]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blame - gdb/ada-lang.c
*** empty log message ***
[thirdparty/binutils-gdb.git] / gdb / ada-lang.c
CommitLineData
6e681866 1/* Ada language support routines for GDB, the GNU debugger.
10a2c479 2
0b302171
JB
3 Copyright (C) 1992-1994, 1997-2000, 2003-2005, 2007-2012 Free
4 Software Foundation, Inc.
14f9c5c9 5
a9762ec7 6 This file is part of GDB.
14f9c5c9 7
a9762ec7
JB
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
14f9c5c9 12
a9762ec7
JB
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
14f9c5c9 17
a9762ec7
JB
18 You should have received a copy of the GNU General Public License
19 along with this program. If not, see <http://www.gnu.org/licenses/>. */
14f9c5c9 20
96d887e8 21
4c4b4cd2 22#include "defs.h"
14f9c5c9 23#include <stdio.h>
0c30c098 24#include "gdb_string.h"
14f9c5c9
AS
25#include <ctype.h>
26#include <stdarg.h>
27#include "demangle.h"
4c4b4cd2
PH
28#include "gdb_regex.h"
29#include "frame.h"
14f9c5c9
AS
30#include "symtab.h"
31#include "gdbtypes.h"
32#include "gdbcmd.h"
33#include "expression.h"
34#include "parser-defs.h"
35#include "language.h"
36#include "c-lang.h"
37#include "inferior.h"
38#include "symfile.h"
39#include "objfiles.h"
40#include "breakpoint.h"
41#include "gdbcore.h"
4c4b4cd2
PH
42#include "hashtab.h"
43#include "gdb_obstack.h"
14f9c5c9 44#include "ada-lang.h"
4c4b4cd2
PH
45#include "completer.h"
46#include "gdb_stat.h"
47#ifdef UI_OUT
14f9c5c9 48#include "ui-out.h"
4c4b4cd2 49#endif
fe898f56 50#include "block.h"
04714b91 51#include "infcall.h"
de4f826b 52#include "dictionary.h"
60250e8b 53#include "exceptions.h"
f7f9143b
JB
54#include "annotate.h"
55#include "valprint.h"
9bbc9174 56#include "source.h"
0259addd 57#include "observer.h"
2ba95b9b 58#include "vec.h"
692465f1 59#include "stack.h"
fa864999 60#include "gdb_vecs.h"
14f9c5c9 61
ccefe4c4 62#include "psymtab.h"
40bc484c 63#include "value.h"
956a9fb9 64#include "mi/mi-common.h"
9ac4176b 65#include "arch-utils.h"
28010a5d 66#include "exceptions.h"
0fcd72ba 67#include "cli/cli-utils.h"
ccefe4c4 68
4c4b4cd2 69/* Define whether or not the C operator '/' truncates towards zero for
0963b4bd 70 differently signed operands (truncation direction is undefined in C).
4c4b4cd2
PH
71 Copied from valarith.c. */
72
73#ifndef TRUNCATION_TOWARDS_ZERO
74#define TRUNCATION_TOWARDS_ZERO ((-5 / 2) == -2)
75#endif
76
d2e4a39e 77static struct type *desc_base_type (struct type *);
14f9c5c9 78
d2e4a39e 79static struct type *desc_bounds_type (struct type *);
14f9c5c9 80
d2e4a39e 81static struct value *desc_bounds (struct value *);
14f9c5c9 82
d2e4a39e 83static int fat_pntr_bounds_bitpos (struct type *);
14f9c5c9 84
d2e4a39e 85static int fat_pntr_bounds_bitsize (struct type *);
14f9c5c9 86
556bdfd4 87static struct type *desc_data_target_type (struct type *);
14f9c5c9 88
d2e4a39e 89static struct value *desc_data (struct value *);
14f9c5c9 90
d2e4a39e 91static int fat_pntr_data_bitpos (struct type *);
14f9c5c9 92
d2e4a39e 93static int fat_pntr_data_bitsize (struct type *);
14f9c5c9 94
d2e4a39e 95static struct value *desc_one_bound (struct value *, int, int);
14f9c5c9 96
d2e4a39e 97static int desc_bound_bitpos (struct type *, int, int);
14f9c5c9 98
d2e4a39e 99static int desc_bound_bitsize (struct type *, int, int);
14f9c5c9 100
d2e4a39e 101static struct type *desc_index_type (struct type *, int);
14f9c5c9 102
d2e4a39e 103static int desc_arity (struct type *);
14f9c5c9 104
d2e4a39e 105static int ada_type_match (struct type *, struct type *, int);
14f9c5c9 106
d2e4a39e 107static int ada_args_match (struct symbol *, struct value **, int);
14f9c5c9 108
40658b94
PH
109static int full_match (const char *, const char *);
110
40bc484c 111static struct value *make_array_descriptor (struct type *, struct value *);
14f9c5c9 112
4c4b4cd2 113static void ada_add_block_symbols (struct obstack *,
76a01679 114 struct block *, const char *,
2570f2b7 115 domain_enum, struct objfile *, int);
14f9c5c9 116
4c4b4cd2 117static int is_nonfunction (struct ada_symbol_info *, int);
14f9c5c9 118
76a01679 119static void add_defn_to_vec (struct obstack *, struct symbol *,
2570f2b7 120 struct block *);
14f9c5c9 121
4c4b4cd2
PH
122static int num_defns_collected (struct obstack *);
123
124static struct ada_symbol_info *defns_collected (struct obstack *, int);
14f9c5c9 125
4c4b4cd2 126static struct value *resolve_subexp (struct expression **, int *, int,
76a01679 127 struct type *);
14f9c5c9 128
d2e4a39e 129static void replace_operator_with_call (struct expression **, int, int, int,
4c4b4cd2 130 struct symbol *, struct block *);
14f9c5c9 131
d2e4a39e 132static int possible_user_operator_p (enum exp_opcode, struct value **);
14f9c5c9 133
4c4b4cd2
PH
134static char *ada_op_name (enum exp_opcode);
135
136static const char *ada_decoded_op_name (enum exp_opcode);
14f9c5c9 137
d2e4a39e 138static int numeric_type_p (struct type *);
14f9c5c9 139
d2e4a39e 140static int integer_type_p (struct type *);
14f9c5c9 141
d2e4a39e 142static int scalar_type_p (struct type *);
14f9c5c9 143
d2e4a39e 144static int discrete_type_p (struct type *);
14f9c5c9 145
aeb5907d
JB
146static enum ada_renaming_category parse_old_style_renaming (struct type *,
147 const char **,
148 int *,
149 const char **);
150
151static struct symbol *find_old_style_renaming_symbol (const char *,
152 struct block *);
153
4c4b4cd2 154static struct type *ada_lookup_struct_elt_type (struct type *, char *,
76a01679 155 int, int, int *);
4c4b4cd2 156
d2e4a39e 157static struct value *evaluate_subexp_type (struct expression *, int *);
14f9c5c9 158
b4ba55a1
JB
159static struct type *ada_find_parallel_type_with_name (struct type *,
160 const char *);
161
d2e4a39e 162static int is_dynamic_field (struct type *, int);
14f9c5c9 163
10a2c479 164static struct type *to_fixed_variant_branch_type (struct type *,
fc1a4b47 165 const gdb_byte *,
4c4b4cd2
PH
166 CORE_ADDR, struct value *);
167
168static struct type *to_fixed_array_type (struct type *, struct value *, int);
14f9c5c9 169
28c85d6c 170static struct type *to_fixed_range_type (struct type *, struct value *);
14f9c5c9 171
d2e4a39e 172static struct type *to_static_fixed_type (struct type *);
f192137b 173static struct type *static_unwrap_type (struct type *type);
14f9c5c9 174
d2e4a39e 175static struct value *unwrap_value (struct value *);
14f9c5c9 176
ad82864c 177static struct type *constrained_packed_array_type (struct type *, long *);
14f9c5c9 178
ad82864c 179static struct type *decode_constrained_packed_array_type (struct type *);
14f9c5c9 180
ad82864c
JB
181static long decode_packed_array_bitsize (struct type *);
182
183static struct value *decode_constrained_packed_array (struct value *);
184
185static int ada_is_packed_array_type (struct type *);
186
187static int ada_is_unconstrained_packed_array_type (struct type *);
14f9c5c9 188
d2e4a39e 189static struct value *value_subscript_packed (struct value *, int,
4c4b4cd2 190 struct value **);
14f9c5c9 191
50810684 192static void move_bits (gdb_byte *, int, const gdb_byte *, int, int, int);
52ce6436 193
4c4b4cd2
PH
194static struct value *coerce_unspec_val_to_type (struct value *,
195 struct type *);
14f9c5c9 196
d2e4a39e 197static struct value *get_var_value (char *, char *);
14f9c5c9 198
d2e4a39e 199static int lesseq_defined_than (struct symbol *, struct symbol *);
14f9c5c9 200
d2e4a39e 201static int equiv_types (struct type *, struct type *);
14f9c5c9 202
d2e4a39e 203static int is_name_suffix (const char *);
14f9c5c9 204
73589123
PH
205static int advance_wild_match (const char **, const char *, int);
206
207static int wild_match (const char *, const char *);
14f9c5c9 208
d2e4a39e 209static struct value *ada_coerce_ref (struct value *);
14f9c5c9 210
4c4b4cd2
PH
211static LONGEST pos_atr (struct value *);
212
3cb382c9 213static struct value *value_pos_atr (struct type *, struct value *);
14f9c5c9 214
d2e4a39e 215static struct value *value_val_atr (struct type *, struct value *);
14f9c5c9 216
4c4b4cd2
PH
217static struct symbol *standard_lookup (const char *, const struct block *,
218 domain_enum);
14f9c5c9 219
4c4b4cd2
PH
220static struct value *ada_search_struct_field (char *, struct value *, int,
221 struct type *);
222
223static struct value *ada_value_primitive_field (struct value *, int, int,
224 struct type *);
225
76a01679 226static int find_struct_field (char *, struct type *, int,
52ce6436 227 struct type **, int *, int *, int *, int *);
4c4b4cd2
PH
228
229static struct value *ada_to_fixed_value_create (struct type *, CORE_ADDR,
230 struct value *);
231
4c4b4cd2
PH
232static int ada_resolve_function (struct ada_symbol_info *, int,
233 struct value **, int, const char *,
234 struct type *);
235
4c4b4cd2
PH
236static int ada_is_direct_array_type (struct type *);
237
72d5681a
PH
238static void ada_language_arch_info (struct gdbarch *,
239 struct language_arch_info *);
714e53ab
PH
240
241static void check_size (const struct type *);
52ce6436
PH
242
243static struct value *ada_index_struct_field (int, struct value *, int,
244 struct type *);
245
246static struct value *assign_aggregate (struct value *, struct value *,
0963b4bd
MS
247 struct expression *,
248 int *, enum noside);
52ce6436
PH
249
250static void aggregate_assign_from_choices (struct value *, struct value *,
251 struct expression *,
252 int *, LONGEST *, int *,
253 int, LONGEST, LONGEST);
254
255static void aggregate_assign_positional (struct value *, struct value *,
256 struct expression *,
257 int *, LONGEST *, int *, int,
258 LONGEST, LONGEST);
259
260
261static void aggregate_assign_others (struct value *, struct value *,
262 struct expression *,
263 int *, LONGEST *, int, LONGEST, LONGEST);
264
265
266static void add_component_interval (LONGEST, LONGEST, LONGEST *, int *, int);
267
268
269static struct value *ada_evaluate_subexp (struct type *, struct expression *,
270 int *, enum noside);
271
272static void ada_forward_operator_length (struct expression *, int, int *,
273 int *);
4c4b4cd2
PH
274\f
275
76a01679 276
4c4b4cd2 277/* Maximum-sized dynamic type. */
14f9c5c9
AS
278static unsigned int varsize_limit;
279
4c4b4cd2
PH
280/* FIXME: brobecker/2003-09-17: No longer a const because it is
281 returned by a function that does not return a const char *. */
282static char *ada_completer_word_break_characters =
283#ifdef VMS
284 " \t\n!@#%^&*()+=|~`}{[]\";:?/,-";
285#else
14f9c5c9 286 " \t\n!@#$%^&*()+=|~`}{[]\";:?/,-";
4c4b4cd2 287#endif
14f9c5c9 288
4c4b4cd2 289/* The name of the symbol to use to get the name of the main subprogram. */
76a01679 290static const char ADA_MAIN_PROGRAM_SYMBOL_NAME[]
4c4b4cd2 291 = "__gnat_ada_main_program_name";
14f9c5c9 292
4c4b4cd2
PH
293/* Limit on the number of warnings to raise per expression evaluation. */
294static int warning_limit = 2;
295
296/* Number of warning messages issued; reset to 0 by cleanups after
297 expression evaluation. */
298static int warnings_issued = 0;
299
300static const char *known_runtime_file_name_patterns[] = {
301 ADA_KNOWN_RUNTIME_FILE_NAME_PATTERNS NULL
302};
303
304static const char *known_auxiliary_function_name_patterns[] = {
305 ADA_KNOWN_AUXILIARY_FUNCTION_NAME_PATTERNS NULL
306};
307
308/* Space for allocating results of ada_lookup_symbol_list. */
309static struct obstack symbol_list_obstack;
310
e802dbe0
JB
311 /* Inferior-specific data. */
312
313/* Per-inferior data for this module. */
314
315struct ada_inferior_data
316{
317 /* The ada__tags__type_specific_data type, which is used when decoding
318 tagged types. With older versions of GNAT, this type was directly
319 accessible through a component ("tsd") in the object tag. But this
320 is no longer the case, so we cache it for each inferior. */
321 struct type *tsd_type;
3eecfa55
JB
322
323 /* The exception_support_info data. This data is used to determine
324 how to implement support for Ada exception catchpoints in a given
325 inferior. */
326 const struct exception_support_info *exception_info;
e802dbe0
JB
327};
328
329/* Our key to this module's inferior data. */
330static const struct inferior_data *ada_inferior_data;
331
332/* A cleanup routine for our inferior data. */
333static void
334ada_inferior_data_cleanup (struct inferior *inf, void *arg)
335{
336 struct ada_inferior_data *data;
337
338 data = inferior_data (inf, ada_inferior_data);
339 if (data != NULL)
340 xfree (data);
341}
342
343/* Return our inferior data for the given inferior (INF).
344
345 This function always returns a valid pointer to an allocated
346 ada_inferior_data structure. If INF's inferior data has not
347 been previously set, this functions creates a new one with all
348 fields set to zero, sets INF's inferior to it, and then returns
349 a pointer to that newly allocated ada_inferior_data. */
350
351static struct ada_inferior_data *
352get_ada_inferior_data (struct inferior *inf)
353{
354 struct ada_inferior_data *data;
355
356 data = inferior_data (inf, ada_inferior_data);
357 if (data == NULL)
358 {
359 data = XZALLOC (struct ada_inferior_data);
360 set_inferior_data (inf, ada_inferior_data, data);
361 }
362
363 return data;
364}
365
366/* Perform all necessary cleanups regarding our module's inferior data
367 that is required after the inferior INF just exited. */
368
369static void
370ada_inferior_exit (struct inferior *inf)
371{
372 ada_inferior_data_cleanup (inf, NULL);
373 set_inferior_data (inf, ada_inferior_data, NULL);
374}
375
4c4b4cd2
PH
376 /* Utilities */
377
720d1a40 378/* If TYPE is a TYPE_CODE_TYPEDEF type, return the target type after
eed9788b 379 all typedef layers have been peeled. Otherwise, return TYPE.
720d1a40
JB
380
381 Normally, we really expect a typedef type to only have 1 typedef layer.
382 In other words, we really expect the target type of a typedef type to be
383 a non-typedef type. This is particularly true for Ada units, because
384 the language does not have a typedef vs not-typedef distinction.
385 In that respect, the Ada compiler has been trying to eliminate as many
386 typedef definitions in the debugging information, since they generally
387 do not bring any extra information (we still use typedef under certain
388 circumstances related mostly to the GNAT encoding).
389
390 Unfortunately, we have seen situations where the debugging information
391 generated by the compiler leads to such multiple typedef layers. For
392 instance, consider the following example with stabs:
393
394 .stabs "pck__float_array___XUP:Tt(0,46)=s16P_ARRAY:(0,47)=[...]"[...]
395 .stabs "pck__float_array___XUP:t(0,36)=(0,46)",128,0,6,0
396
397 This is an error in the debugging information which causes type
398 pck__float_array___XUP to be defined twice, and the second time,
399 it is defined as a typedef of a typedef.
400
401 This is on the fringe of legality as far as debugging information is
402 concerned, and certainly unexpected. But it is easy to handle these
403 situations correctly, so we can afford to be lenient in this case. */
404
405static struct type *
406ada_typedef_target_type (struct type *type)
407{
408 while (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
409 type = TYPE_TARGET_TYPE (type);
410 return type;
411}
412
41d27058
JB
413/* Given DECODED_NAME a string holding a symbol name in its
414 decoded form (ie using the Ada dotted notation), returns
415 its unqualified name. */
416
417static const char *
418ada_unqualified_name (const char *decoded_name)
419{
420 const char *result = strrchr (decoded_name, '.');
421
422 if (result != NULL)
423 result++; /* Skip the dot... */
424 else
425 result = decoded_name;
426
427 return result;
428}
429
430/* Return a string starting with '<', followed by STR, and '>'.
431 The result is good until the next call. */
432
433static char *
434add_angle_brackets (const char *str)
435{
436 static char *result = NULL;
437
438 xfree (result);
88c15c34 439 result = xstrprintf ("<%s>", str);
41d27058
JB
440 return result;
441}
96d887e8 442
4c4b4cd2
PH
443static char *
444ada_get_gdb_completer_word_break_characters (void)
445{
446 return ada_completer_word_break_characters;
447}
448
e79af960
JB
449/* Print an array element index using the Ada syntax. */
450
451static void
452ada_print_array_index (struct value *index_value, struct ui_file *stream,
79a45b7d 453 const struct value_print_options *options)
e79af960 454{
79a45b7d 455 LA_VALUE_PRINT (index_value, stream, options);
e79af960
JB
456 fprintf_filtered (stream, " => ");
457}
458
f27cf670 459/* Assuming VECT points to an array of *SIZE objects of size
14f9c5c9 460 ELEMENT_SIZE, grow it to contain at least MIN_SIZE objects,
f27cf670 461 updating *SIZE as necessary and returning the (new) array. */
14f9c5c9 462
f27cf670
AS
463void *
464grow_vect (void *vect, size_t *size, size_t min_size, int element_size)
14f9c5c9 465{
d2e4a39e
AS
466 if (*size < min_size)
467 {
468 *size *= 2;
469 if (*size < min_size)
4c4b4cd2 470 *size = min_size;
f27cf670 471 vect = xrealloc (vect, *size * element_size);
d2e4a39e 472 }
f27cf670 473 return vect;
14f9c5c9
AS
474}
475
476/* True (non-zero) iff TARGET matches FIELD_NAME up to any trailing
4c4b4cd2 477 suffix of FIELD_NAME beginning "___". */
14f9c5c9
AS
478
479static int
ebf56fd3 480field_name_match (const char *field_name, const char *target)
14f9c5c9
AS
481{
482 int len = strlen (target);
5b4ee69b 483
d2e4a39e 484 return
4c4b4cd2
PH
485 (strncmp (field_name, target, len) == 0
486 && (field_name[len] == '\0'
487 || (strncmp (field_name + len, "___", 3) == 0
76a01679
JB
488 && strcmp (field_name + strlen (field_name) - 6,
489 "___XVN") != 0)));
14f9c5c9
AS
490}
491
492
872c8b51
JB
493/* Assuming TYPE is a TYPE_CODE_STRUCT or a TYPE_CODE_TYPDEF to
494 a TYPE_CODE_STRUCT, find the field whose name matches FIELD_NAME,
495 and return its index. This function also handles fields whose name
496 have ___ suffixes because the compiler sometimes alters their name
497 by adding such a suffix to represent fields with certain constraints.
498 If the field could not be found, return a negative number if
499 MAYBE_MISSING is set. Otherwise raise an error. */
4c4b4cd2
PH
500
501int
502ada_get_field_index (const struct type *type, const char *field_name,
503 int maybe_missing)
504{
505 int fieldno;
872c8b51
JB
506 struct type *struct_type = check_typedef ((struct type *) type);
507
508 for (fieldno = 0; fieldno < TYPE_NFIELDS (struct_type); fieldno++)
509 if (field_name_match (TYPE_FIELD_NAME (struct_type, fieldno), field_name))
4c4b4cd2
PH
510 return fieldno;
511
512 if (!maybe_missing)
323e0a4a 513 error (_("Unable to find field %s in struct %s. Aborting"),
872c8b51 514 field_name, TYPE_NAME (struct_type));
4c4b4cd2
PH
515
516 return -1;
517}
518
519/* The length of the prefix of NAME prior to any "___" suffix. */
14f9c5c9
AS
520
521int
d2e4a39e 522ada_name_prefix_len (const char *name)
14f9c5c9
AS
523{
524 if (name == NULL)
525 return 0;
d2e4a39e 526 else
14f9c5c9 527 {
d2e4a39e 528 const char *p = strstr (name, "___");
5b4ee69b 529
14f9c5c9 530 if (p == NULL)
4c4b4cd2 531 return strlen (name);
14f9c5c9 532 else
4c4b4cd2 533 return p - name;
14f9c5c9
AS
534 }
535}
536
4c4b4cd2
PH
537/* Return non-zero if SUFFIX is a suffix of STR.
538 Return zero if STR is null. */
539
14f9c5c9 540static int
d2e4a39e 541is_suffix (const char *str, const char *suffix)
14f9c5c9
AS
542{
543 int len1, len2;
5b4ee69b 544
14f9c5c9
AS
545 if (str == NULL)
546 return 0;
547 len1 = strlen (str);
548 len2 = strlen (suffix);
4c4b4cd2 549 return (len1 >= len2 && strcmp (str + len1 - len2, suffix) == 0);
14f9c5c9
AS
550}
551
4c4b4cd2
PH
552/* The contents of value VAL, treated as a value of type TYPE. The
553 result is an lval in memory if VAL is. */
14f9c5c9 554
d2e4a39e 555static struct value *
4c4b4cd2 556coerce_unspec_val_to_type (struct value *val, struct type *type)
14f9c5c9 557{
61ee279c 558 type = ada_check_typedef (type);
df407dfe 559 if (value_type (val) == type)
4c4b4cd2 560 return val;
d2e4a39e 561 else
14f9c5c9 562 {
4c4b4cd2
PH
563 struct value *result;
564
565 /* Make sure that the object size is not unreasonable before
566 trying to allocate some memory for it. */
714e53ab 567 check_size (type);
4c4b4cd2 568
41e8491f
JK
569 if (value_lazy (val)
570 || TYPE_LENGTH (type) > TYPE_LENGTH (value_type (val)))
571 result = allocate_value_lazy (type);
572 else
573 {
574 result = allocate_value (type);
575 memcpy (value_contents_raw (result), value_contents (val),
576 TYPE_LENGTH (type));
577 }
74bcbdf3 578 set_value_component_location (result, val);
9bbda503
AC
579 set_value_bitsize (result, value_bitsize (val));
580 set_value_bitpos (result, value_bitpos (val));
42ae5230 581 set_value_address (result, value_address (val));
14f9c5c9
AS
582 return result;
583 }
584}
585
fc1a4b47
AC
586static const gdb_byte *
587cond_offset_host (const gdb_byte *valaddr, long offset)
14f9c5c9
AS
588{
589 if (valaddr == NULL)
590 return NULL;
591 else
592 return valaddr + offset;
593}
594
595static CORE_ADDR
ebf56fd3 596cond_offset_target (CORE_ADDR address, long offset)
14f9c5c9
AS
597{
598 if (address == 0)
599 return 0;
d2e4a39e 600 else
14f9c5c9
AS
601 return address + offset;
602}
603
4c4b4cd2
PH
604/* Issue a warning (as for the definition of warning in utils.c, but
605 with exactly one argument rather than ...), unless the limit on the
606 number of warnings has passed during the evaluation of the current
607 expression. */
a2249542 608
77109804
AC
609/* FIXME: cagney/2004-10-10: This function is mimicking the behavior
610 provided by "complaint". */
a0b31db1 611static void lim_warning (const char *format, ...) ATTRIBUTE_PRINTF (1, 2);
77109804 612
14f9c5c9 613static void
a2249542 614lim_warning (const char *format, ...)
14f9c5c9 615{
a2249542 616 va_list args;
a2249542 617
5b4ee69b 618 va_start (args, format);
4c4b4cd2
PH
619 warnings_issued += 1;
620 if (warnings_issued <= warning_limit)
a2249542
MK
621 vwarning (format, args);
622
623 va_end (args);
4c4b4cd2
PH
624}
625
714e53ab
PH
626/* Issue an error if the size of an object of type T is unreasonable,
627 i.e. if it would be a bad idea to allocate a value of this type in
628 GDB. */
629
630static void
631check_size (const struct type *type)
632{
633 if (TYPE_LENGTH (type) > varsize_limit)
323e0a4a 634 error (_("object size is larger than varsize-limit"));
714e53ab
PH
635}
636
0963b4bd 637/* Maximum value of a SIZE-byte signed integer type. */
4c4b4cd2 638static LONGEST
c3e5cd34 639max_of_size (int size)
4c4b4cd2 640{
76a01679 641 LONGEST top_bit = (LONGEST) 1 << (size * 8 - 2);
5b4ee69b 642
76a01679 643 return top_bit | (top_bit - 1);
4c4b4cd2
PH
644}
645
0963b4bd 646/* Minimum value of a SIZE-byte signed integer type. */
4c4b4cd2 647static LONGEST
c3e5cd34 648min_of_size (int size)
4c4b4cd2 649{
c3e5cd34 650 return -max_of_size (size) - 1;
4c4b4cd2
PH
651}
652
0963b4bd 653/* Maximum value of a SIZE-byte unsigned integer type. */
4c4b4cd2 654static ULONGEST
c3e5cd34 655umax_of_size (int size)
4c4b4cd2 656{
76a01679 657 ULONGEST top_bit = (ULONGEST) 1 << (size * 8 - 1);
5b4ee69b 658
76a01679 659 return top_bit | (top_bit - 1);
4c4b4cd2
PH
660}
661
0963b4bd 662/* Maximum value of integral type T, as a signed quantity. */
c3e5cd34
PH
663static LONGEST
664max_of_type (struct type *t)
4c4b4cd2 665{
c3e5cd34
PH
666 if (TYPE_UNSIGNED (t))
667 return (LONGEST) umax_of_size (TYPE_LENGTH (t));
668 else
669 return max_of_size (TYPE_LENGTH (t));
670}
671
0963b4bd 672/* Minimum value of integral type T, as a signed quantity. */
c3e5cd34
PH
673static LONGEST
674min_of_type (struct type *t)
675{
676 if (TYPE_UNSIGNED (t))
677 return 0;
678 else
679 return min_of_size (TYPE_LENGTH (t));
4c4b4cd2
PH
680}
681
682/* The largest value in the domain of TYPE, a discrete type, as an integer. */
43bbcdc2
PH
683LONGEST
684ada_discrete_type_high_bound (struct type *type)
4c4b4cd2 685{
76a01679 686 switch (TYPE_CODE (type))
4c4b4cd2
PH
687 {
688 case TYPE_CODE_RANGE:
690cc4eb 689 return TYPE_HIGH_BOUND (type);
4c4b4cd2 690 case TYPE_CODE_ENUM:
690cc4eb
PH
691 return TYPE_FIELD_BITPOS (type, TYPE_NFIELDS (type) - 1);
692 case TYPE_CODE_BOOL:
693 return 1;
694 case TYPE_CODE_CHAR:
76a01679 695 case TYPE_CODE_INT:
690cc4eb 696 return max_of_type (type);
4c4b4cd2 697 default:
43bbcdc2 698 error (_("Unexpected type in ada_discrete_type_high_bound."));
4c4b4cd2
PH
699 }
700}
701
702/* The largest value in the domain of TYPE, a discrete type, as an integer. */
43bbcdc2
PH
703LONGEST
704ada_discrete_type_low_bound (struct type *type)
4c4b4cd2 705{
76a01679 706 switch (TYPE_CODE (type))
4c4b4cd2
PH
707 {
708 case TYPE_CODE_RANGE:
690cc4eb 709 return TYPE_LOW_BOUND (type);
4c4b4cd2 710 case TYPE_CODE_ENUM:
690cc4eb
PH
711 return TYPE_FIELD_BITPOS (type, 0);
712 case TYPE_CODE_BOOL:
713 return 0;
714 case TYPE_CODE_CHAR:
76a01679 715 case TYPE_CODE_INT:
690cc4eb 716 return min_of_type (type);
4c4b4cd2 717 default:
43bbcdc2 718 error (_("Unexpected type in ada_discrete_type_low_bound."));
4c4b4cd2
PH
719 }
720}
721
722/* The identity on non-range types. For range types, the underlying
76a01679 723 non-range scalar type. */
4c4b4cd2
PH
724
725static struct type *
18af8284 726get_base_type (struct type *type)
4c4b4cd2
PH
727{
728 while (type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE)
729 {
76a01679
JB
730 if (type == TYPE_TARGET_TYPE (type) || TYPE_TARGET_TYPE (type) == NULL)
731 return type;
4c4b4cd2
PH
732 type = TYPE_TARGET_TYPE (type);
733 }
734 return type;
14f9c5c9 735}
4c4b4cd2 736\f
76a01679 737
4c4b4cd2 738 /* Language Selection */
14f9c5c9
AS
739
740/* If the main program is in Ada, return language_ada, otherwise return LANG
ccefe4c4 741 (the main program is in Ada iif the adainit symbol is found). */
d2e4a39e 742
14f9c5c9 743enum language
ccefe4c4 744ada_update_initial_language (enum language lang)
14f9c5c9 745{
d2e4a39e 746 if (lookup_minimal_symbol ("adainit", (const char *) NULL,
4c4b4cd2
PH
747 (struct objfile *) NULL) != NULL)
748 return language_ada;
14f9c5c9
AS
749
750 return lang;
751}
96d887e8
PH
752
753/* If the main procedure is written in Ada, then return its name.
754 The result is good until the next call. Return NULL if the main
755 procedure doesn't appear to be in Ada. */
756
757char *
758ada_main_name (void)
759{
760 struct minimal_symbol *msym;
f9bc20b9 761 static char *main_program_name = NULL;
6c038f32 762
96d887e8
PH
763 /* For Ada, the name of the main procedure is stored in a specific
764 string constant, generated by the binder. Look for that symbol,
765 extract its address, and then read that string. If we didn't find
766 that string, then most probably the main procedure is not written
767 in Ada. */
768 msym = lookup_minimal_symbol (ADA_MAIN_PROGRAM_SYMBOL_NAME, NULL, NULL);
769
770 if (msym != NULL)
771 {
f9bc20b9
JB
772 CORE_ADDR main_program_name_addr;
773 int err_code;
774
96d887e8
PH
775 main_program_name_addr = SYMBOL_VALUE_ADDRESS (msym);
776 if (main_program_name_addr == 0)
323e0a4a 777 error (_("Invalid address for Ada main program name."));
96d887e8 778
f9bc20b9
JB
779 xfree (main_program_name);
780 target_read_string (main_program_name_addr, &main_program_name,
781 1024, &err_code);
782
783 if (err_code != 0)
784 return NULL;
96d887e8
PH
785 return main_program_name;
786 }
787
788 /* The main procedure doesn't seem to be in Ada. */
789 return NULL;
790}
14f9c5c9 791\f
4c4b4cd2 792 /* Symbols */
d2e4a39e 793
4c4b4cd2
PH
794/* Table of Ada operators and their GNAT-encoded names. Last entry is pair
795 of NULLs. */
14f9c5c9 796
d2e4a39e
AS
797const struct ada_opname_map ada_opname_table[] = {
798 {"Oadd", "\"+\"", BINOP_ADD},
799 {"Osubtract", "\"-\"", BINOP_SUB},
800 {"Omultiply", "\"*\"", BINOP_MUL},
801 {"Odivide", "\"/\"", BINOP_DIV},
802 {"Omod", "\"mod\"", BINOP_MOD},
803 {"Orem", "\"rem\"", BINOP_REM},
804 {"Oexpon", "\"**\"", BINOP_EXP},
805 {"Olt", "\"<\"", BINOP_LESS},
806 {"Ole", "\"<=\"", BINOP_LEQ},
807 {"Ogt", "\">\"", BINOP_GTR},
808 {"Oge", "\">=\"", BINOP_GEQ},
809 {"Oeq", "\"=\"", BINOP_EQUAL},
810 {"One", "\"/=\"", BINOP_NOTEQUAL},
811 {"Oand", "\"and\"", BINOP_BITWISE_AND},
812 {"Oor", "\"or\"", BINOP_BITWISE_IOR},
813 {"Oxor", "\"xor\"", BINOP_BITWISE_XOR},
814 {"Oconcat", "\"&\"", BINOP_CONCAT},
815 {"Oabs", "\"abs\"", UNOP_ABS},
816 {"Onot", "\"not\"", UNOP_LOGICAL_NOT},
817 {"Oadd", "\"+\"", UNOP_PLUS},
818 {"Osubtract", "\"-\"", UNOP_NEG},
819 {NULL, NULL}
14f9c5c9
AS
820};
821
4c4b4cd2
PH
822/* The "encoded" form of DECODED, according to GNAT conventions.
823 The result is valid until the next call to ada_encode. */
824
14f9c5c9 825char *
4c4b4cd2 826ada_encode (const char *decoded)
14f9c5c9 827{
4c4b4cd2
PH
828 static char *encoding_buffer = NULL;
829 static size_t encoding_buffer_size = 0;
d2e4a39e 830 const char *p;
14f9c5c9 831 int k;
d2e4a39e 832
4c4b4cd2 833 if (decoded == NULL)
14f9c5c9
AS
834 return NULL;
835
4c4b4cd2
PH
836 GROW_VECT (encoding_buffer, encoding_buffer_size,
837 2 * strlen (decoded) + 10);
14f9c5c9
AS
838
839 k = 0;
4c4b4cd2 840 for (p = decoded; *p != '\0'; p += 1)
14f9c5c9 841 {
cdc7bb92 842 if (*p == '.')
4c4b4cd2
PH
843 {
844 encoding_buffer[k] = encoding_buffer[k + 1] = '_';
845 k += 2;
846 }
14f9c5c9 847 else if (*p == '"')
4c4b4cd2
PH
848 {
849 const struct ada_opname_map *mapping;
850
851 for (mapping = ada_opname_table;
1265e4aa
JB
852 mapping->encoded != NULL
853 && strncmp (mapping->decoded, p,
854 strlen (mapping->decoded)) != 0; mapping += 1)
4c4b4cd2
PH
855 ;
856 if (mapping->encoded == NULL)
323e0a4a 857 error (_("invalid Ada operator name: %s"), p);
4c4b4cd2
PH
858 strcpy (encoding_buffer + k, mapping->encoded);
859 k += strlen (mapping->encoded);
860 break;
861 }
d2e4a39e 862 else
4c4b4cd2
PH
863 {
864 encoding_buffer[k] = *p;
865 k += 1;
866 }
14f9c5c9
AS
867 }
868
4c4b4cd2
PH
869 encoding_buffer[k] = '\0';
870 return encoding_buffer;
14f9c5c9
AS
871}
872
873/* Return NAME folded to lower case, or, if surrounded by single
4c4b4cd2
PH
874 quotes, unfolded, but with the quotes stripped away. Result good
875 to next call. */
876
d2e4a39e
AS
877char *
878ada_fold_name (const char *name)
14f9c5c9 879{
d2e4a39e 880 static char *fold_buffer = NULL;
14f9c5c9
AS
881 static size_t fold_buffer_size = 0;
882
883 int len = strlen (name);
d2e4a39e 884 GROW_VECT (fold_buffer, fold_buffer_size, len + 1);
14f9c5c9
AS
885
886 if (name[0] == '\'')
887 {
d2e4a39e
AS
888 strncpy (fold_buffer, name + 1, len - 2);
889 fold_buffer[len - 2] = '\000';
14f9c5c9
AS
890 }
891 else
892 {
893 int i;
5b4ee69b 894
14f9c5c9 895 for (i = 0; i <= len; i += 1)
4c4b4cd2 896 fold_buffer[i] = tolower (name[i]);
14f9c5c9
AS
897 }
898
899 return fold_buffer;
900}
901
529cad9c
PH
902/* Return nonzero if C is either a digit or a lowercase alphabet character. */
903
904static int
905is_lower_alphanum (const char c)
906{
907 return (isdigit (c) || (isalpha (c) && islower (c)));
908}
909
c90092fe
JB
910/* ENCODED is the linkage name of a symbol and LEN contains its length.
911 This function saves in LEN the length of that same symbol name but
912 without either of these suffixes:
29480c32
JB
913 . .{DIGIT}+
914 . ${DIGIT}+
915 . ___{DIGIT}+
916 . __{DIGIT}+.
c90092fe 917
29480c32
JB
918 These are suffixes introduced by the compiler for entities such as
919 nested subprogram for instance, in order to avoid name clashes.
920 They do not serve any purpose for the debugger. */
921
922static void
923ada_remove_trailing_digits (const char *encoded, int *len)
924{
925 if (*len > 1 && isdigit (encoded[*len - 1]))
926 {
927 int i = *len - 2;
5b4ee69b 928
29480c32
JB
929 while (i > 0 && isdigit (encoded[i]))
930 i--;
931 if (i >= 0 && encoded[i] == '.')
932 *len = i;
933 else if (i >= 0 && encoded[i] == '$')
934 *len = i;
935 else if (i >= 2 && strncmp (encoded + i - 2, "___", 3) == 0)
936 *len = i - 2;
937 else if (i >= 1 && strncmp (encoded + i - 1, "__", 2) == 0)
938 *len = i - 1;
939 }
940}
941
942/* Remove the suffix introduced by the compiler for protected object
943 subprograms. */
944
945static void
946ada_remove_po_subprogram_suffix (const char *encoded, int *len)
947{
948 /* Remove trailing N. */
949
950 /* Protected entry subprograms are broken into two
951 separate subprograms: The first one is unprotected, and has
952 a 'N' suffix; the second is the protected version, and has
0963b4bd 953 the 'P' suffix. The second calls the first one after handling
29480c32
JB
954 the protection. Since the P subprograms are internally generated,
955 we leave these names undecoded, giving the user a clue that this
956 entity is internal. */
957
958 if (*len > 1
959 && encoded[*len - 1] == 'N'
960 && (isdigit (encoded[*len - 2]) || islower (encoded[*len - 2])))
961 *len = *len - 1;
962}
963
69fadcdf
JB
964/* Remove trailing X[bn]* suffixes (indicating names in package bodies). */
965
966static void
967ada_remove_Xbn_suffix (const char *encoded, int *len)
968{
969 int i = *len - 1;
970
971 while (i > 0 && (encoded[i] == 'b' || encoded[i] == 'n'))
972 i--;
973
974 if (encoded[i] != 'X')
975 return;
976
977 if (i == 0)
978 return;
979
980 if (isalnum (encoded[i-1]))
981 *len = i;
982}
983
29480c32
JB
984/* If ENCODED follows the GNAT entity encoding conventions, then return
985 the decoded form of ENCODED. Otherwise, return "<%s>" where "%s" is
986 replaced by ENCODED.
14f9c5c9 987
4c4b4cd2 988 The resulting string is valid until the next call of ada_decode.
29480c32 989 If the string is unchanged by decoding, the original string pointer
4c4b4cd2
PH
990 is returned. */
991
992const char *
993ada_decode (const char *encoded)
14f9c5c9
AS
994{
995 int i, j;
996 int len0;
d2e4a39e 997 const char *p;
4c4b4cd2 998 char *decoded;
14f9c5c9 999 int at_start_name;
4c4b4cd2
PH
1000 static char *decoding_buffer = NULL;
1001 static size_t decoding_buffer_size = 0;
d2e4a39e 1002
29480c32
JB
1003 /* The name of the Ada main procedure starts with "_ada_".
1004 This prefix is not part of the decoded name, so skip this part
1005 if we see this prefix. */
4c4b4cd2
PH
1006 if (strncmp (encoded, "_ada_", 5) == 0)
1007 encoded += 5;
14f9c5c9 1008
29480c32
JB
1009 /* If the name starts with '_', then it is not a properly encoded
1010 name, so do not attempt to decode it. Similarly, if the name
1011 starts with '<', the name should not be decoded. */
4c4b4cd2 1012 if (encoded[0] == '_' || encoded[0] == '<')
14f9c5c9
AS
1013 goto Suppress;
1014
4c4b4cd2 1015 len0 = strlen (encoded);
4c4b4cd2 1016
29480c32
JB
1017 ada_remove_trailing_digits (encoded, &len0);
1018 ada_remove_po_subprogram_suffix (encoded, &len0);
529cad9c 1019
4c4b4cd2
PH
1020 /* Remove the ___X.* suffix if present. Do not forget to verify that
1021 the suffix is located before the current "end" of ENCODED. We want
1022 to avoid re-matching parts of ENCODED that have previously been
1023 marked as discarded (by decrementing LEN0). */
1024 p = strstr (encoded, "___");
1025 if (p != NULL && p - encoded < len0 - 3)
14f9c5c9
AS
1026 {
1027 if (p[3] == 'X')
4c4b4cd2 1028 len0 = p - encoded;
14f9c5c9 1029 else
4c4b4cd2 1030 goto Suppress;
14f9c5c9 1031 }
4c4b4cd2 1032
29480c32
JB
1033 /* Remove any trailing TKB suffix. It tells us that this symbol
1034 is for the body of a task, but that information does not actually
1035 appear in the decoded name. */
1036
4c4b4cd2 1037 if (len0 > 3 && strncmp (encoded + len0 - 3, "TKB", 3) == 0)
14f9c5c9 1038 len0 -= 3;
76a01679 1039
a10967fa
JB
1040 /* Remove any trailing TB suffix. The TB suffix is slightly different
1041 from the TKB suffix because it is used for non-anonymous task
1042 bodies. */
1043
1044 if (len0 > 2 && strncmp (encoded + len0 - 2, "TB", 2) == 0)
1045 len0 -= 2;
1046
29480c32
JB
1047 /* Remove trailing "B" suffixes. */
1048 /* FIXME: brobecker/2006-04-19: Not sure what this are used for... */
1049
4c4b4cd2 1050 if (len0 > 1 && strncmp (encoded + len0 - 1, "B", 1) == 0)
14f9c5c9
AS
1051 len0 -= 1;
1052
4c4b4cd2 1053 /* Make decoded big enough for possible expansion by operator name. */
29480c32 1054
4c4b4cd2
PH
1055 GROW_VECT (decoding_buffer, decoding_buffer_size, 2 * len0 + 1);
1056 decoded = decoding_buffer;
14f9c5c9 1057
29480c32
JB
1058 /* Remove trailing __{digit}+ or trailing ${digit}+. */
1059
4c4b4cd2 1060 if (len0 > 1 && isdigit (encoded[len0 - 1]))
d2e4a39e 1061 {
4c4b4cd2
PH
1062 i = len0 - 2;
1063 while ((i >= 0 && isdigit (encoded[i]))
1064 || (i >= 1 && encoded[i] == '_' && isdigit (encoded[i - 1])))
1065 i -= 1;
1066 if (i > 1 && encoded[i] == '_' && encoded[i - 1] == '_')
1067 len0 = i - 1;
1068 else if (encoded[i] == '$')
1069 len0 = i;
d2e4a39e 1070 }
14f9c5c9 1071
29480c32
JB
1072 /* The first few characters that are not alphabetic are not part
1073 of any encoding we use, so we can copy them over verbatim. */
1074
4c4b4cd2
PH
1075 for (i = 0, j = 0; i < len0 && !isalpha (encoded[i]); i += 1, j += 1)
1076 decoded[j] = encoded[i];
14f9c5c9
AS
1077
1078 at_start_name = 1;
1079 while (i < len0)
1080 {
29480c32 1081 /* Is this a symbol function? */
4c4b4cd2
PH
1082 if (at_start_name && encoded[i] == 'O')
1083 {
1084 int k;
5b4ee69b 1085
4c4b4cd2
PH
1086 for (k = 0; ada_opname_table[k].encoded != NULL; k += 1)
1087 {
1088 int op_len = strlen (ada_opname_table[k].encoded);
06d5cf63
JB
1089 if ((strncmp (ada_opname_table[k].encoded + 1, encoded + i + 1,
1090 op_len - 1) == 0)
1091 && !isalnum (encoded[i + op_len]))
4c4b4cd2
PH
1092 {
1093 strcpy (decoded + j, ada_opname_table[k].decoded);
1094 at_start_name = 0;
1095 i += op_len;
1096 j += strlen (ada_opname_table[k].decoded);
1097 break;
1098 }
1099 }
1100 if (ada_opname_table[k].encoded != NULL)
1101 continue;
1102 }
14f9c5c9
AS
1103 at_start_name = 0;
1104
529cad9c
PH
1105 /* Replace "TK__" with "__", which will eventually be translated
1106 into "." (just below). */
1107
4c4b4cd2
PH
1108 if (i < len0 - 4 && strncmp (encoded + i, "TK__", 4) == 0)
1109 i += 2;
529cad9c 1110
29480c32
JB
1111 /* Replace "__B_{DIGITS}+__" sequences by "__", which will eventually
1112 be translated into "." (just below). These are internal names
1113 generated for anonymous blocks inside which our symbol is nested. */
1114
1115 if (len0 - i > 5 && encoded [i] == '_' && encoded [i+1] == '_'
1116 && encoded [i+2] == 'B' && encoded [i+3] == '_'
1117 && isdigit (encoded [i+4]))
1118 {
1119 int k = i + 5;
1120
1121 while (k < len0 && isdigit (encoded[k]))
1122 k++; /* Skip any extra digit. */
1123
1124 /* Double-check that the "__B_{DIGITS}+" sequence we found
1125 is indeed followed by "__". */
1126 if (len0 - k > 2 && encoded [k] == '_' && encoded [k+1] == '_')
1127 i = k;
1128 }
1129
529cad9c
PH
1130 /* Remove _E{DIGITS}+[sb] */
1131
1132 /* Just as for protected object subprograms, there are 2 categories
0963b4bd 1133 of subprograms created by the compiler for each entry. The first
529cad9c
PH
1134 one implements the actual entry code, and has a suffix following
1135 the convention above; the second one implements the barrier and
1136 uses the same convention as above, except that the 'E' is replaced
1137 by a 'B'.
1138
1139 Just as above, we do not decode the name of barrier functions
1140 to give the user a clue that the code he is debugging has been
1141 internally generated. */
1142
1143 if (len0 - i > 3 && encoded [i] == '_' && encoded[i+1] == 'E'
1144 && isdigit (encoded[i+2]))
1145 {
1146 int k = i + 3;
1147
1148 while (k < len0 && isdigit (encoded[k]))
1149 k++;
1150
1151 if (k < len0
1152 && (encoded[k] == 'b' || encoded[k] == 's'))
1153 {
1154 k++;
1155 /* Just as an extra precaution, make sure that if this
1156 suffix is followed by anything else, it is a '_'.
1157 Otherwise, we matched this sequence by accident. */
1158 if (k == len0
1159 || (k < len0 && encoded[k] == '_'))
1160 i = k;
1161 }
1162 }
1163
1164 /* Remove trailing "N" in [a-z0-9]+N__. The N is added by
1165 the GNAT front-end in protected object subprograms. */
1166
1167 if (i < len0 + 3
1168 && encoded[i] == 'N' && encoded[i+1] == '_' && encoded[i+2] == '_')
1169 {
1170 /* Backtrack a bit up until we reach either the begining of
1171 the encoded name, or "__". Make sure that we only find
1172 digits or lowercase characters. */
1173 const char *ptr = encoded + i - 1;
1174
1175 while (ptr >= encoded && is_lower_alphanum (ptr[0]))
1176 ptr--;
1177 if (ptr < encoded
1178 || (ptr > encoded && ptr[0] == '_' && ptr[-1] == '_'))
1179 i++;
1180 }
1181
4c4b4cd2
PH
1182 if (encoded[i] == 'X' && i != 0 && isalnum (encoded[i - 1]))
1183 {
29480c32
JB
1184 /* This is a X[bn]* sequence not separated from the previous
1185 part of the name with a non-alpha-numeric character (in other
1186 words, immediately following an alpha-numeric character), then
1187 verify that it is placed at the end of the encoded name. If
1188 not, then the encoding is not valid and we should abort the
1189 decoding. Otherwise, just skip it, it is used in body-nested
1190 package names. */
4c4b4cd2
PH
1191 do
1192 i += 1;
1193 while (i < len0 && (encoded[i] == 'b' || encoded[i] == 'n'));
1194 if (i < len0)
1195 goto Suppress;
1196 }
cdc7bb92 1197 else if (i < len0 - 2 && encoded[i] == '_' && encoded[i + 1] == '_')
4c4b4cd2 1198 {
29480c32 1199 /* Replace '__' by '.'. */
4c4b4cd2
PH
1200 decoded[j] = '.';
1201 at_start_name = 1;
1202 i += 2;
1203 j += 1;
1204 }
14f9c5c9 1205 else
4c4b4cd2 1206 {
29480c32
JB
1207 /* It's a character part of the decoded name, so just copy it
1208 over. */
4c4b4cd2
PH
1209 decoded[j] = encoded[i];
1210 i += 1;
1211 j += 1;
1212 }
14f9c5c9 1213 }
4c4b4cd2 1214 decoded[j] = '\000';
14f9c5c9 1215
29480c32
JB
1216 /* Decoded names should never contain any uppercase character.
1217 Double-check this, and abort the decoding if we find one. */
1218
4c4b4cd2
PH
1219 for (i = 0; decoded[i] != '\0'; i += 1)
1220 if (isupper (decoded[i]) || decoded[i] == ' ')
14f9c5c9
AS
1221 goto Suppress;
1222
4c4b4cd2
PH
1223 if (strcmp (decoded, encoded) == 0)
1224 return encoded;
1225 else
1226 return decoded;
14f9c5c9
AS
1227
1228Suppress:
4c4b4cd2
PH
1229 GROW_VECT (decoding_buffer, decoding_buffer_size, strlen (encoded) + 3);
1230 decoded = decoding_buffer;
1231 if (encoded[0] == '<')
1232 strcpy (decoded, encoded);
14f9c5c9 1233 else
88c15c34 1234 xsnprintf (decoded, decoding_buffer_size, "<%s>", encoded);
4c4b4cd2
PH
1235 return decoded;
1236
1237}
1238
1239/* Table for keeping permanent unique copies of decoded names. Once
1240 allocated, names in this table are never released. While this is a
1241 storage leak, it should not be significant unless there are massive
1242 changes in the set of decoded names in successive versions of a
1243 symbol table loaded during a single session. */
1244static struct htab *decoded_names_store;
1245
1246/* Returns the decoded name of GSYMBOL, as for ada_decode, caching it
1247 in the language-specific part of GSYMBOL, if it has not been
1248 previously computed. Tries to save the decoded name in the same
1249 obstack as GSYMBOL, if possible, and otherwise on the heap (so that,
1250 in any case, the decoded symbol has a lifetime at least that of
0963b4bd 1251 GSYMBOL).
4c4b4cd2
PH
1252 The GSYMBOL parameter is "mutable" in the C++ sense: logically
1253 const, but nevertheless modified to a semantically equivalent form
0963b4bd 1254 when a decoded name is cached in it. */
4c4b4cd2 1255
76a01679
JB
1256char *
1257ada_decode_symbol (const struct general_symbol_info *gsymbol)
4c4b4cd2 1258{
76a01679 1259 char **resultp =
afa16725 1260 (char **) &gsymbol->language_specific.mangled_lang.demangled_name;
5b4ee69b 1261
4c4b4cd2
PH
1262 if (*resultp == NULL)
1263 {
1264 const char *decoded = ada_decode (gsymbol->name);
5b4ee69b 1265
714835d5 1266 if (gsymbol->obj_section != NULL)
76a01679 1267 {
714835d5 1268 struct objfile *objf = gsymbol->obj_section->objfile;
5b4ee69b 1269
714835d5
UW
1270 *resultp = obsavestring (decoded, strlen (decoded),
1271 &objf->objfile_obstack);
76a01679 1272 }
4c4b4cd2 1273 /* Sometimes, we can't find a corresponding objfile, in which
76a01679
JB
1274 case, we put the result on the heap. Since we only decode
1275 when needed, we hope this usually does not cause a
1276 significant memory leak (FIXME). */
4c4b4cd2 1277 if (*resultp == NULL)
76a01679
JB
1278 {
1279 char **slot = (char **) htab_find_slot (decoded_names_store,
1280 decoded, INSERT);
5b4ee69b 1281
76a01679
JB
1282 if (*slot == NULL)
1283 *slot = xstrdup (decoded);
1284 *resultp = *slot;
1285 }
4c4b4cd2 1286 }
14f9c5c9 1287
4c4b4cd2
PH
1288 return *resultp;
1289}
76a01679 1290
2c0b251b 1291static char *
76a01679 1292ada_la_decode (const char *encoded, int options)
4c4b4cd2
PH
1293{
1294 return xstrdup (ada_decode (encoded));
14f9c5c9
AS
1295}
1296
1297/* Returns non-zero iff SYM_NAME matches NAME, ignoring any trailing
4c4b4cd2
PH
1298 suffixes that encode debugging information or leading _ada_ on
1299 SYM_NAME (see is_name_suffix commentary for the debugging
1300 information that is ignored). If WILD, then NAME need only match a
1301 suffix of SYM_NAME minus the same suffixes. Also returns 0 if
1302 either argument is NULL. */
14f9c5c9 1303
2c0b251b 1304static int
40658b94 1305match_name (const char *sym_name, const char *name, int wild)
14f9c5c9
AS
1306{
1307 if (sym_name == NULL || name == NULL)
1308 return 0;
1309 else if (wild)
73589123 1310 return wild_match (sym_name, name) == 0;
d2e4a39e
AS
1311 else
1312 {
1313 int len_name = strlen (name);
5b4ee69b 1314
4c4b4cd2
PH
1315 return (strncmp (sym_name, name, len_name) == 0
1316 && is_name_suffix (sym_name + len_name))
1317 || (strncmp (sym_name, "_ada_", 5) == 0
1318 && strncmp (sym_name + 5, name, len_name) == 0
1319 && is_name_suffix (sym_name + len_name + 5));
d2e4a39e 1320 }
14f9c5c9 1321}
14f9c5c9 1322\f
d2e4a39e 1323
4c4b4cd2 1324 /* Arrays */
14f9c5c9 1325
28c85d6c
JB
1326/* Assuming that INDEX_DESC_TYPE is an ___XA structure, a structure
1327 generated by the GNAT compiler to describe the index type used
1328 for each dimension of an array, check whether it follows the latest
1329 known encoding. If not, fix it up to conform to the latest encoding.
1330 Otherwise, do nothing. This function also does nothing if
1331 INDEX_DESC_TYPE is NULL.
1332
1333 The GNAT encoding used to describle the array index type evolved a bit.
1334 Initially, the information would be provided through the name of each
1335 field of the structure type only, while the type of these fields was
1336 described as unspecified and irrelevant. The debugger was then expected
1337 to perform a global type lookup using the name of that field in order
1338 to get access to the full index type description. Because these global
1339 lookups can be very expensive, the encoding was later enhanced to make
1340 the global lookup unnecessary by defining the field type as being
1341 the full index type description.
1342
1343 The purpose of this routine is to allow us to support older versions
1344 of the compiler by detecting the use of the older encoding, and by
1345 fixing up the INDEX_DESC_TYPE to follow the new one (at this point,
1346 we essentially replace each field's meaningless type by the associated
1347 index subtype). */
1348
1349void
1350ada_fixup_array_indexes_type (struct type *index_desc_type)
1351{
1352 int i;
1353
1354 if (index_desc_type == NULL)
1355 return;
1356 gdb_assert (TYPE_NFIELDS (index_desc_type) > 0);
1357
1358 /* Check if INDEX_DESC_TYPE follows the older encoding (it is sufficient
1359 to check one field only, no need to check them all). If not, return
1360 now.
1361
1362 If our INDEX_DESC_TYPE was generated using the older encoding,
1363 the field type should be a meaningless integer type whose name
1364 is not equal to the field name. */
1365 if (TYPE_NAME (TYPE_FIELD_TYPE (index_desc_type, 0)) != NULL
1366 && strcmp (TYPE_NAME (TYPE_FIELD_TYPE (index_desc_type, 0)),
1367 TYPE_FIELD_NAME (index_desc_type, 0)) == 0)
1368 return;
1369
1370 /* Fixup each field of INDEX_DESC_TYPE. */
1371 for (i = 0; i < TYPE_NFIELDS (index_desc_type); i++)
1372 {
1373 char *name = TYPE_FIELD_NAME (index_desc_type, i);
1374 struct type *raw_type = ada_check_typedef (ada_find_any_type (name));
1375
1376 if (raw_type)
1377 TYPE_FIELD_TYPE (index_desc_type, i) = raw_type;
1378 }
1379}
1380
4c4b4cd2 1381/* Names of MAX_ADA_DIMENS bounds in P_BOUNDS fields of array descriptors. */
14f9c5c9 1382
d2e4a39e
AS
1383static char *bound_name[] = {
1384 "LB0", "UB0", "LB1", "UB1", "LB2", "UB2", "LB3", "UB3",
14f9c5c9
AS
1385 "LB4", "UB4", "LB5", "UB5", "LB6", "UB6", "LB7", "UB7"
1386};
1387
1388/* Maximum number of array dimensions we are prepared to handle. */
1389
4c4b4cd2 1390#define MAX_ADA_DIMENS (sizeof(bound_name) / (2*sizeof(char *)))
14f9c5c9 1391
14f9c5c9 1392
4c4b4cd2
PH
1393/* The desc_* routines return primitive portions of array descriptors
1394 (fat pointers). */
14f9c5c9
AS
1395
1396/* The descriptor or array type, if any, indicated by TYPE; removes
4c4b4cd2
PH
1397 level of indirection, if needed. */
1398
d2e4a39e
AS
1399static struct type *
1400desc_base_type (struct type *type)
14f9c5c9
AS
1401{
1402 if (type == NULL)
1403 return NULL;
61ee279c 1404 type = ada_check_typedef (type);
720d1a40
JB
1405 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
1406 type = ada_typedef_target_type (type);
1407
1265e4aa
JB
1408 if (type != NULL
1409 && (TYPE_CODE (type) == TYPE_CODE_PTR
1410 || TYPE_CODE (type) == TYPE_CODE_REF))
61ee279c 1411 return ada_check_typedef (TYPE_TARGET_TYPE (type));
14f9c5c9
AS
1412 else
1413 return type;
1414}
1415
4c4b4cd2
PH
1416/* True iff TYPE indicates a "thin" array pointer type. */
1417
14f9c5c9 1418static int
d2e4a39e 1419is_thin_pntr (struct type *type)
14f9c5c9 1420{
d2e4a39e 1421 return
14f9c5c9
AS
1422 is_suffix (ada_type_name (desc_base_type (type)), "___XUT")
1423 || is_suffix (ada_type_name (desc_base_type (type)), "___XUT___XVE");
1424}
1425
4c4b4cd2
PH
1426/* The descriptor type for thin pointer type TYPE. */
1427
d2e4a39e
AS
1428static struct type *
1429thin_descriptor_type (struct type *type)
14f9c5c9 1430{
d2e4a39e 1431 struct type *base_type = desc_base_type (type);
5b4ee69b 1432
14f9c5c9
AS
1433 if (base_type == NULL)
1434 return NULL;
1435 if (is_suffix (ada_type_name (base_type), "___XVE"))
1436 return base_type;
d2e4a39e 1437 else
14f9c5c9 1438 {
d2e4a39e 1439 struct type *alt_type = ada_find_parallel_type (base_type, "___XVE");
5b4ee69b 1440
14f9c5c9 1441 if (alt_type == NULL)
4c4b4cd2 1442 return base_type;
14f9c5c9 1443 else
4c4b4cd2 1444 return alt_type;
14f9c5c9
AS
1445 }
1446}
1447
4c4b4cd2
PH
1448/* A pointer to the array data for thin-pointer value VAL. */
1449
d2e4a39e
AS
1450static struct value *
1451thin_data_pntr (struct value *val)
14f9c5c9 1452{
828292f2 1453 struct type *type = ada_check_typedef (value_type (val));
556bdfd4 1454 struct type *data_type = desc_data_target_type (thin_descriptor_type (type));
5b4ee69b 1455
556bdfd4
UW
1456 data_type = lookup_pointer_type (data_type);
1457
14f9c5c9 1458 if (TYPE_CODE (type) == TYPE_CODE_PTR)
556bdfd4 1459 return value_cast (data_type, value_copy (val));
d2e4a39e 1460 else
42ae5230 1461 return value_from_longest (data_type, value_address (val));
14f9c5c9
AS
1462}
1463
4c4b4cd2
PH
1464/* True iff TYPE indicates a "thick" array pointer type. */
1465
14f9c5c9 1466static int
d2e4a39e 1467is_thick_pntr (struct type *type)
14f9c5c9
AS
1468{
1469 type = desc_base_type (type);
1470 return (type != NULL && TYPE_CODE (type) == TYPE_CODE_STRUCT
4c4b4cd2 1471 && lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL);
14f9c5c9
AS
1472}
1473
4c4b4cd2
PH
1474/* If TYPE is the type of an array descriptor (fat or thin pointer) or a
1475 pointer to one, the type of its bounds data; otherwise, NULL. */
76a01679 1476
d2e4a39e
AS
1477static struct type *
1478desc_bounds_type (struct type *type)
14f9c5c9 1479{
d2e4a39e 1480 struct type *r;
14f9c5c9
AS
1481
1482 type = desc_base_type (type);
1483
1484 if (type == NULL)
1485 return NULL;
1486 else if (is_thin_pntr (type))
1487 {
1488 type = thin_descriptor_type (type);
1489 if (type == NULL)
4c4b4cd2 1490 return NULL;
14f9c5c9
AS
1491 r = lookup_struct_elt_type (type, "BOUNDS", 1);
1492 if (r != NULL)
61ee279c 1493 return ada_check_typedef (r);
14f9c5c9
AS
1494 }
1495 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
1496 {
1497 r = lookup_struct_elt_type (type, "P_BOUNDS", 1);
1498 if (r != NULL)
61ee279c 1499 return ada_check_typedef (TYPE_TARGET_TYPE (ada_check_typedef (r)));
14f9c5c9
AS
1500 }
1501 return NULL;
1502}
1503
1504/* If ARR is an array descriptor (fat or thin pointer), or pointer to
4c4b4cd2
PH
1505 one, a pointer to its bounds data. Otherwise NULL. */
1506
d2e4a39e
AS
1507static struct value *
1508desc_bounds (struct value *arr)
14f9c5c9 1509{
df407dfe 1510 struct type *type = ada_check_typedef (value_type (arr));
5b4ee69b 1511
d2e4a39e 1512 if (is_thin_pntr (type))
14f9c5c9 1513 {
d2e4a39e 1514 struct type *bounds_type =
4c4b4cd2 1515 desc_bounds_type (thin_descriptor_type (type));
14f9c5c9
AS
1516 LONGEST addr;
1517
4cdfadb1 1518 if (bounds_type == NULL)
323e0a4a 1519 error (_("Bad GNAT array descriptor"));
14f9c5c9
AS
1520
1521 /* NOTE: The following calculation is not really kosher, but
d2e4a39e 1522 since desc_type is an XVE-encoded type (and shouldn't be),
4c4b4cd2 1523 the correct calculation is a real pain. FIXME (and fix GCC). */
14f9c5c9 1524 if (TYPE_CODE (type) == TYPE_CODE_PTR)
4c4b4cd2 1525 addr = value_as_long (arr);
d2e4a39e 1526 else
42ae5230 1527 addr = value_address (arr);
14f9c5c9 1528
d2e4a39e 1529 return
4c4b4cd2
PH
1530 value_from_longest (lookup_pointer_type (bounds_type),
1531 addr - TYPE_LENGTH (bounds_type));
14f9c5c9
AS
1532 }
1533
1534 else if (is_thick_pntr (type))
05e522ef
JB
1535 {
1536 struct value *p_bounds = value_struct_elt (&arr, NULL, "P_BOUNDS", NULL,
1537 _("Bad GNAT array descriptor"));
1538 struct type *p_bounds_type = value_type (p_bounds);
1539
1540 if (p_bounds_type
1541 && TYPE_CODE (p_bounds_type) == TYPE_CODE_PTR)
1542 {
1543 struct type *target_type = TYPE_TARGET_TYPE (p_bounds_type);
1544
1545 if (TYPE_STUB (target_type))
1546 p_bounds = value_cast (lookup_pointer_type
1547 (ada_check_typedef (target_type)),
1548 p_bounds);
1549 }
1550 else
1551 error (_("Bad GNAT array descriptor"));
1552
1553 return p_bounds;
1554 }
14f9c5c9
AS
1555 else
1556 return NULL;
1557}
1558
4c4b4cd2
PH
1559/* If TYPE is the type of an array-descriptor (fat pointer), the bit
1560 position of the field containing the address of the bounds data. */
1561
14f9c5c9 1562static int
d2e4a39e 1563fat_pntr_bounds_bitpos (struct type *type)
14f9c5c9
AS
1564{
1565 return TYPE_FIELD_BITPOS (desc_base_type (type), 1);
1566}
1567
1568/* If TYPE is the type of an array-descriptor (fat pointer), the bit
4c4b4cd2
PH
1569 size of the field containing the address of the bounds data. */
1570
14f9c5c9 1571static int
d2e4a39e 1572fat_pntr_bounds_bitsize (struct type *type)
14f9c5c9
AS
1573{
1574 type = desc_base_type (type);
1575
d2e4a39e 1576 if (TYPE_FIELD_BITSIZE (type, 1) > 0)
14f9c5c9
AS
1577 return TYPE_FIELD_BITSIZE (type, 1);
1578 else
61ee279c 1579 return 8 * TYPE_LENGTH (ada_check_typedef (TYPE_FIELD_TYPE (type, 1)));
14f9c5c9
AS
1580}
1581
4c4b4cd2 1582/* If TYPE is the type of an array descriptor (fat or thin pointer) or a
556bdfd4
UW
1583 pointer to one, the type of its array data (a array-with-no-bounds type);
1584 otherwise, NULL. Use ada_type_of_array to get an array type with bounds
1585 data. */
4c4b4cd2 1586
d2e4a39e 1587static struct type *
556bdfd4 1588desc_data_target_type (struct type *type)
14f9c5c9
AS
1589{
1590 type = desc_base_type (type);
1591
4c4b4cd2 1592 /* NOTE: The following is bogus; see comment in desc_bounds. */
14f9c5c9 1593 if (is_thin_pntr (type))
556bdfd4 1594 return desc_base_type (TYPE_FIELD_TYPE (thin_descriptor_type (type), 1));
14f9c5c9 1595 else if (is_thick_pntr (type))
556bdfd4
UW
1596 {
1597 struct type *data_type = lookup_struct_elt_type (type, "P_ARRAY", 1);
1598
1599 if (data_type
1600 && TYPE_CODE (ada_check_typedef (data_type)) == TYPE_CODE_PTR)
05e522ef 1601 return ada_check_typedef (TYPE_TARGET_TYPE (data_type));
556bdfd4
UW
1602 }
1603
1604 return NULL;
14f9c5c9
AS
1605}
1606
1607/* If ARR is an array descriptor (fat or thin pointer), a pointer to
1608 its array data. */
4c4b4cd2 1609
d2e4a39e
AS
1610static struct value *
1611desc_data (struct value *arr)
14f9c5c9 1612{
df407dfe 1613 struct type *type = value_type (arr);
5b4ee69b 1614
14f9c5c9
AS
1615 if (is_thin_pntr (type))
1616 return thin_data_pntr (arr);
1617 else if (is_thick_pntr (type))
d2e4a39e 1618 return value_struct_elt (&arr, NULL, "P_ARRAY", NULL,
323e0a4a 1619 _("Bad GNAT array descriptor"));
14f9c5c9
AS
1620 else
1621 return NULL;
1622}
1623
1624
1625/* If TYPE is the type of an array-descriptor (fat pointer), the bit
4c4b4cd2
PH
1626 position of the field containing the address of the data. */
1627
14f9c5c9 1628static int
d2e4a39e 1629fat_pntr_data_bitpos (struct type *type)
14f9c5c9
AS
1630{
1631 return TYPE_FIELD_BITPOS (desc_base_type (type), 0);
1632}
1633
1634/* If TYPE is the type of an array-descriptor (fat pointer), the bit
4c4b4cd2
PH
1635 size of the field containing the address of the data. */
1636
14f9c5c9 1637static int
d2e4a39e 1638fat_pntr_data_bitsize (struct type *type)
14f9c5c9
AS
1639{
1640 type = desc_base_type (type);
1641
1642 if (TYPE_FIELD_BITSIZE (type, 0) > 0)
1643 return TYPE_FIELD_BITSIZE (type, 0);
d2e4a39e 1644 else
14f9c5c9
AS
1645 return TARGET_CHAR_BIT * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 0));
1646}
1647
4c4b4cd2 1648/* If BOUNDS is an array-bounds structure (or pointer to one), return
14f9c5c9 1649 the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
4c4b4cd2
PH
1650 bound, if WHICH is 1. The first bound is I=1. */
1651
d2e4a39e
AS
1652static struct value *
1653desc_one_bound (struct value *bounds, int i, int which)
14f9c5c9 1654{
d2e4a39e 1655 return value_struct_elt (&bounds, NULL, bound_name[2 * i + which - 2], NULL,
323e0a4a 1656 _("Bad GNAT array descriptor bounds"));
14f9c5c9
AS
1657}
1658
1659/* If BOUNDS is an array-bounds structure type, return the bit position
1660 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
4c4b4cd2
PH
1661 bound, if WHICH is 1. The first bound is I=1. */
1662
14f9c5c9 1663static int
d2e4a39e 1664desc_bound_bitpos (struct type *type, int i, int which)
14f9c5c9 1665{
d2e4a39e 1666 return TYPE_FIELD_BITPOS (desc_base_type (type), 2 * i + which - 2);
14f9c5c9
AS
1667}
1668
1669/* If BOUNDS is an array-bounds structure type, return the bit field size
1670 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
4c4b4cd2
PH
1671 bound, if WHICH is 1. The first bound is I=1. */
1672
76a01679 1673static int
d2e4a39e 1674desc_bound_bitsize (struct type *type, int i, int which)
14f9c5c9
AS
1675{
1676 type = desc_base_type (type);
1677
d2e4a39e
AS
1678 if (TYPE_FIELD_BITSIZE (type, 2 * i + which - 2) > 0)
1679 return TYPE_FIELD_BITSIZE (type, 2 * i + which - 2);
1680 else
1681 return 8 * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 2 * i + which - 2));
14f9c5c9
AS
1682}
1683
1684/* If TYPE is the type of an array-bounds structure, the type of its
4c4b4cd2
PH
1685 Ith bound (numbering from 1). Otherwise, NULL. */
1686
d2e4a39e
AS
1687static struct type *
1688desc_index_type (struct type *type, int i)
14f9c5c9
AS
1689{
1690 type = desc_base_type (type);
1691
1692 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
d2e4a39e
AS
1693 return lookup_struct_elt_type (type, bound_name[2 * i - 2], 1);
1694 else
14f9c5c9
AS
1695 return NULL;
1696}
1697
4c4b4cd2
PH
1698/* The number of index positions in the array-bounds type TYPE.
1699 Return 0 if TYPE is NULL. */
1700
14f9c5c9 1701static int
d2e4a39e 1702desc_arity (struct type *type)
14f9c5c9
AS
1703{
1704 type = desc_base_type (type);
1705
1706 if (type != NULL)
1707 return TYPE_NFIELDS (type) / 2;
1708 return 0;
1709}
1710
4c4b4cd2
PH
1711/* Non-zero iff TYPE is a simple array type (not a pointer to one) or
1712 an array descriptor type (representing an unconstrained array
1713 type). */
1714
76a01679
JB
1715static int
1716ada_is_direct_array_type (struct type *type)
4c4b4cd2
PH
1717{
1718 if (type == NULL)
1719 return 0;
61ee279c 1720 type = ada_check_typedef (type);
4c4b4cd2 1721 return (TYPE_CODE (type) == TYPE_CODE_ARRAY
76a01679 1722 || ada_is_array_descriptor_type (type));
4c4b4cd2
PH
1723}
1724
52ce6436 1725/* Non-zero iff TYPE represents any kind of array in Ada, or a pointer
0963b4bd 1726 * to one. */
52ce6436 1727
2c0b251b 1728static int
52ce6436
PH
1729ada_is_array_type (struct type *type)
1730{
1731 while (type != NULL
1732 && (TYPE_CODE (type) == TYPE_CODE_PTR
1733 || TYPE_CODE (type) == TYPE_CODE_REF))
1734 type = TYPE_TARGET_TYPE (type);
1735 return ada_is_direct_array_type (type);
1736}
1737
4c4b4cd2 1738/* Non-zero iff TYPE is a simple array type or pointer to one. */
14f9c5c9 1739
14f9c5c9 1740int
4c4b4cd2 1741ada_is_simple_array_type (struct type *type)
14f9c5c9
AS
1742{
1743 if (type == NULL)
1744 return 0;
61ee279c 1745 type = ada_check_typedef (type);
14f9c5c9 1746 return (TYPE_CODE (type) == TYPE_CODE_ARRAY
4c4b4cd2 1747 || (TYPE_CODE (type) == TYPE_CODE_PTR
b0dd7688
JB
1748 && TYPE_CODE (ada_check_typedef (TYPE_TARGET_TYPE (type)))
1749 == TYPE_CODE_ARRAY));
14f9c5c9
AS
1750}
1751
4c4b4cd2
PH
1752/* Non-zero iff TYPE belongs to a GNAT array descriptor. */
1753
14f9c5c9 1754int
4c4b4cd2 1755ada_is_array_descriptor_type (struct type *type)
14f9c5c9 1756{
556bdfd4 1757 struct type *data_type = desc_data_target_type (type);
14f9c5c9
AS
1758
1759 if (type == NULL)
1760 return 0;
61ee279c 1761 type = ada_check_typedef (type);
556bdfd4
UW
1762 return (data_type != NULL
1763 && TYPE_CODE (data_type) == TYPE_CODE_ARRAY
1764 && desc_arity (desc_bounds_type (type)) > 0);
14f9c5c9
AS
1765}
1766
1767/* Non-zero iff type is a partially mal-formed GNAT array
4c4b4cd2 1768 descriptor. FIXME: This is to compensate for some problems with
14f9c5c9 1769 debugging output from GNAT. Re-examine periodically to see if it
4c4b4cd2
PH
1770 is still needed. */
1771
14f9c5c9 1772int
ebf56fd3 1773ada_is_bogus_array_descriptor (struct type *type)
14f9c5c9 1774{
d2e4a39e 1775 return
14f9c5c9
AS
1776 type != NULL
1777 && TYPE_CODE (type) == TYPE_CODE_STRUCT
1778 && (lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL
4c4b4cd2
PH
1779 || lookup_struct_elt_type (type, "P_ARRAY", 1) != NULL)
1780 && !ada_is_array_descriptor_type (type);
14f9c5c9
AS
1781}
1782
1783
4c4b4cd2 1784/* If ARR has a record type in the form of a standard GNAT array descriptor,
14f9c5c9 1785 (fat pointer) returns the type of the array data described---specifically,
4c4b4cd2 1786 a pointer-to-array type. If BOUNDS is non-zero, the bounds data are filled
14f9c5c9 1787 in from the descriptor; otherwise, they are left unspecified. If
4c4b4cd2
PH
1788 the ARR denotes a null array descriptor and BOUNDS is non-zero,
1789 returns NULL. The result is simply the type of ARR if ARR is not
14f9c5c9 1790 a descriptor. */
d2e4a39e
AS
1791struct type *
1792ada_type_of_array (struct value *arr, int bounds)
14f9c5c9 1793{
ad82864c
JB
1794 if (ada_is_constrained_packed_array_type (value_type (arr)))
1795 return decode_constrained_packed_array_type (value_type (arr));
14f9c5c9 1796
df407dfe
AC
1797 if (!ada_is_array_descriptor_type (value_type (arr)))
1798 return value_type (arr);
d2e4a39e
AS
1799
1800 if (!bounds)
ad82864c
JB
1801 {
1802 struct type *array_type =
1803 ada_check_typedef (desc_data_target_type (value_type (arr)));
1804
1805 if (ada_is_unconstrained_packed_array_type (value_type (arr)))
1806 TYPE_FIELD_BITSIZE (array_type, 0) =
1807 decode_packed_array_bitsize (value_type (arr));
1808
1809 return array_type;
1810 }
14f9c5c9
AS
1811 else
1812 {
d2e4a39e 1813 struct type *elt_type;
14f9c5c9 1814 int arity;
d2e4a39e 1815 struct value *descriptor;
14f9c5c9 1816
df407dfe
AC
1817 elt_type = ada_array_element_type (value_type (arr), -1);
1818 arity = ada_array_arity (value_type (arr));
14f9c5c9 1819
d2e4a39e 1820 if (elt_type == NULL || arity == 0)
df407dfe 1821 return ada_check_typedef (value_type (arr));
14f9c5c9
AS
1822
1823 descriptor = desc_bounds (arr);
d2e4a39e 1824 if (value_as_long (descriptor) == 0)
4c4b4cd2 1825 return NULL;
d2e4a39e 1826 while (arity > 0)
4c4b4cd2 1827 {
e9bb382b
UW
1828 struct type *range_type = alloc_type_copy (value_type (arr));
1829 struct type *array_type = alloc_type_copy (value_type (arr));
4c4b4cd2
PH
1830 struct value *low = desc_one_bound (descriptor, arity, 0);
1831 struct value *high = desc_one_bound (descriptor, arity, 1);
4c4b4cd2 1832
5b4ee69b 1833 arity -= 1;
df407dfe 1834 create_range_type (range_type, value_type (low),
529cad9c
PH
1835 longest_to_int (value_as_long (low)),
1836 longest_to_int (value_as_long (high)));
4c4b4cd2 1837 elt_type = create_array_type (array_type, elt_type, range_type);
ad82864c
JB
1838
1839 if (ada_is_unconstrained_packed_array_type (value_type (arr)))
e67ad678
JB
1840 {
1841 /* We need to store the element packed bitsize, as well as
1842 recompute the array size, because it was previously
1843 computed based on the unpacked element size. */
1844 LONGEST lo = value_as_long (low);
1845 LONGEST hi = value_as_long (high);
1846
1847 TYPE_FIELD_BITSIZE (elt_type, 0) =
1848 decode_packed_array_bitsize (value_type (arr));
1849 /* If the array has no element, then the size is already
1850 zero, and does not need to be recomputed. */
1851 if (lo < hi)
1852 {
1853 int array_bitsize =
1854 (hi - lo + 1) * TYPE_FIELD_BITSIZE (elt_type, 0);
1855
1856 TYPE_LENGTH (array_type) = (array_bitsize + 7) / 8;
1857 }
1858 }
4c4b4cd2 1859 }
14f9c5c9
AS
1860
1861 return lookup_pointer_type (elt_type);
1862 }
1863}
1864
1865/* If ARR does not represent an array, returns ARR unchanged.
4c4b4cd2
PH
1866 Otherwise, returns either a standard GDB array with bounds set
1867 appropriately or, if ARR is a non-null fat pointer, a pointer to a standard
1868 GDB array. Returns NULL if ARR is a null fat pointer. */
1869
d2e4a39e
AS
1870struct value *
1871ada_coerce_to_simple_array_ptr (struct value *arr)
14f9c5c9 1872{
df407dfe 1873 if (ada_is_array_descriptor_type (value_type (arr)))
14f9c5c9 1874 {
d2e4a39e 1875 struct type *arrType = ada_type_of_array (arr, 1);
5b4ee69b 1876
14f9c5c9 1877 if (arrType == NULL)
4c4b4cd2 1878 return NULL;
14f9c5c9
AS
1879 return value_cast (arrType, value_copy (desc_data (arr)));
1880 }
ad82864c
JB
1881 else if (ada_is_constrained_packed_array_type (value_type (arr)))
1882 return decode_constrained_packed_array (arr);
14f9c5c9
AS
1883 else
1884 return arr;
1885}
1886
1887/* If ARR does not represent an array, returns ARR unchanged.
1888 Otherwise, returns a standard GDB array describing ARR (which may
4c4b4cd2
PH
1889 be ARR itself if it already is in the proper form). */
1890
720d1a40 1891struct value *
d2e4a39e 1892ada_coerce_to_simple_array (struct value *arr)
14f9c5c9 1893{
df407dfe 1894 if (ada_is_array_descriptor_type (value_type (arr)))
14f9c5c9 1895 {
d2e4a39e 1896 struct value *arrVal = ada_coerce_to_simple_array_ptr (arr);
5b4ee69b 1897
14f9c5c9 1898 if (arrVal == NULL)
323e0a4a 1899 error (_("Bounds unavailable for null array pointer."));
529cad9c 1900 check_size (TYPE_TARGET_TYPE (value_type (arrVal)));
14f9c5c9
AS
1901 return value_ind (arrVal);
1902 }
ad82864c
JB
1903 else if (ada_is_constrained_packed_array_type (value_type (arr)))
1904 return decode_constrained_packed_array (arr);
d2e4a39e 1905 else
14f9c5c9
AS
1906 return arr;
1907}
1908
1909/* If TYPE represents a GNAT array type, return it translated to an
1910 ordinary GDB array type (possibly with BITSIZE fields indicating
4c4b4cd2
PH
1911 packing). For other types, is the identity. */
1912
d2e4a39e
AS
1913struct type *
1914ada_coerce_to_simple_array_type (struct type *type)
14f9c5c9 1915{
ad82864c
JB
1916 if (ada_is_constrained_packed_array_type (type))
1917 return decode_constrained_packed_array_type (type);
17280b9f
UW
1918
1919 if (ada_is_array_descriptor_type (type))
556bdfd4 1920 return ada_check_typedef (desc_data_target_type (type));
17280b9f
UW
1921
1922 return type;
14f9c5c9
AS
1923}
1924
4c4b4cd2
PH
1925/* Non-zero iff TYPE represents a standard GNAT packed-array type. */
1926
ad82864c
JB
1927static int
1928ada_is_packed_array_type (struct type *type)
14f9c5c9
AS
1929{
1930 if (type == NULL)
1931 return 0;
4c4b4cd2 1932 type = desc_base_type (type);
61ee279c 1933 type = ada_check_typedef (type);
d2e4a39e 1934 return
14f9c5c9
AS
1935 ada_type_name (type) != NULL
1936 && strstr (ada_type_name (type), "___XP") != NULL;
1937}
1938
ad82864c
JB
1939/* Non-zero iff TYPE represents a standard GNAT constrained
1940 packed-array type. */
1941
1942int
1943ada_is_constrained_packed_array_type (struct type *type)
1944{
1945 return ada_is_packed_array_type (type)
1946 && !ada_is_array_descriptor_type (type);
1947}
1948
1949/* Non-zero iff TYPE represents an array descriptor for a
1950 unconstrained packed-array type. */
1951
1952static int
1953ada_is_unconstrained_packed_array_type (struct type *type)
1954{
1955 return ada_is_packed_array_type (type)
1956 && ada_is_array_descriptor_type (type);
1957}
1958
1959/* Given that TYPE encodes a packed array type (constrained or unconstrained),
1960 return the size of its elements in bits. */
1961
1962static long
1963decode_packed_array_bitsize (struct type *type)
1964{
720d1a40 1965 char *raw_name;
ad82864c
JB
1966 char *tail;
1967 long bits;
1968
720d1a40
JB
1969 /* Access to arrays implemented as fat pointers are encoded as a typedef
1970 of the fat pointer type. We need the name of the fat pointer type
1971 to do the decoding, so strip the typedef layer. */
1972 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
1973 type = ada_typedef_target_type (type);
1974
1975 raw_name = ada_type_name (ada_check_typedef (type));
ad82864c
JB
1976 if (!raw_name)
1977 raw_name = ada_type_name (desc_base_type (type));
1978
1979 if (!raw_name)
1980 return 0;
1981
1982 tail = strstr (raw_name, "___XP");
720d1a40 1983 gdb_assert (tail != NULL);
ad82864c
JB
1984
1985 if (sscanf (tail + sizeof ("___XP") - 1, "%ld", &bits) != 1)
1986 {
1987 lim_warning
1988 (_("could not understand bit size information on packed array"));
1989 return 0;
1990 }
1991
1992 return bits;
1993}
1994
14f9c5c9
AS
1995/* Given that TYPE is a standard GDB array type with all bounds filled
1996 in, and that the element size of its ultimate scalar constituents
1997 (that is, either its elements, or, if it is an array of arrays, its
1998 elements' elements, etc.) is *ELT_BITS, return an identical type,
1999 but with the bit sizes of its elements (and those of any
2000 constituent arrays) recorded in the BITSIZE components of its
4c4b4cd2
PH
2001 TYPE_FIELD_BITSIZE values, and with *ELT_BITS set to its total size
2002 in bits. */
2003
d2e4a39e 2004static struct type *
ad82864c 2005constrained_packed_array_type (struct type *type, long *elt_bits)
14f9c5c9 2006{
d2e4a39e
AS
2007 struct type *new_elt_type;
2008 struct type *new_type;
14f9c5c9
AS
2009 LONGEST low_bound, high_bound;
2010
61ee279c 2011 type = ada_check_typedef (type);
14f9c5c9
AS
2012 if (TYPE_CODE (type) != TYPE_CODE_ARRAY)
2013 return type;
2014
e9bb382b 2015 new_type = alloc_type_copy (type);
ad82864c
JB
2016 new_elt_type =
2017 constrained_packed_array_type (ada_check_typedef (TYPE_TARGET_TYPE (type)),
2018 elt_bits);
262452ec 2019 create_array_type (new_type, new_elt_type, TYPE_INDEX_TYPE (type));
14f9c5c9
AS
2020 TYPE_FIELD_BITSIZE (new_type, 0) = *elt_bits;
2021 TYPE_NAME (new_type) = ada_type_name (type);
2022
262452ec 2023 if (get_discrete_bounds (TYPE_INDEX_TYPE (type),
4c4b4cd2 2024 &low_bound, &high_bound) < 0)
14f9c5c9
AS
2025 low_bound = high_bound = 0;
2026 if (high_bound < low_bound)
2027 *elt_bits = TYPE_LENGTH (new_type) = 0;
d2e4a39e 2028 else
14f9c5c9
AS
2029 {
2030 *elt_bits *= (high_bound - low_bound + 1);
d2e4a39e 2031 TYPE_LENGTH (new_type) =
4c4b4cd2 2032 (*elt_bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
14f9c5c9
AS
2033 }
2034
876cecd0 2035 TYPE_FIXED_INSTANCE (new_type) = 1;
14f9c5c9
AS
2036 return new_type;
2037}
2038
ad82864c
JB
2039/* The array type encoded by TYPE, where
2040 ada_is_constrained_packed_array_type (TYPE). */
4c4b4cd2 2041
d2e4a39e 2042static struct type *
ad82864c 2043decode_constrained_packed_array_type (struct type *type)
d2e4a39e 2044{
727e3d2e
JB
2045 char *raw_name = ada_type_name (ada_check_typedef (type));
2046 char *name;
2047 char *tail;
d2e4a39e 2048 struct type *shadow_type;
14f9c5c9 2049 long bits;
14f9c5c9 2050
727e3d2e
JB
2051 if (!raw_name)
2052 raw_name = ada_type_name (desc_base_type (type));
2053
2054 if (!raw_name)
2055 return NULL;
2056
2057 name = (char *) alloca (strlen (raw_name) + 1);
2058 tail = strstr (raw_name, "___XP");
4c4b4cd2
PH
2059 type = desc_base_type (type);
2060
14f9c5c9
AS
2061 memcpy (name, raw_name, tail - raw_name);
2062 name[tail - raw_name] = '\000';
2063
b4ba55a1
JB
2064 shadow_type = ada_find_parallel_type_with_name (type, name);
2065
2066 if (shadow_type == NULL)
14f9c5c9 2067 {
323e0a4a 2068 lim_warning (_("could not find bounds information on packed array"));
14f9c5c9
AS
2069 return NULL;
2070 }
cb249c71 2071 CHECK_TYPEDEF (shadow_type);
14f9c5c9
AS
2072
2073 if (TYPE_CODE (shadow_type) != TYPE_CODE_ARRAY)
2074 {
0963b4bd
MS
2075 lim_warning (_("could not understand bounds "
2076 "information on packed array"));
14f9c5c9
AS
2077 return NULL;
2078 }
d2e4a39e 2079
ad82864c
JB
2080 bits = decode_packed_array_bitsize (type);
2081 return constrained_packed_array_type (shadow_type, &bits);
14f9c5c9
AS
2082}
2083
ad82864c
JB
2084/* Given that ARR is a struct value *indicating a GNAT constrained packed
2085 array, returns a simple array that denotes that array. Its type is a
14f9c5c9
AS
2086 standard GDB array type except that the BITSIZEs of the array
2087 target types are set to the number of bits in each element, and the
4c4b4cd2 2088 type length is set appropriately. */
14f9c5c9 2089
d2e4a39e 2090static struct value *
ad82864c 2091decode_constrained_packed_array (struct value *arr)
14f9c5c9 2092{
4c4b4cd2 2093 struct type *type;
14f9c5c9 2094
4c4b4cd2 2095 arr = ada_coerce_ref (arr);
284614f0
JB
2096
2097 /* If our value is a pointer, then dererence it. Make sure that
2098 this operation does not cause the target type to be fixed, as
2099 this would indirectly cause this array to be decoded. The rest
2100 of the routine assumes that the array hasn't been decoded yet,
2101 so we use the basic "value_ind" routine to perform the dereferencing,
2102 as opposed to using "ada_value_ind". */
828292f2 2103 if (TYPE_CODE (ada_check_typedef (value_type (arr))) == TYPE_CODE_PTR)
284614f0 2104 arr = value_ind (arr);
4c4b4cd2 2105
ad82864c 2106 type = decode_constrained_packed_array_type (value_type (arr));
14f9c5c9
AS
2107 if (type == NULL)
2108 {
323e0a4a 2109 error (_("can't unpack array"));
14f9c5c9
AS
2110 return NULL;
2111 }
61ee279c 2112
50810684 2113 if (gdbarch_bits_big_endian (get_type_arch (value_type (arr)))
32c9a795 2114 && ada_is_modular_type (value_type (arr)))
61ee279c
PH
2115 {
2116 /* This is a (right-justified) modular type representing a packed
2117 array with no wrapper. In order to interpret the value through
2118 the (left-justified) packed array type we just built, we must
2119 first left-justify it. */
2120 int bit_size, bit_pos;
2121 ULONGEST mod;
2122
df407dfe 2123 mod = ada_modulus (value_type (arr)) - 1;
61ee279c
PH
2124 bit_size = 0;
2125 while (mod > 0)
2126 {
2127 bit_size += 1;
2128 mod >>= 1;
2129 }
df407dfe 2130 bit_pos = HOST_CHAR_BIT * TYPE_LENGTH (value_type (arr)) - bit_size;
61ee279c
PH
2131 arr = ada_value_primitive_packed_val (arr, NULL,
2132 bit_pos / HOST_CHAR_BIT,
2133 bit_pos % HOST_CHAR_BIT,
2134 bit_size,
2135 type);
2136 }
2137
4c4b4cd2 2138 return coerce_unspec_val_to_type (arr, type);
14f9c5c9
AS
2139}
2140
2141
2142/* The value of the element of packed array ARR at the ARITY indices
4c4b4cd2 2143 given in IND. ARR must be a simple array. */
14f9c5c9 2144
d2e4a39e
AS
2145static struct value *
2146value_subscript_packed (struct value *arr, int arity, struct value **ind)
14f9c5c9
AS
2147{
2148 int i;
2149 int bits, elt_off, bit_off;
2150 long elt_total_bit_offset;
d2e4a39e
AS
2151 struct type *elt_type;
2152 struct value *v;
14f9c5c9
AS
2153
2154 bits = 0;
2155 elt_total_bit_offset = 0;
df407dfe 2156 elt_type = ada_check_typedef (value_type (arr));
d2e4a39e 2157 for (i = 0; i < arity; i += 1)
14f9c5c9 2158 {
d2e4a39e 2159 if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY
4c4b4cd2
PH
2160 || TYPE_FIELD_BITSIZE (elt_type, 0) == 0)
2161 error
0963b4bd
MS
2162 (_("attempt to do packed indexing of "
2163 "something other than a packed array"));
14f9c5c9 2164 else
4c4b4cd2
PH
2165 {
2166 struct type *range_type = TYPE_INDEX_TYPE (elt_type);
2167 LONGEST lowerbound, upperbound;
2168 LONGEST idx;
2169
2170 if (get_discrete_bounds (range_type, &lowerbound, &upperbound) < 0)
2171 {
323e0a4a 2172 lim_warning (_("don't know bounds of array"));
4c4b4cd2
PH
2173 lowerbound = upperbound = 0;
2174 }
2175
3cb382c9 2176 idx = pos_atr (ind[i]);
4c4b4cd2 2177 if (idx < lowerbound || idx > upperbound)
0963b4bd
MS
2178 lim_warning (_("packed array index %ld out of bounds"),
2179 (long) idx);
4c4b4cd2
PH
2180 bits = TYPE_FIELD_BITSIZE (elt_type, 0);
2181 elt_total_bit_offset += (idx - lowerbound) * bits;
61ee279c 2182 elt_type = ada_check_typedef (TYPE_TARGET_TYPE (elt_type));
4c4b4cd2 2183 }
14f9c5c9
AS
2184 }
2185 elt_off = elt_total_bit_offset / HOST_CHAR_BIT;
2186 bit_off = elt_total_bit_offset % HOST_CHAR_BIT;
d2e4a39e
AS
2187
2188 v = ada_value_primitive_packed_val (arr, NULL, elt_off, bit_off,
4c4b4cd2 2189 bits, elt_type);
14f9c5c9
AS
2190 return v;
2191}
2192
4c4b4cd2 2193/* Non-zero iff TYPE includes negative integer values. */
14f9c5c9
AS
2194
2195static int
d2e4a39e 2196has_negatives (struct type *type)
14f9c5c9 2197{
d2e4a39e
AS
2198 switch (TYPE_CODE (type))
2199 {
2200 default:
2201 return 0;
2202 case TYPE_CODE_INT:
2203 return !TYPE_UNSIGNED (type);
2204 case TYPE_CODE_RANGE:
2205 return TYPE_LOW_BOUND (type) < 0;
2206 }
14f9c5c9 2207}
d2e4a39e 2208
14f9c5c9
AS
2209
2210/* Create a new value of type TYPE from the contents of OBJ starting
2211 at byte OFFSET, and bit offset BIT_OFFSET within that byte,
2212 proceeding for BIT_SIZE bits. If OBJ is an lval in memory, then
0963b4bd 2213 assigning through the result will set the field fetched from.
4c4b4cd2
PH
2214 VALADDR is ignored unless OBJ is NULL, in which case,
2215 VALADDR+OFFSET must address the start of storage containing the
2216 packed value. The value returned in this case is never an lval.
2217 Assumes 0 <= BIT_OFFSET < HOST_CHAR_BIT. */
14f9c5c9 2218
d2e4a39e 2219struct value *
fc1a4b47 2220ada_value_primitive_packed_val (struct value *obj, const gdb_byte *valaddr,
a2bd3dcd 2221 long offset, int bit_offset, int bit_size,
4c4b4cd2 2222 struct type *type)
14f9c5c9 2223{
d2e4a39e 2224 struct value *v;
4c4b4cd2
PH
2225 int src, /* Index into the source area */
2226 targ, /* Index into the target area */
2227 srcBitsLeft, /* Number of source bits left to move */
2228 nsrc, ntarg, /* Number of source and target bytes */
2229 unusedLS, /* Number of bits in next significant
2230 byte of source that are unused */
2231 accumSize; /* Number of meaningful bits in accum */
2232 unsigned char *bytes; /* First byte containing data to unpack */
d2e4a39e 2233 unsigned char *unpacked;
4c4b4cd2 2234 unsigned long accum; /* Staging area for bits being transferred */
14f9c5c9
AS
2235 unsigned char sign;
2236 int len = (bit_size + bit_offset + HOST_CHAR_BIT - 1) / 8;
4c4b4cd2
PH
2237 /* Transmit bytes from least to most significant; delta is the direction
2238 the indices move. */
50810684 2239 int delta = gdbarch_bits_big_endian (get_type_arch (type)) ? -1 : 1;
14f9c5c9 2240
61ee279c 2241 type = ada_check_typedef (type);
14f9c5c9
AS
2242
2243 if (obj == NULL)
2244 {
2245 v = allocate_value (type);
d2e4a39e 2246 bytes = (unsigned char *) (valaddr + offset);
14f9c5c9 2247 }
9214ee5f 2248 else if (VALUE_LVAL (obj) == lval_memory && value_lazy (obj))
14f9c5c9
AS
2249 {
2250 v = value_at (type,
42ae5230 2251 value_address (obj) + offset);
d2e4a39e 2252 bytes = (unsigned char *) alloca (len);
42ae5230 2253 read_memory (value_address (v), bytes, len);
14f9c5c9 2254 }
d2e4a39e 2255 else
14f9c5c9
AS
2256 {
2257 v = allocate_value (type);
0fd88904 2258 bytes = (unsigned char *) value_contents (obj) + offset;
14f9c5c9 2259 }
d2e4a39e
AS
2260
2261 if (obj != NULL)
14f9c5c9 2262 {
42ae5230 2263 CORE_ADDR new_addr;
5b4ee69b 2264
74bcbdf3 2265 set_value_component_location (v, obj);
42ae5230 2266 new_addr = value_address (obj) + offset;
9bbda503
AC
2267 set_value_bitpos (v, bit_offset + value_bitpos (obj));
2268 set_value_bitsize (v, bit_size);
df407dfe 2269 if (value_bitpos (v) >= HOST_CHAR_BIT)
4c4b4cd2 2270 {
42ae5230 2271 ++new_addr;
9bbda503 2272 set_value_bitpos (v, value_bitpos (v) - HOST_CHAR_BIT);
4c4b4cd2 2273 }
42ae5230 2274 set_value_address (v, new_addr);
14f9c5c9
AS
2275 }
2276 else
9bbda503 2277 set_value_bitsize (v, bit_size);
0fd88904 2278 unpacked = (unsigned char *) value_contents (v);
14f9c5c9
AS
2279
2280 srcBitsLeft = bit_size;
2281 nsrc = len;
2282 ntarg = TYPE_LENGTH (type);
2283 sign = 0;
2284 if (bit_size == 0)
2285 {
2286 memset (unpacked, 0, TYPE_LENGTH (type));
2287 return v;
2288 }
50810684 2289 else if (gdbarch_bits_big_endian (get_type_arch (type)))
14f9c5c9 2290 {
d2e4a39e 2291 src = len - 1;
1265e4aa
JB
2292 if (has_negatives (type)
2293 && ((bytes[0] << bit_offset) & (1 << (HOST_CHAR_BIT - 1))))
4c4b4cd2 2294 sign = ~0;
d2e4a39e
AS
2295
2296 unusedLS =
4c4b4cd2
PH
2297 (HOST_CHAR_BIT - (bit_size + bit_offset) % HOST_CHAR_BIT)
2298 % HOST_CHAR_BIT;
14f9c5c9
AS
2299
2300 switch (TYPE_CODE (type))
4c4b4cd2
PH
2301 {
2302 case TYPE_CODE_ARRAY:
2303 case TYPE_CODE_UNION:
2304 case TYPE_CODE_STRUCT:
2305 /* Non-scalar values must be aligned at a byte boundary... */
2306 accumSize =
2307 (HOST_CHAR_BIT - bit_size % HOST_CHAR_BIT) % HOST_CHAR_BIT;
2308 /* ... And are placed at the beginning (most-significant) bytes
2309 of the target. */
529cad9c 2310 targ = (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT - 1;
0056e4d5 2311 ntarg = targ + 1;
4c4b4cd2
PH
2312 break;
2313 default:
2314 accumSize = 0;
2315 targ = TYPE_LENGTH (type) - 1;
2316 break;
2317 }
14f9c5c9 2318 }
d2e4a39e 2319 else
14f9c5c9
AS
2320 {
2321 int sign_bit_offset = (bit_size + bit_offset - 1) % 8;
2322
2323 src = targ = 0;
2324 unusedLS = bit_offset;
2325 accumSize = 0;
2326
d2e4a39e 2327 if (has_negatives (type) && (bytes[len - 1] & (1 << sign_bit_offset)))
4c4b4cd2 2328 sign = ~0;
14f9c5c9 2329 }
d2e4a39e 2330
14f9c5c9
AS
2331 accum = 0;
2332 while (nsrc > 0)
2333 {
2334 /* Mask for removing bits of the next source byte that are not
4c4b4cd2 2335 part of the value. */
d2e4a39e 2336 unsigned int unusedMSMask =
4c4b4cd2
PH
2337 (1 << (srcBitsLeft >= HOST_CHAR_BIT ? HOST_CHAR_BIT : srcBitsLeft)) -
2338 1;
2339 /* Sign-extend bits for this byte. */
14f9c5c9 2340 unsigned int signMask = sign & ~unusedMSMask;
5b4ee69b 2341
d2e4a39e 2342 accum |=
4c4b4cd2 2343 (((bytes[src] >> unusedLS) & unusedMSMask) | signMask) << accumSize;
14f9c5c9 2344 accumSize += HOST_CHAR_BIT - unusedLS;
d2e4a39e 2345 if (accumSize >= HOST_CHAR_BIT)
4c4b4cd2
PH
2346 {
2347 unpacked[targ] = accum & ~(~0L << HOST_CHAR_BIT);
2348 accumSize -= HOST_CHAR_BIT;
2349 accum >>= HOST_CHAR_BIT;
2350 ntarg -= 1;
2351 targ += delta;
2352 }
14f9c5c9
AS
2353 srcBitsLeft -= HOST_CHAR_BIT - unusedLS;
2354 unusedLS = 0;
2355 nsrc -= 1;
2356 src += delta;
2357 }
2358 while (ntarg > 0)
2359 {
2360 accum |= sign << accumSize;
2361 unpacked[targ] = accum & ~(~0L << HOST_CHAR_BIT);
2362 accumSize -= HOST_CHAR_BIT;
2363 accum >>= HOST_CHAR_BIT;
2364 ntarg -= 1;
2365 targ += delta;
2366 }
2367
2368 return v;
2369}
d2e4a39e 2370
14f9c5c9
AS
2371/* Move N bits from SOURCE, starting at bit offset SRC_OFFSET to
2372 TARGET, starting at bit offset TARG_OFFSET. SOURCE and TARGET must
4c4b4cd2 2373 not overlap. */
14f9c5c9 2374static void
fc1a4b47 2375move_bits (gdb_byte *target, int targ_offset, const gdb_byte *source,
50810684 2376 int src_offset, int n, int bits_big_endian_p)
14f9c5c9
AS
2377{
2378 unsigned int accum, mask;
2379 int accum_bits, chunk_size;
2380
2381 target += targ_offset / HOST_CHAR_BIT;
2382 targ_offset %= HOST_CHAR_BIT;
2383 source += src_offset / HOST_CHAR_BIT;
2384 src_offset %= HOST_CHAR_BIT;
50810684 2385 if (bits_big_endian_p)
14f9c5c9
AS
2386 {
2387 accum = (unsigned char) *source;
2388 source += 1;
2389 accum_bits = HOST_CHAR_BIT - src_offset;
2390
d2e4a39e 2391 while (n > 0)
4c4b4cd2
PH
2392 {
2393 int unused_right;
5b4ee69b 2394
4c4b4cd2
PH
2395 accum = (accum << HOST_CHAR_BIT) + (unsigned char) *source;
2396 accum_bits += HOST_CHAR_BIT;
2397 source += 1;
2398 chunk_size = HOST_CHAR_BIT - targ_offset;
2399 if (chunk_size > n)
2400 chunk_size = n;
2401 unused_right = HOST_CHAR_BIT - (chunk_size + targ_offset);
2402 mask = ((1 << chunk_size) - 1) << unused_right;
2403 *target =
2404 (*target & ~mask)
2405 | ((accum >> (accum_bits - chunk_size - unused_right)) & mask);
2406 n -= chunk_size;
2407 accum_bits -= chunk_size;
2408 target += 1;
2409 targ_offset = 0;
2410 }
14f9c5c9
AS
2411 }
2412 else
2413 {
2414 accum = (unsigned char) *source >> src_offset;
2415 source += 1;
2416 accum_bits = HOST_CHAR_BIT - src_offset;
2417
d2e4a39e 2418 while (n > 0)
4c4b4cd2
PH
2419 {
2420 accum = accum + ((unsigned char) *source << accum_bits);
2421 accum_bits += HOST_CHAR_BIT;
2422 source += 1;
2423 chunk_size = HOST_CHAR_BIT - targ_offset;
2424 if (chunk_size > n)
2425 chunk_size = n;
2426 mask = ((1 << chunk_size) - 1) << targ_offset;
2427 *target = (*target & ~mask) | ((accum << targ_offset) & mask);
2428 n -= chunk_size;
2429 accum_bits -= chunk_size;
2430 accum >>= chunk_size;
2431 target += 1;
2432 targ_offset = 0;
2433 }
14f9c5c9
AS
2434 }
2435}
2436
14f9c5c9
AS
2437/* Store the contents of FROMVAL into the location of TOVAL.
2438 Return a new value with the location of TOVAL and contents of
2439 FROMVAL. Handles assignment into packed fields that have
4c4b4cd2 2440 floating-point or non-scalar types. */
14f9c5c9 2441
d2e4a39e
AS
2442static struct value *
2443ada_value_assign (struct value *toval, struct value *fromval)
14f9c5c9 2444{
df407dfe
AC
2445 struct type *type = value_type (toval);
2446 int bits = value_bitsize (toval);
14f9c5c9 2447
52ce6436
PH
2448 toval = ada_coerce_ref (toval);
2449 fromval = ada_coerce_ref (fromval);
2450
2451 if (ada_is_direct_array_type (value_type (toval)))
2452 toval = ada_coerce_to_simple_array (toval);
2453 if (ada_is_direct_array_type (value_type (fromval)))
2454 fromval = ada_coerce_to_simple_array (fromval);
2455
88e3b34b 2456 if (!deprecated_value_modifiable (toval))
323e0a4a 2457 error (_("Left operand of assignment is not a modifiable lvalue."));
14f9c5c9 2458
d2e4a39e 2459 if (VALUE_LVAL (toval) == lval_memory
14f9c5c9 2460 && bits > 0
d2e4a39e 2461 && (TYPE_CODE (type) == TYPE_CODE_FLT
4c4b4cd2 2462 || TYPE_CODE (type) == TYPE_CODE_STRUCT))
14f9c5c9 2463 {
df407dfe
AC
2464 int len = (value_bitpos (toval)
2465 + bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
aced2898 2466 int from_size;
d2e4a39e
AS
2467 char *buffer = (char *) alloca (len);
2468 struct value *val;
42ae5230 2469 CORE_ADDR to_addr = value_address (toval);
14f9c5c9
AS
2470
2471 if (TYPE_CODE (type) == TYPE_CODE_FLT)
4c4b4cd2 2472 fromval = value_cast (type, fromval);
14f9c5c9 2473
52ce6436 2474 read_memory (to_addr, buffer, len);
aced2898
PH
2475 from_size = value_bitsize (fromval);
2476 if (from_size == 0)
2477 from_size = TYPE_LENGTH (value_type (fromval)) * TARGET_CHAR_BIT;
50810684 2478 if (gdbarch_bits_big_endian (get_type_arch (type)))
df407dfe 2479 move_bits (buffer, value_bitpos (toval),
50810684 2480 value_contents (fromval), from_size - bits, bits, 1);
14f9c5c9 2481 else
50810684
UW
2482 move_bits (buffer, value_bitpos (toval),
2483 value_contents (fromval), 0, bits, 0);
52ce6436 2484 write_memory (to_addr, buffer, len);
8cebebb9
PP
2485 observer_notify_memory_changed (to_addr, len, buffer);
2486
14f9c5c9 2487 val = value_copy (toval);
0fd88904 2488 memcpy (value_contents_raw (val), value_contents (fromval),
4c4b4cd2 2489 TYPE_LENGTH (type));
04624583 2490 deprecated_set_value_type (val, type);
d2e4a39e 2491
14f9c5c9
AS
2492 return val;
2493 }
2494
2495 return value_assign (toval, fromval);
2496}
2497
2498
52ce6436
PH
2499/* Given that COMPONENT is a memory lvalue that is part of the lvalue
2500 * CONTAINER, assign the contents of VAL to COMPONENTS's place in
2501 * CONTAINER. Modifies the VALUE_CONTENTS of CONTAINER only, not
2502 * COMPONENT, and not the inferior's memory. The current contents
2503 * of COMPONENT are ignored. */
2504static void
2505value_assign_to_component (struct value *container, struct value *component,
2506 struct value *val)
2507{
2508 LONGEST offset_in_container =
42ae5230 2509 (LONGEST) (value_address (component) - value_address (container));
52ce6436
PH
2510 int bit_offset_in_container =
2511 value_bitpos (component) - value_bitpos (container);
2512 int bits;
2513
2514 val = value_cast (value_type (component), val);
2515
2516 if (value_bitsize (component) == 0)
2517 bits = TARGET_CHAR_BIT * TYPE_LENGTH (value_type (component));
2518 else
2519 bits = value_bitsize (component);
2520
50810684 2521 if (gdbarch_bits_big_endian (get_type_arch (value_type (container))))
52ce6436
PH
2522 move_bits (value_contents_writeable (container) + offset_in_container,
2523 value_bitpos (container) + bit_offset_in_container,
2524 value_contents (val),
2525 TYPE_LENGTH (value_type (component)) * TARGET_CHAR_BIT - bits,
50810684 2526 bits, 1);
52ce6436
PH
2527 else
2528 move_bits (value_contents_writeable (container) + offset_in_container,
2529 value_bitpos (container) + bit_offset_in_container,
50810684 2530 value_contents (val), 0, bits, 0);
52ce6436
PH
2531}
2532
4c4b4cd2
PH
2533/* The value of the element of array ARR at the ARITY indices given in IND.
2534 ARR may be either a simple array, GNAT array descriptor, or pointer
14f9c5c9
AS
2535 thereto. */
2536
d2e4a39e
AS
2537struct value *
2538ada_value_subscript (struct value *arr, int arity, struct value **ind)
14f9c5c9
AS
2539{
2540 int k;
d2e4a39e
AS
2541 struct value *elt;
2542 struct type *elt_type;
14f9c5c9
AS
2543
2544 elt = ada_coerce_to_simple_array (arr);
2545
df407dfe 2546 elt_type = ada_check_typedef (value_type (elt));
d2e4a39e 2547 if (TYPE_CODE (elt_type) == TYPE_CODE_ARRAY
14f9c5c9
AS
2548 && TYPE_FIELD_BITSIZE (elt_type, 0) > 0)
2549 return value_subscript_packed (elt, arity, ind);
2550
2551 for (k = 0; k < arity; k += 1)
2552 {
2553 if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY)
323e0a4a 2554 error (_("too many subscripts (%d expected)"), k);
2497b498 2555 elt = value_subscript (elt, pos_atr (ind[k]));
14f9c5c9
AS
2556 }
2557 return elt;
2558}
2559
2560/* Assuming ARR is a pointer to a standard GDB array of type TYPE, the
2561 value of the element of *ARR at the ARITY indices given in
4c4b4cd2 2562 IND. Does not read the entire array into memory. */
14f9c5c9 2563
2c0b251b 2564static struct value *
d2e4a39e 2565ada_value_ptr_subscript (struct value *arr, struct type *type, int arity,
4c4b4cd2 2566 struct value **ind)
14f9c5c9
AS
2567{
2568 int k;
2569
2570 for (k = 0; k < arity; k += 1)
2571 {
2572 LONGEST lwb, upb;
14f9c5c9
AS
2573
2574 if (TYPE_CODE (type) != TYPE_CODE_ARRAY)
323e0a4a 2575 error (_("too many subscripts (%d expected)"), k);
d2e4a39e 2576 arr = value_cast (lookup_pointer_type (TYPE_TARGET_TYPE (type)),
4c4b4cd2 2577 value_copy (arr));
14f9c5c9 2578 get_discrete_bounds (TYPE_INDEX_TYPE (type), &lwb, &upb);
2497b498 2579 arr = value_ptradd (arr, pos_atr (ind[k]) - lwb);
14f9c5c9
AS
2580 type = TYPE_TARGET_TYPE (type);
2581 }
2582
2583 return value_ind (arr);
2584}
2585
0b5d8877 2586/* Given that ARRAY_PTR is a pointer or reference to an array of type TYPE (the
f5938064
JG
2587 actual type of ARRAY_PTR is ignored), returns the Ada slice of HIGH-LOW+1
2588 elements starting at index LOW. The lower bound of this array is LOW, as
0963b4bd 2589 per Ada rules. */
0b5d8877 2590static struct value *
f5938064
JG
2591ada_value_slice_from_ptr (struct value *array_ptr, struct type *type,
2592 int low, int high)
0b5d8877 2593{
b0dd7688 2594 struct type *type0 = ada_check_typedef (type);
6c038f32 2595 CORE_ADDR base = value_as_address (array_ptr)
b0dd7688
JB
2596 + ((low - ada_discrete_type_low_bound (TYPE_INDEX_TYPE (type0)))
2597 * TYPE_LENGTH (TYPE_TARGET_TYPE (type0)));
6c038f32 2598 struct type *index_type =
b0dd7688 2599 create_range_type (NULL, TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type0)),
0b5d8877 2600 low, high);
6c038f32 2601 struct type *slice_type =
b0dd7688 2602 create_array_type (NULL, TYPE_TARGET_TYPE (type0), index_type);
5b4ee69b 2603
f5938064 2604 return value_at_lazy (slice_type, base);
0b5d8877
PH
2605}
2606
2607
2608static struct value *
2609ada_value_slice (struct value *array, int low, int high)
2610{
b0dd7688 2611 struct type *type = ada_check_typedef (value_type (array));
6c038f32 2612 struct type *index_type =
0b5d8877 2613 create_range_type (NULL, TYPE_INDEX_TYPE (type), low, high);
6c038f32 2614 struct type *slice_type =
0b5d8877 2615 create_array_type (NULL, TYPE_TARGET_TYPE (type), index_type);
5b4ee69b 2616
6c038f32 2617 return value_cast (slice_type, value_slice (array, low, high - low + 1));
0b5d8877
PH
2618}
2619
14f9c5c9
AS
2620/* If type is a record type in the form of a standard GNAT array
2621 descriptor, returns the number of dimensions for type. If arr is a
2622 simple array, returns the number of "array of"s that prefix its
4c4b4cd2 2623 type designation. Otherwise, returns 0. */
14f9c5c9
AS
2624
2625int
d2e4a39e 2626ada_array_arity (struct type *type)
14f9c5c9
AS
2627{
2628 int arity;
2629
2630 if (type == NULL)
2631 return 0;
2632
2633 type = desc_base_type (type);
2634
2635 arity = 0;
d2e4a39e 2636 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
14f9c5c9 2637 return desc_arity (desc_bounds_type (type));
d2e4a39e
AS
2638 else
2639 while (TYPE_CODE (type) == TYPE_CODE_ARRAY)
14f9c5c9 2640 {
4c4b4cd2 2641 arity += 1;
61ee279c 2642 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
14f9c5c9 2643 }
d2e4a39e 2644
14f9c5c9
AS
2645 return arity;
2646}
2647
2648/* If TYPE is a record type in the form of a standard GNAT array
2649 descriptor or a simple array type, returns the element type for
2650 TYPE after indexing by NINDICES indices, or by all indices if
4c4b4cd2 2651 NINDICES is -1. Otherwise, returns NULL. */
14f9c5c9 2652
d2e4a39e
AS
2653struct type *
2654ada_array_element_type (struct type *type, int nindices)
14f9c5c9
AS
2655{
2656 type = desc_base_type (type);
2657
d2e4a39e 2658 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
14f9c5c9
AS
2659 {
2660 int k;
d2e4a39e 2661 struct type *p_array_type;
14f9c5c9 2662
556bdfd4 2663 p_array_type = desc_data_target_type (type);
14f9c5c9
AS
2664
2665 k = ada_array_arity (type);
2666 if (k == 0)
4c4b4cd2 2667 return NULL;
d2e4a39e 2668
4c4b4cd2 2669 /* Initially p_array_type = elt_type(*)[]...(k times)...[]. */
14f9c5c9 2670 if (nindices >= 0 && k > nindices)
4c4b4cd2 2671 k = nindices;
d2e4a39e 2672 while (k > 0 && p_array_type != NULL)
4c4b4cd2 2673 {
61ee279c 2674 p_array_type = ada_check_typedef (TYPE_TARGET_TYPE (p_array_type));
4c4b4cd2
PH
2675 k -= 1;
2676 }
14f9c5c9
AS
2677 return p_array_type;
2678 }
2679 else if (TYPE_CODE (type) == TYPE_CODE_ARRAY)
2680 {
2681 while (nindices != 0 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
4c4b4cd2
PH
2682 {
2683 type = TYPE_TARGET_TYPE (type);
2684 nindices -= 1;
2685 }
14f9c5c9
AS
2686 return type;
2687 }
2688
2689 return NULL;
2690}
2691
4c4b4cd2 2692/* The type of nth index in arrays of given type (n numbering from 1).
dd19d49e
UW
2693 Does not examine memory. Throws an error if N is invalid or TYPE
2694 is not an array type. NAME is the name of the Ada attribute being
2695 evaluated ('range, 'first, 'last, or 'length); it is used in building
2696 the error message. */
14f9c5c9 2697
1eea4ebd
UW
2698static struct type *
2699ada_index_type (struct type *type, int n, const char *name)
14f9c5c9 2700{
4c4b4cd2
PH
2701 struct type *result_type;
2702
14f9c5c9
AS
2703 type = desc_base_type (type);
2704
1eea4ebd
UW
2705 if (n < 0 || n > ada_array_arity (type))
2706 error (_("invalid dimension number to '%s"), name);
14f9c5c9 2707
4c4b4cd2 2708 if (ada_is_simple_array_type (type))
14f9c5c9
AS
2709 {
2710 int i;
2711
2712 for (i = 1; i < n; i += 1)
4c4b4cd2 2713 type = TYPE_TARGET_TYPE (type);
262452ec 2714 result_type = TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type));
4c4b4cd2
PH
2715 /* FIXME: The stabs type r(0,0);bound;bound in an array type
2716 has a target type of TYPE_CODE_UNDEF. We compensate here, but
76a01679 2717 perhaps stabsread.c would make more sense. */
1eea4ebd
UW
2718 if (result_type && TYPE_CODE (result_type) == TYPE_CODE_UNDEF)
2719 result_type = NULL;
14f9c5c9 2720 }
d2e4a39e 2721 else
1eea4ebd
UW
2722 {
2723 result_type = desc_index_type (desc_bounds_type (type), n);
2724 if (result_type == NULL)
2725 error (_("attempt to take bound of something that is not an array"));
2726 }
2727
2728 return result_type;
14f9c5c9
AS
2729}
2730
2731/* Given that arr is an array type, returns the lower bound of the
2732 Nth index (numbering from 1) if WHICH is 0, and the upper bound if
4c4b4cd2 2733 WHICH is 1. This returns bounds 0 .. -1 if ARR_TYPE is an
1eea4ebd
UW
2734 array-descriptor type. It works for other arrays with bounds supplied
2735 by run-time quantities other than discriminants. */
14f9c5c9 2736
abb68b3e 2737static LONGEST
1eea4ebd 2738ada_array_bound_from_type (struct type * arr_type, int n, int which)
14f9c5c9 2739{
1ce677a4 2740 struct type *type, *elt_type, *index_type_desc, *index_type;
1ce677a4 2741 int i;
262452ec
JK
2742
2743 gdb_assert (which == 0 || which == 1);
14f9c5c9 2744
ad82864c
JB
2745 if (ada_is_constrained_packed_array_type (arr_type))
2746 arr_type = decode_constrained_packed_array_type (arr_type);
14f9c5c9 2747
4c4b4cd2 2748 if (arr_type == NULL || !ada_is_simple_array_type (arr_type))
1eea4ebd 2749 return (LONGEST) - which;
14f9c5c9
AS
2750
2751 if (TYPE_CODE (arr_type) == TYPE_CODE_PTR)
2752 type = TYPE_TARGET_TYPE (arr_type);
2753 else
2754 type = arr_type;
2755
1ce677a4
UW
2756 elt_type = type;
2757 for (i = n; i > 1; i--)
2758 elt_type = TYPE_TARGET_TYPE (type);
2759
14f9c5c9 2760 index_type_desc = ada_find_parallel_type (type, "___XA");
28c85d6c 2761 ada_fixup_array_indexes_type (index_type_desc);
262452ec 2762 if (index_type_desc != NULL)
28c85d6c
JB
2763 index_type = to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, n - 1),
2764 NULL);
262452ec 2765 else
1ce677a4 2766 index_type = TYPE_INDEX_TYPE (elt_type);
262452ec 2767
43bbcdc2
PH
2768 return
2769 (LONGEST) (which == 0
2770 ? ada_discrete_type_low_bound (index_type)
2771 : ada_discrete_type_high_bound (index_type));
14f9c5c9
AS
2772}
2773
2774/* Given that arr is an array value, returns the lower bound of the
abb68b3e
JB
2775 nth index (numbering from 1) if WHICH is 0, and the upper bound if
2776 WHICH is 1. This routine will also work for arrays with bounds
4c4b4cd2 2777 supplied by run-time quantities other than discriminants. */
14f9c5c9 2778
1eea4ebd 2779static LONGEST
4dc81987 2780ada_array_bound (struct value *arr, int n, int which)
14f9c5c9 2781{
df407dfe 2782 struct type *arr_type = value_type (arr);
14f9c5c9 2783
ad82864c
JB
2784 if (ada_is_constrained_packed_array_type (arr_type))
2785 return ada_array_bound (decode_constrained_packed_array (arr), n, which);
4c4b4cd2 2786 else if (ada_is_simple_array_type (arr_type))
1eea4ebd 2787 return ada_array_bound_from_type (arr_type, n, which);
14f9c5c9 2788 else
1eea4ebd 2789 return value_as_long (desc_one_bound (desc_bounds (arr), n, which));
14f9c5c9
AS
2790}
2791
2792/* Given that arr is an array value, returns the length of the
2793 nth index. This routine will also work for arrays with bounds
4c4b4cd2
PH
2794 supplied by run-time quantities other than discriminants.
2795 Does not work for arrays indexed by enumeration types with representation
2796 clauses at the moment. */
14f9c5c9 2797
1eea4ebd 2798static LONGEST
d2e4a39e 2799ada_array_length (struct value *arr, int n)
14f9c5c9 2800{
df407dfe 2801 struct type *arr_type = ada_check_typedef (value_type (arr));
14f9c5c9 2802
ad82864c
JB
2803 if (ada_is_constrained_packed_array_type (arr_type))
2804 return ada_array_length (decode_constrained_packed_array (arr), n);
14f9c5c9 2805
4c4b4cd2 2806 if (ada_is_simple_array_type (arr_type))
1eea4ebd
UW
2807 return (ada_array_bound_from_type (arr_type, n, 1)
2808 - ada_array_bound_from_type (arr_type, n, 0) + 1);
14f9c5c9 2809 else
1eea4ebd
UW
2810 return (value_as_long (desc_one_bound (desc_bounds (arr), n, 1))
2811 - value_as_long (desc_one_bound (desc_bounds (arr), n, 0)) + 1);
4c4b4cd2
PH
2812}
2813
2814/* An empty array whose type is that of ARR_TYPE (an array type),
2815 with bounds LOW to LOW-1. */
2816
2817static struct value *
2818empty_array (struct type *arr_type, int low)
2819{
b0dd7688 2820 struct type *arr_type0 = ada_check_typedef (arr_type);
6c038f32 2821 struct type *index_type =
b0dd7688 2822 create_range_type (NULL, TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (arr_type0)),
0b5d8877 2823 low, low - 1);
b0dd7688 2824 struct type *elt_type = ada_array_element_type (arr_type0, 1);
5b4ee69b 2825
0b5d8877 2826 return allocate_value (create_array_type (NULL, elt_type, index_type));
14f9c5c9 2827}
14f9c5c9 2828\f
d2e4a39e 2829
4c4b4cd2 2830 /* Name resolution */
14f9c5c9 2831
4c4b4cd2
PH
2832/* The "decoded" name for the user-definable Ada operator corresponding
2833 to OP. */
14f9c5c9 2834
d2e4a39e 2835static const char *
4c4b4cd2 2836ada_decoded_op_name (enum exp_opcode op)
14f9c5c9
AS
2837{
2838 int i;
2839
4c4b4cd2 2840 for (i = 0; ada_opname_table[i].encoded != NULL; i += 1)
14f9c5c9
AS
2841 {
2842 if (ada_opname_table[i].op == op)
4c4b4cd2 2843 return ada_opname_table[i].decoded;
14f9c5c9 2844 }
323e0a4a 2845 error (_("Could not find operator name for opcode"));
14f9c5c9
AS
2846}
2847
2848
4c4b4cd2
PH
2849/* Same as evaluate_type (*EXP), but resolves ambiguous symbol
2850 references (marked by OP_VAR_VALUE nodes in which the symbol has an
2851 undefined namespace) and converts operators that are
2852 user-defined into appropriate function calls. If CONTEXT_TYPE is
14f9c5c9
AS
2853 non-null, it provides a preferred result type [at the moment, only
2854 type void has any effect---causing procedures to be preferred over
2855 functions in calls]. A null CONTEXT_TYPE indicates that a non-void
4c4b4cd2 2856 return type is preferred. May change (expand) *EXP. */
14f9c5c9 2857
4c4b4cd2
PH
2858static void
2859resolve (struct expression **expp, int void_context_p)
14f9c5c9 2860{
30b15541
UW
2861 struct type *context_type = NULL;
2862 int pc = 0;
2863
2864 if (void_context_p)
2865 context_type = builtin_type ((*expp)->gdbarch)->builtin_void;
2866
2867 resolve_subexp (expp, &pc, 1, context_type);
14f9c5c9
AS
2868}
2869
4c4b4cd2
PH
2870/* Resolve the operator of the subexpression beginning at
2871 position *POS of *EXPP. "Resolving" consists of replacing
2872 the symbols that have undefined namespaces in OP_VAR_VALUE nodes
2873 with their resolutions, replacing built-in operators with
2874 function calls to user-defined operators, where appropriate, and,
2875 when DEPROCEDURE_P is non-zero, converting function-valued variables
2876 into parameterless calls. May expand *EXPP. The CONTEXT_TYPE functions
2877 are as in ada_resolve, above. */
14f9c5c9 2878
d2e4a39e 2879static struct value *
4c4b4cd2 2880resolve_subexp (struct expression **expp, int *pos, int deprocedure_p,
76a01679 2881 struct type *context_type)
14f9c5c9
AS
2882{
2883 int pc = *pos;
2884 int i;
4c4b4cd2 2885 struct expression *exp; /* Convenience: == *expp. */
14f9c5c9 2886 enum exp_opcode op = (*expp)->elts[pc].opcode;
4c4b4cd2
PH
2887 struct value **argvec; /* Vector of operand types (alloca'ed). */
2888 int nargs; /* Number of operands. */
52ce6436 2889 int oplen;
14f9c5c9
AS
2890
2891 argvec = NULL;
2892 nargs = 0;
2893 exp = *expp;
2894
52ce6436
PH
2895 /* Pass one: resolve operands, saving their types and updating *pos,
2896 if needed. */
14f9c5c9
AS
2897 switch (op)
2898 {
4c4b4cd2
PH
2899 case OP_FUNCALL:
2900 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
76a01679
JB
2901 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
2902 *pos += 7;
4c4b4cd2
PH
2903 else
2904 {
2905 *pos += 3;
2906 resolve_subexp (expp, pos, 0, NULL);
2907 }
2908 nargs = longest_to_int (exp->elts[pc + 1].longconst);
14f9c5c9
AS
2909 break;
2910
14f9c5c9 2911 case UNOP_ADDR:
4c4b4cd2
PH
2912 *pos += 1;
2913 resolve_subexp (expp, pos, 0, NULL);
2914 break;
2915
52ce6436
PH
2916 case UNOP_QUAL:
2917 *pos += 3;
17466c1a 2918 resolve_subexp (expp, pos, 1, check_typedef (exp->elts[pc + 1].type));
4c4b4cd2
PH
2919 break;
2920
52ce6436 2921 case OP_ATR_MODULUS:
4c4b4cd2
PH
2922 case OP_ATR_SIZE:
2923 case OP_ATR_TAG:
4c4b4cd2
PH
2924 case OP_ATR_FIRST:
2925 case OP_ATR_LAST:
2926 case OP_ATR_LENGTH:
2927 case OP_ATR_POS:
2928 case OP_ATR_VAL:
4c4b4cd2
PH
2929 case OP_ATR_MIN:
2930 case OP_ATR_MAX:
52ce6436
PH
2931 case TERNOP_IN_RANGE:
2932 case BINOP_IN_BOUNDS:
2933 case UNOP_IN_RANGE:
2934 case OP_AGGREGATE:
2935 case OP_OTHERS:
2936 case OP_CHOICES:
2937 case OP_POSITIONAL:
2938 case OP_DISCRETE_RANGE:
2939 case OP_NAME:
2940 ada_forward_operator_length (exp, pc, &oplen, &nargs);
2941 *pos += oplen;
14f9c5c9
AS
2942 break;
2943
2944 case BINOP_ASSIGN:
2945 {
4c4b4cd2
PH
2946 struct value *arg1;
2947
2948 *pos += 1;
2949 arg1 = resolve_subexp (expp, pos, 0, NULL);
2950 if (arg1 == NULL)
2951 resolve_subexp (expp, pos, 1, NULL);
2952 else
df407dfe 2953 resolve_subexp (expp, pos, 1, value_type (arg1));
4c4b4cd2 2954 break;
14f9c5c9
AS
2955 }
2956
4c4b4cd2 2957 case UNOP_CAST:
4c4b4cd2
PH
2958 *pos += 3;
2959 nargs = 1;
2960 break;
14f9c5c9 2961
4c4b4cd2
PH
2962 case BINOP_ADD:
2963 case BINOP_SUB:
2964 case BINOP_MUL:
2965 case BINOP_DIV:
2966 case BINOP_REM:
2967 case BINOP_MOD:
2968 case BINOP_EXP:
2969 case BINOP_CONCAT:
2970 case BINOP_LOGICAL_AND:
2971 case BINOP_LOGICAL_OR:
2972 case BINOP_BITWISE_AND:
2973 case BINOP_BITWISE_IOR:
2974 case BINOP_BITWISE_XOR:
14f9c5c9 2975
4c4b4cd2
PH
2976 case BINOP_EQUAL:
2977 case BINOP_NOTEQUAL:
2978 case BINOP_LESS:
2979 case BINOP_GTR:
2980 case BINOP_LEQ:
2981 case BINOP_GEQ:
14f9c5c9 2982
4c4b4cd2
PH
2983 case BINOP_REPEAT:
2984 case BINOP_SUBSCRIPT:
2985 case BINOP_COMMA:
40c8aaa9
JB
2986 *pos += 1;
2987 nargs = 2;
2988 break;
14f9c5c9 2989
4c4b4cd2
PH
2990 case UNOP_NEG:
2991 case UNOP_PLUS:
2992 case UNOP_LOGICAL_NOT:
2993 case UNOP_ABS:
2994 case UNOP_IND:
2995 *pos += 1;
2996 nargs = 1;
2997 break;
14f9c5c9 2998
4c4b4cd2
PH
2999 case OP_LONG:
3000 case OP_DOUBLE:
3001 case OP_VAR_VALUE:
3002 *pos += 4;
3003 break;
14f9c5c9 3004
4c4b4cd2
PH
3005 case OP_TYPE:
3006 case OP_BOOL:
3007 case OP_LAST:
4c4b4cd2
PH
3008 case OP_INTERNALVAR:
3009 *pos += 3;
3010 break;
14f9c5c9 3011
4c4b4cd2
PH
3012 case UNOP_MEMVAL:
3013 *pos += 3;
3014 nargs = 1;
3015 break;
3016
67f3407f
DJ
3017 case OP_REGISTER:
3018 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
3019 break;
3020
4c4b4cd2
PH
3021 case STRUCTOP_STRUCT:
3022 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
3023 nargs = 1;
3024 break;
3025
4c4b4cd2 3026 case TERNOP_SLICE:
4c4b4cd2
PH
3027 *pos += 1;
3028 nargs = 3;
3029 break;
3030
52ce6436 3031 case OP_STRING:
14f9c5c9 3032 break;
4c4b4cd2
PH
3033
3034 default:
323e0a4a 3035 error (_("Unexpected operator during name resolution"));
14f9c5c9
AS
3036 }
3037
76a01679 3038 argvec = (struct value * *) alloca (sizeof (struct value *) * (nargs + 1));
4c4b4cd2
PH
3039 for (i = 0; i < nargs; i += 1)
3040 argvec[i] = resolve_subexp (expp, pos, 1, NULL);
3041 argvec[i] = NULL;
3042 exp = *expp;
3043
3044 /* Pass two: perform any resolution on principal operator. */
14f9c5c9
AS
3045 switch (op)
3046 {
3047 default:
3048 break;
3049
14f9c5c9 3050 case OP_VAR_VALUE:
4c4b4cd2 3051 if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
76a01679
JB
3052 {
3053 struct ada_symbol_info *candidates;
3054 int n_candidates;
3055
3056 n_candidates =
3057 ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME
3058 (exp->elts[pc + 2].symbol),
3059 exp->elts[pc + 1].block, VAR_DOMAIN,
d9680e73 3060 &candidates, 1);
76a01679
JB
3061
3062 if (n_candidates > 1)
3063 {
3064 /* Types tend to get re-introduced locally, so if there
3065 are any local symbols that are not types, first filter
3066 out all types. */
3067 int j;
3068 for (j = 0; j < n_candidates; j += 1)
3069 switch (SYMBOL_CLASS (candidates[j].sym))
3070 {
3071 case LOC_REGISTER:
3072 case LOC_ARG:
3073 case LOC_REF_ARG:
76a01679
JB
3074 case LOC_REGPARM_ADDR:
3075 case LOC_LOCAL:
76a01679 3076 case LOC_COMPUTED:
76a01679
JB
3077 goto FoundNonType;
3078 default:
3079 break;
3080 }
3081 FoundNonType:
3082 if (j < n_candidates)
3083 {
3084 j = 0;
3085 while (j < n_candidates)
3086 {
3087 if (SYMBOL_CLASS (candidates[j].sym) == LOC_TYPEDEF)
3088 {
3089 candidates[j] = candidates[n_candidates - 1];
3090 n_candidates -= 1;
3091 }
3092 else
3093 j += 1;
3094 }
3095 }
3096 }
3097
3098 if (n_candidates == 0)
323e0a4a 3099 error (_("No definition found for %s"),
76a01679
JB
3100 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
3101 else if (n_candidates == 1)
3102 i = 0;
3103 else if (deprocedure_p
3104 && !is_nonfunction (candidates, n_candidates))
3105 {
06d5cf63
JB
3106 i = ada_resolve_function
3107 (candidates, n_candidates, NULL, 0,
3108 SYMBOL_LINKAGE_NAME (exp->elts[pc + 2].symbol),
3109 context_type);
76a01679 3110 if (i < 0)
323e0a4a 3111 error (_("Could not find a match for %s"),
76a01679
JB
3112 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
3113 }
3114 else
3115 {
323e0a4a 3116 printf_filtered (_("Multiple matches for %s\n"),
76a01679
JB
3117 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
3118 user_select_syms (candidates, n_candidates, 1);
3119 i = 0;
3120 }
3121
3122 exp->elts[pc + 1].block = candidates[i].block;
3123 exp->elts[pc + 2].symbol = candidates[i].sym;
1265e4aa
JB
3124 if (innermost_block == NULL
3125 || contained_in (candidates[i].block, innermost_block))
76a01679
JB
3126 innermost_block = candidates[i].block;
3127 }
3128
3129 if (deprocedure_p
3130 && (TYPE_CODE (SYMBOL_TYPE (exp->elts[pc + 2].symbol))
3131 == TYPE_CODE_FUNC))
3132 {
3133 replace_operator_with_call (expp, pc, 0, 0,
3134 exp->elts[pc + 2].symbol,
3135 exp->elts[pc + 1].block);
3136 exp = *expp;
3137 }
14f9c5c9
AS
3138 break;
3139
3140 case OP_FUNCALL:
3141 {
4c4b4cd2 3142 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
76a01679 3143 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
4c4b4cd2
PH
3144 {
3145 struct ada_symbol_info *candidates;
3146 int n_candidates;
3147
3148 n_candidates =
76a01679
JB
3149 ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME
3150 (exp->elts[pc + 5].symbol),
3151 exp->elts[pc + 4].block, VAR_DOMAIN,
d9680e73 3152 &candidates, 1);
4c4b4cd2
PH
3153 if (n_candidates == 1)
3154 i = 0;
3155 else
3156 {
06d5cf63
JB
3157 i = ada_resolve_function
3158 (candidates, n_candidates,
3159 argvec, nargs,
3160 SYMBOL_LINKAGE_NAME (exp->elts[pc + 5].symbol),
3161 context_type);
4c4b4cd2 3162 if (i < 0)
323e0a4a 3163 error (_("Could not find a match for %s"),
4c4b4cd2
PH
3164 SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol));
3165 }
3166
3167 exp->elts[pc + 4].block = candidates[i].block;
3168 exp->elts[pc + 5].symbol = candidates[i].sym;
1265e4aa
JB
3169 if (innermost_block == NULL
3170 || contained_in (candidates[i].block, innermost_block))
4c4b4cd2
PH
3171 innermost_block = candidates[i].block;
3172 }
14f9c5c9
AS
3173 }
3174 break;
3175 case BINOP_ADD:
3176 case BINOP_SUB:
3177 case BINOP_MUL:
3178 case BINOP_DIV:
3179 case BINOP_REM:
3180 case BINOP_MOD:
3181 case BINOP_CONCAT:
3182 case BINOP_BITWISE_AND:
3183 case BINOP_BITWISE_IOR:
3184 case BINOP_BITWISE_XOR:
3185 case BINOP_EQUAL:
3186 case BINOP_NOTEQUAL:
3187 case BINOP_LESS:
3188 case BINOP_GTR:
3189 case BINOP_LEQ:
3190 case BINOP_GEQ:
3191 case BINOP_EXP:
3192 case UNOP_NEG:
3193 case UNOP_PLUS:
3194 case UNOP_LOGICAL_NOT:
3195 case UNOP_ABS:
3196 if (possible_user_operator_p (op, argvec))
4c4b4cd2
PH
3197 {
3198 struct ada_symbol_info *candidates;
3199 int n_candidates;
3200
3201 n_candidates =
3202 ada_lookup_symbol_list (ada_encode (ada_decoded_op_name (op)),
3203 (struct block *) NULL, VAR_DOMAIN,
d9680e73 3204 &candidates, 1);
4c4b4cd2 3205 i = ada_resolve_function (candidates, n_candidates, argvec, nargs,
76a01679 3206 ada_decoded_op_name (op), NULL);
4c4b4cd2
PH
3207 if (i < 0)
3208 break;
3209
76a01679
JB
3210 replace_operator_with_call (expp, pc, nargs, 1,
3211 candidates[i].sym, candidates[i].block);
4c4b4cd2
PH
3212 exp = *expp;
3213 }
14f9c5c9 3214 break;
4c4b4cd2
PH
3215
3216 case OP_TYPE:
b3dbf008 3217 case OP_REGISTER:
4c4b4cd2 3218 return NULL;
14f9c5c9
AS
3219 }
3220
3221 *pos = pc;
3222 return evaluate_subexp_type (exp, pos);
3223}
3224
3225/* Return non-zero if formal type FTYPE matches actual type ATYPE. If
4c4b4cd2 3226 MAY_DEREF is non-zero, the formal may be a pointer and the actual
5b3d5b7d 3227 a non-pointer. */
14f9c5c9 3228/* The term "match" here is rather loose. The match is heuristic and
5b3d5b7d 3229 liberal. */
14f9c5c9
AS
3230
3231static int
4dc81987 3232ada_type_match (struct type *ftype, struct type *atype, int may_deref)
14f9c5c9 3233{
61ee279c
PH
3234 ftype = ada_check_typedef (ftype);
3235 atype = ada_check_typedef (atype);
14f9c5c9
AS
3236
3237 if (TYPE_CODE (ftype) == TYPE_CODE_REF)
3238 ftype = TYPE_TARGET_TYPE (ftype);
3239 if (TYPE_CODE (atype) == TYPE_CODE_REF)
3240 atype = TYPE_TARGET_TYPE (atype);
3241
d2e4a39e 3242 switch (TYPE_CODE (ftype))
14f9c5c9
AS
3243 {
3244 default:
5b3d5b7d 3245 return TYPE_CODE (ftype) == TYPE_CODE (atype);
14f9c5c9
AS
3246 case TYPE_CODE_PTR:
3247 if (TYPE_CODE (atype) == TYPE_CODE_PTR)
4c4b4cd2
PH
3248 return ada_type_match (TYPE_TARGET_TYPE (ftype),
3249 TYPE_TARGET_TYPE (atype), 0);
d2e4a39e 3250 else
1265e4aa
JB
3251 return (may_deref
3252 && ada_type_match (TYPE_TARGET_TYPE (ftype), atype, 0));
14f9c5c9
AS
3253 case TYPE_CODE_INT:
3254 case TYPE_CODE_ENUM:
3255 case TYPE_CODE_RANGE:
3256 switch (TYPE_CODE (atype))
4c4b4cd2
PH
3257 {
3258 case TYPE_CODE_INT:
3259 case TYPE_CODE_ENUM:
3260 case TYPE_CODE_RANGE:
3261 return 1;
3262 default:
3263 return 0;
3264 }
14f9c5c9
AS
3265
3266 case TYPE_CODE_ARRAY:
d2e4a39e 3267 return (TYPE_CODE (atype) == TYPE_CODE_ARRAY
4c4b4cd2 3268 || ada_is_array_descriptor_type (atype));
14f9c5c9
AS
3269
3270 case TYPE_CODE_STRUCT:
4c4b4cd2
PH
3271 if (ada_is_array_descriptor_type (ftype))
3272 return (TYPE_CODE (atype) == TYPE_CODE_ARRAY
3273 || ada_is_array_descriptor_type (atype));
14f9c5c9 3274 else
4c4b4cd2
PH
3275 return (TYPE_CODE (atype) == TYPE_CODE_STRUCT
3276 && !ada_is_array_descriptor_type (atype));
14f9c5c9
AS
3277
3278 case TYPE_CODE_UNION:
3279 case TYPE_CODE_FLT:
3280 return (TYPE_CODE (atype) == TYPE_CODE (ftype));
3281 }
3282}
3283
3284/* Return non-zero if the formals of FUNC "sufficiently match" the
3285 vector of actual argument types ACTUALS of size N_ACTUALS. FUNC
3286 may also be an enumeral, in which case it is treated as a 0-
4c4b4cd2 3287 argument function. */
14f9c5c9
AS
3288
3289static int
d2e4a39e 3290ada_args_match (struct symbol *func, struct value **actuals, int n_actuals)
14f9c5c9
AS
3291{
3292 int i;
d2e4a39e 3293 struct type *func_type = SYMBOL_TYPE (func);
14f9c5c9 3294
1265e4aa
JB
3295 if (SYMBOL_CLASS (func) == LOC_CONST
3296 && TYPE_CODE (func_type) == TYPE_CODE_ENUM)
14f9c5c9
AS
3297 return (n_actuals == 0);
3298 else if (func_type == NULL || TYPE_CODE (func_type) != TYPE_CODE_FUNC)
3299 return 0;
3300
3301 if (TYPE_NFIELDS (func_type) != n_actuals)
3302 return 0;
3303
3304 for (i = 0; i < n_actuals; i += 1)
3305 {
4c4b4cd2 3306 if (actuals[i] == NULL)
76a01679
JB
3307 return 0;
3308 else
3309 {
5b4ee69b
MS
3310 struct type *ftype = ada_check_typedef (TYPE_FIELD_TYPE (func_type,
3311 i));
df407dfe 3312 struct type *atype = ada_check_typedef (value_type (actuals[i]));
4c4b4cd2 3313
76a01679
JB
3314 if (!ada_type_match (ftype, atype, 1))
3315 return 0;
3316 }
14f9c5c9
AS
3317 }
3318 return 1;
3319}
3320
3321/* False iff function type FUNC_TYPE definitely does not produce a value
3322 compatible with type CONTEXT_TYPE. Conservatively returns 1 if
3323 FUNC_TYPE is not a valid function type with a non-null return type
3324 or an enumerated type. A null CONTEXT_TYPE indicates any non-void type. */
3325
3326static int
d2e4a39e 3327return_match (struct type *func_type, struct type *context_type)
14f9c5c9 3328{
d2e4a39e 3329 struct type *return_type;
14f9c5c9
AS
3330
3331 if (func_type == NULL)
3332 return 1;
3333
4c4b4cd2 3334 if (TYPE_CODE (func_type) == TYPE_CODE_FUNC)
18af8284 3335 return_type = get_base_type (TYPE_TARGET_TYPE (func_type));
4c4b4cd2 3336 else
18af8284 3337 return_type = get_base_type (func_type);
14f9c5c9
AS
3338 if (return_type == NULL)
3339 return 1;
3340
18af8284 3341 context_type = get_base_type (context_type);
14f9c5c9
AS
3342
3343 if (TYPE_CODE (return_type) == TYPE_CODE_ENUM)
3344 return context_type == NULL || return_type == context_type;
3345 else if (context_type == NULL)
3346 return TYPE_CODE (return_type) != TYPE_CODE_VOID;
3347 else
3348 return TYPE_CODE (return_type) == TYPE_CODE (context_type);
3349}
3350
3351
4c4b4cd2 3352/* Returns the index in SYMS[0..NSYMS-1] that contains the symbol for the
14f9c5c9 3353 function (if any) that matches the types of the NARGS arguments in
4c4b4cd2
PH
3354 ARGS. If CONTEXT_TYPE is non-null and there is at least one match
3355 that returns that type, then eliminate matches that don't. If
3356 CONTEXT_TYPE is void and there is at least one match that does not
3357 return void, eliminate all matches that do.
3358
14f9c5c9
AS
3359 Asks the user if there is more than one match remaining. Returns -1
3360 if there is no such symbol or none is selected. NAME is used
4c4b4cd2
PH
3361 solely for messages. May re-arrange and modify SYMS in
3362 the process; the index returned is for the modified vector. */
14f9c5c9 3363
4c4b4cd2
PH
3364static int
3365ada_resolve_function (struct ada_symbol_info syms[],
3366 int nsyms, struct value **args, int nargs,
3367 const char *name, struct type *context_type)
14f9c5c9 3368{
30b15541 3369 int fallback;
14f9c5c9 3370 int k;
4c4b4cd2 3371 int m; /* Number of hits */
14f9c5c9 3372
d2e4a39e 3373 m = 0;
30b15541
UW
3374 /* In the first pass of the loop, we only accept functions matching
3375 context_type. If none are found, we add a second pass of the loop
3376 where every function is accepted. */
3377 for (fallback = 0; m == 0 && fallback < 2; fallback++)
14f9c5c9
AS
3378 {
3379 for (k = 0; k < nsyms; k += 1)
4c4b4cd2 3380 {
61ee279c 3381 struct type *type = ada_check_typedef (SYMBOL_TYPE (syms[k].sym));
4c4b4cd2
PH
3382
3383 if (ada_args_match (syms[k].sym, args, nargs)
30b15541 3384 && (fallback || return_match (type, context_type)))
4c4b4cd2
PH
3385 {
3386 syms[m] = syms[k];
3387 m += 1;
3388 }
3389 }
14f9c5c9
AS
3390 }
3391
3392 if (m == 0)
3393 return -1;
3394 else if (m > 1)
3395 {
323e0a4a 3396 printf_filtered (_("Multiple matches for %s\n"), name);
4c4b4cd2 3397 user_select_syms (syms, m, 1);
14f9c5c9
AS
3398 return 0;
3399 }
3400 return 0;
3401}
3402
4c4b4cd2
PH
3403/* Returns true (non-zero) iff decoded name N0 should appear before N1
3404 in a listing of choices during disambiguation (see sort_choices, below).
3405 The idea is that overloadings of a subprogram name from the
3406 same package should sort in their source order. We settle for ordering
3407 such symbols by their trailing number (__N or $N). */
3408
14f9c5c9 3409static int
4c4b4cd2 3410encoded_ordered_before (char *N0, char *N1)
14f9c5c9
AS
3411{
3412 if (N1 == NULL)
3413 return 0;
3414 else if (N0 == NULL)
3415 return 1;
3416 else
3417 {
3418 int k0, k1;
5b4ee69b 3419
d2e4a39e 3420 for (k0 = strlen (N0) - 1; k0 > 0 && isdigit (N0[k0]); k0 -= 1)
4c4b4cd2 3421 ;
d2e4a39e 3422 for (k1 = strlen (N1) - 1; k1 > 0 && isdigit (N1[k1]); k1 -= 1)
4c4b4cd2 3423 ;
d2e4a39e 3424 if ((N0[k0] == '_' || N0[k0] == '$') && N0[k0 + 1] != '\000'
4c4b4cd2
PH
3425 && (N1[k1] == '_' || N1[k1] == '$') && N1[k1 + 1] != '\000')
3426 {
3427 int n0, n1;
5b4ee69b 3428
4c4b4cd2
PH
3429 n0 = k0;
3430 while (N0[n0] == '_' && n0 > 0 && N0[n0 - 1] == '_')
3431 n0 -= 1;
3432 n1 = k1;
3433 while (N1[n1] == '_' && n1 > 0 && N1[n1 - 1] == '_')
3434 n1 -= 1;
3435 if (n0 == n1 && strncmp (N0, N1, n0) == 0)
3436 return (atoi (N0 + k0 + 1) < atoi (N1 + k1 + 1));
3437 }
14f9c5c9
AS
3438 return (strcmp (N0, N1) < 0);
3439 }
3440}
d2e4a39e 3441
4c4b4cd2
PH
3442/* Sort SYMS[0..NSYMS-1] to put the choices in a canonical order by the
3443 encoded names. */
3444
d2e4a39e 3445static void
4c4b4cd2 3446sort_choices (struct ada_symbol_info syms[], int nsyms)
14f9c5c9 3447{
4c4b4cd2 3448 int i;
5b4ee69b 3449
d2e4a39e 3450 for (i = 1; i < nsyms; i += 1)
14f9c5c9 3451 {
4c4b4cd2 3452 struct ada_symbol_info sym = syms[i];
14f9c5c9
AS
3453 int j;
3454
d2e4a39e 3455 for (j = i - 1; j >= 0; j -= 1)
4c4b4cd2
PH
3456 {
3457 if (encoded_ordered_before (SYMBOL_LINKAGE_NAME (syms[j].sym),
3458 SYMBOL_LINKAGE_NAME (sym.sym)))
3459 break;
3460 syms[j + 1] = syms[j];
3461 }
d2e4a39e 3462 syms[j + 1] = sym;
14f9c5c9
AS
3463 }
3464}
3465
4c4b4cd2
PH
3466/* Given a list of NSYMS symbols in SYMS, select up to MAX_RESULTS>0
3467 by asking the user (if necessary), returning the number selected,
3468 and setting the first elements of SYMS items. Error if no symbols
3469 selected. */
14f9c5c9
AS
3470
3471/* NOTE: Adapted from decode_line_2 in symtab.c, with which it ought
4c4b4cd2 3472 to be re-integrated one of these days. */
14f9c5c9
AS
3473
3474int
4c4b4cd2 3475user_select_syms (struct ada_symbol_info *syms, int nsyms, int max_results)
14f9c5c9
AS
3476{
3477 int i;
d2e4a39e 3478 int *chosen = (int *) alloca (sizeof (int) * nsyms);
14f9c5c9
AS
3479 int n_chosen;
3480 int first_choice = (max_results == 1) ? 1 : 2;
717d2f5a 3481 const char *select_mode = multiple_symbols_select_mode ();
14f9c5c9
AS
3482
3483 if (max_results < 1)
323e0a4a 3484 error (_("Request to select 0 symbols!"));
14f9c5c9
AS
3485 if (nsyms <= 1)
3486 return nsyms;
3487
717d2f5a
JB
3488 if (select_mode == multiple_symbols_cancel)
3489 error (_("\
3490canceled because the command is ambiguous\n\
3491See set/show multiple-symbol."));
3492
3493 /* If select_mode is "all", then return all possible symbols.
3494 Only do that if more than one symbol can be selected, of course.
3495 Otherwise, display the menu as usual. */
3496 if (select_mode == multiple_symbols_all && max_results > 1)
3497 return nsyms;
3498
323e0a4a 3499 printf_unfiltered (_("[0] cancel\n"));
14f9c5c9 3500 if (max_results > 1)
323e0a4a 3501 printf_unfiltered (_("[1] all\n"));
14f9c5c9 3502
4c4b4cd2 3503 sort_choices (syms, nsyms);
14f9c5c9
AS
3504
3505 for (i = 0; i < nsyms; i += 1)
3506 {
4c4b4cd2
PH
3507 if (syms[i].sym == NULL)
3508 continue;
3509
3510 if (SYMBOL_CLASS (syms[i].sym) == LOC_BLOCK)
3511 {
76a01679
JB
3512 struct symtab_and_line sal =
3513 find_function_start_sal (syms[i].sym, 1);
5b4ee69b 3514
323e0a4a
AC
3515 if (sal.symtab == NULL)
3516 printf_unfiltered (_("[%d] %s at <no source file available>:%d\n"),
3517 i + first_choice,
3518 SYMBOL_PRINT_NAME (syms[i].sym),
3519 sal.line);
3520 else
3521 printf_unfiltered (_("[%d] %s at %s:%d\n"), i + first_choice,
3522 SYMBOL_PRINT_NAME (syms[i].sym),
3523 sal.symtab->filename, sal.line);
4c4b4cd2
PH
3524 continue;
3525 }
d2e4a39e 3526 else
4c4b4cd2
PH
3527 {
3528 int is_enumeral =
3529 (SYMBOL_CLASS (syms[i].sym) == LOC_CONST
3530 && SYMBOL_TYPE (syms[i].sym) != NULL
3531 && TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) == TYPE_CODE_ENUM);
6f38eac8 3532 struct symtab *symtab = syms[i].sym->symtab;
4c4b4cd2
PH
3533
3534 if (SYMBOL_LINE (syms[i].sym) != 0 && symtab != NULL)
323e0a4a 3535 printf_unfiltered (_("[%d] %s at %s:%d\n"),
4c4b4cd2
PH
3536 i + first_choice,
3537 SYMBOL_PRINT_NAME (syms[i].sym),
3538 symtab->filename, SYMBOL_LINE (syms[i].sym));
76a01679
JB
3539 else if (is_enumeral
3540 && TYPE_NAME (SYMBOL_TYPE (syms[i].sym)) != NULL)
4c4b4cd2 3541 {
a3f17187 3542 printf_unfiltered (("[%d] "), i + first_choice);
76a01679
JB
3543 ada_print_type (SYMBOL_TYPE (syms[i].sym), NULL,
3544 gdb_stdout, -1, 0);
323e0a4a 3545 printf_unfiltered (_("'(%s) (enumeral)\n"),
4c4b4cd2
PH
3546 SYMBOL_PRINT_NAME (syms[i].sym));
3547 }
3548 else if (symtab != NULL)
3549 printf_unfiltered (is_enumeral
323e0a4a
AC
3550 ? _("[%d] %s in %s (enumeral)\n")
3551 : _("[%d] %s at %s:?\n"),
4c4b4cd2
PH
3552 i + first_choice,
3553 SYMBOL_PRINT_NAME (syms[i].sym),
3554 symtab->filename);
3555 else
3556 printf_unfiltered (is_enumeral
323e0a4a
AC
3557 ? _("[%d] %s (enumeral)\n")
3558 : _("[%d] %s at ?\n"),
4c4b4cd2
PH
3559 i + first_choice,
3560 SYMBOL_PRINT_NAME (syms[i].sym));
3561 }
14f9c5c9 3562 }
d2e4a39e 3563
14f9c5c9 3564 n_chosen = get_selections (chosen, nsyms, max_results, max_results > 1,
4c4b4cd2 3565 "overload-choice");
14f9c5c9
AS
3566
3567 for (i = 0; i < n_chosen; i += 1)
4c4b4cd2 3568 syms[i] = syms[chosen[i]];
14f9c5c9
AS
3569
3570 return n_chosen;
3571}
3572
3573/* Read and validate a set of numeric choices from the user in the
4c4b4cd2 3574 range 0 .. N_CHOICES-1. Place the results in increasing
14f9c5c9
AS
3575 order in CHOICES[0 .. N-1], and return N.
3576
3577 The user types choices as a sequence of numbers on one line
3578 separated by blanks, encoding them as follows:
3579
4c4b4cd2 3580 + A choice of 0 means to cancel the selection, throwing an error.
14f9c5c9
AS
3581 + If IS_ALL_CHOICE, a choice of 1 selects the entire set 0 .. N_CHOICES-1.
3582 + The user chooses k by typing k+IS_ALL_CHOICE+1.
3583
4c4b4cd2 3584 The user is not allowed to choose more than MAX_RESULTS values.
14f9c5c9
AS
3585
3586 ANNOTATION_SUFFIX, if present, is used to annotate the input
4c4b4cd2 3587 prompts (for use with the -f switch). */
14f9c5c9
AS
3588
3589int
d2e4a39e 3590get_selections (int *choices, int n_choices, int max_results,
4c4b4cd2 3591 int is_all_choice, char *annotation_suffix)
14f9c5c9 3592{
d2e4a39e 3593 char *args;
0bcd0149 3594 char *prompt;
14f9c5c9
AS
3595 int n_chosen;
3596 int first_choice = is_all_choice ? 2 : 1;
d2e4a39e 3597
14f9c5c9
AS
3598 prompt = getenv ("PS2");
3599 if (prompt == NULL)
0bcd0149 3600 prompt = "> ";
14f9c5c9 3601
0bcd0149 3602 args = command_line_input (prompt, 0, annotation_suffix);
d2e4a39e 3603
14f9c5c9 3604 if (args == NULL)
323e0a4a 3605 error_no_arg (_("one or more choice numbers"));
14f9c5c9
AS
3606
3607 n_chosen = 0;
76a01679 3608
4c4b4cd2
PH
3609 /* Set choices[0 .. n_chosen-1] to the users' choices in ascending
3610 order, as given in args. Choices are validated. */
14f9c5c9
AS
3611 while (1)
3612 {
d2e4a39e 3613 char *args2;
14f9c5c9
AS
3614 int choice, j;
3615
0fcd72ba 3616 args = skip_spaces (args);
14f9c5c9 3617 if (*args == '\0' && n_chosen == 0)
323e0a4a 3618 error_no_arg (_("one or more choice numbers"));
14f9c5c9 3619 else if (*args == '\0')
4c4b4cd2 3620 break;
14f9c5c9
AS
3621
3622 choice = strtol (args, &args2, 10);
d2e4a39e 3623 if (args == args2 || choice < 0
4c4b4cd2 3624 || choice > n_choices + first_choice - 1)
323e0a4a 3625 error (_("Argument must be choice number"));
14f9c5c9
AS
3626 args = args2;
3627
d2e4a39e 3628 if (choice == 0)
323e0a4a 3629 error (_("cancelled"));
14f9c5c9
AS
3630
3631 if (choice < first_choice)
4c4b4cd2
PH
3632 {
3633 n_chosen = n_choices;
3634 for (j = 0; j < n_choices; j += 1)
3635 choices[j] = j;
3636 break;
3637 }
14f9c5c9
AS
3638 choice -= first_choice;
3639
d2e4a39e 3640 for (j = n_chosen - 1; j >= 0 && choice < choices[j]; j -= 1)
4c4b4cd2
PH
3641 {
3642 }
14f9c5c9
AS
3643
3644 if (j < 0 || choice != choices[j])
4c4b4cd2
PH
3645 {
3646 int k;
5b4ee69b 3647
4c4b4cd2
PH
3648 for (k = n_chosen - 1; k > j; k -= 1)
3649 choices[k + 1] = choices[k];
3650 choices[j + 1] = choice;
3651 n_chosen += 1;
3652 }
14f9c5c9
AS
3653 }
3654
3655 if (n_chosen > max_results)
323e0a4a 3656 error (_("Select no more than %d of the above"), max_results);
d2e4a39e 3657
14f9c5c9
AS
3658 return n_chosen;
3659}
3660
4c4b4cd2
PH
3661/* Replace the operator of length OPLEN at position PC in *EXPP with a call
3662 on the function identified by SYM and BLOCK, and taking NARGS
3663 arguments. Update *EXPP as needed to hold more space. */
14f9c5c9
AS
3664
3665static void
d2e4a39e 3666replace_operator_with_call (struct expression **expp, int pc, int nargs,
4c4b4cd2
PH
3667 int oplen, struct symbol *sym,
3668 struct block *block)
14f9c5c9
AS
3669{
3670 /* A new expression, with 6 more elements (3 for funcall, 4 for function
4c4b4cd2 3671 symbol, -oplen for operator being replaced). */
d2e4a39e 3672 struct expression *newexp = (struct expression *)
8c1a34e7 3673 xzalloc (sizeof (struct expression)
4c4b4cd2 3674 + EXP_ELEM_TO_BYTES ((*expp)->nelts + 7 - oplen));
d2e4a39e 3675 struct expression *exp = *expp;
14f9c5c9
AS
3676
3677 newexp->nelts = exp->nelts + 7 - oplen;
3678 newexp->language_defn = exp->language_defn;
3489610d 3679 newexp->gdbarch = exp->gdbarch;
14f9c5c9 3680 memcpy (newexp->elts, exp->elts, EXP_ELEM_TO_BYTES (pc));
d2e4a39e 3681 memcpy (newexp->elts + pc + 7, exp->elts + pc + oplen,
4c4b4cd2 3682 EXP_ELEM_TO_BYTES (exp->nelts - pc - oplen));
14f9c5c9
AS
3683
3684 newexp->elts[pc].opcode = newexp->elts[pc + 2].opcode = OP_FUNCALL;
3685 newexp->elts[pc + 1].longconst = (LONGEST) nargs;
3686
3687 newexp->elts[pc + 3].opcode = newexp->elts[pc + 6].opcode = OP_VAR_VALUE;
3688 newexp->elts[pc + 4].block = block;
3689 newexp->elts[pc + 5].symbol = sym;
3690
3691 *expp = newexp;
aacb1f0a 3692 xfree (exp);
d2e4a39e 3693}
14f9c5c9
AS
3694
3695/* Type-class predicates */
3696
4c4b4cd2
PH
3697/* True iff TYPE is numeric (i.e., an INT, RANGE (of numeric type),
3698 or FLOAT). */
14f9c5c9
AS
3699
3700static int
d2e4a39e 3701numeric_type_p (struct type *type)
14f9c5c9
AS
3702{
3703 if (type == NULL)
3704 return 0;
d2e4a39e
AS
3705 else
3706 {
3707 switch (TYPE_CODE (type))
4c4b4cd2
PH
3708 {
3709 case TYPE_CODE_INT:
3710 case TYPE_CODE_FLT:
3711 return 1;
3712 case TYPE_CODE_RANGE:
3713 return (type == TYPE_TARGET_TYPE (type)
3714 || numeric_type_p (TYPE_TARGET_TYPE (type)));
3715 default:
3716 return 0;
3717 }
d2e4a39e 3718 }
14f9c5c9
AS
3719}
3720
4c4b4cd2 3721/* True iff TYPE is integral (an INT or RANGE of INTs). */
14f9c5c9
AS
3722
3723static int
d2e4a39e 3724integer_type_p (struct type *type)
14f9c5c9
AS
3725{
3726 if (type == NULL)
3727 return 0;
d2e4a39e
AS
3728 else
3729 {
3730 switch (TYPE_CODE (type))
4c4b4cd2
PH
3731 {
3732 case TYPE_CODE_INT:
3733 return 1;
3734 case TYPE_CODE_RANGE:
3735 return (type == TYPE_TARGET_TYPE (type)
3736 || integer_type_p (TYPE_TARGET_TYPE (type)));
3737 default:
3738 return 0;
3739 }
d2e4a39e 3740 }
14f9c5c9
AS
3741}
3742
4c4b4cd2 3743/* True iff TYPE is scalar (INT, RANGE, FLOAT, ENUM). */
14f9c5c9
AS
3744
3745static int
d2e4a39e 3746scalar_type_p (struct type *type)
14f9c5c9
AS
3747{
3748 if (type == NULL)
3749 return 0;
d2e4a39e
AS
3750 else
3751 {
3752 switch (TYPE_CODE (type))
4c4b4cd2
PH
3753 {
3754 case TYPE_CODE_INT:
3755 case TYPE_CODE_RANGE:
3756 case TYPE_CODE_ENUM:
3757 case TYPE_CODE_FLT:
3758 return 1;
3759 default:
3760 return 0;
3761 }
d2e4a39e 3762 }
14f9c5c9
AS
3763}
3764
4c4b4cd2 3765/* True iff TYPE is discrete (INT, RANGE, ENUM). */
14f9c5c9
AS
3766
3767static int
d2e4a39e 3768discrete_type_p (struct type *type)
14f9c5c9
AS
3769{
3770 if (type == NULL)
3771 return 0;
d2e4a39e
AS
3772 else
3773 {
3774 switch (TYPE_CODE (type))
4c4b4cd2
PH
3775 {
3776 case TYPE_CODE_INT:
3777 case TYPE_CODE_RANGE:
3778 case TYPE_CODE_ENUM:
872f0337 3779 case TYPE_CODE_BOOL:
4c4b4cd2
PH
3780 return 1;
3781 default:
3782 return 0;
3783 }
d2e4a39e 3784 }
14f9c5c9
AS
3785}
3786
4c4b4cd2
PH
3787/* Returns non-zero if OP with operands in the vector ARGS could be
3788 a user-defined function. Errs on the side of pre-defined operators
3789 (i.e., result 0). */
14f9c5c9
AS
3790
3791static int
d2e4a39e 3792possible_user_operator_p (enum exp_opcode op, struct value *args[])
14f9c5c9 3793{
76a01679 3794 struct type *type0 =
df407dfe 3795 (args[0] == NULL) ? NULL : ada_check_typedef (value_type (args[0]));
d2e4a39e 3796 struct type *type1 =
df407dfe 3797 (args[1] == NULL) ? NULL : ada_check_typedef (value_type (args[1]));
d2e4a39e 3798
4c4b4cd2
PH
3799 if (type0 == NULL)
3800 return 0;
3801
14f9c5c9
AS
3802 switch (op)
3803 {
3804 default:
3805 return 0;
3806
3807 case BINOP_ADD:
3808 case BINOP_SUB:
3809 case BINOP_MUL:
3810 case BINOP_DIV:
d2e4a39e 3811 return (!(numeric_type_p (type0) && numeric_type_p (type1)));
14f9c5c9
AS
3812
3813 case BINOP_REM:
3814 case BINOP_MOD:
3815 case BINOP_BITWISE_AND:
3816 case BINOP_BITWISE_IOR:
3817 case BINOP_BITWISE_XOR:
d2e4a39e 3818 return (!(integer_type_p (type0) && integer_type_p (type1)));
14f9c5c9
AS
3819
3820 case BINOP_EQUAL:
3821 case BINOP_NOTEQUAL:
3822 case BINOP_LESS:
3823 case BINOP_GTR:
3824 case BINOP_LEQ:
3825 case BINOP_GEQ:
d2e4a39e 3826 return (!(scalar_type_p (type0) && scalar_type_p (type1)));
14f9c5c9
AS
3827
3828 case BINOP_CONCAT:
ee90b9ab 3829 return !ada_is_array_type (type0) || !ada_is_array_type (type1);
14f9c5c9
AS
3830
3831 case BINOP_EXP:
d2e4a39e 3832 return (!(numeric_type_p (type0) && integer_type_p (type1)));
14f9c5c9
AS
3833
3834 case UNOP_NEG:
3835 case UNOP_PLUS:
3836 case UNOP_LOGICAL_NOT:
d2e4a39e
AS
3837 case UNOP_ABS:
3838 return (!numeric_type_p (type0));
14f9c5c9
AS
3839
3840 }
3841}
3842\f
4c4b4cd2 3843 /* Renaming */
14f9c5c9 3844
aeb5907d
JB
3845/* NOTES:
3846
3847 1. In the following, we assume that a renaming type's name may
3848 have an ___XD suffix. It would be nice if this went away at some
3849 point.
3850 2. We handle both the (old) purely type-based representation of
3851 renamings and the (new) variable-based encoding. At some point,
3852 it is devoutly to be hoped that the former goes away
3853 (FIXME: hilfinger-2007-07-09).
3854 3. Subprogram renamings are not implemented, although the XRS
3855 suffix is recognized (FIXME: hilfinger-2007-07-09). */
3856
3857/* If SYM encodes a renaming,
3858
3859 <renaming> renames <renamed entity>,
3860
3861 sets *LEN to the length of the renamed entity's name,
3862 *RENAMED_ENTITY to that name (not null-terminated), and *RENAMING_EXPR to
3863 the string describing the subcomponent selected from the renamed
0963b4bd 3864 entity. Returns ADA_NOT_RENAMING if SYM does not encode a renaming
aeb5907d
JB
3865 (in which case, the values of *RENAMED_ENTITY, *LEN, and *RENAMING_EXPR
3866 are undefined). Otherwise, returns a value indicating the category
3867 of entity renamed: an object (ADA_OBJECT_RENAMING), exception
3868 (ADA_EXCEPTION_RENAMING), package (ADA_PACKAGE_RENAMING), or
3869 subprogram (ADA_SUBPROGRAM_RENAMING). Does no allocation; the
3870 strings returned in *RENAMED_ENTITY and *RENAMING_EXPR should not be
3871 deallocated. The values of RENAMED_ENTITY, LEN, or RENAMING_EXPR
3872 may be NULL, in which case they are not assigned.
3873
3874 [Currently, however, GCC does not generate subprogram renamings.] */
3875
3876enum ada_renaming_category
3877ada_parse_renaming (struct symbol *sym,
3878 const char **renamed_entity, int *len,
3879 const char **renaming_expr)
3880{
3881 enum ada_renaming_category kind;
3882 const char *info;
3883 const char *suffix;
3884
3885 if (sym == NULL)
3886 return ADA_NOT_RENAMING;
3887 switch (SYMBOL_CLASS (sym))
14f9c5c9 3888 {
aeb5907d
JB
3889 default:
3890 return ADA_NOT_RENAMING;
3891 case LOC_TYPEDEF:
3892 return parse_old_style_renaming (SYMBOL_TYPE (sym),
3893 renamed_entity, len, renaming_expr);
3894 case LOC_LOCAL:
3895 case LOC_STATIC:
3896 case LOC_COMPUTED:
3897 case LOC_OPTIMIZED_OUT:
3898 info = strstr (SYMBOL_LINKAGE_NAME (sym), "___XR");
3899 if (info == NULL)
3900 return ADA_NOT_RENAMING;
3901 switch (info[5])
3902 {
3903 case '_':
3904 kind = ADA_OBJECT_RENAMING;
3905 info += 6;
3906 break;
3907 case 'E':
3908 kind = ADA_EXCEPTION_RENAMING;
3909 info += 7;
3910 break;
3911 case 'P':
3912 kind = ADA_PACKAGE_RENAMING;
3913 info += 7;
3914 break;
3915 case 'S':
3916 kind = ADA_SUBPROGRAM_RENAMING;
3917 info += 7;
3918 break;
3919 default:
3920 return ADA_NOT_RENAMING;
3921 }
14f9c5c9 3922 }
4c4b4cd2 3923
aeb5907d
JB
3924 if (renamed_entity != NULL)
3925 *renamed_entity = info;
3926 suffix = strstr (info, "___XE");
3927 if (suffix == NULL || suffix == info)
3928 return ADA_NOT_RENAMING;
3929 if (len != NULL)
3930 *len = strlen (info) - strlen (suffix);
3931 suffix += 5;
3932 if (renaming_expr != NULL)
3933 *renaming_expr = suffix;
3934 return kind;
3935}
3936
3937/* Assuming TYPE encodes a renaming according to the old encoding in
3938 exp_dbug.ads, returns details of that renaming in *RENAMED_ENTITY,
3939 *LEN, and *RENAMING_EXPR, as for ada_parse_renaming, above. Returns
3940 ADA_NOT_RENAMING otherwise. */
3941static enum ada_renaming_category
3942parse_old_style_renaming (struct type *type,
3943 const char **renamed_entity, int *len,
3944 const char **renaming_expr)
3945{
3946 enum ada_renaming_category kind;
3947 const char *name;
3948 const char *info;
3949 const char *suffix;
14f9c5c9 3950
aeb5907d
JB
3951 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM
3952 || TYPE_NFIELDS (type) != 1)
3953 return ADA_NOT_RENAMING;
14f9c5c9 3954
aeb5907d
JB
3955 name = type_name_no_tag (type);
3956 if (name == NULL)
3957 return ADA_NOT_RENAMING;
3958
3959 name = strstr (name, "___XR");
3960 if (name == NULL)
3961 return ADA_NOT_RENAMING;
3962 switch (name[5])
3963 {
3964 case '\0':
3965 case '_':
3966 kind = ADA_OBJECT_RENAMING;
3967 break;
3968 case 'E':
3969 kind = ADA_EXCEPTION_RENAMING;
3970 break;
3971 case 'P':
3972 kind = ADA_PACKAGE_RENAMING;
3973 break;
3974 case 'S':
3975 kind = ADA_SUBPROGRAM_RENAMING;
3976 break;
3977 default:
3978 return ADA_NOT_RENAMING;
3979 }
14f9c5c9 3980
aeb5907d
JB
3981 info = TYPE_FIELD_NAME (type, 0);
3982 if (info == NULL)
3983 return ADA_NOT_RENAMING;
3984 if (renamed_entity != NULL)
3985 *renamed_entity = info;
3986 suffix = strstr (info, "___XE");
3987 if (renaming_expr != NULL)
3988 *renaming_expr = suffix + 5;
3989 if (suffix == NULL || suffix == info)
3990 return ADA_NOT_RENAMING;
3991 if (len != NULL)
3992 *len = suffix - info;
3993 return kind;
3994}
52ce6436 3995
14f9c5c9 3996\f
d2e4a39e 3997
4c4b4cd2 3998 /* Evaluation: Function Calls */
14f9c5c9 3999
4c4b4cd2 4000/* Return an lvalue containing the value VAL. This is the identity on
40bc484c
JB
4001 lvalues, and otherwise has the side-effect of allocating memory
4002 in the inferior where a copy of the value contents is copied. */
14f9c5c9 4003
d2e4a39e 4004static struct value *
40bc484c 4005ensure_lval (struct value *val)
14f9c5c9 4006{
40bc484c
JB
4007 if (VALUE_LVAL (val) == not_lval
4008 || VALUE_LVAL (val) == lval_internalvar)
c3e5cd34 4009 {
df407dfe 4010 int len = TYPE_LENGTH (ada_check_typedef (value_type (val)));
40bc484c
JB
4011 const CORE_ADDR addr =
4012 value_as_long (value_allocate_space_in_inferior (len));
c3e5cd34 4013
40bc484c 4014 set_value_address (val, addr);
a84a8a0d 4015 VALUE_LVAL (val) = lval_memory;
40bc484c 4016 write_memory (addr, value_contents (val), len);
c3e5cd34 4017 }
14f9c5c9
AS
4018
4019 return val;
4020}
4021
4022/* Return the value ACTUAL, converted to be an appropriate value for a
4023 formal of type FORMAL_TYPE. Use *SP as a stack pointer for
4024 allocating any necessary descriptors (fat pointers), or copies of
4c4b4cd2 4025 values not residing in memory, updating it as needed. */
14f9c5c9 4026
a93c0eb6 4027struct value *
40bc484c 4028ada_convert_actual (struct value *actual, struct type *formal_type0)
14f9c5c9 4029{
df407dfe 4030 struct type *actual_type = ada_check_typedef (value_type (actual));
61ee279c 4031 struct type *formal_type = ada_check_typedef (formal_type0);
d2e4a39e
AS
4032 struct type *formal_target =
4033 TYPE_CODE (formal_type) == TYPE_CODE_PTR
61ee279c 4034 ? ada_check_typedef (TYPE_TARGET_TYPE (formal_type)) : formal_type;
d2e4a39e
AS
4035 struct type *actual_target =
4036 TYPE_CODE (actual_type) == TYPE_CODE_PTR
61ee279c 4037 ? ada_check_typedef (TYPE_TARGET_TYPE (actual_type)) : actual_type;
14f9c5c9 4038
4c4b4cd2 4039 if (ada_is_array_descriptor_type (formal_target)
14f9c5c9 4040 && TYPE_CODE (actual_target) == TYPE_CODE_ARRAY)
40bc484c 4041 return make_array_descriptor (formal_type, actual);
a84a8a0d
JB
4042 else if (TYPE_CODE (formal_type) == TYPE_CODE_PTR
4043 || TYPE_CODE (formal_type) == TYPE_CODE_REF)
14f9c5c9 4044 {
a84a8a0d 4045 struct value *result;
5b4ee69b 4046
14f9c5c9 4047 if (TYPE_CODE (formal_target) == TYPE_CODE_ARRAY
4c4b4cd2 4048 && ada_is_array_descriptor_type (actual_target))
a84a8a0d 4049 result = desc_data (actual);
14f9c5c9 4050 else if (TYPE_CODE (actual_type) != TYPE_CODE_PTR)
4c4b4cd2
PH
4051 {
4052 if (VALUE_LVAL (actual) != lval_memory)
4053 {
4054 struct value *val;
5b4ee69b 4055
df407dfe 4056 actual_type = ada_check_typedef (value_type (actual));
4c4b4cd2 4057 val = allocate_value (actual_type);
990a07ab 4058 memcpy ((char *) value_contents_raw (val),
0fd88904 4059 (char *) value_contents (actual),
4c4b4cd2 4060 TYPE_LENGTH (actual_type));
40bc484c 4061 actual = ensure_lval (val);
4c4b4cd2 4062 }
a84a8a0d 4063 result = value_addr (actual);
4c4b4cd2 4064 }
a84a8a0d
JB
4065 else
4066 return actual;
4067 return value_cast_pointers (formal_type, result);
14f9c5c9
AS
4068 }
4069 else if (TYPE_CODE (actual_type) == TYPE_CODE_PTR)
4070 return ada_value_ind (actual);
4071
4072 return actual;
4073}
4074
438c98a1
JB
4075/* Convert VALUE (which must be an address) to a CORE_ADDR that is a pointer of
4076 type TYPE. This is usually an inefficient no-op except on some targets
4077 (such as AVR) where the representation of a pointer and an address
4078 differs. */
4079
4080static CORE_ADDR
4081value_pointer (struct value *value, struct type *type)
4082{
4083 struct gdbarch *gdbarch = get_type_arch (type);
4084 unsigned len = TYPE_LENGTH (type);
4085 gdb_byte *buf = alloca (len);
4086 CORE_ADDR addr;
4087
4088 addr = value_address (value);
4089 gdbarch_address_to_pointer (gdbarch, type, buf, addr);
4090 addr = extract_unsigned_integer (buf, len, gdbarch_byte_order (gdbarch));
4091 return addr;
4092}
4093
14f9c5c9 4094
4c4b4cd2
PH
4095/* Push a descriptor of type TYPE for array value ARR on the stack at
4096 *SP, updating *SP to reflect the new descriptor. Return either
14f9c5c9 4097 an lvalue representing the new descriptor, or (if TYPE is a pointer-
4c4b4cd2
PH
4098 to-descriptor type rather than a descriptor type), a struct value *
4099 representing a pointer to this descriptor. */
14f9c5c9 4100
d2e4a39e 4101static struct value *
40bc484c 4102make_array_descriptor (struct type *type, struct value *arr)
14f9c5c9 4103{
d2e4a39e
AS
4104 struct type *bounds_type = desc_bounds_type (type);
4105 struct type *desc_type = desc_base_type (type);
4106 struct value *descriptor = allocate_value (desc_type);
4107 struct value *bounds = allocate_value (bounds_type);
14f9c5c9 4108 int i;
d2e4a39e 4109
0963b4bd
MS
4110 for (i = ada_array_arity (ada_check_typedef (value_type (arr)));
4111 i > 0; i -= 1)
14f9c5c9 4112 {
19f220c3
JK
4113 modify_field (value_type (bounds), value_contents_writeable (bounds),
4114 ada_array_bound (arr, i, 0),
4115 desc_bound_bitpos (bounds_type, i, 0),
4116 desc_bound_bitsize (bounds_type, i, 0));
4117 modify_field (value_type (bounds), value_contents_writeable (bounds),
4118 ada_array_bound (arr, i, 1),
4119 desc_bound_bitpos (bounds_type, i, 1),
4120 desc_bound_bitsize (bounds_type, i, 1));
14f9c5c9 4121 }
d2e4a39e 4122
40bc484c 4123 bounds = ensure_lval (bounds);
d2e4a39e 4124
19f220c3
JK
4125 modify_field (value_type (descriptor),
4126 value_contents_writeable (descriptor),
4127 value_pointer (ensure_lval (arr),
4128 TYPE_FIELD_TYPE (desc_type, 0)),
4129 fat_pntr_data_bitpos (desc_type),
4130 fat_pntr_data_bitsize (desc_type));
4131
4132 modify_field (value_type (descriptor),
4133 value_contents_writeable (descriptor),
4134 value_pointer (bounds,
4135 TYPE_FIELD_TYPE (desc_type, 1)),
4136 fat_pntr_bounds_bitpos (desc_type),
4137 fat_pntr_bounds_bitsize (desc_type));
14f9c5c9 4138
40bc484c 4139 descriptor = ensure_lval (descriptor);
14f9c5c9
AS
4140
4141 if (TYPE_CODE (type) == TYPE_CODE_PTR)
4142 return value_addr (descriptor);
4143 else
4144 return descriptor;
4145}
14f9c5c9 4146\f
963a6417 4147/* Dummy definitions for an experimental caching module that is not
0963b4bd 4148 * used in the public sources. */
96d887e8 4149
96d887e8
PH
4150static int
4151lookup_cached_symbol (const char *name, domain_enum namespace,
2570f2b7 4152 struct symbol **sym, struct block **block)
96d887e8
PH
4153{
4154 return 0;
4155}
4156
4157static void
4158cache_symbol (const char *name, domain_enum namespace, struct symbol *sym,
2570f2b7 4159 struct block *block)
96d887e8
PH
4160{
4161}
4c4b4cd2
PH
4162\f
4163 /* Symbol Lookup */
4164
c0431670
JB
4165/* Return nonzero if wild matching should be used when searching for
4166 all symbols matching LOOKUP_NAME.
4167
4168 LOOKUP_NAME is expected to be a symbol name after transformation
4169 for Ada lookups (see ada_name_for_lookup). */
4170
4171static int
4172should_use_wild_match (const char *lookup_name)
4173{
4174 return (strstr (lookup_name, "__") == NULL);
4175}
4176
4c4b4cd2
PH
4177/* Return the result of a standard (literal, C-like) lookup of NAME in
4178 given DOMAIN, visible from lexical block BLOCK. */
4179
4180static struct symbol *
4181standard_lookup (const char *name, const struct block *block,
4182 domain_enum domain)
4183{
4184 struct symbol *sym;
4c4b4cd2 4185
2570f2b7 4186 if (lookup_cached_symbol (name, domain, &sym, NULL))
4c4b4cd2 4187 return sym;
2570f2b7
UW
4188 sym = lookup_symbol_in_language (name, block, domain, language_c, 0);
4189 cache_symbol (name, domain, sym, block_found);
4c4b4cd2
PH
4190 return sym;
4191}
4192
4193
4194/* Non-zero iff there is at least one non-function/non-enumeral symbol
4195 in the symbol fields of SYMS[0..N-1]. We treat enumerals as functions,
4196 since they contend in overloading in the same way. */
4197static int
4198is_nonfunction (struct ada_symbol_info syms[], int n)
4199{
4200 int i;
4201
4202 for (i = 0; i < n; i += 1)
4203 if (TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) != TYPE_CODE_FUNC
4204 && (TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) != TYPE_CODE_ENUM
4205 || SYMBOL_CLASS (syms[i].sym) != LOC_CONST))
14f9c5c9
AS
4206 return 1;
4207
4208 return 0;
4209}
4210
4211/* If true (non-zero), then TYPE0 and TYPE1 represent equivalent
4c4b4cd2 4212 struct types. Otherwise, they may not. */
14f9c5c9
AS
4213
4214static int
d2e4a39e 4215equiv_types (struct type *type0, struct type *type1)
14f9c5c9 4216{
d2e4a39e 4217 if (type0 == type1)
14f9c5c9 4218 return 1;
d2e4a39e 4219 if (type0 == NULL || type1 == NULL
14f9c5c9
AS
4220 || TYPE_CODE (type0) != TYPE_CODE (type1))
4221 return 0;
d2e4a39e 4222 if ((TYPE_CODE (type0) == TYPE_CODE_STRUCT
14f9c5c9
AS
4223 || TYPE_CODE (type0) == TYPE_CODE_ENUM)
4224 && ada_type_name (type0) != NULL && ada_type_name (type1) != NULL
4c4b4cd2 4225 && strcmp (ada_type_name (type0), ada_type_name (type1)) == 0)
14f9c5c9 4226 return 1;
d2e4a39e 4227
14f9c5c9
AS
4228 return 0;
4229}
4230
4231/* True iff SYM0 represents the same entity as SYM1, or one that is
4c4b4cd2 4232 no more defined than that of SYM1. */
14f9c5c9
AS
4233
4234static int
d2e4a39e 4235lesseq_defined_than (struct symbol *sym0, struct symbol *sym1)
14f9c5c9
AS
4236{
4237 if (sym0 == sym1)
4238 return 1;
176620f1 4239 if (SYMBOL_DOMAIN (sym0) != SYMBOL_DOMAIN (sym1)
14f9c5c9
AS
4240 || SYMBOL_CLASS (sym0) != SYMBOL_CLASS (sym1))
4241 return 0;
4242
d2e4a39e 4243 switch (SYMBOL_CLASS (sym0))
14f9c5c9
AS
4244 {
4245 case LOC_UNDEF:
4246 return 1;
4247 case LOC_TYPEDEF:
4248 {
4c4b4cd2
PH
4249 struct type *type0 = SYMBOL_TYPE (sym0);
4250 struct type *type1 = SYMBOL_TYPE (sym1);
4251 char *name0 = SYMBOL_LINKAGE_NAME (sym0);
4252 char *name1 = SYMBOL_LINKAGE_NAME (sym1);
4253 int len0 = strlen (name0);
5b4ee69b 4254
4c4b4cd2
PH
4255 return
4256 TYPE_CODE (type0) == TYPE_CODE (type1)
4257 && (equiv_types (type0, type1)
4258 || (len0 < strlen (name1) && strncmp (name0, name1, len0) == 0
4259 && strncmp (name1 + len0, "___XV", 5) == 0));
14f9c5c9
AS
4260 }
4261 case LOC_CONST:
4262 return SYMBOL_VALUE (sym0) == SYMBOL_VALUE (sym1)
4c4b4cd2 4263 && equiv_types (SYMBOL_TYPE (sym0), SYMBOL_TYPE (sym1));
d2e4a39e
AS
4264 default:
4265 return 0;
14f9c5c9
AS
4266 }
4267}
4268
4c4b4cd2
PH
4269/* Append (SYM,BLOCK,SYMTAB) to the end of the array of struct ada_symbol_info
4270 records in OBSTACKP. Do nothing if SYM is a duplicate. */
14f9c5c9
AS
4271
4272static void
76a01679
JB
4273add_defn_to_vec (struct obstack *obstackp,
4274 struct symbol *sym,
2570f2b7 4275 struct block *block)
14f9c5c9
AS
4276{
4277 int i;
4c4b4cd2 4278 struct ada_symbol_info *prevDefns = defns_collected (obstackp, 0);
14f9c5c9 4279
529cad9c
PH
4280 /* Do not try to complete stub types, as the debugger is probably
4281 already scanning all symbols matching a certain name at the
4282 time when this function is called. Trying to replace the stub
4283 type by its associated full type will cause us to restart a scan
4284 which may lead to an infinite recursion. Instead, the client
4285 collecting the matching symbols will end up collecting several
4286 matches, with at least one of them complete. It can then filter
4287 out the stub ones if needed. */
4288
4c4b4cd2
PH
4289 for (i = num_defns_collected (obstackp) - 1; i >= 0; i -= 1)
4290 {
4291 if (lesseq_defined_than (sym, prevDefns[i].sym))
4292 return;
4293 else if (lesseq_defined_than (prevDefns[i].sym, sym))
4294 {
4295 prevDefns[i].sym = sym;
4296 prevDefns[i].block = block;
4c4b4cd2 4297 return;
76a01679 4298 }
4c4b4cd2
PH
4299 }
4300
4301 {
4302 struct ada_symbol_info info;
4303
4304 info.sym = sym;
4305 info.block = block;
4c4b4cd2
PH
4306 obstack_grow (obstackp, &info, sizeof (struct ada_symbol_info));
4307 }
4308}
4309
4310/* Number of ada_symbol_info structures currently collected in
4311 current vector in *OBSTACKP. */
4312
76a01679
JB
4313static int
4314num_defns_collected (struct obstack *obstackp)
4c4b4cd2
PH
4315{
4316 return obstack_object_size (obstackp) / sizeof (struct ada_symbol_info);
4317}
4318
4319/* Vector of ada_symbol_info structures currently collected in current
4320 vector in *OBSTACKP. If FINISH, close off the vector and return
4321 its final address. */
4322
76a01679 4323static struct ada_symbol_info *
4c4b4cd2
PH
4324defns_collected (struct obstack *obstackp, int finish)
4325{
4326 if (finish)
4327 return obstack_finish (obstackp);
4328 else
4329 return (struct ada_symbol_info *) obstack_base (obstackp);
4330}
4331
96d887e8
PH
4332/* Return a minimal symbol matching NAME according to Ada decoding
4333 rules. Returns NULL if there is no such minimal symbol. Names
4334 prefixed with "standard__" are handled specially: "standard__" is
4335 first stripped off, and only static and global symbols are searched. */
4c4b4cd2 4336
96d887e8
PH
4337struct minimal_symbol *
4338ada_lookup_simple_minsym (const char *name)
4c4b4cd2 4339{
4c4b4cd2 4340 struct objfile *objfile;
96d887e8 4341 struct minimal_symbol *msymbol;
c0431670 4342 const int wild_match = should_use_wild_match (name);
4c4b4cd2 4343
c0431670
JB
4344 /* Special case: If the user specifies a symbol name inside package
4345 Standard, do a non-wild matching of the symbol name without
4346 the "standard__" prefix. This was primarily introduced in order
4347 to allow the user to specifically access the standard exceptions
4348 using, for instance, Standard.Constraint_Error when Constraint_Error
4349 is ambiguous (due to the user defining its own Constraint_Error
4350 entity inside its program). */
96d887e8 4351 if (strncmp (name, "standard__", sizeof ("standard__") - 1) == 0)
c0431670 4352 name += sizeof ("standard__") - 1;
4c4b4cd2 4353
96d887e8
PH
4354 ALL_MSYMBOLS (objfile, msymbol)
4355 {
40658b94 4356 if (match_name (SYMBOL_LINKAGE_NAME (msymbol), name, wild_match)
96d887e8
PH
4357 && MSYMBOL_TYPE (msymbol) != mst_solib_trampoline)
4358 return msymbol;
4359 }
4c4b4cd2 4360
96d887e8
PH
4361 return NULL;
4362}
4c4b4cd2 4363
96d887e8
PH
4364/* For all subprograms that statically enclose the subprogram of the
4365 selected frame, add symbols matching identifier NAME in DOMAIN
4366 and their blocks to the list of data in OBSTACKP, as for
4367 ada_add_block_symbols (q.v.). If WILD, treat as NAME with a
4368 wildcard prefix. */
4c4b4cd2 4369
96d887e8
PH
4370static void
4371add_symbols_from_enclosing_procs (struct obstack *obstackp,
76a01679 4372 const char *name, domain_enum namespace,
96d887e8
PH
4373 int wild_match)
4374{
96d887e8 4375}
14f9c5c9 4376
96d887e8
PH
4377/* True if TYPE is definitely an artificial type supplied to a symbol
4378 for which no debugging information was given in the symbol file. */
14f9c5c9 4379
96d887e8
PH
4380static int
4381is_nondebugging_type (struct type *type)
4382{
4383 char *name = ada_type_name (type);
5b4ee69b 4384
96d887e8
PH
4385 return (name != NULL && strcmp (name, "<variable, no debug info>") == 0);
4386}
4c4b4cd2 4387
8f17729f
JB
4388/* Return nonzero if TYPE1 and TYPE2 are two enumeration types
4389 that are deemed "identical" for practical purposes.
4390
4391 This function assumes that TYPE1 and TYPE2 are both TYPE_CODE_ENUM
4392 types and that their number of enumerals is identical (in other
4393 words, TYPE_NFIELDS (type1) == TYPE_NFIELDS (type2)). */
4394
4395static int
4396ada_identical_enum_types_p (struct type *type1, struct type *type2)
4397{
4398 int i;
4399
4400 /* The heuristic we use here is fairly conservative. We consider
4401 that 2 enumerate types are identical if they have the same
4402 number of enumerals and that all enumerals have the same
4403 underlying value and name. */
4404
4405 /* All enums in the type should have an identical underlying value. */
4406 for (i = 0; i < TYPE_NFIELDS (type1); i++)
4407 if (TYPE_FIELD_BITPOS (type1, i) != TYPE_FIELD_BITPOS (type2, i))
4408 return 0;
4409
4410 /* All enumerals should also have the same name (modulo any numerical
4411 suffix). */
4412 for (i = 0; i < TYPE_NFIELDS (type1); i++)
4413 {
4414 char *name_1 = TYPE_FIELD_NAME (type1, i);
4415 char *name_2 = TYPE_FIELD_NAME (type2, i);
4416 int len_1 = strlen (name_1);
4417 int len_2 = strlen (name_2);
4418
4419 ada_remove_trailing_digits (TYPE_FIELD_NAME (type1, i), &len_1);
4420 ada_remove_trailing_digits (TYPE_FIELD_NAME (type2, i), &len_2);
4421 if (len_1 != len_2
4422 || strncmp (TYPE_FIELD_NAME (type1, i),
4423 TYPE_FIELD_NAME (type2, i),
4424 len_1) != 0)
4425 return 0;
4426 }
4427
4428 return 1;
4429}
4430
4431/* Return nonzero if all the symbols in SYMS are all enumeral symbols
4432 that are deemed "identical" for practical purposes. Sometimes,
4433 enumerals are not strictly identical, but their types are so similar
4434 that they can be considered identical.
4435
4436 For instance, consider the following code:
4437
4438 type Color is (Black, Red, Green, Blue, White);
4439 type RGB_Color is new Color range Red .. Blue;
4440
4441 Type RGB_Color is a subrange of an implicit type which is a copy
4442 of type Color. If we call that implicit type RGB_ColorB ("B" is
4443 for "Base Type"), then type RGB_ColorB is a copy of type Color.
4444 As a result, when an expression references any of the enumeral
4445 by name (Eg. "print green"), the expression is technically
4446 ambiguous and the user should be asked to disambiguate. But
4447 doing so would only hinder the user, since it wouldn't matter
4448 what choice he makes, the outcome would always be the same.
4449 So, for practical purposes, we consider them as the same. */
4450
4451static int
4452symbols_are_identical_enums (struct ada_symbol_info *syms, int nsyms)
4453{
4454 int i;
4455
4456 /* Before performing a thorough comparison check of each type,
4457 we perform a series of inexpensive checks. We expect that these
4458 checks will quickly fail in the vast majority of cases, and thus
4459 help prevent the unnecessary use of a more expensive comparison.
4460 Said comparison also expects us to make some of these checks
4461 (see ada_identical_enum_types_p). */
4462
4463 /* Quick check: All symbols should have an enum type. */
4464 for (i = 0; i < nsyms; i++)
4465 if (TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) != TYPE_CODE_ENUM)
4466 return 0;
4467
4468 /* Quick check: They should all have the same value. */
4469 for (i = 1; i < nsyms; i++)
4470 if (SYMBOL_VALUE (syms[i].sym) != SYMBOL_VALUE (syms[0].sym))
4471 return 0;
4472
4473 /* Quick check: They should all have the same number of enumerals. */
4474 for (i = 1; i < nsyms; i++)
4475 if (TYPE_NFIELDS (SYMBOL_TYPE (syms[i].sym))
4476 != TYPE_NFIELDS (SYMBOL_TYPE (syms[0].sym)))
4477 return 0;
4478
4479 /* All the sanity checks passed, so we might have a set of
4480 identical enumeration types. Perform a more complete
4481 comparison of the type of each symbol. */
4482 for (i = 1; i < nsyms; i++)
4483 if (!ada_identical_enum_types_p (SYMBOL_TYPE (syms[i].sym),
4484 SYMBOL_TYPE (syms[0].sym)))
4485 return 0;
4486
4487 return 1;
4488}
4489
96d887e8
PH
4490/* Remove any non-debugging symbols in SYMS[0 .. NSYMS-1] that definitely
4491 duplicate other symbols in the list (The only case I know of where
4492 this happens is when object files containing stabs-in-ecoff are
4493 linked with files containing ordinary ecoff debugging symbols (or no
4494 debugging symbols)). Modifies SYMS to squeeze out deleted entries.
4495 Returns the number of items in the modified list. */
4c4b4cd2 4496
96d887e8
PH
4497static int
4498remove_extra_symbols (struct ada_symbol_info *syms, int nsyms)
4499{
4500 int i, j;
4c4b4cd2 4501
8f17729f
JB
4502 /* We should never be called with less than 2 symbols, as there
4503 cannot be any extra symbol in that case. But it's easy to
4504 handle, since we have nothing to do in that case. */
4505 if (nsyms < 2)
4506 return nsyms;
4507
96d887e8
PH
4508 i = 0;
4509 while (i < nsyms)
4510 {
a35ddb44 4511 int remove_p = 0;
339c13b6
JB
4512
4513 /* If two symbols have the same name and one of them is a stub type,
4514 the get rid of the stub. */
4515
4516 if (TYPE_STUB (SYMBOL_TYPE (syms[i].sym))
4517 && SYMBOL_LINKAGE_NAME (syms[i].sym) != NULL)
4518 {
4519 for (j = 0; j < nsyms; j++)
4520 {
4521 if (j != i
4522 && !TYPE_STUB (SYMBOL_TYPE (syms[j].sym))
4523 && SYMBOL_LINKAGE_NAME (syms[j].sym) != NULL
4524 && strcmp (SYMBOL_LINKAGE_NAME (syms[i].sym),
4525 SYMBOL_LINKAGE_NAME (syms[j].sym)) == 0)
a35ddb44 4526 remove_p = 1;
339c13b6
JB
4527 }
4528 }
4529
4530 /* Two symbols with the same name, same class and same address
4531 should be identical. */
4532
4533 else if (SYMBOL_LINKAGE_NAME (syms[i].sym) != NULL
96d887e8
PH
4534 && SYMBOL_CLASS (syms[i].sym) == LOC_STATIC
4535 && is_nondebugging_type (SYMBOL_TYPE (syms[i].sym)))
4536 {
4537 for (j = 0; j < nsyms; j += 1)
4538 {
4539 if (i != j
4540 && SYMBOL_LINKAGE_NAME (syms[j].sym) != NULL
4541 && strcmp (SYMBOL_LINKAGE_NAME (syms[i].sym),
76a01679 4542 SYMBOL_LINKAGE_NAME (syms[j].sym)) == 0
96d887e8
PH
4543 && SYMBOL_CLASS (syms[i].sym) == SYMBOL_CLASS (syms[j].sym)
4544 && SYMBOL_VALUE_ADDRESS (syms[i].sym)
4545 == SYMBOL_VALUE_ADDRESS (syms[j].sym))
a35ddb44 4546 remove_p = 1;
4c4b4cd2 4547 }
4c4b4cd2 4548 }
339c13b6 4549
a35ddb44 4550 if (remove_p)
339c13b6
JB
4551 {
4552 for (j = i + 1; j < nsyms; j += 1)
4553 syms[j - 1] = syms[j];
4554 nsyms -= 1;
4555 }
4556
96d887e8 4557 i += 1;
14f9c5c9 4558 }
8f17729f
JB
4559
4560 /* If all the remaining symbols are identical enumerals, then
4561 just keep the first one and discard the rest.
4562
4563 Unlike what we did previously, we do not discard any entry
4564 unless they are ALL identical. This is because the symbol
4565 comparison is not a strict comparison, but rather a practical
4566 comparison. If all symbols are considered identical, then
4567 we can just go ahead and use the first one and discard the rest.
4568 But if we cannot reduce the list to a single element, we have
4569 to ask the user to disambiguate anyways. And if we have to
4570 present a multiple-choice menu, it's less confusing if the list
4571 isn't missing some choices that were identical and yet distinct. */
4572 if (symbols_are_identical_enums (syms, nsyms))
4573 nsyms = 1;
4574
96d887e8 4575 return nsyms;
14f9c5c9
AS
4576}
4577
96d887e8
PH
4578/* Given a type that corresponds to a renaming entity, use the type name
4579 to extract the scope (package name or function name, fully qualified,
4580 and following the GNAT encoding convention) where this renaming has been
4581 defined. The string returned needs to be deallocated after use. */
4c4b4cd2 4582
96d887e8
PH
4583static char *
4584xget_renaming_scope (struct type *renaming_type)
14f9c5c9 4585{
96d887e8 4586 /* The renaming types adhere to the following convention:
0963b4bd 4587 <scope>__<rename>___<XR extension>.
96d887e8
PH
4588 So, to extract the scope, we search for the "___XR" extension,
4589 and then backtrack until we find the first "__". */
76a01679 4590
96d887e8
PH
4591 const char *name = type_name_no_tag (renaming_type);
4592 char *suffix = strstr (name, "___XR");
4593 char *last;
4594 int scope_len;
4595 char *scope;
14f9c5c9 4596
96d887e8
PH
4597 /* Now, backtrack a bit until we find the first "__". Start looking
4598 at suffix - 3, as the <rename> part is at least one character long. */
14f9c5c9 4599
96d887e8
PH
4600 for (last = suffix - 3; last > name; last--)
4601 if (last[0] == '_' && last[1] == '_')
4602 break;
76a01679 4603
96d887e8 4604 /* Make a copy of scope and return it. */
14f9c5c9 4605
96d887e8
PH
4606 scope_len = last - name;
4607 scope = (char *) xmalloc ((scope_len + 1) * sizeof (char));
14f9c5c9 4608
96d887e8
PH
4609 strncpy (scope, name, scope_len);
4610 scope[scope_len] = '\0';
4c4b4cd2 4611
96d887e8 4612 return scope;
4c4b4cd2
PH
4613}
4614
96d887e8 4615/* Return nonzero if NAME corresponds to a package name. */
4c4b4cd2 4616
96d887e8
PH
4617static int
4618is_package_name (const char *name)
4c4b4cd2 4619{
96d887e8
PH
4620 /* Here, We take advantage of the fact that no symbols are generated
4621 for packages, while symbols are generated for each function.
4622 So the condition for NAME represent a package becomes equivalent
4623 to NAME not existing in our list of symbols. There is only one
4624 small complication with library-level functions (see below). */
4c4b4cd2 4625
96d887e8 4626 char *fun_name;
76a01679 4627
96d887e8
PH
4628 /* If it is a function that has not been defined at library level,
4629 then we should be able to look it up in the symbols. */
4630 if (standard_lookup (name, NULL, VAR_DOMAIN) != NULL)
4631 return 0;
14f9c5c9 4632
96d887e8
PH
4633 /* Library-level function names start with "_ada_". See if function
4634 "_ada_" followed by NAME can be found. */
14f9c5c9 4635
96d887e8 4636 /* Do a quick check that NAME does not contain "__", since library-level
e1d5a0d2 4637 functions names cannot contain "__" in them. */
96d887e8
PH
4638 if (strstr (name, "__") != NULL)
4639 return 0;
4c4b4cd2 4640
b435e160 4641 fun_name = xstrprintf ("_ada_%s", name);
14f9c5c9 4642
96d887e8
PH
4643 return (standard_lookup (fun_name, NULL, VAR_DOMAIN) == NULL);
4644}
14f9c5c9 4645
96d887e8 4646/* Return nonzero if SYM corresponds to a renaming entity that is
aeb5907d 4647 not visible from FUNCTION_NAME. */
14f9c5c9 4648
96d887e8 4649static int
aeb5907d 4650old_renaming_is_invisible (const struct symbol *sym, char *function_name)
96d887e8 4651{
aeb5907d
JB
4652 char *scope;
4653
4654 if (SYMBOL_CLASS (sym) != LOC_TYPEDEF)
4655 return 0;
4656
4657 scope = xget_renaming_scope (SYMBOL_TYPE (sym));
d2e4a39e 4658
96d887e8 4659 make_cleanup (xfree, scope);
14f9c5c9 4660
96d887e8
PH
4661 /* If the rename has been defined in a package, then it is visible. */
4662 if (is_package_name (scope))
aeb5907d 4663 return 0;
14f9c5c9 4664
96d887e8
PH
4665 /* Check that the rename is in the current function scope by checking
4666 that its name starts with SCOPE. */
76a01679 4667
96d887e8
PH
4668 /* If the function name starts with "_ada_", it means that it is
4669 a library-level function. Strip this prefix before doing the
4670 comparison, as the encoding for the renaming does not contain
4671 this prefix. */
4672 if (strncmp (function_name, "_ada_", 5) == 0)
4673 function_name += 5;
f26caa11 4674
aeb5907d 4675 return (strncmp (function_name, scope, strlen (scope)) != 0);
f26caa11
PH
4676}
4677
aeb5907d
JB
4678/* Remove entries from SYMS that corresponds to a renaming entity that
4679 is not visible from the function associated with CURRENT_BLOCK or
4680 that is superfluous due to the presence of more specific renaming
4681 information. Places surviving symbols in the initial entries of
4682 SYMS and returns the number of surviving symbols.
96d887e8
PH
4683
4684 Rationale:
aeb5907d
JB
4685 First, in cases where an object renaming is implemented as a
4686 reference variable, GNAT may produce both the actual reference
4687 variable and the renaming encoding. In this case, we discard the
4688 latter.
4689
4690 Second, GNAT emits a type following a specified encoding for each renaming
96d887e8
PH
4691 entity. Unfortunately, STABS currently does not support the definition
4692 of types that are local to a given lexical block, so all renamings types
4693 are emitted at library level. As a consequence, if an application
4694 contains two renaming entities using the same name, and a user tries to
4695 print the value of one of these entities, the result of the ada symbol
4696 lookup will also contain the wrong renaming type.
f26caa11 4697
96d887e8
PH
4698 This function partially covers for this limitation by attempting to
4699 remove from the SYMS list renaming symbols that should be visible
4700 from CURRENT_BLOCK. However, there does not seem be a 100% reliable
4701 method with the current information available. The implementation
4702 below has a couple of limitations (FIXME: brobecker-2003-05-12):
4703
4704 - When the user tries to print a rename in a function while there
4705 is another rename entity defined in a package: Normally, the
4706 rename in the function has precedence over the rename in the
4707 package, so the latter should be removed from the list. This is
4708 currently not the case.
4709
4710 - This function will incorrectly remove valid renames if
4711 the CURRENT_BLOCK corresponds to a function which symbol name
4712 has been changed by an "Export" pragma. As a consequence,
4713 the user will be unable to print such rename entities. */
4c4b4cd2 4714
14f9c5c9 4715static int
aeb5907d
JB
4716remove_irrelevant_renamings (struct ada_symbol_info *syms,
4717 int nsyms, const struct block *current_block)
4c4b4cd2
PH
4718{
4719 struct symbol *current_function;
4720 char *current_function_name;
4721 int i;
aeb5907d
JB
4722 int is_new_style_renaming;
4723
4724 /* If there is both a renaming foo___XR... encoded as a variable and
4725 a simple variable foo in the same block, discard the latter.
0963b4bd 4726 First, zero out such symbols, then compress. */
aeb5907d
JB
4727 is_new_style_renaming = 0;
4728 for (i = 0; i < nsyms; i += 1)
4729 {
4730 struct symbol *sym = syms[i].sym;
4731 struct block *block = syms[i].block;
4732 const char *name;
4733 const char *suffix;
4734
4735 if (sym == NULL || SYMBOL_CLASS (sym) == LOC_TYPEDEF)
4736 continue;
4737 name = SYMBOL_LINKAGE_NAME (sym);
4738 suffix = strstr (name, "___XR");
4739
4740 if (suffix != NULL)
4741 {
4742 int name_len = suffix - name;
4743 int j;
5b4ee69b 4744
aeb5907d
JB
4745 is_new_style_renaming = 1;
4746 for (j = 0; j < nsyms; j += 1)
4747 if (i != j && syms[j].sym != NULL
4748 && strncmp (name, SYMBOL_LINKAGE_NAME (syms[j].sym),
4749 name_len) == 0
4750 && block == syms[j].block)
4751 syms[j].sym = NULL;
4752 }
4753 }
4754 if (is_new_style_renaming)
4755 {
4756 int j, k;
4757
4758 for (j = k = 0; j < nsyms; j += 1)
4759 if (syms[j].sym != NULL)
4760 {
4761 syms[k] = syms[j];
4762 k += 1;
4763 }
4764 return k;
4765 }
4c4b4cd2
PH
4766
4767 /* Extract the function name associated to CURRENT_BLOCK.
4768 Abort if unable to do so. */
76a01679 4769
4c4b4cd2
PH
4770 if (current_block == NULL)
4771 return nsyms;
76a01679 4772
7f0df278 4773 current_function = block_linkage_function (current_block);
4c4b4cd2
PH
4774 if (current_function == NULL)
4775 return nsyms;
4776
4777 current_function_name = SYMBOL_LINKAGE_NAME (current_function);
4778 if (current_function_name == NULL)
4779 return nsyms;
4780
4781 /* Check each of the symbols, and remove it from the list if it is
4782 a type corresponding to a renaming that is out of the scope of
4783 the current block. */
4784
4785 i = 0;
4786 while (i < nsyms)
4787 {
aeb5907d
JB
4788 if (ada_parse_renaming (syms[i].sym, NULL, NULL, NULL)
4789 == ADA_OBJECT_RENAMING
4790 && old_renaming_is_invisible (syms[i].sym, current_function_name))
4c4b4cd2
PH
4791 {
4792 int j;
5b4ee69b 4793
aeb5907d 4794 for (j = i + 1; j < nsyms; j += 1)
76a01679 4795 syms[j - 1] = syms[j];
4c4b4cd2
PH
4796 nsyms -= 1;
4797 }
4798 else
4799 i += 1;
4800 }
4801
4802 return nsyms;
4803}
4804
339c13b6
JB
4805/* Add to OBSTACKP all symbols from BLOCK (and its super-blocks)
4806 whose name and domain match NAME and DOMAIN respectively.
4807 If no match was found, then extend the search to "enclosing"
4808 routines (in other words, if we're inside a nested function,
4809 search the symbols defined inside the enclosing functions).
4810
4811 Note: This function assumes that OBSTACKP has 0 (zero) element in it. */
4812
4813static void
4814ada_add_local_symbols (struct obstack *obstackp, const char *name,
4815 struct block *block, domain_enum domain,
4816 int wild_match)
4817{
4818 int block_depth = 0;
4819
4820 while (block != NULL)
4821 {
4822 block_depth += 1;
4823 ada_add_block_symbols (obstackp, block, name, domain, NULL, wild_match);
4824
4825 /* If we found a non-function match, assume that's the one. */
4826 if (is_nonfunction (defns_collected (obstackp, 0),
4827 num_defns_collected (obstackp)))
4828 return;
4829
4830 block = BLOCK_SUPERBLOCK (block);
4831 }
4832
4833 /* If no luck so far, try to find NAME as a local symbol in some lexically
4834 enclosing subprogram. */
4835 if (num_defns_collected (obstackp) == 0 && block_depth > 2)
4836 add_symbols_from_enclosing_procs (obstackp, name, domain, wild_match);
4837}
4838
ccefe4c4 4839/* An object of this type is used as the user_data argument when
40658b94 4840 calling the map_matching_symbols method. */
ccefe4c4 4841
40658b94 4842struct match_data
ccefe4c4 4843{
40658b94 4844 struct objfile *objfile;
ccefe4c4 4845 struct obstack *obstackp;
40658b94
PH
4846 struct symbol *arg_sym;
4847 int found_sym;
ccefe4c4
TT
4848};
4849
40658b94
PH
4850/* A callback for add_matching_symbols that adds SYM, found in BLOCK,
4851 to a list of symbols. DATA0 is a pointer to a struct match_data *
4852 containing the obstack that collects the symbol list, the file that SYM
4853 must come from, a flag indicating whether a non-argument symbol has
4854 been found in the current block, and the last argument symbol
4855 passed in SYM within the current block (if any). When SYM is null,
4856 marking the end of a block, the argument symbol is added if no
4857 other has been found. */
ccefe4c4 4858
40658b94
PH
4859static int
4860aux_add_nonlocal_symbols (struct block *block, struct symbol *sym, void *data0)
ccefe4c4 4861{
40658b94
PH
4862 struct match_data *data = (struct match_data *) data0;
4863
4864 if (sym == NULL)
4865 {
4866 if (!data->found_sym && data->arg_sym != NULL)
4867 add_defn_to_vec (data->obstackp,
4868 fixup_symbol_section (data->arg_sym, data->objfile),
4869 block);
4870 data->found_sym = 0;
4871 data->arg_sym = NULL;
4872 }
4873 else
4874 {
4875 if (SYMBOL_CLASS (sym) == LOC_UNRESOLVED)
4876 return 0;
4877 else if (SYMBOL_IS_ARGUMENT (sym))
4878 data->arg_sym = sym;
4879 else
4880 {
4881 data->found_sym = 1;
4882 add_defn_to_vec (data->obstackp,
4883 fixup_symbol_section (sym, data->objfile),
4884 block);
4885 }
4886 }
4887 return 0;
4888}
4889
4890/* Compare STRING1 to STRING2, with results as for strcmp.
4891 Compatible with strcmp_iw in that strcmp_iw (STRING1, STRING2) <= 0
4892 implies compare_names (STRING1, STRING2) (they may differ as to
4893 what symbols compare equal). */
5b4ee69b 4894
40658b94
PH
4895static int
4896compare_names (const char *string1, const char *string2)
4897{
4898 while (*string1 != '\0' && *string2 != '\0')
4899 {
4900 if (isspace (*string1) || isspace (*string2))
4901 return strcmp_iw_ordered (string1, string2);
4902 if (*string1 != *string2)
4903 break;
4904 string1 += 1;
4905 string2 += 1;
4906 }
4907 switch (*string1)
4908 {
4909 case '(':
4910 return strcmp_iw_ordered (string1, string2);
4911 case '_':
4912 if (*string2 == '\0')
4913 {
052874e8 4914 if (is_name_suffix (string1))
40658b94
PH
4915 return 0;
4916 else
1a1d5513 4917 return 1;
40658b94 4918 }
dbb8534f 4919 /* FALLTHROUGH */
40658b94
PH
4920 default:
4921 if (*string2 == '(')
4922 return strcmp_iw_ordered (string1, string2);
4923 else
4924 return *string1 - *string2;
4925 }
ccefe4c4
TT
4926}
4927
339c13b6
JB
4928/* Add to OBSTACKP all non-local symbols whose name and domain match
4929 NAME and DOMAIN respectively. The search is performed on GLOBAL_BLOCK
4930 symbols if GLOBAL is non-zero, or on STATIC_BLOCK symbols otherwise. */
4931
4932static void
40658b94
PH
4933add_nonlocal_symbols (struct obstack *obstackp, const char *name,
4934 domain_enum domain, int global,
4935 int is_wild_match)
339c13b6
JB
4936{
4937 struct objfile *objfile;
40658b94 4938 struct match_data data;
339c13b6 4939
6475f2fe 4940 memset (&data, 0, sizeof data);
ccefe4c4 4941 data.obstackp = obstackp;
339c13b6 4942
ccefe4c4 4943 ALL_OBJFILES (objfile)
40658b94
PH
4944 {
4945 data.objfile = objfile;
4946
4947 if (is_wild_match)
4948 objfile->sf->qf->map_matching_symbols (name, domain, objfile, global,
4949 aux_add_nonlocal_symbols, &data,
4950 wild_match, NULL);
4951 else
4952 objfile->sf->qf->map_matching_symbols (name, domain, objfile, global,
4953 aux_add_nonlocal_symbols, &data,
4954 full_match, compare_names);
4955 }
4956
4957 if (num_defns_collected (obstackp) == 0 && global && !is_wild_match)
4958 {
4959 ALL_OBJFILES (objfile)
4960 {
4961 char *name1 = alloca (strlen (name) + sizeof ("_ada_"));
4962 strcpy (name1, "_ada_");
4963 strcpy (name1 + sizeof ("_ada_") - 1, name);
4964 data.objfile = objfile;
0963b4bd
MS
4965 objfile->sf->qf->map_matching_symbols (name1, domain,
4966 objfile, global,
4967 aux_add_nonlocal_symbols,
4968 &data,
40658b94
PH
4969 full_match, compare_names);
4970 }
4971 }
339c13b6
JB
4972}
4973
4c4b4cd2
PH
4974/* Find symbols in DOMAIN matching NAME0, in BLOCK0 and enclosing
4975 scope and in global scopes, returning the number of matches. Sets
6c9353d3 4976 *RESULTS to point to a vector of (SYM,BLOCK) tuples,
4c4b4cd2
PH
4977 indicating the symbols found and the blocks and symbol tables (if
4978 any) in which they were found. This vector are transient---good only to
4979 the next call of ada_lookup_symbol_list. Any non-function/non-enumeral
4980 symbol match within the nest of blocks whose innermost member is BLOCK0,
4981 is the one match returned (no other matches in that or
d9680e73
TT
4982 enclosing blocks is returned). If there are any matches in or
4983 surrounding BLOCK0, then these alone are returned. Otherwise, if
4984 FULL_SEARCH is non-zero, then the search extends to global and
4985 file-scope (static) symbol tables.
4c4b4cd2
PH
4986 Names prefixed with "standard__" are handled specially: "standard__"
4987 is first stripped off, and only static and global symbols are searched. */
14f9c5c9
AS
4988
4989int
4c4b4cd2 4990ada_lookup_symbol_list (const char *name0, const struct block *block0,
d9680e73
TT
4991 domain_enum namespace,
4992 struct ada_symbol_info **results,
4993 int full_search)
14f9c5c9
AS
4994{
4995 struct symbol *sym;
14f9c5c9 4996 struct block *block;
4c4b4cd2 4997 const char *name;
c0431670 4998 const int wild_match = should_use_wild_match (name0);
14f9c5c9 4999 int cacheIfUnique;
4c4b4cd2 5000 int ndefns;
14f9c5c9 5001
4c4b4cd2
PH
5002 obstack_free (&symbol_list_obstack, NULL);
5003 obstack_init (&symbol_list_obstack);
14f9c5c9 5004
14f9c5c9
AS
5005 cacheIfUnique = 0;
5006
5007 /* Search specified block and its superiors. */
5008
4c4b4cd2 5009 name = name0;
76a01679
JB
5010 block = (struct block *) block0; /* FIXME: No cast ought to be
5011 needed, but adding const will
5012 have a cascade effect. */
339c13b6
JB
5013
5014 /* Special case: If the user specifies a symbol name inside package
5015 Standard, do a non-wild matching of the symbol name without
5016 the "standard__" prefix. This was primarily introduced in order
5017 to allow the user to specifically access the standard exceptions
5018 using, for instance, Standard.Constraint_Error when Constraint_Error
5019 is ambiguous (due to the user defining its own Constraint_Error
5020 entity inside its program). */
4c4b4cd2
PH
5021 if (strncmp (name0, "standard__", sizeof ("standard__") - 1) == 0)
5022 {
4c4b4cd2
PH
5023 block = NULL;
5024 name = name0 + sizeof ("standard__") - 1;
5025 }
5026
339c13b6 5027 /* Check the non-global symbols. If we have ANY match, then we're done. */
14f9c5c9 5028
339c13b6
JB
5029 ada_add_local_symbols (&symbol_list_obstack, name, block, namespace,
5030 wild_match);
d9680e73 5031 if (num_defns_collected (&symbol_list_obstack) > 0 || !full_search)
14f9c5c9 5032 goto done;
d2e4a39e 5033
339c13b6
JB
5034 /* No non-global symbols found. Check our cache to see if we have
5035 already performed this search before. If we have, then return
5036 the same result. */
5037
14f9c5c9 5038 cacheIfUnique = 1;
2570f2b7 5039 if (lookup_cached_symbol (name0, namespace, &sym, &block))
4c4b4cd2
PH
5040 {
5041 if (sym != NULL)
2570f2b7 5042 add_defn_to_vec (&symbol_list_obstack, sym, block);
4c4b4cd2
PH
5043 goto done;
5044 }
14f9c5c9 5045
339c13b6
JB
5046 /* Search symbols from all global blocks. */
5047
40658b94
PH
5048 add_nonlocal_symbols (&symbol_list_obstack, name, namespace, 1,
5049 wild_match);
d2e4a39e 5050
4c4b4cd2 5051 /* Now add symbols from all per-file blocks if we've gotten no hits
339c13b6 5052 (not strictly correct, but perhaps better than an error). */
d2e4a39e 5053
4c4b4cd2 5054 if (num_defns_collected (&symbol_list_obstack) == 0)
40658b94
PH
5055 add_nonlocal_symbols (&symbol_list_obstack, name, namespace, 0,
5056 wild_match);
14f9c5c9 5057
4c4b4cd2
PH
5058done:
5059 ndefns = num_defns_collected (&symbol_list_obstack);
5060 *results = defns_collected (&symbol_list_obstack, 1);
5061
5062 ndefns = remove_extra_symbols (*results, ndefns);
5063
d2e4a39e 5064 if (ndefns == 0)
2570f2b7 5065 cache_symbol (name0, namespace, NULL, NULL);
14f9c5c9 5066
4c4b4cd2 5067 if (ndefns == 1 && cacheIfUnique)
2570f2b7 5068 cache_symbol (name0, namespace, (*results)[0].sym, (*results)[0].block);
14f9c5c9 5069
aeb5907d 5070 ndefns = remove_irrelevant_renamings (*results, ndefns, block0);
14f9c5c9 5071
14f9c5c9
AS
5072 return ndefns;
5073}
5074
f8eba3c6
TT
5075/* If NAME is the name of an entity, return a string that should
5076 be used to look that entity up in Ada units. This string should
5077 be deallocated after use using xfree.
5078
5079 NAME can have any form that the "break" or "print" commands might
5080 recognize. In other words, it does not have to be the "natural"
5081 name, or the "encoded" name. */
5082
5083char *
5084ada_name_for_lookup (const char *name)
5085{
5086 char *canon;
5087 int nlen = strlen (name);
5088
5089 if (name[0] == '<' && name[nlen - 1] == '>')
5090 {
5091 canon = xmalloc (nlen - 1);
5092 memcpy (canon, name + 1, nlen - 2);
5093 canon[nlen - 2] = '\0';
5094 }
5095 else
5096 canon = xstrdup (ada_encode (ada_fold_name (name)));
5097 return canon;
5098}
5099
5100/* Implementation of the la_iterate_over_symbols method. */
5101
5102static void
5103ada_iterate_over_symbols (const struct block *block,
5104 const char *name, domain_enum domain,
8e704927 5105 symbol_found_callback_ftype *callback,
f8eba3c6
TT
5106 void *data)
5107{
5108 int ndefs, i;
5109 struct ada_symbol_info *results;
5110
d9680e73 5111 ndefs = ada_lookup_symbol_list (name, block, domain, &results, 0);
f8eba3c6
TT
5112 for (i = 0; i < ndefs; ++i)
5113 {
5114 if (! (*callback) (results[i].sym, data))
5115 break;
5116 }
5117}
5118
d2e4a39e 5119struct symbol *
aeb5907d 5120ada_lookup_encoded_symbol (const char *name, const struct block *block0,
21b556f4 5121 domain_enum namespace, struct block **block_found)
14f9c5c9 5122{
4c4b4cd2 5123 struct ada_symbol_info *candidates;
14f9c5c9
AS
5124 int n_candidates;
5125
d9680e73
TT
5126 n_candidates = ada_lookup_symbol_list (name, block0, namespace, &candidates,
5127 1);
14f9c5c9
AS
5128
5129 if (n_candidates == 0)
5130 return NULL;
4c4b4cd2 5131
aeb5907d
JB
5132 if (block_found != NULL)
5133 *block_found = candidates[0].block;
4c4b4cd2 5134
21b556f4 5135 return fixup_symbol_section (candidates[0].sym, NULL);
aeb5907d
JB
5136}
5137
5138/* Return a symbol in DOMAIN matching NAME, in BLOCK0 and enclosing
5139 scope and in global scopes, or NULL if none. NAME is folded and
5140 encoded first. Otherwise, the result is as for ada_lookup_symbol_list,
0963b4bd 5141 choosing the first symbol if there are multiple choices.
aeb5907d
JB
5142 *IS_A_FIELD_OF_THIS is set to 0 and *SYMTAB is set to the symbol
5143 table in which the symbol was found (in both cases, these
5144 assignments occur only if the pointers are non-null). */
5145struct symbol *
5146ada_lookup_symbol (const char *name, const struct block *block0,
21b556f4 5147 domain_enum namespace, int *is_a_field_of_this)
aeb5907d
JB
5148{
5149 if (is_a_field_of_this != NULL)
5150 *is_a_field_of_this = 0;
5151
5152 return
5153 ada_lookup_encoded_symbol (ada_encode (ada_fold_name (name)),
21b556f4 5154 block0, namespace, NULL);
4c4b4cd2 5155}
14f9c5c9 5156
4c4b4cd2
PH
5157static struct symbol *
5158ada_lookup_symbol_nonlocal (const char *name,
76a01679 5159 const struct block *block,
21b556f4 5160 const domain_enum domain)
4c4b4cd2 5161{
94af9270 5162 return ada_lookup_symbol (name, block_static_block (block), domain, NULL);
14f9c5c9
AS
5163}
5164
5165
4c4b4cd2
PH
5166/* True iff STR is a possible encoded suffix of a normal Ada name
5167 that is to be ignored for matching purposes. Suffixes of parallel
5168 names (e.g., XVE) are not included here. Currently, the possible suffixes
5823c3ef 5169 are given by any of the regular expressions:
4c4b4cd2 5170
babe1480
JB
5171 [.$][0-9]+ [nested subprogram suffix, on platforms such as GNU/Linux]
5172 ___[0-9]+ [nested subprogram suffix, on platforms such as HP/UX]
9ac7f98e 5173 TKB [subprogram suffix for task bodies]
babe1480 5174 _E[0-9]+[bs]$ [protected object entry suffixes]
61ee279c 5175 (X[nb]*)?((\$|__)[0-9](_?[0-9]+)|___(JM|LJM|X([FDBUP].*|R[^T]?)))?$
babe1480
JB
5176
5177 Also, any leading "__[0-9]+" sequence is skipped before the suffix
5178 match is performed. This sequence is used to differentiate homonyms,
5179 is an optional part of a valid name suffix. */
4c4b4cd2 5180
14f9c5c9 5181static int
d2e4a39e 5182is_name_suffix (const char *str)
14f9c5c9
AS
5183{
5184 int k;
4c4b4cd2
PH
5185 const char *matching;
5186 const int len = strlen (str);
5187
babe1480
JB
5188 /* Skip optional leading __[0-9]+. */
5189
4c4b4cd2
PH
5190 if (len > 3 && str[0] == '_' && str[1] == '_' && isdigit (str[2]))
5191 {
babe1480
JB
5192 str += 3;
5193 while (isdigit (str[0]))
5194 str += 1;
4c4b4cd2 5195 }
babe1480
JB
5196
5197 /* [.$][0-9]+ */
4c4b4cd2 5198
babe1480 5199 if (str[0] == '.' || str[0] == '$')
4c4b4cd2 5200 {
babe1480 5201 matching = str + 1;
4c4b4cd2
PH
5202 while (isdigit (matching[0]))
5203 matching += 1;
5204 if (matching[0] == '\0')
5205 return 1;
5206 }
5207
5208 /* ___[0-9]+ */
babe1480 5209
4c4b4cd2
PH
5210 if (len > 3 && str[0] == '_' && str[1] == '_' && str[2] == '_')
5211 {
5212 matching = str + 3;
5213 while (isdigit (matching[0]))
5214 matching += 1;
5215 if (matching[0] == '\0')
5216 return 1;
5217 }
5218
9ac7f98e
JB
5219 /* "TKB" suffixes are used for subprograms implementing task bodies. */
5220
5221 if (strcmp (str, "TKB") == 0)
5222 return 1;
5223
529cad9c
PH
5224#if 0
5225 /* FIXME: brobecker/2005-09-23: Protected Object subprograms end
0963b4bd
MS
5226 with a N at the end. Unfortunately, the compiler uses the same
5227 convention for other internal types it creates. So treating
529cad9c 5228 all entity names that end with an "N" as a name suffix causes
0963b4bd
MS
5229 some regressions. For instance, consider the case of an enumerated
5230 type. To support the 'Image attribute, it creates an array whose
529cad9c
PH
5231 name ends with N.
5232 Having a single character like this as a suffix carrying some
0963b4bd 5233 information is a bit risky. Perhaps we should change the encoding
529cad9c
PH
5234 to be something like "_N" instead. In the meantime, do not do
5235 the following check. */
5236 /* Protected Object Subprograms */
5237 if (len == 1 && str [0] == 'N')
5238 return 1;
5239#endif
5240
5241 /* _E[0-9]+[bs]$ */
5242 if (len > 3 && str[0] == '_' && str [1] == 'E' && isdigit (str[2]))
5243 {
5244 matching = str + 3;
5245 while (isdigit (matching[0]))
5246 matching += 1;
5247 if ((matching[0] == 'b' || matching[0] == 's')
5248 && matching [1] == '\0')
5249 return 1;
5250 }
5251
4c4b4cd2
PH
5252 /* ??? We should not modify STR directly, as we are doing below. This
5253 is fine in this case, but may become problematic later if we find
5254 that this alternative did not work, and want to try matching
5255 another one from the begining of STR. Since we modified it, we
5256 won't be able to find the begining of the string anymore! */
14f9c5c9
AS
5257 if (str[0] == 'X')
5258 {
5259 str += 1;
d2e4a39e 5260 while (str[0] != '_' && str[0] != '\0')
4c4b4cd2
PH
5261 {
5262 if (str[0] != 'n' && str[0] != 'b')
5263 return 0;
5264 str += 1;
5265 }
14f9c5c9 5266 }
babe1480 5267
14f9c5c9
AS
5268 if (str[0] == '\000')
5269 return 1;
babe1480 5270
d2e4a39e 5271 if (str[0] == '_')
14f9c5c9
AS
5272 {
5273 if (str[1] != '_' || str[2] == '\000')
4c4b4cd2 5274 return 0;
d2e4a39e 5275 if (str[2] == '_')
4c4b4cd2 5276 {
61ee279c
PH
5277 if (strcmp (str + 3, "JM") == 0)
5278 return 1;
5279 /* FIXME: brobecker/2004-09-30: GNAT will soon stop using
5280 the LJM suffix in favor of the JM one. But we will
5281 still accept LJM as a valid suffix for a reasonable
5282 amount of time, just to allow ourselves to debug programs
5283 compiled using an older version of GNAT. */
4c4b4cd2
PH
5284 if (strcmp (str + 3, "LJM") == 0)
5285 return 1;
5286 if (str[3] != 'X')
5287 return 0;
1265e4aa
JB
5288 if (str[4] == 'F' || str[4] == 'D' || str[4] == 'B'
5289 || str[4] == 'U' || str[4] == 'P')
4c4b4cd2
PH
5290 return 1;
5291 if (str[4] == 'R' && str[5] != 'T')
5292 return 1;
5293 return 0;
5294 }
5295 if (!isdigit (str[2]))
5296 return 0;
5297 for (k = 3; str[k] != '\0'; k += 1)
5298 if (!isdigit (str[k]) && str[k] != '_')
5299 return 0;
14f9c5c9
AS
5300 return 1;
5301 }
4c4b4cd2 5302 if (str[0] == '$' && isdigit (str[1]))
14f9c5c9 5303 {
4c4b4cd2
PH
5304 for (k = 2; str[k] != '\0'; k += 1)
5305 if (!isdigit (str[k]) && str[k] != '_')
5306 return 0;
14f9c5c9
AS
5307 return 1;
5308 }
5309 return 0;
5310}
d2e4a39e 5311
aeb5907d
JB
5312/* Return non-zero if the string starting at NAME and ending before
5313 NAME_END contains no capital letters. */
529cad9c
PH
5314
5315static int
5316is_valid_name_for_wild_match (const char *name0)
5317{
5318 const char *decoded_name = ada_decode (name0);
5319 int i;
5320
5823c3ef
JB
5321 /* If the decoded name starts with an angle bracket, it means that
5322 NAME0 does not follow the GNAT encoding format. It should then
5323 not be allowed as a possible wild match. */
5324 if (decoded_name[0] == '<')
5325 return 0;
5326
529cad9c
PH
5327 for (i=0; decoded_name[i] != '\0'; i++)
5328 if (isalpha (decoded_name[i]) && !islower (decoded_name[i]))
5329 return 0;
5330
5331 return 1;
5332}
5333
73589123
PH
5334/* Advance *NAMEP to next occurrence of TARGET0 in the string NAME0
5335 that could start a simple name. Assumes that *NAMEP points into
5336 the string beginning at NAME0. */
4c4b4cd2 5337
14f9c5c9 5338static int
73589123 5339advance_wild_match (const char **namep, const char *name0, int target0)
14f9c5c9 5340{
73589123 5341 const char *name = *namep;
5b4ee69b 5342
5823c3ef 5343 while (1)
14f9c5c9 5344 {
aa27d0b3 5345 int t0, t1;
73589123
PH
5346
5347 t0 = *name;
5348 if (t0 == '_')
5349 {
5350 t1 = name[1];
5351 if ((t1 >= 'a' && t1 <= 'z') || (t1 >= '0' && t1 <= '9'))
5352 {
5353 name += 1;
5354 if (name == name0 + 5 && strncmp (name0, "_ada", 4) == 0)
5355 break;
5356 else
5357 name += 1;
5358 }
aa27d0b3
JB
5359 else if (t1 == '_' && ((name[2] >= 'a' && name[2] <= 'z')
5360 || name[2] == target0))
73589123
PH
5361 {
5362 name += 2;
5363 break;
5364 }
5365 else
5366 return 0;
5367 }
5368 else if ((t0 >= 'a' && t0 <= 'z') || (t0 >= '0' && t0 <= '9'))
5369 name += 1;
5370 else
5823c3ef 5371 return 0;
73589123
PH
5372 }
5373
5374 *namep = name;
5375 return 1;
5376}
5377
5378/* Return 0 iff NAME encodes a name of the form prefix.PATN. Ignores any
5379 informational suffixes of NAME (i.e., for which is_name_suffix is
5380 true). Assumes that PATN is a lower-cased Ada simple name. */
5381
5382static int
5383wild_match (const char *name, const char *patn)
5384{
5385 const char *p, *n;
5386 const char *name0 = name;
5387
5388 while (1)
5389 {
5390 const char *match = name;
5391
5392 if (*name == *patn)
5393 {
5394 for (name += 1, p = patn + 1; *p != '\0'; name += 1, p += 1)
5395 if (*p != *name)
5396 break;
5397 if (*p == '\0' && is_name_suffix (name))
5398 return match != name0 && !is_valid_name_for_wild_match (name0);
5399
5400 if (name[-1] == '_')
5401 name -= 1;
5402 }
5403 if (!advance_wild_match (&name, name0, *patn))
5404 return 1;
96d887e8 5405 }
96d887e8
PH
5406}
5407
40658b94
PH
5408/* Returns 0 iff symbol name SYM_NAME matches SEARCH_NAME, apart from
5409 informational suffix. */
5410
c4d840bd
PH
5411static int
5412full_match (const char *sym_name, const char *search_name)
5413{
40658b94 5414 return !match_name (sym_name, search_name, 0);
c4d840bd
PH
5415}
5416
5417
96d887e8
PH
5418/* Add symbols from BLOCK matching identifier NAME in DOMAIN to
5419 vector *defn_symbols, updating the list of symbols in OBSTACKP
0963b4bd 5420 (if necessary). If WILD, treat as NAME with a wildcard prefix.
96d887e8
PH
5421 OBJFILE is the section containing BLOCK.
5422 SYMTAB is recorded with each symbol added. */
5423
5424static void
5425ada_add_block_symbols (struct obstack *obstackp,
76a01679 5426 struct block *block, const char *name,
96d887e8 5427 domain_enum domain, struct objfile *objfile,
2570f2b7 5428 int wild)
96d887e8
PH
5429{
5430 struct dict_iterator iter;
5431 int name_len = strlen (name);
5432 /* A matching argument symbol, if any. */
5433 struct symbol *arg_sym;
5434 /* Set true when we find a matching non-argument symbol. */
5435 int found_sym;
5436 struct symbol *sym;
5437
5438 arg_sym = NULL;
5439 found_sym = 0;
5440 if (wild)
5441 {
c4d840bd
PH
5442 for (sym = dict_iter_match_first (BLOCK_DICT (block), name,
5443 wild_match, &iter);
5444 sym != NULL; sym = dict_iter_match_next (name, wild_match, &iter))
76a01679 5445 {
5eeb2539
AR
5446 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
5447 SYMBOL_DOMAIN (sym), domain)
73589123 5448 && wild_match (SYMBOL_LINKAGE_NAME (sym), name) == 0)
76a01679 5449 {
2a2d4dc3
AS
5450 if (SYMBOL_CLASS (sym) == LOC_UNRESOLVED)
5451 continue;
5452 else if (SYMBOL_IS_ARGUMENT (sym))
5453 arg_sym = sym;
5454 else
5455 {
76a01679
JB
5456 found_sym = 1;
5457 add_defn_to_vec (obstackp,
5458 fixup_symbol_section (sym, objfile),
2570f2b7 5459 block);
76a01679
JB
5460 }
5461 }
5462 }
96d887e8
PH
5463 }
5464 else
5465 {
c4d840bd 5466 for (sym = dict_iter_match_first (BLOCK_DICT (block), name,
40658b94 5467 full_match, &iter);
c4d840bd 5468 sym != NULL; sym = dict_iter_match_next (name, full_match, &iter))
76a01679 5469 {
5eeb2539
AR
5470 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
5471 SYMBOL_DOMAIN (sym), domain))
76a01679 5472 {
c4d840bd
PH
5473 if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED)
5474 {
5475 if (SYMBOL_IS_ARGUMENT (sym))
5476 arg_sym = sym;
5477 else
2a2d4dc3 5478 {
c4d840bd
PH
5479 found_sym = 1;
5480 add_defn_to_vec (obstackp,
5481 fixup_symbol_section (sym, objfile),
5482 block);
2a2d4dc3 5483 }
c4d840bd 5484 }
76a01679
JB
5485 }
5486 }
96d887e8
PH
5487 }
5488
5489 if (!found_sym && arg_sym != NULL)
5490 {
76a01679
JB
5491 add_defn_to_vec (obstackp,
5492 fixup_symbol_section (arg_sym, objfile),
2570f2b7 5493 block);
96d887e8
PH
5494 }
5495
5496 if (!wild)
5497 {
5498 arg_sym = NULL;
5499 found_sym = 0;
5500
5501 ALL_BLOCK_SYMBOLS (block, iter, sym)
76a01679 5502 {
5eeb2539
AR
5503 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
5504 SYMBOL_DOMAIN (sym), domain))
76a01679
JB
5505 {
5506 int cmp;
5507
5508 cmp = (int) '_' - (int) SYMBOL_LINKAGE_NAME (sym)[0];
5509 if (cmp == 0)
5510 {
5511 cmp = strncmp ("_ada_", SYMBOL_LINKAGE_NAME (sym), 5);
5512 if (cmp == 0)
5513 cmp = strncmp (name, SYMBOL_LINKAGE_NAME (sym) + 5,
5514 name_len);
5515 }
5516
5517 if (cmp == 0
5518 && is_name_suffix (SYMBOL_LINKAGE_NAME (sym) + name_len + 5))
5519 {
2a2d4dc3
AS
5520 if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED)
5521 {
5522 if (SYMBOL_IS_ARGUMENT (sym))
5523 arg_sym = sym;
5524 else
5525 {
5526 found_sym = 1;
5527 add_defn_to_vec (obstackp,
5528 fixup_symbol_section (sym, objfile),
5529 block);
5530 }
5531 }
76a01679
JB
5532 }
5533 }
76a01679 5534 }
96d887e8
PH
5535
5536 /* NOTE: This really shouldn't be needed for _ada_ symbols.
5537 They aren't parameters, right? */
5538 if (!found_sym && arg_sym != NULL)
5539 {
5540 add_defn_to_vec (obstackp,
76a01679 5541 fixup_symbol_section (arg_sym, objfile),
2570f2b7 5542 block);
96d887e8
PH
5543 }
5544 }
5545}
5546\f
41d27058
JB
5547
5548 /* Symbol Completion */
5549
5550/* If SYM_NAME is a completion candidate for TEXT, return this symbol
5551 name in a form that's appropriate for the completion. The result
5552 does not need to be deallocated, but is only good until the next call.
5553
5554 TEXT_LEN is equal to the length of TEXT.
5555 Perform a wild match if WILD_MATCH is set.
5556 ENCODED should be set if TEXT represents the start of a symbol name
5557 in its encoded form. */
5558
5559static const char *
5560symbol_completion_match (const char *sym_name,
5561 const char *text, int text_len,
5562 int wild_match, int encoded)
5563{
41d27058
JB
5564 const int verbatim_match = (text[0] == '<');
5565 int match = 0;
5566
5567 if (verbatim_match)
5568 {
5569 /* Strip the leading angle bracket. */
5570 text = text + 1;
5571 text_len--;
5572 }
5573
5574 /* First, test against the fully qualified name of the symbol. */
5575
5576 if (strncmp (sym_name, text, text_len) == 0)
5577 match = 1;
5578
5579 if (match && !encoded)
5580 {
5581 /* One needed check before declaring a positive match is to verify
5582 that iff we are doing a verbatim match, the decoded version
5583 of the symbol name starts with '<'. Otherwise, this symbol name
5584 is not a suitable completion. */
5585 const char *sym_name_copy = sym_name;
5586 int has_angle_bracket;
5587
5588 sym_name = ada_decode (sym_name);
5589 has_angle_bracket = (sym_name[0] == '<');
5590 match = (has_angle_bracket == verbatim_match);
5591 sym_name = sym_name_copy;
5592 }
5593
5594 if (match && !verbatim_match)
5595 {
5596 /* When doing non-verbatim match, another check that needs to
5597 be done is to verify that the potentially matching symbol name
5598 does not include capital letters, because the ada-mode would
5599 not be able to understand these symbol names without the
5600 angle bracket notation. */
5601 const char *tmp;
5602
5603 for (tmp = sym_name; *tmp != '\0' && !isupper (*tmp); tmp++);
5604 if (*tmp != '\0')
5605 match = 0;
5606 }
5607
5608 /* Second: Try wild matching... */
5609
5610 if (!match && wild_match)
5611 {
5612 /* Since we are doing wild matching, this means that TEXT
5613 may represent an unqualified symbol name. We therefore must
5614 also compare TEXT against the unqualified name of the symbol. */
5615 sym_name = ada_unqualified_name (ada_decode (sym_name));
5616
5617 if (strncmp (sym_name, text, text_len) == 0)
5618 match = 1;
5619 }
5620
5621 /* Finally: If we found a mach, prepare the result to return. */
5622
5623 if (!match)
5624 return NULL;
5625
5626 if (verbatim_match)
5627 sym_name = add_angle_brackets (sym_name);
5628
5629 if (!encoded)
5630 sym_name = ada_decode (sym_name);
5631
5632 return sym_name;
5633}
5634
5635/* A companion function to ada_make_symbol_completion_list().
5636 Check if SYM_NAME represents a symbol which name would be suitable
5637 to complete TEXT (TEXT_LEN is the length of TEXT), in which case
5638 it is appended at the end of the given string vector SV.
5639
5640 ORIG_TEXT is the string original string from the user command
5641 that needs to be completed. WORD is the entire command on which
5642 completion should be performed. These two parameters are used to
5643 determine which part of the symbol name should be added to the
5644 completion vector.
5645 if WILD_MATCH is set, then wild matching is performed.
5646 ENCODED should be set if TEXT represents a symbol name in its
5647 encoded formed (in which case the completion should also be
5648 encoded). */
5649
5650static void
d6565258 5651symbol_completion_add (VEC(char_ptr) **sv,
41d27058
JB
5652 const char *sym_name,
5653 const char *text, int text_len,
5654 const char *orig_text, const char *word,
5655 int wild_match, int encoded)
5656{
5657 const char *match = symbol_completion_match (sym_name, text, text_len,
5658 wild_match, encoded);
5659 char *completion;
5660
5661 if (match == NULL)
5662 return;
5663
5664 /* We found a match, so add the appropriate completion to the given
5665 string vector. */
5666
5667 if (word == orig_text)
5668 {
5669 completion = xmalloc (strlen (match) + 5);
5670 strcpy (completion, match);
5671 }
5672 else if (word > orig_text)
5673 {
5674 /* Return some portion of sym_name. */
5675 completion = xmalloc (strlen (match) + 5);
5676 strcpy (completion, match + (word - orig_text));
5677 }
5678 else
5679 {
5680 /* Return some of ORIG_TEXT plus sym_name. */
5681 completion = xmalloc (strlen (match) + (orig_text - word) + 5);
5682 strncpy (completion, word, orig_text - word);
5683 completion[orig_text - word] = '\0';
5684 strcat (completion, match);
5685 }
5686
d6565258 5687 VEC_safe_push (char_ptr, *sv, completion);
41d27058
JB
5688}
5689
ccefe4c4 5690/* An object of this type is passed as the user_data argument to the
7b08b9eb 5691 expand_partial_symbol_names method. */
ccefe4c4
TT
5692struct add_partial_datum
5693{
5694 VEC(char_ptr) **completions;
5695 char *text;
5696 int text_len;
5697 char *text0;
5698 char *word;
5699 int wild_match;
5700 int encoded;
5701};
5702
7b08b9eb
JK
5703/* A callback for expand_partial_symbol_names. */
5704static int
e078317b 5705ada_expand_partial_symbol_name (const char *name, void *user_data)
ccefe4c4
TT
5706{
5707 struct add_partial_datum *data = user_data;
7b08b9eb
JK
5708
5709 return symbol_completion_match (name, data->text, data->text_len,
5710 data->wild_match, data->encoded) != NULL;
ccefe4c4
TT
5711}
5712
41d27058
JB
5713/* Return a list of possible symbol names completing TEXT0. The list
5714 is NULL terminated. WORD is the entire command on which completion
5715 is made. */
5716
5717static char **
5718ada_make_symbol_completion_list (char *text0, char *word)
5719{
5720 char *text;
5721 int text_len;
5722 int wild_match;
5723 int encoded;
2ba95b9b 5724 VEC(char_ptr) *completions = VEC_alloc (char_ptr, 128);
41d27058
JB
5725 struct symbol *sym;
5726 struct symtab *s;
41d27058
JB
5727 struct minimal_symbol *msymbol;
5728 struct objfile *objfile;
5729 struct block *b, *surrounding_static_block = 0;
5730 int i;
5731 struct dict_iterator iter;
5732
5733 if (text0[0] == '<')
5734 {
5735 text = xstrdup (text0);
5736 make_cleanup (xfree, text);
5737 text_len = strlen (text);
5738 wild_match = 0;
5739 encoded = 1;
5740 }
5741 else
5742 {
5743 text = xstrdup (ada_encode (text0));
5744 make_cleanup (xfree, text);
5745 text_len = strlen (text);
5746 for (i = 0; i < text_len; i++)
5747 text[i] = tolower (text[i]);
5748
5749 encoded = (strstr (text0, "__") != NULL);
5750 /* If the name contains a ".", then the user is entering a fully
5751 qualified entity name, and the match must not be done in wild
5752 mode. Similarly, if the user wants to complete what looks like
5753 an encoded name, the match must not be done in wild mode. */
5754 wild_match = (strchr (text0, '.') == NULL && !encoded);
5755 }
5756
5757 /* First, look at the partial symtab symbols. */
41d27058 5758 {
ccefe4c4
TT
5759 struct add_partial_datum data;
5760
5761 data.completions = &completions;
5762 data.text = text;
5763 data.text_len = text_len;
5764 data.text0 = text0;
5765 data.word = word;
5766 data.wild_match = wild_match;
5767 data.encoded = encoded;
7b08b9eb 5768 expand_partial_symbol_names (ada_expand_partial_symbol_name, &data);
41d27058
JB
5769 }
5770
5771 /* At this point scan through the misc symbol vectors and add each
5772 symbol you find to the list. Eventually we want to ignore
5773 anything that isn't a text symbol (everything else will be
5774 handled by the psymtab code above). */
5775
5776 ALL_MSYMBOLS (objfile, msymbol)
5777 {
5778 QUIT;
d6565258 5779 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (msymbol),
41d27058
JB
5780 text, text_len, text0, word, wild_match, encoded);
5781 }
5782
5783 /* Search upwards from currently selected frame (so that we can
5784 complete on local vars. */
5785
5786 for (b = get_selected_block (0); b != NULL; b = BLOCK_SUPERBLOCK (b))
5787 {
5788 if (!BLOCK_SUPERBLOCK (b))
5789 surrounding_static_block = b; /* For elmin of dups */
5790
5791 ALL_BLOCK_SYMBOLS (b, iter, sym)
5792 {
d6565258 5793 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym),
41d27058
JB
5794 text, text_len, text0, word,
5795 wild_match, encoded);
5796 }
5797 }
5798
5799 /* Go through the symtabs and check the externs and statics for
5800 symbols which match. */
5801
5802 ALL_SYMTABS (objfile, s)
5803 {
5804 QUIT;
5805 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), GLOBAL_BLOCK);
5806 ALL_BLOCK_SYMBOLS (b, iter, sym)
5807 {
d6565258 5808 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym),
41d27058
JB
5809 text, text_len, text0, word,
5810 wild_match, encoded);
5811 }
5812 }
5813
5814 ALL_SYMTABS (objfile, s)
5815 {
5816 QUIT;
5817 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), STATIC_BLOCK);
5818 /* Don't do this block twice. */
5819 if (b == surrounding_static_block)
5820 continue;
5821 ALL_BLOCK_SYMBOLS (b, iter, sym)
5822 {
d6565258 5823 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym),
41d27058
JB
5824 text, text_len, text0, word,
5825 wild_match, encoded);
5826 }
5827 }
5828
5829 /* Append the closing NULL entry. */
2ba95b9b 5830 VEC_safe_push (char_ptr, completions, NULL);
41d27058 5831
2ba95b9b
JB
5832 /* Make a copy of the COMPLETIONS VEC before we free it, and then
5833 return the copy. It's unfortunate that we have to make a copy
5834 of an array that we're about to destroy, but there is nothing much
5835 we can do about it. Fortunately, it's typically not a very large
5836 array. */
5837 {
5838 const size_t completions_size =
5839 VEC_length (char_ptr, completions) * sizeof (char *);
dc19db01 5840 char **result = xmalloc (completions_size);
2ba95b9b
JB
5841
5842 memcpy (result, VEC_address (char_ptr, completions), completions_size);
5843
5844 VEC_free (char_ptr, completions);
5845 return result;
5846 }
41d27058
JB
5847}
5848
963a6417 5849 /* Field Access */
96d887e8 5850
73fb9985
JB
5851/* Return non-zero if TYPE is a pointer to the GNAT dispatch table used
5852 for tagged types. */
5853
5854static int
5855ada_is_dispatch_table_ptr_type (struct type *type)
5856{
5857 char *name;
5858
5859 if (TYPE_CODE (type) != TYPE_CODE_PTR)
5860 return 0;
5861
5862 name = TYPE_NAME (TYPE_TARGET_TYPE (type));
5863 if (name == NULL)
5864 return 0;
5865
5866 return (strcmp (name, "ada__tags__dispatch_table") == 0);
5867}
5868
963a6417
PH
5869/* True if field number FIELD_NUM in struct or union type TYPE is supposed
5870 to be invisible to users. */
96d887e8 5871
963a6417
PH
5872int
5873ada_is_ignored_field (struct type *type, int field_num)
96d887e8 5874{
963a6417
PH
5875 if (field_num < 0 || field_num > TYPE_NFIELDS (type))
5876 return 1;
73fb9985
JB
5877
5878 /* Check the name of that field. */
5879 {
5880 const char *name = TYPE_FIELD_NAME (type, field_num);
5881
5882 /* Anonymous field names should not be printed.
5883 brobecker/2007-02-20: I don't think this can actually happen
5884 but we don't want to print the value of annonymous fields anyway. */
5885 if (name == NULL)
5886 return 1;
5887
5888 /* A field named "_parent" is internally generated by GNAT for
5889 tagged types, and should not be printed either. */
5890 if (name[0] == '_' && strncmp (name, "_parent", 7) != 0)
5891 return 1;
5892 }
5893
5894 /* If this is the dispatch table of a tagged type, then ignore. */
5895 if (ada_is_tagged_type (type, 1)
5896 && ada_is_dispatch_table_ptr_type (TYPE_FIELD_TYPE (type, field_num)))
5897 return 1;
5898
5899 /* Not a special field, so it should not be ignored. */
5900 return 0;
963a6417 5901}
96d887e8 5902
963a6417 5903/* True iff TYPE has a tag field. If REFOK, then TYPE may also be a
0963b4bd 5904 pointer or reference type whose ultimate target has a tag field. */
96d887e8 5905
963a6417
PH
5906int
5907ada_is_tagged_type (struct type *type, int refok)
5908{
5909 return (ada_lookup_struct_elt_type (type, "_tag", refok, 1, NULL) != NULL);
5910}
96d887e8 5911
963a6417 5912/* True iff TYPE represents the type of X'Tag */
96d887e8 5913
963a6417
PH
5914int
5915ada_is_tag_type (struct type *type)
5916{
5917 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_PTR)
5918 return 0;
5919 else
96d887e8 5920 {
963a6417 5921 const char *name = ada_type_name (TYPE_TARGET_TYPE (type));
5b4ee69b 5922
963a6417
PH
5923 return (name != NULL
5924 && strcmp (name, "ada__tags__dispatch_table") == 0);
96d887e8 5925 }
96d887e8
PH
5926}
5927
963a6417 5928/* The type of the tag on VAL. */
76a01679 5929
963a6417
PH
5930struct type *
5931ada_tag_type (struct value *val)
96d887e8 5932{
df407dfe 5933 return ada_lookup_struct_elt_type (value_type (val), "_tag", 1, 0, NULL);
963a6417 5934}
96d887e8 5935
963a6417 5936/* The value of the tag on VAL. */
96d887e8 5937
963a6417
PH
5938struct value *
5939ada_value_tag (struct value *val)
5940{
03ee6b2e 5941 return ada_value_struct_elt (val, "_tag", 0);
96d887e8
PH
5942}
5943
963a6417
PH
5944/* The value of the tag on the object of type TYPE whose contents are
5945 saved at VALADDR, if it is non-null, or is at memory address
0963b4bd 5946 ADDRESS. */
96d887e8 5947
963a6417 5948static struct value *
10a2c479 5949value_tag_from_contents_and_address (struct type *type,
fc1a4b47 5950 const gdb_byte *valaddr,
963a6417 5951 CORE_ADDR address)
96d887e8 5952{
b5385fc0 5953 int tag_byte_offset;
963a6417 5954 struct type *tag_type;
5b4ee69b 5955
963a6417 5956 if (find_struct_field ("_tag", type, 0, &tag_type, &tag_byte_offset,
52ce6436 5957 NULL, NULL, NULL))
96d887e8 5958 {
fc1a4b47 5959 const gdb_byte *valaddr1 = ((valaddr == NULL)
10a2c479
AC
5960 ? NULL
5961 : valaddr + tag_byte_offset);
963a6417 5962 CORE_ADDR address1 = (address == 0) ? 0 : address + tag_byte_offset;
96d887e8 5963
963a6417 5964 return value_from_contents_and_address (tag_type, valaddr1, address1);
96d887e8 5965 }
963a6417
PH
5966 return NULL;
5967}
96d887e8 5968
963a6417
PH
5969static struct type *
5970type_from_tag (struct value *tag)
5971{
5972 const char *type_name = ada_tag_name (tag);
5b4ee69b 5973
963a6417
PH
5974 if (type_name != NULL)
5975 return ada_find_any_type (ada_encode (type_name));
5976 return NULL;
5977}
96d887e8 5978
963a6417
PH
5979struct tag_args
5980{
5981 struct value *tag;
5982 char *name;
5983};
4c4b4cd2 5984
529cad9c
PH
5985
5986static int ada_tag_name_1 (void *);
5987static int ada_tag_name_2 (struct tag_args *);
5988
4c4b4cd2 5989/* Wrapper function used by ada_tag_name. Given a struct tag_args*
0963b4bd 5990 value ARGS, sets ARGS->name to the tag name of ARGS->tag.
4c4b4cd2
PH
5991 The value stored in ARGS->name is valid until the next call to
5992 ada_tag_name_1. */
5993
5994static int
5995ada_tag_name_1 (void *args0)
5996{
5997 struct tag_args *args = (struct tag_args *) args0;
5998 static char name[1024];
76a01679 5999 char *p;
4c4b4cd2 6000 struct value *val;
5b4ee69b 6001
4c4b4cd2 6002 args->name = NULL;
03ee6b2e 6003 val = ada_value_struct_elt (args->tag, "tsd", 1);
529cad9c
PH
6004 if (val == NULL)
6005 return ada_tag_name_2 (args);
03ee6b2e 6006 val = ada_value_struct_elt (val, "expanded_name", 1);
529cad9c
PH
6007 if (val == NULL)
6008 return 0;
6009 read_memory_string (value_as_address (val), name, sizeof (name) - 1);
6010 for (p = name; *p != '\0'; p += 1)
6011 if (isalpha (*p))
6012 *p = tolower (*p);
6013 args->name = name;
6014 return 0;
6015}
6016
e802dbe0
JB
6017/* Return the "ada__tags__type_specific_data" type. */
6018
6019static struct type *
6020ada_get_tsd_type (struct inferior *inf)
6021{
6022 struct ada_inferior_data *data = get_ada_inferior_data (inf);
6023
6024 if (data->tsd_type == 0)
6025 data->tsd_type = ada_find_any_type ("ada__tags__type_specific_data");
6026 return data->tsd_type;
6027}
6028
529cad9c
PH
6029/* Utility function for ada_tag_name_1 that tries the second
6030 representation for the dispatch table (in which there is no
6031 explicit 'tsd' field in the referent of the tag pointer, and instead
0963b4bd 6032 the tsd pointer is stored just before the dispatch table. */
529cad9c
PH
6033
6034static int
6035ada_tag_name_2 (struct tag_args *args)
6036{
6037 struct type *info_type;
6038 static char name[1024];
6039 char *p;
6040 struct value *val, *valp;
6041
6042 args->name = NULL;
e802dbe0 6043 info_type = ada_get_tsd_type (current_inferior());
529cad9c
PH
6044 if (info_type == NULL)
6045 return 0;
6046 info_type = lookup_pointer_type (lookup_pointer_type (info_type));
6047 valp = value_cast (info_type, args->tag);
6048 if (valp == NULL)
6049 return 0;
2497b498 6050 val = value_ind (value_ptradd (valp, -1));
4c4b4cd2
PH
6051 if (val == NULL)
6052 return 0;
03ee6b2e 6053 val = ada_value_struct_elt (val, "expanded_name", 1);
4c4b4cd2
PH
6054 if (val == NULL)
6055 return 0;
6056 read_memory_string (value_as_address (val), name, sizeof (name) - 1);
6057 for (p = name; *p != '\0'; p += 1)
6058 if (isalpha (*p))
6059 *p = tolower (*p);
6060 args->name = name;
6061 return 0;
6062}
6063
6064/* The type name of the dynamic type denoted by the 'tag value TAG, as
e802dbe0 6065 a C string. */
4c4b4cd2
PH
6066
6067const char *
6068ada_tag_name (struct value *tag)
6069{
6070 struct tag_args args;
5b4ee69b 6071
df407dfe 6072 if (!ada_is_tag_type (value_type (tag)))
4c4b4cd2 6073 return NULL;
76a01679 6074 args.tag = tag;
4c4b4cd2
PH
6075 args.name = NULL;
6076 catch_errors (ada_tag_name_1, &args, NULL, RETURN_MASK_ALL);
6077 return args.name;
6078}
6079
6080/* The parent type of TYPE, or NULL if none. */
14f9c5c9 6081
d2e4a39e 6082struct type *
ebf56fd3 6083ada_parent_type (struct type *type)
14f9c5c9
AS
6084{
6085 int i;
6086
61ee279c 6087 type = ada_check_typedef (type);
14f9c5c9
AS
6088
6089 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT)
6090 return NULL;
6091
6092 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
6093 if (ada_is_parent_field (type, i))
0c1f74cf
JB
6094 {
6095 struct type *parent_type = TYPE_FIELD_TYPE (type, i);
6096
6097 /* If the _parent field is a pointer, then dereference it. */
6098 if (TYPE_CODE (parent_type) == TYPE_CODE_PTR)
6099 parent_type = TYPE_TARGET_TYPE (parent_type);
6100 /* If there is a parallel XVS type, get the actual base type. */
6101 parent_type = ada_get_base_type (parent_type);
6102
6103 return ada_check_typedef (parent_type);
6104 }
14f9c5c9
AS
6105
6106 return NULL;
6107}
6108
4c4b4cd2
PH
6109/* True iff field number FIELD_NUM of structure type TYPE contains the
6110 parent-type (inherited) fields of a derived type. Assumes TYPE is
6111 a structure type with at least FIELD_NUM+1 fields. */
14f9c5c9
AS
6112
6113int
ebf56fd3 6114ada_is_parent_field (struct type *type, int field_num)
14f9c5c9 6115{
61ee279c 6116 const char *name = TYPE_FIELD_NAME (ada_check_typedef (type), field_num);
5b4ee69b 6117
4c4b4cd2
PH
6118 return (name != NULL
6119 && (strncmp (name, "PARENT", 6) == 0
6120 || strncmp (name, "_parent", 7) == 0));
14f9c5c9
AS
6121}
6122
4c4b4cd2 6123/* True iff field number FIELD_NUM of structure type TYPE is a
14f9c5c9 6124 transparent wrapper field (which should be silently traversed when doing
4c4b4cd2 6125 field selection and flattened when printing). Assumes TYPE is a
14f9c5c9 6126 structure type with at least FIELD_NUM+1 fields. Such fields are always
4c4b4cd2 6127 structures. */
14f9c5c9
AS
6128
6129int
ebf56fd3 6130ada_is_wrapper_field (struct type *type, int field_num)
14f9c5c9 6131{
d2e4a39e 6132 const char *name = TYPE_FIELD_NAME (type, field_num);
5b4ee69b 6133
d2e4a39e 6134 return (name != NULL
4c4b4cd2
PH
6135 && (strncmp (name, "PARENT", 6) == 0
6136 || strcmp (name, "REP") == 0
6137 || strncmp (name, "_parent", 7) == 0
6138 || name[0] == 'S' || name[0] == 'R' || name[0] == 'O'));
14f9c5c9
AS
6139}
6140
4c4b4cd2
PH
6141/* True iff field number FIELD_NUM of structure or union type TYPE
6142 is a variant wrapper. Assumes TYPE is a structure type with at least
6143 FIELD_NUM+1 fields. */
14f9c5c9
AS
6144
6145int
ebf56fd3 6146ada_is_variant_part (struct type *type, int field_num)
14f9c5c9 6147{
d2e4a39e 6148 struct type *field_type = TYPE_FIELD_TYPE (type, field_num);
5b4ee69b 6149
14f9c5c9 6150 return (TYPE_CODE (field_type) == TYPE_CODE_UNION
4c4b4cd2 6151 || (is_dynamic_field (type, field_num)
c3e5cd34
PH
6152 && (TYPE_CODE (TYPE_TARGET_TYPE (field_type))
6153 == TYPE_CODE_UNION)));
14f9c5c9
AS
6154}
6155
6156/* Assuming that VAR_TYPE is a variant wrapper (type of the variant part)
4c4b4cd2 6157 whose discriminants are contained in the record type OUTER_TYPE,
7c964f07
UW
6158 returns the type of the controlling discriminant for the variant.
6159 May return NULL if the type could not be found. */
14f9c5c9 6160
d2e4a39e 6161struct type *
ebf56fd3 6162ada_variant_discrim_type (struct type *var_type, struct type *outer_type)
14f9c5c9 6163{
d2e4a39e 6164 char *name = ada_variant_discrim_name (var_type);
5b4ee69b 6165
7c964f07 6166 return ada_lookup_struct_elt_type (outer_type, name, 1, 1, NULL);
14f9c5c9
AS
6167}
6168
4c4b4cd2 6169/* Assuming that TYPE is the type of a variant wrapper, and FIELD_NUM is a
14f9c5c9 6170 valid field number within it, returns 1 iff field FIELD_NUM of TYPE
4c4b4cd2 6171 represents a 'when others' clause; otherwise 0. */
14f9c5c9
AS
6172
6173int
ebf56fd3 6174ada_is_others_clause (struct type *type, int field_num)
14f9c5c9 6175{
d2e4a39e 6176 const char *name = TYPE_FIELD_NAME (type, field_num);
5b4ee69b 6177
14f9c5c9
AS
6178 return (name != NULL && name[0] == 'O');
6179}
6180
6181/* Assuming that TYPE0 is the type of the variant part of a record,
4c4b4cd2
PH
6182 returns the name of the discriminant controlling the variant.
6183 The value is valid until the next call to ada_variant_discrim_name. */
14f9c5c9 6184
d2e4a39e 6185char *
ebf56fd3 6186ada_variant_discrim_name (struct type *type0)
14f9c5c9 6187{
d2e4a39e 6188 static char *result = NULL;
14f9c5c9 6189 static size_t result_len = 0;
d2e4a39e
AS
6190 struct type *type;
6191 const char *name;
6192 const char *discrim_end;
6193 const char *discrim_start;
14f9c5c9
AS
6194
6195 if (TYPE_CODE (type0) == TYPE_CODE_PTR)
6196 type = TYPE_TARGET_TYPE (type0);
6197 else
6198 type = type0;
6199
6200 name = ada_type_name (type);
6201
6202 if (name == NULL || name[0] == '\000')
6203 return "";
6204
6205 for (discrim_end = name + strlen (name) - 6; discrim_end != name;
6206 discrim_end -= 1)
6207 {
4c4b4cd2
PH
6208 if (strncmp (discrim_end, "___XVN", 6) == 0)
6209 break;
14f9c5c9
AS
6210 }
6211 if (discrim_end == name)
6212 return "";
6213
d2e4a39e 6214 for (discrim_start = discrim_end; discrim_start != name + 3;
14f9c5c9
AS
6215 discrim_start -= 1)
6216 {
d2e4a39e 6217 if (discrim_start == name + 1)
4c4b4cd2 6218 return "";
76a01679 6219 if ((discrim_start > name + 3
4c4b4cd2
PH
6220 && strncmp (discrim_start - 3, "___", 3) == 0)
6221 || discrim_start[-1] == '.')
6222 break;
14f9c5c9
AS
6223 }
6224
6225 GROW_VECT (result, result_len, discrim_end - discrim_start + 1);
6226 strncpy (result, discrim_start, discrim_end - discrim_start);
d2e4a39e 6227 result[discrim_end - discrim_start] = '\0';
14f9c5c9
AS
6228 return result;
6229}
6230
4c4b4cd2
PH
6231/* Scan STR for a subtype-encoded number, beginning at position K.
6232 Put the position of the character just past the number scanned in
6233 *NEW_K, if NEW_K!=NULL. Put the scanned number in *R, if R!=NULL.
6234 Return 1 if there was a valid number at the given position, and 0
6235 otherwise. A "subtype-encoded" number consists of the absolute value
6236 in decimal, followed by the letter 'm' to indicate a negative number.
6237 Assumes 0m does not occur. */
14f9c5c9
AS
6238
6239int
d2e4a39e 6240ada_scan_number (const char str[], int k, LONGEST * R, int *new_k)
14f9c5c9
AS
6241{
6242 ULONGEST RU;
6243
d2e4a39e 6244 if (!isdigit (str[k]))
14f9c5c9
AS
6245 return 0;
6246
4c4b4cd2 6247 /* Do it the hard way so as not to make any assumption about
14f9c5c9 6248 the relationship of unsigned long (%lu scan format code) and
4c4b4cd2 6249 LONGEST. */
14f9c5c9
AS
6250 RU = 0;
6251 while (isdigit (str[k]))
6252 {
d2e4a39e 6253 RU = RU * 10 + (str[k] - '0');
14f9c5c9
AS
6254 k += 1;
6255 }
6256
d2e4a39e 6257 if (str[k] == 'm')
14f9c5c9
AS
6258 {
6259 if (R != NULL)
4c4b4cd2 6260 *R = (-(LONGEST) (RU - 1)) - 1;
14f9c5c9
AS
6261 k += 1;
6262 }
6263 else if (R != NULL)
6264 *R = (LONGEST) RU;
6265
4c4b4cd2 6266 /* NOTE on the above: Technically, C does not say what the results of
14f9c5c9
AS
6267 - (LONGEST) RU or (LONGEST) -RU are for RU == largest positive
6268 number representable as a LONGEST (although either would probably work
6269 in most implementations). When RU>0, the locution in the then branch
4c4b4cd2 6270 above is always equivalent to the negative of RU. */
14f9c5c9
AS
6271
6272 if (new_k != NULL)
6273 *new_k = k;
6274 return 1;
6275}
6276
4c4b4cd2
PH
6277/* Assuming that TYPE is a variant part wrapper type (a VARIANTS field),
6278 and FIELD_NUM is a valid field number within it, returns 1 iff VAL is
6279 in the range encoded by field FIELD_NUM of TYPE; otherwise 0. */
14f9c5c9 6280
d2e4a39e 6281int
ebf56fd3 6282ada_in_variant (LONGEST val, struct type *type, int field_num)
14f9c5c9 6283{
d2e4a39e 6284 const char *name = TYPE_FIELD_NAME (type, field_num);
14f9c5c9
AS
6285 int p;
6286
6287 p = 0;
6288 while (1)
6289 {
d2e4a39e 6290 switch (name[p])
4c4b4cd2
PH
6291 {
6292 case '\0':
6293 return 0;
6294 case 'S':
6295 {
6296 LONGEST W;
5b4ee69b 6297
4c4b4cd2
PH
6298 if (!ada_scan_number (name, p + 1, &W, &p))
6299 return 0;
6300 if (val == W)
6301 return 1;
6302 break;
6303 }
6304 case 'R':
6305 {
6306 LONGEST L, U;
5b4ee69b 6307
4c4b4cd2
PH
6308 if (!ada_scan_number (name, p + 1, &L, &p)
6309 || name[p] != 'T' || !ada_scan_number (name, p + 1, &U, &p))
6310 return 0;
6311 if (val >= L && val <= U)
6312 return 1;
6313 break;
6314 }
6315 case 'O':
6316 return 1;
6317 default:
6318 return 0;
6319 }
6320 }
6321}
6322
0963b4bd 6323/* FIXME: Lots of redundancy below. Try to consolidate. */
4c4b4cd2
PH
6324
6325/* Given a value ARG1 (offset by OFFSET bytes) of a struct or union type
6326 ARG_TYPE, extract and return the value of one of its (non-static)
6327 fields. FIELDNO says which field. Differs from value_primitive_field
6328 only in that it can handle packed values of arbitrary type. */
14f9c5c9 6329
4c4b4cd2 6330static struct value *
d2e4a39e 6331ada_value_primitive_field (struct value *arg1, int offset, int fieldno,
4c4b4cd2 6332 struct type *arg_type)
14f9c5c9 6333{
14f9c5c9
AS
6334 struct type *type;
6335
61ee279c 6336 arg_type = ada_check_typedef (arg_type);
14f9c5c9
AS
6337 type = TYPE_FIELD_TYPE (arg_type, fieldno);
6338
4c4b4cd2 6339 /* Handle packed fields. */
14f9c5c9
AS
6340
6341 if (TYPE_FIELD_BITSIZE (arg_type, fieldno) != 0)
6342 {
6343 int bit_pos = TYPE_FIELD_BITPOS (arg_type, fieldno);
6344 int bit_size = TYPE_FIELD_BITSIZE (arg_type, fieldno);
d2e4a39e 6345
0fd88904 6346 return ada_value_primitive_packed_val (arg1, value_contents (arg1),
4c4b4cd2
PH
6347 offset + bit_pos / 8,
6348 bit_pos % 8, bit_size, type);
14f9c5c9
AS
6349 }
6350 else
6351 return value_primitive_field (arg1, offset, fieldno, arg_type);
6352}
6353
52ce6436
PH
6354/* Find field with name NAME in object of type TYPE. If found,
6355 set the following for each argument that is non-null:
6356 - *FIELD_TYPE_P to the field's type;
6357 - *BYTE_OFFSET_P to OFFSET + the byte offset of the field within
6358 an object of that type;
6359 - *BIT_OFFSET_P to the bit offset modulo byte size of the field;
6360 - *BIT_SIZE_P to its size in bits if the field is packed, and
6361 0 otherwise;
6362 If INDEX_P is non-null, increment *INDEX_P by the number of source-visible
6363 fields up to but not including the desired field, or by the total
6364 number of fields if not found. A NULL value of NAME never
6365 matches; the function just counts visible fields in this case.
6366
0963b4bd 6367 Returns 1 if found, 0 otherwise. */
52ce6436 6368
4c4b4cd2 6369static int
76a01679
JB
6370find_struct_field (char *name, struct type *type, int offset,
6371 struct type **field_type_p,
52ce6436
PH
6372 int *byte_offset_p, int *bit_offset_p, int *bit_size_p,
6373 int *index_p)
4c4b4cd2
PH
6374{
6375 int i;
6376
61ee279c 6377 type = ada_check_typedef (type);
76a01679 6378
52ce6436
PH
6379 if (field_type_p != NULL)
6380 *field_type_p = NULL;
6381 if (byte_offset_p != NULL)
d5d6fca5 6382 *byte_offset_p = 0;
52ce6436
PH
6383 if (bit_offset_p != NULL)
6384 *bit_offset_p = 0;
6385 if (bit_size_p != NULL)
6386 *bit_size_p = 0;
6387
6388 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
4c4b4cd2
PH
6389 {
6390 int bit_pos = TYPE_FIELD_BITPOS (type, i);
6391 int fld_offset = offset + bit_pos / 8;
6392 char *t_field_name = TYPE_FIELD_NAME (type, i);
76a01679 6393
4c4b4cd2
PH
6394 if (t_field_name == NULL)
6395 continue;
6396
52ce6436 6397 else if (name != NULL && field_name_match (t_field_name, name))
76a01679
JB
6398 {
6399 int bit_size = TYPE_FIELD_BITSIZE (type, i);
5b4ee69b 6400
52ce6436
PH
6401 if (field_type_p != NULL)
6402 *field_type_p = TYPE_FIELD_TYPE (type, i);
6403 if (byte_offset_p != NULL)
6404 *byte_offset_p = fld_offset;
6405 if (bit_offset_p != NULL)
6406 *bit_offset_p = bit_pos % 8;
6407 if (bit_size_p != NULL)
6408 *bit_size_p = bit_size;
76a01679
JB
6409 return 1;
6410 }
4c4b4cd2
PH
6411 else if (ada_is_wrapper_field (type, i))
6412 {
52ce6436
PH
6413 if (find_struct_field (name, TYPE_FIELD_TYPE (type, i), fld_offset,
6414 field_type_p, byte_offset_p, bit_offset_p,
6415 bit_size_p, index_p))
76a01679
JB
6416 return 1;
6417 }
4c4b4cd2
PH
6418 else if (ada_is_variant_part (type, i))
6419 {
52ce6436
PH
6420 /* PNH: Wait. Do we ever execute this section, or is ARG always of
6421 fixed type?? */
4c4b4cd2 6422 int j;
52ce6436
PH
6423 struct type *field_type
6424 = ada_check_typedef (TYPE_FIELD_TYPE (type, i));
4c4b4cd2 6425
52ce6436 6426 for (j = 0; j < TYPE_NFIELDS (field_type); j += 1)
4c4b4cd2 6427 {
76a01679
JB
6428 if (find_struct_field (name, TYPE_FIELD_TYPE (field_type, j),
6429 fld_offset
6430 + TYPE_FIELD_BITPOS (field_type, j) / 8,
6431 field_type_p, byte_offset_p,
52ce6436 6432 bit_offset_p, bit_size_p, index_p))
76a01679 6433 return 1;
4c4b4cd2
PH
6434 }
6435 }
52ce6436
PH
6436 else if (index_p != NULL)
6437 *index_p += 1;
4c4b4cd2
PH
6438 }
6439 return 0;
6440}
6441
0963b4bd 6442/* Number of user-visible fields in record type TYPE. */
4c4b4cd2 6443
52ce6436
PH
6444static int
6445num_visible_fields (struct type *type)
6446{
6447 int n;
5b4ee69b 6448
52ce6436
PH
6449 n = 0;
6450 find_struct_field (NULL, type, 0, NULL, NULL, NULL, NULL, &n);
6451 return n;
6452}
14f9c5c9 6453
4c4b4cd2 6454/* Look for a field NAME in ARG. Adjust the address of ARG by OFFSET bytes,
14f9c5c9
AS
6455 and search in it assuming it has (class) type TYPE.
6456 If found, return value, else return NULL.
6457
4c4b4cd2 6458 Searches recursively through wrapper fields (e.g., '_parent'). */
14f9c5c9 6459
4c4b4cd2 6460static struct value *
d2e4a39e 6461ada_search_struct_field (char *name, struct value *arg, int offset,
4c4b4cd2 6462 struct type *type)
14f9c5c9
AS
6463{
6464 int i;
14f9c5c9 6465
5b4ee69b 6466 type = ada_check_typedef (type);
52ce6436 6467 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
14f9c5c9
AS
6468 {
6469 char *t_field_name = TYPE_FIELD_NAME (type, i);
6470
6471 if (t_field_name == NULL)
4c4b4cd2 6472 continue;
14f9c5c9
AS
6473
6474 else if (field_name_match (t_field_name, name))
4c4b4cd2 6475 return ada_value_primitive_field (arg, offset, i, type);
14f9c5c9
AS
6476
6477 else if (ada_is_wrapper_field (type, i))
4c4b4cd2 6478 {
0963b4bd 6479 struct value *v = /* Do not let indent join lines here. */
06d5cf63
JB
6480 ada_search_struct_field (name, arg,
6481 offset + TYPE_FIELD_BITPOS (type, i) / 8,
6482 TYPE_FIELD_TYPE (type, i));
5b4ee69b 6483
4c4b4cd2
PH
6484 if (v != NULL)
6485 return v;
6486 }
14f9c5c9
AS
6487
6488 else if (ada_is_variant_part (type, i))
4c4b4cd2 6489 {
0963b4bd 6490 /* PNH: Do we ever get here? See find_struct_field. */
4c4b4cd2 6491 int j;
5b4ee69b
MS
6492 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type,
6493 i));
4c4b4cd2
PH
6494 int var_offset = offset + TYPE_FIELD_BITPOS (type, i) / 8;
6495
52ce6436 6496 for (j = 0; j < TYPE_NFIELDS (field_type); j += 1)
4c4b4cd2 6497 {
0963b4bd
MS
6498 struct value *v = ada_search_struct_field /* Force line
6499 break. */
06d5cf63
JB
6500 (name, arg,
6501 var_offset + TYPE_FIELD_BITPOS (field_type, j) / 8,
6502 TYPE_FIELD_TYPE (field_type, j));
5b4ee69b 6503
4c4b4cd2
PH
6504 if (v != NULL)
6505 return v;
6506 }
6507 }
14f9c5c9
AS
6508 }
6509 return NULL;
6510}
d2e4a39e 6511
52ce6436
PH
6512static struct value *ada_index_struct_field_1 (int *, struct value *,
6513 int, struct type *);
6514
6515
6516/* Return field #INDEX in ARG, where the index is that returned by
6517 * find_struct_field through its INDEX_P argument. Adjust the address
6518 * of ARG by OFFSET bytes, and search in it assuming it has (class) type TYPE.
0963b4bd 6519 * If found, return value, else return NULL. */
52ce6436
PH
6520
6521static struct value *
6522ada_index_struct_field (int index, struct value *arg, int offset,
6523 struct type *type)
6524{
6525 return ada_index_struct_field_1 (&index, arg, offset, type);
6526}
6527
6528
6529/* Auxiliary function for ada_index_struct_field. Like
6530 * ada_index_struct_field, but takes index from *INDEX_P and modifies
0963b4bd 6531 * *INDEX_P. */
52ce6436
PH
6532
6533static struct value *
6534ada_index_struct_field_1 (int *index_p, struct value *arg, int offset,
6535 struct type *type)
6536{
6537 int i;
6538 type = ada_check_typedef (type);
6539
6540 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
6541 {
6542 if (TYPE_FIELD_NAME (type, i) == NULL)
6543 continue;
6544 else if (ada_is_wrapper_field (type, i))
6545 {
0963b4bd 6546 struct value *v = /* Do not let indent join lines here. */
52ce6436
PH
6547 ada_index_struct_field_1 (index_p, arg,
6548 offset + TYPE_FIELD_BITPOS (type, i) / 8,
6549 TYPE_FIELD_TYPE (type, i));
5b4ee69b 6550
52ce6436
PH
6551 if (v != NULL)
6552 return v;
6553 }
6554
6555 else if (ada_is_variant_part (type, i))
6556 {
6557 /* PNH: Do we ever get here? See ada_search_struct_field,
0963b4bd 6558 find_struct_field. */
52ce6436
PH
6559 error (_("Cannot assign this kind of variant record"));
6560 }
6561 else if (*index_p == 0)
6562 return ada_value_primitive_field (arg, offset, i, type);
6563 else
6564 *index_p -= 1;
6565 }
6566 return NULL;
6567}
6568
4c4b4cd2
PH
6569/* Given ARG, a value of type (pointer or reference to a)*
6570 structure/union, extract the component named NAME from the ultimate
6571 target structure/union and return it as a value with its
f5938064 6572 appropriate type.
14f9c5c9 6573
4c4b4cd2
PH
6574 The routine searches for NAME among all members of the structure itself
6575 and (recursively) among all members of any wrapper members
14f9c5c9
AS
6576 (e.g., '_parent').
6577
03ee6b2e
PH
6578 If NO_ERR, then simply return NULL in case of error, rather than
6579 calling error. */
14f9c5c9 6580
d2e4a39e 6581struct value *
03ee6b2e 6582ada_value_struct_elt (struct value *arg, char *name, int no_err)
14f9c5c9 6583{
4c4b4cd2 6584 struct type *t, *t1;
d2e4a39e 6585 struct value *v;
14f9c5c9 6586
4c4b4cd2 6587 v = NULL;
df407dfe 6588 t1 = t = ada_check_typedef (value_type (arg));
4c4b4cd2
PH
6589 if (TYPE_CODE (t) == TYPE_CODE_REF)
6590 {
6591 t1 = TYPE_TARGET_TYPE (t);
6592 if (t1 == NULL)
03ee6b2e 6593 goto BadValue;
61ee279c 6594 t1 = ada_check_typedef (t1);
4c4b4cd2 6595 if (TYPE_CODE (t1) == TYPE_CODE_PTR)
76a01679 6596 {
994b9211 6597 arg = coerce_ref (arg);
76a01679
JB
6598 t = t1;
6599 }
4c4b4cd2 6600 }
14f9c5c9 6601
4c4b4cd2
PH
6602 while (TYPE_CODE (t) == TYPE_CODE_PTR)
6603 {
6604 t1 = TYPE_TARGET_TYPE (t);
6605 if (t1 == NULL)
03ee6b2e 6606 goto BadValue;
61ee279c 6607 t1 = ada_check_typedef (t1);
4c4b4cd2 6608 if (TYPE_CODE (t1) == TYPE_CODE_PTR)
76a01679
JB
6609 {
6610 arg = value_ind (arg);
6611 t = t1;
6612 }
4c4b4cd2 6613 else
76a01679 6614 break;
4c4b4cd2 6615 }
14f9c5c9 6616
4c4b4cd2 6617 if (TYPE_CODE (t1) != TYPE_CODE_STRUCT && TYPE_CODE (t1) != TYPE_CODE_UNION)
03ee6b2e 6618 goto BadValue;
14f9c5c9 6619
4c4b4cd2
PH
6620 if (t1 == t)
6621 v = ada_search_struct_field (name, arg, 0, t);
6622 else
6623 {
6624 int bit_offset, bit_size, byte_offset;
6625 struct type *field_type;
6626 CORE_ADDR address;
6627
76a01679
JB
6628 if (TYPE_CODE (t) == TYPE_CODE_PTR)
6629 address = value_as_address (arg);
4c4b4cd2 6630 else
0fd88904 6631 address = unpack_pointer (t, value_contents (arg));
14f9c5c9 6632
1ed6ede0 6633 t1 = ada_to_fixed_type (ada_get_base_type (t1), NULL, address, NULL, 1);
76a01679
JB
6634 if (find_struct_field (name, t1, 0,
6635 &field_type, &byte_offset, &bit_offset,
52ce6436 6636 &bit_size, NULL))
76a01679
JB
6637 {
6638 if (bit_size != 0)
6639 {
714e53ab
PH
6640 if (TYPE_CODE (t) == TYPE_CODE_REF)
6641 arg = ada_coerce_ref (arg);
6642 else
6643 arg = ada_value_ind (arg);
76a01679
JB
6644 v = ada_value_primitive_packed_val (arg, NULL, byte_offset,
6645 bit_offset, bit_size,
6646 field_type);
6647 }
6648 else
f5938064 6649 v = value_at_lazy (field_type, address + byte_offset);
76a01679
JB
6650 }
6651 }
6652
03ee6b2e
PH
6653 if (v != NULL || no_err)
6654 return v;
6655 else
323e0a4a 6656 error (_("There is no member named %s."), name);
14f9c5c9 6657
03ee6b2e
PH
6658 BadValue:
6659 if (no_err)
6660 return NULL;
6661 else
0963b4bd
MS
6662 error (_("Attempt to extract a component of "
6663 "a value that is not a record."));
14f9c5c9
AS
6664}
6665
6666/* Given a type TYPE, look up the type of the component of type named NAME.
4c4b4cd2
PH
6667 If DISPP is non-null, add its byte displacement from the beginning of a
6668 structure (pointed to by a value) of type TYPE to *DISPP (does not
14f9c5c9
AS
6669 work for packed fields).
6670
6671 Matches any field whose name has NAME as a prefix, possibly
4c4b4cd2 6672 followed by "___".
14f9c5c9 6673
0963b4bd 6674 TYPE can be either a struct or union. If REFOK, TYPE may also
4c4b4cd2
PH
6675 be a (pointer or reference)+ to a struct or union, and the
6676 ultimate target type will be searched.
14f9c5c9
AS
6677
6678 Looks recursively into variant clauses and parent types.
6679
4c4b4cd2
PH
6680 If NOERR is nonzero, return NULL if NAME is not suitably defined or
6681 TYPE is not a type of the right kind. */
14f9c5c9 6682
4c4b4cd2 6683static struct type *
76a01679
JB
6684ada_lookup_struct_elt_type (struct type *type, char *name, int refok,
6685 int noerr, int *dispp)
14f9c5c9
AS
6686{
6687 int i;
6688
6689 if (name == NULL)
6690 goto BadName;
6691
76a01679 6692 if (refok && type != NULL)
4c4b4cd2
PH
6693 while (1)
6694 {
61ee279c 6695 type = ada_check_typedef (type);
76a01679
JB
6696 if (TYPE_CODE (type) != TYPE_CODE_PTR
6697 && TYPE_CODE (type) != TYPE_CODE_REF)
6698 break;
6699 type = TYPE_TARGET_TYPE (type);
4c4b4cd2 6700 }
14f9c5c9 6701
76a01679 6702 if (type == NULL
1265e4aa
JB
6703 || (TYPE_CODE (type) != TYPE_CODE_STRUCT
6704 && TYPE_CODE (type) != TYPE_CODE_UNION))
14f9c5c9 6705 {
4c4b4cd2 6706 if (noerr)
76a01679 6707 return NULL;
4c4b4cd2 6708 else
76a01679
JB
6709 {
6710 target_terminal_ours ();
6711 gdb_flush (gdb_stdout);
323e0a4a
AC
6712 if (type == NULL)
6713 error (_("Type (null) is not a structure or union type"));
6714 else
6715 {
6716 /* XXX: type_sprint */
6717 fprintf_unfiltered (gdb_stderr, _("Type "));
6718 type_print (type, "", gdb_stderr, -1);
6719 error (_(" is not a structure or union type"));
6720 }
76a01679 6721 }
14f9c5c9
AS
6722 }
6723
6724 type = to_static_fixed_type (type);
6725
6726 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
6727 {
6728 char *t_field_name = TYPE_FIELD_NAME (type, i);
6729 struct type *t;
6730 int disp;
d2e4a39e 6731
14f9c5c9 6732 if (t_field_name == NULL)
4c4b4cd2 6733 continue;
14f9c5c9
AS
6734
6735 else if (field_name_match (t_field_name, name))
4c4b4cd2
PH
6736 {
6737 if (dispp != NULL)
6738 *dispp += TYPE_FIELD_BITPOS (type, i) / 8;
61ee279c 6739 return ada_check_typedef (TYPE_FIELD_TYPE (type, i));
4c4b4cd2 6740 }
14f9c5c9
AS
6741
6742 else if (ada_is_wrapper_field (type, i))
4c4b4cd2
PH
6743 {
6744 disp = 0;
6745 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (type, i), name,
6746 0, 1, &disp);
6747 if (t != NULL)
6748 {
6749 if (dispp != NULL)
6750 *dispp += disp + TYPE_FIELD_BITPOS (type, i) / 8;
6751 return t;
6752 }
6753 }
14f9c5c9
AS
6754
6755 else if (ada_is_variant_part (type, i))
4c4b4cd2
PH
6756 {
6757 int j;
5b4ee69b
MS
6758 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type,
6759 i));
4c4b4cd2
PH
6760
6761 for (j = TYPE_NFIELDS (field_type) - 1; j >= 0; j -= 1)
6762 {
b1f33ddd
JB
6763 /* FIXME pnh 2008/01/26: We check for a field that is
6764 NOT wrapped in a struct, since the compiler sometimes
6765 generates these for unchecked variant types. Revisit
0963b4bd 6766 if the compiler changes this practice. */
b1f33ddd 6767 char *v_field_name = TYPE_FIELD_NAME (field_type, j);
4c4b4cd2 6768 disp = 0;
b1f33ddd
JB
6769 if (v_field_name != NULL
6770 && field_name_match (v_field_name, name))
6771 t = ada_check_typedef (TYPE_FIELD_TYPE (field_type, j));
6772 else
0963b4bd
MS
6773 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (field_type,
6774 j),
b1f33ddd
JB
6775 name, 0, 1, &disp);
6776
4c4b4cd2
PH
6777 if (t != NULL)
6778 {
6779 if (dispp != NULL)
6780 *dispp += disp + TYPE_FIELD_BITPOS (type, i) / 8;
6781 return t;
6782 }
6783 }
6784 }
14f9c5c9
AS
6785
6786 }
6787
6788BadName:
d2e4a39e 6789 if (!noerr)
14f9c5c9
AS
6790 {
6791 target_terminal_ours ();
6792 gdb_flush (gdb_stdout);
323e0a4a
AC
6793 if (name == NULL)
6794 {
6795 /* XXX: type_sprint */
6796 fprintf_unfiltered (gdb_stderr, _("Type "));
6797 type_print (type, "", gdb_stderr, -1);
6798 error (_(" has no component named <null>"));
6799 }
6800 else
6801 {
6802 /* XXX: type_sprint */
6803 fprintf_unfiltered (gdb_stderr, _("Type "));
6804 type_print (type, "", gdb_stderr, -1);
6805 error (_(" has no component named %s"), name);
6806 }
14f9c5c9
AS
6807 }
6808
6809 return NULL;
6810}
6811
b1f33ddd
JB
6812/* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
6813 within a value of type OUTER_TYPE, return true iff VAR_TYPE
6814 represents an unchecked union (that is, the variant part of a
0963b4bd 6815 record that is named in an Unchecked_Union pragma). */
b1f33ddd
JB
6816
6817static int
6818is_unchecked_variant (struct type *var_type, struct type *outer_type)
6819{
6820 char *discrim_name = ada_variant_discrim_name (var_type);
5b4ee69b 6821
b1f33ddd
JB
6822 return (ada_lookup_struct_elt_type (outer_type, discrim_name, 0, 1, NULL)
6823 == NULL);
6824}
6825
6826
14f9c5c9
AS
6827/* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
6828 within a value of type OUTER_TYPE that is stored in GDB at
4c4b4cd2
PH
6829 OUTER_VALADDR, determine which variant clause (field number in VAR_TYPE,
6830 numbering from 0) is applicable. Returns -1 if none are. */
14f9c5c9 6831
d2e4a39e 6832int
ebf56fd3 6833ada_which_variant_applies (struct type *var_type, struct type *outer_type,
fc1a4b47 6834 const gdb_byte *outer_valaddr)
14f9c5c9
AS
6835{
6836 int others_clause;
6837 int i;
d2e4a39e 6838 char *discrim_name = ada_variant_discrim_name (var_type);
0c281816
JB
6839 struct value *outer;
6840 struct value *discrim;
14f9c5c9
AS
6841 LONGEST discrim_val;
6842
0c281816
JB
6843 outer = value_from_contents_and_address (outer_type, outer_valaddr, 0);
6844 discrim = ada_value_struct_elt (outer, discrim_name, 1);
6845 if (discrim == NULL)
14f9c5c9 6846 return -1;
0c281816 6847 discrim_val = value_as_long (discrim);
14f9c5c9
AS
6848
6849 others_clause = -1;
6850 for (i = 0; i < TYPE_NFIELDS (var_type); i += 1)
6851 {
6852 if (ada_is_others_clause (var_type, i))
4c4b4cd2 6853 others_clause = i;
14f9c5c9 6854 else if (ada_in_variant (discrim_val, var_type, i))
4c4b4cd2 6855 return i;
14f9c5c9
AS
6856 }
6857
6858 return others_clause;
6859}
d2e4a39e 6860\f
14f9c5c9
AS
6861
6862
4c4b4cd2 6863 /* Dynamic-Sized Records */
14f9c5c9
AS
6864
6865/* Strategy: The type ostensibly attached to a value with dynamic size
6866 (i.e., a size that is not statically recorded in the debugging
6867 data) does not accurately reflect the size or layout of the value.
6868 Our strategy is to convert these values to values with accurate,
4c4b4cd2 6869 conventional types that are constructed on the fly. */
14f9c5c9
AS
6870
6871/* There is a subtle and tricky problem here. In general, we cannot
6872 determine the size of dynamic records without its data. However,
6873 the 'struct value' data structure, which GDB uses to represent
6874 quantities in the inferior process (the target), requires the size
6875 of the type at the time of its allocation in order to reserve space
6876 for GDB's internal copy of the data. That's why the
6877 'to_fixed_xxx_type' routines take (target) addresses as parameters,
4c4b4cd2 6878 rather than struct value*s.
14f9c5c9
AS
6879
6880 However, GDB's internal history variables ($1, $2, etc.) are
6881 struct value*s containing internal copies of the data that are not, in
6882 general, the same as the data at their corresponding addresses in
6883 the target. Fortunately, the types we give to these values are all
6884 conventional, fixed-size types (as per the strategy described
6885 above), so that we don't usually have to perform the
6886 'to_fixed_xxx_type' conversions to look at their values.
6887 Unfortunately, there is one exception: if one of the internal
6888 history variables is an array whose elements are unconstrained
6889 records, then we will need to create distinct fixed types for each
6890 element selected. */
6891
6892/* The upshot of all of this is that many routines take a (type, host
6893 address, target address) triple as arguments to represent a value.
6894 The host address, if non-null, is supposed to contain an internal
6895 copy of the relevant data; otherwise, the program is to consult the
4c4b4cd2 6896 target at the target address. */
14f9c5c9
AS
6897
6898/* Assuming that VAL0 represents a pointer value, the result of
6899 dereferencing it. Differs from value_ind in its treatment of
4c4b4cd2 6900 dynamic-sized types. */
14f9c5c9 6901
d2e4a39e
AS
6902struct value *
6903ada_value_ind (struct value *val0)
14f9c5c9 6904{
d2e4a39e 6905 struct value *val = unwrap_value (value_ind (val0));
5b4ee69b 6906
4c4b4cd2 6907 return ada_to_fixed_value (val);
14f9c5c9
AS
6908}
6909
6910/* The value resulting from dereferencing any "reference to"
4c4b4cd2
PH
6911 qualifiers on VAL0. */
6912
d2e4a39e
AS
6913static struct value *
6914ada_coerce_ref (struct value *val0)
6915{
df407dfe 6916 if (TYPE_CODE (value_type (val0)) == TYPE_CODE_REF)
d2e4a39e
AS
6917 {
6918 struct value *val = val0;
5b4ee69b 6919
994b9211 6920 val = coerce_ref (val);
d2e4a39e 6921 val = unwrap_value (val);
4c4b4cd2 6922 return ada_to_fixed_value (val);
d2e4a39e
AS
6923 }
6924 else
14f9c5c9
AS
6925 return val0;
6926}
6927
6928/* Return OFF rounded upward if necessary to a multiple of
4c4b4cd2 6929 ALIGNMENT (a power of 2). */
14f9c5c9
AS
6930
6931static unsigned int
ebf56fd3 6932align_value (unsigned int off, unsigned int alignment)
14f9c5c9
AS
6933{
6934 return (off + alignment - 1) & ~(alignment - 1);
6935}
6936
4c4b4cd2 6937/* Return the bit alignment required for field #F of template type TYPE. */
14f9c5c9
AS
6938
6939static unsigned int
ebf56fd3 6940field_alignment (struct type *type, int f)
14f9c5c9 6941{
d2e4a39e 6942 const char *name = TYPE_FIELD_NAME (type, f);
64a1bf19 6943 int len;
14f9c5c9
AS
6944 int align_offset;
6945
64a1bf19
JB
6946 /* The field name should never be null, unless the debugging information
6947 is somehow malformed. In this case, we assume the field does not
6948 require any alignment. */
6949 if (name == NULL)
6950 return 1;
6951
6952 len = strlen (name);
6953
4c4b4cd2
PH
6954 if (!isdigit (name[len - 1]))
6955 return 1;
14f9c5c9 6956
d2e4a39e 6957 if (isdigit (name[len - 2]))
14f9c5c9
AS
6958 align_offset = len - 2;
6959 else
6960 align_offset = len - 1;
6961
4c4b4cd2 6962 if (align_offset < 7 || strncmp ("___XV", name + align_offset - 6, 5) != 0)
14f9c5c9
AS
6963 return TARGET_CHAR_BIT;
6964
4c4b4cd2
PH
6965 return atoi (name + align_offset) * TARGET_CHAR_BIT;
6966}
6967
6968/* Find a symbol named NAME. Ignores ambiguity. */
6969
6970struct symbol *
6971ada_find_any_symbol (const char *name)
6972{
6973 struct symbol *sym;
6974
6975 sym = standard_lookup (name, get_selected_block (NULL), VAR_DOMAIN);
6976 if (sym != NULL && SYMBOL_CLASS (sym) == LOC_TYPEDEF)
6977 return sym;
6978
6979 sym = standard_lookup (name, NULL, STRUCT_DOMAIN);
6980 return sym;
14f9c5c9
AS
6981}
6982
dddfab26
UW
6983/* Find a type named NAME. Ignores ambiguity. This routine will look
6984 solely for types defined by debug info, it will not search the GDB
6985 primitive types. */
4c4b4cd2 6986
d2e4a39e 6987struct type *
ebf56fd3 6988ada_find_any_type (const char *name)
14f9c5c9 6989{
4c4b4cd2 6990 struct symbol *sym = ada_find_any_symbol (name);
14f9c5c9 6991
14f9c5c9 6992 if (sym != NULL)
dddfab26 6993 return SYMBOL_TYPE (sym);
14f9c5c9 6994
dddfab26 6995 return NULL;
14f9c5c9
AS
6996}
6997
aeb5907d
JB
6998/* Given NAME and an associated BLOCK, search all symbols for
6999 NAME suffixed with "___XR", which is the ``renaming'' symbol
4c4b4cd2
PH
7000 associated to NAME. Return this symbol if found, return
7001 NULL otherwise. */
7002
7003struct symbol *
7004ada_find_renaming_symbol (const char *name, struct block *block)
aeb5907d
JB
7005{
7006 struct symbol *sym;
7007
7008 sym = find_old_style_renaming_symbol (name, block);
7009
7010 if (sym != NULL)
7011 return sym;
7012
0963b4bd 7013 /* Not right yet. FIXME pnh 7/20/2007. */
aeb5907d
JB
7014 sym = ada_find_any_symbol (name);
7015 if (sym != NULL && strstr (SYMBOL_LINKAGE_NAME (sym), "___XR") != NULL)
7016 return sym;
7017 else
7018 return NULL;
7019}
7020
7021static struct symbol *
7022find_old_style_renaming_symbol (const char *name, struct block *block)
4c4b4cd2 7023{
7f0df278 7024 const struct symbol *function_sym = block_linkage_function (block);
4c4b4cd2
PH
7025 char *rename;
7026
7027 if (function_sym != NULL)
7028 {
7029 /* If the symbol is defined inside a function, NAME is not fully
7030 qualified. This means we need to prepend the function name
7031 as well as adding the ``___XR'' suffix to build the name of
7032 the associated renaming symbol. */
7033 char *function_name = SYMBOL_LINKAGE_NAME (function_sym);
529cad9c
PH
7034 /* Function names sometimes contain suffixes used
7035 for instance to qualify nested subprograms. When building
7036 the XR type name, we need to make sure that this suffix is
7037 not included. So do not include any suffix in the function
7038 name length below. */
69fadcdf 7039 int function_name_len = ada_name_prefix_len (function_name);
76a01679
JB
7040 const int rename_len = function_name_len + 2 /* "__" */
7041 + strlen (name) + 6 /* "___XR\0" */ ;
4c4b4cd2 7042
529cad9c 7043 /* Strip the suffix if necessary. */
69fadcdf
JB
7044 ada_remove_trailing_digits (function_name, &function_name_len);
7045 ada_remove_po_subprogram_suffix (function_name, &function_name_len);
7046 ada_remove_Xbn_suffix (function_name, &function_name_len);
529cad9c 7047
4c4b4cd2
PH
7048 /* Library-level functions are a special case, as GNAT adds
7049 a ``_ada_'' prefix to the function name to avoid namespace
aeb5907d 7050 pollution. However, the renaming symbols themselves do not
4c4b4cd2
PH
7051 have this prefix, so we need to skip this prefix if present. */
7052 if (function_name_len > 5 /* "_ada_" */
7053 && strstr (function_name, "_ada_") == function_name)
69fadcdf
JB
7054 {
7055 function_name += 5;
7056 function_name_len -= 5;
7057 }
4c4b4cd2
PH
7058
7059 rename = (char *) alloca (rename_len * sizeof (char));
69fadcdf
JB
7060 strncpy (rename, function_name, function_name_len);
7061 xsnprintf (rename + function_name_len, rename_len - function_name_len,
7062 "__%s___XR", name);
4c4b4cd2
PH
7063 }
7064 else
7065 {
7066 const int rename_len = strlen (name) + 6;
5b4ee69b 7067
4c4b4cd2 7068 rename = (char *) alloca (rename_len * sizeof (char));
88c15c34 7069 xsnprintf (rename, rename_len * sizeof (char), "%s___XR", name);
4c4b4cd2
PH
7070 }
7071
7072 return ada_find_any_symbol (rename);
7073}
7074
14f9c5c9 7075/* Because of GNAT encoding conventions, several GDB symbols may match a
4c4b4cd2 7076 given type name. If the type denoted by TYPE0 is to be preferred to
14f9c5c9 7077 that of TYPE1 for purposes of type printing, return non-zero;
4c4b4cd2
PH
7078 otherwise return 0. */
7079
14f9c5c9 7080int
d2e4a39e 7081ada_prefer_type (struct type *type0, struct type *type1)
14f9c5c9
AS
7082{
7083 if (type1 == NULL)
7084 return 1;
7085 else if (type0 == NULL)
7086 return 0;
7087 else if (TYPE_CODE (type1) == TYPE_CODE_VOID)
7088 return 1;
7089 else if (TYPE_CODE (type0) == TYPE_CODE_VOID)
7090 return 0;
4c4b4cd2
PH
7091 else if (TYPE_NAME (type1) == NULL && TYPE_NAME (type0) != NULL)
7092 return 1;
ad82864c 7093 else if (ada_is_constrained_packed_array_type (type0))
14f9c5c9 7094 return 1;
4c4b4cd2
PH
7095 else if (ada_is_array_descriptor_type (type0)
7096 && !ada_is_array_descriptor_type (type1))
14f9c5c9 7097 return 1;
aeb5907d
JB
7098 else
7099 {
7100 const char *type0_name = type_name_no_tag (type0);
7101 const char *type1_name = type_name_no_tag (type1);
7102
7103 if (type0_name != NULL && strstr (type0_name, "___XR") != NULL
7104 && (type1_name == NULL || strstr (type1_name, "___XR") == NULL))
7105 return 1;
7106 }
14f9c5c9
AS
7107 return 0;
7108}
7109
7110/* The name of TYPE, which is either its TYPE_NAME, or, if that is
4c4b4cd2
PH
7111 null, its TYPE_TAG_NAME. Null if TYPE is null. */
7112
d2e4a39e
AS
7113char *
7114ada_type_name (struct type *type)
14f9c5c9 7115{
d2e4a39e 7116 if (type == NULL)
14f9c5c9
AS
7117 return NULL;
7118 else if (TYPE_NAME (type) != NULL)
7119 return TYPE_NAME (type);
7120 else
7121 return TYPE_TAG_NAME (type);
7122}
7123
b4ba55a1
JB
7124/* Search the list of "descriptive" types associated to TYPE for a type
7125 whose name is NAME. */
7126
7127static struct type *
7128find_parallel_type_by_descriptive_type (struct type *type, const char *name)
7129{
7130 struct type *result;
7131
7132 /* If there no descriptive-type info, then there is no parallel type
7133 to be found. */
7134 if (!HAVE_GNAT_AUX_INFO (type))
7135 return NULL;
7136
7137 result = TYPE_DESCRIPTIVE_TYPE (type);
7138 while (result != NULL)
7139 {
7140 char *result_name = ada_type_name (result);
7141
7142 if (result_name == NULL)
7143 {
7144 warning (_("unexpected null name on descriptive type"));
7145 return NULL;
7146 }
7147
7148 /* If the names match, stop. */
7149 if (strcmp (result_name, name) == 0)
7150 break;
7151
7152 /* Otherwise, look at the next item on the list, if any. */
7153 if (HAVE_GNAT_AUX_INFO (result))
7154 result = TYPE_DESCRIPTIVE_TYPE (result);
7155 else
7156 result = NULL;
7157 }
7158
7159 /* If we didn't find a match, see whether this is a packed array. With
7160 older compilers, the descriptive type information is either absent or
7161 irrelevant when it comes to packed arrays so the above lookup fails.
7162 Fall back to using a parallel lookup by name in this case. */
12ab9e09 7163 if (result == NULL && ada_is_constrained_packed_array_type (type))
b4ba55a1
JB
7164 return ada_find_any_type (name);
7165
7166 return result;
7167}
7168
7169/* Find a parallel type to TYPE with the specified NAME, using the
7170 descriptive type taken from the debugging information, if available,
7171 and otherwise using the (slower) name-based method. */
7172
7173static struct type *
7174ada_find_parallel_type_with_name (struct type *type, const char *name)
7175{
7176 struct type *result = NULL;
7177
7178 if (HAVE_GNAT_AUX_INFO (type))
7179 result = find_parallel_type_by_descriptive_type (type, name);
7180 else
7181 result = ada_find_any_type (name);
7182
7183 return result;
7184}
7185
7186/* Same as above, but specify the name of the parallel type by appending
4c4b4cd2 7187 SUFFIX to the name of TYPE. */
14f9c5c9 7188
d2e4a39e 7189struct type *
ebf56fd3 7190ada_find_parallel_type (struct type *type, const char *suffix)
14f9c5c9 7191{
b4ba55a1 7192 char *name, *typename = ada_type_name (type);
14f9c5c9 7193 int len;
d2e4a39e 7194
14f9c5c9
AS
7195 if (typename == NULL)
7196 return NULL;
7197
7198 len = strlen (typename);
7199
b4ba55a1 7200 name = (char *) alloca (len + strlen (suffix) + 1);
14f9c5c9
AS
7201
7202 strcpy (name, typename);
7203 strcpy (name + len, suffix);
7204
b4ba55a1 7205 return ada_find_parallel_type_with_name (type, name);
14f9c5c9
AS
7206}
7207
14f9c5c9 7208/* If TYPE is a variable-size record type, return the corresponding template
4c4b4cd2 7209 type describing its fields. Otherwise, return NULL. */
14f9c5c9 7210
d2e4a39e
AS
7211static struct type *
7212dynamic_template_type (struct type *type)
14f9c5c9 7213{
61ee279c 7214 type = ada_check_typedef (type);
14f9c5c9
AS
7215
7216 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT
d2e4a39e 7217 || ada_type_name (type) == NULL)
14f9c5c9 7218 return NULL;
d2e4a39e 7219 else
14f9c5c9
AS
7220 {
7221 int len = strlen (ada_type_name (type));
5b4ee69b 7222
4c4b4cd2
PH
7223 if (len > 6 && strcmp (ada_type_name (type) + len - 6, "___XVE") == 0)
7224 return type;
14f9c5c9 7225 else
4c4b4cd2 7226 return ada_find_parallel_type (type, "___XVE");
14f9c5c9
AS
7227 }
7228}
7229
7230/* Assuming that TEMPL_TYPE is a union or struct type, returns
4c4b4cd2 7231 non-zero iff field FIELD_NUM of TEMPL_TYPE has dynamic size. */
14f9c5c9 7232
d2e4a39e
AS
7233static int
7234is_dynamic_field (struct type *templ_type, int field_num)
14f9c5c9
AS
7235{
7236 const char *name = TYPE_FIELD_NAME (templ_type, field_num);
5b4ee69b 7237
d2e4a39e 7238 return name != NULL
14f9c5c9
AS
7239 && TYPE_CODE (TYPE_FIELD_TYPE (templ_type, field_num)) == TYPE_CODE_PTR
7240 && strstr (name, "___XVL") != NULL;
7241}
7242
4c4b4cd2
PH
7243/* The index of the variant field of TYPE, or -1 if TYPE does not
7244 represent a variant record type. */
14f9c5c9 7245
d2e4a39e 7246static int
4c4b4cd2 7247variant_field_index (struct type *type)
14f9c5c9
AS
7248{
7249 int f;
7250
4c4b4cd2
PH
7251 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT)
7252 return -1;
7253
7254 for (f = 0; f < TYPE_NFIELDS (type); f += 1)
7255 {
7256 if (ada_is_variant_part (type, f))
7257 return f;
7258 }
7259 return -1;
14f9c5c9
AS
7260}
7261
4c4b4cd2
PH
7262/* A record type with no fields. */
7263
d2e4a39e 7264static struct type *
e9bb382b 7265empty_record (struct type *template)
14f9c5c9 7266{
e9bb382b 7267 struct type *type = alloc_type_copy (template);
5b4ee69b 7268
14f9c5c9
AS
7269 TYPE_CODE (type) = TYPE_CODE_STRUCT;
7270 TYPE_NFIELDS (type) = 0;
7271 TYPE_FIELDS (type) = NULL;
b1f33ddd 7272 INIT_CPLUS_SPECIFIC (type);
14f9c5c9
AS
7273 TYPE_NAME (type) = "<empty>";
7274 TYPE_TAG_NAME (type) = NULL;
14f9c5c9
AS
7275 TYPE_LENGTH (type) = 0;
7276 return type;
7277}
7278
7279/* An ordinary record type (with fixed-length fields) that describes
4c4b4cd2
PH
7280 the value of type TYPE at VALADDR or ADDRESS (see comments at
7281 the beginning of this section) VAL according to GNAT conventions.
7282 DVAL0 should describe the (portion of a) record that contains any
df407dfe 7283 necessary discriminants. It should be NULL if value_type (VAL) is
14f9c5c9
AS
7284 an outer-level type (i.e., as opposed to a branch of a variant.) A
7285 variant field (unless unchecked) is replaced by a particular branch
4c4b4cd2 7286 of the variant.
14f9c5c9 7287
4c4b4cd2
PH
7288 If not KEEP_DYNAMIC_FIELDS, then all fields whose position or
7289 length are not statically known are discarded. As a consequence,
7290 VALADDR, ADDRESS and DVAL0 are ignored.
7291
7292 NOTE: Limitations: For now, we assume that dynamic fields and
7293 variants occupy whole numbers of bytes. However, they need not be
7294 byte-aligned. */
7295
7296struct type *
10a2c479 7297ada_template_to_fixed_record_type_1 (struct type *type,
fc1a4b47 7298 const gdb_byte *valaddr,
4c4b4cd2
PH
7299 CORE_ADDR address, struct value *dval0,
7300 int keep_dynamic_fields)
14f9c5c9 7301{
d2e4a39e
AS
7302 struct value *mark = value_mark ();
7303 struct value *dval;
7304 struct type *rtype;
14f9c5c9 7305 int nfields, bit_len;
4c4b4cd2 7306 int variant_field;
14f9c5c9 7307 long off;
d94e4f4f 7308 int fld_bit_len;
14f9c5c9
AS
7309 int f;
7310
4c4b4cd2
PH
7311 /* Compute the number of fields in this record type that are going
7312 to be processed: unless keep_dynamic_fields, this includes only
7313 fields whose position and length are static will be processed. */
7314 if (keep_dynamic_fields)
7315 nfields = TYPE_NFIELDS (type);
7316 else
7317 {
7318 nfields = 0;
76a01679 7319 while (nfields < TYPE_NFIELDS (type)
4c4b4cd2
PH
7320 && !ada_is_variant_part (type, nfields)
7321 && !is_dynamic_field (type, nfields))
7322 nfields++;
7323 }
7324
e9bb382b 7325 rtype = alloc_type_copy (type);
14f9c5c9
AS
7326 TYPE_CODE (rtype) = TYPE_CODE_STRUCT;
7327 INIT_CPLUS_SPECIFIC (rtype);
7328 TYPE_NFIELDS (rtype) = nfields;
d2e4a39e 7329 TYPE_FIELDS (rtype) = (struct field *)
14f9c5c9
AS
7330 TYPE_ALLOC (rtype, nfields * sizeof (struct field));
7331 memset (TYPE_FIELDS (rtype), 0, sizeof (struct field) * nfields);
7332 TYPE_NAME (rtype) = ada_type_name (type);
7333 TYPE_TAG_NAME (rtype) = NULL;
876cecd0 7334 TYPE_FIXED_INSTANCE (rtype) = 1;
14f9c5c9 7335
d2e4a39e
AS
7336 off = 0;
7337 bit_len = 0;
4c4b4cd2
PH
7338 variant_field = -1;
7339
14f9c5c9
AS
7340 for (f = 0; f < nfields; f += 1)
7341 {
6c038f32
PH
7342 off = align_value (off, field_alignment (type, f))
7343 + TYPE_FIELD_BITPOS (type, f);
14f9c5c9 7344 TYPE_FIELD_BITPOS (rtype, f) = off;
d2e4a39e 7345 TYPE_FIELD_BITSIZE (rtype, f) = 0;
14f9c5c9 7346
d2e4a39e 7347 if (ada_is_variant_part (type, f))
4c4b4cd2
PH
7348 {
7349 variant_field = f;
d94e4f4f 7350 fld_bit_len = 0;
4c4b4cd2 7351 }
14f9c5c9 7352 else if (is_dynamic_field (type, f))
4c4b4cd2 7353 {
284614f0
JB
7354 const gdb_byte *field_valaddr = valaddr;
7355 CORE_ADDR field_address = address;
7356 struct type *field_type =
7357 TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type, f));
7358
4c4b4cd2 7359 if (dval0 == NULL)
b5304971
JG
7360 {
7361 /* rtype's length is computed based on the run-time
7362 value of discriminants. If the discriminants are not
7363 initialized, the type size may be completely bogus and
0963b4bd 7364 GDB may fail to allocate a value for it. So check the
b5304971
JG
7365 size first before creating the value. */
7366 check_size (rtype);
7367 dval = value_from_contents_and_address (rtype, valaddr, address);
7368 }
4c4b4cd2
PH
7369 else
7370 dval = dval0;
7371
284614f0
JB
7372 /* If the type referenced by this field is an aligner type, we need
7373 to unwrap that aligner type, because its size might not be set.
7374 Keeping the aligner type would cause us to compute the wrong
7375 size for this field, impacting the offset of the all the fields
7376 that follow this one. */
7377 if (ada_is_aligner_type (field_type))
7378 {
7379 long field_offset = TYPE_FIELD_BITPOS (field_type, f);
7380
7381 field_valaddr = cond_offset_host (field_valaddr, field_offset);
7382 field_address = cond_offset_target (field_address, field_offset);
7383 field_type = ada_aligned_type (field_type);
7384 }
7385
7386 field_valaddr = cond_offset_host (field_valaddr,
7387 off / TARGET_CHAR_BIT);
7388 field_address = cond_offset_target (field_address,
7389 off / TARGET_CHAR_BIT);
7390
7391 /* Get the fixed type of the field. Note that, in this case,
7392 we do not want to get the real type out of the tag: if
7393 the current field is the parent part of a tagged record,
7394 we will get the tag of the object. Clearly wrong: the real
7395 type of the parent is not the real type of the child. We
7396 would end up in an infinite loop. */
7397 field_type = ada_get_base_type (field_type);
7398 field_type = ada_to_fixed_type (field_type, field_valaddr,
7399 field_address, dval, 0);
27f2a97b
JB
7400 /* If the field size is already larger than the maximum
7401 object size, then the record itself will necessarily
7402 be larger than the maximum object size. We need to make
7403 this check now, because the size might be so ridiculously
7404 large (due to an uninitialized variable in the inferior)
7405 that it would cause an overflow when adding it to the
7406 record size. */
7407 check_size (field_type);
284614f0
JB
7408
7409 TYPE_FIELD_TYPE (rtype, f) = field_type;
4c4b4cd2 7410 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
27f2a97b
JB
7411 /* The multiplication can potentially overflow. But because
7412 the field length has been size-checked just above, and
7413 assuming that the maximum size is a reasonable value,
7414 an overflow should not happen in practice. So rather than
7415 adding overflow recovery code to this already complex code,
7416 we just assume that it's not going to happen. */
d94e4f4f 7417 fld_bit_len =
4c4b4cd2
PH
7418 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, f)) * TARGET_CHAR_BIT;
7419 }
14f9c5c9 7420 else
4c4b4cd2 7421 {
9f0dec2d
JB
7422 struct type *field_type = TYPE_FIELD_TYPE (type, f);
7423
720d1a40
JB
7424 /* If our field is a typedef type (most likely a typedef of
7425 a fat pointer, encoding an array access), then we need to
7426 look at its target type to determine its characteristics.
7427 In particular, we would miscompute the field size if we took
7428 the size of the typedef (zero), instead of the size of
7429 the target type. */
7430 if (TYPE_CODE (field_type) == TYPE_CODE_TYPEDEF)
7431 field_type = ada_typedef_target_type (field_type);
7432
9f0dec2d 7433 TYPE_FIELD_TYPE (rtype, f) = field_type;
4c4b4cd2
PH
7434 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
7435 if (TYPE_FIELD_BITSIZE (type, f) > 0)
d94e4f4f 7436 fld_bit_len =
4c4b4cd2
PH
7437 TYPE_FIELD_BITSIZE (rtype, f) = TYPE_FIELD_BITSIZE (type, f);
7438 else
d94e4f4f 7439 fld_bit_len =
9f0dec2d 7440 TYPE_LENGTH (ada_check_typedef (field_type)) * TARGET_CHAR_BIT;
4c4b4cd2 7441 }
14f9c5c9 7442 if (off + fld_bit_len > bit_len)
4c4b4cd2 7443 bit_len = off + fld_bit_len;
d94e4f4f 7444 off += fld_bit_len;
4c4b4cd2
PH
7445 TYPE_LENGTH (rtype) =
7446 align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
14f9c5c9 7447 }
4c4b4cd2
PH
7448
7449 /* We handle the variant part, if any, at the end because of certain
b1f33ddd 7450 odd cases in which it is re-ordered so as NOT to be the last field of
4c4b4cd2
PH
7451 the record. This can happen in the presence of representation
7452 clauses. */
7453 if (variant_field >= 0)
7454 {
7455 struct type *branch_type;
7456
7457 off = TYPE_FIELD_BITPOS (rtype, variant_field);
7458
7459 if (dval0 == NULL)
7460 dval = value_from_contents_and_address (rtype, valaddr, address);
7461 else
7462 dval = dval0;
7463
7464 branch_type =
7465 to_fixed_variant_branch_type
7466 (TYPE_FIELD_TYPE (type, variant_field),
7467 cond_offset_host (valaddr, off / TARGET_CHAR_BIT),
7468 cond_offset_target (address, off / TARGET_CHAR_BIT), dval);
7469 if (branch_type == NULL)
7470 {
7471 for (f = variant_field + 1; f < TYPE_NFIELDS (rtype); f += 1)
7472 TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f];
7473 TYPE_NFIELDS (rtype) -= 1;
7474 }
7475 else
7476 {
7477 TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
7478 TYPE_FIELD_NAME (rtype, variant_field) = "S";
7479 fld_bit_len =
7480 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, variant_field)) *
7481 TARGET_CHAR_BIT;
7482 if (off + fld_bit_len > bit_len)
7483 bit_len = off + fld_bit_len;
7484 TYPE_LENGTH (rtype) =
7485 align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
7486 }
7487 }
7488
714e53ab
PH
7489 /* According to exp_dbug.ads, the size of TYPE for variable-size records
7490 should contain the alignment of that record, which should be a strictly
7491 positive value. If null or negative, then something is wrong, most
7492 probably in the debug info. In that case, we don't round up the size
0963b4bd 7493 of the resulting type. If this record is not part of another structure,
714e53ab
PH
7494 the current RTYPE length might be good enough for our purposes. */
7495 if (TYPE_LENGTH (type) <= 0)
7496 {
323e0a4a
AC
7497 if (TYPE_NAME (rtype))
7498 warning (_("Invalid type size for `%s' detected: %d."),
7499 TYPE_NAME (rtype), TYPE_LENGTH (type));
7500 else
7501 warning (_("Invalid type size for <unnamed> detected: %d."),
7502 TYPE_LENGTH (type));
714e53ab
PH
7503 }
7504 else
7505 {
7506 TYPE_LENGTH (rtype) = align_value (TYPE_LENGTH (rtype),
7507 TYPE_LENGTH (type));
7508 }
14f9c5c9
AS
7509
7510 value_free_to_mark (mark);
d2e4a39e 7511 if (TYPE_LENGTH (rtype) > varsize_limit)
323e0a4a 7512 error (_("record type with dynamic size is larger than varsize-limit"));
14f9c5c9
AS
7513 return rtype;
7514}
7515
4c4b4cd2
PH
7516/* As for ada_template_to_fixed_record_type_1 with KEEP_DYNAMIC_FIELDS
7517 of 1. */
14f9c5c9 7518
d2e4a39e 7519static struct type *
fc1a4b47 7520template_to_fixed_record_type (struct type *type, const gdb_byte *valaddr,
4c4b4cd2
PH
7521 CORE_ADDR address, struct value *dval0)
7522{
7523 return ada_template_to_fixed_record_type_1 (type, valaddr,
7524 address, dval0, 1);
7525}
7526
7527/* An ordinary record type in which ___XVL-convention fields and
7528 ___XVU- and ___XVN-convention field types in TYPE0 are replaced with
7529 static approximations, containing all possible fields. Uses
7530 no runtime values. Useless for use in values, but that's OK,
7531 since the results are used only for type determinations. Works on both
7532 structs and unions. Representation note: to save space, we memorize
7533 the result of this function in the TYPE_TARGET_TYPE of the
7534 template type. */
7535
7536static struct type *
7537template_to_static_fixed_type (struct type *type0)
14f9c5c9
AS
7538{
7539 struct type *type;
7540 int nfields;
7541 int f;
7542
4c4b4cd2
PH
7543 if (TYPE_TARGET_TYPE (type0) != NULL)
7544 return TYPE_TARGET_TYPE (type0);
7545
7546 nfields = TYPE_NFIELDS (type0);
7547 type = type0;
14f9c5c9
AS
7548
7549 for (f = 0; f < nfields; f += 1)
7550 {
61ee279c 7551 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type0, f));
4c4b4cd2 7552 struct type *new_type;
14f9c5c9 7553
4c4b4cd2
PH
7554 if (is_dynamic_field (type0, f))
7555 new_type = to_static_fixed_type (TYPE_TARGET_TYPE (field_type));
14f9c5c9 7556 else
f192137b 7557 new_type = static_unwrap_type (field_type);
4c4b4cd2
PH
7558 if (type == type0 && new_type != field_type)
7559 {
e9bb382b 7560 TYPE_TARGET_TYPE (type0) = type = alloc_type_copy (type0);
4c4b4cd2
PH
7561 TYPE_CODE (type) = TYPE_CODE (type0);
7562 INIT_CPLUS_SPECIFIC (type);
7563 TYPE_NFIELDS (type) = nfields;
7564 TYPE_FIELDS (type) = (struct field *)
7565 TYPE_ALLOC (type, nfields * sizeof (struct field));
7566 memcpy (TYPE_FIELDS (type), TYPE_FIELDS (type0),
7567 sizeof (struct field) * nfields);
7568 TYPE_NAME (type) = ada_type_name (type0);
7569 TYPE_TAG_NAME (type) = NULL;
876cecd0 7570 TYPE_FIXED_INSTANCE (type) = 1;
4c4b4cd2
PH
7571 TYPE_LENGTH (type) = 0;
7572 }
7573 TYPE_FIELD_TYPE (type, f) = new_type;
7574 TYPE_FIELD_NAME (type, f) = TYPE_FIELD_NAME (type0, f);
14f9c5c9 7575 }
14f9c5c9
AS
7576 return type;
7577}
7578
4c4b4cd2 7579/* Given an object of type TYPE whose contents are at VALADDR and
5823c3ef
JB
7580 whose address in memory is ADDRESS, returns a revision of TYPE,
7581 which should be a non-dynamic-sized record, in which the variant
7582 part, if any, is replaced with the appropriate branch. Looks
4c4b4cd2
PH
7583 for discriminant values in DVAL0, which can be NULL if the record
7584 contains the necessary discriminant values. */
7585
d2e4a39e 7586static struct type *
fc1a4b47 7587to_record_with_fixed_variant_part (struct type *type, const gdb_byte *valaddr,
4c4b4cd2 7588 CORE_ADDR address, struct value *dval0)
14f9c5c9 7589{
d2e4a39e 7590 struct value *mark = value_mark ();
4c4b4cd2 7591 struct value *dval;
d2e4a39e 7592 struct type *rtype;
14f9c5c9
AS
7593 struct type *branch_type;
7594 int nfields = TYPE_NFIELDS (type);
4c4b4cd2 7595 int variant_field = variant_field_index (type);
14f9c5c9 7596
4c4b4cd2 7597 if (variant_field == -1)
14f9c5c9
AS
7598 return type;
7599
4c4b4cd2
PH
7600 if (dval0 == NULL)
7601 dval = value_from_contents_and_address (type, valaddr, address);
7602 else
7603 dval = dval0;
7604
e9bb382b 7605 rtype = alloc_type_copy (type);
14f9c5c9 7606 TYPE_CODE (rtype) = TYPE_CODE_STRUCT;
4c4b4cd2
PH
7607 INIT_CPLUS_SPECIFIC (rtype);
7608 TYPE_NFIELDS (rtype) = nfields;
d2e4a39e
AS
7609 TYPE_FIELDS (rtype) =
7610 (struct field *) TYPE_ALLOC (rtype, nfields * sizeof (struct field));
7611 memcpy (TYPE_FIELDS (rtype), TYPE_FIELDS (type),
4c4b4cd2 7612 sizeof (struct field) * nfields);
14f9c5c9
AS
7613 TYPE_NAME (rtype) = ada_type_name (type);
7614 TYPE_TAG_NAME (rtype) = NULL;
876cecd0 7615 TYPE_FIXED_INSTANCE (rtype) = 1;
14f9c5c9
AS
7616 TYPE_LENGTH (rtype) = TYPE_LENGTH (type);
7617
4c4b4cd2
PH
7618 branch_type = to_fixed_variant_branch_type
7619 (TYPE_FIELD_TYPE (type, variant_field),
d2e4a39e 7620 cond_offset_host (valaddr,
4c4b4cd2
PH
7621 TYPE_FIELD_BITPOS (type, variant_field)
7622 / TARGET_CHAR_BIT),
d2e4a39e 7623 cond_offset_target (address,
4c4b4cd2
PH
7624 TYPE_FIELD_BITPOS (type, variant_field)
7625 / TARGET_CHAR_BIT), dval);
d2e4a39e 7626 if (branch_type == NULL)
14f9c5c9 7627 {
4c4b4cd2 7628 int f;
5b4ee69b 7629
4c4b4cd2
PH
7630 for (f = variant_field + 1; f < nfields; f += 1)
7631 TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f];
14f9c5c9 7632 TYPE_NFIELDS (rtype) -= 1;
14f9c5c9
AS
7633 }
7634 else
7635 {
4c4b4cd2
PH
7636 TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
7637 TYPE_FIELD_NAME (rtype, variant_field) = "S";
7638 TYPE_FIELD_BITSIZE (rtype, variant_field) = 0;
14f9c5c9 7639 TYPE_LENGTH (rtype) += TYPE_LENGTH (branch_type);
14f9c5c9 7640 }
4c4b4cd2 7641 TYPE_LENGTH (rtype) -= TYPE_LENGTH (TYPE_FIELD_TYPE (type, variant_field));
d2e4a39e 7642
4c4b4cd2 7643 value_free_to_mark (mark);
14f9c5c9
AS
7644 return rtype;
7645}
7646
7647/* An ordinary record type (with fixed-length fields) that describes
7648 the value at (TYPE0, VALADDR, ADDRESS) [see explanation at
7649 beginning of this section]. Any necessary discriminants' values
4c4b4cd2
PH
7650 should be in DVAL, a record value; it may be NULL if the object
7651 at ADDR itself contains any necessary discriminant values.
7652 Additionally, VALADDR and ADDRESS may also be NULL if no discriminant
7653 values from the record are needed. Except in the case that DVAL,
7654 VALADDR, and ADDRESS are all 0 or NULL, a variant field (unless
7655 unchecked) is replaced by a particular branch of the variant.
7656
7657 NOTE: the case in which DVAL and VALADDR are NULL and ADDRESS is 0
7658 is questionable and may be removed. It can arise during the
7659 processing of an unconstrained-array-of-record type where all the
7660 variant branches have exactly the same size. This is because in
7661 such cases, the compiler does not bother to use the XVS convention
7662 when encoding the record. I am currently dubious of this
7663 shortcut and suspect the compiler should be altered. FIXME. */
14f9c5c9 7664
d2e4a39e 7665static struct type *
fc1a4b47 7666to_fixed_record_type (struct type *type0, const gdb_byte *valaddr,
4c4b4cd2 7667 CORE_ADDR address, struct value *dval)
14f9c5c9 7668{
d2e4a39e 7669 struct type *templ_type;
14f9c5c9 7670
876cecd0 7671 if (TYPE_FIXED_INSTANCE (type0))
4c4b4cd2
PH
7672 return type0;
7673
d2e4a39e 7674 templ_type = dynamic_template_type (type0);
14f9c5c9
AS
7675
7676 if (templ_type != NULL)
7677 return template_to_fixed_record_type (templ_type, valaddr, address, dval);
4c4b4cd2
PH
7678 else if (variant_field_index (type0) >= 0)
7679 {
7680 if (dval == NULL && valaddr == NULL && address == 0)
7681 return type0;
7682 return to_record_with_fixed_variant_part (type0, valaddr, address,
7683 dval);
7684 }
14f9c5c9
AS
7685 else
7686 {
876cecd0 7687 TYPE_FIXED_INSTANCE (type0) = 1;
14f9c5c9
AS
7688 return type0;
7689 }
7690
7691}
7692
7693/* An ordinary record type (with fixed-length fields) that describes
7694 the value at (VAR_TYPE0, VALADDR, ADDRESS), where VAR_TYPE0 is a
7695 union type. Any necessary discriminants' values should be in DVAL,
7696 a record value. That is, this routine selects the appropriate
7697 branch of the union at ADDR according to the discriminant value
b1f33ddd 7698 indicated in the union's type name. Returns VAR_TYPE0 itself if
0963b4bd 7699 it represents a variant subject to a pragma Unchecked_Union. */
14f9c5c9 7700
d2e4a39e 7701static struct type *
fc1a4b47 7702to_fixed_variant_branch_type (struct type *var_type0, const gdb_byte *valaddr,
4c4b4cd2 7703 CORE_ADDR address, struct value *dval)
14f9c5c9
AS
7704{
7705 int which;
d2e4a39e
AS
7706 struct type *templ_type;
7707 struct type *var_type;
14f9c5c9
AS
7708
7709 if (TYPE_CODE (var_type0) == TYPE_CODE_PTR)
7710 var_type = TYPE_TARGET_TYPE (var_type0);
d2e4a39e 7711 else
14f9c5c9
AS
7712 var_type = var_type0;
7713
7714 templ_type = ada_find_parallel_type (var_type, "___XVU");
7715
7716 if (templ_type != NULL)
7717 var_type = templ_type;
7718
b1f33ddd
JB
7719 if (is_unchecked_variant (var_type, value_type (dval)))
7720 return var_type0;
d2e4a39e
AS
7721 which =
7722 ada_which_variant_applies (var_type,
0fd88904 7723 value_type (dval), value_contents (dval));
14f9c5c9
AS
7724
7725 if (which < 0)
e9bb382b 7726 return empty_record (var_type);
14f9c5c9 7727 else if (is_dynamic_field (var_type, which))
4c4b4cd2 7728 return to_fixed_record_type
d2e4a39e
AS
7729 (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (var_type, which)),
7730 valaddr, address, dval);
4c4b4cd2 7731 else if (variant_field_index (TYPE_FIELD_TYPE (var_type, which)) >= 0)
d2e4a39e
AS
7732 return
7733 to_fixed_record_type
7734 (TYPE_FIELD_TYPE (var_type, which), valaddr, address, dval);
14f9c5c9
AS
7735 else
7736 return TYPE_FIELD_TYPE (var_type, which);
7737}
7738
7739/* Assuming that TYPE0 is an array type describing the type of a value
7740 at ADDR, and that DVAL describes a record containing any
7741 discriminants used in TYPE0, returns a type for the value that
7742 contains no dynamic components (that is, no components whose sizes
7743 are determined by run-time quantities). Unless IGNORE_TOO_BIG is
7744 true, gives an error message if the resulting type's size is over
4c4b4cd2 7745 varsize_limit. */
14f9c5c9 7746
d2e4a39e
AS
7747static struct type *
7748to_fixed_array_type (struct type *type0, struct value *dval,
4c4b4cd2 7749 int ignore_too_big)
14f9c5c9 7750{
d2e4a39e
AS
7751 struct type *index_type_desc;
7752 struct type *result;
ad82864c 7753 int constrained_packed_array_p;
14f9c5c9 7754
b0dd7688 7755 type0 = ada_check_typedef (type0);
284614f0 7756 if (TYPE_FIXED_INSTANCE (type0))
4c4b4cd2 7757 return type0;
14f9c5c9 7758
ad82864c
JB
7759 constrained_packed_array_p = ada_is_constrained_packed_array_type (type0);
7760 if (constrained_packed_array_p)
7761 type0 = decode_constrained_packed_array_type (type0);
284614f0 7762
14f9c5c9 7763 index_type_desc = ada_find_parallel_type (type0, "___XA");
28c85d6c 7764 ada_fixup_array_indexes_type (index_type_desc);
14f9c5c9
AS
7765 if (index_type_desc == NULL)
7766 {
61ee279c 7767 struct type *elt_type0 = ada_check_typedef (TYPE_TARGET_TYPE (type0));
5b4ee69b 7768
14f9c5c9 7769 /* NOTE: elt_type---the fixed version of elt_type0---should never
4c4b4cd2
PH
7770 depend on the contents of the array in properly constructed
7771 debugging data. */
529cad9c
PH
7772 /* Create a fixed version of the array element type.
7773 We're not providing the address of an element here,
e1d5a0d2 7774 and thus the actual object value cannot be inspected to do
529cad9c
PH
7775 the conversion. This should not be a problem, since arrays of
7776 unconstrained objects are not allowed. In particular, all
7777 the elements of an array of a tagged type should all be of
7778 the same type specified in the debugging info. No need to
7779 consult the object tag. */
1ed6ede0 7780 struct type *elt_type = ada_to_fixed_type (elt_type0, 0, 0, dval, 1);
14f9c5c9 7781
284614f0
JB
7782 /* Make sure we always create a new array type when dealing with
7783 packed array types, since we're going to fix-up the array
7784 type length and element bitsize a little further down. */
ad82864c 7785 if (elt_type0 == elt_type && !constrained_packed_array_p)
4c4b4cd2 7786 result = type0;
14f9c5c9 7787 else
e9bb382b 7788 result = create_array_type (alloc_type_copy (type0),
4c4b4cd2 7789 elt_type, TYPE_INDEX_TYPE (type0));
14f9c5c9
AS
7790 }
7791 else
7792 {
7793 int i;
7794 struct type *elt_type0;
7795
7796 elt_type0 = type0;
7797 for (i = TYPE_NFIELDS (index_type_desc); i > 0; i -= 1)
4c4b4cd2 7798 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
14f9c5c9
AS
7799
7800 /* NOTE: result---the fixed version of elt_type0---should never
4c4b4cd2
PH
7801 depend on the contents of the array in properly constructed
7802 debugging data. */
529cad9c
PH
7803 /* Create a fixed version of the array element type.
7804 We're not providing the address of an element here,
e1d5a0d2 7805 and thus the actual object value cannot be inspected to do
529cad9c
PH
7806 the conversion. This should not be a problem, since arrays of
7807 unconstrained objects are not allowed. In particular, all
7808 the elements of an array of a tagged type should all be of
7809 the same type specified in the debugging info. No need to
7810 consult the object tag. */
1ed6ede0
JB
7811 result =
7812 ada_to_fixed_type (ada_check_typedef (elt_type0), 0, 0, dval, 1);
1ce677a4
UW
7813
7814 elt_type0 = type0;
14f9c5c9 7815 for (i = TYPE_NFIELDS (index_type_desc) - 1; i >= 0; i -= 1)
4c4b4cd2
PH
7816 {
7817 struct type *range_type =
28c85d6c 7818 to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, i), dval);
5b4ee69b 7819
e9bb382b 7820 result = create_array_type (alloc_type_copy (elt_type0),
4c4b4cd2 7821 result, range_type);
1ce677a4 7822 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
4c4b4cd2 7823 }
d2e4a39e 7824 if (!ignore_too_big && TYPE_LENGTH (result) > varsize_limit)
323e0a4a 7825 error (_("array type with dynamic size is larger than varsize-limit"));
14f9c5c9
AS
7826 }
7827
ad82864c 7828 if (constrained_packed_array_p)
284614f0
JB
7829 {
7830 /* So far, the resulting type has been created as if the original
7831 type was a regular (non-packed) array type. As a result, the
7832 bitsize of the array elements needs to be set again, and the array
7833 length needs to be recomputed based on that bitsize. */
7834 int len = TYPE_LENGTH (result) / TYPE_LENGTH (TYPE_TARGET_TYPE (result));
7835 int elt_bitsize = TYPE_FIELD_BITSIZE (type0, 0);
7836
7837 TYPE_FIELD_BITSIZE (result, 0) = TYPE_FIELD_BITSIZE (type0, 0);
7838 TYPE_LENGTH (result) = len * elt_bitsize / HOST_CHAR_BIT;
7839 if (TYPE_LENGTH (result) * HOST_CHAR_BIT < len * elt_bitsize)
7840 TYPE_LENGTH (result)++;
7841 }
7842
876cecd0 7843 TYPE_FIXED_INSTANCE (result) = 1;
14f9c5c9 7844 return result;
d2e4a39e 7845}
14f9c5c9
AS
7846
7847
7848/* A standard type (containing no dynamically sized components)
7849 corresponding to TYPE for the value (TYPE, VALADDR, ADDRESS)
7850 DVAL describes a record containing any discriminants used in TYPE0,
4c4b4cd2 7851 and may be NULL if there are none, or if the object of type TYPE at
529cad9c
PH
7852 ADDRESS or in VALADDR contains these discriminants.
7853
1ed6ede0
JB
7854 If CHECK_TAG is not null, in the case of tagged types, this function
7855 attempts to locate the object's tag and use it to compute the actual
7856 type. However, when ADDRESS is null, we cannot use it to determine the
7857 location of the tag, and therefore compute the tagged type's actual type.
7858 So we return the tagged type without consulting the tag. */
529cad9c 7859
f192137b
JB
7860static struct type *
7861ada_to_fixed_type_1 (struct type *type, const gdb_byte *valaddr,
1ed6ede0 7862 CORE_ADDR address, struct value *dval, int check_tag)
14f9c5c9 7863{
61ee279c 7864 type = ada_check_typedef (type);
d2e4a39e
AS
7865 switch (TYPE_CODE (type))
7866 {
7867 default:
14f9c5c9 7868 return type;
d2e4a39e 7869 case TYPE_CODE_STRUCT:
4c4b4cd2 7870 {
76a01679 7871 struct type *static_type = to_static_fixed_type (type);
1ed6ede0
JB
7872 struct type *fixed_record_type =
7873 to_fixed_record_type (type, valaddr, address, NULL);
5b4ee69b 7874
529cad9c
PH
7875 /* If STATIC_TYPE is a tagged type and we know the object's address,
7876 then we can determine its tag, and compute the object's actual
0963b4bd 7877 type from there. Note that we have to use the fixed record
1ed6ede0
JB
7878 type (the parent part of the record may have dynamic fields
7879 and the way the location of _tag is expressed may depend on
7880 them). */
529cad9c 7881
1ed6ede0 7882 if (check_tag && address != 0 && ada_is_tagged_type (static_type, 0))
76a01679
JB
7883 {
7884 struct type *real_type =
1ed6ede0
JB
7885 type_from_tag (value_tag_from_contents_and_address
7886 (fixed_record_type,
7887 valaddr,
7888 address));
5b4ee69b 7889
76a01679 7890 if (real_type != NULL)
1ed6ede0 7891 return to_fixed_record_type (real_type, valaddr, address, NULL);
76a01679 7892 }
4af88198
JB
7893
7894 /* Check to see if there is a parallel ___XVZ variable.
7895 If there is, then it provides the actual size of our type. */
7896 else if (ada_type_name (fixed_record_type) != NULL)
7897 {
7898 char *name = ada_type_name (fixed_record_type);
7899 char *xvz_name = alloca (strlen (name) + 7 /* "___XVZ\0" */);
7900 int xvz_found = 0;
7901 LONGEST size;
7902
88c15c34 7903 xsnprintf (xvz_name, strlen (name) + 7, "%s___XVZ", name);
4af88198
JB
7904 size = get_int_var_value (xvz_name, &xvz_found);
7905 if (xvz_found && TYPE_LENGTH (fixed_record_type) != size)
7906 {
7907 fixed_record_type = copy_type (fixed_record_type);
7908 TYPE_LENGTH (fixed_record_type) = size;
7909
7910 /* The FIXED_RECORD_TYPE may have be a stub. We have
7911 observed this when the debugging info is STABS, and
7912 apparently it is something that is hard to fix.
7913
7914 In practice, we don't need the actual type definition
7915 at all, because the presence of the XVZ variable allows us
7916 to assume that there must be a XVS type as well, which we
7917 should be able to use later, when we need the actual type
7918 definition.
7919
7920 In the meantime, pretend that the "fixed" type we are
7921 returning is NOT a stub, because this can cause trouble
7922 when using this type to create new types targeting it.
7923 Indeed, the associated creation routines often check
7924 whether the target type is a stub and will try to replace
0963b4bd 7925 it, thus using a type with the wrong size. This, in turn,
4af88198
JB
7926 might cause the new type to have the wrong size too.
7927 Consider the case of an array, for instance, where the size
7928 of the array is computed from the number of elements in
7929 our array multiplied by the size of its element. */
7930 TYPE_STUB (fixed_record_type) = 0;
7931 }
7932 }
1ed6ede0 7933 return fixed_record_type;
4c4b4cd2 7934 }
d2e4a39e 7935 case TYPE_CODE_ARRAY:
4c4b4cd2 7936 return to_fixed_array_type (type, dval, 1);
d2e4a39e
AS
7937 case TYPE_CODE_UNION:
7938 if (dval == NULL)
4c4b4cd2 7939 return type;
d2e4a39e 7940 else
4c4b4cd2 7941 return to_fixed_variant_branch_type (type, valaddr, address, dval);
d2e4a39e 7942 }
14f9c5c9
AS
7943}
7944
f192137b
JB
7945/* The same as ada_to_fixed_type_1, except that it preserves the type
7946 if it is a TYPE_CODE_TYPEDEF of a type that is already fixed.
96dbd2c1
JB
7947
7948 The typedef layer needs be preserved in order to differentiate between
7949 arrays and array pointers when both types are implemented using the same
7950 fat pointer. In the array pointer case, the pointer is encoded as
7951 a typedef of the pointer type. For instance, considering:
7952
7953 type String_Access is access String;
7954 S1 : String_Access := null;
7955
7956 To the debugger, S1 is defined as a typedef of type String. But
7957 to the user, it is a pointer. So if the user tries to print S1,
7958 we should not dereference the array, but print the array address
7959 instead.
7960
7961 If we didn't preserve the typedef layer, we would lose the fact that
7962 the type is to be presented as a pointer (needs de-reference before
7963 being printed). And we would also use the source-level type name. */
f192137b
JB
7964
7965struct type *
7966ada_to_fixed_type (struct type *type, const gdb_byte *valaddr,
7967 CORE_ADDR address, struct value *dval, int check_tag)
7968
7969{
7970 struct type *fixed_type =
7971 ada_to_fixed_type_1 (type, valaddr, address, dval, check_tag);
7972
96dbd2c1
JB
7973 /* If TYPE is a typedef and its target type is the same as the FIXED_TYPE,
7974 then preserve the typedef layer.
7975
7976 Implementation note: We can only check the main-type portion of
7977 the TYPE and FIXED_TYPE, because eliminating the typedef layer
7978 from TYPE now returns a type that has the same instance flags
7979 as TYPE. For instance, if TYPE is a "typedef const", and its
7980 target type is a "struct", then the typedef elimination will return
7981 a "const" version of the target type. See check_typedef for more
7982 details about how the typedef layer elimination is done.
7983
7984 brobecker/2010-11-19: It seems to me that the only case where it is
7985 useful to preserve the typedef layer is when dealing with fat pointers.
7986 Perhaps, we could add a check for that and preserve the typedef layer
7987 only in that situation. But this seems unecessary so far, probably
7988 because we call check_typedef/ada_check_typedef pretty much everywhere.
7989 */
f192137b 7990 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF
720d1a40 7991 && (TYPE_MAIN_TYPE (ada_typedef_target_type (type))
96dbd2c1 7992 == TYPE_MAIN_TYPE (fixed_type)))
f192137b
JB
7993 return type;
7994
7995 return fixed_type;
7996}
7997
14f9c5c9 7998/* A standard (static-sized) type corresponding as well as possible to
4c4b4cd2 7999 TYPE0, but based on no runtime data. */
14f9c5c9 8000
d2e4a39e
AS
8001static struct type *
8002to_static_fixed_type (struct type *type0)
14f9c5c9 8003{
d2e4a39e 8004 struct type *type;
14f9c5c9
AS
8005
8006 if (type0 == NULL)
8007 return NULL;
8008
876cecd0 8009 if (TYPE_FIXED_INSTANCE (type0))
4c4b4cd2
PH
8010 return type0;
8011
61ee279c 8012 type0 = ada_check_typedef (type0);
d2e4a39e 8013
14f9c5c9
AS
8014 switch (TYPE_CODE (type0))
8015 {
8016 default:
8017 return type0;
8018 case TYPE_CODE_STRUCT:
8019 type = dynamic_template_type (type0);
d2e4a39e 8020 if (type != NULL)
4c4b4cd2
PH
8021 return template_to_static_fixed_type (type);
8022 else
8023 return template_to_static_fixed_type (type0);
14f9c5c9
AS
8024 case TYPE_CODE_UNION:
8025 type = ada_find_parallel_type (type0, "___XVU");
8026 if (type != NULL)
4c4b4cd2
PH
8027 return template_to_static_fixed_type (type);
8028 else
8029 return template_to_static_fixed_type (type0);
14f9c5c9
AS
8030 }
8031}
8032
4c4b4cd2
PH
8033/* A static approximation of TYPE with all type wrappers removed. */
8034
d2e4a39e
AS
8035static struct type *
8036static_unwrap_type (struct type *type)
14f9c5c9
AS
8037{
8038 if (ada_is_aligner_type (type))
8039 {
61ee279c 8040 struct type *type1 = TYPE_FIELD_TYPE (ada_check_typedef (type), 0);
14f9c5c9 8041 if (ada_type_name (type1) == NULL)
4c4b4cd2 8042 TYPE_NAME (type1) = ada_type_name (type);
14f9c5c9
AS
8043
8044 return static_unwrap_type (type1);
8045 }
d2e4a39e 8046 else
14f9c5c9 8047 {
d2e4a39e 8048 struct type *raw_real_type = ada_get_base_type (type);
5b4ee69b 8049
d2e4a39e 8050 if (raw_real_type == type)
4c4b4cd2 8051 return type;
14f9c5c9 8052 else
4c4b4cd2 8053 return to_static_fixed_type (raw_real_type);
14f9c5c9
AS
8054 }
8055}
8056
8057/* In some cases, incomplete and private types require
4c4b4cd2 8058 cross-references that are not resolved as records (for example,
14f9c5c9
AS
8059 type Foo;
8060 type FooP is access Foo;
8061 V: FooP;
8062 type Foo is array ...;
4c4b4cd2 8063 ). In these cases, since there is no mechanism for producing
14f9c5c9
AS
8064 cross-references to such types, we instead substitute for FooP a
8065 stub enumeration type that is nowhere resolved, and whose tag is
4c4b4cd2 8066 the name of the actual type. Call these types "non-record stubs". */
14f9c5c9
AS
8067
8068/* A type equivalent to TYPE that is not a non-record stub, if one
4c4b4cd2
PH
8069 exists, otherwise TYPE. */
8070
d2e4a39e 8071struct type *
61ee279c 8072ada_check_typedef (struct type *type)
14f9c5c9 8073{
727e3d2e
JB
8074 if (type == NULL)
8075 return NULL;
8076
720d1a40
JB
8077 /* If our type is a typedef type of a fat pointer, then we're done.
8078 We don't want to strip the TYPE_CODE_TYPDEF layer, because this is
8079 what allows us to distinguish between fat pointers that represent
8080 array types, and fat pointers that represent array access types
8081 (in both cases, the compiler implements them as fat pointers). */
8082 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF
8083 && is_thick_pntr (ada_typedef_target_type (type)))
8084 return type;
8085
14f9c5c9
AS
8086 CHECK_TYPEDEF (type);
8087 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM
529cad9c 8088 || !TYPE_STUB (type)
14f9c5c9
AS
8089 || TYPE_TAG_NAME (type) == NULL)
8090 return type;
d2e4a39e 8091 else
14f9c5c9 8092 {
d2e4a39e
AS
8093 char *name = TYPE_TAG_NAME (type);
8094 struct type *type1 = ada_find_any_type (name);
5b4ee69b 8095
05e522ef
JB
8096 if (type1 == NULL)
8097 return type;
8098
8099 /* TYPE1 might itself be a TYPE_CODE_TYPEDEF (this can happen with
8100 stubs pointing to arrays, as we don't create symbols for array
3a867c22
JB
8101 types, only for the typedef-to-array types). If that's the case,
8102 strip the typedef layer. */
8103 if (TYPE_CODE (type1) == TYPE_CODE_TYPEDEF)
8104 type1 = ada_check_typedef (type1);
8105
8106 return type1;
14f9c5c9
AS
8107 }
8108}
8109
8110/* A value representing the data at VALADDR/ADDRESS as described by
8111 type TYPE0, but with a standard (static-sized) type that correctly
8112 describes it. If VAL0 is not NULL and TYPE0 already is a standard
8113 type, then return VAL0 [this feature is simply to avoid redundant
4c4b4cd2 8114 creation of struct values]. */
14f9c5c9 8115
4c4b4cd2
PH
8116static struct value *
8117ada_to_fixed_value_create (struct type *type0, CORE_ADDR address,
8118 struct value *val0)
14f9c5c9 8119{
1ed6ede0 8120 struct type *type = ada_to_fixed_type (type0, 0, address, NULL, 1);
5b4ee69b 8121
14f9c5c9
AS
8122 if (type == type0 && val0 != NULL)
8123 return val0;
d2e4a39e 8124 else
4c4b4cd2
PH
8125 return value_from_contents_and_address (type, 0, address);
8126}
8127
8128/* A value representing VAL, but with a standard (static-sized) type
8129 that correctly describes it. Does not necessarily create a new
8130 value. */
8131
0c3acc09 8132struct value *
4c4b4cd2
PH
8133ada_to_fixed_value (struct value *val)
8134{
df407dfe 8135 return ada_to_fixed_value_create (value_type (val),
42ae5230 8136 value_address (val),
4c4b4cd2 8137 val);
14f9c5c9 8138}
d2e4a39e 8139\f
14f9c5c9 8140
14f9c5c9
AS
8141/* Attributes */
8142
4c4b4cd2
PH
8143/* Table mapping attribute numbers to names.
8144 NOTE: Keep up to date with enum ada_attribute definition in ada-lang.h. */
14f9c5c9 8145
d2e4a39e 8146static const char *attribute_names[] = {
14f9c5c9
AS
8147 "<?>",
8148
d2e4a39e 8149 "first",
14f9c5c9
AS
8150 "last",
8151 "length",
8152 "image",
14f9c5c9
AS
8153 "max",
8154 "min",
4c4b4cd2
PH
8155 "modulus",
8156 "pos",
8157 "size",
8158 "tag",
14f9c5c9 8159 "val",
14f9c5c9
AS
8160 0
8161};
8162
d2e4a39e 8163const char *
4c4b4cd2 8164ada_attribute_name (enum exp_opcode n)
14f9c5c9 8165{
4c4b4cd2
PH
8166 if (n >= OP_ATR_FIRST && n <= (int) OP_ATR_VAL)
8167 return attribute_names[n - OP_ATR_FIRST + 1];
14f9c5c9
AS
8168 else
8169 return attribute_names[0];
8170}
8171
4c4b4cd2 8172/* Evaluate the 'POS attribute applied to ARG. */
14f9c5c9 8173
4c4b4cd2
PH
8174static LONGEST
8175pos_atr (struct value *arg)
14f9c5c9 8176{
24209737
PH
8177 struct value *val = coerce_ref (arg);
8178 struct type *type = value_type (val);
14f9c5c9 8179
d2e4a39e 8180 if (!discrete_type_p (type))
323e0a4a 8181 error (_("'POS only defined on discrete types"));
14f9c5c9
AS
8182
8183 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
8184 {
8185 int i;
24209737 8186 LONGEST v = value_as_long (val);
14f9c5c9 8187
d2e4a39e 8188 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
4c4b4cd2
PH
8189 {
8190 if (v == TYPE_FIELD_BITPOS (type, i))
8191 return i;
8192 }
323e0a4a 8193 error (_("enumeration value is invalid: can't find 'POS"));
14f9c5c9
AS
8194 }
8195 else
24209737 8196 return value_as_long (val);
4c4b4cd2
PH
8197}
8198
8199static struct value *
3cb382c9 8200value_pos_atr (struct type *type, struct value *arg)
4c4b4cd2 8201{
3cb382c9 8202 return value_from_longest (type, pos_atr (arg));
14f9c5c9
AS
8203}
8204
4c4b4cd2 8205/* Evaluate the TYPE'VAL attribute applied to ARG. */
14f9c5c9 8206
d2e4a39e
AS
8207static struct value *
8208value_val_atr (struct type *type, struct value *arg)
14f9c5c9 8209{
d2e4a39e 8210 if (!discrete_type_p (type))
323e0a4a 8211 error (_("'VAL only defined on discrete types"));
df407dfe 8212 if (!integer_type_p (value_type (arg)))
323e0a4a 8213 error (_("'VAL requires integral argument"));
14f9c5c9
AS
8214
8215 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
8216 {
8217 long pos = value_as_long (arg);
5b4ee69b 8218
14f9c5c9 8219 if (pos < 0 || pos >= TYPE_NFIELDS (type))
323e0a4a 8220 error (_("argument to 'VAL out of range"));
d2e4a39e 8221 return value_from_longest (type, TYPE_FIELD_BITPOS (type, pos));
14f9c5c9
AS
8222 }
8223 else
8224 return value_from_longest (type, value_as_long (arg));
8225}
14f9c5c9 8226\f
d2e4a39e 8227
4c4b4cd2 8228 /* Evaluation */
14f9c5c9 8229
4c4b4cd2
PH
8230/* True if TYPE appears to be an Ada character type.
8231 [At the moment, this is true only for Character and Wide_Character;
8232 It is a heuristic test that could stand improvement]. */
14f9c5c9 8233
d2e4a39e
AS
8234int
8235ada_is_character_type (struct type *type)
14f9c5c9 8236{
7b9f71f2
JB
8237 const char *name;
8238
8239 /* If the type code says it's a character, then assume it really is,
8240 and don't check any further. */
8241 if (TYPE_CODE (type) == TYPE_CODE_CHAR)
8242 return 1;
8243
8244 /* Otherwise, assume it's a character type iff it is a discrete type
8245 with a known character type name. */
8246 name = ada_type_name (type);
8247 return (name != NULL
8248 && (TYPE_CODE (type) == TYPE_CODE_INT
8249 || TYPE_CODE (type) == TYPE_CODE_RANGE)
8250 && (strcmp (name, "character") == 0
8251 || strcmp (name, "wide_character") == 0
5a517ebd 8252 || strcmp (name, "wide_wide_character") == 0
7b9f71f2 8253 || strcmp (name, "unsigned char") == 0));
14f9c5c9
AS
8254}
8255
4c4b4cd2 8256/* True if TYPE appears to be an Ada string type. */
14f9c5c9
AS
8257
8258int
ebf56fd3 8259ada_is_string_type (struct type *type)
14f9c5c9 8260{
61ee279c 8261 type = ada_check_typedef (type);
d2e4a39e 8262 if (type != NULL
14f9c5c9 8263 && TYPE_CODE (type) != TYPE_CODE_PTR
76a01679
JB
8264 && (ada_is_simple_array_type (type)
8265 || ada_is_array_descriptor_type (type))
14f9c5c9
AS
8266 && ada_array_arity (type) == 1)
8267 {
8268 struct type *elttype = ada_array_element_type (type, 1);
8269
8270 return ada_is_character_type (elttype);
8271 }
d2e4a39e 8272 else
14f9c5c9
AS
8273 return 0;
8274}
8275
5bf03f13
JB
8276/* The compiler sometimes provides a parallel XVS type for a given
8277 PAD type. Normally, it is safe to follow the PAD type directly,
8278 but older versions of the compiler have a bug that causes the offset
8279 of its "F" field to be wrong. Following that field in that case
8280 would lead to incorrect results, but this can be worked around
8281 by ignoring the PAD type and using the associated XVS type instead.
8282
8283 Set to True if the debugger should trust the contents of PAD types.
8284 Otherwise, ignore the PAD type if there is a parallel XVS type. */
8285static int trust_pad_over_xvs = 1;
14f9c5c9
AS
8286
8287/* True if TYPE is a struct type introduced by the compiler to force the
8288 alignment of a value. Such types have a single field with a
4c4b4cd2 8289 distinctive name. */
14f9c5c9
AS
8290
8291int
ebf56fd3 8292ada_is_aligner_type (struct type *type)
14f9c5c9 8293{
61ee279c 8294 type = ada_check_typedef (type);
714e53ab 8295
5bf03f13 8296 if (!trust_pad_over_xvs && ada_find_parallel_type (type, "___XVS") != NULL)
714e53ab
PH
8297 return 0;
8298
14f9c5c9 8299 return (TYPE_CODE (type) == TYPE_CODE_STRUCT
4c4b4cd2
PH
8300 && TYPE_NFIELDS (type) == 1
8301 && strcmp (TYPE_FIELD_NAME (type, 0), "F") == 0);
14f9c5c9
AS
8302}
8303
8304/* If there is an ___XVS-convention type parallel to SUBTYPE, return
4c4b4cd2 8305 the parallel type. */
14f9c5c9 8306
d2e4a39e
AS
8307struct type *
8308ada_get_base_type (struct type *raw_type)
14f9c5c9 8309{
d2e4a39e
AS
8310 struct type *real_type_namer;
8311 struct type *raw_real_type;
14f9c5c9
AS
8312
8313 if (raw_type == NULL || TYPE_CODE (raw_type) != TYPE_CODE_STRUCT)
8314 return raw_type;
8315
284614f0
JB
8316 if (ada_is_aligner_type (raw_type))
8317 /* The encoding specifies that we should always use the aligner type.
8318 So, even if this aligner type has an associated XVS type, we should
8319 simply ignore it.
8320
8321 According to the compiler gurus, an XVS type parallel to an aligner
8322 type may exist because of a stabs limitation. In stabs, aligner
8323 types are empty because the field has a variable-sized type, and
8324 thus cannot actually be used as an aligner type. As a result,
8325 we need the associated parallel XVS type to decode the type.
8326 Since the policy in the compiler is to not change the internal
8327 representation based on the debugging info format, we sometimes
8328 end up having a redundant XVS type parallel to the aligner type. */
8329 return raw_type;
8330
14f9c5c9 8331 real_type_namer = ada_find_parallel_type (raw_type, "___XVS");
d2e4a39e 8332 if (real_type_namer == NULL
14f9c5c9
AS
8333 || TYPE_CODE (real_type_namer) != TYPE_CODE_STRUCT
8334 || TYPE_NFIELDS (real_type_namer) != 1)
8335 return raw_type;
8336
f80d3ff2
JB
8337 if (TYPE_CODE (TYPE_FIELD_TYPE (real_type_namer, 0)) != TYPE_CODE_REF)
8338 {
8339 /* This is an older encoding form where the base type needs to be
8340 looked up by name. We prefer the newer enconding because it is
8341 more efficient. */
8342 raw_real_type = ada_find_any_type (TYPE_FIELD_NAME (real_type_namer, 0));
8343 if (raw_real_type == NULL)
8344 return raw_type;
8345 else
8346 return raw_real_type;
8347 }
8348
8349 /* The field in our XVS type is a reference to the base type. */
8350 return TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (real_type_namer, 0));
d2e4a39e 8351}
14f9c5c9 8352
4c4b4cd2 8353/* The type of value designated by TYPE, with all aligners removed. */
14f9c5c9 8354
d2e4a39e
AS
8355struct type *
8356ada_aligned_type (struct type *type)
14f9c5c9
AS
8357{
8358 if (ada_is_aligner_type (type))
8359 return ada_aligned_type (TYPE_FIELD_TYPE (type, 0));
8360 else
8361 return ada_get_base_type (type);
8362}
8363
8364
8365/* The address of the aligned value in an object at address VALADDR
4c4b4cd2 8366 having type TYPE. Assumes ada_is_aligner_type (TYPE). */
14f9c5c9 8367
fc1a4b47
AC
8368const gdb_byte *
8369ada_aligned_value_addr (struct type *type, const gdb_byte *valaddr)
14f9c5c9 8370{
d2e4a39e 8371 if (ada_is_aligner_type (type))
14f9c5c9 8372 return ada_aligned_value_addr (TYPE_FIELD_TYPE (type, 0),
4c4b4cd2
PH
8373 valaddr +
8374 TYPE_FIELD_BITPOS (type,
8375 0) / TARGET_CHAR_BIT);
14f9c5c9
AS
8376 else
8377 return valaddr;
8378}
8379
4c4b4cd2
PH
8380
8381
14f9c5c9 8382/* The printed representation of an enumeration literal with encoded
4c4b4cd2 8383 name NAME. The value is good to the next call of ada_enum_name. */
d2e4a39e
AS
8384const char *
8385ada_enum_name (const char *name)
14f9c5c9 8386{
4c4b4cd2
PH
8387 static char *result;
8388 static size_t result_len = 0;
d2e4a39e 8389 char *tmp;
14f9c5c9 8390
4c4b4cd2
PH
8391 /* First, unqualify the enumeration name:
8392 1. Search for the last '.' character. If we find one, then skip
177b42fe 8393 all the preceding characters, the unqualified name starts
76a01679 8394 right after that dot.
4c4b4cd2 8395 2. Otherwise, we may be debugging on a target where the compiler
76a01679
JB
8396 translates dots into "__". Search forward for double underscores,
8397 but stop searching when we hit an overloading suffix, which is
8398 of the form "__" followed by digits. */
4c4b4cd2 8399
c3e5cd34
PH
8400 tmp = strrchr (name, '.');
8401 if (tmp != NULL)
4c4b4cd2
PH
8402 name = tmp + 1;
8403 else
14f9c5c9 8404 {
4c4b4cd2
PH
8405 while ((tmp = strstr (name, "__")) != NULL)
8406 {
8407 if (isdigit (tmp[2]))
8408 break;
8409 else
8410 name = tmp + 2;
8411 }
14f9c5c9
AS
8412 }
8413
8414 if (name[0] == 'Q')
8415 {
14f9c5c9 8416 int v;
5b4ee69b 8417
14f9c5c9 8418 if (name[1] == 'U' || name[1] == 'W')
4c4b4cd2
PH
8419 {
8420 if (sscanf (name + 2, "%x", &v) != 1)
8421 return name;
8422 }
14f9c5c9 8423 else
4c4b4cd2 8424 return name;
14f9c5c9 8425
4c4b4cd2 8426 GROW_VECT (result, result_len, 16);
14f9c5c9 8427 if (isascii (v) && isprint (v))
88c15c34 8428 xsnprintf (result, result_len, "'%c'", v);
14f9c5c9 8429 else if (name[1] == 'U')
88c15c34 8430 xsnprintf (result, result_len, "[\"%02x\"]", v);
14f9c5c9 8431 else
88c15c34 8432 xsnprintf (result, result_len, "[\"%04x\"]", v);
14f9c5c9
AS
8433
8434 return result;
8435 }
d2e4a39e 8436 else
4c4b4cd2 8437 {
c3e5cd34
PH
8438 tmp = strstr (name, "__");
8439 if (tmp == NULL)
8440 tmp = strstr (name, "$");
8441 if (tmp != NULL)
4c4b4cd2
PH
8442 {
8443 GROW_VECT (result, result_len, tmp - name + 1);
8444 strncpy (result, name, tmp - name);
8445 result[tmp - name] = '\0';
8446 return result;
8447 }
8448
8449 return name;
8450 }
14f9c5c9
AS
8451}
8452
14f9c5c9
AS
8453/* Evaluate the subexpression of EXP starting at *POS as for
8454 evaluate_type, updating *POS to point just past the evaluated
4c4b4cd2 8455 expression. */
14f9c5c9 8456
d2e4a39e
AS
8457static struct value *
8458evaluate_subexp_type (struct expression *exp, int *pos)
14f9c5c9 8459{
4b27a620 8460 return evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
14f9c5c9
AS
8461}
8462
8463/* If VAL is wrapped in an aligner or subtype wrapper, return the
4c4b4cd2 8464 value it wraps. */
14f9c5c9 8465
d2e4a39e
AS
8466static struct value *
8467unwrap_value (struct value *val)
14f9c5c9 8468{
df407dfe 8469 struct type *type = ada_check_typedef (value_type (val));
5b4ee69b 8470
14f9c5c9
AS
8471 if (ada_is_aligner_type (type))
8472 {
de4d072f 8473 struct value *v = ada_value_struct_elt (val, "F", 0);
df407dfe 8474 struct type *val_type = ada_check_typedef (value_type (v));
5b4ee69b 8475
14f9c5c9 8476 if (ada_type_name (val_type) == NULL)
4c4b4cd2 8477 TYPE_NAME (val_type) = ada_type_name (type);
14f9c5c9
AS
8478
8479 return unwrap_value (v);
8480 }
d2e4a39e 8481 else
14f9c5c9 8482 {
d2e4a39e 8483 struct type *raw_real_type =
61ee279c 8484 ada_check_typedef (ada_get_base_type (type));
d2e4a39e 8485
5bf03f13
JB
8486 /* If there is no parallel XVS or XVE type, then the value is
8487 already unwrapped. Return it without further modification. */
8488 if ((type == raw_real_type)
8489 && ada_find_parallel_type (type, "___XVE") == NULL)
8490 return val;
14f9c5c9 8491
d2e4a39e 8492 return
4c4b4cd2
PH
8493 coerce_unspec_val_to_type
8494 (val, ada_to_fixed_type (raw_real_type, 0,
42ae5230 8495 value_address (val),
1ed6ede0 8496 NULL, 1));
14f9c5c9
AS
8497 }
8498}
d2e4a39e
AS
8499
8500static struct value *
8501cast_to_fixed (struct type *type, struct value *arg)
14f9c5c9
AS
8502{
8503 LONGEST val;
8504
df407dfe 8505 if (type == value_type (arg))
14f9c5c9 8506 return arg;
df407dfe 8507 else if (ada_is_fixed_point_type (value_type (arg)))
d2e4a39e 8508 val = ada_float_to_fixed (type,
df407dfe 8509 ada_fixed_to_float (value_type (arg),
4c4b4cd2 8510 value_as_long (arg)));
d2e4a39e 8511 else
14f9c5c9 8512 {
a53b7a21 8513 DOUBLEST argd = value_as_double (arg);
5b4ee69b 8514
14f9c5c9
AS
8515 val = ada_float_to_fixed (type, argd);
8516 }
8517
8518 return value_from_longest (type, val);
8519}
8520
d2e4a39e 8521static struct value *
a53b7a21 8522cast_from_fixed (struct type *type, struct value *arg)
14f9c5c9 8523{
df407dfe 8524 DOUBLEST val = ada_fixed_to_float (value_type (arg),
4c4b4cd2 8525 value_as_long (arg));
5b4ee69b 8526
a53b7a21 8527 return value_from_double (type, val);
14f9c5c9
AS
8528}
8529
4c4b4cd2
PH
8530/* Coerce VAL as necessary for assignment to an lval of type TYPE, and
8531 return the converted value. */
8532
d2e4a39e
AS
8533static struct value *
8534coerce_for_assign (struct type *type, struct value *val)
14f9c5c9 8535{
df407dfe 8536 struct type *type2 = value_type (val);
5b4ee69b 8537
14f9c5c9
AS
8538 if (type == type2)
8539 return val;
8540
61ee279c
PH
8541 type2 = ada_check_typedef (type2);
8542 type = ada_check_typedef (type);
14f9c5c9 8543
d2e4a39e
AS
8544 if (TYPE_CODE (type2) == TYPE_CODE_PTR
8545 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
14f9c5c9
AS
8546 {
8547 val = ada_value_ind (val);
df407dfe 8548 type2 = value_type (val);
14f9c5c9
AS
8549 }
8550
d2e4a39e 8551 if (TYPE_CODE (type2) == TYPE_CODE_ARRAY
14f9c5c9
AS
8552 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
8553 {
8554 if (TYPE_LENGTH (type2) != TYPE_LENGTH (type)
4c4b4cd2
PH
8555 || TYPE_LENGTH (TYPE_TARGET_TYPE (type2))
8556 != TYPE_LENGTH (TYPE_TARGET_TYPE (type2)))
323e0a4a 8557 error (_("Incompatible types in assignment"));
04624583 8558 deprecated_set_value_type (val, type);
14f9c5c9 8559 }
d2e4a39e 8560 return val;
14f9c5c9
AS
8561}
8562
4c4b4cd2
PH
8563static struct value *
8564ada_value_binop (struct value *arg1, struct value *arg2, enum exp_opcode op)
8565{
8566 struct value *val;
8567 struct type *type1, *type2;
8568 LONGEST v, v1, v2;
8569
994b9211
AC
8570 arg1 = coerce_ref (arg1);
8571 arg2 = coerce_ref (arg2);
18af8284
JB
8572 type1 = get_base_type (ada_check_typedef (value_type (arg1)));
8573 type2 = get_base_type (ada_check_typedef (value_type (arg2)));
4c4b4cd2 8574
76a01679
JB
8575 if (TYPE_CODE (type1) != TYPE_CODE_INT
8576 || TYPE_CODE (type2) != TYPE_CODE_INT)
4c4b4cd2
PH
8577 return value_binop (arg1, arg2, op);
8578
76a01679 8579 switch (op)
4c4b4cd2
PH
8580 {
8581 case BINOP_MOD:
8582 case BINOP_DIV:
8583 case BINOP_REM:
8584 break;
8585 default:
8586 return value_binop (arg1, arg2, op);
8587 }
8588
8589 v2 = value_as_long (arg2);
8590 if (v2 == 0)
323e0a4a 8591 error (_("second operand of %s must not be zero."), op_string (op));
4c4b4cd2
PH
8592
8593 if (TYPE_UNSIGNED (type1) || op == BINOP_MOD)
8594 return value_binop (arg1, arg2, op);
8595
8596 v1 = value_as_long (arg1);
8597 switch (op)
8598 {
8599 case BINOP_DIV:
8600 v = v1 / v2;
76a01679
JB
8601 if (!TRUNCATION_TOWARDS_ZERO && v1 * (v1 % v2) < 0)
8602 v += v > 0 ? -1 : 1;
4c4b4cd2
PH
8603 break;
8604 case BINOP_REM:
8605 v = v1 % v2;
76a01679
JB
8606 if (v * v1 < 0)
8607 v -= v2;
4c4b4cd2
PH
8608 break;
8609 default:
8610 /* Should not reach this point. */
8611 v = 0;
8612 }
8613
8614 val = allocate_value (type1);
990a07ab 8615 store_unsigned_integer (value_contents_raw (val),
e17a4113
UW
8616 TYPE_LENGTH (value_type (val)),
8617 gdbarch_byte_order (get_type_arch (type1)), v);
4c4b4cd2
PH
8618 return val;
8619}
8620
8621static int
8622ada_value_equal (struct value *arg1, struct value *arg2)
8623{
df407dfe
AC
8624 if (ada_is_direct_array_type (value_type (arg1))
8625 || ada_is_direct_array_type (value_type (arg2)))
4c4b4cd2 8626 {
f58b38bf
JB
8627 /* Automatically dereference any array reference before
8628 we attempt to perform the comparison. */
8629 arg1 = ada_coerce_ref (arg1);
8630 arg2 = ada_coerce_ref (arg2);
8631
4c4b4cd2
PH
8632 arg1 = ada_coerce_to_simple_array (arg1);
8633 arg2 = ada_coerce_to_simple_array (arg2);
df407dfe
AC
8634 if (TYPE_CODE (value_type (arg1)) != TYPE_CODE_ARRAY
8635 || TYPE_CODE (value_type (arg2)) != TYPE_CODE_ARRAY)
323e0a4a 8636 error (_("Attempt to compare array with non-array"));
4c4b4cd2 8637 /* FIXME: The following works only for types whose
76a01679
JB
8638 representations use all bits (no padding or undefined bits)
8639 and do not have user-defined equality. */
8640 return
df407dfe 8641 TYPE_LENGTH (value_type (arg1)) == TYPE_LENGTH (value_type (arg2))
0fd88904 8642 && memcmp (value_contents (arg1), value_contents (arg2),
df407dfe 8643 TYPE_LENGTH (value_type (arg1))) == 0;
4c4b4cd2
PH
8644 }
8645 return value_equal (arg1, arg2);
8646}
8647
52ce6436
PH
8648/* Total number of component associations in the aggregate starting at
8649 index PC in EXP. Assumes that index PC is the start of an
0963b4bd 8650 OP_AGGREGATE. */
52ce6436
PH
8651
8652static int
8653num_component_specs (struct expression *exp, int pc)
8654{
8655 int n, m, i;
5b4ee69b 8656
52ce6436
PH
8657 m = exp->elts[pc + 1].longconst;
8658 pc += 3;
8659 n = 0;
8660 for (i = 0; i < m; i += 1)
8661 {
8662 switch (exp->elts[pc].opcode)
8663 {
8664 default:
8665 n += 1;
8666 break;
8667 case OP_CHOICES:
8668 n += exp->elts[pc + 1].longconst;
8669 break;
8670 }
8671 ada_evaluate_subexp (NULL, exp, &pc, EVAL_SKIP);
8672 }
8673 return n;
8674}
8675
8676/* Assign the result of evaluating EXP starting at *POS to the INDEXth
8677 component of LHS (a simple array or a record), updating *POS past
8678 the expression, assuming that LHS is contained in CONTAINER. Does
8679 not modify the inferior's memory, nor does it modify LHS (unless
8680 LHS == CONTAINER). */
8681
8682static void
8683assign_component (struct value *container, struct value *lhs, LONGEST index,
8684 struct expression *exp, int *pos)
8685{
8686 struct value *mark = value_mark ();
8687 struct value *elt;
5b4ee69b 8688
52ce6436
PH
8689 if (TYPE_CODE (value_type (lhs)) == TYPE_CODE_ARRAY)
8690 {
22601c15
UW
8691 struct type *index_type = builtin_type (exp->gdbarch)->builtin_int;
8692 struct value *index_val = value_from_longest (index_type, index);
5b4ee69b 8693
52ce6436
PH
8694 elt = unwrap_value (ada_value_subscript (lhs, 1, &index_val));
8695 }
8696 else
8697 {
8698 elt = ada_index_struct_field (index, lhs, 0, value_type (lhs));
8699 elt = ada_to_fixed_value (unwrap_value (elt));
8700 }
8701
8702 if (exp->elts[*pos].opcode == OP_AGGREGATE)
8703 assign_aggregate (container, elt, exp, pos, EVAL_NORMAL);
8704 else
8705 value_assign_to_component (container, elt,
8706 ada_evaluate_subexp (NULL, exp, pos,
8707 EVAL_NORMAL));
8708
8709 value_free_to_mark (mark);
8710}
8711
8712/* Assuming that LHS represents an lvalue having a record or array
8713 type, and EXP->ELTS[*POS] is an OP_AGGREGATE, evaluate an assignment
8714 of that aggregate's value to LHS, advancing *POS past the
8715 aggregate. NOSIDE is as for evaluate_subexp. CONTAINER is an
8716 lvalue containing LHS (possibly LHS itself). Does not modify
8717 the inferior's memory, nor does it modify the contents of
0963b4bd 8718 LHS (unless == CONTAINER). Returns the modified CONTAINER. */
52ce6436
PH
8719
8720static struct value *
8721assign_aggregate (struct value *container,
8722 struct value *lhs, struct expression *exp,
8723 int *pos, enum noside noside)
8724{
8725 struct type *lhs_type;
8726 int n = exp->elts[*pos+1].longconst;
8727 LONGEST low_index, high_index;
8728 int num_specs;
8729 LONGEST *indices;
8730 int max_indices, num_indices;
8731 int is_array_aggregate;
8732 int i;
52ce6436
PH
8733
8734 *pos += 3;
8735 if (noside != EVAL_NORMAL)
8736 {
52ce6436
PH
8737 for (i = 0; i < n; i += 1)
8738 ada_evaluate_subexp (NULL, exp, pos, noside);
8739 return container;
8740 }
8741
8742 container = ada_coerce_ref (container);
8743 if (ada_is_direct_array_type (value_type (container)))
8744 container = ada_coerce_to_simple_array (container);
8745 lhs = ada_coerce_ref (lhs);
8746 if (!deprecated_value_modifiable (lhs))
8747 error (_("Left operand of assignment is not a modifiable lvalue."));
8748
8749 lhs_type = value_type (lhs);
8750 if (ada_is_direct_array_type (lhs_type))
8751 {
8752 lhs = ada_coerce_to_simple_array (lhs);
8753 lhs_type = value_type (lhs);
8754 low_index = TYPE_ARRAY_LOWER_BOUND_VALUE (lhs_type);
8755 high_index = TYPE_ARRAY_UPPER_BOUND_VALUE (lhs_type);
8756 is_array_aggregate = 1;
8757 }
8758 else if (TYPE_CODE (lhs_type) == TYPE_CODE_STRUCT)
8759 {
8760 low_index = 0;
8761 high_index = num_visible_fields (lhs_type) - 1;
8762 is_array_aggregate = 0;
8763 }
8764 else
8765 error (_("Left-hand side must be array or record."));
8766
8767 num_specs = num_component_specs (exp, *pos - 3);
8768 max_indices = 4 * num_specs + 4;
8769 indices = alloca (max_indices * sizeof (indices[0]));
8770 indices[0] = indices[1] = low_index - 1;
8771 indices[2] = indices[3] = high_index + 1;
8772 num_indices = 4;
8773
8774 for (i = 0; i < n; i += 1)
8775 {
8776 switch (exp->elts[*pos].opcode)
8777 {
1fbf5ada
JB
8778 case OP_CHOICES:
8779 aggregate_assign_from_choices (container, lhs, exp, pos, indices,
8780 &num_indices, max_indices,
8781 low_index, high_index);
8782 break;
8783 case OP_POSITIONAL:
8784 aggregate_assign_positional (container, lhs, exp, pos, indices,
52ce6436
PH
8785 &num_indices, max_indices,
8786 low_index, high_index);
1fbf5ada
JB
8787 break;
8788 case OP_OTHERS:
8789 if (i != n-1)
8790 error (_("Misplaced 'others' clause"));
8791 aggregate_assign_others (container, lhs, exp, pos, indices,
8792 num_indices, low_index, high_index);
8793 break;
8794 default:
8795 error (_("Internal error: bad aggregate clause"));
52ce6436
PH
8796 }
8797 }
8798
8799 return container;
8800}
8801
8802/* Assign into the component of LHS indexed by the OP_POSITIONAL
8803 construct at *POS, updating *POS past the construct, given that
8804 the positions are relative to lower bound LOW, where HIGH is the
8805 upper bound. Record the position in INDICES[0 .. MAX_INDICES-1]
8806 updating *NUM_INDICES as needed. CONTAINER is as for
0963b4bd 8807 assign_aggregate. */
52ce6436
PH
8808static void
8809aggregate_assign_positional (struct value *container,
8810 struct value *lhs, struct expression *exp,
8811 int *pos, LONGEST *indices, int *num_indices,
8812 int max_indices, LONGEST low, LONGEST high)
8813{
8814 LONGEST ind = longest_to_int (exp->elts[*pos + 1].longconst) + low;
8815
8816 if (ind - 1 == high)
e1d5a0d2 8817 warning (_("Extra components in aggregate ignored."));
52ce6436
PH
8818 if (ind <= high)
8819 {
8820 add_component_interval (ind, ind, indices, num_indices, max_indices);
8821 *pos += 3;
8822 assign_component (container, lhs, ind, exp, pos);
8823 }
8824 else
8825 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
8826}
8827
8828/* Assign into the components of LHS indexed by the OP_CHOICES
8829 construct at *POS, updating *POS past the construct, given that
8830 the allowable indices are LOW..HIGH. Record the indices assigned
8831 to in INDICES[0 .. MAX_INDICES-1], updating *NUM_INDICES as
0963b4bd 8832 needed. CONTAINER is as for assign_aggregate. */
52ce6436
PH
8833static void
8834aggregate_assign_from_choices (struct value *container,
8835 struct value *lhs, struct expression *exp,
8836 int *pos, LONGEST *indices, int *num_indices,
8837 int max_indices, LONGEST low, LONGEST high)
8838{
8839 int j;
8840 int n_choices = longest_to_int (exp->elts[*pos+1].longconst);
8841 int choice_pos, expr_pc;
8842 int is_array = ada_is_direct_array_type (value_type (lhs));
8843
8844 choice_pos = *pos += 3;
8845
8846 for (j = 0; j < n_choices; j += 1)
8847 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
8848 expr_pc = *pos;
8849 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
8850
8851 for (j = 0; j < n_choices; j += 1)
8852 {
8853 LONGEST lower, upper;
8854 enum exp_opcode op = exp->elts[choice_pos].opcode;
5b4ee69b 8855
52ce6436
PH
8856 if (op == OP_DISCRETE_RANGE)
8857 {
8858 choice_pos += 1;
8859 lower = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
8860 EVAL_NORMAL));
8861 upper = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
8862 EVAL_NORMAL));
8863 }
8864 else if (is_array)
8865 {
8866 lower = value_as_long (ada_evaluate_subexp (NULL, exp, &choice_pos,
8867 EVAL_NORMAL));
8868 upper = lower;
8869 }
8870 else
8871 {
8872 int ind;
8873 char *name;
5b4ee69b 8874
52ce6436
PH
8875 switch (op)
8876 {
8877 case OP_NAME:
8878 name = &exp->elts[choice_pos + 2].string;
8879 break;
8880 case OP_VAR_VALUE:
8881 name = SYMBOL_NATURAL_NAME (exp->elts[choice_pos + 2].symbol);
8882 break;
8883 default:
8884 error (_("Invalid record component association."));
8885 }
8886 ada_evaluate_subexp (NULL, exp, &choice_pos, EVAL_SKIP);
8887 ind = 0;
8888 if (! find_struct_field (name, value_type (lhs), 0,
8889 NULL, NULL, NULL, NULL, &ind))
8890 error (_("Unknown component name: %s."), name);
8891 lower = upper = ind;
8892 }
8893
8894 if (lower <= upper && (lower < low || upper > high))
8895 error (_("Index in component association out of bounds."));
8896
8897 add_component_interval (lower, upper, indices, num_indices,
8898 max_indices);
8899 while (lower <= upper)
8900 {
8901 int pos1;
5b4ee69b 8902
52ce6436
PH
8903 pos1 = expr_pc;
8904 assign_component (container, lhs, lower, exp, &pos1);
8905 lower += 1;
8906 }
8907 }
8908}
8909
8910/* Assign the value of the expression in the OP_OTHERS construct in
8911 EXP at *POS into the components of LHS indexed from LOW .. HIGH that
8912 have not been previously assigned. The index intervals already assigned
8913 are in INDICES[0 .. NUM_INDICES-1]. Updates *POS to after the
0963b4bd 8914 OP_OTHERS clause. CONTAINER is as for assign_aggregate. */
52ce6436
PH
8915static void
8916aggregate_assign_others (struct value *container,
8917 struct value *lhs, struct expression *exp,
8918 int *pos, LONGEST *indices, int num_indices,
8919 LONGEST low, LONGEST high)
8920{
8921 int i;
5ce64950 8922 int expr_pc = *pos + 1;
52ce6436
PH
8923
8924 for (i = 0; i < num_indices - 2; i += 2)
8925 {
8926 LONGEST ind;
5b4ee69b 8927
52ce6436
PH
8928 for (ind = indices[i + 1] + 1; ind < indices[i + 2]; ind += 1)
8929 {
5ce64950 8930 int localpos;
5b4ee69b 8931
5ce64950
MS
8932 localpos = expr_pc;
8933 assign_component (container, lhs, ind, exp, &localpos);
52ce6436
PH
8934 }
8935 }
8936 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
8937}
8938
8939/* Add the interval [LOW .. HIGH] to the sorted set of intervals
8940 [ INDICES[0] .. INDICES[1] ],..., [ INDICES[*SIZE-2] .. INDICES[*SIZE-1] ],
8941 modifying *SIZE as needed. It is an error if *SIZE exceeds
8942 MAX_SIZE. The resulting intervals do not overlap. */
8943static void
8944add_component_interval (LONGEST low, LONGEST high,
8945 LONGEST* indices, int *size, int max_size)
8946{
8947 int i, j;
5b4ee69b 8948
52ce6436
PH
8949 for (i = 0; i < *size; i += 2) {
8950 if (high >= indices[i] && low <= indices[i + 1])
8951 {
8952 int kh;
5b4ee69b 8953
52ce6436
PH
8954 for (kh = i + 2; kh < *size; kh += 2)
8955 if (high < indices[kh])
8956 break;
8957 if (low < indices[i])
8958 indices[i] = low;
8959 indices[i + 1] = indices[kh - 1];
8960 if (high > indices[i + 1])
8961 indices[i + 1] = high;
8962 memcpy (indices + i + 2, indices + kh, *size - kh);
8963 *size -= kh - i - 2;
8964 return;
8965 }
8966 else if (high < indices[i])
8967 break;
8968 }
8969
8970 if (*size == max_size)
8971 error (_("Internal error: miscounted aggregate components."));
8972 *size += 2;
8973 for (j = *size-1; j >= i+2; j -= 1)
8974 indices[j] = indices[j - 2];
8975 indices[i] = low;
8976 indices[i + 1] = high;
8977}
8978
6e48bd2c
JB
8979/* Perform and Ada cast of ARG2 to type TYPE if the type of ARG2
8980 is different. */
8981
8982static struct value *
8983ada_value_cast (struct type *type, struct value *arg2, enum noside noside)
8984{
8985 if (type == ada_check_typedef (value_type (arg2)))
8986 return arg2;
8987
8988 if (ada_is_fixed_point_type (type))
8989 return (cast_to_fixed (type, arg2));
8990
8991 if (ada_is_fixed_point_type (value_type (arg2)))
a53b7a21 8992 return cast_from_fixed (type, arg2);
6e48bd2c
JB
8993
8994 return value_cast (type, arg2);
8995}
8996
284614f0
JB
8997/* Evaluating Ada expressions, and printing their result.
8998 ------------------------------------------------------
8999
21649b50
JB
9000 1. Introduction:
9001 ----------------
9002
284614f0
JB
9003 We usually evaluate an Ada expression in order to print its value.
9004 We also evaluate an expression in order to print its type, which
9005 happens during the EVAL_AVOID_SIDE_EFFECTS phase of the evaluation,
9006 but we'll focus mostly on the EVAL_NORMAL phase. In practice, the
9007 EVAL_AVOID_SIDE_EFFECTS phase allows us to simplify certain aspects of
9008 the evaluation compared to the EVAL_NORMAL, but is otherwise very
9009 similar.
9010
9011 Evaluating expressions is a little more complicated for Ada entities
9012 than it is for entities in languages such as C. The main reason for
9013 this is that Ada provides types whose definition might be dynamic.
9014 One example of such types is variant records. Or another example
9015 would be an array whose bounds can only be known at run time.
9016
9017 The following description is a general guide as to what should be
9018 done (and what should NOT be done) in order to evaluate an expression
9019 involving such types, and when. This does not cover how the semantic
9020 information is encoded by GNAT as this is covered separatly. For the
9021 document used as the reference for the GNAT encoding, see exp_dbug.ads
9022 in the GNAT sources.
9023
9024 Ideally, we should embed each part of this description next to its
9025 associated code. Unfortunately, the amount of code is so vast right
9026 now that it's hard to see whether the code handling a particular
9027 situation might be duplicated or not. One day, when the code is
9028 cleaned up, this guide might become redundant with the comments
9029 inserted in the code, and we might want to remove it.
9030
21649b50
JB
9031 2. ``Fixing'' an Entity, the Simple Case:
9032 -----------------------------------------
9033
284614f0
JB
9034 When evaluating Ada expressions, the tricky issue is that they may
9035 reference entities whose type contents and size are not statically
9036 known. Consider for instance a variant record:
9037
9038 type Rec (Empty : Boolean := True) is record
9039 case Empty is
9040 when True => null;
9041 when False => Value : Integer;
9042 end case;
9043 end record;
9044 Yes : Rec := (Empty => False, Value => 1);
9045 No : Rec := (empty => True);
9046
9047 The size and contents of that record depends on the value of the
9048 descriminant (Rec.Empty). At this point, neither the debugging
9049 information nor the associated type structure in GDB are able to
9050 express such dynamic types. So what the debugger does is to create
9051 "fixed" versions of the type that applies to the specific object.
9052 We also informally refer to this opperation as "fixing" an object,
9053 which means creating its associated fixed type.
9054
9055 Example: when printing the value of variable "Yes" above, its fixed
9056 type would look like this:
9057
9058 type Rec is record
9059 Empty : Boolean;
9060 Value : Integer;
9061 end record;
9062
9063 On the other hand, if we printed the value of "No", its fixed type
9064 would become:
9065
9066 type Rec is record
9067 Empty : Boolean;
9068 end record;
9069
9070 Things become a little more complicated when trying to fix an entity
9071 with a dynamic type that directly contains another dynamic type,
9072 such as an array of variant records, for instance. There are
9073 two possible cases: Arrays, and records.
9074
21649b50
JB
9075 3. ``Fixing'' Arrays:
9076 ---------------------
9077
9078 The type structure in GDB describes an array in terms of its bounds,
9079 and the type of its elements. By design, all elements in the array
9080 have the same type and we cannot represent an array of variant elements
9081 using the current type structure in GDB. When fixing an array,
9082 we cannot fix the array element, as we would potentially need one
9083 fixed type per element of the array. As a result, the best we can do
9084 when fixing an array is to produce an array whose bounds and size
9085 are correct (allowing us to read it from memory), but without having
9086 touched its element type. Fixing each element will be done later,
9087 when (if) necessary.
9088
9089 Arrays are a little simpler to handle than records, because the same
9090 amount of memory is allocated for each element of the array, even if
1b536f04 9091 the amount of space actually used by each element differs from element
21649b50 9092 to element. Consider for instance the following array of type Rec:
284614f0
JB
9093
9094 type Rec_Array is array (1 .. 2) of Rec;
9095
1b536f04
JB
9096 The actual amount of memory occupied by each element might be different
9097 from element to element, depending on the value of their discriminant.
21649b50 9098 But the amount of space reserved for each element in the array remains
1b536f04 9099 fixed regardless. So we simply need to compute that size using
21649b50
JB
9100 the debugging information available, from which we can then determine
9101 the array size (we multiply the number of elements of the array by
9102 the size of each element).
9103
9104 The simplest case is when we have an array of a constrained element
9105 type. For instance, consider the following type declarations:
9106
9107 type Bounded_String (Max_Size : Integer) is
9108 Length : Integer;
9109 Buffer : String (1 .. Max_Size);
9110 end record;
9111 type Bounded_String_Array is array (1 ..2) of Bounded_String (80);
9112
9113 In this case, the compiler describes the array as an array of
9114 variable-size elements (identified by its XVS suffix) for which
9115 the size can be read in the parallel XVZ variable.
9116
9117 In the case of an array of an unconstrained element type, the compiler
9118 wraps the array element inside a private PAD type. This type should not
9119 be shown to the user, and must be "unwrap"'ed before printing. Note
284614f0
JB
9120 that we also use the adjective "aligner" in our code to designate
9121 these wrapper types.
9122
1b536f04 9123 In some cases, the size allocated for each element is statically
21649b50
JB
9124 known. In that case, the PAD type already has the correct size,
9125 and the array element should remain unfixed.
9126
9127 But there are cases when this size is not statically known.
9128 For instance, assuming that "Five" is an integer variable:
284614f0
JB
9129
9130 type Dynamic is array (1 .. Five) of Integer;
9131 type Wrapper (Has_Length : Boolean := False) is record
9132 Data : Dynamic;
9133 case Has_Length is
9134 when True => Length : Integer;
9135 when False => null;
9136 end case;
9137 end record;
9138 type Wrapper_Array is array (1 .. 2) of Wrapper;
9139
9140 Hello : Wrapper_Array := (others => (Has_Length => True,
9141 Data => (others => 17),
9142 Length => 1));
9143
9144
9145 The debugging info would describe variable Hello as being an
9146 array of a PAD type. The size of that PAD type is not statically
9147 known, but can be determined using a parallel XVZ variable.
9148 In that case, a copy of the PAD type with the correct size should
9149 be used for the fixed array.
9150
21649b50
JB
9151 3. ``Fixing'' record type objects:
9152 ----------------------------------
9153
9154 Things are slightly different from arrays in the case of dynamic
284614f0
JB
9155 record types. In this case, in order to compute the associated
9156 fixed type, we need to determine the size and offset of each of
9157 its components. This, in turn, requires us to compute the fixed
9158 type of each of these components.
9159
9160 Consider for instance the example:
9161
9162 type Bounded_String (Max_Size : Natural) is record
9163 Str : String (1 .. Max_Size);
9164 Length : Natural;
9165 end record;
9166 My_String : Bounded_String (Max_Size => 10);
9167
9168 In that case, the position of field "Length" depends on the size
9169 of field Str, which itself depends on the value of the Max_Size
21649b50 9170 discriminant. In order to fix the type of variable My_String,
284614f0
JB
9171 we need to fix the type of field Str. Therefore, fixing a variant
9172 record requires us to fix each of its components.
9173
9174 However, if a component does not have a dynamic size, the component
9175 should not be fixed. In particular, fields that use a PAD type
9176 should not fixed. Here is an example where this might happen
9177 (assuming type Rec above):
9178
9179 type Container (Big : Boolean) is record
9180 First : Rec;
9181 After : Integer;
9182 case Big is
9183 when True => Another : Integer;
9184 when False => null;
9185 end case;
9186 end record;
9187 My_Container : Container := (Big => False,
9188 First => (Empty => True),
9189 After => 42);
9190
9191 In that example, the compiler creates a PAD type for component First,
9192 whose size is constant, and then positions the component After just
9193 right after it. The offset of component After is therefore constant
9194 in this case.
9195
9196 The debugger computes the position of each field based on an algorithm
9197 that uses, among other things, the actual position and size of the field
21649b50
JB
9198 preceding it. Let's now imagine that the user is trying to print
9199 the value of My_Container. If the type fixing was recursive, we would
284614f0
JB
9200 end up computing the offset of field After based on the size of the
9201 fixed version of field First. And since in our example First has
9202 only one actual field, the size of the fixed type is actually smaller
9203 than the amount of space allocated to that field, and thus we would
9204 compute the wrong offset of field After.
9205
21649b50
JB
9206 To make things more complicated, we need to watch out for dynamic
9207 components of variant records (identified by the ___XVL suffix in
9208 the component name). Even if the target type is a PAD type, the size
9209 of that type might not be statically known. So the PAD type needs
9210 to be unwrapped and the resulting type needs to be fixed. Otherwise,
9211 we might end up with the wrong size for our component. This can be
9212 observed with the following type declarations:
284614f0
JB
9213
9214 type Octal is new Integer range 0 .. 7;
9215 type Octal_Array is array (Positive range <>) of Octal;
9216 pragma Pack (Octal_Array);
9217
9218 type Octal_Buffer (Size : Positive) is record
9219 Buffer : Octal_Array (1 .. Size);
9220 Length : Integer;
9221 end record;
9222
9223 In that case, Buffer is a PAD type whose size is unset and needs
9224 to be computed by fixing the unwrapped type.
9225
21649b50
JB
9226 4. When to ``Fix'' un-``Fixed'' sub-elements of an entity:
9227 ----------------------------------------------------------
9228
9229 Lastly, when should the sub-elements of an entity that remained unfixed
284614f0
JB
9230 thus far, be actually fixed?
9231
9232 The answer is: Only when referencing that element. For instance
9233 when selecting one component of a record, this specific component
9234 should be fixed at that point in time. Or when printing the value
9235 of a record, each component should be fixed before its value gets
9236 printed. Similarly for arrays, the element of the array should be
9237 fixed when printing each element of the array, or when extracting
9238 one element out of that array. On the other hand, fixing should
9239 not be performed on the elements when taking a slice of an array!
9240
9241 Note that one of the side-effects of miscomputing the offset and
9242 size of each field is that we end up also miscomputing the size
9243 of the containing type. This can have adverse results when computing
9244 the value of an entity. GDB fetches the value of an entity based
9245 on the size of its type, and thus a wrong size causes GDB to fetch
9246 the wrong amount of memory. In the case where the computed size is
9247 too small, GDB fetches too little data to print the value of our
9248 entiry. Results in this case as unpredicatble, as we usually read
9249 past the buffer containing the data =:-o. */
9250
9251/* Implement the evaluate_exp routine in the exp_descriptor structure
9252 for the Ada language. */
9253
52ce6436 9254static struct value *
ebf56fd3 9255ada_evaluate_subexp (struct type *expect_type, struct expression *exp,
4c4b4cd2 9256 int *pos, enum noside noside)
14f9c5c9
AS
9257{
9258 enum exp_opcode op;
b5385fc0 9259 int tem;
14f9c5c9
AS
9260 int pc;
9261 struct value *arg1 = NULL, *arg2 = NULL, *arg3;
9262 struct type *type;
52ce6436 9263 int nargs, oplen;
d2e4a39e 9264 struct value **argvec;
14f9c5c9 9265
d2e4a39e
AS
9266 pc = *pos;
9267 *pos += 1;
14f9c5c9
AS
9268 op = exp->elts[pc].opcode;
9269
d2e4a39e 9270 switch (op)
14f9c5c9
AS
9271 {
9272 default:
9273 *pos -= 1;
6e48bd2c
JB
9274 arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside);
9275 arg1 = unwrap_value (arg1);
9276
9277 /* If evaluating an OP_DOUBLE and an EXPECT_TYPE was provided,
9278 then we need to perform the conversion manually, because
9279 evaluate_subexp_standard doesn't do it. This conversion is
9280 necessary in Ada because the different kinds of float/fixed
9281 types in Ada have different representations.
9282
9283 Similarly, we need to perform the conversion from OP_LONG
9284 ourselves. */
9285 if ((op == OP_DOUBLE || op == OP_LONG) && expect_type != NULL)
9286 arg1 = ada_value_cast (expect_type, arg1, noside);
9287
9288 return arg1;
4c4b4cd2
PH
9289
9290 case OP_STRING:
9291 {
76a01679 9292 struct value *result;
5b4ee69b 9293
76a01679
JB
9294 *pos -= 1;
9295 result = evaluate_subexp_standard (expect_type, exp, pos, noside);
9296 /* The result type will have code OP_STRING, bashed there from
9297 OP_ARRAY. Bash it back. */
df407dfe
AC
9298 if (TYPE_CODE (value_type (result)) == TYPE_CODE_STRING)
9299 TYPE_CODE (value_type (result)) = TYPE_CODE_ARRAY;
76a01679 9300 return result;
4c4b4cd2 9301 }
14f9c5c9
AS
9302
9303 case UNOP_CAST:
9304 (*pos) += 2;
9305 type = exp->elts[pc + 1].type;
9306 arg1 = evaluate_subexp (type, exp, pos, noside);
9307 if (noside == EVAL_SKIP)
4c4b4cd2 9308 goto nosideret;
6e48bd2c 9309 arg1 = ada_value_cast (type, arg1, noside);
14f9c5c9
AS
9310 return arg1;
9311
4c4b4cd2
PH
9312 case UNOP_QUAL:
9313 (*pos) += 2;
9314 type = exp->elts[pc + 1].type;
9315 return ada_evaluate_subexp (type, exp, pos, noside);
9316
14f9c5c9
AS
9317 case BINOP_ASSIGN:
9318 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
52ce6436
PH
9319 if (exp->elts[*pos].opcode == OP_AGGREGATE)
9320 {
9321 arg1 = assign_aggregate (arg1, arg1, exp, pos, noside);
9322 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
9323 return arg1;
9324 return ada_value_assign (arg1, arg1);
9325 }
003f3813
JB
9326 /* Force the evaluation of the rhs ARG2 to the type of the lhs ARG1,
9327 except if the lhs of our assignment is a convenience variable.
9328 In the case of assigning to a convenience variable, the lhs
9329 should be exactly the result of the evaluation of the rhs. */
9330 type = value_type (arg1);
9331 if (VALUE_LVAL (arg1) == lval_internalvar)
9332 type = NULL;
9333 arg2 = evaluate_subexp (type, exp, pos, noside);
14f9c5c9 9334 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
4c4b4cd2 9335 return arg1;
df407dfe
AC
9336 if (ada_is_fixed_point_type (value_type (arg1)))
9337 arg2 = cast_to_fixed (value_type (arg1), arg2);
9338 else if (ada_is_fixed_point_type (value_type (arg2)))
76a01679 9339 error
323e0a4a 9340 (_("Fixed-point values must be assigned to fixed-point variables"));
d2e4a39e 9341 else
df407dfe 9342 arg2 = coerce_for_assign (value_type (arg1), arg2);
4c4b4cd2 9343 return ada_value_assign (arg1, arg2);
14f9c5c9
AS
9344
9345 case BINOP_ADD:
9346 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
9347 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
9348 if (noside == EVAL_SKIP)
4c4b4cd2 9349 goto nosideret;
2ac8a782
JB
9350 if (TYPE_CODE (value_type (arg1)) == TYPE_CODE_PTR)
9351 return (value_from_longest
9352 (value_type (arg1),
9353 value_as_long (arg1) + value_as_long (arg2)));
df407dfe
AC
9354 if ((ada_is_fixed_point_type (value_type (arg1))
9355 || ada_is_fixed_point_type (value_type (arg2)))
9356 && value_type (arg1) != value_type (arg2))
323e0a4a 9357 error (_("Operands of fixed-point addition must have the same type"));
b7789565
JB
9358 /* Do the addition, and cast the result to the type of the first
9359 argument. We cannot cast the result to a reference type, so if
9360 ARG1 is a reference type, find its underlying type. */
9361 type = value_type (arg1);
9362 while (TYPE_CODE (type) == TYPE_CODE_REF)
9363 type = TYPE_TARGET_TYPE (type);
f44316fa 9364 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
89eef114 9365 return value_cast (type, value_binop (arg1, arg2, BINOP_ADD));
14f9c5c9
AS
9366
9367 case BINOP_SUB:
9368 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
9369 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
9370 if (noside == EVAL_SKIP)
4c4b4cd2 9371 goto nosideret;
2ac8a782
JB
9372 if (TYPE_CODE (value_type (arg1)) == TYPE_CODE_PTR)
9373 return (value_from_longest
9374 (value_type (arg1),
9375 value_as_long (arg1) - value_as_long (arg2)));
df407dfe
AC
9376 if ((ada_is_fixed_point_type (value_type (arg1))
9377 || ada_is_fixed_point_type (value_type (arg2)))
9378 && value_type (arg1) != value_type (arg2))
0963b4bd
MS
9379 error (_("Operands of fixed-point subtraction "
9380 "must have the same type"));
b7789565
JB
9381 /* Do the substraction, and cast the result to the type of the first
9382 argument. We cannot cast the result to a reference type, so if
9383 ARG1 is a reference type, find its underlying type. */
9384 type = value_type (arg1);
9385 while (TYPE_CODE (type) == TYPE_CODE_REF)
9386 type = TYPE_TARGET_TYPE (type);
f44316fa 9387 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
89eef114 9388 return value_cast (type, value_binop (arg1, arg2, BINOP_SUB));
14f9c5c9
AS
9389
9390 case BINOP_MUL:
9391 case BINOP_DIV:
e1578042
JB
9392 case BINOP_REM:
9393 case BINOP_MOD:
14f9c5c9
AS
9394 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9395 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9396 if (noside == EVAL_SKIP)
4c4b4cd2 9397 goto nosideret;
e1578042 9398 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
9c2be529
JB
9399 {
9400 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9401 return value_zero (value_type (arg1), not_lval);
9402 }
14f9c5c9 9403 else
4c4b4cd2 9404 {
a53b7a21 9405 type = builtin_type (exp->gdbarch)->builtin_double;
df407dfe 9406 if (ada_is_fixed_point_type (value_type (arg1)))
a53b7a21 9407 arg1 = cast_from_fixed (type, arg1);
df407dfe 9408 if (ada_is_fixed_point_type (value_type (arg2)))
a53b7a21 9409 arg2 = cast_from_fixed (type, arg2);
f44316fa 9410 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
4c4b4cd2
PH
9411 return ada_value_binop (arg1, arg2, op);
9412 }
9413
4c4b4cd2
PH
9414 case BINOP_EQUAL:
9415 case BINOP_NOTEQUAL:
14f9c5c9 9416 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
df407dfe 9417 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
14f9c5c9 9418 if (noside == EVAL_SKIP)
76a01679 9419 goto nosideret;
4c4b4cd2 9420 if (noside == EVAL_AVOID_SIDE_EFFECTS)
76a01679 9421 tem = 0;
4c4b4cd2 9422 else
f44316fa
UW
9423 {
9424 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9425 tem = ada_value_equal (arg1, arg2);
9426 }
4c4b4cd2 9427 if (op == BINOP_NOTEQUAL)
76a01679 9428 tem = !tem;
fbb06eb1
UW
9429 type = language_bool_type (exp->language_defn, exp->gdbarch);
9430 return value_from_longest (type, (LONGEST) tem);
4c4b4cd2
PH
9431
9432 case UNOP_NEG:
9433 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9434 if (noside == EVAL_SKIP)
9435 goto nosideret;
df407dfe
AC
9436 else if (ada_is_fixed_point_type (value_type (arg1)))
9437 return value_cast (value_type (arg1), value_neg (arg1));
14f9c5c9 9438 else
f44316fa
UW
9439 {
9440 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
9441 return value_neg (arg1);
9442 }
4c4b4cd2 9443
2330c6c6
JB
9444 case BINOP_LOGICAL_AND:
9445 case BINOP_LOGICAL_OR:
9446 case UNOP_LOGICAL_NOT:
000d5124
JB
9447 {
9448 struct value *val;
9449
9450 *pos -= 1;
9451 val = evaluate_subexp_standard (expect_type, exp, pos, noside);
fbb06eb1
UW
9452 type = language_bool_type (exp->language_defn, exp->gdbarch);
9453 return value_cast (type, val);
000d5124 9454 }
2330c6c6
JB
9455
9456 case BINOP_BITWISE_AND:
9457 case BINOP_BITWISE_IOR:
9458 case BINOP_BITWISE_XOR:
000d5124
JB
9459 {
9460 struct value *val;
9461
9462 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
9463 *pos = pc;
9464 val = evaluate_subexp_standard (expect_type, exp, pos, noside);
9465
9466 return value_cast (value_type (arg1), val);
9467 }
2330c6c6 9468
14f9c5c9
AS
9469 case OP_VAR_VALUE:
9470 *pos -= 1;
6799def4 9471
14f9c5c9 9472 if (noside == EVAL_SKIP)
4c4b4cd2
PH
9473 {
9474 *pos += 4;
9475 goto nosideret;
9476 }
9477 else if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
76a01679
JB
9478 /* Only encountered when an unresolved symbol occurs in a
9479 context other than a function call, in which case, it is
52ce6436 9480 invalid. */
323e0a4a 9481 error (_("Unexpected unresolved symbol, %s, during evaluation"),
4c4b4cd2 9482 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
14f9c5c9 9483 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
4c4b4cd2 9484 {
0c1f74cf 9485 type = static_unwrap_type (SYMBOL_TYPE (exp->elts[pc + 2].symbol));
31dbc1c5
JB
9486 /* Check to see if this is a tagged type. We also need to handle
9487 the case where the type is a reference to a tagged type, but
9488 we have to be careful to exclude pointers to tagged types.
9489 The latter should be shown as usual (as a pointer), whereas
9490 a reference should mostly be transparent to the user. */
9491 if (ada_is_tagged_type (type, 0)
9492 || (TYPE_CODE(type) == TYPE_CODE_REF
9493 && ada_is_tagged_type (TYPE_TARGET_TYPE (type), 0)))
0c1f74cf
JB
9494 {
9495 /* Tagged types are a little special in the fact that the real
9496 type is dynamic and can only be determined by inspecting the
9497 object's tag. This means that we need to get the object's
9498 value first (EVAL_NORMAL) and then extract the actual object
9499 type from its tag.
9500
9501 Note that we cannot skip the final step where we extract
9502 the object type from its tag, because the EVAL_NORMAL phase
9503 results in dynamic components being resolved into fixed ones.
9504 This can cause problems when trying to print the type
9505 description of tagged types whose parent has a dynamic size:
9506 We use the type name of the "_parent" component in order
9507 to print the name of the ancestor type in the type description.
9508 If that component had a dynamic size, the resolution into
9509 a fixed type would result in the loss of that type name,
9510 thus preventing us from printing the name of the ancestor
9511 type in the type description. */
b79819ba
JB
9512 struct type *actual_type;
9513
0c1f74cf 9514 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_NORMAL);
b79819ba
JB
9515 actual_type = type_from_tag (ada_value_tag (arg1));
9516 if (actual_type == NULL)
9517 /* If, for some reason, we were unable to determine
9518 the actual type from the tag, then use the static
9519 approximation that we just computed as a fallback.
9520 This can happen if the debugging information is
9521 incomplete, for instance. */
9522 actual_type = type;
9523
9524 return value_zero (actual_type, not_lval);
0c1f74cf
JB
9525 }
9526
4c4b4cd2
PH
9527 *pos += 4;
9528 return value_zero
9529 (to_static_fixed_type
9530 (static_unwrap_type (SYMBOL_TYPE (exp->elts[pc + 2].symbol))),
9531 not_lval);
9532 }
d2e4a39e 9533 else
4c4b4cd2 9534 {
284614f0
JB
9535 arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside);
9536 arg1 = unwrap_value (arg1);
4c4b4cd2
PH
9537 return ada_to_fixed_value (arg1);
9538 }
9539
9540 case OP_FUNCALL:
9541 (*pos) += 2;
9542
9543 /* Allocate arg vector, including space for the function to be
9544 called in argvec[0] and a terminating NULL. */
9545 nargs = longest_to_int (exp->elts[pc + 1].longconst);
9546 argvec =
9547 (struct value **) alloca (sizeof (struct value *) * (nargs + 2));
9548
9549 if (exp->elts[*pos].opcode == OP_VAR_VALUE
76a01679 9550 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
323e0a4a 9551 error (_("Unexpected unresolved symbol, %s, during evaluation"),
4c4b4cd2
PH
9552 SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol));
9553 else
9554 {
9555 for (tem = 0; tem <= nargs; tem += 1)
9556 argvec[tem] = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9557 argvec[tem] = 0;
9558
9559 if (noside == EVAL_SKIP)
9560 goto nosideret;
9561 }
9562
ad82864c
JB
9563 if (ada_is_constrained_packed_array_type
9564 (desc_base_type (value_type (argvec[0]))))
4c4b4cd2 9565 argvec[0] = ada_coerce_to_simple_array (argvec[0]);
284614f0
JB
9566 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_ARRAY
9567 && TYPE_FIELD_BITSIZE (value_type (argvec[0]), 0) != 0)
9568 /* This is a packed array that has already been fixed, and
9569 therefore already coerced to a simple array. Nothing further
9570 to do. */
9571 ;
df407dfe
AC
9572 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_REF
9573 || (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_ARRAY
76a01679 9574 && VALUE_LVAL (argvec[0]) == lval_memory))
4c4b4cd2
PH
9575 argvec[0] = value_addr (argvec[0]);
9576
df407dfe 9577 type = ada_check_typedef (value_type (argvec[0]));
720d1a40
JB
9578
9579 /* Ada allows us to implicitly dereference arrays when subscripting
8f465ea7
JB
9580 them. So, if this is an array typedef (encoding use for array
9581 access types encoded as fat pointers), strip it now. */
720d1a40
JB
9582 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
9583 type = ada_typedef_target_type (type);
9584
4c4b4cd2
PH
9585 if (TYPE_CODE (type) == TYPE_CODE_PTR)
9586 {
61ee279c 9587 switch (TYPE_CODE (ada_check_typedef (TYPE_TARGET_TYPE (type))))
4c4b4cd2
PH
9588 {
9589 case TYPE_CODE_FUNC:
61ee279c 9590 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
4c4b4cd2
PH
9591 break;
9592 case TYPE_CODE_ARRAY:
9593 break;
9594 case TYPE_CODE_STRUCT:
9595 if (noside != EVAL_AVOID_SIDE_EFFECTS)
9596 argvec[0] = ada_value_ind (argvec[0]);
61ee279c 9597 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
4c4b4cd2
PH
9598 break;
9599 default:
323e0a4a 9600 error (_("cannot subscript or call something of type `%s'"),
df407dfe 9601 ada_type_name (value_type (argvec[0])));
4c4b4cd2
PH
9602 break;
9603 }
9604 }
9605
9606 switch (TYPE_CODE (type))
9607 {
9608 case TYPE_CODE_FUNC:
9609 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9610 return allocate_value (TYPE_TARGET_TYPE (type));
9611 return call_function_by_hand (argvec[0], nargs, argvec + 1);
9612 case TYPE_CODE_STRUCT:
9613 {
9614 int arity;
9615
4c4b4cd2
PH
9616 arity = ada_array_arity (type);
9617 type = ada_array_element_type (type, nargs);
9618 if (type == NULL)
323e0a4a 9619 error (_("cannot subscript or call a record"));
4c4b4cd2 9620 if (arity != nargs)
323e0a4a 9621 error (_("wrong number of subscripts; expecting %d"), arity);
4c4b4cd2 9622 if (noside == EVAL_AVOID_SIDE_EFFECTS)
0a07e705 9623 return value_zero (ada_aligned_type (type), lval_memory);
4c4b4cd2
PH
9624 return
9625 unwrap_value (ada_value_subscript
9626 (argvec[0], nargs, argvec + 1));
9627 }
9628 case TYPE_CODE_ARRAY:
9629 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9630 {
9631 type = ada_array_element_type (type, nargs);
9632 if (type == NULL)
323e0a4a 9633 error (_("element type of array unknown"));
4c4b4cd2 9634 else
0a07e705 9635 return value_zero (ada_aligned_type (type), lval_memory);
4c4b4cd2
PH
9636 }
9637 return
9638 unwrap_value (ada_value_subscript
9639 (ada_coerce_to_simple_array (argvec[0]),
9640 nargs, argvec + 1));
9641 case TYPE_CODE_PTR: /* Pointer to array */
9642 type = to_fixed_array_type (TYPE_TARGET_TYPE (type), NULL, 1);
9643 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9644 {
9645 type = ada_array_element_type (type, nargs);
9646 if (type == NULL)
323e0a4a 9647 error (_("element type of array unknown"));
4c4b4cd2 9648 else
0a07e705 9649 return value_zero (ada_aligned_type (type), lval_memory);
4c4b4cd2
PH
9650 }
9651 return
9652 unwrap_value (ada_value_ptr_subscript (argvec[0], type,
9653 nargs, argvec + 1));
9654
9655 default:
e1d5a0d2
PH
9656 error (_("Attempt to index or call something other than an "
9657 "array or function"));
4c4b4cd2
PH
9658 }
9659
9660 case TERNOP_SLICE:
9661 {
9662 struct value *array = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9663 struct value *low_bound_val =
9664 evaluate_subexp (NULL_TYPE, exp, pos, noside);
714e53ab
PH
9665 struct value *high_bound_val =
9666 evaluate_subexp (NULL_TYPE, exp, pos, noside);
9667 LONGEST low_bound;
9668 LONGEST high_bound;
5b4ee69b 9669
994b9211
AC
9670 low_bound_val = coerce_ref (low_bound_val);
9671 high_bound_val = coerce_ref (high_bound_val);
714e53ab
PH
9672 low_bound = pos_atr (low_bound_val);
9673 high_bound = pos_atr (high_bound_val);
963a6417 9674
4c4b4cd2
PH
9675 if (noside == EVAL_SKIP)
9676 goto nosideret;
9677
4c4b4cd2
PH
9678 /* If this is a reference to an aligner type, then remove all
9679 the aligners. */
df407dfe
AC
9680 if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF
9681 && ada_is_aligner_type (TYPE_TARGET_TYPE (value_type (array))))
9682 TYPE_TARGET_TYPE (value_type (array)) =
9683 ada_aligned_type (TYPE_TARGET_TYPE (value_type (array)));
4c4b4cd2 9684
ad82864c 9685 if (ada_is_constrained_packed_array_type (value_type (array)))
323e0a4a 9686 error (_("cannot slice a packed array"));
4c4b4cd2
PH
9687
9688 /* If this is a reference to an array or an array lvalue,
9689 convert to a pointer. */
df407dfe
AC
9690 if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF
9691 || (TYPE_CODE (value_type (array)) == TYPE_CODE_ARRAY
4c4b4cd2
PH
9692 && VALUE_LVAL (array) == lval_memory))
9693 array = value_addr (array);
9694
1265e4aa 9695 if (noside == EVAL_AVOID_SIDE_EFFECTS
61ee279c 9696 && ada_is_array_descriptor_type (ada_check_typedef
df407dfe 9697 (value_type (array))))
0b5d8877 9698 return empty_array (ada_type_of_array (array, 0), low_bound);
4c4b4cd2
PH
9699
9700 array = ada_coerce_to_simple_array_ptr (array);
9701
714e53ab
PH
9702 /* If we have more than one level of pointer indirection,
9703 dereference the value until we get only one level. */
df407dfe
AC
9704 while (TYPE_CODE (value_type (array)) == TYPE_CODE_PTR
9705 && (TYPE_CODE (TYPE_TARGET_TYPE (value_type (array)))
714e53ab
PH
9706 == TYPE_CODE_PTR))
9707 array = value_ind (array);
9708
9709 /* Make sure we really do have an array type before going further,
9710 to avoid a SEGV when trying to get the index type or the target
9711 type later down the road if the debug info generated by
9712 the compiler is incorrect or incomplete. */
df407dfe 9713 if (!ada_is_simple_array_type (value_type (array)))
323e0a4a 9714 error (_("cannot take slice of non-array"));
714e53ab 9715
828292f2
JB
9716 if (TYPE_CODE (ada_check_typedef (value_type (array)))
9717 == TYPE_CODE_PTR)
4c4b4cd2 9718 {
828292f2
JB
9719 struct type *type0 = ada_check_typedef (value_type (array));
9720
0b5d8877 9721 if (high_bound < low_bound || noside == EVAL_AVOID_SIDE_EFFECTS)
828292f2 9722 return empty_array (TYPE_TARGET_TYPE (type0), low_bound);
4c4b4cd2
PH
9723 else
9724 {
9725 struct type *arr_type0 =
828292f2 9726 to_fixed_array_type (TYPE_TARGET_TYPE (type0), NULL, 1);
5b4ee69b 9727
f5938064
JG
9728 return ada_value_slice_from_ptr (array, arr_type0,
9729 longest_to_int (low_bound),
9730 longest_to_int (high_bound));
4c4b4cd2
PH
9731 }
9732 }
9733 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
9734 return array;
9735 else if (high_bound < low_bound)
df407dfe 9736 return empty_array (value_type (array), low_bound);
4c4b4cd2 9737 else
529cad9c
PH
9738 return ada_value_slice (array, longest_to_int (low_bound),
9739 longest_to_int (high_bound));
4c4b4cd2 9740 }
14f9c5c9 9741
4c4b4cd2
PH
9742 case UNOP_IN_RANGE:
9743 (*pos) += 2;
9744 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8008e265 9745 type = check_typedef (exp->elts[pc + 1].type);
14f9c5c9 9746
14f9c5c9 9747 if (noside == EVAL_SKIP)
4c4b4cd2 9748 goto nosideret;
14f9c5c9 9749
4c4b4cd2
PH
9750 switch (TYPE_CODE (type))
9751 {
9752 default:
e1d5a0d2
PH
9753 lim_warning (_("Membership test incompletely implemented; "
9754 "always returns true"));
fbb06eb1
UW
9755 type = language_bool_type (exp->language_defn, exp->gdbarch);
9756 return value_from_longest (type, (LONGEST) 1);
4c4b4cd2
PH
9757
9758 case TYPE_CODE_RANGE:
030b4912
UW
9759 arg2 = value_from_longest (type, TYPE_LOW_BOUND (type));
9760 arg3 = value_from_longest (type, TYPE_HIGH_BOUND (type));
f44316fa
UW
9761 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9762 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
fbb06eb1
UW
9763 type = language_bool_type (exp->language_defn, exp->gdbarch);
9764 return
9765 value_from_longest (type,
4c4b4cd2
PH
9766 (value_less (arg1, arg3)
9767 || value_equal (arg1, arg3))
9768 && (value_less (arg2, arg1)
9769 || value_equal (arg2, arg1)));
9770 }
9771
9772 case BINOP_IN_BOUNDS:
14f9c5c9 9773 (*pos) += 2;
4c4b4cd2
PH
9774 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9775 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
14f9c5c9 9776
4c4b4cd2
PH
9777 if (noside == EVAL_SKIP)
9778 goto nosideret;
14f9c5c9 9779
4c4b4cd2 9780 if (noside == EVAL_AVOID_SIDE_EFFECTS)
fbb06eb1
UW
9781 {
9782 type = language_bool_type (exp->language_defn, exp->gdbarch);
9783 return value_zero (type, not_lval);
9784 }
14f9c5c9 9785
4c4b4cd2 9786 tem = longest_to_int (exp->elts[pc + 1].longconst);
14f9c5c9 9787
1eea4ebd
UW
9788 type = ada_index_type (value_type (arg2), tem, "range");
9789 if (!type)
9790 type = value_type (arg1);
14f9c5c9 9791
1eea4ebd
UW
9792 arg3 = value_from_longest (type, ada_array_bound (arg2, tem, 1));
9793 arg2 = value_from_longest (type, ada_array_bound (arg2, tem, 0));
d2e4a39e 9794
f44316fa
UW
9795 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9796 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
fbb06eb1 9797 type = language_bool_type (exp->language_defn, exp->gdbarch);
4c4b4cd2 9798 return
fbb06eb1 9799 value_from_longest (type,
4c4b4cd2
PH
9800 (value_less (arg1, arg3)
9801 || value_equal (arg1, arg3))
9802 && (value_less (arg2, arg1)
9803 || value_equal (arg2, arg1)));
9804
9805 case TERNOP_IN_RANGE:
9806 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9807 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9808 arg3 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9809
9810 if (noside == EVAL_SKIP)
9811 goto nosideret;
9812
f44316fa
UW
9813 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9814 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
fbb06eb1 9815 type = language_bool_type (exp->language_defn, exp->gdbarch);
4c4b4cd2 9816 return
fbb06eb1 9817 value_from_longest (type,
4c4b4cd2
PH
9818 (value_less (arg1, arg3)
9819 || value_equal (arg1, arg3))
9820 && (value_less (arg2, arg1)
9821 || value_equal (arg2, arg1)));
9822
9823 case OP_ATR_FIRST:
9824 case OP_ATR_LAST:
9825 case OP_ATR_LENGTH:
9826 {
76a01679 9827 struct type *type_arg;
5b4ee69b 9828
76a01679
JB
9829 if (exp->elts[*pos].opcode == OP_TYPE)
9830 {
9831 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
9832 arg1 = NULL;
5bc23cb3 9833 type_arg = check_typedef (exp->elts[pc + 2].type);
76a01679
JB
9834 }
9835 else
9836 {
9837 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9838 type_arg = NULL;
9839 }
9840
9841 if (exp->elts[*pos].opcode != OP_LONG)
323e0a4a 9842 error (_("Invalid operand to '%s"), ada_attribute_name (op));
76a01679
JB
9843 tem = longest_to_int (exp->elts[*pos + 2].longconst);
9844 *pos += 4;
9845
9846 if (noside == EVAL_SKIP)
9847 goto nosideret;
9848
9849 if (type_arg == NULL)
9850 {
9851 arg1 = ada_coerce_ref (arg1);
9852
ad82864c 9853 if (ada_is_constrained_packed_array_type (value_type (arg1)))
76a01679
JB
9854 arg1 = ada_coerce_to_simple_array (arg1);
9855
1eea4ebd
UW
9856 type = ada_index_type (value_type (arg1), tem,
9857 ada_attribute_name (op));
9858 if (type == NULL)
9859 type = builtin_type (exp->gdbarch)->builtin_int;
76a01679
JB
9860
9861 if (noside == EVAL_AVOID_SIDE_EFFECTS)
1eea4ebd 9862 return allocate_value (type);
76a01679
JB
9863
9864 switch (op)
9865 {
9866 default: /* Should never happen. */
323e0a4a 9867 error (_("unexpected attribute encountered"));
76a01679 9868 case OP_ATR_FIRST:
1eea4ebd
UW
9869 return value_from_longest
9870 (type, ada_array_bound (arg1, tem, 0));
76a01679 9871 case OP_ATR_LAST:
1eea4ebd
UW
9872 return value_from_longest
9873 (type, ada_array_bound (arg1, tem, 1));
76a01679 9874 case OP_ATR_LENGTH:
1eea4ebd
UW
9875 return value_from_longest
9876 (type, ada_array_length (arg1, tem));
76a01679
JB
9877 }
9878 }
9879 else if (discrete_type_p (type_arg))
9880 {
9881 struct type *range_type;
9882 char *name = ada_type_name (type_arg);
5b4ee69b 9883
76a01679
JB
9884 range_type = NULL;
9885 if (name != NULL && TYPE_CODE (type_arg) != TYPE_CODE_ENUM)
28c85d6c 9886 range_type = to_fixed_range_type (type_arg, NULL);
76a01679
JB
9887 if (range_type == NULL)
9888 range_type = type_arg;
9889 switch (op)
9890 {
9891 default:
323e0a4a 9892 error (_("unexpected attribute encountered"));
76a01679 9893 case OP_ATR_FIRST:
690cc4eb 9894 return value_from_longest
43bbcdc2 9895 (range_type, ada_discrete_type_low_bound (range_type));
76a01679 9896 case OP_ATR_LAST:
690cc4eb 9897 return value_from_longest
43bbcdc2 9898 (range_type, ada_discrete_type_high_bound (range_type));
76a01679 9899 case OP_ATR_LENGTH:
323e0a4a 9900 error (_("the 'length attribute applies only to array types"));
76a01679
JB
9901 }
9902 }
9903 else if (TYPE_CODE (type_arg) == TYPE_CODE_FLT)
323e0a4a 9904 error (_("unimplemented type attribute"));
76a01679
JB
9905 else
9906 {
9907 LONGEST low, high;
9908
ad82864c
JB
9909 if (ada_is_constrained_packed_array_type (type_arg))
9910 type_arg = decode_constrained_packed_array_type (type_arg);
76a01679 9911
1eea4ebd 9912 type = ada_index_type (type_arg, tem, ada_attribute_name (op));
76a01679 9913 if (type == NULL)
1eea4ebd
UW
9914 type = builtin_type (exp->gdbarch)->builtin_int;
9915
76a01679
JB
9916 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9917 return allocate_value (type);
9918
9919 switch (op)
9920 {
9921 default:
323e0a4a 9922 error (_("unexpected attribute encountered"));
76a01679 9923 case OP_ATR_FIRST:
1eea4ebd 9924 low = ada_array_bound_from_type (type_arg, tem, 0);
76a01679
JB
9925 return value_from_longest (type, low);
9926 case OP_ATR_LAST:
1eea4ebd 9927 high = ada_array_bound_from_type (type_arg, tem, 1);
76a01679
JB
9928 return value_from_longest (type, high);
9929 case OP_ATR_LENGTH:
1eea4ebd
UW
9930 low = ada_array_bound_from_type (type_arg, tem, 0);
9931 high = ada_array_bound_from_type (type_arg, tem, 1);
76a01679
JB
9932 return value_from_longest (type, high - low + 1);
9933 }
9934 }
14f9c5c9
AS
9935 }
9936
4c4b4cd2
PH
9937 case OP_ATR_TAG:
9938 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9939 if (noside == EVAL_SKIP)
76a01679 9940 goto nosideret;
4c4b4cd2
PH
9941
9942 if (noside == EVAL_AVOID_SIDE_EFFECTS)
76a01679 9943 return value_zero (ada_tag_type (arg1), not_lval);
4c4b4cd2
PH
9944
9945 return ada_value_tag (arg1);
9946
9947 case OP_ATR_MIN:
9948 case OP_ATR_MAX:
9949 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
14f9c5c9
AS
9950 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9951 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9952 if (noside == EVAL_SKIP)
76a01679 9953 goto nosideret;
d2e4a39e 9954 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
df407dfe 9955 return value_zero (value_type (arg1), not_lval);
14f9c5c9 9956 else
f44316fa
UW
9957 {
9958 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9959 return value_binop (arg1, arg2,
9960 op == OP_ATR_MIN ? BINOP_MIN : BINOP_MAX);
9961 }
14f9c5c9 9962
4c4b4cd2
PH
9963 case OP_ATR_MODULUS:
9964 {
31dedfee 9965 struct type *type_arg = check_typedef (exp->elts[pc + 2].type);
4c4b4cd2 9966
5b4ee69b 9967 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
76a01679
JB
9968 if (noside == EVAL_SKIP)
9969 goto nosideret;
4c4b4cd2 9970
76a01679 9971 if (!ada_is_modular_type (type_arg))
323e0a4a 9972 error (_("'modulus must be applied to modular type"));
4c4b4cd2 9973
76a01679
JB
9974 return value_from_longest (TYPE_TARGET_TYPE (type_arg),
9975 ada_modulus (type_arg));
4c4b4cd2
PH
9976 }
9977
9978
9979 case OP_ATR_POS:
9980 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
14f9c5c9
AS
9981 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9982 if (noside == EVAL_SKIP)
76a01679 9983 goto nosideret;
3cb382c9
UW
9984 type = builtin_type (exp->gdbarch)->builtin_int;
9985 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9986 return value_zero (type, not_lval);
14f9c5c9 9987 else
3cb382c9 9988 return value_pos_atr (type, arg1);
14f9c5c9 9989
4c4b4cd2
PH
9990 case OP_ATR_SIZE:
9991 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8c1c099f
JB
9992 type = value_type (arg1);
9993
9994 /* If the argument is a reference, then dereference its type, since
9995 the user is really asking for the size of the actual object,
9996 not the size of the pointer. */
9997 if (TYPE_CODE (type) == TYPE_CODE_REF)
9998 type = TYPE_TARGET_TYPE (type);
9999
4c4b4cd2 10000 if (noside == EVAL_SKIP)
76a01679 10001 goto nosideret;
4c4b4cd2 10002 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
22601c15 10003 return value_zero (builtin_type (exp->gdbarch)->builtin_int, not_lval);
4c4b4cd2 10004 else
22601c15 10005 return value_from_longest (builtin_type (exp->gdbarch)->builtin_int,
8c1c099f 10006 TARGET_CHAR_BIT * TYPE_LENGTH (type));
4c4b4cd2
PH
10007
10008 case OP_ATR_VAL:
10009 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
14f9c5c9 10010 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
4c4b4cd2 10011 type = exp->elts[pc + 2].type;
14f9c5c9 10012 if (noside == EVAL_SKIP)
76a01679 10013 goto nosideret;
4c4b4cd2 10014 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
76a01679 10015 return value_zero (type, not_lval);
4c4b4cd2 10016 else
76a01679 10017 return value_val_atr (type, arg1);
4c4b4cd2
PH
10018
10019 case BINOP_EXP:
10020 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10021 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10022 if (noside == EVAL_SKIP)
10023 goto nosideret;
10024 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
df407dfe 10025 return value_zero (value_type (arg1), not_lval);
4c4b4cd2 10026 else
f44316fa
UW
10027 {
10028 /* For integer exponentiation operations,
10029 only promote the first argument. */
10030 if (is_integral_type (value_type (arg2)))
10031 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
10032 else
10033 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10034
10035 return value_binop (arg1, arg2, op);
10036 }
4c4b4cd2
PH
10037
10038 case UNOP_PLUS:
10039 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10040 if (noside == EVAL_SKIP)
10041 goto nosideret;
10042 else
10043 return arg1;
10044
10045 case UNOP_ABS:
10046 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10047 if (noside == EVAL_SKIP)
10048 goto nosideret;
f44316fa 10049 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
df407dfe 10050 if (value_less (arg1, value_zero (value_type (arg1), not_lval)))
4c4b4cd2 10051 return value_neg (arg1);
14f9c5c9 10052 else
4c4b4cd2 10053 return arg1;
14f9c5c9
AS
10054
10055 case UNOP_IND:
6b0d7253 10056 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
14f9c5c9 10057 if (noside == EVAL_SKIP)
4c4b4cd2 10058 goto nosideret;
df407dfe 10059 type = ada_check_typedef (value_type (arg1));
14f9c5c9 10060 if (noside == EVAL_AVOID_SIDE_EFFECTS)
4c4b4cd2
PH
10061 {
10062 if (ada_is_array_descriptor_type (type))
10063 /* GDB allows dereferencing GNAT array descriptors. */
10064 {
10065 struct type *arrType = ada_type_of_array (arg1, 0);
5b4ee69b 10066
4c4b4cd2 10067 if (arrType == NULL)
323e0a4a 10068 error (_("Attempt to dereference null array pointer."));
00a4c844 10069 return value_at_lazy (arrType, 0);
4c4b4cd2
PH
10070 }
10071 else if (TYPE_CODE (type) == TYPE_CODE_PTR
10072 || TYPE_CODE (type) == TYPE_CODE_REF
10073 /* In C you can dereference an array to get the 1st elt. */
10074 || TYPE_CODE (type) == TYPE_CODE_ARRAY)
714e53ab
PH
10075 {
10076 type = to_static_fixed_type
10077 (ada_aligned_type
10078 (ada_check_typedef (TYPE_TARGET_TYPE (type))));
10079 check_size (type);
10080 return value_zero (type, lval_memory);
10081 }
4c4b4cd2 10082 else if (TYPE_CODE (type) == TYPE_CODE_INT)
6b0d7253
JB
10083 {
10084 /* GDB allows dereferencing an int. */
10085 if (expect_type == NULL)
10086 return value_zero (builtin_type (exp->gdbarch)->builtin_int,
10087 lval_memory);
10088 else
10089 {
10090 expect_type =
10091 to_static_fixed_type (ada_aligned_type (expect_type));
10092 return value_zero (expect_type, lval_memory);
10093 }
10094 }
4c4b4cd2 10095 else
323e0a4a 10096 error (_("Attempt to take contents of a non-pointer value."));
4c4b4cd2 10097 }
0963b4bd 10098 arg1 = ada_coerce_ref (arg1); /* FIXME: What is this for?? */
df407dfe 10099 type = ada_check_typedef (value_type (arg1));
d2e4a39e 10100
96967637
JB
10101 if (TYPE_CODE (type) == TYPE_CODE_INT)
10102 /* GDB allows dereferencing an int. If we were given
10103 the expect_type, then use that as the target type.
10104 Otherwise, assume that the target type is an int. */
10105 {
10106 if (expect_type != NULL)
10107 return ada_value_ind (value_cast (lookup_pointer_type (expect_type),
10108 arg1));
10109 else
10110 return value_at_lazy (builtin_type (exp->gdbarch)->builtin_int,
10111 (CORE_ADDR) value_as_address (arg1));
10112 }
6b0d7253 10113
4c4b4cd2
PH
10114 if (ada_is_array_descriptor_type (type))
10115 /* GDB allows dereferencing GNAT array descriptors. */
10116 return ada_coerce_to_simple_array (arg1);
14f9c5c9 10117 else
4c4b4cd2 10118 return ada_value_ind (arg1);
14f9c5c9
AS
10119
10120 case STRUCTOP_STRUCT:
10121 tem = longest_to_int (exp->elts[pc + 1].longconst);
10122 (*pos) += 3 + BYTES_TO_EXP_ELEM (tem + 1);
10123 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10124 if (noside == EVAL_SKIP)
4c4b4cd2 10125 goto nosideret;
14f9c5c9 10126 if (noside == EVAL_AVOID_SIDE_EFFECTS)
76a01679 10127 {
df407dfe 10128 struct type *type1 = value_type (arg1);
5b4ee69b 10129
76a01679
JB
10130 if (ada_is_tagged_type (type1, 1))
10131 {
10132 type = ada_lookup_struct_elt_type (type1,
10133 &exp->elts[pc + 2].string,
10134 1, 1, NULL);
10135 if (type == NULL)
10136 /* In this case, we assume that the field COULD exist
10137 in some extension of the type. Return an object of
10138 "type" void, which will match any formal
0963b4bd 10139 (see ada_type_match). */
30b15541
UW
10140 return value_zero (builtin_type (exp->gdbarch)->builtin_void,
10141 lval_memory);
76a01679
JB
10142 }
10143 else
10144 type =
10145 ada_lookup_struct_elt_type (type1, &exp->elts[pc + 2].string, 1,
10146 0, NULL);
10147
10148 return value_zero (ada_aligned_type (type), lval_memory);
10149 }
14f9c5c9 10150 else
284614f0
JB
10151 arg1 = ada_value_struct_elt (arg1, &exp->elts[pc + 2].string, 0);
10152 arg1 = unwrap_value (arg1);
10153 return ada_to_fixed_value (arg1);
10154
14f9c5c9 10155 case OP_TYPE:
4c4b4cd2
PH
10156 /* The value is not supposed to be used. This is here to make it
10157 easier to accommodate expressions that contain types. */
14f9c5c9
AS
10158 (*pos) += 2;
10159 if (noside == EVAL_SKIP)
4c4b4cd2 10160 goto nosideret;
14f9c5c9 10161 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
a6cfbe68 10162 return allocate_value (exp->elts[pc + 1].type);
14f9c5c9 10163 else
323e0a4a 10164 error (_("Attempt to use a type name as an expression"));
52ce6436
PH
10165
10166 case OP_AGGREGATE:
10167 case OP_CHOICES:
10168 case OP_OTHERS:
10169 case OP_DISCRETE_RANGE:
10170 case OP_POSITIONAL:
10171 case OP_NAME:
10172 if (noside == EVAL_NORMAL)
10173 switch (op)
10174 {
10175 case OP_NAME:
10176 error (_("Undefined name, ambiguous name, or renaming used in "
e1d5a0d2 10177 "component association: %s."), &exp->elts[pc+2].string);
52ce6436
PH
10178 case OP_AGGREGATE:
10179 error (_("Aggregates only allowed on the right of an assignment"));
10180 default:
0963b4bd
MS
10181 internal_error (__FILE__, __LINE__,
10182 _("aggregate apparently mangled"));
52ce6436
PH
10183 }
10184
10185 ada_forward_operator_length (exp, pc, &oplen, &nargs);
10186 *pos += oplen - 1;
10187 for (tem = 0; tem < nargs; tem += 1)
10188 ada_evaluate_subexp (NULL, exp, pos, noside);
10189 goto nosideret;
14f9c5c9
AS
10190 }
10191
10192nosideret:
22601c15 10193 return value_from_longest (builtin_type (exp->gdbarch)->builtin_int, 1);
14f9c5c9 10194}
14f9c5c9 10195\f
d2e4a39e 10196
4c4b4cd2 10197 /* Fixed point */
14f9c5c9
AS
10198
10199/* If TYPE encodes an Ada fixed-point type, return the suffix of the
10200 type name that encodes the 'small and 'delta information.
4c4b4cd2 10201 Otherwise, return NULL. */
14f9c5c9 10202
d2e4a39e 10203static const char *
ebf56fd3 10204fixed_type_info (struct type *type)
14f9c5c9 10205{
d2e4a39e 10206 const char *name = ada_type_name (type);
14f9c5c9
AS
10207 enum type_code code = (type == NULL) ? TYPE_CODE_UNDEF : TYPE_CODE (type);
10208
d2e4a39e
AS
10209 if ((code == TYPE_CODE_INT || code == TYPE_CODE_RANGE) && name != NULL)
10210 {
14f9c5c9 10211 const char *tail = strstr (name, "___XF_");
5b4ee69b 10212
14f9c5c9 10213 if (tail == NULL)
4c4b4cd2 10214 return NULL;
d2e4a39e 10215 else
4c4b4cd2 10216 return tail + 5;
14f9c5c9
AS
10217 }
10218 else if (code == TYPE_CODE_RANGE && TYPE_TARGET_TYPE (type) != type)
10219 return fixed_type_info (TYPE_TARGET_TYPE (type));
10220 else
10221 return NULL;
10222}
10223
4c4b4cd2 10224/* Returns non-zero iff TYPE represents an Ada fixed-point type. */
14f9c5c9
AS
10225
10226int
ebf56fd3 10227ada_is_fixed_point_type (struct type *type)
14f9c5c9
AS
10228{
10229 return fixed_type_info (type) != NULL;
10230}
10231
4c4b4cd2
PH
10232/* Return non-zero iff TYPE represents a System.Address type. */
10233
10234int
10235ada_is_system_address_type (struct type *type)
10236{
10237 return (TYPE_NAME (type)
10238 && strcmp (TYPE_NAME (type), "system__address") == 0);
10239}
10240
14f9c5c9
AS
10241/* Assuming that TYPE is the representation of an Ada fixed-point
10242 type, return its delta, or -1 if the type is malformed and the
4c4b4cd2 10243 delta cannot be determined. */
14f9c5c9
AS
10244
10245DOUBLEST
ebf56fd3 10246ada_delta (struct type *type)
14f9c5c9
AS
10247{
10248 const char *encoding = fixed_type_info (type);
facc390f 10249 DOUBLEST num, den;
14f9c5c9 10250
facc390f
JB
10251 /* Strictly speaking, num and den are encoded as integer. However,
10252 they may not fit into a long, and they will have to be converted
10253 to DOUBLEST anyway. So scan them as DOUBLEST. */
10254 if (sscanf (encoding, "_%" DOUBLEST_SCAN_FORMAT "_%" DOUBLEST_SCAN_FORMAT,
10255 &num, &den) < 2)
14f9c5c9 10256 return -1.0;
d2e4a39e 10257 else
facc390f 10258 return num / den;
14f9c5c9
AS
10259}
10260
10261/* Assuming that ada_is_fixed_point_type (TYPE), return the scaling
4c4b4cd2 10262 factor ('SMALL value) associated with the type. */
14f9c5c9
AS
10263
10264static DOUBLEST
ebf56fd3 10265scaling_factor (struct type *type)
14f9c5c9
AS
10266{
10267 const char *encoding = fixed_type_info (type);
facc390f 10268 DOUBLEST num0, den0, num1, den1;
14f9c5c9 10269 int n;
d2e4a39e 10270
facc390f
JB
10271 /* Strictly speaking, num's and den's are encoded as integer. However,
10272 they may not fit into a long, and they will have to be converted
10273 to DOUBLEST anyway. So scan them as DOUBLEST. */
10274 n = sscanf (encoding,
10275 "_%" DOUBLEST_SCAN_FORMAT "_%" DOUBLEST_SCAN_FORMAT
10276 "_%" DOUBLEST_SCAN_FORMAT "_%" DOUBLEST_SCAN_FORMAT,
10277 &num0, &den0, &num1, &den1);
14f9c5c9
AS
10278
10279 if (n < 2)
10280 return 1.0;
10281 else if (n == 4)
facc390f 10282 return num1 / den1;
d2e4a39e 10283 else
facc390f 10284 return num0 / den0;
14f9c5c9
AS
10285}
10286
10287
10288/* Assuming that X is the representation of a value of fixed-point
4c4b4cd2 10289 type TYPE, return its floating-point equivalent. */
14f9c5c9
AS
10290
10291DOUBLEST
ebf56fd3 10292ada_fixed_to_float (struct type *type, LONGEST x)
14f9c5c9 10293{
d2e4a39e 10294 return (DOUBLEST) x *scaling_factor (type);
14f9c5c9
AS
10295}
10296
4c4b4cd2
PH
10297/* The representation of a fixed-point value of type TYPE
10298 corresponding to the value X. */
14f9c5c9
AS
10299
10300LONGEST
ebf56fd3 10301ada_float_to_fixed (struct type *type, DOUBLEST x)
14f9c5c9
AS
10302{
10303 return (LONGEST) (x / scaling_factor (type) + 0.5);
10304}
10305
14f9c5c9 10306\f
d2e4a39e 10307
4c4b4cd2 10308 /* Range types */
14f9c5c9
AS
10309
10310/* Scan STR beginning at position K for a discriminant name, and
10311 return the value of that discriminant field of DVAL in *PX. If
10312 PNEW_K is not null, put the position of the character beyond the
10313 name scanned in *PNEW_K. Return 1 if successful; return 0 and do
4c4b4cd2 10314 not alter *PX and *PNEW_K if unsuccessful. */
14f9c5c9
AS
10315
10316static int
07d8f827 10317scan_discrim_bound (char *str, int k, struct value *dval, LONGEST * px,
76a01679 10318 int *pnew_k)
14f9c5c9
AS
10319{
10320 static char *bound_buffer = NULL;
10321 static size_t bound_buffer_len = 0;
10322 char *bound;
10323 char *pend;
d2e4a39e 10324 struct value *bound_val;
14f9c5c9
AS
10325
10326 if (dval == NULL || str == NULL || str[k] == '\0')
10327 return 0;
10328
d2e4a39e 10329 pend = strstr (str + k, "__");
14f9c5c9
AS
10330 if (pend == NULL)
10331 {
d2e4a39e 10332 bound = str + k;
14f9c5c9
AS
10333 k += strlen (bound);
10334 }
d2e4a39e 10335 else
14f9c5c9 10336 {
d2e4a39e 10337 GROW_VECT (bound_buffer, bound_buffer_len, pend - (str + k) + 1);
14f9c5c9 10338 bound = bound_buffer;
d2e4a39e
AS
10339 strncpy (bound_buffer, str + k, pend - (str + k));
10340 bound[pend - (str + k)] = '\0';
10341 k = pend - str;
14f9c5c9 10342 }
d2e4a39e 10343
df407dfe 10344 bound_val = ada_search_struct_field (bound, dval, 0, value_type (dval));
14f9c5c9
AS
10345 if (bound_val == NULL)
10346 return 0;
10347
10348 *px = value_as_long (bound_val);
10349 if (pnew_k != NULL)
10350 *pnew_k = k;
10351 return 1;
10352}
10353
10354/* Value of variable named NAME in the current environment. If
10355 no such variable found, then if ERR_MSG is null, returns 0, and
4c4b4cd2
PH
10356 otherwise causes an error with message ERR_MSG. */
10357
d2e4a39e
AS
10358static struct value *
10359get_var_value (char *name, char *err_msg)
14f9c5c9 10360{
4c4b4cd2 10361 struct ada_symbol_info *syms;
14f9c5c9
AS
10362 int nsyms;
10363
4c4b4cd2 10364 nsyms = ada_lookup_symbol_list (name, get_selected_block (0), VAR_DOMAIN,
d9680e73 10365 &syms, 1);
14f9c5c9
AS
10366
10367 if (nsyms != 1)
10368 {
10369 if (err_msg == NULL)
4c4b4cd2 10370 return 0;
14f9c5c9 10371 else
8a3fe4f8 10372 error (("%s"), err_msg);
14f9c5c9
AS
10373 }
10374
4c4b4cd2 10375 return value_of_variable (syms[0].sym, syms[0].block);
14f9c5c9 10376}
d2e4a39e 10377
14f9c5c9 10378/* Value of integer variable named NAME in the current environment. If
4c4b4cd2
PH
10379 no such variable found, returns 0, and sets *FLAG to 0. If
10380 successful, sets *FLAG to 1. */
10381
14f9c5c9 10382LONGEST
4c4b4cd2 10383get_int_var_value (char *name, int *flag)
14f9c5c9 10384{
4c4b4cd2 10385 struct value *var_val = get_var_value (name, 0);
d2e4a39e 10386
14f9c5c9
AS
10387 if (var_val == 0)
10388 {
10389 if (flag != NULL)
4c4b4cd2 10390 *flag = 0;
14f9c5c9
AS
10391 return 0;
10392 }
10393 else
10394 {
10395 if (flag != NULL)
4c4b4cd2 10396 *flag = 1;
14f9c5c9
AS
10397 return value_as_long (var_val);
10398 }
10399}
d2e4a39e 10400
14f9c5c9
AS
10401
10402/* Return a range type whose base type is that of the range type named
10403 NAME in the current environment, and whose bounds are calculated
4c4b4cd2 10404 from NAME according to the GNAT range encoding conventions.
1ce677a4
UW
10405 Extract discriminant values, if needed, from DVAL. ORIG_TYPE is the
10406 corresponding range type from debug information; fall back to using it
10407 if symbol lookup fails. If a new type must be created, allocate it
10408 like ORIG_TYPE was. The bounds information, in general, is encoded
10409 in NAME, the base type given in the named range type. */
14f9c5c9 10410
d2e4a39e 10411static struct type *
28c85d6c 10412to_fixed_range_type (struct type *raw_type, struct value *dval)
14f9c5c9 10413{
28c85d6c 10414 char *name;
14f9c5c9 10415 struct type *base_type;
d2e4a39e 10416 char *subtype_info;
14f9c5c9 10417
28c85d6c
JB
10418 gdb_assert (raw_type != NULL);
10419 gdb_assert (TYPE_NAME (raw_type) != NULL);
dddfab26 10420
1ce677a4 10421 if (TYPE_CODE (raw_type) == TYPE_CODE_RANGE)
14f9c5c9
AS
10422 base_type = TYPE_TARGET_TYPE (raw_type);
10423 else
10424 base_type = raw_type;
10425
28c85d6c 10426 name = TYPE_NAME (raw_type);
14f9c5c9
AS
10427 subtype_info = strstr (name, "___XD");
10428 if (subtype_info == NULL)
690cc4eb 10429 {
43bbcdc2
PH
10430 LONGEST L = ada_discrete_type_low_bound (raw_type);
10431 LONGEST U = ada_discrete_type_high_bound (raw_type);
5b4ee69b 10432
690cc4eb
PH
10433 if (L < INT_MIN || U > INT_MAX)
10434 return raw_type;
10435 else
28c85d6c 10436 return create_range_type (alloc_type_copy (raw_type), raw_type,
43bbcdc2
PH
10437 ada_discrete_type_low_bound (raw_type),
10438 ada_discrete_type_high_bound (raw_type));
690cc4eb 10439 }
14f9c5c9
AS
10440 else
10441 {
10442 static char *name_buf = NULL;
10443 static size_t name_len = 0;
10444 int prefix_len = subtype_info - name;
10445 LONGEST L, U;
10446 struct type *type;
10447 char *bounds_str;
10448 int n;
10449
10450 GROW_VECT (name_buf, name_len, prefix_len + 5);
10451 strncpy (name_buf, name, prefix_len);
10452 name_buf[prefix_len] = '\0';
10453
10454 subtype_info += 5;
10455 bounds_str = strchr (subtype_info, '_');
10456 n = 1;
10457
d2e4a39e 10458 if (*subtype_info == 'L')
4c4b4cd2
PH
10459 {
10460 if (!ada_scan_number (bounds_str, n, &L, &n)
10461 && !scan_discrim_bound (bounds_str, n, dval, &L, &n))
10462 return raw_type;
10463 if (bounds_str[n] == '_')
10464 n += 2;
0963b4bd 10465 else if (bounds_str[n] == '.') /* FIXME? SGI Workshop kludge. */
4c4b4cd2
PH
10466 n += 1;
10467 subtype_info += 1;
10468 }
d2e4a39e 10469 else
4c4b4cd2
PH
10470 {
10471 int ok;
5b4ee69b 10472
4c4b4cd2
PH
10473 strcpy (name_buf + prefix_len, "___L");
10474 L = get_int_var_value (name_buf, &ok);
10475 if (!ok)
10476 {
323e0a4a 10477 lim_warning (_("Unknown lower bound, using 1."));
4c4b4cd2
PH
10478 L = 1;
10479 }
10480 }
14f9c5c9 10481
d2e4a39e 10482 if (*subtype_info == 'U')
4c4b4cd2
PH
10483 {
10484 if (!ada_scan_number (bounds_str, n, &U, &n)
10485 && !scan_discrim_bound (bounds_str, n, dval, &U, &n))
10486 return raw_type;
10487 }
d2e4a39e 10488 else
4c4b4cd2
PH
10489 {
10490 int ok;
5b4ee69b 10491
4c4b4cd2
PH
10492 strcpy (name_buf + prefix_len, "___U");
10493 U = get_int_var_value (name_buf, &ok);
10494 if (!ok)
10495 {
323e0a4a 10496 lim_warning (_("Unknown upper bound, using %ld."), (long) L);
4c4b4cd2
PH
10497 U = L;
10498 }
10499 }
14f9c5c9 10500
28c85d6c 10501 type = create_range_type (alloc_type_copy (raw_type), base_type, L, U);
d2e4a39e 10502 TYPE_NAME (type) = name;
14f9c5c9
AS
10503 return type;
10504 }
10505}
10506
4c4b4cd2
PH
10507/* True iff NAME is the name of a range type. */
10508
14f9c5c9 10509int
d2e4a39e 10510ada_is_range_type_name (const char *name)
14f9c5c9
AS
10511{
10512 return (name != NULL && strstr (name, "___XD"));
d2e4a39e 10513}
14f9c5c9 10514\f
d2e4a39e 10515
4c4b4cd2
PH
10516 /* Modular types */
10517
10518/* True iff TYPE is an Ada modular type. */
14f9c5c9 10519
14f9c5c9 10520int
d2e4a39e 10521ada_is_modular_type (struct type *type)
14f9c5c9 10522{
18af8284 10523 struct type *subranged_type = get_base_type (type);
14f9c5c9
AS
10524
10525 return (subranged_type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE
690cc4eb 10526 && TYPE_CODE (subranged_type) == TYPE_CODE_INT
4c4b4cd2 10527 && TYPE_UNSIGNED (subranged_type));
14f9c5c9
AS
10528}
10529
0056e4d5
JB
10530/* Try to determine the lower and upper bounds of the given modular type
10531 using the type name only. Return non-zero and set L and U as the lower
10532 and upper bounds (respectively) if successful. */
10533
10534int
10535ada_modulus_from_name (struct type *type, ULONGEST *modulus)
10536{
10537 char *name = ada_type_name (type);
10538 char *suffix;
10539 int k;
10540 LONGEST U;
10541
10542 if (name == NULL)
10543 return 0;
10544
10545 /* Discrete type bounds are encoded using an __XD suffix. In our case,
10546 we are looking for static bounds, which means an __XDLU suffix.
10547 Moreover, we know that the lower bound of modular types is always
10548 zero, so the actual suffix should start with "__XDLU_0__", and
10549 then be followed by the upper bound value. */
10550 suffix = strstr (name, "__XDLU_0__");
10551 if (suffix == NULL)
10552 return 0;
10553 k = 10;
10554 if (!ada_scan_number (suffix, k, &U, NULL))
10555 return 0;
10556
10557 *modulus = (ULONGEST) U + 1;
10558 return 1;
10559}
10560
4c4b4cd2
PH
10561/* Assuming ada_is_modular_type (TYPE), the modulus of TYPE. */
10562
61ee279c 10563ULONGEST
0056e4d5 10564ada_modulus (struct type *type)
14f9c5c9 10565{
43bbcdc2 10566 return (ULONGEST) TYPE_HIGH_BOUND (type) + 1;
14f9c5c9 10567}
d2e4a39e 10568\f
f7f9143b
JB
10569
10570/* Ada exception catchpoint support:
10571 ---------------------------------
10572
10573 We support 3 kinds of exception catchpoints:
10574 . catchpoints on Ada exceptions
10575 . catchpoints on unhandled Ada exceptions
10576 . catchpoints on failed assertions
10577
10578 Exceptions raised during failed assertions, or unhandled exceptions
10579 could perfectly be caught with the general catchpoint on Ada exceptions.
10580 However, we can easily differentiate these two special cases, and having
10581 the option to distinguish these two cases from the rest can be useful
10582 to zero-in on certain situations.
10583
10584 Exception catchpoints are a specialized form of breakpoint,
10585 since they rely on inserting breakpoints inside known routines
10586 of the GNAT runtime. The implementation therefore uses a standard
10587 breakpoint structure of the BP_BREAKPOINT type, but with its own set
10588 of breakpoint_ops.
10589
0259addd
JB
10590 Support in the runtime for exception catchpoints have been changed
10591 a few times already, and these changes affect the implementation
10592 of these catchpoints. In order to be able to support several
10593 variants of the runtime, we use a sniffer that will determine
28010a5d 10594 the runtime variant used by the program being debugged. */
f7f9143b
JB
10595
10596/* The different types of catchpoints that we introduced for catching
10597 Ada exceptions. */
10598
10599enum exception_catchpoint_kind
10600{
10601 ex_catch_exception,
10602 ex_catch_exception_unhandled,
10603 ex_catch_assert
10604};
10605
3d0b0fa3
JB
10606/* Ada's standard exceptions. */
10607
10608static char *standard_exc[] = {
10609 "constraint_error",
10610 "program_error",
10611 "storage_error",
10612 "tasking_error"
10613};
10614
0259addd
JB
10615typedef CORE_ADDR (ada_unhandled_exception_name_addr_ftype) (void);
10616
10617/* A structure that describes how to support exception catchpoints
10618 for a given executable. */
10619
10620struct exception_support_info
10621{
10622 /* The name of the symbol to break on in order to insert
10623 a catchpoint on exceptions. */
10624 const char *catch_exception_sym;
10625
10626 /* The name of the symbol to break on in order to insert
10627 a catchpoint on unhandled exceptions. */
10628 const char *catch_exception_unhandled_sym;
10629
10630 /* The name of the symbol to break on in order to insert
10631 a catchpoint on failed assertions. */
10632 const char *catch_assert_sym;
10633
10634 /* Assuming that the inferior just triggered an unhandled exception
10635 catchpoint, this function is responsible for returning the address
10636 in inferior memory where the name of that exception is stored.
10637 Return zero if the address could not be computed. */
10638 ada_unhandled_exception_name_addr_ftype *unhandled_exception_name_addr;
10639};
10640
10641static CORE_ADDR ada_unhandled_exception_name_addr (void);
10642static CORE_ADDR ada_unhandled_exception_name_addr_from_raise (void);
10643
10644/* The following exception support info structure describes how to
10645 implement exception catchpoints with the latest version of the
10646 Ada runtime (as of 2007-03-06). */
10647
10648static const struct exception_support_info default_exception_support_info =
10649{
10650 "__gnat_debug_raise_exception", /* catch_exception_sym */
10651 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
10652 "__gnat_debug_raise_assert_failure", /* catch_assert_sym */
10653 ada_unhandled_exception_name_addr
10654};
10655
10656/* The following exception support info structure describes how to
10657 implement exception catchpoints with a slightly older version
10658 of the Ada runtime. */
10659
10660static const struct exception_support_info exception_support_info_fallback =
10661{
10662 "__gnat_raise_nodefer_with_msg", /* catch_exception_sym */
10663 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
10664 "system__assertions__raise_assert_failure", /* catch_assert_sym */
10665 ada_unhandled_exception_name_addr_from_raise
10666};
10667
f17011e0
JB
10668/* Return nonzero if we can detect the exception support routines
10669 described in EINFO.
10670
10671 This function errors out if an abnormal situation is detected
10672 (for instance, if we find the exception support routines, but
10673 that support is found to be incomplete). */
10674
10675static int
10676ada_has_this_exception_support (const struct exception_support_info *einfo)
10677{
10678 struct symbol *sym;
10679
10680 /* The symbol we're looking up is provided by a unit in the GNAT runtime
10681 that should be compiled with debugging information. As a result, we
10682 expect to find that symbol in the symtabs. */
10683
10684 sym = standard_lookup (einfo->catch_exception_sym, NULL, VAR_DOMAIN);
10685 if (sym == NULL)
a6af7abe
JB
10686 {
10687 /* Perhaps we did not find our symbol because the Ada runtime was
10688 compiled without debugging info, or simply stripped of it.
10689 It happens on some GNU/Linux distributions for instance, where
10690 users have to install a separate debug package in order to get
10691 the runtime's debugging info. In that situation, let the user
10692 know why we cannot insert an Ada exception catchpoint.
10693
10694 Note: Just for the purpose of inserting our Ada exception
10695 catchpoint, we could rely purely on the associated minimal symbol.
10696 But we would be operating in degraded mode anyway, since we are
10697 still lacking the debugging info needed later on to extract
10698 the name of the exception being raised (this name is printed in
10699 the catchpoint message, and is also used when trying to catch
10700 a specific exception). We do not handle this case for now. */
10701 if (lookup_minimal_symbol (einfo->catch_exception_sym, NULL, NULL))
10702 error (_("Your Ada runtime appears to be missing some debugging "
10703 "information.\nCannot insert Ada exception catchpoint "
10704 "in this configuration."));
10705
10706 return 0;
10707 }
f17011e0
JB
10708
10709 /* Make sure that the symbol we found corresponds to a function. */
10710
10711 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
10712 error (_("Symbol \"%s\" is not a function (class = %d)"),
10713 SYMBOL_LINKAGE_NAME (sym), SYMBOL_CLASS (sym));
10714
10715 return 1;
10716}
10717
0259addd
JB
10718/* Inspect the Ada runtime and determine which exception info structure
10719 should be used to provide support for exception catchpoints.
10720
3eecfa55
JB
10721 This function will always set the per-inferior exception_info,
10722 or raise an error. */
0259addd
JB
10723
10724static void
10725ada_exception_support_info_sniffer (void)
10726{
3eecfa55 10727 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
0259addd
JB
10728 struct symbol *sym;
10729
10730 /* If the exception info is already known, then no need to recompute it. */
3eecfa55 10731 if (data->exception_info != NULL)
0259addd
JB
10732 return;
10733
10734 /* Check the latest (default) exception support info. */
f17011e0 10735 if (ada_has_this_exception_support (&default_exception_support_info))
0259addd 10736 {
3eecfa55 10737 data->exception_info = &default_exception_support_info;
0259addd
JB
10738 return;
10739 }
10740
10741 /* Try our fallback exception suport info. */
f17011e0 10742 if (ada_has_this_exception_support (&exception_support_info_fallback))
0259addd 10743 {
3eecfa55 10744 data->exception_info = &exception_support_info_fallback;
0259addd
JB
10745 return;
10746 }
10747
10748 /* Sometimes, it is normal for us to not be able to find the routine
10749 we are looking for. This happens when the program is linked with
10750 the shared version of the GNAT runtime, and the program has not been
10751 started yet. Inform the user of these two possible causes if
10752 applicable. */
10753
ccefe4c4 10754 if (ada_update_initial_language (language_unknown) != language_ada)
0259addd
JB
10755 error (_("Unable to insert catchpoint. Is this an Ada main program?"));
10756
10757 /* If the symbol does not exist, then check that the program is
10758 already started, to make sure that shared libraries have been
10759 loaded. If it is not started, this may mean that the symbol is
10760 in a shared library. */
10761
10762 if (ptid_get_pid (inferior_ptid) == 0)
10763 error (_("Unable to insert catchpoint. Try to start the program first."));
10764
10765 /* At this point, we know that we are debugging an Ada program and
10766 that the inferior has been started, but we still are not able to
0963b4bd 10767 find the run-time symbols. That can mean that we are in
0259addd
JB
10768 configurable run time mode, or that a-except as been optimized
10769 out by the linker... In any case, at this point it is not worth
10770 supporting this feature. */
10771
7dda8cff 10772 error (_("Cannot insert Ada exception catchpoints in this configuration."));
0259addd
JB
10773}
10774
f7f9143b
JB
10775/* True iff FRAME is very likely to be that of a function that is
10776 part of the runtime system. This is all very heuristic, but is
10777 intended to be used as advice as to what frames are uninteresting
10778 to most users. */
10779
10780static int
10781is_known_support_routine (struct frame_info *frame)
10782{
4ed6b5be 10783 struct symtab_and_line sal;
f7f9143b 10784 char *func_name;
692465f1 10785 enum language func_lang;
f7f9143b 10786 int i;
f7f9143b 10787
4ed6b5be
JB
10788 /* If this code does not have any debugging information (no symtab),
10789 This cannot be any user code. */
f7f9143b 10790
4ed6b5be 10791 find_frame_sal (frame, &sal);
f7f9143b
JB
10792 if (sal.symtab == NULL)
10793 return 1;
10794
4ed6b5be
JB
10795 /* If there is a symtab, but the associated source file cannot be
10796 located, then assume this is not user code: Selecting a frame
10797 for which we cannot display the code would not be very helpful
10798 for the user. This should also take care of case such as VxWorks
10799 where the kernel has some debugging info provided for a few units. */
f7f9143b 10800
9bbc9174 10801 if (symtab_to_fullname (sal.symtab) == NULL)
f7f9143b
JB
10802 return 1;
10803
4ed6b5be
JB
10804 /* Check the unit filename againt the Ada runtime file naming.
10805 We also check the name of the objfile against the name of some
10806 known system libraries that sometimes come with debugging info
10807 too. */
10808
f7f9143b
JB
10809 for (i = 0; known_runtime_file_name_patterns[i] != NULL; i += 1)
10810 {
10811 re_comp (known_runtime_file_name_patterns[i]);
10812 if (re_exec (sal.symtab->filename))
10813 return 1;
4ed6b5be
JB
10814 if (sal.symtab->objfile != NULL
10815 && re_exec (sal.symtab->objfile->name))
10816 return 1;
f7f9143b
JB
10817 }
10818
4ed6b5be 10819 /* Check whether the function is a GNAT-generated entity. */
f7f9143b 10820
e9e07ba6 10821 find_frame_funname (frame, &func_name, &func_lang, NULL);
f7f9143b
JB
10822 if (func_name == NULL)
10823 return 1;
10824
10825 for (i = 0; known_auxiliary_function_name_patterns[i] != NULL; i += 1)
10826 {
10827 re_comp (known_auxiliary_function_name_patterns[i]);
10828 if (re_exec (func_name))
10829 return 1;
10830 }
10831
10832 return 0;
10833}
10834
10835/* Find the first frame that contains debugging information and that is not
10836 part of the Ada run-time, starting from FI and moving upward. */
10837
0ef643c8 10838void
f7f9143b
JB
10839ada_find_printable_frame (struct frame_info *fi)
10840{
10841 for (; fi != NULL; fi = get_prev_frame (fi))
10842 {
10843 if (!is_known_support_routine (fi))
10844 {
10845 select_frame (fi);
10846 break;
10847 }
10848 }
10849
10850}
10851
10852/* Assuming that the inferior just triggered an unhandled exception
10853 catchpoint, return the address in inferior memory where the name
10854 of the exception is stored.
10855
10856 Return zero if the address could not be computed. */
10857
10858static CORE_ADDR
10859ada_unhandled_exception_name_addr (void)
0259addd
JB
10860{
10861 return parse_and_eval_address ("e.full_name");
10862}
10863
10864/* Same as ada_unhandled_exception_name_addr, except that this function
10865 should be used when the inferior uses an older version of the runtime,
10866 where the exception name needs to be extracted from a specific frame
10867 several frames up in the callstack. */
10868
10869static CORE_ADDR
10870ada_unhandled_exception_name_addr_from_raise (void)
f7f9143b
JB
10871{
10872 int frame_level;
10873 struct frame_info *fi;
3eecfa55 10874 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
f7f9143b
JB
10875
10876 /* To determine the name of this exception, we need to select
10877 the frame corresponding to RAISE_SYM_NAME. This frame is
10878 at least 3 levels up, so we simply skip the first 3 frames
10879 without checking the name of their associated function. */
10880 fi = get_current_frame ();
10881 for (frame_level = 0; frame_level < 3; frame_level += 1)
10882 if (fi != NULL)
10883 fi = get_prev_frame (fi);
10884
10885 while (fi != NULL)
10886 {
692465f1
JB
10887 char *func_name;
10888 enum language func_lang;
10889
e9e07ba6 10890 find_frame_funname (fi, &func_name, &func_lang, NULL);
f7f9143b 10891 if (func_name != NULL
3eecfa55 10892 && strcmp (func_name, data->exception_info->catch_exception_sym) == 0)
f7f9143b
JB
10893 break; /* We found the frame we were looking for... */
10894 fi = get_prev_frame (fi);
10895 }
10896
10897 if (fi == NULL)
10898 return 0;
10899
10900 select_frame (fi);
10901 return parse_and_eval_address ("id.full_name");
10902}
10903
10904/* Assuming the inferior just triggered an Ada exception catchpoint
10905 (of any type), return the address in inferior memory where the name
10906 of the exception is stored, if applicable.
10907
10908 Return zero if the address could not be computed, or if not relevant. */
10909
10910static CORE_ADDR
10911ada_exception_name_addr_1 (enum exception_catchpoint_kind ex,
10912 struct breakpoint *b)
10913{
3eecfa55
JB
10914 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
10915
f7f9143b
JB
10916 switch (ex)
10917 {
10918 case ex_catch_exception:
10919 return (parse_and_eval_address ("e.full_name"));
10920 break;
10921
10922 case ex_catch_exception_unhandled:
3eecfa55 10923 return data->exception_info->unhandled_exception_name_addr ();
f7f9143b
JB
10924 break;
10925
10926 case ex_catch_assert:
10927 return 0; /* Exception name is not relevant in this case. */
10928 break;
10929
10930 default:
10931 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
10932 break;
10933 }
10934
10935 return 0; /* Should never be reached. */
10936}
10937
10938/* Same as ada_exception_name_addr_1, except that it intercepts and contains
10939 any error that ada_exception_name_addr_1 might cause to be thrown.
10940 When an error is intercepted, a warning with the error message is printed,
10941 and zero is returned. */
10942
10943static CORE_ADDR
10944ada_exception_name_addr (enum exception_catchpoint_kind ex,
10945 struct breakpoint *b)
10946{
bfd189b1 10947 volatile struct gdb_exception e;
f7f9143b
JB
10948 CORE_ADDR result = 0;
10949
10950 TRY_CATCH (e, RETURN_MASK_ERROR)
10951 {
10952 result = ada_exception_name_addr_1 (ex, b);
10953 }
10954
10955 if (e.reason < 0)
10956 {
10957 warning (_("failed to get exception name: %s"), e.message);
10958 return 0;
10959 }
10960
10961 return result;
10962}
10963
28010a5d
PA
10964static struct symtab_and_line ada_exception_sal (enum exception_catchpoint_kind,
10965 char *, char **,
c0a91b2b 10966 const struct breakpoint_ops **);
28010a5d
PA
10967static char *ada_exception_catchpoint_cond_string (const char *excep_string);
10968
10969/* Ada catchpoints.
10970
10971 In the case of catchpoints on Ada exceptions, the catchpoint will
10972 stop the target on every exception the program throws. When a user
10973 specifies the name of a specific exception, we translate this
10974 request into a condition expression (in text form), and then parse
10975 it into an expression stored in each of the catchpoint's locations.
10976 We then use this condition to check whether the exception that was
10977 raised is the one the user is interested in. If not, then the
10978 target is resumed again. We store the name of the requested
10979 exception, in order to be able to re-set the condition expression
10980 when symbols change. */
10981
10982/* An instance of this type is used to represent an Ada catchpoint
10983 breakpoint location. It includes a "struct bp_location" as a kind
10984 of base class; users downcast to "struct bp_location *" when
10985 needed. */
10986
10987struct ada_catchpoint_location
10988{
10989 /* The base class. */
10990 struct bp_location base;
10991
10992 /* The condition that checks whether the exception that was raised
10993 is the specific exception the user specified on catchpoint
10994 creation. */
10995 struct expression *excep_cond_expr;
10996};
10997
10998/* Implement the DTOR method in the bp_location_ops structure for all
10999 Ada exception catchpoint kinds. */
11000
11001static void
11002ada_catchpoint_location_dtor (struct bp_location *bl)
11003{
11004 struct ada_catchpoint_location *al = (struct ada_catchpoint_location *) bl;
11005
11006 xfree (al->excep_cond_expr);
11007}
11008
11009/* The vtable to be used in Ada catchpoint locations. */
11010
11011static const struct bp_location_ops ada_catchpoint_location_ops =
11012{
11013 ada_catchpoint_location_dtor
11014};
11015
11016/* An instance of this type is used to represent an Ada catchpoint.
11017 It includes a "struct breakpoint" as a kind of base class; users
11018 downcast to "struct breakpoint *" when needed. */
11019
11020struct ada_catchpoint
11021{
11022 /* The base class. */
11023 struct breakpoint base;
11024
11025 /* The name of the specific exception the user specified. */
11026 char *excep_string;
11027};
11028
11029/* Parse the exception condition string in the context of each of the
11030 catchpoint's locations, and store them for later evaluation. */
11031
11032static void
11033create_excep_cond_exprs (struct ada_catchpoint *c)
11034{
11035 struct cleanup *old_chain;
11036 struct bp_location *bl;
11037 char *cond_string;
11038
11039 /* Nothing to do if there's no specific exception to catch. */
11040 if (c->excep_string == NULL)
11041 return;
11042
11043 /* Same if there are no locations... */
11044 if (c->base.loc == NULL)
11045 return;
11046
11047 /* Compute the condition expression in text form, from the specific
11048 expection we want to catch. */
11049 cond_string = ada_exception_catchpoint_cond_string (c->excep_string);
11050 old_chain = make_cleanup (xfree, cond_string);
11051
11052 /* Iterate over all the catchpoint's locations, and parse an
11053 expression for each. */
11054 for (bl = c->base.loc; bl != NULL; bl = bl->next)
11055 {
11056 struct ada_catchpoint_location *ada_loc
11057 = (struct ada_catchpoint_location *) bl;
11058 struct expression *exp = NULL;
11059
11060 if (!bl->shlib_disabled)
11061 {
11062 volatile struct gdb_exception e;
11063 char *s;
11064
11065 s = cond_string;
11066 TRY_CATCH (e, RETURN_MASK_ERROR)
11067 {
11068 exp = parse_exp_1 (&s, block_for_pc (bl->address), 0);
11069 }
11070 if (e.reason < 0)
11071 warning (_("failed to reevaluate internal exception condition "
11072 "for catchpoint %d: %s"),
11073 c->base.number, e.message);
11074 }
11075
11076 ada_loc->excep_cond_expr = exp;
11077 }
11078
11079 do_cleanups (old_chain);
11080}
11081
11082/* Implement the DTOR method in the breakpoint_ops structure for all
11083 exception catchpoint kinds. */
11084
11085static void
11086dtor_exception (enum exception_catchpoint_kind ex, struct breakpoint *b)
11087{
11088 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
11089
11090 xfree (c->excep_string);
348d480f 11091
2060206e 11092 bkpt_breakpoint_ops.dtor (b);
28010a5d
PA
11093}
11094
11095/* Implement the ALLOCATE_LOCATION method in the breakpoint_ops
11096 structure for all exception catchpoint kinds. */
11097
11098static struct bp_location *
11099allocate_location_exception (enum exception_catchpoint_kind ex,
11100 struct breakpoint *self)
11101{
11102 struct ada_catchpoint_location *loc;
11103
11104 loc = XNEW (struct ada_catchpoint_location);
11105 init_bp_location (&loc->base, &ada_catchpoint_location_ops, self);
11106 loc->excep_cond_expr = NULL;
11107 return &loc->base;
11108}
11109
11110/* Implement the RE_SET method in the breakpoint_ops structure for all
11111 exception catchpoint kinds. */
11112
11113static void
11114re_set_exception (enum exception_catchpoint_kind ex, struct breakpoint *b)
11115{
11116 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
11117
11118 /* Call the base class's method. This updates the catchpoint's
11119 locations. */
2060206e 11120 bkpt_breakpoint_ops.re_set (b);
28010a5d
PA
11121
11122 /* Reparse the exception conditional expressions. One for each
11123 location. */
11124 create_excep_cond_exprs (c);
11125}
11126
11127/* Returns true if we should stop for this breakpoint hit. If the
11128 user specified a specific exception, we only want to cause a stop
11129 if the program thrown that exception. */
11130
11131static int
11132should_stop_exception (const struct bp_location *bl)
11133{
11134 struct ada_catchpoint *c = (struct ada_catchpoint *) bl->owner;
11135 const struct ada_catchpoint_location *ada_loc
11136 = (const struct ada_catchpoint_location *) bl;
11137 volatile struct gdb_exception ex;
11138 int stop;
11139
11140 /* With no specific exception, should always stop. */
11141 if (c->excep_string == NULL)
11142 return 1;
11143
11144 if (ada_loc->excep_cond_expr == NULL)
11145 {
11146 /* We will have a NULL expression if back when we were creating
11147 the expressions, this location's had failed to parse. */
11148 return 1;
11149 }
11150
11151 stop = 1;
11152 TRY_CATCH (ex, RETURN_MASK_ALL)
11153 {
11154 struct value *mark;
11155
11156 mark = value_mark ();
11157 stop = value_true (evaluate_expression (ada_loc->excep_cond_expr));
11158 value_free_to_mark (mark);
11159 }
11160 if (ex.reason < 0)
11161 exception_fprintf (gdb_stderr, ex,
11162 _("Error in testing exception condition:\n"));
11163 return stop;
11164}
11165
11166/* Implement the CHECK_STATUS method in the breakpoint_ops structure
11167 for all exception catchpoint kinds. */
11168
11169static void
11170check_status_exception (enum exception_catchpoint_kind ex, bpstat bs)
11171{
11172 bs->stop = should_stop_exception (bs->bp_location_at);
11173}
11174
f7f9143b
JB
11175/* Implement the PRINT_IT method in the breakpoint_ops structure
11176 for all exception catchpoint kinds. */
11177
11178static enum print_stop_action
348d480f 11179print_it_exception (enum exception_catchpoint_kind ex, bpstat bs)
f7f9143b 11180{
79a45e25 11181 struct ui_out *uiout = current_uiout;
348d480f
PA
11182 struct breakpoint *b = bs->breakpoint_at;
11183
956a9fb9 11184 annotate_catchpoint (b->number);
f7f9143b 11185
956a9fb9 11186 if (ui_out_is_mi_like_p (uiout))
f7f9143b 11187 {
956a9fb9
JB
11188 ui_out_field_string (uiout, "reason",
11189 async_reason_lookup (EXEC_ASYNC_BREAKPOINT_HIT));
11190 ui_out_field_string (uiout, "disp", bpdisp_text (b->disposition));
f7f9143b
JB
11191 }
11192
00eb2c4a
JB
11193 ui_out_text (uiout,
11194 b->disposition == disp_del ? "\nTemporary catchpoint "
11195 : "\nCatchpoint ");
956a9fb9
JB
11196 ui_out_field_int (uiout, "bkptno", b->number);
11197 ui_out_text (uiout, ", ");
f7f9143b 11198
f7f9143b
JB
11199 switch (ex)
11200 {
11201 case ex_catch_exception:
f7f9143b 11202 case ex_catch_exception_unhandled:
956a9fb9
JB
11203 {
11204 const CORE_ADDR addr = ada_exception_name_addr (ex, b);
11205 char exception_name[256];
11206
11207 if (addr != 0)
11208 {
11209 read_memory (addr, exception_name, sizeof (exception_name) - 1);
11210 exception_name [sizeof (exception_name) - 1] = '\0';
11211 }
11212 else
11213 {
11214 /* For some reason, we were unable to read the exception
11215 name. This could happen if the Runtime was compiled
11216 without debugging info, for instance. In that case,
11217 just replace the exception name by the generic string
11218 "exception" - it will read as "an exception" in the
11219 notification we are about to print. */
967cff16 11220 memcpy (exception_name, "exception", sizeof ("exception"));
956a9fb9
JB
11221 }
11222 /* In the case of unhandled exception breakpoints, we print
11223 the exception name as "unhandled EXCEPTION_NAME", to make
11224 it clearer to the user which kind of catchpoint just got
11225 hit. We used ui_out_text to make sure that this extra
11226 info does not pollute the exception name in the MI case. */
11227 if (ex == ex_catch_exception_unhandled)
11228 ui_out_text (uiout, "unhandled ");
11229 ui_out_field_string (uiout, "exception-name", exception_name);
11230 }
11231 break;
f7f9143b 11232 case ex_catch_assert:
956a9fb9
JB
11233 /* In this case, the name of the exception is not really
11234 important. Just print "failed assertion" to make it clearer
11235 that his program just hit an assertion-failure catchpoint.
11236 We used ui_out_text because this info does not belong in
11237 the MI output. */
11238 ui_out_text (uiout, "failed assertion");
11239 break;
f7f9143b 11240 }
956a9fb9
JB
11241 ui_out_text (uiout, " at ");
11242 ada_find_printable_frame (get_current_frame ());
f7f9143b
JB
11243
11244 return PRINT_SRC_AND_LOC;
11245}
11246
11247/* Implement the PRINT_ONE method in the breakpoint_ops structure
11248 for all exception catchpoint kinds. */
11249
11250static void
11251print_one_exception (enum exception_catchpoint_kind ex,
a6d9a66e 11252 struct breakpoint *b, struct bp_location **last_loc)
f7f9143b 11253{
79a45e25 11254 struct ui_out *uiout = current_uiout;
28010a5d 11255 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
79a45b7d
TT
11256 struct value_print_options opts;
11257
11258 get_user_print_options (&opts);
11259 if (opts.addressprint)
f7f9143b
JB
11260 {
11261 annotate_field (4);
5af949e3 11262 ui_out_field_core_addr (uiout, "addr", b->loc->gdbarch, b->loc->address);
f7f9143b
JB
11263 }
11264
11265 annotate_field (5);
a6d9a66e 11266 *last_loc = b->loc;
f7f9143b
JB
11267 switch (ex)
11268 {
11269 case ex_catch_exception:
28010a5d 11270 if (c->excep_string != NULL)
f7f9143b 11271 {
28010a5d
PA
11272 char *msg = xstrprintf (_("`%s' Ada exception"), c->excep_string);
11273
f7f9143b
JB
11274 ui_out_field_string (uiout, "what", msg);
11275 xfree (msg);
11276 }
11277 else
11278 ui_out_field_string (uiout, "what", "all Ada exceptions");
11279
11280 break;
11281
11282 case ex_catch_exception_unhandled:
11283 ui_out_field_string (uiout, "what", "unhandled Ada exceptions");
11284 break;
11285
11286 case ex_catch_assert:
11287 ui_out_field_string (uiout, "what", "failed Ada assertions");
11288 break;
11289
11290 default:
11291 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
11292 break;
11293 }
11294}
11295
11296/* Implement the PRINT_MENTION method in the breakpoint_ops structure
11297 for all exception catchpoint kinds. */
11298
11299static void
11300print_mention_exception (enum exception_catchpoint_kind ex,
11301 struct breakpoint *b)
11302{
28010a5d 11303 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
79a45e25 11304 struct ui_out *uiout = current_uiout;
28010a5d 11305
00eb2c4a
JB
11306 ui_out_text (uiout, b->disposition == disp_del ? _("Temporary catchpoint ")
11307 : _("Catchpoint "));
11308 ui_out_field_int (uiout, "bkptno", b->number);
11309 ui_out_text (uiout, ": ");
11310
f7f9143b
JB
11311 switch (ex)
11312 {
11313 case ex_catch_exception:
28010a5d 11314 if (c->excep_string != NULL)
00eb2c4a
JB
11315 {
11316 char *info = xstrprintf (_("`%s' Ada exception"), c->excep_string);
11317 struct cleanup *old_chain = make_cleanup (xfree, info);
11318
11319 ui_out_text (uiout, info);
11320 do_cleanups (old_chain);
11321 }
f7f9143b 11322 else
00eb2c4a 11323 ui_out_text (uiout, _("all Ada exceptions"));
f7f9143b
JB
11324 break;
11325
11326 case ex_catch_exception_unhandled:
00eb2c4a 11327 ui_out_text (uiout, _("unhandled Ada exceptions"));
f7f9143b
JB
11328 break;
11329
11330 case ex_catch_assert:
00eb2c4a 11331 ui_out_text (uiout, _("failed Ada assertions"));
f7f9143b
JB
11332 break;
11333
11334 default:
11335 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
11336 break;
11337 }
11338}
11339
6149aea9
PA
11340/* Implement the PRINT_RECREATE method in the breakpoint_ops structure
11341 for all exception catchpoint kinds. */
11342
11343static void
11344print_recreate_exception (enum exception_catchpoint_kind ex,
11345 struct breakpoint *b, struct ui_file *fp)
11346{
28010a5d
PA
11347 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
11348
6149aea9
PA
11349 switch (ex)
11350 {
11351 case ex_catch_exception:
11352 fprintf_filtered (fp, "catch exception");
28010a5d
PA
11353 if (c->excep_string != NULL)
11354 fprintf_filtered (fp, " %s", c->excep_string);
6149aea9
PA
11355 break;
11356
11357 case ex_catch_exception_unhandled:
78076abc 11358 fprintf_filtered (fp, "catch exception unhandled");
6149aea9
PA
11359 break;
11360
11361 case ex_catch_assert:
11362 fprintf_filtered (fp, "catch assert");
11363 break;
11364
11365 default:
11366 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
11367 }
d9b3f62e 11368 print_recreate_thread (b, fp);
6149aea9
PA
11369}
11370
f7f9143b
JB
11371/* Virtual table for "catch exception" breakpoints. */
11372
28010a5d
PA
11373static void
11374dtor_catch_exception (struct breakpoint *b)
11375{
11376 dtor_exception (ex_catch_exception, b);
11377}
11378
11379static struct bp_location *
11380allocate_location_catch_exception (struct breakpoint *self)
11381{
11382 return allocate_location_exception (ex_catch_exception, self);
11383}
11384
11385static void
11386re_set_catch_exception (struct breakpoint *b)
11387{
11388 re_set_exception (ex_catch_exception, b);
11389}
11390
11391static void
11392check_status_catch_exception (bpstat bs)
11393{
11394 check_status_exception (ex_catch_exception, bs);
11395}
11396
f7f9143b 11397static enum print_stop_action
348d480f 11398print_it_catch_exception (bpstat bs)
f7f9143b 11399{
348d480f 11400 return print_it_exception (ex_catch_exception, bs);
f7f9143b
JB
11401}
11402
11403static void
a6d9a66e 11404print_one_catch_exception (struct breakpoint *b, struct bp_location **last_loc)
f7f9143b 11405{
a6d9a66e 11406 print_one_exception (ex_catch_exception, b, last_loc);
f7f9143b
JB
11407}
11408
11409static void
11410print_mention_catch_exception (struct breakpoint *b)
11411{
11412 print_mention_exception (ex_catch_exception, b);
11413}
11414
6149aea9
PA
11415static void
11416print_recreate_catch_exception (struct breakpoint *b, struct ui_file *fp)
11417{
11418 print_recreate_exception (ex_catch_exception, b, fp);
11419}
11420
2060206e 11421static struct breakpoint_ops catch_exception_breakpoint_ops;
f7f9143b
JB
11422
11423/* Virtual table for "catch exception unhandled" breakpoints. */
11424
28010a5d
PA
11425static void
11426dtor_catch_exception_unhandled (struct breakpoint *b)
11427{
11428 dtor_exception (ex_catch_exception_unhandled, b);
11429}
11430
11431static struct bp_location *
11432allocate_location_catch_exception_unhandled (struct breakpoint *self)
11433{
11434 return allocate_location_exception (ex_catch_exception_unhandled, self);
11435}
11436
11437static void
11438re_set_catch_exception_unhandled (struct breakpoint *b)
11439{
11440 re_set_exception (ex_catch_exception_unhandled, b);
11441}
11442
11443static void
11444check_status_catch_exception_unhandled (bpstat bs)
11445{
11446 check_status_exception (ex_catch_exception_unhandled, bs);
11447}
11448
f7f9143b 11449static enum print_stop_action
348d480f 11450print_it_catch_exception_unhandled (bpstat bs)
f7f9143b 11451{
348d480f 11452 return print_it_exception (ex_catch_exception_unhandled, bs);
f7f9143b
JB
11453}
11454
11455static void
a6d9a66e
UW
11456print_one_catch_exception_unhandled (struct breakpoint *b,
11457 struct bp_location **last_loc)
f7f9143b 11458{
a6d9a66e 11459 print_one_exception (ex_catch_exception_unhandled, b, last_loc);
f7f9143b
JB
11460}
11461
11462static void
11463print_mention_catch_exception_unhandled (struct breakpoint *b)
11464{
11465 print_mention_exception (ex_catch_exception_unhandled, b);
11466}
11467
6149aea9
PA
11468static void
11469print_recreate_catch_exception_unhandled (struct breakpoint *b,
11470 struct ui_file *fp)
11471{
11472 print_recreate_exception (ex_catch_exception_unhandled, b, fp);
11473}
11474
2060206e 11475static struct breakpoint_ops catch_exception_unhandled_breakpoint_ops;
f7f9143b
JB
11476
11477/* Virtual table for "catch assert" breakpoints. */
11478
28010a5d
PA
11479static void
11480dtor_catch_assert (struct breakpoint *b)
11481{
11482 dtor_exception (ex_catch_assert, b);
11483}
11484
11485static struct bp_location *
11486allocate_location_catch_assert (struct breakpoint *self)
11487{
11488 return allocate_location_exception (ex_catch_assert, self);
11489}
11490
11491static void
11492re_set_catch_assert (struct breakpoint *b)
11493{
11494 return re_set_exception (ex_catch_assert, b);
11495}
11496
11497static void
11498check_status_catch_assert (bpstat bs)
11499{
11500 check_status_exception (ex_catch_assert, bs);
11501}
11502
f7f9143b 11503static enum print_stop_action
348d480f 11504print_it_catch_assert (bpstat bs)
f7f9143b 11505{
348d480f 11506 return print_it_exception (ex_catch_assert, bs);
f7f9143b
JB
11507}
11508
11509static void
a6d9a66e 11510print_one_catch_assert (struct breakpoint *b, struct bp_location **last_loc)
f7f9143b 11511{
a6d9a66e 11512 print_one_exception (ex_catch_assert, b, last_loc);
f7f9143b
JB
11513}
11514
11515static void
11516print_mention_catch_assert (struct breakpoint *b)
11517{
11518 print_mention_exception (ex_catch_assert, b);
11519}
11520
6149aea9
PA
11521static void
11522print_recreate_catch_assert (struct breakpoint *b, struct ui_file *fp)
11523{
11524 print_recreate_exception (ex_catch_assert, b, fp);
11525}
11526
2060206e 11527static struct breakpoint_ops catch_assert_breakpoint_ops;
f7f9143b 11528
f7f9143b
JB
11529/* Return a newly allocated copy of the first space-separated token
11530 in ARGSP, and then adjust ARGSP to point immediately after that
11531 token.
11532
11533 Return NULL if ARGPS does not contain any more tokens. */
11534
11535static char *
11536ada_get_next_arg (char **argsp)
11537{
11538 char *args = *argsp;
11539 char *end;
11540 char *result;
11541
0fcd72ba 11542 args = skip_spaces (args);
f7f9143b
JB
11543 if (args[0] == '\0')
11544 return NULL; /* No more arguments. */
11545
11546 /* Find the end of the current argument. */
11547
0fcd72ba 11548 end = skip_to_space (args);
f7f9143b
JB
11549
11550 /* Adjust ARGSP to point to the start of the next argument. */
11551
11552 *argsp = end;
11553
11554 /* Make a copy of the current argument and return it. */
11555
11556 result = xmalloc (end - args + 1);
11557 strncpy (result, args, end - args);
11558 result[end - args] = '\0';
11559
11560 return result;
11561}
11562
11563/* Split the arguments specified in a "catch exception" command.
11564 Set EX to the appropriate catchpoint type.
28010a5d 11565 Set EXCEP_STRING to the name of the specific exception if
f7f9143b
JB
11566 specified by the user. */
11567
11568static void
11569catch_ada_exception_command_split (char *args,
11570 enum exception_catchpoint_kind *ex,
28010a5d 11571 char **excep_string)
f7f9143b
JB
11572{
11573 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
11574 char *exception_name;
11575
11576 exception_name = ada_get_next_arg (&args);
11577 make_cleanup (xfree, exception_name);
11578
11579 /* Check that we do not have any more arguments. Anything else
11580 is unexpected. */
11581
0fcd72ba 11582 args = skip_spaces (args);
f7f9143b
JB
11583
11584 if (args[0] != '\0')
11585 error (_("Junk at end of expression"));
11586
11587 discard_cleanups (old_chain);
11588
11589 if (exception_name == NULL)
11590 {
11591 /* Catch all exceptions. */
11592 *ex = ex_catch_exception;
28010a5d 11593 *excep_string = NULL;
f7f9143b
JB
11594 }
11595 else if (strcmp (exception_name, "unhandled") == 0)
11596 {
11597 /* Catch unhandled exceptions. */
11598 *ex = ex_catch_exception_unhandled;
28010a5d 11599 *excep_string = NULL;
f7f9143b
JB
11600 }
11601 else
11602 {
11603 /* Catch a specific exception. */
11604 *ex = ex_catch_exception;
28010a5d 11605 *excep_string = exception_name;
f7f9143b
JB
11606 }
11607}
11608
11609/* Return the name of the symbol on which we should break in order to
11610 implement a catchpoint of the EX kind. */
11611
11612static const char *
11613ada_exception_sym_name (enum exception_catchpoint_kind ex)
11614{
3eecfa55
JB
11615 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
11616
11617 gdb_assert (data->exception_info != NULL);
0259addd 11618
f7f9143b
JB
11619 switch (ex)
11620 {
11621 case ex_catch_exception:
3eecfa55 11622 return (data->exception_info->catch_exception_sym);
f7f9143b
JB
11623 break;
11624 case ex_catch_exception_unhandled:
3eecfa55 11625 return (data->exception_info->catch_exception_unhandled_sym);
f7f9143b
JB
11626 break;
11627 case ex_catch_assert:
3eecfa55 11628 return (data->exception_info->catch_assert_sym);
f7f9143b
JB
11629 break;
11630 default:
11631 internal_error (__FILE__, __LINE__,
11632 _("unexpected catchpoint kind (%d)"), ex);
11633 }
11634}
11635
11636/* Return the breakpoint ops "virtual table" used for catchpoints
11637 of the EX kind. */
11638
c0a91b2b 11639static const struct breakpoint_ops *
4b9eee8c 11640ada_exception_breakpoint_ops (enum exception_catchpoint_kind ex)
f7f9143b
JB
11641{
11642 switch (ex)
11643 {
11644 case ex_catch_exception:
11645 return (&catch_exception_breakpoint_ops);
11646 break;
11647 case ex_catch_exception_unhandled:
11648 return (&catch_exception_unhandled_breakpoint_ops);
11649 break;
11650 case ex_catch_assert:
11651 return (&catch_assert_breakpoint_ops);
11652 break;
11653 default:
11654 internal_error (__FILE__, __LINE__,
11655 _("unexpected catchpoint kind (%d)"), ex);
11656 }
11657}
11658
11659/* Return the condition that will be used to match the current exception
11660 being raised with the exception that the user wants to catch. This
11661 assumes that this condition is used when the inferior just triggered
11662 an exception catchpoint.
11663
11664 The string returned is a newly allocated string that needs to be
11665 deallocated later. */
11666
11667static char *
28010a5d 11668ada_exception_catchpoint_cond_string (const char *excep_string)
f7f9143b 11669{
3d0b0fa3
JB
11670 int i;
11671
0963b4bd 11672 /* The standard exceptions are a special case. They are defined in
3d0b0fa3 11673 runtime units that have been compiled without debugging info; if
28010a5d 11674 EXCEP_STRING is the not-fully-qualified name of a standard
3d0b0fa3
JB
11675 exception (e.g. "constraint_error") then, during the evaluation
11676 of the condition expression, the symbol lookup on this name would
0963b4bd 11677 *not* return this standard exception. The catchpoint condition
3d0b0fa3
JB
11678 may then be set only on user-defined exceptions which have the
11679 same not-fully-qualified name (e.g. my_package.constraint_error).
11680
11681 To avoid this unexcepted behavior, these standard exceptions are
0963b4bd 11682 systematically prefixed by "standard". This means that "catch
3d0b0fa3
JB
11683 exception constraint_error" is rewritten into "catch exception
11684 standard.constraint_error".
11685
11686 If an exception named contraint_error is defined in another package of
11687 the inferior program, then the only way to specify this exception as a
11688 breakpoint condition is to use its fully-qualified named:
11689 e.g. my_package.constraint_error. */
11690
11691 for (i = 0; i < sizeof (standard_exc) / sizeof (char *); i++)
11692 {
28010a5d 11693 if (strcmp (standard_exc [i], excep_string) == 0)
3d0b0fa3
JB
11694 {
11695 return xstrprintf ("long_integer (e) = long_integer (&standard.%s)",
28010a5d 11696 excep_string);
3d0b0fa3
JB
11697 }
11698 }
28010a5d 11699 return xstrprintf ("long_integer (e) = long_integer (&%s)", excep_string);
f7f9143b
JB
11700}
11701
11702/* Return the symtab_and_line that should be used to insert an exception
11703 catchpoint of the TYPE kind.
11704
28010a5d
PA
11705 EXCEP_STRING should contain the name of a specific exception that
11706 the catchpoint should catch, or NULL otherwise.
f7f9143b 11707
28010a5d
PA
11708 ADDR_STRING returns the name of the function where the real
11709 breakpoint that implements the catchpoints is set, depending on the
11710 type of catchpoint we need to create. */
f7f9143b
JB
11711
11712static struct symtab_and_line
28010a5d 11713ada_exception_sal (enum exception_catchpoint_kind ex, char *excep_string,
c0a91b2b 11714 char **addr_string, const struct breakpoint_ops **ops)
f7f9143b
JB
11715{
11716 const char *sym_name;
11717 struct symbol *sym;
f7f9143b 11718
0259addd
JB
11719 /* First, find out which exception support info to use. */
11720 ada_exception_support_info_sniffer ();
11721
11722 /* Then lookup the function on which we will break in order to catch
f7f9143b 11723 the Ada exceptions requested by the user. */
f7f9143b
JB
11724 sym_name = ada_exception_sym_name (ex);
11725 sym = standard_lookup (sym_name, NULL, VAR_DOMAIN);
11726
f17011e0
JB
11727 /* We can assume that SYM is not NULL at this stage. If the symbol
11728 did not exist, ada_exception_support_info_sniffer would have
11729 raised an exception.
f7f9143b 11730
f17011e0
JB
11731 Also, ada_exception_support_info_sniffer should have already
11732 verified that SYM is a function symbol. */
11733 gdb_assert (sym != NULL);
11734 gdb_assert (SYMBOL_CLASS (sym) == LOC_BLOCK);
f7f9143b
JB
11735
11736 /* Set ADDR_STRING. */
f7f9143b
JB
11737 *addr_string = xstrdup (sym_name);
11738
f7f9143b 11739 /* Set OPS. */
4b9eee8c 11740 *ops = ada_exception_breakpoint_ops (ex);
f7f9143b 11741
f17011e0 11742 return find_function_start_sal (sym, 1);
f7f9143b
JB
11743}
11744
11745/* Parse the arguments (ARGS) of the "catch exception" command.
11746
f7f9143b
JB
11747 If the user asked the catchpoint to catch only a specific
11748 exception, then save the exception name in ADDR_STRING.
11749
11750 See ada_exception_sal for a description of all the remaining
11751 function arguments of this function. */
11752
9ac4176b 11753static struct symtab_and_line
f7f9143b 11754ada_decode_exception_location (char *args, char **addr_string,
28010a5d 11755 char **excep_string,
c0a91b2b 11756 const struct breakpoint_ops **ops)
f7f9143b
JB
11757{
11758 enum exception_catchpoint_kind ex;
11759
28010a5d
PA
11760 catch_ada_exception_command_split (args, &ex, excep_string);
11761 return ada_exception_sal (ex, *excep_string, addr_string, ops);
11762}
11763
11764/* Create an Ada exception catchpoint. */
11765
11766static void
11767create_ada_exception_catchpoint (struct gdbarch *gdbarch,
11768 struct symtab_and_line sal,
11769 char *addr_string,
11770 char *excep_string,
c0a91b2b 11771 const struct breakpoint_ops *ops,
28010a5d
PA
11772 int tempflag,
11773 int from_tty)
11774{
11775 struct ada_catchpoint *c;
11776
11777 c = XNEW (struct ada_catchpoint);
11778 init_ada_exception_breakpoint (&c->base, gdbarch, sal, addr_string,
11779 ops, tempflag, from_tty);
11780 c->excep_string = excep_string;
11781 create_excep_cond_exprs (c);
3ea46bff 11782 install_breakpoint (0, &c->base, 1);
f7f9143b
JB
11783}
11784
9ac4176b
PA
11785/* Implement the "catch exception" command. */
11786
11787static void
11788catch_ada_exception_command (char *arg, int from_tty,
11789 struct cmd_list_element *command)
11790{
11791 struct gdbarch *gdbarch = get_current_arch ();
11792 int tempflag;
11793 struct symtab_and_line sal;
11794 char *addr_string = NULL;
28010a5d 11795 char *excep_string = NULL;
c0a91b2b 11796 const struct breakpoint_ops *ops = NULL;
9ac4176b
PA
11797
11798 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
11799
11800 if (!arg)
11801 arg = "";
28010a5d
PA
11802 sal = ada_decode_exception_location (arg, &addr_string, &excep_string, &ops);
11803 create_ada_exception_catchpoint (gdbarch, sal, addr_string,
11804 excep_string, ops, tempflag, from_tty);
9ac4176b
PA
11805}
11806
11807static struct symtab_and_line
f7f9143b 11808ada_decode_assert_location (char *args, char **addr_string,
c0a91b2b 11809 const struct breakpoint_ops **ops)
f7f9143b
JB
11810{
11811 /* Check that no argument where provided at the end of the command. */
11812
11813 if (args != NULL)
11814 {
0fcd72ba 11815 args = skip_spaces (args);
f7f9143b
JB
11816 if (*args != '\0')
11817 error (_("Junk at end of arguments."));
11818 }
11819
28010a5d 11820 return ada_exception_sal (ex_catch_assert, NULL, addr_string, ops);
f7f9143b
JB
11821}
11822
9ac4176b
PA
11823/* Implement the "catch assert" command. */
11824
11825static void
11826catch_assert_command (char *arg, int from_tty,
11827 struct cmd_list_element *command)
11828{
11829 struct gdbarch *gdbarch = get_current_arch ();
11830 int tempflag;
11831 struct symtab_and_line sal;
11832 char *addr_string = NULL;
c0a91b2b 11833 const struct breakpoint_ops *ops = NULL;
9ac4176b
PA
11834
11835 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
11836
11837 if (!arg)
11838 arg = "";
11839 sal = ada_decode_assert_location (arg, &addr_string, &ops);
28010a5d
PA
11840 create_ada_exception_catchpoint (gdbarch, sal, addr_string,
11841 NULL, ops, tempflag, from_tty);
9ac4176b 11842}
4c4b4cd2
PH
11843 /* Operators */
11844/* Information about operators given special treatment in functions
11845 below. */
11846/* Format: OP_DEFN (<operator>, <operator length>, <# args>, <binop>). */
11847
11848#define ADA_OPERATORS \
11849 OP_DEFN (OP_VAR_VALUE, 4, 0, 0) \
11850 OP_DEFN (BINOP_IN_BOUNDS, 3, 2, 0) \
11851 OP_DEFN (TERNOP_IN_RANGE, 1, 3, 0) \
11852 OP_DEFN (OP_ATR_FIRST, 1, 2, 0) \
11853 OP_DEFN (OP_ATR_LAST, 1, 2, 0) \
11854 OP_DEFN (OP_ATR_LENGTH, 1, 2, 0) \
11855 OP_DEFN (OP_ATR_IMAGE, 1, 2, 0) \
11856 OP_DEFN (OP_ATR_MAX, 1, 3, 0) \
11857 OP_DEFN (OP_ATR_MIN, 1, 3, 0) \
11858 OP_DEFN (OP_ATR_MODULUS, 1, 1, 0) \
11859 OP_DEFN (OP_ATR_POS, 1, 2, 0) \
11860 OP_DEFN (OP_ATR_SIZE, 1, 1, 0) \
11861 OP_DEFN (OP_ATR_TAG, 1, 1, 0) \
11862 OP_DEFN (OP_ATR_VAL, 1, 2, 0) \
11863 OP_DEFN (UNOP_QUAL, 3, 1, 0) \
52ce6436
PH
11864 OP_DEFN (UNOP_IN_RANGE, 3, 1, 0) \
11865 OP_DEFN (OP_OTHERS, 1, 1, 0) \
11866 OP_DEFN (OP_POSITIONAL, 3, 1, 0) \
11867 OP_DEFN (OP_DISCRETE_RANGE, 1, 2, 0)
4c4b4cd2
PH
11868
11869static void
554794dc
SDJ
11870ada_operator_length (const struct expression *exp, int pc, int *oplenp,
11871 int *argsp)
4c4b4cd2
PH
11872{
11873 switch (exp->elts[pc - 1].opcode)
11874 {
76a01679 11875 default:
4c4b4cd2
PH
11876 operator_length_standard (exp, pc, oplenp, argsp);
11877 break;
11878
11879#define OP_DEFN(op, len, args, binop) \
11880 case op: *oplenp = len; *argsp = args; break;
11881 ADA_OPERATORS;
11882#undef OP_DEFN
52ce6436
PH
11883
11884 case OP_AGGREGATE:
11885 *oplenp = 3;
11886 *argsp = longest_to_int (exp->elts[pc - 2].longconst);
11887 break;
11888
11889 case OP_CHOICES:
11890 *oplenp = 3;
11891 *argsp = longest_to_int (exp->elts[pc - 2].longconst) + 1;
11892 break;
4c4b4cd2
PH
11893 }
11894}
11895
c0201579
JK
11896/* Implementation of the exp_descriptor method operator_check. */
11897
11898static int
11899ada_operator_check (struct expression *exp, int pos,
11900 int (*objfile_func) (struct objfile *objfile, void *data),
11901 void *data)
11902{
11903 const union exp_element *const elts = exp->elts;
11904 struct type *type = NULL;
11905
11906 switch (elts[pos].opcode)
11907 {
11908 case UNOP_IN_RANGE:
11909 case UNOP_QUAL:
11910 type = elts[pos + 1].type;
11911 break;
11912
11913 default:
11914 return operator_check_standard (exp, pos, objfile_func, data);
11915 }
11916
11917 /* Invoke callbacks for TYPE and OBJFILE if they were set as non-NULL. */
11918
11919 if (type && TYPE_OBJFILE (type)
11920 && (*objfile_func) (TYPE_OBJFILE (type), data))
11921 return 1;
11922
11923 return 0;
11924}
11925
4c4b4cd2
PH
11926static char *
11927ada_op_name (enum exp_opcode opcode)
11928{
11929 switch (opcode)
11930 {
76a01679 11931 default:
4c4b4cd2 11932 return op_name_standard (opcode);
52ce6436 11933
4c4b4cd2
PH
11934#define OP_DEFN(op, len, args, binop) case op: return #op;
11935 ADA_OPERATORS;
11936#undef OP_DEFN
52ce6436
PH
11937
11938 case OP_AGGREGATE:
11939 return "OP_AGGREGATE";
11940 case OP_CHOICES:
11941 return "OP_CHOICES";
11942 case OP_NAME:
11943 return "OP_NAME";
4c4b4cd2
PH
11944 }
11945}
11946
11947/* As for operator_length, but assumes PC is pointing at the first
11948 element of the operator, and gives meaningful results only for the
52ce6436 11949 Ada-specific operators, returning 0 for *OPLENP and *ARGSP otherwise. */
4c4b4cd2
PH
11950
11951static void
76a01679
JB
11952ada_forward_operator_length (struct expression *exp, int pc,
11953 int *oplenp, int *argsp)
4c4b4cd2 11954{
76a01679 11955 switch (exp->elts[pc].opcode)
4c4b4cd2
PH
11956 {
11957 default:
11958 *oplenp = *argsp = 0;
11959 break;
52ce6436 11960
4c4b4cd2
PH
11961#define OP_DEFN(op, len, args, binop) \
11962 case op: *oplenp = len; *argsp = args; break;
11963 ADA_OPERATORS;
11964#undef OP_DEFN
52ce6436
PH
11965
11966 case OP_AGGREGATE:
11967 *oplenp = 3;
11968 *argsp = longest_to_int (exp->elts[pc + 1].longconst);
11969 break;
11970
11971 case OP_CHOICES:
11972 *oplenp = 3;
11973 *argsp = longest_to_int (exp->elts[pc + 1].longconst) + 1;
11974 break;
11975
11976 case OP_STRING:
11977 case OP_NAME:
11978 {
11979 int len = longest_to_int (exp->elts[pc + 1].longconst);
5b4ee69b 11980
52ce6436
PH
11981 *oplenp = 4 + BYTES_TO_EXP_ELEM (len + 1);
11982 *argsp = 0;
11983 break;
11984 }
4c4b4cd2
PH
11985 }
11986}
11987
11988static int
11989ada_dump_subexp_body (struct expression *exp, struct ui_file *stream, int elt)
11990{
11991 enum exp_opcode op = exp->elts[elt].opcode;
11992 int oplen, nargs;
11993 int pc = elt;
11994 int i;
76a01679 11995
4c4b4cd2
PH
11996 ada_forward_operator_length (exp, elt, &oplen, &nargs);
11997
76a01679 11998 switch (op)
4c4b4cd2 11999 {
76a01679 12000 /* Ada attributes ('Foo). */
4c4b4cd2
PH
12001 case OP_ATR_FIRST:
12002 case OP_ATR_LAST:
12003 case OP_ATR_LENGTH:
12004 case OP_ATR_IMAGE:
12005 case OP_ATR_MAX:
12006 case OP_ATR_MIN:
12007 case OP_ATR_MODULUS:
12008 case OP_ATR_POS:
12009 case OP_ATR_SIZE:
12010 case OP_ATR_TAG:
12011 case OP_ATR_VAL:
12012 break;
12013
12014 case UNOP_IN_RANGE:
12015 case UNOP_QUAL:
323e0a4a
AC
12016 /* XXX: gdb_sprint_host_address, type_sprint */
12017 fprintf_filtered (stream, _("Type @"));
4c4b4cd2
PH
12018 gdb_print_host_address (exp->elts[pc + 1].type, stream);
12019 fprintf_filtered (stream, " (");
12020 type_print (exp->elts[pc + 1].type, NULL, stream, 0);
12021 fprintf_filtered (stream, ")");
12022 break;
12023 case BINOP_IN_BOUNDS:
52ce6436
PH
12024 fprintf_filtered (stream, " (%d)",
12025 longest_to_int (exp->elts[pc + 2].longconst));
4c4b4cd2
PH
12026 break;
12027 case TERNOP_IN_RANGE:
12028 break;
12029
52ce6436
PH
12030 case OP_AGGREGATE:
12031 case OP_OTHERS:
12032 case OP_DISCRETE_RANGE:
12033 case OP_POSITIONAL:
12034 case OP_CHOICES:
12035 break;
12036
12037 case OP_NAME:
12038 case OP_STRING:
12039 {
12040 char *name = &exp->elts[elt + 2].string;
12041 int len = longest_to_int (exp->elts[elt + 1].longconst);
5b4ee69b 12042
52ce6436
PH
12043 fprintf_filtered (stream, "Text: `%.*s'", len, name);
12044 break;
12045 }
12046
4c4b4cd2
PH
12047 default:
12048 return dump_subexp_body_standard (exp, stream, elt);
12049 }
12050
12051 elt += oplen;
12052 for (i = 0; i < nargs; i += 1)
12053 elt = dump_subexp (exp, stream, elt);
12054
12055 return elt;
12056}
12057
12058/* The Ada extension of print_subexp (q.v.). */
12059
76a01679
JB
12060static void
12061ada_print_subexp (struct expression *exp, int *pos,
12062 struct ui_file *stream, enum precedence prec)
4c4b4cd2 12063{
52ce6436 12064 int oplen, nargs, i;
4c4b4cd2
PH
12065 int pc = *pos;
12066 enum exp_opcode op = exp->elts[pc].opcode;
12067
12068 ada_forward_operator_length (exp, pc, &oplen, &nargs);
12069
52ce6436 12070 *pos += oplen;
4c4b4cd2
PH
12071 switch (op)
12072 {
12073 default:
52ce6436 12074 *pos -= oplen;
4c4b4cd2
PH
12075 print_subexp_standard (exp, pos, stream, prec);
12076 return;
12077
12078 case OP_VAR_VALUE:
4c4b4cd2
PH
12079 fputs_filtered (SYMBOL_NATURAL_NAME (exp->elts[pc + 2].symbol), stream);
12080 return;
12081
12082 case BINOP_IN_BOUNDS:
323e0a4a 12083 /* XXX: sprint_subexp */
4c4b4cd2 12084 print_subexp (exp, pos, stream, PREC_SUFFIX);
0b48a291 12085 fputs_filtered (" in ", stream);
4c4b4cd2 12086 print_subexp (exp, pos, stream, PREC_SUFFIX);
0b48a291 12087 fputs_filtered ("'range", stream);
4c4b4cd2 12088 if (exp->elts[pc + 1].longconst > 1)
76a01679
JB
12089 fprintf_filtered (stream, "(%ld)",
12090 (long) exp->elts[pc + 1].longconst);
4c4b4cd2
PH
12091 return;
12092
12093 case TERNOP_IN_RANGE:
4c4b4cd2 12094 if (prec >= PREC_EQUAL)
76a01679 12095 fputs_filtered ("(", stream);
323e0a4a 12096 /* XXX: sprint_subexp */
4c4b4cd2 12097 print_subexp (exp, pos, stream, PREC_SUFFIX);
0b48a291 12098 fputs_filtered (" in ", stream);
4c4b4cd2
PH
12099 print_subexp (exp, pos, stream, PREC_EQUAL);
12100 fputs_filtered (" .. ", stream);
12101 print_subexp (exp, pos, stream, PREC_EQUAL);
12102 if (prec >= PREC_EQUAL)
76a01679
JB
12103 fputs_filtered (")", stream);
12104 return;
4c4b4cd2
PH
12105
12106 case OP_ATR_FIRST:
12107 case OP_ATR_LAST:
12108 case OP_ATR_LENGTH:
12109 case OP_ATR_IMAGE:
12110 case OP_ATR_MAX:
12111 case OP_ATR_MIN:
12112 case OP_ATR_MODULUS:
12113 case OP_ATR_POS:
12114 case OP_ATR_SIZE:
12115 case OP_ATR_TAG:
12116 case OP_ATR_VAL:
4c4b4cd2 12117 if (exp->elts[*pos].opcode == OP_TYPE)
76a01679
JB
12118 {
12119 if (TYPE_CODE (exp->elts[*pos + 1].type) != TYPE_CODE_VOID)
12120 LA_PRINT_TYPE (exp->elts[*pos + 1].type, "", stream, 0, 0);
12121 *pos += 3;
12122 }
4c4b4cd2 12123 else
76a01679 12124 print_subexp (exp, pos, stream, PREC_SUFFIX);
4c4b4cd2
PH
12125 fprintf_filtered (stream, "'%s", ada_attribute_name (op));
12126 if (nargs > 1)
76a01679
JB
12127 {
12128 int tem;
5b4ee69b 12129
76a01679
JB
12130 for (tem = 1; tem < nargs; tem += 1)
12131 {
12132 fputs_filtered ((tem == 1) ? " (" : ", ", stream);
12133 print_subexp (exp, pos, stream, PREC_ABOVE_COMMA);
12134 }
12135 fputs_filtered (")", stream);
12136 }
4c4b4cd2 12137 return;
14f9c5c9 12138
4c4b4cd2 12139 case UNOP_QUAL:
4c4b4cd2
PH
12140 type_print (exp->elts[pc + 1].type, "", stream, 0);
12141 fputs_filtered ("'(", stream);
12142 print_subexp (exp, pos, stream, PREC_PREFIX);
12143 fputs_filtered (")", stream);
12144 return;
14f9c5c9 12145
4c4b4cd2 12146 case UNOP_IN_RANGE:
323e0a4a 12147 /* XXX: sprint_subexp */
4c4b4cd2 12148 print_subexp (exp, pos, stream, PREC_SUFFIX);
0b48a291 12149 fputs_filtered (" in ", stream);
4c4b4cd2
PH
12150 LA_PRINT_TYPE (exp->elts[pc + 1].type, "", stream, 1, 0);
12151 return;
52ce6436
PH
12152
12153 case OP_DISCRETE_RANGE:
12154 print_subexp (exp, pos, stream, PREC_SUFFIX);
12155 fputs_filtered ("..", stream);
12156 print_subexp (exp, pos, stream, PREC_SUFFIX);
12157 return;
12158
12159 case OP_OTHERS:
12160 fputs_filtered ("others => ", stream);
12161 print_subexp (exp, pos, stream, PREC_SUFFIX);
12162 return;
12163
12164 case OP_CHOICES:
12165 for (i = 0; i < nargs-1; i += 1)
12166 {
12167 if (i > 0)
12168 fputs_filtered ("|", stream);
12169 print_subexp (exp, pos, stream, PREC_SUFFIX);
12170 }
12171 fputs_filtered (" => ", stream);
12172 print_subexp (exp, pos, stream, PREC_SUFFIX);
12173 return;
12174
12175 case OP_POSITIONAL:
12176 print_subexp (exp, pos, stream, PREC_SUFFIX);
12177 return;
12178
12179 case OP_AGGREGATE:
12180 fputs_filtered ("(", stream);
12181 for (i = 0; i < nargs; i += 1)
12182 {
12183 if (i > 0)
12184 fputs_filtered (", ", stream);
12185 print_subexp (exp, pos, stream, PREC_SUFFIX);
12186 }
12187 fputs_filtered (")", stream);
12188 return;
4c4b4cd2
PH
12189 }
12190}
14f9c5c9
AS
12191
12192/* Table mapping opcodes into strings for printing operators
12193 and precedences of the operators. */
12194
d2e4a39e
AS
12195static const struct op_print ada_op_print_tab[] = {
12196 {":=", BINOP_ASSIGN, PREC_ASSIGN, 1},
12197 {"or else", BINOP_LOGICAL_OR, PREC_LOGICAL_OR, 0},
12198 {"and then", BINOP_LOGICAL_AND, PREC_LOGICAL_AND, 0},
12199 {"or", BINOP_BITWISE_IOR, PREC_BITWISE_IOR, 0},
12200 {"xor", BINOP_BITWISE_XOR, PREC_BITWISE_XOR, 0},
12201 {"and", BINOP_BITWISE_AND, PREC_BITWISE_AND, 0},
12202 {"=", BINOP_EQUAL, PREC_EQUAL, 0},
12203 {"/=", BINOP_NOTEQUAL, PREC_EQUAL, 0},
12204 {"<=", BINOP_LEQ, PREC_ORDER, 0},
12205 {">=", BINOP_GEQ, PREC_ORDER, 0},
12206 {">", BINOP_GTR, PREC_ORDER, 0},
12207 {"<", BINOP_LESS, PREC_ORDER, 0},
12208 {">>", BINOP_RSH, PREC_SHIFT, 0},
12209 {"<<", BINOP_LSH, PREC_SHIFT, 0},
12210 {"+", BINOP_ADD, PREC_ADD, 0},
12211 {"-", BINOP_SUB, PREC_ADD, 0},
12212 {"&", BINOP_CONCAT, PREC_ADD, 0},
12213 {"*", BINOP_MUL, PREC_MUL, 0},
12214 {"/", BINOP_DIV, PREC_MUL, 0},
12215 {"rem", BINOP_REM, PREC_MUL, 0},
12216 {"mod", BINOP_MOD, PREC_MUL, 0},
12217 {"**", BINOP_EXP, PREC_REPEAT, 0},
12218 {"@", BINOP_REPEAT, PREC_REPEAT, 0},
12219 {"-", UNOP_NEG, PREC_PREFIX, 0},
12220 {"+", UNOP_PLUS, PREC_PREFIX, 0},
12221 {"not ", UNOP_LOGICAL_NOT, PREC_PREFIX, 0},
12222 {"not ", UNOP_COMPLEMENT, PREC_PREFIX, 0},
12223 {"abs ", UNOP_ABS, PREC_PREFIX, 0},
4c4b4cd2
PH
12224 {".all", UNOP_IND, PREC_SUFFIX, 1},
12225 {"'access", UNOP_ADDR, PREC_SUFFIX, 1},
12226 {"'size", OP_ATR_SIZE, PREC_SUFFIX, 1},
d2e4a39e 12227 {NULL, 0, 0, 0}
14f9c5c9
AS
12228};
12229\f
72d5681a
PH
12230enum ada_primitive_types {
12231 ada_primitive_type_int,
12232 ada_primitive_type_long,
12233 ada_primitive_type_short,
12234 ada_primitive_type_char,
12235 ada_primitive_type_float,
12236 ada_primitive_type_double,
12237 ada_primitive_type_void,
12238 ada_primitive_type_long_long,
12239 ada_primitive_type_long_double,
12240 ada_primitive_type_natural,
12241 ada_primitive_type_positive,
12242 ada_primitive_type_system_address,
12243 nr_ada_primitive_types
12244};
6c038f32
PH
12245
12246static void
d4a9a881 12247ada_language_arch_info (struct gdbarch *gdbarch,
72d5681a
PH
12248 struct language_arch_info *lai)
12249{
d4a9a881 12250 const struct builtin_type *builtin = builtin_type (gdbarch);
5b4ee69b 12251
72d5681a 12252 lai->primitive_type_vector
d4a9a881 12253 = GDBARCH_OBSTACK_CALLOC (gdbarch, nr_ada_primitive_types + 1,
72d5681a 12254 struct type *);
e9bb382b
UW
12255
12256 lai->primitive_type_vector [ada_primitive_type_int]
12257 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
12258 0, "integer");
12259 lai->primitive_type_vector [ada_primitive_type_long]
12260 = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
12261 0, "long_integer");
12262 lai->primitive_type_vector [ada_primitive_type_short]
12263 = arch_integer_type (gdbarch, gdbarch_short_bit (gdbarch),
12264 0, "short_integer");
12265 lai->string_char_type
12266 = lai->primitive_type_vector [ada_primitive_type_char]
12267 = arch_integer_type (gdbarch, TARGET_CHAR_BIT, 0, "character");
12268 lai->primitive_type_vector [ada_primitive_type_float]
12269 = arch_float_type (gdbarch, gdbarch_float_bit (gdbarch),
12270 "float", NULL);
12271 lai->primitive_type_vector [ada_primitive_type_double]
12272 = arch_float_type (gdbarch, gdbarch_double_bit (gdbarch),
12273 "long_float", NULL);
12274 lai->primitive_type_vector [ada_primitive_type_long_long]
12275 = arch_integer_type (gdbarch, gdbarch_long_long_bit (gdbarch),
12276 0, "long_long_integer");
12277 lai->primitive_type_vector [ada_primitive_type_long_double]
12278 = arch_float_type (gdbarch, gdbarch_double_bit (gdbarch),
12279 "long_long_float", NULL);
12280 lai->primitive_type_vector [ada_primitive_type_natural]
12281 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
12282 0, "natural");
12283 lai->primitive_type_vector [ada_primitive_type_positive]
12284 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
12285 0, "positive");
12286 lai->primitive_type_vector [ada_primitive_type_void]
12287 = builtin->builtin_void;
12288
12289 lai->primitive_type_vector [ada_primitive_type_system_address]
12290 = lookup_pointer_type (arch_type (gdbarch, TYPE_CODE_VOID, 1, "void"));
72d5681a
PH
12291 TYPE_NAME (lai->primitive_type_vector [ada_primitive_type_system_address])
12292 = "system__address";
fbb06eb1 12293
47e729a8 12294 lai->bool_type_symbol = NULL;
fbb06eb1 12295 lai->bool_type_default = builtin->builtin_bool;
6c038f32 12296}
6c038f32
PH
12297\f
12298 /* Language vector */
12299
12300/* Not really used, but needed in the ada_language_defn. */
12301
12302static void
6c7a06a3 12303emit_char (int c, struct type *type, struct ui_file *stream, int quoter)
6c038f32 12304{
6c7a06a3 12305 ada_emit_char (c, type, stream, quoter, 1);
6c038f32
PH
12306}
12307
12308static int
12309parse (void)
12310{
12311 warnings_issued = 0;
12312 return ada_parse ();
12313}
12314
12315static const struct exp_descriptor ada_exp_descriptor = {
12316 ada_print_subexp,
12317 ada_operator_length,
c0201579 12318 ada_operator_check,
6c038f32
PH
12319 ada_op_name,
12320 ada_dump_subexp_body,
12321 ada_evaluate_subexp
12322};
12323
74ccd7f5
JB
12324/* Implement the "la_get_symbol_name_match_p" language_defn method
12325 for Ada. */
12326
12327static symbol_name_match_p_ftype
12328ada_get_symbol_name_match_p (const char *lookup_name)
12329{
12330 if (should_use_wild_match (lookup_name))
12331 return wild_match;
12332 else
12333 return compare_names;
12334}
12335
6c038f32
PH
12336const struct language_defn ada_language_defn = {
12337 "ada", /* Language name */
12338 language_ada,
6c038f32
PH
12339 range_check_off,
12340 type_check_off,
12341 case_sensitive_on, /* Yes, Ada is case-insensitive, but
12342 that's not quite what this means. */
6c038f32 12343 array_row_major,
9a044a89 12344 macro_expansion_no,
6c038f32
PH
12345 &ada_exp_descriptor,
12346 parse,
12347 ada_error,
12348 resolve,
12349 ada_printchar, /* Print a character constant */
12350 ada_printstr, /* Function to print string constant */
12351 emit_char, /* Function to print single char (not used) */
6c038f32 12352 ada_print_type, /* Print a type using appropriate syntax */
be942545 12353 ada_print_typedef, /* Print a typedef using appropriate syntax */
6c038f32
PH
12354 ada_val_print, /* Print a value using appropriate syntax */
12355 ada_value_print, /* Print a top-level value */
12356 NULL, /* Language specific skip_trampoline */
2b2d9e11 12357 NULL, /* name_of_this */
6c038f32
PH
12358 ada_lookup_symbol_nonlocal, /* Looking up non-local symbols. */
12359 basic_lookup_transparent_type, /* lookup_transparent_type */
12360 ada_la_decode, /* Language specific symbol demangler */
0963b4bd
MS
12361 NULL, /* Language specific
12362 class_name_from_physname */
6c038f32
PH
12363 ada_op_print_tab, /* expression operators for printing */
12364 0, /* c-style arrays */
12365 1, /* String lower bound */
6c038f32 12366 ada_get_gdb_completer_word_break_characters,
41d27058 12367 ada_make_symbol_completion_list,
72d5681a 12368 ada_language_arch_info,
e79af960 12369 ada_print_array_index,
41f1b697 12370 default_pass_by_reference,
ae6a3a4c 12371 c_get_string,
74ccd7f5 12372 ada_get_symbol_name_match_p, /* la_get_symbol_name_match_p */
f8eba3c6 12373 ada_iterate_over_symbols,
6c038f32
PH
12374 LANG_MAGIC
12375};
12376
2c0b251b
PA
12377/* Provide a prototype to silence -Wmissing-prototypes. */
12378extern initialize_file_ftype _initialize_ada_language;
12379
5bf03f13
JB
12380/* Command-list for the "set/show ada" prefix command. */
12381static struct cmd_list_element *set_ada_list;
12382static struct cmd_list_element *show_ada_list;
12383
12384/* Implement the "set ada" prefix command. */
12385
12386static void
12387set_ada_command (char *arg, int from_tty)
12388{
12389 printf_unfiltered (_(\
12390"\"set ada\" must be followed by the name of a setting.\n"));
12391 help_list (set_ada_list, "set ada ", -1, gdb_stdout);
12392}
12393
12394/* Implement the "show ada" prefix command. */
12395
12396static void
12397show_ada_command (char *args, int from_tty)
12398{
12399 cmd_show_list (show_ada_list, from_tty, "");
12400}
12401
2060206e
PA
12402static void
12403initialize_ada_catchpoint_ops (void)
12404{
12405 struct breakpoint_ops *ops;
12406
12407 initialize_breakpoint_ops ();
12408
12409 ops = &catch_exception_breakpoint_ops;
12410 *ops = bkpt_breakpoint_ops;
12411 ops->dtor = dtor_catch_exception;
12412 ops->allocate_location = allocate_location_catch_exception;
12413 ops->re_set = re_set_catch_exception;
12414 ops->check_status = check_status_catch_exception;
12415 ops->print_it = print_it_catch_exception;
12416 ops->print_one = print_one_catch_exception;
12417 ops->print_mention = print_mention_catch_exception;
12418 ops->print_recreate = print_recreate_catch_exception;
12419
12420 ops = &catch_exception_unhandled_breakpoint_ops;
12421 *ops = bkpt_breakpoint_ops;
12422 ops->dtor = dtor_catch_exception_unhandled;
12423 ops->allocate_location = allocate_location_catch_exception_unhandled;
12424 ops->re_set = re_set_catch_exception_unhandled;
12425 ops->check_status = check_status_catch_exception_unhandled;
12426 ops->print_it = print_it_catch_exception_unhandled;
12427 ops->print_one = print_one_catch_exception_unhandled;
12428 ops->print_mention = print_mention_catch_exception_unhandled;
12429 ops->print_recreate = print_recreate_catch_exception_unhandled;
12430
12431 ops = &catch_assert_breakpoint_ops;
12432 *ops = bkpt_breakpoint_ops;
12433 ops->dtor = dtor_catch_assert;
12434 ops->allocate_location = allocate_location_catch_assert;
12435 ops->re_set = re_set_catch_assert;
12436 ops->check_status = check_status_catch_assert;
12437 ops->print_it = print_it_catch_assert;
12438 ops->print_one = print_one_catch_assert;
12439 ops->print_mention = print_mention_catch_assert;
12440 ops->print_recreate = print_recreate_catch_assert;
12441}
12442
d2e4a39e 12443void
6c038f32 12444_initialize_ada_language (void)
14f9c5c9 12445{
6c038f32
PH
12446 add_language (&ada_language_defn);
12447
2060206e
PA
12448 initialize_ada_catchpoint_ops ();
12449
5bf03f13
JB
12450 add_prefix_cmd ("ada", no_class, set_ada_command,
12451 _("Prefix command for changing Ada-specfic settings"),
12452 &set_ada_list, "set ada ", 0, &setlist);
12453
12454 add_prefix_cmd ("ada", no_class, show_ada_command,
12455 _("Generic command for showing Ada-specific settings."),
12456 &show_ada_list, "show ada ", 0, &showlist);
12457
12458 add_setshow_boolean_cmd ("trust-PAD-over-XVS", class_obscure,
12459 &trust_pad_over_xvs, _("\
12460Enable or disable an optimization trusting PAD types over XVS types"), _("\
12461Show whether an optimization trusting PAD types over XVS types is activated"),
12462 _("\
12463This is related to the encoding used by the GNAT compiler. The debugger\n\
12464should normally trust the contents of PAD types, but certain older versions\n\
12465of GNAT have a bug that sometimes causes the information in the PAD type\n\
12466to be incorrect. Turning this setting \"off\" allows the debugger to\n\
12467work around this bug. It is always safe to turn this option \"off\", but\n\
12468this incurs a slight performance penalty, so it is recommended to NOT change\n\
12469this option to \"off\" unless necessary."),
12470 NULL, NULL, &set_ada_list, &show_ada_list);
12471
9ac4176b
PA
12472 add_catch_command ("exception", _("\
12473Catch Ada exceptions, when raised.\n\
12474With an argument, catch only exceptions with the given name."),
12475 catch_ada_exception_command,
12476 NULL,
12477 CATCH_PERMANENT,
12478 CATCH_TEMPORARY);
12479 add_catch_command ("assert", _("\
12480Catch failed Ada assertions, when raised.\n\
12481With an argument, catch only exceptions with the given name."),
12482 catch_assert_command,
12483 NULL,
12484 CATCH_PERMANENT,
12485 CATCH_TEMPORARY);
12486
6c038f32 12487 varsize_limit = 65536;
6c038f32
PH
12488
12489 obstack_init (&symbol_list_obstack);
12490
12491 decoded_names_store = htab_create_alloc
12492 (256, htab_hash_string, (int (*)(const void *, const void *)) streq,
12493 NULL, xcalloc, xfree);
6b69afc4 12494
e802dbe0
JB
12495 /* Setup per-inferior data. */
12496 observer_attach_inferior_exit (ada_inferior_exit);
12497 ada_inferior_data
12498 = register_inferior_data_with_cleanup (ada_inferior_data_cleanup);
14f9c5c9 12499}