]>
Commit | Line | Data |
---|---|---|
197e01b6 | 1 | /* Ada language support routines for GDB, the GNU debugger. Copyright (C) |
10a2c479 | 2 | |
ae6a3a4c TJB |
3 | 1992, 1993, 1994, 1997, 1998, 1999, 2000, 2003, 2004, 2005, 2007, 2008, |
4 | 2009 Free Software Foundation, Inc. | |
14f9c5c9 | 5 | |
a9762ec7 | 6 | This file is part of GDB. |
14f9c5c9 | 7 | |
a9762ec7 JB |
8 | This program is free software; you can redistribute it and/or modify |
9 | it under the terms of the GNU General Public License as published by | |
10 | the Free Software Foundation; either version 3 of the License, or | |
11 | (at your option) any later version. | |
14f9c5c9 | 12 | |
a9762ec7 JB |
13 | This program is distributed in the hope that it will be useful, |
14 | but WITHOUT ANY WARRANTY; without even the implied warranty of | |
15 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
16 | GNU General Public License for more details. | |
14f9c5c9 | 17 | |
a9762ec7 JB |
18 | You should have received a copy of the GNU General Public License |
19 | along with this program. If not, see <http://www.gnu.org/licenses/>. */ | |
14f9c5c9 | 20 | |
96d887e8 | 21 | |
4c4b4cd2 | 22 | #include "defs.h" |
14f9c5c9 | 23 | #include <stdio.h> |
0c30c098 | 24 | #include "gdb_string.h" |
14f9c5c9 AS |
25 | #include <ctype.h> |
26 | #include <stdarg.h> | |
27 | #include "demangle.h" | |
4c4b4cd2 PH |
28 | #include "gdb_regex.h" |
29 | #include "frame.h" | |
14f9c5c9 AS |
30 | #include "symtab.h" |
31 | #include "gdbtypes.h" | |
32 | #include "gdbcmd.h" | |
33 | #include "expression.h" | |
34 | #include "parser-defs.h" | |
35 | #include "language.h" | |
36 | #include "c-lang.h" | |
37 | #include "inferior.h" | |
38 | #include "symfile.h" | |
39 | #include "objfiles.h" | |
40 | #include "breakpoint.h" | |
41 | #include "gdbcore.h" | |
4c4b4cd2 PH |
42 | #include "hashtab.h" |
43 | #include "gdb_obstack.h" | |
14f9c5c9 | 44 | #include "ada-lang.h" |
4c4b4cd2 PH |
45 | #include "completer.h" |
46 | #include "gdb_stat.h" | |
47 | #ifdef UI_OUT | |
14f9c5c9 | 48 | #include "ui-out.h" |
4c4b4cd2 | 49 | #endif |
fe898f56 | 50 | #include "block.h" |
04714b91 | 51 | #include "infcall.h" |
de4f826b | 52 | #include "dictionary.h" |
60250e8b | 53 | #include "exceptions.h" |
f7f9143b JB |
54 | #include "annotate.h" |
55 | #include "valprint.h" | |
9bbc9174 | 56 | #include "source.h" |
0259addd | 57 | #include "observer.h" |
2ba95b9b | 58 | #include "vec.h" |
692465f1 | 59 | #include "stack.h" |
14f9c5c9 | 60 | |
ccefe4c4 TT |
61 | #include "psymtab.h" |
62 | ||
4c4b4cd2 PH |
63 | /* Define whether or not the C operator '/' truncates towards zero for |
64 | differently signed operands (truncation direction is undefined in C). | |
65 | Copied from valarith.c. */ | |
66 | ||
67 | #ifndef TRUNCATION_TOWARDS_ZERO | |
68 | #define TRUNCATION_TOWARDS_ZERO ((-5 / 2) == -2) | |
69 | #endif | |
70 | ||
50810684 | 71 | static void modify_general_field (struct type *, char *, LONGEST, int, int); |
14f9c5c9 | 72 | |
d2e4a39e | 73 | static struct type *desc_base_type (struct type *); |
14f9c5c9 | 74 | |
d2e4a39e | 75 | static struct type *desc_bounds_type (struct type *); |
14f9c5c9 | 76 | |
d2e4a39e | 77 | static struct value *desc_bounds (struct value *); |
14f9c5c9 | 78 | |
d2e4a39e | 79 | static int fat_pntr_bounds_bitpos (struct type *); |
14f9c5c9 | 80 | |
d2e4a39e | 81 | static int fat_pntr_bounds_bitsize (struct type *); |
14f9c5c9 | 82 | |
556bdfd4 | 83 | static struct type *desc_data_target_type (struct type *); |
14f9c5c9 | 84 | |
d2e4a39e | 85 | static struct value *desc_data (struct value *); |
14f9c5c9 | 86 | |
d2e4a39e | 87 | static int fat_pntr_data_bitpos (struct type *); |
14f9c5c9 | 88 | |
d2e4a39e | 89 | static int fat_pntr_data_bitsize (struct type *); |
14f9c5c9 | 90 | |
d2e4a39e | 91 | static struct value *desc_one_bound (struct value *, int, int); |
14f9c5c9 | 92 | |
d2e4a39e | 93 | static int desc_bound_bitpos (struct type *, int, int); |
14f9c5c9 | 94 | |
d2e4a39e | 95 | static int desc_bound_bitsize (struct type *, int, int); |
14f9c5c9 | 96 | |
d2e4a39e | 97 | static struct type *desc_index_type (struct type *, int); |
14f9c5c9 | 98 | |
d2e4a39e | 99 | static int desc_arity (struct type *); |
14f9c5c9 | 100 | |
d2e4a39e | 101 | static int ada_type_match (struct type *, struct type *, int); |
14f9c5c9 | 102 | |
d2e4a39e | 103 | static int ada_args_match (struct symbol *, struct value **, int); |
14f9c5c9 | 104 | |
4a399546 UW |
105 | static struct value *ensure_lval (struct value *, |
106 | struct gdbarch *, CORE_ADDR *); | |
14f9c5c9 | 107 | |
d2e4a39e | 108 | static struct value *make_array_descriptor (struct type *, struct value *, |
4a399546 | 109 | struct gdbarch *, CORE_ADDR *); |
14f9c5c9 | 110 | |
4c4b4cd2 | 111 | static void ada_add_block_symbols (struct obstack *, |
76a01679 | 112 | struct block *, const char *, |
2570f2b7 | 113 | domain_enum, struct objfile *, int); |
14f9c5c9 | 114 | |
4c4b4cd2 | 115 | static int is_nonfunction (struct ada_symbol_info *, int); |
14f9c5c9 | 116 | |
76a01679 | 117 | static void add_defn_to_vec (struct obstack *, struct symbol *, |
2570f2b7 | 118 | struct block *); |
14f9c5c9 | 119 | |
4c4b4cd2 PH |
120 | static int num_defns_collected (struct obstack *); |
121 | ||
122 | static struct ada_symbol_info *defns_collected (struct obstack *, int); | |
14f9c5c9 | 123 | |
4c4b4cd2 | 124 | static struct value *resolve_subexp (struct expression **, int *, int, |
76a01679 | 125 | struct type *); |
14f9c5c9 | 126 | |
d2e4a39e | 127 | static void replace_operator_with_call (struct expression **, int, int, int, |
4c4b4cd2 | 128 | struct symbol *, struct block *); |
14f9c5c9 | 129 | |
d2e4a39e | 130 | static int possible_user_operator_p (enum exp_opcode, struct value **); |
14f9c5c9 | 131 | |
4c4b4cd2 PH |
132 | static char *ada_op_name (enum exp_opcode); |
133 | ||
134 | static const char *ada_decoded_op_name (enum exp_opcode); | |
14f9c5c9 | 135 | |
d2e4a39e | 136 | static int numeric_type_p (struct type *); |
14f9c5c9 | 137 | |
d2e4a39e | 138 | static int integer_type_p (struct type *); |
14f9c5c9 | 139 | |
d2e4a39e | 140 | static int scalar_type_p (struct type *); |
14f9c5c9 | 141 | |
d2e4a39e | 142 | static int discrete_type_p (struct type *); |
14f9c5c9 | 143 | |
aeb5907d JB |
144 | static enum ada_renaming_category parse_old_style_renaming (struct type *, |
145 | const char **, | |
146 | int *, | |
147 | const char **); | |
148 | ||
149 | static struct symbol *find_old_style_renaming_symbol (const char *, | |
150 | struct block *); | |
151 | ||
4c4b4cd2 | 152 | static struct type *ada_lookup_struct_elt_type (struct type *, char *, |
76a01679 | 153 | int, int, int *); |
4c4b4cd2 | 154 | |
d2e4a39e | 155 | static struct value *evaluate_subexp_type (struct expression *, int *); |
14f9c5c9 | 156 | |
b4ba55a1 JB |
157 | static struct type *ada_find_parallel_type_with_name (struct type *, |
158 | const char *); | |
159 | ||
d2e4a39e | 160 | static int is_dynamic_field (struct type *, int); |
14f9c5c9 | 161 | |
10a2c479 | 162 | static struct type *to_fixed_variant_branch_type (struct type *, |
fc1a4b47 | 163 | const gdb_byte *, |
4c4b4cd2 PH |
164 | CORE_ADDR, struct value *); |
165 | ||
166 | static struct type *to_fixed_array_type (struct type *, struct value *, int); | |
14f9c5c9 | 167 | |
d2e4a39e | 168 | static struct type *to_fixed_range_type (char *, struct value *, |
1ce677a4 | 169 | struct type *); |
14f9c5c9 | 170 | |
d2e4a39e | 171 | static struct type *to_static_fixed_type (struct type *); |
f192137b | 172 | static struct type *static_unwrap_type (struct type *type); |
14f9c5c9 | 173 | |
d2e4a39e | 174 | static struct value *unwrap_value (struct value *); |
14f9c5c9 | 175 | |
ad82864c | 176 | static struct type *constrained_packed_array_type (struct type *, long *); |
14f9c5c9 | 177 | |
ad82864c | 178 | static struct type *decode_constrained_packed_array_type (struct type *); |
14f9c5c9 | 179 | |
ad82864c JB |
180 | static long decode_packed_array_bitsize (struct type *); |
181 | ||
182 | static struct value *decode_constrained_packed_array (struct value *); | |
183 | ||
184 | static int ada_is_packed_array_type (struct type *); | |
185 | ||
186 | static int ada_is_unconstrained_packed_array_type (struct type *); | |
14f9c5c9 | 187 | |
d2e4a39e | 188 | static struct value *value_subscript_packed (struct value *, int, |
4c4b4cd2 | 189 | struct value **); |
14f9c5c9 | 190 | |
50810684 | 191 | static void move_bits (gdb_byte *, int, const gdb_byte *, int, int, int); |
52ce6436 | 192 | |
4c4b4cd2 PH |
193 | static struct value *coerce_unspec_val_to_type (struct value *, |
194 | struct type *); | |
14f9c5c9 | 195 | |
d2e4a39e | 196 | static struct value *get_var_value (char *, char *); |
14f9c5c9 | 197 | |
d2e4a39e | 198 | static int lesseq_defined_than (struct symbol *, struct symbol *); |
14f9c5c9 | 199 | |
d2e4a39e | 200 | static int equiv_types (struct type *, struct type *); |
14f9c5c9 | 201 | |
d2e4a39e | 202 | static int is_name_suffix (const char *); |
14f9c5c9 | 203 | |
d2e4a39e | 204 | static int wild_match (const char *, int, const char *); |
14f9c5c9 | 205 | |
d2e4a39e | 206 | static struct value *ada_coerce_ref (struct value *); |
14f9c5c9 | 207 | |
4c4b4cd2 PH |
208 | static LONGEST pos_atr (struct value *); |
209 | ||
3cb382c9 | 210 | static struct value *value_pos_atr (struct type *, struct value *); |
14f9c5c9 | 211 | |
d2e4a39e | 212 | static struct value *value_val_atr (struct type *, struct value *); |
14f9c5c9 | 213 | |
4c4b4cd2 PH |
214 | static struct symbol *standard_lookup (const char *, const struct block *, |
215 | domain_enum); | |
14f9c5c9 | 216 | |
4c4b4cd2 PH |
217 | static struct value *ada_search_struct_field (char *, struct value *, int, |
218 | struct type *); | |
219 | ||
220 | static struct value *ada_value_primitive_field (struct value *, int, int, | |
221 | struct type *); | |
222 | ||
76a01679 | 223 | static int find_struct_field (char *, struct type *, int, |
52ce6436 | 224 | struct type **, int *, int *, int *, int *); |
4c4b4cd2 PH |
225 | |
226 | static struct value *ada_to_fixed_value_create (struct type *, CORE_ADDR, | |
227 | struct value *); | |
228 | ||
229 | static struct value *ada_to_fixed_value (struct value *); | |
14f9c5c9 | 230 | |
4c4b4cd2 PH |
231 | static int ada_resolve_function (struct ada_symbol_info *, int, |
232 | struct value **, int, const char *, | |
233 | struct type *); | |
234 | ||
235 | static struct value *ada_coerce_to_simple_array (struct value *); | |
236 | ||
237 | static int ada_is_direct_array_type (struct type *); | |
238 | ||
72d5681a PH |
239 | static void ada_language_arch_info (struct gdbarch *, |
240 | struct language_arch_info *); | |
714e53ab PH |
241 | |
242 | static void check_size (const struct type *); | |
52ce6436 PH |
243 | |
244 | static struct value *ada_index_struct_field (int, struct value *, int, | |
245 | struct type *); | |
246 | ||
247 | static struct value *assign_aggregate (struct value *, struct value *, | |
248 | struct expression *, int *, enum noside); | |
249 | ||
250 | static void aggregate_assign_from_choices (struct value *, struct value *, | |
251 | struct expression *, | |
252 | int *, LONGEST *, int *, | |
253 | int, LONGEST, LONGEST); | |
254 | ||
255 | static void aggregate_assign_positional (struct value *, struct value *, | |
256 | struct expression *, | |
257 | int *, LONGEST *, int *, int, | |
258 | LONGEST, LONGEST); | |
259 | ||
260 | ||
261 | static void aggregate_assign_others (struct value *, struct value *, | |
262 | struct expression *, | |
263 | int *, LONGEST *, int, LONGEST, LONGEST); | |
264 | ||
265 | ||
266 | static void add_component_interval (LONGEST, LONGEST, LONGEST *, int *, int); | |
267 | ||
268 | ||
269 | static struct value *ada_evaluate_subexp (struct type *, struct expression *, | |
270 | int *, enum noside); | |
271 | ||
272 | static void ada_forward_operator_length (struct expression *, int, int *, | |
273 | int *); | |
4c4b4cd2 PH |
274 | \f |
275 | ||
76a01679 | 276 | |
4c4b4cd2 | 277 | /* Maximum-sized dynamic type. */ |
14f9c5c9 AS |
278 | static unsigned int varsize_limit; |
279 | ||
4c4b4cd2 PH |
280 | /* FIXME: brobecker/2003-09-17: No longer a const because it is |
281 | returned by a function that does not return a const char *. */ | |
282 | static char *ada_completer_word_break_characters = | |
283 | #ifdef VMS | |
284 | " \t\n!@#%^&*()+=|~`}{[]\";:?/,-"; | |
285 | #else | |
14f9c5c9 | 286 | " \t\n!@#$%^&*()+=|~`}{[]\";:?/,-"; |
4c4b4cd2 | 287 | #endif |
14f9c5c9 | 288 | |
4c4b4cd2 | 289 | /* The name of the symbol to use to get the name of the main subprogram. */ |
76a01679 | 290 | static const char ADA_MAIN_PROGRAM_SYMBOL_NAME[] |
4c4b4cd2 | 291 | = "__gnat_ada_main_program_name"; |
14f9c5c9 | 292 | |
4c4b4cd2 PH |
293 | /* Limit on the number of warnings to raise per expression evaluation. */ |
294 | static int warning_limit = 2; | |
295 | ||
296 | /* Number of warning messages issued; reset to 0 by cleanups after | |
297 | expression evaluation. */ | |
298 | static int warnings_issued = 0; | |
299 | ||
300 | static const char *known_runtime_file_name_patterns[] = { | |
301 | ADA_KNOWN_RUNTIME_FILE_NAME_PATTERNS NULL | |
302 | }; | |
303 | ||
304 | static const char *known_auxiliary_function_name_patterns[] = { | |
305 | ADA_KNOWN_AUXILIARY_FUNCTION_NAME_PATTERNS NULL | |
306 | }; | |
307 | ||
308 | /* Space for allocating results of ada_lookup_symbol_list. */ | |
309 | static struct obstack symbol_list_obstack; | |
310 | ||
311 | /* Utilities */ | |
312 | ||
41d27058 JB |
313 | /* Given DECODED_NAME a string holding a symbol name in its |
314 | decoded form (ie using the Ada dotted notation), returns | |
315 | its unqualified name. */ | |
316 | ||
317 | static const char * | |
318 | ada_unqualified_name (const char *decoded_name) | |
319 | { | |
320 | const char *result = strrchr (decoded_name, '.'); | |
321 | ||
322 | if (result != NULL) | |
323 | result++; /* Skip the dot... */ | |
324 | else | |
325 | result = decoded_name; | |
326 | ||
327 | return result; | |
328 | } | |
329 | ||
330 | /* Return a string starting with '<', followed by STR, and '>'. | |
331 | The result is good until the next call. */ | |
332 | ||
333 | static char * | |
334 | add_angle_brackets (const char *str) | |
335 | { | |
336 | static char *result = NULL; | |
337 | ||
338 | xfree (result); | |
88c15c34 | 339 | result = xstrprintf ("<%s>", str); |
41d27058 JB |
340 | return result; |
341 | } | |
96d887e8 | 342 | |
4c4b4cd2 PH |
343 | static char * |
344 | ada_get_gdb_completer_word_break_characters (void) | |
345 | { | |
346 | return ada_completer_word_break_characters; | |
347 | } | |
348 | ||
e79af960 JB |
349 | /* Print an array element index using the Ada syntax. */ |
350 | ||
351 | static void | |
352 | ada_print_array_index (struct value *index_value, struct ui_file *stream, | |
79a45b7d | 353 | const struct value_print_options *options) |
e79af960 | 354 | { |
79a45b7d | 355 | LA_VALUE_PRINT (index_value, stream, options); |
e79af960 JB |
356 | fprintf_filtered (stream, " => "); |
357 | } | |
358 | ||
f27cf670 | 359 | /* Assuming VECT points to an array of *SIZE objects of size |
14f9c5c9 | 360 | ELEMENT_SIZE, grow it to contain at least MIN_SIZE objects, |
f27cf670 | 361 | updating *SIZE as necessary and returning the (new) array. */ |
14f9c5c9 | 362 | |
f27cf670 AS |
363 | void * |
364 | grow_vect (void *vect, size_t *size, size_t min_size, int element_size) | |
14f9c5c9 | 365 | { |
d2e4a39e AS |
366 | if (*size < min_size) |
367 | { | |
368 | *size *= 2; | |
369 | if (*size < min_size) | |
4c4b4cd2 | 370 | *size = min_size; |
f27cf670 | 371 | vect = xrealloc (vect, *size * element_size); |
d2e4a39e | 372 | } |
f27cf670 | 373 | return vect; |
14f9c5c9 AS |
374 | } |
375 | ||
376 | /* True (non-zero) iff TARGET matches FIELD_NAME up to any trailing | |
4c4b4cd2 | 377 | suffix of FIELD_NAME beginning "___". */ |
14f9c5c9 AS |
378 | |
379 | static int | |
ebf56fd3 | 380 | field_name_match (const char *field_name, const char *target) |
14f9c5c9 AS |
381 | { |
382 | int len = strlen (target); | |
d2e4a39e | 383 | return |
4c4b4cd2 PH |
384 | (strncmp (field_name, target, len) == 0 |
385 | && (field_name[len] == '\0' | |
386 | || (strncmp (field_name + len, "___", 3) == 0 | |
76a01679 JB |
387 | && strcmp (field_name + strlen (field_name) - 6, |
388 | "___XVN") != 0))); | |
14f9c5c9 AS |
389 | } |
390 | ||
391 | ||
872c8b51 JB |
392 | /* Assuming TYPE is a TYPE_CODE_STRUCT or a TYPE_CODE_TYPDEF to |
393 | a TYPE_CODE_STRUCT, find the field whose name matches FIELD_NAME, | |
394 | and return its index. This function also handles fields whose name | |
395 | have ___ suffixes because the compiler sometimes alters their name | |
396 | by adding such a suffix to represent fields with certain constraints. | |
397 | If the field could not be found, return a negative number if | |
398 | MAYBE_MISSING is set. Otherwise raise an error. */ | |
4c4b4cd2 PH |
399 | |
400 | int | |
401 | ada_get_field_index (const struct type *type, const char *field_name, | |
402 | int maybe_missing) | |
403 | { | |
404 | int fieldno; | |
872c8b51 JB |
405 | struct type *struct_type = check_typedef ((struct type *) type); |
406 | ||
407 | for (fieldno = 0; fieldno < TYPE_NFIELDS (struct_type); fieldno++) | |
408 | if (field_name_match (TYPE_FIELD_NAME (struct_type, fieldno), field_name)) | |
4c4b4cd2 PH |
409 | return fieldno; |
410 | ||
411 | if (!maybe_missing) | |
323e0a4a | 412 | error (_("Unable to find field %s in struct %s. Aborting"), |
872c8b51 | 413 | field_name, TYPE_NAME (struct_type)); |
4c4b4cd2 PH |
414 | |
415 | return -1; | |
416 | } | |
417 | ||
418 | /* The length of the prefix of NAME prior to any "___" suffix. */ | |
14f9c5c9 AS |
419 | |
420 | int | |
d2e4a39e | 421 | ada_name_prefix_len (const char *name) |
14f9c5c9 AS |
422 | { |
423 | if (name == NULL) | |
424 | return 0; | |
d2e4a39e | 425 | else |
14f9c5c9 | 426 | { |
d2e4a39e | 427 | const char *p = strstr (name, "___"); |
14f9c5c9 | 428 | if (p == NULL) |
4c4b4cd2 | 429 | return strlen (name); |
14f9c5c9 | 430 | else |
4c4b4cd2 | 431 | return p - name; |
14f9c5c9 AS |
432 | } |
433 | } | |
434 | ||
4c4b4cd2 PH |
435 | /* Return non-zero if SUFFIX is a suffix of STR. |
436 | Return zero if STR is null. */ | |
437 | ||
14f9c5c9 | 438 | static int |
d2e4a39e | 439 | is_suffix (const char *str, const char *suffix) |
14f9c5c9 AS |
440 | { |
441 | int len1, len2; | |
442 | if (str == NULL) | |
443 | return 0; | |
444 | len1 = strlen (str); | |
445 | len2 = strlen (suffix); | |
4c4b4cd2 | 446 | return (len1 >= len2 && strcmp (str + len1 - len2, suffix) == 0); |
14f9c5c9 AS |
447 | } |
448 | ||
4c4b4cd2 PH |
449 | /* The contents of value VAL, treated as a value of type TYPE. The |
450 | result is an lval in memory if VAL is. */ | |
14f9c5c9 | 451 | |
d2e4a39e | 452 | static struct value * |
4c4b4cd2 | 453 | coerce_unspec_val_to_type (struct value *val, struct type *type) |
14f9c5c9 | 454 | { |
61ee279c | 455 | type = ada_check_typedef (type); |
df407dfe | 456 | if (value_type (val) == type) |
4c4b4cd2 | 457 | return val; |
d2e4a39e | 458 | else |
14f9c5c9 | 459 | { |
4c4b4cd2 PH |
460 | struct value *result; |
461 | ||
462 | /* Make sure that the object size is not unreasonable before | |
463 | trying to allocate some memory for it. */ | |
714e53ab | 464 | check_size (type); |
4c4b4cd2 PH |
465 | |
466 | result = allocate_value (type); | |
74bcbdf3 | 467 | set_value_component_location (result, val); |
9bbda503 AC |
468 | set_value_bitsize (result, value_bitsize (val)); |
469 | set_value_bitpos (result, value_bitpos (val)); | |
42ae5230 | 470 | set_value_address (result, value_address (val)); |
d69fe07e | 471 | if (value_lazy (val) |
df407dfe | 472 | || TYPE_LENGTH (type) > TYPE_LENGTH (value_type (val))) |
dfa52d88 | 473 | set_value_lazy (result, 1); |
d2e4a39e | 474 | else |
0fd88904 | 475 | memcpy (value_contents_raw (result), value_contents (val), |
4c4b4cd2 | 476 | TYPE_LENGTH (type)); |
14f9c5c9 AS |
477 | return result; |
478 | } | |
479 | } | |
480 | ||
fc1a4b47 AC |
481 | static const gdb_byte * |
482 | cond_offset_host (const gdb_byte *valaddr, long offset) | |
14f9c5c9 AS |
483 | { |
484 | if (valaddr == NULL) | |
485 | return NULL; | |
486 | else | |
487 | return valaddr + offset; | |
488 | } | |
489 | ||
490 | static CORE_ADDR | |
ebf56fd3 | 491 | cond_offset_target (CORE_ADDR address, long offset) |
14f9c5c9 AS |
492 | { |
493 | if (address == 0) | |
494 | return 0; | |
d2e4a39e | 495 | else |
14f9c5c9 AS |
496 | return address + offset; |
497 | } | |
498 | ||
4c4b4cd2 PH |
499 | /* Issue a warning (as for the definition of warning in utils.c, but |
500 | with exactly one argument rather than ...), unless the limit on the | |
501 | number of warnings has passed during the evaluation of the current | |
502 | expression. */ | |
a2249542 | 503 | |
77109804 AC |
504 | /* FIXME: cagney/2004-10-10: This function is mimicking the behavior |
505 | provided by "complaint". */ | |
506 | static void lim_warning (const char *format, ...) ATTR_FORMAT (printf, 1, 2); | |
507 | ||
14f9c5c9 | 508 | static void |
a2249542 | 509 | lim_warning (const char *format, ...) |
14f9c5c9 | 510 | { |
a2249542 MK |
511 | va_list args; |
512 | va_start (args, format); | |
513 | ||
4c4b4cd2 PH |
514 | warnings_issued += 1; |
515 | if (warnings_issued <= warning_limit) | |
a2249542 MK |
516 | vwarning (format, args); |
517 | ||
518 | va_end (args); | |
4c4b4cd2 PH |
519 | } |
520 | ||
714e53ab PH |
521 | /* Issue an error if the size of an object of type T is unreasonable, |
522 | i.e. if it would be a bad idea to allocate a value of this type in | |
523 | GDB. */ | |
524 | ||
525 | static void | |
526 | check_size (const struct type *type) | |
527 | { | |
528 | if (TYPE_LENGTH (type) > varsize_limit) | |
323e0a4a | 529 | error (_("object size is larger than varsize-limit")); |
714e53ab PH |
530 | } |
531 | ||
532 | ||
c3e5cd34 PH |
533 | /* Note: would have used MAX_OF_TYPE and MIN_OF_TYPE macros from |
534 | gdbtypes.h, but some of the necessary definitions in that file | |
535 | seem to have gone missing. */ | |
536 | ||
537 | /* Maximum value of a SIZE-byte signed integer type. */ | |
4c4b4cd2 | 538 | static LONGEST |
c3e5cd34 | 539 | max_of_size (int size) |
4c4b4cd2 | 540 | { |
76a01679 JB |
541 | LONGEST top_bit = (LONGEST) 1 << (size * 8 - 2); |
542 | return top_bit | (top_bit - 1); | |
4c4b4cd2 PH |
543 | } |
544 | ||
c3e5cd34 | 545 | /* Minimum value of a SIZE-byte signed integer type. */ |
4c4b4cd2 | 546 | static LONGEST |
c3e5cd34 | 547 | min_of_size (int size) |
4c4b4cd2 | 548 | { |
c3e5cd34 | 549 | return -max_of_size (size) - 1; |
4c4b4cd2 PH |
550 | } |
551 | ||
c3e5cd34 | 552 | /* Maximum value of a SIZE-byte unsigned integer type. */ |
4c4b4cd2 | 553 | static ULONGEST |
c3e5cd34 | 554 | umax_of_size (int size) |
4c4b4cd2 | 555 | { |
76a01679 JB |
556 | ULONGEST top_bit = (ULONGEST) 1 << (size * 8 - 1); |
557 | return top_bit | (top_bit - 1); | |
4c4b4cd2 PH |
558 | } |
559 | ||
c3e5cd34 PH |
560 | /* Maximum value of integral type T, as a signed quantity. */ |
561 | static LONGEST | |
562 | max_of_type (struct type *t) | |
4c4b4cd2 | 563 | { |
c3e5cd34 PH |
564 | if (TYPE_UNSIGNED (t)) |
565 | return (LONGEST) umax_of_size (TYPE_LENGTH (t)); | |
566 | else | |
567 | return max_of_size (TYPE_LENGTH (t)); | |
568 | } | |
569 | ||
570 | /* Minimum value of integral type T, as a signed quantity. */ | |
571 | static LONGEST | |
572 | min_of_type (struct type *t) | |
573 | { | |
574 | if (TYPE_UNSIGNED (t)) | |
575 | return 0; | |
576 | else | |
577 | return min_of_size (TYPE_LENGTH (t)); | |
4c4b4cd2 PH |
578 | } |
579 | ||
580 | /* The largest value in the domain of TYPE, a discrete type, as an integer. */ | |
43bbcdc2 PH |
581 | LONGEST |
582 | ada_discrete_type_high_bound (struct type *type) | |
4c4b4cd2 | 583 | { |
76a01679 | 584 | switch (TYPE_CODE (type)) |
4c4b4cd2 PH |
585 | { |
586 | case TYPE_CODE_RANGE: | |
690cc4eb | 587 | return TYPE_HIGH_BOUND (type); |
4c4b4cd2 | 588 | case TYPE_CODE_ENUM: |
690cc4eb PH |
589 | return TYPE_FIELD_BITPOS (type, TYPE_NFIELDS (type) - 1); |
590 | case TYPE_CODE_BOOL: | |
591 | return 1; | |
592 | case TYPE_CODE_CHAR: | |
76a01679 | 593 | case TYPE_CODE_INT: |
690cc4eb | 594 | return max_of_type (type); |
4c4b4cd2 | 595 | default: |
43bbcdc2 | 596 | error (_("Unexpected type in ada_discrete_type_high_bound.")); |
4c4b4cd2 PH |
597 | } |
598 | } | |
599 | ||
600 | /* The largest value in the domain of TYPE, a discrete type, as an integer. */ | |
43bbcdc2 PH |
601 | LONGEST |
602 | ada_discrete_type_low_bound (struct type *type) | |
4c4b4cd2 | 603 | { |
76a01679 | 604 | switch (TYPE_CODE (type)) |
4c4b4cd2 PH |
605 | { |
606 | case TYPE_CODE_RANGE: | |
690cc4eb | 607 | return TYPE_LOW_BOUND (type); |
4c4b4cd2 | 608 | case TYPE_CODE_ENUM: |
690cc4eb PH |
609 | return TYPE_FIELD_BITPOS (type, 0); |
610 | case TYPE_CODE_BOOL: | |
611 | return 0; | |
612 | case TYPE_CODE_CHAR: | |
76a01679 | 613 | case TYPE_CODE_INT: |
690cc4eb | 614 | return min_of_type (type); |
4c4b4cd2 | 615 | default: |
43bbcdc2 | 616 | error (_("Unexpected type in ada_discrete_type_low_bound.")); |
4c4b4cd2 PH |
617 | } |
618 | } | |
619 | ||
620 | /* The identity on non-range types. For range types, the underlying | |
76a01679 | 621 | non-range scalar type. */ |
4c4b4cd2 PH |
622 | |
623 | static struct type * | |
624 | base_type (struct type *type) | |
625 | { | |
626 | while (type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE) | |
627 | { | |
76a01679 JB |
628 | if (type == TYPE_TARGET_TYPE (type) || TYPE_TARGET_TYPE (type) == NULL) |
629 | return type; | |
4c4b4cd2 PH |
630 | type = TYPE_TARGET_TYPE (type); |
631 | } | |
632 | return type; | |
14f9c5c9 | 633 | } |
4c4b4cd2 | 634 | \f |
76a01679 | 635 | |
4c4b4cd2 | 636 | /* Language Selection */ |
14f9c5c9 AS |
637 | |
638 | /* If the main program is in Ada, return language_ada, otherwise return LANG | |
ccefe4c4 | 639 | (the main program is in Ada iif the adainit symbol is found). */ |
d2e4a39e | 640 | |
14f9c5c9 | 641 | enum language |
ccefe4c4 | 642 | ada_update_initial_language (enum language lang) |
14f9c5c9 | 643 | { |
d2e4a39e | 644 | if (lookup_minimal_symbol ("adainit", (const char *) NULL, |
4c4b4cd2 PH |
645 | (struct objfile *) NULL) != NULL) |
646 | return language_ada; | |
14f9c5c9 AS |
647 | |
648 | return lang; | |
649 | } | |
96d887e8 PH |
650 | |
651 | /* If the main procedure is written in Ada, then return its name. | |
652 | The result is good until the next call. Return NULL if the main | |
653 | procedure doesn't appear to be in Ada. */ | |
654 | ||
655 | char * | |
656 | ada_main_name (void) | |
657 | { | |
658 | struct minimal_symbol *msym; | |
f9bc20b9 | 659 | static char *main_program_name = NULL; |
6c038f32 | 660 | |
96d887e8 PH |
661 | /* For Ada, the name of the main procedure is stored in a specific |
662 | string constant, generated by the binder. Look for that symbol, | |
663 | extract its address, and then read that string. If we didn't find | |
664 | that string, then most probably the main procedure is not written | |
665 | in Ada. */ | |
666 | msym = lookup_minimal_symbol (ADA_MAIN_PROGRAM_SYMBOL_NAME, NULL, NULL); | |
667 | ||
668 | if (msym != NULL) | |
669 | { | |
f9bc20b9 JB |
670 | CORE_ADDR main_program_name_addr; |
671 | int err_code; | |
672 | ||
96d887e8 PH |
673 | main_program_name_addr = SYMBOL_VALUE_ADDRESS (msym); |
674 | if (main_program_name_addr == 0) | |
323e0a4a | 675 | error (_("Invalid address for Ada main program name.")); |
96d887e8 | 676 | |
f9bc20b9 JB |
677 | xfree (main_program_name); |
678 | target_read_string (main_program_name_addr, &main_program_name, | |
679 | 1024, &err_code); | |
680 | ||
681 | if (err_code != 0) | |
682 | return NULL; | |
96d887e8 PH |
683 | return main_program_name; |
684 | } | |
685 | ||
686 | /* The main procedure doesn't seem to be in Ada. */ | |
687 | return NULL; | |
688 | } | |
14f9c5c9 | 689 | \f |
4c4b4cd2 | 690 | /* Symbols */ |
d2e4a39e | 691 | |
4c4b4cd2 PH |
692 | /* Table of Ada operators and their GNAT-encoded names. Last entry is pair |
693 | of NULLs. */ | |
14f9c5c9 | 694 | |
d2e4a39e AS |
695 | const struct ada_opname_map ada_opname_table[] = { |
696 | {"Oadd", "\"+\"", BINOP_ADD}, | |
697 | {"Osubtract", "\"-\"", BINOP_SUB}, | |
698 | {"Omultiply", "\"*\"", BINOP_MUL}, | |
699 | {"Odivide", "\"/\"", BINOP_DIV}, | |
700 | {"Omod", "\"mod\"", BINOP_MOD}, | |
701 | {"Orem", "\"rem\"", BINOP_REM}, | |
702 | {"Oexpon", "\"**\"", BINOP_EXP}, | |
703 | {"Olt", "\"<\"", BINOP_LESS}, | |
704 | {"Ole", "\"<=\"", BINOP_LEQ}, | |
705 | {"Ogt", "\">\"", BINOP_GTR}, | |
706 | {"Oge", "\">=\"", BINOP_GEQ}, | |
707 | {"Oeq", "\"=\"", BINOP_EQUAL}, | |
708 | {"One", "\"/=\"", BINOP_NOTEQUAL}, | |
709 | {"Oand", "\"and\"", BINOP_BITWISE_AND}, | |
710 | {"Oor", "\"or\"", BINOP_BITWISE_IOR}, | |
711 | {"Oxor", "\"xor\"", BINOP_BITWISE_XOR}, | |
712 | {"Oconcat", "\"&\"", BINOP_CONCAT}, | |
713 | {"Oabs", "\"abs\"", UNOP_ABS}, | |
714 | {"Onot", "\"not\"", UNOP_LOGICAL_NOT}, | |
715 | {"Oadd", "\"+\"", UNOP_PLUS}, | |
716 | {"Osubtract", "\"-\"", UNOP_NEG}, | |
717 | {NULL, NULL} | |
14f9c5c9 AS |
718 | }; |
719 | ||
4c4b4cd2 PH |
720 | /* The "encoded" form of DECODED, according to GNAT conventions. |
721 | The result is valid until the next call to ada_encode. */ | |
722 | ||
14f9c5c9 | 723 | char * |
4c4b4cd2 | 724 | ada_encode (const char *decoded) |
14f9c5c9 | 725 | { |
4c4b4cd2 PH |
726 | static char *encoding_buffer = NULL; |
727 | static size_t encoding_buffer_size = 0; | |
d2e4a39e | 728 | const char *p; |
14f9c5c9 | 729 | int k; |
d2e4a39e | 730 | |
4c4b4cd2 | 731 | if (decoded == NULL) |
14f9c5c9 AS |
732 | return NULL; |
733 | ||
4c4b4cd2 PH |
734 | GROW_VECT (encoding_buffer, encoding_buffer_size, |
735 | 2 * strlen (decoded) + 10); | |
14f9c5c9 AS |
736 | |
737 | k = 0; | |
4c4b4cd2 | 738 | for (p = decoded; *p != '\0'; p += 1) |
14f9c5c9 | 739 | { |
cdc7bb92 | 740 | if (*p == '.') |
4c4b4cd2 PH |
741 | { |
742 | encoding_buffer[k] = encoding_buffer[k + 1] = '_'; | |
743 | k += 2; | |
744 | } | |
14f9c5c9 | 745 | else if (*p == '"') |
4c4b4cd2 PH |
746 | { |
747 | const struct ada_opname_map *mapping; | |
748 | ||
749 | for (mapping = ada_opname_table; | |
1265e4aa JB |
750 | mapping->encoded != NULL |
751 | && strncmp (mapping->decoded, p, | |
752 | strlen (mapping->decoded)) != 0; mapping += 1) | |
4c4b4cd2 PH |
753 | ; |
754 | if (mapping->encoded == NULL) | |
323e0a4a | 755 | error (_("invalid Ada operator name: %s"), p); |
4c4b4cd2 PH |
756 | strcpy (encoding_buffer + k, mapping->encoded); |
757 | k += strlen (mapping->encoded); | |
758 | break; | |
759 | } | |
d2e4a39e | 760 | else |
4c4b4cd2 PH |
761 | { |
762 | encoding_buffer[k] = *p; | |
763 | k += 1; | |
764 | } | |
14f9c5c9 AS |
765 | } |
766 | ||
4c4b4cd2 PH |
767 | encoding_buffer[k] = '\0'; |
768 | return encoding_buffer; | |
14f9c5c9 AS |
769 | } |
770 | ||
771 | /* Return NAME folded to lower case, or, if surrounded by single | |
4c4b4cd2 PH |
772 | quotes, unfolded, but with the quotes stripped away. Result good |
773 | to next call. */ | |
774 | ||
d2e4a39e AS |
775 | char * |
776 | ada_fold_name (const char *name) | |
14f9c5c9 | 777 | { |
d2e4a39e | 778 | static char *fold_buffer = NULL; |
14f9c5c9 AS |
779 | static size_t fold_buffer_size = 0; |
780 | ||
781 | int len = strlen (name); | |
d2e4a39e | 782 | GROW_VECT (fold_buffer, fold_buffer_size, len + 1); |
14f9c5c9 AS |
783 | |
784 | if (name[0] == '\'') | |
785 | { | |
d2e4a39e AS |
786 | strncpy (fold_buffer, name + 1, len - 2); |
787 | fold_buffer[len - 2] = '\000'; | |
14f9c5c9 AS |
788 | } |
789 | else | |
790 | { | |
791 | int i; | |
792 | for (i = 0; i <= len; i += 1) | |
4c4b4cd2 | 793 | fold_buffer[i] = tolower (name[i]); |
14f9c5c9 AS |
794 | } |
795 | ||
796 | return fold_buffer; | |
797 | } | |
798 | ||
529cad9c PH |
799 | /* Return nonzero if C is either a digit or a lowercase alphabet character. */ |
800 | ||
801 | static int | |
802 | is_lower_alphanum (const char c) | |
803 | { | |
804 | return (isdigit (c) || (isalpha (c) && islower (c))); | |
805 | } | |
806 | ||
29480c32 JB |
807 | /* Remove either of these suffixes: |
808 | . .{DIGIT}+ | |
809 | . ${DIGIT}+ | |
810 | . ___{DIGIT}+ | |
811 | . __{DIGIT}+. | |
812 | These are suffixes introduced by the compiler for entities such as | |
813 | nested subprogram for instance, in order to avoid name clashes. | |
814 | They do not serve any purpose for the debugger. */ | |
815 | ||
816 | static void | |
817 | ada_remove_trailing_digits (const char *encoded, int *len) | |
818 | { | |
819 | if (*len > 1 && isdigit (encoded[*len - 1])) | |
820 | { | |
821 | int i = *len - 2; | |
822 | while (i > 0 && isdigit (encoded[i])) | |
823 | i--; | |
824 | if (i >= 0 && encoded[i] == '.') | |
825 | *len = i; | |
826 | else if (i >= 0 && encoded[i] == '$') | |
827 | *len = i; | |
828 | else if (i >= 2 && strncmp (encoded + i - 2, "___", 3) == 0) | |
829 | *len = i - 2; | |
830 | else if (i >= 1 && strncmp (encoded + i - 1, "__", 2) == 0) | |
831 | *len = i - 1; | |
832 | } | |
833 | } | |
834 | ||
835 | /* Remove the suffix introduced by the compiler for protected object | |
836 | subprograms. */ | |
837 | ||
838 | static void | |
839 | ada_remove_po_subprogram_suffix (const char *encoded, int *len) | |
840 | { | |
841 | /* Remove trailing N. */ | |
842 | ||
843 | /* Protected entry subprograms are broken into two | |
844 | separate subprograms: The first one is unprotected, and has | |
845 | a 'N' suffix; the second is the protected version, and has | |
846 | the 'P' suffix. The second calls the first one after handling | |
847 | the protection. Since the P subprograms are internally generated, | |
848 | we leave these names undecoded, giving the user a clue that this | |
849 | entity is internal. */ | |
850 | ||
851 | if (*len > 1 | |
852 | && encoded[*len - 1] == 'N' | |
853 | && (isdigit (encoded[*len - 2]) || islower (encoded[*len - 2]))) | |
854 | *len = *len - 1; | |
855 | } | |
856 | ||
69fadcdf JB |
857 | /* Remove trailing X[bn]* suffixes (indicating names in package bodies). */ |
858 | ||
859 | static void | |
860 | ada_remove_Xbn_suffix (const char *encoded, int *len) | |
861 | { | |
862 | int i = *len - 1; | |
863 | ||
864 | while (i > 0 && (encoded[i] == 'b' || encoded[i] == 'n')) | |
865 | i--; | |
866 | ||
867 | if (encoded[i] != 'X') | |
868 | return; | |
869 | ||
870 | if (i == 0) | |
871 | return; | |
872 | ||
873 | if (isalnum (encoded[i-1])) | |
874 | *len = i; | |
875 | } | |
876 | ||
29480c32 JB |
877 | /* If ENCODED follows the GNAT entity encoding conventions, then return |
878 | the decoded form of ENCODED. Otherwise, return "<%s>" where "%s" is | |
879 | replaced by ENCODED. | |
14f9c5c9 | 880 | |
4c4b4cd2 | 881 | The resulting string is valid until the next call of ada_decode. |
29480c32 | 882 | If the string is unchanged by decoding, the original string pointer |
4c4b4cd2 PH |
883 | is returned. */ |
884 | ||
885 | const char * | |
886 | ada_decode (const char *encoded) | |
14f9c5c9 AS |
887 | { |
888 | int i, j; | |
889 | int len0; | |
d2e4a39e | 890 | const char *p; |
4c4b4cd2 | 891 | char *decoded; |
14f9c5c9 | 892 | int at_start_name; |
4c4b4cd2 PH |
893 | static char *decoding_buffer = NULL; |
894 | static size_t decoding_buffer_size = 0; | |
d2e4a39e | 895 | |
29480c32 JB |
896 | /* The name of the Ada main procedure starts with "_ada_". |
897 | This prefix is not part of the decoded name, so skip this part | |
898 | if we see this prefix. */ | |
4c4b4cd2 PH |
899 | if (strncmp (encoded, "_ada_", 5) == 0) |
900 | encoded += 5; | |
14f9c5c9 | 901 | |
29480c32 JB |
902 | /* If the name starts with '_', then it is not a properly encoded |
903 | name, so do not attempt to decode it. Similarly, if the name | |
904 | starts with '<', the name should not be decoded. */ | |
4c4b4cd2 | 905 | if (encoded[0] == '_' || encoded[0] == '<') |
14f9c5c9 AS |
906 | goto Suppress; |
907 | ||
4c4b4cd2 | 908 | len0 = strlen (encoded); |
4c4b4cd2 | 909 | |
29480c32 JB |
910 | ada_remove_trailing_digits (encoded, &len0); |
911 | ada_remove_po_subprogram_suffix (encoded, &len0); | |
529cad9c | 912 | |
4c4b4cd2 PH |
913 | /* Remove the ___X.* suffix if present. Do not forget to verify that |
914 | the suffix is located before the current "end" of ENCODED. We want | |
915 | to avoid re-matching parts of ENCODED that have previously been | |
916 | marked as discarded (by decrementing LEN0). */ | |
917 | p = strstr (encoded, "___"); | |
918 | if (p != NULL && p - encoded < len0 - 3) | |
14f9c5c9 AS |
919 | { |
920 | if (p[3] == 'X') | |
4c4b4cd2 | 921 | len0 = p - encoded; |
14f9c5c9 | 922 | else |
4c4b4cd2 | 923 | goto Suppress; |
14f9c5c9 | 924 | } |
4c4b4cd2 | 925 | |
29480c32 JB |
926 | /* Remove any trailing TKB suffix. It tells us that this symbol |
927 | is for the body of a task, but that information does not actually | |
928 | appear in the decoded name. */ | |
929 | ||
4c4b4cd2 | 930 | if (len0 > 3 && strncmp (encoded + len0 - 3, "TKB", 3) == 0) |
14f9c5c9 | 931 | len0 -= 3; |
76a01679 | 932 | |
a10967fa JB |
933 | /* Remove any trailing TB suffix. The TB suffix is slightly different |
934 | from the TKB suffix because it is used for non-anonymous task | |
935 | bodies. */ | |
936 | ||
937 | if (len0 > 2 && strncmp (encoded + len0 - 2, "TB", 2) == 0) | |
938 | len0 -= 2; | |
939 | ||
29480c32 JB |
940 | /* Remove trailing "B" suffixes. */ |
941 | /* FIXME: brobecker/2006-04-19: Not sure what this are used for... */ | |
942 | ||
4c4b4cd2 | 943 | if (len0 > 1 && strncmp (encoded + len0 - 1, "B", 1) == 0) |
14f9c5c9 AS |
944 | len0 -= 1; |
945 | ||
4c4b4cd2 | 946 | /* Make decoded big enough for possible expansion by operator name. */ |
29480c32 | 947 | |
4c4b4cd2 PH |
948 | GROW_VECT (decoding_buffer, decoding_buffer_size, 2 * len0 + 1); |
949 | decoded = decoding_buffer; | |
14f9c5c9 | 950 | |
29480c32 JB |
951 | /* Remove trailing __{digit}+ or trailing ${digit}+. */ |
952 | ||
4c4b4cd2 | 953 | if (len0 > 1 && isdigit (encoded[len0 - 1])) |
d2e4a39e | 954 | { |
4c4b4cd2 PH |
955 | i = len0 - 2; |
956 | while ((i >= 0 && isdigit (encoded[i])) | |
957 | || (i >= 1 && encoded[i] == '_' && isdigit (encoded[i - 1]))) | |
958 | i -= 1; | |
959 | if (i > 1 && encoded[i] == '_' && encoded[i - 1] == '_') | |
960 | len0 = i - 1; | |
961 | else if (encoded[i] == '$') | |
962 | len0 = i; | |
d2e4a39e | 963 | } |
14f9c5c9 | 964 | |
29480c32 JB |
965 | /* The first few characters that are not alphabetic are not part |
966 | of any encoding we use, so we can copy them over verbatim. */ | |
967 | ||
4c4b4cd2 PH |
968 | for (i = 0, j = 0; i < len0 && !isalpha (encoded[i]); i += 1, j += 1) |
969 | decoded[j] = encoded[i]; | |
14f9c5c9 AS |
970 | |
971 | at_start_name = 1; | |
972 | while (i < len0) | |
973 | { | |
29480c32 | 974 | /* Is this a symbol function? */ |
4c4b4cd2 PH |
975 | if (at_start_name && encoded[i] == 'O') |
976 | { | |
977 | int k; | |
978 | for (k = 0; ada_opname_table[k].encoded != NULL; k += 1) | |
979 | { | |
980 | int op_len = strlen (ada_opname_table[k].encoded); | |
06d5cf63 JB |
981 | if ((strncmp (ada_opname_table[k].encoded + 1, encoded + i + 1, |
982 | op_len - 1) == 0) | |
983 | && !isalnum (encoded[i + op_len])) | |
4c4b4cd2 PH |
984 | { |
985 | strcpy (decoded + j, ada_opname_table[k].decoded); | |
986 | at_start_name = 0; | |
987 | i += op_len; | |
988 | j += strlen (ada_opname_table[k].decoded); | |
989 | break; | |
990 | } | |
991 | } | |
992 | if (ada_opname_table[k].encoded != NULL) | |
993 | continue; | |
994 | } | |
14f9c5c9 AS |
995 | at_start_name = 0; |
996 | ||
529cad9c PH |
997 | /* Replace "TK__" with "__", which will eventually be translated |
998 | into "." (just below). */ | |
999 | ||
4c4b4cd2 PH |
1000 | if (i < len0 - 4 && strncmp (encoded + i, "TK__", 4) == 0) |
1001 | i += 2; | |
529cad9c | 1002 | |
29480c32 JB |
1003 | /* Replace "__B_{DIGITS}+__" sequences by "__", which will eventually |
1004 | be translated into "." (just below). These are internal names | |
1005 | generated for anonymous blocks inside which our symbol is nested. */ | |
1006 | ||
1007 | if (len0 - i > 5 && encoded [i] == '_' && encoded [i+1] == '_' | |
1008 | && encoded [i+2] == 'B' && encoded [i+3] == '_' | |
1009 | && isdigit (encoded [i+4])) | |
1010 | { | |
1011 | int k = i + 5; | |
1012 | ||
1013 | while (k < len0 && isdigit (encoded[k])) | |
1014 | k++; /* Skip any extra digit. */ | |
1015 | ||
1016 | /* Double-check that the "__B_{DIGITS}+" sequence we found | |
1017 | is indeed followed by "__". */ | |
1018 | if (len0 - k > 2 && encoded [k] == '_' && encoded [k+1] == '_') | |
1019 | i = k; | |
1020 | } | |
1021 | ||
529cad9c PH |
1022 | /* Remove _E{DIGITS}+[sb] */ |
1023 | ||
1024 | /* Just as for protected object subprograms, there are 2 categories | |
1025 | of subprograms created by the compiler for each entry. The first | |
1026 | one implements the actual entry code, and has a suffix following | |
1027 | the convention above; the second one implements the barrier and | |
1028 | uses the same convention as above, except that the 'E' is replaced | |
1029 | by a 'B'. | |
1030 | ||
1031 | Just as above, we do not decode the name of barrier functions | |
1032 | to give the user a clue that the code he is debugging has been | |
1033 | internally generated. */ | |
1034 | ||
1035 | if (len0 - i > 3 && encoded [i] == '_' && encoded[i+1] == 'E' | |
1036 | && isdigit (encoded[i+2])) | |
1037 | { | |
1038 | int k = i + 3; | |
1039 | ||
1040 | while (k < len0 && isdigit (encoded[k])) | |
1041 | k++; | |
1042 | ||
1043 | if (k < len0 | |
1044 | && (encoded[k] == 'b' || encoded[k] == 's')) | |
1045 | { | |
1046 | k++; | |
1047 | /* Just as an extra precaution, make sure that if this | |
1048 | suffix is followed by anything else, it is a '_'. | |
1049 | Otherwise, we matched this sequence by accident. */ | |
1050 | if (k == len0 | |
1051 | || (k < len0 && encoded[k] == '_')) | |
1052 | i = k; | |
1053 | } | |
1054 | } | |
1055 | ||
1056 | /* Remove trailing "N" in [a-z0-9]+N__. The N is added by | |
1057 | the GNAT front-end in protected object subprograms. */ | |
1058 | ||
1059 | if (i < len0 + 3 | |
1060 | && encoded[i] == 'N' && encoded[i+1] == '_' && encoded[i+2] == '_') | |
1061 | { | |
1062 | /* Backtrack a bit up until we reach either the begining of | |
1063 | the encoded name, or "__". Make sure that we only find | |
1064 | digits or lowercase characters. */ | |
1065 | const char *ptr = encoded + i - 1; | |
1066 | ||
1067 | while (ptr >= encoded && is_lower_alphanum (ptr[0])) | |
1068 | ptr--; | |
1069 | if (ptr < encoded | |
1070 | || (ptr > encoded && ptr[0] == '_' && ptr[-1] == '_')) | |
1071 | i++; | |
1072 | } | |
1073 | ||
4c4b4cd2 PH |
1074 | if (encoded[i] == 'X' && i != 0 && isalnum (encoded[i - 1])) |
1075 | { | |
29480c32 JB |
1076 | /* This is a X[bn]* sequence not separated from the previous |
1077 | part of the name with a non-alpha-numeric character (in other | |
1078 | words, immediately following an alpha-numeric character), then | |
1079 | verify that it is placed at the end of the encoded name. If | |
1080 | not, then the encoding is not valid and we should abort the | |
1081 | decoding. Otherwise, just skip it, it is used in body-nested | |
1082 | package names. */ | |
4c4b4cd2 PH |
1083 | do |
1084 | i += 1; | |
1085 | while (i < len0 && (encoded[i] == 'b' || encoded[i] == 'n')); | |
1086 | if (i < len0) | |
1087 | goto Suppress; | |
1088 | } | |
cdc7bb92 | 1089 | else if (i < len0 - 2 && encoded[i] == '_' && encoded[i + 1] == '_') |
4c4b4cd2 | 1090 | { |
29480c32 | 1091 | /* Replace '__' by '.'. */ |
4c4b4cd2 PH |
1092 | decoded[j] = '.'; |
1093 | at_start_name = 1; | |
1094 | i += 2; | |
1095 | j += 1; | |
1096 | } | |
14f9c5c9 | 1097 | else |
4c4b4cd2 | 1098 | { |
29480c32 JB |
1099 | /* It's a character part of the decoded name, so just copy it |
1100 | over. */ | |
4c4b4cd2 PH |
1101 | decoded[j] = encoded[i]; |
1102 | i += 1; | |
1103 | j += 1; | |
1104 | } | |
14f9c5c9 | 1105 | } |
4c4b4cd2 | 1106 | decoded[j] = '\000'; |
14f9c5c9 | 1107 | |
29480c32 JB |
1108 | /* Decoded names should never contain any uppercase character. |
1109 | Double-check this, and abort the decoding if we find one. */ | |
1110 | ||
4c4b4cd2 PH |
1111 | for (i = 0; decoded[i] != '\0'; i += 1) |
1112 | if (isupper (decoded[i]) || decoded[i] == ' ') | |
14f9c5c9 AS |
1113 | goto Suppress; |
1114 | ||
4c4b4cd2 PH |
1115 | if (strcmp (decoded, encoded) == 0) |
1116 | return encoded; | |
1117 | else | |
1118 | return decoded; | |
14f9c5c9 AS |
1119 | |
1120 | Suppress: | |
4c4b4cd2 PH |
1121 | GROW_VECT (decoding_buffer, decoding_buffer_size, strlen (encoded) + 3); |
1122 | decoded = decoding_buffer; | |
1123 | if (encoded[0] == '<') | |
1124 | strcpy (decoded, encoded); | |
14f9c5c9 | 1125 | else |
88c15c34 | 1126 | xsnprintf (decoded, decoding_buffer_size, "<%s>", encoded); |
4c4b4cd2 PH |
1127 | return decoded; |
1128 | ||
1129 | } | |
1130 | ||
1131 | /* Table for keeping permanent unique copies of decoded names. Once | |
1132 | allocated, names in this table are never released. While this is a | |
1133 | storage leak, it should not be significant unless there are massive | |
1134 | changes in the set of decoded names in successive versions of a | |
1135 | symbol table loaded during a single session. */ | |
1136 | static struct htab *decoded_names_store; | |
1137 | ||
1138 | /* Returns the decoded name of GSYMBOL, as for ada_decode, caching it | |
1139 | in the language-specific part of GSYMBOL, if it has not been | |
1140 | previously computed. Tries to save the decoded name in the same | |
1141 | obstack as GSYMBOL, if possible, and otherwise on the heap (so that, | |
1142 | in any case, the decoded symbol has a lifetime at least that of | |
1143 | GSYMBOL). | |
1144 | The GSYMBOL parameter is "mutable" in the C++ sense: logically | |
1145 | const, but nevertheless modified to a semantically equivalent form | |
1146 | when a decoded name is cached in it. | |
76a01679 | 1147 | */ |
4c4b4cd2 | 1148 | |
76a01679 JB |
1149 | char * |
1150 | ada_decode_symbol (const struct general_symbol_info *gsymbol) | |
4c4b4cd2 | 1151 | { |
76a01679 | 1152 | char **resultp = |
4c4b4cd2 PH |
1153 | (char **) &gsymbol->language_specific.cplus_specific.demangled_name; |
1154 | if (*resultp == NULL) | |
1155 | { | |
1156 | const char *decoded = ada_decode (gsymbol->name); | |
714835d5 | 1157 | if (gsymbol->obj_section != NULL) |
76a01679 | 1158 | { |
714835d5 UW |
1159 | struct objfile *objf = gsymbol->obj_section->objfile; |
1160 | *resultp = obsavestring (decoded, strlen (decoded), | |
1161 | &objf->objfile_obstack); | |
76a01679 | 1162 | } |
4c4b4cd2 | 1163 | /* Sometimes, we can't find a corresponding objfile, in which |
76a01679 JB |
1164 | case, we put the result on the heap. Since we only decode |
1165 | when needed, we hope this usually does not cause a | |
1166 | significant memory leak (FIXME). */ | |
4c4b4cd2 | 1167 | if (*resultp == NULL) |
76a01679 JB |
1168 | { |
1169 | char **slot = (char **) htab_find_slot (decoded_names_store, | |
1170 | decoded, INSERT); | |
1171 | if (*slot == NULL) | |
1172 | *slot = xstrdup (decoded); | |
1173 | *resultp = *slot; | |
1174 | } | |
4c4b4cd2 | 1175 | } |
14f9c5c9 | 1176 | |
4c4b4cd2 PH |
1177 | return *resultp; |
1178 | } | |
76a01679 | 1179 | |
2c0b251b | 1180 | static char * |
76a01679 | 1181 | ada_la_decode (const char *encoded, int options) |
4c4b4cd2 PH |
1182 | { |
1183 | return xstrdup (ada_decode (encoded)); | |
14f9c5c9 AS |
1184 | } |
1185 | ||
1186 | /* Returns non-zero iff SYM_NAME matches NAME, ignoring any trailing | |
4c4b4cd2 PH |
1187 | suffixes that encode debugging information or leading _ada_ on |
1188 | SYM_NAME (see is_name_suffix commentary for the debugging | |
1189 | information that is ignored). If WILD, then NAME need only match a | |
1190 | suffix of SYM_NAME minus the same suffixes. Also returns 0 if | |
1191 | either argument is NULL. */ | |
14f9c5c9 | 1192 | |
2c0b251b | 1193 | static int |
d2e4a39e | 1194 | ada_match_name (const char *sym_name, const char *name, int wild) |
14f9c5c9 AS |
1195 | { |
1196 | if (sym_name == NULL || name == NULL) | |
1197 | return 0; | |
1198 | else if (wild) | |
1199 | return wild_match (name, strlen (name), sym_name); | |
d2e4a39e AS |
1200 | else |
1201 | { | |
1202 | int len_name = strlen (name); | |
4c4b4cd2 PH |
1203 | return (strncmp (sym_name, name, len_name) == 0 |
1204 | && is_name_suffix (sym_name + len_name)) | |
1205 | || (strncmp (sym_name, "_ada_", 5) == 0 | |
1206 | && strncmp (sym_name + 5, name, len_name) == 0 | |
1207 | && is_name_suffix (sym_name + len_name + 5)); | |
d2e4a39e | 1208 | } |
14f9c5c9 | 1209 | } |
14f9c5c9 | 1210 | \f |
d2e4a39e | 1211 | |
4c4b4cd2 | 1212 | /* Arrays */ |
14f9c5c9 | 1213 | |
4c4b4cd2 | 1214 | /* Names of MAX_ADA_DIMENS bounds in P_BOUNDS fields of array descriptors. */ |
14f9c5c9 | 1215 | |
d2e4a39e AS |
1216 | static char *bound_name[] = { |
1217 | "LB0", "UB0", "LB1", "UB1", "LB2", "UB2", "LB3", "UB3", | |
14f9c5c9 AS |
1218 | "LB4", "UB4", "LB5", "UB5", "LB6", "UB6", "LB7", "UB7" |
1219 | }; | |
1220 | ||
1221 | /* Maximum number of array dimensions we are prepared to handle. */ | |
1222 | ||
4c4b4cd2 | 1223 | #define MAX_ADA_DIMENS (sizeof(bound_name) / (2*sizeof(char *))) |
14f9c5c9 | 1224 | |
4c4b4cd2 | 1225 | /* Like modify_field, but allows bitpos > wordlength. */ |
14f9c5c9 AS |
1226 | |
1227 | static void | |
50810684 UW |
1228 | modify_general_field (struct type *type, char *addr, |
1229 | LONGEST fieldval, int bitpos, int bitsize) | |
14f9c5c9 | 1230 | { |
50810684 | 1231 | modify_field (type, addr + bitpos / 8, fieldval, bitpos % 8, bitsize); |
14f9c5c9 AS |
1232 | } |
1233 | ||
1234 | ||
4c4b4cd2 PH |
1235 | /* The desc_* routines return primitive portions of array descriptors |
1236 | (fat pointers). */ | |
14f9c5c9 AS |
1237 | |
1238 | /* The descriptor or array type, if any, indicated by TYPE; removes | |
4c4b4cd2 PH |
1239 | level of indirection, if needed. */ |
1240 | ||
d2e4a39e AS |
1241 | static struct type * |
1242 | desc_base_type (struct type *type) | |
14f9c5c9 AS |
1243 | { |
1244 | if (type == NULL) | |
1245 | return NULL; | |
61ee279c | 1246 | type = ada_check_typedef (type); |
1265e4aa JB |
1247 | if (type != NULL |
1248 | && (TYPE_CODE (type) == TYPE_CODE_PTR | |
1249 | || TYPE_CODE (type) == TYPE_CODE_REF)) | |
61ee279c | 1250 | return ada_check_typedef (TYPE_TARGET_TYPE (type)); |
14f9c5c9 AS |
1251 | else |
1252 | return type; | |
1253 | } | |
1254 | ||
4c4b4cd2 PH |
1255 | /* True iff TYPE indicates a "thin" array pointer type. */ |
1256 | ||
14f9c5c9 | 1257 | static int |
d2e4a39e | 1258 | is_thin_pntr (struct type *type) |
14f9c5c9 | 1259 | { |
d2e4a39e | 1260 | return |
14f9c5c9 AS |
1261 | is_suffix (ada_type_name (desc_base_type (type)), "___XUT") |
1262 | || is_suffix (ada_type_name (desc_base_type (type)), "___XUT___XVE"); | |
1263 | } | |
1264 | ||
4c4b4cd2 PH |
1265 | /* The descriptor type for thin pointer type TYPE. */ |
1266 | ||
d2e4a39e AS |
1267 | static struct type * |
1268 | thin_descriptor_type (struct type *type) | |
14f9c5c9 | 1269 | { |
d2e4a39e | 1270 | struct type *base_type = desc_base_type (type); |
14f9c5c9 AS |
1271 | if (base_type == NULL) |
1272 | return NULL; | |
1273 | if (is_suffix (ada_type_name (base_type), "___XVE")) | |
1274 | return base_type; | |
d2e4a39e | 1275 | else |
14f9c5c9 | 1276 | { |
d2e4a39e | 1277 | struct type *alt_type = ada_find_parallel_type (base_type, "___XVE"); |
14f9c5c9 | 1278 | if (alt_type == NULL) |
4c4b4cd2 | 1279 | return base_type; |
14f9c5c9 | 1280 | else |
4c4b4cd2 | 1281 | return alt_type; |
14f9c5c9 AS |
1282 | } |
1283 | } | |
1284 | ||
4c4b4cd2 PH |
1285 | /* A pointer to the array data for thin-pointer value VAL. */ |
1286 | ||
d2e4a39e AS |
1287 | static struct value * |
1288 | thin_data_pntr (struct value *val) | |
14f9c5c9 | 1289 | { |
df407dfe | 1290 | struct type *type = value_type (val); |
556bdfd4 UW |
1291 | struct type *data_type = desc_data_target_type (thin_descriptor_type (type)); |
1292 | data_type = lookup_pointer_type (data_type); | |
1293 | ||
14f9c5c9 | 1294 | if (TYPE_CODE (type) == TYPE_CODE_PTR) |
556bdfd4 | 1295 | return value_cast (data_type, value_copy (val)); |
d2e4a39e | 1296 | else |
42ae5230 | 1297 | return value_from_longest (data_type, value_address (val)); |
14f9c5c9 AS |
1298 | } |
1299 | ||
4c4b4cd2 PH |
1300 | /* True iff TYPE indicates a "thick" array pointer type. */ |
1301 | ||
14f9c5c9 | 1302 | static int |
d2e4a39e | 1303 | is_thick_pntr (struct type *type) |
14f9c5c9 AS |
1304 | { |
1305 | type = desc_base_type (type); | |
1306 | return (type != NULL && TYPE_CODE (type) == TYPE_CODE_STRUCT | |
4c4b4cd2 | 1307 | && lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL); |
14f9c5c9 AS |
1308 | } |
1309 | ||
4c4b4cd2 PH |
1310 | /* If TYPE is the type of an array descriptor (fat or thin pointer) or a |
1311 | pointer to one, the type of its bounds data; otherwise, NULL. */ | |
76a01679 | 1312 | |
d2e4a39e AS |
1313 | static struct type * |
1314 | desc_bounds_type (struct type *type) | |
14f9c5c9 | 1315 | { |
d2e4a39e | 1316 | struct type *r; |
14f9c5c9 AS |
1317 | |
1318 | type = desc_base_type (type); | |
1319 | ||
1320 | if (type == NULL) | |
1321 | return NULL; | |
1322 | else if (is_thin_pntr (type)) | |
1323 | { | |
1324 | type = thin_descriptor_type (type); | |
1325 | if (type == NULL) | |
4c4b4cd2 | 1326 | return NULL; |
14f9c5c9 AS |
1327 | r = lookup_struct_elt_type (type, "BOUNDS", 1); |
1328 | if (r != NULL) | |
61ee279c | 1329 | return ada_check_typedef (r); |
14f9c5c9 AS |
1330 | } |
1331 | else if (TYPE_CODE (type) == TYPE_CODE_STRUCT) | |
1332 | { | |
1333 | r = lookup_struct_elt_type (type, "P_BOUNDS", 1); | |
1334 | if (r != NULL) | |
61ee279c | 1335 | return ada_check_typedef (TYPE_TARGET_TYPE (ada_check_typedef (r))); |
14f9c5c9 AS |
1336 | } |
1337 | return NULL; | |
1338 | } | |
1339 | ||
1340 | /* If ARR is an array descriptor (fat or thin pointer), or pointer to | |
4c4b4cd2 PH |
1341 | one, a pointer to its bounds data. Otherwise NULL. */ |
1342 | ||
d2e4a39e AS |
1343 | static struct value * |
1344 | desc_bounds (struct value *arr) | |
14f9c5c9 | 1345 | { |
df407dfe | 1346 | struct type *type = ada_check_typedef (value_type (arr)); |
d2e4a39e | 1347 | if (is_thin_pntr (type)) |
14f9c5c9 | 1348 | { |
d2e4a39e | 1349 | struct type *bounds_type = |
4c4b4cd2 | 1350 | desc_bounds_type (thin_descriptor_type (type)); |
14f9c5c9 AS |
1351 | LONGEST addr; |
1352 | ||
4cdfadb1 | 1353 | if (bounds_type == NULL) |
323e0a4a | 1354 | error (_("Bad GNAT array descriptor")); |
14f9c5c9 AS |
1355 | |
1356 | /* NOTE: The following calculation is not really kosher, but | |
d2e4a39e | 1357 | since desc_type is an XVE-encoded type (and shouldn't be), |
4c4b4cd2 | 1358 | the correct calculation is a real pain. FIXME (and fix GCC). */ |
14f9c5c9 | 1359 | if (TYPE_CODE (type) == TYPE_CODE_PTR) |
4c4b4cd2 | 1360 | addr = value_as_long (arr); |
d2e4a39e | 1361 | else |
42ae5230 | 1362 | addr = value_address (arr); |
14f9c5c9 | 1363 | |
d2e4a39e | 1364 | return |
4c4b4cd2 PH |
1365 | value_from_longest (lookup_pointer_type (bounds_type), |
1366 | addr - TYPE_LENGTH (bounds_type)); | |
14f9c5c9 AS |
1367 | } |
1368 | ||
1369 | else if (is_thick_pntr (type)) | |
d2e4a39e | 1370 | return value_struct_elt (&arr, NULL, "P_BOUNDS", NULL, |
323e0a4a | 1371 | _("Bad GNAT array descriptor")); |
14f9c5c9 AS |
1372 | else |
1373 | return NULL; | |
1374 | } | |
1375 | ||
4c4b4cd2 PH |
1376 | /* If TYPE is the type of an array-descriptor (fat pointer), the bit |
1377 | position of the field containing the address of the bounds data. */ | |
1378 | ||
14f9c5c9 | 1379 | static int |
d2e4a39e | 1380 | fat_pntr_bounds_bitpos (struct type *type) |
14f9c5c9 AS |
1381 | { |
1382 | return TYPE_FIELD_BITPOS (desc_base_type (type), 1); | |
1383 | } | |
1384 | ||
1385 | /* If TYPE is the type of an array-descriptor (fat pointer), the bit | |
4c4b4cd2 PH |
1386 | size of the field containing the address of the bounds data. */ |
1387 | ||
14f9c5c9 | 1388 | static int |
d2e4a39e | 1389 | fat_pntr_bounds_bitsize (struct type *type) |
14f9c5c9 AS |
1390 | { |
1391 | type = desc_base_type (type); | |
1392 | ||
d2e4a39e | 1393 | if (TYPE_FIELD_BITSIZE (type, 1) > 0) |
14f9c5c9 AS |
1394 | return TYPE_FIELD_BITSIZE (type, 1); |
1395 | else | |
61ee279c | 1396 | return 8 * TYPE_LENGTH (ada_check_typedef (TYPE_FIELD_TYPE (type, 1))); |
14f9c5c9 AS |
1397 | } |
1398 | ||
4c4b4cd2 | 1399 | /* If TYPE is the type of an array descriptor (fat or thin pointer) or a |
556bdfd4 UW |
1400 | pointer to one, the type of its array data (a array-with-no-bounds type); |
1401 | otherwise, NULL. Use ada_type_of_array to get an array type with bounds | |
1402 | data. */ | |
4c4b4cd2 | 1403 | |
d2e4a39e | 1404 | static struct type * |
556bdfd4 | 1405 | desc_data_target_type (struct type *type) |
14f9c5c9 AS |
1406 | { |
1407 | type = desc_base_type (type); | |
1408 | ||
4c4b4cd2 | 1409 | /* NOTE: The following is bogus; see comment in desc_bounds. */ |
14f9c5c9 | 1410 | if (is_thin_pntr (type)) |
556bdfd4 | 1411 | return desc_base_type (TYPE_FIELD_TYPE (thin_descriptor_type (type), 1)); |
14f9c5c9 | 1412 | else if (is_thick_pntr (type)) |
556bdfd4 UW |
1413 | { |
1414 | struct type *data_type = lookup_struct_elt_type (type, "P_ARRAY", 1); | |
1415 | ||
1416 | if (data_type | |
1417 | && TYPE_CODE (ada_check_typedef (data_type)) == TYPE_CODE_PTR) | |
1418 | return TYPE_TARGET_TYPE (data_type); | |
1419 | } | |
1420 | ||
1421 | return NULL; | |
14f9c5c9 AS |
1422 | } |
1423 | ||
1424 | /* If ARR is an array descriptor (fat or thin pointer), a pointer to | |
1425 | its array data. */ | |
4c4b4cd2 | 1426 | |
d2e4a39e AS |
1427 | static struct value * |
1428 | desc_data (struct value *arr) | |
14f9c5c9 | 1429 | { |
df407dfe | 1430 | struct type *type = value_type (arr); |
14f9c5c9 AS |
1431 | if (is_thin_pntr (type)) |
1432 | return thin_data_pntr (arr); | |
1433 | else if (is_thick_pntr (type)) | |
d2e4a39e | 1434 | return value_struct_elt (&arr, NULL, "P_ARRAY", NULL, |
323e0a4a | 1435 | _("Bad GNAT array descriptor")); |
14f9c5c9 AS |
1436 | else |
1437 | return NULL; | |
1438 | } | |
1439 | ||
1440 | ||
1441 | /* If TYPE is the type of an array-descriptor (fat pointer), the bit | |
4c4b4cd2 PH |
1442 | position of the field containing the address of the data. */ |
1443 | ||
14f9c5c9 | 1444 | static int |
d2e4a39e | 1445 | fat_pntr_data_bitpos (struct type *type) |
14f9c5c9 AS |
1446 | { |
1447 | return TYPE_FIELD_BITPOS (desc_base_type (type), 0); | |
1448 | } | |
1449 | ||
1450 | /* If TYPE is the type of an array-descriptor (fat pointer), the bit | |
4c4b4cd2 PH |
1451 | size of the field containing the address of the data. */ |
1452 | ||
14f9c5c9 | 1453 | static int |
d2e4a39e | 1454 | fat_pntr_data_bitsize (struct type *type) |
14f9c5c9 AS |
1455 | { |
1456 | type = desc_base_type (type); | |
1457 | ||
1458 | if (TYPE_FIELD_BITSIZE (type, 0) > 0) | |
1459 | return TYPE_FIELD_BITSIZE (type, 0); | |
d2e4a39e | 1460 | else |
14f9c5c9 AS |
1461 | return TARGET_CHAR_BIT * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 0)); |
1462 | } | |
1463 | ||
4c4b4cd2 | 1464 | /* If BOUNDS is an array-bounds structure (or pointer to one), return |
14f9c5c9 | 1465 | the Ith lower bound stored in it, if WHICH is 0, and the Ith upper |
4c4b4cd2 PH |
1466 | bound, if WHICH is 1. The first bound is I=1. */ |
1467 | ||
d2e4a39e AS |
1468 | static struct value * |
1469 | desc_one_bound (struct value *bounds, int i, int which) | |
14f9c5c9 | 1470 | { |
d2e4a39e | 1471 | return value_struct_elt (&bounds, NULL, bound_name[2 * i + which - 2], NULL, |
323e0a4a | 1472 | _("Bad GNAT array descriptor bounds")); |
14f9c5c9 AS |
1473 | } |
1474 | ||
1475 | /* If BOUNDS is an array-bounds structure type, return the bit position | |
1476 | of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper | |
4c4b4cd2 PH |
1477 | bound, if WHICH is 1. The first bound is I=1. */ |
1478 | ||
14f9c5c9 | 1479 | static int |
d2e4a39e | 1480 | desc_bound_bitpos (struct type *type, int i, int which) |
14f9c5c9 | 1481 | { |
d2e4a39e | 1482 | return TYPE_FIELD_BITPOS (desc_base_type (type), 2 * i + which - 2); |
14f9c5c9 AS |
1483 | } |
1484 | ||
1485 | /* If BOUNDS is an array-bounds structure type, return the bit field size | |
1486 | of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper | |
4c4b4cd2 PH |
1487 | bound, if WHICH is 1. The first bound is I=1. */ |
1488 | ||
76a01679 | 1489 | static int |
d2e4a39e | 1490 | desc_bound_bitsize (struct type *type, int i, int which) |
14f9c5c9 AS |
1491 | { |
1492 | type = desc_base_type (type); | |
1493 | ||
d2e4a39e AS |
1494 | if (TYPE_FIELD_BITSIZE (type, 2 * i + which - 2) > 0) |
1495 | return TYPE_FIELD_BITSIZE (type, 2 * i + which - 2); | |
1496 | else | |
1497 | return 8 * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 2 * i + which - 2)); | |
14f9c5c9 AS |
1498 | } |
1499 | ||
1500 | /* If TYPE is the type of an array-bounds structure, the type of its | |
4c4b4cd2 PH |
1501 | Ith bound (numbering from 1). Otherwise, NULL. */ |
1502 | ||
d2e4a39e AS |
1503 | static struct type * |
1504 | desc_index_type (struct type *type, int i) | |
14f9c5c9 AS |
1505 | { |
1506 | type = desc_base_type (type); | |
1507 | ||
1508 | if (TYPE_CODE (type) == TYPE_CODE_STRUCT) | |
d2e4a39e AS |
1509 | return lookup_struct_elt_type (type, bound_name[2 * i - 2], 1); |
1510 | else | |
14f9c5c9 AS |
1511 | return NULL; |
1512 | } | |
1513 | ||
4c4b4cd2 PH |
1514 | /* The number of index positions in the array-bounds type TYPE. |
1515 | Return 0 if TYPE is NULL. */ | |
1516 | ||
14f9c5c9 | 1517 | static int |
d2e4a39e | 1518 | desc_arity (struct type *type) |
14f9c5c9 AS |
1519 | { |
1520 | type = desc_base_type (type); | |
1521 | ||
1522 | if (type != NULL) | |
1523 | return TYPE_NFIELDS (type) / 2; | |
1524 | return 0; | |
1525 | } | |
1526 | ||
4c4b4cd2 PH |
1527 | /* Non-zero iff TYPE is a simple array type (not a pointer to one) or |
1528 | an array descriptor type (representing an unconstrained array | |
1529 | type). */ | |
1530 | ||
76a01679 JB |
1531 | static int |
1532 | ada_is_direct_array_type (struct type *type) | |
4c4b4cd2 PH |
1533 | { |
1534 | if (type == NULL) | |
1535 | return 0; | |
61ee279c | 1536 | type = ada_check_typedef (type); |
4c4b4cd2 | 1537 | return (TYPE_CODE (type) == TYPE_CODE_ARRAY |
76a01679 | 1538 | || ada_is_array_descriptor_type (type)); |
4c4b4cd2 PH |
1539 | } |
1540 | ||
52ce6436 PH |
1541 | /* Non-zero iff TYPE represents any kind of array in Ada, or a pointer |
1542 | * to one. */ | |
1543 | ||
2c0b251b | 1544 | static int |
52ce6436 PH |
1545 | ada_is_array_type (struct type *type) |
1546 | { | |
1547 | while (type != NULL | |
1548 | && (TYPE_CODE (type) == TYPE_CODE_PTR | |
1549 | || TYPE_CODE (type) == TYPE_CODE_REF)) | |
1550 | type = TYPE_TARGET_TYPE (type); | |
1551 | return ada_is_direct_array_type (type); | |
1552 | } | |
1553 | ||
4c4b4cd2 | 1554 | /* Non-zero iff TYPE is a simple array type or pointer to one. */ |
14f9c5c9 | 1555 | |
14f9c5c9 | 1556 | int |
4c4b4cd2 | 1557 | ada_is_simple_array_type (struct type *type) |
14f9c5c9 AS |
1558 | { |
1559 | if (type == NULL) | |
1560 | return 0; | |
61ee279c | 1561 | type = ada_check_typedef (type); |
14f9c5c9 | 1562 | return (TYPE_CODE (type) == TYPE_CODE_ARRAY |
4c4b4cd2 PH |
1563 | || (TYPE_CODE (type) == TYPE_CODE_PTR |
1564 | && TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_ARRAY)); | |
14f9c5c9 AS |
1565 | } |
1566 | ||
4c4b4cd2 PH |
1567 | /* Non-zero iff TYPE belongs to a GNAT array descriptor. */ |
1568 | ||
14f9c5c9 | 1569 | int |
4c4b4cd2 | 1570 | ada_is_array_descriptor_type (struct type *type) |
14f9c5c9 | 1571 | { |
556bdfd4 | 1572 | struct type *data_type = desc_data_target_type (type); |
14f9c5c9 AS |
1573 | |
1574 | if (type == NULL) | |
1575 | return 0; | |
61ee279c | 1576 | type = ada_check_typedef (type); |
556bdfd4 UW |
1577 | return (data_type != NULL |
1578 | && TYPE_CODE (data_type) == TYPE_CODE_ARRAY | |
1579 | && desc_arity (desc_bounds_type (type)) > 0); | |
14f9c5c9 AS |
1580 | } |
1581 | ||
1582 | /* Non-zero iff type is a partially mal-formed GNAT array | |
4c4b4cd2 | 1583 | descriptor. FIXME: This is to compensate for some problems with |
14f9c5c9 | 1584 | debugging output from GNAT. Re-examine periodically to see if it |
4c4b4cd2 PH |
1585 | is still needed. */ |
1586 | ||
14f9c5c9 | 1587 | int |
ebf56fd3 | 1588 | ada_is_bogus_array_descriptor (struct type *type) |
14f9c5c9 | 1589 | { |
d2e4a39e | 1590 | return |
14f9c5c9 AS |
1591 | type != NULL |
1592 | && TYPE_CODE (type) == TYPE_CODE_STRUCT | |
1593 | && (lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL | |
4c4b4cd2 PH |
1594 | || lookup_struct_elt_type (type, "P_ARRAY", 1) != NULL) |
1595 | && !ada_is_array_descriptor_type (type); | |
14f9c5c9 AS |
1596 | } |
1597 | ||
1598 | ||
4c4b4cd2 | 1599 | /* If ARR has a record type in the form of a standard GNAT array descriptor, |
14f9c5c9 | 1600 | (fat pointer) returns the type of the array data described---specifically, |
4c4b4cd2 | 1601 | a pointer-to-array type. If BOUNDS is non-zero, the bounds data are filled |
14f9c5c9 | 1602 | in from the descriptor; otherwise, they are left unspecified. If |
4c4b4cd2 PH |
1603 | the ARR denotes a null array descriptor and BOUNDS is non-zero, |
1604 | returns NULL. The result is simply the type of ARR if ARR is not | |
14f9c5c9 | 1605 | a descriptor. */ |
d2e4a39e AS |
1606 | struct type * |
1607 | ada_type_of_array (struct value *arr, int bounds) | |
14f9c5c9 | 1608 | { |
ad82864c JB |
1609 | if (ada_is_constrained_packed_array_type (value_type (arr))) |
1610 | return decode_constrained_packed_array_type (value_type (arr)); | |
14f9c5c9 | 1611 | |
df407dfe AC |
1612 | if (!ada_is_array_descriptor_type (value_type (arr))) |
1613 | return value_type (arr); | |
d2e4a39e AS |
1614 | |
1615 | if (!bounds) | |
ad82864c JB |
1616 | { |
1617 | struct type *array_type = | |
1618 | ada_check_typedef (desc_data_target_type (value_type (arr))); | |
1619 | ||
1620 | if (ada_is_unconstrained_packed_array_type (value_type (arr))) | |
1621 | TYPE_FIELD_BITSIZE (array_type, 0) = | |
1622 | decode_packed_array_bitsize (value_type (arr)); | |
1623 | ||
1624 | return array_type; | |
1625 | } | |
14f9c5c9 AS |
1626 | else |
1627 | { | |
d2e4a39e | 1628 | struct type *elt_type; |
14f9c5c9 | 1629 | int arity; |
d2e4a39e | 1630 | struct value *descriptor; |
14f9c5c9 | 1631 | |
df407dfe AC |
1632 | elt_type = ada_array_element_type (value_type (arr), -1); |
1633 | arity = ada_array_arity (value_type (arr)); | |
14f9c5c9 | 1634 | |
d2e4a39e | 1635 | if (elt_type == NULL || arity == 0) |
df407dfe | 1636 | return ada_check_typedef (value_type (arr)); |
14f9c5c9 AS |
1637 | |
1638 | descriptor = desc_bounds (arr); | |
d2e4a39e | 1639 | if (value_as_long (descriptor) == 0) |
4c4b4cd2 | 1640 | return NULL; |
d2e4a39e | 1641 | while (arity > 0) |
4c4b4cd2 | 1642 | { |
e9bb382b UW |
1643 | struct type *range_type = alloc_type_copy (value_type (arr)); |
1644 | struct type *array_type = alloc_type_copy (value_type (arr)); | |
4c4b4cd2 PH |
1645 | struct value *low = desc_one_bound (descriptor, arity, 0); |
1646 | struct value *high = desc_one_bound (descriptor, arity, 1); | |
1647 | arity -= 1; | |
1648 | ||
df407dfe | 1649 | create_range_type (range_type, value_type (low), |
529cad9c PH |
1650 | longest_to_int (value_as_long (low)), |
1651 | longest_to_int (value_as_long (high))); | |
4c4b4cd2 | 1652 | elt_type = create_array_type (array_type, elt_type, range_type); |
ad82864c JB |
1653 | |
1654 | if (ada_is_unconstrained_packed_array_type (value_type (arr))) | |
1655 | TYPE_FIELD_BITSIZE (elt_type, 0) = | |
1656 | decode_packed_array_bitsize (value_type (arr)); | |
4c4b4cd2 | 1657 | } |
14f9c5c9 AS |
1658 | |
1659 | return lookup_pointer_type (elt_type); | |
1660 | } | |
1661 | } | |
1662 | ||
1663 | /* If ARR does not represent an array, returns ARR unchanged. | |
4c4b4cd2 PH |
1664 | Otherwise, returns either a standard GDB array with bounds set |
1665 | appropriately or, if ARR is a non-null fat pointer, a pointer to a standard | |
1666 | GDB array. Returns NULL if ARR is a null fat pointer. */ | |
1667 | ||
d2e4a39e AS |
1668 | struct value * |
1669 | ada_coerce_to_simple_array_ptr (struct value *arr) | |
14f9c5c9 | 1670 | { |
df407dfe | 1671 | if (ada_is_array_descriptor_type (value_type (arr))) |
14f9c5c9 | 1672 | { |
d2e4a39e | 1673 | struct type *arrType = ada_type_of_array (arr, 1); |
14f9c5c9 | 1674 | if (arrType == NULL) |
4c4b4cd2 | 1675 | return NULL; |
14f9c5c9 AS |
1676 | return value_cast (arrType, value_copy (desc_data (arr))); |
1677 | } | |
ad82864c JB |
1678 | else if (ada_is_constrained_packed_array_type (value_type (arr))) |
1679 | return decode_constrained_packed_array (arr); | |
14f9c5c9 AS |
1680 | else |
1681 | return arr; | |
1682 | } | |
1683 | ||
1684 | /* If ARR does not represent an array, returns ARR unchanged. | |
1685 | Otherwise, returns a standard GDB array describing ARR (which may | |
4c4b4cd2 PH |
1686 | be ARR itself if it already is in the proper form). */ |
1687 | ||
1688 | static struct value * | |
d2e4a39e | 1689 | ada_coerce_to_simple_array (struct value *arr) |
14f9c5c9 | 1690 | { |
df407dfe | 1691 | if (ada_is_array_descriptor_type (value_type (arr))) |
14f9c5c9 | 1692 | { |
d2e4a39e | 1693 | struct value *arrVal = ada_coerce_to_simple_array_ptr (arr); |
14f9c5c9 | 1694 | if (arrVal == NULL) |
323e0a4a | 1695 | error (_("Bounds unavailable for null array pointer.")); |
529cad9c | 1696 | check_size (TYPE_TARGET_TYPE (value_type (arrVal))); |
14f9c5c9 AS |
1697 | return value_ind (arrVal); |
1698 | } | |
ad82864c JB |
1699 | else if (ada_is_constrained_packed_array_type (value_type (arr))) |
1700 | return decode_constrained_packed_array (arr); | |
d2e4a39e | 1701 | else |
14f9c5c9 AS |
1702 | return arr; |
1703 | } | |
1704 | ||
1705 | /* If TYPE represents a GNAT array type, return it translated to an | |
1706 | ordinary GDB array type (possibly with BITSIZE fields indicating | |
4c4b4cd2 PH |
1707 | packing). For other types, is the identity. */ |
1708 | ||
d2e4a39e AS |
1709 | struct type * |
1710 | ada_coerce_to_simple_array_type (struct type *type) | |
14f9c5c9 | 1711 | { |
ad82864c JB |
1712 | if (ada_is_constrained_packed_array_type (type)) |
1713 | return decode_constrained_packed_array_type (type); | |
17280b9f UW |
1714 | |
1715 | if (ada_is_array_descriptor_type (type)) | |
556bdfd4 | 1716 | return ada_check_typedef (desc_data_target_type (type)); |
17280b9f UW |
1717 | |
1718 | return type; | |
14f9c5c9 AS |
1719 | } |
1720 | ||
4c4b4cd2 PH |
1721 | /* Non-zero iff TYPE represents a standard GNAT packed-array type. */ |
1722 | ||
ad82864c JB |
1723 | static int |
1724 | ada_is_packed_array_type (struct type *type) | |
14f9c5c9 AS |
1725 | { |
1726 | if (type == NULL) | |
1727 | return 0; | |
4c4b4cd2 | 1728 | type = desc_base_type (type); |
61ee279c | 1729 | type = ada_check_typedef (type); |
d2e4a39e | 1730 | return |
14f9c5c9 AS |
1731 | ada_type_name (type) != NULL |
1732 | && strstr (ada_type_name (type), "___XP") != NULL; | |
1733 | } | |
1734 | ||
ad82864c JB |
1735 | /* Non-zero iff TYPE represents a standard GNAT constrained |
1736 | packed-array type. */ | |
1737 | ||
1738 | int | |
1739 | ada_is_constrained_packed_array_type (struct type *type) | |
1740 | { | |
1741 | return ada_is_packed_array_type (type) | |
1742 | && !ada_is_array_descriptor_type (type); | |
1743 | } | |
1744 | ||
1745 | /* Non-zero iff TYPE represents an array descriptor for a | |
1746 | unconstrained packed-array type. */ | |
1747 | ||
1748 | static int | |
1749 | ada_is_unconstrained_packed_array_type (struct type *type) | |
1750 | { | |
1751 | return ada_is_packed_array_type (type) | |
1752 | && ada_is_array_descriptor_type (type); | |
1753 | } | |
1754 | ||
1755 | /* Given that TYPE encodes a packed array type (constrained or unconstrained), | |
1756 | return the size of its elements in bits. */ | |
1757 | ||
1758 | static long | |
1759 | decode_packed_array_bitsize (struct type *type) | |
1760 | { | |
1761 | char *raw_name = ada_type_name (ada_check_typedef (type)); | |
1762 | char *tail; | |
1763 | long bits; | |
1764 | ||
1765 | if (!raw_name) | |
1766 | raw_name = ada_type_name (desc_base_type (type)); | |
1767 | ||
1768 | if (!raw_name) | |
1769 | return 0; | |
1770 | ||
1771 | tail = strstr (raw_name, "___XP"); | |
1772 | ||
1773 | if (sscanf (tail + sizeof ("___XP") - 1, "%ld", &bits) != 1) | |
1774 | { | |
1775 | lim_warning | |
1776 | (_("could not understand bit size information on packed array")); | |
1777 | return 0; | |
1778 | } | |
1779 | ||
1780 | return bits; | |
1781 | } | |
1782 | ||
14f9c5c9 AS |
1783 | /* Given that TYPE is a standard GDB array type with all bounds filled |
1784 | in, and that the element size of its ultimate scalar constituents | |
1785 | (that is, either its elements, or, if it is an array of arrays, its | |
1786 | elements' elements, etc.) is *ELT_BITS, return an identical type, | |
1787 | but with the bit sizes of its elements (and those of any | |
1788 | constituent arrays) recorded in the BITSIZE components of its | |
4c4b4cd2 PH |
1789 | TYPE_FIELD_BITSIZE values, and with *ELT_BITS set to its total size |
1790 | in bits. */ | |
1791 | ||
d2e4a39e | 1792 | static struct type * |
ad82864c | 1793 | constrained_packed_array_type (struct type *type, long *elt_bits) |
14f9c5c9 | 1794 | { |
d2e4a39e AS |
1795 | struct type *new_elt_type; |
1796 | struct type *new_type; | |
14f9c5c9 AS |
1797 | LONGEST low_bound, high_bound; |
1798 | ||
61ee279c | 1799 | type = ada_check_typedef (type); |
14f9c5c9 AS |
1800 | if (TYPE_CODE (type) != TYPE_CODE_ARRAY) |
1801 | return type; | |
1802 | ||
e9bb382b | 1803 | new_type = alloc_type_copy (type); |
ad82864c JB |
1804 | new_elt_type = |
1805 | constrained_packed_array_type (ada_check_typedef (TYPE_TARGET_TYPE (type)), | |
1806 | elt_bits); | |
262452ec | 1807 | create_array_type (new_type, new_elt_type, TYPE_INDEX_TYPE (type)); |
14f9c5c9 AS |
1808 | TYPE_FIELD_BITSIZE (new_type, 0) = *elt_bits; |
1809 | TYPE_NAME (new_type) = ada_type_name (type); | |
1810 | ||
262452ec | 1811 | if (get_discrete_bounds (TYPE_INDEX_TYPE (type), |
4c4b4cd2 | 1812 | &low_bound, &high_bound) < 0) |
14f9c5c9 AS |
1813 | low_bound = high_bound = 0; |
1814 | if (high_bound < low_bound) | |
1815 | *elt_bits = TYPE_LENGTH (new_type) = 0; | |
d2e4a39e | 1816 | else |
14f9c5c9 AS |
1817 | { |
1818 | *elt_bits *= (high_bound - low_bound + 1); | |
d2e4a39e | 1819 | TYPE_LENGTH (new_type) = |
4c4b4cd2 | 1820 | (*elt_bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT; |
14f9c5c9 AS |
1821 | } |
1822 | ||
876cecd0 | 1823 | TYPE_FIXED_INSTANCE (new_type) = 1; |
14f9c5c9 AS |
1824 | return new_type; |
1825 | } | |
1826 | ||
ad82864c JB |
1827 | /* The array type encoded by TYPE, where |
1828 | ada_is_constrained_packed_array_type (TYPE). */ | |
4c4b4cd2 | 1829 | |
d2e4a39e | 1830 | static struct type * |
ad82864c | 1831 | decode_constrained_packed_array_type (struct type *type) |
d2e4a39e | 1832 | { |
4c4b4cd2 | 1833 | struct symbol *sym; |
d2e4a39e | 1834 | struct block **blocks; |
727e3d2e JB |
1835 | char *raw_name = ada_type_name (ada_check_typedef (type)); |
1836 | char *name; | |
1837 | char *tail; | |
d2e4a39e | 1838 | struct type *shadow_type; |
14f9c5c9 AS |
1839 | long bits; |
1840 | int i, n; | |
1841 | ||
727e3d2e JB |
1842 | if (!raw_name) |
1843 | raw_name = ada_type_name (desc_base_type (type)); | |
1844 | ||
1845 | if (!raw_name) | |
1846 | return NULL; | |
1847 | ||
1848 | name = (char *) alloca (strlen (raw_name) + 1); | |
1849 | tail = strstr (raw_name, "___XP"); | |
4c4b4cd2 PH |
1850 | type = desc_base_type (type); |
1851 | ||
14f9c5c9 AS |
1852 | memcpy (name, raw_name, tail - raw_name); |
1853 | name[tail - raw_name] = '\000'; | |
1854 | ||
b4ba55a1 JB |
1855 | shadow_type = ada_find_parallel_type_with_name (type, name); |
1856 | ||
1857 | if (shadow_type == NULL) | |
14f9c5c9 | 1858 | { |
323e0a4a | 1859 | lim_warning (_("could not find bounds information on packed array")); |
14f9c5c9 AS |
1860 | return NULL; |
1861 | } | |
cb249c71 | 1862 | CHECK_TYPEDEF (shadow_type); |
14f9c5c9 AS |
1863 | |
1864 | if (TYPE_CODE (shadow_type) != TYPE_CODE_ARRAY) | |
1865 | { | |
323e0a4a | 1866 | lim_warning (_("could not understand bounds information on packed array")); |
14f9c5c9 AS |
1867 | return NULL; |
1868 | } | |
d2e4a39e | 1869 | |
ad82864c JB |
1870 | bits = decode_packed_array_bitsize (type); |
1871 | return constrained_packed_array_type (shadow_type, &bits); | |
14f9c5c9 AS |
1872 | } |
1873 | ||
ad82864c JB |
1874 | /* Given that ARR is a struct value *indicating a GNAT constrained packed |
1875 | array, returns a simple array that denotes that array. Its type is a | |
14f9c5c9 AS |
1876 | standard GDB array type except that the BITSIZEs of the array |
1877 | target types are set to the number of bits in each element, and the | |
4c4b4cd2 | 1878 | type length is set appropriately. */ |
14f9c5c9 | 1879 | |
d2e4a39e | 1880 | static struct value * |
ad82864c | 1881 | decode_constrained_packed_array (struct value *arr) |
14f9c5c9 | 1882 | { |
4c4b4cd2 | 1883 | struct type *type; |
14f9c5c9 | 1884 | |
4c4b4cd2 | 1885 | arr = ada_coerce_ref (arr); |
284614f0 JB |
1886 | |
1887 | /* If our value is a pointer, then dererence it. Make sure that | |
1888 | this operation does not cause the target type to be fixed, as | |
1889 | this would indirectly cause this array to be decoded. The rest | |
1890 | of the routine assumes that the array hasn't been decoded yet, | |
1891 | so we use the basic "value_ind" routine to perform the dereferencing, | |
1892 | as opposed to using "ada_value_ind". */ | |
df407dfe | 1893 | if (TYPE_CODE (value_type (arr)) == TYPE_CODE_PTR) |
284614f0 | 1894 | arr = value_ind (arr); |
4c4b4cd2 | 1895 | |
ad82864c | 1896 | type = decode_constrained_packed_array_type (value_type (arr)); |
14f9c5c9 AS |
1897 | if (type == NULL) |
1898 | { | |
323e0a4a | 1899 | error (_("can't unpack array")); |
14f9c5c9 AS |
1900 | return NULL; |
1901 | } | |
61ee279c | 1902 | |
50810684 | 1903 | if (gdbarch_bits_big_endian (get_type_arch (value_type (arr))) |
32c9a795 | 1904 | && ada_is_modular_type (value_type (arr))) |
61ee279c PH |
1905 | { |
1906 | /* This is a (right-justified) modular type representing a packed | |
1907 | array with no wrapper. In order to interpret the value through | |
1908 | the (left-justified) packed array type we just built, we must | |
1909 | first left-justify it. */ | |
1910 | int bit_size, bit_pos; | |
1911 | ULONGEST mod; | |
1912 | ||
df407dfe | 1913 | mod = ada_modulus (value_type (arr)) - 1; |
61ee279c PH |
1914 | bit_size = 0; |
1915 | while (mod > 0) | |
1916 | { | |
1917 | bit_size += 1; | |
1918 | mod >>= 1; | |
1919 | } | |
df407dfe | 1920 | bit_pos = HOST_CHAR_BIT * TYPE_LENGTH (value_type (arr)) - bit_size; |
61ee279c PH |
1921 | arr = ada_value_primitive_packed_val (arr, NULL, |
1922 | bit_pos / HOST_CHAR_BIT, | |
1923 | bit_pos % HOST_CHAR_BIT, | |
1924 | bit_size, | |
1925 | type); | |
1926 | } | |
1927 | ||
4c4b4cd2 | 1928 | return coerce_unspec_val_to_type (arr, type); |
14f9c5c9 AS |
1929 | } |
1930 | ||
1931 | ||
1932 | /* The value of the element of packed array ARR at the ARITY indices | |
4c4b4cd2 | 1933 | given in IND. ARR must be a simple array. */ |
14f9c5c9 | 1934 | |
d2e4a39e AS |
1935 | static struct value * |
1936 | value_subscript_packed (struct value *arr, int arity, struct value **ind) | |
14f9c5c9 AS |
1937 | { |
1938 | int i; | |
1939 | int bits, elt_off, bit_off; | |
1940 | long elt_total_bit_offset; | |
d2e4a39e AS |
1941 | struct type *elt_type; |
1942 | struct value *v; | |
14f9c5c9 AS |
1943 | |
1944 | bits = 0; | |
1945 | elt_total_bit_offset = 0; | |
df407dfe | 1946 | elt_type = ada_check_typedef (value_type (arr)); |
d2e4a39e | 1947 | for (i = 0; i < arity; i += 1) |
14f9c5c9 | 1948 | { |
d2e4a39e | 1949 | if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY |
4c4b4cd2 PH |
1950 | || TYPE_FIELD_BITSIZE (elt_type, 0) == 0) |
1951 | error | |
323e0a4a | 1952 | (_("attempt to do packed indexing of something other than a packed array")); |
14f9c5c9 | 1953 | else |
4c4b4cd2 PH |
1954 | { |
1955 | struct type *range_type = TYPE_INDEX_TYPE (elt_type); | |
1956 | LONGEST lowerbound, upperbound; | |
1957 | LONGEST idx; | |
1958 | ||
1959 | if (get_discrete_bounds (range_type, &lowerbound, &upperbound) < 0) | |
1960 | { | |
323e0a4a | 1961 | lim_warning (_("don't know bounds of array")); |
4c4b4cd2 PH |
1962 | lowerbound = upperbound = 0; |
1963 | } | |
1964 | ||
3cb382c9 | 1965 | idx = pos_atr (ind[i]); |
4c4b4cd2 | 1966 | if (idx < lowerbound || idx > upperbound) |
323e0a4a | 1967 | lim_warning (_("packed array index %ld out of bounds"), (long) idx); |
4c4b4cd2 PH |
1968 | bits = TYPE_FIELD_BITSIZE (elt_type, 0); |
1969 | elt_total_bit_offset += (idx - lowerbound) * bits; | |
61ee279c | 1970 | elt_type = ada_check_typedef (TYPE_TARGET_TYPE (elt_type)); |
4c4b4cd2 | 1971 | } |
14f9c5c9 AS |
1972 | } |
1973 | elt_off = elt_total_bit_offset / HOST_CHAR_BIT; | |
1974 | bit_off = elt_total_bit_offset % HOST_CHAR_BIT; | |
d2e4a39e AS |
1975 | |
1976 | v = ada_value_primitive_packed_val (arr, NULL, elt_off, bit_off, | |
4c4b4cd2 | 1977 | bits, elt_type); |
14f9c5c9 AS |
1978 | return v; |
1979 | } | |
1980 | ||
4c4b4cd2 | 1981 | /* Non-zero iff TYPE includes negative integer values. */ |
14f9c5c9 AS |
1982 | |
1983 | static int | |
d2e4a39e | 1984 | has_negatives (struct type *type) |
14f9c5c9 | 1985 | { |
d2e4a39e AS |
1986 | switch (TYPE_CODE (type)) |
1987 | { | |
1988 | default: | |
1989 | return 0; | |
1990 | case TYPE_CODE_INT: | |
1991 | return !TYPE_UNSIGNED (type); | |
1992 | case TYPE_CODE_RANGE: | |
1993 | return TYPE_LOW_BOUND (type) < 0; | |
1994 | } | |
14f9c5c9 | 1995 | } |
d2e4a39e | 1996 | |
14f9c5c9 AS |
1997 | |
1998 | /* Create a new value of type TYPE from the contents of OBJ starting | |
1999 | at byte OFFSET, and bit offset BIT_OFFSET within that byte, | |
2000 | proceeding for BIT_SIZE bits. If OBJ is an lval in memory, then | |
4c4b4cd2 PH |
2001 | assigning through the result will set the field fetched from. |
2002 | VALADDR is ignored unless OBJ is NULL, in which case, | |
2003 | VALADDR+OFFSET must address the start of storage containing the | |
2004 | packed value. The value returned in this case is never an lval. | |
2005 | Assumes 0 <= BIT_OFFSET < HOST_CHAR_BIT. */ | |
14f9c5c9 | 2006 | |
d2e4a39e | 2007 | struct value * |
fc1a4b47 | 2008 | ada_value_primitive_packed_val (struct value *obj, const gdb_byte *valaddr, |
a2bd3dcd | 2009 | long offset, int bit_offset, int bit_size, |
4c4b4cd2 | 2010 | struct type *type) |
14f9c5c9 | 2011 | { |
d2e4a39e | 2012 | struct value *v; |
4c4b4cd2 PH |
2013 | int src, /* Index into the source area */ |
2014 | targ, /* Index into the target area */ | |
2015 | srcBitsLeft, /* Number of source bits left to move */ | |
2016 | nsrc, ntarg, /* Number of source and target bytes */ | |
2017 | unusedLS, /* Number of bits in next significant | |
2018 | byte of source that are unused */ | |
2019 | accumSize; /* Number of meaningful bits in accum */ | |
2020 | unsigned char *bytes; /* First byte containing data to unpack */ | |
d2e4a39e | 2021 | unsigned char *unpacked; |
4c4b4cd2 | 2022 | unsigned long accum; /* Staging area for bits being transferred */ |
14f9c5c9 AS |
2023 | unsigned char sign; |
2024 | int len = (bit_size + bit_offset + HOST_CHAR_BIT - 1) / 8; | |
4c4b4cd2 PH |
2025 | /* Transmit bytes from least to most significant; delta is the direction |
2026 | the indices move. */ | |
50810684 | 2027 | int delta = gdbarch_bits_big_endian (get_type_arch (type)) ? -1 : 1; |
14f9c5c9 | 2028 | |
61ee279c | 2029 | type = ada_check_typedef (type); |
14f9c5c9 AS |
2030 | |
2031 | if (obj == NULL) | |
2032 | { | |
2033 | v = allocate_value (type); | |
d2e4a39e | 2034 | bytes = (unsigned char *) (valaddr + offset); |
14f9c5c9 | 2035 | } |
9214ee5f | 2036 | else if (VALUE_LVAL (obj) == lval_memory && value_lazy (obj)) |
14f9c5c9 AS |
2037 | { |
2038 | v = value_at (type, | |
42ae5230 | 2039 | value_address (obj) + offset); |
d2e4a39e | 2040 | bytes = (unsigned char *) alloca (len); |
42ae5230 | 2041 | read_memory (value_address (v), bytes, len); |
14f9c5c9 | 2042 | } |
d2e4a39e | 2043 | else |
14f9c5c9 AS |
2044 | { |
2045 | v = allocate_value (type); | |
0fd88904 | 2046 | bytes = (unsigned char *) value_contents (obj) + offset; |
14f9c5c9 | 2047 | } |
d2e4a39e AS |
2048 | |
2049 | if (obj != NULL) | |
14f9c5c9 | 2050 | { |
42ae5230 | 2051 | CORE_ADDR new_addr; |
74bcbdf3 | 2052 | set_value_component_location (v, obj); |
42ae5230 | 2053 | new_addr = value_address (obj) + offset; |
9bbda503 AC |
2054 | set_value_bitpos (v, bit_offset + value_bitpos (obj)); |
2055 | set_value_bitsize (v, bit_size); | |
df407dfe | 2056 | if (value_bitpos (v) >= HOST_CHAR_BIT) |
4c4b4cd2 | 2057 | { |
42ae5230 | 2058 | ++new_addr; |
9bbda503 | 2059 | set_value_bitpos (v, value_bitpos (v) - HOST_CHAR_BIT); |
4c4b4cd2 | 2060 | } |
42ae5230 | 2061 | set_value_address (v, new_addr); |
14f9c5c9 AS |
2062 | } |
2063 | else | |
9bbda503 | 2064 | set_value_bitsize (v, bit_size); |
0fd88904 | 2065 | unpacked = (unsigned char *) value_contents (v); |
14f9c5c9 AS |
2066 | |
2067 | srcBitsLeft = bit_size; | |
2068 | nsrc = len; | |
2069 | ntarg = TYPE_LENGTH (type); | |
2070 | sign = 0; | |
2071 | if (bit_size == 0) | |
2072 | { | |
2073 | memset (unpacked, 0, TYPE_LENGTH (type)); | |
2074 | return v; | |
2075 | } | |
50810684 | 2076 | else if (gdbarch_bits_big_endian (get_type_arch (type))) |
14f9c5c9 | 2077 | { |
d2e4a39e | 2078 | src = len - 1; |
1265e4aa JB |
2079 | if (has_negatives (type) |
2080 | && ((bytes[0] << bit_offset) & (1 << (HOST_CHAR_BIT - 1)))) | |
4c4b4cd2 | 2081 | sign = ~0; |
d2e4a39e AS |
2082 | |
2083 | unusedLS = | |
4c4b4cd2 PH |
2084 | (HOST_CHAR_BIT - (bit_size + bit_offset) % HOST_CHAR_BIT) |
2085 | % HOST_CHAR_BIT; | |
14f9c5c9 AS |
2086 | |
2087 | switch (TYPE_CODE (type)) | |
4c4b4cd2 PH |
2088 | { |
2089 | case TYPE_CODE_ARRAY: | |
2090 | case TYPE_CODE_UNION: | |
2091 | case TYPE_CODE_STRUCT: | |
2092 | /* Non-scalar values must be aligned at a byte boundary... */ | |
2093 | accumSize = | |
2094 | (HOST_CHAR_BIT - bit_size % HOST_CHAR_BIT) % HOST_CHAR_BIT; | |
2095 | /* ... And are placed at the beginning (most-significant) bytes | |
2096 | of the target. */ | |
529cad9c | 2097 | targ = (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT - 1; |
0056e4d5 | 2098 | ntarg = targ + 1; |
4c4b4cd2 PH |
2099 | break; |
2100 | default: | |
2101 | accumSize = 0; | |
2102 | targ = TYPE_LENGTH (type) - 1; | |
2103 | break; | |
2104 | } | |
14f9c5c9 | 2105 | } |
d2e4a39e | 2106 | else |
14f9c5c9 AS |
2107 | { |
2108 | int sign_bit_offset = (bit_size + bit_offset - 1) % 8; | |
2109 | ||
2110 | src = targ = 0; | |
2111 | unusedLS = bit_offset; | |
2112 | accumSize = 0; | |
2113 | ||
d2e4a39e | 2114 | if (has_negatives (type) && (bytes[len - 1] & (1 << sign_bit_offset))) |
4c4b4cd2 | 2115 | sign = ~0; |
14f9c5c9 | 2116 | } |
d2e4a39e | 2117 | |
14f9c5c9 AS |
2118 | accum = 0; |
2119 | while (nsrc > 0) | |
2120 | { | |
2121 | /* Mask for removing bits of the next source byte that are not | |
4c4b4cd2 | 2122 | part of the value. */ |
d2e4a39e | 2123 | unsigned int unusedMSMask = |
4c4b4cd2 PH |
2124 | (1 << (srcBitsLeft >= HOST_CHAR_BIT ? HOST_CHAR_BIT : srcBitsLeft)) - |
2125 | 1; | |
2126 | /* Sign-extend bits for this byte. */ | |
14f9c5c9 | 2127 | unsigned int signMask = sign & ~unusedMSMask; |
d2e4a39e | 2128 | accum |= |
4c4b4cd2 | 2129 | (((bytes[src] >> unusedLS) & unusedMSMask) | signMask) << accumSize; |
14f9c5c9 | 2130 | accumSize += HOST_CHAR_BIT - unusedLS; |
d2e4a39e | 2131 | if (accumSize >= HOST_CHAR_BIT) |
4c4b4cd2 PH |
2132 | { |
2133 | unpacked[targ] = accum & ~(~0L << HOST_CHAR_BIT); | |
2134 | accumSize -= HOST_CHAR_BIT; | |
2135 | accum >>= HOST_CHAR_BIT; | |
2136 | ntarg -= 1; | |
2137 | targ += delta; | |
2138 | } | |
14f9c5c9 AS |
2139 | srcBitsLeft -= HOST_CHAR_BIT - unusedLS; |
2140 | unusedLS = 0; | |
2141 | nsrc -= 1; | |
2142 | src += delta; | |
2143 | } | |
2144 | while (ntarg > 0) | |
2145 | { | |
2146 | accum |= sign << accumSize; | |
2147 | unpacked[targ] = accum & ~(~0L << HOST_CHAR_BIT); | |
2148 | accumSize -= HOST_CHAR_BIT; | |
2149 | accum >>= HOST_CHAR_BIT; | |
2150 | ntarg -= 1; | |
2151 | targ += delta; | |
2152 | } | |
2153 | ||
2154 | return v; | |
2155 | } | |
d2e4a39e | 2156 | |
14f9c5c9 AS |
2157 | /* Move N bits from SOURCE, starting at bit offset SRC_OFFSET to |
2158 | TARGET, starting at bit offset TARG_OFFSET. SOURCE and TARGET must | |
4c4b4cd2 | 2159 | not overlap. */ |
14f9c5c9 | 2160 | static void |
fc1a4b47 | 2161 | move_bits (gdb_byte *target, int targ_offset, const gdb_byte *source, |
50810684 | 2162 | int src_offset, int n, int bits_big_endian_p) |
14f9c5c9 AS |
2163 | { |
2164 | unsigned int accum, mask; | |
2165 | int accum_bits, chunk_size; | |
2166 | ||
2167 | target += targ_offset / HOST_CHAR_BIT; | |
2168 | targ_offset %= HOST_CHAR_BIT; | |
2169 | source += src_offset / HOST_CHAR_BIT; | |
2170 | src_offset %= HOST_CHAR_BIT; | |
50810684 | 2171 | if (bits_big_endian_p) |
14f9c5c9 AS |
2172 | { |
2173 | accum = (unsigned char) *source; | |
2174 | source += 1; | |
2175 | accum_bits = HOST_CHAR_BIT - src_offset; | |
2176 | ||
d2e4a39e | 2177 | while (n > 0) |
4c4b4cd2 PH |
2178 | { |
2179 | int unused_right; | |
2180 | accum = (accum << HOST_CHAR_BIT) + (unsigned char) *source; | |
2181 | accum_bits += HOST_CHAR_BIT; | |
2182 | source += 1; | |
2183 | chunk_size = HOST_CHAR_BIT - targ_offset; | |
2184 | if (chunk_size > n) | |
2185 | chunk_size = n; | |
2186 | unused_right = HOST_CHAR_BIT - (chunk_size + targ_offset); | |
2187 | mask = ((1 << chunk_size) - 1) << unused_right; | |
2188 | *target = | |
2189 | (*target & ~mask) | |
2190 | | ((accum >> (accum_bits - chunk_size - unused_right)) & mask); | |
2191 | n -= chunk_size; | |
2192 | accum_bits -= chunk_size; | |
2193 | target += 1; | |
2194 | targ_offset = 0; | |
2195 | } | |
14f9c5c9 AS |
2196 | } |
2197 | else | |
2198 | { | |
2199 | accum = (unsigned char) *source >> src_offset; | |
2200 | source += 1; | |
2201 | accum_bits = HOST_CHAR_BIT - src_offset; | |
2202 | ||
d2e4a39e | 2203 | while (n > 0) |
4c4b4cd2 PH |
2204 | { |
2205 | accum = accum + ((unsigned char) *source << accum_bits); | |
2206 | accum_bits += HOST_CHAR_BIT; | |
2207 | source += 1; | |
2208 | chunk_size = HOST_CHAR_BIT - targ_offset; | |
2209 | if (chunk_size > n) | |
2210 | chunk_size = n; | |
2211 | mask = ((1 << chunk_size) - 1) << targ_offset; | |
2212 | *target = (*target & ~mask) | ((accum << targ_offset) & mask); | |
2213 | n -= chunk_size; | |
2214 | accum_bits -= chunk_size; | |
2215 | accum >>= chunk_size; | |
2216 | target += 1; | |
2217 | targ_offset = 0; | |
2218 | } | |
14f9c5c9 AS |
2219 | } |
2220 | } | |
2221 | ||
14f9c5c9 AS |
2222 | /* Store the contents of FROMVAL into the location of TOVAL. |
2223 | Return a new value with the location of TOVAL and contents of | |
2224 | FROMVAL. Handles assignment into packed fields that have | |
4c4b4cd2 | 2225 | floating-point or non-scalar types. */ |
14f9c5c9 | 2226 | |
d2e4a39e AS |
2227 | static struct value * |
2228 | ada_value_assign (struct value *toval, struct value *fromval) | |
14f9c5c9 | 2229 | { |
df407dfe AC |
2230 | struct type *type = value_type (toval); |
2231 | int bits = value_bitsize (toval); | |
14f9c5c9 | 2232 | |
52ce6436 PH |
2233 | toval = ada_coerce_ref (toval); |
2234 | fromval = ada_coerce_ref (fromval); | |
2235 | ||
2236 | if (ada_is_direct_array_type (value_type (toval))) | |
2237 | toval = ada_coerce_to_simple_array (toval); | |
2238 | if (ada_is_direct_array_type (value_type (fromval))) | |
2239 | fromval = ada_coerce_to_simple_array (fromval); | |
2240 | ||
88e3b34b | 2241 | if (!deprecated_value_modifiable (toval)) |
323e0a4a | 2242 | error (_("Left operand of assignment is not a modifiable lvalue.")); |
14f9c5c9 | 2243 | |
d2e4a39e | 2244 | if (VALUE_LVAL (toval) == lval_memory |
14f9c5c9 | 2245 | && bits > 0 |
d2e4a39e | 2246 | && (TYPE_CODE (type) == TYPE_CODE_FLT |
4c4b4cd2 | 2247 | || TYPE_CODE (type) == TYPE_CODE_STRUCT)) |
14f9c5c9 | 2248 | { |
df407dfe AC |
2249 | int len = (value_bitpos (toval) |
2250 | + bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT; | |
aced2898 | 2251 | int from_size; |
d2e4a39e AS |
2252 | char *buffer = (char *) alloca (len); |
2253 | struct value *val; | |
42ae5230 | 2254 | CORE_ADDR to_addr = value_address (toval); |
14f9c5c9 AS |
2255 | |
2256 | if (TYPE_CODE (type) == TYPE_CODE_FLT) | |
4c4b4cd2 | 2257 | fromval = value_cast (type, fromval); |
14f9c5c9 | 2258 | |
52ce6436 | 2259 | read_memory (to_addr, buffer, len); |
aced2898 PH |
2260 | from_size = value_bitsize (fromval); |
2261 | if (from_size == 0) | |
2262 | from_size = TYPE_LENGTH (value_type (fromval)) * TARGET_CHAR_BIT; | |
50810684 | 2263 | if (gdbarch_bits_big_endian (get_type_arch (type))) |
df407dfe | 2264 | move_bits (buffer, value_bitpos (toval), |
50810684 | 2265 | value_contents (fromval), from_size - bits, bits, 1); |
14f9c5c9 | 2266 | else |
50810684 UW |
2267 | move_bits (buffer, value_bitpos (toval), |
2268 | value_contents (fromval), 0, bits, 0); | |
52ce6436 | 2269 | write_memory (to_addr, buffer, len); |
8cebebb9 PP |
2270 | observer_notify_memory_changed (to_addr, len, buffer); |
2271 | ||
14f9c5c9 | 2272 | val = value_copy (toval); |
0fd88904 | 2273 | memcpy (value_contents_raw (val), value_contents (fromval), |
4c4b4cd2 | 2274 | TYPE_LENGTH (type)); |
04624583 | 2275 | deprecated_set_value_type (val, type); |
d2e4a39e | 2276 | |
14f9c5c9 AS |
2277 | return val; |
2278 | } | |
2279 | ||
2280 | return value_assign (toval, fromval); | |
2281 | } | |
2282 | ||
2283 | ||
52ce6436 PH |
2284 | /* Given that COMPONENT is a memory lvalue that is part of the lvalue |
2285 | * CONTAINER, assign the contents of VAL to COMPONENTS's place in | |
2286 | * CONTAINER. Modifies the VALUE_CONTENTS of CONTAINER only, not | |
2287 | * COMPONENT, and not the inferior's memory. The current contents | |
2288 | * of COMPONENT are ignored. */ | |
2289 | static void | |
2290 | value_assign_to_component (struct value *container, struct value *component, | |
2291 | struct value *val) | |
2292 | { | |
2293 | LONGEST offset_in_container = | |
42ae5230 | 2294 | (LONGEST) (value_address (component) - value_address (container)); |
52ce6436 PH |
2295 | int bit_offset_in_container = |
2296 | value_bitpos (component) - value_bitpos (container); | |
2297 | int bits; | |
2298 | ||
2299 | val = value_cast (value_type (component), val); | |
2300 | ||
2301 | if (value_bitsize (component) == 0) | |
2302 | bits = TARGET_CHAR_BIT * TYPE_LENGTH (value_type (component)); | |
2303 | else | |
2304 | bits = value_bitsize (component); | |
2305 | ||
50810684 | 2306 | if (gdbarch_bits_big_endian (get_type_arch (value_type (container)))) |
52ce6436 PH |
2307 | move_bits (value_contents_writeable (container) + offset_in_container, |
2308 | value_bitpos (container) + bit_offset_in_container, | |
2309 | value_contents (val), | |
2310 | TYPE_LENGTH (value_type (component)) * TARGET_CHAR_BIT - bits, | |
50810684 | 2311 | bits, 1); |
52ce6436 PH |
2312 | else |
2313 | move_bits (value_contents_writeable (container) + offset_in_container, | |
2314 | value_bitpos (container) + bit_offset_in_container, | |
50810684 | 2315 | value_contents (val), 0, bits, 0); |
52ce6436 PH |
2316 | } |
2317 | ||
4c4b4cd2 PH |
2318 | /* The value of the element of array ARR at the ARITY indices given in IND. |
2319 | ARR may be either a simple array, GNAT array descriptor, or pointer | |
14f9c5c9 AS |
2320 | thereto. */ |
2321 | ||
d2e4a39e AS |
2322 | struct value * |
2323 | ada_value_subscript (struct value *arr, int arity, struct value **ind) | |
14f9c5c9 AS |
2324 | { |
2325 | int k; | |
d2e4a39e AS |
2326 | struct value *elt; |
2327 | struct type *elt_type; | |
14f9c5c9 AS |
2328 | |
2329 | elt = ada_coerce_to_simple_array (arr); | |
2330 | ||
df407dfe | 2331 | elt_type = ada_check_typedef (value_type (elt)); |
d2e4a39e | 2332 | if (TYPE_CODE (elt_type) == TYPE_CODE_ARRAY |
14f9c5c9 AS |
2333 | && TYPE_FIELD_BITSIZE (elt_type, 0) > 0) |
2334 | return value_subscript_packed (elt, arity, ind); | |
2335 | ||
2336 | for (k = 0; k < arity; k += 1) | |
2337 | { | |
2338 | if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY) | |
323e0a4a | 2339 | error (_("too many subscripts (%d expected)"), k); |
2497b498 | 2340 | elt = value_subscript (elt, pos_atr (ind[k])); |
14f9c5c9 AS |
2341 | } |
2342 | return elt; | |
2343 | } | |
2344 | ||
2345 | /* Assuming ARR is a pointer to a standard GDB array of type TYPE, the | |
2346 | value of the element of *ARR at the ARITY indices given in | |
4c4b4cd2 | 2347 | IND. Does not read the entire array into memory. */ |
14f9c5c9 | 2348 | |
2c0b251b | 2349 | static struct value * |
d2e4a39e | 2350 | ada_value_ptr_subscript (struct value *arr, struct type *type, int arity, |
4c4b4cd2 | 2351 | struct value **ind) |
14f9c5c9 AS |
2352 | { |
2353 | int k; | |
2354 | ||
2355 | for (k = 0; k < arity; k += 1) | |
2356 | { | |
2357 | LONGEST lwb, upb; | |
14f9c5c9 AS |
2358 | |
2359 | if (TYPE_CODE (type) != TYPE_CODE_ARRAY) | |
323e0a4a | 2360 | error (_("too many subscripts (%d expected)"), k); |
d2e4a39e | 2361 | arr = value_cast (lookup_pointer_type (TYPE_TARGET_TYPE (type)), |
4c4b4cd2 | 2362 | value_copy (arr)); |
14f9c5c9 | 2363 | get_discrete_bounds (TYPE_INDEX_TYPE (type), &lwb, &upb); |
2497b498 | 2364 | arr = value_ptradd (arr, pos_atr (ind[k]) - lwb); |
14f9c5c9 AS |
2365 | type = TYPE_TARGET_TYPE (type); |
2366 | } | |
2367 | ||
2368 | return value_ind (arr); | |
2369 | } | |
2370 | ||
0b5d8877 | 2371 | /* Given that ARRAY_PTR is a pointer or reference to an array of type TYPE (the |
f5938064 JG |
2372 | actual type of ARRAY_PTR is ignored), returns the Ada slice of HIGH-LOW+1 |
2373 | elements starting at index LOW. The lower bound of this array is LOW, as | |
2374 | per Ada rules. */ | |
0b5d8877 | 2375 | static struct value * |
f5938064 JG |
2376 | ada_value_slice_from_ptr (struct value *array_ptr, struct type *type, |
2377 | int low, int high) | |
0b5d8877 | 2378 | { |
6c038f32 | 2379 | CORE_ADDR base = value_as_address (array_ptr) |
43bbcdc2 | 2380 | + ((low - ada_discrete_type_low_bound (TYPE_INDEX_TYPE (type))) |
0b5d8877 | 2381 | * TYPE_LENGTH (TYPE_TARGET_TYPE (type))); |
6c038f32 PH |
2382 | struct type *index_type = |
2383 | create_range_type (NULL, TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type)), | |
0b5d8877 | 2384 | low, high); |
6c038f32 | 2385 | struct type *slice_type = |
0b5d8877 | 2386 | create_array_type (NULL, TYPE_TARGET_TYPE (type), index_type); |
f5938064 | 2387 | return value_at_lazy (slice_type, base); |
0b5d8877 PH |
2388 | } |
2389 | ||
2390 | ||
2391 | static struct value * | |
2392 | ada_value_slice (struct value *array, int low, int high) | |
2393 | { | |
df407dfe | 2394 | struct type *type = value_type (array); |
6c038f32 | 2395 | struct type *index_type = |
0b5d8877 | 2396 | create_range_type (NULL, TYPE_INDEX_TYPE (type), low, high); |
6c038f32 | 2397 | struct type *slice_type = |
0b5d8877 | 2398 | create_array_type (NULL, TYPE_TARGET_TYPE (type), index_type); |
6c038f32 | 2399 | return value_cast (slice_type, value_slice (array, low, high - low + 1)); |
0b5d8877 PH |
2400 | } |
2401 | ||
14f9c5c9 AS |
2402 | /* If type is a record type in the form of a standard GNAT array |
2403 | descriptor, returns the number of dimensions for type. If arr is a | |
2404 | simple array, returns the number of "array of"s that prefix its | |
4c4b4cd2 | 2405 | type designation. Otherwise, returns 0. */ |
14f9c5c9 AS |
2406 | |
2407 | int | |
d2e4a39e | 2408 | ada_array_arity (struct type *type) |
14f9c5c9 AS |
2409 | { |
2410 | int arity; | |
2411 | ||
2412 | if (type == NULL) | |
2413 | return 0; | |
2414 | ||
2415 | type = desc_base_type (type); | |
2416 | ||
2417 | arity = 0; | |
d2e4a39e | 2418 | if (TYPE_CODE (type) == TYPE_CODE_STRUCT) |
14f9c5c9 | 2419 | return desc_arity (desc_bounds_type (type)); |
d2e4a39e AS |
2420 | else |
2421 | while (TYPE_CODE (type) == TYPE_CODE_ARRAY) | |
14f9c5c9 | 2422 | { |
4c4b4cd2 | 2423 | arity += 1; |
61ee279c | 2424 | type = ada_check_typedef (TYPE_TARGET_TYPE (type)); |
14f9c5c9 | 2425 | } |
d2e4a39e | 2426 | |
14f9c5c9 AS |
2427 | return arity; |
2428 | } | |
2429 | ||
2430 | /* If TYPE is a record type in the form of a standard GNAT array | |
2431 | descriptor or a simple array type, returns the element type for | |
2432 | TYPE after indexing by NINDICES indices, or by all indices if | |
4c4b4cd2 | 2433 | NINDICES is -1. Otherwise, returns NULL. */ |
14f9c5c9 | 2434 | |
d2e4a39e AS |
2435 | struct type * |
2436 | ada_array_element_type (struct type *type, int nindices) | |
14f9c5c9 AS |
2437 | { |
2438 | type = desc_base_type (type); | |
2439 | ||
d2e4a39e | 2440 | if (TYPE_CODE (type) == TYPE_CODE_STRUCT) |
14f9c5c9 AS |
2441 | { |
2442 | int k; | |
d2e4a39e | 2443 | struct type *p_array_type; |
14f9c5c9 | 2444 | |
556bdfd4 | 2445 | p_array_type = desc_data_target_type (type); |
14f9c5c9 AS |
2446 | |
2447 | k = ada_array_arity (type); | |
2448 | if (k == 0) | |
4c4b4cd2 | 2449 | return NULL; |
d2e4a39e | 2450 | |
4c4b4cd2 | 2451 | /* Initially p_array_type = elt_type(*)[]...(k times)...[]. */ |
14f9c5c9 | 2452 | if (nindices >= 0 && k > nindices) |
4c4b4cd2 | 2453 | k = nindices; |
d2e4a39e | 2454 | while (k > 0 && p_array_type != NULL) |
4c4b4cd2 | 2455 | { |
61ee279c | 2456 | p_array_type = ada_check_typedef (TYPE_TARGET_TYPE (p_array_type)); |
4c4b4cd2 PH |
2457 | k -= 1; |
2458 | } | |
14f9c5c9 AS |
2459 | return p_array_type; |
2460 | } | |
2461 | else if (TYPE_CODE (type) == TYPE_CODE_ARRAY) | |
2462 | { | |
2463 | while (nindices != 0 && TYPE_CODE (type) == TYPE_CODE_ARRAY) | |
4c4b4cd2 PH |
2464 | { |
2465 | type = TYPE_TARGET_TYPE (type); | |
2466 | nindices -= 1; | |
2467 | } | |
14f9c5c9 AS |
2468 | return type; |
2469 | } | |
2470 | ||
2471 | return NULL; | |
2472 | } | |
2473 | ||
4c4b4cd2 | 2474 | /* The type of nth index in arrays of given type (n numbering from 1). |
dd19d49e UW |
2475 | Does not examine memory. Throws an error if N is invalid or TYPE |
2476 | is not an array type. NAME is the name of the Ada attribute being | |
2477 | evaluated ('range, 'first, 'last, or 'length); it is used in building | |
2478 | the error message. */ | |
14f9c5c9 | 2479 | |
1eea4ebd UW |
2480 | static struct type * |
2481 | ada_index_type (struct type *type, int n, const char *name) | |
14f9c5c9 | 2482 | { |
4c4b4cd2 PH |
2483 | struct type *result_type; |
2484 | ||
14f9c5c9 AS |
2485 | type = desc_base_type (type); |
2486 | ||
1eea4ebd UW |
2487 | if (n < 0 || n > ada_array_arity (type)) |
2488 | error (_("invalid dimension number to '%s"), name); | |
14f9c5c9 | 2489 | |
4c4b4cd2 | 2490 | if (ada_is_simple_array_type (type)) |
14f9c5c9 AS |
2491 | { |
2492 | int i; | |
2493 | ||
2494 | for (i = 1; i < n; i += 1) | |
4c4b4cd2 | 2495 | type = TYPE_TARGET_TYPE (type); |
262452ec | 2496 | result_type = TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type)); |
4c4b4cd2 PH |
2497 | /* FIXME: The stabs type r(0,0);bound;bound in an array type |
2498 | has a target type of TYPE_CODE_UNDEF. We compensate here, but | |
76a01679 | 2499 | perhaps stabsread.c would make more sense. */ |
1eea4ebd UW |
2500 | if (result_type && TYPE_CODE (result_type) == TYPE_CODE_UNDEF) |
2501 | result_type = NULL; | |
14f9c5c9 | 2502 | } |
d2e4a39e | 2503 | else |
1eea4ebd UW |
2504 | { |
2505 | result_type = desc_index_type (desc_bounds_type (type), n); | |
2506 | if (result_type == NULL) | |
2507 | error (_("attempt to take bound of something that is not an array")); | |
2508 | } | |
2509 | ||
2510 | return result_type; | |
14f9c5c9 AS |
2511 | } |
2512 | ||
2513 | /* Given that arr is an array type, returns the lower bound of the | |
2514 | Nth index (numbering from 1) if WHICH is 0, and the upper bound if | |
4c4b4cd2 | 2515 | WHICH is 1. This returns bounds 0 .. -1 if ARR_TYPE is an |
1eea4ebd UW |
2516 | array-descriptor type. It works for other arrays with bounds supplied |
2517 | by run-time quantities other than discriminants. */ | |
14f9c5c9 | 2518 | |
abb68b3e | 2519 | static LONGEST |
1eea4ebd | 2520 | ada_array_bound_from_type (struct type * arr_type, int n, int which) |
14f9c5c9 | 2521 | { |
1ce677a4 | 2522 | struct type *type, *elt_type, *index_type_desc, *index_type; |
1ce677a4 | 2523 | int i; |
262452ec JK |
2524 | |
2525 | gdb_assert (which == 0 || which == 1); | |
14f9c5c9 | 2526 | |
ad82864c JB |
2527 | if (ada_is_constrained_packed_array_type (arr_type)) |
2528 | arr_type = decode_constrained_packed_array_type (arr_type); | |
14f9c5c9 | 2529 | |
4c4b4cd2 | 2530 | if (arr_type == NULL || !ada_is_simple_array_type (arr_type)) |
1eea4ebd | 2531 | return (LONGEST) - which; |
14f9c5c9 AS |
2532 | |
2533 | if (TYPE_CODE (arr_type) == TYPE_CODE_PTR) | |
2534 | type = TYPE_TARGET_TYPE (arr_type); | |
2535 | else | |
2536 | type = arr_type; | |
2537 | ||
1ce677a4 UW |
2538 | elt_type = type; |
2539 | for (i = n; i > 1; i--) | |
2540 | elt_type = TYPE_TARGET_TYPE (type); | |
2541 | ||
14f9c5c9 | 2542 | index_type_desc = ada_find_parallel_type (type, "___XA"); |
262452ec JK |
2543 | if (index_type_desc != NULL) |
2544 | index_type = to_fixed_range_type (TYPE_FIELD_NAME (index_type_desc, n - 1), | |
1ce677a4 | 2545 | NULL, TYPE_INDEX_TYPE (elt_type)); |
262452ec | 2546 | else |
1ce677a4 | 2547 | index_type = TYPE_INDEX_TYPE (elt_type); |
262452ec | 2548 | |
43bbcdc2 PH |
2549 | return |
2550 | (LONGEST) (which == 0 | |
2551 | ? ada_discrete_type_low_bound (index_type) | |
2552 | : ada_discrete_type_high_bound (index_type)); | |
14f9c5c9 AS |
2553 | } |
2554 | ||
2555 | /* Given that arr is an array value, returns the lower bound of the | |
abb68b3e JB |
2556 | nth index (numbering from 1) if WHICH is 0, and the upper bound if |
2557 | WHICH is 1. This routine will also work for arrays with bounds | |
4c4b4cd2 | 2558 | supplied by run-time quantities other than discriminants. */ |
14f9c5c9 | 2559 | |
1eea4ebd | 2560 | static LONGEST |
4dc81987 | 2561 | ada_array_bound (struct value *arr, int n, int which) |
14f9c5c9 | 2562 | { |
df407dfe | 2563 | struct type *arr_type = value_type (arr); |
14f9c5c9 | 2564 | |
ad82864c JB |
2565 | if (ada_is_constrained_packed_array_type (arr_type)) |
2566 | return ada_array_bound (decode_constrained_packed_array (arr), n, which); | |
4c4b4cd2 | 2567 | else if (ada_is_simple_array_type (arr_type)) |
1eea4ebd | 2568 | return ada_array_bound_from_type (arr_type, n, which); |
14f9c5c9 | 2569 | else |
1eea4ebd | 2570 | return value_as_long (desc_one_bound (desc_bounds (arr), n, which)); |
14f9c5c9 AS |
2571 | } |
2572 | ||
2573 | /* Given that arr is an array value, returns the length of the | |
2574 | nth index. This routine will also work for arrays with bounds | |
4c4b4cd2 PH |
2575 | supplied by run-time quantities other than discriminants. |
2576 | Does not work for arrays indexed by enumeration types with representation | |
2577 | clauses at the moment. */ | |
14f9c5c9 | 2578 | |
1eea4ebd | 2579 | static LONGEST |
d2e4a39e | 2580 | ada_array_length (struct value *arr, int n) |
14f9c5c9 | 2581 | { |
df407dfe | 2582 | struct type *arr_type = ada_check_typedef (value_type (arr)); |
14f9c5c9 | 2583 | |
ad82864c JB |
2584 | if (ada_is_constrained_packed_array_type (arr_type)) |
2585 | return ada_array_length (decode_constrained_packed_array (arr), n); | |
14f9c5c9 | 2586 | |
4c4b4cd2 | 2587 | if (ada_is_simple_array_type (arr_type)) |
1eea4ebd UW |
2588 | return (ada_array_bound_from_type (arr_type, n, 1) |
2589 | - ada_array_bound_from_type (arr_type, n, 0) + 1); | |
14f9c5c9 | 2590 | else |
1eea4ebd UW |
2591 | return (value_as_long (desc_one_bound (desc_bounds (arr), n, 1)) |
2592 | - value_as_long (desc_one_bound (desc_bounds (arr), n, 0)) + 1); | |
4c4b4cd2 PH |
2593 | } |
2594 | ||
2595 | /* An empty array whose type is that of ARR_TYPE (an array type), | |
2596 | with bounds LOW to LOW-1. */ | |
2597 | ||
2598 | static struct value * | |
2599 | empty_array (struct type *arr_type, int low) | |
2600 | { | |
6c038f32 | 2601 | struct type *index_type = |
0b5d8877 PH |
2602 | create_range_type (NULL, TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (arr_type)), |
2603 | low, low - 1); | |
2604 | struct type *elt_type = ada_array_element_type (arr_type, 1); | |
2605 | return allocate_value (create_array_type (NULL, elt_type, index_type)); | |
14f9c5c9 | 2606 | } |
14f9c5c9 | 2607 | \f |
d2e4a39e | 2608 | |
4c4b4cd2 | 2609 | /* Name resolution */ |
14f9c5c9 | 2610 | |
4c4b4cd2 PH |
2611 | /* The "decoded" name for the user-definable Ada operator corresponding |
2612 | to OP. */ | |
14f9c5c9 | 2613 | |
d2e4a39e | 2614 | static const char * |
4c4b4cd2 | 2615 | ada_decoded_op_name (enum exp_opcode op) |
14f9c5c9 AS |
2616 | { |
2617 | int i; | |
2618 | ||
4c4b4cd2 | 2619 | for (i = 0; ada_opname_table[i].encoded != NULL; i += 1) |
14f9c5c9 AS |
2620 | { |
2621 | if (ada_opname_table[i].op == op) | |
4c4b4cd2 | 2622 | return ada_opname_table[i].decoded; |
14f9c5c9 | 2623 | } |
323e0a4a | 2624 | error (_("Could not find operator name for opcode")); |
14f9c5c9 AS |
2625 | } |
2626 | ||
2627 | ||
4c4b4cd2 PH |
2628 | /* Same as evaluate_type (*EXP), but resolves ambiguous symbol |
2629 | references (marked by OP_VAR_VALUE nodes in which the symbol has an | |
2630 | undefined namespace) and converts operators that are | |
2631 | user-defined into appropriate function calls. If CONTEXT_TYPE is | |
14f9c5c9 AS |
2632 | non-null, it provides a preferred result type [at the moment, only |
2633 | type void has any effect---causing procedures to be preferred over | |
2634 | functions in calls]. A null CONTEXT_TYPE indicates that a non-void | |
4c4b4cd2 | 2635 | return type is preferred. May change (expand) *EXP. */ |
14f9c5c9 | 2636 | |
4c4b4cd2 PH |
2637 | static void |
2638 | resolve (struct expression **expp, int void_context_p) | |
14f9c5c9 | 2639 | { |
30b15541 UW |
2640 | struct type *context_type = NULL; |
2641 | int pc = 0; | |
2642 | ||
2643 | if (void_context_p) | |
2644 | context_type = builtin_type ((*expp)->gdbarch)->builtin_void; | |
2645 | ||
2646 | resolve_subexp (expp, &pc, 1, context_type); | |
14f9c5c9 AS |
2647 | } |
2648 | ||
4c4b4cd2 PH |
2649 | /* Resolve the operator of the subexpression beginning at |
2650 | position *POS of *EXPP. "Resolving" consists of replacing | |
2651 | the symbols that have undefined namespaces in OP_VAR_VALUE nodes | |
2652 | with their resolutions, replacing built-in operators with | |
2653 | function calls to user-defined operators, where appropriate, and, | |
2654 | when DEPROCEDURE_P is non-zero, converting function-valued variables | |
2655 | into parameterless calls. May expand *EXPP. The CONTEXT_TYPE functions | |
2656 | are as in ada_resolve, above. */ | |
14f9c5c9 | 2657 | |
d2e4a39e | 2658 | static struct value * |
4c4b4cd2 | 2659 | resolve_subexp (struct expression **expp, int *pos, int deprocedure_p, |
76a01679 | 2660 | struct type *context_type) |
14f9c5c9 AS |
2661 | { |
2662 | int pc = *pos; | |
2663 | int i; | |
4c4b4cd2 | 2664 | struct expression *exp; /* Convenience: == *expp. */ |
14f9c5c9 | 2665 | enum exp_opcode op = (*expp)->elts[pc].opcode; |
4c4b4cd2 PH |
2666 | struct value **argvec; /* Vector of operand types (alloca'ed). */ |
2667 | int nargs; /* Number of operands. */ | |
52ce6436 | 2668 | int oplen; |
14f9c5c9 AS |
2669 | |
2670 | argvec = NULL; | |
2671 | nargs = 0; | |
2672 | exp = *expp; | |
2673 | ||
52ce6436 PH |
2674 | /* Pass one: resolve operands, saving their types and updating *pos, |
2675 | if needed. */ | |
14f9c5c9 AS |
2676 | switch (op) |
2677 | { | |
4c4b4cd2 PH |
2678 | case OP_FUNCALL: |
2679 | if (exp->elts[pc + 3].opcode == OP_VAR_VALUE | |
76a01679 JB |
2680 | && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN) |
2681 | *pos += 7; | |
4c4b4cd2 PH |
2682 | else |
2683 | { | |
2684 | *pos += 3; | |
2685 | resolve_subexp (expp, pos, 0, NULL); | |
2686 | } | |
2687 | nargs = longest_to_int (exp->elts[pc + 1].longconst); | |
14f9c5c9 AS |
2688 | break; |
2689 | ||
14f9c5c9 | 2690 | case UNOP_ADDR: |
4c4b4cd2 PH |
2691 | *pos += 1; |
2692 | resolve_subexp (expp, pos, 0, NULL); | |
2693 | break; | |
2694 | ||
52ce6436 PH |
2695 | case UNOP_QUAL: |
2696 | *pos += 3; | |
17466c1a | 2697 | resolve_subexp (expp, pos, 1, check_typedef (exp->elts[pc + 1].type)); |
4c4b4cd2 PH |
2698 | break; |
2699 | ||
52ce6436 | 2700 | case OP_ATR_MODULUS: |
4c4b4cd2 PH |
2701 | case OP_ATR_SIZE: |
2702 | case OP_ATR_TAG: | |
4c4b4cd2 PH |
2703 | case OP_ATR_FIRST: |
2704 | case OP_ATR_LAST: | |
2705 | case OP_ATR_LENGTH: | |
2706 | case OP_ATR_POS: | |
2707 | case OP_ATR_VAL: | |
4c4b4cd2 PH |
2708 | case OP_ATR_MIN: |
2709 | case OP_ATR_MAX: | |
52ce6436 PH |
2710 | case TERNOP_IN_RANGE: |
2711 | case BINOP_IN_BOUNDS: | |
2712 | case UNOP_IN_RANGE: | |
2713 | case OP_AGGREGATE: | |
2714 | case OP_OTHERS: | |
2715 | case OP_CHOICES: | |
2716 | case OP_POSITIONAL: | |
2717 | case OP_DISCRETE_RANGE: | |
2718 | case OP_NAME: | |
2719 | ada_forward_operator_length (exp, pc, &oplen, &nargs); | |
2720 | *pos += oplen; | |
14f9c5c9 AS |
2721 | break; |
2722 | ||
2723 | case BINOP_ASSIGN: | |
2724 | { | |
4c4b4cd2 PH |
2725 | struct value *arg1; |
2726 | ||
2727 | *pos += 1; | |
2728 | arg1 = resolve_subexp (expp, pos, 0, NULL); | |
2729 | if (arg1 == NULL) | |
2730 | resolve_subexp (expp, pos, 1, NULL); | |
2731 | else | |
df407dfe | 2732 | resolve_subexp (expp, pos, 1, value_type (arg1)); |
4c4b4cd2 | 2733 | break; |
14f9c5c9 AS |
2734 | } |
2735 | ||
4c4b4cd2 | 2736 | case UNOP_CAST: |
4c4b4cd2 PH |
2737 | *pos += 3; |
2738 | nargs = 1; | |
2739 | break; | |
14f9c5c9 | 2740 | |
4c4b4cd2 PH |
2741 | case BINOP_ADD: |
2742 | case BINOP_SUB: | |
2743 | case BINOP_MUL: | |
2744 | case BINOP_DIV: | |
2745 | case BINOP_REM: | |
2746 | case BINOP_MOD: | |
2747 | case BINOP_EXP: | |
2748 | case BINOP_CONCAT: | |
2749 | case BINOP_LOGICAL_AND: | |
2750 | case BINOP_LOGICAL_OR: | |
2751 | case BINOP_BITWISE_AND: | |
2752 | case BINOP_BITWISE_IOR: | |
2753 | case BINOP_BITWISE_XOR: | |
14f9c5c9 | 2754 | |
4c4b4cd2 PH |
2755 | case BINOP_EQUAL: |
2756 | case BINOP_NOTEQUAL: | |
2757 | case BINOP_LESS: | |
2758 | case BINOP_GTR: | |
2759 | case BINOP_LEQ: | |
2760 | case BINOP_GEQ: | |
14f9c5c9 | 2761 | |
4c4b4cd2 PH |
2762 | case BINOP_REPEAT: |
2763 | case BINOP_SUBSCRIPT: | |
2764 | case BINOP_COMMA: | |
40c8aaa9 JB |
2765 | *pos += 1; |
2766 | nargs = 2; | |
2767 | break; | |
14f9c5c9 | 2768 | |
4c4b4cd2 PH |
2769 | case UNOP_NEG: |
2770 | case UNOP_PLUS: | |
2771 | case UNOP_LOGICAL_NOT: | |
2772 | case UNOP_ABS: | |
2773 | case UNOP_IND: | |
2774 | *pos += 1; | |
2775 | nargs = 1; | |
2776 | break; | |
14f9c5c9 | 2777 | |
4c4b4cd2 PH |
2778 | case OP_LONG: |
2779 | case OP_DOUBLE: | |
2780 | case OP_VAR_VALUE: | |
2781 | *pos += 4; | |
2782 | break; | |
14f9c5c9 | 2783 | |
4c4b4cd2 PH |
2784 | case OP_TYPE: |
2785 | case OP_BOOL: | |
2786 | case OP_LAST: | |
4c4b4cd2 PH |
2787 | case OP_INTERNALVAR: |
2788 | *pos += 3; | |
2789 | break; | |
14f9c5c9 | 2790 | |
4c4b4cd2 PH |
2791 | case UNOP_MEMVAL: |
2792 | *pos += 3; | |
2793 | nargs = 1; | |
2794 | break; | |
2795 | ||
67f3407f DJ |
2796 | case OP_REGISTER: |
2797 | *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1); | |
2798 | break; | |
2799 | ||
4c4b4cd2 PH |
2800 | case STRUCTOP_STRUCT: |
2801 | *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1); | |
2802 | nargs = 1; | |
2803 | break; | |
2804 | ||
4c4b4cd2 | 2805 | case TERNOP_SLICE: |
4c4b4cd2 PH |
2806 | *pos += 1; |
2807 | nargs = 3; | |
2808 | break; | |
2809 | ||
52ce6436 | 2810 | case OP_STRING: |
14f9c5c9 | 2811 | break; |
4c4b4cd2 PH |
2812 | |
2813 | default: | |
323e0a4a | 2814 | error (_("Unexpected operator during name resolution")); |
14f9c5c9 AS |
2815 | } |
2816 | ||
76a01679 | 2817 | argvec = (struct value * *) alloca (sizeof (struct value *) * (nargs + 1)); |
4c4b4cd2 PH |
2818 | for (i = 0; i < nargs; i += 1) |
2819 | argvec[i] = resolve_subexp (expp, pos, 1, NULL); | |
2820 | argvec[i] = NULL; | |
2821 | exp = *expp; | |
2822 | ||
2823 | /* Pass two: perform any resolution on principal operator. */ | |
14f9c5c9 AS |
2824 | switch (op) |
2825 | { | |
2826 | default: | |
2827 | break; | |
2828 | ||
14f9c5c9 | 2829 | case OP_VAR_VALUE: |
4c4b4cd2 | 2830 | if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN) |
76a01679 JB |
2831 | { |
2832 | struct ada_symbol_info *candidates; | |
2833 | int n_candidates; | |
2834 | ||
2835 | n_candidates = | |
2836 | ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME | |
2837 | (exp->elts[pc + 2].symbol), | |
2838 | exp->elts[pc + 1].block, VAR_DOMAIN, | |
2839 | &candidates); | |
2840 | ||
2841 | if (n_candidates > 1) | |
2842 | { | |
2843 | /* Types tend to get re-introduced locally, so if there | |
2844 | are any local symbols that are not types, first filter | |
2845 | out all types. */ | |
2846 | int j; | |
2847 | for (j = 0; j < n_candidates; j += 1) | |
2848 | switch (SYMBOL_CLASS (candidates[j].sym)) | |
2849 | { | |
2850 | case LOC_REGISTER: | |
2851 | case LOC_ARG: | |
2852 | case LOC_REF_ARG: | |
76a01679 JB |
2853 | case LOC_REGPARM_ADDR: |
2854 | case LOC_LOCAL: | |
76a01679 | 2855 | case LOC_COMPUTED: |
76a01679 JB |
2856 | goto FoundNonType; |
2857 | default: | |
2858 | break; | |
2859 | } | |
2860 | FoundNonType: | |
2861 | if (j < n_candidates) | |
2862 | { | |
2863 | j = 0; | |
2864 | while (j < n_candidates) | |
2865 | { | |
2866 | if (SYMBOL_CLASS (candidates[j].sym) == LOC_TYPEDEF) | |
2867 | { | |
2868 | candidates[j] = candidates[n_candidates - 1]; | |
2869 | n_candidates -= 1; | |
2870 | } | |
2871 | else | |
2872 | j += 1; | |
2873 | } | |
2874 | } | |
2875 | } | |
2876 | ||
2877 | if (n_candidates == 0) | |
323e0a4a | 2878 | error (_("No definition found for %s"), |
76a01679 JB |
2879 | SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol)); |
2880 | else if (n_candidates == 1) | |
2881 | i = 0; | |
2882 | else if (deprocedure_p | |
2883 | && !is_nonfunction (candidates, n_candidates)) | |
2884 | { | |
06d5cf63 JB |
2885 | i = ada_resolve_function |
2886 | (candidates, n_candidates, NULL, 0, | |
2887 | SYMBOL_LINKAGE_NAME (exp->elts[pc + 2].symbol), | |
2888 | context_type); | |
76a01679 | 2889 | if (i < 0) |
323e0a4a | 2890 | error (_("Could not find a match for %s"), |
76a01679 JB |
2891 | SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol)); |
2892 | } | |
2893 | else | |
2894 | { | |
323e0a4a | 2895 | printf_filtered (_("Multiple matches for %s\n"), |
76a01679 JB |
2896 | SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol)); |
2897 | user_select_syms (candidates, n_candidates, 1); | |
2898 | i = 0; | |
2899 | } | |
2900 | ||
2901 | exp->elts[pc + 1].block = candidates[i].block; | |
2902 | exp->elts[pc + 2].symbol = candidates[i].sym; | |
1265e4aa JB |
2903 | if (innermost_block == NULL |
2904 | || contained_in (candidates[i].block, innermost_block)) | |
76a01679 JB |
2905 | innermost_block = candidates[i].block; |
2906 | } | |
2907 | ||
2908 | if (deprocedure_p | |
2909 | && (TYPE_CODE (SYMBOL_TYPE (exp->elts[pc + 2].symbol)) | |
2910 | == TYPE_CODE_FUNC)) | |
2911 | { | |
2912 | replace_operator_with_call (expp, pc, 0, 0, | |
2913 | exp->elts[pc + 2].symbol, | |
2914 | exp->elts[pc + 1].block); | |
2915 | exp = *expp; | |
2916 | } | |
14f9c5c9 AS |
2917 | break; |
2918 | ||
2919 | case OP_FUNCALL: | |
2920 | { | |
4c4b4cd2 | 2921 | if (exp->elts[pc + 3].opcode == OP_VAR_VALUE |
76a01679 | 2922 | && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN) |
4c4b4cd2 PH |
2923 | { |
2924 | struct ada_symbol_info *candidates; | |
2925 | int n_candidates; | |
2926 | ||
2927 | n_candidates = | |
76a01679 JB |
2928 | ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME |
2929 | (exp->elts[pc + 5].symbol), | |
2930 | exp->elts[pc + 4].block, VAR_DOMAIN, | |
2931 | &candidates); | |
4c4b4cd2 PH |
2932 | if (n_candidates == 1) |
2933 | i = 0; | |
2934 | else | |
2935 | { | |
06d5cf63 JB |
2936 | i = ada_resolve_function |
2937 | (candidates, n_candidates, | |
2938 | argvec, nargs, | |
2939 | SYMBOL_LINKAGE_NAME (exp->elts[pc + 5].symbol), | |
2940 | context_type); | |
4c4b4cd2 | 2941 | if (i < 0) |
323e0a4a | 2942 | error (_("Could not find a match for %s"), |
4c4b4cd2 PH |
2943 | SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol)); |
2944 | } | |
2945 | ||
2946 | exp->elts[pc + 4].block = candidates[i].block; | |
2947 | exp->elts[pc + 5].symbol = candidates[i].sym; | |
1265e4aa JB |
2948 | if (innermost_block == NULL |
2949 | || contained_in (candidates[i].block, innermost_block)) | |
4c4b4cd2 PH |
2950 | innermost_block = candidates[i].block; |
2951 | } | |
14f9c5c9 AS |
2952 | } |
2953 | break; | |
2954 | case BINOP_ADD: | |
2955 | case BINOP_SUB: | |
2956 | case BINOP_MUL: | |
2957 | case BINOP_DIV: | |
2958 | case BINOP_REM: | |
2959 | case BINOP_MOD: | |
2960 | case BINOP_CONCAT: | |
2961 | case BINOP_BITWISE_AND: | |
2962 | case BINOP_BITWISE_IOR: | |
2963 | case BINOP_BITWISE_XOR: | |
2964 | case BINOP_EQUAL: | |
2965 | case BINOP_NOTEQUAL: | |
2966 | case BINOP_LESS: | |
2967 | case BINOP_GTR: | |
2968 | case BINOP_LEQ: | |
2969 | case BINOP_GEQ: | |
2970 | case BINOP_EXP: | |
2971 | case UNOP_NEG: | |
2972 | case UNOP_PLUS: | |
2973 | case UNOP_LOGICAL_NOT: | |
2974 | case UNOP_ABS: | |
2975 | if (possible_user_operator_p (op, argvec)) | |
4c4b4cd2 PH |
2976 | { |
2977 | struct ada_symbol_info *candidates; | |
2978 | int n_candidates; | |
2979 | ||
2980 | n_candidates = | |
2981 | ada_lookup_symbol_list (ada_encode (ada_decoded_op_name (op)), | |
2982 | (struct block *) NULL, VAR_DOMAIN, | |
2983 | &candidates); | |
2984 | i = ada_resolve_function (candidates, n_candidates, argvec, nargs, | |
76a01679 | 2985 | ada_decoded_op_name (op), NULL); |
4c4b4cd2 PH |
2986 | if (i < 0) |
2987 | break; | |
2988 | ||
76a01679 JB |
2989 | replace_operator_with_call (expp, pc, nargs, 1, |
2990 | candidates[i].sym, candidates[i].block); | |
4c4b4cd2 PH |
2991 | exp = *expp; |
2992 | } | |
14f9c5c9 | 2993 | break; |
4c4b4cd2 PH |
2994 | |
2995 | case OP_TYPE: | |
b3dbf008 | 2996 | case OP_REGISTER: |
4c4b4cd2 | 2997 | return NULL; |
14f9c5c9 AS |
2998 | } |
2999 | ||
3000 | *pos = pc; | |
3001 | return evaluate_subexp_type (exp, pos); | |
3002 | } | |
3003 | ||
3004 | /* Return non-zero if formal type FTYPE matches actual type ATYPE. If | |
4c4b4cd2 | 3005 | MAY_DEREF is non-zero, the formal may be a pointer and the actual |
5b3d5b7d | 3006 | a non-pointer. */ |
14f9c5c9 | 3007 | /* The term "match" here is rather loose. The match is heuristic and |
5b3d5b7d | 3008 | liberal. */ |
14f9c5c9 AS |
3009 | |
3010 | static int | |
4dc81987 | 3011 | ada_type_match (struct type *ftype, struct type *atype, int may_deref) |
14f9c5c9 | 3012 | { |
61ee279c PH |
3013 | ftype = ada_check_typedef (ftype); |
3014 | atype = ada_check_typedef (atype); | |
14f9c5c9 AS |
3015 | |
3016 | if (TYPE_CODE (ftype) == TYPE_CODE_REF) | |
3017 | ftype = TYPE_TARGET_TYPE (ftype); | |
3018 | if (TYPE_CODE (atype) == TYPE_CODE_REF) | |
3019 | atype = TYPE_TARGET_TYPE (atype); | |
3020 | ||
d2e4a39e | 3021 | switch (TYPE_CODE (ftype)) |
14f9c5c9 AS |
3022 | { |
3023 | default: | |
5b3d5b7d | 3024 | return TYPE_CODE (ftype) == TYPE_CODE (atype); |
14f9c5c9 AS |
3025 | case TYPE_CODE_PTR: |
3026 | if (TYPE_CODE (atype) == TYPE_CODE_PTR) | |
4c4b4cd2 PH |
3027 | return ada_type_match (TYPE_TARGET_TYPE (ftype), |
3028 | TYPE_TARGET_TYPE (atype), 0); | |
d2e4a39e | 3029 | else |
1265e4aa JB |
3030 | return (may_deref |
3031 | && ada_type_match (TYPE_TARGET_TYPE (ftype), atype, 0)); | |
14f9c5c9 AS |
3032 | case TYPE_CODE_INT: |
3033 | case TYPE_CODE_ENUM: | |
3034 | case TYPE_CODE_RANGE: | |
3035 | switch (TYPE_CODE (atype)) | |
4c4b4cd2 PH |
3036 | { |
3037 | case TYPE_CODE_INT: | |
3038 | case TYPE_CODE_ENUM: | |
3039 | case TYPE_CODE_RANGE: | |
3040 | return 1; | |
3041 | default: | |
3042 | return 0; | |
3043 | } | |
14f9c5c9 AS |
3044 | |
3045 | case TYPE_CODE_ARRAY: | |
d2e4a39e | 3046 | return (TYPE_CODE (atype) == TYPE_CODE_ARRAY |
4c4b4cd2 | 3047 | || ada_is_array_descriptor_type (atype)); |
14f9c5c9 AS |
3048 | |
3049 | case TYPE_CODE_STRUCT: | |
4c4b4cd2 PH |
3050 | if (ada_is_array_descriptor_type (ftype)) |
3051 | return (TYPE_CODE (atype) == TYPE_CODE_ARRAY | |
3052 | || ada_is_array_descriptor_type (atype)); | |
14f9c5c9 | 3053 | else |
4c4b4cd2 PH |
3054 | return (TYPE_CODE (atype) == TYPE_CODE_STRUCT |
3055 | && !ada_is_array_descriptor_type (atype)); | |
14f9c5c9 AS |
3056 | |
3057 | case TYPE_CODE_UNION: | |
3058 | case TYPE_CODE_FLT: | |
3059 | return (TYPE_CODE (atype) == TYPE_CODE (ftype)); | |
3060 | } | |
3061 | } | |
3062 | ||
3063 | /* Return non-zero if the formals of FUNC "sufficiently match" the | |
3064 | vector of actual argument types ACTUALS of size N_ACTUALS. FUNC | |
3065 | may also be an enumeral, in which case it is treated as a 0- | |
4c4b4cd2 | 3066 | argument function. */ |
14f9c5c9 AS |
3067 | |
3068 | static int | |
d2e4a39e | 3069 | ada_args_match (struct symbol *func, struct value **actuals, int n_actuals) |
14f9c5c9 AS |
3070 | { |
3071 | int i; | |
d2e4a39e | 3072 | struct type *func_type = SYMBOL_TYPE (func); |
14f9c5c9 | 3073 | |
1265e4aa JB |
3074 | if (SYMBOL_CLASS (func) == LOC_CONST |
3075 | && TYPE_CODE (func_type) == TYPE_CODE_ENUM) | |
14f9c5c9 AS |
3076 | return (n_actuals == 0); |
3077 | else if (func_type == NULL || TYPE_CODE (func_type) != TYPE_CODE_FUNC) | |
3078 | return 0; | |
3079 | ||
3080 | if (TYPE_NFIELDS (func_type) != n_actuals) | |
3081 | return 0; | |
3082 | ||
3083 | for (i = 0; i < n_actuals; i += 1) | |
3084 | { | |
4c4b4cd2 | 3085 | if (actuals[i] == NULL) |
76a01679 JB |
3086 | return 0; |
3087 | else | |
3088 | { | |
61ee279c | 3089 | struct type *ftype = ada_check_typedef (TYPE_FIELD_TYPE (func_type, i)); |
df407dfe | 3090 | struct type *atype = ada_check_typedef (value_type (actuals[i])); |
4c4b4cd2 | 3091 | |
76a01679 JB |
3092 | if (!ada_type_match (ftype, atype, 1)) |
3093 | return 0; | |
3094 | } | |
14f9c5c9 AS |
3095 | } |
3096 | return 1; | |
3097 | } | |
3098 | ||
3099 | /* False iff function type FUNC_TYPE definitely does not produce a value | |
3100 | compatible with type CONTEXT_TYPE. Conservatively returns 1 if | |
3101 | FUNC_TYPE is not a valid function type with a non-null return type | |
3102 | or an enumerated type. A null CONTEXT_TYPE indicates any non-void type. */ | |
3103 | ||
3104 | static int | |
d2e4a39e | 3105 | return_match (struct type *func_type, struct type *context_type) |
14f9c5c9 | 3106 | { |
d2e4a39e | 3107 | struct type *return_type; |
14f9c5c9 AS |
3108 | |
3109 | if (func_type == NULL) | |
3110 | return 1; | |
3111 | ||
4c4b4cd2 PH |
3112 | if (TYPE_CODE (func_type) == TYPE_CODE_FUNC) |
3113 | return_type = base_type (TYPE_TARGET_TYPE (func_type)); | |
3114 | else | |
3115 | return_type = base_type (func_type); | |
14f9c5c9 AS |
3116 | if (return_type == NULL) |
3117 | return 1; | |
3118 | ||
4c4b4cd2 | 3119 | context_type = base_type (context_type); |
14f9c5c9 AS |
3120 | |
3121 | if (TYPE_CODE (return_type) == TYPE_CODE_ENUM) | |
3122 | return context_type == NULL || return_type == context_type; | |
3123 | else if (context_type == NULL) | |
3124 | return TYPE_CODE (return_type) != TYPE_CODE_VOID; | |
3125 | else | |
3126 | return TYPE_CODE (return_type) == TYPE_CODE (context_type); | |
3127 | } | |
3128 | ||
3129 | ||
4c4b4cd2 | 3130 | /* Returns the index in SYMS[0..NSYMS-1] that contains the symbol for the |
14f9c5c9 | 3131 | function (if any) that matches the types of the NARGS arguments in |
4c4b4cd2 PH |
3132 | ARGS. If CONTEXT_TYPE is non-null and there is at least one match |
3133 | that returns that type, then eliminate matches that don't. If | |
3134 | CONTEXT_TYPE is void and there is at least one match that does not | |
3135 | return void, eliminate all matches that do. | |
3136 | ||
14f9c5c9 AS |
3137 | Asks the user if there is more than one match remaining. Returns -1 |
3138 | if there is no such symbol or none is selected. NAME is used | |
4c4b4cd2 PH |
3139 | solely for messages. May re-arrange and modify SYMS in |
3140 | the process; the index returned is for the modified vector. */ | |
14f9c5c9 | 3141 | |
4c4b4cd2 PH |
3142 | static int |
3143 | ada_resolve_function (struct ada_symbol_info syms[], | |
3144 | int nsyms, struct value **args, int nargs, | |
3145 | const char *name, struct type *context_type) | |
14f9c5c9 | 3146 | { |
30b15541 | 3147 | int fallback; |
14f9c5c9 | 3148 | int k; |
4c4b4cd2 | 3149 | int m; /* Number of hits */ |
14f9c5c9 | 3150 | |
d2e4a39e | 3151 | m = 0; |
30b15541 UW |
3152 | /* In the first pass of the loop, we only accept functions matching |
3153 | context_type. If none are found, we add a second pass of the loop | |
3154 | where every function is accepted. */ | |
3155 | for (fallback = 0; m == 0 && fallback < 2; fallback++) | |
14f9c5c9 AS |
3156 | { |
3157 | for (k = 0; k < nsyms; k += 1) | |
4c4b4cd2 | 3158 | { |
61ee279c | 3159 | struct type *type = ada_check_typedef (SYMBOL_TYPE (syms[k].sym)); |
4c4b4cd2 PH |
3160 | |
3161 | if (ada_args_match (syms[k].sym, args, nargs) | |
30b15541 | 3162 | && (fallback || return_match (type, context_type))) |
4c4b4cd2 PH |
3163 | { |
3164 | syms[m] = syms[k]; | |
3165 | m += 1; | |
3166 | } | |
3167 | } | |
14f9c5c9 AS |
3168 | } |
3169 | ||
3170 | if (m == 0) | |
3171 | return -1; | |
3172 | else if (m > 1) | |
3173 | { | |
323e0a4a | 3174 | printf_filtered (_("Multiple matches for %s\n"), name); |
4c4b4cd2 | 3175 | user_select_syms (syms, m, 1); |
14f9c5c9 AS |
3176 | return 0; |
3177 | } | |
3178 | return 0; | |
3179 | } | |
3180 | ||
4c4b4cd2 PH |
3181 | /* Returns true (non-zero) iff decoded name N0 should appear before N1 |
3182 | in a listing of choices during disambiguation (see sort_choices, below). | |
3183 | The idea is that overloadings of a subprogram name from the | |
3184 | same package should sort in their source order. We settle for ordering | |
3185 | such symbols by their trailing number (__N or $N). */ | |
3186 | ||
14f9c5c9 | 3187 | static int |
4c4b4cd2 | 3188 | encoded_ordered_before (char *N0, char *N1) |
14f9c5c9 AS |
3189 | { |
3190 | if (N1 == NULL) | |
3191 | return 0; | |
3192 | else if (N0 == NULL) | |
3193 | return 1; | |
3194 | else | |
3195 | { | |
3196 | int k0, k1; | |
d2e4a39e | 3197 | for (k0 = strlen (N0) - 1; k0 > 0 && isdigit (N0[k0]); k0 -= 1) |
4c4b4cd2 | 3198 | ; |
d2e4a39e | 3199 | for (k1 = strlen (N1) - 1; k1 > 0 && isdigit (N1[k1]); k1 -= 1) |
4c4b4cd2 | 3200 | ; |
d2e4a39e | 3201 | if ((N0[k0] == '_' || N0[k0] == '$') && N0[k0 + 1] != '\000' |
4c4b4cd2 PH |
3202 | && (N1[k1] == '_' || N1[k1] == '$') && N1[k1 + 1] != '\000') |
3203 | { | |
3204 | int n0, n1; | |
3205 | n0 = k0; | |
3206 | while (N0[n0] == '_' && n0 > 0 && N0[n0 - 1] == '_') | |
3207 | n0 -= 1; | |
3208 | n1 = k1; | |
3209 | while (N1[n1] == '_' && n1 > 0 && N1[n1 - 1] == '_') | |
3210 | n1 -= 1; | |
3211 | if (n0 == n1 && strncmp (N0, N1, n0) == 0) | |
3212 | return (atoi (N0 + k0 + 1) < atoi (N1 + k1 + 1)); | |
3213 | } | |
14f9c5c9 AS |
3214 | return (strcmp (N0, N1) < 0); |
3215 | } | |
3216 | } | |
d2e4a39e | 3217 | |
4c4b4cd2 PH |
3218 | /* Sort SYMS[0..NSYMS-1] to put the choices in a canonical order by the |
3219 | encoded names. */ | |
3220 | ||
d2e4a39e | 3221 | static void |
4c4b4cd2 | 3222 | sort_choices (struct ada_symbol_info syms[], int nsyms) |
14f9c5c9 | 3223 | { |
4c4b4cd2 | 3224 | int i; |
d2e4a39e | 3225 | for (i = 1; i < nsyms; i += 1) |
14f9c5c9 | 3226 | { |
4c4b4cd2 | 3227 | struct ada_symbol_info sym = syms[i]; |
14f9c5c9 AS |
3228 | int j; |
3229 | ||
d2e4a39e | 3230 | for (j = i - 1; j >= 0; j -= 1) |
4c4b4cd2 PH |
3231 | { |
3232 | if (encoded_ordered_before (SYMBOL_LINKAGE_NAME (syms[j].sym), | |
3233 | SYMBOL_LINKAGE_NAME (sym.sym))) | |
3234 | break; | |
3235 | syms[j + 1] = syms[j]; | |
3236 | } | |
d2e4a39e | 3237 | syms[j + 1] = sym; |
14f9c5c9 AS |
3238 | } |
3239 | } | |
3240 | ||
4c4b4cd2 PH |
3241 | /* Given a list of NSYMS symbols in SYMS, select up to MAX_RESULTS>0 |
3242 | by asking the user (if necessary), returning the number selected, | |
3243 | and setting the first elements of SYMS items. Error if no symbols | |
3244 | selected. */ | |
14f9c5c9 AS |
3245 | |
3246 | /* NOTE: Adapted from decode_line_2 in symtab.c, with which it ought | |
4c4b4cd2 | 3247 | to be re-integrated one of these days. */ |
14f9c5c9 AS |
3248 | |
3249 | int | |
4c4b4cd2 | 3250 | user_select_syms (struct ada_symbol_info *syms, int nsyms, int max_results) |
14f9c5c9 AS |
3251 | { |
3252 | int i; | |
d2e4a39e | 3253 | int *chosen = (int *) alloca (sizeof (int) * nsyms); |
14f9c5c9 AS |
3254 | int n_chosen; |
3255 | int first_choice = (max_results == 1) ? 1 : 2; | |
717d2f5a | 3256 | const char *select_mode = multiple_symbols_select_mode (); |
14f9c5c9 AS |
3257 | |
3258 | if (max_results < 1) | |
323e0a4a | 3259 | error (_("Request to select 0 symbols!")); |
14f9c5c9 AS |
3260 | if (nsyms <= 1) |
3261 | return nsyms; | |
3262 | ||
717d2f5a JB |
3263 | if (select_mode == multiple_symbols_cancel) |
3264 | error (_("\ | |
3265 | canceled because the command is ambiguous\n\ | |
3266 | See set/show multiple-symbol.")); | |
3267 | ||
3268 | /* If select_mode is "all", then return all possible symbols. | |
3269 | Only do that if more than one symbol can be selected, of course. | |
3270 | Otherwise, display the menu as usual. */ | |
3271 | if (select_mode == multiple_symbols_all && max_results > 1) | |
3272 | return nsyms; | |
3273 | ||
323e0a4a | 3274 | printf_unfiltered (_("[0] cancel\n")); |
14f9c5c9 | 3275 | if (max_results > 1) |
323e0a4a | 3276 | printf_unfiltered (_("[1] all\n")); |
14f9c5c9 | 3277 | |
4c4b4cd2 | 3278 | sort_choices (syms, nsyms); |
14f9c5c9 AS |
3279 | |
3280 | for (i = 0; i < nsyms; i += 1) | |
3281 | { | |
4c4b4cd2 PH |
3282 | if (syms[i].sym == NULL) |
3283 | continue; | |
3284 | ||
3285 | if (SYMBOL_CLASS (syms[i].sym) == LOC_BLOCK) | |
3286 | { | |
76a01679 JB |
3287 | struct symtab_and_line sal = |
3288 | find_function_start_sal (syms[i].sym, 1); | |
323e0a4a AC |
3289 | if (sal.symtab == NULL) |
3290 | printf_unfiltered (_("[%d] %s at <no source file available>:%d\n"), | |
3291 | i + first_choice, | |
3292 | SYMBOL_PRINT_NAME (syms[i].sym), | |
3293 | sal.line); | |
3294 | else | |
3295 | printf_unfiltered (_("[%d] %s at %s:%d\n"), i + first_choice, | |
3296 | SYMBOL_PRINT_NAME (syms[i].sym), | |
3297 | sal.symtab->filename, sal.line); | |
4c4b4cd2 PH |
3298 | continue; |
3299 | } | |
d2e4a39e | 3300 | else |
4c4b4cd2 PH |
3301 | { |
3302 | int is_enumeral = | |
3303 | (SYMBOL_CLASS (syms[i].sym) == LOC_CONST | |
3304 | && SYMBOL_TYPE (syms[i].sym) != NULL | |
3305 | && TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) == TYPE_CODE_ENUM); | |
6f38eac8 | 3306 | struct symtab *symtab = syms[i].sym->symtab; |
4c4b4cd2 PH |
3307 | |
3308 | if (SYMBOL_LINE (syms[i].sym) != 0 && symtab != NULL) | |
323e0a4a | 3309 | printf_unfiltered (_("[%d] %s at %s:%d\n"), |
4c4b4cd2 PH |
3310 | i + first_choice, |
3311 | SYMBOL_PRINT_NAME (syms[i].sym), | |
3312 | symtab->filename, SYMBOL_LINE (syms[i].sym)); | |
76a01679 JB |
3313 | else if (is_enumeral |
3314 | && TYPE_NAME (SYMBOL_TYPE (syms[i].sym)) != NULL) | |
4c4b4cd2 | 3315 | { |
a3f17187 | 3316 | printf_unfiltered (("[%d] "), i + first_choice); |
76a01679 JB |
3317 | ada_print_type (SYMBOL_TYPE (syms[i].sym), NULL, |
3318 | gdb_stdout, -1, 0); | |
323e0a4a | 3319 | printf_unfiltered (_("'(%s) (enumeral)\n"), |
4c4b4cd2 PH |
3320 | SYMBOL_PRINT_NAME (syms[i].sym)); |
3321 | } | |
3322 | else if (symtab != NULL) | |
3323 | printf_unfiltered (is_enumeral | |
323e0a4a AC |
3324 | ? _("[%d] %s in %s (enumeral)\n") |
3325 | : _("[%d] %s at %s:?\n"), | |
4c4b4cd2 PH |
3326 | i + first_choice, |
3327 | SYMBOL_PRINT_NAME (syms[i].sym), | |
3328 | symtab->filename); | |
3329 | else | |
3330 | printf_unfiltered (is_enumeral | |
323e0a4a AC |
3331 | ? _("[%d] %s (enumeral)\n") |
3332 | : _("[%d] %s at ?\n"), | |
4c4b4cd2 PH |
3333 | i + first_choice, |
3334 | SYMBOL_PRINT_NAME (syms[i].sym)); | |
3335 | } | |
14f9c5c9 | 3336 | } |
d2e4a39e | 3337 | |
14f9c5c9 | 3338 | n_chosen = get_selections (chosen, nsyms, max_results, max_results > 1, |
4c4b4cd2 | 3339 | "overload-choice"); |
14f9c5c9 AS |
3340 | |
3341 | for (i = 0; i < n_chosen; i += 1) | |
4c4b4cd2 | 3342 | syms[i] = syms[chosen[i]]; |
14f9c5c9 AS |
3343 | |
3344 | return n_chosen; | |
3345 | } | |
3346 | ||
3347 | /* Read and validate a set of numeric choices from the user in the | |
4c4b4cd2 | 3348 | range 0 .. N_CHOICES-1. Place the results in increasing |
14f9c5c9 AS |
3349 | order in CHOICES[0 .. N-1], and return N. |
3350 | ||
3351 | The user types choices as a sequence of numbers on one line | |
3352 | separated by blanks, encoding them as follows: | |
3353 | ||
4c4b4cd2 | 3354 | + A choice of 0 means to cancel the selection, throwing an error. |
14f9c5c9 AS |
3355 | + If IS_ALL_CHOICE, a choice of 1 selects the entire set 0 .. N_CHOICES-1. |
3356 | + The user chooses k by typing k+IS_ALL_CHOICE+1. | |
3357 | ||
4c4b4cd2 | 3358 | The user is not allowed to choose more than MAX_RESULTS values. |
14f9c5c9 AS |
3359 | |
3360 | ANNOTATION_SUFFIX, if present, is used to annotate the input | |
4c4b4cd2 | 3361 | prompts (for use with the -f switch). */ |
14f9c5c9 AS |
3362 | |
3363 | int | |
d2e4a39e | 3364 | get_selections (int *choices, int n_choices, int max_results, |
4c4b4cd2 | 3365 | int is_all_choice, char *annotation_suffix) |
14f9c5c9 | 3366 | { |
d2e4a39e | 3367 | char *args; |
0bcd0149 | 3368 | char *prompt; |
14f9c5c9 AS |
3369 | int n_chosen; |
3370 | int first_choice = is_all_choice ? 2 : 1; | |
d2e4a39e | 3371 | |
14f9c5c9 AS |
3372 | prompt = getenv ("PS2"); |
3373 | if (prompt == NULL) | |
0bcd0149 | 3374 | prompt = "> "; |
14f9c5c9 | 3375 | |
0bcd0149 | 3376 | args = command_line_input (prompt, 0, annotation_suffix); |
d2e4a39e | 3377 | |
14f9c5c9 | 3378 | if (args == NULL) |
323e0a4a | 3379 | error_no_arg (_("one or more choice numbers")); |
14f9c5c9 AS |
3380 | |
3381 | n_chosen = 0; | |
76a01679 | 3382 | |
4c4b4cd2 PH |
3383 | /* Set choices[0 .. n_chosen-1] to the users' choices in ascending |
3384 | order, as given in args. Choices are validated. */ | |
14f9c5c9 AS |
3385 | while (1) |
3386 | { | |
d2e4a39e | 3387 | char *args2; |
14f9c5c9 AS |
3388 | int choice, j; |
3389 | ||
3390 | while (isspace (*args)) | |
4c4b4cd2 | 3391 | args += 1; |
14f9c5c9 | 3392 | if (*args == '\0' && n_chosen == 0) |
323e0a4a | 3393 | error_no_arg (_("one or more choice numbers")); |
14f9c5c9 | 3394 | else if (*args == '\0') |
4c4b4cd2 | 3395 | break; |
14f9c5c9 AS |
3396 | |
3397 | choice = strtol (args, &args2, 10); | |
d2e4a39e | 3398 | if (args == args2 || choice < 0 |
4c4b4cd2 | 3399 | || choice > n_choices + first_choice - 1) |
323e0a4a | 3400 | error (_("Argument must be choice number")); |
14f9c5c9 AS |
3401 | args = args2; |
3402 | ||
d2e4a39e | 3403 | if (choice == 0) |
323e0a4a | 3404 | error (_("cancelled")); |
14f9c5c9 AS |
3405 | |
3406 | if (choice < first_choice) | |
4c4b4cd2 PH |
3407 | { |
3408 | n_chosen = n_choices; | |
3409 | for (j = 0; j < n_choices; j += 1) | |
3410 | choices[j] = j; | |
3411 | break; | |
3412 | } | |
14f9c5c9 AS |
3413 | choice -= first_choice; |
3414 | ||
d2e4a39e | 3415 | for (j = n_chosen - 1; j >= 0 && choice < choices[j]; j -= 1) |
4c4b4cd2 PH |
3416 | { |
3417 | } | |
14f9c5c9 AS |
3418 | |
3419 | if (j < 0 || choice != choices[j]) | |
4c4b4cd2 PH |
3420 | { |
3421 | int k; | |
3422 | for (k = n_chosen - 1; k > j; k -= 1) | |
3423 | choices[k + 1] = choices[k]; | |
3424 | choices[j + 1] = choice; | |
3425 | n_chosen += 1; | |
3426 | } | |
14f9c5c9 AS |
3427 | } |
3428 | ||
3429 | if (n_chosen > max_results) | |
323e0a4a | 3430 | error (_("Select no more than %d of the above"), max_results); |
d2e4a39e | 3431 | |
14f9c5c9 AS |
3432 | return n_chosen; |
3433 | } | |
3434 | ||
4c4b4cd2 PH |
3435 | /* Replace the operator of length OPLEN at position PC in *EXPP with a call |
3436 | on the function identified by SYM and BLOCK, and taking NARGS | |
3437 | arguments. Update *EXPP as needed to hold more space. */ | |
14f9c5c9 AS |
3438 | |
3439 | static void | |
d2e4a39e | 3440 | replace_operator_with_call (struct expression **expp, int pc, int nargs, |
4c4b4cd2 PH |
3441 | int oplen, struct symbol *sym, |
3442 | struct block *block) | |
14f9c5c9 AS |
3443 | { |
3444 | /* A new expression, with 6 more elements (3 for funcall, 4 for function | |
4c4b4cd2 | 3445 | symbol, -oplen for operator being replaced). */ |
d2e4a39e | 3446 | struct expression *newexp = (struct expression *) |
14f9c5c9 | 3447 | xmalloc (sizeof (struct expression) |
4c4b4cd2 | 3448 | + EXP_ELEM_TO_BYTES ((*expp)->nelts + 7 - oplen)); |
d2e4a39e | 3449 | struct expression *exp = *expp; |
14f9c5c9 AS |
3450 | |
3451 | newexp->nelts = exp->nelts + 7 - oplen; | |
3452 | newexp->language_defn = exp->language_defn; | |
3453 | memcpy (newexp->elts, exp->elts, EXP_ELEM_TO_BYTES (pc)); | |
d2e4a39e | 3454 | memcpy (newexp->elts + pc + 7, exp->elts + pc + oplen, |
4c4b4cd2 | 3455 | EXP_ELEM_TO_BYTES (exp->nelts - pc - oplen)); |
14f9c5c9 AS |
3456 | |
3457 | newexp->elts[pc].opcode = newexp->elts[pc + 2].opcode = OP_FUNCALL; | |
3458 | newexp->elts[pc + 1].longconst = (LONGEST) nargs; | |
3459 | ||
3460 | newexp->elts[pc + 3].opcode = newexp->elts[pc + 6].opcode = OP_VAR_VALUE; | |
3461 | newexp->elts[pc + 4].block = block; | |
3462 | newexp->elts[pc + 5].symbol = sym; | |
3463 | ||
3464 | *expp = newexp; | |
aacb1f0a | 3465 | xfree (exp); |
d2e4a39e | 3466 | } |
14f9c5c9 AS |
3467 | |
3468 | /* Type-class predicates */ | |
3469 | ||
4c4b4cd2 PH |
3470 | /* True iff TYPE is numeric (i.e., an INT, RANGE (of numeric type), |
3471 | or FLOAT). */ | |
14f9c5c9 AS |
3472 | |
3473 | static int | |
d2e4a39e | 3474 | numeric_type_p (struct type *type) |
14f9c5c9 AS |
3475 | { |
3476 | if (type == NULL) | |
3477 | return 0; | |
d2e4a39e AS |
3478 | else |
3479 | { | |
3480 | switch (TYPE_CODE (type)) | |
4c4b4cd2 PH |
3481 | { |
3482 | case TYPE_CODE_INT: | |
3483 | case TYPE_CODE_FLT: | |
3484 | return 1; | |
3485 | case TYPE_CODE_RANGE: | |
3486 | return (type == TYPE_TARGET_TYPE (type) | |
3487 | || numeric_type_p (TYPE_TARGET_TYPE (type))); | |
3488 | default: | |
3489 | return 0; | |
3490 | } | |
d2e4a39e | 3491 | } |
14f9c5c9 AS |
3492 | } |
3493 | ||
4c4b4cd2 | 3494 | /* True iff TYPE is integral (an INT or RANGE of INTs). */ |
14f9c5c9 AS |
3495 | |
3496 | static int | |
d2e4a39e | 3497 | integer_type_p (struct type *type) |
14f9c5c9 AS |
3498 | { |
3499 | if (type == NULL) | |
3500 | return 0; | |
d2e4a39e AS |
3501 | else |
3502 | { | |
3503 | switch (TYPE_CODE (type)) | |
4c4b4cd2 PH |
3504 | { |
3505 | case TYPE_CODE_INT: | |
3506 | return 1; | |
3507 | case TYPE_CODE_RANGE: | |
3508 | return (type == TYPE_TARGET_TYPE (type) | |
3509 | || integer_type_p (TYPE_TARGET_TYPE (type))); | |
3510 | default: | |
3511 | return 0; | |
3512 | } | |
d2e4a39e | 3513 | } |
14f9c5c9 AS |
3514 | } |
3515 | ||
4c4b4cd2 | 3516 | /* True iff TYPE is scalar (INT, RANGE, FLOAT, ENUM). */ |
14f9c5c9 AS |
3517 | |
3518 | static int | |
d2e4a39e | 3519 | scalar_type_p (struct type *type) |
14f9c5c9 AS |
3520 | { |
3521 | if (type == NULL) | |
3522 | return 0; | |
d2e4a39e AS |
3523 | else |
3524 | { | |
3525 | switch (TYPE_CODE (type)) | |
4c4b4cd2 PH |
3526 | { |
3527 | case TYPE_CODE_INT: | |
3528 | case TYPE_CODE_RANGE: | |
3529 | case TYPE_CODE_ENUM: | |
3530 | case TYPE_CODE_FLT: | |
3531 | return 1; | |
3532 | default: | |
3533 | return 0; | |
3534 | } | |
d2e4a39e | 3535 | } |
14f9c5c9 AS |
3536 | } |
3537 | ||
4c4b4cd2 | 3538 | /* True iff TYPE is discrete (INT, RANGE, ENUM). */ |
14f9c5c9 AS |
3539 | |
3540 | static int | |
d2e4a39e | 3541 | discrete_type_p (struct type *type) |
14f9c5c9 AS |
3542 | { |
3543 | if (type == NULL) | |
3544 | return 0; | |
d2e4a39e AS |
3545 | else |
3546 | { | |
3547 | switch (TYPE_CODE (type)) | |
4c4b4cd2 PH |
3548 | { |
3549 | case TYPE_CODE_INT: | |
3550 | case TYPE_CODE_RANGE: | |
3551 | case TYPE_CODE_ENUM: | |
872f0337 | 3552 | case TYPE_CODE_BOOL: |
4c4b4cd2 PH |
3553 | return 1; |
3554 | default: | |
3555 | return 0; | |
3556 | } | |
d2e4a39e | 3557 | } |
14f9c5c9 AS |
3558 | } |
3559 | ||
4c4b4cd2 PH |
3560 | /* Returns non-zero if OP with operands in the vector ARGS could be |
3561 | a user-defined function. Errs on the side of pre-defined operators | |
3562 | (i.e., result 0). */ | |
14f9c5c9 AS |
3563 | |
3564 | static int | |
d2e4a39e | 3565 | possible_user_operator_p (enum exp_opcode op, struct value *args[]) |
14f9c5c9 | 3566 | { |
76a01679 | 3567 | struct type *type0 = |
df407dfe | 3568 | (args[0] == NULL) ? NULL : ada_check_typedef (value_type (args[0])); |
d2e4a39e | 3569 | struct type *type1 = |
df407dfe | 3570 | (args[1] == NULL) ? NULL : ada_check_typedef (value_type (args[1])); |
d2e4a39e | 3571 | |
4c4b4cd2 PH |
3572 | if (type0 == NULL) |
3573 | return 0; | |
3574 | ||
14f9c5c9 AS |
3575 | switch (op) |
3576 | { | |
3577 | default: | |
3578 | return 0; | |
3579 | ||
3580 | case BINOP_ADD: | |
3581 | case BINOP_SUB: | |
3582 | case BINOP_MUL: | |
3583 | case BINOP_DIV: | |
d2e4a39e | 3584 | return (!(numeric_type_p (type0) && numeric_type_p (type1))); |
14f9c5c9 AS |
3585 | |
3586 | case BINOP_REM: | |
3587 | case BINOP_MOD: | |
3588 | case BINOP_BITWISE_AND: | |
3589 | case BINOP_BITWISE_IOR: | |
3590 | case BINOP_BITWISE_XOR: | |
d2e4a39e | 3591 | return (!(integer_type_p (type0) && integer_type_p (type1))); |
14f9c5c9 AS |
3592 | |
3593 | case BINOP_EQUAL: | |
3594 | case BINOP_NOTEQUAL: | |
3595 | case BINOP_LESS: | |
3596 | case BINOP_GTR: | |
3597 | case BINOP_LEQ: | |
3598 | case BINOP_GEQ: | |
d2e4a39e | 3599 | return (!(scalar_type_p (type0) && scalar_type_p (type1))); |
14f9c5c9 AS |
3600 | |
3601 | case BINOP_CONCAT: | |
ee90b9ab | 3602 | return !ada_is_array_type (type0) || !ada_is_array_type (type1); |
14f9c5c9 AS |
3603 | |
3604 | case BINOP_EXP: | |
d2e4a39e | 3605 | return (!(numeric_type_p (type0) && integer_type_p (type1))); |
14f9c5c9 AS |
3606 | |
3607 | case UNOP_NEG: | |
3608 | case UNOP_PLUS: | |
3609 | case UNOP_LOGICAL_NOT: | |
d2e4a39e AS |
3610 | case UNOP_ABS: |
3611 | return (!numeric_type_p (type0)); | |
14f9c5c9 AS |
3612 | |
3613 | } | |
3614 | } | |
3615 | \f | |
4c4b4cd2 | 3616 | /* Renaming */ |
14f9c5c9 | 3617 | |
aeb5907d JB |
3618 | /* NOTES: |
3619 | ||
3620 | 1. In the following, we assume that a renaming type's name may | |
3621 | have an ___XD suffix. It would be nice if this went away at some | |
3622 | point. | |
3623 | 2. We handle both the (old) purely type-based representation of | |
3624 | renamings and the (new) variable-based encoding. At some point, | |
3625 | it is devoutly to be hoped that the former goes away | |
3626 | (FIXME: hilfinger-2007-07-09). | |
3627 | 3. Subprogram renamings are not implemented, although the XRS | |
3628 | suffix is recognized (FIXME: hilfinger-2007-07-09). */ | |
3629 | ||
3630 | /* If SYM encodes a renaming, | |
3631 | ||
3632 | <renaming> renames <renamed entity>, | |
3633 | ||
3634 | sets *LEN to the length of the renamed entity's name, | |
3635 | *RENAMED_ENTITY to that name (not null-terminated), and *RENAMING_EXPR to | |
3636 | the string describing the subcomponent selected from the renamed | |
3637 | entity. Returns ADA_NOT_RENAMING if SYM does not encode a renaming | |
3638 | (in which case, the values of *RENAMED_ENTITY, *LEN, and *RENAMING_EXPR | |
3639 | are undefined). Otherwise, returns a value indicating the category | |
3640 | of entity renamed: an object (ADA_OBJECT_RENAMING), exception | |
3641 | (ADA_EXCEPTION_RENAMING), package (ADA_PACKAGE_RENAMING), or | |
3642 | subprogram (ADA_SUBPROGRAM_RENAMING). Does no allocation; the | |
3643 | strings returned in *RENAMED_ENTITY and *RENAMING_EXPR should not be | |
3644 | deallocated. The values of RENAMED_ENTITY, LEN, or RENAMING_EXPR | |
3645 | may be NULL, in which case they are not assigned. | |
3646 | ||
3647 | [Currently, however, GCC does not generate subprogram renamings.] */ | |
3648 | ||
3649 | enum ada_renaming_category | |
3650 | ada_parse_renaming (struct symbol *sym, | |
3651 | const char **renamed_entity, int *len, | |
3652 | const char **renaming_expr) | |
3653 | { | |
3654 | enum ada_renaming_category kind; | |
3655 | const char *info; | |
3656 | const char *suffix; | |
3657 | ||
3658 | if (sym == NULL) | |
3659 | return ADA_NOT_RENAMING; | |
3660 | switch (SYMBOL_CLASS (sym)) | |
14f9c5c9 | 3661 | { |
aeb5907d JB |
3662 | default: |
3663 | return ADA_NOT_RENAMING; | |
3664 | case LOC_TYPEDEF: | |
3665 | return parse_old_style_renaming (SYMBOL_TYPE (sym), | |
3666 | renamed_entity, len, renaming_expr); | |
3667 | case LOC_LOCAL: | |
3668 | case LOC_STATIC: | |
3669 | case LOC_COMPUTED: | |
3670 | case LOC_OPTIMIZED_OUT: | |
3671 | info = strstr (SYMBOL_LINKAGE_NAME (sym), "___XR"); | |
3672 | if (info == NULL) | |
3673 | return ADA_NOT_RENAMING; | |
3674 | switch (info[5]) | |
3675 | { | |
3676 | case '_': | |
3677 | kind = ADA_OBJECT_RENAMING; | |
3678 | info += 6; | |
3679 | break; | |
3680 | case 'E': | |
3681 | kind = ADA_EXCEPTION_RENAMING; | |
3682 | info += 7; | |
3683 | break; | |
3684 | case 'P': | |
3685 | kind = ADA_PACKAGE_RENAMING; | |
3686 | info += 7; | |
3687 | break; | |
3688 | case 'S': | |
3689 | kind = ADA_SUBPROGRAM_RENAMING; | |
3690 | info += 7; | |
3691 | break; | |
3692 | default: | |
3693 | return ADA_NOT_RENAMING; | |
3694 | } | |
14f9c5c9 | 3695 | } |
4c4b4cd2 | 3696 | |
aeb5907d JB |
3697 | if (renamed_entity != NULL) |
3698 | *renamed_entity = info; | |
3699 | suffix = strstr (info, "___XE"); | |
3700 | if (suffix == NULL || suffix == info) | |
3701 | return ADA_NOT_RENAMING; | |
3702 | if (len != NULL) | |
3703 | *len = strlen (info) - strlen (suffix); | |
3704 | suffix += 5; | |
3705 | if (renaming_expr != NULL) | |
3706 | *renaming_expr = suffix; | |
3707 | return kind; | |
3708 | } | |
3709 | ||
3710 | /* Assuming TYPE encodes a renaming according to the old encoding in | |
3711 | exp_dbug.ads, returns details of that renaming in *RENAMED_ENTITY, | |
3712 | *LEN, and *RENAMING_EXPR, as for ada_parse_renaming, above. Returns | |
3713 | ADA_NOT_RENAMING otherwise. */ | |
3714 | static enum ada_renaming_category | |
3715 | parse_old_style_renaming (struct type *type, | |
3716 | const char **renamed_entity, int *len, | |
3717 | const char **renaming_expr) | |
3718 | { | |
3719 | enum ada_renaming_category kind; | |
3720 | const char *name; | |
3721 | const char *info; | |
3722 | const char *suffix; | |
14f9c5c9 | 3723 | |
aeb5907d JB |
3724 | if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM |
3725 | || TYPE_NFIELDS (type) != 1) | |
3726 | return ADA_NOT_RENAMING; | |
14f9c5c9 | 3727 | |
aeb5907d JB |
3728 | name = type_name_no_tag (type); |
3729 | if (name == NULL) | |
3730 | return ADA_NOT_RENAMING; | |
3731 | ||
3732 | name = strstr (name, "___XR"); | |
3733 | if (name == NULL) | |
3734 | return ADA_NOT_RENAMING; | |
3735 | switch (name[5]) | |
3736 | { | |
3737 | case '\0': | |
3738 | case '_': | |
3739 | kind = ADA_OBJECT_RENAMING; | |
3740 | break; | |
3741 | case 'E': | |
3742 | kind = ADA_EXCEPTION_RENAMING; | |
3743 | break; | |
3744 | case 'P': | |
3745 | kind = ADA_PACKAGE_RENAMING; | |
3746 | break; | |
3747 | case 'S': | |
3748 | kind = ADA_SUBPROGRAM_RENAMING; | |
3749 | break; | |
3750 | default: | |
3751 | return ADA_NOT_RENAMING; | |
3752 | } | |
14f9c5c9 | 3753 | |
aeb5907d JB |
3754 | info = TYPE_FIELD_NAME (type, 0); |
3755 | if (info == NULL) | |
3756 | return ADA_NOT_RENAMING; | |
3757 | if (renamed_entity != NULL) | |
3758 | *renamed_entity = info; | |
3759 | suffix = strstr (info, "___XE"); | |
3760 | if (renaming_expr != NULL) | |
3761 | *renaming_expr = suffix + 5; | |
3762 | if (suffix == NULL || suffix == info) | |
3763 | return ADA_NOT_RENAMING; | |
3764 | if (len != NULL) | |
3765 | *len = suffix - info; | |
3766 | return kind; | |
3767 | } | |
52ce6436 | 3768 | |
14f9c5c9 | 3769 | \f |
d2e4a39e | 3770 | |
4c4b4cd2 | 3771 | /* Evaluation: Function Calls */ |
14f9c5c9 | 3772 | |
4c4b4cd2 PH |
3773 | /* Return an lvalue containing the value VAL. This is the identity on |
3774 | lvalues, and otherwise has the side-effect of pushing a copy of VAL | |
3775 | on the stack, using and updating *SP as the stack pointer, and | |
42ae5230 | 3776 | returning an lvalue whose value_address points to the copy. */ |
14f9c5c9 | 3777 | |
d2e4a39e | 3778 | static struct value * |
4a399546 | 3779 | ensure_lval (struct value *val, struct gdbarch *gdbarch, CORE_ADDR *sp) |
14f9c5c9 | 3780 | { |
c3e5cd34 PH |
3781 | if (! VALUE_LVAL (val)) |
3782 | { | |
df407dfe | 3783 | int len = TYPE_LENGTH (ada_check_typedef (value_type (val))); |
c3e5cd34 PH |
3784 | |
3785 | /* The following is taken from the structure-return code in | |
3786 | call_function_by_hand. FIXME: Therefore, some refactoring seems | |
3787 | indicated. */ | |
4a399546 | 3788 | if (gdbarch_inner_than (gdbarch, 1, 2)) |
c3e5cd34 | 3789 | { |
42ae5230 | 3790 | /* Stack grows downward. Align SP and value_address (val) after |
c3e5cd34 PH |
3791 | reserving sufficient space. */ |
3792 | *sp -= len; | |
4a399546 UW |
3793 | if (gdbarch_frame_align_p (gdbarch)) |
3794 | *sp = gdbarch_frame_align (gdbarch, *sp); | |
42ae5230 | 3795 | set_value_address (val, *sp); |
c3e5cd34 PH |
3796 | } |
3797 | else | |
3798 | { | |
3799 | /* Stack grows upward. Align the frame, allocate space, and | |
3800 | then again, re-align the frame. */ | |
4a399546 UW |
3801 | if (gdbarch_frame_align_p (gdbarch)) |
3802 | *sp = gdbarch_frame_align (gdbarch, *sp); | |
42ae5230 | 3803 | set_value_address (val, *sp); |
c3e5cd34 | 3804 | *sp += len; |
4a399546 UW |
3805 | if (gdbarch_frame_align_p (gdbarch)) |
3806 | *sp = gdbarch_frame_align (gdbarch, *sp); | |
c3e5cd34 | 3807 | } |
a84a8a0d | 3808 | VALUE_LVAL (val) = lval_memory; |
14f9c5c9 | 3809 | |
42ae5230 | 3810 | write_memory (value_address (val), value_contents_raw (val), len); |
c3e5cd34 | 3811 | } |
14f9c5c9 AS |
3812 | |
3813 | return val; | |
3814 | } | |
3815 | ||
3816 | /* Return the value ACTUAL, converted to be an appropriate value for a | |
3817 | formal of type FORMAL_TYPE. Use *SP as a stack pointer for | |
3818 | allocating any necessary descriptors (fat pointers), or copies of | |
4c4b4cd2 | 3819 | values not residing in memory, updating it as needed. */ |
14f9c5c9 | 3820 | |
a93c0eb6 JB |
3821 | struct value * |
3822 | ada_convert_actual (struct value *actual, struct type *formal_type0, | |
4a399546 | 3823 | struct gdbarch *gdbarch, CORE_ADDR *sp) |
14f9c5c9 | 3824 | { |
df407dfe | 3825 | struct type *actual_type = ada_check_typedef (value_type (actual)); |
61ee279c | 3826 | struct type *formal_type = ada_check_typedef (formal_type0); |
d2e4a39e AS |
3827 | struct type *formal_target = |
3828 | TYPE_CODE (formal_type) == TYPE_CODE_PTR | |
61ee279c | 3829 | ? ada_check_typedef (TYPE_TARGET_TYPE (formal_type)) : formal_type; |
d2e4a39e AS |
3830 | struct type *actual_target = |
3831 | TYPE_CODE (actual_type) == TYPE_CODE_PTR | |
61ee279c | 3832 | ? ada_check_typedef (TYPE_TARGET_TYPE (actual_type)) : actual_type; |
14f9c5c9 | 3833 | |
4c4b4cd2 | 3834 | if (ada_is_array_descriptor_type (formal_target) |
14f9c5c9 | 3835 | && TYPE_CODE (actual_target) == TYPE_CODE_ARRAY) |
4a399546 | 3836 | return make_array_descriptor (formal_type, actual, gdbarch, sp); |
a84a8a0d JB |
3837 | else if (TYPE_CODE (formal_type) == TYPE_CODE_PTR |
3838 | || TYPE_CODE (formal_type) == TYPE_CODE_REF) | |
14f9c5c9 | 3839 | { |
a84a8a0d | 3840 | struct value *result; |
14f9c5c9 | 3841 | if (TYPE_CODE (formal_target) == TYPE_CODE_ARRAY |
4c4b4cd2 | 3842 | && ada_is_array_descriptor_type (actual_target)) |
a84a8a0d | 3843 | result = desc_data (actual); |
14f9c5c9 | 3844 | else if (TYPE_CODE (actual_type) != TYPE_CODE_PTR) |
4c4b4cd2 PH |
3845 | { |
3846 | if (VALUE_LVAL (actual) != lval_memory) | |
3847 | { | |
3848 | struct value *val; | |
df407dfe | 3849 | actual_type = ada_check_typedef (value_type (actual)); |
4c4b4cd2 | 3850 | val = allocate_value (actual_type); |
990a07ab | 3851 | memcpy ((char *) value_contents_raw (val), |
0fd88904 | 3852 | (char *) value_contents (actual), |
4c4b4cd2 | 3853 | TYPE_LENGTH (actual_type)); |
4a399546 | 3854 | actual = ensure_lval (val, gdbarch, sp); |
4c4b4cd2 | 3855 | } |
a84a8a0d | 3856 | result = value_addr (actual); |
4c4b4cd2 | 3857 | } |
a84a8a0d JB |
3858 | else |
3859 | return actual; | |
3860 | return value_cast_pointers (formal_type, result); | |
14f9c5c9 AS |
3861 | } |
3862 | else if (TYPE_CODE (actual_type) == TYPE_CODE_PTR) | |
3863 | return ada_value_ind (actual); | |
3864 | ||
3865 | return actual; | |
3866 | } | |
3867 | ||
3868 | ||
4c4b4cd2 PH |
3869 | /* Push a descriptor of type TYPE for array value ARR on the stack at |
3870 | *SP, updating *SP to reflect the new descriptor. Return either | |
14f9c5c9 | 3871 | an lvalue representing the new descriptor, or (if TYPE is a pointer- |
4c4b4cd2 PH |
3872 | to-descriptor type rather than a descriptor type), a struct value * |
3873 | representing a pointer to this descriptor. */ | |
14f9c5c9 | 3874 | |
d2e4a39e | 3875 | static struct value * |
4a399546 UW |
3876 | make_array_descriptor (struct type *type, struct value *arr, |
3877 | struct gdbarch *gdbarch, CORE_ADDR *sp) | |
14f9c5c9 | 3878 | { |
d2e4a39e AS |
3879 | struct type *bounds_type = desc_bounds_type (type); |
3880 | struct type *desc_type = desc_base_type (type); | |
3881 | struct value *descriptor = allocate_value (desc_type); | |
3882 | struct value *bounds = allocate_value (bounds_type); | |
14f9c5c9 | 3883 | int i; |
d2e4a39e | 3884 | |
df407dfe | 3885 | for (i = ada_array_arity (ada_check_typedef (value_type (arr))); i > 0; i -= 1) |
14f9c5c9 | 3886 | { |
50810684 UW |
3887 | modify_general_field (value_type (bounds), |
3888 | value_contents_writeable (bounds), | |
1eea4ebd | 3889 | ada_array_bound (arr, i, 0), |
4c4b4cd2 PH |
3890 | desc_bound_bitpos (bounds_type, i, 0), |
3891 | desc_bound_bitsize (bounds_type, i, 0)); | |
50810684 UW |
3892 | modify_general_field (value_type (bounds), |
3893 | value_contents_writeable (bounds), | |
1eea4ebd | 3894 | ada_array_bound (arr, i, 1), |
4c4b4cd2 PH |
3895 | desc_bound_bitpos (bounds_type, i, 1), |
3896 | desc_bound_bitsize (bounds_type, i, 1)); | |
14f9c5c9 | 3897 | } |
d2e4a39e | 3898 | |
4a399546 | 3899 | bounds = ensure_lval (bounds, gdbarch, sp); |
d2e4a39e | 3900 | |
50810684 UW |
3901 | modify_general_field (value_type (descriptor), |
3902 | value_contents_writeable (descriptor), | |
4a399546 | 3903 | value_address (ensure_lval (arr, gdbarch, sp)), |
76a01679 JB |
3904 | fat_pntr_data_bitpos (desc_type), |
3905 | fat_pntr_data_bitsize (desc_type)); | |
4c4b4cd2 | 3906 | |
50810684 UW |
3907 | modify_general_field (value_type (descriptor), |
3908 | value_contents_writeable (descriptor), | |
42ae5230 | 3909 | value_address (bounds), |
4c4b4cd2 PH |
3910 | fat_pntr_bounds_bitpos (desc_type), |
3911 | fat_pntr_bounds_bitsize (desc_type)); | |
14f9c5c9 | 3912 | |
4a399546 | 3913 | descriptor = ensure_lval (descriptor, gdbarch, sp); |
14f9c5c9 AS |
3914 | |
3915 | if (TYPE_CODE (type) == TYPE_CODE_PTR) | |
3916 | return value_addr (descriptor); | |
3917 | else | |
3918 | return descriptor; | |
3919 | } | |
14f9c5c9 | 3920 | \f |
963a6417 PH |
3921 | /* Dummy definitions for an experimental caching module that is not |
3922 | * used in the public sources. */ | |
96d887e8 | 3923 | |
96d887e8 PH |
3924 | static int |
3925 | lookup_cached_symbol (const char *name, domain_enum namespace, | |
2570f2b7 | 3926 | struct symbol **sym, struct block **block) |
96d887e8 PH |
3927 | { |
3928 | return 0; | |
3929 | } | |
3930 | ||
3931 | static void | |
3932 | cache_symbol (const char *name, domain_enum namespace, struct symbol *sym, | |
2570f2b7 | 3933 | struct block *block) |
96d887e8 PH |
3934 | { |
3935 | } | |
4c4b4cd2 PH |
3936 | \f |
3937 | /* Symbol Lookup */ | |
3938 | ||
3939 | /* Return the result of a standard (literal, C-like) lookup of NAME in | |
3940 | given DOMAIN, visible from lexical block BLOCK. */ | |
3941 | ||
3942 | static struct symbol * | |
3943 | standard_lookup (const char *name, const struct block *block, | |
3944 | domain_enum domain) | |
3945 | { | |
3946 | struct symbol *sym; | |
4c4b4cd2 | 3947 | |
2570f2b7 | 3948 | if (lookup_cached_symbol (name, domain, &sym, NULL)) |
4c4b4cd2 | 3949 | return sym; |
2570f2b7 UW |
3950 | sym = lookup_symbol_in_language (name, block, domain, language_c, 0); |
3951 | cache_symbol (name, domain, sym, block_found); | |
4c4b4cd2 PH |
3952 | return sym; |
3953 | } | |
3954 | ||
3955 | ||
3956 | /* Non-zero iff there is at least one non-function/non-enumeral symbol | |
3957 | in the symbol fields of SYMS[0..N-1]. We treat enumerals as functions, | |
3958 | since they contend in overloading in the same way. */ | |
3959 | static int | |
3960 | is_nonfunction (struct ada_symbol_info syms[], int n) | |
3961 | { | |
3962 | int i; | |
3963 | ||
3964 | for (i = 0; i < n; i += 1) | |
3965 | if (TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) != TYPE_CODE_FUNC | |
3966 | && (TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) != TYPE_CODE_ENUM | |
3967 | || SYMBOL_CLASS (syms[i].sym) != LOC_CONST)) | |
14f9c5c9 AS |
3968 | return 1; |
3969 | ||
3970 | return 0; | |
3971 | } | |
3972 | ||
3973 | /* If true (non-zero), then TYPE0 and TYPE1 represent equivalent | |
4c4b4cd2 | 3974 | struct types. Otherwise, they may not. */ |
14f9c5c9 AS |
3975 | |
3976 | static int | |
d2e4a39e | 3977 | equiv_types (struct type *type0, struct type *type1) |
14f9c5c9 | 3978 | { |
d2e4a39e | 3979 | if (type0 == type1) |
14f9c5c9 | 3980 | return 1; |
d2e4a39e | 3981 | if (type0 == NULL || type1 == NULL |
14f9c5c9 AS |
3982 | || TYPE_CODE (type0) != TYPE_CODE (type1)) |
3983 | return 0; | |
d2e4a39e | 3984 | if ((TYPE_CODE (type0) == TYPE_CODE_STRUCT |
14f9c5c9 AS |
3985 | || TYPE_CODE (type0) == TYPE_CODE_ENUM) |
3986 | && ada_type_name (type0) != NULL && ada_type_name (type1) != NULL | |
4c4b4cd2 | 3987 | && strcmp (ada_type_name (type0), ada_type_name (type1)) == 0) |
14f9c5c9 | 3988 | return 1; |
d2e4a39e | 3989 | |
14f9c5c9 AS |
3990 | return 0; |
3991 | } | |
3992 | ||
3993 | /* True iff SYM0 represents the same entity as SYM1, or one that is | |
4c4b4cd2 | 3994 | no more defined than that of SYM1. */ |
14f9c5c9 AS |
3995 | |
3996 | static int | |
d2e4a39e | 3997 | lesseq_defined_than (struct symbol *sym0, struct symbol *sym1) |
14f9c5c9 AS |
3998 | { |
3999 | if (sym0 == sym1) | |
4000 | return 1; | |
176620f1 | 4001 | if (SYMBOL_DOMAIN (sym0) != SYMBOL_DOMAIN (sym1) |
14f9c5c9 AS |
4002 | || SYMBOL_CLASS (sym0) != SYMBOL_CLASS (sym1)) |
4003 | return 0; | |
4004 | ||
d2e4a39e | 4005 | switch (SYMBOL_CLASS (sym0)) |
14f9c5c9 AS |
4006 | { |
4007 | case LOC_UNDEF: | |
4008 | return 1; | |
4009 | case LOC_TYPEDEF: | |
4010 | { | |
4c4b4cd2 PH |
4011 | struct type *type0 = SYMBOL_TYPE (sym0); |
4012 | struct type *type1 = SYMBOL_TYPE (sym1); | |
4013 | char *name0 = SYMBOL_LINKAGE_NAME (sym0); | |
4014 | char *name1 = SYMBOL_LINKAGE_NAME (sym1); | |
4015 | int len0 = strlen (name0); | |
4016 | return | |
4017 | TYPE_CODE (type0) == TYPE_CODE (type1) | |
4018 | && (equiv_types (type0, type1) | |
4019 | || (len0 < strlen (name1) && strncmp (name0, name1, len0) == 0 | |
4020 | && strncmp (name1 + len0, "___XV", 5) == 0)); | |
14f9c5c9 AS |
4021 | } |
4022 | case LOC_CONST: | |
4023 | return SYMBOL_VALUE (sym0) == SYMBOL_VALUE (sym1) | |
4c4b4cd2 | 4024 | && equiv_types (SYMBOL_TYPE (sym0), SYMBOL_TYPE (sym1)); |
d2e4a39e AS |
4025 | default: |
4026 | return 0; | |
14f9c5c9 AS |
4027 | } |
4028 | } | |
4029 | ||
4c4b4cd2 PH |
4030 | /* Append (SYM,BLOCK,SYMTAB) to the end of the array of struct ada_symbol_info |
4031 | records in OBSTACKP. Do nothing if SYM is a duplicate. */ | |
14f9c5c9 AS |
4032 | |
4033 | static void | |
76a01679 JB |
4034 | add_defn_to_vec (struct obstack *obstackp, |
4035 | struct symbol *sym, | |
2570f2b7 | 4036 | struct block *block) |
14f9c5c9 AS |
4037 | { |
4038 | int i; | |
4039 | size_t tmp; | |
4c4b4cd2 | 4040 | struct ada_symbol_info *prevDefns = defns_collected (obstackp, 0); |
14f9c5c9 | 4041 | |
529cad9c PH |
4042 | /* Do not try to complete stub types, as the debugger is probably |
4043 | already scanning all symbols matching a certain name at the | |
4044 | time when this function is called. Trying to replace the stub | |
4045 | type by its associated full type will cause us to restart a scan | |
4046 | which may lead to an infinite recursion. Instead, the client | |
4047 | collecting the matching symbols will end up collecting several | |
4048 | matches, with at least one of them complete. It can then filter | |
4049 | out the stub ones if needed. */ | |
4050 | ||
4c4b4cd2 PH |
4051 | for (i = num_defns_collected (obstackp) - 1; i >= 0; i -= 1) |
4052 | { | |
4053 | if (lesseq_defined_than (sym, prevDefns[i].sym)) | |
4054 | return; | |
4055 | else if (lesseq_defined_than (prevDefns[i].sym, sym)) | |
4056 | { | |
4057 | prevDefns[i].sym = sym; | |
4058 | prevDefns[i].block = block; | |
4c4b4cd2 | 4059 | return; |
76a01679 | 4060 | } |
4c4b4cd2 PH |
4061 | } |
4062 | ||
4063 | { | |
4064 | struct ada_symbol_info info; | |
4065 | ||
4066 | info.sym = sym; | |
4067 | info.block = block; | |
4c4b4cd2 PH |
4068 | obstack_grow (obstackp, &info, sizeof (struct ada_symbol_info)); |
4069 | } | |
4070 | } | |
4071 | ||
4072 | /* Number of ada_symbol_info structures currently collected in | |
4073 | current vector in *OBSTACKP. */ | |
4074 | ||
76a01679 JB |
4075 | static int |
4076 | num_defns_collected (struct obstack *obstackp) | |
4c4b4cd2 PH |
4077 | { |
4078 | return obstack_object_size (obstackp) / sizeof (struct ada_symbol_info); | |
4079 | } | |
4080 | ||
4081 | /* Vector of ada_symbol_info structures currently collected in current | |
4082 | vector in *OBSTACKP. If FINISH, close off the vector and return | |
4083 | its final address. */ | |
4084 | ||
76a01679 | 4085 | static struct ada_symbol_info * |
4c4b4cd2 PH |
4086 | defns_collected (struct obstack *obstackp, int finish) |
4087 | { | |
4088 | if (finish) | |
4089 | return obstack_finish (obstackp); | |
4090 | else | |
4091 | return (struct ada_symbol_info *) obstack_base (obstackp); | |
4092 | } | |
4093 | ||
96d887e8 PH |
4094 | /* Return a minimal symbol matching NAME according to Ada decoding |
4095 | rules. Returns NULL if there is no such minimal symbol. Names | |
4096 | prefixed with "standard__" are handled specially: "standard__" is | |
4097 | first stripped off, and only static and global symbols are searched. */ | |
4c4b4cd2 | 4098 | |
96d887e8 PH |
4099 | struct minimal_symbol * |
4100 | ada_lookup_simple_minsym (const char *name) | |
4c4b4cd2 | 4101 | { |
4c4b4cd2 | 4102 | struct objfile *objfile; |
96d887e8 PH |
4103 | struct minimal_symbol *msymbol; |
4104 | int wild_match; | |
4c4b4cd2 | 4105 | |
96d887e8 | 4106 | if (strncmp (name, "standard__", sizeof ("standard__") - 1) == 0) |
4c4b4cd2 | 4107 | { |
96d887e8 | 4108 | name += sizeof ("standard__") - 1; |
4c4b4cd2 | 4109 | wild_match = 0; |
4c4b4cd2 PH |
4110 | } |
4111 | else | |
96d887e8 | 4112 | wild_match = (strstr (name, "__") == NULL); |
4c4b4cd2 | 4113 | |
96d887e8 PH |
4114 | ALL_MSYMBOLS (objfile, msymbol) |
4115 | { | |
4116 | if (ada_match_name (SYMBOL_LINKAGE_NAME (msymbol), name, wild_match) | |
4117 | && MSYMBOL_TYPE (msymbol) != mst_solib_trampoline) | |
4118 | return msymbol; | |
4119 | } | |
4c4b4cd2 | 4120 | |
96d887e8 PH |
4121 | return NULL; |
4122 | } | |
4c4b4cd2 | 4123 | |
96d887e8 PH |
4124 | /* For all subprograms that statically enclose the subprogram of the |
4125 | selected frame, add symbols matching identifier NAME in DOMAIN | |
4126 | and their blocks to the list of data in OBSTACKP, as for | |
4127 | ada_add_block_symbols (q.v.). If WILD, treat as NAME with a | |
4128 | wildcard prefix. */ | |
4c4b4cd2 | 4129 | |
96d887e8 PH |
4130 | static void |
4131 | add_symbols_from_enclosing_procs (struct obstack *obstackp, | |
76a01679 | 4132 | const char *name, domain_enum namespace, |
96d887e8 PH |
4133 | int wild_match) |
4134 | { | |
96d887e8 | 4135 | } |
14f9c5c9 | 4136 | |
96d887e8 PH |
4137 | /* True if TYPE is definitely an artificial type supplied to a symbol |
4138 | for which no debugging information was given in the symbol file. */ | |
14f9c5c9 | 4139 | |
96d887e8 PH |
4140 | static int |
4141 | is_nondebugging_type (struct type *type) | |
4142 | { | |
4143 | char *name = ada_type_name (type); | |
4144 | return (name != NULL && strcmp (name, "<variable, no debug info>") == 0); | |
4145 | } | |
4c4b4cd2 | 4146 | |
96d887e8 PH |
4147 | /* Remove any non-debugging symbols in SYMS[0 .. NSYMS-1] that definitely |
4148 | duplicate other symbols in the list (The only case I know of where | |
4149 | this happens is when object files containing stabs-in-ecoff are | |
4150 | linked with files containing ordinary ecoff debugging symbols (or no | |
4151 | debugging symbols)). Modifies SYMS to squeeze out deleted entries. | |
4152 | Returns the number of items in the modified list. */ | |
4c4b4cd2 | 4153 | |
96d887e8 PH |
4154 | static int |
4155 | remove_extra_symbols (struct ada_symbol_info *syms, int nsyms) | |
4156 | { | |
4157 | int i, j; | |
4c4b4cd2 | 4158 | |
96d887e8 PH |
4159 | i = 0; |
4160 | while (i < nsyms) | |
4161 | { | |
339c13b6 JB |
4162 | int remove = 0; |
4163 | ||
4164 | /* If two symbols have the same name and one of them is a stub type, | |
4165 | the get rid of the stub. */ | |
4166 | ||
4167 | if (TYPE_STUB (SYMBOL_TYPE (syms[i].sym)) | |
4168 | && SYMBOL_LINKAGE_NAME (syms[i].sym) != NULL) | |
4169 | { | |
4170 | for (j = 0; j < nsyms; j++) | |
4171 | { | |
4172 | if (j != i | |
4173 | && !TYPE_STUB (SYMBOL_TYPE (syms[j].sym)) | |
4174 | && SYMBOL_LINKAGE_NAME (syms[j].sym) != NULL | |
4175 | && strcmp (SYMBOL_LINKAGE_NAME (syms[i].sym), | |
4176 | SYMBOL_LINKAGE_NAME (syms[j].sym)) == 0) | |
4177 | remove = 1; | |
4178 | } | |
4179 | } | |
4180 | ||
4181 | /* Two symbols with the same name, same class and same address | |
4182 | should be identical. */ | |
4183 | ||
4184 | else if (SYMBOL_LINKAGE_NAME (syms[i].sym) != NULL | |
96d887e8 PH |
4185 | && SYMBOL_CLASS (syms[i].sym) == LOC_STATIC |
4186 | && is_nondebugging_type (SYMBOL_TYPE (syms[i].sym))) | |
4187 | { | |
4188 | for (j = 0; j < nsyms; j += 1) | |
4189 | { | |
4190 | if (i != j | |
4191 | && SYMBOL_LINKAGE_NAME (syms[j].sym) != NULL | |
4192 | && strcmp (SYMBOL_LINKAGE_NAME (syms[i].sym), | |
76a01679 | 4193 | SYMBOL_LINKAGE_NAME (syms[j].sym)) == 0 |
96d887e8 PH |
4194 | && SYMBOL_CLASS (syms[i].sym) == SYMBOL_CLASS (syms[j].sym) |
4195 | && SYMBOL_VALUE_ADDRESS (syms[i].sym) | |
4196 | == SYMBOL_VALUE_ADDRESS (syms[j].sym)) | |
339c13b6 | 4197 | remove = 1; |
4c4b4cd2 | 4198 | } |
4c4b4cd2 | 4199 | } |
339c13b6 JB |
4200 | |
4201 | if (remove) | |
4202 | { | |
4203 | for (j = i + 1; j < nsyms; j += 1) | |
4204 | syms[j - 1] = syms[j]; | |
4205 | nsyms -= 1; | |
4206 | } | |
4207 | ||
96d887e8 | 4208 | i += 1; |
14f9c5c9 | 4209 | } |
96d887e8 | 4210 | return nsyms; |
14f9c5c9 AS |
4211 | } |
4212 | ||
96d887e8 PH |
4213 | /* Given a type that corresponds to a renaming entity, use the type name |
4214 | to extract the scope (package name or function name, fully qualified, | |
4215 | and following the GNAT encoding convention) where this renaming has been | |
4216 | defined. The string returned needs to be deallocated after use. */ | |
4c4b4cd2 | 4217 | |
96d887e8 PH |
4218 | static char * |
4219 | xget_renaming_scope (struct type *renaming_type) | |
14f9c5c9 | 4220 | { |
96d887e8 PH |
4221 | /* The renaming types adhere to the following convention: |
4222 | <scope>__<rename>___<XR extension>. | |
4223 | So, to extract the scope, we search for the "___XR" extension, | |
4224 | and then backtrack until we find the first "__". */ | |
76a01679 | 4225 | |
96d887e8 PH |
4226 | const char *name = type_name_no_tag (renaming_type); |
4227 | char *suffix = strstr (name, "___XR"); | |
4228 | char *last; | |
4229 | int scope_len; | |
4230 | char *scope; | |
14f9c5c9 | 4231 | |
96d887e8 PH |
4232 | /* Now, backtrack a bit until we find the first "__". Start looking |
4233 | at suffix - 3, as the <rename> part is at least one character long. */ | |
14f9c5c9 | 4234 | |
96d887e8 PH |
4235 | for (last = suffix - 3; last > name; last--) |
4236 | if (last[0] == '_' && last[1] == '_') | |
4237 | break; | |
76a01679 | 4238 | |
96d887e8 | 4239 | /* Make a copy of scope and return it. */ |
14f9c5c9 | 4240 | |
96d887e8 PH |
4241 | scope_len = last - name; |
4242 | scope = (char *) xmalloc ((scope_len + 1) * sizeof (char)); | |
14f9c5c9 | 4243 | |
96d887e8 PH |
4244 | strncpy (scope, name, scope_len); |
4245 | scope[scope_len] = '\0'; | |
4c4b4cd2 | 4246 | |
96d887e8 | 4247 | return scope; |
4c4b4cd2 PH |
4248 | } |
4249 | ||
96d887e8 | 4250 | /* Return nonzero if NAME corresponds to a package name. */ |
4c4b4cd2 | 4251 | |
96d887e8 PH |
4252 | static int |
4253 | is_package_name (const char *name) | |
4c4b4cd2 | 4254 | { |
96d887e8 PH |
4255 | /* Here, We take advantage of the fact that no symbols are generated |
4256 | for packages, while symbols are generated for each function. | |
4257 | So the condition for NAME represent a package becomes equivalent | |
4258 | to NAME not existing in our list of symbols. There is only one | |
4259 | small complication with library-level functions (see below). */ | |
4c4b4cd2 | 4260 | |
96d887e8 | 4261 | char *fun_name; |
76a01679 | 4262 | |
96d887e8 PH |
4263 | /* If it is a function that has not been defined at library level, |
4264 | then we should be able to look it up in the symbols. */ | |
4265 | if (standard_lookup (name, NULL, VAR_DOMAIN) != NULL) | |
4266 | return 0; | |
14f9c5c9 | 4267 | |
96d887e8 PH |
4268 | /* Library-level function names start with "_ada_". See if function |
4269 | "_ada_" followed by NAME can be found. */ | |
14f9c5c9 | 4270 | |
96d887e8 | 4271 | /* Do a quick check that NAME does not contain "__", since library-level |
e1d5a0d2 | 4272 | functions names cannot contain "__" in them. */ |
96d887e8 PH |
4273 | if (strstr (name, "__") != NULL) |
4274 | return 0; | |
4c4b4cd2 | 4275 | |
b435e160 | 4276 | fun_name = xstrprintf ("_ada_%s", name); |
14f9c5c9 | 4277 | |
96d887e8 PH |
4278 | return (standard_lookup (fun_name, NULL, VAR_DOMAIN) == NULL); |
4279 | } | |
14f9c5c9 | 4280 | |
96d887e8 | 4281 | /* Return nonzero if SYM corresponds to a renaming entity that is |
aeb5907d | 4282 | not visible from FUNCTION_NAME. */ |
14f9c5c9 | 4283 | |
96d887e8 | 4284 | static int |
aeb5907d | 4285 | old_renaming_is_invisible (const struct symbol *sym, char *function_name) |
96d887e8 | 4286 | { |
aeb5907d JB |
4287 | char *scope; |
4288 | ||
4289 | if (SYMBOL_CLASS (sym) != LOC_TYPEDEF) | |
4290 | return 0; | |
4291 | ||
4292 | scope = xget_renaming_scope (SYMBOL_TYPE (sym)); | |
d2e4a39e | 4293 | |
96d887e8 | 4294 | make_cleanup (xfree, scope); |
14f9c5c9 | 4295 | |
96d887e8 PH |
4296 | /* If the rename has been defined in a package, then it is visible. */ |
4297 | if (is_package_name (scope)) | |
aeb5907d | 4298 | return 0; |
14f9c5c9 | 4299 | |
96d887e8 PH |
4300 | /* Check that the rename is in the current function scope by checking |
4301 | that its name starts with SCOPE. */ | |
76a01679 | 4302 | |
96d887e8 PH |
4303 | /* If the function name starts with "_ada_", it means that it is |
4304 | a library-level function. Strip this prefix before doing the | |
4305 | comparison, as the encoding for the renaming does not contain | |
4306 | this prefix. */ | |
4307 | if (strncmp (function_name, "_ada_", 5) == 0) | |
4308 | function_name += 5; | |
f26caa11 | 4309 | |
aeb5907d | 4310 | return (strncmp (function_name, scope, strlen (scope)) != 0); |
f26caa11 PH |
4311 | } |
4312 | ||
aeb5907d JB |
4313 | /* Remove entries from SYMS that corresponds to a renaming entity that |
4314 | is not visible from the function associated with CURRENT_BLOCK or | |
4315 | that is superfluous due to the presence of more specific renaming | |
4316 | information. Places surviving symbols in the initial entries of | |
4317 | SYMS and returns the number of surviving symbols. | |
96d887e8 PH |
4318 | |
4319 | Rationale: | |
aeb5907d JB |
4320 | First, in cases where an object renaming is implemented as a |
4321 | reference variable, GNAT may produce both the actual reference | |
4322 | variable and the renaming encoding. In this case, we discard the | |
4323 | latter. | |
4324 | ||
4325 | Second, GNAT emits a type following a specified encoding for each renaming | |
96d887e8 PH |
4326 | entity. Unfortunately, STABS currently does not support the definition |
4327 | of types that are local to a given lexical block, so all renamings types | |
4328 | are emitted at library level. As a consequence, if an application | |
4329 | contains two renaming entities using the same name, and a user tries to | |
4330 | print the value of one of these entities, the result of the ada symbol | |
4331 | lookup will also contain the wrong renaming type. | |
f26caa11 | 4332 | |
96d887e8 PH |
4333 | This function partially covers for this limitation by attempting to |
4334 | remove from the SYMS list renaming symbols that should be visible | |
4335 | from CURRENT_BLOCK. However, there does not seem be a 100% reliable | |
4336 | method with the current information available. The implementation | |
4337 | below has a couple of limitations (FIXME: brobecker-2003-05-12): | |
4338 | ||
4339 | - When the user tries to print a rename in a function while there | |
4340 | is another rename entity defined in a package: Normally, the | |
4341 | rename in the function has precedence over the rename in the | |
4342 | package, so the latter should be removed from the list. This is | |
4343 | currently not the case. | |
4344 | ||
4345 | - This function will incorrectly remove valid renames if | |
4346 | the CURRENT_BLOCK corresponds to a function which symbol name | |
4347 | has been changed by an "Export" pragma. As a consequence, | |
4348 | the user will be unable to print such rename entities. */ | |
4c4b4cd2 | 4349 | |
14f9c5c9 | 4350 | static int |
aeb5907d JB |
4351 | remove_irrelevant_renamings (struct ada_symbol_info *syms, |
4352 | int nsyms, const struct block *current_block) | |
4c4b4cd2 PH |
4353 | { |
4354 | struct symbol *current_function; | |
4355 | char *current_function_name; | |
4356 | int i; | |
aeb5907d JB |
4357 | int is_new_style_renaming; |
4358 | ||
4359 | /* If there is both a renaming foo___XR... encoded as a variable and | |
4360 | a simple variable foo in the same block, discard the latter. | |
4361 | First, zero out such symbols, then compress. */ | |
4362 | is_new_style_renaming = 0; | |
4363 | for (i = 0; i < nsyms; i += 1) | |
4364 | { | |
4365 | struct symbol *sym = syms[i].sym; | |
4366 | struct block *block = syms[i].block; | |
4367 | const char *name; | |
4368 | const char *suffix; | |
4369 | ||
4370 | if (sym == NULL || SYMBOL_CLASS (sym) == LOC_TYPEDEF) | |
4371 | continue; | |
4372 | name = SYMBOL_LINKAGE_NAME (sym); | |
4373 | suffix = strstr (name, "___XR"); | |
4374 | ||
4375 | if (suffix != NULL) | |
4376 | { | |
4377 | int name_len = suffix - name; | |
4378 | int j; | |
4379 | is_new_style_renaming = 1; | |
4380 | for (j = 0; j < nsyms; j += 1) | |
4381 | if (i != j && syms[j].sym != NULL | |
4382 | && strncmp (name, SYMBOL_LINKAGE_NAME (syms[j].sym), | |
4383 | name_len) == 0 | |
4384 | && block == syms[j].block) | |
4385 | syms[j].sym = NULL; | |
4386 | } | |
4387 | } | |
4388 | if (is_new_style_renaming) | |
4389 | { | |
4390 | int j, k; | |
4391 | ||
4392 | for (j = k = 0; j < nsyms; j += 1) | |
4393 | if (syms[j].sym != NULL) | |
4394 | { | |
4395 | syms[k] = syms[j]; | |
4396 | k += 1; | |
4397 | } | |
4398 | return k; | |
4399 | } | |
4c4b4cd2 PH |
4400 | |
4401 | /* Extract the function name associated to CURRENT_BLOCK. | |
4402 | Abort if unable to do so. */ | |
76a01679 | 4403 | |
4c4b4cd2 PH |
4404 | if (current_block == NULL) |
4405 | return nsyms; | |
76a01679 | 4406 | |
7f0df278 | 4407 | current_function = block_linkage_function (current_block); |
4c4b4cd2 PH |
4408 | if (current_function == NULL) |
4409 | return nsyms; | |
4410 | ||
4411 | current_function_name = SYMBOL_LINKAGE_NAME (current_function); | |
4412 | if (current_function_name == NULL) | |
4413 | return nsyms; | |
4414 | ||
4415 | /* Check each of the symbols, and remove it from the list if it is | |
4416 | a type corresponding to a renaming that is out of the scope of | |
4417 | the current block. */ | |
4418 | ||
4419 | i = 0; | |
4420 | while (i < nsyms) | |
4421 | { | |
aeb5907d JB |
4422 | if (ada_parse_renaming (syms[i].sym, NULL, NULL, NULL) |
4423 | == ADA_OBJECT_RENAMING | |
4424 | && old_renaming_is_invisible (syms[i].sym, current_function_name)) | |
4c4b4cd2 PH |
4425 | { |
4426 | int j; | |
aeb5907d | 4427 | for (j = i + 1; j < nsyms; j += 1) |
76a01679 | 4428 | syms[j - 1] = syms[j]; |
4c4b4cd2 PH |
4429 | nsyms -= 1; |
4430 | } | |
4431 | else | |
4432 | i += 1; | |
4433 | } | |
4434 | ||
4435 | return nsyms; | |
4436 | } | |
4437 | ||
339c13b6 JB |
4438 | /* Add to OBSTACKP all symbols from BLOCK (and its super-blocks) |
4439 | whose name and domain match NAME and DOMAIN respectively. | |
4440 | If no match was found, then extend the search to "enclosing" | |
4441 | routines (in other words, if we're inside a nested function, | |
4442 | search the symbols defined inside the enclosing functions). | |
4443 | ||
4444 | Note: This function assumes that OBSTACKP has 0 (zero) element in it. */ | |
4445 | ||
4446 | static void | |
4447 | ada_add_local_symbols (struct obstack *obstackp, const char *name, | |
4448 | struct block *block, domain_enum domain, | |
4449 | int wild_match) | |
4450 | { | |
4451 | int block_depth = 0; | |
4452 | ||
4453 | while (block != NULL) | |
4454 | { | |
4455 | block_depth += 1; | |
4456 | ada_add_block_symbols (obstackp, block, name, domain, NULL, wild_match); | |
4457 | ||
4458 | /* If we found a non-function match, assume that's the one. */ | |
4459 | if (is_nonfunction (defns_collected (obstackp, 0), | |
4460 | num_defns_collected (obstackp))) | |
4461 | return; | |
4462 | ||
4463 | block = BLOCK_SUPERBLOCK (block); | |
4464 | } | |
4465 | ||
4466 | /* If no luck so far, try to find NAME as a local symbol in some lexically | |
4467 | enclosing subprogram. */ | |
4468 | if (num_defns_collected (obstackp) == 0 && block_depth > 2) | |
4469 | add_symbols_from_enclosing_procs (obstackp, name, domain, wild_match); | |
4470 | } | |
4471 | ||
ccefe4c4 TT |
4472 | /* An object of this type is used as the user_data argument when |
4473 | calling the map_ada_symtabs method. */ | |
4474 | ||
4475 | struct ada_psym_data | |
4476 | { | |
4477 | struct obstack *obstackp; | |
4478 | const char *name; | |
4479 | domain_enum domain; | |
4480 | int global; | |
4481 | int wild_match; | |
4482 | }; | |
4483 | ||
4484 | /* Callback function for map_ada_symtabs. */ | |
4485 | ||
4486 | static void | |
4487 | ada_add_psyms (struct objfile *objfile, struct symtab *s, void *user_data) | |
4488 | { | |
4489 | struct ada_psym_data *data = user_data; | |
4490 | const int block_kind = data->global ? GLOBAL_BLOCK : STATIC_BLOCK; | |
4491 | ada_add_block_symbols (data->obstackp, | |
4492 | BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), block_kind), | |
4493 | data->name, data->domain, objfile, data->wild_match); | |
4494 | } | |
4495 | ||
339c13b6 JB |
4496 | /* Add to OBSTACKP all non-local symbols whose name and domain match |
4497 | NAME and DOMAIN respectively. The search is performed on GLOBAL_BLOCK | |
4498 | symbols if GLOBAL is non-zero, or on STATIC_BLOCK symbols otherwise. */ | |
4499 | ||
4500 | static void | |
4501 | ada_add_non_local_symbols (struct obstack *obstackp, const char *name, | |
4502 | domain_enum domain, int global, | |
ccefe4c4 | 4503 | int is_wild_match) |
339c13b6 JB |
4504 | { |
4505 | struct objfile *objfile; | |
ccefe4c4 | 4506 | struct ada_psym_data data; |
339c13b6 | 4507 | |
ccefe4c4 TT |
4508 | data.obstackp = obstackp; |
4509 | data.name = name; | |
4510 | data.domain = domain; | |
4511 | data.global = global; | |
4512 | data.wild_match = is_wild_match; | |
339c13b6 | 4513 | |
ccefe4c4 TT |
4514 | ALL_OBJFILES (objfile) |
4515 | { | |
4516 | if (objfile->sf) | |
4517 | objfile->sf->qf->map_ada_symtabs (objfile, wild_match, is_name_suffix, | |
4518 | ada_add_psyms, name, | |
4519 | global, domain, | |
4520 | is_wild_match, &data); | |
339c13b6 JB |
4521 | } |
4522 | } | |
4523 | ||
4c4b4cd2 PH |
4524 | /* Find symbols in DOMAIN matching NAME0, in BLOCK0 and enclosing |
4525 | scope and in global scopes, returning the number of matches. Sets | |
6c9353d3 | 4526 | *RESULTS to point to a vector of (SYM,BLOCK) tuples, |
4c4b4cd2 PH |
4527 | indicating the symbols found and the blocks and symbol tables (if |
4528 | any) in which they were found. This vector are transient---good only to | |
4529 | the next call of ada_lookup_symbol_list. Any non-function/non-enumeral | |
4530 | symbol match within the nest of blocks whose innermost member is BLOCK0, | |
4531 | is the one match returned (no other matches in that or | |
4532 | enclosing blocks is returned). If there are any matches in or | |
4533 | surrounding BLOCK0, then these alone are returned. Otherwise, the | |
4534 | search extends to global and file-scope (static) symbol tables. | |
4535 | Names prefixed with "standard__" are handled specially: "standard__" | |
4536 | is first stripped off, and only static and global symbols are searched. */ | |
14f9c5c9 AS |
4537 | |
4538 | int | |
4c4b4cd2 | 4539 | ada_lookup_symbol_list (const char *name0, const struct block *block0, |
76a01679 JB |
4540 | domain_enum namespace, |
4541 | struct ada_symbol_info **results) | |
14f9c5c9 AS |
4542 | { |
4543 | struct symbol *sym; | |
14f9c5c9 | 4544 | struct block *block; |
4c4b4cd2 | 4545 | const char *name; |
4c4b4cd2 | 4546 | int wild_match; |
14f9c5c9 | 4547 | int cacheIfUnique; |
4c4b4cd2 | 4548 | int ndefns; |
14f9c5c9 | 4549 | |
4c4b4cd2 PH |
4550 | obstack_free (&symbol_list_obstack, NULL); |
4551 | obstack_init (&symbol_list_obstack); | |
14f9c5c9 | 4552 | |
14f9c5c9 AS |
4553 | cacheIfUnique = 0; |
4554 | ||
4555 | /* Search specified block and its superiors. */ | |
4556 | ||
4c4b4cd2 PH |
4557 | wild_match = (strstr (name0, "__") == NULL); |
4558 | name = name0; | |
76a01679 JB |
4559 | block = (struct block *) block0; /* FIXME: No cast ought to be |
4560 | needed, but adding const will | |
4561 | have a cascade effect. */ | |
339c13b6 JB |
4562 | |
4563 | /* Special case: If the user specifies a symbol name inside package | |
4564 | Standard, do a non-wild matching of the symbol name without | |
4565 | the "standard__" prefix. This was primarily introduced in order | |
4566 | to allow the user to specifically access the standard exceptions | |
4567 | using, for instance, Standard.Constraint_Error when Constraint_Error | |
4568 | is ambiguous (due to the user defining its own Constraint_Error | |
4569 | entity inside its program). */ | |
4c4b4cd2 PH |
4570 | if (strncmp (name0, "standard__", sizeof ("standard__") - 1) == 0) |
4571 | { | |
4572 | wild_match = 0; | |
4573 | block = NULL; | |
4574 | name = name0 + sizeof ("standard__") - 1; | |
4575 | } | |
4576 | ||
339c13b6 | 4577 | /* Check the non-global symbols. If we have ANY match, then we're done. */ |
14f9c5c9 | 4578 | |
339c13b6 JB |
4579 | ada_add_local_symbols (&symbol_list_obstack, name, block, namespace, |
4580 | wild_match); | |
4c4b4cd2 | 4581 | if (num_defns_collected (&symbol_list_obstack) > 0) |
14f9c5c9 | 4582 | goto done; |
d2e4a39e | 4583 | |
339c13b6 JB |
4584 | /* No non-global symbols found. Check our cache to see if we have |
4585 | already performed this search before. If we have, then return | |
4586 | the same result. */ | |
4587 | ||
14f9c5c9 | 4588 | cacheIfUnique = 1; |
2570f2b7 | 4589 | if (lookup_cached_symbol (name0, namespace, &sym, &block)) |
4c4b4cd2 PH |
4590 | { |
4591 | if (sym != NULL) | |
2570f2b7 | 4592 | add_defn_to_vec (&symbol_list_obstack, sym, block); |
4c4b4cd2 PH |
4593 | goto done; |
4594 | } | |
14f9c5c9 | 4595 | |
339c13b6 JB |
4596 | /* Search symbols from all global blocks. */ |
4597 | ||
4598 | ada_add_non_local_symbols (&symbol_list_obstack, name, namespace, 1, | |
4599 | wild_match); | |
d2e4a39e | 4600 | |
4c4b4cd2 | 4601 | /* Now add symbols from all per-file blocks if we've gotten no hits |
339c13b6 | 4602 | (not strictly correct, but perhaps better than an error). */ |
d2e4a39e | 4603 | |
4c4b4cd2 | 4604 | if (num_defns_collected (&symbol_list_obstack) == 0) |
339c13b6 JB |
4605 | ada_add_non_local_symbols (&symbol_list_obstack, name, namespace, 0, |
4606 | wild_match); | |
14f9c5c9 | 4607 | |
4c4b4cd2 PH |
4608 | done: |
4609 | ndefns = num_defns_collected (&symbol_list_obstack); | |
4610 | *results = defns_collected (&symbol_list_obstack, 1); | |
4611 | ||
4612 | ndefns = remove_extra_symbols (*results, ndefns); | |
4613 | ||
d2e4a39e | 4614 | if (ndefns == 0) |
2570f2b7 | 4615 | cache_symbol (name0, namespace, NULL, NULL); |
14f9c5c9 | 4616 | |
4c4b4cd2 | 4617 | if (ndefns == 1 && cacheIfUnique) |
2570f2b7 | 4618 | cache_symbol (name0, namespace, (*results)[0].sym, (*results)[0].block); |
14f9c5c9 | 4619 | |
aeb5907d | 4620 | ndefns = remove_irrelevant_renamings (*results, ndefns, block0); |
14f9c5c9 | 4621 | |
14f9c5c9 AS |
4622 | return ndefns; |
4623 | } | |
4624 | ||
d2e4a39e | 4625 | struct symbol * |
aeb5907d | 4626 | ada_lookup_encoded_symbol (const char *name, const struct block *block0, |
21b556f4 | 4627 | domain_enum namespace, struct block **block_found) |
14f9c5c9 | 4628 | { |
4c4b4cd2 | 4629 | struct ada_symbol_info *candidates; |
14f9c5c9 AS |
4630 | int n_candidates; |
4631 | ||
aeb5907d | 4632 | n_candidates = ada_lookup_symbol_list (name, block0, namespace, &candidates); |
14f9c5c9 AS |
4633 | |
4634 | if (n_candidates == 0) | |
4635 | return NULL; | |
4c4b4cd2 | 4636 | |
aeb5907d JB |
4637 | if (block_found != NULL) |
4638 | *block_found = candidates[0].block; | |
4c4b4cd2 | 4639 | |
21b556f4 | 4640 | return fixup_symbol_section (candidates[0].sym, NULL); |
aeb5907d JB |
4641 | } |
4642 | ||
4643 | /* Return a symbol in DOMAIN matching NAME, in BLOCK0 and enclosing | |
4644 | scope and in global scopes, or NULL if none. NAME is folded and | |
4645 | encoded first. Otherwise, the result is as for ada_lookup_symbol_list, | |
4646 | choosing the first symbol if there are multiple choices. | |
4647 | *IS_A_FIELD_OF_THIS is set to 0 and *SYMTAB is set to the symbol | |
4648 | table in which the symbol was found (in both cases, these | |
4649 | assignments occur only if the pointers are non-null). */ | |
4650 | struct symbol * | |
4651 | ada_lookup_symbol (const char *name, const struct block *block0, | |
21b556f4 | 4652 | domain_enum namespace, int *is_a_field_of_this) |
aeb5907d JB |
4653 | { |
4654 | if (is_a_field_of_this != NULL) | |
4655 | *is_a_field_of_this = 0; | |
4656 | ||
4657 | return | |
4658 | ada_lookup_encoded_symbol (ada_encode (ada_fold_name (name)), | |
21b556f4 | 4659 | block0, namespace, NULL); |
4c4b4cd2 | 4660 | } |
14f9c5c9 | 4661 | |
4c4b4cd2 PH |
4662 | static struct symbol * |
4663 | ada_lookup_symbol_nonlocal (const char *name, | |
76a01679 | 4664 | const struct block *block, |
21b556f4 | 4665 | const domain_enum domain) |
4c4b4cd2 | 4666 | { |
94af9270 | 4667 | return ada_lookup_symbol (name, block_static_block (block), domain, NULL); |
14f9c5c9 AS |
4668 | } |
4669 | ||
4670 | ||
4c4b4cd2 PH |
4671 | /* True iff STR is a possible encoded suffix of a normal Ada name |
4672 | that is to be ignored for matching purposes. Suffixes of parallel | |
4673 | names (e.g., XVE) are not included here. Currently, the possible suffixes | |
5823c3ef | 4674 | are given by any of the regular expressions: |
4c4b4cd2 | 4675 | |
babe1480 JB |
4676 | [.$][0-9]+ [nested subprogram suffix, on platforms such as GNU/Linux] |
4677 | ___[0-9]+ [nested subprogram suffix, on platforms such as HP/UX] | |
4678 | _E[0-9]+[bs]$ [protected object entry suffixes] | |
61ee279c | 4679 | (X[nb]*)?((\$|__)[0-9](_?[0-9]+)|___(JM|LJM|X([FDBUP].*|R[^T]?)))?$ |
babe1480 JB |
4680 | |
4681 | Also, any leading "__[0-9]+" sequence is skipped before the suffix | |
4682 | match is performed. This sequence is used to differentiate homonyms, | |
4683 | is an optional part of a valid name suffix. */ | |
4c4b4cd2 | 4684 | |
14f9c5c9 | 4685 | static int |
d2e4a39e | 4686 | is_name_suffix (const char *str) |
14f9c5c9 AS |
4687 | { |
4688 | int k; | |
4c4b4cd2 PH |
4689 | const char *matching; |
4690 | const int len = strlen (str); | |
4691 | ||
babe1480 JB |
4692 | /* Skip optional leading __[0-9]+. */ |
4693 | ||
4c4b4cd2 PH |
4694 | if (len > 3 && str[0] == '_' && str[1] == '_' && isdigit (str[2])) |
4695 | { | |
babe1480 JB |
4696 | str += 3; |
4697 | while (isdigit (str[0])) | |
4698 | str += 1; | |
4c4b4cd2 | 4699 | } |
babe1480 JB |
4700 | |
4701 | /* [.$][0-9]+ */ | |
4c4b4cd2 | 4702 | |
babe1480 | 4703 | if (str[0] == '.' || str[0] == '$') |
4c4b4cd2 | 4704 | { |
babe1480 | 4705 | matching = str + 1; |
4c4b4cd2 PH |
4706 | while (isdigit (matching[0])) |
4707 | matching += 1; | |
4708 | if (matching[0] == '\0') | |
4709 | return 1; | |
4710 | } | |
4711 | ||
4712 | /* ___[0-9]+ */ | |
babe1480 | 4713 | |
4c4b4cd2 PH |
4714 | if (len > 3 && str[0] == '_' && str[1] == '_' && str[2] == '_') |
4715 | { | |
4716 | matching = str + 3; | |
4717 | while (isdigit (matching[0])) | |
4718 | matching += 1; | |
4719 | if (matching[0] == '\0') | |
4720 | return 1; | |
4721 | } | |
4722 | ||
529cad9c PH |
4723 | #if 0 |
4724 | /* FIXME: brobecker/2005-09-23: Protected Object subprograms end | |
4725 | with a N at the end. Unfortunately, the compiler uses the same | |
4726 | convention for other internal types it creates. So treating | |
4727 | all entity names that end with an "N" as a name suffix causes | |
4728 | some regressions. For instance, consider the case of an enumerated | |
4729 | type. To support the 'Image attribute, it creates an array whose | |
4730 | name ends with N. | |
4731 | Having a single character like this as a suffix carrying some | |
4732 | information is a bit risky. Perhaps we should change the encoding | |
4733 | to be something like "_N" instead. In the meantime, do not do | |
4734 | the following check. */ | |
4735 | /* Protected Object Subprograms */ | |
4736 | if (len == 1 && str [0] == 'N') | |
4737 | return 1; | |
4738 | #endif | |
4739 | ||
4740 | /* _E[0-9]+[bs]$ */ | |
4741 | if (len > 3 && str[0] == '_' && str [1] == 'E' && isdigit (str[2])) | |
4742 | { | |
4743 | matching = str + 3; | |
4744 | while (isdigit (matching[0])) | |
4745 | matching += 1; | |
4746 | if ((matching[0] == 'b' || matching[0] == 's') | |
4747 | && matching [1] == '\0') | |
4748 | return 1; | |
4749 | } | |
4750 | ||
4c4b4cd2 PH |
4751 | /* ??? We should not modify STR directly, as we are doing below. This |
4752 | is fine in this case, but may become problematic later if we find | |
4753 | that this alternative did not work, and want to try matching | |
4754 | another one from the begining of STR. Since we modified it, we | |
4755 | won't be able to find the begining of the string anymore! */ | |
14f9c5c9 AS |
4756 | if (str[0] == 'X') |
4757 | { | |
4758 | str += 1; | |
d2e4a39e | 4759 | while (str[0] != '_' && str[0] != '\0') |
4c4b4cd2 PH |
4760 | { |
4761 | if (str[0] != 'n' && str[0] != 'b') | |
4762 | return 0; | |
4763 | str += 1; | |
4764 | } | |
14f9c5c9 | 4765 | } |
babe1480 | 4766 | |
14f9c5c9 AS |
4767 | if (str[0] == '\000') |
4768 | return 1; | |
babe1480 | 4769 | |
d2e4a39e | 4770 | if (str[0] == '_') |
14f9c5c9 AS |
4771 | { |
4772 | if (str[1] != '_' || str[2] == '\000') | |
4c4b4cd2 | 4773 | return 0; |
d2e4a39e | 4774 | if (str[2] == '_') |
4c4b4cd2 | 4775 | { |
61ee279c PH |
4776 | if (strcmp (str + 3, "JM") == 0) |
4777 | return 1; | |
4778 | /* FIXME: brobecker/2004-09-30: GNAT will soon stop using | |
4779 | the LJM suffix in favor of the JM one. But we will | |
4780 | still accept LJM as a valid suffix for a reasonable | |
4781 | amount of time, just to allow ourselves to debug programs | |
4782 | compiled using an older version of GNAT. */ | |
4c4b4cd2 PH |
4783 | if (strcmp (str + 3, "LJM") == 0) |
4784 | return 1; | |
4785 | if (str[3] != 'X') | |
4786 | return 0; | |
1265e4aa JB |
4787 | if (str[4] == 'F' || str[4] == 'D' || str[4] == 'B' |
4788 | || str[4] == 'U' || str[4] == 'P') | |
4c4b4cd2 PH |
4789 | return 1; |
4790 | if (str[4] == 'R' && str[5] != 'T') | |
4791 | return 1; | |
4792 | return 0; | |
4793 | } | |
4794 | if (!isdigit (str[2])) | |
4795 | return 0; | |
4796 | for (k = 3; str[k] != '\0'; k += 1) | |
4797 | if (!isdigit (str[k]) && str[k] != '_') | |
4798 | return 0; | |
14f9c5c9 AS |
4799 | return 1; |
4800 | } | |
4c4b4cd2 | 4801 | if (str[0] == '$' && isdigit (str[1])) |
14f9c5c9 | 4802 | { |
4c4b4cd2 PH |
4803 | for (k = 2; str[k] != '\0'; k += 1) |
4804 | if (!isdigit (str[k]) && str[k] != '_') | |
4805 | return 0; | |
14f9c5c9 AS |
4806 | return 1; |
4807 | } | |
4808 | return 0; | |
4809 | } | |
d2e4a39e | 4810 | |
aeb5907d JB |
4811 | /* Return non-zero if the string starting at NAME and ending before |
4812 | NAME_END contains no capital letters. */ | |
529cad9c PH |
4813 | |
4814 | static int | |
4815 | is_valid_name_for_wild_match (const char *name0) | |
4816 | { | |
4817 | const char *decoded_name = ada_decode (name0); | |
4818 | int i; | |
4819 | ||
5823c3ef JB |
4820 | /* If the decoded name starts with an angle bracket, it means that |
4821 | NAME0 does not follow the GNAT encoding format. It should then | |
4822 | not be allowed as a possible wild match. */ | |
4823 | if (decoded_name[0] == '<') | |
4824 | return 0; | |
4825 | ||
529cad9c PH |
4826 | for (i=0; decoded_name[i] != '\0'; i++) |
4827 | if (isalpha (decoded_name[i]) && !islower (decoded_name[i])) | |
4828 | return 0; | |
4829 | ||
4830 | return 1; | |
4831 | } | |
4832 | ||
4c4b4cd2 PH |
4833 | /* True if NAME represents a name of the form A1.A2....An, n>=1 and |
4834 | PATN[0..PATN_LEN-1] = Ak.Ak+1.....An for some k >= 1. Ignores | |
4835 | informational suffixes of NAME (i.e., for which is_name_suffix is | |
4836 | true). */ | |
4837 | ||
14f9c5c9 | 4838 | static int |
4c4b4cd2 | 4839 | wild_match (const char *patn0, int patn_len, const char *name0) |
14f9c5c9 | 4840 | { |
5823c3ef JB |
4841 | char* match; |
4842 | const char* start; | |
4843 | start = name0; | |
4844 | while (1) | |
14f9c5c9 | 4845 | { |
5823c3ef JB |
4846 | match = strstr (start, patn0); |
4847 | if (match == NULL) | |
4848 | return 0; | |
4849 | if ((match == name0 | |
4850 | || match[-1] == '.' | |
4851 | || (match > name0 + 1 && match[-1] == '_' && match[-2] == '_') | |
4852 | || (match == name0 + 5 && strncmp ("_ada_", name0, 5) == 0)) | |
4853 | && is_name_suffix (match + patn_len)) | |
4854 | return (match == name0 || is_valid_name_for_wild_match (name0)); | |
4855 | start = match + 1; | |
96d887e8 | 4856 | } |
96d887e8 PH |
4857 | } |
4858 | ||
96d887e8 PH |
4859 | /* Add symbols from BLOCK matching identifier NAME in DOMAIN to |
4860 | vector *defn_symbols, updating the list of symbols in OBSTACKP | |
4861 | (if necessary). If WILD, treat as NAME with a wildcard prefix. | |
4862 | OBJFILE is the section containing BLOCK. | |
4863 | SYMTAB is recorded with each symbol added. */ | |
4864 | ||
4865 | static void | |
4866 | ada_add_block_symbols (struct obstack *obstackp, | |
76a01679 | 4867 | struct block *block, const char *name, |
96d887e8 | 4868 | domain_enum domain, struct objfile *objfile, |
2570f2b7 | 4869 | int wild) |
96d887e8 PH |
4870 | { |
4871 | struct dict_iterator iter; | |
4872 | int name_len = strlen (name); | |
4873 | /* A matching argument symbol, if any. */ | |
4874 | struct symbol *arg_sym; | |
4875 | /* Set true when we find a matching non-argument symbol. */ | |
4876 | int found_sym; | |
4877 | struct symbol *sym; | |
4878 | ||
4879 | arg_sym = NULL; | |
4880 | found_sym = 0; | |
4881 | if (wild) | |
4882 | { | |
4883 | struct symbol *sym; | |
4884 | ALL_BLOCK_SYMBOLS (block, iter, sym) | |
76a01679 | 4885 | { |
5eeb2539 AR |
4886 | if (symbol_matches_domain (SYMBOL_LANGUAGE (sym), |
4887 | SYMBOL_DOMAIN (sym), domain) | |
1265e4aa | 4888 | && wild_match (name, name_len, SYMBOL_LINKAGE_NAME (sym))) |
76a01679 | 4889 | { |
2a2d4dc3 AS |
4890 | if (SYMBOL_CLASS (sym) == LOC_UNRESOLVED) |
4891 | continue; | |
4892 | else if (SYMBOL_IS_ARGUMENT (sym)) | |
4893 | arg_sym = sym; | |
4894 | else | |
4895 | { | |
76a01679 JB |
4896 | found_sym = 1; |
4897 | add_defn_to_vec (obstackp, | |
4898 | fixup_symbol_section (sym, objfile), | |
2570f2b7 | 4899 | block); |
76a01679 JB |
4900 | } |
4901 | } | |
4902 | } | |
96d887e8 PH |
4903 | } |
4904 | else | |
4905 | { | |
4906 | ALL_BLOCK_SYMBOLS (block, iter, sym) | |
76a01679 | 4907 | { |
5eeb2539 AR |
4908 | if (symbol_matches_domain (SYMBOL_LANGUAGE (sym), |
4909 | SYMBOL_DOMAIN (sym), domain)) | |
76a01679 JB |
4910 | { |
4911 | int cmp = strncmp (name, SYMBOL_LINKAGE_NAME (sym), name_len); | |
4912 | if (cmp == 0 | |
4913 | && is_name_suffix (SYMBOL_LINKAGE_NAME (sym) + name_len)) | |
4914 | { | |
2a2d4dc3 AS |
4915 | if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED) |
4916 | { | |
4917 | if (SYMBOL_IS_ARGUMENT (sym)) | |
4918 | arg_sym = sym; | |
4919 | else | |
4920 | { | |
4921 | found_sym = 1; | |
4922 | add_defn_to_vec (obstackp, | |
4923 | fixup_symbol_section (sym, objfile), | |
4924 | block); | |
4925 | } | |
4926 | } | |
76a01679 JB |
4927 | } |
4928 | } | |
4929 | } | |
96d887e8 PH |
4930 | } |
4931 | ||
4932 | if (!found_sym && arg_sym != NULL) | |
4933 | { | |
76a01679 JB |
4934 | add_defn_to_vec (obstackp, |
4935 | fixup_symbol_section (arg_sym, objfile), | |
2570f2b7 | 4936 | block); |
96d887e8 PH |
4937 | } |
4938 | ||
4939 | if (!wild) | |
4940 | { | |
4941 | arg_sym = NULL; | |
4942 | found_sym = 0; | |
4943 | ||
4944 | ALL_BLOCK_SYMBOLS (block, iter, sym) | |
76a01679 | 4945 | { |
5eeb2539 AR |
4946 | if (symbol_matches_domain (SYMBOL_LANGUAGE (sym), |
4947 | SYMBOL_DOMAIN (sym), domain)) | |
76a01679 JB |
4948 | { |
4949 | int cmp; | |
4950 | ||
4951 | cmp = (int) '_' - (int) SYMBOL_LINKAGE_NAME (sym)[0]; | |
4952 | if (cmp == 0) | |
4953 | { | |
4954 | cmp = strncmp ("_ada_", SYMBOL_LINKAGE_NAME (sym), 5); | |
4955 | if (cmp == 0) | |
4956 | cmp = strncmp (name, SYMBOL_LINKAGE_NAME (sym) + 5, | |
4957 | name_len); | |
4958 | } | |
4959 | ||
4960 | if (cmp == 0 | |
4961 | && is_name_suffix (SYMBOL_LINKAGE_NAME (sym) + name_len + 5)) | |
4962 | { | |
2a2d4dc3 AS |
4963 | if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED) |
4964 | { | |
4965 | if (SYMBOL_IS_ARGUMENT (sym)) | |
4966 | arg_sym = sym; | |
4967 | else | |
4968 | { | |
4969 | found_sym = 1; | |
4970 | add_defn_to_vec (obstackp, | |
4971 | fixup_symbol_section (sym, objfile), | |
4972 | block); | |
4973 | } | |
4974 | } | |
76a01679 JB |
4975 | } |
4976 | } | |
76a01679 | 4977 | } |
96d887e8 PH |
4978 | |
4979 | /* NOTE: This really shouldn't be needed for _ada_ symbols. | |
4980 | They aren't parameters, right? */ | |
4981 | if (!found_sym && arg_sym != NULL) | |
4982 | { | |
4983 | add_defn_to_vec (obstackp, | |
76a01679 | 4984 | fixup_symbol_section (arg_sym, objfile), |
2570f2b7 | 4985 | block); |
96d887e8 PH |
4986 | } |
4987 | } | |
4988 | } | |
4989 | \f | |
41d27058 JB |
4990 | |
4991 | /* Symbol Completion */ | |
4992 | ||
4993 | /* If SYM_NAME is a completion candidate for TEXT, return this symbol | |
4994 | name in a form that's appropriate for the completion. The result | |
4995 | does not need to be deallocated, but is only good until the next call. | |
4996 | ||
4997 | TEXT_LEN is equal to the length of TEXT. | |
4998 | Perform a wild match if WILD_MATCH is set. | |
4999 | ENCODED should be set if TEXT represents the start of a symbol name | |
5000 | in its encoded form. */ | |
5001 | ||
5002 | static const char * | |
5003 | symbol_completion_match (const char *sym_name, | |
5004 | const char *text, int text_len, | |
5005 | int wild_match, int encoded) | |
5006 | { | |
5007 | char *result; | |
5008 | const int verbatim_match = (text[0] == '<'); | |
5009 | int match = 0; | |
5010 | ||
5011 | if (verbatim_match) | |
5012 | { | |
5013 | /* Strip the leading angle bracket. */ | |
5014 | text = text + 1; | |
5015 | text_len--; | |
5016 | } | |
5017 | ||
5018 | /* First, test against the fully qualified name of the symbol. */ | |
5019 | ||
5020 | if (strncmp (sym_name, text, text_len) == 0) | |
5021 | match = 1; | |
5022 | ||
5023 | if (match && !encoded) | |
5024 | { | |
5025 | /* One needed check before declaring a positive match is to verify | |
5026 | that iff we are doing a verbatim match, the decoded version | |
5027 | of the symbol name starts with '<'. Otherwise, this symbol name | |
5028 | is not a suitable completion. */ | |
5029 | const char *sym_name_copy = sym_name; | |
5030 | int has_angle_bracket; | |
5031 | ||
5032 | sym_name = ada_decode (sym_name); | |
5033 | has_angle_bracket = (sym_name[0] == '<'); | |
5034 | match = (has_angle_bracket == verbatim_match); | |
5035 | sym_name = sym_name_copy; | |
5036 | } | |
5037 | ||
5038 | if (match && !verbatim_match) | |
5039 | { | |
5040 | /* When doing non-verbatim match, another check that needs to | |
5041 | be done is to verify that the potentially matching symbol name | |
5042 | does not include capital letters, because the ada-mode would | |
5043 | not be able to understand these symbol names without the | |
5044 | angle bracket notation. */ | |
5045 | const char *tmp; | |
5046 | ||
5047 | for (tmp = sym_name; *tmp != '\0' && !isupper (*tmp); tmp++); | |
5048 | if (*tmp != '\0') | |
5049 | match = 0; | |
5050 | } | |
5051 | ||
5052 | /* Second: Try wild matching... */ | |
5053 | ||
5054 | if (!match && wild_match) | |
5055 | { | |
5056 | /* Since we are doing wild matching, this means that TEXT | |
5057 | may represent an unqualified symbol name. We therefore must | |
5058 | also compare TEXT against the unqualified name of the symbol. */ | |
5059 | sym_name = ada_unqualified_name (ada_decode (sym_name)); | |
5060 | ||
5061 | if (strncmp (sym_name, text, text_len) == 0) | |
5062 | match = 1; | |
5063 | } | |
5064 | ||
5065 | /* Finally: If we found a mach, prepare the result to return. */ | |
5066 | ||
5067 | if (!match) | |
5068 | return NULL; | |
5069 | ||
5070 | if (verbatim_match) | |
5071 | sym_name = add_angle_brackets (sym_name); | |
5072 | ||
5073 | if (!encoded) | |
5074 | sym_name = ada_decode (sym_name); | |
5075 | ||
5076 | return sym_name; | |
5077 | } | |
5078 | ||
2ba95b9b JB |
5079 | DEF_VEC_P (char_ptr); |
5080 | ||
41d27058 JB |
5081 | /* A companion function to ada_make_symbol_completion_list(). |
5082 | Check if SYM_NAME represents a symbol which name would be suitable | |
5083 | to complete TEXT (TEXT_LEN is the length of TEXT), in which case | |
5084 | it is appended at the end of the given string vector SV. | |
5085 | ||
5086 | ORIG_TEXT is the string original string from the user command | |
5087 | that needs to be completed. WORD is the entire command on which | |
5088 | completion should be performed. These two parameters are used to | |
5089 | determine which part of the symbol name should be added to the | |
5090 | completion vector. | |
5091 | if WILD_MATCH is set, then wild matching is performed. | |
5092 | ENCODED should be set if TEXT represents a symbol name in its | |
5093 | encoded formed (in which case the completion should also be | |
5094 | encoded). */ | |
5095 | ||
5096 | static void | |
d6565258 | 5097 | symbol_completion_add (VEC(char_ptr) **sv, |
41d27058 JB |
5098 | const char *sym_name, |
5099 | const char *text, int text_len, | |
5100 | const char *orig_text, const char *word, | |
5101 | int wild_match, int encoded) | |
5102 | { | |
5103 | const char *match = symbol_completion_match (sym_name, text, text_len, | |
5104 | wild_match, encoded); | |
5105 | char *completion; | |
5106 | ||
5107 | if (match == NULL) | |
5108 | return; | |
5109 | ||
5110 | /* We found a match, so add the appropriate completion to the given | |
5111 | string vector. */ | |
5112 | ||
5113 | if (word == orig_text) | |
5114 | { | |
5115 | completion = xmalloc (strlen (match) + 5); | |
5116 | strcpy (completion, match); | |
5117 | } | |
5118 | else if (word > orig_text) | |
5119 | { | |
5120 | /* Return some portion of sym_name. */ | |
5121 | completion = xmalloc (strlen (match) + 5); | |
5122 | strcpy (completion, match + (word - orig_text)); | |
5123 | } | |
5124 | else | |
5125 | { | |
5126 | /* Return some of ORIG_TEXT plus sym_name. */ | |
5127 | completion = xmalloc (strlen (match) + (orig_text - word) + 5); | |
5128 | strncpy (completion, word, orig_text - word); | |
5129 | completion[orig_text - word] = '\0'; | |
5130 | strcat (completion, match); | |
5131 | } | |
5132 | ||
d6565258 | 5133 | VEC_safe_push (char_ptr, *sv, completion); |
41d27058 JB |
5134 | } |
5135 | ||
ccefe4c4 TT |
5136 | /* An object of this type is passed as the user_data argument to the |
5137 | map_partial_symbol_names method. */ | |
5138 | struct add_partial_datum | |
5139 | { | |
5140 | VEC(char_ptr) **completions; | |
5141 | char *text; | |
5142 | int text_len; | |
5143 | char *text0; | |
5144 | char *word; | |
5145 | int wild_match; | |
5146 | int encoded; | |
5147 | }; | |
5148 | ||
5149 | /* A callback for map_partial_symbol_names. */ | |
5150 | static void | |
5151 | ada_add_partial_symbol_completions (const char *name, void *user_data) | |
5152 | { | |
5153 | struct add_partial_datum *data = user_data; | |
5154 | symbol_completion_add (data->completions, name, | |
5155 | data->text, data->text_len, data->text0, data->word, | |
5156 | data->wild_match, data->encoded); | |
5157 | } | |
5158 | ||
41d27058 JB |
5159 | /* Return a list of possible symbol names completing TEXT0. The list |
5160 | is NULL terminated. WORD is the entire command on which completion | |
5161 | is made. */ | |
5162 | ||
5163 | static char ** | |
5164 | ada_make_symbol_completion_list (char *text0, char *word) | |
5165 | { | |
5166 | char *text; | |
5167 | int text_len; | |
5168 | int wild_match; | |
5169 | int encoded; | |
2ba95b9b | 5170 | VEC(char_ptr) *completions = VEC_alloc (char_ptr, 128); |
41d27058 JB |
5171 | struct symbol *sym; |
5172 | struct symtab *s; | |
41d27058 JB |
5173 | struct minimal_symbol *msymbol; |
5174 | struct objfile *objfile; | |
5175 | struct block *b, *surrounding_static_block = 0; | |
5176 | int i; | |
5177 | struct dict_iterator iter; | |
5178 | ||
5179 | if (text0[0] == '<') | |
5180 | { | |
5181 | text = xstrdup (text0); | |
5182 | make_cleanup (xfree, text); | |
5183 | text_len = strlen (text); | |
5184 | wild_match = 0; | |
5185 | encoded = 1; | |
5186 | } | |
5187 | else | |
5188 | { | |
5189 | text = xstrdup (ada_encode (text0)); | |
5190 | make_cleanup (xfree, text); | |
5191 | text_len = strlen (text); | |
5192 | for (i = 0; i < text_len; i++) | |
5193 | text[i] = tolower (text[i]); | |
5194 | ||
5195 | encoded = (strstr (text0, "__") != NULL); | |
5196 | /* If the name contains a ".", then the user is entering a fully | |
5197 | qualified entity name, and the match must not be done in wild | |
5198 | mode. Similarly, if the user wants to complete what looks like | |
5199 | an encoded name, the match must not be done in wild mode. */ | |
5200 | wild_match = (strchr (text0, '.') == NULL && !encoded); | |
5201 | } | |
5202 | ||
5203 | /* First, look at the partial symtab symbols. */ | |
41d27058 | 5204 | { |
ccefe4c4 TT |
5205 | struct add_partial_datum data; |
5206 | ||
5207 | data.completions = &completions; | |
5208 | data.text = text; | |
5209 | data.text_len = text_len; | |
5210 | data.text0 = text0; | |
5211 | data.word = word; | |
5212 | data.wild_match = wild_match; | |
5213 | data.encoded = encoded; | |
5214 | map_partial_symbol_names (ada_add_partial_symbol_completions, &data); | |
41d27058 JB |
5215 | } |
5216 | ||
5217 | /* At this point scan through the misc symbol vectors and add each | |
5218 | symbol you find to the list. Eventually we want to ignore | |
5219 | anything that isn't a text symbol (everything else will be | |
5220 | handled by the psymtab code above). */ | |
5221 | ||
5222 | ALL_MSYMBOLS (objfile, msymbol) | |
5223 | { | |
5224 | QUIT; | |
d6565258 | 5225 | symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (msymbol), |
41d27058 JB |
5226 | text, text_len, text0, word, wild_match, encoded); |
5227 | } | |
5228 | ||
5229 | /* Search upwards from currently selected frame (so that we can | |
5230 | complete on local vars. */ | |
5231 | ||
5232 | for (b = get_selected_block (0); b != NULL; b = BLOCK_SUPERBLOCK (b)) | |
5233 | { | |
5234 | if (!BLOCK_SUPERBLOCK (b)) | |
5235 | surrounding_static_block = b; /* For elmin of dups */ | |
5236 | ||
5237 | ALL_BLOCK_SYMBOLS (b, iter, sym) | |
5238 | { | |
d6565258 | 5239 | symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym), |
41d27058 JB |
5240 | text, text_len, text0, word, |
5241 | wild_match, encoded); | |
5242 | } | |
5243 | } | |
5244 | ||
5245 | /* Go through the symtabs and check the externs and statics for | |
5246 | symbols which match. */ | |
5247 | ||
5248 | ALL_SYMTABS (objfile, s) | |
5249 | { | |
5250 | QUIT; | |
5251 | b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), GLOBAL_BLOCK); | |
5252 | ALL_BLOCK_SYMBOLS (b, iter, sym) | |
5253 | { | |
d6565258 | 5254 | symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym), |
41d27058 JB |
5255 | text, text_len, text0, word, |
5256 | wild_match, encoded); | |
5257 | } | |
5258 | } | |
5259 | ||
5260 | ALL_SYMTABS (objfile, s) | |
5261 | { | |
5262 | QUIT; | |
5263 | b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), STATIC_BLOCK); | |
5264 | /* Don't do this block twice. */ | |
5265 | if (b == surrounding_static_block) | |
5266 | continue; | |
5267 | ALL_BLOCK_SYMBOLS (b, iter, sym) | |
5268 | { | |
d6565258 | 5269 | symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym), |
41d27058 JB |
5270 | text, text_len, text0, word, |
5271 | wild_match, encoded); | |
5272 | } | |
5273 | } | |
5274 | ||
5275 | /* Append the closing NULL entry. */ | |
2ba95b9b | 5276 | VEC_safe_push (char_ptr, completions, NULL); |
41d27058 | 5277 | |
2ba95b9b JB |
5278 | /* Make a copy of the COMPLETIONS VEC before we free it, and then |
5279 | return the copy. It's unfortunate that we have to make a copy | |
5280 | of an array that we're about to destroy, but there is nothing much | |
5281 | we can do about it. Fortunately, it's typically not a very large | |
5282 | array. */ | |
5283 | { | |
5284 | const size_t completions_size = | |
5285 | VEC_length (char_ptr, completions) * sizeof (char *); | |
5286 | char **result = malloc (completions_size); | |
5287 | ||
5288 | memcpy (result, VEC_address (char_ptr, completions), completions_size); | |
5289 | ||
5290 | VEC_free (char_ptr, completions); | |
5291 | return result; | |
5292 | } | |
41d27058 JB |
5293 | } |
5294 | ||
963a6417 | 5295 | /* Field Access */ |
96d887e8 | 5296 | |
73fb9985 JB |
5297 | /* Return non-zero if TYPE is a pointer to the GNAT dispatch table used |
5298 | for tagged types. */ | |
5299 | ||
5300 | static int | |
5301 | ada_is_dispatch_table_ptr_type (struct type *type) | |
5302 | { | |
5303 | char *name; | |
5304 | ||
5305 | if (TYPE_CODE (type) != TYPE_CODE_PTR) | |
5306 | return 0; | |
5307 | ||
5308 | name = TYPE_NAME (TYPE_TARGET_TYPE (type)); | |
5309 | if (name == NULL) | |
5310 | return 0; | |
5311 | ||
5312 | return (strcmp (name, "ada__tags__dispatch_table") == 0); | |
5313 | } | |
5314 | ||
963a6417 PH |
5315 | /* True if field number FIELD_NUM in struct or union type TYPE is supposed |
5316 | to be invisible to users. */ | |
96d887e8 | 5317 | |
963a6417 PH |
5318 | int |
5319 | ada_is_ignored_field (struct type *type, int field_num) | |
96d887e8 | 5320 | { |
963a6417 PH |
5321 | if (field_num < 0 || field_num > TYPE_NFIELDS (type)) |
5322 | return 1; | |
73fb9985 JB |
5323 | |
5324 | /* Check the name of that field. */ | |
5325 | { | |
5326 | const char *name = TYPE_FIELD_NAME (type, field_num); | |
5327 | ||
5328 | /* Anonymous field names should not be printed. | |
5329 | brobecker/2007-02-20: I don't think this can actually happen | |
5330 | but we don't want to print the value of annonymous fields anyway. */ | |
5331 | if (name == NULL) | |
5332 | return 1; | |
5333 | ||
5334 | /* A field named "_parent" is internally generated by GNAT for | |
5335 | tagged types, and should not be printed either. */ | |
5336 | if (name[0] == '_' && strncmp (name, "_parent", 7) != 0) | |
5337 | return 1; | |
5338 | } | |
5339 | ||
5340 | /* If this is the dispatch table of a tagged type, then ignore. */ | |
5341 | if (ada_is_tagged_type (type, 1) | |
5342 | && ada_is_dispatch_table_ptr_type (TYPE_FIELD_TYPE (type, field_num))) | |
5343 | return 1; | |
5344 | ||
5345 | /* Not a special field, so it should not be ignored. */ | |
5346 | return 0; | |
963a6417 | 5347 | } |
96d887e8 | 5348 | |
963a6417 PH |
5349 | /* True iff TYPE has a tag field. If REFOK, then TYPE may also be a |
5350 | pointer or reference type whose ultimate target has a tag field. */ | |
96d887e8 | 5351 | |
963a6417 PH |
5352 | int |
5353 | ada_is_tagged_type (struct type *type, int refok) | |
5354 | { | |
5355 | return (ada_lookup_struct_elt_type (type, "_tag", refok, 1, NULL) != NULL); | |
5356 | } | |
96d887e8 | 5357 | |
963a6417 | 5358 | /* True iff TYPE represents the type of X'Tag */ |
96d887e8 | 5359 | |
963a6417 PH |
5360 | int |
5361 | ada_is_tag_type (struct type *type) | |
5362 | { | |
5363 | if (type == NULL || TYPE_CODE (type) != TYPE_CODE_PTR) | |
5364 | return 0; | |
5365 | else | |
96d887e8 | 5366 | { |
963a6417 PH |
5367 | const char *name = ada_type_name (TYPE_TARGET_TYPE (type)); |
5368 | return (name != NULL | |
5369 | && strcmp (name, "ada__tags__dispatch_table") == 0); | |
96d887e8 | 5370 | } |
96d887e8 PH |
5371 | } |
5372 | ||
963a6417 | 5373 | /* The type of the tag on VAL. */ |
76a01679 | 5374 | |
963a6417 PH |
5375 | struct type * |
5376 | ada_tag_type (struct value *val) | |
96d887e8 | 5377 | { |
df407dfe | 5378 | return ada_lookup_struct_elt_type (value_type (val), "_tag", 1, 0, NULL); |
963a6417 | 5379 | } |
96d887e8 | 5380 | |
963a6417 | 5381 | /* The value of the tag on VAL. */ |
96d887e8 | 5382 | |
963a6417 PH |
5383 | struct value * |
5384 | ada_value_tag (struct value *val) | |
5385 | { | |
03ee6b2e | 5386 | return ada_value_struct_elt (val, "_tag", 0); |
96d887e8 PH |
5387 | } |
5388 | ||
963a6417 PH |
5389 | /* The value of the tag on the object of type TYPE whose contents are |
5390 | saved at VALADDR, if it is non-null, or is at memory address | |
5391 | ADDRESS. */ | |
96d887e8 | 5392 | |
963a6417 | 5393 | static struct value * |
10a2c479 | 5394 | value_tag_from_contents_and_address (struct type *type, |
fc1a4b47 | 5395 | const gdb_byte *valaddr, |
963a6417 | 5396 | CORE_ADDR address) |
96d887e8 | 5397 | { |
963a6417 PH |
5398 | int tag_byte_offset, dummy1, dummy2; |
5399 | struct type *tag_type; | |
5400 | if (find_struct_field ("_tag", type, 0, &tag_type, &tag_byte_offset, | |
52ce6436 | 5401 | NULL, NULL, NULL)) |
96d887e8 | 5402 | { |
fc1a4b47 | 5403 | const gdb_byte *valaddr1 = ((valaddr == NULL) |
10a2c479 AC |
5404 | ? NULL |
5405 | : valaddr + tag_byte_offset); | |
963a6417 | 5406 | CORE_ADDR address1 = (address == 0) ? 0 : address + tag_byte_offset; |
96d887e8 | 5407 | |
963a6417 | 5408 | return value_from_contents_and_address (tag_type, valaddr1, address1); |
96d887e8 | 5409 | } |
963a6417 PH |
5410 | return NULL; |
5411 | } | |
96d887e8 | 5412 | |
963a6417 PH |
5413 | static struct type * |
5414 | type_from_tag (struct value *tag) | |
5415 | { | |
5416 | const char *type_name = ada_tag_name (tag); | |
5417 | if (type_name != NULL) | |
5418 | return ada_find_any_type (ada_encode (type_name)); | |
5419 | return NULL; | |
5420 | } | |
96d887e8 | 5421 | |
963a6417 PH |
5422 | struct tag_args |
5423 | { | |
5424 | struct value *tag; | |
5425 | char *name; | |
5426 | }; | |
4c4b4cd2 | 5427 | |
529cad9c PH |
5428 | |
5429 | static int ada_tag_name_1 (void *); | |
5430 | static int ada_tag_name_2 (struct tag_args *); | |
5431 | ||
4c4b4cd2 PH |
5432 | /* Wrapper function used by ada_tag_name. Given a struct tag_args* |
5433 | value ARGS, sets ARGS->name to the tag name of ARGS->tag. | |
5434 | The value stored in ARGS->name is valid until the next call to | |
5435 | ada_tag_name_1. */ | |
5436 | ||
5437 | static int | |
5438 | ada_tag_name_1 (void *args0) | |
5439 | { | |
5440 | struct tag_args *args = (struct tag_args *) args0; | |
5441 | static char name[1024]; | |
76a01679 | 5442 | char *p; |
4c4b4cd2 PH |
5443 | struct value *val; |
5444 | args->name = NULL; | |
03ee6b2e | 5445 | val = ada_value_struct_elt (args->tag, "tsd", 1); |
529cad9c PH |
5446 | if (val == NULL) |
5447 | return ada_tag_name_2 (args); | |
03ee6b2e | 5448 | val = ada_value_struct_elt (val, "expanded_name", 1); |
529cad9c PH |
5449 | if (val == NULL) |
5450 | return 0; | |
5451 | read_memory_string (value_as_address (val), name, sizeof (name) - 1); | |
5452 | for (p = name; *p != '\0'; p += 1) | |
5453 | if (isalpha (*p)) | |
5454 | *p = tolower (*p); | |
5455 | args->name = name; | |
5456 | return 0; | |
5457 | } | |
5458 | ||
5459 | /* Utility function for ada_tag_name_1 that tries the second | |
5460 | representation for the dispatch table (in which there is no | |
5461 | explicit 'tsd' field in the referent of the tag pointer, and instead | |
5462 | the tsd pointer is stored just before the dispatch table. */ | |
5463 | ||
5464 | static int | |
5465 | ada_tag_name_2 (struct tag_args *args) | |
5466 | { | |
5467 | struct type *info_type; | |
5468 | static char name[1024]; | |
5469 | char *p; | |
5470 | struct value *val, *valp; | |
5471 | ||
5472 | args->name = NULL; | |
5473 | info_type = ada_find_any_type ("ada__tags__type_specific_data"); | |
5474 | if (info_type == NULL) | |
5475 | return 0; | |
5476 | info_type = lookup_pointer_type (lookup_pointer_type (info_type)); | |
5477 | valp = value_cast (info_type, args->tag); | |
5478 | if (valp == NULL) | |
5479 | return 0; | |
2497b498 | 5480 | val = value_ind (value_ptradd (valp, -1)); |
4c4b4cd2 PH |
5481 | if (val == NULL) |
5482 | return 0; | |
03ee6b2e | 5483 | val = ada_value_struct_elt (val, "expanded_name", 1); |
4c4b4cd2 PH |
5484 | if (val == NULL) |
5485 | return 0; | |
5486 | read_memory_string (value_as_address (val), name, sizeof (name) - 1); | |
5487 | for (p = name; *p != '\0'; p += 1) | |
5488 | if (isalpha (*p)) | |
5489 | *p = tolower (*p); | |
5490 | args->name = name; | |
5491 | return 0; | |
5492 | } | |
5493 | ||
5494 | /* The type name of the dynamic type denoted by the 'tag value TAG, as | |
5495 | * a C string. */ | |
5496 | ||
5497 | const char * | |
5498 | ada_tag_name (struct value *tag) | |
5499 | { | |
5500 | struct tag_args args; | |
df407dfe | 5501 | if (!ada_is_tag_type (value_type (tag))) |
4c4b4cd2 | 5502 | return NULL; |
76a01679 | 5503 | args.tag = tag; |
4c4b4cd2 PH |
5504 | args.name = NULL; |
5505 | catch_errors (ada_tag_name_1, &args, NULL, RETURN_MASK_ALL); | |
5506 | return args.name; | |
5507 | } | |
5508 | ||
5509 | /* The parent type of TYPE, or NULL if none. */ | |
14f9c5c9 | 5510 | |
d2e4a39e | 5511 | struct type * |
ebf56fd3 | 5512 | ada_parent_type (struct type *type) |
14f9c5c9 AS |
5513 | { |
5514 | int i; | |
5515 | ||
61ee279c | 5516 | type = ada_check_typedef (type); |
14f9c5c9 AS |
5517 | |
5518 | if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT) | |
5519 | return NULL; | |
5520 | ||
5521 | for (i = 0; i < TYPE_NFIELDS (type); i += 1) | |
5522 | if (ada_is_parent_field (type, i)) | |
0c1f74cf JB |
5523 | { |
5524 | struct type *parent_type = TYPE_FIELD_TYPE (type, i); | |
5525 | ||
5526 | /* If the _parent field is a pointer, then dereference it. */ | |
5527 | if (TYPE_CODE (parent_type) == TYPE_CODE_PTR) | |
5528 | parent_type = TYPE_TARGET_TYPE (parent_type); | |
5529 | /* If there is a parallel XVS type, get the actual base type. */ | |
5530 | parent_type = ada_get_base_type (parent_type); | |
5531 | ||
5532 | return ada_check_typedef (parent_type); | |
5533 | } | |
14f9c5c9 AS |
5534 | |
5535 | return NULL; | |
5536 | } | |
5537 | ||
4c4b4cd2 PH |
5538 | /* True iff field number FIELD_NUM of structure type TYPE contains the |
5539 | parent-type (inherited) fields of a derived type. Assumes TYPE is | |
5540 | a structure type with at least FIELD_NUM+1 fields. */ | |
14f9c5c9 AS |
5541 | |
5542 | int | |
ebf56fd3 | 5543 | ada_is_parent_field (struct type *type, int field_num) |
14f9c5c9 | 5544 | { |
61ee279c | 5545 | const char *name = TYPE_FIELD_NAME (ada_check_typedef (type), field_num); |
4c4b4cd2 PH |
5546 | return (name != NULL |
5547 | && (strncmp (name, "PARENT", 6) == 0 | |
5548 | || strncmp (name, "_parent", 7) == 0)); | |
14f9c5c9 AS |
5549 | } |
5550 | ||
4c4b4cd2 | 5551 | /* True iff field number FIELD_NUM of structure type TYPE is a |
14f9c5c9 | 5552 | transparent wrapper field (which should be silently traversed when doing |
4c4b4cd2 | 5553 | field selection and flattened when printing). Assumes TYPE is a |
14f9c5c9 | 5554 | structure type with at least FIELD_NUM+1 fields. Such fields are always |
4c4b4cd2 | 5555 | structures. */ |
14f9c5c9 AS |
5556 | |
5557 | int | |
ebf56fd3 | 5558 | ada_is_wrapper_field (struct type *type, int field_num) |
14f9c5c9 | 5559 | { |
d2e4a39e AS |
5560 | const char *name = TYPE_FIELD_NAME (type, field_num); |
5561 | return (name != NULL | |
4c4b4cd2 PH |
5562 | && (strncmp (name, "PARENT", 6) == 0 |
5563 | || strcmp (name, "REP") == 0 | |
5564 | || strncmp (name, "_parent", 7) == 0 | |
5565 | || name[0] == 'S' || name[0] == 'R' || name[0] == 'O')); | |
14f9c5c9 AS |
5566 | } |
5567 | ||
4c4b4cd2 PH |
5568 | /* True iff field number FIELD_NUM of structure or union type TYPE |
5569 | is a variant wrapper. Assumes TYPE is a structure type with at least | |
5570 | FIELD_NUM+1 fields. */ | |
14f9c5c9 AS |
5571 | |
5572 | int | |
ebf56fd3 | 5573 | ada_is_variant_part (struct type *type, int field_num) |
14f9c5c9 | 5574 | { |
d2e4a39e | 5575 | struct type *field_type = TYPE_FIELD_TYPE (type, field_num); |
14f9c5c9 | 5576 | return (TYPE_CODE (field_type) == TYPE_CODE_UNION |
4c4b4cd2 | 5577 | || (is_dynamic_field (type, field_num) |
c3e5cd34 PH |
5578 | && (TYPE_CODE (TYPE_TARGET_TYPE (field_type)) |
5579 | == TYPE_CODE_UNION))); | |
14f9c5c9 AS |
5580 | } |
5581 | ||
5582 | /* Assuming that VAR_TYPE is a variant wrapper (type of the variant part) | |
4c4b4cd2 | 5583 | whose discriminants are contained in the record type OUTER_TYPE, |
7c964f07 UW |
5584 | returns the type of the controlling discriminant for the variant. |
5585 | May return NULL if the type could not be found. */ | |
14f9c5c9 | 5586 | |
d2e4a39e | 5587 | struct type * |
ebf56fd3 | 5588 | ada_variant_discrim_type (struct type *var_type, struct type *outer_type) |
14f9c5c9 | 5589 | { |
d2e4a39e | 5590 | char *name = ada_variant_discrim_name (var_type); |
7c964f07 | 5591 | return ada_lookup_struct_elt_type (outer_type, name, 1, 1, NULL); |
14f9c5c9 AS |
5592 | } |
5593 | ||
4c4b4cd2 | 5594 | /* Assuming that TYPE is the type of a variant wrapper, and FIELD_NUM is a |
14f9c5c9 | 5595 | valid field number within it, returns 1 iff field FIELD_NUM of TYPE |
4c4b4cd2 | 5596 | represents a 'when others' clause; otherwise 0. */ |
14f9c5c9 AS |
5597 | |
5598 | int | |
ebf56fd3 | 5599 | ada_is_others_clause (struct type *type, int field_num) |
14f9c5c9 | 5600 | { |
d2e4a39e | 5601 | const char *name = TYPE_FIELD_NAME (type, field_num); |
14f9c5c9 AS |
5602 | return (name != NULL && name[0] == 'O'); |
5603 | } | |
5604 | ||
5605 | /* Assuming that TYPE0 is the type of the variant part of a record, | |
4c4b4cd2 PH |
5606 | returns the name of the discriminant controlling the variant. |
5607 | The value is valid until the next call to ada_variant_discrim_name. */ | |
14f9c5c9 | 5608 | |
d2e4a39e | 5609 | char * |
ebf56fd3 | 5610 | ada_variant_discrim_name (struct type *type0) |
14f9c5c9 | 5611 | { |
d2e4a39e | 5612 | static char *result = NULL; |
14f9c5c9 | 5613 | static size_t result_len = 0; |
d2e4a39e AS |
5614 | struct type *type; |
5615 | const char *name; | |
5616 | const char *discrim_end; | |
5617 | const char *discrim_start; | |
14f9c5c9 AS |
5618 | |
5619 | if (TYPE_CODE (type0) == TYPE_CODE_PTR) | |
5620 | type = TYPE_TARGET_TYPE (type0); | |
5621 | else | |
5622 | type = type0; | |
5623 | ||
5624 | name = ada_type_name (type); | |
5625 | ||
5626 | if (name == NULL || name[0] == '\000') | |
5627 | return ""; | |
5628 | ||
5629 | for (discrim_end = name + strlen (name) - 6; discrim_end != name; | |
5630 | discrim_end -= 1) | |
5631 | { | |
4c4b4cd2 PH |
5632 | if (strncmp (discrim_end, "___XVN", 6) == 0) |
5633 | break; | |
14f9c5c9 AS |
5634 | } |
5635 | if (discrim_end == name) | |
5636 | return ""; | |
5637 | ||
d2e4a39e | 5638 | for (discrim_start = discrim_end; discrim_start != name + 3; |
14f9c5c9 AS |
5639 | discrim_start -= 1) |
5640 | { | |
d2e4a39e | 5641 | if (discrim_start == name + 1) |
4c4b4cd2 | 5642 | return ""; |
76a01679 | 5643 | if ((discrim_start > name + 3 |
4c4b4cd2 PH |
5644 | && strncmp (discrim_start - 3, "___", 3) == 0) |
5645 | || discrim_start[-1] == '.') | |
5646 | break; | |
14f9c5c9 AS |
5647 | } |
5648 | ||
5649 | GROW_VECT (result, result_len, discrim_end - discrim_start + 1); | |
5650 | strncpy (result, discrim_start, discrim_end - discrim_start); | |
d2e4a39e | 5651 | result[discrim_end - discrim_start] = '\0'; |
14f9c5c9 AS |
5652 | return result; |
5653 | } | |
5654 | ||
4c4b4cd2 PH |
5655 | /* Scan STR for a subtype-encoded number, beginning at position K. |
5656 | Put the position of the character just past the number scanned in | |
5657 | *NEW_K, if NEW_K!=NULL. Put the scanned number in *R, if R!=NULL. | |
5658 | Return 1 if there was a valid number at the given position, and 0 | |
5659 | otherwise. A "subtype-encoded" number consists of the absolute value | |
5660 | in decimal, followed by the letter 'm' to indicate a negative number. | |
5661 | Assumes 0m does not occur. */ | |
14f9c5c9 AS |
5662 | |
5663 | int | |
d2e4a39e | 5664 | ada_scan_number (const char str[], int k, LONGEST * R, int *new_k) |
14f9c5c9 AS |
5665 | { |
5666 | ULONGEST RU; | |
5667 | ||
d2e4a39e | 5668 | if (!isdigit (str[k])) |
14f9c5c9 AS |
5669 | return 0; |
5670 | ||
4c4b4cd2 | 5671 | /* Do it the hard way so as not to make any assumption about |
14f9c5c9 | 5672 | the relationship of unsigned long (%lu scan format code) and |
4c4b4cd2 | 5673 | LONGEST. */ |
14f9c5c9 AS |
5674 | RU = 0; |
5675 | while (isdigit (str[k])) | |
5676 | { | |
d2e4a39e | 5677 | RU = RU * 10 + (str[k] - '0'); |
14f9c5c9 AS |
5678 | k += 1; |
5679 | } | |
5680 | ||
d2e4a39e | 5681 | if (str[k] == 'm') |
14f9c5c9 AS |
5682 | { |
5683 | if (R != NULL) | |
4c4b4cd2 | 5684 | *R = (-(LONGEST) (RU - 1)) - 1; |
14f9c5c9 AS |
5685 | k += 1; |
5686 | } | |
5687 | else if (R != NULL) | |
5688 | *R = (LONGEST) RU; | |
5689 | ||
4c4b4cd2 | 5690 | /* NOTE on the above: Technically, C does not say what the results of |
14f9c5c9 AS |
5691 | - (LONGEST) RU or (LONGEST) -RU are for RU == largest positive |
5692 | number representable as a LONGEST (although either would probably work | |
5693 | in most implementations). When RU>0, the locution in the then branch | |
4c4b4cd2 | 5694 | above is always equivalent to the negative of RU. */ |
14f9c5c9 AS |
5695 | |
5696 | if (new_k != NULL) | |
5697 | *new_k = k; | |
5698 | return 1; | |
5699 | } | |
5700 | ||
4c4b4cd2 PH |
5701 | /* Assuming that TYPE is a variant part wrapper type (a VARIANTS field), |
5702 | and FIELD_NUM is a valid field number within it, returns 1 iff VAL is | |
5703 | in the range encoded by field FIELD_NUM of TYPE; otherwise 0. */ | |
14f9c5c9 | 5704 | |
d2e4a39e | 5705 | int |
ebf56fd3 | 5706 | ada_in_variant (LONGEST val, struct type *type, int field_num) |
14f9c5c9 | 5707 | { |
d2e4a39e | 5708 | const char *name = TYPE_FIELD_NAME (type, field_num); |
14f9c5c9 AS |
5709 | int p; |
5710 | ||
5711 | p = 0; | |
5712 | while (1) | |
5713 | { | |
d2e4a39e | 5714 | switch (name[p]) |
4c4b4cd2 PH |
5715 | { |
5716 | case '\0': | |
5717 | return 0; | |
5718 | case 'S': | |
5719 | { | |
5720 | LONGEST W; | |
5721 | if (!ada_scan_number (name, p + 1, &W, &p)) | |
5722 | return 0; | |
5723 | if (val == W) | |
5724 | return 1; | |
5725 | break; | |
5726 | } | |
5727 | case 'R': | |
5728 | { | |
5729 | LONGEST L, U; | |
5730 | if (!ada_scan_number (name, p + 1, &L, &p) | |
5731 | || name[p] != 'T' || !ada_scan_number (name, p + 1, &U, &p)) | |
5732 | return 0; | |
5733 | if (val >= L && val <= U) | |
5734 | return 1; | |
5735 | break; | |
5736 | } | |
5737 | case 'O': | |
5738 | return 1; | |
5739 | default: | |
5740 | return 0; | |
5741 | } | |
5742 | } | |
5743 | } | |
5744 | ||
5745 | /* FIXME: Lots of redundancy below. Try to consolidate. */ | |
5746 | ||
5747 | /* Given a value ARG1 (offset by OFFSET bytes) of a struct or union type | |
5748 | ARG_TYPE, extract and return the value of one of its (non-static) | |
5749 | fields. FIELDNO says which field. Differs from value_primitive_field | |
5750 | only in that it can handle packed values of arbitrary type. */ | |
14f9c5c9 | 5751 | |
4c4b4cd2 | 5752 | static struct value * |
d2e4a39e | 5753 | ada_value_primitive_field (struct value *arg1, int offset, int fieldno, |
4c4b4cd2 | 5754 | struct type *arg_type) |
14f9c5c9 | 5755 | { |
14f9c5c9 AS |
5756 | struct type *type; |
5757 | ||
61ee279c | 5758 | arg_type = ada_check_typedef (arg_type); |
14f9c5c9 AS |
5759 | type = TYPE_FIELD_TYPE (arg_type, fieldno); |
5760 | ||
4c4b4cd2 | 5761 | /* Handle packed fields. */ |
14f9c5c9 AS |
5762 | |
5763 | if (TYPE_FIELD_BITSIZE (arg_type, fieldno) != 0) | |
5764 | { | |
5765 | int bit_pos = TYPE_FIELD_BITPOS (arg_type, fieldno); | |
5766 | int bit_size = TYPE_FIELD_BITSIZE (arg_type, fieldno); | |
d2e4a39e | 5767 | |
0fd88904 | 5768 | return ada_value_primitive_packed_val (arg1, value_contents (arg1), |
4c4b4cd2 PH |
5769 | offset + bit_pos / 8, |
5770 | bit_pos % 8, bit_size, type); | |
14f9c5c9 AS |
5771 | } |
5772 | else | |
5773 | return value_primitive_field (arg1, offset, fieldno, arg_type); | |
5774 | } | |
5775 | ||
52ce6436 PH |
5776 | /* Find field with name NAME in object of type TYPE. If found, |
5777 | set the following for each argument that is non-null: | |
5778 | - *FIELD_TYPE_P to the field's type; | |
5779 | - *BYTE_OFFSET_P to OFFSET + the byte offset of the field within | |
5780 | an object of that type; | |
5781 | - *BIT_OFFSET_P to the bit offset modulo byte size of the field; | |
5782 | - *BIT_SIZE_P to its size in bits if the field is packed, and | |
5783 | 0 otherwise; | |
5784 | If INDEX_P is non-null, increment *INDEX_P by the number of source-visible | |
5785 | fields up to but not including the desired field, or by the total | |
5786 | number of fields if not found. A NULL value of NAME never | |
5787 | matches; the function just counts visible fields in this case. | |
5788 | ||
5789 | Returns 1 if found, 0 otherwise. */ | |
5790 | ||
4c4b4cd2 | 5791 | static int |
76a01679 JB |
5792 | find_struct_field (char *name, struct type *type, int offset, |
5793 | struct type **field_type_p, | |
52ce6436 PH |
5794 | int *byte_offset_p, int *bit_offset_p, int *bit_size_p, |
5795 | int *index_p) | |
4c4b4cd2 PH |
5796 | { |
5797 | int i; | |
5798 | ||
61ee279c | 5799 | type = ada_check_typedef (type); |
76a01679 | 5800 | |
52ce6436 PH |
5801 | if (field_type_p != NULL) |
5802 | *field_type_p = NULL; | |
5803 | if (byte_offset_p != NULL) | |
d5d6fca5 | 5804 | *byte_offset_p = 0; |
52ce6436 PH |
5805 | if (bit_offset_p != NULL) |
5806 | *bit_offset_p = 0; | |
5807 | if (bit_size_p != NULL) | |
5808 | *bit_size_p = 0; | |
5809 | ||
5810 | for (i = 0; i < TYPE_NFIELDS (type); i += 1) | |
4c4b4cd2 PH |
5811 | { |
5812 | int bit_pos = TYPE_FIELD_BITPOS (type, i); | |
5813 | int fld_offset = offset + bit_pos / 8; | |
5814 | char *t_field_name = TYPE_FIELD_NAME (type, i); | |
76a01679 | 5815 | |
4c4b4cd2 PH |
5816 | if (t_field_name == NULL) |
5817 | continue; | |
5818 | ||
52ce6436 | 5819 | else if (name != NULL && field_name_match (t_field_name, name)) |
76a01679 JB |
5820 | { |
5821 | int bit_size = TYPE_FIELD_BITSIZE (type, i); | |
52ce6436 PH |
5822 | if (field_type_p != NULL) |
5823 | *field_type_p = TYPE_FIELD_TYPE (type, i); | |
5824 | if (byte_offset_p != NULL) | |
5825 | *byte_offset_p = fld_offset; | |
5826 | if (bit_offset_p != NULL) | |
5827 | *bit_offset_p = bit_pos % 8; | |
5828 | if (bit_size_p != NULL) | |
5829 | *bit_size_p = bit_size; | |
76a01679 JB |
5830 | return 1; |
5831 | } | |
4c4b4cd2 PH |
5832 | else if (ada_is_wrapper_field (type, i)) |
5833 | { | |
52ce6436 PH |
5834 | if (find_struct_field (name, TYPE_FIELD_TYPE (type, i), fld_offset, |
5835 | field_type_p, byte_offset_p, bit_offset_p, | |
5836 | bit_size_p, index_p)) | |
76a01679 JB |
5837 | return 1; |
5838 | } | |
4c4b4cd2 PH |
5839 | else if (ada_is_variant_part (type, i)) |
5840 | { | |
52ce6436 PH |
5841 | /* PNH: Wait. Do we ever execute this section, or is ARG always of |
5842 | fixed type?? */ | |
4c4b4cd2 | 5843 | int j; |
52ce6436 PH |
5844 | struct type *field_type |
5845 | = ada_check_typedef (TYPE_FIELD_TYPE (type, i)); | |
4c4b4cd2 | 5846 | |
52ce6436 | 5847 | for (j = 0; j < TYPE_NFIELDS (field_type); j += 1) |
4c4b4cd2 | 5848 | { |
76a01679 JB |
5849 | if (find_struct_field (name, TYPE_FIELD_TYPE (field_type, j), |
5850 | fld_offset | |
5851 | + TYPE_FIELD_BITPOS (field_type, j) / 8, | |
5852 | field_type_p, byte_offset_p, | |
52ce6436 | 5853 | bit_offset_p, bit_size_p, index_p)) |
76a01679 | 5854 | return 1; |
4c4b4cd2 PH |
5855 | } |
5856 | } | |
52ce6436 PH |
5857 | else if (index_p != NULL) |
5858 | *index_p += 1; | |
4c4b4cd2 PH |
5859 | } |
5860 | return 0; | |
5861 | } | |
5862 | ||
52ce6436 | 5863 | /* Number of user-visible fields in record type TYPE. */ |
4c4b4cd2 | 5864 | |
52ce6436 PH |
5865 | static int |
5866 | num_visible_fields (struct type *type) | |
5867 | { | |
5868 | int n; | |
5869 | n = 0; | |
5870 | find_struct_field (NULL, type, 0, NULL, NULL, NULL, NULL, &n); | |
5871 | return n; | |
5872 | } | |
14f9c5c9 | 5873 | |
4c4b4cd2 | 5874 | /* Look for a field NAME in ARG. Adjust the address of ARG by OFFSET bytes, |
14f9c5c9 AS |
5875 | and search in it assuming it has (class) type TYPE. |
5876 | If found, return value, else return NULL. | |
5877 | ||
4c4b4cd2 | 5878 | Searches recursively through wrapper fields (e.g., '_parent'). */ |
14f9c5c9 | 5879 | |
4c4b4cd2 | 5880 | static struct value * |
d2e4a39e | 5881 | ada_search_struct_field (char *name, struct value *arg, int offset, |
4c4b4cd2 | 5882 | struct type *type) |
14f9c5c9 AS |
5883 | { |
5884 | int i; | |
61ee279c | 5885 | type = ada_check_typedef (type); |
14f9c5c9 | 5886 | |
52ce6436 | 5887 | for (i = 0; i < TYPE_NFIELDS (type); i += 1) |
14f9c5c9 AS |
5888 | { |
5889 | char *t_field_name = TYPE_FIELD_NAME (type, i); | |
5890 | ||
5891 | if (t_field_name == NULL) | |
4c4b4cd2 | 5892 | continue; |
14f9c5c9 AS |
5893 | |
5894 | else if (field_name_match (t_field_name, name)) | |
4c4b4cd2 | 5895 | return ada_value_primitive_field (arg, offset, i, type); |
14f9c5c9 AS |
5896 | |
5897 | else if (ada_is_wrapper_field (type, i)) | |
4c4b4cd2 | 5898 | { |
06d5cf63 JB |
5899 | struct value *v = /* Do not let indent join lines here. */ |
5900 | ada_search_struct_field (name, arg, | |
5901 | offset + TYPE_FIELD_BITPOS (type, i) / 8, | |
5902 | TYPE_FIELD_TYPE (type, i)); | |
4c4b4cd2 PH |
5903 | if (v != NULL) |
5904 | return v; | |
5905 | } | |
14f9c5c9 AS |
5906 | |
5907 | else if (ada_is_variant_part (type, i)) | |
4c4b4cd2 | 5908 | { |
52ce6436 | 5909 | /* PNH: Do we ever get here? See find_struct_field. */ |
4c4b4cd2 | 5910 | int j; |
61ee279c | 5911 | struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type, i)); |
4c4b4cd2 PH |
5912 | int var_offset = offset + TYPE_FIELD_BITPOS (type, i) / 8; |
5913 | ||
52ce6436 | 5914 | for (j = 0; j < TYPE_NFIELDS (field_type); j += 1) |
4c4b4cd2 | 5915 | { |
06d5cf63 JB |
5916 | struct value *v = ada_search_struct_field /* Force line break. */ |
5917 | (name, arg, | |
5918 | var_offset + TYPE_FIELD_BITPOS (field_type, j) / 8, | |
5919 | TYPE_FIELD_TYPE (field_type, j)); | |
4c4b4cd2 PH |
5920 | if (v != NULL) |
5921 | return v; | |
5922 | } | |
5923 | } | |
14f9c5c9 AS |
5924 | } |
5925 | return NULL; | |
5926 | } | |
d2e4a39e | 5927 | |
52ce6436 PH |
5928 | static struct value *ada_index_struct_field_1 (int *, struct value *, |
5929 | int, struct type *); | |
5930 | ||
5931 | ||
5932 | /* Return field #INDEX in ARG, where the index is that returned by | |
5933 | * find_struct_field through its INDEX_P argument. Adjust the address | |
5934 | * of ARG by OFFSET bytes, and search in it assuming it has (class) type TYPE. | |
5935 | * If found, return value, else return NULL. */ | |
5936 | ||
5937 | static struct value * | |
5938 | ada_index_struct_field (int index, struct value *arg, int offset, | |
5939 | struct type *type) | |
5940 | { | |
5941 | return ada_index_struct_field_1 (&index, arg, offset, type); | |
5942 | } | |
5943 | ||
5944 | ||
5945 | /* Auxiliary function for ada_index_struct_field. Like | |
5946 | * ada_index_struct_field, but takes index from *INDEX_P and modifies | |
5947 | * *INDEX_P. */ | |
5948 | ||
5949 | static struct value * | |
5950 | ada_index_struct_field_1 (int *index_p, struct value *arg, int offset, | |
5951 | struct type *type) | |
5952 | { | |
5953 | int i; | |
5954 | type = ada_check_typedef (type); | |
5955 | ||
5956 | for (i = 0; i < TYPE_NFIELDS (type); i += 1) | |
5957 | { | |
5958 | if (TYPE_FIELD_NAME (type, i) == NULL) | |
5959 | continue; | |
5960 | else if (ada_is_wrapper_field (type, i)) | |
5961 | { | |
5962 | struct value *v = /* Do not let indent join lines here. */ | |
5963 | ada_index_struct_field_1 (index_p, arg, | |
5964 | offset + TYPE_FIELD_BITPOS (type, i) / 8, | |
5965 | TYPE_FIELD_TYPE (type, i)); | |
5966 | if (v != NULL) | |
5967 | return v; | |
5968 | } | |
5969 | ||
5970 | else if (ada_is_variant_part (type, i)) | |
5971 | { | |
5972 | /* PNH: Do we ever get here? See ada_search_struct_field, | |
5973 | find_struct_field. */ | |
5974 | error (_("Cannot assign this kind of variant record")); | |
5975 | } | |
5976 | else if (*index_p == 0) | |
5977 | return ada_value_primitive_field (arg, offset, i, type); | |
5978 | else | |
5979 | *index_p -= 1; | |
5980 | } | |
5981 | return NULL; | |
5982 | } | |
5983 | ||
4c4b4cd2 PH |
5984 | /* Given ARG, a value of type (pointer or reference to a)* |
5985 | structure/union, extract the component named NAME from the ultimate | |
5986 | target structure/union and return it as a value with its | |
f5938064 | 5987 | appropriate type. |
14f9c5c9 | 5988 | |
4c4b4cd2 PH |
5989 | The routine searches for NAME among all members of the structure itself |
5990 | and (recursively) among all members of any wrapper members | |
14f9c5c9 AS |
5991 | (e.g., '_parent'). |
5992 | ||
03ee6b2e PH |
5993 | If NO_ERR, then simply return NULL in case of error, rather than |
5994 | calling error. */ | |
14f9c5c9 | 5995 | |
d2e4a39e | 5996 | struct value * |
03ee6b2e | 5997 | ada_value_struct_elt (struct value *arg, char *name, int no_err) |
14f9c5c9 | 5998 | { |
4c4b4cd2 | 5999 | struct type *t, *t1; |
d2e4a39e | 6000 | struct value *v; |
14f9c5c9 | 6001 | |
4c4b4cd2 | 6002 | v = NULL; |
df407dfe | 6003 | t1 = t = ada_check_typedef (value_type (arg)); |
4c4b4cd2 PH |
6004 | if (TYPE_CODE (t) == TYPE_CODE_REF) |
6005 | { | |
6006 | t1 = TYPE_TARGET_TYPE (t); | |
6007 | if (t1 == NULL) | |
03ee6b2e | 6008 | goto BadValue; |
61ee279c | 6009 | t1 = ada_check_typedef (t1); |
4c4b4cd2 | 6010 | if (TYPE_CODE (t1) == TYPE_CODE_PTR) |
76a01679 | 6011 | { |
994b9211 | 6012 | arg = coerce_ref (arg); |
76a01679 JB |
6013 | t = t1; |
6014 | } | |
4c4b4cd2 | 6015 | } |
14f9c5c9 | 6016 | |
4c4b4cd2 PH |
6017 | while (TYPE_CODE (t) == TYPE_CODE_PTR) |
6018 | { | |
6019 | t1 = TYPE_TARGET_TYPE (t); | |
6020 | if (t1 == NULL) | |
03ee6b2e | 6021 | goto BadValue; |
61ee279c | 6022 | t1 = ada_check_typedef (t1); |
4c4b4cd2 | 6023 | if (TYPE_CODE (t1) == TYPE_CODE_PTR) |
76a01679 JB |
6024 | { |
6025 | arg = value_ind (arg); | |
6026 | t = t1; | |
6027 | } | |
4c4b4cd2 | 6028 | else |
76a01679 | 6029 | break; |
4c4b4cd2 | 6030 | } |
14f9c5c9 | 6031 | |
4c4b4cd2 | 6032 | if (TYPE_CODE (t1) != TYPE_CODE_STRUCT && TYPE_CODE (t1) != TYPE_CODE_UNION) |
03ee6b2e | 6033 | goto BadValue; |
14f9c5c9 | 6034 | |
4c4b4cd2 PH |
6035 | if (t1 == t) |
6036 | v = ada_search_struct_field (name, arg, 0, t); | |
6037 | else | |
6038 | { | |
6039 | int bit_offset, bit_size, byte_offset; | |
6040 | struct type *field_type; | |
6041 | CORE_ADDR address; | |
6042 | ||
76a01679 JB |
6043 | if (TYPE_CODE (t) == TYPE_CODE_PTR) |
6044 | address = value_as_address (arg); | |
4c4b4cd2 | 6045 | else |
0fd88904 | 6046 | address = unpack_pointer (t, value_contents (arg)); |
14f9c5c9 | 6047 | |
1ed6ede0 | 6048 | t1 = ada_to_fixed_type (ada_get_base_type (t1), NULL, address, NULL, 1); |
76a01679 JB |
6049 | if (find_struct_field (name, t1, 0, |
6050 | &field_type, &byte_offset, &bit_offset, | |
52ce6436 | 6051 | &bit_size, NULL)) |
76a01679 JB |
6052 | { |
6053 | if (bit_size != 0) | |
6054 | { | |
714e53ab PH |
6055 | if (TYPE_CODE (t) == TYPE_CODE_REF) |
6056 | arg = ada_coerce_ref (arg); | |
6057 | else | |
6058 | arg = ada_value_ind (arg); | |
76a01679 JB |
6059 | v = ada_value_primitive_packed_val (arg, NULL, byte_offset, |
6060 | bit_offset, bit_size, | |
6061 | field_type); | |
6062 | } | |
6063 | else | |
f5938064 | 6064 | v = value_at_lazy (field_type, address + byte_offset); |
76a01679 JB |
6065 | } |
6066 | } | |
6067 | ||
03ee6b2e PH |
6068 | if (v != NULL || no_err) |
6069 | return v; | |
6070 | else | |
323e0a4a | 6071 | error (_("There is no member named %s."), name); |
14f9c5c9 | 6072 | |
03ee6b2e PH |
6073 | BadValue: |
6074 | if (no_err) | |
6075 | return NULL; | |
6076 | else | |
6077 | error (_("Attempt to extract a component of a value that is not a record.")); | |
14f9c5c9 AS |
6078 | } |
6079 | ||
6080 | /* Given a type TYPE, look up the type of the component of type named NAME. | |
4c4b4cd2 PH |
6081 | If DISPP is non-null, add its byte displacement from the beginning of a |
6082 | structure (pointed to by a value) of type TYPE to *DISPP (does not | |
14f9c5c9 AS |
6083 | work for packed fields). |
6084 | ||
6085 | Matches any field whose name has NAME as a prefix, possibly | |
4c4b4cd2 | 6086 | followed by "___". |
14f9c5c9 | 6087 | |
4c4b4cd2 PH |
6088 | TYPE can be either a struct or union. If REFOK, TYPE may also |
6089 | be a (pointer or reference)+ to a struct or union, and the | |
6090 | ultimate target type will be searched. | |
14f9c5c9 AS |
6091 | |
6092 | Looks recursively into variant clauses and parent types. | |
6093 | ||
4c4b4cd2 PH |
6094 | If NOERR is nonzero, return NULL if NAME is not suitably defined or |
6095 | TYPE is not a type of the right kind. */ | |
14f9c5c9 | 6096 | |
4c4b4cd2 | 6097 | static struct type * |
76a01679 JB |
6098 | ada_lookup_struct_elt_type (struct type *type, char *name, int refok, |
6099 | int noerr, int *dispp) | |
14f9c5c9 AS |
6100 | { |
6101 | int i; | |
6102 | ||
6103 | if (name == NULL) | |
6104 | goto BadName; | |
6105 | ||
76a01679 | 6106 | if (refok && type != NULL) |
4c4b4cd2 PH |
6107 | while (1) |
6108 | { | |
61ee279c | 6109 | type = ada_check_typedef (type); |
76a01679 JB |
6110 | if (TYPE_CODE (type) != TYPE_CODE_PTR |
6111 | && TYPE_CODE (type) != TYPE_CODE_REF) | |
6112 | break; | |
6113 | type = TYPE_TARGET_TYPE (type); | |
4c4b4cd2 | 6114 | } |
14f9c5c9 | 6115 | |
76a01679 | 6116 | if (type == NULL |
1265e4aa JB |
6117 | || (TYPE_CODE (type) != TYPE_CODE_STRUCT |
6118 | && TYPE_CODE (type) != TYPE_CODE_UNION)) | |
14f9c5c9 | 6119 | { |
4c4b4cd2 | 6120 | if (noerr) |
76a01679 | 6121 | return NULL; |
4c4b4cd2 | 6122 | else |
76a01679 JB |
6123 | { |
6124 | target_terminal_ours (); | |
6125 | gdb_flush (gdb_stdout); | |
323e0a4a AC |
6126 | if (type == NULL) |
6127 | error (_("Type (null) is not a structure or union type")); | |
6128 | else | |
6129 | { | |
6130 | /* XXX: type_sprint */ | |
6131 | fprintf_unfiltered (gdb_stderr, _("Type ")); | |
6132 | type_print (type, "", gdb_stderr, -1); | |
6133 | error (_(" is not a structure or union type")); | |
6134 | } | |
76a01679 | 6135 | } |
14f9c5c9 AS |
6136 | } |
6137 | ||
6138 | type = to_static_fixed_type (type); | |
6139 | ||
6140 | for (i = 0; i < TYPE_NFIELDS (type); i += 1) | |
6141 | { | |
6142 | char *t_field_name = TYPE_FIELD_NAME (type, i); | |
6143 | struct type *t; | |
6144 | int disp; | |
d2e4a39e | 6145 | |
14f9c5c9 | 6146 | if (t_field_name == NULL) |
4c4b4cd2 | 6147 | continue; |
14f9c5c9 AS |
6148 | |
6149 | else if (field_name_match (t_field_name, name)) | |
4c4b4cd2 PH |
6150 | { |
6151 | if (dispp != NULL) | |
6152 | *dispp += TYPE_FIELD_BITPOS (type, i) / 8; | |
61ee279c | 6153 | return ada_check_typedef (TYPE_FIELD_TYPE (type, i)); |
4c4b4cd2 | 6154 | } |
14f9c5c9 AS |
6155 | |
6156 | else if (ada_is_wrapper_field (type, i)) | |
4c4b4cd2 PH |
6157 | { |
6158 | disp = 0; | |
6159 | t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (type, i), name, | |
6160 | 0, 1, &disp); | |
6161 | if (t != NULL) | |
6162 | { | |
6163 | if (dispp != NULL) | |
6164 | *dispp += disp + TYPE_FIELD_BITPOS (type, i) / 8; | |
6165 | return t; | |
6166 | } | |
6167 | } | |
14f9c5c9 AS |
6168 | |
6169 | else if (ada_is_variant_part (type, i)) | |
4c4b4cd2 PH |
6170 | { |
6171 | int j; | |
61ee279c | 6172 | struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type, i)); |
4c4b4cd2 PH |
6173 | |
6174 | for (j = TYPE_NFIELDS (field_type) - 1; j >= 0; j -= 1) | |
6175 | { | |
b1f33ddd JB |
6176 | /* FIXME pnh 2008/01/26: We check for a field that is |
6177 | NOT wrapped in a struct, since the compiler sometimes | |
6178 | generates these for unchecked variant types. Revisit | |
6179 | if the compiler changes this practice. */ | |
6180 | char *v_field_name = TYPE_FIELD_NAME (field_type, j); | |
4c4b4cd2 | 6181 | disp = 0; |
b1f33ddd JB |
6182 | if (v_field_name != NULL |
6183 | && field_name_match (v_field_name, name)) | |
6184 | t = ada_check_typedef (TYPE_FIELD_TYPE (field_type, j)); | |
6185 | else | |
6186 | t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (field_type, j), | |
6187 | name, 0, 1, &disp); | |
6188 | ||
4c4b4cd2 PH |
6189 | if (t != NULL) |
6190 | { | |
6191 | if (dispp != NULL) | |
6192 | *dispp += disp + TYPE_FIELD_BITPOS (type, i) / 8; | |
6193 | return t; | |
6194 | } | |
6195 | } | |
6196 | } | |
14f9c5c9 AS |
6197 | |
6198 | } | |
6199 | ||
6200 | BadName: | |
d2e4a39e | 6201 | if (!noerr) |
14f9c5c9 AS |
6202 | { |
6203 | target_terminal_ours (); | |
6204 | gdb_flush (gdb_stdout); | |
323e0a4a AC |
6205 | if (name == NULL) |
6206 | { | |
6207 | /* XXX: type_sprint */ | |
6208 | fprintf_unfiltered (gdb_stderr, _("Type ")); | |
6209 | type_print (type, "", gdb_stderr, -1); | |
6210 | error (_(" has no component named <null>")); | |
6211 | } | |
6212 | else | |
6213 | { | |
6214 | /* XXX: type_sprint */ | |
6215 | fprintf_unfiltered (gdb_stderr, _("Type ")); | |
6216 | type_print (type, "", gdb_stderr, -1); | |
6217 | error (_(" has no component named %s"), name); | |
6218 | } | |
14f9c5c9 AS |
6219 | } |
6220 | ||
6221 | return NULL; | |
6222 | } | |
6223 | ||
b1f33ddd JB |
6224 | /* Assuming that VAR_TYPE is the type of a variant part of a record (a union), |
6225 | within a value of type OUTER_TYPE, return true iff VAR_TYPE | |
6226 | represents an unchecked union (that is, the variant part of a | |
6227 | record that is named in an Unchecked_Union pragma). */ | |
6228 | ||
6229 | static int | |
6230 | is_unchecked_variant (struct type *var_type, struct type *outer_type) | |
6231 | { | |
6232 | char *discrim_name = ada_variant_discrim_name (var_type); | |
6233 | return (ada_lookup_struct_elt_type (outer_type, discrim_name, 0, 1, NULL) | |
6234 | == NULL); | |
6235 | } | |
6236 | ||
6237 | ||
14f9c5c9 AS |
6238 | /* Assuming that VAR_TYPE is the type of a variant part of a record (a union), |
6239 | within a value of type OUTER_TYPE that is stored in GDB at | |
4c4b4cd2 PH |
6240 | OUTER_VALADDR, determine which variant clause (field number in VAR_TYPE, |
6241 | numbering from 0) is applicable. Returns -1 if none are. */ | |
14f9c5c9 | 6242 | |
d2e4a39e | 6243 | int |
ebf56fd3 | 6244 | ada_which_variant_applies (struct type *var_type, struct type *outer_type, |
fc1a4b47 | 6245 | const gdb_byte *outer_valaddr) |
14f9c5c9 AS |
6246 | { |
6247 | int others_clause; | |
6248 | int i; | |
d2e4a39e | 6249 | char *discrim_name = ada_variant_discrim_name (var_type); |
0c281816 JB |
6250 | struct value *outer; |
6251 | struct value *discrim; | |
14f9c5c9 AS |
6252 | LONGEST discrim_val; |
6253 | ||
0c281816 JB |
6254 | outer = value_from_contents_and_address (outer_type, outer_valaddr, 0); |
6255 | discrim = ada_value_struct_elt (outer, discrim_name, 1); | |
6256 | if (discrim == NULL) | |
14f9c5c9 | 6257 | return -1; |
0c281816 | 6258 | discrim_val = value_as_long (discrim); |
14f9c5c9 AS |
6259 | |
6260 | others_clause = -1; | |
6261 | for (i = 0; i < TYPE_NFIELDS (var_type); i += 1) | |
6262 | { | |
6263 | if (ada_is_others_clause (var_type, i)) | |
4c4b4cd2 | 6264 | others_clause = i; |
14f9c5c9 | 6265 | else if (ada_in_variant (discrim_val, var_type, i)) |
4c4b4cd2 | 6266 | return i; |
14f9c5c9 AS |
6267 | } |
6268 | ||
6269 | return others_clause; | |
6270 | } | |
d2e4a39e | 6271 | \f |
14f9c5c9 AS |
6272 | |
6273 | ||
4c4b4cd2 | 6274 | /* Dynamic-Sized Records */ |
14f9c5c9 AS |
6275 | |
6276 | /* Strategy: The type ostensibly attached to a value with dynamic size | |
6277 | (i.e., a size that is not statically recorded in the debugging | |
6278 | data) does not accurately reflect the size or layout of the value. | |
6279 | Our strategy is to convert these values to values with accurate, | |
4c4b4cd2 | 6280 | conventional types that are constructed on the fly. */ |
14f9c5c9 AS |
6281 | |
6282 | /* There is a subtle and tricky problem here. In general, we cannot | |
6283 | determine the size of dynamic records without its data. However, | |
6284 | the 'struct value' data structure, which GDB uses to represent | |
6285 | quantities in the inferior process (the target), requires the size | |
6286 | of the type at the time of its allocation in order to reserve space | |
6287 | for GDB's internal copy of the data. That's why the | |
6288 | 'to_fixed_xxx_type' routines take (target) addresses as parameters, | |
4c4b4cd2 | 6289 | rather than struct value*s. |
14f9c5c9 AS |
6290 | |
6291 | However, GDB's internal history variables ($1, $2, etc.) are | |
6292 | struct value*s containing internal copies of the data that are not, in | |
6293 | general, the same as the data at their corresponding addresses in | |
6294 | the target. Fortunately, the types we give to these values are all | |
6295 | conventional, fixed-size types (as per the strategy described | |
6296 | above), so that we don't usually have to perform the | |
6297 | 'to_fixed_xxx_type' conversions to look at their values. | |
6298 | Unfortunately, there is one exception: if one of the internal | |
6299 | history variables is an array whose elements are unconstrained | |
6300 | records, then we will need to create distinct fixed types for each | |
6301 | element selected. */ | |
6302 | ||
6303 | /* The upshot of all of this is that many routines take a (type, host | |
6304 | address, target address) triple as arguments to represent a value. | |
6305 | The host address, if non-null, is supposed to contain an internal | |
6306 | copy of the relevant data; otherwise, the program is to consult the | |
4c4b4cd2 | 6307 | target at the target address. */ |
14f9c5c9 AS |
6308 | |
6309 | /* Assuming that VAL0 represents a pointer value, the result of | |
6310 | dereferencing it. Differs from value_ind in its treatment of | |
4c4b4cd2 | 6311 | dynamic-sized types. */ |
14f9c5c9 | 6312 | |
d2e4a39e AS |
6313 | struct value * |
6314 | ada_value_ind (struct value *val0) | |
14f9c5c9 | 6315 | { |
d2e4a39e | 6316 | struct value *val = unwrap_value (value_ind (val0)); |
4c4b4cd2 | 6317 | return ada_to_fixed_value (val); |
14f9c5c9 AS |
6318 | } |
6319 | ||
6320 | /* The value resulting from dereferencing any "reference to" | |
4c4b4cd2 PH |
6321 | qualifiers on VAL0. */ |
6322 | ||
d2e4a39e AS |
6323 | static struct value * |
6324 | ada_coerce_ref (struct value *val0) | |
6325 | { | |
df407dfe | 6326 | if (TYPE_CODE (value_type (val0)) == TYPE_CODE_REF) |
d2e4a39e AS |
6327 | { |
6328 | struct value *val = val0; | |
994b9211 | 6329 | val = coerce_ref (val); |
d2e4a39e | 6330 | val = unwrap_value (val); |
4c4b4cd2 | 6331 | return ada_to_fixed_value (val); |
d2e4a39e AS |
6332 | } |
6333 | else | |
14f9c5c9 AS |
6334 | return val0; |
6335 | } | |
6336 | ||
6337 | /* Return OFF rounded upward if necessary to a multiple of | |
4c4b4cd2 | 6338 | ALIGNMENT (a power of 2). */ |
14f9c5c9 AS |
6339 | |
6340 | static unsigned int | |
ebf56fd3 | 6341 | align_value (unsigned int off, unsigned int alignment) |
14f9c5c9 AS |
6342 | { |
6343 | return (off + alignment - 1) & ~(alignment - 1); | |
6344 | } | |
6345 | ||
4c4b4cd2 | 6346 | /* Return the bit alignment required for field #F of template type TYPE. */ |
14f9c5c9 AS |
6347 | |
6348 | static unsigned int | |
ebf56fd3 | 6349 | field_alignment (struct type *type, int f) |
14f9c5c9 | 6350 | { |
d2e4a39e | 6351 | const char *name = TYPE_FIELD_NAME (type, f); |
64a1bf19 | 6352 | int len; |
14f9c5c9 AS |
6353 | int align_offset; |
6354 | ||
64a1bf19 JB |
6355 | /* The field name should never be null, unless the debugging information |
6356 | is somehow malformed. In this case, we assume the field does not | |
6357 | require any alignment. */ | |
6358 | if (name == NULL) | |
6359 | return 1; | |
6360 | ||
6361 | len = strlen (name); | |
6362 | ||
4c4b4cd2 PH |
6363 | if (!isdigit (name[len - 1])) |
6364 | return 1; | |
14f9c5c9 | 6365 | |
d2e4a39e | 6366 | if (isdigit (name[len - 2])) |
14f9c5c9 AS |
6367 | align_offset = len - 2; |
6368 | else | |
6369 | align_offset = len - 1; | |
6370 | ||
4c4b4cd2 | 6371 | if (align_offset < 7 || strncmp ("___XV", name + align_offset - 6, 5) != 0) |
14f9c5c9 AS |
6372 | return TARGET_CHAR_BIT; |
6373 | ||
4c4b4cd2 PH |
6374 | return atoi (name + align_offset) * TARGET_CHAR_BIT; |
6375 | } | |
6376 | ||
6377 | /* Find a symbol named NAME. Ignores ambiguity. */ | |
6378 | ||
6379 | struct symbol * | |
6380 | ada_find_any_symbol (const char *name) | |
6381 | { | |
6382 | struct symbol *sym; | |
6383 | ||
6384 | sym = standard_lookup (name, get_selected_block (NULL), VAR_DOMAIN); | |
6385 | if (sym != NULL && SYMBOL_CLASS (sym) == LOC_TYPEDEF) | |
6386 | return sym; | |
6387 | ||
6388 | sym = standard_lookup (name, NULL, STRUCT_DOMAIN); | |
6389 | return sym; | |
14f9c5c9 AS |
6390 | } |
6391 | ||
dddfab26 UW |
6392 | /* Find a type named NAME. Ignores ambiguity. This routine will look |
6393 | solely for types defined by debug info, it will not search the GDB | |
6394 | primitive types. */ | |
4c4b4cd2 | 6395 | |
d2e4a39e | 6396 | struct type * |
ebf56fd3 | 6397 | ada_find_any_type (const char *name) |
14f9c5c9 | 6398 | { |
4c4b4cd2 | 6399 | struct symbol *sym = ada_find_any_symbol (name); |
14f9c5c9 | 6400 | |
14f9c5c9 | 6401 | if (sym != NULL) |
dddfab26 | 6402 | return SYMBOL_TYPE (sym); |
14f9c5c9 | 6403 | |
dddfab26 | 6404 | return NULL; |
14f9c5c9 AS |
6405 | } |
6406 | ||
aeb5907d JB |
6407 | /* Given NAME and an associated BLOCK, search all symbols for |
6408 | NAME suffixed with "___XR", which is the ``renaming'' symbol | |
4c4b4cd2 PH |
6409 | associated to NAME. Return this symbol if found, return |
6410 | NULL otherwise. */ | |
6411 | ||
6412 | struct symbol * | |
6413 | ada_find_renaming_symbol (const char *name, struct block *block) | |
aeb5907d JB |
6414 | { |
6415 | struct symbol *sym; | |
6416 | ||
6417 | sym = find_old_style_renaming_symbol (name, block); | |
6418 | ||
6419 | if (sym != NULL) | |
6420 | return sym; | |
6421 | ||
6422 | /* Not right yet. FIXME pnh 7/20/2007. */ | |
6423 | sym = ada_find_any_symbol (name); | |
6424 | if (sym != NULL && strstr (SYMBOL_LINKAGE_NAME (sym), "___XR") != NULL) | |
6425 | return sym; | |
6426 | else | |
6427 | return NULL; | |
6428 | } | |
6429 | ||
6430 | static struct symbol * | |
6431 | find_old_style_renaming_symbol (const char *name, struct block *block) | |
4c4b4cd2 | 6432 | { |
7f0df278 | 6433 | const struct symbol *function_sym = block_linkage_function (block); |
4c4b4cd2 PH |
6434 | char *rename; |
6435 | ||
6436 | if (function_sym != NULL) | |
6437 | { | |
6438 | /* If the symbol is defined inside a function, NAME is not fully | |
6439 | qualified. This means we need to prepend the function name | |
6440 | as well as adding the ``___XR'' suffix to build the name of | |
6441 | the associated renaming symbol. */ | |
6442 | char *function_name = SYMBOL_LINKAGE_NAME (function_sym); | |
529cad9c PH |
6443 | /* Function names sometimes contain suffixes used |
6444 | for instance to qualify nested subprograms. When building | |
6445 | the XR type name, we need to make sure that this suffix is | |
6446 | not included. So do not include any suffix in the function | |
6447 | name length below. */ | |
69fadcdf | 6448 | int function_name_len = ada_name_prefix_len (function_name); |
76a01679 JB |
6449 | const int rename_len = function_name_len + 2 /* "__" */ |
6450 | + strlen (name) + 6 /* "___XR\0" */ ; | |
4c4b4cd2 | 6451 | |
529cad9c | 6452 | /* Strip the suffix if necessary. */ |
69fadcdf JB |
6453 | ada_remove_trailing_digits (function_name, &function_name_len); |
6454 | ada_remove_po_subprogram_suffix (function_name, &function_name_len); | |
6455 | ada_remove_Xbn_suffix (function_name, &function_name_len); | |
529cad9c | 6456 | |
4c4b4cd2 PH |
6457 | /* Library-level functions are a special case, as GNAT adds |
6458 | a ``_ada_'' prefix to the function name to avoid namespace | |
aeb5907d | 6459 | pollution. However, the renaming symbols themselves do not |
4c4b4cd2 PH |
6460 | have this prefix, so we need to skip this prefix if present. */ |
6461 | if (function_name_len > 5 /* "_ada_" */ | |
6462 | && strstr (function_name, "_ada_") == function_name) | |
69fadcdf JB |
6463 | { |
6464 | function_name += 5; | |
6465 | function_name_len -= 5; | |
6466 | } | |
4c4b4cd2 PH |
6467 | |
6468 | rename = (char *) alloca (rename_len * sizeof (char)); | |
69fadcdf JB |
6469 | strncpy (rename, function_name, function_name_len); |
6470 | xsnprintf (rename + function_name_len, rename_len - function_name_len, | |
6471 | "__%s___XR", name); | |
4c4b4cd2 PH |
6472 | } |
6473 | else | |
6474 | { | |
6475 | const int rename_len = strlen (name) + 6; | |
6476 | rename = (char *) alloca (rename_len * sizeof (char)); | |
88c15c34 | 6477 | xsnprintf (rename, rename_len * sizeof (char), "%s___XR", name); |
4c4b4cd2 PH |
6478 | } |
6479 | ||
6480 | return ada_find_any_symbol (rename); | |
6481 | } | |
6482 | ||
14f9c5c9 | 6483 | /* Because of GNAT encoding conventions, several GDB symbols may match a |
4c4b4cd2 | 6484 | given type name. If the type denoted by TYPE0 is to be preferred to |
14f9c5c9 | 6485 | that of TYPE1 for purposes of type printing, return non-zero; |
4c4b4cd2 PH |
6486 | otherwise return 0. */ |
6487 | ||
14f9c5c9 | 6488 | int |
d2e4a39e | 6489 | ada_prefer_type (struct type *type0, struct type *type1) |
14f9c5c9 AS |
6490 | { |
6491 | if (type1 == NULL) | |
6492 | return 1; | |
6493 | else if (type0 == NULL) | |
6494 | return 0; | |
6495 | else if (TYPE_CODE (type1) == TYPE_CODE_VOID) | |
6496 | return 1; | |
6497 | else if (TYPE_CODE (type0) == TYPE_CODE_VOID) | |
6498 | return 0; | |
4c4b4cd2 PH |
6499 | else if (TYPE_NAME (type1) == NULL && TYPE_NAME (type0) != NULL) |
6500 | return 1; | |
ad82864c | 6501 | else if (ada_is_constrained_packed_array_type (type0)) |
14f9c5c9 | 6502 | return 1; |
4c4b4cd2 PH |
6503 | else if (ada_is_array_descriptor_type (type0) |
6504 | && !ada_is_array_descriptor_type (type1)) | |
14f9c5c9 | 6505 | return 1; |
aeb5907d JB |
6506 | else |
6507 | { | |
6508 | const char *type0_name = type_name_no_tag (type0); | |
6509 | const char *type1_name = type_name_no_tag (type1); | |
6510 | ||
6511 | if (type0_name != NULL && strstr (type0_name, "___XR") != NULL | |
6512 | && (type1_name == NULL || strstr (type1_name, "___XR") == NULL)) | |
6513 | return 1; | |
6514 | } | |
14f9c5c9 AS |
6515 | return 0; |
6516 | } | |
6517 | ||
6518 | /* The name of TYPE, which is either its TYPE_NAME, or, if that is | |
4c4b4cd2 PH |
6519 | null, its TYPE_TAG_NAME. Null if TYPE is null. */ |
6520 | ||
d2e4a39e AS |
6521 | char * |
6522 | ada_type_name (struct type *type) | |
14f9c5c9 | 6523 | { |
d2e4a39e | 6524 | if (type == NULL) |
14f9c5c9 AS |
6525 | return NULL; |
6526 | else if (TYPE_NAME (type) != NULL) | |
6527 | return TYPE_NAME (type); | |
6528 | else | |
6529 | return TYPE_TAG_NAME (type); | |
6530 | } | |
6531 | ||
b4ba55a1 JB |
6532 | /* Search the list of "descriptive" types associated to TYPE for a type |
6533 | whose name is NAME. */ | |
6534 | ||
6535 | static struct type * | |
6536 | find_parallel_type_by_descriptive_type (struct type *type, const char *name) | |
6537 | { | |
6538 | struct type *result; | |
6539 | ||
6540 | /* If there no descriptive-type info, then there is no parallel type | |
6541 | to be found. */ | |
6542 | if (!HAVE_GNAT_AUX_INFO (type)) | |
6543 | return NULL; | |
6544 | ||
6545 | result = TYPE_DESCRIPTIVE_TYPE (type); | |
6546 | while (result != NULL) | |
6547 | { | |
6548 | char *result_name = ada_type_name (result); | |
6549 | ||
6550 | if (result_name == NULL) | |
6551 | { | |
6552 | warning (_("unexpected null name on descriptive type")); | |
6553 | return NULL; | |
6554 | } | |
6555 | ||
6556 | /* If the names match, stop. */ | |
6557 | if (strcmp (result_name, name) == 0) | |
6558 | break; | |
6559 | ||
6560 | /* Otherwise, look at the next item on the list, if any. */ | |
6561 | if (HAVE_GNAT_AUX_INFO (result)) | |
6562 | result = TYPE_DESCRIPTIVE_TYPE (result); | |
6563 | else | |
6564 | result = NULL; | |
6565 | } | |
6566 | ||
6567 | /* If we didn't find a match, see whether this is a packed array. With | |
6568 | older compilers, the descriptive type information is either absent or | |
6569 | irrelevant when it comes to packed arrays so the above lookup fails. | |
6570 | Fall back to using a parallel lookup by name in this case. */ | |
12ab9e09 | 6571 | if (result == NULL && ada_is_constrained_packed_array_type (type)) |
b4ba55a1 JB |
6572 | return ada_find_any_type (name); |
6573 | ||
6574 | return result; | |
6575 | } | |
6576 | ||
6577 | /* Find a parallel type to TYPE with the specified NAME, using the | |
6578 | descriptive type taken from the debugging information, if available, | |
6579 | and otherwise using the (slower) name-based method. */ | |
6580 | ||
6581 | static struct type * | |
6582 | ada_find_parallel_type_with_name (struct type *type, const char *name) | |
6583 | { | |
6584 | struct type *result = NULL; | |
6585 | ||
6586 | if (HAVE_GNAT_AUX_INFO (type)) | |
6587 | result = find_parallel_type_by_descriptive_type (type, name); | |
6588 | else | |
6589 | result = ada_find_any_type (name); | |
6590 | ||
6591 | return result; | |
6592 | } | |
6593 | ||
6594 | /* Same as above, but specify the name of the parallel type by appending | |
4c4b4cd2 | 6595 | SUFFIX to the name of TYPE. */ |
14f9c5c9 | 6596 | |
d2e4a39e | 6597 | struct type * |
ebf56fd3 | 6598 | ada_find_parallel_type (struct type *type, const char *suffix) |
14f9c5c9 | 6599 | { |
b4ba55a1 | 6600 | char *name, *typename = ada_type_name (type); |
14f9c5c9 | 6601 | int len; |
d2e4a39e | 6602 | |
14f9c5c9 AS |
6603 | if (typename == NULL) |
6604 | return NULL; | |
6605 | ||
6606 | len = strlen (typename); | |
6607 | ||
b4ba55a1 | 6608 | name = (char *) alloca (len + strlen (suffix) + 1); |
14f9c5c9 AS |
6609 | |
6610 | strcpy (name, typename); | |
6611 | strcpy (name + len, suffix); | |
6612 | ||
b4ba55a1 | 6613 | return ada_find_parallel_type_with_name (type, name); |
14f9c5c9 AS |
6614 | } |
6615 | ||
14f9c5c9 | 6616 | /* If TYPE is a variable-size record type, return the corresponding template |
4c4b4cd2 | 6617 | type describing its fields. Otherwise, return NULL. */ |
14f9c5c9 | 6618 | |
d2e4a39e AS |
6619 | static struct type * |
6620 | dynamic_template_type (struct type *type) | |
14f9c5c9 | 6621 | { |
61ee279c | 6622 | type = ada_check_typedef (type); |
14f9c5c9 AS |
6623 | |
6624 | if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT | |
d2e4a39e | 6625 | || ada_type_name (type) == NULL) |
14f9c5c9 | 6626 | return NULL; |
d2e4a39e | 6627 | else |
14f9c5c9 AS |
6628 | { |
6629 | int len = strlen (ada_type_name (type)); | |
4c4b4cd2 PH |
6630 | if (len > 6 && strcmp (ada_type_name (type) + len - 6, "___XVE") == 0) |
6631 | return type; | |
14f9c5c9 | 6632 | else |
4c4b4cd2 | 6633 | return ada_find_parallel_type (type, "___XVE"); |
14f9c5c9 AS |
6634 | } |
6635 | } | |
6636 | ||
6637 | /* Assuming that TEMPL_TYPE is a union or struct type, returns | |
4c4b4cd2 | 6638 | non-zero iff field FIELD_NUM of TEMPL_TYPE has dynamic size. */ |
14f9c5c9 | 6639 | |
d2e4a39e AS |
6640 | static int |
6641 | is_dynamic_field (struct type *templ_type, int field_num) | |
14f9c5c9 AS |
6642 | { |
6643 | const char *name = TYPE_FIELD_NAME (templ_type, field_num); | |
d2e4a39e | 6644 | return name != NULL |
14f9c5c9 AS |
6645 | && TYPE_CODE (TYPE_FIELD_TYPE (templ_type, field_num)) == TYPE_CODE_PTR |
6646 | && strstr (name, "___XVL") != NULL; | |
6647 | } | |
6648 | ||
4c4b4cd2 PH |
6649 | /* The index of the variant field of TYPE, or -1 if TYPE does not |
6650 | represent a variant record type. */ | |
14f9c5c9 | 6651 | |
d2e4a39e | 6652 | static int |
4c4b4cd2 | 6653 | variant_field_index (struct type *type) |
14f9c5c9 AS |
6654 | { |
6655 | int f; | |
6656 | ||
4c4b4cd2 PH |
6657 | if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT) |
6658 | return -1; | |
6659 | ||
6660 | for (f = 0; f < TYPE_NFIELDS (type); f += 1) | |
6661 | { | |
6662 | if (ada_is_variant_part (type, f)) | |
6663 | return f; | |
6664 | } | |
6665 | return -1; | |
14f9c5c9 AS |
6666 | } |
6667 | ||
4c4b4cd2 PH |
6668 | /* A record type with no fields. */ |
6669 | ||
d2e4a39e | 6670 | static struct type * |
e9bb382b | 6671 | empty_record (struct type *template) |
14f9c5c9 | 6672 | { |
e9bb382b | 6673 | struct type *type = alloc_type_copy (template); |
14f9c5c9 AS |
6674 | TYPE_CODE (type) = TYPE_CODE_STRUCT; |
6675 | TYPE_NFIELDS (type) = 0; | |
6676 | TYPE_FIELDS (type) = NULL; | |
b1f33ddd | 6677 | INIT_CPLUS_SPECIFIC (type); |
14f9c5c9 AS |
6678 | TYPE_NAME (type) = "<empty>"; |
6679 | TYPE_TAG_NAME (type) = NULL; | |
14f9c5c9 AS |
6680 | TYPE_LENGTH (type) = 0; |
6681 | return type; | |
6682 | } | |
6683 | ||
6684 | /* An ordinary record type (with fixed-length fields) that describes | |
4c4b4cd2 PH |
6685 | the value of type TYPE at VALADDR or ADDRESS (see comments at |
6686 | the beginning of this section) VAL according to GNAT conventions. | |
6687 | DVAL0 should describe the (portion of a) record that contains any | |
df407dfe | 6688 | necessary discriminants. It should be NULL if value_type (VAL) is |
14f9c5c9 AS |
6689 | an outer-level type (i.e., as opposed to a branch of a variant.) A |
6690 | variant field (unless unchecked) is replaced by a particular branch | |
4c4b4cd2 | 6691 | of the variant. |
14f9c5c9 | 6692 | |
4c4b4cd2 PH |
6693 | If not KEEP_DYNAMIC_FIELDS, then all fields whose position or |
6694 | length are not statically known are discarded. As a consequence, | |
6695 | VALADDR, ADDRESS and DVAL0 are ignored. | |
6696 | ||
6697 | NOTE: Limitations: For now, we assume that dynamic fields and | |
6698 | variants occupy whole numbers of bytes. However, they need not be | |
6699 | byte-aligned. */ | |
6700 | ||
6701 | struct type * | |
10a2c479 | 6702 | ada_template_to_fixed_record_type_1 (struct type *type, |
fc1a4b47 | 6703 | const gdb_byte *valaddr, |
4c4b4cd2 PH |
6704 | CORE_ADDR address, struct value *dval0, |
6705 | int keep_dynamic_fields) | |
14f9c5c9 | 6706 | { |
d2e4a39e AS |
6707 | struct value *mark = value_mark (); |
6708 | struct value *dval; | |
6709 | struct type *rtype; | |
14f9c5c9 | 6710 | int nfields, bit_len; |
4c4b4cd2 | 6711 | int variant_field; |
14f9c5c9 | 6712 | long off; |
4c4b4cd2 | 6713 | int fld_bit_len, bit_incr; |
14f9c5c9 AS |
6714 | int f; |
6715 | ||
4c4b4cd2 PH |
6716 | /* Compute the number of fields in this record type that are going |
6717 | to be processed: unless keep_dynamic_fields, this includes only | |
6718 | fields whose position and length are static will be processed. */ | |
6719 | if (keep_dynamic_fields) | |
6720 | nfields = TYPE_NFIELDS (type); | |
6721 | else | |
6722 | { | |
6723 | nfields = 0; | |
76a01679 | 6724 | while (nfields < TYPE_NFIELDS (type) |
4c4b4cd2 PH |
6725 | && !ada_is_variant_part (type, nfields) |
6726 | && !is_dynamic_field (type, nfields)) | |
6727 | nfields++; | |
6728 | } | |
6729 | ||
e9bb382b | 6730 | rtype = alloc_type_copy (type); |
14f9c5c9 AS |
6731 | TYPE_CODE (rtype) = TYPE_CODE_STRUCT; |
6732 | INIT_CPLUS_SPECIFIC (rtype); | |
6733 | TYPE_NFIELDS (rtype) = nfields; | |
d2e4a39e | 6734 | TYPE_FIELDS (rtype) = (struct field *) |
14f9c5c9 AS |
6735 | TYPE_ALLOC (rtype, nfields * sizeof (struct field)); |
6736 | memset (TYPE_FIELDS (rtype), 0, sizeof (struct field) * nfields); | |
6737 | TYPE_NAME (rtype) = ada_type_name (type); | |
6738 | TYPE_TAG_NAME (rtype) = NULL; | |
876cecd0 | 6739 | TYPE_FIXED_INSTANCE (rtype) = 1; |
14f9c5c9 | 6740 | |
d2e4a39e AS |
6741 | off = 0; |
6742 | bit_len = 0; | |
4c4b4cd2 PH |
6743 | variant_field = -1; |
6744 | ||
14f9c5c9 AS |
6745 | for (f = 0; f < nfields; f += 1) |
6746 | { | |
6c038f32 PH |
6747 | off = align_value (off, field_alignment (type, f)) |
6748 | + TYPE_FIELD_BITPOS (type, f); | |
14f9c5c9 | 6749 | TYPE_FIELD_BITPOS (rtype, f) = off; |
d2e4a39e | 6750 | TYPE_FIELD_BITSIZE (rtype, f) = 0; |
14f9c5c9 | 6751 | |
d2e4a39e | 6752 | if (ada_is_variant_part (type, f)) |
4c4b4cd2 PH |
6753 | { |
6754 | variant_field = f; | |
6755 | fld_bit_len = bit_incr = 0; | |
6756 | } | |
14f9c5c9 | 6757 | else if (is_dynamic_field (type, f)) |
4c4b4cd2 | 6758 | { |
284614f0 JB |
6759 | const gdb_byte *field_valaddr = valaddr; |
6760 | CORE_ADDR field_address = address; | |
6761 | struct type *field_type = | |
6762 | TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type, f)); | |
6763 | ||
4c4b4cd2 | 6764 | if (dval0 == NULL) |
b5304971 JG |
6765 | { |
6766 | /* rtype's length is computed based on the run-time | |
6767 | value of discriminants. If the discriminants are not | |
6768 | initialized, the type size may be completely bogus and | |
6769 | GDB may fail to allocate a value for it. So check the | |
6770 | size first before creating the value. */ | |
6771 | check_size (rtype); | |
6772 | dval = value_from_contents_and_address (rtype, valaddr, address); | |
6773 | } | |
4c4b4cd2 PH |
6774 | else |
6775 | dval = dval0; | |
6776 | ||
284614f0 JB |
6777 | /* If the type referenced by this field is an aligner type, we need |
6778 | to unwrap that aligner type, because its size might not be set. | |
6779 | Keeping the aligner type would cause us to compute the wrong | |
6780 | size for this field, impacting the offset of the all the fields | |
6781 | that follow this one. */ | |
6782 | if (ada_is_aligner_type (field_type)) | |
6783 | { | |
6784 | long field_offset = TYPE_FIELD_BITPOS (field_type, f); | |
6785 | ||
6786 | field_valaddr = cond_offset_host (field_valaddr, field_offset); | |
6787 | field_address = cond_offset_target (field_address, field_offset); | |
6788 | field_type = ada_aligned_type (field_type); | |
6789 | } | |
6790 | ||
6791 | field_valaddr = cond_offset_host (field_valaddr, | |
6792 | off / TARGET_CHAR_BIT); | |
6793 | field_address = cond_offset_target (field_address, | |
6794 | off / TARGET_CHAR_BIT); | |
6795 | ||
6796 | /* Get the fixed type of the field. Note that, in this case, | |
6797 | we do not want to get the real type out of the tag: if | |
6798 | the current field is the parent part of a tagged record, | |
6799 | we will get the tag of the object. Clearly wrong: the real | |
6800 | type of the parent is not the real type of the child. We | |
6801 | would end up in an infinite loop. */ | |
6802 | field_type = ada_get_base_type (field_type); | |
6803 | field_type = ada_to_fixed_type (field_type, field_valaddr, | |
6804 | field_address, dval, 0); | |
6805 | ||
6806 | TYPE_FIELD_TYPE (rtype, f) = field_type; | |
4c4b4cd2 PH |
6807 | TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f); |
6808 | bit_incr = fld_bit_len = | |
6809 | TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, f)) * TARGET_CHAR_BIT; | |
6810 | } | |
14f9c5c9 | 6811 | else |
4c4b4cd2 | 6812 | { |
9f0dec2d JB |
6813 | struct type *field_type = TYPE_FIELD_TYPE (type, f); |
6814 | ||
6815 | TYPE_FIELD_TYPE (rtype, f) = field_type; | |
4c4b4cd2 PH |
6816 | TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f); |
6817 | if (TYPE_FIELD_BITSIZE (type, f) > 0) | |
6818 | bit_incr = fld_bit_len = | |
6819 | TYPE_FIELD_BITSIZE (rtype, f) = TYPE_FIELD_BITSIZE (type, f); | |
6820 | else | |
6821 | bit_incr = fld_bit_len = | |
9f0dec2d | 6822 | TYPE_LENGTH (ada_check_typedef (field_type)) * TARGET_CHAR_BIT; |
4c4b4cd2 | 6823 | } |
14f9c5c9 | 6824 | if (off + fld_bit_len > bit_len) |
4c4b4cd2 | 6825 | bit_len = off + fld_bit_len; |
14f9c5c9 | 6826 | off += bit_incr; |
4c4b4cd2 PH |
6827 | TYPE_LENGTH (rtype) = |
6828 | align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT; | |
14f9c5c9 | 6829 | } |
4c4b4cd2 PH |
6830 | |
6831 | /* We handle the variant part, if any, at the end because of certain | |
b1f33ddd | 6832 | odd cases in which it is re-ordered so as NOT to be the last field of |
4c4b4cd2 PH |
6833 | the record. This can happen in the presence of representation |
6834 | clauses. */ | |
6835 | if (variant_field >= 0) | |
6836 | { | |
6837 | struct type *branch_type; | |
6838 | ||
6839 | off = TYPE_FIELD_BITPOS (rtype, variant_field); | |
6840 | ||
6841 | if (dval0 == NULL) | |
6842 | dval = value_from_contents_and_address (rtype, valaddr, address); | |
6843 | else | |
6844 | dval = dval0; | |
6845 | ||
6846 | branch_type = | |
6847 | to_fixed_variant_branch_type | |
6848 | (TYPE_FIELD_TYPE (type, variant_field), | |
6849 | cond_offset_host (valaddr, off / TARGET_CHAR_BIT), | |
6850 | cond_offset_target (address, off / TARGET_CHAR_BIT), dval); | |
6851 | if (branch_type == NULL) | |
6852 | { | |
6853 | for (f = variant_field + 1; f < TYPE_NFIELDS (rtype); f += 1) | |
6854 | TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f]; | |
6855 | TYPE_NFIELDS (rtype) -= 1; | |
6856 | } | |
6857 | else | |
6858 | { | |
6859 | TYPE_FIELD_TYPE (rtype, variant_field) = branch_type; | |
6860 | TYPE_FIELD_NAME (rtype, variant_field) = "S"; | |
6861 | fld_bit_len = | |
6862 | TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, variant_field)) * | |
6863 | TARGET_CHAR_BIT; | |
6864 | if (off + fld_bit_len > bit_len) | |
6865 | bit_len = off + fld_bit_len; | |
6866 | TYPE_LENGTH (rtype) = | |
6867 | align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT; | |
6868 | } | |
6869 | } | |
6870 | ||
714e53ab PH |
6871 | /* According to exp_dbug.ads, the size of TYPE for variable-size records |
6872 | should contain the alignment of that record, which should be a strictly | |
6873 | positive value. If null or negative, then something is wrong, most | |
6874 | probably in the debug info. In that case, we don't round up the size | |
6875 | of the resulting type. If this record is not part of another structure, | |
6876 | the current RTYPE length might be good enough for our purposes. */ | |
6877 | if (TYPE_LENGTH (type) <= 0) | |
6878 | { | |
323e0a4a AC |
6879 | if (TYPE_NAME (rtype)) |
6880 | warning (_("Invalid type size for `%s' detected: %d."), | |
6881 | TYPE_NAME (rtype), TYPE_LENGTH (type)); | |
6882 | else | |
6883 | warning (_("Invalid type size for <unnamed> detected: %d."), | |
6884 | TYPE_LENGTH (type)); | |
714e53ab PH |
6885 | } |
6886 | else | |
6887 | { | |
6888 | TYPE_LENGTH (rtype) = align_value (TYPE_LENGTH (rtype), | |
6889 | TYPE_LENGTH (type)); | |
6890 | } | |
14f9c5c9 AS |
6891 | |
6892 | value_free_to_mark (mark); | |
d2e4a39e | 6893 | if (TYPE_LENGTH (rtype) > varsize_limit) |
323e0a4a | 6894 | error (_("record type with dynamic size is larger than varsize-limit")); |
14f9c5c9 AS |
6895 | return rtype; |
6896 | } | |
6897 | ||
4c4b4cd2 PH |
6898 | /* As for ada_template_to_fixed_record_type_1 with KEEP_DYNAMIC_FIELDS |
6899 | of 1. */ | |
14f9c5c9 | 6900 | |
d2e4a39e | 6901 | static struct type * |
fc1a4b47 | 6902 | template_to_fixed_record_type (struct type *type, const gdb_byte *valaddr, |
4c4b4cd2 PH |
6903 | CORE_ADDR address, struct value *dval0) |
6904 | { | |
6905 | return ada_template_to_fixed_record_type_1 (type, valaddr, | |
6906 | address, dval0, 1); | |
6907 | } | |
6908 | ||
6909 | /* An ordinary record type in which ___XVL-convention fields and | |
6910 | ___XVU- and ___XVN-convention field types in TYPE0 are replaced with | |
6911 | static approximations, containing all possible fields. Uses | |
6912 | no runtime values. Useless for use in values, but that's OK, | |
6913 | since the results are used only for type determinations. Works on both | |
6914 | structs and unions. Representation note: to save space, we memorize | |
6915 | the result of this function in the TYPE_TARGET_TYPE of the | |
6916 | template type. */ | |
6917 | ||
6918 | static struct type * | |
6919 | template_to_static_fixed_type (struct type *type0) | |
14f9c5c9 AS |
6920 | { |
6921 | struct type *type; | |
6922 | int nfields; | |
6923 | int f; | |
6924 | ||
4c4b4cd2 PH |
6925 | if (TYPE_TARGET_TYPE (type0) != NULL) |
6926 | return TYPE_TARGET_TYPE (type0); | |
6927 | ||
6928 | nfields = TYPE_NFIELDS (type0); | |
6929 | type = type0; | |
14f9c5c9 AS |
6930 | |
6931 | for (f = 0; f < nfields; f += 1) | |
6932 | { | |
61ee279c | 6933 | struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type0, f)); |
4c4b4cd2 | 6934 | struct type *new_type; |
14f9c5c9 | 6935 | |
4c4b4cd2 PH |
6936 | if (is_dynamic_field (type0, f)) |
6937 | new_type = to_static_fixed_type (TYPE_TARGET_TYPE (field_type)); | |
14f9c5c9 | 6938 | else |
f192137b | 6939 | new_type = static_unwrap_type (field_type); |
4c4b4cd2 PH |
6940 | if (type == type0 && new_type != field_type) |
6941 | { | |
e9bb382b | 6942 | TYPE_TARGET_TYPE (type0) = type = alloc_type_copy (type0); |
4c4b4cd2 PH |
6943 | TYPE_CODE (type) = TYPE_CODE (type0); |
6944 | INIT_CPLUS_SPECIFIC (type); | |
6945 | TYPE_NFIELDS (type) = nfields; | |
6946 | TYPE_FIELDS (type) = (struct field *) | |
6947 | TYPE_ALLOC (type, nfields * sizeof (struct field)); | |
6948 | memcpy (TYPE_FIELDS (type), TYPE_FIELDS (type0), | |
6949 | sizeof (struct field) * nfields); | |
6950 | TYPE_NAME (type) = ada_type_name (type0); | |
6951 | TYPE_TAG_NAME (type) = NULL; | |
876cecd0 | 6952 | TYPE_FIXED_INSTANCE (type) = 1; |
4c4b4cd2 PH |
6953 | TYPE_LENGTH (type) = 0; |
6954 | } | |
6955 | TYPE_FIELD_TYPE (type, f) = new_type; | |
6956 | TYPE_FIELD_NAME (type, f) = TYPE_FIELD_NAME (type0, f); | |
14f9c5c9 | 6957 | } |
14f9c5c9 AS |
6958 | return type; |
6959 | } | |
6960 | ||
4c4b4cd2 | 6961 | /* Given an object of type TYPE whose contents are at VALADDR and |
5823c3ef JB |
6962 | whose address in memory is ADDRESS, returns a revision of TYPE, |
6963 | which should be a non-dynamic-sized record, in which the variant | |
6964 | part, if any, is replaced with the appropriate branch. Looks | |
4c4b4cd2 PH |
6965 | for discriminant values in DVAL0, which can be NULL if the record |
6966 | contains the necessary discriminant values. */ | |
6967 | ||
d2e4a39e | 6968 | static struct type * |
fc1a4b47 | 6969 | to_record_with_fixed_variant_part (struct type *type, const gdb_byte *valaddr, |
4c4b4cd2 | 6970 | CORE_ADDR address, struct value *dval0) |
14f9c5c9 | 6971 | { |
d2e4a39e | 6972 | struct value *mark = value_mark (); |
4c4b4cd2 | 6973 | struct value *dval; |
d2e4a39e | 6974 | struct type *rtype; |
14f9c5c9 AS |
6975 | struct type *branch_type; |
6976 | int nfields = TYPE_NFIELDS (type); | |
4c4b4cd2 | 6977 | int variant_field = variant_field_index (type); |
14f9c5c9 | 6978 | |
4c4b4cd2 | 6979 | if (variant_field == -1) |
14f9c5c9 AS |
6980 | return type; |
6981 | ||
4c4b4cd2 PH |
6982 | if (dval0 == NULL) |
6983 | dval = value_from_contents_and_address (type, valaddr, address); | |
6984 | else | |
6985 | dval = dval0; | |
6986 | ||
e9bb382b | 6987 | rtype = alloc_type_copy (type); |
14f9c5c9 | 6988 | TYPE_CODE (rtype) = TYPE_CODE_STRUCT; |
4c4b4cd2 PH |
6989 | INIT_CPLUS_SPECIFIC (rtype); |
6990 | TYPE_NFIELDS (rtype) = nfields; | |
d2e4a39e AS |
6991 | TYPE_FIELDS (rtype) = |
6992 | (struct field *) TYPE_ALLOC (rtype, nfields * sizeof (struct field)); | |
6993 | memcpy (TYPE_FIELDS (rtype), TYPE_FIELDS (type), | |
4c4b4cd2 | 6994 | sizeof (struct field) * nfields); |
14f9c5c9 AS |
6995 | TYPE_NAME (rtype) = ada_type_name (type); |
6996 | TYPE_TAG_NAME (rtype) = NULL; | |
876cecd0 | 6997 | TYPE_FIXED_INSTANCE (rtype) = 1; |
14f9c5c9 AS |
6998 | TYPE_LENGTH (rtype) = TYPE_LENGTH (type); |
6999 | ||
4c4b4cd2 PH |
7000 | branch_type = to_fixed_variant_branch_type |
7001 | (TYPE_FIELD_TYPE (type, variant_field), | |
d2e4a39e | 7002 | cond_offset_host (valaddr, |
4c4b4cd2 PH |
7003 | TYPE_FIELD_BITPOS (type, variant_field) |
7004 | / TARGET_CHAR_BIT), | |
d2e4a39e | 7005 | cond_offset_target (address, |
4c4b4cd2 PH |
7006 | TYPE_FIELD_BITPOS (type, variant_field) |
7007 | / TARGET_CHAR_BIT), dval); | |
d2e4a39e | 7008 | if (branch_type == NULL) |
14f9c5c9 | 7009 | { |
4c4b4cd2 PH |
7010 | int f; |
7011 | for (f = variant_field + 1; f < nfields; f += 1) | |
7012 | TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f]; | |
14f9c5c9 | 7013 | TYPE_NFIELDS (rtype) -= 1; |
14f9c5c9 AS |
7014 | } |
7015 | else | |
7016 | { | |
4c4b4cd2 PH |
7017 | TYPE_FIELD_TYPE (rtype, variant_field) = branch_type; |
7018 | TYPE_FIELD_NAME (rtype, variant_field) = "S"; | |
7019 | TYPE_FIELD_BITSIZE (rtype, variant_field) = 0; | |
14f9c5c9 | 7020 | TYPE_LENGTH (rtype) += TYPE_LENGTH (branch_type); |
14f9c5c9 | 7021 | } |
4c4b4cd2 | 7022 | TYPE_LENGTH (rtype) -= TYPE_LENGTH (TYPE_FIELD_TYPE (type, variant_field)); |
d2e4a39e | 7023 | |
4c4b4cd2 | 7024 | value_free_to_mark (mark); |
14f9c5c9 AS |
7025 | return rtype; |
7026 | } | |
7027 | ||
7028 | /* An ordinary record type (with fixed-length fields) that describes | |
7029 | the value at (TYPE0, VALADDR, ADDRESS) [see explanation at | |
7030 | beginning of this section]. Any necessary discriminants' values | |
4c4b4cd2 PH |
7031 | should be in DVAL, a record value; it may be NULL if the object |
7032 | at ADDR itself contains any necessary discriminant values. | |
7033 | Additionally, VALADDR and ADDRESS may also be NULL if no discriminant | |
7034 | values from the record are needed. Except in the case that DVAL, | |
7035 | VALADDR, and ADDRESS are all 0 or NULL, a variant field (unless | |
7036 | unchecked) is replaced by a particular branch of the variant. | |
7037 | ||
7038 | NOTE: the case in which DVAL and VALADDR are NULL and ADDRESS is 0 | |
7039 | is questionable and may be removed. It can arise during the | |
7040 | processing of an unconstrained-array-of-record type where all the | |
7041 | variant branches have exactly the same size. This is because in | |
7042 | such cases, the compiler does not bother to use the XVS convention | |
7043 | when encoding the record. I am currently dubious of this | |
7044 | shortcut and suspect the compiler should be altered. FIXME. */ | |
14f9c5c9 | 7045 | |
d2e4a39e | 7046 | static struct type * |
fc1a4b47 | 7047 | to_fixed_record_type (struct type *type0, const gdb_byte *valaddr, |
4c4b4cd2 | 7048 | CORE_ADDR address, struct value *dval) |
14f9c5c9 | 7049 | { |
d2e4a39e | 7050 | struct type *templ_type; |
14f9c5c9 | 7051 | |
876cecd0 | 7052 | if (TYPE_FIXED_INSTANCE (type0)) |
4c4b4cd2 PH |
7053 | return type0; |
7054 | ||
d2e4a39e | 7055 | templ_type = dynamic_template_type (type0); |
14f9c5c9 AS |
7056 | |
7057 | if (templ_type != NULL) | |
7058 | return template_to_fixed_record_type (templ_type, valaddr, address, dval); | |
4c4b4cd2 PH |
7059 | else if (variant_field_index (type0) >= 0) |
7060 | { | |
7061 | if (dval == NULL && valaddr == NULL && address == 0) | |
7062 | return type0; | |
7063 | return to_record_with_fixed_variant_part (type0, valaddr, address, | |
7064 | dval); | |
7065 | } | |
14f9c5c9 AS |
7066 | else |
7067 | { | |
876cecd0 | 7068 | TYPE_FIXED_INSTANCE (type0) = 1; |
14f9c5c9 AS |
7069 | return type0; |
7070 | } | |
7071 | ||
7072 | } | |
7073 | ||
7074 | /* An ordinary record type (with fixed-length fields) that describes | |
7075 | the value at (VAR_TYPE0, VALADDR, ADDRESS), where VAR_TYPE0 is a | |
7076 | union type. Any necessary discriminants' values should be in DVAL, | |
7077 | a record value. That is, this routine selects the appropriate | |
7078 | branch of the union at ADDR according to the discriminant value | |
b1f33ddd JB |
7079 | indicated in the union's type name. Returns VAR_TYPE0 itself if |
7080 | it represents a variant subject to a pragma Unchecked_Union. */ | |
14f9c5c9 | 7081 | |
d2e4a39e | 7082 | static struct type * |
fc1a4b47 | 7083 | to_fixed_variant_branch_type (struct type *var_type0, const gdb_byte *valaddr, |
4c4b4cd2 | 7084 | CORE_ADDR address, struct value *dval) |
14f9c5c9 AS |
7085 | { |
7086 | int which; | |
d2e4a39e AS |
7087 | struct type *templ_type; |
7088 | struct type *var_type; | |
14f9c5c9 AS |
7089 | |
7090 | if (TYPE_CODE (var_type0) == TYPE_CODE_PTR) | |
7091 | var_type = TYPE_TARGET_TYPE (var_type0); | |
d2e4a39e | 7092 | else |
14f9c5c9 AS |
7093 | var_type = var_type0; |
7094 | ||
7095 | templ_type = ada_find_parallel_type (var_type, "___XVU"); | |
7096 | ||
7097 | if (templ_type != NULL) | |
7098 | var_type = templ_type; | |
7099 | ||
b1f33ddd JB |
7100 | if (is_unchecked_variant (var_type, value_type (dval))) |
7101 | return var_type0; | |
d2e4a39e AS |
7102 | which = |
7103 | ada_which_variant_applies (var_type, | |
0fd88904 | 7104 | value_type (dval), value_contents (dval)); |
14f9c5c9 AS |
7105 | |
7106 | if (which < 0) | |
e9bb382b | 7107 | return empty_record (var_type); |
14f9c5c9 | 7108 | else if (is_dynamic_field (var_type, which)) |
4c4b4cd2 | 7109 | return to_fixed_record_type |
d2e4a39e AS |
7110 | (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (var_type, which)), |
7111 | valaddr, address, dval); | |
4c4b4cd2 | 7112 | else if (variant_field_index (TYPE_FIELD_TYPE (var_type, which)) >= 0) |
d2e4a39e AS |
7113 | return |
7114 | to_fixed_record_type | |
7115 | (TYPE_FIELD_TYPE (var_type, which), valaddr, address, dval); | |
14f9c5c9 AS |
7116 | else |
7117 | return TYPE_FIELD_TYPE (var_type, which); | |
7118 | } | |
7119 | ||
7120 | /* Assuming that TYPE0 is an array type describing the type of a value | |
7121 | at ADDR, and that DVAL describes a record containing any | |
7122 | discriminants used in TYPE0, returns a type for the value that | |
7123 | contains no dynamic components (that is, no components whose sizes | |
7124 | are determined by run-time quantities). Unless IGNORE_TOO_BIG is | |
7125 | true, gives an error message if the resulting type's size is over | |
4c4b4cd2 | 7126 | varsize_limit. */ |
14f9c5c9 | 7127 | |
d2e4a39e AS |
7128 | static struct type * |
7129 | to_fixed_array_type (struct type *type0, struct value *dval, | |
4c4b4cd2 | 7130 | int ignore_too_big) |
14f9c5c9 | 7131 | { |
d2e4a39e AS |
7132 | struct type *index_type_desc; |
7133 | struct type *result; | |
ad82864c | 7134 | int constrained_packed_array_p; |
14f9c5c9 | 7135 | |
284614f0 | 7136 | if (TYPE_FIXED_INSTANCE (type0)) |
4c4b4cd2 | 7137 | return type0; |
14f9c5c9 | 7138 | |
ad82864c JB |
7139 | constrained_packed_array_p = ada_is_constrained_packed_array_type (type0); |
7140 | if (constrained_packed_array_p) | |
7141 | type0 = decode_constrained_packed_array_type (type0); | |
284614f0 | 7142 | |
14f9c5c9 AS |
7143 | index_type_desc = ada_find_parallel_type (type0, "___XA"); |
7144 | if (index_type_desc == NULL) | |
7145 | { | |
61ee279c | 7146 | struct type *elt_type0 = ada_check_typedef (TYPE_TARGET_TYPE (type0)); |
14f9c5c9 | 7147 | /* NOTE: elt_type---the fixed version of elt_type0---should never |
4c4b4cd2 PH |
7148 | depend on the contents of the array in properly constructed |
7149 | debugging data. */ | |
529cad9c PH |
7150 | /* Create a fixed version of the array element type. |
7151 | We're not providing the address of an element here, | |
e1d5a0d2 | 7152 | and thus the actual object value cannot be inspected to do |
529cad9c PH |
7153 | the conversion. This should not be a problem, since arrays of |
7154 | unconstrained objects are not allowed. In particular, all | |
7155 | the elements of an array of a tagged type should all be of | |
7156 | the same type specified in the debugging info. No need to | |
7157 | consult the object tag. */ | |
1ed6ede0 | 7158 | struct type *elt_type = ada_to_fixed_type (elt_type0, 0, 0, dval, 1); |
14f9c5c9 | 7159 | |
284614f0 JB |
7160 | /* Make sure we always create a new array type when dealing with |
7161 | packed array types, since we're going to fix-up the array | |
7162 | type length and element bitsize a little further down. */ | |
ad82864c | 7163 | if (elt_type0 == elt_type && !constrained_packed_array_p) |
4c4b4cd2 | 7164 | result = type0; |
14f9c5c9 | 7165 | else |
e9bb382b | 7166 | result = create_array_type (alloc_type_copy (type0), |
4c4b4cd2 | 7167 | elt_type, TYPE_INDEX_TYPE (type0)); |
14f9c5c9 AS |
7168 | } |
7169 | else | |
7170 | { | |
7171 | int i; | |
7172 | struct type *elt_type0; | |
7173 | ||
7174 | elt_type0 = type0; | |
7175 | for (i = TYPE_NFIELDS (index_type_desc); i > 0; i -= 1) | |
4c4b4cd2 | 7176 | elt_type0 = TYPE_TARGET_TYPE (elt_type0); |
14f9c5c9 AS |
7177 | |
7178 | /* NOTE: result---the fixed version of elt_type0---should never | |
4c4b4cd2 PH |
7179 | depend on the contents of the array in properly constructed |
7180 | debugging data. */ | |
529cad9c PH |
7181 | /* Create a fixed version of the array element type. |
7182 | We're not providing the address of an element here, | |
e1d5a0d2 | 7183 | and thus the actual object value cannot be inspected to do |
529cad9c PH |
7184 | the conversion. This should not be a problem, since arrays of |
7185 | unconstrained objects are not allowed. In particular, all | |
7186 | the elements of an array of a tagged type should all be of | |
7187 | the same type specified in the debugging info. No need to | |
7188 | consult the object tag. */ | |
1ed6ede0 JB |
7189 | result = |
7190 | ada_to_fixed_type (ada_check_typedef (elt_type0), 0, 0, dval, 1); | |
1ce677a4 UW |
7191 | |
7192 | elt_type0 = type0; | |
14f9c5c9 | 7193 | for (i = TYPE_NFIELDS (index_type_desc) - 1; i >= 0; i -= 1) |
4c4b4cd2 PH |
7194 | { |
7195 | struct type *range_type = | |
7196 | to_fixed_range_type (TYPE_FIELD_NAME (index_type_desc, i), | |
1ce677a4 | 7197 | dval, TYPE_INDEX_TYPE (elt_type0)); |
e9bb382b | 7198 | result = create_array_type (alloc_type_copy (elt_type0), |
4c4b4cd2 | 7199 | result, range_type); |
1ce677a4 | 7200 | elt_type0 = TYPE_TARGET_TYPE (elt_type0); |
4c4b4cd2 | 7201 | } |
d2e4a39e | 7202 | if (!ignore_too_big && TYPE_LENGTH (result) > varsize_limit) |
323e0a4a | 7203 | error (_("array type with dynamic size is larger than varsize-limit")); |
14f9c5c9 AS |
7204 | } |
7205 | ||
ad82864c | 7206 | if (constrained_packed_array_p) |
284614f0 JB |
7207 | { |
7208 | /* So far, the resulting type has been created as if the original | |
7209 | type was a regular (non-packed) array type. As a result, the | |
7210 | bitsize of the array elements needs to be set again, and the array | |
7211 | length needs to be recomputed based on that bitsize. */ | |
7212 | int len = TYPE_LENGTH (result) / TYPE_LENGTH (TYPE_TARGET_TYPE (result)); | |
7213 | int elt_bitsize = TYPE_FIELD_BITSIZE (type0, 0); | |
7214 | ||
7215 | TYPE_FIELD_BITSIZE (result, 0) = TYPE_FIELD_BITSIZE (type0, 0); | |
7216 | TYPE_LENGTH (result) = len * elt_bitsize / HOST_CHAR_BIT; | |
7217 | if (TYPE_LENGTH (result) * HOST_CHAR_BIT < len * elt_bitsize) | |
7218 | TYPE_LENGTH (result)++; | |
7219 | } | |
7220 | ||
876cecd0 | 7221 | TYPE_FIXED_INSTANCE (result) = 1; |
14f9c5c9 | 7222 | return result; |
d2e4a39e | 7223 | } |
14f9c5c9 AS |
7224 | |
7225 | ||
7226 | /* A standard type (containing no dynamically sized components) | |
7227 | corresponding to TYPE for the value (TYPE, VALADDR, ADDRESS) | |
7228 | DVAL describes a record containing any discriminants used in TYPE0, | |
4c4b4cd2 | 7229 | and may be NULL if there are none, or if the object of type TYPE at |
529cad9c PH |
7230 | ADDRESS or in VALADDR contains these discriminants. |
7231 | ||
1ed6ede0 JB |
7232 | If CHECK_TAG is not null, in the case of tagged types, this function |
7233 | attempts to locate the object's tag and use it to compute the actual | |
7234 | type. However, when ADDRESS is null, we cannot use it to determine the | |
7235 | location of the tag, and therefore compute the tagged type's actual type. | |
7236 | So we return the tagged type without consulting the tag. */ | |
529cad9c | 7237 | |
f192137b JB |
7238 | static struct type * |
7239 | ada_to_fixed_type_1 (struct type *type, const gdb_byte *valaddr, | |
1ed6ede0 | 7240 | CORE_ADDR address, struct value *dval, int check_tag) |
14f9c5c9 | 7241 | { |
61ee279c | 7242 | type = ada_check_typedef (type); |
d2e4a39e AS |
7243 | switch (TYPE_CODE (type)) |
7244 | { | |
7245 | default: | |
14f9c5c9 | 7246 | return type; |
d2e4a39e | 7247 | case TYPE_CODE_STRUCT: |
4c4b4cd2 | 7248 | { |
76a01679 | 7249 | struct type *static_type = to_static_fixed_type (type); |
1ed6ede0 JB |
7250 | struct type *fixed_record_type = |
7251 | to_fixed_record_type (type, valaddr, address, NULL); | |
529cad9c PH |
7252 | /* If STATIC_TYPE is a tagged type and we know the object's address, |
7253 | then we can determine its tag, and compute the object's actual | |
1ed6ede0 JB |
7254 | type from there. Note that we have to use the fixed record |
7255 | type (the parent part of the record may have dynamic fields | |
7256 | and the way the location of _tag is expressed may depend on | |
7257 | them). */ | |
529cad9c | 7258 | |
1ed6ede0 | 7259 | if (check_tag && address != 0 && ada_is_tagged_type (static_type, 0)) |
76a01679 JB |
7260 | { |
7261 | struct type *real_type = | |
1ed6ede0 JB |
7262 | type_from_tag (value_tag_from_contents_and_address |
7263 | (fixed_record_type, | |
7264 | valaddr, | |
7265 | address)); | |
76a01679 | 7266 | if (real_type != NULL) |
1ed6ede0 | 7267 | return to_fixed_record_type (real_type, valaddr, address, NULL); |
76a01679 | 7268 | } |
4af88198 JB |
7269 | |
7270 | /* Check to see if there is a parallel ___XVZ variable. | |
7271 | If there is, then it provides the actual size of our type. */ | |
7272 | else if (ada_type_name (fixed_record_type) != NULL) | |
7273 | { | |
7274 | char *name = ada_type_name (fixed_record_type); | |
7275 | char *xvz_name = alloca (strlen (name) + 7 /* "___XVZ\0" */); | |
7276 | int xvz_found = 0; | |
7277 | LONGEST size; | |
7278 | ||
88c15c34 | 7279 | xsnprintf (xvz_name, strlen (name) + 7, "%s___XVZ", name); |
4af88198 JB |
7280 | size = get_int_var_value (xvz_name, &xvz_found); |
7281 | if (xvz_found && TYPE_LENGTH (fixed_record_type) != size) | |
7282 | { | |
7283 | fixed_record_type = copy_type (fixed_record_type); | |
7284 | TYPE_LENGTH (fixed_record_type) = size; | |
7285 | ||
7286 | /* The FIXED_RECORD_TYPE may have be a stub. We have | |
7287 | observed this when the debugging info is STABS, and | |
7288 | apparently it is something that is hard to fix. | |
7289 | ||
7290 | In practice, we don't need the actual type definition | |
7291 | at all, because the presence of the XVZ variable allows us | |
7292 | to assume that there must be a XVS type as well, which we | |
7293 | should be able to use later, when we need the actual type | |
7294 | definition. | |
7295 | ||
7296 | In the meantime, pretend that the "fixed" type we are | |
7297 | returning is NOT a stub, because this can cause trouble | |
7298 | when using this type to create new types targeting it. | |
7299 | Indeed, the associated creation routines often check | |
7300 | whether the target type is a stub and will try to replace | |
7301 | it, thus using a type with the wrong size. This, in turn, | |
7302 | might cause the new type to have the wrong size too. | |
7303 | Consider the case of an array, for instance, where the size | |
7304 | of the array is computed from the number of elements in | |
7305 | our array multiplied by the size of its element. */ | |
7306 | TYPE_STUB (fixed_record_type) = 0; | |
7307 | } | |
7308 | } | |
1ed6ede0 | 7309 | return fixed_record_type; |
4c4b4cd2 | 7310 | } |
d2e4a39e | 7311 | case TYPE_CODE_ARRAY: |
4c4b4cd2 | 7312 | return to_fixed_array_type (type, dval, 1); |
d2e4a39e AS |
7313 | case TYPE_CODE_UNION: |
7314 | if (dval == NULL) | |
4c4b4cd2 | 7315 | return type; |
d2e4a39e | 7316 | else |
4c4b4cd2 | 7317 | return to_fixed_variant_branch_type (type, valaddr, address, dval); |
d2e4a39e | 7318 | } |
14f9c5c9 AS |
7319 | } |
7320 | ||
f192137b JB |
7321 | /* The same as ada_to_fixed_type_1, except that it preserves the type |
7322 | if it is a TYPE_CODE_TYPEDEF of a type that is already fixed. | |
7323 | ada_to_fixed_type_1 would return the type referenced by TYPE. */ | |
7324 | ||
7325 | struct type * | |
7326 | ada_to_fixed_type (struct type *type, const gdb_byte *valaddr, | |
7327 | CORE_ADDR address, struct value *dval, int check_tag) | |
7328 | ||
7329 | { | |
7330 | struct type *fixed_type = | |
7331 | ada_to_fixed_type_1 (type, valaddr, address, dval, check_tag); | |
7332 | ||
7333 | if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF | |
7334 | && TYPE_TARGET_TYPE (type) == fixed_type) | |
7335 | return type; | |
7336 | ||
7337 | return fixed_type; | |
7338 | } | |
7339 | ||
14f9c5c9 | 7340 | /* A standard (static-sized) type corresponding as well as possible to |
4c4b4cd2 | 7341 | TYPE0, but based on no runtime data. */ |
14f9c5c9 | 7342 | |
d2e4a39e AS |
7343 | static struct type * |
7344 | to_static_fixed_type (struct type *type0) | |
14f9c5c9 | 7345 | { |
d2e4a39e | 7346 | struct type *type; |
14f9c5c9 AS |
7347 | |
7348 | if (type0 == NULL) | |
7349 | return NULL; | |
7350 | ||
876cecd0 | 7351 | if (TYPE_FIXED_INSTANCE (type0)) |
4c4b4cd2 PH |
7352 | return type0; |
7353 | ||
61ee279c | 7354 | type0 = ada_check_typedef (type0); |
d2e4a39e | 7355 | |
14f9c5c9 AS |
7356 | switch (TYPE_CODE (type0)) |
7357 | { | |
7358 | default: | |
7359 | return type0; | |
7360 | case TYPE_CODE_STRUCT: | |
7361 | type = dynamic_template_type (type0); | |
d2e4a39e | 7362 | if (type != NULL) |
4c4b4cd2 PH |
7363 | return template_to_static_fixed_type (type); |
7364 | else | |
7365 | return template_to_static_fixed_type (type0); | |
14f9c5c9 AS |
7366 | case TYPE_CODE_UNION: |
7367 | type = ada_find_parallel_type (type0, "___XVU"); | |
7368 | if (type != NULL) | |
4c4b4cd2 PH |
7369 | return template_to_static_fixed_type (type); |
7370 | else | |
7371 | return template_to_static_fixed_type (type0); | |
14f9c5c9 AS |
7372 | } |
7373 | } | |
7374 | ||
4c4b4cd2 PH |
7375 | /* A static approximation of TYPE with all type wrappers removed. */ |
7376 | ||
d2e4a39e AS |
7377 | static struct type * |
7378 | static_unwrap_type (struct type *type) | |
14f9c5c9 AS |
7379 | { |
7380 | if (ada_is_aligner_type (type)) | |
7381 | { | |
61ee279c | 7382 | struct type *type1 = TYPE_FIELD_TYPE (ada_check_typedef (type), 0); |
14f9c5c9 | 7383 | if (ada_type_name (type1) == NULL) |
4c4b4cd2 | 7384 | TYPE_NAME (type1) = ada_type_name (type); |
14f9c5c9 AS |
7385 | |
7386 | return static_unwrap_type (type1); | |
7387 | } | |
d2e4a39e | 7388 | else |
14f9c5c9 | 7389 | { |
d2e4a39e AS |
7390 | struct type *raw_real_type = ada_get_base_type (type); |
7391 | if (raw_real_type == type) | |
4c4b4cd2 | 7392 | return type; |
14f9c5c9 | 7393 | else |
4c4b4cd2 | 7394 | return to_static_fixed_type (raw_real_type); |
14f9c5c9 AS |
7395 | } |
7396 | } | |
7397 | ||
7398 | /* In some cases, incomplete and private types require | |
4c4b4cd2 | 7399 | cross-references that are not resolved as records (for example, |
14f9c5c9 AS |
7400 | type Foo; |
7401 | type FooP is access Foo; | |
7402 | V: FooP; | |
7403 | type Foo is array ...; | |
4c4b4cd2 | 7404 | ). In these cases, since there is no mechanism for producing |
14f9c5c9 AS |
7405 | cross-references to such types, we instead substitute for FooP a |
7406 | stub enumeration type that is nowhere resolved, and whose tag is | |
4c4b4cd2 | 7407 | the name of the actual type. Call these types "non-record stubs". */ |
14f9c5c9 AS |
7408 | |
7409 | /* A type equivalent to TYPE that is not a non-record stub, if one | |
4c4b4cd2 PH |
7410 | exists, otherwise TYPE. */ |
7411 | ||
d2e4a39e | 7412 | struct type * |
61ee279c | 7413 | ada_check_typedef (struct type *type) |
14f9c5c9 | 7414 | { |
727e3d2e JB |
7415 | if (type == NULL) |
7416 | return NULL; | |
7417 | ||
14f9c5c9 AS |
7418 | CHECK_TYPEDEF (type); |
7419 | if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM | |
529cad9c | 7420 | || !TYPE_STUB (type) |
14f9c5c9 AS |
7421 | || TYPE_TAG_NAME (type) == NULL) |
7422 | return type; | |
d2e4a39e | 7423 | else |
14f9c5c9 | 7424 | { |
d2e4a39e AS |
7425 | char *name = TYPE_TAG_NAME (type); |
7426 | struct type *type1 = ada_find_any_type (name); | |
14f9c5c9 AS |
7427 | return (type1 == NULL) ? type : type1; |
7428 | } | |
7429 | } | |
7430 | ||
7431 | /* A value representing the data at VALADDR/ADDRESS as described by | |
7432 | type TYPE0, but with a standard (static-sized) type that correctly | |
7433 | describes it. If VAL0 is not NULL and TYPE0 already is a standard | |
7434 | type, then return VAL0 [this feature is simply to avoid redundant | |
4c4b4cd2 | 7435 | creation of struct values]. */ |
14f9c5c9 | 7436 | |
4c4b4cd2 PH |
7437 | static struct value * |
7438 | ada_to_fixed_value_create (struct type *type0, CORE_ADDR address, | |
7439 | struct value *val0) | |
14f9c5c9 | 7440 | { |
1ed6ede0 | 7441 | struct type *type = ada_to_fixed_type (type0, 0, address, NULL, 1); |
14f9c5c9 AS |
7442 | if (type == type0 && val0 != NULL) |
7443 | return val0; | |
d2e4a39e | 7444 | else |
4c4b4cd2 PH |
7445 | return value_from_contents_and_address (type, 0, address); |
7446 | } | |
7447 | ||
7448 | /* A value representing VAL, but with a standard (static-sized) type | |
7449 | that correctly describes it. Does not necessarily create a new | |
7450 | value. */ | |
7451 | ||
7452 | static struct value * | |
7453 | ada_to_fixed_value (struct value *val) | |
7454 | { | |
df407dfe | 7455 | return ada_to_fixed_value_create (value_type (val), |
42ae5230 | 7456 | value_address (val), |
4c4b4cd2 | 7457 | val); |
14f9c5c9 | 7458 | } |
d2e4a39e | 7459 | \f |
14f9c5c9 | 7460 | |
14f9c5c9 AS |
7461 | /* Attributes */ |
7462 | ||
4c4b4cd2 PH |
7463 | /* Table mapping attribute numbers to names. |
7464 | NOTE: Keep up to date with enum ada_attribute definition in ada-lang.h. */ | |
14f9c5c9 | 7465 | |
d2e4a39e | 7466 | static const char *attribute_names[] = { |
14f9c5c9 AS |
7467 | "<?>", |
7468 | ||
d2e4a39e | 7469 | "first", |
14f9c5c9 AS |
7470 | "last", |
7471 | "length", | |
7472 | "image", | |
14f9c5c9 AS |
7473 | "max", |
7474 | "min", | |
4c4b4cd2 PH |
7475 | "modulus", |
7476 | "pos", | |
7477 | "size", | |
7478 | "tag", | |
14f9c5c9 | 7479 | "val", |
14f9c5c9 AS |
7480 | 0 |
7481 | }; | |
7482 | ||
d2e4a39e | 7483 | const char * |
4c4b4cd2 | 7484 | ada_attribute_name (enum exp_opcode n) |
14f9c5c9 | 7485 | { |
4c4b4cd2 PH |
7486 | if (n >= OP_ATR_FIRST && n <= (int) OP_ATR_VAL) |
7487 | return attribute_names[n - OP_ATR_FIRST + 1]; | |
14f9c5c9 AS |
7488 | else |
7489 | return attribute_names[0]; | |
7490 | } | |
7491 | ||
4c4b4cd2 | 7492 | /* Evaluate the 'POS attribute applied to ARG. */ |
14f9c5c9 | 7493 | |
4c4b4cd2 PH |
7494 | static LONGEST |
7495 | pos_atr (struct value *arg) | |
14f9c5c9 | 7496 | { |
24209737 PH |
7497 | struct value *val = coerce_ref (arg); |
7498 | struct type *type = value_type (val); | |
14f9c5c9 | 7499 | |
d2e4a39e | 7500 | if (!discrete_type_p (type)) |
323e0a4a | 7501 | error (_("'POS only defined on discrete types")); |
14f9c5c9 AS |
7502 | |
7503 | if (TYPE_CODE (type) == TYPE_CODE_ENUM) | |
7504 | { | |
7505 | int i; | |
24209737 | 7506 | LONGEST v = value_as_long (val); |
14f9c5c9 | 7507 | |
d2e4a39e | 7508 | for (i = 0; i < TYPE_NFIELDS (type); i += 1) |
4c4b4cd2 PH |
7509 | { |
7510 | if (v == TYPE_FIELD_BITPOS (type, i)) | |
7511 | return i; | |
7512 | } | |
323e0a4a | 7513 | error (_("enumeration value is invalid: can't find 'POS")); |
14f9c5c9 AS |
7514 | } |
7515 | else | |
24209737 | 7516 | return value_as_long (val); |
4c4b4cd2 PH |
7517 | } |
7518 | ||
7519 | static struct value * | |
3cb382c9 | 7520 | value_pos_atr (struct type *type, struct value *arg) |
4c4b4cd2 | 7521 | { |
3cb382c9 | 7522 | return value_from_longest (type, pos_atr (arg)); |
14f9c5c9 AS |
7523 | } |
7524 | ||
4c4b4cd2 | 7525 | /* Evaluate the TYPE'VAL attribute applied to ARG. */ |
14f9c5c9 | 7526 | |
d2e4a39e AS |
7527 | static struct value * |
7528 | value_val_atr (struct type *type, struct value *arg) | |
14f9c5c9 | 7529 | { |
d2e4a39e | 7530 | if (!discrete_type_p (type)) |
323e0a4a | 7531 | error (_("'VAL only defined on discrete types")); |
df407dfe | 7532 | if (!integer_type_p (value_type (arg))) |
323e0a4a | 7533 | error (_("'VAL requires integral argument")); |
14f9c5c9 AS |
7534 | |
7535 | if (TYPE_CODE (type) == TYPE_CODE_ENUM) | |
7536 | { | |
7537 | long pos = value_as_long (arg); | |
7538 | if (pos < 0 || pos >= TYPE_NFIELDS (type)) | |
323e0a4a | 7539 | error (_("argument to 'VAL out of range")); |
d2e4a39e | 7540 | return value_from_longest (type, TYPE_FIELD_BITPOS (type, pos)); |
14f9c5c9 AS |
7541 | } |
7542 | else | |
7543 | return value_from_longest (type, value_as_long (arg)); | |
7544 | } | |
14f9c5c9 | 7545 | \f |
d2e4a39e | 7546 | |
4c4b4cd2 | 7547 | /* Evaluation */ |
14f9c5c9 | 7548 | |
4c4b4cd2 PH |
7549 | /* True if TYPE appears to be an Ada character type. |
7550 | [At the moment, this is true only for Character and Wide_Character; | |
7551 | It is a heuristic test that could stand improvement]. */ | |
14f9c5c9 | 7552 | |
d2e4a39e AS |
7553 | int |
7554 | ada_is_character_type (struct type *type) | |
14f9c5c9 | 7555 | { |
7b9f71f2 JB |
7556 | const char *name; |
7557 | ||
7558 | /* If the type code says it's a character, then assume it really is, | |
7559 | and don't check any further. */ | |
7560 | if (TYPE_CODE (type) == TYPE_CODE_CHAR) | |
7561 | return 1; | |
7562 | ||
7563 | /* Otherwise, assume it's a character type iff it is a discrete type | |
7564 | with a known character type name. */ | |
7565 | name = ada_type_name (type); | |
7566 | return (name != NULL | |
7567 | && (TYPE_CODE (type) == TYPE_CODE_INT | |
7568 | || TYPE_CODE (type) == TYPE_CODE_RANGE) | |
7569 | && (strcmp (name, "character") == 0 | |
7570 | || strcmp (name, "wide_character") == 0 | |
5a517ebd | 7571 | || strcmp (name, "wide_wide_character") == 0 |
7b9f71f2 | 7572 | || strcmp (name, "unsigned char") == 0)); |
14f9c5c9 AS |
7573 | } |
7574 | ||
4c4b4cd2 | 7575 | /* True if TYPE appears to be an Ada string type. */ |
14f9c5c9 AS |
7576 | |
7577 | int | |
ebf56fd3 | 7578 | ada_is_string_type (struct type *type) |
14f9c5c9 | 7579 | { |
61ee279c | 7580 | type = ada_check_typedef (type); |
d2e4a39e | 7581 | if (type != NULL |
14f9c5c9 | 7582 | && TYPE_CODE (type) != TYPE_CODE_PTR |
76a01679 JB |
7583 | && (ada_is_simple_array_type (type) |
7584 | || ada_is_array_descriptor_type (type)) | |
14f9c5c9 AS |
7585 | && ada_array_arity (type) == 1) |
7586 | { | |
7587 | struct type *elttype = ada_array_element_type (type, 1); | |
7588 | ||
7589 | return ada_is_character_type (elttype); | |
7590 | } | |
d2e4a39e | 7591 | else |
14f9c5c9 AS |
7592 | return 0; |
7593 | } | |
7594 | ||
5bf03f13 JB |
7595 | /* The compiler sometimes provides a parallel XVS type for a given |
7596 | PAD type. Normally, it is safe to follow the PAD type directly, | |
7597 | but older versions of the compiler have a bug that causes the offset | |
7598 | of its "F" field to be wrong. Following that field in that case | |
7599 | would lead to incorrect results, but this can be worked around | |
7600 | by ignoring the PAD type and using the associated XVS type instead. | |
7601 | ||
7602 | Set to True if the debugger should trust the contents of PAD types. | |
7603 | Otherwise, ignore the PAD type if there is a parallel XVS type. */ | |
7604 | static int trust_pad_over_xvs = 1; | |
14f9c5c9 AS |
7605 | |
7606 | /* True if TYPE is a struct type introduced by the compiler to force the | |
7607 | alignment of a value. Such types have a single field with a | |
4c4b4cd2 | 7608 | distinctive name. */ |
14f9c5c9 AS |
7609 | |
7610 | int | |
ebf56fd3 | 7611 | ada_is_aligner_type (struct type *type) |
14f9c5c9 | 7612 | { |
61ee279c | 7613 | type = ada_check_typedef (type); |
714e53ab | 7614 | |
5bf03f13 | 7615 | if (!trust_pad_over_xvs && ada_find_parallel_type (type, "___XVS") != NULL) |
714e53ab PH |
7616 | return 0; |
7617 | ||
14f9c5c9 | 7618 | return (TYPE_CODE (type) == TYPE_CODE_STRUCT |
4c4b4cd2 PH |
7619 | && TYPE_NFIELDS (type) == 1 |
7620 | && strcmp (TYPE_FIELD_NAME (type, 0), "F") == 0); | |
14f9c5c9 AS |
7621 | } |
7622 | ||
7623 | /* If there is an ___XVS-convention type parallel to SUBTYPE, return | |
4c4b4cd2 | 7624 | the parallel type. */ |
14f9c5c9 | 7625 | |
d2e4a39e AS |
7626 | struct type * |
7627 | ada_get_base_type (struct type *raw_type) | |
14f9c5c9 | 7628 | { |
d2e4a39e AS |
7629 | struct type *real_type_namer; |
7630 | struct type *raw_real_type; | |
14f9c5c9 AS |
7631 | |
7632 | if (raw_type == NULL || TYPE_CODE (raw_type) != TYPE_CODE_STRUCT) | |
7633 | return raw_type; | |
7634 | ||
284614f0 JB |
7635 | if (ada_is_aligner_type (raw_type)) |
7636 | /* The encoding specifies that we should always use the aligner type. | |
7637 | So, even if this aligner type has an associated XVS type, we should | |
7638 | simply ignore it. | |
7639 | ||
7640 | According to the compiler gurus, an XVS type parallel to an aligner | |
7641 | type may exist because of a stabs limitation. In stabs, aligner | |
7642 | types are empty because the field has a variable-sized type, and | |
7643 | thus cannot actually be used as an aligner type. As a result, | |
7644 | we need the associated parallel XVS type to decode the type. | |
7645 | Since the policy in the compiler is to not change the internal | |
7646 | representation based on the debugging info format, we sometimes | |
7647 | end up having a redundant XVS type parallel to the aligner type. */ | |
7648 | return raw_type; | |
7649 | ||
14f9c5c9 | 7650 | real_type_namer = ada_find_parallel_type (raw_type, "___XVS"); |
d2e4a39e | 7651 | if (real_type_namer == NULL |
14f9c5c9 AS |
7652 | || TYPE_CODE (real_type_namer) != TYPE_CODE_STRUCT |
7653 | || TYPE_NFIELDS (real_type_namer) != 1) | |
7654 | return raw_type; | |
7655 | ||
f80d3ff2 JB |
7656 | if (TYPE_CODE (TYPE_FIELD_TYPE (real_type_namer, 0)) != TYPE_CODE_REF) |
7657 | { | |
7658 | /* This is an older encoding form where the base type needs to be | |
7659 | looked up by name. We prefer the newer enconding because it is | |
7660 | more efficient. */ | |
7661 | raw_real_type = ada_find_any_type (TYPE_FIELD_NAME (real_type_namer, 0)); | |
7662 | if (raw_real_type == NULL) | |
7663 | return raw_type; | |
7664 | else | |
7665 | return raw_real_type; | |
7666 | } | |
7667 | ||
7668 | /* The field in our XVS type is a reference to the base type. */ | |
7669 | return TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (real_type_namer, 0)); | |
d2e4a39e | 7670 | } |
14f9c5c9 | 7671 | |
4c4b4cd2 | 7672 | /* The type of value designated by TYPE, with all aligners removed. */ |
14f9c5c9 | 7673 | |
d2e4a39e AS |
7674 | struct type * |
7675 | ada_aligned_type (struct type *type) | |
14f9c5c9 AS |
7676 | { |
7677 | if (ada_is_aligner_type (type)) | |
7678 | return ada_aligned_type (TYPE_FIELD_TYPE (type, 0)); | |
7679 | else | |
7680 | return ada_get_base_type (type); | |
7681 | } | |
7682 | ||
7683 | ||
7684 | /* The address of the aligned value in an object at address VALADDR | |
4c4b4cd2 | 7685 | having type TYPE. Assumes ada_is_aligner_type (TYPE). */ |
14f9c5c9 | 7686 | |
fc1a4b47 AC |
7687 | const gdb_byte * |
7688 | ada_aligned_value_addr (struct type *type, const gdb_byte *valaddr) | |
14f9c5c9 | 7689 | { |
d2e4a39e | 7690 | if (ada_is_aligner_type (type)) |
14f9c5c9 | 7691 | return ada_aligned_value_addr (TYPE_FIELD_TYPE (type, 0), |
4c4b4cd2 PH |
7692 | valaddr + |
7693 | TYPE_FIELD_BITPOS (type, | |
7694 | 0) / TARGET_CHAR_BIT); | |
14f9c5c9 AS |
7695 | else |
7696 | return valaddr; | |
7697 | } | |
7698 | ||
4c4b4cd2 PH |
7699 | |
7700 | ||
14f9c5c9 | 7701 | /* The printed representation of an enumeration literal with encoded |
4c4b4cd2 | 7702 | name NAME. The value is good to the next call of ada_enum_name. */ |
d2e4a39e AS |
7703 | const char * |
7704 | ada_enum_name (const char *name) | |
14f9c5c9 | 7705 | { |
4c4b4cd2 PH |
7706 | static char *result; |
7707 | static size_t result_len = 0; | |
d2e4a39e | 7708 | char *tmp; |
14f9c5c9 | 7709 | |
4c4b4cd2 PH |
7710 | /* First, unqualify the enumeration name: |
7711 | 1. Search for the last '.' character. If we find one, then skip | |
76a01679 JB |
7712 | all the preceeding characters, the unqualified name starts |
7713 | right after that dot. | |
4c4b4cd2 | 7714 | 2. Otherwise, we may be debugging on a target where the compiler |
76a01679 JB |
7715 | translates dots into "__". Search forward for double underscores, |
7716 | but stop searching when we hit an overloading suffix, which is | |
7717 | of the form "__" followed by digits. */ | |
4c4b4cd2 | 7718 | |
c3e5cd34 PH |
7719 | tmp = strrchr (name, '.'); |
7720 | if (tmp != NULL) | |
4c4b4cd2 PH |
7721 | name = tmp + 1; |
7722 | else | |
14f9c5c9 | 7723 | { |
4c4b4cd2 PH |
7724 | while ((tmp = strstr (name, "__")) != NULL) |
7725 | { | |
7726 | if (isdigit (tmp[2])) | |
7727 | break; | |
7728 | else | |
7729 | name = tmp + 2; | |
7730 | } | |
14f9c5c9 AS |
7731 | } |
7732 | ||
7733 | if (name[0] == 'Q') | |
7734 | { | |
14f9c5c9 AS |
7735 | int v; |
7736 | if (name[1] == 'U' || name[1] == 'W') | |
4c4b4cd2 PH |
7737 | { |
7738 | if (sscanf (name + 2, "%x", &v) != 1) | |
7739 | return name; | |
7740 | } | |
14f9c5c9 | 7741 | else |
4c4b4cd2 | 7742 | return name; |
14f9c5c9 | 7743 | |
4c4b4cd2 | 7744 | GROW_VECT (result, result_len, 16); |
14f9c5c9 | 7745 | if (isascii (v) && isprint (v)) |
88c15c34 | 7746 | xsnprintf (result, result_len, "'%c'", v); |
14f9c5c9 | 7747 | else if (name[1] == 'U') |
88c15c34 | 7748 | xsnprintf (result, result_len, "[\"%02x\"]", v); |
14f9c5c9 | 7749 | else |
88c15c34 | 7750 | xsnprintf (result, result_len, "[\"%04x\"]", v); |
14f9c5c9 AS |
7751 | |
7752 | return result; | |
7753 | } | |
d2e4a39e | 7754 | else |
4c4b4cd2 | 7755 | { |
c3e5cd34 PH |
7756 | tmp = strstr (name, "__"); |
7757 | if (tmp == NULL) | |
7758 | tmp = strstr (name, "$"); | |
7759 | if (tmp != NULL) | |
4c4b4cd2 PH |
7760 | { |
7761 | GROW_VECT (result, result_len, tmp - name + 1); | |
7762 | strncpy (result, name, tmp - name); | |
7763 | result[tmp - name] = '\0'; | |
7764 | return result; | |
7765 | } | |
7766 | ||
7767 | return name; | |
7768 | } | |
14f9c5c9 AS |
7769 | } |
7770 | ||
14f9c5c9 AS |
7771 | /* Evaluate the subexpression of EXP starting at *POS as for |
7772 | evaluate_type, updating *POS to point just past the evaluated | |
4c4b4cd2 | 7773 | expression. */ |
14f9c5c9 | 7774 | |
d2e4a39e AS |
7775 | static struct value * |
7776 | evaluate_subexp_type (struct expression *exp, int *pos) | |
14f9c5c9 | 7777 | { |
4b27a620 | 7778 | return evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS); |
14f9c5c9 AS |
7779 | } |
7780 | ||
7781 | /* If VAL is wrapped in an aligner or subtype wrapper, return the | |
4c4b4cd2 | 7782 | value it wraps. */ |
14f9c5c9 | 7783 | |
d2e4a39e AS |
7784 | static struct value * |
7785 | unwrap_value (struct value *val) | |
14f9c5c9 | 7786 | { |
df407dfe | 7787 | struct type *type = ada_check_typedef (value_type (val)); |
14f9c5c9 AS |
7788 | if (ada_is_aligner_type (type)) |
7789 | { | |
de4d072f | 7790 | struct value *v = ada_value_struct_elt (val, "F", 0); |
df407dfe | 7791 | struct type *val_type = ada_check_typedef (value_type (v)); |
14f9c5c9 | 7792 | if (ada_type_name (val_type) == NULL) |
4c4b4cd2 | 7793 | TYPE_NAME (val_type) = ada_type_name (type); |
14f9c5c9 AS |
7794 | |
7795 | return unwrap_value (v); | |
7796 | } | |
d2e4a39e | 7797 | else |
14f9c5c9 | 7798 | { |
d2e4a39e | 7799 | struct type *raw_real_type = |
61ee279c | 7800 | ada_check_typedef (ada_get_base_type (type)); |
d2e4a39e | 7801 | |
5bf03f13 JB |
7802 | /* If there is no parallel XVS or XVE type, then the value is |
7803 | already unwrapped. Return it without further modification. */ | |
7804 | if ((type == raw_real_type) | |
7805 | && ada_find_parallel_type (type, "___XVE") == NULL) | |
7806 | return val; | |
14f9c5c9 | 7807 | |
d2e4a39e | 7808 | return |
4c4b4cd2 PH |
7809 | coerce_unspec_val_to_type |
7810 | (val, ada_to_fixed_type (raw_real_type, 0, | |
42ae5230 | 7811 | value_address (val), |
1ed6ede0 | 7812 | NULL, 1)); |
14f9c5c9 AS |
7813 | } |
7814 | } | |
d2e4a39e AS |
7815 | |
7816 | static struct value * | |
7817 | cast_to_fixed (struct type *type, struct value *arg) | |
14f9c5c9 AS |
7818 | { |
7819 | LONGEST val; | |
7820 | ||
df407dfe | 7821 | if (type == value_type (arg)) |
14f9c5c9 | 7822 | return arg; |
df407dfe | 7823 | else if (ada_is_fixed_point_type (value_type (arg))) |
d2e4a39e | 7824 | val = ada_float_to_fixed (type, |
df407dfe | 7825 | ada_fixed_to_float (value_type (arg), |
4c4b4cd2 | 7826 | value_as_long (arg))); |
d2e4a39e | 7827 | else |
14f9c5c9 | 7828 | { |
a53b7a21 | 7829 | DOUBLEST argd = value_as_double (arg); |
14f9c5c9 AS |
7830 | val = ada_float_to_fixed (type, argd); |
7831 | } | |
7832 | ||
7833 | return value_from_longest (type, val); | |
7834 | } | |
7835 | ||
d2e4a39e | 7836 | static struct value * |
a53b7a21 | 7837 | cast_from_fixed (struct type *type, struct value *arg) |
14f9c5c9 | 7838 | { |
df407dfe | 7839 | DOUBLEST val = ada_fixed_to_float (value_type (arg), |
4c4b4cd2 | 7840 | value_as_long (arg)); |
a53b7a21 | 7841 | return value_from_double (type, val); |
14f9c5c9 AS |
7842 | } |
7843 | ||
4c4b4cd2 PH |
7844 | /* Coerce VAL as necessary for assignment to an lval of type TYPE, and |
7845 | return the converted value. */ | |
7846 | ||
d2e4a39e AS |
7847 | static struct value * |
7848 | coerce_for_assign (struct type *type, struct value *val) | |
14f9c5c9 | 7849 | { |
df407dfe | 7850 | struct type *type2 = value_type (val); |
14f9c5c9 AS |
7851 | if (type == type2) |
7852 | return val; | |
7853 | ||
61ee279c PH |
7854 | type2 = ada_check_typedef (type2); |
7855 | type = ada_check_typedef (type); | |
14f9c5c9 | 7856 | |
d2e4a39e AS |
7857 | if (TYPE_CODE (type2) == TYPE_CODE_PTR |
7858 | && TYPE_CODE (type) == TYPE_CODE_ARRAY) | |
14f9c5c9 AS |
7859 | { |
7860 | val = ada_value_ind (val); | |
df407dfe | 7861 | type2 = value_type (val); |
14f9c5c9 AS |
7862 | } |
7863 | ||
d2e4a39e | 7864 | if (TYPE_CODE (type2) == TYPE_CODE_ARRAY |
14f9c5c9 AS |
7865 | && TYPE_CODE (type) == TYPE_CODE_ARRAY) |
7866 | { | |
7867 | if (TYPE_LENGTH (type2) != TYPE_LENGTH (type) | |
4c4b4cd2 PH |
7868 | || TYPE_LENGTH (TYPE_TARGET_TYPE (type2)) |
7869 | != TYPE_LENGTH (TYPE_TARGET_TYPE (type2))) | |
323e0a4a | 7870 | error (_("Incompatible types in assignment")); |
04624583 | 7871 | deprecated_set_value_type (val, type); |
14f9c5c9 | 7872 | } |
d2e4a39e | 7873 | return val; |
14f9c5c9 AS |
7874 | } |
7875 | ||
4c4b4cd2 PH |
7876 | static struct value * |
7877 | ada_value_binop (struct value *arg1, struct value *arg2, enum exp_opcode op) | |
7878 | { | |
7879 | struct value *val; | |
7880 | struct type *type1, *type2; | |
7881 | LONGEST v, v1, v2; | |
7882 | ||
994b9211 AC |
7883 | arg1 = coerce_ref (arg1); |
7884 | arg2 = coerce_ref (arg2); | |
df407dfe AC |
7885 | type1 = base_type (ada_check_typedef (value_type (arg1))); |
7886 | type2 = base_type (ada_check_typedef (value_type (arg2))); | |
4c4b4cd2 | 7887 | |
76a01679 JB |
7888 | if (TYPE_CODE (type1) != TYPE_CODE_INT |
7889 | || TYPE_CODE (type2) != TYPE_CODE_INT) | |
4c4b4cd2 PH |
7890 | return value_binop (arg1, arg2, op); |
7891 | ||
76a01679 | 7892 | switch (op) |
4c4b4cd2 PH |
7893 | { |
7894 | case BINOP_MOD: | |
7895 | case BINOP_DIV: | |
7896 | case BINOP_REM: | |
7897 | break; | |
7898 | default: | |
7899 | return value_binop (arg1, arg2, op); | |
7900 | } | |
7901 | ||
7902 | v2 = value_as_long (arg2); | |
7903 | if (v2 == 0) | |
323e0a4a | 7904 | error (_("second operand of %s must not be zero."), op_string (op)); |
4c4b4cd2 PH |
7905 | |
7906 | if (TYPE_UNSIGNED (type1) || op == BINOP_MOD) | |
7907 | return value_binop (arg1, arg2, op); | |
7908 | ||
7909 | v1 = value_as_long (arg1); | |
7910 | switch (op) | |
7911 | { | |
7912 | case BINOP_DIV: | |
7913 | v = v1 / v2; | |
76a01679 JB |
7914 | if (!TRUNCATION_TOWARDS_ZERO && v1 * (v1 % v2) < 0) |
7915 | v += v > 0 ? -1 : 1; | |
4c4b4cd2 PH |
7916 | break; |
7917 | case BINOP_REM: | |
7918 | v = v1 % v2; | |
76a01679 JB |
7919 | if (v * v1 < 0) |
7920 | v -= v2; | |
4c4b4cd2 PH |
7921 | break; |
7922 | default: | |
7923 | /* Should not reach this point. */ | |
7924 | v = 0; | |
7925 | } | |
7926 | ||
7927 | val = allocate_value (type1); | |
990a07ab | 7928 | store_unsigned_integer (value_contents_raw (val), |
e17a4113 UW |
7929 | TYPE_LENGTH (value_type (val)), |
7930 | gdbarch_byte_order (get_type_arch (type1)), v); | |
4c4b4cd2 PH |
7931 | return val; |
7932 | } | |
7933 | ||
7934 | static int | |
7935 | ada_value_equal (struct value *arg1, struct value *arg2) | |
7936 | { | |
df407dfe AC |
7937 | if (ada_is_direct_array_type (value_type (arg1)) |
7938 | || ada_is_direct_array_type (value_type (arg2))) | |
4c4b4cd2 | 7939 | { |
f58b38bf JB |
7940 | /* Automatically dereference any array reference before |
7941 | we attempt to perform the comparison. */ | |
7942 | arg1 = ada_coerce_ref (arg1); | |
7943 | arg2 = ada_coerce_ref (arg2); | |
7944 | ||
4c4b4cd2 PH |
7945 | arg1 = ada_coerce_to_simple_array (arg1); |
7946 | arg2 = ada_coerce_to_simple_array (arg2); | |
df407dfe AC |
7947 | if (TYPE_CODE (value_type (arg1)) != TYPE_CODE_ARRAY |
7948 | || TYPE_CODE (value_type (arg2)) != TYPE_CODE_ARRAY) | |
323e0a4a | 7949 | error (_("Attempt to compare array with non-array")); |
4c4b4cd2 | 7950 | /* FIXME: The following works only for types whose |
76a01679 JB |
7951 | representations use all bits (no padding or undefined bits) |
7952 | and do not have user-defined equality. */ | |
7953 | return | |
df407dfe | 7954 | TYPE_LENGTH (value_type (arg1)) == TYPE_LENGTH (value_type (arg2)) |
0fd88904 | 7955 | && memcmp (value_contents (arg1), value_contents (arg2), |
df407dfe | 7956 | TYPE_LENGTH (value_type (arg1))) == 0; |
4c4b4cd2 PH |
7957 | } |
7958 | return value_equal (arg1, arg2); | |
7959 | } | |
7960 | ||
52ce6436 PH |
7961 | /* Total number of component associations in the aggregate starting at |
7962 | index PC in EXP. Assumes that index PC is the start of an | |
7963 | OP_AGGREGATE. */ | |
7964 | ||
7965 | static int | |
7966 | num_component_specs (struct expression *exp, int pc) | |
7967 | { | |
7968 | int n, m, i; | |
7969 | m = exp->elts[pc + 1].longconst; | |
7970 | pc += 3; | |
7971 | n = 0; | |
7972 | for (i = 0; i < m; i += 1) | |
7973 | { | |
7974 | switch (exp->elts[pc].opcode) | |
7975 | { | |
7976 | default: | |
7977 | n += 1; | |
7978 | break; | |
7979 | case OP_CHOICES: | |
7980 | n += exp->elts[pc + 1].longconst; | |
7981 | break; | |
7982 | } | |
7983 | ada_evaluate_subexp (NULL, exp, &pc, EVAL_SKIP); | |
7984 | } | |
7985 | return n; | |
7986 | } | |
7987 | ||
7988 | /* Assign the result of evaluating EXP starting at *POS to the INDEXth | |
7989 | component of LHS (a simple array or a record), updating *POS past | |
7990 | the expression, assuming that LHS is contained in CONTAINER. Does | |
7991 | not modify the inferior's memory, nor does it modify LHS (unless | |
7992 | LHS == CONTAINER). */ | |
7993 | ||
7994 | static void | |
7995 | assign_component (struct value *container, struct value *lhs, LONGEST index, | |
7996 | struct expression *exp, int *pos) | |
7997 | { | |
7998 | struct value *mark = value_mark (); | |
7999 | struct value *elt; | |
8000 | if (TYPE_CODE (value_type (lhs)) == TYPE_CODE_ARRAY) | |
8001 | { | |
22601c15 UW |
8002 | struct type *index_type = builtin_type (exp->gdbarch)->builtin_int; |
8003 | struct value *index_val = value_from_longest (index_type, index); | |
52ce6436 PH |
8004 | elt = unwrap_value (ada_value_subscript (lhs, 1, &index_val)); |
8005 | } | |
8006 | else | |
8007 | { | |
8008 | elt = ada_index_struct_field (index, lhs, 0, value_type (lhs)); | |
8009 | elt = ada_to_fixed_value (unwrap_value (elt)); | |
8010 | } | |
8011 | ||
8012 | if (exp->elts[*pos].opcode == OP_AGGREGATE) | |
8013 | assign_aggregate (container, elt, exp, pos, EVAL_NORMAL); | |
8014 | else | |
8015 | value_assign_to_component (container, elt, | |
8016 | ada_evaluate_subexp (NULL, exp, pos, | |
8017 | EVAL_NORMAL)); | |
8018 | ||
8019 | value_free_to_mark (mark); | |
8020 | } | |
8021 | ||
8022 | /* Assuming that LHS represents an lvalue having a record or array | |
8023 | type, and EXP->ELTS[*POS] is an OP_AGGREGATE, evaluate an assignment | |
8024 | of that aggregate's value to LHS, advancing *POS past the | |
8025 | aggregate. NOSIDE is as for evaluate_subexp. CONTAINER is an | |
8026 | lvalue containing LHS (possibly LHS itself). Does not modify | |
8027 | the inferior's memory, nor does it modify the contents of | |
8028 | LHS (unless == CONTAINER). Returns the modified CONTAINER. */ | |
8029 | ||
8030 | static struct value * | |
8031 | assign_aggregate (struct value *container, | |
8032 | struct value *lhs, struct expression *exp, | |
8033 | int *pos, enum noside noside) | |
8034 | { | |
8035 | struct type *lhs_type; | |
8036 | int n = exp->elts[*pos+1].longconst; | |
8037 | LONGEST low_index, high_index; | |
8038 | int num_specs; | |
8039 | LONGEST *indices; | |
8040 | int max_indices, num_indices; | |
8041 | int is_array_aggregate; | |
8042 | int i; | |
8043 | struct value *mark = value_mark (); | |
8044 | ||
8045 | *pos += 3; | |
8046 | if (noside != EVAL_NORMAL) | |
8047 | { | |
8048 | int i; | |
8049 | for (i = 0; i < n; i += 1) | |
8050 | ada_evaluate_subexp (NULL, exp, pos, noside); | |
8051 | return container; | |
8052 | } | |
8053 | ||
8054 | container = ada_coerce_ref (container); | |
8055 | if (ada_is_direct_array_type (value_type (container))) | |
8056 | container = ada_coerce_to_simple_array (container); | |
8057 | lhs = ada_coerce_ref (lhs); | |
8058 | if (!deprecated_value_modifiable (lhs)) | |
8059 | error (_("Left operand of assignment is not a modifiable lvalue.")); | |
8060 | ||
8061 | lhs_type = value_type (lhs); | |
8062 | if (ada_is_direct_array_type (lhs_type)) | |
8063 | { | |
8064 | lhs = ada_coerce_to_simple_array (lhs); | |
8065 | lhs_type = value_type (lhs); | |
8066 | low_index = TYPE_ARRAY_LOWER_BOUND_VALUE (lhs_type); | |
8067 | high_index = TYPE_ARRAY_UPPER_BOUND_VALUE (lhs_type); | |
8068 | is_array_aggregate = 1; | |
8069 | } | |
8070 | else if (TYPE_CODE (lhs_type) == TYPE_CODE_STRUCT) | |
8071 | { | |
8072 | low_index = 0; | |
8073 | high_index = num_visible_fields (lhs_type) - 1; | |
8074 | is_array_aggregate = 0; | |
8075 | } | |
8076 | else | |
8077 | error (_("Left-hand side must be array or record.")); | |
8078 | ||
8079 | num_specs = num_component_specs (exp, *pos - 3); | |
8080 | max_indices = 4 * num_specs + 4; | |
8081 | indices = alloca (max_indices * sizeof (indices[0])); | |
8082 | indices[0] = indices[1] = low_index - 1; | |
8083 | indices[2] = indices[3] = high_index + 1; | |
8084 | num_indices = 4; | |
8085 | ||
8086 | for (i = 0; i < n; i += 1) | |
8087 | { | |
8088 | switch (exp->elts[*pos].opcode) | |
8089 | { | |
8090 | case OP_CHOICES: | |
8091 | aggregate_assign_from_choices (container, lhs, exp, pos, indices, | |
8092 | &num_indices, max_indices, | |
8093 | low_index, high_index); | |
8094 | break; | |
8095 | case OP_POSITIONAL: | |
8096 | aggregate_assign_positional (container, lhs, exp, pos, indices, | |
8097 | &num_indices, max_indices, | |
8098 | low_index, high_index); | |
8099 | break; | |
8100 | case OP_OTHERS: | |
8101 | if (i != n-1) | |
8102 | error (_("Misplaced 'others' clause")); | |
8103 | aggregate_assign_others (container, lhs, exp, pos, indices, | |
8104 | num_indices, low_index, high_index); | |
8105 | break; | |
8106 | default: | |
8107 | error (_("Internal error: bad aggregate clause")); | |
8108 | } | |
8109 | } | |
8110 | ||
8111 | return container; | |
8112 | } | |
8113 | ||
8114 | /* Assign into the component of LHS indexed by the OP_POSITIONAL | |
8115 | construct at *POS, updating *POS past the construct, given that | |
8116 | the positions are relative to lower bound LOW, where HIGH is the | |
8117 | upper bound. Record the position in INDICES[0 .. MAX_INDICES-1] | |
8118 | updating *NUM_INDICES as needed. CONTAINER is as for | |
8119 | assign_aggregate. */ | |
8120 | static void | |
8121 | aggregate_assign_positional (struct value *container, | |
8122 | struct value *lhs, struct expression *exp, | |
8123 | int *pos, LONGEST *indices, int *num_indices, | |
8124 | int max_indices, LONGEST low, LONGEST high) | |
8125 | { | |
8126 | LONGEST ind = longest_to_int (exp->elts[*pos + 1].longconst) + low; | |
8127 | ||
8128 | if (ind - 1 == high) | |
e1d5a0d2 | 8129 | warning (_("Extra components in aggregate ignored.")); |
52ce6436 PH |
8130 | if (ind <= high) |
8131 | { | |
8132 | add_component_interval (ind, ind, indices, num_indices, max_indices); | |
8133 | *pos += 3; | |
8134 | assign_component (container, lhs, ind, exp, pos); | |
8135 | } | |
8136 | else | |
8137 | ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP); | |
8138 | } | |
8139 | ||
8140 | /* Assign into the components of LHS indexed by the OP_CHOICES | |
8141 | construct at *POS, updating *POS past the construct, given that | |
8142 | the allowable indices are LOW..HIGH. Record the indices assigned | |
8143 | to in INDICES[0 .. MAX_INDICES-1], updating *NUM_INDICES as | |
8144 | needed. CONTAINER is as for assign_aggregate. */ | |
8145 | static void | |
8146 | aggregate_assign_from_choices (struct value *container, | |
8147 | struct value *lhs, struct expression *exp, | |
8148 | int *pos, LONGEST *indices, int *num_indices, | |
8149 | int max_indices, LONGEST low, LONGEST high) | |
8150 | { | |
8151 | int j; | |
8152 | int n_choices = longest_to_int (exp->elts[*pos+1].longconst); | |
8153 | int choice_pos, expr_pc; | |
8154 | int is_array = ada_is_direct_array_type (value_type (lhs)); | |
8155 | ||
8156 | choice_pos = *pos += 3; | |
8157 | ||
8158 | for (j = 0; j < n_choices; j += 1) | |
8159 | ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP); | |
8160 | expr_pc = *pos; | |
8161 | ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP); | |
8162 | ||
8163 | for (j = 0; j < n_choices; j += 1) | |
8164 | { | |
8165 | LONGEST lower, upper; | |
8166 | enum exp_opcode op = exp->elts[choice_pos].opcode; | |
8167 | if (op == OP_DISCRETE_RANGE) | |
8168 | { | |
8169 | choice_pos += 1; | |
8170 | lower = value_as_long (ada_evaluate_subexp (NULL, exp, pos, | |
8171 | EVAL_NORMAL)); | |
8172 | upper = value_as_long (ada_evaluate_subexp (NULL, exp, pos, | |
8173 | EVAL_NORMAL)); | |
8174 | } | |
8175 | else if (is_array) | |
8176 | { | |
8177 | lower = value_as_long (ada_evaluate_subexp (NULL, exp, &choice_pos, | |
8178 | EVAL_NORMAL)); | |
8179 | upper = lower; | |
8180 | } | |
8181 | else | |
8182 | { | |
8183 | int ind; | |
8184 | char *name; | |
8185 | switch (op) | |
8186 | { | |
8187 | case OP_NAME: | |
8188 | name = &exp->elts[choice_pos + 2].string; | |
8189 | break; | |
8190 | case OP_VAR_VALUE: | |
8191 | name = SYMBOL_NATURAL_NAME (exp->elts[choice_pos + 2].symbol); | |
8192 | break; | |
8193 | default: | |
8194 | error (_("Invalid record component association.")); | |
8195 | } | |
8196 | ada_evaluate_subexp (NULL, exp, &choice_pos, EVAL_SKIP); | |
8197 | ind = 0; | |
8198 | if (! find_struct_field (name, value_type (lhs), 0, | |
8199 | NULL, NULL, NULL, NULL, &ind)) | |
8200 | error (_("Unknown component name: %s."), name); | |
8201 | lower = upper = ind; | |
8202 | } | |
8203 | ||
8204 | if (lower <= upper && (lower < low || upper > high)) | |
8205 | error (_("Index in component association out of bounds.")); | |
8206 | ||
8207 | add_component_interval (lower, upper, indices, num_indices, | |
8208 | max_indices); | |
8209 | while (lower <= upper) | |
8210 | { | |
8211 | int pos1; | |
8212 | pos1 = expr_pc; | |
8213 | assign_component (container, lhs, lower, exp, &pos1); | |
8214 | lower += 1; | |
8215 | } | |
8216 | } | |
8217 | } | |
8218 | ||
8219 | /* Assign the value of the expression in the OP_OTHERS construct in | |
8220 | EXP at *POS into the components of LHS indexed from LOW .. HIGH that | |
8221 | have not been previously assigned. The index intervals already assigned | |
8222 | are in INDICES[0 .. NUM_INDICES-1]. Updates *POS to after the | |
8223 | OP_OTHERS clause. CONTAINER is as for assign_aggregate*/ | |
8224 | static void | |
8225 | aggregate_assign_others (struct value *container, | |
8226 | struct value *lhs, struct expression *exp, | |
8227 | int *pos, LONGEST *indices, int num_indices, | |
8228 | LONGEST low, LONGEST high) | |
8229 | { | |
8230 | int i; | |
8231 | int expr_pc = *pos+1; | |
8232 | ||
8233 | for (i = 0; i < num_indices - 2; i += 2) | |
8234 | { | |
8235 | LONGEST ind; | |
8236 | for (ind = indices[i + 1] + 1; ind < indices[i + 2]; ind += 1) | |
8237 | { | |
8238 | int pos; | |
8239 | pos = expr_pc; | |
8240 | assign_component (container, lhs, ind, exp, &pos); | |
8241 | } | |
8242 | } | |
8243 | ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP); | |
8244 | } | |
8245 | ||
8246 | /* Add the interval [LOW .. HIGH] to the sorted set of intervals | |
8247 | [ INDICES[0] .. INDICES[1] ],..., [ INDICES[*SIZE-2] .. INDICES[*SIZE-1] ], | |
8248 | modifying *SIZE as needed. It is an error if *SIZE exceeds | |
8249 | MAX_SIZE. The resulting intervals do not overlap. */ | |
8250 | static void | |
8251 | add_component_interval (LONGEST low, LONGEST high, | |
8252 | LONGEST* indices, int *size, int max_size) | |
8253 | { | |
8254 | int i, j; | |
8255 | for (i = 0; i < *size; i += 2) { | |
8256 | if (high >= indices[i] && low <= indices[i + 1]) | |
8257 | { | |
8258 | int kh; | |
8259 | for (kh = i + 2; kh < *size; kh += 2) | |
8260 | if (high < indices[kh]) | |
8261 | break; | |
8262 | if (low < indices[i]) | |
8263 | indices[i] = low; | |
8264 | indices[i + 1] = indices[kh - 1]; | |
8265 | if (high > indices[i + 1]) | |
8266 | indices[i + 1] = high; | |
8267 | memcpy (indices + i + 2, indices + kh, *size - kh); | |
8268 | *size -= kh - i - 2; | |
8269 | return; | |
8270 | } | |
8271 | else if (high < indices[i]) | |
8272 | break; | |
8273 | } | |
8274 | ||
8275 | if (*size == max_size) | |
8276 | error (_("Internal error: miscounted aggregate components.")); | |
8277 | *size += 2; | |
8278 | for (j = *size-1; j >= i+2; j -= 1) | |
8279 | indices[j] = indices[j - 2]; | |
8280 | indices[i] = low; | |
8281 | indices[i + 1] = high; | |
8282 | } | |
8283 | ||
6e48bd2c JB |
8284 | /* Perform and Ada cast of ARG2 to type TYPE if the type of ARG2 |
8285 | is different. */ | |
8286 | ||
8287 | static struct value * | |
8288 | ada_value_cast (struct type *type, struct value *arg2, enum noside noside) | |
8289 | { | |
8290 | if (type == ada_check_typedef (value_type (arg2))) | |
8291 | return arg2; | |
8292 | ||
8293 | if (ada_is_fixed_point_type (type)) | |
8294 | return (cast_to_fixed (type, arg2)); | |
8295 | ||
8296 | if (ada_is_fixed_point_type (value_type (arg2))) | |
a53b7a21 | 8297 | return cast_from_fixed (type, arg2); |
6e48bd2c JB |
8298 | |
8299 | return value_cast (type, arg2); | |
8300 | } | |
8301 | ||
284614f0 JB |
8302 | /* Evaluating Ada expressions, and printing their result. |
8303 | ------------------------------------------------------ | |
8304 | ||
21649b50 JB |
8305 | 1. Introduction: |
8306 | ---------------- | |
8307 | ||
284614f0 JB |
8308 | We usually evaluate an Ada expression in order to print its value. |
8309 | We also evaluate an expression in order to print its type, which | |
8310 | happens during the EVAL_AVOID_SIDE_EFFECTS phase of the evaluation, | |
8311 | but we'll focus mostly on the EVAL_NORMAL phase. In practice, the | |
8312 | EVAL_AVOID_SIDE_EFFECTS phase allows us to simplify certain aspects of | |
8313 | the evaluation compared to the EVAL_NORMAL, but is otherwise very | |
8314 | similar. | |
8315 | ||
8316 | Evaluating expressions is a little more complicated for Ada entities | |
8317 | than it is for entities in languages such as C. The main reason for | |
8318 | this is that Ada provides types whose definition might be dynamic. | |
8319 | One example of such types is variant records. Or another example | |
8320 | would be an array whose bounds can only be known at run time. | |
8321 | ||
8322 | The following description is a general guide as to what should be | |
8323 | done (and what should NOT be done) in order to evaluate an expression | |
8324 | involving such types, and when. This does not cover how the semantic | |
8325 | information is encoded by GNAT as this is covered separatly. For the | |
8326 | document used as the reference for the GNAT encoding, see exp_dbug.ads | |
8327 | in the GNAT sources. | |
8328 | ||
8329 | Ideally, we should embed each part of this description next to its | |
8330 | associated code. Unfortunately, the amount of code is so vast right | |
8331 | now that it's hard to see whether the code handling a particular | |
8332 | situation might be duplicated or not. One day, when the code is | |
8333 | cleaned up, this guide might become redundant with the comments | |
8334 | inserted in the code, and we might want to remove it. | |
8335 | ||
21649b50 JB |
8336 | 2. ``Fixing'' an Entity, the Simple Case: |
8337 | ----------------------------------------- | |
8338 | ||
284614f0 JB |
8339 | When evaluating Ada expressions, the tricky issue is that they may |
8340 | reference entities whose type contents and size are not statically | |
8341 | known. Consider for instance a variant record: | |
8342 | ||
8343 | type Rec (Empty : Boolean := True) is record | |
8344 | case Empty is | |
8345 | when True => null; | |
8346 | when False => Value : Integer; | |
8347 | end case; | |
8348 | end record; | |
8349 | Yes : Rec := (Empty => False, Value => 1); | |
8350 | No : Rec := (empty => True); | |
8351 | ||
8352 | The size and contents of that record depends on the value of the | |
8353 | descriminant (Rec.Empty). At this point, neither the debugging | |
8354 | information nor the associated type structure in GDB are able to | |
8355 | express such dynamic types. So what the debugger does is to create | |
8356 | "fixed" versions of the type that applies to the specific object. | |
8357 | We also informally refer to this opperation as "fixing" an object, | |
8358 | which means creating its associated fixed type. | |
8359 | ||
8360 | Example: when printing the value of variable "Yes" above, its fixed | |
8361 | type would look like this: | |
8362 | ||
8363 | type Rec is record | |
8364 | Empty : Boolean; | |
8365 | Value : Integer; | |
8366 | end record; | |
8367 | ||
8368 | On the other hand, if we printed the value of "No", its fixed type | |
8369 | would become: | |
8370 | ||
8371 | type Rec is record | |
8372 | Empty : Boolean; | |
8373 | end record; | |
8374 | ||
8375 | Things become a little more complicated when trying to fix an entity | |
8376 | with a dynamic type that directly contains another dynamic type, | |
8377 | such as an array of variant records, for instance. There are | |
8378 | two possible cases: Arrays, and records. | |
8379 | ||
21649b50 JB |
8380 | 3. ``Fixing'' Arrays: |
8381 | --------------------- | |
8382 | ||
8383 | The type structure in GDB describes an array in terms of its bounds, | |
8384 | and the type of its elements. By design, all elements in the array | |
8385 | have the same type and we cannot represent an array of variant elements | |
8386 | using the current type structure in GDB. When fixing an array, | |
8387 | we cannot fix the array element, as we would potentially need one | |
8388 | fixed type per element of the array. As a result, the best we can do | |
8389 | when fixing an array is to produce an array whose bounds and size | |
8390 | are correct (allowing us to read it from memory), but without having | |
8391 | touched its element type. Fixing each element will be done later, | |
8392 | when (if) necessary. | |
8393 | ||
8394 | Arrays are a little simpler to handle than records, because the same | |
8395 | amount of memory is allocated for each element of the array, even if | |
1b536f04 | 8396 | the amount of space actually used by each element differs from element |
21649b50 | 8397 | to element. Consider for instance the following array of type Rec: |
284614f0 JB |
8398 | |
8399 | type Rec_Array is array (1 .. 2) of Rec; | |
8400 | ||
1b536f04 JB |
8401 | The actual amount of memory occupied by each element might be different |
8402 | from element to element, depending on the value of their discriminant. | |
21649b50 | 8403 | But the amount of space reserved for each element in the array remains |
1b536f04 | 8404 | fixed regardless. So we simply need to compute that size using |
21649b50 JB |
8405 | the debugging information available, from which we can then determine |
8406 | the array size (we multiply the number of elements of the array by | |
8407 | the size of each element). | |
8408 | ||
8409 | The simplest case is when we have an array of a constrained element | |
8410 | type. For instance, consider the following type declarations: | |
8411 | ||
8412 | type Bounded_String (Max_Size : Integer) is | |
8413 | Length : Integer; | |
8414 | Buffer : String (1 .. Max_Size); | |
8415 | end record; | |
8416 | type Bounded_String_Array is array (1 ..2) of Bounded_String (80); | |
8417 | ||
8418 | In this case, the compiler describes the array as an array of | |
8419 | variable-size elements (identified by its XVS suffix) for which | |
8420 | the size can be read in the parallel XVZ variable. | |
8421 | ||
8422 | In the case of an array of an unconstrained element type, the compiler | |
8423 | wraps the array element inside a private PAD type. This type should not | |
8424 | be shown to the user, and must be "unwrap"'ed before printing. Note | |
284614f0 JB |
8425 | that we also use the adjective "aligner" in our code to designate |
8426 | these wrapper types. | |
8427 | ||
1b536f04 | 8428 | In some cases, the size allocated for each element is statically |
21649b50 JB |
8429 | known. In that case, the PAD type already has the correct size, |
8430 | and the array element should remain unfixed. | |
8431 | ||
8432 | But there are cases when this size is not statically known. | |
8433 | For instance, assuming that "Five" is an integer variable: | |
284614f0 JB |
8434 | |
8435 | type Dynamic is array (1 .. Five) of Integer; | |
8436 | type Wrapper (Has_Length : Boolean := False) is record | |
8437 | Data : Dynamic; | |
8438 | case Has_Length is | |
8439 | when True => Length : Integer; | |
8440 | when False => null; | |
8441 | end case; | |
8442 | end record; | |
8443 | type Wrapper_Array is array (1 .. 2) of Wrapper; | |
8444 | ||
8445 | Hello : Wrapper_Array := (others => (Has_Length => True, | |
8446 | Data => (others => 17), | |
8447 | Length => 1)); | |
8448 | ||
8449 | ||
8450 | The debugging info would describe variable Hello as being an | |
8451 | array of a PAD type. The size of that PAD type is not statically | |
8452 | known, but can be determined using a parallel XVZ variable. | |
8453 | In that case, a copy of the PAD type with the correct size should | |
8454 | be used for the fixed array. | |
8455 | ||
21649b50 JB |
8456 | 3. ``Fixing'' record type objects: |
8457 | ---------------------------------- | |
8458 | ||
8459 | Things are slightly different from arrays in the case of dynamic | |
284614f0 JB |
8460 | record types. In this case, in order to compute the associated |
8461 | fixed type, we need to determine the size and offset of each of | |
8462 | its components. This, in turn, requires us to compute the fixed | |
8463 | type of each of these components. | |
8464 | ||
8465 | Consider for instance the example: | |
8466 | ||
8467 | type Bounded_String (Max_Size : Natural) is record | |
8468 | Str : String (1 .. Max_Size); | |
8469 | Length : Natural; | |
8470 | end record; | |
8471 | My_String : Bounded_String (Max_Size => 10); | |
8472 | ||
8473 | In that case, the position of field "Length" depends on the size | |
8474 | of field Str, which itself depends on the value of the Max_Size | |
21649b50 | 8475 | discriminant. In order to fix the type of variable My_String, |
284614f0 JB |
8476 | we need to fix the type of field Str. Therefore, fixing a variant |
8477 | record requires us to fix each of its components. | |
8478 | ||
8479 | However, if a component does not have a dynamic size, the component | |
8480 | should not be fixed. In particular, fields that use a PAD type | |
8481 | should not fixed. Here is an example where this might happen | |
8482 | (assuming type Rec above): | |
8483 | ||
8484 | type Container (Big : Boolean) is record | |
8485 | First : Rec; | |
8486 | After : Integer; | |
8487 | case Big is | |
8488 | when True => Another : Integer; | |
8489 | when False => null; | |
8490 | end case; | |
8491 | end record; | |
8492 | My_Container : Container := (Big => False, | |
8493 | First => (Empty => True), | |
8494 | After => 42); | |
8495 | ||
8496 | In that example, the compiler creates a PAD type for component First, | |
8497 | whose size is constant, and then positions the component After just | |
8498 | right after it. The offset of component After is therefore constant | |
8499 | in this case. | |
8500 | ||
8501 | The debugger computes the position of each field based on an algorithm | |
8502 | that uses, among other things, the actual position and size of the field | |
21649b50 JB |
8503 | preceding it. Let's now imagine that the user is trying to print |
8504 | the value of My_Container. If the type fixing was recursive, we would | |
284614f0 JB |
8505 | end up computing the offset of field After based on the size of the |
8506 | fixed version of field First. And since in our example First has | |
8507 | only one actual field, the size of the fixed type is actually smaller | |
8508 | than the amount of space allocated to that field, and thus we would | |
8509 | compute the wrong offset of field After. | |
8510 | ||
21649b50 JB |
8511 | To make things more complicated, we need to watch out for dynamic |
8512 | components of variant records (identified by the ___XVL suffix in | |
8513 | the component name). Even if the target type is a PAD type, the size | |
8514 | of that type might not be statically known. So the PAD type needs | |
8515 | to be unwrapped and the resulting type needs to be fixed. Otherwise, | |
8516 | we might end up with the wrong size for our component. This can be | |
8517 | observed with the following type declarations: | |
284614f0 JB |
8518 | |
8519 | type Octal is new Integer range 0 .. 7; | |
8520 | type Octal_Array is array (Positive range <>) of Octal; | |
8521 | pragma Pack (Octal_Array); | |
8522 | ||
8523 | type Octal_Buffer (Size : Positive) is record | |
8524 | Buffer : Octal_Array (1 .. Size); | |
8525 | Length : Integer; | |
8526 | end record; | |
8527 | ||
8528 | In that case, Buffer is a PAD type whose size is unset and needs | |
8529 | to be computed by fixing the unwrapped type. | |
8530 | ||
21649b50 JB |
8531 | 4. When to ``Fix'' un-``Fixed'' sub-elements of an entity: |
8532 | ---------------------------------------------------------- | |
8533 | ||
8534 | Lastly, when should the sub-elements of an entity that remained unfixed | |
284614f0 JB |
8535 | thus far, be actually fixed? |
8536 | ||
8537 | The answer is: Only when referencing that element. For instance | |
8538 | when selecting one component of a record, this specific component | |
8539 | should be fixed at that point in time. Or when printing the value | |
8540 | of a record, each component should be fixed before its value gets | |
8541 | printed. Similarly for arrays, the element of the array should be | |
8542 | fixed when printing each element of the array, or when extracting | |
8543 | one element out of that array. On the other hand, fixing should | |
8544 | not be performed on the elements when taking a slice of an array! | |
8545 | ||
8546 | Note that one of the side-effects of miscomputing the offset and | |
8547 | size of each field is that we end up also miscomputing the size | |
8548 | of the containing type. This can have adverse results when computing | |
8549 | the value of an entity. GDB fetches the value of an entity based | |
8550 | on the size of its type, and thus a wrong size causes GDB to fetch | |
8551 | the wrong amount of memory. In the case where the computed size is | |
8552 | too small, GDB fetches too little data to print the value of our | |
8553 | entiry. Results in this case as unpredicatble, as we usually read | |
8554 | past the buffer containing the data =:-o. */ | |
8555 | ||
8556 | /* Implement the evaluate_exp routine in the exp_descriptor structure | |
8557 | for the Ada language. */ | |
8558 | ||
52ce6436 | 8559 | static struct value * |
ebf56fd3 | 8560 | ada_evaluate_subexp (struct type *expect_type, struct expression *exp, |
4c4b4cd2 | 8561 | int *pos, enum noside noside) |
14f9c5c9 AS |
8562 | { |
8563 | enum exp_opcode op; | |
14f9c5c9 AS |
8564 | int tem, tem2, tem3; |
8565 | int pc; | |
8566 | struct value *arg1 = NULL, *arg2 = NULL, *arg3; | |
8567 | struct type *type; | |
52ce6436 | 8568 | int nargs, oplen; |
d2e4a39e | 8569 | struct value **argvec; |
14f9c5c9 | 8570 | |
d2e4a39e AS |
8571 | pc = *pos; |
8572 | *pos += 1; | |
14f9c5c9 AS |
8573 | op = exp->elts[pc].opcode; |
8574 | ||
d2e4a39e | 8575 | switch (op) |
14f9c5c9 AS |
8576 | { |
8577 | default: | |
8578 | *pos -= 1; | |
6e48bd2c JB |
8579 | arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside); |
8580 | arg1 = unwrap_value (arg1); | |
8581 | ||
8582 | /* If evaluating an OP_DOUBLE and an EXPECT_TYPE was provided, | |
8583 | then we need to perform the conversion manually, because | |
8584 | evaluate_subexp_standard doesn't do it. This conversion is | |
8585 | necessary in Ada because the different kinds of float/fixed | |
8586 | types in Ada have different representations. | |
8587 | ||
8588 | Similarly, we need to perform the conversion from OP_LONG | |
8589 | ourselves. */ | |
8590 | if ((op == OP_DOUBLE || op == OP_LONG) && expect_type != NULL) | |
8591 | arg1 = ada_value_cast (expect_type, arg1, noside); | |
8592 | ||
8593 | return arg1; | |
4c4b4cd2 PH |
8594 | |
8595 | case OP_STRING: | |
8596 | { | |
76a01679 JB |
8597 | struct value *result; |
8598 | *pos -= 1; | |
8599 | result = evaluate_subexp_standard (expect_type, exp, pos, noside); | |
8600 | /* The result type will have code OP_STRING, bashed there from | |
8601 | OP_ARRAY. Bash it back. */ | |
df407dfe AC |
8602 | if (TYPE_CODE (value_type (result)) == TYPE_CODE_STRING) |
8603 | TYPE_CODE (value_type (result)) = TYPE_CODE_ARRAY; | |
76a01679 | 8604 | return result; |
4c4b4cd2 | 8605 | } |
14f9c5c9 AS |
8606 | |
8607 | case UNOP_CAST: | |
8608 | (*pos) += 2; | |
8609 | type = exp->elts[pc + 1].type; | |
8610 | arg1 = evaluate_subexp (type, exp, pos, noside); | |
8611 | if (noside == EVAL_SKIP) | |
4c4b4cd2 | 8612 | goto nosideret; |
6e48bd2c | 8613 | arg1 = ada_value_cast (type, arg1, noside); |
14f9c5c9 AS |
8614 | return arg1; |
8615 | ||
4c4b4cd2 PH |
8616 | case UNOP_QUAL: |
8617 | (*pos) += 2; | |
8618 | type = exp->elts[pc + 1].type; | |
8619 | return ada_evaluate_subexp (type, exp, pos, noside); | |
8620 | ||
14f9c5c9 AS |
8621 | case BINOP_ASSIGN: |
8622 | arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside); | |
52ce6436 PH |
8623 | if (exp->elts[*pos].opcode == OP_AGGREGATE) |
8624 | { | |
8625 | arg1 = assign_aggregate (arg1, arg1, exp, pos, noside); | |
8626 | if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS) | |
8627 | return arg1; | |
8628 | return ada_value_assign (arg1, arg1); | |
8629 | } | |
003f3813 JB |
8630 | /* Force the evaluation of the rhs ARG2 to the type of the lhs ARG1, |
8631 | except if the lhs of our assignment is a convenience variable. | |
8632 | In the case of assigning to a convenience variable, the lhs | |
8633 | should be exactly the result of the evaluation of the rhs. */ | |
8634 | type = value_type (arg1); | |
8635 | if (VALUE_LVAL (arg1) == lval_internalvar) | |
8636 | type = NULL; | |
8637 | arg2 = evaluate_subexp (type, exp, pos, noside); | |
14f9c5c9 | 8638 | if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS) |
4c4b4cd2 | 8639 | return arg1; |
df407dfe AC |
8640 | if (ada_is_fixed_point_type (value_type (arg1))) |
8641 | arg2 = cast_to_fixed (value_type (arg1), arg2); | |
8642 | else if (ada_is_fixed_point_type (value_type (arg2))) | |
76a01679 | 8643 | error |
323e0a4a | 8644 | (_("Fixed-point values must be assigned to fixed-point variables")); |
d2e4a39e | 8645 | else |
df407dfe | 8646 | arg2 = coerce_for_assign (value_type (arg1), arg2); |
4c4b4cd2 | 8647 | return ada_value_assign (arg1, arg2); |
14f9c5c9 AS |
8648 | |
8649 | case BINOP_ADD: | |
8650 | arg1 = evaluate_subexp_with_coercion (exp, pos, noside); | |
8651 | arg2 = evaluate_subexp_with_coercion (exp, pos, noside); | |
8652 | if (noside == EVAL_SKIP) | |
4c4b4cd2 | 8653 | goto nosideret; |
2ac8a782 JB |
8654 | if (TYPE_CODE (value_type (arg1)) == TYPE_CODE_PTR) |
8655 | return (value_from_longest | |
8656 | (value_type (arg1), | |
8657 | value_as_long (arg1) + value_as_long (arg2))); | |
df407dfe AC |
8658 | if ((ada_is_fixed_point_type (value_type (arg1)) |
8659 | || ada_is_fixed_point_type (value_type (arg2))) | |
8660 | && value_type (arg1) != value_type (arg2)) | |
323e0a4a | 8661 | error (_("Operands of fixed-point addition must have the same type")); |
b7789565 JB |
8662 | /* Do the addition, and cast the result to the type of the first |
8663 | argument. We cannot cast the result to a reference type, so if | |
8664 | ARG1 is a reference type, find its underlying type. */ | |
8665 | type = value_type (arg1); | |
8666 | while (TYPE_CODE (type) == TYPE_CODE_REF) | |
8667 | type = TYPE_TARGET_TYPE (type); | |
f44316fa | 8668 | binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2); |
89eef114 | 8669 | return value_cast (type, value_binop (arg1, arg2, BINOP_ADD)); |
14f9c5c9 AS |
8670 | |
8671 | case BINOP_SUB: | |
8672 | arg1 = evaluate_subexp_with_coercion (exp, pos, noside); | |
8673 | arg2 = evaluate_subexp_with_coercion (exp, pos, noside); | |
8674 | if (noside == EVAL_SKIP) | |
4c4b4cd2 | 8675 | goto nosideret; |
2ac8a782 JB |
8676 | if (TYPE_CODE (value_type (arg1)) == TYPE_CODE_PTR) |
8677 | return (value_from_longest | |
8678 | (value_type (arg1), | |
8679 | value_as_long (arg1) - value_as_long (arg2))); | |
df407dfe AC |
8680 | if ((ada_is_fixed_point_type (value_type (arg1)) |
8681 | || ada_is_fixed_point_type (value_type (arg2))) | |
8682 | && value_type (arg1) != value_type (arg2)) | |
323e0a4a | 8683 | error (_("Operands of fixed-point subtraction must have the same type")); |
b7789565 JB |
8684 | /* Do the substraction, and cast the result to the type of the first |
8685 | argument. We cannot cast the result to a reference type, so if | |
8686 | ARG1 is a reference type, find its underlying type. */ | |
8687 | type = value_type (arg1); | |
8688 | while (TYPE_CODE (type) == TYPE_CODE_REF) | |
8689 | type = TYPE_TARGET_TYPE (type); | |
f44316fa | 8690 | binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2); |
89eef114 | 8691 | return value_cast (type, value_binop (arg1, arg2, BINOP_SUB)); |
14f9c5c9 AS |
8692 | |
8693 | case BINOP_MUL: | |
8694 | case BINOP_DIV: | |
e1578042 JB |
8695 | case BINOP_REM: |
8696 | case BINOP_MOD: | |
14f9c5c9 AS |
8697 | arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside); |
8698 | arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside); | |
8699 | if (noside == EVAL_SKIP) | |
4c4b4cd2 | 8700 | goto nosideret; |
e1578042 | 8701 | else if (noside == EVAL_AVOID_SIDE_EFFECTS) |
9c2be529 JB |
8702 | { |
8703 | binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2); | |
8704 | return value_zero (value_type (arg1), not_lval); | |
8705 | } | |
14f9c5c9 | 8706 | else |
4c4b4cd2 | 8707 | { |
a53b7a21 | 8708 | type = builtin_type (exp->gdbarch)->builtin_double; |
df407dfe | 8709 | if (ada_is_fixed_point_type (value_type (arg1))) |
a53b7a21 | 8710 | arg1 = cast_from_fixed (type, arg1); |
df407dfe | 8711 | if (ada_is_fixed_point_type (value_type (arg2))) |
a53b7a21 | 8712 | arg2 = cast_from_fixed (type, arg2); |
f44316fa | 8713 | binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2); |
4c4b4cd2 PH |
8714 | return ada_value_binop (arg1, arg2, op); |
8715 | } | |
8716 | ||
4c4b4cd2 PH |
8717 | case BINOP_EQUAL: |
8718 | case BINOP_NOTEQUAL: | |
14f9c5c9 | 8719 | arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside); |
df407dfe | 8720 | arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside); |
14f9c5c9 | 8721 | if (noside == EVAL_SKIP) |
76a01679 | 8722 | goto nosideret; |
4c4b4cd2 | 8723 | if (noside == EVAL_AVOID_SIDE_EFFECTS) |
76a01679 | 8724 | tem = 0; |
4c4b4cd2 | 8725 | else |
f44316fa UW |
8726 | { |
8727 | binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2); | |
8728 | tem = ada_value_equal (arg1, arg2); | |
8729 | } | |
4c4b4cd2 | 8730 | if (op == BINOP_NOTEQUAL) |
76a01679 | 8731 | tem = !tem; |
fbb06eb1 UW |
8732 | type = language_bool_type (exp->language_defn, exp->gdbarch); |
8733 | return value_from_longest (type, (LONGEST) tem); | |
4c4b4cd2 PH |
8734 | |
8735 | case UNOP_NEG: | |
8736 | arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside); | |
8737 | if (noside == EVAL_SKIP) | |
8738 | goto nosideret; | |
df407dfe AC |
8739 | else if (ada_is_fixed_point_type (value_type (arg1))) |
8740 | return value_cast (value_type (arg1), value_neg (arg1)); | |
14f9c5c9 | 8741 | else |
f44316fa UW |
8742 | { |
8743 | unop_promote (exp->language_defn, exp->gdbarch, &arg1); | |
8744 | return value_neg (arg1); | |
8745 | } | |
4c4b4cd2 | 8746 | |
2330c6c6 JB |
8747 | case BINOP_LOGICAL_AND: |
8748 | case BINOP_LOGICAL_OR: | |
8749 | case UNOP_LOGICAL_NOT: | |
000d5124 JB |
8750 | { |
8751 | struct value *val; | |
8752 | ||
8753 | *pos -= 1; | |
8754 | val = evaluate_subexp_standard (expect_type, exp, pos, noside); | |
fbb06eb1 UW |
8755 | type = language_bool_type (exp->language_defn, exp->gdbarch); |
8756 | return value_cast (type, val); | |
000d5124 | 8757 | } |
2330c6c6 JB |
8758 | |
8759 | case BINOP_BITWISE_AND: | |
8760 | case BINOP_BITWISE_IOR: | |
8761 | case BINOP_BITWISE_XOR: | |
000d5124 JB |
8762 | { |
8763 | struct value *val; | |
8764 | ||
8765 | arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS); | |
8766 | *pos = pc; | |
8767 | val = evaluate_subexp_standard (expect_type, exp, pos, noside); | |
8768 | ||
8769 | return value_cast (value_type (arg1), val); | |
8770 | } | |
2330c6c6 | 8771 | |
14f9c5c9 AS |
8772 | case OP_VAR_VALUE: |
8773 | *pos -= 1; | |
6799def4 | 8774 | |
14f9c5c9 | 8775 | if (noside == EVAL_SKIP) |
4c4b4cd2 PH |
8776 | { |
8777 | *pos += 4; | |
8778 | goto nosideret; | |
8779 | } | |
8780 | else if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN) | |
76a01679 JB |
8781 | /* Only encountered when an unresolved symbol occurs in a |
8782 | context other than a function call, in which case, it is | |
52ce6436 | 8783 | invalid. */ |
323e0a4a | 8784 | error (_("Unexpected unresolved symbol, %s, during evaluation"), |
4c4b4cd2 | 8785 | SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol)); |
14f9c5c9 | 8786 | else if (noside == EVAL_AVOID_SIDE_EFFECTS) |
4c4b4cd2 | 8787 | { |
0c1f74cf | 8788 | type = static_unwrap_type (SYMBOL_TYPE (exp->elts[pc + 2].symbol)); |
31dbc1c5 JB |
8789 | /* Check to see if this is a tagged type. We also need to handle |
8790 | the case where the type is a reference to a tagged type, but | |
8791 | we have to be careful to exclude pointers to tagged types. | |
8792 | The latter should be shown as usual (as a pointer), whereas | |
8793 | a reference should mostly be transparent to the user. */ | |
8794 | if (ada_is_tagged_type (type, 0) | |
8795 | || (TYPE_CODE(type) == TYPE_CODE_REF | |
8796 | && ada_is_tagged_type (TYPE_TARGET_TYPE (type), 0))) | |
0c1f74cf JB |
8797 | { |
8798 | /* Tagged types are a little special in the fact that the real | |
8799 | type is dynamic and can only be determined by inspecting the | |
8800 | object's tag. This means that we need to get the object's | |
8801 | value first (EVAL_NORMAL) and then extract the actual object | |
8802 | type from its tag. | |
8803 | ||
8804 | Note that we cannot skip the final step where we extract | |
8805 | the object type from its tag, because the EVAL_NORMAL phase | |
8806 | results in dynamic components being resolved into fixed ones. | |
8807 | This can cause problems when trying to print the type | |
8808 | description of tagged types whose parent has a dynamic size: | |
8809 | We use the type name of the "_parent" component in order | |
8810 | to print the name of the ancestor type in the type description. | |
8811 | If that component had a dynamic size, the resolution into | |
8812 | a fixed type would result in the loss of that type name, | |
8813 | thus preventing us from printing the name of the ancestor | |
8814 | type in the type description. */ | |
b79819ba JB |
8815 | struct type *actual_type; |
8816 | ||
0c1f74cf | 8817 | arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_NORMAL); |
b79819ba JB |
8818 | actual_type = type_from_tag (ada_value_tag (arg1)); |
8819 | if (actual_type == NULL) | |
8820 | /* If, for some reason, we were unable to determine | |
8821 | the actual type from the tag, then use the static | |
8822 | approximation that we just computed as a fallback. | |
8823 | This can happen if the debugging information is | |
8824 | incomplete, for instance. */ | |
8825 | actual_type = type; | |
8826 | ||
8827 | return value_zero (actual_type, not_lval); | |
0c1f74cf JB |
8828 | } |
8829 | ||
4c4b4cd2 PH |
8830 | *pos += 4; |
8831 | return value_zero | |
8832 | (to_static_fixed_type | |
8833 | (static_unwrap_type (SYMBOL_TYPE (exp->elts[pc + 2].symbol))), | |
8834 | not_lval); | |
8835 | } | |
d2e4a39e | 8836 | else |
4c4b4cd2 | 8837 | { |
284614f0 JB |
8838 | arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside); |
8839 | arg1 = unwrap_value (arg1); | |
4c4b4cd2 PH |
8840 | return ada_to_fixed_value (arg1); |
8841 | } | |
8842 | ||
8843 | case OP_FUNCALL: | |
8844 | (*pos) += 2; | |
8845 | ||
8846 | /* Allocate arg vector, including space for the function to be | |
8847 | called in argvec[0] and a terminating NULL. */ | |
8848 | nargs = longest_to_int (exp->elts[pc + 1].longconst); | |
8849 | argvec = | |
8850 | (struct value **) alloca (sizeof (struct value *) * (nargs + 2)); | |
8851 | ||
8852 | if (exp->elts[*pos].opcode == OP_VAR_VALUE | |
76a01679 | 8853 | && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN) |
323e0a4a | 8854 | error (_("Unexpected unresolved symbol, %s, during evaluation"), |
4c4b4cd2 PH |
8855 | SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol)); |
8856 | else | |
8857 | { | |
8858 | for (tem = 0; tem <= nargs; tem += 1) | |
8859 | argvec[tem] = evaluate_subexp (NULL_TYPE, exp, pos, noside); | |
8860 | argvec[tem] = 0; | |
8861 | ||
8862 | if (noside == EVAL_SKIP) | |
8863 | goto nosideret; | |
8864 | } | |
8865 | ||
ad82864c JB |
8866 | if (ada_is_constrained_packed_array_type |
8867 | (desc_base_type (value_type (argvec[0])))) | |
4c4b4cd2 | 8868 | argvec[0] = ada_coerce_to_simple_array (argvec[0]); |
284614f0 JB |
8869 | else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_ARRAY |
8870 | && TYPE_FIELD_BITSIZE (value_type (argvec[0]), 0) != 0) | |
8871 | /* This is a packed array that has already been fixed, and | |
8872 | therefore already coerced to a simple array. Nothing further | |
8873 | to do. */ | |
8874 | ; | |
df407dfe AC |
8875 | else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_REF |
8876 | || (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_ARRAY | |
76a01679 | 8877 | && VALUE_LVAL (argvec[0]) == lval_memory)) |
4c4b4cd2 PH |
8878 | argvec[0] = value_addr (argvec[0]); |
8879 | ||
df407dfe | 8880 | type = ada_check_typedef (value_type (argvec[0])); |
4c4b4cd2 PH |
8881 | if (TYPE_CODE (type) == TYPE_CODE_PTR) |
8882 | { | |
61ee279c | 8883 | switch (TYPE_CODE (ada_check_typedef (TYPE_TARGET_TYPE (type)))) |
4c4b4cd2 PH |
8884 | { |
8885 | case TYPE_CODE_FUNC: | |
61ee279c | 8886 | type = ada_check_typedef (TYPE_TARGET_TYPE (type)); |
4c4b4cd2 PH |
8887 | break; |
8888 | case TYPE_CODE_ARRAY: | |
8889 | break; | |
8890 | case TYPE_CODE_STRUCT: | |
8891 | if (noside != EVAL_AVOID_SIDE_EFFECTS) | |
8892 | argvec[0] = ada_value_ind (argvec[0]); | |
61ee279c | 8893 | type = ada_check_typedef (TYPE_TARGET_TYPE (type)); |
4c4b4cd2 PH |
8894 | break; |
8895 | default: | |
323e0a4a | 8896 | error (_("cannot subscript or call something of type `%s'"), |
df407dfe | 8897 | ada_type_name (value_type (argvec[0]))); |
4c4b4cd2 PH |
8898 | break; |
8899 | } | |
8900 | } | |
8901 | ||
8902 | switch (TYPE_CODE (type)) | |
8903 | { | |
8904 | case TYPE_CODE_FUNC: | |
8905 | if (noside == EVAL_AVOID_SIDE_EFFECTS) | |
8906 | return allocate_value (TYPE_TARGET_TYPE (type)); | |
8907 | return call_function_by_hand (argvec[0], nargs, argvec + 1); | |
8908 | case TYPE_CODE_STRUCT: | |
8909 | { | |
8910 | int arity; | |
8911 | ||
4c4b4cd2 PH |
8912 | arity = ada_array_arity (type); |
8913 | type = ada_array_element_type (type, nargs); | |
8914 | if (type == NULL) | |
323e0a4a | 8915 | error (_("cannot subscript or call a record")); |
4c4b4cd2 | 8916 | if (arity != nargs) |
323e0a4a | 8917 | error (_("wrong number of subscripts; expecting %d"), arity); |
4c4b4cd2 | 8918 | if (noside == EVAL_AVOID_SIDE_EFFECTS) |
0a07e705 | 8919 | return value_zero (ada_aligned_type (type), lval_memory); |
4c4b4cd2 PH |
8920 | return |
8921 | unwrap_value (ada_value_subscript | |
8922 | (argvec[0], nargs, argvec + 1)); | |
8923 | } | |
8924 | case TYPE_CODE_ARRAY: | |
8925 | if (noside == EVAL_AVOID_SIDE_EFFECTS) | |
8926 | { | |
8927 | type = ada_array_element_type (type, nargs); | |
8928 | if (type == NULL) | |
323e0a4a | 8929 | error (_("element type of array unknown")); |
4c4b4cd2 | 8930 | else |
0a07e705 | 8931 | return value_zero (ada_aligned_type (type), lval_memory); |
4c4b4cd2 PH |
8932 | } |
8933 | return | |
8934 | unwrap_value (ada_value_subscript | |
8935 | (ada_coerce_to_simple_array (argvec[0]), | |
8936 | nargs, argvec + 1)); | |
8937 | case TYPE_CODE_PTR: /* Pointer to array */ | |
8938 | type = to_fixed_array_type (TYPE_TARGET_TYPE (type), NULL, 1); | |
8939 | if (noside == EVAL_AVOID_SIDE_EFFECTS) | |
8940 | { | |
8941 | type = ada_array_element_type (type, nargs); | |
8942 | if (type == NULL) | |
323e0a4a | 8943 | error (_("element type of array unknown")); |
4c4b4cd2 | 8944 | else |
0a07e705 | 8945 | return value_zero (ada_aligned_type (type), lval_memory); |
4c4b4cd2 PH |
8946 | } |
8947 | return | |
8948 | unwrap_value (ada_value_ptr_subscript (argvec[0], type, | |
8949 | nargs, argvec + 1)); | |
8950 | ||
8951 | default: | |
e1d5a0d2 PH |
8952 | error (_("Attempt to index or call something other than an " |
8953 | "array or function")); | |
4c4b4cd2 PH |
8954 | } |
8955 | ||
8956 | case TERNOP_SLICE: | |
8957 | { | |
8958 | struct value *array = evaluate_subexp (NULL_TYPE, exp, pos, noside); | |
8959 | struct value *low_bound_val = | |
8960 | evaluate_subexp (NULL_TYPE, exp, pos, noside); | |
714e53ab PH |
8961 | struct value *high_bound_val = |
8962 | evaluate_subexp (NULL_TYPE, exp, pos, noside); | |
8963 | LONGEST low_bound; | |
8964 | LONGEST high_bound; | |
994b9211 AC |
8965 | low_bound_val = coerce_ref (low_bound_val); |
8966 | high_bound_val = coerce_ref (high_bound_val); | |
714e53ab PH |
8967 | low_bound = pos_atr (low_bound_val); |
8968 | high_bound = pos_atr (high_bound_val); | |
963a6417 | 8969 | |
4c4b4cd2 PH |
8970 | if (noside == EVAL_SKIP) |
8971 | goto nosideret; | |
8972 | ||
4c4b4cd2 PH |
8973 | /* If this is a reference to an aligner type, then remove all |
8974 | the aligners. */ | |
df407dfe AC |
8975 | if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF |
8976 | && ada_is_aligner_type (TYPE_TARGET_TYPE (value_type (array)))) | |
8977 | TYPE_TARGET_TYPE (value_type (array)) = | |
8978 | ada_aligned_type (TYPE_TARGET_TYPE (value_type (array))); | |
4c4b4cd2 | 8979 | |
ad82864c | 8980 | if (ada_is_constrained_packed_array_type (value_type (array))) |
323e0a4a | 8981 | error (_("cannot slice a packed array")); |
4c4b4cd2 PH |
8982 | |
8983 | /* If this is a reference to an array or an array lvalue, | |
8984 | convert to a pointer. */ | |
df407dfe AC |
8985 | if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF |
8986 | || (TYPE_CODE (value_type (array)) == TYPE_CODE_ARRAY | |
4c4b4cd2 PH |
8987 | && VALUE_LVAL (array) == lval_memory)) |
8988 | array = value_addr (array); | |
8989 | ||
1265e4aa | 8990 | if (noside == EVAL_AVOID_SIDE_EFFECTS |
61ee279c | 8991 | && ada_is_array_descriptor_type (ada_check_typedef |
df407dfe | 8992 | (value_type (array)))) |
0b5d8877 | 8993 | return empty_array (ada_type_of_array (array, 0), low_bound); |
4c4b4cd2 PH |
8994 | |
8995 | array = ada_coerce_to_simple_array_ptr (array); | |
8996 | ||
714e53ab PH |
8997 | /* If we have more than one level of pointer indirection, |
8998 | dereference the value until we get only one level. */ | |
df407dfe AC |
8999 | while (TYPE_CODE (value_type (array)) == TYPE_CODE_PTR |
9000 | && (TYPE_CODE (TYPE_TARGET_TYPE (value_type (array))) | |
714e53ab PH |
9001 | == TYPE_CODE_PTR)) |
9002 | array = value_ind (array); | |
9003 | ||
9004 | /* Make sure we really do have an array type before going further, | |
9005 | to avoid a SEGV when trying to get the index type or the target | |
9006 | type later down the road if the debug info generated by | |
9007 | the compiler is incorrect or incomplete. */ | |
df407dfe | 9008 | if (!ada_is_simple_array_type (value_type (array))) |
323e0a4a | 9009 | error (_("cannot take slice of non-array")); |
714e53ab | 9010 | |
df407dfe | 9011 | if (TYPE_CODE (value_type (array)) == TYPE_CODE_PTR) |
4c4b4cd2 | 9012 | { |
0b5d8877 | 9013 | if (high_bound < low_bound || noside == EVAL_AVOID_SIDE_EFFECTS) |
df407dfe | 9014 | return empty_array (TYPE_TARGET_TYPE (value_type (array)), |
4c4b4cd2 PH |
9015 | low_bound); |
9016 | else | |
9017 | { | |
9018 | struct type *arr_type0 = | |
df407dfe | 9019 | to_fixed_array_type (TYPE_TARGET_TYPE (value_type (array)), |
4c4b4cd2 | 9020 | NULL, 1); |
f5938064 JG |
9021 | return ada_value_slice_from_ptr (array, arr_type0, |
9022 | longest_to_int (low_bound), | |
9023 | longest_to_int (high_bound)); | |
4c4b4cd2 PH |
9024 | } |
9025 | } | |
9026 | else if (noside == EVAL_AVOID_SIDE_EFFECTS) | |
9027 | return array; | |
9028 | else if (high_bound < low_bound) | |
df407dfe | 9029 | return empty_array (value_type (array), low_bound); |
4c4b4cd2 | 9030 | else |
529cad9c PH |
9031 | return ada_value_slice (array, longest_to_int (low_bound), |
9032 | longest_to_int (high_bound)); | |
4c4b4cd2 | 9033 | } |
14f9c5c9 | 9034 | |
4c4b4cd2 PH |
9035 | case UNOP_IN_RANGE: |
9036 | (*pos) += 2; | |
9037 | arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside); | |
8008e265 | 9038 | type = check_typedef (exp->elts[pc + 1].type); |
14f9c5c9 | 9039 | |
14f9c5c9 | 9040 | if (noside == EVAL_SKIP) |
4c4b4cd2 | 9041 | goto nosideret; |
14f9c5c9 | 9042 | |
4c4b4cd2 PH |
9043 | switch (TYPE_CODE (type)) |
9044 | { | |
9045 | default: | |
e1d5a0d2 PH |
9046 | lim_warning (_("Membership test incompletely implemented; " |
9047 | "always returns true")); | |
fbb06eb1 UW |
9048 | type = language_bool_type (exp->language_defn, exp->gdbarch); |
9049 | return value_from_longest (type, (LONGEST) 1); | |
4c4b4cd2 PH |
9050 | |
9051 | case TYPE_CODE_RANGE: | |
030b4912 UW |
9052 | arg2 = value_from_longest (type, TYPE_LOW_BOUND (type)); |
9053 | arg3 = value_from_longest (type, TYPE_HIGH_BOUND (type)); | |
f44316fa UW |
9054 | binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2); |
9055 | binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3); | |
fbb06eb1 UW |
9056 | type = language_bool_type (exp->language_defn, exp->gdbarch); |
9057 | return | |
9058 | value_from_longest (type, | |
4c4b4cd2 PH |
9059 | (value_less (arg1, arg3) |
9060 | || value_equal (arg1, arg3)) | |
9061 | && (value_less (arg2, arg1) | |
9062 | || value_equal (arg2, arg1))); | |
9063 | } | |
9064 | ||
9065 | case BINOP_IN_BOUNDS: | |
14f9c5c9 | 9066 | (*pos) += 2; |
4c4b4cd2 PH |
9067 | arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside); |
9068 | arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside); | |
14f9c5c9 | 9069 | |
4c4b4cd2 PH |
9070 | if (noside == EVAL_SKIP) |
9071 | goto nosideret; | |
14f9c5c9 | 9072 | |
4c4b4cd2 | 9073 | if (noside == EVAL_AVOID_SIDE_EFFECTS) |
fbb06eb1 UW |
9074 | { |
9075 | type = language_bool_type (exp->language_defn, exp->gdbarch); | |
9076 | return value_zero (type, not_lval); | |
9077 | } | |
14f9c5c9 | 9078 | |
4c4b4cd2 | 9079 | tem = longest_to_int (exp->elts[pc + 1].longconst); |
14f9c5c9 | 9080 | |
1eea4ebd UW |
9081 | type = ada_index_type (value_type (arg2), tem, "range"); |
9082 | if (!type) | |
9083 | type = value_type (arg1); | |
14f9c5c9 | 9084 | |
1eea4ebd UW |
9085 | arg3 = value_from_longest (type, ada_array_bound (arg2, tem, 1)); |
9086 | arg2 = value_from_longest (type, ada_array_bound (arg2, tem, 0)); | |
d2e4a39e | 9087 | |
f44316fa UW |
9088 | binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2); |
9089 | binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3); | |
fbb06eb1 | 9090 | type = language_bool_type (exp->language_defn, exp->gdbarch); |
4c4b4cd2 | 9091 | return |
fbb06eb1 | 9092 | value_from_longest (type, |
4c4b4cd2 PH |
9093 | (value_less (arg1, arg3) |
9094 | || value_equal (arg1, arg3)) | |
9095 | && (value_less (arg2, arg1) | |
9096 | || value_equal (arg2, arg1))); | |
9097 | ||
9098 | case TERNOP_IN_RANGE: | |
9099 | arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside); | |
9100 | arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside); | |
9101 | arg3 = evaluate_subexp (NULL_TYPE, exp, pos, noside); | |
9102 | ||
9103 | if (noside == EVAL_SKIP) | |
9104 | goto nosideret; | |
9105 | ||
f44316fa UW |
9106 | binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2); |
9107 | binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3); | |
fbb06eb1 | 9108 | type = language_bool_type (exp->language_defn, exp->gdbarch); |
4c4b4cd2 | 9109 | return |
fbb06eb1 | 9110 | value_from_longest (type, |
4c4b4cd2 PH |
9111 | (value_less (arg1, arg3) |
9112 | || value_equal (arg1, arg3)) | |
9113 | && (value_less (arg2, arg1) | |
9114 | || value_equal (arg2, arg1))); | |
9115 | ||
9116 | case OP_ATR_FIRST: | |
9117 | case OP_ATR_LAST: | |
9118 | case OP_ATR_LENGTH: | |
9119 | { | |
76a01679 JB |
9120 | struct type *type_arg; |
9121 | if (exp->elts[*pos].opcode == OP_TYPE) | |
9122 | { | |
9123 | evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP); | |
9124 | arg1 = NULL; | |
5bc23cb3 | 9125 | type_arg = check_typedef (exp->elts[pc + 2].type); |
76a01679 JB |
9126 | } |
9127 | else | |
9128 | { | |
9129 | arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside); | |
9130 | type_arg = NULL; | |
9131 | } | |
9132 | ||
9133 | if (exp->elts[*pos].opcode != OP_LONG) | |
323e0a4a | 9134 | error (_("Invalid operand to '%s"), ada_attribute_name (op)); |
76a01679 JB |
9135 | tem = longest_to_int (exp->elts[*pos + 2].longconst); |
9136 | *pos += 4; | |
9137 | ||
9138 | if (noside == EVAL_SKIP) | |
9139 | goto nosideret; | |
9140 | ||
9141 | if (type_arg == NULL) | |
9142 | { | |
9143 | arg1 = ada_coerce_ref (arg1); | |
9144 | ||
ad82864c | 9145 | if (ada_is_constrained_packed_array_type (value_type (arg1))) |
76a01679 JB |
9146 | arg1 = ada_coerce_to_simple_array (arg1); |
9147 | ||
1eea4ebd UW |
9148 | type = ada_index_type (value_type (arg1), tem, |
9149 | ada_attribute_name (op)); | |
9150 | if (type == NULL) | |
9151 | type = builtin_type (exp->gdbarch)->builtin_int; | |
76a01679 JB |
9152 | |
9153 | if (noside == EVAL_AVOID_SIDE_EFFECTS) | |
1eea4ebd | 9154 | return allocate_value (type); |
76a01679 JB |
9155 | |
9156 | switch (op) | |
9157 | { | |
9158 | default: /* Should never happen. */ | |
323e0a4a | 9159 | error (_("unexpected attribute encountered")); |
76a01679 | 9160 | case OP_ATR_FIRST: |
1eea4ebd UW |
9161 | return value_from_longest |
9162 | (type, ada_array_bound (arg1, tem, 0)); | |
76a01679 | 9163 | case OP_ATR_LAST: |
1eea4ebd UW |
9164 | return value_from_longest |
9165 | (type, ada_array_bound (arg1, tem, 1)); | |
76a01679 | 9166 | case OP_ATR_LENGTH: |
1eea4ebd UW |
9167 | return value_from_longest |
9168 | (type, ada_array_length (arg1, tem)); | |
76a01679 JB |
9169 | } |
9170 | } | |
9171 | else if (discrete_type_p (type_arg)) | |
9172 | { | |
9173 | struct type *range_type; | |
9174 | char *name = ada_type_name (type_arg); | |
9175 | range_type = NULL; | |
9176 | if (name != NULL && TYPE_CODE (type_arg) != TYPE_CODE_ENUM) | |
1ce677a4 | 9177 | range_type = to_fixed_range_type (name, NULL, type_arg); |
76a01679 JB |
9178 | if (range_type == NULL) |
9179 | range_type = type_arg; | |
9180 | switch (op) | |
9181 | { | |
9182 | default: | |
323e0a4a | 9183 | error (_("unexpected attribute encountered")); |
76a01679 | 9184 | case OP_ATR_FIRST: |
690cc4eb | 9185 | return value_from_longest |
43bbcdc2 | 9186 | (range_type, ada_discrete_type_low_bound (range_type)); |
76a01679 | 9187 | case OP_ATR_LAST: |
690cc4eb | 9188 | return value_from_longest |
43bbcdc2 | 9189 | (range_type, ada_discrete_type_high_bound (range_type)); |
76a01679 | 9190 | case OP_ATR_LENGTH: |
323e0a4a | 9191 | error (_("the 'length attribute applies only to array types")); |
76a01679 JB |
9192 | } |
9193 | } | |
9194 | else if (TYPE_CODE (type_arg) == TYPE_CODE_FLT) | |
323e0a4a | 9195 | error (_("unimplemented type attribute")); |
76a01679 JB |
9196 | else |
9197 | { | |
9198 | LONGEST low, high; | |
9199 | ||
ad82864c JB |
9200 | if (ada_is_constrained_packed_array_type (type_arg)) |
9201 | type_arg = decode_constrained_packed_array_type (type_arg); | |
76a01679 | 9202 | |
1eea4ebd | 9203 | type = ada_index_type (type_arg, tem, ada_attribute_name (op)); |
76a01679 | 9204 | if (type == NULL) |
1eea4ebd UW |
9205 | type = builtin_type (exp->gdbarch)->builtin_int; |
9206 | ||
76a01679 JB |
9207 | if (noside == EVAL_AVOID_SIDE_EFFECTS) |
9208 | return allocate_value (type); | |
9209 | ||
9210 | switch (op) | |
9211 | { | |
9212 | default: | |
323e0a4a | 9213 | error (_("unexpected attribute encountered")); |
76a01679 | 9214 | case OP_ATR_FIRST: |
1eea4ebd | 9215 | low = ada_array_bound_from_type (type_arg, tem, 0); |
76a01679 JB |
9216 | return value_from_longest (type, low); |
9217 | case OP_ATR_LAST: | |
1eea4ebd | 9218 | high = ada_array_bound_from_type (type_arg, tem, 1); |
76a01679 JB |
9219 | return value_from_longest (type, high); |
9220 | case OP_ATR_LENGTH: | |
1eea4ebd UW |
9221 | low = ada_array_bound_from_type (type_arg, tem, 0); |
9222 | high = ada_array_bound_from_type (type_arg, tem, 1); | |
76a01679 JB |
9223 | return value_from_longest (type, high - low + 1); |
9224 | } | |
9225 | } | |
14f9c5c9 AS |
9226 | } |
9227 | ||
4c4b4cd2 PH |
9228 | case OP_ATR_TAG: |
9229 | arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside); | |
9230 | if (noside == EVAL_SKIP) | |
76a01679 | 9231 | goto nosideret; |
4c4b4cd2 PH |
9232 | |
9233 | if (noside == EVAL_AVOID_SIDE_EFFECTS) | |
76a01679 | 9234 | return value_zero (ada_tag_type (arg1), not_lval); |
4c4b4cd2 PH |
9235 | |
9236 | return ada_value_tag (arg1); | |
9237 | ||
9238 | case OP_ATR_MIN: | |
9239 | case OP_ATR_MAX: | |
9240 | evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP); | |
14f9c5c9 AS |
9241 | arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside); |
9242 | arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside); | |
9243 | if (noside == EVAL_SKIP) | |
76a01679 | 9244 | goto nosideret; |
d2e4a39e | 9245 | else if (noside == EVAL_AVOID_SIDE_EFFECTS) |
df407dfe | 9246 | return value_zero (value_type (arg1), not_lval); |
14f9c5c9 | 9247 | else |
f44316fa UW |
9248 | { |
9249 | binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2); | |
9250 | return value_binop (arg1, arg2, | |
9251 | op == OP_ATR_MIN ? BINOP_MIN : BINOP_MAX); | |
9252 | } | |
14f9c5c9 | 9253 | |
4c4b4cd2 PH |
9254 | case OP_ATR_MODULUS: |
9255 | { | |
31dedfee | 9256 | struct type *type_arg = check_typedef (exp->elts[pc + 2].type); |
76a01679 | 9257 | evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP); |
4c4b4cd2 | 9258 | |
76a01679 JB |
9259 | if (noside == EVAL_SKIP) |
9260 | goto nosideret; | |
4c4b4cd2 | 9261 | |
76a01679 | 9262 | if (!ada_is_modular_type (type_arg)) |
323e0a4a | 9263 | error (_("'modulus must be applied to modular type")); |
4c4b4cd2 | 9264 | |
76a01679 JB |
9265 | return value_from_longest (TYPE_TARGET_TYPE (type_arg), |
9266 | ada_modulus (type_arg)); | |
4c4b4cd2 PH |
9267 | } |
9268 | ||
9269 | ||
9270 | case OP_ATR_POS: | |
9271 | evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP); | |
14f9c5c9 AS |
9272 | arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside); |
9273 | if (noside == EVAL_SKIP) | |
76a01679 | 9274 | goto nosideret; |
3cb382c9 UW |
9275 | type = builtin_type (exp->gdbarch)->builtin_int; |
9276 | if (noside == EVAL_AVOID_SIDE_EFFECTS) | |
9277 | return value_zero (type, not_lval); | |
14f9c5c9 | 9278 | else |
3cb382c9 | 9279 | return value_pos_atr (type, arg1); |
14f9c5c9 | 9280 | |
4c4b4cd2 PH |
9281 | case OP_ATR_SIZE: |
9282 | arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside); | |
8c1c099f JB |
9283 | type = value_type (arg1); |
9284 | ||
9285 | /* If the argument is a reference, then dereference its type, since | |
9286 | the user is really asking for the size of the actual object, | |
9287 | not the size of the pointer. */ | |
9288 | if (TYPE_CODE (type) == TYPE_CODE_REF) | |
9289 | type = TYPE_TARGET_TYPE (type); | |
9290 | ||
4c4b4cd2 | 9291 | if (noside == EVAL_SKIP) |
76a01679 | 9292 | goto nosideret; |
4c4b4cd2 | 9293 | else if (noside == EVAL_AVOID_SIDE_EFFECTS) |
22601c15 | 9294 | return value_zero (builtin_type (exp->gdbarch)->builtin_int, not_lval); |
4c4b4cd2 | 9295 | else |
22601c15 | 9296 | return value_from_longest (builtin_type (exp->gdbarch)->builtin_int, |
8c1c099f | 9297 | TARGET_CHAR_BIT * TYPE_LENGTH (type)); |
4c4b4cd2 PH |
9298 | |
9299 | case OP_ATR_VAL: | |
9300 | evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP); | |
14f9c5c9 | 9301 | arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside); |
4c4b4cd2 | 9302 | type = exp->elts[pc + 2].type; |
14f9c5c9 | 9303 | if (noside == EVAL_SKIP) |
76a01679 | 9304 | goto nosideret; |
4c4b4cd2 | 9305 | else if (noside == EVAL_AVOID_SIDE_EFFECTS) |
76a01679 | 9306 | return value_zero (type, not_lval); |
4c4b4cd2 | 9307 | else |
76a01679 | 9308 | return value_val_atr (type, arg1); |
4c4b4cd2 PH |
9309 | |
9310 | case BINOP_EXP: | |
9311 | arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside); | |
9312 | arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside); | |
9313 | if (noside == EVAL_SKIP) | |
9314 | goto nosideret; | |
9315 | else if (noside == EVAL_AVOID_SIDE_EFFECTS) | |
df407dfe | 9316 | return value_zero (value_type (arg1), not_lval); |
4c4b4cd2 | 9317 | else |
f44316fa UW |
9318 | { |
9319 | /* For integer exponentiation operations, | |
9320 | only promote the first argument. */ | |
9321 | if (is_integral_type (value_type (arg2))) | |
9322 | unop_promote (exp->language_defn, exp->gdbarch, &arg1); | |
9323 | else | |
9324 | binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2); | |
9325 | ||
9326 | return value_binop (arg1, arg2, op); | |
9327 | } | |
4c4b4cd2 PH |
9328 | |
9329 | case UNOP_PLUS: | |
9330 | arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside); | |
9331 | if (noside == EVAL_SKIP) | |
9332 | goto nosideret; | |
9333 | else | |
9334 | return arg1; | |
9335 | ||
9336 | case UNOP_ABS: | |
9337 | arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside); | |
9338 | if (noside == EVAL_SKIP) | |
9339 | goto nosideret; | |
f44316fa | 9340 | unop_promote (exp->language_defn, exp->gdbarch, &arg1); |
df407dfe | 9341 | if (value_less (arg1, value_zero (value_type (arg1), not_lval))) |
4c4b4cd2 | 9342 | return value_neg (arg1); |
14f9c5c9 | 9343 | else |
4c4b4cd2 | 9344 | return arg1; |
14f9c5c9 AS |
9345 | |
9346 | case UNOP_IND: | |
6b0d7253 | 9347 | arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside); |
14f9c5c9 | 9348 | if (noside == EVAL_SKIP) |
4c4b4cd2 | 9349 | goto nosideret; |
df407dfe | 9350 | type = ada_check_typedef (value_type (arg1)); |
14f9c5c9 | 9351 | if (noside == EVAL_AVOID_SIDE_EFFECTS) |
4c4b4cd2 PH |
9352 | { |
9353 | if (ada_is_array_descriptor_type (type)) | |
9354 | /* GDB allows dereferencing GNAT array descriptors. */ | |
9355 | { | |
9356 | struct type *arrType = ada_type_of_array (arg1, 0); | |
9357 | if (arrType == NULL) | |
323e0a4a | 9358 | error (_("Attempt to dereference null array pointer.")); |
00a4c844 | 9359 | return value_at_lazy (arrType, 0); |
4c4b4cd2 PH |
9360 | } |
9361 | else if (TYPE_CODE (type) == TYPE_CODE_PTR | |
9362 | || TYPE_CODE (type) == TYPE_CODE_REF | |
9363 | /* In C you can dereference an array to get the 1st elt. */ | |
9364 | || TYPE_CODE (type) == TYPE_CODE_ARRAY) | |
714e53ab PH |
9365 | { |
9366 | type = to_static_fixed_type | |
9367 | (ada_aligned_type | |
9368 | (ada_check_typedef (TYPE_TARGET_TYPE (type)))); | |
9369 | check_size (type); | |
9370 | return value_zero (type, lval_memory); | |
9371 | } | |
4c4b4cd2 | 9372 | else if (TYPE_CODE (type) == TYPE_CODE_INT) |
6b0d7253 JB |
9373 | { |
9374 | /* GDB allows dereferencing an int. */ | |
9375 | if (expect_type == NULL) | |
9376 | return value_zero (builtin_type (exp->gdbarch)->builtin_int, | |
9377 | lval_memory); | |
9378 | else | |
9379 | { | |
9380 | expect_type = | |
9381 | to_static_fixed_type (ada_aligned_type (expect_type)); | |
9382 | return value_zero (expect_type, lval_memory); | |
9383 | } | |
9384 | } | |
4c4b4cd2 | 9385 | else |
323e0a4a | 9386 | error (_("Attempt to take contents of a non-pointer value.")); |
4c4b4cd2 | 9387 | } |
76a01679 | 9388 | arg1 = ada_coerce_ref (arg1); /* FIXME: What is this for?? */ |
df407dfe | 9389 | type = ada_check_typedef (value_type (arg1)); |
d2e4a39e | 9390 | |
96967637 JB |
9391 | if (TYPE_CODE (type) == TYPE_CODE_INT) |
9392 | /* GDB allows dereferencing an int. If we were given | |
9393 | the expect_type, then use that as the target type. | |
9394 | Otherwise, assume that the target type is an int. */ | |
9395 | { | |
9396 | if (expect_type != NULL) | |
9397 | return ada_value_ind (value_cast (lookup_pointer_type (expect_type), | |
9398 | arg1)); | |
9399 | else | |
9400 | return value_at_lazy (builtin_type (exp->gdbarch)->builtin_int, | |
9401 | (CORE_ADDR) value_as_address (arg1)); | |
9402 | } | |
6b0d7253 | 9403 | |
4c4b4cd2 PH |
9404 | if (ada_is_array_descriptor_type (type)) |
9405 | /* GDB allows dereferencing GNAT array descriptors. */ | |
9406 | return ada_coerce_to_simple_array (arg1); | |
14f9c5c9 | 9407 | else |
4c4b4cd2 | 9408 | return ada_value_ind (arg1); |
14f9c5c9 AS |
9409 | |
9410 | case STRUCTOP_STRUCT: | |
9411 | tem = longest_to_int (exp->elts[pc + 1].longconst); | |
9412 | (*pos) += 3 + BYTES_TO_EXP_ELEM (tem + 1); | |
9413 | arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside); | |
9414 | if (noside == EVAL_SKIP) | |
4c4b4cd2 | 9415 | goto nosideret; |
14f9c5c9 | 9416 | if (noside == EVAL_AVOID_SIDE_EFFECTS) |
76a01679 | 9417 | { |
df407dfe | 9418 | struct type *type1 = value_type (arg1); |
76a01679 JB |
9419 | if (ada_is_tagged_type (type1, 1)) |
9420 | { | |
9421 | type = ada_lookup_struct_elt_type (type1, | |
9422 | &exp->elts[pc + 2].string, | |
9423 | 1, 1, NULL); | |
9424 | if (type == NULL) | |
9425 | /* In this case, we assume that the field COULD exist | |
9426 | in some extension of the type. Return an object of | |
9427 | "type" void, which will match any formal | |
9428 | (see ada_type_match). */ | |
30b15541 UW |
9429 | return value_zero (builtin_type (exp->gdbarch)->builtin_void, |
9430 | lval_memory); | |
76a01679 JB |
9431 | } |
9432 | else | |
9433 | type = | |
9434 | ada_lookup_struct_elt_type (type1, &exp->elts[pc + 2].string, 1, | |
9435 | 0, NULL); | |
9436 | ||
9437 | return value_zero (ada_aligned_type (type), lval_memory); | |
9438 | } | |
14f9c5c9 | 9439 | else |
284614f0 JB |
9440 | arg1 = ada_value_struct_elt (arg1, &exp->elts[pc + 2].string, 0); |
9441 | arg1 = unwrap_value (arg1); | |
9442 | return ada_to_fixed_value (arg1); | |
9443 | ||
14f9c5c9 | 9444 | case OP_TYPE: |
4c4b4cd2 PH |
9445 | /* The value is not supposed to be used. This is here to make it |
9446 | easier to accommodate expressions that contain types. */ | |
14f9c5c9 AS |
9447 | (*pos) += 2; |
9448 | if (noside == EVAL_SKIP) | |
4c4b4cd2 | 9449 | goto nosideret; |
14f9c5c9 | 9450 | else if (noside == EVAL_AVOID_SIDE_EFFECTS) |
a6cfbe68 | 9451 | return allocate_value (exp->elts[pc + 1].type); |
14f9c5c9 | 9452 | else |
323e0a4a | 9453 | error (_("Attempt to use a type name as an expression")); |
52ce6436 PH |
9454 | |
9455 | case OP_AGGREGATE: | |
9456 | case OP_CHOICES: | |
9457 | case OP_OTHERS: | |
9458 | case OP_DISCRETE_RANGE: | |
9459 | case OP_POSITIONAL: | |
9460 | case OP_NAME: | |
9461 | if (noside == EVAL_NORMAL) | |
9462 | switch (op) | |
9463 | { | |
9464 | case OP_NAME: | |
9465 | error (_("Undefined name, ambiguous name, or renaming used in " | |
e1d5a0d2 | 9466 | "component association: %s."), &exp->elts[pc+2].string); |
52ce6436 PH |
9467 | case OP_AGGREGATE: |
9468 | error (_("Aggregates only allowed on the right of an assignment")); | |
9469 | default: | |
e1d5a0d2 | 9470 | internal_error (__FILE__, __LINE__, _("aggregate apparently mangled")); |
52ce6436 PH |
9471 | } |
9472 | ||
9473 | ada_forward_operator_length (exp, pc, &oplen, &nargs); | |
9474 | *pos += oplen - 1; | |
9475 | for (tem = 0; tem < nargs; tem += 1) | |
9476 | ada_evaluate_subexp (NULL, exp, pos, noside); | |
9477 | goto nosideret; | |
14f9c5c9 AS |
9478 | } |
9479 | ||
9480 | nosideret: | |
22601c15 | 9481 | return value_from_longest (builtin_type (exp->gdbarch)->builtin_int, 1); |
14f9c5c9 | 9482 | } |
14f9c5c9 | 9483 | \f |
d2e4a39e | 9484 | |
4c4b4cd2 | 9485 | /* Fixed point */ |
14f9c5c9 AS |
9486 | |
9487 | /* If TYPE encodes an Ada fixed-point type, return the suffix of the | |
9488 | type name that encodes the 'small and 'delta information. | |
4c4b4cd2 | 9489 | Otherwise, return NULL. */ |
14f9c5c9 | 9490 | |
d2e4a39e | 9491 | static const char * |
ebf56fd3 | 9492 | fixed_type_info (struct type *type) |
14f9c5c9 | 9493 | { |
d2e4a39e | 9494 | const char *name = ada_type_name (type); |
14f9c5c9 AS |
9495 | enum type_code code = (type == NULL) ? TYPE_CODE_UNDEF : TYPE_CODE (type); |
9496 | ||
d2e4a39e AS |
9497 | if ((code == TYPE_CODE_INT || code == TYPE_CODE_RANGE) && name != NULL) |
9498 | { | |
14f9c5c9 AS |
9499 | const char *tail = strstr (name, "___XF_"); |
9500 | if (tail == NULL) | |
4c4b4cd2 | 9501 | return NULL; |
d2e4a39e | 9502 | else |
4c4b4cd2 | 9503 | return tail + 5; |
14f9c5c9 AS |
9504 | } |
9505 | else if (code == TYPE_CODE_RANGE && TYPE_TARGET_TYPE (type) != type) | |
9506 | return fixed_type_info (TYPE_TARGET_TYPE (type)); | |
9507 | else | |
9508 | return NULL; | |
9509 | } | |
9510 | ||
4c4b4cd2 | 9511 | /* Returns non-zero iff TYPE represents an Ada fixed-point type. */ |
14f9c5c9 AS |
9512 | |
9513 | int | |
ebf56fd3 | 9514 | ada_is_fixed_point_type (struct type *type) |
14f9c5c9 AS |
9515 | { |
9516 | return fixed_type_info (type) != NULL; | |
9517 | } | |
9518 | ||
4c4b4cd2 PH |
9519 | /* Return non-zero iff TYPE represents a System.Address type. */ |
9520 | ||
9521 | int | |
9522 | ada_is_system_address_type (struct type *type) | |
9523 | { | |
9524 | return (TYPE_NAME (type) | |
9525 | && strcmp (TYPE_NAME (type), "system__address") == 0); | |
9526 | } | |
9527 | ||
14f9c5c9 AS |
9528 | /* Assuming that TYPE is the representation of an Ada fixed-point |
9529 | type, return its delta, or -1 if the type is malformed and the | |
4c4b4cd2 | 9530 | delta cannot be determined. */ |
14f9c5c9 AS |
9531 | |
9532 | DOUBLEST | |
ebf56fd3 | 9533 | ada_delta (struct type *type) |
14f9c5c9 AS |
9534 | { |
9535 | const char *encoding = fixed_type_info (type); | |
facc390f | 9536 | DOUBLEST num, den; |
14f9c5c9 | 9537 | |
facc390f JB |
9538 | /* Strictly speaking, num and den are encoded as integer. However, |
9539 | they may not fit into a long, and they will have to be converted | |
9540 | to DOUBLEST anyway. So scan them as DOUBLEST. */ | |
9541 | if (sscanf (encoding, "_%" DOUBLEST_SCAN_FORMAT "_%" DOUBLEST_SCAN_FORMAT, | |
9542 | &num, &den) < 2) | |
14f9c5c9 | 9543 | return -1.0; |
d2e4a39e | 9544 | else |
facc390f | 9545 | return num / den; |
14f9c5c9 AS |
9546 | } |
9547 | ||
9548 | /* Assuming that ada_is_fixed_point_type (TYPE), return the scaling | |
4c4b4cd2 | 9549 | factor ('SMALL value) associated with the type. */ |
14f9c5c9 AS |
9550 | |
9551 | static DOUBLEST | |
ebf56fd3 | 9552 | scaling_factor (struct type *type) |
14f9c5c9 AS |
9553 | { |
9554 | const char *encoding = fixed_type_info (type); | |
facc390f | 9555 | DOUBLEST num0, den0, num1, den1; |
14f9c5c9 | 9556 | int n; |
d2e4a39e | 9557 | |
facc390f JB |
9558 | /* Strictly speaking, num's and den's are encoded as integer. However, |
9559 | they may not fit into a long, and they will have to be converted | |
9560 | to DOUBLEST anyway. So scan them as DOUBLEST. */ | |
9561 | n = sscanf (encoding, | |
9562 | "_%" DOUBLEST_SCAN_FORMAT "_%" DOUBLEST_SCAN_FORMAT | |
9563 | "_%" DOUBLEST_SCAN_FORMAT "_%" DOUBLEST_SCAN_FORMAT, | |
9564 | &num0, &den0, &num1, &den1); | |
14f9c5c9 AS |
9565 | |
9566 | if (n < 2) | |
9567 | return 1.0; | |
9568 | else if (n == 4) | |
facc390f | 9569 | return num1 / den1; |
d2e4a39e | 9570 | else |
facc390f | 9571 | return num0 / den0; |
14f9c5c9 AS |
9572 | } |
9573 | ||
9574 | ||
9575 | /* Assuming that X is the representation of a value of fixed-point | |
4c4b4cd2 | 9576 | type TYPE, return its floating-point equivalent. */ |
14f9c5c9 AS |
9577 | |
9578 | DOUBLEST | |
ebf56fd3 | 9579 | ada_fixed_to_float (struct type *type, LONGEST x) |
14f9c5c9 | 9580 | { |
d2e4a39e | 9581 | return (DOUBLEST) x *scaling_factor (type); |
14f9c5c9 AS |
9582 | } |
9583 | ||
4c4b4cd2 PH |
9584 | /* The representation of a fixed-point value of type TYPE |
9585 | corresponding to the value X. */ | |
14f9c5c9 AS |
9586 | |
9587 | LONGEST | |
ebf56fd3 | 9588 | ada_float_to_fixed (struct type *type, DOUBLEST x) |
14f9c5c9 AS |
9589 | { |
9590 | return (LONGEST) (x / scaling_factor (type) + 0.5); | |
9591 | } | |
9592 | ||
14f9c5c9 | 9593 | \f |
d2e4a39e | 9594 | |
4c4b4cd2 | 9595 | /* Range types */ |
14f9c5c9 AS |
9596 | |
9597 | /* Scan STR beginning at position K for a discriminant name, and | |
9598 | return the value of that discriminant field of DVAL in *PX. If | |
9599 | PNEW_K is not null, put the position of the character beyond the | |
9600 | name scanned in *PNEW_K. Return 1 if successful; return 0 and do | |
4c4b4cd2 | 9601 | not alter *PX and *PNEW_K if unsuccessful. */ |
14f9c5c9 AS |
9602 | |
9603 | static int | |
07d8f827 | 9604 | scan_discrim_bound (char *str, int k, struct value *dval, LONGEST * px, |
76a01679 | 9605 | int *pnew_k) |
14f9c5c9 AS |
9606 | { |
9607 | static char *bound_buffer = NULL; | |
9608 | static size_t bound_buffer_len = 0; | |
9609 | char *bound; | |
9610 | char *pend; | |
d2e4a39e | 9611 | struct value *bound_val; |
14f9c5c9 AS |
9612 | |
9613 | if (dval == NULL || str == NULL || str[k] == '\0') | |
9614 | return 0; | |
9615 | ||
d2e4a39e | 9616 | pend = strstr (str + k, "__"); |
14f9c5c9 AS |
9617 | if (pend == NULL) |
9618 | { | |
d2e4a39e | 9619 | bound = str + k; |
14f9c5c9 AS |
9620 | k += strlen (bound); |
9621 | } | |
d2e4a39e | 9622 | else |
14f9c5c9 | 9623 | { |
d2e4a39e | 9624 | GROW_VECT (bound_buffer, bound_buffer_len, pend - (str + k) + 1); |
14f9c5c9 | 9625 | bound = bound_buffer; |
d2e4a39e AS |
9626 | strncpy (bound_buffer, str + k, pend - (str + k)); |
9627 | bound[pend - (str + k)] = '\0'; | |
9628 | k = pend - str; | |
14f9c5c9 | 9629 | } |
d2e4a39e | 9630 | |
df407dfe | 9631 | bound_val = ada_search_struct_field (bound, dval, 0, value_type (dval)); |
14f9c5c9 AS |
9632 | if (bound_val == NULL) |
9633 | return 0; | |
9634 | ||
9635 | *px = value_as_long (bound_val); | |
9636 | if (pnew_k != NULL) | |
9637 | *pnew_k = k; | |
9638 | return 1; | |
9639 | } | |
9640 | ||
9641 | /* Value of variable named NAME in the current environment. If | |
9642 | no such variable found, then if ERR_MSG is null, returns 0, and | |
4c4b4cd2 PH |
9643 | otherwise causes an error with message ERR_MSG. */ |
9644 | ||
d2e4a39e AS |
9645 | static struct value * |
9646 | get_var_value (char *name, char *err_msg) | |
14f9c5c9 | 9647 | { |
4c4b4cd2 | 9648 | struct ada_symbol_info *syms; |
14f9c5c9 AS |
9649 | int nsyms; |
9650 | ||
4c4b4cd2 PH |
9651 | nsyms = ada_lookup_symbol_list (name, get_selected_block (0), VAR_DOMAIN, |
9652 | &syms); | |
14f9c5c9 AS |
9653 | |
9654 | if (nsyms != 1) | |
9655 | { | |
9656 | if (err_msg == NULL) | |
4c4b4cd2 | 9657 | return 0; |
14f9c5c9 | 9658 | else |
8a3fe4f8 | 9659 | error (("%s"), err_msg); |
14f9c5c9 AS |
9660 | } |
9661 | ||
4c4b4cd2 | 9662 | return value_of_variable (syms[0].sym, syms[0].block); |
14f9c5c9 | 9663 | } |
d2e4a39e | 9664 | |
14f9c5c9 | 9665 | /* Value of integer variable named NAME in the current environment. If |
4c4b4cd2 PH |
9666 | no such variable found, returns 0, and sets *FLAG to 0. If |
9667 | successful, sets *FLAG to 1. */ | |
9668 | ||
14f9c5c9 | 9669 | LONGEST |
4c4b4cd2 | 9670 | get_int_var_value (char *name, int *flag) |
14f9c5c9 | 9671 | { |
4c4b4cd2 | 9672 | struct value *var_val = get_var_value (name, 0); |
d2e4a39e | 9673 | |
14f9c5c9 AS |
9674 | if (var_val == 0) |
9675 | { | |
9676 | if (flag != NULL) | |
4c4b4cd2 | 9677 | *flag = 0; |
14f9c5c9 AS |
9678 | return 0; |
9679 | } | |
9680 | else | |
9681 | { | |
9682 | if (flag != NULL) | |
4c4b4cd2 | 9683 | *flag = 1; |
14f9c5c9 AS |
9684 | return value_as_long (var_val); |
9685 | } | |
9686 | } | |
d2e4a39e | 9687 | |
14f9c5c9 AS |
9688 | |
9689 | /* Return a range type whose base type is that of the range type named | |
9690 | NAME in the current environment, and whose bounds are calculated | |
4c4b4cd2 | 9691 | from NAME according to the GNAT range encoding conventions. |
1ce677a4 UW |
9692 | Extract discriminant values, if needed, from DVAL. ORIG_TYPE is the |
9693 | corresponding range type from debug information; fall back to using it | |
9694 | if symbol lookup fails. If a new type must be created, allocate it | |
9695 | like ORIG_TYPE was. The bounds information, in general, is encoded | |
9696 | in NAME, the base type given in the named range type. */ | |
14f9c5c9 | 9697 | |
d2e4a39e | 9698 | static struct type * |
1ce677a4 | 9699 | to_fixed_range_type (char *name, struct value *dval, struct type *orig_type) |
14f9c5c9 AS |
9700 | { |
9701 | struct type *raw_type = ada_find_any_type (name); | |
9702 | struct type *base_type; | |
d2e4a39e | 9703 | char *subtype_info; |
14f9c5c9 | 9704 | |
1ce677a4 | 9705 | /* Fall back to the original type if symbol lookup failed. */ |
dddfab26 | 9706 | if (raw_type == NULL) |
1ce677a4 | 9707 | raw_type = orig_type; |
dddfab26 | 9708 | |
1ce677a4 | 9709 | if (TYPE_CODE (raw_type) == TYPE_CODE_RANGE) |
14f9c5c9 AS |
9710 | base_type = TYPE_TARGET_TYPE (raw_type); |
9711 | else | |
9712 | base_type = raw_type; | |
9713 | ||
9714 | subtype_info = strstr (name, "___XD"); | |
9715 | if (subtype_info == NULL) | |
690cc4eb | 9716 | { |
43bbcdc2 PH |
9717 | LONGEST L = ada_discrete_type_low_bound (raw_type); |
9718 | LONGEST U = ada_discrete_type_high_bound (raw_type); | |
690cc4eb PH |
9719 | if (L < INT_MIN || U > INT_MAX) |
9720 | return raw_type; | |
9721 | else | |
e9bb382b | 9722 | return create_range_type (alloc_type_copy (orig_type), raw_type, |
43bbcdc2 PH |
9723 | ada_discrete_type_low_bound (raw_type), |
9724 | ada_discrete_type_high_bound (raw_type)); | |
690cc4eb | 9725 | } |
14f9c5c9 AS |
9726 | else |
9727 | { | |
9728 | static char *name_buf = NULL; | |
9729 | static size_t name_len = 0; | |
9730 | int prefix_len = subtype_info - name; | |
9731 | LONGEST L, U; | |
9732 | struct type *type; | |
9733 | char *bounds_str; | |
9734 | int n; | |
9735 | ||
9736 | GROW_VECT (name_buf, name_len, prefix_len + 5); | |
9737 | strncpy (name_buf, name, prefix_len); | |
9738 | name_buf[prefix_len] = '\0'; | |
9739 | ||
9740 | subtype_info += 5; | |
9741 | bounds_str = strchr (subtype_info, '_'); | |
9742 | n = 1; | |
9743 | ||
d2e4a39e | 9744 | if (*subtype_info == 'L') |
4c4b4cd2 PH |
9745 | { |
9746 | if (!ada_scan_number (bounds_str, n, &L, &n) | |
9747 | && !scan_discrim_bound (bounds_str, n, dval, &L, &n)) | |
9748 | return raw_type; | |
9749 | if (bounds_str[n] == '_') | |
9750 | n += 2; | |
9751 | else if (bounds_str[n] == '.') /* FIXME? SGI Workshop kludge. */ | |
9752 | n += 1; | |
9753 | subtype_info += 1; | |
9754 | } | |
d2e4a39e | 9755 | else |
4c4b4cd2 PH |
9756 | { |
9757 | int ok; | |
9758 | strcpy (name_buf + prefix_len, "___L"); | |
9759 | L = get_int_var_value (name_buf, &ok); | |
9760 | if (!ok) | |
9761 | { | |
323e0a4a | 9762 | lim_warning (_("Unknown lower bound, using 1.")); |
4c4b4cd2 PH |
9763 | L = 1; |
9764 | } | |
9765 | } | |
14f9c5c9 | 9766 | |
d2e4a39e | 9767 | if (*subtype_info == 'U') |
4c4b4cd2 PH |
9768 | { |
9769 | if (!ada_scan_number (bounds_str, n, &U, &n) | |
9770 | && !scan_discrim_bound (bounds_str, n, dval, &U, &n)) | |
9771 | return raw_type; | |
9772 | } | |
d2e4a39e | 9773 | else |
4c4b4cd2 PH |
9774 | { |
9775 | int ok; | |
9776 | strcpy (name_buf + prefix_len, "___U"); | |
9777 | U = get_int_var_value (name_buf, &ok); | |
9778 | if (!ok) | |
9779 | { | |
323e0a4a | 9780 | lim_warning (_("Unknown upper bound, using %ld."), (long) L); |
4c4b4cd2 PH |
9781 | U = L; |
9782 | } | |
9783 | } | |
14f9c5c9 | 9784 | |
e9bb382b | 9785 | type = create_range_type (alloc_type_copy (orig_type), base_type, L, U); |
d2e4a39e | 9786 | TYPE_NAME (type) = name; |
14f9c5c9 AS |
9787 | return type; |
9788 | } | |
9789 | } | |
9790 | ||
4c4b4cd2 PH |
9791 | /* True iff NAME is the name of a range type. */ |
9792 | ||
14f9c5c9 | 9793 | int |
d2e4a39e | 9794 | ada_is_range_type_name (const char *name) |
14f9c5c9 AS |
9795 | { |
9796 | return (name != NULL && strstr (name, "___XD")); | |
d2e4a39e | 9797 | } |
14f9c5c9 | 9798 | \f |
d2e4a39e | 9799 | |
4c4b4cd2 PH |
9800 | /* Modular types */ |
9801 | ||
9802 | /* True iff TYPE is an Ada modular type. */ | |
14f9c5c9 | 9803 | |
14f9c5c9 | 9804 | int |
d2e4a39e | 9805 | ada_is_modular_type (struct type *type) |
14f9c5c9 | 9806 | { |
4c4b4cd2 | 9807 | struct type *subranged_type = base_type (type); |
14f9c5c9 AS |
9808 | |
9809 | return (subranged_type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE | |
690cc4eb | 9810 | && TYPE_CODE (subranged_type) == TYPE_CODE_INT |
4c4b4cd2 | 9811 | && TYPE_UNSIGNED (subranged_type)); |
14f9c5c9 AS |
9812 | } |
9813 | ||
0056e4d5 JB |
9814 | /* Try to determine the lower and upper bounds of the given modular type |
9815 | using the type name only. Return non-zero and set L and U as the lower | |
9816 | and upper bounds (respectively) if successful. */ | |
9817 | ||
9818 | int | |
9819 | ada_modulus_from_name (struct type *type, ULONGEST *modulus) | |
9820 | { | |
9821 | char *name = ada_type_name (type); | |
9822 | char *suffix; | |
9823 | int k; | |
9824 | LONGEST U; | |
9825 | ||
9826 | if (name == NULL) | |
9827 | return 0; | |
9828 | ||
9829 | /* Discrete type bounds are encoded using an __XD suffix. In our case, | |
9830 | we are looking for static bounds, which means an __XDLU suffix. | |
9831 | Moreover, we know that the lower bound of modular types is always | |
9832 | zero, so the actual suffix should start with "__XDLU_0__", and | |
9833 | then be followed by the upper bound value. */ | |
9834 | suffix = strstr (name, "__XDLU_0__"); | |
9835 | if (suffix == NULL) | |
9836 | return 0; | |
9837 | k = 10; | |
9838 | if (!ada_scan_number (suffix, k, &U, NULL)) | |
9839 | return 0; | |
9840 | ||
9841 | *modulus = (ULONGEST) U + 1; | |
9842 | return 1; | |
9843 | } | |
9844 | ||
4c4b4cd2 PH |
9845 | /* Assuming ada_is_modular_type (TYPE), the modulus of TYPE. */ |
9846 | ||
61ee279c | 9847 | ULONGEST |
0056e4d5 | 9848 | ada_modulus (struct type *type) |
14f9c5c9 | 9849 | { |
43bbcdc2 | 9850 | return (ULONGEST) TYPE_HIGH_BOUND (type) + 1; |
14f9c5c9 | 9851 | } |
d2e4a39e | 9852 | \f |
f7f9143b JB |
9853 | |
9854 | /* Ada exception catchpoint support: | |
9855 | --------------------------------- | |
9856 | ||
9857 | We support 3 kinds of exception catchpoints: | |
9858 | . catchpoints on Ada exceptions | |
9859 | . catchpoints on unhandled Ada exceptions | |
9860 | . catchpoints on failed assertions | |
9861 | ||
9862 | Exceptions raised during failed assertions, or unhandled exceptions | |
9863 | could perfectly be caught with the general catchpoint on Ada exceptions. | |
9864 | However, we can easily differentiate these two special cases, and having | |
9865 | the option to distinguish these two cases from the rest can be useful | |
9866 | to zero-in on certain situations. | |
9867 | ||
9868 | Exception catchpoints are a specialized form of breakpoint, | |
9869 | since they rely on inserting breakpoints inside known routines | |
9870 | of the GNAT runtime. The implementation therefore uses a standard | |
9871 | breakpoint structure of the BP_BREAKPOINT type, but with its own set | |
9872 | of breakpoint_ops. | |
9873 | ||
0259addd JB |
9874 | Support in the runtime for exception catchpoints have been changed |
9875 | a few times already, and these changes affect the implementation | |
9876 | of these catchpoints. In order to be able to support several | |
9877 | variants of the runtime, we use a sniffer that will determine | |
9878 | the runtime variant used by the program being debugged. | |
9879 | ||
f7f9143b JB |
9880 | At this time, we do not support the use of conditions on Ada exception |
9881 | catchpoints. The COND and COND_STRING fields are therefore set | |
9882 | to NULL (most of the time, see below). | |
9883 | ||
9884 | Conditions where EXP_STRING, COND, and COND_STRING are used: | |
9885 | ||
9886 | When a user specifies the name of a specific exception in the case | |
9887 | of catchpoints on Ada exceptions, we store the name of that exception | |
9888 | in the EXP_STRING. We then translate this request into an actual | |
9889 | condition stored in COND_STRING, and then parse it into an expression | |
9890 | stored in COND. */ | |
9891 | ||
9892 | /* The different types of catchpoints that we introduced for catching | |
9893 | Ada exceptions. */ | |
9894 | ||
9895 | enum exception_catchpoint_kind | |
9896 | { | |
9897 | ex_catch_exception, | |
9898 | ex_catch_exception_unhandled, | |
9899 | ex_catch_assert | |
9900 | }; | |
9901 | ||
3d0b0fa3 JB |
9902 | /* Ada's standard exceptions. */ |
9903 | ||
9904 | static char *standard_exc[] = { | |
9905 | "constraint_error", | |
9906 | "program_error", | |
9907 | "storage_error", | |
9908 | "tasking_error" | |
9909 | }; | |
9910 | ||
0259addd JB |
9911 | typedef CORE_ADDR (ada_unhandled_exception_name_addr_ftype) (void); |
9912 | ||
9913 | /* A structure that describes how to support exception catchpoints | |
9914 | for a given executable. */ | |
9915 | ||
9916 | struct exception_support_info | |
9917 | { | |
9918 | /* The name of the symbol to break on in order to insert | |
9919 | a catchpoint on exceptions. */ | |
9920 | const char *catch_exception_sym; | |
9921 | ||
9922 | /* The name of the symbol to break on in order to insert | |
9923 | a catchpoint on unhandled exceptions. */ | |
9924 | const char *catch_exception_unhandled_sym; | |
9925 | ||
9926 | /* The name of the symbol to break on in order to insert | |
9927 | a catchpoint on failed assertions. */ | |
9928 | const char *catch_assert_sym; | |
9929 | ||
9930 | /* Assuming that the inferior just triggered an unhandled exception | |
9931 | catchpoint, this function is responsible for returning the address | |
9932 | in inferior memory where the name of that exception is stored. | |
9933 | Return zero if the address could not be computed. */ | |
9934 | ada_unhandled_exception_name_addr_ftype *unhandled_exception_name_addr; | |
9935 | }; | |
9936 | ||
9937 | static CORE_ADDR ada_unhandled_exception_name_addr (void); | |
9938 | static CORE_ADDR ada_unhandled_exception_name_addr_from_raise (void); | |
9939 | ||
9940 | /* The following exception support info structure describes how to | |
9941 | implement exception catchpoints with the latest version of the | |
9942 | Ada runtime (as of 2007-03-06). */ | |
9943 | ||
9944 | static const struct exception_support_info default_exception_support_info = | |
9945 | { | |
9946 | "__gnat_debug_raise_exception", /* catch_exception_sym */ | |
9947 | "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */ | |
9948 | "__gnat_debug_raise_assert_failure", /* catch_assert_sym */ | |
9949 | ada_unhandled_exception_name_addr | |
9950 | }; | |
9951 | ||
9952 | /* The following exception support info structure describes how to | |
9953 | implement exception catchpoints with a slightly older version | |
9954 | of the Ada runtime. */ | |
9955 | ||
9956 | static const struct exception_support_info exception_support_info_fallback = | |
9957 | { | |
9958 | "__gnat_raise_nodefer_with_msg", /* catch_exception_sym */ | |
9959 | "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */ | |
9960 | "system__assertions__raise_assert_failure", /* catch_assert_sym */ | |
9961 | ada_unhandled_exception_name_addr_from_raise | |
9962 | }; | |
9963 | ||
9964 | /* For each executable, we sniff which exception info structure to use | |
9965 | and cache it in the following global variable. */ | |
9966 | ||
9967 | static const struct exception_support_info *exception_info = NULL; | |
9968 | ||
9969 | /* Inspect the Ada runtime and determine which exception info structure | |
9970 | should be used to provide support for exception catchpoints. | |
9971 | ||
9972 | This function will always set exception_info, or raise an error. */ | |
9973 | ||
9974 | static void | |
9975 | ada_exception_support_info_sniffer (void) | |
9976 | { | |
9977 | struct symbol *sym; | |
9978 | ||
9979 | /* If the exception info is already known, then no need to recompute it. */ | |
9980 | if (exception_info != NULL) | |
9981 | return; | |
9982 | ||
9983 | /* Check the latest (default) exception support info. */ | |
9984 | sym = standard_lookup (default_exception_support_info.catch_exception_sym, | |
9985 | NULL, VAR_DOMAIN); | |
9986 | if (sym != NULL) | |
9987 | { | |
9988 | exception_info = &default_exception_support_info; | |
9989 | return; | |
9990 | } | |
9991 | ||
9992 | /* Try our fallback exception suport info. */ | |
9993 | sym = standard_lookup (exception_support_info_fallback.catch_exception_sym, | |
9994 | NULL, VAR_DOMAIN); | |
9995 | if (sym != NULL) | |
9996 | { | |
9997 | exception_info = &exception_support_info_fallback; | |
9998 | return; | |
9999 | } | |
10000 | ||
10001 | /* Sometimes, it is normal for us to not be able to find the routine | |
10002 | we are looking for. This happens when the program is linked with | |
10003 | the shared version of the GNAT runtime, and the program has not been | |
10004 | started yet. Inform the user of these two possible causes if | |
10005 | applicable. */ | |
10006 | ||
ccefe4c4 | 10007 | if (ada_update_initial_language (language_unknown) != language_ada) |
0259addd JB |
10008 | error (_("Unable to insert catchpoint. Is this an Ada main program?")); |
10009 | ||
10010 | /* If the symbol does not exist, then check that the program is | |
10011 | already started, to make sure that shared libraries have been | |
10012 | loaded. If it is not started, this may mean that the symbol is | |
10013 | in a shared library. */ | |
10014 | ||
10015 | if (ptid_get_pid (inferior_ptid) == 0) | |
10016 | error (_("Unable to insert catchpoint. Try to start the program first.")); | |
10017 | ||
10018 | /* At this point, we know that we are debugging an Ada program and | |
10019 | that the inferior has been started, but we still are not able to | |
10020 | find the run-time symbols. That can mean that we are in | |
10021 | configurable run time mode, or that a-except as been optimized | |
10022 | out by the linker... In any case, at this point it is not worth | |
10023 | supporting this feature. */ | |
10024 | ||
10025 | error (_("Cannot insert catchpoints in this configuration.")); | |
10026 | } | |
10027 | ||
10028 | /* An observer of "executable_changed" events. | |
10029 | Its role is to clear certain cached values that need to be recomputed | |
10030 | each time a new executable is loaded by GDB. */ | |
10031 | ||
10032 | static void | |
781b42b0 | 10033 | ada_executable_changed_observer (void) |
0259addd JB |
10034 | { |
10035 | /* If the executable changed, then it is possible that the Ada runtime | |
10036 | is different. So we need to invalidate the exception support info | |
10037 | cache. */ | |
10038 | exception_info = NULL; | |
10039 | } | |
10040 | ||
f7f9143b JB |
10041 | /* True iff FRAME is very likely to be that of a function that is |
10042 | part of the runtime system. This is all very heuristic, but is | |
10043 | intended to be used as advice as to what frames are uninteresting | |
10044 | to most users. */ | |
10045 | ||
10046 | static int | |
10047 | is_known_support_routine (struct frame_info *frame) | |
10048 | { | |
4ed6b5be | 10049 | struct symtab_and_line sal; |
f7f9143b | 10050 | char *func_name; |
692465f1 | 10051 | enum language func_lang; |
f7f9143b | 10052 | int i; |
f7f9143b | 10053 | |
4ed6b5be JB |
10054 | /* If this code does not have any debugging information (no symtab), |
10055 | This cannot be any user code. */ | |
f7f9143b | 10056 | |
4ed6b5be | 10057 | find_frame_sal (frame, &sal); |
f7f9143b JB |
10058 | if (sal.symtab == NULL) |
10059 | return 1; | |
10060 | ||
4ed6b5be JB |
10061 | /* If there is a symtab, but the associated source file cannot be |
10062 | located, then assume this is not user code: Selecting a frame | |
10063 | for which we cannot display the code would not be very helpful | |
10064 | for the user. This should also take care of case such as VxWorks | |
10065 | where the kernel has some debugging info provided for a few units. */ | |
f7f9143b | 10066 | |
9bbc9174 | 10067 | if (symtab_to_fullname (sal.symtab) == NULL) |
f7f9143b JB |
10068 | return 1; |
10069 | ||
4ed6b5be JB |
10070 | /* Check the unit filename againt the Ada runtime file naming. |
10071 | We also check the name of the objfile against the name of some | |
10072 | known system libraries that sometimes come with debugging info | |
10073 | too. */ | |
10074 | ||
f7f9143b JB |
10075 | for (i = 0; known_runtime_file_name_patterns[i] != NULL; i += 1) |
10076 | { | |
10077 | re_comp (known_runtime_file_name_patterns[i]); | |
10078 | if (re_exec (sal.symtab->filename)) | |
10079 | return 1; | |
4ed6b5be JB |
10080 | if (sal.symtab->objfile != NULL |
10081 | && re_exec (sal.symtab->objfile->name)) | |
10082 | return 1; | |
f7f9143b JB |
10083 | } |
10084 | ||
4ed6b5be | 10085 | /* Check whether the function is a GNAT-generated entity. */ |
f7f9143b | 10086 | |
692465f1 | 10087 | find_frame_funname (frame, &func_name, &func_lang); |
f7f9143b JB |
10088 | if (func_name == NULL) |
10089 | return 1; | |
10090 | ||
10091 | for (i = 0; known_auxiliary_function_name_patterns[i] != NULL; i += 1) | |
10092 | { | |
10093 | re_comp (known_auxiliary_function_name_patterns[i]); | |
10094 | if (re_exec (func_name)) | |
10095 | return 1; | |
10096 | } | |
10097 | ||
10098 | return 0; | |
10099 | } | |
10100 | ||
10101 | /* Find the first frame that contains debugging information and that is not | |
10102 | part of the Ada run-time, starting from FI and moving upward. */ | |
10103 | ||
0ef643c8 | 10104 | void |
f7f9143b JB |
10105 | ada_find_printable_frame (struct frame_info *fi) |
10106 | { | |
10107 | for (; fi != NULL; fi = get_prev_frame (fi)) | |
10108 | { | |
10109 | if (!is_known_support_routine (fi)) | |
10110 | { | |
10111 | select_frame (fi); | |
10112 | break; | |
10113 | } | |
10114 | } | |
10115 | ||
10116 | } | |
10117 | ||
10118 | /* Assuming that the inferior just triggered an unhandled exception | |
10119 | catchpoint, return the address in inferior memory where the name | |
10120 | of the exception is stored. | |
10121 | ||
10122 | Return zero if the address could not be computed. */ | |
10123 | ||
10124 | static CORE_ADDR | |
10125 | ada_unhandled_exception_name_addr (void) | |
0259addd JB |
10126 | { |
10127 | return parse_and_eval_address ("e.full_name"); | |
10128 | } | |
10129 | ||
10130 | /* Same as ada_unhandled_exception_name_addr, except that this function | |
10131 | should be used when the inferior uses an older version of the runtime, | |
10132 | where the exception name needs to be extracted from a specific frame | |
10133 | several frames up in the callstack. */ | |
10134 | ||
10135 | static CORE_ADDR | |
10136 | ada_unhandled_exception_name_addr_from_raise (void) | |
f7f9143b JB |
10137 | { |
10138 | int frame_level; | |
10139 | struct frame_info *fi; | |
10140 | ||
10141 | /* To determine the name of this exception, we need to select | |
10142 | the frame corresponding to RAISE_SYM_NAME. This frame is | |
10143 | at least 3 levels up, so we simply skip the first 3 frames | |
10144 | without checking the name of their associated function. */ | |
10145 | fi = get_current_frame (); | |
10146 | for (frame_level = 0; frame_level < 3; frame_level += 1) | |
10147 | if (fi != NULL) | |
10148 | fi = get_prev_frame (fi); | |
10149 | ||
10150 | while (fi != NULL) | |
10151 | { | |
692465f1 JB |
10152 | char *func_name; |
10153 | enum language func_lang; | |
10154 | ||
10155 | find_frame_funname (fi, &func_name, &func_lang); | |
f7f9143b | 10156 | if (func_name != NULL |
0259addd | 10157 | && strcmp (func_name, exception_info->catch_exception_sym) == 0) |
f7f9143b JB |
10158 | break; /* We found the frame we were looking for... */ |
10159 | fi = get_prev_frame (fi); | |
10160 | } | |
10161 | ||
10162 | if (fi == NULL) | |
10163 | return 0; | |
10164 | ||
10165 | select_frame (fi); | |
10166 | return parse_and_eval_address ("id.full_name"); | |
10167 | } | |
10168 | ||
10169 | /* Assuming the inferior just triggered an Ada exception catchpoint | |
10170 | (of any type), return the address in inferior memory where the name | |
10171 | of the exception is stored, if applicable. | |
10172 | ||
10173 | Return zero if the address could not be computed, or if not relevant. */ | |
10174 | ||
10175 | static CORE_ADDR | |
10176 | ada_exception_name_addr_1 (enum exception_catchpoint_kind ex, | |
10177 | struct breakpoint *b) | |
10178 | { | |
10179 | switch (ex) | |
10180 | { | |
10181 | case ex_catch_exception: | |
10182 | return (parse_and_eval_address ("e.full_name")); | |
10183 | break; | |
10184 | ||
10185 | case ex_catch_exception_unhandled: | |
0259addd | 10186 | return exception_info->unhandled_exception_name_addr (); |
f7f9143b JB |
10187 | break; |
10188 | ||
10189 | case ex_catch_assert: | |
10190 | return 0; /* Exception name is not relevant in this case. */ | |
10191 | break; | |
10192 | ||
10193 | default: | |
10194 | internal_error (__FILE__, __LINE__, _("unexpected catchpoint type")); | |
10195 | break; | |
10196 | } | |
10197 | ||
10198 | return 0; /* Should never be reached. */ | |
10199 | } | |
10200 | ||
10201 | /* Same as ada_exception_name_addr_1, except that it intercepts and contains | |
10202 | any error that ada_exception_name_addr_1 might cause to be thrown. | |
10203 | When an error is intercepted, a warning with the error message is printed, | |
10204 | and zero is returned. */ | |
10205 | ||
10206 | static CORE_ADDR | |
10207 | ada_exception_name_addr (enum exception_catchpoint_kind ex, | |
10208 | struct breakpoint *b) | |
10209 | { | |
10210 | struct gdb_exception e; | |
10211 | CORE_ADDR result = 0; | |
10212 | ||
10213 | TRY_CATCH (e, RETURN_MASK_ERROR) | |
10214 | { | |
10215 | result = ada_exception_name_addr_1 (ex, b); | |
10216 | } | |
10217 | ||
10218 | if (e.reason < 0) | |
10219 | { | |
10220 | warning (_("failed to get exception name: %s"), e.message); | |
10221 | return 0; | |
10222 | } | |
10223 | ||
10224 | return result; | |
10225 | } | |
10226 | ||
10227 | /* Implement the PRINT_IT method in the breakpoint_ops structure | |
10228 | for all exception catchpoint kinds. */ | |
10229 | ||
10230 | static enum print_stop_action | |
10231 | print_it_exception (enum exception_catchpoint_kind ex, struct breakpoint *b) | |
10232 | { | |
10233 | const CORE_ADDR addr = ada_exception_name_addr (ex, b); | |
10234 | char exception_name[256]; | |
10235 | ||
10236 | if (addr != 0) | |
10237 | { | |
10238 | read_memory (addr, exception_name, sizeof (exception_name) - 1); | |
10239 | exception_name [sizeof (exception_name) - 1] = '\0'; | |
10240 | } | |
10241 | ||
10242 | ada_find_printable_frame (get_current_frame ()); | |
10243 | ||
10244 | annotate_catchpoint (b->number); | |
10245 | switch (ex) | |
10246 | { | |
10247 | case ex_catch_exception: | |
10248 | if (addr != 0) | |
10249 | printf_filtered (_("\nCatchpoint %d, %s at "), | |
10250 | b->number, exception_name); | |
10251 | else | |
10252 | printf_filtered (_("\nCatchpoint %d, exception at "), b->number); | |
10253 | break; | |
10254 | case ex_catch_exception_unhandled: | |
10255 | if (addr != 0) | |
10256 | printf_filtered (_("\nCatchpoint %d, unhandled %s at "), | |
10257 | b->number, exception_name); | |
10258 | else | |
10259 | printf_filtered (_("\nCatchpoint %d, unhandled exception at "), | |
10260 | b->number); | |
10261 | break; | |
10262 | case ex_catch_assert: | |
10263 | printf_filtered (_("\nCatchpoint %d, failed assertion at "), | |
10264 | b->number); | |
10265 | break; | |
10266 | } | |
10267 | ||
10268 | return PRINT_SRC_AND_LOC; | |
10269 | } | |
10270 | ||
10271 | /* Implement the PRINT_ONE method in the breakpoint_ops structure | |
10272 | for all exception catchpoint kinds. */ | |
10273 | ||
10274 | static void | |
10275 | print_one_exception (enum exception_catchpoint_kind ex, | |
a6d9a66e | 10276 | struct breakpoint *b, struct bp_location **last_loc) |
f7f9143b | 10277 | { |
79a45b7d TT |
10278 | struct value_print_options opts; |
10279 | ||
10280 | get_user_print_options (&opts); | |
10281 | if (opts.addressprint) | |
f7f9143b JB |
10282 | { |
10283 | annotate_field (4); | |
5af949e3 | 10284 | ui_out_field_core_addr (uiout, "addr", b->loc->gdbarch, b->loc->address); |
f7f9143b JB |
10285 | } |
10286 | ||
10287 | annotate_field (5); | |
a6d9a66e | 10288 | *last_loc = b->loc; |
f7f9143b JB |
10289 | switch (ex) |
10290 | { | |
10291 | case ex_catch_exception: | |
10292 | if (b->exp_string != NULL) | |
10293 | { | |
10294 | char *msg = xstrprintf (_("`%s' Ada exception"), b->exp_string); | |
10295 | ||
10296 | ui_out_field_string (uiout, "what", msg); | |
10297 | xfree (msg); | |
10298 | } | |
10299 | else | |
10300 | ui_out_field_string (uiout, "what", "all Ada exceptions"); | |
10301 | ||
10302 | break; | |
10303 | ||
10304 | case ex_catch_exception_unhandled: | |
10305 | ui_out_field_string (uiout, "what", "unhandled Ada exceptions"); | |
10306 | break; | |
10307 | ||
10308 | case ex_catch_assert: | |
10309 | ui_out_field_string (uiout, "what", "failed Ada assertions"); | |
10310 | break; | |
10311 | ||
10312 | default: | |
10313 | internal_error (__FILE__, __LINE__, _("unexpected catchpoint type")); | |
10314 | break; | |
10315 | } | |
10316 | } | |
10317 | ||
10318 | /* Implement the PRINT_MENTION method in the breakpoint_ops structure | |
10319 | for all exception catchpoint kinds. */ | |
10320 | ||
10321 | static void | |
10322 | print_mention_exception (enum exception_catchpoint_kind ex, | |
10323 | struct breakpoint *b) | |
10324 | { | |
10325 | switch (ex) | |
10326 | { | |
10327 | case ex_catch_exception: | |
10328 | if (b->exp_string != NULL) | |
10329 | printf_filtered (_("Catchpoint %d: `%s' Ada exception"), | |
10330 | b->number, b->exp_string); | |
10331 | else | |
10332 | printf_filtered (_("Catchpoint %d: all Ada exceptions"), b->number); | |
10333 | ||
10334 | break; | |
10335 | ||
10336 | case ex_catch_exception_unhandled: | |
10337 | printf_filtered (_("Catchpoint %d: unhandled Ada exceptions"), | |
10338 | b->number); | |
10339 | break; | |
10340 | ||
10341 | case ex_catch_assert: | |
10342 | printf_filtered (_("Catchpoint %d: failed Ada assertions"), b->number); | |
10343 | break; | |
10344 | ||
10345 | default: | |
10346 | internal_error (__FILE__, __LINE__, _("unexpected catchpoint type")); | |
10347 | break; | |
10348 | } | |
10349 | } | |
10350 | ||
10351 | /* Virtual table for "catch exception" breakpoints. */ | |
10352 | ||
10353 | static enum print_stop_action | |
10354 | print_it_catch_exception (struct breakpoint *b) | |
10355 | { | |
10356 | return print_it_exception (ex_catch_exception, b); | |
10357 | } | |
10358 | ||
10359 | static void | |
a6d9a66e | 10360 | print_one_catch_exception (struct breakpoint *b, struct bp_location **last_loc) |
f7f9143b | 10361 | { |
a6d9a66e | 10362 | print_one_exception (ex_catch_exception, b, last_loc); |
f7f9143b JB |
10363 | } |
10364 | ||
10365 | static void | |
10366 | print_mention_catch_exception (struct breakpoint *b) | |
10367 | { | |
10368 | print_mention_exception (ex_catch_exception, b); | |
10369 | } | |
10370 | ||
10371 | static struct breakpoint_ops catch_exception_breakpoint_ops = | |
10372 | { | |
ce78b96d JB |
10373 | NULL, /* insert */ |
10374 | NULL, /* remove */ | |
10375 | NULL, /* breakpoint_hit */ | |
f7f9143b JB |
10376 | print_it_catch_exception, |
10377 | print_one_catch_exception, | |
10378 | print_mention_catch_exception | |
10379 | }; | |
10380 | ||
10381 | /* Virtual table for "catch exception unhandled" breakpoints. */ | |
10382 | ||
10383 | static enum print_stop_action | |
10384 | print_it_catch_exception_unhandled (struct breakpoint *b) | |
10385 | { | |
10386 | return print_it_exception (ex_catch_exception_unhandled, b); | |
10387 | } | |
10388 | ||
10389 | static void | |
a6d9a66e UW |
10390 | print_one_catch_exception_unhandled (struct breakpoint *b, |
10391 | struct bp_location **last_loc) | |
f7f9143b | 10392 | { |
a6d9a66e | 10393 | print_one_exception (ex_catch_exception_unhandled, b, last_loc); |
f7f9143b JB |
10394 | } |
10395 | ||
10396 | static void | |
10397 | print_mention_catch_exception_unhandled (struct breakpoint *b) | |
10398 | { | |
10399 | print_mention_exception (ex_catch_exception_unhandled, b); | |
10400 | } | |
10401 | ||
10402 | static struct breakpoint_ops catch_exception_unhandled_breakpoint_ops = { | |
ce78b96d JB |
10403 | NULL, /* insert */ |
10404 | NULL, /* remove */ | |
10405 | NULL, /* breakpoint_hit */ | |
f7f9143b JB |
10406 | print_it_catch_exception_unhandled, |
10407 | print_one_catch_exception_unhandled, | |
10408 | print_mention_catch_exception_unhandled | |
10409 | }; | |
10410 | ||
10411 | /* Virtual table for "catch assert" breakpoints. */ | |
10412 | ||
10413 | static enum print_stop_action | |
10414 | print_it_catch_assert (struct breakpoint *b) | |
10415 | { | |
10416 | return print_it_exception (ex_catch_assert, b); | |
10417 | } | |
10418 | ||
10419 | static void | |
a6d9a66e | 10420 | print_one_catch_assert (struct breakpoint *b, struct bp_location **last_loc) |
f7f9143b | 10421 | { |
a6d9a66e | 10422 | print_one_exception (ex_catch_assert, b, last_loc); |
f7f9143b JB |
10423 | } |
10424 | ||
10425 | static void | |
10426 | print_mention_catch_assert (struct breakpoint *b) | |
10427 | { | |
10428 | print_mention_exception (ex_catch_assert, b); | |
10429 | } | |
10430 | ||
10431 | static struct breakpoint_ops catch_assert_breakpoint_ops = { | |
ce78b96d JB |
10432 | NULL, /* insert */ |
10433 | NULL, /* remove */ | |
10434 | NULL, /* breakpoint_hit */ | |
f7f9143b JB |
10435 | print_it_catch_assert, |
10436 | print_one_catch_assert, | |
10437 | print_mention_catch_assert | |
10438 | }; | |
10439 | ||
10440 | /* Return non-zero if B is an Ada exception catchpoint. */ | |
10441 | ||
10442 | int | |
10443 | ada_exception_catchpoint_p (struct breakpoint *b) | |
10444 | { | |
10445 | return (b->ops == &catch_exception_breakpoint_ops | |
10446 | || b->ops == &catch_exception_unhandled_breakpoint_ops | |
10447 | || b->ops == &catch_assert_breakpoint_ops); | |
10448 | } | |
10449 | ||
f7f9143b JB |
10450 | /* Return a newly allocated copy of the first space-separated token |
10451 | in ARGSP, and then adjust ARGSP to point immediately after that | |
10452 | token. | |
10453 | ||
10454 | Return NULL if ARGPS does not contain any more tokens. */ | |
10455 | ||
10456 | static char * | |
10457 | ada_get_next_arg (char **argsp) | |
10458 | { | |
10459 | char *args = *argsp; | |
10460 | char *end; | |
10461 | char *result; | |
10462 | ||
10463 | /* Skip any leading white space. */ | |
10464 | ||
10465 | while (isspace (*args)) | |
10466 | args++; | |
10467 | ||
10468 | if (args[0] == '\0') | |
10469 | return NULL; /* No more arguments. */ | |
10470 | ||
10471 | /* Find the end of the current argument. */ | |
10472 | ||
10473 | end = args; | |
10474 | while (*end != '\0' && !isspace (*end)) | |
10475 | end++; | |
10476 | ||
10477 | /* Adjust ARGSP to point to the start of the next argument. */ | |
10478 | ||
10479 | *argsp = end; | |
10480 | ||
10481 | /* Make a copy of the current argument and return it. */ | |
10482 | ||
10483 | result = xmalloc (end - args + 1); | |
10484 | strncpy (result, args, end - args); | |
10485 | result[end - args] = '\0'; | |
10486 | ||
10487 | return result; | |
10488 | } | |
10489 | ||
10490 | /* Split the arguments specified in a "catch exception" command. | |
10491 | Set EX to the appropriate catchpoint type. | |
10492 | Set EXP_STRING to the name of the specific exception if | |
10493 | specified by the user. */ | |
10494 | ||
10495 | static void | |
10496 | catch_ada_exception_command_split (char *args, | |
10497 | enum exception_catchpoint_kind *ex, | |
10498 | char **exp_string) | |
10499 | { | |
10500 | struct cleanup *old_chain = make_cleanup (null_cleanup, NULL); | |
10501 | char *exception_name; | |
10502 | ||
10503 | exception_name = ada_get_next_arg (&args); | |
10504 | make_cleanup (xfree, exception_name); | |
10505 | ||
10506 | /* Check that we do not have any more arguments. Anything else | |
10507 | is unexpected. */ | |
10508 | ||
10509 | while (isspace (*args)) | |
10510 | args++; | |
10511 | ||
10512 | if (args[0] != '\0') | |
10513 | error (_("Junk at end of expression")); | |
10514 | ||
10515 | discard_cleanups (old_chain); | |
10516 | ||
10517 | if (exception_name == NULL) | |
10518 | { | |
10519 | /* Catch all exceptions. */ | |
10520 | *ex = ex_catch_exception; | |
10521 | *exp_string = NULL; | |
10522 | } | |
10523 | else if (strcmp (exception_name, "unhandled") == 0) | |
10524 | { | |
10525 | /* Catch unhandled exceptions. */ | |
10526 | *ex = ex_catch_exception_unhandled; | |
10527 | *exp_string = NULL; | |
10528 | } | |
10529 | else | |
10530 | { | |
10531 | /* Catch a specific exception. */ | |
10532 | *ex = ex_catch_exception; | |
10533 | *exp_string = exception_name; | |
10534 | } | |
10535 | } | |
10536 | ||
10537 | /* Return the name of the symbol on which we should break in order to | |
10538 | implement a catchpoint of the EX kind. */ | |
10539 | ||
10540 | static const char * | |
10541 | ada_exception_sym_name (enum exception_catchpoint_kind ex) | |
10542 | { | |
0259addd JB |
10543 | gdb_assert (exception_info != NULL); |
10544 | ||
f7f9143b JB |
10545 | switch (ex) |
10546 | { | |
10547 | case ex_catch_exception: | |
0259addd | 10548 | return (exception_info->catch_exception_sym); |
f7f9143b JB |
10549 | break; |
10550 | case ex_catch_exception_unhandled: | |
0259addd | 10551 | return (exception_info->catch_exception_unhandled_sym); |
f7f9143b JB |
10552 | break; |
10553 | case ex_catch_assert: | |
0259addd | 10554 | return (exception_info->catch_assert_sym); |
f7f9143b JB |
10555 | break; |
10556 | default: | |
10557 | internal_error (__FILE__, __LINE__, | |
10558 | _("unexpected catchpoint kind (%d)"), ex); | |
10559 | } | |
10560 | } | |
10561 | ||
10562 | /* Return the breakpoint ops "virtual table" used for catchpoints | |
10563 | of the EX kind. */ | |
10564 | ||
10565 | static struct breakpoint_ops * | |
4b9eee8c | 10566 | ada_exception_breakpoint_ops (enum exception_catchpoint_kind ex) |
f7f9143b JB |
10567 | { |
10568 | switch (ex) | |
10569 | { | |
10570 | case ex_catch_exception: | |
10571 | return (&catch_exception_breakpoint_ops); | |
10572 | break; | |
10573 | case ex_catch_exception_unhandled: | |
10574 | return (&catch_exception_unhandled_breakpoint_ops); | |
10575 | break; | |
10576 | case ex_catch_assert: | |
10577 | return (&catch_assert_breakpoint_ops); | |
10578 | break; | |
10579 | default: | |
10580 | internal_error (__FILE__, __LINE__, | |
10581 | _("unexpected catchpoint kind (%d)"), ex); | |
10582 | } | |
10583 | } | |
10584 | ||
10585 | /* Return the condition that will be used to match the current exception | |
10586 | being raised with the exception that the user wants to catch. This | |
10587 | assumes that this condition is used when the inferior just triggered | |
10588 | an exception catchpoint. | |
10589 | ||
10590 | The string returned is a newly allocated string that needs to be | |
10591 | deallocated later. */ | |
10592 | ||
10593 | static char * | |
10594 | ada_exception_catchpoint_cond_string (const char *exp_string) | |
10595 | { | |
3d0b0fa3 JB |
10596 | int i; |
10597 | ||
10598 | /* The standard exceptions are a special case. They are defined in | |
10599 | runtime units that have been compiled without debugging info; if | |
10600 | EXP_STRING is the not-fully-qualified name of a standard | |
10601 | exception (e.g. "constraint_error") then, during the evaluation | |
10602 | of the condition expression, the symbol lookup on this name would | |
10603 | *not* return this standard exception. The catchpoint condition | |
10604 | may then be set only on user-defined exceptions which have the | |
10605 | same not-fully-qualified name (e.g. my_package.constraint_error). | |
10606 | ||
10607 | To avoid this unexcepted behavior, these standard exceptions are | |
10608 | systematically prefixed by "standard". This means that "catch | |
10609 | exception constraint_error" is rewritten into "catch exception | |
10610 | standard.constraint_error". | |
10611 | ||
10612 | If an exception named contraint_error is defined in another package of | |
10613 | the inferior program, then the only way to specify this exception as a | |
10614 | breakpoint condition is to use its fully-qualified named: | |
10615 | e.g. my_package.constraint_error. */ | |
10616 | ||
10617 | for (i = 0; i < sizeof (standard_exc) / sizeof (char *); i++) | |
10618 | { | |
10619 | if (strcmp (standard_exc [i], exp_string) == 0) | |
10620 | { | |
10621 | return xstrprintf ("long_integer (e) = long_integer (&standard.%s)", | |
10622 | exp_string); | |
10623 | } | |
10624 | } | |
f7f9143b JB |
10625 | return xstrprintf ("long_integer (e) = long_integer (&%s)", exp_string); |
10626 | } | |
10627 | ||
10628 | /* Return the expression corresponding to COND_STRING evaluated at SAL. */ | |
10629 | ||
10630 | static struct expression * | |
10631 | ada_parse_catchpoint_condition (char *cond_string, | |
10632 | struct symtab_and_line sal) | |
10633 | { | |
10634 | return (parse_exp_1 (&cond_string, block_for_pc (sal.pc), 0)); | |
10635 | } | |
10636 | ||
10637 | /* Return the symtab_and_line that should be used to insert an exception | |
10638 | catchpoint of the TYPE kind. | |
10639 | ||
10640 | EX_STRING should contain the name of a specific exception | |
10641 | that the catchpoint should catch, or NULL otherwise. | |
10642 | ||
10643 | The idea behind all the remaining parameters is that their names match | |
10644 | the name of certain fields in the breakpoint structure that are used to | |
10645 | handle exception catchpoints. This function returns the value to which | |
10646 | these fields should be set, depending on the type of catchpoint we need | |
10647 | to create. | |
10648 | ||
10649 | If COND and COND_STRING are both non-NULL, any value they might | |
10650 | hold will be free'ed, and then replaced by newly allocated ones. | |
10651 | These parameters are left untouched otherwise. */ | |
10652 | ||
10653 | static struct symtab_and_line | |
10654 | ada_exception_sal (enum exception_catchpoint_kind ex, char *exp_string, | |
10655 | char **addr_string, char **cond_string, | |
10656 | struct expression **cond, struct breakpoint_ops **ops) | |
10657 | { | |
10658 | const char *sym_name; | |
10659 | struct symbol *sym; | |
10660 | struct symtab_and_line sal; | |
10661 | ||
0259addd JB |
10662 | /* First, find out which exception support info to use. */ |
10663 | ada_exception_support_info_sniffer (); | |
10664 | ||
10665 | /* Then lookup the function on which we will break in order to catch | |
f7f9143b JB |
10666 | the Ada exceptions requested by the user. */ |
10667 | ||
10668 | sym_name = ada_exception_sym_name (ex); | |
10669 | sym = standard_lookup (sym_name, NULL, VAR_DOMAIN); | |
10670 | ||
10671 | /* The symbol we're looking up is provided by a unit in the GNAT runtime | |
10672 | that should be compiled with debugging information. As a result, we | |
10673 | expect to find that symbol in the symtabs. If we don't find it, then | |
10674 | the target most likely does not support Ada exceptions, or we cannot | |
10675 | insert exception breakpoints yet, because the GNAT runtime hasn't been | |
10676 | loaded yet. */ | |
10677 | ||
10678 | /* brobecker/2006-12-26: It is conceivable that the runtime was compiled | |
10679 | in such a way that no debugging information is produced for the symbol | |
10680 | we are looking for. In this case, we could search the minimal symbols | |
10681 | as a fall-back mechanism. This would still be operating in degraded | |
10682 | mode, however, as we would still be missing the debugging information | |
10683 | that is needed in order to extract the name of the exception being | |
10684 | raised (this name is printed in the catchpoint message, and is also | |
10685 | used when trying to catch a specific exception). We do not handle | |
10686 | this case for now. */ | |
10687 | ||
10688 | if (sym == NULL) | |
0259addd | 10689 | error (_("Unable to break on '%s' in this configuration."), sym_name); |
f7f9143b JB |
10690 | |
10691 | /* Make sure that the symbol we found corresponds to a function. */ | |
10692 | if (SYMBOL_CLASS (sym) != LOC_BLOCK) | |
10693 | error (_("Symbol \"%s\" is not a function (class = %d)"), | |
10694 | sym_name, SYMBOL_CLASS (sym)); | |
10695 | ||
10696 | sal = find_function_start_sal (sym, 1); | |
10697 | ||
10698 | /* Set ADDR_STRING. */ | |
10699 | ||
10700 | *addr_string = xstrdup (sym_name); | |
10701 | ||
10702 | /* Set the COND and COND_STRING (if not NULL). */ | |
10703 | ||
10704 | if (cond_string != NULL && cond != NULL) | |
10705 | { | |
10706 | if (*cond_string != NULL) | |
10707 | { | |
10708 | xfree (*cond_string); | |
10709 | *cond_string = NULL; | |
10710 | } | |
10711 | if (*cond != NULL) | |
10712 | { | |
10713 | xfree (*cond); | |
10714 | *cond = NULL; | |
10715 | } | |
10716 | if (exp_string != NULL) | |
10717 | { | |
10718 | *cond_string = ada_exception_catchpoint_cond_string (exp_string); | |
10719 | *cond = ada_parse_catchpoint_condition (*cond_string, sal); | |
10720 | } | |
10721 | } | |
10722 | ||
10723 | /* Set OPS. */ | |
4b9eee8c | 10724 | *ops = ada_exception_breakpoint_ops (ex); |
f7f9143b JB |
10725 | |
10726 | return sal; | |
10727 | } | |
10728 | ||
10729 | /* Parse the arguments (ARGS) of the "catch exception" command. | |
10730 | ||
10731 | Set TYPE to the appropriate exception catchpoint type. | |
10732 | If the user asked the catchpoint to catch only a specific | |
10733 | exception, then save the exception name in ADDR_STRING. | |
10734 | ||
10735 | See ada_exception_sal for a description of all the remaining | |
10736 | function arguments of this function. */ | |
10737 | ||
10738 | struct symtab_and_line | |
10739 | ada_decode_exception_location (char *args, char **addr_string, | |
10740 | char **exp_string, char **cond_string, | |
10741 | struct expression **cond, | |
10742 | struct breakpoint_ops **ops) | |
10743 | { | |
10744 | enum exception_catchpoint_kind ex; | |
10745 | ||
10746 | catch_ada_exception_command_split (args, &ex, exp_string); | |
10747 | return ada_exception_sal (ex, *exp_string, addr_string, cond_string, | |
10748 | cond, ops); | |
10749 | } | |
10750 | ||
10751 | struct symtab_and_line | |
10752 | ada_decode_assert_location (char *args, char **addr_string, | |
10753 | struct breakpoint_ops **ops) | |
10754 | { | |
10755 | /* Check that no argument where provided at the end of the command. */ | |
10756 | ||
10757 | if (args != NULL) | |
10758 | { | |
10759 | while (isspace (*args)) | |
10760 | args++; | |
10761 | if (*args != '\0') | |
10762 | error (_("Junk at end of arguments.")); | |
10763 | } | |
10764 | ||
10765 | return ada_exception_sal (ex_catch_assert, NULL, addr_string, NULL, NULL, | |
10766 | ops); | |
10767 | } | |
10768 | ||
4c4b4cd2 PH |
10769 | /* Operators */ |
10770 | /* Information about operators given special treatment in functions | |
10771 | below. */ | |
10772 | /* Format: OP_DEFN (<operator>, <operator length>, <# args>, <binop>). */ | |
10773 | ||
10774 | #define ADA_OPERATORS \ | |
10775 | OP_DEFN (OP_VAR_VALUE, 4, 0, 0) \ | |
10776 | OP_DEFN (BINOP_IN_BOUNDS, 3, 2, 0) \ | |
10777 | OP_DEFN (TERNOP_IN_RANGE, 1, 3, 0) \ | |
10778 | OP_DEFN (OP_ATR_FIRST, 1, 2, 0) \ | |
10779 | OP_DEFN (OP_ATR_LAST, 1, 2, 0) \ | |
10780 | OP_DEFN (OP_ATR_LENGTH, 1, 2, 0) \ | |
10781 | OP_DEFN (OP_ATR_IMAGE, 1, 2, 0) \ | |
10782 | OP_DEFN (OP_ATR_MAX, 1, 3, 0) \ | |
10783 | OP_DEFN (OP_ATR_MIN, 1, 3, 0) \ | |
10784 | OP_DEFN (OP_ATR_MODULUS, 1, 1, 0) \ | |
10785 | OP_DEFN (OP_ATR_POS, 1, 2, 0) \ | |
10786 | OP_DEFN (OP_ATR_SIZE, 1, 1, 0) \ | |
10787 | OP_DEFN (OP_ATR_TAG, 1, 1, 0) \ | |
10788 | OP_DEFN (OP_ATR_VAL, 1, 2, 0) \ | |
10789 | OP_DEFN (UNOP_QUAL, 3, 1, 0) \ | |
52ce6436 PH |
10790 | OP_DEFN (UNOP_IN_RANGE, 3, 1, 0) \ |
10791 | OP_DEFN (OP_OTHERS, 1, 1, 0) \ | |
10792 | OP_DEFN (OP_POSITIONAL, 3, 1, 0) \ | |
10793 | OP_DEFN (OP_DISCRETE_RANGE, 1, 2, 0) | |
4c4b4cd2 PH |
10794 | |
10795 | static void | |
10796 | ada_operator_length (struct expression *exp, int pc, int *oplenp, int *argsp) | |
10797 | { | |
10798 | switch (exp->elts[pc - 1].opcode) | |
10799 | { | |
76a01679 | 10800 | default: |
4c4b4cd2 PH |
10801 | operator_length_standard (exp, pc, oplenp, argsp); |
10802 | break; | |
10803 | ||
10804 | #define OP_DEFN(op, len, args, binop) \ | |
10805 | case op: *oplenp = len; *argsp = args; break; | |
10806 | ADA_OPERATORS; | |
10807 | #undef OP_DEFN | |
52ce6436 PH |
10808 | |
10809 | case OP_AGGREGATE: | |
10810 | *oplenp = 3; | |
10811 | *argsp = longest_to_int (exp->elts[pc - 2].longconst); | |
10812 | break; | |
10813 | ||
10814 | case OP_CHOICES: | |
10815 | *oplenp = 3; | |
10816 | *argsp = longest_to_int (exp->elts[pc - 2].longconst) + 1; | |
10817 | break; | |
4c4b4cd2 PH |
10818 | } |
10819 | } | |
10820 | ||
10821 | static char * | |
10822 | ada_op_name (enum exp_opcode opcode) | |
10823 | { | |
10824 | switch (opcode) | |
10825 | { | |
76a01679 | 10826 | default: |
4c4b4cd2 | 10827 | return op_name_standard (opcode); |
52ce6436 | 10828 | |
4c4b4cd2 PH |
10829 | #define OP_DEFN(op, len, args, binop) case op: return #op; |
10830 | ADA_OPERATORS; | |
10831 | #undef OP_DEFN | |
52ce6436 PH |
10832 | |
10833 | case OP_AGGREGATE: | |
10834 | return "OP_AGGREGATE"; | |
10835 | case OP_CHOICES: | |
10836 | return "OP_CHOICES"; | |
10837 | case OP_NAME: | |
10838 | return "OP_NAME"; | |
4c4b4cd2 PH |
10839 | } |
10840 | } | |
10841 | ||
10842 | /* As for operator_length, but assumes PC is pointing at the first | |
10843 | element of the operator, and gives meaningful results only for the | |
52ce6436 | 10844 | Ada-specific operators, returning 0 for *OPLENP and *ARGSP otherwise. */ |
4c4b4cd2 PH |
10845 | |
10846 | static void | |
76a01679 JB |
10847 | ada_forward_operator_length (struct expression *exp, int pc, |
10848 | int *oplenp, int *argsp) | |
4c4b4cd2 | 10849 | { |
76a01679 | 10850 | switch (exp->elts[pc].opcode) |
4c4b4cd2 PH |
10851 | { |
10852 | default: | |
10853 | *oplenp = *argsp = 0; | |
10854 | break; | |
52ce6436 | 10855 | |
4c4b4cd2 PH |
10856 | #define OP_DEFN(op, len, args, binop) \ |
10857 | case op: *oplenp = len; *argsp = args; break; | |
10858 | ADA_OPERATORS; | |
10859 | #undef OP_DEFN | |
52ce6436 PH |
10860 | |
10861 | case OP_AGGREGATE: | |
10862 | *oplenp = 3; | |
10863 | *argsp = longest_to_int (exp->elts[pc + 1].longconst); | |
10864 | break; | |
10865 | ||
10866 | case OP_CHOICES: | |
10867 | *oplenp = 3; | |
10868 | *argsp = longest_to_int (exp->elts[pc + 1].longconst) + 1; | |
10869 | break; | |
10870 | ||
10871 | case OP_STRING: | |
10872 | case OP_NAME: | |
10873 | { | |
10874 | int len = longest_to_int (exp->elts[pc + 1].longconst); | |
10875 | *oplenp = 4 + BYTES_TO_EXP_ELEM (len + 1); | |
10876 | *argsp = 0; | |
10877 | break; | |
10878 | } | |
4c4b4cd2 PH |
10879 | } |
10880 | } | |
10881 | ||
10882 | static int | |
10883 | ada_dump_subexp_body (struct expression *exp, struct ui_file *stream, int elt) | |
10884 | { | |
10885 | enum exp_opcode op = exp->elts[elt].opcode; | |
10886 | int oplen, nargs; | |
10887 | int pc = elt; | |
10888 | int i; | |
76a01679 | 10889 | |
4c4b4cd2 PH |
10890 | ada_forward_operator_length (exp, elt, &oplen, &nargs); |
10891 | ||
76a01679 | 10892 | switch (op) |
4c4b4cd2 | 10893 | { |
76a01679 | 10894 | /* Ada attributes ('Foo). */ |
4c4b4cd2 PH |
10895 | case OP_ATR_FIRST: |
10896 | case OP_ATR_LAST: | |
10897 | case OP_ATR_LENGTH: | |
10898 | case OP_ATR_IMAGE: | |
10899 | case OP_ATR_MAX: | |
10900 | case OP_ATR_MIN: | |
10901 | case OP_ATR_MODULUS: | |
10902 | case OP_ATR_POS: | |
10903 | case OP_ATR_SIZE: | |
10904 | case OP_ATR_TAG: | |
10905 | case OP_ATR_VAL: | |
10906 | break; | |
10907 | ||
10908 | case UNOP_IN_RANGE: | |
10909 | case UNOP_QUAL: | |
323e0a4a AC |
10910 | /* XXX: gdb_sprint_host_address, type_sprint */ |
10911 | fprintf_filtered (stream, _("Type @")); | |
4c4b4cd2 PH |
10912 | gdb_print_host_address (exp->elts[pc + 1].type, stream); |
10913 | fprintf_filtered (stream, " ("); | |
10914 | type_print (exp->elts[pc + 1].type, NULL, stream, 0); | |
10915 | fprintf_filtered (stream, ")"); | |
10916 | break; | |
10917 | case BINOP_IN_BOUNDS: | |
52ce6436 PH |
10918 | fprintf_filtered (stream, " (%d)", |
10919 | longest_to_int (exp->elts[pc + 2].longconst)); | |
4c4b4cd2 PH |
10920 | break; |
10921 | case TERNOP_IN_RANGE: | |
10922 | break; | |
10923 | ||
52ce6436 PH |
10924 | case OP_AGGREGATE: |
10925 | case OP_OTHERS: | |
10926 | case OP_DISCRETE_RANGE: | |
10927 | case OP_POSITIONAL: | |
10928 | case OP_CHOICES: | |
10929 | break; | |
10930 | ||
10931 | case OP_NAME: | |
10932 | case OP_STRING: | |
10933 | { | |
10934 | char *name = &exp->elts[elt + 2].string; | |
10935 | int len = longest_to_int (exp->elts[elt + 1].longconst); | |
10936 | fprintf_filtered (stream, "Text: `%.*s'", len, name); | |
10937 | break; | |
10938 | } | |
10939 | ||
4c4b4cd2 PH |
10940 | default: |
10941 | return dump_subexp_body_standard (exp, stream, elt); | |
10942 | } | |
10943 | ||
10944 | elt += oplen; | |
10945 | for (i = 0; i < nargs; i += 1) | |
10946 | elt = dump_subexp (exp, stream, elt); | |
10947 | ||
10948 | return elt; | |
10949 | } | |
10950 | ||
10951 | /* The Ada extension of print_subexp (q.v.). */ | |
10952 | ||
76a01679 JB |
10953 | static void |
10954 | ada_print_subexp (struct expression *exp, int *pos, | |
10955 | struct ui_file *stream, enum precedence prec) | |
4c4b4cd2 | 10956 | { |
52ce6436 | 10957 | int oplen, nargs, i; |
4c4b4cd2 PH |
10958 | int pc = *pos; |
10959 | enum exp_opcode op = exp->elts[pc].opcode; | |
10960 | ||
10961 | ada_forward_operator_length (exp, pc, &oplen, &nargs); | |
10962 | ||
52ce6436 | 10963 | *pos += oplen; |
4c4b4cd2 PH |
10964 | switch (op) |
10965 | { | |
10966 | default: | |
52ce6436 | 10967 | *pos -= oplen; |
4c4b4cd2 PH |
10968 | print_subexp_standard (exp, pos, stream, prec); |
10969 | return; | |
10970 | ||
10971 | case OP_VAR_VALUE: | |
4c4b4cd2 PH |
10972 | fputs_filtered (SYMBOL_NATURAL_NAME (exp->elts[pc + 2].symbol), stream); |
10973 | return; | |
10974 | ||
10975 | case BINOP_IN_BOUNDS: | |
323e0a4a | 10976 | /* XXX: sprint_subexp */ |
4c4b4cd2 | 10977 | print_subexp (exp, pos, stream, PREC_SUFFIX); |
0b48a291 | 10978 | fputs_filtered (" in ", stream); |
4c4b4cd2 | 10979 | print_subexp (exp, pos, stream, PREC_SUFFIX); |
0b48a291 | 10980 | fputs_filtered ("'range", stream); |
4c4b4cd2 | 10981 | if (exp->elts[pc + 1].longconst > 1) |
76a01679 JB |
10982 | fprintf_filtered (stream, "(%ld)", |
10983 | (long) exp->elts[pc + 1].longconst); | |
4c4b4cd2 PH |
10984 | return; |
10985 | ||
10986 | case TERNOP_IN_RANGE: | |
4c4b4cd2 | 10987 | if (prec >= PREC_EQUAL) |
76a01679 | 10988 | fputs_filtered ("(", stream); |
323e0a4a | 10989 | /* XXX: sprint_subexp */ |
4c4b4cd2 | 10990 | print_subexp (exp, pos, stream, PREC_SUFFIX); |
0b48a291 | 10991 | fputs_filtered (" in ", stream); |
4c4b4cd2 PH |
10992 | print_subexp (exp, pos, stream, PREC_EQUAL); |
10993 | fputs_filtered (" .. ", stream); | |
10994 | print_subexp (exp, pos, stream, PREC_EQUAL); | |
10995 | if (prec >= PREC_EQUAL) | |
76a01679 JB |
10996 | fputs_filtered (")", stream); |
10997 | return; | |
4c4b4cd2 PH |
10998 | |
10999 | case OP_ATR_FIRST: | |
11000 | case OP_ATR_LAST: | |
11001 | case OP_ATR_LENGTH: | |
11002 | case OP_ATR_IMAGE: | |
11003 | case OP_ATR_MAX: | |
11004 | case OP_ATR_MIN: | |
11005 | case OP_ATR_MODULUS: | |
11006 | case OP_ATR_POS: | |
11007 | case OP_ATR_SIZE: | |
11008 | case OP_ATR_TAG: | |
11009 | case OP_ATR_VAL: | |
4c4b4cd2 | 11010 | if (exp->elts[*pos].opcode == OP_TYPE) |
76a01679 JB |
11011 | { |
11012 | if (TYPE_CODE (exp->elts[*pos + 1].type) != TYPE_CODE_VOID) | |
11013 | LA_PRINT_TYPE (exp->elts[*pos + 1].type, "", stream, 0, 0); | |
11014 | *pos += 3; | |
11015 | } | |
4c4b4cd2 | 11016 | else |
76a01679 | 11017 | print_subexp (exp, pos, stream, PREC_SUFFIX); |
4c4b4cd2 PH |
11018 | fprintf_filtered (stream, "'%s", ada_attribute_name (op)); |
11019 | if (nargs > 1) | |
76a01679 JB |
11020 | { |
11021 | int tem; | |
11022 | for (tem = 1; tem < nargs; tem += 1) | |
11023 | { | |
11024 | fputs_filtered ((tem == 1) ? " (" : ", ", stream); | |
11025 | print_subexp (exp, pos, stream, PREC_ABOVE_COMMA); | |
11026 | } | |
11027 | fputs_filtered (")", stream); | |
11028 | } | |
4c4b4cd2 | 11029 | return; |
14f9c5c9 | 11030 | |
4c4b4cd2 | 11031 | case UNOP_QUAL: |
4c4b4cd2 PH |
11032 | type_print (exp->elts[pc + 1].type, "", stream, 0); |
11033 | fputs_filtered ("'(", stream); | |
11034 | print_subexp (exp, pos, stream, PREC_PREFIX); | |
11035 | fputs_filtered (")", stream); | |
11036 | return; | |
14f9c5c9 | 11037 | |
4c4b4cd2 | 11038 | case UNOP_IN_RANGE: |
323e0a4a | 11039 | /* XXX: sprint_subexp */ |
4c4b4cd2 | 11040 | print_subexp (exp, pos, stream, PREC_SUFFIX); |
0b48a291 | 11041 | fputs_filtered (" in ", stream); |
4c4b4cd2 PH |
11042 | LA_PRINT_TYPE (exp->elts[pc + 1].type, "", stream, 1, 0); |
11043 | return; | |
52ce6436 PH |
11044 | |
11045 | case OP_DISCRETE_RANGE: | |
11046 | print_subexp (exp, pos, stream, PREC_SUFFIX); | |
11047 | fputs_filtered ("..", stream); | |
11048 | print_subexp (exp, pos, stream, PREC_SUFFIX); | |
11049 | return; | |
11050 | ||
11051 | case OP_OTHERS: | |
11052 | fputs_filtered ("others => ", stream); | |
11053 | print_subexp (exp, pos, stream, PREC_SUFFIX); | |
11054 | return; | |
11055 | ||
11056 | case OP_CHOICES: | |
11057 | for (i = 0; i < nargs-1; i += 1) | |
11058 | { | |
11059 | if (i > 0) | |
11060 | fputs_filtered ("|", stream); | |
11061 | print_subexp (exp, pos, stream, PREC_SUFFIX); | |
11062 | } | |
11063 | fputs_filtered (" => ", stream); | |
11064 | print_subexp (exp, pos, stream, PREC_SUFFIX); | |
11065 | return; | |
11066 | ||
11067 | case OP_POSITIONAL: | |
11068 | print_subexp (exp, pos, stream, PREC_SUFFIX); | |
11069 | return; | |
11070 | ||
11071 | case OP_AGGREGATE: | |
11072 | fputs_filtered ("(", stream); | |
11073 | for (i = 0; i < nargs; i += 1) | |
11074 | { | |
11075 | if (i > 0) | |
11076 | fputs_filtered (", ", stream); | |
11077 | print_subexp (exp, pos, stream, PREC_SUFFIX); | |
11078 | } | |
11079 | fputs_filtered (")", stream); | |
11080 | return; | |
4c4b4cd2 PH |
11081 | } |
11082 | } | |
14f9c5c9 AS |
11083 | |
11084 | /* Table mapping opcodes into strings for printing operators | |
11085 | and precedences of the operators. */ | |
11086 | ||
d2e4a39e AS |
11087 | static const struct op_print ada_op_print_tab[] = { |
11088 | {":=", BINOP_ASSIGN, PREC_ASSIGN, 1}, | |
11089 | {"or else", BINOP_LOGICAL_OR, PREC_LOGICAL_OR, 0}, | |
11090 | {"and then", BINOP_LOGICAL_AND, PREC_LOGICAL_AND, 0}, | |
11091 | {"or", BINOP_BITWISE_IOR, PREC_BITWISE_IOR, 0}, | |
11092 | {"xor", BINOP_BITWISE_XOR, PREC_BITWISE_XOR, 0}, | |
11093 | {"and", BINOP_BITWISE_AND, PREC_BITWISE_AND, 0}, | |
11094 | {"=", BINOP_EQUAL, PREC_EQUAL, 0}, | |
11095 | {"/=", BINOP_NOTEQUAL, PREC_EQUAL, 0}, | |
11096 | {"<=", BINOP_LEQ, PREC_ORDER, 0}, | |
11097 | {">=", BINOP_GEQ, PREC_ORDER, 0}, | |
11098 | {">", BINOP_GTR, PREC_ORDER, 0}, | |
11099 | {"<", BINOP_LESS, PREC_ORDER, 0}, | |
11100 | {">>", BINOP_RSH, PREC_SHIFT, 0}, | |
11101 | {"<<", BINOP_LSH, PREC_SHIFT, 0}, | |
11102 | {"+", BINOP_ADD, PREC_ADD, 0}, | |
11103 | {"-", BINOP_SUB, PREC_ADD, 0}, | |
11104 | {"&", BINOP_CONCAT, PREC_ADD, 0}, | |
11105 | {"*", BINOP_MUL, PREC_MUL, 0}, | |
11106 | {"/", BINOP_DIV, PREC_MUL, 0}, | |
11107 | {"rem", BINOP_REM, PREC_MUL, 0}, | |
11108 | {"mod", BINOP_MOD, PREC_MUL, 0}, | |
11109 | {"**", BINOP_EXP, PREC_REPEAT, 0}, | |
11110 | {"@", BINOP_REPEAT, PREC_REPEAT, 0}, | |
11111 | {"-", UNOP_NEG, PREC_PREFIX, 0}, | |
11112 | {"+", UNOP_PLUS, PREC_PREFIX, 0}, | |
11113 | {"not ", UNOP_LOGICAL_NOT, PREC_PREFIX, 0}, | |
11114 | {"not ", UNOP_COMPLEMENT, PREC_PREFIX, 0}, | |
11115 | {"abs ", UNOP_ABS, PREC_PREFIX, 0}, | |
4c4b4cd2 PH |
11116 | {".all", UNOP_IND, PREC_SUFFIX, 1}, |
11117 | {"'access", UNOP_ADDR, PREC_SUFFIX, 1}, | |
11118 | {"'size", OP_ATR_SIZE, PREC_SUFFIX, 1}, | |
d2e4a39e | 11119 | {NULL, 0, 0, 0} |
14f9c5c9 AS |
11120 | }; |
11121 | \f | |
72d5681a PH |
11122 | enum ada_primitive_types { |
11123 | ada_primitive_type_int, | |
11124 | ada_primitive_type_long, | |
11125 | ada_primitive_type_short, | |
11126 | ada_primitive_type_char, | |
11127 | ada_primitive_type_float, | |
11128 | ada_primitive_type_double, | |
11129 | ada_primitive_type_void, | |
11130 | ada_primitive_type_long_long, | |
11131 | ada_primitive_type_long_double, | |
11132 | ada_primitive_type_natural, | |
11133 | ada_primitive_type_positive, | |
11134 | ada_primitive_type_system_address, | |
11135 | nr_ada_primitive_types | |
11136 | }; | |
6c038f32 PH |
11137 | |
11138 | static void | |
d4a9a881 | 11139 | ada_language_arch_info (struct gdbarch *gdbarch, |
72d5681a PH |
11140 | struct language_arch_info *lai) |
11141 | { | |
d4a9a881 | 11142 | const struct builtin_type *builtin = builtin_type (gdbarch); |
72d5681a | 11143 | lai->primitive_type_vector |
d4a9a881 | 11144 | = GDBARCH_OBSTACK_CALLOC (gdbarch, nr_ada_primitive_types + 1, |
72d5681a | 11145 | struct type *); |
e9bb382b UW |
11146 | |
11147 | lai->primitive_type_vector [ada_primitive_type_int] | |
11148 | = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch), | |
11149 | 0, "integer"); | |
11150 | lai->primitive_type_vector [ada_primitive_type_long] | |
11151 | = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch), | |
11152 | 0, "long_integer"); | |
11153 | lai->primitive_type_vector [ada_primitive_type_short] | |
11154 | = arch_integer_type (gdbarch, gdbarch_short_bit (gdbarch), | |
11155 | 0, "short_integer"); | |
11156 | lai->string_char_type | |
11157 | = lai->primitive_type_vector [ada_primitive_type_char] | |
11158 | = arch_integer_type (gdbarch, TARGET_CHAR_BIT, 0, "character"); | |
11159 | lai->primitive_type_vector [ada_primitive_type_float] | |
11160 | = arch_float_type (gdbarch, gdbarch_float_bit (gdbarch), | |
11161 | "float", NULL); | |
11162 | lai->primitive_type_vector [ada_primitive_type_double] | |
11163 | = arch_float_type (gdbarch, gdbarch_double_bit (gdbarch), | |
11164 | "long_float", NULL); | |
11165 | lai->primitive_type_vector [ada_primitive_type_long_long] | |
11166 | = arch_integer_type (gdbarch, gdbarch_long_long_bit (gdbarch), | |
11167 | 0, "long_long_integer"); | |
11168 | lai->primitive_type_vector [ada_primitive_type_long_double] | |
11169 | = arch_float_type (gdbarch, gdbarch_double_bit (gdbarch), | |
11170 | "long_long_float", NULL); | |
11171 | lai->primitive_type_vector [ada_primitive_type_natural] | |
11172 | = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch), | |
11173 | 0, "natural"); | |
11174 | lai->primitive_type_vector [ada_primitive_type_positive] | |
11175 | = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch), | |
11176 | 0, "positive"); | |
11177 | lai->primitive_type_vector [ada_primitive_type_void] | |
11178 | = builtin->builtin_void; | |
11179 | ||
11180 | lai->primitive_type_vector [ada_primitive_type_system_address] | |
11181 | = lookup_pointer_type (arch_type (gdbarch, TYPE_CODE_VOID, 1, "void")); | |
72d5681a PH |
11182 | TYPE_NAME (lai->primitive_type_vector [ada_primitive_type_system_address]) |
11183 | = "system__address"; | |
fbb06eb1 | 11184 | |
47e729a8 | 11185 | lai->bool_type_symbol = NULL; |
fbb06eb1 | 11186 | lai->bool_type_default = builtin->builtin_bool; |
6c038f32 | 11187 | } |
6c038f32 PH |
11188 | \f |
11189 | /* Language vector */ | |
11190 | ||
11191 | /* Not really used, but needed in the ada_language_defn. */ | |
11192 | ||
11193 | static void | |
6c7a06a3 | 11194 | emit_char (int c, struct type *type, struct ui_file *stream, int quoter) |
6c038f32 | 11195 | { |
6c7a06a3 | 11196 | ada_emit_char (c, type, stream, quoter, 1); |
6c038f32 PH |
11197 | } |
11198 | ||
11199 | static int | |
11200 | parse (void) | |
11201 | { | |
11202 | warnings_issued = 0; | |
11203 | return ada_parse (); | |
11204 | } | |
11205 | ||
11206 | static const struct exp_descriptor ada_exp_descriptor = { | |
11207 | ada_print_subexp, | |
11208 | ada_operator_length, | |
11209 | ada_op_name, | |
11210 | ada_dump_subexp_body, | |
11211 | ada_evaluate_subexp | |
11212 | }; | |
11213 | ||
11214 | const struct language_defn ada_language_defn = { | |
11215 | "ada", /* Language name */ | |
11216 | language_ada, | |
6c038f32 PH |
11217 | range_check_off, |
11218 | type_check_off, | |
11219 | case_sensitive_on, /* Yes, Ada is case-insensitive, but | |
11220 | that's not quite what this means. */ | |
6c038f32 | 11221 | array_row_major, |
9a044a89 | 11222 | macro_expansion_no, |
6c038f32 PH |
11223 | &ada_exp_descriptor, |
11224 | parse, | |
11225 | ada_error, | |
11226 | resolve, | |
11227 | ada_printchar, /* Print a character constant */ | |
11228 | ada_printstr, /* Function to print string constant */ | |
11229 | emit_char, /* Function to print single char (not used) */ | |
6c038f32 | 11230 | ada_print_type, /* Print a type using appropriate syntax */ |
5c6ce71d | 11231 | default_print_typedef, /* Print a typedef using appropriate syntax */ |
6c038f32 PH |
11232 | ada_val_print, /* Print a value using appropriate syntax */ |
11233 | ada_value_print, /* Print a top-level value */ | |
11234 | NULL, /* Language specific skip_trampoline */ | |
2b2d9e11 | 11235 | NULL, /* name_of_this */ |
6c038f32 PH |
11236 | ada_lookup_symbol_nonlocal, /* Looking up non-local symbols. */ |
11237 | basic_lookup_transparent_type, /* lookup_transparent_type */ | |
11238 | ada_la_decode, /* Language specific symbol demangler */ | |
11239 | NULL, /* Language specific class_name_from_physname */ | |
11240 | ada_op_print_tab, /* expression operators for printing */ | |
11241 | 0, /* c-style arrays */ | |
11242 | 1, /* String lower bound */ | |
6c038f32 | 11243 | ada_get_gdb_completer_word_break_characters, |
41d27058 | 11244 | ada_make_symbol_completion_list, |
72d5681a | 11245 | ada_language_arch_info, |
e79af960 | 11246 | ada_print_array_index, |
41f1b697 | 11247 | default_pass_by_reference, |
ae6a3a4c | 11248 | c_get_string, |
6c038f32 PH |
11249 | LANG_MAGIC |
11250 | }; | |
11251 | ||
2c0b251b PA |
11252 | /* Provide a prototype to silence -Wmissing-prototypes. */ |
11253 | extern initialize_file_ftype _initialize_ada_language; | |
11254 | ||
5bf03f13 JB |
11255 | /* Command-list for the "set/show ada" prefix command. */ |
11256 | static struct cmd_list_element *set_ada_list; | |
11257 | static struct cmd_list_element *show_ada_list; | |
11258 | ||
11259 | /* Implement the "set ada" prefix command. */ | |
11260 | ||
11261 | static void | |
11262 | set_ada_command (char *arg, int from_tty) | |
11263 | { | |
11264 | printf_unfiltered (_(\ | |
11265 | "\"set ada\" must be followed by the name of a setting.\n")); | |
11266 | help_list (set_ada_list, "set ada ", -1, gdb_stdout); | |
11267 | } | |
11268 | ||
11269 | /* Implement the "show ada" prefix command. */ | |
11270 | ||
11271 | static void | |
11272 | show_ada_command (char *args, int from_tty) | |
11273 | { | |
11274 | cmd_show_list (show_ada_list, from_tty, ""); | |
11275 | } | |
11276 | ||
d2e4a39e | 11277 | void |
6c038f32 | 11278 | _initialize_ada_language (void) |
14f9c5c9 | 11279 | { |
6c038f32 PH |
11280 | add_language (&ada_language_defn); |
11281 | ||
5bf03f13 JB |
11282 | add_prefix_cmd ("ada", no_class, set_ada_command, |
11283 | _("Prefix command for changing Ada-specfic settings"), | |
11284 | &set_ada_list, "set ada ", 0, &setlist); | |
11285 | ||
11286 | add_prefix_cmd ("ada", no_class, show_ada_command, | |
11287 | _("Generic command for showing Ada-specific settings."), | |
11288 | &show_ada_list, "show ada ", 0, &showlist); | |
11289 | ||
11290 | add_setshow_boolean_cmd ("trust-PAD-over-XVS", class_obscure, | |
11291 | &trust_pad_over_xvs, _("\ | |
11292 | Enable or disable an optimization trusting PAD types over XVS types"), _("\ | |
11293 | Show whether an optimization trusting PAD types over XVS types is activated"), | |
11294 | _("\ | |
11295 | This is related to the encoding used by the GNAT compiler. The debugger\n\ | |
11296 | should normally trust the contents of PAD types, but certain older versions\n\ | |
11297 | of GNAT have a bug that sometimes causes the information in the PAD type\n\ | |
11298 | to be incorrect. Turning this setting \"off\" allows the debugger to\n\ | |
11299 | work around this bug. It is always safe to turn this option \"off\", but\n\ | |
11300 | this incurs a slight performance penalty, so it is recommended to NOT change\n\ | |
11301 | this option to \"off\" unless necessary."), | |
11302 | NULL, NULL, &set_ada_list, &show_ada_list); | |
11303 | ||
6c038f32 | 11304 | varsize_limit = 65536; |
6c038f32 PH |
11305 | |
11306 | obstack_init (&symbol_list_obstack); | |
11307 | ||
11308 | decoded_names_store = htab_create_alloc | |
11309 | (256, htab_hash_string, (int (*)(const void *, const void *)) streq, | |
11310 | NULL, xcalloc, xfree); | |
6b69afc4 JB |
11311 | |
11312 | observer_attach_executable_changed (ada_executable_changed_observer); | |
14f9c5c9 | 11313 | } |