JB
9104
9105 The typedef layer needs be preserved in order to differentiate between
9106 arrays and array pointers when both types are implemented using the same
9107 fat pointer. In the array pointer case, the pointer is encoded as
9108 a typedef of the pointer type. For instance, considering:
9109
9110 type String_Access is access String;
9111 S1 : String_Access := null;
9112
9113 To the debugger, S1 is defined as a typedef of type String. But
9114 to the user, it is a pointer. So if the user tries to print S1,
9115 we should not dereference the array, but print the array address
9116 instead.
9117
9118 If we didn't preserve the typedef layer, we would lose the fact that
9119 the type is to be presented as a pointer (needs de-reference before
9120 being printed). And we would also use the source-level type name. */
f192137b
JB
9121
9122struct type *
9123ada_to_fixed_type (struct type *type, const gdb_byte *valaddr,
9124 CORE_ADDR address, struct value *dval, int check_tag)
9125
9126{
9127 struct type *fixed_type =
9128 ada_to_fixed_type_1 (type, valaddr, address, dval, check_tag);
9129
96dbd2c1
JB
9130 /* If TYPE is a typedef and its target type is the same as the FIXED_TYPE,
9131 then preserve the typedef layer.
9132
9133 Implementation note: We can only check the main-type portion of
9134 the TYPE and FIXED_TYPE, because eliminating the typedef layer
9135 from TYPE now returns a type that has the same instance flags
9136 as TYPE. For instance, if TYPE is a "typedef const", and its
9137 target type is a "struct", then the typedef elimination will return
9138 a "const" version of the target type. See check_typedef for more
9139 details about how the typedef layer elimination is done.
9140
9141 brobecker/2010-11-19: It seems to me that the only case where it is
9142 useful to preserve the typedef layer is when dealing with fat pointers.
9143 Perhaps, we could add a check for that and preserve the typedef layer
9144 only in that situation. But this seems unecessary so far, probably
9145 because we call check_typedef/ada_check_typedef pretty much everywhere.
9146 */
f192137b 9147 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF
720d1a40 9148 && (TYPE_MAIN_TYPE (ada_typedef_target_type (type))
96dbd2c1 9149 == TYPE_MAIN_TYPE (fixed_type)))
f192137b
JB
9150 return type;
9151
9152 return fixed_type;
9153}
9154
14f9c5c9 9155/* A standard (static-sized) type corresponding as well as possible to
4c4b4cd2 9156 TYPE0, but based on no runtime data. */
14f9c5c9 9157
d2e4a39e
AS
9158static struct type *
9159to_static_fixed_type (struct type *type0)
14f9c5c9 9160{
d2e4a39e 9161 struct type *type;
14f9c5c9
AS
9162
9163 if (type0 == NULL)
9164 return NULL;
9165
876cecd0 9166 if (TYPE_FIXED_INSTANCE (type0))
4c4b4cd2
PH
9167 return type0;
9168
61ee279c 9169 type0 = ada_check_typedef (type0);
d2e4a39e 9170
14f9c5c9
AS
9171 switch (TYPE_CODE (type0))
9172 {
9173 default:
9174 return type0;
9175 case TYPE_CODE_STRUCT:
9176 type = dynamic_template_type (type0);
d2e4a39e 9177 if (type != NULL)
4c4b4cd2
PH
9178 return template_to_static_fixed_type (type);
9179 else
9180 return template_to_static_fixed_type (type0);
14f9c5c9
AS
9181 case TYPE_CODE_UNION:
9182 type = ada_find_parallel_type (type0, "___XVU");
9183 if (type != NULL)
4c4b4cd2
PH
9184 return template_to_static_fixed_type (type);
9185 else
9186 return template_to_static_fixed_type (type0);
14f9c5c9
AS
9187 }
9188}
9189
4c4b4cd2
PH
9190/* A static approximation of TYPE with all type wrappers removed. */
9191
d2e4a39e
AS
9192static struct type *
9193static_unwrap_type (struct type *type)
14f9c5c9
AS
9194{
9195 if (ada_is_aligner_type (type))
9196 {
61ee279c 9197 struct type *type1 = TYPE_FIELD_TYPE (ada_check_typedef (type), 0);
14f9c5c9 9198 if (ada_type_name (type1) == NULL)
4c4b4cd2 9199 TYPE_NAME (type1) = ada_type_name (type);
14f9c5c9
AS
9200
9201 return static_unwrap_type (type1);
9202 }
d2e4a39e 9203 else
14f9c5c9 9204 {
d2e4a39e 9205 struct type *raw_real_type = ada_get_base_type (type);
5b4ee69b 9206
d2e4a39e 9207 if (raw_real_type == type)
4c4b4cd2 9208 return type;
14f9c5c9 9209 else
4c4b4cd2 9210 return to_static_fixed_type (raw_real_type);
14f9c5c9
AS
9211 }
9212}
9213
9214/* In some cases, incomplete and private types require
4c4b4cd2 9215 cross-references that are not resolved as records (for example,
14f9c5c9
AS
9216 type Foo;
9217 type FooP is access Foo;
9218 V: FooP;
9219 type Foo is array ...;
4c4b4cd2 9220 ). In these cases, since there is no mechanism for producing
14f9c5c9
AS
9221 cross-references to such types, we instead substitute for FooP a
9222 stub enumeration type that is nowhere resolved, and whose tag is
4c4b4cd2 9223 the name of the actual type. Call these types "non-record stubs". */
14f9c5c9
AS
9224
9225/* A type equivalent to TYPE that is not a non-record stub, if one
4c4b4cd2
PH
9226 exists, otherwise TYPE. */
9227
d2e4a39e 9228struct type *
61ee279c 9229ada_check_typedef (struct type *type)
14f9c5c9 9230{
727e3d2e
JB
9231 if (type == NULL)
9232 return NULL;
9233
720d1a40
JB
9234 /* If our type is a typedef type of a fat pointer, then we're done.
9235 We don't want to strip the TYPE_CODE_TYPDEF layer, because this is
9236 what allows us to distinguish between fat pointers that represent
9237 array types, and fat pointers that represent array access types
9238 (in both cases, the compiler implements them as fat pointers). */
9239 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF
9240 && is_thick_pntr (ada_typedef_target_type (type)))
9241 return type;
9242
f168693b 9243 type = check_typedef (type);
14f9c5c9 9244 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM
529cad9c 9245 || !TYPE_STUB (type)
14f9c5c9
AS
9246 || TYPE_TAG_NAME (type) == NULL)
9247 return type;
d2e4a39e 9248 else
14f9c5c9 9249 {
0d5cff50 9250 const char *name = TYPE_TAG_NAME (type);
d2e4a39e 9251 struct type *type1 = ada_find_any_type (name);
5b4ee69b 9252
05e522ef
JB
9253 if (type1 == NULL)
9254 return type;
9255
9256 /* TYPE1 might itself be a TYPE_CODE_TYPEDEF (this can happen with
9257 stubs pointing to arrays, as we don't create symbols for array
3a867c22
JB
9258 types, only for the typedef-to-array types). If that's the case,
9259 strip the typedef layer. */
9260 if (TYPE_CODE (type1) == TYPE_CODE_TYPEDEF)
9261 type1 = ada_check_typedef (type1);
9262
9263 return type1;
14f9c5c9
AS
9264 }
9265}
9266
9267/* A value representing the data at VALADDR/ADDRESS as described by
9268 type TYPE0, but with a standard (static-sized) type that correctly
9269 describes it. If VAL0 is not NULL and TYPE0 already is a standard
9270 type, then return VAL0 [this feature is simply to avoid redundant
4c4b4cd2 9271 creation of struct values]. */
14f9c5c9 9272
4c4b4cd2
PH
9273static struct value *
9274ada_to_fixed_value_create (struct type *type0, CORE_ADDR address,
9275 struct value *val0)
14f9c5c9 9276{
1ed6ede0 9277 struct type *type = ada_to_fixed_type (type0, 0, address, NULL, 1);
5b4ee69b 9278
14f9c5c9
AS
9279 if (type == type0 && val0 != NULL)
9280 return val0;
d2e4a39e 9281 else
4c4b4cd2
PH
9282 return value_from_contents_and_address (type, 0, address);
9283}
9284
9285/* A value representing VAL, but with a standard (static-sized) type
9286 that correctly describes it. Does not necessarily create a new
9287 value. */
9288
0c3acc09 9289struct value *
4c4b4cd2
PH
9290ada_to_fixed_value (struct value *val)
9291{
c48db5ca
JB
9292 val = unwrap_value (val);
9293 val = ada_to_fixed_value_create (value_type (val),
9294 value_address (val),
9295 val);
9296 return val;
14f9c5c9 9297}
d2e4a39e 9298\f
14f9c5c9 9299
14f9c5c9
AS
9300/* Attributes */
9301
4c4b4cd2
PH
9302/* Table mapping attribute numbers to names.
9303 NOTE: Keep up to date with enum ada_attribute definition in ada-lang.h. */
14f9c5c9 9304
d2e4a39e 9305static const char *attribute_names[] = {
14f9c5c9
AS
9306 "<?>",
9307
d2e4a39e 9308 "first",
14f9c5c9
AS
9309 "last",
9310 "length",
9311 "image",
14f9c5c9
AS
9312 "max",
9313 "min",
4c4b4cd2
PH
9314 "modulus",
9315 "pos",
9316 "size",
9317 "tag",
14f9c5c9 9318 "val",
14f9c5c9
AS
9319 0
9320};
9321
d2e4a39e 9322const char *
4c4b4cd2 9323ada_attribute_name (enum exp_opcode n)
14f9c5c9 9324{
4c4b4cd2
PH
9325 if (n >= OP_ATR_FIRST && n <= (int) OP_ATR_VAL)
9326 return attribute_names[n - OP_ATR_FIRST + 1];
14f9c5c9
AS
9327 else
9328 return attribute_names[0];
9329}
9330
4c4b4cd2 9331/* Evaluate the 'POS attribute applied to ARG. */
14f9c5c9 9332
4c4b4cd2
PH
9333static LONGEST
9334pos_atr (struct value *arg)
14f9c5c9 9335{
24209737
PH
9336 struct value *val = coerce_ref (arg);
9337 struct type *type = value_type (val);
aa715135 9338 LONGEST result;
14f9c5c9 9339
d2e4a39e 9340 if (!discrete_type_p (type))
323e0a4a 9341 error (_("'POS only defined on discrete types"));
14f9c5c9 9342
aa715135
JG
9343 if (!discrete_position (type, value_as_long (val), &result))
9344 error (_("enumeration value is invalid: can't find 'POS"));
14f9c5c9 9345
aa715135 9346 return result;
4c4b4cd2
PH
9347}
9348
9349static struct value *
3cb382c9 9350value_pos_atr (struct type *type, struct value *arg)
4c4b4cd2 9351{
3cb382c9 9352 return value_from_longest (type, pos_atr (arg));
14f9c5c9
AS
9353}
9354
4c4b4cd2 9355/* Evaluate the TYPE'VAL attribute applied to ARG. */
14f9c5c9 9356
d2e4a39e
AS
9357static struct value *
9358value_val_atr (struct type *type, struct value *arg)
14f9c5c9 9359{
d2e4a39e 9360 if (!discrete_type_p (type))
323e0a4a 9361 error (_("'VAL only defined on discrete types"));
df407dfe 9362 if (!integer_type_p (value_type (arg)))
323e0a4a 9363 error (_("'VAL requires integral argument"));
14f9c5c9
AS
9364
9365 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
9366 {
9367 long pos = value_as_long (arg);
5b4ee69b 9368
14f9c5c9 9369 if (pos < 0 || pos >= TYPE_NFIELDS (type))
323e0a4a 9370 error (_("argument to 'VAL out of range"));
14e75d8e 9371 return value_from_longest (type, TYPE_FIELD_ENUMVAL (type, pos));
14f9c5c9
AS
9372 }
9373 else
9374 return value_from_longest (type, value_as_long (arg));
9375}
14f9c5c9 9376\f
d2e4a39e 9377
4c4b4cd2 9378 /* Evaluation */
14f9c5c9 9379
4c4b4cd2
PH
9380/* True if TYPE appears to be an Ada character type.
9381 [At the moment, this is true only for Character and Wide_Character;
9382 It is a heuristic test that could stand improvement]. */
14f9c5c9 9383
d2e4a39e
AS
9384int
9385ada_is_character_type (struct type *type)
14f9c5c9 9386{
7b9f71f2
JB
9387 const char *name;
9388
9389 /* If the type code says it's a character, then assume it really is,
9390 and don't check any further. */
9391 if (TYPE_CODE (type) == TYPE_CODE_CHAR)
9392 return 1;
9393
9394 /* Otherwise, assume it's a character type iff it is a discrete type
9395 with a known character type name. */
9396 name = ada_type_name (type);
9397 return (name != NULL
9398 && (TYPE_CODE (type) == TYPE_CODE_INT
9399 || TYPE_CODE (type) == TYPE_CODE_RANGE)
9400 && (strcmp (name, "character") == 0
9401 || strcmp (name, "wide_character") == 0
5a517ebd 9402 || strcmp (name, "wide_wide_character") == 0
7b9f71f2 9403 || strcmp (name, "unsigned char") == 0));
14f9c5c9
AS
9404}
9405
4c4b4cd2 9406/* True if TYPE appears to be an Ada string type. */
14f9c5c9
AS
9407
9408int
ebf56fd3 9409ada_is_string_type (struct type *type)
14f9c5c9 9410{
61ee279c 9411 type = ada_check_typedef (type);
d2e4a39e 9412 if (type != NULL
14f9c5c9 9413 && TYPE_CODE (type) != TYPE_CODE_PTR
76a01679
JB
9414 && (ada_is_simple_array_type (type)
9415 || ada_is_array_descriptor_type (type))
14f9c5c9
AS
9416 && ada_array_arity (type) == 1)
9417 {
9418 struct type *elttype = ada_array_element_type (type, 1);
9419
9420 return ada_is_character_type (elttype);
9421 }
d2e4a39e 9422 else
14f9c5c9
AS
9423 return 0;
9424}
9425
5bf03f13
JB
9426/* The compiler sometimes provides a parallel XVS type for a given
9427 PAD type. Normally, it is safe to follow the PAD type directly,
9428 but older versions of the compiler have a bug that causes the offset
9429 of its "F" field to be wrong. Following that field in that case
9430 would lead to incorrect results, but this can be worked around
9431 by ignoring the PAD type and using the associated XVS type instead.
9432
9433 Set to True if the debugger should trust the contents of PAD types.
9434 Otherwise, ignore the PAD type if there is a parallel XVS type. */
9435static int trust_pad_over_xvs = 1;
14f9c5c9
AS
9436
9437/* True if TYPE is a struct type introduced by the compiler to force the
9438 alignment of a value. Such types have a single field with a
4c4b4cd2 9439 distinctive name. */
14f9c5c9
AS
9440
9441int
ebf56fd3 9442ada_is_aligner_type (struct type *type)
14f9c5c9 9443{
61ee279c 9444 type = ada_check_typedef (type);
714e53ab 9445
5bf03f13 9446 if (!trust_pad_over_xvs && ada_find_parallel_type (type, "___XVS") != NULL)
714e53ab
PH
9447 return 0;
9448
14f9c5c9 9449 return (TYPE_CODE (type) == TYPE_CODE_STRUCT
4c4b4cd2
PH
9450 && TYPE_NFIELDS (type) == 1
9451 && strcmp (TYPE_FIELD_NAME (type, 0), "F") == 0);
14f9c5c9
AS
9452}
9453
9454/* If there is an ___XVS-convention type parallel to SUBTYPE, return
4c4b4cd2 9455 the parallel type. */
14f9c5c9 9456
d2e4a39e
AS
9457struct type *
9458ada_get_base_type (struct type *raw_type)
14f9c5c9 9459{
d2e4a39e
AS
9460 struct type *real_type_namer;
9461 struct type *raw_real_type;
14f9c5c9
AS
9462
9463 if (raw_type == NULL || TYPE_CODE (raw_type) != TYPE_CODE_STRUCT)
9464 return raw_type;
9465
284614f0
JB
9466 if (ada_is_aligner_type (raw_type))
9467 /* The encoding specifies that we should always use the aligner type.
9468 So, even if this aligner type has an associated XVS type, we should
9469 simply ignore it.
9470
9471 According to the compiler gurus, an XVS type parallel to an aligner
9472 type may exist because of a stabs limitation. In stabs, aligner
9473 types are empty because the field has a variable-sized type, and
9474 thus cannot actually be used as an aligner type. As a result,
9475 we need the associated parallel XVS type to decode the type.
9476 Since the policy in the compiler is to not change the internal
9477 representation based on the debugging info format, we sometimes
9478 end up having a redundant XVS type parallel to the aligner type. */
9479 return raw_type;
9480
14f9c5c9 9481 real_type_namer = ada_find_parallel_type (raw_type, "___XVS");
d2e4a39e 9482 if (real_type_namer == NULL
14f9c5c9
AS
9483 || TYPE_CODE (real_type_namer) != TYPE_CODE_STRUCT
9484 || TYPE_NFIELDS (real_type_namer) != 1)
9485 return raw_type;
9486
f80d3ff2
JB
9487 if (TYPE_CODE (TYPE_FIELD_TYPE (real_type_namer, 0)) != TYPE_CODE_REF)
9488 {
9489 /* This is an older encoding form where the base type needs to be
9490 looked up by name. We prefer the newer enconding because it is
9491 more efficient. */
9492 raw_real_type = ada_find_any_type (TYPE_FIELD_NAME (real_type_namer, 0));
9493 if (raw_real_type == NULL)
9494 return raw_type;
9495 else
9496 return raw_real_type;
9497 }
9498
9499 /* The field in our XVS type is a reference to the base type. */
9500 return TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (real_type_namer, 0));
d2e4a39e 9501}
14f9c5c9 9502
4c4b4cd2 9503/* The type of value designated by TYPE, with all aligners removed. */
14f9c5c9 9504
d2e4a39e
AS
9505struct type *
9506ada_aligned_type (struct type *type)
14f9c5c9
AS
9507{
9508 if (ada_is_aligner_type (type))
9509 return ada_aligned_type (TYPE_FIELD_TYPE (type, 0));
9510 else
9511 return ada_get_base_type (type);
9512}
9513
9514
9515/* The address of the aligned value in an object at address VALADDR
4c4b4cd2 9516 having type TYPE. Assumes ada_is_aligner_type (TYPE). */
14f9c5c9 9517
fc1a4b47
AC
9518const gdb_byte *
9519ada_aligned_value_addr (struct type *type, const gdb_byte *valaddr)
14f9c5c9 9520{
d2e4a39e 9521 if (ada_is_aligner_type (type))
14f9c5c9 9522 return ada_aligned_value_addr (TYPE_FIELD_TYPE (type, 0),
4c4b4cd2
PH
9523 valaddr +
9524 TYPE_FIELD_BITPOS (type,
9525 0) / TARGET_CHAR_BIT);
14f9c5c9
AS
9526 else
9527 return valaddr;
9528}
9529
4c4b4cd2
PH
9530
9531
14f9c5c9 9532/* The printed representation of an enumeration literal with encoded
4c4b4cd2 9533 name NAME. The value is good to the next call of ada_enum_name. */
d2e4a39e
AS
9534const char *
9535ada_enum_name (const char *name)
14f9c5c9 9536{
4c4b4cd2
PH
9537 static char *result;
9538 static size_t result_len = 0;
e6a959d6 9539 const char *tmp;
14f9c5c9 9540
4c4b4cd2
PH
9541 /* First, unqualify the enumeration name:
9542 1. Search for the last '.' character. If we find one, then skip
177b42fe 9543 all the preceding characters, the unqualified name starts
76a01679 9544 right after that dot.
4c4b4cd2 9545 2. Otherwise, we may be debugging on a target where the compiler
76a01679
JB
9546 translates dots into "__". Search forward for double underscores,
9547 but stop searching when we hit an overloading suffix, which is
9548 of the form "__" followed by digits. */
4c4b4cd2 9549
c3e5cd34
PH
9550 tmp = strrchr (name, '.');
9551 if (tmp != NULL)
4c4b4cd2
PH
9552 name = tmp + 1;
9553 else
14f9c5c9 9554 {
4c4b4cd2
PH
9555 while ((tmp = strstr (name, "__")) != NULL)
9556 {
9557 if (isdigit (tmp[2]))
9558 break;
9559 else
9560 name = tmp + 2;
9561 }
14f9c5c9
AS
9562 }
9563
9564 if (name[0] == 'Q')
9565 {
14f9c5c9 9566 int v;
5b4ee69b 9567
14f9c5c9 9568 if (name[1] == 'U' || name[1] == 'W')
4c4b4cd2
PH
9569 {
9570 if (sscanf (name + 2, "%x", &v) != 1)
9571 return name;
9572 }
14f9c5c9 9573 else
4c4b4cd2 9574 return name;
14f9c5c9 9575
4c4b4cd2 9576 GROW_VECT (result, result_len, 16);
14f9c5c9 9577 if (isascii (v) && isprint (v))
88c15c34 9578 xsnprintf (result, result_len, "'%c'", v);
14f9c5c9 9579 else if (name[1] == 'U')
88c15c34 9580 xsnprintf (result, result_len, "[\"%02x\"]", v);
14f9c5c9 9581 else
88c15c34 9582 xsnprintf (result, result_len, "[\"%04x\"]", v);
14f9c5c9
AS
9583
9584 return result;
9585 }
d2e4a39e 9586 else
4c4b4cd2 9587 {
c3e5cd34
PH
9588 tmp = strstr (name, "__");
9589 if (tmp == NULL)
9590 tmp = strstr (name, "$");
9591 if (tmp != NULL)
4c4b4cd2
PH
9592 {
9593 GROW_VECT (result, result_len, tmp - name + 1);
9594 strncpy (result, name, tmp - name);
9595 result[tmp - name] = '\0';
9596 return result;
9597 }
9598
9599 return name;
9600 }
14f9c5c9
AS
9601}
9602
14f9c5c9
AS
9603/* Evaluate the subexpression of EXP starting at *POS as for
9604 evaluate_type, updating *POS to point just past the evaluated
4c4b4cd2 9605 expression. */
14f9c5c9 9606
d2e4a39e
AS
9607static struct value *
9608evaluate_subexp_type (struct expression *exp, int *pos)
14f9c5c9 9609{
4b27a620 9610 return evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
14f9c5c9
AS
9611}
9612
9613/* If VAL is wrapped in an aligner or subtype wrapper, return the
4c4b4cd2 9614 value it wraps. */
14f9c5c9 9615
d2e4a39e
AS
9616static struct value *
9617unwrap_value (struct value *val)
14f9c5c9 9618{
df407dfe 9619 struct type *type = ada_check_typedef (value_type (val));
5b4ee69b 9620
14f9c5c9
AS
9621 if (ada_is_aligner_type (type))
9622 {
de4d072f 9623 struct value *v = ada_value_struct_elt (val, "F", 0);
df407dfe 9624 struct type *val_type = ada_check_typedef (value_type (v));
5b4ee69b 9625
14f9c5c9 9626 if (ada_type_name (val_type) == NULL)
4c4b4cd2 9627 TYPE_NAME (val_type) = ada_type_name (type);
14f9c5c9
AS
9628
9629 return unwrap_value (v);
9630 }
d2e4a39e 9631 else
14f9c5c9 9632 {
d2e4a39e 9633 struct type *raw_real_type =
61ee279c 9634 ada_check_typedef (ada_get_base_type (type));
d2e4a39e 9635
5bf03f13
JB
9636 /* If there is no parallel XVS or XVE type, then the value is
9637 already unwrapped. Return it without further modification. */
9638 if ((type == raw_real_type)
9639 && ada_find_parallel_type (type, "___XVE") == NULL)
9640 return val;
14f9c5c9 9641
d2e4a39e 9642 return
4c4b4cd2
PH
9643 coerce_unspec_val_to_type
9644 (val, ada_to_fixed_type (raw_real_type, 0,
42ae5230 9645 value_address (val),
1ed6ede0 9646 NULL, 1));
14f9c5c9
AS
9647 }
9648}
d2e4a39e
AS
9649
9650static struct value *
9651cast_to_fixed (struct type *type, struct value *arg)
14f9c5c9
AS
9652{
9653 LONGEST val;
9654
df407dfe 9655 if (type == value_type (arg))
14f9c5c9 9656 return arg;
df407dfe 9657 else if (ada_is_fixed_point_type (value_type (arg)))
d2e4a39e 9658 val = ada_float_to_fixed (type,
df407dfe 9659 ada_fixed_to_float (value_type (arg),
4c4b4cd2 9660 value_as_long (arg)));
d2e4a39e 9661 else
14f9c5c9 9662 {
a53b7a21 9663 DOUBLEST argd = value_as_double (arg);
5b4ee69b 9664
14f9c5c9
AS
9665 val = ada_float_to_fixed (type, argd);
9666 }
9667
9668 return value_from_longest (type, val);
9669}
9670
d2e4a39e 9671static struct value *
a53b7a21 9672cast_from_fixed (struct type *type, struct value *arg)
14f9c5c9 9673{
df407dfe 9674 DOUBLEST val = ada_fixed_to_float (value_type (arg),
4c4b4cd2 9675 value_as_long (arg));
5b4ee69b 9676
a53b7a21 9677 return value_from_double (type, val);
14f9c5c9
AS
9678}
9679
d99dcf51
JB
9680/* Given two array types T1 and T2, return nonzero iff both arrays
9681 contain the same number of elements. */
9682
9683static int
9684ada_same_array_size_p (struct type *t1, struct type *t2)
9685{
9686 LONGEST lo1, hi1, lo2, hi2;
9687
9688 /* Get the array bounds in order to verify that the size of
9689 the two arrays match. */
9690 if (!get_array_bounds (t1, &lo1, &hi1)
9691 || !get_array_bounds (t2, &lo2, &hi2))
9692 error (_("unable to determine array bounds"));
9693
9694 /* To make things easier for size comparison, normalize a bit
9695 the case of empty arrays by making sure that the difference
9696 between upper bound and lower bound is always -1. */
9697 if (lo1 > hi1)
9698 hi1 = lo1 - 1;
9699 if (lo2 > hi2)
9700 hi2 = lo2 - 1;
9701
9702 return (hi1 - lo1 == hi2 - lo2);
9703}
9704
9705/* Assuming that VAL is an array of integrals, and TYPE represents
9706 an array with the same number of elements, but with wider integral
9707 elements, return an array "casted" to TYPE. In practice, this
9708 means that the returned array is built by casting each element
9709 of the original array into TYPE's (wider) element type. */
9710
9711static struct value *
9712ada_promote_array_of_integrals (struct type *type, struct value *val)
9713{
9714 struct type *elt_type = TYPE_TARGET_TYPE (type);
9715 LONGEST lo, hi;
9716 struct value *res;
9717 LONGEST i;
9718
9719 /* Verify that both val and type are arrays of scalars, and
9720 that the size of val's elements is smaller than the size
9721 of type's element. */
9722 gdb_assert (TYPE_CODE (type) == TYPE_CODE_ARRAY);
9723 gdb_assert (is_integral_type (TYPE_TARGET_TYPE (type)));
9724 gdb_assert (TYPE_CODE (value_type (val)) == TYPE_CODE_ARRAY);
9725 gdb_assert (is_integral_type (TYPE_TARGET_TYPE (value_type (val))));
9726 gdb_assert (TYPE_LENGTH (TYPE_TARGET_TYPE (type))
9727 > TYPE_LENGTH (TYPE_TARGET_TYPE (value_type (val))));
9728
9729 if (!get_array_bounds (type, &lo, &hi))
9730 error (_("unable to determine array bounds"));
9731
9732 res = allocate_value (type);
9733
9734 /* Promote each array element. */
9735 for (i = 0; i < hi - lo + 1; i++)
9736 {
9737 struct value *elt = value_cast (elt_type, value_subscript (val, lo + i));
9738
9739 memcpy (value_contents_writeable (res) + (i * TYPE_LENGTH (elt_type)),
9740 value_contents_all (elt), TYPE_LENGTH (elt_type));
9741 }
9742
9743 return res;
9744}
9745
4c4b4cd2
PH
9746/* Coerce VAL as necessary for assignment to an lval of type TYPE, and
9747 return the converted value. */
9748
d2e4a39e
AS
9749static struct value *
9750coerce_for_assign (struct type *type, struct value *val)
14f9c5c9 9751{
df407dfe 9752 struct type *type2 = value_type (val);
5b4ee69b 9753
14f9c5c9
AS
9754 if (type == type2)
9755 return val;
9756
61ee279c
PH
9757 type2 = ada_check_typedef (type2);
9758 type = ada_check_typedef (type);
14f9c5c9 9759
d2e4a39e
AS
9760 if (TYPE_CODE (type2) == TYPE_CODE_PTR
9761 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
14f9c5c9
AS
9762 {
9763 val = ada_value_ind (val);
df407dfe 9764 type2 = value_type (val);
14f9c5c9
AS
9765 }
9766
d2e4a39e 9767 if (TYPE_CODE (type2) == TYPE_CODE_ARRAY
14f9c5c9
AS
9768 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
9769 {
d99dcf51
JB
9770 if (!ada_same_array_size_p (type, type2))
9771 error (_("cannot assign arrays of different length"));
9772
9773 if (is_integral_type (TYPE_TARGET_TYPE (type))
9774 && is_integral_type (TYPE_TARGET_TYPE (type2))
9775 && TYPE_LENGTH (TYPE_TARGET_TYPE (type2))
9776 < TYPE_LENGTH (TYPE_TARGET_TYPE (type)))
9777 {
9778 /* Allow implicit promotion of the array elements to
9779 a wider type. */
9780 return ada_promote_array_of_integrals (type, val);
9781 }
9782
9783 if (TYPE_LENGTH (TYPE_TARGET_TYPE (type2))
9784 != TYPE_LENGTH (TYPE_TARGET_TYPE (type)))
323e0a4a 9785 error (_("Incompatible types in assignment"));
04624583 9786 deprecated_set_value_type (val, type);
14f9c5c9 9787 }
d2e4a39e 9788 return val;
14f9c5c9
AS
9789}
9790
4c4b4cd2
PH
9791static struct value *
9792ada_value_binop (struct value *arg1, struct value *arg2, enum exp_opcode op)
9793{
9794 struct value *val;
9795 struct type *type1, *type2;
9796 LONGEST v, v1, v2;
9797
994b9211
AC
9798 arg1 = coerce_ref (arg1);
9799 arg2 = coerce_ref (arg2);
18af8284
JB
9800 type1 = get_base_type (ada_check_typedef (value_type (arg1)));
9801 type2 = get_base_type (ada_check_typedef (value_type (arg2)));
4c4b4cd2 9802
76a01679
JB
9803 if (TYPE_CODE (type1) != TYPE_CODE_INT
9804 || TYPE_CODE (type2) != TYPE_CODE_INT)
4c4b4cd2
PH
9805 return value_binop (arg1, arg2, op);
9806
76a01679 9807 switch (op)
4c4b4cd2
PH
9808 {
9809 case BINOP_MOD:
9810 case BINOP_DIV:
9811 case BINOP_REM:
9812 break;
9813 default:
9814 return value_binop (arg1, arg2, op);
9815 }
9816
9817 v2 = value_as_long (arg2);
9818 if (v2 == 0)
323e0a4a 9819 error (_("second operand of %s must not be zero."), op_string (op));
4c4b4cd2
PH
9820
9821 if (TYPE_UNSIGNED (type1) || op == BINOP_MOD)
9822 return value_binop (arg1, arg2, op);
9823
9824 v1 = value_as_long (arg1);
9825 switch (op)
9826 {
9827 case BINOP_DIV:
9828 v = v1 / v2;
76a01679
JB
9829 if (!TRUNCATION_TOWARDS_ZERO && v1 * (v1 % v2) < 0)
9830 v += v > 0 ? -1 : 1;
4c4b4cd2
PH
9831 break;
9832 case BINOP_REM:
9833 v = v1 % v2;
76a01679
JB
9834 if (v * v1 < 0)
9835 v -= v2;
4c4b4cd2
PH
9836 break;
9837 default:
9838 /* Should not reach this point. */
9839 v = 0;
9840 }
9841
9842 val = allocate_value (type1);
990a07ab 9843 store_unsigned_integer (value_contents_raw (val),
e17a4113
UW
9844 TYPE_LENGTH (value_type (val)),
9845 gdbarch_byte_order (get_type_arch (type1)), v);
4c4b4cd2
PH
9846 return val;
9847}
9848
9849static int
9850ada_value_equal (struct value *arg1, struct value *arg2)
9851{
df407dfe
AC
9852 if (ada_is_direct_array_type (value_type (arg1))
9853 || ada_is_direct_array_type (value_type (arg2)))
4c4b4cd2 9854 {
f58b38bf
JB
9855 /* Automatically dereference any array reference before
9856 we attempt to perform the comparison. */
9857 arg1 = ada_coerce_ref (arg1);
9858 arg2 = ada_coerce_ref (arg2);
9859
4c4b4cd2
PH
9860 arg1 = ada_coerce_to_simple_array (arg1);
9861 arg2 = ada_coerce_to_simple_array (arg2);
df407dfe
AC
9862 if (TYPE_CODE (value_type (arg1)) != TYPE_CODE_ARRAY
9863 || TYPE_CODE (value_type (arg2)) != TYPE_CODE_ARRAY)
323e0a4a 9864 error (_("Attempt to compare array with non-array"));
4c4b4cd2 9865 /* FIXME: The following works only for types whose
76a01679
JB
9866 representations use all bits (no padding or undefined bits)
9867 and do not have user-defined equality. */
9868 return
df407dfe 9869 TYPE_LENGTH (value_type (arg1)) == TYPE_LENGTH (value_type (arg2))
0fd88904 9870 && memcmp (value_contents (arg1), value_contents (arg2),
df407dfe 9871 TYPE_LENGTH (value_type (arg1))) == 0;
4c4b4cd2
PH
9872 }
9873 return value_equal (arg1, arg2);
9874}
9875
52ce6436
PH
9876/* Total number of component associations in the aggregate starting at
9877 index PC in EXP. Assumes that index PC is the start of an
0963b4bd 9878 OP_AGGREGATE. */
52ce6436
PH
9879
9880static int
9881num_component_specs (struct expression *exp, int pc)
9882{
9883 int n, m, i;
5b4ee69b 9884
52ce6436
PH
9885 m = exp->elts[pc + 1].longconst;
9886 pc += 3;
9887 n = 0;
9888 for (i = 0; i < m; i += 1)
9889 {
9890 switch (exp->elts[pc].opcode)
9891 {
9892 default:
9893 n += 1;
9894 break;
9895 case OP_CHOICES:
9896 n += exp->elts[pc + 1].longconst;
9897 break;
9898 }
9899 ada_evaluate_subexp (NULL, exp, &pc, EVAL_SKIP);
9900 }
9901 return n;
9902}
9903
9904/* Assign the result of evaluating EXP starting at *POS to the INDEXth
9905 component of LHS (a simple array or a record), updating *POS past
9906 the expression, assuming that LHS is contained in CONTAINER. Does
9907 not modify the inferior's memory, nor does it modify LHS (unless
9908 LHS == CONTAINER). */
9909
9910static void
9911assign_component (struct value *container, struct value *lhs, LONGEST index,
9912 struct expression *exp, int *pos)
9913{
9914 struct value *mark = value_mark ();
9915 struct value *elt;
5b4ee69b 9916
52ce6436
PH
9917 if (TYPE_CODE (value_type (lhs)) == TYPE_CODE_ARRAY)
9918 {
22601c15
UW
9919 struct type *index_type = builtin_type (exp->gdbarch)->builtin_int;
9920 struct value *index_val = value_from_longest (index_type, index);
5b4ee69b 9921
52ce6436
PH
9922 elt = unwrap_value (ada_value_subscript (lhs, 1, &index_val));
9923 }
9924 else
9925 {
9926 elt = ada_index_struct_field (index, lhs, 0, value_type (lhs));
c48db5ca 9927 elt = ada_to_fixed_value (elt);
52ce6436
PH
9928 }
9929
9930 if (exp->elts[*pos].opcode == OP_AGGREGATE)
9931 assign_aggregate (container, elt, exp, pos, EVAL_NORMAL);
9932 else
9933 value_assign_to_component (container, elt,
9934 ada_evaluate_subexp (NULL, exp, pos,
9935 EVAL_NORMAL));
9936
9937 value_free_to_mark (mark);
9938}
9939
9940/* Assuming that LHS represents an lvalue having a record or array
9941 type, and EXP->ELTS[*POS] is an OP_AGGREGATE, evaluate an assignment
9942 of that aggregate's value to LHS, advancing *POS past the
9943 aggregate. NOSIDE is as for evaluate_subexp. CONTAINER is an
9944 lvalue containing LHS (possibly LHS itself). Does not modify
9945 the inferior's memory, nor does it modify the contents of
0963b4bd 9946 LHS (unless == CONTAINER). Returns the modified CONTAINER. */
52ce6436
PH
9947
9948static struct value *
9949assign_aggregate (struct value *container,
9950 struct value *lhs, struct expression *exp,
9951 int *pos, enum noside noside)
9952{
9953 struct type *lhs_type;
9954 int n = exp->elts[*pos+1].longconst;
9955 LONGEST low_index, high_index;
9956 int num_specs;
9957 LONGEST *indices;
9958 int max_indices, num_indices;
52ce6436 9959 int i;
52ce6436
PH
9960
9961 *pos += 3;
9962 if (noside != EVAL_NORMAL)
9963 {
52ce6436
PH
9964 for (i = 0; i < n; i += 1)
9965 ada_evaluate_subexp (NULL, exp, pos, noside);
9966 return container;
9967 }
9968
9969 container = ada_coerce_ref (container);
9970 if (ada_is_direct_array_type (value_type (container)))
9971 container = ada_coerce_to_simple_array (container);
9972 lhs = ada_coerce_ref (lhs);
9973 if (!deprecated_value_modifiable (lhs))
9974 error (_("Left operand of assignment is not a modifiable lvalue."));
9975
9976 lhs_type = value_type (lhs);
9977 if (ada_is_direct_array_type (lhs_type))
9978 {
9979 lhs = ada_coerce_to_simple_array (lhs);
9980 lhs_type = value_type (lhs);
9981 low_index = TYPE_ARRAY_LOWER_BOUND_VALUE (lhs_type);
9982 high_index = TYPE_ARRAY_UPPER_BOUND_VALUE (lhs_type);
52ce6436
PH
9983 }
9984 else if (TYPE_CODE (lhs_type) == TYPE_CODE_STRUCT)
9985 {
9986 low_index = 0;
9987 high_index = num_visible_fields (lhs_type) - 1;
52ce6436
PH
9988 }
9989 else
9990 error (_("Left-hand side must be array or record."));
9991
9992 num_specs = num_component_specs (exp, *pos - 3);
9993 max_indices = 4 * num_specs + 4;
8d749320 9994 indices = XALLOCAVEC (LONGEST, max_indices);
52ce6436
PH
9995 indices[0] = indices[1] = low_index - 1;
9996 indices[2] = indices[3] = high_index + 1;
9997 num_indices = 4;
9998
9999 for (i = 0; i < n; i += 1)
10000 {
10001 switch (exp->elts[*pos].opcode)
10002 {
1fbf5ada
JB
10003 case OP_CHOICES:
10004 aggregate_assign_from_choices (container, lhs, exp, pos, indices,
10005 &num_indices, max_indices,
10006 low_index, high_index);
10007 break;
10008 case OP_POSITIONAL:
10009 aggregate_assign_positional (container, lhs, exp, pos, indices,
52ce6436
PH
10010 &num_indices, max_indices,
10011 low_index, high_index);
1fbf5ada
JB
10012 break;
10013 case OP_OTHERS:
10014 if (i != n-1)
10015 error (_("Misplaced 'others' clause"));
10016 aggregate_assign_others (container, lhs, exp, pos, indices,
10017 num_indices, low_index, high_index);
10018 break;
10019 default:
10020 error (_("Internal error: bad aggregate clause"));
52ce6436
PH
10021 }
10022 }
10023
10024 return container;
10025}
10026
10027/* Assign into the component of LHS indexed by the OP_POSITIONAL
10028 construct at *POS, updating *POS past the construct, given that
10029 the positions are relative to lower bound LOW, where HIGH is the
10030 upper bound. Record the position in INDICES[0 .. MAX_INDICES-1]
10031 updating *NUM_INDICES as needed. CONTAINER is as for
0963b4bd 10032 assign_aggregate. */
52ce6436
PH
10033static void
10034aggregate_assign_positional (struct value *container,
10035 struct value *lhs, struct expression *exp,
10036 int *pos, LONGEST *indices, int *num_indices,
10037 int max_indices, LONGEST low, LONGEST high)
10038{
10039 LONGEST ind = longest_to_int (exp->elts[*pos + 1].longconst) + low;
10040
10041 if (ind - 1 == high)
e1d5a0d2 10042 warning (_("Extra components in aggregate ignored."));
52ce6436
PH
10043 if (ind <= high)
10044 {
10045 add_component_interval (ind, ind, indices, num_indices, max_indices);
10046 *pos += 3;
10047 assign_component (container, lhs, ind, exp, pos);
10048 }
10049 else
10050 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
10051}
10052
10053/* Assign into the components of LHS indexed by the OP_CHOICES
10054 construct at *POS, updating *POS past the construct, given that
10055 the allowable indices are LOW..HIGH. Record the indices assigned
10056 to in INDICES[0 .. MAX_INDICES-1], updating *NUM_INDICES as
0963b4bd 10057 needed. CONTAINER is as for assign_aggregate. */
52ce6436
PH
10058static void
10059aggregate_assign_from_choices (struct value *container,
10060 struct value *lhs, struct expression *exp,
10061 int *pos, LONGEST *indices, int *num_indices,
10062 int max_indices, LONGEST low, LONGEST high)
10063{
10064 int j;
10065 int n_choices = longest_to_int (exp->elts[*pos+1].longconst);
10066 int choice_pos, expr_pc;
10067 int is_array = ada_is_direct_array_type (value_type (lhs));
10068
10069 choice_pos = *pos += 3;
10070
10071 for (j = 0; j < n_choices; j += 1)
10072 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
10073 expr_pc = *pos;
10074 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
10075
10076 for (j = 0; j < n_choices; j += 1)
10077 {
10078 LONGEST lower, upper;
10079 enum exp_opcode op = exp->elts[choice_pos].opcode;
5b4ee69b 10080
52ce6436
PH
10081 if (op == OP_DISCRETE_RANGE)
10082 {
10083 choice_pos += 1;
10084 lower = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
10085 EVAL_NORMAL));
10086 upper = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
10087 EVAL_NORMAL));
10088 }
10089 else if (is_array)
10090 {
10091 lower = value_as_long (ada_evaluate_subexp (NULL, exp, &choice_pos,
10092 EVAL_NORMAL));
10093 upper = lower;
10094 }
10095 else
10096 {
10097 int ind;
0d5cff50 10098 const char *name;
5b4ee69b 10099
52ce6436
PH
10100 switch (op)
10101 {
10102 case OP_NAME:
10103 name = &exp->elts[choice_pos + 2].string;
10104 break;
10105 case OP_VAR_VALUE:
10106 name = SYMBOL_NATURAL_NAME (exp->elts[choice_pos + 2].symbol);
10107 break;
10108 default:
10109 error (_("Invalid record component association."));
10110 }
10111 ada_evaluate_subexp (NULL, exp, &choice_pos, EVAL_SKIP);
10112 ind = 0;
10113 if (! find_struct_field (name, value_type (lhs), 0,
10114 NULL, NULL, NULL, NULL, &ind))
10115 error (_("Unknown component name: %s."), name);
10116 lower = upper = ind;
10117 }
10118
10119 if (lower <= upper && (lower < low || upper > high))
10120 error (_("Index in component association out of bounds."));
10121
10122 add_component_interval (lower, upper, indices, num_indices,
10123 max_indices);
10124 while (lower <= upper)
10125 {
10126 int pos1;
5b4ee69b 10127
52ce6436
PH
10128 pos1 = expr_pc;
10129 assign_component (container, lhs, lower, exp, &pos1);
10130 lower += 1;
10131 }
10132 }
10133}
10134
10135/* Assign the value of the expression in the OP_OTHERS construct in
10136 EXP at *POS into the components of LHS indexed from LOW .. HIGH that
10137 have not been previously assigned. The index intervals already assigned
10138 are in INDICES[0 .. NUM_INDICES-1]. Updates *POS to after the
0963b4bd 10139 OP_OTHERS clause. CONTAINER is as for assign_aggregate. */
52ce6436
PH
10140static void
10141aggregate_assign_others (struct value *container,
10142 struct value *lhs, struct expression *exp,
10143 int *pos, LONGEST *indices, int num_indices,
10144 LONGEST low, LONGEST high)
10145{
10146 int i;
5ce64950 10147 int expr_pc = *pos + 1;
52ce6436
PH
10148
10149 for (i = 0; i < num_indices - 2; i += 2)
10150 {
10151 LONGEST ind;
5b4ee69b 10152
52ce6436
PH
10153 for (ind = indices[i + 1] + 1; ind < indices[i + 2]; ind += 1)
10154 {
5ce64950 10155 int localpos;
5b4ee69b 10156
5ce64950
MS
10157 localpos = expr_pc;
10158 assign_component (container, lhs, ind, exp, &localpos);
52ce6436
PH
10159 }
10160 }
10161 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
10162}
10163
10164/* Add the interval [LOW .. HIGH] to the sorted set of intervals
10165 [ INDICES[0] .. INDICES[1] ],..., [ INDICES[*SIZE-2] .. INDICES[*SIZE-1] ],
10166 modifying *SIZE as needed. It is an error if *SIZE exceeds
10167 MAX_SIZE. The resulting intervals do not overlap. */
10168static void
10169add_component_interval (LONGEST low, LONGEST high,
10170 LONGEST* indices, int *size, int max_size)
10171{
10172 int i, j;
5b4ee69b 10173
52ce6436
PH
10174 for (i = 0; i < *size; i += 2) {
10175 if (high >= indices[i] && low <= indices[i + 1])
10176 {
10177 int kh;
5b4ee69b 10178
52ce6436
PH
10179 for (kh = i + 2; kh < *size; kh += 2)
10180 if (high < indices[kh])
10181 break;
10182 if (low < indices[i])
10183 indices[i] = low;
10184 indices[i + 1] = indices[kh - 1];
10185 if (high > indices[i + 1])
10186 indices[i + 1] = high;
10187 memcpy (indices + i + 2, indices + kh, *size - kh);
10188 *size -= kh - i - 2;
10189 return;
10190 }
10191 else if (high < indices[i])
10192 break;
10193 }
10194
10195 if (*size == max_size)
10196 error (_("Internal error: miscounted aggregate components."));
10197 *size += 2;
10198 for (j = *size-1; j >= i+2; j -= 1)
10199 indices[j] = indices[j - 2];
10200 indices[i] = low;
10201 indices[i + 1] = high;
10202}
10203
6e48bd2c
JB
10204/* Perform and Ada cast of ARG2 to type TYPE if the type of ARG2
10205 is different. */
10206
10207static struct value *
10208ada_value_cast (struct type *type, struct value *arg2, enum noside noside)
10209{
10210 if (type == ada_check_typedef (value_type (arg2)))
10211 return arg2;
10212
10213 if (ada_is_fixed_point_type (type))
10214 return (cast_to_fixed (type, arg2));
10215
10216 if (ada_is_fixed_point_type (value_type (arg2)))
a53b7a21 10217 return cast_from_fixed (type, arg2);
6e48bd2c
JB
10218
10219 return value_cast (type, arg2);
10220}
10221
284614f0
JB
10222/* Evaluating Ada expressions, and printing their result.
10223 ------------------------------------------------------
10224
21649b50
JB
10225 1. Introduction:
10226 ----------------
10227
284614f0
JB
10228 We usually evaluate an Ada expression in order to print its value.
10229 We also evaluate an expression in order to print its type, which
10230 happens during the EVAL_AVOID_SIDE_EFFECTS phase of the evaluation,
10231 but we'll focus mostly on the EVAL_NORMAL phase. In practice, the
10232 EVAL_AVOID_SIDE_EFFECTS phase allows us to simplify certain aspects of
10233 the evaluation compared to the EVAL_NORMAL, but is otherwise very
10234 similar.
10235
10236 Evaluating expressions is a little more complicated for Ada entities
10237 than it is for entities in languages such as C. The main reason for
10238 this is that Ada provides types whose definition might be dynamic.
10239 One example of such types is variant records. Or another example
10240 would be an array whose bounds can only be known at run time.
10241
10242 The following description is a general guide as to what should be
10243 done (and what should NOT be done) in order to evaluate an expression
10244 involving such types, and when. This does not cover how the semantic
10245 information is encoded by GNAT as this is covered separatly. For the
10246 document used as the reference for the GNAT encoding, see exp_dbug.ads
10247 in the GNAT sources.
10248
10249 Ideally, we should embed each part of this description next to its
10250 associated code. Unfortunately, the amount of code is so vast right
10251 now that it's hard to see whether the code handling a particular
10252 situation might be duplicated or not. One day, when the code is
10253 cleaned up, this guide might become redundant with the comments
10254 inserted in the code, and we might want to remove it.
10255
21649b50
JB
10256 2. ``Fixing'' an Entity, the Simple Case:
10257 -----------------------------------------
10258
284614f0
JB
10259 When evaluating Ada expressions, the tricky issue is that they may
10260 reference entities whose type contents and size are not statically
10261 known. Consider for instance a variant record:
10262
10263 type Rec (Empty : Boolean := True) is record
10264 case Empty is
10265 when True => null;
10266 when False => Value : Integer;
10267 end case;
10268 end record;
10269 Yes : Rec := (Empty => False, Value => 1);
10270 No : Rec := (empty => True);
10271
10272 The size and contents of that record depends on the value of the
10273 descriminant (Rec.Empty). At this point, neither the debugging
10274 information nor the associated type structure in GDB are able to
10275 express such dynamic types. So what the debugger does is to create
10276 "fixed" versions of the type that applies to the specific object.
10277 We also informally refer to this opperation as "fixing" an object,
10278 which means creating its associated fixed type.
10279
10280 Example: when printing the value of variable "Yes" above, its fixed
10281 type would look like this:
10282
10283 type Rec is record
10284 Empty : Boolean;
10285 Value : Integer;
10286 end record;
10287
10288 On the other hand, if we printed the value of "No", its fixed type
10289 would become:
10290
10291 type Rec is record
10292 Empty : Boolean;
10293 end record;
10294
10295 Things become a little more complicated when trying to fix an entity
10296 with a dynamic type that directly contains another dynamic type,
10297 such as an array of variant records, for instance. There are
10298 two possible cases: Arrays, and records.
10299
21649b50
JB
10300 3. ``Fixing'' Arrays:
10301 ---------------------
10302
10303 The type structure in GDB describes an array in terms of its bounds,
10304 and the type of its elements. By design, all elements in the array
10305 have the same type and we cannot represent an array of variant elements
10306 using the current type structure in GDB. When fixing an array,
10307 we cannot fix the array element, as we would potentially need one
10308 fixed type per element of the array. As a result, the best we can do
10309 when fixing an array is to produce an array whose bounds and size
10310 are correct (allowing us to read it from memory), but without having
10311 touched its element type. Fixing each element will be done later,
10312 when (if) necessary.
10313
10314 Arrays are a little simpler to handle than records, because the same
10315 amount of memory is allocated for each element of the array, even if
1b536f04 10316 the amount of space actually used by each element differs from element
21649b50 10317 to element. Consider for instance the following array of type Rec:
284614f0
JB
10318
10319 type Rec_Array is array (1 .. 2) of Rec;
10320
1b536f04
JB
10321 The actual amount of memory occupied by each element might be different
10322 from element to element, depending on the value of their discriminant.
21649b50 10323 But the amount of space reserved for each element in the array remains
1b536f04 10324 fixed regardless. So we simply need to compute that size using
21649b50
JB
10325 the debugging information available, from which we can then determine
10326 the array size (we multiply the number of elements of the array by
10327 the size of each element).
10328
10329 The simplest case is when we have an array of a constrained element
10330 type. For instance, consider the following type declarations:
10331
10332 type Bounded_String (Max_Size : Integer) is
10333 Length : Integer;
10334 Buffer : String (1 .. Max_Size);
10335 end record;
10336 type Bounded_String_Array is array (1 ..2) of Bounded_String (80);
10337
10338 In this case, the compiler describes the array as an array of
10339 variable-size elements (identified by its XVS suffix) for which
10340 the size can be read in the parallel XVZ variable.
10341
10342 In the case of an array of an unconstrained element type, the compiler
10343 wraps the array element inside a private PAD type. This type should not
10344 be shown to the user, and must be "unwrap"'ed before printing. Note
284614f0
JB
10345 that we also use the adjective "aligner" in our code to designate
10346 these wrapper types.
10347
1b536f04 10348 In some cases, the size allocated for each element is statically
21649b50
JB
10349 known. In that case, the PAD type already has the correct size,
10350 and the array element should remain unfixed.
10351
10352 But there are cases when this size is not statically known.
10353 For instance, assuming that "Five" is an integer variable:
284614f0
JB
10354
10355 type Dynamic is array (1 .. Five) of Integer;
10356 type Wrapper (Has_Length : Boolean := False) is record
10357 Data : Dynamic;
10358 case Has_Length is
10359 when True => Length : Integer;
10360 when False => null;
10361 end case;
10362 end record;
10363 type Wrapper_Array is array (1 .. 2) of Wrapper;
10364
10365 Hello : Wrapper_Array := (others => (Has_Length => True,
10366 Data => (others => 17),
10367 Length => 1));
10368
10369
10370 The debugging info would describe variable Hello as being an
10371 array of a PAD type. The size of that PAD type is not statically
10372 known, but can be determined using a parallel XVZ variable.
10373 In that case, a copy of the PAD type with the correct size should
10374 be used for the fixed array.
10375
21649b50
JB
10376 3. ``Fixing'' record type objects:
10377 ----------------------------------
10378
10379 Things are slightly different from arrays in the case of dynamic
284614f0
JB
10380 record types. In this case, in order to compute the associated
10381 fixed type, we need to determine the size and offset of each of
10382 its components. This, in turn, requires us to compute the fixed
10383 type of each of these components.
10384
10385 Consider for instance the example:
10386
10387 type Bounded_String (Max_Size : Natural) is record
10388 Str : String (1 .. Max_Size);
10389 Length : Natural;
10390 end record;
10391 My_String : Bounded_String (Max_Size => 10);
10392
10393 In that case, the position of field "Length" depends on the size
10394 of field Str, which itself depends on the value of the Max_Size
21649b50 10395 discriminant. In order to fix the type of variable My_String,
284614f0
JB
10396 we need to fix the type of field Str. Therefore, fixing a variant
10397 record requires us to fix each of its components.
10398
10399 However, if a component does not have a dynamic size, the component
10400 should not be fixed. In particular, fields that use a PAD type
10401 should not fixed. Here is an example where this might happen
10402 (assuming type Rec above):
10403
10404 type Container (Big : Boolean) is record
10405 First : Rec;
10406 After : Integer;
10407 case Big is
10408 when True => Another : Integer;
10409 when False => null;
10410 end case;
10411 end record;
10412 My_Container : Container := (Big => False,
10413 First => (Empty => True),
10414 After => 42);
10415
10416 In that example, the compiler creates a PAD type for component First,
10417 whose size is constant, and then positions the component After just
10418 right after it. The offset of component After is therefore constant
10419 in this case.
10420
10421 The debugger computes the position of each field based on an algorithm
10422 that uses, among other things, the actual position and size of the field
21649b50
JB
10423 preceding it. Let's now imagine that the user is trying to print
10424 the value of My_Container. If the type fixing was recursive, we would
284614f0
JB
10425 end up computing the offset of field After based on the size of the
10426 fixed version of field First. And since in our example First has
10427 only one actual field, the size of the fixed type is actually smaller
10428 than the amount of space allocated to that field, and thus we would
10429 compute the wrong offset of field After.
10430
21649b50
JB
10431 To make things more complicated, we need to watch out for dynamic
10432 components of variant records (identified by the ___XVL suffix in
10433 the component name). Even if the target type is a PAD type, the size
10434 of that type might not be statically known. So the PAD type needs
10435 to be unwrapped and the resulting type needs to be fixed. Otherwise,
10436 we might end up with the wrong size for our component. This can be
10437 observed with the following type declarations:
284614f0
JB
10438
10439 type Octal is new Integer range 0 .. 7;
10440 type Octal_Array is array (Positive range <>) of Octal;
10441 pragma Pack (Octal_Array);
10442
10443 type Octal_Buffer (Size : Positive) is record
10444 Buffer : Octal_Array (1 .. Size);
10445 Length : Integer;
10446 end record;
10447
10448 In that case, Buffer is a PAD type whose size is unset and needs
10449 to be computed by fixing the unwrapped type.
10450
21649b50
JB
10451 4. When to ``Fix'' un-``Fixed'' sub-elements of an entity:
10452 ----------------------------------------------------------
10453
10454 Lastly, when should the sub-elements of an entity that remained unfixed
284614f0
JB
10455 thus far, be actually fixed?
10456
10457 The answer is: Only when referencing that element. For instance
10458 when selecting one component of a record, this specific component
10459 should be fixed at that point in time. Or when printing the value
10460 of a record, each component should be fixed before its value gets
10461 printed. Similarly for arrays, the element of the array should be
10462 fixed when printing each element of the array, or when extracting
10463 one element out of that array. On the other hand, fixing should
10464 not be performed on the elements when taking a slice of an array!
10465
10466 Note that one of the side-effects of miscomputing the offset and
10467 size of each field is that we end up also miscomputing the size
10468 of the containing type. This can have adverse results when computing
10469 the value of an entity. GDB fetches the value of an entity based
10470 on the size of its type, and thus a wrong size causes GDB to fetch
10471 the wrong amount of memory. In the case where the computed size is
10472 too small, GDB fetches too little data to print the value of our
10473 entiry. Results in this case as unpredicatble, as we usually read
10474 past the buffer containing the data =:-o. */
10475
10476/* Implement the evaluate_exp routine in the exp_descriptor structure
10477 for the Ada language. */
10478
52ce6436 10479static struct value *
ebf56fd3 10480ada_evaluate_subexp (struct type *expect_type, struct expression *exp,
4c4b4cd2 10481 int *pos, enum noside noside)
14f9c5c9
AS
10482{
10483 enum exp_opcode op;
b5385fc0 10484 int tem;
14f9c5c9 10485 int pc;
5ec18f2b 10486 int preeval_pos;
14f9c5c9
AS
10487 struct value *arg1 = NULL, *arg2 = NULL, *arg3;
10488 struct type *type;
52ce6436 10489 int nargs, oplen;
d2e4a39e 10490 struct value **argvec;
14f9c5c9 10491
d2e4a39e
AS
10492 pc = *pos;
10493 *pos += 1;
14f9c5c9
AS
10494 op = exp->elts[pc].opcode;
10495
d2e4a39e 10496 switch (op)
14f9c5c9
AS
10497 {
10498 default:
10499 *pos -= 1;
6e48bd2c 10500 arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside);
ca1f964d
JG
10501
10502 if (noside == EVAL_NORMAL)
10503 arg1 = unwrap_value (arg1);
6e48bd2c
JB
10504
10505 /* If evaluating an OP_DOUBLE and an EXPECT_TYPE was provided,
10506 then we need to perform the conversion manually, because
10507 evaluate_subexp_standard doesn't do it. This conversion is
10508 necessary in Ada because the different kinds of float/fixed
10509 types in Ada have different representations.
10510
10511 Similarly, we need to perform the conversion from OP_LONG
10512 ourselves. */
10513 if ((op == OP_DOUBLE || op == OP_LONG) && expect_type != NULL)
10514 arg1 = ada_value_cast (expect_type, arg1, noside);
10515
10516 return arg1;
4c4b4cd2
PH
10517
10518 case OP_STRING:
10519 {
76a01679 10520 struct value *result;
5b4ee69b 10521
76a01679
JB
10522 *pos -= 1;
10523 result = evaluate_subexp_standard (expect_type, exp, pos, noside);
10524 /* The result type will have code OP_STRING, bashed there from
10525 OP_ARRAY. Bash it back. */
df407dfe
AC
10526 if (TYPE_CODE (value_type (result)) == TYPE_CODE_STRING)
10527 TYPE_CODE (value_type (result)) = TYPE_CODE_ARRAY;
76a01679 10528 return result;
4c4b4cd2 10529 }
14f9c5c9
AS
10530
10531 case UNOP_CAST:
10532 (*pos) += 2;
10533 type = exp->elts[pc + 1].type;
10534 arg1 = evaluate_subexp (type, exp, pos, noside);
10535 if (noside == EVAL_SKIP)
4c4b4cd2 10536 goto nosideret;
6e48bd2c 10537 arg1 = ada_value_cast (type, arg1, noside);
14f9c5c9
AS
10538 return arg1;
10539
4c4b4cd2
PH
10540 case UNOP_QUAL:
10541 (*pos) += 2;
10542 type = exp->elts[pc + 1].type;
10543 return ada_evaluate_subexp (type, exp, pos, noside);
10544
14f9c5c9
AS
10545 case BINOP_ASSIGN:
10546 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
52ce6436
PH
10547 if (exp->elts[*pos].opcode == OP_AGGREGATE)
10548 {
10549 arg1 = assign_aggregate (arg1, arg1, exp, pos, noside);
10550 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
10551 return arg1;
10552 return ada_value_assign (arg1, arg1);
10553 }
003f3813
JB
10554 /* Force the evaluation of the rhs ARG2 to the type of the lhs ARG1,
10555 except if the lhs of our assignment is a convenience variable.
10556 In the case of assigning to a convenience variable, the lhs
10557 should be exactly the result of the evaluation of the rhs. */
10558 type = value_type (arg1);
10559 if (VALUE_LVAL (arg1) == lval_internalvar)
10560 type = NULL;
10561 arg2 = evaluate_subexp (type, exp, pos, noside);
14f9c5c9 10562 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
4c4b4cd2 10563 return arg1;
df407dfe
AC
10564 if (ada_is_fixed_point_type (value_type (arg1)))
10565 arg2 = cast_to_fixed (value_type (arg1), arg2);
10566 else if (ada_is_fixed_point_type (value_type (arg2)))
76a01679 10567 error
323e0a4a 10568 (_("Fixed-point values must be assigned to fixed-point variables"));
d2e4a39e 10569 else
df407dfe 10570 arg2 = coerce_for_assign (value_type (arg1), arg2);
4c4b4cd2 10571 return ada_value_assign (arg1, arg2);
14f9c5c9
AS
10572
10573 case BINOP_ADD:
10574 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
10575 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
10576 if (noside == EVAL_SKIP)
4c4b4cd2 10577 goto nosideret;
2ac8a782
JB
10578 if (TYPE_CODE (value_type (arg1)) == TYPE_CODE_PTR)
10579 return (value_from_longest
10580 (value_type (arg1),
10581 value_as_long (arg1) + value_as_long (arg2)));
c40cc657
JB
10582 if (TYPE_CODE (value_type (arg2)) == TYPE_CODE_PTR)
10583 return (value_from_longest
10584 (value_type (arg2),
10585 value_as_long (arg1) + value_as_long (arg2)));
df407dfe
AC
10586 if ((ada_is_fixed_point_type (value_type (arg1))
10587 || ada_is_fixed_point_type (value_type (arg2)))
10588 && value_type (arg1) != value_type (arg2))
323e0a4a 10589 error (_("Operands of fixed-point addition must have the same type"));
b7789565
JB
10590 /* Do the addition, and cast the result to the type of the first
10591 argument. We cannot cast the result to a reference type, so if
10592 ARG1 is a reference type, find its underlying type. */
10593 type = value_type (arg1);
10594 while (TYPE_CODE (type) == TYPE_CODE_REF)
10595 type = TYPE_TARGET_TYPE (type);
f44316fa 10596 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
89eef114 10597 return value_cast (type, value_binop (arg1, arg2, BINOP_ADD));
14f9c5c9
AS
10598
10599 case BINOP_SUB:
10600 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
10601 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
10602 if (noside == EVAL_SKIP)
4c4b4cd2 10603 goto nosideret;
2ac8a782
JB
10604 if (TYPE_CODE (value_type (arg1)) == TYPE_CODE_PTR)
10605 return (value_from_longest
10606 (value_type (arg1),
10607 value_as_long (arg1) - value_as_long (arg2)));
c40cc657
JB
10608 if (TYPE_CODE (value_type (arg2)) == TYPE_CODE_PTR)
10609 return (value_from_longest
10610 (value_type (arg2),
10611 value_as_long (arg1) - value_as_long (arg2)));
df407dfe
AC
10612 if ((ada_is_fixed_point_type (value_type (arg1))
10613 || ada_is_fixed_point_type (value_type (arg2)))
10614 && value_type (arg1) != value_type (arg2))
0963b4bd
MS
10615 error (_("Operands of fixed-point subtraction "
10616 "must have the same type"));
b7789565
JB
10617 /* Do the substraction, and cast the result to the type of the first
10618 argument. We cannot cast the result to a reference type, so if
10619 ARG1 is a reference type, find its underlying type. */
10620 type = value_type (arg1);
10621 while (TYPE_CODE (type) == TYPE_CODE_REF)
10622 type = TYPE_TARGET_TYPE (type);
f44316fa 10623 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
89eef114 10624 return value_cast (type, value_binop (arg1, arg2, BINOP_SUB));
14f9c5c9
AS
10625
10626 case BINOP_MUL:
10627 case BINOP_DIV:
e1578042
JB
10628 case BINOP_REM:
10629 case BINOP_MOD:
14f9c5c9
AS
10630 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10631 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10632 if (noside == EVAL_SKIP)
4c4b4cd2 10633 goto nosideret;
e1578042 10634 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
9c2be529
JB
10635 {
10636 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10637 return value_zero (value_type (arg1), not_lval);
10638 }
14f9c5c9 10639 else
4c4b4cd2 10640 {
a53b7a21 10641 type = builtin_type (exp->gdbarch)->builtin_double;
df407dfe 10642 if (ada_is_fixed_point_type (value_type (arg1)))
a53b7a21 10643 arg1 = cast_from_fixed (type, arg1);
df407dfe 10644 if (ada_is_fixed_point_type (value_type (arg2)))
a53b7a21 10645 arg2 = cast_from_fixed (type, arg2);
f44316fa 10646 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
4c4b4cd2
PH
10647 return ada_value_binop (arg1, arg2, op);
10648 }
10649
4c4b4cd2
PH
10650 case BINOP_EQUAL:
10651 case BINOP_NOTEQUAL:
14f9c5c9 10652 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
df407dfe 10653 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
14f9c5c9 10654 if (noside == EVAL_SKIP)
76a01679 10655 goto nosideret;
4c4b4cd2 10656 if (noside == EVAL_AVOID_SIDE_EFFECTS)
76a01679 10657 tem = 0;
4c4b4cd2 10658 else
f44316fa
UW
10659 {
10660 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10661 tem = ada_value_equal (arg1, arg2);
10662 }
4c4b4cd2 10663 if (op == BINOP_NOTEQUAL)
76a01679 10664 tem = !tem;
fbb06eb1
UW
10665 type = language_bool_type (exp->language_defn, exp->gdbarch);
10666 return value_from_longest (type, (LONGEST) tem);
4c4b4cd2
PH
10667
10668 case UNOP_NEG:
10669 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10670 if (noside == EVAL_SKIP)
10671 goto nosideret;
df407dfe
AC
10672 else if (ada_is_fixed_point_type (value_type (arg1)))
10673 return value_cast (value_type (arg1), value_neg (arg1));
14f9c5c9 10674 else
f44316fa
UW
10675 {
10676 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
10677 return value_neg (arg1);
10678 }
4c4b4cd2 10679
2330c6c6
JB
10680 case BINOP_LOGICAL_AND:
10681 case BINOP_LOGICAL_OR:
10682 case UNOP_LOGICAL_NOT:
000d5124
JB
10683 {
10684 struct value *val;
10685
10686 *pos -= 1;
10687 val = evaluate_subexp_standard (expect_type, exp, pos, noside);
fbb06eb1
UW
10688 type = language_bool_type (exp->language_defn, exp->gdbarch);
10689 return value_cast (type, val);
000d5124 10690 }
2330c6c6
JB
10691
10692 case BINOP_BITWISE_AND:
10693 case BINOP_BITWISE_IOR:
10694 case BINOP_BITWISE_XOR:
000d5124
JB
10695 {
10696 struct value *val;
10697
10698 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
10699 *pos = pc;
10700 val = evaluate_subexp_standard (expect_type, exp, pos, noside);
10701
10702 return value_cast (value_type (arg1), val);
10703 }
2330c6c6 10704
14f9c5c9
AS
10705 case OP_VAR_VALUE:
10706 *pos -= 1;
6799def4 10707
14f9c5c9 10708 if (noside == EVAL_SKIP)
4c4b4cd2
PH
10709 {
10710 *pos += 4;
10711 goto nosideret;
10712 }
da5c522f
JB
10713
10714 if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
76a01679
JB
10715 /* Only encountered when an unresolved symbol occurs in a
10716 context other than a function call, in which case, it is
52ce6436 10717 invalid. */
323e0a4a 10718 error (_("Unexpected unresolved symbol, %s, during evaluation"),
4c4b4cd2 10719 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
da5c522f
JB
10720
10721 if (noside == EVAL_AVOID_SIDE_EFFECTS)
4c4b4cd2 10722 {
0c1f74cf 10723 type = static_unwrap_type (SYMBOL_TYPE (exp->elts[pc + 2].symbol));
31dbc1c5
JB
10724 /* Check to see if this is a tagged type. We also need to handle
10725 the case where the type is a reference to a tagged type, but
10726 we have to be careful to exclude pointers to tagged types.
10727 The latter should be shown as usual (as a pointer), whereas
10728 a reference should mostly be transparent to the user. */
10729 if (ada_is_tagged_type (type, 0)
023db19c 10730 || (TYPE_CODE (type) == TYPE_CODE_REF
31dbc1c5 10731 && ada_is_tagged_type (TYPE_TARGET_TYPE (type), 0)))
0d72a7c3
JB
10732 {
10733 /* Tagged types are a little special in the fact that the real
10734 type is dynamic and can only be determined by inspecting the
10735 object's tag. This means that we need to get the object's
10736 value first (EVAL_NORMAL) and then extract the actual object
10737 type from its tag.
10738
10739 Note that we cannot skip the final step where we extract
10740 the object type from its tag, because the EVAL_NORMAL phase
10741 results in dynamic components being resolved into fixed ones.
10742 This can cause problems when trying to print the type
10743 description of tagged types whose parent has a dynamic size:
10744 We use the type name of the "_parent" component in order
10745 to print the name of the ancestor type in the type description.
10746 If that component had a dynamic size, the resolution into
10747 a fixed type would result in the loss of that type name,
10748 thus preventing us from printing the name of the ancestor
10749 type in the type description. */
10750 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_NORMAL);
10751
10752 if (TYPE_CODE (type) != TYPE_CODE_REF)
10753 {
10754 struct type *actual_type;
10755
10756 actual_type = type_from_tag (ada_value_tag (arg1));
10757 if (actual_type == NULL)
10758 /* If, for some reason, we were unable to determine
10759 the actual type from the tag, then use the static
10760 approximation that we just computed as a fallback.
10761 This can happen if the debugging information is
10762 incomplete, for instance. */
10763 actual_type = type;
10764 return value_zero (actual_type, not_lval);
10765 }
10766 else
10767 {
10768 /* In the case of a ref, ada_coerce_ref takes care
10769 of determining the actual type. But the evaluation
10770 should return a ref as it should be valid to ask
10771 for its address; so rebuild a ref after coerce. */
10772 arg1 = ada_coerce_ref (arg1);
10773 return value_ref (arg1);
10774 }
10775 }
0c1f74cf 10776
84754697
JB
10777 /* Records and unions for which GNAT encodings have been
10778 generated need to be statically fixed as well.
10779 Otherwise, non-static fixing produces a type where
10780 all dynamic properties are removed, which prevents "ptype"
10781 from being able to completely describe the type.
10782 For instance, a case statement in a variant record would be
10783 replaced by the relevant components based on the actual
10784 value of the discriminants. */
10785 if ((TYPE_CODE (type) == TYPE_CODE_STRUCT
10786 && dynamic_template_type (type) != NULL)
10787 || (TYPE_CODE (type) == TYPE_CODE_UNION
10788 && ada_find_parallel_type (type, "___XVU") != NULL))
10789 {
10790 *pos += 4;
10791 return value_zero (to_static_fixed_type (type), not_lval);
10792 }
4c4b4cd2 10793 }
da5c522f
JB
10794
10795 arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside);
10796 return ada_to_fixed_value (arg1);
4c4b4cd2
PH
10797
10798 case OP_FUNCALL:
10799 (*pos) += 2;
10800
10801 /* Allocate arg vector, including space for the function to be
10802 called in argvec[0] and a terminating NULL. */
10803 nargs = longest_to_int (exp->elts[pc + 1].longconst);
8d749320 10804 argvec = XALLOCAVEC (struct value *, nargs + 2);
4c4b4cd2
PH
10805
10806 if (exp->elts[*pos].opcode == OP_VAR_VALUE
76a01679 10807 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
323e0a4a 10808 error (_("Unexpected unresolved symbol, %s, during evaluation"),
4c4b4cd2
PH
10809 SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol));
10810 else
10811 {
10812 for (tem = 0; tem <= nargs; tem += 1)
10813 argvec[tem] = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10814 argvec[tem] = 0;
10815
10816 if (noside == EVAL_SKIP)
10817 goto nosideret;
10818 }
10819
ad82864c
JB
10820 if (ada_is_constrained_packed_array_type
10821 (desc_base_type (value_type (argvec[0]))))
4c4b4cd2 10822 argvec[0] = ada_coerce_to_simple_array (argvec[0]);
284614f0
JB
10823 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_ARRAY
10824 && TYPE_FIELD_BITSIZE (value_type (argvec[0]), 0) != 0)
10825 /* This is a packed array that has already been fixed, and
10826 therefore already coerced to a simple array. Nothing further
10827 to do. */
10828 ;
e6c2c623
PMR
10829 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_REF)
10830 {
10831 /* Make sure we dereference references so that all the code below
10832 feels like it's really handling the referenced value. Wrapping
10833 types (for alignment) may be there, so make sure we strip them as
10834 well. */
10835 argvec[0] = ada_to_fixed_value (coerce_ref (argvec[0]));
10836 }
10837 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_ARRAY
10838 && VALUE_LVAL (argvec[0]) == lval_memory)
10839 argvec[0] = value_addr (argvec[0]);
4c4b4cd2 10840
df407dfe 10841 type = ada_check_typedef (value_type (argvec[0]));
720d1a40
JB
10842
10843 /* Ada allows us to implicitly dereference arrays when subscripting
8f465ea7
JB
10844 them. So, if this is an array typedef (encoding use for array
10845 access types encoded as fat pointers), strip it now. */
720d1a40
JB
10846 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
10847 type = ada_typedef_target_type (type);
10848
4c4b4cd2
PH
10849 if (TYPE_CODE (type) == TYPE_CODE_PTR)
10850 {
61ee279c 10851 switch (TYPE_CODE (ada_check_typedef (TYPE_TARGET_TYPE (type))))
4c4b4cd2
PH
10852 {
10853 case TYPE_CODE_FUNC:
61ee279c 10854 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
4c4b4cd2
PH
10855 break;
10856 case TYPE_CODE_ARRAY:
10857 break;
10858 case TYPE_CODE_STRUCT:
10859 if (noside != EVAL_AVOID_SIDE_EFFECTS)
10860 argvec[0] = ada_value_ind (argvec[0]);
61ee279c 10861 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
4c4b4cd2
PH
10862 break;
10863 default:
323e0a4a 10864 error (_("cannot subscript or call something of type `%s'"),
df407dfe 10865 ada_type_name (value_type (argvec[0])));
4c4b4cd2
PH
10866 break;
10867 }
10868 }
10869
10870 switch (TYPE_CODE (type))
10871 {
10872 case TYPE_CODE_FUNC:
10873 if (noside == EVAL_AVOID_SIDE_EFFECTS)
c8ea1972
PH
10874 {
10875 struct type *rtype = TYPE_TARGET_TYPE (type);
10876
10877 if (TYPE_GNU_IFUNC (type))
10878 return allocate_value (TYPE_TARGET_TYPE (rtype));
10879 return allocate_value (rtype);
10880 }
4c4b4cd2 10881 return call_function_by_hand (argvec[0], nargs, argvec + 1);
c8ea1972
PH
10882 case TYPE_CODE_INTERNAL_FUNCTION:
10883 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10884 /* We don't know anything about what the internal
10885 function might return, but we have to return
10886 something. */
10887 return value_zero (builtin_type (exp->gdbarch)->builtin_int,
10888 not_lval);
10889 else
10890 return call_internal_function (exp->gdbarch, exp->language_defn,
10891 argvec[0], nargs, argvec + 1);
10892
4c4b4cd2
PH
10893 case TYPE_CODE_STRUCT:
10894 {
10895 int arity;
10896
4c4b4cd2
PH
10897 arity = ada_array_arity (type);
10898 type = ada_array_element_type (type, nargs);
10899 if (type == NULL)
323e0a4a 10900 error (_("cannot subscript or call a record"));
4c4b4cd2 10901 if (arity != nargs)
323e0a4a 10902 error (_("wrong number of subscripts; expecting %d"), arity);
4c4b4cd2 10903 if (noside == EVAL_AVOID_SIDE_EFFECTS)
0a07e705 10904 return value_zero (ada_aligned_type (type), lval_memory);
4c4b4cd2
PH
10905 return
10906 unwrap_value (ada_value_subscript
10907 (argvec[0], nargs, argvec + 1));
10908 }
10909 case TYPE_CODE_ARRAY:
10910 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10911 {
10912 type = ada_array_element_type (type, nargs);
10913 if (type == NULL)
323e0a4a 10914 error (_("element type of array unknown"));
4c4b4cd2 10915 else
0a07e705 10916 return value_zero (ada_aligned_type (type), lval_memory);
4c4b4cd2
PH
10917 }
10918 return
10919 unwrap_value (ada_value_subscript
10920 (ada_coerce_to_simple_array (argvec[0]),
10921 nargs, argvec + 1));
10922 case TYPE_CODE_PTR: /* Pointer to array */
4c4b4cd2
PH
10923 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10924 {
deede10c 10925 type = to_fixed_array_type (TYPE_TARGET_TYPE (type), NULL, 1);
4c4b4cd2
PH
10926 type = ada_array_element_type (type, nargs);
10927 if (type == NULL)
323e0a4a 10928 error (_("element type of array unknown"));
4c4b4cd2 10929 else
0a07e705 10930 return value_zero (ada_aligned_type (type), lval_memory);
4c4b4cd2
PH
10931 }
10932 return
deede10c
JB
10933 unwrap_value (ada_value_ptr_subscript (argvec[0],
10934 nargs, argvec + 1));
4c4b4cd2
PH
10935
10936 default:
e1d5a0d2
PH
10937 error (_("Attempt to index or call something other than an "
10938 "array or function"));
4c4b4cd2
PH
10939 }
10940
10941 case TERNOP_SLICE:
10942 {
10943 struct value *array = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10944 struct value *low_bound_val =
10945 evaluate_subexp (NULL_TYPE, exp, pos, noside);
714e53ab
PH
10946 struct value *high_bound_val =
10947 evaluate_subexp (NULL_TYPE, exp, pos, noside);
10948 LONGEST low_bound;
10949 LONGEST high_bound;
5b4ee69b 10950
994b9211
AC
10951 low_bound_val = coerce_ref (low_bound_val);
10952 high_bound_val = coerce_ref (high_bound_val);
aa715135
JG
10953 low_bound = value_as_long (low_bound_val);
10954 high_bound = value_as_long (high_bound_val);
963a6417 10955
4c4b4cd2
PH
10956 if (noside == EVAL_SKIP)
10957 goto nosideret;
10958
4c4b4cd2
PH
10959 /* If this is a reference to an aligner type, then remove all
10960 the aligners. */
df407dfe
AC
10961 if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF
10962 && ada_is_aligner_type (TYPE_TARGET_TYPE (value_type (array))))
10963 TYPE_TARGET_TYPE (value_type (array)) =
10964 ada_aligned_type (TYPE_TARGET_TYPE (value_type (array)));
4c4b4cd2 10965
ad82864c 10966 if (ada_is_constrained_packed_array_type (value_type (array)))
323e0a4a 10967 error (_("cannot slice a packed array"));
4c4b4cd2
PH
10968
10969 /* If this is a reference to an array or an array lvalue,
10970 convert to a pointer. */
df407dfe
AC
10971 if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF
10972 || (TYPE_CODE (value_type (array)) == TYPE_CODE_ARRAY
4c4b4cd2
PH
10973 && VALUE_LVAL (array) == lval_memory))
10974 array = value_addr (array);
10975
1265e4aa 10976 if (noside == EVAL_AVOID_SIDE_EFFECTS
61ee279c 10977 && ada_is_array_descriptor_type (ada_check_typedef
df407dfe 10978 (value_type (array))))
0b5d8877 10979 return empty_array (ada_type_of_array (array, 0), low_bound);
4c4b4cd2
PH
10980
10981 array = ada_coerce_to_simple_array_ptr (array);
10982
714e53ab
PH
10983 /* If we have more than one level of pointer indirection,
10984 dereference the value until we get only one level. */
df407dfe
AC
10985 while (TYPE_CODE (value_type (array)) == TYPE_CODE_PTR
10986 && (TYPE_CODE (TYPE_TARGET_TYPE (value_type (array)))
714e53ab
PH
10987 == TYPE_CODE_PTR))
10988 array = value_ind (array);
10989
10990 /* Make sure we really do have an array type before going further,
10991 to avoid a SEGV when trying to get the index type or the target
10992 type later down the road if the debug info generated by
10993 the compiler is incorrect or incomplete. */
df407dfe 10994 if (!ada_is_simple_array_type (value_type (array)))
323e0a4a 10995 error (_("cannot take slice of non-array"));
714e53ab 10996
828292f2
JB
10997 if (TYPE_CODE (ada_check_typedef (value_type (array)))
10998 == TYPE_CODE_PTR)
4c4b4cd2 10999 {
828292f2
JB
11000 struct type *type0 = ada_check_typedef (value_type (array));
11001
0b5d8877 11002 if (high_bound < low_bound || noside == EVAL_AVOID_SIDE_EFFECTS)
828292f2 11003 return empty_array (TYPE_TARGET_TYPE (type0), low_bound);
4c4b4cd2
PH
11004 else
11005 {
11006 struct type *arr_type0 =
828292f2 11007 to_fixed_array_type (TYPE_TARGET_TYPE (type0), NULL, 1);
5b4ee69b 11008
f5938064
JG
11009 return ada_value_slice_from_ptr (array, arr_type0,
11010 longest_to_int (low_bound),
11011 longest_to_int (high_bound));
4c4b4cd2
PH
11012 }
11013 }
11014 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
11015 return array;
11016 else if (high_bound < low_bound)
df407dfe 11017 return empty_array (value_type (array), low_bound);
4c4b4cd2 11018 else
529cad9c
PH
11019 return ada_value_slice (array, longest_to_int (low_bound),
11020 longest_to_int (high_bound));
4c4b4cd2 11021 }
14f9c5c9 11022
4c4b4cd2
PH
11023 case UNOP_IN_RANGE:
11024 (*pos) += 2;
11025 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8008e265 11026 type = check_typedef (exp->elts[pc + 1].type);
14f9c5c9 11027
14f9c5c9 11028 if (noside == EVAL_SKIP)
4c4b4cd2 11029 goto nosideret;
14f9c5c9 11030
4c4b4cd2
PH
11031 switch (TYPE_CODE (type))
11032 {
11033 default:
e1d5a0d2
PH
11034 lim_warning (_("Membership test incompletely implemented; "
11035 "always returns true"));
fbb06eb1
UW
11036 type = language_bool_type (exp->language_defn, exp->gdbarch);
11037 return value_from_longest (type, (LONGEST) 1);
4c4b4cd2
PH
11038
11039 case TYPE_CODE_RANGE:
030b4912
UW
11040 arg2 = value_from_longest (type, TYPE_LOW_BOUND (type));
11041 arg3 = value_from_longest (type, TYPE_HIGH_BOUND (type));
f44316fa
UW
11042 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
11043 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
fbb06eb1
UW
11044 type = language_bool_type (exp->language_defn, exp->gdbarch);
11045 return
11046 value_from_longest (type,
4c4b4cd2
PH
11047 (value_less (arg1, arg3)
11048 || value_equal (arg1, arg3))
11049 && (value_less (arg2, arg1)
11050 || value_equal (arg2, arg1)));
11051 }
11052
11053 case BINOP_IN_BOUNDS:
14f9c5c9 11054 (*pos) += 2;
4c4b4cd2
PH
11055 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11056 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
14f9c5c9 11057
4c4b4cd2
PH
11058 if (noside == EVAL_SKIP)
11059 goto nosideret;
14f9c5c9 11060
4c4b4cd2 11061 if (noside == EVAL_AVOID_SIDE_EFFECTS)
fbb06eb1
UW
11062 {
11063 type = language_bool_type (exp->language_defn, exp->gdbarch);
11064 return value_zero (type, not_lval);
11065 }
14f9c5c9 11066
4c4b4cd2 11067 tem = longest_to_int (exp->elts[pc + 1].longconst);
14f9c5c9 11068
1eea4ebd
UW
11069 type = ada_index_type (value_type (arg2), tem, "range");
11070 if (!type)
11071 type = value_type (arg1);
14f9c5c9 11072
1eea4ebd
UW
11073 arg3 = value_from_longest (type, ada_array_bound (arg2, tem, 1));
11074 arg2 = value_from_longest (type, ada_array_bound (arg2, tem, 0));
d2e4a39e 11075
f44316fa
UW
11076 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
11077 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
fbb06eb1 11078 type = language_bool_type (exp->language_defn, exp->gdbarch);
4c4b4cd2 11079 return
fbb06eb1 11080 value_from_longest (type,
4c4b4cd2
PH
11081 (value_less (arg1, arg3)
11082 || value_equal (arg1, arg3))
11083 && (value_less (arg2, arg1)
11084 || value_equal (arg2, arg1)));
11085
11086 case TERNOP_IN_RANGE:
11087 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11088 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11089 arg3 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11090
11091 if (noside == EVAL_SKIP)
11092 goto nosideret;
11093
f44316fa
UW
11094 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
11095 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
fbb06eb1 11096 type = language_bool_type (exp->language_defn, exp->gdbarch);
4c4b4cd2 11097 return
fbb06eb1 11098 value_from_longest (type,
4c4b4cd2
PH
11099 (value_less (arg1, arg3)
11100 || value_equal (arg1, arg3))
11101 && (value_less (arg2, arg1)
11102 || value_equal (arg2, arg1)));
11103
11104 case OP_ATR_FIRST:
11105 case OP_ATR_LAST:
11106 case OP_ATR_LENGTH:
11107 {
76a01679 11108 struct type *type_arg;
5b4ee69b 11109
76a01679
JB
11110 if (exp->elts[*pos].opcode == OP_TYPE)
11111 {
11112 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
11113 arg1 = NULL;
5bc23cb3 11114 type_arg = check_typedef (exp->elts[pc + 2].type);
76a01679
JB
11115 }
11116 else
11117 {
11118 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11119 type_arg = NULL;
11120 }
11121
11122 if (exp->elts[*pos].opcode != OP_LONG)
323e0a4a 11123 error (_("Invalid operand to '%s"), ada_attribute_name (op));
76a01679
JB
11124 tem = longest_to_int (exp->elts[*pos + 2].longconst);
11125 *pos += 4;
11126
11127 if (noside == EVAL_SKIP)
11128 goto nosideret;
11129
11130 if (type_arg == NULL)
11131 {
11132 arg1 = ada_coerce_ref (arg1);
11133
ad82864c 11134 if (ada_is_constrained_packed_array_type (value_type (arg1)))
76a01679
JB
11135 arg1 = ada_coerce_to_simple_array (arg1);
11136
aa4fb036 11137 if (op == OP_ATR_LENGTH)
1eea4ebd 11138 type = builtin_type (exp->gdbarch)->builtin_int;
aa4fb036
JB
11139 else
11140 {
11141 type = ada_index_type (value_type (arg1), tem,
11142 ada_attribute_name (op));
11143 if (type == NULL)
11144 type = builtin_type (exp->gdbarch)->builtin_int;
11145 }
76a01679
JB
11146
11147 if (noside == EVAL_AVOID_SIDE_EFFECTS)
1eea4ebd 11148 return allocate_value (type);
76a01679
JB
11149
11150 switch (op)
11151 {
11152 default: /* Should never happen. */
323e0a4a 11153 error (_("unexpected attribute encountered"));
76a01679 11154 case OP_ATR_FIRST:
1eea4ebd
UW
11155 return value_from_longest
11156 (type, ada_array_bound (arg1, tem, 0));
76a01679 11157 case OP_ATR_LAST:
1eea4ebd
UW
11158 return value_from_longest
11159 (type, ada_array_bound (arg1, tem, 1));
76a01679 11160 case OP_ATR_LENGTH:
1eea4ebd
UW
11161 return value_from_longest
11162 (type, ada_array_length (arg1, tem));
76a01679
JB
11163 }
11164 }
11165 else if (discrete_type_p (type_arg))
11166 {
11167 struct type *range_type;
0d5cff50 11168 const char *name = ada_type_name (type_arg);
5b4ee69b 11169
76a01679
JB
11170 range_type = NULL;
11171 if (name != NULL && TYPE_CODE (type_arg) != TYPE_CODE_ENUM)
28c85d6c 11172 range_type = to_fixed_range_type (type_arg, NULL);
76a01679
JB
11173 if (range_type == NULL)
11174 range_type = type_arg;
11175 switch (op)
11176 {
11177 default:
323e0a4a 11178 error (_("unexpected attribute encountered"));
76a01679 11179 case OP_ATR_FIRST:
690cc4eb 11180 return value_from_longest
43bbcdc2 11181 (range_type, ada_discrete_type_low_bound (range_type));
76a01679 11182 case OP_ATR_LAST:
690cc4eb 11183 return value_from_longest
43bbcdc2 11184 (range_type, ada_discrete_type_high_bound (range_type));
76a01679 11185 case OP_ATR_LENGTH:
323e0a4a 11186 error (_("the 'length attribute applies only to array types"));
76a01679
JB
11187 }
11188 }
11189 else if (TYPE_CODE (type_arg) == TYPE_CODE_FLT)
323e0a4a 11190 error (_("unimplemented type attribute"));
76a01679
JB
11191 else
11192 {
11193 LONGEST low, high;
11194
ad82864c
JB
11195 if (ada_is_constrained_packed_array_type (type_arg))
11196 type_arg = decode_constrained_packed_array_type (type_arg);
76a01679 11197
aa4fb036 11198 if (op == OP_ATR_LENGTH)
1eea4ebd 11199 type = builtin_type (exp->gdbarch)->builtin_int;
aa4fb036
JB
11200 else
11201 {
11202 type = ada_index_type (type_arg, tem, ada_attribute_name (op));
11203 if (type == NULL)
11204 type = builtin_type (exp->gdbarch)->builtin_int;
11205 }
1eea4ebd 11206
76a01679
JB
11207 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11208 return allocate_value (type);
11209
11210 switch (op)
11211 {
11212 default:
323e0a4a 11213 error (_("unexpected attribute encountered"));
76a01679 11214 case OP_ATR_FIRST:
1eea4ebd 11215 low = ada_array_bound_from_type (type_arg, tem, 0);
76a01679
JB
11216 return value_from_longest (type, low);
11217 case OP_ATR_LAST:
1eea4ebd 11218 high = ada_array_bound_from_type (type_arg, tem, 1);
76a01679
JB
11219 return value_from_longest (type, high);
11220 case OP_ATR_LENGTH:
1eea4ebd
UW
11221 low = ada_array_bound_from_type (type_arg, tem, 0);
11222 high = ada_array_bound_from_type (type_arg, tem, 1);
76a01679
JB
11223 return value_from_longest (type, high - low + 1);
11224 }
11225 }
14f9c5c9
AS
11226 }
11227
4c4b4cd2
PH
11228 case OP_ATR_TAG:
11229 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11230 if (noside == EVAL_SKIP)
76a01679 11231 goto nosideret;
4c4b4cd2
PH
11232
11233 if (noside == EVAL_AVOID_SIDE_EFFECTS)
76a01679 11234 return value_zero (ada_tag_type (arg1), not_lval);
4c4b4cd2
PH
11235
11236 return ada_value_tag (arg1);
11237
11238 case OP_ATR_MIN:
11239 case OP_ATR_MAX:
11240 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
14f9c5c9
AS
11241 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11242 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11243 if (noside == EVAL_SKIP)
76a01679 11244 goto nosideret;
d2e4a39e 11245 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
df407dfe 11246 return value_zero (value_type (arg1), not_lval);
14f9c5c9 11247 else
f44316fa
UW
11248 {
11249 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
11250 return value_binop (arg1, arg2,
11251 op == OP_ATR_MIN ? BINOP_MIN : BINOP_MAX);
11252 }
14f9c5c9 11253
4c4b4cd2
PH
11254 case OP_ATR_MODULUS:
11255 {
31dedfee 11256 struct type *type_arg = check_typedef (exp->elts[pc + 2].type);
4c4b4cd2 11257
5b4ee69b 11258 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
76a01679
JB
11259 if (noside == EVAL_SKIP)
11260 goto nosideret;
4c4b4cd2 11261
76a01679 11262 if (!ada_is_modular_type (type_arg))
323e0a4a 11263 error (_("'modulus must be applied to modular type"));
4c4b4cd2 11264
76a01679
JB
11265 return value_from_longest (TYPE_TARGET_TYPE (type_arg),
11266 ada_modulus (type_arg));
4c4b4cd2
PH
11267 }
11268
11269
11270 case OP_ATR_POS:
11271 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
14f9c5c9
AS
11272 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11273 if (noside == EVAL_SKIP)
76a01679 11274 goto nosideret;
3cb382c9
UW
11275 type = builtin_type (exp->gdbarch)->builtin_int;
11276 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11277 return value_zero (type, not_lval);
14f9c5c9 11278 else
3cb382c9 11279 return value_pos_atr (type, arg1);
14f9c5c9 11280
4c4b4cd2
PH
11281 case OP_ATR_SIZE:
11282 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8c1c099f
JB
11283 type = value_type (arg1);
11284
11285 /* If the argument is a reference, then dereference its type, since
11286 the user is really asking for the size of the actual object,
11287 not the size of the pointer. */
11288 if (TYPE_CODE (type) == TYPE_CODE_REF)
11289 type = TYPE_TARGET_TYPE (type);
11290
4c4b4cd2 11291 if (noside == EVAL_SKIP)
76a01679 11292 goto nosideret;
4c4b4cd2 11293 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
22601c15 11294 return value_zero (builtin_type (exp->gdbarch)->builtin_int, not_lval);
4c4b4cd2 11295 else
22601c15 11296 return value_from_longest (builtin_type (exp->gdbarch)->builtin_int,
8c1c099f 11297 TARGET_CHAR_BIT * TYPE_LENGTH (type));
4c4b4cd2
PH
11298
11299 case OP_ATR_VAL:
11300 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
14f9c5c9 11301 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
4c4b4cd2 11302 type = exp->elts[pc + 2].type;
14f9c5c9 11303 if (noside == EVAL_SKIP)
76a01679 11304 goto nosideret;
4c4b4cd2 11305 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
76a01679 11306 return value_zero (type, not_lval);
4c4b4cd2 11307 else
76a01679 11308 return value_val_atr (type, arg1);
4c4b4cd2
PH
11309
11310 case BINOP_EXP:
11311 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11312 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11313 if (noside == EVAL_SKIP)
11314 goto nosideret;
11315 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
df407dfe 11316 return value_zero (value_type (arg1), not_lval);
4c4b4cd2 11317 else
f44316fa
UW
11318 {
11319 /* For integer exponentiation operations,
11320 only promote the first argument. */
11321 if (is_integral_type (value_type (arg2)))
11322 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
11323 else
11324 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
11325
11326 return value_binop (arg1, arg2, op);
11327 }
4c4b4cd2
PH
11328
11329 case UNOP_PLUS:
11330 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11331 if (noside == EVAL_SKIP)
11332 goto nosideret;
11333 else
11334 return arg1;
11335
11336 case UNOP_ABS:
11337 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11338 if (noside == EVAL_SKIP)
11339 goto nosideret;
f44316fa 11340 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
df407dfe 11341 if (value_less (arg1, value_zero (value_type (arg1), not_lval)))
4c4b4cd2 11342 return value_neg (arg1);
14f9c5c9 11343 else
4c4b4cd2 11344 return arg1;
14f9c5c9
AS
11345
11346 case UNOP_IND:
5ec18f2b 11347 preeval_pos = *pos;
6b0d7253 11348 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
14f9c5c9 11349 if (noside == EVAL_SKIP)
4c4b4cd2 11350 goto nosideret;
df407dfe 11351 type = ada_check_typedef (value_type (arg1));
14f9c5c9 11352 if (noside == EVAL_AVOID_SIDE_EFFECTS)
4c4b4cd2
PH
11353 {
11354 if (ada_is_array_descriptor_type (type))
11355 /* GDB allows dereferencing GNAT array descriptors. */
11356 {
11357 struct type *arrType = ada_type_of_array (arg1, 0);
5b4ee69b 11358
4c4b4cd2 11359 if (arrType == NULL)
323e0a4a 11360 error (_("Attempt to dereference null array pointer."));
00a4c844 11361 return value_at_lazy (arrType, 0);
4c4b4cd2
PH
11362 }
11363 else if (TYPE_CODE (type) == TYPE_CODE_PTR
11364 || TYPE_CODE (type) == TYPE_CODE_REF
11365 /* In C you can dereference an array to get the 1st elt. */
11366 || TYPE_CODE (type) == TYPE_CODE_ARRAY)
714e53ab 11367 {
5ec18f2b
JG
11368 /* As mentioned in the OP_VAR_VALUE case, tagged types can
11369 only be determined by inspecting the object's tag.
11370 This means that we need to evaluate completely the
11371 expression in order to get its type. */
11372
023db19c
JB
11373 if ((TYPE_CODE (type) == TYPE_CODE_REF
11374 || TYPE_CODE (type) == TYPE_CODE_PTR)
5ec18f2b
JG
11375 && ada_is_tagged_type (TYPE_TARGET_TYPE (type), 0))
11376 {
11377 arg1 = evaluate_subexp (NULL_TYPE, exp, &preeval_pos,
11378 EVAL_NORMAL);
11379 type = value_type (ada_value_ind (arg1));
11380 }
11381 else
11382 {
11383 type = to_static_fixed_type
11384 (ada_aligned_type
11385 (ada_check_typedef (TYPE_TARGET_TYPE (type))));
11386 }
c1b5a1a6 11387 ada_ensure_varsize_limit (type);
714e53ab
PH
11388 return value_zero (type, lval_memory);
11389 }
4c4b4cd2 11390 else if (TYPE_CODE (type) == TYPE_CODE_INT)
6b0d7253
JB
11391 {
11392 /* GDB allows dereferencing an int. */
11393 if (expect_type == NULL)
11394 return value_zero (builtin_type (exp->gdbarch)->builtin_int,
11395 lval_memory);
11396 else
11397 {
11398 expect_type =
11399 to_static_fixed_type (ada_aligned_type (expect_type));
11400 return value_zero (expect_type, lval_memory);
11401 }
11402 }
4c4b4cd2 11403 else
323e0a4a 11404 error (_("Attempt to take contents of a non-pointer value."));
4c4b4cd2 11405 }
0963b4bd 11406 arg1 = ada_coerce_ref (arg1); /* FIXME: What is this for?? */
df407dfe 11407 type = ada_check_typedef (value_type (arg1));
d2e4a39e 11408
96967637
JB
11409 if (TYPE_CODE (type) == TYPE_CODE_INT)
11410 /* GDB allows dereferencing an int. If we were given
11411 the expect_type, then use that as the target type.
11412 Otherwise, assume that the target type is an int. */
11413 {
11414 if (expect_type != NULL)
11415 return ada_value_ind (value_cast (lookup_pointer_type (expect_type),
11416 arg1));
11417 else
11418 return value_at_lazy (builtin_type (exp->gdbarch)->builtin_int,
11419 (CORE_ADDR) value_as_address (arg1));
11420 }
6b0d7253 11421
4c4b4cd2
PH
11422 if (ada_is_array_descriptor_type (type))
11423 /* GDB allows dereferencing GNAT array descriptors. */
11424 return ada_coerce_to_simple_array (arg1);
14f9c5c9 11425 else
4c4b4cd2 11426 return ada_value_ind (arg1);
14f9c5c9
AS
11427
11428 case STRUCTOP_STRUCT:
11429 tem = longest_to_int (exp->elts[pc + 1].longconst);
11430 (*pos) += 3 + BYTES_TO_EXP_ELEM (tem + 1);
5ec18f2b 11431 preeval_pos = *pos;
14f9c5c9
AS
11432 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11433 if (noside == EVAL_SKIP)
4c4b4cd2 11434 goto nosideret;
14f9c5c9 11435 if (noside == EVAL_AVOID_SIDE_EFFECTS)
76a01679 11436 {
df407dfe 11437 struct type *type1 = value_type (arg1);
5b4ee69b 11438
76a01679
JB
11439 if (ada_is_tagged_type (type1, 1))
11440 {
11441 type = ada_lookup_struct_elt_type (type1,
11442 &exp->elts[pc + 2].string,
11443 1, 1, NULL);
5ec18f2b
JG
11444
11445 /* If the field is not found, check if it exists in the
11446 extension of this object's type. This means that we
11447 need to evaluate completely the expression. */
11448
76a01679 11449 if (type == NULL)
5ec18f2b
JG
11450 {
11451 arg1 = evaluate_subexp (NULL_TYPE, exp, &preeval_pos,
11452 EVAL_NORMAL);
11453 arg1 = ada_value_struct_elt (arg1,
11454 &exp->elts[pc + 2].string,
11455 0);
11456 arg1 = unwrap_value (arg1);
11457 type = value_type (ada_to_fixed_value (arg1));
11458 }
76a01679
JB
11459 }
11460 else
11461 type =
11462 ada_lookup_struct_elt_type (type1, &exp->elts[pc + 2].string, 1,
11463 0, NULL);
11464
11465 return value_zero (ada_aligned_type (type), lval_memory);
11466 }
14f9c5c9 11467 else
a579cd9a
MW
11468 {
11469 arg1 = ada_value_struct_elt (arg1, &exp->elts[pc + 2].string, 0);
11470 arg1 = unwrap_value (arg1);
11471 return ada_to_fixed_value (arg1);
11472 }
284614f0 11473
14f9c5c9 11474 case OP_TYPE:
4c4b4cd2
PH
11475 /* The value is not supposed to be used. This is here to make it
11476 easier to accommodate expressions that contain types. */
14f9c5c9
AS
11477 (*pos) += 2;
11478 if (noside == EVAL_SKIP)
4c4b4cd2 11479 goto nosideret;
14f9c5c9 11480 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
a6cfbe68 11481 return allocate_value (exp->elts[pc + 1].type);
14f9c5c9 11482 else
323e0a4a 11483 error (_("Attempt to use a type name as an expression"));
52ce6436
PH
11484
11485 case OP_AGGREGATE:
11486 case OP_CHOICES:
11487 case OP_OTHERS:
11488 case OP_DISCRETE_RANGE:
11489 case OP_POSITIONAL:
11490 case OP_NAME:
11491 if (noside == EVAL_NORMAL)
11492 switch (op)
11493 {
11494 case OP_NAME:
11495 error (_("Undefined name, ambiguous name, or renaming used in "
e1d5a0d2 11496 "component association: %s."), &exp->elts[pc+2].string);
52ce6436
PH
11497 case OP_AGGREGATE:
11498 error (_("Aggregates only allowed on the right of an assignment"));
11499 default:
0963b4bd
MS
11500 internal_error (__FILE__, __LINE__,
11501 _("aggregate apparently mangled"));
52ce6436
PH
11502 }
11503
11504 ada_forward_operator_length (exp, pc, &oplen, &nargs);
11505 *pos += oplen - 1;
11506 for (tem = 0; tem < nargs; tem += 1)
11507 ada_evaluate_subexp (NULL, exp, pos, noside);
11508 goto nosideret;
14f9c5c9
AS
11509 }
11510
11511nosideret:
22601c15 11512 return value_from_longest (builtin_type (exp->gdbarch)->builtin_int, 1);
14f9c5c9 11513}
14f9c5c9 11514\f
d2e4a39e 11515
4c4b4cd2 11516 /* Fixed point */
14f9c5c9
AS
11517
11518/* If TYPE encodes an Ada fixed-point type, return the suffix of the
11519 type name that encodes the 'small and 'delta information.
4c4b4cd2 11520 Otherwise, return NULL. */
14f9c5c9 11521
d2e4a39e 11522static const char *
ebf56fd3 11523fixed_type_info (struct type *type)
14f9c5c9 11524{
d2e4a39e 11525 const char *name = ada_type_name (type);
14f9c5c9
AS
11526 enum type_code code = (type == NULL) ? TYPE_CODE_UNDEF : TYPE_CODE (type);
11527
d2e4a39e
AS
11528 if ((code == TYPE_CODE_INT || code == TYPE_CODE_RANGE) && name != NULL)
11529 {
14f9c5c9 11530 const char *tail = strstr (name, "___XF_");
5b4ee69b 11531
14f9c5c9 11532 if (tail == NULL)
4c4b4cd2 11533 return NULL;
d2e4a39e 11534 else
4c4b4cd2 11535 return tail + 5;
14f9c5c9
AS
11536 }
11537 else if (code == TYPE_CODE_RANGE && TYPE_TARGET_TYPE (type) != type)
11538 return fixed_type_info (TYPE_TARGET_TYPE (type));
11539 else
11540 return NULL;
11541}
11542
4c4b4cd2 11543/* Returns non-zero iff TYPE represents an Ada fixed-point type. */
14f9c5c9
AS
11544
11545int
ebf56fd3 11546ada_is_fixed_point_type (struct type *type)
14f9c5c9
AS
11547{
11548 return fixed_type_info (type) != NULL;
11549}
11550
4c4b4cd2
PH
11551/* Return non-zero iff TYPE represents a System.Address type. */
11552
11553int
11554ada_is_system_address_type (struct type *type)
11555{
11556 return (TYPE_NAME (type)
11557 && strcmp (TYPE_NAME (type), "system__address") == 0);
11558}
11559
14f9c5c9
AS
11560/* Assuming that TYPE is the representation of an Ada fixed-point
11561 type, return its delta, or -1 if the type is malformed and the
4c4b4cd2 11562 delta cannot be determined. */
14f9c5c9
AS
11563
11564DOUBLEST
ebf56fd3 11565ada_delta (struct type *type)
14f9c5c9
AS
11566{
11567 const char *encoding = fixed_type_info (type);
facc390f 11568 DOUBLEST num, den;
14f9c5c9 11569
facc390f
JB
11570 /* Strictly speaking, num and den are encoded as integer. However,
11571 they may not fit into a long, and they will have to be converted
11572 to DOUBLEST anyway. So scan them as DOUBLEST. */
11573 if (sscanf (encoding, "_%" DOUBLEST_SCAN_FORMAT "_%" DOUBLEST_SCAN_FORMAT,
11574 &num, &den) < 2)
14f9c5c9 11575 return -1.0;
d2e4a39e 11576 else
facc390f 11577 return num / den;
14f9c5c9
AS
11578}
11579
11580/* Assuming that ada_is_fixed_point_type (TYPE), return the scaling
4c4b4cd2 11581 factor ('SMALL value) associated with the type. */
14f9c5c9
AS
11582
11583static DOUBLEST
ebf56fd3 11584scaling_factor (struct type *type)
14f9c5c9
AS
11585{
11586 const char *encoding = fixed_type_info (type);
facc390f 11587 DOUBLEST num0, den0, num1, den1;
14f9c5c9 11588 int n;
d2e4a39e 11589
facc390f
JB
11590 /* Strictly speaking, num's and den's are encoded as integer. However,
11591 they may not fit into a long, and they will have to be converted
11592 to DOUBLEST anyway. So scan them as DOUBLEST. */
11593 n = sscanf (encoding,
11594 "_%" DOUBLEST_SCAN_FORMAT "_%" DOUBLEST_SCAN_FORMAT
11595 "_%" DOUBLEST_SCAN_FORMAT "_%" DOUBLEST_SCAN_FORMAT,
11596 &num0, &den0, &num1, &den1);
14f9c5c9
AS
11597
11598 if (n < 2)
11599 return 1.0;
11600 else if (n == 4)
facc390f 11601 return num1 / den1;
d2e4a39e 11602 else
facc390f 11603 return num0 / den0;
14f9c5c9
AS
11604}
11605
11606
11607/* Assuming that X is the representation of a value of fixed-point
4c4b4cd2 11608 type TYPE, return its floating-point equivalent. */
14f9c5c9
AS
11609
11610DOUBLEST
ebf56fd3 11611ada_fixed_to_float (struct type *type, LONGEST x)
14f9c5c9 11612{
d2e4a39e 11613 return (DOUBLEST) x *scaling_factor (type);
14f9c5c9
AS
11614}
11615
4c4b4cd2
PH
11616/* The representation of a fixed-point value of type TYPE
11617 corresponding to the value X. */
14f9c5c9
AS
11618
11619LONGEST
ebf56fd3 11620ada_float_to_fixed (struct type *type, DOUBLEST x)
14f9c5c9
AS
11621{
11622 return (LONGEST) (x / scaling_factor (type) + 0.5);
11623}
11624
14f9c5c9 11625\f
d2e4a39e 11626
4c4b4cd2 11627 /* Range types */
14f9c5c9
AS
11628
11629/* Scan STR beginning at position K for a discriminant name, and
11630 return the value of that discriminant field of DVAL in *PX. If
11631 PNEW_K is not null, put the position of the character beyond the
11632 name scanned in *PNEW_K. Return 1 if successful; return 0 and do
4c4b4cd2 11633 not alter *PX and *PNEW_K if unsuccessful. */
14f9c5c9
AS
11634
11635static int
108d56a4 11636scan_discrim_bound (const char *str, int k, struct value *dval, LONGEST * px,
76a01679 11637 int *pnew_k)
14f9c5c9
AS
11638{
11639 static char *bound_buffer = NULL;
11640 static size_t bound_buffer_len = 0;
5da1a4d3 11641 const char *pstart, *pend, *bound;
d2e4a39e 11642 struct value *bound_val;
14f9c5c9
AS
11643
11644 if (dval == NULL || str == NULL || str[k] == '\0')
11645 return 0;
11646
5da1a4d3
SM
11647 pstart = str + k;
11648 pend = strstr (pstart, "__");
14f9c5c9
AS
11649 if (pend == NULL)
11650 {
5da1a4d3 11651 bound = pstart;
14f9c5c9
AS
11652 k += strlen (bound);
11653 }
d2e4a39e 11654 else
14f9c5c9 11655 {
5da1a4d3
SM
11656 int len = pend - pstart;
11657
11658 /* Strip __ and beyond. */
11659 GROW_VECT (bound_buffer, bound_buffer_len, len + 1);
11660 strncpy (bound_buffer, pstart, len);
11661 bound_buffer[len] = '\0';
11662
14f9c5c9 11663 bound = bound_buffer;
d2e4a39e 11664 k = pend - str;
14f9c5c9 11665 }
d2e4a39e 11666
df407dfe 11667 bound_val = ada_search_struct_field (bound, dval, 0, value_type (dval));
14f9c5c9
AS
11668 if (bound_val == NULL)
11669 return 0;
11670
11671 *px = value_as_long (bound_val);
11672 if (pnew_k != NULL)
11673 *pnew_k = k;
11674 return 1;
11675}
11676
11677/* Value of variable named NAME in the current environment. If
11678 no such variable found, then if ERR_MSG is null, returns 0, and
4c4b4cd2
PH
11679 otherwise causes an error with message ERR_MSG. */
11680
d2e4a39e
AS
11681static struct value *
11682get_var_value (char *name, char *err_msg)
14f9c5c9 11683{
d12307c1 11684 struct block_symbol *syms;
14f9c5c9
AS
11685 int nsyms;
11686
4c4b4cd2 11687 nsyms = ada_lookup_symbol_list (name, get_selected_block (0), VAR_DOMAIN,
4eeaa230 11688 &syms);
14f9c5c9
AS
11689
11690 if (nsyms != 1)
11691 {
11692 if (err_msg == NULL)
4c4b4cd2 11693 return 0;
14f9c5c9 11694 else
8a3fe4f8 11695 error (("%s"), err_msg);
14f9c5c9
AS
11696 }
11697
d12307c1 11698 return value_of_variable (syms[0].symbol, syms[0].block);
14f9c5c9 11699}
d2e4a39e 11700
14f9c5c9 11701/* Value of integer variable named NAME in the current environment. If
4c4b4cd2
PH
11702 no such variable found, returns 0, and sets *FLAG to 0. If
11703 successful, sets *FLAG to 1. */
11704
14f9c5c9 11705LONGEST
4c4b4cd2 11706get_int_var_value (char *name, int *flag)
14f9c5c9 11707{
4c4b4cd2 11708 struct value *var_val = get_var_value (name, 0);
d2e4a39e 11709
14f9c5c9
AS
11710 if (var_val == 0)
11711 {
11712 if (flag != NULL)
4c4b4cd2 11713 *flag = 0;
14f9c5c9
AS
11714 return 0;
11715 }
11716 else
11717 {
11718 if (flag != NULL)
4c4b4cd2 11719 *flag = 1;
14f9c5c9
AS
11720 return value_as_long (var_val);
11721 }
11722}
d2e4a39e 11723
14f9c5c9
AS
11724
11725/* Return a range type whose base type is that of the range type named
11726 NAME in the current environment, and whose bounds are calculated
4c4b4cd2 11727 from NAME according to the GNAT range encoding conventions.
1ce677a4
UW
11728 Extract discriminant values, if needed, from DVAL. ORIG_TYPE is the
11729 corresponding range type from debug information; fall back to using it
11730 if symbol lookup fails. If a new type must be created, allocate it
11731 like ORIG_TYPE was. The bounds information, in general, is encoded
11732 in NAME, the base type given in the named range type. */
14f9c5c9 11733
d2e4a39e 11734static struct type *
28c85d6c 11735to_fixed_range_type (struct type *raw_type, struct value *dval)
14f9c5c9 11736{
0d5cff50 11737 const char *name;
14f9c5c9 11738 struct type *base_type;
108d56a4 11739 const char *subtype_info;
14f9c5c9 11740
28c85d6c
JB
11741 gdb_assert (raw_type != NULL);
11742 gdb_assert (TYPE_NAME (raw_type) != NULL);
dddfab26 11743
1ce677a4 11744 if (TYPE_CODE (raw_type) == TYPE_CODE_RANGE)
14f9c5c9
AS
11745 base_type = TYPE_TARGET_TYPE (raw_type);
11746 else
11747 base_type = raw_type;
11748
28c85d6c 11749 name = TYPE_NAME (raw_type);
14f9c5c9
AS
11750 subtype_info = strstr (name, "___XD");
11751 if (subtype_info == NULL)
690cc4eb 11752 {
43bbcdc2
PH
11753 LONGEST L = ada_discrete_type_low_bound (raw_type);
11754 LONGEST U = ada_discrete_type_high_bound (raw_type);
5b4ee69b 11755
690cc4eb
PH
11756 if (L < INT_MIN || U > INT_MAX)
11757 return raw_type;
11758 else
0c9c3474
SA
11759 return create_static_range_type (alloc_type_copy (raw_type), raw_type,
11760 L, U);
690cc4eb 11761 }
14f9c5c9
AS
11762 else
11763 {
11764 static char *name_buf = NULL;
11765 static size_t name_len = 0;
11766 int prefix_len = subtype_info - name;
11767 LONGEST L, U;
11768 struct type *type;
108d56a4 11769 const char *bounds_str;
14f9c5c9
AS
11770 int n;
11771
11772 GROW_VECT (name_buf, name_len, prefix_len + 5);
11773 strncpy (name_buf, name, prefix_len);
11774 name_buf[prefix_len] = '\0';
11775
11776 subtype_info += 5;
11777 bounds_str = strchr (subtype_info, '_');
11778 n = 1;
11779
d2e4a39e 11780 if (*subtype_info == 'L')
4c4b4cd2
PH
11781 {
11782 if (!ada_scan_number (bounds_str, n, &L, &n)
11783 && !scan_discrim_bound (bounds_str, n, dval, &L, &n))
11784 return raw_type;
11785 if (bounds_str[n] == '_')
11786 n += 2;
0963b4bd 11787 else if (bounds_str[n] == '.') /* FIXME? SGI Workshop kludge. */
4c4b4cd2
PH
11788 n += 1;
11789 subtype_info += 1;
11790 }
d2e4a39e 11791 else
4c4b4cd2
PH
11792 {
11793 int ok;
5b4ee69b 11794
4c4b4cd2
PH
11795 strcpy (name_buf + prefix_len, "___L");
11796 L = get_int_var_value (name_buf, &ok);
11797 if (!ok)
11798 {
323e0a4a 11799 lim_warning (_("Unknown lower bound, using 1."));
4c4b4cd2
PH
11800 L = 1;
11801 }
11802 }
14f9c5c9 11803
d2e4a39e 11804 if (*subtype_info == 'U')
4c4b4cd2
PH
11805 {
11806 if (!ada_scan_number (bounds_str, n, &U, &n)
11807 && !scan_discrim_bound (bounds_str, n, dval, &U, &n))
11808 return raw_type;
11809 }
d2e4a39e 11810 else
4c4b4cd2
PH
11811 {
11812 int ok;
5b4ee69b 11813
4c4b4cd2
PH
11814 strcpy (name_buf + prefix_len, "___U");
11815 U = get_int_var_value (name_buf, &ok);
11816 if (!ok)
11817 {
323e0a4a 11818 lim_warning (_("Unknown upper bound, using %ld."), (long) L);
4c4b4cd2
PH
11819 U = L;
11820 }
11821 }
14f9c5c9 11822
0c9c3474
SA
11823 type = create_static_range_type (alloc_type_copy (raw_type),
11824 base_type, L, U);
d2e4a39e 11825 TYPE_NAME (type) = name;
14f9c5c9
AS
11826 return type;
11827 }
11828}
11829
4c4b4cd2
PH
11830/* True iff NAME is the name of a range type. */
11831
14f9c5c9 11832int
d2e4a39e 11833ada_is_range_type_name (const char *name)
14f9c5c9
AS
11834{
11835 return (name != NULL && strstr (name, "___XD"));
d2e4a39e 11836}
14f9c5c9 11837\f
d2e4a39e 11838
4c4b4cd2
PH
11839 /* Modular types */
11840
11841/* True iff TYPE is an Ada modular type. */
14f9c5c9 11842
14f9c5c9 11843int
d2e4a39e 11844ada_is_modular_type (struct type *type)
14f9c5c9 11845{
18af8284 11846 struct type *subranged_type = get_base_type (type);
14f9c5c9
AS
11847
11848 return (subranged_type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE
690cc4eb 11849 && TYPE_CODE (subranged_type) == TYPE_CODE_INT
4c4b4cd2 11850 && TYPE_UNSIGNED (subranged_type));
14f9c5c9
AS
11851}
11852
4c4b4cd2
PH
11853/* Assuming ada_is_modular_type (TYPE), the modulus of TYPE. */
11854
61ee279c 11855ULONGEST
0056e4d5 11856ada_modulus (struct type *type)
14f9c5c9 11857{
43bbcdc2 11858 return (ULONGEST) TYPE_HIGH_BOUND (type) + 1;
14f9c5c9 11859}
d2e4a39e 11860\f
f7f9143b
JB
11861
11862/* Ada exception catchpoint support:
11863 ---------------------------------
11864
11865 We support 3 kinds of exception catchpoints:
11866 . catchpoints on Ada exceptions
11867 . catchpoints on unhandled Ada exceptions
11868 . catchpoints on failed assertions
11869
11870 Exceptions raised during failed assertions, or unhandled exceptions
11871 could perfectly be caught with the general catchpoint on Ada exceptions.
11872 However, we can easily differentiate these two special cases, and having
11873 the option to distinguish these two cases from the rest can be useful
11874 to zero-in on certain situations.
11875
11876 Exception catchpoints are a specialized form of breakpoint,
11877 since they rely on inserting breakpoints inside known routines
11878 of the GNAT runtime. The implementation therefore uses a standard
11879 breakpoint structure of the BP_BREAKPOINT type, but with its own set
11880 of breakpoint_ops.
11881
0259addd
JB
11882 Support in the runtime for exception catchpoints have been changed
11883 a few times already, and these changes affect the implementation
11884 of these catchpoints. In order to be able to support several
11885 variants of the runtime, we use a sniffer that will determine
28010a5d 11886 the runtime variant used by the program being debugged. */
f7f9143b 11887
82eacd52
JB
11888/* Ada's standard exceptions.
11889
11890 The Ada 83 standard also defined Numeric_Error. But there so many
11891 situations where it was unclear from the Ada 83 Reference Manual
11892 (RM) whether Constraint_Error or Numeric_Error should be raised,
11893 that the ARG (Ada Rapporteur Group) eventually issued a Binding
11894 Interpretation saying that anytime the RM says that Numeric_Error
11895 should be raised, the implementation may raise Constraint_Error.
11896 Ada 95 went one step further and pretty much removed Numeric_Error
11897 from the list of standard exceptions (it made it a renaming of
11898 Constraint_Error, to help preserve compatibility when compiling
11899 an Ada83 compiler). As such, we do not include Numeric_Error from
11900 this list of standard exceptions. */
3d0b0fa3
JB
11901
11902static char *standard_exc[] = {
11903 "constraint_error",
11904 "program_error",
11905 "storage_error",
11906 "tasking_error"
11907};
11908
0259addd
JB
11909typedef CORE_ADDR (ada_unhandled_exception_name_addr_ftype) (void);
11910
11911/* A structure that describes how to support exception catchpoints
11912 for a given executable. */
11913
11914struct exception_support_info
11915{
11916 /* The name of the symbol to break on in order to insert
11917 a catchpoint on exceptions. */
11918 const char *catch_exception_sym;
11919
11920 /* The name of the symbol to break on in order to insert
11921 a catchpoint on unhandled exceptions. */
11922 const char *catch_exception_unhandled_sym;
11923
11924 /* The name of the symbol to break on in order to insert
11925 a catchpoint on failed assertions. */
11926 const char *catch_assert_sym;
11927
11928 /* Assuming that the inferior just triggered an unhandled exception
11929 catchpoint, this function is responsible for returning the address
11930 in inferior memory where the name of that exception is stored.
11931 Return zero if the address could not be computed. */
11932 ada_unhandled_exception_name_addr_ftype *unhandled_exception_name_addr;
11933};
11934
11935static CORE_ADDR ada_unhandled_exception_name_addr (void);
11936static CORE_ADDR ada_unhandled_exception_name_addr_from_raise (void);
11937
11938/* The following exception support info structure describes how to
11939 implement exception catchpoints with the latest version of the
11940 Ada runtime (as of 2007-03-06). */
11941
11942static const struct exception_support_info default_exception_support_info =
11943{
11944 "__gnat_debug_raise_exception", /* catch_exception_sym */
11945 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
11946 "__gnat_debug_raise_assert_failure", /* catch_assert_sym */
11947 ada_unhandled_exception_name_addr
11948};
11949
11950/* The following exception support info structure describes how to
11951 implement exception catchpoints with a slightly older version
11952 of the Ada runtime. */
11953
11954static const struct exception_support_info exception_support_info_fallback =
11955{
11956 "__gnat_raise_nodefer_with_msg", /* catch_exception_sym */
11957 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
11958 "system__assertions__raise_assert_failure", /* catch_assert_sym */
11959 ada_unhandled_exception_name_addr_from_raise
11960};
11961
f17011e0
JB
11962/* Return nonzero if we can detect the exception support routines
11963 described in EINFO.
11964
11965 This function errors out if an abnormal situation is detected
11966 (for instance, if we find the exception support routines, but
11967 that support is found to be incomplete). */
11968
11969static int
11970ada_has_this_exception_support (const struct exception_support_info *einfo)
11971{
11972 struct symbol *sym;
11973
11974 /* The symbol we're looking up is provided by a unit in the GNAT runtime
11975 that should be compiled with debugging information. As a result, we
11976 expect to find that symbol in the symtabs. */
11977
11978 sym = standard_lookup (einfo->catch_exception_sym, NULL, VAR_DOMAIN);
11979 if (sym == NULL)
a6af7abe
JB
11980 {
11981 /* Perhaps we did not find our symbol because the Ada runtime was
11982 compiled without debugging info, or simply stripped of it.
11983 It happens on some GNU/Linux distributions for instance, where
11984 users have to install a separate debug package in order to get
11985 the runtime's debugging info. In that situation, let the user
11986 know why we cannot insert an Ada exception catchpoint.
11987
11988 Note: Just for the purpose of inserting our Ada exception
11989 catchpoint, we could rely purely on the associated minimal symbol.
11990 But we would be operating in degraded mode anyway, since we are
11991 still lacking the debugging info needed later on to extract
11992 the name of the exception being raised (this name is printed in
11993 the catchpoint message, and is also used when trying to catch
11994 a specific exception). We do not handle this case for now. */
3b7344d5 11995 struct bound_minimal_symbol msym
1c8e84b0
JB
11996 = lookup_minimal_symbol (einfo->catch_exception_sym, NULL, NULL);
11997
3b7344d5 11998 if (msym.minsym && MSYMBOL_TYPE (msym.minsym) != mst_solib_trampoline)
a6af7abe
JB
11999 error (_("Your Ada runtime appears to be missing some debugging "
12000 "information.\nCannot insert Ada exception catchpoint "
12001 "in this configuration."));
12002
12003 return 0;
12004 }
f17011e0
JB
12005
12006 /* Make sure that the symbol we found corresponds to a function. */
12007
12008 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
12009 error (_("Symbol \"%s\" is not a function (class = %d)"),
12010 SYMBOL_LINKAGE_NAME (sym), SYMBOL_CLASS (sym));
12011
12012 return 1;
12013}
12014
0259addd
JB
12015/* Inspect the Ada runtime and determine which exception info structure
12016 should be used to provide support for exception catchpoints.
12017
3eecfa55
JB
12018 This function will always set the per-inferior exception_info,
12019 or raise an error. */
0259addd
JB
12020
12021static void
12022ada_exception_support_info_sniffer (void)
12023{
3eecfa55 12024 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
0259addd
JB
12025
12026 /* If the exception info is already known, then no need to recompute it. */
3eecfa55 12027 if (data->exception_info != NULL)
0259addd
JB
12028 return;
12029
12030 /* Check the latest (default) exception support info. */
f17011e0 12031 if (ada_has_this_exception_support (&default_exception_support_info))
0259addd 12032 {
3eecfa55 12033 data->exception_info = &default_exception_support_info;
0259addd
JB
12034 return;
12035 }
12036
12037 /* Try our fallback exception suport info. */
f17011e0 12038 if (ada_has_this_exception_support (&exception_support_info_fallback))
0259addd 12039 {
3eecfa55 12040 data->exception_info = &exception_support_info_fallback;
0259addd
JB
12041 return;
12042 }
12043
12044 /* Sometimes, it is normal for us to not be able to find the routine
12045 we are looking for. This happens when the program is linked with
12046 the shared version of the GNAT runtime, and the program has not been
12047 started yet. Inform the user of these two possible causes if
12048 applicable. */
12049
ccefe4c4 12050 if (ada_update_initial_language (language_unknown) != language_ada)
0259addd
JB
12051 error (_("Unable to insert catchpoint. Is this an Ada main program?"));
12052
12053 /* If the symbol does not exist, then check that the program is
12054 already started, to make sure that shared libraries have been
12055 loaded. If it is not started, this may mean that the symbol is
12056 in a shared library. */
12057
12058 if (ptid_get_pid (inferior_ptid) == 0)
12059 error (_("Unable to insert catchpoint. Try to start the program first."));
12060
12061 /* At this point, we know that we are debugging an Ada program and
12062 that the inferior has been started, but we still are not able to
0963b4bd 12063 find the run-time symbols. That can mean that we are in
0259addd
JB
12064 configurable run time mode, or that a-except as been optimized
12065 out by the linker... In any case, at this point it is not worth
12066 supporting this feature. */
12067
7dda8cff 12068 error (_("Cannot insert Ada exception catchpoints in this configuration."));
0259addd
JB
12069}
12070
f7f9143b
JB
12071/* True iff FRAME is very likely to be that of a function that is
12072 part of the runtime system. This is all very heuristic, but is
12073 intended to be used as advice as to what frames are uninteresting
12074 to most users. */
12075
12076static int
12077is_known_support_routine (struct frame_info *frame)
12078{
4ed6b5be 12079 struct symtab_and_line sal;
55b87a52 12080 char *func_name;
692465f1 12081 enum language func_lang;
f7f9143b 12082 int i;
f35a17b5 12083 const char *fullname;
f7f9143b 12084
4ed6b5be
JB
12085 /* If this code does not have any debugging information (no symtab),
12086 This cannot be any user code. */
f7f9143b 12087
4ed6b5be 12088 find_frame_sal (frame, &sal);
f7f9143b
JB
12089 if (sal.symtab == NULL)
12090 return 1;
12091
4ed6b5be
JB
12092 /* If there is a symtab, but the associated source file cannot be
12093 located, then assume this is not user code: Selecting a frame
12094 for which we cannot display the code would not be very helpful
12095 for the user. This should also take care of case such as VxWorks
12096 where the kernel has some debugging info provided for a few units. */
f7f9143b 12097
f35a17b5
JK
12098 fullname = symtab_to_fullname (sal.symtab);
12099 if (access (fullname, R_OK) != 0)
f7f9143b
JB
12100 return 1;
12101
4ed6b5be
JB
12102 /* Check the unit filename againt the Ada runtime file naming.
12103 We also check the name of the objfile against the name of some
12104 known system libraries that sometimes come with debugging info
12105 too. */
12106
f7f9143b
JB
12107 for (i = 0; known_runtime_file_name_patterns[i] != NULL; i += 1)
12108 {
12109 re_comp (known_runtime_file_name_patterns[i]);
f69c91ad 12110 if (re_exec (lbasename (sal.symtab->filename)))
f7f9143b 12111 return 1;
eb822aa6
DE
12112 if (SYMTAB_OBJFILE (sal.symtab) != NULL
12113 && re_exec (objfile_name (SYMTAB_OBJFILE (sal.symtab))))
4ed6b5be 12114 return 1;
f7f9143b
JB
12115 }
12116
4ed6b5be 12117 /* Check whether the function is a GNAT-generated entity. */
f7f9143b 12118
e9e07ba6 12119 find_frame_funname (frame, &func_name, &func_lang, NULL);
f7f9143b
JB
12120 if (func_name == NULL)
12121 return 1;
12122
12123 for (i = 0; known_auxiliary_function_name_patterns[i] != NULL; i += 1)
12124 {
12125 re_comp (known_auxiliary_function_name_patterns[i]);
12126 if (re_exec (func_name))
55b87a52
KS
12127 {
12128 xfree (func_name);
12129 return 1;
12130 }
f7f9143b
JB
12131 }
12132
55b87a52 12133 xfree (func_name);
f7f9143b
JB
12134 return 0;
12135}
12136
12137/* Find the first frame that contains debugging information and that is not
12138 part of the Ada run-time, starting from FI and moving upward. */
12139
0ef643c8 12140void
f7f9143b
JB
12141ada_find_printable_frame (struct frame_info *fi)
12142{
12143 for (; fi != NULL; fi = get_prev_frame (fi))
12144 {
12145 if (!is_known_support_routine (fi))
12146 {
12147 select_frame (fi);
12148 break;
12149 }
12150 }
12151
12152}
12153
12154/* Assuming that the inferior just triggered an unhandled exception
12155 catchpoint, return the address in inferior memory where the name
12156 of the exception is stored.
12157
12158 Return zero if the address could not be computed. */
12159
12160static CORE_ADDR
12161ada_unhandled_exception_name_addr (void)
0259addd
JB
12162{
12163 return parse_and_eval_address ("e.full_name");
12164}
12165
12166/* Same as ada_unhandled_exception_name_addr, except that this function
12167 should be used when the inferior uses an older version of the runtime,
12168 where the exception name needs to be extracted from a specific frame
12169 several frames up in the callstack. */
12170
12171static CORE_ADDR
12172ada_unhandled_exception_name_addr_from_raise (void)
f7f9143b
JB
12173{
12174 int frame_level;
12175 struct frame_info *fi;
3eecfa55 12176 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
55b87a52 12177 struct cleanup *old_chain;
f7f9143b
JB
12178
12179 /* To determine the name of this exception, we need to select
12180 the frame corresponding to RAISE_SYM_NAME. This frame is
12181 at least 3 levels up, so we simply skip the first 3 frames
12182 without checking the name of their associated function. */
12183 fi = get_current_frame ();
12184 for (frame_level = 0; frame_level < 3; frame_level += 1)
12185 if (fi != NULL)
12186 fi = get_prev_frame (fi);
12187
55b87a52 12188 old_chain = make_cleanup (null_cleanup, NULL);
f7f9143b
JB
12189 while (fi != NULL)
12190 {
55b87a52 12191 char *func_name;
692465f1
JB
12192 enum language func_lang;
12193
e9e07ba6 12194 find_frame_funname (fi, &func_name, &func_lang, NULL);
55b87a52
KS
12195 if (func_name != NULL)
12196 {
12197 make_cleanup (xfree, func_name);
12198
12199 if (strcmp (func_name,
12200 data->exception_info->catch_exception_sym) == 0)
12201 break; /* We found the frame we were looking for... */
12202 fi = get_prev_frame (fi);
12203 }
f7f9143b 12204 }
55b87a52 12205 do_cleanups (old_chain);
f7f9143b
JB
12206
12207 if (fi == NULL)
12208 return 0;
12209
12210 select_frame (fi);
12211 return parse_and_eval_address ("id.full_name");
12212}
12213
12214/* Assuming the inferior just triggered an Ada exception catchpoint
12215 (of any type), return the address in inferior memory where the name
12216 of the exception is stored, if applicable.
12217
45db7c09
PA
12218 Assumes the selected frame is the current frame.
12219
f7f9143b
JB
12220 Return zero if the address could not be computed, or if not relevant. */
12221
12222static CORE_ADDR
761269c8 12223ada_exception_name_addr_1 (enum ada_exception_catchpoint_kind ex,
f7f9143b
JB
12224 struct breakpoint *b)
12225{
3eecfa55
JB
12226 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
12227
f7f9143b
JB
12228 switch (ex)
12229 {
761269c8 12230 case ada_catch_exception:
f7f9143b
JB
12231 return (parse_and_eval_address ("e.full_name"));
12232 break;
12233
761269c8 12234 case ada_catch_exception_unhandled:
3eecfa55 12235 return data->exception_info->unhandled_exception_name_addr ();
f7f9143b
JB
12236 break;
12237
761269c8 12238 case ada_catch_assert:
f7f9143b
JB
12239 return 0; /* Exception name is not relevant in this case. */
12240 break;
12241
12242 default:
12243 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12244 break;
12245 }
12246
12247 return 0; /* Should never be reached. */
12248}
12249
12250/* Same as ada_exception_name_addr_1, except that it intercepts and contains
12251 any error that ada_exception_name_addr_1 might cause to be thrown.
12252 When an error is intercepted, a warning with the error message is printed,
12253 and zero is returned. */
12254
12255static CORE_ADDR
761269c8 12256ada_exception_name_addr (enum ada_exception_catchpoint_kind ex,
f7f9143b
JB
12257 struct breakpoint *b)
12258{
f7f9143b
JB
12259 CORE_ADDR result = 0;
12260
492d29ea 12261 TRY
f7f9143b
JB
12262 {
12263 result = ada_exception_name_addr_1 (ex, b);
12264 }
12265
492d29ea 12266 CATCH (e, RETURN_MASK_ERROR)
f7f9143b
JB
12267 {
12268 warning (_("failed to get exception name: %s"), e.message);
12269 return 0;
12270 }
492d29ea 12271 END_CATCH
f7f9143b
JB
12272
12273 return result;
12274}
12275
28010a5d
PA
12276static char *ada_exception_catchpoint_cond_string (const char *excep_string);
12277
12278/* Ada catchpoints.
12279
12280 In the case of catchpoints on Ada exceptions, the catchpoint will
12281 stop the target on every exception the program throws. When a user
12282 specifies the name of a specific exception, we translate this
12283 request into a condition expression (in text form), and then parse
12284 it into an expression stored in each of the catchpoint's locations.
12285 We then use this condition to check whether the exception that was
12286 raised is the one the user is interested in. If not, then the
12287 target is resumed again. We store the name of the requested
12288 exception, in order to be able to re-set the condition expression
12289 when symbols change. */
12290
12291/* An instance of this type is used to represent an Ada catchpoint
12292 breakpoint location. It includes a "struct bp_location" as a kind
12293 of base class; users downcast to "struct bp_location *" when
12294 needed. */
12295
12296struct ada_catchpoint_location
12297{
12298 /* The base class. */
12299 struct bp_location base;
12300
12301 /* The condition that checks whether the exception that was raised
12302 is the specific exception the user specified on catchpoint
12303 creation. */
4d01a485 12304 expression_up excep_cond_expr;
28010a5d
PA
12305};
12306
12307/* Implement the DTOR method in the bp_location_ops structure for all
12308 Ada exception catchpoint kinds. */
12309
12310static void
12311ada_catchpoint_location_dtor (struct bp_location *bl)
12312{
12313 struct ada_catchpoint_location *al = (struct ada_catchpoint_location *) bl;
12314
4d01a485 12315 al->excep_cond_expr.reset ();
28010a5d
PA
12316}
12317
12318/* The vtable to be used in Ada catchpoint locations. */
12319
12320static const struct bp_location_ops ada_catchpoint_location_ops =
12321{
12322 ada_catchpoint_location_dtor
12323};
12324
12325/* An instance of this type is used to represent an Ada catchpoint.
12326 It includes a "struct breakpoint" as a kind of base class; users
12327 downcast to "struct breakpoint *" when needed. */
12328
12329struct ada_catchpoint
12330{
12331 /* The base class. */
12332 struct breakpoint base;
12333
12334 /* The name of the specific exception the user specified. */
12335 char *excep_string;
12336};
12337
12338/* Parse the exception condition string in the context of each of the
12339 catchpoint's locations, and store them for later evaluation. */
12340
12341static void
12342create_excep_cond_exprs (struct ada_catchpoint *c)
12343{
12344 struct cleanup *old_chain;
12345 struct bp_location *bl;
12346 char *cond_string;
12347
12348 /* Nothing to do if there's no specific exception to catch. */
12349 if (c->excep_string == NULL)
12350 return;
12351
12352 /* Same if there are no locations... */
12353 if (c->base.loc == NULL)
12354 return;
12355
12356 /* Compute the condition expression in text form, from the specific
12357 expection we want to catch. */
12358 cond_string = ada_exception_catchpoint_cond_string (c->excep_string);
12359 old_chain = make_cleanup (xfree, cond_string);
12360
12361 /* Iterate over all the catchpoint's locations, and parse an
12362 expression for each. */
12363 for (bl = c->base.loc; bl != NULL; bl = bl->next)
12364 {
12365 struct ada_catchpoint_location *ada_loc
12366 = (struct ada_catchpoint_location *) bl;
4d01a485 12367 expression_up exp;
28010a5d
PA
12368
12369 if (!bl->shlib_disabled)
12370 {
bbc13ae3 12371 const char *s;
28010a5d
PA
12372
12373 s = cond_string;
492d29ea 12374 TRY
28010a5d 12375 {
4d01a485
PA
12376 exp = gdb::move (parse_exp_1 (&s, bl->address,
12377 block_for_pc (bl->address),
12378 0));
28010a5d 12379 }
492d29ea 12380 CATCH (e, RETURN_MASK_ERROR)
849f2b52
JB
12381 {
12382 warning (_("failed to reevaluate internal exception condition "
12383 "for catchpoint %d: %s"),
12384 c->base.number, e.message);
849f2b52 12385 }
492d29ea 12386 END_CATCH
28010a5d
PA
12387 }
12388
4d01a485 12389 ada_loc->excep_cond_expr = gdb::move (exp);
28010a5d
PA
12390 }
12391
12392 do_cleanups (old_chain);
12393}
12394
12395/* Implement the DTOR method in the breakpoint_ops structure for all
12396 exception catchpoint kinds. */
12397
12398static void
761269c8 12399dtor_exception (enum ada_exception_catchpoint_kind ex, struct breakpoint *b)
28010a5d
PA
12400{
12401 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
12402
12403 xfree (c->excep_string);
348d480f 12404
2060206e 12405 bkpt_breakpoint_ops.dtor (b);
28010a5d
PA
12406}
12407
12408/* Implement the ALLOCATE_LOCATION method in the breakpoint_ops
12409 structure for all exception catchpoint kinds. */
12410
12411static struct bp_location *
761269c8 12412allocate_location_exception (enum ada_exception_catchpoint_kind ex,
28010a5d
PA
12413 struct breakpoint *self)
12414{
12415 struct ada_catchpoint_location *loc;
12416
4d01a485 12417 loc = new ada_catchpoint_location ();
28010a5d
PA
12418 init_bp_location (&loc->base, &ada_catchpoint_location_ops, self);
12419 loc->excep_cond_expr = NULL;
12420 return &loc->base;
12421}
12422
12423/* Implement the RE_SET method in the breakpoint_ops structure for all
12424 exception catchpoint kinds. */
12425
12426static void
761269c8 12427re_set_exception (enum ada_exception_catchpoint_kind ex, struct breakpoint *b)
28010a5d
PA
12428{
12429 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
12430
12431 /* Call the base class's method. This updates the catchpoint's
12432 locations. */
2060206e 12433 bkpt_breakpoint_ops.re_set (b);
28010a5d
PA
12434
12435 /* Reparse the exception conditional expressions. One for each
12436 location. */
12437 create_excep_cond_exprs (c);
12438}
12439
12440/* Returns true if we should stop for this breakpoint hit. If the
12441 user specified a specific exception, we only want to cause a stop
12442 if the program thrown that exception. */
12443
12444static int
12445should_stop_exception (const struct bp_location *bl)
12446{
12447 struct ada_catchpoint *c = (struct ada_catchpoint *) bl->owner;
12448 const struct ada_catchpoint_location *ada_loc
12449 = (const struct ada_catchpoint_location *) bl;
28010a5d
PA
12450 int stop;
12451
12452 /* With no specific exception, should always stop. */
12453 if (c->excep_string == NULL)
12454 return 1;
12455
12456 if (ada_loc->excep_cond_expr == NULL)
12457 {
12458 /* We will have a NULL expression if back when we were creating
12459 the expressions, this location's had failed to parse. */
12460 return 1;
12461 }
12462
12463 stop = 1;
492d29ea 12464 TRY
28010a5d
PA
12465 {
12466 struct value *mark;
12467
12468 mark = value_mark ();
4d01a485 12469 stop = value_true (evaluate_expression (ada_loc->excep_cond_expr.get ()));
28010a5d
PA
12470 value_free_to_mark (mark);
12471 }
492d29ea
PA
12472 CATCH (ex, RETURN_MASK_ALL)
12473 {
12474 exception_fprintf (gdb_stderr, ex,
12475 _("Error in testing exception condition:\n"));
12476 }
12477 END_CATCH
12478
28010a5d
PA
12479 return stop;
12480}
12481
12482/* Implement the CHECK_STATUS method in the breakpoint_ops structure
12483 for all exception catchpoint kinds. */
12484
12485static void
761269c8 12486check_status_exception (enum ada_exception_catchpoint_kind ex, bpstat bs)
28010a5d
PA
12487{
12488 bs->stop = should_stop_exception (bs->bp_location_at);
12489}
12490
f7f9143b
JB
12491/* Implement the PRINT_IT method in the breakpoint_ops structure
12492 for all exception catchpoint kinds. */
12493
12494static enum print_stop_action
761269c8 12495print_it_exception (enum ada_exception_catchpoint_kind ex, bpstat bs)
f7f9143b 12496{
79a45e25 12497 struct ui_out *uiout = current_uiout;
348d480f
PA
12498 struct breakpoint *b = bs->breakpoint_at;
12499
956a9fb9 12500 annotate_catchpoint (b->number);
f7f9143b 12501
956a9fb9 12502 if (ui_out_is_mi_like_p (uiout))
f7f9143b 12503 {
956a9fb9
JB
12504 ui_out_field_string (uiout, "reason",
12505 async_reason_lookup (EXEC_ASYNC_BREAKPOINT_HIT));
12506 ui_out_field_string (uiout, "disp", bpdisp_text (b->disposition));
f7f9143b
JB
12507 }
12508
00eb2c4a
JB
12509 ui_out_text (uiout,
12510 b->disposition == disp_del ? "\nTemporary catchpoint "
12511 : "\nCatchpoint ");
956a9fb9
JB
12512 ui_out_field_int (uiout, "bkptno", b->number);
12513 ui_out_text (uiout, ", ");
f7f9143b 12514
45db7c09
PA
12515 /* ada_exception_name_addr relies on the selected frame being the
12516 current frame. Need to do this here because this function may be
12517 called more than once when printing a stop, and below, we'll
12518 select the first frame past the Ada run-time (see
12519 ada_find_printable_frame). */
12520 select_frame (get_current_frame ());
12521
f7f9143b
JB
12522 switch (ex)
12523 {
761269c8
JB
12524 case ada_catch_exception:
12525 case ada_catch_exception_unhandled:
956a9fb9
JB
12526 {
12527 const CORE_ADDR addr = ada_exception_name_addr (ex, b);
12528 char exception_name[256];
12529
12530 if (addr != 0)
12531 {
c714b426
PA
12532 read_memory (addr, (gdb_byte *) exception_name,
12533 sizeof (exception_name) - 1);
956a9fb9
JB
12534 exception_name [sizeof (exception_name) - 1] = '\0';
12535 }
12536 else
12537 {
12538 /* For some reason, we were unable to read the exception
12539 name. This could happen if the Runtime was compiled
12540 without debugging info, for instance. In that case,
12541 just replace the exception name by the generic string
12542 "exception" - it will read as "an exception" in the
12543 notification we are about to print. */
967cff16 12544 memcpy (exception_name, "exception", sizeof ("exception"));
956a9fb9
JB
12545 }
12546 /* In the case of unhandled exception breakpoints, we print
12547 the exception name as "unhandled EXCEPTION_NAME", to make
12548 it clearer to the user which kind of catchpoint just got
12549 hit. We used ui_out_text to make sure that this extra
12550 info does not pollute the exception name in the MI case. */
761269c8 12551 if (ex == ada_catch_exception_unhandled)
956a9fb9
JB
12552 ui_out_text (uiout, "unhandled ");
12553 ui_out_field_string (uiout, "exception-name", exception_name);
12554 }
12555 break;
761269c8 12556 case ada_catch_assert:
956a9fb9
JB
12557 /* In this case, the name of the exception is not really
12558 important. Just print "failed assertion" to make it clearer
12559 that his program just hit an assertion-failure catchpoint.
12560 We used ui_out_text because this info does not belong in
12561 the MI output. */
12562 ui_out_text (uiout, "failed assertion");
12563 break;
f7f9143b 12564 }
956a9fb9
JB
12565 ui_out_text (uiout, " at ");
12566 ada_find_printable_frame (get_current_frame ());
f7f9143b
JB
12567
12568 return PRINT_SRC_AND_LOC;
12569}
12570
12571/* Implement the PRINT_ONE method in the breakpoint_ops structure
12572 for all exception catchpoint kinds. */
12573
12574static void
761269c8 12575print_one_exception (enum ada_exception_catchpoint_kind ex,
a6d9a66e 12576 struct breakpoint *b, struct bp_location **last_loc)
f7f9143b 12577{
79a45e25 12578 struct ui_out *uiout = current_uiout;
28010a5d 12579 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
79a45b7d
TT
12580 struct value_print_options opts;
12581
12582 get_user_print_options (&opts);
12583 if (opts.addressprint)
f7f9143b
JB
12584 {
12585 annotate_field (4);
5af949e3 12586 ui_out_field_core_addr (uiout, "addr", b->loc->gdbarch, b->loc->address);
f7f9143b
JB
12587 }
12588
12589 annotate_field (5);
a6d9a66e 12590 *last_loc = b->loc;
f7f9143b
JB
12591 switch (ex)
12592 {
761269c8 12593 case ada_catch_exception:
28010a5d 12594 if (c->excep_string != NULL)
f7f9143b 12595 {
28010a5d
PA
12596 char *msg = xstrprintf (_("`%s' Ada exception"), c->excep_string);
12597
f7f9143b
JB
12598 ui_out_field_string (uiout, "what", msg);
12599 xfree (msg);
12600 }
12601 else
12602 ui_out_field_string (uiout, "what", "all Ada exceptions");
12603
12604 break;
12605
761269c8 12606 case ada_catch_exception_unhandled:
f7f9143b
JB
12607 ui_out_field_string (uiout, "what", "unhandled Ada exceptions");
12608 break;
12609
761269c8 12610 case ada_catch_assert:
f7f9143b
JB
12611 ui_out_field_string (uiout, "what", "failed Ada assertions");
12612 break;
12613
12614 default:
12615 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12616 break;
12617 }
12618}
12619
12620/* Implement the PRINT_MENTION method in the breakpoint_ops structure
12621 for all exception catchpoint kinds. */
12622
12623static void
761269c8 12624print_mention_exception (enum ada_exception_catchpoint_kind ex,
f7f9143b
JB
12625 struct breakpoint *b)
12626{
28010a5d 12627 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
79a45e25 12628 struct ui_out *uiout = current_uiout;
28010a5d 12629
00eb2c4a
JB
12630 ui_out_text (uiout, b->disposition == disp_del ? _("Temporary catchpoint ")
12631 : _("Catchpoint "));
12632 ui_out_field_int (uiout, "bkptno", b->number);
12633 ui_out_text (uiout, ": ");
12634
f7f9143b
JB
12635 switch (ex)
12636 {
761269c8 12637 case ada_catch_exception:
28010a5d 12638 if (c->excep_string != NULL)
00eb2c4a
JB
12639 {
12640 char *info = xstrprintf (_("`%s' Ada exception"), c->excep_string);
12641 struct cleanup *old_chain = make_cleanup (xfree, info);
12642
12643 ui_out_text (uiout, info);
12644 do_cleanups (old_chain);
12645 }
f7f9143b 12646 else
00eb2c4a 12647 ui_out_text (uiout, _("all Ada exceptions"));
f7f9143b
JB
12648 break;
12649
761269c8 12650 case ada_catch_exception_unhandled:
00eb2c4a 12651 ui_out_text (uiout, _("unhandled Ada exceptions"));
f7f9143b
JB
12652 break;
12653
761269c8 12654 case ada_catch_assert:
00eb2c4a 12655 ui_out_text (uiout, _("failed Ada assertions"));
f7f9143b
JB
12656 break;
12657
12658 default:
12659 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12660 break;
12661 }
12662}
12663
6149aea9
PA
12664/* Implement the PRINT_RECREATE method in the breakpoint_ops structure
12665 for all exception catchpoint kinds. */
12666
12667static void
761269c8 12668print_recreate_exception (enum ada_exception_catchpoint_kind ex,
6149aea9
PA
12669 struct breakpoint *b, struct ui_file *fp)
12670{
28010a5d
PA
12671 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
12672
6149aea9
PA
12673 switch (ex)
12674 {
761269c8 12675 case ada_catch_exception:
6149aea9 12676 fprintf_filtered (fp, "catch exception");
28010a5d
PA
12677 if (c->excep_string != NULL)
12678 fprintf_filtered (fp, " %s", c->excep_string);
6149aea9
PA
12679 break;
12680
761269c8 12681 case ada_catch_exception_unhandled:
78076abc 12682 fprintf_filtered (fp, "catch exception unhandled");
6149aea9
PA
12683 break;
12684
761269c8 12685 case ada_catch_assert:
6149aea9
PA
12686 fprintf_filtered (fp, "catch assert");
12687 break;
12688
12689 default:
12690 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12691 }
d9b3f62e 12692 print_recreate_thread (b, fp);
6149aea9
PA
12693}
12694
f7f9143b
JB
12695/* Virtual table for "catch exception" breakpoints. */
12696
28010a5d
PA
12697static void
12698dtor_catch_exception (struct breakpoint *b)
12699{
761269c8 12700 dtor_exception (ada_catch_exception, b);
28010a5d
PA
12701}
12702
12703static struct bp_location *
12704allocate_location_catch_exception (struct breakpoint *self)
12705{
761269c8 12706 return allocate_location_exception (ada_catch_exception, self);
28010a5d
PA
12707}
12708
12709static void
12710re_set_catch_exception (struct breakpoint *b)
12711{
761269c8 12712 re_set_exception (ada_catch_exception, b);
28010a5d
PA
12713}
12714
12715static void
12716check_status_catch_exception (bpstat bs)
12717{
761269c8 12718 check_status_exception (ada_catch_exception, bs);
28010a5d
PA
12719}
12720
f7f9143b 12721static enum print_stop_action
348d480f 12722print_it_catch_exception (bpstat bs)
f7f9143b 12723{
761269c8 12724 return print_it_exception (ada_catch_exception, bs);
f7f9143b
JB
12725}
12726
12727static void
a6d9a66e 12728print_one_catch_exception (struct breakpoint *b, struct bp_location **last_loc)
f7f9143b 12729{
761269c8 12730 print_one_exception (ada_catch_exception, b, last_loc);
f7f9143b
JB
12731}
12732
12733static void
12734print_mention_catch_exception (struct breakpoint *b)
12735{
761269c8 12736 print_mention_exception (ada_catch_exception, b);
f7f9143b
JB
12737}
12738
6149aea9
PA
12739static void
12740print_recreate_catch_exception (struct breakpoint *b, struct ui_file *fp)
12741{
761269c8 12742 print_recreate_exception (ada_catch_exception, b, fp);
6149aea9
PA
12743}
12744
2060206e 12745static struct breakpoint_ops catch_exception_breakpoint_ops;
f7f9143b
JB
12746
12747/* Virtual table for "catch exception unhandled" breakpoints. */
12748
28010a5d
PA
12749static void
12750dtor_catch_exception_unhandled (struct breakpoint *b)
12751{
761269c8 12752 dtor_exception (ada_catch_exception_unhandled, b);
28010a5d
PA
12753}
12754
12755static struct bp_location *
12756allocate_location_catch_exception_unhandled (struct breakpoint *self)
12757{
761269c8 12758 return allocate_location_exception (ada_catch_exception_unhandled, self);
28010a5d
PA
12759}
12760
12761static void
12762re_set_catch_exception_unhandled (struct breakpoint *b)
12763{
761269c8 12764 re_set_exception (ada_catch_exception_unhandled, b);
28010a5d
PA
12765}
12766
12767static void
12768check_status_catch_exception_unhandled (bpstat bs)
12769{
761269c8 12770 check_status_exception (ada_catch_exception_unhandled, bs);
28010a5d
PA
12771}
12772
f7f9143b 12773static enum print_stop_action
348d480f 12774print_it_catch_exception_unhandled (bpstat bs)
f7f9143b 12775{
761269c8 12776 return print_it_exception (ada_catch_exception_unhandled, bs);
f7f9143b
JB
12777}
12778
12779static void
a6d9a66e
UW
12780print_one_catch_exception_unhandled (struct breakpoint *b,
12781 struct bp_location **last_loc)
f7f9143b 12782{
761269c8 12783 print_one_exception (ada_catch_exception_unhandled, b, last_loc);
f7f9143b
JB
12784}
12785
12786static void
12787print_mention_catch_exception_unhandled (struct breakpoint *b)
12788{
761269c8 12789 print_mention_exception (ada_catch_exception_unhandled, b);
f7f9143b
JB
12790}
12791
6149aea9
PA
12792static void
12793print_recreate_catch_exception_unhandled (struct breakpoint *b,
12794 struct ui_file *fp)
12795{
761269c8 12796 print_recreate_exception (ada_catch_exception_unhandled, b, fp);
6149aea9
PA
12797}
12798
2060206e 12799static struct breakpoint_ops catch_exception_unhandled_breakpoint_ops;
f7f9143b
JB
12800
12801/* Virtual table for "catch assert" breakpoints. */
12802
28010a5d
PA
12803static void
12804dtor_catch_assert (struct breakpoint *b)
12805{
761269c8 12806 dtor_exception (ada_catch_assert, b);
28010a5d
PA
12807}
12808
12809static struct bp_location *
12810allocate_location_catch_assert (struct breakpoint *self)
12811{
761269c8 12812 return allocate_location_exception (ada_catch_assert, self);
28010a5d
PA
12813}
12814
12815static void
12816re_set_catch_assert (struct breakpoint *b)
12817{
761269c8 12818 re_set_exception (ada_catch_assert, b);
28010a5d
PA
12819}
12820
12821static void
12822check_status_catch_assert (bpstat bs)
12823{
761269c8 12824 check_status_exception (ada_catch_assert, bs);
28010a5d
PA
12825}
12826
f7f9143b 12827static enum print_stop_action
348d480f 12828print_it_catch_assert (bpstat bs)
f7f9143b 12829{
761269c8 12830 return print_it_exception (ada_catch_assert, bs);
f7f9143b
JB
12831}
12832
12833static void
a6d9a66e 12834print_one_catch_assert (struct breakpoint *b, struct bp_location **last_loc)
f7f9143b 12835{
761269c8 12836 print_one_exception (ada_catch_assert, b, last_loc);
f7f9143b
JB
12837}
12838
12839static void
12840print_mention_catch_assert (struct breakpoint *b)
12841{
761269c8 12842 print_mention_exception (ada_catch_assert, b);
f7f9143b
JB
12843}
12844
6149aea9
PA
12845static void
12846print_recreate_catch_assert (struct breakpoint *b, struct ui_file *fp)
12847{
761269c8 12848 print_recreate_exception (ada_catch_assert, b, fp);
6149aea9
PA
12849}
12850
2060206e 12851static struct breakpoint_ops catch_assert_breakpoint_ops;
f7f9143b 12852
f7f9143b
JB
12853/* Return a newly allocated copy of the first space-separated token
12854 in ARGSP, and then adjust ARGSP to point immediately after that
12855 token.
12856
12857 Return NULL if ARGPS does not contain any more tokens. */
12858
12859static char *
12860ada_get_next_arg (char **argsp)
12861{
12862 char *args = *argsp;
12863 char *end;
12864 char *result;
12865
0fcd72ba 12866 args = skip_spaces (args);
f7f9143b
JB
12867 if (args[0] == '\0')
12868 return NULL; /* No more arguments. */
12869
12870 /* Find the end of the current argument. */
12871
0fcd72ba 12872 end = skip_to_space (args);
f7f9143b
JB
12873
12874 /* Adjust ARGSP to point to the start of the next argument. */
12875
12876 *argsp = end;
12877
12878 /* Make a copy of the current argument and return it. */
12879
224c3ddb 12880 result = (char *) xmalloc (end - args + 1);
f7f9143b
JB
12881 strncpy (result, args, end - args);
12882 result[end - args] = '\0';
12883
12884 return result;
12885}
12886
12887/* Split the arguments specified in a "catch exception" command.
12888 Set EX to the appropriate catchpoint type.
28010a5d 12889 Set EXCEP_STRING to the name of the specific exception if
5845583d
JB
12890 specified by the user.
12891 If a condition is found at the end of the arguments, the condition
12892 expression is stored in COND_STRING (memory must be deallocated
12893 after use). Otherwise COND_STRING is set to NULL. */
f7f9143b
JB
12894
12895static void
12896catch_ada_exception_command_split (char *args,
761269c8 12897 enum ada_exception_catchpoint_kind *ex,
5845583d
JB
12898 char **excep_string,
12899 char **cond_string)
f7f9143b
JB
12900{
12901 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
12902 char *exception_name;
5845583d 12903 char *cond = NULL;
f7f9143b
JB
12904
12905 exception_name = ada_get_next_arg (&args);
5845583d
JB
12906 if (exception_name != NULL && strcmp (exception_name, "if") == 0)
12907 {
12908 /* This is not an exception name; this is the start of a condition
12909 expression for a catchpoint on all exceptions. So, "un-get"
12910 this token, and set exception_name to NULL. */
12911 xfree (exception_name);
12912 exception_name = NULL;
12913 args -= 2;
12914 }
f7f9143b
JB
12915 make_cleanup (xfree, exception_name);
12916
5845583d 12917 /* Check to see if we have a condition. */
f7f9143b 12918
0fcd72ba 12919 args = skip_spaces (args);
61012eef 12920 if (startswith (args, "if")
5845583d
JB
12921 && (isspace (args[2]) || args[2] == '\0'))
12922 {
12923 args += 2;
12924 args = skip_spaces (args);
12925
12926 if (args[0] == '\0')
12927 error (_("Condition missing after `if' keyword"));
12928 cond = xstrdup (args);
12929 make_cleanup (xfree, cond);
12930
12931 args += strlen (args);
12932 }
12933
12934 /* Check that we do not have any more arguments. Anything else
12935 is unexpected. */
f7f9143b
JB
12936
12937 if (args[0] != '\0')
12938 error (_("Junk at end of expression"));
12939
12940 discard_cleanups (old_chain);
12941
12942 if (exception_name == NULL)
12943 {
12944 /* Catch all exceptions. */
761269c8 12945 *ex = ada_catch_exception;
28010a5d 12946 *excep_string = NULL;
f7f9143b
JB
12947 }
12948 else if (strcmp (exception_name, "unhandled") == 0)
12949 {
12950 /* Catch unhandled exceptions. */
761269c8 12951 *ex = ada_catch_exception_unhandled;
28010a5d 12952 *excep_string = NULL;
f7f9143b
JB
12953 }
12954 else
12955 {
12956 /* Catch a specific exception. */
761269c8 12957 *ex = ada_catch_exception;
28010a5d 12958 *excep_string = exception_name;
f7f9143b 12959 }
5845583d 12960 *cond_string = cond;
f7f9143b
JB
12961}
12962
12963/* Return the name of the symbol on which we should break in order to
12964 implement a catchpoint of the EX kind. */
12965
12966static const char *
761269c8 12967ada_exception_sym_name (enum ada_exception_catchpoint_kind ex)
f7f9143b 12968{
3eecfa55
JB
12969 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
12970
12971 gdb_assert (data->exception_info != NULL);
0259addd 12972
f7f9143b
JB
12973 switch (ex)
12974 {
761269c8 12975 case ada_catch_exception:
3eecfa55 12976 return (data->exception_info->catch_exception_sym);
f7f9143b 12977 break;
761269c8 12978 case ada_catch_exception_unhandled:
3eecfa55 12979 return (data->exception_info->catch_exception_unhandled_sym);
f7f9143b 12980 break;
761269c8 12981 case ada_catch_assert:
3eecfa55 12982 return (data->exception_info->catch_assert_sym);
f7f9143b
JB
12983 break;
12984 default:
12985 internal_error (__FILE__, __LINE__,
12986 _("unexpected catchpoint kind (%d)"), ex);
12987 }
12988}
12989
12990/* Return the breakpoint ops "virtual table" used for catchpoints
12991 of the EX kind. */
12992
c0a91b2b 12993static const struct breakpoint_ops *
761269c8 12994ada_exception_breakpoint_ops (enum ada_exception_catchpoint_kind ex)
f7f9143b
JB
12995{
12996 switch (ex)
12997 {
761269c8 12998 case ada_catch_exception:
f7f9143b
JB
12999 return (&catch_exception_breakpoint_ops);
13000 break;
761269c8 13001 case ada_catch_exception_unhandled:
f7f9143b
JB
13002 return (&catch_exception_unhandled_breakpoint_ops);
13003 break;
761269c8 13004 case ada_catch_assert:
f7f9143b
JB
13005 return (&catch_assert_breakpoint_ops);
13006 break;
13007 default:
13008 internal_error (__FILE__, __LINE__,
13009 _("unexpected catchpoint kind (%d)"), ex);
13010 }
13011}
13012
13013/* Return the condition that will be used to match the current exception
13014 being raised with the exception that the user wants to catch. This
13015 assumes that this condition is used when the inferior just triggered
13016 an exception catchpoint.
13017
13018 The string returned is a newly allocated string that needs to be
13019 deallocated later. */
13020
13021static char *
28010a5d 13022ada_exception_catchpoint_cond_string (const char *excep_string)
f7f9143b 13023{
3d0b0fa3
JB
13024 int i;
13025
0963b4bd 13026 /* The standard exceptions are a special case. They are defined in
3d0b0fa3 13027 runtime units that have been compiled without debugging info; if
28010a5d 13028 EXCEP_STRING is the not-fully-qualified name of a standard
3d0b0fa3
JB
13029 exception (e.g. "constraint_error") then, during the evaluation
13030 of the condition expression, the symbol lookup on this name would
0963b4bd 13031 *not* return this standard exception. The catchpoint condition
3d0b0fa3
JB
13032 may then be set only on user-defined exceptions which have the
13033 same not-fully-qualified name (e.g. my_package.constraint_error).
13034
13035 To avoid this unexcepted behavior, these standard exceptions are
0963b4bd 13036 systematically prefixed by "standard". This means that "catch
3d0b0fa3
JB
13037 exception constraint_error" is rewritten into "catch exception
13038 standard.constraint_error".
13039
13040 If an exception named contraint_error is defined in another package of
13041 the inferior program, then the only way to specify this exception as a
13042 breakpoint condition is to use its fully-qualified named:
13043 e.g. my_package.constraint_error. */
13044
13045 for (i = 0; i < sizeof (standard_exc) / sizeof (char *); i++)
13046 {
28010a5d 13047 if (strcmp (standard_exc [i], excep_string) == 0)
3d0b0fa3
JB
13048 {
13049 return xstrprintf ("long_integer (e) = long_integer (&standard.%s)",
28010a5d 13050 excep_string);
3d0b0fa3
JB
13051 }
13052 }
28010a5d 13053 return xstrprintf ("long_integer (e) = long_integer (&%s)", excep_string);
f7f9143b
JB
13054}
13055
13056/* Return the symtab_and_line that should be used to insert an exception
13057 catchpoint of the TYPE kind.
13058
28010a5d
PA
13059 EXCEP_STRING should contain the name of a specific exception that
13060 the catchpoint should catch, or NULL otherwise.
f7f9143b 13061
28010a5d
PA
13062 ADDR_STRING returns the name of the function where the real
13063 breakpoint that implements the catchpoints is set, depending on the
13064 type of catchpoint we need to create. */
f7f9143b
JB
13065
13066static struct symtab_and_line
761269c8 13067ada_exception_sal (enum ada_exception_catchpoint_kind ex, char *excep_string,
c0a91b2b 13068 char **addr_string, const struct breakpoint_ops **ops)
f7f9143b
JB
13069{
13070 const char *sym_name;
13071 struct symbol *sym;
f7f9143b 13072
0259addd
JB
13073 /* First, find out which exception support info to use. */
13074 ada_exception_support_info_sniffer ();
13075
13076 /* Then lookup the function on which we will break in order to catch
f7f9143b 13077 the Ada exceptions requested by the user. */
f7f9143b
JB
13078 sym_name = ada_exception_sym_name (ex);
13079 sym = standard_lookup (sym_name, NULL, VAR_DOMAIN);
13080
f17011e0
JB
13081 /* We can assume that SYM is not NULL at this stage. If the symbol
13082 did not exist, ada_exception_support_info_sniffer would have
13083 raised an exception.
f7f9143b 13084
f17011e0
JB
13085 Also, ada_exception_support_info_sniffer should have already
13086 verified that SYM is a function symbol. */
13087 gdb_assert (sym != NULL);
13088 gdb_assert (SYMBOL_CLASS (sym) == LOC_BLOCK);
f7f9143b
JB
13089
13090 /* Set ADDR_STRING. */
f7f9143b
JB
13091 *addr_string = xstrdup (sym_name);
13092
f7f9143b 13093 /* Set OPS. */
4b9eee8c 13094 *ops = ada_exception_breakpoint_ops (ex);
f7f9143b 13095
f17011e0 13096 return find_function_start_sal (sym, 1);
f7f9143b
JB
13097}
13098
b4a5b78b 13099/* Create an Ada exception catchpoint.
f7f9143b 13100
b4a5b78b 13101 EX_KIND is the kind of exception catchpoint to be created.
5845583d 13102
2df4d1d5
JB
13103 If EXCEPT_STRING is NULL, this catchpoint is expected to trigger
13104 for all exceptions. Otherwise, EXCEPT_STRING indicates the name
13105 of the exception to which this catchpoint applies. When not NULL,
13106 the string must be allocated on the heap, and its deallocation
13107 is no longer the responsibility of the caller.
13108
13109 COND_STRING, if not NULL, is the catchpoint condition. This string
13110 must be allocated on the heap, and its deallocation is no longer
13111 the responsibility of the caller.
f7f9143b 13112
b4a5b78b
JB
13113 TEMPFLAG, if nonzero, means that the underlying breakpoint
13114 should be temporary.
28010a5d 13115
b4a5b78b 13116 FROM_TTY is the usual argument passed to all commands implementations. */
28010a5d 13117
349774ef 13118void
28010a5d 13119create_ada_exception_catchpoint (struct gdbarch *gdbarch,
761269c8 13120 enum ada_exception_catchpoint_kind ex_kind,
28010a5d 13121 char *excep_string,
5845583d 13122 char *cond_string,
28010a5d 13123 int tempflag,
349774ef 13124 int disabled,
28010a5d
PA
13125 int from_tty)
13126{
13127 struct ada_catchpoint *c;
b4a5b78b
JB
13128 char *addr_string = NULL;
13129 const struct breakpoint_ops *ops = NULL;
13130 struct symtab_and_line sal
13131 = ada_exception_sal (ex_kind, excep_string, &addr_string, &ops);
28010a5d 13132
4d01a485 13133 c = new ada_catchpoint ();
28010a5d 13134 init_ada_exception_breakpoint (&c->base, gdbarch, sal, addr_string,
349774ef 13135 ops, tempflag, disabled, from_tty);
28010a5d
PA
13136 c->excep_string = excep_string;
13137 create_excep_cond_exprs (c);
5845583d
JB
13138 if (cond_string != NULL)
13139 set_breakpoint_condition (&c->base, cond_string, from_tty);
3ea46bff 13140 install_breakpoint (0, &c->base, 1);
f7f9143b
JB
13141}
13142
9ac4176b
PA
13143/* Implement the "catch exception" command. */
13144
13145static void
13146catch_ada_exception_command (char *arg, int from_tty,
13147 struct cmd_list_element *command)
13148{
13149 struct gdbarch *gdbarch = get_current_arch ();
13150 int tempflag;
761269c8 13151 enum ada_exception_catchpoint_kind ex_kind;
28010a5d 13152 char *excep_string = NULL;
5845583d 13153 char *cond_string = NULL;
9ac4176b
PA
13154
13155 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
13156
13157 if (!arg)
13158 arg = "";
b4a5b78b
JB
13159 catch_ada_exception_command_split (arg, &ex_kind, &excep_string,
13160 &cond_string);
13161 create_ada_exception_catchpoint (gdbarch, ex_kind,
13162 excep_string, cond_string,
349774ef
JB
13163 tempflag, 1 /* enabled */,
13164 from_tty);
9ac4176b
PA
13165}
13166
b4a5b78b 13167/* Split the arguments specified in a "catch assert" command.
5845583d 13168
b4a5b78b
JB
13169 ARGS contains the command's arguments (or the empty string if
13170 no arguments were passed).
5845583d
JB
13171
13172 If ARGS contains a condition, set COND_STRING to that condition
b4a5b78b 13173 (the memory needs to be deallocated after use). */
5845583d 13174
b4a5b78b
JB
13175static void
13176catch_ada_assert_command_split (char *args, char **cond_string)
f7f9143b 13177{
5845583d 13178 args = skip_spaces (args);
f7f9143b 13179
5845583d 13180 /* Check whether a condition was provided. */
61012eef 13181 if (startswith (args, "if")
5845583d 13182 && (isspace (args[2]) || args[2] == '\0'))
f7f9143b 13183 {
5845583d 13184 args += 2;
0fcd72ba 13185 args = skip_spaces (args);
5845583d
JB
13186 if (args[0] == '\0')
13187 error (_("condition missing after `if' keyword"));
13188 *cond_string = xstrdup (args);
f7f9143b
JB
13189 }
13190
5845583d
JB
13191 /* Otherwise, there should be no other argument at the end of
13192 the command. */
13193 else if (args[0] != '\0')
13194 error (_("Junk at end of arguments."));
f7f9143b
JB
13195}
13196
9ac4176b
PA
13197/* Implement the "catch assert" command. */
13198
13199static void
13200catch_assert_command (char *arg, int from_tty,
13201 struct cmd_list_element *command)
13202{
13203 struct gdbarch *gdbarch = get_current_arch ();
13204 int tempflag;
5845583d 13205 char *cond_string = NULL;
9ac4176b
PA
13206
13207 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
13208
13209 if (!arg)
13210 arg = "";
b4a5b78b 13211 catch_ada_assert_command_split (arg, &cond_string);
761269c8 13212 create_ada_exception_catchpoint (gdbarch, ada_catch_assert,
b4a5b78b 13213 NULL, cond_string,
349774ef
JB
13214 tempflag, 1 /* enabled */,
13215 from_tty);
9ac4176b 13216}
778865d3
JB
13217
13218/* Return non-zero if the symbol SYM is an Ada exception object. */
13219
13220static int
13221ada_is_exception_sym (struct symbol *sym)
13222{
13223 const char *type_name = type_name_no_tag (SYMBOL_TYPE (sym));
13224
13225 return (SYMBOL_CLASS (sym) != LOC_TYPEDEF
13226 && SYMBOL_CLASS (sym) != LOC_BLOCK
13227 && SYMBOL_CLASS (sym) != LOC_CONST
13228 && SYMBOL_CLASS (sym) != LOC_UNRESOLVED
13229 && type_name != NULL && strcmp (type_name, "exception") == 0);
13230}
13231
13232/* Given a global symbol SYM, return non-zero iff SYM is a non-standard
13233 Ada exception object. This matches all exceptions except the ones
13234 defined by the Ada language. */
13235
13236static int
13237ada_is_non_standard_exception_sym (struct symbol *sym)
13238{
13239 int i;
13240
13241 if (!ada_is_exception_sym (sym))
13242 return 0;
13243
13244 for (i = 0; i < ARRAY_SIZE (standard_exc); i++)
13245 if (strcmp (SYMBOL_LINKAGE_NAME (sym), standard_exc[i]) == 0)
13246 return 0; /* A standard exception. */
13247
13248 /* Numeric_Error is also a standard exception, so exclude it.
13249 See the STANDARD_EXC description for more details as to why
13250 this exception is not listed in that array. */
13251 if (strcmp (SYMBOL_LINKAGE_NAME (sym), "numeric_error") == 0)
13252 return 0;
13253
13254 return 1;
13255}
13256
13257/* A helper function for qsort, comparing two struct ada_exc_info
13258 objects.
13259
13260 The comparison is determined first by exception name, and then
13261 by exception address. */
13262
13263static int
13264compare_ada_exception_info (const void *a, const void *b)
13265{
13266 const struct ada_exc_info *exc_a = (struct ada_exc_info *) a;
13267 const struct ada_exc_info *exc_b = (struct ada_exc_info *) b;
13268 int result;
13269
13270 result = strcmp (exc_a->name, exc_b->name);
13271 if (result != 0)
13272 return result;
13273
13274 if (exc_a->addr < exc_b->addr)
13275 return -1;
13276 if (exc_a->addr > exc_b->addr)
13277 return 1;
13278
13279 return 0;
13280}
13281
13282/* Sort EXCEPTIONS using compare_ada_exception_info as the comparison
13283 routine, but keeping the first SKIP elements untouched.
13284
13285 All duplicates are also removed. */
13286
13287static void
13288sort_remove_dups_ada_exceptions_list (VEC(ada_exc_info) **exceptions,
13289 int skip)
13290{
13291 struct ada_exc_info *to_sort
13292 = VEC_address (ada_exc_info, *exceptions) + skip;
13293 int to_sort_len
13294 = VEC_length (ada_exc_info, *exceptions) - skip;
13295 int i, j;
13296
13297 qsort (to_sort, to_sort_len, sizeof (struct ada_exc_info),
13298 compare_ada_exception_info);
13299
13300 for (i = 1, j = 1; i < to_sort_len; i++)
13301 if (compare_ada_exception_info (&to_sort[i], &to_sort[j - 1]) != 0)
13302 to_sort[j++] = to_sort[i];
13303 to_sort_len = j;
13304 VEC_truncate(ada_exc_info, *exceptions, skip + to_sort_len);
13305}
13306
13307/* A function intended as the "name_matcher" callback in the struct
13308 quick_symbol_functions' expand_symtabs_matching method.
13309
13310 SEARCH_NAME is the symbol's search name.
13311
13312 If USER_DATA is not NULL, it is a pointer to a regext_t object
13313 used to match the symbol (by natural name). Otherwise, when USER_DATA
13314 is null, no filtering is performed, and all symbols are a positive
13315 match. */
13316
13317static int
13318ada_exc_search_name_matches (const char *search_name, void *user_data)
13319{
9a3c8263 13320 regex_t *preg = (regex_t *) user_data;
778865d3
JB
13321
13322 if (preg == NULL)
13323 return 1;
13324
13325 /* In Ada, the symbol "search name" is a linkage name, whereas
13326 the regular expression used to do the matching refers to
13327 the natural name. So match against the decoded name. */
13328 return (regexec (preg, ada_decode (search_name), 0, NULL, 0) == 0);
13329}
13330
13331/* Add all exceptions defined by the Ada standard whose name match
13332 a regular expression.
13333
13334 If PREG is not NULL, then this regexp_t object is used to
13335 perform the symbol name matching. Otherwise, no name-based
13336 filtering is performed.
13337
13338 EXCEPTIONS is a vector of exceptions to which matching exceptions
13339 gets pushed. */
13340
13341static void
13342ada_add_standard_exceptions (regex_t *preg, VEC(ada_exc_info) **exceptions)
13343{
13344 int i;
13345
13346 for (i = 0; i < ARRAY_SIZE (standard_exc); i++)
13347 {
13348 if (preg == NULL
13349 || regexec (preg, standard_exc[i], 0, NULL, 0) == 0)
13350 {
13351 struct bound_minimal_symbol msymbol
13352 = ada_lookup_simple_minsym (standard_exc[i]);
13353
13354 if (msymbol.minsym != NULL)
13355 {
13356 struct ada_exc_info info
77e371c0 13357 = {standard_exc[i], BMSYMBOL_VALUE_ADDRESS (msymbol)};
778865d3
JB
13358
13359 VEC_safe_push (ada_exc_info, *exceptions, &info);
13360 }
13361 }
13362 }
13363}
13364
13365/* Add all Ada exceptions defined locally and accessible from the given
13366 FRAME.
13367
13368 If PREG is not NULL, then this regexp_t object is used to
13369 perform the symbol name matching. Otherwise, no name-based
13370 filtering is performed.
13371
13372 EXCEPTIONS is a vector of exceptions to which matching exceptions
13373 gets pushed. */
13374
13375static void
13376ada_add_exceptions_from_frame (regex_t *preg, struct frame_info *frame,
13377 VEC(ada_exc_info) **exceptions)
13378{
3977b71f 13379 const struct block *block = get_frame_block (frame, 0);
778865d3
JB
13380
13381 while (block != 0)
13382 {
13383 struct block_iterator iter;
13384 struct symbol *sym;
13385
13386 ALL_BLOCK_SYMBOLS (block, iter, sym)
13387 {
13388 switch (SYMBOL_CLASS (sym))
13389 {
13390 case LOC_TYPEDEF:
13391 case LOC_BLOCK:
13392 case LOC_CONST:
13393 break;
13394 default:
13395 if (ada_is_exception_sym (sym))
13396 {
13397 struct ada_exc_info info = {SYMBOL_PRINT_NAME (sym),
13398 SYMBOL_VALUE_ADDRESS (sym)};
13399
13400 VEC_safe_push (ada_exc_info, *exceptions, &info);
13401 }
13402 }
13403 }
13404 if (BLOCK_FUNCTION (block) != NULL)
13405 break;
13406 block = BLOCK_SUPERBLOCK (block);
13407 }
13408}
13409
13410/* Add all exceptions defined globally whose name name match
13411 a regular expression, excluding standard exceptions.
13412
13413 The reason we exclude standard exceptions is that they need
13414 to be handled separately: Standard exceptions are defined inside
13415 a runtime unit which is normally not compiled with debugging info,
13416 and thus usually do not show up in our symbol search. However,
13417 if the unit was in fact built with debugging info, we need to
13418 exclude them because they would duplicate the entry we found
13419 during the special loop that specifically searches for those
13420 standard exceptions.
13421
13422 If PREG is not NULL, then this regexp_t object is used to
13423 perform the symbol name matching. Otherwise, no name-based
13424 filtering is performed.
13425
13426 EXCEPTIONS is a vector of exceptions to which matching exceptions
13427 gets pushed. */
13428
13429static void
13430ada_add_global_exceptions (regex_t *preg, VEC(ada_exc_info) **exceptions)
13431{
13432 struct objfile *objfile;
43f3e411 13433 struct compunit_symtab *s;
778865d3 13434
276d885b 13435 expand_symtabs_matching (NULL, ada_exc_search_name_matches, NULL,
bb4142cf 13436 VARIABLES_DOMAIN, preg);
778865d3 13437
43f3e411 13438 ALL_COMPUNITS (objfile, s)
778865d3 13439 {
43f3e411 13440 const struct blockvector *bv = COMPUNIT_BLOCKVECTOR (s);
778865d3
JB
13441 int i;
13442
13443 for (i = GLOBAL_BLOCK; i <= STATIC_BLOCK; i++)
13444 {
13445 struct block *b = BLOCKVECTOR_BLOCK (bv, i);
13446 struct block_iterator iter;
13447 struct symbol *sym;
13448
13449 ALL_BLOCK_SYMBOLS (b, iter, sym)
13450 if (ada_is_non_standard_exception_sym (sym)
13451 && (preg == NULL
13452 || regexec (preg, SYMBOL_NATURAL_NAME (sym),
13453 0, NULL, 0) == 0))
13454 {
13455 struct ada_exc_info info
13456 = {SYMBOL_PRINT_NAME (sym), SYMBOL_VALUE_ADDRESS (sym)};
13457
13458 VEC_safe_push (ada_exc_info, *exceptions, &info);
13459 }
13460 }
13461 }
13462}
13463
13464/* Implements ada_exceptions_list with the regular expression passed
13465 as a regex_t, rather than a string.
13466
13467 If not NULL, PREG is used to filter out exceptions whose names
13468 do not match. Otherwise, all exceptions are listed. */
13469
13470static VEC(ada_exc_info) *
13471ada_exceptions_list_1 (regex_t *preg)
13472{
13473 VEC(ada_exc_info) *result = NULL;
13474 struct cleanup *old_chain
13475 = make_cleanup (VEC_cleanup (ada_exc_info), &result);
13476 int prev_len;
13477
13478 /* First, list the known standard exceptions. These exceptions
13479 need to be handled separately, as they are usually defined in
13480 runtime units that have been compiled without debugging info. */
13481
13482 ada_add_standard_exceptions (preg, &result);
13483
13484 /* Next, find all exceptions whose scope is local and accessible
13485 from the currently selected frame. */
13486
13487 if (has_stack_frames ())
13488 {
13489 prev_len = VEC_length (ada_exc_info, result);
13490 ada_add_exceptions_from_frame (preg, get_selected_frame (NULL),
13491 &result);
13492 if (VEC_length (ada_exc_info, result) > prev_len)
13493 sort_remove_dups_ada_exceptions_list (&result, prev_len);
13494 }
13495
13496 /* Add all exceptions whose scope is global. */
13497
13498 prev_len = VEC_length (ada_exc_info, result);
13499 ada_add_global_exceptions (preg, &result);
13500 if (VEC_length (ada_exc_info, result) > prev_len)
13501 sort_remove_dups_ada_exceptions_list (&result, prev_len);
13502
13503 discard_cleanups (old_chain);
13504 return result;
13505}
13506
13507/* Return a vector of ada_exc_info.
13508
13509 If REGEXP is NULL, all exceptions are included in the result.
13510 Otherwise, it should contain a valid regular expression,
13511 and only the exceptions whose names match that regular expression
13512 are included in the result.
13513
13514 The exceptions are sorted in the following order:
13515 - Standard exceptions (defined by the Ada language), in
13516 alphabetical order;
13517 - Exceptions only visible from the current frame, in
13518 alphabetical order;
13519 - Exceptions whose scope is global, in alphabetical order. */
13520
13521VEC(ada_exc_info) *
13522ada_exceptions_list (const char *regexp)
13523{
13524 VEC(ada_exc_info) *result = NULL;
13525 struct cleanup *old_chain = NULL;
13526 regex_t reg;
13527
13528 if (regexp != NULL)
13529 old_chain = compile_rx_or_error (&reg, regexp,
13530 _("invalid regular expression"));
13531
13532 result = ada_exceptions_list_1 (regexp != NULL ? &reg : NULL);
13533
13534 if (old_chain != NULL)
13535 do_cleanups (old_chain);
13536 return result;
13537}
13538
13539/* Implement the "info exceptions" command. */
13540
13541static void
13542info_exceptions_command (char *regexp, int from_tty)
13543{
13544 VEC(ada_exc_info) *exceptions;
13545 struct cleanup *cleanup;
13546 struct gdbarch *gdbarch = get_current_arch ();
13547 int ix;
13548 struct ada_exc_info *info;
13549
13550 exceptions = ada_exceptions_list (regexp);
13551 cleanup = make_cleanup (VEC_cleanup (ada_exc_info), &exceptions);
13552
13553 if (regexp != NULL)
13554 printf_filtered
13555 (_("All Ada exceptions matching regular expression \"%s\":\n"), regexp);
13556 else
13557 printf_filtered (_("All defined Ada exceptions:\n"));
13558
13559 for (ix = 0; VEC_iterate(ada_exc_info, exceptions, ix, info); ix++)
13560 printf_filtered ("%s: %s\n", info->name, paddress (gdbarch, info->addr));
13561
13562 do_cleanups (cleanup);
13563}
13564
4c4b4cd2
PH
13565 /* Operators */
13566/* Information about operators given special treatment in functions
13567 below. */
13568/* Format: OP_DEFN (<operator>, <operator length>, <# args>, <binop>). */
13569
13570#define ADA_OPERATORS \
13571 OP_DEFN (OP_VAR_VALUE, 4, 0, 0) \
13572 OP_DEFN (BINOP_IN_BOUNDS, 3, 2, 0) \
13573 OP_DEFN (TERNOP_IN_RANGE, 1, 3, 0) \
13574 OP_DEFN (OP_ATR_FIRST, 1, 2, 0) \
13575 OP_DEFN (OP_ATR_LAST, 1, 2, 0) \
13576 OP_DEFN (OP_ATR_LENGTH, 1, 2, 0) \
13577 OP_DEFN (OP_ATR_IMAGE, 1, 2, 0) \
13578 OP_DEFN (OP_ATR_MAX, 1, 3, 0) \
13579 OP_DEFN (OP_ATR_MIN, 1, 3, 0) \
13580 OP_DEFN (OP_ATR_MODULUS, 1, 1, 0) \
13581 OP_DEFN (OP_ATR_POS, 1, 2, 0) \
13582 OP_DEFN (OP_ATR_SIZE, 1, 1, 0) \
13583 OP_DEFN (OP_ATR_TAG, 1, 1, 0) \
13584 OP_DEFN (OP_ATR_VAL, 1, 2, 0) \
13585 OP_DEFN (UNOP_QUAL, 3, 1, 0) \
52ce6436
PH
13586 OP_DEFN (UNOP_IN_RANGE, 3, 1, 0) \
13587 OP_DEFN (OP_OTHERS, 1, 1, 0) \
13588 OP_DEFN (OP_POSITIONAL, 3, 1, 0) \
13589 OP_DEFN (OP_DISCRETE_RANGE, 1, 2, 0)
4c4b4cd2
PH
13590
13591static void
554794dc
SDJ
13592ada_operator_length (const struct expression *exp, int pc, int *oplenp,
13593 int *argsp)
4c4b4cd2
PH
13594{
13595 switch (exp->elts[pc - 1].opcode)
13596 {
76a01679 13597 default:
4c4b4cd2
PH
13598 operator_length_standard (exp, pc, oplenp, argsp);
13599 break;
13600
13601#define OP_DEFN(op, len, args, binop) \
13602 case op: *oplenp = len; *argsp = args; break;
13603 ADA_OPERATORS;
13604#undef OP_DEFN
52ce6436
PH
13605
13606 case OP_AGGREGATE:
13607 *oplenp = 3;
13608 *argsp = longest_to_int (exp->elts[pc - 2].longconst);
13609 break;
13610
13611 case OP_CHOICES:
13612 *oplenp = 3;
13613 *argsp = longest_to_int (exp->elts[pc - 2].longconst) + 1;
13614 break;
4c4b4cd2
PH
13615 }
13616}
13617
c0201579
JK
13618/* Implementation of the exp_descriptor method operator_check. */
13619
13620static int
13621ada_operator_check (struct expression *exp, int pos,
13622 int (*objfile_func) (struct objfile *objfile, void *data),
13623 void *data)
13624{
13625 const union exp_element *const elts = exp->elts;
13626 struct type *type = NULL;
13627
13628 switch (elts[pos].opcode)
13629 {
13630 case UNOP_IN_RANGE:
13631 case UNOP_QUAL:
13632 type = elts[pos + 1].type;
13633 break;
13634
13635 default:
13636 return operator_check_standard (exp, pos, objfile_func, data);
13637 }
13638
13639 /* Invoke callbacks for TYPE and OBJFILE if they were set as non-NULL. */
13640
13641 if (type && TYPE_OBJFILE (type)
13642 && (*objfile_func) (TYPE_OBJFILE (type), data))
13643 return 1;
13644
13645 return 0;
13646}
13647
4c4b4cd2
PH
13648static char *
13649ada_op_name (enum exp_opcode opcode)
13650{
13651 switch (opcode)
13652 {
76a01679 13653 default:
4c4b4cd2 13654 return op_name_standard (opcode);
52ce6436 13655
4c4b4cd2
PH
13656#define OP_DEFN(op, len, args, binop) case op: return #op;
13657 ADA_OPERATORS;
13658#undef OP_DEFN
52ce6436
PH
13659
13660 case OP_AGGREGATE:
13661 return "OP_AGGREGATE";
13662 case OP_CHOICES:
13663 return "OP_CHOICES";
13664 case OP_NAME:
13665 return "OP_NAME";
4c4b4cd2
PH
13666 }
13667}
13668
13669/* As for operator_length, but assumes PC is pointing at the first
13670 element of the operator, and gives meaningful results only for the
52ce6436 13671 Ada-specific operators, returning 0 for *OPLENP and *ARGSP otherwise. */
4c4b4cd2
PH
13672
13673static void
76a01679
JB
13674ada_forward_operator_length (struct expression *exp, int pc,
13675 int *oplenp, int *argsp)
4c4b4cd2 13676{
76a01679 13677 switch (exp->elts[pc].opcode)
4c4b4cd2
PH
13678 {
13679 default:
13680 *oplenp = *argsp = 0;
13681 break;
52ce6436 13682
4c4b4cd2
PH
13683#define OP_DEFN(op, len, args, binop) \
13684 case op: *oplenp = len; *argsp = args; break;
13685 ADA_OPERATORS;
13686#undef OP_DEFN
52ce6436
PH
13687
13688 case OP_AGGREGATE:
13689 *oplenp = 3;
13690 *argsp = longest_to_int (exp->elts[pc + 1].longconst);
13691 break;
13692
13693 case OP_CHOICES:
13694 *oplenp = 3;
13695 *argsp = longest_to_int (exp->elts[pc + 1].longconst) + 1;
13696 break;
13697
13698 case OP_STRING:
13699 case OP_NAME:
13700 {
13701 int len = longest_to_int (exp->elts[pc + 1].longconst);
5b4ee69b 13702
52ce6436
PH
13703 *oplenp = 4 + BYTES_TO_EXP_ELEM (len + 1);
13704 *argsp = 0;
13705 break;
13706 }
4c4b4cd2
PH
13707 }
13708}
13709
13710static int
13711ada_dump_subexp_body (struct expression *exp, struct ui_file *stream, int elt)
13712{
13713 enum exp_opcode op = exp->elts[elt].opcode;
13714 int oplen, nargs;
13715 int pc = elt;
13716 int i;
76a01679 13717
4c4b4cd2
PH
13718 ada_forward_operator_length (exp, elt, &oplen, &nargs);
13719
76a01679 13720 switch (op)
4c4b4cd2 13721 {
76a01679 13722 /* Ada attributes ('Foo). */
4c4b4cd2
PH
13723 case OP_ATR_FIRST:
13724 case OP_ATR_LAST:
13725 case OP_ATR_LENGTH:
13726 case OP_ATR_IMAGE:
13727 case OP_ATR_MAX:
13728 case OP_ATR_MIN:
13729 case OP_ATR_MODULUS:
13730 case OP_ATR_POS:
13731 case OP_ATR_SIZE:
13732 case OP_ATR_TAG:
13733 case OP_ATR_VAL:
13734 break;
13735
13736 case UNOP_IN_RANGE:
13737 case UNOP_QUAL:
323e0a4a
AC
13738 /* XXX: gdb_sprint_host_address, type_sprint */
13739 fprintf_filtered (stream, _("Type @"));
4c4b4cd2
PH
13740 gdb_print_host_address (exp->elts[pc + 1].type, stream);
13741 fprintf_filtered (stream, " (");
13742 type_print (exp->elts[pc + 1].type, NULL, stream, 0);
13743 fprintf_filtered (stream, ")");
13744 break;
13745 case BINOP_IN_BOUNDS:
52ce6436
PH
13746 fprintf_filtered (stream, " (%d)",
13747 longest_to_int (exp->elts[pc + 2].longconst));
4c4b4cd2
PH
13748 break;
13749 case TERNOP_IN_RANGE:
13750 break;
13751
52ce6436
PH
13752 case OP_AGGREGATE:
13753 case OP_OTHERS:
13754 case OP_DISCRETE_RANGE:
13755 case OP_POSITIONAL:
13756 case OP_CHOICES:
13757 break;
13758
13759 case OP_NAME:
13760 case OP_STRING:
13761 {
13762 char *name = &exp->elts[elt + 2].string;
13763 int len = longest_to_int (exp->elts[elt + 1].longconst);
5b4ee69b 13764
52ce6436
PH
13765 fprintf_filtered (stream, "Text: `%.*s'", len, name);
13766 break;
13767 }
13768
4c4b4cd2
PH
13769 default:
13770 return dump_subexp_body_standard (exp, stream, elt);
13771 }
13772
13773 elt += oplen;
13774 for (i = 0; i < nargs; i += 1)
13775 elt = dump_subexp (exp, stream, elt);
13776
13777 return elt;
13778}
13779
13780/* The Ada extension of print_subexp (q.v.). */
13781
76a01679
JB
13782static void
13783ada_print_subexp (struct expression *exp, int *pos,
13784 struct ui_file *stream, enum precedence prec)
4c4b4cd2 13785{
52ce6436 13786 int oplen, nargs, i;
4c4b4cd2
PH
13787 int pc = *pos;
13788 enum exp_opcode op = exp->elts[pc].opcode;
13789
13790 ada_forward_operator_length (exp, pc, &oplen, &nargs);
13791
52ce6436 13792 *pos += oplen;
4c4b4cd2
PH
13793 switch (op)
13794 {
13795 default:
52ce6436 13796 *pos -= oplen;
4c4b4cd2
PH
13797 print_subexp_standard (exp, pos, stream, prec);
13798 return;
13799
13800 case OP_VAR_VALUE:
4c4b4cd2
PH
13801 fputs_filtered (SYMBOL_NATURAL_NAME (exp->elts[pc + 2].symbol), stream);
13802 return;
13803
13804 case BINOP_IN_BOUNDS:
323e0a4a 13805 /* XXX: sprint_subexp */
4c4b4cd2 13806 print_subexp (exp, pos, stream, PREC_SUFFIX);
0b48a291 13807 fputs_filtered (" in ", stream);
4c4b4cd2 13808 print_subexp (exp, pos, stream, PREC_SUFFIX);
0b48a291 13809 fputs_filtered ("'range", stream);
4c4b4cd2 13810 if (exp->elts[pc + 1].longconst > 1)
76a01679
JB
13811 fprintf_filtered (stream, "(%ld)",
13812 (long) exp->elts[pc + 1].longconst);
4c4b4cd2
PH
13813 return;
13814
13815 case TERNOP_IN_RANGE:
4c4b4cd2 13816 if (prec >= PREC_EQUAL)
76a01679 13817 fputs_filtered ("(", stream);
323e0a4a 13818 /* XXX: sprint_subexp */
4c4b4cd2 13819 print_subexp (exp, pos, stream, PREC_SUFFIX);
0b48a291 13820 fputs_filtered (" in ", stream);
4c4b4cd2
PH
13821 print_subexp (exp, pos, stream, PREC_EQUAL);
13822 fputs_filtered (" .. ", stream);
13823 print_subexp (exp, pos, stream, PREC_EQUAL);
13824 if (prec >= PREC_EQUAL)
76a01679
JB
13825 fputs_filtered (")", stream);
13826 return;
4c4b4cd2
PH
13827
13828 case OP_ATR_FIRST:
13829 case OP_ATR_LAST:
13830 case OP_ATR_LENGTH:
13831 case OP_ATR_IMAGE:
13832 case OP_ATR_MAX:
13833 case OP_ATR_MIN:
13834 case OP_ATR_MODULUS:
13835 case OP_ATR_POS:
13836 case OP_ATR_SIZE:
13837 case OP_ATR_TAG:
13838 case OP_ATR_VAL:
4c4b4cd2 13839 if (exp->elts[*pos].opcode == OP_TYPE)
76a01679
JB
13840 {
13841 if (TYPE_CODE (exp->elts[*pos + 1].type) != TYPE_CODE_VOID)
79d43c61
TT
13842 LA_PRINT_TYPE (exp->elts[*pos + 1].type, "", stream, 0, 0,
13843 &type_print_raw_options);
76a01679
JB
13844 *pos += 3;
13845 }
4c4b4cd2 13846 else
76a01679 13847 print_subexp (exp, pos, stream, PREC_SUFFIX);
4c4b4cd2
PH
13848 fprintf_filtered (stream, "'%s", ada_attribute_name (op));
13849 if (nargs > 1)
76a01679
JB
13850 {
13851 int tem;
5b4ee69b 13852
76a01679
JB
13853 for (tem = 1; tem < nargs; tem += 1)
13854 {
13855 fputs_filtered ((tem == 1) ? " (" : ", ", stream);
13856 print_subexp (exp, pos, stream, PREC_ABOVE_COMMA);
13857 }
13858 fputs_filtered (")", stream);
13859 }
4c4b4cd2 13860 return;
14f9c5c9 13861
4c4b4cd2 13862 case UNOP_QUAL:
4c4b4cd2
PH
13863 type_print (exp->elts[pc + 1].type, "", stream, 0);
13864 fputs_filtered ("'(", stream);
13865 print_subexp (exp, pos, stream, PREC_PREFIX);
13866 fputs_filtered (")", stream);
13867 return;
14f9c5c9 13868
4c4b4cd2 13869 case UNOP_IN_RANGE:
323e0a4a 13870 /* XXX: sprint_subexp */
4c4b4cd2 13871 print_subexp (exp, pos, stream, PREC_SUFFIX);
0b48a291 13872 fputs_filtered (" in ", stream);
79d43c61
TT
13873 LA_PRINT_TYPE (exp->elts[pc + 1].type, "", stream, 1, 0,
13874 &type_print_raw_options);
4c4b4cd2 13875 return;
52ce6436
PH
13876
13877 case OP_DISCRETE_RANGE:
13878 print_subexp (exp, pos, stream, PREC_SUFFIX);
13879 fputs_filtered ("..", stream);
13880 print_subexp (exp, pos, stream, PREC_SUFFIX);
13881 return;
13882
13883 case OP_OTHERS:
13884 fputs_filtered ("others => ", stream);
13885 print_subexp (exp, pos, stream, PREC_SUFFIX);
13886 return;
13887
13888 case OP_CHOICES:
13889 for (i = 0; i < nargs-1; i += 1)
13890 {
13891 if (i > 0)
13892 fputs_filtered ("|", stream);
13893 print_subexp (exp, pos, stream, PREC_SUFFIX);
13894 }
13895 fputs_filtered (" => ", stream);
13896 print_subexp (exp, pos, stream, PREC_SUFFIX);
13897 return;
13898
13899 case OP_POSITIONAL:
13900 print_subexp (exp, pos, stream, PREC_SUFFIX);
13901 return;
13902
13903 case OP_AGGREGATE:
13904 fputs_filtered ("(", stream);
13905 for (i = 0; i < nargs; i += 1)
13906 {
13907 if (i > 0)
13908 fputs_filtered (", ", stream);
13909 print_subexp (exp, pos, stream, PREC_SUFFIX);
13910 }
13911 fputs_filtered (")", stream);
13912 return;
4c4b4cd2
PH
13913 }
13914}
14f9c5c9
AS
13915
13916/* Table mapping opcodes into strings for printing operators
13917 and precedences of the operators. */
13918
d2e4a39e
AS
13919static const struct op_print ada_op_print_tab[] = {
13920 {":=", BINOP_ASSIGN, PREC_ASSIGN, 1},
13921 {"or else", BINOP_LOGICAL_OR, PREC_LOGICAL_OR, 0},
13922 {"and then", BINOP_LOGICAL_AND, PREC_LOGICAL_AND, 0},
13923 {"or", BINOP_BITWISE_IOR, PREC_BITWISE_IOR, 0},
13924 {"xor", BINOP_BITWISE_XOR, PREC_BITWISE_XOR, 0},
13925 {"and", BINOP_BITWISE_AND, PREC_BITWISE_AND, 0},
13926 {"=", BINOP_EQUAL, PREC_EQUAL, 0},
13927 {"/=", BINOP_NOTEQUAL, PREC_EQUAL, 0},
13928 {"<=", BINOP_LEQ, PREC_ORDER, 0},
13929 {">=", BINOP_GEQ, PREC_ORDER, 0},
13930 {">", BINOP_GTR, PREC_ORDER, 0},
13931 {"<", BINOP_LESS, PREC_ORDER, 0},
13932 {">>", BINOP_RSH, PREC_SHIFT, 0},
13933 {"<<", BINOP_LSH, PREC_SHIFT, 0},
13934 {"+", BINOP_ADD, PREC_ADD, 0},
13935 {"-", BINOP_SUB, PREC_ADD, 0},
13936 {"&", BINOP_CONCAT, PREC_ADD, 0},
13937 {"*", BINOP_MUL, PREC_MUL, 0},
13938 {"/", BINOP_DIV, PREC_MUL, 0},
13939 {"rem", BINOP_REM, PREC_MUL, 0},
13940 {"mod", BINOP_MOD, PREC_MUL, 0},
13941 {"**", BINOP_EXP, PREC_REPEAT, 0},
13942 {"@", BINOP_REPEAT, PREC_REPEAT, 0},
13943 {"-", UNOP_NEG, PREC_PREFIX, 0},
13944 {"+", UNOP_PLUS, PREC_PREFIX, 0},
13945 {"not ", UNOP_LOGICAL_NOT, PREC_PREFIX, 0},
13946 {"not ", UNOP_COMPLEMENT, PREC_PREFIX, 0},
13947 {"abs ", UNOP_ABS, PREC_PREFIX, 0},
4c4b4cd2
PH
13948 {".all", UNOP_IND, PREC_SUFFIX, 1},
13949 {"'access", UNOP_ADDR, PREC_SUFFIX, 1},
13950 {"'size", OP_ATR_SIZE, PREC_SUFFIX, 1},
f486487f 13951 {NULL, OP_NULL, PREC_SUFFIX, 0}
14f9c5c9
AS
13952};
13953\f
72d5681a
PH
13954enum ada_primitive_types {
13955 ada_primitive_type_int,
13956 ada_primitive_type_long,
13957 ada_primitive_type_short,
13958 ada_primitive_type_char,
13959 ada_primitive_type_float,
13960 ada_primitive_type_double,
13961 ada_primitive_type_void,
13962 ada_primitive_type_long_long,
13963 ada_primitive_type_long_double,
13964 ada_primitive_type_natural,
13965 ada_primitive_type_positive,
13966 ada_primitive_type_system_address,
13967 nr_ada_primitive_types
13968};
6c038f32
PH
13969
13970static void
d4a9a881 13971ada_language_arch_info (struct gdbarch *gdbarch,
72d5681a
PH
13972 struct language_arch_info *lai)
13973{
d4a9a881 13974 const struct builtin_type *builtin = builtin_type (gdbarch);
5b4ee69b 13975
72d5681a 13976 lai->primitive_type_vector
d4a9a881 13977 = GDBARCH_OBSTACK_CALLOC (gdbarch, nr_ada_primitive_types + 1,
72d5681a 13978 struct type *);
e9bb382b
UW
13979
13980 lai->primitive_type_vector [ada_primitive_type_int]
13981 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
13982 0, "integer");
13983 lai->primitive_type_vector [ada_primitive_type_long]
13984 = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
13985 0, "long_integer");
13986 lai->primitive_type_vector [ada_primitive_type_short]
13987 = arch_integer_type (gdbarch, gdbarch_short_bit (gdbarch),
13988 0, "short_integer");
13989 lai->string_char_type
13990 = lai->primitive_type_vector [ada_primitive_type_char]
cd7c1778 13991 = arch_character_type (gdbarch, TARGET_CHAR_BIT, 0, "character");
e9bb382b
UW
13992 lai->primitive_type_vector [ada_primitive_type_float]
13993 = arch_float_type (gdbarch, gdbarch_float_bit (gdbarch),
49f190bc 13994 "float", gdbarch_float_format (gdbarch));
e9bb382b
UW
13995 lai->primitive_type_vector [ada_primitive_type_double]
13996 = arch_float_type (gdbarch, gdbarch_double_bit (gdbarch),
49f190bc 13997 "long_float", gdbarch_double_format (gdbarch));
e9bb382b
UW
13998 lai->primitive_type_vector [ada_primitive_type_long_long]
13999 = arch_integer_type (gdbarch, gdbarch_long_long_bit (gdbarch),
14000 0, "long_long_integer");
14001 lai->primitive_type_vector [ada_primitive_type_long_double]
5f3bceb6 14002 = arch_float_type (gdbarch, gdbarch_long_double_bit (gdbarch),
49f190bc 14003 "long_long_float", gdbarch_long_double_format (gdbarch));
e9bb382b
UW
14004 lai->primitive_type_vector [ada_primitive_type_natural]
14005 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
14006 0, "natural");
14007 lai->primitive_type_vector [ada_primitive_type_positive]
14008 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
14009 0, "positive");
14010 lai->primitive_type_vector [ada_primitive_type_void]
14011 = builtin->builtin_void;
14012
14013 lai->primitive_type_vector [ada_primitive_type_system_address]
14014 = lookup_pointer_type (arch_type (gdbarch, TYPE_CODE_VOID, 1, "void"));
72d5681a
PH
14015 TYPE_NAME (lai->primitive_type_vector [ada_primitive_type_system_address])
14016 = "system__address";
fbb06eb1 14017
47e729a8 14018 lai->bool_type_symbol = NULL;
fbb06eb1 14019 lai->bool_type_default = builtin->builtin_bool;
6c038f32 14020}
6c038f32
PH
14021\f
14022 /* Language vector */
14023
14024/* Not really used, but needed in the ada_language_defn. */
14025
14026static void
6c7a06a3 14027emit_char (int c, struct type *type, struct ui_file *stream, int quoter)
6c038f32 14028{
6c7a06a3 14029 ada_emit_char (c, type, stream, quoter, 1);
6c038f32
PH
14030}
14031
14032static int
410a0ff2 14033parse (struct parser_state *ps)
6c038f32
PH
14034{
14035 warnings_issued = 0;
410a0ff2 14036 return ada_parse (ps);
6c038f32
PH
14037}
14038
14039static const struct exp_descriptor ada_exp_descriptor = {
14040 ada_print_subexp,
14041 ada_operator_length,
c0201579 14042 ada_operator_check,
6c038f32
PH
14043 ada_op_name,
14044 ada_dump_subexp_body,
14045 ada_evaluate_subexp
14046};
14047
1a119f36 14048/* Implement the "la_get_symbol_name_cmp" language_defn method
74ccd7f5
JB
14049 for Ada. */
14050
1a119f36
JB
14051static symbol_name_cmp_ftype
14052ada_get_symbol_name_cmp (const char *lookup_name)
74ccd7f5
JB
14053{
14054 if (should_use_wild_match (lookup_name))
14055 return wild_match;
14056 else
14057 return compare_names;
14058}
14059
a5ee536b
JB
14060/* Implement the "la_read_var_value" language_defn method for Ada. */
14061
14062static struct value *
63e43d3a
PMR
14063ada_read_var_value (struct symbol *var, const struct block *var_block,
14064 struct frame_info *frame)
a5ee536b 14065{
3977b71f 14066 const struct block *frame_block = NULL;
a5ee536b
JB
14067 struct symbol *renaming_sym = NULL;
14068
14069 /* The only case where default_read_var_value is not sufficient
14070 is when VAR is a renaming... */
14071 if (frame)
14072 frame_block = get_frame_block (frame, NULL);
14073 if (frame_block)
14074 renaming_sym = ada_find_renaming_symbol (var, frame_block);
14075 if (renaming_sym != NULL)
14076 return ada_read_renaming_var_value (renaming_sym, frame_block);
14077
14078 /* This is a typical case where we expect the default_read_var_value
14079 function to work. */
63e43d3a 14080 return default_read_var_value (var, var_block, frame);
a5ee536b
JB
14081}
14082
56618e20
TT
14083static const char *ada_extensions[] =
14084{
14085 ".adb", ".ads", ".a", ".ada", ".dg", NULL
14086};
14087
6c038f32
PH
14088const struct language_defn ada_language_defn = {
14089 "ada", /* Language name */
6abde28f 14090 "Ada",
6c038f32 14091 language_ada,
6c038f32 14092 range_check_off,
6c038f32
PH
14093 case_sensitive_on, /* Yes, Ada is case-insensitive, but
14094 that's not quite what this means. */
6c038f32 14095 array_row_major,
9a044a89 14096 macro_expansion_no,
56618e20 14097 ada_extensions,
6c038f32
PH
14098 &ada_exp_descriptor,
14099 parse,
b3f11165 14100 ada_yyerror,
6c038f32
PH
14101 resolve,
14102 ada_printchar, /* Print a character constant */
14103 ada_printstr, /* Function to print string constant */
14104 emit_char, /* Function to print single char (not used) */
6c038f32 14105 ada_print_type, /* Print a type using appropriate syntax */
be942545 14106 ada_print_typedef, /* Print a typedef using appropriate syntax */
6c038f32
PH
14107 ada_val_print, /* Print a value using appropriate syntax */
14108 ada_value_print, /* Print a top-level value */
a5ee536b 14109 ada_read_var_value, /* la_read_var_value */
6c038f32 14110 NULL, /* Language specific skip_trampoline */
2b2d9e11 14111 NULL, /* name_of_this */
6c038f32
PH
14112 ada_lookup_symbol_nonlocal, /* Looking up non-local symbols. */
14113 basic_lookup_transparent_type, /* lookup_transparent_type */
14114 ada_la_decode, /* Language specific symbol demangler */
8b302db8 14115 ada_sniff_from_mangled_name,
0963b4bd
MS
14116 NULL, /* Language specific
14117 class_name_from_physname */
6c038f32
PH
14118 ada_op_print_tab, /* expression operators for printing */
14119 0, /* c-style arrays */
14120 1, /* String lower bound */
6c038f32 14121 ada_get_gdb_completer_word_break_characters,
41d27058 14122 ada_make_symbol_completion_list,
72d5681a 14123 ada_language_arch_info,
e79af960 14124 ada_print_array_index,
41f1b697 14125 default_pass_by_reference,
ae6a3a4c 14126 c_get_string,
1a119f36 14127 ada_get_symbol_name_cmp, /* la_get_symbol_name_cmp */
f8eba3c6 14128 ada_iterate_over_symbols,
a53b64ea 14129 &ada_varobj_ops,
bb2ec1b3
TT
14130 NULL,
14131 NULL,
6c038f32
PH
14132 LANG_MAGIC
14133};
14134
2c0b251b
PA
14135/* Provide a prototype to silence -Wmissing-prototypes. */
14136extern initialize_file_ftype _initialize_ada_language;
14137
5bf03f13
JB
14138/* Command-list for the "set/show ada" prefix command. */
14139static struct cmd_list_element *set_ada_list;
14140static struct cmd_list_element *show_ada_list;
14141
14142/* Implement the "set ada" prefix command. */
14143
14144static void
14145set_ada_command (char *arg, int from_tty)
14146{
14147 printf_unfiltered (_(\
14148"\"set ada\" must be followed by the name of a setting.\n"));
635c7e8a 14149 help_list (set_ada_list, "set ada ", all_commands, gdb_stdout);
5bf03f13
JB
14150}
14151
14152/* Implement the "show ada" prefix command. */
14153
14154static void
14155show_ada_command (char *args, int from_tty)
14156{
14157 cmd_show_list (show_ada_list, from_tty, "");
14158}
14159
2060206e
PA
14160static void
14161initialize_ada_catchpoint_ops (void)
14162{
14163 struct breakpoint_ops *ops;
14164
14165 initialize_breakpoint_ops ();
14166
14167 ops = &catch_exception_breakpoint_ops;
14168 *ops = bkpt_breakpoint_ops;
14169 ops->dtor = dtor_catch_exception;
14170 ops->allocate_location = allocate_location_catch_exception;
14171 ops->re_set = re_set_catch_exception;
14172 ops->check_status = check_status_catch_exception;
14173 ops->print_it = print_it_catch_exception;
14174 ops->print_one = print_one_catch_exception;
14175 ops->print_mention = print_mention_catch_exception;
14176 ops->print_recreate = print_recreate_catch_exception;
14177
14178 ops = &catch_exception_unhandled_breakpoint_ops;
14179 *ops = bkpt_breakpoint_ops;
14180 ops->dtor = dtor_catch_exception_unhandled;
14181 ops->allocate_location = allocate_location_catch_exception_unhandled;
14182 ops->re_set = re_set_catch_exception_unhandled;
14183 ops->check_status = check_status_catch_exception_unhandled;
14184 ops->print_it = print_it_catch_exception_unhandled;
14185 ops->print_one = print_one_catch_exception_unhandled;
14186 ops->print_mention = print_mention_catch_exception_unhandled;
14187 ops->print_recreate = print_recreate_catch_exception_unhandled;
14188
14189 ops = &catch_assert_breakpoint_ops;
14190 *ops = bkpt_breakpoint_ops;
14191 ops->dtor = dtor_catch_assert;
14192 ops->allocate_location = allocate_location_catch_assert;
14193 ops->re_set = re_set_catch_assert;
14194 ops->check_status = check_status_catch_assert;
14195 ops->print_it = print_it_catch_assert;
14196 ops->print_one = print_one_catch_assert;
14197 ops->print_mention = print_mention_catch_assert;
14198 ops->print_recreate = print_recreate_catch_assert;
14199}
14200
3d9434b5
JB
14201/* This module's 'new_objfile' observer. */
14202
14203static void
14204ada_new_objfile_observer (struct objfile *objfile)
14205{
14206 ada_clear_symbol_cache ();
14207}
14208
14209/* This module's 'free_objfile' observer. */
14210
14211static void
14212ada_free_objfile_observer (struct objfile *objfile)
14213{
14214 ada_clear_symbol_cache ();
14215}
14216
d2e4a39e 14217void
6c038f32 14218_initialize_ada_language (void)
14f9c5c9 14219{
6c038f32
PH
14220 add_language (&ada_language_defn);
14221
2060206e
PA
14222 initialize_ada_catchpoint_ops ();
14223
5bf03f13
JB
14224 add_prefix_cmd ("ada", no_class, set_ada_command,
14225 _("Prefix command for changing Ada-specfic settings"),
14226 &set_ada_list, "set ada ", 0, &setlist);
14227
14228 add_prefix_cmd ("ada", no_class, show_ada_command,
14229 _("Generic command for showing Ada-specific settings."),
14230 &show_ada_list, "show ada ", 0, &showlist);
14231
14232 add_setshow_boolean_cmd ("trust-PAD-over-XVS", class_obscure,
14233 &trust_pad_over_xvs, _("\
14234Enable or disable an optimization trusting PAD types over XVS types"), _("\
14235Show whether an optimization trusting PAD types over XVS types is activated"),
14236 _("\
14237This is related to the encoding used by the GNAT compiler. The debugger\n\
14238should normally trust the contents of PAD types, but certain older versions\n\
14239of GNAT have a bug that sometimes causes the information in the PAD type\n\
14240to be incorrect. Turning this setting \"off\" allows the debugger to\n\
14241work around this bug. It is always safe to turn this option \"off\", but\n\
14242this incurs a slight performance penalty, so it is recommended to NOT change\n\
14243this option to \"off\" unless necessary."),
14244 NULL, NULL, &set_ada_list, &show_ada_list);
14245
d72413e6
PMR
14246 add_setshow_boolean_cmd ("print-signatures", class_vars,
14247 &print_signatures, _("\
14248Enable or disable the output of formal and return types for functions in the \
14249overloads selection menu"), _("\
14250Show whether the output of formal and return types for functions in the \
14251overloads selection menu is activated"),
14252 NULL, NULL, NULL, &set_ada_list, &show_ada_list);
14253
9ac4176b
PA
14254 add_catch_command ("exception", _("\
14255Catch Ada exceptions, when raised.\n\
14256With an argument, catch only exceptions with the given name."),
14257 catch_ada_exception_command,
14258 NULL,
14259 CATCH_PERMANENT,
14260 CATCH_TEMPORARY);
14261 add_catch_command ("assert", _("\
14262Catch failed Ada assertions, when raised.\n\
14263With an argument, catch only exceptions with the given name."),
14264 catch_assert_command,
14265 NULL,
14266 CATCH_PERMANENT,
14267 CATCH_TEMPORARY);
14268
6c038f32 14269 varsize_limit = 65536;
6c038f32 14270
778865d3
JB
14271 add_info ("exceptions", info_exceptions_command,
14272 _("\
14273List all Ada exception names.\n\
14274If a regular expression is passed as an argument, only those matching\n\
14275the regular expression are listed."));
14276
c6044dd1
JB
14277 add_prefix_cmd ("ada", class_maintenance, maint_set_ada_cmd,
14278 _("Set Ada maintenance-related variables."),
14279 &maint_set_ada_cmdlist, "maintenance set ada ",
14280 0/*allow-unknown*/, &maintenance_set_cmdlist);
14281
14282 add_prefix_cmd ("ada", class_maintenance, maint_show_ada_cmd,
14283 _("Show Ada maintenance-related variables"),
14284 &maint_show_ada_cmdlist, "maintenance show ada ",
14285 0/*allow-unknown*/, &maintenance_show_cmdlist);
14286
14287 add_setshow_boolean_cmd
14288 ("ignore-descriptive-types", class_maintenance,
14289 &ada_ignore_descriptive_types_p,
14290 _("Set whether descriptive types generated by GNAT should be ignored."),
14291 _("Show whether descriptive types generated by GNAT should be ignored."),
14292 _("\
14293When enabled, the debugger will stop using the DW_AT_GNAT_descriptive_type\n\
14294DWARF attribute."),
14295 NULL, NULL, &maint_set_ada_cmdlist, &maint_show_ada_cmdlist);
14296
6c038f32
PH
14297 obstack_init (&symbol_list_obstack);
14298
14299 decoded_names_store = htab_create_alloc
14300 (256, htab_hash_string, (int (*)(const void *, const void *)) streq,
14301 NULL, xcalloc, xfree);
6b69afc4 14302
3d9434b5
JB
14303 /* The ada-lang observers. */
14304 observer_attach_new_objfile (ada_new_objfile_observer);
14305 observer_attach_free_objfile (ada_free_objfile_observer);
e802dbe0 14306 observer_attach_inferior_exit (ada_inferior_exit);
ee01b665
JB
14307
14308 /* Setup various context-specific data. */
e802dbe0 14309 ada_inferior_data
8e260fc0 14310 = register_inferior_data_with_cleanup (NULL, ada_inferior_data_cleanup);
ee01b665
JB
14311 ada_pspace_data_handle
14312 = register_program_space_data_with_cleanup (NULL, ada_pspace_data_cleanup);
14f9c5c9 14313}