]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blame - gdb/ada-lang.c
*** empty log message ***
[thirdparty/binutils-gdb.git] / gdb / ada-lang.c
CommitLineData
197e01b6 1/* Ada language support routines for GDB, the GNU debugger. Copyright (C)
10a2c479 2
ae6a3a4c
TJB
3 1992, 1993, 1994, 1997, 1998, 1999, 2000, 2003, 2004, 2005, 2007, 2008,
4 2009 Free Software Foundation, Inc.
14f9c5c9 5
a9762ec7 6 This file is part of GDB.
14f9c5c9 7
a9762ec7
JB
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
14f9c5c9 12
a9762ec7
JB
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
14f9c5c9 17
a9762ec7
JB
18 You should have received a copy of the GNU General Public License
19 along with this program. If not, see <http://www.gnu.org/licenses/>. */
14f9c5c9 20
96d887e8 21
4c4b4cd2 22#include "defs.h"
14f9c5c9 23#include <stdio.h>
0c30c098 24#include "gdb_string.h"
14f9c5c9
AS
25#include <ctype.h>
26#include <stdarg.h>
27#include "demangle.h"
4c4b4cd2
PH
28#include "gdb_regex.h"
29#include "frame.h"
14f9c5c9
AS
30#include "symtab.h"
31#include "gdbtypes.h"
32#include "gdbcmd.h"
33#include "expression.h"
34#include "parser-defs.h"
35#include "language.h"
36#include "c-lang.h"
37#include "inferior.h"
38#include "symfile.h"
39#include "objfiles.h"
40#include "breakpoint.h"
41#include "gdbcore.h"
4c4b4cd2
PH
42#include "hashtab.h"
43#include "gdb_obstack.h"
14f9c5c9 44#include "ada-lang.h"
4c4b4cd2
PH
45#include "completer.h"
46#include "gdb_stat.h"
47#ifdef UI_OUT
14f9c5c9 48#include "ui-out.h"
4c4b4cd2 49#endif
fe898f56 50#include "block.h"
04714b91 51#include "infcall.h"
de4f826b 52#include "dictionary.h"
60250e8b 53#include "exceptions.h"
f7f9143b
JB
54#include "annotate.h"
55#include "valprint.h"
9bbc9174 56#include "source.h"
0259addd 57#include "observer.h"
2ba95b9b 58#include "vec.h"
692465f1 59#include "stack.h"
14f9c5c9 60
ccefe4c4
TT
61#include "psymtab.h"
62
4c4b4cd2
PH
63/* Define whether or not the C operator '/' truncates towards zero for
64 differently signed operands (truncation direction is undefined in C).
65 Copied from valarith.c. */
66
67#ifndef TRUNCATION_TOWARDS_ZERO
68#define TRUNCATION_TOWARDS_ZERO ((-5 / 2) == -2)
69#endif
70
50810684 71static void modify_general_field (struct type *, char *, LONGEST, int, int);
14f9c5c9 72
d2e4a39e 73static struct type *desc_base_type (struct type *);
14f9c5c9 74
d2e4a39e 75static struct type *desc_bounds_type (struct type *);
14f9c5c9 76
d2e4a39e 77static struct value *desc_bounds (struct value *);
14f9c5c9 78
d2e4a39e 79static int fat_pntr_bounds_bitpos (struct type *);
14f9c5c9 80
d2e4a39e 81static int fat_pntr_bounds_bitsize (struct type *);
14f9c5c9 82
556bdfd4 83static struct type *desc_data_target_type (struct type *);
14f9c5c9 84
d2e4a39e 85static struct value *desc_data (struct value *);
14f9c5c9 86
d2e4a39e 87static int fat_pntr_data_bitpos (struct type *);
14f9c5c9 88
d2e4a39e 89static int fat_pntr_data_bitsize (struct type *);
14f9c5c9 90
d2e4a39e 91static struct value *desc_one_bound (struct value *, int, int);
14f9c5c9 92
d2e4a39e 93static int desc_bound_bitpos (struct type *, int, int);
14f9c5c9 94
d2e4a39e 95static int desc_bound_bitsize (struct type *, int, int);
14f9c5c9 96
d2e4a39e 97static struct type *desc_index_type (struct type *, int);
14f9c5c9 98
d2e4a39e 99static int desc_arity (struct type *);
14f9c5c9 100
d2e4a39e 101static int ada_type_match (struct type *, struct type *, int);
14f9c5c9 102
d2e4a39e 103static int ada_args_match (struct symbol *, struct value **, int);
14f9c5c9 104
4a399546
UW
105static struct value *ensure_lval (struct value *,
106 struct gdbarch *, CORE_ADDR *);
14f9c5c9 107
d2e4a39e 108static struct value *make_array_descriptor (struct type *, struct value *,
4a399546 109 struct gdbarch *, CORE_ADDR *);
14f9c5c9 110
4c4b4cd2 111static void ada_add_block_symbols (struct obstack *,
76a01679 112 struct block *, const char *,
2570f2b7 113 domain_enum, struct objfile *, int);
14f9c5c9 114
4c4b4cd2 115static int is_nonfunction (struct ada_symbol_info *, int);
14f9c5c9 116
76a01679 117static void add_defn_to_vec (struct obstack *, struct symbol *,
2570f2b7 118 struct block *);
14f9c5c9 119
4c4b4cd2
PH
120static int num_defns_collected (struct obstack *);
121
122static struct ada_symbol_info *defns_collected (struct obstack *, int);
14f9c5c9 123
4c4b4cd2 124static struct value *resolve_subexp (struct expression **, int *, int,
76a01679 125 struct type *);
14f9c5c9 126
d2e4a39e 127static void replace_operator_with_call (struct expression **, int, int, int,
4c4b4cd2 128 struct symbol *, struct block *);
14f9c5c9 129
d2e4a39e 130static int possible_user_operator_p (enum exp_opcode, struct value **);
14f9c5c9 131
4c4b4cd2
PH
132static char *ada_op_name (enum exp_opcode);
133
134static const char *ada_decoded_op_name (enum exp_opcode);
14f9c5c9 135
d2e4a39e 136static int numeric_type_p (struct type *);
14f9c5c9 137
d2e4a39e 138static int integer_type_p (struct type *);
14f9c5c9 139
d2e4a39e 140static int scalar_type_p (struct type *);
14f9c5c9 141
d2e4a39e 142static int discrete_type_p (struct type *);
14f9c5c9 143
aeb5907d
JB
144static enum ada_renaming_category parse_old_style_renaming (struct type *,
145 const char **,
146 int *,
147 const char **);
148
149static struct symbol *find_old_style_renaming_symbol (const char *,
150 struct block *);
151
4c4b4cd2 152static struct type *ada_lookup_struct_elt_type (struct type *, char *,
76a01679 153 int, int, int *);
4c4b4cd2 154
d2e4a39e 155static struct value *evaluate_subexp_type (struct expression *, int *);
14f9c5c9 156
b4ba55a1
JB
157static struct type *ada_find_parallel_type_with_name (struct type *,
158 const char *);
159
d2e4a39e 160static int is_dynamic_field (struct type *, int);
14f9c5c9 161
10a2c479 162static struct type *to_fixed_variant_branch_type (struct type *,
fc1a4b47 163 const gdb_byte *,
4c4b4cd2
PH
164 CORE_ADDR, struct value *);
165
166static struct type *to_fixed_array_type (struct type *, struct value *, int);
14f9c5c9 167
d2e4a39e 168static struct type *to_fixed_range_type (char *, struct value *,
1ce677a4 169 struct type *);
14f9c5c9 170
d2e4a39e 171static struct type *to_static_fixed_type (struct type *);
f192137b 172static struct type *static_unwrap_type (struct type *type);
14f9c5c9 173
d2e4a39e 174static struct value *unwrap_value (struct value *);
14f9c5c9 175
ad82864c 176static struct type *constrained_packed_array_type (struct type *, long *);
14f9c5c9 177
ad82864c 178static struct type *decode_constrained_packed_array_type (struct type *);
14f9c5c9 179
ad82864c
JB
180static long decode_packed_array_bitsize (struct type *);
181
182static struct value *decode_constrained_packed_array (struct value *);
183
184static int ada_is_packed_array_type (struct type *);
185
186static int ada_is_unconstrained_packed_array_type (struct type *);
14f9c5c9 187
d2e4a39e 188static struct value *value_subscript_packed (struct value *, int,
4c4b4cd2 189 struct value **);
14f9c5c9 190
50810684 191static void move_bits (gdb_byte *, int, const gdb_byte *, int, int, int);
52ce6436 192
4c4b4cd2
PH
193static struct value *coerce_unspec_val_to_type (struct value *,
194 struct type *);
14f9c5c9 195
d2e4a39e 196static struct value *get_var_value (char *, char *);
14f9c5c9 197
d2e4a39e 198static int lesseq_defined_than (struct symbol *, struct symbol *);
14f9c5c9 199
d2e4a39e 200static int equiv_types (struct type *, struct type *);
14f9c5c9 201
d2e4a39e 202static int is_name_suffix (const char *);
14f9c5c9 203
d2e4a39e 204static int wild_match (const char *, int, const char *);
14f9c5c9 205
d2e4a39e 206static struct value *ada_coerce_ref (struct value *);
14f9c5c9 207
4c4b4cd2
PH
208static LONGEST pos_atr (struct value *);
209
3cb382c9 210static struct value *value_pos_atr (struct type *, struct value *);
14f9c5c9 211
d2e4a39e 212static struct value *value_val_atr (struct type *, struct value *);
14f9c5c9 213
4c4b4cd2
PH
214static struct symbol *standard_lookup (const char *, const struct block *,
215 domain_enum);
14f9c5c9 216
4c4b4cd2
PH
217static struct value *ada_search_struct_field (char *, struct value *, int,
218 struct type *);
219
220static struct value *ada_value_primitive_field (struct value *, int, int,
221 struct type *);
222
76a01679 223static int find_struct_field (char *, struct type *, int,
52ce6436 224 struct type **, int *, int *, int *, int *);
4c4b4cd2
PH
225
226static struct value *ada_to_fixed_value_create (struct type *, CORE_ADDR,
227 struct value *);
228
229static struct value *ada_to_fixed_value (struct value *);
14f9c5c9 230
4c4b4cd2
PH
231static int ada_resolve_function (struct ada_symbol_info *, int,
232 struct value **, int, const char *,
233 struct type *);
234
235static struct value *ada_coerce_to_simple_array (struct value *);
236
237static int ada_is_direct_array_type (struct type *);
238
72d5681a
PH
239static void ada_language_arch_info (struct gdbarch *,
240 struct language_arch_info *);
714e53ab
PH
241
242static void check_size (const struct type *);
52ce6436
PH
243
244static struct value *ada_index_struct_field (int, struct value *, int,
245 struct type *);
246
247static struct value *assign_aggregate (struct value *, struct value *,
248 struct expression *, int *, enum noside);
249
250static void aggregate_assign_from_choices (struct value *, struct value *,
251 struct expression *,
252 int *, LONGEST *, int *,
253 int, LONGEST, LONGEST);
254
255static void aggregate_assign_positional (struct value *, struct value *,
256 struct expression *,
257 int *, LONGEST *, int *, int,
258 LONGEST, LONGEST);
259
260
261static void aggregate_assign_others (struct value *, struct value *,
262 struct expression *,
263 int *, LONGEST *, int, LONGEST, LONGEST);
264
265
266static void add_component_interval (LONGEST, LONGEST, LONGEST *, int *, int);
267
268
269static struct value *ada_evaluate_subexp (struct type *, struct expression *,
270 int *, enum noside);
271
272static void ada_forward_operator_length (struct expression *, int, int *,
273 int *);
4c4b4cd2
PH
274\f
275
76a01679 276
4c4b4cd2 277/* Maximum-sized dynamic type. */
14f9c5c9
AS
278static unsigned int varsize_limit;
279
4c4b4cd2
PH
280/* FIXME: brobecker/2003-09-17: No longer a const because it is
281 returned by a function that does not return a const char *. */
282static char *ada_completer_word_break_characters =
283#ifdef VMS
284 " \t\n!@#%^&*()+=|~`}{[]\";:?/,-";
285#else
14f9c5c9 286 " \t\n!@#$%^&*()+=|~`}{[]\";:?/,-";
4c4b4cd2 287#endif
14f9c5c9 288
4c4b4cd2 289/* The name of the symbol to use to get the name of the main subprogram. */
76a01679 290static const char ADA_MAIN_PROGRAM_SYMBOL_NAME[]
4c4b4cd2 291 = "__gnat_ada_main_program_name";
14f9c5c9 292
4c4b4cd2
PH
293/* Limit on the number of warnings to raise per expression evaluation. */
294static int warning_limit = 2;
295
296/* Number of warning messages issued; reset to 0 by cleanups after
297 expression evaluation. */
298static int warnings_issued = 0;
299
300static const char *known_runtime_file_name_patterns[] = {
301 ADA_KNOWN_RUNTIME_FILE_NAME_PATTERNS NULL
302};
303
304static const char *known_auxiliary_function_name_patterns[] = {
305 ADA_KNOWN_AUXILIARY_FUNCTION_NAME_PATTERNS NULL
306};
307
308/* Space for allocating results of ada_lookup_symbol_list. */
309static struct obstack symbol_list_obstack;
310
311 /* Utilities */
312
41d27058
JB
313/* Given DECODED_NAME a string holding a symbol name in its
314 decoded form (ie using the Ada dotted notation), returns
315 its unqualified name. */
316
317static const char *
318ada_unqualified_name (const char *decoded_name)
319{
320 const char *result = strrchr (decoded_name, '.');
321
322 if (result != NULL)
323 result++; /* Skip the dot... */
324 else
325 result = decoded_name;
326
327 return result;
328}
329
330/* Return a string starting with '<', followed by STR, and '>'.
331 The result is good until the next call. */
332
333static char *
334add_angle_brackets (const char *str)
335{
336 static char *result = NULL;
337
338 xfree (result);
88c15c34 339 result = xstrprintf ("<%s>", str);
41d27058
JB
340 return result;
341}
96d887e8 342
4c4b4cd2
PH
343static char *
344ada_get_gdb_completer_word_break_characters (void)
345{
346 return ada_completer_word_break_characters;
347}
348
e79af960
JB
349/* Print an array element index using the Ada syntax. */
350
351static void
352ada_print_array_index (struct value *index_value, struct ui_file *stream,
79a45b7d 353 const struct value_print_options *options)
e79af960 354{
79a45b7d 355 LA_VALUE_PRINT (index_value, stream, options);
e79af960
JB
356 fprintf_filtered (stream, " => ");
357}
358
f27cf670 359/* Assuming VECT points to an array of *SIZE objects of size
14f9c5c9 360 ELEMENT_SIZE, grow it to contain at least MIN_SIZE objects,
f27cf670 361 updating *SIZE as necessary and returning the (new) array. */
14f9c5c9 362
f27cf670
AS
363void *
364grow_vect (void *vect, size_t *size, size_t min_size, int element_size)
14f9c5c9 365{
d2e4a39e
AS
366 if (*size < min_size)
367 {
368 *size *= 2;
369 if (*size < min_size)
4c4b4cd2 370 *size = min_size;
f27cf670 371 vect = xrealloc (vect, *size * element_size);
d2e4a39e 372 }
f27cf670 373 return vect;
14f9c5c9
AS
374}
375
376/* True (non-zero) iff TARGET matches FIELD_NAME up to any trailing
4c4b4cd2 377 suffix of FIELD_NAME beginning "___". */
14f9c5c9
AS
378
379static int
ebf56fd3 380field_name_match (const char *field_name, const char *target)
14f9c5c9
AS
381{
382 int len = strlen (target);
d2e4a39e 383 return
4c4b4cd2
PH
384 (strncmp (field_name, target, len) == 0
385 && (field_name[len] == '\0'
386 || (strncmp (field_name + len, "___", 3) == 0
76a01679
JB
387 && strcmp (field_name + strlen (field_name) - 6,
388 "___XVN") != 0)));
14f9c5c9
AS
389}
390
391
872c8b51
JB
392/* Assuming TYPE is a TYPE_CODE_STRUCT or a TYPE_CODE_TYPDEF to
393 a TYPE_CODE_STRUCT, find the field whose name matches FIELD_NAME,
394 and return its index. This function also handles fields whose name
395 have ___ suffixes because the compiler sometimes alters their name
396 by adding such a suffix to represent fields with certain constraints.
397 If the field could not be found, return a negative number if
398 MAYBE_MISSING is set. Otherwise raise an error. */
4c4b4cd2
PH
399
400int
401ada_get_field_index (const struct type *type, const char *field_name,
402 int maybe_missing)
403{
404 int fieldno;
872c8b51
JB
405 struct type *struct_type = check_typedef ((struct type *) type);
406
407 for (fieldno = 0; fieldno < TYPE_NFIELDS (struct_type); fieldno++)
408 if (field_name_match (TYPE_FIELD_NAME (struct_type, fieldno), field_name))
4c4b4cd2
PH
409 return fieldno;
410
411 if (!maybe_missing)
323e0a4a 412 error (_("Unable to find field %s in struct %s. Aborting"),
872c8b51 413 field_name, TYPE_NAME (struct_type));
4c4b4cd2
PH
414
415 return -1;
416}
417
418/* The length of the prefix of NAME prior to any "___" suffix. */
14f9c5c9
AS
419
420int
d2e4a39e 421ada_name_prefix_len (const char *name)
14f9c5c9
AS
422{
423 if (name == NULL)
424 return 0;
d2e4a39e 425 else
14f9c5c9 426 {
d2e4a39e 427 const char *p = strstr (name, "___");
14f9c5c9 428 if (p == NULL)
4c4b4cd2 429 return strlen (name);
14f9c5c9 430 else
4c4b4cd2 431 return p - name;
14f9c5c9
AS
432 }
433}
434
4c4b4cd2
PH
435/* Return non-zero if SUFFIX is a suffix of STR.
436 Return zero if STR is null. */
437
14f9c5c9 438static int
d2e4a39e 439is_suffix (const char *str, const char *suffix)
14f9c5c9
AS
440{
441 int len1, len2;
442 if (str == NULL)
443 return 0;
444 len1 = strlen (str);
445 len2 = strlen (suffix);
4c4b4cd2 446 return (len1 >= len2 && strcmp (str + len1 - len2, suffix) == 0);
14f9c5c9
AS
447}
448
4c4b4cd2
PH
449/* The contents of value VAL, treated as a value of type TYPE. The
450 result is an lval in memory if VAL is. */
14f9c5c9 451
d2e4a39e 452static struct value *
4c4b4cd2 453coerce_unspec_val_to_type (struct value *val, struct type *type)
14f9c5c9 454{
61ee279c 455 type = ada_check_typedef (type);
df407dfe 456 if (value_type (val) == type)
4c4b4cd2 457 return val;
d2e4a39e 458 else
14f9c5c9 459 {
4c4b4cd2
PH
460 struct value *result;
461
462 /* Make sure that the object size is not unreasonable before
463 trying to allocate some memory for it. */
714e53ab 464 check_size (type);
4c4b4cd2
PH
465
466 result = allocate_value (type);
74bcbdf3 467 set_value_component_location (result, val);
9bbda503
AC
468 set_value_bitsize (result, value_bitsize (val));
469 set_value_bitpos (result, value_bitpos (val));
42ae5230 470 set_value_address (result, value_address (val));
d69fe07e 471 if (value_lazy (val)
df407dfe 472 || TYPE_LENGTH (type) > TYPE_LENGTH (value_type (val)))
dfa52d88 473 set_value_lazy (result, 1);
d2e4a39e 474 else
0fd88904 475 memcpy (value_contents_raw (result), value_contents (val),
4c4b4cd2 476 TYPE_LENGTH (type));
14f9c5c9
AS
477 return result;
478 }
479}
480
fc1a4b47
AC
481static const gdb_byte *
482cond_offset_host (const gdb_byte *valaddr, long offset)
14f9c5c9
AS
483{
484 if (valaddr == NULL)
485 return NULL;
486 else
487 return valaddr + offset;
488}
489
490static CORE_ADDR
ebf56fd3 491cond_offset_target (CORE_ADDR address, long offset)
14f9c5c9
AS
492{
493 if (address == 0)
494 return 0;
d2e4a39e 495 else
14f9c5c9
AS
496 return address + offset;
497}
498
4c4b4cd2
PH
499/* Issue a warning (as for the definition of warning in utils.c, but
500 with exactly one argument rather than ...), unless the limit on the
501 number of warnings has passed during the evaluation of the current
502 expression. */
a2249542 503
77109804
AC
504/* FIXME: cagney/2004-10-10: This function is mimicking the behavior
505 provided by "complaint". */
506static void lim_warning (const char *format, ...) ATTR_FORMAT (printf, 1, 2);
507
14f9c5c9 508static void
a2249542 509lim_warning (const char *format, ...)
14f9c5c9 510{
a2249542
MK
511 va_list args;
512 va_start (args, format);
513
4c4b4cd2
PH
514 warnings_issued += 1;
515 if (warnings_issued <= warning_limit)
a2249542
MK
516 vwarning (format, args);
517
518 va_end (args);
4c4b4cd2
PH
519}
520
714e53ab
PH
521/* Issue an error if the size of an object of type T is unreasonable,
522 i.e. if it would be a bad idea to allocate a value of this type in
523 GDB. */
524
525static void
526check_size (const struct type *type)
527{
528 if (TYPE_LENGTH (type) > varsize_limit)
323e0a4a 529 error (_("object size is larger than varsize-limit"));
714e53ab
PH
530}
531
532
c3e5cd34
PH
533/* Note: would have used MAX_OF_TYPE and MIN_OF_TYPE macros from
534 gdbtypes.h, but some of the necessary definitions in that file
535 seem to have gone missing. */
536
537/* Maximum value of a SIZE-byte signed integer type. */
4c4b4cd2 538static LONGEST
c3e5cd34 539max_of_size (int size)
4c4b4cd2 540{
76a01679
JB
541 LONGEST top_bit = (LONGEST) 1 << (size * 8 - 2);
542 return top_bit | (top_bit - 1);
4c4b4cd2
PH
543}
544
c3e5cd34 545/* Minimum value of a SIZE-byte signed integer type. */
4c4b4cd2 546static LONGEST
c3e5cd34 547min_of_size (int size)
4c4b4cd2 548{
c3e5cd34 549 return -max_of_size (size) - 1;
4c4b4cd2
PH
550}
551
c3e5cd34 552/* Maximum value of a SIZE-byte unsigned integer type. */
4c4b4cd2 553static ULONGEST
c3e5cd34 554umax_of_size (int size)
4c4b4cd2 555{
76a01679
JB
556 ULONGEST top_bit = (ULONGEST) 1 << (size * 8 - 1);
557 return top_bit | (top_bit - 1);
4c4b4cd2
PH
558}
559
c3e5cd34
PH
560/* Maximum value of integral type T, as a signed quantity. */
561static LONGEST
562max_of_type (struct type *t)
4c4b4cd2 563{
c3e5cd34
PH
564 if (TYPE_UNSIGNED (t))
565 return (LONGEST) umax_of_size (TYPE_LENGTH (t));
566 else
567 return max_of_size (TYPE_LENGTH (t));
568}
569
570/* Minimum value of integral type T, as a signed quantity. */
571static LONGEST
572min_of_type (struct type *t)
573{
574 if (TYPE_UNSIGNED (t))
575 return 0;
576 else
577 return min_of_size (TYPE_LENGTH (t));
4c4b4cd2
PH
578}
579
580/* The largest value in the domain of TYPE, a discrete type, as an integer. */
43bbcdc2
PH
581LONGEST
582ada_discrete_type_high_bound (struct type *type)
4c4b4cd2 583{
76a01679 584 switch (TYPE_CODE (type))
4c4b4cd2
PH
585 {
586 case TYPE_CODE_RANGE:
690cc4eb 587 return TYPE_HIGH_BOUND (type);
4c4b4cd2 588 case TYPE_CODE_ENUM:
690cc4eb
PH
589 return TYPE_FIELD_BITPOS (type, TYPE_NFIELDS (type) - 1);
590 case TYPE_CODE_BOOL:
591 return 1;
592 case TYPE_CODE_CHAR:
76a01679 593 case TYPE_CODE_INT:
690cc4eb 594 return max_of_type (type);
4c4b4cd2 595 default:
43bbcdc2 596 error (_("Unexpected type in ada_discrete_type_high_bound."));
4c4b4cd2
PH
597 }
598}
599
600/* The largest value in the domain of TYPE, a discrete type, as an integer. */
43bbcdc2
PH
601LONGEST
602ada_discrete_type_low_bound (struct type *type)
4c4b4cd2 603{
76a01679 604 switch (TYPE_CODE (type))
4c4b4cd2
PH
605 {
606 case TYPE_CODE_RANGE:
690cc4eb 607 return TYPE_LOW_BOUND (type);
4c4b4cd2 608 case TYPE_CODE_ENUM:
690cc4eb
PH
609 return TYPE_FIELD_BITPOS (type, 0);
610 case TYPE_CODE_BOOL:
611 return 0;
612 case TYPE_CODE_CHAR:
76a01679 613 case TYPE_CODE_INT:
690cc4eb 614 return min_of_type (type);
4c4b4cd2 615 default:
43bbcdc2 616 error (_("Unexpected type in ada_discrete_type_low_bound."));
4c4b4cd2
PH
617 }
618}
619
620/* The identity on non-range types. For range types, the underlying
76a01679 621 non-range scalar type. */
4c4b4cd2
PH
622
623static struct type *
624base_type (struct type *type)
625{
626 while (type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE)
627 {
76a01679
JB
628 if (type == TYPE_TARGET_TYPE (type) || TYPE_TARGET_TYPE (type) == NULL)
629 return type;
4c4b4cd2
PH
630 type = TYPE_TARGET_TYPE (type);
631 }
632 return type;
14f9c5c9 633}
4c4b4cd2 634\f
76a01679 635
4c4b4cd2 636 /* Language Selection */
14f9c5c9
AS
637
638/* If the main program is in Ada, return language_ada, otherwise return LANG
ccefe4c4 639 (the main program is in Ada iif the adainit symbol is found). */
d2e4a39e 640
14f9c5c9 641enum language
ccefe4c4 642ada_update_initial_language (enum language lang)
14f9c5c9 643{
d2e4a39e 644 if (lookup_minimal_symbol ("adainit", (const char *) NULL,
4c4b4cd2
PH
645 (struct objfile *) NULL) != NULL)
646 return language_ada;
14f9c5c9
AS
647
648 return lang;
649}
96d887e8
PH
650
651/* If the main procedure is written in Ada, then return its name.
652 The result is good until the next call. Return NULL if the main
653 procedure doesn't appear to be in Ada. */
654
655char *
656ada_main_name (void)
657{
658 struct minimal_symbol *msym;
f9bc20b9 659 static char *main_program_name = NULL;
6c038f32 660
96d887e8
PH
661 /* For Ada, the name of the main procedure is stored in a specific
662 string constant, generated by the binder. Look for that symbol,
663 extract its address, and then read that string. If we didn't find
664 that string, then most probably the main procedure is not written
665 in Ada. */
666 msym = lookup_minimal_symbol (ADA_MAIN_PROGRAM_SYMBOL_NAME, NULL, NULL);
667
668 if (msym != NULL)
669 {
f9bc20b9
JB
670 CORE_ADDR main_program_name_addr;
671 int err_code;
672
96d887e8
PH
673 main_program_name_addr = SYMBOL_VALUE_ADDRESS (msym);
674 if (main_program_name_addr == 0)
323e0a4a 675 error (_("Invalid address for Ada main program name."));
96d887e8 676
f9bc20b9
JB
677 xfree (main_program_name);
678 target_read_string (main_program_name_addr, &main_program_name,
679 1024, &err_code);
680
681 if (err_code != 0)
682 return NULL;
96d887e8
PH
683 return main_program_name;
684 }
685
686 /* The main procedure doesn't seem to be in Ada. */
687 return NULL;
688}
14f9c5c9 689\f
4c4b4cd2 690 /* Symbols */
d2e4a39e 691
4c4b4cd2
PH
692/* Table of Ada operators and their GNAT-encoded names. Last entry is pair
693 of NULLs. */
14f9c5c9 694
d2e4a39e
AS
695const struct ada_opname_map ada_opname_table[] = {
696 {"Oadd", "\"+\"", BINOP_ADD},
697 {"Osubtract", "\"-\"", BINOP_SUB},
698 {"Omultiply", "\"*\"", BINOP_MUL},
699 {"Odivide", "\"/\"", BINOP_DIV},
700 {"Omod", "\"mod\"", BINOP_MOD},
701 {"Orem", "\"rem\"", BINOP_REM},
702 {"Oexpon", "\"**\"", BINOP_EXP},
703 {"Olt", "\"<\"", BINOP_LESS},
704 {"Ole", "\"<=\"", BINOP_LEQ},
705 {"Ogt", "\">\"", BINOP_GTR},
706 {"Oge", "\">=\"", BINOP_GEQ},
707 {"Oeq", "\"=\"", BINOP_EQUAL},
708 {"One", "\"/=\"", BINOP_NOTEQUAL},
709 {"Oand", "\"and\"", BINOP_BITWISE_AND},
710 {"Oor", "\"or\"", BINOP_BITWISE_IOR},
711 {"Oxor", "\"xor\"", BINOP_BITWISE_XOR},
712 {"Oconcat", "\"&\"", BINOP_CONCAT},
713 {"Oabs", "\"abs\"", UNOP_ABS},
714 {"Onot", "\"not\"", UNOP_LOGICAL_NOT},
715 {"Oadd", "\"+\"", UNOP_PLUS},
716 {"Osubtract", "\"-\"", UNOP_NEG},
717 {NULL, NULL}
14f9c5c9
AS
718};
719
4c4b4cd2
PH
720/* The "encoded" form of DECODED, according to GNAT conventions.
721 The result is valid until the next call to ada_encode. */
722
14f9c5c9 723char *
4c4b4cd2 724ada_encode (const char *decoded)
14f9c5c9 725{
4c4b4cd2
PH
726 static char *encoding_buffer = NULL;
727 static size_t encoding_buffer_size = 0;
d2e4a39e 728 const char *p;
14f9c5c9 729 int k;
d2e4a39e 730
4c4b4cd2 731 if (decoded == NULL)
14f9c5c9
AS
732 return NULL;
733
4c4b4cd2
PH
734 GROW_VECT (encoding_buffer, encoding_buffer_size,
735 2 * strlen (decoded) + 10);
14f9c5c9
AS
736
737 k = 0;
4c4b4cd2 738 for (p = decoded; *p != '\0'; p += 1)
14f9c5c9 739 {
cdc7bb92 740 if (*p == '.')
4c4b4cd2
PH
741 {
742 encoding_buffer[k] = encoding_buffer[k + 1] = '_';
743 k += 2;
744 }
14f9c5c9 745 else if (*p == '"')
4c4b4cd2
PH
746 {
747 const struct ada_opname_map *mapping;
748
749 for (mapping = ada_opname_table;
1265e4aa
JB
750 mapping->encoded != NULL
751 && strncmp (mapping->decoded, p,
752 strlen (mapping->decoded)) != 0; mapping += 1)
4c4b4cd2
PH
753 ;
754 if (mapping->encoded == NULL)
323e0a4a 755 error (_("invalid Ada operator name: %s"), p);
4c4b4cd2
PH
756 strcpy (encoding_buffer + k, mapping->encoded);
757 k += strlen (mapping->encoded);
758 break;
759 }
d2e4a39e 760 else
4c4b4cd2
PH
761 {
762 encoding_buffer[k] = *p;
763 k += 1;
764 }
14f9c5c9
AS
765 }
766
4c4b4cd2
PH
767 encoding_buffer[k] = '\0';
768 return encoding_buffer;
14f9c5c9
AS
769}
770
771/* Return NAME folded to lower case, or, if surrounded by single
4c4b4cd2
PH
772 quotes, unfolded, but with the quotes stripped away. Result good
773 to next call. */
774
d2e4a39e
AS
775char *
776ada_fold_name (const char *name)
14f9c5c9 777{
d2e4a39e 778 static char *fold_buffer = NULL;
14f9c5c9
AS
779 static size_t fold_buffer_size = 0;
780
781 int len = strlen (name);
d2e4a39e 782 GROW_VECT (fold_buffer, fold_buffer_size, len + 1);
14f9c5c9
AS
783
784 if (name[0] == '\'')
785 {
d2e4a39e
AS
786 strncpy (fold_buffer, name + 1, len - 2);
787 fold_buffer[len - 2] = '\000';
14f9c5c9
AS
788 }
789 else
790 {
791 int i;
792 for (i = 0; i <= len; i += 1)
4c4b4cd2 793 fold_buffer[i] = tolower (name[i]);
14f9c5c9
AS
794 }
795
796 return fold_buffer;
797}
798
529cad9c
PH
799/* Return nonzero if C is either a digit or a lowercase alphabet character. */
800
801static int
802is_lower_alphanum (const char c)
803{
804 return (isdigit (c) || (isalpha (c) && islower (c)));
805}
806
29480c32
JB
807/* Remove either of these suffixes:
808 . .{DIGIT}+
809 . ${DIGIT}+
810 . ___{DIGIT}+
811 . __{DIGIT}+.
812 These are suffixes introduced by the compiler for entities such as
813 nested subprogram for instance, in order to avoid name clashes.
814 They do not serve any purpose for the debugger. */
815
816static void
817ada_remove_trailing_digits (const char *encoded, int *len)
818{
819 if (*len > 1 && isdigit (encoded[*len - 1]))
820 {
821 int i = *len - 2;
822 while (i > 0 && isdigit (encoded[i]))
823 i--;
824 if (i >= 0 && encoded[i] == '.')
825 *len = i;
826 else if (i >= 0 && encoded[i] == '$')
827 *len = i;
828 else if (i >= 2 && strncmp (encoded + i - 2, "___", 3) == 0)
829 *len = i - 2;
830 else if (i >= 1 && strncmp (encoded + i - 1, "__", 2) == 0)
831 *len = i - 1;
832 }
833}
834
835/* Remove the suffix introduced by the compiler for protected object
836 subprograms. */
837
838static void
839ada_remove_po_subprogram_suffix (const char *encoded, int *len)
840{
841 /* Remove trailing N. */
842
843 /* Protected entry subprograms are broken into two
844 separate subprograms: The first one is unprotected, and has
845 a 'N' suffix; the second is the protected version, and has
846 the 'P' suffix. The second calls the first one after handling
847 the protection. Since the P subprograms are internally generated,
848 we leave these names undecoded, giving the user a clue that this
849 entity is internal. */
850
851 if (*len > 1
852 && encoded[*len - 1] == 'N'
853 && (isdigit (encoded[*len - 2]) || islower (encoded[*len - 2])))
854 *len = *len - 1;
855}
856
69fadcdf
JB
857/* Remove trailing X[bn]* suffixes (indicating names in package bodies). */
858
859static void
860ada_remove_Xbn_suffix (const char *encoded, int *len)
861{
862 int i = *len - 1;
863
864 while (i > 0 && (encoded[i] == 'b' || encoded[i] == 'n'))
865 i--;
866
867 if (encoded[i] != 'X')
868 return;
869
870 if (i == 0)
871 return;
872
873 if (isalnum (encoded[i-1]))
874 *len = i;
875}
876
29480c32
JB
877/* If ENCODED follows the GNAT entity encoding conventions, then return
878 the decoded form of ENCODED. Otherwise, return "<%s>" where "%s" is
879 replaced by ENCODED.
14f9c5c9 880
4c4b4cd2 881 The resulting string is valid until the next call of ada_decode.
29480c32 882 If the string is unchanged by decoding, the original string pointer
4c4b4cd2
PH
883 is returned. */
884
885const char *
886ada_decode (const char *encoded)
14f9c5c9
AS
887{
888 int i, j;
889 int len0;
d2e4a39e 890 const char *p;
4c4b4cd2 891 char *decoded;
14f9c5c9 892 int at_start_name;
4c4b4cd2
PH
893 static char *decoding_buffer = NULL;
894 static size_t decoding_buffer_size = 0;
d2e4a39e 895
29480c32
JB
896 /* The name of the Ada main procedure starts with "_ada_".
897 This prefix is not part of the decoded name, so skip this part
898 if we see this prefix. */
4c4b4cd2
PH
899 if (strncmp (encoded, "_ada_", 5) == 0)
900 encoded += 5;
14f9c5c9 901
29480c32
JB
902 /* If the name starts with '_', then it is not a properly encoded
903 name, so do not attempt to decode it. Similarly, if the name
904 starts with '<', the name should not be decoded. */
4c4b4cd2 905 if (encoded[0] == '_' || encoded[0] == '<')
14f9c5c9
AS
906 goto Suppress;
907
4c4b4cd2 908 len0 = strlen (encoded);
4c4b4cd2 909
29480c32
JB
910 ada_remove_trailing_digits (encoded, &len0);
911 ada_remove_po_subprogram_suffix (encoded, &len0);
529cad9c 912
4c4b4cd2
PH
913 /* Remove the ___X.* suffix if present. Do not forget to verify that
914 the suffix is located before the current "end" of ENCODED. We want
915 to avoid re-matching parts of ENCODED that have previously been
916 marked as discarded (by decrementing LEN0). */
917 p = strstr (encoded, "___");
918 if (p != NULL && p - encoded < len0 - 3)
14f9c5c9
AS
919 {
920 if (p[3] == 'X')
4c4b4cd2 921 len0 = p - encoded;
14f9c5c9 922 else
4c4b4cd2 923 goto Suppress;
14f9c5c9 924 }
4c4b4cd2 925
29480c32
JB
926 /* Remove any trailing TKB suffix. It tells us that this symbol
927 is for the body of a task, but that information does not actually
928 appear in the decoded name. */
929
4c4b4cd2 930 if (len0 > 3 && strncmp (encoded + len0 - 3, "TKB", 3) == 0)
14f9c5c9 931 len0 -= 3;
76a01679 932
a10967fa
JB
933 /* Remove any trailing TB suffix. The TB suffix is slightly different
934 from the TKB suffix because it is used for non-anonymous task
935 bodies. */
936
937 if (len0 > 2 && strncmp (encoded + len0 - 2, "TB", 2) == 0)
938 len0 -= 2;
939
29480c32
JB
940 /* Remove trailing "B" suffixes. */
941 /* FIXME: brobecker/2006-04-19: Not sure what this are used for... */
942
4c4b4cd2 943 if (len0 > 1 && strncmp (encoded + len0 - 1, "B", 1) == 0)
14f9c5c9
AS
944 len0 -= 1;
945
4c4b4cd2 946 /* Make decoded big enough for possible expansion by operator name. */
29480c32 947
4c4b4cd2
PH
948 GROW_VECT (decoding_buffer, decoding_buffer_size, 2 * len0 + 1);
949 decoded = decoding_buffer;
14f9c5c9 950
29480c32
JB
951 /* Remove trailing __{digit}+ or trailing ${digit}+. */
952
4c4b4cd2 953 if (len0 > 1 && isdigit (encoded[len0 - 1]))
d2e4a39e 954 {
4c4b4cd2
PH
955 i = len0 - 2;
956 while ((i >= 0 && isdigit (encoded[i]))
957 || (i >= 1 && encoded[i] == '_' && isdigit (encoded[i - 1])))
958 i -= 1;
959 if (i > 1 && encoded[i] == '_' && encoded[i - 1] == '_')
960 len0 = i - 1;
961 else if (encoded[i] == '$')
962 len0 = i;
d2e4a39e 963 }
14f9c5c9 964
29480c32
JB
965 /* The first few characters that are not alphabetic are not part
966 of any encoding we use, so we can copy them over verbatim. */
967
4c4b4cd2
PH
968 for (i = 0, j = 0; i < len0 && !isalpha (encoded[i]); i += 1, j += 1)
969 decoded[j] = encoded[i];
14f9c5c9
AS
970
971 at_start_name = 1;
972 while (i < len0)
973 {
29480c32 974 /* Is this a symbol function? */
4c4b4cd2
PH
975 if (at_start_name && encoded[i] == 'O')
976 {
977 int k;
978 for (k = 0; ada_opname_table[k].encoded != NULL; k += 1)
979 {
980 int op_len = strlen (ada_opname_table[k].encoded);
06d5cf63
JB
981 if ((strncmp (ada_opname_table[k].encoded + 1, encoded + i + 1,
982 op_len - 1) == 0)
983 && !isalnum (encoded[i + op_len]))
4c4b4cd2
PH
984 {
985 strcpy (decoded + j, ada_opname_table[k].decoded);
986 at_start_name = 0;
987 i += op_len;
988 j += strlen (ada_opname_table[k].decoded);
989 break;
990 }
991 }
992 if (ada_opname_table[k].encoded != NULL)
993 continue;
994 }
14f9c5c9
AS
995 at_start_name = 0;
996
529cad9c
PH
997 /* Replace "TK__" with "__", which will eventually be translated
998 into "." (just below). */
999
4c4b4cd2
PH
1000 if (i < len0 - 4 && strncmp (encoded + i, "TK__", 4) == 0)
1001 i += 2;
529cad9c 1002
29480c32
JB
1003 /* Replace "__B_{DIGITS}+__" sequences by "__", which will eventually
1004 be translated into "." (just below). These are internal names
1005 generated for anonymous blocks inside which our symbol is nested. */
1006
1007 if (len0 - i > 5 && encoded [i] == '_' && encoded [i+1] == '_'
1008 && encoded [i+2] == 'B' && encoded [i+3] == '_'
1009 && isdigit (encoded [i+4]))
1010 {
1011 int k = i + 5;
1012
1013 while (k < len0 && isdigit (encoded[k]))
1014 k++; /* Skip any extra digit. */
1015
1016 /* Double-check that the "__B_{DIGITS}+" sequence we found
1017 is indeed followed by "__". */
1018 if (len0 - k > 2 && encoded [k] == '_' && encoded [k+1] == '_')
1019 i = k;
1020 }
1021
529cad9c
PH
1022 /* Remove _E{DIGITS}+[sb] */
1023
1024 /* Just as for protected object subprograms, there are 2 categories
1025 of subprograms created by the compiler for each entry. The first
1026 one implements the actual entry code, and has a suffix following
1027 the convention above; the second one implements the barrier and
1028 uses the same convention as above, except that the 'E' is replaced
1029 by a 'B'.
1030
1031 Just as above, we do not decode the name of barrier functions
1032 to give the user a clue that the code he is debugging has been
1033 internally generated. */
1034
1035 if (len0 - i > 3 && encoded [i] == '_' && encoded[i+1] == 'E'
1036 && isdigit (encoded[i+2]))
1037 {
1038 int k = i + 3;
1039
1040 while (k < len0 && isdigit (encoded[k]))
1041 k++;
1042
1043 if (k < len0
1044 && (encoded[k] == 'b' || encoded[k] == 's'))
1045 {
1046 k++;
1047 /* Just as an extra precaution, make sure that if this
1048 suffix is followed by anything else, it is a '_'.
1049 Otherwise, we matched this sequence by accident. */
1050 if (k == len0
1051 || (k < len0 && encoded[k] == '_'))
1052 i = k;
1053 }
1054 }
1055
1056 /* Remove trailing "N" in [a-z0-9]+N__. The N is added by
1057 the GNAT front-end in protected object subprograms. */
1058
1059 if (i < len0 + 3
1060 && encoded[i] == 'N' && encoded[i+1] == '_' && encoded[i+2] == '_')
1061 {
1062 /* Backtrack a bit up until we reach either the begining of
1063 the encoded name, or "__". Make sure that we only find
1064 digits or lowercase characters. */
1065 const char *ptr = encoded + i - 1;
1066
1067 while (ptr >= encoded && is_lower_alphanum (ptr[0]))
1068 ptr--;
1069 if (ptr < encoded
1070 || (ptr > encoded && ptr[0] == '_' && ptr[-1] == '_'))
1071 i++;
1072 }
1073
4c4b4cd2
PH
1074 if (encoded[i] == 'X' && i != 0 && isalnum (encoded[i - 1]))
1075 {
29480c32
JB
1076 /* This is a X[bn]* sequence not separated from the previous
1077 part of the name with a non-alpha-numeric character (in other
1078 words, immediately following an alpha-numeric character), then
1079 verify that it is placed at the end of the encoded name. If
1080 not, then the encoding is not valid and we should abort the
1081 decoding. Otherwise, just skip it, it is used in body-nested
1082 package names. */
4c4b4cd2
PH
1083 do
1084 i += 1;
1085 while (i < len0 && (encoded[i] == 'b' || encoded[i] == 'n'));
1086 if (i < len0)
1087 goto Suppress;
1088 }
cdc7bb92 1089 else if (i < len0 - 2 && encoded[i] == '_' && encoded[i + 1] == '_')
4c4b4cd2 1090 {
29480c32 1091 /* Replace '__' by '.'. */
4c4b4cd2
PH
1092 decoded[j] = '.';
1093 at_start_name = 1;
1094 i += 2;
1095 j += 1;
1096 }
14f9c5c9 1097 else
4c4b4cd2 1098 {
29480c32
JB
1099 /* It's a character part of the decoded name, so just copy it
1100 over. */
4c4b4cd2
PH
1101 decoded[j] = encoded[i];
1102 i += 1;
1103 j += 1;
1104 }
14f9c5c9 1105 }
4c4b4cd2 1106 decoded[j] = '\000';
14f9c5c9 1107
29480c32
JB
1108 /* Decoded names should never contain any uppercase character.
1109 Double-check this, and abort the decoding if we find one. */
1110
4c4b4cd2
PH
1111 for (i = 0; decoded[i] != '\0'; i += 1)
1112 if (isupper (decoded[i]) || decoded[i] == ' ')
14f9c5c9
AS
1113 goto Suppress;
1114
4c4b4cd2
PH
1115 if (strcmp (decoded, encoded) == 0)
1116 return encoded;
1117 else
1118 return decoded;
14f9c5c9
AS
1119
1120Suppress:
4c4b4cd2
PH
1121 GROW_VECT (decoding_buffer, decoding_buffer_size, strlen (encoded) + 3);
1122 decoded = decoding_buffer;
1123 if (encoded[0] == '<')
1124 strcpy (decoded, encoded);
14f9c5c9 1125 else
88c15c34 1126 xsnprintf (decoded, decoding_buffer_size, "<%s>", encoded);
4c4b4cd2
PH
1127 return decoded;
1128
1129}
1130
1131/* Table for keeping permanent unique copies of decoded names. Once
1132 allocated, names in this table are never released. While this is a
1133 storage leak, it should not be significant unless there are massive
1134 changes in the set of decoded names in successive versions of a
1135 symbol table loaded during a single session. */
1136static struct htab *decoded_names_store;
1137
1138/* Returns the decoded name of GSYMBOL, as for ada_decode, caching it
1139 in the language-specific part of GSYMBOL, if it has not been
1140 previously computed. Tries to save the decoded name in the same
1141 obstack as GSYMBOL, if possible, and otherwise on the heap (so that,
1142 in any case, the decoded symbol has a lifetime at least that of
1143 GSYMBOL).
1144 The GSYMBOL parameter is "mutable" in the C++ sense: logically
1145 const, but nevertheless modified to a semantically equivalent form
1146 when a decoded name is cached in it.
76a01679 1147*/
4c4b4cd2 1148
76a01679
JB
1149char *
1150ada_decode_symbol (const struct general_symbol_info *gsymbol)
4c4b4cd2 1151{
76a01679 1152 char **resultp =
4c4b4cd2
PH
1153 (char **) &gsymbol->language_specific.cplus_specific.demangled_name;
1154 if (*resultp == NULL)
1155 {
1156 const char *decoded = ada_decode (gsymbol->name);
714835d5 1157 if (gsymbol->obj_section != NULL)
76a01679 1158 {
714835d5
UW
1159 struct objfile *objf = gsymbol->obj_section->objfile;
1160 *resultp = obsavestring (decoded, strlen (decoded),
1161 &objf->objfile_obstack);
76a01679 1162 }
4c4b4cd2 1163 /* Sometimes, we can't find a corresponding objfile, in which
76a01679
JB
1164 case, we put the result on the heap. Since we only decode
1165 when needed, we hope this usually does not cause a
1166 significant memory leak (FIXME). */
4c4b4cd2 1167 if (*resultp == NULL)
76a01679
JB
1168 {
1169 char **slot = (char **) htab_find_slot (decoded_names_store,
1170 decoded, INSERT);
1171 if (*slot == NULL)
1172 *slot = xstrdup (decoded);
1173 *resultp = *slot;
1174 }
4c4b4cd2 1175 }
14f9c5c9 1176
4c4b4cd2
PH
1177 return *resultp;
1178}
76a01679 1179
2c0b251b 1180static char *
76a01679 1181ada_la_decode (const char *encoded, int options)
4c4b4cd2
PH
1182{
1183 return xstrdup (ada_decode (encoded));
14f9c5c9
AS
1184}
1185
1186/* Returns non-zero iff SYM_NAME matches NAME, ignoring any trailing
4c4b4cd2
PH
1187 suffixes that encode debugging information or leading _ada_ on
1188 SYM_NAME (see is_name_suffix commentary for the debugging
1189 information that is ignored). If WILD, then NAME need only match a
1190 suffix of SYM_NAME minus the same suffixes. Also returns 0 if
1191 either argument is NULL. */
14f9c5c9 1192
2c0b251b 1193static int
d2e4a39e 1194ada_match_name (const char *sym_name, const char *name, int wild)
14f9c5c9
AS
1195{
1196 if (sym_name == NULL || name == NULL)
1197 return 0;
1198 else if (wild)
1199 return wild_match (name, strlen (name), sym_name);
d2e4a39e
AS
1200 else
1201 {
1202 int len_name = strlen (name);
4c4b4cd2
PH
1203 return (strncmp (sym_name, name, len_name) == 0
1204 && is_name_suffix (sym_name + len_name))
1205 || (strncmp (sym_name, "_ada_", 5) == 0
1206 && strncmp (sym_name + 5, name, len_name) == 0
1207 && is_name_suffix (sym_name + len_name + 5));
d2e4a39e 1208 }
14f9c5c9 1209}
14f9c5c9 1210\f
d2e4a39e 1211
4c4b4cd2 1212 /* Arrays */
14f9c5c9 1213
4c4b4cd2 1214/* Names of MAX_ADA_DIMENS bounds in P_BOUNDS fields of array descriptors. */
14f9c5c9 1215
d2e4a39e
AS
1216static char *bound_name[] = {
1217 "LB0", "UB0", "LB1", "UB1", "LB2", "UB2", "LB3", "UB3",
14f9c5c9
AS
1218 "LB4", "UB4", "LB5", "UB5", "LB6", "UB6", "LB7", "UB7"
1219};
1220
1221/* Maximum number of array dimensions we are prepared to handle. */
1222
4c4b4cd2 1223#define MAX_ADA_DIMENS (sizeof(bound_name) / (2*sizeof(char *)))
14f9c5c9 1224
4c4b4cd2 1225/* Like modify_field, but allows bitpos > wordlength. */
14f9c5c9
AS
1226
1227static void
50810684
UW
1228modify_general_field (struct type *type, char *addr,
1229 LONGEST fieldval, int bitpos, int bitsize)
14f9c5c9 1230{
50810684 1231 modify_field (type, addr + bitpos / 8, fieldval, bitpos % 8, bitsize);
14f9c5c9
AS
1232}
1233
1234
4c4b4cd2
PH
1235/* The desc_* routines return primitive portions of array descriptors
1236 (fat pointers). */
14f9c5c9
AS
1237
1238/* The descriptor or array type, if any, indicated by TYPE; removes
4c4b4cd2
PH
1239 level of indirection, if needed. */
1240
d2e4a39e
AS
1241static struct type *
1242desc_base_type (struct type *type)
14f9c5c9
AS
1243{
1244 if (type == NULL)
1245 return NULL;
61ee279c 1246 type = ada_check_typedef (type);
1265e4aa
JB
1247 if (type != NULL
1248 && (TYPE_CODE (type) == TYPE_CODE_PTR
1249 || TYPE_CODE (type) == TYPE_CODE_REF))
61ee279c 1250 return ada_check_typedef (TYPE_TARGET_TYPE (type));
14f9c5c9
AS
1251 else
1252 return type;
1253}
1254
4c4b4cd2
PH
1255/* True iff TYPE indicates a "thin" array pointer type. */
1256
14f9c5c9 1257static int
d2e4a39e 1258is_thin_pntr (struct type *type)
14f9c5c9 1259{
d2e4a39e 1260 return
14f9c5c9
AS
1261 is_suffix (ada_type_name (desc_base_type (type)), "___XUT")
1262 || is_suffix (ada_type_name (desc_base_type (type)), "___XUT___XVE");
1263}
1264
4c4b4cd2
PH
1265/* The descriptor type for thin pointer type TYPE. */
1266
d2e4a39e
AS
1267static struct type *
1268thin_descriptor_type (struct type *type)
14f9c5c9 1269{
d2e4a39e 1270 struct type *base_type = desc_base_type (type);
14f9c5c9
AS
1271 if (base_type == NULL)
1272 return NULL;
1273 if (is_suffix (ada_type_name (base_type), "___XVE"))
1274 return base_type;
d2e4a39e 1275 else
14f9c5c9 1276 {
d2e4a39e 1277 struct type *alt_type = ada_find_parallel_type (base_type, "___XVE");
14f9c5c9 1278 if (alt_type == NULL)
4c4b4cd2 1279 return base_type;
14f9c5c9 1280 else
4c4b4cd2 1281 return alt_type;
14f9c5c9
AS
1282 }
1283}
1284
4c4b4cd2
PH
1285/* A pointer to the array data for thin-pointer value VAL. */
1286
d2e4a39e
AS
1287static struct value *
1288thin_data_pntr (struct value *val)
14f9c5c9 1289{
df407dfe 1290 struct type *type = value_type (val);
556bdfd4
UW
1291 struct type *data_type = desc_data_target_type (thin_descriptor_type (type));
1292 data_type = lookup_pointer_type (data_type);
1293
14f9c5c9 1294 if (TYPE_CODE (type) == TYPE_CODE_PTR)
556bdfd4 1295 return value_cast (data_type, value_copy (val));
d2e4a39e 1296 else
42ae5230 1297 return value_from_longest (data_type, value_address (val));
14f9c5c9
AS
1298}
1299
4c4b4cd2
PH
1300/* True iff TYPE indicates a "thick" array pointer type. */
1301
14f9c5c9 1302static int
d2e4a39e 1303is_thick_pntr (struct type *type)
14f9c5c9
AS
1304{
1305 type = desc_base_type (type);
1306 return (type != NULL && TYPE_CODE (type) == TYPE_CODE_STRUCT
4c4b4cd2 1307 && lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL);
14f9c5c9
AS
1308}
1309
4c4b4cd2
PH
1310/* If TYPE is the type of an array descriptor (fat or thin pointer) or a
1311 pointer to one, the type of its bounds data; otherwise, NULL. */
76a01679 1312
d2e4a39e
AS
1313static struct type *
1314desc_bounds_type (struct type *type)
14f9c5c9 1315{
d2e4a39e 1316 struct type *r;
14f9c5c9
AS
1317
1318 type = desc_base_type (type);
1319
1320 if (type == NULL)
1321 return NULL;
1322 else if (is_thin_pntr (type))
1323 {
1324 type = thin_descriptor_type (type);
1325 if (type == NULL)
4c4b4cd2 1326 return NULL;
14f9c5c9
AS
1327 r = lookup_struct_elt_type (type, "BOUNDS", 1);
1328 if (r != NULL)
61ee279c 1329 return ada_check_typedef (r);
14f9c5c9
AS
1330 }
1331 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
1332 {
1333 r = lookup_struct_elt_type (type, "P_BOUNDS", 1);
1334 if (r != NULL)
61ee279c 1335 return ada_check_typedef (TYPE_TARGET_TYPE (ada_check_typedef (r)));
14f9c5c9
AS
1336 }
1337 return NULL;
1338}
1339
1340/* If ARR is an array descriptor (fat or thin pointer), or pointer to
4c4b4cd2
PH
1341 one, a pointer to its bounds data. Otherwise NULL. */
1342
d2e4a39e
AS
1343static struct value *
1344desc_bounds (struct value *arr)
14f9c5c9 1345{
df407dfe 1346 struct type *type = ada_check_typedef (value_type (arr));
d2e4a39e 1347 if (is_thin_pntr (type))
14f9c5c9 1348 {
d2e4a39e 1349 struct type *bounds_type =
4c4b4cd2 1350 desc_bounds_type (thin_descriptor_type (type));
14f9c5c9
AS
1351 LONGEST addr;
1352
4cdfadb1 1353 if (bounds_type == NULL)
323e0a4a 1354 error (_("Bad GNAT array descriptor"));
14f9c5c9
AS
1355
1356 /* NOTE: The following calculation is not really kosher, but
d2e4a39e 1357 since desc_type is an XVE-encoded type (and shouldn't be),
4c4b4cd2 1358 the correct calculation is a real pain. FIXME (and fix GCC). */
14f9c5c9 1359 if (TYPE_CODE (type) == TYPE_CODE_PTR)
4c4b4cd2 1360 addr = value_as_long (arr);
d2e4a39e 1361 else
42ae5230 1362 addr = value_address (arr);
14f9c5c9 1363
d2e4a39e 1364 return
4c4b4cd2
PH
1365 value_from_longest (lookup_pointer_type (bounds_type),
1366 addr - TYPE_LENGTH (bounds_type));
14f9c5c9
AS
1367 }
1368
1369 else if (is_thick_pntr (type))
d2e4a39e 1370 return value_struct_elt (&arr, NULL, "P_BOUNDS", NULL,
323e0a4a 1371 _("Bad GNAT array descriptor"));
14f9c5c9
AS
1372 else
1373 return NULL;
1374}
1375
4c4b4cd2
PH
1376/* If TYPE is the type of an array-descriptor (fat pointer), the bit
1377 position of the field containing the address of the bounds data. */
1378
14f9c5c9 1379static int
d2e4a39e 1380fat_pntr_bounds_bitpos (struct type *type)
14f9c5c9
AS
1381{
1382 return TYPE_FIELD_BITPOS (desc_base_type (type), 1);
1383}
1384
1385/* If TYPE is the type of an array-descriptor (fat pointer), the bit
4c4b4cd2
PH
1386 size of the field containing the address of the bounds data. */
1387
14f9c5c9 1388static int
d2e4a39e 1389fat_pntr_bounds_bitsize (struct type *type)
14f9c5c9
AS
1390{
1391 type = desc_base_type (type);
1392
d2e4a39e 1393 if (TYPE_FIELD_BITSIZE (type, 1) > 0)
14f9c5c9
AS
1394 return TYPE_FIELD_BITSIZE (type, 1);
1395 else
61ee279c 1396 return 8 * TYPE_LENGTH (ada_check_typedef (TYPE_FIELD_TYPE (type, 1)));
14f9c5c9
AS
1397}
1398
4c4b4cd2 1399/* If TYPE is the type of an array descriptor (fat or thin pointer) or a
556bdfd4
UW
1400 pointer to one, the type of its array data (a array-with-no-bounds type);
1401 otherwise, NULL. Use ada_type_of_array to get an array type with bounds
1402 data. */
4c4b4cd2 1403
d2e4a39e 1404static struct type *
556bdfd4 1405desc_data_target_type (struct type *type)
14f9c5c9
AS
1406{
1407 type = desc_base_type (type);
1408
4c4b4cd2 1409 /* NOTE: The following is bogus; see comment in desc_bounds. */
14f9c5c9 1410 if (is_thin_pntr (type))
556bdfd4 1411 return desc_base_type (TYPE_FIELD_TYPE (thin_descriptor_type (type), 1));
14f9c5c9 1412 else if (is_thick_pntr (type))
556bdfd4
UW
1413 {
1414 struct type *data_type = lookup_struct_elt_type (type, "P_ARRAY", 1);
1415
1416 if (data_type
1417 && TYPE_CODE (ada_check_typedef (data_type)) == TYPE_CODE_PTR)
1418 return TYPE_TARGET_TYPE (data_type);
1419 }
1420
1421 return NULL;
14f9c5c9
AS
1422}
1423
1424/* If ARR is an array descriptor (fat or thin pointer), a pointer to
1425 its array data. */
4c4b4cd2 1426
d2e4a39e
AS
1427static struct value *
1428desc_data (struct value *arr)
14f9c5c9 1429{
df407dfe 1430 struct type *type = value_type (arr);
14f9c5c9
AS
1431 if (is_thin_pntr (type))
1432 return thin_data_pntr (arr);
1433 else if (is_thick_pntr (type))
d2e4a39e 1434 return value_struct_elt (&arr, NULL, "P_ARRAY", NULL,
323e0a4a 1435 _("Bad GNAT array descriptor"));
14f9c5c9
AS
1436 else
1437 return NULL;
1438}
1439
1440
1441/* If TYPE is the type of an array-descriptor (fat pointer), the bit
4c4b4cd2
PH
1442 position of the field containing the address of the data. */
1443
14f9c5c9 1444static int
d2e4a39e 1445fat_pntr_data_bitpos (struct type *type)
14f9c5c9
AS
1446{
1447 return TYPE_FIELD_BITPOS (desc_base_type (type), 0);
1448}
1449
1450/* If TYPE is the type of an array-descriptor (fat pointer), the bit
4c4b4cd2
PH
1451 size of the field containing the address of the data. */
1452
14f9c5c9 1453static int
d2e4a39e 1454fat_pntr_data_bitsize (struct type *type)
14f9c5c9
AS
1455{
1456 type = desc_base_type (type);
1457
1458 if (TYPE_FIELD_BITSIZE (type, 0) > 0)
1459 return TYPE_FIELD_BITSIZE (type, 0);
d2e4a39e 1460 else
14f9c5c9
AS
1461 return TARGET_CHAR_BIT * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 0));
1462}
1463
4c4b4cd2 1464/* If BOUNDS is an array-bounds structure (or pointer to one), return
14f9c5c9 1465 the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
4c4b4cd2
PH
1466 bound, if WHICH is 1. The first bound is I=1. */
1467
d2e4a39e
AS
1468static struct value *
1469desc_one_bound (struct value *bounds, int i, int which)
14f9c5c9 1470{
d2e4a39e 1471 return value_struct_elt (&bounds, NULL, bound_name[2 * i + which - 2], NULL,
323e0a4a 1472 _("Bad GNAT array descriptor bounds"));
14f9c5c9
AS
1473}
1474
1475/* If BOUNDS is an array-bounds structure type, return the bit position
1476 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
4c4b4cd2
PH
1477 bound, if WHICH is 1. The first bound is I=1. */
1478
14f9c5c9 1479static int
d2e4a39e 1480desc_bound_bitpos (struct type *type, int i, int which)
14f9c5c9 1481{
d2e4a39e 1482 return TYPE_FIELD_BITPOS (desc_base_type (type), 2 * i + which - 2);
14f9c5c9
AS
1483}
1484
1485/* If BOUNDS is an array-bounds structure type, return the bit field size
1486 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
4c4b4cd2
PH
1487 bound, if WHICH is 1. The first bound is I=1. */
1488
76a01679 1489static int
d2e4a39e 1490desc_bound_bitsize (struct type *type, int i, int which)
14f9c5c9
AS
1491{
1492 type = desc_base_type (type);
1493
d2e4a39e
AS
1494 if (TYPE_FIELD_BITSIZE (type, 2 * i + which - 2) > 0)
1495 return TYPE_FIELD_BITSIZE (type, 2 * i + which - 2);
1496 else
1497 return 8 * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 2 * i + which - 2));
14f9c5c9
AS
1498}
1499
1500/* If TYPE is the type of an array-bounds structure, the type of its
4c4b4cd2
PH
1501 Ith bound (numbering from 1). Otherwise, NULL. */
1502
d2e4a39e
AS
1503static struct type *
1504desc_index_type (struct type *type, int i)
14f9c5c9
AS
1505{
1506 type = desc_base_type (type);
1507
1508 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
d2e4a39e
AS
1509 return lookup_struct_elt_type (type, bound_name[2 * i - 2], 1);
1510 else
14f9c5c9
AS
1511 return NULL;
1512}
1513
4c4b4cd2
PH
1514/* The number of index positions in the array-bounds type TYPE.
1515 Return 0 if TYPE is NULL. */
1516
14f9c5c9 1517static int
d2e4a39e 1518desc_arity (struct type *type)
14f9c5c9
AS
1519{
1520 type = desc_base_type (type);
1521
1522 if (type != NULL)
1523 return TYPE_NFIELDS (type) / 2;
1524 return 0;
1525}
1526
4c4b4cd2
PH
1527/* Non-zero iff TYPE is a simple array type (not a pointer to one) or
1528 an array descriptor type (representing an unconstrained array
1529 type). */
1530
76a01679
JB
1531static int
1532ada_is_direct_array_type (struct type *type)
4c4b4cd2
PH
1533{
1534 if (type == NULL)
1535 return 0;
61ee279c 1536 type = ada_check_typedef (type);
4c4b4cd2 1537 return (TYPE_CODE (type) == TYPE_CODE_ARRAY
76a01679 1538 || ada_is_array_descriptor_type (type));
4c4b4cd2
PH
1539}
1540
52ce6436
PH
1541/* Non-zero iff TYPE represents any kind of array in Ada, or a pointer
1542 * to one. */
1543
2c0b251b 1544static int
52ce6436
PH
1545ada_is_array_type (struct type *type)
1546{
1547 while (type != NULL
1548 && (TYPE_CODE (type) == TYPE_CODE_PTR
1549 || TYPE_CODE (type) == TYPE_CODE_REF))
1550 type = TYPE_TARGET_TYPE (type);
1551 return ada_is_direct_array_type (type);
1552}
1553
4c4b4cd2 1554/* Non-zero iff TYPE is a simple array type or pointer to one. */
14f9c5c9 1555
14f9c5c9 1556int
4c4b4cd2 1557ada_is_simple_array_type (struct type *type)
14f9c5c9
AS
1558{
1559 if (type == NULL)
1560 return 0;
61ee279c 1561 type = ada_check_typedef (type);
14f9c5c9 1562 return (TYPE_CODE (type) == TYPE_CODE_ARRAY
4c4b4cd2
PH
1563 || (TYPE_CODE (type) == TYPE_CODE_PTR
1564 && TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_ARRAY));
14f9c5c9
AS
1565}
1566
4c4b4cd2
PH
1567/* Non-zero iff TYPE belongs to a GNAT array descriptor. */
1568
14f9c5c9 1569int
4c4b4cd2 1570ada_is_array_descriptor_type (struct type *type)
14f9c5c9 1571{
556bdfd4 1572 struct type *data_type = desc_data_target_type (type);
14f9c5c9
AS
1573
1574 if (type == NULL)
1575 return 0;
61ee279c 1576 type = ada_check_typedef (type);
556bdfd4
UW
1577 return (data_type != NULL
1578 && TYPE_CODE (data_type) == TYPE_CODE_ARRAY
1579 && desc_arity (desc_bounds_type (type)) > 0);
14f9c5c9
AS
1580}
1581
1582/* Non-zero iff type is a partially mal-formed GNAT array
4c4b4cd2 1583 descriptor. FIXME: This is to compensate for some problems with
14f9c5c9 1584 debugging output from GNAT. Re-examine periodically to see if it
4c4b4cd2
PH
1585 is still needed. */
1586
14f9c5c9 1587int
ebf56fd3 1588ada_is_bogus_array_descriptor (struct type *type)
14f9c5c9 1589{
d2e4a39e 1590 return
14f9c5c9
AS
1591 type != NULL
1592 && TYPE_CODE (type) == TYPE_CODE_STRUCT
1593 && (lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL
4c4b4cd2
PH
1594 || lookup_struct_elt_type (type, "P_ARRAY", 1) != NULL)
1595 && !ada_is_array_descriptor_type (type);
14f9c5c9
AS
1596}
1597
1598
4c4b4cd2 1599/* If ARR has a record type in the form of a standard GNAT array descriptor,
14f9c5c9 1600 (fat pointer) returns the type of the array data described---specifically,
4c4b4cd2 1601 a pointer-to-array type. If BOUNDS is non-zero, the bounds data are filled
14f9c5c9 1602 in from the descriptor; otherwise, they are left unspecified. If
4c4b4cd2
PH
1603 the ARR denotes a null array descriptor and BOUNDS is non-zero,
1604 returns NULL. The result is simply the type of ARR if ARR is not
14f9c5c9 1605 a descriptor. */
d2e4a39e
AS
1606struct type *
1607ada_type_of_array (struct value *arr, int bounds)
14f9c5c9 1608{
ad82864c
JB
1609 if (ada_is_constrained_packed_array_type (value_type (arr)))
1610 return decode_constrained_packed_array_type (value_type (arr));
14f9c5c9 1611
df407dfe
AC
1612 if (!ada_is_array_descriptor_type (value_type (arr)))
1613 return value_type (arr);
d2e4a39e
AS
1614
1615 if (!bounds)
ad82864c
JB
1616 {
1617 struct type *array_type =
1618 ada_check_typedef (desc_data_target_type (value_type (arr)));
1619
1620 if (ada_is_unconstrained_packed_array_type (value_type (arr)))
1621 TYPE_FIELD_BITSIZE (array_type, 0) =
1622 decode_packed_array_bitsize (value_type (arr));
1623
1624 return array_type;
1625 }
14f9c5c9
AS
1626 else
1627 {
d2e4a39e 1628 struct type *elt_type;
14f9c5c9 1629 int arity;
d2e4a39e 1630 struct value *descriptor;
14f9c5c9 1631
df407dfe
AC
1632 elt_type = ada_array_element_type (value_type (arr), -1);
1633 arity = ada_array_arity (value_type (arr));
14f9c5c9 1634
d2e4a39e 1635 if (elt_type == NULL || arity == 0)
df407dfe 1636 return ada_check_typedef (value_type (arr));
14f9c5c9
AS
1637
1638 descriptor = desc_bounds (arr);
d2e4a39e 1639 if (value_as_long (descriptor) == 0)
4c4b4cd2 1640 return NULL;
d2e4a39e 1641 while (arity > 0)
4c4b4cd2 1642 {
e9bb382b
UW
1643 struct type *range_type = alloc_type_copy (value_type (arr));
1644 struct type *array_type = alloc_type_copy (value_type (arr));
4c4b4cd2
PH
1645 struct value *low = desc_one_bound (descriptor, arity, 0);
1646 struct value *high = desc_one_bound (descriptor, arity, 1);
1647 arity -= 1;
1648
df407dfe 1649 create_range_type (range_type, value_type (low),
529cad9c
PH
1650 longest_to_int (value_as_long (low)),
1651 longest_to_int (value_as_long (high)));
4c4b4cd2 1652 elt_type = create_array_type (array_type, elt_type, range_type);
ad82864c
JB
1653
1654 if (ada_is_unconstrained_packed_array_type (value_type (arr)))
1655 TYPE_FIELD_BITSIZE (elt_type, 0) =
1656 decode_packed_array_bitsize (value_type (arr));
4c4b4cd2 1657 }
14f9c5c9
AS
1658
1659 return lookup_pointer_type (elt_type);
1660 }
1661}
1662
1663/* If ARR does not represent an array, returns ARR unchanged.
4c4b4cd2
PH
1664 Otherwise, returns either a standard GDB array with bounds set
1665 appropriately or, if ARR is a non-null fat pointer, a pointer to a standard
1666 GDB array. Returns NULL if ARR is a null fat pointer. */
1667
d2e4a39e
AS
1668struct value *
1669ada_coerce_to_simple_array_ptr (struct value *arr)
14f9c5c9 1670{
df407dfe 1671 if (ada_is_array_descriptor_type (value_type (arr)))
14f9c5c9 1672 {
d2e4a39e 1673 struct type *arrType = ada_type_of_array (arr, 1);
14f9c5c9 1674 if (arrType == NULL)
4c4b4cd2 1675 return NULL;
14f9c5c9
AS
1676 return value_cast (arrType, value_copy (desc_data (arr)));
1677 }
ad82864c
JB
1678 else if (ada_is_constrained_packed_array_type (value_type (arr)))
1679 return decode_constrained_packed_array (arr);
14f9c5c9
AS
1680 else
1681 return arr;
1682}
1683
1684/* If ARR does not represent an array, returns ARR unchanged.
1685 Otherwise, returns a standard GDB array describing ARR (which may
4c4b4cd2
PH
1686 be ARR itself if it already is in the proper form). */
1687
1688static struct value *
d2e4a39e 1689ada_coerce_to_simple_array (struct value *arr)
14f9c5c9 1690{
df407dfe 1691 if (ada_is_array_descriptor_type (value_type (arr)))
14f9c5c9 1692 {
d2e4a39e 1693 struct value *arrVal = ada_coerce_to_simple_array_ptr (arr);
14f9c5c9 1694 if (arrVal == NULL)
323e0a4a 1695 error (_("Bounds unavailable for null array pointer."));
529cad9c 1696 check_size (TYPE_TARGET_TYPE (value_type (arrVal)));
14f9c5c9
AS
1697 return value_ind (arrVal);
1698 }
ad82864c
JB
1699 else if (ada_is_constrained_packed_array_type (value_type (arr)))
1700 return decode_constrained_packed_array (arr);
d2e4a39e 1701 else
14f9c5c9
AS
1702 return arr;
1703}
1704
1705/* If TYPE represents a GNAT array type, return it translated to an
1706 ordinary GDB array type (possibly with BITSIZE fields indicating
4c4b4cd2
PH
1707 packing). For other types, is the identity. */
1708
d2e4a39e
AS
1709struct type *
1710ada_coerce_to_simple_array_type (struct type *type)
14f9c5c9 1711{
ad82864c
JB
1712 if (ada_is_constrained_packed_array_type (type))
1713 return decode_constrained_packed_array_type (type);
17280b9f
UW
1714
1715 if (ada_is_array_descriptor_type (type))
556bdfd4 1716 return ada_check_typedef (desc_data_target_type (type));
17280b9f
UW
1717
1718 return type;
14f9c5c9
AS
1719}
1720
4c4b4cd2
PH
1721/* Non-zero iff TYPE represents a standard GNAT packed-array type. */
1722
ad82864c
JB
1723static int
1724ada_is_packed_array_type (struct type *type)
14f9c5c9
AS
1725{
1726 if (type == NULL)
1727 return 0;
4c4b4cd2 1728 type = desc_base_type (type);
61ee279c 1729 type = ada_check_typedef (type);
d2e4a39e 1730 return
14f9c5c9
AS
1731 ada_type_name (type) != NULL
1732 && strstr (ada_type_name (type), "___XP") != NULL;
1733}
1734
ad82864c
JB
1735/* Non-zero iff TYPE represents a standard GNAT constrained
1736 packed-array type. */
1737
1738int
1739ada_is_constrained_packed_array_type (struct type *type)
1740{
1741 return ada_is_packed_array_type (type)
1742 && !ada_is_array_descriptor_type (type);
1743}
1744
1745/* Non-zero iff TYPE represents an array descriptor for a
1746 unconstrained packed-array type. */
1747
1748static int
1749ada_is_unconstrained_packed_array_type (struct type *type)
1750{
1751 return ada_is_packed_array_type (type)
1752 && ada_is_array_descriptor_type (type);
1753}
1754
1755/* Given that TYPE encodes a packed array type (constrained or unconstrained),
1756 return the size of its elements in bits. */
1757
1758static long
1759decode_packed_array_bitsize (struct type *type)
1760{
1761 char *raw_name = ada_type_name (ada_check_typedef (type));
1762 char *tail;
1763 long bits;
1764
1765 if (!raw_name)
1766 raw_name = ada_type_name (desc_base_type (type));
1767
1768 if (!raw_name)
1769 return 0;
1770
1771 tail = strstr (raw_name, "___XP");
1772
1773 if (sscanf (tail + sizeof ("___XP") - 1, "%ld", &bits) != 1)
1774 {
1775 lim_warning
1776 (_("could not understand bit size information on packed array"));
1777 return 0;
1778 }
1779
1780 return bits;
1781}
1782
14f9c5c9
AS
1783/* Given that TYPE is a standard GDB array type with all bounds filled
1784 in, and that the element size of its ultimate scalar constituents
1785 (that is, either its elements, or, if it is an array of arrays, its
1786 elements' elements, etc.) is *ELT_BITS, return an identical type,
1787 but with the bit sizes of its elements (and those of any
1788 constituent arrays) recorded in the BITSIZE components of its
4c4b4cd2
PH
1789 TYPE_FIELD_BITSIZE values, and with *ELT_BITS set to its total size
1790 in bits. */
1791
d2e4a39e 1792static struct type *
ad82864c 1793constrained_packed_array_type (struct type *type, long *elt_bits)
14f9c5c9 1794{
d2e4a39e
AS
1795 struct type *new_elt_type;
1796 struct type *new_type;
14f9c5c9
AS
1797 LONGEST low_bound, high_bound;
1798
61ee279c 1799 type = ada_check_typedef (type);
14f9c5c9
AS
1800 if (TYPE_CODE (type) != TYPE_CODE_ARRAY)
1801 return type;
1802
e9bb382b 1803 new_type = alloc_type_copy (type);
ad82864c
JB
1804 new_elt_type =
1805 constrained_packed_array_type (ada_check_typedef (TYPE_TARGET_TYPE (type)),
1806 elt_bits);
262452ec 1807 create_array_type (new_type, new_elt_type, TYPE_INDEX_TYPE (type));
14f9c5c9
AS
1808 TYPE_FIELD_BITSIZE (new_type, 0) = *elt_bits;
1809 TYPE_NAME (new_type) = ada_type_name (type);
1810
262452ec 1811 if (get_discrete_bounds (TYPE_INDEX_TYPE (type),
4c4b4cd2 1812 &low_bound, &high_bound) < 0)
14f9c5c9
AS
1813 low_bound = high_bound = 0;
1814 if (high_bound < low_bound)
1815 *elt_bits = TYPE_LENGTH (new_type) = 0;
d2e4a39e 1816 else
14f9c5c9
AS
1817 {
1818 *elt_bits *= (high_bound - low_bound + 1);
d2e4a39e 1819 TYPE_LENGTH (new_type) =
4c4b4cd2 1820 (*elt_bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
14f9c5c9
AS
1821 }
1822
876cecd0 1823 TYPE_FIXED_INSTANCE (new_type) = 1;
14f9c5c9
AS
1824 return new_type;
1825}
1826
ad82864c
JB
1827/* The array type encoded by TYPE, where
1828 ada_is_constrained_packed_array_type (TYPE). */
4c4b4cd2 1829
d2e4a39e 1830static struct type *
ad82864c 1831decode_constrained_packed_array_type (struct type *type)
d2e4a39e 1832{
4c4b4cd2 1833 struct symbol *sym;
d2e4a39e 1834 struct block **blocks;
727e3d2e
JB
1835 char *raw_name = ada_type_name (ada_check_typedef (type));
1836 char *name;
1837 char *tail;
d2e4a39e 1838 struct type *shadow_type;
14f9c5c9
AS
1839 long bits;
1840 int i, n;
1841
727e3d2e
JB
1842 if (!raw_name)
1843 raw_name = ada_type_name (desc_base_type (type));
1844
1845 if (!raw_name)
1846 return NULL;
1847
1848 name = (char *) alloca (strlen (raw_name) + 1);
1849 tail = strstr (raw_name, "___XP");
4c4b4cd2
PH
1850 type = desc_base_type (type);
1851
14f9c5c9
AS
1852 memcpy (name, raw_name, tail - raw_name);
1853 name[tail - raw_name] = '\000';
1854
b4ba55a1
JB
1855 shadow_type = ada_find_parallel_type_with_name (type, name);
1856
1857 if (shadow_type == NULL)
14f9c5c9 1858 {
323e0a4a 1859 lim_warning (_("could not find bounds information on packed array"));
14f9c5c9
AS
1860 return NULL;
1861 }
cb249c71 1862 CHECK_TYPEDEF (shadow_type);
14f9c5c9
AS
1863
1864 if (TYPE_CODE (shadow_type) != TYPE_CODE_ARRAY)
1865 {
323e0a4a 1866 lim_warning (_("could not understand bounds information on packed array"));
14f9c5c9
AS
1867 return NULL;
1868 }
d2e4a39e 1869
ad82864c
JB
1870 bits = decode_packed_array_bitsize (type);
1871 return constrained_packed_array_type (shadow_type, &bits);
14f9c5c9
AS
1872}
1873
ad82864c
JB
1874/* Given that ARR is a struct value *indicating a GNAT constrained packed
1875 array, returns a simple array that denotes that array. Its type is a
14f9c5c9
AS
1876 standard GDB array type except that the BITSIZEs of the array
1877 target types are set to the number of bits in each element, and the
4c4b4cd2 1878 type length is set appropriately. */
14f9c5c9 1879
d2e4a39e 1880static struct value *
ad82864c 1881decode_constrained_packed_array (struct value *arr)
14f9c5c9 1882{
4c4b4cd2 1883 struct type *type;
14f9c5c9 1884
4c4b4cd2 1885 arr = ada_coerce_ref (arr);
284614f0
JB
1886
1887 /* If our value is a pointer, then dererence it. Make sure that
1888 this operation does not cause the target type to be fixed, as
1889 this would indirectly cause this array to be decoded. The rest
1890 of the routine assumes that the array hasn't been decoded yet,
1891 so we use the basic "value_ind" routine to perform the dereferencing,
1892 as opposed to using "ada_value_ind". */
df407dfe 1893 if (TYPE_CODE (value_type (arr)) == TYPE_CODE_PTR)
284614f0 1894 arr = value_ind (arr);
4c4b4cd2 1895
ad82864c 1896 type = decode_constrained_packed_array_type (value_type (arr));
14f9c5c9
AS
1897 if (type == NULL)
1898 {
323e0a4a 1899 error (_("can't unpack array"));
14f9c5c9
AS
1900 return NULL;
1901 }
61ee279c 1902
50810684 1903 if (gdbarch_bits_big_endian (get_type_arch (value_type (arr)))
32c9a795 1904 && ada_is_modular_type (value_type (arr)))
61ee279c
PH
1905 {
1906 /* This is a (right-justified) modular type representing a packed
1907 array with no wrapper. In order to interpret the value through
1908 the (left-justified) packed array type we just built, we must
1909 first left-justify it. */
1910 int bit_size, bit_pos;
1911 ULONGEST mod;
1912
df407dfe 1913 mod = ada_modulus (value_type (arr)) - 1;
61ee279c
PH
1914 bit_size = 0;
1915 while (mod > 0)
1916 {
1917 bit_size += 1;
1918 mod >>= 1;
1919 }
df407dfe 1920 bit_pos = HOST_CHAR_BIT * TYPE_LENGTH (value_type (arr)) - bit_size;
61ee279c
PH
1921 arr = ada_value_primitive_packed_val (arr, NULL,
1922 bit_pos / HOST_CHAR_BIT,
1923 bit_pos % HOST_CHAR_BIT,
1924 bit_size,
1925 type);
1926 }
1927
4c4b4cd2 1928 return coerce_unspec_val_to_type (arr, type);
14f9c5c9
AS
1929}
1930
1931
1932/* The value of the element of packed array ARR at the ARITY indices
4c4b4cd2 1933 given in IND. ARR must be a simple array. */
14f9c5c9 1934
d2e4a39e
AS
1935static struct value *
1936value_subscript_packed (struct value *arr, int arity, struct value **ind)
14f9c5c9
AS
1937{
1938 int i;
1939 int bits, elt_off, bit_off;
1940 long elt_total_bit_offset;
d2e4a39e
AS
1941 struct type *elt_type;
1942 struct value *v;
14f9c5c9
AS
1943
1944 bits = 0;
1945 elt_total_bit_offset = 0;
df407dfe 1946 elt_type = ada_check_typedef (value_type (arr));
d2e4a39e 1947 for (i = 0; i < arity; i += 1)
14f9c5c9 1948 {
d2e4a39e 1949 if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY
4c4b4cd2
PH
1950 || TYPE_FIELD_BITSIZE (elt_type, 0) == 0)
1951 error
323e0a4a 1952 (_("attempt to do packed indexing of something other than a packed array"));
14f9c5c9 1953 else
4c4b4cd2
PH
1954 {
1955 struct type *range_type = TYPE_INDEX_TYPE (elt_type);
1956 LONGEST lowerbound, upperbound;
1957 LONGEST idx;
1958
1959 if (get_discrete_bounds (range_type, &lowerbound, &upperbound) < 0)
1960 {
323e0a4a 1961 lim_warning (_("don't know bounds of array"));
4c4b4cd2
PH
1962 lowerbound = upperbound = 0;
1963 }
1964
3cb382c9 1965 idx = pos_atr (ind[i]);
4c4b4cd2 1966 if (idx < lowerbound || idx > upperbound)
323e0a4a 1967 lim_warning (_("packed array index %ld out of bounds"), (long) idx);
4c4b4cd2
PH
1968 bits = TYPE_FIELD_BITSIZE (elt_type, 0);
1969 elt_total_bit_offset += (idx - lowerbound) * bits;
61ee279c 1970 elt_type = ada_check_typedef (TYPE_TARGET_TYPE (elt_type));
4c4b4cd2 1971 }
14f9c5c9
AS
1972 }
1973 elt_off = elt_total_bit_offset / HOST_CHAR_BIT;
1974 bit_off = elt_total_bit_offset % HOST_CHAR_BIT;
d2e4a39e
AS
1975
1976 v = ada_value_primitive_packed_val (arr, NULL, elt_off, bit_off,
4c4b4cd2 1977 bits, elt_type);
14f9c5c9
AS
1978 return v;
1979}
1980
4c4b4cd2 1981/* Non-zero iff TYPE includes negative integer values. */
14f9c5c9
AS
1982
1983static int
d2e4a39e 1984has_negatives (struct type *type)
14f9c5c9 1985{
d2e4a39e
AS
1986 switch (TYPE_CODE (type))
1987 {
1988 default:
1989 return 0;
1990 case TYPE_CODE_INT:
1991 return !TYPE_UNSIGNED (type);
1992 case TYPE_CODE_RANGE:
1993 return TYPE_LOW_BOUND (type) < 0;
1994 }
14f9c5c9 1995}
d2e4a39e 1996
14f9c5c9
AS
1997
1998/* Create a new value of type TYPE from the contents of OBJ starting
1999 at byte OFFSET, and bit offset BIT_OFFSET within that byte,
2000 proceeding for BIT_SIZE bits. If OBJ is an lval in memory, then
4c4b4cd2
PH
2001 assigning through the result will set the field fetched from.
2002 VALADDR is ignored unless OBJ is NULL, in which case,
2003 VALADDR+OFFSET must address the start of storage containing the
2004 packed value. The value returned in this case is never an lval.
2005 Assumes 0 <= BIT_OFFSET < HOST_CHAR_BIT. */
14f9c5c9 2006
d2e4a39e 2007struct value *
fc1a4b47 2008ada_value_primitive_packed_val (struct value *obj, const gdb_byte *valaddr,
a2bd3dcd 2009 long offset, int bit_offset, int bit_size,
4c4b4cd2 2010 struct type *type)
14f9c5c9 2011{
d2e4a39e 2012 struct value *v;
4c4b4cd2
PH
2013 int src, /* Index into the source area */
2014 targ, /* Index into the target area */
2015 srcBitsLeft, /* Number of source bits left to move */
2016 nsrc, ntarg, /* Number of source and target bytes */
2017 unusedLS, /* Number of bits in next significant
2018 byte of source that are unused */
2019 accumSize; /* Number of meaningful bits in accum */
2020 unsigned char *bytes; /* First byte containing data to unpack */
d2e4a39e 2021 unsigned char *unpacked;
4c4b4cd2 2022 unsigned long accum; /* Staging area for bits being transferred */
14f9c5c9
AS
2023 unsigned char sign;
2024 int len = (bit_size + bit_offset + HOST_CHAR_BIT - 1) / 8;
4c4b4cd2
PH
2025 /* Transmit bytes from least to most significant; delta is the direction
2026 the indices move. */
50810684 2027 int delta = gdbarch_bits_big_endian (get_type_arch (type)) ? -1 : 1;
14f9c5c9 2028
61ee279c 2029 type = ada_check_typedef (type);
14f9c5c9
AS
2030
2031 if (obj == NULL)
2032 {
2033 v = allocate_value (type);
d2e4a39e 2034 bytes = (unsigned char *) (valaddr + offset);
14f9c5c9 2035 }
9214ee5f 2036 else if (VALUE_LVAL (obj) == lval_memory && value_lazy (obj))
14f9c5c9
AS
2037 {
2038 v = value_at (type,
42ae5230 2039 value_address (obj) + offset);
d2e4a39e 2040 bytes = (unsigned char *) alloca (len);
42ae5230 2041 read_memory (value_address (v), bytes, len);
14f9c5c9 2042 }
d2e4a39e 2043 else
14f9c5c9
AS
2044 {
2045 v = allocate_value (type);
0fd88904 2046 bytes = (unsigned char *) value_contents (obj) + offset;
14f9c5c9 2047 }
d2e4a39e
AS
2048
2049 if (obj != NULL)
14f9c5c9 2050 {
42ae5230 2051 CORE_ADDR new_addr;
74bcbdf3 2052 set_value_component_location (v, obj);
42ae5230 2053 new_addr = value_address (obj) + offset;
9bbda503
AC
2054 set_value_bitpos (v, bit_offset + value_bitpos (obj));
2055 set_value_bitsize (v, bit_size);
df407dfe 2056 if (value_bitpos (v) >= HOST_CHAR_BIT)
4c4b4cd2 2057 {
42ae5230 2058 ++new_addr;
9bbda503 2059 set_value_bitpos (v, value_bitpos (v) - HOST_CHAR_BIT);
4c4b4cd2 2060 }
42ae5230 2061 set_value_address (v, new_addr);
14f9c5c9
AS
2062 }
2063 else
9bbda503 2064 set_value_bitsize (v, bit_size);
0fd88904 2065 unpacked = (unsigned char *) value_contents (v);
14f9c5c9
AS
2066
2067 srcBitsLeft = bit_size;
2068 nsrc = len;
2069 ntarg = TYPE_LENGTH (type);
2070 sign = 0;
2071 if (bit_size == 0)
2072 {
2073 memset (unpacked, 0, TYPE_LENGTH (type));
2074 return v;
2075 }
50810684 2076 else if (gdbarch_bits_big_endian (get_type_arch (type)))
14f9c5c9 2077 {
d2e4a39e 2078 src = len - 1;
1265e4aa
JB
2079 if (has_negatives (type)
2080 && ((bytes[0] << bit_offset) & (1 << (HOST_CHAR_BIT - 1))))
4c4b4cd2 2081 sign = ~0;
d2e4a39e
AS
2082
2083 unusedLS =
4c4b4cd2
PH
2084 (HOST_CHAR_BIT - (bit_size + bit_offset) % HOST_CHAR_BIT)
2085 % HOST_CHAR_BIT;
14f9c5c9
AS
2086
2087 switch (TYPE_CODE (type))
4c4b4cd2
PH
2088 {
2089 case TYPE_CODE_ARRAY:
2090 case TYPE_CODE_UNION:
2091 case TYPE_CODE_STRUCT:
2092 /* Non-scalar values must be aligned at a byte boundary... */
2093 accumSize =
2094 (HOST_CHAR_BIT - bit_size % HOST_CHAR_BIT) % HOST_CHAR_BIT;
2095 /* ... And are placed at the beginning (most-significant) bytes
2096 of the target. */
529cad9c 2097 targ = (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT - 1;
0056e4d5 2098 ntarg = targ + 1;
4c4b4cd2
PH
2099 break;
2100 default:
2101 accumSize = 0;
2102 targ = TYPE_LENGTH (type) - 1;
2103 break;
2104 }
14f9c5c9 2105 }
d2e4a39e 2106 else
14f9c5c9
AS
2107 {
2108 int sign_bit_offset = (bit_size + bit_offset - 1) % 8;
2109
2110 src = targ = 0;
2111 unusedLS = bit_offset;
2112 accumSize = 0;
2113
d2e4a39e 2114 if (has_negatives (type) && (bytes[len - 1] & (1 << sign_bit_offset)))
4c4b4cd2 2115 sign = ~0;
14f9c5c9 2116 }
d2e4a39e 2117
14f9c5c9
AS
2118 accum = 0;
2119 while (nsrc > 0)
2120 {
2121 /* Mask for removing bits of the next source byte that are not
4c4b4cd2 2122 part of the value. */
d2e4a39e 2123 unsigned int unusedMSMask =
4c4b4cd2
PH
2124 (1 << (srcBitsLeft >= HOST_CHAR_BIT ? HOST_CHAR_BIT : srcBitsLeft)) -
2125 1;
2126 /* Sign-extend bits for this byte. */
14f9c5c9 2127 unsigned int signMask = sign & ~unusedMSMask;
d2e4a39e 2128 accum |=
4c4b4cd2 2129 (((bytes[src] >> unusedLS) & unusedMSMask) | signMask) << accumSize;
14f9c5c9 2130 accumSize += HOST_CHAR_BIT - unusedLS;
d2e4a39e 2131 if (accumSize >= HOST_CHAR_BIT)
4c4b4cd2
PH
2132 {
2133 unpacked[targ] = accum & ~(~0L << HOST_CHAR_BIT);
2134 accumSize -= HOST_CHAR_BIT;
2135 accum >>= HOST_CHAR_BIT;
2136 ntarg -= 1;
2137 targ += delta;
2138 }
14f9c5c9
AS
2139 srcBitsLeft -= HOST_CHAR_BIT - unusedLS;
2140 unusedLS = 0;
2141 nsrc -= 1;
2142 src += delta;
2143 }
2144 while (ntarg > 0)
2145 {
2146 accum |= sign << accumSize;
2147 unpacked[targ] = accum & ~(~0L << HOST_CHAR_BIT);
2148 accumSize -= HOST_CHAR_BIT;
2149 accum >>= HOST_CHAR_BIT;
2150 ntarg -= 1;
2151 targ += delta;
2152 }
2153
2154 return v;
2155}
d2e4a39e 2156
14f9c5c9
AS
2157/* Move N bits from SOURCE, starting at bit offset SRC_OFFSET to
2158 TARGET, starting at bit offset TARG_OFFSET. SOURCE and TARGET must
4c4b4cd2 2159 not overlap. */
14f9c5c9 2160static void
fc1a4b47 2161move_bits (gdb_byte *target, int targ_offset, const gdb_byte *source,
50810684 2162 int src_offset, int n, int bits_big_endian_p)
14f9c5c9
AS
2163{
2164 unsigned int accum, mask;
2165 int accum_bits, chunk_size;
2166
2167 target += targ_offset / HOST_CHAR_BIT;
2168 targ_offset %= HOST_CHAR_BIT;
2169 source += src_offset / HOST_CHAR_BIT;
2170 src_offset %= HOST_CHAR_BIT;
50810684 2171 if (bits_big_endian_p)
14f9c5c9
AS
2172 {
2173 accum = (unsigned char) *source;
2174 source += 1;
2175 accum_bits = HOST_CHAR_BIT - src_offset;
2176
d2e4a39e 2177 while (n > 0)
4c4b4cd2
PH
2178 {
2179 int unused_right;
2180 accum = (accum << HOST_CHAR_BIT) + (unsigned char) *source;
2181 accum_bits += HOST_CHAR_BIT;
2182 source += 1;
2183 chunk_size = HOST_CHAR_BIT - targ_offset;
2184 if (chunk_size > n)
2185 chunk_size = n;
2186 unused_right = HOST_CHAR_BIT - (chunk_size + targ_offset);
2187 mask = ((1 << chunk_size) - 1) << unused_right;
2188 *target =
2189 (*target & ~mask)
2190 | ((accum >> (accum_bits - chunk_size - unused_right)) & mask);
2191 n -= chunk_size;
2192 accum_bits -= chunk_size;
2193 target += 1;
2194 targ_offset = 0;
2195 }
14f9c5c9
AS
2196 }
2197 else
2198 {
2199 accum = (unsigned char) *source >> src_offset;
2200 source += 1;
2201 accum_bits = HOST_CHAR_BIT - src_offset;
2202
d2e4a39e 2203 while (n > 0)
4c4b4cd2
PH
2204 {
2205 accum = accum + ((unsigned char) *source << accum_bits);
2206 accum_bits += HOST_CHAR_BIT;
2207 source += 1;
2208 chunk_size = HOST_CHAR_BIT - targ_offset;
2209 if (chunk_size > n)
2210 chunk_size = n;
2211 mask = ((1 << chunk_size) - 1) << targ_offset;
2212 *target = (*target & ~mask) | ((accum << targ_offset) & mask);
2213 n -= chunk_size;
2214 accum_bits -= chunk_size;
2215 accum >>= chunk_size;
2216 target += 1;
2217 targ_offset = 0;
2218 }
14f9c5c9
AS
2219 }
2220}
2221
14f9c5c9
AS
2222/* Store the contents of FROMVAL into the location of TOVAL.
2223 Return a new value with the location of TOVAL and contents of
2224 FROMVAL. Handles assignment into packed fields that have
4c4b4cd2 2225 floating-point or non-scalar types. */
14f9c5c9 2226
d2e4a39e
AS
2227static struct value *
2228ada_value_assign (struct value *toval, struct value *fromval)
14f9c5c9 2229{
df407dfe
AC
2230 struct type *type = value_type (toval);
2231 int bits = value_bitsize (toval);
14f9c5c9 2232
52ce6436
PH
2233 toval = ada_coerce_ref (toval);
2234 fromval = ada_coerce_ref (fromval);
2235
2236 if (ada_is_direct_array_type (value_type (toval)))
2237 toval = ada_coerce_to_simple_array (toval);
2238 if (ada_is_direct_array_type (value_type (fromval)))
2239 fromval = ada_coerce_to_simple_array (fromval);
2240
88e3b34b 2241 if (!deprecated_value_modifiable (toval))
323e0a4a 2242 error (_("Left operand of assignment is not a modifiable lvalue."));
14f9c5c9 2243
d2e4a39e 2244 if (VALUE_LVAL (toval) == lval_memory
14f9c5c9 2245 && bits > 0
d2e4a39e 2246 && (TYPE_CODE (type) == TYPE_CODE_FLT
4c4b4cd2 2247 || TYPE_CODE (type) == TYPE_CODE_STRUCT))
14f9c5c9 2248 {
df407dfe
AC
2249 int len = (value_bitpos (toval)
2250 + bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
aced2898 2251 int from_size;
d2e4a39e
AS
2252 char *buffer = (char *) alloca (len);
2253 struct value *val;
42ae5230 2254 CORE_ADDR to_addr = value_address (toval);
14f9c5c9
AS
2255
2256 if (TYPE_CODE (type) == TYPE_CODE_FLT)
4c4b4cd2 2257 fromval = value_cast (type, fromval);
14f9c5c9 2258
52ce6436 2259 read_memory (to_addr, buffer, len);
aced2898
PH
2260 from_size = value_bitsize (fromval);
2261 if (from_size == 0)
2262 from_size = TYPE_LENGTH (value_type (fromval)) * TARGET_CHAR_BIT;
50810684 2263 if (gdbarch_bits_big_endian (get_type_arch (type)))
df407dfe 2264 move_bits (buffer, value_bitpos (toval),
50810684 2265 value_contents (fromval), from_size - bits, bits, 1);
14f9c5c9 2266 else
50810684
UW
2267 move_bits (buffer, value_bitpos (toval),
2268 value_contents (fromval), 0, bits, 0);
52ce6436 2269 write_memory (to_addr, buffer, len);
8cebebb9
PP
2270 observer_notify_memory_changed (to_addr, len, buffer);
2271
14f9c5c9 2272 val = value_copy (toval);
0fd88904 2273 memcpy (value_contents_raw (val), value_contents (fromval),
4c4b4cd2 2274 TYPE_LENGTH (type));
04624583 2275 deprecated_set_value_type (val, type);
d2e4a39e 2276
14f9c5c9
AS
2277 return val;
2278 }
2279
2280 return value_assign (toval, fromval);
2281}
2282
2283
52ce6436
PH
2284/* Given that COMPONENT is a memory lvalue that is part of the lvalue
2285 * CONTAINER, assign the contents of VAL to COMPONENTS's place in
2286 * CONTAINER. Modifies the VALUE_CONTENTS of CONTAINER only, not
2287 * COMPONENT, and not the inferior's memory. The current contents
2288 * of COMPONENT are ignored. */
2289static void
2290value_assign_to_component (struct value *container, struct value *component,
2291 struct value *val)
2292{
2293 LONGEST offset_in_container =
42ae5230 2294 (LONGEST) (value_address (component) - value_address (container));
52ce6436
PH
2295 int bit_offset_in_container =
2296 value_bitpos (component) - value_bitpos (container);
2297 int bits;
2298
2299 val = value_cast (value_type (component), val);
2300
2301 if (value_bitsize (component) == 0)
2302 bits = TARGET_CHAR_BIT * TYPE_LENGTH (value_type (component));
2303 else
2304 bits = value_bitsize (component);
2305
50810684 2306 if (gdbarch_bits_big_endian (get_type_arch (value_type (container))))
52ce6436
PH
2307 move_bits (value_contents_writeable (container) + offset_in_container,
2308 value_bitpos (container) + bit_offset_in_container,
2309 value_contents (val),
2310 TYPE_LENGTH (value_type (component)) * TARGET_CHAR_BIT - bits,
50810684 2311 bits, 1);
52ce6436
PH
2312 else
2313 move_bits (value_contents_writeable (container) + offset_in_container,
2314 value_bitpos (container) + bit_offset_in_container,
50810684 2315 value_contents (val), 0, bits, 0);
52ce6436
PH
2316}
2317
4c4b4cd2
PH
2318/* The value of the element of array ARR at the ARITY indices given in IND.
2319 ARR may be either a simple array, GNAT array descriptor, or pointer
14f9c5c9
AS
2320 thereto. */
2321
d2e4a39e
AS
2322struct value *
2323ada_value_subscript (struct value *arr, int arity, struct value **ind)
14f9c5c9
AS
2324{
2325 int k;
d2e4a39e
AS
2326 struct value *elt;
2327 struct type *elt_type;
14f9c5c9
AS
2328
2329 elt = ada_coerce_to_simple_array (arr);
2330
df407dfe 2331 elt_type = ada_check_typedef (value_type (elt));
d2e4a39e 2332 if (TYPE_CODE (elt_type) == TYPE_CODE_ARRAY
14f9c5c9
AS
2333 && TYPE_FIELD_BITSIZE (elt_type, 0) > 0)
2334 return value_subscript_packed (elt, arity, ind);
2335
2336 for (k = 0; k < arity; k += 1)
2337 {
2338 if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY)
323e0a4a 2339 error (_("too many subscripts (%d expected)"), k);
2497b498 2340 elt = value_subscript (elt, pos_atr (ind[k]));
14f9c5c9
AS
2341 }
2342 return elt;
2343}
2344
2345/* Assuming ARR is a pointer to a standard GDB array of type TYPE, the
2346 value of the element of *ARR at the ARITY indices given in
4c4b4cd2 2347 IND. Does not read the entire array into memory. */
14f9c5c9 2348
2c0b251b 2349static struct value *
d2e4a39e 2350ada_value_ptr_subscript (struct value *arr, struct type *type, int arity,
4c4b4cd2 2351 struct value **ind)
14f9c5c9
AS
2352{
2353 int k;
2354
2355 for (k = 0; k < arity; k += 1)
2356 {
2357 LONGEST lwb, upb;
14f9c5c9
AS
2358
2359 if (TYPE_CODE (type) != TYPE_CODE_ARRAY)
323e0a4a 2360 error (_("too many subscripts (%d expected)"), k);
d2e4a39e 2361 arr = value_cast (lookup_pointer_type (TYPE_TARGET_TYPE (type)),
4c4b4cd2 2362 value_copy (arr));
14f9c5c9 2363 get_discrete_bounds (TYPE_INDEX_TYPE (type), &lwb, &upb);
2497b498 2364 arr = value_ptradd (arr, pos_atr (ind[k]) - lwb);
14f9c5c9
AS
2365 type = TYPE_TARGET_TYPE (type);
2366 }
2367
2368 return value_ind (arr);
2369}
2370
0b5d8877 2371/* Given that ARRAY_PTR is a pointer or reference to an array of type TYPE (the
f5938064
JG
2372 actual type of ARRAY_PTR is ignored), returns the Ada slice of HIGH-LOW+1
2373 elements starting at index LOW. The lower bound of this array is LOW, as
2374 per Ada rules. */
0b5d8877 2375static struct value *
f5938064
JG
2376ada_value_slice_from_ptr (struct value *array_ptr, struct type *type,
2377 int low, int high)
0b5d8877 2378{
6c038f32 2379 CORE_ADDR base = value_as_address (array_ptr)
43bbcdc2 2380 + ((low - ada_discrete_type_low_bound (TYPE_INDEX_TYPE (type)))
0b5d8877 2381 * TYPE_LENGTH (TYPE_TARGET_TYPE (type)));
6c038f32
PH
2382 struct type *index_type =
2383 create_range_type (NULL, TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type)),
0b5d8877 2384 low, high);
6c038f32 2385 struct type *slice_type =
0b5d8877 2386 create_array_type (NULL, TYPE_TARGET_TYPE (type), index_type);
f5938064 2387 return value_at_lazy (slice_type, base);
0b5d8877
PH
2388}
2389
2390
2391static struct value *
2392ada_value_slice (struct value *array, int low, int high)
2393{
df407dfe 2394 struct type *type = value_type (array);
6c038f32 2395 struct type *index_type =
0b5d8877 2396 create_range_type (NULL, TYPE_INDEX_TYPE (type), low, high);
6c038f32 2397 struct type *slice_type =
0b5d8877 2398 create_array_type (NULL, TYPE_TARGET_TYPE (type), index_type);
6c038f32 2399 return value_cast (slice_type, value_slice (array, low, high - low + 1));
0b5d8877
PH
2400}
2401
14f9c5c9
AS
2402/* If type is a record type in the form of a standard GNAT array
2403 descriptor, returns the number of dimensions for type. If arr is a
2404 simple array, returns the number of "array of"s that prefix its
4c4b4cd2 2405 type designation. Otherwise, returns 0. */
14f9c5c9
AS
2406
2407int
d2e4a39e 2408ada_array_arity (struct type *type)
14f9c5c9
AS
2409{
2410 int arity;
2411
2412 if (type == NULL)
2413 return 0;
2414
2415 type = desc_base_type (type);
2416
2417 arity = 0;
d2e4a39e 2418 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
14f9c5c9 2419 return desc_arity (desc_bounds_type (type));
d2e4a39e
AS
2420 else
2421 while (TYPE_CODE (type) == TYPE_CODE_ARRAY)
14f9c5c9 2422 {
4c4b4cd2 2423 arity += 1;
61ee279c 2424 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
14f9c5c9 2425 }
d2e4a39e 2426
14f9c5c9
AS
2427 return arity;
2428}
2429
2430/* If TYPE is a record type in the form of a standard GNAT array
2431 descriptor or a simple array type, returns the element type for
2432 TYPE after indexing by NINDICES indices, or by all indices if
4c4b4cd2 2433 NINDICES is -1. Otherwise, returns NULL. */
14f9c5c9 2434
d2e4a39e
AS
2435struct type *
2436ada_array_element_type (struct type *type, int nindices)
14f9c5c9
AS
2437{
2438 type = desc_base_type (type);
2439
d2e4a39e 2440 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
14f9c5c9
AS
2441 {
2442 int k;
d2e4a39e 2443 struct type *p_array_type;
14f9c5c9 2444
556bdfd4 2445 p_array_type = desc_data_target_type (type);
14f9c5c9
AS
2446
2447 k = ada_array_arity (type);
2448 if (k == 0)
4c4b4cd2 2449 return NULL;
d2e4a39e 2450
4c4b4cd2 2451 /* Initially p_array_type = elt_type(*)[]...(k times)...[]. */
14f9c5c9 2452 if (nindices >= 0 && k > nindices)
4c4b4cd2 2453 k = nindices;
d2e4a39e 2454 while (k > 0 && p_array_type != NULL)
4c4b4cd2 2455 {
61ee279c 2456 p_array_type = ada_check_typedef (TYPE_TARGET_TYPE (p_array_type));
4c4b4cd2
PH
2457 k -= 1;
2458 }
14f9c5c9
AS
2459 return p_array_type;
2460 }
2461 else if (TYPE_CODE (type) == TYPE_CODE_ARRAY)
2462 {
2463 while (nindices != 0 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
4c4b4cd2
PH
2464 {
2465 type = TYPE_TARGET_TYPE (type);
2466 nindices -= 1;
2467 }
14f9c5c9
AS
2468 return type;
2469 }
2470
2471 return NULL;
2472}
2473
4c4b4cd2 2474/* The type of nth index in arrays of given type (n numbering from 1).
dd19d49e
UW
2475 Does not examine memory. Throws an error if N is invalid or TYPE
2476 is not an array type. NAME is the name of the Ada attribute being
2477 evaluated ('range, 'first, 'last, or 'length); it is used in building
2478 the error message. */
14f9c5c9 2479
1eea4ebd
UW
2480static struct type *
2481ada_index_type (struct type *type, int n, const char *name)
14f9c5c9 2482{
4c4b4cd2
PH
2483 struct type *result_type;
2484
14f9c5c9
AS
2485 type = desc_base_type (type);
2486
1eea4ebd
UW
2487 if (n < 0 || n > ada_array_arity (type))
2488 error (_("invalid dimension number to '%s"), name);
14f9c5c9 2489
4c4b4cd2 2490 if (ada_is_simple_array_type (type))
14f9c5c9
AS
2491 {
2492 int i;
2493
2494 for (i = 1; i < n; i += 1)
4c4b4cd2 2495 type = TYPE_TARGET_TYPE (type);
262452ec 2496 result_type = TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type));
4c4b4cd2
PH
2497 /* FIXME: The stabs type r(0,0);bound;bound in an array type
2498 has a target type of TYPE_CODE_UNDEF. We compensate here, but
76a01679 2499 perhaps stabsread.c would make more sense. */
1eea4ebd
UW
2500 if (result_type && TYPE_CODE (result_type) == TYPE_CODE_UNDEF)
2501 result_type = NULL;
14f9c5c9 2502 }
d2e4a39e 2503 else
1eea4ebd
UW
2504 {
2505 result_type = desc_index_type (desc_bounds_type (type), n);
2506 if (result_type == NULL)
2507 error (_("attempt to take bound of something that is not an array"));
2508 }
2509
2510 return result_type;
14f9c5c9
AS
2511}
2512
2513/* Given that arr is an array type, returns the lower bound of the
2514 Nth index (numbering from 1) if WHICH is 0, and the upper bound if
4c4b4cd2 2515 WHICH is 1. This returns bounds 0 .. -1 if ARR_TYPE is an
1eea4ebd
UW
2516 array-descriptor type. It works for other arrays with bounds supplied
2517 by run-time quantities other than discriminants. */
14f9c5c9 2518
abb68b3e 2519static LONGEST
1eea4ebd 2520ada_array_bound_from_type (struct type * arr_type, int n, int which)
14f9c5c9 2521{
1ce677a4 2522 struct type *type, *elt_type, *index_type_desc, *index_type;
1ce677a4 2523 int i;
262452ec
JK
2524
2525 gdb_assert (which == 0 || which == 1);
14f9c5c9 2526
ad82864c
JB
2527 if (ada_is_constrained_packed_array_type (arr_type))
2528 arr_type = decode_constrained_packed_array_type (arr_type);
14f9c5c9 2529
4c4b4cd2 2530 if (arr_type == NULL || !ada_is_simple_array_type (arr_type))
1eea4ebd 2531 return (LONGEST) - which;
14f9c5c9
AS
2532
2533 if (TYPE_CODE (arr_type) == TYPE_CODE_PTR)
2534 type = TYPE_TARGET_TYPE (arr_type);
2535 else
2536 type = arr_type;
2537
1ce677a4
UW
2538 elt_type = type;
2539 for (i = n; i > 1; i--)
2540 elt_type = TYPE_TARGET_TYPE (type);
2541
14f9c5c9 2542 index_type_desc = ada_find_parallel_type (type, "___XA");
262452ec
JK
2543 if (index_type_desc != NULL)
2544 index_type = to_fixed_range_type (TYPE_FIELD_NAME (index_type_desc, n - 1),
1ce677a4 2545 NULL, TYPE_INDEX_TYPE (elt_type));
262452ec 2546 else
1ce677a4 2547 index_type = TYPE_INDEX_TYPE (elt_type);
262452ec 2548
43bbcdc2
PH
2549 return
2550 (LONGEST) (which == 0
2551 ? ada_discrete_type_low_bound (index_type)
2552 : ada_discrete_type_high_bound (index_type));
14f9c5c9
AS
2553}
2554
2555/* Given that arr is an array value, returns the lower bound of the
abb68b3e
JB
2556 nth index (numbering from 1) if WHICH is 0, and the upper bound if
2557 WHICH is 1. This routine will also work for arrays with bounds
4c4b4cd2 2558 supplied by run-time quantities other than discriminants. */
14f9c5c9 2559
1eea4ebd 2560static LONGEST
4dc81987 2561ada_array_bound (struct value *arr, int n, int which)
14f9c5c9 2562{
df407dfe 2563 struct type *arr_type = value_type (arr);
14f9c5c9 2564
ad82864c
JB
2565 if (ada_is_constrained_packed_array_type (arr_type))
2566 return ada_array_bound (decode_constrained_packed_array (arr), n, which);
4c4b4cd2 2567 else if (ada_is_simple_array_type (arr_type))
1eea4ebd 2568 return ada_array_bound_from_type (arr_type, n, which);
14f9c5c9 2569 else
1eea4ebd 2570 return value_as_long (desc_one_bound (desc_bounds (arr), n, which));
14f9c5c9
AS
2571}
2572
2573/* Given that arr is an array value, returns the length of the
2574 nth index. This routine will also work for arrays with bounds
4c4b4cd2
PH
2575 supplied by run-time quantities other than discriminants.
2576 Does not work for arrays indexed by enumeration types with representation
2577 clauses at the moment. */
14f9c5c9 2578
1eea4ebd 2579static LONGEST
d2e4a39e 2580ada_array_length (struct value *arr, int n)
14f9c5c9 2581{
df407dfe 2582 struct type *arr_type = ada_check_typedef (value_type (arr));
14f9c5c9 2583
ad82864c
JB
2584 if (ada_is_constrained_packed_array_type (arr_type))
2585 return ada_array_length (decode_constrained_packed_array (arr), n);
14f9c5c9 2586
4c4b4cd2 2587 if (ada_is_simple_array_type (arr_type))
1eea4ebd
UW
2588 return (ada_array_bound_from_type (arr_type, n, 1)
2589 - ada_array_bound_from_type (arr_type, n, 0) + 1);
14f9c5c9 2590 else
1eea4ebd
UW
2591 return (value_as_long (desc_one_bound (desc_bounds (arr), n, 1))
2592 - value_as_long (desc_one_bound (desc_bounds (arr), n, 0)) + 1);
4c4b4cd2
PH
2593}
2594
2595/* An empty array whose type is that of ARR_TYPE (an array type),
2596 with bounds LOW to LOW-1. */
2597
2598static struct value *
2599empty_array (struct type *arr_type, int low)
2600{
6c038f32 2601 struct type *index_type =
0b5d8877
PH
2602 create_range_type (NULL, TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (arr_type)),
2603 low, low - 1);
2604 struct type *elt_type = ada_array_element_type (arr_type, 1);
2605 return allocate_value (create_array_type (NULL, elt_type, index_type));
14f9c5c9 2606}
14f9c5c9 2607\f
d2e4a39e 2608
4c4b4cd2 2609 /* Name resolution */
14f9c5c9 2610
4c4b4cd2
PH
2611/* The "decoded" name for the user-definable Ada operator corresponding
2612 to OP. */
14f9c5c9 2613
d2e4a39e 2614static const char *
4c4b4cd2 2615ada_decoded_op_name (enum exp_opcode op)
14f9c5c9
AS
2616{
2617 int i;
2618
4c4b4cd2 2619 for (i = 0; ada_opname_table[i].encoded != NULL; i += 1)
14f9c5c9
AS
2620 {
2621 if (ada_opname_table[i].op == op)
4c4b4cd2 2622 return ada_opname_table[i].decoded;
14f9c5c9 2623 }
323e0a4a 2624 error (_("Could not find operator name for opcode"));
14f9c5c9
AS
2625}
2626
2627
4c4b4cd2
PH
2628/* Same as evaluate_type (*EXP), but resolves ambiguous symbol
2629 references (marked by OP_VAR_VALUE nodes in which the symbol has an
2630 undefined namespace) and converts operators that are
2631 user-defined into appropriate function calls. If CONTEXT_TYPE is
14f9c5c9
AS
2632 non-null, it provides a preferred result type [at the moment, only
2633 type void has any effect---causing procedures to be preferred over
2634 functions in calls]. A null CONTEXT_TYPE indicates that a non-void
4c4b4cd2 2635 return type is preferred. May change (expand) *EXP. */
14f9c5c9 2636
4c4b4cd2
PH
2637static void
2638resolve (struct expression **expp, int void_context_p)
14f9c5c9 2639{
30b15541
UW
2640 struct type *context_type = NULL;
2641 int pc = 0;
2642
2643 if (void_context_p)
2644 context_type = builtin_type ((*expp)->gdbarch)->builtin_void;
2645
2646 resolve_subexp (expp, &pc, 1, context_type);
14f9c5c9
AS
2647}
2648
4c4b4cd2
PH
2649/* Resolve the operator of the subexpression beginning at
2650 position *POS of *EXPP. "Resolving" consists of replacing
2651 the symbols that have undefined namespaces in OP_VAR_VALUE nodes
2652 with their resolutions, replacing built-in operators with
2653 function calls to user-defined operators, where appropriate, and,
2654 when DEPROCEDURE_P is non-zero, converting function-valued variables
2655 into parameterless calls. May expand *EXPP. The CONTEXT_TYPE functions
2656 are as in ada_resolve, above. */
14f9c5c9 2657
d2e4a39e 2658static struct value *
4c4b4cd2 2659resolve_subexp (struct expression **expp, int *pos, int deprocedure_p,
76a01679 2660 struct type *context_type)
14f9c5c9
AS
2661{
2662 int pc = *pos;
2663 int i;
4c4b4cd2 2664 struct expression *exp; /* Convenience: == *expp. */
14f9c5c9 2665 enum exp_opcode op = (*expp)->elts[pc].opcode;
4c4b4cd2
PH
2666 struct value **argvec; /* Vector of operand types (alloca'ed). */
2667 int nargs; /* Number of operands. */
52ce6436 2668 int oplen;
14f9c5c9
AS
2669
2670 argvec = NULL;
2671 nargs = 0;
2672 exp = *expp;
2673
52ce6436
PH
2674 /* Pass one: resolve operands, saving their types and updating *pos,
2675 if needed. */
14f9c5c9
AS
2676 switch (op)
2677 {
4c4b4cd2
PH
2678 case OP_FUNCALL:
2679 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
76a01679
JB
2680 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
2681 *pos += 7;
4c4b4cd2
PH
2682 else
2683 {
2684 *pos += 3;
2685 resolve_subexp (expp, pos, 0, NULL);
2686 }
2687 nargs = longest_to_int (exp->elts[pc + 1].longconst);
14f9c5c9
AS
2688 break;
2689
14f9c5c9 2690 case UNOP_ADDR:
4c4b4cd2
PH
2691 *pos += 1;
2692 resolve_subexp (expp, pos, 0, NULL);
2693 break;
2694
52ce6436
PH
2695 case UNOP_QUAL:
2696 *pos += 3;
17466c1a 2697 resolve_subexp (expp, pos, 1, check_typedef (exp->elts[pc + 1].type));
4c4b4cd2
PH
2698 break;
2699
52ce6436 2700 case OP_ATR_MODULUS:
4c4b4cd2
PH
2701 case OP_ATR_SIZE:
2702 case OP_ATR_TAG:
4c4b4cd2
PH
2703 case OP_ATR_FIRST:
2704 case OP_ATR_LAST:
2705 case OP_ATR_LENGTH:
2706 case OP_ATR_POS:
2707 case OP_ATR_VAL:
4c4b4cd2
PH
2708 case OP_ATR_MIN:
2709 case OP_ATR_MAX:
52ce6436
PH
2710 case TERNOP_IN_RANGE:
2711 case BINOP_IN_BOUNDS:
2712 case UNOP_IN_RANGE:
2713 case OP_AGGREGATE:
2714 case OP_OTHERS:
2715 case OP_CHOICES:
2716 case OP_POSITIONAL:
2717 case OP_DISCRETE_RANGE:
2718 case OP_NAME:
2719 ada_forward_operator_length (exp, pc, &oplen, &nargs);
2720 *pos += oplen;
14f9c5c9
AS
2721 break;
2722
2723 case BINOP_ASSIGN:
2724 {
4c4b4cd2
PH
2725 struct value *arg1;
2726
2727 *pos += 1;
2728 arg1 = resolve_subexp (expp, pos, 0, NULL);
2729 if (arg1 == NULL)
2730 resolve_subexp (expp, pos, 1, NULL);
2731 else
df407dfe 2732 resolve_subexp (expp, pos, 1, value_type (arg1));
4c4b4cd2 2733 break;
14f9c5c9
AS
2734 }
2735
4c4b4cd2 2736 case UNOP_CAST:
4c4b4cd2
PH
2737 *pos += 3;
2738 nargs = 1;
2739 break;
14f9c5c9 2740
4c4b4cd2
PH
2741 case BINOP_ADD:
2742 case BINOP_SUB:
2743 case BINOP_MUL:
2744 case BINOP_DIV:
2745 case BINOP_REM:
2746 case BINOP_MOD:
2747 case BINOP_EXP:
2748 case BINOP_CONCAT:
2749 case BINOP_LOGICAL_AND:
2750 case BINOP_LOGICAL_OR:
2751 case BINOP_BITWISE_AND:
2752 case BINOP_BITWISE_IOR:
2753 case BINOP_BITWISE_XOR:
14f9c5c9 2754
4c4b4cd2
PH
2755 case BINOP_EQUAL:
2756 case BINOP_NOTEQUAL:
2757 case BINOP_LESS:
2758 case BINOP_GTR:
2759 case BINOP_LEQ:
2760 case BINOP_GEQ:
14f9c5c9 2761
4c4b4cd2
PH
2762 case BINOP_REPEAT:
2763 case BINOP_SUBSCRIPT:
2764 case BINOP_COMMA:
40c8aaa9
JB
2765 *pos += 1;
2766 nargs = 2;
2767 break;
14f9c5c9 2768
4c4b4cd2
PH
2769 case UNOP_NEG:
2770 case UNOP_PLUS:
2771 case UNOP_LOGICAL_NOT:
2772 case UNOP_ABS:
2773 case UNOP_IND:
2774 *pos += 1;
2775 nargs = 1;
2776 break;
14f9c5c9 2777
4c4b4cd2
PH
2778 case OP_LONG:
2779 case OP_DOUBLE:
2780 case OP_VAR_VALUE:
2781 *pos += 4;
2782 break;
14f9c5c9 2783
4c4b4cd2
PH
2784 case OP_TYPE:
2785 case OP_BOOL:
2786 case OP_LAST:
4c4b4cd2
PH
2787 case OP_INTERNALVAR:
2788 *pos += 3;
2789 break;
14f9c5c9 2790
4c4b4cd2
PH
2791 case UNOP_MEMVAL:
2792 *pos += 3;
2793 nargs = 1;
2794 break;
2795
67f3407f
DJ
2796 case OP_REGISTER:
2797 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
2798 break;
2799
4c4b4cd2
PH
2800 case STRUCTOP_STRUCT:
2801 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
2802 nargs = 1;
2803 break;
2804
4c4b4cd2 2805 case TERNOP_SLICE:
4c4b4cd2
PH
2806 *pos += 1;
2807 nargs = 3;
2808 break;
2809
52ce6436 2810 case OP_STRING:
14f9c5c9 2811 break;
4c4b4cd2
PH
2812
2813 default:
323e0a4a 2814 error (_("Unexpected operator during name resolution"));
14f9c5c9
AS
2815 }
2816
76a01679 2817 argvec = (struct value * *) alloca (sizeof (struct value *) * (nargs + 1));
4c4b4cd2
PH
2818 for (i = 0; i < nargs; i += 1)
2819 argvec[i] = resolve_subexp (expp, pos, 1, NULL);
2820 argvec[i] = NULL;
2821 exp = *expp;
2822
2823 /* Pass two: perform any resolution on principal operator. */
14f9c5c9
AS
2824 switch (op)
2825 {
2826 default:
2827 break;
2828
14f9c5c9 2829 case OP_VAR_VALUE:
4c4b4cd2 2830 if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
76a01679
JB
2831 {
2832 struct ada_symbol_info *candidates;
2833 int n_candidates;
2834
2835 n_candidates =
2836 ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME
2837 (exp->elts[pc + 2].symbol),
2838 exp->elts[pc + 1].block, VAR_DOMAIN,
2839 &candidates);
2840
2841 if (n_candidates > 1)
2842 {
2843 /* Types tend to get re-introduced locally, so if there
2844 are any local symbols that are not types, first filter
2845 out all types. */
2846 int j;
2847 for (j = 0; j < n_candidates; j += 1)
2848 switch (SYMBOL_CLASS (candidates[j].sym))
2849 {
2850 case LOC_REGISTER:
2851 case LOC_ARG:
2852 case LOC_REF_ARG:
76a01679
JB
2853 case LOC_REGPARM_ADDR:
2854 case LOC_LOCAL:
76a01679 2855 case LOC_COMPUTED:
76a01679
JB
2856 goto FoundNonType;
2857 default:
2858 break;
2859 }
2860 FoundNonType:
2861 if (j < n_candidates)
2862 {
2863 j = 0;
2864 while (j < n_candidates)
2865 {
2866 if (SYMBOL_CLASS (candidates[j].sym) == LOC_TYPEDEF)
2867 {
2868 candidates[j] = candidates[n_candidates - 1];
2869 n_candidates -= 1;
2870 }
2871 else
2872 j += 1;
2873 }
2874 }
2875 }
2876
2877 if (n_candidates == 0)
323e0a4a 2878 error (_("No definition found for %s"),
76a01679
JB
2879 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
2880 else if (n_candidates == 1)
2881 i = 0;
2882 else if (deprocedure_p
2883 && !is_nonfunction (candidates, n_candidates))
2884 {
06d5cf63
JB
2885 i = ada_resolve_function
2886 (candidates, n_candidates, NULL, 0,
2887 SYMBOL_LINKAGE_NAME (exp->elts[pc + 2].symbol),
2888 context_type);
76a01679 2889 if (i < 0)
323e0a4a 2890 error (_("Could not find a match for %s"),
76a01679
JB
2891 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
2892 }
2893 else
2894 {
323e0a4a 2895 printf_filtered (_("Multiple matches for %s\n"),
76a01679
JB
2896 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
2897 user_select_syms (candidates, n_candidates, 1);
2898 i = 0;
2899 }
2900
2901 exp->elts[pc + 1].block = candidates[i].block;
2902 exp->elts[pc + 2].symbol = candidates[i].sym;
1265e4aa
JB
2903 if (innermost_block == NULL
2904 || contained_in (candidates[i].block, innermost_block))
76a01679
JB
2905 innermost_block = candidates[i].block;
2906 }
2907
2908 if (deprocedure_p
2909 && (TYPE_CODE (SYMBOL_TYPE (exp->elts[pc + 2].symbol))
2910 == TYPE_CODE_FUNC))
2911 {
2912 replace_operator_with_call (expp, pc, 0, 0,
2913 exp->elts[pc + 2].symbol,
2914 exp->elts[pc + 1].block);
2915 exp = *expp;
2916 }
14f9c5c9
AS
2917 break;
2918
2919 case OP_FUNCALL:
2920 {
4c4b4cd2 2921 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
76a01679 2922 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
4c4b4cd2
PH
2923 {
2924 struct ada_symbol_info *candidates;
2925 int n_candidates;
2926
2927 n_candidates =
76a01679
JB
2928 ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME
2929 (exp->elts[pc + 5].symbol),
2930 exp->elts[pc + 4].block, VAR_DOMAIN,
2931 &candidates);
4c4b4cd2
PH
2932 if (n_candidates == 1)
2933 i = 0;
2934 else
2935 {
06d5cf63
JB
2936 i = ada_resolve_function
2937 (candidates, n_candidates,
2938 argvec, nargs,
2939 SYMBOL_LINKAGE_NAME (exp->elts[pc + 5].symbol),
2940 context_type);
4c4b4cd2 2941 if (i < 0)
323e0a4a 2942 error (_("Could not find a match for %s"),
4c4b4cd2
PH
2943 SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol));
2944 }
2945
2946 exp->elts[pc + 4].block = candidates[i].block;
2947 exp->elts[pc + 5].symbol = candidates[i].sym;
1265e4aa
JB
2948 if (innermost_block == NULL
2949 || contained_in (candidates[i].block, innermost_block))
4c4b4cd2
PH
2950 innermost_block = candidates[i].block;
2951 }
14f9c5c9
AS
2952 }
2953 break;
2954 case BINOP_ADD:
2955 case BINOP_SUB:
2956 case BINOP_MUL:
2957 case BINOP_DIV:
2958 case BINOP_REM:
2959 case BINOP_MOD:
2960 case BINOP_CONCAT:
2961 case BINOP_BITWISE_AND:
2962 case BINOP_BITWISE_IOR:
2963 case BINOP_BITWISE_XOR:
2964 case BINOP_EQUAL:
2965 case BINOP_NOTEQUAL:
2966 case BINOP_LESS:
2967 case BINOP_GTR:
2968 case BINOP_LEQ:
2969 case BINOP_GEQ:
2970 case BINOP_EXP:
2971 case UNOP_NEG:
2972 case UNOP_PLUS:
2973 case UNOP_LOGICAL_NOT:
2974 case UNOP_ABS:
2975 if (possible_user_operator_p (op, argvec))
4c4b4cd2
PH
2976 {
2977 struct ada_symbol_info *candidates;
2978 int n_candidates;
2979
2980 n_candidates =
2981 ada_lookup_symbol_list (ada_encode (ada_decoded_op_name (op)),
2982 (struct block *) NULL, VAR_DOMAIN,
2983 &candidates);
2984 i = ada_resolve_function (candidates, n_candidates, argvec, nargs,
76a01679 2985 ada_decoded_op_name (op), NULL);
4c4b4cd2
PH
2986 if (i < 0)
2987 break;
2988
76a01679
JB
2989 replace_operator_with_call (expp, pc, nargs, 1,
2990 candidates[i].sym, candidates[i].block);
4c4b4cd2
PH
2991 exp = *expp;
2992 }
14f9c5c9 2993 break;
4c4b4cd2
PH
2994
2995 case OP_TYPE:
b3dbf008 2996 case OP_REGISTER:
4c4b4cd2 2997 return NULL;
14f9c5c9
AS
2998 }
2999
3000 *pos = pc;
3001 return evaluate_subexp_type (exp, pos);
3002}
3003
3004/* Return non-zero if formal type FTYPE matches actual type ATYPE. If
4c4b4cd2 3005 MAY_DEREF is non-zero, the formal may be a pointer and the actual
5b3d5b7d 3006 a non-pointer. */
14f9c5c9 3007/* The term "match" here is rather loose. The match is heuristic and
5b3d5b7d 3008 liberal. */
14f9c5c9
AS
3009
3010static int
4dc81987 3011ada_type_match (struct type *ftype, struct type *atype, int may_deref)
14f9c5c9 3012{
61ee279c
PH
3013 ftype = ada_check_typedef (ftype);
3014 atype = ada_check_typedef (atype);
14f9c5c9
AS
3015
3016 if (TYPE_CODE (ftype) == TYPE_CODE_REF)
3017 ftype = TYPE_TARGET_TYPE (ftype);
3018 if (TYPE_CODE (atype) == TYPE_CODE_REF)
3019 atype = TYPE_TARGET_TYPE (atype);
3020
d2e4a39e 3021 switch (TYPE_CODE (ftype))
14f9c5c9
AS
3022 {
3023 default:
5b3d5b7d 3024 return TYPE_CODE (ftype) == TYPE_CODE (atype);
14f9c5c9
AS
3025 case TYPE_CODE_PTR:
3026 if (TYPE_CODE (atype) == TYPE_CODE_PTR)
4c4b4cd2
PH
3027 return ada_type_match (TYPE_TARGET_TYPE (ftype),
3028 TYPE_TARGET_TYPE (atype), 0);
d2e4a39e 3029 else
1265e4aa
JB
3030 return (may_deref
3031 && ada_type_match (TYPE_TARGET_TYPE (ftype), atype, 0));
14f9c5c9
AS
3032 case TYPE_CODE_INT:
3033 case TYPE_CODE_ENUM:
3034 case TYPE_CODE_RANGE:
3035 switch (TYPE_CODE (atype))
4c4b4cd2
PH
3036 {
3037 case TYPE_CODE_INT:
3038 case TYPE_CODE_ENUM:
3039 case TYPE_CODE_RANGE:
3040 return 1;
3041 default:
3042 return 0;
3043 }
14f9c5c9
AS
3044
3045 case TYPE_CODE_ARRAY:
d2e4a39e 3046 return (TYPE_CODE (atype) == TYPE_CODE_ARRAY
4c4b4cd2 3047 || ada_is_array_descriptor_type (atype));
14f9c5c9
AS
3048
3049 case TYPE_CODE_STRUCT:
4c4b4cd2
PH
3050 if (ada_is_array_descriptor_type (ftype))
3051 return (TYPE_CODE (atype) == TYPE_CODE_ARRAY
3052 || ada_is_array_descriptor_type (atype));
14f9c5c9 3053 else
4c4b4cd2
PH
3054 return (TYPE_CODE (atype) == TYPE_CODE_STRUCT
3055 && !ada_is_array_descriptor_type (atype));
14f9c5c9
AS
3056
3057 case TYPE_CODE_UNION:
3058 case TYPE_CODE_FLT:
3059 return (TYPE_CODE (atype) == TYPE_CODE (ftype));
3060 }
3061}
3062
3063/* Return non-zero if the formals of FUNC "sufficiently match" the
3064 vector of actual argument types ACTUALS of size N_ACTUALS. FUNC
3065 may also be an enumeral, in which case it is treated as a 0-
4c4b4cd2 3066 argument function. */
14f9c5c9
AS
3067
3068static int
d2e4a39e 3069ada_args_match (struct symbol *func, struct value **actuals, int n_actuals)
14f9c5c9
AS
3070{
3071 int i;
d2e4a39e 3072 struct type *func_type = SYMBOL_TYPE (func);
14f9c5c9 3073
1265e4aa
JB
3074 if (SYMBOL_CLASS (func) == LOC_CONST
3075 && TYPE_CODE (func_type) == TYPE_CODE_ENUM)
14f9c5c9
AS
3076 return (n_actuals == 0);
3077 else if (func_type == NULL || TYPE_CODE (func_type) != TYPE_CODE_FUNC)
3078 return 0;
3079
3080 if (TYPE_NFIELDS (func_type) != n_actuals)
3081 return 0;
3082
3083 for (i = 0; i < n_actuals; i += 1)
3084 {
4c4b4cd2 3085 if (actuals[i] == NULL)
76a01679
JB
3086 return 0;
3087 else
3088 {
61ee279c 3089 struct type *ftype = ada_check_typedef (TYPE_FIELD_TYPE (func_type, i));
df407dfe 3090 struct type *atype = ada_check_typedef (value_type (actuals[i]));
4c4b4cd2 3091
76a01679
JB
3092 if (!ada_type_match (ftype, atype, 1))
3093 return 0;
3094 }
14f9c5c9
AS
3095 }
3096 return 1;
3097}
3098
3099/* False iff function type FUNC_TYPE definitely does not produce a value
3100 compatible with type CONTEXT_TYPE. Conservatively returns 1 if
3101 FUNC_TYPE is not a valid function type with a non-null return type
3102 or an enumerated type. A null CONTEXT_TYPE indicates any non-void type. */
3103
3104static int
d2e4a39e 3105return_match (struct type *func_type, struct type *context_type)
14f9c5c9 3106{
d2e4a39e 3107 struct type *return_type;
14f9c5c9
AS
3108
3109 if (func_type == NULL)
3110 return 1;
3111
4c4b4cd2
PH
3112 if (TYPE_CODE (func_type) == TYPE_CODE_FUNC)
3113 return_type = base_type (TYPE_TARGET_TYPE (func_type));
3114 else
3115 return_type = base_type (func_type);
14f9c5c9
AS
3116 if (return_type == NULL)
3117 return 1;
3118
4c4b4cd2 3119 context_type = base_type (context_type);
14f9c5c9
AS
3120
3121 if (TYPE_CODE (return_type) == TYPE_CODE_ENUM)
3122 return context_type == NULL || return_type == context_type;
3123 else if (context_type == NULL)
3124 return TYPE_CODE (return_type) != TYPE_CODE_VOID;
3125 else
3126 return TYPE_CODE (return_type) == TYPE_CODE (context_type);
3127}
3128
3129
4c4b4cd2 3130/* Returns the index in SYMS[0..NSYMS-1] that contains the symbol for the
14f9c5c9 3131 function (if any) that matches the types of the NARGS arguments in
4c4b4cd2
PH
3132 ARGS. If CONTEXT_TYPE is non-null and there is at least one match
3133 that returns that type, then eliminate matches that don't. If
3134 CONTEXT_TYPE is void and there is at least one match that does not
3135 return void, eliminate all matches that do.
3136
14f9c5c9
AS
3137 Asks the user if there is more than one match remaining. Returns -1
3138 if there is no such symbol or none is selected. NAME is used
4c4b4cd2
PH
3139 solely for messages. May re-arrange and modify SYMS in
3140 the process; the index returned is for the modified vector. */
14f9c5c9 3141
4c4b4cd2
PH
3142static int
3143ada_resolve_function (struct ada_symbol_info syms[],
3144 int nsyms, struct value **args, int nargs,
3145 const char *name, struct type *context_type)
14f9c5c9 3146{
30b15541 3147 int fallback;
14f9c5c9 3148 int k;
4c4b4cd2 3149 int m; /* Number of hits */
14f9c5c9 3150
d2e4a39e 3151 m = 0;
30b15541
UW
3152 /* In the first pass of the loop, we only accept functions matching
3153 context_type. If none are found, we add a second pass of the loop
3154 where every function is accepted. */
3155 for (fallback = 0; m == 0 && fallback < 2; fallback++)
14f9c5c9
AS
3156 {
3157 for (k = 0; k < nsyms; k += 1)
4c4b4cd2 3158 {
61ee279c 3159 struct type *type = ada_check_typedef (SYMBOL_TYPE (syms[k].sym));
4c4b4cd2
PH
3160
3161 if (ada_args_match (syms[k].sym, args, nargs)
30b15541 3162 && (fallback || return_match (type, context_type)))
4c4b4cd2
PH
3163 {
3164 syms[m] = syms[k];
3165 m += 1;
3166 }
3167 }
14f9c5c9
AS
3168 }
3169
3170 if (m == 0)
3171 return -1;
3172 else if (m > 1)
3173 {
323e0a4a 3174 printf_filtered (_("Multiple matches for %s\n"), name);
4c4b4cd2 3175 user_select_syms (syms, m, 1);
14f9c5c9
AS
3176 return 0;
3177 }
3178 return 0;
3179}
3180
4c4b4cd2
PH
3181/* Returns true (non-zero) iff decoded name N0 should appear before N1
3182 in a listing of choices during disambiguation (see sort_choices, below).
3183 The idea is that overloadings of a subprogram name from the
3184 same package should sort in their source order. We settle for ordering
3185 such symbols by their trailing number (__N or $N). */
3186
14f9c5c9 3187static int
4c4b4cd2 3188encoded_ordered_before (char *N0, char *N1)
14f9c5c9
AS
3189{
3190 if (N1 == NULL)
3191 return 0;
3192 else if (N0 == NULL)
3193 return 1;
3194 else
3195 {
3196 int k0, k1;
d2e4a39e 3197 for (k0 = strlen (N0) - 1; k0 > 0 && isdigit (N0[k0]); k0 -= 1)
4c4b4cd2 3198 ;
d2e4a39e 3199 for (k1 = strlen (N1) - 1; k1 > 0 && isdigit (N1[k1]); k1 -= 1)
4c4b4cd2 3200 ;
d2e4a39e 3201 if ((N0[k0] == '_' || N0[k0] == '$') && N0[k0 + 1] != '\000'
4c4b4cd2
PH
3202 && (N1[k1] == '_' || N1[k1] == '$') && N1[k1 + 1] != '\000')
3203 {
3204 int n0, n1;
3205 n0 = k0;
3206 while (N0[n0] == '_' && n0 > 0 && N0[n0 - 1] == '_')
3207 n0 -= 1;
3208 n1 = k1;
3209 while (N1[n1] == '_' && n1 > 0 && N1[n1 - 1] == '_')
3210 n1 -= 1;
3211 if (n0 == n1 && strncmp (N0, N1, n0) == 0)
3212 return (atoi (N0 + k0 + 1) < atoi (N1 + k1 + 1));
3213 }
14f9c5c9
AS
3214 return (strcmp (N0, N1) < 0);
3215 }
3216}
d2e4a39e 3217
4c4b4cd2
PH
3218/* Sort SYMS[0..NSYMS-1] to put the choices in a canonical order by the
3219 encoded names. */
3220
d2e4a39e 3221static void
4c4b4cd2 3222sort_choices (struct ada_symbol_info syms[], int nsyms)
14f9c5c9 3223{
4c4b4cd2 3224 int i;
d2e4a39e 3225 for (i = 1; i < nsyms; i += 1)
14f9c5c9 3226 {
4c4b4cd2 3227 struct ada_symbol_info sym = syms[i];
14f9c5c9
AS
3228 int j;
3229
d2e4a39e 3230 for (j = i - 1; j >= 0; j -= 1)
4c4b4cd2
PH
3231 {
3232 if (encoded_ordered_before (SYMBOL_LINKAGE_NAME (syms[j].sym),
3233 SYMBOL_LINKAGE_NAME (sym.sym)))
3234 break;
3235 syms[j + 1] = syms[j];
3236 }
d2e4a39e 3237 syms[j + 1] = sym;
14f9c5c9
AS
3238 }
3239}
3240
4c4b4cd2
PH
3241/* Given a list of NSYMS symbols in SYMS, select up to MAX_RESULTS>0
3242 by asking the user (if necessary), returning the number selected,
3243 and setting the first elements of SYMS items. Error if no symbols
3244 selected. */
14f9c5c9
AS
3245
3246/* NOTE: Adapted from decode_line_2 in symtab.c, with which it ought
4c4b4cd2 3247 to be re-integrated one of these days. */
14f9c5c9
AS
3248
3249int
4c4b4cd2 3250user_select_syms (struct ada_symbol_info *syms, int nsyms, int max_results)
14f9c5c9
AS
3251{
3252 int i;
d2e4a39e 3253 int *chosen = (int *) alloca (sizeof (int) * nsyms);
14f9c5c9
AS
3254 int n_chosen;
3255 int first_choice = (max_results == 1) ? 1 : 2;
717d2f5a 3256 const char *select_mode = multiple_symbols_select_mode ();
14f9c5c9
AS
3257
3258 if (max_results < 1)
323e0a4a 3259 error (_("Request to select 0 symbols!"));
14f9c5c9
AS
3260 if (nsyms <= 1)
3261 return nsyms;
3262
717d2f5a
JB
3263 if (select_mode == multiple_symbols_cancel)
3264 error (_("\
3265canceled because the command is ambiguous\n\
3266See set/show multiple-symbol."));
3267
3268 /* If select_mode is "all", then return all possible symbols.
3269 Only do that if more than one symbol can be selected, of course.
3270 Otherwise, display the menu as usual. */
3271 if (select_mode == multiple_symbols_all && max_results > 1)
3272 return nsyms;
3273
323e0a4a 3274 printf_unfiltered (_("[0] cancel\n"));
14f9c5c9 3275 if (max_results > 1)
323e0a4a 3276 printf_unfiltered (_("[1] all\n"));
14f9c5c9 3277
4c4b4cd2 3278 sort_choices (syms, nsyms);
14f9c5c9
AS
3279
3280 for (i = 0; i < nsyms; i += 1)
3281 {
4c4b4cd2
PH
3282 if (syms[i].sym == NULL)
3283 continue;
3284
3285 if (SYMBOL_CLASS (syms[i].sym) == LOC_BLOCK)
3286 {
76a01679
JB
3287 struct symtab_and_line sal =
3288 find_function_start_sal (syms[i].sym, 1);
323e0a4a
AC
3289 if (sal.symtab == NULL)
3290 printf_unfiltered (_("[%d] %s at <no source file available>:%d\n"),
3291 i + first_choice,
3292 SYMBOL_PRINT_NAME (syms[i].sym),
3293 sal.line);
3294 else
3295 printf_unfiltered (_("[%d] %s at %s:%d\n"), i + first_choice,
3296 SYMBOL_PRINT_NAME (syms[i].sym),
3297 sal.symtab->filename, sal.line);
4c4b4cd2
PH
3298 continue;
3299 }
d2e4a39e 3300 else
4c4b4cd2
PH
3301 {
3302 int is_enumeral =
3303 (SYMBOL_CLASS (syms[i].sym) == LOC_CONST
3304 && SYMBOL_TYPE (syms[i].sym) != NULL
3305 && TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) == TYPE_CODE_ENUM);
6f38eac8 3306 struct symtab *symtab = syms[i].sym->symtab;
4c4b4cd2
PH
3307
3308 if (SYMBOL_LINE (syms[i].sym) != 0 && symtab != NULL)
323e0a4a 3309 printf_unfiltered (_("[%d] %s at %s:%d\n"),
4c4b4cd2
PH
3310 i + first_choice,
3311 SYMBOL_PRINT_NAME (syms[i].sym),
3312 symtab->filename, SYMBOL_LINE (syms[i].sym));
76a01679
JB
3313 else if (is_enumeral
3314 && TYPE_NAME (SYMBOL_TYPE (syms[i].sym)) != NULL)
4c4b4cd2 3315 {
a3f17187 3316 printf_unfiltered (("[%d] "), i + first_choice);
76a01679
JB
3317 ada_print_type (SYMBOL_TYPE (syms[i].sym), NULL,
3318 gdb_stdout, -1, 0);
323e0a4a 3319 printf_unfiltered (_("'(%s) (enumeral)\n"),
4c4b4cd2
PH
3320 SYMBOL_PRINT_NAME (syms[i].sym));
3321 }
3322 else if (symtab != NULL)
3323 printf_unfiltered (is_enumeral
323e0a4a
AC
3324 ? _("[%d] %s in %s (enumeral)\n")
3325 : _("[%d] %s at %s:?\n"),
4c4b4cd2
PH
3326 i + first_choice,
3327 SYMBOL_PRINT_NAME (syms[i].sym),
3328 symtab->filename);
3329 else
3330 printf_unfiltered (is_enumeral
323e0a4a
AC
3331 ? _("[%d] %s (enumeral)\n")
3332 : _("[%d] %s at ?\n"),
4c4b4cd2
PH
3333 i + first_choice,
3334 SYMBOL_PRINT_NAME (syms[i].sym));
3335 }
14f9c5c9 3336 }
d2e4a39e 3337
14f9c5c9 3338 n_chosen = get_selections (chosen, nsyms, max_results, max_results > 1,
4c4b4cd2 3339 "overload-choice");
14f9c5c9
AS
3340
3341 for (i = 0; i < n_chosen; i += 1)
4c4b4cd2 3342 syms[i] = syms[chosen[i]];
14f9c5c9
AS
3343
3344 return n_chosen;
3345}
3346
3347/* Read and validate a set of numeric choices from the user in the
4c4b4cd2 3348 range 0 .. N_CHOICES-1. Place the results in increasing
14f9c5c9
AS
3349 order in CHOICES[0 .. N-1], and return N.
3350
3351 The user types choices as a sequence of numbers on one line
3352 separated by blanks, encoding them as follows:
3353
4c4b4cd2 3354 + A choice of 0 means to cancel the selection, throwing an error.
14f9c5c9
AS
3355 + If IS_ALL_CHOICE, a choice of 1 selects the entire set 0 .. N_CHOICES-1.
3356 + The user chooses k by typing k+IS_ALL_CHOICE+1.
3357
4c4b4cd2 3358 The user is not allowed to choose more than MAX_RESULTS values.
14f9c5c9
AS
3359
3360 ANNOTATION_SUFFIX, if present, is used to annotate the input
4c4b4cd2 3361 prompts (for use with the -f switch). */
14f9c5c9
AS
3362
3363int
d2e4a39e 3364get_selections (int *choices, int n_choices, int max_results,
4c4b4cd2 3365 int is_all_choice, char *annotation_suffix)
14f9c5c9 3366{
d2e4a39e 3367 char *args;
0bcd0149 3368 char *prompt;
14f9c5c9
AS
3369 int n_chosen;
3370 int first_choice = is_all_choice ? 2 : 1;
d2e4a39e 3371
14f9c5c9
AS
3372 prompt = getenv ("PS2");
3373 if (prompt == NULL)
0bcd0149 3374 prompt = "> ";
14f9c5c9 3375
0bcd0149 3376 args = command_line_input (prompt, 0, annotation_suffix);
d2e4a39e 3377
14f9c5c9 3378 if (args == NULL)
323e0a4a 3379 error_no_arg (_("one or more choice numbers"));
14f9c5c9
AS
3380
3381 n_chosen = 0;
76a01679 3382
4c4b4cd2
PH
3383 /* Set choices[0 .. n_chosen-1] to the users' choices in ascending
3384 order, as given in args. Choices are validated. */
14f9c5c9
AS
3385 while (1)
3386 {
d2e4a39e 3387 char *args2;
14f9c5c9
AS
3388 int choice, j;
3389
3390 while (isspace (*args))
4c4b4cd2 3391 args += 1;
14f9c5c9 3392 if (*args == '\0' && n_chosen == 0)
323e0a4a 3393 error_no_arg (_("one or more choice numbers"));
14f9c5c9 3394 else if (*args == '\0')
4c4b4cd2 3395 break;
14f9c5c9
AS
3396
3397 choice = strtol (args, &args2, 10);
d2e4a39e 3398 if (args == args2 || choice < 0
4c4b4cd2 3399 || choice > n_choices + first_choice - 1)
323e0a4a 3400 error (_("Argument must be choice number"));
14f9c5c9
AS
3401 args = args2;
3402
d2e4a39e 3403 if (choice == 0)
323e0a4a 3404 error (_("cancelled"));
14f9c5c9
AS
3405
3406 if (choice < first_choice)
4c4b4cd2
PH
3407 {
3408 n_chosen = n_choices;
3409 for (j = 0; j < n_choices; j += 1)
3410 choices[j] = j;
3411 break;
3412 }
14f9c5c9
AS
3413 choice -= first_choice;
3414
d2e4a39e 3415 for (j = n_chosen - 1; j >= 0 && choice < choices[j]; j -= 1)
4c4b4cd2
PH
3416 {
3417 }
14f9c5c9
AS
3418
3419 if (j < 0 || choice != choices[j])
4c4b4cd2
PH
3420 {
3421 int k;
3422 for (k = n_chosen - 1; k > j; k -= 1)
3423 choices[k + 1] = choices[k];
3424 choices[j + 1] = choice;
3425 n_chosen += 1;
3426 }
14f9c5c9
AS
3427 }
3428
3429 if (n_chosen > max_results)
323e0a4a 3430 error (_("Select no more than %d of the above"), max_results);
d2e4a39e 3431
14f9c5c9
AS
3432 return n_chosen;
3433}
3434
4c4b4cd2
PH
3435/* Replace the operator of length OPLEN at position PC in *EXPP with a call
3436 on the function identified by SYM and BLOCK, and taking NARGS
3437 arguments. Update *EXPP as needed to hold more space. */
14f9c5c9
AS
3438
3439static void
d2e4a39e 3440replace_operator_with_call (struct expression **expp, int pc, int nargs,
4c4b4cd2
PH
3441 int oplen, struct symbol *sym,
3442 struct block *block)
14f9c5c9
AS
3443{
3444 /* A new expression, with 6 more elements (3 for funcall, 4 for function
4c4b4cd2 3445 symbol, -oplen for operator being replaced). */
d2e4a39e 3446 struct expression *newexp = (struct expression *)
14f9c5c9 3447 xmalloc (sizeof (struct expression)
4c4b4cd2 3448 + EXP_ELEM_TO_BYTES ((*expp)->nelts + 7 - oplen));
d2e4a39e 3449 struct expression *exp = *expp;
14f9c5c9
AS
3450
3451 newexp->nelts = exp->nelts + 7 - oplen;
3452 newexp->language_defn = exp->language_defn;
3453 memcpy (newexp->elts, exp->elts, EXP_ELEM_TO_BYTES (pc));
d2e4a39e 3454 memcpy (newexp->elts + pc + 7, exp->elts + pc + oplen,
4c4b4cd2 3455 EXP_ELEM_TO_BYTES (exp->nelts - pc - oplen));
14f9c5c9
AS
3456
3457 newexp->elts[pc].opcode = newexp->elts[pc + 2].opcode = OP_FUNCALL;
3458 newexp->elts[pc + 1].longconst = (LONGEST) nargs;
3459
3460 newexp->elts[pc + 3].opcode = newexp->elts[pc + 6].opcode = OP_VAR_VALUE;
3461 newexp->elts[pc + 4].block = block;
3462 newexp->elts[pc + 5].symbol = sym;
3463
3464 *expp = newexp;
aacb1f0a 3465 xfree (exp);
d2e4a39e 3466}
14f9c5c9
AS
3467
3468/* Type-class predicates */
3469
4c4b4cd2
PH
3470/* True iff TYPE is numeric (i.e., an INT, RANGE (of numeric type),
3471 or FLOAT). */
14f9c5c9
AS
3472
3473static int
d2e4a39e 3474numeric_type_p (struct type *type)
14f9c5c9
AS
3475{
3476 if (type == NULL)
3477 return 0;
d2e4a39e
AS
3478 else
3479 {
3480 switch (TYPE_CODE (type))
4c4b4cd2
PH
3481 {
3482 case TYPE_CODE_INT:
3483 case TYPE_CODE_FLT:
3484 return 1;
3485 case TYPE_CODE_RANGE:
3486 return (type == TYPE_TARGET_TYPE (type)
3487 || numeric_type_p (TYPE_TARGET_TYPE (type)));
3488 default:
3489 return 0;
3490 }
d2e4a39e 3491 }
14f9c5c9
AS
3492}
3493
4c4b4cd2 3494/* True iff TYPE is integral (an INT or RANGE of INTs). */
14f9c5c9
AS
3495
3496static int
d2e4a39e 3497integer_type_p (struct type *type)
14f9c5c9
AS
3498{
3499 if (type == NULL)
3500 return 0;
d2e4a39e
AS
3501 else
3502 {
3503 switch (TYPE_CODE (type))
4c4b4cd2
PH
3504 {
3505 case TYPE_CODE_INT:
3506 return 1;
3507 case TYPE_CODE_RANGE:
3508 return (type == TYPE_TARGET_TYPE (type)
3509 || integer_type_p (TYPE_TARGET_TYPE (type)));
3510 default:
3511 return 0;
3512 }
d2e4a39e 3513 }
14f9c5c9
AS
3514}
3515
4c4b4cd2 3516/* True iff TYPE is scalar (INT, RANGE, FLOAT, ENUM). */
14f9c5c9
AS
3517
3518static int
d2e4a39e 3519scalar_type_p (struct type *type)
14f9c5c9
AS
3520{
3521 if (type == NULL)
3522 return 0;
d2e4a39e
AS
3523 else
3524 {
3525 switch (TYPE_CODE (type))
4c4b4cd2
PH
3526 {
3527 case TYPE_CODE_INT:
3528 case TYPE_CODE_RANGE:
3529 case TYPE_CODE_ENUM:
3530 case TYPE_CODE_FLT:
3531 return 1;
3532 default:
3533 return 0;
3534 }
d2e4a39e 3535 }
14f9c5c9
AS
3536}
3537
4c4b4cd2 3538/* True iff TYPE is discrete (INT, RANGE, ENUM). */
14f9c5c9
AS
3539
3540static int
d2e4a39e 3541discrete_type_p (struct type *type)
14f9c5c9
AS
3542{
3543 if (type == NULL)
3544 return 0;
d2e4a39e
AS
3545 else
3546 {
3547 switch (TYPE_CODE (type))
4c4b4cd2
PH
3548 {
3549 case TYPE_CODE_INT:
3550 case TYPE_CODE_RANGE:
3551 case TYPE_CODE_ENUM:
872f0337 3552 case TYPE_CODE_BOOL:
4c4b4cd2
PH
3553 return 1;
3554 default:
3555 return 0;
3556 }
d2e4a39e 3557 }
14f9c5c9
AS
3558}
3559
4c4b4cd2
PH
3560/* Returns non-zero if OP with operands in the vector ARGS could be
3561 a user-defined function. Errs on the side of pre-defined operators
3562 (i.e., result 0). */
14f9c5c9
AS
3563
3564static int
d2e4a39e 3565possible_user_operator_p (enum exp_opcode op, struct value *args[])
14f9c5c9 3566{
76a01679 3567 struct type *type0 =
df407dfe 3568 (args[0] == NULL) ? NULL : ada_check_typedef (value_type (args[0]));
d2e4a39e 3569 struct type *type1 =
df407dfe 3570 (args[1] == NULL) ? NULL : ada_check_typedef (value_type (args[1]));
d2e4a39e 3571
4c4b4cd2
PH
3572 if (type0 == NULL)
3573 return 0;
3574
14f9c5c9
AS
3575 switch (op)
3576 {
3577 default:
3578 return 0;
3579
3580 case BINOP_ADD:
3581 case BINOP_SUB:
3582 case BINOP_MUL:
3583 case BINOP_DIV:
d2e4a39e 3584 return (!(numeric_type_p (type0) && numeric_type_p (type1)));
14f9c5c9
AS
3585
3586 case BINOP_REM:
3587 case BINOP_MOD:
3588 case BINOP_BITWISE_AND:
3589 case BINOP_BITWISE_IOR:
3590 case BINOP_BITWISE_XOR:
d2e4a39e 3591 return (!(integer_type_p (type0) && integer_type_p (type1)));
14f9c5c9
AS
3592
3593 case BINOP_EQUAL:
3594 case BINOP_NOTEQUAL:
3595 case BINOP_LESS:
3596 case BINOP_GTR:
3597 case BINOP_LEQ:
3598 case BINOP_GEQ:
d2e4a39e 3599 return (!(scalar_type_p (type0) && scalar_type_p (type1)));
14f9c5c9
AS
3600
3601 case BINOP_CONCAT:
ee90b9ab 3602 return !ada_is_array_type (type0) || !ada_is_array_type (type1);
14f9c5c9
AS
3603
3604 case BINOP_EXP:
d2e4a39e 3605 return (!(numeric_type_p (type0) && integer_type_p (type1)));
14f9c5c9
AS
3606
3607 case UNOP_NEG:
3608 case UNOP_PLUS:
3609 case UNOP_LOGICAL_NOT:
d2e4a39e
AS
3610 case UNOP_ABS:
3611 return (!numeric_type_p (type0));
14f9c5c9
AS
3612
3613 }
3614}
3615\f
4c4b4cd2 3616 /* Renaming */
14f9c5c9 3617
aeb5907d
JB
3618/* NOTES:
3619
3620 1. In the following, we assume that a renaming type's name may
3621 have an ___XD suffix. It would be nice if this went away at some
3622 point.
3623 2. We handle both the (old) purely type-based representation of
3624 renamings and the (new) variable-based encoding. At some point,
3625 it is devoutly to be hoped that the former goes away
3626 (FIXME: hilfinger-2007-07-09).
3627 3. Subprogram renamings are not implemented, although the XRS
3628 suffix is recognized (FIXME: hilfinger-2007-07-09). */
3629
3630/* If SYM encodes a renaming,
3631
3632 <renaming> renames <renamed entity>,
3633
3634 sets *LEN to the length of the renamed entity's name,
3635 *RENAMED_ENTITY to that name (not null-terminated), and *RENAMING_EXPR to
3636 the string describing the subcomponent selected from the renamed
3637 entity. Returns ADA_NOT_RENAMING if SYM does not encode a renaming
3638 (in which case, the values of *RENAMED_ENTITY, *LEN, and *RENAMING_EXPR
3639 are undefined). Otherwise, returns a value indicating the category
3640 of entity renamed: an object (ADA_OBJECT_RENAMING), exception
3641 (ADA_EXCEPTION_RENAMING), package (ADA_PACKAGE_RENAMING), or
3642 subprogram (ADA_SUBPROGRAM_RENAMING). Does no allocation; the
3643 strings returned in *RENAMED_ENTITY and *RENAMING_EXPR should not be
3644 deallocated. The values of RENAMED_ENTITY, LEN, or RENAMING_EXPR
3645 may be NULL, in which case they are not assigned.
3646
3647 [Currently, however, GCC does not generate subprogram renamings.] */
3648
3649enum ada_renaming_category
3650ada_parse_renaming (struct symbol *sym,
3651 const char **renamed_entity, int *len,
3652 const char **renaming_expr)
3653{
3654 enum ada_renaming_category kind;
3655 const char *info;
3656 const char *suffix;
3657
3658 if (sym == NULL)
3659 return ADA_NOT_RENAMING;
3660 switch (SYMBOL_CLASS (sym))
14f9c5c9 3661 {
aeb5907d
JB
3662 default:
3663 return ADA_NOT_RENAMING;
3664 case LOC_TYPEDEF:
3665 return parse_old_style_renaming (SYMBOL_TYPE (sym),
3666 renamed_entity, len, renaming_expr);
3667 case LOC_LOCAL:
3668 case LOC_STATIC:
3669 case LOC_COMPUTED:
3670 case LOC_OPTIMIZED_OUT:
3671 info = strstr (SYMBOL_LINKAGE_NAME (sym), "___XR");
3672 if (info == NULL)
3673 return ADA_NOT_RENAMING;
3674 switch (info[5])
3675 {
3676 case '_':
3677 kind = ADA_OBJECT_RENAMING;
3678 info += 6;
3679 break;
3680 case 'E':
3681 kind = ADA_EXCEPTION_RENAMING;
3682 info += 7;
3683 break;
3684 case 'P':
3685 kind = ADA_PACKAGE_RENAMING;
3686 info += 7;
3687 break;
3688 case 'S':
3689 kind = ADA_SUBPROGRAM_RENAMING;
3690 info += 7;
3691 break;
3692 default:
3693 return ADA_NOT_RENAMING;
3694 }
14f9c5c9 3695 }
4c4b4cd2 3696
aeb5907d
JB
3697 if (renamed_entity != NULL)
3698 *renamed_entity = info;
3699 suffix = strstr (info, "___XE");
3700 if (suffix == NULL || suffix == info)
3701 return ADA_NOT_RENAMING;
3702 if (len != NULL)
3703 *len = strlen (info) - strlen (suffix);
3704 suffix += 5;
3705 if (renaming_expr != NULL)
3706 *renaming_expr = suffix;
3707 return kind;
3708}
3709
3710/* Assuming TYPE encodes a renaming according to the old encoding in
3711 exp_dbug.ads, returns details of that renaming in *RENAMED_ENTITY,
3712 *LEN, and *RENAMING_EXPR, as for ada_parse_renaming, above. Returns
3713 ADA_NOT_RENAMING otherwise. */
3714static enum ada_renaming_category
3715parse_old_style_renaming (struct type *type,
3716 const char **renamed_entity, int *len,
3717 const char **renaming_expr)
3718{
3719 enum ada_renaming_category kind;
3720 const char *name;
3721 const char *info;
3722 const char *suffix;
14f9c5c9 3723
aeb5907d
JB
3724 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM
3725 || TYPE_NFIELDS (type) != 1)
3726 return ADA_NOT_RENAMING;
14f9c5c9 3727
aeb5907d
JB
3728 name = type_name_no_tag (type);
3729 if (name == NULL)
3730 return ADA_NOT_RENAMING;
3731
3732 name = strstr (name, "___XR");
3733 if (name == NULL)
3734 return ADA_NOT_RENAMING;
3735 switch (name[5])
3736 {
3737 case '\0':
3738 case '_':
3739 kind = ADA_OBJECT_RENAMING;
3740 break;
3741 case 'E':
3742 kind = ADA_EXCEPTION_RENAMING;
3743 break;
3744 case 'P':
3745 kind = ADA_PACKAGE_RENAMING;
3746 break;
3747 case 'S':
3748 kind = ADA_SUBPROGRAM_RENAMING;
3749 break;
3750 default:
3751 return ADA_NOT_RENAMING;
3752 }
14f9c5c9 3753
aeb5907d
JB
3754 info = TYPE_FIELD_NAME (type, 0);
3755 if (info == NULL)
3756 return ADA_NOT_RENAMING;
3757 if (renamed_entity != NULL)
3758 *renamed_entity = info;
3759 suffix = strstr (info, "___XE");
3760 if (renaming_expr != NULL)
3761 *renaming_expr = suffix + 5;
3762 if (suffix == NULL || suffix == info)
3763 return ADA_NOT_RENAMING;
3764 if (len != NULL)
3765 *len = suffix - info;
3766 return kind;
3767}
52ce6436 3768
14f9c5c9 3769\f
d2e4a39e 3770
4c4b4cd2 3771 /* Evaluation: Function Calls */
14f9c5c9 3772
4c4b4cd2
PH
3773/* Return an lvalue containing the value VAL. This is the identity on
3774 lvalues, and otherwise has the side-effect of pushing a copy of VAL
3775 on the stack, using and updating *SP as the stack pointer, and
42ae5230 3776 returning an lvalue whose value_address points to the copy. */
14f9c5c9 3777
d2e4a39e 3778static struct value *
4a399546 3779ensure_lval (struct value *val, struct gdbarch *gdbarch, CORE_ADDR *sp)
14f9c5c9 3780{
c3e5cd34
PH
3781 if (! VALUE_LVAL (val))
3782 {
df407dfe 3783 int len = TYPE_LENGTH (ada_check_typedef (value_type (val)));
c3e5cd34
PH
3784
3785 /* The following is taken from the structure-return code in
3786 call_function_by_hand. FIXME: Therefore, some refactoring seems
3787 indicated. */
4a399546 3788 if (gdbarch_inner_than (gdbarch, 1, 2))
c3e5cd34 3789 {
42ae5230 3790 /* Stack grows downward. Align SP and value_address (val) after
c3e5cd34
PH
3791 reserving sufficient space. */
3792 *sp -= len;
4a399546
UW
3793 if (gdbarch_frame_align_p (gdbarch))
3794 *sp = gdbarch_frame_align (gdbarch, *sp);
42ae5230 3795 set_value_address (val, *sp);
c3e5cd34
PH
3796 }
3797 else
3798 {
3799 /* Stack grows upward. Align the frame, allocate space, and
3800 then again, re-align the frame. */
4a399546
UW
3801 if (gdbarch_frame_align_p (gdbarch))
3802 *sp = gdbarch_frame_align (gdbarch, *sp);
42ae5230 3803 set_value_address (val, *sp);
c3e5cd34 3804 *sp += len;
4a399546
UW
3805 if (gdbarch_frame_align_p (gdbarch))
3806 *sp = gdbarch_frame_align (gdbarch, *sp);
c3e5cd34 3807 }
a84a8a0d 3808 VALUE_LVAL (val) = lval_memory;
14f9c5c9 3809
42ae5230 3810 write_memory (value_address (val), value_contents_raw (val), len);
c3e5cd34 3811 }
14f9c5c9
AS
3812
3813 return val;
3814}
3815
3816/* Return the value ACTUAL, converted to be an appropriate value for a
3817 formal of type FORMAL_TYPE. Use *SP as a stack pointer for
3818 allocating any necessary descriptors (fat pointers), or copies of
4c4b4cd2 3819 values not residing in memory, updating it as needed. */
14f9c5c9 3820
a93c0eb6
JB
3821struct value *
3822ada_convert_actual (struct value *actual, struct type *formal_type0,
4a399546 3823 struct gdbarch *gdbarch, CORE_ADDR *sp)
14f9c5c9 3824{
df407dfe 3825 struct type *actual_type = ada_check_typedef (value_type (actual));
61ee279c 3826 struct type *formal_type = ada_check_typedef (formal_type0);
d2e4a39e
AS
3827 struct type *formal_target =
3828 TYPE_CODE (formal_type) == TYPE_CODE_PTR
61ee279c 3829 ? ada_check_typedef (TYPE_TARGET_TYPE (formal_type)) : formal_type;
d2e4a39e
AS
3830 struct type *actual_target =
3831 TYPE_CODE (actual_type) == TYPE_CODE_PTR
61ee279c 3832 ? ada_check_typedef (TYPE_TARGET_TYPE (actual_type)) : actual_type;
14f9c5c9 3833
4c4b4cd2 3834 if (ada_is_array_descriptor_type (formal_target)
14f9c5c9 3835 && TYPE_CODE (actual_target) == TYPE_CODE_ARRAY)
4a399546 3836 return make_array_descriptor (formal_type, actual, gdbarch, sp);
a84a8a0d
JB
3837 else if (TYPE_CODE (formal_type) == TYPE_CODE_PTR
3838 || TYPE_CODE (formal_type) == TYPE_CODE_REF)
14f9c5c9 3839 {
a84a8a0d 3840 struct value *result;
14f9c5c9 3841 if (TYPE_CODE (formal_target) == TYPE_CODE_ARRAY
4c4b4cd2 3842 && ada_is_array_descriptor_type (actual_target))
a84a8a0d 3843 result = desc_data (actual);
14f9c5c9 3844 else if (TYPE_CODE (actual_type) != TYPE_CODE_PTR)
4c4b4cd2
PH
3845 {
3846 if (VALUE_LVAL (actual) != lval_memory)
3847 {
3848 struct value *val;
df407dfe 3849 actual_type = ada_check_typedef (value_type (actual));
4c4b4cd2 3850 val = allocate_value (actual_type);
990a07ab 3851 memcpy ((char *) value_contents_raw (val),
0fd88904 3852 (char *) value_contents (actual),
4c4b4cd2 3853 TYPE_LENGTH (actual_type));
4a399546 3854 actual = ensure_lval (val, gdbarch, sp);
4c4b4cd2 3855 }
a84a8a0d 3856 result = value_addr (actual);
4c4b4cd2 3857 }
a84a8a0d
JB
3858 else
3859 return actual;
3860 return value_cast_pointers (formal_type, result);
14f9c5c9
AS
3861 }
3862 else if (TYPE_CODE (actual_type) == TYPE_CODE_PTR)
3863 return ada_value_ind (actual);
3864
3865 return actual;
3866}
3867
3868
4c4b4cd2
PH
3869/* Push a descriptor of type TYPE for array value ARR on the stack at
3870 *SP, updating *SP to reflect the new descriptor. Return either
14f9c5c9 3871 an lvalue representing the new descriptor, or (if TYPE is a pointer-
4c4b4cd2
PH
3872 to-descriptor type rather than a descriptor type), a struct value *
3873 representing a pointer to this descriptor. */
14f9c5c9 3874
d2e4a39e 3875static struct value *
4a399546
UW
3876make_array_descriptor (struct type *type, struct value *arr,
3877 struct gdbarch *gdbarch, CORE_ADDR *sp)
14f9c5c9 3878{
d2e4a39e
AS
3879 struct type *bounds_type = desc_bounds_type (type);
3880 struct type *desc_type = desc_base_type (type);
3881 struct value *descriptor = allocate_value (desc_type);
3882 struct value *bounds = allocate_value (bounds_type);
14f9c5c9 3883 int i;
d2e4a39e 3884
df407dfe 3885 for (i = ada_array_arity (ada_check_typedef (value_type (arr))); i > 0; i -= 1)
14f9c5c9 3886 {
50810684
UW
3887 modify_general_field (value_type (bounds),
3888 value_contents_writeable (bounds),
1eea4ebd 3889 ada_array_bound (arr, i, 0),
4c4b4cd2
PH
3890 desc_bound_bitpos (bounds_type, i, 0),
3891 desc_bound_bitsize (bounds_type, i, 0));
50810684
UW
3892 modify_general_field (value_type (bounds),
3893 value_contents_writeable (bounds),
1eea4ebd 3894 ada_array_bound (arr, i, 1),
4c4b4cd2
PH
3895 desc_bound_bitpos (bounds_type, i, 1),
3896 desc_bound_bitsize (bounds_type, i, 1));
14f9c5c9 3897 }
d2e4a39e 3898
4a399546 3899 bounds = ensure_lval (bounds, gdbarch, sp);
d2e4a39e 3900
50810684
UW
3901 modify_general_field (value_type (descriptor),
3902 value_contents_writeable (descriptor),
4a399546 3903 value_address (ensure_lval (arr, gdbarch, sp)),
76a01679
JB
3904 fat_pntr_data_bitpos (desc_type),
3905 fat_pntr_data_bitsize (desc_type));
4c4b4cd2 3906
50810684
UW
3907 modify_general_field (value_type (descriptor),
3908 value_contents_writeable (descriptor),
42ae5230 3909 value_address (bounds),
4c4b4cd2
PH
3910 fat_pntr_bounds_bitpos (desc_type),
3911 fat_pntr_bounds_bitsize (desc_type));
14f9c5c9 3912
4a399546 3913 descriptor = ensure_lval (descriptor, gdbarch, sp);
14f9c5c9
AS
3914
3915 if (TYPE_CODE (type) == TYPE_CODE_PTR)
3916 return value_addr (descriptor);
3917 else
3918 return descriptor;
3919}
14f9c5c9 3920\f
963a6417
PH
3921/* Dummy definitions for an experimental caching module that is not
3922 * used in the public sources. */
96d887e8 3923
96d887e8
PH
3924static int
3925lookup_cached_symbol (const char *name, domain_enum namespace,
2570f2b7 3926 struct symbol **sym, struct block **block)
96d887e8
PH
3927{
3928 return 0;
3929}
3930
3931static void
3932cache_symbol (const char *name, domain_enum namespace, struct symbol *sym,
2570f2b7 3933 struct block *block)
96d887e8
PH
3934{
3935}
4c4b4cd2
PH
3936\f
3937 /* Symbol Lookup */
3938
3939/* Return the result of a standard (literal, C-like) lookup of NAME in
3940 given DOMAIN, visible from lexical block BLOCK. */
3941
3942static struct symbol *
3943standard_lookup (const char *name, const struct block *block,
3944 domain_enum domain)
3945{
3946 struct symbol *sym;
4c4b4cd2 3947
2570f2b7 3948 if (lookup_cached_symbol (name, domain, &sym, NULL))
4c4b4cd2 3949 return sym;
2570f2b7
UW
3950 sym = lookup_symbol_in_language (name, block, domain, language_c, 0);
3951 cache_symbol (name, domain, sym, block_found);
4c4b4cd2
PH
3952 return sym;
3953}
3954
3955
3956/* Non-zero iff there is at least one non-function/non-enumeral symbol
3957 in the symbol fields of SYMS[0..N-1]. We treat enumerals as functions,
3958 since they contend in overloading in the same way. */
3959static int
3960is_nonfunction (struct ada_symbol_info syms[], int n)
3961{
3962 int i;
3963
3964 for (i = 0; i < n; i += 1)
3965 if (TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) != TYPE_CODE_FUNC
3966 && (TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) != TYPE_CODE_ENUM
3967 || SYMBOL_CLASS (syms[i].sym) != LOC_CONST))
14f9c5c9
AS
3968 return 1;
3969
3970 return 0;
3971}
3972
3973/* If true (non-zero), then TYPE0 and TYPE1 represent equivalent
4c4b4cd2 3974 struct types. Otherwise, they may not. */
14f9c5c9
AS
3975
3976static int
d2e4a39e 3977equiv_types (struct type *type0, struct type *type1)
14f9c5c9 3978{
d2e4a39e 3979 if (type0 == type1)
14f9c5c9 3980 return 1;
d2e4a39e 3981 if (type0 == NULL || type1 == NULL
14f9c5c9
AS
3982 || TYPE_CODE (type0) != TYPE_CODE (type1))
3983 return 0;
d2e4a39e 3984 if ((TYPE_CODE (type0) == TYPE_CODE_STRUCT
14f9c5c9
AS
3985 || TYPE_CODE (type0) == TYPE_CODE_ENUM)
3986 && ada_type_name (type0) != NULL && ada_type_name (type1) != NULL
4c4b4cd2 3987 && strcmp (ada_type_name (type0), ada_type_name (type1)) == 0)
14f9c5c9 3988 return 1;
d2e4a39e 3989
14f9c5c9
AS
3990 return 0;
3991}
3992
3993/* True iff SYM0 represents the same entity as SYM1, or one that is
4c4b4cd2 3994 no more defined than that of SYM1. */
14f9c5c9
AS
3995
3996static int
d2e4a39e 3997lesseq_defined_than (struct symbol *sym0, struct symbol *sym1)
14f9c5c9
AS
3998{
3999 if (sym0 == sym1)
4000 return 1;
176620f1 4001 if (SYMBOL_DOMAIN (sym0) != SYMBOL_DOMAIN (sym1)
14f9c5c9
AS
4002 || SYMBOL_CLASS (sym0) != SYMBOL_CLASS (sym1))
4003 return 0;
4004
d2e4a39e 4005 switch (SYMBOL_CLASS (sym0))
14f9c5c9
AS
4006 {
4007 case LOC_UNDEF:
4008 return 1;
4009 case LOC_TYPEDEF:
4010 {
4c4b4cd2
PH
4011 struct type *type0 = SYMBOL_TYPE (sym0);
4012 struct type *type1 = SYMBOL_TYPE (sym1);
4013 char *name0 = SYMBOL_LINKAGE_NAME (sym0);
4014 char *name1 = SYMBOL_LINKAGE_NAME (sym1);
4015 int len0 = strlen (name0);
4016 return
4017 TYPE_CODE (type0) == TYPE_CODE (type1)
4018 && (equiv_types (type0, type1)
4019 || (len0 < strlen (name1) && strncmp (name0, name1, len0) == 0
4020 && strncmp (name1 + len0, "___XV", 5) == 0));
14f9c5c9
AS
4021 }
4022 case LOC_CONST:
4023 return SYMBOL_VALUE (sym0) == SYMBOL_VALUE (sym1)
4c4b4cd2 4024 && equiv_types (SYMBOL_TYPE (sym0), SYMBOL_TYPE (sym1));
d2e4a39e
AS
4025 default:
4026 return 0;
14f9c5c9
AS
4027 }
4028}
4029
4c4b4cd2
PH
4030/* Append (SYM,BLOCK,SYMTAB) to the end of the array of struct ada_symbol_info
4031 records in OBSTACKP. Do nothing if SYM is a duplicate. */
14f9c5c9
AS
4032
4033static void
76a01679
JB
4034add_defn_to_vec (struct obstack *obstackp,
4035 struct symbol *sym,
2570f2b7 4036 struct block *block)
14f9c5c9
AS
4037{
4038 int i;
4039 size_t tmp;
4c4b4cd2 4040 struct ada_symbol_info *prevDefns = defns_collected (obstackp, 0);
14f9c5c9 4041
529cad9c
PH
4042 /* Do not try to complete stub types, as the debugger is probably
4043 already scanning all symbols matching a certain name at the
4044 time when this function is called. Trying to replace the stub
4045 type by its associated full type will cause us to restart a scan
4046 which may lead to an infinite recursion. Instead, the client
4047 collecting the matching symbols will end up collecting several
4048 matches, with at least one of them complete. It can then filter
4049 out the stub ones if needed. */
4050
4c4b4cd2
PH
4051 for (i = num_defns_collected (obstackp) - 1; i >= 0; i -= 1)
4052 {
4053 if (lesseq_defined_than (sym, prevDefns[i].sym))
4054 return;
4055 else if (lesseq_defined_than (prevDefns[i].sym, sym))
4056 {
4057 prevDefns[i].sym = sym;
4058 prevDefns[i].block = block;
4c4b4cd2 4059 return;
76a01679 4060 }
4c4b4cd2
PH
4061 }
4062
4063 {
4064 struct ada_symbol_info info;
4065
4066 info.sym = sym;
4067 info.block = block;
4c4b4cd2
PH
4068 obstack_grow (obstackp, &info, sizeof (struct ada_symbol_info));
4069 }
4070}
4071
4072/* Number of ada_symbol_info structures currently collected in
4073 current vector in *OBSTACKP. */
4074
76a01679
JB
4075static int
4076num_defns_collected (struct obstack *obstackp)
4c4b4cd2
PH
4077{
4078 return obstack_object_size (obstackp) / sizeof (struct ada_symbol_info);
4079}
4080
4081/* Vector of ada_symbol_info structures currently collected in current
4082 vector in *OBSTACKP. If FINISH, close off the vector and return
4083 its final address. */
4084
76a01679 4085static struct ada_symbol_info *
4c4b4cd2
PH
4086defns_collected (struct obstack *obstackp, int finish)
4087{
4088 if (finish)
4089 return obstack_finish (obstackp);
4090 else
4091 return (struct ada_symbol_info *) obstack_base (obstackp);
4092}
4093
96d887e8
PH
4094/* Return a minimal symbol matching NAME according to Ada decoding
4095 rules. Returns NULL if there is no such minimal symbol. Names
4096 prefixed with "standard__" are handled specially: "standard__" is
4097 first stripped off, and only static and global symbols are searched. */
4c4b4cd2 4098
96d887e8
PH
4099struct minimal_symbol *
4100ada_lookup_simple_minsym (const char *name)
4c4b4cd2 4101{
4c4b4cd2 4102 struct objfile *objfile;
96d887e8
PH
4103 struct minimal_symbol *msymbol;
4104 int wild_match;
4c4b4cd2 4105
96d887e8 4106 if (strncmp (name, "standard__", sizeof ("standard__") - 1) == 0)
4c4b4cd2 4107 {
96d887e8 4108 name += sizeof ("standard__") - 1;
4c4b4cd2 4109 wild_match = 0;
4c4b4cd2
PH
4110 }
4111 else
96d887e8 4112 wild_match = (strstr (name, "__") == NULL);
4c4b4cd2 4113
96d887e8
PH
4114 ALL_MSYMBOLS (objfile, msymbol)
4115 {
4116 if (ada_match_name (SYMBOL_LINKAGE_NAME (msymbol), name, wild_match)
4117 && MSYMBOL_TYPE (msymbol) != mst_solib_trampoline)
4118 return msymbol;
4119 }
4c4b4cd2 4120
96d887e8
PH
4121 return NULL;
4122}
4c4b4cd2 4123
96d887e8
PH
4124/* For all subprograms that statically enclose the subprogram of the
4125 selected frame, add symbols matching identifier NAME in DOMAIN
4126 and their blocks to the list of data in OBSTACKP, as for
4127 ada_add_block_symbols (q.v.). If WILD, treat as NAME with a
4128 wildcard prefix. */
4c4b4cd2 4129
96d887e8
PH
4130static void
4131add_symbols_from_enclosing_procs (struct obstack *obstackp,
76a01679 4132 const char *name, domain_enum namespace,
96d887e8
PH
4133 int wild_match)
4134{
96d887e8 4135}
14f9c5c9 4136
96d887e8
PH
4137/* True if TYPE is definitely an artificial type supplied to a symbol
4138 for which no debugging information was given in the symbol file. */
14f9c5c9 4139
96d887e8
PH
4140static int
4141is_nondebugging_type (struct type *type)
4142{
4143 char *name = ada_type_name (type);
4144 return (name != NULL && strcmp (name, "<variable, no debug info>") == 0);
4145}
4c4b4cd2 4146
96d887e8
PH
4147/* Remove any non-debugging symbols in SYMS[0 .. NSYMS-1] that definitely
4148 duplicate other symbols in the list (The only case I know of where
4149 this happens is when object files containing stabs-in-ecoff are
4150 linked with files containing ordinary ecoff debugging symbols (or no
4151 debugging symbols)). Modifies SYMS to squeeze out deleted entries.
4152 Returns the number of items in the modified list. */
4c4b4cd2 4153
96d887e8
PH
4154static int
4155remove_extra_symbols (struct ada_symbol_info *syms, int nsyms)
4156{
4157 int i, j;
4c4b4cd2 4158
96d887e8
PH
4159 i = 0;
4160 while (i < nsyms)
4161 {
339c13b6
JB
4162 int remove = 0;
4163
4164 /* If two symbols have the same name and one of them is a stub type,
4165 the get rid of the stub. */
4166
4167 if (TYPE_STUB (SYMBOL_TYPE (syms[i].sym))
4168 && SYMBOL_LINKAGE_NAME (syms[i].sym) != NULL)
4169 {
4170 for (j = 0; j < nsyms; j++)
4171 {
4172 if (j != i
4173 && !TYPE_STUB (SYMBOL_TYPE (syms[j].sym))
4174 && SYMBOL_LINKAGE_NAME (syms[j].sym) != NULL
4175 && strcmp (SYMBOL_LINKAGE_NAME (syms[i].sym),
4176 SYMBOL_LINKAGE_NAME (syms[j].sym)) == 0)
4177 remove = 1;
4178 }
4179 }
4180
4181 /* Two symbols with the same name, same class and same address
4182 should be identical. */
4183
4184 else if (SYMBOL_LINKAGE_NAME (syms[i].sym) != NULL
96d887e8
PH
4185 && SYMBOL_CLASS (syms[i].sym) == LOC_STATIC
4186 && is_nondebugging_type (SYMBOL_TYPE (syms[i].sym)))
4187 {
4188 for (j = 0; j < nsyms; j += 1)
4189 {
4190 if (i != j
4191 && SYMBOL_LINKAGE_NAME (syms[j].sym) != NULL
4192 && strcmp (SYMBOL_LINKAGE_NAME (syms[i].sym),
76a01679 4193 SYMBOL_LINKAGE_NAME (syms[j].sym)) == 0
96d887e8
PH
4194 && SYMBOL_CLASS (syms[i].sym) == SYMBOL_CLASS (syms[j].sym)
4195 && SYMBOL_VALUE_ADDRESS (syms[i].sym)
4196 == SYMBOL_VALUE_ADDRESS (syms[j].sym))
339c13b6 4197 remove = 1;
4c4b4cd2 4198 }
4c4b4cd2 4199 }
339c13b6
JB
4200
4201 if (remove)
4202 {
4203 for (j = i + 1; j < nsyms; j += 1)
4204 syms[j - 1] = syms[j];
4205 nsyms -= 1;
4206 }
4207
96d887e8 4208 i += 1;
14f9c5c9 4209 }
96d887e8 4210 return nsyms;
14f9c5c9
AS
4211}
4212
96d887e8
PH
4213/* Given a type that corresponds to a renaming entity, use the type name
4214 to extract the scope (package name or function name, fully qualified,
4215 and following the GNAT encoding convention) where this renaming has been
4216 defined. The string returned needs to be deallocated after use. */
4c4b4cd2 4217
96d887e8
PH
4218static char *
4219xget_renaming_scope (struct type *renaming_type)
14f9c5c9 4220{
96d887e8
PH
4221 /* The renaming types adhere to the following convention:
4222 <scope>__<rename>___<XR extension>.
4223 So, to extract the scope, we search for the "___XR" extension,
4224 and then backtrack until we find the first "__". */
76a01679 4225
96d887e8
PH
4226 const char *name = type_name_no_tag (renaming_type);
4227 char *suffix = strstr (name, "___XR");
4228 char *last;
4229 int scope_len;
4230 char *scope;
14f9c5c9 4231
96d887e8
PH
4232 /* Now, backtrack a bit until we find the first "__". Start looking
4233 at suffix - 3, as the <rename> part is at least one character long. */
14f9c5c9 4234
96d887e8
PH
4235 for (last = suffix - 3; last > name; last--)
4236 if (last[0] == '_' && last[1] == '_')
4237 break;
76a01679 4238
96d887e8 4239 /* Make a copy of scope and return it. */
14f9c5c9 4240
96d887e8
PH
4241 scope_len = last - name;
4242 scope = (char *) xmalloc ((scope_len + 1) * sizeof (char));
14f9c5c9 4243
96d887e8
PH
4244 strncpy (scope, name, scope_len);
4245 scope[scope_len] = '\0';
4c4b4cd2 4246
96d887e8 4247 return scope;
4c4b4cd2
PH
4248}
4249
96d887e8 4250/* Return nonzero if NAME corresponds to a package name. */
4c4b4cd2 4251
96d887e8
PH
4252static int
4253is_package_name (const char *name)
4c4b4cd2 4254{
96d887e8
PH
4255 /* Here, We take advantage of the fact that no symbols are generated
4256 for packages, while symbols are generated for each function.
4257 So the condition for NAME represent a package becomes equivalent
4258 to NAME not existing in our list of symbols. There is only one
4259 small complication with library-level functions (see below). */
4c4b4cd2 4260
96d887e8 4261 char *fun_name;
76a01679 4262
96d887e8
PH
4263 /* If it is a function that has not been defined at library level,
4264 then we should be able to look it up in the symbols. */
4265 if (standard_lookup (name, NULL, VAR_DOMAIN) != NULL)
4266 return 0;
14f9c5c9 4267
96d887e8
PH
4268 /* Library-level function names start with "_ada_". See if function
4269 "_ada_" followed by NAME can be found. */
14f9c5c9 4270
96d887e8 4271 /* Do a quick check that NAME does not contain "__", since library-level
e1d5a0d2 4272 functions names cannot contain "__" in them. */
96d887e8
PH
4273 if (strstr (name, "__") != NULL)
4274 return 0;
4c4b4cd2 4275
b435e160 4276 fun_name = xstrprintf ("_ada_%s", name);
14f9c5c9 4277
96d887e8
PH
4278 return (standard_lookup (fun_name, NULL, VAR_DOMAIN) == NULL);
4279}
14f9c5c9 4280
96d887e8 4281/* Return nonzero if SYM corresponds to a renaming entity that is
aeb5907d 4282 not visible from FUNCTION_NAME. */
14f9c5c9 4283
96d887e8 4284static int
aeb5907d 4285old_renaming_is_invisible (const struct symbol *sym, char *function_name)
96d887e8 4286{
aeb5907d
JB
4287 char *scope;
4288
4289 if (SYMBOL_CLASS (sym) != LOC_TYPEDEF)
4290 return 0;
4291
4292 scope = xget_renaming_scope (SYMBOL_TYPE (sym));
d2e4a39e 4293
96d887e8 4294 make_cleanup (xfree, scope);
14f9c5c9 4295
96d887e8
PH
4296 /* If the rename has been defined in a package, then it is visible. */
4297 if (is_package_name (scope))
aeb5907d 4298 return 0;
14f9c5c9 4299
96d887e8
PH
4300 /* Check that the rename is in the current function scope by checking
4301 that its name starts with SCOPE. */
76a01679 4302
96d887e8
PH
4303 /* If the function name starts with "_ada_", it means that it is
4304 a library-level function. Strip this prefix before doing the
4305 comparison, as the encoding for the renaming does not contain
4306 this prefix. */
4307 if (strncmp (function_name, "_ada_", 5) == 0)
4308 function_name += 5;
f26caa11 4309
aeb5907d 4310 return (strncmp (function_name, scope, strlen (scope)) != 0);
f26caa11
PH
4311}
4312
aeb5907d
JB
4313/* Remove entries from SYMS that corresponds to a renaming entity that
4314 is not visible from the function associated with CURRENT_BLOCK or
4315 that is superfluous due to the presence of more specific renaming
4316 information. Places surviving symbols in the initial entries of
4317 SYMS and returns the number of surviving symbols.
96d887e8
PH
4318
4319 Rationale:
aeb5907d
JB
4320 First, in cases where an object renaming is implemented as a
4321 reference variable, GNAT may produce both the actual reference
4322 variable and the renaming encoding. In this case, we discard the
4323 latter.
4324
4325 Second, GNAT emits a type following a specified encoding for each renaming
96d887e8
PH
4326 entity. Unfortunately, STABS currently does not support the definition
4327 of types that are local to a given lexical block, so all renamings types
4328 are emitted at library level. As a consequence, if an application
4329 contains two renaming entities using the same name, and a user tries to
4330 print the value of one of these entities, the result of the ada symbol
4331 lookup will also contain the wrong renaming type.
f26caa11 4332
96d887e8
PH
4333 This function partially covers for this limitation by attempting to
4334 remove from the SYMS list renaming symbols that should be visible
4335 from CURRENT_BLOCK. However, there does not seem be a 100% reliable
4336 method with the current information available. The implementation
4337 below has a couple of limitations (FIXME: brobecker-2003-05-12):
4338
4339 - When the user tries to print a rename in a function while there
4340 is another rename entity defined in a package: Normally, the
4341 rename in the function has precedence over the rename in the
4342 package, so the latter should be removed from the list. This is
4343 currently not the case.
4344
4345 - This function will incorrectly remove valid renames if
4346 the CURRENT_BLOCK corresponds to a function which symbol name
4347 has been changed by an "Export" pragma. As a consequence,
4348 the user will be unable to print such rename entities. */
4c4b4cd2 4349
14f9c5c9 4350static int
aeb5907d
JB
4351remove_irrelevant_renamings (struct ada_symbol_info *syms,
4352 int nsyms, const struct block *current_block)
4c4b4cd2
PH
4353{
4354 struct symbol *current_function;
4355 char *current_function_name;
4356 int i;
aeb5907d
JB
4357 int is_new_style_renaming;
4358
4359 /* If there is both a renaming foo___XR... encoded as a variable and
4360 a simple variable foo in the same block, discard the latter.
4361 First, zero out such symbols, then compress. */
4362 is_new_style_renaming = 0;
4363 for (i = 0; i < nsyms; i += 1)
4364 {
4365 struct symbol *sym = syms[i].sym;
4366 struct block *block = syms[i].block;
4367 const char *name;
4368 const char *suffix;
4369
4370 if (sym == NULL || SYMBOL_CLASS (sym) == LOC_TYPEDEF)
4371 continue;
4372 name = SYMBOL_LINKAGE_NAME (sym);
4373 suffix = strstr (name, "___XR");
4374
4375 if (suffix != NULL)
4376 {
4377 int name_len = suffix - name;
4378 int j;
4379 is_new_style_renaming = 1;
4380 for (j = 0; j < nsyms; j += 1)
4381 if (i != j && syms[j].sym != NULL
4382 && strncmp (name, SYMBOL_LINKAGE_NAME (syms[j].sym),
4383 name_len) == 0
4384 && block == syms[j].block)
4385 syms[j].sym = NULL;
4386 }
4387 }
4388 if (is_new_style_renaming)
4389 {
4390 int j, k;
4391
4392 for (j = k = 0; j < nsyms; j += 1)
4393 if (syms[j].sym != NULL)
4394 {
4395 syms[k] = syms[j];
4396 k += 1;
4397 }
4398 return k;
4399 }
4c4b4cd2
PH
4400
4401 /* Extract the function name associated to CURRENT_BLOCK.
4402 Abort if unable to do so. */
76a01679 4403
4c4b4cd2
PH
4404 if (current_block == NULL)
4405 return nsyms;
76a01679 4406
7f0df278 4407 current_function = block_linkage_function (current_block);
4c4b4cd2
PH
4408 if (current_function == NULL)
4409 return nsyms;
4410
4411 current_function_name = SYMBOL_LINKAGE_NAME (current_function);
4412 if (current_function_name == NULL)
4413 return nsyms;
4414
4415 /* Check each of the symbols, and remove it from the list if it is
4416 a type corresponding to a renaming that is out of the scope of
4417 the current block. */
4418
4419 i = 0;
4420 while (i < nsyms)
4421 {
aeb5907d
JB
4422 if (ada_parse_renaming (syms[i].sym, NULL, NULL, NULL)
4423 == ADA_OBJECT_RENAMING
4424 && old_renaming_is_invisible (syms[i].sym, current_function_name))
4c4b4cd2
PH
4425 {
4426 int j;
aeb5907d 4427 for (j = i + 1; j < nsyms; j += 1)
76a01679 4428 syms[j - 1] = syms[j];
4c4b4cd2
PH
4429 nsyms -= 1;
4430 }
4431 else
4432 i += 1;
4433 }
4434
4435 return nsyms;
4436}
4437
339c13b6
JB
4438/* Add to OBSTACKP all symbols from BLOCK (and its super-blocks)
4439 whose name and domain match NAME and DOMAIN respectively.
4440 If no match was found, then extend the search to "enclosing"
4441 routines (in other words, if we're inside a nested function,
4442 search the symbols defined inside the enclosing functions).
4443
4444 Note: This function assumes that OBSTACKP has 0 (zero) element in it. */
4445
4446static void
4447ada_add_local_symbols (struct obstack *obstackp, const char *name,
4448 struct block *block, domain_enum domain,
4449 int wild_match)
4450{
4451 int block_depth = 0;
4452
4453 while (block != NULL)
4454 {
4455 block_depth += 1;
4456 ada_add_block_symbols (obstackp, block, name, domain, NULL, wild_match);
4457
4458 /* If we found a non-function match, assume that's the one. */
4459 if (is_nonfunction (defns_collected (obstackp, 0),
4460 num_defns_collected (obstackp)))
4461 return;
4462
4463 block = BLOCK_SUPERBLOCK (block);
4464 }
4465
4466 /* If no luck so far, try to find NAME as a local symbol in some lexically
4467 enclosing subprogram. */
4468 if (num_defns_collected (obstackp) == 0 && block_depth > 2)
4469 add_symbols_from_enclosing_procs (obstackp, name, domain, wild_match);
4470}
4471
ccefe4c4
TT
4472/* An object of this type is used as the user_data argument when
4473 calling the map_ada_symtabs method. */
4474
4475struct ada_psym_data
4476{
4477 struct obstack *obstackp;
4478 const char *name;
4479 domain_enum domain;
4480 int global;
4481 int wild_match;
4482};
4483
4484/* Callback function for map_ada_symtabs. */
4485
4486static void
4487ada_add_psyms (struct objfile *objfile, struct symtab *s, void *user_data)
4488{
4489 struct ada_psym_data *data = user_data;
4490 const int block_kind = data->global ? GLOBAL_BLOCK : STATIC_BLOCK;
4491 ada_add_block_symbols (data->obstackp,
4492 BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), block_kind),
4493 data->name, data->domain, objfile, data->wild_match);
4494}
4495
339c13b6
JB
4496/* Add to OBSTACKP all non-local symbols whose name and domain match
4497 NAME and DOMAIN respectively. The search is performed on GLOBAL_BLOCK
4498 symbols if GLOBAL is non-zero, or on STATIC_BLOCK symbols otherwise. */
4499
4500static void
4501ada_add_non_local_symbols (struct obstack *obstackp, const char *name,
4502 domain_enum domain, int global,
ccefe4c4 4503 int is_wild_match)
339c13b6
JB
4504{
4505 struct objfile *objfile;
ccefe4c4 4506 struct ada_psym_data data;
339c13b6 4507
ccefe4c4
TT
4508 data.obstackp = obstackp;
4509 data.name = name;
4510 data.domain = domain;
4511 data.global = global;
4512 data.wild_match = is_wild_match;
339c13b6 4513
ccefe4c4
TT
4514 ALL_OBJFILES (objfile)
4515 {
4516 if (objfile->sf)
4517 objfile->sf->qf->map_ada_symtabs (objfile, wild_match, is_name_suffix,
4518 ada_add_psyms, name,
4519 global, domain,
4520 is_wild_match, &data);
339c13b6
JB
4521 }
4522}
4523
4c4b4cd2
PH
4524/* Find symbols in DOMAIN matching NAME0, in BLOCK0 and enclosing
4525 scope and in global scopes, returning the number of matches. Sets
6c9353d3 4526 *RESULTS to point to a vector of (SYM,BLOCK) tuples,
4c4b4cd2
PH
4527 indicating the symbols found and the blocks and symbol tables (if
4528 any) in which they were found. This vector are transient---good only to
4529 the next call of ada_lookup_symbol_list. Any non-function/non-enumeral
4530 symbol match within the nest of blocks whose innermost member is BLOCK0,
4531 is the one match returned (no other matches in that or
4532 enclosing blocks is returned). If there are any matches in or
4533 surrounding BLOCK0, then these alone are returned. Otherwise, the
4534 search extends to global and file-scope (static) symbol tables.
4535 Names prefixed with "standard__" are handled specially: "standard__"
4536 is first stripped off, and only static and global symbols are searched. */
14f9c5c9
AS
4537
4538int
4c4b4cd2 4539ada_lookup_symbol_list (const char *name0, const struct block *block0,
76a01679
JB
4540 domain_enum namespace,
4541 struct ada_symbol_info **results)
14f9c5c9
AS
4542{
4543 struct symbol *sym;
14f9c5c9 4544 struct block *block;
4c4b4cd2 4545 const char *name;
4c4b4cd2 4546 int wild_match;
14f9c5c9 4547 int cacheIfUnique;
4c4b4cd2 4548 int ndefns;
14f9c5c9 4549
4c4b4cd2
PH
4550 obstack_free (&symbol_list_obstack, NULL);
4551 obstack_init (&symbol_list_obstack);
14f9c5c9 4552
14f9c5c9
AS
4553 cacheIfUnique = 0;
4554
4555 /* Search specified block and its superiors. */
4556
4c4b4cd2
PH
4557 wild_match = (strstr (name0, "__") == NULL);
4558 name = name0;
76a01679
JB
4559 block = (struct block *) block0; /* FIXME: No cast ought to be
4560 needed, but adding const will
4561 have a cascade effect. */
339c13b6
JB
4562
4563 /* Special case: If the user specifies a symbol name inside package
4564 Standard, do a non-wild matching of the symbol name without
4565 the "standard__" prefix. This was primarily introduced in order
4566 to allow the user to specifically access the standard exceptions
4567 using, for instance, Standard.Constraint_Error when Constraint_Error
4568 is ambiguous (due to the user defining its own Constraint_Error
4569 entity inside its program). */
4c4b4cd2
PH
4570 if (strncmp (name0, "standard__", sizeof ("standard__") - 1) == 0)
4571 {
4572 wild_match = 0;
4573 block = NULL;
4574 name = name0 + sizeof ("standard__") - 1;
4575 }
4576
339c13b6 4577 /* Check the non-global symbols. If we have ANY match, then we're done. */
14f9c5c9 4578
339c13b6
JB
4579 ada_add_local_symbols (&symbol_list_obstack, name, block, namespace,
4580 wild_match);
4c4b4cd2 4581 if (num_defns_collected (&symbol_list_obstack) > 0)
14f9c5c9 4582 goto done;
d2e4a39e 4583
339c13b6
JB
4584 /* No non-global symbols found. Check our cache to see if we have
4585 already performed this search before. If we have, then return
4586 the same result. */
4587
14f9c5c9 4588 cacheIfUnique = 1;
2570f2b7 4589 if (lookup_cached_symbol (name0, namespace, &sym, &block))
4c4b4cd2
PH
4590 {
4591 if (sym != NULL)
2570f2b7 4592 add_defn_to_vec (&symbol_list_obstack, sym, block);
4c4b4cd2
PH
4593 goto done;
4594 }
14f9c5c9 4595
339c13b6
JB
4596 /* Search symbols from all global blocks. */
4597
4598 ada_add_non_local_symbols (&symbol_list_obstack, name, namespace, 1,
4599 wild_match);
d2e4a39e 4600
4c4b4cd2 4601 /* Now add symbols from all per-file blocks if we've gotten no hits
339c13b6 4602 (not strictly correct, but perhaps better than an error). */
d2e4a39e 4603
4c4b4cd2 4604 if (num_defns_collected (&symbol_list_obstack) == 0)
339c13b6
JB
4605 ada_add_non_local_symbols (&symbol_list_obstack, name, namespace, 0,
4606 wild_match);
14f9c5c9 4607
4c4b4cd2
PH
4608done:
4609 ndefns = num_defns_collected (&symbol_list_obstack);
4610 *results = defns_collected (&symbol_list_obstack, 1);
4611
4612 ndefns = remove_extra_symbols (*results, ndefns);
4613
d2e4a39e 4614 if (ndefns == 0)
2570f2b7 4615 cache_symbol (name0, namespace, NULL, NULL);
14f9c5c9 4616
4c4b4cd2 4617 if (ndefns == 1 && cacheIfUnique)
2570f2b7 4618 cache_symbol (name0, namespace, (*results)[0].sym, (*results)[0].block);
14f9c5c9 4619
aeb5907d 4620 ndefns = remove_irrelevant_renamings (*results, ndefns, block0);
14f9c5c9 4621
14f9c5c9
AS
4622 return ndefns;
4623}
4624
d2e4a39e 4625struct symbol *
aeb5907d 4626ada_lookup_encoded_symbol (const char *name, const struct block *block0,
21b556f4 4627 domain_enum namespace, struct block **block_found)
14f9c5c9 4628{
4c4b4cd2 4629 struct ada_symbol_info *candidates;
14f9c5c9
AS
4630 int n_candidates;
4631
aeb5907d 4632 n_candidates = ada_lookup_symbol_list (name, block0, namespace, &candidates);
14f9c5c9
AS
4633
4634 if (n_candidates == 0)
4635 return NULL;
4c4b4cd2 4636
aeb5907d
JB
4637 if (block_found != NULL)
4638 *block_found = candidates[0].block;
4c4b4cd2 4639
21b556f4 4640 return fixup_symbol_section (candidates[0].sym, NULL);
aeb5907d
JB
4641}
4642
4643/* Return a symbol in DOMAIN matching NAME, in BLOCK0 and enclosing
4644 scope and in global scopes, or NULL if none. NAME is folded and
4645 encoded first. Otherwise, the result is as for ada_lookup_symbol_list,
4646 choosing the first symbol if there are multiple choices.
4647 *IS_A_FIELD_OF_THIS is set to 0 and *SYMTAB is set to the symbol
4648 table in which the symbol was found (in both cases, these
4649 assignments occur only if the pointers are non-null). */
4650struct symbol *
4651ada_lookup_symbol (const char *name, const struct block *block0,
21b556f4 4652 domain_enum namespace, int *is_a_field_of_this)
aeb5907d
JB
4653{
4654 if (is_a_field_of_this != NULL)
4655 *is_a_field_of_this = 0;
4656
4657 return
4658 ada_lookup_encoded_symbol (ada_encode (ada_fold_name (name)),
21b556f4 4659 block0, namespace, NULL);
4c4b4cd2 4660}
14f9c5c9 4661
4c4b4cd2
PH
4662static struct symbol *
4663ada_lookup_symbol_nonlocal (const char *name,
76a01679 4664 const struct block *block,
21b556f4 4665 const domain_enum domain)
4c4b4cd2 4666{
94af9270 4667 return ada_lookup_symbol (name, block_static_block (block), domain, NULL);
14f9c5c9
AS
4668}
4669
4670
4c4b4cd2
PH
4671/* True iff STR is a possible encoded suffix of a normal Ada name
4672 that is to be ignored for matching purposes. Suffixes of parallel
4673 names (e.g., XVE) are not included here. Currently, the possible suffixes
5823c3ef 4674 are given by any of the regular expressions:
4c4b4cd2 4675
babe1480
JB
4676 [.$][0-9]+ [nested subprogram suffix, on platforms such as GNU/Linux]
4677 ___[0-9]+ [nested subprogram suffix, on platforms such as HP/UX]
4678 _E[0-9]+[bs]$ [protected object entry suffixes]
61ee279c 4679 (X[nb]*)?((\$|__)[0-9](_?[0-9]+)|___(JM|LJM|X([FDBUP].*|R[^T]?)))?$
babe1480
JB
4680
4681 Also, any leading "__[0-9]+" sequence is skipped before the suffix
4682 match is performed. This sequence is used to differentiate homonyms,
4683 is an optional part of a valid name suffix. */
4c4b4cd2 4684
14f9c5c9 4685static int
d2e4a39e 4686is_name_suffix (const char *str)
14f9c5c9
AS
4687{
4688 int k;
4c4b4cd2
PH
4689 const char *matching;
4690 const int len = strlen (str);
4691
babe1480
JB
4692 /* Skip optional leading __[0-9]+. */
4693
4c4b4cd2
PH
4694 if (len > 3 && str[0] == '_' && str[1] == '_' && isdigit (str[2]))
4695 {
babe1480
JB
4696 str += 3;
4697 while (isdigit (str[0]))
4698 str += 1;
4c4b4cd2 4699 }
babe1480
JB
4700
4701 /* [.$][0-9]+ */
4c4b4cd2 4702
babe1480 4703 if (str[0] == '.' || str[0] == '$')
4c4b4cd2 4704 {
babe1480 4705 matching = str + 1;
4c4b4cd2
PH
4706 while (isdigit (matching[0]))
4707 matching += 1;
4708 if (matching[0] == '\0')
4709 return 1;
4710 }
4711
4712 /* ___[0-9]+ */
babe1480 4713
4c4b4cd2
PH
4714 if (len > 3 && str[0] == '_' && str[1] == '_' && str[2] == '_')
4715 {
4716 matching = str + 3;
4717 while (isdigit (matching[0]))
4718 matching += 1;
4719 if (matching[0] == '\0')
4720 return 1;
4721 }
4722
529cad9c
PH
4723#if 0
4724 /* FIXME: brobecker/2005-09-23: Protected Object subprograms end
4725 with a N at the end. Unfortunately, the compiler uses the same
4726 convention for other internal types it creates. So treating
4727 all entity names that end with an "N" as a name suffix causes
4728 some regressions. For instance, consider the case of an enumerated
4729 type. To support the 'Image attribute, it creates an array whose
4730 name ends with N.
4731 Having a single character like this as a suffix carrying some
4732 information is a bit risky. Perhaps we should change the encoding
4733 to be something like "_N" instead. In the meantime, do not do
4734 the following check. */
4735 /* Protected Object Subprograms */
4736 if (len == 1 && str [0] == 'N')
4737 return 1;
4738#endif
4739
4740 /* _E[0-9]+[bs]$ */
4741 if (len > 3 && str[0] == '_' && str [1] == 'E' && isdigit (str[2]))
4742 {
4743 matching = str + 3;
4744 while (isdigit (matching[0]))
4745 matching += 1;
4746 if ((matching[0] == 'b' || matching[0] == 's')
4747 && matching [1] == '\0')
4748 return 1;
4749 }
4750
4c4b4cd2
PH
4751 /* ??? We should not modify STR directly, as we are doing below. This
4752 is fine in this case, but may become problematic later if we find
4753 that this alternative did not work, and want to try matching
4754 another one from the begining of STR. Since we modified it, we
4755 won't be able to find the begining of the string anymore! */
14f9c5c9
AS
4756 if (str[0] == 'X')
4757 {
4758 str += 1;
d2e4a39e 4759 while (str[0] != '_' && str[0] != '\0')
4c4b4cd2
PH
4760 {
4761 if (str[0] != 'n' && str[0] != 'b')
4762 return 0;
4763 str += 1;
4764 }
14f9c5c9 4765 }
babe1480 4766
14f9c5c9
AS
4767 if (str[0] == '\000')
4768 return 1;
babe1480 4769
d2e4a39e 4770 if (str[0] == '_')
14f9c5c9
AS
4771 {
4772 if (str[1] != '_' || str[2] == '\000')
4c4b4cd2 4773 return 0;
d2e4a39e 4774 if (str[2] == '_')
4c4b4cd2 4775 {
61ee279c
PH
4776 if (strcmp (str + 3, "JM") == 0)
4777 return 1;
4778 /* FIXME: brobecker/2004-09-30: GNAT will soon stop using
4779 the LJM suffix in favor of the JM one. But we will
4780 still accept LJM as a valid suffix for a reasonable
4781 amount of time, just to allow ourselves to debug programs
4782 compiled using an older version of GNAT. */
4c4b4cd2
PH
4783 if (strcmp (str + 3, "LJM") == 0)
4784 return 1;
4785 if (str[3] != 'X')
4786 return 0;
1265e4aa
JB
4787 if (str[4] == 'F' || str[4] == 'D' || str[4] == 'B'
4788 || str[4] == 'U' || str[4] == 'P')
4c4b4cd2
PH
4789 return 1;
4790 if (str[4] == 'R' && str[5] != 'T')
4791 return 1;
4792 return 0;
4793 }
4794 if (!isdigit (str[2]))
4795 return 0;
4796 for (k = 3; str[k] != '\0'; k += 1)
4797 if (!isdigit (str[k]) && str[k] != '_')
4798 return 0;
14f9c5c9
AS
4799 return 1;
4800 }
4c4b4cd2 4801 if (str[0] == '$' && isdigit (str[1]))
14f9c5c9 4802 {
4c4b4cd2
PH
4803 for (k = 2; str[k] != '\0'; k += 1)
4804 if (!isdigit (str[k]) && str[k] != '_')
4805 return 0;
14f9c5c9
AS
4806 return 1;
4807 }
4808 return 0;
4809}
d2e4a39e 4810
aeb5907d
JB
4811/* Return non-zero if the string starting at NAME and ending before
4812 NAME_END contains no capital letters. */
529cad9c
PH
4813
4814static int
4815is_valid_name_for_wild_match (const char *name0)
4816{
4817 const char *decoded_name = ada_decode (name0);
4818 int i;
4819
5823c3ef
JB
4820 /* If the decoded name starts with an angle bracket, it means that
4821 NAME0 does not follow the GNAT encoding format. It should then
4822 not be allowed as a possible wild match. */
4823 if (decoded_name[0] == '<')
4824 return 0;
4825
529cad9c
PH
4826 for (i=0; decoded_name[i] != '\0'; i++)
4827 if (isalpha (decoded_name[i]) && !islower (decoded_name[i]))
4828 return 0;
4829
4830 return 1;
4831}
4832
4c4b4cd2
PH
4833/* True if NAME represents a name of the form A1.A2....An, n>=1 and
4834 PATN[0..PATN_LEN-1] = Ak.Ak+1.....An for some k >= 1. Ignores
4835 informational suffixes of NAME (i.e., for which is_name_suffix is
4836 true). */
4837
14f9c5c9 4838static int
4c4b4cd2 4839wild_match (const char *patn0, int patn_len, const char *name0)
14f9c5c9 4840{
5823c3ef
JB
4841 char* match;
4842 const char* start;
4843 start = name0;
4844 while (1)
14f9c5c9 4845 {
5823c3ef
JB
4846 match = strstr (start, patn0);
4847 if (match == NULL)
4848 return 0;
4849 if ((match == name0
4850 || match[-1] == '.'
4851 || (match > name0 + 1 && match[-1] == '_' && match[-2] == '_')
4852 || (match == name0 + 5 && strncmp ("_ada_", name0, 5) == 0))
4853 && is_name_suffix (match + patn_len))
4854 return (match == name0 || is_valid_name_for_wild_match (name0));
4855 start = match + 1;
96d887e8 4856 }
96d887e8
PH
4857}
4858
96d887e8
PH
4859/* Add symbols from BLOCK matching identifier NAME in DOMAIN to
4860 vector *defn_symbols, updating the list of symbols in OBSTACKP
4861 (if necessary). If WILD, treat as NAME with a wildcard prefix.
4862 OBJFILE is the section containing BLOCK.
4863 SYMTAB is recorded with each symbol added. */
4864
4865static void
4866ada_add_block_symbols (struct obstack *obstackp,
76a01679 4867 struct block *block, const char *name,
96d887e8 4868 domain_enum domain, struct objfile *objfile,
2570f2b7 4869 int wild)
96d887e8
PH
4870{
4871 struct dict_iterator iter;
4872 int name_len = strlen (name);
4873 /* A matching argument symbol, if any. */
4874 struct symbol *arg_sym;
4875 /* Set true when we find a matching non-argument symbol. */
4876 int found_sym;
4877 struct symbol *sym;
4878
4879 arg_sym = NULL;
4880 found_sym = 0;
4881 if (wild)
4882 {
4883 struct symbol *sym;
4884 ALL_BLOCK_SYMBOLS (block, iter, sym)
76a01679 4885 {
5eeb2539
AR
4886 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
4887 SYMBOL_DOMAIN (sym), domain)
1265e4aa 4888 && wild_match (name, name_len, SYMBOL_LINKAGE_NAME (sym)))
76a01679 4889 {
2a2d4dc3
AS
4890 if (SYMBOL_CLASS (sym) == LOC_UNRESOLVED)
4891 continue;
4892 else if (SYMBOL_IS_ARGUMENT (sym))
4893 arg_sym = sym;
4894 else
4895 {
76a01679
JB
4896 found_sym = 1;
4897 add_defn_to_vec (obstackp,
4898 fixup_symbol_section (sym, objfile),
2570f2b7 4899 block);
76a01679
JB
4900 }
4901 }
4902 }
96d887e8
PH
4903 }
4904 else
4905 {
4906 ALL_BLOCK_SYMBOLS (block, iter, sym)
76a01679 4907 {
5eeb2539
AR
4908 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
4909 SYMBOL_DOMAIN (sym), domain))
76a01679
JB
4910 {
4911 int cmp = strncmp (name, SYMBOL_LINKAGE_NAME (sym), name_len);
4912 if (cmp == 0
4913 && is_name_suffix (SYMBOL_LINKAGE_NAME (sym) + name_len))
4914 {
2a2d4dc3
AS
4915 if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED)
4916 {
4917 if (SYMBOL_IS_ARGUMENT (sym))
4918 arg_sym = sym;
4919 else
4920 {
4921 found_sym = 1;
4922 add_defn_to_vec (obstackp,
4923 fixup_symbol_section (sym, objfile),
4924 block);
4925 }
4926 }
76a01679
JB
4927 }
4928 }
4929 }
96d887e8
PH
4930 }
4931
4932 if (!found_sym && arg_sym != NULL)
4933 {
76a01679
JB
4934 add_defn_to_vec (obstackp,
4935 fixup_symbol_section (arg_sym, objfile),
2570f2b7 4936 block);
96d887e8
PH
4937 }
4938
4939 if (!wild)
4940 {
4941 arg_sym = NULL;
4942 found_sym = 0;
4943
4944 ALL_BLOCK_SYMBOLS (block, iter, sym)
76a01679 4945 {
5eeb2539
AR
4946 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
4947 SYMBOL_DOMAIN (sym), domain))
76a01679
JB
4948 {
4949 int cmp;
4950
4951 cmp = (int) '_' - (int) SYMBOL_LINKAGE_NAME (sym)[0];
4952 if (cmp == 0)
4953 {
4954 cmp = strncmp ("_ada_", SYMBOL_LINKAGE_NAME (sym), 5);
4955 if (cmp == 0)
4956 cmp = strncmp (name, SYMBOL_LINKAGE_NAME (sym) + 5,
4957 name_len);
4958 }
4959
4960 if (cmp == 0
4961 && is_name_suffix (SYMBOL_LINKAGE_NAME (sym) + name_len + 5))
4962 {
2a2d4dc3
AS
4963 if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED)
4964 {
4965 if (SYMBOL_IS_ARGUMENT (sym))
4966 arg_sym = sym;
4967 else
4968 {
4969 found_sym = 1;
4970 add_defn_to_vec (obstackp,
4971 fixup_symbol_section (sym, objfile),
4972 block);
4973 }
4974 }
76a01679
JB
4975 }
4976 }
76a01679 4977 }
96d887e8
PH
4978
4979 /* NOTE: This really shouldn't be needed for _ada_ symbols.
4980 They aren't parameters, right? */
4981 if (!found_sym && arg_sym != NULL)
4982 {
4983 add_defn_to_vec (obstackp,
76a01679 4984 fixup_symbol_section (arg_sym, objfile),
2570f2b7 4985 block);
96d887e8
PH
4986 }
4987 }
4988}
4989\f
41d27058
JB
4990
4991 /* Symbol Completion */
4992
4993/* If SYM_NAME is a completion candidate for TEXT, return this symbol
4994 name in a form that's appropriate for the completion. The result
4995 does not need to be deallocated, but is only good until the next call.
4996
4997 TEXT_LEN is equal to the length of TEXT.
4998 Perform a wild match if WILD_MATCH is set.
4999 ENCODED should be set if TEXT represents the start of a symbol name
5000 in its encoded form. */
5001
5002static const char *
5003symbol_completion_match (const char *sym_name,
5004 const char *text, int text_len,
5005 int wild_match, int encoded)
5006{
5007 char *result;
5008 const int verbatim_match = (text[0] == '<');
5009 int match = 0;
5010
5011 if (verbatim_match)
5012 {
5013 /* Strip the leading angle bracket. */
5014 text = text + 1;
5015 text_len--;
5016 }
5017
5018 /* First, test against the fully qualified name of the symbol. */
5019
5020 if (strncmp (sym_name, text, text_len) == 0)
5021 match = 1;
5022
5023 if (match && !encoded)
5024 {
5025 /* One needed check before declaring a positive match is to verify
5026 that iff we are doing a verbatim match, the decoded version
5027 of the symbol name starts with '<'. Otherwise, this symbol name
5028 is not a suitable completion. */
5029 const char *sym_name_copy = sym_name;
5030 int has_angle_bracket;
5031
5032 sym_name = ada_decode (sym_name);
5033 has_angle_bracket = (sym_name[0] == '<');
5034 match = (has_angle_bracket == verbatim_match);
5035 sym_name = sym_name_copy;
5036 }
5037
5038 if (match && !verbatim_match)
5039 {
5040 /* When doing non-verbatim match, another check that needs to
5041 be done is to verify that the potentially matching symbol name
5042 does not include capital letters, because the ada-mode would
5043 not be able to understand these symbol names without the
5044 angle bracket notation. */
5045 const char *tmp;
5046
5047 for (tmp = sym_name; *tmp != '\0' && !isupper (*tmp); tmp++);
5048 if (*tmp != '\0')
5049 match = 0;
5050 }
5051
5052 /* Second: Try wild matching... */
5053
5054 if (!match && wild_match)
5055 {
5056 /* Since we are doing wild matching, this means that TEXT
5057 may represent an unqualified symbol name. We therefore must
5058 also compare TEXT against the unqualified name of the symbol. */
5059 sym_name = ada_unqualified_name (ada_decode (sym_name));
5060
5061 if (strncmp (sym_name, text, text_len) == 0)
5062 match = 1;
5063 }
5064
5065 /* Finally: If we found a mach, prepare the result to return. */
5066
5067 if (!match)
5068 return NULL;
5069
5070 if (verbatim_match)
5071 sym_name = add_angle_brackets (sym_name);
5072
5073 if (!encoded)
5074 sym_name = ada_decode (sym_name);
5075
5076 return sym_name;
5077}
5078
2ba95b9b
JB
5079DEF_VEC_P (char_ptr);
5080
41d27058
JB
5081/* A companion function to ada_make_symbol_completion_list().
5082 Check if SYM_NAME represents a symbol which name would be suitable
5083 to complete TEXT (TEXT_LEN is the length of TEXT), in which case
5084 it is appended at the end of the given string vector SV.
5085
5086 ORIG_TEXT is the string original string from the user command
5087 that needs to be completed. WORD is the entire command on which
5088 completion should be performed. These two parameters are used to
5089 determine which part of the symbol name should be added to the
5090 completion vector.
5091 if WILD_MATCH is set, then wild matching is performed.
5092 ENCODED should be set if TEXT represents a symbol name in its
5093 encoded formed (in which case the completion should also be
5094 encoded). */
5095
5096static void
d6565258 5097symbol_completion_add (VEC(char_ptr) **sv,
41d27058
JB
5098 const char *sym_name,
5099 const char *text, int text_len,
5100 const char *orig_text, const char *word,
5101 int wild_match, int encoded)
5102{
5103 const char *match = symbol_completion_match (sym_name, text, text_len,
5104 wild_match, encoded);
5105 char *completion;
5106
5107 if (match == NULL)
5108 return;
5109
5110 /* We found a match, so add the appropriate completion to the given
5111 string vector. */
5112
5113 if (word == orig_text)
5114 {
5115 completion = xmalloc (strlen (match) + 5);
5116 strcpy (completion, match);
5117 }
5118 else if (word > orig_text)
5119 {
5120 /* Return some portion of sym_name. */
5121 completion = xmalloc (strlen (match) + 5);
5122 strcpy (completion, match + (word - orig_text));
5123 }
5124 else
5125 {
5126 /* Return some of ORIG_TEXT plus sym_name. */
5127 completion = xmalloc (strlen (match) + (orig_text - word) + 5);
5128 strncpy (completion, word, orig_text - word);
5129 completion[orig_text - word] = '\0';
5130 strcat (completion, match);
5131 }
5132
d6565258 5133 VEC_safe_push (char_ptr, *sv, completion);
41d27058
JB
5134}
5135
ccefe4c4
TT
5136/* An object of this type is passed as the user_data argument to the
5137 map_partial_symbol_names method. */
5138struct add_partial_datum
5139{
5140 VEC(char_ptr) **completions;
5141 char *text;
5142 int text_len;
5143 char *text0;
5144 char *word;
5145 int wild_match;
5146 int encoded;
5147};
5148
5149/* A callback for map_partial_symbol_names. */
5150static void
5151ada_add_partial_symbol_completions (const char *name, void *user_data)
5152{
5153 struct add_partial_datum *data = user_data;
5154 symbol_completion_add (data->completions, name,
5155 data->text, data->text_len, data->text0, data->word,
5156 data->wild_match, data->encoded);
5157}
5158
41d27058
JB
5159/* Return a list of possible symbol names completing TEXT0. The list
5160 is NULL terminated. WORD is the entire command on which completion
5161 is made. */
5162
5163static char **
5164ada_make_symbol_completion_list (char *text0, char *word)
5165{
5166 char *text;
5167 int text_len;
5168 int wild_match;
5169 int encoded;
2ba95b9b 5170 VEC(char_ptr) *completions = VEC_alloc (char_ptr, 128);
41d27058
JB
5171 struct symbol *sym;
5172 struct symtab *s;
41d27058
JB
5173 struct minimal_symbol *msymbol;
5174 struct objfile *objfile;
5175 struct block *b, *surrounding_static_block = 0;
5176 int i;
5177 struct dict_iterator iter;
5178
5179 if (text0[0] == '<')
5180 {
5181 text = xstrdup (text0);
5182 make_cleanup (xfree, text);
5183 text_len = strlen (text);
5184 wild_match = 0;
5185 encoded = 1;
5186 }
5187 else
5188 {
5189 text = xstrdup (ada_encode (text0));
5190 make_cleanup (xfree, text);
5191 text_len = strlen (text);
5192 for (i = 0; i < text_len; i++)
5193 text[i] = tolower (text[i]);
5194
5195 encoded = (strstr (text0, "__") != NULL);
5196 /* If the name contains a ".", then the user is entering a fully
5197 qualified entity name, and the match must not be done in wild
5198 mode. Similarly, if the user wants to complete what looks like
5199 an encoded name, the match must not be done in wild mode. */
5200 wild_match = (strchr (text0, '.') == NULL && !encoded);
5201 }
5202
5203 /* First, look at the partial symtab symbols. */
41d27058 5204 {
ccefe4c4
TT
5205 struct add_partial_datum data;
5206
5207 data.completions = &completions;
5208 data.text = text;
5209 data.text_len = text_len;
5210 data.text0 = text0;
5211 data.word = word;
5212 data.wild_match = wild_match;
5213 data.encoded = encoded;
5214 map_partial_symbol_names (ada_add_partial_symbol_completions, &data);
41d27058
JB
5215 }
5216
5217 /* At this point scan through the misc symbol vectors and add each
5218 symbol you find to the list. Eventually we want to ignore
5219 anything that isn't a text symbol (everything else will be
5220 handled by the psymtab code above). */
5221
5222 ALL_MSYMBOLS (objfile, msymbol)
5223 {
5224 QUIT;
d6565258 5225 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (msymbol),
41d27058
JB
5226 text, text_len, text0, word, wild_match, encoded);
5227 }
5228
5229 /* Search upwards from currently selected frame (so that we can
5230 complete on local vars. */
5231
5232 for (b = get_selected_block (0); b != NULL; b = BLOCK_SUPERBLOCK (b))
5233 {
5234 if (!BLOCK_SUPERBLOCK (b))
5235 surrounding_static_block = b; /* For elmin of dups */
5236
5237 ALL_BLOCK_SYMBOLS (b, iter, sym)
5238 {
d6565258 5239 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym),
41d27058
JB
5240 text, text_len, text0, word,
5241 wild_match, encoded);
5242 }
5243 }
5244
5245 /* Go through the symtabs and check the externs and statics for
5246 symbols which match. */
5247
5248 ALL_SYMTABS (objfile, s)
5249 {
5250 QUIT;
5251 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), GLOBAL_BLOCK);
5252 ALL_BLOCK_SYMBOLS (b, iter, sym)
5253 {
d6565258 5254 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym),
41d27058
JB
5255 text, text_len, text0, word,
5256 wild_match, encoded);
5257 }
5258 }
5259
5260 ALL_SYMTABS (objfile, s)
5261 {
5262 QUIT;
5263 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), STATIC_BLOCK);
5264 /* Don't do this block twice. */
5265 if (b == surrounding_static_block)
5266 continue;
5267 ALL_BLOCK_SYMBOLS (b, iter, sym)
5268 {
d6565258 5269 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym),
41d27058
JB
5270 text, text_len, text0, word,
5271 wild_match, encoded);
5272 }
5273 }
5274
5275 /* Append the closing NULL entry. */
2ba95b9b 5276 VEC_safe_push (char_ptr, completions, NULL);
41d27058 5277
2ba95b9b
JB
5278 /* Make a copy of the COMPLETIONS VEC before we free it, and then
5279 return the copy. It's unfortunate that we have to make a copy
5280 of an array that we're about to destroy, but there is nothing much
5281 we can do about it. Fortunately, it's typically not a very large
5282 array. */
5283 {
5284 const size_t completions_size =
5285 VEC_length (char_ptr, completions) * sizeof (char *);
5286 char **result = malloc (completions_size);
5287
5288 memcpy (result, VEC_address (char_ptr, completions), completions_size);
5289
5290 VEC_free (char_ptr, completions);
5291 return result;
5292 }
41d27058
JB
5293}
5294
963a6417 5295 /* Field Access */
96d887e8 5296
73fb9985
JB
5297/* Return non-zero if TYPE is a pointer to the GNAT dispatch table used
5298 for tagged types. */
5299
5300static int
5301ada_is_dispatch_table_ptr_type (struct type *type)
5302{
5303 char *name;
5304
5305 if (TYPE_CODE (type) != TYPE_CODE_PTR)
5306 return 0;
5307
5308 name = TYPE_NAME (TYPE_TARGET_TYPE (type));
5309 if (name == NULL)
5310 return 0;
5311
5312 return (strcmp (name, "ada__tags__dispatch_table") == 0);
5313}
5314
963a6417
PH
5315/* True if field number FIELD_NUM in struct or union type TYPE is supposed
5316 to be invisible to users. */
96d887e8 5317
963a6417
PH
5318int
5319ada_is_ignored_field (struct type *type, int field_num)
96d887e8 5320{
963a6417
PH
5321 if (field_num < 0 || field_num > TYPE_NFIELDS (type))
5322 return 1;
73fb9985
JB
5323
5324 /* Check the name of that field. */
5325 {
5326 const char *name = TYPE_FIELD_NAME (type, field_num);
5327
5328 /* Anonymous field names should not be printed.
5329 brobecker/2007-02-20: I don't think this can actually happen
5330 but we don't want to print the value of annonymous fields anyway. */
5331 if (name == NULL)
5332 return 1;
5333
5334 /* A field named "_parent" is internally generated by GNAT for
5335 tagged types, and should not be printed either. */
5336 if (name[0] == '_' && strncmp (name, "_parent", 7) != 0)
5337 return 1;
5338 }
5339
5340 /* If this is the dispatch table of a tagged type, then ignore. */
5341 if (ada_is_tagged_type (type, 1)
5342 && ada_is_dispatch_table_ptr_type (TYPE_FIELD_TYPE (type, field_num)))
5343 return 1;
5344
5345 /* Not a special field, so it should not be ignored. */
5346 return 0;
963a6417 5347}
96d887e8 5348
963a6417
PH
5349/* True iff TYPE has a tag field. If REFOK, then TYPE may also be a
5350 pointer or reference type whose ultimate target has a tag field. */
96d887e8 5351
963a6417
PH
5352int
5353ada_is_tagged_type (struct type *type, int refok)
5354{
5355 return (ada_lookup_struct_elt_type (type, "_tag", refok, 1, NULL) != NULL);
5356}
96d887e8 5357
963a6417 5358/* True iff TYPE represents the type of X'Tag */
96d887e8 5359
963a6417
PH
5360int
5361ada_is_tag_type (struct type *type)
5362{
5363 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_PTR)
5364 return 0;
5365 else
96d887e8 5366 {
963a6417
PH
5367 const char *name = ada_type_name (TYPE_TARGET_TYPE (type));
5368 return (name != NULL
5369 && strcmp (name, "ada__tags__dispatch_table") == 0);
96d887e8 5370 }
96d887e8
PH
5371}
5372
963a6417 5373/* The type of the tag on VAL. */
76a01679 5374
963a6417
PH
5375struct type *
5376ada_tag_type (struct value *val)
96d887e8 5377{
df407dfe 5378 return ada_lookup_struct_elt_type (value_type (val), "_tag", 1, 0, NULL);
963a6417 5379}
96d887e8 5380
963a6417 5381/* The value of the tag on VAL. */
96d887e8 5382
963a6417
PH
5383struct value *
5384ada_value_tag (struct value *val)
5385{
03ee6b2e 5386 return ada_value_struct_elt (val, "_tag", 0);
96d887e8
PH
5387}
5388
963a6417
PH
5389/* The value of the tag on the object of type TYPE whose contents are
5390 saved at VALADDR, if it is non-null, or is at memory address
5391 ADDRESS. */
96d887e8 5392
963a6417 5393static struct value *
10a2c479 5394value_tag_from_contents_and_address (struct type *type,
fc1a4b47 5395 const gdb_byte *valaddr,
963a6417 5396 CORE_ADDR address)
96d887e8 5397{
963a6417
PH
5398 int tag_byte_offset, dummy1, dummy2;
5399 struct type *tag_type;
5400 if (find_struct_field ("_tag", type, 0, &tag_type, &tag_byte_offset,
52ce6436 5401 NULL, NULL, NULL))
96d887e8 5402 {
fc1a4b47 5403 const gdb_byte *valaddr1 = ((valaddr == NULL)
10a2c479
AC
5404 ? NULL
5405 : valaddr + tag_byte_offset);
963a6417 5406 CORE_ADDR address1 = (address == 0) ? 0 : address + tag_byte_offset;
96d887e8 5407
963a6417 5408 return value_from_contents_and_address (tag_type, valaddr1, address1);
96d887e8 5409 }
963a6417
PH
5410 return NULL;
5411}
96d887e8 5412
963a6417
PH
5413static struct type *
5414type_from_tag (struct value *tag)
5415{
5416 const char *type_name = ada_tag_name (tag);
5417 if (type_name != NULL)
5418 return ada_find_any_type (ada_encode (type_name));
5419 return NULL;
5420}
96d887e8 5421
963a6417
PH
5422struct tag_args
5423{
5424 struct value *tag;
5425 char *name;
5426};
4c4b4cd2 5427
529cad9c
PH
5428
5429static int ada_tag_name_1 (void *);
5430static int ada_tag_name_2 (struct tag_args *);
5431
4c4b4cd2
PH
5432/* Wrapper function used by ada_tag_name. Given a struct tag_args*
5433 value ARGS, sets ARGS->name to the tag name of ARGS->tag.
5434 The value stored in ARGS->name is valid until the next call to
5435 ada_tag_name_1. */
5436
5437static int
5438ada_tag_name_1 (void *args0)
5439{
5440 struct tag_args *args = (struct tag_args *) args0;
5441 static char name[1024];
76a01679 5442 char *p;
4c4b4cd2
PH
5443 struct value *val;
5444 args->name = NULL;
03ee6b2e 5445 val = ada_value_struct_elt (args->tag, "tsd", 1);
529cad9c
PH
5446 if (val == NULL)
5447 return ada_tag_name_2 (args);
03ee6b2e 5448 val = ada_value_struct_elt (val, "expanded_name", 1);
529cad9c
PH
5449 if (val == NULL)
5450 return 0;
5451 read_memory_string (value_as_address (val), name, sizeof (name) - 1);
5452 for (p = name; *p != '\0'; p += 1)
5453 if (isalpha (*p))
5454 *p = tolower (*p);
5455 args->name = name;
5456 return 0;
5457}
5458
5459/* Utility function for ada_tag_name_1 that tries the second
5460 representation for the dispatch table (in which there is no
5461 explicit 'tsd' field in the referent of the tag pointer, and instead
5462 the tsd pointer is stored just before the dispatch table. */
5463
5464static int
5465ada_tag_name_2 (struct tag_args *args)
5466{
5467 struct type *info_type;
5468 static char name[1024];
5469 char *p;
5470 struct value *val, *valp;
5471
5472 args->name = NULL;
5473 info_type = ada_find_any_type ("ada__tags__type_specific_data");
5474 if (info_type == NULL)
5475 return 0;
5476 info_type = lookup_pointer_type (lookup_pointer_type (info_type));
5477 valp = value_cast (info_type, args->tag);
5478 if (valp == NULL)
5479 return 0;
2497b498 5480 val = value_ind (value_ptradd (valp, -1));
4c4b4cd2
PH
5481 if (val == NULL)
5482 return 0;
03ee6b2e 5483 val = ada_value_struct_elt (val, "expanded_name", 1);
4c4b4cd2
PH
5484 if (val == NULL)
5485 return 0;
5486 read_memory_string (value_as_address (val), name, sizeof (name) - 1);
5487 for (p = name; *p != '\0'; p += 1)
5488 if (isalpha (*p))
5489 *p = tolower (*p);
5490 args->name = name;
5491 return 0;
5492}
5493
5494/* The type name of the dynamic type denoted by the 'tag value TAG, as
5495 * a C string. */
5496
5497const char *
5498ada_tag_name (struct value *tag)
5499{
5500 struct tag_args args;
df407dfe 5501 if (!ada_is_tag_type (value_type (tag)))
4c4b4cd2 5502 return NULL;
76a01679 5503 args.tag = tag;
4c4b4cd2
PH
5504 args.name = NULL;
5505 catch_errors (ada_tag_name_1, &args, NULL, RETURN_MASK_ALL);
5506 return args.name;
5507}
5508
5509/* The parent type of TYPE, or NULL if none. */
14f9c5c9 5510
d2e4a39e 5511struct type *
ebf56fd3 5512ada_parent_type (struct type *type)
14f9c5c9
AS
5513{
5514 int i;
5515
61ee279c 5516 type = ada_check_typedef (type);
14f9c5c9
AS
5517
5518 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT)
5519 return NULL;
5520
5521 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
5522 if (ada_is_parent_field (type, i))
0c1f74cf
JB
5523 {
5524 struct type *parent_type = TYPE_FIELD_TYPE (type, i);
5525
5526 /* If the _parent field is a pointer, then dereference it. */
5527 if (TYPE_CODE (parent_type) == TYPE_CODE_PTR)
5528 parent_type = TYPE_TARGET_TYPE (parent_type);
5529 /* If there is a parallel XVS type, get the actual base type. */
5530 parent_type = ada_get_base_type (parent_type);
5531
5532 return ada_check_typedef (parent_type);
5533 }
14f9c5c9
AS
5534
5535 return NULL;
5536}
5537
4c4b4cd2
PH
5538/* True iff field number FIELD_NUM of structure type TYPE contains the
5539 parent-type (inherited) fields of a derived type. Assumes TYPE is
5540 a structure type with at least FIELD_NUM+1 fields. */
14f9c5c9
AS
5541
5542int
ebf56fd3 5543ada_is_parent_field (struct type *type, int field_num)
14f9c5c9 5544{
61ee279c 5545 const char *name = TYPE_FIELD_NAME (ada_check_typedef (type), field_num);
4c4b4cd2
PH
5546 return (name != NULL
5547 && (strncmp (name, "PARENT", 6) == 0
5548 || strncmp (name, "_parent", 7) == 0));
14f9c5c9
AS
5549}
5550
4c4b4cd2 5551/* True iff field number FIELD_NUM of structure type TYPE is a
14f9c5c9 5552 transparent wrapper field (which should be silently traversed when doing
4c4b4cd2 5553 field selection and flattened when printing). Assumes TYPE is a
14f9c5c9 5554 structure type with at least FIELD_NUM+1 fields. Such fields are always
4c4b4cd2 5555 structures. */
14f9c5c9
AS
5556
5557int
ebf56fd3 5558ada_is_wrapper_field (struct type *type, int field_num)
14f9c5c9 5559{
d2e4a39e
AS
5560 const char *name = TYPE_FIELD_NAME (type, field_num);
5561 return (name != NULL
4c4b4cd2
PH
5562 && (strncmp (name, "PARENT", 6) == 0
5563 || strcmp (name, "REP") == 0
5564 || strncmp (name, "_parent", 7) == 0
5565 || name[0] == 'S' || name[0] == 'R' || name[0] == 'O'));
14f9c5c9
AS
5566}
5567
4c4b4cd2
PH
5568/* True iff field number FIELD_NUM of structure or union type TYPE
5569 is a variant wrapper. Assumes TYPE is a structure type with at least
5570 FIELD_NUM+1 fields. */
14f9c5c9
AS
5571
5572int
ebf56fd3 5573ada_is_variant_part (struct type *type, int field_num)
14f9c5c9 5574{
d2e4a39e 5575 struct type *field_type = TYPE_FIELD_TYPE (type, field_num);
14f9c5c9 5576 return (TYPE_CODE (field_type) == TYPE_CODE_UNION
4c4b4cd2 5577 || (is_dynamic_field (type, field_num)
c3e5cd34
PH
5578 && (TYPE_CODE (TYPE_TARGET_TYPE (field_type))
5579 == TYPE_CODE_UNION)));
14f9c5c9
AS
5580}
5581
5582/* Assuming that VAR_TYPE is a variant wrapper (type of the variant part)
4c4b4cd2 5583 whose discriminants are contained in the record type OUTER_TYPE,
7c964f07
UW
5584 returns the type of the controlling discriminant for the variant.
5585 May return NULL if the type could not be found. */
14f9c5c9 5586
d2e4a39e 5587struct type *
ebf56fd3 5588ada_variant_discrim_type (struct type *var_type, struct type *outer_type)
14f9c5c9 5589{
d2e4a39e 5590 char *name = ada_variant_discrim_name (var_type);
7c964f07 5591 return ada_lookup_struct_elt_type (outer_type, name, 1, 1, NULL);
14f9c5c9
AS
5592}
5593
4c4b4cd2 5594/* Assuming that TYPE is the type of a variant wrapper, and FIELD_NUM is a
14f9c5c9 5595 valid field number within it, returns 1 iff field FIELD_NUM of TYPE
4c4b4cd2 5596 represents a 'when others' clause; otherwise 0. */
14f9c5c9
AS
5597
5598int
ebf56fd3 5599ada_is_others_clause (struct type *type, int field_num)
14f9c5c9 5600{
d2e4a39e 5601 const char *name = TYPE_FIELD_NAME (type, field_num);
14f9c5c9
AS
5602 return (name != NULL && name[0] == 'O');
5603}
5604
5605/* Assuming that TYPE0 is the type of the variant part of a record,
4c4b4cd2
PH
5606 returns the name of the discriminant controlling the variant.
5607 The value is valid until the next call to ada_variant_discrim_name. */
14f9c5c9 5608
d2e4a39e 5609char *
ebf56fd3 5610ada_variant_discrim_name (struct type *type0)
14f9c5c9 5611{
d2e4a39e 5612 static char *result = NULL;
14f9c5c9 5613 static size_t result_len = 0;
d2e4a39e
AS
5614 struct type *type;
5615 const char *name;
5616 const char *discrim_end;
5617 const char *discrim_start;
14f9c5c9
AS
5618
5619 if (TYPE_CODE (type0) == TYPE_CODE_PTR)
5620 type = TYPE_TARGET_TYPE (type0);
5621 else
5622 type = type0;
5623
5624 name = ada_type_name (type);
5625
5626 if (name == NULL || name[0] == '\000')
5627 return "";
5628
5629 for (discrim_end = name + strlen (name) - 6; discrim_end != name;
5630 discrim_end -= 1)
5631 {
4c4b4cd2
PH
5632 if (strncmp (discrim_end, "___XVN", 6) == 0)
5633 break;
14f9c5c9
AS
5634 }
5635 if (discrim_end == name)
5636 return "";
5637
d2e4a39e 5638 for (discrim_start = discrim_end; discrim_start != name + 3;
14f9c5c9
AS
5639 discrim_start -= 1)
5640 {
d2e4a39e 5641 if (discrim_start == name + 1)
4c4b4cd2 5642 return "";
76a01679 5643 if ((discrim_start > name + 3
4c4b4cd2
PH
5644 && strncmp (discrim_start - 3, "___", 3) == 0)
5645 || discrim_start[-1] == '.')
5646 break;
14f9c5c9
AS
5647 }
5648
5649 GROW_VECT (result, result_len, discrim_end - discrim_start + 1);
5650 strncpy (result, discrim_start, discrim_end - discrim_start);
d2e4a39e 5651 result[discrim_end - discrim_start] = '\0';
14f9c5c9
AS
5652 return result;
5653}
5654
4c4b4cd2
PH
5655/* Scan STR for a subtype-encoded number, beginning at position K.
5656 Put the position of the character just past the number scanned in
5657 *NEW_K, if NEW_K!=NULL. Put the scanned number in *R, if R!=NULL.
5658 Return 1 if there was a valid number at the given position, and 0
5659 otherwise. A "subtype-encoded" number consists of the absolute value
5660 in decimal, followed by the letter 'm' to indicate a negative number.
5661 Assumes 0m does not occur. */
14f9c5c9
AS
5662
5663int
d2e4a39e 5664ada_scan_number (const char str[], int k, LONGEST * R, int *new_k)
14f9c5c9
AS
5665{
5666 ULONGEST RU;
5667
d2e4a39e 5668 if (!isdigit (str[k]))
14f9c5c9
AS
5669 return 0;
5670
4c4b4cd2 5671 /* Do it the hard way so as not to make any assumption about
14f9c5c9 5672 the relationship of unsigned long (%lu scan format code) and
4c4b4cd2 5673 LONGEST. */
14f9c5c9
AS
5674 RU = 0;
5675 while (isdigit (str[k]))
5676 {
d2e4a39e 5677 RU = RU * 10 + (str[k] - '0');
14f9c5c9
AS
5678 k += 1;
5679 }
5680
d2e4a39e 5681 if (str[k] == 'm')
14f9c5c9
AS
5682 {
5683 if (R != NULL)
4c4b4cd2 5684 *R = (-(LONGEST) (RU - 1)) - 1;
14f9c5c9
AS
5685 k += 1;
5686 }
5687 else if (R != NULL)
5688 *R = (LONGEST) RU;
5689
4c4b4cd2 5690 /* NOTE on the above: Technically, C does not say what the results of
14f9c5c9
AS
5691 - (LONGEST) RU or (LONGEST) -RU are for RU == largest positive
5692 number representable as a LONGEST (although either would probably work
5693 in most implementations). When RU>0, the locution in the then branch
4c4b4cd2 5694 above is always equivalent to the negative of RU. */
14f9c5c9
AS
5695
5696 if (new_k != NULL)
5697 *new_k = k;
5698 return 1;
5699}
5700
4c4b4cd2
PH
5701/* Assuming that TYPE is a variant part wrapper type (a VARIANTS field),
5702 and FIELD_NUM is a valid field number within it, returns 1 iff VAL is
5703 in the range encoded by field FIELD_NUM of TYPE; otherwise 0. */
14f9c5c9 5704
d2e4a39e 5705int
ebf56fd3 5706ada_in_variant (LONGEST val, struct type *type, int field_num)
14f9c5c9 5707{
d2e4a39e 5708 const char *name = TYPE_FIELD_NAME (type, field_num);
14f9c5c9
AS
5709 int p;
5710
5711 p = 0;
5712 while (1)
5713 {
d2e4a39e 5714 switch (name[p])
4c4b4cd2
PH
5715 {
5716 case '\0':
5717 return 0;
5718 case 'S':
5719 {
5720 LONGEST W;
5721 if (!ada_scan_number (name, p + 1, &W, &p))
5722 return 0;
5723 if (val == W)
5724 return 1;
5725 break;
5726 }
5727 case 'R':
5728 {
5729 LONGEST L, U;
5730 if (!ada_scan_number (name, p + 1, &L, &p)
5731 || name[p] != 'T' || !ada_scan_number (name, p + 1, &U, &p))
5732 return 0;
5733 if (val >= L && val <= U)
5734 return 1;
5735 break;
5736 }
5737 case 'O':
5738 return 1;
5739 default:
5740 return 0;
5741 }
5742 }
5743}
5744
5745/* FIXME: Lots of redundancy below. Try to consolidate. */
5746
5747/* Given a value ARG1 (offset by OFFSET bytes) of a struct or union type
5748 ARG_TYPE, extract and return the value of one of its (non-static)
5749 fields. FIELDNO says which field. Differs from value_primitive_field
5750 only in that it can handle packed values of arbitrary type. */
14f9c5c9 5751
4c4b4cd2 5752static struct value *
d2e4a39e 5753ada_value_primitive_field (struct value *arg1, int offset, int fieldno,
4c4b4cd2 5754 struct type *arg_type)
14f9c5c9 5755{
14f9c5c9
AS
5756 struct type *type;
5757
61ee279c 5758 arg_type = ada_check_typedef (arg_type);
14f9c5c9
AS
5759 type = TYPE_FIELD_TYPE (arg_type, fieldno);
5760
4c4b4cd2 5761 /* Handle packed fields. */
14f9c5c9
AS
5762
5763 if (TYPE_FIELD_BITSIZE (arg_type, fieldno) != 0)
5764 {
5765 int bit_pos = TYPE_FIELD_BITPOS (arg_type, fieldno);
5766 int bit_size = TYPE_FIELD_BITSIZE (arg_type, fieldno);
d2e4a39e 5767
0fd88904 5768 return ada_value_primitive_packed_val (arg1, value_contents (arg1),
4c4b4cd2
PH
5769 offset + bit_pos / 8,
5770 bit_pos % 8, bit_size, type);
14f9c5c9
AS
5771 }
5772 else
5773 return value_primitive_field (arg1, offset, fieldno, arg_type);
5774}
5775
52ce6436
PH
5776/* Find field with name NAME in object of type TYPE. If found,
5777 set the following for each argument that is non-null:
5778 - *FIELD_TYPE_P to the field's type;
5779 - *BYTE_OFFSET_P to OFFSET + the byte offset of the field within
5780 an object of that type;
5781 - *BIT_OFFSET_P to the bit offset modulo byte size of the field;
5782 - *BIT_SIZE_P to its size in bits if the field is packed, and
5783 0 otherwise;
5784 If INDEX_P is non-null, increment *INDEX_P by the number of source-visible
5785 fields up to but not including the desired field, or by the total
5786 number of fields if not found. A NULL value of NAME never
5787 matches; the function just counts visible fields in this case.
5788
5789 Returns 1 if found, 0 otherwise. */
5790
4c4b4cd2 5791static int
76a01679
JB
5792find_struct_field (char *name, struct type *type, int offset,
5793 struct type **field_type_p,
52ce6436
PH
5794 int *byte_offset_p, int *bit_offset_p, int *bit_size_p,
5795 int *index_p)
4c4b4cd2
PH
5796{
5797 int i;
5798
61ee279c 5799 type = ada_check_typedef (type);
76a01679 5800
52ce6436
PH
5801 if (field_type_p != NULL)
5802 *field_type_p = NULL;
5803 if (byte_offset_p != NULL)
d5d6fca5 5804 *byte_offset_p = 0;
52ce6436
PH
5805 if (bit_offset_p != NULL)
5806 *bit_offset_p = 0;
5807 if (bit_size_p != NULL)
5808 *bit_size_p = 0;
5809
5810 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
4c4b4cd2
PH
5811 {
5812 int bit_pos = TYPE_FIELD_BITPOS (type, i);
5813 int fld_offset = offset + bit_pos / 8;
5814 char *t_field_name = TYPE_FIELD_NAME (type, i);
76a01679 5815
4c4b4cd2
PH
5816 if (t_field_name == NULL)
5817 continue;
5818
52ce6436 5819 else if (name != NULL && field_name_match (t_field_name, name))
76a01679
JB
5820 {
5821 int bit_size = TYPE_FIELD_BITSIZE (type, i);
52ce6436
PH
5822 if (field_type_p != NULL)
5823 *field_type_p = TYPE_FIELD_TYPE (type, i);
5824 if (byte_offset_p != NULL)
5825 *byte_offset_p = fld_offset;
5826 if (bit_offset_p != NULL)
5827 *bit_offset_p = bit_pos % 8;
5828 if (bit_size_p != NULL)
5829 *bit_size_p = bit_size;
76a01679
JB
5830 return 1;
5831 }
4c4b4cd2
PH
5832 else if (ada_is_wrapper_field (type, i))
5833 {
52ce6436
PH
5834 if (find_struct_field (name, TYPE_FIELD_TYPE (type, i), fld_offset,
5835 field_type_p, byte_offset_p, bit_offset_p,
5836 bit_size_p, index_p))
76a01679
JB
5837 return 1;
5838 }
4c4b4cd2
PH
5839 else if (ada_is_variant_part (type, i))
5840 {
52ce6436
PH
5841 /* PNH: Wait. Do we ever execute this section, or is ARG always of
5842 fixed type?? */
4c4b4cd2 5843 int j;
52ce6436
PH
5844 struct type *field_type
5845 = ada_check_typedef (TYPE_FIELD_TYPE (type, i));
4c4b4cd2 5846
52ce6436 5847 for (j = 0; j < TYPE_NFIELDS (field_type); j += 1)
4c4b4cd2 5848 {
76a01679
JB
5849 if (find_struct_field (name, TYPE_FIELD_TYPE (field_type, j),
5850 fld_offset
5851 + TYPE_FIELD_BITPOS (field_type, j) / 8,
5852 field_type_p, byte_offset_p,
52ce6436 5853 bit_offset_p, bit_size_p, index_p))
76a01679 5854 return 1;
4c4b4cd2
PH
5855 }
5856 }
52ce6436
PH
5857 else if (index_p != NULL)
5858 *index_p += 1;
4c4b4cd2
PH
5859 }
5860 return 0;
5861}
5862
52ce6436 5863/* Number of user-visible fields in record type TYPE. */
4c4b4cd2 5864
52ce6436
PH
5865static int
5866num_visible_fields (struct type *type)
5867{
5868 int n;
5869 n = 0;
5870 find_struct_field (NULL, type, 0, NULL, NULL, NULL, NULL, &n);
5871 return n;
5872}
14f9c5c9 5873
4c4b4cd2 5874/* Look for a field NAME in ARG. Adjust the address of ARG by OFFSET bytes,
14f9c5c9
AS
5875 and search in it assuming it has (class) type TYPE.
5876 If found, return value, else return NULL.
5877
4c4b4cd2 5878 Searches recursively through wrapper fields (e.g., '_parent'). */
14f9c5c9 5879
4c4b4cd2 5880static struct value *
d2e4a39e 5881ada_search_struct_field (char *name, struct value *arg, int offset,
4c4b4cd2 5882 struct type *type)
14f9c5c9
AS
5883{
5884 int i;
61ee279c 5885 type = ada_check_typedef (type);
14f9c5c9 5886
52ce6436 5887 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
14f9c5c9
AS
5888 {
5889 char *t_field_name = TYPE_FIELD_NAME (type, i);
5890
5891 if (t_field_name == NULL)
4c4b4cd2 5892 continue;
14f9c5c9
AS
5893
5894 else if (field_name_match (t_field_name, name))
4c4b4cd2 5895 return ada_value_primitive_field (arg, offset, i, type);
14f9c5c9
AS
5896
5897 else if (ada_is_wrapper_field (type, i))
4c4b4cd2 5898 {
06d5cf63
JB
5899 struct value *v = /* Do not let indent join lines here. */
5900 ada_search_struct_field (name, arg,
5901 offset + TYPE_FIELD_BITPOS (type, i) / 8,
5902 TYPE_FIELD_TYPE (type, i));
4c4b4cd2
PH
5903 if (v != NULL)
5904 return v;
5905 }
14f9c5c9
AS
5906
5907 else if (ada_is_variant_part (type, i))
4c4b4cd2 5908 {
52ce6436 5909 /* PNH: Do we ever get here? See find_struct_field. */
4c4b4cd2 5910 int j;
61ee279c 5911 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type, i));
4c4b4cd2
PH
5912 int var_offset = offset + TYPE_FIELD_BITPOS (type, i) / 8;
5913
52ce6436 5914 for (j = 0; j < TYPE_NFIELDS (field_type); j += 1)
4c4b4cd2 5915 {
06d5cf63
JB
5916 struct value *v = ada_search_struct_field /* Force line break. */
5917 (name, arg,
5918 var_offset + TYPE_FIELD_BITPOS (field_type, j) / 8,
5919 TYPE_FIELD_TYPE (field_type, j));
4c4b4cd2
PH
5920 if (v != NULL)
5921 return v;
5922 }
5923 }
14f9c5c9
AS
5924 }
5925 return NULL;
5926}
d2e4a39e 5927
52ce6436
PH
5928static struct value *ada_index_struct_field_1 (int *, struct value *,
5929 int, struct type *);
5930
5931
5932/* Return field #INDEX in ARG, where the index is that returned by
5933 * find_struct_field through its INDEX_P argument. Adjust the address
5934 * of ARG by OFFSET bytes, and search in it assuming it has (class) type TYPE.
5935 * If found, return value, else return NULL. */
5936
5937static struct value *
5938ada_index_struct_field (int index, struct value *arg, int offset,
5939 struct type *type)
5940{
5941 return ada_index_struct_field_1 (&index, arg, offset, type);
5942}
5943
5944
5945/* Auxiliary function for ada_index_struct_field. Like
5946 * ada_index_struct_field, but takes index from *INDEX_P and modifies
5947 * *INDEX_P. */
5948
5949static struct value *
5950ada_index_struct_field_1 (int *index_p, struct value *arg, int offset,
5951 struct type *type)
5952{
5953 int i;
5954 type = ada_check_typedef (type);
5955
5956 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
5957 {
5958 if (TYPE_FIELD_NAME (type, i) == NULL)
5959 continue;
5960 else if (ada_is_wrapper_field (type, i))
5961 {
5962 struct value *v = /* Do not let indent join lines here. */
5963 ada_index_struct_field_1 (index_p, arg,
5964 offset + TYPE_FIELD_BITPOS (type, i) / 8,
5965 TYPE_FIELD_TYPE (type, i));
5966 if (v != NULL)
5967 return v;
5968 }
5969
5970 else if (ada_is_variant_part (type, i))
5971 {
5972 /* PNH: Do we ever get here? See ada_search_struct_field,
5973 find_struct_field. */
5974 error (_("Cannot assign this kind of variant record"));
5975 }
5976 else if (*index_p == 0)
5977 return ada_value_primitive_field (arg, offset, i, type);
5978 else
5979 *index_p -= 1;
5980 }
5981 return NULL;
5982}
5983
4c4b4cd2
PH
5984/* Given ARG, a value of type (pointer or reference to a)*
5985 structure/union, extract the component named NAME from the ultimate
5986 target structure/union and return it as a value with its
f5938064 5987 appropriate type.
14f9c5c9 5988
4c4b4cd2
PH
5989 The routine searches for NAME among all members of the structure itself
5990 and (recursively) among all members of any wrapper members
14f9c5c9
AS
5991 (e.g., '_parent').
5992
03ee6b2e
PH
5993 If NO_ERR, then simply return NULL in case of error, rather than
5994 calling error. */
14f9c5c9 5995
d2e4a39e 5996struct value *
03ee6b2e 5997ada_value_struct_elt (struct value *arg, char *name, int no_err)
14f9c5c9 5998{
4c4b4cd2 5999 struct type *t, *t1;
d2e4a39e 6000 struct value *v;
14f9c5c9 6001
4c4b4cd2 6002 v = NULL;
df407dfe 6003 t1 = t = ada_check_typedef (value_type (arg));
4c4b4cd2
PH
6004 if (TYPE_CODE (t) == TYPE_CODE_REF)
6005 {
6006 t1 = TYPE_TARGET_TYPE (t);
6007 if (t1 == NULL)
03ee6b2e 6008 goto BadValue;
61ee279c 6009 t1 = ada_check_typedef (t1);
4c4b4cd2 6010 if (TYPE_CODE (t1) == TYPE_CODE_PTR)
76a01679 6011 {
994b9211 6012 arg = coerce_ref (arg);
76a01679
JB
6013 t = t1;
6014 }
4c4b4cd2 6015 }
14f9c5c9 6016
4c4b4cd2
PH
6017 while (TYPE_CODE (t) == TYPE_CODE_PTR)
6018 {
6019 t1 = TYPE_TARGET_TYPE (t);
6020 if (t1 == NULL)
03ee6b2e 6021 goto BadValue;
61ee279c 6022 t1 = ada_check_typedef (t1);
4c4b4cd2 6023 if (TYPE_CODE (t1) == TYPE_CODE_PTR)
76a01679
JB
6024 {
6025 arg = value_ind (arg);
6026 t = t1;
6027 }
4c4b4cd2 6028 else
76a01679 6029 break;
4c4b4cd2 6030 }
14f9c5c9 6031
4c4b4cd2 6032 if (TYPE_CODE (t1) != TYPE_CODE_STRUCT && TYPE_CODE (t1) != TYPE_CODE_UNION)
03ee6b2e 6033 goto BadValue;
14f9c5c9 6034
4c4b4cd2
PH
6035 if (t1 == t)
6036 v = ada_search_struct_field (name, arg, 0, t);
6037 else
6038 {
6039 int bit_offset, bit_size, byte_offset;
6040 struct type *field_type;
6041 CORE_ADDR address;
6042
76a01679
JB
6043 if (TYPE_CODE (t) == TYPE_CODE_PTR)
6044 address = value_as_address (arg);
4c4b4cd2 6045 else
0fd88904 6046 address = unpack_pointer (t, value_contents (arg));
14f9c5c9 6047
1ed6ede0 6048 t1 = ada_to_fixed_type (ada_get_base_type (t1), NULL, address, NULL, 1);
76a01679
JB
6049 if (find_struct_field (name, t1, 0,
6050 &field_type, &byte_offset, &bit_offset,
52ce6436 6051 &bit_size, NULL))
76a01679
JB
6052 {
6053 if (bit_size != 0)
6054 {
714e53ab
PH
6055 if (TYPE_CODE (t) == TYPE_CODE_REF)
6056 arg = ada_coerce_ref (arg);
6057 else
6058 arg = ada_value_ind (arg);
76a01679
JB
6059 v = ada_value_primitive_packed_val (arg, NULL, byte_offset,
6060 bit_offset, bit_size,
6061 field_type);
6062 }
6063 else
f5938064 6064 v = value_at_lazy (field_type, address + byte_offset);
76a01679
JB
6065 }
6066 }
6067
03ee6b2e
PH
6068 if (v != NULL || no_err)
6069 return v;
6070 else
323e0a4a 6071 error (_("There is no member named %s."), name);
14f9c5c9 6072
03ee6b2e
PH
6073 BadValue:
6074 if (no_err)
6075 return NULL;
6076 else
6077 error (_("Attempt to extract a component of a value that is not a record."));
14f9c5c9
AS
6078}
6079
6080/* Given a type TYPE, look up the type of the component of type named NAME.
4c4b4cd2
PH
6081 If DISPP is non-null, add its byte displacement from the beginning of a
6082 structure (pointed to by a value) of type TYPE to *DISPP (does not
14f9c5c9
AS
6083 work for packed fields).
6084
6085 Matches any field whose name has NAME as a prefix, possibly
4c4b4cd2 6086 followed by "___".
14f9c5c9 6087
4c4b4cd2
PH
6088 TYPE can be either a struct or union. If REFOK, TYPE may also
6089 be a (pointer or reference)+ to a struct or union, and the
6090 ultimate target type will be searched.
14f9c5c9
AS
6091
6092 Looks recursively into variant clauses and parent types.
6093
4c4b4cd2
PH
6094 If NOERR is nonzero, return NULL if NAME is not suitably defined or
6095 TYPE is not a type of the right kind. */
14f9c5c9 6096
4c4b4cd2 6097static struct type *
76a01679
JB
6098ada_lookup_struct_elt_type (struct type *type, char *name, int refok,
6099 int noerr, int *dispp)
14f9c5c9
AS
6100{
6101 int i;
6102
6103 if (name == NULL)
6104 goto BadName;
6105
76a01679 6106 if (refok && type != NULL)
4c4b4cd2
PH
6107 while (1)
6108 {
61ee279c 6109 type = ada_check_typedef (type);
76a01679
JB
6110 if (TYPE_CODE (type) != TYPE_CODE_PTR
6111 && TYPE_CODE (type) != TYPE_CODE_REF)
6112 break;
6113 type = TYPE_TARGET_TYPE (type);
4c4b4cd2 6114 }
14f9c5c9 6115
76a01679 6116 if (type == NULL
1265e4aa
JB
6117 || (TYPE_CODE (type) != TYPE_CODE_STRUCT
6118 && TYPE_CODE (type) != TYPE_CODE_UNION))
14f9c5c9 6119 {
4c4b4cd2 6120 if (noerr)
76a01679 6121 return NULL;
4c4b4cd2 6122 else
76a01679
JB
6123 {
6124 target_terminal_ours ();
6125 gdb_flush (gdb_stdout);
323e0a4a
AC
6126 if (type == NULL)
6127 error (_("Type (null) is not a structure or union type"));
6128 else
6129 {
6130 /* XXX: type_sprint */
6131 fprintf_unfiltered (gdb_stderr, _("Type "));
6132 type_print (type, "", gdb_stderr, -1);
6133 error (_(" is not a structure or union type"));
6134 }
76a01679 6135 }
14f9c5c9
AS
6136 }
6137
6138 type = to_static_fixed_type (type);
6139
6140 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
6141 {
6142 char *t_field_name = TYPE_FIELD_NAME (type, i);
6143 struct type *t;
6144 int disp;
d2e4a39e 6145
14f9c5c9 6146 if (t_field_name == NULL)
4c4b4cd2 6147 continue;
14f9c5c9
AS
6148
6149 else if (field_name_match (t_field_name, name))
4c4b4cd2
PH
6150 {
6151 if (dispp != NULL)
6152 *dispp += TYPE_FIELD_BITPOS (type, i) / 8;
61ee279c 6153 return ada_check_typedef (TYPE_FIELD_TYPE (type, i));
4c4b4cd2 6154 }
14f9c5c9
AS
6155
6156 else if (ada_is_wrapper_field (type, i))
4c4b4cd2
PH
6157 {
6158 disp = 0;
6159 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (type, i), name,
6160 0, 1, &disp);
6161 if (t != NULL)
6162 {
6163 if (dispp != NULL)
6164 *dispp += disp + TYPE_FIELD_BITPOS (type, i) / 8;
6165 return t;
6166 }
6167 }
14f9c5c9
AS
6168
6169 else if (ada_is_variant_part (type, i))
4c4b4cd2
PH
6170 {
6171 int j;
61ee279c 6172 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type, i));
4c4b4cd2
PH
6173
6174 for (j = TYPE_NFIELDS (field_type) - 1; j >= 0; j -= 1)
6175 {
b1f33ddd
JB
6176 /* FIXME pnh 2008/01/26: We check for a field that is
6177 NOT wrapped in a struct, since the compiler sometimes
6178 generates these for unchecked variant types. Revisit
6179 if the compiler changes this practice. */
6180 char *v_field_name = TYPE_FIELD_NAME (field_type, j);
4c4b4cd2 6181 disp = 0;
b1f33ddd
JB
6182 if (v_field_name != NULL
6183 && field_name_match (v_field_name, name))
6184 t = ada_check_typedef (TYPE_FIELD_TYPE (field_type, j));
6185 else
6186 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (field_type, j),
6187 name, 0, 1, &disp);
6188
4c4b4cd2
PH
6189 if (t != NULL)
6190 {
6191 if (dispp != NULL)
6192 *dispp += disp + TYPE_FIELD_BITPOS (type, i) / 8;
6193 return t;
6194 }
6195 }
6196 }
14f9c5c9
AS
6197
6198 }
6199
6200BadName:
d2e4a39e 6201 if (!noerr)
14f9c5c9
AS
6202 {
6203 target_terminal_ours ();
6204 gdb_flush (gdb_stdout);
323e0a4a
AC
6205 if (name == NULL)
6206 {
6207 /* XXX: type_sprint */
6208 fprintf_unfiltered (gdb_stderr, _("Type "));
6209 type_print (type, "", gdb_stderr, -1);
6210 error (_(" has no component named <null>"));
6211 }
6212 else
6213 {
6214 /* XXX: type_sprint */
6215 fprintf_unfiltered (gdb_stderr, _("Type "));
6216 type_print (type, "", gdb_stderr, -1);
6217 error (_(" has no component named %s"), name);
6218 }
14f9c5c9
AS
6219 }
6220
6221 return NULL;
6222}
6223
b1f33ddd
JB
6224/* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
6225 within a value of type OUTER_TYPE, return true iff VAR_TYPE
6226 represents an unchecked union (that is, the variant part of a
6227 record that is named in an Unchecked_Union pragma). */
6228
6229static int
6230is_unchecked_variant (struct type *var_type, struct type *outer_type)
6231{
6232 char *discrim_name = ada_variant_discrim_name (var_type);
6233 return (ada_lookup_struct_elt_type (outer_type, discrim_name, 0, 1, NULL)
6234 == NULL);
6235}
6236
6237
14f9c5c9
AS
6238/* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
6239 within a value of type OUTER_TYPE that is stored in GDB at
4c4b4cd2
PH
6240 OUTER_VALADDR, determine which variant clause (field number in VAR_TYPE,
6241 numbering from 0) is applicable. Returns -1 if none are. */
14f9c5c9 6242
d2e4a39e 6243int
ebf56fd3 6244ada_which_variant_applies (struct type *var_type, struct type *outer_type,
fc1a4b47 6245 const gdb_byte *outer_valaddr)
14f9c5c9
AS
6246{
6247 int others_clause;
6248 int i;
d2e4a39e 6249 char *discrim_name = ada_variant_discrim_name (var_type);
0c281816
JB
6250 struct value *outer;
6251 struct value *discrim;
14f9c5c9
AS
6252 LONGEST discrim_val;
6253
0c281816
JB
6254 outer = value_from_contents_and_address (outer_type, outer_valaddr, 0);
6255 discrim = ada_value_struct_elt (outer, discrim_name, 1);
6256 if (discrim == NULL)
14f9c5c9 6257 return -1;
0c281816 6258 discrim_val = value_as_long (discrim);
14f9c5c9
AS
6259
6260 others_clause = -1;
6261 for (i = 0; i < TYPE_NFIELDS (var_type); i += 1)
6262 {
6263 if (ada_is_others_clause (var_type, i))
4c4b4cd2 6264 others_clause = i;
14f9c5c9 6265 else if (ada_in_variant (discrim_val, var_type, i))
4c4b4cd2 6266 return i;
14f9c5c9
AS
6267 }
6268
6269 return others_clause;
6270}
d2e4a39e 6271\f
14f9c5c9
AS
6272
6273
4c4b4cd2 6274 /* Dynamic-Sized Records */
14f9c5c9
AS
6275
6276/* Strategy: The type ostensibly attached to a value with dynamic size
6277 (i.e., a size that is not statically recorded in the debugging
6278 data) does not accurately reflect the size or layout of the value.
6279 Our strategy is to convert these values to values with accurate,
4c4b4cd2 6280 conventional types that are constructed on the fly. */
14f9c5c9
AS
6281
6282/* There is a subtle and tricky problem here. In general, we cannot
6283 determine the size of dynamic records without its data. However,
6284 the 'struct value' data structure, which GDB uses to represent
6285 quantities in the inferior process (the target), requires the size
6286 of the type at the time of its allocation in order to reserve space
6287 for GDB's internal copy of the data. That's why the
6288 'to_fixed_xxx_type' routines take (target) addresses as parameters,
4c4b4cd2 6289 rather than struct value*s.
14f9c5c9
AS
6290
6291 However, GDB's internal history variables ($1, $2, etc.) are
6292 struct value*s containing internal copies of the data that are not, in
6293 general, the same as the data at their corresponding addresses in
6294 the target. Fortunately, the types we give to these values are all
6295 conventional, fixed-size types (as per the strategy described
6296 above), so that we don't usually have to perform the
6297 'to_fixed_xxx_type' conversions to look at their values.
6298 Unfortunately, there is one exception: if one of the internal
6299 history variables is an array whose elements are unconstrained
6300 records, then we will need to create distinct fixed types for each
6301 element selected. */
6302
6303/* The upshot of all of this is that many routines take a (type, host
6304 address, target address) triple as arguments to represent a value.
6305 The host address, if non-null, is supposed to contain an internal
6306 copy of the relevant data; otherwise, the program is to consult the
4c4b4cd2 6307 target at the target address. */
14f9c5c9
AS
6308
6309/* Assuming that VAL0 represents a pointer value, the result of
6310 dereferencing it. Differs from value_ind in its treatment of
4c4b4cd2 6311 dynamic-sized types. */
14f9c5c9 6312
d2e4a39e
AS
6313struct value *
6314ada_value_ind (struct value *val0)
14f9c5c9 6315{
d2e4a39e 6316 struct value *val = unwrap_value (value_ind (val0));
4c4b4cd2 6317 return ada_to_fixed_value (val);
14f9c5c9
AS
6318}
6319
6320/* The value resulting from dereferencing any "reference to"
4c4b4cd2
PH
6321 qualifiers on VAL0. */
6322
d2e4a39e
AS
6323static struct value *
6324ada_coerce_ref (struct value *val0)
6325{
df407dfe 6326 if (TYPE_CODE (value_type (val0)) == TYPE_CODE_REF)
d2e4a39e
AS
6327 {
6328 struct value *val = val0;
994b9211 6329 val = coerce_ref (val);
d2e4a39e 6330 val = unwrap_value (val);
4c4b4cd2 6331 return ada_to_fixed_value (val);
d2e4a39e
AS
6332 }
6333 else
14f9c5c9
AS
6334 return val0;
6335}
6336
6337/* Return OFF rounded upward if necessary to a multiple of
4c4b4cd2 6338 ALIGNMENT (a power of 2). */
14f9c5c9
AS
6339
6340static unsigned int
ebf56fd3 6341align_value (unsigned int off, unsigned int alignment)
14f9c5c9
AS
6342{
6343 return (off + alignment - 1) & ~(alignment - 1);
6344}
6345
4c4b4cd2 6346/* Return the bit alignment required for field #F of template type TYPE. */
14f9c5c9
AS
6347
6348static unsigned int
ebf56fd3 6349field_alignment (struct type *type, int f)
14f9c5c9 6350{
d2e4a39e 6351 const char *name = TYPE_FIELD_NAME (type, f);
64a1bf19 6352 int len;
14f9c5c9
AS
6353 int align_offset;
6354
64a1bf19
JB
6355 /* The field name should never be null, unless the debugging information
6356 is somehow malformed. In this case, we assume the field does not
6357 require any alignment. */
6358 if (name == NULL)
6359 return 1;
6360
6361 len = strlen (name);
6362
4c4b4cd2
PH
6363 if (!isdigit (name[len - 1]))
6364 return 1;
14f9c5c9 6365
d2e4a39e 6366 if (isdigit (name[len - 2]))
14f9c5c9
AS
6367 align_offset = len - 2;
6368 else
6369 align_offset = len - 1;
6370
4c4b4cd2 6371 if (align_offset < 7 || strncmp ("___XV", name + align_offset - 6, 5) != 0)
14f9c5c9
AS
6372 return TARGET_CHAR_BIT;
6373
4c4b4cd2
PH
6374 return atoi (name + align_offset) * TARGET_CHAR_BIT;
6375}
6376
6377/* Find a symbol named NAME. Ignores ambiguity. */
6378
6379struct symbol *
6380ada_find_any_symbol (const char *name)
6381{
6382 struct symbol *sym;
6383
6384 sym = standard_lookup (name, get_selected_block (NULL), VAR_DOMAIN);
6385 if (sym != NULL && SYMBOL_CLASS (sym) == LOC_TYPEDEF)
6386 return sym;
6387
6388 sym = standard_lookup (name, NULL, STRUCT_DOMAIN);
6389 return sym;
14f9c5c9
AS
6390}
6391
dddfab26
UW
6392/* Find a type named NAME. Ignores ambiguity. This routine will look
6393 solely for types defined by debug info, it will not search the GDB
6394 primitive types. */
4c4b4cd2 6395
d2e4a39e 6396struct type *
ebf56fd3 6397ada_find_any_type (const char *name)
14f9c5c9 6398{
4c4b4cd2 6399 struct symbol *sym = ada_find_any_symbol (name);
14f9c5c9 6400
14f9c5c9 6401 if (sym != NULL)
dddfab26 6402 return SYMBOL_TYPE (sym);
14f9c5c9 6403
dddfab26 6404 return NULL;
14f9c5c9
AS
6405}
6406
aeb5907d
JB
6407/* Given NAME and an associated BLOCK, search all symbols for
6408 NAME suffixed with "___XR", which is the ``renaming'' symbol
4c4b4cd2
PH
6409 associated to NAME. Return this symbol if found, return
6410 NULL otherwise. */
6411
6412struct symbol *
6413ada_find_renaming_symbol (const char *name, struct block *block)
aeb5907d
JB
6414{
6415 struct symbol *sym;
6416
6417 sym = find_old_style_renaming_symbol (name, block);
6418
6419 if (sym != NULL)
6420 return sym;
6421
6422 /* Not right yet. FIXME pnh 7/20/2007. */
6423 sym = ada_find_any_symbol (name);
6424 if (sym != NULL && strstr (SYMBOL_LINKAGE_NAME (sym), "___XR") != NULL)
6425 return sym;
6426 else
6427 return NULL;
6428}
6429
6430static struct symbol *
6431find_old_style_renaming_symbol (const char *name, struct block *block)
4c4b4cd2 6432{
7f0df278 6433 const struct symbol *function_sym = block_linkage_function (block);
4c4b4cd2
PH
6434 char *rename;
6435
6436 if (function_sym != NULL)
6437 {
6438 /* If the symbol is defined inside a function, NAME is not fully
6439 qualified. This means we need to prepend the function name
6440 as well as adding the ``___XR'' suffix to build the name of
6441 the associated renaming symbol. */
6442 char *function_name = SYMBOL_LINKAGE_NAME (function_sym);
529cad9c
PH
6443 /* Function names sometimes contain suffixes used
6444 for instance to qualify nested subprograms. When building
6445 the XR type name, we need to make sure that this suffix is
6446 not included. So do not include any suffix in the function
6447 name length below. */
69fadcdf 6448 int function_name_len = ada_name_prefix_len (function_name);
76a01679
JB
6449 const int rename_len = function_name_len + 2 /* "__" */
6450 + strlen (name) + 6 /* "___XR\0" */ ;
4c4b4cd2 6451
529cad9c 6452 /* Strip the suffix if necessary. */
69fadcdf
JB
6453 ada_remove_trailing_digits (function_name, &function_name_len);
6454 ada_remove_po_subprogram_suffix (function_name, &function_name_len);
6455 ada_remove_Xbn_suffix (function_name, &function_name_len);
529cad9c 6456
4c4b4cd2
PH
6457 /* Library-level functions are a special case, as GNAT adds
6458 a ``_ada_'' prefix to the function name to avoid namespace
aeb5907d 6459 pollution. However, the renaming symbols themselves do not
4c4b4cd2
PH
6460 have this prefix, so we need to skip this prefix if present. */
6461 if (function_name_len > 5 /* "_ada_" */
6462 && strstr (function_name, "_ada_") == function_name)
69fadcdf
JB
6463 {
6464 function_name += 5;
6465 function_name_len -= 5;
6466 }
4c4b4cd2
PH
6467
6468 rename = (char *) alloca (rename_len * sizeof (char));
69fadcdf
JB
6469 strncpy (rename, function_name, function_name_len);
6470 xsnprintf (rename + function_name_len, rename_len - function_name_len,
6471 "__%s___XR", name);
4c4b4cd2
PH
6472 }
6473 else
6474 {
6475 const int rename_len = strlen (name) + 6;
6476 rename = (char *) alloca (rename_len * sizeof (char));
88c15c34 6477 xsnprintf (rename, rename_len * sizeof (char), "%s___XR", name);
4c4b4cd2
PH
6478 }
6479
6480 return ada_find_any_symbol (rename);
6481}
6482
14f9c5c9 6483/* Because of GNAT encoding conventions, several GDB symbols may match a
4c4b4cd2 6484 given type name. If the type denoted by TYPE0 is to be preferred to
14f9c5c9 6485 that of TYPE1 for purposes of type printing, return non-zero;
4c4b4cd2
PH
6486 otherwise return 0. */
6487
14f9c5c9 6488int
d2e4a39e 6489ada_prefer_type (struct type *type0, struct type *type1)
14f9c5c9
AS
6490{
6491 if (type1 == NULL)
6492 return 1;
6493 else if (type0 == NULL)
6494 return 0;
6495 else if (TYPE_CODE (type1) == TYPE_CODE_VOID)
6496 return 1;
6497 else if (TYPE_CODE (type0) == TYPE_CODE_VOID)
6498 return 0;
4c4b4cd2
PH
6499 else if (TYPE_NAME (type1) == NULL && TYPE_NAME (type0) != NULL)
6500 return 1;
ad82864c 6501 else if (ada_is_constrained_packed_array_type (type0))
14f9c5c9 6502 return 1;
4c4b4cd2
PH
6503 else if (ada_is_array_descriptor_type (type0)
6504 && !ada_is_array_descriptor_type (type1))
14f9c5c9 6505 return 1;
aeb5907d
JB
6506 else
6507 {
6508 const char *type0_name = type_name_no_tag (type0);
6509 const char *type1_name = type_name_no_tag (type1);
6510
6511 if (type0_name != NULL && strstr (type0_name, "___XR") != NULL
6512 && (type1_name == NULL || strstr (type1_name, "___XR") == NULL))
6513 return 1;
6514 }
14f9c5c9
AS
6515 return 0;
6516}
6517
6518/* The name of TYPE, which is either its TYPE_NAME, or, if that is
4c4b4cd2
PH
6519 null, its TYPE_TAG_NAME. Null if TYPE is null. */
6520
d2e4a39e
AS
6521char *
6522ada_type_name (struct type *type)
14f9c5c9 6523{
d2e4a39e 6524 if (type == NULL)
14f9c5c9
AS
6525 return NULL;
6526 else if (TYPE_NAME (type) != NULL)
6527 return TYPE_NAME (type);
6528 else
6529 return TYPE_TAG_NAME (type);
6530}
6531
b4ba55a1
JB
6532/* Search the list of "descriptive" types associated to TYPE for a type
6533 whose name is NAME. */
6534
6535static struct type *
6536find_parallel_type_by_descriptive_type (struct type *type, const char *name)
6537{
6538 struct type *result;
6539
6540 /* If there no descriptive-type info, then there is no parallel type
6541 to be found. */
6542 if (!HAVE_GNAT_AUX_INFO (type))
6543 return NULL;
6544
6545 result = TYPE_DESCRIPTIVE_TYPE (type);
6546 while (result != NULL)
6547 {
6548 char *result_name = ada_type_name (result);
6549
6550 if (result_name == NULL)
6551 {
6552 warning (_("unexpected null name on descriptive type"));
6553 return NULL;
6554 }
6555
6556 /* If the names match, stop. */
6557 if (strcmp (result_name, name) == 0)
6558 break;
6559
6560 /* Otherwise, look at the next item on the list, if any. */
6561 if (HAVE_GNAT_AUX_INFO (result))
6562 result = TYPE_DESCRIPTIVE_TYPE (result);
6563 else
6564 result = NULL;
6565 }
6566
6567 /* If we didn't find a match, see whether this is a packed array. With
6568 older compilers, the descriptive type information is either absent or
6569 irrelevant when it comes to packed arrays so the above lookup fails.
6570 Fall back to using a parallel lookup by name in this case. */
12ab9e09 6571 if (result == NULL && ada_is_constrained_packed_array_type (type))
b4ba55a1
JB
6572 return ada_find_any_type (name);
6573
6574 return result;
6575}
6576
6577/* Find a parallel type to TYPE with the specified NAME, using the
6578 descriptive type taken from the debugging information, if available,
6579 and otherwise using the (slower) name-based method. */
6580
6581static struct type *
6582ada_find_parallel_type_with_name (struct type *type, const char *name)
6583{
6584 struct type *result = NULL;
6585
6586 if (HAVE_GNAT_AUX_INFO (type))
6587 result = find_parallel_type_by_descriptive_type (type, name);
6588 else
6589 result = ada_find_any_type (name);
6590
6591 return result;
6592}
6593
6594/* Same as above, but specify the name of the parallel type by appending
4c4b4cd2 6595 SUFFIX to the name of TYPE. */
14f9c5c9 6596
d2e4a39e 6597struct type *
ebf56fd3 6598ada_find_parallel_type (struct type *type, const char *suffix)
14f9c5c9 6599{
b4ba55a1 6600 char *name, *typename = ada_type_name (type);
14f9c5c9 6601 int len;
d2e4a39e 6602
14f9c5c9
AS
6603 if (typename == NULL)
6604 return NULL;
6605
6606 len = strlen (typename);
6607
b4ba55a1 6608 name = (char *) alloca (len + strlen (suffix) + 1);
14f9c5c9
AS
6609
6610 strcpy (name, typename);
6611 strcpy (name + len, suffix);
6612
b4ba55a1 6613 return ada_find_parallel_type_with_name (type, name);
14f9c5c9
AS
6614}
6615
14f9c5c9 6616/* If TYPE is a variable-size record type, return the corresponding template
4c4b4cd2 6617 type describing its fields. Otherwise, return NULL. */
14f9c5c9 6618
d2e4a39e
AS
6619static struct type *
6620dynamic_template_type (struct type *type)
14f9c5c9 6621{
61ee279c 6622 type = ada_check_typedef (type);
14f9c5c9
AS
6623
6624 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT
d2e4a39e 6625 || ada_type_name (type) == NULL)
14f9c5c9 6626 return NULL;
d2e4a39e 6627 else
14f9c5c9
AS
6628 {
6629 int len = strlen (ada_type_name (type));
4c4b4cd2
PH
6630 if (len > 6 && strcmp (ada_type_name (type) + len - 6, "___XVE") == 0)
6631 return type;
14f9c5c9 6632 else
4c4b4cd2 6633 return ada_find_parallel_type (type, "___XVE");
14f9c5c9
AS
6634 }
6635}
6636
6637/* Assuming that TEMPL_TYPE is a union or struct type, returns
4c4b4cd2 6638 non-zero iff field FIELD_NUM of TEMPL_TYPE has dynamic size. */
14f9c5c9 6639
d2e4a39e
AS
6640static int
6641is_dynamic_field (struct type *templ_type, int field_num)
14f9c5c9
AS
6642{
6643 const char *name = TYPE_FIELD_NAME (templ_type, field_num);
d2e4a39e 6644 return name != NULL
14f9c5c9
AS
6645 && TYPE_CODE (TYPE_FIELD_TYPE (templ_type, field_num)) == TYPE_CODE_PTR
6646 && strstr (name, "___XVL") != NULL;
6647}
6648
4c4b4cd2
PH
6649/* The index of the variant field of TYPE, or -1 if TYPE does not
6650 represent a variant record type. */
14f9c5c9 6651
d2e4a39e 6652static int
4c4b4cd2 6653variant_field_index (struct type *type)
14f9c5c9
AS
6654{
6655 int f;
6656
4c4b4cd2
PH
6657 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT)
6658 return -1;
6659
6660 for (f = 0; f < TYPE_NFIELDS (type); f += 1)
6661 {
6662 if (ada_is_variant_part (type, f))
6663 return f;
6664 }
6665 return -1;
14f9c5c9
AS
6666}
6667
4c4b4cd2
PH
6668/* A record type with no fields. */
6669
d2e4a39e 6670static struct type *
e9bb382b 6671empty_record (struct type *template)
14f9c5c9 6672{
e9bb382b 6673 struct type *type = alloc_type_copy (template);
14f9c5c9
AS
6674 TYPE_CODE (type) = TYPE_CODE_STRUCT;
6675 TYPE_NFIELDS (type) = 0;
6676 TYPE_FIELDS (type) = NULL;
b1f33ddd 6677 INIT_CPLUS_SPECIFIC (type);
14f9c5c9
AS
6678 TYPE_NAME (type) = "<empty>";
6679 TYPE_TAG_NAME (type) = NULL;
14f9c5c9
AS
6680 TYPE_LENGTH (type) = 0;
6681 return type;
6682}
6683
6684/* An ordinary record type (with fixed-length fields) that describes
4c4b4cd2
PH
6685 the value of type TYPE at VALADDR or ADDRESS (see comments at
6686 the beginning of this section) VAL according to GNAT conventions.
6687 DVAL0 should describe the (portion of a) record that contains any
df407dfe 6688 necessary discriminants. It should be NULL if value_type (VAL) is
14f9c5c9
AS
6689 an outer-level type (i.e., as opposed to a branch of a variant.) A
6690 variant field (unless unchecked) is replaced by a particular branch
4c4b4cd2 6691 of the variant.
14f9c5c9 6692
4c4b4cd2
PH
6693 If not KEEP_DYNAMIC_FIELDS, then all fields whose position or
6694 length are not statically known are discarded. As a consequence,
6695 VALADDR, ADDRESS and DVAL0 are ignored.
6696
6697 NOTE: Limitations: For now, we assume that dynamic fields and
6698 variants occupy whole numbers of bytes. However, they need not be
6699 byte-aligned. */
6700
6701struct type *
10a2c479 6702ada_template_to_fixed_record_type_1 (struct type *type,
fc1a4b47 6703 const gdb_byte *valaddr,
4c4b4cd2
PH
6704 CORE_ADDR address, struct value *dval0,
6705 int keep_dynamic_fields)
14f9c5c9 6706{
d2e4a39e
AS
6707 struct value *mark = value_mark ();
6708 struct value *dval;
6709 struct type *rtype;
14f9c5c9 6710 int nfields, bit_len;
4c4b4cd2 6711 int variant_field;
14f9c5c9 6712 long off;
4c4b4cd2 6713 int fld_bit_len, bit_incr;
14f9c5c9
AS
6714 int f;
6715
4c4b4cd2
PH
6716 /* Compute the number of fields in this record type that are going
6717 to be processed: unless keep_dynamic_fields, this includes only
6718 fields whose position and length are static will be processed. */
6719 if (keep_dynamic_fields)
6720 nfields = TYPE_NFIELDS (type);
6721 else
6722 {
6723 nfields = 0;
76a01679 6724 while (nfields < TYPE_NFIELDS (type)
4c4b4cd2
PH
6725 && !ada_is_variant_part (type, nfields)
6726 && !is_dynamic_field (type, nfields))
6727 nfields++;
6728 }
6729
e9bb382b 6730 rtype = alloc_type_copy (type);
14f9c5c9
AS
6731 TYPE_CODE (rtype) = TYPE_CODE_STRUCT;
6732 INIT_CPLUS_SPECIFIC (rtype);
6733 TYPE_NFIELDS (rtype) = nfields;
d2e4a39e 6734 TYPE_FIELDS (rtype) = (struct field *)
14f9c5c9
AS
6735 TYPE_ALLOC (rtype, nfields * sizeof (struct field));
6736 memset (TYPE_FIELDS (rtype), 0, sizeof (struct field) * nfields);
6737 TYPE_NAME (rtype) = ada_type_name (type);
6738 TYPE_TAG_NAME (rtype) = NULL;
876cecd0 6739 TYPE_FIXED_INSTANCE (rtype) = 1;
14f9c5c9 6740
d2e4a39e
AS
6741 off = 0;
6742 bit_len = 0;
4c4b4cd2
PH
6743 variant_field = -1;
6744
14f9c5c9
AS
6745 for (f = 0; f < nfields; f += 1)
6746 {
6c038f32
PH
6747 off = align_value (off, field_alignment (type, f))
6748 + TYPE_FIELD_BITPOS (type, f);
14f9c5c9 6749 TYPE_FIELD_BITPOS (rtype, f) = off;
d2e4a39e 6750 TYPE_FIELD_BITSIZE (rtype, f) = 0;
14f9c5c9 6751
d2e4a39e 6752 if (ada_is_variant_part (type, f))
4c4b4cd2
PH
6753 {
6754 variant_field = f;
6755 fld_bit_len = bit_incr = 0;
6756 }
14f9c5c9 6757 else if (is_dynamic_field (type, f))
4c4b4cd2 6758 {
284614f0
JB
6759 const gdb_byte *field_valaddr = valaddr;
6760 CORE_ADDR field_address = address;
6761 struct type *field_type =
6762 TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type, f));
6763
4c4b4cd2 6764 if (dval0 == NULL)
b5304971
JG
6765 {
6766 /* rtype's length is computed based on the run-time
6767 value of discriminants. If the discriminants are not
6768 initialized, the type size may be completely bogus and
6769 GDB may fail to allocate a value for it. So check the
6770 size first before creating the value. */
6771 check_size (rtype);
6772 dval = value_from_contents_and_address (rtype, valaddr, address);
6773 }
4c4b4cd2
PH
6774 else
6775 dval = dval0;
6776
284614f0
JB
6777 /* If the type referenced by this field is an aligner type, we need
6778 to unwrap that aligner type, because its size might not be set.
6779 Keeping the aligner type would cause us to compute the wrong
6780 size for this field, impacting the offset of the all the fields
6781 that follow this one. */
6782 if (ada_is_aligner_type (field_type))
6783 {
6784 long field_offset = TYPE_FIELD_BITPOS (field_type, f);
6785
6786 field_valaddr = cond_offset_host (field_valaddr, field_offset);
6787 field_address = cond_offset_target (field_address, field_offset);
6788 field_type = ada_aligned_type (field_type);
6789 }
6790
6791 field_valaddr = cond_offset_host (field_valaddr,
6792 off / TARGET_CHAR_BIT);
6793 field_address = cond_offset_target (field_address,
6794 off / TARGET_CHAR_BIT);
6795
6796 /* Get the fixed type of the field. Note that, in this case,
6797 we do not want to get the real type out of the tag: if
6798 the current field is the parent part of a tagged record,
6799 we will get the tag of the object. Clearly wrong: the real
6800 type of the parent is not the real type of the child. We
6801 would end up in an infinite loop. */
6802 field_type = ada_get_base_type (field_type);
6803 field_type = ada_to_fixed_type (field_type, field_valaddr,
6804 field_address, dval, 0);
6805
6806 TYPE_FIELD_TYPE (rtype, f) = field_type;
4c4b4cd2
PH
6807 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
6808 bit_incr = fld_bit_len =
6809 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, f)) * TARGET_CHAR_BIT;
6810 }
14f9c5c9 6811 else
4c4b4cd2 6812 {
9f0dec2d
JB
6813 struct type *field_type = TYPE_FIELD_TYPE (type, f);
6814
6815 TYPE_FIELD_TYPE (rtype, f) = field_type;
4c4b4cd2
PH
6816 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
6817 if (TYPE_FIELD_BITSIZE (type, f) > 0)
6818 bit_incr = fld_bit_len =
6819 TYPE_FIELD_BITSIZE (rtype, f) = TYPE_FIELD_BITSIZE (type, f);
6820 else
6821 bit_incr = fld_bit_len =
9f0dec2d 6822 TYPE_LENGTH (ada_check_typedef (field_type)) * TARGET_CHAR_BIT;
4c4b4cd2 6823 }
14f9c5c9 6824 if (off + fld_bit_len > bit_len)
4c4b4cd2 6825 bit_len = off + fld_bit_len;
14f9c5c9 6826 off += bit_incr;
4c4b4cd2
PH
6827 TYPE_LENGTH (rtype) =
6828 align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
14f9c5c9 6829 }
4c4b4cd2
PH
6830
6831 /* We handle the variant part, if any, at the end because of certain
b1f33ddd 6832 odd cases in which it is re-ordered so as NOT to be the last field of
4c4b4cd2
PH
6833 the record. This can happen in the presence of representation
6834 clauses. */
6835 if (variant_field >= 0)
6836 {
6837 struct type *branch_type;
6838
6839 off = TYPE_FIELD_BITPOS (rtype, variant_field);
6840
6841 if (dval0 == NULL)
6842 dval = value_from_contents_and_address (rtype, valaddr, address);
6843 else
6844 dval = dval0;
6845
6846 branch_type =
6847 to_fixed_variant_branch_type
6848 (TYPE_FIELD_TYPE (type, variant_field),
6849 cond_offset_host (valaddr, off / TARGET_CHAR_BIT),
6850 cond_offset_target (address, off / TARGET_CHAR_BIT), dval);
6851 if (branch_type == NULL)
6852 {
6853 for (f = variant_field + 1; f < TYPE_NFIELDS (rtype); f += 1)
6854 TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f];
6855 TYPE_NFIELDS (rtype) -= 1;
6856 }
6857 else
6858 {
6859 TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
6860 TYPE_FIELD_NAME (rtype, variant_field) = "S";
6861 fld_bit_len =
6862 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, variant_field)) *
6863 TARGET_CHAR_BIT;
6864 if (off + fld_bit_len > bit_len)
6865 bit_len = off + fld_bit_len;
6866 TYPE_LENGTH (rtype) =
6867 align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
6868 }
6869 }
6870
714e53ab
PH
6871 /* According to exp_dbug.ads, the size of TYPE for variable-size records
6872 should contain the alignment of that record, which should be a strictly
6873 positive value. If null or negative, then something is wrong, most
6874 probably in the debug info. In that case, we don't round up the size
6875 of the resulting type. If this record is not part of another structure,
6876 the current RTYPE length might be good enough for our purposes. */
6877 if (TYPE_LENGTH (type) <= 0)
6878 {
323e0a4a
AC
6879 if (TYPE_NAME (rtype))
6880 warning (_("Invalid type size for `%s' detected: %d."),
6881 TYPE_NAME (rtype), TYPE_LENGTH (type));
6882 else
6883 warning (_("Invalid type size for <unnamed> detected: %d."),
6884 TYPE_LENGTH (type));
714e53ab
PH
6885 }
6886 else
6887 {
6888 TYPE_LENGTH (rtype) = align_value (TYPE_LENGTH (rtype),
6889 TYPE_LENGTH (type));
6890 }
14f9c5c9
AS
6891
6892 value_free_to_mark (mark);
d2e4a39e 6893 if (TYPE_LENGTH (rtype) > varsize_limit)
323e0a4a 6894 error (_("record type with dynamic size is larger than varsize-limit"));
14f9c5c9
AS
6895 return rtype;
6896}
6897
4c4b4cd2
PH
6898/* As for ada_template_to_fixed_record_type_1 with KEEP_DYNAMIC_FIELDS
6899 of 1. */
14f9c5c9 6900
d2e4a39e 6901static struct type *
fc1a4b47 6902template_to_fixed_record_type (struct type *type, const gdb_byte *valaddr,
4c4b4cd2
PH
6903 CORE_ADDR address, struct value *dval0)
6904{
6905 return ada_template_to_fixed_record_type_1 (type, valaddr,
6906 address, dval0, 1);
6907}
6908
6909/* An ordinary record type in which ___XVL-convention fields and
6910 ___XVU- and ___XVN-convention field types in TYPE0 are replaced with
6911 static approximations, containing all possible fields. Uses
6912 no runtime values. Useless for use in values, but that's OK,
6913 since the results are used only for type determinations. Works on both
6914 structs and unions. Representation note: to save space, we memorize
6915 the result of this function in the TYPE_TARGET_TYPE of the
6916 template type. */
6917
6918static struct type *
6919template_to_static_fixed_type (struct type *type0)
14f9c5c9
AS
6920{
6921 struct type *type;
6922 int nfields;
6923 int f;
6924
4c4b4cd2
PH
6925 if (TYPE_TARGET_TYPE (type0) != NULL)
6926 return TYPE_TARGET_TYPE (type0);
6927
6928 nfields = TYPE_NFIELDS (type0);
6929 type = type0;
14f9c5c9
AS
6930
6931 for (f = 0; f < nfields; f += 1)
6932 {
61ee279c 6933 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type0, f));
4c4b4cd2 6934 struct type *new_type;
14f9c5c9 6935
4c4b4cd2
PH
6936 if (is_dynamic_field (type0, f))
6937 new_type = to_static_fixed_type (TYPE_TARGET_TYPE (field_type));
14f9c5c9 6938 else
f192137b 6939 new_type = static_unwrap_type (field_type);
4c4b4cd2
PH
6940 if (type == type0 && new_type != field_type)
6941 {
e9bb382b 6942 TYPE_TARGET_TYPE (type0) = type = alloc_type_copy (type0);
4c4b4cd2
PH
6943 TYPE_CODE (type) = TYPE_CODE (type0);
6944 INIT_CPLUS_SPECIFIC (type);
6945 TYPE_NFIELDS (type) = nfields;
6946 TYPE_FIELDS (type) = (struct field *)
6947 TYPE_ALLOC (type, nfields * sizeof (struct field));
6948 memcpy (TYPE_FIELDS (type), TYPE_FIELDS (type0),
6949 sizeof (struct field) * nfields);
6950 TYPE_NAME (type) = ada_type_name (type0);
6951 TYPE_TAG_NAME (type) = NULL;
876cecd0 6952 TYPE_FIXED_INSTANCE (type) = 1;
4c4b4cd2
PH
6953 TYPE_LENGTH (type) = 0;
6954 }
6955 TYPE_FIELD_TYPE (type, f) = new_type;
6956 TYPE_FIELD_NAME (type, f) = TYPE_FIELD_NAME (type0, f);
14f9c5c9 6957 }
14f9c5c9
AS
6958 return type;
6959}
6960
4c4b4cd2 6961/* Given an object of type TYPE whose contents are at VALADDR and
5823c3ef
JB
6962 whose address in memory is ADDRESS, returns a revision of TYPE,
6963 which should be a non-dynamic-sized record, in which the variant
6964 part, if any, is replaced with the appropriate branch. Looks
4c4b4cd2
PH
6965 for discriminant values in DVAL0, which can be NULL if the record
6966 contains the necessary discriminant values. */
6967
d2e4a39e 6968static struct type *
fc1a4b47 6969to_record_with_fixed_variant_part (struct type *type, const gdb_byte *valaddr,
4c4b4cd2 6970 CORE_ADDR address, struct value *dval0)
14f9c5c9 6971{
d2e4a39e 6972 struct value *mark = value_mark ();
4c4b4cd2 6973 struct value *dval;
d2e4a39e 6974 struct type *rtype;
14f9c5c9
AS
6975 struct type *branch_type;
6976 int nfields = TYPE_NFIELDS (type);
4c4b4cd2 6977 int variant_field = variant_field_index (type);
14f9c5c9 6978
4c4b4cd2 6979 if (variant_field == -1)
14f9c5c9
AS
6980 return type;
6981
4c4b4cd2
PH
6982 if (dval0 == NULL)
6983 dval = value_from_contents_and_address (type, valaddr, address);
6984 else
6985 dval = dval0;
6986
e9bb382b 6987 rtype = alloc_type_copy (type);
14f9c5c9 6988 TYPE_CODE (rtype) = TYPE_CODE_STRUCT;
4c4b4cd2
PH
6989 INIT_CPLUS_SPECIFIC (rtype);
6990 TYPE_NFIELDS (rtype) = nfields;
d2e4a39e
AS
6991 TYPE_FIELDS (rtype) =
6992 (struct field *) TYPE_ALLOC (rtype, nfields * sizeof (struct field));
6993 memcpy (TYPE_FIELDS (rtype), TYPE_FIELDS (type),
4c4b4cd2 6994 sizeof (struct field) * nfields);
14f9c5c9
AS
6995 TYPE_NAME (rtype) = ada_type_name (type);
6996 TYPE_TAG_NAME (rtype) = NULL;
876cecd0 6997 TYPE_FIXED_INSTANCE (rtype) = 1;
14f9c5c9
AS
6998 TYPE_LENGTH (rtype) = TYPE_LENGTH (type);
6999
4c4b4cd2
PH
7000 branch_type = to_fixed_variant_branch_type
7001 (TYPE_FIELD_TYPE (type, variant_field),
d2e4a39e 7002 cond_offset_host (valaddr,
4c4b4cd2
PH
7003 TYPE_FIELD_BITPOS (type, variant_field)
7004 / TARGET_CHAR_BIT),
d2e4a39e 7005 cond_offset_target (address,
4c4b4cd2
PH
7006 TYPE_FIELD_BITPOS (type, variant_field)
7007 / TARGET_CHAR_BIT), dval);
d2e4a39e 7008 if (branch_type == NULL)
14f9c5c9 7009 {
4c4b4cd2
PH
7010 int f;
7011 for (f = variant_field + 1; f < nfields; f += 1)
7012 TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f];
14f9c5c9 7013 TYPE_NFIELDS (rtype) -= 1;
14f9c5c9
AS
7014 }
7015 else
7016 {
4c4b4cd2
PH
7017 TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
7018 TYPE_FIELD_NAME (rtype, variant_field) = "S";
7019 TYPE_FIELD_BITSIZE (rtype, variant_field) = 0;
14f9c5c9 7020 TYPE_LENGTH (rtype) += TYPE_LENGTH (branch_type);
14f9c5c9 7021 }
4c4b4cd2 7022 TYPE_LENGTH (rtype) -= TYPE_LENGTH (TYPE_FIELD_TYPE (type, variant_field));
d2e4a39e 7023
4c4b4cd2 7024 value_free_to_mark (mark);
14f9c5c9
AS
7025 return rtype;
7026}
7027
7028/* An ordinary record type (with fixed-length fields) that describes
7029 the value at (TYPE0, VALADDR, ADDRESS) [see explanation at
7030 beginning of this section]. Any necessary discriminants' values
4c4b4cd2
PH
7031 should be in DVAL, a record value; it may be NULL if the object
7032 at ADDR itself contains any necessary discriminant values.
7033 Additionally, VALADDR and ADDRESS may also be NULL if no discriminant
7034 values from the record are needed. Except in the case that DVAL,
7035 VALADDR, and ADDRESS are all 0 or NULL, a variant field (unless
7036 unchecked) is replaced by a particular branch of the variant.
7037
7038 NOTE: the case in which DVAL and VALADDR are NULL and ADDRESS is 0
7039 is questionable and may be removed. It can arise during the
7040 processing of an unconstrained-array-of-record type where all the
7041 variant branches have exactly the same size. This is because in
7042 such cases, the compiler does not bother to use the XVS convention
7043 when encoding the record. I am currently dubious of this
7044 shortcut and suspect the compiler should be altered. FIXME. */
14f9c5c9 7045
d2e4a39e 7046static struct type *
fc1a4b47 7047to_fixed_record_type (struct type *type0, const gdb_byte *valaddr,
4c4b4cd2 7048 CORE_ADDR address, struct value *dval)
14f9c5c9 7049{
d2e4a39e 7050 struct type *templ_type;
14f9c5c9 7051
876cecd0 7052 if (TYPE_FIXED_INSTANCE (type0))
4c4b4cd2
PH
7053 return type0;
7054
d2e4a39e 7055 templ_type = dynamic_template_type (type0);
14f9c5c9
AS
7056
7057 if (templ_type != NULL)
7058 return template_to_fixed_record_type (templ_type, valaddr, address, dval);
4c4b4cd2
PH
7059 else if (variant_field_index (type0) >= 0)
7060 {
7061 if (dval == NULL && valaddr == NULL && address == 0)
7062 return type0;
7063 return to_record_with_fixed_variant_part (type0, valaddr, address,
7064 dval);
7065 }
14f9c5c9
AS
7066 else
7067 {
876cecd0 7068 TYPE_FIXED_INSTANCE (type0) = 1;
14f9c5c9
AS
7069 return type0;
7070 }
7071
7072}
7073
7074/* An ordinary record type (with fixed-length fields) that describes
7075 the value at (VAR_TYPE0, VALADDR, ADDRESS), where VAR_TYPE0 is a
7076 union type. Any necessary discriminants' values should be in DVAL,
7077 a record value. That is, this routine selects the appropriate
7078 branch of the union at ADDR according to the discriminant value
b1f33ddd
JB
7079 indicated in the union's type name. Returns VAR_TYPE0 itself if
7080 it represents a variant subject to a pragma Unchecked_Union. */
14f9c5c9 7081
d2e4a39e 7082static struct type *
fc1a4b47 7083to_fixed_variant_branch_type (struct type *var_type0, const gdb_byte *valaddr,
4c4b4cd2 7084 CORE_ADDR address, struct value *dval)
14f9c5c9
AS
7085{
7086 int which;
d2e4a39e
AS
7087 struct type *templ_type;
7088 struct type *var_type;
14f9c5c9
AS
7089
7090 if (TYPE_CODE (var_type0) == TYPE_CODE_PTR)
7091 var_type = TYPE_TARGET_TYPE (var_type0);
d2e4a39e 7092 else
14f9c5c9
AS
7093 var_type = var_type0;
7094
7095 templ_type = ada_find_parallel_type (var_type, "___XVU");
7096
7097 if (templ_type != NULL)
7098 var_type = templ_type;
7099
b1f33ddd
JB
7100 if (is_unchecked_variant (var_type, value_type (dval)))
7101 return var_type0;
d2e4a39e
AS
7102 which =
7103 ada_which_variant_applies (var_type,
0fd88904 7104 value_type (dval), value_contents (dval));
14f9c5c9
AS
7105
7106 if (which < 0)
e9bb382b 7107 return empty_record (var_type);
14f9c5c9 7108 else if (is_dynamic_field (var_type, which))
4c4b4cd2 7109 return to_fixed_record_type
d2e4a39e
AS
7110 (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (var_type, which)),
7111 valaddr, address, dval);
4c4b4cd2 7112 else if (variant_field_index (TYPE_FIELD_TYPE (var_type, which)) >= 0)
d2e4a39e
AS
7113 return
7114 to_fixed_record_type
7115 (TYPE_FIELD_TYPE (var_type, which), valaddr, address, dval);
14f9c5c9
AS
7116 else
7117 return TYPE_FIELD_TYPE (var_type, which);
7118}
7119
7120/* Assuming that TYPE0 is an array type describing the type of a value
7121 at ADDR, and that DVAL describes a record containing any
7122 discriminants used in TYPE0, returns a type for the value that
7123 contains no dynamic components (that is, no components whose sizes
7124 are determined by run-time quantities). Unless IGNORE_TOO_BIG is
7125 true, gives an error message if the resulting type's size is over
4c4b4cd2 7126 varsize_limit. */
14f9c5c9 7127
d2e4a39e
AS
7128static struct type *
7129to_fixed_array_type (struct type *type0, struct value *dval,
4c4b4cd2 7130 int ignore_too_big)
14f9c5c9 7131{
d2e4a39e
AS
7132 struct type *index_type_desc;
7133 struct type *result;
ad82864c 7134 int constrained_packed_array_p;
14f9c5c9 7135
284614f0 7136 if (TYPE_FIXED_INSTANCE (type0))
4c4b4cd2 7137 return type0;
14f9c5c9 7138
ad82864c
JB
7139 constrained_packed_array_p = ada_is_constrained_packed_array_type (type0);
7140 if (constrained_packed_array_p)
7141 type0 = decode_constrained_packed_array_type (type0);
284614f0 7142
14f9c5c9
AS
7143 index_type_desc = ada_find_parallel_type (type0, "___XA");
7144 if (index_type_desc == NULL)
7145 {
61ee279c 7146 struct type *elt_type0 = ada_check_typedef (TYPE_TARGET_TYPE (type0));
14f9c5c9 7147 /* NOTE: elt_type---the fixed version of elt_type0---should never
4c4b4cd2
PH
7148 depend on the contents of the array in properly constructed
7149 debugging data. */
529cad9c
PH
7150 /* Create a fixed version of the array element type.
7151 We're not providing the address of an element here,
e1d5a0d2 7152 and thus the actual object value cannot be inspected to do
529cad9c
PH
7153 the conversion. This should not be a problem, since arrays of
7154 unconstrained objects are not allowed. In particular, all
7155 the elements of an array of a tagged type should all be of
7156 the same type specified in the debugging info. No need to
7157 consult the object tag. */
1ed6ede0 7158 struct type *elt_type = ada_to_fixed_type (elt_type0, 0, 0, dval, 1);
14f9c5c9 7159
284614f0
JB
7160 /* Make sure we always create a new array type when dealing with
7161 packed array types, since we're going to fix-up the array
7162 type length and element bitsize a little further down. */
ad82864c 7163 if (elt_type0 == elt_type && !constrained_packed_array_p)
4c4b4cd2 7164 result = type0;
14f9c5c9 7165 else
e9bb382b 7166 result = create_array_type (alloc_type_copy (type0),
4c4b4cd2 7167 elt_type, TYPE_INDEX_TYPE (type0));
14f9c5c9
AS
7168 }
7169 else
7170 {
7171 int i;
7172 struct type *elt_type0;
7173
7174 elt_type0 = type0;
7175 for (i = TYPE_NFIELDS (index_type_desc); i > 0; i -= 1)
4c4b4cd2 7176 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
14f9c5c9
AS
7177
7178 /* NOTE: result---the fixed version of elt_type0---should never
4c4b4cd2
PH
7179 depend on the contents of the array in properly constructed
7180 debugging data. */
529cad9c
PH
7181 /* Create a fixed version of the array element type.
7182 We're not providing the address of an element here,
e1d5a0d2 7183 and thus the actual object value cannot be inspected to do
529cad9c
PH
7184 the conversion. This should not be a problem, since arrays of
7185 unconstrained objects are not allowed. In particular, all
7186 the elements of an array of a tagged type should all be of
7187 the same type specified in the debugging info. No need to
7188 consult the object tag. */
1ed6ede0
JB
7189 result =
7190 ada_to_fixed_type (ada_check_typedef (elt_type0), 0, 0, dval, 1);
1ce677a4
UW
7191
7192 elt_type0 = type0;
14f9c5c9 7193 for (i = TYPE_NFIELDS (index_type_desc) - 1; i >= 0; i -= 1)
4c4b4cd2
PH
7194 {
7195 struct type *range_type =
7196 to_fixed_range_type (TYPE_FIELD_NAME (index_type_desc, i),
1ce677a4 7197 dval, TYPE_INDEX_TYPE (elt_type0));
e9bb382b 7198 result = create_array_type (alloc_type_copy (elt_type0),
4c4b4cd2 7199 result, range_type);
1ce677a4 7200 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
4c4b4cd2 7201 }
d2e4a39e 7202 if (!ignore_too_big && TYPE_LENGTH (result) > varsize_limit)
323e0a4a 7203 error (_("array type with dynamic size is larger than varsize-limit"));
14f9c5c9
AS
7204 }
7205
ad82864c 7206 if (constrained_packed_array_p)
284614f0
JB
7207 {
7208 /* So far, the resulting type has been created as if the original
7209 type was a regular (non-packed) array type. As a result, the
7210 bitsize of the array elements needs to be set again, and the array
7211 length needs to be recomputed based on that bitsize. */
7212 int len = TYPE_LENGTH (result) / TYPE_LENGTH (TYPE_TARGET_TYPE (result));
7213 int elt_bitsize = TYPE_FIELD_BITSIZE (type0, 0);
7214
7215 TYPE_FIELD_BITSIZE (result, 0) = TYPE_FIELD_BITSIZE (type0, 0);
7216 TYPE_LENGTH (result) = len * elt_bitsize / HOST_CHAR_BIT;
7217 if (TYPE_LENGTH (result) * HOST_CHAR_BIT < len * elt_bitsize)
7218 TYPE_LENGTH (result)++;
7219 }
7220
876cecd0 7221 TYPE_FIXED_INSTANCE (result) = 1;
14f9c5c9 7222 return result;
d2e4a39e 7223}
14f9c5c9
AS
7224
7225
7226/* A standard type (containing no dynamically sized components)
7227 corresponding to TYPE for the value (TYPE, VALADDR, ADDRESS)
7228 DVAL describes a record containing any discriminants used in TYPE0,
4c4b4cd2 7229 and may be NULL if there are none, or if the object of type TYPE at
529cad9c
PH
7230 ADDRESS or in VALADDR contains these discriminants.
7231
1ed6ede0
JB
7232 If CHECK_TAG is not null, in the case of tagged types, this function
7233 attempts to locate the object's tag and use it to compute the actual
7234 type. However, when ADDRESS is null, we cannot use it to determine the
7235 location of the tag, and therefore compute the tagged type's actual type.
7236 So we return the tagged type without consulting the tag. */
529cad9c 7237
f192137b
JB
7238static struct type *
7239ada_to_fixed_type_1 (struct type *type, const gdb_byte *valaddr,
1ed6ede0 7240 CORE_ADDR address, struct value *dval, int check_tag)
14f9c5c9 7241{
61ee279c 7242 type = ada_check_typedef (type);
d2e4a39e
AS
7243 switch (TYPE_CODE (type))
7244 {
7245 default:
14f9c5c9 7246 return type;
d2e4a39e 7247 case TYPE_CODE_STRUCT:
4c4b4cd2 7248 {
76a01679 7249 struct type *static_type = to_static_fixed_type (type);
1ed6ede0
JB
7250 struct type *fixed_record_type =
7251 to_fixed_record_type (type, valaddr, address, NULL);
529cad9c
PH
7252 /* If STATIC_TYPE is a tagged type and we know the object's address,
7253 then we can determine its tag, and compute the object's actual
1ed6ede0
JB
7254 type from there. Note that we have to use the fixed record
7255 type (the parent part of the record may have dynamic fields
7256 and the way the location of _tag is expressed may depend on
7257 them). */
529cad9c 7258
1ed6ede0 7259 if (check_tag && address != 0 && ada_is_tagged_type (static_type, 0))
76a01679
JB
7260 {
7261 struct type *real_type =
1ed6ede0
JB
7262 type_from_tag (value_tag_from_contents_and_address
7263 (fixed_record_type,
7264 valaddr,
7265 address));
76a01679 7266 if (real_type != NULL)
1ed6ede0 7267 return to_fixed_record_type (real_type, valaddr, address, NULL);
76a01679 7268 }
4af88198
JB
7269
7270 /* Check to see if there is a parallel ___XVZ variable.
7271 If there is, then it provides the actual size of our type. */
7272 else if (ada_type_name (fixed_record_type) != NULL)
7273 {
7274 char *name = ada_type_name (fixed_record_type);
7275 char *xvz_name = alloca (strlen (name) + 7 /* "___XVZ\0" */);
7276 int xvz_found = 0;
7277 LONGEST size;
7278
88c15c34 7279 xsnprintf (xvz_name, strlen (name) + 7, "%s___XVZ", name);
4af88198
JB
7280 size = get_int_var_value (xvz_name, &xvz_found);
7281 if (xvz_found && TYPE_LENGTH (fixed_record_type) != size)
7282 {
7283 fixed_record_type = copy_type (fixed_record_type);
7284 TYPE_LENGTH (fixed_record_type) = size;
7285
7286 /* The FIXED_RECORD_TYPE may have be a stub. We have
7287 observed this when the debugging info is STABS, and
7288 apparently it is something that is hard to fix.
7289
7290 In practice, we don't need the actual type definition
7291 at all, because the presence of the XVZ variable allows us
7292 to assume that there must be a XVS type as well, which we
7293 should be able to use later, when we need the actual type
7294 definition.
7295
7296 In the meantime, pretend that the "fixed" type we are
7297 returning is NOT a stub, because this can cause trouble
7298 when using this type to create new types targeting it.
7299 Indeed, the associated creation routines often check
7300 whether the target type is a stub and will try to replace
7301 it, thus using a type with the wrong size. This, in turn,
7302 might cause the new type to have the wrong size too.
7303 Consider the case of an array, for instance, where the size
7304 of the array is computed from the number of elements in
7305 our array multiplied by the size of its element. */
7306 TYPE_STUB (fixed_record_type) = 0;
7307 }
7308 }
1ed6ede0 7309 return fixed_record_type;
4c4b4cd2 7310 }
d2e4a39e 7311 case TYPE_CODE_ARRAY:
4c4b4cd2 7312 return to_fixed_array_type (type, dval, 1);
d2e4a39e
AS
7313 case TYPE_CODE_UNION:
7314 if (dval == NULL)
4c4b4cd2 7315 return type;
d2e4a39e 7316 else
4c4b4cd2 7317 return to_fixed_variant_branch_type (type, valaddr, address, dval);
d2e4a39e 7318 }
14f9c5c9
AS
7319}
7320
f192137b
JB
7321/* The same as ada_to_fixed_type_1, except that it preserves the type
7322 if it is a TYPE_CODE_TYPEDEF of a type that is already fixed.
7323 ada_to_fixed_type_1 would return the type referenced by TYPE. */
7324
7325struct type *
7326ada_to_fixed_type (struct type *type, const gdb_byte *valaddr,
7327 CORE_ADDR address, struct value *dval, int check_tag)
7328
7329{
7330 struct type *fixed_type =
7331 ada_to_fixed_type_1 (type, valaddr, address, dval, check_tag);
7332
7333 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF
7334 && TYPE_TARGET_TYPE (type) == fixed_type)
7335 return type;
7336
7337 return fixed_type;
7338}
7339
14f9c5c9 7340/* A standard (static-sized) type corresponding as well as possible to
4c4b4cd2 7341 TYPE0, but based on no runtime data. */
14f9c5c9 7342
d2e4a39e
AS
7343static struct type *
7344to_static_fixed_type (struct type *type0)
14f9c5c9 7345{
d2e4a39e 7346 struct type *type;
14f9c5c9
AS
7347
7348 if (type0 == NULL)
7349 return NULL;
7350
876cecd0 7351 if (TYPE_FIXED_INSTANCE (type0))
4c4b4cd2
PH
7352 return type0;
7353
61ee279c 7354 type0 = ada_check_typedef (type0);
d2e4a39e 7355
14f9c5c9
AS
7356 switch (TYPE_CODE (type0))
7357 {
7358 default:
7359 return type0;
7360 case TYPE_CODE_STRUCT:
7361 type = dynamic_template_type (type0);
d2e4a39e 7362 if (type != NULL)
4c4b4cd2
PH
7363 return template_to_static_fixed_type (type);
7364 else
7365 return template_to_static_fixed_type (type0);
14f9c5c9
AS
7366 case TYPE_CODE_UNION:
7367 type = ada_find_parallel_type (type0, "___XVU");
7368 if (type != NULL)
4c4b4cd2
PH
7369 return template_to_static_fixed_type (type);
7370 else
7371 return template_to_static_fixed_type (type0);
14f9c5c9
AS
7372 }
7373}
7374
4c4b4cd2
PH
7375/* A static approximation of TYPE with all type wrappers removed. */
7376
d2e4a39e
AS
7377static struct type *
7378static_unwrap_type (struct type *type)
14f9c5c9
AS
7379{
7380 if (ada_is_aligner_type (type))
7381 {
61ee279c 7382 struct type *type1 = TYPE_FIELD_TYPE (ada_check_typedef (type), 0);
14f9c5c9 7383 if (ada_type_name (type1) == NULL)
4c4b4cd2 7384 TYPE_NAME (type1) = ada_type_name (type);
14f9c5c9
AS
7385
7386 return static_unwrap_type (type1);
7387 }
d2e4a39e 7388 else
14f9c5c9 7389 {
d2e4a39e
AS
7390 struct type *raw_real_type = ada_get_base_type (type);
7391 if (raw_real_type == type)
4c4b4cd2 7392 return type;
14f9c5c9 7393 else
4c4b4cd2 7394 return to_static_fixed_type (raw_real_type);
14f9c5c9
AS
7395 }
7396}
7397
7398/* In some cases, incomplete and private types require
4c4b4cd2 7399 cross-references that are not resolved as records (for example,
14f9c5c9
AS
7400 type Foo;
7401 type FooP is access Foo;
7402 V: FooP;
7403 type Foo is array ...;
4c4b4cd2 7404 ). In these cases, since there is no mechanism for producing
14f9c5c9
AS
7405 cross-references to such types, we instead substitute for FooP a
7406 stub enumeration type that is nowhere resolved, and whose tag is
4c4b4cd2 7407 the name of the actual type. Call these types "non-record stubs". */
14f9c5c9
AS
7408
7409/* A type equivalent to TYPE that is not a non-record stub, if one
4c4b4cd2
PH
7410 exists, otherwise TYPE. */
7411
d2e4a39e 7412struct type *
61ee279c 7413ada_check_typedef (struct type *type)
14f9c5c9 7414{
727e3d2e
JB
7415 if (type == NULL)
7416 return NULL;
7417
14f9c5c9
AS
7418 CHECK_TYPEDEF (type);
7419 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM
529cad9c 7420 || !TYPE_STUB (type)
14f9c5c9
AS
7421 || TYPE_TAG_NAME (type) == NULL)
7422 return type;
d2e4a39e 7423 else
14f9c5c9 7424 {
d2e4a39e
AS
7425 char *name = TYPE_TAG_NAME (type);
7426 struct type *type1 = ada_find_any_type (name);
14f9c5c9
AS
7427 return (type1 == NULL) ? type : type1;
7428 }
7429}
7430
7431/* A value representing the data at VALADDR/ADDRESS as described by
7432 type TYPE0, but with a standard (static-sized) type that correctly
7433 describes it. If VAL0 is not NULL and TYPE0 already is a standard
7434 type, then return VAL0 [this feature is simply to avoid redundant
4c4b4cd2 7435 creation of struct values]. */
14f9c5c9 7436
4c4b4cd2
PH
7437static struct value *
7438ada_to_fixed_value_create (struct type *type0, CORE_ADDR address,
7439 struct value *val0)
14f9c5c9 7440{
1ed6ede0 7441 struct type *type = ada_to_fixed_type (type0, 0, address, NULL, 1);
14f9c5c9
AS
7442 if (type == type0 && val0 != NULL)
7443 return val0;
d2e4a39e 7444 else
4c4b4cd2
PH
7445 return value_from_contents_and_address (type, 0, address);
7446}
7447
7448/* A value representing VAL, but with a standard (static-sized) type
7449 that correctly describes it. Does not necessarily create a new
7450 value. */
7451
7452static struct value *
7453ada_to_fixed_value (struct value *val)
7454{
df407dfe 7455 return ada_to_fixed_value_create (value_type (val),
42ae5230 7456 value_address (val),
4c4b4cd2 7457 val);
14f9c5c9 7458}
d2e4a39e 7459\f
14f9c5c9 7460
14f9c5c9
AS
7461/* Attributes */
7462
4c4b4cd2
PH
7463/* Table mapping attribute numbers to names.
7464 NOTE: Keep up to date with enum ada_attribute definition in ada-lang.h. */
14f9c5c9 7465
d2e4a39e 7466static const char *attribute_names[] = {
14f9c5c9
AS
7467 "<?>",
7468
d2e4a39e 7469 "first",
14f9c5c9
AS
7470 "last",
7471 "length",
7472 "image",
14f9c5c9
AS
7473 "max",
7474 "min",
4c4b4cd2
PH
7475 "modulus",
7476 "pos",
7477 "size",
7478 "tag",
14f9c5c9 7479 "val",
14f9c5c9
AS
7480 0
7481};
7482
d2e4a39e 7483const char *
4c4b4cd2 7484ada_attribute_name (enum exp_opcode n)
14f9c5c9 7485{
4c4b4cd2
PH
7486 if (n >= OP_ATR_FIRST && n <= (int) OP_ATR_VAL)
7487 return attribute_names[n - OP_ATR_FIRST + 1];
14f9c5c9
AS
7488 else
7489 return attribute_names[0];
7490}
7491
4c4b4cd2 7492/* Evaluate the 'POS attribute applied to ARG. */
14f9c5c9 7493
4c4b4cd2
PH
7494static LONGEST
7495pos_atr (struct value *arg)
14f9c5c9 7496{
24209737
PH
7497 struct value *val = coerce_ref (arg);
7498 struct type *type = value_type (val);
14f9c5c9 7499
d2e4a39e 7500 if (!discrete_type_p (type))
323e0a4a 7501 error (_("'POS only defined on discrete types"));
14f9c5c9
AS
7502
7503 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
7504 {
7505 int i;
24209737 7506 LONGEST v = value_as_long (val);
14f9c5c9 7507
d2e4a39e 7508 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
4c4b4cd2
PH
7509 {
7510 if (v == TYPE_FIELD_BITPOS (type, i))
7511 return i;
7512 }
323e0a4a 7513 error (_("enumeration value is invalid: can't find 'POS"));
14f9c5c9
AS
7514 }
7515 else
24209737 7516 return value_as_long (val);
4c4b4cd2
PH
7517}
7518
7519static struct value *
3cb382c9 7520value_pos_atr (struct type *type, struct value *arg)
4c4b4cd2 7521{
3cb382c9 7522 return value_from_longest (type, pos_atr (arg));
14f9c5c9
AS
7523}
7524
4c4b4cd2 7525/* Evaluate the TYPE'VAL attribute applied to ARG. */
14f9c5c9 7526
d2e4a39e
AS
7527static struct value *
7528value_val_atr (struct type *type, struct value *arg)
14f9c5c9 7529{
d2e4a39e 7530 if (!discrete_type_p (type))
323e0a4a 7531 error (_("'VAL only defined on discrete types"));
df407dfe 7532 if (!integer_type_p (value_type (arg)))
323e0a4a 7533 error (_("'VAL requires integral argument"));
14f9c5c9
AS
7534
7535 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
7536 {
7537 long pos = value_as_long (arg);
7538 if (pos < 0 || pos >= TYPE_NFIELDS (type))
323e0a4a 7539 error (_("argument to 'VAL out of range"));
d2e4a39e 7540 return value_from_longest (type, TYPE_FIELD_BITPOS (type, pos));
14f9c5c9
AS
7541 }
7542 else
7543 return value_from_longest (type, value_as_long (arg));
7544}
14f9c5c9 7545\f
d2e4a39e 7546
4c4b4cd2 7547 /* Evaluation */
14f9c5c9 7548
4c4b4cd2
PH
7549/* True if TYPE appears to be an Ada character type.
7550 [At the moment, this is true only for Character and Wide_Character;
7551 It is a heuristic test that could stand improvement]. */
14f9c5c9 7552
d2e4a39e
AS
7553int
7554ada_is_character_type (struct type *type)
14f9c5c9 7555{
7b9f71f2
JB
7556 const char *name;
7557
7558 /* If the type code says it's a character, then assume it really is,
7559 and don't check any further. */
7560 if (TYPE_CODE (type) == TYPE_CODE_CHAR)
7561 return 1;
7562
7563 /* Otherwise, assume it's a character type iff it is a discrete type
7564 with a known character type name. */
7565 name = ada_type_name (type);
7566 return (name != NULL
7567 && (TYPE_CODE (type) == TYPE_CODE_INT
7568 || TYPE_CODE (type) == TYPE_CODE_RANGE)
7569 && (strcmp (name, "character") == 0
7570 || strcmp (name, "wide_character") == 0
5a517ebd 7571 || strcmp (name, "wide_wide_character") == 0
7b9f71f2 7572 || strcmp (name, "unsigned char") == 0));
14f9c5c9
AS
7573}
7574
4c4b4cd2 7575/* True if TYPE appears to be an Ada string type. */
14f9c5c9
AS
7576
7577int
ebf56fd3 7578ada_is_string_type (struct type *type)
14f9c5c9 7579{
61ee279c 7580 type = ada_check_typedef (type);
d2e4a39e 7581 if (type != NULL
14f9c5c9 7582 && TYPE_CODE (type) != TYPE_CODE_PTR
76a01679
JB
7583 && (ada_is_simple_array_type (type)
7584 || ada_is_array_descriptor_type (type))
14f9c5c9
AS
7585 && ada_array_arity (type) == 1)
7586 {
7587 struct type *elttype = ada_array_element_type (type, 1);
7588
7589 return ada_is_character_type (elttype);
7590 }
d2e4a39e 7591 else
14f9c5c9
AS
7592 return 0;
7593}
7594
5bf03f13
JB
7595/* The compiler sometimes provides a parallel XVS type for a given
7596 PAD type. Normally, it is safe to follow the PAD type directly,
7597 but older versions of the compiler have a bug that causes the offset
7598 of its "F" field to be wrong. Following that field in that case
7599 would lead to incorrect results, but this can be worked around
7600 by ignoring the PAD type and using the associated XVS type instead.
7601
7602 Set to True if the debugger should trust the contents of PAD types.
7603 Otherwise, ignore the PAD type if there is a parallel XVS type. */
7604static int trust_pad_over_xvs = 1;
14f9c5c9
AS
7605
7606/* True if TYPE is a struct type introduced by the compiler to force the
7607 alignment of a value. Such types have a single field with a
4c4b4cd2 7608 distinctive name. */
14f9c5c9
AS
7609
7610int
ebf56fd3 7611ada_is_aligner_type (struct type *type)
14f9c5c9 7612{
61ee279c 7613 type = ada_check_typedef (type);
714e53ab 7614
5bf03f13 7615 if (!trust_pad_over_xvs && ada_find_parallel_type (type, "___XVS") != NULL)
714e53ab
PH
7616 return 0;
7617
14f9c5c9 7618 return (TYPE_CODE (type) == TYPE_CODE_STRUCT
4c4b4cd2
PH
7619 && TYPE_NFIELDS (type) == 1
7620 && strcmp (TYPE_FIELD_NAME (type, 0), "F") == 0);
14f9c5c9
AS
7621}
7622
7623/* If there is an ___XVS-convention type parallel to SUBTYPE, return
4c4b4cd2 7624 the parallel type. */
14f9c5c9 7625
d2e4a39e
AS
7626struct type *
7627ada_get_base_type (struct type *raw_type)
14f9c5c9 7628{
d2e4a39e
AS
7629 struct type *real_type_namer;
7630 struct type *raw_real_type;
14f9c5c9
AS
7631
7632 if (raw_type == NULL || TYPE_CODE (raw_type) != TYPE_CODE_STRUCT)
7633 return raw_type;
7634
284614f0
JB
7635 if (ada_is_aligner_type (raw_type))
7636 /* The encoding specifies that we should always use the aligner type.
7637 So, even if this aligner type has an associated XVS type, we should
7638 simply ignore it.
7639
7640 According to the compiler gurus, an XVS type parallel to an aligner
7641 type may exist because of a stabs limitation. In stabs, aligner
7642 types are empty because the field has a variable-sized type, and
7643 thus cannot actually be used as an aligner type. As a result,
7644 we need the associated parallel XVS type to decode the type.
7645 Since the policy in the compiler is to not change the internal
7646 representation based on the debugging info format, we sometimes
7647 end up having a redundant XVS type parallel to the aligner type. */
7648 return raw_type;
7649
14f9c5c9 7650 real_type_namer = ada_find_parallel_type (raw_type, "___XVS");
d2e4a39e 7651 if (real_type_namer == NULL
14f9c5c9
AS
7652 || TYPE_CODE (real_type_namer) != TYPE_CODE_STRUCT
7653 || TYPE_NFIELDS (real_type_namer) != 1)
7654 return raw_type;
7655
f80d3ff2
JB
7656 if (TYPE_CODE (TYPE_FIELD_TYPE (real_type_namer, 0)) != TYPE_CODE_REF)
7657 {
7658 /* This is an older encoding form where the base type needs to be
7659 looked up by name. We prefer the newer enconding because it is
7660 more efficient. */
7661 raw_real_type = ada_find_any_type (TYPE_FIELD_NAME (real_type_namer, 0));
7662 if (raw_real_type == NULL)
7663 return raw_type;
7664 else
7665 return raw_real_type;
7666 }
7667
7668 /* The field in our XVS type is a reference to the base type. */
7669 return TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (real_type_namer, 0));
d2e4a39e 7670}
14f9c5c9 7671
4c4b4cd2 7672/* The type of value designated by TYPE, with all aligners removed. */
14f9c5c9 7673
d2e4a39e
AS
7674struct type *
7675ada_aligned_type (struct type *type)
14f9c5c9
AS
7676{
7677 if (ada_is_aligner_type (type))
7678 return ada_aligned_type (TYPE_FIELD_TYPE (type, 0));
7679 else
7680 return ada_get_base_type (type);
7681}
7682
7683
7684/* The address of the aligned value in an object at address VALADDR
4c4b4cd2 7685 having type TYPE. Assumes ada_is_aligner_type (TYPE). */
14f9c5c9 7686
fc1a4b47
AC
7687const gdb_byte *
7688ada_aligned_value_addr (struct type *type, const gdb_byte *valaddr)
14f9c5c9 7689{
d2e4a39e 7690 if (ada_is_aligner_type (type))
14f9c5c9 7691 return ada_aligned_value_addr (TYPE_FIELD_TYPE (type, 0),
4c4b4cd2
PH
7692 valaddr +
7693 TYPE_FIELD_BITPOS (type,
7694 0) / TARGET_CHAR_BIT);
14f9c5c9
AS
7695 else
7696 return valaddr;
7697}
7698
4c4b4cd2
PH
7699
7700
14f9c5c9 7701/* The printed representation of an enumeration literal with encoded
4c4b4cd2 7702 name NAME. The value is good to the next call of ada_enum_name. */
d2e4a39e
AS
7703const char *
7704ada_enum_name (const char *name)
14f9c5c9 7705{
4c4b4cd2
PH
7706 static char *result;
7707 static size_t result_len = 0;
d2e4a39e 7708 char *tmp;
14f9c5c9 7709
4c4b4cd2
PH
7710 /* First, unqualify the enumeration name:
7711 1. Search for the last '.' character. If we find one, then skip
76a01679
JB
7712 all the preceeding characters, the unqualified name starts
7713 right after that dot.
4c4b4cd2 7714 2. Otherwise, we may be debugging on a target where the compiler
76a01679
JB
7715 translates dots into "__". Search forward for double underscores,
7716 but stop searching when we hit an overloading suffix, which is
7717 of the form "__" followed by digits. */
4c4b4cd2 7718
c3e5cd34
PH
7719 tmp = strrchr (name, '.');
7720 if (tmp != NULL)
4c4b4cd2
PH
7721 name = tmp + 1;
7722 else
14f9c5c9 7723 {
4c4b4cd2
PH
7724 while ((tmp = strstr (name, "__")) != NULL)
7725 {
7726 if (isdigit (tmp[2]))
7727 break;
7728 else
7729 name = tmp + 2;
7730 }
14f9c5c9
AS
7731 }
7732
7733 if (name[0] == 'Q')
7734 {
14f9c5c9
AS
7735 int v;
7736 if (name[1] == 'U' || name[1] == 'W')
4c4b4cd2
PH
7737 {
7738 if (sscanf (name + 2, "%x", &v) != 1)
7739 return name;
7740 }
14f9c5c9 7741 else
4c4b4cd2 7742 return name;
14f9c5c9 7743
4c4b4cd2 7744 GROW_VECT (result, result_len, 16);
14f9c5c9 7745 if (isascii (v) && isprint (v))
88c15c34 7746 xsnprintf (result, result_len, "'%c'", v);
14f9c5c9 7747 else if (name[1] == 'U')
88c15c34 7748 xsnprintf (result, result_len, "[\"%02x\"]", v);
14f9c5c9 7749 else
88c15c34 7750 xsnprintf (result, result_len, "[\"%04x\"]", v);
14f9c5c9
AS
7751
7752 return result;
7753 }
d2e4a39e 7754 else
4c4b4cd2 7755 {
c3e5cd34
PH
7756 tmp = strstr (name, "__");
7757 if (tmp == NULL)
7758 tmp = strstr (name, "$");
7759 if (tmp != NULL)
4c4b4cd2
PH
7760 {
7761 GROW_VECT (result, result_len, tmp - name + 1);
7762 strncpy (result, name, tmp - name);
7763 result[tmp - name] = '\0';
7764 return result;
7765 }
7766
7767 return name;
7768 }
14f9c5c9
AS
7769}
7770
14f9c5c9
AS
7771/* Evaluate the subexpression of EXP starting at *POS as for
7772 evaluate_type, updating *POS to point just past the evaluated
4c4b4cd2 7773 expression. */
14f9c5c9 7774
d2e4a39e
AS
7775static struct value *
7776evaluate_subexp_type (struct expression *exp, int *pos)
14f9c5c9 7777{
4b27a620 7778 return evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
14f9c5c9
AS
7779}
7780
7781/* If VAL is wrapped in an aligner or subtype wrapper, return the
4c4b4cd2 7782 value it wraps. */
14f9c5c9 7783
d2e4a39e
AS
7784static struct value *
7785unwrap_value (struct value *val)
14f9c5c9 7786{
df407dfe 7787 struct type *type = ada_check_typedef (value_type (val));
14f9c5c9
AS
7788 if (ada_is_aligner_type (type))
7789 {
de4d072f 7790 struct value *v = ada_value_struct_elt (val, "F", 0);
df407dfe 7791 struct type *val_type = ada_check_typedef (value_type (v));
14f9c5c9 7792 if (ada_type_name (val_type) == NULL)
4c4b4cd2 7793 TYPE_NAME (val_type) = ada_type_name (type);
14f9c5c9
AS
7794
7795 return unwrap_value (v);
7796 }
d2e4a39e 7797 else
14f9c5c9 7798 {
d2e4a39e 7799 struct type *raw_real_type =
61ee279c 7800 ada_check_typedef (ada_get_base_type (type));
d2e4a39e 7801
5bf03f13
JB
7802 /* If there is no parallel XVS or XVE type, then the value is
7803 already unwrapped. Return it without further modification. */
7804 if ((type == raw_real_type)
7805 && ada_find_parallel_type (type, "___XVE") == NULL)
7806 return val;
14f9c5c9 7807
d2e4a39e 7808 return
4c4b4cd2
PH
7809 coerce_unspec_val_to_type
7810 (val, ada_to_fixed_type (raw_real_type, 0,
42ae5230 7811 value_address (val),
1ed6ede0 7812 NULL, 1));
14f9c5c9
AS
7813 }
7814}
d2e4a39e
AS
7815
7816static struct value *
7817cast_to_fixed (struct type *type, struct value *arg)
14f9c5c9
AS
7818{
7819 LONGEST val;
7820
df407dfe 7821 if (type == value_type (arg))
14f9c5c9 7822 return arg;
df407dfe 7823 else if (ada_is_fixed_point_type (value_type (arg)))
d2e4a39e 7824 val = ada_float_to_fixed (type,
df407dfe 7825 ada_fixed_to_float (value_type (arg),
4c4b4cd2 7826 value_as_long (arg)));
d2e4a39e 7827 else
14f9c5c9 7828 {
a53b7a21 7829 DOUBLEST argd = value_as_double (arg);
14f9c5c9
AS
7830 val = ada_float_to_fixed (type, argd);
7831 }
7832
7833 return value_from_longest (type, val);
7834}
7835
d2e4a39e 7836static struct value *
a53b7a21 7837cast_from_fixed (struct type *type, struct value *arg)
14f9c5c9 7838{
df407dfe 7839 DOUBLEST val = ada_fixed_to_float (value_type (arg),
4c4b4cd2 7840 value_as_long (arg));
a53b7a21 7841 return value_from_double (type, val);
14f9c5c9
AS
7842}
7843
4c4b4cd2
PH
7844/* Coerce VAL as necessary for assignment to an lval of type TYPE, and
7845 return the converted value. */
7846
d2e4a39e
AS
7847static struct value *
7848coerce_for_assign (struct type *type, struct value *val)
14f9c5c9 7849{
df407dfe 7850 struct type *type2 = value_type (val);
14f9c5c9
AS
7851 if (type == type2)
7852 return val;
7853
61ee279c
PH
7854 type2 = ada_check_typedef (type2);
7855 type = ada_check_typedef (type);
14f9c5c9 7856
d2e4a39e
AS
7857 if (TYPE_CODE (type2) == TYPE_CODE_PTR
7858 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
14f9c5c9
AS
7859 {
7860 val = ada_value_ind (val);
df407dfe 7861 type2 = value_type (val);
14f9c5c9
AS
7862 }
7863
d2e4a39e 7864 if (TYPE_CODE (type2) == TYPE_CODE_ARRAY
14f9c5c9
AS
7865 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
7866 {
7867 if (TYPE_LENGTH (type2) != TYPE_LENGTH (type)
4c4b4cd2
PH
7868 || TYPE_LENGTH (TYPE_TARGET_TYPE (type2))
7869 != TYPE_LENGTH (TYPE_TARGET_TYPE (type2)))
323e0a4a 7870 error (_("Incompatible types in assignment"));
04624583 7871 deprecated_set_value_type (val, type);
14f9c5c9 7872 }
d2e4a39e 7873 return val;
14f9c5c9
AS
7874}
7875
4c4b4cd2
PH
7876static struct value *
7877ada_value_binop (struct value *arg1, struct value *arg2, enum exp_opcode op)
7878{
7879 struct value *val;
7880 struct type *type1, *type2;
7881 LONGEST v, v1, v2;
7882
994b9211
AC
7883 arg1 = coerce_ref (arg1);
7884 arg2 = coerce_ref (arg2);
df407dfe
AC
7885 type1 = base_type (ada_check_typedef (value_type (arg1)));
7886 type2 = base_type (ada_check_typedef (value_type (arg2)));
4c4b4cd2 7887
76a01679
JB
7888 if (TYPE_CODE (type1) != TYPE_CODE_INT
7889 || TYPE_CODE (type2) != TYPE_CODE_INT)
4c4b4cd2
PH
7890 return value_binop (arg1, arg2, op);
7891
76a01679 7892 switch (op)
4c4b4cd2
PH
7893 {
7894 case BINOP_MOD:
7895 case BINOP_DIV:
7896 case BINOP_REM:
7897 break;
7898 default:
7899 return value_binop (arg1, arg2, op);
7900 }
7901
7902 v2 = value_as_long (arg2);
7903 if (v2 == 0)
323e0a4a 7904 error (_("second operand of %s must not be zero."), op_string (op));
4c4b4cd2
PH
7905
7906 if (TYPE_UNSIGNED (type1) || op == BINOP_MOD)
7907 return value_binop (arg1, arg2, op);
7908
7909 v1 = value_as_long (arg1);
7910 switch (op)
7911 {
7912 case BINOP_DIV:
7913 v = v1 / v2;
76a01679
JB
7914 if (!TRUNCATION_TOWARDS_ZERO && v1 * (v1 % v2) < 0)
7915 v += v > 0 ? -1 : 1;
4c4b4cd2
PH
7916 break;
7917 case BINOP_REM:
7918 v = v1 % v2;
76a01679
JB
7919 if (v * v1 < 0)
7920 v -= v2;
4c4b4cd2
PH
7921 break;
7922 default:
7923 /* Should not reach this point. */
7924 v = 0;
7925 }
7926
7927 val = allocate_value (type1);
990a07ab 7928 store_unsigned_integer (value_contents_raw (val),
e17a4113
UW
7929 TYPE_LENGTH (value_type (val)),
7930 gdbarch_byte_order (get_type_arch (type1)), v);
4c4b4cd2
PH
7931 return val;
7932}
7933
7934static int
7935ada_value_equal (struct value *arg1, struct value *arg2)
7936{
df407dfe
AC
7937 if (ada_is_direct_array_type (value_type (arg1))
7938 || ada_is_direct_array_type (value_type (arg2)))
4c4b4cd2 7939 {
f58b38bf
JB
7940 /* Automatically dereference any array reference before
7941 we attempt to perform the comparison. */
7942 arg1 = ada_coerce_ref (arg1);
7943 arg2 = ada_coerce_ref (arg2);
7944
4c4b4cd2
PH
7945 arg1 = ada_coerce_to_simple_array (arg1);
7946 arg2 = ada_coerce_to_simple_array (arg2);
df407dfe
AC
7947 if (TYPE_CODE (value_type (arg1)) != TYPE_CODE_ARRAY
7948 || TYPE_CODE (value_type (arg2)) != TYPE_CODE_ARRAY)
323e0a4a 7949 error (_("Attempt to compare array with non-array"));
4c4b4cd2 7950 /* FIXME: The following works only for types whose
76a01679
JB
7951 representations use all bits (no padding or undefined bits)
7952 and do not have user-defined equality. */
7953 return
df407dfe 7954 TYPE_LENGTH (value_type (arg1)) == TYPE_LENGTH (value_type (arg2))
0fd88904 7955 && memcmp (value_contents (arg1), value_contents (arg2),
df407dfe 7956 TYPE_LENGTH (value_type (arg1))) == 0;
4c4b4cd2
PH
7957 }
7958 return value_equal (arg1, arg2);
7959}
7960
52ce6436
PH
7961/* Total number of component associations in the aggregate starting at
7962 index PC in EXP. Assumes that index PC is the start of an
7963 OP_AGGREGATE. */
7964
7965static int
7966num_component_specs (struct expression *exp, int pc)
7967{
7968 int n, m, i;
7969 m = exp->elts[pc + 1].longconst;
7970 pc += 3;
7971 n = 0;
7972 for (i = 0; i < m; i += 1)
7973 {
7974 switch (exp->elts[pc].opcode)
7975 {
7976 default:
7977 n += 1;
7978 break;
7979 case OP_CHOICES:
7980 n += exp->elts[pc + 1].longconst;
7981 break;
7982 }
7983 ada_evaluate_subexp (NULL, exp, &pc, EVAL_SKIP);
7984 }
7985 return n;
7986}
7987
7988/* Assign the result of evaluating EXP starting at *POS to the INDEXth
7989 component of LHS (a simple array or a record), updating *POS past
7990 the expression, assuming that LHS is contained in CONTAINER. Does
7991 not modify the inferior's memory, nor does it modify LHS (unless
7992 LHS == CONTAINER). */
7993
7994static void
7995assign_component (struct value *container, struct value *lhs, LONGEST index,
7996 struct expression *exp, int *pos)
7997{
7998 struct value *mark = value_mark ();
7999 struct value *elt;
8000 if (TYPE_CODE (value_type (lhs)) == TYPE_CODE_ARRAY)
8001 {
22601c15
UW
8002 struct type *index_type = builtin_type (exp->gdbarch)->builtin_int;
8003 struct value *index_val = value_from_longest (index_type, index);
52ce6436
PH
8004 elt = unwrap_value (ada_value_subscript (lhs, 1, &index_val));
8005 }
8006 else
8007 {
8008 elt = ada_index_struct_field (index, lhs, 0, value_type (lhs));
8009 elt = ada_to_fixed_value (unwrap_value (elt));
8010 }
8011
8012 if (exp->elts[*pos].opcode == OP_AGGREGATE)
8013 assign_aggregate (container, elt, exp, pos, EVAL_NORMAL);
8014 else
8015 value_assign_to_component (container, elt,
8016 ada_evaluate_subexp (NULL, exp, pos,
8017 EVAL_NORMAL));
8018
8019 value_free_to_mark (mark);
8020}
8021
8022/* Assuming that LHS represents an lvalue having a record or array
8023 type, and EXP->ELTS[*POS] is an OP_AGGREGATE, evaluate an assignment
8024 of that aggregate's value to LHS, advancing *POS past the
8025 aggregate. NOSIDE is as for evaluate_subexp. CONTAINER is an
8026 lvalue containing LHS (possibly LHS itself). Does not modify
8027 the inferior's memory, nor does it modify the contents of
8028 LHS (unless == CONTAINER). Returns the modified CONTAINER. */
8029
8030static struct value *
8031assign_aggregate (struct value *container,
8032 struct value *lhs, struct expression *exp,
8033 int *pos, enum noside noside)
8034{
8035 struct type *lhs_type;
8036 int n = exp->elts[*pos+1].longconst;
8037 LONGEST low_index, high_index;
8038 int num_specs;
8039 LONGEST *indices;
8040 int max_indices, num_indices;
8041 int is_array_aggregate;
8042 int i;
8043 struct value *mark = value_mark ();
8044
8045 *pos += 3;
8046 if (noside != EVAL_NORMAL)
8047 {
8048 int i;
8049 for (i = 0; i < n; i += 1)
8050 ada_evaluate_subexp (NULL, exp, pos, noside);
8051 return container;
8052 }
8053
8054 container = ada_coerce_ref (container);
8055 if (ada_is_direct_array_type (value_type (container)))
8056 container = ada_coerce_to_simple_array (container);
8057 lhs = ada_coerce_ref (lhs);
8058 if (!deprecated_value_modifiable (lhs))
8059 error (_("Left operand of assignment is not a modifiable lvalue."));
8060
8061 lhs_type = value_type (lhs);
8062 if (ada_is_direct_array_type (lhs_type))
8063 {
8064 lhs = ada_coerce_to_simple_array (lhs);
8065 lhs_type = value_type (lhs);
8066 low_index = TYPE_ARRAY_LOWER_BOUND_VALUE (lhs_type);
8067 high_index = TYPE_ARRAY_UPPER_BOUND_VALUE (lhs_type);
8068 is_array_aggregate = 1;
8069 }
8070 else if (TYPE_CODE (lhs_type) == TYPE_CODE_STRUCT)
8071 {
8072 low_index = 0;
8073 high_index = num_visible_fields (lhs_type) - 1;
8074 is_array_aggregate = 0;
8075 }
8076 else
8077 error (_("Left-hand side must be array or record."));
8078
8079 num_specs = num_component_specs (exp, *pos - 3);
8080 max_indices = 4 * num_specs + 4;
8081 indices = alloca (max_indices * sizeof (indices[0]));
8082 indices[0] = indices[1] = low_index - 1;
8083 indices[2] = indices[3] = high_index + 1;
8084 num_indices = 4;
8085
8086 for (i = 0; i < n; i += 1)
8087 {
8088 switch (exp->elts[*pos].opcode)
8089 {
8090 case OP_CHOICES:
8091 aggregate_assign_from_choices (container, lhs, exp, pos, indices,
8092 &num_indices, max_indices,
8093 low_index, high_index);
8094 break;
8095 case OP_POSITIONAL:
8096 aggregate_assign_positional (container, lhs, exp, pos, indices,
8097 &num_indices, max_indices,
8098 low_index, high_index);
8099 break;
8100 case OP_OTHERS:
8101 if (i != n-1)
8102 error (_("Misplaced 'others' clause"));
8103 aggregate_assign_others (container, lhs, exp, pos, indices,
8104 num_indices, low_index, high_index);
8105 break;
8106 default:
8107 error (_("Internal error: bad aggregate clause"));
8108 }
8109 }
8110
8111 return container;
8112}
8113
8114/* Assign into the component of LHS indexed by the OP_POSITIONAL
8115 construct at *POS, updating *POS past the construct, given that
8116 the positions are relative to lower bound LOW, where HIGH is the
8117 upper bound. Record the position in INDICES[0 .. MAX_INDICES-1]
8118 updating *NUM_INDICES as needed. CONTAINER is as for
8119 assign_aggregate. */
8120static void
8121aggregate_assign_positional (struct value *container,
8122 struct value *lhs, struct expression *exp,
8123 int *pos, LONGEST *indices, int *num_indices,
8124 int max_indices, LONGEST low, LONGEST high)
8125{
8126 LONGEST ind = longest_to_int (exp->elts[*pos + 1].longconst) + low;
8127
8128 if (ind - 1 == high)
e1d5a0d2 8129 warning (_("Extra components in aggregate ignored."));
52ce6436
PH
8130 if (ind <= high)
8131 {
8132 add_component_interval (ind, ind, indices, num_indices, max_indices);
8133 *pos += 3;
8134 assign_component (container, lhs, ind, exp, pos);
8135 }
8136 else
8137 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
8138}
8139
8140/* Assign into the components of LHS indexed by the OP_CHOICES
8141 construct at *POS, updating *POS past the construct, given that
8142 the allowable indices are LOW..HIGH. Record the indices assigned
8143 to in INDICES[0 .. MAX_INDICES-1], updating *NUM_INDICES as
8144 needed. CONTAINER is as for assign_aggregate. */
8145static void
8146aggregate_assign_from_choices (struct value *container,
8147 struct value *lhs, struct expression *exp,
8148 int *pos, LONGEST *indices, int *num_indices,
8149 int max_indices, LONGEST low, LONGEST high)
8150{
8151 int j;
8152 int n_choices = longest_to_int (exp->elts[*pos+1].longconst);
8153 int choice_pos, expr_pc;
8154 int is_array = ada_is_direct_array_type (value_type (lhs));
8155
8156 choice_pos = *pos += 3;
8157
8158 for (j = 0; j < n_choices; j += 1)
8159 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
8160 expr_pc = *pos;
8161 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
8162
8163 for (j = 0; j < n_choices; j += 1)
8164 {
8165 LONGEST lower, upper;
8166 enum exp_opcode op = exp->elts[choice_pos].opcode;
8167 if (op == OP_DISCRETE_RANGE)
8168 {
8169 choice_pos += 1;
8170 lower = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
8171 EVAL_NORMAL));
8172 upper = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
8173 EVAL_NORMAL));
8174 }
8175 else if (is_array)
8176 {
8177 lower = value_as_long (ada_evaluate_subexp (NULL, exp, &choice_pos,
8178 EVAL_NORMAL));
8179 upper = lower;
8180 }
8181 else
8182 {
8183 int ind;
8184 char *name;
8185 switch (op)
8186 {
8187 case OP_NAME:
8188 name = &exp->elts[choice_pos + 2].string;
8189 break;
8190 case OP_VAR_VALUE:
8191 name = SYMBOL_NATURAL_NAME (exp->elts[choice_pos + 2].symbol);
8192 break;
8193 default:
8194 error (_("Invalid record component association."));
8195 }
8196 ada_evaluate_subexp (NULL, exp, &choice_pos, EVAL_SKIP);
8197 ind = 0;
8198 if (! find_struct_field (name, value_type (lhs), 0,
8199 NULL, NULL, NULL, NULL, &ind))
8200 error (_("Unknown component name: %s."), name);
8201 lower = upper = ind;
8202 }
8203
8204 if (lower <= upper && (lower < low || upper > high))
8205 error (_("Index in component association out of bounds."));
8206
8207 add_component_interval (lower, upper, indices, num_indices,
8208 max_indices);
8209 while (lower <= upper)
8210 {
8211 int pos1;
8212 pos1 = expr_pc;
8213 assign_component (container, lhs, lower, exp, &pos1);
8214 lower += 1;
8215 }
8216 }
8217}
8218
8219/* Assign the value of the expression in the OP_OTHERS construct in
8220 EXP at *POS into the components of LHS indexed from LOW .. HIGH that
8221 have not been previously assigned. The index intervals already assigned
8222 are in INDICES[0 .. NUM_INDICES-1]. Updates *POS to after the
8223 OP_OTHERS clause. CONTAINER is as for assign_aggregate*/
8224static void
8225aggregate_assign_others (struct value *container,
8226 struct value *lhs, struct expression *exp,
8227 int *pos, LONGEST *indices, int num_indices,
8228 LONGEST low, LONGEST high)
8229{
8230 int i;
8231 int expr_pc = *pos+1;
8232
8233 for (i = 0; i < num_indices - 2; i += 2)
8234 {
8235 LONGEST ind;
8236 for (ind = indices[i + 1] + 1; ind < indices[i + 2]; ind += 1)
8237 {
8238 int pos;
8239 pos = expr_pc;
8240 assign_component (container, lhs, ind, exp, &pos);
8241 }
8242 }
8243 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
8244}
8245
8246/* Add the interval [LOW .. HIGH] to the sorted set of intervals
8247 [ INDICES[0] .. INDICES[1] ],..., [ INDICES[*SIZE-2] .. INDICES[*SIZE-1] ],
8248 modifying *SIZE as needed. It is an error if *SIZE exceeds
8249 MAX_SIZE. The resulting intervals do not overlap. */
8250static void
8251add_component_interval (LONGEST low, LONGEST high,
8252 LONGEST* indices, int *size, int max_size)
8253{
8254 int i, j;
8255 for (i = 0; i < *size; i += 2) {
8256 if (high >= indices[i] && low <= indices[i + 1])
8257 {
8258 int kh;
8259 for (kh = i + 2; kh < *size; kh += 2)
8260 if (high < indices[kh])
8261 break;
8262 if (low < indices[i])
8263 indices[i] = low;
8264 indices[i + 1] = indices[kh - 1];
8265 if (high > indices[i + 1])
8266 indices[i + 1] = high;
8267 memcpy (indices + i + 2, indices + kh, *size - kh);
8268 *size -= kh - i - 2;
8269 return;
8270 }
8271 else if (high < indices[i])
8272 break;
8273 }
8274
8275 if (*size == max_size)
8276 error (_("Internal error: miscounted aggregate components."));
8277 *size += 2;
8278 for (j = *size-1; j >= i+2; j -= 1)
8279 indices[j] = indices[j - 2];
8280 indices[i] = low;
8281 indices[i + 1] = high;
8282}
8283
6e48bd2c
JB
8284/* Perform and Ada cast of ARG2 to type TYPE if the type of ARG2
8285 is different. */
8286
8287static struct value *
8288ada_value_cast (struct type *type, struct value *arg2, enum noside noside)
8289{
8290 if (type == ada_check_typedef (value_type (arg2)))
8291 return arg2;
8292
8293 if (ada_is_fixed_point_type (type))
8294 return (cast_to_fixed (type, arg2));
8295
8296 if (ada_is_fixed_point_type (value_type (arg2)))
a53b7a21 8297 return cast_from_fixed (type, arg2);
6e48bd2c
JB
8298
8299 return value_cast (type, arg2);
8300}
8301
284614f0
JB
8302/* Evaluating Ada expressions, and printing their result.
8303 ------------------------------------------------------
8304
21649b50
JB
8305 1. Introduction:
8306 ----------------
8307
284614f0
JB
8308 We usually evaluate an Ada expression in order to print its value.
8309 We also evaluate an expression in order to print its type, which
8310 happens during the EVAL_AVOID_SIDE_EFFECTS phase of the evaluation,
8311 but we'll focus mostly on the EVAL_NORMAL phase. In practice, the
8312 EVAL_AVOID_SIDE_EFFECTS phase allows us to simplify certain aspects of
8313 the evaluation compared to the EVAL_NORMAL, but is otherwise very
8314 similar.
8315
8316 Evaluating expressions is a little more complicated for Ada entities
8317 than it is for entities in languages such as C. The main reason for
8318 this is that Ada provides types whose definition might be dynamic.
8319 One example of such types is variant records. Or another example
8320 would be an array whose bounds can only be known at run time.
8321
8322 The following description is a general guide as to what should be
8323 done (and what should NOT be done) in order to evaluate an expression
8324 involving such types, and when. This does not cover how the semantic
8325 information is encoded by GNAT as this is covered separatly. For the
8326 document used as the reference for the GNAT encoding, see exp_dbug.ads
8327 in the GNAT sources.
8328
8329 Ideally, we should embed each part of this description next to its
8330 associated code. Unfortunately, the amount of code is so vast right
8331 now that it's hard to see whether the code handling a particular
8332 situation might be duplicated or not. One day, when the code is
8333 cleaned up, this guide might become redundant with the comments
8334 inserted in the code, and we might want to remove it.
8335
21649b50
JB
8336 2. ``Fixing'' an Entity, the Simple Case:
8337 -----------------------------------------
8338
284614f0
JB
8339 When evaluating Ada expressions, the tricky issue is that they may
8340 reference entities whose type contents and size are not statically
8341 known. Consider for instance a variant record:
8342
8343 type Rec (Empty : Boolean := True) is record
8344 case Empty is
8345 when True => null;
8346 when False => Value : Integer;
8347 end case;
8348 end record;
8349 Yes : Rec := (Empty => False, Value => 1);
8350 No : Rec := (empty => True);
8351
8352 The size and contents of that record depends on the value of the
8353 descriminant (Rec.Empty). At this point, neither the debugging
8354 information nor the associated type structure in GDB are able to
8355 express such dynamic types. So what the debugger does is to create
8356 "fixed" versions of the type that applies to the specific object.
8357 We also informally refer to this opperation as "fixing" an object,
8358 which means creating its associated fixed type.
8359
8360 Example: when printing the value of variable "Yes" above, its fixed
8361 type would look like this:
8362
8363 type Rec is record
8364 Empty : Boolean;
8365 Value : Integer;
8366 end record;
8367
8368 On the other hand, if we printed the value of "No", its fixed type
8369 would become:
8370
8371 type Rec is record
8372 Empty : Boolean;
8373 end record;
8374
8375 Things become a little more complicated when trying to fix an entity
8376 with a dynamic type that directly contains another dynamic type,
8377 such as an array of variant records, for instance. There are
8378 two possible cases: Arrays, and records.
8379
21649b50
JB
8380 3. ``Fixing'' Arrays:
8381 ---------------------
8382
8383 The type structure in GDB describes an array in terms of its bounds,
8384 and the type of its elements. By design, all elements in the array
8385 have the same type and we cannot represent an array of variant elements
8386 using the current type structure in GDB. When fixing an array,
8387 we cannot fix the array element, as we would potentially need one
8388 fixed type per element of the array. As a result, the best we can do
8389 when fixing an array is to produce an array whose bounds and size
8390 are correct (allowing us to read it from memory), but without having
8391 touched its element type. Fixing each element will be done later,
8392 when (if) necessary.
8393
8394 Arrays are a little simpler to handle than records, because the same
8395 amount of memory is allocated for each element of the array, even if
1b536f04 8396 the amount of space actually used by each element differs from element
21649b50 8397 to element. Consider for instance the following array of type Rec:
284614f0
JB
8398
8399 type Rec_Array is array (1 .. 2) of Rec;
8400
1b536f04
JB
8401 The actual amount of memory occupied by each element might be different
8402 from element to element, depending on the value of their discriminant.
21649b50 8403 But the amount of space reserved for each element in the array remains
1b536f04 8404 fixed regardless. So we simply need to compute that size using
21649b50
JB
8405 the debugging information available, from which we can then determine
8406 the array size (we multiply the number of elements of the array by
8407 the size of each element).
8408
8409 The simplest case is when we have an array of a constrained element
8410 type. For instance, consider the following type declarations:
8411
8412 type Bounded_String (Max_Size : Integer) is
8413 Length : Integer;
8414 Buffer : String (1 .. Max_Size);
8415 end record;
8416 type Bounded_String_Array is array (1 ..2) of Bounded_String (80);
8417
8418 In this case, the compiler describes the array as an array of
8419 variable-size elements (identified by its XVS suffix) for which
8420 the size can be read in the parallel XVZ variable.
8421
8422 In the case of an array of an unconstrained element type, the compiler
8423 wraps the array element inside a private PAD type. This type should not
8424 be shown to the user, and must be "unwrap"'ed before printing. Note
284614f0
JB
8425 that we also use the adjective "aligner" in our code to designate
8426 these wrapper types.
8427
1b536f04 8428 In some cases, the size allocated for each element is statically
21649b50
JB
8429 known. In that case, the PAD type already has the correct size,
8430 and the array element should remain unfixed.
8431
8432 But there are cases when this size is not statically known.
8433 For instance, assuming that "Five" is an integer variable:
284614f0
JB
8434
8435 type Dynamic is array (1 .. Five) of Integer;
8436 type Wrapper (Has_Length : Boolean := False) is record
8437 Data : Dynamic;
8438 case Has_Length is
8439 when True => Length : Integer;
8440 when False => null;
8441 end case;
8442 end record;
8443 type Wrapper_Array is array (1 .. 2) of Wrapper;
8444
8445 Hello : Wrapper_Array := (others => (Has_Length => True,
8446 Data => (others => 17),
8447 Length => 1));
8448
8449
8450 The debugging info would describe variable Hello as being an
8451 array of a PAD type. The size of that PAD type is not statically
8452 known, but can be determined using a parallel XVZ variable.
8453 In that case, a copy of the PAD type with the correct size should
8454 be used for the fixed array.
8455
21649b50
JB
8456 3. ``Fixing'' record type objects:
8457 ----------------------------------
8458
8459 Things are slightly different from arrays in the case of dynamic
284614f0
JB
8460 record types. In this case, in order to compute the associated
8461 fixed type, we need to determine the size and offset of each of
8462 its components. This, in turn, requires us to compute the fixed
8463 type of each of these components.
8464
8465 Consider for instance the example:
8466
8467 type Bounded_String (Max_Size : Natural) is record
8468 Str : String (1 .. Max_Size);
8469 Length : Natural;
8470 end record;
8471 My_String : Bounded_String (Max_Size => 10);
8472
8473 In that case, the position of field "Length" depends on the size
8474 of field Str, which itself depends on the value of the Max_Size
21649b50 8475 discriminant. In order to fix the type of variable My_String,
284614f0
JB
8476 we need to fix the type of field Str. Therefore, fixing a variant
8477 record requires us to fix each of its components.
8478
8479 However, if a component does not have a dynamic size, the component
8480 should not be fixed. In particular, fields that use a PAD type
8481 should not fixed. Here is an example where this might happen
8482 (assuming type Rec above):
8483
8484 type Container (Big : Boolean) is record
8485 First : Rec;
8486 After : Integer;
8487 case Big is
8488 when True => Another : Integer;
8489 when False => null;
8490 end case;
8491 end record;
8492 My_Container : Container := (Big => False,
8493 First => (Empty => True),
8494 After => 42);
8495
8496 In that example, the compiler creates a PAD type for component First,
8497 whose size is constant, and then positions the component After just
8498 right after it. The offset of component After is therefore constant
8499 in this case.
8500
8501 The debugger computes the position of each field based on an algorithm
8502 that uses, among other things, the actual position and size of the field
21649b50
JB
8503 preceding it. Let's now imagine that the user is trying to print
8504 the value of My_Container. If the type fixing was recursive, we would
284614f0
JB
8505 end up computing the offset of field After based on the size of the
8506 fixed version of field First. And since in our example First has
8507 only one actual field, the size of the fixed type is actually smaller
8508 than the amount of space allocated to that field, and thus we would
8509 compute the wrong offset of field After.
8510
21649b50
JB
8511 To make things more complicated, we need to watch out for dynamic
8512 components of variant records (identified by the ___XVL suffix in
8513 the component name). Even if the target type is a PAD type, the size
8514 of that type might not be statically known. So the PAD type needs
8515 to be unwrapped and the resulting type needs to be fixed. Otherwise,
8516 we might end up with the wrong size for our component. This can be
8517 observed with the following type declarations:
284614f0
JB
8518
8519 type Octal is new Integer range 0 .. 7;
8520 type Octal_Array is array (Positive range <>) of Octal;
8521 pragma Pack (Octal_Array);
8522
8523 type Octal_Buffer (Size : Positive) is record
8524 Buffer : Octal_Array (1 .. Size);
8525 Length : Integer;
8526 end record;
8527
8528 In that case, Buffer is a PAD type whose size is unset and needs
8529 to be computed by fixing the unwrapped type.
8530
21649b50
JB
8531 4. When to ``Fix'' un-``Fixed'' sub-elements of an entity:
8532 ----------------------------------------------------------
8533
8534 Lastly, when should the sub-elements of an entity that remained unfixed
284614f0
JB
8535 thus far, be actually fixed?
8536
8537 The answer is: Only when referencing that element. For instance
8538 when selecting one component of a record, this specific component
8539 should be fixed at that point in time. Or when printing the value
8540 of a record, each component should be fixed before its value gets
8541 printed. Similarly for arrays, the element of the array should be
8542 fixed when printing each element of the array, or when extracting
8543 one element out of that array. On the other hand, fixing should
8544 not be performed on the elements when taking a slice of an array!
8545
8546 Note that one of the side-effects of miscomputing the offset and
8547 size of each field is that we end up also miscomputing the size
8548 of the containing type. This can have adverse results when computing
8549 the value of an entity. GDB fetches the value of an entity based
8550 on the size of its type, and thus a wrong size causes GDB to fetch
8551 the wrong amount of memory. In the case where the computed size is
8552 too small, GDB fetches too little data to print the value of our
8553 entiry. Results in this case as unpredicatble, as we usually read
8554 past the buffer containing the data =:-o. */
8555
8556/* Implement the evaluate_exp routine in the exp_descriptor structure
8557 for the Ada language. */
8558
52ce6436 8559static struct value *
ebf56fd3 8560ada_evaluate_subexp (struct type *expect_type, struct expression *exp,
4c4b4cd2 8561 int *pos, enum noside noside)
14f9c5c9
AS
8562{
8563 enum exp_opcode op;
14f9c5c9
AS
8564 int tem, tem2, tem3;
8565 int pc;
8566 struct value *arg1 = NULL, *arg2 = NULL, *arg3;
8567 struct type *type;
52ce6436 8568 int nargs, oplen;
d2e4a39e 8569 struct value **argvec;
14f9c5c9 8570
d2e4a39e
AS
8571 pc = *pos;
8572 *pos += 1;
14f9c5c9
AS
8573 op = exp->elts[pc].opcode;
8574
d2e4a39e 8575 switch (op)
14f9c5c9
AS
8576 {
8577 default:
8578 *pos -= 1;
6e48bd2c
JB
8579 arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside);
8580 arg1 = unwrap_value (arg1);
8581
8582 /* If evaluating an OP_DOUBLE and an EXPECT_TYPE was provided,
8583 then we need to perform the conversion manually, because
8584 evaluate_subexp_standard doesn't do it. This conversion is
8585 necessary in Ada because the different kinds of float/fixed
8586 types in Ada have different representations.
8587
8588 Similarly, we need to perform the conversion from OP_LONG
8589 ourselves. */
8590 if ((op == OP_DOUBLE || op == OP_LONG) && expect_type != NULL)
8591 arg1 = ada_value_cast (expect_type, arg1, noside);
8592
8593 return arg1;
4c4b4cd2
PH
8594
8595 case OP_STRING:
8596 {
76a01679
JB
8597 struct value *result;
8598 *pos -= 1;
8599 result = evaluate_subexp_standard (expect_type, exp, pos, noside);
8600 /* The result type will have code OP_STRING, bashed there from
8601 OP_ARRAY. Bash it back. */
df407dfe
AC
8602 if (TYPE_CODE (value_type (result)) == TYPE_CODE_STRING)
8603 TYPE_CODE (value_type (result)) = TYPE_CODE_ARRAY;
76a01679 8604 return result;
4c4b4cd2 8605 }
14f9c5c9
AS
8606
8607 case UNOP_CAST:
8608 (*pos) += 2;
8609 type = exp->elts[pc + 1].type;
8610 arg1 = evaluate_subexp (type, exp, pos, noside);
8611 if (noside == EVAL_SKIP)
4c4b4cd2 8612 goto nosideret;
6e48bd2c 8613 arg1 = ada_value_cast (type, arg1, noside);
14f9c5c9
AS
8614 return arg1;
8615
4c4b4cd2
PH
8616 case UNOP_QUAL:
8617 (*pos) += 2;
8618 type = exp->elts[pc + 1].type;
8619 return ada_evaluate_subexp (type, exp, pos, noside);
8620
14f9c5c9
AS
8621 case BINOP_ASSIGN:
8622 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
52ce6436
PH
8623 if (exp->elts[*pos].opcode == OP_AGGREGATE)
8624 {
8625 arg1 = assign_aggregate (arg1, arg1, exp, pos, noside);
8626 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
8627 return arg1;
8628 return ada_value_assign (arg1, arg1);
8629 }
003f3813
JB
8630 /* Force the evaluation of the rhs ARG2 to the type of the lhs ARG1,
8631 except if the lhs of our assignment is a convenience variable.
8632 In the case of assigning to a convenience variable, the lhs
8633 should be exactly the result of the evaluation of the rhs. */
8634 type = value_type (arg1);
8635 if (VALUE_LVAL (arg1) == lval_internalvar)
8636 type = NULL;
8637 arg2 = evaluate_subexp (type, exp, pos, noside);
14f9c5c9 8638 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
4c4b4cd2 8639 return arg1;
df407dfe
AC
8640 if (ada_is_fixed_point_type (value_type (arg1)))
8641 arg2 = cast_to_fixed (value_type (arg1), arg2);
8642 else if (ada_is_fixed_point_type (value_type (arg2)))
76a01679 8643 error
323e0a4a 8644 (_("Fixed-point values must be assigned to fixed-point variables"));
d2e4a39e 8645 else
df407dfe 8646 arg2 = coerce_for_assign (value_type (arg1), arg2);
4c4b4cd2 8647 return ada_value_assign (arg1, arg2);
14f9c5c9
AS
8648
8649 case BINOP_ADD:
8650 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
8651 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
8652 if (noside == EVAL_SKIP)
4c4b4cd2 8653 goto nosideret;
2ac8a782
JB
8654 if (TYPE_CODE (value_type (arg1)) == TYPE_CODE_PTR)
8655 return (value_from_longest
8656 (value_type (arg1),
8657 value_as_long (arg1) + value_as_long (arg2)));
df407dfe
AC
8658 if ((ada_is_fixed_point_type (value_type (arg1))
8659 || ada_is_fixed_point_type (value_type (arg2)))
8660 && value_type (arg1) != value_type (arg2))
323e0a4a 8661 error (_("Operands of fixed-point addition must have the same type"));
b7789565
JB
8662 /* Do the addition, and cast the result to the type of the first
8663 argument. We cannot cast the result to a reference type, so if
8664 ARG1 is a reference type, find its underlying type. */
8665 type = value_type (arg1);
8666 while (TYPE_CODE (type) == TYPE_CODE_REF)
8667 type = TYPE_TARGET_TYPE (type);
f44316fa 8668 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
89eef114 8669 return value_cast (type, value_binop (arg1, arg2, BINOP_ADD));
14f9c5c9
AS
8670
8671 case BINOP_SUB:
8672 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
8673 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
8674 if (noside == EVAL_SKIP)
4c4b4cd2 8675 goto nosideret;
2ac8a782
JB
8676 if (TYPE_CODE (value_type (arg1)) == TYPE_CODE_PTR)
8677 return (value_from_longest
8678 (value_type (arg1),
8679 value_as_long (arg1) - value_as_long (arg2)));
df407dfe
AC
8680 if ((ada_is_fixed_point_type (value_type (arg1))
8681 || ada_is_fixed_point_type (value_type (arg2)))
8682 && value_type (arg1) != value_type (arg2))
323e0a4a 8683 error (_("Operands of fixed-point subtraction must have the same type"));
b7789565
JB
8684 /* Do the substraction, and cast the result to the type of the first
8685 argument. We cannot cast the result to a reference type, so if
8686 ARG1 is a reference type, find its underlying type. */
8687 type = value_type (arg1);
8688 while (TYPE_CODE (type) == TYPE_CODE_REF)
8689 type = TYPE_TARGET_TYPE (type);
f44316fa 8690 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
89eef114 8691 return value_cast (type, value_binop (arg1, arg2, BINOP_SUB));
14f9c5c9
AS
8692
8693 case BINOP_MUL:
8694 case BINOP_DIV:
e1578042
JB
8695 case BINOP_REM:
8696 case BINOP_MOD:
14f9c5c9
AS
8697 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8698 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8699 if (noside == EVAL_SKIP)
4c4b4cd2 8700 goto nosideret;
e1578042 8701 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
9c2be529
JB
8702 {
8703 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
8704 return value_zero (value_type (arg1), not_lval);
8705 }
14f9c5c9 8706 else
4c4b4cd2 8707 {
a53b7a21 8708 type = builtin_type (exp->gdbarch)->builtin_double;
df407dfe 8709 if (ada_is_fixed_point_type (value_type (arg1)))
a53b7a21 8710 arg1 = cast_from_fixed (type, arg1);
df407dfe 8711 if (ada_is_fixed_point_type (value_type (arg2)))
a53b7a21 8712 arg2 = cast_from_fixed (type, arg2);
f44316fa 8713 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
4c4b4cd2
PH
8714 return ada_value_binop (arg1, arg2, op);
8715 }
8716
4c4b4cd2
PH
8717 case BINOP_EQUAL:
8718 case BINOP_NOTEQUAL:
14f9c5c9 8719 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
df407dfe 8720 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
14f9c5c9 8721 if (noside == EVAL_SKIP)
76a01679 8722 goto nosideret;
4c4b4cd2 8723 if (noside == EVAL_AVOID_SIDE_EFFECTS)
76a01679 8724 tem = 0;
4c4b4cd2 8725 else
f44316fa
UW
8726 {
8727 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
8728 tem = ada_value_equal (arg1, arg2);
8729 }
4c4b4cd2 8730 if (op == BINOP_NOTEQUAL)
76a01679 8731 tem = !tem;
fbb06eb1
UW
8732 type = language_bool_type (exp->language_defn, exp->gdbarch);
8733 return value_from_longest (type, (LONGEST) tem);
4c4b4cd2
PH
8734
8735 case UNOP_NEG:
8736 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8737 if (noside == EVAL_SKIP)
8738 goto nosideret;
df407dfe
AC
8739 else if (ada_is_fixed_point_type (value_type (arg1)))
8740 return value_cast (value_type (arg1), value_neg (arg1));
14f9c5c9 8741 else
f44316fa
UW
8742 {
8743 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
8744 return value_neg (arg1);
8745 }
4c4b4cd2 8746
2330c6c6
JB
8747 case BINOP_LOGICAL_AND:
8748 case BINOP_LOGICAL_OR:
8749 case UNOP_LOGICAL_NOT:
000d5124
JB
8750 {
8751 struct value *val;
8752
8753 *pos -= 1;
8754 val = evaluate_subexp_standard (expect_type, exp, pos, noside);
fbb06eb1
UW
8755 type = language_bool_type (exp->language_defn, exp->gdbarch);
8756 return value_cast (type, val);
000d5124 8757 }
2330c6c6
JB
8758
8759 case BINOP_BITWISE_AND:
8760 case BINOP_BITWISE_IOR:
8761 case BINOP_BITWISE_XOR:
000d5124
JB
8762 {
8763 struct value *val;
8764
8765 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
8766 *pos = pc;
8767 val = evaluate_subexp_standard (expect_type, exp, pos, noside);
8768
8769 return value_cast (value_type (arg1), val);
8770 }
2330c6c6 8771
14f9c5c9
AS
8772 case OP_VAR_VALUE:
8773 *pos -= 1;
6799def4 8774
14f9c5c9 8775 if (noside == EVAL_SKIP)
4c4b4cd2
PH
8776 {
8777 *pos += 4;
8778 goto nosideret;
8779 }
8780 else if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
76a01679
JB
8781 /* Only encountered when an unresolved symbol occurs in a
8782 context other than a function call, in which case, it is
52ce6436 8783 invalid. */
323e0a4a 8784 error (_("Unexpected unresolved symbol, %s, during evaluation"),
4c4b4cd2 8785 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
14f9c5c9 8786 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
4c4b4cd2 8787 {
0c1f74cf 8788 type = static_unwrap_type (SYMBOL_TYPE (exp->elts[pc + 2].symbol));
31dbc1c5
JB
8789 /* Check to see if this is a tagged type. We also need to handle
8790 the case where the type is a reference to a tagged type, but
8791 we have to be careful to exclude pointers to tagged types.
8792 The latter should be shown as usual (as a pointer), whereas
8793 a reference should mostly be transparent to the user. */
8794 if (ada_is_tagged_type (type, 0)
8795 || (TYPE_CODE(type) == TYPE_CODE_REF
8796 && ada_is_tagged_type (TYPE_TARGET_TYPE (type), 0)))
0c1f74cf
JB
8797 {
8798 /* Tagged types are a little special in the fact that the real
8799 type is dynamic and can only be determined by inspecting the
8800 object's tag. This means that we need to get the object's
8801 value first (EVAL_NORMAL) and then extract the actual object
8802 type from its tag.
8803
8804 Note that we cannot skip the final step where we extract
8805 the object type from its tag, because the EVAL_NORMAL phase
8806 results in dynamic components being resolved into fixed ones.
8807 This can cause problems when trying to print the type
8808 description of tagged types whose parent has a dynamic size:
8809 We use the type name of the "_parent" component in order
8810 to print the name of the ancestor type in the type description.
8811 If that component had a dynamic size, the resolution into
8812 a fixed type would result in the loss of that type name,
8813 thus preventing us from printing the name of the ancestor
8814 type in the type description. */
b79819ba
JB
8815 struct type *actual_type;
8816
0c1f74cf 8817 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_NORMAL);
b79819ba
JB
8818 actual_type = type_from_tag (ada_value_tag (arg1));
8819 if (actual_type == NULL)
8820 /* If, for some reason, we were unable to determine
8821 the actual type from the tag, then use the static
8822 approximation that we just computed as a fallback.
8823 This can happen if the debugging information is
8824 incomplete, for instance. */
8825 actual_type = type;
8826
8827 return value_zero (actual_type, not_lval);
0c1f74cf
JB
8828 }
8829
4c4b4cd2
PH
8830 *pos += 4;
8831 return value_zero
8832 (to_static_fixed_type
8833 (static_unwrap_type (SYMBOL_TYPE (exp->elts[pc + 2].symbol))),
8834 not_lval);
8835 }
d2e4a39e 8836 else
4c4b4cd2 8837 {
284614f0
JB
8838 arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside);
8839 arg1 = unwrap_value (arg1);
4c4b4cd2
PH
8840 return ada_to_fixed_value (arg1);
8841 }
8842
8843 case OP_FUNCALL:
8844 (*pos) += 2;
8845
8846 /* Allocate arg vector, including space for the function to be
8847 called in argvec[0] and a terminating NULL. */
8848 nargs = longest_to_int (exp->elts[pc + 1].longconst);
8849 argvec =
8850 (struct value **) alloca (sizeof (struct value *) * (nargs + 2));
8851
8852 if (exp->elts[*pos].opcode == OP_VAR_VALUE
76a01679 8853 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
323e0a4a 8854 error (_("Unexpected unresolved symbol, %s, during evaluation"),
4c4b4cd2
PH
8855 SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol));
8856 else
8857 {
8858 for (tem = 0; tem <= nargs; tem += 1)
8859 argvec[tem] = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8860 argvec[tem] = 0;
8861
8862 if (noside == EVAL_SKIP)
8863 goto nosideret;
8864 }
8865
ad82864c
JB
8866 if (ada_is_constrained_packed_array_type
8867 (desc_base_type (value_type (argvec[0]))))
4c4b4cd2 8868 argvec[0] = ada_coerce_to_simple_array (argvec[0]);
284614f0
JB
8869 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_ARRAY
8870 && TYPE_FIELD_BITSIZE (value_type (argvec[0]), 0) != 0)
8871 /* This is a packed array that has already been fixed, and
8872 therefore already coerced to a simple array. Nothing further
8873 to do. */
8874 ;
df407dfe
AC
8875 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_REF
8876 || (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_ARRAY
76a01679 8877 && VALUE_LVAL (argvec[0]) == lval_memory))
4c4b4cd2
PH
8878 argvec[0] = value_addr (argvec[0]);
8879
df407dfe 8880 type = ada_check_typedef (value_type (argvec[0]));
4c4b4cd2
PH
8881 if (TYPE_CODE (type) == TYPE_CODE_PTR)
8882 {
61ee279c 8883 switch (TYPE_CODE (ada_check_typedef (TYPE_TARGET_TYPE (type))))
4c4b4cd2
PH
8884 {
8885 case TYPE_CODE_FUNC:
61ee279c 8886 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
4c4b4cd2
PH
8887 break;
8888 case TYPE_CODE_ARRAY:
8889 break;
8890 case TYPE_CODE_STRUCT:
8891 if (noside != EVAL_AVOID_SIDE_EFFECTS)
8892 argvec[0] = ada_value_ind (argvec[0]);
61ee279c 8893 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
4c4b4cd2
PH
8894 break;
8895 default:
323e0a4a 8896 error (_("cannot subscript or call something of type `%s'"),
df407dfe 8897 ada_type_name (value_type (argvec[0])));
4c4b4cd2
PH
8898 break;
8899 }
8900 }
8901
8902 switch (TYPE_CODE (type))
8903 {
8904 case TYPE_CODE_FUNC:
8905 if (noside == EVAL_AVOID_SIDE_EFFECTS)
8906 return allocate_value (TYPE_TARGET_TYPE (type));
8907 return call_function_by_hand (argvec[0], nargs, argvec + 1);
8908 case TYPE_CODE_STRUCT:
8909 {
8910 int arity;
8911
4c4b4cd2
PH
8912 arity = ada_array_arity (type);
8913 type = ada_array_element_type (type, nargs);
8914 if (type == NULL)
323e0a4a 8915 error (_("cannot subscript or call a record"));
4c4b4cd2 8916 if (arity != nargs)
323e0a4a 8917 error (_("wrong number of subscripts; expecting %d"), arity);
4c4b4cd2 8918 if (noside == EVAL_AVOID_SIDE_EFFECTS)
0a07e705 8919 return value_zero (ada_aligned_type (type), lval_memory);
4c4b4cd2
PH
8920 return
8921 unwrap_value (ada_value_subscript
8922 (argvec[0], nargs, argvec + 1));
8923 }
8924 case TYPE_CODE_ARRAY:
8925 if (noside == EVAL_AVOID_SIDE_EFFECTS)
8926 {
8927 type = ada_array_element_type (type, nargs);
8928 if (type == NULL)
323e0a4a 8929 error (_("element type of array unknown"));
4c4b4cd2 8930 else
0a07e705 8931 return value_zero (ada_aligned_type (type), lval_memory);
4c4b4cd2
PH
8932 }
8933 return
8934 unwrap_value (ada_value_subscript
8935 (ada_coerce_to_simple_array (argvec[0]),
8936 nargs, argvec + 1));
8937 case TYPE_CODE_PTR: /* Pointer to array */
8938 type = to_fixed_array_type (TYPE_TARGET_TYPE (type), NULL, 1);
8939 if (noside == EVAL_AVOID_SIDE_EFFECTS)
8940 {
8941 type = ada_array_element_type (type, nargs);
8942 if (type == NULL)
323e0a4a 8943 error (_("element type of array unknown"));
4c4b4cd2 8944 else
0a07e705 8945 return value_zero (ada_aligned_type (type), lval_memory);
4c4b4cd2
PH
8946 }
8947 return
8948 unwrap_value (ada_value_ptr_subscript (argvec[0], type,
8949 nargs, argvec + 1));
8950
8951 default:
e1d5a0d2
PH
8952 error (_("Attempt to index or call something other than an "
8953 "array or function"));
4c4b4cd2
PH
8954 }
8955
8956 case TERNOP_SLICE:
8957 {
8958 struct value *array = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8959 struct value *low_bound_val =
8960 evaluate_subexp (NULL_TYPE, exp, pos, noside);
714e53ab
PH
8961 struct value *high_bound_val =
8962 evaluate_subexp (NULL_TYPE, exp, pos, noside);
8963 LONGEST low_bound;
8964 LONGEST high_bound;
994b9211
AC
8965 low_bound_val = coerce_ref (low_bound_val);
8966 high_bound_val = coerce_ref (high_bound_val);
714e53ab
PH
8967 low_bound = pos_atr (low_bound_val);
8968 high_bound = pos_atr (high_bound_val);
963a6417 8969
4c4b4cd2
PH
8970 if (noside == EVAL_SKIP)
8971 goto nosideret;
8972
4c4b4cd2
PH
8973 /* If this is a reference to an aligner type, then remove all
8974 the aligners. */
df407dfe
AC
8975 if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF
8976 && ada_is_aligner_type (TYPE_TARGET_TYPE (value_type (array))))
8977 TYPE_TARGET_TYPE (value_type (array)) =
8978 ada_aligned_type (TYPE_TARGET_TYPE (value_type (array)));
4c4b4cd2 8979
ad82864c 8980 if (ada_is_constrained_packed_array_type (value_type (array)))
323e0a4a 8981 error (_("cannot slice a packed array"));
4c4b4cd2
PH
8982
8983 /* If this is a reference to an array or an array lvalue,
8984 convert to a pointer. */
df407dfe
AC
8985 if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF
8986 || (TYPE_CODE (value_type (array)) == TYPE_CODE_ARRAY
4c4b4cd2
PH
8987 && VALUE_LVAL (array) == lval_memory))
8988 array = value_addr (array);
8989
1265e4aa 8990 if (noside == EVAL_AVOID_SIDE_EFFECTS
61ee279c 8991 && ada_is_array_descriptor_type (ada_check_typedef
df407dfe 8992 (value_type (array))))
0b5d8877 8993 return empty_array (ada_type_of_array (array, 0), low_bound);
4c4b4cd2
PH
8994
8995 array = ada_coerce_to_simple_array_ptr (array);
8996
714e53ab
PH
8997 /* If we have more than one level of pointer indirection,
8998 dereference the value until we get only one level. */
df407dfe
AC
8999 while (TYPE_CODE (value_type (array)) == TYPE_CODE_PTR
9000 && (TYPE_CODE (TYPE_TARGET_TYPE (value_type (array)))
714e53ab
PH
9001 == TYPE_CODE_PTR))
9002 array = value_ind (array);
9003
9004 /* Make sure we really do have an array type before going further,
9005 to avoid a SEGV when trying to get the index type or the target
9006 type later down the road if the debug info generated by
9007 the compiler is incorrect or incomplete. */
df407dfe 9008 if (!ada_is_simple_array_type (value_type (array)))
323e0a4a 9009 error (_("cannot take slice of non-array"));
714e53ab 9010
df407dfe 9011 if (TYPE_CODE (value_type (array)) == TYPE_CODE_PTR)
4c4b4cd2 9012 {
0b5d8877 9013 if (high_bound < low_bound || noside == EVAL_AVOID_SIDE_EFFECTS)
df407dfe 9014 return empty_array (TYPE_TARGET_TYPE (value_type (array)),
4c4b4cd2
PH
9015 low_bound);
9016 else
9017 {
9018 struct type *arr_type0 =
df407dfe 9019 to_fixed_array_type (TYPE_TARGET_TYPE (value_type (array)),
4c4b4cd2 9020 NULL, 1);
f5938064
JG
9021 return ada_value_slice_from_ptr (array, arr_type0,
9022 longest_to_int (low_bound),
9023 longest_to_int (high_bound));
4c4b4cd2
PH
9024 }
9025 }
9026 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
9027 return array;
9028 else if (high_bound < low_bound)
df407dfe 9029 return empty_array (value_type (array), low_bound);
4c4b4cd2 9030 else
529cad9c
PH
9031 return ada_value_slice (array, longest_to_int (low_bound),
9032 longest_to_int (high_bound));
4c4b4cd2 9033 }
14f9c5c9 9034
4c4b4cd2
PH
9035 case UNOP_IN_RANGE:
9036 (*pos) += 2;
9037 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8008e265 9038 type = check_typedef (exp->elts[pc + 1].type);
14f9c5c9 9039
14f9c5c9 9040 if (noside == EVAL_SKIP)
4c4b4cd2 9041 goto nosideret;
14f9c5c9 9042
4c4b4cd2
PH
9043 switch (TYPE_CODE (type))
9044 {
9045 default:
e1d5a0d2
PH
9046 lim_warning (_("Membership test incompletely implemented; "
9047 "always returns true"));
fbb06eb1
UW
9048 type = language_bool_type (exp->language_defn, exp->gdbarch);
9049 return value_from_longest (type, (LONGEST) 1);
4c4b4cd2
PH
9050
9051 case TYPE_CODE_RANGE:
030b4912
UW
9052 arg2 = value_from_longest (type, TYPE_LOW_BOUND (type));
9053 arg3 = value_from_longest (type, TYPE_HIGH_BOUND (type));
f44316fa
UW
9054 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9055 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
fbb06eb1
UW
9056 type = language_bool_type (exp->language_defn, exp->gdbarch);
9057 return
9058 value_from_longest (type,
4c4b4cd2
PH
9059 (value_less (arg1, arg3)
9060 || value_equal (arg1, arg3))
9061 && (value_less (arg2, arg1)
9062 || value_equal (arg2, arg1)));
9063 }
9064
9065 case BINOP_IN_BOUNDS:
14f9c5c9 9066 (*pos) += 2;
4c4b4cd2
PH
9067 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9068 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
14f9c5c9 9069
4c4b4cd2
PH
9070 if (noside == EVAL_SKIP)
9071 goto nosideret;
14f9c5c9 9072
4c4b4cd2 9073 if (noside == EVAL_AVOID_SIDE_EFFECTS)
fbb06eb1
UW
9074 {
9075 type = language_bool_type (exp->language_defn, exp->gdbarch);
9076 return value_zero (type, not_lval);
9077 }
14f9c5c9 9078
4c4b4cd2 9079 tem = longest_to_int (exp->elts[pc + 1].longconst);
14f9c5c9 9080
1eea4ebd
UW
9081 type = ada_index_type (value_type (arg2), tem, "range");
9082 if (!type)
9083 type = value_type (arg1);
14f9c5c9 9084
1eea4ebd
UW
9085 arg3 = value_from_longest (type, ada_array_bound (arg2, tem, 1));
9086 arg2 = value_from_longest (type, ada_array_bound (arg2, tem, 0));
d2e4a39e 9087
f44316fa
UW
9088 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9089 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
fbb06eb1 9090 type = language_bool_type (exp->language_defn, exp->gdbarch);
4c4b4cd2 9091 return
fbb06eb1 9092 value_from_longest (type,
4c4b4cd2
PH
9093 (value_less (arg1, arg3)
9094 || value_equal (arg1, arg3))
9095 && (value_less (arg2, arg1)
9096 || value_equal (arg2, arg1)));
9097
9098 case TERNOP_IN_RANGE:
9099 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9100 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9101 arg3 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9102
9103 if (noside == EVAL_SKIP)
9104 goto nosideret;
9105
f44316fa
UW
9106 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9107 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
fbb06eb1 9108 type = language_bool_type (exp->language_defn, exp->gdbarch);
4c4b4cd2 9109 return
fbb06eb1 9110 value_from_longest (type,
4c4b4cd2
PH
9111 (value_less (arg1, arg3)
9112 || value_equal (arg1, arg3))
9113 && (value_less (arg2, arg1)
9114 || value_equal (arg2, arg1)));
9115
9116 case OP_ATR_FIRST:
9117 case OP_ATR_LAST:
9118 case OP_ATR_LENGTH:
9119 {
76a01679
JB
9120 struct type *type_arg;
9121 if (exp->elts[*pos].opcode == OP_TYPE)
9122 {
9123 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
9124 arg1 = NULL;
5bc23cb3 9125 type_arg = check_typedef (exp->elts[pc + 2].type);
76a01679
JB
9126 }
9127 else
9128 {
9129 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9130 type_arg = NULL;
9131 }
9132
9133 if (exp->elts[*pos].opcode != OP_LONG)
323e0a4a 9134 error (_("Invalid operand to '%s"), ada_attribute_name (op));
76a01679
JB
9135 tem = longest_to_int (exp->elts[*pos + 2].longconst);
9136 *pos += 4;
9137
9138 if (noside == EVAL_SKIP)
9139 goto nosideret;
9140
9141 if (type_arg == NULL)
9142 {
9143 arg1 = ada_coerce_ref (arg1);
9144
ad82864c 9145 if (ada_is_constrained_packed_array_type (value_type (arg1)))
76a01679
JB
9146 arg1 = ada_coerce_to_simple_array (arg1);
9147
1eea4ebd
UW
9148 type = ada_index_type (value_type (arg1), tem,
9149 ada_attribute_name (op));
9150 if (type == NULL)
9151 type = builtin_type (exp->gdbarch)->builtin_int;
76a01679
JB
9152
9153 if (noside == EVAL_AVOID_SIDE_EFFECTS)
1eea4ebd 9154 return allocate_value (type);
76a01679
JB
9155
9156 switch (op)
9157 {
9158 default: /* Should never happen. */
323e0a4a 9159 error (_("unexpected attribute encountered"));
76a01679 9160 case OP_ATR_FIRST:
1eea4ebd
UW
9161 return value_from_longest
9162 (type, ada_array_bound (arg1, tem, 0));
76a01679 9163 case OP_ATR_LAST:
1eea4ebd
UW
9164 return value_from_longest
9165 (type, ada_array_bound (arg1, tem, 1));
76a01679 9166 case OP_ATR_LENGTH:
1eea4ebd
UW
9167 return value_from_longest
9168 (type, ada_array_length (arg1, tem));
76a01679
JB
9169 }
9170 }
9171 else if (discrete_type_p (type_arg))
9172 {
9173 struct type *range_type;
9174 char *name = ada_type_name (type_arg);
9175 range_type = NULL;
9176 if (name != NULL && TYPE_CODE (type_arg) != TYPE_CODE_ENUM)
1ce677a4 9177 range_type = to_fixed_range_type (name, NULL, type_arg);
76a01679
JB
9178 if (range_type == NULL)
9179 range_type = type_arg;
9180 switch (op)
9181 {
9182 default:
323e0a4a 9183 error (_("unexpected attribute encountered"));
76a01679 9184 case OP_ATR_FIRST:
690cc4eb 9185 return value_from_longest
43bbcdc2 9186 (range_type, ada_discrete_type_low_bound (range_type));
76a01679 9187 case OP_ATR_LAST:
690cc4eb 9188 return value_from_longest
43bbcdc2 9189 (range_type, ada_discrete_type_high_bound (range_type));
76a01679 9190 case OP_ATR_LENGTH:
323e0a4a 9191 error (_("the 'length attribute applies only to array types"));
76a01679
JB
9192 }
9193 }
9194 else if (TYPE_CODE (type_arg) == TYPE_CODE_FLT)
323e0a4a 9195 error (_("unimplemented type attribute"));
76a01679
JB
9196 else
9197 {
9198 LONGEST low, high;
9199
ad82864c
JB
9200 if (ada_is_constrained_packed_array_type (type_arg))
9201 type_arg = decode_constrained_packed_array_type (type_arg);
76a01679 9202
1eea4ebd 9203 type = ada_index_type (type_arg, tem, ada_attribute_name (op));
76a01679 9204 if (type == NULL)
1eea4ebd
UW
9205 type = builtin_type (exp->gdbarch)->builtin_int;
9206
76a01679
JB
9207 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9208 return allocate_value (type);
9209
9210 switch (op)
9211 {
9212 default:
323e0a4a 9213 error (_("unexpected attribute encountered"));
76a01679 9214 case OP_ATR_FIRST:
1eea4ebd 9215 low = ada_array_bound_from_type (type_arg, tem, 0);
76a01679
JB
9216 return value_from_longest (type, low);
9217 case OP_ATR_LAST:
1eea4ebd 9218 high = ada_array_bound_from_type (type_arg, tem, 1);
76a01679
JB
9219 return value_from_longest (type, high);
9220 case OP_ATR_LENGTH:
1eea4ebd
UW
9221 low = ada_array_bound_from_type (type_arg, tem, 0);
9222 high = ada_array_bound_from_type (type_arg, tem, 1);
76a01679
JB
9223 return value_from_longest (type, high - low + 1);
9224 }
9225 }
14f9c5c9
AS
9226 }
9227
4c4b4cd2
PH
9228 case OP_ATR_TAG:
9229 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9230 if (noside == EVAL_SKIP)
76a01679 9231 goto nosideret;
4c4b4cd2
PH
9232
9233 if (noside == EVAL_AVOID_SIDE_EFFECTS)
76a01679 9234 return value_zero (ada_tag_type (arg1), not_lval);
4c4b4cd2
PH
9235
9236 return ada_value_tag (arg1);
9237
9238 case OP_ATR_MIN:
9239 case OP_ATR_MAX:
9240 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
14f9c5c9
AS
9241 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9242 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9243 if (noside == EVAL_SKIP)
76a01679 9244 goto nosideret;
d2e4a39e 9245 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
df407dfe 9246 return value_zero (value_type (arg1), not_lval);
14f9c5c9 9247 else
f44316fa
UW
9248 {
9249 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9250 return value_binop (arg1, arg2,
9251 op == OP_ATR_MIN ? BINOP_MIN : BINOP_MAX);
9252 }
14f9c5c9 9253
4c4b4cd2
PH
9254 case OP_ATR_MODULUS:
9255 {
31dedfee 9256 struct type *type_arg = check_typedef (exp->elts[pc + 2].type);
76a01679 9257 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
4c4b4cd2 9258
76a01679
JB
9259 if (noside == EVAL_SKIP)
9260 goto nosideret;
4c4b4cd2 9261
76a01679 9262 if (!ada_is_modular_type (type_arg))
323e0a4a 9263 error (_("'modulus must be applied to modular type"));
4c4b4cd2 9264
76a01679
JB
9265 return value_from_longest (TYPE_TARGET_TYPE (type_arg),
9266 ada_modulus (type_arg));
4c4b4cd2
PH
9267 }
9268
9269
9270 case OP_ATR_POS:
9271 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
14f9c5c9
AS
9272 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9273 if (noside == EVAL_SKIP)
76a01679 9274 goto nosideret;
3cb382c9
UW
9275 type = builtin_type (exp->gdbarch)->builtin_int;
9276 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9277 return value_zero (type, not_lval);
14f9c5c9 9278 else
3cb382c9 9279 return value_pos_atr (type, arg1);
14f9c5c9 9280
4c4b4cd2
PH
9281 case OP_ATR_SIZE:
9282 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8c1c099f
JB
9283 type = value_type (arg1);
9284
9285 /* If the argument is a reference, then dereference its type, since
9286 the user is really asking for the size of the actual object,
9287 not the size of the pointer. */
9288 if (TYPE_CODE (type) == TYPE_CODE_REF)
9289 type = TYPE_TARGET_TYPE (type);
9290
4c4b4cd2 9291 if (noside == EVAL_SKIP)
76a01679 9292 goto nosideret;
4c4b4cd2 9293 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
22601c15 9294 return value_zero (builtin_type (exp->gdbarch)->builtin_int, not_lval);
4c4b4cd2 9295 else
22601c15 9296 return value_from_longest (builtin_type (exp->gdbarch)->builtin_int,
8c1c099f 9297 TARGET_CHAR_BIT * TYPE_LENGTH (type));
4c4b4cd2
PH
9298
9299 case OP_ATR_VAL:
9300 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
14f9c5c9 9301 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
4c4b4cd2 9302 type = exp->elts[pc + 2].type;
14f9c5c9 9303 if (noside == EVAL_SKIP)
76a01679 9304 goto nosideret;
4c4b4cd2 9305 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
76a01679 9306 return value_zero (type, not_lval);
4c4b4cd2 9307 else
76a01679 9308 return value_val_atr (type, arg1);
4c4b4cd2
PH
9309
9310 case BINOP_EXP:
9311 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9312 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9313 if (noside == EVAL_SKIP)
9314 goto nosideret;
9315 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
df407dfe 9316 return value_zero (value_type (arg1), not_lval);
4c4b4cd2 9317 else
f44316fa
UW
9318 {
9319 /* For integer exponentiation operations,
9320 only promote the first argument. */
9321 if (is_integral_type (value_type (arg2)))
9322 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
9323 else
9324 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9325
9326 return value_binop (arg1, arg2, op);
9327 }
4c4b4cd2
PH
9328
9329 case UNOP_PLUS:
9330 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9331 if (noside == EVAL_SKIP)
9332 goto nosideret;
9333 else
9334 return arg1;
9335
9336 case UNOP_ABS:
9337 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9338 if (noside == EVAL_SKIP)
9339 goto nosideret;
f44316fa 9340 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
df407dfe 9341 if (value_less (arg1, value_zero (value_type (arg1), not_lval)))
4c4b4cd2 9342 return value_neg (arg1);
14f9c5c9 9343 else
4c4b4cd2 9344 return arg1;
14f9c5c9
AS
9345
9346 case UNOP_IND:
6b0d7253 9347 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
14f9c5c9 9348 if (noside == EVAL_SKIP)
4c4b4cd2 9349 goto nosideret;
df407dfe 9350 type = ada_check_typedef (value_type (arg1));
14f9c5c9 9351 if (noside == EVAL_AVOID_SIDE_EFFECTS)
4c4b4cd2
PH
9352 {
9353 if (ada_is_array_descriptor_type (type))
9354 /* GDB allows dereferencing GNAT array descriptors. */
9355 {
9356 struct type *arrType = ada_type_of_array (arg1, 0);
9357 if (arrType == NULL)
323e0a4a 9358 error (_("Attempt to dereference null array pointer."));
00a4c844 9359 return value_at_lazy (arrType, 0);
4c4b4cd2
PH
9360 }
9361 else if (TYPE_CODE (type) == TYPE_CODE_PTR
9362 || TYPE_CODE (type) == TYPE_CODE_REF
9363 /* In C you can dereference an array to get the 1st elt. */
9364 || TYPE_CODE (type) == TYPE_CODE_ARRAY)
714e53ab
PH
9365 {
9366 type = to_static_fixed_type
9367 (ada_aligned_type
9368 (ada_check_typedef (TYPE_TARGET_TYPE (type))));
9369 check_size (type);
9370 return value_zero (type, lval_memory);
9371 }
4c4b4cd2 9372 else if (TYPE_CODE (type) == TYPE_CODE_INT)
6b0d7253
JB
9373 {
9374 /* GDB allows dereferencing an int. */
9375 if (expect_type == NULL)
9376 return value_zero (builtin_type (exp->gdbarch)->builtin_int,
9377 lval_memory);
9378 else
9379 {
9380 expect_type =
9381 to_static_fixed_type (ada_aligned_type (expect_type));
9382 return value_zero (expect_type, lval_memory);
9383 }
9384 }
4c4b4cd2 9385 else
323e0a4a 9386 error (_("Attempt to take contents of a non-pointer value."));
4c4b4cd2 9387 }
76a01679 9388 arg1 = ada_coerce_ref (arg1); /* FIXME: What is this for?? */
df407dfe 9389 type = ada_check_typedef (value_type (arg1));
d2e4a39e 9390
96967637
JB
9391 if (TYPE_CODE (type) == TYPE_CODE_INT)
9392 /* GDB allows dereferencing an int. If we were given
9393 the expect_type, then use that as the target type.
9394 Otherwise, assume that the target type is an int. */
9395 {
9396 if (expect_type != NULL)
9397 return ada_value_ind (value_cast (lookup_pointer_type (expect_type),
9398 arg1));
9399 else
9400 return value_at_lazy (builtin_type (exp->gdbarch)->builtin_int,
9401 (CORE_ADDR) value_as_address (arg1));
9402 }
6b0d7253 9403
4c4b4cd2
PH
9404 if (ada_is_array_descriptor_type (type))
9405 /* GDB allows dereferencing GNAT array descriptors. */
9406 return ada_coerce_to_simple_array (arg1);
14f9c5c9 9407 else
4c4b4cd2 9408 return ada_value_ind (arg1);
14f9c5c9
AS
9409
9410 case STRUCTOP_STRUCT:
9411 tem = longest_to_int (exp->elts[pc + 1].longconst);
9412 (*pos) += 3 + BYTES_TO_EXP_ELEM (tem + 1);
9413 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9414 if (noside == EVAL_SKIP)
4c4b4cd2 9415 goto nosideret;
14f9c5c9 9416 if (noside == EVAL_AVOID_SIDE_EFFECTS)
76a01679 9417 {
df407dfe 9418 struct type *type1 = value_type (arg1);
76a01679
JB
9419 if (ada_is_tagged_type (type1, 1))
9420 {
9421 type = ada_lookup_struct_elt_type (type1,
9422 &exp->elts[pc + 2].string,
9423 1, 1, NULL);
9424 if (type == NULL)
9425 /* In this case, we assume that the field COULD exist
9426 in some extension of the type. Return an object of
9427 "type" void, which will match any formal
9428 (see ada_type_match). */
30b15541
UW
9429 return value_zero (builtin_type (exp->gdbarch)->builtin_void,
9430 lval_memory);
76a01679
JB
9431 }
9432 else
9433 type =
9434 ada_lookup_struct_elt_type (type1, &exp->elts[pc + 2].string, 1,
9435 0, NULL);
9436
9437 return value_zero (ada_aligned_type (type), lval_memory);
9438 }
14f9c5c9 9439 else
284614f0
JB
9440 arg1 = ada_value_struct_elt (arg1, &exp->elts[pc + 2].string, 0);
9441 arg1 = unwrap_value (arg1);
9442 return ada_to_fixed_value (arg1);
9443
14f9c5c9 9444 case OP_TYPE:
4c4b4cd2
PH
9445 /* The value is not supposed to be used. This is here to make it
9446 easier to accommodate expressions that contain types. */
14f9c5c9
AS
9447 (*pos) += 2;
9448 if (noside == EVAL_SKIP)
4c4b4cd2 9449 goto nosideret;
14f9c5c9 9450 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
a6cfbe68 9451 return allocate_value (exp->elts[pc + 1].type);
14f9c5c9 9452 else
323e0a4a 9453 error (_("Attempt to use a type name as an expression"));
52ce6436
PH
9454
9455 case OP_AGGREGATE:
9456 case OP_CHOICES:
9457 case OP_OTHERS:
9458 case OP_DISCRETE_RANGE:
9459 case OP_POSITIONAL:
9460 case OP_NAME:
9461 if (noside == EVAL_NORMAL)
9462 switch (op)
9463 {
9464 case OP_NAME:
9465 error (_("Undefined name, ambiguous name, or renaming used in "
e1d5a0d2 9466 "component association: %s."), &exp->elts[pc+2].string);
52ce6436
PH
9467 case OP_AGGREGATE:
9468 error (_("Aggregates only allowed on the right of an assignment"));
9469 default:
e1d5a0d2 9470 internal_error (__FILE__, __LINE__, _("aggregate apparently mangled"));
52ce6436
PH
9471 }
9472
9473 ada_forward_operator_length (exp, pc, &oplen, &nargs);
9474 *pos += oplen - 1;
9475 for (tem = 0; tem < nargs; tem += 1)
9476 ada_evaluate_subexp (NULL, exp, pos, noside);
9477 goto nosideret;
14f9c5c9
AS
9478 }
9479
9480nosideret:
22601c15 9481 return value_from_longest (builtin_type (exp->gdbarch)->builtin_int, 1);
14f9c5c9 9482}
14f9c5c9 9483\f
d2e4a39e 9484
4c4b4cd2 9485 /* Fixed point */
14f9c5c9
AS
9486
9487/* If TYPE encodes an Ada fixed-point type, return the suffix of the
9488 type name that encodes the 'small and 'delta information.
4c4b4cd2 9489 Otherwise, return NULL. */
14f9c5c9 9490
d2e4a39e 9491static const char *
ebf56fd3 9492fixed_type_info (struct type *type)
14f9c5c9 9493{
d2e4a39e 9494 const char *name = ada_type_name (type);
14f9c5c9
AS
9495 enum type_code code = (type == NULL) ? TYPE_CODE_UNDEF : TYPE_CODE (type);
9496
d2e4a39e
AS
9497 if ((code == TYPE_CODE_INT || code == TYPE_CODE_RANGE) && name != NULL)
9498 {
14f9c5c9
AS
9499 const char *tail = strstr (name, "___XF_");
9500 if (tail == NULL)
4c4b4cd2 9501 return NULL;
d2e4a39e 9502 else
4c4b4cd2 9503 return tail + 5;
14f9c5c9
AS
9504 }
9505 else if (code == TYPE_CODE_RANGE && TYPE_TARGET_TYPE (type) != type)
9506 return fixed_type_info (TYPE_TARGET_TYPE (type));
9507 else
9508 return NULL;
9509}
9510
4c4b4cd2 9511/* Returns non-zero iff TYPE represents an Ada fixed-point type. */
14f9c5c9
AS
9512
9513int
ebf56fd3 9514ada_is_fixed_point_type (struct type *type)
14f9c5c9
AS
9515{
9516 return fixed_type_info (type) != NULL;
9517}
9518
4c4b4cd2
PH
9519/* Return non-zero iff TYPE represents a System.Address type. */
9520
9521int
9522ada_is_system_address_type (struct type *type)
9523{
9524 return (TYPE_NAME (type)
9525 && strcmp (TYPE_NAME (type), "system__address") == 0);
9526}
9527
14f9c5c9
AS
9528/* Assuming that TYPE is the representation of an Ada fixed-point
9529 type, return its delta, or -1 if the type is malformed and the
4c4b4cd2 9530 delta cannot be determined. */
14f9c5c9
AS
9531
9532DOUBLEST
ebf56fd3 9533ada_delta (struct type *type)
14f9c5c9
AS
9534{
9535 const char *encoding = fixed_type_info (type);
facc390f 9536 DOUBLEST num, den;
14f9c5c9 9537
facc390f
JB
9538 /* Strictly speaking, num and den are encoded as integer. However,
9539 they may not fit into a long, and they will have to be converted
9540 to DOUBLEST anyway. So scan them as DOUBLEST. */
9541 if (sscanf (encoding, "_%" DOUBLEST_SCAN_FORMAT "_%" DOUBLEST_SCAN_FORMAT,
9542 &num, &den) < 2)
14f9c5c9 9543 return -1.0;
d2e4a39e 9544 else
facc390f 9545 return num / den;
14f9c5c9
AS
9546}
9547
9548/* Assuming that ada_is_fixed_point_type (TYPE), return the scaling
4c4b4cd2 9549 factor ('SMALL value) associated with the type. */
14f9c5c9
AS
9550
9551static DOUBLEST
ebf56fd3 9552scaling_factor (struct type *type)
14f9c5c9
AS
9553{
9554 const char *encoding = fixed_type_info (type);
facc390f 9555 DOUBLEST num0, den0, num1, den1;
14f9c5c9 9556 int n;
d2e4a39e 9557
facc390f
JB
9558 /* Strictly speaking, num's and den's are encoded as integer. However,
9559 they may not fit into a long, and they will have to be converted
9560 to DOUBLEST anyway. So scan them as DOUBLEST. */
9561 n = sscanf (encoding,
9562 "_%" DOUBLEST_SCAN_FORMAT "_%" DOUBLEST_SCAN_FORMAT
9563 "_%" DOUBLEST_SCAN_FORMAT "_%" DOUBLEST_SCAN_FORMAT,
9564 &num0, &den0, &num1, &den1);
14f9c5c9
AS
9565
9566 if (n < 2)
9567 return 1.0;
9568 else if (n == 4)
facc390f 9569 return num1 / den1;
d2e4a39e 9570 else
facc390f 9571 return num0 / den0;
14f9c5c9
AS
9572}
9573
9574
9575/* Assuming that X is the representation of a value of fixed-point
4c4b4cd2 9576 type TYPE, return its floating-point equivalent. */
14f9c5c9
AS
9577
9578DOUBLEST
ebf56fd3 9579ada_fixed_to_float (struct type *type, LONGEST x)
14f9c5c9 9580{
d2e4a39e 9581 return (DOUBLEST) x *scaling_factor (type);
14f9c5c9
AS
9582}
9583
4c4b4cd2
PH
9584/* The representation of a fixed-point value of type TYPE
9585 corresponding to the value X. */
14f9c5c9
AS
9586
9587LONGEST
ebf56fd3 9588ada_float_to_fixed (struct type *type, DOUBLEST x)
14f9c5c9
AS
9589{
9590 return (LONGEST) (x / scaling_factor (type) + 0.5);
9591}
9592
14f9c5c9 9593\f
d2e4a39e 9594
4c4b4cd2 9595 /* Range types */
14f9c5c9
AS
9596
9597/* Scan STR beginning at position K for a discriminant name, and
9598 return the value of that discriminant field of DVAL in *PX. If
9599 PNEW_K is not null, put the position of the character beyond the
9600 name scanned in *PNEW_K. Return 1 if successful; return 0 and do
4c4b4cd2 9601 not alter *PX and *PNEW_K if unsuccessful. */
14f9c5c9
AS
9602
9603static int
07d8f827 9604scan_discrim_bound (char *str, int k, struct value *dval, LONGEST * px,
76a01679 9605 int *pnew_k)
14f9c5c9
AS
9606{
9607 static char *bound_buffer = NULL;
9608 static size_t bound_buffer_len = 0;
9609 char *bound;
9610 char *pend;
d2e4a39e 9611 struct value *bound_val;
14f9c5c9
AS
9612
9613 if (dval == NULL || str == NULL || str[k] == '\0')
9614 return 0;
9615
d2e4a39e 9616 pend = strstr (str + k, "__");
14f9c5c9
AS
9617 if (pend == NULL)
9618 {
d2e4a39e 9619 bound = str + k;
14f9c5c9
AS
9620 k += strlen (bound);
9621 }
d2e4a39e 9622 else
14f9c5c9 9623 {
d2e4a39e 9624 GROW_VECT (bound_buffer, bound_buffer_len, pend - (str + k) + 1);
14f9c5c9 9625 bound = bound_buffer;
d2e4a39e
AS
9626 strncpy (bound_buffer, str + k, pend - (str + k));
9627 bound[pend - (str + k)] = '\0';
9628 k = pend - str;
14f9c5c9 9629 }
d2e4a39e 9630
df407dfe 9631 bound_val = ada_search_struct_field (bound, dval, 0, value_type (dval));
14f9c5c9
AS
9632 if (bound_val == NULL)
9633 return 0;
9634
9635 *px = value_as_long (bound_val);
9636 if (pnew_k != NULL)
9637 *pnew_k = k;
9638 return 1;
9639}
9640
9641/* Value of variable named NAME in the current environment. If
9642 no such variable found, then if ERR_MSG is null, returns 0, and
4c4b4cd2
PH
9643 otherwise causes an error with message ERR_MSG. */
9644
d2e4a39e
AS
9645static struct value *
9646get_var_value (char *name, char *err_msg)
14f9c5c9 9647{
4c4b4cd2 9648 struct ada_symbol_info *syms;
14f9c5c9
AS
9649 int nsyms;
9650
4c4b4cd2
PH
9651 nsyms = ada_lookup_symbol_list (name, get_selected_block (0), VAR_DOMAIN,
9652 &syms);
14f9c5c9
AS
9653
9654 if (nsyms != 1)
9655 {
9656 if (err_msg == NULL)
4c4b4cd2 9657 return 0;
14f9c5c9 9658 else
8a3fe4f8 9659 error (("%s"), err_msg);
14f9c5c9
AS
9660 }
9661
4c4b4cd2 9662 return value_of_variable (syms[0].sym, syms[0].block);
14f9c5c9 9663}
d2e4a39e 9664
14f9c5c9 9665/* Value of integer variable named NAME in the current environment. If
4c4b4cd2
PH
9666 no such variable found, returns 0, and sets *FLAG to 0. If
9667 successful, sets *FLAG to 1. */
9668
14f9c5c9 9669LONGEST
4c4b4cd2 9670get_int_var_value (char *name, int *flag)
14f9c5c9 9671{
4c4b4cd2 9672 struct value *var_val = get_var_value (name, 0);
d2e4a39e 9673
14f9c5c9
AS
9674 if (var_val == 0)
9675 {
9676 if (flag != NULL)
4c4b4cd2 9677 *flag = 0;
14f9c5c9
AS
9678 return 0;
9679 }
9680 else
9681 {
9682 if (flag != NULL)
4c4b4cd2 9683 *flag = 1;
14f9c5c9
AS
9684 return value_as_long (var_val);
9685 }
9686}
d2e4a39e 9687
14f9c5c9
AS
9688
9689/* Return a range type whose base type is that of the range type named
9690 NAME in the current environment, and whose bounds are calculated
4c4b4cd2 9691 from NAME according to the GNAT range encoding conventions.
1ce677a4
UW
9692 Extract discriminant values, if needed, from DVAL. ORIG_TYPE is the
9693 corresponding range type from debug information; fall back to using it
9694 if symbol lookup fails. If a new type must be created, allocate it
9695 like ORIG_TYPE was. The bounds information, in general, is encoded
9696 in NAME, the base type given in the named range type. */
14f9c5c9 9697
d2e4a39e 9698static struct type *
1ce677a4 9699to_fixed_range_type (char *name, struct value *dval, struct type *orig_type)
14f9c5c9
AS
9700{
9701 struct type *raw_type = ada_find_any_type (name);
9702 struct type *base_type;
d2e4a39e 9703 char *subtype_info;
14f9c5c9 9704
1ce677a4 9705 /* Fall back to the original type if symbol lookup failed. */
dddfab26 9706 if (raw_type == NULL)
1ce677a4 9707 raw_type = orig_type;
dddfab26 9708
1ce677a4 9709 if (TYPE_CODE (raw_type) == TYPE_CODE_RANGE)
14f9c5c9
AS
9710 base_type = TYPE_TARGET_TYPE (raw_type);
9711 else
9712 base_type = raw_type;
9713
9714 subtype_info = strstr (name, "___XD");
9715 if (subtype_info == NULL)
690cc4eb 9716 {
43bbcdc2
PH
9717 LONGEST L = ada_discrete_type_low_bound (raw_type);
9718 LONGEST U = ada_discrete_type_high_bound (raw_type);
690cc4eb
PH
9719 if (L < INT_MIN || U > INT_MAX)
9720 return raw_type;
9721 else
e9bb382b 9722 return create_range_type (alloc_type_copy (orig_type), raw_type,
43bbcdc2
PH
9723 ada_discrete_type_low_bound (raw_type),
9724 ada_discrete_type_high_bound (raw_type));
690cc4eb 9725 }
14f9c5c9
AS
9726 else
9727 {
9728 static char *name_buf = NULL;
9729 static size_t name_len = 0;
9730 int prefix_len = subtype_info - name;
9731 LONGEST L, U;
9732 struct type *type;
9733 char *bounds_str;
9734 int n;
9735
9736 GROW_VECT (name_buf, name_len, prefix_len + 5);
9737 strncpy (name_buf, name, prefix_len);
9738 name_buf[prefix_len] = '\0';
9739
9740 subtype_info += 5;
9741 bounds_str = strchr (subtype_info, '_');
9742 n = 1;
9743
d2e4a39e 9744 if (*subtype_info == 'L')
4c4b4cd2
PH
9745 {
9746 if (!ada_scan_number (bounds_str, n, &L, &n)
9747 && !scan_discrim_bound (bounds_str, n, dval, &L, &n))
9748 return raw_type;
9749 if (bounds_str[n] == '_')
9750 n += 2;
9751 else if (bounds_str[n] == '.') /* FIXME? SGI Workshop kludge. */
9752 n += 1;
9753 subtype_info += 1;
9754 }
d2e4a39e 9755 else
4c4b4cd2
PH
9756 {
9757 int ok;
9758 strcpy (name_buf + prefix_len, "___L");
9759 L = get_int_var_value (name_buf, &ok);
9760 if (!ok)
9761 {
323e0a4a 9762 lim_warning (_("Unknown lower bound, using 1."));
4c4b4cd2
PH
9763 L = 1;
9764 }
9765 }
14f9c5c9 9766
d2e4a39e 9767 if (*subtype_info == 'U')
4c4b4cd2
PH
9768 {
9769 if (!ada_scan_number (bounds_str, n, &U, &n)
9770 && !scan_discrim_bound (bounds_str, n, dval, &U, &n))
9771 return raw_type;
9772 }
d2e4a39e 9773 else
4c4b4cd2
PH
9774 {
9775 int ok;
9776 strcpy (name_buf + prefix_len, "___U");
9777 U = get_int_var_value (name_buf, &ok);
9778 if (!ok)
9779 {
323e0a4a 9780 lim_warning (_("Unknown upper bound, using %ld."), (long) L);
4c4b4cd2
PH
9781 U = L;
9782 }
9783 }
14f9c5c9 9784
e9bb382b 9785 type = create_range_type (alloc_type_copy (orig_type), base_type, L, U);
d2e4a39e 9786 TYPE_NAME (type) = name;
14f9c5c9
AS
9787 return type;
9788 }
9789}
9790
4c4b4cd2
PH
9791/* True iff NAME is the name of a range type. */
9792
14f9c5c9 9793int
d2e4a39e 9794ada_is_range_type_name (const char *name)
14f9c5c9
AS
9795{
9796 return (name != NULL && strstr (name, "___XD"));
d2e4a39e 9797}
14f9c5c9 9798\f
d2e4a39e 9799
4c4b4cd2
PH
9800 /* Modular types */
9801
9802/* True iff TYPE is an Ada modular type. */
14f9c5c9 9803
14f9c5c9 9804int
d2e4a39e 9805ada_is_modular_type (struct type *type)
14f9c5c9 9806{
4c4b4cd2 9807 struct type *subranged_type = base_type (type);
14f9c5c9
AS
9808
9809 return (subranged_type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE
690cc4eb 9810 && TYPE_CODE (subranged_type) == TYPE_CODE_INT
4c4b4cd2 9811 && TYPE_UNSIGNED (subranged_type));
14f9c5c9
AS
9812}
9813
0056e4d5
JB
9814/* Try to determine the lower and upper bounds of the given modular type
9815 using the type name only. Return non-zero and set L and U as the lower
9816 and upper bounds (respectively) if successful. */
9817
9818int
9819ada_modulus_from_name (struct type *type, ULONGEST *modulus)
9820{
9821 char *name = ada_type_name (type);
9822 char *suffix;
9823 int k;
9824 LONGEST U;
9825
9826 if (name == NULL)
9827 return 0;
9828
9829 /* Discrete type bounds are encoded using an __XD suffix. In our case,
9830 we are looking for static bounds, which means an __XDLU suffix.
9831 Moreover, we know that the lower bound of modular types is always
9832 zero, so the actual suffix should start with "__XDLU_0__", and
9833 then be followed by the upper bound value. */
9834 suffix = strstr (name, "__XDLU_0__");
9835 if (suffix == NULL)
9836 return 0;
9837 k = 10;
9838 if (!ada_scan_number (suffix, k, &U, NULL))
9839 return 0;
9840
9841 *modulus = (ULONGEST) U + 1;
9842 return 1;
9843}
9844
4c4b4cd2
PH
9845/* Assuming ada_is_modular_type (TYPE), the modulus of TYPE. */
9846
61ee279c 9847ULONGEST
0056e4d5 9848ada_modulus (struct type *type)
14f9c5c9 9849{
43bbcdc2 9850 return (ULONGEST) TYPE_HIGH_BOUND (type) + 1;
14f9c5c9 9851}
d2e4a39e 9852\f
f7f9143b
JB
9853
9854/* Ada exception catchpoint support:
9855 ---------------------------------
9856
9857 We support 3 kinds of exception catchpoints:
9858 . catchpoints on Ada exceptions
9859 . catchpoints on unhandled Ada exceptions
9860 . catchpoints on failed assertions
9861
9862 Exceptions raised during failed assertions, or unhandled exceptions
9863 could perfectly be caught with the general catchpoint on Ada exceptions.
9864 However, we can easily differentiate these two special cases, and having
9865 the option to distinguish these two cases from the rest can be useful
9866 to zero-in on certain situations.
9867
9868 Exception catchpoints are a specialized form of breakpoint,
9869 since they rely on inserting breakpoints inside known routines
9870 of the GNAT runtime. The implementation therefore uses a standard
9871 breakpoint structure of the BP_BREAKPOINT type, but with its own set
9872 of breakpoint_ops.
9873
0259addd
JB
9874 Support in the runtime for exception catchpoints have been changed
9875 a few times already, and these changes affect the implementation
9876 of these catchpoints. In order to be able to support several
9877 variants of the runtime, we use a sniffer that will determine
9878 the runtime variant used by the program being debugged.
9879
f7f9143b
JB
9880 At this time, we do not support the use of conditions on Ada exception
9881 catchpoints. The COND and COND_STRING fields are therefore set
9882 to NULL (most of the time, see below).
9883
9884 Conditions where EXP_STRING, COND, and COND_STRING are used:
9885
9886 When a user specifies the name of a specific exception in the case
9887 of catchpoints on Ada exceptions, we store the name of that exception
9888 in the EXP_STRING. We then translate this request into an actual
9889 condition stored in COND_STRING, and then parse it into an expression
9890 stored in COND. */
9891
9892/* The different types of catchpoints that we introduced for catching
9893 Ada exceptions. */
9894
9895enum exception_catchpoint_kind
9896{
9897 ex_catch_exception,
9898 ex_catch_exception_unhandled,
9899 ex_catch_assert
9900};
9901
3d0b0fa3
JB
9902/* Ada's standard exceptions. */
9903
9904static char *standard_exc[] = {
9905 "constraint_error",
9906 "program_error",
9907 "storage_error",
9908 "tasking_error"
9909};
9910
0259addd
JB
9911typedef CORE_ADDR (ada_unhandled_exception_name_addr_ftype) (void);
9912
9913/* A structure that describes how to support exception catchpoints
9914 for a given executable. */
9915
9916struct exception_support_info
9917{
9918 /* The name of the symbol to break on in order to insert
9919 a catchpoint on exceptions. */
9920 const char *catch_exception_sym;
9921
9922 /* The name of the symbol to break on in order to insert
9923 a catchpoint on unhandled exceptions. */
9924 const char *catch_exception_unhandled_sym;
9925
9926 /* The name of the symbol to break on in order to insert
9927 a catchpoint on failed assertions. */
9928 const char *catch_assert_sym;
9929
9930 /* Assuming that the inferior just triggered an unhandled exception
9931 catchpoint, this function is responsible for returning the address
9932 in inferior memory where the name of that exception is stored.
9933 Return zero if the address could not be computed. */
9934 ada_unhandled_exception_name_addr_ftype *unhandled_exception_name_addr;
9935};
9936
9937static CORE_ADDR ada_unhandled_exception_name_addr (void);
9938static CORE_ADDR ada_unhandled_exception_name_addr_from_raise (void);
9939
9940/* The following exception support info structure describes how to
9941 implement exception catchpoints with the latest version of the
9942 Ada runtime (as of 2007-03-06). */
9943
9944static const struct exception_support_info default_exception_support_info =
9945{
9946 "__gnat_debug_raise_exception", /* catch_exception_sym */
9947 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
9948 "__gnat_debug_raise_assert_failure", /* catch_assert_sym */
9949 ada_unhandled_exception_name_addr
9950};
9951
9952/* The following exception support info structure describes how to
9953 implement exception catchpoints with a slightly older version
9954 of the Ada runtime. */
9955
9956static const struct exception_support_info exception_support_info_fallback =
9957{
9958 "__gnat_raise_nodefer_with_msg", /* catch_exception_sym */
9959 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
9960 "system__assertions__raise_assert_failure", /* catch_assert_sym */
9961 ada_unhandled_exception_name_addr_from_raise
9962};
9963
9964/* For each executable, we sniff which exception info structure to use
9965 and cache it in the following global variable. */
9966
9967static const struct exception_support_info *exception_info = NULL;
9968
9969/* Inspect the Ada runtime and determine which exception info structure
9970 should be used to provide support for exception catchpoints.
9971
9972 This function will always set exception_info, or raise an error. */
9973
9974static void
9975ada_exception_support_info_sniffer (void)
9976{
9977 struct symbol *sym;
9978
9979 /* If the exception info is already known, then no need to recompute it. */
9980 if (exception_info != NULL)
9981 return;
9982
9983 /* Check the latest (default) exception support info. */
9984 sym = standard_lookup (default_exception_support_info.catch_exception_sym,
9985 NULL, VAR_DOMAIN);
9986 if (sym != NULL)
9987 {
9988 exception_info = &default_exception_support_info;
9989 return;
9990 }
9991
9992 /* Try our fallback exception suport info. */
9993 sym = standard_lookup (exception_support_info_fallback.catch_exception_sym,
9994 NULL, VAR_DOMAIN);
9995 if (sym != NULL)
9996 {
9997 exception_info = &exception_support_info_fallback;
9998 return;
9999 }
10000
10001 /* Sometimes, it is normal for us to not be able to find the routine
10002 we are looking for. This happens when the program is linked with
10003 the shared version of the GNAT runtime, and the program has not been
10004 started yet. Inform the user of these two possible causes if
10005 applicable. */
10006
ccefe4c4 10007 if (ada_update_initial_language (language_unknown) != language_ada)
0259addd
JB
10008 error (_("Unable to insert catchpoint. Is this an Ada main program?"));
10009
10010 /* If the symbol does not exist, then check that the program is
10011 already started, to make sure that shared libraries have been
10012 loaded. If it is not started, this may mean that the symbol is
10013 in a shared library. */
10014
10015 if (ptid_get_pid (inferior_ptid) == 0)
10016 error (_("Unable to insert catchpoint. Try to start the program first."));
10017
10018 /* At this point, we know that we are debugging an Ada program and
10019 that the inferior has been started, but we still are not able to
10020 find the run-time symbols. That can mean that we are in
10021 configurable run time mode, or that a-except as been optimized
10022 out by the linker... In any case, at this point it is not worth
10023 supporting this feature. */
10024
10025 error (_("Cannot insert catchpoints in this configuration."));
10026}
10027
10028/* An observer of "executable_changed" events.
10029 Its role is to clear certain cached values that need to be recomputed
10030 each time a new executable is loaded by GDB. */
10031
10032static void
781b42b0 10033ada_executable_changed_observer (void)
0259addd
JB
10034{
10035 /* If the executable changed, then it is possible that the Ada runtime
10036 is different. So we need to invalidate the exception support info
10037 cache. */
10038 exception_info = NULL;
10039}
10040
f7f9143b
JB
10041/* True iff FRAME is very likely to be that of a function that is
10042 part of the runtime system. This is all very heuristic, but is
10043 intended to be used as advice as to what frames are uninteresting
10044 to most users. */
10045
10046static int
10047is_known_support_routine (struct frame_info *frame)
10048{
4ed6b5be 10049 struct symtab_and_line sal;
f7f9143b 10050 char *func_name;
692465f1 10051 enum language func_lang;
f7f9143b 10052 int i;
f7f9143b 10053
4ed6b5be
JB
10054 /* If this code does not have any debugging information (no symtab),
10055 This cannot be any user code. */
f7f9143b 10056
4ed6b5be 10057 find_frame_sal (frame, &sal);
f7f9143b
JB
10058 if (sal.symtab == NULL)
10059 return 1;
10060
4ed6b5be
JB
10061 /* If there is a symtab, but the associated source file cannot be
10062 located, then assume this is not user code: Selecting a frame
10063 for which we cannot display the code would not be very helpful
10064 for the user. This should also take care of case such as VxWorks
10065 where the kernel has some debugging info provided for a few units. */
f7f9143b 10066
9bbc9174 10067 if (symtab_to_fullname (sal.symtab) == NULL)
f7f9143b
JB
10068 return 1;
10069
4ed6b5be
JB
10070 /* Check the unit filename againt the Ada runtime file naming.
10071 We also check the name of the objfile against the name of some
10072 known system libraries that sometimes come with debugging info
10073 too. */
10074
f7f9143b
JB
10075 for (i = 0; known_runtime_file_name_patterns[i] != NULL; i += 1)
10076 {
10077 re_comp (known_runtime_file_name_patterns[i]);
10078 if (re_exec (sal.symtab->filename))
10079 return 1;
4ed6b5be
JB
10080 if (sal.symtab->objfile != NULL
10081 && re_exec (sal.symtab->objfile->name))
10082 return 1;
f7f9143b
JB
10083 }
10084
4ed6b5be 10085 /* Check whether the function is a GNAT-generated entity. */
f7f9143b 10086
692465f1 10087 find_frame_funname (frame, &func_name, &func_lang);
f7f9143b
JB
10088 if (func_name == NULL)
10089 return 1;
10090
10091 for (i = 0; known_auxiliary_function_name_patterns[i] != NULL; i += 1)
10092 {
10093 re_comp (known_auxiliary_function_name_patterns[i]);
10094 if (re_exec (func_name))
10095 return 1;
10096 }
10097
10098 return 0;
10099}
10100
10101/* Find the first frame that contains debugging information and that is not
10102 part of the Ada run-time, starting from FI and moving upward. */
10103
0ef643c8 10104void
f7f9143b
JB
10105ada_find_printable_frame (struct frame_info *fi)
10106{
10107 for (; fi != NULL; fi = get_prev_frame (fi))
10108 {
10109 if (!is_known_support_routine (fi))
10110 {
10111 select_frame (fi);
10112 break;
10113 }
10114 }
10115
10116}
10117
10118/* Assuming that the inferior just triggered an unhandled exception
10119 catchpoint, return the address in inferior memory where the name
10120 of the exception is stored.
10121
10122 Return zero if the address could not be computed. */
10123
10124static CORE_ADDR
10125ada_unhandled_exception_name_addr (void)
0259addd
JB
10126{
10127 return parse_and_eval_address ("e.full_name");
10128}
10129
10130/* Same as ada_unhandled_exception_name_addr, except that this function
10131 should be used when the inferior uses an older version of the runtime,
10132 where the exception name needs to be extracted from a specific frame
10133 several frames up in the callstack. */
10134
10135static CORE_ADDR
10136ada_unhandled_exception_name_addr_from_raise (void)
f7f9143b
JB
10137{
10138 int frame_level;
10139 struct frame_info *fi;
10140
10141 /* To determine the name of this exception, we need to select
10142 the frame corresponding to RAISE_SYM_NAME. This frame is
10143 at least 3 levels up, so we simply skip the first 3 frames
10144 without checking the name of their associated function. */
10145 fi = get_current_frame ();
10146 for (frame_level = 0; frame_level < 3; frame_level += 1)
10147 if (fi != NULL)
10148 fi = get_prev_frame (fi);
10149
10150 while (fi != NULL)
10151 {
692465f1
JB
10152 char *func_name;
10153 enum language func_lang;
10154
10155 find_frame_funname (fi, &func_name, &func_lang);
f7f9143b 10156 if (func_name != NULL
0259addd 10157 && strcmp (func_name, exception_info->catch_exception_sym) == 0)
f7f9143b
JB
10158 break; /* We found the frame we were looking for... */
10159 fi = get_prev_frame (fi);
10160 }
10161
10162 if (fi == NULL)
10163 return 0;
10164
10165 select_frame (fi);
10166 return parse_and_eval_address ("id.full_name");
10167}
10168
10169/* Assuming the inferior just triggered an Ada exception catchpoint
10170 (of any type), return the address in inferior memory where the name
10171 of the exception is stored, if applicable.
10172
10173 Return zero if the address could not be computed, or if not relevant. */
10174
10175static CORE_ADDR
10176ada_exception_name_addr_1 (enum exception_catchpoint_kind ex,
10177 struct breakpoint *b)
10178{
10179 switch (ex)
10180 {
10181 case ex_catch_exception:
10182 return (parse_and_eval_address ("e.full_name"));
10183 break;
10184
10185 case ex_catch_exception_unhandled:
0259addd 10186 return exception_info->unhandled_exception_name_addr ();
f7f9143b
JB
10187 break;
10188
10189 case ex_catch_assert:
10190 return 0; /* Exception name is not relevant in this case. */
10191 break;
10192
10193 default:
10194 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
10195 break;
10196 }
10197
10198 return 0; /* Should never be reached. */
10199}
10200
10201/* Same as ada_exception_name_addr_1, except that it intercepts and contains
10202 any error that ada_exception_name_addr_1 might cause to be thrown.
10203 When an error is intercepted, a warning with the error message is printed,
10204 and zero is returned. */
10205
10206static CORE_ADDR
10207ada_exception_name_addr (enum exception_catchpoint_kind ex,
10208 struct breakpoint *b)
10209{
10210 struct gdb_exception e;
10211 CORE_ADDR result = 0;
10212
10213 TRY_CATCH (e, RETURN_MASK_ERROR)
10214 {
10215 result = ada_exception_name_addr_1 (ex, b);
10216 }
10217
10218 if (e.reason < 0)
10219 {
10220 warning (_("failed to get exception name: %s"), e.message);
10221 return 0;
10222 }
10223
10224 return result;
10225}
10226
10227/* Implement the PRINT_IT method in the breakpoint_ops structure
10228 for all exception catchpoint kinds. */
10229
10230static enum print_stop_action
10231print_it_exception (enum exception_catchpoint_kind ex, struct breakpoint *b)
10232{
10233 const CORE_ADDR addr = ada_exception_name_addr (ex, b);
10234 char exception_name[256];
10235
10236 if (addr != 0)
10237 {
10238 read_memory (addr, exception_name, sizeof (exception_name) - 1);
10239 exception_name [sizeof (exception_name) - 1] = '\0';
10240 }
10241
10242 ada_find_printable_frame (get_current_frame ());
10243
10244 annotate_catchpoint (b->number);
10245 switch (ex)
10246 {
10247 case ex_catch_exception:
10248 if (addr != 0)
10249 printf_filtered (_("\nCatchpoint %d, %s at "),
10250 b->number, exception_name);
10251 else
10252 printf_filtered (_("\nCatchpoint %d, exception at "), b->number);
10253 break;
10254 case ex_catch_exception_unhandled:
10255 if (addr != 0)
10256 printf_filtered (_("\nCatchpoint %d, unhandled %s at "),
10257 b->number, exception_name);
10258 else
10259 printf_filtered (_("\nCatchpoint %d, unhandled exception at "),
10260 b->number);
10261 break;
10262 case ex_catch_assert:
10263 printf_filtered (_("\nCatchpoint %d, failed assertion at "),
10264 b->number);
10265 break;
10266 }
10267
10268 return PRINT_SRC_AND_LOC;
10269}
10270
10271/* Implement the PRINT_ONE method in the breakpoint_ops structure
10272 for all exception catchpoint kinds. */
10273
10274static void
10275print_one_exception (enum exception_catchpoint_kind ex,
a6d9a66e 10276 struct breakpoint *b, struct bp_location **last_loc)
f7f9143b 10277{
79a45b7d
TT
10278 struct value_print_options opts;
10279
10280 get_user_print_options (&opts);
10281 if (opts.addressprint)
f7f9143b
JB
10282 {
10283 annotate_field (4);
5af949e3 10284 ui_out_field_core_addr (uiout, "addr", b->loc->gdbarch, b->loc->address);
f7f9143b
JB
10285 }
10286
10287 annotate_field (5);
a6d9a66e 10288 *last_loc = b->loc;
f7f9143b
JB
10289 switch (ex)
10290 {
10291 case ex_catch_exception:
10292 if (b->exp_string != NULL)
10293 {
10294 char *msg = xstrprintf (_("`%s' Ada exception"), b->exp_string);
10295
10296 ui_out_field_string (uiout, "what", msg);
10297 xfree (msg);
10298 }
10299 else
10300 ui_out_field_string (uiout, "what", "all Ada exceptions");
10301
10302 break;
10303
10304 case ex_catch_exception_unhandled:
10305 ui_out_field_string (uiout, "what", "unhandled Ada exceptions");
10306 break;
10307
10308 case ex_catch_assert:
10309 ui_out_field_string (uiout, "what", "failed Ada assertions");
10310 break;
10311
10312 default:
10313 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
10314 break;
10315 }
10316}
10317
10318/* Implement the PRINT_MENTION method in the breakpoint_ops structure
10319 for all exception catchpoint kinds. */
10320
10321static void
10322print_mention_exception (enum exception_catchpoint_kind ex,
10323 struct breakpoint *b)
10324{
10325 switch (ex)
10326 {
10327 case ex_catch_exception:
10328 if (b->exp_string != NULL)
10329 printf_filtered (_("Catchpoint %d: `%s' Ada exception"),
10330 b->number, b->exp_string);
10331 else
10332 printf_filtered (_("Catchpoint %d: all Ada exceptions"), b->number);
10333
10334 break;
10335
10336 case ex_catch_exception_unhandled:
10337 printf_filtered (_("Catchpoint %d: unhandled Ada exceptions"),
10338 b->number);
10339 break;
10340
10341 case ex_catch_assert:
10342 printf_filtered (_("Catchpoint %d: failed Ada assertions"), b->number);
10343 break;
10344
10345 default:
10346 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
10347 break;
10348 }
10349}
10350
10351/* Virtual table for "catch exception" breakpoints. */
10352
10353static enum print_stop_action
10354print_it_catch_exception (struct breakpoint *b)
10355{
10356 return print_it_exception (ex_catch_exception, b);
10357}
10358
10359static void
a6d9a66e 10360print_one_catch_exception (struct breakpoint *b, struct bp_location **last_loc)
f7f9143b 10361{
a6d9a66e 10362 print_one_exception (ex_catch_exception, b, last_loc);
f7f9143b
JB
10363}
10364
10365static void
10366print_mention_catch_exception (struct breakpoint *b)
10367{
10368 print_mention_exception (ex_catch_exception, b);
10369}
10370
10371static struct breakpoint_ops catch_exception_breakpoint_ops =
10372{
ce78b96d
JB
10373 NULL, /* insert */
10374 NULL, /* remove */
10375 NULL, /* breakpoint_hit */
f7f9143b
JB
10376 print_it_catch_exception,
10377 print_one_catch_exception,
10378 print_mention_catch_exception
10379};
10380
10381/* Virtual table for "catch exception unhandled" breakpoints. */
10382
10383static enum print_stop_action
10384print_it_catch_exception_unhandled (struct breakpoint *b)
10385{
10386 return print_it_exception (ex_catch_exception_unhandled, b);
10387}
10388
10389static void
a6d9a66e
UW
10390print_one_catch_exception_unhandled (struct breakpoint *b,
10391 struct bp_location **last_loc)
f7f9143b 10392{
a6d9a66e 10393 print_one_exception (ex_catch_exception_unhandled, b, last_loc);
f7f9143b
JB
10394}
10395
10396static void
10397print_mention_catch_exception_unhandled (struct breakpoint *b)
10398{
10399 print_mention_exception (ex_catch_exception_unhandled, b);
10400}
10401
10402static struct breakpoint_ops catch_exception_unhandled_breakpoint_ops = {
ce78b96d
JB
10403 NULL, /* insert */
10404 NULL, /* remove */
10405 NULL, /* breakpoint_hit */
f7f9143b
JB
10406 print_it_catch_exception_unhandled,
10407 print_one_catch_exception_unhandled,
10408 print_mention_catch_exception_unhandled
10409};
10410
10411/* Virtual table for "catch assert" breakpoints. */
10412
10413static enum print_stop_action
10414print_it_catch_assert (struct breakpoint *b)
10415{
10416 return print_it_exception (ex_catch_assert, b);
10417}
10418
10419static void
a6d9a66e 10420print_one_catch_assert (struct breakpoint *b, struct bp_location **last_loc)
f7f9143b 10421{
a6d9a66e 10422 print_one_exception (ex_catch_assert, b, last_loc);
f7f9143b
JB
10423}
10424
10425static void
10426print_mention_catch_assert (struct breakpoint *b)
10427{
10428 print_mention_exception (ex_catch_assert, b);
10429}
10430
10431static struct breakpoint_ops catch_assert_breakpoint_ops = {
ce78b96d
JB
10432 NULL, /* insert */
10433 NULL, /* remove */
10434 NULL, /* breakpoint_hit */
f7f9143b
JB
10435 print_it_catch_assert,
10436 print_one_catch_assert,
10437 print_mention_catch_assert
10438};
10439
10440/* Return non-zero if B is an Ada exception catchpoint. */
10441
10442int
10443ada_exception_catchpoint_p (struct breakpoint *b)
10444{
10445 return (b->ops == &catch_exception_breakpoint_ops
10446 || b->ops == &catch_exception_unhandled_breakpoint_ops
10447 || b->ops == &catch_assert_breakpoint_ops);
10448}
10449
f7f9143b
JB
10450/* Return a newly allocated copy of the first space-separated token
10451 in ARGSP, and then adjust ARGSP to point immediately after that
10452 token.
10453
10454 Return NULL if ARGPS does not contain any more tokens. */
10455
10456static char *
10457ada_get_next_arg (char **argsp)
10458{
10459 char *args = *argsp;
10460 char *end;
10461 char *result;
10462
10463 /* Skip any leading white space. */
10464
10465 while (isspace (*args))
10466 args++;
10467
10468 if (args[0] == '\0')
10469 return NULL; /* No more arguments. */
10470
10471 /* Find the end of the current argument. */
10472
10473 end = args;
10474 while (*end != '\0' && !isspace (*end))
10475 end++;
10476
10477 /* Adjust ARGSP to point to the start of the next argument. */
10478
10479 *argsp = end;
10480
10481 /* Make a copy of the current argument and return it. */
10482
10483 result = xmalloc (end - args + 1);
10484 strncpy (result, args, end - args);
10485 result[end - args] = '\0';
10486
10487 return result;
10488}
10489
10490/* Split the arguments specified in a "catch exception" command.
10491 Set EX to the appropriate catchpoint type.
10492 Set EXP_STRING to the name of the specific exception if
10493 specified by the user. */
10494
10495static void
10496catch_ada_exception_command_split (char *args,
10497 enum exception_catchpoint_kind *ex,
10498 char **exp_string)
10499{
10500 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
10501 char *exception_name;
10502
10503 exception_name = ada_get_next_arg (&args);
10504 make_cleanup (xfree, exception_name);
10505
10506 /* Check that we do not have any more arguments. Anything else
10507 is unexpected. */
10508
10509 while (isspace (*args))
10510 args++;
10511
10512 if (args[0] != '\0')
10513 error (_("Junk at end of expression"));
10514
10515 discard_cleanups (old_chain);
10516
10517 if (exception_name == NULL)
10518 {
10519 /* Catch all exceptions. */
10520 *ex = ex_catch_exception;
10521 *exp_string = NULL;
10522 }
10523 else if (strcmp (exception_name, "unhandled") == 0)
10524 {
10525 /* Catch unhandled exceptions. */
10526 *ex = ex_catch_exception_unhandled;
10527 *exp_string = NULL;
10528 }
10529 else
10530 {
10531 /* Catch a specific exception. */
10532 *ex = ex_catch_exception;
10533 *exp_string = exception_name;
10534 }
10535}
10536
10537/* Return the name of the symbol on which we should break in order to
10538 implement a catchpoint of the EX kind. */
10539
10540static const char *
10541ada_exception_sym_name (enum exception_catchpoint_kind ex)
10542{
0259addd
JB
10543 gdb_assert (exception_info != NULL);
10544
f7f9143b
JB
10545 switch (ex)
10546 {
10547 case ex_catch_exception:
0259addd 10548 return (exception_info->catch_exception_sym);
f7f9143b
JB
10549 break;
10550 case ex_catch_exception_unhandled:
0259addd 10551 return (exception_info->catch_exception_unhandled_sym);
f7f9143b
JB
10552 break;
10553 case ex_catch_assert:
0259addd 10554 return (exception_info->catch_assert_sym);
f7f9143b
JB
10555 break;
10556 default:
10557 internal_error (__FILE__, __LINE__,
10558 _("unexpected catchpoint kind (%d)"), ex);
10559 }
10560}
10561
10562/* Return the breakpoint ops "virtual table" used for catchpoints
10563 of the EX kind. */
10564
10565static struct breakpoint_ops *
4b9eee8c 10566ada_exception_breakpoint_ops (enum exception_catchpoint_kind ex)
f7f9143b
JB
10567{
10568 switch (ex)
10569 {
10570 case ex_catch_exception:
10571 return (&catch_exception_breakpoint_ops);
10572 break;
10573 case ex_catch_exception_unhandled:
10574 return (&catch_exception_unhandled_breakpoint_ops);
10575 break;
10576 case ex_catch_assert:
10577 return (&catch_assert_breakpoint_ops);
10578 break;
10579 default:
10580 internal_error (__FILE__, __LINE__,
10581 _("unexpected catchpoint kind (%d)"), ex);
10582 }
10583}
10584
10585/* Return the condition that will be used to match the current exception
10586 being raised with the exception that the user wants to catch. This
10587 assumes that this condition is used when the inferior just triggered
10588 an exception catchpoint.
10589
10590 The string returned is a newly allocated string that needs to be
10591 deallocated later. */
10592
10593static char *
10594ada_exception_catchpoint_cond_string (const char *exp_string)
10595{
3d0b0fa3
JB
10596 int i;
10597
10598 /* The standard exceptions are a special case. They are defined in
10599 runtime units that have been compiled without debugging info; if
10600 EXP_STRING is the not-fully-qualified name of a standard
10601 exception (e.g. "constraint_error") then, during the evaluation
10602 of the condition expression, the symbol lookup on this name would
10603 *not* return this standard exception. The catchpoint condition
10604 may then be set only on user-defined exceptions which have the
10605 same not-fully-qualified name (e.g. my_package.constraint_error).
10606
10607 To avoid this unexcepted behavior, these standard exceptions are
10608 systematically prefixed by "standard". This means that "catch
10609 exception constraint_error" is rewritten into "catch exception
10610 standard.constraint_error".
10611
10612 If an exception named contraint_error is defined in another package of
10613 the inferior program, then the only way to specify this exception as a
10614 breakpoint condition is to use its fully-qualified named:
10615 e.g. my_package.constraint_error. */
10616
10617 for (i = 0; i < sizeof (standard_exc) / sizeof (char *); i++)
10618 {
10619 if (strcmp (standard_exc [i], exp_string) == 0)
10620 {
10621 return xstrprintf ("long_integer (e) = long_integer (&standard.%s)",
10622 exp_string);
10623 }
10624 }
f7f9143b
JB
10625 return xstrprintf ("long_integer (e) = long_integer (&%s)", exp_string);
10626}
10627
10628/* Return the expression corresponding to COND_STRING evaluated at SAL. */
10629
10630static struct expression *
10631ada_parse_catchpoint_condition (char *cond_string,
10632 struct symtab_and_line sal)
10633{
10634 return (parse_exp_1 (&cond_string, block_for_pc (sal.pc), 0));
10635}
10636
10637/* Return the symtab_and_line that should be used to insert an exception
10638 catchpoint of the TYPE kind.
10639
10640 EX_STRING should contain the name of a specific exception
10641 that the catchpoint should catch, or NULL otherwise.
10642
10643 The idea behind all the remaining parameters is that their names match
10644 the name of certain fields in the breakpoint structure that are used to
10645 handle exception catchpoints. This function returns the value to which
10646 these fields should be set, depending on the type of catchpoint we need
10647 to create.
10648
10649 If COND and COND_STRING are both non-NULL, any value they might
10650 hold will be free'ed, and then replaced by newly allocated ones.
10651 These parameters are left untouched otherwise. */
10652
10653static struct symtab_and_line
10654ada_exception_sal (enum exception_catchpoint_kind ex, char *exp_string,
10655 char **addr_string, char **cond_string,
10656 struct expression **cond, struct breakpoint_ops **ops)
10657{
10658 const char *sym_name;
10659 struct symbol *sym;
10660 struct symtab_and_line sal;
10661
0259addd
JB
10662 /* First, find out which exception support info to use. */
10663 ada_exception_support_info_sniffer ();
10664
10665 /* Then lookup the function on which we will break in order to catch
f7f9143b
JB
10666 the Ada exceptions requested by the user. */
10667
10668 sym_name = ada_exception_sym_name (ex);
10669 sym = standard_lookup (sym_name, NULL, VAR_DOMAIN);
10670
10671 /* The symbol we're looking up is provided by a unit in the GNAT runtime
10672 that should be compiled with debugging information. As a result, we
10673 expect to find that symbol in the symtabs. If we don't find it, then
10674 the target most likely does not support Ada exceptions, or we cannot
10675 insert exception breakpoints yet, because the GNAT runtime hasn't been
10676 loaded yet. */
10677
10678 /* brobecker/2006-12-26: It is conceivable that the runtime was compiled
10679 in such a way that no debugging information is produced for the symbol
10680 we are looking for. In this case, we could search the minimal symbols
10681 as a fall-back mechanism. This would still be operating in degraded
10682 mode, however, as we would still be missing the debugging information
10683 that is needed in order to extract the name of the exception being
10684 raised (this name is printed in the catchpoint message, and is also
10685 used when trying to catch a specific exception). We do not handle
10686 this case for now. */
10687
10688 if (sym == NULL)
0259addd 10689 error (_("Unable to break on '%s' in this configuration."), sym_name);
f7f9143b
JB
10690
10691 /* Make sure that the symbol we found corresponds to a function. */
10692 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
10693 error (_("Symbol \"%s\" is not a function (class = %d)"),
10694 sym_name, SYMBOL_CLASS (sym));
10695
10696 sal = find_function_start_sal (sym, 1);
10697
10698 /* Set ADDR_STRING. */
10699
10700 *addr_string = xstrdup (sym_name);
10701
10702 /* Set the COND and COND_STRING (if not NULL). */
10703
10704 if (cond_string != NULL && cond != NULL)
10705 {
10706 if (*cond_string != NULL)
10707 {
10708 xfree (*cond_string);
10709 *cond_string = NULL;
10710 }
10711 if (*cond != NULL)
10712 {
10713 xfree (*cond);
10714 *cond = NULL;
10715 }
10716 if (exp_string != NULL)
10717 {
10718 *cond_string = ada_exception_catchpoint_cond_string (exp_string);
10719 *cond = ada_parse_catchpoint_condition (*cond_string, sal);
10720 }
10721 }
10722
10723 /* Set OPS. */
4b9eee8c 10724 *ops = ada_exception_breakpoint_ops (ex);
f7f9143b
JB
10725
10726 return sal;
10727}
10728
10729/* Parse the arguments (ARGS) of the "catch exception" command.
10730
10731 Set TYPE to the appropriate exception catchpoint type.
10732 If the user asked the catchpoint to catch only a specific
10733 exception, then save the exception name in ADDR_STRING.
10734
10735 See ada_exception_sal for a description of all the remaining
10736 function arguments of this function. */
10737
10738struct symtab_and_line
10739ada_decode_exception_location (char *args, char **addr_string,
10740 char **exp_string, char **cond_string,
10741 struct expression **cond,
10742 struct breakpoint_ops **ops)
10743{
10744 enum exception_catchpoint_kind ex;
10745
10746 catch_ada_exception_command_split (args, &ex, exp_string);
10747 return ada_exception_sal (ex, *exp_string, addr_string, cond_string,
10748 cond, ops);
10749}
10750
10751struct symtab_and_line
10752ada_decode_assert_location (char *args, char **addr_string,
10753 struct breakpoint_ops **ops)
10754{
10755 /* Check that no argument where provided at the end of the command. */
10756
10757 if (args != NULL)
10758 {
10759 while (isspace (*args))
10760 args++;
10761 if (*args != '\0')
10762 error (_("Junk at end of arguments."));
10763 }
10764
10765 return ada_exception_sal (ex_catch_assert, NULL, addr_string, NULL, NULL,
10766 ops);
10767}
10768
4c4b4cd2
PH
10769 /* Operators */
10770/* Information about operators given special treatment in functions
10771 below. */
10772/* Format: OP_DEFN (<operator>, <operator length>, <# args>, <binop>). */
10773
10774#define ADA_OPERATORS \
10775 OP_DEFN (OP_VAR_VALUE, 4, 0, 0) \
10776 OP_DEFN (BINOP_IN_BOUNDS, 3, 2, 0) \
10777 OP_DEFN (TERNOP_IN_RANGE, 1, 3, 0) \
10778 OP_DEFN (OP_ATR_FIRST, 1, 2, 0) \
10779 OP_DEFN (OP_ATR_LAST, 1, 2, 0) \
10780 OP_DEFN (OP_ATR_LENGTH, 1, 2, 0) \
10781 OP_DEFN (OP_ATR_IMAGE, 1, 2, 0) \
10782 OP_DEFN (OP_ATR_MAX, 1, 3, 0) \
10783 OP_DEFN (OP_ATR_MIN, 1, 3, 0) \
10784 OP_DEFN (OP_ATR_MODULUS, 1, 1, 0) \
10785 OP_DEFN (OP_ATR_POS, 1, 2, 0) \
10786 OP_DEFN (OP_ATR_SIZE, 1, 1, 0) \
10787 OP_DEFN (OP_ATR_TAG, 1, 1, 0) \
10788 OP_DEFN (OP_ATR_VAL, 1, 2, 0) \
10789 OP_DEFN (UNOP_QUAL, 3, 1, 0) \
52ce6436
PH
10790 OP_DEFN (UNOP_IN_RANGE, 3, 1, 0) \
10791 OP_DEFN (OP_OTHERS, 1, 1, 0) \
10792 OP_DEFN (OP_POSITIONAL, 3, 1, 0) \
10793 OP_DEFN (OP_DISCRETE_RANGE, 1, 2, 0)
4c4b4cd2
PH
10794
10795static void
10796ada_operator_length (struct expression *exp, int pc, int *oplenp, int *argsp)
10797{
10798 switch (exp->elts[pc - 1].opcode)
10799 {
76a01679 10800 default:
4c4b4cd2
PH
10801 operator_length_standard (exp, pc, oplenp, argsp);
10802 break;
10803
10804#define OP_DEFN(op, len, args, binop) \
10805 case op: *oplenp = len; *argsp = args; break;
10806 ADA_OPERATORS;
10807#undef OP_DEFN
52ce6436
PH
10808
10809 case OP_AGGREGATE:
10810 *oplenp = 3;
10811 *argsp = longest_to_int (exp->elts[pc - 2].longconst);
10812 break;
10813
10814 case OP_CHOICES:
10815 *oplenp = 3;
10816 *argsp = longest_to_int (exp->elts[pc - 2].longconst) + 1;
10817 break;
4c4b4cd2
PH
10818 }
10819}
10820
10821static char *
10822ada_op_name (enum exp_opcode opcode)
10823{
10824 switch (opcode)
10825 {
76a01679 10826 default:
4c4b4cd2 10827 return op_name_standard (opcode);
52ce6436 10828
4c4b4cd2
PH
10829#define OP_DEFN(op, len, args, binop) case op: return #op;
10830 ADA_OPERATORS;
10831#undef OP_DEFN
52ce6436
PH
10832
10833 case OP_AGGREGATE:
10834 return "OP_AGGREGATE";
10835 case OP_CHOICES:
10836 return "OP_CHOICES";
10837 case OP_NAME:
10838 return "OP_NAME";
4c4b4cd2
PH
10839 }
10840}
10841
10842/* As for operator_length, but assumes PC is pointing at the first
10843 element of the operator, and gives meaningful results only for the
52ce6436 10844 Ada-specific operators, returning 0 for *OPLENP and *ARGSP otherwise. */
4c4b4cd2
PH
10845
10846static void
76a01679
JB
10847ada_forward_operator_length (struct expression *exp, int pc,
10848 int *oplenp, int *argsp)
4c4b4cd2 10849{
76a01679 10850 switch (exp->elts[pc].opcode)
4c4b4cd2
PH
10851 {
10852 default:
10853 *oplenp = *argsp = 0;
10854 break;
52ce6436 10855
4c4b4cd2
PH
10856#define OP_DEFN(op, len, args, binop) \
10857 case op: *oplenp = len; *argsp = args; break;
10858 ADA_OPERATORS;
10859#undef OP_DEFN
52ce6436
PH
10860
10861 case OP_AGGREGATE:
10862 *oplenp = 3;
10863 *argsp = longest_to_int (exp->elts[pc + 1].longconst);
10864 break;
10865
10866 case OP_CHOICES:
10867 *oplenp = 3;
10868 *argsp = longest_to_int (exp->elts[pc + 1].longconst) + 1;
10869 break;
10870
10871 case OP_STRING:
10872 case OP_NAME:
10873 {
10874 int len = longest_to_int (exp->elts[pc + 1].longconst);
10875 *oplenp = 4 + BYTES_TO_EXP_ELEM (len + 1);
10876 *argsp = 0;
10877 break;
10878 }
4c4b4cd2
PH
10879 }
10880}
10881
10882static int
10883ada_dump_subexp_body (struct expression *exp, struct ui_file *stream, int elt)
10884{
10885 enum exp_opcode op = exp->elts[elt].opcode;
10886 int oplen, nargs;
10887 int pc = elt;
10888 int i;
76a01679 10889
4c4b4cd2
PH
10890 ada_forward_operator_length (exp, elt, &oplen, &nargs);
10891
76a01679 10892 switch (op)
4c4b4cd2 10893 {
76a01679 10894 /* Ada attributes ('Foo). */
4c4b4cd2
PH
10895 case OP_ATR_FIRST:
10896 case OP_ATR_LAST:
10897 case OP_ATR_LENGTH:
10898 case OP_ATR_IMAGE:
10899 case OP_ATR_MAX:
10900 case OP_ATR_MIN:
10901 case OP_ATR_MODULUS:
10902 case OP_ATR_POS:
10903 case OP_ATR_SIZE:
10904 case OP_ATR_TAG:
10905 case OP_ATR_VAL:
10906 break;
10907
10908 case UNOP_IN_RANGE:
10909 case UNOP_QUAL:
323e0a4a
AC
10910 /* XXX: gdb_sprint_host_address, type_sprint */
10911 fprintf_filtered (stream, _("Type @"));
4c4b4cd2
PH
10912 gdb_print_host_address (exp->elts[pc + 1].type, stream);
10913 fprintf_filtered (stream, " (");
10914 type_print (exp->elts[pc + 1].type, NULL, stream, 0);
10915 fprintf_filtered (stream, ")");
10916 break;
10917 case BINOP_IN_BOUNDS:
52ce6436
PH
10918 fprintf_filtered (stream, " (%d)",
10919 longest_to_int (exp->elts[pc + 2].longconst));
4c4b4cd2
PH
10920 break;
10921 case TERNOP_IN_RANGE:
10922 break;
10923
52ce6436
PH
10924 case OP_AGGREGATE:
10925 case OP_OTHERS:
10926 case OP_DISCRETE_RANGE:
10927 case OP_POSITIONAL:
10928 case OP_CHOICES:
10929 break;
10930
10931 case OP_NAME:
10932 case OP_STRING:
10933 {
10934 char *name = &exp->elts[elt + 2].string;
10935 int len = longest_to_int (exp->elts[elt + 1].longconst);
10936 fprintf_filtered (stream, "Text: `%.*s'", len, name);
10937 break;
10938 }
10939
4c4b4cd2
PH
10940 default:
10941 return dump_subexp_body_standard (exp, stream, elt);
10942 }
10943
10944 elt += oplen;
10945 for (i = 0; i < nargs; i += 1)
10946 elt = dump_subexp (exp, stream, elt);
10947
10948 return elt;
10949}
10950
10951/* The Ada extension of print_subexp (q.v.). */
10952
76a01679
JB
10953static void
10954ada_print_subexp (struct expression *exp, int *pos,
10955 struct ui_file *stream, enum precedence prec)
4c4b4cd2 10956{
52ce6436 10957 int oplen, nargs, i;
4c4b4cd2
PH
10958 int pc = *pos;
10959 enum exp_opcode op = exp->elts[pc].opcode;
10960
10961 ada_forward_operator_length (exp, pc, &oplen, &nargs);
10962
52ce6436 10963 *pos += oplen;
4c4b4cd2
PH
10964 switch (op)
10965 {
10966 default:
52ce6436 10967 *pos -= oplen;
4c4b4cd2
PH
10968 print_subexp_standard (exp, pos, stream, prec);
10969 return;
10970
10971 case OP_VAR_VALUE:
4c4b4cd2
PH
10972 fputs_filtered (SYMBOL_NATURAL_NAME (exp->elts[pc + 2].symbol), stream);
10973 return;
10974
10975 case BINOP_IN_BOUNDS:
323e0a4a 10976 /* XXX: sprint_subexp */
4c4b4cd2 10977 print_subexp (exp, pos, stream, PREC_SUFFIX);
0b48a291 10978 fputs_filtered (" in ", stream);
4c4b4cd2 10979 print_subexp (exp, pos, stream, PREC_SUFFIX);
0b48a291 10980 fputs_filtered ("'range", stream);
4c4b4cd2 10981 if (exp->elts[pc + 1].longconst > 1)
76a01679
JB
10982 fprintf_filtered (stream, "(%ld)",
10983 (long) exp->elts[pc + 1].longconst);
4c4b4cd2
PH
10984 return;
10985
10986 case TERNOP_IN_RANGE:
4c4b4cd2 10987 if (prec >= PREC_EQUAL)
76a01679 10988 fputs_filtered ("(", stream);
323e0a4a 10989 /* XXX: sprint_subexp */
4c4b4cd2 10990 print_subexp (exp, pos, stream, PREC_SUFFIX);
0b48a291 10991 fputs_filtered (" in ", stream);
4c4b4cd2
PH
10992 print_subexp (exp, pos, stream, PREC_EQUAL);
10993 fputs_filtered (" .. ", stream);
10994 print_subexp (exp, pos, stream, PREC_EQUAL);
10995 if (prec >= PREC_EQUAL)
76a01679
JB
10996 fputs_filtered (")", stream);
10997 return;
4c4b4cd2
PH
10998
10999 case OP_ATR_FIRST:
11000 case OP_ATR_LAST:
11001 case OP_ATR_LENGTH:
11002 case OP_ATR_IMAGE:
11003 case OP_ATR_MAX:
11004 case OP_ATR_MIN:
11005 case OP_ATR_MODULUS:
11006 case OP_ATR_POS:
11007 case OP_ATR_SIZE:
11008 case OP_ATR_TAG:
11009 case OP_ATR_VAL:
4c4b4cd2 11010 if (exp->elts[*pos].opcode == OP_TYPE)
76a01679
JB
11011 {
11012 if (TYPE_CODE (exp->elts[*pos + 1].type) != TYPE_CODE_VOID)
11013 LA_PRINT_TYPE (exp->elts[*pos + 1].type, "", stream, 0, 0);
11014 *pos += 3;
11015 }
4c4b4cd2 11016 else
76a01679 11017 print_subexp (exp, pos, stream, PREC_SUFFIX);
4c4b4cd2
PH
11018 fprintf_filtered (stream, "'%s", ada_attribute_name (op));
11019 if (nargs > 1)
76a01679
JB
11020 {
11021 int tem;
11022 for (tem = 1; tem < nargs; tem += 1)
11023 {
11024 fputs_filtered ((tem == 1) ? " (" : ", ", stream);
11025 print_subexp (exp, pos, stream, PREC_ABOVE_COMMA);
11026 }
11027 fputs_filtered (")", stream);
11028 }
4c4b4cd2 11029 return;
14f9c5c9 11030
4c4b4cd2 11031 case UNOP_QUAL:
4c4b4cd2
PH
11032 type_print (exp->elts[pc + 1].type, "", stream, 0);
11033 fputs_filtered ("'(", stream);
11034 print_subexp (exp, pos, stream, PREC_PREFIX);
11035 fputs_filtered (")", stream);
11036 return;
14f9c5c9 11037
4c4b4cd2 11038 case UNOP_IN_RANGE:
323e0a4a 11039 /* XXX: sprint_subexp */
4c4b4cd2 11040 print_subexp (exp, pos, stream, PREC_SUFFIX);
0b48a291 11041 fputs_filtered (" in ", stream);
4c4b4cd2
PH
11042 LA_PRINT_TYPE (exp->elts[pc + 1].type, "", stream, 1, 0);
11043 return;
52ce6436
PH
11044
11045 case OP_DISCRETE_RANGE:
11046 print_subexp (exp, pos, stream, PREC_SUFFIX);
11047 fputs_filtered ("..", stream);
11048 print_subexp (exp, pos, stream, PREC_SUFFIX);
11049 return;
11050
11051 case OP_OTHERS:
11052 fputs_filtered ("others => ", stream);
11053 print_subexp (exp, pos, stream, PREC_SUFFIX);
11054 return;
11055
11056 case OP_CHOICES:
11057 for (i = 0; i < nargs-1; i += 1)
11058 {
11059 if (i > 0)
11060 fputs_filtered ("|", stream);
11061 print_subexp (exp, pos, stream, PREC_SUFFIX);
11062 }
11063 fputs_filtered (" => ", stream);
11064 print_subexp (exp, pos, stream, PREC_SUFFIX);
11065 return;
11066
11067 case OP_POSITIONAL:
11068 print_subexp (exp, pos, stream, PREC_SUFFIX);
11069 return;
11070
11071 case OP_AGGREGATE:
11072 fputs_filtered ("(", stream);
11073 for (i = 0; i < nargs; i += 1)
11074 {
11075 if (i > 0)
11076 fputs_filtered (", ", stream);
11077 print_subexp (exp, pos, stream, PREC_SUFFIX);
11078 }
11079 fputs_filtered (")", stream);
11080 return;
4c4b4cd2
PH
11081 }
11082}
14f9c5c9
AS
11083
11084/* Table mapping opcodes into strings for printing operators
11085 and precedences of the operators. */
11086
d2e4a39e
AS
11087static const struct op_print ada_op_print_tab[] = {
11088 {":=", BINOP_ASSIGN, PREC_ASSIGN, 1},
11089 {"or else", BINOP_LOGICAL_OR, PREC_LOGICAL_OR, 0},
11090 {"and then", BINOP_LOGICAL_AND, PREC_LOGICAL_AND, 0},
11091 {"or", BINOP_BITWISE_IOR, PREC_BITWISE_IOR, 0},
11092 {"xor", BINOP_BITWISE_XOR, PREC_BITWISE_XOR, 0},
11093 {"and", BINOP_BITWISE_AND, PREC_BITWISE_AND, 0},
11094 {"=", BINOP_EQUAL, PREC_EQUAL, 0},
11095 {"/=", BINOP_NOTEQUAL, PREC_EQUAL, 0},
11096 {"<=", BINOP_LEQ, PREC_ORDER, 0},
11097 {">=", BINOP_GEQ, PREC_ORDER, 0},
11098 {">", BINOP_GTR, PREC_ORDER, 0},
11099 {"<", BINOP_LESS, PREC_ORDER, 0},
11100 {">>", BINOP_RSH, PREC_SHIFT, 0},
11101 {"<<", BINOP_LSH, PREC_SHIFT, 0},
11102 {"+", BINOP_ADD, PREC_ADD, 0},
11103 {"-", BINOP_SUB, PREC_ADD, 0},
11104 {"&", BINOP_CONCAT, PREC_ADD, 0},
11105 {"*", BINOP_MUL, PREC_MUL, 0},
11106 {"/", BINOP_DIV, PREC_MUL, 0},
11107 {"rem", BINOP_REM, PREC_MUL, 0},
11108 {"mod", BINOP_MOD, PREC_MUL, 0},
11109 {"**", BINOP_EXP, PREC_REPEAT, 0},
11110 {"@", BINOP_REPEAT, PREC_REPEAT, 0},
11111 {"-", UNOP_NEG, PREC_PREFIX, 0},
11112 {"+", UNOP_PLUS, PREC_PREFIX, 0},
11113 {"not ", UNOP_LOGICAL_NOT, PREC_PREFIX, 0},
11114 {"not ", UNOP_COMPLEMENT, PREC_PREFIX, 0},
11115 {"abs ", UNOP_ABS, PREC_PREFIX, 0},
4c4b4cd2
PH
11116 {".all", UNOP_IND, PREC_SUFFIX, 1},
11117 {"'access", UNOP_ADDR, PREC_SUFFIX, 1},
11118 {"'size", OP_ATR_SIZE, PREC_SUFFIX, 1},
d2e4a39e 11119 {NULL, 0, 0, 0}
14f9c5c9
AS
11120};
11121\f
72d5681a
PH
11122enum ada_primitive_types {
11123 ada_primitive_type_int,
11124 ada_primitive_type_long,
11125 ada_primitive_type_short,
11126 ada_primitive_type_char,
11127 ada_primitive_type_float,
11128 ada_primitive_type_double,
11129 ada_primitive_type_void,
11130 ada_primitive_type_long_long,
11131 ada_primitive_type_long_double,
11132 ada_primitive_type_natural,
11133 ada_primitive_type_positive,
11134 ada_primitive_type_system_address,
11135 nr_ada_primitive_types
11136};
6c038f32
PH
11137
11138static void
d4a9a881 11139ada_language_arch_info (struct gdbarch *gdbarch,
72d5681a
PH
11140 struct language_arch_info *lai)
11141{
d4a9a881 11142 const struct builtin_type *builtin = builtin_type (gdbarch);
72d5681a 11143 lai->primitive_type_vector
d4a9a881 11144 = GDBARCH_OBSTACK_CALLOC (gdbarch, nr_ada_primitive_types + 1,
72d5681a 11145 struct type *);
e9bb382b
UW
11146
11147 lai->primitive_type_vector [ada_primitive_type_int]
11148 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
11149 0, "integer");
11150 lai->primitive_type_vector [ada_primitive_type_long]
11151 = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
11152 0, "long_integer");
11153 lai->primitive_type_vector [ada_primitive_type_short]
11154 = arch_integer_type (gdbarch, gdbarch_short_bit (gdbarch),
11155 0, "short_integer");
11156 lai->string_char_type
11157 = lai->primitive_type_vector [ada_primitive_type_char]
11158 = arch_integer_type (gdbarch, TARGET_CHAR_BIT, 0, "character");
11159 lai->primitive_type_vector [ada_primitive_type_float]
11160 = arch_float_type (gdbarch, gdbarch_float_bit (gdbarch),
11161 "float", NULL);
11162 lai->primitive_type_vector [ada_primitive_type_double]
11163 = arch_float_type (gdbarch, gdbarch_double_bit (gdbarch),
11164 "long_float", NULL);
11165 lai->primitive_type_vector [ada_primitive_type_long_long]
11166 = arch_integer_type (gdbarch, gdbarch_long_long_bit (gdbarch),
11167 0, "long_long_integer");
11168 lai->primitive_type_vector [ada_primitive_type_long_double]
11169 = arch_float_type (gdbarch, gdbarch_double_bit (gdbarch),
11170 "long_long_float", NULL);
11171 lai->primitive_type_vector [ada_primitive_type_natural]
11172 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
11173 0, "natural");
11174 lai->primitive_type_vector [ada_primitive_type_positive]
11175 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
11176 0, "positive");
11177 lai->primitive_type_vector [ada_primitive_type_void]
11178 = builtin->builtin_void;
11179
11180 lai->primitive_type_vector [ada_primitive_type_system_address]
11181 = lookup_pointer_type (arch_type (gdbarch, TYPE_CODE_VOID, 1, "void"));
72d5681a
PH
11182 TYPE_NAME (lai->primitive_type_vector [ada_primitive_type_system_address])
11183 = "system__address";
fbb06eb1 11184
47e729a8 11185 lai->bool_type_symbol = NULL;
fbb06eb1 11186 lai->bool_type_default = builtin->builtin_bool;
6c038f32 11187}
6c038f32
PH
11188\f
11189 /* Language vector */
11190
11191/* Not really used, but needed in the ada_language_defn. */
11192
11193static void
6c7a06a3 11194emit_char (int c, struct type *type, struct ui_file *stream, int quoter)
6c038f32 11195{
6c7a06a3 11196 ada_emit_char (c, type, stream, quoter, 1);
6c038f32
PH
11197}
11198
11199static int
11200parse (void)
11201{
11202 warnings_issued = 0;
11203 return ada_parse ();
11204}
11205
11206static const struct exp_descriptor ada_exp_descriptor = {
11207 ada_print_subexp,
11208 ada_operator_length,
11209 ada_op_name,
11210 ada_dump_subexp_body,
11211 ada_evaluate_subexp
11212};
11213
11214const struct language_defn ada_language_defn = {
11215 "ada", /* Language name */
11216 language_ada,
6c038f32
PH
11217 range_check_off,
11218 type_check_off,
11219 case_sensitive_on, /* Yes, Ada is case-insensitive, but
11220 that's not quite what this means. */
6c038f32 11221 array_row_major,
9a044a89 11222 macro_expansion_no,
6c038f32
PH
11223 &ada_exp_descriptor,
11224 parse,
11225 ada_error,
11226 resolve,
11227 ada_printchar, /* Print a character constant */
11228 ada_printstr, /* Function to print string constant */
11229 emit_char, /* Function to print single char (not used) */
6c038f32 11230 ada_print_type, /* Print a type using appropriate syntax */
5c6ce71d 11231 default_print_typedef, /* Print a typedef using appropriate syntax */
6c038f32
PH
11232 ada_val_print, /* Print a value using appropriate syntax */
11233 ada_value_print, /* Print a top-level value */
11234 NULL, /* Language specific skip_trampoline */
2b2d9e11 11235 NULL, /* name_of_this */
6c038f32
PH
11236 ada_lookup_symbol_nonlocal, /* Looking up non-local symbols. */
11237 basic_lookup_transparent_type, /* lookup_transparent_type */
11238 ada_la_decode, /* Language specific symbol demangler */
11239 NULL, /* Language specific class_name_from_physname */
11240 ada_op_print_tab, /* expression operators for printing */
11241 0, /* c-style arrays */
11242 1, /* String lower bound */
6c038f32 11243 ada_get_gdb_completer_word_break_characters,
41d27058 11244 ada_make_symbol_completion_list,
72d5681a 11245 ada_language_arch_info,
e79af960 11246 ada_print_array_index,
41f1b697 11247 default_pass_by_reference,
ae6a3a4c 11248 c_get_string,
6c038f32
PH
11249 LANG_MAGIC
11250};
11251
2c0b251b
PA
11252/* Provide a prototype to silence -Wmissing-prototypes. */
11253extern initialize_file_ftype _initialize_ada_language;
11254
5bf03f13
JB
11255/* Command-list for the "set/show ada" prefix command. */
11256static struct cmd_list_element *set_ada_list;
11257static struct cmd_list_element *show_ada_list;
11258
11259/* Implement the "set ada" prefix command. */
11260
11261static void
11262set_ada_command (char *arg, int from_tty)
11263{
11264 printf_unfiltered (_(\
11265"\"set ada\" must be followed by the name of a setting.\n"));
11266 help_list (set_ada_list, "set ada ", -1, gdb_stdout);
11267}
11268
11269/* Implement the "show ada" prefix command. */
11270
11271static void
11272show_ada_command (char *args, int from_tty)
11273{
11274 cmd_show_list (show_ada_list, from_tty, "");
11275}
11276
d2e4a39e 11277void
6c038f32 11278_initialize_ada_language (void)
14f9c5c9 11279{
6c038f32
PH
11280 add_language (&ada_language_defn);
11281
5bf03f13
JB
11282 add_prefix_cmd ("ada", no_class, set_ada_command,
11283 _("Prefix command for changing Ada-specfic settings"),
11284 &set_ada_list, "set ada ", 0, &setlist);
11285
11286 add_prefix_cmd ("ada", no_class, show_ada_command,
11287 _("Generic command for showing Ada-specific settings."),
11288 &show_ada_list, "show ada ", 0, &showlist);
11289
11290 add_setshow_boolean_cmd ("trust-PAD-over-XVS", class_obscure,
11291 &trust_pad_over_xvs, _("\
11292Enable or disable an optimization trusting PAD types over XVS types"), _("\
11293Show whether an optimization trusting PAD types over XVS types is activated"),
11294 _("\
11295This is related to the encoding used by the GNAT compiler. The debugger\n\
11296should normally trust the contents of PAD types, but certain older versions\n\
11297of GNAT have a bug that sometimes causes the information in the PAD type\n\
11298to be incorrect. Turning this setting \"off\" allows the debugger to\n\
11299work around this bug. It is always safe to turn this option \"off\", but\n\
11300this incurs a slight performance penalty, so it is recommended to NOT change\n\
11301this option to \"off\" unless necessary."),
11302 NULL, NULL, &set_ada_list, &show_ada_list);
11303
6c038f32 11304 varsize_limit = 65536;
6c038f32
PH
11305
11306 obstack_init (&symbol_list_obstack);
11307
11308 decoded_names_store = htab_create_alloc
11309 (256, htab_hash_string, (int (*)(const void *, const void *)) streq,
11310 NULL, xcalloc, xfree);
6b69afc4
JB
11311
11312 observer_attach_executable_changed (ada_executable_changed_observer);
14f9c5c9 11313}