]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blame - gdb/ada-lang.c
(Ada) New function ada_is_access_to_unconstrained_array
[thirdparty/binutils-gdb.git] / gdb / ada-lang.c
CommitLineData
6e681866 1/* Ada language support routines for GDB, the GNU debugger.
10a2c479 2
e2882c85 3 Copyright (C) 1992-2018 Free Software Foundation, Inc.
14f9c5c9 4
a9762ec7 5 This file is part of GDB.
14f9c5c9 6
a9762ec7
JB
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
14f9c5c9 11
a9762ec7
JB
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
14f9c5c9 16
a9762ec7
JB
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
14f9c5c9 19
96d887e8 20
4c4b4cd2 21#include "defs.h"
14f9c5c9 22#include <ctype.h>
14f9c5c9 23#include "demangle.h"
4c4b4cd2
PH
24#include "gdb_regex.h"
25#include "frame.h"
14f9c5c9
AS
26#include "symtab.h"
27#include "gdbtypes.h"
28#include "gdbcmd.h"
29#include "expression.h"
30#include "parser-defs.h"
31#include "language.h"
a53b64ea 32#include "varobj.h"
14f9c5c9
AS
33#include "c-lang.h"
34#include "inferior.h"
35#include "symfile.h"
36#include "objfiles.h"
37#include "breakpoint.h"
38#include "gdbcore.h"
4c4b4cd2
PH
39#include "hashtab.h"
40#include "gdb_obstack.h"
14f9c5c9 41#include "ada-lang.h"
4c4b4cd2 42#include "completer.h"
53ce3c39 43#include <sys/stat.h>
14f9c5c9 44#include "ui-out.h"
fe898f56 45#include "block.h"
04714b91 46#include "infcall.h"
de4f826b 47#include "dictionary.h"
f7f9143b
JB
48#include "annotate.h"
49#include "valprint.h"
9bbc9174 50#include "source.h"
76727919 51#include "observable.h"
2ba95b9b 52#include "vec.h"
692465f1 53#include "stack.h"
fa864999 54#include "gdb_vecs.h"
79d43c61 55#include "typeprint.h"
22cee43f 56#include "namespace.h"
14f9c5c9 57
ccefe4c4 58#include "psymtab.h"
40bc484c 59#include "value.h"
956a9fb9 60#include "mi/mi-common.h"
9ac4176b 61#include "arch-utils.h"
0fcd72ba 62#include "cli/cli-utils.h"
14bc53a8 63#include "common/function-view.h"
d5722aa2 64#include "common/byte-vector.h"
ab816a27 65#include <algorithm>
ccefe4c4 66
4c4b4cd2 67/* Define whether or not the C operator '/' truncates towards zero for
0963b4bd 68 differently signed operands (truncation direction is undefined in C).
4c4b4cd2
PH
69 Copied from valarith.c. */
70
71#ifndef TRUNCATION_TOWARDS_ZERO
72#define TRUNCATION_TOWARDS_ZERO ((-5 / 2) == -2)
73#endif
74
d2e4a39e 75static struct type *desc_base_type (struct type *);
14f9c5c9 76
d2e4a39e 77static struct type *desc_bounds_type (struct type *);
14f9c5c9 78
d2e4a39e 79static struct value *desc_bounds (struct value *);
14f9c5c9 80
d2e4a39e 81static int fat_pntr_bounds_bitpos (struct type *);
14f9c5c9 82
d2e4a39e 83static int fat_pntr_bounds_bitsize (struct type *);
14f9c5c9 84
556bdfd4 85static struct type *desc_data_target_type (struct type *);
14f9c5c9 86
d2e4a39e 87static struct value *desc_data (struct value *);
14f9c5c9 88
d2e4a39e 89static int fat_pntr_data_bitpos (struct type *);
14f9c5c9 90
d2e4a39e 91static int fat_pntr_data_bitsize (struct type *);
14f9c5c9 92
d2e4a39e 93static struct value *desc_one_bound (struct value *, int, int);
14f9c5c9 94
d2e4a39e 95static int desc_bound_bitpos (struct type *, int, int);
14f9c5c9 96
d2e4a39e 97static int desc_bound_bitsize (struct type *, int, int);
14f9c5c9 98
d2e4a39e 99static struct type *desc_index_type (struct type *, int);
14f9c5c9 100
d2e4a39e 101static int desc_arity (struct type *);
14f9c5c9 102
d2e4a39e 103static int ada_type_match (struct type *, struct type *, int);
14f9c5c9 104
d2e4a39e 105static int ada_args_match (struct symbol *, struct value **, int);
14f9c5c9 106
40bc484c 107static struct value *make_array_descriptor (struct type *, struct value *);
14f9c5c9 108
4c4b4cd2 109static void ada_add_block_symbols (struct obstack *,
b5ec771e
PA
110 const struct block *,
111 const lookup_name_info &lookup_name,
112 domain_enum, struct objfile *);
14f9c5c9 113
22cee43f 114static void ada_add_all_symbols (struct obstack *, const struct block *,
b5ec771e
PA
115 const lookup_name_info &lookup_name,
116 domain_enum, int, int *);
22cee43f 117
d12307c1 118static int is_nonfunction (struct block_symbol *, int);
14f9c5c9 119
76a01679 120static void add_defn_to_vec (struct obstack *, struct symbol *,
f0c5f9b2 121 const struct block *);
14f9c5c9 122
4c4b4cd2
PH
123static int num_defns_collected (struct obstack *);
124
d12307c1 125static struct block_symbol *defns_collected (struct obstack *, int);
14f9c5c9 126
e9d9f57e 127static struct value *resolve_subexp (expression_up *, int *, int,
76a01679 128 struct type *);
14f9c5c9 129
e9d9f57e 130static void replace_operator_with_call (expression_up *, int, int, int,
270140bd 131 struct symbol *, const struct block *);
14f9c5c9 132
d2e4a39e 133static int possible_user_operator_p (enum exp_opcode, struct value **);
14f9c5c9 134
a121b7c1 135static const char *ada_op_name (enum exp_opcode);
4c4b4cd2
PH
136
137static const char *ada_decoded_op_name (enum exp_opcode);
14f9c5c9 138
d2e4a39e 139static int numeric_type_p (struct type *);
14f9c5c9 140
d2e4a39e 141static int integer_type_p (struct type *);
14f9c5c9 142
d2e4a39e 143static int scalar_type_p (struct type *);
14f9c5c9 144
d2e4a39e 145static int discrete_type_p (struct type *);
14f9c5c9 146
aeb5907d
JB
147static enum ada_renaming_category parse_old_style_renaming (struct type *,
148 const char **,
149 int *,
150 const char **);
151
152static struct symbol *find_old_style_renaming_symbol (const char *,
270140bd 153 const struct block *);
aeb5907d 154
a121b7c1 155static struct type *ada_lookup_struct_elt_type (struct type *, const char *,
988f6b3d 156 int, int);
4c4b4cd2 157
d2e4a39e 158static struct value *evaluate_subexp_type (struct expression *, int *);
14f9c5c9 159
b4ba55a1
JB
160static struct type *ada_find_parallel_type_with_name (struct type *,
161 const char *);
162
d2e4a39e 163static int is_dynamic_field (struct type *, int);
14f9c5c9 164
10a2c479 165static struct type *to_fixed_variant_branch_type (struct type *,
fc1a4b47 166 const gdb_byte *,
4c4b4cd2
PH
167 CORE_ADDR, struct value *);
168
169static struct type *to_fixed_array_type (struct type *, struct value *, int);
14f9c5c9 170
28c85d6c 171static struct type *to_fixed_range_type (struct type *, struct value *);
14f9c5c9 172
d2e4a39e 173static struct type *to_static_fixed_type (struct type *);
f192137b 174static struct type *static_unwrap_type (struct type *type);
14f9c5c9 175
d2e4a39e 176static struct value *unwrap_value (struct value *);
14f9c5c9 177
ad82864c 178static struct type *constrained_packed_array_type (struct type *, long *);
14f9c5c9 179
ad82864c 180static struct type *decode_constrained_packed_array_type (struct type *);
14f9c5c9 181
ad82864c
JB
182static long decode_packed_array_bitsize (struct type *);
183
184static struct value *decode_constrained_packed_array (struct value *);
185
186static int ada_is_packed_array_type (struct type *);
187
188static int ada_is_unconstrained_packed_array_type (struct type *);
14f9c5c9 189
d2e4a39e 190static struct value *value_subscript_packed (struct value *, int,
4c4b4cd2 191 struct value **);
14f9c5c9 192
50810684 193static void move_bits (gdb_byte *, int, const gdb_byte *, int, int, int);
52ce6436 194
4c4b4cd2
PH
195static struct value *coerce_unspec_val_to_type (struct value *,
196 struct type *);
14f9c5c9 197
d2e4a39e 198static int lesseq_defined_than (struct symbol *, struct symbol *);
14f9c5c9 199
d2e4a39e 200static int equiv_types (struct type *, struct type *);
14f9c5c9 201
d2e4a39e 202static int is_name_suffix (const char *);
14f9c5c9 203
73589123
PH
204static int advance_wild_match (const char **, const char *, int);
205
b5ec771e 206static bool wild_match (const char *name, const char *patn);
14f9c5c9 207
d2e4a39e 208static struct value *ada_coerce_ref (struct value *);
14f9c5c9 209
4c4b4cd2
PH
210static LONGEST pos_atr (struct value *);
211
3cb382c9 212static struct value *value_pos_atr (struct type *, struct value *);
14f9c5c9 213
d2e4a39e 214static struct value *value_val_atr (struct type *, struct value *);
14f9c5c9 215
4c4b4cd2
PH
216static struct symbol *standard_lookup (const char *, const struct block *,
217 domain_enum);
14f9c5c9 218
108d56a4 219static struct value *ada_search_struct_field (const char *, struct value *, int,
4c4b4cd2
PH
220 struct type *);
221
222static struct value *ada_value_primitive_field (struct value *, int, int,
223 struct type *);
224
0d5cff50 225static int find_struct_field (const char *, struct type *, int,
52ce6436 226 struct type **, int *, int *, int *, int *);
4c4b4cd2 227
d12307c1 228static int ada_resolve_function (struct block_symbol *, int,
4c4b4cd2
PH
229 struct value **, int, const char *,
230 struct type *);
231
4c4b4cd2
PH
232static int ada_is_direct_array_type (struct type *);
233
72d5681a
PH
234static void ada_language_arch_info (struct gdbarch *,
235 struct language_arch_info *);
714e53ab 236
52ce6436
PH
237static struct value *ada_index_struct_field (int, struct value *, int,
238 struct type *);
239
240static struct value *assign_aggregate (struct value *, struct value *,
0963b4bd
MS
241 struct expression *,
242 int *, enum noside);
52ce6436
PH
243
244static void aggregate_assign_from_choices (struct value *, struct value *,
245 struct expression *,
246 int *, LONGEST *, int *,
247 int, LONGEST, LONGEST);
248
249static void aggregate_assign_positional (struct value *, struct value *,
250 struct expression *,
251 int *, LONGEST *, int *, int,
252 LONGEST, LONGEST);
253
254
255static void aggregate_assign_others (struct value *, struct value *,
256 struct expression *,
257 int *, LONGEST *, int, LONGEST, LONGEST);
258
259
260static void add_component_interval (LONGEST, LONGEST, LONGEST *, int *, int);
261
262
263static struct value *ada_evaluate_subexp (struct type *, struct expression *,
264 int *, enum noside);
265
266static void ada_forward_operator_length (struct expression *, int, int *,
267 int *);
852dff6c
JB
268
269static struct type *ada_find_any_type (const char *name);
b5ec771e
PA
270
271static symbol_name_matcher_ftype *ada_get_symbol_name_matcher
272 (const lookup_name_info &lookup_name);
273
4c4b4cd2
PH
274\f
275
ee01b665
JB
276/* The result of a symbol lookup to be stored in our symbol cache. */
277
278struct cache_entry
279{
280 /* The name used to perform the lookup. */
281 const char *name;
282 /* The namespace used during the lookup. */
fe978cb0 283 domain_enum domain;
ee01b665
JB
284 /* The symbol returned by the lookup, or NULL if no matching symbol
285 was found. */
286 struct symbol *sym;
287 /* The block where the symbol was found, or NULL if no matching
288 symbol was found. */
289 const struct block *block;
290 /* A pointer to the next entry with the same hash. */
291 struct cache_entry *next;
292};
293
294/* The Ada symbol cache, used to store the result of Ada-mode symbol
295 lookups in the course of executing the user's commands.
296
297 The cache is implemented using a simple, fixed-sized hash.
298 The size is fixed on the grounds that there are not likely to be
299 all that many symbols looked up during any given session, regardless
300 of the size of the symbol table. If we decide to go to a resizable
301 table, let's just use the stuff from libiberty instead. */
302
303#define HASH_SIZE 1009
304
305struct ada_symbol_cache
306{
307 /* An obstack used to store the entries in our cache. */
308 struct obstack cache_space;
309
310 /* The root of the hash table used to implement our symbol cache. */
311 struct cache_entry *root[HASH_SIZE];
312};
313
314static void ada_free_symbol_cache (struct ada_symbol_cache *sym_cache);
76a01679 315
4c4b4cd2 316/* Maximum-sized dynamic type. */
14f9c5c9
AS
317static unsigned int varsize_limit;
318
67cb5b2d 319static const char ada_completer_word_break_characters[] =
4c4b4cd2
PH
320#ifdef VMS
321 " \t\n!@#%^&*()+=|~`}{[]\";:?/,-";
322#else
14f9c5c9 323 " \t\n!@#$%^&*()+=|~`}{[]\";:?/,-";
4c4b4cd2 324#endif
14f9c5c9 325
4c4b4cd2 326/* The name of the symbol to use to get the name of the main subprogram. */
76a01679 327static const char ADA_MAIN_PROGRAM_SYMBOL_NAME[]
4c4b4cd2 328 = "__gnat_ada_main_program_name";
14f9c5c9 329
4c4b4cd2
PH
330/* Limit on the number of warnings to raise per expression evaluation. */
331static int warning_limit = 2;
332
333/* Number of warning messages issued; reset to 0 by cleanups after
334 expression evaluation. */
335static int warnings_issued = 0;
336
337static const char *known_runtime_file_name_patterns[] = {
338 ADA_KNOWN_RUNTIME_FILE_NAME_PATTERNS NULL
339};
340
341static const char *known_auxiliary_function_name_patterns[] = {
342 ADA_KNOWN_AUXILIARY_FUNCTION_NAME_PATTERNS NULL
343};
344
c6044dd1
JB
345/* Maintenance-related settings for this module. */
346
347static struct cmd_list_element *maint_set_ada_cmdlist;
348static struct cmd_list_element *maint_show_ada_cmdlist;
349
350/* Implement the "maintenance set ada" (prefix) command. */
351
352static void
981a3fb3 353maint_set_ada_cmd (const char *args, int from_tty)
c6044dd1 354{
635c7e8a
TT
355 help_list (maint_set_ada_cmdlist, "maintenance set ada ", all_commands,
356 gdb_stdout);
c6044dd1
JB
357}
358
359/* Implement the "maintenance show ada" (prefix) command. */
360
361static void
981a3fb3 362maint_show_ada_cmd (const char *args, int from_tty)
c6044dd1
JB
363{
364 cmd_show_list (maint_show_ada_cmdlist, from_tty, "");
365}
366
367/* The "maintenance ada set/show ignore-descriptive-type" value. */
368
369static int ada_ignore_descriptive_types_p = 0;
370
e802dbe0
JB
371 /* Inferior-specific data. */
372
373/* Per-inferior data for this module. */
374
375struct ada_inferior_data
376{
377 /* The ada__tags__type_specific_data type, which is used when decoding
378 tagged types. With older versions of GNAT, this type was directly
379 accessible through a component ("tsd") in the object tag. But this
380 is no longer the case, so we cache it for each inferior. */
381 struct type *tsd_type;
3eecfa55
JB
382
383 /* The exception_support_info data. This data is used to determine
384 how to implement support for Ada exception catchpoints in a given
385 inferior. */
386 const struct exception_support_info *exception_info;
e802dbe0
JB
387};
388
389/* Our key to this module's inferior data. */
390static const struct inferior_data *ada_inferior_data;
391
392/* A cleanup routine for our inferior data. */
393static void
394ada_inferior_data_cleanup (struct inferior *inf, void *arg)
395{
396 struct ada_inferior_data *data;
397
9a3c8263 398 data = (struct ada_inferior_data *) inferior_data (inf, ada_inferior_data);
e802dbe0
JB
399 if (data != NULL)
400 xfree (data);
401}
402
403/* Return our inferior data for the given inferior (INF).
404
405 This function always returns a valid pointer to an allocated
406 ada_inferior_data structure. If INF's inferior data has not
407 been previously set, this functions creates a new one with all
408 fields set to zero, sets INF's inferior to it, and then returns
409 a pointer to that newly allocated ada_inferior_data. */
410
411static struct ada_inferior_data *
412get_ada_inferior_data (struct inferior *inf)
413{
414 struct ada_inferior_data *data;
415
9a3c8263 416 data = (struct ada_inferior_data *) inferior_data (inf, ada_inferior_data);
e802dbe0
JB
417 if (data == NULL)
418 {
41bf6aca 419 data = XCNEW (struct ada_inferior_data);
e802dbe0
JB
420 set_inferior_data (inf, ada_inferior_data, data);
421 }
422
423 return data;
424}
425
426/* Perform all necessary cleanups regarding our module's inferior data
427 that is required after the inferior INF just exited. */
428
429static void
430ada_inferior_exit (struct inferior *inf)
431{
432 ada_inferior_data_cleanup (inf, NULL);
433 set_inferior_data (inf, ada_inferior_data, NULL);
434}
435
ee01b665
JB
436
437 /* program-space-specific data. */
438
439/* This module's per-program-space data. */
440struct ada_pspace_data
441{
442 /* The Ada symbol cache. */
443 struct ada_symbol_cache *sym_cache;
444};
445
446/* Key to our per-program-space data. */
447static const struct program_space_data *ada_pspace_data_handle;
448
449/* Return this module's data for the given program space (PSPACE).
450 If not is found, add a zero'ed one now.
451
452 This function always returns a valid object. */
453
454static struct ada_pspace_data *
455get_ada_pspace_data (struct program_space *pspace)
456{
457 struct ada_pspace_data *data;
458
9a3c8263
SM
459 data = ((struct ada_pspace_data *)
460 program_space_data (pspace, ada_pspace_data_handle));
ee01b665
JB
461 if (data == NULL)
462 {
463 data = XCNEW (struct ada_pspace_data);
464 set_program_space_data (pspace, ada_pspace_data_handle, data);
465 }
466
467 return data;
468}
469
470/* The cleanup callback for this module's per-program-space data. */
471
472static void
473ada_pspace_data_cleanup (struct program_space *pspace, void *data)
474{
9a3c8263 475 struct ada_pspace_data *pspace_data = (struct ada_pspace_data *) data;
ee01b665
JB
476
477 if (pspace_data->sym_cache != NULL)
478 ada_free_symbol_cache (pspace_data->sym_cache);
479 xfree (pspace_data);
480}
481
4c4b4cd2
PH
482 /* Utilities */
483
720d1a40 484/* If TYPE is a TYPE_CODE_TYPEDEF type, return the target type after
eed9788b 485 all typedef layers have been peeled. Otherwise, return TYPE.
720d1a40
JB
486
487 Normally, we really expect a typedef type to only have 1 typedef layer.
488 In other words, we really expect the target type of a typedef type to be
489 a non-typedef type. This is particularly true for Ada units, because
490 the language does not have a typedef vs not-typedef distinction.
491 In that respect, the Ada compiler has been trying to eliminate as many
492 typedef definitions in the debugging information, since they generally
493 do not bring any extra information (we still use typedef under certain
494 circumstances related mostly to the GNAT encoding).
495
496 Unfortunately, we have seen situations where the debugging information
497 generated by the compiler leads to such multiple typedef layers. For
498 instance, consider the following example with stabs:
499
500 .stabs "pck__float_array___XUP:Tt(0,46)=s16P_ARRAY:(0,47)=[...]"[...]
501 .stabs "pck__float_array___XUP:t(0,36)=(0,46)",128,0,6,0
502
503 This is an error in the debugging information which causes type
504 pck__float_array___XUP to be defined twice, and the second time,
505 it is defined as a typedef of a typedef.
506
507 This is on the fringe of legality as far as debugging information is
508 concerned, and certainly unexpected. But it is easy to handle these
509 situations correctly, so we can afford to be lenient in this case. */
510
511static struct type *
512ada_typedef_target_type (struct type *type)
513{
514 while (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
515 type = TYPE_TARGET_TYPE (type);
516 return type;
517}
518
41d27058
JB
519/* Given DECODED_NAME a string holding a symbol name in its
520 decoded form (ie using the Ada dotted notation), returns
521 its unqualified name. */
522
523static const char *
524ada_unqualified_name (const char *decoded_name)
525{
2b0f535a
JB
526 const char *result;
527
528 /* If the decoded name starts with '<', it means that the encoded
529 name does not follow standard naming conventions, and thus that
530 it is not your typical Ada symbol name. Trying to unqualify it
531 is therefore pointless and possibly erroneous. */
532 if (decoded_name[0] == '<')
533 return decoded_name;
534
535 result = strrchr (decoded_name, '.');
41d27058
JB
536 if (result != NULL)
537 result++; /* Skip the dot... */
538 else
539 result = decoded_name;
540
541 return result;
542}
543
39e7af3e 544/* Return a string starting with '<', followed by STR, and '>'. */
41d27058 545
39e7af3e 546static std::string
41d27058
JB
547add_angle_brackets (const char *str)
548{
39e7af3e 549 return string_printf ("<%s>", str);
41d27058 550}
96d887e8 551
67cb5b2d 552static const char *
4c4b4cd2
PH
553ada_get_gdb_completer_word_break_characters (void)
554{
555 return ada_completer_word_break_characters;
556}
557
e79af960
JB
558/* Print an array element index using the Ada syntax. */
559
560static void
561ada_print_array_index (struct value *index_value, struct ui_file *stream,
79a45b7d 562 const struct value_print_options *options)
e79af960 563{
79a45b7d 564 LA_VALUE_PRINT (index_value, stream, options);
e79af960
JB
565 fprintf_filtered (stream, " => ");
566}
567
f27cf670 568/* Assuming VECT points to an array of *SIZE objects of size
14f9c5c9 569 ELEMENT_SIZE, grow it to contain at least MIN_SIZE objects,
f27cf670 570 updating *SIZE as necessary and returning the (new) array. */
14f9c5c9 571
f27cf670
AS
572void *
573grow_vect (void *vect, size_t *size, size_t min_size, int element_size)
14f9c5c9 574{
d2e4a39e
AS
575 if (*size < min_size)
576 {
577 *size *= 2;
578 if (*size < min_size)
4c4b4cd2 579 *size = min_size;
f27cf670 580 vect = xrealloc (vect, *size * element_size);
d2e4a39e 581 }
f27cf670 582 return vect;
14f9c5c9
AS
583}
584
585/* True (non-zero) iff TARGET matches FIELD_NAME up to any trailing
4c4b4cd2 586 suffix of FIELD_NAME beginning "___". */
14f9c5c9
AS
587
588static int
ebf56fd3 589field_name_match (const char *field_name, const char *target)
14f9c5c9
AS
590{
591 int len = strlen (target);
5b4ee69b 592
d2e4a39e 593 return
4c4b4cd2
PH
594 (strncmp (field_name, target, len) == 0
595 && (field_name[len] == '\0'
61012eef 596 || (startswith (field_name + len, "___")
76a01679
JB
597 && strcmp (field_name + strlen (field_name) - 6,
598 "___XVN") != 0)));
14f9c5c9
AS
599}
600
601
872c8b51
JB
602/* Assuming TYPE is a TYPE_CODE_STRUCT or a TYPE_CODE_TYPDEF to
603 a TYPE_CODE_STRUCT, find the field whose name matches FIELD_NAME,
604 and return its index. This function also handles fields whose name
605 have ___ suffixes because the compiler sometimes alters their name
606 by adding such a suffix to represent fields with certain constraints.
607 If the field could not be found, return a negative number if
608 MAYBE_MISSING is set. Otherwise raise an error. */
4c4b4cd2
PH
609
610int
611ada_get_field_index (const struct type *type, const char *field_name,
612 int maybe_missing)
613{
614 int fieldno;
872c8b51
JB
615 struct type *struct_type = check_typedef ((struct type *) type);
616
617 for (fieldno = 0; fieldno < TYPE_NFIELDS (struct_type); fieldno++)
618 if (field_name_match (TYPE_FIELD_NAME (struct_type, fieldno), field_name))
4c4b4cd2
PH
619 return fieldno;
620
621 if (!maybe_missing)
323e0a4a 622 error (_("Unable to find field %s in struct %s. Aborting"),
872c8b51 623 field_name, TYPE_NAME (struct_type));
4c4b4cd2
PH
624
625 return -1;
626}
627
628/* The length of the prefix of NAME prior to any "___" suffix. */
14f9c5c9
AS
629
630int
d2e4a39e 631ada_name_prefix_len (const char *name)
14f9c5c9
AS
632{
633 if (name == NULL)
634 return 0;
d2e4a39e 635 else
14f9c5c9 636 {
d2e4a39e 637 const char *p = strstr (name, "___");
5b4ee69b 638
14f9c5c9 639 if (p == NULL)
4c4b4cd2 640 return strlen (name);
14f9c5c9 641 else
4c4b4cd2 642 return p - name;
14f9c5c9
AS
643 }
644}
645
4c4b4cd2
PH
646/* Return non-zero if SUFFIX is a suffix of STR.
647 Return zero if STR is null. */
648
14f9c5c9 649static int
d2e4a39e 650is_suffix (const char *str, const char *suffix)
14f9c5c9
AS
651{
652 int len1, len2;
5b4ee69b 653
14f9c5c9
AS
654 if (str == NULL)
655 return 0;
656 len1 = strlen (str);
657 len2 = strlen (suffix);
4c4b4cd2 658 return (len1 >= len2 && strcmp (str + len1 - len2, suffix) == 0);
14f9c5c9
AS
659}
660
4c4b4cd2
PH
661/* The contents of value VAL, treated as a value of type TYPE. The
662 result is an lval in memory if VAL is. */
14f9c5c9 663
d2e4a39e 664static struct value *
4c4b4cd2 665coerce_unspec_val_to_type (struct value *val, struct type *type)
14f9c5c9 666{
61ee279c 667 type = ada_check_typedef (type);
df407dfe 668 if (value_type (val) == type)
4c4b4cd2 669 return val;
d2e4a39e 670 else
14f9c5c9 671 {
4c4b4cd2
PH
672 struct value *result;
673
674 /* Make sure that the object size is not unreasonable before
675 trying to allocate some memory for it. */
c1b5a1a6 676 ada_ensure_varsize_limit (type);
4c4b4cd2 677
41e8491f
JK
678 if (value_lazy (val)
679 || TYPE_LENGTH (type) > TYPE_LENGTH (value_type (val)))
680 result = allocate_value_lazy (type);
681 else
682 {
683 result = allocate_value (type);
9a0dc9e3 684 value_contents_copy_raw (result, 0, val, 0, TYPE_LENGTH (type));
41e8491f 685 }
74bcbdf3 686 set_value_component_location (result, val);
9bbda503
AC
687 set_value_bitsize (result, value_bitsize (val));
688 set_value_bitpos (result, value_bitpos (val));
42ae5230 689 set_value_address (result, value_address (val));
14f9c5c9
AS
690 return result;
691 }
692}
693
fc1a4b47
AC
694static const gdb_byte *
695cond_offset_host (const gdb_byte *valaddr, long offset)
14f9c5c9
AS
696{
697 if (valaddr == NULL)
698 return NULL;
699 else
700 return valaddr + offset;
701}
702
703static CORE_ADDR
ebf56fd3 704cond_offset_target (CORE_ADDR address, long offset)
14f9c5c9
AS
705{
706 if (address == 0)
707 return 0;
d2e4a39e 708 else
14f9c5c9
AS
709 return address + offset;
710}
711
4c4b4cd2
PH
712/* Issue a warning (as for the definition of warning in utils.c, but
713 with exactly one argument rather than ...), unless the limit on the
714 number of warnings has passed during the evaluation of the current
715 expression. */
a2249542 716
77109804
AC
717/* FIXME: cagney/2004-10-10: This function is mimicking the behavior
718 provided by "complaint". */
a0b31db1 719static void lim_warning (const char *format, ...) ATTRIBUTE_PRINTF (1, 2);
77109804 720
14f9c5c9 721static void
a2249542 722lim_warning (const char *format, ...)
14f9c5c9 723{
a2249542 724 va_list args;
a2249542 725
5b4ee69b 726 va_start (args, format);
4c4b4cd2
PH
727 warnings_issued += 1;
728 if (warnings_issued <= warning_limit)
a2249542
MK
729 vwarning (format, args);
730
731 va_end (args);
4c4b4cd2
PH
732}
733
714e53ab
PH
734/* Issue an error if the size of an object of type T is unreasonable,
735 i.e. if it would be a bad idea to allocate a value of this type in
736 GDB. */
737
c1b5a1a6
JB
738void
739ada_ensure_varsize_limit (const struct type *type)
714e53ab
PH
740{
741 if (TYPE_LENGTH (type) > varsize_limit)
323e0a4a 742 error (_("object size is larger than varsize-limit"));
714e53ab
PH
743}
744
0963b4bd 745/* Maximum value of a SIZE-byte signed integer type. */
4c4b4cd2 746static LONGEST
c3e5cd34 747max_of_size (int size)
4c4b4cd2 748{
76a01679 749 LONGEST top_bit = (LONGEST) 1 << (size * 8 - 2);
5b4ee69b 750
76a01679 751 return top_bit | (top_bit - 1);
4c4b4cd2
PH
752}
753
0963b4bd 754/* Minimum value of a SIZE-byte signed integer type. */
4c4b4cd2 755static LONGEST
c3e5cd34 756min_of_size (int size)
4c4b4cd2 757{
c3e5cd34 758 return -max_of_size (size) - 1;
4c4b4cd2
PH
759}
760
0963b4bd 761/* Maximum value of a SIZE-byte unsigned integer type. */
4c4b4cd2 762static ULONGEST
c3e5cd34 763umax_of_size (int size)
4c4b4cd2 764{
76a01679 765 ULONGEST top_bit = (ULONGEST) 1 << (size * 8 - 1);
5b4ee69b 766
76a01679 767 return top_bit | (top_bit - 1);
4c4b4cd2
PH
768}
769
0963b4bd 770/* Maximum value of integral type T, as a signed quantity. */
c3e5cd34
PH
771static LONGEST
772max_of_type (struct type *t)
4c4b4cd2 773{
c3e5cd34
PH
774 if (TYPE_UNSIGNED (t))
775 return (LONGEST) umax_of_size (TYPE_LENGTH (t));
776 else
777 return max_of_size (TYPE_LENGTH (t));
778}
779
0963b4bd 780/* Minimum value of integral type T, as a signed quantity. */
c3e5cd34
PH
781static LONGEST
782min_of_type (struct type *t)
783{
784 if (TYPE_UNSIGNED (t))
785 return 0;
786 else
787 return min_of_size (TYPE_LENGTH (t));
4c4b4cd2
PH
788}
789
790/* The largest value in the domain of TYPE, a discrete type, as an integer. */
43bbcdc2
PH
791LONGEST
792ada_discrete_type_high_bound (struct type *type)
4c4b4cd2 793{
c3345124 794 type = resolve_dynamic_type (type, NULL, 0);
76a01679 795 switch (TYPE_CODE (type))
4c4b4cd2
PH
796 {
797 case TYPE_CODE_RANGE:
690cc4eb 798 return TYPE_HIGH_BOUND (type);
4c4b4cd2 799 case TYPE_CODE_ENUM:
14e75d8e 800 return TYPE_FIELD_ENUMVAL (type, TYPE_NFIELDS (type) - 1);
690cc4eb
PH
801 case TYPE_CODE_BOOL:
802 return 1;
803 case TYPE_CODE_CHAR:
76a01679 804 case TYPE_CODE_INT:
690cc4eb 805 return max_of_type (type);
4c4b4cd2 806 default:
43bbcdc2 807 error (_("Unexpected type in ada_discrete_type_high_bound."));
4c4b4cd2
PH
808 }
809}
810
14e75d8e 811/* The smallest value in the domain of TYPE, a discrete type, as an integer. */
43bbcdc2
PH
812LONGEST
813ada_discrete_type_low_bound (struct type *type)
4c4b4cd2 814{
c3345124 815 type = resolve_dynamic_type (type, NULL, 0);
76a01679 816 switch (TYPE_CODE (type))
4c4b4cd2
PH
817 {
818 case TYPE_CODE_RANGE:
690cc4eb 819 return TYPE_LOW_BOUND (type);
4c4b4cd2 820 case TYPE_CODE_ENUM:
14e75d8e 821 return TYPE_FIELD_ENUMVAL (type, 0);
690cc4eb
PH
822 case TYPE_CODE_BOOL:
823 return 0;
824 case TYPE_CODE_CHAR:
76a01679 825 case TYPE_CODE_INT:
690cc4eb 826 return min_of_type (type);
4c4b4cd2 827 default:
43bbcdc2 828 error (_("Unexpected type in ada_discrete_type_low_bound."));
4c4b4cd2
PH
829 }
830}
831
832/* The identity on non-range types. For range types, the underlying
76a01679 833 non-range scalar type. */
4c4b4cd2
PH
834
835static struct type *
18af8284 836get_base_type (struct type *type)
4c4b4cd2
PH
837{
838 while (type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE)
839 {
76a01679
JB
840 if (type == TYPE_TARGET_TYPE (type) || TYPE_TARGET_TYPE (type) == NULL)
841 return type;
4c4b4cd2
PH
842 type = TYPE_TARGET_TYPE (type);
843 }
844 return type;
14f9c5c9 845}
41246937
JB
846
847/* Return a decoded version of the given VALUE. This means returning
848 a value whose type is obtained by applying all the GNAT-specific
849 encondings, making the resulting type a static but standard description
850 of the initial type. */
851
852struct value *
853ada_get_decoded_value (struct value *value)
854{
855 struct type *type = ada_check_typedef (value_type (value));
856
857 if (ada_is_array_descriptor_type (type)
858 || (ada_is_constrained_packed_array_type (type)
859 && TYPE_CODE (type) != TYPE_CODE_PTR))
860 {
861 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF) /* array access type. */
862 value = ada_coerce_to_simple_array_ptr (value);
863 else
864 value = ada_coerce_to_simple_array (value);
865 }
866 else
867 value = ada_to_fixed_value (value);
868
869 return value;
870}
871
872/* Same as ada_get_decoded_value, but with the given TYPE.
873 Because there is no associated actual value for this type,
874 the resulting type might be a best-effort approximation in
875 the case of dynamic types. */
876
877struct type *
878ada_get_decoded_type (struct type *type)
879{
880 type = to_static_fixed_type (type);
881 if (ada_is_constrained_packed_array_type (type))
882 type = ada_coerce_to_simple_array_type (type);
883 return type;
884}
885
4c4b4cd2 886\f
76a01679 887
4c4b4cd2 888 /* Language Selection */
14f9c5c9
AS
889
890/* If the main program is in Ada, return language_ada, otherwise return LANG
ccefe4c4 891 (the main program is in Ada iif the adainit symbol is found). */
d2e4a39e 892
14f9c5c9 893enum language
ccefe4c4 894ada_update_initial_language (enum language lang)
14f9c5c9 895{
d2e4a39e 896 if (lookup_minimal_symbol ("adainit", (const char *) NULL,
3b7344d5 897 (struct objfile *) NULL).minsym != NULL)
4c4b4cd2 898 return language_ada;
14f9c5c9
AS
899
900 return lang;
901}
96d887e8
PH
902
903/* If the main procedure is written in Ada, then return its name.
904 The result is good until the next call. Return NULL if the main
905 procedure doesn't appear to be in Ada. */
906
907char *
908ada_main_name (void)
909{
3b7344d5 910 struct bound_minimal_symbol msym;
e83e4e24 911 static gdb::unique_xmalloc_ptr<char> main_program_name;
6c038f32 912
96d887e8
PH
913 /* For Ada, the name of the main procedure is stored in a specific
914 string constant, generated by the binder. Look for that symbol,
915 extract its address, and then read that string. If we didn't find
916 that string, then most probably the main procedure is not written
917 in Ada. */
918 msym = lookup_minimal_symbol (ADA_MAIN_PROGRAM_SYMBOL_NAME, NULL, NULL);
919
3b7344d5 920 if (msym.minsym != NULL)
96d887e8 921 {
f9bc20b9
JB
922 CORE_ADDR main_program_name_addr;
923 int err_code;
924
77e371c0 925 main_program_name_addr = BMSYMBOL_VALUE_ADDRESS (msym);
96d887e8 926 if (main_program_name_addr == 0)
323e0a4a 927 error (_("Invalid address for Ada main program name."));
96d887e8 928
f9bc20b9
JB
929 target_read_string (main_program_name_addr, &main_program_name,
930 1024, &err_code);
931
932 if (err_code != 0)
933 return NULL;
e83e4e24 934 return main_program_name.get ();
96d887e8
PH
935 }
936
937 /* The main procedure doesn't seem to be in Ada. */
938 return NULL;
939}
14f9c5c9 940\f
4c4b4cd2 941 /* Symbols */
d2e4a39e 942
4c4b4cd2
PH
943/* Table of Ada operators and their GNAT-encoded names. Last entry is pair
944 of NULLs. */
14f9c5c9 945
d2e4a39e
AS
946const struct ada_opname_map ada_opname_table[] = {
947 {"Oadd", "\"+\"", BINOP_ADD},
948 {"Osubtract", "\"-\"", BINOP_SUB},
949 {"Omultiply", "\"*\"", BINOP_MUL},
950 {"Odivide", "\"/\"", BINOP_DIV},
951 {"Omod", "\"mod\"", BINOP_MOD},
952 {"Orem", "\"rem\"", BINOP_REM},
953 {"Oexpon", "\"**\"", BINOP_EXP},
954 {"Olt", "\"<\"", BINOP_LESS},
955 {"Ole", "\"<=\"", BINOP_LEQ},
956 {"Ogt", "\">\"", BINOP_GTR},
957 {"Oge", "\">=\"", BINOP_GEQ},
958 {"Oeq", "\"=\"", BINOP_EQUAL},
959 {"One", "\"/=\"", BINOP_NOTEQUAL},
960 {"Oand", "\"and\"", BINOP_BITWISE_AND},
961 {"Oor", "\"or\"", BINOP_BITWISE_IOR},
962 {"Oxor", "\"xor\"", BINOP_BITWISE_XOR},
963 {"Oconcat", "\"&\"", BINOP_CONCAT},
964 {"Oabs", "\"abs\"", UNOP_ABS},
965 {"Onot", "\"not\"", UNOP_LOGICAL_NOT},
966 {"Oadd", "\"+\"", UNOP_PLUS},
967 {"Osubtract", "\"-\"", UNOP_NEG},
968 {NULL, NULL}
14f9c5c9
AS
969};
970
b5ec771e
PA
971/* The "encoded" form of DECODED, according to GNAT conventions. The
972 result is valid until the next call to ada_encode. If
973 THROW_ERRORS, throw an error if invalid operator name is found.
974 Otherwise, return NULL in that case. */
4c4b4cd2 975
b5ec771e
PA
976static char *
977ada_encode_1 (const char *decoded, bool throw_errors)
14f9c5c9 978{
4c4b4cd2
PH
979 static char *encoding_buffer = NULL;
980 static size_t encoding_buffer_size = 0;
d2e4a39e 981 const char *p;
14f9c5c9 982 int k;
d2e4a39e 983
4c4b4cd2 984 if (decoded == NULL)
14f9c5c9
AS
985 return NULL;
986
4c4b4cd2
PH
987 GROW_VECT (encoding_buffer, encoding_buffer_size,
988 2 * strlen (decoded) + 10);
14f9c5c9
AS
989
990 k = 0;
4c4b4cd2 991 for (p = decoded; *p != '\0'; p += 1)
14f9c5c9 992 {
cdc7bb92 993 if (*p == '.')
4c4b4cd2
PH
994 {
995 encoding_buffer[k] = encoding_buffer[k + 1] = '_';
996 k += 2;
997 }
14f9c5c9 998 else if (*p == '"')
4c4b4cd2
PH
999 {
1000 const struct ada_opname_map *mapping;
1001
1002 for (mapping = ada_opname_table;
1265e4aa 1003 mapping->encoded != NULL
61012eef 1004 && !startswith (p, mapping->decoded); mapping += 1)
4c4b4cd2
PH
1005 ;
1006 if (mapping->encoded == NULL)
b5ec771e
PA
1007 {
1008 if (throw_errors)
1009 error (_("invalid Ada operator name: %s"), p);
1010 else
1011 return NULL;
1012 }
4c4b4cd2
PH
1013 strcpy (encoding_buffer + k, mapping->encoded);
1014 k += strlen (mapping->encoded);
1015 break;
1016 }
d2e4a39e 1017 else
4c4b4cd2
PH
1018 {
1019 encoding_buffer[k] = *p;
1020 k += 1;
1021 }
14f9c5c9
AS
1022 }
1023
4c4b4cd2
PH
1024 encoding_buffer[k] = '\0';
1025 return encoding_buffer;
14f9c5c9
AS
1026}
1027
b5ec771e
PA
1028/* The "encoded" form of DECODED, according to GNAT conventions.
1029 The result is valid until the next call to ada_encode. */
1030
1031char *
1032ada_encode (const char *decoded)
1033{
1034 return ada_encode_1 (decoded, true);
1035}
1036
14f9c5c9 1037/* Return NAME folded to lower case, or, if surrounded by single
4c4b4cd2
PH
1038 quotes, unfolded, but with the quotes stripped away. Result good
1039 to next call. */
1040
d2e4a39e
AS
1041char *
1042ada_fold_name (const char *name)
14f9c5c9 1043{
d2e4a39e 1044 static char *fold_buffer = NULL;
14f9c5c9
AS
1045 static size_t fold_buffer_size = 0;
1046
1047 int len = strlen (name);
d2e4a39e 1048 GROW_VECT (fold_buffer, fold_buffer_size, len + 1);
14f9c5c9
AS
1049
1050 if (name[0] == '\'')
1051 {
d2e4a39e
AS
1052 strncpy (fold_buffer, name + 1, len - 2);
1053 fold_buffer[len - 2] = '\000';
14f9c5c9
AS
1054 }
1055 else
1056 {
1057 int i;
5b4ee69b 1058
14f9c5c9 1059 for (i = 0; i <= len; i += 1)
4c4b4cd2 1060 fold_buffer[i] = tolower (name[i]);
14f9c5c9
AS
1061 }
1062
1063 return fold_buffer;
1064}
1065
529cad9c
PH
1066/* Return nonzero if C is either a digit or a lowercase alphabet character. */
1067
1068static int
1069is_lower_alphanum (const char c)
1070{
1071 return (isdigit (c) || (isalpha (c) && islower (c)));
1072}
1073
c90092fe
JB
1074/* ENCODED is the linkage name of a symbol and LEN contains its length.
1075 This function saves in LEN the length of that same symbol name but
1076 without either of these suffixes:
29480c32
JB
1077 . .{DIGIT}+
1078 . ${DIGIT}+
1079 . ___{DIGIT}+
1080 . __{DIGIT}+.
c90092fe 1081
29480c32
JB
1082 These are suffixes introduced by the compiler for entities such as
1083 nested subprogram for instance, in order to avoid name clashes.
1084 They do not serve any purpose for the debugger. */
1085
1086static void
1087ada_remove_trailing_digits (const char *encoded, int *len)
1088{
1089 if (*len > 1 && isdigit (encoded[*len - 1]))
1090 {
1091 int i = *len - 2;
5b4ee69b 1092
29480c32
JB
1093 while (i > 0 && isdigit (encoded[i]))
1094 i--;
1095 if (i >= 0 && encoded[i] == '.')
1096 *len = i;
1097 else if (i >= 0 && encoded[i] == '$')
1098 *len = i;
61012eef 1099 else if (i >= 2 && startswith (encoded + i - 2, "___"))
29480c32 1100 *len = i - 2;
61012eef 1101 else if (i >= 1 && startswith (encoded + i - 1, "__"))
29480c32
JB
1102 *len = i - 1;
1103 }
1104}
1105
1106/* Remove the suffix introduced by the compiler for protected object
1107 subprograms. */
1108
1109static void
1110ada_remove_po_subprogram_suffix (const char *encoded, int *len)
1111{
1112 /* Remove trailing N. */
1113
1114 /* Protected entry subprograms are broken into two
1115 separate subprograms: The first one is unprotected, and has
1116 a 'N' suffix; the second is the protected version, and has
0963b4bd 1117 the 'P' suffix. The second calls the first one after handling
29480c32
JB
1118 the protection. Since the P subprograms are internally generated,
1119 we leave these names undecoded, giving the user a clue that this
1120 entity is internal. */
1121
1122 if (*len > 1
1123 && encoded[*len - 1] == 'N'
1124 && (isdigit (encoded[*len - 2]) || islower (encoded[*len - 2])))
1125 *len = *len - 1;
1126}
1127
69fadcdf
JB
1128/* Remove trailing X[bn]* suffixes (indicating names in package bodies). */
1129
1130static void
1131ada_remove_Xbn_suffix (const char *encoded, int *len)
1132{
1133 int i = *len - 1;
1134
1135 while (i > 0 && (encoded[i] == 'b' || encoded[i] == 'n'))
1136 i--;
1137
1138 if (encoded[i] != 'X')
1139 return;
1140
1141 if (i == 0)
1142 return;
1143
1144 if (isalnum (encoded[i-1]))
1145 *len = i;
1146}
1147
29480c32
JB
1148/* If ENCODED follows the GNAT entity encoding conventions, then return
1149 the decoded form of ENCODED. Otherwise, return "<%s>" where "%s" is
1150 replaced by ENCODED.
14f9c5c9 1151
4c4b4cd2 1152 The resulting string is valid until the next call of ada_decode.
29480c32 1153 If the string is unchanged by decoding, the original string pointer
4c4b4cd2
PH
1154 is returned. */
1155
1156const char *
1157ada_decode (const char *encoded)
14f9c5c9
AS
1158{
1159 int i, j;
1160 int len0;
d2e4a39e 1161 const char *p;
4c4b4cd2 1162 char *decoded;
14f9c5c9 1163 int at_start_name;
4c4b4cd2
PH
1164 static char *decoding_buffer = NULL;
1165 static size_t decoding_buffer_size = 0;
d2e4a39e 1166
0d81f350
JG
1167 /* With function descriptors on PPC64, the value of a symbol named
1168 ".FN", if it exists, is the entry point of the function "FN". */
1169 if (encoded[0] == '.')
1170 encoded += 1;
1171
29480c32
JB
1172 /* The name of the Ada main procedure starts with "_ada_".
1173 This prefix is not part of the decoded name, so skip this part
1174 if we see this prefix. */
61012eef 1175 if (startswith (encoded, "_ada_"))
4c4b4cd2 1176 encoded += 5;
14f9c5c9 1177
29480c32
JB
1178 /* If the name starts with '_', then it is not a properly encoded
1179 name, so do not attempt to decode it. Similarly, if the name
1180 starts with '<', the name should not be decoded. */
4c4b4cd2 1181 if (encoded[0] == '_' || encoded[0] == '<')
14f9c5c9
AS
1182 goto Suppress;
1183
4c4b4cd2 1184 len0 = strlen (encoded);
4c4b4cd2 1185
29480c32
JB
1186 ada_remove_trailing_digits (encoded, &len0);
1187 ada_remove_po_subprogram_suffix (encoded, &len0);
529cad9c 1188
4c4b4cd2
PH
1189 /* Remove the ___X.* suffix if present. Do not forget to verify that
1190 the suffix is located before the current "end" of ENCODED. We want
1191 to avoid re-matching parts of ENCODED that have previously been
1192 marked as discarded (by decrementing LEN0). */
1193 p = strstr (encoded, "___");
1194 if (p != NULL && p - encoded < len0 - 3)
14f9c5c9
AS
1195 {
1196 if (p[3] == 'X')
4c4b4cd2 1197 len0 = p - encoded;
14f9c5c9 1198 else
4c4b4cd2 1199 goto Suppress;
14f9c5c9 1200 }
4c4b4cd2 1201
29480c32
JB
1202 /* Remove any trailing TKB suffix. It tells us that this symbol
1203 is for the body of a task, but that information does not actually
1204 appear in the decoded name. */
1205
61012eef 1206 if (len0 > 3 && startswith (encoded + len0 - 3, "TKB"))
14f9c5c9 1207 len0 -= 3;
76a01679 1208
a10967fa
JB
1209 /* Remove any trailing TB suffix. The TB suffix is slightly different
1210 from the TKB suffix because it is used for non-anonymous task
1211 bodies. */
1212
61012eef 1213 if (len0 > 2 && startswith (encoded + len0 - 2, "TB"))
a10967fa
JB
1214 len0 -= 2;
1215
29480c32
JB
1216 /* Remove trailing "B" suffixes. */
1217 /* FIXME: brobecker/2006-04-19: Not sure what this are used for... */
1218
61012eef 1219 if (len0 > 1 && startswith (encoded + len0 - 1, "B"))
14f9c5c9
AS
1220 len0 -= 1;
1221
4c4b4cd2 1222 /* Make decoded big enough for possible expansion by operator name. */
29480c32 1223
4c4b4cd2
PH
1224 GROW_VECT (decoding_buffer, decoding_buffer_size, 2 * len0 + 1);
1225 decoded = decoding_buffer;
14f9c5c9 1226
29480c32
JB
1227 /* Remove trailing __{digit}+ or trailing ${digit}+. */
1228
4c4b4cd2 1229 if (len0 > 1 && isdigit (encoded[len0 - 1]))
d2e4a39e 1230 {
4c4b4cd2
PH
1231 i = len0 - 2;
1232 while ((i >= 0 && isdigit (encoded[i]))
1233 || (i >= 1 && encoded[i] == '_' && isdigit (encoded[i - 1])))
1234 i -= 1;
1235 if (i > 1 && encoded[i] == '_' && encoded[i - 1] == '_')
1236 len0 = i - 1;
1237 else if (encoded[i] == '$')
1238 len0 = i;
d2e4a39e 1239 }
14f9c5c9 1240
29480c32
JB
1241 /* The first few characters that are not alphabetic are not part
1242 of any encoding we use, so we can copy them over verbatim. */
1243
4c4b4cd2
PH
1244 for (i = 0, j = 0; i < len0 && !isalpha (encoded[i]); i += 1, j += 1)
1245 decoded[j] = encoded[i];
14f9c5c9
AS
1246
1247 at_start_name = 1;
1248 while (i < len0)
1249 {
29480c32 1250 /* Is this a symbol function? */
4c4b4cd2
PH
1251 if (at_start_name && encoded[i] == 'O')
1252 {
1253 int k;
5b4ee69b 1254
4c4b4cd2
PH
1255 for (k = 0; ada_opname_table[k].encoded != NULL; k += 1)
1256 {
1257 int op_len = strlen (ada_opname_table[k].encoded);
06d5cf63
JB
1258 if ((strncmp (ada_opname_table[k].encoded + 1, encoded + i + 1,
1259 op_len - 1) == 0)
1260 && !isalnum (encoded[i + op_len]))
4c4b4cd2
PH
1261 {
1262 strcpy (decoded + j, ada_opname_table[k].decoded);
1263 at_start_name = 0;
1264 i += op_len;
1265 j += strlen (ada_opname_table[k].decoded);
1266 break;
1267 }
1268 }
1269 if (ada_opname_table[k].encoded != NULL)
1270 continue;
1271 }
14f9c5c9
AS
1272 at_start_name = 0;
1273
529cad9c
PH
1274 /* Replace "TK__" with "__", which will eventually be translated
1275 into "." (just below). */
1276
61012eef 1277 if (i < len0 - 4 && startswith (encoded + i, "TK__"))
4c4b4cd2 1278 i += 2;
529cad9c 1279
29480c32
JB
1280 /* Replace "__B_{DIGITS}+__" sequences by "__", which will eventually
1281 be translated into "." (just below). These are internal names
1282 generated for anonymous blocks inside which our symbol is nested. */
1283
1284 if (len0 - i > 5 && encoded [i] == '_' && encoded [i+1] == '_'
1285 && encoded [i+2] == 'B' && encoded [i+3] == '_'
1286 && isdigit (encoded [i+4]))
1287 {
1288 int k = i + 5;
1289
1290 while (k < len0 && isdigit (encoded[k]))
1291 k++; /* Skip any extra digit. */
1292
1293 /* Double-check that the "__B_{DIGITS}+" sequence we found
1294 is indeed followed by "__". */
1295 if (len0 - k > 2 && encoded [k] == '_' && encoded [k+1] == '_')
1296 i = k;
1297 }
1298
529cad9c
PH
1299 /* Remove _E{DIGITS}+[sb] */
1300
1301 /* Just as for protected object subprograms, there are 2 categories
0963b4bd 1302 of subprograms created by the compiler for each entry. The first
529cad9c
PH
1303 one implements the actual entry code, and has a suffix following
1304 the convention above; the second one implements the barrier and
1305 uses the same convention as above, except that the 'E' is replaced
1306 by a 'B'.
1307
1308 Just as above, we do not decode the name of barrier functions
1309 to give the user a clue that the code he is debugging has been
1310 internally generated. */
1311
1312 if (len0 - i > 3 && encoded [i] == '_' && encoded[i+1] == 'E'
1313 && isdigit (encoded[i+2]))
1314 {
1315 int k = i + 3;
1316
1317 while (k < len0 && isdigit (encoded[k]))
1318 k++;
1319
1320 if (k < len0
1321 && (encoded[k] == 'b' || encoded[k] == 's'))
1322 {
1323 k++;
1324 /* Just as an extra precaution, make sure that if this
1325 suffix is followed by anything else, it is a '_'.
1326 Otherwise, we matched this sequence by accident. */
1327 if (k == len0
1328 || (k < len0 && encoded[k] == '_'))
1329 i = k;
1330 }
1331 }
1332
1333 /* Remove trailing "N" in [a-z0-9]+N__. The N is added by
1334 the GNAT front-end in protected object subprograms. */
1335
1336 if (i < len0 + 3
1337 && encoded[i] == 'N' && encoded[i+1] == '_' && encoded[i+2] == '_')
1338 {
1339 /* Backtrack a bit up until we reach either the begining of
1340 the encoded name, or "__". Make sure that we only find
1341 digits or lowercase characters. */
1342 const char *ptr = encoded + i - 1;
1343
1344 while (ptr >= encoded && is_lower_alphanum (ptr[0]))
1345 ptr--;
1346 if (ptr < encoded
1347 || (ptr > encoded && ptr[0] == '_' && ptr[-1] == '_'))
1348 i++;
1349 }
1350
4c4b4cd2
PH
1351 if (encoded[i] == 'X' && i != 0 && isalnum (encoded[i - 1]))
1352 {
29480c32
JB
1353 /* This is a X[bn]* sequence not separated from the previous
1354 part of the name with a non-alpha-numeric character (in other
1355 words, immediately following an alpha-numeric character), then
1356 verify that it is placed at the end of the encoded name. If
1357 not, then the encoding is not valid and we should abort the
1358 decoding. Otherwise, just skip it, it is used in body-nested
1359 package names. */
4c4b4cd2
PH
1360 do
1361 i += 1;
1362 while (i < len0 && (encoded[i] == 'b' || encoded[i] == 'n'));
1363 if (i < len0)
1364 goto Suppress;
1365 }
cdc7bb92 1366 else if (i < len0 - 2 && encoded[i] == '_' && encoded[i + 1] == '_')
4c4b4cd2 1367 {
29480c32 1368 /* Replace '__' by '.'. */
4c4b4cd2
PH
1369 decoded[j] = '.';
1370 at_start_name = 1;
1371 i += 2;
1372 j += 1;
1373 }
14f9c5c9 1374 else
4c4b4cd2 1375 {
29480c32
JB
1376 /* It's a character part of the decoded name, so just copy it
1377 over. */
4c4b4cd2
PH
1378 decoded[j] = encoded[i];
1379 i += 1;
1380 j += 1;
1381 }
14f9c5c9 1382 }
4c4b4cd2 1383 decoded[j] = '\000';
14f9c5c9 1384
29480c32
JB
1385 /* Decoded names should never contain any uppercase character.
1386 Double-check this, and abort the decoding if we find one. */
1387
4c4b4cd2
PH
1388 for (i = 0; decoded[i] != '\0'; i += 1)
1389 if (isupper (decoded[i]) || decoded[i] == ' ')
14f9c5c9
AS
1390 goto Suppress;
1391
4c4b4cd2
PH
1392 if (strcmp (decoded, encoded) == 0)
1393 return encoded;
1394 else
1395 return decoded;
14f9c5c9
AS
1396
1397Suppress:
4c4b4cd2
PH
1398 GROW_VECT (decoding_buffer, decoding_buffer_size, strlen (encoded) + 3);
1399 decoded = decoding_buffer;
1400 if (encoded[0] == '<')
1401 strcpy (decoded, encoded);
14f9c5c9 1402 else
88c15c34 1403 xsnprintf (decoded, decoding_buffer_size, "<%s>", encoded);
4c4b4cd2
PH
1404 return decoded;
1405
1406}
1407
1408/* Table for keeping permanent unique copies of decoded names. Once
1409 allocated, names in this table are never released. While this is a
1410 storage leak, it should not be significant unless there are massive
1411 changes in the set of decoded names in successive versions of a
1412 symbol table loaded during a single session. */
1413static struct htab *decoded_names_store;
1414
1415/* Returns the decoded name of GSYMBOL, as for ada_decode, caching it
1416 in the language-specific part of GSYMBOL, if it has not been
1417 previously computed. Tries to save the decoded name in the same
1418 obstack as GSYMBOL, if possible, and otherwise on the heap (so that,
1419 in any case, the decoded symbol has a lifetime at least that of
0963b4bd 1420 GSYMBOL).
4c4b4cd2
PH
1421 The GSYMBOL parameter is "mutable" in the C++ sense: logically
1422 const, but nevertheless modified to a semantically equivalent form
0963b4bd 1423 when a decoded name is cached in it. */
4c4b4cd2 1424
45e6c716 1425const char *
f85f34ed 1426ada_decode_symbol (const struct general_symbol_info *arg)
4c4b4cd2 1427{
f85f34ed
TT
1428 struct general_symbol_info *gsymbol = (struct general_symbol_info *) arg;
1429 const char **resultp =
615b3f62 1430 &gsymbol->language_specific.demangled_name;
5b4ee69b 1431
f85f34ed 1432 if (!gsymbol->ada_mangled)
4c4b4cd2
PH
1433 {
1434 const char *decoded = ada_decode (gsymbol->name);
f85f34ed 1435 struct obstack *obstack = gsymbol->language_specific.obstack;
5b4ee69b 1436
f85f34ed 1437 gsymbol->ada_mangled = 1;
5b4ee69b 1438
f85f34ed 1439 if (obstack != NULL)
224c3ddb
SM
1440 *resultp
1441 = (const char *) obstack_copy0 (obstack, decoded, strlen (decoded));
f85f34ed 1442 else
76a01679 1443 {
f85f34ed
TT
1444 /* Sometimes, we can't find a corresponding objfile, in
1445 which case, we put the result on the heap. Since we only
1446 decode when needed, we hope this usually does not cause a
1447 significant memory leak (FIXME). */
1448
76a01679
JB
1449 char **slot = (char **) htab_find_slot (decoded_names_store,
1450 decoded, INSERT);
5b4ee69b 1451
76a01679
JB
1452 if (*slot == NULL)
1453 *slot = xstrdup (decoded);
1454 *resultp = *slot;
1455 }
4c4b4cd2 1456 }
14f9c5c9 1457
4c4b4cd2
PH
1458 return *resultp;
1459}
76a01679 1460
2c0b251b 1461static char *
76a01679 1462ada_la_decode (const char *encoded, int options)
4c4b4cd2
PH
1463{
1464 return xstrdup (ada_decode (encoded));
14f9c5c9
AS
1465}
1466
8b302db8
TT
1467/* Implement la_sniff_from_mangled_name for Ada. */
1468
1469static int
1470ada_sniff_from_mangled_name (const char *mangled, char **out)
1471{
1472 const char *demangled = ada_decode (mangled);
1473
1474 *out = NULL;
1475
1476 if (demangled != mangled && demangled != NULL && demangled[0] != '<')
1477 {
1478 /* Set the gsymbol language to Ada, but still return 0.
1479 Two reasons for that:
1480
1481 1. For Ada, we prefer computing the symbol's decoded name
1482 on the fly rather than pre-compute it, in order to save
1483 memory (Ada projects are typically very large).
1484
1485 2. There are some areas in the definition of the GNAT
1486 encoding where, with a bit of bad luck, we might be able
1487 to decode a non-Ada symbol, generating an incorrect
1488 demangled name (Eg: names ending with "TB" for instance
1489 are identified as task bodies and so stripped from
1490 the decoded name returned).
1491
1492 Returning 1, here, but not setting *DEMANGLED, helps us get a
1493 little bit of the best of both worlds. Because we're last,
1494 we should not affect any of the other languages that were
1495 able to demangle the symbol before us; we get to correctly
1496 tag Ada symbols as such; and even if we incorrectly tagged a
1497 non-Ada symbol, which should be rare, any routing through the
1498 Ada language should be transparent (Ada tries to behave much
1499 like C/C++ with non-Ada symbols). */
1500 return 1;
1501 }
1502
1503 return 0;
1504}
1505
14f9c5c9 1506\f
d2e4a39e 1507
4c4b4cd2 1508 /* Arrays */
14f9c5c9 1509
28c85d6c
JB
1510/* Assuming that INDEX_DESC_TYPE is an ___XA structure, a structure
1511 generated by the GNAT compiler to describe the index type used
1512 for each dimension of an array, check whether it follows the latest
1513 known encoding. If not, fix it up to conform to the latest encoding.
1514 Otherwise, do nothing. This function also does nothing if
1515 INDEX_DESC_TYPE is NULL.
1516
1517 The GNAT encoding used to describle the array index type evolved a bit.
1518 Initially, the information would be provided through the name of each
1519 field of the structure type only, while the type of these fields was
1520 described as unspecified and irrelevant. The debugger was then expected
1521 to perform a global type lookup using the name of that field in order
1522 to get access to the full index type description. Because these global
1523 lookups can be very expensive, the encoding was later enhanced to make
1524 the global lookup unnecessary by defining the field type as being
1525 the full index type description.
1526
1527 The purpose of this routine is to allow us to support older versions
1528 of the compiler by detecting the use of the older encoding, and by
1529 fixing up the INDEX_DESC_TYPE to follow the new one (at this point,
1530 we essentially replace each field's meaningless type by the associated
1531 index subtype). */
1532
1533void
1534ada_fixup_array_indexes_type (struct type *index_desc_type)
1535{
1536 int i;
1537
1538 if (index_desc_type == NULL)
1539 return;
1540 gdb_assert (TYPE_NFIELDS (index_desc_type) > 0);
1541
1542 /* Check if INDEX_DESC_TYPE follows the older encoding (it is sufficient
1543 to check one field only, no need to check them all). If not, return
1544 now.
1545
1546 If our INDEX_DESC_TYPE was generated using the older encoding,
1547 the field type should be a meaningless integer type whose name
1548 is not equal to the field name. */
1549 if (TYPE_NAME (TYPE_FIELD_TYPE (index_desc_type, 0)) != NULL
1550 && strcmp (TYPE_NAME (TYPE_FIELD_TYPE (index_desc_type, 0)),
1551 TYPE_FIELD_NAME (index_desc_type, 0)) == 0)
1552 return;
1553
1554 /* Fixup each field of INDEX_DESC_TYPE. */
1555 for (i = 0; i < TYPE_NFIELDS (index_desc_type); i++)
1556 {
0d5cff50 1557 const char *name = TYPE_FIELD_NAME (index_desc_type, i);
28c85d6c
JB
1558 struct type *raw_type = ada_check_typedef (ada_find_any_type (name));
1559
1560 if (raw_type)
1561 TYPE_FIELD_TYPE (index_desc_type, i) = raw_type;
1562 }
1563}
1564
4c4b4cd2 1565/* Names of MAX_ADA_DIMENS bounds in P_BOUNDS fields of array descriptors. */
14f9c5c9 1566
a121b7c1 1567static const char *bound_name[] = {
d2e4a39e 1568 "LB0", "UB0", "LB1", "UB1", "LB2", "UB2", "LB3", "UB3",
14f9c5c9
AS
1569 "LB4", "UB4", "LB5", "UB5", "LB6", "UB6", "LB7", "UB7"
1570};
1571
1572/* Maximum number of array dimensions we are prepared to handle. */
1573
4c4b4cd2 1574#define MAX_ADA_DIMENS (sizeof(bound_name) / (2*sizeof(char *)))
14f9c5c9 1575
14f9c5c9 1576
4c4b4cd2
PH
1577/* The desc_* routines return primitive portions of array descriptors
1578 (fat pointers). */
14f9c5c9
AS
1579
1580/* The descriptor or array type, if any, indicated by TYPE; removes
4c4b4cd2
PH
1581 level of indirection, if needed. */
1582
d2e4a39e
AS
1583static struct type *
1584desc_base_type (struct type *type)
14f9c5c9
AS
1585{
1586 if (type == NULL)
1587 return NULL;
61ee279c 1588 type = ada_check_typedef (type);
720d1a40
JB
1589 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
1590 type = ada_typedef_target_type (type);
1591
1265e4aa
JB
1592 if (type != NULL
1593 && (TYPE_CODE (type) == TYPE_CODE_PTR
1594 || TYPE_CODE (type) == TYPE_CODE_REF))
61ee279c 1595 return ada_check_typedef (TYPE_TARGET_TYPE (type));
14f9c5c9
AS
1596 else
1597 return type;
1598}
1599
4c4b4cd2
PH
1600/* True iff TYPE indicates a "thin" array pointer type. */
1601
14f9c5c9 1602static int
d2e4a39e 1603is_thin_pntr (struct type *type)
14f9c5c9 1604{
d2e4a39e 1605 return
14f9c5c9
AS
1606 is_suffix (ada_type_name (desc_base_type (type)), "___XUT")
1607 || is_suffix (ada_type_name (desc_base_type (type)), "___XUT___XVE");
1608}
1609
4c4b4cd2
PH
1610/* The descriptor type for thin pointer type TYPE. */
1611
d2e4a39e
AS
1612static struct type *
1613thin_descriptor_type (struct type *type)
14f9c5c9 1614{
d2e4a39e 1615 struct type *base_type = desc_base_type (type);
5b4ee69b 1616
14f9c5c9
AS
1617 if (base_type == NULL)
1618 return NULL;
1619 if (is_suffix (ada_type_name (base_type), "___XVE"))
1620 return base_type;
d2e4a39e 1621 else
14f9c5c9 1622 {
d2e4a39e 1623 struct type *alt_type = ada_find_parallel_type (base_type, "___XVE");
5b4ee69b 1624
14f9c5c9 1625 if (alt_type == NULL)
4c4b4cd2 1626 return base_type;
14f9c5c9 1627 else
4c4b4cd2 1628 return alt_type;
14f9c5c9
AS
1629 }
1630}
1631
4c4b4cd2
PH
1632/* A pointer to the array data for thin-pointer value VAL. */
1633
d2e4a39e
AS
1634static struct value *
1635thin_data_pntr (struct value *val)
14f9c5c9 1636{
828292f2 1637 struct type *type = ada_check_typedef (value_type (val));
556bdfd4 1638 struct type *data_type = desc_data_target_type (thin_descriptor_type (type));
5b4ee69b 1639
556bdfd4
UW
1640 data_type = lookup_pointer_type (data_type);
1641
14f9c5c9 1642 if (TYPE_CODE (type) == TYPE_CODE_PTR)
556bdfd4 1643 return value_cast (data_type, value_copy (val));
d2e4a39e 1644 else
42ae5230 1645 return value_from_longest (data_type, value_address (val));
14f9c5c9
AS
1646}
1647
4c4b4cd2
PH
1648/* True iff TYPE indicates a "thick" array pointer type. */
1649
14f9c5c9 1650static int
d2e4a39e 1651is_thick_pntr (struct type *type)
14f9c5c9
AS
1652{
1653 type = desc_base_type (type);
1654 return (type != NULL && TYPE_CODE (type) == TYPE_CODE_STRUCT
4c4b4cd2 1655 && lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL);
14f9c5c9
AS
1656}
1657
4c4b4cd2
PH
1658/* If TYPE is the type of an array descriptor (fat or thin pointer) or a
1659 pointer to one, the type of its bounds data; otherwise, NULL. */
76a01679 1660
d2e4a39e
AS
1661static struct type *
1662desc_bounds_type (struct type *type)
14f9c5c9 1663{
d2e4a39e 1664 struct type *r;
14f9c5c9
AS
1665
1666 type = desc_base_type (type);
1667
1668 if (type == NULL)
1669 return NULL;
1670 else if (is_thin_pntr (type))
1671 {
1672 type = thin_descriptor_type (type);
1673 if (type == NULL)
4c4b4cd2 1674 return NULL;
14f9c5c9
AS
1675 r = lookup_struct_elt_type (type, "BOUNDS", 1);
1676 if (r != NULL)
61ee279c 1677 return ada_check_typedef (r);
14f9c5c9
AS
1678 }
1679 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
1680 {
1681 r = lookup_struct_elt_type (type, "P_BOUNDS", 1);
1682 if (r != NULL)
61ee279c 1683 return ada_check_typedef (TYPE_TARGET_TYPE (ada_check_typedef (r)));
14f9c5c9
AS
1684 }
1685 return NULL;
1686}
1687
1688/* If ARR is an array descriptor (fat or thin pointer), or pointer to
4c4b4cd2
PH
1689 one, a pointer to its bounds data. Otherwise NULL. */
1690
d2e4a39e
AS
1691static struct value *
1692desc_bounds (struct value *arr)
14f9c5c9 1693{
df407dfe 1694 struct type *type = ada_check_typedef (value_type (arr));
5b4ee69b 1695
d2e4a39e 1696 if (is_thin_pntr (type))
14f9c5c9 1697 {
d2e4a39e 1698 struct type *bounds_type =
4c4b4cd2 1699 desc_bounds_type (thin_descriptor_type (type));
14f9c5c9
AS
1700 LONGEST addr;
1701
4cdfadb1 1702 if (bounds_type == NULL)
323e0a4a 1703 error (_("Bad GNAT array descriptor"));
14f9c5c9
AS
1704
1705 /* NOTE: The following calculation is not really kosher, but
d2e4a39e 1706 since desc_type is an XVE-encoded type (and shouldn't be),
4c4b4cd2 1707 the correct calculation is a real pain. FIXME (and fix GCC). */
14f9c5c9 1708 if (TYPE_CODE (type) == TYPE_CODE_PTR)
4c4b4cd2 1709 addr = value_as_long (arr);
d2e4a39e 1710 else
42ae5230 1711 addr = value_address (arr);
14f9c5c9 1712
d2e4a39e 1713 return
4c4b4cd2
PH
1714 value_from_longest (lookup_pointer_type (bounds_type),
1715 addr - TYPE_LENGTH (bounds_type));
14f9c5c9
AS
1716 }
1717
1718 else if (is_thick_pntr (type))
05e522ef
JB
1719 {
1720 struct value *p_bounds = value_struct_elt (&arr, NULL, "P_BOUNDS", NULL,
1721 _("Bad GNAT array descriptor"));
1722 struct type *p_bounds_type = value_type (p_bounds);
1723
1724 if (p_bounds_type
1725 && TYPE_CODE (p_bounds_type) == TYPE_CODE_PTR)
1726 {
1727 struct type *target_type = TYPE_TARGET_TYPE (p_bounds_type);
1728
1729 if (TYPE_STUB (target_type))
1730 p_bounds = value_cast (lookup_pointer_type
1731 (ada_check_typedef (target_type)),
1732 p_bounds);
1733 }
1734 else
1735 error (_("Bad GNAT array descriptor"));
1736
1737 return p_bounds;
1738 }
14f9c5c9
AS
1739 else
1740 return NULL;
1741}
1742
4c4b4cd2
PH
1743/* If TYPE is the type of an array-descriptor (fat pointer), the bit
1744 position of the field containing the address of the bounds data. */
1745
14f9c5c9 1746static int
d2e4a39e 1747fat_pntr_bounds_bitpos (struct type *type)
14f9c5c9
AS
1748{
1749 return TYPE_FIELD_BITPOS (desc_base_type (type), 1);
1750}
1751
1752/* If TYPE is the type of an array-descriptor (fat pointer), the bit
4c4b4cd2
PH
1753 size of the field containing the address of the bounds data. */
1754
14f9c5c9 1755static int
d2e4a39e 1756fat_pntr_bounds_bitsize (struct type *type)
14f9c5c9
AS
1757{
1758 type = desc_base_type (type);
1759
d2e4a39e 1760 if (TYPE_FIELD_BITSIZE (type, 1) > 0)
14f9c5c9
AS
1761 return TYPE_FIELD_BITSIZE (type, 1);
1762 else
61ee279c 1763 return 8 * TYPE_LENGTH (ada_check_typedef (TYPE_FIELD_TYPE (type, 1)));
14f9c5c9
AS
1764}
1765
4c4b4cd2 1766/* If TYPE is the type of an array descriptor (fat or thin pointer) or a
556bdfd4
UW
1767 pointer to one, the type of its array data (a array-with-no-bounds type);
1768 otherwise, NULL. Use ada_type_of_array to get an array type with bounds
1769 data. */
4c4b4cd2 1770
d2e4a39e 1771static struct type *
556bdfd4 1772desc_data_target_type (struct type *type)
14f9c5c9
AS
1773{
1774 type = desc_base_type (type);
1775
4c4b4cd2 1776 /* NOTE: The following is bogus; see comment in desc_bounds. */
14f9c5c9 1777 if (is_thin_pntr (type))
556bdfd4 1778 return desc_base_type (TYPE_FIELD_TYPE (thin_descriptor_type (type), 1));
14f9c5c9 1779 else if (is_thick_pntr (type))
556bdfd4
UW
1780 {
1781 struct type *data_type = lookup_struct_elt_type (type, "P_ARRAY", 1);
1782
1783 if (data_type
1784 && TYPE_CODE (ada_check_typedef (data_type)) == TYPE_CODE_PTR)
05e522ef 1785 return ada_check_typedef (TYPE_TARGET_TYPE (data_type));
556bdfd4
UW
1786 }
1787
1788 return NULL;
14f9c5c9
AS
1789}
1790
1791/* If ARR is an array descriptor (fat or thin pointer), a pointer to
1792 its array data. */
4c4b4cd2 1793
d2e4a39e
AS
1794static struct value *
1795desc_data (struct value *arr)
14f9c5c9 1796{
df407dfe 1797 struct type *type = value_type (arr);
5b4ee69b 1798
14f9c5c9
AS
1799 if (is_thin_pntr (type))
1800 return thin_data_pntr (arr);
1801 else if (is_thick_pntr (type))
d2e4a39e 1802 return value_struct_elt (&arr, NULL, "P_ARRAY", NULL,
323e0a4a 1803 _("Bad GNAT array descriptor"));
14f9c5c9
AS
1804 else
1805 return NULL;
1806}
1807
1808
1809/* If TYPE is the type of an array-descriptor (fat pointer), the bit
4c4b4cd2
PH
1810 position of the field containing the address of the data. */
1811
14f9c5c9 1812static int
d2e4a39e 1813fat_pntr_data_bitpos (struct type *type)
14f9c5c9
AS
1814{
1815 return TYPE_FIELD_BITPOS (desc_base_type (type), 0);
1816}
1817
1818/* If TYPE is the type of an array-descriptor (fat pointer), the bit
4c4b4cd2
PH
1819 size of the field containing the address of the data. */
1820
14f9c5c9 1821static int
d2e4a39e 1822fat_pntr_data_bitsize (struct type *type)
14f9c5c9
AS
1823{
1824 type = desc_base_type (type);
1825
1826 if (TYPE_FIELD_BITSIZE (type, 0) > 0)
1827 return TYPE_FIELD_BITSIZE (type, 0);
d2e4a39e 1828 else
14f9c5c9
AS
1829 return TARGET_CHAR_BIT * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 0));
1830}
1831
4c4b4cd2 1832/* If BOUNDS is an array-bounds structure (or pointer to one), return
14f9c5c9 1833 the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
4c4b4cd2
PH
1834 bound, if WHICH is 1. The first bound is I=1. */
1835
d2e4a39e
AS
1836static struct value *
1837desc_one_bound (struct value *bounds, int i, int which)
14f9c5c9 1838{
d2e4a39e 1839 return value_struct_elt (&bounds, NULL, bound_name[2 * i + which - 2], NULL,
323e0a4a 1840 _("Bad GNAT array descriptor bounds"));
14f9c5c9
AS
1841}
1842
1843/* If BOUNDS is an array-bounds structure type, return the bit position
1844 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
4c4b4cd2
PH
1845 bound, if WHICH is 1. The first bound is I=1. */
1846
14f9c5c9 1847static int
d2e4a39e 1848desc_bound_bitpos (struct type *type, int i, int which)
14f9c5c9 1849{
d2e4a39e 1850 return TYPE_FIELD_BITPOS (desc_base_type (type), 2 * i + which - 2);
14f9c5c9
AS
1851}
1852
1853/* If BOUNDS is an array-bounds structure type, return the bit field size
1854 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
4c4b4cd2
PH
1855 bound, if WHICH is 1. The first bound is I=1. */
1856
76a01679 1857static int
d2e4a39e 1858desc_bound_bitsize (struct type *type, int i, int which)
14f9c5c9
AS
1859{
1860 type = desc_base_type (type);
1861
d2e4a39e
AS
1862 if (TYPE_FIELD_BITSIZE (type, 2 * i + which - 2) > 0)
1863 return TYPE_FIELD_BITSIZE (type, 2 * i + which - 2);
1864 else
1865 return 8 * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 2 * i + which - 2));
14f9c5c9
AS
1866}
1867
1868/* If TYPE is the type of an array-bounds structure, the type of its
4c4b4cd2
PH
1869 Ith bound (numbering from 1). Otherwise, NULL. */
1870
d2e4a39e
AS
1871static struct type *
1872desc_index_type (struct type *type, int i)
14f9c5c9
AS
1873{
1874 type = desc_base_type (type);
1875
1876 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
d2e4a39e
AS
1877 return lookup_struct_elt_type (type, bound_name[2 * i - 2], 1);
1878 else
14f9c5c9
AS
1879 return NULL;
1880}
1881
4c4b4cd2
PH
1882/* The number of index positions in the array-bounds type TYPE.
1883 Return 0 if TYPE is NULL. */
1884
14f9c5c9 1885static int
d2e4a39e 1886desc_arity (struct type *type)
14f9c5c9
AS
1887{
1888 type = desc_base_type (type);
1889
1890 if (type != NULL)
1891 return TYPE_NFIELDS (type) / 2;
1892 return 0;
1893}
1894
4c4b4cd2
PH
1895/* Non-zero iff TYPE is a simple array type (not a pointer to one) or
1896 an array descriptor type (representing an unconstrained array
1897 type). */
1898
76a01679
JB
1899static int
1900ada_is_direct_array_type (struct type *type)
4c4b4cd2
PH
1901{
1902 if (type == NULL)
1903 return 0;
61ee279c 1904 type = ada_check_typedef (type);
4c4b4cd2 1905 return (TYPE_CODE (type) == TYPE_CODE_ARRAY
76a01679 1906 || ada_is_array_descriptor_type (type));
4c4b4cd2
PH
1907}
1908
52ce6436 1909/* Non-zero iff TYPE represents any kind of array in Ada, or a pointer
0963b4bd 1910 * to one. */
52ce6436 1911
2c0b251b 1912static int
52ce6436
PH
1913ada_is_array_type (struct type *type)
1914{
1915 while (type != NULL
1916 && (TYPE_CODE (type) == TYPE_CODE_PTR
1917 || TYPE_CODE (type) == TYPE_CODE_REF))
1918 type = TYPE_TARGET_TYPE (type);
1919 return ada_is_direct_array_type (type);
1920}
1921
4c4b4cd2 1922/* Non-zero iff TYPE is a simple array type or pointer to one. */
14f9c5c9 1923
14f9c5c9 1924int
4c4b4cd2 1925ada_is_simple_array_type (struct type *type)
14f9c5c9
AS
1926{
1927 if (type == NULL)
1928 return 0;
61ee279c 1929 type = ada_check_typedef (type);
14f9c5c9 1930 return (TYPE_CODE (type) == TYPE_CODE_ARRAY
4c4b4cd2 1931 || (TYPE_CODE (type) == TYPE_CODE_PTR
b0dd7688
JB
1932 && TYPE_CODE (ada_check_typedef (TYPE_TARGET_TYPE (type)))
1933 == TYPE_CODE_ARRAY));
14f9c5c9
AS
1934}
1935
4c4b4cd2
PH
1936/* Non-zero iff TYPE belongs to a GNAT array descriptor. */
1937
14f9c5c9 1938int
4c4b4cd2 1939ada_is_array_descriptor_type (struct type *type)
14f9c5c9 1940{
556bdfd4 1941 struct type *data_type = desc_data_target_type (type);
14f9c5c9
AS
1942
1943 if (type == NULL)
1944 return 0;
61ee279c 1945 type = ada_check_typedef (type);
556bdfd4
UW
1946 return (data_type != NULL
1947 && TYPE_CODE (data_type) == TYPE_CODE_ARRAY
1948 && desc_arity (desc_bounds_type (type)) > 0);
14f9c5c9
AS
1949}
1950
1951/* Non-zero iff type is a partially mal-formed GNAT array
4c4b4cd2 1952 descriptor. FIXME: This is to compensate for some problems with
14f9c5c9 1953 debugging output from GNAT. Re-examine periodically to see if it
4c4b4cd2
PH
1954 is still needed. */
1955
14f9c5c9 1956int
ebf56fd3 1957ada_is_bogus_array_descriptor (struct type *type)
14f9c5c9 1958{
d2e4a39e 1959 return
14f9c5c9
AS
1960 type != NULL
1961 && TYPE_CODE (type) == TYPE_CODE_STRUCT
1962 && (lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL
4c4b4cd2
PH
1963 || lookup_struct_elt_type (type, "P_ARRAY", 1) != NULL)
1964 && !ada_is_array_descriptor_type (type);
14f9c5c9
AS
1965}
1966
1967
4c4b4cd2 1968/* If ARR has a record type in the form of a standard GNAT array descriptor,
14f9c5c9 1969 (fat pointer) returns the type of the array data described---specifically,
4c4b4cd2 1970 a pointer-to-array type. If BOUNDS is non-zero, the bounds data are filled
14f9c5c9 1971 in from the descriptor; otherwise, they are left unspecified. If
4c4b4cd2
PH
1972 the ARR denotes a null array descriptor and BOUNDS is non-zero,
1973 returns NULL. The result is simply the type of ARR if ARR is not
14f9c5c9 1974 a descriptor. */
d2e4a39e
AS
1975struct type *
1976ada_type_of_array (struct value *arr, int bounds)
14f9c5c9 1977{
ad82864c
JB
1978 if (ada_is_constrained_packed_array_type (value_type (arr)))
1979 return decode_constrained_packed_array_type (value_type (arr));
14f9c5c9 1980
df407dfe
AC
1981 if (!ada_is_array_descriptor_type (value_type (arr)))
1982 return value_type (arr);
d2e4a39e
AS
1983
1984 if (!bounds)
ad82864c
JB
1985 {
1986 struct type *array_type =
1987 ada_check_typedef (desc_data_target_type (value_type (arr)));
1988
1989 if (ada_is_unconstrained_packed_array_type (value_type (arr)))
1990 TYPE_FIELD_BITSIZE (array_type, 0) =
1991 decode_packed_array_bitsize (value_type (arr));
1992
1993 return array_type;
1994 }
14f9c5c9
AS
1995 else
1996 {
d2e4a39e 1997 struct type *elt_type;
14f9c5c9 1998 int arity;
d2e4a39e 1999 struct value *descriptor;
14f9c5c9 2000
df407dfe
AC
2001 elt_type = ada_array_element_type (value_type (arr), -1);
2002 arity = ada_array_arity (value_type (arr));
14f9c5c9 2003
d2e4a39e 2004 if (elt_type == NULL || arity == 0)
df407dfe 2005 return ada_check_typedef (value_type (arr));
14f9c5c9
AS
2006
2007 descriptor = desc_bounds (arr);
d2e4a39e 2008 if (value_as_long (descriptor) == 0)
4c4b4cd2 2009 return NULL;
d2e4a39e 2010 while (arity > 0)
4c4b4cd2 2011 {
e9bb382b
UW
2012 struct type *range_type = alloc_type_copy (value_type (arr));
2013 struct type *array_type = alloc_type_copy (value_type (arr));
4c4b4cd2
PH
2014 struct value *low = desc_one_bound (descriptor, arity, 0);
2015 struct value *high = desc_one_bound (descriptor, arity, 1);
4c4b4cd2 2016
5b4ee69b 2017 arity -= 1;
0c9c3474
SA
2018 create_static_range_type (range_type, value_type (low),
2019 longest_to_int (value_as_long (low)),
2020 longest_to_int (value_as_long (high)));
4c4b4cd2 2021 elt_type = create_array_type (array_type, elt_type, range_type);
ad82864c
JB
2022
2023 if (ada_is_unconstrained_packed_array_type (value_type (arr)))
e67ad678
JB
2024 {
2025 /* We need to store the element packed bitsize, as well as
2026 recompute the array size, because it was previously
2027 computed based on the unpacked element size. */
2028 LONGEST lo = value_as_long (low);
2029 LONGEST hi = value_as_long (high);
2030
2031 TYPE_FIELD_BITSIZE (elt_type, 0) =
2032 decode_packed_array_bitsize (value_type (arr));
2033 /* If the array has no element, then the size is already
2034 zero, and does not need to be recomputed. */
2035 if (lo < hi)
2036 {
2037 int array_bitsize =
2038 (hi - lo + 1) * TYPE_FIELD_BITSIZE (elt_type, 0);
2039
2040 TYPE_LENGTH (array_type) = (array_bitsize + 7) / 8;
2041 }
2042 }
4c4b4cd2 2043 }
14f9c5c9
AS
2044
2045 return lookup_pointer_type (elt_type);
2046 }
2047}
2048
2049/* If ARR does not represent an array, returns ARR unchanged.
4c4b4cd2
PH
2050 Otherwise, returns either a standard GDB array with bounds set
2051 appropriately or, if ARR is a non-null fat pointer, a pointer to a standard
2052 GDB array. Returns NULL if ARR is a null fat pointer. */
2053
d2e4a39e
AS
2054struct value *
2055ada_coerce_to_simple_array_ptr (struct value *arr)
14f9c5c9 2056{
df407dfe 2057 if (ada_is_array_descriptor_type (value_type (arr)))
14f9c5c9 2058 {
d2e4a39e 2059 struct type *arrType = ada_type_of_array (arr, 1);
5b4ee69b 2060
14f9c5c9 2061 if (arrType == NULL)
4c4b4cd2 2062 return NULL;
14f9c5c9
AS
2063 return value_cast (arrType, value_copy (desc_data (arr)));
2064 }
ad82864c
JB
2065 else if (ada_is_constrained_packed_array_type (value_type (arr)))
2066 return decode_constrained_packed_array (arr);
14f9c5c9
AS
2067 else
2068 return arr;
2069}
2070
2071/* If ARR does not represent an array, returns ARR unchanged.
2072 Otherwise, returns a standard GDB array describing ARR (which may
4c4b4cd2
PH
2073 be ARR itself if it already is in the proper form). */
2074
720d1a40 2075struct value *
d2e4a39e 2076ada_coerce_to_simple_array (struct value *arr)
14f9c5c9 2077{
df407dfe 2078 if (ada_is_array_descriptor_type (value_type (arr)))
14f9c5c9 2079 {
d2e4a39e 2080 struct value *arrVal = ada_coerce_to_simple_array_ptr (arr);
5b4ee69b 2081
14f9c5c9 2082 if (arrVal == NULL)
323e0a4a 2083 error (_("Bounds unavailable for null array pointer."));
c1b5a1a6 2084 ada_ensure_varsize_limit (TYPE_TARGET_TYPE (value_type (arrVal)));
14f9c5c9
AS
2085 return value_ind (arrVal);
2086 }
ad82864c
JB
2087 else if (ada_is_constrained_packed_array_type (value_type (arr)))
2088 return decode_constrained_packed_array (arr);
d2e4a39e 2089 else
14f9c5c9
AS
2090 return arr;
2091}
2092
2093/* If TYPE represents a GNAT array type, return it translated to an
2094 ordinary GDB array type (possibly with BITSIZE fields indicating
4c4b4cd2
PH
2095 packing). For other types, is the identity. */
2096
d2e4a39e
AS
2097struct type *
2098ada_coerce_to_simple_array_type (struct type *type)
14f9c5c9 2099{
ad82864c
JB
2100 if (ada_is_constrained_packed_array_type (type))
2101 return decode_constrained_packed_array_type (type);
17280b9f
UW
2102
2103 if (ada_is_array_descriptor_type (type))
556bdfd4 2104 return ada_check_typedef (desc_data_target_type (type));
17280b9f
UW
2105
2106 return type;
14f9c5c9
AS
2107}
2108
4c4b4cd2
PH
2109/* Non-zero iff TYPE represents a standard GNAT packed-array type. */
2110
ad82864c
JB
2111static int
2112ada_is_packed_array_type (struct type *type)
14f9c5c9
AS
2113{
2114 if (type == NULL)
2115 return 0;
4c4b4cd2 2116 type = desc_base_type (type);
61ee279c 2117 type = ada_check_typedef (type);
d2e4a39e 2118 return
14f9c5c9
AS
2119 ada_type_name (type) != NULL
2120 && strstr (ada_type_name (type), "___XP") != NULL;
2121}
2122
ad82864c
JB
2123/* Non-zero iff TYPE represents a standard GNAT constrained
2124 packed-array type. */
2125
2126int
2127ada_is_constrained_packed_array_type (struct type *type)
2128{
2129 return ada_is_packed_array_type (type)
2130 && !ada_is_array_descriptor_type (type);
2131}
2132
2133/* Non-zero iff TYPE represents an array descriptor for a
2134 unconstrained packed-array type. */
2135
2136static int
2137ada_is_unconstrained_packed_array_type (struct type *type)
2138{
2139 return ada_is_packed_array_type (type)
2140 && ada_is_array_descriptor_type (type);
2141}
2142
2143/* Given that TYPE encodes a packed array type (constrained or unconstrained),
2144 return the size of its elements in bits. */
2145
2146static long
2147decode_packed_array_bitsize (struct type *type)
2148{
0d5cff50
DE
2149 const char *raw_name;
2150 const char *tail;
ad82864c
JB
2151 long bits;
2152
720d1a40
JB
2153 /* Access to arrays implemented as fat pointers are encoded as a typedef
2154 of the fat pointer type. We need the name of the fat pointer type
2155 to do the decoding, so strip the typedef layer. */
2156 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
2157 type = ada_typedef_target_type (type);
2158
2159 raw_name = ada_type_name (ada_check_typedef (type));
ad82864c
JB
2160 if (!raw_name)
2161 raw_name = ada_type_name (desc_base_type (type));
2162
2163 if (!raw_name)
2164 return 0;
2165
2166 tail = strstr (raw_name, "___XP");
720d1a40 2167 gdb_assert (tail != NULL);
ad82864c
JB
2168
2169 if (sscanf (tail + sizeof ("___XP") - 1, "%ld", &bits) != 1)
2170 {
2171 lim_warning
2172 (_("could not understand bit size information on packed array"));
2173 return 0;
2174 }
2175
2176 return bits;
2177}
2178
14f9c5c9
AS
2179/* Given that TYPE is a standard GDB array type with all bounds filled
2180 in, and that the element size of its ultimate scalar constituents
2181 (that is, either its elements, or, if it is an array of arrays, its
2182 elements' elements, etc.) is *ELT_BITS, return an identical type,
2183 but with the bit sizes of its elements (and those of any
2184 constituent arrays) recorded in the BITSIZE components of its
4c4b4cd2 2185 TYPE_FIELD_BITSIZE values, and with *ELT_BITS set to its total size
4a46959e
JB
2186 in bits.
2187
2188 Note that, for arrays whose index type has an XA encoding where
2189 a bound references a record discriminant, getting that discriminant,
2190 and therefore the actual value of that bound, is not possible
2191 because none of the given parameters gives us access to the record.
2192 This function assumes that it is OK in the context where it is being
2193 used to return an array whose bounds are still dynamic and where
2194 the length is arbitrary. */
4c4b4cd2 2195
d2e4a39e 2196static struct type *
ad82864c 2197constrained_packed_array_type (struct type *type, long *elt_bits)
14f9c5c9 2198{
d2e4a39e
AS
2199 struct type *new_elt_type;
2200 struct type *new_type;
99b1c762
JB
2201 struct type *index_type_desc;
2202 struct type *index_type;
14f9c5c9
AS
2203 LONGEST low_bound, high_bound;
2204
61ee279c 2205 type = ada_check_typedef (type);
14f9c5c9
AS
2206 if (TYPE_CODE (type) != TYPE_CODE_ARRAY)
2207 return type;
2208
99b1c762
JB
2209 index_type_desc = ada_find_parallel_type (type, "___XA");
2210 if (index_type_desc)
2211 index_type = to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, 0),
2212 NULL);
2213 else
2214 index_type = TYPE_INDEX_TYPE (type);
2215
e9bb382b 2216 new_type = alloc_type_copy (type);
ad82864c
JB
2217 new_elt_type =
2218 constrained_packed_array_type (ada_check_typedef (TYPE_TARGET_TYPE (type)),
2219 elt_bits);
99b1c762 2220 create_array_type (new_type, new_elt_type, index_type);
14f9c5c9
AS
2221 TYPE_FIELD_BITSIZE (new_type, 0) = *elt_bits;
2222 TYPE_NAME (new_type) = ada_type_name (type);
2223
4a46959e
JB
2224 if ((TYPE_CODE (check_typedef (index_type)) == TYPE_CODE_RANGE
2225 && is_dynamic_type (check_typedef (index_type)))
2226 || get_discrete_bounds (index_type, &low_bound, &high_bound) < 0)
14f9c5c9
AS
2227 low_bound = high_bound = 0;
2228 if (high_bound < low_bound)
2229 *elt_bits = TYPE_LENGTH (new_type) = 0;
d2e4a39e 2230 else
14f9c5c9
AS
2231 {
2232 *elt_bits *= (high_bound - low_bound + 1);
d2e4a39e 2233 TYPE_LENGTH (new_type) =
4c4b4cd2 2234 (*elt_bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
14f9c5c9
AS
2235 }
2236
876cecd0 2237 TYPE_FIXED_INSTANCE (new_type) = 1;
14f9c5c9
AS
2238 return new_type;
2239}
2240
ad82864c
JB
2241/* The array type encoded by TYPE, where
2242 ada_is_constrained_packed_array_type (TYPE). */
4c4b4cd2 2243
d2e4a39e 2244static struct type *
ad82864c 2245decode_constrained_packed_array_type (struct type *type)
d2e4a39e 2246{
0d5cff50 2247 const char *raw_name = ada_type_name (ada_check_typedef (type));
727e3d2e 2248 char *name;
0d5cff50 2249 const char *tail;
d2e4a39e 2250 struct type *shadow_type;
14f9c5c9 2251 long bits;
14f9c5c9 2252
727e3d2e
JB
2253 if (!raw_name)
2254 raw_name = ada_type_name (desc_base_type (type));
2255
2256 if (!raw_name)
2257 return NULL;
2258
2259 name = (char *) alloca (strlen (raw_name) + 1);
2260 tail = strstr (raw_name, "___XP");
4c4b4cd2
PH
2261 type = desc_base_type (type);
2262
14f9c5c9
AS
2263 memcpy (name, raw_name, tail - raw_name);
2264 name[tail - raw_name] = '\000';
2265
b4ba55a1
JB
2266 shadow_type = ada_find_parallel_type_with_name (type, name);
2267
2268 if (shadow_type == NULL)
14f9c5c9 2269 {
323e0a4a 2270 lim_warning (_("could not find bounds information on packed array"));
14f9c5c9
AS
2271 return NULL;
2272 }
f168693b 2273 shadow_type = check_typedef (shadow_type);
14f9c5c9
AS
2274
2275 if (TYPE_CODE (shadow_type) != TYPE_CODE_ARRAY)
2276 {
0963b4bd
MS
2277 lim_warning (_("could not understand bounds "
2278 "information on packed array"));
14f9c5c9
AS
2279 return NULL;
2280 }
d2e4a39e 2281
ad82864c
JB
2282 bits = decode_packed_array_bitsize (type);
2283 return constrained_packed_array_type (shadow_type, &bits);
14f9c5c9
AS
2284}
2285
ad82864c
JB
2286/* Given that ARR is a struct value *indicating a GNAT constrained packed
2287 array, returns a simple array that denotes that array. Its type is a
14f9c5c9
AS
2288 standard GDB array type except that the BITSIZEs of the array
2289 target types are set to the number of bits in each element, and the
4c4b4cd2 2290 type length is set appropriately. */
14f9c5c9 2291
d2e4a39e 2292static struct value *
ad82864c 2293decode_constrained_packed_array (struct value *arr)
14f9c5c9 2294{
4c4b4cd2 2295 struct type *type;
14f9c5c9 2296
11aa919a
PMR
2297 /* If our value is a pointer, then dereference it. Likewise if
2298 the value is a reference. Make sure that this operation does not
2299 cause the target type to be fixed, as this would indirectly cause
2300 this array to be decoded. The rest of the routine assumes that
2301 the array hasn't been decoded yet, so we use the basic "coerce_ref"
2302 and "value_ind" routines to perform the dereferencing, as opposed
2303 to using "ada_coerce_ref" or "ada_value_ind". */
2304 arr = coerce_ref (arr);
828292f2 2305 if (TYPE_CODE (ada_check_typedef (value_type (arr))) == TYPE_CODE_PTR)
284614f0 2306 arr = value_ind (arr);
4c4b4cd2 2307
ad82864c 2308 type = decode_constrained_packed_array_type (value_type (arr));
14f9c5c9
AS
2309 if (type == NULL)
2310 {
323e0a4a 2311 error (_("can't unpack array"));
14f9c5c9
AS
2312 return NULL;
2313 }
61ee279c 2314
50810684 2315 if (gdbarch_bits_big_endian (get_type_arch (value_type (arr)))
32c9a795 2316 && ada_is_modular_type (value_type (arr)))
61ee279c
PH
2317 {
2318 /* This is a (right-justified) modular type representing a packed
2319 array with no wrapper. In order to interpret the value through
2320 the (left-justified) packed array type we just built, we must
2321 first left-justify it. */
2322 int bit_size, bit_pos;
2323 ULONGEST mod;
2324
df407dfe 2325 mod = ada_modulus (value_type (arr)) - 1;
61ee279c
PH
2326 bit_size = 0;
2327 while (mod > 0)
2328 {
2329 bit_size += 1;
2330 mod >>= 1;
2331 }
df407dfe 2332 bit_pos = HOST_CHAR_BIT * TYPE_LENGTH (value_type (arr)) - bit_size;
61ee279c
PH
2333 arr = ada_value_primitive_packed_val (arr, NULL,
2334 bit_pos / HOST_CHAR_BIT,
2335 bit_pos % HOST_CHAR_BIT,
2336 bit_size,
2337 type);
2338 }
2339
4c4b4cd2 2340 return coerce_unspec_val_to_type (arr, type);
14f9c5c9
AS
2341}
2342
2343
2344/* The value of the element of packed array ARR at the ARITY indices
4c4b4cd2 2345 given in IND. ARR must be a simple array. */
14f9c5c9 2346
d2e4a39e
AS
2347static struct value *
2348value_subscript_packed (struct value *arr, int arity, struct value **ind)
14f9c5c9
AS
2349{
2350 int i;
2351 int bits, elt_off, bit_off;
2352 long elt_total_bit_offset;
d2e4a39e
AS
2353 struct type *elt_type;
2354 struct value *v;
14f9c5c9
AS
2355
2356 bits = 0;
2357 elt_total_bit_offset = 0;
df407dfe 2358 elt_type = ada_check_typedef (value_type (arr));
d2e4a39e 2359 for (i = 0; i < arity; i += 1)
14f9c5c9 2360 {
d2e4a39e 2361 if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY
4c4b4cd2
PH
2362 || TYPE_FIELD_BITSIZE (elt_type, 0) == 0)
2363 error
0963b4bd
MS
2364 (_("attempt to do packed indexing of "
2365 "something other than a packed array"));
14f9c5c9 2366 else
4c4b4cd2
PH
2367 {
2368 struct type *range_type = TYPE_INDEX_TYPE (elt_type);
2369 LONGEST lowerbound, upperbound;
2370 LONGEST idx;
2371
2372 if (get_discrete_bounds (range_type, &lowerbound, &upperbound) < 0)
2373 {
323e0a4a 2374 lim_warning (_("don't know bounds of array"));
4c4b4cd2
PH
2375 lowerbound = upperbound = 0;
2376 }
2377
3cb382c9 2378 idx = pos_atr (ind[i]);
4c4b4cd2 2379 if (idx < lowerbound || idx > upperbound)
0963b4bd
MS
2380 lim_warning (_("packed array index %ld out of bounds"),
2381 (long) idx);
4c4b4cd2
PH
2382 bits = TYPE_FIELD_BITSIZE (elt_type, 0);
2383 elt_total_bit_offset += (idx - lowerbound) * bits;
61ee279c 2384 elt_type = ada_check_typedef (TYPE_TARGET_TYPE (elt_type));
4c4b4cd2 2385 }
14f9c5c9
AS
2386 }
2387 elt_off = elt_total_bit_offset / HOST_CHAR_BIT;
2388 bit_off = elt_total_bit_offset % HOST_CHAR_BIT;
d2e4a39e
AS
2389
2390 v = ada_value_primitive_packed_val (arr, NULL, elt_off, bit_off,
4c4b4cd2 2391 bits, elt_type);
14f9c5c9
AS
2392 return v;
2393}
2394
4c4b4cd2 2395/* Non-zero iff TYPE includes negative integer values. */
14f9c5c9
AS
2396
2397static int
d2e4a39e 2398has_negatives (struct type *type)
14f9c5c9 2399{
d2e4a39e
AS
2400 switch (TYPE_CODE (type))
2401 {
2402 default:
2403 return 0;
2404 case TYPE_CODE_INT:
2405 return !TYPE_UNSIGNED (type);
2406 case TYPE_CODE_RANGE:
2407 return TYPE_LOW_BOUND (type) < 0;
2408 }
14f9c5c9 2409}
d2e4a39e 2410
f93fca70 2411/* With SRC being a buffer containing BIT_SIZE bits of data at BIT_OFFSET,
5b639dea 2412 unpack that data into UNPACKED. UNPACKED_LEN is the size in bytes of
f93fca70 2413 the unpacked buffer.
14f9c5c9 2414
5b639dea
JB
2415 The size of the unpacked buffer (UNPACKED_LEN) is expected to be large
2416 enough to contain at least BIT_OFFSET bits. If not, an error is raised.
2417
f93fca70
JB
2418 IS_BIG_ENDIAN is nonzero if the data is stored in big endian mode,
2419 zero otherwise.
14f9c5c9 2420
f93fca70 2421 IS_SIGNED_TYPE is nonzero if the data corresponds to a signed type.
a1c95e6b 2422
f93fca70
JB
2423 IS_SCALAR is nonzero if the data corresponds to a signed type. */
2424
2425static void
2426ada_unpack_from_contents (const gdb_byte *src, int bit_offset, int bit_size,
2427 gdb_byte *unpacked, int unpacked_len,
2428 int is_big_endian, int is_signed_type,
2429 int is_scalar)
2430{
a1c95e6b
JB
2431 int src_len = (bit_size + bit_offset + HOST_CHAR_BIT - 1) / 8;
2432 int src_idx; /* Index into the source area */
2433 int src_bytes_left; /* Number of source bytes left to process. */
2434 int srcBitsLeft; /* Number of source bits left to move */
2435 int unusedLS; /* Number of bits in next significant
2436 byte of source that are unused */
2437
a1c95e6b
JB
2438 int unpacked_idx; /* Index into the unpacked buffer */
2439 int unpacked_bytes_left; /* Number of bytes left to set in unpacked. */
2440
4c4b4cd2 2441 unsigned long accum; /* Staging area for bits being transferred */
a1c95e6b 2442 int accumSize; /* Number of meaningful bits in accum */
14f9c5c9 2443 unsigned char sign;
a1c95e6b 2444
4c4b4cd2
PH
2445 /* Transmit bytes from least to most significant; delta is the direction
2446 the indices move. */
f93fca70 2447 int delta = is_big_endian ? -1 : 1;
14f9c5c9 2448
5b639dea
JB
2449 /* Make sure that unpacked is large enough to receive the BIT_SIZE
2450 bits from SRC. .*/
2451 if ((bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT > unpacked_len)
2452 error (_("Cannot unpack %d bits into buffer of %d bytes"),
2453 bit_size, unpacked_len);
2454
14f9c5c9 2455 srcBitsLeft = bit_size;
086ca51f 2456 src_bytes_left = src_len;
f93fca70 2457 unpacked_bytes_left = unpacked_len;
14f9c5c9 2458 sign = 0;
f93fca70
JB
2459
2460 if (is_big_endian)
14f9c5c9 2461 {
086ca51f 2462 src_idx = src_len - 1;
f93fca70
JB
2463 if (is_signed_type
2464 && ((src[0] << bit_offset) & (1 << (HOST_CHAR_BIT - 1))))
4c4b4cd2 2465 sign = ~0;
d2e4a39e
AS
2466
2467 unusedLS =
4c4b4cd2
PH
2468 (HOST_CHAR_BIT - (bit_size + bit_offset) % HOST_CHAR_BIT)
2469 % HOST_CHAR_BIT;
14f9c5c9 2470
f93fca70
JB
2471 if (is_scalar)
2472 {
2473 accumSize = 0;
2474 unpacked_idx = unpacked_len - 1;
2475 }
2476 else
2477 {
4c4b4cd2
PH
2478 /* Non-scalar values must be aligned at a byte boundary... */
2479 accumSize =
2480 (HOST_CHAR_BIT - bit_size % HOST_CHAR_BIT) % HOST_CHAR_BIT;
2481 /* ... And are placed at the beginning (most-significant) bytes
2482 of the target. */
086ca51f
JB
2483 unpacked_idx = (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT - 1;
2484 unpacked_bytes_left = unpacked_idx + 1;
f93fca70 2485 }
14f9c5c9 2486 }
d2e4a39e 2487 else
14f9c5c9
AS
2488 {
2489 int sign_bit_offset = (bit_size + bit_offset - 1) % 8;
2490
086ca51f 2491 src_idx = unpacked_idx = 0;
14f9c5c9
AS
2492 unusedLS = bit_offset;
2493 accumSize = 0;
2494
f93fca70 2495 if (is_signed_type && (src[src_len - 1] & (1 << sign_bit_offset)))
4c4b4cd2 2496 sign = ~0;
14f9c5c9 2497 }
d2e4a39e 2498
14f9c5c9 2499 accum = 0;
086ca51f 2500 while (src_bytes_left > 0)
14f9c5c9
AS
2501 {
2502 /* Mask for removing bits of the next source byte that are not
4c4b4cd2 2503 part of the value. */
d2e4a39e 2504 unsigned int unusedMSMask =
4c4b4cd2
PH
2505 (1 << (srcBitsLeft >= HOST_CHAR_BIT ? HOST_CHAR_BIT : srcBitsLeft)) -
2506 1;
2507 /* Sign-extend bits for this byte. */
14f9c5c9 2508 unsigned int signMask = sign & ~unusedMSMask;
5b4ee69b 2509
d2e4a39e 2510 accum |=
086ca51f 2511 (((src[src_idx] >> unusedLS) & unusedMSMask) | signMask) << accumSize;
14f9c5c9 2512 accumSize += HOST_CHAR_BIT - unusedLS;
d2e4a39e 2513 if (accumSize >= HOST_CHAR_BIT)
4c4b4cd2 2514 {
db297a65 2515 unpacked[unpacked_idx] = accum & ~(~0UL << HOST_CHAR_BIT);
4c4b4cd2
PH
2516 accumSize -= HOST_CHAR_BIT;
2517 accum >>= HOST_CHAR_BIT;
086ca51f
JB
2518 unpacked_bytes_left -= 1;
2519 unpacked_idx += delta;
4c4b4cd2 2520 }
14f9c5c9
AS
2521 srcBitsLeft -= HOST_CHAR_BIT - unusedLS;
2522 unusedLS = 0;
086ca51f
JB
2523 src_bytes_left -= 1;
2524 src_idx += delta;
14f9c5c9 2525 }
086ca51f 2526 while (unpacked_bytes_left > 0)
14f9c5c9
AS
2527 {
2528 accum |= sign << accumSize;
db297a65 2529 unpacked[unpacked_idx] = accum & ~(~0UL << HOST_CHAR_BIT);
14f9c5c9 2530 accumSize -= HOST_CHAR_BIT;
9cd4d857
JB
2531 if (accumSize < 0)
2532 accumSize = 0;
14f9c5c9 2533 accum >>= HOST_CHAR_BIT;
086ca51f
JB
2534 unpacked_bytes_left -= 1;
2535 unpacked_idx += delta;
14f9c5c9 2536 }
f93fca70
JB
2537}
2538
2539/* Create a new value of type TYPE from the contents of OBJ starting
2540 at byte OFFSET, and bit offset BIT_OFFSET within that byte,
2541 proceeding for BIT_SIZE bits. If OBJ is an lval in memory, then
2542 assigning through the result will set the field fetched from.
2543 VALADDR is ignored unless OBJ is NULL, in which case,
2544 VALADDR+OFFSET must address the start of storage containing the
2545 packed value. The value returned in this case is never an lval.
2546 Assumes 0 <= BIT_OFFSET < HOST_CHAR_BIT. */
2547
2548struct value *
2549ada_value_primitive_packed_val (struct value *obj, const gdb_byte *valaddr,
2550 long offset, int bit_offset, int bit_size,
2551 struct type *type)
2552{
2553 struct value *v;
bfb1c796 2554 const gdb_byte *src; /* First byte containing data to unpack */
f93fca70 2555 gdb_byte *unpacked;
220475ed 2556 const int is_scalar = is_scalar_type (type);
d0a9e810 2557 const int is_big_endian = gdbarch_bits_big_endian (get_type_arch (type));
d5722aa2 2558 gdb::byte_vector staging;
f93fca70
JB
2559
2560 type = ada_check_typedef (type);
2561
d0a9e810 2562 if (obj == NULL)
bfb1c796 2563 src = valaddr + offset;
d0a9e810 2564 else
bfb1c796 2565 src = value_contents (obj) + offset;
d0a9e810
JB
2566
2567 if (is_dynamic_type (type))
2568 {
2569 /* The length of TYPE might by dynamic, so we need to resolve
2570 TYPE in order to know its actual size, which we then use
2571 to create the contents buffer of the value we return.
2572 The difficulty is that the data containing our object is
2573 packed, and therefore maybe not at a byte boundary. So, what
2574 we do, is unpack the data into a byte-aligned buffer, and then
2575 use that buffer as our object's value for resolving the type. */
d5722aa2
PA
2576 int staging_len = (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
2577 staging.resize (staging_len);
d0a9e810
JB
2578
2579 ada_unpack_from_contents (src, bit_offset, bit_size,
d5722aa2 2580 staging.data (), staging.size (),
d0a9e810
JB
2581 is_big_endian, has_negatives (type),
2582 is_scalar);
d5722aa2 2583 type = resolve_dynamic_type (type, staging.data (), 0);
0cafa88c
JB
2584 if (TYPE_LENGTH (type) < (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT)
2585 {
2586 /* This happens when the length of the object is dynamic,
2587 and is actually smaller than the space reserved for it.
2588 For instance, in an array of variant records, the bit_size
2589 we're given is the array stride, which is constant and
2590 normally equal to the maximum size of its element.
2591 But, in reality, each element only actually spans a portion
2592 of that stride. */
2593 bit_size = TYPE_LENGTH (type) * HOST_CHAR_BIT;
2594 }
d0a9e810
JB
2595 }
2596
f93fca70
JB
2597 if (obj == NULL)
2598 {
2599 v = allocate_value (type);
bfb1c796 2600 src = valaddr + offset;
f93fca70
JB
2601 }
2602 else if (VALUE_LVAL (obj) == lval_memory && value_lazy (obj))
2603 {
0cafa88c 2604 int src_len = (bit_size + bit_offset + HOST_CHAR_BIT - 1) / 8;
bfb1c796 2605 gdb_byte *buf;
0cafa88c 2606
f93fca70 2607 v = value_at (type, value_address (obj) + offset);
bfb1c796
PA
2608 buf = (gdb_byte *) alloca (src_len);
2609 read_memory (value_address (v), buf, src_len);
2610 src = buf;
f93fca70
JB
2611 }
2612 else
2613 {
2614 v = allocate_value (type);
bfb1c796 2615 src = value_contents (obj) + offset;
f93fca70
JB
2616 }
2617
2618 if (obj != NULL)
2619 {
2620 long new_offset = offset;
2621
2622 set_value_component_location (v, obj);
2623 set_value_bitpos (v, bit_offset + value_bitpos (obj));
2624 set_value_bitsize (v, bit_size);
2625 if (value_bitpos (v) >= HOST_CHAR_BIT)
2626 {
2627 ++new_offset;
2628 set_value_bitpos (v, value_bitpos (v) - HOST_CHAR_BIT);
2629 }
2630 set_value_offset (v, new_offset);
2631
2632 /* Also set the parent value. This is needed when trying to
2633 assign a new value (in inferior memory). */
2634 set_value_parent (v, obj);
2635 }
2636 else
2637 set_value_bitsize (v, bit_size);
bfb1c796 2638 unpacked = value_contents_writeable (v);
f93fca70
JB
2639
2640 if (bit_size == 0)
2641 {
2642 memset (unpacked, 0, TYPE_LENGTH (type));
2643 return v;
2644 }
2645
d5722aa2 2646 if (staging.size () == TYPE_LENGTH (type))
f93fca70 2647 {
d0a9e810
JB
2648 /* Small short-cut: If we've unpacked the data into a buffer
2649 of the same size as TYPE's length, then we can reuse that,
2650 instead of doing the unpacking again. */
d5722aa2 2651 memcpy (unpacked, staging.data (), staging.size ());
f93fca70 2652 }
d0a9e810
JB
2653 else
2654 ada_unpack_from_contents (src, bit_offset, bit_size,
2655 unpacked, TYPE_LENGTH (type),
2656 is_big_endian, has_negatives (type), is_scalar);
f93fca70 2657
14f9c5c9
AS
2658 return v;
2659}
d2e4a39e 2660
14f9c5c9
AS
2661/* Move N bits from SOURCE, starting at bit offset SRC_OFFSET to
2662 TARGET, starting at bit offset TARG_OFFSET. SOURCE and TARGET must
4c4b4cd2 2663 not overlap. */
14f9c5c9 2664static void
fc1a4b47 2665move_bits (gdb_byte *target, int targ_offset, const gdb_byte *source,
50810684 2666 int src_offset, int n, int bits_big_endian_p)
14f9c5c9
AS
2667{
2668 unsigned int accum, mask;
2669 int accum_bits, chunk_size;
2670
2671 target += targ_offset / HOST_CHAR_BIT;
2672 targ_offset %= HOST_CHAR_BIT;
2673 source += src_offset / HOST_CHAR_BIT;
2674 src_offset %= HOST_CHAR_BIT;
50810684 2675 if (bits_big_endian_p)
14f9c5c9
AS
2676 {
2677 accum = (unsigned char) *source;
2678 source += 1;
2679 accum_bits = HOST_CHAR_BIT - src_offset;
2680
d2e4a39e 2681 while (n > 0)
4c4b4cd2
PH
2682 {
2683 int unused_right;
5b4ee69b 2684
4c4b4cd2
PH
2685 accum = (accum << HOST_CHAR_BIT) + (unsigned char) *source;
2686 accum_bits += HOST_CHAR_BIT;
2687 source += 1;
2688 chunk_size = HOST_CHAR_BIT - targ_offset;
2689 if (chunk_size > n)
2690 chunk_size = n;
2691 unused_right = HOST_CHAR_BIT - (chunk_size + targ_offset);
2692 mask = ((1 << chunk_size) - 1) << unused_right;
2693 *target =
2694 (*target & ~mask)
2695 | ((accum >> (accum_bits - chunk_size - unused_right)) & mask);
2696 n -= chunk_size;
2697 accum_bits -= chunk_size;
2698 target += 1;
2699 targ_offset = 0;
2700 }
14f9c5c9
AS
2701 }
2702 else
2703 {
2704 accum = (unsigned char) *source >> src_offset;
2705 source += 1;
2706 accum_bits = HOST_CHAR_BIT - src_offset;
2707
d2e4a39e 2708 while (n > 0)
4c4b4cd2
PH
2709 {
2710 accum = accum + ((unsigned char) *source << accum_bits);
2711 accum_bits += HOST_CHAR_BIT;
2712 source += 1;
2713 chunk_size = HOST_CHAR_BIT - targ_offset;
2714 if (chunk_size > n)
2715 chunk_size = n;
2716 mask = ((1 << chunk_size) - 1) << targ_offset;
2717 *target = (*target & ~mask) | ((accum << targ_offset) & mask);
2718 n -= chunk_size;
2719 accum_bits -= chunk_size;
2720 accum >>= chunk_size;
2721 target += 1;
2722 targ_offset = 0;
2723 }
14f9c5c9
AS
2724 }
2725}
2726
14f9c5c9
AS
2727/* Store the contents of FROMVAL into the location of TOVAL.
2728 Return a new value with the location of TOVAL and contents of
2729 FROMVAL. Handles assignment into packed fields that have
4c4b4cd2 2730 floating-point or non-scalar types. */
14f9c5c9 2731
d2e4a39e
AS
2732static struct value *
2733ada_value_assign (struct value *toval, struct value *fromval)
14f9c5c9 2734{
df407dfe
AC
2735 struct type *type = value_type (toval);
2736 int bits = value_bitsize (toval);
14f9c5c9 2737
52ce6436
PH
2738 toval = ada_coerce_ref (toval);
2739 fromval = ada_coerce_ref (fromval);
2740
2741 if (ada_is_direct_array_type (value_type (toval)))
2742 toval = ada_coerce_to_simple_array (toval);
2743 if (ada_is_direct_array_type (value_type (fromval)))
2744 fromval = ada_coerce_to_simple_array (fromval);
2745
88e3b34b 2746 if (!deprecated_value_modifiable (toval))
323e0a4a 2747 error (_("Left operand of assignment is not a modifiable lvalue."));
14f9c5c9 2748
d2e4a39e 2749 if (VALUE_LVAL (toval) == lval_memory
14f9c5c9 2750 && bits > 0
d2e4a39e 2751 && (TYPE_CODE (type) == TYPE_CODE_FLT
4c4b4cd2 2752 || TYPE_CODE (type) == TYPE_CODE_STRUCT))
14f9c5c9 2753 {
df407dfe
AC
2754 int len = (value_bitpos (toval)
2755 + bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
aced2898 2756 int from_size;
224c3ddb 2757 gdb_byte *buffer = (gdb_byte *) alloca (len);
d2e4a39e 2758 struct value *val;
42ae5230 2759 CORE_ADDR to_addr = value_address (toval);
14f9c5c9
AS
2760
2761 if (TYPE_CODE (type) == TYPE_CODE_FLT)
4c4b4cd2 2762 fromval = value_cast (type, fromval);
14f9c5c9 2763
52ce6436 2764 read_memory (to_addr, buffer, len);
aced2898
PH
2765 from_size = value_bitsize (fromval);
2766 if (from_size == 0)
2767 from_size = TYPE_LENGTH (value_type (fromval)) * TARGET_CHAR_BIT;
50810684 2768 if (gdbarch_bits_big_endian (get_type_arch (type)))
df407dfe 2769 move_bits (buffer, value_bitpos (toval),
50810684 2770 value_contents (fromval), from_size - bits, bits, 1);
14f9c5c9 2771 else
50810684
UW
2772 move_bits (buffer, value_bitpos (toval),
2773 value_contents (fromval), 0, bits, 0);
972daa01 2774 write_memory_with_notification (to_addr, buffer, len);
8cebebb9 2775
14f9c5c9 2776 val = value_copy (toval);
0fd88904 2777 memcpy (value_contents_raw (val), value_contents (fromval),
4c4b4cd2 2778 TYPE_LENGTH (type));
04624583 2779 deprecated_set_value_type (val, type);
d2e4a39e 2780
14f9c5c9
AS
2781 return val;
2782 }
2783
2784 return value_assign (toval, fromval);
2785}
2786
2787
7c512744
JB
2788/* Given that COMPONENT is a memory lvalue that is part of the lvalue
2789 CONTAINER, assign the contents of VAL to COMPONENTS's place in
2790 CONTAINER. Modifies the VALUE_CONTENTS of CONTAINER only, not
2791 COMPONENT, and not the inferior's memory. The current contents
2792 of COMPONENT are ignored.
2793
2794 Although not part of the initial design, this function also works
2795 when CONTAINER and COMPONENT are not_lval's: it works as if CONTAINER
2796 had a null address, and COMPONENT had an address which is equal to
2797 its offset inside CONTAINER. */
2798
52ce6436
PH
2799static void
2800value_assign_to_component (struct value *container, struct value *component,
2801 struct value *val)
2802{
2803 LONGEST offset_in_container =
42ae5230 2804 (LONGEST) (value_address (component) - value_address (container));
7c512744 2805 int bit_offset_in_container =
52ce6436
PH
2806 value_bitpos (component) - value_bitpos (container);
2807 int bits;
7c512744 2808
52ce6436
PH
2809 val = value_cast (value_type (component), val);
2810
2811 if (value_bitsize (component) == 0)
2812 bits = TARGET_CHAR_BIT * TYPE_LENGTH (value_type (component));
2813 else
2814 bits = value_bitsize (component);
2815
50810684 2816 if (gdbarch_bits_big_endian (get_type_arch (value_type (container))))
2a62dfa9
JB
2817 {
2818 int src_offset;
2819
2820 if (is_scalar_type (check_typedef (value_type (component))))
2821 src_offset
2822 = TYPE_LENGTH (value_type (component)) * TARGET_CHAR_BIT - bits;
2823 else
2824 src_offset = 0;
2825 move_bits (value_contents_writeable (container) + offset_in_container,
2826 value_bitpos (container) + bit_offset_in_container,
2827 value_contents (val), src_offset, bits, 1);
2828 }
52ce6436 2829 else
7c512744 2830 move_bits (value_contents_writeable (container) + offset_in_container,
52ce6436 2831 value_bitpos (container) + bit_offset_in_container,
50810684 2832 value_contents (val), 0, bits, 0);
7c512744
JB
2833}
2834
736ade86
XR
2835/* Determine if TYPE is an access to an unconstrained array. */
2836
2837static bool
2838ada_is_access_to_unconstrained_array (struct type *type)
2839{
2840 return (TYPE_CODE (type) == TYPE_CODE_TYPEDEF
2841 && is_thick_pntr (ada_typedef_target_type (type)));
2842}
2843
4c4b4cd2
PH
2844/* The value of the element of array ARR at the ARITY indices given in IND.
2845 ARR may be either a simple array, GNAT array descriptor, or pointer
14f9c5c9
AS
2846 thereto. */
2847
d2e4a39e
AS
2848struct value *
2849ada_value_subscript (struct value *arr, int arity, struct value **ind)
14f9c5c9
AS
2850{
2851 int k;
d2e4a39e
AS
2852 struct value *elt;
2853 struct type *elt_type;
14f9c5c9
AS
2854
2855 elt = ada_coerce_to_simple_array (arr);
2856
df407dfe 2857 elt_type = ada_check_typedef (value_type (elt));
d2e4a39e 2858 if (TYPE_CODE (elt_type) == TYPE_CODE_ARRAY
14f9c5c9
AS
2859 && TYPE_FIELD_BITSIZE (elt_type, 0) > 0)
2860 return value_subscript_packed (elt, arity, ind);
2861
2862 for (k = 0; k < arity; k += 1)
2863 {
2864 if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY)
323e0a4a 2865 error (_("too many subscripts (%d expected)"), k);
2497b498 2866 elt = value_subscript (elt, pos_atr (ind[k]));
14f9c5c9
AS
2867 }
2868 return elt;
2869}
2870
deede10c
JB
2871/* Assuming ARR is a pointer to a GDB array, the value of the element
2872 of *ARR at the ARITY indices given in IND.
919e6dbe
PMR
2873 Does not read the entire array into memory.
2874
2875 Note: Unlike what one would expect, this function is used instead of
2876 ada_value_subscript for basically all non-packed array types. The reason
2877 for this is that a side effect of doing our own pointer arithmetics instead
2878 of relying on value_subscript is that there is no implicit typedef peeling.
2879 This is important for arrays of array accesses, where it allows us to
2880 preserve the fact that the array's element is an array access, where the
2881 access part os encoded in a typedef layer. */
14f9c5c9 2882
2c0b251b 2883static struct value *
deede10c 2884ada_value_ptr_subscript (struct value *arr, int arity, struct value **ind)
14f9c5c9
AS
2885{
2886 int k;
919e6dbe 2887 struct value *array_ind = ada_value_ind (arr);
deede10c 2888 struct type *type
919e6dbe
PMR
2889 = check_typedef (value_enclosing_type (array_ind));
2890
2891 if (TYPE_CODE (type) == TYPE_CODE_ARRAY
2892 && TYPE_FIELD_BITSIZE (type, 0) > 0)
2893 return value_subscript_packed (array_ind, arity, ind);
14f9c5c9
AS
2894
2895 for (k = 0; k < arity; k += 1)
2896 {
2897 LONGEST lwb, upb;
aa715135 2898 struct value *lwb_value;
14f9c5c9
AS
2899
2900 if (TYPE_CODE (type) != TYPE_CODE_ARRAY)
323e0a4a 2901 error (_("too many subscripts (%d expected)"), k);
d2e4a39e 2902 arr = value_cast (lookup_pointer_type (TYPE_TARGET_TYPE (type)),
4c4b4cd2 2903 value_copy (arr));
14f9c5c9 2904 get_discrete_bounds (TYPE_INDEX_TYPE (type), &lwb, &upb);
aa715135
JG
2905 lwb_value = value_from_longest (value_type(ind[k]), lwb);
2906 arr = value_ptradd (arr, pos_atr (ind[k]) - pos_atr (lwb_value));
14f9c5c9
AS
2907 type = TYPE_TARGET_TYPE (type);
2908 }
2909
2910 return value_ind (arr);
2911}
2912
0b5d8877 2913/* Given that ARRAY_PTR is a pointer or reference to an array of type TYPE (the
aa715135
JG
2914 actual type of ARRAY_PTR is ignored), returns the Ada slice of
2915 HIGH'Pos-LOW'Pos+1 elements starting at index LOW. The lower bound of
2916 this array is LOW, as per Ada rules. */
0b5d8877 2917static struct value *
f5938064
JG
2918ada_value_slice_from_ptr (struct value *array_ptr, struct type *type,
2919 int low, int high)
0b5d8877 2920{
b0dd7688 2921 struct type *type0 = ada_check_typedef (type);
aa715135 2922 struct type *base_index_type = TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type0));
0c9c3474 2923 struct type *index_type
aa715135 2924 = create_static_range_type (NULL, base_index_type, low, high);
9fe561ab
JB
2925 struct type *slice_type = create_array_type_with_stride
2926 (NULL, TYPE_TARGET_TYPE (type0), index_type,
2927 get_dyn_prop (DYN_PROP_BYTE_STRIDE, type0),
2928 TYPE_FIELD_BITSIZE (type0, 0));
aa715135
JG
2929 int base_low = ada_discrete_type_low_bound (TYPE_INDEX_TYPE (type0));
2930 LONGEST base_low_pos, low_pos;
2931 CORE_ADDR base;
2932
2933 if (!discrete_position (base_index_type, low, &low_pos)
2934 || !discrete_position (base_index_type, base_low, &base_low_pos))
2935 {
2936 warning (_("unable to get positions in slice, use bounds instead"));
2937 low_pos = low;
2938 base_low_pos = base_low;
2939 }
5b4ee69b 2940
aa715135
JG
2941 base = value_as_address (array_ptr)
2942 + ((low_pos - base_low_pos)
2943 * TYPE_LENGTH (TYPE_TARGET_TYPE (type0)));
f5938064 2944 return value_at_lazy (slice_type, base);
0b5d8877
PH
2945}
2946
2947
2948static struct value *
2949ada_value_slice (struct value *array, int low, int high)
2950{
b0dd7688 2951 struct type *type = ada_check_typedef (value_type (array));
aa715135 2952 struct type *base_index_type = TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type));
0c9c3474
SA
2953 struct type *index_type
2954 = create_static_range_type (NULL, TYPE_INDEX_TYPE (type), low, high);
9fe561ab
JB
2955 struct type *slice_type = create_array_type_with_stride
2956 (NULL, TYPE_TARGET_TYPE (type), index_type,
2957 get_dyn_prop (DYN_PROP_BYTE_STRIDE, type),
2958 TYPE_FIELD_BITSIZE (type, 0));
aa715135 2959 LONGEST low_pos, high_pos;
5b4ee69b 2960
aa715135
JG
2961 if (!discrete_position (base_index_type, low, &low_pos)
2962 || !discrete_position (base_index_type, high, &high_pos))
2963 {
2964 warning (_("unable to get positions in slice, use bounds instead"));
2965 low_pos = low;
2966 high_pos = high;
2967 }
2968
2969 return value_cast (slice_type,
2970 value_slice (array, low, high_pos - low_pos + 1));
0b5d8877
PH
2971}
2972
14f9c5c9
AS
2973/* If type is a record type in the form of a standard GNAT array
2974 descriptor, returns the number of dimensions for type. If arr is a
2975 simple array, returns the number of "array of"s that prefix its
4c4b4cd2 2976 type designation. Otherwise, returns 0. */
14f9c5c9
AS
2977
2978int
d2e4a39e 2979ada_array_arity (struct type *type)
14f9c5c9
AS
2980{
2981 int arity;
2982
2983 if (type == NULL)
2984 return 0;
2985
2986 type = desc_base_type (type);
2987
2988 arity = 0;
d2e4a39e 2989 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
14f9c5c9 2990 return desc_arity (desc_bounds_type (type));
d2e4a39e
AS
2991 else
2992 while (TYPE_CODE (type) == TYPE_CODE_ARRAY)
14f9c5c9 2993 {
4c4b4cd2 2994 arity += 1;
61ee279c 2995 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
14f9c5c9 2996 }
d2e4a39e 2997
14f9c5c9
AS
2998 return arity;
2999}
3000
3001/* If TYPE is a record type in the form of a standard GNAT array
3002 descriptor or a simple array type, returns the element type for
3003 TYPE after indexing by NINDICES indices, or by all indices if
4c4b4cd2 3004 NINDICES is -1. Otherwise, returns NULL. */
14f9c5c9 3005
d2e4a39e
AS
3006struct type *
3007ada_array_element_type (struct type *type, int nindices)
14f9c5c9
AS
3008{
3009 type = desc_base_type (type);
3010
d2e4a39e 3011 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
14f9c5c9
AS
3012 {
3013 int k;
d2e4a39e 3014 struct type *p_array_type;
14f9c5c9 3015
556bdfd4 3016 p_array_type = desc_data_target_type (type);
14f9c5c9
AS
3017
3018 k = ada_array_arity (type);
3019 if (k == 0)
4c4b4cd2 3020 return NULL;
d2e4a39e 3021
4c4b4cd2 3022 /* Initially p_array_type = elt_type(*)[]...(k times)...[]. */
14f9c5c9 3023 if (nindices >= 0 && k > nindices)
4c4b4cd2 3024 k = nindices;
d2e4a39e 3025 while (k > 0 && p_array_type != NULL)
4c4b4cd2 3026 {
61ee279c 3027 p_array_type = ada_check_typedef (TYPE_TARGET_TYPE (p_array_type));
4c4b4cd2
PH
3028 k -= 1;
3029 }
14f9c5c9
AS
3030 return p_array_type;
3031 }
3032 else if (TYPE_CODE (type) == TYPE_CODE_ARRAY)
3033 {
3034 while (nindices != 0 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
4c4b4cd2
PH
3035 {
3036 type = TYPE_TARGET_TYPE (type);
3037 nindices -= 1;
3038 }
14f9c5c9
AS
3039 return type;
3040 }
3041
3042 return NULL;
3043}
3044
4c4b4cd2 3045/* The type of nth index in arrays of given type (n numbering from 1).
dd19d49e
UW
3046 Does not examine memory. Throws an error if N is invalid or TYPE
3047 is not an array type. NAME is the name of the Ada attribute being
3048 evaluated ('range, 'first, 'last, or 'length); it is used in building
3049 the error message. */
14f9c5c9 3050
1eea4ebd
UW
3051static struct type *
3052ada_index_type (struct type *type, int n, const char *name)
14f9c5c9 3053{
4c4b4cd2
PH
3054 struct type *result_type;
3055
14f9c5c9
AS
3056 type = desc_base_type (type);
3057
1eea4ebd
UW
3058 if (n < 0 || n > ada_array_arity (type))
3059 error (_("invalid dimension number to '%s"), name);
14f9c5c9 3060
4c4b4cd2 3061 if (ada_is_simple_array_type (type))
14f9c5c9
AS
3062 {
3063 int i;
3064
3065 for (i = 1; i < n; i += 1)
4c4b4cd2 3066 type = TYPE_TARGET_TYPE (type);
262452ec 3067 result_type = TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type));
4c4b4cd2
PH
3068 /* FIXME: The stabs type r(0,0);bound;bound in an array type
3069 has a target type of TYPE_CODE_UNDEF. We compensate here, but
76a01679 3070 perhaps stabsread.c would make more sense. */
1eea4ebd
UW
3071 if (result_type && TYPE_CODE (result_type) == TYPE_CODE_UNDEF)
3072 result_type = NULL;
14f9c5c9 3073 }
d2e4a39e 3074 else
1eea4ebd
UW
3075 {
3076 result_type = desc_index_type (desc_bounds_type (type), n);
3077 if (result_type == NULL)
3078 error (_("attempt to take bound of something that is not an array"));
3079 }
3080
3081 return result_type;
14f9c5c9
AS
3082}
3083
3084/* Given that arr is an array type, returns the lower bound of the
3085 Nth index (numbering from 1) if WHICH is 0, and the upper bound if
4c4b4cd2 3086 WHICH is 1. This returns bounds 0 .. -1 if ARR_TYPE is an
1eea4ebd
UW
3087 array-descriptor type. It works for other arrays with bounds supplied
3088 by run-time quantities other than discriminants. */
14f9c5c9 3089
abb68b3e 3090static LONGEST
fb5e3d5c 3091ada_array_bound_from_type (struct type *arr_type, int n, int which)
14f9c5c9 3092{
8a48ac95 3093 struct type *type, *index_type_desc, *index_type;
1ce677a4 3094 int i;
262452ec
JK
3095
3096 gdb_assert (which == 0 || which == 1);
14f9c5c9 3097
ad82864c
JB
3098 if (ada_is_constrained_packed_array_type (arr_type))
3099 arr_type = decode_constrained_packed_array_type (arr_type);
14f9c5c9 3100
4c4b4cd2 3101 if (arr_type == NULL || !ada_is_simple_array_type (arr_type))
1eea4ebd 3102 return (LONGEST) - which;
14f9c5c9
AS
3103
3104 if (TYPE_CODE (arr_type) == TYPE_CODE_PTR)
3105 type = TYPE_TARGET_TYPE (arr_type);
3106 else
3107 type = arr_type;
3108
bafffb51
JB
3109 if (TYPE_FIXED_INSTANCE (type))
3110 {
3111 /* The array has already been fixed, so we do not need to
3112 check the parallel ___XA type again. That encoding has
3113 already been applied, so ignore it now. */
3114 index_type_desc = NULL;
3115 }
3116 else
3117 {
3118 index_type_desc = ada_find_parallel_type (type, "___XA");
3119 ada_fixup_array_indexes_type (index_type_desc);
3120 }
3121
262452ec 3122 if (index_type_desc != NULL)
28c85d6c
JB
3123 index_type = to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, n - 1),
3124 NULL);
262452ec 3125 else
8a48ac95
JB
3126 {
3127 struct type *elt_type = check_typedef (type);
3128
3129 for (i = 1; i < n; i++)
3130 elt_type = check_typedef (TYPE_TARGET_TYPE (elt_type));
3131
3132 index_type = TYPE_INDEX_TYPE (elt_type);
3133 }
262452ec 3134
43bbcdc2
PH
3135 return
3136 (LONGEST) (which == 0
3137 ? ada_discrete_type_low_bound (index_type)
3138 : ada_discrete_type_high_bound (index_type));
14f9c5c9
AS
3139}
3140
3141/* Given that arr is an array value, returns the lower bound of the
abb68b3e
JB
3142 nth index (numbering from 1) if WHICH is 0, and the upper bound if
3143 WHICH is 1. This routine will also work for arrays with bounds
4c4b4cd2 3144 supplied by run-time quantities other than discriminants. */
14f9c5c9 3145
1eea4ebd 3146static LONGEST
4dc81987 3147ada_array_bound (struct value *arr, int n, int which)
14f9c5c9 3148{
eb479039
JB
3149 struct type *arr_type;
3150
3151 if (TYPE_CODE (check_typedef (value_type (arr))) == TYPE_CODE_PTR)
3152 arr = value_ind (arr);
3153 arr_type = value_enclosing_type (arr);
14f9c5c9 3154
ad82864c
JB
3155 if (ada_is_constrained_packed_array_type (arr_type))
3156 return ada_array_bound (decode_constrained_packed_array (arr), n, which);
4c4b4cd2 3157 else if (ada_is_simple_array_type (arr_type))
1eea4ebd 3158 return ada_array_bound_from_type (arr_type, n, which);
14f9c5c9 3159 else
1eea4ebd 3160 return value_as_long (desc_one_bound (desc_bounds (arr), n, which));
14f9c5c9
AS
3161}
3162
3163/* Given that arr is an array value, returns the length of the
3164 nth index. This routine will also work for arrays with bounds
4c4b4cd2
PH
3165 supplied by run-time quantities other than discriminants.
3166 Does not work for arrays indexed by enumeration types with representation
3167 clauses at the moment. */
14f9c5c9 3168
1eea4ebd 3169static LONGEST
d2e4a39e 3170ada_array_length (struct value *arr, int n)
14f9c5c9 3171{
aa715135
JG
3172 struct type *arr_type, *index_type;
3173 int low, high;
eb479039
JB
3174
3175 if (TYPE_CODE (check_typedef (value_type (arr))) == TYPE_CODE_PTR)
3176 arr = value_ind (arr);
3177 arr_type = value_enclosing_type (arr);
14f9c5c9 3178
ad82864c
JB
3179 if (ada_is_constrained_packed_array_type (arr_type))
3180 return ada_array_length (decode_constrained_packed_array (arr), n);
14f9c5c9 3181
4c4b4cd2 3182 if (ada_is_simple_array_type (arr_type))
aa715135
JG
3183 {
3184 low = ada_array_bound_from_type (arr_type, n, 0);
3185 high = ada_array_bound_from_type (arr_type, n, 1);
3186 }
14f9c5c9 3187 else
aa715135
JG
3188 {
3189 low = value_as_long (desc_one_bound (desc_bounds (arr), n, 0));
3190 high = value_as_long (desc_one_bound (desc_bounds (arr), n, 1));
3191 }
3192
f168693b 3193 arr_type = check_typedef (arr_type);
7150d33c 3194 index_type = ada_index_type (arr_type, n, "length");
aa715135
JG
3195 if (index_type != NULL)
3196 {
3197 struct type *base_type;
3198 if (TYPE_CODE (index_type) == TYPE_CODE_RANGE)
3199 base_type = TYPE_TARGET_TYPE (index_type);
3200 else
3201 base_type = index_type;
3202
3203 low = pos_atr (value_from_longest (base_type, low));
3204 high = pos_atr (value_from_longest (base_type, high));
3205 }
3206 return high - low + 1;
4c4b4cd2
PH
3207}
3208
3209/* An empty array whose type is that of ARR_TYPE (an array type),
3210 with bounds LOW to LOW-1. */
3211
3212static struct value *
3213empty_array (struct type *arr_type, int low)
3214{
b0dd7688 3215 struct type *arr_type0 = ada_check_typedef (arr_type);
0c9c3474
SA
3216 struct type *index_type
3217 = create_static_range_type
3218 (NULL, TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (arr_type0)), low, low - 1);
b0dd7688 3219 struct type *elt_type = ada_array_element_type (arr_type0, 1);
5b4ee69b 3220
0b5d8877 3221 return allocate_value (create_array_type (NULL, elt_type, index_type));
14f9c5c9 3222}
14f9c5c9 3223\f
d2e4a39e 3224
4c4b4cd2 3225 /* Name resolution */
14f9c5c9 3226
4c4b4cd2
PH
3227/* The "decoded" name for the user-definable Ada operator corresponding
3228 to OP. */
14f9c5c9 3229
d2e4a39e 3230static const char *
4c4b4cd2 3231ada_decoded_op_name (enum exp_opcode op)
14f9c5c9
AS
3232{
3233 int i;
3234
4c4b4cd2 3235 for (i = 0; ada_opname_table[i].encoded != NULL; i += 1)
14f9c5c9
AS
3236 {
3237 if (ada_opname_table[i].op == op)
4c4b4cd2 3238 return ada_opname_table[i].decoded;
14f9c5c9 3239 }
323e0a4a 3240 error (_("Could not find operator name for opcode"));
14f9c5c9
AS
3241}
3242
3243
4c4b4cd2
PH
3244/* Same as evaluate_type (*EXP), but resolves ambiguous symbol
3245 references (marked by OP_VAR_VALUE nodes in which the symbol has an
3246 undefined namespace) and converts operators that are
3247 user-defined into appropriate function calls. If CONTEXT_TYPE is
14f9c5c9
AS
3248 non-null, it provides a preferred result type [at the moment, only
3249 type void has any effect---causing procedures to be preferred over
3250 functions in calls]. A null CONTEXT_TYPE indicates that a non-void
4c4b4cd2 3251 return type is preferred. May change (expand) *EXP. */
14f9c5c9 3252
4c4b4cd2 3253static void
e9d9f57e 3254resolve (expression_up *expp, int void_context_p)
14f9c5c9 3255{
30b15541
UW
3256 struct type *context_type = NULL;
3257 int pc = 0;
3258
3259 if (void_context_p)
3260 context_type = builtin_type ((*expp)->gdbarch)->builtin_void;
3261
3262 resolve_subexp (expp, &pc, 1, context_type);
14f9c5c9
AS
3263}
3264
4c4b4cd2
PH
3265/* Resolve the operator of the subexpression beginning at
3266 position *POS of *EXPP. "Resolving" consists of replacing
3267 the symbols that have undefined namespaces in OP_VAR_VALUE nodes
3268 with their resolutions, replacing built-in operators with
3269 function calls to user-defined operators, where appropriate, and,
3270 when DEPROCEDURE_P is non-zero, converting function-valued variables
3271 into parameterless calls. May expand *EXPP. The CONTEXT_TYPE functions
3272 are as in ada_resolve, above. */
14f9c5c9 3273
d2e4a39e 3274static struct value *
e9d9f57e 3275resolve_subexp (expression_up *expp, int *pos, int deprocedure_p,
76a01679 3276 struct type *context_type)
14f9c5c9
AS
3277{
3278 int pc = *pos;
3279 int i;
4c4b4cd2 3280 struct expression *exp; /* Convenience: == *expp. */
14f9c5c9 3281 enum exp_opcode op = (*expp)->elts[pc].opcode;
4c4b4cd2
PH
3282 struct value **argvec; /* Vector of operand types (alloca'ed). */
3283 int nargs; /* Number of operands. */
52ce6436 3284 int oplen;
14f9c5c9
AS
3285
3286 argvec = NULL;
3287 nargs = 0;
e9d9f57e 3288 exp = expp->get ();
14f9c5c9 3289
52ce6436
PH
3290 /* Pass one: resolve operands, saving their types and updating *pos,
3291 if needed. */
14f9c5c9
AS
3292 switch (op)
3293 {
4c4b4cd2
PH
3294 case OP_FUNCALL:
3295 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
76a01679
JB
3296 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
3297 *pos += 7;
4c4b4cd2
PH
3298 else
3299 {
3300 *pos += 3;
3301 resolve_subexp (expp, pos, 0, NULL);
3302 }
3303 nargs = longest_to_int (exp->elts[pc + 1].longconst);
14f9c5c9
AS
3304 break;
3305
14f9c5c9 3306 case UNOP_ADDR:
4c4b4cd2
PH
3307 *pos += 1;
3308 resolve_subexp (expp, pos, 0, NULL);
3309 break;
3310
52ce6436
PH
3311 case UNOP_QUAL:
3312 *pos += 3;
17466c1a 3313 resolve_subexp (expp, pos, 1, check_typedef (exp->elts[pc + 1].type));
4c4b4cd2
PH
3314 break;
3315
52ce6436 3316 case OP_ATR_MODULUS:
4c4b4cd2
PH
3317 case OP_ATR_SIZE:
3318 case OP_ATR_TAG:
4c4b4cd2
PH
3319 case OP_ATR_FIRST:
3320 case OP_ATR_LAST:
3321 case OP_ATR_LENGTH:
3322 case OP_ATR_POS:
3323 case OP_ATR_VAL:
4c4b4cd2
PH
3324 case OP_ATR_MIN:
3325 case OP_ATR_MAX:
52ce6436
PH
3326 case TERNOP_IN_RANGE:
3327 case BINOP_IN_BOUNDS:
3328 case UNOP_IN_RANGE:
3329 case OP_AGGREGATE:
3330 case OP_OTHERS:
3331 case OP_CHOICES:
3332 case OP_POSITIONAL:
3333 case OP_DISCRETE_RANGE:
3334 case OP_NAME:
3335 ada_forward_operator_length (exp, pc, &oplen, &nargs);
3336 *pos += oplen;
14f9c5c9
AS
3337 break;
3338
3339 case BINOP_ASSIGN:
3340 {
4c4b4cd2
PH
3341 struct value *arg1;
3342
3343 *pos += 1;
3344 arg1 = resolve_subexp (expp, pos, 0, NULL);
3345 if (arg1 == NULL)
3346 resolve_subexp (expp, pos, 1, NULL);
3347 else
df407dfe 3348 resolve_subexp (expp, pos, 1, value_type (arg1));
4c4b4cd2 3349 break;
14f9c5c9
AS
3350 }
3351
4c4b4cd2 3352 case UNOP_CAST:
4c4b4cd2
PH
3353 *pos += 3;
3354 nargs = 1;
3355 break;
14f9c5c9 3356
4c4b4cd2
PH
3357 case BINOP_ADD:
3358 case BINOP_SUB:
3359 case BINOP_MUL:
3360 case BINOP_DIV:
3361 case BINOP_REM:
3362 case BINOP_MOD:
3363 case BINOP_EXP:
3364 case BINOP_CONCAT:
3365 case BINOP_LOGICAL_AND:
3366 case BINOP_LOGICAL_OR:
3367 case BINOP_BITWISE_AND:
3368 case BINOP_BITWISE_IOR:
3369 case BINOP_BITWISE_XOR:
14f9c5c9 3370
4c4b4cd2
PH
3371 case BINOP_EQUAL:
3372 case BINOP_NOTEQUAL:
3373 case BINOP_LESS:
3374 case BINOP_GTR:
3375 case BINOP_LEQ:
3376 case BINOP_GEQ:
14f9c5c9 3377
4c4b4cd2
PH
3378 case BINOP_REPEAT:
3379 case BINOP_SUBSCRIPT:
3380 case BINOP_COMMA:
40c8aaa9
JB
3381 *pos += 1;
3382 nargs = 2;
3383 break;
14f9c5c9 3384
4c4b4cd2
PH
3385 case UNOP_NEG:
3386 case UNOP_PLUS:
3387 case UNOP_LOGICAL_NOT:
3388 case UNOP_ABS:
3389 case UNOP_IND:
3390 *pos += 1;
3391 nargs = 1;
3392 break;
14f9c5c9 3393
4c4b4cd2 3394 case OP_LONG:
edd079d9 3395 case OP_FLOAT:
4c4b4cd2 3396 case OP_VAR_VALUE:
74ea4be4 3397 case OP_VAR_MSYM_VALUE:
4c4b4cd2
PH
3398 *pos += 4;
3399 break;
14f9c5c9 3400
4c4b4cd2
PH
3401 case OP_TYPE:
3402 case OP_BOOL:
3403 case OP_LAST:
4c4b4cd2
PH
3404 case OP_INTERNALVAR:
3405 *pos += 3;
3406 break;
14f9c5c9 3407
4c4b4cd2
PH
3408 case UNOP_MEMVAL:
3409 *pos += 3;
3410 nargs = 1;
3411 break;
3412
67f3407f
DJ
3413 case OP_REGISTER:
3414 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
3415 break;
3416
4c4b4cd2
PH
3417 case STRUCTOP_STRUCT:
3418 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
3419 nargs = 1;
3420 break;
3421
4c4b4cd2 3422 case TERNOP_SLICE:
4c4b4cd2
PH
3423 *pos += 1;
3424 nargs = 3;
3425 break;
3426
52ce6436 3427 case OP_STRING:
14f9c5c9 3428 break;
4c4b4cd2
PH
3429
3430 default:
323e0a4a 3431 error (_("Unexpected operator during name resolution"));
14f9c5c9
AS
3432 }
3433
8d749320 3434 argvec = XALLOCAVEC (struct value *, nargs + 1);
4c4b4cd2
PH
3435 for (i = 0; i < nargs; i += 1)
3436 argvec[i] = resolve_subexp (expp, pos, 1, NULL);
3437 argvec[i] = NULL;
e9d9f57e 3438 exp = expp->get ();
4c4b4cd2
PH
3439
3440 /* Pass two: perform any resolution on principal operator. */
14f9c5c9
AS
3441 switch (op)
3442 {
3443 default:
3444 break;
3445
14f9c5c9 3446 case OP_VAR_VALUE:
4c4b4cd2 3447 if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
76a01679 3448 {
54d343a2 3449 std::vector<struct block_symbol> candidates;
76a01679
JB
3450 int n_candidates;
3451
3452 n_candidates =
3453 ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME
3454 (exp->elts[pc + 2].symbol),
3455 exp->elts[pc + 1].block, VAR_DOMAIN,
4eeaa230 3456 &candidates);
76a01679
JB
3457
3458 if (n_candidates > 1)
3459 {
3460 /* Types tend to get re-introduced locally, so if there
3461 are any local symbols that are not types, first filter
3462 out all types. */
3463 int j;
3464 for (j = 0; j < n_candidates; j += 1)
d12307c1 3465 switch (SYMBOL_CLASS (candidates[j].symbol))
76a01679
JB
3466 {
3467 case LOC_REGISTER:
3468 case LOC_ARG:
3469 case LOC_REF_ARG:
76a01679
JB
3470 case LOC_REGPARM_ADDR:
3471 case LOC_LOCAL:
76a01679 3472 case LOC_COMPUTED:
76a01679
JB
3473 goto FoundNonType;
3474 default:
3475 break;
3476 }
3477 FoundNonType:
3478 if (j < n_candidates)
3479 {
3480 j = 0;
3481 while (j < n_candidates)
3482 {
d12307c1 3483 if (SYMBOL_CLASS (candidates[j].symbol) == LOC_TYPEDEF)
76a01679
JB
3484 {
3485 candidates[j] = candidates[n_candidates - 1];
3486 n_candidates -= 1;
3487 }
3488 else
3489 j += 1;
3490 }
3491 }
3492 }
3493
3494 if (n_candidates == 0)
323e0a4a 3495 error (_("No definition found for %s"),
76a01679
JB
3496 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
3497 else if (n_candidates == 1)
3498 i = 0;
3499 else if (deprocedure_p
54d343a2 3500 && !is_nonfunction (candidates.data (), n_candidates))
76a01679 3501 {
06d5cf63 3502 i = ada_resolve_function
54d343a2 3503 (candidates.data (), n_candidates, NULL, 0,
06d5cf63
JB
3504 SYMBOL_LINKAGE_NAME (exp->elts[pc + 2].symbol),
3505 context_type);
76a01679 3506 if (i < 0)
323e0a4a 3507 error (_("Could not find a match for %s"),
76a01679
JB
3508 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
3509 }
3510 else
3511 {
323e0a4a 3512 printf_filtered (_("Multiple matches for %s\n"),
76a01679 3513 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
54d343a2 3514 user_select_syms (candidates.data (), n_candidates, 1);
76a01679
JB
3515 i = 0;
3516 }
3517
3518 exp->elts[pc + 1].block = candidates[i].block;
d12307c1 3519 exp->elts[pc + 2].symbol = candidates[i].symbol;
aee1fcdf 3520 innermost_block.update (candidates[i]);
76a01679
JB
3521 }
3522
3523 if (deprocedure_p
3524 && (TYPE_CODE (SYMBOL_TYPE (exp->elts[pc + 2].symbol))
3525 == TYPE_CODE_FUNC))
3526 {
424da6cf 3527 replace_operator_with_call (expp, pc, 0, 4,
76a01679
JB
3528 exp->elts[pc + 2].symbol,
3529 exp->elts[pc + 1].block);
e9d9f57e 3530 exp = expp->get ();
76a01679 3531 }
14f9c5c9
AS
3532 break;
3533
3534 case OP_FUNCALL:
3535 {
4c4b4cd2 3536 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
76a01679 3537 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
4c4b4cd2 3538 {
54d343a2 3539 std::vector<struct block_symbol> candidates;
4c4b4cd2
PH
3540 int n_candidates;
3541
3542 n_candidates =
76a01679
JB
3543 ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME
3544 (exp->elts[pc + 5].symbol),
3545 exp->elts[pc + 4].block, VAR_DOMAIN,
4eeaa230 3546 &candidates);
ec6a20c2 3547
4c4b4cd2
PH
3548 if (n_candidates == 1)
3549 i = 0;
3550 else
3551 {
06d5cf63 3552 i = ada_resolve_function
54d343a2 3553 (candidates.data (), n_candidates,
06d5cf63
JB
3554 argvec, nargs,
3555 SYMBOL_LINKAGE_NAME (exp->elts[pc + 5].symbol),
3556 context_type);
4c4b4cd2 3557 if (i < 0)
323e0a4a 3558 error (_("Could not find a match for %s"),
4c4b4cd2
PH
3559 SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol));
3560 }
3561
3562 exp->elts[pc + 4].block = candidates[i].block;
d12307c1 3563 exp->elts[pc + 5].symbol = candidates[i].symbol;
aee1fcdf 3564 innermost_block.update (candidates[i]);
4c4b4cd2 3565 }
14f9c5c9
AS
3566 }
3567 break;
3568 case BINOP_ADD:
3569 case BINOP_SUB:
3570 case BINOP_MUL:
3571 case BINOP_DIV:
3572 case BINOP_REM:
3573 case BINOP_MOD:
3574 case BINOP_CONCAT:
3575 case BINOP_BITWISE_AND:
3576 case BINOP_BITWISE_IOR:
3577 case BINOP_BITWISE_XOR:
3578 case BINOP_EQUAL:
3579 case BINOP_NOTEQUAL:
3580 case BINOP_LESS:
3581 case BINOP_GTR:
3582 case BINOP_LEQ:
3583 case BINOP_GEQ:
3584 case BINOP_EXP:
3585 case UNOP_NEG:
3586 case UNOP_PLUS:
3587 case UNOP_LOGICAL_NOT:
3588 case UNOP_ABS:
3589 if (possible_user_operator_p (op, argvec))
4c4b4cd2 3590 {
54d343a2 3591 std::vector<struct block_symbol> candidates;
4c4b4cd2
PH
3592 int n_candidates;
3593
3594 n_candidates =
b5ec771e 3595 ada_lookup_symbol_list (ada_decoded_op_name (op),
4c4b4cd2 3596 (struct block *) NULL, VAR_DOMAIN,
4eeaa230 3597 &candidates);
ec6a20c2 3598
54d343a2
TT
3599 i = ada_resolve_function (candidates.data (), n_candidates, argvec,
3600 nargs, ada_decoded_op_name (op), NULL);
4c4b4cd2
PH
3601 if (i < 0)
3602 break;
3603
d12307c1
PMR
3604 replace_operator_with_call (expp, pc, nargs, 1,
3605 candidates[i].symbol,
3606 candidates[i].block);
e9d9f57e 3607 exp = expp->get ();
4c4b4cd2 3608 }
14f9c5c9 3609 break;
4c4b4cd2
PH
3610
3611 case OP_TYPE:
b3dbf008 3612 case OP_REGISTER:
4c4b4cd2 3613 return NULL;
14f9c5c9
AS
3614 }
3615
3616 *pos = pc;
ced9779b
JB
3617 if (exp->elts[pc].opcode == OP_VAR_MSYM_VALUE)
3618 return evaluate_var_msym_value (EVAL_AVOID_SIDE_EFFECTS,
3619 exp->elts[pc + 1].objfile,
3620 exp->elts[pc + 2].msymbol);
3621 else
3622 return evaluate_subexp_type (exp, pos);
14f9c5c9
AS
3623}
3624
3625/* Return non-zero if formal type FTYPE matches actual type ATYPE. If
4c4b4cd2 3626 MAY_DEREF is non-zero, the formal may be a pointer and the actual
5b3d5b7d 3627 a non-pointer. */
14f9c5c9 3628/* The term "match" here is rather loose. The match is heuristic and
5b3d5b7d 3629 liberal. */
14f9c5c9
AS
3630
3631static int
4dc81987 3632ada_type_match (struct type *ftype, struct type *atype, int may_deref)
14f9c5c9 3633{
61ee279c
PH
3634 ftype = ada_check_typedef (ftype);
3635 atype = ada_check_typedef (atype);
14f9c5c9
AS
3636
3637 if (TYPE_CODE (ftype) == TYPE_CODE_REF)
3638 ftype = TYPE_TARGET_TYPE (ftype);
3639 if (TYPE_CODE (atype) == TYPE_CODE_REF)
3640 atype = TYPE_TARGET_TYPE (atype);
3641
d2e4a39e 3642 switch (TYPE_CODE (ftype))
14f9c5c9
AS
3643 {
3644 default:
5b3d5b7d 3645 return TYPE_CODE (ftype) == TYPE_CODE (atype);
14f9c5c9
AS
3646 case TYPE_CODE_PTR:
3647 if (TYPE_CODE (atype) == TYPE_CODE_PTR)
4c4b4cd2
PH
3648 return ada_type_match (TYPE_TARGET_TYPE (ftype),
3649 TYPE_TARGET_TYPE (atype), 0);
d2e4a39e 3650 else
1265e4aa
JB
3651 return (may_deref
3652 && ada_type_match (TYPE_TARGET_TYPE (ftype), atype, 0));
14f9c5c9
AS
3653 case TYPE_CODE_INT:
3654 case TYPE_CODE_ENUM:
3655 case TYPE_CODE_RANGE:
3656 switch (TYPE_CODE (atype))
4c4b4cd2
PH
3657 {
3658 case TYPE_CODE_INT:
3659 case TYPE_CODE_ENUM:
3660 case TYPE_CODE_RANGE:
3661 return 1;
3662 default:
3663 return 0;
3664 }
14f9c5c9
AS
3665
3666 case TYPE_CODE_ARRAY:
d2e4a39e 3667 return (TYPE_CODE (atype) == TYPE_CODE_ARRAY
4c4b4cd2 3668 || ada_is_array_descriptor_type (atype));
14f9c5c9
AS
3669
3670 case TYPE_CODE_STRUCT:
4c4b4cd2
PH
3671 if (ada_is_array_descriptor_type (ftype))
3672 return (TYPE_CODE (atype) == TYPE_CODE_ARRAY
3673 || ada_is_array_descriptor_type (atype));
14f9c5c9 3674 else
4c4b4cd2
PH
3675 return (TYPE_CODE (atype) == TYPE_CODE_STRUCT
3676 && !ada_is_array_descriptor_type (atype));
14f9c5c9
AS
3677
3678 case TYPE_CODE_UNION:
3679 case TYPE_CODE_FLT:
3680 return (TYPE_CODE (atype) == TYPE_CODE (ftype));
3681 }
3682}
3683
3684/* Return non-zero if the formals of FUNC "sufficiently match" the
3685 vector of actual argument types ACTUALS of size N_ACTUALS. FUNC
3686 may also be an enumeral, in which case it is treated as a 0-
4c4b4cd2 3687 argument function. */
14f9c5c9
AS
3688
3689static int
d2e4a39e 3690ada_args_match (struct symbol *func, struct value **actuals, int n_actuals)
14f9c5c9
AS
3691{
3692 int i;
d2e4a39e 3693 struct type *func_type = SYMBOL_TYPE (func);
14f9c5c9 3694
1265e4aa
JB
3695 if (SYMBOL_CLASS (func) == LOC_CONST
3696 && TYPE_CODE (func_type) == TYPE_CODE_ENUM)
14f9c5c9
AS
3697 return (n_actuals == 0);
3698 else if (func_type == NULL || TYPE_CODE (func_type) != TYPE_CODE_FUNC)
3699 return 0;
3700
3701 if (TYPE_NFIELDS (func_type) != n_actuals)
3702 return 0;
3703
3704 for (i = 0; i < n_actuals; i += 1)
3705 {
4c4b4cd2 3706 if (actuals[i] == NULL)
76a01679
JB
3707 return 0;
3708 else
3709 {
5b4ee69b
MS
3710 struct type *ftype = ada_check_typedef (TYPE_FIELD_TYPE (func_type,
3711 i));
df407dfe 3712 struct type *atype = ada_check_typedef (value_type (actuals[i]));
4c4b4cd2 3713
76a01679
JB
3714 if (!ada_type_match (ftype, atype, 1))
3715 return 0;
3716 }
14f9c5c9
AS
3717 }
3718 return 1;
3719}
3720
3721/* False iff function type FUNC_TYPE definitely does not produce a value
3722 compatible with type CONTEXT_TYPE. Conservatively returns 1 if
3723 FUNC_TYPE is not a valid function type with a non-null return type
3724 or an enumerated type. A null CONTEXT_TYPE indicates any non-void type. */
3725
3726static int
d2e4a39e 3727return_match (struct type *func_type, struct type *context_type)
14f9c5c9 3728{
d2e4a39e 3729 struct type *return_type;
14f9c5c9
AS
3730
3731 if (func_type == NULL)
3732 return 1;
3733
4c4b4cd2 3734 if (TYPE_CODE (func_type) == TYPE_CODE_FUNC)
18af8284 3735 return_type = get_base_type (TYPE_TARGET_TYPE (func_type));
4c4b4cd2 3736 else
18af8284 3737 return_type = get_base_type (func_type);
14f9c5c9
AS
3738 if (return_type == NULL)
3739 return 1;
3740
18af8284 3741 context_type = get_base_type (context_type);
14f9c5c9
AS
3742
3743 if (TYPE_CODE (return_type) == TYPE_CODE_ENUM)
3744 return context_type == NULL || return_type == context_type;
3745 else if (context_type == NULL)
3746 return TYPE_CODE (return_type) != TYPE_CODE_VOID;
3747 else
3748 return TYPE_CODE (return_type) == TYPE_CODE (context_type);
3749}
3750
3751
4c4b4cd2 3752/* Returns the index in SYMS[0..NSYMS-1] that contains the symbol for the
14f9c5c9 3753 function (if any) that matches the types of the NARGS arguments in
4c4b4cd2
PH
3754 ARGS. If CONTEXT_TYPE is non-null and there is at least one match
3755 that returns that type, then eliminate matches that don't. If
3756 CONTEXT_TYPE is void and there is at least one match that does not
3757 return void, eliminate all matches that do.
3758
14f9c5c9
AS
3759 Asks the user if there is more than one match remaining. Returns -1
3760 if there is no such symbol or none is selected. NAME is used
4c4b4cd2
PH
3761 solely for messages. May re-arrange and modify SYMS in
3762 the process; the index returned is for the modified vector. */
14f9c5c9 3763
4c4b4cd2 3764static int
d12307c1 3765ada_resolve_function (struct block_symbol syms[],
4c4b4cd2
PH
3766 int nsyms, struct value **args, int nargs,
3767 const char *name, struct type *context_type)
14f9c5c9 3768{
30b15541 3769 int fallback;
14f9c5c9 3770 int k;
4c4b4cd2 3771 int m; /* Number of hits */
14f9c5c9 3772
d2e4a39e 3773 m = 0;
30b15541
UW
3774 /* In the first pass of the loop, we only accept functions matching
3775 context_type. If none are found, we add a second pass of the loop
3776 where every function is accepted. */
3777 for (fallback = 0; m == 0 && fallback < 2; fallback++)
14f9c5c9
AS
3778 {
3779 for (k = 0; k < nsyms; k += 1)
4c4b4cd2 3780 {
d12307c1 3781 struct type *type = ada_check_typedef (SYMBOL_TYPE (syms[k].symbol));
4c4b4cd2 3782
d12307c1 3783 if (ada_args_match (syms[k].symbol, args, nargs)
30b15541 3784 && (fallback || return_match (type, context_type)))
4c4b4cd2
PH
3785 {
3786 syms[m] = syms[k];
3787 m += 1;
3788 }
3789 }
14f9c5c9
AS
3790 }
3791
dc5c8746
PMR
3792 /* If we got multiple matches, ask the user which one to use. Don't do this
3793 interactive thing during completion, though, as the purpose of the
3794 completion is providing a list of all possible matches. Prompting the
3795 user to filter it down would be completely unexpected in this case. */
14f9c5c9
AS
3796 if (m == 0)
3797 return -1;
dc5c8746 3798 else if (m > 1 && !parse_completion)
14f9c5c9 3799 {
323e0a4a 3800 printf_filtered (_("Multiple matches for %s\n"), name);
4c4b4cd2 3801 user_select_syms (syms, m, 1);
14f9c5c9
AS
3802 return 0;
3803 }
3804 return 0;
3805}
3806
4c4b4cd2
PH
3807/* Returns true (non-zero) iff decoded name N0 should appear before N1
3808 in a listing of choices during disambiguation (see sort_choices, below).
3809 The idea is that overloadings of a subprogram name from the
3810 same package should sort in their source order. We settle for ordering
3811 such symbols by their trailing number (__N or $N). */
3812
14f9c5c9 3813static int
0d5cff50 3814encoded_ordered_before (const char *N0, const char *N1)
14f9c5c9
AS
3815{
3816 if (N1 == NULL)
3817 return 0;
3818 else if (N0 == NULL)
3819 return 1;
3820 else
3821 {
3822 int k0, k1;
5b4ee69b 3823
d2e4a39e 3824 for (k0 = strlen (N0) - 1; k0 > 0 && isdigit (N0[k0]); k0 -= 1)
4c4b4cd2 3825 ;
d2e4a39e 3826 for (k1 = strlen (N1) - 1; k1 > 0 && isdigit (N1[k1]); k1 -= 1)
4c4b4cd2 3827 ;
d2e4a39e 3828 if ((N0[k0] == '_' || N0[k0] == '$') && N0[k0 + 1] != '\000'
4c4b4cd2
PH
3829 && (N1[k1] == '_' || N1[k1] == '$') && N1[k1 + 1] != '\000')
3830 {
3831 int n0, n1;
5b4ee69b 3832
4c4b4cd2
PH
3833 n0 = k0;
3834 while (N0[n0] == '_' && n0 > 0 && N0[n0 - 1] == '_')
3835 n0 -= 1;
3836 n1 = k1;
3837 while (N1[n1] == '_' && n1 > 0 && N1[n1 - 1] == '_')
3838 n1 -= 1;
3839 if (n0 == n1 && strncmp (N0, N1, n0) == 0)
3840 return (atoi (N0 + k0 + 1) < atoi (N1 + k1 + 1));
3841 }
14f9c5c9
AS
3842 return (strcmp (N0, N1) < 0);
3843 }
3844}
d2e4a39e 3845
4c4b4cd2
PH
3846/* Sort SYMS[0..NSYMS-1] to put the choices in a canonical order by the
3847 encoded names. */
3848
d2e4a39e 3849static void
d12307c1 3850sort_choices (struct block_symbol syms[], int nsyms)
14f9c5c9 3851{
4c4b4cd2 3852 int i;
5b4ee69b 3853
d2e4a39e 3854 for (i = 1; i < nsyms; i += 1)
14f9c5c9 3855 {
d12307c1 3856 struct block_symbol sym = syms[i];
14f9c5c9
AS
3857 int j;
3858
d2e4a39e 3859 for (j = i - 1; j >= 0; j -= 1)
4c4b4cd2 3860 {
d12307c1
PMR
3861 if (encoded_ordered_before (SYMBOL_LINKAGE_NAME (syms[j].symbol),
3862 SYMBOL_LINKAGE_NAME (sym.symbol)))
4c4b4cd2
PH
3863 break;
3864 syms[j + 1] = syms[j];
3865 }
d2e4a39e 3866 syms[j + 1] = sym;
14f9c5c9
AS
3867 }
3868}
3869
d72413e6
PMR
3870/* Whether GDB should display formals and return types for functions in the
3871 overloads selection menu. */
3872static int print_signatures = 1;
3873
3874/* Print the signature for SYM on STREAM according to the FLAGS options. For
3875 all but functions, the signature is just the name of the symbol. For
3876 functions, this is the name of the function, the list of types for formals
3877 and the return type (if any). */
3878
3879static void
3880ada_print_symbol_signature (struct ui_file *stream, struct symbol *sym,
3881 const struct type_print_options *flags)
3882{
3883 struct type *type = SYMBOL_TYPE (sym);
3884
3885 fprintf_filtered (stream, "%s", SYMBOL_PRINT_NAME (sym));
3886 if (!print_signatures
3887 || type == NULL
3888 || TYPE_CODE (type) != TYPE_CODE_FUNC)
3889 return;
3890
3891 if (TYPE_NFIELDS (type) > 0)
3892 {
3893 int i;
3894
3895 fprintf_filtered (stream, " (");
3896 for (i = 0; i < TYPE_NFIELDS (type); ++i)
3897 {
3898 if (i > 0)
3899 fprintf_filtered (stream, "; ");
3900 ada_print_type (TYPE_FIELD_TYPE (type, i), NULL, stream, -1, 0,
3901 flags);
3902 }
3903 fprintf_filtered (stream, ")");
3904 }
3905 if (TYPE_TARGET_TYPE (type) != NULL
3906 && TYPE_CODE (TYPE_TARGET_TYPE (type)) != TYPE_CODE_VOID)
3907 {
3908 fprintf_filtered (stream, " return ");
3909 ada_print_type (TYPE_TARGET_TYPE (type), NULL, stream, -1, 0, flags);
3910 }
3911}
3912
4c4b4cd2
PH
3913/* Given a list of NSYMS symbols in SYMS, select up to MAX_RESULTS>0
3914 by asking the user (if necessary), returning the number selected,
3915 and setting the first elements of SYMS items. Error if no symbols
3916 selected. */
14f9c5c9
AS
3917
3918/* NOTE: Adapted from decode_line_2 in symtab.c, with which it ought
4c4b4cd2 3919 to be re-integrated one of these days. */
14f9c5c9
AS
3920
3921int
d12307c1 3922user_select_syms (struct block_symbol *syms, int nsyms, int max_results)
14f9c5c9
AS
3923{
3924 int i;
8d749320 3925 int *chosen = XALLOCAVEC (int , nsyms);
14f9c5c9
AS
3926 int n_chosen;
3927 int first_choice = (max_results == 1) ? 1 : 2;
717d2f5a 3928 const char *select_mode = multiple_symbols_select_mode ();
14f9c5c9
AS
3929
3930 if (max_results < 1)
323e0a4a 3931 error (_("Request to select 0 symbols!"));
14f9c5c9
AS
3932 if (nsyms <= 1)
3933 return nsyms;
3934
717d2f5a
JB
3935 if (select_mode == multiple_symbols_cancel)
3936 error (_("\
3937canceled because the command is ambiguous\n\
3938See set/show multiple-symbol."));
3939
3940 /* If select_mode is "all", then return all possible symbols.
3941 Only do that if more than one symbol can be selected, of course.
3942 Otherwise, display the menu as usual. */
3943 if (select_mode == multiple_symbols_all && max_results > 1)
3944 return nsyms;
3945
323e0a4a 3946 printf_unfiltered (_("[0] cancel\n"));
14f9c5c9 3947 if (max_results > 1)
323e0a4a 3948 printf_unfiltered (_("[1] all\n"));
14f9c5c9 3949
4c4b4cd2 3950 sort_choices (syms, nsyms);
14f9c5c9
AS
3951
3952 for (i = 0; i < nsyms; i += 1)
3953 {
d12307c1 3954 if (syms[i].symbol == NULL)
4c4b4cd2
PH
3955 continue;
3956
d12307c1 3957 if (SYMBOL_CLASS (syms[i].symbol) == LOC_BLOCK)
4c4b4cd2 3958 {
76a01679 3959 struct symtab_and_line sal =
d12307c1 3960 find_function_start_sal (syms[i].symbol, 1);
5b4ee69b 3961
d72413e6
PMR
3962 printf_unfiltered ("[%d] ", i + first_choice);
3963 ada_print_symbol_signature (gdb_stdout, syms[i].symbol,
3964 &type_print_raw_options);
323e0a4a 3965 if (sal.symtab == NULL)
d72413e6 3966 printf_unfiltered (_(" at <no source file available>:%d\n"),
323e0a4a
AC
3967 sal.line);
3968 else
d72413e6 3969 printf_unfiltered (_(" at %s:%d\n"),
05cba821
JK
3970 symtab_to_filename_for_display (sal.symtab),
3971 sal.line);
4c4b4cd2
PH
3972 continue;
3973 }
d2e4a39e 3974 else
4c4b4cd2
PH
3975 {
3976 int is_enumeral =
d12307c1
PMR
3977 (SYMBOL_CLASS (syms[i].symbol) == LOC_CONST
3978 && SYMBOL_TYPE (syms[i].symbol) != NULL
3979 && TYPE_CODE (SYMBOL_TYPE (syms[i].symbol)) == TYPE_CODE_ENUM);
1994afbf
DE
3980 struct symtab *symtab = NULL;
3981
d12307c1
PMR
3982 if (SYMBOL_OBJFILE_OWNED (syms[i].symbol))
3983 symtab = symbol_symtab (syms[i].symbol);
4c4b4cd2 3984
d12307c1 3985 if (SYMBOL_LINE (syms[i].symbol) != 0 && symtab != NULL)
d72413e6
PMR
3986 {
3987 printf_unfiltered ("[%d] ", i + first_choice);
3988 ada_print_symbol_signature (gdb_stdout, syms[i].symbol,
3989 &type_print_raw_options);
3990 printf_unfiltered (_(" at %s:%d\n"),
3991 symtab_to_filename_for_display (symtab),
3992 SYMBOL_LINE (syms[i].symbol));
3993 }
76a01679 3994 else if (is_enumeral
d12307c1 3995 && TYPE_NAME (SYMBOL_TYPE (syms[i].symbol)) != NULL)
4c4b4cd2 3996 {
a3f17187 3997 printf_unfiltered (("[%d] "), i + first_choice);
d12307c1 3998 ada_print_type (SYMBOL_TYPE (syms[i].symbol), NULL,
79d43c61 3999 gdb_stdout, -1, 0, &type_print_raw_options);
323e0a4a 4000 printf_unfiltered (_("'(%s) (enumeral)\n"),
d12307c1 4001 SYMBOL_PRINT_NAME (syms[i].symbol));
4c4b4cd2 4002 }
d72413e6
PMR
4003 else
4004 {
4005 printf_unfiltered ("[%d] ", i + first_choice);
4006 ada_print_symbol_signature (gdb_stdout, syms[i].symbol,
4007 &type_print_raw_options);
4008
4009 if (symtab != NULL)
4010 printf_unfiltered (is_enumeral
4011 ? _(" in %s (enumeral)\n")
4012 : _(" at %s:?\n"),
4013 symtab_to_filename_for_display (symtab));
4014 else
4015 printf_unfiltered (is_enumeral
4016 ? _(" (enumeral)\n")
4017 : _(" at ?\n"));
4018 }
4c4b4cd2 4019 }
14f9c5c9 4020 }
d2e4a39e 4021
14f9c5c9 4022 n_chosen = get_selections (chosen, nsyms, max_results, max_results > 1,
4c4b4cd2 4023 "overload-choice");
14f9c5c9
AS
4024
4025 for (i = 0; i < n_chosen; i += 1)
4c4b4cd2 4026 syms[i] = syms[chosen[i]];
14f9c5c9
AS
4027
4028 return n_chosen;
4029}
4030
4031/* Read and validate a set of numeric choices from the user in the
4c4b4cd2 4032 range 0 .. N_CHOICES-1. Place the results in increasing
14f9c5c9
AS
4033 order in CHOICES[0 .. N-1], and return N.
4034
4035 The user types choices as a sequence of numbers on one line
4036 separated by blanks, encoding them as follows:
4037
4c4b4cd2 4038 + A choice of 0 means to cancel the selection, throwing an error.
14f9c5c9
AS
4039 + If IS_ALL_CHOICE, a choice of 1 selects the entire set 0 .. N_CHOICES-1.
4040 + The user chooses k by typing k+IS_ALL_CHOICE+1.
4041
4c4b4cd2 4042 The user is not allowed to choose more than MAX_RESULTS values.
14f9c5c9
AS
4043
4044 ANNOTATION_SUFFIX, if present, is used to annotate the input
4c4b4cd2 4045 prompts (for use with the -f switch). */
14f9c5c9
AS
4046
4047int
d2e4a39e 4048get_selections (int *choices, int n_choices, int max_results,
a121b7c1 4049 int is_all_choice, const char *annotation_suffix)
14f9c5c9 4050{
d2e4a39e 4051 char *args;
a121b7c1 4052 const char *prompt;
14f9c5c9
AS
4053 int n_chosen;
4054 int first_choice = is_all_choice ? 2 : 1;
d2e4a39e 4055
14f9c5c9
AS
4056 prompt = getenv ("PS2");
4057 if (prompt == NULL)
0bcd0149 4058 prompt = "> ";
14f9c5c9 4059
89fbedf3 4060 args = command_line_input (prompt, annotation_suffix);
d2e4a39e 4061
14f9c5c9 4062 if (args == NULL)
323e0a4a 4063 error_no_arg (_("one or more choice numbers"));
14f9c5c9
AS
4064
4065 n_chosen = 0;
76a01679 4066
4c4b4cd2
PH
4067 /* Set choices[0 .. n_chosen-1] to the users' choices in ascending
4068 order, as given in args. Choices are validated. */
14f9c5c9
AS
4069 while (1)
4070 {
d2e4a39e 4071 char *args2;
14f9c5c9
AS
4072 int choice, j;
4073
0fcd72ba 4074 args = skip_spaces (args);
14f9c5c9 4075 if (*args == '\0' && n_chosen == 0)
323e0a4a 4076 error_no_arg (_("one or more choice numbers"));
14f9c5c9 4077 else if (*args == '\0')
4c4b4cd2 4078 break;
14f9c5c9
AS
4079
4080 choice = strtol (args, &args2, 10);
d2e4a39e 4081 if (args == args2 || choice < 0
4c4b4cd2 4082 || choice > n_choices + first_choice - 1)
323e0a4a 4083 error (_("Argument must be choice number"));
14f9c5c9
AS
4084 args = args2;
4085
d2e4a39e 4086 if (choice == 0)
323e0a4a 4087 error (_("cancelled"));
14f9c5c9
AS
4088
4089 if (choice < first_choice)
4c4b4cd2
PH
4090 {
4091 n_chosen = n_choices;
4092 for (j = 0; j < n_choices; j += 1)
4093 choices[j] = j;
4094 break;
4095 }
14f9c5c9
AS
4096 choice -= first_choice;
4097
d2e4a39e 4098 for (j = n_chosen - 1; j >= 0 && choice < choices[j]; j -= 1)
4c4b4cd2
PH
4099 {
4100 }
14f9c5c9
AS
4101
4102 if (j < 0 || choice != choices[j])
4c4b4cd2
PH
4103 {
4104 int k;
5b4ee69b 4105
4c4b4cd2
PH
4106 for (k = n_chosen - 1; k > j; k -= 1)
4107 choices[k + 1] = choices[k];
4108 choices[j + 1] = choice;
4109 n_chosen += 1;
4110 }
14f9c5c9
AS
4111 }
4112
4113 if (n_chosen > max_results)
323e0a4a 4114 error (_("Select no more than %d of the above"), max_results);
d2e4a39e 4115
14f9c5c9
AS
4116 return n_chosen;
4117}
4118
4c4b4cd2
PH
4119/* Replace the operator of length OPLEN at position PC in *EXPP with a call
4120 on the function identified by SYM and BLOCK, and taking NARGS
4121 arguments. Update *EXPP as needed to hold more space. */
14f9c5c9
AS
4122
4123static void
e9d9f57e 4124replace_operator_with_call (expression_up *expp, int pc, int nargs,
4c4b4cd2 4125 int oplen, struct symbol *sym,
270140bd 4126 const struct block *block)
14f9c5c9
AS
4127{
4128 /* A new expression, with 6 more elements (3 for funcall, 4 for function
4c4b4cd2 4129 symbol, -oplen for operator being replaced). */
d2e4a39e 4130 struct expression *newexp = (struct expression *)
8c1a34e7 4131 xzalloc (sizeof (struct expression)
4c4b4cd2 4132 + EXP_ELEM_TO_BYTES ((*expp)->nelts + 7 - oplen));
e9d9f57e 4133 struct expression *exp = expp->get ();
14f9c5c9
AS
4134
4135 newexp->nelts = exp->nelts + 7 - oplen;
4136 newexp->language_defn = exp->language_defn;
3489610d 4137 newexp->gdbarch = exp->gdbarch;
14f9c5c9 4138 memcpy (newexp->elts, exp->elts, EXP_ELEM_TO_BYTES (pc));
d2e4a39e 4139 memcpy (newexp->elts + pc + 7, exp->elts + pc + oplen,
4c4b4cd2 4140 EXP_ELEM_TO_BYTES (exp->nelts - pc - oplen));
14f9c5c9
AS
4141
4142 newexp->elts[pc].opcode = newexp->elts[pc + 2].opcode = OP_FUNCALL;
4143 newexp->elts[pc + 1].longconst = (LONGEST) nargs;
4144
4145 newexp->elts[pc + 3].opcode = newexp->elts[pc + 6].opcode = OP_VAR_VALUE;
4146 newexp->elts[pc + 4].block = block;
4147 newexp->elts[pc + 5].symbol = sym;
4148
e9d9f57e 4149 expp->reset (newexp);
d2e4a39e 4150}
14f9c5c9
AS
4151
4152/* Type-class predicates */
4153
4c4b4cd2
PH
4154/* True iff TYPE is numeric (i.e., an INT, RANGE (of numeric type),
4155 or FLOAT). */
14f9c5c9
AS
4156
4157static int
d2e4a39e 4158numeric_type_p (struct type *type)
14f9c5c9
AS
4159{
4160 if (type == NULL)
4161 return 0;
d2e4a39e
AS
4162 else
4163 {
4164 switch (TYPE_CODE (type))
4c4b4cd2
PH
4165 {
4166 case TYPE_CODE_INT:
4167 case TYPE_CODE_FLT:
4168 return 1;
4169 case TYPE_CODE_RANGE:
4170 return (type == TYPE_TARGET_TYPE (type)
4171 || numeric_type_p (TYPE_TARGET_TYPE (type)));
4172 default:
4173 return 0;
4174 }
d2e4a39e 4175 }
14f9c5c9
AS
4176}
4177
4c4b4cd2 4178/* True iff TYPE is integral (an INT or RANGE of INTs). */
14f9c5c9
AS
4179
4180static int
d2e4a39e 4181integer_type_p (struct type *type)
14f9c5c9
AS
4182{
4183 if (type == NULL)
4184 return 0;
d2e4a39e
AS
4185 else
4186 {
4187 switch (TYPE_CODE (type))
4c4b4cd2
PH
4188 {
4189 case TYPE_CODE_INT:
4190 return 1;
4191 case TYPE_CODE_RANGE:
4192 return (type == TYPE_TARGET_TYPE (type)
4193 || integer_type_p (TYPE_TARGET_TYPE (type)));
4194 default:
4195 return 0;
4196 }
d2e4a39e 4197 }
14f9c5c9
AS
4198}
4199
4c4b4cd2 4200/* True iff TYPE is scalar (INT, RANGE, FLOAT, ENUM). */
14f9c5c9
AS
4201
4202static int
d2e4a39e 4203scalar_type_p (struct type *type)
14f9c5c9
AS
4204{
4205 if (type == NULL)
4206 return 0;
d2e4a39e
AS
4207 else
4208 {
4209 switch (TYPE_CODE (type))
4c4b4cd2
PH
4210 {
4211 case TYPE_CODE_INT:
4212 case TYPE_CODE_RANGE:
4213 case TYPE_CODE_ENUM:
4214 case TYPE_CODE_FLT:
4215 return 1;
4216 default:
4217 return 0;
4218 }
d2e4a39e 4219 }
14f9c5c9
AS
4220}
4221
4c4b4cd2 4222/* True iff TYPE is discrete (INT, RANGE, ENUM). */
14f9c5c9
AS
4223
4224static int
d2e4a39e 4225discrete_type_p (struct type *type)
14f9c5c9
AS
4226{
4227 if (type == NULL)
4228 return 0;
d2e4a39e
AS
4229 else
4230 {
4231 switch (TYPE_CODE (type))
4c4b4cd2
PH
4232 {
4233 case TYPE_CODE_INT:
4234 case TYPE_CODE_RANGE:
4235 case TYPE_CODE_ENUM:
872f0337 4236 case TYPE_CODE_BOOL:
4c4b4cd2
PH
4237 return 1;
4238 default:
4239 return 0;
4240 }
d2e4a39e 4241 }
14f9c5c9
AS
4242}
4243
4c4b4cd2
PH
4244/* Returns non-zero if OP with operands in the vector ARGS could be
4245 a user-defined function. Errs on the side of pre-defined operators
4246 (i.e., result 0). */
14f9c5c9
AS
4247
4248static int
d2e4a39e 4249possible_user_operator_p (enum exp_opcode op, struct value *args[])
14f9c5c9 4250{
76a01679 4251 struct type *type0 =
df407dfe 4252 (args[0] == NULL) ? NULL : ada_check_typedef (value_type (args[0]));
d2e4a39e 4253 struct type *type1 =
df407dfe 4254 (args[1] == NULL) ? NULL : ada_check_typedef (value_type (args[1]));
d2e4a39e 4255
4c4b4cd2
PH
4256 if (type0 == NULL)
4257 return 0;
4258
14f9c5c9
AS
4259 switch (op)
4260 {
4261 default:
4262 return 0;
4263
4264 case BINOP_ADD:
4265 case BINOP_SUB:
4266 case BINOP_MUL:
4267 case BINOP_DIV:
d2e4a39e 4268 return (!(numeric_type_p (type0) && numeric_type_p (type1)));
14f9c5c9
AS
4269
4270 case BINOP_REM:
4271 case BINOP_MOD:
4272 case BINOP_BITWISE_AND:
4273 case BINOP_BITWISE_IOR:
4274 case BINOP_BITWISE_XOR:
d2e4a39e 4275 return (!(integer_type_p (type0) && integer_type_p (type1)));
14f9c5c9
AS
4276
4277 case BINOP_EQUAL:
4278 case BINOP_NOTEQUAL:
4279 case BINOP_LESS:
4280 case BINOP_GTR:
4281 case BINOP_LEQ:
4282 case BINOP_GEQ:
d2e4a39e 4283 return (!(scalar_type_p (type0) && scalar_type_p (type1)));
14f9c5c9
AS
4284
4285 case BINOP_CONCAT:
ee90b9ab 4286 return !ada_is_array_type (type0) || !ada_is_array_type (type1);
14f9c5c9
AS
4287
4288 case BINOP_EXP:
d2e4a39e 4289 return (!(numeric_type_p (type0) && integer_type_p (type1)));
14f9c5c9
AS
4290
4291 case UNOP_NEG:
4292 case UNOP_PLUS:
4293 case UNOP_LOGICAL_NOT:
d2e4a39e
AS
4294 case UNOP_ABS:
4295 return (!numeric_type_p (type0));
14f9c5c9
AS
4296
4297 }
4298}
4299\f
4c4b4cd2 4300 /* Renaming */
14f9c5c9 4301
aeb5907d
JB
4302/* NOTES:
4303
4304 1. In the following, we assume that a renaming type's name may
4305 have an ___XD suffix. It would be nice if this went away at some
4306 point.
4307 2. We handle both the (old) purely type-based representation of
4308 renamings and the (new) variable-based encoding. At some point,
4309 it is devoutly to be hoped that the former goes away
4310 (FIXME: hilfinger-2007-07-09).
4311 3. Subprogram renamings are not implemented, although the XRS
4312 suffix is recognized (FIXME: hilfinger-2007-07-09). */
4313
4314/* If SYM encodes a renaming,
4315
4316 <renaming> renames <renamed entity>,
4317
4318 sets *LEN to the length of the renamed entity's name,
4319 *RENAMED_ENTITY to that name (not null-terminated), and *RENAMING_EXPR to
4320 the string describing the subcomponent selected from the renamed
0963b4bd 4321 entity. Returns ADA_NOT_RENAMING if SYM does not encode a renaming
aeb5907d
JB
4322 (in which case, the values of *RENAMED_ENTITY, *LEN, and *RENAMING_EXPR
4323 are undefined). Otherwise, returns a value indicating the category
4324 of entity renamed: an object (ADA_OBJECT_RENAMING), exception
4325 (ADA_EXCEPTION_RENAMING), package (ADA_PACKAGE_RENAMING), or
4326 subprogram (ADA_SUBPROGRAM_RENAMING). Does no allocation; the
4327 strings returned in *RENAMED_ENTITY and *RENAMING_EXPR should not be
4328 deallocated. The values of RENAMED_ENTITY, LEN, or RENAMING_EXPR
4329 may be NULL, in which case they are not assigned.
4330
4331 [Currently, however, GCC does not generate subprogram renamings.] */
4332
4333enum ada_renaming_category
4334ada_parse_renaming (struct symbol *sym,
4335 const char **renamed_entity, int *len,
4336 const char **renaming_expr)
4337{
4338 enum ada_renaming_category kind;
4339 const char *info;
4340 const char *suffix;
4341
4342 if (sym == NULL)
4343 return ADA_NOT_RENAMING;
4344 switch (SYMBOL_CLASS (sym))
14f9c5c9 4345 {
aeb5907d
JB
4346 default:
4347 return ADA_NOT_RENAMING;
4348 case LOC_TYPEDEF:
4349 return parse_old_style_renaming (SYMBOL_TYPE (sym),
4350 renamed_entity, len, renaming_expr);
4351 case LOC_LOCAL:
4352 case LOC_STATIC:
4353 case LOC_COMPUTED:
4354 case LOC_OPTIMIZED_OUT:
4355 info = strstr (SYMBOL_LINKAGE_NAME (sym), "___XR");
4356 if (info == NULL)
4357 return ADA_NOT_RENAMING;
4358 switch (info[5])
4359 {
4360 case '_':
4361 kind = ADA_OBJECT_RENAMING;
4362 info += 6;
4363 break;
4364 case 'E':
4365 kind = ADA_EXCEPTION_RENAMING;
4366 info += 7;
4367 break;
4368 case 'P':
4369 kind = ADA_PACKAGE_RENAMING;
4370 info += 7;
4371 break;
4372 case 'S':
4373 kind = ADA_SUBPROGRAM_RENAMING;
4374 info += 7;
4375 break;
4376 default:
4377 return ADA_NOT_RENAMING;
4378 }
14f9c5c9 4379 }
4c4b4cd2 4380
aeb5907d
JB
4381 if (renamed_entity != NULL)
4382 *renamed_entity = info;
4383 suffix = strstr (info, "___XE");
4384 if (suffix == NULL || suffix == info)
4385 return ADA_NOT_RENAMING;
4386 if (len != NULL)
4387 *len = strlen (info) - strlen (suffix);
4388 suffix += 5;
4389 if (renaming_expr != NULL)
4390 *renaming_expr = suffix;
4391 return kind;
4392}
4393
4394/* Assuming TYPE encodes a renaming according to the old encoding in
4395 exp_dbug.ads, returns details of that renaming in *RENAMED_ENTITY,
4396 *LEN, and *RENAMING_EXPR, as for ada_parse_renaming, above. Returns
4397 ADA_NOT_RENAMING otherwise. */
4398static enum ada_renaming_category
4399parse_old_style_renaming (struct type *type,
4400 const char **renamed_entity, int *len,
4401 const char **renaming_expr)
4402{
4403 enum ada_renaming_category kind;
4404 const char *name;
4405 const char *info;
4406 const char *suffix;
14f9c5c9 4407
aeb5907d
JB
4408 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM
4409 || TYPE_NFIELDS (type) != 1)
4410 return ADA_NOT_RENAMING;
14f9c5c9 4411
a737d952 4412 name = TYPE_NAME (type);
aeb5907d
JB
4413 if (name == NULL)
4414 return ADA_NOT_RENAMING;
4415
4416 name = strstr (name, "___XR");
4417 if (name == NULL)
4418 return ADA_NOT_RENAMING;
4419 switch (name[5])
4420 {
4421 case '\0':
4422 case '_':
4423 kind = ADA_OBJECT_RENAMING;
4424 break;
4425 case 'E':
4426 kind = ADA_EXCEPTION_RENAMING;
4427 break;
4428 case 'P':
4429 kind = ADA_PACKAGE_RENAMING;
4430 break;
4431 case 'S':
4432 kind = ADA_SUBPROGRAM_RENAMING;
4433 break;
4434 default:
4435 return ADA_NOT_RENAMING;
4436 }
14f9c5c9 4437
aeb5907d
JB
4438 info = TYPE_FIELD_NAME (type, 0);
4439 if (info == NULL)
4440 return ADA_NOT_RENAMING;
4441 if (renamed_entity != NULL)
4442 *renamed_entity = info;
4443 suffix = strstr (info, "___XE");
4444 if (renaming_expr != NULL)
4445 *renaming_expr = suffix + 5;
4446 if (suffix == NULL || suffix == info)
4447 return ADA_NOT_RENAMING;
4448 if (len != NULL)
4449 *len = suffix - info;
4450 return kind;
a5ee536b
JB
4451}
4452
4453/* Compute the value of the given RENAMING_SYM, which is expected to
4454 be a symbol encoding a renaming expression. BLOCK is the block
4455 used to evaluate the renaming. */
52ce6436 4456
a5ee536b
JB
4457static struct value *
4458ada_read_renaming_var_value (struct symbol *renaming_sym,
3977b71f 4459 const struct block *block)
a5ee536b 4460{
bbc13ae3 4461 const char *sym_name;
a5ee536b 4462
bbc13ae3 4463 sym_name = SYMBOL_LINKAGE_NAME (renaming_sym);
4d01a485
PA
4464 expression_up expr = parse_exp_1 (&sym_name, 0, block, 0);
4465 return evaluate_expression (expr.get ());
a5ee536b 4466}
14f9c5c9 4467\f
d2e4a39e 4468
4c4b4cd2 4469 /* Evaluation: Function Calls */
14f9c5c9 4470
4c4b4cd2 4471/* Return an lvalue containing the value VAL. This is the identity on
40bc484c
JB
4472 lvalues, and otherwise has the side-effect of allocating memory
4473 in the inferior where a copy of the value contents is copied. */
14f9c5c9 4474
d2e4a39e 4475static struct value *
40bc484c 4476ensure_lval (struct value *val)
14f9c5c9 4477{
40bc484c
JB
4478 if (VALUE_LVAL (val) == not_lval
4479 || VALUE_LVAL (val) == lval_internalvar)
c3e5cd34 4480 {
df407dfe 4481 int len = TYPE_LENGTH (ada_check_typedef (value_type (val)));
40bc484c
JB
4482 const CORE_ADDR addr =
4483 value_as_long (value_allocate_space_in_inferior (len));
c3e5cd34 4484
a84a8a0d 4485 VALUE_LVAL (val) = lval_memory;
1a088441 4486 set_value_address (val, addr);
40bc484c 4487 write_memory (addr, value_contents (val), len);
c3e5cd34 4488 }
14f9c5c9
AS
4489
4490 return val;
4491}
4492
4493/* Return the value ACTUAL, converted to be an appropriate value for a
4494 formal of type FORMAL_TYPE. Use *SP as a stack pointer for
4495 allocating any necessary descriptors (fat pointers), or copies of
4c4b4cd2 4496 values not residing in memory, updating it as needed. */
14f9c5c9 4497
a93c0eb6 4498struct value *
40bc484c 4499ada_convert_actual (struct value *actual, struct type *formal_type0)
14f9c5c9 4500{
df407dfe 4501 struct type *actual_type = ada_check_typedef (value_type (actual));
61ee279c 4502 struct type *formal_type = ada_check_typedef (formal_type0);
d2e4a39e
AS
4503 struct type *formal_target =
4504 TYPE_CODE (formal_type) == TYPE_CODE_PTR
61ee279c 4505 ? ada_check_typedef (TYPE_TARGET_TYPE (formal_type)) : formal_type;
d2e4a39e
AS
4506 struct type *actual_target =
4507 TYPE_CODE (actual_type) == TYPE_CODE_PTR
61ee279c 4508 ? ada_check_typedef (TYPE_TARGET_TYPE (actual_type)) : actual_type;
14f9c5c9 4509
4c4b4cd2 4510 if (ada_is_array_descriptor_type (formal_target)
14f9c5c9 4511 && TYPE_CODE (actual_target) == TYPE_CODE_ARRAY)
40bc484c 4512 return make_array_descriptor (formal_type, actual);
a84a8a0d
JB
4513 else if (TYPE_CODE (formal_type) == TYPE_CODE_PTR
4514 || TYPE_CODE (formal_type) == TYPE_CODE_REF)
14f9c5c9 4515 {
a84a8a0d 4516 struct value *result;
5b4ee69b 4517
14f9c5c9 4518 if (TYPE_CODE (formal_target) == TYPE_CODE_ARRAY
4c4b4cd2 4519 && ada_is_array_descriptor_type (actual_target))
a84a8a0d 4520 result = desc_data (actual);
cb923fcc 4521 else if (TYPE_CODE (formal_type) != TYPE_CODE_PTR)
4c4b4cd2
PH
4522 {
4523 if (VALUE_LVAL (actual) != lval_memory)
4524 {
4525 struct value *val;
5b4ee69b 4526
df407dfe 4527 actual_type = ada_check_typedef (value_type (actual));
4c4b4cd2 4528 val = allocate_value (actual_type);
990a07ab 4529 memcpy ((char *) value_contents_raw (val),
0fd88904 4530 (char *) value_contents (actual),
4c4b4cd2 4531 TYPE_LENGTH (actual_type));
40bc484c 4532 actual = ensure_lval (val);
4c4b4cd2 4533 }
a84a8a0d 4534 result = value_addr (actual);
4c4b4cd2 4535 }
a84a8a0d
JB
4536 else
4537 return actual;
b1af9e97 4538 return value_cast_pointers (formal_type, result, 0);
14f9c5c9
AS
4539 }
4540 else if (TYPE_CODE (actual_type) == TYPE_CODE_PTR)
4541 return ada_value_ind (actual);
8344af1e
JB
4542 else if (ada_is_aligner_type (formal_type))
4543 {
4544 /* We need to turn this parameter into an aligner type
4545 as well. */
4546 struct value *aligner = allocate_value (formal_type);
4547 struct value *component = ada_value_struct_elt (aligner, "F", 0);
4548
4549 value_assign_to_component (aligner, component, actual);
4550 return aligner;
4551 }
14f9c5c9
AS
4552
4553 return actual;
4554}
4555
438c98a1
JB
4556/* Convert VALUE (which must be an address) to a CORE_ADDR that is a pointer of
4557 type TYPE. This is usually an inefficient no-op except on some targets
4558 (such as AVR) where the representation of a pointer and an address
4559 differs. */
4560
4561static CORE_ADDR
4562value_pointer (struct value *value, struct type *type)
4563{
4564 struct gdbarch *gdbarch = get_type_arch (type);
4565 unsigned len = TYPE_LENGTH (type);
224c3ddb 4566 gdb_byte *buf = (gdb_byte *) alloca (len);
438c98a1
JB
4567 CORE_ADDR addr;
4568
4569 addr = value_address (value);
4570 gdbarch_address_to_pointer (gdbarch, type, buf, addr);
4571 addr = extract_unsigned_integer (buf, len, gdbarch_byte_order (gdbarch));
4572 return addr;
4573}
4574
14f9c5c9 4575
4c4b4cd2
PH
4576/* Push a descriptor of type TYPE for array value ARR on the stack at
4577 *SP, updating *SP to reflect the new descriptor. Return either
14f9c5c9 4578 an lvalue representing the new descriptor, or (if TYPE is a pointer-
4c4b4cd2
PH
4579 to-descriptor type rather than a descriptor type), a struct value *
4580 representing a pointer to this descriptor. */
14f9c5c9 4581
d2e4a39e 4582static struct value *
40bc484c 4583make_array_descriptor (struct type *type, struct value *arr)
14f9c5c9 4584{
d2e4a39e
AS
4585 struct type *bounds_type = desc_bounds_type (type);
4586 struct type *desc_type = desc_base_type (type);
4587 struct value *descriptor = allocate_value (desc_type);
4588 struct value *bounds = allocate_value (bounds_type);
14f9c5c9 4589 int i;
d2e4a39e 4590
0963b4bd
MS
4591 for (i = ada_array_arity (ada_check_typedef (value_type (arr)));
4592 i > 0; i -= 1)
14f9c5c9 4593 {
19f220c3
JK
4594 modify_field (value_type (bounds), value_contents_writeable (bounds),
4595 ada_array_bound (arr, i, 0),
4596 desc_bound_bitpos (bounds_type, i, 0),
4597 desc_bound_bitsize (bounds_type, i, 0));
4598 modify_field (value_type (bounds), value_contents_writeable (bounds),
4599 ada_array_bound (arr, i, 1),
4600 desc_bound_bitpos (bounds_type, i, 1),
4601 desc_bound_bitsize (bounds_type, i, 1));
14f9c5c9 4602 }
d2e4a39e 4603
40bc484c 4604 bounds = ensure_lval (bounds);
d2e4a39e 4605
19f220c3
JK
4606 modify_field (value_type (descriptor),
4607 value_contents_writeable (descriptor),
4608 value_pointer (ensure_lval (arr),
4609 TYPE_FIELD_TYPE (desc_type, 0)),
4610 fat_pntr_data_bitpos (desc_type),
4611 fat_pntr_data_bitsize (desc_type));
4612
4613 modify_field (value_type (descriptor),
4614 value_contents_writeable (descriptor),
4615 value_pointer (bounds,
4616 TYPE_FIELD_TYPE (desc_type, 1)),
4617 fat_pntr_bounds_bitpos (desc_type),
4618 fat_pntr_bounds_bitsize (desc_type));
14f9c5c9 4619
40bc484c 4620 descriptor = ensure_lval (descriptor);
14f9c5c9
AS
4621
4622 if (TYPE_CODE (type) == TYPE_CODE_PTR)
4623 return value_addr (descriptor);
4624 else
4625 return descriptor;
4626}
14f9c5c9 4627\f
3d9434b5
JB
4628 /* Symbol Cache Module */
4629
3d9434b5 4630/* Performance measurements made as of 2010-01-15 indicate that
ee01b665 4631 this cache does bring some noticeable improvements. Depending
3d9434b5
JB
4632 on the type of entity being printed, the cache can make it as much
4633 as an order of magnitude faster than without it.
4634
4635 The descriptive type DWARF extension has significantly reduced
4636 the need for this cache, at least when DWARF is being used. However,
4637 even in this case, some expensive name-based symbol searches are still
4638 sometimes necessary - to find an XVZ variable, mostly. */
4639
ee01b665 4640/* Initialize the contents of SYM_CACHE. */
3d9434b5 4641
ee01b665
JB
4642static void
4643ada_init_symbol_cache (struct ada_symbol_cache *sym_cache)
4644{
4645 obstack_init (&sym_cache->cache_space);
4646 memset (sym_cache->root, '\000', sizeof (sym_cache->root));
4647}
3d9434b5 4648
ee01b665
JB
4649/* Free the memory used by SYM_CACHE. */
4650
4651static void
4652ada_free_symbol_cache (struct ada_symbol_cache *sym_cache)
3d9434b5 4653{
ee01b665
JB
4654 obstack_free (&sym_cache->cache_space, NULL);
4655 xfree (sym_cache);
4656}
3d9434b5 4657
ee01b665
JB
4658/* Return the symbol cache associated to the given program space PSPACE.
4659 If not allocated for this PSPACE yet, allocate and initialize one. */
3d9434b5 4660
ee01b665
JB
4661static struct ada_symbol_cache *
4662ada_get_symbol_cache (struct program_space *pspace)
4663{
4664 struct ada_pspace_data *pspace_data = get_ada_pspace_data (pspace);
ee01b665 4665
66c168ae 4666 if (pspace_data->sym_cache == NULL)
ee01b665 4667 {
66c168ae
JB
4668 pspace_data->sym_cache = XCNEW (struct ada_symbol_cache);
4669 ada_init_symbol_cache (pspace_data->sym_cache);
ee01b665
JB
4670 }
4671
66c168ae 4672 return pspace_data->sym_cache;
ee01b665 4673}
3d9434b5
JB
4674
4675/* Clear all entries from the symbol cache. */
4676
4677static void
4678ada_clear_symbol_cache (void)
4679{
ee01b665
JB
4680 struct ada_symbol_cache *sym_cache
4681 = ada_get_symbol_cache (current_program_space);
4682
4683 obstack_free (&sym_cache->cache_space, NULL);
4684 ada_init_symbol_cache (sym_cache);
3d9434b5
JB
4685}
4686
fe978cb0 4687/* Search our cache for an entry matching NAME and DOMAIN.
3d9434b5
JB
4688 Return it if found, or NULL otherwise. */
4689
4690static struct cache_entry **
fe978cb0 4691find_entry (const char *name, domain_enum domain)
3d9434b5 4692{
ee01b665
JB
4693 struct ada_symbol_cache *sym_cache
4694 = ada_get_symbol_cache (current_program_space);
3d9434b5
JB
4695 int h = msymbol_hash (name) % HASH_SIZE;
4696 struct cache_entry **e;
4697
ee01b665 4698 for (e = &sym_cache->root[h]; *e != NULL; e = &(*e)->next)
3d9434b5 4699 {
fe978cb0 4700 if (domain == (*e)->domain && strcmp (name, (*e)->name) == 0)
3d9434b5
JB
4701 return e;
4702 }
4703 return NULL;
4704}
4705
fe978cb0 4706/* Search the symbol cache for an entry matching NAME and DOMAIN.
3d9434b5
JB
4707 Return 1 if found, 0 otherwise.
4708
4709 If an entry was found and SYM is not NULL, set *SYM to the entry's
4710 SYM. Same principle for BLOCK if not NULL. */
96d887e8 4711
96d887e8 4712static int
fe978cb0 4713lookup_cached_symbol (const char *name, domain_enum domain,
f0c5f9b2 4714 struct symbol **sym, const struct block **block)
96d887e8 4715{
fe978cb0 4716 struct cache_entry **e = find_entry (name, domain);
3d9434b5
JB
4717
4718 if (e == NULL)
4719 return 0;
4720 if (sym != NULL)
4721 *sym = (*e)->sym;
4722 if (block != NULL)
4723 *block = (*e)->block;
4724 return 1;
96d887e8
PH
4725}
4726
3d9434b5 4727/* Assuming that (SYM, BLOCK) is the result of the lookup of NAME
fe978cb0 4728 in domain DOMAIN, save this result in our symbol cache. */
3d9434b5 4729
96d887e8 4730static void
fe978cb0 4731cache_symbol (const char *name, domain_enum domain, struct symbol *sym,
270140bd 4732 const struct block *block)
96d887e8 4733{
ee01b665
JB
4734 struct ada_symbol_cache *sym_cache
4735 = ada_get_symbol_cache (current_program_space);
3d9434b5
JB
4736 int h;
4737 char *copy;
4738 struct cache_entry *e;
4739
1994afbf
DE
4740 /* Symbols for builtin types don't have a block.
4741 For now don't cache such symbols. */
4742 if (sym != NULL && !SYMBOL_OBJFILE_OWNED (sym))
4743 return;
4744
3d9434b5
JB
4745 /* If the symbol is a local symbol, then do not cache it, as a search
4746 for that symbol depends on the context. To determine whether
4747 the symbol is local or not, we check the block where we found it
4748 against the global and static blocks of its associated symtab. */
4749 if (sym
08be3fe3 4750 && BLOCKVECTOR_BLOCK (SYMTAB_BLOCKVECTOR (symbol_symtab (sym)),
439247b6 4751 GLOBAL_BLOCK) != block
08be3fe3 4752 && BLOCKVECTOR_BLOCK (SYMTAB_BLOCKVECTOR (symbol_symtab (sym)),
439247b6 4753 STATIC_BLOCK) != block)
3d9434b5
JB
4754 return;
4755
4756 h = msymbol_hash (name) % HASH_SIZE;
e39db4db 4757 e = XOBNEW (&sym_cache->cache_space, cache_entry);
ee01b665
JB
4758 e->next = sym_cache->root[h];
4759 sym_cache->root[h] = e;
224c3ddb
SM
4760 e->name = copy
4761 = (char *) obstack_alloc (&sym_cache->cache_space, strlen (name) + 1);
3d9434b5
JB
4762 strcpy (copy, name);
4763 e->sym = sym;
fe978cb0 4764 e->domain = domain;
3d9434b5 4765 e->block = block;
96d887e8 4766}
4c4b4cd2
PH
4767\f
4768 /* Symbol Lookup */
4769
b5ec771e
PA
4770/* Return the symbol name match type that should be used used when
4771 searching for all symbols matching LOOKUP_NAME.
c0431670
JB
4772
4773 LOOKUP_NAME is expected to be a symbol name after transformation
f98b2e33 4774 for Ada lookups. */
c0431670 4775
b5ec771e
PA
4776static symbol_name_match_type
4777name_match_type_from_name (const char *lookup_name)
c0431670 4778{
b5ec771e
PA
4779 return (strstr (lookup_name, "__") == NULL
4780 ? symbol_name_match_type::WILD
4781 : symbol_name_match_type::FULL);
c0431670
JB
4782}
4783
4c4b4cd2
PH
4784/* Return the result of a standard (literal, C-like) lookup of NAME in
4785 given DOMAIN, visible from lexical block BLOCK. */
4786
4787static struct symbol *
4788standard_lookup (const char *name, const struct block *block,
4789 domain_enum domain)
4790{
acbd605d 4791 /* Initialize it just to avoid a GCC false warning. */
d12307c1 4792 struct block_symbol sym = {NULL, NULL};
4c4b4cd2 4793
d12307c1
PMR
4794 if (lookup_cached_symbol (name, domain, &sym.symbol, NULL))
4795 return sym.symbol;
2570f2b7 4796 sym = lookup_symbol_in_language (name, block, domain, language_c, 0);
d12307c1
PMR
4797 cache_symbol (name, domain, sym.symbol, sym.block);
4798 return sym.symbol;
4c4b4cd2
PH
4799}
4800
4801
4802/* Non-zero iff there is at least one non-function/non-enumeral symbol
4803 in the symbol fields of SYMS[0..N-1]. We treat enumerals as functions,
4804 since they contend in overloading in the same way. */
4805static int
d12307c1 4806is_nonfunction (struct block_symbol syms[], int n)
4c4b4cd2
PH
4807{
4808 int i;
4809
4810 for (i = 0; i < n; i += 1)
d12307c1
PMR
4811 if (TYPE_CODE (SYMBOL_TYPE (syms[i].symbol)) != TYPE_CODE_FUNC
4812 && (TYPE_CODE (SYMBOL_TYPE (syms[i].symbol)) != TYPE_CODE_ENUM
4813 || SYMBOL_CLASS (syms[i].symbol) != LOC_CONST))
14f9c5c9
AS
4814 return 1;
4815
4816 return 0;
4817}
4818
4819/* If true (non-zero), then TYPE0 and TYPE1 represent equivalent
4c4b4cd2 4820 struct types. Otherwise, they may not. */
14f9c5c9
AS
4821
4822static int
d2e4a39e 4823equiv_types (struct type *type0, struct type *type1)
14f9c5c9 4824{
d2e4a39e 4825 if (type0 == type1)
14f9c5c9 4826 return 1;
d2e4a39e 4827 if (type0 == NULL || type1 == NULL
14f9c5c9
AS
4828 || TYPE_CODE (type0) != TYPE_CODE (type1))
4829 return 0;
d2e4a39e 4830 if ((TYPE_CODE (type0) == TYPE_CODE_STRUCT
14f9c5c9
AS
4831 || TYPE_CODE (type0) == TYPE_CODE_ENUM)
4832 && ada_type_name (type0) != NULL && ada_type_name (type1) != NULL
4c4b4cd2 4833 && strcmp (ada_type_name (type0), ada_type_name (type1)) == 0)
14f9c5c9 4834 return 1;
d2e4a39e 4835
14f9c5c9
AS
4836 return 0;
4837}
4838
4839/* True iff SYM0 represents the same entity as SYM1, or one that is
4c4b4cd2 4840 no more defined than that of SYM1. */
14f9c5c9
AS
4841
4842static int
d2e4a39e 4843lesseq_defined_than (struct symbol *sym0, struct symbol *sym1)
14f9c5c9
AS
4844{
4845 if (sym0 == sym1)
4846 return 1;
176620f1 4847 if (SYMBOL_DOMAIN (sym0) != SYMBOL_DOMAIN (sym1)
14f9c5c9
AS
4848 || SYMBOL_CLASS (sym0) != SYMBOL_CLASS (sym1))
4849 return 0;
4850
d2e4a39e 4851 switch (SYMBOL_CLASS (sym0))
14f9c5c9
AS
4852 {
4853 case LOC_UNDEF:
4854 return 1;
4855 case LOC_TYPEDEF:
4856 {
4c4b4cd2
PH
4857 struct type *type0 = SYMBOL_TYPE (sym0);
4858 struct type *type1 = SYMBOL_TYPE (sym1);
0d5cff50
DE
4859 const char *name0 = SYMBOL_LINKAGE_NAME (sym0);
4860 const char *name1 = SYMBOL_LINKAGE_NAME (sym1);
4c4b4cd2 4861 int len0 = strlen (name0);
5b4ee69b 4862
4c4b4cd2
PH
4863 return
4864 TYPE_CODE (type0) == TYPE_CODE (type1)
4865 && (equiv_types (type0, type1)
4866 || (len0 < strlen (name1) && strncmp (name0, name1, len0) == 0
61012eef 4867 && startswith (name1 + len0, "___XV")));
14f9c5c9
AS
4868 }
4869 case LOC_CONST:
4870 return SYMBOL_VALUE (sym0) == SYMBOL_VALUE (sym1)
4c4b4cd2 4871 && equiv_types (SYMBOL_TYPE (sym0), SYMBOL_TYPE (sym1));
d2e4a39e
AS
4872 default:
4873 return 0;
14f9c5c9
AS
4874 }
4875}
4876
d12307c1 4877/* Append (SYM,BLOCK,SYMTAB) to the end of the array of struct block_symbol
4c4b4cd2 4878 records in OBSTACKP. Do nothing if SYM is a duplicate. */
14f9c5c9
AS
4879
4880static void
76a01679
JB
4881add_defn_to_vec (struct obstack *obstackp,
4882 struct symbol *sym,
f0c5f9b2 4883 const struct block *block)
14f9c5c9
AS
4884{
4885 int i;
d12307c1 4886 struct block_symbol *prevDefns = defns_collected (obstackp, 0);
14f9c5c9 4887
529cad9c
PH
4888 /* Do not try to complete stub types, as the debugger is probably
4889 already scanning all symbols matching a certain name at the
4890 time when this function is called. Trying to replace the stub
4891 type by its associated full type will cause us to restart a scan
4892 which may lead to an infinite recursion. Instead, the client
4893 collecting the matching symbols will end up collecting several
4894 matches, with at least one of them complete. It can then filter
4895 out the stub ones if needed. */
4896
4c4b4cd2
PH
4897 for (i = num_defns_collected (obstackp) - 1; i >= 0; i -= 1)
4898 {
d12307c1 4899 if (lesseq_defined_than (sym, prevDefns[i].symbol))
4c4b4cd2 4900 return;
d12307c1 4901 else if (lesseq_defined_than (prevDefns[i].symbol, sym))
4c4b4cd2 4902 {
d12307c1 4903 prevDefns[i].symbol = sym;
4c4b4cd2 4904 prevDefns[i].block = block;
4c4b4cd2 4905 return;
76a01679 4906 }
4c4b4cd2
PH
4907 }
4908
4909 {
d12307c1 4910 struct block_symbol info;
4c4b4cd2 4911
d12307c1 4912 info.symbol = sym;
4c4b4cd2 4913 info.block = block;
d12307c1 4914 obstack_grow (obstackp, &info, sizeof (struct block_symbol));
4c4b4cd2
PH
4915 }
4916}
4917
d12307c1
PMR
4918/* Number of block_symbol structures currently collected in current vector in
4919 OBSTACKP. */
4c4b4cd2 4920
76a01679
JB
4921static int
4922num_defns_collected (struct obstack *obstackp)
4c4b4cd2 4923{
d12307c1 4924 return obstack_object_size (obstackp) / sizeof (struct block_symbol);
4c4b4cd2
PH
4925}
4926
d12307c1
PMR
4927/* Vector of block_symbol structures currently collected in current vector in
4928 OBSTACKP. If FINISH, close off the vector and return its final address. */
4c4b4cd2 4929
d12307c1 4930static struct block_symbol *
4c4b4cd2
PH
4931defns_collected (struct obstack *obstackp, int finish)
4932{
4933 if (finish)
224c3ddb 4934 return (struct block_symbol *) obstack_finish (obstackp);
4c4b4cd2 4935 else
d12307c1 4936 return (struct block_symbol *) obstack_base (obstackp);
4c4b4cd2
PH
4937}
4938
7c7b6655
TT
4939/* Return a bound minimal symbol matching NAME according to Ada
4940 decoding rules. Returns an invalid symbol if there is no such
4941 minimal symbol. Names prefixed with "standard__" are handled
4942 specially: "standard__" is first stripped off, and only static and
4943 global symbols are searched. */
4c4b4cd2 4944
7c7b6655 4945struct bound_minimal_symbol
96d887e8 4946ada_lookup_simple_minsym (const char *name)
4c4b4cd2 4947{
7c7b6655 4948 struct bound_minimal_symbol result;
4c4b4cd2 4949 struct objfile *objfile;
96d887e8 4950 struct minimal_symbol *msymbol;
4c4b4cd2 4951
7c7b6655
TT
4952 memset (&result, 0, sizeof (result));
4953
b5ec771e
PA
4954 symbol_name_match_type match_type = name_match_type_from_name (name);
4955 lookup_name_info lookup_name (name, match_type);
4956
4957 symbol_name_matcher_ftype *match_name
4958 = ada_get_symbol_name_matcher (lookup_name);
4c4b4cd2 4959
96d887e8
PH
4960 ALL_MSYMBOLS (objfile, msymbol)
4961 {
b5ec771e 4962 if (match_name (MSYMBOL_LINKAGE_NAME (msymbol), lookup_name, NULL)
96d887e8 4963 && MSYMBOL_TYPE (msymbol) != mst_solib_trampoline)
7c7b6655
TT
4964 {
4965 result.minsym = msymbol;
4966 result.objfile = objfile;
4967 break;
4968 }
96d887e8 4969 }
4c4b4cd2 4970
7c7b6655 4971 return result;
96d887e8 4972}
4c4b4cd2 4973
96d887e8
PH
4974/* For all subprograms that statically enclose the subprogram of the
4975 selected frame, add symbols matching identifier NAME in DOMAIN
4976 and their blocks to the list of data in OBSTACKP, as for
48b78332
JB
4977 ada_add_block_symbols (q.v.). If WILD_MATCH_P, treat as NAME
4978 with a wildcard prefix. */
4c4b4cd2 4979
96d887e8
PH
4980static void
4981add_symbols_from_enclosing_procs (struct obstack *obstackp,
b5ec771e
PA
4982 const lookup_name_info &lookup_name,
4983 domain_enum domain)
96d887e8 4984{
96d887e8 4985}
14f9c5c9 4986
96d887e8
PH
4987/* True if TYPE is definitely an artificial type supplied to a symbol
4988 for which no debugging information was given in the symbol file. */
14f9c5c9 4989
96d887e8
PH
4990static int
4991is_nondebugging_type (struct type *type)
4992{
0d5cff50 4993 const char *name = ada_type_name (type);
5b4ee69b 4994
96d887e8
PH
4995 return (name != NULL && strcmp (name, "<variable, no debug info>") == 0);
4996}
4c4b4cd2 4997
8f17729f
JB
4998/* Return nonzero if TYPE1 and TYPE2 are two enumeration types
4999 that are deemed "identical" for practical purposes.
5000
5001 This function assumes that TYPE1 and TYPE2 are both TYPE_CODE_ENUM
5002 types and that their number of enumerals is identical (in other
5003 words, TYPE_NFIELDS (type1) == TYPE_NFIELDS (type2)). */
5004
5005static int
5006ada_identical_enum_types_p (struct type *type1, struct type *type2)
5007{
5008 int i;
5009
5010 /* The heuristic we use here is fairly conservative. We consider
5011 that 2 enumerate types are identical if they have the same
5012 number of enumerals and that all enumerals have the same
5013 underlying value and name. */
5014
5015 /* All enums in the type should have an identical underlying value. */
5016 for (i = 0; i < TYPE_NFIELDS (type1); i++)
14e75d8e 5017 if (TYPE_FIELD_ENUMVAL (type1, i) != TYPE_FIELD_ENUMVAL (type2, i))
8f17729f
JB
5018 return 0;
5019
5020 /* All enumerals should also have the same name (modulo any numerical
5021 suffix). */
5022 for (i = 0; i < TYPE_NFIELDS (type1); i++)
5023 {
0d5cff50
DE
5024 const char *name_1 = TYPE_FIELD_NAME (type1, i);
5025 const char *name_2 = TYPE_FIELD_NAME (type2, i);
8f17729f
JB
5026 int len_1 = strlen (name_1);
5027 int len_2 = strlen (name_2);
5028
5029 ada_remove_trailing_digits (TYPE_FIELD_NAME (type1, i), &len_1);
5030 ada_remove_trailing_digits (TYPE_FIELD_NAME (type2, i), &len_2);
5031 if (len_1 != len_2
5032 || strncmp (TYPE_FIELD_NAME (type1, i),
5033 TYPE_FIELD_NAME (type2, i),
5034 len_1) != 0)
5035 return 0;
5036 }
5037
5038 return 1;
5039}
5040
5041/* Return nonzero if all the symbols in SYMS are all enumeral symbols
5042 that are deemed "identical" for practical purposes. Sometimes,
5043 enumerals are not strictly identical, but their types are so similar
5044 that they can be considered identical.
5045
5046 For instance, consider the following code:
5047
5048 type Color is (Black, Red, Green, Blue, White);
5049 type RGB_Color is new Color range Red .. Blue;
5050
5051 Type RGB_Color is a subrange of an implicit type which is a copy
5052 of type Color. If we call that implicit type RGB_ColorB ("B" is
5053 for "Base Type"), then type RGB_ColorB is a copy of type Color.
5054 As a result, when an expression references any of the enumeral
5055 by name (Eg. "print green"), the expression is technically
5056 ambiguous and the user should be asked to disambiguate. But
5057 doing so would only hinder the user, since it wouldn't matter
5058 what choice he makes, the outcome would always be the same.
5059 So, for practical purposes, we consider them as the same. */
5060
5061static int
54d343a2 5062symbols_are_identical_enums (const std::vector<struct block_symbol> &syms)
8f17729f
JB
5063{
5064 int i;
5065
5066 /* Before performing a thorough comparison check of each type,
5067 we perform a series of inexpensive checks. We expect that these
5068 checks will quickly fail in the vast majority of cases, and thus
5069 help prevent the unnecessary use of a more expensive comparison.
5070 Said comparison also expects us to make some of these checks
5071 (see ada_identical_enum_types_p). */
5072
5073 /* Quick check: All symbols should have an enum type. */
54d343a2 5074 for (i = 0; i < syms.size (); i++)
d12307c1 5075 if (TYPE_CODE (SYMBOL_TYPE (syms[i].symbol)) != TYPE_CODE_ENUM)
8f17729f
JB
5076 return 0;
5077
5078 /* Quick check: They should all have the same value. */
54d343a2 5079 for (i = 1; i < syms.size (); i++)
d12307c1 5080 if (SYMBOL_VALUE (syms[i].symbol) != SYMBOL_VALUE (syms[0].symbol))
8f17729f
JB
5081 return 0;
5082
5083 /* Quick check: They should all have the same number of enumerals. */
54d343a2 5084 for (i = 1; i < syms.size (); i++)
d12307c1
PMR
5085 if (TYPE_NFIELDS (SYMBOL_TYPE (syms[i].symbol))
5086 != TYPE_NFIELDS (SYMBOL_TYPE (syms[0].symbol)))
8f17729f
JB
5087 return 0;
5088
5089 /* All the sanity checks passed, so we might have a set of
5090 identical enumeration types. Perform a more complete
5091 comparison of the type of each symbol. */
54d343a2 5092 for (i = 1; i < syms.size (); i++)
d12307c1
PMR
5093 if (!ada_identical_enum_types_p (SYMBOL_TYPE (syms[i].symbol),
5094 SYMBOL_TYPE (syms[0].symbol)))
8f17729f
JB
5095 return 0;
5096
5097 return 1;
5098}
5099
54d343a2 5100/* Remove any non-debugging symbols in SYMS that definitely
96d887e8
PH
5101 duplicate other symbols in the list (The only case I know of where
5102 this happens is when object files containing stabs-in-ecoff are
5103 linked with files containing ordinary ecoff debugging symbols (or no
5104 debugging symbols)). Modifies SYMS to squeeze out deleted entries.
5105 Returns the number of items in the modified list. */
4c4b4cd2 5106
96d887e8 5107static int
54d343a2 5108remove_extra_symbols (std::vector<struct block_symbol> *syms)
96d887e8
PH
5109{
5110 int i, j;
4c4b4cd2 5111
8f17729f
JB
5112 /* We should never be called with less than 2 symbols, as there
5113 cannot be any extra symbol in that case. But it's easy to
5114 handle, since we have nothing to do in that case. */
54d343a2
TT
5115 if (syms->size () < 2)
5116 return syms->size ();
8f17729f 5117
96d887e8 5118 i = 0;
54d343a2 5119 while (i < syms->size ())
96d887e8 5120 {
a35ddb44 5121 int remove_p = 0;
339c13b6
JB
5122
5123 /* If two symbols have the same name and one of them is a stub type,
5124 the get rid of the stub. */
5125
54d343a2
TT
5126 if (TYPE_STUB (SYMBOL_TYPE ((*syms)[i].symbol))
5127 && SYMBOL_LINKAGE_NAME ((*syms)[i].symbol) != NULL)
339c13b6 5128 {
54d343a2 5129 for (j = 0; j < syms->size (); j++)
339c13b6
JB
5130 {
5131 if (j != i
54d343a2
TT
5132 && !TYPE_STUB (SYMBOL_TYPE ((*syms)[j].symbol))
5133 && SYMBOL_LINKAGE_NAME ((*syms)[j].symbol) != NULL
5134 && strcmp (SYMBOL_LINKAGE_NAME ((*syms)[i].symbol),
5135 SYMBOL_LINKAGE_NAME ((*syms)[j].symbol)) == 0)
a35ddb44 5136 remove_p = 1;
339c13b6
JB
5137 }
5138 }
5139
5140 /* Two symbols with the same name, same class and same address
5141 should be identical. */
5142
54d343a2
TT
5143 else if (SYMBOL_LINKAGE_NAME ((*syms)[i].symbol) != NULL
5144 && SYMBOL_CLASS ((*syms)[i].symbol) == LOC_STATIC
5145 && is_nondebugging_type (SYMBOL_TYPE ((*syms)[i].symbol)))
96d887e8 5146 {
54d343a2 5147 for (j = 0; j < syms->size (); j += 1)
96d887e8
PH
5148 {
5149 if (i != j
54d343a2
TT
5150 && SYMBOL_LINKAGE_NAME ((*syms)[j].symbol) != NULL
5151 && strcmp (SYMBOL_LINKAGE_NAME ((*syms)[i].symbol),
5152 SYMBOL_LINKAGE_NAME ((*syms)[j].symbol)) == 0
5153 && SYMBOL_CLASS ((*syms)[i].symbol)
5154 == SYMBOL_CLASS ((*syms)[j].symbol)
5155 && SYMBOL_VALUE_ADDRESS ((*syms)[i].symbol)
5156 == SYMBOL_VALUE_ADDRESS ((*syms)[j].symbol))
a35ddb44 5157 remove_p = 1;
4c4b4cd2 5158 }
4c4b4cd2 5159 }
339c13b6 5160
a35ddb44 5161 if (remove_p)
54d343a2 5162 syms->erase (syms->begin () + i);
339c13b6 5163
96d887e8 5164 i += 1;
14f9c5c9 5165 }
8f17729f
JB
5166
5167 /* If all the remaining symbols are identical enumerals, then
5168 just keep the first one and discard the rest.
5169
5170 Unlike what we did previously, we do not discard any entry
5171 unless they are ALL identical. This is because the symbol
5172 comparison is not a strict comparison, but rather a practical
5173 comparison. If all symbols are considered identical, then
5174 we can just go ahead and use the first one and discard the rest.
5175 But if we cannot reduce the list to a single element, we have
5176 to ask the user to disambiguate anyways. And if we have to
5177 present a multiple-choice menu, it's less confusing if the list
5178 isn't missing some choices that were identical and yet distinct. */
54d343a2
TT
5179 if (symbols_are_identical_enums (*syms))
5180 syms->resize (1);
8f17729f 5181
54d343a2 5182 return syms->size ();
14f9c5c9
AS
5183}
5184
96d887e8
PH
5185/* Given a type that corresponds to a renaming entity, use the type name
5186 to extract the scope (package name or function name, fully qualified,
5187 and following the GNAT encoding convention) where this renaming has been
49d83361 5188 defined. */
4c4b4cd2 5189
49d83361 5190static std::string
96d887e8 5191xget_renaming_scope (struct type *renaming_type)
14f9c5c9 5192{
96d887e8 5193 /* The renaming types adhere to the following convention:
0963b4bd 5194 <scope>__<rename>___<XR extension>.
96d887e8
PH
5195 So, to extract the scope, we search for the "___XR" extension,
5196 and then backtrack until we find the first "__". */
76a01679 5197
a737d952 5198 const char *name = TYPE_NAME (renaming_type);
108d56a4
SM
5199 const char *suffix = strstr (name, "___XR");
5200 const char *last;
14f9c5c9 5201
96d887e8
PH
5202 /* Now, backtrack a bit until we find the first "__". Start looking
5203 at suffix - 3, as the <rename> part is at least one character long. */
14f9c5c9 5204
96d887e8
PH
5205 for (last = suffix - 3; last > name; last--)
5206 if (last[0] == '_' && last[1] == '_')
5207 break;
76a01679 5208
96d887e8 5209 /* Make a copy of scope and return it. */
49d83361 5210 return std::string (name, last);
4c4b4cd2
PH
5211}
5212
96d887e8 5213/* Return nonzero if NAME corresponds to a package name. */
4c4b4cd2 5214
96d887e8
PH
5215static int
5216is_package_name (const char *name)
4c4b4cd2 5217{
96d887e8
PH
5218 /* Here, We take advantage of the fact that no symbols are generated
5219 for packages, while symbols are generated for each function.
5220 So the condition for NAME represent a package becomes equivalent
5221 to NAME not existing in our list of symbols. There is only one
5222 small complication with library-level functions (see below). */
4c4b4cd2 5223
96d887e8
PH
5224 /* If it is a function that has not been defined at library level,
5225 then we should be able to look it up in the symbols. */
5226 if (standard_lookup (name, NULL, VAR_DOMAIN) != NULL)
5227 return 0;
14f9c5c9 5228
96d887e8
PH
5229 /* Library-level function names start with "_ada_". See if function
5230 "_ada_" followed by NAME can be found. */
14f9c5c9 5231
96d887e8 5232 /* Do a quick check that NAME does not contain "__", since library-level
e1d5a0d2 5233 functions names cannot contain "__" in them. */
96d887e8
PH
5234 if (strstr (name, "__") != NULL)
5235 return 0;
4c4b4cd2 5236
528e1572 5237 std::string fun_name = string_printf ("_ada_%s", name);
14f9c5c9 5238
528e1572 5239 return (standard_lookup (fun_name.c_str (), NULL, VAR_DOMAIN) == NULL);
96d887e8 5240}
14f9c5c9 5241
96d887e8 5242/* Return nonzero if SYM corresponds to a renaming entity that is
aeb5907d 5243 not visible from FUNCTION_NAME. */
14f9c5c9 5244
96d887e8 5245static int
0d5cff50 5246old_renaming_is_invisible (const struct symbol *sym, const char *function_name)
96d887e8 5247{
aeb5907d
JB
5248 if (SYMBOL_CLASS (sym) != LOC_TYPEDEF)
5249 return 0;
5250
49d83361 5251 std::string scope = xget_renaming_scope (SYMBOL_TYPE (sym));
14f9c5c9 5252
96d887e8 5253 /* If the rename has been defined in a package, then it is visible. */
49d83361
TT
5254 if (is_package_name (scope.c_str ()))
5255 return 0;
14f9c5c9 5256
96d887e8
PH
5257 /* Check that the rename is in the current function scope by checking
5258 that its name starts with SCOPE. */
76a01679 5259
96d887e8
PH
5260 /* If the function name starts with "_ada_", it means that it is
5261 a library-level function. Strip this prefix before doing the
5262 comparison, as the encoding for the renaming does not contain
5263 this prefix. */
61012eef 5264 if (startswith (function_name, "_ada_"))
96d887e8 5265 function_name += 5;
f26caa11 5266
49d83361 5267 return !startswith (function_name, scope.c_str ());
f26caa11
PH
5268}
5269
aeb5907d
JB
5270/* Remove entries from SYMS that corresponds to a renaming entity that
5271 is not visible from the function associated with CURRENT_BLOCK or
5272 that is superfluous due to the presence of more specific renaming
5273 information. Places surviving symbols in the initial entries of
5274 SYMS and returns the number of surviving symbols.
96d887e8
PH
5275
5276 Rationale:
aeb5907d
JB
5277 First, in cases where an object renaming is implemented as a
5278 reference variable, GNAT may produce both the actual reference
5279 variable and the renaming encoding. In this case, we discard the
5280 latter.
5281
5282 Second, GNAT emits a type following a specified encoding for each renaming
96d887e8
PH
5283 entity. Unfortunately, STABS currently does not support the definition
5284 of types that are local to a given lexical block, so all renamings types
5285 are emitted at library level. As a consequence, if an application
5286 contains two renaming entities using the same name, and a user tries to
5287 print the value of one of these entities, the result of the ada symbol
5288 lookup will also contain the wrong renaming type.
f26caa11 5289
96d887e8
PH
5290 This function partially covers for this limitation by attempting to
5291 remove from the SYMS list renaming symbols that should be visible
5292 from CURRENT_BLOCK. However, there does not seem be a 100% reliable
5293 method with the current information available. The implementation
5294 below has a couple of limitations (FIXME: brobecker-2003-05-12):
5295
5296 - When the user tries to print a rename in a function while there
5297 is another rename entity defined in a package: Normally, the
5298 rename in the function has precedence over the rename in the
5299 package, so the latter should be removed from the list. This is
5300 currently not the case.
5301
5302 - This function will incorrectly remove valid renames if
5303 the CURRENT_BLOCK corresponds to a function which symbol name
5304 has been changed by an "Export" pragma. As a consequence,
5305 the user will be unable to print such rename entities. */
4c4b4cd2 5306
14f9c5c9 5307static int
54d343a2
TT
5308remove_irrelevant_renamings (std::vector<struct block_symbol> *syms,
5309 const struct block *current_block)
4c4b4cd2
PH
5310{
5311 struct symbol *current_function;
0d5cff50 5312 const char *current_function_name;
4c4b4cd2 5313 int i;
aeb5907d
JB
5314 int is_new_style_renaming;
5315
5316 /* If there is both a renaming foo___XR... encoded as a variable and
5317 a simple variable foo in the same block, discard the latter.
0963b4bd 5318 First, zero out such symbols, then compress. */
aeb5907d 5319 is_new_style_renaming = 0;
54d343a2 5320 for (i = 0; i < syms->size (); i += 1)
aeb5907d 5321 {
54d343a2
TT
5322 struct symbol *sym = (*syms)[i].symbol;
5323 const struct block *block = (*syms)[i].block;
aeb5907d
JB
5324 const char *name;
5325 const char *suffix;
5326
5327 if (sym == NULL || SYMBOL_CLASS (sym) == LOC_TYPEDEF)
5328 continue;
5329 name = SYMBOL_LINKAGE_NAME (sym);
5330 suffix = strstr (name, "___XR");
5331
5332 if (suffix != NULL)
5333 {
5334 int name_len = suffix - name;
5335 int j;
5b4ee69b 5336
aeb5907d 5337 is_new_style_renaming = 1;
54d343a2
TT
5338 for (j = 0; j < syms->size (); j += 1)
5339 if (i != j && (*syms)[j].symbol != NULL
5340 && strncmp (name, SYMBOL_LINKAGE_NAME ((*syms)[j].symbol),
aeb5907d 5341 name_len) == 0
54d343a2
TT
5342 && block == (*syms)[j].block)
5343 (*syms)[j].symbol = NULL;
aeb5907d
JB
5344 }
5345 }
5346 if (is_new_style_renaming)
5347 {
5348 int j, k;
5349
54d343a2
TT
5350 for (j = k = 0; j < syms->size (); j += 1)
5351 if ((*syms)[j].symbol != NULL)
aeb5907d 5352 {
54d343a2 5353 (*syms)[k] = (*syms)[j];
aeb5907d
JB
5354 k += 1;
5355 }
5356 return k;
5357 }
4c4b4cd2
PH
5358
5359 /* Extract the function name associated to CURRENT_BLOCK.
5360 Abort if unable to do so. */
76a01679 5361
4c4b4cd2 5362 if (current_block == NULL)
54d343a2 5363 return syms->size ();
76a01679 5364
7f0df278 5365 current_function = block_linkage_function (current_block);
4c4b4cd2 5366 if (current_function == NULL)
54d343a2 5367 return syms->size ();
4c4b4cd2
PH
5368
5369 current_function_name = SYMBOL_LINKAGE_NAME (current_function);
5370 if (current_function_name == NULL)
54d343a2 5371 return syms->size ();
4c4b4cd2
PH
5372
5373 /* Check each of the symbols, and remove it from the list if it is
5374 a type corresponding to a renaming that is out of the scope of
5375 the current block. */
5376
5377 i = 0;
54d343a2 5378 while (i < syms->size ())
4c4b4cd2 5379 {
54d343a2 5380 if (ada_parse_renaming ((*syms)[i].symbol, NULL, NULL, NULL)
aeb5907d 5381 == ADA_OBJECT_RENAMING
54d343a2
TT
5382 && old_renaming_is_invisible ((*syms)[i].symbol,
5383 current_function_name))
5384 syms->erase (syms->begin () + i);
4c4b4cd2
PH
5385 else
5386 i += 1;
5387 }
5388
54d343a2 5389 return syms->size ();
4c4b4cd2
PH
5390}
5391
339c13b6
JB
5392/* Add to OBSTACKP all symbols from BLOCK (and its super-blocks)
5393 whose name and domain match NAME and DOMAIN respectively.
5394 If no match was found, then extend the search to "enclosing"
5395 routines (in other words, if we're inside a nested function,
5396 search the symbols defined inside the enclosing functions).
d0a8ab18
JB
5397 If WILD_MATCH_P is nonzero, perform the naming matching in
5398 "wild" mode (see function "wild_match" for more info).
339c13b6
JB
5399
5400 Note: This function assumes that OBSTACKP has 0 (zero) element in it. */
5401
5402static void
b5ec771e
PA
5403ada_add_local_symbols (struct obstack *obstackp,
5404 const lookup_name_info &lookup_name,
5405 const struct block *block, domain_enum domain)
339c13b6
JB
5406{
5407 int block_depth = 0;
5408
5409 while (block != NULL)
5410 {
5411 block_depth += 1;
b5ec771e 5412 ada_add_block_symbols (obstackp, block, lookup_name, domain, NULL);
339c13b6
JB
5413
5414 /* If we found a non-function match, assume that's the one. */
5415 if (is_nonfunction (defns_collected (obstackp, 0),
5416 num_defns_collected (obstackp)))
5417 return;
5418
5419 block = BLOCK_SUPERBLOCK (block);
5420 }
5421
5422 /* If no luck so far, try to find NAME as a local symbol in some lexically
5423 enclosing subprogram. */
5424 if (num_defns_collected (obstackp) == 0 && block_depth > 2)
b5ec771e 5425 add_symbols_from_enclosing_procs (obstackp, lookup_name, domain);
339c13b6
JB
5426}
5427
ccefe4c4 5428/* An object of this type is used as the user_data argument when
40658b94 5429 calling the map_matching_symbols method. */
ccefe4c4 5430
40658b94 5431struct match_data
ccefe4c4 5432{
40658b94 5433 struct objfile *objfile;
ccefe4c4 5434 struct obstack *obstackp;
40658b94
PH
5435 struct symbol *arg_sym;
5436 int found_sym;
ccefe4c4
TT
5437};
5438
22cee43f 5439/* A callback for add_nonlocal_symbols that adds SYM, found in BLOCK,
40658b94
PH
5440 to a list of symbols. DATA0 is a pointer to a struct match_data *
5441 containing the obstack that collects the symbol list, the file that SYM
5442 must come from, a flag indicating whether a non-argument symbol has
5443 been found in the current block, and the last argument symbol
5444 passed in SYM within the current block (if any). When SYM is null,
5445 marking the end of a block, the argument symbol is added if no
5446 other has been found. */
ccefe4c4 5447
40658b94
PH
5448static int
5449aux_add_nonlocal_symbols (struct block *block, struct symbol *sym, void *data0)
ccefe4c4 5450{
40658b94
PH
5451 struct match_data *data = (struct match_data *) data0;
5452
5453 if (sym == NULL)
5454 {
5455 if (!data->found_sym && data->arg_sym != NULL)
5456 add_defn_to_vec (data->obstackp,
5457 fixup_symbol_section (data->arg_sym, data->objfile),
5458 block);
5459 data->found_sym = 0;
5460 data->arg_sym = NULL;
5461 }
5462 else
5463 {
5464 if (SYMBOL_CLASS (sym) == LOC_UNRESOLVED)
5465 return 0;
5466 else if (SYMBOL_IS_ARGUMENT (sym))
5467 data->arg_sym = sym;
5468 else
5469 {
5470 data->found_sym = 1;
5471 add_defn_to_vec (data->obstackp,
5472 fixup_symbol_section (sym, data->objfile),
5473 block);
5474 }
5475 }
5476 return 0;
5477}
5478
b5ec771e
PA
5479/* Helper for add_nonlocal_symbols. Find symbols in DOMAIN which are
5480 targeted by renamings matching LOOKUP_NAME in BLOCK. Add these
5481 symbols to OBSTACKP. Return whether we found such symbols. */
22cee43f
PMR
5482
5483static int
5484ada_add_block_renamings (struct obstack *obstackp,
5485 const struct block *block,
b5ec771e
PA
5486 const lookup_name_info &lookup_name,
5487 domain_enum domain)
22cee43f
PMR
5488{
5489 struct using_direct *renaming;
5490 int defns_mark = num_defns_collected (obstackp);
5491
b5ec771e
PA
5492 symbol_name_matcher_ftype *name_match
5493 = ada_get_symbol_name_matcher (lookup_name);
5494
22cee43f
PMR
5495 for (renaming = block_using (block);
5496 renaming != NULL;
5497 renaming = renaming->next)
5498 {
5499 const char *r_name;
22cee43f
PMR
5500
5501 /* Avoid infinite recursions: skip this renaming if we are actually
5502 already traversing it.
5503
5504 Currently, symbol lookup in Ada don't use the namespace machinery from
5505 C++/Fortran support: skip namespace imports that use them. */
5506 if (renaming->searched
5507 || (renaming->import_src != NULL
5508 && renaming->import_src[0] != '\0')
5509 || (renaming->import_dest != NULL
5510 && renaming->import_dest[0] != '\0'))
5511 continue;
5512 renaming->searched = 1;
5513
5514 /* TODO: here, we perform another name-based symbol lookup, which can
5515 pull its own multiple overloads. In theory, we should be able to do
5516 better in this case since, in DWARF, DW_AT_import is a DIE reference,
5517 not a simple name. But in order to do this, we would need to enhance
5518 the DWARF reader to associate a symbol to this renaming, instead of a
5519 name. So, for now, we do something simpler: re-use the C++/Fortran
5520 namespace machinery. */
5521 r_name = (renaming->alias != NULL
5522 ? renaming->alias
5523 : renaming->declaration);
b5ec771e
PA
5524 if (name_match (r_name, lookup_name, NULL))
5525 {
5526 lookup_name_info decl_lookup_name (renaming->declaration,
5527 lookup_name.match_type ());
5528 ada_add_all_symbols (obstackp, block, decl_lookup_name, domain,
5529 1, NULL);
5530 }
22cee43f
PMR
5531 renaming->searched = 0;
5532 }
5533 return num_defns_collected (obstackp) != defns_mark;
5534}
5535
db230ce3
JB
5536/* Implements compare_names, but only applying the comparision using
5537 the given CASING. */
5b4ee69b 5538
40658b94 5539static int
db230ce3
JB
5540compare_names_with_case (const char *string1, const char *string2,
5541 enum case_sensitivity casing)
40658b94
PH
5542{
5543 while (*string1 != '\0' && *string2 != '\0')
5544 {
db230ce3
JB
5545 char c1, c2;
5546
40658b94
PH
5547 if (isspace (*string1) || isspace (*string2))
5548 return strcmp_iw_ordered (string1, string2);
db230ce3
JB
5549
5550 if (casing == case_sensitive_off)
5551 {
5552 c1 = tolower (*string1);
5553 c2 = tolower (*string2);
5554 }
5555 else
5556 {
5557 c1 = *string1;
5558 c2 = *string2;
5559 }
5560 if (c1 != c2)
40658b94 5561 break;
db230ce3 5562
40658b94
PH
5563 string1 += 1;
5564 string2 += 1;
5565 }
db230ce3 5566
40658b94
PH
5567 switch (*string1)
5568 {
5569 case '(':
5570 return strcmp_iw_ordered (string1, string2);
5571 case '_':
5572 if (*string2 == '\0')
5573 {
052874e8 5574 if (is_name_suffix (string1))
40658b94
PH
5575 return 0;
5576 else
1a1d5513 5577 return 1;
40658b94 5578 }
dbb8534f 5579 /* FALLTHROUGH */
40658b94
PH
5580 default:
5581 if (*string2 == '(')
5582 return strcmp_iw_ordered (string1, string2);
5583 else
db230ce3
JB
5584 {
5585 if (casing == case_sensitive_off)
5586 return tolower (*string1) - tolower (*string2);
5587 else
5588 return *string1 - *string2;
5589 }
40658b94 5590 }
ccefe4c4
TT
5591}
5592
db230ce3
JB
5593/* Compare STRING1 to STRING2, with results as for strcmp.
5594 Compatible with strcmp_iw_ordered in that...
5595
5596 strcmp_iw_ordered (STRING1, STRING2) <= 0
5597
5598 ... implies...
5599
5600 compare_names (STRING1, STRING2) <= 0
5601
5602 (they may differ as to what symbols compare equal). */
5603
5604static int
5605compare_names (const char *string1, const char *string2)
5606{
5607 int result;
5608
5609 /* Similar to what strcmp_iw_ordered does, we need to perform
5610 a case-insensitive comparison first, and only resort to
5611 a second, case-sensitive, comparison if the first one was
5612 not sufficient to differentiate the two strings. */
5613
5614 result = compare_names_with_case (string1, string2, case_sensitive_off);
5615 if (result == 0)
5616 result = compare_names_with_case (string1, string2, case_sensitive_on);
5617
5618 return result;
5619}
5620
b5ec771e
PA
5621/* Convenience function to get at the Ada encoded lookup name for
5622 LOOKUP_NAME, as a C string. */
5623
5624static const char *
5625ada_lookup_name (const lookup_name_info &lookup_name)
5626{
5627 return lookup_name.ada ().lookup_name ().c_str ();
5628}
5629
339c13b6 5630/* Add to OBSTACKP all non-local symbols whose name and domain match
b5ec771e
PA
5631 LOOKUP_NAME and DOMAIN respectively. The search is performed on
5632 GLOBAL_BLOCK symbols if GLOBAL is non-zero, or on STATIC_BLOCK
5633 symbols otherwise. */
339c13b6
JB
5634
5635static void
b5ec771e
PA
5636add_nonlocal_symbols (struct obstack *obstackp,
5637 const lookup_name_info &lookup_name,
5638 domain_enum domain, int global)
339c13b6
JB
5639{
5640 struct objfile *objfile;
22cee43f 5641 struct compunit_symtab *cu;
40658b94 5642 struct match_data data;
339c13b6 5643
6475f2fe 5644 memset (&data, 0, sizeof data);
ccefe4c4 5645 data.obstackp = obstackp;
339c13b6 5646
b5ec771e
PA
5647 bool is_wild_match = lookup_name.ada ().wild_match_p ();
5648
ccefe4c4 5649 ALL_OBJFILES (objfile)
40658b94
PH
5650 {
5651 data.objfile = objfile;
5652
5653 if (is_wild_match)
b5ec771e
PA
5654 objfile->sf->qf->map_matching_symbols (objfile, lookup_name.name ().c_str (),
5655 domain, global,
4186eb54 5656 aux_add_nonlocal_symbols, &data,
b5ec771e
PA
5657 symbol_name_match_type::WILD,
5658 NULL);
40658b94 5659 else
b5ec771e
PA
5660 objfile->sf->qf->map_matching_symbols (objfile, lookup_name.name ().c_str (),
5661 domain, global,
4186eb54 5662 aux_add_nonlocal_symbols, &data,
b5ec771e
PA
5663 symbol_name_match_type::FULL,
5664 compare_names);
22cee43f
PMR
5665
5666 ALL_OBJFILE_COMPUNITS (objfile, cu)
5667 {
5668 const struct block *global_block
5669 = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (cu), GLOBAL_BLOCK);
5670
b5ec771e
PA
5671 if (ada_add_block_renamings (obstackp, global_block, lookup_name,
5672 domain))
22cee43f
PMR
5673 data.found_sym = 1;
5674 }
40658b94
PH
5675 }
5676
5677 if (num_defns_collected (obstackp) == 0 && global && !is_wild_match)
5678 {
b5ec771e
PA
5679 const char *name = ada_lookup_name (lookup_name);
5680 std::string name1 = std::string ("<_ada_") + name + '>';
5681
40658b94
PH
5682 ALL_OBJFILES (objfile)
5683 {
40658b94 5684 data.objfile = objfile;
b5ec771e
PA
5685 objfile->sf->qf->map_matching_symbols (objfile, name1.c_str (),
5686 domain, global,
0963b4bd
MS
5687 aux_add_nonlocal_symbols,
5688 &data,
b5ec771e
PA
5689 symbol_name_match_type::FULL,
5690 compare_names);
40658b94
PH
5691 }
5692 }
339c13b6
JB
5693}
5694
b5ec771e
PA
5695/* Find symbols in DOMAIN matching LOOKUP_NAME, in BLOCK and, if
5696 FULL_SEARCH is non-zero, enclosing scope and in global scopes,
5697 returning the number of matches. Add these to OBSTACKP.
4eeaa230 5698
22cee43f
PMR
5699 When FULL_SEARCH is non-zero, any non-function/non-enumeral
5700 symbol match within the nest of blocks whose innermost member is BLOCK,
4c4b4cd2 5701 is the one match returned (no other matches in that or
d9680e73 5702 enclosing blocks is returned). If there are any matches in or
22cee43f 5703 surrounding BLOCK, then these alone are returned.
4eeaa230 5704
b5ec771e
PA
5705 Names prefixed with "standard__" are handled specially:
5706 "standard__" is first stripped off (by the lookup_name
5707 constructor), and only static and global symbols are searched.
14f9c5c9 5708
22cee43f
PMR
5709 If MADE_GLOBAL_LOOKUP_P is non-null, set it before return to whether we had
5710 to lookup global symbols. */
5711
5712static void
5713ada_add_all_symbols (struct obstack *obstackp,
5714 const struct block *block,
b5ec771e 5715 const lookup_name_info &lookup_name,
22cee43f
PMR
5716 domain_enum domain,
5717 int full_search,
5718 int *made_global_lookup_p)
14f9c5c9
AS
5719{
5720 struct symbol *sym;
14f9c5c9 5721
22cee43f
PMR
5722 if (made_global_lookup_p)
5723 *made_global_lookup_p = 0;
339c13b6
JB
5724
5725 /* Special case: If the user specifies a symbol name inside package
5726 Standard, do a non-wild matching of the symbol name without
5727 the "standard__" prefix. This was primarily introduced in order
5728 to allow the user to specifically access the standard exceptions
5729 using, for instance, Standard.Constraint_Error when Constraint_Error
5730 is ambiguous (due to the user defining its own Constraint_Error
5731 entity inside its program). */
b5ec771e
PA
5732 if (lookup_name.ada ().standard_p ())
5733 block = NULL;
4c4b4cd2 5734
339c13b6 5735 /* Check the non-global symbols. If we have ANY match, then we're done. */
14f9c5c9 5736
4eeaa230
DE
5737 if (block != NULL)
5738 {
5739 if (full_search)
b5ec771e 5740 ada_add_local_symbols (obstackp, lookup_name, block, domain);
4eeaa230
DE
5741 else
5742 {
5743 /* In the !full_search case we're are being called by
5744 ada_iterate_over_symbols, and we don't want to search
5745 superblocks. */
b5ec771e 5746 ada_add_block_symbols (obstackp, block, lookup_name, domain, NULL);
4eeaa230 5747 }
22cee43f
PMR
5748 if (num_defns_collected (obstackp) > 0 || !full_search)
5749 return;
4eeaa230 5750 }
d2e4a39e 5751
339c13b6
JB
5752 /* No non-global symbols found. Check our cache to see if we have
5753 already performed this search before. If we have, then return
5754 the same result. */
5755
b5ec771e
PA
5756 if (lookup_cached_symbol (ada_lookup_name (lookup_name),
5757 domain, &sym, &block))
4c4b4cd2
PH
5758 {
5759 if (sym != NULL)
b5ec771e 5760 add_defn_to_vec (obstackp, sym, block);
22cee43f 5761 return;
4c4b4cd2 5762 }
14f9c5c9 5763
22cee43f
PMR
5764 if (made_global_lookup_p)
5765 *made_global_lookup_p = 1;
b1eedac9 5766
339c13b6
JB
5767 /* Search symbols from all global blocks. */
5768
b5ec771e 5769 add_nonlocal_symbols (obstackp, lookup_name, domain, 1);
d2e4a39e 5770
4c4b4cd2 5771 /* Now add symbols from all per-file blocks if we've gotten no hits
339c13b6 5772 (not strictly correct, but perhaps better than an error). */
d2e4a39e 5773
22cee43f 5774 if (num_defns_collected (obstackp) == 0)
b5ec771e 5775 add_nonlocal_symbols (obstackp, lookup_name, domain, 0);
22cee43f
PMR
5776}
5777
b5ec771e
PA
5778/* Find symbols in DOMAIN matching LOOKUP_NAME, in BLOCK and, if FULL_SEARCH
5779 is non-zero, enclosing scope and in global scopes, returning the number of
22cee43f 5780 matches.
54d343a2
TT
5781 Fills *RESULTS with (SYM,BLOCK) tuples, indicating the symbols
5782 found and the blocks and symbol tables (if any) in which they were
5783 found.
22cee43f
PMR
5784
5785 When full_search is non-zero, any non-function/non-enumeral
5786 symbol match within the nest of blocks whose innermost member is BLOCK,
5787 is the one match returned (no other matches in that or
5788 enclosing blocks is returned). If there are any matches in or
5789 surrounding BLOCK, then these alone are returned.
5790
5791 Names prefixed with "standard__" are handled specially: "standard__"
5792 is first stripped off, and only static and global symbols are searched. */
5793
5794static int
b5ec771e
PA
5795ada_lookup_symbol_list_worker (const lookup_name_info &lookup_name,
5796 const struct block *block,
22cee43f 5797 domain_enum domain,
54d343a2 5798 std::vector<struct block_symbol> *results,
22cee43f
PMR
5799 int full_search)
5800{
22cee43f
PMR
5801 int syms_from_global_search;
5802 int ndefns;
ec6a20c2 5803 auto_obstack obstack;
22cee43f 5804
ec6a20c2 5805 ada_add_all_symbols (&obstack, block, lookup_name,
b5ec771e 5806 domain, full_search, &syms_from_global_search);
14f9c5c9 5807
ec6a20c2
JB
5808 ndefns = num_defns_collected (&obstack);
5809
54d343a2
TT
5810 struct block_symbol *base = defns_collected (&obstack, 1);
5811 for (int i = 0; i < ndefns; ++i)
5812 results->push_back (base[i]);
4c4b4cd2 5813
54d343a2 5814 ndefns = remove_extra_symbols (results);
4c4b4cd2 5815
b1eedac9 5816 if (ndefns == 0 && full_search && syms_from_global_search)
b5ec771e 5817 cache_symbol (ada_lookup_name (lookup_name), domain, NULL, NULL);
14f9c5c9 5818
b1eedac9 5819 if (ndefns == 1 && full_search && syms_from_global_search)
b5ec771e
PA
5820 cache_symbol (ada_lookup_name (lookup_name), domain,
5821 (*results)[0].symbol, (*results)[0].block);
14f9c5c9 5822
54d343a2 5823 ndefns = remove_irrelevant_renamings (results, block);
ec6a20c2 5824
14f9c5c9
AS
5825 return ndefns;
5826}
5827
b5ec771e 5828/* Find symbols in DOMAIN matching NAME, in BLOCK and enclosing scope and
54d343a2
TT
5829 in global scopes, returning the number of matches, and filling *RESULTS
5830 with (SYM,BLOCK) tuples.
ec6a20c2 5831
4eeaa230
DE
5832 See ada_lookup_symbol_list_worker for further details. */
5833
5834int
b5ec771e 5835ada_lookup_symbol_list (const char *name, const struct block *block,
54d343a2
TT
5836 domain_enum domain,
5837 std::vector<struct block_symbol> *results)
4eeaa230 5838{
b5ec771e
PA
5839 symbol_name_match_type name_match_type = name_match_type_from_name (name);
5840 lookup_name_info lookup_name (name, name_match_type);
5841
5842 return ada_lookup_symbol_list_worker (lookup_name, block, domain, results, 1);
4eeaa230
DE
5843}
5844
5845/* Implementation of the la_iterate_over_symbols method. */
5846
5847static void
14bc53a8 5848ada_iterate_over_symbols
b5ec771e
PA
5849 (const struct block *block, const lookup_name_info &name,
5850 domain_enum domain,
14bc53a8 5851 gdb::function_view<symbol_found_callback_ftype> callback)
4eeaa230
DE
5852{
5853 int ndefs, i;
54d343a2 5854 std::vector<struct block_symbol> results;
4eeaa230
DE
5855
5856 ndefs = ada_lookup_symbol_list_worker (name, block, domain, &results, 0);
ec6a20c2 5857
4eeaa230
DE
5858 for (i = 0; i < ndefs; ++i)
5859 {
7e41c8db 5860 if (!callback (&results[i]))
4eeaa230
DE
5861 break;
5862 }
5863}
5864
4e5c77fe
JB
5865/* The result is as for ada_lookup_symbol_list with FULL_SEARCH set
5866 to 1, but choosing the first symbol found if there are multiple
5867 choices.
5868
5e2336be
JB
5869 The result is stored in *INFO, which must be non-NULL.
5870 If no match is found, INFO->SYM is set to NULL. */
4e5c77fe
JB
5871
5872void
5873ada_lookup_encoded_symbol (const char *name, const struct block *block,
fe978cb0 5874 domain_enum domain,
d12307c1 5875 struct block_symbol *info)
14f9c5c9 5876{
b5ec771e
PA
5877 /* Since we already have an encoded name, wrap it in '<>' to force a
5878 verbatim match. Otherwise, if the name happens to not look like
5879 an encoded name (because it doesn't include a "__"),
5880 ada_lookup_name_info would re-encode/fold it again, and that
5881 would e.g., incorrectly lowercase object renaming names like
5882 "R28b" -> "r28b". */
5883 std::string verbatim = std::string ("<") + name + '>';
5884
5e2336be 5885 gdb_assert (info != NULL);
f98fc17b 5886 *info = ada_lookup_symbol (verbatim.c_str (), block, domain, NULL);
4e5c77fe 5887}
aeb5907d
JB
5888
5889/* Return a symbol in DOMAIN matching NAME, in BLOCK0 and enclosing
5890 scope and in global scopes, or NULL if none. NAME is folded and
5891 encoded first. Otherwise, the result is as for ada_lookup_symbol_list,
0963b4bd 5892 choosing the first symbol if there are multiple choices.
4e5c77fe
JB
5893 If IS_A_FIELD_OF_THIS is not NULL, it is set to zero. */
5894
d12307c1 5895struct block_symbol
aeb5907d 5896ada_lookup_symbol (const char *name, const struct block *block0,
fe978cb0 5897 domain_enum domain, int *is_a_field_of_this)
aeb5907d
JB
5898{
5899 if (is_a_field_of_this != NULL)
5900 *is_a_field_of_this = 0;
5901
54d343a2 5902 std::vector<struct block_symbol> candidates;
f98fc17b 5903 int n_candidates;
f98fc17b
PA
5904
5905 n_candidates = ada_lookup_symbol_list (name, block0, domain, &candidates);
f98fc17b
PA
5906
5907 if (n_candidates == 0)
54d343a2 5908 return {};
f98fc17b
PA
5909
5910 block_symbol info = candidates[0];
5911 info.symbol = fixup_symbol_section (info.symbol, NULL);
d12307c1 5912 return info;
4c4b4cd2 5913}
14f9c5c9 5914
d12307c1 5915static struct block_symbol
f606139a
DE
5916ada_lookup_symbol_nonlocal (const struct language_defn *langdef,
5917 const char *name,
76a01679 5918 const struct block *block,
21b556f4 5919 const domain_enum domain)
4c4b4cd2 5920{
d12307c1 5921 struct block_symbol sym;
04dccad0
JB
5922
5923 sym = ada_lookup_symbol (name, block_static_block (block), domain, NULL);
d12307c1 5924 if (sym.symbol != NULL)
04dccad0
JB
5925 return sym;
5926
5927 /* If we haven't found a match at this point, try the primitive
5928 types. In other languages, this search is performed before
5929 searching for global symbols in order to short-circuit that
5930 global-symbol search if it happens that the name corresponds
5931 to a primitive type. But we cannot do the same in Ada, because
5932 it is perfectly legitimate for a program to declare a type which
5933 has the same name as a standard type. If looking up a type in
5934 that situation, we have traditionally ignored the primitive type
5935 in favor of user-defined types. This is why, unlike most other
5936 languages, we search the primitive types this late and only after
5937 having searched the global symbols without success. */
5938
5939 if (domain == VAR_DOMAIN)
5940 {
5941 struct gdbarch *gdbarch;
5942
5943 if (block == NULL)
5944 gdbarch = target_gdbarch ();
5945 else
5946 gdbarch = block_gdbarch (block);
d12307c1
PMR
5947 sym.symbol = language_lookup_primitive_type_as_symbol (langdef, gdbarch, name);
5948 if (sym.symbol != NULL)
04dccad0
JB
5949 return sym;
5950 }
5951
d12307c1 5952 return (struct block_symbol) {NULL, NULL};
14f9c5c9
AS
5953}
5954
5955
4c4b4cd2
PH
5956/* True iff STR is a possible encoded suffix of a normal Ada name
5957 that is to be ignored for matching purposes. Suffixes of parallel
5958 names (e.g., XVE) are not included here. Currently, the possible suffixes
5823c3ef 5959 are given by any of the regular expressions:
4c4b4cd2 5960
babe1480
JB
5961 [.$][0-9]+ [nested subprogram suffix, on platforms such as GNU/Linux]
5962 ___[0-9]+ [nested subprogram suffix, on platforms such as HP/UX]
9ac7f98e 5963 TKB [subprogram suffix for task bodies]
babe1480 5964 _E[0-9]+[bs]$ [protected object entry suffixes]
61ee279c 5965 (X[nb]*)?((\$|__)[0-9](_?[0-9]+)|___(JM|LJM|X([FDBUP].*|R[^T]?)))?$
babe1480
JB
5966
5967 Also, any leading "__[0-9]+" sequence is skipped before the suffix
5968 match is performed. This sequence is used to differentiate homonyms,
5969 is an optional part of a valid name suffix. */
4c4b4cd2 5970
14f9c5c9 5971static int
d2e4a39e 5972is_name_suffix (const char *str)
14f9c5c9
AS
5973{
5974 int k;
4c4b4cd2
PH
5975 const char *matching;
5976 const int len = strlen (str);
5977
babe1480
JB
5978 /* Skip optional leading __[0-9]+. */
5979
4c4b4cd2
PH
5980 if (len > 3 && str[0] == '_' && str[1] == '_' && isdigit (str[2]))
5981 {
babe1480
JB
5982 str += 3;
5983 while (isdigit (str[0]))
5984 str += 1;
4c4b4cd2 5985 }
babe1480
JB
5986
5987 /* [.$][0-9]+ */
4c4b4cd2 5988
babe1480 5989 if (str[0] == '.' || str[0] == '$')
4c4b4cd2 5990 {
babe1480 5991 matching = str + 1;
4c4b4cd2
PH
5992 while (isdigit (matching[0]))
5993 matching += 1;
5994 if (matching[0] == '\0')
5995 return 1;
5996 }
5997
5998 /* ___[0-9]+ */
babe1480 5999
4c4b4cd2
PH
6000 if (len > 3 && str[0] == '_' && str[1] == '_' && str[2] == '_')
6001 {
6002 matching = str + 3;
6003 while (isdigit (matching[0]))
6004 matching += 1;
6005 if (matching[0] == '\0')
6006 return 1;
6007 }
6008
9ac7f98e
JB
6009 /* "TKB" suffixes are used for subprograms implementing task bodies. */
6010
6011 if (strcmp (str, "TKB") == 0)
6012 return 1;
6013
529cad9c
PH
6014#if 0
6015 /* FIXME: brobecker/2005-09-23: Protected Object subprograms end
0963b4bd
MS
6016 with a N at the end. Unfortunately, the compiler uses the same
6017 convention for other internal types it creates. So treating
529cad9c 6018 all entity names that end with an "N" as a name suffix causes
0963b4bd
MS
6019 some regressions. For instance, consider the case of an enumerated
6020 type. To support the 'Image attribute, it creates an array whose
529cad9c
PH
6021 name ends with N.
6022 Having a single character like this as a suffix carrying some
0963b4bd 6023 information is a bit risky. Perhaps we should change the encoding
529cad9c
PH
6024 to be something like "_N" instead. In the meantime, do not do
6025 the following check. */
6026 /* Protected Object Subprograms */
6027 if (len == 1 && str [0] == 'N')
6028 return 1;
6029#endif
6030
6031 /* _E[0-9]+[bs]$ */
6032 if (len > 3 && str[0] == '_' && str [1] == 'E' && isdigit (str[2]))
6033 {
6034 matching = str + 3;
6035 while (isdigit (matching[0]))
6036 matching += 1;
6037 if ((matching[0] == 'b' || matching[0] == 's')
6038 && matching [1] == '\0')
6039 return 1;
6040 }
6041
4c4b4cd2
PH
6042 /* ??? We should not modify STR directly, as we are doing below. This
6043 is fine in this case, but may become problematic later if we find
6044 that this alternative did not work, and want to try matching
6045 another one from the begining of STR. Since we modified it, we
6046 won't be able to find the begining of the string anymore! */
14f9c5c9
AS
6047 if (str[0] == 'X')
6048 {
6049 str += 1;
d2e4a39e 6050 while (str[0] != '_' && str[0] != '\0')
4c4b4cd2
PH
6051 {
6052 if (str[0] != 'n' && str[0] != 'b')
6053 return 0;
6054 str += 1;
6055 }
14f9c5c9 6056 }
babe1480 6057
14f9c5c9
AS
6058 if (str[0] == '\000')
6059 return 1;
babe1480 6060
d2e4a39e 6061 if (str[0] == '_')
14f9c5c9
AS
6062 {
6063 if (str[1] != '_' || str[2] == '\000')
4c4b4cd2 6064 return 0;
d2e4a39e 6065 if (str[2] == '_')
4c4b4cd2 6066 {
61ee279c
PH
6067 if (strcmp (str + 3, "JM") == 0)
6068 return 1;
6069 /* FIXME: brobecker/2004-09-30: GNAT will soon stop using
6070 the LJM suffix in favor of the JM one. But we will
6071 still accept LJM as a valid suffix for a reasonable
6072 amount of time, just to allow ourselves to debug programs
6073 compiled using an older version of GNAT. */
4c4b4cd2
PH
6074 if (strcmp (str + 3, "LJM") == 0)
6075 return 1;
6076 if (str[3] != 'X')
6077 return 0;
1265e4aa
JB
6078 if (str[4] == 'F' || str[4] == 'D' || str[4] == 'B'
6079 || str[4] == 'U' || str[4] == 'P')
4c4b4cd2
PH
6080 return 1;
6081 if (str[4] == 'R' && str[5] != 'T')
6082 return 1;
6083 return 0;
6084 }
6085 if (!isdigit (str[2]))
6086 return 0;
6087 for (k = 3; str[k] != '\0'; k += 1)
6088 if (!isdigit (str[k]) && str[k] != '_')
6089 return 0;
14f9c5c9
AS
6090 return 1;
6091 }
4c4b4cd2 6092 if (str[0] == '$' && isdigit (str[1]))
14f9c5c9 6093 {
4c4b4cd2
PH
6094 for (k = 2; str[k] != '\0'; k += 1)
6095 if (!isdigit (str[k]) && str[k] != '_')
6096 return 0;
14f9c5c9
AS
6097 return 1;
6098 }
6099 return 0;
6100}
d2e4a39e 6101
aeb5907d
JB
6102/* Return non-zero if the string starting at NAME and ending before
6103 NAME_END contains no capital letters. */
529cad9c
PH
6104
6105static int
6106is_valid_name_for_wild_match (const char *name0)
6107{
6108 const char *decoded_name = ada_decode (name0);
6109 int i;
6110
5823c3ef
JB
6111 /* If the decoded name starts with an angle bracket, it means that
6112 NAME0 does not follow the GNAT encoding format. It should then
6113 not be allowed as a possible wild match. */
6114 if (decoded_name[0] == '<')
6115 return 0;
6116
529cad9c
PH
6117 for (i=0; decoded_name[i] != '\0'; i++)
6118 if (isalpha (decoded_name[i]) && !islower (decoded_name[i]))
6119 return 0;
6120
6121 return 1;
6122}
6123
73589123
PH
6124/* Advance *NAMEP to next occurrence of TARGET0 in the string NAME0
6125 that could start a simple name. Assumes that *NAMEP points into
6126 the string beginning at NAME0. */
4c4b4cd2 6127
14f9c5c9 6128static int
73589123 6129advance_wild_match (const char **namep, const char *name0, int target0)
14f9c5c9 6130{
73589123 6131 const char *name = *namep;
5b4ee69b 6132
5823c3ef 6133 while (1)
14f9c5c9 6134 {
aa27d0b3 6135 int t0, t1;
73589123
PH
6136
6137 t0 = *name;
6138 if (t0 == '_')
6139 {
6140 t1 = name[1];
6141 if ((t1 >= 'a' && t1 <= 'z') || (t1 >= '0' && t1 <= '9'))
6142 {
6143 name += 1;
61012eef 6144 if (name == name0 + 5 && startswith (name0, "_ada"))
73589123
PH
6145 break;
6146 else
6147 name += 1;
6148 }
aa27d0b3
JB
6149 else if (t1 == '_' && ((name[2] >= 'a' && name[2] <= 'z')
6150 || name[2] == target0))
73589123
PH
6151 {
6152 name += 2;
6153 break;
6154 }
6155 else
6156 return 0;
6157 }
6158 else if ((t0 >= 'a' && t0 <= 'z') || (t0 >= '0' && t0 <= '9'))
6159 name += 1;
6160 else
5823c3ef 6161 return 0;
73589123
PH
6162 }
6163
6164 *namep = name;
6165 return 1;
6166}
6167
b5ec771e
PA
6168/* Return true iff NAME encodes a name of the form prefix.PATN.
6169 Ignores any informational suffixes of NAME (i.e., for which
6170 is_name_suffix is true). Assumes that PATN is a lower-cased Ada
6171 simple name. */
73589123 6172
b5ec771e 6173static bool
73589123
PH
6174wild_match (const char *name, const char *patn)
6175{
22e048c9 6176 const char *p;
73589123
PH
6177 const char *name0 = name;
6178
6179 while (1)
6180 {
6181 const char *match = name;
6182
6183 if (*name == *patn)
6184 {
6185 for (name += 1, p = patn + 1; *p != '\0'; name += 1, p += 1)
6186 if (*p != *name)
6187 break;
6188 if (*p == '\0' && is_name_suffix (name))
b5ec771e 6189 return match == name0 || is_valid_name_for_wild_match (name0);
73589123
PH
6190
6191 if (name[-1] == '_')
6192 name -= 1;
6193 }
6194 if (!advance_wild_match (&name, name0, *patn))
b5ec771e 6195 return false;
96d887e8 6196 }
96d887e8
PH
6197}
6198
b5ec771e
PA
6199/* Returns true iff symbol name SYM_NAME matches SEARCH_NAME, ignoring
6200 any trailing suffixes that encode debugging information or leading
6201 _ada_ on SYM_NAME (see is_name_suffix commentary for the debugging
6202 information that is ignored). */
40658b94 6203
b5ec771e 6204static bool
c4d840bd
PH
6205full_match (const char *sym_name, const char *search_name)
6206{
b5ec771e
PA
6207 size_t search_name_len = strlen (search_name);
6208
6209 if (strncmp (sym_name, search_name, search_name_len) == 0
6210 && is_name_suffix (sym_name + search_name_len))
6211 return true;
6212
6213 if (startswith (sym_name, "_ada_")
6214 && strncmp (sym_name + 5, search_name, search_name_len) == 0
6215 && is_name_suffix (sym_name + search_name_len + 5))
6216 return true;
c4d840bd 6217
b5ec771e
PA
6218 return false;
6219}
c4d840bd 6220
b5ec771e
PA
6221/* Add symbols from BLOCK matching LOOKUP_NAME in DOMAIN to vector
6222 *defn_symbols, updating the list of symbols in OBSTACKP (if
6223 necessary). OBJFILE is the section containing BLOCK. */
96d887e8
PH
6224
6225static void
6226ada_add_block_symbols (struct obstack *obstackp,
b5ec771e
PA
6227 const struct block *block,
6228 const lookup_name_info &lookup_name,
6229 domain_enum domain, struct objfile *objfile)
96d887e8 6230{
8157b174 6231 struct block_iterator iter;
96d887e8
PH
6232 /* A matching argument symbol, if any. */
6233 struct symbol *arg_sym;
6234 /* Set true when we find a matching non-argument symbol. */
6235 int found_sym;
6236 struct symbol *sym;
6237
6238 arg_sym = NULL;
6239 found_sym = 0;
b5ec771e
PA
6240 for (sym = block_iter_match_first (block, lookup_name, &iter);
6241 sym != NULL;
6242 sym = block_iter_match_next (lookup_name, &iter))
96d887e8 6243 {
b5ec771e
PA
6244 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
6245 SYMBOL_DOMAIN (sym), domain))
6246 {
6247 if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED)
6248 {
6249 if (SYMBOL_IS_ARGUMENT (sym))
6250 arg_sym = sym;
6251 else
6252 {
6253 found_sym = 1;
6254 add_defn_to_vec (obstackp,
6255 fixup_symbol_section (sym, objfile),
6256 block);
6257 }
6258 }
6259 }
96d887e8
PH
6260 }
6261
22cee43f
PMR
6262 /* Handle renamings. */
6263
b5ec771e 6264 if (ada_add_block_renamings (obstackp, block, lookup_name, domain))
22cee43f
PMR
6265 found_sym = 1;
6266
96d887e8
PH
6267 if (!found_sym && arg_sym != NULL)
6268 {
76a01679
JB
6269 add_defn_to_vec (obstackp,
6270 fixup_symbol_section (arg_sym, objfile),
2570f2b7 6271 block);
96d887e8
PH
6272 }
6273
b5ec771e 6274 if (!lookup_name.ada ().wild_match_p ())
96d887e8
PH
6275 {
6276 arg_sym = NULL;
6277 found_sym = 0;
b5ec771e
PA
6278 const std::string &ada_lookup_name = lookup_name.ada ().lookup_name ();
6279 const char *name = ada_lookup_name.c_str ();
6280 size_t name_len = ada_lookup_name.size ();
96d887e8
PH
6281
6282 ALL_BLOCK_SYMBOLS (block, iter, sym)
76a01679 6283 {
4186eb54
KS
6284 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
6285 SYMBOL_DOMAIN (sym), domain))
76a01679
JB
6286 {
6287 int cmp;
6288
6289 cmp = (int) '_' - (int) SYMBOL_LINKAGE_NAME (sym)[0];
6290 if (cmp == 0)
6291 {
61012eef 6292 cmp = !startswith (SYMBOL_LINKAGE_NAME (sym), "_ada_");
76a01679
JB
6293 if (cmp == 0)
6294 cmp = strncmp (name, SYMBOL_LINKAGE_NAME (sym) + 5,
6295 name_len);
6296 }
6297
6298 if (cmp == 0
6299 && is_name_suffix (SYMBOL_LINKAGE_NAME (sym) + name_len + 5))
6300 {
2a2d4dc3
AS
6301 if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED)
6302 {
6303 if (SYMBOL_IS_ARGUMENT (sym))
6304 arg_sym = sym;
6305 else
6306 {
6307 found_sym = 1;
6308 add_defn_to_vec (obstackp,
6309 fixup_symbol_section (sym, objfile),
6310 block);
6311 }
6312 }
76a01679
JB
6313 }
6314 }
76a01679 6315 }
96d887e8
PH
6316
6317 /* NOTE: This really shouldn't be needed for _ada_ symbols.
6318 They aren't parameters, right? */
6319 if (!found_sym && arg_sym != NULL)
6320 {
6321 add_defn_to_vec (obstackp,
76a01679 6322 fixup_symbol_section (arg_sym, objfile),
2570f2b7 6323 block);
96d887e8
PH
6324 }
6325 }
6326}
6327\f
41d27058
JB
6328
6329 /* Symbol Completion */
6330
b5ec771e 6331/* See symtab.h. */
41d27058 6332
b5ec771e
PA
6333bool
6334ada_lookup_name_info::matches
6335 (const char *sym_name,
6336 symbol_name_match_type match_type,
a207cff2 6337 completion_match_result *comp_match_res) const
41d27058 6338{
b5ec771e
PA
6339 bool match = false;
6340 const char *text = m_encoded_name.c_str ();
6341 size_t text_len = m_encoded_name.size ();
41d27058
JB
6342
6343 /* First, test against the fully qualified name of the symbol. */
6344
6345 if (strncmp (sym_name, text, text_len) == 0)
b5ec771e 6346 match = true;
41d27058 6347
b5ec771e 6348 if (match && !m_encoded_p)
41d27058
JB
6349 {
6350 /* One needed check before declaring a positive match is to verify
6351 that iff we are doing a verbatim match, the decoded version
6352 of the symbol name starts with '<'. Otherwise, this symbol name
6353 is not a suitable completion. */
6354 const char *sym_name_copy = sym_name;
b5ec771e 6355 bool has_angle_bracket;
41d27058
JB
6356
6357 sym_name = ada_decode (sym_name);
6358 has_angle_bracket = (sym_name[0] == '<');
b5ec771e 6359 match = (has_angle_bracket == m_verbatim_p);
41d27058
JB
6360 sym_name = sym_name_copy;
6361 }
6362
b5ec771e 6363 if (match && !m_verbatim_p)
41d27058
JB
6364 {
6365 /* When doing non-verbatim match, another check that needs to
6366 be done is to verify that the potentially matching symbol name
6367 does not include capital letters, because the ada-mode would
6368 not be able to understand these symbol names without the
6369 angle bracket notation. */
6370 const char *tmp;
6371
6372 for (tmp = sym_name; *tmp != '\0' && !isupper (*tmp); tmp++);
6373 if (*tmp != '\0')
b5ec771e 6374 match = false;
41d27058
JB
6375 }
6376
6377 /* Second: Try wild matching... */
6378
b5ec771e 6379 if (!match && m_wild_match_p)
41d27058
JB
6380 {
6381 /* Since we are doing wild matching, this means that TEXT
6382 may represent an unqualified symbol name. We therefore must
6383 also compare TEXT against the unqualified name of the symbol. */
6384 sym_name = ada_unqualified_name (ada_decode (sym_name));
6385
6386 if (strncmp (sym_name, text, text_len) == 0)
b5ec771e 6387 match = true;
41d27058
JB
6388 }
6389
b5ec771e 6390 /* Finally: If we found a match, prepare the result to return. */
41d27058
JB
6391
6392 if (!match)
b5ec771e 6393 return false;
41d27058 6394
a207cff2 6395 if (comp_match_res != NULL)
b5ec771e 6396 {
a207cff2 6397 std::string &match_str = comp_match_res->match.storage ();
41d27058 6398
b5ec771e 6399 if (!m_encoded_p)
a207cff2 6400 match_str = ada_decode (sym_name);
b5ec771e
PA
6401 else
6402 {
6403 if (m_verbatim_p)
6404 match_str = add_angle_brackets (sym_name);
6405 else
6406 match_str = sym_name;
41d27058 6407
b5ec771e 6408 }
a207cff2
PA
6409
6410 comp_match_res->set_match (match_str.c_str ());
41d27058
JB
6411 }
6412
b5ec771e 6413 return true;
41d27058
JB
6414}
6415
b5ec771e 6416/* Add the list of possible symbol names completing TEXT to TRACKER.
eb3ff9a5 6417 WORD is the entire command on which completion is made. */
41d27058 6418
eb3ff9a5
PA
6419static void
6420ada_collect_symbol_completion_matches (completion_tracker &tracker,
c6756f62 6421 complete_symbol_mode mode,
b5ec771e
PA
6422 symbol_name_match_type name_match_type,
6423 const char *text, const char *word,
eb3ff9a5 6424 enum type_code code)
41d27058 6425{
41d27058 6426 struct symbol *sym;
43f3e411 6427 struct compunit_symtab *s;
41d27058
JB
6428 struct minimal_symbol *msymbol;
6429 struct objfile *objfile;
3977b71f 6430 const struct block *b, *surrounding_static_block = 0;
8157b174 6431 struct block_iterator iter;
41d27058 6432
2f68a895
TT
6433 gdb_assert (code == TYPE_CODE_UNDEF);
6434
1b026119 6435 lookup_name_info lookup_name (text, name_match_type, true);
41d27058
JB
6436
6437 /* First, look at the partial symtab symbols. */
14bc53a8 6438 expand_symtabs_matching (NULL,
b5ec771e
PA
6439 lookup_name,
6440 NULL,
14bc53a8
PA
6441 NULL,
6442 ALL_DOMAIN);
41d27058
JB
6443
6444 /* At this point scan through the misc symbol vectors and add each
6445 symbol you find to the list. Eventually we want to ignore
6446 anything that isn't a text symbol (everything else will be
6447 handled by the psymtab code above). */
6448
6449 ALL_MSYMBOLS (objfile, msymbol)
6450 {
6451 QUIT;
b5ec771e 6452
f9d67a22
PA
6453 if (completion_skip_symbol (mode, msymbol))
6454 continue;
6455
d4c2a405
PA
6456 language symbol_language = MSYMBOL_LANGUAGE (msymbol);
6457
6458 /* Ada minimal symbols won't have their language set to Ada. If
6459 we let completion_list_add_name compare using the
6460 default/C-like matcher, then when completing e.g., symbols in a
6461 package named "pck", we'd match internal Ada symbols like
6462 "pckS", which are invalid in an Ada expression, unless you wrap
6463 them in '<' '>' to request a verbatim match.
6464
6465 Unfortunately, some Ada encoded names successfully demangle as
6466 C++ symbols (using an old mangling scheme), such as "name__2Xn"
6467 -> "Xn::name(void)" and thus some Ada minimal symbols end up
6468 with the wrong language set. Paper over that issue here. */
6469 if (symbol_language == language_auto
6470 || symbol_language == language_cplus)
6471 symbol_language = language_ada;
6472
b5ec771e 6473 completion_list_add_name (tracker,
d4c2a405 6474 symbol_language,
b5ec771e 6475 MSYMBOL_LINKAGE_NAME (msymbol),
1b026119 6476 lookup_name, text, word);
41d27058
JB
6477 }
6478
6479 /* Search upwards from currently selected frame (so that we can
6480 complete on local vars. */
6481
6482 for (b = get_selected_block (0); b != NULL; b = BLOCK_SUPERBLOCK (b))
6483 {
6484 if (!BLOCK_SUPERBLOCK (b))
6485 surrounding_static_block = b; /* For elmin of dups */
6486
6487 ALL_BLOCK_SYMBOLS (b, iter, sym)
6488 {
f9d67a22
PA
6489 if (completion_skip_symbol (mode, sym))
6490 continue;
6491
b5ec771e
PA
6492 completion_list_add_name (tracker,
6493 SYMBOL_LANGUAGE (sym),
6494 SYMBOL_LINKAGE_NAME (sym),
1b026119 6495 lookup_name, text, word);
41d27058
JB
6496 }
6497 }
6498
6499 /* Go through the symtabs and check the externs and statics for
43f3e411 6500 symbols which match. */
41d27058 6501
43f3e411 6502 ALL_COMPUNITS (objfile, s)
41d27058
JB
6503 {
6504 QUIT;
43f3e411 6505 b = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (s), GLOBAL_BLOCK);
41d27058
JB
6506 ALL_BLOCK_SYMBOLS (b, iter, sym)
6507 {
f9d67a22
PA
6508 if (completion_skip_symbol (mode, sym))
6509 continue;
6510
b5ec771e
PA
6511 completion_list_add_name (tracker,
6512 SYMBOL_LANGUAGE (sym),
6513 SYMBOL_LINKAGE_NAME (sym),
1b026119 6514 lookup_name, text, word);
41d27058
JB
6515 }
6516 }
6517
43f3e411 6518 ALL_COMPUNITS (objfile, s)
41d27058
JB
6519 {
6520 QUIT;
43f3e411 6521 b = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (s), STATIC_BLOCK);
41d27058
JB
6522 /* Don't do this block twice. */
6523 if (b == surrounding_static_block)
6524 continue;
6525 ALL_BLOCK_SYMBOLS (b, iter, sym)
6526 {
f9d67a22
PA
6527 if (completion_skip_symbol (mode, sym))
6528 continue;
6529
b5ec771e
PA
6530 completion_list_add_name (tracker,
6531 SYMBOL_LANGUAGE (sym),
6532 SYMBOL_LINKAGE_NAME (sym),
1b026119 6533 lookup_name, text, word);
41d27058
JB
6534 }
6535 }
41d27058
JB
6536}
6537
963a6417 6538 /* Field Access */
96d887e8 6539
73fb9985
JB
6540/* Return non-zero if TYPE is a pointer to the GNAT dispatch table used
6541 for tagged types. */
6542
6543static int
6544ada_is_dispatch_table_ptr_type (struct type *type)
6545{
0d5cff50 6546 const char *name;
73fb9985
JB
6547
6548 if (TYPE_CODE (type) != TYPE_CODE_PTR)
6549 return 0;
6550
6551 name = TYPE_NAME (TYPE_TARGET_TYPE (type));
6552 if (name == NULL)
6553 return 0;
6554
6555 return (strcmp (name, "ada__tags__dispatch_table") == 0);
6556}
6557
ac4a2da4
JG
6558/* Return non-zero if TYPE is an interface tag. */
6559
6560static int
6561ada_is_interface_tag (struct type *type)
6562{
6563 const char *name = TYPE_NAME (type);
6564
6565 if (name == NULL)
6566 return 0;
6567
6568 return (strcmp (name, "ada__tags__interface_tag") == 0);
6569}
6570
963a6417
PH
6571/* True if field number FIELD_NUM in struct or union type TYPE is supposed
6572 to be invisible to users. */
96d887e8 6573
963a6417
PH
6574int
6575ada_is_ignored_field (struct type *type, int field_num)
96d887e8 6576{
963a6417
PH
6577 if (field_num < 0 || field_num > TYPE_NFIELDS (type))
6578 return 1;
ffde82bf 6579
73fb9985
JB
6580 /* Check the name of that field. */
6581 {
6582 const char *name = TYPE_FIELD_NAME (type, field_num);
6583
6584 /* Anonymous field names should not be printed.
6585 brobecker/2007-02-20: I don't think this can actually happen
6586 but we don't want to print the value of annonymous fields anyway. */
6587 if (name == NULL)
6588 return 1;
6589
ffde82bf
JB
6590 /* Normally, fields whose name start with an underscore ("_")
6591 are fields that have been internally generated by the compiler,
6592 and thus should not be printed. The "_parent" field is special,
6593 however: This is a field internally generated by the compiler
6594 for tagged types, and it contains the components inherited from
6595 the parent type. This field should not be printed as is, but
6596 should not be ignored either. */
61012eef 6597 if (name[0] == '_' && !startswith (name, "_parent"))
73fb9985
JB
6598 return 1;
6599 }
6600
ac4a2da4
JG
6601 /* If this is the dispatch table of a tagged type or an interface tag,
6602 then ignore. */
73fb9985 6603 if (ada_is_tagged_type (type, 1)
ac4a2da4
JG
6604 && (ada_is_dispatch_table_ptr_type (TYPE_FIELD_TYPE (type, field_num))
6605 || ada_is_interface_tag (TYPE_FIELD_TYPE (type, field_num))))
73fb9985
JB
6606 return 1;
6607
6608 /* Not a special field, so it should not be ignored. */
6609 return 0;
963a6417 6610}
96d887e8 6611
963a6417 6612/* True iff TYPE has a tag field. If REFOK, then TYPE may also be a
0963b4bd 6613 pointer or reference type whose ultimate target has a tag field. */
96d887e8 6614
963a6417
PH
6615int
6616ada_is_tagged_type (struct type *type, int refok)
6617{
988f6b3d 6618 return (ada_lookup_struct_elt_type (type, "_tag", refok, 1) != NULL);
963a6417 6619}
96d887e8 6620
963a6417 6621/* True iff TYPE represents the type of X'Tag */
96d887e8 6622
963a6417
PH
6623int
6624ada_is_tag_type (struct type *type)
6625{
460efde1
JB
6626 type = ada_check_typedef (type);
6627
963a6417
PH
6628 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_PTR)
6629 return 0;
6630 else
96d887e8 6631 {
963a6417 6632 const char *name = ada_type_name (TYPE_TARGET_TYPE (type));
5b4ee69b 6633
963a6417
PH
6634 return (name != NULL
6635 && strcmp (name, "ada__tags__dispatch_table") == 0);
96d887e8 6636 }
96d887e8
PH
6637}
6638
963a6417 6639/* The type of the tag on VAL. */
76a01679 6640
963a6417
PH
6641struct type *
6642ada_tag_type (struct value *val)
96d887e8 6643{
988f6b3d 6644 return ada_lookup_struct_elt_type (value_type (val), "_tag", 1, 0);
963a6417 6645}
96d887e8 6646
b50d69b5
JG
6647/* Return 1 if TAG follows the old scheme for Ada tags (used for Ada 95,
6648 retired at Ada 05). */
6649
6650static int
6651is_ada95_tag (struct value *tag)
6652{
6653 return ada_value_struct_elt (tag, "tsd", 1) != NULL;
6654}
6655
963a6417 6656/* The value of the tag on VAL. */
96d887e8 6657
963a6417
PH
6658struct value *
6659ada_value_tag (struct value *val)
6660{
03ee6b2e 6661 return ada_value_struct_elt (val, "_tag", 0);
96d887e8
PH
6662}
6663
963a6417
PH
6664/* The value of the tag on the object of type TYPE whose contents are
6665 saved at VALADDR, if it is non-null, or is at memory address
0963b4bd 6666 ADDRESS. */
96d887e8 6667
963a6417 6668static struct value *
10a2c479 6669value_tag_from_contents_and_address (struct type *type,
fc1a4b47 6670 const gdb_byte *valaddr,
963a6417 6671 CORE_ADDR address)
96d887e8 6672{
b5385fc0 6673 int tag_byte_offset;
963a6417 6674 struct type *tag_type;
5b4ee69b 6675
963a6417 6676 if (find_struct_field ("_tag", type, 0, &tag_type, &tag_byte_offset,
52ce6436 6677 NULL, NULL, NULL))
96d887e8 6678 {
fc1a4b47 6679 const gdb_byte *valaddr1 = ((valaddr == NULL)
10a2c479
AC
6680 ? NULL
6681 : valaddr + tag_byte_offset);
963a6417 6682 CORE_ADDR address1 = (address == 0) ? 0 : address + tag_byte_offset;
96d887e8 6683
963a6417 6684 return value_from_contents_and_address (tag_type, valaddr1, address1);
96d887e8 6685 }
963a6417
PH
6686 return NULL;
6687}
96d887e8 6688
963a6417
PH
6689static struct type *
6690type_from_tag (struct value *tag)
6691{
6692 const char *type_name = ada_tag_name (tag);
5b4ee69b 6693
963a6417
PH
6694 if (type_name != NULL)
6695 return ada_find_any_type (ada_encode (type_name));
6696 return NULL;
6697}
96d887e8 6698
b50d69b5
JG
6699/* Given a value OBJ of a tagged type, return a value of this
6700 type at the base address of the object. The base address, as
6701 defined in Ada.Tags, it is the address of the primary tag of
6702 the object, and therefore where the field values of its full
6703 view can be fetched. */
6704
6705struct value *
6706ada_tag_value_at_base_address (struct value *obj)
6707{
b50d69b5
JG
6708 struct value *val;
6709 LONGEST offset_to_top = 0;
6710 struct type *ptr_type, *obj_type;
6711 struct value *tag;
6712 CORE_ADDR base_address;
6713
6714 obj_type = value_type (obj);
6715
6716 /* It is the responsability of the caller to deref pointers. */
6717
6718 if (TYPE_CODE (obj_type) == TYPE_CODE_PTR
6719 || TYPE_CODE (obj_type) == TYPE_CODE_REF)
6720 return obj;
6721
6722 tag = ada_value_tag (obj);
6723 if (!tag)
6724 return obj;
6725
6726 /* Base addresses only appeared with Ada 05 and multiple inheritance. */
6727
6728 if (is_ada95_tag (tag))
6729 return obj;
6730
08f49010
XR
6731 ptr_type = language_lookup_primitive_type
6732 (language_def (language_ada), target_gdbarch(), "storage_offset");
b50d69b5
JG
6733 ptr_type = lookup_pointer_type (ptr_type);
6734 val = value_cast (ptr_type, tag);
6735 if (!val)
6736 return obj;
6737
6738 /* It is perfectly possible that an exception be raised while
6739 trying to determine the base address, just like for the tag;
6740 see ada_tag_name for more details. We do not print the error
6741 message for the same reason. */
6742
492d29ea 6743 TRY
b50d69b5
JG
6744 {
6745 offset_to_top = value_as_long (value_ind (value_ptradd (val, -2)));
6746 }
6747
492d29ea
PA
6748 CATCH (e, RETURN_MASK_ERROR)
6749 {
6750 return obj;
6751 }
6752 END_CATCH
b50d69b5
JG
6753
6754 /* If offset is null, nothing to do. */
6755
6756 if (offset_to_top == 0)
6757 return obj;
6758
6759 /* -1 is a special case in Ada.Tags; however, what should be done
6760 is not quite clear from the documentation. So do nothing for
6761 now. */
6762
6763 if (offset_to_top == -1)
6764 return obj;
6765
08f49010
XR
6766 /* OFFSET_TO_TOP used to be a positive value to be subtracted
6767 from the base address. This was however incompatible with
6768 C++ dispatch table: C++ uses a *negative* value to *add*
6769 to the base address. Ada's convention has therefore been
6770 changed in GNAT 19.0w 20171023: since then, C++ and Ada
6771 use the same convention. Here, we support both cases by
6772 checking the sign of OFFSET_TO_TOP. */
6773
6774 if (offset_to_top > 0)
6775 offset_to_top = -offset_to_top;
6776
6777 base_address = value_address (obj) + offset_to_top;
b50d69b5
JG
6778 tag = value_tag_from_contents_and_address (obj_type, NULL, base_address);
6779
6780 /* Make sure that we have a proper tag at the new address.
6781 Otherwise, offset_to_top is bogus (which can happen when
6782 the object is not initialized yet). */
6783
6784 if (!tag)
6785 return obj;
6786
6787 obj_type = type_from_tag (tag);
6788
6789 if (!obj_type)
6790 return obj;
6791
6792 return value_from_contents_and_address (obj_type, NULL, base_address);
6793}
6794
1b611343
JB
6795/* Return the "ada__tags__type_specific_data" type. */
6796
6797static struct type *
6798ada_get_tsd_type (struct inferior *inf)
963a6417 6799{
1b611343 6800 struct ada_inferior_data *data = get_ada_inferior_data (inf);
4c4b4cd2 6801
1b611343
JB
6802 if (data->tsd_type == 0)
6803 data->tsd_type = ada_find_any_type ("ada__tags__type_specific_data");
6804 return data->tsd_type;
6805}
529cad9c 6806
1b611343
JB
6807/* Return the TSD (type-specific data) associated to the given TAG.
6808 TAG is assumed to be the tag of a tagged-type entity.
529cad9c 6809
1b611343 6810 May return NULL if we are unable to get the TSD. */
4c4b4cd2 6811
1b611343
JB
6812static struct value *
6813ada_get_tsd_from_tag (struct value *tag)
4c4b4cd2 6814{
4c4b4cd2 6815 struct value *val;
1b611343 6816 struct type *type;
5b4ee69b 6817
1b611343
JB
6818 /* First option: The TSD is simply stored as a field of our TAG.
6819 Only older versions of GNAT would use this format, but we have
6820 to test it first, because there are no visible markers for
6821 the current approach except the absence of that field. */
529cad9c 6822
1b611343
JB
6823 val = ada_value_struct_elt (tag, "tsd", 1);
6824 if (val)
6825 return val;
e802dbe0 6826
1b611343
JB
6827 /* Try the second representation for the dispatch table (in which
6828 there is no explicit 'tsd' field in the referent of the tag pointer,
6829 and instead the tsd pointer is stored just before the dispatch
6830 table. */
e802dbe0 6831
1b611343
JB
6832 type = ada_get_tsd_type (current_inferior());
6833 if (type == NULL)
6834 return NULL;
6835 type = lookup_pointer_type (lookup_pointer_type (type));
6836 val = value_cast (type, tag);
6837 if (val == NULL)
6838 return NULL;
6839 return value_ind (value_ptradd (val, -1));
e802dbe0
JB
6840}
6841
1b611343
JB
6842/* Given the TSD of a tag (type-specific data), return a string
6843 containing the name of the associated type.
6844
6845 The returned value is good until the next call. May return NULL
6846 if we are unable to determine the tag name. */
6847
6848static char *
6849ada_tag_name_from_tsd (struct value *tsd)
529cad9c 6850{
529cad9c
PH
6851 static char name[1024];
6852 char *p;
1b611343 6853 struct value *val;
529cad9c 6854
1b611343 6855 val = ada_value_struct_elt (tsd, "expanded_name", 1);
4c4b4cd2 6856 if (val == NULL)
1b611343 6857 return NULL;
4c4b4cd2
PH
6858 read_memory_string (value_as_address (val), name, sizeof (name) - 1);
6859 for (p = name; *p != '\0'; p += 1)
6860 if (isalpha (*p))
6861 *p = tolower (*p);
1b611343 6862 return name;
4c4b4cd2
PH
6863}
6864
6865/* The type name of the dynamic type denoted by the 'tag value TAG, as
1b611343
JB
6866 a C string.
6867
6868 Return NULL if the TAG is not an Ada tag, or if we were unable to
6869 determine the name of that tag. The result is good until the next
6870 call. */
4c4b4cd2
PH
6871
6872const char *
6873ada_tag_name (struct value *tag)
6874{
1b611343 6875 char *name = NULL;
5b4ee69b 6876
df407dfe 6877 if (!ada_is_tag_type (value_type (tag)))
4c4b4cd2 6878 return NULL;
1b611343
JB
6879
6880 /* It is perfectly possible that an exception be raised while trying
6881 to determine the TAG's name, even under normal circumstances:
6882 The associated variable may be uninitialized or corrupted, for
6883 instance. We do not let any exception propagate past this point.
6884 instead we return NULL.
6885
6886 We also do not print the error message either (which often is very
6887 low-level (Eg: "Cannot read memory at 0x[...]"), but instead let
6888 the caller print a more meaningful message if necessary. */
492d29ea 6889 TRY
1b611343
JB
6890 {
6891 struct value *tsd = ada_get_tsd_from_tag (tag);
6892
6893 if (tsd != NULL)
6894 name = ada_tag_name_from_tsd (tsd);
6895 }
492d29ea
PA
6896 CATCH (e, RETURN_MASK_ERROR)
6897 {
6898 }
6899 END_CATCH
1b611343
JB
6900
6901 return name;
4c4b4cd2
PH
6902}
6903
6904/* The parent type of TYPE, or NULL if none. */
14f9c5c9 6905
d2e4a39e 6906struct type *
ebf56fd3 6907ada_parent_type (struct type *type)
14f9c5c9
AS
6908{
6909 int i;
6910
61ee279c 6911 type = ada_check_typedef (type);
14f9c5c9
AS
6912
6913 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT)
6914 return NULL;
6915
6916 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
6917 if (ada_is_parent_field (type, i))
0c1f74cf
JB
6918 {
6919 struct type *parent_type = TYPE_FIELD_TYPE (type, i);
6920
6921 /* If the _parent field is a pointer, then dereference it. */
6922 if (TYPE_CODE (parent_type) == TYPE_CODE_PTR)
6923 parent_type = TYPE_TARGET_TYPE (parent_type);
6924 /* If there is a parallel XVS type, get the actual base type. */
6925 parent_type = ada_get_base_type (parent_type);
6926
6927 return ada_check_typedef (parent_type);
6928 }
14f9c5c9
AS
6929
6930 return NULL;
6931}
6932
4c4b4cd2
PH
6933/* True iff field number FIELD_NUM of structure type TYPE contains the
6934 parent-type (inherited) fields of a derived type. Assumes TYPE is
6935 a structure type with at least FIELD_NUM+1 fields. */
14f9c5c9
AS
6936
6937int
ebf56fd3 6938ada_is_parent_field (struct type *type, int field_num)
14f9c5c9 6939{
61ee279c 6940 const char *name = TYPE_FIELD_NAME (ada_check_typedef (type), field_num);
5b4ee69b 6941
4c4b4cd2 6942 return (name != NULL
61012eef
GB
6943 && (startswith (name, "PARENT")
6944 || startswith (name, "_parent")));
14f9c5c9
AS
6945}
6946
4c4b4cd2 6947/* True iff field number FIELD_NUM of structure type TYPE is a
14f9c5c9 6948 transparent wrapper field (which should be silently traversed when doing
4c4b4cd2 6949 field selection and flattened when printing). Assumes TYPE is a
14f9c5c9 6950 structure type with at least FIELD_NUM+1 fields. Such fields are always
4c4b4cd2 6951 structures. */
14f9c5c9
AS
6952
6953int
ebf56fd3 6954ada_is_wrapper_field (struct type *type, int field_num)
14f9c5c9 6955{
d2e4a39e 6956 const char *name = TYPE_FIELD_NAME (type, field_num);
5b4ee69b 6957
dddc0e16
JB
6958 if (name != NULL && strcmp (name, "RETVAL") == 0)
6959 {
6960 /* This happens in functions with "out" or "in out" parameters
6961 which are passed by copy. For such functions, GNAT describes
6962 the function's return type as being a struct where the return
6963 value is in a field called RETVAL, and where the other "out"
6964 or "in out" parameters are fields of that struct. This is not
6965 a wrapper. */
6966 return 0;
6967 }
6968
d2e4a39e 6969 return (name != NULL
61012eef 6970 && (startswith (name, "PARENT")
4c4b4cd2 6971 || strcmp (name, "REP") == 0
61012eef 6972 || startswith (name, "_parent")
4c4b4cd2 6973 || name[0] == 'S' || name[0] == 'R' || name[0] == 'O'));
14f9c5c9
AS
6974}
6975
4c4b4cd2
PH
6976/* True iff field number FIELD_NUM of structure or union type TYPE
6977 is a variant wrapper. Assumes TYPE is a structure type with at least
6978 FIELD_NUM+1 fields. */
14f9c5c9
AS
6979
6980int
ebf56fd3 6981ada_is_variant_part (struct type *type, int field_num)
14f9c5c9 6982{
d2e4a39e 6983 struct type *field_type = TYPE_FIELD_TYPE (type, field_num);
5b4ee69b 6984
14f9c5c9 6985 return (TYPE_CODE (field_type) == TYPE_CODE_UNION
4c4b4cd2 6986 || (is_dynamic_field (type, field_num)
c3e5cd34
PH
6987 && (TYPE_CODE (TYPE_TARGET_TYPE (field_type))
6988 == TYPE_CODE_UNION)));
14f9c5c9
AS
6989}
6990
6991/* Assuming that VAR_TYPE is a variant wrapper (type of the variant part)
4c4b4cd2 6992 whose discriminants are contained in the record type OUTER_TYPE,
7c964f07
UW
6993 returns the type of the controlling discriminant for the variant.
6994 May return NULL if the type could not be found. */
14f9c5c9 6995
d2e4a39e 6996struct type *
ebf56fd3 6997ada_variant_discrim_type (struct type *var_type, struct type *outer_type)
14f9c5c9 6998{
a121b7c1 6999 const char *name = ada_variant_discrim_name (var_type);
5b4ee69b 7000
988f6b3d 7001 return ada_lookup_struct_elt_type (outer_type, name, 1, 1);
14f9c5c9
AS
7002}
7003
4c4b4cd2 7004/* Assuming that TYPE is the type of a variant wrapper, and FIELD_NUM is a
14f9c5c9 7005 valid field number within it, returns 1 iff field FIELD_NUM of TYPE
4c4b4cd2 7006 represents a 'when others' clause; otherwise 0. */
14f9c5c9
AS
7007
7008int
ebf56fd3 7009ada_is_others_clause (struct type *type, int field_num)
14f9c5c9 7010{
d2e4a39e 7011 const char *name = TYPE_FIELD_NAME (type, field_num);
5b4ee69b 7012
14f9c5c9
AS
7013 return (name != NULL && name[0] == 'O');
7014}
7015
7016/* Assuming that TYPE0 is the type of the variant part of a record,
4c4b4cd2
PH
7017 returns the name of the discriminant controlling the variant.
7018 The value is valid until the next call to ada_variant_discrim_name. */
14f9c5c9 7019
a121b7c1 7020const char *
ebf56fd3 7021ada_variant_discrim_name (struct type *type0)
14f9c5c9 7022{
d2e4a39e 7023 static char *result = NULL;
14f9c5c9 7024 static size_t result_len = 0;
d2e4a39e
AS
7025 struct type *type;
7026 const char *name;
7027 const char *discrim_end;
7028 const char *discrim_start;
14f9c5c9
AS
7029
7030 if (TYPE_CODE (type0) == TYPE_CODE_PTR)
7031 type = TYPE_TARGET_TYPE (type0);
7032 else
7033 type = type0;
7034
7035 name = ada_type_name (type);
7036
7037 if (name == NULL || name[0] == '\000')
7038 return "";
7039
7040 for (discrim_end = name + strlen (name) - 6; discrim_end != name;
7041 discrim_end -= 1)
7042 {
61012eef 7043 if (startswith (discrim_end, "___XVN"))
4c4b4cd2 7044 break;
14f9c5c9
AS
7045 }
7046 if (discrim_end == name)
7047 return "";
7048
d2e4a39e 7049 for (discrim_start = discrim_end; discrim_start != name + 3;
14f9c5c9
AS
7050 discrim_start -= 1)
7051 {
d2e4a39e 7052 if (discrim_start == name + 1)
4c4b4cd2 7053 return "";
76a01679 7054 if ((discrim_start > name + 3
61012eef 7055 && startswith (discrim_start - 3, "___"))
4c4b4cd2
PH
7056 || discrim_start[-1] == '.')
7057 break;
14f9c5c9
AS
7058 }
7059
7060 GROW_VECT (result, result_len, discrim_end - discrim_start + 1);
7061 strncpy (result, discrim_start, discrim_end - discrim_start);
d2e4a39e 7062 result[discrim_end - discrim_start] = '\0';
14f9c5c9
AS
7063 return result;
7064}
7065
4c4b4cd2
PH
7066/* Scan STR for a subtype-encoded number, beginning at position K.
7067 Put the position of the character just past the number scanned in
7068 *NEW_K, if NEW_K!=NULL. Put the scanned number in *R, if R!=NULL.
7069 Return 1 if there was a valid number at the given position, and 0
7070 otherwise. A "subtype-encoded" number consists of the absolute value
7071 in decimal, followed by the letter 'm' to indicate a negative number.
7072 Assumes 0m does not occur. */
14f9c5c9
AS
7073
7074int
d2e4a39e 7075ada_scan_number (const char str[], int k, LONGEST * R, int *new_k)
14f9c5c9
AS
7076{
7077 ULONGEST RU;
7078
d2e4a39e 7079 if (!isdigit (str[k]))
14f9c5c9
AS
7080 return 0;
7081
4c4b4cd2 7082 /* Do it the hard way so as not to make any assumption about
14f9c5c9 7083 the relationship of unsigned long (%lu scan format code) and
4c4b4cd2 7084 LONGEST. */
14f9c5c9
AS
7085 RU = 0;
7086 while (isdigit (str[k]))
7087 {
d2e4a39e 7088 RU = RU * 10 + (str[k] - '0');
14f9c5c9
AS
7089 k += 1;
7090 }
7091
d2e4a39e 7092 if (str[k] == 'm')
14f9c5c9
AS
7093 {
7094 if (R != NULL)
4c4b4cd2 7095 *R = (-(LONGEST) (RU - 1)) - 1;
14f9c5c9
AS
7096 k += 1;
7097 }
7098 else if (R != NULL)
7099 *R = (LONGEST) RU;
7100
4c4b4cd2 7101 /* NOTE on the above: Technically, C does not say what the results of
14f9c5c9
AS
7102 - (LONGEST) RU or (LONGEST) -RU are for RU == largest positive
7103 number representable as a LONGEST (although either would probably work
7104 in most implementations). When RU>0, the locution in the then branch
4c4b4cd2 7105 above is always equivalent to the negative of RU. */
14f9c5c9
AS
7106
7107 if (new_k != NULL)
7108 *new_k = k;
7109 return 1;
7110}
7111
4c4b4cd2
PH
7112/* Assuming that TYPE is a variant part wrapper type (a VARIANTS field),
7113 and FIELD_NUM is a valid field number within it, returns 1 iff VAL is
7114 in the range encoded by field FIELD_NUM of TYPE; otherwise 0. */
14f9c5c9 7115
d2e4a39e 7116int
ebf56fd3 7117ada_in_variant (LONGEST val, struct type *type, int field_num)
14f9c5c9 7118{
d2e4a39e 7119 const char *name = TYPE_FIELD_NAME (type, field_num);
14f9c5c9
AS
7120 int p;
7121
7122 p = 0;
7123 while (1)
7124 {
d2e4a39e 7125 switch (name[p])
4c4b4cd2
PH
7126 {
7127 case '\0':
7128 return 0;
7129 case 'S':
7130 {
7131 LONGEST W;
5b4ee69b 7132
4c4b4cd2
PH
7133 if (!ada_scan_number (name, p + 1, &W, &p))
7134 return 0;
7135 if (val == W)
7136 return 1;
7137 break;
7138 }
7139 case 'R':
7140 {
7141 LONGEST L, U;
5b4ee69b 7142
4c4b4cd2
PH
7143 if (!ada_scan_number (name, p + 1, &L, &p)
7144 || name[p] != 'T' || !ada_scan_number (name, p + 1, &U, &p))
7145 return 0;
7146 if (val >= L && val <= U)
7147 return 1;
7148 break;
7149 }
7150 case 'O':
7151 return 1;
7152 default:
7153 return 0;
7154 }
7155 }
7156}
7157
0963b4bd 7158/* FIXME: Lots of redundancy below. Try to consolidate. */
4c4b4cd2
PH
7159
7160/* Given a value ARG1 (offset by OFFSET bytes) of a struct or union type
7161 ARG_TYPE, extract and return the value of one of its (non-static)
7162 fields. FIELDNO says which field. Differs from value_primitive_field
7163 only in that it can handle packed values of arbitrary type. */
14f9c5c9 7164
4c4b4cd2 7165static struct value *
d2e4a39e 7166ada_value_primitive_field (struct value *arg1, int offset, int fieldno,
4c4b4cd2 7167 struct type *arg_type)
14f9c5c9 7168{
14f9c5c9
AS
7169 struct type *type;
7170
61ee279c 7171 arg_type = ada_check_typedef (arg_type);
14f9c5c9
AS
7172 type = TYPE_FIELD_TYPE (arg_type, fieldno);
7173
4c4b4cd2 7174 /* Handle packed fields. */
14f9c5c9
AS
7175
7176 if (TYPE_FIELD_BITSIZE (arg_type, fieldno) != 0)
7177 {
7178 int bit_pos = TYPE_FIELD_BITPOS (arg_type, fieldno);
7179 int bit_size = TYPE_FIELD_BITSIZE (arg_type, fieldno);
d2e4a39e 7180
0fd88904 7181 return ada_value_primitive_packed_val (arg1, value_contents (arg1),
4c4b4cd2
PH
7182 offset + bit_pos / 8,
7183 bit_pos % 8, bit_size, type);
14f9c5c9
AS
7184 }
7185 else
7186 return value_primitive_field (arg1, offset, fieldno, arg_type);
7187}
7188
52ce6436
PH
7189/* Find field with name NAME in object of type TYPE. If found,
7190 set the following for each argument that is non-null:
7191 - *FIELD_TYPE_P to the field's type;
7192 - *BYTE_OFFSET_P to OFFSET + the byte offset of the field within
7193 an object of that type;
7194 - *BIT_OFFSET_P to the bit offset modulo byte size of the field;
7195 - *BIT_SIZE_P to its size in bits if the field is packed, and
7196 0 otherwise;
7197 If INDEX_P is non-null, increment *INDEX_P by the number of source-visible
7198 fields up to but not including the desired field, or by the total
7199 number of fields if not found. A NULL value of NAME never
7200 matches; the function just counts visible fields in this case.
7201
828d5846
XR
7202 Notice that we need to handle when a tagged record hierarchy
7203 has some components with the same name, like in this scenario:
7204
7205 type Top_T is tagged record
7206 N : Integer := 1;
7207 U : Integer := 974;
7208 A : Integer := 48;
7209 end record;
7210
7211 type Middle_T is new Top.Top_T with record
7212 N : Character := 'a';
7213 C : Integer := 3;
7214 end record;
7215
7216 type Bottom_T is new Middle.Middle_T with record
7217 N : Float := 4.0;
7218 C : Character := '5';
7219 X : Integer := 6;
7220 A : Character := 'J';
7221 end record;
7222
7223 Let's say we now have a variable declared and initialized as follow:
7224
7225 TC : Top_A := new Bottom_T;
7226
7227 And then we use this variable to call this function
7228
7229 procedure Assign (Obj: in out Top_T; TV : Integer);
7230
7231 as follow:
7232
7233 Assign (Top_T (B), 12);
7234
7235 Now, we're in the debugger, and we're inside that procedure
7236 then and we want to print the value of obj.c:
7237
7238 Usually, the tagged record or one of the parent type owns the
7239 component to print and there's no issue but in this particular
7240 case, what does it mean to ask for Obj.C? Since the actual
7241 type for object is type Bottom_T, it could mean two things: type
7242 component C from the Middle_T view, but also component C from
7243 Bottom_T. So in that "undefined" case, when the component is
7244 not found in the non-resolved type (which includes all the
7245 components of the parent type), then resolve it and see if we
7246 get better luck once expanded.
7247
7248 In the case of homonyms in the derived tagged type, we don't
7249 guaranty anything, and pick the one that's easiest for us
7250 to program.
7251
0963b4bd 7252 Returns 1 if found, 0 otherwise. */
52ce6436 7253
4c4b4cd2 7254static int
0d5cff50 7255find_struct_field (const char *name, struct type *type, int offset,
76a01679 7256 struct type **field_type_p,
52ce6436
PH
7257 int *byte_offset_p, int *bit_offset_p, int *bit_size_p,
7258 int *index_p)
4c4b4cd2
PH
7259{
7260 int i;
828d5846 7261 int parent_offset = -1;
4c4b4cd2 7262
61ee279c 7263 type = ada_check_typedef (type);
76a01679 7264
52ce6436
PH
7265 if (field_type_p != NULL)
7266 *field_type_p = NULL;
7267 if (byte_offset_p != NULL)
d5d6fca5 7268 *byte_offset_p = 0;
52ce6436
PH
7269 if (bit_offset_p != NULL)
7270 *bit_offset_p = 0;
7271 if (bit_size_p != NULL)
7272 *bit_size_p = 0;
7273
7274 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
4c4b4cd2
PH
7275 {
7276 int bit_pos = TYPE_FIELD_BITPOS (type, i);
7277 int fld_offset = offset + bit_pos / 8;
0d5cff50 7278 const char *t_field_name = TYPE_FIELD_NAME (type, i);
76a01679 7279
4c4b4cd2
PH
7280 if (t_field_name == NULL)
7281 continue;
7282
828d5846
XR
7283 else if (ada_is_parent_field (type, i))
7284 {
7285 /* This is a field pointing us to the parent type of a tagged
7286 type. As hinted in this function's documentation, we give
7287 preference to fields in the current record first, so what
7288 we do here is just record the index of this field before
7289 we skip it. If it turns out we couldn't find our field
7290 in the current record, then we'll get back to it and search
7291 inside it whether the field might exist in the parent. */
7292
7293 parent_offset = i;
7294 continue;
7295 }
7296
52ce6436 7297 else if (name != NULL && field_name_match (t_field_name, name))
76a01679
JB
7298 {
7299 int bit_size = TYPE_FIELD_BITSIZE (type, i);
5b4ee69b 7300
52ce6436
PH
7301 if (field_type_p != NULL)
7302 *field_type_p = TYPE_FIELD_TYPE (type, i);
7303 if (byte_offset_p != NULL)
7304 *byte_offset_p = fld_offset;
7305 if (bit_offset_p != NULL)
7306 *bit_offset_p = bit_pos % 8;
7307 if (bit_size_p != NULL)
7308 *bit_size_p = bit_size;
76a01679
JB
7309 return 1;
7310 }
4c4b4cd2
PH
7311 else if (ada_is_wrapper_field (type, i))
7312 {
52ce6436
PH
7313 if (find_struct_field (name, TYPE_FIELD_TYPE (type, i), fld_offset,
7314 field_type_p, byte_offset_p, bit_offset_p,
7315 bit_size_p, index_p))
76a01679
JB
7316 return 1;
7317 }
4c4b4cd2
PH
7318 else if (ada_is_variant_part (type, i))
7319 {
52ce6436
PH
7320 /* PNH: Wait. Do we ever execute this section, or is ARG always of
7321 fixed type?? */
4c4b4cd2 7322 int j;
52ce6436
PH
7323 struct type *field_type
7324 = ada_check_typedef (TYPE_FIELD_TYPE (type, i));
4c4b4cd2 7325
52ce6436 7326 for (j = 0; j < TYPE_NFIELDS (field_type); j += 1)
4c4b4cd2 7327 {
76a01679
JB
7328 if (find_struct_field (name, TYPE_FIELD_TYPE (field_type, j),
7329 fld_offset
7330 + TYPE_FIELD_BITPOS (field_type, j) / 8,
7331 field_type_p, byte_offset_p,
52ce6436 7332 bit_offset_p, bit_size_p, index_p))
76a01679 7333 return 1;
4c4b4cd2
PH
7334 }
7335 }
52ce6436
PH
7336 else if (index_p != NULL)
7337 *index_p += 1;
4c4b4cd2 7338 }
828d5846
XR
7339
7340 /* Field not found so far. If this is a tagged type which
7341 has a parent, try finding that field in the parent now. */
7342
7343 if (parent_offset != -1)
7344 {
7345 int bit_pos = TYPE_FIELD_BITPOS (type, parent_offset);
7346 int fld_offset = offset + bit_pos / 8;
7347
7348 if (find_struct_field (name, TYPE_FIELD_TYPE (type, parent_offset),
7349 fld_offset, field_type_p, byte_offset_p,
7350 bit_offset_p, bit_size_p, index_p))
7351 return 1;
7352 }
7353
4c4b4cd2
PH
7354 return 0;
7355}
7356
0963b4bd 7357/* Number of user-visible fields in record type TYPE. */
4c4b4cd2 7358
52ce6436
PH
7359static int
7360num_visible_fields (struct type *type)
7361{
7362 int n;
5b4ee69b 7363
52ce6436
PH
7364 n = 0;
7365 find_struct_field (NULL, type, 0, NULL, NULL, NULL, NULL, &n);
7366 return n;
7367}
14f9c5c9 7368
4c4b4cd2 7369/* Look for a field NAME in ARG. Adjust the address of ARG by OFFSET bytes,
14f9c5c9
AS
7370 and search in it assuming it has (class) type TYPE.
7371 If found, return value, else return NULL.
7372
828d5846
XR
7373 Searches recursively through wrapper fields (e.g., '_parent').
7374
7375 In the case of homonyms in the tagged types, please refer to the
7376 long explanation in find_struct_field's function documentation. */
14f9c5c9 7377
4c4b4cd2 7378static struct value *
108d56a4 7379ada_search_struct_field (const char *name, struct value *arg, int offset,
4c4b4cd2 7380 struct type *type)
14f9c5c9
AS
7381{
7382 int i;
828d5846 7383 int parent_offset = -1;
14f9c5c9 7384
5b4ee69b 7385 type = ada_check_typedef (type);
52ce6436 7386 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
14f9c5c9 7387 {
0d5cff50 7388 const char *t_field_name = TYPE_FIELD_NAME (type, i);
14f9c5c9
AS
7389
7390 if (t_field_name == NULL)
4c4b4cd2 7391 continue;
14f9c5c9 7392
828d5846
XR
7393 else if (ada_is_parent_field (type, i))
7394 {
7395 /* This is a field pointing us to the parent type of a tagged
7396 type. As hinted in this function's documentation, we give
7397 preference to fields in the current record first, so what
7398 we do here is just record the index of this field before
7399 we skip it. If it turns out we couldn't find our field
7400 in the current record, then we'll get back to it and search
7401 inside it whether the field might exist in the parent. */
7402
7403 parent_offset = i;
7404 continue;
7405 }
7406
14f9c5c9 7407 else if (field_name_match (t_field_name, name))
4c4b4cd2 7408 return ada_value_primitive_field (arg, offset, i, type);
14f9c5c9
AS
7409
7410 else if (ada_is_wrapper_field (type, i))
4c4b4cd2 7411 {
0963b4bd 7412 struct value *v = /* Do not let indent join lines here. */
06d5cf63
JB
7413 ada_search_struct_field (name, arg,
7414 offset + TYPE_FIELD_BITPOS (type, i) / 8,
7415 TYPE_FIELD_TYPE (type, i));
5b4ee69b 7416
4c4b4cd2
PH
7417 if (v != NULL)
7418 return v;
7419 }
14f9c5c9
AS
7420
7421 else if (ada_is_variant_part (type, i))
4c4b4cd2 7422 {
0963b4bd 7423 /* PNH: Do we ever get here? See find_struct_field. */
4c4b4cd2 7424 int j;
5b4ee69b
MS
7425 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type,
7426 i));
4c4b4cd2
PH
7427 int var_offset = offset + TYPE_FIELD_BITPOS (type, i) / 8;
7428
52ce6436 7429 for (j = 0; j < TYPE_NFIELDS (field_type); j += 1)
4c4b4cd2 7430 {
0963b4bd
MS
7431 struct value *v = ada_search_struct_field /* Force line
7432 break. */
06d5cf63
JB
7433 (name, arg,
7434 var_offset + TYPE_FIELD_BITPOS (field_type, j) / 8,
7435 TYPE_FIELD_TYPE (field_type, j));
5b4ee69b 7436
4c4b4cd2
PH
7437 if (v != NULL)
7438 return v;
7439 }
7440 }
14f9c5c9 7441 }
828d5846
XR
7442
7443 /* Field not found so far. If this is a tagged type which
7444 has a parent, try finding that field in the parent now. */
7445
7446 if (parent_offset != -1)
7447 {
7448 struct value *v = ada_search_struct_field (
7449 name, arg, offset + TYPE_FIELD_BITPOS (type, parent_offset) / 8,
7450 TYPE_FIELD_TYPE (type, parent_offset));
7451
7452 if (v != NULL)
7453 return v;
7454 }
7455
14f9c5c9
AS
7456 return NULL;
7457}
d2e4a39e 7458
52ce6436
PH
7459static struct value *ada_index_struct_field_1 (int *, struct value *,
7460 int, struct type *);
7461
7462
7463/* Return field #INDEX in ARG, where the index is that returned by
7464 * find_struct_field through its INDEX_P argument. Adjust the address
7465 * of ARG by OFFSET bytes, and search in it assuming it has (class) type TYPE.
0963b4bd 7466 * If found, return value, else return NULL. */
52ce6436
PH
7467
7468static struct value *
7469ada_index_struct_field (int index, struct value *arg, int offset,
7470 struct type *type)
7471{
7472 return ada_index_struct_field_1 (&index, arg, offset, type);
7473}
7474
7475
7476/* Auxiliary function for ada_index_struct_field. Like
7477 * ada_index_struct_field, but takes index from *INDEX_P and modifies
0963b4bd 7478 * *INDEX_P. */
52ce6436
PH
7479
7480static struct value *
7481ada_index_struct_field_1 (int *index_p, struct value *arg, int offset,
7482 struct type *type)
7483{
7484 int i;
7485 type = ada_check_typedef (type);
7486
7487 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
7488 {
7489 if (TYPE_FIELD_NAME (type, i) == NULL)
7490 continue;
7491 else if (ada_is_wrapper_field (type, i))
7492 {
0963b4bd 7493 struct value *v = /* Do not let indent join lines here. */
52ce6436
PH
7494 ada_index_struct_field_1 (index_p, arg,
7495 offset + TYPE_FIELD_BITPOS (type, i) / 8,
7496 TYPE_FIELD_TYPE (type, i));
5b4ee69b 7497
52ce6436
PH
7498 if (v != NULL)
7499 return v;
7500 }
7501
7502 else if (ada_is_variant_part (type, i))
7503 {
7504 /* PNH: Do we ever get here? See ada_search_struct_field,
0963b4bd 7505 find_struct_field. */
52ce6436
PH
7506 error (_("Cannot assign this kind of variant record"));
7507 }
7508 else if (*index_p == 0)
7509 return ada_value_primitive_field (arg, offset, i, type);
7510 else
7511 *index_p -= 1;
7512 }
7513 return NULL;
7514}
7515
4c4b4cd2
PH
7516/* Given ARG, a value of type (pointer or reference to a)*
7517 structure/union, extract the component named NAME from the ultimate
7518 target structure/union and return it as a value with its
f5938064 7519 appropriate type.
14f9c5c9 7520
4c4b4cd2
PH
7521 The routine searches for NAME among all members of the structure itself
7522 and (recursively) among all members of any wrapper members
14f9c5c9
AS
7523 (e.g., '_parent').
7524
03ee6b2e
PH
7525 If NO_ERR, then simply return NULL in case of error, rather than
7526 calling error. */
14f9c5c9 7527
d2e4a39e 7528struct value *
a121b7c1 7529ada_value_struct_elt (struct value *arg, const char *name, int no_err)
14f9c5c9 7530{
4c4b4cd2 7531 struct type *t, *t1;
d2e4a39e 7532 struct value *v;
14f9c5c9 7533
4c4b4cd2 7534 v = NULL;
df407dfe 7535 t1 = t = ada_check_typedef (value_type (arg));
4c4b4cd2
PH
7536 if (TYPE_CODE (t) == TYPE_CODE_REF)
7537 {
7538 t1 = TYPE_TARGET_TYPE (t);
7539 if (t1 == NULL)
03ee6b2e 7540 goto BadValue;
61ee279c 7541 t1 = ada_check_typedef (t1);
4c4b4cd2 7542 if (TYPE_CODE (t1) == TYPE_CODE_PTR)
76a01679 7543 {
994b9211 7544 arg = coerce_ref (arg);
76a01679
JB
7545 t = t1;
7546 }
4c4b4cd2 7547 }
14f9c5c9 7548
4c4b4cd2
PH
7549 while (TYPE_CODE (t) == TYPE_CODE_PTR)
7550 {
7551 t1 = TYPE_TARGET_TYPE (t);
7552 if (t1 == NULL)
03ee6b2e 7553 goto BadValue;
61ee279c 7554 t1 = ada_check_typedef (t1);
4c4b4cd2 7555 if (TYPE_CODE (t1) == TYPE_CODE_PTR)
76a01679
JB
7556 {
7557 arg = value_ind (arg);
7558 t = t1;
7559 }
4c4b4cd2 7560 else
76a01679 7561 break;
4c4b4cd2 7562 }
14f9c5c9 7563
4c4b4cd2 7564 if (TYPE_CODE (t1) != TYPE_CODE_STRUCT && TYPE_CODE (t1) != TYPE_CODE_UNION)
03ee6b2e 7565 goto BadValue;
14f9c5c9 7566
4c4b4cd2
PH
7567 if (t1 == t)
7568 v = ada_search_struct_field (name, arg, 0, t);
7569 else
7570 {
7571 int bit_offset, bit_size, byte_offset;
7572 struct type *field_type;
7573 CORE_ADDR address;
7574
76a01679 7575 if (TYPE_CODE (t) == TYPE_CODE_PTR)
b50d69b5 7576 address = value_address (ada_value_ind (arg));
4c4b4cd2 7577 else
b50d69b5 7578 address = value_address (ada_coerce_ref (arg));
14f9c5c9 7579
828d5846
XR
7580 /* Check to see if this is a tagged type. We also need to handle
7581 the case where the type is a reference to a tagged type, but
7582 we have to be careful to exclude pointers to tagged types.
7583 The latter should be shown as usual (as a pointer), whereas
7584 a reference should mostly be transparent to the user. */
7585
7586 if (ada_is_tagged_type (t1, 0)
7587 || (TYPE_CODE (t1) == TYPE_CODE_REF
7588 && ada_is_tagged_type (TYPE_TARGET_TYPE (t1), 0)))
7589 {
7590 /* We first try to find the searched field in the current type.
7591 If not found then let's look in the fixed type. */
7592
7593 if (!find_struct_field (name, t1, 0,
7594 &field_type, &byte_offset, &bit_offset,
7595 &bit_size, NULL))
7596 t1 = ada_to_fixed_type (ada_get_base_type (t1), NULL,
7597 address, NULL, 1);
7598 }
7599 else
7600 t1 = ada_to_fixed_type (ada_get_base_type (t1), NULL,
7601 address, NULL, 1);
7602
76a01679
JB
7603 if (find_struct_field (name, t1, 0,
7604 &field_type, &byte_offset, &bit_offset,
52ce6436 7605 &bit_size, NULL))
76a01679
JB
7606 {
7607 if (bit_size != 0)
7608 {
714e53ab
PH
7609 if (TYPE_CODE (t) == TYPE_CODE_REF)
7610 arg = ada_coerce_ref (arg);
7611 else
7612 arg = ada_value_ind (arg);
76a01679
JB
7613 v = ada_value_primitive_packed_val (arg, NULL, byte_offset,
7614 bit_offset, bit_size,
7615 field_type);
7616 }
7617 else
f5938064 7618 v = value_at_lazy (field_type, address + byte_offset);
76a01679
JB
7619 }
7620 }
7621
03ee6b2e
PH
7622 if (v != NULL || no_err)
7623 return v;
7624 else
323e0a4a 7625 error (_("There is no member named %s."), name);
14f9c5c9 7626
03ee6b2e
PH
7627 BadValue:
7628 if (no_err)
7629 return NULL;
7630 else
0963b4bd
MS
7631 error (_("Attempt to extract a component of "
7632 "a value that is not a record."));
14f9c5c9
AS
7633}
7634
3b4de39c 7635/* Return a string representation of type TYPE. */
99bbb428 7636
3b4de39c 7637static std::string
99bbb428
PA
7638type_as_string (struct type *type)
7639{
d7e74731 7640 string_file tmp_stream;
99bbb428 7641
d7e74731 7642 type_print (type, "", &tmp_stream, -1);
99bbb428 7643
d7e74731 7644 return std::move (tmp_stream.string ());
99bbb428
PA
7645}
7646
14f9c5c9 7647/* Given a type TYPE, look up the type of the component of type named NAME.
4c4b4cd2
PH
7648 If DISPP is non-null, add its byte displacement from the beginning of a
7649 structure (pointed to by a value) of type TYPE to *DISPP (does not
14f9c5c9
AS
7650 work for packed fields).
7651
7652 Matches any field whose name has NAME as a prefix, possibly
4c4b4cd2 7653 followed by "___".
14f9c5c9 7654
0963b4bd 7655 TYPE can be either a struct or union. If REFOK, TYPE may also
4c4b4cd2
PH
7656 be a (pointer or reference)+ to a struct or union, and the
7657 ultimate target type will be searched.
14f9c5c9
AS
7658
7659 Looks recursively into variant clauses and parent types.
7660
828d5846
XR
7661 In the case of homonyms in the tagged types, please refer to the
7662 long explanation in find_struct_field's function documentation.
7663
4c4b4cd2
PH
7664 If NOERR is nonzero, return NULL if NAME is not suitably defined or
7665 TYPE is not a type of the right kind. */
14f9c5c9 7666
4c4b4cd2 7667static struct type *
a121b7c1 7668ada_lookup_struct_elt_type (struct type *type, const char *name, int refok,
988f6b3d 7669 int noerr)
14f9c5c9
AS
7670{
7671 int i;
828d5846 7672 int parent_offset = -1;
14f9c5c9
AS
7673
7674 if (name == NULL)
7675 goto BadName;
7676
76a01679 7677 if (refok && type != NULL)
4c4b4cd2
PH
7678 while (1)
7679 {
61ee279c 7680 type = ada_check_typedef (type);
76a01679
JB
7681 if (TYPE_CODE (type) != TYPE_CODE_PTR
7682 && TYPE_CODE (type) != TYPE_CODE_REF)
7683 break;
7684 type = TYPE_TARGET_TYPE (type);
4c4b4cd2 7685 }
14f9c5c9 7686
76a01679 7687 if (type == NULL
1265e4aa
JB
7688 || (TYPE_CODE (type) != TYPE_CODE_STRUCT
7689 && TYPE_CODE (type) != TYPE_CODE_UNION))
14f9c5c9 7690 {
4c4b4cd2 7691 if (noerr)
76a01679 7692 return NULL;
99bbb428 7693
3b4de39c
PA
7694 error (_("Type %s is not a structure or union type"),
7695 type != NULL ? type_as_string (type).c_str () : _("(null)"));
14f9c5c9
AS
7696 }
7697
7698 type = to_static_fixed_type (type);
7699
7700 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
7701 {
0d5cff50 7702 const char *t_field_name = TYPE_FIELD_NAME (type, i);
14f9c5c9 7703 struct type *t;
d2e4a39e 7704
14f9c5c9 7705 if (t_field_name == NULL)
4c4b4cd2 7706 continue;
14f9c5c9 7707
828d5846
XR
7708 else if (ada_is_parent_field (type, i))
7709 {
7710 /* This is a field pointing us to the parent type of a tagged
7711 type. As hinted in this function's documentation, we give
7712 preference to fields in the current record first, so what
7713 we do here is just record the index of this field before
7714 we skip it. If it turns out we couldn't find our field
7715 in the current record, then we'll get back to it and search
7716 inside it whether the field might exist in the parent. */
7717
7718 parent_offset = i;
7719 continue;
7720 }
7721
14f9c5c9 7722 else if (field_name_match (t_field_name, name))
988f6b3d 7723 return TYPE_FIELD_TYPE (type, i);
14f9c5c9
AS
7724
7725 else if (ada_is_wrapper_field (type, i))
4c4b4cd2 7726 {
4c4b4cd2 7727 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (type, i), name,
988f6b3d 7728 0, 1);
4c4b4cd2 7729 if (t != NULL)
988f6b3d 7730 return t;
4c4b4cd2 7731 }
14f9c5c9
AS
7732
7733 else if (ada_is_variant_part (type, i))
4c4b4cd2
PH
7734 {
7735 int j;
5b4ee69b
MS
7736 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type,
7737 i));
4c4b4cd2
PH
7738
7739 for (j = TYPE_NFIELDS (field_type) - 1; j >= 0; j -= 1)
7740 {
b1f33ddd
JB
7741 /* FIXME pnh 2008/01/26: We check for a field that is
7742 NOT wrapped in a struct, since the compiler sometimes
7743 generates these for unchecked variant types. Revisit
0963b4bd 7744 if the compiler changes this practice. */
0d5cff50 7745 const char *v_field_name = TYPE_FIELD_NAME (field_type, j);
988f6b3d 7746
b1f33ddd
JB
7747 if (v_field_name != NULL
7748 && field_name_match (v_field_name, name))
460efde1 7749 t = TYPE_FIELD_TYPE (field_type, j);
b1f33ddd 7750 else
0963b4bd
MS
7751 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (field_type,
7752 j),
988f6b3d 7753 name, 0, 1);
b1f33ddd 7754
4c4b4cd2 7755 if (t != NULL)
988f6b3d 7756 return t;
4c4b4cd2
PH
7757 }
7758 }
14f9c5c9
AS
7759
7760 }
7761
828d5846
XR
7762 /* Field not found so far. If this is a tagged type which
7763 has a parent, try finding that field in the parent now. */
7764
7765 if (parent_offset != -1)
7766 {
7767 struct type *t;
7768
7769 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (type, parent_offset),
7770 name, 0, 1);
7771 if (t != NULL)
7772 return t;
7773 }
7774
14f9c5c9 7775BadName:
d2e4a39e 7776 if (!noerr)
14f9c5c9 7777 {
2b2798cc 7778 const char *name_str = name != NULL ? name : _("<null>");
99bbb428
PA
7779
7780 error (_("Type %s has no component named %s"),
3b4de39c 7781 type_as_string (type).c_str (), name_str);
14f9c5c9
AS
7782 }
7783
7784 return NULL;
7785}
7786
b1f33ddd
JB
7787/* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
7788 within a value of type OUTER_TYPE, return true iff VAR_TYPE
7789 represents an unchecked union (that is, the variant part of a
0963b4bd 7790 record that is named in an Unchecked_Union pragma). */
b1f33ddd
JB
7791
7792static int
7793is_unchecked_variant (struct type *var_type, struct type *outer_type)
7794{
a121b7c1 7795 const char *discrim_name = ada_variant_discrim_name (var_type);
5b4ee69b 7796
988f6b3d 7797 return (ada_lookup_struct_elt_type (outer_type, discrim_name, 0, 1) == NULL);
b1f33ddd
JB
7798}
7799
7800
14f9c5c9
AS
7801/* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
7802 within a value of type OUTER_TYPE that is stored in GDB at
4c4b4cd2
PH
7803 OUTER_VALADDR, determine which variant clause (field number in VAR_TYPE,
7804 numbering from 0) is applicable. Returns -1 if none are. */
14f9c5c9 7805
d2e4a39e 7806int
ebf56fd3 7807ada_which_variant_applies (struct type *var_type, struct type *outer_type,
fc1a4b47 7808 const gdb_byte *outer_valaddr)
14f9c5c9
AS
7809{
7810 int others_clause;
7811 int i;
a121b7c1 7812 const char *discrim_name = ada_variant_discrim_name (var_type);
0c281816
JB
7813 struct value *outer;
7814 struct value *discrim;
14f9c5c9
AS
7815 LONGEST discrim_val;
7816
012370f6
TT
7817 /* Using plain value_from_contents_and_address here causes problems
7818 because we will end up trying to resolve a type that is currently
7819 being constructed. */
7820 outer = value_from_contents_and_address_unresolved (outer_type,
7821 outer_valaddr, 0);
0c281816
JB
7822 discrim = ada_value_struct_elt (outer, discrim_name, 1);
7823 if (discrim == NULL)
14f9c5c9 7824 return -1;
0c281816 7825 discrim_val = value_as_long (discrim);
14f9c5c9
AS
7826
7827 others_clause = -1;
7828 for (i = 0; i < TYPE_NFIELDS (var_type); i += 1)
7829 {
7830 if (ada_is_others_clause (var_type, i))
4c4b4cd2 7831 others_clause = i;
14f9c5c9 7832 else if (ada_in_variant (discrim_val, var_type, i))
4c4b4cd2 7833 return i;
14f9c5c9
AS
7834 }
7835
7836 return others_clause;
7837}
d2e4a39e 7838\f
14f9c5c9
AS
7839
7840
4c4b4cd2 7841 /* Dynamic-Sized Records */
14f9c5c9
AS
7842
7843/* Strategy: The type ostensibly attached to a value with dynamic size
7844 (i.e., a size that is not statically recorded in the debugging
7845 data) does not accurately reflect the size or layout of the value.
7846 Our strategy is to convert these values to values with accurate,
4c4b4cd2 7847 conventional types that are constructed on the fly. */
14f9c5c9
AS
7848
7849/* There is a subtle and tricky problem here. In general, we cannot
7850 determine the size of dynamic records without its data. However,
7851 the 'struct value' data structure, which GDB uses to represent
7852 quantities in the inferior process (the target), requires the size
7853 of the type at the time of its allocation in order to reserve space
7854 for GDB's internal copy of the data. That's why the
7855 'to_fixed_xxx_type' routines take (target) addresses as parameters,
4c4b4cd2 7856 rather than struct value*s.
14f9c5c9
AS
7857
7858 However, GDB's internal history variables ($1, $2, etc.) are
7859 struct value*s containing internal copies of the data that are not, in
7860 general, the same as the data at their corresponding addresses in
7861 the target. Fortunately, the types we give to these values are all
7862 conventional, fixed-size types (as per the strategy described
7863 above), so that we don't usually have to perform the
7864 'to_fixed_xxx_type' conversions to look at their values.
7865 Unfortunately, there is one exception: if one of the internal
7866 history variables is an array whose elements are unconstrained
7867 records, then we will need to create distinct fixed types for each
7868 element selected. */
7869
7870/* The upshot of all of this is that many routines take a (type, host
7871 address, target address) triple as arguments to represent a value.
7872 The host address, if non-null, is supposed to contain an internal
7873 copy of the relevant data; otherwise, the program is to consult the
4c4b4cd2 7874 target at the target address. */
14f9c5c9
AS
7875
7876/* Assuming that VAL0 represents a pointer value, the result of
7877 dereferencing it. Differs from value_ind in its treatment of
4c4b4cd2 7878 dynamic-sized types. */
14f9c5c9 7879
d2e4a39e
AS
7880struct value *
7881ada_value_ind (struct value *val0)
14f9c5c9 7882{
c48db5ca 7883 struct value *val = value_ind (val0);
5b4ee69b 7884
b50d69b5
JG
7885 if (ada_is_tagged_type (value_type (val), 0))
7886 val = ada_tag_value_at_base_address (val);
7887
4c4b4cd2 7888 return ada_to_fixed_value (val);
14f9c5c9
AS
7889}
7890
7891/* The value resulting from dereferencing any "reference to"
4c4b4cd2
PH
7892 qualifiers on VAL0. */
7893
d2e4a39e
AS
7894static struct value *
7895ada_coerce_ref (struct value *val0)
7896{
df407dfe 7897 if (TYPE_CODE (value_type (val0)) == TYPE_CODE_REF)
d2e4a39e
AS
7898 {
7899 struct value *val = val0;
5b4ee69b 7900
994b9211 7901 val = coerce_ref (val);
b50d69b5
JG
7902
7903 if (ada_is_tagged_type (value_type (val), 0))
7904 val = ada_tag_value_at_base_address (val);
7905
4c4b4cd2 7906 return ada_to_fixed_value (val);
d2e4a39e
AS
7907 }
7908 else
14f9c5c9
AS
7909 return val0;
7910}
7911
7912/* Return OFF rounded upward if necessary to a multiple of
4c4b4cd2 7913 ALIGNMENT (a power of 2). */
14f9c5c9
AS
7914
7915static unsigned int
ebf56fd3 7916align_value (unsigned int off, unsigned int alignment)
14f9c5c9
AS
7917{
7918 return (off + alignment - 1) & ~(alignment - 1);
7919}
7920
4c4b4cd2 7921/* Return the bit alignment required for field #F of template type TYPE. */
14f9c5c9
AS
7922
7923static unsigned int
ebf56fd3 7924field_alignment (struct type *type, int f)
14f9c5c9 7925{
d2e4a39e 7926 const char *name = TYPE_FIELD_NAME (type, f);
64a1bf19 7927 int len;
14f9c5c9
AS
7928 int align_offset;
7929
64a1bf19
JB
7930 /* The field name should never be null, unless the debugging information
7931 is somehow malformed. In this case, we assume the field does not
7932 require any alignment. */
7933 if (name == NULL)
7934 return 1;
7935
7936 len = strlen (name);
7937
4c4b4cd2
PH
7938 if (!isdigit (name[len - 1]))
7939 return 1;
14f9c5c9 7940
d2e4a39e 7941 if (isdigit (name[len - 2]))
14f9c5c9
AS
7942 align_offset = len - 2;
7943 else
7944 align_offset = len - 1;
7945
61012eef 7946 if (align_offset < 7 || !startswith (name + align_offset - 6, "___XV"))
14f9c5c9
AS
7947 return TARGET_CHAR_BIT;
7948
4c4b4cd2
PH
7949 return atoi (name + align_offset) * TARGET_CHAR_BIT;
7950}
7951
852dff6c 7952/* Find a typedef or tag symbol named NAME. Ignores ambiguity. */
4c4b4cd2 7953
852dff6c
JB
7954static struct symbol *
7955ada_find_any_type_symbol (const char *name)
4c4b4cd2
PH
7956{
7957 struct symbol *sym;
7958
7959 sym = standard_lookup (name, get_selected_block (NULL), VAR_DOMAIN);
4186eb54 7960 if (sym != NULL && SYMBOL_CLASS (sym) == LOC_TYPEDEF)
4c4b4cd2
PH
7961 return sym;
7962
4186eb54
KS
7963 sym = standard_lookup (name, NULL, STRUCT_DOMAIN);
7964 return sym;
14f9c5c9
AS
7965}
7966
dddfab26
UW
7967/* Find a type named NAME. Ignores ambiguity. This routine will look
7968 solely for types defined by debug info, it will not search the GDB
7969 primitive types. */
4c4b4cd2 7970
852dff6c 7971static struct type *
ebf56fd3 7972ada_find_any_type (const char *name)
14f9c5c9 7973{
852dff6c 7974 struct symbol *sym = ada_find_any_type_symbol (name);
14f9c5c9 7975
14f9c5c9 7976 if (sym != NULL)
dddfab26 7977 return SYMBOL_TYPE (sym);
14f9c5c9 7978
dddfab26 7979 return NULL;
14f9c5c9
AS
7980}
7981
739593e0
JB
7982/* Given NAME_SYM and an associated BLOCK, find a "renaming" symbol
7983 associated with NAME_SYM's name. NAME_SYM may itself be a renaming
7984 symbol, in which case it is returned. Otherwise, this looks for
7985 symbols whose name is that of NAME_SYM suffixed with "___XR".
7986 Return symbol if found, and NULL otherwise. */
4c4b4cd2
PH
7987
7988struct symbol *
270140bd 7989ada_find_renaming_symbol (struct symbol *name_sym, const struct block *block)
aeb5907d 7990{
739593e0 7991 const char *name = SYMBOL_LINKAGE_NAME (name_sym);
aeb5907d
JB
7992 struct symbol *sym;
7993
739593e0
JB
7994 if (strstr (name, "___XR") != NULL)
7995 return name_sym;
7996
aeb5907d
JB
7997 sym = find_old_style_renaming_symbol (name, block);
7998
7999 if (sym != NULL)
8000 return sym;
8001
0963b4bd 8002 /* Not right yet. FIXME pnh 7/20/2007. */
852dff6c 8003 sym = ada_find_any_type_symbol (name);
aeb5907d
JB
8004 if (sym != NULL && strstr (SYMBOL_LINKAGE_NAME (sym), "___XR") != NULL)
8005 return sym;
8006 else
8007 return NULL;
8008}
8009
8010static struct symbol *
270140bd 8011find_old_style_renaming_symbol (const char *name, const struct block *block)
4c4b4cd2 8012{
7f0df278 8013 const struct symbol *function_sym = block_linkage_function (block);
4c4b4cd2
PH
8014 char *rename;
8015
8016 if (function_sym != NULL)
8017 {
8018 /* If the symbol is defined inside a function, NAME is not fully
8019 qualified. This means we need to prepend the function name
8020 as well as adding the ``___XR'' suffix to build the name of
8021 the associated renaming symbol. */
0d5cff50 8022 const char *function_name = SYMBOL_LINKAGE_NAME (function_sym);
529cad9c
PH
8023 /* Function names sometimes contain suffixes used
8024 for instance to qualify nested subprograms. When building
8025 the XR type name, we need to make sure that this suffix is
8026 not included. So do not include any suffix in the function
8027 name length below. */
69fadcdf 8028 int function_name_len = ada_name_prefix_len (function_name);
76a01679
JB
8029 const int rename_len = function_name_len + 2 /* "__" */
8030 + strlen (name) + 6 /* "___XR\0" */ ;
4c4b4cd2 8031
529cad9c 8032 /* Strip the suffix if necessary. */
69fadcdf
JB
8033 ada_remove_trailing_digits (function_name, &function_name_len);
8034 ada_remove_po_subprogram_suffix (function_name, &function_name_len);
8035 ada_remove_Xbn_suffix (function_name, &function_name_len);
529cad9c 8036
4c4b4cd2
PH
8037 /* Library-level functions are a special case, as GNAT adds
8038 a ``_ada_'' prefix to the function name to avoid namespace
aeb5907d 8039 pollution. However, the renaming symbols themselves do not
4c4b4cd2
PH
8040 have this prefix, so we need to skip this prefix if present. */
8041 if (function_name_len > 5 /* "_ada_" */
8042 && strstr (function_name, "_ada_") == function_name)
69fadcdf
JB
8043 {
8044 function_name += 5;
8045 function_name_len -= 5;
8046 }
4c4b4cd2
PH
8047
8048 rename = (char *) alloca (rename_len * sizeof (char));
69fadcdf
JB
8049 strncpy (rename, function_name, function_name_len);
8050 xsnprintf (rename + function_name_len, rename_len - function_name_len,
8051 "__%s___XR", name);
4c4b4cd2
PH
8052 }
8053 else
8054 {
8055 const int rename_len = strlen (name) + 6;
5b4ee69b 8056
4c4b4cd2 8057 rename = (char *) alloca (rename_len * sizeof (char));
88c15c34 8058 xsnprintf (rename, rename_len * sizeof (char), "%s___XR", name);
4c4b4cd2
PH
8059 }
8060
852dff6c 8061 return ada_find_any_type_symbol (rename);
4c4b4cd2
PH
8062}
8063
14f9c5c9 8064/* Because of GNAT encoding conventions, several GDB symbols may match a
4c4b4cd2 8065 given type name. If the type denoted by TYPE0 is to be preferred to
14f9c5c9 8066 that of TYPE1 for purposes of type printing, return non-zero;
4c4b4cd2
PH
8067 otherwise return 0. */
8068
14f9c5c9 8069int
d2e4a39e 8070ada_prefer_type (struct type *type0, struct type *type1)
14f9c5c9
AS
8071{
8072 if (type1 == NULL)
8073 return 1;
8074 else if (type0 == NULL)
8075 return 0;
8076 else if (TYPE_CODE (type1) == TYPE_CODE_VOID)
8077 return 1;
8078 else if (TYPE_CODE (type0) == TYPE_CODE_VOID)
8079 return 0;
4c4b4cd2
PH
8080 else if (TYPE_NAME (type1) == NULL && TYPE_NAME (type0) != NULL)
8081 return 1;
ad82864c 8082 else if (ada_is_constrained_packed_array_type (type0))
14f9c5c9 8083 return 1;
4c4b4cd2
PH
8084 else if (ada_is_array_descriptor_type (type0)
8085 && !ada_is_array_descriptor_type (type1))
14f9c5c9 8086 return 1;
aeb5907d
JB
8087 else
8088 {
a737d952
TT
8089 const char *type0_name = TYPE_NAME (type0);
8090 const char *type1_name = TYPE_NAME (type1);
aeb5907d
JB
8091
8092 if (type0_name != NULL && strstr (type0_name, "___XR") != NULL
8093 && (type1_name == NULL || strstr (type1_name, "___XR") == NULL))
8094 return 1;
8095 }
14f9c5c9
AS
8096 return 0;
8097}
8098
e86ca25f
TT
8099/* The name of TYPE, which is its TYPE_NAME. Null if TYPE is
8100 null. */
4c4b4cd2 8101
0d5cff50 8102const char *
d2e4a39e 8103ada_type_name (struct type *type)
14f9c5c9 8104{
d2e4a39e 8105 if (type == NULL)
14f9c5c9 8106 return NULL;
e86ca25f 8107 return TYPE_NAME (type);
14f9c5c9
AS
8108}
8109
b4ba55a1
JB
8110/* Search the list of "descriptive" types associated to TYPE for a type
8111 whose name is NAME. */
8112
8113static struct type *
8114find_parallel_type_by_descriptive_type (struct type *type, const char *name)
8115{
931e5bc3 8116 struct type *result, *tmp;
b4ba55a1 8117
c6044dd1
JB
8118 if (ada_ignore_descriptive_types_p)
8119 return NULL;
8120
b4ba55a1
JB
8121 /* If there no descriptive-type info, then there is no parallel type
8122 to be found. */
8123 if (!HAVE_GNAT_AUX_INFO (type))
8124 return NULL;
8125
8126 result = TYPE_DESCRIPTIVE_TYPE (type);
8127 while (result != NULL)
8128 {
0d5cff50 8129 const char *result_name = ada_type_name (result);
b4ba55a1
JB
8130
8131 if (result_name == NULL)
8132 {
8133 warning (_("unexpected null name on descriptive type"));
8134 return NULL;
8135 }
8136
8137 /* If the names match, stop. */
8138 if (strcmp (result_name, name) == 0)
8139 break;
8140
8141 /* Otherwise, look at the next item on the list, if any. */
8142 if (HAVE_GNAT_AUX_INFO (result))
931e5bc3
JG
8143 tmp = TYPE_DESCRIPTIVE_TYPE (result);
8144 else
8145 tmp = NULL;
8146
8147 /* If not found either, try after having resolved the typedef. */
8148 if (tmp != NULL)
8149 result = tmp;
b4ba55a1 8150 else
931e5bc3 8151 {
f168693b 8152 result = check_typedef (result);
931e5bc3
JG
8153 if (HAVE_GNAT_AUX_INFO (result))
8154 result = TYPE_DESCRIPTIVE_TYPE (result);
8155 else
8156 result = NULL;
8157 }
b4ba55a1
JB
8158 }
8159
8160 /* If we didn't find a match, see whether this is a packed array. With
8161 older compilers, the descriptive type information is either absent or
8162 irrelevant when it comes to packed arrays so the above lookup fails.
8163 Fall back to using a parallel lookup by name in this case. */
12ab9e09 8164 if (result == NULL && ada_is_constrained_packed_array_type (type))
b4ba55a1
JB
8165 return ada_find_any_type (name);
8166
8167 return result;
8168}
8169
8170/* Find a parallel type to TYPE with the specified NAME, using the
8171 descriptive type taken from the debugging information, if available,
8172 and otherwise using the (slower) name-based method. */
8173
8174static struct type *
8175ada_find_parallel_type_with_name (struct type *type, const char *name)
8176{
8177 struct type *result = NULL;
8178
8179 if (HAVE_GNAT_AUX_INFO (type))
8180 result = find_parallel_type_by_descriptive_type (type, name);
8181 else
8182 result = ada_find_any_type (name);
8183
8184 return result;
8185}
8186
8187/* Same as above, but specify the name of the parallel type by appending
4c4b4cd2 8188 SUFFIX to the name of TYPE. */
14f9c5c9 8189
d2e4a39e 8190struct type *
ebf56fd3 8191ada_find_parallel_type (struct type *type, const char *suffix)
14f9c5c9 8192{
0d5cff50 8193 char *name;
fe978cb0 8194 const char *type_name = ada_type_name (type);
14f9c5c9 8195 int len;
d2e4a39e 8196
fe978cb0 8197 if (type_name == NULL)
14f9c5c9
AS
8198 return NULL;
8199
fe978cb0 8200 len = strlen (type_name);
14f9c5c9 8201
b4ba55a1 8202 name = (char *) alloca (len + strlen (suffix) + 1);
14f9c5c9 8203
fe978cb0 8204 strcpy (name, type_name);
14f9c5c9
AS
8205 strcpy (name + len, suffix);
8206
b4ba55a1 8207 return ada_find_parallel_type_with_name (type, name);
14f9c5c9
AS
8208}
8209
14f9c5c9 8210/* If TYPE is a variable-size record type, return the corresponding template
4c4b4cd2 8211 type describing its fields. Otherwise, return NULL. */
14f9c5c9 8212
d2e4a39e
AS
8213static struct type *
8214dynamic_template_type (struct type *type)
14f9c5c9 8215{
61ee279c 8216 type = ada_check_typedef (type);
14f9c5c9
AS
8217
8218 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT
d2e4a39e 8219 || ada_type_name (type) == NULL)
14f9c5c9 8220 return NULL;
d2e4a39e 8221 else
14f9c5c9
AS
8222 {
8223 int len = strlen (ada_type_name (type));
5b4ee69b 8224
4c4b4cd2
PH
8225 if (len > 6 && strcmp (ada_type_name (type) + len - 6, "___XVE") == 0)
8226 return type;
14f9c5c9 8227 else
4c4b4cd2 8228 return ada_find_parallel_type (type, "___XVE");
14f9c5c9
AS
8229 }
8230}
8231
8232/* Assuming that TEMPL_TYPE is a union or struct type, returns
4c4b4cd2 8233 non-zero iff field FIELD_NUM of TEMPL_TYPE has dynamic size. */
14f9c5c9 8234
d2e4a39e
AS
8235static int
8236is_dynamic_field (struct type *templ_type, int field_num)
14f9c5c9
AS
8237{
8238 const char *name = TYPE_FIELD_NAME (templ_type, field_num);
5b4ee69b 8239
d2e4a39e 8240 return name != NULL
14f9c5c9
AS
8241 && TYPE_CODE (TYPE_FIELD_TYPE (templ_type, field_num)) == TYPE_CODE_PTR
8242 && strstr (name, "___XVL") != NULL;
8243}
8244
4c4b4cd2
PH
8245/* The index of the variant field of TYPE, or -1 if TYPE does not
8246 represent a variant record type. */
14f9c5c9 8247
d2e4a39e 8248static int
4c4b4cd2 8249variant_field_index (struct type *type)
14f9c5c9
AS
8250{
8251 int f;
8252
4c4b4cd2
PH
8253 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT)
8254 return -1;
8255
8256 for (f = 0; f < TYPE_NFIELDS (type); f += 1)
8257 {
8258 if (ada_is_variant_part (type, f))
8259 return f;
8260 }
8261 return -1;
14f9c5c9
AS
8262}
8263
4c4b4cd2
PH
8264/* A record type with no fields. */
8265
d2e4a39e 8266static struct type *
fe978cb0 8267empty_record (struct type *templ)
14f9c5c9 8268{
fe978cb0 8269 struct type *type = alloc_type_copy (templ);
5b4ee69b 8270
14f9c5c9
AS
8271 TYPE_CODE (type) = TYPE_CODE_STRUCT;
8272 TYPE_NFIELDS (type) = 0;
8273 TYPE_FIELDS (type) = NULL;
b1f33ddd 8274 INIT_CPLUS_SPECIFIC (type);
14f9c5c9 8275 TYPE_NAME (type) = "<empty>";
14f9c5c9
AS
8276 TYPE_LENGTH (type) = 0;
8277 return type;
8278}
8279
8280/* An ordinary record type (with fixed-length fields) that describes
4c4b4cd2
PH
8281 the value of type TYPE at VALADDR or ADDRESS (see comments at
8282 the beginning of this section) VAL according to GNAT conventions.
8283 DVAL0 should describe the (portion of a) record that contains any
df407dfe 8284 necessary discriminants. It should be NULL if value_type (VAL) is
14f9c5c9
AS
8285 an outer-level type (i.e., as opposed to a branch of a variant.) A
8286 variant field (unless unchecked) is replaced by a particular branch
4c4b4cd2 8287 of the variant.
14f9c5c9 8288
4c4b4cd2
PH
8289 If not KEEP_DYNAMIC_FIELDS, then all fields whose position or
8290 length are not statically known are discarded. As a consequence,
8291 VALADDR, ADDRESS and DVAL0 are ignored.
8292
8293 NOTE: Limitations: For now, we assume that dynamic fields and
8294 variants occupy whole numbers of bytes. However, they need not be
8295 byte-aligned. */
8296
8297struct type *
10a2c479 8298ada_template_to_fixed_record_type_1 (struct type *type,
fc1a4b47 8299 const gdb_byte *valaddr,
4c4b4cd2
PH
8300 CORE_ADDR address, struct value *dval0,
8301 int keep_dynamic_fields)
14f9c5c9 8302{
d2e4a39e
AS
8303 struct value *mark = value_mark ();
8304 struct value *dval;
8305 struct type *rtype;
14f9c5c9 8306 int nfields, bit_len;
4c4b4cd2 8307 int variant_field;
14f9c5c9 8308 long off;
d94e4f4f 8309 int fld_bit_len;
14f9c5c9
AS
8310 int f;
8311
4c4b4cd2
PH
8312 /* Compute the number of fields in this record type that are going
8313 to be processed: unless keep_dynamic_fields, this includes only
8314 fields whose position and length are static will be processed. */
8315 if (keep_dynamic_fields)
8316 nfields = TYPE_NFIELDS (type);
8317 else
8318 {
8319 nfields = 0;
76a01679 8320 while (nfields < TYPE_NFIELDS (type)
4c4b4cd2
PH
8321 && !ada_is_variant_part (type, nfields)
8322 && !is_dynamic_field (type, nfields))
8323 nfields++;
8324 }
8325
e9bb382b 8326 rtype = alloc_type_copy (type);
14f9c5c9
AS
8327 TYPE_CODE (rtype) = TYPE_CODE_STRUCT;
8328 INIT_CPLUS_SPECIFIC (rtype);
8329 TYPE_NFIELDS (rtype) = nfields;
d2e4a39e 8330 TYPE_FIELDS (rtype) = (struct field *)
14f9c5c9
AS
8331 TYPE_ALLOC (rtype, nfields * sizeof (struct field));
8332 memset (TYPE_FIELDS (rtype), 0, sizeof (struct field) * nfields);
8333 TYPE_NAME (rtype) = ada_type_name (type);
876cecd0 8334 TYPE_FIXED_INSTANCE (rtype) = 1;
14f9c5c9 8335
d2e4a39e
AS
8336 off = 0;
8337 bit_len = 0;
4c4b4cd2
PH
8338 variant_field = -1;
8339
14f9c5c9
AS
8340 for (f = 0; f < nfields; f += 1)
8341 {
6c038f32
PH
8342 off = align_value (off, field_alignment (type, f))
8343 + TYPE_FIELD_BITPOS (type, f);
945b3a32 8344 SET_FIELD_BITPOS (TYPE_FIELD (rtype, f), off);
d2e4a39e 8345 TYPE_FIELD_BITSIZE (rtype, f) = 0;
14f9c5c9 8346
d2e4a39e 8347 if (ada_is_variant_part (type, f))
4c4b4cd2
PH
8348 {
8349 variant_field = f;
d94e4f4f 8350 fld_bit_len = 0;
4c4b4cd2 8351 }
14f9c5c9 8352 else if (is_dynamic_field (type, f))
4c4b4cd2 8353 {
284614f0
JB
8354 const gdb_byte *field_valaddr = valaddr;
8355 CORE_ADDR field_address = address;
8356 struct type *field_type =
8357 TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type, f));
8358
4c4b4cd2 8359 if (dval0 == NULL)
b5304971
JG
8360 {
8361 /* rtype's length is computed based on the run-time
8362 value of discriminants. If the discriminants are not
8363 initialized, the type size may be completely bogus and
0963b4bd 8364 GDB may fail to allocate a value for it. So check the
b5304971 8365 size first before creating the value. */
c1b5a1a6 8366 ada_ensure_varsize_limit (rtype);
012370f6
TT
8367 /* Using plain value_from_contents_and_address here
8368 causes problems because we will end up trying to
8369 resolve a type that is currently being
8370 constructed. */
8371 dval = value_from_contents_and_address_unresolved (rtype,
8372 valaddr,
8373 address);
9f1f738a 8374 rtype = value_type (dval);
b5304971 8375 }
4c4b4cd2
PH
8376 else
8377 dval = dval0;
8378
284614f0
JB
8379 /* If the type referenced by this field is an aligner type, we need
8380 to unwrap that aligner type, because its size might not be set.
8381 Keeping the aligner type would cause us to compute the wrong
8382 size for this field, impacting the offset of the all the fields
8383 that follow this one. */
8384 if (ada_is_aligner_type (field_type))
8385 {
8386 long field_offset = TYPE_FIELD_BITPOS (field_type, f);
8387
8388 field_valaddr = cond_offset_host (field_valaddr, field_offset);
8389 field_address = cond_offset_target (field_address, field_offset);
8390 field_type = ada_aligned_type (field_type);
8391 }
8392
8393 field_valaddr = cond_offset_host (field_valaddr,
8394 off / TARGET_CHAR_BIT);
8395 field_address = cond_offset_target (field_address,
8396 off / TARGET_CHAR_BIT);
8397
8398 /* Get the fixed type of the field. Note that, in this case,
8399 we do not want to get the real type out of the tag: if
8400 the current field is the parent part of a tagged record,
8401 we will get the tag of the object. Clearly wrong: the real
8402 type of the parent is not the real type of the child. We
8403 would end up in an infinite loop. */
8404 field_type = ada_get_base_type (field_type);
8405 field_type = ada_to_fixed_type (field_type, field_valaddr,
8406 field_address, dval, 0);
27f2a97b
JB
8407 /* If the field size is already larger than the maximum
8408 object size, then the record itself will necessarily
8409 be larger than the maximum object size. We need to make
8410 this check now, because the size might be so ridiculously
8411 large (due to an uninitialized variable in the inferior)
8412 that it would cause an overflow when adding it to the
8413 record size. */
c1b5a1a6 8414 ada_ensure_varsize_limit (field_type);
284614f0
JB
8415
8416 TYPE_FIELD_TYPE (rtype, f) = field_type;
4c4b4cd2 8417 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
27f2a97b
JB
8418 /* The multiplication can potentially overflow. But because
8419 the field length has been size-checked just above, and
8420 assuming that the maximum size is a reasonable value,
8421 an overflow should not happen in practice. So rather than
8422 adding overflow recovery code to this already complex code,
8423 we just assume that it's not going to happen. */
d94e4f4f 8424 fld_bit_len =
4c4b4cd2
PH
8425 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, f)) * TARGET_CHAR_BIT;
8426 }
14f9c5c9 8427 else
4c4b4cd2 8428 {
5ded5331
JB
8429 /* Note: If this field's type is a typedef, it is important
8430 to preserve the typedef layer.
8431
8432 Otherwise, we might be transforming a typedef to a fat
8433 pointer (encoding a pointer to an unconstrained array),
8434 into a basic fat pointer (encoding an unconstrained
8435 array). As both types are implemented using the same
8436 structure, the typedef is the only clue which allows us
8437 to distinguish between the two options. Stripping it
8438 would prevent us from printing this field appropriately. */
8439 TYPE_FIELD_TYPE (rtype, f) = TYPE_FIELD_TYPE (type, f);
4c4b4cd2
PH
8440 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
8441 if (TYPE_FIELD_BITSIZE (type, f) > 0)
d94e4f4f 8442 fld_bit_len =
4c4b4cd2
PH
8443 TYPE_FIELD_BITSIZE (rtype, f) = TYPE_FIELD_BITSIZE (type, f);
8444 else
5ded5331
JB
8445 {
8446 struct type *field_type = TYPE_FIELD_TYPE (type, f);
8447
8448 /* We need to be careful of typedefs when computing
8449 the length of our field. If this is a typedef,
8450 get the length of the target type, not the length
8451 of the typedef. */
8452 if (TYPE_CODE (field_type) == TYPE_CODE_TYPEDEF)
8453 field_type = ada_typedef_target_type (field_type);
8454
8455 fld_bit_len =
8456 TYPE_LENGTH (ada_check_typedef (field_type)) * TARGET_CHAR_BIT;
8457 }
4c4b4cd2 8458 }
14f9c5c9 8459 if (off + fld_bit_len > bit_len)
4c4b4cd2 8460 bit_len = off + fld_bit_len;
d94e4f4f 8461 off += fld_bit_len;
4c4b4cd2
PH
8462 TYPE_LENGTH (rtype) =
8463 align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
14f9c5c9 8464 }
4c4b4cd2
PH
8465
8466 /* We handle the variant part, if any, at the end because of certain
b1f33ddd 8467 odd cases in which it is re-ordered so as NOT to be the last field of
4c4b4cd2
PH
8468 the record. This can happen in the presence of representation
8469 clauses. */
8470 if (variant_field >= 0)
8471 {
8472 struct type *branch_type;
8473
8474 off = TYPE_FIELD_BITPOS (rtype, variant_field);
8475
8476 if (dval0 == NULL)
9f1f738a 8477 {
012370f6
TT
8478 /* Using plain value_from_contents_and_address here causes
8479 problems because we will end up trying to resolve a type
8480 that is currently being constructed. */
8481 dval = value_from_contents_and_address_unresolved (rtype, valaddr,
8482 address);
9f1f738a
SA
8483 rtype = value_type (dval);
8484 }
4c4b4cd2
PH
8485 else
8486 dval = dval0;
8487
8488 branch_type =
8489 to_fixed_variant_branch_type
8490 (TYPE_FIELD_TYPE (type, variant_field),
8491 cond_offset_host (valaddr, off / TARGET_CHAR_BIT),
8492 cond_offset_target (address, off / TARGET_CHAR_BIT), dval);
8493 if (branch_type == NULL)
8494 {
8495 for (f = variant_field + 1; f < TYPE_NFIELDS (rtype); f += 1)
8496 TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f];
8497 TYPE_NFIELDS (rtype) -= 1;
8498 }
8499 else
8500 {
8501 TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
8502 TYPE_FIELD_NAME (rtype, variant_field) = "S";
8503 fld_bit_len =
8504 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, variant_field)) *
8505 TARGET_CHAR_BIT;
8506 if (off + fld_bit_len > bit_len)
8507 bit_len = off + fld_bit_len;
8508 TYPE_LENGTH (rtype) =
8509 align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
8510 }
8511 }
8512
714e53ab
PH
8513 /* According to exp_dbug.ads, the size of TYPE for variable-size records
8514 should contain the alignment of that record, which should be a strictly
8515 positive value. If null or negative, then something is wrong, most
8516 probably in the debug info. In that case, we don't round up the size
0963b4bd 8517 of the resulting type. If this record is not part of another structure,
714e53ab
PH
8518 the current RTYPE length might be good enough for our purposes. */
8519 if (TYPE_LENGTH (type) <= 0)
8520 {
323e0a4a
AC
8521 if (TYPE_NAME (rtype))
8522 warning (_("Invalid type size for `%s' detected: %d."),
8523 TYPE_NAME (rtype), TYPE_LENGTH (type));
8524 else
8525 warning (_("Invalid type size for <unnamed> detected: %d."),
8526 TYPE_LENGTH (type));
714e53ab
PH
8527 }
8528 else
8529 {
8530 TYPE_LENGTH (rtype) = align_value (TYPE_LENGTH (rtype),
8531 TYPE_LENGTH (type));
8532 }
14f9c5c9
AS
8533
8534 value_free_to_mark (mark);
d2e4a39e 8535 if (TYPE_LENGTH (rtype) > varsize_limit)
323e0a4a 8536 error (_("record type with dynamic size is larger than varsize-limit"));
14f9c5c9
AS
8537 return rtype;
8538}
8539
4c4b4cd2
PH
8540/* As for ada_template_to_fixed_record_type_1 with KEEP_DYNAMIC_FIELDS
8541 of 1. */
14f9c5c9 8542
d2e4a39e 8543static struct type *
fc1a4b47 8544template_to_fixed_record_type (struct type *type, const gdb_byte *valaddr,
4c4b4cd2
PH
8545 CORE_ADDR address, struct value *dval0)
8546{
8547 return ada_template_to_fixed_record_type_1 (type, valaddr,
8548 address, dval0, 1);
8549}
8550
8551/* An ordinary record type in which ___XVL-convention fields and
8552 ___XVU- and ___XVN-convention field types in TYPE0 are replaced with
8553 static approximations, containing all possible fields. Uses
8554 no runtime values. Useless for use in values, but that's OK,
8555 since the results are used only for type determinations. Works on both
8556 structs and unions. Representation note: to save space, we memorize
8557 the result of this function in the TYPE_TARGET_TYPE of the
8558 template type. */
8559
8560static struct type *
8561template_to_static_fixed_type (struct type *type0)
14f9c5c9
AS
8562{
8563 struct type *type;
8564 int nfields;
8565 int f;
8566
9e195661
PMR
8567 /* No need no do anything if the input type is already fixed. */
8568 if (TYPE_FIXED_INSTANCE (type0))
8569 return type0;
8570
8571 /* Likewise if we already have computed the static approximation. */
4c4b4cd2
PH
8572 if (TYPE_TARGET_TYPE (type0) != NULL)
8573 return TYPE_TARGET_TYPE (type0);
8574
9e195661 8575 /* Don't clone TYPE0 until we are sure we are going to need a copy. */
4c4b4cd2 8576 type = type0;
9e195661
PMR
8577 nfields = TYPE_NFIELDS (type0);
8578
8579 /* Whether or not we cloned TYPE0, cache the result so that we don't do
8580 recompute all over next time. */
8581 TYPE_TARGET_TYPE (type0) = type;
14f9c5c9
AS
8582
8583 for (f = 0; f < nfields; f += 1)
8584 {
460efde1 8585 struct type *field_type = TYPE_FIELD_TYPE (type0, f);
4c4b4cd2 8586 struct type *new_type;
14f9c5c9 8587
4c4b4cd2 8588 if (is_dynamic_field (type0, f))
460efde1
JB
8589 {
8590 field_type = ada_check_typedef (field_type);
8591 new_type = to_static_fixed_type (TYPE_TARGET_TYPE (field_type));
8592 }
14f9c5c9 8593 else
f192137b 8594 new_type = static_unwrap_type (field_type);
9e195661
PMR
8595
8596 if (new_type != field_type)
8597 {
8598 /* Clone TYPE0 only the first time we get a new field type. */
8599 if (type == type0)
8600 {
8601 TYPE_TARGET_TYPE (type0) = type = alloc_type_copy (type0);
8602 TYPE_CODE (type) = TYPE_CODE (type0);
8603 INIT_CPLUS_SPECIFIC (type);
8604 TYPE_NFIELDS (type) = nfields;
8605 TYPE_FIELDS (type) = (struct field *)
8606 TYPE_ALLOC (type, nfields * sizeof (struct field));
8607 memcpy (TYPE_FIELDS (type), TYPE_FIELDS (type0),
8608 sizeof (struct field) * nfields);
8609 TYPE_NAME (type) = ada_type_name (type0);
9e195661
PMR
8610 TYPE_FIXED_INSTANCE (type) = 1;
8611 TYPE_LENGTH (type) = 0;
8612 }
8613 TYPE_FIELD_TYPE (type, f) = new_type;
8614 TYPE_FIELD_NAME (type, f) = TYPE_FIELD_NAME (type0, f);
8615 }
14f9c5c9 8616 }
9e195661 8617
14f9c5c9
AS
8618 return type;
8619}
8620
4c4b4cd2 8621/* Given an object of type TYPE whose contents are at VALADDR and
5823c3ef
JB
8622 whose address in memory is ADDRESS, returns a revision of TYPE,
8623 which should be a non-dynamic-sized record, in which the variant
8624 part, if any, is replaced with the appropriate branch. Looks
4c4b4cd2
PH
8625 for discriminant values in DVAL0, which can be NULL if the record
8626 contains the necessary discriminant values. */
8627
d2e4a39e 8628static struct type *
fc1a4b47 8629to_record_with_fixed_variant_part (struct type *type, const gdb_byte *valaddr,
4c4b4cd2 8630 CORE_ADDR address, struct value *dval0)
14f9c5c9 8631{
d2e4a39e 8632 struct value *mark = value_mark ();
4c4b4cd2 8633 struct value *dval;
d2e4a39e 8634 struct type *rtype;
14f9c5c9
AS
8635 struct type *branch_type;
8636 int nfields = TYPE_NFIELDS (type);
4c4b4cd2 8637 int variant_field = variant_field_index (type);
14f9c5c9 8638
4c4b4cd2 8639 if (variant_field == -1)
14f9c5c9
AS
8640 return type;
8641
4c4b4cd2 8642 if (dval0 == NULL)
9f1f738a
SA
8643 {
8644 dval = value_from_contents_and_address (type, valaddr, address);
8645 type = value_type (dval);
8646 }
4c4b4cd2
PH
8647 else
8648 dval = dval0;
8649
e9bb382b 8650 rtype = alloc_type_copy (type);
14f9c5c9 8651 TYPE_CODE (rtype) = TYPE_CODE_STRUCT;
4c4b4cd2
PH
8652 INIT_CPLUS_SPECIFIC (rtype);
8653 TYPE_NFIELDS (rtype) = nfields;
d2e4a39e
AS
8654 TYPE_FIELDS (rtype) =
8655 (struct field *) TYPE_ALLOC (rtype, nfields * sizeof (struct field));
8656 memcpy (TYPE_FIELDS (rtype), TYPE_FIELDS (type),
4c4b4cd2 8657 sizeof (struct field) * nfields);
14f9c5c9 8658 TYPE_NAME (rtype) = ada_type_name (type);
876cecd0 8659 TYPE_FIXED_INSTANCE (rtype) = 1;
14f9c5c9
AS
8660 TYPE_LENGTH (rtype) = TYPE_LENGTH (type);
8661
4c4b4cd2
PH
8662 branch_type = to_fixed_variant_branch_type
8663 (TYPE_FIELD_TYPE (type, variant_field),
d2e4a39e 8664 cond_offset_host (valaddr,
4c4b4cd2
PH
8665 TYPE_FIELD_BITPOS (type, variant_field)
8666 / TARGET_CHAR_BIT),
d2e4a39e 8667 cond_offset_target (address,
4c4b4cd2
PH
8668 TYPE_FIELD_BITPOS (type, variant_field)
8669 / TARGET_CHAR_BIT), dval);
d2e4a39e 8670 if (branch_type == NULL)
14f9c5c9 8671 {
4c4b4cd2 8672 int f;
5b4ee69b 8673
4c4b4cd2
PH
8674 for (f = variant_field + 1; f < nfields; f += 1)
8675 TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f];
14f9c5c9 8676 TYPE_NFIELDS (rtype) -= 1;
14f9c5c9
AS
8677 }
8678 else
8679 {
4c4b4cd2
PH
8680 TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
8681 TYPE_FIELD_NAME (rtype, variant_field) = "S";
8682 TYPE_FIELD_BITSIZE (rtype, variant_field) = 0;
14f9c5c9 8683 TYPE_LENGTH (rtype) += TYPE_LENGTH (branch_type);
14f9c5c9 8684 }
4c4b4cd2 8685 TYPE_LENGTH (rtype) -= TYPE_LENGTH (TYPE_FIELD_TYPE (type, variant_field));
d2e4a39e 8686
4c4b4cd2 8687 value_free_to_mark (mark);
14f9c5c9
AS
8688 return rtype;
8689}
8690
8691/* An ordinary record type (with fixed-length fields) that describes
8692 the value at (TYPE0, VALADDR, ADDRESS) [see explanation at
8693 beginning of this section]. Any necessary discriminants' values
4c4b4cd2
PH
8694 should be in DVAL, a record value; it may be NULL if the object
8695 at ADDR itself contains any necessary discriminant values.
8696 Additionally, VALADDR and ADDRESS may also be NULL if no discriminant
8697 values from the record are needed. Except in the case that DVAL,
8698 VALADDR, and ADDRESS are all 0 or NULL, a variant field (unless
8699 unchecked) is replaced by a particular branch of the variant.
8700
8701 NOTE: the case in which DVAL and VALADDR are NULL and ADDRESS is 0
8702 is questionable and may be removed. It can arise during the
8703 processing of an unconstrained-array-of-record type where all the
8704 variant branches have exactly the same size. This is because in
8705 such cases, the compiler does not bother to use the XVS convention
8706 when encoding the record. I am currently dubious of this
8707 shortcut and suspect the compiler should be altered. FIXME. */
14f9c5c9 8708
d2e4a39e 8709static struct type *
fc1a4b47 8710to_fixed_record_type (struct type *type0, const gdb_byte *valaddr,
4c4b4cd2 8711 CORE_ADDR address, struct value *dval)
14f9c5c9 8712{
d2e4a39e 8713 struct type *templ_type;
14f9c5c9 8714
876cecd0 8715 if (TYPE_FIXED_INSTANCE (type0))
4c4b4cd2
PH
8716 return type0;
8717
d2e4a39e 8718 templ_type = dynamic_template_type (type0);
14f9c5c9
AS
8719
8720 if (templ_type != NULL)
8721 return template_to_fixed_record_type (templ_type, valaddr, address, dval);
4c4b4cd2
PH
8722 else if (variant_field_index (type0) >= 0)
8723 {
8724 if (dval == NULL && valaddr == NULL && address == 0)
8725 return type0;
8726 return to_record_with_fixed_variant_part (type0, valaddr, address,
8727 dval);
8728 }
14f9c5c9
AS
8729 else
8730 {
876cecd0 8731 TYPE_FIXED_INSTANCE (type0) = 1;
14f9c5c9
AS
8732 return type0;
8733 }
8734
8735}
8736
8737/* An ordinary record type (with fixed-length fields) that describes
8738 the value at (VAR_TYPE0, VALADDR, ADDRESS), where VAR_TYPE0 is a
8739 union type. Any necessary discriminants' values should be in DVAL,
8740 a record value. That is, this routine selects the appropriate
8741 branch of the union at ADDR according to the discriminant value
b1f33ddd 8742 indicated in the union's type name. Returns VAR_TYPE0 itself if
0963b4bd 8743 it represents a variant subject to a pragma Unchecked_Union. */
14f9c5c9 8744
d2e4a39e 8745static struct type *
fc1a4b47 8746to_fixed_variant_branch_type (struct type *var_type0, const gdb_byte *valaddr,
4c4b4cd2 8747 CORE_ADDR address, struct value *dval)
14f9c5c9
AS
8748{
8749 int which;
d2e4a39e
AS
8750 struct type *templ_type;
8751 struct type *var_type;
14f9c5c9
AS
8752
8753 if (TYPE_CODE (var_type0) == TYPE_CODE_PTR)
8754 var_type = TYPE_TARGET_TYPE (var_type0);
d2e4a39e 8755 else
14f9c5c9
AS
8756 var_type = var_type0;
8757
8758 templ_type = ada_find_parallel_type (var_type, "___XVU");
8759
8760 if (templ_type != NULL)
8761 var_type = templ_type;
8762
b1f33ddd
JB
8763 if (is_unchecked_variant (var_type, value_type (dval)))
8764 return var_type0;
d2e4a39e
AS
8765 which =
8766 ada_which_variant_applies (var_type,
0fd88904 8767 value_type (dval), value_contents (dval));
14f9c5c9
AS
8768
8769 if (which < 0)
e9bb382b 8770 return empty_record (var_type);
14f9c5c9 8771 else if (is_dynamic_field (var_type, which))
4c4b4cd2 8772 return to_fixed_record_type
d2e4a39e
AS
8773 (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (var_type, which)),
8774 valaddr, address, dval);
4c4b4cd2 8775 else if (variant_field_index (TYPE_FIELD_TYPE (var_type, which)) >= 0)
d2e4a39e
AS
8776 return
8777 to_fixed_record_type
8778 (TYPE_FIELD_TYPE (var_type, which), valaddr, address, dval);
14f9c5c9
AS
8779 else
8780 return TYPE_FIELD_TYPE (var_type, which);
8781}
8782
8908fca5
JB
8783/* Assuming RANGE_TYPE is a TYPE_CODE_RANGE, return nonzero if
8784 ENCODING_TYPE, a type following the GNAT conventions for discrete
8785 type encodings, only carries redundant information. */
8786
8787static int
8788ada_is_redundant_range_encoding (struct type *range_type,
8789 struct type *encoding_type)
8790{
108d56a4 8791 const char *bounds_str;
8908fca5
JB
8792 int n;
8793 LONGEST lo, hi;
8794
8795 gdb_assert (TYPE_CODE (range_type) == TYPE_CODE_RANGE);
8796
005e2509
JB
8797 if (TYPE_CODE (get_base_type (range_type))
8798 != TYPE_CODE (get_base_type (encoding_type)))
8799 {
8800 /* The compiler probably used a simple base type to describe
8801 the range type instead of the range's actual base type,
8802 expecting us to get the real base type from the encoding
8803 anyway. In this situation, the encoding cannot be ignored
8804 as redundant. */
8805 return 0;
8806 }
8807
8908fca5
JB
8808 if (is_dynamic_type (range_type))
8809 return 0;
8810
8811 if (TYPE_NAME (encoding_type) == NULL)
8812 return 0;
8813
8814 bounds_str = strstr (TYPE_NAME (encoding_type), "___XDLU_");
8815 if (bounds_str == NULL)
8816 return 0;
8817
8818 n = 8; /* Skip "___XDLU_". */
8819 if (!ada_scan_number (bounds_str, n, &lo, &n))
8820 return 0;
8821 if (TYPE_LOW_BOUND (range_type) != lo)
8822 return 0;
8823
8824 n += 2; /* Skip the "__" separator between the two bounds. */
8825 if (!ada_scan_number (bounds_str, n, &hi, &n))
8826 return 0;
8827 if (TYPE_HIGH_BOUND (range_type) != hi)
8828 return 0;
8829
8830 return 1;
8831}
8832
8833/* Given the array type ARRAY_TYPE, return nonzero if DESC_TYPE,
8834 a type following the GNAT encoding for describing array type
8835 indices, only carries redundant information. */
8836
8837static int
8838ada_is_redundant_index_type_desc (struct type *array_type,
8839 struct type *desc_type)
8840{
8841 struct type *this_layer = check_typedef (array_type);
8842 int i;
8843
8844 for (i = 0; i < TYPE_NFIELDS (desc_type); i++)
8845 {
8846 if (!ada_is_redundant_range_encoding (TYPE_INDEX_TYPE (this_layer),
8847 TYPE_FIELD_TYPE (desc_type, i)))
8848 return 0;
8849 this_layer = check_typedef (TYPE_TARGET_TYPE (this_layer));
8850 }
8851
8852 return 1;
8853}
8854
14f9c5c9
AS
8855/* Assuming that TYPE0 is an array type describing the type of a value
8856 at ADDR, and that DVAL describes a record containing any
8857 discriminants used in TYPE0, returns a type for the value that
8858 contains no dynamic components (that is, no components whose sizes
8859 are determined by run-time quantities). Unless IGNORE_TOO_BIG is
8860 true, gives an error message if the resulting type's size is over
4c4b4cd2 8861 varsize_limit. */
14f9c5c9 8862
d2e4a39e
AS
8863static struct type *
8864to_fixed_array_type (struct type *type0, struct value *dval,
4c4b4cd2 8865 int ignore_too_big)
14f9c5c9 8866{
d2e4a39e
AS
8867 struct type *index_type_desc;
8868 struct type *result;
ad82864c 8869 int constrained_packed_array_p;
931e5bc3 8870 static const char *xa_suffix = "___XA";
14f9c5c9 8871
b0dd7688 8872 type0 = ada_check_typedef (type0);
284614f0 8873 if (TYPE_FIXED_INSTANCE (type0))
4c4b4cd2 8874 return type0;
14f9c5c9 8875
ad82864c
JB
8876 constrained_packed_array_p = ada_is_constrained_packed_array_type (type0);
8877 if (constrained_packed_array_p)
8878 type0 = decode_constrained_packed_array_type (type0);
284614f0 8879
931e5bc3
JG
8880 index_type_desc = ada_find_parallel_type (type0, xa_suffix);
8881
8882 /* As mentioned in exp_dbug.ads, for non bit-packed arrays an
8883 encoding suffixed with 'P' may still be generated. If so,
8884 it should be used to find the XA type. */
8885
8886 if (index_type_desc == NULL)
8887 {
1da0522e 8888 const char *type_name = ada_type_name (type0);
931e5bc3 8889
1da0522e 8890 if (type_name != NULL)
931e5bc3 8891 {
1da0522e 8892 const int len = strlen (type_name);
931e5bc3
JG
8893 char *name = (char *) alloca (len + strlen (xa_suffix));
8894
1da0522e 8895 if (type_name[len - 1] == 'P')
931e5bc3 8896 {
1da0522e 8897 strcpy (name, type_name);
931e5bc3
JG
8898 strcpy (name + len - 1, xa_suffix);
8899 index_type_desc = ada_find_parallel_type_with_name (type0, name);
8900 }
8901 }
8902 }
8903
28c85d6c 8904 ada_fixup_array_indexes_type (index_type_desc);
8908fca5
JB
8905 if (index_type_desc != NULL
8906 && ada_is_redundant_index_type_desc (type0, index_type_desc))
8907 {
8908 /* Ignore this ___XA parallel type, as it does not bring any
8909 useful information. This allows us to avoid creating fixed
8910 versions of the array's index types, which would be identical
8911 to the original ones. This, in turn, can also help avoid
8912 the creation of fixed versions of the array itself. */
8913 index_type_desc = NULL;
8914 }
8915
14f9c5c9
AS
8916 if (index_type_desc == NULL)
8917 {
61ee279c 8918 struct type *elt_type0 = ada_check_typedef (TYPE_TARGET_TYPE (type0));
5b4ee69b 8919
14f9c5c9 8920 /* NOTE: elt_type---the fixed version of elt_type0---should never
4c4b4cd2
PH
8921 depend on the contents of the array in properly constructed
8922 debugging data. */
529cad9c
PH
8923 /* Create a fixed version of the array element type.
8924 We're not providing the address of an element here,
e1d5a0d2 8925 and thus the actual object value cannot be inspected to do
529cad9c
PH
8926 the conversion. This should not be a problem, since arrays of
8927 unconstrained objects are not allowed. In particular, all
8928 the elements of an array of a tagged type should all be of
8929 the same type specified in the debugging info. No need to
8930 consult the object tag. */
1ed6ede0 8931 struct type *elt_type = ada_to_fixed_type (elt_type0, 0, 0, dval, 1);
14f9c5c9 8932
284614f0
JB
8933 /* Make sure we always create a new array type when dealing with
8934 packed array types, since we're going to fix-up the array
8935 type length and element bitsize a little further down. */
ad82864c 8936 if (elt_type0 == elt_type && !constrained_packed_array_p)
4c4b4cd2 8937 result = type0;
14f9c5c9 8938 else
e9bb382b 8939 result = create_array_type (alloc_type_copy (type0),
4c4b4cd2 8940 elt_type, TYPE_INDEX_TYPE (type0));
14f9c5c9
AS
8941 }
8942 else
8943 {
8944 int i;
8945 struct type *elt_type0;
8946
8947 elt_type0 = type0;
8948 for (i = TYPE_NFIELDS (index_type_desc); i > 0; i -= 1)
4c4b4cd2 8949 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
14f9c5c9
AS
8950
8951 /* NOTE: result---the fixed version of elt_type0---should never
4c4b4cd2
PH
8952 depend on the contents of the array in properly constructed
8953 debugging data. */
529cad9c
PH
8954 /* Create a fixed version of the array element type.
8955 We're not providing the address of an element here,
e1d5a0d2 8956 and thus the actual object value cannot be inspected to do
529cad9c
PH
8957 the conversion. This should not be a problem, since arrays of
8958 unconstrained objects are not allowed. In particular, all
8959 the elements of an array of a tagged type should all be of
8960 the same type specified in the debugging info. No need to
8961 consult the object tag. */
1ed6ede0
JB
8962 result =
8963 ada_to_fixed_type (ada_check_typedef (elt_type0), 0, 0, dval, 1);
1ce677a4
UW
8964
8965 elt_type0 = type0;
14f9c5c9 8966 for (i = TYPE_NFIELDS (index_type_desc) - 1; i >= 0; i -= 1)
4c4b4cd2
PH
8967 {
8968 struct type *range_type =
28c85d6c 8969 to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, i), dval);
5b4ee69b 8970
e9bb382b 8971 result = create_array_type (alloc_type_copy (elt_type0),
4c4b4cd2 8972 result, range_type);
1ce677a4 8973 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
4c4b4cd2 8974 }
d2e4a39e 8975 if (!ignore_too_big && TYPE_LENGTH (result) > varsize_limit)
323e0a4a 8976 error (_("array type with dynamic size is larger than varsize-limit"));
14f9c5c9
AS
8977 }
8978
2e6fda7d
JB
8979 /* We want to preserve the type name. This can be useful when
8980 trying to get the type name of a value that has already been
8981 printed (for instance, if the user did "print VAR; whatis $". */
8982 TYPE_NAME (result) = TYPE_NAME (type0);
8983
ad82864c 8984 if (constrained_packed_array_p)
284614f0
JB
8985 {
8986 /* So far, the resulting type has been created as if the original
8987 type was a regular (non-packed) array type. As a result, the
8988 bitsize of the array elements needs to be set again, and the array
8989 length needs to be recomputed based on that bitsize. */
8990 int len = TYPE_LENGTH (result) / TYPE_LENGTH (TYPE_TARGET_TYPE (result));
8991 int elt_bitsize = TYPE_FIELD_BITSIZE (type0, 0);
8992
8993 TYPE_FIELD_BITSIZE (result, 0) = TYPE_FIELD_BITSIZE (type0, 0);
8994 TYPE_LENGTH (result) = len * elt_bitsize / HOST_CHAR_BIT;
8995 if (TYPE_LENGTH (result) * HOST_CHAR_BIT < len * elt_bitsize)
8996 TYPE_LENGTH (result)++;
8997 }
8998
876cecd0 8999 TYPE_FIXED_INSTANCE (result) = 1;
14f9c5c9 9000 return result;
d2e4a39e 9001}
14f9c5c9
AS
9002
9003
9004/* A standard type (containing no dynamically sized components)
9005 corresponding to TYPE for the value (TYPE, VALADDR, ADDRESS)
9006 DVAL describes a record containing any discriminants used in TYPE0,
4c4b4cd2 9007 and may be NULL if there are none, or if the object of type TYPE at
529cad9c
PH
9008 ADDRESS or in VALADDR contains these discriminants.
9009
1ed6ede0
JB
9010 If CHECK_TAG is not null, in the case of tagged types, this function
9011 attempts to locate the object's tag and use it to compute the actual
9012 type. However, when ADDRESS is null, we cannot use it to determine the
9013 location of the tag, and therefore compute the tagged type's actual type.
9014 So we return the tagged type without consulting the tag. */
529cad9c 9015
f192137b
JB
9016static struct type *
9017ada_to_fixed_type_1 (struct type *type, const gdb_byte *valaddr,
1ed6ede0 9018 CORE_ADDR address, struct value *dval, int check_tag)
14f9c5c9 9019{
61ee279c 9020 type = ada_check_typedef (type);
d2e4a39e
AS
9021 switch (TYPE_CODE (type))
9022 {
9023 default:
14f9c5c9 9024 return type;
d2e4a39e 9025 case TYPE_CODE_STRUCT:
4c4b4cd2 9026 {
76a01679 9027 struct type *static_type = to_static_fixed_type (type);
1ed6ede0
JB
9028 struct type *fixed_record_type =
9029 to_fixed_record_type (type, valaddr, address, NULL);
5b4ee69b 9030
529cad9c
PH
9031 /* If STATIC_TYPE is a tagged type and we know the object's address,
9032 then we can determine its tag, and compute the object's actual
0963b4bd 9033 type from there. Note that we have to use the fixed record
1ed6ede0
JB
9034 type (the parent part of the record may have dynamic fields
9035 and the way the location of _tag is expressed may depend on
9036 them). */
529cad9c 9037
1ed6ede0 9038 if (check_tag && address != 0 && ada_is_tagged_type (static_type, 0))
76a01679 9039 {
b50d69b5
JG
9040 struct value *tag =
9041 value_tag_from_contents_and_address
9042 (fixed_record_type,
9043 valaddr,
9044 address);
9045 struct type *real_type = type_from_tag (tag);
9046 struct value *obj =
9047 value_from_contents_and_address (fixed_record_type,
9048 valaddr,
9049 address);
9f1f738a 9050 fixed_record_type = value_type (obj);
76a01679 9051 if (real_type != NULL)
b50d69b5
JG
9052 return to_fixed_record_type
9053 (real_type, NULL,
9054 value_address (ada_tag_value_at_base_address (obj)), NULL);
76a01679 9055 }
4af88198
JB
9056
9057 /* Check to see if there is a parallel ___XVZ variable.
9058 If there is, then it provides the actual size of our type. */
9059 else if (ada_type_name (fixed_record_type) != NULL)
9060 {
0d5cff50 9061 const char *name = ada_type_name (fixed_record_type);
224c3ddb
SM
9062 char *xvz_name
9063 = (char *) alloca (strlen (name) + 7 /* "___XVZ\0" */);
eccab96d 9064 bool xvz_found = false;
4af88198
JB
9065 LONGEST size;
9066
88c15c34 9067 xsnprintf (xvz_name, strlen (name) + 7, "%s___XVZ", name);
eccab96d
JB
9068 TRY
9069 {
9070 xvz_found = get_int_var_value (xvz_name, size);
9071 }
9072 CATCH (except, RETURN_MASK_ERROR)
9073 {
9074 /* We found the variable, but somehow failed to read
9075 its value. Rethrow the same error, but with a little
9076 bit more information, to help the user understand
9077 what went wrong (Eg: the variable might have been
9078 optimized out). */
9079 throw_error (except.error,
9080 _("unable to read value of %s (%s)"),
9081 xvz_name, except.message);
9082 }
9083 END_CATCH
9084
9085 if (xvz_found && TYPE_LENGTH (fixed_record_type) != size)
4af88198
JB
9086 {
9087 fixed_record_type = copy_type (fixed_record_type);
9088 TYPE_LENGTH (fixed_record_type) = size;
9089
9090 /* The FIXED_RECORD_TYPE may have be a stub. We have
9091 observed this when the debugging info is STABS, and
9092 apparently it is something that is hard to fix.
9093
9094 In practice, we don't need the actual type definition
9095 at all, because the presence of the XVZ variable allows us
9096 to assume that there must be a XVS type as well, which we
9097 should be able to use later, when we need the actual type
9098 definition.
9099
9100 In the meantime, pretend that the "fixed" type we are
9101 returning is NOT a stub, because this can cause trouble
9102 when using this type to create new types targeting it.
9103 Indeed, the associated creation routines often check
9104 whether the target type is a stub and will try to replace
0963b4bd 9105 it, thus using a type with the wrong size. This, in turn,
4af88198
JB
9106 might cause the new type to have the wrong size too.
9107 Consider the case of an array, for instance, where the size
9108 of the array is computed from the number of elements in
9109 our array multiplied by the size of its element. */
9110 TYPE_STUB (fixed_record_type) = 0;
9111 }
9112 }
1ed6ede0 9113 return fixed_record_type;
4c4b4cd2 9114 }
d2e4a39e 9115 case TYPE_CODE_ARRAY:
4c4b4cd2 9116 return to_fixed_array_type (type, dval, 1);
d2e4a39e
AS
9117 case TYPE_CODE_UNION:
9118 if (dval == NULL)
4c4b4cd2 9119 return type;
d2e4a39e 9120 else
4c4b4cd2 9121 return to_fixed_variant_branch_type (type, valaddr, address, dval);
d2e4a39e 9122 }
14f9c5c9
AS
9123}
9124
f192137b
JB
9125/* The same as ada_to_fixed_type_1, except that it preserves the type
9126 if it is a TYPE_CODE_TYPEDEF of a type that is already fixed.
96dbd2c1
JB
9127
9128 The typedef layer needs be preserved in order to differentiate between
9129 arrays and array pointers when both types are implemented using the same
9130 fat pointer. In the array pointer case, the pointer is encoded as
9131 a typedef of the pointer type. For instance, considering:
9132
9133 type String_Access is access String;
9134 S1 : String_Access := null;
9135
9136 To the debugger, S1 is defined as a typedef of type String. But
9137 to the user, it is a pointer. So if the user tries to print S1,
9138 we should not dereference the array, but print the array address
9139 instead.
9140
9141 If we didn't preserve the typedef layer, we would lose the fact that
9142 the type is to be presented as a pointer (needs de-reference before
9143 being printed). And we would also use the source-level type name. */
f192137b
JB
9144
9145struct type *
9146ada_to_fixed_type (struct type *type, const gdb_byte *valaddr,
9147 CORE_ADDR address, struct value *dval, int check_tag)
9148
9149{
9150 struct type *fixed_type =
9151 ada_to_fixed_type_1 (type, valaddr, address, dval, check_tag);
9152
96dbd2c1
JB
9153 /* If TYPE is a typedef and its target type is the same as the FIXED_TYPE,
9154 then preserve the typedef layer.
9155
9156 Implementation note: We can only check the main-type portion of
9157 the TYPE and FIXED_TYPE, because eliminating the typedef layer
9158 from TYPE now returns a type that has the same instance flags
9159 as TYPE. For instance, if TYPE is a "typedef const", and its
9160 target type is a "struct", then the typedef elimination will return
9161 a "const" version of the target type. See check_typedef for more
9162 details about how the typedef layer elimination is done.
9163
9164 brobecker/2010-11-19: It seems to me that the only case where it is
9165 useful to preserve the typedef layer is when dealing with fat pointers.
9166 Perhaps, we could add a check for that and preserve the typedef layer
9167 only in that situation. But this seems unecessary so far, probably
9168 because we call check_typedef/ada_check_typedef pretty much everywhere.
9169 */
f192137b 9170 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF
720d1a40 9171 && (TYPE_MAIN_TYPE (ada_typedef_target_type (type))
96dbd2c1 9172 == TYPE_MAIN_TYPE (fixed_type)))
f192137b
JB
9173 return type;
9174
9175 return fixed_type;
9176}
9177
14f9c5c9 9178/* A standard (static-sized) type corresponding as well as possible to
4c4b4cd2 9179 TYPE0, but based on no runtime data. */
14f9c5c9 9180
d2e4a39e
AS
9181static struct type *
9182to_static_fixed_type (struct type *type0)
14f9c5c9 9183{
d2e4a39e 9184 struct type *type;
14f9c5c9
AS
9185
9186 if (type0 == NULL)
9187 return NULL;
9188
876cecd0 9189 if (TYPE_FIXED_INSTANCE (type0))
4c4b4cd2
PH
9190 return type0;
9191
61ee279c 9192 type0 = ada_check_typedef (type0);
d2e4a39e 9193
14f9c5c9
AS
9194 switch (TYPE_CODE (type0))
9195 {
9196 default:
9197 return type0;
9198 case TYPE_CODE_STRUCT:
9199 type = dynamic_template_type (type0);
d2e4a39e 9200 if (type != NULL)
4c4b4cd2
PH
9201 return template_to_static_fixed_type (type);
9202 else
9203 return template_to_static_fixed_type (type0);
14f9c5c9
AS
9204 case TYPE_CODE_UNION:
9205 type = ada_find_parallel_type (type0, "___XVU");
9206 if (type != NULL)
4c4b4cd2
PH
9207 return template_to_static_fixed_type (type);
9208 else
9209 return template_to_static_fixed_type (type0);
14f9c5c9
AS
9210 }
9211}
9212
4c4b4cd2
PH
9213/* A static approximation of TYPE with all type wrappers removed. */
9214
d2e4a39e
AS
9215static struct type *
9216static_unwrap_type (struct type *type)
14f9c5c9
AS
9217{
9218 if (ada_is_aligner_type (type))
9219 {
61ee279c 9220 struct type *type1 = TYPE_FIELD_TYPE (ada_check_typedef (type), 0);
14f9c5c9 9221 if (ada_type_name (type1) == NULL)
4c4b4cd2 9222 TYPE_NAME (type1) = ada_type_name (type);
14f9c5c9
AS
9223
9224 return static_unwrap_type (type1);
9225 }
d2e4a39e 9226 else
14f9c5c9 9227 {
d2e4a39e 9228 struct type *raw_real_type = ada_get_base_type (type);
5b4ee69b 9229
d2e4a39e 9230 if (raw_real_type == type)
4c4b4cd2 9231 return type;
14f9c5c9 9232 else
4c4b4cd2 9233 return to_static_fixed_type (raw_real_type);
14f9c5c9
AS
9234 }
9235}
9236
9237/* In some cases, incomplete and private types require
4c4b4cd2 9238 cross-references that are not resolved as records (for example,
14f9c5c9
AS
9239 type Foo;
9240 type FooP is access Foo;
9241 V: FooP;
9242 type Foo is array ...;
4c4b4cd2 9243 ). In these cases, since there is no mechanism for producing
14f9c5c9
AS
9244 cross-references to such types, we instead substitute for FooP a
9245 stub enumeration type that is nowhere resolved, and whose tag is
4c4b4cd2 9246 the name of the actual type. Call these types "non-record stubs". */
14f9c5c9
AS
9247
9248/* A type equivalent to TYPE that is not a non-record stub, if one
4c4b4cd2
PH
9249 exists, otherwise TYPE. */
9250
d2e4a39e 9251struct type *
61ee279c 9252ada_check_typedef (struct type *type)
14f9c5c9 9253{
727e3d2e
JB
9254 if (type == NULL)
9255 return NULL;
9256
736ade86
XR
9257 /* If our type is an access to an unconstrained array, which is encoded
9258 as a TYPE_CODE_TYPEDEF of a fat pointer, then we're done.
720d1a40
JB
9259 We don't want to strip the TYPE_CODE_TYPDEF layer, because this is
9260 what allows us to distinguish between fat pointers that represent
9261 array types, and fat pointers that represent array access types
9262 (in both cases, the compiler implements them as fat pointers). */
736ade86 9263 if (ada_is_access_to_unconstrained_array (type))
720d1a40
JB
9264 return type;
9265
f168693b 9266 type = check_typedef (type);
14f9c5c9 9267 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM
529cad9c 9268 || !TYPE_STUB (type)
e86ca25f 9269 || TYPE_NAME (type) == NULL)
14f9c5c9 9270 return type;
d2e4a39e 9271 else
14f9c5c9 9272 {
e86ca25f 9273 const char *name = TYPE_NAME (type);
d2e4a39e 9274 struct type *type1 = ada_find_any_type (name);
5b4ee69b 9275
05e522ef
JB
9276 if (type1 == NULL)
9277 return type;
9278
9279 /* TYPE1 might itself be a TYPE_CODE_TYPEDEF (this can happen with
9280 stubs pointing to arrays, as we don't create symbols for array
3a867c22
JB
9281 types, only for the typedef-to-array types). If that's the case,
9282 strip the typedef layer. */
9283 if (TYPE_CODE (type1) == TYPE_CODE_TYPEDEF)
9284 type1 = ada_check_typedef (type1);
9285
9286 return type1;
14f9c5c9
AS
9287 }
9288}
9289
9290/* A value representing the data at VALADDR/ADDRESS as described by
9291 type TYPE0, but with a standard (static-sized) type that correctly
9292 describes it. If VAL0 is not NULL and TYPE0 already is a standard
9293 type, then return VAL0 [this feature is simply to avoid redundant
4c4b4cd2 9294 creation of struct values]. */
14f9c5c9 9295
4c4b4cd2
PH
9296static struct value *
9297ada_to_fixed_value_create (struct type *type0, CORE_ADDR address,
9298 struct value *val0)
14f9c5c9 9299{
1ed6ede0 9300 struct type *type = ada_to_fixed_type (type0, 0, address, NULL, 1);
5b4ee69b 9301
14f9c5c9
AS
9302 if (type == type0 && val0 != NULL)
9303 return val0;
cc0e770c
JB
9304
9305 if (VALUE_LVAL (val0) != lval_memory)
9306 {
9307 /* Our value does not live in memory; it could be a convenience
9308 variable, for instance. Create a not_lval value using val0's
9309 contents. */
9310 return value_from_contents (type, value_contents (val0));
9311 }
9312
9313 return value_from_contents_and_address (type, 0, address);
4c4b4cd2
PH
9314}
9315
9316/* A value representing VAL, but with a standard (static-sized) type
9317 that correctly describes it. Does not necessarily create a new
9318 value. */
9319
0c3acc09 9320struct value *
4c4b4cd2
PH
9321ada_to_fixed_value (struct value *val)
9322{
c48db5ca 9323 val = unwrap_value (val);
d8ce9127 9324 val = ada_to_fixed_value_create (value_type (val), value_address (val), val);
c48db5ca 9325 return val;
14f9c5c9 9326}
d2e4a39e 9327\f
14f9c5c9 9328
14f9c5c9
AS
9329/* Attributes */
9330
4c4b4cd2
PH
9331/* Table mapping attribute numbers to names.
9332 NOTE: Keep up to date with enum ada_attribute definition in ada-lang.h. */
14f9c5c9 9333
d2e4a39e 9334static const char *attribute_names[] = {
14f9c5c9
AS
9335 "<?>",
9336
d2e4a39e 9337 "first",
14f9c5c9
AS
9338 "last",
9339 "length",
9340 "image",
14f9c5c9
AS
9341 "max",
9342 "min",
4c4b4cd2
PH
9343 "modulus",
9344 "pos",
9345 "size",
9346 "tag",
14f9c5c9 9347 "val",
14f9c5c9
AS
9348 0
9349};
9350
d2e4a39e 9351const char *
4c4b4cd2 9352ada_attribute_name (enum exp_opcode n)
14f9c5c9 9353{
4c4b4cd2
PH
9354 if (n >= OP_ATR_FIRST && n <= (int) OP_ATR_VAL)
9355 return attribute_names[n - OP_ATR_FIRST + 1];
14f9c5c9
AS
9356 else
9357 return attribute_names[0];
9358}
9359
4c4b4cd2 9360/* Evaluate the 'POS attribute applied to ARG. */
14f9c5c9 9361
4c4b4cd2
PH
9362static LONGEST
9363pos_atr (struct value *arg)
14f9c5c9 9364{
24209737
PH
9365 struct value *val = coerce_ref (arg);
9366 struct type *type = value_type (val);
aa715135 9367 LONGEST result;
14f9c5c9 9368
d2e4a39e 9369 if (!discrete_type_p (type))
323e0a4a 9370 error (_("'POS only defined on discrete types"));
14f9c5c9 9371
aa715135
JG
9372 if (!discrete_position (type, value_as_long (val), &result))
9373 error (_("enumeration value is invalid: can't find 'POS"));
14f9c5c9 9374
aa715135 9375 return result;
4c4b4cd2
PH
9376}
9377
9378static struct value *
3cb382c9 9379value_pos_atr (struct type *type, struct value *arg)
4c4b4cd2 9380{
3cb382c9 9381 return value_from_longest (type, pos_atr (arg));
14f9c5c9
AS
9382}
9383
4c4b4cd2 9384/* Evaluate the TYPE'VAL attribute applied to ARG. */
14f9c5c9 9385
d2e4a39e
AS
9386static struct value *
9387value_val_atr (struct type *type, struct value *arg)
14f9c5c9 9388{
d2e4a39e 9389 if (!discrete_type_p (type))
323e0a4a 9390 error (_("'VAL only defined on discrete types"));
df407dfe 9391 if (!integer_type_p (value_type (arg)))
323e0a4a 9392 error (_("'VAL requires integral argument"));
14f9c5c9
AS
9393
9394 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
9395 {
9396 long pos = value_as_long (arg);
5b4ee69b 9397
14f9c5c9 9398 if (pos < 0 || pos >= TYPE_NFIELDS (type))
323e0a4a 9399 error (_("argument to 'VAL out of range"));
14e75d8e 9400 return value_from_longest (type, TYPE_FIELD_ENUMVAL (type, pos));
14f9c5c9
AS
9401 }
9402 else
9403 return value_from_longest (type, value_as_long (arg));
9404}
14f9c5c9 9405\f
d2e4a39e 9406
4c4b4cd2 9407 /* Evaluation */
14f9c5c9 9408
4c4b4cd2
PH
9409/* True if TYPE appears to be an Ada character type.
9410 [At the moment, this is true only for Character and Wide_Character;
9411 It is a heuristic test that could stand improvement]. */
14f9c5c9 9412
d2e4a39e
AS
9413int
9414ada_is_character_type (struct type *type)
14f9c5c9 9415{
7b9f71f2
JB
9416 const char *name;
9417
9418 /* If the type code says it's a character, then assume it really is,
9419 and don't check any further. */
9420 if (TYPE_CODE (type) == TYPE_CODE_CHAR)
9421 return 1;
9422
9423 /* Otherwise, assume it's a character type iff it is a discrete type
9424 with a known character type name. */
9425 name = ada_type_name (type);
9426 return (name != NULL
9427 && (TYPE_CODE (type) == TYPE_CODE_INT
9428 || TYPE_CODE (type) == TYPE_CODE_RANGE)
9429 && (strcmp (name, "character") == 0
9430 || strcmp (name, "wide_character") == 0
5a517ebd 9431 || strcmp (name, "wide_wide_character") == 0
7b9f71f2 9432 || strcmp (name, "unsigned char") == 0));
14f9c5c9
AS
9433}
9434
4c4b4cd2 9435/* True if TYPE appears to be an Ada string type. */
14f9c5c9
AS
9436
9437int
ebf56fd3 9438ada_is_string_type (struct type *type)
14f9c5c9 9439{
61ee279c 9440 type = ada_check_typedef (type);
d2e4a39e 9441 if (type != NULL
14f9c5c9 9442 && TYPE_CODE (type) != TYPE_CODE_PTR
76a01679
JB
9443 && (ada_is_simple_array_type (type)
9444 || ada_is_array_descriptor_type (type))
14f9c5c9
AS
9445 && ada_array_arity (type) == 1)
9446 {
9447 struct type *elttype = ada_array_element_type (type, 1);
9448
9449 return ada_is_character_type (elttype);
9450 }
d2e4a39e 9451 else
14f9c5c9
AS
9452 return 0;
9453}
9454
5bf03f13
JB
9455/* The compiler sometimes provides a parallel XVS type for a given
9456 PAD type. Normally, it is safe to follow the PAD type directly,
9457 but older versions of the compiler have a bug that causes the offset
9458 of its "F" field to be wrong. Following that field in that case
9459 would lead to incorrect results, but this can be worked around
9460 by ignoring the PAD type and using the associated XVS type instead.
9461
9462 Set to True if the debugger should trust the contents of PAD types.
9463 Otherwise, ignore the PAD type if there is a parallel XVS type. */
9464static int trust_pad_over_xvs = 1;
14f9c5c9
AS
9465
9466/* True if TYPE is a struct type introduced by the compiler to force the
9467 alignment of a value. Such types have a single field with a
4c4b4cd2 9468 distinctive name. */
14f9c5c9
AS
9469
9470int
ebf56fd3 9471ada_is_aligner_type (struct type *type)
14f9c5c9 9472{
61ee279c 9473 type = ada_check_typedef (type);
714e53ab 9474
5bf03f13 9475 if (!trust_pad_over_xvs && ada_find_parallel_type (type, "___XVS") != NULL)
714e53ab
PH
9476 return 0;
9477
14f9c5c9 9478 return (TYPE_CODE (type) == TYPE_CODE_STRUCT
4c4b4cd2
PH
9479 && TYPE_NFIELDS (type) == 1
9480 && strcmp (TYPE_FIELD_NAME (type, 0), "F") == 0);
14f9c5c9
AS
9481}
9482
9483/* If there is an ___XVS-convention type parallel to SUBTYPE, return
4c4b4cd2 9484 the parallel type. */
14f9c5c9 9485
d2e4a39e
AS
9486struct type *
9487ada_get_base_type (struct type *raw_type)
14f9c5c9 9488{
d2e4a39e
AS
9489 struct type *real_type_namer;
9490 struct type *raw_real_type;
14f9c5c9
AS
9491
9492 if (raw_type == NULL || TYPE_CODE (raw_type) != TYPE_CODE_STRUCT)
9493 return raw_type;
9494
284614f0
JB
9495 if (ada_is_aligner_type (raw_type))
9496 /* The encoding specifies that we should always use the aligner type.
9497 So, even if this aligner type has an associated XVS type, we should
9498 simply ignore it.
9499
9500 According to the compiler gurus, an XVS type parallel to an aligner
9501 type may exist because of a stabs limitation. In stabs, aligner
9502 types are empty because the field has a variable-sized type, and
9503 thus cannot actually be used as an aligner type. As a result,
9504 we need the associated parallel XVS type to decode the type.
9505 Since the policy in the compiler is to not change the internal
9506 representation based on the debugging info format, we sometimes
9507 end up having a redundant XVS type parallel to the aligner type. */
9508 return raw_type;
9509
14f9c5c9 9510 real_type_namer = ada_find_parallel_type (raw_type, "___XVS");
d2e4a39e 9511 if (real_type_namer == NULL
14f9c5c9
AS
9512 || TYPE_CODE (real_type_namer) != TYPE_CODE_STRUCT
9513 || TYPE_NFIELDS (real_type_namer) != 1)
9514 return raw_type;
9515
f80d3ff2
JB
9516 if (TYPE_CODE (TYPE_FIELD_TYPE (real_type_namer, 0)) != TYPE_CODE_REF)
9517 {
9518 /* This is an older encoding form where the base type needs to be
9519 looked up by name. We prefer the newer enconding because it is
9520 more efficient. */
9521 raw_real_type = ada_find_any_type (TYPE_FIELD_NAME (real_type_namer, 0));
9522 if (raw_real_type == NULL)
9523 return raw_type;
9524 else
9525 return raw_real_type;
9526 }
9527
9528 /* The field in our XVS type is a reference to the base type. */
9529 return TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (real_type_namer, 0));
d2e4a39e 9530}
14f9c5c9 9531
4c4b4cd2 9532/* The type of value designated by TYPE, with all aligners removed. */
14f9c5c9 9533
d2e4a39e
AS
9534struct type *
9535ada_aligned_type (struct type *type)
14f9c5c9
AS
9536{
9537 if (ada_is_aligner_type (type))
9538 return ada_aligned_type (TYPE_FIELD_TYPE (type, 0));
9539 else
9540 return ada_get_base_type (type);
9541}
9542
9543
9544/* The address of the aligned value in an object at address VALADDR
4c4b4cd2 9545 having type TYPE. Assumes ada_is_aligner_type (TYPE). */
14f9c5c9 9546
fc1a4b47
AC
9547const gdb_byte *
9548ada_aligned_value_addr (struct type *type, const gdb_byte *valaddr)
14f9c5c9 9549{
d2e4a39e 9550 if (ada_is_aligner_type (type))
14f9c5c9 9551 return ada_aligned_value_addr (TYPE_FIELD_TYPE (type, 0),
4c4b4cd2
PH
9552 valaddr +
9553 TYPE_FIELD_BITPOS (type,
9554 0) / TARGET_CHAR_BIT);
14f9c5c9
AS
9555 else
9556 return valaddr;
9557}
9558
4c4b4cd2
PH
9559
9560
14f9c5c9 9561/* The printed representation of an enumeration literal with encoded
4c4b4cd2 9562 name NAME. The value is good to the next call of ada_enum_name. */
d2e4a39e
AS
9563const char *
9564ada_enum_name (const char *name)
14f9c5c9 9565{
4c4b4cd2
PH
9566 static char *result;
9567 static size_t result_len = 0;
e6a959d6 9568 const char *tmp;
14f9c5c9 9569
4c4b4cd2
PH
9570 /* First, unqualify the enumeration name:
9571 1. Search for the last '.' character. If we find one, then skip
177b42fe 9572 all the preceding characters, the unqualified name starts
76a01679 9573 right after that dot.
4c4b4cd2 9574 2. Otherwise, we may be debugging on a target where the compiler
76a01679
JB
9575 translates dots into "__". Search forward for double underscores,
9576 but stop searching when we hit an overloading suffix, which is
9577 of the form "__" followed by digits. */
4c4b4cd2 9578
c3e5cd34
PH
9579 tmp = strrchr (name, '.');
9580 if (tmp != NULL)
4c4b4cd2
PH
9581 name = tmp + 1;
9582 else
14f9c5c9 9583 {
4c4b4cd2
PH
9584 while ((tmp = strstr (name, "__")) != NULL)
9585 {
9586 if (isdigit (tmp[2]))
9587 break;
9588 else
9589 name = tmp + 2;
9590 }
14f9c5c9
AS
9591 }
9592
9593 if (name[0] == 'Q')
9594 {
14f9c5c9 9595 int v;
5b4ee69b 9596
14f9c5c9 9597 if (name[1] == 'U' || name[1] == 'W')
4c4b4cd2
PH
9598 {
9599 if (sscanf (name + 2, "%x", &v) != 1)
9600 return name;
9601 }
14f9c5c9 9602 else
4c4b4cd2 9603 return name;
14f9c5c9 9604
4c4b4cd2 9605 GROW_VECT (result, result_len, 16);
14f9c5c9 9606 if (isascii (v) && isprint (v))
88c15c34 9607 xsnprintf (result, result_len, "'%c'", v);
14f9c5c9 9608 else if (name[1] == 'U')
88c15c34 9609 xsnprintf (result, result_len, "[\"%02x\"]", v);
14f9c5c9 9610 else
88c15c34 9611 xsnprintf (result, result_len, "[\"%04x\"]", v);
14f9c5c9
AS
9612
9613 return result;
9614 }
d2e4a39e 9615 else
4c4b4cd2 9616 {
c3e5cd34
PH
9617 tmp = strstr (name, "__");
9618 if (tmp == NULL)
9619 tmp = strstr (name, "$");
9620 if (tmp != NULL)
4c4b4cd2
PH
9621 {
9622 GROW_VECT (result, result_len, tmp - name + 1);
9623 strncpy (result, name, tmp - name);
9624 result[tmp - name] = '\0';
9625 return result;
9626 }
9627
9628 return name;
9629 }
14f9c5c9
AS
9630}
9631
14f9c5c9
AS
9632/* Evaluate the subexpression of EXP starting at *POS as for
9633 evaluate_type, updating *POS to point just past the evaluated
4c4b4cd2 9634 expression. */
14f9c5c9 9635
d2e4a39e
AS
9636static struct value *
9637evaluate_subexp_type (struct expression *exp, int *pos)
14f9c5c9 9638{
4b27a620 9639 return evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
14f9c5c9
AS
9640}
9641
9642/* If VAL is wrapped in an aligner or subtype wrapper, return the
4c4b4cd2 9643 value it wraps. */
14f9c5c9 9644
d2e4a39e
AS
9645static struct value *
9646unwrap_value (struct value *val)
14f9c5c9 9647{
df407dfe 9648 struct type *type = ada_check_typedef (value_type (val));
5b4ee69b 9649
14f9c5c9
AS
9650 if (ada_is_aligner_type (type))
9651 {
de4d072f 9652 struct value *v = ada_value_struct_elt (val, "F", 0);
df407dfe 9653 struct type *val_type = ada_check_typedef (value_type (v));
5b4ee69b 9654
14f9c5c9 9655 if (ada_type_name (val_type) == NULL)
4c4b4cd2 9656 TYPE_NAME (val_type) = ada_type_name (type);
14f9c5c9
AS
9657
9658 return unwrap_value (v);
9659 }
d2e4a39e 9660 else
14f9c5c9 9661 {
d2e4a39e 9662 struct type *raw_real_type =
61ee279c 9663 ada_check_typedef (ada_get_base_type (type));
d2e4a39e 9664
5bf03f13
JB
9665 /* If there is no parallel XVS or XVE type, then the value is
9666 already unwrapped. Return it without further modification. */
9667 if ((type == raw_real_type)
9668 && ada_find_parallel_type (type, "___XVE") == NULL)
9669 return val;
14f9c5c9 9670
d2e4a39e 9671 return
4c4b4cd2
PH
9672 coerce_unspec_val_to_type
9673 (val, ada_to_fixed_type (raw_real_type, 0,
42ae5230 9674 value_address (val),
1ed6ede0 9675 NULL, 1));
14f9c5c9
AS
9676 }
9677}
d2e4a39e
AS
9678
9679static struct value *
50eff16b 9680cast_from_fixed (struct type *type, struct value *arg)
14f9c5c9 9681{
50eff16b
UW
9682 struct value *scale = ada_scaling_factor (value_type (arg));
9683 arg = value_cast (value_type (scale), arg);
14f9c5c9 9684
50eff16b
UW
9685 arg = value_binop (arg, scale, BINOP_MUL);
9686 return value_cast (type, arg);
14f9c5c9
AS
9687}
9688
d2e4a39e 9689static struct value *
50eff16b 9690cast_to_fixed (struct type *type, struct value *arg)
14f9c5c9 9691{
50eff16b
UW
9692 if (type == value_type (arg))
9693 return arg;
5b4ee69b 9694
50eff16b
UW
9695 struct value *scale = ada_scaling_factor (type);
9696 if (ada_is_fixed_point_type (value_type (arg)))
9697 arg = cast_from_fixed (value_type (scale), arg);
9698 else
9699 arg = value_cast (value_type (scale), arg);
9700
9701 arg = value_binop (arg, scale, BINOP_DIV);
9702 return value_cast (type, arg);
14f9c5c9
AS
9703}
9704
d99dcf51
JB
9705/* Given two array types T1 and T2, return nonzero iff both arrays
9706 contain the same number of elements. */
9707
9708static int
9709ada_same_array_size_p (struct type *t1, struct type *t2)
9710{
9711 LONGEST lo1, hi1, lo2, hi2;
9712
9713 /* Get the array bounds in order to verify that the size of
9714 the two arrays match. */
9715 if (!get_array_bounds (t1, &lo1, &hi1)
9716 || !get_array_bounds (t2, &lo2, &hi2))
9717 error (_("unable to determine array bounds"));
9718
9719 /* To make things easier for size comparison, normalize a bit
9720 the case of empty arrays by making sure that the difference
9721 between upper bound and lower bound is always -1. */
9722 if (lo1 > hi1)
9723 hi1 = lo1 - 1;
9724 if (lo2 > hi2)
9725 hi2 = lo2 - 1;
9726
9727 return (hi1 - lo1 == hi2 - lo2);
9728}
9729
9730/* Assuming that VAL is an array of integrals, and TYPE represents
9731 an array with the same number of elements, but with wider integral
9732 elements, return an array "casted" to TYPE. In practice, this
9733 means that the returned array is built by casting each element
9734 of the original array into TYPE's (wider) element type. */
9735
9736static struct value *
9737ada_promote_array_of_integrals (struct type *type, struct value *val)
9738{
9739 struct type *elt_type = TYPE_TARGET_TYPE (type);
9740 LONGEST lo, hi;
9741 struct value *res;
9742 LONGEST i;
9743
9744 /* Verify that both val and type are arrays of scalars, and
9745 that the size of val's elements is smaller than the size
9746 of type's element. */
9747 gdb_assert (TYPE_CODE (type) == TYPE_CODE_ARRAY);
9748 gdb_assert (is_integral_type (TYPE_TARGET_TYPE (type)));
9749 gdb_assert (TYPE_CODE (value_type (val)) == TYPE_CODE_ARRAY);
9750 gdb_assert (is_integral_type (TYPE_TARGET_TYPE (value_type (val))));
9751 gdb_assert (TYPE_LENGTH (TYPE_TARGET_TYPE (type))
9752 > TYPE_LENGTH (TYPE_TARGET_TYPE (value_type (val))));
9753
9754 if (!get_array_bounds (type, &lo, &hi))
9755 error (_("unable to determine array bounds"));
9756
9757 res = allocate_value (type);
9758
9759 /* Promote each array element. */
9760 for (i = 0; i < hi - lo + 1; i++)
9761 {
9762 struct value *elt = value_cast (elt_type, value_subscript (val, lo + i));
9763
9764 memcpy (value_contents_writeable (res) + (i * TYPE_LENGTH (elt_type)),
9765 value_contents_all (elt), TYPE_LENGTH (elt_type));
9766 }
9767
9768 return res;
9769}
9770
4c4b4cd2
PH
9771/* Coerce VAL as necessary for assignment to an lval of type TYPE, and
9772 return the converted value. */
9773
d2e4a39e
AS
9774static struct value *
9775coerce_for_assign (struct type *type, struct value *val)
14f9c5c9 9776{
df407dfe 9777 struct type *type2 = value_type (val);
5b4ee69b 9778
14f9c5c9
AS
9779 if (type == type2)
9780 return val;
9781
61ee279c
PH
9782 type2 = ada_check_typedef (type2);
9783 type = ada_check_typedef (type);
14f9c5c9 9784
d2e4a39e
AS
9785 if (TYPE_CODE (type2) == TYPE_CODE_PTR
9786 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
14f9c5c9
AS
9787 {
9788 val = ada_value_ind (val);
df407dfe 9789 type2 = value_type (val);
14f9c5c9
AS
9790 }
9791
d2e4a39e 9792 if (TYPE_CODE (type2) == TYPE_CODE_ARRAY
14f9c5c9
AS
9793 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
9794 {
d99dcf51
JB
9795 if (!ada_same_array_size_p (type, type2))
9796 error (_("cannot assign arrays of different length"));
9797
9798 if (is_integral_type (TYPE_TARGET_TYPE (type))
9799 && is_integral_type (TYPE_TARGET_TYPE (type2))
9800 && TYPE_LENGTH (TYPE_TARGET_TYPE (type2))
9801 < TYPE_LENGTH (TYPE_TARGET_TYPE (type)))
9802 {
9803 /* Allow implicit promotion of the array elements to
9804 a wider type. */
9805 return ada_promote_array_of_integrals (type, val);
9806 }
9807
9808 if (TYPE_LENGTH (TYPE_TARGET_TYPE (type2))
9809 != TYPE_LENGTH (TYPE_TARGET_TYPE (type)))
323e0a4a 9810 error (_("Incompatible types in assignment"));
04624583 9811 deprecated_set_value_type (val, type);
14f9c5c9 9812 }
d2e4a39e 9813 return val;
14f9c5c9
AS
9814}
9815
4c4b4cd2
PH
9816static struct value *
9817ada_value_binop (struct value *arg1, struct value *arg2, enum exp_opcode op)
9818{
9819 struct value *val;
9820 struct type *type1, *type2;
9821 LONGEST v, v1, v2;
9822
994b9211
AC
9823 arg1 = coerce_ref (arg1);
9824 arg2 = coerce_ref (arg2);
18af8284
JB
9825 type1 = get_base_type (ada_check_typedef (value_type (arg1)));
9826 type2 = get_base_type (ada_check_typedef (value_type (arg2)));
4c4b4cd2 9827
76a01679
JB
9828 if (TYPE_CODE (type1) != TYPE_CODE_INT
9829 || TYPE_CODE (type2) != TYPE_CODE_INT)
4c4b4cd2
PH
9830 return value_binop (arg1, arg2, op);
9831
76a01679 9832 switch (op)
4c4b4cd2
PH
9833 {
9834 case BINOP_MOD:
9835 case BINOP_DIV:
9836 case BINOP_REM:
9837 break;
9838 default:
9839 return value_binop (arg1, arg2, op);
9840 }
9841
9842 v2 = value_as_long (arg2);
9843 if (v2 == 0)
323e0a4a 9844 error (_("second operand of %s must not be zero."), op_string (op));
4c4b4cd2
PH
9845
9846 if (TYPE_UNSIGNED (type1) || op == BINOP_MOD)
9847 return value_binop (arg1, arg2, op);
9848
9849 v1 = value_as_long (arg1);
9850 switch (op)
9851 {
9852 case BINOP_DIV:
9853 v = v1 / v2;
76a01679
JB
9854 if (!TRUNCATION_TOWARDS_ZERO && v1 * (v1 % v2) < 0)
9855 v += v > 0 ? -1 : 1;
4c4b4cd2
PH
9856 break;
9857 case BINOP_REM:
9858 v = v1 % v2;
76a01679
JB
9859 if (v * v1 < 0)
9860 v -= v2;
4c4b4cd2
PH
9861 break;
9862 default:
9863 /* Should not reach this point. */
9864 v = 0;
9865 }
9866
9867 val = allocate_value (type1);
990a07ab 9868 store_unsigned_integer (value_contents_raw (val),
e17a4113
UW
9869 TYPE_LENGTH (value_type (val)),
9870 gdbarch_byte_order (get_type_arch (type1)), v);
4c4b4cd2
PH
9871 return val;
9872}
9873
9874static int
9875ada_value_equal (struct value *arg1, struct value *arg2)
9876{
df407dfe
AC
9877 if (ada_is_direct_array_type (value_type (arg1))
9878 || ada_is_direct_array_type (value_type (arg2)))
4c4b4cd2 9879 {
79e8fcaa
JB
9880 struct type *arg1_type, *arg2_type;
9881
f58b38bf
JB
9882 /* Automatically dereference any array reference before
9883 we attempt to perform the comparison. */
9884 arg1 = ada_coerce_ref (arg1);
9885 arg2 = ada_coerce_ref (arg2);
79e8fcaa 9886
4c4b4cd2
PH
9887 arg1 = ada_coerce_to_simple_array (arg1);
9888 arg2 = ada_coerce_to_simple_array (arg2);
79e8fcaa
JB
9889
9890 arg1_type = ada_check_typedef (value_type (arg1));
9891 arg2_type = ada_check_typedef (value_type (arg2));
9892
9893 if (TYPE_CODE (arg1_type) != TYPE_CODE_ARRAY
9894 || TYPE_CODE (arg2_type) != TYPE_CODE_ARRAY)
323e0a4a 9895 error (_("Attempt to compare array with non-array"));
4c4b4cd2 9896 /* FIXME: The following works only for types whose
76a01679
JB
9897 representations use all bits (no padding or undefined bits)
9898 and do not have user-defined equality. */
79e8fcaa
JB
9899 return (TYPE_LENGTH (arg1_type) == TYPE_LENGTH (arg2_type)
9900 && memcmp (value_contents (arg1), value_contents (arg2),
9901 TYPE_LENGTH (arg1_type)) == 0);
4c4b4cd2
PH
9902 }
9903 return value_equal (arg1, arg2);
9904}
9905
52ce6436
PH
9906/* Total number of component associations in the aggregate starting at
9907 index PC in EXP. Assumes that index PC is the start of an
0963b4bd 9908 OP_AGGREGATE. */
52ce6436
PH
9909
9910static int
9911num_component_specs (struct expression *exp, int pc)
9912{
9913 int n, m, i;
5b4ee69b 9914
52ce6436
PH
9915 m = exp->elts[pc + 1].longconst;
9916 pc += 3;
9917 n = 0;
9918 for (i = 0; i < m; i += 1)
9919 {
9920 switch (exp->elts[pc].opcode)
9921 {
9922 default:
9923 n += 1;
9924 break;
9925 case OP_CHOICES:
9926 n += exp->elts[pc + 1].longconst;
9927 break;
9928 }
9929 ada_evaluate_subexp (NULL, exp, &pc, EVAL_SKIP);
9930 }
9931 return n;
9932}
9933
9934/* Assign the result of evaluating EXP starting at *POS to the INDEXth
9935 component of LHS (a simple array or a record), updating *POS past
9936 the expression, assuming that LHS is contained in CONTAINER. Does
9937 not modify the inferior's memory, nor does it modify LHS (unless
9938 LHS == CONTAINER). */
9939
9940static void
9941assign_component (struct value *container, struct value *lhs, LONGEST index,
9942 struct expression *exp, int *pos)
9943{
9944 struct value *mark = value_mark ();
9945 struct value *elt;
0e2da9f0 9946 struct type *lhs_type = check_typedef (value_type (lhs));
5b4ee69b 9947
0e2da9f0 9948 if (TYPE_CODE (lhs_type) == TYPE_CODE_ARRAY)
52ce6436 9949 {
22601c15
UW
9950 struct type *index_type = builtin_type (exp->gdbarch)->builtin_int;
9951 struct value *index_val = value_from_longest (index_type, index);
5b4ee69b 9952
52ce6436
PH
9953 elt = unwrap_value (ada_value_subscript (lhs, 1, &index_val));
9954 }
9955 else
9956 {
9957 elt = ada_index_struct_field (index, lhs, 0, value_type (lhs));
c48db5ca 9958 elt = ada_to_fixed_value (elt);
52ce6436
PH
9959 }
9960
9961 if (exp->elts[*pos].opcode == OP_AGGREGATE)
9962 assign_aggregate (container, elt, exp, pos, EVAL_NORMAL);
9963 else
9964 value_assign_to_component (container, elt,
9965 ada_evaluate_subexp (NULL, exp, pos,
9966 EVAL_NORMAL));
9967
9968 value_free_to_mark (mark);
9969}
9970
9971/* Assuming that LHS represents an lvalue having a record or array
9972 type, and EXP->ELTS[*POS] is an OP_AGGREGATE, evaluate an assignment
9973 of that aggregate's value to LHS, advancing *POS past the
9974 aggregate. NOSIDE is as for evaluate_subexp. CONTAINER is an
9975 lvalue containing LHS (possibly LHS itself). Does not modify
9976 the inferior's memory, nor does it modify the contents of
0963b4bd 9977 LHS (unless == CONTAINER). Returns the modified CONTAINER. */
52ce6436
PH
9978
9979static struct value *
9980assign_aggregate (struct value *container,
9981 struct value *lhs, struct expression *exp,
9982 int *pos, enum noside noside)
9983{
9984 struct type *lhs_type;
9985 int n = exp->elts[*pos+1].longconst;
9986 LONGEST low_index, high_index;
9987 int num_specs;
9988 LONGEST *indices;
9989 int max_indices, num_indices;
52ce6436 9990 int i;
52ce6436
PH
9991
9992 *pos += 3;
9993 if (noside != EVAL_NORMAL)
9994 {
52ce6436
PH
9995 for (i = 0; i < n; i += 1)
9996 ada_evaluate_subexp (NULL, exp, pos, noside);
9997 return container;
9998 }
9999
10000 container = ada_coerce_ref (container);
10001 if (ada_is_direct_array_type (value_type (container)))
10002 container = ada_coerce_to_simple_array (container);
10003 lhs = ada_coerce_ref (lhs);
10004 if (!deprecated_value_modifiable (lhs))
10005 error (_("Left operand of assignment is not a modifiable lvalue."));
10006
0e2da9f0 10007 lhs_type = check_typedef (value_type (lhs));
52ce6436
PH
10008 if (ada_is_direct_array_type (lhs_type))
10009 {
10010 lhs = ada_coerce_to_simple_array (lhs);
0e2da9f0 10011 lhs_type = check_typedef (value_type (lhs));
52ce6436
PH
10012 low_index = TYPE_ARRAY_LOWER_BOUND_VALUE (lhs_type);
10013 high_index = TYPE_ARRAY_UPPER_BOUND_VALUE (lhs_type);
52ce6436
PH
10014 }
10015 else if (TYPE_CODE (lhs_type) == TYPE_CODE_STRUCT)
10016 {
10017 low_index = 0;
10018 high_index = num_visible_fields (lhs_type) - 1;
52ce6436
PH
10019 }
10020 else
10021 error (_("Left-hand side must be array or record."));
10022
10023 num_specs = num_component_specs (exp, *pos - 3);
10024 max_indices = 4 * num_specs + 4;
8d749320 10025 indices = XALLOCAVEC (LONGEST, max_indices);
52ce6436
PH
10026 indices[0] = indices[1] = low_index - 1;
10027 indices[2] = indices[3] = high_index + 1;
10028 num_indices = 4;
10029
10030 for (i = 0; i < n; i += 1)
10031 {
10032 switch (exp->elts[*pos].opcode)
10033 {
1fbf5ada
JB
10034 case OP_CHOICES:
10035 aggregate_assign_from_choices (container, lhs, exp, pos, indices,
10036 &num_indices, max_indices,
10037 low_index, high_index);
10038 break;
10039 case OP_POSITIONAL:
10040 aggregate_assign_positional (container, lhs, exp, pos, indices,
52ce6436
PH
10041 &num_indices, max_indices,
10042 low_index, high_index);
1fbf5ada
JB
10043 break;
10044 case OP_OTHERS:
10045 if (i != n-1)
10046 error (_("Misplaced 'others' clause"));
10047 aggregate_assign_others (container, lhs, exp, pos, indices,
10048 num_indices, low_index, high_index);
10049 break;
10050 default:
10051 error (_("Internal error: bad aggregate clause"));
52ce6436
PH
10052 }
10053 }
10054
10055 return container;
10056}
10057
10058/* Assign into the component of LHS indexed by the OP_POSITIONAL
10059 construct at *POS, updating *POS past the construct, given that
10060 the positions are relative to lower bound LOW, where HIGH is the
10061 upper bound. Record the position in INDICES[0 .. MAX_INDICES-1]
10062 updating *NUM_INDICES as needed. CONTAINER is as for
0963b4bd 10063 assign_aggregate. */
52ce6436
PH
10064static void
10065aggregate_assign_positional (struct value *container,
10066 struct value *lhs, struct expression *exp,
10067 int *pos, LONGEST *indices, int *num_indices,
10068 int max_indices, LONGEST low, LONGEST high)
10069{
10070 LONGEST ind = longest_to_int (exp->elts[*pos + 1].longconst) + low;
10071
10072 if (ind - 1 == high)
e1d5a0d2 10073 warning (_("Extra components in aggregate ignored."));
52ce6436
PH
10074 if (ind <= high)
10075 {
10076 add_component_interval (ind, ind, indices, num_indices, max_indices);
10077 *pos += 3;
10078 assign_component (container, lhs, ind, exp, pos);
10079 }
10080 else
10081 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
10082}
10083
10084/* Assign into the components of LHS indexed by the OP_CHOICES
10085 construct at *POS, updating *POS past the construct, given that
10086 the allowable indices are LOW..HIGH. Record the indices assigned
10087 to in INDICES[0 .. MAX_INDICES-1], updating *NUM_INDICES as
0963b4bd 10088 needed. CONTAINER is as for assign_aggregate. */
52ce6436
PH
10089static void
10090aggregate_assign_from_choices (struct value *container,
10091 struct value *lhs, struct expression *exp,
10092 int *pos, LONGEST *indices, int *num_indices,
10093 int max_indices, LONGEST low, LONGEST high)
10094{
10095 int j;
10096 int n_choices = longest_to_int (exp->elts[*pos+1].longconst);
10097 int choice_pos, expr_pc;
10098 int is_array = ada_is_direct_array_type (value_type (lhs));
10099
10100 choice_pos = *pos += 3;
10101
10102 for (j = 0; j < n_choices; j += 1)
10103 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
10104 expr_pc = *pos;
10105 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
10106
10107 for (j = 0; j < n_choices; j += 1)
10108 {
10109 LONGEST lower, upper;
10110 enum exp_opcode op = exp->elts[choice_pos].opcode;
5b4ee69b 10111
52ce6436
PH
10112 if (op == OP_DISCRETE_RANGE)
10113 {
10114 choice_pos += 1;
10115 lower = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
10116 EVAL_NORMAL));
10117 upper = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
10118 EVAL_NORMAL));
10119 }
10120 else if (is_array)
10121 {
10122 lower = value_as_long (ada_evaluate_subexp (NULL, exp, &choice_pos,
10123 EVAL_NORMAL));
10124 upper = lower;
10125 }
10126 else
10127 {
10128 int ind;
0d5cff50 10129 const char *name;
5b4ee69b 10130
52ce6436
PH
10131 switch (op)
10132 {
10133 case OP_NAME:
10134 name = &exp->elts[choice_pos + 2].string;
10135 break;
10136 case OP_VAR_VALUE:
10137 name = SYMBOL_NATURAL_NAME (exp->elts[choice_pos + 2].symbol);
10138 break;
10139 default:
10140 error (_("Invalid record component association."));
10141 }
10142 ada_evaluate_subexp (NULL, exp, &choice_pos, EVAL_SKIP);
10143 ind = 0;
10144 if (! find_struct_field (name, value_type (lhs), 0,
10145 NULL, NULL, NULL, NULL, &ind))
10146 error (_("Unknown component name: %s."), name);
10147 lower = upper = ind;
10148 }
10149
10150 if (lower <= upper && (lower < low || upper > high))
10151 error (_("Index in component association out of bounds."));
10152
10153 add_component_interval (lower, upper, indices, num_indices,
10154 max_indices);
10155 while (lower <= upper)
10156 {
10157 int pos1;
5b4ee69b 10158
52ce6436
PH
10159 pos1 = expr_pc;
10160 assign_component (container, lhs, lower, exp, &pos1);
10161 lower += 1;
10162 }
10163 }
10164}
10165
10166/* Assign the value of the expression in the OP_OTHERS construct in
10167 EXP at *POS into the components of LHS indexed from LOW .. HIGH that
10168 have not been previously assigned. The index intervals already assigned
10169 are in INDICES[0 .. NUM_INDICES-1]. Updates *POS to after the
0963b4bd 10170 OP_OTHERS clause. CONTAINER is as for assign_aggregate. */
52ce6436
PH
10171static void
10172aggregate_assign_others (struct value *container,
10173 struct value *lhs, struct expression *exp,
10174 int *pos, LONGEST *indices, int num_indices,
10175 LONGEST low, LONGEST high)
10176{
10177 int i;
5ce64950 10178 int expr_pc = *pos + 1;
52ce6436
PH
10179
10180 for (i = 0; i < num_indices - 2; i += 2)
10181 {
10182 LONGEST ind;
5b4ee69b 10183
52ce6436
PH
10184 for (ind = indices[i + 1] + 1; ind < indices[i + 2]; ind += 1)
10185 {
5ce64950 10186 int localpos;
5b4ee69b 10187
5ce64950
MS
10188 localpos = expr_pc;
10189 assign_component (container, lhs, ind, exp, &localpos);
52ce6436
PH
10190 }
10191 }
10192 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
10193}
10194
10195/* Add the interval [LOW .. HIGH] to the sorted set of intervals
10196 [ INDICES[0] .. INDICES[1] ],..., [ INDICES[*SIZE-2] .. INDICES[*SIZE-1] ],
10197 modifying *SIZE as needed. It is an error if *SIZE exceeds
10198 MAX_SIZE. The resulting intervals do not overlap. */
10199static void
10200add_component_interval (LONGEST low, LONGEST high,
10201 LONGEST* indices, int *size, int max_size)
10202{
10203 int i, j;
5b4ee69b 10204
52ce6436
PH
10205 for (i = 0; i < *size; i += 2) {
10206 if (high >= indices[i] && low <= indices[i + 1])
10207 {
10208 int kh;
5b4ee69b 10209
52ce6436
PH
10210 for (kh = i + 2; kh < *size; kh += 2)
10211 if (high < indices[kh])
10212 break;
10213 if (low < indices[i])
10214 indices[i] = low;
10215 indices[i + 1] = indices[kh - 1];
10216 if (high > indices[i + 1])
10217 indices[i + 1] = high;
10218 memcpy (indices + i + 2, indices + kh, *size - kh);
10219 *size -= kh - i - 2;
10220 return;
10221 }
10222 else if (high < indices[i])
10223 break;
10224 }
10225
10226 if (*size == max_size)
10227 error (_("Internal error: miscounted aggregate components."));
10228 *size += 2;
10229 for (j = *size-1; j >= i+2; j -= 1)
10230 indices[j] = indices[j - 2];
10231 indices[i] = low;
10232 indices[i + 1] = high;
10233}
10234
6e48bd2c
JB
10235/* Perform and Ada cast of ARG2 to type TYPE if the type of ARG2
10236 is different. */
10237
10238static struct value *
b7e22850 10239ada_value_cast (struct type *type, struct value *arg2)
6e48bd2c
JB
10240{
10241 if (type == ada_check_typedef (value_type (arg2)))
10242 return arg2;
10243
10244 if (ada_is_fixed_point_type (type))
95f39a5b 10245 return cast_to_fixed (type, arg2);
6e48bd2c
JB
10246
10247 if (ada_is_fixed_point_type (value_type (arg2)))
a53b7a21 10248 return cast_from_fixed (type, arg2);
6e48bd2c
JB
10249
10250 return value_cast (type, arg2);
10251}
10252
284614f0
JB
10253/* Evaluating Ada expressions, and printing their result.
10254 ------------------------------------------------------
10255
21649b50
JB
10256 1. Introduction:
10257 ----------------
10258
284614f0
JB
10259 We usually evaluate an Ada expression in order to print its value.
10260 We also evaluate an expression in order to print its type, which
10261 happens during the EVAL_AVOID_SIDE_EFFECTS phase of the evaluation,
10262 but we'll focus mostly on the EVAL_NORMAL phase. In practice, the
10263 EVAL_AVOID_SIDE_EFFECTS phase allows us to simplify certain aspects of
10264 the evaluation compared to the EVAL_NORMAL, but is otherwise very
10265 similar.
10266
10267 Evaluating expressions is a little more complicated for Ada entities
10268 than it is for entities in languages such as C. The main reason for
10269 this is that Ada provides types whose definition might be dynamic.
10270 One example of such types is variant records. Or another example
10271 would be an array whose bounds can only be known at run time.
10272
10273 The following description is a general guide as to what should be
10274 done (and what should NOT be done) in order to evaluate an expression
10275 involving such types, and when. This does not cover how the semantic
10276 information is encoded by GNAT as this is covered separatly. For the
10277 document used as the reference for the GNAT encoding, see exp_dbug.ads
10278 in the GNAT sources.
10279
10280 Ideally, we should embed each part of this description next to its
10281 associated code. Unfortunately, the amount of code is so vast right
10282 now that it's hard to see whether the code handling a particular
10283 situation might be duplicated or not. One day, when the code is
10284 cleaned up, this guide might become redundant with the comments
10285 inserted in the code, and we might want to remove it.
10286
21649b50
JB
10287 2. ``Fixing'' an Entity, the Simple Case:
10288 -----------------------------------------
10289
284614f0
JB
10290 When evaluating Ada expressions, the tricky issue is that they may
10291 reference entities whose type contents and size are not statically
10292 known. Consider for instance a variant record:
10293
10294 type Rec (Empty : Boolean := True) is record
10295 case Empty is
10296 when True => null;
10297 when False => Value : Integer;
10298 end case;
10299 end record;
10300 Yes : Rec := (Empty => False, Value => 1);
10301 No : Rec := (empty => True);
10302
10303 The size and contents of that record depends on the value of the
10304 descriminant (Rec.Empty). At this point, neither the debugging
10305 information nor the associated type structure in GDB are able to
10306 express such dynamic types. So what the debugger does is to create
10307 "fixed" versions of the type that applies to the specific object.
10308 We also informally refer to this opperation as "fixing" an object,
10309 which means creating its associated fixed type.
10310
10311 Example: when printing the value of variable "Yes" above, its fixed
10312 type would look like this:
10313
10314 type Rec is record
10315 Empty : Boolean;
10316 Value : Integer;
10317 end record;
10318
10319 On the other hand, if we printed the value of "No", its fixed type
10320 would become:
10321
10322 type Rec is record
10323 Empty : Boolean;
10324 end record;
10325
10326 Things become a little more complicated when trying to fix an entity
10327 with a dynamic type that directly contains another dynamic type,
10328 such as an array of variant records, for instance. There are
10329 two possible cases: Arrays, and records.
10330
21649b50
JB
10331 3. ``Fixing'' Arrays:
10332 ---------------------
10333
10334 The type structure in GDB describes an array in terms of its bounds,
10335 and the type of its elements. By design, all elements in the array
10336 have the same type and we cannot represent an array of variant elements
10337 using the current type structure in GDB. When fixing an array,
10338 we cannot fix the array element, as we would potentially need one
10339 fixed type per element of the array. As a result, the best we can do
10340 when fixing an array is to produce an array whose bounds and size
10341 are correct (allowing us to read it from memory), but without having
10342 touched its element type. Fixing each element will be done later,
10343 when (if) necessary.
10344
10345 Arrays are a little simpler to handle than records, because the same
10346 amount of memory is allocated for each element of the array, even if
1b536f04 10347 the amount of space actually used by each element differs from element
21649b50 10348 to element. Consider for instance the following array of type Rec:
284614f0
JB
10349
10350 type Rec_Array is array (1 .. 2) of Rec;
10351
1b536f04
JB
10352 The actual amount of memory occupied by each element might be different
10353 from element to element, depending on the value of their discriminant.
21649b50 10354 But the amount of space reserved for each element in the array remains
1b536f04 10355 fixed regardless. So we simply need to compute that size using
21649b50
JB
10356 the debugging information available, from which we can then determine
10357 the array size (we multiply the number of elements of the array by
10358 the size of each element).
10359
10360 The simplest case is when we have an array of a constrained element
10361 type. For instance, consider the following type declarations:
10362
10363 type Bounded_String (Max_Size : Integer) is
10364 Length : Integer;
10365 Buffer : String (1 .. Max_Size);
10366 end record;
10367 type Bounded_String_Array is array (1 ..2) of Bounded_String (80);
10368
10369 In this case, the compiler describes the array as an array of
10370 variable-size elements (identified by its XVS suffix) for which
10371 the size can be read in the parallel XVZ variable.
10372
10373 In the case of an array of an unconstrained element type, the compiler
10374 wraps the array element inside a private PAD type. This type should not
10375 be shown to the user, and must be "unwrap"'ed before printing. Note
284614f0
JB
10376 that we also use the adjective "aligner" in our code to designate
10377 these wrapper types.
10378
1b536f04 10379 In some cases, the size allocated for each element is statically
21649b50
JB
10380 known. In that case, the PAD type already has the correct size,
10381 and the array element should remain unfixed.
10382
10383 But there are cases when this size is not statically known.
10384 For instance, assuming that "Five" is an integer variable:
284614f0
JB
10385
10386 type Dynamic is array (1 .. Five) of Integer;
10387 type Wrapper (Has_Length : Boolean := False) is record
10388 Data : Dynamic;
10389 case Has_Length is
10390 when True => Length : Integer;
10391 when False => null;
10392 end case;
10393 end record;
10394 type Wrapper_Array is array (1 .. 2) of Wrapper;
10395
10396 Hello : Wrapper_Array := (others => (Has_Length => True,
10397 Data => (others => 17),
10398 Length => 1));
10399
10400
10401 The debugging info would describe variable Hello as being an
10402 array of a PAD type. The size of that PAD type is not statically
10403 known, but can be determined using a parallel XVZ variable.
10404 In that case, a copy of the PAD type with the correct size should
10405 be used for the fixed array.
10406
21649b50
JB
10407 3. ``Fixing'' record type objects:
10408 ----------------------------------
10409
10410 Things are slightly different from arrays in the case of dynamic
284614f0
JB
10411 record types. In this case, in order to compute the associated
10412 fixed type, we need to determine the size and offset of each of
10413 its components. This, in turn, requires us to compute the fixed
10414 type of each of these components.
10415
10416 Consider for instance the example:
10417
10418 type Bounded_String (Max_Size : Natural) is record
10419 Str : String (1 .. Max_Size);
10420 Length : Natural;
10421 end record;
10422 My_String : Bounded_String (Max_Size => 10);
10423
10424 In that case, the position of field "Length" depends on the size
10425 of field Str, which itself depends on the value of the Max_Size
21649b50 10426 discriminant. In order to fix the type of variable My_String,
284614f0
JB
10427 we need to fix the type of field Str. Therefore, fixing a variant
10428 record requires us to fix each of its components.
10429
10430 However, if a component does not have a dynamic size, the component
10431 should not be fixed. In particular, fields that use a PAD type
10432 should not fixed. Here is an example where this might happen
10433 (assuming type Rec above):
10434
10435 type Container (Big : Boolean) is record
10436 First : Rec;
10437 After : Integer;
10438 case Big is
10439 when True => Another : Integer;
10440 when False => null;
10441 end case;
10442 end record;
10443 My_Container : Container := (Big => False,
10444 First => (Empty => True),
10445 After => 42);
10446
10447 In that example, the compiler creates a PAD type for component First,
10448 whose size is constant, and then positions the component After just
10449 right after it. The offset of component After is therefore constant
10450 in this case.
10451
10452 The debugger computes the position of each field based on an algorithm
10453 that uses, among other things, the actual position and size of the field
21649b50
JB
10454 preceding it. Let's now imagine that the user is trying to print
10455 the value of My_Container. If the type fixing was recursive, we would
284614f0
JB
10456 end up computing the offset of field After based on the size of the
10457 fixed version of field First. And since in our example First has
10458 only one actual field, the size of the fixed type is actually smaller
10459 than the amount of space allocated to that field, and thus we would
10460 compute the wrong offset of field After.
10461
21649b50
JB
10462 To make things more complicated, we need to watch out for dynamic
10463 components of variant records (identified by the ___XVL suffix in
10464 the component name). Even if the target type is a PAD type, the size
10465 of that type might not be statically known. So the PAD type needs
10466 to be unwrapped and the resulting type needs to be fixed. Otherwise,
10467 we might end up with the wrong size for our component. This can be
10468 observed with the following type declarations:
284614f0
JB
10469
10470 type Octal is new Integer range 0 .. 7;
10471 type Octal_Array is array (Positive range <>) of Octal;
10472 pragma Pack (Octal_Array);
10473
10474 type Octal_Buffer (Size : Positive) is record
10475 Buffer : Octal_Array (1 .. Size);
10476 Length : Integer;
10477 end record;
10478
10479 In that case, Buffer is a PAD type whose size is unset and needs
10480 to be computed by fixing the unwrapped type.
10481
21649b50
JB
10482 4. When to ``Fix'' un-``Fixed'' sub-elements of an entity:
10483 ----------------------------------------------------------
10484
10485 Lastly, when should the sub-elements of an entity that remained unfixed
284614f0
JB
10486 thus far, be actually fixed?
10487
10488 The answer is: Only when referencing that element. For instance
10489 when selecting one component of a record, this specific component
10490 should be fixed at that point in time. Or when printing the value
10491 of a record, each component should be fixed before its value gets
10492 printed. Similarly for arrays, the element of the array should be
10493 fixed when printing each element of the array, or when extracting
10494 one element out of that array. On the other hand, fixing should
10495 not be performed on the elements when taking a slice of an array!
10496
31432a67 10497 Note that one of the side effects of miscomputing the offset and
284614f0
JB
10498 size of each field is that we end up also miscomputing the size
10499 of the containing type. This can have adverse results when computing
10500 the value of an entity. GDB fetches the value of an entity based
10501 on the size of its type, and thus a wrong size causes GDB to fetch
10502 the wrong amount of memory. In the case where the computed size is
10503 too small, GDB fetches too little data to print the value of our
31432a67 10504 entity. Results in this case are unpredictable, as we usually read
284614f0
JB
10505 past the buffer containing the data =:-o. */
10506
ced9779b
JB
10507/* Evaluate a subexpression of EXP, at index *POS, and return a value
10508 for that subexpression cast to TO_TYPE. Advance *POS over the
10509 subexpression. */
10510
10511static value *
10512ada_evaluate_subexp_for_cast (expression *exp, int *pos,
10513 enum noside noside, struct type *to_type)
10514{
10515 int pc = *pos;
10516
10517 if (exp->elts[pc].opcode == OP_VAR_MSYM_VALUE
10518 || exp->elts[pc].opcode == OP_VAR_VALUE)
10519 {
10520 (*pos) += 4;
10521
10522 value *val;
10523 if (exp->elts[pc].opcode == OP_VAR_MSYM_VALUE)
10524 {
10525 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10526 return value_zero (to_type, not_lval);
10527
10528 val = evaluate_var_msym_value (noside,
10529 exp->elts[pc + 1].objfile,
10530 exp->elts[pc + 2].msymbol);
10531 }
10532 else
10533 val = evaluate_var_value (noside,
10534 exp->elts[pc + 1].block,
10535 exp->elts[pc + 2].symbol);
10536
10537 if (noside == EVAL_SKIP)
10538 return eval_skip_value (exp);
10539
10540 val = ada_value_cast (to_type, val);
10541
10542 /* Follow the Ada language semantics that do not allow taking
10543 an address of the result of a cast (view conversion in Ada). */
10544 if (VALUE_LVAL (val) == lval_memory)
10545 {
10546 if (value_lazy (val))
10547 value_fetch_lazy (val);
10548 VALUE_LVAL (val) = not_lval;
10549 }
10550 return val;
10551 }
10552
10553 value *val = evaluate_subexp (to_type, exp, pos, noside);
10554 if (noside == EVAL_SKIP)
10555 return eval_skip_value (exp);
10556 return ada_value_cast (to_type, val);
10557}
10558
284614f0
JB
10559/* Implement the evaluate_exp routine in the exp_descriptor structure
10560 for the Ada language. */
10561
52ce6436 10562static struct value *
ebf56fd3 10563ada_evaluate_subexp (struct type *expect_type, struct expression *exp,
4c4b4cd2 10564 int *pos, enum noside noside)
14f9c5c9
AS
10565{
10566 enum exp_opcode op;
b5385fc0 10567 int tem;
14f9c5c9 10568 int pc;
5ec18f2b 10569 int preeval_pos;
14f9c5c9
AS
10570 struct value *arg1 = NULL, *arg2 = NULL, *arg3;
10571 struct type *type;
52ce6436 10572 int nargs, oplen;
d2e4a39e 10573 struct value **argvec;
14f9c5c9 10574
d2e4a39e
AS
10575 pc = *pos;
10576 *pos += 1;
14f9c5c9
AS
10577 op = exp->elts[pc].opcode;
10578
d2e4a39e 10579 switch (op)
14f9c5c9
AS
10580 {
10581 default:
10582 *pos -= 1;
6e48bd2c 10583 arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside);
ca1f964d
JG
10584
10585 if (noside == EVAL_NORMAL)
10586 arg1 = unwrap_value (arg1);
6e48bd2c 10587
edd079d9 10588 /* If evaluating an OP_FLOAT and an EXPECT_TYPE was provided,
6e48bd2c
JB
10589 then we need to perform the conversion manually, because
10590 evaluate_subexp_standard doesn't do it. This conversion is
10591 necessary in Ada because the different kinds of float/fixed
10592 types in Ada have different representations.
10593
10594 Similarly, we need to perform the conversion from OP_LONG
10595 ourselves. */
edd079d9 10596 if ((op == OP_FLOAT || op == OP_LONG) && expect_type != NULL)
b7e22850 10597 arg1 = ada_value_cast (expect_type, arg1);
6e48bd2c
JB
10598
10599 return arg1;
4c4b4cd2
PH
10600
10601 case OP_STRING:
10602 {
76a01679 10603 struct value *result;
5b4ee69b 10604
76a01679
JB
10605 *pos -= 1;
10606 result = evaluate_subexp_standard (expect_type, exp, pos, noside);
10607 /* The result type will have code OP_STRING, bashed there from
10608 OP_ARRAY. Bash it back. */
df407dfe
AC
10609 if (TYPE_CODE (value_type (result)) == TYPE_CODE_STRING)
10610 TYPE_CODE (value_type (result)) = TYPE_CODE_ARRAY;
76a01679 10611 return result;
4c4b4cd2 10612 }
14f9c5c9
AS
10613
10614 case UNOP_CAST:
10615 (*pos) += 2;
10616 type = exp->elts[pc + 1].type;
ced9779b 10617 return ada_evaluate_subexp_for_cast (exp, pos, noside, type);
14f9c5c9 10618
4c4b4cd2
PH
10619 case UNOP_QUAL:
10620 (*pos) += 2;
10621 type = exp->elts[pc + 1].type;
10622 return ada_evaluate_subexp (type, exp, pos, noside);
10623
14f9c5c9
AS
10624 case BINOP_ASSIGN:
10625 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
52ce6436
PH
10626 if (exp->elts[*pos].opcode == OP_AGGREGATE)
10627 {
10628 arg1 = assign_aggregate (arg1, arg1, exp, pos, noside);
10629 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
10630 return arg1;
10631 return ada_value_assign (arg1, arg1);
10632 }
003f3813
JB
10633 /* Force the evaluation of the rhs ARG2 to the type of the lhs ARG1,
10634 except if the lhs of our assignment is a convenience variable.
10635 In the case of assigning to a convenience variable, the lhs
10636 should be exactly the result of the evaluation of the rhs. */
10637 type = value_type (arg1);
10638 if (VALUE_LVAL (arg1) == lval_internalvar)
10639 type = NULL;
10640 arg2 = evaluate_subexp (type, exp, pos, noside);
14f9c5c9 10641 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
4c4b4cd2 10642 return arg1;
df407dfe
AC
10643 if (ada_is_fixed_point_type (value_type (arg1)))
10644 arg2 = cast_to_fixed (value_type (arg1), arg2);
10645 else if (ada_is_fixed_point_type (value_type (arg2)))
76a01679 10646 error
323e0a4a 10647 (_("Fixed-point values must be assigned to fixed-point variables"));
d2e4a39e 10648 else
df407dfe 10649 arg2 = coerce_for_assign (value_type (arg1), arg2);
4c4b4cd2 10650 return ada_value_assign (arg1, arg2);
14f9c5c9
AS
10651
10652 case BINOP_ADD:
10653 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
10654 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
10655 if (noside == EVAL_SKIP)
4c4b4cd2 10656 goto nosideret;
2ac8a782
JB
10657 if (TYPE_CODE (value_type (arg1)) == TYPE_CODE_PTR)
10658 return (value_from_longest
10659 (value_type (arg1),
10660 value_as_long (arg1) + value_as_long (arg2)));
c40cc657
JB
10661 if (TYPE_CODE (value_type (arg2)) == TYPE_CODE_PTR)
10662 return (value_from_longest
10663 (value_type (arg2),
10664 value_as_long (arg1) + value_as_long (arg2)));
df407dfe
AC
10665 if ((ada_is_fixed_point_type (value_type (arg1))
10666 || ada_is_fixed_point_type (value_type (arg2)))
10667 && value_type (arg1) != value_type (arg2))
323e0a4a 10668 error (_("Operands of fixed-point addition must have the same type"));
b7789565
JB
10669 /* Do the addition, and cast the result to the type of the first
10670 argument. We cannot cast the result to a reference type, so if
10671 ARG1 is a reference type, find its underlying type. */
10672 type = value_type (arg1);
10673 while (TYPE_CODE (type) == TYPE_CODE_REF)
10674 type = TYPE_TARGET_TYPE (type);
f44316fa 10675 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
89eef114 10676 return value_cast (type, value_binop (arg1, arg2, BINOP_ADD));
14f9c5c9
AS
10677
10678 case BINOP_SUB:
10679 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
10680 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
10681 if (noside == EVAL_SKIP)
4c4b4cd2 10682 goto nosideret;
2ac8a782
JB
10683 if (TYPE_CODE (value_type (arg1)) == TYPE_CODE_PTR)
10684 return (value_from_longest
10685 (value_type (arg1),
10686 value_as_long (arg1) - value_as_long (arg2)));
c40cc657
JB
10687 if (TYPE_CODE (value_type (arg2)) == TYPE_CODE_PTR)
10688 return (value_from_longest
10689 (value_type (arg2),
10690 value_as_long (arg1) - value_as_long (arg2)));
df407dfe
AC
10691 if ((ada_is_fixed_point_type (value_type (arg1))
10692 || ada_is_fixed_point_type (value_type (arg2)))
10693 && value_type (arg1) != value_type (arg2))
0963b4bd
MS
10694 error (_("Operands of fixed-point subtraction "
10695 "must have the same type"));
b7789565
JB
10696 /* Do the substraction, and cast the result to the type of the first
10697 argument. We cannot cast the result to a reference type, so if
10698 ARG1 is a reference type, find its underlying type. */
10699 type = value_type (arg1);
10700 while (TYPE_CODE (type) == TYPE_CODE_REF)
10701 type = TYPE_TARGET_TYPE (type);
f44316fa 10702 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
89eef114 10703 return value_cast (type, value_binop (arg1, arg2, BINOP_SUB));
14f9c5c9
AS
10704
10705 case BINOP_MUL:
10706 case BINOP_DIV:
e1578042
JB
10707 case BINOP_REM:
10708 case BINOP_MOD:
14f9c5c9
AS
10709 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10710 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10711 if (noside == EVAL_SKIP)
4c4b4cd2 10712 goto nosideret;
e1578042 10713 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
9c2be529
JB
10714 {
10715 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10716 return value_zero (value_type (arg1), not_lval);
10717 }
14f9c5c9 10718 else
4c4b4cd2 10719 {
a53b7a21 10720 type = builtin_type (exp->gdbarch)->builtin_double;
df407dfe 10721 if (ada_is_fixed_point_type (value_type (arg1)))
a53b7a21 10722 arg1 = cast_from_fixed (type, arg1);
df407dfe 10723 if (ada_is_fixed_point_type (value_type (arg2)))
a53b7a21 10724 arg2 = cast_from_fixed (type, arg2);
f44316fa 10725 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
4c4b4cd2
PH
10726 return ada_value_binop (arg1, arg2, op);
10727 }
10728
4c4b4cd2
PH
10729 case BINOP_EQUAL:
10730 case BINOP_NOTEQUAL:
14f9c5c9 10731 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
df407dfe 10732 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
14f9c5c9 10733 if (noside == EVAL_SKIP)
76a01679 10734 goto nosideret;
4c4b4cd2 10735 if (noside == EVAL_AVOID_SIDE_EFFECTS)
76a01679 10736 tem = 0;
4c4b4cd2 10737 else
f44316fa
UW
10738 {
10739 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10740 tem = ada_value_equal (arg1, arg2);
10741 }
4c4b4cd2 10742 if (op == BINOP_NOTEQUAL)
76a01679 10743 tem = !tem;
fbb06eb1
UW
10744 type = language_bool_type (exp->language_defn, exp->gdbarch);
10745 return value_from_longest (type, (LONGEST) tem);
4c4b4cd2
PH
10746
10747 case UNOP_NEG:
10748 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10749 if (noside == EVAL_SKIP)
10750 goto nosideret;
df407dfe
AC
10751 else if (ada_is_fixed_point_type (value_type (arg1)))
10752 return value_cast (value_type (arg1), value_neg (arg1));
14f9c5c9 10753 else
f44316fa
UW
10754 {
10755 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
10756 return value_neg (arg1);
10757 }
4c4b4cd2 10758
2330c6c6
JB
10759 case BINOP_LOGICAL_AND:
10760 case BINOP_LOGICAL_OR:
10761 case UNOP_LOGICAL_NOT:
000d5124
JB
10762 {
10763 struct value *val;
10764
10765 *pos -= 1;
10766 val = evaluate_subexp_standard (expect_type, exp, pos, noside);
fbb06eb1
UW
10767 type = language_bool_type (exp->language_defn, exp->gdbarch);
10768 return value_cast (type, val);
000d5124 10769 }
2330c6c6
JB
10770
10771 case BINOP_BITWISE_AND:
10772 case BINOP_BITWISE_IOR:
10773 case BINOP_BITWISE_XOR:
000d5124
JB
10774 {
10775 struct value *val;
10776
10777 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
10778 *pos = pc;
10779 val = evaluate_subexp_standard (expect_type, exp, pos, noside);
10780
10781 return value_cast (value_type (arg1), val);
10782 }
2330c6c6 10783
14f9c5c9
AS
10784 case OP_VAR_VALUE:
10785 *pos -= 1;
6799def4 10786
14f9c5c9 10787 if (noside == EVAL_SKIP)
4c4b4cd2
PH
10788 {
10789 *pos += 4;
10790 goto nosideret;
10791 }
da5c522f
JB
10792
10793 if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
76a01679
JB
10794 /* Only encountered when an unresolved symbol occurs in a
10795 context other than a function call, in which case, it is
52ce6436 10796 invalid. */
323e0a4a 10797 error (_("Unexpected unresolved symbol, %s, during evaluation"),
4c4b4cd2 10798 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
da5c522f
JB
10799
10800 if (noside == EVAL_AVOID_SIDE_EFFECTS)
4c4b4cd2 10801 {
0c1f74cf 10802 type = static_unwrap_type (SYMBOL_TYPE (exp->elts[pc + 2].symbol));
31dbc1c5
JB
10803 /* Check to see if this is a tagged type. We also need to handle
10804 the case where the type is a reference to a tagged type, but
10805 we have to be careful to exclude pointers to tagged types.
10806 The latter should be shown as usual (as a pointer), whereas
10807 a reference should mostly be transparent to the user. */
10808 if (ada_is_tagged_type (type, 0)
023db19c 10809 || (TYPE_CODE (type) == TYPE_CODE_REF
31dbc1c5 10810 && ada_is_tagged_type (TYPE_TARGET_TYPE (type), 0)))
0d72a7c3
JB
10811 {
10812 /* Tagged types are a little special in the fact that the real
10813 type is dynamic and can only be determined by inspecting the
10814 object's tag. This means that we need to get the object's
10815 value first (EVAL_NORMAL) and then extract the actual object
10816 type from its tag.
10817
10818 Note that we cannot skip the final step where we extract
10819 the object type from its tag, because the EVAL_NORMAL phase
10820 results in dynamic components being resolved into fixed ones.
10821 This can cause problems when trying to print the type
10822 description of tagged types whose parent has a dynamic size:
10823 We use the type name of the "_parent" component in order
10824 to print the name of the ancestor type in the type description.
10825 If that component had a dynamic size, the resolution into
10826 a fixed type would result in the loss of that type name,
10827 thus preventing us from printing the name of the ancestor
10828 type in the type description. */
10829 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_NORMAL);
10830
10831 if (TYPE_CODE (type) != TYPE_CODE_REF)
10832 {
10833 struct type *actual_type;
10834
10835 actual_type = type_from_tag (ada_value_tag (arg1));
10836 if (actual_type == NULL)
10837 /* If, for some reason, we were unable to determine
10838 the actual type from the tag, then use the static
10839 approximation that we just computed as a fallback.
10840 This can happen if the debugging information is
10841 incomplete, for instance. */
10842 actual_type = type;
10843 return value_zero (actual_type, not_lval);
10844 }
10845 else
10846 {
10847 /* In the case of a ref, ada_coerce_ref takes care
10848 of determining the actual type. But the evaluation
10849 should return a ref as it should be valid to ask
10850 for its address; so rebuild a ref after coerce. */
10851 arg1 = ada_coerce_ref (arg1);
a65cfae5 10852 return value_ref (arg1, TYPE_CODE_REF);
0d72a7c3
JB
10853 }
10854 }
0c1f74cf 10855
84754697
JB
10856 /* Records and unions for which GNAT encodings have been
10857 generated need to be statically fixed as well.
10858 Otherwise, non-static fixing produces a type where
10859 all dynamic properties are removed, which prevents "ptype"
10860 from being able to completely describe the type.
10861 For instance, a case statement in a variant record would be
10862 replaced by the relevant components based on the actual
10863 value of the discriminants. */
10864 if ((TYPE_CODE (type) == TYPE_CODE_STRUCT
10865 && dynamic_template_type (type) != NULL)
10866 || (TYPE_CODE (type) == TYPE_CODE_UNION
10867 && ada_find_parallel_type (type, "___XVU") != NULL))
10868 {
10869 *pos += 4;
10870 return value_zero (to_static_fixed_type (type), not_lval);
10871 }
4c4b4cd2 10872 }
da5c522f
JB
10873
10874 arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside);
10875 return ada_to_fixed_value (arg1);
4c4b4cd2
PH
10876
10877 case OP_FUNCALL:
10878 (*pos) += 2;
10879
10880 /* Allocate arg vector, including space for the function to be
10881 called in argvec[0] and a terminating NULL. */
10882 nargs = longest_to_int (exp->elts[pc + 1].longconst);
8d749320 10883 argvec = XALLOCAVEC (struct value *, nargs + 2);
4c4b4cd2
PH
10884
10885 if (exp->elts[*pos].opcode == OP_VAR_VALUE
76a01679 10886 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
323e0a4a 10887 error (_("Unexpected unresolved symbol, %s, during evaluation"),
4c4b4cd2
PH
10888 SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol));
10889 else
10890 {
10891 for (tem = 0; tem <= nargs; tem += 1)
10892 argvec[tem] = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10893 argvec[tem] = 0;
10894
10895 if (noside == EVAL_SKIP)
10896 goto nosideret;
10897 }
10898
ad82864c
JB
10899 if (ada_is_constrained_packed_array_type
10900 (desc_base_type (value_type (argvec[0]))))
4c4b4cd2 10901 argvec[0] = ada_coerce_to_simple_array (argvec[0]);
284614f0
JB
10902 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_ARRAY
10903 && TYPE_FIELD_BITSIZE (value_type (argvec[0]), 0) != 0)
10904 /* This is a packed array that has already been fixed, and
10905 therefore already coerced to a simple array. Nothing further
10906 to do. */
10907 ;
e6c2c623
PMR
10908 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_REF)
10909 {
10910 /* Make sure we dereference references so that all the code below
10911 feels like it's really handling the referenced value. Wrapping
10912 types (for alignment) may be there, so make sure we strip them as
10913 well. */
10914 argvec[0] = ada_to_fixed_value (coerce_ref (argvec[0]));
10915 }
10916 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_ARRAY
10917 && VALUE_LVAL (argvec[0]) == lval_memory)
10918 argvec[0] = value_addr (argvec[0]);
4c4b4cd2 10919
df407dfe 10920 type = ada_check_typedef (value_type (argvec[0]));
720d1a40
JB
10921
10922 /* Ada allows us to implicitly dereference arrays when subscripting
8f465ea7
JB
10923 them. So, if this is an array typedef (encoding use for array
10924 access types encoded as fat pointers), strip it now. */
720d1a40
JB
10925 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
10926 type = ada_typedef_target_type (type);
10927
4c4b4cd2
PH
10928 if (TYPE_CODE (type) == TYPE_CODE_PTR)
10929 {
61ee279c 10930 switch (TYPE_CODE (ada_check_typedef (TYPE_TARGET_TYPE (type))))
4c4b4cd2
PH
10931 {
10932 case TYPE_CODE_FUNC:
61ee279c 10933 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
4c4b4cd2
PH
10934 break;
10935 case TYPE_CODE_ARRAY:
10936 break;
10937 case TYPE_CODE_STRUCT:
10938 if (noside != EVAL_AVOID_SIDE_EFFECTS)
10939 argvec[0] = ada_value_ind (argvec[0]);
61ee279c 10940 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
4c4b4cd2
PH
10941 break;
10942 default:
323e0a4a 10943 error (_("cannot subscript or call something of type `%s'"),
df407dfe 10944 ada_type_name (value_type (argvec[0])));
4c4b4cd2
PH
10945 break;
10946 }
10947 }
10948
10949 switch (TYPE_CODE (type))
10950 {
10951 case TYPE_CODE_FUNC:
10952 if (noside == EVAL_AVOID_SIDE_EFFECTS)
c8ea1972 10953 {
7022349d
PA
10954 if (TYPE_TARGET_TYPE (type) == NULL)
10955 error_call_unknown_return_type (NULL);
10956 return allocate_value (TYPE_TARGET_TYPE (type));
c8ea1972 10957 }
7022349d 10958 return call_function_by_hand (argvec[0], NULL, nargs, argvec + 1);
c8ea1972
PH
10959 case TYPE_CODE_INTERNAL_FUNCTION:
10960 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10961 /* We don't know anything about what the internal
10962 function might return, but we have to return
10963 something. */
10964 return value_zero (builtin_type (exp->gdbarch)->builtin_int,
10965 not_lval);
10966 else
10967 return call_internal_function (exp->gdbarch, exp->language_defn,
10968 argvec[0], nargs, argvec + 1);
10969
4c4b4cd2
PH
10970 case TYPE_CODE_STRUCT:
10971 {
10972 int arity;
10973
4c4b4cd2
PH
10974 arity = ada_array_arity (type);
10975 type = ada_array_element_type (type, nargs);
10976 if (type == NULL)
323e0a4a 10977 error (_("cannot subscript or call a record"));
4c4b4cd2 10978 if (arity != nargs)
323e0a4a 10979 error (_("wrong number of subscripts; expecting %d"), arity);
4c4b4cd2 10980 if (noside == EVAL_AVOID_SIDE_EFFECTS)
0a07e705 10981 return value_zero (ada_aligned_type (type), lval_memory);
4c4b4cd2
PH
10982 return
10983 unwrap_value (ada_value_subscript
10984 (argvec[0], nargs, argvec + 1));
10985 }
10986 case TYPE_CODE_ARRAY:
10987 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10988 {
10989 type = ada_array_element_type (type, nargs);
10990 if (type == NULL)
323e0a4a 10991 error (_("element type of array unknown"));
4c4b4cd2 10992 else
0a07e705 10993 return value_zero (ada_aligned_type (type), lval_memory);
4c4b4cd2
PH
10994 }
10995 return
10996 unwrap_value (ada_value_subscript
10997 (ada_coerce_to_simple_array (argvec[0]),
10998 nargs, argvec + 1));
10999 case TYPE_CODE_PTR: /* Pointer to array */
4c4b4cd2
PH
11000 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11001 {
deede10c 11002 type = to_fixed_array_type (TYPE_TARGET_TYPE (type), NULL, 1);
4c4b4cd2
PH
11003 type = ada_array_element_type (type, nargs);
11004 if (type == NULL)
323e0a4a 11005 error (_("element type of array unknown"));
4c4b4cd2 11006 else
0a07e705 11007 return value_zero (ada_aligned_type (type), lval_memory);
4c4b4cd2
PH
11008 }
11009 return
deede10c
JB
11010 unwrap_value (ada_value_ptr_subscript (argvec[0],
11011 nargs, argvec + 1));
4c4b4cd2
PH
11012
11013 default:
e1d5a0d2
PH
11014 error (_("Attempt to index or call something other than an "
11015 "array or function"));
4c4b4cd2
PH
11016 }
11017
11018 case TERNOP_SLICE:
11019 {
11020 struct value *array = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11021 struct value *low_bound_val =
11022 evaluate_subexp (NULL_TYPE, exp, pos, noside);
714e53ab
PH
11023 struct value *high_bound_val =
11024 evaluate_subexp (NULL_TYPE, exp, pos, noside);
11025 LONGEST low_bound;
11026 LONGEST high_bound;
5b4ee69b 11027
994b9211
AC
11028 low_bound_val = coerce_ref (low_bound_val);
11029 high_bound_val = coerce_ref (high_bound_val);
aa715135
JG
11030 low_bound = value_as_long (low_bound_val);
11031 high_bound = value_as_long (high_bound_val);
963a6417 11032
4c4b4cd2
PH
11033 if (noside == EVAL_SKIP)
11034 goto nosideret;
11035
4c4b4cd2
PH
11036 /* If this is a reference to an aligner type, then remove all
11037 the aligners. */
df407dfe
AC
11038 if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF
11039 && ada_is_aligner_type (TYPE_TARGET_TYPE (value_type (array))))
11040 TYPE_TARGET_TYPE (value_type (array)) =
11041 ada_aligned_type (TYPE_TARGET_TYPE (value_type (array)));
4c4b4cd2 11042
ad82864c 11043 if (ada_is_constrained_packed_array_type (value_type (array)))
323e0a4a 11044 error (_("cannot slice a packed array"));
4c4b4cd2
PH
11045
11046 /* If this is a reference to an array or an array lvalue,
11047 convert to a pointer. */
df407dfe
AC
11048 if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF
11049 || (TYPE_CODE (value_type (array)) == TYPE_CODE_ARRAY
4c4b4cd2
PH
11050 && VALUE_LVAL (array) == lval_memory))
11051 array = value_addr (array);
11052
1265e4aa 11053 if (noside == EVAL_AVOID_SIDE_EFFECTS
61ee279c 11054 && ada_is_array_descriptor_type (ada_check_typedef
df407dfe 11055 (value_type (array))))
0b5d8877 11056 return empty_array (ada_type_of_array (array, 0), low_bound);
4c4b4cd2
PH
11057
11058 array = ada_coerce_to_simple_array_ptr (array);
11059
714e53ab
PH
11060 /* If we have more than one level of pointer indirection,
11061 dereference the value until we get only one level. */
df407dfe
AC
11062 while (TYPE_CODE (value_type (array)) == TYPE_CODE_PTR
11063 && (TYPE_CODE (TYPE_TARGET_TYPE (value_type (array)))
714e53ab
PH
11064 == TYPE_CODE_PTR))
11065 array = value_ind (array);
11066
11067 /* Make sure we really do have an array type before going further,
11068 to avoid a SEGV when trying to get the index type or the target
11069 type later down the road if the debug info generated by
11070 the compiler is incorrect or incomplete. */
df407dfe 11071 if (!ada_is_simple_array_type (value_type (array)))
323e0a4a 11072 error (_("cannot take slice of non-array"));
714e53ab 11073
828292f2
JB
11074 if (TYPE_CODE (ada_check_typedef (value_type (array)))
11075 == TYPE_CODE_PTR)
4c4b4cd2 11076 {
828292f2
JB
11077 struct type *type0 = ada_check_typedef (value_type (array));
11078
0b5d8877 11079 if (high_bound < low_bound || noside == EVAL_AVOID_SIDE_EFFECTS)
828292f2 11080 return empty_array (TYPE_TARGET_TYPE (type0), low_bound);
4c4b4cd2
PH
11081 else
11082 {
11083 struct type *arr_type0 =
828292f2 11084 to_fixed_array_type (TYPE_TARGET_TYPE (type0), NULL, 1);
5b4ee69b 11085
f5938064
JG
11086 return ada_value_slice_from_ptr (array, arr_type0,
11087 longest_to_int (low_bound),
11088 longest_to_int (high_bound));
4c4b4cd2
PH
11089 }
11090 }
11091 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
11092 return array;
11093 else if (high_bound < low_bound)
df407dfe 11094 return empty_array (value_type (array), low_bound);
4c4b4cd2 11095 else
529cad9c
PH
11096 return ada_value_slice (array, longest_to_int (low_bound),
11097 longest_to_int (high_bound));
4c4b4cd2 11098 }
14f9c5c9 11099
4c4b4cd2
PH
11100 case UNOP_IN_RANGE:
11101 (*pos) += 2;
11102 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8008e265 11103 type = check_typedef (exp->elts[pc + 1].type);
14f9c5c9 11104
14f9c5c9 11105 if (noside == EVAL_SKIP)
4c4b4cd2 11106 goto nosideret;
14f9c5c9 11107
4c4b4cd2
PH
11108 switch (TYPE_CODE (type))
11109 {
11110 default:
e1d5a0d2
PH
11111 lim_warning (_("Membership test incompletely implemented; "
11112 "always returns true"));
fbb06eb1
UW
11113 type = language_bool_type (exp->language_defn, exp->gdbarch);
11114 return value_from_longest (type, (LONGEST) 1);
4c4b4cd2
PH
11115
11116 case TYPE_CODE_RANGE:
030b4912
UW
11117 arg2 = value_from_longest (type, TYPE_LOW_BOUND (type));
11118 arg3 = value_from_longest (type, TYPE_HIGH_BOUND (type));
f44316fa
UW
11119 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
11120 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
fbb06eb1
UW
11121 type = language_bool_type (exp->language_defn, exp->gdbarch);
11122 return
11123 value_from_longest (type,
4c4b4cd2
PH
11124 (value_less (arg1, arg3)
11125 || value_equal (arg1, arg3))
11126 && (value_less (arg2, arg1)
11127 || value_equal (arg2, arg1)));
11128 }
11129
11130 case BINOP_IN_BOUNDS:
14f9c5c9 11131 (*pos) += 2;
4c4b4cd2
PH
11132 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11133 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
14f9c5c9 11134
4c4b4cd2
PH
11135 if (noside == EVAL_SKIP)
11136 goto nosideret;
14f9c5c9 11137
4c4b4cd2 11138 if (noside == EVAL_AVOID_SIDE_EFFECTS)
fbb06eb1
UW
11139 {
11140 type = language_bool_type (exp->language_defn, exp->gdbarch);
11141 return value_zero (type, not_lval);
11142 }
14f9c5c9 11143
4c4b4cd2 11144 tem = longest_to_int (exp->elts[pc + 1].longconst);
14f9c5c9 11145
1eea4ebd
UW
11146 type = ada_index_type (value_type (arg2), tem, "range");
11147 if (!type)
11148 type = value_type (arg1);
14f9c5c9 11149
1eea4ebd
UW
11150 arg3 = value_from_longest (type, ada_array_bound (arg2, tem, 1));
11151 arg2 = value_from_longest (type, ada_array_bound (arg2, tem, 0));
d2e4a39e 11152
f44316fa
UW
11153 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
11154 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
fbb06eb1 11155 type = language_bool_type (exp->language_defn, exp->gdbarch);
4c4b4cd2 11156 return
fbb06eb1 11157 value_from_longest (type,
4c4b4cd2
PH
11158 (value_less (arg1, arg3)
11159 || value_equal (arg1, arg3))
11160 && (value_less (arg2, arg1)
11161 || value_equal (arg2, arg1)));
11162
11163 case TERNOP_IN_RANGE:
11164 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11165 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11166 arg3 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11167
11168 if (noside == EVAL_SKIP)
11169 goto nosideret;
11170
f44316fa
UW
11171 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
11172 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
fbb06eb1 11173 type = language_bool_type (exp->language_defn, exp->gdbarch);
4c4b4cd2 11174 return
fbb06eb1 11175 value_from_longest (type,
4c4b4cd2
PH
11176 (value_less (arg1, arg3)
11177 || value_equal (arg1, arg3))
11178 && (value_less (arg2, arg1)
11179 || value_equal (arg2, arg1)));
11180
11181 case OP_ATR_FIRST:
11182 case OP_ATR_LAST:
11183 case OP_ATR_LENGTH:
11184 {
76a01679 11185 struct type *type_arg;
5b4ee69b 11186
76a01679
JB
11187 if (exp->elts[*pos].opcode == OP_TYPE)
11188 {
11189 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
11190 arg1 = NULL;
5bc23cb3 11191 type_arg = check_typedef (exp->elts[pc + 2].type);
76a01679
JB
11192 }
11193 else
11194 {
11195 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11196 type_arg = NULL;
11197 }
11198
11199 if (exp->elts[*pos].opcode != OP_LONG)
323e0a4a 11200 error (_("Invalid operand to '%s"), ada_attribute_name (op));
76a01679
JB
11201 tem = longest_to_int (exp->elts[*pos + 2].longconst);
11202 *pos += 4;
11203
11204 if (noside == EVAL_SKIP)
11205 goto nosideret;
11206
11207 if (type_arg == NULL)
11208 {
11209 arg1 = ada_coerce_ref (arg1);
11210
ad82864c 11211 if (ada_is_constrained_packed_array_type (value_type (arg1)))
76a01679
JB
11212 arg1 = ada_coerce_to_simple_array (arg1);
11213
aa4fb036 11214 if (op == OP_ATR_LENGTH)
1eea4ebd 11215 type = builtin_type (exp->gdbarch)->builtin_int;
aa4fb036
JB
11216 else
11217 {
11218 type = ada_index_type (value_type (arg1), tem,
11219 ada_attribute_name (op));
11220 if (type == NULL)
11221 type = builtin_type (exp->gdbarch)->builtin_int;
11222 }
76a01679
JB
11223
11224 if (noside == EVAL_AVOID_SIDE_EFFECTS)
1eea4ebd 11225 return allocate_value (type);
76a01679
JB
11226
11227 switch (op)
11228 {
11229 default: /* Should never happen. */
323e0a4a 11230 error (_("unexpected attribute encountered"));
76a01679 11231 case OP_ATR_FIRST:
1eea4ebd
UW
11232 return value_from_longest
11233 (type, ada_array_bound (arg1, tem, 0));
76a01679 11234 case OP_ATR_LAST:
1eea4ebd
UW
11235 return value_from_longest
11236 (type, ada_array_bound (arg1, tem, 1));
76a01679 11237 case OP_ATR_LENGTH:
1eea4ebd
UW
11238 return value_from_longest
11239 (type, ada_array_length (arg1, tem));
76a01679
JB
11240 }
11241 }
11242 else if (discrete_type_p (type_arg))
11243 {
11244 struct type *range_type;
0d5cff50 11245 const char *name = ada_type_name (type_arg);
5b4ee69b 11246
76a01679
JB
11247 range_type = NULL;
11248 if (name != NULL && TYPE_CODE (type_arg) != TYPE_CODE_ENUM)
28c85d6c 11249 range_type = to_fixed_range_type (type_arg, NULL);
76a01679
JB
11250 if (range_type == NULL)
11251 range_type = type_arg;
11252 switch (op)
11253 {
11254 default:
323e0a4a 11255 error (_("unexpected attribute encountered"));
76a01679 11256 case OP_ATR_FIRST:
690cc4eb 11257 return value_from_longest
43bbcdc2 11258 (range_type, ada_discrete_type_low_bound (range_type));
76a01679 11259 case OP_ATR_LAST:
690cc4eb 11260 return value_from_longest
43bbcdc2 11261 (range_type, ada_discrete_type_high_bound (range_type));
76a01679 11262 case OP_ATR_LENGTH:
323e0a4a 11263 error (_("the 'length attribute applies only to array types"));
76a01679
JB
11264 }
11265 }
11266 else if (TYPE_CODE (type_arg) == TYPE_CODE_FLT)
323e0a4a 11267 error (_("unimplemented type attribute"));
76a01679
JB
11268 else
11269 {
11270 LONGEST low, high;
11271
ad82864c
JB
11272 if (ada_is_constrained_packed_array_type (type_arg))
11273 type_arg = decode_constrained_packed_array_type (type_arg);
76a01679 11274
aa4fb036 11275 if (op == OP_ATR_LENGTH)
1eea4ebd 11276 type = builtin_type (exp->gdbarch)->builtin_int;
aa4fb036
JB
11277 else
11278 {
11279 type = ada_index_type (type_arg, tem, ada_attribute_name (op));
11280 if (type == NULL)
11281 type = builtin_type (exp->gdbarch)->builtin_int;
11282 }
1eea4ebd 11283
76a01679
JB
11284 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11285 return allocate_value (type);
11286
11287 switch (op)
11288 {
11289 default:
323e0a4a 11290 error (_("unexpected attribute encountered"));
76a01679 11291 case OP_ATR_FIRST:
1eea4ebd 11292 low = ada_array_bound_from_type (type_arg, tem, 0);
76a01679
JB
11293 return value_from_longest (type, low);
11294 case OP_ATR_LAST:
1eea4ebd 11295 high = ada_array_bound_from_type (type_arg, tem, 1);
76a01679
JB
11296 return value_from_longest (type, high);
11297 case OP_ATR_LENGTH:
1eea4ebd
UW
11298 low = ada_array_bound_from_type (type_arg, tem, 0);
11299 high = ada_array_bound_from_type (type_arg, tem, 1);
76a01679
JB
11300 return value_from_longest (type, high - low + 1);
11301 }
11302 }
14f9c5c9
AS
11303 }
11304
4c4b4cd2
PH
11305 case OP_ATR_TAG:
11306 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11307 if (noside == EVAL_SKIP)
76a01679 11308 goto nosideret;
4c4b4cd2
PH
11309
11310 if (noside == EVAL_AVOID_SIDE_EFFECTS)
76a01679 11311 return value_zero (ada_tag_type (arg1), not_lval);
4c4b4cd2
PH
11312
11313 return ada_value_tag (arg1);
11314
11315 case OP_ATR_MIN:
11316 case OP_ATR_MAX:
11317 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
14f9c5c9
AS
11318 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11319 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11320 if (noside == EVAL_SKIP)
76a01679 11321 goto nosideret;
d2e4a39e 11322 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
df407dfe 11323 return value_zero (value_type (arg1), not_lval);
14f9c5c9 11324 else
f44316fa
UW
11325 {
11326 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
11327 return value_binop (arg1, arg2,
11328 op == OP_ATR_MIN ? BINOP_MIN : BINOP_MAX);
11329 }
14f9c5c9 11330
4c4b4cd2
PH
11331 case OP_ATR_MODULUS:
11332 {
31dedfee 11333 struct type *type_arg = check_typedef (exp->elts[pc + 2].type);
4c4b4cd2 11334
5b4ee69b 11335 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
76a01679
JB
11336 if (noside == EVAL_SKIP)
11337 goto nosideret;
4c4b4cd2 11338
76a01679 11339 if (!ada_is_modular_type (type_arg))
323e0a4a 11340 error (_("'modulus must be applied to modular type"));
4c4b4cd2 11341
76a01679
JB
11342 return value_from_longest (TYPE_TARGET_TYPE (type_arg),
11343 ada_modulus (type_arg));
4c4b4cd2
PH
11344 }
11345
11346
11347 case OP_ATR_POS:
11348 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
14f9c5c9
AS
11349 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11350 if (noside == EVAL_SKIP)
76a01679 11351 goto nosideret;
3cb382c9
UW
11352 type = builtin_type (exp->gdbarch)->builtin_int;
11353 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11354 return value_zero (type, not_lval);
14f9c5c9 11355 else
3cb382c9 11356 return value_pos_atr (type, arg1);
14f9c5c9 11357
4c4b4cd2
PH
11358 case OP_ATR_SIZE:
11359 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8c1c099f
JB
11360 type = value_type (arg1);
11361
11362 /* If the argument is a reference, then dereference its type, since
11363 the user is really asking for the size of the actual object,
11364 not the size of the pointer. */
11365 if (TYPE_CODE (type) == TYPE_CODE_REF)
11366 type = TYPE_TARGET_TYPE (type);
11367
4c4b4cd2 11368 if (noside == EVAL_SKIP)
76a01679 11369 goto nosideret;
4c4b4cd2 11370 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
22601c15 11371 return value_zero (builtin_type (exp->gdbarch)->builtin_int, not_lval);
4c4b4cd2 11372 else
22601c15 11373 return value_from_longest (builtin_type (exp->gdbarch)->builtin_int,
8c1c099f 11374 TARGET_CHAR_BIT * TYPE_LENGTH (type));
4c4b4cd2
PH
11375
11376 case OP_ATR_VAL:
11377 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
14f9c5c9 11378 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
4c4b4cd2 11379 type = exp->elts[pc + 2].type;
14f9c5c9 11380 if (noside == EVAL_SKIP)
76a01679 11381 goto nosideret;
4c4b4cd2 11382 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
76a01679 11383 return value_zero (type, not_lval);
4c4b4cd2 11384 else
76a01679 11385 return value_val_atr (type, arg1);
4c4b4cd2
PH
11386
11387 case BINOP_EXP:
11388 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11389 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11390 if (noside == EVAL_SKIP)
11391 goto nosideret;
11392 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
df407dfe 11393 return value_zero (value_type (arg1), not_lval);
4c4b4cd2 11394 else
f44316fa
UW
11395 {
11396 /* For integer exponentiation operations,
11397 only promote the first argument. */
11398 if (is_integral_type (value_type (arg2)))
11399 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
11400 else
11401 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
11402
11403 return value_binop (arg1, arg2, op);
11404 }
4c4b4cd2
PH
11405
11406 case UNOP_PLUS:
11407 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11408 if (noside == EVAL_SKIP)
11409 goto nosideret;
11410 else
11411 return arg1;
11412
11413 case UNOP_ABS:
11414 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11415 if (noside == EVAL_SKIP)
11416 goto nosideret;
f44316fa 11417 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
df407dfe 11418 if (value_less (arg1, value_zero (value_type (arg1), not_lval)))
4c4b4cd2 11419 return value_neg (arg1);
14f9c5c9 11420 else
4c4b4cd2 11421 return arg1;
14f9c5c9
AS
11422
11423 case UNOP_IND:
5ec18f2b 11424 preeval_pos = *pos;
6b0d7253 11425 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
14f9c5c9 11426 if (noside == EVAL_SKIP)
4c4b4cd2 11427 goto nosideret;
df407dfe 11428 type = ada_check_typedef (value_type (arg1));
14f9c5c9 11429 if (noside == EVAL_AVOID_SIDE_EFFECTS)
4c4b4cd2
PH
11430 {
11431 if (ada_is_array_descriptor_type (type))
11432 /* GDB allows dereferencing GNAT array descriptors. */
11433 {
11434 struct type *arrType = ada_type_of_array (arg1, 0);
5b4ee69b 11435
4c4b4cd2 11436 if (arrType == NULL)
323e0a4a 11437 error (_("Attempt to dereference null array pointer."));
00a4c844 11438 return value_at_lazy (arrType, 0);
4c4b4cd2
PH
11439 }
11440 else if (TYPE_CODE (type) == TYPE_CODE_PTR
11441 || TYPE_CODE (type) == TYPE_CODE_REF
11442 /* In C you can dereference an array to get the 1st elt. */
11443 || TYPE_CODE (type) == TYPE_CODE_ARRAY)
714e53ab 11444 {
5ec18f2b
JG
11445 /* As mentioned in the OP_VAR_VALUE case, tagged types can
11446 only be determined by inspecting the object's tag.
11447 This means that we need to evaluate completely the
11448 expression in order to get its type. */
11449
023db19c
JB
11450 if ((TYPE_CODE (type) == TYPE_CODE_REF
11451 || TYPE_CODE (type) == TYPE_CODE_PTR)
5ec18f2b
JG
11452 && ada_is_tagged_type (TYPE_TARGET_TYPE (type), 0))
11453 {
11454 arg1 = evaluate_subexp (NULL_TYPE, exp, &preeval_pos,
11455 EVAL_NORMAL);
11456 type = value_type (ada_value_ind (arg1));
11457 }
11458 else
11459 {
11460 type = to_static_fixed_type
11461 (ada_aligned_type
11462 (ada_check_typedef (TYPE_TARGET_TYPE (type))));
11463 }
c1b5a1a6 11464 ada_ensure_varsize_limit (type);
714e53ab
PH
11465 return value_zero (type, lval_memory);
11466 }
4c4b4cd2 11467 else if (TYPE_CODE (type) == TYPE_CODE_INT)
6b0d7253
JB
11468 {
11469 /* GDB allows dereferencing an int. */
11470 if (expect_type == NULL)
11471 return value_zero (builtin_type (exp->gdbarch)->builtin_int,
11472 lval_memory);
11473 else
11474 {
11475 expect_type =
11476 to_static_fixed_type (ada_aligned_type (expect_type));
11477 return value_zero (expect_type, lval_memory);
11478 }
11479 }
4c4b4cd2 11480 else
323e0a4a 11481 error (_("Attempt to take contents of a non-pointer value."));
4c4b4cd2 11482 }
0963b4bd 11483 arg1 = ada_coerce_ref (arg1); /* FIXME: What is this for?? */
df407dfe 11484 type = ada_check_typedef (value_type (arg1));
d2e4a39e 11485
96967637
JB
11486 if (TYPE_CODE (type) == TYPE_CODE_INT)
11487 /* GDB allows dereferencing an int. If we were given
11488 the expect_type, then use that as the target type.
11489 Otherwise, assume that the target type is an int. */
11490 {
11491 if (expect_type != NULL)
11492 return ada_value_ind (value_cast (lookup_pointer_type (expect_type),
11493 arg1));
11494 else
11495 return value_at_lazy (builtin_type (exp->gdbarch)->builtin_int,
11496 (CORE_ADDR) value_as_address (arg1));
11497 }
6b0d7253 11498
4c4b4cd2
PH
11499 if (ada_is_array_descriptor_type (type))
11500 /* GDB allows dereferencing GNAT array descriptors. */
11501 return ada_coerce_to_simple_array (arg1);
14f9c5c9 11502 else
4c4b4cd2 11503 return ada_value_ind (arg1);
14f9c5c9
AS
11504
11505 case STRUCTOP_STRUCT:
11506 tem = longest_to_int (exp->elts[pc + 1].longconst);
11507 (*pos) += 3 + BYTES_TO_EXP_ELEM (tem + 1);
5ec18f2b 11508 preeval_pos = *pos;
14f9c5c9
AS
11509 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11510 if (noside == EVAL_SKIP)
4c4b4cd2 11511 goto nosideret;
14f9c5c9 11512 if (noside == EVAL_AVOID_SIDE_EFFECTS)
76a01679 11513 {
df407dfe 11514 struct type *type1 = value_type (arg1);
5b4ee69b 11515
76a01679
JB
11516 if (ada_is_tagged_type (type1, 1))
11517 {
11518 type = ada_lookup_struct_elt_type (type1,
11519 &exp->elts[pc + 2].string,
988f6b3d 11520 1, 1);
5ec18f2b
JG
11521
11522 /* If the field is not found, check if it exists in the
11523 extension of this object's type. This means that we
11524 need to evaluate completely the expression. */
11525
76a01679 11526 if (type == NULL)
5ec18f2b
JG
11527 {
11528 arg1 = evaluate_subexp (NULL_TYPE, exp, &preeval_pos,
11529 EVAL_NORMAL);
11530 arg1 = ada_value_struct_elt (arg1,
11531 &exp->elts[pc + 2].string,
11532 0);
11533 arg1 = unwrap_value (arg1);
11534 type = value_type (ada_to_fixed_value (arg1));
11535 }
76a01679
JB
11536 }
11537 else
11538 type =
11539 ada_lookup_struct_elt_type (type1, &exp->elts[pc + 2].string, 1,
988f6b3d 11540 0);
76a01679
JB
11541
11542 return value_zero (ada_aligned_type (type), lval_memory);
11543 }
14f9c5c9 11544 else
a579cd9a
MW
11545 {
11546 arg1 = ada_value_struct_elt (arg1, &exp->elts[pc + 2].string, 0);
11547 arg1 = unwrap_value (arg1);
11548 return ada_to_fixed_value (arg1);
11549 }
284614f0 11550
14f9c5c9 11551 case OP_TYPE:
4c4b4cd2
PH
11552 /* The value is not supposed to be used. This is here to make it
11553 easier to accommodate expressions that contain types. */
14f9c5c9
AS
11554 (*pos) += 2;
11555 if (noside == EVAL_SKIP)
4c4b4cd2 11556 goto nosideret;
14f9c5c9 11557 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
a6cfbe68 11558 return allocate_value (exp->elts[pc + 1].type);
14f9c5c9 11559 else
323e0a4a 11560 error (_("Attempt to use a type name as an expression"));
52ce6436
PH
11561
11562 case OP_AGGREGATE:
11563 case OP_CHOICES:
11564 case OP_OTHERS:
11565 case OP_DISCRETE_RANGE:
11566 case OP_POSITIONAL:
11567 case OP_NAME:
11568 if (noside == EVAL_NORMAL)
11569 switch (op)
11570 {
11571 case OP_NAME:
11572 error (_("Undefined name, ambiguous name, or renaming used in "
e1d5a0d2 11573 "component association: %s."), &exp->elts[pc+2].string);
52ce6436
PH
11574 case OP_AGGREGATE:
11575 error (_("Aggregates only allowed on the right of an assignment"));
11576 default:
0963b4bd
MS
11577 internal_error (__FILE__, __LINE__,
11578 _("aggregate apparently mangled"));
52ce6436
PH
11579 }
11580
11581 ada_forward_operator_length (exp, pc, &oplen, &nargs);
11582 *pos += oplen - 1;
11583 for (tem = 0; tem < nargs; tem += 1)
11584 ada_evaluate_subexp (NULL, exp, pos, noside);
11585 goto nosideret;
14f9c5c9
AS
11586 }
11587
11588nosideret:
ced9779b 11589 return eval_skip_value (exp);
14f9c5c9 11590}
14f9c5c9 11591\f
d2e4a39e 11592
4c4b4cd2 11593 /* Fixed point */
14f9c5c9
AS
11594
11595/* If TYPE encodes an Ada fixed-point type, return the suffix of the
11596 type name that encodes the 'small and 'delta information.
4c4b4cd2 11597 Otherwise, return NULL. */
14f9c5c9 11598
d2e4a39e 11599static const char *
ebf56fd3 11600fixed_type_info (struct type *type)
14f9c5c9 11601{
d2e4a39e 11602 const char *name = ada_type_name (type);
14f9c5c9
AS
11603 enum type_code code = (type == NULL) ? TYPE_CODE_UNDEF : TYPE_CODE (type);
11604
d2e4a39e
AS
11605 if ((code == TYPE_CODE_INT || code == TYPE_CODE_RANGE) && name != NULL)
11606 {
14f9c5c9 11607 const char *tail = strstr (name, "___XF_");
5b4ee69b 11608
14f9c5c9 11609 if (tail == NULL)
4c4b4cd2 11610 return NULL;
d2e4a39e 11611 else
4c4b4cd2 11612 return tail + 5;
14f9c5c9
AS
11613 }
11614 else if (code == TYPE_CODE_RANGE && TYPE_TARGET_TYPE (type) != type)
11615 return fixed_type_info (TYPE_TARGET_TYPE (type));
11616 else
11617 return NULL;
11618}
11619
4c4b4cd2 11620/* Returns non-zero iff TYPE represents an Ada fixed-point type. */
14f9c5c9
AS
11621
11622int
ebf56fd3 11623ada_is_fixed_point_type (struct type *type)
14f9c5c9
AS
11624{
11625 return fixed_type_info (type) != NULL;
11626}
11627
4c4b4cd2
PH
11628/* Return non-zero iff TYPE represents a System.Address type. */
11629
11630int
11631ada_is_system_address_type (struct type *type)
11632{
11633 return (TYPE_NAME (type)
11634 && strcmp (TYPE_NAME (type), "system__address") == 0);
11635}
11636
14f9c5c9 11637/* Assuming that TYPE is the representation of an Ada fixed-point
50eff16b
UW
11638 type, return the target floating-point type to be used to represent
11639 of this type during internal computation. */
11640
11641static struct type *
11642ada_scaling_type (struct type *type)
11643{
11644 return builtin_type (get_type_arch (type))->builtin_long_double;
11645}
11646
11647/* Assuming that TYPE is the representation of an Ada fixed-point
11648 type, return its delta, or NULL if the type is malformed and the
4c4b4cd2 11649 delta cannot be determined. */
14f9c5c9 11650
50eff16b 11651struct value *
ebf56fd3 11652ada_delta (struct type *type)
14f9c5c9
AS
11653{
11654 const char *encoding = fixed_type_info (type);
50eff16b
UW
11655 struct type *scale_type = ada_scaling_type (type);
11656
11657 long long num, den;
11658
11659 if (sscanf (encoding, "_%lld_%lld", &num, &den) < 2)
11660 return nullptr;
d2e4a39e 11661 else
50eff16b
UW
11662 return value_binop (value_from_longest (scale_type, num),
11663 value_from_longest (scale_type, den), BINOP_DIV);
14f9c5c9
AS
11664}
11665
11666/* Assuming that ada_is_fixed_point_type (TYPE), return the scaling
4c4b4cd2 11667 factor ('SMALL value) associated with the type. */
14f9c5c9 11668
50eff16b
UW
11669struct value *
11670ada_scaling_factor (struct type *type)
14f9c5c9
AS
11671{
11672 const char *encoding = fixed_type_info (type);
50eff16b
UW
11673 struct type *scale_type = ada_scaling_type (type);
11674
11675 long long num0, den0, num1, den1;
14f9c5c9 11676 int n;
d2e4a39e 11677
50eff16b 11678 n = sscanf (encoding, "_%lld_%lld_%lld_%lld",
facc390f 11679 &num0, &den0, &num1, &den1);
14f9c5c9
AS
11680
11681 if (n < 2)
50eff16b 11682 return value_from_longest (scale_type, 1);
14f9c5c9 11683 else if (n == 4)
50eff16b
UW
11684 return value_binop (value_from_longest (scale_type, num1),
11685 value_from_longest (scale_type, den1), BINOP_DIV);
d2e4a39e 11686 else
50eff16b
UW
11687 return value_binop (value_from_longest (scale_type, num0),
11688 value_from_longest (scale_type, den0), BINOP_DIV);
14f9c5c9
AS
11689}
11690
14f9c5c9 11691\f
d2e4a39e 11692
4c4b4cd2 11693 /* Range types */
14f9c5c9
AS
11694
11695/* Scan STR beginning at position K for a discriminant name, and
11696 return the value of that discriminant field of DVAL in *PX. If
11697 PNEW_K is not null, put the position of the character beyond the
11698 name scanned in *PNEW_K. Return 1 if successful; return 0 and do
4c4b4cd2 11699 not alter *PX and *PNEW_K if unsuccessful. */
14f9c5c9
AS
11700
11701static int
108d56a4 11702scan_discrim_bound (const char *str, int k, struct value *dval, LONGEST * px,
76a01679 11703 int *pnew_k)
14f9c5c9
AS
11704{
11705 static char *bound_buffer = NULL;
11706 static size_t bound_buffer_len = 0;
5da1a4d3 11707 const char *pstart, *pend, *bound;
d2e4a39e 11708 struct value *bound_val;
14f9c5c9
AS
11709
11710 if (dval == NULL || str == NULL || str[k] == '\0')
11711 return 0;
11712
5da1a4d3
SM
11713 pstart = str + k;
11714 pend = strstr (pstart, "__");
14f9c5c9
AS
11715 if (pend == NULL)
11716 {
5da1a4d3 11717 bound = pstart;
14f9c5c9
AS
11718 k += strlen (bound);
11719 }
d2e4a39e 11720 else
14f9c5c9 11721 {
5da1a4d3
SM
11722 int len = pend - pstart;
11723
11724 /* Strip __ and beyond. */
11725 GROW_VECT (bound_buffer, bound_buffer_len, len + 1);
11726 strncpy (bound_buffer, pstart, len);
11727 bound_buffer[len] = '\0';
11728
14f9c5c9 11729 bound = bound_buffer;
d2e4a39e 11730 k = pend - str;
14f9c5c9 11731 }
d2e4a39e 11732
df407dfe 11733 bound_val = ada_search_struct_field (bound, dval, 0, value_type (dval));
14f9c5c9
AS
11734 if (bound_val == NULL)
11735 return 0;
11736
11737 *px = value_as_long (bound_val);
11738 if (pnew_k != NULL)
11739 *pnew_k = k;
11740 return 1;
11741}
11742
11743/* Value of variable named NAME in the current environment. If
11744 no such variable found, then if ERR_MSG is null, returns 0, and
4c4b4cd2
PH
11745 otherwise causes an error with message ERR_MSG. */
11746
d2e4a39e 11747static struct value *
edb0c9cb 11748get_var_value (const char *name, const char *err_msg)
14f9c5c9 11749{
b5ec771e 11750 lookup_name_info lookup_name (name, symbol_name_match_type::FULL);
14f9c5c9 11751
54d343a2 11752 std::vector<struct block_symbol> syms;
b5ec771e
PA
11753 int nsyms = ada_lookup_symbol_list_worker (lookup_name,
11754 get_selected_block (0),
11755 VAR_DOMAIN, &syms, 1);
14f9c5c9
AS
11756
11757 if (nsyms != 1)
11758 {
11759 if (err_msg == NULL)
4c4b4cd2 11760 return 0;
14f9c5c9 11761 else
8a3fe4f8 11762 error (("%s"), err_msg);
14f9c5c9
AS
11763 }
11764
54d343a2 11765 return value_of_variable (syms[0].symbol, syms[0].block);
14f9c5c9 11766}
d2e4a39e 11767
edb0c9cb
PA
11768/* Value of integer variable named NAME in the current environment.
11769 If no such variable is found, returns false. Otherwise, sets VALUE
11770 to the variable's value and returns true. */
4c4b4cd2 11771
edb0c9cb
PA
11772bool
11773get_int_var_value (const char *name, LONGEST &value)
14f9c5c9 11774{
4c4b4cd2 11775 struct value *var_val = get_var_value (name, 0);
d2e4a39e 11776
14f9c5c9 11777 if (var_val == 0)
edb0c9cb
PA
11778 return false;
11779
11780 value = value_as_long (var_val);
11781 return true;
14f9c5c9 11782}
d2e4a39e 11783
14f9c5c9
AS
11784
11785/* Return a range type whose base type is that of the range type named
11786 NAME in the current environment, and whose bounds are calculated
4c4b4cd2 11787 from NAME according to the GNAT range encoding conventions.
1ce677a4
UW
11788 Extract discriminant values, if needed, from DVAL. ORIG_TYPE is the
11789 corresponding range type from debug information; fall back to using it
11790 if symbol lookup fails. If a new type must be created, allocate it
11791 like ORIG_TYPE was. The bounds information, in general, is encoded
11792 in NAME, the base type given in the named range type. */
14f9c5c9 11793
d2e4a39e 11794static struct type *
28c85d6c 11795to_fixed_range_type (struct type *raw_type, struct value *dval)
14f9c5c9 11796{
0d5cff50 11797 const char *name;
14f9c5c9 11798 struct type *base_type;
108d56a4 11799 const char *subtype_info;
14f9c5c9 11800
28c85d6c
JB
11801 gdb_assert (raw_type != NULL);
11802 gdb_assert (TYPE_NAME (raw_type) != NULL);
dddfab26 11803
1ce677a4 11804 if (TYPE_CODE (raw_type) == TYPE_CODE_RANGE)
14f9c5c9
AS
11805 base_type = TYPE_TARGET_TYPE (raw_type);
11806 else
11807 base_type = raw_type;
11808
28c85d6c 11809 name = TYPE_NAME (raw_type);
14f9c5c9
AS
11810 subtype_info = strstr (name, "___XD");
11811 if (subtype_info == NULL)
690cc4eb 11812 {
43bbcdc2
PH
11813 LONGEST L = ada_discrete_type_low_bound (raw_type);
11814 LONGEST U = ada_discrete_type_high_bound (raw_type);
5b4ee69b 11815
690cc4eb
PH
11816 if (L < INT_MIN || U > INT_MAX)
11817 return raw_type;
11818 else
0c9c3474
SA
11819 return create_static_range_type (alloc_type_copy (raw_type), raw_type,
11820 L, U);
690cc4eb 11821 }
14f9c5c9
AS
11822 else
11823 {
11824 static char *name_buf = NULL;
11825 static size_t name_len = 0;
11826 int prefix_len = subtype_info - name;
11827 LONGEST L, U;
11828 struct type *type;
108d56a4 11829 const char *bounds_str;
14f9c5c9
AS
11830 int n;
11831
11832 GROW_VECT (name_buf, name_len, prefix_len + 5);
11833 strncpy (name_buf, name, prefix_len);
11834 name_buf[prefix_len] = '\0';
11835
11836 subtype_info += 5;
11837 bounds_str = strchr (subtype_info, '_');
11838 n = 1;
11839
d2e4a39e 11840 if (*subtype_info == 'L')
4c4b4cd2
PH
11841 {
11842 if (!ada_scan_number (bounds_str, n, &L, &n)
11843 && !scan_discrim_bound (bounds_str, n, dval, &L, &n))
11844 return raw_type;
11845 if (bounds_str[n] == '_')
11846 n += 2;
0963b4bd 11847 else if (bounds_str[n] == '.') /* FIXME? SGI Workshop kludge. */
4c4b4cd2
PH
11848 n += 1;
11849 subtype_info += 1;
11850 }
d2e4a39e 11851 else
4c4b4cd2 11852 {
4c4b4cd2 11853 strcpy (name_buf + prefix_len, "___L");
edb0c9cb 11854 if (!get_int_var_value (name_buf, L))
4c4b4cd2 11855 {
323e0a4a 11856 lim_warning (_("Unknown lower bound, using 1."));
4c4b4cd2
PH
11857 L = 1;
11858 }
11859 }
14f9c5c9 11860
d2e4a39e 11861 if (*subtype_info == 'U')
4c4b4cd2
PH
11862 {
11863 if (!ada_scan_number (bounds_str, n, &U, &n)
11864 && !scan_discrim_bound (bounds_str, n, dval, &U, &n))
11865 return raw_type;
11866 }
d2e4a39e 11867 else
4c4b4cd2 11868 {
4c4b4cd2 11869 strcpy (name_buf + prefix_len, "___U");
edb0c9cb 11870 if (!get_int_var_value (name_buf, U))
4c4b4cd2 11871 {
323e0a4a 11872 lim_warning (_("Unknown upper bound, using %ld."), (long) L);
4c4b4cd2
PH
11873 U = L;
11874 }
11875 }
14f9c5c9 11876
0c9c3474
SA
11877 type = create_static_range_type (alloc_type_copy (raw_type),
11878 base_type, L, U);
f5a91472
JB
11879 /* create_static_range_type alters the resulting type's length
11880 to match the size of the base_type, which is not what we want.
11881 Set it back to the original range type's length. */
11882 TYPE_LENGTH (type) = TYPE_LENGTH (raw_type);
d2e4a39e 11883 TYPE_NAME (type) = name;
14f9c5c9
AS
11884 return type;
11885 }
11886}
11887
4c4b4cd2
PH
11888/* True iff NAME is the name of a range type. */
11889
14f9c5c9 11890int
d2e4a39e 11891ada_is_range_type_name (const char *name)
14f9c5c9
AS
11892{
11893 return (name != NULL && strstr (name, "___XD"));
d2e4a39e 11894}
14f9c5c9 11895\f
d2e4a39e 11896
4c4b4cd2
PH
11897 /* Modular types */
11898
11899/* True iff TYPE is an Ada modular type. */
14f9c5c9 11900
14f9c5c9 11901int
d2e4a39e 11902ada_is_modular_type (struct type *type)
14f9c5c9 11903{
18af8284 11904 struct type *subranged_type = get_base_type (type);
14f9c5c9
AS
11905
11906 return (subranged_type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE
690cc4eb 11907 && TYPE_CODE (subranged_type) == TYPE_CODE_INT
4c4b4cd2 11908 && TYPE_UNSIGNED (subranged_type));
14f9c5c9
AS
11909}
11910
4c4b4cd2
PH
11911/* Assuming ada_is_modular_type (TYPE), the modulus of TYPE. */
11912
61ee279c 11913ULONGEST
0056e4d5 11914ada_modulus (struct type *type)
14f9c5c9 11915{
43bbcdc2 11916 return (ULONGEST) TYPE_HIGH_BOUND (type) + 1;
14f9c5c9 11917}
d2e4a39e 11918\f
f7f9143b
JB
11919
11920/* Ada exception catchpoint support:
11921 ---------------------------------
11922
11923 We support 3 kinds of exception catchpoints:
11924 . catchpoints on Ada exceptions
11925 . catchpoints on unhandled Ada exceptions
11926 . catchpoints on failed assertions
11927
11928 Exceptions raised during failed assertions, or unhandled exceptions
11929 could perfectly be caught with the general catchpoint on Ada exceptions.
11930 However, we can easily differentiate these two special cases, and having
11931 the option to distinguish these two cases from the rest can be useful
11932 to zero-in on certain situations.
11933
11934 Exception catchpoints are a specialized form of breakpoint,
11935 since they rely on inserting breakpoints inside known routines
11936 of the GNAT runtime. The implementation therefore uses a standard
11937 breakpoint structure of the BP_BREAKPOINT type, but with its own set
11938 of breakpoint_ops.
11939
0259addd
JB
11940 Support in the runtime for exception catchpoints have been changed
11941 a few times already, and these changes affect the implementation
11942 of these catchpoints. In order to be able to support several
11943 variants of the runtime, we use a sniffer that will determine
28010a5d 11944 the runtime variant used by the program being debugged. */
f7f9143b 11945
82eacd52
JB
11946/* Ada's standard exceptions.
11947
11948 The Ada 83 standard also defined Numeric_Error. But there so many
11949 situations where it was unclear from the Ada 83 Reference Manual
11950 (RM) whether Constraint_Error or Numeric_Error should be raised,
11951 that the ARG (Ada Rapporteur Group) eventually issued a Binding
11952 Interpretation saying that anytime the RM says that Numeric_Error
11953 should be raised, the implementation may raise Constraint_Error.
11954 Ada 95 went one step further and pretty much removed Numeric_Error
11955 from the list of standard exceptions (it made it a renaming of
11956 Constraint_Error, to help preserve compatibility when compiling
11957 an Ada83 compiler). As such, we do not include Numeric_Error from
11958 this list of standard exceptions. */
3d0b0fa3 11959
a121b7c1 11960static const char *standard_exc[] = {
3d0b0fa3
JB
11961 "constraint_error",
11962 "program_error",
11963 "storage_error",
11964 "tasking_error"
11965};
11966
0259addd
JB
11967typedef CORE_ADDR (ada_unhandled_exception_name_addr_ftype) (void);
11968
11969/* A structure that describes how to support exception catchpoints
11970 for a given executable. */
11971
11972struct exception_support_info
11973{
11974 /* The name of the symbol to break on in order to insert
11975 a catchpoint on exceptions. */
11976 const char *catch_exception_sym;
11977
11978 /* The name of the symbol to break on in order to insert
11979 a catchpoint on unhandled exceptions. */
11980 const char *catch_exception_unhandled_sym;
11981
11982 /* The name of the symbol to break on in order to insert
11983 a catchpoint on failed assertions. */
11984 const char *catch_assert_sym;
11985
9f757bf7
XR
11986 /* The name of the symbol to break on in order to insert
11987 a catchpoint on exception handling. */
11988 const char *catch_handlers_sym;
11989
0259addd
JB
11990 /* Assuming that the inferior just triggered an unhandled exception
11991 catchpoint, this function is responsible for returning the address
11992 in inferior memory where the name of that exception is stored.
11993 Return zero if the address could not be computed. */
11994 ada_unhandled_exception_name_addr_ftype *unhandled_exception_name_addr;
11995};
11996
11997static CORE_ADDR ada_unhandled_exception_name_addr (void);
11998static CORE_ADDR ada_unhandled_exception_name_addr_from_raise (void);
11999
12000/* The following exception support info structure describes how to
12001 implement exception catchpoints with the latest version of the
12002 Ada runtime (as of 2007-03-06). */
12003
12004static const struct exception_support_info default_exception_support_info =
12005{
12006 "__gnat_debug_raise_exception", /* catch_exception_sym */
12007 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
12008 "__gnat_debug_raise_assert_failure", /* catch_assert_sym */
9f757bf7 12009 "__gnat_begin_handler", /* catch_handlers_sym */
0259addd
JB
12010 ada_unhandled_exception_name_addr
12011};
12012
12013/* The following exception support info structure describes how to
12014 implement exception catchpoints with a slightly older version
12015 of the Ada runtime. */
12016
12017static const struct exception_support_info exception_support_info_fallback =
12018{
12019 "__gnat_raise_nodefer_with_msg", /* catch_exception_sym */
12020 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
12021 "system__assertions__raise_assert_failure", /* catch_assert_sym */
9f757bf7 12022 "__gnat_begin_handler", /* catch_handlers_sym */
0259addd
JB
12023 ada_unhandled_exception_name_addr_from_raise
12024};
12025
f17011e0
JB
12026/* Return nonzero if we can detect the exception support routines
12027 described in EINFO.
12028
12029 This function errors out if an abnormal situation is detected
12030 (for instance, if we find the exception support routines, but
12031 that support is found to be incomplete). */
12032
12033static int
12034ada_has_this_exception_support (const struct exception_support_info *einfo)
12035{
12036 struct symbol *sym;
12037
12038 /* The symbol we're looking up is provided by a unit in the GNAT runtime
12039 that should be compiled with debugging information. As a result, we
12040 expect to find that symbol in the symtabs. */
12041
12042 sym = standard_lookup (einfo->catch_exception_sym, NULL, VAR_DOMAIN);
12043 if (sym == NULL)
a6af7abe
JB
12044 {
12045 /* Perhaps we did not find our symbol because the Ada runtime was
12046 compiled without debugging info, or simply stripped of it.
12047 It happens on some GNU/Linux distributions for instance, where
12048 users have to install a separate debug package in order to get
12049 the runtime's debugging info. In that situation, let the user
12050 know why we cannot insert an Ada exception catchpoint.
12051
12052 Note: Just for the purpose of inserting our Ada exception
12053 catchpoint, we could rely purely on the associated minimal symbol.
12054 But we would be operating in degraded mode anyway, since we are
12055 still lacking the debugging info needed later on to extract
12056 the name of the exception being raised (this name is printed in
12057 the catchpoint message, and is also used when trying to catch
12058 a specific exception). We do not handle this case for now. */
3b7344d5 12059 struct bound_minimal_symbol msym
1c8e84b0
JB
12060 = lookup_minimal_symbol (einfo->catch_exception_sym, NULL, NULL);
12061
3b7344d5 12062 if (msym.minsym && MSYMBOL_TYPE (msym.minsym) != mst_solib_trampoline)
a6af7abe
JB
12063 error (_("Your Ada runtime appears to be missing some debugging "
12064 "information.\nCannot insert Ada exception catchpoint "
12065 "in this configuration."));
12066
12067 return 0;
12068 }
f17011e0
JB
12069
12070 /* Make sure that the symbol we found corresponds to a function. */
12071
12072 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
12073 error (_("Symbol \"%s\" is not a function (class = %d)"),
12074 SYMBOL_LINKAGE_NAME (sym), SYMBOL_CLASS (sym));
12075
12076 return 1;
12077}
12078
0259addd
JB
12079/* Inspect the Ada runtime and determine which exception info structure
12080 should be used to provide support for exception catchpoints.
12081
3eecfa55
JB
12082 This function will always set the per-inferior exception_info,
12083 or raise an error. */
0259addd
JB
12084
12085static void
12086ada_exception_support_info_sniffer (void)
12087{
3eecfa55 12088 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
0259addd
JB
12089
12090 /* If the exception info is already known, then no need to recompute it. */
3eecfa55 12091 if (data->exception_info != NULL)
0259addd
JB
12092 return;
12093
12094 /* Check the latest (default) exception support info. */
f17011e0 12095 if (ada_has_this_exception_support (&default_exception_support_info))
0259addd 12096 {
3eecfa55 12097 data->exception_info = &default_exception_support_info;
0259addd
JB
12098 return;
12099 }
12100
12101 /* Try our fallback exception suport info. */
f17011e0 12102 if (ada_has_this_exception_support (&exception_support_info_fallback))
0259addd 12103 {
3eecfa55 12104 data->exception_info = &exception_support_info_fallback;
0259addd
JB
12105 return;
12106 }
12107
12108 /* Sometimes, it is normal for us to not be able to find the routine
12109 we are looking for. This happens when the program is linked with
12110 the shared version of the GNAT runtime, and the program has not been
12111 started yet. Inform the user of these two possible causes if
12112 applicable. */
12113
ccefe4c4 12114 if (ada_update_initial_language (language_unknown) != language_ada)
0259addd
JB
12115 error (_("Unable to insert catchpoint. Is this an Ada main program?"));
12116
12117 /* If the symbol does not exist, then check that the program is
12118 already started, to make sure that shared libraries have been
12119 loaded. If it is not started, this may mean that the symbol is
12120 in a shared library. */
12121
e99b03dc 12122 if (inferior_ptid.pid () == 0)
0259addd
JB
12123 error (_("Unable to insert catchpoint. Try to start the program first."));
12124
12125 /* At this point, we know that we are debugging an Ada program and
12126 that the inferior has been started, but we still are not able to
0963b4bd 12127 find the run-time symbols. That can mean that we are in
0259addd
JB
12128 configurable run time mode, or that a-except as been optimized
12129 out by the linker... In any case, at this point it is not worth
12130 supporting this feature. */
12131
7dda8cff 12132 error (_("Cannot insert Ada exception catchpoints in this configuration."));
0259addd
JB
12133}
12134
f7f9143b
JB
12135/* True iff FRAME is very likely to be that of a function that is
12136 part of the runtime system. This is all very heuristic, but is
12137 intended to be used as advice as to what frames are uninteresting
12138 to most users. */
12139
12140static int
12141is_known_support_routine (struct frame_info *frame)
12142{
692465f1 12143 enum language func_lang;
f7f9143b 12144 int i;
f35a17b5 12145 const char *fullname;
f7f9143b 12146
4ed6b5be
JB
12147 /* If this code does not have any debugging information (no symtab),
12148 This cannot be any user code. */
f7f9143b 12149
51abb421 12150 symtab_and_line sal = find_frame_sal (frame);
f7f9143b
JB
12151 if (sal.symtab == NULL)
12152 return 1;
12153
4ed6b5be
JB
12154 /* If there is a symtab, but the associated source file cannot be
12155 located, then assume this is not user code: Selecting a frame
12156 for which we cannot display the code would not be very helpful
12157 for the user. This should also take care of case such as VxWorks
12158 where the kernel has some debugging info provided for a few units. */
f7f9143b 12159
f35a17b5
JK
12160 fullname = symtab_to_fullname (sal.symtab);
12161 if (access (fullname, R_OK) != 0)
f7f9143b
JB
12162 return 1;
12163
4ed6b5be
JB
12164 /* Check the unit filename againt the Ada runtime file naming.
12165 We also check the name of the objfile against the name of some
12166 known system libraries that sometimes come with debugging info
12167 too. */
12168
f7f9143b
JB
12169 for (i = 0; known_runtime_file_name_patterns[i] != NULL; i += 1)
12170 {
12171 re_comp (known_runtime_file_name_patterns[i]);
f69c91ad 12172 if (re_exec (lbasename (sal.symtab->filename)))
f7f9143b 12173 return 1;
eb822aa6
DE
12174 if (SYMTAB_OBJFILE (sal.symtab) != NULL
12175 && re_exec (objfile_name (SYMTAB_OBJFILE (sal.symtab))))
4ed6b5be 12176 return 1;
f7f9143b
JB
12177 }
12178
4ed6b5be 12179 /* Check whether the function is a GNAT-generated entity. */
f7f9143b 12180
c6dc63a1
TT
12181 gdb::unique_xmalloc_ptr<char> func_name
12182 = find_frame_funname (frame, &func_lang, NULL);
f7f9143b
JB
12183 if (func_name == NULL)
12184 return 1;
12185
12186 for (i = 0; known_auxiliary_function_name_patterns[i] != NULL; i += 1)
12187 {
12188 re_comp (known_auxiliary_function_name_patterns[i]);
c6dc63a1
TT
12189 if (re_exec (func_name.get ()))
12190 return 1;
f7f9143b
JB
12191 }
12192
12193 return 0;
12194}
12195
12196/* Find the first frame that contains debugging information and that is not
12197 part of the Ada run-time, starting from FI and moving upward. */
12198
0ef643c8 12199void
f7f9143b
JB
12200ada_find_printable_frame (struct frame_info *fi)
12201{
12202 for (; fi != NULL; fi = get_prev_frame (fi))
12203 {
12204 if (!is_known_support_routine (fi))
12205 {
12206 select_frame (fi);
12207 break;
12208 }
12209 }
12210
12211}
12212
12213/* Assuming that the inferior just triggered an unhandled exception
12214 catchpoint, return the address in inferior memory where the name
12215 of the exception is stored.
12216
12217 Return zero if the address could not be computed. */
12218
12219static CORE_ADDR
12220ada_unhandled_exception_name_addr (void)
0259addd
JB
12221{
12222 return parse_and_eval_address ("e.full_name");
12223}
12224
12225/* Same as ada_unhandled_exception_name_addr, except that this function
12226 should be used when the inferior uses an older version of the runtime,
12227 where the exception name needs to be extracted from a specific frame
12228 several frames up in the callstack. */
12229
12230static CORE_ADDR
12231ada_unhandled_exception_name_addr_from_raise (void)
f7f9143b
JB
12232{
12233 int frame_level;
12234 struct frame_info *fi;
3eecfa55 12235 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
f7f9143b
JB
12236
12237 /* To determine the name of this exception, we need to select
12238 the frame corresponding to RAISE_SYM_NAME. This frame is
12239 at least 3 levels up, so we simply skip the first 3 frames
12240 without checking the name of their associated function. */
12241 fi = get_current_frame ();
12242 for (frame_level = 0; frame_level < 3; frame_level += 1)
12243 if (fi != NULL)
12244 fi = get_prev_frame (fi);
12245
12246 while (fi != NULL)
12247 {
692465f1
JB
12248 enum language func_lang;
12249
c6dc63a1
TT
12250 gdb::unique_xmalloc_ptr<char> func_name
12251 = find_frame_funname (fi, &func_lang, NULL);
55b87a52
KS
12252 if (func_name != NULL)
12253 {
c6dc63a1 12254 if (strcmp (func_name.get (),
55b87a52
KS
12255 data->exception_info->catch_exception_sym) == 0)
12256 break; /* We found the frame we were looking for... */
55b87a52 12257 }
fb44b1a7 12258 fi = get_prev_frame (fi);
f7f9143b
JB
12259 }
12260
12261 if (fi == NULL)
12262 return 0;
12263
12264 select_frame (fi);
12265 return parse_and_eval_address ("id.full_name");
12266}
12267
12268/* Assuming the inferior just triggered an Ada exception catchpoint
12269 (of any type), return the address in inferior memory where the name
12270 of the exception is stored, if applicable.
12271
45db7c09
PA
12272 Assumes the selected frame is the current frame.
12273
f7f9143b
JB
12274 Return zero if the address could not be computed, or if not relevant. */
12275
12276static CORE_ADDR
761269c8 12277ada_exception_name_addr_1 (enum ada_exception_catchpoint_kind ex,
f7f9143b
JB
12278 struct breakpoint *b)
12279{
3eecfa55
JB
12280 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
12281
f7f9143b
JB
12282 switch (ex)
12283 {
761269c8 12284 case ada_catch_exception:
f7f9143b
JB
12285 return (parse_and_eval_address ("e.full_name"));
12286 break;
12287
761269c8 12288 case ada_catch_exception_unhandled:
3eecfa55 12289 return data->exception_info->unhandled_exception_name_addr ();
f7f9143b 12290 break;
9f757bf7
XR
12291
12292 case ada_catch_handlers:
12293 return 0; /* The runtimes does not provide access to the exception
12294 name. */
12295 break;
12296
761269c8 12297 case ada_catch_assert:
f7f9143b
JB
12298 return 0; /* Exception name is not relevant in this case. */
12299 break;
12300
12301 default:
12302 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12303 break;
12304 }
12305
12306 return 0; /* Should never be reached. */
12307}
12308
e547c119
JB
12309/* Assuming the inferior is stopped at an exception catchpoint,
12310 return the message which was associated to the exception, if
12311 available. Return NULL if the message could not be retrieved.
12312
e547c119
JB
12313 Note: The exception message can be associated to an exception
12314 either through the use of the Raise_Exception function, or
12315 more simply (Ada 2005 and later), via:
12316
12317 raise Exception_Name with "exception message";
12318
12319 */
12320
6f46ac85 12321static gdb::unique_xmalloc_ptr<char>
e547c119
JB
12322ada_exception_message_1 (void)
12323{
12324 struct value *e_msg_val;
e547c119 12325 int e_msg_len;
e547c119
JB
12326
12327 /* For runtimes that support this feature, the exception message
12328 is passed as an unbounded string argument called "message". */
12329 e_msg_val = parse_and_eval ("message");
12330 if (e_msg_val == NULL)
12331 return NULL; /* Exception message not supported. */
12332
12333 e_msg_val = ada_coerce_to_simple_array (e_msg_val);
12334 gdb_assert (e_msg_val != NULL);
12335 e_msg_len = TYPE_LENGTH (value_type (e_msg_val));
12336
12337 /* If the message string is empty, then treat it as if there was
12338 no exception message. */
12339 if (e_msg_len <= 0)
12340 return NULL;
12341
6f46ac85
TT
12342 gdb::unique_xmalloc_ptr<char> e_msg ((char *) xmalloc (e_msg_len + 1));
12343 read_memory_string (value_address (e_msg_val), e_msg.get (), e_msg_len + 1);
12344 e_msg.get ()[e_msg_len] = '\0';
e547c119 12345
e547c119
JB
12346 return e_msg;
12347}
12348
12349/* Same as ada_exception_message_1, except that all exceptions are
12350 contained here (returning NULL instead). */
12351
6f46ac85 12352static gdb::unique_xmalloc_ptr<char>
e547c119
JB
12353ada_exception_message (void)
12354{
6f46ac85 12355 gdb::unique_xmalloc_ptr<char> e_msg;
e547c119
JB
12356
12357 TRY
12358 {
12359 e_msg = ada_exception_message_1 ();
12360 }
12361 CATCH (e, RETURN_MASK_ERROR)
12362 {
6f46ac85 12363 e_msg.reset (nullptr);
e547c119
JB
12364 }
12365 END_CATCH
12366
12367 return e_msg;
12368}
12369
f7f9143b
JB
12370/* Same as ada_exception_name_addr_1, except that it intercepts and contains
12371 any error that ada_exception_name_addr_1 might cause to be thrown.
12372 When an error is intercepted, a warning with the error message is printed,
12373 and zero is returned. */
12374
12375static CORE_ADDR
761269c8 12376ada_exception_name_addr (enum ada_exception_catchpoint_kind ex,
f7f9143b
JB
12377 struct breakpoint *b)
12378{
f7f9143b
JB
12379 CORE_ADDR result = 0;
12380
492d29ea 12381 TRY
f7f9143b
JB
12382 {
12383 result = ada_exception_name_addr_1 (ex, b);
12384 }
12385
492d29ea 12386 CATCH (e, RETURN_MASK_ERROR)
f7f9143b
JB
12387 {
12388 warning (_("failed to get exception name: %s"), e.message);
12389 return 0;
12390 }
492d29ea 12391 END_CATCH
f7f9143b
JB
12392
12393 return result;
12394}
12395
cb7de75e 12396static std::string ada_exception_catchpoint_cond_string
9f757bf7
XR
12397 (const char *excep_string,
12398 enum ada_exception_catchpoint_kind ex);
28010a5d
PA
12399
12400/* Ada catchpoints.
12401
12402 In the case of catchpoints on Ada exceptions, the catchpoint will
12403 stop the target on every exception the program throws. When a user
12404 specifies the name of a specific exception, we translate this
12405 request into a condition expression (in text form), and then parse
12406 it into an expression stored in each of the catchpoint's locations.
12407 We then use this condition to check whether the exception that was
12408 raised is the one the user is interested in. If not, then the
12409 target is resumed again. We store the name of the requested
12410 exception, in order to be able to re-set the condition expression
12411 when symbols change. */
12412
12413/* An instance of this type is used to represent an Ada catchpoint
5625a286 12414 breakpoint location. */
28010a5d 12415
5625a286 12416class ada_catchpoint_location : public bp_location
28010a5d 12417{
5625a286
PA
12418public:
12419 ada_catchpoint_location (const bp_location_ops *ops, breakpoint *owner)
12420 : bp_location (ops, owner)
12421 {}
28010a5d
PA
12422
12423 /* The condition that checks whether the exception that was raised
12424 is the specific exception the user specified on catchpoint
12425 creation. */
4d01a485 12426 expression_up excep_cond_expr;
28010a5d
PA
12427};
12428
12429/* Implement the DTOR method in the bp_location_ops structure for all
12430 Ada exception catchpoint kinds. */
12431
12432static void
12433ada_catchpoint_location_dtor (struct bp_location *bl)
12434{
12435 struct ada_catchpoint_location *al = (struct ada_catchpoint_location *) bl;
12436
4d01a485 12437 al->excep_cond_expr.reset ();
28010a5d
PA
12438}
12439
12440/* The vtable to be used in Ada catchpoint locations. */
12441
12442static const struct bp_location_ops ada_catchpoint_location_ops =
12443{
12444 ada_catchpoint_location_dtor
12445};
12446
c1fc2657 12447/* An instance of this type is used to represent an Ada catchpoint. */
28010a5d 12448
c1fc2657 12449struct ada_catchpoint : public breakpoint
28010a5d 12450{
28010a5d 12451 /* The name of the specific exception the user specified. */
bc18fbb5 12452 std::string excep_string;
28010a5d
PA
12453};
12454
12455/* Parse the exception condition string in the context of each of the
12456 catchpoint's locations, and store them for later evaluation. */
12457
12458static void
9f757bf7
XR
12459create_excep_cond_exprs (struct ada_catchpoint *c,
12460 enum ada_exception_catchpoint_kind ex)
28010a5d 12461{
28010a5d 12462 struct bp_location *bl;
28010a5d
PA
12463
12464 /* Nothing to do if there's no specific exception to catch. */
bc18fbb5 12465 if (c->excep_string.empty ())
28010a5d
PA
12466 return;
12467
12468 /* Same if there are no locations... */
c1fc2657 12469 if (c->loc == NULL)
28010a5d
PA
12470 return;
12471
12472 /* Compute the condition expression in text form, from the specific
12473 expection we want to catch. */
cb7de75e 12474 std::string cond_string
bc18fbb5 12475 = ada_exception_catchpoint_cond_string (c->excep_string.c_str (), ex);
28010a5d
PA
12476
12477 /* Iterate over all the catchpoint's locations, and parse an
12478 expression for each. */
c1fc2657 12479 for (bl = c->loc; bl != NULL; bl = bl->next)
28010a5d
PA
12480 {
12481 struct ada_catchpoint_location *ada_loc
12482 = (struct ada_catchpoint_location *) bl;
4d01a485 12483 expression_up exp;
28010a5d
PA
12484
12485 if (!bl->shlib_disabled)
12486 {
bbc13ae3 12487 const char *s;
28010a5d 12488
cb7de75e 12489 s = cond_string.c_str ();
492d29ea 12490 TRY
28010a5d 12491 {
036e657b
JB
12492 exp = parse_exp_1 (&s, bl->address,
12493 block_for_pc (bl->address),
12494 0);
28010a5d 12495 }
492d29ea 12496 CATCH (e, RETURN_MASK_ERROR)
849f2b52
JB
12497 {
12498 warning (_("failed to reevaluate internal exception condition "
12499 "for catchpoint %d: %s"),
c1fc2657 12500 c->number, e.message);
849f2b52 12501 }
492d29ea 12502 END_CATCH
28010a5d
PA
12503 }
12504
b22e99fd 12505 ada_loc->excep_cond_expr = std::move (exp);
28010a5d 12506 }
28010a5d
PA
12507}
12508
28010a5d
PA
12509/* Implement the ALLOCATE_LOCATION method in the breakpoint_ops
12510 structure for all exception catchpoint kinds. */
12511
12512static struct bp_location *
761269c8 12513allocate_location_exception (enum ada_exception_catchpoint_kind ex,
28010a5d
PA
12514 struct breakpoint *self)
12515{
5625a286 12516 return new ada_catchpoint_location (&ada_catchpoint_location_ops, self);
28010a5d
PA
12517}
12518
12519/* Implement the RE_SET method in the breakpoint_ops structure for all
12520 exception catchpoint kinds. */
12521
12522static void
761269c8 12523re_set_exception (enum ada_exception_catchpoint_kind ex, struct breakpoint *b)
28010a5d
PA
12524{
12525 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
12526
12527 /* Call the base class's method. This updates the catchpoint's
12528 locations. */
2060206e 12529 bkpt_breakpoint_ops.re_set (b);
28010a5d
PA
12530
12531 /* Reparse the exception conditional expressions. One for each
12532 location. */
9f757bf7 12533 create_excep_cond_exprs (c, ex);
28010a5d
PA
12534}
12535
12536/* Returns true if we should stop for this breakpoint hit. If the
12537 user specified a specific exception, we only want to cause a stop
12538 if the program thrown that exception. */
12539
12540static int
12541should_stop_exception (const struct bp_location *bl)
12542{
12543 struct ada_catchpoint *c = (struct ada_catchpoint *) bl->owner;
12544 const struct ada_catchpoint_location *ada_loc
12545 = (const struct ada_catchpoint_location *) bl;
28010a5d
PA
12546 int stop;
12547
12548 /* With no specific exception, should always stop. */
bc18fbb5 12549 if (c->excep_string.empty ())
28010a5d
PA
12550 return 1;
12551
12552 if (ada_loc->excep_cond_expr == NULL)
12553 {
12554 /* We will have a NULL expression if back when we were creating
12555 the expressions, this location's had failed to parse. */
12556 return 1;
12557 }
12558
12559 stop = 1;
492d29ea 12560 TRY
28010a5d
PA
12561 {
12562 struct value *mark;
12563
12564 mark = value_mark ();
4d01a485 12565 stop = value_true (evaluate_expression (ada_loc->excep_cond_expr.get ()));
28010a5d
PA
12566 value_free_to_mark (mark);
12567 }
492d29ea
PA
12568 CATCH (ex, RETURN_MASK_ALL)
12569 {
12570 exception_fprintf (gdb_stderr, ex,
12571 _("Error in testing exception condition:\n"));
12572 }
12573 END_CATCH
12574
28010a5d
PA
12575 return stop;
12576}
12577
12578/* Implement the CHECK_STATUS method in the breakpoint_ops structure
12579 for all exception catchpoint kinds. */
12580
12581static void
761269c8 12582check_status_exception (enum ada_exception_catchpoint_kind ex, bpstat bs)
28010a5d
PA
12583{
12584 bs->stop = should_stop_exception (bs->bp_location_at);
12585}
12586
f7f9143b
JB
12587/* Implement the PRINT_IT method in the breakpoint_ops structure
12588 for all exception catchpoint kinds. */
12589
12590static enum print_stop_action
761269c8 12591print_it_exception (enum ada_exception_catchpoint_kind ex, bpstat bs)
f7f9143b 12592{
79a45e25 12593 struct ui_out *uiout = current_uiout;
348d480f
PA
12594 struct breakpoint *b = bs->breakpoint_at;
12595
956a9fb9 12596 annotate_catchpoint (b->number);
f7f9143b 12597
112e8700 12598 if (uiout->is_mi_like_p ())
f7f9143b 12599 {
112e8700 12600 uiout->field_string ("reason",
956a9fb9 12601 async_reason_lookup (EXEC_ASYNC_BREAKPOINT_HIT));
112e8700 12602 uiout->field_string ("disp", bpdisp_text (b->disposition));
f7f9143b
JB
12603 }
12604
112e8700
SM
12605 uiout->text (b->disposition == disp_del
12606 ? "\nTemporary catchpoint " : "\nCatchpoint ");
12607 uiout->field_int ("bkptno", b->number);
12608 uiout->text (", ");
f7f9143b 12609
45db7c09
PA
12610 /* ada_exception_name_addr relies on the selected frame being the
12611 current frame. Need to do this here because this function may be
12612 called more than once when printing a stop, and below, we'll
12613 select the first frame past the Ada run-time (see
12614 ada_find_printable_frame). */
12615 select_frame (get_current_frame ());
12616
f7f9143b
JB
12617 switch (ex)
12618 {
761269c8
JB
12619 case ada_catch_exception:
12620 case ada_catch_exception_unhandled:
9f757bf7 12621 case ada_catch_handlers:
956a9fb9
JB
12622 {
12623 const CORE_ADDR addr = ada_exception_name_addr (ex, b);
12624 char exception_name[256];
12625
12626 if (addr != 0)
12627 {
c714b426
PA
12628 read_memory (addr, (gdb_byte *) exception_name,
12629 sizeof (exception_name) - 1);
956a9fb9
JB
12630 exception_name [sizeof (exception_name) - 1] = '\0';
12631 }
12632 else
12633 {
12634 /* For some reason, we were unable to read the exception
12635 name. This could happen if the Runtime was compiled
12636 without debugging info, for instance. In that case,
12637 just replace the exception name by the generic string
12638 "exception" - it will read as "an exception" in the
12639 notification we are about to print. */
967cff16 12640 memcpy (exception_name, "exception", sizeof ("exception"));
956a9fb9
JB
12641 }
12642 /* In the case of unhandled exception breakpoints, we print
12643 the exception name as "unhandled EXCEPTION_NAME", to make
12644 it clearer to the user which kind of catchpoint just got
12645 hit. We used ui_out_text to make sure that this extra
12646 info does not pollute the exception name in the MI case. */
761269c8 12647 if (ex == ada_catch_exception_unhandled)
112e8700
SM
12648 uiout->text ("unhandled ");
12649 uiout->field_string ("exception-name", exception_name);
956a9fb9
JB
12650 }
12651 break;
761269c8 12652 case ada_catch_assert:
956a9fb9
JB
12653 /* In this case, the name of the exception is not really
12654 important. Just print "failed assertion" to make it clearer
12655 that his program just hit an assertion-failure catchpoint.
12656 We used ui_out_text because this info does not belong in
12657 the MI output. */
112e8700 12658 uiout->text ("failed assertion");
956a9fb9 12659 break;
f7f9143b 12660 }
e547c119 12661
6f46ac85 12662 gdb::unique_xmalloc_ptr<char> exception_message = ada_exception_message ();
e547c119
JB
12663 if (exception_message != NULL)
12664 {
e547c119 12665 uiout->text (" (");
6f46ac85 12666 uiout->field_string ("exception-message", exception_message.get ());
e547c119 12667 uiout->text (")");
e547c119
JB
12668 }
12669
112e8700 12670 uiout->text (" at ");
956a9fb9 12671 ada_find_printable_frame (get_current_frame ());
f7f9143b
JB
12672
12673 return PRINT_SRC_AND_LOC;
12674}
12675
12676/* Implement the PRINT_ONE method in the breakpoint_ops structure
12677 for all exception catchpoint kinds. */
12678
12679static void
761269c8 12680print_one_exception (enum ada_exception_catchpoint_kind ex,
a6d9a66e 12681 struct breakpoint *b, struct bp_location **last_loc)
f7f9143b 12682{
79a45e25 12683 struct ui_out *uiout = current_uiout;
28010a5d 12684 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
79a45b7d
TT
12685 struct value_print_options opts;
12686
12687 get_user_print_options (&opts);
12688 if (opts.addressprint)
f7f9143b
JB
12689 {
12690 annotate_field (4);
112e8700 12691 uiout->field_core_addr ("addr", b->loc->gdbarch, b->loc->address);
f7f9143b
JB
12692 }
12693
12694 annotate_field (5);
a6d9a66e 12695 *last_loc = b->loc;
f7f9143b
JB
12696 switch (ex)
12697 {
761269c8 12698 case ada_catch_exception:
bc18fbb5 12699 if (!c->excep_string.empty ())
f7f9143b 12700 {
bc18fbb5
TT
12701 std::string msg = string_printf (_("`%s' Ada exception"),
12702 c->excep_string.c_str ());
28010a5d 12703
112e8700 12704 uiout->field_string ("what", msg);
f7f9143b
JB
12705 }
12706 else
112e8700 12707 uiout->field_string ("what", "all Ada exceptions");
f7f9143b
JB
12708
12709 break;
12710
761269c8 12711 case ada_catch_exception_unhandled:
112e8700 12712 uiout->field_string ("what", "unhandled Ada exceptions");
f7f9143b
JB
12713 break;
12714
9f757bf7 12715 case ada_catch_handlers:
bc18fbb5 12716 if (!c->excep_string.empty ())
9f757bf7
XR
12717 {
12718 uiout->field_fmt ("what",
12719 _("`%s' Ada exception handlers"),
bc18fbb5 12720 c->excep_string.c_str ());
9f757bf7
XR
12721 }
12722 else
12723 uiout->field_string ("what", "all Ada exceptions handlers");
12724 break;
12725
761269c8 12726 case ada_catch_assert:
112e8700 12727 uiout->field_string ("what", "failed Ada assertions");
f7f9143b
JB
12728 break;
12729
12730 default:
12731 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12732 break;
12733 }
12734}
12735
12736/* Implement the PRINT_MENTION method in the breakpoint_ops structure
12737 for all exception catchpoint kinds. */
12738
12739static void
761269c8 12740print_mention_exception (enum ada_exception_catchpoint_kind ex,
f7f9143b
JB
12741 struct breakpoint *b)
12742{
28010a5d 12743 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
79a45e25 12744 struct ui_out *uiout = current_uiout;
28010a5d 12745
112e8700 12746 uiout->text (b->disposition == disp_del ? _("Temporary catchpoint ")
00eb2c4a 12747 : _("Catchpoint "));
112e8700
SM
12748 uiout->field_int ("bkptno", b->number);
12749 uiout->text (": ");
00eb2c4a 12750
f7f9143b
JB
12751 switch (ex)
12752 {
761269c8 12753 case ada_catch_exception:
bc18fbb5 12754 if (!c->excep_string.empty ())
00eb2c4a 12755 {
862d101a 12756 std::string info = string_printf (_("`%s' Ada exception"),
bc18fbb5 12757 c->excep_string.c_str ());
862d101a 12758 uiout->text (info.c_str ());
00eb2c4a 12759 }
f7f9143b 12760 else
112e8700 12761 uiout->text (_("all Ada exceptions"));
f7f9143b
JB
12762 break;
12763
761269c8 12764 case ada_catch_exception_unhandled:
112e8700 12765 uiout->text (_("unhandled Ada exceptions"));
f7f9143b 12766 break;
9f757bf7
XR
12767
12768 case ada_catch_handlers:
bc18fbb5 12769 if (!c->excep_string.empty ())
9f757bf7
XR
12770 {
12771 std::string info
12772 = string_printf (_("`%s' Ada exception handlers"),
bc18fbb5 12773 c->excep_string.c_str ());
9f757bf7
XR
12774 uiout->text (info.c_str ());
12775 }
12776 else
12777 uiout->text (_("all Ada exceptions handlers"));
12778 break;
12779
761269c8 12780 case ada_catch_assert:
112e8700 12781 uiout->text (_("failed Ada assertions"));
f7f9143b
JB
12782 break;
12783
12784 default:
12785 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12786 break;
12787 }
12788}
12789
6149aea9
PA
12790/* Implement the PRINT_RECREATE method in the breakpoint_ops structure
12791 for all exception catchpoint kinds. */
12792
12793static void
761269c8 12794print_recreate_exception (enum ada_exception_catchpoint_kind ex,
6149aea9
PA
12795 struct breakpoint *b, struct ui_file *fp)
12796{
28010a5d
PA
12797 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
12798
6149aea9
PA
12799 switch (ex)
12800 {
761269c8 12801 case ada_catch_exception:
6149aea9 12802 fprintf_filtered (fp, "catch exception");
bc18fbb5
TT
12803 if (!c->excep_string.empty ())
12804 fprintf_filtered (fp, " %s", c->excep_string.c_str ());
6149aea9
PA
12805 break;
12806
761269c8 12807 case ada_catch_exception_unhandled:
78076abc 12808 fprintf_filtered (fp, "catch exception unhandled");
6149aea9
PA
12809 break;
12810
9f757bf7
XR
12811 case ada_catch_handlers:
12812 fprintf_filtered (fp, "catch handlers");
12813 break;
12814
761269c8 12815 case ada_catch_assert:
6149aea9
PA
12816 fprintf_filtered (fp, "catch assert");
12817 break;
12818
12819 default:
12820 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12821 }
d9b3f62e 12822 print_recreate_thread (b, fp);
6149aea9
PA
12823}
12824
f7f9143b
JB
12825/* Virtual table for "catch exception" breakpoints. */
12826
28010a5d
PA
12827static struct bp_location *
12828allocate_location_catch_exception (struct breakpoint *self)
12829{
761269c8 12830 return allocate_location_exception (ada_catch_exception, self);
28010a5d
PA
12831}
12832
12833static void
12834re_set_catch_exception (struct breakpoint *b)
12835{
761269c8 12836 re_set_exception (ada_catch_exception, b);
28010a5d
PA
12837}
12838
12839static void
12840check_status_catch_exception (bpstat bs)
12841{
761269c8 12842 check_status_exception (ada_catch_exception, bs);
28010a5d
PA
12843}
12844
f7f9143b 12845static enum print_stop_action
348d480f 12846print_it_catch_exception (bpstat bs)
f7f9143b 12847{
761269c8 12848 return print_it_exception (ada_catch_exception, bs);
f7f9143b
JB
12849}
12850
12851static void
a6d9a66e 12852print_one_catch_exception (struct breakpoint *b, struct bp_location **last_loc)
f7f9143b 12853{
761269c8 12854 print_one_exception (ada_catch_exception, b, last_loc);
f7f9143b
JB
12855}
12856
12857static void
12858print_mention_catch_exception (struct breakpoint *b)
12859{
761269c8 12860 print_mention_exception (ada_catch_exception, b);
f7f9143b
JB
12861}
12862
6149aea9
PA
12863static void
12864print_recreate_catch_exception (struct breakpoint *b, struct ui_file *fp)
12865{
761269c8 12866 print_recreate_exception (ada_catch_exception, b, fp);
6149aea9
PA
12867}
12868
2060206e 12869static struct breakpoint_ops catch_exception_breakpoint_ops;
f7f9143b
JB
12870
12871/* Virtual table for "catch exception unhandled" breakpoints. */
12872
28010a5d
PA
12873static struct bp_location *
12874allocate_location_catch_exception_unhandled (struct breakpoint *self)
12875{
761269c8 12876 return allocate_location_exception (ada_catch_exception_unhandled, self);
28010a5d
PA
12877}
12878
12879static void
12880re_set_catch_exception_unhandled (struct breakpoint *b)
12881{
761269c8 12882 re_set_exception (ada_catch_exception_unhandled, b);
28010a5d
PA
12883}
12884
12885static void
12886check_status_catch_exception_unhandled (bpstat bs)
12887{
761269c8 12888 check_status_exception (ada_catch_exception_unhandled, bs);
28010a5d
PA
12889}
12890
f7f9143b 12891static enum print_stop_action
348d480f 12892print_it_catch_exception_unhandled (bpstat bs)
f7f9143b 12893{
761269c8 12894 return print_it_exception (ada_catch_exception_unhandled, bs);
f7f9143b
JB
12895}
12896
12897static void
a6d9a66e
UW
12898print_one_catch_exception_unhandled (struct breakpoint *b,
12899 struct bp_location **last_loc)
f7f9143b 12900{
761269c8 12901 print_one_exception (ada_catch_exception_unhandled, b, last_loc);
f7f9143b
JB
12902}
12903
12904static void
12905print_mention_catch_exception_unhandled (struct breakpoint *b)
12906{
761269c8 12907 print_mention_exception (ada_catch_exception_unhandled, b);
f7f9143b
JB
12908}
12909
6149aea9
PA
12910static void
12911print_recreate_catch_exception_unhandled (struct breakpoint *b,
12912 struct ui_file *fp)
12913{
761269c8 12914 print_recreate_exception (ada_catch_exception_unhandled, b, fp);
6149aea9
PA
12915}
12916
2060206e 12917static struct breakpoint_ops catch_exception_unhandled_breakpoint_ops;
f7f9143b
JB
12918
12919/* Virtual table for "catch assert" breakpoints. */
12920
28010a5d
PA
12921static struct bp_location *
12922allocate_location_catch_assert (struct breakpoint *self)
12923{
761269c8 12924 return allocate_location_exception (ada_catch_assert, self);
28010a5d
PA
12925}
12926
12927static void
12928re_set_catch_assert (struct breakpoint *b)
12929{
761269c8 12930 re_set_exception (ada_catch_assert, b);
28010a5d
PA
12931}
12932
12933static void
12934check_status_catch_assert (bpstat bs)
12935{
761269c8 12936 check_status_exception (ada_catch_assert, bs);
28010a5d
PA
12937}
12938
f7f9143b 12939static enum print_stop_action
348d480f 12940print_it_catch_assert (bpstat bs)
f7f9143b 12941{
761269c8 12942 return print_it_exception (ada_catch_assert, bs);
f7f9143b
JB
12943}
12944
12945static void
a6d9a66e 12946print_one_catch_assert (struct breakpoint *b, struct bp_location **last_loc)
f7f9143b 12947{
761269c8 12948 print_one_exception (ada_catch_assert, b, last_loc);
f7f9143b
JB
12949}
12950
12951static void
12952print_mention_catch_assert (struct breakpoint *b)
12953{
761269c8 12954 print_mention_exception (ada_catch_assert, b);
f7f9143b
JB
12955}
12956
6149aea9
PA
12957static void
12958print_recreate_catch_assert (struct breakpoint *b, struct ui_file *fp)
12959{
761269c8 12960 print_recreate_exception (ada_catch_assert, b, fp);
6149aea9
PA
12961}
12962
2060206e 12963static struct breakpoint_ops catch_assert_breakpoint_ops;
f7f9143b 12964
9f757bf7
XR
12965/* Virtual table for "catch handlers" breakpoints. */
12966
12967static struct bp_location *
12968allocate_location_catch_handlers (struct breakpoint *self)
12969{
12970 return allocate_location_exception (ada_catch_handlers, self);
12971}
12972
12973static void
12974re_set_catch_handlers (struct breakpoint *b)
12975{
12976 re_set_exception (ada_catch_handlers, b);
12977}
12978
12979static void
12980check_status_catch_handlers (bpstat bs)
12981{
12982 check_status_exception (ada_catch_handlers, bs);
12983}
12984
12985static enum print_stop_action
12986print_it_catch_handlers (bpstat bs)
12987{
12988 return print_it_exception (ada_catch_handlers, bs);
12989}
12990
12991static void
12992print_one_catch_handlers (struct breakpoint *b,
12993 struct bp_location **last_loc)
12994{
12995 print_one_exception (ada_catch_handlers, b, last_loc);
12996}
12997
12998static void
12999print_mention_catch_handlers (struct breakpoint *b)
13000{
13001 print_mention_exception (ada_catch_handlers, b);
13002}
13003
13004static void
13005print_recreate_catch_handlers (struct breakpoint *b,
13006 struct ui_file *fp)
13007{
13008 print_recreate_exception (ada_catch_handlers, b, fp);
13009}
13010
13011static struct breakpoint_ops catch_handlers_breakpoint_ops;
13012
f7f9143b
JB
13013/* Split the arguments specified in a "catch exception" command.
13014 Set EX to the appropriate catchpoint type.
28010a5d 13015 Set EXCEP_STRING to the name of the specific exception if
5845583d 13016 specified by the user.
9f757bf7
XR
13017 IS_CATCH_HANDLERS_CMD: True if the arguments are for a
13018 "catch handlers" command. False otherwise.
5845583d
JB
13019 If a condition is found at the end of the arguments, the condition
13020 expression is stored in COND_STRING (memory must be deallocated
13021 after use). Otherwise COND_STRING is set to NULL. */
f7f9143b
JB
13022
13023static void
a121b7c1 13024catch_ada_exception_command_split (const char *args,
9f757bf7 13025 bool is_catch_handlers_cmd,
761269c8 13026 enum ada_exception_catchpoint_kind *ex,
bc18fbb5
TT
13027 std::string *excep_string,
13028 std::string *cond_string)
f7f9143b 13029{
bc18fbb5 13030 std::string exception_name;
f7f9143b 13031
bc18fbb5
TT
13032 exception_name = extract_arg (&args);
13033 if (exception_name == "if")
5845583d
JB
13034 {
13035 /* This is not an exception name; this is the start of a condition
13036 expression for a catchpoint on all exceptions. So, "un-get"
13037 this token, and set exception_name to NULL. */
bc18fbb5 13038 exception_name.clear ();
5845583d
JB
13039 args -= 2;
13040 }
f7f9143b 13041
5845583d 13042 /* Check to see if we have a condition. */
f7f9143b 13043
f1735a53 13044 args = skip_spaces (args);
61012eef 13045 if (startswith (args, "if")
5845583d
JB
13046 && (isspace (args[2]) || args[2] == '\0'))
13047 {
13048 args += 2;
f1735a53 13049 args = skip_spaces (args);
5845583d
JB
13050
13051 if (args[0] == '\0')
13052 error (_("Condition missing after `if' keyword"));
bc18fbb5 13053 *cond_string = args;
5845583d
JB
13054
13055 args += strlen (args);
13056 }
13057
13058 /* Check that we do not have any more arguments. Anything else
13059 is unexpected. */
f7f9143b
JB
13060
13061 if (args[0] != '\0')
13062 error (_("Junk at end of expression"));
13063
9f757bf7
XR
13064 if (is_catch_handlers_cmd)
13065 {
13066 /* Catch handling of exceptions. */
13067 *ex = ada_catch_handlers;
13068 *excep_string = exception_name;
13069 }
bc18fbb5 13070 else if (exception_name.empty ())
f7f9143b
JB
13071 {
13072 /* Catch all exceptions. */
761269c8 13073 *ex = ada_catch_exception;
bc18fbb5 13074 excep_string->clear ();
f7f9143b 13075 }
bc18fbb5 13076 else if (exception_name == "unhandled")
f7f9143b
JB
13077 {
13078 /* Catch unhandled exceptions. */
761269c8 13079 *ex = ada_catch_exception_unhandled;
bc18fbb5 13080 excep_string->clear ();
f7f9143b
JB
13081 }
13082 else
13083 {
13084 /* Catch a specific exception. */
761269c8 13085 *ex = ada_catch_exception;
28010a5d 13086 *excep_string = exception_name;
f7f9143b
JB
13087 }
13088}
13089
13090/* Return the name of the symbol on which we should break in order to
13091 implement a catchpoint of the EX kind. */
13092
13093static const char *
761269c8 13094ada_exception_sym_name (enum ada_exception_catchpoint_kind ex)
f7f9143b 13095{
3eecfa55
JB
13096 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
13097
13098 gdb_assert (data->exception_info != NULL);
0259addd 13099
f7f9143b
JB
13100 switch (ex)
13101 {
761269c8 13102 case ada_catch_exception:
3eecfa55 13103 return (data->exception_info->catch_exception_sym);
f7f9143b 13104 break;
761269c8 13105 case ada_catch_exception_unhandled:
3eecfa55 13106 return (data->exception_info->catch_exception_unhandled_sym);
f7f9143b 13107 break;
761269c8 13108 case ada_catch_assert:
3eecfa55 13109 return (data->exception_info->catch_assert_sym);
f7f9143b 13110 break;
9f757bf7
XR
13111 case ada_catch_handlers:
13112 return (data->exception_info->catch_handlers_sym);
13113 break;
f7f9143b
JB
13114 default:
13115 internal_error (__FILE__, __LINE__,
13116 _("unexpected catchpoint kind (%d)"), ex);
13117 }
13118}
13119
13120/* Return the breakpoint ops "virtual table" used for catchpoints
13121 of the EX kind. */
13122
c0a91b2b 13123static const struct breakpoint_ops *
761269c8 13124ada_exception_breakpoint_ops (enum ada_exception_catchpoint_kind ex)
f7f9143b
JB
13125{
13126 switch (ex)
13127 {
761269c8 13128 case ada_catch_exception:
f7f9143b
JB
13129 return (&catch_exception_breakpoint_ops);
13130 break;
761269c8 13131 case ada_catch_exception_unhandled:
f7f9143b
JB
13132 return (&catch_exception_unhandled_breakpoint_ops);
13133 break;
761269c8 13134 case ada_catch_assert:
f7f9143b
JB
13135 return (&catch_assert_breakpoint_ops);
13136 break;
9f757bf7
XR
13137 case ada_catch_handlers:
13138 return (&catch_handlers_breakpoint_ops);
13139 break;
f7f9143b
JB
13140 default:
13141 internal_error (__FILE__, __LINE__,
13142 _("unexpected catchpoint kind (%d)"), ex);
13143 }
13144}
13145
13146/* Return the condition that will be used to match the current exception
13147 being raised with the exception that the user wants to catch. This
13148 assumes that this condition is used when the inferior just triggered
13149 an exception catchpoint.
cb7de75e 13150 EX: the type of catchpoints used for catching Ada exceptions. */
f7f9143b 13151
cb7de75e 13152static std::string
9f757bf7
XR
13153ada_exception_catchpoint_cond_string (const char *excep_string,
13154 enum ada_exception_catchpoint_kind ex)
f7f9143b 13155{
3d0b0fa3 13156 int i;
9f757bf7 13157 bool is_standard_exc = false;
cb7de75e 13158 std::string result;
9f757bf7
XR
13159
13160 if (ex == ada_catch_handlers)
13161 {
13162 /* For exception handlers catchpoints, the condition string does
13163 not use the same parameter as for the other exceptions. */
cb7de75e
TT
13164 result = ("long_integer (GNAT_GCC_exception_Access"
13165 "(gcc_exception).all.occurrence.id)");
9f757bf7
XR
13166 }
13167 else
cb7de75e 13168 result = "long_integer (e)";
3d0b0fa3 13169
0963b4bd 13170 /* The standard exceptions are a special case. They are defined in
3d0b0fa3 13171 runtime units that have been compiled without debugging info; if
28010a5d 13172 EXCEP_STRING is the not-fully-qualified name of a standard
3d0b0fa3
JB
13173 exception (e.g. "constraint_error") then, during the evaluation
13174 of the condition expression, the symbol lookup on this name would
0963b4bd 13175 *not* return this standard exception. The catchpoint condition
3d0b0fa3
JB
13176 may then be set only on user-defined exceptions which have the
13177 same not-fully-qualified name (e.g. my_package.constraint_error).
13178
13179 To avoid this unexcepted behavior, these standard exceptions are
0963b4bd 13180 systematically prefixed by "standard". This means that "catch
3d0b0fa3
JB
13181 exception constraint_error" is rewritten into "catch exception
13182 standard.constraint_error".
13183
13184 If an exception named contraint_error is defined in another package of
13185 the inferior program, then the only way to specify this exception as a
13186 breakpoint condition is to use its fully-qualified named:
13187 e.g. my_package.constraint_error. */
13188
13189 for (i = 0; i < sizeof (standard_exc) / sizeof (char *); i++)
13190 {
28010a5d 13191 if (strcmp (standard_exc [i], excep_string) == 0)
3d0b0fa3 13192 {
9f757bf7
XR
13193 is_standard_exc = true;
13194 break;
3d0b0fa3
JB
13195 }
13196 }
9f757bf7 13197
cb7de75e
TT
13198 result += " = ";
13199
9f757bf7 13200 if (is_standard_exc)
cb7de75e 13201 string_appendf (result, "long_integer (&standard.%s)", excep_string);
9f757bf7 13202 else
cb7de75e 13203 string_appendf (result, "long_integer (&%s)", excep_string);
9f757bf7 13204
9f757bf7 13205 return result;
f7f9143b
JB
13206}
13207
13208/* Return the symtab_and_line that should be used to insert an exception
13209 catchpoint of the TYPE kind.
13210
28010a5d
PA
13211 ADDR_STRING returns the name of the function where the real
13212 breakpoint that implements the catchpoints is set, depending on the
13213 type of catchpoint we need to create. */
f7f9143b
JB
13214
13215static struct symtab_and_line
bc18fbb5 13216ada_exception_sal (enum ada_exception_catchpoint_kind ex,
f2fc3015 13217 const char **addr_string, const struct breakpoint_ops **ops)
f7f9143b
JB
13218{
13219 const char *sym_name;
13220 struct symbol *sym;
f7f9143b 13221
0259addd
JB
13222 /* First, find out which exception support info to use. */
13223 ada_exception_support_info_sniffer ();
13224
13225 /* Then lookup the function on which we will break in order to catch
f7f9143b 13226 the Ada exceptions requested by the user. */
f7f9143b
JB
13227 sym_name = ada_exception_sym_name (ex);
13228 sym = standard_lookup (sym_name, NULL, VAR_DOMAIN);
13229
57aff202
JB
13230 if (sym == NULL)
13231 error (_("Catchpoint symbol not found: %s"), sym_name);
13232
13233 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
13234 error (_("Unable to insert catchpoint. %s is not a function."), sym_name);
f7f9143b
JB
13235
13236 /* Set ADDR_STRING. */
f7f9143b
JB
13237 *addr_string = xstrdup (sym_name);
13238
f7f9143b 13239 /* Set OPS. */
4b9eee8c 13240 *ops = ada_exception_breakpoint_ops (ex);
f7f9143b 13241
f17011e0 13242 return find_function_start_sal (sym, 1);
f7f9143b
JB
13243}
13244
b4a5b78b 13245/* Create an Ada exception catchpoint.
f7f9143b 13246
b4a5b78b 13247 EX_KIND is the kind of exception catchpoint to be created.
5845583d 13248
bc18fbb5 13249 If EXCEPT_STRING is empty, this catchpoint is expected to trigger
2df4d1d5 13250 for all exceptions. Otherwise, EXCEPT_STRING indicates the name
bc18fbb5 13251 of the exception to which this catchpoint applies.
2df4d1d5 13252
bc18fbb5 13253 COND_STRING, if not empty, is the catchpoint condition.
f7f9143b 13254
b4a5b78b
JB
13255 TEMPFLAG, if nonzero, means that the underlying breakpoint
13256 should be temporary.
28010a5d 13257
b4a5b78b 13258 FROM_TTY is the usual argument passed to all commands implementations. */
28010a5d 13259
349774ef 13260void
28010a5d 13261create_ada_exception_catchpoint (struct gdbarch *gdbarch,
761269c8 13262 enum ada_exception_catchpoint_kind ex_kind,
bc18fbb5 13263 const std::string &excep_string,
56ecd069 13264 const std::string &cond_string,
28010a5d 13265 int tempflag,
349774ef 13266 int disabled,
28010a5d
PA
13267 int from_tty)
13268{
f2fc3015 13269 const char *addr_string = NULL;
b4a5b78b 13270 const struct breakpoint_ops *ops = NULL;
bc18fbb5 13271 struct symtab_and_line sal = ada_exception_sal (ex_kind, &addr_string, &ops);
28010a5d 13272
b270e6f9
TT
13273 std::unique_ptr<ada_catchpoint> c (new ada_catchpoint ());
13274 init_ada_exception_breakpoint (c.get (), gdbarch, sal, addr_string,
349774ef 13275 ops, tempflag, disabled, from_tty);
28010a5d 13276 c->excep_string = excep_string;
9f757bf7 13277 create_excep_cond_exprs (c.get (), ex_kind);
56ecd069
XR
13278 if (!cond_string.empty ())
13279 set_breakpoint_condition (c.get (), cond_string.c_str (), from_tty);
b270e6f9 13280 install_breakpoint (0, std::move (c), 1);
f7f9143b
JB
13281}
13282
9ac4176b
PA
13283/* Implement the "catch exception" command. */
13284
13285static void
eb4c3f4a 13286catch_ada_exception_command (const char *arg_entry, int from_tty,
9ac4176b
PA
13287 struct cmd_list_element *command)
13288{
a121b7c1 13289 const char *arg = arg_entry;
9ac4176b
PA
13290 struct gdbarch *gdbarch = get_current_arch ();
13291 int tempflag;
761269c8 13292 enum ada_exception_catchpoint_kind ex_kind;
bc18fbb5 13293 std::string excep_string;
56ecd069 13294 std::string cond_string;
9ac4176b
PA
13295
13296 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
13297
13298 if (!arg)
13299 arg = "";
9f757bf7 13300 catch_ada_exception_command_split (arg, false, &ex_kind, &excep_string,
bc18fbb5 13301 &cond_string);
9f757bf7
XR
13302 create_ada_exception_catchpoint (gdbarch, ex_kind,
13303 excep_string, cond_string,
13304 tempflag, 1 /* enabled */,
13305 from_tty);
13306}
13307
13308/* Implement the "catch handlers" command. */
13309
13310static void
13311catch_ada_handlers_command (const char *arg_entry, int from_tty,
13312 struct cmd_list_element *command)
13313{
13314 const char *arg = arg_entry;
13315 struct gdbarch *gdbarch = get_current_arch ();
13316 int tempflag;
13317 enum ada_exception_catchpoint_kind ex_kind;
bc18fbb5 13318 std::string excep_string;
56ecd069 13319 std::string cond_string;
9f757bf7
XR
13320
13321 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
13322
13323 if (!arg)
13324 arg = "";
13325 catch_ada_exception_command_split (arg, true, &ex_kind, &excep_string,
bc18fbb5 13326 &cond_string);
b4a5b78b
JB
13327 create_ada_exception_catchpoint (gdbarch, ex_kind,
13328 excep_string, cond_string,
349774ef
JB
13329 tempflag, 1 /* enabled */,
13330 from_tty);
9ac4176b
PA
13331}
13332
b4a5b78b 13333/* Split the arguments specified in a "catch assert" command.
5845583d 13334
b4a5b78b
JB
13335 ARGS contains the command's arguments (or the empty string if
13336 no arguments were passed).
5845583d
JB
13337
13338 If ARGS contains a condition, set COND_STRING to that condition
b4a5b78b 13339 (the memory needs to be deallocated after use). */
5845583d 13340
b4a5b78b 13341static void
56ecd069 13342catch_ada_assert_command_split (const char *args, std::string &cond_string)
f7f9143b 13343{
f1735a53 13344 args = skip_spaces (args);
f7f9143b 13345
5845583d 13346 /* Check whether a condition was provided. */
61012eef 13347 if (startswith (args, "if")
5845583d 13348 && (isspace (args[2]) || args[2] == '\0'))
f7f9143b 13349 {
5845583d 13350 args += 2;
f1735a53 13351 args = skip_spaces (args);
5845583d
JB
13352 if (args[0] == '\0')
13353 error (_("condition missing after `if' keyword"));
56ecd069 13354 cond_string.assign (args);
f7f9143b
JB
13355 }
13356
5845583d
JB
13357 /* Otherwise, there should be no other argument at the end of
13358 the command. */
13359 else if (args[0] != '\0')
13360 error (_("Junk at end of arguments."));
f7f9143b
JB
13361}
13362
9ac4176b
PA
13363/* Implement the "catch assert" command. */
13364
13365static void
eb4c3f4a 13366catch_assert_command (const char *arg_entry, int from_tty,
9ac4176b
PA
13367 struct cmd_list_element *command)
13368{
a121b7c1 13369 const char *arg = arg_entry;
9ac4176b
PA
13370 struct gdbarch *gdbarch = get_current_arch ();
13371 int tempflag;
56ecd069 13372 std::string cond_string;
9ac4176b
PA
13373
13374 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
13375
13376 if (!arg)
13377 arg = "";
56ecd069 13378 catch_ada_assert_command_split (arg, cond_string);
761269c8 13379 create_ada_exception_catchpoint (gdbarch, ada_catch_assert,
241db429 13380 "", cond_string,
349774ef
JB
13381 tempflag, 1 /* enabled */,
13382 from_tty);
9ac4176b 13383}
778865d3
JB
13384
13385/* Return non-zero if the symbol SYM is an Ada exception object. */
13386
13387static int
13388ada_is_exception_sym (struct symbol *sym)
13389{
a737d952 13390 const char *type_name = TYPE_NAME (SYMBOL_TYPE (sym));
778865d3
JB
13391
13392 return (SYMBOL_CLASS (sym) != LOC_TYPEDEF
13393 && SYMBOL_CLASS (sym) != LOC_BLOCK
13394 && SYMBOL_CLASS (sym) != LOC_CONST
13395 && SYMBOL_CLASS (sym) != LOC_UNRESOLVED
13396 && type_name != NULL && strcmp (type_name, "exception") == 0);
13397}
13398
13399/* Given a global symbol SYM, return non-zero iff SYM is a non-standard
13400 Ada exception object. This matches all exceptions except the ones
13401 defined by the Ada language. */
13402
13403static int
13404ada_is_non_standard_exception_sym (struct symbol *sym)
13405{
13406 int i;
13407
13408 if (!ada_is_exception_sym (sym))
13409 return 0;
13410
13411 for (i = 0; i < ARRAY_SIZE (standard_exc); i++)
13412 if (strcmp (SYMBOL_LINKAGE_NAME (sym), standard_exc[i]) == 0)
13413 return 0; /* A standard exception. */
13414
13415 /* Numeric_Error is also a standard exception, so exclude it.
13416 See the STANDARD_EXC description for more details as to why
13417 this exception is not listed in that array. */
13418 if (strcmp (SYMBOL_LINKAGE_NAME (sym), "numeric_error") == 0)
13419 return 0;
13420
13421 return 1;
13422}
13423
ab816a27 13424/* A helper function for std::sort, comparing two struct ada_exc_info
778865d3
JB
13425 objects.
13426
13427 The comparison is determined first by exception name, and then
13428 by exception address. */
13429
ab816a27 13430bool
cc536b21 13431ada_exc_info::operator< (const ada_exc_info &other) const
778865d3 13432{
778865d3
JB
13433 int result;
13434
ab816a27
TT
13435 result = strcmp (name, other.name);
13436 if (result < 0)
13437 return true;
13438 if (result == 0 && addr < other.addr)
13439 return true;
13440 return false;
13441}
778865d3 13442
ab816a27 13443bool
cc536b21 13444ada_exc_info::operator== (const ada_exc_info &other) const
ab816a27
TT
13445{
13446 return addr == other.addr && strcmp (name, other.name) == 0;
778865d3
JB
13447}
13448
13449/* Sort EXCEPTIONS using compare_ada_exception_info as the comparison
13450 routine, but keeping the first SKIP elements untouched.
13451
13452 All duplicates are also removed. */
13453
13454static void
ab816a27 13455sort_remove_dups_ada_exceptions_list (std::vector<ada_exc_info> *exceptions,
778865d3
JB
13456 int skip)
13457{
ab816a27
TT
13458 std::sort (exceptions->begin () + skip, exceptions->end ());
13459 exceptions->erase (std::unique (exceptions->begin () + skip, exceptions->end ()),
13460 exceptions->end ());
778865d3
JB
13461}
13462
778865d3
JB
13463/* Add all exceptions defined by the Ada standard whose name match
13464 a regular expression.
13465
13466 If PREG is not NULL, then this regexp_t object is used to
13467 perform the symbol name matching. Otherwise, no name-based
13468 filtering is performed.
13469
13470 EXCEPTIONS is a vector of exceptions to which matching exceptions
13471 gets pushed. */
13472
13473static void
2d7cc5c7 13474ada_add_standard_exceptions (compiled_regex *preg,
ab816a27 13475 std::vector<ada_exc_info> *exceptions)
778865d3
JB
13476{
13477 int i;
13478
13479 for (i = 0; i < ARRAY_SIZE (standard_exc); i++)
13480 {
13481 if (preg == NULL
2d7cc5c7 13482 || preg->exec (standard_exc[i], 0, NULL, 0) == 0)
778865d3
JB
13483 {
13484 struct bound_minimal_symbol msymbol
13485 = ada_lookup_simple_minsym (standard_exc[i]);
13486
13487 if (msymbol.minsym != NULL)
13488 {
13489 struct ada_exc_info info
77e371c0 13490 = {standard_exc[i], BMSYMBOL_VALUE_ADDRESS (msymbol)};
778865d3 13491
ab816a27 13492 exceptions->push_back (info);
778865d3
JB
13493 }
13494 }
13495 }
13496}
13497
13498/* Add all Ada exceptions defined locally and accessible from the given
13499 FRAME.
13500
13501 If PREG is not NULL, then this regexp_t object is used to
13502 perform the symbol name matching. Otherwise, no name-based
13503 filtering is performed.
13504
13505 EXCEPTIONS is a vector of exceptions to which matching exceptions
13506 gets pushed. */
13507
13508static void
2d7cc5c7
PA
13509ada_add_exceptions_from_frame (compiled_regex *preg,
13510 struct frame_info *frame,
ab816a27 13511 std::vector<ada_exc_info> *exceptions)
778865d3 13512{
3977b71f 13513 const struct block *block = get_frame_block (frame, 0);
778865d3
JB
13514
13515 while (block != 0)
13516 {
13517 struct block_iterator iter;
13518 struct symbol *sym;
13519
13520 ALL_BLOCK_SYMBOLS (block, iter, sym)
13521 {
13522 switch (SYMBOL_CLASS (sym))
13523 {
13524 case LOC_TYPEDEF:
13525 case LOC_BLOCK:
13526 case LOC_CONST:
13527 break;
13528 default:
13529 if (ada_is_exception_sym (sym))
13530 {
13531 struct ada_exc_info info = {SYMBOL_PRINT_NAME (sym),
13532 SYMBOL_VALUE_ADDRESS (sym)};
13533
ab816a27 13534 exceptions->push_back (info);
778865d3
JB
13535 }
13536 }
13537 }
13538 if (BLOCK_FUNCTION (block) != NULL)
13539 break;
13540 block = BLOCK_SUPERBLOCK (block);
13541 }
13542}
13543
14bc53a8
PA
13544/* Return true if NAME matches PREG or if PREG is NULL. */
13545
13546static bool
2d7cc5c7 13547name_matches_regex (const char *name, compiled_regex *preg)
14bc53a8
PA
13548{
13549 return (preg == NULL
2d7cc5c7 13550 || preg->exec (ada_decode (name), 0, NULL, 0) == 0);
14bc53a8
PA
13551}
13552
778865d3
JB
13553/* Add all exceptions defined globally whose name name match
13554 a regular expression, excluding standard exceptions.
13555
13556 The reason we exclude standard exceptions is that they need
13557 to be handled separately: Standard exceptions are defined inside
13558 a runtime unit which is normally not compiled with debugging info,
13559 and thus usually do not show up in our symbol search. However,
13560 if the unit was in fact built with debugging info, we need to
13561 exclude them because they would duplicate the entry we found
13562 during the special loop that specifically searches for those
13563 standard exceptions.
13564
13565 If PREG is not NULL, then this regexp_t object is used to
13566 perform the symbol name matching. Otherwise, no name-based
13567 filtering is performed.
13568
13569 EXCEPTIONS is a vector of exceptions to which matching exceptions
13570 gets pushed. */
13571
13572static void
2d7cc5c7 13573ada_add_global_exceptions (compiled_regex *preg,
ab816a27 13574 std::vector<ada_exc_info> *exceptions)
778865d3
JB
13575{
13576 struct objfile *objfile;
43f3e411 13577 struct compunit_symtab *s;
778865d3 13578
14bc53a8
PA
13579 /* In Ada, the symbol "search name" is a linkage name, whereas the
13580 regular expression used to do the matching refers to the natural
13581 name. So match against the decoded name. */
13582 expand_symtabs_matching (NULL,
b5ec771e 13583 lookup_name_info::match_any (),
14bc53a8
PA
13584 [&] (const char *search_name)
13585 {
13586 const char *decoded = ada_decode (search_name);
13587 return name_matches_regex (decoded, preg);
13588 },
13589 NULL,
13590 VARIABLES_DOMAIN);
778865d3 13591
43f3e411 13592 ALL_COMPUNITS (objfile, s)
778865d3 13593 {
43f3e411 13594 const struct blockvector *bv = COMPUNIT_BLOCKVECTOR (s);
778865d3
JB
13595 int i;
13596
13597 for (i = GLOBAL_BLOCK; i <= STATIC_BLOCK; i++)
13598 {
13599 struct block *b = BLOCKVECTOR_BLOCK (bv, i);
13600 struct block_iterator iter;
13601 struct symbol *sym;
13602
13603 ALL_BLOCK_SYMBOLS (b, iter, sym)
13604 if (ada_is_non_standard_exception_sym (sym)
14bc53a8 13605 && name_matches_regex (SYMBOL_NATURAL_NAME (sym), preg))
778865d3
JB
13606 {
13607 struct ada_exc_info info
13608 = {SYMBOL_PRINT_NAME (sym), SYMBOL_VALUE_ADDRESS (sym)};
13609
ab816a27 13610 exceptions->push_back (info);
778865d3
JB
13611 }
13612 }
13613 }
13614}
13615
13616/* Implements ada_exceptions_list with the regular expression passed
13617 as a regex_t, rather than a string.
13618
13619 If not NULL, PREG is used to filter out exceptions whose names
13620 do not match. Otherwise, all exceptions are listed. */
13621
ab816a27 13622static std::vector<ada_exc_info>
2d7cc5c7 13623ada_exceptions_list_1 (compiled_regex *preg)
778865d3 13624{
ab816a27 13625 std::vector<ada_exc_info> result;
778865d3
JB
13626 int prev_len;
13627
13628 /* First, list the known standard exceptions. These exceptions
13629 need to be handled separately, as they are usually defined in
13630 runtime units that have been compiled without debugging info. */
13631
13632 ada_add_standard_exceptions (preg, &result);
13633
13634 /* Next, find all exceptions whose scope is local and accessible
13635 from the currently selected frame. */
13636
13637 if (has_stack_frames ())
13638 {
ab816a27 13639 prev_len = result.size ();
778865d3
JB
13640 ada_add_exceptions_from_frame (preg, get_selected_frame (NULL),
13641 &result);
ab816a27 13642 if (result.size () > prev_len)
778865d3
JB
13643 sort_remove_dups_ada_exceptions_list (&result, prev_len);
13644 }
13645
13646 /* Add all exceptions whose scope is global. */
13647
ab816a27 13648 prev_len = result.size ();
778865d3 13649 ada_add_global_exceptions (preg, &result);
ab816a27 13650 if (result.size () > prev_len)
778865d3
JB
13651 sort_remove_dups_ada_exceptions_list (&result, prev_len);
13652
778865d3
JB
13653 return result;
13654}
13655
13656/* Return a vector of ada_exc_info.
13657
13658 If REGEXP is NULL, all exceptions are included in the result.
13659 Otherwise, it should contain a valid regular expression,
13660 and only the exceptions whose names match that regular expression
13661 are included in the result.
13662
13663 The exceptions are sorted in the following order:
13664 - Standard exceptions (defined by the Ada language), in
13665 alphabetical order;
13666 - Exceptions only visible from the current frame, in
13667 alphabetical order;
13668 - Exceptions whose scope is global, in alphabetical order. */
13669
ab816a27 13670std::vector<ada_exc_info>
778865d3
JB
13671ada_exceptions_list (const char *regexp)
13672{
2d7cc5c7
PA
13673 if (regexp == NULL)
13674 return ada_exceptions_list_1 (NULL);
778865d3 13675
2d7cc5c7
PA
13676 compiled_regex reg (regexp, REG_NOSUB, _("invalid regular expression"));
13677 return ada_exceptions_list_1 (&reg);
778865d3
JB
13678}
13679
13680/* Implement the "info exceptions" command. */
13681
13682static void
1d12d88f 13683info_exceptions_command (const char *regexp, int from_tty)
778865d3 13684{
778865d3 13685 struct gdbarch *gdbarch = get_current_arch ();
778865d3 13686
ab816a27 13687 std::vector<ada_exc_info> exceptions = ada_exceptions_list (regexp);
778865d3
JB
13688
13689 if (regexp != NULL)
13690 printf_filtered
13691 (_("All Ada exceptions matching regular expression \"%s\":\n"), regexp);
13692 else
13693 printf_filtered (_("All defined Ada exceptions:\n"));
13694
ab816a27
TT
13695 for (const ada_exc_info &info : exceptions)
13696 printf_filtered ("%s: %s\n", info.name, paddress (gdbarch, info.addr));
778865d3
JB
13697}
13698
4c4b4cd2
PH
13699 /* Operators */
13700/* Information about operators given special treatment in functions
13701 below. */
13702/* Format: OP_DEFN (<operator>, <operator length>, <# args>, <binop>). */
13703
13704#define ADA_OPERATORS \
13705 OP_DEFN (OP_VAR_VALUE, 4, 0, 0) \
13706 OP_DEFN (BINOP_IN_BOUNDS, 3, 2, 0) \
13707 OP_DEFN (TERNOP_IN_RANGE, 1, 3, 0) \
13708 OP_DEFN (OP_ATR_FIRST, 1, 2, 0) \
13709 OP_DEFN (OP_ATR_LAST, 1, 2, 0) \
13710 OP_DEFN (OP_ATR_LENGTH, 1, 2, 0) \
13711 OP_DEFN (OP_ATR_IMAGE, 1, 2, 0) \
13712 OP_DEFN (OP_ATR_MAX, 1, 3, 0) \
13713 OP_DEFN (OP_ATR_MIN, 1, 3, 0) \
13714 OP_DEFN (OP_ATR_MODULUS, 1, 1, 0) \
13715 OP_DEFN (OP_ATR_POS, 1, 2, 0) \
13716 OP_DEFN (OP_ATR_SIZE, 1, 1, 0) \
13717 OP_DEFN (OP_ATR_TAG, 1, 1, 0) \
13718 OP_DEFN (OP_ATR_VAL, 1, 2, 0) \
13719 OP_DEFN (UNOP_QUAL, 3, 1, 0) \
52ce6436
PH
13720 OP_DEFN (UNOP_IN_RANGE, 3, 1, 0) \
13721 OP_DEFN (OP_OTHERS, 1, 1, 0) \
13722 OP_DEFN (OP_POSITIONAL, 3, 1, 0) \
13723 OP_DEFN (OP_DISCRETE_RANGE, 1, 2, 0)
4c4b4cd2
PH
13724
13725static void
554794dc
SDJ
13726ada_operator_length (const struct expression *exp, int pc, int *oplenp,
13727 int *argsp)
4c4b4cd2
PH
13728{
13729 switch (exp->elts[pc - 1].opcode)
13730 {
76a01679 13731 default:
4c4b4cd2
PH
13732 operator_length_standard (exp, pc, oplenp, argsp);
13733 break;
13734
13735#define OP_DEFN(op, len, args, binop) \
13736 case op: *oplenp = len; *argsp = args; break;
13737 ADA_OPERATORS;
13738#undef OP_DEFN
52ce6436
PH
13739
13740 case OP_AGGREGATE:
13741 *oplenp = 3;
13742 *argsp = longest_to_int (exp->elts[pc - 2].longconst);
13743 break;
13744
13745 case OP_CHOICES:
13746 *oplenp = 3;
13747 *argsp = longest_to_int (exp->elts[pc - 2].longconst) + 1;
13748 break;
4c4b4cd2
PH
13749 }
13750}
13751
c0201579
JK
13752/* Implementation of the exp_descriptor method operator_check. */
13753
13754static int
13755ada_operator_check (struct expression *exp, int pos,
13756 int (*objfile_func) (struct objfile *objfile, void *data),
13757 void *data)
13758{
13759 const union exp_element *const elts = exp->elts;
13760 struct type *type = NULL;
13761
13762 switch (elts[pos].opcode)
13763 {
13764 case UNOP_IN_RANGE:
13765 case UNOP_QUAL:
13766 type = elts[pos + 1].type;
13767 break;
13768
13769 default:
13770 return operator_check_standard (exp, pos, objfile_func, data);
13771 }
13772
13773 /* Invoke callbacks for TYPE and OBJFILE if they were set as non-NULL. */
13774
13775 if (type && TYPE_OBJFILE (type)
13776 && (*objfile_func) (TYPE_OBJFILE (type), data))
13777 return 1;
13778
13779 return 0;
13780}
13781
a121b7c1 13782static const char *
4c4b4cd2
PH
13783ada_op_name (enum exp_opcode opcode)
13784{
13785 switch (opcode)
13786 {
76a01679 13787 default:
4c4b4cd2 13788 return op_name_standard (opcode);
52ce6436 13789
4c4b4cd2
PH
13790#define OP_DEFN(op, len, args, binop) case op: return #op;
13791 ADA_OPERATORS;
13792#undef OP_DEFN
52ce6436
PH
13793
13794 case OP_AGGREGATE:
13795 return "OP_AGGREGATE";
13796 case OP_CHOICES:
13797 return "OP_CHOICES";
13798 case OP_NAME:
13799 return "OP_NAME";
4c4b4cd2
PH
13800 }
13801}
13802
13803/* As for operator_length, but assumes PC is pointing at the first
13804 element of the operator, and gives meaningful results only for the
52ce6436 13805 Ada-specific operators, returning 0 for *OPLENP and *ARGSP otherwise. */
4c4b4cd2
PH
13806
13807static void
76a01679
JB
13808ada_forward_operator_length (struct expression *exp, int pc,
13809 int *oplenp, int *argsp)
4c4b4cd2 13810{
76a01679 13811 switch (exp->elts[pc].opcode)
4c4b4cd2
PH
13812 {
13813 default:
13814 *oplenp = *argsp = 0;
13815 break;
52ce6436 13816
4c4b4cd2
PH
13817#define OP_DEFN(op, len, args, binop) \
13818 case op: *oplenp = len; *argsp = args; break;
13819 ADA_OPERATORS;
13820#undef OP_DEFN
52ce6436
PH
13821
13822 case OP_AGGREGATE:
13823 *oplenp = 3;
13824 *argsp = longest_to_int (exp->elts[pc + 1].longconst);
13825 break;
13826
13827 case OP_CHOICES:
13828 *oplenp = 3;
13829 *argsp = longest_to_int (exp->elts[pc + 1].longconst) + 1;
13830 break;
13831
13832 case OP_STRING:
13833 case OP_NAME:
13834 {
13835 int len = longest_to_int (exp->elts[pc + 1].longconst);
5b4ee69b 13836
52ce6436
PH
13837 *oplenp = 4 + BYTES_TO_EXP_ELEM (len + 1);
13838 *argsp = 0;
13839 break;
13840 }
4c4b4cd2
PH
13841 }
13842}
13843
13844static int
13845ada_dump_subexp_body (struct expression *exp, struct ui_file *stream, int elt)
13846{
13847 enum exp_opcode op = exp->elts[elt].opcode;
13848 int oplen, nargs;
13849 int pc = elt;
13850 int i;
76a01679 13851
4c4b4cd2
PH
13852 ada_forward_operator_length (exp, elt, &oplen, &nargs);
13853
76a01679 13854 switch (op)
4c4b4cd2 13855 {
76a01679 13856 /* Ada attributes ('Foo). */
4c4b4cd2
PH
13857 case OP_ATR_FIRST:
13858 case OP_ATR_LAST:
13859 case OP_ATR_LENGTH:
13860 case OP_ATR_IMAGE:
13861 case OP_ATR_MAX:
13862 case OP_ATR_MIN:
13863 case OP_ATR_MODULUS:
13864 case OP_ATR_POS:
13865 case OP_ATR_SIZE:
13866 case OP_ATR_TAG:
13867 case OP_ATR_VAL:
13868 break;
13869
13870 case UNOP_IN_RANGE:
13871 case UNOP_QUAL:
323e0a4a
AC
13872 /* XXX: gdb_sprint_host_address, type_sprint */
13873 fprintf_filtered (stream, _("Type @"));
4c4b4cd2
PH
13874 gdb_print_host_address (exp->elts[pc + 1].type, stream);
13875 fprintf_filtered (stream, " (");
13876 type_print (exp->elts[pc + 1].type, NULL, stream, 0);
13877 fprintf_filtered (stream, ")");
13878 break;
13879 case BINOP_IN_BOUNDS:
52ce6436
PH
13880 fprintf_filtered (stream, " (%d)",
13881 longest_to_int (exp->elts[pc + 2].longconst));
4c4b4cd2
PH
13882 break;
13883 case TERNOP_IN_RANGE:
13884 break;
13885
52ce6436
PH
13886 case OP_AGGREGATE:
13887 case OP_OTHERS:
13888 case OP_DISCRETE_RANGE:
13889 case OP_POSITIONAL:
13890 case OP_CHOICES:
13891 break;
13892
13893 case OP_NAME:
13894 case OP_STRING:
13895 {
13896 char *name = &exp->elts[elt + 2].string;
13897 int len = longest_to_int (exp->elts[elt + 1].longconst);
5b4ee69b 13898
52ce6436
PH
13899 fprintf_filtered (stream, "Text: `%.*s'", len, name);
13900 break;
13901 }
13902
4c4b4cd2
PH
13903 default:
13904 return dump_subexp_body_standard (exp, stream, elt);
13905 }
13906
13907 elt += oplen;
13908 for (i = 0; i < nargs; i += 1)
13909 elt = dump_subexp (exp, stream, elt);
13910
13911 return elt;
13912}
13913
13914/* The Ada extension of print_subexp (q.v.). */
13915
76a01679
JB
13916static void
13917ada_print_subexp (struct expression *exp, int *pos,
13918 struct ui_file *stream, enum precedence prec)
4c4b4cd2 13919{
52ce6436 13920 int oplen, nargs, i;
4c4b4cd2
PH
13921 int pc = *pos;
13922 enum exp_opcode op = exp->elts[pc].opcode;
13923
13924 ada_forward_operator_length (exp, pc, &oplen, &nargs);
13925
52ce6436 13926 *pos += oplen;
4c4b4cd2
PH
13927 switch (op)
13928 {
13929 default:
52ce6436 13930 *pos -= oplen;
4c4b4cd2
PH
13931 print_subexp_standard (exp, pos, stream, prec);
13932 return;
13933
13934 case OP_VAR_VALUE:
4c4b4cd2
PH
13935 fputs_filtered (SYMBOL_NATURAL_NAME (exp->elts[pc + 2].symbol), stream);
13936 return;
13937
13938 case BINOP_IN_BOUNDS:
323e0a4a 13939 /* XXX: sprint_subexp */
4c4b4cd2 13940 print_subexp (exp, pos, stream, PREC_SUFFIX);
0b48a291 13941 fputs_filtered (" in ", stream);
4c4b4cd2 13942 print_subexp (exp, pos, stream, PREC_SUFFIX);
0b48a291 13943 fputs_filtered ("'range", stream);
4c4b4cd2 13944 if (exp->elts[pc + 1].longconst > 1)
76a01679
JB
13945 fprintf_filtered (stream, "(%ld)",
13946 (long) exp->elts[pc + 1].longconst);
4c4b4cd2
PH
13947 return;
13948
13949 case TERNOP_IN_RANGE:
4c4b4cd2 13950 if (prec >= PREC_EQUAL)
76a01679 13951 fputs_filtered ("(", stream);
323e0a4a 13952 /* XXX: sprint_subexp */
4c4b4cd2 13953 print_subexp (exp, pos, stream, PREC_SUFFIX);
0b48a291 13954 fputs_filtered (" in ", stream);
4c4b4cd2
PH
13955 print_subexp (exp, pos, stream, PREC_EQUAL);
13956 fputs_filtered (" .. ", stream);
13957 print_subexp (exp, pos, stream, PREC_EQUAL);
13958 if (prec >= PREC_EQUAL)
76a01679
JB
13959 fputs_filtered (")", stream);
13960 return;
4c4b4cd2
PH
13961
13962 case OP_ATR_FIRST:
13963 case OP_ATR_LAST:
13964 case OP_ATR_LENGTH:
13965 case OP_ATR_IMAGE:
13966 case OP_ATR_MAX:
13967 case OP_ATR_MIN:
13968 case OP_ATR_MODULUS:
13969 case OP_ATR_POS:
13970 case OP_ATR_SIZE:
13971 case OP_ATR_TAG:
13972 case OP_ATR_VAL:
4c4b4cd2 13973 if (exp->elts[*pos].opcode == OP_TYPE)
76a01679
JB
13974 {
13975 if (TYPE_CODE (exp->elts[*pos + 1].type) != TYPE_CODE_VOID)
79d43c61
TT
13976 LA_PRINT_TYPE (exp->elts[*pos + 1].type, "", stream, 0, 0,
13977 &type_print_raw_options);
76a01679
JB
13978 *pos += 3;
13979 }
4c4b4cd2 13980 else
76a01679 13981 print_subexp (exp, pos, stream, PREC_SUFFIX);
4c4b4cd2
PH
13982 fprintf_filtered (stream, "'%s", ada_attribute_name (op));
13983 if (nargs > 1)
76a01679
JB
13984 {
13985 int tem;
5b4ee69b 13986
76a01679
JB
13987 for (tem = 1; tem < nargs; tem += 1)
13988 {
13989 fputs_filtered ((tem == 1) ? " (" : ", ", stream);
13990 print_subexp (exp, pos, stream, PREC_ABOVE_COMMA);
13991 }
13992 fputs_filtered (")", stream);
13993 }
4c4b4cd2 13994 return;
14f9c5c9 13995
4c4b4cd2 13996 case UNOP_QUAL:
4c4b4cd2
PH
13997 type_print (exp->elts[pc + 1].type, "", stream, 0);
13998 fputs_filtered ("'(", stream);
13999 print_subexp (exp, pos, stream, PREC_PREFIX);
14000 fputs_filtered (")", stream);
14001 return;
14f9c5c9 14002
4c4b4cd2 14003 case UNOP_IN_RANGE:
323e0a4a 14004 /* XXX: sprint_subexp */
4c4b4cd2 14005 print_subexp (exp, pos, stream, PREC_SUFFIX);
0b48a291 14006 fputs_filtered (" in ", stream);
79d43c61
TT
14007 LA_PRINT_TYPE (exp->elts[pc + 1].type, "", stream, 1, 0,
14008 &type_print_raw_options);
4c4b4cd2 14009 return;
52ce6436
PH
14010
14011 case OP_DISCRETE_RANGE:
14012 print_subexp (exp, pos, stream, PREC_SUFFIX);
14013 fputs_filtered ("..", stream);
14014 print_subexp (exp, pos, stream, PREC_SUFFIX);
14015 return;
14016
14017 case OP_OTHERS:
14018 fputs_filtered ("others => ", stream);
14019 print_subexp (exp, pos, stream, PREC_SUFFIX);
14020 return;
14021
14022 case OP_CHOICES:
14023 for (i = 0; i < nargs-1; i += 1)
14024 {
14025 if (i > 0)
14026 fputs_filtered ("|", stream);
14027 print_subexp (exp, pos, stream, PREC_SUFFIX);
14028 }
14029 fputs_filtered (" => ", stream);
14030 print_subexp (exp, pos, stream, PREC_SUFFIX);
14031 return;
14032
14033 case OP_POSITIONAL:
14034 print_subexp (exp, pos, stream, PREC_SUFFIX);
14035 return;
14036
14037 case OP_AGGREGATE:
14038 fputs_filtered ("(", stream);
14039 for (i = 0; i < nargs; i += 1)
14040 {
14041 if (i > 0)
14042 fputs_filtered (", ", stream);
14043 print_subexp (exp, pos, stream, PREC_SUFFIX);
14044 }
14045 fputs_filtered (")", stream);
14046 return;
4c4b4cd2
PH
14047 }
14048}
14f9c5c9
AS
14049
14050/* Table mapping opcodes into strings for printing operators
14051 and precedences of the operators. */
14052
d2e4a39e
AS
14053static const struct op_print ada_op_print_tab[] = {
14054 {":=", BINOP_ASSIGN, PREC_ASSIGN, 1},
14055 {"or else", BINOP_LOGICAL_OR, PREC_LOGICAL_OR, 0},
14056 {"and then", BINOP_LOGICAL_AND, PREC_LOGICAL_AND, 0},
14057 {"or", BINOP_BITWISE_IOR, PREC_BITWISE_IOR, 0},
14058 {"xor", BINOP_BITWISE_XOR, PREC_BITWISE_XOR, 0},
14059 {"and", BINOP_BITWISE_AND, PREC_BITWISE_AND, 0},
14060 {"=", BINOP_EQUAL, PREC_EQUAL, 0},
14061 {"/=", BINOP_NOTEQUAL, PREC_EQUAL, 0},
14062 {"<=", BINOP_LEQ, PREC_ORDER, 0},
14063 {">=", BINOP_GEQ, PREC_ORDER, 0},
14064 {">", BINOP_GTR, PREC_ORDER, 0},
14065 {"<", BINOP_LESS, PREC_ORDER, 0},
14066 {">>", BINOP_RSH, PREC_SHIFT, 0},
14067 {"<<", BINOP_LSH, PREC_SHIFT, 0},
14068 {"+", BINOP_ADD, PREC_ADD, 0},
14069 {"-", BINOP_SUB, PREC_ADD, 0},
14070 {"&", BINOP_CONCAT, PREC_ADD, 0},
14071 {"*", BINOP_MUL, PREC_MUL, 0},
14072 {"/", BINOP_DIV, PREC_MUL, 0},
14073 {"rem", BINOP_REM, PREC_MUL, 0},
14074 {"mod", BINOP_MOD, PREC_MUL, 0},
14075 {"**", BINOP_EXP, PREC_REPEAT, 0},
14076 {"@", BINOP_REPEAT, PREC_REPEAT, 0},
14077 {"-", UNOP_NEG, PREC_PREFIX, 0},
14078 {"+", UNOP_PLUS, PREC_PREFIX, 0},
14079 {"not ", UNOP_LOGICAL_NOT, PREC_PREFIX, 0},
14080 {"not ", UNOP_COMPLEMENT, PREC_PREFIX, 0},
14081 {"abs ", UNOP_ABS, PREC_PREFIX, 0},
4c4b4cd2
PH
14082 {".all", UNOP_IND, PREC_SUFFIX, 1},
14083 {"'access", UNOP_ADDR, PREC_SUFFIX, 1},
14084 {"'size", OP_ATR_SIZE, PREC_SUFFIX, 1},
f486487f 14085 {NULL, OP_NULL, PREC_SUFFIX, 0}
14f9c5c9
AS
14086};
14087\f
72d5681a
PH
14088enum ada_primitive_types {
14089 ada_primitive_type_int,
14090 ada_primitive_type_long,
14091 ada_primitive_type_short,
14092 ada_primitive_type_char,
14093 ada_primitive_type_float,
14094 ada_primitive_type_double,
14095 ada_primitive_type_void,
14096 ada_primitive_type_long_long,
14097 ada_primitive_type_long_double,
14098 ada_primitive_type_natural,
14099 ada_primitive_type_positive,
14100 ada_primitive_type_system_address,
08f49010 14101 ada_primitive_type_storage_offset,
72d5681a
PH
14102 nr_ada_primitive_types
14103};
6c038f32
PH
14104
14105static void
d4a9a881 14106ada_language_arch_info (struct gdbarch *gdbarch,
72d5681a
PH
14107 struct language_arch_info *lai)
14108{
d4a9a881 14109 const struct builtin_type *builtin = builtin_type (gdbarch);
5b4ee69b 14110
72d5681a 14111 lai->primitive_type_vector
d4a9a881 14112 = GDBARCH_OBSTACK_CALLOC (gdbarch, nr_ada_primitive_types + 1,
72d5681a 14113 struct type *);
e9bb382b
UW
14114
14115 lai->primitive_type_vector [ada_primitive_type_int]
14116 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
14117 0, "integer");
14118 lai->primitive_type_vector [ada_primitive_type_long]
14119 = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
14120 0, "long_integer");
14121 lai->primitive_type_vector [ada_primitive_type_short]
14122 = arch_integer_type (gdbarch, gdbarch_short_bit (gdbarch),
14123 0, "short_integer");
14124 lai->string_char_type
14125 = lai->primitive_type_vector [ada_primitive_type_char]
cd7c1778 14126 = arch_character_type (gdbarch, TARGET_CHAR_BIT, 0, "character");
e9bb382b
UW
14127 lai->primitive_type_vector [ada_primitive_type_float]
14128 = arch_float_type (gdbarch, gdbarch_float_bit (gdbarch),
49f190bc 14129 "float", gdbarch_float_format (gdbarch));
e9bb382b
UW
14130 lai->primitive_type_vector [ada_primitive_type_double]
14131 = arch_float_type (gdbarch, gdbarch_double_bit (gdbarch),
49f190bc 14132 "long_float", gdbarch_double_format (gdbarch));
e9bb382b
UW
14133 lai->primitive_type_vector [ada_primitive_type_long_long]
14134 = arch_integer_type (gdbarch, gdbarch_long_long_bit (gdbarch),
14135 0, "long_long_integer");
14136 lai->primitive_type_vector [ada_primitive_type_long_double]
5f3bceb6 14137 = arch_float_type (gdbarch, gdbarch_long_double_bit (gdbarch),
49f190bc 14138 "long_long_float", gdbarch_long_double_format (gdbarch));
e9bb382b
UW
14139 lai->primitive_type_vector [ada_primitive_type_natural]
14140 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
14141 0, "natural");
14142 lai->primitive_type_vector [ada_primitive_type_positive]
14143 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
14144 0, "positive");
14145 lai->primitive_type_vector [ada_primitive_type_void]
14146 = builtin->builtin_void;
14147
14148 lai->primitive_type_vector [ada_primitive_type_system_address]
77b7c781
UW
14149 = lookup_pointer_type (arch_type (gdbarch, TYPE_CODE_VOID, TARGET_CHAR_BIT,
14150 "void"));
72d5681a
PH
14151 TYPE_NAME (lai->primitive_type_vector [ada_primitive_type_system_address])
14152 = "system__address";
fbb06eb1 14153
08f49010
XR
14154 /* Create the equivalent of the System.Storage_Elements.Storage_Offset
14155 type. This is a signed integral type whose size is the same as
14156 the size of addresses. */
14157 {
14158 unsigned int addr_length = TYPE_LENGTH
14159 (lai->primitive_type_vector [ada_primitive_type_system_address]);
14160
14161 lai->primitive_type_vector [ada_primitive_type_storage_offset]
14162 = arch_integer_type (gdbarch, addr_length * HOST_CHAR_BIT, 0,
14163 "storage_offset");
14164 }
14165
47e729a8 14166 lai->bool_type_symbol = NULL;
fbb06eb1 14167 lai->bool_type_default = builtin->builtin_bool;
6c038f32 14168}
6c038f32
PH
14169\f
14170 /* Language vector */
14171
14172/* Not really used, but needed in the ada_language_defn. */
14173
14174static void
6c7a06a3 14175emit_char (int c, struct type *type, struct ui_file *stream, int quoter)
6c038f32 14176{
6c7a06a3 14177 ada_emit_char (c, type, stream, quoter, 1);
6c038f32
PH
14178}
14179
14180static int
410a0ff2 14181parse (struct parser_state *ps)
6c038f32
PH
14182{
14183 warnings_issued = 0;
410a0ff2 14184 return ada_parse (ps);
6c038f32
PH
14185}
14186
14187static const struct exp_descriptor ada_exp_descriptor = {
14188 ada_print_subexp,
14189 ada_operator_length,
c0201579 14190 ada_operator_check,
6c038f32
PH
14191 ada_op_name,
14192 ada_dump_subexp_body,
14193 ada_evaluate_subexp
14194};
14195
b5ec771e
PA
14196/* symbol_name_matcher_ftype adapter for wild_match. */
14197
14198static bool
14199do_wild_match (const char *symbol_search_name,
14200 const lookup_name_info &lookup_name,
a207cff2 14201 completion_match_result *comp_match_res)
b5ec771e
PA
14202{
14203 return wild_match (symbol_search_name, ada_lookup_name (lookup_name));
14204}
14205
14206/* symbol_name_matcher_ftype adapter for full_match. */
14207
14208static bool
14209do_full_match (const char *symbol_search_name,
14210 const lookup_name_info &lookup_name,
a207cff2 14211 completion_match_result *comp_match_res)
b5ec771e
PA
14212{
14213 return full_match (symbol_search_name, ada_lookup_name (lookup_name));
14214}
14215
14216/* Build the Ada lookup name for LOOKUP_NAME. */
14217
14218ada_lookup_name_info::ada_lookup_name_info (const lookup_name_info &lookup_name)
14219{
14220 const std::string &user_name = lookup_name.name ();
14221
14222 if (user_name[0] == '<')
14223 {
14224 if (user_name.back () == '>')
14225 m_encoded_name = user_name.substr (1, user_name.size () - 2);
14226 else
14227 m_encoded_name = user_name.substr (1, user_name.size () - 1);
14228 m_encoded_p = true;
14229 m_verbatim_p = true;
14230 m_wild_match_p = false;
14231 m_standard_p = false;
14232 }
14233 else
14234 {
14235 m_verbatim_p = false;
14236
14237 m_encoded_p = user_name.find ("__") != std::string::npos;
14238
14239 if (!m_encoded_p)
14240 {
14241 const char *folded = ada_fold_name (user_name.c_str ());
14242 const char *encoded = ada_encode_1 (folded, false);
14243 if (encoded != NULL)
14244 m_encoded_name = encoded;
14245 else
14246 m_encoded_name = user_name;
14247 }
14248 else
14249 m_encoded_name = user_name;
14250
14251 /* Handle the 'package Standard' special case. See description
14252 of m_standard_p. */
14253 if (startswith (m_encoded_name.c_str (), "standard__"))
14254 {
14255 m_encoded_name = m_encoded_name.substr (sizeof ("standard__") - 1);
14256 m_standard_p = true;
14257 }
14258 else
14259 m_standard_p = false;
74ccd7f5 14260
b5ec771e
PA
14261 /* If the name contains a ".", then the user is entering a fully
14262 qualified entity name, and the match must not be done in wild
14263 mode. Similarly, if the user wants to complete what looks
14264 like an encoded name, the match must not be done in wild
14265 mode. Also, in the standard__ special case always do
14266 non-wild matching. */
14267 m_wild_match_p
14268 = (lookup_name.match_type () != symbol_name_match_type::FULL
14269 && !m_encoded_p
14270 && !m_standard_p
14271 && user_name.find ('.') == std::string::npos);
14272 }
14273}
14274
14275/* symbol_name_matcher_ftype method for Ada. This only handles
14276 completion mode. */
14277
14278static bool
14279ada_symbol_name_matches (const char *symbol_search_name,
14280 const lookup_name_info &lookup_name,
a207cff2 14281 completion_match_result *comp_match_res)
74ccd7f5 14282{
b5ec771e
PA
14283 return lookup_name.ada ().matches (symbol_search_name,
14284 lookup_name.match_type (),
a207cff2 14285 comp_match_res);
b5ec771e
PA
14286}
14287
de63c46b
PA
14288/* A name matcher that matches the symbol name exactly, with
14289 strcmp. */
14290
14291static bool
14292literal_symbol_name_matcher (const char *symbol_search_name,
14293 const lookup_name_info &lookup_name,
14294 completion_match_result *comp_match_res)
14295{
14296 const std::string &name = lookup_name.name ();
14297
14298 int cmp = (lookup_name.completion_mode ()
14299 ? strncmp (symbol_search_name, name.c_str (), name.size ())
14300 : strcmp (symbol_search_name, name.c_str ()));
14301 if (cmp == 0)
14302 {
14303 if (comp_match_res != NULL)
14304 comp_match_res->set_match (symbol_search_name);
14305 return true;
14306 }
14307 else
14308 return false;
14309}
14310
b5ec771e
PA
14311/* Implement the "la_get_symbol_name_matcher" language_defn method for
14312 Ada. */
14313
14314static symbol_name_matcher_ftype *
14315ada_get_symbol_name_matcher (const lookup_name_info &lookup_name)
14316{
de63c46b
PA
14317 if (lookup_name.match_type () == symbol_name_match_type::SEARCH_NAME)
14318 return literal_symbol_name_matcher;
14319
b5ec771e
PA
14320 if (lookup_name.completion_mode ())
14321 return ada_symbol_name_matches;
74ccd7f5 14322 else
b5ec771e
PA
14323 {
14324 if (lookup_name.ada ().wild_match_p ())
14325 return do_wild_match;
14326 else
14327 return do_full_match;
14328 }
74ccd7f5
JB
14329}
14330
a5ee536b
JB
14331/* Implement the "la_read_var_value" language_defn method for Ada. */
14332
14333static struct value *
63e43d3a
PMR
14334ada_read_var_value (struct symbol *var, const struct block *var_block,
14335 struct frame_info *frame)
a5ee536b 14336{
3977b71f 14337 const struct block *frame_block = NULL;
a5ee536b
JB
14338 struct symbol *renaming_sym = NULL;
14339
14340 /* The only case where default_read_var_value is not sufficient
14341 is when VAR is a renaming... */
14342 if (frame)
14343 frame_block = get_frame_block (frame, NULL);
14344 if (frame_block)
14345 renaming_sym = ada_find_renaming_symbol (var, frame_block);
14346 if (renaming_sym != NULL)
14347 return ada_read_renaming_var_value (renaming_sym, frame_block);
14348
14349 /* This is a typical case where we expect the default_read_var_value
14350 function to work. */
63e43d3a 14351 return default_read_var_value (var, var_block, frame);
a5ee536b
JB
14352}
14353
56618e20
TT
14354static const char *ada_extensions[] =
14355{
14356 ".adb", ".ads", ".a", ".ada", ".dg", NULL
14357};
14358
47e77640 14359extern const struct language_defn ada_language_defn = {
6c038f32 14360 "ada", /* Language name */
6abde28f 14361 "Ada",
6c038f32 14362 language_ada,
6c038f32 14363 range_check_off,
6c038f32
PH
14364 case_sensitive_on, /* Yes, Ada is case-insensitive, but
14365 that's not quite what this means. */
6c038f32 14366 array_row_major,
9a044a89 14367 macro_expansion_no,
56618e20 14368 ada_extensions,
6c038f32
PH
14369 &ada_exp_descriptor,
14370 parse,
6c038f32
PH
14371 resolve,
14372 ada_printchar, /* Print a character constant */
14373 ada_printstr, /* Function to print string constant */
14374 emit_char, /* Function to print single char (not used) */
6c038f32 14375 ada_print_type, /* Print a type using appropriate syntax */
be942545 14376 ada_print_typedef, /* Print a typedef using appropriate syntax */
6c038f32
PH
14377 ada_val_print, /* Print a value using appropriate syntax */
14378 ada_value_print, /* Print a top-level value */
a5ee536b 14379 ada_read_var_value, /* la_read_var_value */
6c038f32 14380 NULL, /* Language specific skip_trampoline */
2b2d9e11 14381 NULL, /* name_of_this */
59cc4834 14382 true, /* la_store_sym_names_in_linkage_form_p */
6c038f32
PH
14383 ada_lookup_symbol_nonlocal, /* Looking up non-local symbols. */
14384 basic_lookup_transparent_type, /* lookup_transparent_type */
14385 ada_la_decode, /* Language specific symbol demangler */
8b302db8 14386 ada_sniff_from_mangled_name,
0963b4bd
MS
14387 NULL, /* Language specific
14388 class_name_from_physname */
6c038f32
PH
14389 ada_op_print_tab, /* expression operators for printing */
14390 0, /* c-style arrays */
14391 1, /* String lower bound */
6c038f32 14392 ada_get_gdb_completer_word_break_characters,
eb3ff9a5 14393 ada_collect_symbol_completion_matches,
72d5681a 14394 ada_language_arch_info,
e79af960 14395 ada_print_array_index,
41f1b697 14396 default_pass_by_reference,
ae6a3a4c 14397 c_get_string,
43cc5389 14398 c_watch_location_expression,
b5ec771e 14399 ada_get_symbol_name_matcher, /* la_get_symbol_name_matcher */
f8eba3c6 14400 ada_iterate_over_symbols,
5ffa0793 14401 default_search_name_hash,
a53b64ea 14402 &ada_varobj_ops,
bb2ec1b3
TT
14403 NULL,
14404 NULL,
6c038f32
PH
14405 LANG_MAGIC
14406};
14407
5bf03f13
JB
14408/* Command-list for the "set/show ada" prefix command. */
14409static struct cmd_list_element *set_ada_list;
14410static struct cmd_list_element *show_ada_list;
14411
14412/* Implement the "set ada" prefix command. */
14413
14414static void
981a3fb3 14415set_ada_command (const char *arg, int from_tty)
5bf03f13
JB
14416{
14417 printf_unfiltered (_(\
14418"\"set ada\" must be followed by the name of a setting.\n"));
635c7e8a 14419 help_list (set_ada_list, "set ada ", all_commands, gdb_stdout);
5bf03f13
JB
14420}
14421
14422/* Implement the "show ada" prefix command. */
14423
14424static void
981a3fb3 14425show_ada_command (const char *args, int from_tty)
5bf03f13
JB
14426{
14427 cmd_show_list (show_ada_list, from_tty, "");
14428}
14429
2060206e
PA
14430static void
14431initialize_ada_catchpoint_ops (void)
14432{
14433 struct breakpoint_ops *ops;
14434
14435 initialize_breakpoint_ops ();
14436
14437 ops = &catch_exception_breakpoint_ops;
14438 *ops = bkpt_breakpoint_ops;
2060206e
PA
14439 ops->allocate_location = allocate_location_catch_exception;
14440 ops->re_set = re_set_catch_exception;
14441 ops->check_status = check_status_catch_exception;
14442 ops->print_it = print_it_catch_exception;
14443 ops->print_one = print_one_catch_exception;
14444 ops->print_mention = print_mention_catch_exception;
14445 ops->print_recreate = print_recreate_catch_exception;
14446
14447 ops = &catch_exception_unhandled_breakpoint_ops;
14448 *ops = bkpt_breakpoint_ops;
2060206e
PA
14449 ops->allocate_location = allocate_location_catch_exception_unhandled;
14450 ops->re_set = re_set_catch_exception_unhandled;
14451 ops->check_status = check_status_catch_exception_unhandled;
14452 ops->print_it = print_it_catch_exception_unhandled;
14453 ops->print_one = print_one_catch_exception_unhandled;
14454 ops->print_mention = print_mention_catch_exception_unhandled;
14455 ops->print_recreate = print_recreate_catch_exception_unhandled;
14456
14457 ops = &catch_assert_breakpoint_ops;
14458 *ops = bkpt_breakpoint_ops;
2060206e
PA
14459 ops->allocate_location = allocate_location_catch_assert;
14460 ops->re_set = re_set_catch_assert;
14461 ops->check_status = check_status_catch_assert;
14462 ops->print_it = print_it_catch_assert;
14463 ops->print_one = print_one_catch_assert;
14464 ops->print_mention = print_mention_catch_assert;
14465 ops->print_recreate = print_recreate_catch_assert;
9f757bf7
XR
14466
14467 ops = &catch_handlers_breakpoint_ops;
14468 *ops = bkpt_breakpoint_ops;
14469 ops->allocate_location = allocate_location_catch_handlers;
14470 ops->re_set = re_set_catch_handlers;
14471 ops->check_status = check_status_catch_handlers;
14472 ops->print_it = print_it_catch_handlers;
14473 ops->print_one = print_one_catch_handlers;
14474 ops->print_mention = print_mention_catch_handlers;
14475 ops->print_recreate = print_recreate_catch_handlers;
2060206e
PA
14476}
14477
3d9434b5
JB
14478/* This module's 'new_objfile' observer. */
14479
14480static void
14481ada_new_objfile_observer (struct objfile *objfile)
14482{
14483 ada_clear_symbol_cache ();
14484}
14485
14486/* This module's 'free_objfile' observer. */
14487
14488static void
14489ada_free_objfile_observer (struct objfile *objfile)
14490{
14491 ada_clear_symbol_cache ();
14492}
14493
d2e4a39e 14494void
6c038f32 14495_initialize_ada_language (void)
14f9c5c9 14496{
2060206e
PA
14497 initialize_ada_catchpoint_ops ();
14498
5bf03f13
JB
14499 add_prefix_cmd ("ada", no_class, set_ada_command,
14500 _("Prefix command for changing Ada-specfic settings"),
14501 &set_ada_list, "set ada ", 0, &setlist);
14502
14503 add_prefix_cmd ("ada", no_class, show_ada_command,
14504 _("Generic command for showing Ada-specific settings."),
14505 &show_ada_list, "show ada ", 0, &showlist);
14506
14507 add_setshow_boolean_cmd ("trust-PAD-over-XVS", class_obscure,
14508 &trust_pad_over_xvs, _("\
14509Enable or disable an optimization trusting PAD types over XVS types"), _("\
14510Show whether an optimization trusting PAD types over XVS types is activated"),
14511 _("\
14512This is related to the encoding used by the GNAT compiler. The debugger\n\
14513should normally trust the contents of PAD types, but certain older versions\n\
14514of GNAT have a bug that sometimes causes the information in the PAD type\n\
14515to be incorrect. Turning this setting \"off\" allows the debugger to\n\
14516work around this bug. It is always safe to turn this option \"off\", but\n\
14517this incurs a slight performance penalty, so it is recommended to NOT change\n\
14518this option to \"off\" unless necessary."),
14519 NULL, NULL, &set_ada_list, &show_ada_list);
14520
d72413e6
PMR
14521 add_setshow_boolean_cmd ("print-signatures", class_vars,
14522 &print_signatures, _("\
14523Enable or disable the output of formal and return types for functions in the \
14524overloads selection menu"), _("\
14525Show whether the output of formal and return types for functions in the \
14526overloads selection menu is activated"),
14527 NULL, NULL, NULL, &set_ada_list, &show_ada_list);
14528
9ac4176b
PA
14529 add_catch_command ("exception", _("\
14530Catch Ada exceptions, when raised.\n\
14531With an argument, catch only exceptions with the given name."),
14532 catch_ada_exception_command,
14533 NULL,
14534 CATCH_PERMANENT,
14535 CATCH_TEMPORARY);
9f757bf7
XR
14536
14537 add_catch_command ("handlers", _("\
14538Catch Ada exceptions, when handled.\n\
14539With an argument, catch only exceptions with the given name."),
14540 catch_ada_handlers_command,
14541 NULL,
14542 CATCH_PERMANENT,
14543 CATCH_TEMPORARY);
9ac4176b
PA
14544 add_catch_command ("assert", _("\
14545Catch failed Ada assertions, when raised.\n\
14546With an argument, catch only exceptions with the given name."),
14547 catch_assert_command,
14548 NULL,
14549 CATCH_PERMANENT,
14550 CATCH_TEMPORARY);
14551
6c038f32 14552 varsize_limit = 65536;
3fcded8f
JB
14553 add_setshow_uinteger_cmd ("varsize-limit", class_support,
14554 &varsize_limit, _("\
14555Set the maximum number of bytes allowed in a variable-size object."), _("\
14556Show the maximum number of bytes allowed in a variable-size object."), _("\
14557Attempts to access an object whose size is not a compile-time constant\n\
14558and exceeds this limit will cause an error."),
14559 NULL, NULL, &setlist, &showlist);
6c038f32 14560
778865d3
JB
14561 add_info ("exceptions", info_exceptions_command,
14562 _("\
14563List all Ada exception names.\n\
14564If a regular expression is passed as an argument, only those matching\n\
14565the regular expression are listed."));
14566
c6044dd1
JB
14567 add_prefix_cmd ("ada", class_maintenance, maint_set_ada_cmd,
14568 _("Set Ada maintenance-related variables."),
14569 &maint_set_ada_cmdlist, "maintenance set ada ",
14570 0/*allow-unknown*/, &maintenance_set_cmdlist);
14571
14572 add_prefix_cmd ("ada", class_maintenance, maint_show_ada_cmd,
14573 _("Show Ada maintenance-related variables"),
14574 &maint_show_ada_cmdlist, "maintenance show ada ",
14575 0/*allow-unknown*/, &maintenance_show_cmdlist);
14576
14577 add_setshow_boolean_cmd
14578 ("ignore-descriptive-types", class_maintenance,
14579 &ada_ignore_descriptive_types_p,
14580 _("Set whether descriptive types generated by GNAT should be ignored."),
14581 _("Show whether descriptive types generated by GNAT should be ignored."),
14582 _("\
14583When enabled, the debugger will stop using the DW_AT_GNAT_descriptive_type\n\
14584DWARF attribute."),
14585 NULL, NULL, &maint_set_ada_cmdlist, &maint_show_ada_cmdlist);
14586
459a2e4c
TT
14587 decoded_names_store = htab_create_alloc (256, htab_hash_string, streq_hash,
14588 NULL, xcalloc, xfree);
6b69afc4 14589
3d9434b5 14590 /* The ada-lang observers. */
76727919
TT
14591 gdb::observers::new_objfile.attach (ada_new_objfile_observer);
14592 gdb::observers::free_objfile.attach (ada_free_objfile_observer);
14593 gdb::observers::inferior_exit.attach (ada_inferior_exit);
ee01b665
JB
14594
14595 /* Setup various context-specific data. */
e802dbe0 14596 ada_inferior_data
8e260fc0 14597 = register_inferior_data_with_cleanup (NULL, ada_inferior_data_cleanup);
ee01b665
JB
14598 ada_pspace_data_handle
14599 = register_program_space_data_with_cleanup (NULL, ada_pspace_data_cleanup);
14f9c5c9 14600}