]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blame - gdb/ada-lang.c
use xzalloc in ada-lang.c:replace_operator_with_call
[thirdparty/binutils-gdb.git] / gdb / ada-lang.c
CommitLineData
197e01b6 1/* Ada language support routines for GDB, the GNU debugger. Copyright (C)
10a2c479 2
ae6a3a4c
TJB
3 1992, 1993, 1994, 1997, 1998, 1999, 2000, 2003, 2004, 2005, 2007, 2008,
4 2009 Free Software Foundation, Inc.
14f9c5c9 5
a9762ec7 6 This file is part of GDB.
14f9c5c9 7
a9762ec7
JB
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
14f9c5c9 12
a9762ec7
JB
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
14f9c5c9 17
a9762ec7
JB
18 You should have received a copy of the GNU General Public License
19 along with this program. If not, see <http://www.gnu.org/licenses/>. */
14f9c5c9 20
96d887e8 21
4c4b4cd2 22#include "defs.h"
14f9c5c9 23#include <stdio.h>
0c30c098 24#include "gdb_string.h"
14f9c5c9
AS
25#include <ctype.h>
26#include <stdarg.h>
27#include "demangle.h"
4c4b4cd2
PH
28#include "gdb_regex.h"
29#include "frame.h"
14f9c5c9
AS
30#include "symtab.h"
31#include "gdbtypes.h"
32#include "gdbcmd.h"
33#include "expression.h"
34#include "parser-defs.h"
35#include "language.h"
36#include "c-lang.h"
37#include "inferior.h"
38#include "symfile.h"
39#include "objfiles.h"
40#include "breakpoint.h"
41#include "gdbcore.h"
4c4b4cd2
PH
42#include "hashtab.h"
43#include "gdb_obstack.h"
14f9c5c9 44#include "ada-lang.h"
4c4b4cd2
PH
45#include "completer.h"
46#include "gdb_stat.h"
47#ifdef UI_OUT
14f9c5c9 48#include "ui-out.h"
4c4b4cd2 49#endif
fe898f56 50#include "block.h"
04714b91 51#include "infcall.h"
de4f826b 52#include "dictionary.h"
60250e8b 53#include "exceptions.h"
f7f9143b
JB
54#include "annotate.h"
55#include "valprint.h"
9bbc9174 56#include "source.h"
0259addd 57#include "observer.h"
2ba95b9b 58#include "vec.h"
692465f1 59#include "stack.h"
14f9c5c9 60
ccefe4c4 61#include "psymtab.h"
40bc484c 62#include "value.h"
ccefe4c4 63
4c4b4cd2 64/* Define whether or not the C operator '/' truncates towards zero for
0963b4bd 65 differently signed operands (truncation direction is undefined in C).
4c4b4cd2
PH
66 Copied from valarith.c. */
67
68#ifndef TRUNCATION_TOWARDS_ZERO
69#define TRUNCATION_TOWARDS_ZERO ((-5 / 2) == -2)
70#endif
71
d2e4a39e 72static struct type *desc_base_type (struct type *);
14f9c5c9 73
d2e4a39e 74static struct type *desc_bounds_type (struct type *);
14f9c5c9 75
d2e4a39e 76static struct value *desc_bounds (struct value *);
14f9c5c9 77
d2e4a39e 78static int fat_pntr_bounds_bitpos (struct type *);
14f9c5c9 79
d2e4a39e 80static int fat_pntr_bounds_bitsize (struct type *);
14f9c5c9 81
556bdfd4 82static struct type *desc_data_target_type (struct type *);
14f9c5c9 83
d2e4a39e 84static struct value *desc_data (struct value *);
14f9c5c9 85
d2e4a39e 86static int fat_pntr_data_bitpos (struct type *);
14f9c5c9 87
d2e4a39e 88static int fat_pntr_data_bitsize (struct type *);
14f9c5c9 89
d2e4a39e 90static struct value *desc_one_bound (struct value *, int, int);
14f9c5c9 91
d2e4a39e 92static int desc_bound_bitpos (struct type *, int, int);
14f9c5c9 93
d2e4a39e 94static int desc_bound_bitsize (struct type *, int, int);
14f9c5c9 95
d2e4a39e 96static struct type *desc_index_type (struct type *, int);
14f9c5c9 97
d2e4a39e 98static int desc_arity (struct type *);
14f9c5c9 99
d2e4a39e 100static int ada_type_match (struct type *, struct type *, int);
14f9c5c9 101
d2e4a39e 102static int ada_args_match (struct symbol *, struct value **, int);
14f9c5c9 103
40658b94
PH
104static int full_match (const char *, const char *);
105
40bc484c 106static struct value *make_array_descriptor (struct type *, struct value *);
14f9c5c9 107
4c4b4cd2 108static void ada_add_block_symbols (struct obstack *,
76a01679 109 struct block *, const char *,
2570f2b7 110 domain_enum, struct objfile *, int);
14f9c5c9 111
4c4b4cd2 112static int is_nonfunction (struct ada_symbol_info *, int);
14f9c5c9 113
76a01679 114static void add_defn_to_vec (struct obstack *, struct symbol *,
2570f2b7 115 struct block *);
14f9c5c9 116
4c4b4cd2
PH
117static int num_defns_collected (struct obstack *);
118
119static struct ada_symbol_info *defns_collected (struct obstack *, int);
14f9c5c9 120
4c4b4cd2 121static struct value *resolve_subexp (struct expression **, int *, int,
76a01679 122 struct type *);
14f9c5c9 123
d2e4a39e 124static void replace_operator_with_call (struct expression **, int, int, int,
4c4b4cd2 125 struct symbol *, struct block *);
14f9c5c9 126
d2e4a39e 127static int possible_user_operator_p (enum exp_opcode, struct value **);
14f9c5c9 128
4c4b4cd2
PH
129static char *ada_op_name (enum exp_opcode);
130
131static const char *ada_decoded_op_name (enum exp_opcode);
14f9c5c9 132
d2e4a39e 133static int numeric_type_p (struct type *);
14f9c5c9 134
d2e4a39e 135static int integer_type_p (struct type *);
14f9c5c9 136
d2e4a39e 137static int scalar_type_p (struct type *);
14f9c5c9 138
d2e4a39e 139static int discrete_type_p (struct type *);
14f9c5c9 140
aeb5907d
JB
141static enum ada_renaming_category parse_old_style_renaming (struct type *,
142 const char **,
143 int *,
144 const char **);
145
146static struct symbol *find_old_style_renaming_symbol (const char *,
147 struct block *);
148
4c4b4cd2 149static struct type *ada_lookup_struct_elt_type (struct type *, char *,
76a01679 150 int, int, int *);
4c4b4cd2 151
d2e4a39e 152static struct value *evaluate_subexp_type (struct expression *, int *);
14f9c5c9 153
b4ba55a1
JB
154static struct type *ada_find_parallel_type_with_name (struct type *,
155 const char *);
156
d2e4a39e 157static int is_dynamic_field (struct type *, int);
14f9c5c9 158
10a2c479 159static struct type *to_fixed_variant_branch_type (struct type *,
fc1a4b47 160 const gdb_byte *,
4c4b4cd2
PH
161 CORE_ADDR, struct value *);
162
163static struct type *to_fixed_array_type (struct type *, struct value *, int);
14f9c5c9 164
28c85d6c 165static struct type *to_fixed_range_type (struct type *, struct value *);
14f9c5c9 166
d2e4a39e 167static struct type *to_static_fixed_type (struct type *);
f192137b 168static struct type *static_unwrap_type (struct type *type);
14f9c5c9 169
d2e4a39e 170static struct value *unwrap_value (struct value *);
14f9c5c9 171
ad82864c 172static struct type *constrained_packed_array_type (struct type *, long *);
14f9c5c9 173
ad82864c 174static struct type *decode_constrained_packed_array_type (struct type *);
14f9c5c9 175
ad82864c
JB
176static long decode_packed_array_bitsize (struct type *);
177
178static struct value *decode_constrained_packed_array (struct value *);
179
180static int ada_is_packed_array_type (struct type *);
181
182static int ada_is_unconstrained_packed_array_type (struct type *);
14f9c5c9 183
d2e4a39e 184static struct value *value_subscript_packed (struct value *, int,
4c4b4cd2 185 struct value **);
14f9c5c9 186
50810684 187static void move_bits (gdb_byte *, int, const gdb_byte *, int, int, int);
52ce6436 188
4c4b4cd2
PH
189static struct value *coerce_unspec_val_to_type (struct value *,
190 struct type *);
14f9c5c9 191
d2e4a39e 192static struct value *get_var_value (char *, char *);
14f9c5c9 193
d2e4a39e 194static int lesseq_defined_than (struct symbol *, struct symbol *);
14f9c5c9 195
d2e4a39e 196static int equiv_types (struct type *, struct type *);
14f9c5c9 197
d2e4a39e 198static int is_name_suffix (const char *);
14f9c5c9 199
73589123
PH
200static int advance_wild_match (const char **, const char *, int);
201
202static int wild_match (const char *, const char *);
14f9c5c9 203
d2e4a39e 204static struct value *ada_coerce_ref (struct value *);
14f9c5c9 205
4c4b4cd2
PH
206static LONGEST pos_atr (struct value *);
207
3cb382c9 208static struct value *value_pos_atr (struct type *, struct value *);
14f9c5c9 209
d2e4a39e 210static struct value *value_val_atr (struct type *, struct value *);
14f9c5c9 211
4c4b4cd2
PH
212static struct symbol *standard_lookup (const char *, const struct block *,
213 domain_enum);
14f9c5c9 214
4c4b4cd2
PH
215static struct value *ada_search_struct_field (char *, struct value *, int,
216 struct type *);
217
218static struct value *ada_value_primitive_field (struct value *, int, int,
219 struct type *);
220
76a01679 221static int find_struct_field (char *, struct type *, int,
52ce6436 222 struct type **, int *, int *, int *, int *);
4c4b4cd2
PH
223
224static struct value *ada_to_fixed_value_create (struct type *, CORE_ADDR,
225 struct value *);
226
4c4b4cd2
PH
227static int ada_resolve_function (struct ada_symbol_info *, int,
228 struct value **, int, const char *,
229 struct type *);
230
4c4b4cd2
PH
231static int ada_is_direct_array_type (struct type *);
232
72d5681a
PH
233static void ada_language_arch_info (struct gdbarch *,
234 struct language_arch_info *);
714e53ab
PH
235
236static void check_size (const struct type *);
52ce6436
PH
237
238static struct value *ada_index_struct_field (int, struct value *, int,
239 struct type *);
240
241static struct value *assign_aggregate (struct value *, struct value *,
0963b4bd
MS
242 struct expression *,
243 int *, enum noside);
52ce6436
PH
244
245static void aggregate_assign_from_choices (struct value *, struct value *,
246 struct expression *,
247 int *, LONGEST *, int *,
248 int, LONGEST, LONGEST);
249
250static void aggregate_assign_positional (struct value *, struct value *,
251 struct expression *,
252 int *, LONGEST *, int *, int,
253 LONGEST, LONGEST);
254
255
256static void aggregate_assign_others (struct value *, struct value *,
257 struct expression *,
258 int *, LONGEST *, int, LONGEST, LONGEST);
259
260
261static void add_component_interval (LONGEST, LONGEST, LONGEST *, int *, int);
262
263
264static struct value *ada_evaluate_subexp (struct type *, struct expression *,
265 int *, enum noside);
266
267static void ada_forward_operator_length (struct expression *, int, int *,
268 int *);
4c4b4cd2
PH
269\f
270
76a01679 271
4c4b4cd2 272/* Maximum-sized dynamic type. */
14f9c5c9
AS
273static unsigned int varsize_limit;
274
4c4b4cd2
PH
275/* FIXME: brobecker/2003-09-17: No longer a const because it is
276 returned by a function that does not return a const char *. */
277static char *ada_completer_word_break_characters =
278#ifdef VMS
279 " \t\n!@#%^&*()+=|~`}{[]\";:?/,-";
280#else
14f9c5c9 281 " \t\n!@#$%^&*()+=|~`}{[]\";:?/,-";
4c4b4cd2 282#endif
14f9c5c9 283
4c4b4cd2 284/* The name of the symbol to use to get the name of the main subprogram. */
76a01679 285static const char ADA_MAIN_PROGRAM_SYMBOL_NAME[]
4c4b4cd2 286 = "__gnat_ada_main_program_name";
14f9c5c9 287
4c4b4cd2
PH
288/* Limit on the number of warnings to raise per expression evaluation. */
289static int warning_limit = 2;
290
291/* Number of warning messages issued; reset to 0 by cleanups after
292 expression evaluation. */
293static int warnings_issued = 0;
294
295static const char *known_runtime_file_name_patterns[] = {
296 ADA_KNOWN_RUNTIME_FILE_NAME_PATTERNS NULL
297};
298
299static const char *known_auxiliary_function_name_patterns[] = {
300 ADA_KNOWN_AUXILIARY_FUNCTION_NAME_PATTERNS NULL
301};
302
303/* Space for allocating results of ada_lookup_symbol_list. */
304static struct obstack symbol_list_obstack;
305
e802dbe0
JB
306 /* Inferior-specific data. */
307
308/* Per-inferior data for this module. */
309
310struct ada_inferior_data
311{
312 /* The ada__tags__type_specific_data type, which is used when decoding
313 tagged types. With older versions of GNAT, this type was directly
314 accessible through a component ("tsd") in the object tag. But this
315 is no longer the case, so we cache it for each inferior. */
316 struct type *tsd_type;
317};
318
319/* Our key to this module's inferior data. */
320static const struct inferior_data *ada_inferior_data;
321
322/* A cleanup routine for our inferior data. */
323static void
324ada_inferior_data_cleanup (struct inferior *inf, void *arg)
325{
326 struct ada_inferior_data *data;
327
328 data = inferior_data (inf, ada_inferior_data);
329 if (data != NULL)
330 xfree (data);
331}
332
333/* Return our inferior data for the given inferior (INF).
334
335 This function always returns a valid pointer to an allocated
336 ada_inferior_data structure. If INF's inferior data has not
337 been previously set, this functions creates a new one with all
338 fields set to zero, sets INF's inferior to it, and then returns
339 a pointer to that newly allocated ada_inferior_data. */
340
341static struct ada_inferior_data *
342get_ada_inferior_data (struct inferior *inf)
343{
344 struct ada_inferior_data *data;
345
346 data = inferior_data (inf, ada_inferior_data);
347 if (data == NULL)
348 {
349 data = XZALLOC (struct ada_inferior_data);
350 set_inferior_data (inf, ada_inferior_data, data);
351 }
352
353 return data;
354}
355
356/* Perform all necessary cleanups regarding our module's inferior data
357 that is required after the inferior INF just exited. */
358
359static void
360ada_inferior_exit (struct inferior *inf)
361{
362 ada_inferior_data_cleanup (inf, NULL);
363 set_inferior_data (inf, ada_inferior_data, NULL);
364}
365
4c4b4cd2
PH
366 /* Utilities */
367
720d1a40 368/* If TYPE is a TYPE_CODE_TYPEDEF type, return the target type after
eed9788b 369 all typedef layers have been peeled. Otherwise, return TYPE.
720d1a40
JB
370
371 Normally, we really expect a typedef type to only have 1 typedef layer.
372 In other words, we really expect the target type of a typedef type to be
373 a non-typedef type. This is particularly true for Ada units, because
374 the language does not have a typedef vs not-typedef distinction.
375 In that respect, the Ada compiler has been trying to eliminate as many
376 typedef definitions in the debugging information, since they generally
377 do not bring any extra information (we still use typedef under certain
378 circumstances related mostly to the GNAT encoding).
379
380 Unfortunately, we have seen situations where the debugging information
381 generated by the compiler leads to such multiple typedef layers. For
382 instance, consider the following example with stabs:
383
384 .stabs "pck__float_array___XUP:Tt(0,46)=s16P_ARRAY:(0,47)=[...]"[...]
385 .stabs "pck__float_array___XUP:t(0,36)=(0,46)",128,0,6,0
386
387 This is an error in the debugging information which causes type
388 pck__float_array___XUP to be defined twice, and the second time,
389 it is defined as a typedef of a typedef.
390
391 This is on the fringe of legality as far as debugging information is
392 concerned, and certainly unexpected. But it is easy to handle these
393 situations correctly, so we can afford to be lenient in this case. */
394
395static struct type *
396ada_typedef_target_type (struct type *type)
397{
398 while (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
399 type = TYPE_TARGET_TYPE (type);
400 return type;
401}
402
41d27058
JB
403/* Given DECODED_NAME a string holding a symbol name in its
404 decoded form (ie using the Ada dotted notation), returns
405 its unqualified name. */
406
407static const char *
408ada_unqualified_name (const char *decoded_name)
409{
410 const char *result = strrchr (decoded_name, '.');
411
412 if (result != NULL)
413 result++; /* Skip the dot... */
414 else
415 result = decoded_name;
416
417 return result;
418}
419
420/* Return a string starting with '<', followed by STR, and '>'.
421 The result is good until the next call. */
422
423static char *
424add_angle_brackets (const char *str)
425{
426 static char *result = NULL;
427
428 xfree (result);
88c15c34 429 result = xstrprintf ("<%s>", str);
41d27058
JB
430 return result;
431}
96d887e8 432
4c4b4cd2
PH
433static char *
434ada_get_gdb_completer_word_break_characters (void)
435{
436 return ada_completer_word_break_characters;
437}
438
e79af960
JB
439/* Print an array element index using the Ada syntax. */
440
441static void
442ada_print_array_index (struct value *index_value, struct ui_file *stream,
79a45b7d 443 const struct value_print_options *options)
e79af960 444{
79a45b7d 445 LA_VALUE_PRINT (index_value, stream, options);
e79af960
JB
446 fprintf_filtered (stream, " => ");
447}
448
f27cf670 449/* Assuming VECT points to an array of *SIZE objects of size
14f9c5c9 450 ELEMENT_SIZE, grow it to contain at least MIN_SIZE objects,
f27cf670 451 updating *SIZE as necessary and returning the (new) array. */
14f9c5c9 452
f27cf670
AS
453void *
454grow_vect (void *vect, size_t *size, size_t min_size, int element_size)
14f9c5c9 455{
d2e4a39e
AS
456 if (*size < min_size)
457 {
458 *size *= 2;
459 if (*size < min_size)
4c4b4cd2 460 *size = min_size;
f27cf670 461 vect = xrealloc (vect, *size * element_size);
d2e4a39e 462 }
f27cf670 463 return vect;
14f9c5c9
AS
464}
465
466/* True (non-zero) iff TARGET matches FIELD_NAME up to any trailing
4c4b4cd2 467 suffix of FIELD_NAME beginning "___". */
14f9c5c9
AS
468
469static int
ebf56fd3 470field_name_match (const char *field_name, const char *target)
14f9c5c9
AS
471{
472 int len = strlen (target);
5b4ee69b 473
d2e4a39e 474 return
4c4b4cd2
PH
475 (strncmp (field_name, target, len) == 0
476 && (field_name[len] == '\0'
477 || (strncmp (field_name + len, "___", 3) == 0
76a01679
JB
478 && strcmp (field_name + strlen (field_name) - 6,
479 "___XVN") != 0)));
14f9c5c9
AS
480}
481
482
872c8b51
JB
483/* Assuming TYPE is a TYPE_CODE_STRUCT or a TYPE_CODE_TYPDEF to
484 a TYPE_CODE_STRUCT, find the field whose name matches FIELD_NAME,
485 and return its index. This function also handles fields whose name
486 have ___ suffixes because the compiler sometimes alters their name
487 by adding such a suffix to represent fields with certain constraints.
488 If the field could not be found, return a negative number if
489 MAYBE_MISSING is set. Otherwise raise an error. */
4c4b4cd2
PH
490
491int
492ada_get_field_index (const struct type *type, const char *field_name,
493 int maybe_missing)
494{
495 int fieldno;
872c8b51
JB
496 struct type *struct_type = check_typedef ((struct type *) type);
497
498 for (fieldno = 0; fieldno < TYPE_NFIELDS (struct_type); fieldno++)
499 if (field_name_match (TYPE_FIELD_NAME (struct_type, fieldno), field_name))
4c4b4cd2
PH
500 return fieldno;
501
502 if (!maybe_missing)
323e0a4a 503 error (_("Unable to find field %s in struct %s. Aborting"),
872c8b51 504 field_name, TYPE_NAME (struct_type));
4c4b4cd2
PH
505
506 return -1;
507}
508
509/* The length of the prefix of NAME prior to any "___" suffix. */
14f9c5c9
AS
510
511int
d2e4a39e 512ada_name_prefix_len (const char *name)
14f9c5c9
AS
513{
514 if (name == NULL)
515 return 0;
d2e4a39e 516 else
14f9c5c9 517 {
d2e4a39e 518 const char *p = strstr (name, "___");
5b4ee69b 519
14f9c5c9 520 if (p == NULL)
4c4b4cd2 521 return strlen (name);
14f9c5c9 522 else
4c4b4cd2 523 return p - name;
14f9c5c9
AS
524 }
525}
526
4c4b4cd2
PH
527/* Return non-zero if SUFFIX is a suffix of STR.
528 Return zero if STR is null. */
529
14f9c5c9 530static int
d2e4a39e 531is_suffix (const char *str, const char *suffix)
14f9c5c9
AS
532{
533 int len1, len2;
5b4ee69b 534
14f9c5c9
AS
535 if (str == NULL)
536 return 0;
537 len1 = strlen (str);
538 len2 = strlen (suffix);
4c4b4cd2 539 return (len1 >= len2 && strcmp (str + len1 - len2, suffix) == 0);
14f9c5c9
AS
540}
541
4c4b4cd2
PH
542/* The contents of value VAL, treated as a value of type TYPE. The
543 result is an lval in memory if VAL is. */
14f9c5c9 544
d2e4a39e 545static struct value *
4c4b4cd2 546coerce_unspec_val_to_type (struct value *val, struct type *type)
14f9c5c9 547{
61ee279c 548 type = ada_check_typedef (type);
df407dfe 549 if (value_type (val) == type)
4c4b4cd2 550 return val;
d2e4a39e 551 else
14f9c5c9 552 {
4c4b4cd2
PH
553 struct value *result;
554
555 /* Make sure that the object size is not unreasonable before
556 trying to allocate some memory for it. */
714e53ab 557 check_size (type);
4c4b4cd2 558
41e8491f
JK
559 if (value_lazy (val)
560 || TYPE_LENGTH (type) > TYPE_LENGTH (value_type (val)))
561 result = allocate_value_lazy (type);
562 else
563 {
564 result = allocate_value (type);
565 memcpy (value_contents_raw (result), value_contents (val),
566 TYPE_LENGTH (type));
567 }
74bcbdf3 568 set_value_component_location (result, val);
9bbda503
AC
569 set_value_bitsize (result, value_bitsize (val));
570 set_value_bitpos (result, value_bitpos (val));
42ae5230 571 set_value_address (result, value_address (val));
14f9c5c9
AS
572 return result;
573 }
574}
575
fc1a4b47
AC
576static const gdb_byte *
577cond_offset_host (const gdb_byte *valaddr, long offset)
14f9c5c9
AS
578{
579 if (valaddr == NULL)
580 return NULL;
581 else
582 return valaddr + offset;
583}
584
585static CORE_ADDR
ebf56fd3 586cond_offset_target (CORE_ADDR address, long offset)
14f9c5c9
AS
587{
588 if (address == 0)
589 return 0;
d2e4a39e 590 else
14f9c5c9
AS
591 return address + offset;
592}
593
4c4b4cd2
PH
594/* Issue a warning (as for the definition of warning in utils.c, but
595 with exactly one argument rather than ...), unless the limit on the
596 number of warnings has passed during the evaluation of the current
597 expression. */
a2249542 598
77109804
AC
599/* FIXME: cagney/2004-10-10: This function is mimicking the behavior
600 provided by "complaint". */
a0b31db1 601static void lim_warning (const char *format, ...) ATTRIBUTE_PRINTF (1, 2);
77109804 602
14f9c5c9 603static void
a2249542 604lim_warning (const char *format, ...)
14f9c5c9 605{
a2249542 606 va_list args;
a2249542 607
5b4ee69b 608 va_start (args, format);
4c4b4cd2
PH
609 warnings_issued += 1;
610 if (warnings_issued <= warning_limit)
a2249542
MK
611 vwarning (format, args);
612
613 va_end (args);
4c4b4cd2
PH
614}
615
714e53ab
PH
616/* Issue an error if the size of an object of type T is unreasonable,
617 i.e. if it would be a bad idea to allocate a value of this type in
618 GDB. */
619
620static void
621check_size (const struct type *type)
622{
623 if (TYPE_LENGTH (type) > varsize_limit)
323e0a4a 624 error (_("object size is larger than varsize-limit"));
714e53ab
PH
625}
626
0963b4bd 627/* Maximum value of a SIZE-byte signed integer type. */
4c4b4cd2 628static LONGEST
c3e5cd34 629max_of_size (int size)
4c4b4cd2 630{
76a01679 631 LONGEST top_bit = (LONGEST) 1 << (size * 8 - 2);
5b4ee69b 632
76a01679 633 return top_bit | (top_bit - 1);
4c4b4cd2
PH
634}
635
0963b4bd 636/* Minimum value of a SIZE-byte signed integer type. */
4c4b4cd2 637static LONGEST
c3e5cd34 638min_of_size (int size)
4c4b4cd2 639{
c3e5cd34 640 return -max_of_size (size) - 1;
4c4b4cd2
PH
641}
642
0963b4bd 643/* Maximum value of a SIZE-byte unsigned integer type. */
4c4b4cd2 644static ULONGEST
c3e5cd34 645umax_of_size (int size)
4c4b4cd2 646{
76a01679 647 ULONGEST top_bit = (ULONGEST) 1 << (size * 8 - 1);
5b4ee69b 648
76a01679 649 return top_bit | (top_bit - 1);
4c4b4cd2
PH
650}
651
0963b4bd 652/* Maximum value of integral type T, as a signed quantity. */
c3e5cd34
PH
653static LONGEST
654max_of_type (struct type *t)
4c4b4cd2 655{
c3e5cd34
PH
656 if (TYPE_UNSIGNED (t))
657 return (LONGEST) umax_of_size (TYPE_LENGTH (t));
658 else
659 return max_of_size (TYPE_LENGTH (t));
660}
661
0963b4bd 662/* Minimum value of integral type T, as a signed quantity. */
c3e5cd34
PH
663static LONGEST
664min_of_type (struct type *t)
665{
666 if (TYPE_UNSIGNED (t))
667 return 0;
668 else
669 return min_of_size (TYPE_LENGTH (t));
4c4b4cd2
PH
670}
671
672/* The largest value in the domain of TYPE, a discrete type, as an integer. */
43bbcdc2
PH
673LONGEST
674ada_discrete_type_high_bound (struct type *type)
4c4b4cd2 675{
76a01679 676 switch (TYPE_CODE (type))
4c4b4cd2
PH
677 {
678 case TYPE_CODE_RANGE:
690cc4eb 679 return TYPE_HIGH_BOUND (type);
4c4b4cd2 680 case TYPE_CODE_ENUM:
690cc4eb
PH
681 return TYPE_FIELD_BITPOS (type, TYPE_NFIELDS (type) - 1);
682 case TYPE_CODE_BOOL:
683 return 1;
684 case TYPE_CODE_CHAR:
76a01679 685 case TYPE_CODE_INT:
690cc4eb 686 return max_of_type (type);
4c4b4cd2 687 default:
43bbcdc2 688 error (_("Unexpected type in ada_discrete_type_high_bound."));
4c4b4cd2
PH
689 }
690}
691
692/* The largest value in the domain of TYPE, a discrete type, as an integer. */
43bbcdc2
PH
693LONGEST
694ada_discrete_type_low_bound (struct type *type)
4c4b4cd2 695{
76a01679 696 switch (TYPE_CODE (type))
4c4b4cd2
PH
697 {
698 case TYPE_CODE_RANGE:
690cc4eb 699 return TYPE_LOW_BOUND (type);
4c4b4cd2 700 case TYPE_CODE_ENUM:
690cc4eb
PH
701 return TYPE_FIELD_BITPOS (type, 0);
702 case TYPE_CODE_BOOL:
703 return 0;
704 case TYPE_CODE_CHAR:
76a01679 705 case TYPE_CODE_INT:
690cc4eb 706 return min_of_type (type);
4c4b4cd2 707 default:
43bbcdc2 708 error (_("Unexpected type in ada_discrete_type_low_bound."));
4c4b4cd2
PH
709 }
710}
711
712/* The identity on non-range types. For range types, the underlying
76a01679 713 non-range scalar type. */
4c4b4cd2
PH
714
715static struct type *
716base_type (struct type *type)
717{
718 while (type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE)
719 {
76a01679
JB
720 if (type == TYPE_TARGET_TYPE (type) || TYPE_TARGET_TYPE (type) == NULL)
721 return type;
4c4b4cd2
PH
722 type = TYPE_TARGET_TYPE (type);
723 }
724 return type;
14f9c5c9 725}
4c4b4cd2 726\f
76a01679 727
4c4b4cd2 728 /* Language Selection */
14f9c5c9
AS
729
730/* If the main program is in Ada, return language_ada, otherwise return LANG
ccefe4c4 731 (the main program is in Ada iif the adainit symbol is found). */
d2e4a39e 732
14f9c5c9 733enum language
ccefe4c4 734ada_update_initial_language (enum language lang)
14f9c5c9 735{
d2e4a39e 736 if (lookup_minimal_symbol ("adainit", (const char *) NULL,
4c4b4cd2
PH
737 (struct objfile *) NULL) != NULL)
738 return language_ada;
14f9c5c9
AS
739
740 return lang;
741}
96d887e8
PH
742
743/* If the main procedure is written in Ada, then return its name.
744 The result is good until the next call. Return NULL if the main
745 procedure doesn't appear to be in Ada. */
746
747char *
748ada_main_name (void)
749{
750 struct minimal_symbol *msym;
f9bc20b9 751 static char *main_program_name = NULL;
6c038f32 752
96d887e8
PH
753 /* For Ada, the name of the main procedure is stored in a specific
754 string constant, generated by the binder. Look for that symbol,
755 extract its address, and then read that string. If we didn't find
756 that string, then most probably the main procedure is not written
757 in Ada. */
758 msym = lookup_minimal_symbol (ADA_MAIN_PROGRAM_SYMBOL_NAME, NULL, NULL);
759
760 if (msym != NULL)
761 {
f9bc20b9
JB
762 CORE_ADDR main_program_name_addr;
763 int err_code;
764
96d887e8
PH
765 main_program_name_addr = SYMBOL_VALUE_ADDRESS (msym);
766 if (main_program_name_addr == 0)
323e0a4a 767 error (_("Invalid address for Ada main program name."));
96d887e8 768
f9bc20b9
JB
769 xfree (main_program_name);
770 target_read_string (main_program_name_addr, &main_program_name,
771 1024, &err_code);
772
773 if (err_code != 0)
774 return NULL;
96d887e8
PH
775 return main_program_name;
776 }
777
778 /* The main procedure doesn't seem to be in Ada. */
779 return NULL;
780}
14f9c5c9 781\f
4c4b4cd2 782 /* Symbols */
d2e4a39e 783
4c4b4cd2
PH
784/* Table of Ada operators and their GNAT-encoded names. Last entry is pair
785 of NULLs. */
14f9c5c9 786
d2e4a39e
AS
787const struct ada_opname_map ada_opname_table[] = {
788 {"Oadd", "\"+\"", BINOP_ADD},
789 {"Osubtract", "\"-\"", BINOP_SUB},
790 {"Omultiply", "\"*\"", BINOP_MUL},
791 {"Odivide", "\"/\"", BINOP_DIV},
792 {"Omod", "\"mod\"", BINOP_MOD},
793 {"Orem", "\"rem\"", BINOP_REM},
794 {"Oexpon", "\"**\"", BINOP_EXP},
795 {"Olt", "\"<\"", BINOP_LESS},
796 {"Ole", "\"<=\"", BINOP_LEQ},
797 {"Ogt", "\">\"", BINOP_GTR},
798 {"Oge", "\">=\"", BINOP_GEQ},
799 {"Oeq", "\"=\"", BINOP_EQUAL},
800 {"One", "\"/=\"", BINOP_NOTEQUAL},
801 {"Oand", "\"and\"", BINOP_BITWISE_AND},
802 {"Oor", "\"or\"", BINOP_BITWISE_IOR},
803 {"Oxor", "\"xor\"", BINOP_BITWISE_XOR},
804 {"Oconcat", "\"&\"", BINOP_CONCAT},
805 {"Oabs", "\"abs\"", UNOP_ABS},
806 {"Onot", "\"not\"", UNOP_LOGICAL_NOT},
807 {"Oadd", "\"+\"", UNOP_PLUS},
808 {"Osubtract", "\"-\"", UNOP_NEG},
809 {NULL, NULL}
14f9c5c9
AS
810};
811
4c4b4cd2
PH
812/* The "encoded" form of DECODED, according to GNAT conventions.
813 The result is valid until the next call to ada_encode. */
814
14f9c5c9 815char *
4c4b4cd2 816ada_encode (const char *decoded)
14f9c5c9 817{
4c4b4cd2
PH
818 static char *encoding_buffer = NULL;
819 static size_t encoding_buffer_size = 0;
d2e4a39e 820 const char *p;
14f9c5c9 821 int k;
d2e4a39e 822
4c4b4cd2 823 if (decoded == NULL)
14f9c5c9
AS
824 return NULL;
825
4c4b4cd2
PH
826 GROW_VECT (encoding_buffer, encoding_buffer_size,
827 2 * strlen (decoded) + 10);
14f9c5c9
AS
828
829 k = 0;
4c4b4cd2 830 for (p = decoded; *p != '\0'; p += 1)
14f9c5c9 831 {
cdc7bb92 832 if (*p == '.')
4c4b4cd2
PH
833 {
834 encoding_buffer[k] = encoding_buffer[k + 1] = '_';
835 k += 2;
836 }
14f9c5c9 837 else if (*p == '"')
4c4b4cd2
PH
838 {
839 const struct ada_opname_map *mapping;
840
841 for (mapping = ada_opname_table;
1265e4aa
JB
842 mapping->encoded != NULL
843 && strncmp (mapping->decoded, p,
844 strlen (mapping->decoded)) != 0; mapping += 1)
4c4b4cd2
PH
845 ;
846 if (mapping->encoded == NULL)
323e0a4a 847 error (_("invalid Ada operator name: %s"), p);
4c4b4cd2
PH
848 strcpy (encoding_buffer + k, mapping->encoded);
849 k += strlen (mapping->encoded);
850 break;
851 }
d2e4a39e 852 else
4c4b4cd2
PH
853 {
854 encoding_buffer[k] = *p;
855 k += 1;
856 }
14f9c5c9
AS
857 }
858
4c4b4cd2
PH
859 encoding_buffer[k] = '\0';
860 return encoding_buffer;
14f9c5c9
AS
861}
862
863/* Return NAME folded to lower case, or, if surrounded by single
4c4b4cd2
PH
864 quotes, unfolded, but with the quotes stripped away. Result good
865 to next call. */
866
d2e4a39e
AS
867char *
868ada_fold_name (const char *name)
14f9c5c9 869{
d2e4a39e 870 static char *fold_buffer = NULL;
14f9c5c9
AS
871 static size_t fold_buffer_size = 0;
872
873 int len = strlen (name);
d2e4a39e 874 GROW_VECT (fold_buffer, fold_buffer_size, len + 1);
14f9c5c9
AS
875
876 if (name[0] == '\'')
877 {
d2e4a39e
AS
878 strncpy (fold_buffer, name + 1, len - 2);
879 fold_buffer[len - 2] = '\000';
14f9c5c9
AS
880 }
881 else
882 {
883 int i;
5b4ee69b 884
14f9c5c9 885 for (i = 0; i <= len; i += 1)
4c4b4cd2 886 fold_buffer[i] = tolower (name[i]);
14f9c5c9
AS
887 }
888
889 return fold_buffer;
890}
891
529cad9c
PH
892/* Return nonzero if C is either a digit or a lowercase alphabet character. */
893
894static int
895is_lower_alphanum (const char c)
896{
897 return (isdigit (c) || (isalpha (c) && islower (c)));
898}
899
29480c32
JB
900/* Remove either of these suffixes:
901 . .{DIGIT}+
902 . ${DIGIT}+
903 . ___{DIGIT}+
904 . __{DIGIT}+.
905 These are suffixes introduced by the compiler for entities such as
906 nested subprogram for instance, in order to avoid name clashes.
907 They do not serve any purpose for the debugger. */
908
909static void
910ada_remove_trailing_digits (const char *encoded, int *len)
911{
912 if (*len > 1 && isdigit (encoded[*len - 1]))
913 {
914 int i = *len - 2;
5b4ee69b 915
29480c32
JB
916 while (i > 0 && isdigit (encoded[i]))
917 i--;
918 if (i >= 0 && encoded[i] == '.')
919 *len = i;
920 else if (i >= 0 && encoded[i] == '$')
921 *len = i;
922 else if (i >= 2 && strncmp (encoded + i - 2, "___", 3) == 0)
923 *len = i - 2;
924 else if (i >= 1 && strncmp (encoded + i - 1, "__", 2) == 0)
925 *len = i - 1;
926 }
927}
928
929/* Remove the suffix introduced by the compiler for protected object
930 subprograms. */
931
932static void
933ada_remove_po_subprogram_suffix (const char *encoded, int *len)
934{
935 /* Remove trailing N. */
936
937 /* Protected entry subprograms are broken into two
938 separate subprograms: The first one is unprotected, and has
939 a 'N' suffix; the second is the protected version, and has
0963b4bd 940 the 'P' suffix. The second calls the first one after handling
29480c32
JB
941 the protection. Since the P subprograms are internally generated,
942 we leave these names undecoded, giving the user a clue that this
943 entity is internal. */
944
945 if (*len > 1
946 && encoded[*len - 1] == 'N'
947 && (isdigit (encoded[*len - 2]) || islower (encoded[*len - 2])))
948 *len = *len - 1;
949}
950
69fadcdf
JB
951/* Remove trailing X[bn]* suffixes (indicating names in package bodies). */
952
953static void
954ada_remove_Xbn_suffix (const char *encoded, int *len)
955{
956 int i = *len - 1;
957
958 while (i > 0 && (encoded[i] == 'b' || encoded[i] == 'n'))
959 i--;
960
961 if (encoded[i] != 'X')
962 return;
963
964 if (i == 0)
965 return;
966
967 if (isalnum (encoded[i-1]))
968 *len = i;
969}
970
29480c32
JB
971/* If ENCODED follows the GNAT entity encoding conventions, then return
972 the decoded form of ENCODED. Otherwise, return "<%s>" where "%s" is
973 replaced by ENCODED.
14f9c5c9 974
4c4b4cd2 975 The resulting string is valid until the next call of ada_decode.
29480c32 976 If the string is unchanged by decoding, the original string pointer
4c4b4cd2
PH
977 is returned. */
978
979const char *
980ada_decode (const char *encoded)
14f9c5c9
AS
981{
982 int i, j;
983 int len0;
d2e4a39e 984 const char *p;
4c4b4cd2 985 char *decoded;
14f9c5c9 986 int at_start_name;
4c4b4cd2
PH
987 static char *decoding_buffer = NULL;
988 static size_t decoding_buffer_size = 0;
d2e4a39e 989
29480c32
JB
990 /* The name of the Ada main procedure starts with "_ada_".
991 This prefix is not part of the decoded name, so skip this part
992 if we see this prefix. */
4c4b4cd2
PH
993 if (strncmp (encoded, "_ada_", 5) == 0)
994 encoded += 5;
14f9c5c9 995
29480c32
JB
996 /* If the name starts with '_', then it is not a properly encoded
997 name, so do not attempt to decode it. Similarly, if the name
998 starts with '<', the name should not be decoded. */
4c4b4cd2 999 if (encoded[0] == '_' || encoded[0] == '<')
14f9c5c9
AS
1000 goto Suppress;
1001
4c4b4cd2 1002 len0 = strlen (encoded);
4c4b4cd2 1003
29480c32
JB
1004 ada_remove_trailing_digits (encoded, &len0);
1005 ada_remove_po_subprogram_suffix (encoded, &len0);
529cad9c 1006
4c4b4cd2
PH
1007 /* Remove the ___X.* suffix if present. Do not forget to verify that
1008 the suffix is located before the current "end" of ENCODED. We want
1009 to avoid re-matching parts of ENCODED that have previously been
1010 marked as discarded (by decrementing LEN0). */
1011 p = strstr (encoded, "___");
1012 if (p != NULL && p - encoded < len0 - 3)
14f9c5c9
AS
1013 {
1014 if (p[3] == 'X')
4c4b4cd2 1015 len0 = p - encoded;
14f9c5c9 1016 else
4c4b4cd2 1017 goto Suppress;
14f9c5c9 1018 }
4c4b4cd2 1019
29480c32
JB
1020 /* Remove any trailing TKB suffix. It tells us that this symbol
1021 is for the body of a task, but that information does not actually
1022 appear in the decoded name. */
1023
4c4b4cd2 1024 if (len0 > 3 && strncmp (encoded + len0 - 3, "TKB", 3) == 0)
14f9c5c9 1025 len0 -= 3;
76a01679 1026
a10967fa
JB
1027 /* Remove any trailing TB suffix. The TB suffix is slightly different
1028 from the TKB suffix because it is used for non-anonymous task
1029 bodies. */
1030
1031 if (len0 > 2 && strncmp (encoded + len0 - 2, "TB", 2) == 0)
1032 len0 -= 2;
1033
29480c32
JB
1034 /* Remove trailing "B" suffixes. */
1035 /* FIXME: brobecker/2006-04-19: Not sure what this are used for... */
1036
4c4b4cd2 1037 if (len0 > 1 && strncmp (encoded + len0 - 1, "B", 1) == 0)
14f9c5c9
AS
1038 len0 -= 1;
1039
4c4b4cd2 1040 /* Make decoded big enough for possible expansion by operator name. */
29480c32 1041
4c4b4cd2
PH
1042 GROW_VECT (decoding_buffer, decoding_buffer_size, 2 * len0 + 1);
1043 decoded = decoding_buffer;
14f9c5c9 1044
29480c32
JB
1045 /* Remove trailing __{digit}+ or trailing ${digit}+. */
1046
4c4b4cd2 1047 if (len0 > 1 && isdigit (encoded[len0 - 1]))
d2e4a39e 1048 {
4c4b4cd2
PH
1049 i = len0 - 2;
1050 while ((i >= 0 && isdigit (encoded[i]))
1051 || (i >= 1 && encoded[i] == '_' && isdigit (encoded[i - 1])))
1052 i -= 1;
1053 if (i > 1 && encoded[i] == '_' && encoded[i - 1] == '_')
1054 len0 = i - 1;
1055 else if (encoded[i] == '$')
1056 len0 = i;
d2e4a39e 1057 }
14f9c5c9 1058
29480c32
JB
1059 /* The first few characters that are not alphabetic are not part
1060 of any encoding we use, so we can copy them over verbatim. */
1061
4c4b4cd2
PH
1062 for (i = 0, j = 0; i < len0 && !isalpha (encoded[i]); i += 1, j += 1)
1063 decoded[j] = encoded[i];
14f9c5c9
AS
1064
1065 at_start_name = 1;
1066 while (i < len0)
1067 {
29480c32 1068 /* Is this a symbol function? */
4c4b4cd2
PH
1069 if (at_start_name && encoded[i] == 'O')
1070 {
1071 int k;
5b4ee69b 1072
4c4b4cd2
PH
1073 for (k = 0; ada_opname_table[k].encoded != NULL; k += 1)
1074 {
1075 int op_len = strlen (ada_opname_table[k].encoded);
06d5cf63
JB
1076 if ((strncmp (ada_opname_table[k].encoded + 1, encoded + i + 1,
1077 op_len - 1) == 0)
1078 && !isalnum (encoded[i + op_len]))
4c4b4cd2
PH
1079 {
1080 strcpy (decoded + j, ada_opname_table[k].decoded);
1081 at_start_name = 0;
1082 i += op_len;
1083 j += strlen (ada_opname_table[k].decoded);
1084 break;
1085 }
1086 }
1087 if (ada_opname_table[k].encoded != NULL)
1088 continue;
1089 }
14f9c5c9
AS
1090 at_start_name = 0;
1091
529cad9c
PH
1092 /* Replace "TK__" with "__", which will eventually be translated
1093 into "." (just below). */
1094
4c4b4cd2
PH
1095 if (i < len0 - 4 && strncmp (encoded + i, "TK__", 4) == 0)
1096 i += 2;
529cad9c 1097
29480c32
JB
1098 /* Replace "__B_{DIGITS}+__" sequences by "__", which will eventually
1099 be translated into "." (just below). These are internal names
1100 generated for anonymous blocks inside which our symbol is nested. */
1101
1102 if (len0 - i > 5 && encoded [i] == '_' && encoded [i+1] == '_'
1103 && encoded [i+2] == 'B' && encoded [i+3] == '_'
1104 && isdigit (encoded [i+4]))
1105 {
1106 int k = i + 5;
1107
1108 while (k < len0 && isdigit (encoded[k]))
1109 k++; /* Skip any extra digit. */
1110
1111 /* Double-check that the "__B_{DIGITS}+" sequence we found
1112 is indeed followed by "__". */
1113 if (len0 - k > 2 && encoded [k] == '_' && encoded [k+1] == '_')
1114 i = k;
1115 }
1116
529cad9c
PH
1117 /* Remove _E{DIGITS}+[sb] */
1118
1119 /* Just as for protected object subprograms, there are 2 categories
0963b4bd 1120 of subprograms created by the compiler for each entry. The first
529cad9c
PH
1121 one implements the actual entry code, and has a suffix following
1122 the convention above; the second one implements the barrier and
1123 uses the same convention as above, except that the 'E' is replaced
1124 by a 'B'.
1125
1126 Just as above, we do not decode the name of barrier functions
1127 to give the user a clue that the code he is debugging has been
1128 internally generated. */
1129
1130 if (len0 - i > 3 && encoded [i] == '_' && encoded[i+1] == 'E'
1131 && isdigit (encoded[i+2]))
1132 {
1133 int k = i + 3;
1134
1135 while (k < len0 && isdigit (encoded[k]))
1136 k++;
1137
1138 if (k < len0
1139 && (encoded[k] == 'b' || encoded[k] == 's'))
1140 {
1141 k++;
1142 /* Just as an extra precaution, make sure that if this
1143 suffix is followed by anything else, it is a '_'.
1144 Otherwise, we matched this sequence by accident. */
1145 if (k == len0
1146 || (k < len0 && encoded[k] == '_'))
1147 i = k;
1148 }
1149 }
1150
1151 /* Remove trailing "N" in [a-z0-9]+N__. The N is added by
1152 the GNAT front-end in protected object subprograms. */
1153
1154 if (i < len0 + 3
1155 && encoded[i] == 'N' && encoded[i+1] == '_' && encoded[i+2] == '_')
1156 {
1157 /* Backtrack a bit up until we reach either the begining of
1158 the encoded name, or "__". Make sure that we only find
1159 digits or lowercase characters. */
1160 const char *ptr = encoded + i - 1;
1161
1162 while (ptr >= encoded && is_lower_alphanum (ptr[0]))
1163 ptr--;
1164 if (ptr < encoded
1165 || (ptr > encoded && ptr[0] == '_' && ptr[-1] == '_'))
1166 i++;
1167 }
1168
4c4b4cd2
PH
1169 if (encoded[i] == 'X' && i != 0 && isalnum (encoded[i - 1]))
1170 {
29480c32
JB
1171 /* This is a X[bn]* sequence not separated from the previous
1172 part of the name with a non-alpha-numeric character (in other
1173 words, immediately following an alpha-numeric character), then
1174 verify that it is placed at the end of the encoded name. If
1175 not, then the encoding is not valid and we should abort the
1176 decoding. Otherwise, just skip it, it is used in body-nested
1177 package names. */
4c4b4cd2
PH
1178 do
1179 i += 1;
1180 while (i < len0 && (encoded[i] == 'b' || encoded[i] == 'n'));
1181 if (i < len0)
1182 goto Suppress;
1183 }
cdc7bb92 1184 else if (i < len0 - 2 && encoded[i] == '_' && encoded[i + 1] == '_')
4c4b4cd2 1185 {
29480c32 1186 /* Replace '__' by '.'. */
4c4b4cd2
PH
1187 decoded[j] = '.';
1188 at_start_name = 1;
1189 i += 2;
1190 j += 1;
1191 }
14f9c5c9 1192 else
4c4b4cd2 1193 {
29480c32
JB
1194 /* It's a character part of the decoded name, so just copy it
1195 over. */
4c4b4cd2
PH
1196 decoded[j] = encoded[i];
1197 i += 1;
1198 j += 1;
1199 }
14f9c5c9 1200 }
4c4b4cd2 1201 decoded[j] = '\000';
14f9c5c9 1202
29480c32
JB
1203 /* Decoded names should never contain any uppercase character.
1204 Double-check this, and abort the decoding if we find one. */
1205
4c4b4cd2
PH
1206 for (i = 0; decoded[i] != '\0'; i += 1)
1207 if (isupper (decoded[i]) || decoded[i] == ' ')
14f9c5c9
AS
1208 goto Suppress;
1209
4c4b4cd2
PH
1210 if (strcmp (decoded, encoded) == 0)
1211 return encoded;
1212 else
1213 return decoded;
14f9c5c9
AS
1214
1215Suppress:
4c4b4cd2
PH
1216 GROW_VECT (decoding_buffer, decoding_buffer_size, strlen (encoded) + 3);
1217 decoded = decoding_buffer;
1218 if (encoded[0] == '<')
1219 strcpy (decoded, encoded);
14f9c5c9 1220 else
88c15c34 1221 xsnprintf (decoded, decoding_buffer_size, "<%s>", encoded);
4c4b4cd2
PH
1222 return decoded;
1223
1224}
1225
1226/* Table for keeping permanent unique copies of decoded names. Once
1227 allocated, names in this table are never released. While this is a
1228 storage leak, it should not be significant unless there are massive
1229 changes in the set of decoded names in successive versions of a
1230 symbol table loaded during a single session. */
1231static struct htab *decoded_names_store;
1232
1233/* Returns the decoded name of GSYMBOL, as for ada_decode, caching it
1234 in the language-specific part of GSYMBOL, if it has not been
1235 previously computed. Tries to save the decoded name in the same
1236 obstack as GSYMBOL, if possible, and otherwise on the heap (so that,
1237 in any case, the decoded symbol has a lifetime at least that of
0963b4bd 1238 GSYMBOL).
4c4b4cd2
PH
1239 The GSYMBOL parameter is "mutable" in the C++ sense: logically
1240 const, but nevertheless modified to a semantically equivalent form
0963b4bd 1241 when a decoded name is cached in it. */
4c4b4cd2 1242
76a01679
JB
1243char *
1244ada_decode_symbol (const struct general_symbol_info *gsymbol)
4c4b4cd2 1245{
76a01679 1246 char **resultp =
afa16725 1247 (char **) &gsymbol->language_specific.mangled_lang.demangled_name;
5b4ee69b 1248
4c4b4cd2
PH
1249 if (*resultp == NULL)
1250 {
1251 const char *decoded = ada_decode (gsymbol->name);
5b4ee69b 1252
714835d5 1253 if (gsymbol->obj_section != NULL)
76a01679 1254 {
714835d5 1255 struct objfile *objf = gsymbol->obj_section->objfile;
5b4ee69b 1256
714835d5
UW
1257 *resultp = obsavestring (decoded, strlen (decoded),
1258 &objf->objfile_obstack);
76a01679 1259 }
4c4b4cd2 1260 /* Sometimes, we can't find a corresponding objfile, in which
76a01679
JB
1261 case, we put the result on the heap. Since we only decode
1262 when needed, we hope this usually does not cause a
1263 significant memory leak (FIXME). */
4c4b4cd2 1264 if (*resultp == NULL)
76a01679
JB
1265 {
1266 char **slot = (char **) htab_find_slot (decoded_names_store,
1267 decoded, INSERT);
5b4ee69b 1268
76a01679
JB
1269 if (*slot == NULL)
1270 *slot = xstrdup (decoded);
1271 *resultp = *slot;
1272 }
4c4b4cd2 1273 }
14f9c5c9 1274
4c4b4cd2
PH
1275 return *resultp;
1276}
76a01679 1277
2c0b251b 1278static char *
76a01679 1279ada_la_decode (const char *encoded, int options)
4c4b4cd2
PH
1280{
1281 return xstrdup (ada_decode (encoded));
14f9c5c9
AS
1282}
1283
1284/* Returns non-zero iff SYM_NAME matches NAME, ignoring any trailing
4c4b4cd2
PH
1285 suffixes that encode debugging information or leading _ada_ on
1286 SYM_NAME (see is_name_suffix commentary for the debugging
1287 information that is ignored). If WILD, then NAME need only match a
1288 suffix of SYM_NAME minus the same suffixes. Also returns 0 if
1289 either argument is NULL. */
14f9c5c9 1290
2c0b251b 1291static int
40658b94 1292match_name (const char *sym_name, const char *name, int wild)
14f9c5c9
AS
1293{
1294 if (sym_name == NULL || name == NULL)
1295 return 0;
1296 else if (wild)
73589123 1297 return wild_match (sym_name, name) == 0;
d2e4a39e
AS
1298 else
1299 {
1300 int len_name = strlen (name);
5b4ee69b 1301
4c4b4cd2
PH
1302 return (strncmp (sym_name, name, len_name) == 0
1303 && is_name_suffix (sym_name + len_name))
1304 || (strncmp (sym_name, "_ada_", 5) == 0
1305 && strncmp (sym_name + 5, name, len_name) == 0
1306 && is_name_suffix (sym_name + len_name + 5));
d2e4a39e 1307 }
14f9c5c9 1308}
14f9c5c9 1309\f
d2e4a39e 1310
4c4b4cd2 1311 /* Arrays */
14f9c5c9 1312
28c85d6c
JB
1313/* Assuming that INDEX_DESC_TYPE is an ___XA structure, a structure
1314 generated by the GNAT compiler to describe the index type used
1315 for each dimension of an array, check whether it follows the latest
1316 known encoding. If not, fix it up to conform to the latest encoding.
1317 Otherwise, do nothing. This function also does nothing if
1318 INDEX_DESC_TYPE is NULL.
1319
1320 The GNAT encoding used to describle the array index type evolved a bit.
1321 Initially, the information would be provided through the name of each
1322 field of the structure type only, while the type of these fields was
1323 described as unspecified and irrelevant. The debugger was then expected
1324 to perform a global type lookup using the name of that field in order
1325 to get access to the full index type description. Because these global
1326 lookups can be very expensive, the encoding was later enhanced to make
1327 the global lookup unnecessary by defining the field type as being
1328 the full index type description.
1329
1330 The purpose of this routine is to allow us to support older versions
1331 of the compiler by detecting the use of the older encoding, and by
1332 fixing up the INDEX_DESC_TYPE to follow the new one (at this point,
1333 we essentially replace each field's meaningless type by the associated
1334 index subtype). */
1335
1336void
1337ada_fixup_array_indexes_type (struct type *index_desc_type)
1338{
1339 int i;
1340
1341 if (index_desc_type == NULL)
1342 return;
1343 gdb_assert (TYPE_NFIELDS (index_desc_type) > 0);
1344
1345 /* Check if INDEX_DESC_TYPE follows the older encoding (it is sufficient
1346 to check one field only, no need to check them all). If not, return
1347 now.
1348
1349 If our INDEX_DESC_TYPE was generated using the older encoding,
1350 the field type should be a meaningless integer type whose name
1351 is not equal to the field name. */
1352 if (TYPE_NAME (TYPE_FIELD_TYPE (index_desc_type, 0)) != NULL
1353 && strcmp (TYPE_NAME (TYPE_FIELD_TYPE (index_desc_type, 0)),
1354 TYPE_FIELD_NAME (index_desc_type, 0)) == 0)
1355 return;
1356
1357 /* Fixup each field of INDEX_DESC_TYPE. */
1358 for (i = 0; i < TYPE_NFIELDS (index_desc_type); i++)
1359 {
1360 char *name = TYPE_FIELD_NAME (index_desc_type, i);
1361 struct type *raw_type = ada_check_typedef (ada_find_any_type (name));
1362
1363 if (raw_type)
1364 TYPE_FIELD_TYPE (index_desc_type, i) = raw_type;
1365 }
1366}
1367
4c4b4cd2 1368/* Names of MAX_ADA_DIMENS bounds in P_BOUNDS fields of array descriptors. */
14f9c5c9 1369
d2e4a39e
AS
1370static char *bound_name[] = {
1371 "LB0", "UB0", "LB1", "UB1", "LB2", "UB2", "LB3", "UB3",
14f9c5c9
AS
1372 "LB4", "UB4", "LB5", "UB5", "LB6", "UB6", "LB7", "UB7"
1373};
1374
1375/* Maximum number of array dimensions we are prepared to handle. */
1376
4c4b4cd2 1377#define MAX_ADA_DIMENS (sizeof(bound_name) / (2*sizeof(char *)))
14f9c5c9 1378
14f9c5c9 1379
4c4b4cd2
PH
1380/* The desc_* routines return primitive portions of array descriptors
1381 (fat pointers). */
14f9c5c9
AS
1382
1383/* The descriptor or array type, if any, indicated by TYPE; removes
4c4b4cd2
PH
1384 level of indirection, if needed. */
1385
d2e4a39e
AS
1386static struct type *
1387desc_base_type (struct type *type)
14f9c5c9
AS
1388{
1389 if (type == NULL)
1390 return NULL;
61ee279c 1391 type = ada_check_typedef (type);
720d1a40
JB
1392 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
1393 type = ada_typedef_target_type (type);
1394
1265e4aa
JB
1395 if (type != NULL
1396 && (TYPE_CODE (type) == TYPE_CODE_PTR
1397 || TYPE_CODE (type) == TYPE_CODE_REF))
61ee279c 1398 return ada_check_typedef (TYPE_TARGET_TYPE (type));
14f9c5c9
AS
1399 else
1400 return type;
1401}
1402
4c4b4cd2
PH
1403/* True iff TYPE indicates a "thin" array pointer type. */
1404
14f9c5c9 1405static int
d2e4a39e 1406is_thin_pntr (struct type *type)
14f9c5c9 1407{
d2e4a39e 1408 return
14f9c5c9
AS
1409 is_suffix (ada_type_name (desc_base_type (type)), "___XUT")
1410 || is_suffix (ada_type_name (desc_base_type (type)), "___XUT___XVE");
1411}
1412
4c4b4cd2
PH
1413/* The descriptor type for thin pointer type TYPE. */
1414
d2e4a39e
AS
1415static struct type *
1416thin_descriptor_type (struct type *type)
14f9c5c9 1417{
d2e4a39e 1418 struct type *base_type = desc_base_type (type);
5b4ee69b 1419
14f9c5c9
AS
1420 if (base_type == NULL)
1421 return NULL;
1422 if (is_suffix (ada_type_name (base_type), "___XVE"))
1423 return base_type;
d2e4a39e 1424 else
14f9c5c9 1425 {
d2e4a39e 1426 struct type *alt_type = ada_find_parallel_type (base_type, "___XVE");
5b4ee69b 1427
14f9c5c9 1428 if (alt_type == NULL)
4c4b4cd2 1429 return base_type;
14f9c5c9 1430 else
4c4b4cd2 1431 return alt_type;
14f9c5c9
AS
1432 }
1433}
1434
4c4b4cd2
PH
1435/* A pointer to the array data for thin-pointer value VAL. */
1436
d2e4a39e
AS
1437static struct value *
1438thin_data_pntr (struct value *val)
14f9c5c9 1439{
df407dfe 1440 struct type *type = value_type (val);
556bdfd4 1441 struct type *data_type = desc_data_target_type (thin_descriptor_type (type));
5b4ee69b 1442
556bdfd4
UW
1443 data_type = lookup_pointer_type (data_type);
1444
14f9c5c9 1445 if (TYPE_CODE (type) == TYPE_CODE_PTR)
556bdfd4 1446 return value_cast (data_type, value_copy (val));
d2e4a39e 1447 else
42ae5230 1448 return value_from_longest (data_type, value_address (val));
14f9c5c9
AS
1449}
1450
4c4b4cd2
PH
1451/* True iff TYPE indicates a "thick" array pointer type. */
1452
14f9c5c9 1453static int
d2e4a39e 1454is_thick_pntr (struct type *type)
14f9c5c9
AS
1455{
1456 type = desc_base_type (type);
1457 return (type != NULL && TYPE_CODE (type) == TYPE_CODE_STRUCT
4c4b4cd2 1458 && lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL);
14f9c5c9
AS
1459}
1460
4c4b4cd2
PH
1461/* If TYPE is the type of an array descriptor (fat or thin pointer) or a
1462 pointer to one, the type of its bounds data; otherwise, NULL. */
76a01679 1463
d2e4a39e
AS
1464static struct type *
1465desc_bounds_type (struct type *type)
14f9c5c9 1466{
d2e4a39e 1467 struct type *r;
14f9c5c9
AS
1468
1469 type = desc_base_type (type);
1470
1471 if (type == NULL)
1472 return NULL;
1473 else if (is_thin_pntr (type))
1474 {
1475 type = thin_descriptor_type (type);
1476 if (type == NULL)
4c4b4cd2 1477 return NULL;
14f9c5c9
AS
1478 r = lookup_struct_elt_type (type, "BOUNDS", 1);
1479 if (r != NULL)
61ee279c 1480 return ada_check_typedef (r);
14f9c5c9
AS
1481 }
1482 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
1483 {
1484 r = lookup_struct_elt_type (type, "P_BOUNDS", 1);
1485 if (r != NULL)
61ee279c 1486 return ada_check_typedef (TYPE_TARGET_TYPE (ada_check_typedef (r)));
14f9c5c9
AS
1487 }
1488 return NULL;
1489}
1490
1491/* If ARR is an array descriptor (fat or thin pointer), or pointer to
4c4b4cd2
PH
1492 one, a pointer to its bounds data. Otherwise NULL. */
1493
d2e4a39e
AS
1494static struct value *
1495desc_bounds (struct value *arr)
14f9c5c9 1496{
df407dfe 1497 struct type *type = ada_check_typedef (value_type (arr));
5b4ee69b 1498
d2e4a39e 1499 if (is_thin_pntr (type))
14f9c5c9 1500 {
d2e4a39e 1501 struct type *bounds_type =
4c4b4cd2 1502 desc_bounds_type (thin_descriptor_type (type));
14f9c5c9
AS
1503 LONGEST addr;
1504
4cdfadb1 1505 if (bounds_type == NULL)
323e0a4a 1506 error (_("Bad GNAT array descriptor"));
14f9c5c9
AS
1507
1508 /* NOTE: The following calculation is not really kosher, but
d2e4a39e 1509 since desc_type is an XVE-encoded type (and shouldn't be),
4c4b4cd2 1510 the correct calculation is a real pain. FIXME (and fix GCC). */
14f9c5c9 1511 if (TYPE_CODE (type) == TYPE_CODE_PTR)
4c4b4cd2 1512 addr = value_as_long (arr);
d2e4a39e 1513 else
42ae5230 1514 addr = value_address (arr);
14f9c5c9 1515
d2e4a39e 1516 return
4c4b4cd2
PH
1517 value_from_longest (lookup_pointer_type (bounds_type),
1518 addr - TYPE_LENGTH (bounds_type));
14f9c5c9
AS
1519 }
1520
1521 else if (is_thick_pntr (type))
05e522ef
JB
1522 {
1523 struct value *p_bounds = value_struct_elt (&arr, NULL, "P_BOUNDS", NULL,
1524 _("Bad GNAT array descriptor"));
1525 struct type *p_bounds_type = value_type (p_bounds);
1526
1527 if (p_bounds_type
1528 && TYPE_CODE (p_bounds_type) == TYPE_CODE_PTR)
1529 {
1530 struct type *target_type = TYPE_TARGET_TYPE (p_bounds_type);
1531
1532 if (TYPE_STUB (target_type))
1533 p_bounds = value_cast (lookup_pointer_type
1534 (ada_check_typedef (target_type)),
1535 p_bounds);
1536 }
1537 else
1538 error (_("Bad GNAT array descriptor"));
1539
1540 return p_bounds;
1541 }
14f9c5c9
AS
1542 else
1543 return NULL;
1544}
1545
4c4b4cd2
PH
1546/* If TYPE is the type of an array-descriptor (fat pointer), the bit
1547 position of the field containing the address of the bounds data. */
1548
14f9c5c9 1549static int
d2e4a39e 1550fat_pntr_bounds_bitpos (struct type *type)
14f9c5c9
AS
1551{
1552 return TYPE_FIELD_BITPOS (desc_base_type (type), 1);
1553}
1554
1555/* If TYPE is the type of an array-descriptor (fat pointer), the bit
4c4b4cd2
PH
1556 size of the field containing the address of the bounds data. */
1557
14f9c5c9 1558static int
d2e4a39e 1559fat_pntr_bounds_bitsize (struct type *type)
14f9c5c9
AS
1560{
1561 type = desc_base_type (type);
1562
d2e4a39e 1563 if (TYPE_FIELD_BITSIZE (type, 1) > 0)
14f9c5c9
AS
1564 return TYPE_FIELD_BITSIZE (type, 1);
1565 else
61ee279c 1566 return 8 * TYPE_LENGTH (ada_check_typedef (TYPE_FIELD_TYPE (type, 1)));
14f9c5c9
AS
1567}
1568
4c4b4cd2 1569/* If TYPE is the type of an array descriptor (fat or thin pointer) or a
556bdfd4
UW
1570 pointer to one, the type of its array data (a array-with-no-bounds type);
1571 otherwise, NULL. Use ada_type_of_array to get an array type with bounds
1572 data. */
4c4b4cd2 1573
d2e4a39e 1574static struct type *
556bdfd4 1575desc_data_target_type (struct type *type)
14f9c5c9
AS
1576{
1577 type = desc_base_type (type);
1578
4c4b4cd2 1579 /* NOTE: The following is bogus; see comment in desc_bounds. */
14f9c5c9 1580 if (is_thin_pntr (type))
556bdfd4 1581 return desc_base_type (TYPE_FIELD_TYPE (thin_descriptor_type (type), 1));
14f9c5c9 1582 else if (is_thick_pntr (type))
556bdfd4
UW
1583 {
1584 struct type *data_type = lookup_struct_elt_type (type, "P_ARRAY", 1);
1585
1586 if (data_type
1587 && TYPE_CODE (ada_check_typedef (data_type)) == TYPE_CODE_PTR)
05e522ef 1588 return ada_check_typedef (TYPE_TARGET_TYPE (data_type));
556bdfd4
UW
1589 }
1590
1591 return NULL;
14f9c5c9
AS
1592}
1593
1594/* If ARR is an array descriptor (fat or thin pointer), a pointer to
1595 its array data. */
4c4b4cd2 1596
d2e4a39e
AS
1597static struct value *
1598desc_data (struct value *arr)
14f9c5c9 1599{
df407dfe 1600 struct type *type = value_type (arr);
5b4ee69b 1601
14f9c5c9
AS
1602 if (is_thin_pntr (type))
1603 return thin_data_pntr (arr);
1604 else if (is_thick_pntr (type))
d2e4a39e 1605 return value_struct_elt (&arr, NULL, "P_ARRAY", NULL,
323e0a4a 1606 _("Bad GNAT array descriptor"));
14f9c5c9
AS
1607 else
1608 return NULL;
1609}
1610
1611
1612/* If TYPE is the type of an array-descriptor (fat pointer), the bit
4c4b4cd2
PH
1613 position of the field containing the address of the data. */
1614
14f9c5c9 1615static int
d2e4a39e 1616fat_pntr_data_bitpos (struct type *type)
14f9c5c9
AS
1617{
1618 return TYPE_FIELD_BITPOS (desc_base_type (type), 0);
1619}
1620
1621/* If TYPE is the type of an array-descriptor (fat pointer), the bit
4c4b4cd2
PH
1622 size of the field containing the address of the data. */
1623
14f9c5c9 1624static int
d2e4a39e 1625fat_pntr_data_bitsize (struct type *type)
14f9c5c9
AS
1626{
1627 type = desc_base_type (type);
1628
1629 if (TYPE_FIELD_BITSIZE (type, 0) > 0)
1630 return TYPE_FIELD_BITSIZE (type, 0);
d2e4a39e 1631 else
14f9c5c9
AS
1632 return TARGET_CHAR_BIT * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 0));
1633}
1634
4c4b4cd2 1635/* If BOUNDS is an array-bounds structure (or pointer to one), return
14f9c5c9 1636 the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
4c4b4cd2
PH
1637 bound, if WHICH is 1. The first bound is I=1. */
1638
d2e4a39e
AS
1639static struct value *
1640desc_one_bound (struct value *bounds, int i, int which)
14f9c5c9 1641{
d2e4a39e 1642 return value_struct_elt (&bounds, NULL, bound_name[2 * i + which - 2], NULL,
323e0a4a 1643 _("Bad GNAT array descriptor bounds"));
14f9c5c9
AS
1644}
1645
1646/* If BOUNDS is an array-bounds structure type, return the bit position
1647 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
4c4b4cd2
PH
1648 bound, if WHICH is 1. The first bound is I=1. */
1649
14f9c5c9 1650static int
d2e4a39e 1651desc_bound_bitpos (struct type *type, int i, int which)
14f9c5c9 1652{
d2e4a39e 1653 return TYPE_FIELD_BITPOS (desc_base_type (type), 2 * i + which - 2);
14f9c5c9
AS
1654}
1655
1656/* If BOUNDS is an array-bounds structure type, return the bit field size
1657 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
4c4b4cd2
PH
1658 bound, if WHICH is 1. The first bound is I=1. */
1659
76a01679 1660static int
d2e4a39e 1661desc_bound_bitsize (struct type *type, int i, int which)
14f9c5c9
AS
1662{
1663 type = desc_base_type (type);
1664
d2e4a39e
AS
1665 if (TYPE_FIELD_BITSIZE (type, 2 * i + which - 2) > 0)
1666 return TYPE_FIELD_BITSIZE (type, 2 * i + which - 2);
1667 else
1668 return 8 * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 2 * i + which - 2));
14f9c5c9
AS
1669}
1670
1671/* If TYPE is the type of an array-bounds structure, the type of its
4c4b4cd2
PH
1672 Ith bound (numbering from 1). Otherwise, NULL. */
1673
d2e4a39e
AS
1674static struct type *
1675desc_index_type (struct type *type, int i)
14f9c5c9
AS
1676{
1677 type = desc_base_type (type);
1678
1679 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
d2e4a39e
AS
1680 return lookup_struct_elt_type (type, bound_name[2 * i - 2], 1);
1681 else
14f9c5c9
AS
1682 return NULL;
1683}
1684
4c4b4cd2
PH
1685/* The number of index positions in the array-bounds type TYPE.
1686 Return 0 if TYPE is NULL. */
1687
14f9c5c9 1688static int
d2e4a39e 1689desc_arity (struct type *type)
14f9c5c9
AS
1690{
1691 type = desc_base_type (type);
1692
1693 if (type != NULL)
1694 return TYPE_NFIELDS (type) / 2;
1695 return 0;
1696}
1697
4c4b4cd2
PH
1698/* Non-zero iff TYPE is a simple array type (not a pointer to one) or
1699 an array descriptor type (representing an unconstrained array
1700 type). */
1701
76a01679
JB
1702static int
1703ada_is_direct_array_type (struct type *type)
4c4b4cd2
PH
1704{
1705 if (type == NULL)
1706 return 0;
61ee279c 1707 type = ada_check_typedef (type);
4c4b4cd2 1708 return (TYPE_CODE (type) == TYPE_CODE_ARRAY
76a01679 1709 || ada_is_array_descriptor_type (type));
4c4b4cd2
PH
1710}
1711
52ce6436 1712/* Non-zero iff TYPE represents any kind of array in Ada, or a pointer
0963b4bd 1713 * to one. */
52ce6436 1714
2c0b251b 1715static int
52ce6436
PH
1716ada_is_array_type (struct type *type)
1717{
1718 while (type != NULL
1719 && (TYPE_CODE (type) == TYPE_CODE_PTR
1720 || TYPE_CODE (type) == TYPE_CODE_REF))
1721 type = TYPE_TARGET_TYPE (type);
1722 return ada_is_direct_array_type (type);
1723}
1724
4c4b4cd2 1725/* Non-zero iff TYPE is a simple array type or pointer to one. */
14f9c5c9 1726
14f9c5c9 1727int
4c4b4cd2 1728ada_is_simple_array_type (struct type *type)
14f9c5c9
AS
1729{
1730 if (type == NULL)
1731 return 0;
61ee279c 1732 type = ada_check_typedef (type);
14f9c5c9 1733 return (TYPE_CODE (type) == TYPE_CODE_ARRAY
4c4b4cd2
PH
1734 || (TYPE_CODE (type) == TYPE_CODE_PTR
1735 && TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_ARRAY));
14f9c5c9
AS
1736}
1737
4c4b4cd2
PH
1738/* Non-zero iff TYPE belongs to a GNAT array descriptor. */
1739
14f9c5c9 1740int
4c4b4cd2 1741ada_is_array_descriptor_type (struct type *type)
14f9c5c9 1742{
556bdfd4 1743 struct type *data_type = desc_data_target_type (type);
14f9c5c9
AS
1744
1745 if (type == NULL)
1746 return 0;
61ee279c 1747 type = ada_check_typedef (type);
556bdfd4
UW
1748 return (data_type != NULL
1749 && TYPE_CODE (data_type) == TYPE_CODE_ARRAY
1750 && desc_arity (desc_bounds_type (type)) > 0);
14f9c5c9
AS
1751}
1752
1753/* Non-zero iff type is a partially mal-formed GNAT array
4c4b4cd2 1754 descriptor. FIXME: This is to compensate for some problems with
14f9c5c9 1755 debugging output from GNAT. Re-examine periodically to see if it
4c4b4cd2
PH
1756 is still needed. */
1757
14f9c5c9 1758int
ebf56fd3 1759ada_is_bogus_array_descriptor (struct type *type)
14f9c5c9 1760{
d2e4a39e 1761 return
14f9c5c9
AS
1762 type != NULL
1763 && TYPE_CODE (type) == TYPE_CODE_STRUCT
1764 && (lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL
4c4b4cd2
PH
1765 || lookup_struct_elt_type (type, "P_ARRAY", 1) != NULL)
1766 && !ada_is_array_descriptor_type (type);
14f9c5c9
AS
1767}
1768
1769
4c4b4cd2 1770/* If ARR has a record type in the form of a standard GNAT array descriptor,
14f9c5c9 1771 (fat pointer) returns the type of the array data described---specifically,
4c4b4cd2 1772 a pointer-to-array type. If BOUNDS is non-zero, the bounds data are filled
14f9c5c9 1773 in from the descriptor; otherwise, they are left unspecified. If
4c4b4cd2
PH
1774 the ARR denotes a null array descriptor and BOUNDS is non-zero,
1775 returns NULL. The result is simply the type of ARR if ARR is not
14f9c5c9 1776 a descriptor. */
d2e4a39e
AS
1777struct type *
1778ada_type_of_array (struct value *arr, int bounds)
14f9c5c9 1779{
ad82864c
JB
1780 if (ada_is_constrained_packed_array_type (value_type (arr)))
1781 return decode_constrained_packed_array_type (value_type (arr));
14f9c5c9 1782
df407dfe
AC
1783 if (!ada_is_array_descriptor_type (value_type (arr)))
1784 return value_type (arr);
d2e4a39e
AS
1785
1786 if (!bounds)
ad82864c
JB
1787 {
1788 struct type *array_type =
1789 ada_check_typedef (desc_data_target_type (value_type (arr)));
1790
1791 if (ada_is_unconstrained_packed_array_type (value_type (arr)))
1792 TYPE_FIELD_BITSIZE (array_type, 0) =
1793 decode_packed_array_bitsize (value_type (arr));
1794
1795 return array_type;
1796 }
14f9c5c9
AS
1797 else
1798 {
d2e4a39e 1799 struct type *elt_type;
14f9c5c9 1800 int arity;
d2e4a39e 1801 struct value *descriptor;
14f9c5c9 1802
df407dfe
AC
1803 elt_type = ada_array_element_type (value_type (arr), -1);
1804 arity = ada_array_arity (value_type (arr));
14f9c5c9 1805
d2e4a39e 1806 if (elt_type == NULL || arity == 0)
df407dfe 1807 return ada_check_typedef (value_type (arr));
14f9c5c9
AS
1808
1809 descriptor = desc_bounds (arr);
d2e4a39e 1810 if (value_as_long (descriptor) == 0)
4c4b4cd2 1811 return NULL;
d2e4a39e 1812 while (arity > 0)
4c4b4cd2 1813 {
e9bb382b
UW
1814 struct type *range_type = alloc_type_copy (value_type (arr));
1815 struct type *array_type = alloc_type_copy (value_type (arr));
4c4b4cd2
PH
1816 struct value *low = desc_one_bound (descriptor, arity, 0);
1817 struct value *high = desc_one_bound (descriptor, arity, 1);
4c4b4cd2 1818
5b4ee69b 1819 arity -= 1;
df407dfe 1820 create_range_type (range_type, value_type (low),
529cad9c
PH
1821 longest_to_int (value_as_long (low)),
1822 longest_to_int (value_as_long (high)));
4c4b4cd2 1823 elt_type = create_array_type (array_type, elt_type, range_type);
ad82864c
JB
1824
1825 if (ada_is_unconstrained_packed_array_type (value_type (arr)))
e67ad678
JB
1826 {
1827 /* We need to store the element packed bitsize, as well as
1828 recompute the array size, because it was previously
1829 computed based on the unpacked element size. */
1830 LONGEST lo = value_as_long (low);
1831 LONGEST hi = value_as_long (high);
1832
1833 TYPE_FIELD_BITSIZE (elt_type, 0) =
1834 decode_packed_array_bitsize (value_type (arr));
1835 /* If the array has no element, then the size is already
1836 zero, and does not need to be recomputed. */
1837 if (lo < hi)
1838 {
1839 int array_bitsize =
1840 (hi - lo + 1) * TYPE_FIELD_BITSIZE (elt_type, 0);
1841
1842 TYPE_LENGTH (array_type) = (array_bitsize + 7) / 8;
1843 }
1844 }
4c4b4cd2 1845 }
14f9c5c9
AS
1846
1847 return lookup_pointer_type (elt_type);
1848 }
1849}
1850
1851/* If ARR does not represent an array, returns ARR unchanged.
4c4b4cd2
PH
1852 Otherwise, returns either a standard GDB array with bounds set
1853 appropriately or, if ARR is a non-null fat pointer, a pointer to a standard
1854 GDB array. Returns NULL if ARR is a null fat pointer. */
1855
d2e4a39e
AS
1856struct value *
1857ada_coerce_to_simple_array_ptr (struct value *arr)
14f9c5c9 1858{
df407dfe 1859 if (ada_is_array_descriptor_type (value_type (arr)))
14f9c5c9 1860 {
d2e4a39e 1861 struct type *arrType = ada_type_of_array (arr, 1);
5b4ee69b 1862
14f9c5c9 1863 if (arrType == NULL)
4c4b4cd2 1864 return NULL;
14f9c5c9
AS
1865 return value_cast (arrType, value_copy (desc_data (arr)));
1866 }
ad82864c
JB
1867 else if (ada_is_constrained_packed_array_type (value_type (arr)))
1868 return decode_constrained_packed_array (arr);
14f9c5c9
AS
1869 else
1870 return arr;
1871}
1872
1873/* If ARR does not represent an array, returns ARR unchanged.
1874 Otherwise, returns a standard GDB array describing ARR (which may
4c4b4cd2
PH
1875 be ARR itself if it already is in the proper form). */
1876
720d1a40 1877struct value *
d2e4a39e 1878ada_coerce_to_simple_array (struct value *arr)
14f9c5c9 1879{
df407dfe 1880 if (ada_is_array_descriptor_type (value_type (arr)))
14f9c5c9 1881 {
d2e4a39e 1882 struct value *arrVal = ada_coerce_to_simple_array_ptr (arr);
5b4ee69b 1883
14f9c5c9 1884 if (arrVal == NULL)
323e0a4a 1885 error (_("Bounds unavailable for null array pointer."));
529cad9c 1886 check_size (TYPE_TARGET_TYPE (value_type (arrVal)));
14f9c5c9
AS
1887 return value_ind (arrVal);
1888 }
ad82864c
JB
1889 else if (ada_is_constrained_packed_array_type (value_type (arr)))
1890 return decode_constrained_packed_array (arr);
d2e4a39e 1891 else
14f9c5c9
AS
1892 return arr;
1893}
1894
1895/* If TYPE represents a GNAT array type, return it translated to an
1896 ordinary GDB array type (possibly with BITSIZE fields indicating
4c4b4cd2
PH
1897 packing). For other types, is the identity. */
1898
d2e4a39e
AS
1899struct type *
1900ada_coerce_to_simple_array_type (struct type *type)
14f9c5c9 1901{
ad82864c
JB
1902 if (ada_is_constrained_packed_array_type (type))
1903 return decode_constrained_packed_array_type (type);
17280b9f
UW
1904
1905 if (ada_is_array_descriptor_type (type))
556bdfd4 1906 return ada_check_typedef (desc_data_target_type (type));
17280b9f
UW
1907
1908 return type;
14f9c5c9
AS
1909}
1910
4c4b4cd2
PH
1911/* Non-zero iff TYPE represents a standard GNAT packed-array type. */
1912
ad82864c
JB
1913static int
1914ada_is_packed_array_type (struct type *type)
14f9c5c9
AS
1915{
1916 if (type == NULL)
1917 return 0;
4c4b4cd2 1918 type = desc_base_type (type);
61ee279c 1919 type = ada_check_typedef (type);
d2e4a39e 1920 return
14f9c5c9
AS
1921 ada_type_name (type) != NULL
1922 && strstr (ada_type_name (type), "___XP") != NULL;
1923}
1924
ad82864c
JB
1925/* Non-zero iff TYPE represents a standard GNAT constrained
1926 packed-array type. */
1927
1928int
1929ada_is_constrained_packed_array_type (struct type *type)
1930{
1931 return ada_is_packed_array_type (type)
1932 && !ada_is_array_descriptor_type (type);
1933}
1934
1935/* Non-zero iff TYPE represents an array descriptor for a
1936 unconstrained packed-array type. */
1937
1938static int
1939ada_is_unconstrained_packed_array_type (struct type *type)
1940{
1941 return ada_is_packed_array_type (type)
1942 && ada_is_array_descriptor_type (type);
1943}
1944
1945/* Given that TYPE encodes a packed array type (constrained or unconstrained),
1946 return the size of its elements in bits. */
1947
1948static long
1949decode_packed_array_bitsize (struct type *type)
1950{
720d1a40 1951 char *raw_name;
ad82864c
JB
1952 char *tail;
1953 long bits;
1954
720d1a40
JB
1955 /* Access to arrays implemented as fat pointers are encoded as a typedef
1956 of the fat pointer type. We need the name of the fat pointer type
1957 to do the decoding, so strip the typedef layer. */
1958 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
1959 type = ada_typedef_target_type (type);
1960
1961 raw_name = ada_type_name (ada_check_typedef (type));
ad82864c
JB
1962 if (!raw_name)
1963 raw_name = ada_type_name (desc_base_type (type));
1964
1965 if (!raw_name)
1966 return 0;
1967
1968 tail = strstr (raw_name, "___XP");
720d1a40 1969 gdb_assert (tail != NULL);
ad82864c
JB
1970
1971 if (sscanf (tail + sizeof ("___XP") - 1, "%ld", &bits) != 1)
1972 {
1973 lim_warning
1974 (_("could not understand bit size information on packed array"));
1975 return 0;
1976 }
1977
1978 return bits;
1979}
1980
14f9c5c9
AS
1981/* Given that TYPE is a standard GDB array type with all bounds filled
1982 in, and that the element size of its ultimate scalar constituents
1983 (that is, either its elements, or, if it is an array of arrays, its
1984 elements' elements, etc.) is *ELT_BITS, return an identical type,
1985 but with the bit sizes of its elements (and those of any
1986 constituent arrays) recorded in the BITSIZE components of its
4c4b4cd2
PH
1987 TYPE_FIELD_BITSIZE values, and with *ELT_BITS set to its total size
1988 in bits. */
1989
d2e4a39e 1990static struct type *
ad82864c 1991constrained_packed_array_type (struct type *type, long *elt_bits)
14f9c5c9 1992{
d2e4a39e
AS
1993 struct type *new_elt_type;
1994 struct type *new_type;
14f9c5c9
AS
1995 LONGEST low_bound, high_bound;
1996
61ee279c 1997 type = ada_check_typedef (type);
14f9c5c9
AS
1998 if (TYPE_CODE (type) != TYPE_CODE_ARRAY)
1999 return type;
2000
e9bb382b 2001 new_type = alloc_type_copy (type);
ad82864c
JB
2002 new_elt_type =
2003 constrained_packed_array_type (ada_check_typedef (TYPE_TARGET_TYPE (type)),
2004 elt_bits);
262452ec 2005 create_array_type (new_type, new_elt_type, TYPE_INDEX_TYPE (type));
14f9c5c9
AS
2006 TYPE_FIELD_BITSIZE (new_type, 0) = *elt_bits;
2007 TYPE_NAME (new_type) = ada_type_name (type);
2008
262452ec 2009 if (get_discrete_bounds (TYPE_INDEX_TYPE (type),
4c4b4cd2 2010 &low_bound, &high_bound) < 0)
14f9c5c9
AS
2011 low_bound = high_bound = 0;
2012 if (high_bound < low_bound)
2013 *elt_bits = TYPE_LENGTH (new_type) = 0;
d2e4a39e 2014 else
14f9c5c9
AS
2015 {
2016 *elt_bits *= (high_bound - low_bound + 1);
d2e4a39e 2017 TYPE_LENGTH (new_type) =
4c4b4cd2 2018 (*elt_bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
14f9c5c9
AS
2019 }
2020
876cecd0 2021 TYPE_FIXED_INSTANCE (new_type) = 1;
14f9c5c9
AS
2022 return new_type;
2023}
2024
ad82864c
JB
2025/* The array type encoded by TYPE, where
2026 ada_is_constrained_packed_array_type (TYPE). */
4c4b4cd2 2027
d2e4a39e 2028static struct type *
ad82864c 2029decode_constrained_packed_array_type (struct type *type)
d2e4a39e 2030{
727e3d2e
JB
2031 char *raw_name = ada_type_name (ada_check_typedef (type));
2032 char *name;
2033 char *tail;
d2e4a39e 2034 struct type *shadow_type;
14f9c5c9 2035 long bits;
14f9c5c9 2036
727e3d2e
JB
2037 if (!raw_name)
2038 raw_name = ada_type_name (desc_base_type (type));
2039
2040 if (!raw_name)
2041 return NULL;
2042
2043 name = (char *) alloca (strlen (raw_name) + 1);
2044 tail = strstr (raw_name, "___XP");
4c4b4cd2
PH
2045 type = desc_base_type (type);
2046
14f9c5c9
AS
2047 memcpy (name, raw_name, tail - raw_name);
2048 name[tail - raw_name] = '\000';
2049
b4ba55a1
JB
2050 shadow_type = ada_find_parallel_type_with_name (type, name);
2051
2052 if (shadow_type == NULL)
14f9c5c9 2053 {
323e0a4a 2054 lim_warning (_("could not find bounds information on packed array"));
14f9c5c9
AS
2055 return NULL;
2056 }
cb249c71 2057 CHECK_TYPEDEF (shadow_type);
14f9c5c9
AS
2058
2059 if (TYPE_CODE (shadow_type) != TYPE_CODE_ARRAY)
2060 {
0963b4bd
MS
2061 lim_warning (_("could not understand bounds "
2062 "information on packed array"));
14f9c5c9
AS
2063 return NULL;
2064 }
d2e4a39e 2065
ad82864c
JB
2066 bits = decode_packed_array_bitsize (type);
2067 return constrained_packed_array_type (shadow_type, &bits);
14f9c5c9
AS
2068}
2069
ad82864c
JB
2070/* Given that ARR is a struct value *indicating a GNAT constrained packed
2071 array, returns a simple array that denotes that array. Its type is a
14f9c5c9
AS
2072 standard GDB array type except that the BITSIZEs of the array
2073 target types are set to the number of bits in each element, and the
4c4b4cd2 2074 type length is set appropriately. */
14f9c5c9 2075
d2e4a39e 2076static struct value *
ad82864c 2077decode_constrained_packed_array (struct value *arr)
14f9c5c9 2078{
4c4b4cd2 2079 struct type *type;
14f9c5c9 2080
4c4b4cd2 2081 arr = ada_coerce_ref (arr);
284614f0
JB
2082
2083 /* If our value is a pointer, then dererence it. Make sure that
2084 this operation does not cause the target type to be fixed, as
2085 this would indirectly cause this array to be decoded. The rest
2086 of the routine assumes that the array hasn't been decoded yet,
2087 so we use the basic "value_ind" routine to perform the dereferencing,
2088 as opposed to using "ada_value_ind". */
df407dfe 2089 if (TYPE_CODE (value_type (arr)) == TYPE_CODE_PTR)
284614f0 2090 arr = value_ind (arr);
4c4b4cd2 2091
ad82864c 2092 type = decode_constrained_packed_array_type (value_type (arr));
14f9c5c9
AS
2093 if (type == NULL)
2094 {
323e0a4a 2095 error (_("can't unpack array"));
14f9c5c9
AS
2096 return NULL;
2097 }
61ee279c 2098
50810684 2099 if (gdbarch_bits_big_endian (get_type_arch (value_type (arr)))
32c9a795 2100 && ada_is_modular_type (value_type (arr)))
61ee279c
PH
2101 {
2102 /* This is a (right-justified) modular type representing a packed
2103 array with no wrapper. In order to interpret the value through
2104 the (left-justified) packed array type we just built, we must
2105 first left-justify it. */
2106 int bit_size, bit_pos;
2107 ULONGEST mod;
2108
df407dfe 2109 mod = ada_modulus (value_type (arr)) - 1;
61ee279c
PH
2110 bit_size = 0;
2111 while (mod > 0)
2112 {
2113 bit_size += 1;
2114 mod >>= 1;
2115 }
df407dfe 2116 bit_pos = HOST_CHAR_BIT * TYPE_LENGTH (value_type (arr)) - bit_size;
61ee279c
PH
2117 arr = ada_value_primitive_packed_val (arr, NULL,
2118 bit_pos / HOST_CHAR_BIT,
2119 bit_pos % HOST_CHAR_BIT,
2120 bit_size,
2121 type);
2122 }
2123
4c4b4cd2 2124 return coerce_unspec_val_to_type (arr, type);
14f9c5c9
AS
2125}
2126
2127
2128/* The value of the element of packed array ARR at the ARITY indices
4c4b4cd2 2129 given in IND. ARR must be a simple array. */
14f9c5c9 2130
d2e4a39e
AS
2131static struct value *
2132value_subscript_packed (struct value *arr, int arity, struct value **ind)
14f9c5c9
AS
2133{
2134 int i;
2135 int bits, elt_off, bit_off;
2136 long elt_total_bit_offset;
d2e4a39e
AS
2137 struct type *elt_type;
2138 struct value *v;
14f9c5c9
AS
2139
2140 bits = 0;
2141 elt_total_bit_offset = 0;
df407dfe 2142 elt_type = ada_check_typedef (value_type (arr));
d2e4a39e 2143 for (i = 0; i < arity; i += 1)
14f9c5c9 2144 {
d2e4a39e 2145 if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY
4c4b4cd2
PH
2146 || TYPE_FIELD_BITSIZE (elt_type, 0) == 0)
2147 error
0963b4bd
MS
2148 (_("attempt to do packed indexing of "
2149 "something other than a packed array"));
14f9c5c9 2150 else
4c4b4cd2
PH
2151 {
2152 struct type *range_type = TYPE_INDEX_TYPE (elt_type);
2153 LONGEST lowerbound, upperbound;
2154 LONGEST idx;
2155
2156 if (get_discrete_bounds (range_type, &lowerbound, &upperbound) < 0)
2157 {
323e0a4a 2158 lim_warning (_("don't know bounds of array"));
4c4b4cd2
PH
2159 lowerbound = upperbound = 0;
2160 }
2161
3cb382c9 2162 idx = pos_atr (ind[i]);
4c4b4cd2 2163 if (idx < lowerbound || idx > upperbound)
0963b4bd
MS
2164 lim_warning (_("packed array index %ld out of bounds"),
2165 (long) idx);
4c4b4cd2
PH
2166 bits = TYPE_FIELD_BITSIZE (elt_type, 0);
2167 elt_total_bit_offset += (idx - lowerbound) * bits;
61ee279c 2168 elt_type = ada_check_typedef (TYPE_TARGET_TYPE (elt_type));
4c4b4cd2 2169 }
14f9c5c9
AS
2170 }
2171 elt_off = elt_total_bit_offset / HOST_CHAR_BIT;
2172 bit_off = elt_total_bit_offset % HOST_CHAR_BIT;
d2e4a39e
AS
2173
2174 v = ada_value_primitive_packed_val (arr, NULL, elt_off, bit_off,
4c4b4cd2 2175 bits, elt_type);
14f9c5c9
AS
2176 return v;
2177}
2178
4c4b4cd2 2179/* Non-zero iff TYPE includes negative integer values. */
14f9c5c9
AS
2180
2181static int
d2e4a39e 2182has_negatives (struct type *type)
14f9c5c9 2183{
d2e4a39e
AS
2184 switch (TYPE_CODE (type))
2185 {
2186 default:
2187 return 0;
2188 case TYPE_CODE_INT:
2189 return !TYPE_UNSIGNED (type);
2190 case TYPE_CODE_RANGE:
2191 return TYPE_LOW_BOUND (type) < 0;
2192 }
14f9c5c9 2193}
d2e4a39e 2194
14f9c5c9
AS
2195
2196/* Create a new value of type TYPE from the contents of OBJ starting
2197 at byte OFFSET, and bit offset BIT_OFFSET within that byte,
2198 proceeding for BIT_SIZE bits. If OBJ is an lval in memory, then
0963b4bd 2199 assigning through the result will set the field fetched from.
4c4b4cd2
PH
2200 VALADDR is ignored unless OBJ is NULL, in which case,
2201 VALADDR+OFFSET must address the start of storage containing the
2202 packed value. The value returned in this case is never an lval.
2203 Assumes 0 <= BIT_OFFSET < HOST_CHAR_BIT. */
14f9c5c9 2204
d2e4a39e 2205struct value *
fc1a4b47 2206ada_value_primitive_packed_val (struct value *obj, const gdb_byte *valaddr,
a2bd3dcd 2207 long offset, int bit_offset, int bit_size,
4c4b4cd2 2208 struct type *type)
14f9c5c9 2209{
d2e4a39e 2210 struct value *v;
4c4b4cd2
PH
2211 int src, /* Index into the source area */
2212 targ, /* Index into the target area */
2213 srcBitsLeft, /* Number of source bits left to move */
2214 nsrc, ntarg, /* Number of source and target bytes */
2215 unusedLS, /* Number of bits in next significant
2216 byte of source that are unused */
2217 accumSize; /* Number of meaningful bits in accum */
2218 unsigned char *bytes; /* First byte containing data to unpack */
d2e4a39e 2219 unsigned char *unpacked;
4c4b4cd2 2220 unsigned long accum; /* Staging area for bits being transferred */
14f9c5c9
AS
2221 unsigned char sign;
2222 int len = (bit_size + bit_offset + HOST_CHAR_BIT - 1) / 8;
4c4b4cd2
PH
2223 /* Transmit bytes from least to most significant; delta is the direction
2224 the indices move. */
50810684 2225 int delta = gdbarch_bits_big_endian (get_type_arch (type)) ? -1 : 1;
14f9c5c9 2226
61ee279c 2227 type = ada_check_typedef (type);
14f9c5c9
AS
2228
2229 if (obj == NULL)
2230 {
2231 v = allocate_value (type);
d2e4a39e 2232 bytes = (unsigned char *) (valaddr + offset);
14f9c5c9 2233 }
9214ee5f 2234 else if (VALUE_LVAL (obj) == lval_memory && value_lazy (obj))
14f9c5c9
AS
2235 {
2236 v = value_at (type,
42ae5230 2237 value_address (obj) + offset);
d2e4a39e 2238 bytes = (unsigned char *) alloca (len);
42ae5230 2239 read_memory (value_address (v), bytes, len);
14f9c5c9 2240 }
d2e4a39e 2241 else
14f9c5c9
AS
2242 {
2243 v = allocate_value (type);
0fd88904 2244 bytes = (unsigned char *) value_contents (obj) + offset;
14f9c5c9 2245 }
d2e4a39e
AS
2246
2247 if (obj != NULL)
14f9c5c9 2248 {
42ae5230 2249 CORE_ADDR new_addr;
5b4ee69b 2250
74bcbdf3 2251 set_value_component_location (v, obj);
42ae5230 2252 new_addr = value_address (obj) + offset;
9bbda503
AC
2253 set_value_bitpos (v, bit_offset + value_bitpos (obj));
2254 set_value_bitsize (v, bit_size);
df407dfe 2255 if (value_bitpos (v) >= HOST_CHAR_BIT)
4c4b4cd2 2256 {
42ae5230 2257 ++new_addr;
9bbda503 2258 set_value_bitpos (v, value_bitpos (v) - HOST_CHAR_BIT);
4c4b4cd2 2259 }
42ae5230 2260 set_value_address (v, new_addr);
14f9c5c9
AS
2261 }
2262 else
9bbda503 2263 set_value_bitsize (v, bit_size);
0fd88904 2264 unpacked = (unsigned char *) value_contents (v);
14f9c5c9
AS
2265
2266 srcBitsLeft = bit_size;
2267 nsrc = len;
2268 ntarg = TYPE_LENGTH (type);
2269 sign = 0;
2270 if (bit_size == 0)
2271 {
2272 memset (unpacked, 0, TYPE_LENGTH (type));
2273 return v;
2274 }
50810684 2275 else if (gdbarch_bits_big_endian (get_type_arch (type)))
14f9c5c9 2276 {
d2e4a39e 2277 src = len - 1;
1265e4aa
JB
2278 if (has_negatives (type)
2279 && ((bytes[0] << bit_offset) & (1 << (HOST_CHAR_BIT - 1))))
4c4b4cd2 2280 sign = ~0;
d2e4a39e
AS
2281
2282 unusedLS =
4c4b4cd2
PH
2283 (HOST_CHAR_BIT - (bit_size + bit_offset) % HOST_CHAR_BIT)
2284 % HOST_CHAR_BIT;
14f9c5c9
AS
2285
2286 switch (TYPE_CODE (type))
4c4b4cd2
PH
2287 {
2288 case TYPE_CODE_ARRAY:
2289 case TYPE_CODE_UNION:
2290 case TYPE_CODE_STRUCT:
2291 /* Non-scalar values must be aligned at a byte boundary... */
2292 accumSize =
2293 (HOST_CHAR_BIT - bit_size % HOST_CHAR_BIT) % HOST_CHAR_BIT;
2294 /* ... And are placed at the beginning (most-significant) bytes
2295 of the target. */
529cad9c 2296 targ = (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT - 1;
0056e4d5 2297 ntarg = targ + 1;
4c4b4cd2
PH
2298 break;
2299 default:
2300 accumSize = 0;
2301 targ = TYPE_LENGTH (type) - 1;
2302 break;
2303 }
14f9c5c9 2304 }
d2e4a39e 2305 else
14f9c5c9
AS
2306 {
2307 int sign_bit_offset = (bit_size + bit_offset - 1) % 8;
2308
2309 src = targ = 0;
2310 unusedLS = bit_offset;
2311 accumSize = 0;
2312
d2e4a39e 2313 if (has_negatives (type) && (bytes[len - 1] & (1 << sign_bit_offset)))
4c4b4cd2 2314 sign = ~0;
14f9c5c9 2315 }
d2e4a39e 2316
14f9c5c9
AS
2317 accum = 0;
2318 while (nsrc > 0)
2319 {
2320 /* Mask for removing bits of the next source byte that are not
4c4b4cd2 2321 part of the value. */
d2e4a39e 2322 unsigned int unusedMSMask =
4c4b4cd2
PH
2323 (1 << (srcBitsLeft >= HOST_CHAR_BIT ? HOST_CHAR_BIT : srcBitsLeft)) -
2324 1;
2325 /* Sign-extend bits for this byte. */
14f9c5c9 2326 unsigned int signMask = sign & ~unusedMSMask;
5b4ee69b 2327
d2e4a39e 2328 accum |=
4c4b4cd2 2329 (((bytes[src] >> unusedLS) & unusedMSMask) | signMask) << accumSize;
14f9c5c9 2330 accumSize += HOST_CHAR_BIT - unusedLS;
d2e4a39e 2331 if (accumSize >= HOST_CHAR_BIT)
4c4b4cd2
PH
2332 {
2333 unpacked[targ] = accum & ~(~0L << HOST_CHAR_BIT);
2334 accumSize -= HOST_CHAR_BIT;
2335 accum >>= HOST_CHAR_BIT;
2336 ntarg -= 1;
2337 targ += delta;
2338 }
14f9c5c9
AS
2339 srcBitsLeft -= HOST_CHAR_BIT - unusedLS;
2340 unusedLS = 0;
2341 nsrc -= 1;
2342 src += delta;
2343 }
2344 while (ntarg > 0)
2345 {
2346 accum |= sign << accumSize;
2347 unpacked[targ] = accum & ~(~0L << HOST_CHAR_BIT);
2348 accumSize -= HOST_CHAR_BIT;
2349 accum >>= HOST_CHAR_BIT;
2350 ntarg -= 1;
2351 targ += delta;
2352 }
2353
2354 return v;
2355}
d2e4a39e 2356
14f9c5c9
AS
2357/* Move N bits from SOURCE, starting at bit offset SRC_OFFSET to
2358 TARGET, starting at bit offset TARG_OFFSET. SOURCE and TARGET must
4c4b4cd2 2359 not overlap. */
14f9c5c9 2360static void
fc1a4b47 2361move_bits (gdb_byte *target, int targ_offset, const gdb_byte *source,
50810684 2362 int src_offset, int n, int bits_big_endian_p)
14f9c5c9
AS
2363{
2364 unsigned int accum, mask;
2365 int accum_bits, chunk_size;
2366
2367 target += targ_offset / HOST_CHAR_BIT;
2368 targ_offset %= HOST_CHAR_BIT;
2369 source += src_offset / HOST_CHAR_BIT;
2370 src_offset %= HOST_CHAR_BIT;
50810684 2371 if (bits_big_endian_p)
14f9c5c9
AS
2372 {
2373 accum = (unsigned char) *source;
2374 source += 1;
2375 accum_bits = HOST_CHAR_BIT - src_offset;
2376
d2e4a39e 2377 while (n > 0)
4c4b4cd2
PH
2378 {
2379 int unused_right;
5b4ee69b 2380
4c4b4cd2
PH
2381 accum = (accum << HOST_CHAR_BIT) + (unsigned char) *source;
2382 accum_bits += HOST_CHAR_BIT;
2383 source += 1;
2384 chunk_size = HOST_CHAR_BIT - targ_offset;
2385 if (chunk_size > n)
2386 chunk_size = n;
2387 unused_right = HOST_CHAR_BIT - (chunk_size + targ_offset);
2388 mask = ((1 << chunk_size) - 1) << unused_right;
2389 *target =
2390 (*target & ~mask)
2391 | ((accum >> (accum_bits - chunk_size - unused_right)) & mask);
2392 n -= chunk_size;
2393 accum_bits -= chunk_size;
2394 target += 1;
2395 targ_offset = 0;
2396 }
14f9c5c9
AS
2397 }
2398 else
2399 {
2400 accum = (unsigned char) *source >> src_offset;
2401 source += 1;
2402 accum_bits = HOST_CHAR_BIT - src_offset;
2403
d2e4a39e 2404 while (n > 0)
4c4b4cd2
PH
2405 {
2406 accum = accum + ((unsigned char) *source << accum_bits);
2407 accum_bits += HOST_CHAR_BIT;
2408 source += 1;
2409 chunk_size = HOST_CHAR_BIT - targ_offset;
2410 if (chunk_size > n)
2411 chunk_size = n;
2412 mask = ((1 << chunk_size) - 1) << targ_offset;
2413 *target = (*target & ~mask) | ((accum << targ_offset) & mask);
2414 n -= chunk_size;
2415 accum_bits -= chunk_size;
2416 accum >>= chunk_size;
2417 target += 1;
2418 targ_offset = 0;
2419 }
14f9c5c9
AS
2420 }
2421}
2422
14f9c5c9
AS
2423/* Store the contents of FROMVAL into the location of TOVAL.
2424 Return a new value with the location of TOVAL and contents of
2425 FROMVAL. Handles assignment into packed fields that have
4c4b4cd2 2426 floating-point or non-scalar types. */
14f9c5c9 2427
d2e4a39e
AS
2428static struct value *
2429ada_value_assign (struct value *toval, struct value *fromval)
14f9c5c9 2430{
df407dfe
AC
2431 struct type *type = value_type (toval);
2432 int bits = value_bitsize (toval);
14f9c5c9 2433
52ce6436
PH
2434 toval = ada_coerce_ref (toval);
2435 fromval = ada_coerce_ref (fromval);
2436
2437 if (ada_is_direct_array_type (value_type (toval)))
2438 toval = ada_coerce_to_simple_array (toval);
2439 if (ada_is_direct_array_type (value_type (fromval)))
2440 fromval = ada_coerce_to_simple_array (fromval);
2441
88e3b34b 2442 if (!deprecated_value_modifiable (toval))
323e0a4a 2443 error (_("Left operand of assignment is not a modifiable lvalue."));
14f9c5c9 2444
d2e4a39e 2445 if (VALUE_LVAL (toval) == lval_memory
14f9c5c9 2446 && bits > 0
d2e4a39e 2447 && (TYPE_CODE (type) == TYPE_CODE_FLT
4c4b4cd2 2448 || TYPE_CODE (type) == TYPE_CODE_STRUCT))
14f9c5c9 2449 {
df407dfe
AC
2450 int len = (value_bitpos (toval)
2451 + bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
aced2898 2452 int from_size;
d2e4a39e
AS
2453 char *buffer = (char *) alloca (len);
2454 struct value *val;
42ae5230 2455 CORE_ADDR to_addr = value_address (toval);
14f9c5c9
AS
2456
2457 if (TYPE_CODE (type) == TYPE_CODE_FLT)
4c4b4cd2 2458 fromval = value_cast (type, fromval);
14f9c5c9 2459
52ce6436 2460 read_memory (to_addr, buffer, len);
aced2898
PH
2461 from_size = value_bitsize (fromval);
2462 if (from_size == 0)
2463 from_size = TYPE_LENGTH (value_type (fromval)) * TARGET_CHAR_BIT;
50810684 2464 if (gdbarch_bits_big_endian (get_type_arch (type)))
df407dfe 2465 move_bits (buffer, value_bitpos (toval),
50810684 2466 value_contents (fromval), from_size - bits, bits, 1);
14f9c5c9 2467 else
50810684
UW
2468 move_bits (buffer, value_bitpos (toval),
2469 value_contents (fromval), 0, bits, 0);
52ce6436 2470 write_memory (to_addr, buffer, len);
8cebebb9
PP
2471 observer_notify_memory_changed (to_addr, len, buffer);
2472
14f9c5c9 2473 val = value_copy (toval);
0fd88904 2474 memcpy (value_contents_raw (val), value_contents (fromval),
4c4b4cd2 2475 TYPE_LENGTH (type));
04624583 2476 deprecated_set_value_type (val, type);
d2e4a39e 2477
14f9c5c9
AS
2478 return val;
2479 }
2480
2481 return value_assign (toval, fromval);
2482}
2483
2484
52ce6436
PH
2485/* Given that COMPONENT is a memory lvalue that is part of the lvalue
2486 * CONTAINER, assign the contents of VAL to COMPONENTS's place in
2487 * CONTAINER. Modifies the VALUE_CONTENTS of CONTAINER only, not
2488 * COMPONENT, and not the inferior's memory. The current contents
2489 * of COMPONENT are ignored. */
2490static void
2491value_assign_to_component (struct value *container, struct value *component,
2492 struct value *val)
2493{
2494 LONGEST offset_in_container =
42ae5230 2495 (LONGEST) (value_address (component) - value_address (container));
52ce6436
PH
2496 int bit_offset_in_container =
2497 value_bitpos (component) - value_bitpos (container);
2498 int bits;
2499
2500 val = value_cast (value_type (component), val);
2501
2502 if (value_bitsize (component) == 0)
2503 bits = TARGET_CHAR_BIT * TYPE_LENGTH (value_type (component));
2504 else
2505 bits = value_bitsize (component);
2506
50810684 2507 if (gdbarch_bits_big_endian (get_type_arch (value_type (container))))
52ce6436
PH
2508 move_bits (value_contents_writeable (container) + offset_in_container,
2509 value_bitpos (container) + bit_offset_in_container,
2510 value_contents (val),
2511 TYPE_LENGTH (value_type (component)) * TARGET_CHAR_BIT - bits,
50810684 2512 bits, 1);
52ce6436
PH
2513 else
2514 move_bits (value_contents_writeable (container) + offset_in_container,
2515 value_bitpos (container) + bit_offset_in_container,
50810684 2516 value_contents (val), 0, bits, 0);
52ce6436
PH
2517}
2518
4c4b4cd2
PH
2519/* The value of the element of array ARR at the ARITY indices given in IND.
2520 ARR may be either a simple array, GNAT array descriptor, or pointer
14f9c5c9
AS
2521 thereto. */
2522
d2e4a39e
AS
2523struct value *
2524ada_value_subscript (struct value *arr, int arity, struct value **ind)
14f9c5c9
AS
2525{
2526 int k;
d2e4a39e
AS
2527 struct value *elt;
2528 struct type *elt_type;
14f9c5c9
AS
2529
2530 elt = ada_coerce_to_simple_array (arr);
2531
df407dfe 2532 elt_type = ada_check_typedef (value_type (elt));
d2e4a39e 2533 if (TYPE_CODE (elt_type) == TYPE_CODE_ARRAY
14f9c5c9
AS
2534 && TYPE_FIELD_BITSIZE (elt_type, 0) > 0)
2535 return value_subscript_packed (elt, arity, ind);
2536
2537 for (k = 0; k < arity; k += 1)
2538 {
2539 if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY)
323e0a4a 2540 error (_("too many subscripts (%d expected)"), k);
2497b498 2541 elt = value_subscript (elt, pos_atr (ind[k]));
14f9c5c9
AS
2542 }
2543 return elt;
2544}
2545
2546/* Assuming ARR is a pointer to a standard GDB array of type TYPE, the
2547 value of the element of *ARR at the ARITY indices given in
4c4b4cd2 2548 IND. Does not read the entire array into memory. */
14f9c5c9 2549
2c0b251b 2550static struct value *
d2e4a39e 2551ada_value_ptr_subscript (struct value *arr, struct type *type, int arity,
4c4b4cd2 2552 struct value **ind)
14f9c5c9
AS
2553{
2554 int k;
2555
2556 for (k = 0; k < arity; k += 1)
2557 {
2558 LONGEST lwb, upb;
14f9c5c9
AS
2559
2560 if (TYPE_CODE (type) != TYPE_CODE_ARRAY)
323e0a4a 2561 error (_("too many subscripts (%d expected)"), k);
d2e4a39e 2562 arr = value_cast (lookup_pointer_type (TYPE_TARGET_TYPE (type)),
4c4b4cd2 2563 value_copy (arr));
14f9c5c9 2564 get_discrete_bounds (TYPE_INDEX_TYPE (type), &lwb, &upb);
2497b498 2565 arr = value_ptradd (arr, pos_atr (ind[k]) - lwb);
14f9c5c9
AS
2566 type = TYPE_TARGET_TYPE (type);
2567 }
2568
2569 return value_ind (arr);
2570}
2571
0b5d8877 2572/* Given that ARRAY_PTR is a pointer or reference to an array of type TYPE (the
f5938064
JG
2573 actual type of ARRAY_PTR is ignored), returns the Ada slice of HIGH-LOW+1
2574 elements starting at index LOW. The lower bound of this array is LOW, as
0963b4bd 2575 per Ada rules. */
0b5d8877 2576static struct value *
f5938064
JG
2577ada_value_slice_from_ptr (struct value *array_ptr, struct type *type,
2578 int low, int high)
0b5d8877 2579{
6c038f32 2580 CORE_ADDR base = value_as_address (array_ptr)
43bbcdc2 2581 + ((low - ada_discrete_type_low_bound (TYPE_INDEX_TYPE (type)))
0b5d8877 2582 * TYPE_LENGTH (TYPE_TARGET_TYPE (type)));
6c038f32
PH
2583 struct type *index_type =
2584 create_range_type (NULL, TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type)),
0b5d8877 2585 low, high);
6c038f32 2586 struct type *slice_type =
0b5d8877 2587 create_array_type (NULL, TYPE_TARGET_TYPE (type), index_type);
5b4ee69b 2588
f5938064 2589 return value_at_lazy (slice_type, base);
0b5d8877
PH
2590}
2591
2592
2593static struct value *
2594ada_value_slice (struct value *array, int low, int high)
2595{
df407dfe 2596 struct type *type = value_type (array);
6c038f32 2597 struct type *index_type =
0b5d8877 2598 create_range_type (NULL, TYPE_INDEX_TYPE (type), low, high);
6c038f32 2599 struct type *slice_type =
0b5d8877 2600 create_array_type (NULL, TYPE_TARGET_TYPE (type), index_type);
5b4ee69b 2601
6c038f32 2602 return value_cast (slice_type, value_slice (array, low, high - low + 1));
0b5d8877
PH
2603}
2604
14f9c5c9
AS
2605/* If type is a record type in the form of a standard GNAT array
2606 descriptor, returns the number of dimensions for type. If arr is a
2607 simple array, returns the number of "array of"s that prefix its
4c4b4cd2 2608 type designation. Otherwise, returns 0. */
14f9c5c9
AS
2609
2610int
d2e4a39e 2611ada_array_arity (struct type *type)
14f9c5c9
AS
2612{
2613 int arity;
2614
2615 if (type == NULL)
2616 return 0;
2617
2618 type = desc_base_type (type);
2619
2620 arity = 0;
d2e4a39e 2621 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
14f9c5c9 2622 return desc_arity (desc_bounds_type (type));
d2e4a39e
AS
2623 else
2624 while (TYPE_CODE (type) == TYPE_CODE_ARRAY)
14f9c5c9 2625 {
4c4b4cd2 2626 arity += 1;
61ee279c 2627 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
14f9c5c9 2628 }
d2e4a39e 2629
14f9c5c9
AS
2630 return arity;
2631}
2632
2633/* If TYPE is a record type in the form of a standard GNAT array
2634 descriptor or a simple array type, returns the element type for
2635 TYPE after indexing by NINDICES indices, or by all indices if
4c4b4cd2 2636 NINDICES is -1. Otherwise, returns NULL. */
14f9c5c9 2637
d2e4a39e
AS
2638struct type *
2639ada_array_element_type (struct type *type, int nindices)
14f9c5c9
AS
2640{
2641 type = desc_base_type (type);
2642
d2e4a39e 2643 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
14f9c5c9
AS
2644 {
2645 int k;
d2e4a39e 2646 struct type *p_array_type;
14f9c5c9 2647
556bdfd4 2648 p_array_type = desc_data_target_type (type);
14f9c5c9
AS
2649
2650 k = ada_array_arity (type);
2651 if (k == 0)
4c4b4cd2 2652 return NULL;
d2e4a39e 2653
4c4b4cd2 2654 /* Initially p_array_type = elt_type(*)[]...(k times)...[]. */
14f9c5c9 2655 if (nindices >= 0 && k > nindices)
4c4b4cd2 2656 k = nindices;
d2e4a39e 2657 while (k > 0 && p_array_type != NULL)
4c4b4cd2 2658 {
61ee279c 2659 p_array_type = ada_check_typedef (TYPE_TARGET_TYPE (p_array_type));
4c4b4cd2
PH
2660 k -= 1;
2661 }
14f9c5c9
AS
2662 return p_array_type;
2663 }
2664 else if (TYPE_CODE (type) == TYPE_CODE_ARRAY)
2665 {
2666 while (nindices != 0 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
4c4b4cd2
PH
2667 {
2668 type = TYPE_TARGET_TYPE (type);
2669 nindices -= 1;
2670 }
14f9c5c9
AS
2671 return type;
2672 }
2673
2674 return NULL;
2675}
2676
4c4b4cd2 2677/* The type of nth index in arrays of given type (n numbering from 1).
dd19d49e
UW
2678 Does not examine memory. Throws an error if N is invalid or TYPE
2679 is not an array type. NAME is the name of the Ada attribute being
2680 evaluated ('range, 'first, 'last, or 'length); it is used in building
2681 the error message. */
14f9c5c9 2682
1eea4ebd
UW
2683static struct type *
2684ada_index_type (struct type *type, int n, const char *name)
14f9c5c9 2685{
4c4b4cd2
PH
2686 struct type *result_type;
2687
14f9c5c9
AS
2688 type = desc_base_type (type);
2689
1eea4ebd
UW
2690 if (n < 0 || n > ada_array_arity (type))
2691 error (_("invalid dimension number to '%s"), name);
14f9c5c9 2692
4c4b4cd2 2693 if (ada_is_simple_array_type (type))
14f9c5c9
AS
2694 {
2695 int i;
2696
2697 for (i = 1; i < n; i += 1)
4c4b4cd2 2698 type = TYPE_TARGET_TYPE (type);
262452ec 2699 result_type = TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type));
4c4b4cd2
PH
2700 /* FIXME: The stabs type r(0,0);bound;bound in an array type
2701 has a target type of TYPE_CODE_UNDEF. We compensate here, but
76a01679 2702 perhaps stabsread.c would make more sense. */
1eea4ebd
UW
2703 if (result_type && TYPE_CODE (result_type) == TYPE_CODE_UNDEF)
2704 result_type = NULL;
14f9c5c9 2705 }
d2e4a39e 2706 else
1eea4ebd
UW
2707 {
2708 result_type = desc_index_type (desc_bounds_type (type), n);
2709 if (result_type == NULL)
2710 error (_("attempt to take bound of something that is not an array"));
2711 }
2712
2713 return result_type;
14f9c5c9
AS
2714}
2715
2716/* Given that arr is an array type, returns the lower bound of the
2717 Nth index (numbering from 1) if WHICH is 0, and the upper bound if
4c4b4cd2 2718 WHICH is 1. This returns bounds 0 .. -1 if ARR_TYPE is an
1eea4ebd
UW
2719 array-descriptor type. It works for other arrays with bounds supplied
2720 by run-time quantities other than discriminants. */
14f9c5c9 2721
abb68b3e 2722static LONGEST
1eea4ebd 2723ada_array_bound_from_type (struct type * arr_type, int n, int which)
14f9c5c9 2724{
1ce677a4 2725 struct type *type, *elt_type, *index_type_desc, *index_type;
1ce677a4 2726 int i;
262452ec
JK
2727
2728 gdb_assert (which == 0 || which == 1);
14f9c5c9 2729
ad82864c
JB
2730 if (ada_is_constrained_packed_array_type (arr_type))
2731 arr_type = decode_constrained_packed_array_type (arr_type);
14f9c5c9 2732
4c4b4cd2 2733 if (arr_type == NULL || !ada_is_simple_array_type (arr_type))
1eea4ebd 2734 return (LONGEST) - which;
14f9c5c9
AS
2735
2736 if (TYPE_CODE (arr_type) == TYPE_CODE_PTR)
2737 type = TYPE_TARGET_TYPE (arr_type);
2738 else
2739 type = arr_type;
2740
1ce677a4
UW
2741 elt_type = type;
2742 for (i = n; i > 1; i--)
2743 elt_type = TYPE_TARGET_TYPE (type);
2744
14f9c5c9 2745 index_type_desc = ada_find_parallel_type (type, "___XA");
28c85d6c 2746 ada_fixup_array_indexes_type (index_type_desc);
262452ec 2747 if (index_type_desc != NULL)
28c85d6c
JB
2748 index_type = to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, n - 1),
2749 NULL);
262452ec 2750 else
1ce677a4 2751 index_type = TYPE_INDEX_TYPE (elt_type);
262452ec 2752
43bbcdc2
PH
2753 return
2754 (LONGEST) (which == 0
2755 ? ada_discrete_type_low_bound (index_type)
2756 : ada_discrete_type_high_bound (index_type));
14f9c5c9
AS
2757}
2758
2759/* Given that arr is an array value, returns the lower bound of the
abb68b3e
JB
2760 nth index (numbering from 1) if WHICH is 0, and the upper bound if
2761 WHICH is 1. This routine will also work for arrays with bounds
4c4b4cd2 2762 supplied by run-time quantities other than discriminants. */
14f9c5c9 2763
1eea4ebd 2764static LONGEST
4dc81987 2765ada_array_bound (struct value *arr, int n, int which)
14f9c5c9 2766{
df407dfe 2767 struct type *arr_type = value_type (arr);
14f9c5c9 2768
ad82864c
JB
2769 if (ada_is_constrained_packed_array_type (arr_type))
2770 return ada_array_bound (decode_constrained_packed_array (arr), n, which);
4c4b4cd2 2771 else if (ada_is_simple_array_type (arr_type))
1eea4ebd 2772 return ada_array_bound_from_type (arr_type, n, which);
14f9c5c9 2773 else
1eea4ebd 2774 return value_as_long (desc_one_bound (desc_bounds (arr), n, which));
14f9c5c9
AS
2775}
2776
2777/* Given that arr is an array value, returns the length of the
2778 nth index. This routine will also work for arrays with bounds
4c4b4cd2
PH
2779 supplied by run-time quantities other than discriminants.
2780 Does not work for arrays indexed by enumeration types with representation
2781 clauses at the moment. */
14f9c5c9 2782
1eea4ebd 2783static LONGEST
d2e4a39e 2784ada_array_length (struct value *arr, int n)
14f9c5c9 2785{
df407dfe 2786 struct type *arr_type = ada_check_typedef (value_type (arr));
14f9c5c9 2787
ad82864c
JB
2788 if (ada_is_constrained_packed_array_type (arr_type))
2789 return ada_array_length (decode_constrained_packed_array (arr), n);
14f9c5c9 2790
4c4b4cd2 2791 if (ada_is_simple_array_type (arr_type))
1eea4ebd
UW
2792 return (ada_array_bound_from_type (arr_type, n, 1)
2793 - ada_array_bound_from_type (arr_type, n, 0) + 1);
14f9c5c9 2794 else
1eea4ebd
UW
2795 return (value_as_long (desc_one_bound (desc_bounds (arr), n, 1))
2796 - value_as_long (desc_one_bound (desc_bounds (arr), n, 0)) + 1);
4c4b4cd2
PH
2797}
2798
2799/* An empty array whose type is that of ARR_TYPE (an array type),
2800 with bounds LOW to LOW-1. */
2801
2802static struct value *
2803empty_array (struct type *arr_type, int low)
2804{
6c038f32 2805 struct type *index_type =
0b5d8877
PH
2806 create_range_type (NULL, TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (arr_type)),
2807 low, low - 1);
2808 struct type *elt_type = ada_array_element_type (arr_type, 1);
5b4ee69b 2809
0b5d8877 2810 return allocate_value (create_array_type (NULL, elt_type, index_type));
14f9c5c9 2811}
14f9c5c9 2812\f
d2e4a39e 2813
4c4b4cd2 2814 /* Name resolution */
14f9c5c9 2815
4c4b4cd2
PH
2816/* The "decoded" name for the user-definable Ada operator corresponding
2817 to OP. */
14f9c5c9 2818
d2e4a39e 2819static const char *
4c4b4cd2 2820ada_decoded_op_name (enum exp_opcode op)
14f9c5c9
AS
2821{
2822 int i;
2823
4c4b4cd2 2824 for (i = 0; ada_opname_table[i].encoded != NULL; i += 1)
14f9c5c9
AS
2825 {
2826 if (ada_opname_table[i].op == op)
4c4b4cd2 2827 return ada_opname_table[i].decoded;
14f9c5c9 2828 }
323e0a4a 2829 error (_("Could not find operator name for opcode"));
14f9c5c9
AS
2830}
2831
2832
4c4b4cd2
PH
2833/* Same as evaluate_type (*EXP), but resolves ambiguous symbol
2834 references (marked by OP_VAR_VALUE nodes in which the symbol has an
2835 undefined namespace) and converts operators that are
2836 user-defined into appropriate function calls. If CONTEXT_TYPE is
14f9c5c9
AS
2837 non-null, it provides a preferred result type [at the moment, only
2838 type void has any effect---causing procedures to be preferred over
2839 functions in calls]. A null CONTEXT_TYPE indicates that a non-void
4c4b4cd2 2840 return type is preferred. May change (expand) *EXP. */
14f9c5c9 2841
4c4b4cd2
PH
2842static void
2843resolve (struct expression **expp, int void_context_p)
14f9c5c9 2844{
30b15541
UW
2845 struct type *context_type = NULL;
2846 int pc = 0;
2847
2848 if (void_context_p)
2849 context_type = builtin_type ((*expp)->gdbarch)->builtin_void;
2850
2851 resolve_subexp (expp, &pc, 1, context_type);
14f9c5c9
AS
2852}
2853
4c4b4cd2
PH
2854/* Resolve the operator of the subexpression beginning at
2855 position *POS of *EXPP. "Resolving" consists of replacing
2856 the symbols that have undefined namespaces in OP_VAR_VALUE nodes
2857 with their resolutions, replacing built-in operators with
2858 function calls to user-defined operators, where appropriate, and,
2859 when DEPROCEDURE_P is non-zero, converting function-valued variables
2860 into parameterless calls. May expand *EXPP. The CONTEXT_TYPE functions
2861 are as in ada_resolve, above. */
14f9c5c9 2862
d2e4a39e 2863static struct value *
4c4b4cd2 2864resolve_subexp (struct expression **expp, int *pos, int deprocedure_p,
76a01679 2865 struct type *context_type)
14f9c5c9
AS
2866{
2867 int pc = *pos;
2868 int i;
4c4b4cd2 2869 struct expression *exp; /* Convenience: == *expp. */
14f9c5c9 2870 enum exp_opcode op = (*expp)->elts[pc].opcode;
4c4b4cd2
PH
2871 struct value **argvec; /* Vector of operand types (alloca'ed). */
2872 int nargs; /* Number of operands. */
52ce6436 2873 int oplen;
14f9c5c9
AS
2874
2875 argvec = NULL;
2876 nargs = 0;
2877 exp = *expp;
2878
52ce6436
PH
2879 /* Pass one: resolve operands, saving their types and updating *pos,
2880 if needed. */
14f9c5c9
AS
2881 switch (op)
2882 {
4c4b4cd2
PH
2883 case OP_FUNCALL:
2884 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
76a01679
JB
2885 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
2886 *pos += 7;
4c4b4cd2
PH
2887 else
2888 {
2889 *pos += 3;
2890 resolve_subexp (expp, pos, 0, NULL);
2891 }
2892 nargs = longest_to_int (exp->elts[pc + 1].longconst);
14f9c5c9
AS
2893 break;
2894
14f9c5c9 2895 case UNOP_ADDR:
4c4b4cd2
PH
2896 *pos += 1;
2897 resolve_subexp (expp, pos, 0, NULL);
2898 break;
2899
52ce6436
PH
2900 case UNOP_QUAL:
2901 *pos += 3;
17466c1a 2902 resolve_subexp (expp, pos, 1, check_typedef (exp->elts[pc + 1].type));
4c4b4cd2
PH
2903 break;
2904
52ce6436 2905 case OP_ATR_MODULUS:
4c4b4cd2
PH
2906 case OP_ATR_SIZE:
2907 case OP_ATR_TAG:
4c4b4cd2
PH
2908 case OP_ATR_FIRST:
2909 case OP_ATR_LAST:
2910 case OP_ATR_LENGTH:
2911 case OP_ATR_POS:
2912 case OP_ATR_VAL:
4c4b4cd2
PH
2913 case OP_ATR_MIN:
2914 case OP_ATR_MAX:
52ce6436
PH
2915 case TERNOP_IN_RANGE:
2916 case BINOP_IN_BOUNDS:
2917 case UNOP_IN_RANGE:
2918 case OP_AGGREGATE:
2919 case OP_OTHERS:
2920 case OP_CHOICES:
2921 case OP_POSITIONAL:
2922 case OP_DISCRETE_RANGE:
2923 case OP_NAME:
2924 ada_forward_operator_length (exp, pc, &oplen, &nargs);
2925 *pos += oplen;
14f9c5c9
AS
2926 break;
2927
2928 case BINOP_ASSIGN:
2929 {
4c4b4cd2
PH
2930 struct value *arg1;
2931
2932 *pos += 1;
2933 arg1 = resolve_subexp (expp, pos, 0, NULL);
2934 if (arg1 == NULL)
2935 resolve_subexp (expp, pos, 1, NULL);
2936 else
df407dfe 2937 resolve_subexp (expp, pos, 1, value_type (arg1));
4c4b4cd2 2938 break;
14f9c5c9
AS
2939 }
2940
4c4b4cd2 2941 case UNOP_CAST:
4c4b4cd2
PH
2942 *pos += 3;
2943 nargs = 1;
2944 break;
14f9c5c9 2945
4c4b4cd2
PH
2946 case BINOP_ADD:
2947 case BINOP_SUB:
2948 case BINOP_MUL:
2949 case BINOP_DIV:
2950 case BINOP_REM:
2951 case BINOP_MOD:
2952 case BINOP_EXP:
2953 case BINOP_CONCAT:
2954 case BINOP_LOGICAL_AND:
2955 case BINOP_LOGICAL_OR:
2956 case BINOP_BITWISE_AND:
2957 case BINOP_BITWISE_IOR:
2958 case BINOP_BITWISE_XOR:
14f9c5c9 2959
4c4b4cd2
PH
2960 case BINOP_EQUAL:
2961 case BINOP_NOTEQUAL:
2962 case BINOP_LESS:
2963 case BINOP_GTR:
2964 case BINOP_LEQ:
2965 case BINOP_GEQ:
14f9c5c9 2966
4c4b4cd2
PH
2967 case BINOP_REPEAT:
2968 case BINOP_SUBSCRIPT:
2969 case BINOP_COMMA:
40c8aaa9
JB
2970 *pos += 1;
2971 nargs = 2;
2972 break;
14f9c5c9 2973
4c4b4cd2
PH
2974 case UNOP_NEG:
2975 case UNOP_PLUS:
2976 case UNOP_LOGICAL_NOT:
2977 case UNOP_ABS:
2978 case UNOP_IND:
2979 *pos += 1;
2980 nargs = 1;
2981 break;
14f9c5c9 2982
4c4b4cd2
PH
2983 case OP_LONG:
2984 case OP_DOUBLE:
2985 case OP_VAR_VALUE:
2986 *pos += 4;
2987 break;
14f9c5c9 2988
4c4b4cd2
PH
2989 case OP_TYPE:
2990 case OP_BOOL:
2991 case OP_LAST:
4c4b4cd2
PH
2992 case OP_INTERNALVAR:
2993 *pos += 3;
2994 break;
14f9c5c9 2995
4c4b4cd2
PH
2996 case UNOP_MEMVAL:
2997 *pos += 3;
2998 nargs = 1;
2999 break;
3000
67f3407f
DJ
3001 case OP_REGISTER:
3002 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
3003 break;
3004
4c4b4cd2
PH
3005 case STRUCTOP_STRUCT:
3006 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
3007 nargs = 1;
3008 break;
3009
4c4b4cd2 3010 case TERNOP_SLICE:
4c4b4cd2
PH
3011 *pos += 1;
3012 nargs = 3;
3013 break;
3014
52ce6436 3015 case OP_STRING:
14f9c5c9 3016 break;
4c4b4cd2
PH
3017
3018 default:
323e0a4a 3019 error (_("Unexpected operator during name resolution"));
14f9c5c9
AS
3020 }
3021
76a01679 3022 argvec = (struct value * *) alloca (sizeof (struct value *) * (nargs + 1));
4c4b4cd2
PH
3023 for (i = 0; i < nargs; i += 1)
3024 argvec[i] = resolve_subexp (expp, pos, 1, NULL);
3025 argvec[i] = NULL;
3026 exp = *expp;
3027
3028 /* Pass two: perform any resolution on principal operator. */
14f9c5c9
AS
3029 switch (op)
3030 {
3031 default:
3032 break;
3033
14f9c5c9 3034 case OP_VAR_VALUE:
4c4b4cd2 3035 if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
76a01679
JB
3036 {
3037 struct ada_symbol_info *candidates;
3038 int n_candidates;
3039
3040 n_candidates =
3041 ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME
3042 (exp->elts[pc + 2].symbol),
3043 exp->elts[pc + 1].block, VAR_DOMAIN,
3044 &candidates);
3045
3046 if (n_candidates > 1)
3047 {
3048 /* Types tend to get re-introduced locally, so if there
3049 are any local symbols that are not types, first filter
3050 out all types. */
3051 int j;
3052 for (j = 0; j < n_candidates; j += 1)
3053 switch (SYMBOL_CLASS (candidates[j].sym))
3054 {
3055 case LOC_REGISTER:
3056 case LOC_ARG:
3057 case LOC_REF_ARG:
76a01679
JB
3058 case LOC_REGPARM_ADDR:
3059 case LOC_LOCAL:
76a01679 3060 case LOC_COMPUTED:
76a01679
JB
3061 goto FoundNonType;
3062 default:
3063 break;
3064 }
3065 FoundNonType:
3066 if (j < n_candidates)
3067 {
3068 j = 0;
3069 while (j < n_candidates)
3070 {
3071 if (SYMBOL_CLASS (candidates[j].sym) == LOC_TYPEDEF)
3072 {
3073 candidates[j] = candidates[n_candidates - 1];
3074 n_candidates -= 1;
3075 }
3076 else
3077 j += 1;
3078 }
3079 }
3080 }
3081
3082 if (n_candidates == 0)
323e0a4a 3083 error (_("No definition found for %s"),
76a01679
JB
3084 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
3085 else if (n_candidates == 1)
3086 i = 0;
3087 else if (deprocedure_p
3088 && !is_nonfunction (candidates, n_candidates))
3089 {
06d5cf63
JB
3090 i = ada_resolve_function
3091 (candidates, n_candidates, NULL, 0,
3092 SYMBOL_LINKAGE_NAME (exp->elts[pc + 2].symbol),
3093 context_type);
76a01679 3094 if (i < 0)
323e0a4a 3095 error (_("Could not find a match for %s"),
76a01679
JB
3096 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
3097 }
3098 else
3099 {
323e0a4a 3100 printf_filtered (_("Multiple matches for %s\n"),
76a01679
JB
3101 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
3102 user_select_syms (candidates, n_candidates, 1);
3103 i = 0;
3104 }
3105
3106 exp->elts[pc + 1].block = candidates[i].block;
3107 exp->elts[pc + 2].symbol = candidates[i].sym;
1265e4aa
JB
3108 if (innermost_block == NULL
3109 || contained_in (candidates[i].block, innermost_block))
76a01679
JB
3110 innermost_block = candidates[i].block;
3111 }
3112
3113 if (deprocedure_p
3114 && (TYPE_CODE (SYMBOL_TYPE (exp->elts[pc + 2].symbol))
3115 == TYPE_CODE_FUNC))
3116 {
3117 replace_operator_with_call (expp, pc, 0, 0,
3118 exp->elts[pc + 2].symbol,
3119 exp->elts[pc + 1].block);
3120 exp = *expp;
3121 }
14f9c5c9
AS
3122 break;
3123
3124 case OP_FUNCALL:
3125 {
4c4b4cd2 3126 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
76a01679 3127 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
4c4b4cd2
PH
3128 {
3129 struct ada_symbol_info *candidates;
3130 int n_candidates;
3131
3132 n_candidates =
76a01679
JB
3133 ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME
3134 (exp->elts[pc + 5].symbol),
3135 exp->elts[pc + 4].block, VAR_DOMAIN,
3136 &candidates);
4c4b4cd2
PH
3137 if (n_candidates == 1)
3138 i = 0;
3139 else
3140 {
06d5cf63
JB
3141 i = ada_resolve_function
3142 (candidates, n_candidates,
3143 argvec, nargs,
3144 SYMBOL_LINKAGE_NAME (exp->elts[pc + 5].symbol),
3145 context_type);
4c4b4cd2 3146 if (i < 0)
323e0a4a 3147 error (_("Could not find a match for %s"),
4c4b4cd2
PH
3148 SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol));
3149 }
3150
3151 exp->elts[pc + 4].block = candidates[i].block;
3152 exp->elts[pc + 5].symbol = candidates[i].sym;
1265e4aa
JB
3153 if (innermost_block == NULL
3154 || contained_in (candidates[i].block, innermost_block))
4c4b4cd2
PH
3155 innermost_block = candidates[i].block;
3156 }
14f9c5c9
AS
3157 }
3158 break;
3159 case BINOP_ADD:
3160 case BINOP_SUB:
3161 case BINOP_MUL:
3162 case BINOP_DIV:
3163 case BINOP_REM:
3164 case BINOP_MOD:
3165 case BINOP_CONCAT:
3166 case BINOP_BITWISE_AND:
3167 case BINOP_BITWISE_IOR:
3168 case BINOP_BITWISE_XOR:
3169 case BINOP_EQUAL:
3170 case BINOP_NOTEQUAL:
3171 case BINOP_LESS:
3172 case BINOP_GTR:
3173 case BINOP_LEQ:
3174 case BINOP_GEQ:
3175 case BINOP_EXP:
3176 case UNOP_NEG:
3177 case UNOP_PLUS:
3178 case UNOP_LOGICAL_NOT:
3179 case UNOP_ABS:
3180 if (possible_user_operator_p (op, argvec))
4c4b4cd2
PH
3181 {
3182 struct ada_symbol_info *candidates;
3183 int n_candidates;
3184
3185 n_candidates =
3186 ada_lookup_symbol_list (ada_encode (ada_decoded_op_name (op)),
3187 (struct block *) NULL, VAR_DOMAIN,
3188 &candidates);
3189 i = ada_resolve_function (candidates, n_candidates, argvec, nargs,
76a01679 3190 ada_decoded_op_name (op), NULL);
4c4b4cd2
PH
3191 if (i < 0)
3192 break;
3193
76a01679
JB
3194 replace_operator_with_call (expp, pc, nargs, 1,
3195 candidates[i].sym, candidates[i].block);
4c4b4cd2
PH
3196 exp = *expp;
3197 }
14f9c5c9 3198 break;
4c4b4cd2
PH
3199
3200 case OP_TYPE:
b3dbf008 3201 case OP_REGISTER:
4c4b4cd2 3202 return NULL;
14f9c5c9
AS
3203 }
3204
3205 *pos = pc;
3206 return evaluate_subexp_type (exp, pos);
3207}
3208
3209/* Return non-zero if formal type FTYPE matches actual type ATYPE. If
4c4b4cd2 3210 MAY_DEREF is non-zero, the formal may be a pointer and the actual
5b3d5b7d 3211 a non-pointer. */
14f9c5c9 3212/* The term "match" here is rather loose. The match is heuristic and
5b3d5b7d 3213 liberal. */
14f9c5c9
AS
3214
3215static int
4dc81987 3216ada_type_match (struct type *ftype, struct type *atype, int may_deref)
14f9c5c9 3217{
61ee279c
PH
3218 ftype = ada_check_typedef (ftype);
3219 atype = ada_check_typedef (atype);
14f9c5c9
AS
3220
3221 if (TYPE_CODE (ftype) == TYPE_CODE_REF)
3222 ftype = TYPE_TARGET_TYPE (ftype);
3223 if (TYPE_CODE (atype) == TYPE_CODE_REF)
3224 atype = TYPE_TARGET_TYPE (atype);
3225
d2e4a39e 3226 switch (TYPE_CODE (ftype))
14f9c5c9
AS
3227 {
3228 default:
5b3d5b7d 3229 return TYPE_CODE (ftype) == TYPE_CODE (atype);
14f9c5c9
AS
3230 case TYPE_CODE_PTR:
3231 if (TYPE_CODE (atype) == TYPE_CODE_PTR)
4c4b4cd2
PH
3232 return ada_type_match (TYPE_TARGET_TYPE (ftype),
3233 TYPE_TARGET_TYPE (atype), 0);
d2e4a39e 3234 else
1265e4aa
JB
3235 return (may_deref
3236 && ada_type_match (TYPE_TARGET_TYPE (ftype), atype, 0));
14f9c5c9
AS
3237 case TYPE_CODE_INT:
3238 case TYPE_CODE_ENUM:
3239 case TYPE_CODE_RANGE:
3240 switch (TYPE_CODE (atype))
4c4b4cd2
PH
3241 {
3242 case TYPE_CODE_INT:
3243 case TYPE_CODE_ENUM:
3244 case TYPE_CODE_RANGE:
3245 return 1;
3246 default:
3247 return 0;
3248 }
14f9c5c9
AS
3249
3250 case TYPE_CODE_ARRAY:
d2e4a39e 3251 return (TYPE_CODE (atype) == TYPE_CODE_ARRAY
4c4b4cd2 3252 || ada_is_array_descriptor_type (atype));
14f9c5c9
AS
3253
3254 case TYPE_CODE_STRUCT:
4c4b4cd2
PH
3255 if (ada_is_array_descriptor_type (ftype))
3256 return (TYPE_CODE (atype) == TYPE_CODE_ARRAY
3257 || ada_is_array_descriptor_type (atype));
14f9c5c9 3258 else
4c4b4cd2
PH
3259 return (TYPE_CODE (atype) == TYPE_CODE_STRUCT
3260 && !ada_is_array_descriptor_type (atype));
14f9c5c9
AS
3261
3262 case TYPE_CODE_UNION:
3263 case TYPE_CODE_FLT:
3264 return (TYPE_CODE (atype) == TYPE_CODE (ftype));
3265 }
3266}
3267
3268/* Return non-zero if the formals of FUNC "sufficiently match" the
3269 vector of actual argument types ACTUALS of size N_ACTUALS. FUNC
3270 may also be an enumeral, in which case it is treated as a 0-
4c4b4cd2 3271 argument function. */
14f9c5c9
AS
3272
3273static int
d2e4a39e 3274ada_args_match (struct symbol *func, struct value **actuals, int n_actuals)
14f9c5c9
AS
3275{
3276 int i;
d2e4a39e 3277 struct type *func_type = SYMBOL_TYPE (func);
14f9c5c9 3278
1265e4aa
JB
3279 if (SYMBOL_CLASS (func) == LOC_CONST
3280 && TYPE_CODE (func_type) == TYPE_CODE_ENUM)
14f9c5c9
AS
3281 return (n_actuals == 0);
3282 else if (func_type == NULL || TYPE_CODE (func_type) != TYPE_CODE_FUNC)
3283 return 0;
3284
3285 if (TYPE_NFIELDS (func_type) != n_actuals)
3286 return 0;
3287
3288 for (i = 0; i < n_actuals; i += 1)
3289 {
4c4b4cd2 3290 if (actuals[i] == NULL)
76a01679
JB
3291 return 0;
3292 else
3293 {
5b4ee69b
MS
3294 struct type *ftype = ada_check_typedef (TYPE_FIELD_TYPE (func_type,
3295 i));
df407dfe 3296 struct type *atype = ada_check_typedef (value_type (actuals[i]));
4c4b4cd2 3297
76a01679
JB
3298 if (!ada_type_match (ftype, atype, 1))
3299 return 0;
3300 }
14f9c5c9
AS
3301 }
3302 return 1;
3303}
3304
3305/* False iff function type FUNC_TYPE definitely does not produce a value
3306 compatible with type CONTEXT_TYPE. Conservatively returns 1 if
3307 FUNC_TYPE is not a valid function type with a non-null return type
3308 or an enumerated type. A null CONTEXT_TYPE indicates any non-void type. */
3309
3310static int
d2e4a39e 3311return_match (struct type *func_type, struct type *context_type)
14f9c5c9 3312{
d2e4a39e 3313 struct type *return_type;
14f9c5c9
AS
3314
3315 if (func_type == NULL)
3316 return 1;
3317
4c4b4cd2
PH
3318 if (TYPE_CODE (func_type) == TYPE_CODE_FUNC)
3319 return_type = base_type (TYPE_TARGET_TYPE (func_type));
3320 else
3321 return_type = base_type (func_type);
14f9c5c9
AS
3322 if (return_type == NULL)
3323 return 1;
3324
4c4b4cd2 3325 context_type = base_type (context_type);
14f9c5c9
AS
3326
3327 if (TYPE_CODE (return_type) == TYPE_CODE_ENUM)
3328 return context_type == NULL || return_type == context_type;
3329 else if (context_type == NULL)
3330 return TYPE_CODE (return_type) != TYPE_CODE_VOID;
3331 else
3332 return TYPE_CODE (return_type) == TYPE_CODE (context_type);
3333}
3334
3335
4c4b4cd2 3336/* Returns the index in SYMS[0..NSYMS-1] that contains the symbol for the
14f9c5c9 3337 function (if any) that matches the types of the NARGS arguments in
4c4b4cd2
PH
3338 ARGS. If CONTEXT_TYPE is non-null and there is at least one match
3339 that returns that type, then eliminate matches that don't. If
3340 CONTEXT_TYPE is void and there is at least one match that does not
3341 return void, eliminate all matches that do.
3342
14f9c5c9
AS
3343 Asks the user if there is more than one match remaining. Returns -1
3344 if there is no such symbol or none is selected. NAME is used
4c4b4cd2
PH
3345 solely for messages. May re-arrange and modify SYMS in
3346 the process; the index returned is for the modified vector. */
14f9c5c9 3347
4c4b4cd2
PH
3348static int
3349ada_resolve_function (struct ada_symbol_info syms[],
3350 int nsyms, struct value **args, int nargs,
3351 const char *name, struct type *context_type)
14f9c5c9 3352{
30b15541 3353 int fallback;
14f9c5c9 3354 int k;
4c4b4cd2 3355 int m; /* Number of hits */
14f9c5c9 3356
d2e4a39e 3357 m = 0;
30b15541
UW
3358 /* In the first pass of the loop, we only accept functions matching
3359 context_type. If none are found, we add a second pass of the loop
3360 where every function is accepted. */
3361 for (fallback = 0; m == 0 && fallback < 2; fallback++)
14f9c5c9
AS
3362 {
3363 for (k = 0; k < nsyms; k += 1)
4c4b4cd2 3364 {
61ee279c 3365 struct type *type = ada_check_typedef (SYMBOL_TYPE (syms[k].sym));
4c4b4cd2
PH
3366
3367 if (ada_args_match (syms[k].sym, args, nargs)
30b15541 3368 && (fallback || return_match (type, context_type)))
4c4b4cd2
PH
3369 {
3370 syms[m] = syms[k];
3371 m += 1;
3372 }
3373 }
14f9c5c9
AS
3374 }
3375
3376 if (m == 0)
3377 return -1;
3378 else if (m > 1)
3379 {
323e0a4a 3380 printf_filtered (_("Multiple matches for %s\n"), name);
4c4b4cd2 3381 user_select_syms (syms, m, 1);
14f9c5c9
AS
3382 return 0;
3383 }
3384 return 0;
3385}
3386
4c4b4cd2
PH
3387/* Returns true (non-zero) iff decoded name N0 should appear before N1
3388 in a listing of choices during disambiguation (see sort_choices, below).
3389 The idea is that overloadings of a subprogram name from the
3390 same package should sort in their source order. We settle for ordering
3391 such symbols by their trailing number (__N or $N). */
3392
14f9c5c9 3393static int
4c4b4cd2 3394encoded_ordered_before (char *N0, char *N1)
14f9c5c9
AS
3395{
3396 if (N1 == NULL)
3397 return 0;
3398 else if (N0 == NULL)
3399 return 1;
3400 else
3401 {
3402 int k0, k1;
5b4ee69b 3403
d2e4a39e 3404 for (k0 = strlen (N0) - 1; k0 > 0 && isdigit (N0[k0]); k0 -= 1)
4c4b4cd2 3405 ;
d2e4a39e 3406 for (k1 = strlen (N1) - 1; k1 > 0 && isdigit (N1[k1]); k1 -= 1)
4c4b4cd2 3407 ;
d2e4a39e 3408 if ((N0[k0] == '_' || N0[k0] == '$') && N0[k0 + 1] != '\000'
4c4b4cd2
PH
3409 && (N1[k1] == '_' || N1[k1] == '$') && N1[k1 + 1] != '\000')
3410 {
3411 int n0, n1;
5b4ee69b 3412
4c4b4cd2
PH
3413 n0 = k0;
3414 while (N0[n0] == '_' && n0 > 0 && N0[n0 - 1] == '_')
3415 n0 -= 1;
3416 n1 = k1;
3417 while (N1[n1] == '_' && n1 > 0 && N1[n1 - 1] == '_')
3418 n1 -= 1;
3419 if (n0 == n1 && strncmp (N0, N1, n0) == 0)
3420 return (atoi (N0 + k0 + 1) < atoi (N1 + k1 + 1));
3421 }
14f9c5c9
AS
3422 return (strcmp (N0, N1) < 0);
3423 }
3424}
d2e4a39e 3425
4c4b4cd2
PH
3426/* Sort SYMS[0..NSYMS-1] to put the choices in a canonical order by the
3427 encoded names. */
3428
d2e4a39e 3429static void
4c4b4cd2 3430sort_choices (struct ada_symbol_info syms[], int nsyms)
14f9c5c9 3431{
4c4b4cd2 3432 int i;
5b4ee69b 3433
d2e4a39e 3434 for (i = 1; i < nsyms; i += 1)
14f9c5c9 3435 {
4c4b4cd2 3436 struct ada_symbol_info sym = syms[i];
14f9c5c9
AS
3437 int j;
3438
d2e4a39e 3439 for (j = i - 1; j >= 0; j -= 1)
4c4b4cd2
PH
3440 {
3441 if (encoded_ordered_before (SYMBOL_LINKAGE_NAME (syms[j].sym),
3442 SYMBOL_LINKAGE_NAME (sym.sym)))
3443 break;
3444 syms[j + 1] = syms[j];
3445 }
d2e4a39e 3446 syms[j + 1] = sym;
14f9c5c9
AS
3447 }
3448}
3449
4c4b4cd2
PH
3450/* Given a list of NSYMS symbols in SYMS, select up to MAX_RESULTS>0
3451 by asking the user (if necessary), returning the number selected,
3452 and setting the first elements of SYMS items. Error if no symbols
3453 selected. */
14f9c5c9
AS
3454
3455/* NOTE: Adapted from decode_line_2 in symtab.c, with which it ought
4c4b4cd2 3456 to be re-integrated one of these days. */
14f9c5c9
AS
3457
3458int
4c4b4cd2 3459user_select_syms (struct ada_symbol_info *syms, int nsyms, int max_results)
14f9c5c9
AS
3460{
3461 int i;
d2e4a39e 3462 int *chosen = (int *) alloca (sizeof (int) * nsyms);
14f9c5c9
AS
3463 int n_chosen;
3464 int first_choice = (max_results == 1) ? 1 : 2;
717d2f5a 3465 const char *select_mode = multiple_symbols_select_mode ();
14f9c5c9
AS
3466
3467 if (max_results < 1)
323e0a4a 3468 error (_("Request to select 0 symbols!"));
14f9c5c9
AS
3469 if (nsyms <= 1)
3470 return nsyms;
3471
717d2f5a
JB
3472 if (select_mode == multiple_symbols_cancel)
3473 error (_("\
3474canceled because the command is ambiguous\n\
3475See set/show multiple-symbol."));
3476
3477 /* If select_mode is "all", then return all possible symbols.
3478 Only do that if more than one symbol can be selected, of course.
3479 Otherwise, display the menu as usual. */
3480 if (select_mode == multiple_symbols_all && max_results > 1)
3481 return nsyms;
3482
323e0a4a 3483 printf_unfiltered (_("[0] cancel\n"));
14f9c5c9 3484 if (max_results > 1)
323e0a4a 3485 printf_unfiltered (_("[1] all\n"));
14f9c5c9 3486
4c4b4cd2 3487 sort_choices (syms, nsyms);
14f9c5c9
AS
3488
3489 for (i = 0; i < nsyms; i += 1)
3490 {
4c4b4cd2
PH
3491 if (syms[i].sym == NULL)
3492 continue;
3493
3494 if (SYMBOL_CLASS (syms[i].sym) == LOC_BLOCK)
3495 {
76a01679
JB
3496 struct symtab_and_line sal =
3497 find_function_start_sal (syms[i].sym, 1);
5b4ee69b 3498
323e0a4a
AC
3499 if (sal.symtab == NULL)
3500 printf_unfiltered (_("[%d] %s at <no source file available>:%d\n"),
3501 i + first_choice,
3502 SYMBOL_PRINT_NAME (syms[i].sym),
3503 sal.line);
3504 else
3505 printf_unfiltered (_("[%d] %s at %s:%d\n"), i + first_choice,
3506 SYMBOL_PRINT_NAME (syms[i].sym),
3507 sal.symtab->filename, sal.line);
4c4b4cd2
PH
3508 continue;
3509 }
d2e4a39e 3510 else
4c4b4cd2
PH
3511 {
3512 int is_enumeral =
3513 (SYMBOL_CLASS (syms[i].sym) == LOC_CONST
3514 && SYMBOL_TYPE (syms[i].sym) != NULL
3515 && TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) == TYPE_CODE_ENUM);
6f38eac8 3516 struct symtab *symtab = syms[i].sym->symtab;
4c4b4cd2
PH
3517
3518 if (SYMBOL_LINE (syms[i].sym) != 0 && symtab != NULL)
323e0a4a 3519 printf_unfiltered (_("[%d] %s at %s:%d\n"),
4c4b4cd2
PH
3520 i + first_choice,
3521 SYMBOL_PRINT_NAME (syms[i].sym),
3522 symtab->filename, SYMBOL_LINE (syms[i].sym));
76a01679
JB
3523 else if (is_enumeral
3524 && TYPE_NAME (SYMBOL_TYPE (syms[i].sym)) != NULL)
4c4b4cd2 3525 {
a3f17187 3526 printf_unfiltered (("[%d] "), i + first_choice);
76a01679
JB
3527 ada_print_type (SYMBOL_TYPE (syms[i].sym), NULL,
3528 gdb_stdout, -1, 0);
323e0a4a 3529 printf_unfiltered (_("'(%s) (enumeral)\n"),
4c4b4cd2
PH
3530 SYMBOL_PRINT_NAME (syms[i].sym));
3531 }
3532 else if (symtab != NULL)
3533 printf_unfiltered (is_enumeral
323e0a4a
AC
3534 ? _("[%d] %s in %s (enumeral)\n")
3535 : _("[%d] %s at %s:?\n"),
4c4b4cd2
PH
3536 i + first_choice,
3537 SYMBOL_PRINT_NAME (syms[i].sym),
3538 symtab->filename);
3539 else
3540 printf_unfiltered (is_enumeral
323e0a4a
AC
3541 ? _("[%d] %s (enumeral)\n")
3542 : _("[%d] %s at ?\n"),
4c4b4cd2
PH
3543 i + first_choice,
3544 SYMBOL_PRINT_NAME (syms[i].sym));
3545 }
14f9c5c9 3546 }
d2e4a39e 3547
14f9c5c9 3548 n_chosen = get_selections (chosen, nsyms, max_results, max_results > 1,
4c4b4cd2 3549 "overload-choice");
14f9c5c9
AS
3550
3551 for (i = 0; i < n_chosen; i += 1)
4c4b4cd2 3552 syms[i] = syms[chosen[i]];
14f9c5c9
AS
3553
3554 return n_chosen;
3555}
3556
3557/* Read and validate a set of numeric choices from the user in the
4c4b4cd2 3558 range 0 .. N_CHOICES-1. Place the results in increasing
14f9c5c9
AS
3559 order in CHOICES[0 .. N-1], and return N.
3560
3561 The user types choices as a sequence of numbers on one line
3562 separated by blanks, encoding them as follows:
3563
4c4b4cd2 3564 + A choice of 0 means to cancel the selection, throwing an error.
14f9c5c9
AS
3565 + If IS_ALL_CHOICE, a choice of 1 selects the entire set 0 .. N_CHOICES-1.
3566 + The user chooses k by typing k+IS_ALL_CHOICE+1.
3567
4c4b4cd2 3568 The user is not allowed to choose more than MAX_RESULTS values.
14f9c5c9
AS
3569
3570 ANNOTATION_SUFFIX, if present, is used to annotate the input
4c4b4cd2 3571 prompts (for use with the -f switch). */
14f9c5c9
AS
3572
3573int
d2e4a39e 3574get_selections (int *choices, int n_choices, int max_results,
4c4b4cd2 3575 int is_all_choice, char *annotation_suffix)
14f9c5c9 3576{
d2e4a39e 3577 char *args;
0bcd0149 3578 char *prompt;
14f9c5c9
AS
3579 int n_chosen;
3580 int first_choice = is_all_choice ? 2 : 1;
d2e4a39e 3581
14f9c5c9
AS
3582 prompt = getenv ("PS2");
3583 if (prompt == NULL)
0bcd0149 3584 prompt = "> ";
14f9c5c9 3585
0bcd0149 3586 args = command_line_input (prompt, 0, annotation_suffix);
d2e4a39e 3587
14f9c5c9 3588 if (args == NULL)
323e0a4a 3589 error_no_arg (_("one or more choice numbers"));
14f9c5c9
AS
3590
3591 n_chosen = 0;
76a01679 3592
4c4b4cd2
PH
3593 /* Set choices[0 .. n_chosen-1] to the users' choices in ascending
3594 order, as given in args. Choices are validated. */
14f9c5c9
AS
3595 while (1)
3596 {
d2e4a39e 3597 char *args2;
14f9c5c9
AS
3598 int choice, j;
3599
3600 while (isspace (*args))
4c4b4cd2 3601 args += 1;
14f9c5c9 3602 if (*args == '\0' && n_chosen == 0)
323e0a4a 3603 error_no_arg (_("one or more choice numbers"));
14f9c5c9 3604 else if (*args == '\0')
4c4b4cd2 3605 break;
14f9c5c9
AS
3606
3607 choice = strtol (args, &args2, 10);
d2e4a39e 3608 if (args == args2 || choice < 0
4c4b4cd2 3609 || choice > n_choices + first_choice - 1)
323e0a4a 3610 error (_("Argument must be choice number"));
14f9c5c9
AS
3611 args = args2;
3612
d2e4a39e 3613 if (choice == 0)
323e0a4a 3614 error (_("cancelled"));
14f9c5c9
AS
3615
3616 if (choice < first_choice)
4c4b4cd2
PH
3617 {
3618 n_chosen = n_choices;
3619 for (j = 0; j < n_choices; j += 1)
3620 choices[j] = j;
3621 break;
3622 }
14f9c5c9
AS
3623 choice -= first_choice;
3624
d2e4a39e 3625 for (j = n_chosen - 1; j >= 0 && choice < choices[j]; j -= 1)
4c4b4cd2
PH
3626 {
3627 }
14f9c5c9
AS
3628
3629 if (j < 0 || choice != choices[j])
4c4b4cd2
PH
3630 {
3631 int k;
5b4ee69b 3632
4c4b4cd2
PH
3633 for (k = n_chosen - 1; k > j; k -= 1)
3634 choices[k + 1] = choices[k];
3635 choices[j + 1] = choice;
3636 n_chosen += 1;
3637 }
14f9c5c9
AS
3638 }
3639
3640 if (n_chosen > max_results)
323e0a4a 3641 error (_("Select no more than %d of the above"), max_results);
d2e4a39e 3642
14f9c5c9
AS
3643 return n_chosen;
3644}
3645
4c4b4cd2
PH
3646/* Replace the operator of length OPLEN at position PC in *EXPP with a call
3647 on the function identified by SYM and BLOCK, and taking NARGS
3648 arguments. Update *EXPP as needed to hold more space. */
14f9c5c9
AS
3649
3650static void
d2e4a39e 3651replace_operator_with_call (struct expression **expp, int pc, int nargs,
4c4b4cd2
PH
3652 int oplen, struct symbol *sym,
3653 struct block *block)
14f9c5c9
AS
3654{
3655 /* A new expression, with 6 more elements (3 for funcall, 4 for function
4c4b4cd2 3656 symbol, -oplen for operator being replaced). */
d2e4a39e 3657 struct expression *newexp = (struct expression *)
8c1a34e7 3658 xzalloc (sizeof (struct expression)
4c4b4cd2 3659 + EXP_ELEM_TO_BYTES ((*expp)->nelts + 7 - oplen));
d2e4a39e 3660 struct expression *exp = *expp;
14f9c5c9
AS
3661
3662 newexp->nelts = exp->nelts + 7 - oplen;
3663 newexp->language_defn = exp->language_defn;
3664 memcpy (newexp->elts, exp->elts, EXP_ELEM_TO_BYTES (pc));
d2e4a39e 3665 memcpy (newexp->elts + pc + 7, exp->elts + pc + oplen,
4c4b4cd2 3666 EXP_ELEM_TO_BYTES (exp->nelts - pc - oplen));
14f9c5c9
AS
3667
3668 newexp->elts[pc].opcode = newexp->elts[pc + 2].opcode = OP_FUNCALL;
3669 newexp->elts[pc + 1].longconst = (LONGEST) nargs;
3670
3671 newexp->elts[pc + 3].opcode = newexp->elts[pc + 6].opcode = OP_VAR_VALUE;
3672 newexp->elts[pc + 4].block = block;
3673 newexp->elts[pc + 5].symbol = sym;
3674
3675 *expp = newexp;
aacb1f0a 3676 xfree (exp);
d2e4a39e 3677}
14f9c5c9
AS
3678
3679/* Type-class predicates */
3680
4c4b4cd2
PH
3681/* True iff TYPE is numeric (i.e., an INT, RANGE (of numeric type),
3682 or FLOAT). */
14f9c5c9
AS
3683
3684static int
d2e4a39e 3685numeric_type_p (struct type *type)
14f9c5c9
AS
3686{
3687 if (type == NULL)
3688 return 0;
d2e4a39e
AS
3689 else
3690 {
3691 switch (TYPE_CODE (type))
4c4b4cd2
PH
3692 {
3693 case TYPE_CODE_INT:
3694 case TYPE_CODE_FLT:
3695 return 1;
3696 case TYPE_CODE_RANGE:
3697 return (type == TYPE_TARGET_TYPE (type)
3698 || numeric_type_p (TYPE_TARGET_TYPE (type)));
3699 default:
3700 return 0;
3701 }
d2e4a39e 3702 }
14f9c5c9
AS
3703}
3704
4c4b4cd2 3705/* True iff TYPE is integral (an INT or RANGE of INTs). */
14f9c5c9
AS
3706
3707static int
d2e4a39e 3708integer_type_p (struct type *type)
14f9c5c9
AS
3709{
3710 if (type == NULL)
3711 return 0;
d2e4a39e
AS
3712 else
3713 {
3714 switch (TYPE_CODE (type))
4c4b4cd2
PH
3715 {
3716 case TYPE_CODE_INT:
3717 return 1;
3718 case TYPE_CODE_RANGE:
3719 return (type == TYPE_TARGET_TYPE (type)
3720 || integer_type_p (TYPE_TARGET_TYPE (type)));
3721 default:
3722 return 0;
3723 }
d2e4a39e 3724 }
14f9c5c9
AS
3725}
3726
4c4b4cd2 3727/* True iff TYPE is scalar (INT, RANGE, FLOAT, ENUM). */
14f9c5c9
AS
3728
3729static int
d2e4a39e 3730scalar_type_p (struct type *type)
14f9c5c9
AS
3731{
3732 if (type == NULL)
3733 return 0;
d2e4a39e
AS
3734 else
3735 {
3736 switch (TYPE_CODE (type))
4c4b4cd2
PH
3737 {
3738 case TYPE_CODE_INT:
3739 case TYPE_CODE_RANGE:
3740 case TYPE_CODE_ENUM:
3741 case TYPE_CODE_FLT:
3742 return 1;
3743 default:
3744 return 0;
3745 }
d2e4a39e 3746 }
14f9c5c9
AS
3747}
3748
4c4b4cd2 3749/* True iff TYPE is discrete (INT, RANGE, ENUM). */
14f9c5c9
AS
3750
3751static int
d2e4a39e 3752discrete_type_p (struct type *type)
14f9c5c9
AS
3753{
3754 if (type == NULL)
3755 return 0;
d2e4a39e
AS
3756 else
3757 {
3758 switch (TYPE_CODE (type))
4c4b4cd2
PH
3759 {
3760 case TYPE_CODE_INT:
3761 case TYPE_CODE_RANGE:
3762 case TYPE_CODE_ENUM:
872f0337 3763 case TYPE_CODE_BOOL:
4c4b4cd2
PH
3764 return 1;
3765 default:
3766 return 0;
3767 }
d2e4a39e 3768 }
14f9c5c9
AS
3769}
3770
4c4b4cd2
PH
3771/* Returns non-zero if OP with operands in the vector ARGS could be
3772 a user-defined function. Errs on the side of pre-defined operators
3773 (i.e., result 0). */
14f9c5c9
AS
3774
3775static int
d2e4a39e 3776possible_user_operator_p (enum exp_opcode op, struct value *args[])
14f9c5c9 3777{
76a01679 3778 struct type *type0 =
df407dfe 3779 (args[0] == NULL) ? NULL : ada_check_typedef (value_type (args[0]));
d2e4a39e 3780 struct type *type1 =
df407dfe 3781 (args[1] == NULL) ? NULL : ada_check_typedef (value_type (args[1]));
d2e4a39e 3782
4c4b4cd2
PH
3783 if (type0 == NULL)
3784 return 0;
3785
14f9c5c9
AS
3786 switch (op)
3787 {
3788 default:
3789 return 0;
3790
3791 case BINOP_ADD:
3792 case BINOP_SUB:
3793 case BINOP_MUL:
3794 case BINOP_DIV:
d2e4a39e 3795 return (!(numeric_type_p (type0) && numeric_type_p (type1)));
14f9c5c9
AS
3796
3797 case BINOP_REM:
3798 case BINOP_MOD:
3799 case BINOP_BITWISE_AND:
3800 case BINOP_BITWISE_IOR:
3801 case BINOP_BITWISE_XOR:
d2e4a39e 3802 return (!(integer_type_p (type0) && integer_type_p (type1)));
14f9c5c9
AS
3803
3804 case BINOP_EQUAL:
3805 case BINOP_NOTEQUAL:
3806 case BINOP_LESS:
3807 case BINOP_GTR:
3808 case BINOP_LEQ:
3809 case BINOP_GEQ:
d2e4a39e 3810 return (!(scalar_type_p (type0) && scalar_type_p (type1)));
14f9c5c9
AS
3811
3812 case BINOP_CONCAT:
ee90b9ab 3813 return !ada_is_array_type (type0) || !ada_is_array_type (type1);
14f9c5c9
AS
3814
3815 case BINOP_EXP:
d2e4a39e 3816 return (!(numeric_type_p (type0) && integer_type_p (type1)));
14f9c5c9
AS
3817
3818 case UNOP_NEG:
3819 case UNOP_PLUS:
3820 case UNOP_LOGICAL_NOT:
d2e4a39e
AS
3821 case UNOP_ABS:
3822 return (!numeric_type_p (type0));
14f9c5c9
AS
3823
3824 }
3825}
3826\f
4c4b4cd2 3827 /* Renaming */
14f9c5c9 3828
aeb5907d
JB
3829/* NOTES:
3830
3831 1. In the following, we assume that a renaming type's name may
3832 have an ___XD suffix. It would be nice if this went away at some
3833 point.
3834 2. We handle both the (old) purely type-based representation of
3835 renamings and the (new) variable-based encoding. At some point,
3836 it is devoutly to be hoped that the former goes away
3837 (FIXME: hilfinger-2007-07-09).
3838 3. Subprogram renamings are not implemented, although the XRS
3839 suffix is recognized (FIXME: hilfinger-2007-07-09). */
3840
3841/* If SYM encodes a renaming,
3842
3843 <renaming> renames <renamed entity>,
3844
3845 sets *LEN to the length of the renamed entity's name,
3846 *RENAMED_ENTITY to that name (not null-terminated), and *RENAMING_EXPR to
3847 the string describing the subcomponent selected from the renamed
0963b4bd 3848 entity. Returns ADA_NOT_RENAMING if SYM does not encode a renaming
aeb5907d
JB
3849 (in which case, the values of *RENAMED_ENTITY, *LEN, and *RENAMING_EXPR
3850 are undefined). Otherwise, returns a value indicating the category
3851 of entity renamed: an object (ADA_OBJECT_RENAMING), exception
3852 (ADA_EXCEPTION_RENAMING), package (ADA_PACKAGE_RENAMING), or
3853 subprogram (ADA_SUBPROGRAM_RENAMING). Does no allocation; the
3854 strings returned in *RENAMED_ENTITY and *RENAMING_EXPR should not be
3855 deallocated. The values of RENAMED_ENTITY, LEN, or RENAMING_EXPR
3856 may be NULL, in which case they are not assigned.
3857
3858 [Currently, however, GCC does not generate subprogram renamings.] */
3859
3860enum ada_renaming_category
3861ada_parse_renaming (struct symbol *sym,
3862 const char **renamed_entity, int *len,
3863 const char **renaming_expr)
3864{
3865 enum ada_renaming_category kind;
3866 const char *info;
3867 const char *suffix;
3868
3869 if (sym == NULL)
3870 return ADA_NOT_RENAMING;
3871 switch (SYMBOL_CLASS (sym))
14f9c5c9 3872 {
aeb5907d
JB
3873 default:
3874 return ADA_NOT_RENAMING;
3875 case LOC_TYPEDEF:
3876 return parse_old_style_renaming (SYMBOL_TYPE (sym),
3877 renamed_entity, len, renaming_expr);
3878 case LOC_LOCAL:
3879 case LOC_STATIC:
3880 case LOC_COMPUTED:
3881 case LOC_OPTIMIZED_OUT:
3882 info = strstr (SYMBOL_LINKAGE_NAME (sym), "___XR");
3883 if (info == NULL)
3884 return ADA_NOT_RENAMING;
3885 switch (info[5])
3886 {
3887 case '_':
3888 kind = ADA_OBJECT_RENAMING;
3889 info += 6;
3890 break;
3891 case 'E':
3892 kind = ADA_EXCEPTION_RENAMING;
3893 info += 7;
3894 break;
3895 case 'P':
3896 kind = ADA_PACKAGE_RENAMING;
3897 info += 7;
3898 break;
3899 case 'S':
3900 kind = ADA_SUBPROGRAM_RENAMING;
3901 info += 7;
3902 break;
3903 default:
3904 return ADA_NOT_RENAMING;
3905 }
14f9c5c9 3906 }
4c4b4cd2 3907
aeb5907d
JB
3908 if (renamed_entity != NULL)
3909 *renamed_entity = info;
3910 suffix = strstr (info, "___XE");
3911 if (suffix == NULL || suffix == info)
3912 return ADA_NOT_RENAMING;
3913 if (len != NULL)
3914 *len = strlen (info) - strlen (suffix);
3915 suffix += 5;
3916 if (renaming_expr != NULL)
3917 *renaming_expr = suffix;
3918 return kind;
3919}
3920
3921/* Assuming TYPE encodes a renaming according to the old encoding in
3922 exp_dbug.ads, returns details of that renaming in *RENAMED_ENTITY,
3923 *LEN, and *RENAMING_EXPR, as for ada_parse_renaming, above. Returns
3924 ADA_NOT_RENAMING otherwise. */
3925static enum ada_renaming_category
3926parse_old_style_renaming (struct type *type,
3927 const char **renamed_entity, int *len,
3928 const char **renaming_expr)
3929{
3930 enum ada_renaming_category kind;
3931 const char *name;
3932 const char *info;
3933 const char *suffix;
14f9c5c9 3934
aeb5907d
JB
3935 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM
3936 || TYPE_NFIELDS (type) != 1)
3937 return ADA_NOT_RENAMING;
14f9c5c9 3938
aeb5907d
JB
3939 name = type_name_no_tag (type);
3940 if (name == NULL)
3941 return ADA_NOT_RENAMING;
3942
3943 name = strstr (name, "___XR");
3944 if (name == NULL)
3945 return ADA_NOT_RENAMING;
3946 switch (name[5])
3947 {
3948 case '\0':
3949 case '_':
3950 kind = ADA_OBJECT_RENAMING;
3951 break;
3952 case 'E':
3953 kind = ADA_EXCEPTION_RENAMING;
3954 break;
3955 case 'P':
3956 kind = ADA_PACKAGE_RENAMING;
3957 break;
3958 case 'S':
3959 kind = ADA_SUBPROGRAM_RENAMING;
3960 break;
3961 default:
3962 return ADA_NOT_RENAMING;
3963 }
14f9c5c9 3964
aeb5907d
JB
3965 info = TYPE_FIELD_NAME (type, 0);
3966 if (info == NULL)
3967 return ADA_NOT_RENAMING;
3968 if (renamed_entity != NULL)
3969 *renamed_entity = info;
3970 suffix = strstr (info, "___XE");
3971 if (renaming_expr != NULL)
3972 *renaming_expr = suffix + 5;
3973 if (suffix == NULL || suffix == info)
3974 return ADA_NOT_RENAMING;
3975 if (len != NULL)
3976 *len = suffix - info;
3977 return kind;
3978}
52ce6436 3979
14f9c5c9 3980\f
d2e4a39e 3981
4c4b4cd2 3982 /* Evaluation: Function Calls */
14f9c5c9 3983
4c4b4cd2 3984/* Return an lvalue containing the value VAL. This is the identity on
40bc484c
JB
3985 lvalues, and otherwise has the side-effect of allocating memory
3986 in the inferior where a copy of the value contents is copied. */
14f9c5c9 3987
d2e4a39e 3988static struct value *
40bc484c 3989ensure_lval (struct value *val)
14f9c5c9 3990{
40bc484c
JB
3991 if (VALUE_LVAL (val) == not_lval
3992 || VALUE_LVAL (val) == lval_internalvar)
c3e5cd34 3993 {
df407dfe 3994 int len = TYPE_LENGTH (ada_check_typedef (value_type (val)));
40bc484c
JB
3995 const CORE_ADDR addr =
3996 value_as_long (value_allocate_space_in_inferior (len));
c3e5cd34 3997
40bc484c 3998 set_value_address (val, addr);
a84a8a0d 3999 VALUE_LVAL (val) = lval_memory;
40bc484c 4000 write_memory (addr, value_contents (val), len);
c3e5cd34 4001 }
14f9c5c9
AS
4002
4003 return val;
4004}
4005
4006/* Return the value ACTUAL, converted to be an appropriate value for a
4007 formal of type FORMAL_TYPE. Use *SP as a stack pointer for
4008 allocating any necessary descriptors (fat pointers), or copies of
4c4b4cd2 4009 values not residing in memory, updating it as needed. */
14f9c5c9 4010
a93c0eb6 4011struct value *
40bc484c 4012ada_convert_actual (struct value *actual, struct type *formal_type0)
14f9c5c9 4013{
df407dfe 4014 struct type *actual_type = ada_check_typedef (value_type (actual));
61ee279c 4015 struct type *formal_type = ada_check_typedef (formal_type0);
d2e4a39e
AS
4016 struct type *formal_target =
4017 TYPE_CODE (formal_type) == TYPE_CODE_PTR
61ee279c 4018 ? ada_check_typedef (TYPE_TARGET_TYPE (formal_type)) : formal_type;
d2e4a39e
AS
4019 struct type *actual_target =
4020 TYPE_CODE (actual_type) == TYPE_CODE_PTR
61ee279c 4021 ? ada_check_typedef (TYPE_TARGET_TYPE (actual_type)) : actual_type;
14f9c5c9 4022
4c4b4cd2 4023 if (ada_is_array_descriptor_type (formal_target)
14f9c5c9 4024 && TYPE_CODE (actual_target) == TYPE_CODE_ARRAY)
40bc484c 4025 return make_array_descriptor (formal_type, actual);
a84a8a0d
JB
4026 else if (TYPE_CODE (formal_type) == TYPE_CODE_PTR
4027 || TYPE_CODE (formal_type) == TYPE_CODE_REF)
14f9c5c9 4028 {
a84a8a0d 4029 struct value *result;
5b4ee69b 4030
14f9c5c9 4031 if (TYPE_CODE (formal_target) == TYPE_CODE_ARRAY
4c4b4cd2 4032 && ada_is_array_descriptor_type (actual_target))
a84a8a0d 4033 result = desc_data (actual);
14f9c5c9 4034 else if (TYPE_CODE (actual_type) != TYPE_CODE_PTR)
4c4b4cd2
PH
4035 {
4036 if (VALUE_LVAL (actual) != lval_memory)
4037 {
4038 struct value *val;
5b4ee69b 4039
df407dfe 4040 actual_type = ada_check_typedef (value_type (actual));
4c4b4cd2 4041 val = allocate_value (actual_type);
990a07ab 4042 memcpy ((char *) value_contents_raw (val),
0fd88904 4043 (char *) value_contents (actual),
4c4b4cd2 4044 TYPE_LENGTH (actual_type));
40bc484c 4045 actual = ensure_lval (val);
4c4b4cd2 4046 }
a84a8a0d 4047 result = value_addr (actual);
4c4b4cd2 4048 }
a84a8a0d
JB
4049 else
4050 return actual;
4051 return value_cast_pointers (formal_type, result);
14f9c5c9
AS
4052 }
4053 else if (TYPE_CODE (actual_type) == TYPE_CODE_PTR)
4054 return ada_value_ind (actual);
4055
4056 return actual;
4057}
4058
438c98a1
JB
4059/* Convert VALUE (which must be an address) to a CORE_ADDR that is a pointer of
4060 type TYPE. This is usually an inefficient no-op except on some targets
4061 (such as AVR) where the representation of a pointer and an address
4062 differs. */
4063
4064static CORE_ADDR
4065value_pointer (struct value *value, struct type *type)
4066{
4067 struct gdbarch *gdbarch = get_type_arch (type);
4068 unsigned len = TYPE_LENGTH (type);
4069 gdb_byte *buf = alloca (len);
4070 CORE_ADDR addr;
4071
4072 addr = value_address (value);
4073 gdbarch_address_to_pointer (gdbarch, type, buf, addr);
4074 addr = extract_unsigned_integer (buf, len, gdbarch_byte_order (gdbarch));
4075 return addr;
4076}
4077
14f9c5c9 4078
4c4b4cd2
PH
4079/* Push a descriptor of type TYPE for array value ARR on the stack at
4080 *SP, updating *SP to reflect the new descriptor. Return either
14f9c5c9 4081 an lvalue representing the new descriptor, or (if TYPE is a pointer-
4c4b4cd2
PH
4082 to-descriptor type rather than a descriptor type), a struct value *
4083 representing a pointer to this descriptor. */
14f9c5c9 4084
d2e4a39e 4085static struct value *
40bc484c 4086make_array_descriptor (struct type *type, struct value *arr)
14f9c5c9 4087{
d2e4a39e
AS
4088 struct type *bounds_type = desc_bounds_type (type);
4089 struct type *desc_type = desc_base_type (type);
4090 struct value *descriptor = allocate_value (desc_type);
4091 struct value *bounds = allocate_value (bounds_type);
14f9c5c9 4092 int i;
d2e4a39e 4093
0963b4bd
MS
4094 for (i = ada_array_arity (ada_check_typedef (value_type (arr)));
4095 i > 0; i -= 1)
14f9c5c9 4096 {
19f220c3
JK
4097 modify_field (value_type (bounds), value_contents_writeable (bounds),
4098 ada_array_bound (arr, i, 0),
4099 desc_bound_bitpos (bounds_type, i, 0),
4100 desc_bound_bitsize (bounds_type, i, 0));
4101 modify_field (value_type (bounds), value_contents_writeable (bounds),
4102 ada_array_bound (arr, i, 1),
4103 desc_bound_bitpos (bounds_type, i, 1),
4104 desc_bound_bitsize (bounds_type, i, 1));
14f9c5c9 4105 }
d2e4a39e 4106
40bc484c 4107 bounds = ensure_lval (bounds);
d2e4a39e 4108
19f220c3
JK
4109 modify_field (value_type (descriptor),
4110 value_contents_writeable (descriptor),
4111 value_pointer (ensure_lval (arr),
4112 TYPE_FIELD_TYPE (desc_type, 0)),
4113 fat_pntr_data_bitpos (desc_type),
4114 fat_pntr_data_bitsize (desc_type));
4115
4116 modify_field (value_type (descriptor),
4117 value_contents_writeable (descriptor),
4118 value_pointer (bounds,
4119 TYPE_FIELD_TYPE (desc_type, 1)),
4120 fat_pntr_bounds_bitpos (desc_type),
4121 fat_pntr_bounds_bitsize (desc_type));
14f9c5c9 4122
40bc484c 4123 descriptor = ensure_lval (descriptor);
14f9c5c9
AS
4124
4125 if (TYPE_CODE (type) == TYPE_CODE_PTR)
4126 return value_addr (descriptor);
4127 else
4128 return descriptor;
4129}
14f9c5c9 4130\f
963a6417 4131/* Dummy definitions for an experimental caching module that is not
0963b4bd 4132 * used in the public sources. */
96d887e8 4133
96d887e8
PH
4134static int
4135lookup_cached_symbol (const char *name, domain_enum namespace,
2570f2b7 4136 struct symbol **sym, struct block **block)
96d887e8
PH
4137{
4138 return 0;
4139}
4140
4141static void
4142cache_symbol (const char *name, domain_enum namespace, struct symbol *sym,
2570f2b7 4143 struct block *block)
96d887e8
PH
4144{
4145}
4c4b4cd2
PH
4146\f
4147 /* Symbol Lookup */
4148
4149/* Return the result of a standard (literal, C-like) lookup of NAME in
4150 given DOMAIN, visible from lexical block BLOCK. */
4151
4152static struct symbol *
4153standard_lookup (const char *name, const struct block *block,
4154 domain_enum domain)
4155{
4156 struct symbol *sym;
4c4b4cd2 4157
2570f2b7 4158 if (lookup_cached_symbol (name, domain, &sym, NULL))
4c4b4cd2 4159 return sym;
2570f2b7
UW
4160 sym = lookup_symbol_in_language (name, block, domain, language_c, 0);
4161 cache_symbol (name, domain, sym, block_found);
4c4b4cd2
PH
4162 return sym;
4163}
4164
4165
4166/* Non-zero iff there is at least one non-function/non-enumeral symbol
4167 in the symbol fields of SYMS[0..N-1]. We treat enumerals as functions,
4168 since they contend in overloading in the same way. */
4169static int
4170is_nonfunction (struct ada_symbol_info syms[], int n)
4171{
4172 int i;
4173
4174 for (i = 0; i < n; i += 1)
4175 if (TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) != TYPE_CODE_FUNC
4176 && (TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) != TYPE_CODE_ENUM
4177 || SYMBOL_CLASS (syms[i].sym) != LOC_CONST))
14f9c5c9
AS
4178 return 1;
4179
4180 return 0;
4181}
4182
4183/* If true (non-zero), then TYPE0 and TYPE1 represent equivalent
4c4b4cd2 4184 struct types. Otherwise, they may not. */
14f9c5c9
AS
4185
4186static int
d2e4a39e 4187equiv_types (struct type *type0, struct type *type1)
14f9c5c9 4188{
d2e4a39e 4189 if (type0 == type1)
14f9c5c9 4190 return 1;
d2e4a39e 4191 if (type0 == NULL || type1 == NULL
14f9c5c9
AS
4192 || TYPE_CODE (type0) != TYPE_CODE (type1))
4193 return 0;
d2e4a39e 4194 if ((TYPE_CODE (type0) == TYPE_CODE_STRUCT
14f9c5c9
AS
4195 || TYPE_CODE (type0) == TYPE_CODE_ENUM)
4196 && ada_type_name (type0) != NULL && ada_type_name (type1) != NULL
4c4b4cd2 4197 && strcmp (ada_type_name (type0), ada_type_name (type1)) == 0)
14f9c5c9 4198 return 1;
d2e4a39e 4199
14f9c5c9
AS
4200 return 0;
4201}
4202
4203/* True iff SYM0 represents the same entity as SYM1, or one that is
4c4b4cd2 4204 no more defined than that of SYM1. */
14f9c5c9
AS
4205
4206static int
d2e4a39e 4207lesseq_defined_than (struct symbol *sym0, struct symbol *sym1)
14f9c5c9
AS
4208{
4209 if (sym0 == sym1)
4210 return 1;
176620f1 4211 if (SYMBOL_DOMAIN (sym0) != SYMBOL_DOMAIN (sym1)
14f9c5c9
AS
4212 || SYMBOL_CLASS (sym0) != SYMBOL_CLASS (sym1))
4213 return 0;
4214
d2e4a39e 4215 switch (SYMBOL_CLASS (sym0))
14f9c5c9
AS
4216 {
4217 case LOC_UNDEF:
4218 return 1;
4219 case LOC_TYPEDEF:
4220 {
4c4b4cd2
PH
4221 struct type *type0 = SYMBOL_TYPE (sym0);
4222 struct type *type1 = SYMBOL_TYPE (sym1);
4223 char *name0 = SYMBOL_LINKAGE_NAME (sym0);
4224 char *name1 = SYMBOL_LINKAGE_NAME (sym1);
4225 int len0 = strlen (name0);
5b4ee69b 4226
4c4b4cd2
PH
4227 return
4228 TYPE_CODE (type0) == TYPE_CODE (type1)
4229 && (equiv_types (type0, type1)
4230 || (len0 < strlen (name1) && strncmp (name0, name1, len0) == 0
4231 && strncmp (name1 + len0, "___XV", 5) == 0));
14f9c5c9
AS
4232 }
4233 case LOC_CONST:
4234 return SYMBOL_VALUE (sym0) == SYMBOL_VALUE (sym1)
4c4b4cd2 4235 && equiv_types (SYMBOL_TYPE (sym0), SYMBOL_TYPE (sym1));
d2e4a39e
AS
4236 default:
4237 return 0;
14f9c5c9
AS
4238 }
4239}
4240
4c4b4cd2
PH
4241/* Append (SYM,BLOCK,SYMTAB) to the end of the array of struct ada_symbol_info
4242 records in OBSTACKP. Do nothing if SYM is a duplicate. */
14f9c5c9
AS
4243
4244static void
76a01679
JB
4245add_defn_to_vec (struct obstack *obstackp,
4246 struct symbol *sym,
2570f2b7 4247 struct block *block)
14f9c5c9
AS
4248{
4249 int i;
4c4b4cd2 4250 struct ada_symbol_info *prevDefns = defns_collected (obstackp, 0);
14f9c5c9 4251
529cad9c
PH
4252 /* Do not try to complete stub types, as the debugger is probably
4253 already scanning all symbols matching a certain name at the
4254 time when this function is called. Trying to replace the stub
4255 type by its associated full type will cause us to restart a scan
4256 which may lead to an infinite recursion. Instead, the client
4257 collecting the matching symbols will end up collecting several
4258 matches, with at least one of them complete. It can then filter
4259 out the stub ones if needed. */
4260
4c4b4cd2
PH
4261 for (i = num_defns_collected (obstackp) - 1; i >= 0; i -= 1)
4262 {
4263 if (lesseq_defined_than (sym, prevDefns[i].sym))
4264 return;
4265 else if (lesseq_defined_than (prevDefns[i].sym, sym))
4266 {
4267 prevDefns[i].sym = sym;
4268 prevDefns[i].block = block;
4c4b4cd2 4269 return;
76a01679 4270 }
4c4b4cd2
PH
4271 }
4272
4273 {
4274 struct ada_symbol_info info;
4275
4276 info.sym = sym;
4277 info.block = block;
4c4b4cd2
PH
4278 obstack_grow (obstackp, &info, sizeof (struct ada_symbol_info));
4279 }
4280}
4281
4282/* Number of ada_symbol_info structures currently collected in
4283 current vector in *OBSTACKP. */
4284
76a01679
JB
4285static int
4286num_defns_collected (struct obstack *obstackp)
4c4b4cd2
PH
4287{
4288 return obstack_object_size (obstackp) / sizeof (struct ada_symbol_info);
4289}
4290
4291/* Vector of ada_symbol_info structures currently collected in current
4292 vector in *OBSTACKP. If FINISH, close off the vector and return
4293 its final address. */
4294
76a01679 4295static struct ada_symbol_info *
4c4b4cd2
PH
4296defns_collected (struct obstack *obstackp, int finish)
4297{
4298 if (finish)
4299 return obstack_finish (obstackp);
4300 else
4301 return (struct ada_symbol_info *) obstack_base (obstackp);
4302}
4303
96d887e8
PH
4304/* Return a minimal symbol matching NAME according to Ada decoding
4305 rules. Returns NULL if there is no such minimal symbol. Names
4306 prefixed with "standard__" are handled specially: "standard__" is
4307 first stripped off, and only static and global symbols are searched. */
4c4b4cd2 4308
96d887e8
PH
4309struct minimal_symbol *
4310ada_lookup_simple_minsym (const char *name)
4c4b4cd2 4311{
4c4b4cd2 4312 struct objfile *objfile;
96d887e8
PH
4313 struct minimal_symbol *msymbol;
4314 int wild_match;
4c4b4cd2 4315
96d887e8 4316 if (strncmp (name, "standard__", sizeof ("standard__") - 1) == 0)
4c4b4cd2 4317 {
96d887e8 4318 name += sizeof ("standard__") - 1;
4c4b4cd2 4319 wild_match = 0;
4c4b4cd2
PH
4320 }
4321 else
96d887e8 4322 wild_match = (strstr (name, "__") == NULL);
4c4b4cd2 4323
96d887e8
PH
4324 ALL_MSYMBOLS (objfile, msymbol)
4325 {
40658b94 4326 if (match_name (SYMBOL_LINKAGE_NAME (msymbol), name, wild_match)
96d887e8
PH
4327 && MSYMBOL_TYPE (msymbol) != mst_solib_trampoline)
4328 return msymbol;
4329 }
4c4b4cd2 4330
96d887e8
PH
4331 return NULL;
4332}
4c4b4cd2 4333
96d887e8
PH
4334/* For all subprograms that statically enclose the subprogram of the
4335 selected frame, add symbols matching identifier NAME in DOMAIN
4336 and their blocks to the list of data in OBSTACKP, as for
4337 ada_add_block_symbols (q.v.). If WILD, treat as NAME with a
4338 wildcard prefix. */
4c4b4cd2 4339
96d887e8
PH
4340static void
4341add_symbols_from_enclosing_procs (struct obstack *obstackp,
76a01679 4342 const char *name, domain_enum namespace,
96d887e8
PH
4343 int wild_match)
4344{
96d887e8 4345}
14f9c5c9 4346
96d887e8
PH
4347/* True if TYPE is definitely an artificial type supplied to a symbol
4348 for which no debugging information was given in the symbol file. */
14f9c5c9 4349
96d887e8
PH
4350static int
4351is_nondebugging_type (struct type *type)
4352{
4353 char *name = ada_type_name (type);
5b4ee69b 4354
96d887e8
PH
4355 return (name != NULL && strcmp (name, "<variable, no debug info>") == 0);
4356}
4c4b4cd2 4357
96d887e8
PH
4358/* Remove any non-debugging symbols in SYMS[0 .. NSYMS-1] that definitely
4359 duplicate other symbols in the list (The only case I know of where
4360 this happens is when object files containing stabs-in-ecoff are
4361 linked with files containing ordinary ecoff debugging symbols (or no
4362 debugging symbols)). Modifies SYMS to squeeze out deleted entries.
4363 Returns the number of items in the modified list. */
4c4b4cd2 4364
96d887e8
PH
4365static int
4366remove_extra_symbols (struct ada_symbol_info *syms, int nsyms)
4367{
4368 int i, j;
4c4b4cd2 4369
96d887e8
PH
4370 i = 0;
4371 while (i < nsyms)
4372 {
339c13b6
JB
4373 int remove = 0;
4374
4375 /* If two symbols have the same name and one of them is a stub type,
4376 the get rid of the stub. */
4377
4378 if (TYPE_STUB (SYMBOL_TYPE (syms[i].sym))
4379 && SYMBOL_LINKAGE_NAME (syms[i].sym) != NULL)
4380 {
4381 for (j = 0; j < nsyms; j++)
4382 {
4383 if (j != i
4384 && !TYPE_STUB (SYMBOL_TYPE (syms[j].sym))
4385 && SYMBOL_LINKAGE_NAME (syms[j].sym) != NULL
4386 && strcmp (SYMBOL_LINKAGE_NAME (syms[i].sym),
4387 SYMBOL_LINKAGE_NAME (syms[j].sym)) == 0)
4388 remove = 1;
4389 }
4390 }
4391
4392 /* Two symbols with the same name, same class and same address
4393 should be identical. */
4394
4395 else if (SYMBOL_LINKAGE_NAME (syms[i].sym) != NULL
96d887e8
PH
4396 && SYMBOL_CLASS (syms[i].sym) == LOC_STATIC
4397 && is_nondebugging_type (SYMBOL_TYPE (syms[i].sym)))
4398 {
4399 for (j = 0; j < nsyms; j += 1)
4400 {
4401 if (i != j
4402 && SYMBOL_LINKAGE_NAME (syms[j].sym) != NULL
4403 && strcmp (SYMBOL_LINKAGE_NAME (syms[i].sym),
76a01679 4404 SYMBOL_LINKAGE_NAME (syms[j].sym)) == 0
96d887e8
PH
4405 && SYMBOL_CLASS (syms[i].sym) == SYMBOL_CLASS (syms[j].sym)
4406 && SYMBOL_VALUE_ADDRESS (syms[i].sym)
4407 == SYMBOL_VALUE_ADDRESS (syms[j].sym))
339c13b6 4408 remove = 1;
4c4b4cd2 4409 }
4c4b4cd2 4410 }
339c13b6
JB
4411
4412 if (remove)
4413 {
4414 for (j = i + 1; j < nsyms; j += 1)
4415 syms[j - 1] = syms[j];
4416 nsyms -= 1;
4417 }
4418
96d887e8 4419 i += 1;
14f9c5c9 4420 }
96d887e8 4421 return nsyms;
14f9c5c9
AS
4422}
4423
96d887e8
PH
4424/* Given a type that corresponds to a renaming entity, use the type name
4425 to extract the scope (package name or function name, fully qualified,
4426 and following the GNAT encoding convention) where this renaming has been
4427 defined. The string returned needs to be deallocated after use. */
4c4b4cd2 4428
96d887e8
PH
4429static char *
4430xget_renaming_scope (struct type *renaming_type)
14f9c5c9 4431{
96d887e8 4432 /* The renaming types adhere to the following convention:
0963b4bd 4433 <scope>__<rename>___<XR extension>.
96d887e8
PH
4434 So, to extract the scope, we search for the "___XR" extension,
4435 and then backtrack until we find the first "__". */
76a01679 4436
96d887e8
PH
4437 const char *name = type_name_no_tag (renaming_type);
4438 char *suffix = strstr (name, "___XR");
4439 char *last;
4440 int scope_len;
4441 char *scope;
14f9c5c9 4442
96d887e8
PH
4443 /* Now, backtrack a bit until we find the first "__". Start looking
4444 at suffix - 3, as the <rename> part is at least one character long. */
14f9c5c9 4445
96d887e8
PH
4446 for (last = suffix - 3; last > name; last--)
4447 if (last[0] == '_' && last[1] == '_')
4448 break;
76a01679 4449
96d887e8 4450 /* Make a copy of scope and return it. */
14f9c5c9 4451
96d887e8
PH
4452 scope_len = last - name;
4453 scope = (char *) xmalloc ((scope_len + 1) * sizeof (char));
14f9c5c9 4454
96d887e8
PH
4455 strncpy (scope, name, scope_len);
4456 scope[scope_len] = '\0';
4c4b4cd2 4457
96d887e8 4458 return scope;
4c4b4cd2
PH
4459}
4460
96d887e8 4461/* Return nonzero if NAME corresponds to a package name. */
4c4b4cd2 4462
96d887e8
PH
4463static int
4464is_package_name (const char *name)
4c4b4cd2 4465{
96d887e8
PH
4466 /* Here, We take advantage of the fact that no symbols are generated
4467 for packages, while symbols are generated for each function.
4468 So the condition for NAME represent a package becomes equivalent
4469 to NAME not existing in our list of symbols. There is only one
4470 small complication with library-level functions (see below). */
4c4b4cd2 4471
96d887e8 4472 char *fun_name;
76a01679 4473
96d887e8
PH
4474 /* If it is a function that has not been defined at library level,
4475 then we should be able to look it up in the symbols. */
4476 if (standard_lookup (name, NULL, VAR_DOMAIN) != NULL)
4477 return 0;
14f9c5c9 4478
96d887e8
PH
4479 /* Library-level function names start with "_ada_". See if function
4480 "_ada_" followed by NAME can be found. */
14f9c5c9 4481
96d887e8 4482 /* Do a quick check that NAME does not contain "__", since library-level
e1d5a0d2 4483 functions names cannot contain "__" in them. */
96d887e8
PH
4484 if (strstr (name, "__") != NULL)
4485 return 0;
4c4b4cd2 4486
b435e160 4487 fun_name = xstrprintf ("_ada_%s", name);
14f9c5c9 4488
96d887e8
PH
4489 return (standard_lookup (fun_name, NULL, VAR_DOMAIN) == NULL);
4490}
14f9c5c9 4491
96d887e8 4492/* Return nonzero if SYM corresponds to a renaming entity that is
aeb5907d 4493 not visible from FUNCTION_NAME. */
14f9c5c9 4494
96d887e8 4495static int
aeb5907d 4496old_renaming_is_invisible (const struct symbol *sym, char *function_name)
96d887e8 4497{
aeb5907d
JB
4498 char *scope;
4499
4500 if (SYMBOL_CLASS (sym) != LOC_TYPEDEF)
4501 return 0;
4502
4503 scope = xget_renaming_scope (SYMBOL_TYPE (sym));
d2e4a39e 4504
96d887e8 4505 make_cleanup (xfree, scope);
14f9c5c9 4506
96d887e8
PH
4507 /* If the rename has been defined in a package, then it is visible. */
4508 if (is_package_name (scope))
aeb5907d 4509 return 0;
14f9c5c9 4510
96d887e8
PH
4511 /* Check that the rename is in the current function scope by checking
4512 that its name starts with SCOPE. */
76a01679 4513
96d887e8
PH
4514 /* If the function name starts with "_ada_", it means that it is
4515 a library-level function. Strip this prefix before doing the
4516 comparison, as the encoding for the renaming does not contain
4517 this prefix. */
4518 if (strncmp (function_name, "_ada_", 5) == 0)
4519 function_name += 5;
f26caa11 4520
aeb5907d 4521 return (strncmp (function_name, scope, strlen (scope)) != 0);
f26caa11
PH
4522}
4523
aeb5907d
JB
4524/* Remove entries from SYMS that corresponds to a renaming entity that
4525 is not visible from the function associated with CURRENT_BLOCK or
4526 that is superfluous due to the presence of more specific renaming
4527 information. Places surviving symbols in the initial entries of
4528 SYMS and returns the number of surviving symbols.
96d887e8
PH
4529
4530 Rationale:
aeb5907d
JB
4531 First, in cases where an object renaming is implemented as a
4532 reference variable, GNAT may produce both the actual reference
4533 variable and the renaming encoding. In this case, we discard the
4534 latter.
4535
4536 Second, GNAT emits a type following a specified encoding for each renaming
96d887e8
PH
4537 entity. Unfortunately, STABS currently does not support the definition
4538 of types that are local to a given lexical block, so all renamings types
4539 are emitted at library level. As a consequence, if an application
4540 contains two renaming entities using the same name, and a user tries to
4541 print the value of one of these entities, the result of the ada symbol
4542 lookup will also contain the wrong renaming type.
f26caa11 4543
96d887e8
PH
4544 This function partially covers for this limitation by attempting to
4545 remove from the SYMS list renaming symbols that should be visible
4546 from CURRENT_BLOCK. However, there does not seem be a 100% reliable
4547 method with the current information available. The implementation
4548 below has a couple of limitations (FIXME: brobecker-2003-05-12):
4549
4550 - When the user tries to print a rename in a function while there
4551 is another rename entity defined in a package: Normally, the
4552 rename in the function has precedence over the rename in the
4553 package, so the latter should be removed from the list. This is
4554 currently not the case.
4555
4556 - This function will incorrectly remove valid renames if
4557 the CURRENT_BLOCK corresponds to a function which symbol name
4558 has been changed by an "Export" pragma. As a consequence,
4559 the user will be unable to print such rename entities. */
4c4b4cd2 4560
14f9c5c9 4561static int
aeb5907d
JB
4562remove_irrelevant_renamings (struct ada_symbol_info *syms,
4563 int nsyms, const struct block *current_block)
4c4b4cd2
PH
4564{
4565 struct symbol *current_function;
4566 char *current_function_name;
4567 int i;
aeb5907d
JB
4568 int is_new_style_renaming;
4569
4570 /* If there is both a renaming foo___XR... encoded as a variable and
4571 a simple variable foo in the same block, discard the latter.
0963b4bd 4572 First, zero out such symbols, then compress. */
aeb5907d
JB
4573 is_new_style_renaming = 0;
4574 for (i = 0; i < nsyms; i += 1)
4575 {
4576 struct symbol *sym = syms[i].sym;
4577 struct block *block = syms[i].block;
4578 const char *name;
4579 const char *suffix;
4580
4581 if (sym == NULL || SYMBOL_CLASS (sym) == LOC_TYPEDEF)
4582 continue;
4583 name = SYMBOL_LINKAGE_NAME (sym);
4584 suffix = strstr (name, "___XR");
4585
4586 if (suffix != NULL)
4587 {
4588 int name_len = suffix - name;
4589 int j;
5b4ee69b 4590
aeb5907d
JB
4591 is_new_style_renaming = 1;
4592 for (j = 0; j < nsyms; j += 1)
4593 if (i != j && syms[j].sym != NULL
4594 && strncmp (name, SYMBOL_LINKAGE_NAME (syms[j].sym),
4595 name_len) == 0
4596 && block == syms[j].block)
4597 syms[j].sym = NULL;
4598 }
4599 }
4600 if (is_new_style_renaming)
4601 {
4602 int j, k;
4603
4604 for (j = k = 0; j < nsyms; j += 1)
4605 if (syms[j].sym != NULL)
4606 {
4607 syms[k] = syms[j];
4608 k += 1;
4609 }
4610 return k;
4611 }
4c4b4cd2
PH
4612
4613 /* Extract the function name associated to CURRENT_BLOCK.
4614 Abort if unable to do so. */
76a01679 4615
4c4b4cd2
PH
4616 if (current_block == NULL)
4617 return nsyms;
76a01679 4618
7f0df278 4619 current_function = block_linkage_function (current_block);
4c4b4cd2
PH
4620 if (current_function == NULL)
4621 return nsyms;
4622
4623 current_function_name = SYMBOL_LINKAGE_NAME (current_function);
4624 if (current_function_name == NULL)
4625 return nsyms;
4626
4627 /* Check each of the symbols, and remove it from the list if it is
4628 a type corresponding to a renaming that is out of the scope of
4629 the current block. */
4630
4631 i = 0;
4632 while (i < nsyms)
4633 {
aeb5907d
JB
4634 if (ada_parse_renaming (syms[i].sym, NULL, NULL, NULL)
4635 == ADA_OBJECT_RENAMING
4636 && old_renaming_is_invisible (syms[i].sym, current_function_name))
4c4b4cd2
PH
4637 {
4638 int j;
5b4ee69b 4639
aeb5907d 4640 for (j = i + 1; j < nsyms; j += 1)
76a01679 4641 syms[j - 1] = syms[j];
4c4b4cd2
PH
4642 nsyms -= 1;
4643 }
4644 else
4645 i += 1;
4646 }
4647
4648 return nsyms;
4649}
4650
339c13b6
JB
4651/* Add to OBSTACKP all symbols from BLOCK (and its super-blocks)
4652 whose name and domain match NAME and DOMAIN respectively.
4653 If no match was found, then extend the search to "enclosing"
4654 routines (in other words, if we're inside a nested function,
4655 search the symbols defined inside the enclosing functions).
4656
4657 Note: This function assumes that OBSTACKP has 0 (zero) element in it. */
4658
4659static void
4660ada_add_local_symbols (struct obstack *obstackp, const char *name,
4661 struct block *block, domain_enum domain,
4662 int wild_match)
4663{
4664 int block_depth = 0;
4665
4666 while (block != NULL)
4667 {
4668 block_depth += 1;
4669 ada_add_block_symbols (obstackp, block, name, domain, NULL, wild_match);
4670
4671 /* If we found a non-function match, assume that's the one. */
4672 if (is_nonfunction (defns_collected (obstackp, 0),
4673 num_defns_collected (obstackp)))
4674 return;
4675
4676 block = BLOCK_SUPERBLOCK (block);
4677 }
4678
4679 /* If no luck so far, try to find NAME as a local symbol in some lexically
4680 enclosing subprogram. */
4681 if (num_defns_collected (obstackp) == 0 && block_depth > 2)
4682 add_symbols_from_enclosing_procs (obstackp, name, domain, wild_match);
4683}
4684
ccefe4c4 4685/* An object of this type is used as the user_data argument when
40658b94 4686 calling the map_matching_symbols method. */
ccefe4c4 4687
40658b94 4688struct match_data
ccefe4c4 4689{
40658b94 4690 struct objfile *objfile;
ccefe4c4 4691 struct obstack *obstackp;
40658b94
PH
4692 struct symbol *arg_sym;
4693 int found_sym;
ccefe4c4
TT
4694};
4695
40658b94
PH
4696/* A callback for add_matching_symbols that adds SYM, found in BLOCK,
4697 to a list of symbols. DATA0 is a pointer to a struct match_data *
4698 containing the obstack that collects the symbol list, the file that SYM
4699 must come from, a flag indicating whether a non-argument symbol has
4700 been found in the current block, and the last argument symbol
4701 passed in SYM within the current block (if any). When SYM is null,
4702 marking the end of a block, the argument symbol is added if no
4703 other has been found. */
ccefe4c4 4704
40658b94
PH
4705static int
4706aux_add_nonlocal_symbols (struct block *block, struct symbol *sym, void *data0)
ccefe4c4 4707{
40658b94
PH
4708 struct match_data *data = (struct match_data *) data0;
4709
4710 if (sym == NULL)
4711 {
4712 if (!data->found_sym && data->arg_sym != NULL)
4713 add_defn_to_vec (data->obstackp,
4714 fixup_symbol_section (data->arg_sym, data->objfile),
4715 block);
4716 data->found_sym = 0;
4717 data->arg_sym = NULL;
4718 }
4719 else
4720 {
4721 if (SYMBOL_CLASS (sym) == LOC_UNRESOLVED)
4722 return 0;
4723 else if (SYMBOL_IS_ARGUMENT (sym))
4724 data->arg_sym = sym;
4725 else
4726 {
4727 data->found_sym = 1;
4728 add_defn_to_vec (data->obstackp,
4729 fixup_symbol_section (sym, data->objfile),
4730 block);
4731 }
4732 }
4733 return 0;
4734}
4735
4736/* Compare STRING1 to STRING2, with results as for strcmp.
4737 Compatible with strcmp_iw in that strcmp_iw (STRING1, STRING2) <= 0
4738 implies compare_names (STRING1, STRING2) (they may differ as to
4739 what symbols compare equal). */
5b4ee69b 4740
40658b94
PH
4741static int
4742compare_names (const char *string1, const char *string2)
4743{
4744 while (*string1 != '\0' && *string2 != '\0')
4745 {
4746 if (isspace (*string1) || isspace (*string2))
4747 return strcmp_iw_ordered (string1, string2);
4748 if (*string1 != *string2)
4749 break;
4750 string1 += 1;
4751 string2 += 1;
4752 }
4753 switch (*string1)
4754 {
4755 case '(':
4756 return strcmp_iw_ordered (string1, string2);
4757 case '_':
4758 if (*string2 == '\0')
4759 {
052874e8 4760 if (is_name_suffix (string1))
40658b94
PH
4761 return 0;
4762 else
4763 return -1;
4764 }
dbb8534f 4765 /* FALLTHROUGH */
40658b94
PH
4766 default:
4767 if (*string2 == '(')
4768 return strcmp_iw_ordered (string1, string2);
4769 else
4770 return *string1 - *string2;
4771 }
ccefe4c4
TT
4772}
4773
339c13b6
JB
4774/* Add to OBSTACKP all non-local symbols whose name and domain match
4775 NAME and DOMAIN respectively. The search is performed on GLOBAL_BLOCK
4776 symbols if GLOBAL is non-zero, or on STATIC_BLOCK symbols otherwise. */
4777
4778static void
40658b94
PH
4779add_nonlocal_symbols (struct obstack *obstackp, const char *name,
4780 domain_enum domain, int global,
4781 int is_wild_match)
339c13b6
JB
4782{
4783 struct objfile *objfile;
40658b94 4784 struct match_data data;
339c13b6 4785
ccefe4c4 4786 data.obstackp = obstackp;
40658b94 4787 data.arg_sym = NULL;
339c13b6 4788
ccefe4c4 4789 ALL_OBJFILES (objfile)
40658b94
PH
4790 {
4791 data.objfile = objfile;
4792
4793 if (is_wild_match)
4794 objfile->sf->qf->map_matching_symbols (name, domain, objfile, global,
4795 aux_add_nonlocal_symbols, &data,
4796 wild_match, NULL);
4797 else
4798 objfile->sf->qf->map_matching_symbols (name, domain, objfile, global,
4799 aux_add_nonlocal_symbols, &data,
4800 full_match, compare_names);
4801 }
4802
4803 if (num_defns_collected (obstackp) == 0 && global && !is_wild_match)
4804 {
4805 ALL_OBJFILES (objfile)
4806 {
4807 char *name1 = alloca (strlen (name) + sizeof ("_ada_"));
4808 strcpy (name1, "_ada_");
4809 strcpy (name1 + sizeof ("_ada_") - 1, name);
4810 data.objfile = objfile;
0963b4bd
MS
4811 objfile->sf->qf->map_matching_symbols (name1, domain,
4812 objfile, global,
4813 aux_add_nonlocal_symbols,
4814 &data,
40658b94
PH
4815 full_match, compare_names);
4816 }
4817 }
339c13b6
JB
4818}
4819
4c4b4cd2
PH
4820/* Find symbols in DOMAIN matching NAME0, in BLOCK0 and enclosing
4821 scope and in global scopes, returning the number of matches. Sets
6c9353d3 4822 *RESULTS to point to a vector of (SYM,BLOCK) tuples,
4c4b4cd2
PH
4823 indicating the symbols found and the blocks and symbol tables (if
4824 any) in which they were found. This vector are transient---good only to
4825 the next call of ada_lookup_symbol_list. Any non-function/non-enumeral
4826 symbol match within the nest of blocks whose innermost member is BLOCK0,
4827 is the one match returned (no other matches in that or
4828 enclosing blocks is returned). If there are any matches in or
4829 surrounding BLOCK0, then these alone are returned. Otherwise, the
4830 search extends to global and file-scope (static) symbol tables.
4831 Names prefixed with "standard__" are handled specially: "standard__"
4832 is first stripped off, and only static and global symbols are searched. */
14f9c5c9
AS
4833
4834int
4c4b4cd2 4835ada_lookup_symbol_list (const char *name0, const struct block *block0,
76a01679
JB
4836 domain_enum namespace,
4837 struct ada_symbol_info **results)
14f9c5c9
AS
4838{
4839 struct symbol *sym;
14f9c5c9 4840 struct block *block;
4c4b4cd2 4841 const char *name;
4c4b4cd2 4842 int wild_match;
14f9c5c9 4843 int cacheIfUnique;
4c4b4cd2 4844 int ndefns;
14f9c5c9 4845
4c4b4cd2
PH
4846 obstack_free (&symbol_list_obstack, NULL);
4847 obstack_init (&symbol_list_obstack);
14f9c5c9 4848
14f9c5c9
AS
4849 cacheIfUnique = 0;
4850
4851 /* Search specified block and its superiors. */
4852
4c4b4cd2
PH
4853 wild_match = (strstr (name0, "__") == NULL);
4854 name = name0;
76a01679
JB
4855 block = (struct block *) block0; /* FIXME: No cast ought to be
4856 needed, but adding const will
4857 have a cascade effect. */
339c13b6
JB
4858
4859 /* Special case: If the user specifies a symbol name inside package
4860 Standard, do a non-wild matching of the symbol name without
4861 the "standard__" prefix. This was primarily introduced in order
4862 to allow the user to specifically access the standard exceptions
4863 using, for instance, Standard.Constraint_Error when Constraint_Error
4864 is ambiguous (due to the user defining its own Constraint_Error
4865 entity inside its program). */
4c4b4cd2
PH
4866 if (strncmp (name0, "standard__", sizeof ("standard__") - 1) == 0)
4867 {
4868 wild_match = 0;
4869 block = NULL;
4870 name = name0 + sizeof ("standard__") - 1;
4871 }
4872
339c13b6 4873 /* Check the non-global symbols. If we have ANY match, then we're done. */
14f9c5c9 4874
339c13b6
JB
4875 ada_add_local_symbols (&symbol_list_obstack, name, block, namespace,
4876 wild_match);
4c4b4cd2 4877 if (num_defns_collected (&symbol_list_obstack) > 0)
14f9c5c9 4878 goto done;
d2e4a39e 4879
339c13b6
JB
4880 /* No non-global symbols found. Check our cache to see if we have
4881 already performed this search before. If we have, then return
4882 the same result. */
4883
14f9c5c9 4884 cacheIfUnique = 1;
2570f2b7 4885 if (lookup_cached_symbol (name0, namespace, &sym, &block))
4c4b4cd2
PH
4886 {
4887 if (sym != NULL)
2570f2b7 4888 add_defn_to_vec (&symbol_list_obstack, sym, block);
4c4b4cd2
PH
4889 goto done;
4890 }
14f9c5c9 4891
339c13b6
JB
4892 /* Search symbols from all global blocks. */
4893
40658b94
PH
4894 add_nonlocal_symbols (&symbol_list_obstack, name, namespace, 1,
4895 wild_match);
d2e4a39e 4896
4c4b4cd2 4897 /* Now add symbols from all per-file blocks if we've gotten no hits
339c13b6 4898 (not strictly correct, but perhaps better than an error). */
d2e4a39e 4899
4c4b4cd2 4900 if (num_defns_collected (&symbol_list_obstack) == 0)
40658b94
PH
4901 add_nonlocal_symbols (&symbol_list_obstack, name, namespace, 0,
4902 wild_match);
14f9c5c9 4903
4c4b4cd2
PH
4904done:
4905 ndefns = num_defns_collected (&symbol_list_obstack);
4906 *results = defns_collected (&symbol_list_obstack, 1);
4907
4908 ndefns = remove_extra_symbols (*results, ndefns);
4909
d2e4a39e 4910 if (ndefns == 0)
2570f2b7 4911 cache_symbol (name0, namespace, NULL, NULL);
14f9c5c9 4912
4c4b4cd2 4913 if (ndefns == 1 && cacheIfUnique)
2570f2b7 4914 cache_symbol (name0, namespace, (*results)[0].sym, (*results)[0].block);
14f9c5c9 4915
aeb5907d 4916 ndefns = remove_irrelevant_renamings (*results, ndefns, block0);
14f9c5c9 4917
14f9c5c9
AS
4918 return ndefns;
4919}
4920
d2e4a39e 4921struct symbol *
aeb5907d 4922ada_lookup_encoded_symbol (const char *name, const struct block *block0,
21b556f4 4923 domain_enum namespace, struct block **block_found)
14f9c5c9 4924{
4c4b4cd2 4925 struct ada_symbol_info *candidates;
14f9c5c9
AS
4926 int n_candidates;
4927
aeb5907d 4928 n_candidates = ada_lookup_symbol_list (name, block0, namespace, &candidates);
14f9c5c9
AS
4929
4930 if (n_candidates == 0)
4931 return NULL;
4c4b4cd2 4932
aeb5907d
JB
4933 if (block_found != NULL)
4934 *block_found = candidates[0].block;
4c4b4cd2 4935
21b556f4 4936 return fixup_symbol_section (candidates[0].sym, NULL);
aeb5907d
JB
4937}
4938
4939/* Return a symbol in DOMAIN matching NAME, in BLOCK0 and enclosing
4940 scope and in global scopes, or NULL if none. NAME is folded and
4941 encoded first. Otherwise, the result is as for ada_lookup_symbol_list,
0963b4bd 4942 choosing the first symbol if there are multiple choices.
aeb5907d
JB
4943 *IS_A_FIELD_OF_THIS is set to 0 and *SYMTAB is set to the symbol
4944 table in which the symbol was found (in both cases, these
4945 assignments occur only if the pointers are non-null). */
4946struct symbol *
4947ada_lookup_symbol (const char *name, const struct block *block0,
21b556f4 4948 domain_enum namespace, int *is_a_field_of_this)
aeb5907d
JB
4949{
4950 if (is_a_field_of_this != NULL)
4951 *is_a_field_of_this = 0;
4952
4953 return
4954 ada_lookup_encoded_symbol (ada_encode (ada_fold_name (name)),
21b556f4 4955 block0, namespace, NULL);
4c4b4cd2 4956}
14f9c5c9 4957
4c4b4cd2
PH
4958static struct symbol *
4959ada_lookup_symbol_nonlocal (const char *name,
76a01679 4960 const struct block *block,
21b556f4 4961 const domain_enum domain)
4c4b4cd2 4962{
94af9270 4963 return ada_lookup_symbol (name, block_static_block (block), domain, NULL);
14f9c5c9
AS
4964}
4965
4966
4c4b4cd2
PH
4967/* True iff STR is a possible encoded suffix of a normal Ada name
4968 that is to be ignored for matching purposes. Suffixes of parallel
4969 names (e.g., XVE) are not included here. Currently, the possible suffixes
5823c3ef 4970 are given by any of the regular expressions:
4c4b4cd2 4971
babe1480
JB
4972 [.$][0-9]+ [nested subprogram suffix, on platforms such as GNU/Linux]
4973 ___[0-9]+ [nested subprogram suffix, on platforms such as HP/UX]
4974 _E[0-9]+[bs]$ [protected object entry suffixes]
61ee279c 4975 (X[nb]*)?((\$|__)[0-9](_?[0-9]+)|___(JM|LJM|X([FDBUP].*|R[^T]?)))?$
babe1480
JB
4976
4977 Also, any leading "__[0-9]+" sequence is skipped before the suffix
4978 match is performed. This sequence is used to differentiate homonyms,
4979 is an optional part of a valid name suffix. */
4c4b4cd2 4980
14f9c5c9 4981static int
d2e4a39e 4982is_name_suffix (const char *str)
14f9c5c9
AS
4983{
4984 int k;
4c4b4cd2
PH
4985 const char *matching;
4986 const int len = strlen (str);
4987
babe1480
JB
4988 /* Skip optional leading __[0-9]+. */
4989
4c4b4cd2
PH
4990 if (len > 3 && str[0] == '_' && str[1] == '_' && isdigit (str[2]))
4991 {
babe1480
JB
4992 str += 3;
4993 while (isdigit (str[0]))
4994 str += 1;
4c4b4cd2 4995 }
babe1480
JB
4996
4997 /* [.$][0-9]+ */
4c4b4cd2 4998
babe1480 4999 if (str[0] == '.' || str[0] == '$')
4c4b4cd2 5000 {
babe1480 5001 matching = str + 1;
4c4b4cd2
PH
5002 while (isdigit (matching[0]))
5003 matching += 1;
5004 if (matching[0] == '\0')
5005 return 1;
5006 }
5007
5008 /* ___[0-9]+ */
babe1480 5009
4c4b4cd2
PH
5010 if (len > 3 && str[0] == '_' && str[1] == '_' && str[2] == '_')
5011 {
5012 matching = str + 3;
5013 while (isdigit (matching[0]))
5014 matching += 1;
5015 if (matching[0] == '\0')
5016 return 1;
5017 }
5018
529cad9c
PH
5019#if 0
5020 /* FIXME: brobecker/2005-09-23: Protected Object subprograms end
0963b4bd
MS
5021 with a N at the end. Unfortunately, the compiler uses the same
5022 convention for other internal types it creates. So treating
529cad9c 5023 all entity names that end with an "N" as a name suffix causes
0963b4bd
MS
5024 some regressions. For instance, consider the case of an enumerated
5025 type. To support the 'Image attribute, it creates an array whose
529cad9c
PH
5026 name ends with N.
5027 Having a single character like this as a suffix carrying some
0963b4bd 5028 information is a bit risky. Perhaps we should change the encoding
529cad9c
PH
5029 to be something like "_N" instead. In the meantime, do not do
5030 the following check. */
5031 /* Protected Object Subprograms */
5032 if (len == 1 && str [0] == 'N')
5033 return 1;
5034#endif
5035
5036 /* _E[0-9]+[bs]$ */
5037 if (len > 3 && str[0] == '_' && str [1] == 'E' && isdigit (str[2]))
5038 {
5039 matching = str + 3;
5040 while (isdigit (matching[0]))
5041 matching += 1;
5042 if ((matching[0] == 'b' || matching[0] == 's')
5043 && matching [1] == '\0')
5044 return 1;
5045 }
5046
4c4b4cd2
PH
5047 /* ??? We should not modify STR directly, as we are doing below. This
5048 is fine in this case, but may become problematic later if we find
5049 that this alternative did not work, and want to try matching
5050 another one from the begining of STR. Since we modified it, we
5051 won't be able to find the begining of the string anymore! */
14f9c5c9
AS
5052 if (str[0] == 'X')
5053 {
5054 str += 1;
d2e4a39e 5055 while (str[0] != '_' && str[0] != '\0')
4c4b4cd2
PH
5056 {
5057 if (str[0] != 'n' && str[0] != 'b')
5058 return 0;
5059 str += 1;
5060 }
14f9c5c9 5061 }
babe1480 5062
14f9c5c9
AS
5063 if (str[0] == '\000')
5064 return 1;
babe1480 5065
d2e4a39e 5066 if (str[0] == '_')
14f9c5c9
AS
5067 {
5068 if (str[1] != '_' || str[2] == '\000')
4c4b4cd2 5069 return 0;
d2e4a39e 5070 if (str[2] == '_')
4c4b4cd2 5071 {
61ee279c
PH
5072 if (strcmp (str + 3, "JM") == 0)
5073 return 1;
5074 /* FIXME: brobecker/2004-09-30: GNAT will soon stop using
5075 the LJM suffix in favor of the JM one. But we will
5076 still accept LJM as a valid suffix for a reasonable
5077 amount of time, just to allow ourselves to debug programs
5078 compiled using an older version of GNAT. */
4c4b4cd2
PH
5079 if (strcmp (str + 3, "LJM") == 0)
5080 return 1;
5081 if (str[3] != 'X')
5082 return 0;
1265e4aa
JB
5083 if (str[4] == 'F' || str[4] == 'D' || str[4] == 'B'
5084 || str[4] == 'U' || str[4] == 'P')
4c4b4cd2
PH
5085 return 1;
5086 if (str[4] == 'R' && str[5] != 'T')
5087 return 1;
5088 return 0;
5089 }
5090 if (!isdigit (str[2]))
5091 return 0;
5092 for (k = 3; str[k] != '\0'; k += 1)
5093 if (!isdigit (str[k]) && str[k] != '_')
5094 return 0;
14f9c5c9
AS
5095 return 1;
5096 }
4c4b4cd2 5097 if (str[0] == '$' && isdigit (str[1]))
14f9c5c9 5098 {
4c4b4cd2
PH
5099 for (k = 2; str[k] != '\0'; k += 1)
5100 if (!isdigit (str[k]) && str[k] != '_')
5101 return 0;
14f9c5c9
AS
5102 return 1;
5103 }
5104 return 0;
5105}
d2e4a39e 5106
aeb5907d
JB
5107/* Return non-zero if the string starting at NAME and ending before
5108 NAME_END contains no capital letters. */
529cad9c
PH
5109
5110static int
5111is_valid_name_for_wild_match (const char *name0)
5112{
5113 const char *decoded_name = ada_decode (name0);
5114 int i;
5115
5823c3ef
JB
5116 /* If the decoded name starts with an angle bracket, it means that
5117 NAME0 does not follow the GNAT encoding format. It should then
5118 not be allowed as a possible wild match. */
5119 if (decoded_name[0] == '<')
5120 return 0;
5121
529cad9c
PH
5122 for (i=0; decoded_name[i] != '\0'; i++)
5123 if (isalpha (decoded_name[i]) && !islower (decoded_name[i]))
5124 return 0;
5125
5126 return 1;
5127}
5128
73589123
PH
5129/* Advance *NAMEP to next occurrence of TARGET0 in the string NAME0
5130 that could start a simple name. Assumes that *NAMEP points into
5131 the string beginning at NAME0. */
4c4b4cd2 5132
14f9c5c9 5133static int
73589123 5134advance_wild_match (const char **namep, const char *name0, int target0)
14f9c5c9 5135{
73589123 5136 const char *name = *namep;
5b4ee69b 5137
5823c3ef 5138 while (1)
14f9c5c9 5139 {
aa27d0b3 5140 int t0, t1;
73589123
PH
5141
5142 t0 = *name;
5143 if (t0 == '_')
5144 {
5145 t1 = name[1];
5146 if ((t1 >= 'a' && t1 <= 'z') || (t1 >= '0' && t1 <= '9'))
5147 {
5148 name += 1;
5149 if (name == name0 + 5 && strncmp (name0, "_ada", 4) == 0)
5150 break;
5151 else
5152 name += 1;
5153 }
aa27d0b3
JB
5154 else if (t1 == '_' && ((name[2] >= 'a' && name[2] <= 'z')
5155 || name[2] == target0))
73589123
PH
5156 {
5157 name += 2;
5158 break;
5159 }
5160 else
5161 return 0;
5162 }
5163 else if ((t0 >= 'a' && t0 <= 'z') || (t0 >= '0' && t0 <= '9'))
5164 name += 1;
5165 else
5823c3ef 5166 return 0;
73589123
PH
5167 }
5168
5169 *namep = name;
5170 return 1;
5171}
5172
5173/* Return 0 iff NAME encodes a name of the form prefix.PATN. Ignores any
5174 informational suffixes of NAME (i.e., for which is_name_suffix is
5175 true). Assumes that PATN is a lower-cased Ada simple name. */
5176
5177static int
5178wild_match (const char *name, const char *patn)
5179{
5180 const char *p, *n;
5181 const char *name0 = name;
5182
5183 while (1)
5184 {
5185 const char *match = name;
5186
5187 if (*name == *patn)
5188 {
5189 for (name += 1, p = patn + 1; *p != '\0'; name += 1, p += 1)
5190 if (*p != *name)
5191 break;
5192 if (*p == '\0' && is_name_suffix (name))
5193 return match != name0 && !is_valid_name_for_wild_match (name0);
5194
5195 if (name[-1] == '_')
5196 name -= 1;
5197 }
5198 if (!advance_wild_match (&name, name0, *patn))
5199 return 1;
96d887e8 5200 }
96d887e8
PH
5201}
5202
40658b94
PH
5203/* Returns 0 iff symbol name SYM_NAME matches SEARCH_NAME, apart from
5204 informational suffix. */
5205
c4d840bd
PH
5206static int
5207full_match (const char *sym_name, const char *search_name)
5208{
40658b94 5209 return !match_name (sym_name, search_name, 0);
c4d840bd
PH
5210}
5211
5212
96d887e8
PH
5213/* Add symbols from BLOCK matching identifier NAME in DOMAIN to
5214 vector *defn_symbols, updating the list of symbols in OBSTACKP
0963b4bd 5215 (if necessary). If WILD, treat as NAME with a wildcard prefix.
96d887e8
PH
5216 OBJFILE is the section containing BLOCK.
5217 SYMTAB is recorded with each symbol added. */
5218
5219static void
5220ada_add_block_symbols (struct obstack *obstackp,
76a01679 5221 struct block *block, const char *name,
96d887e8 5222 domain_enum domain, struct objfile *objfile,
2570f2b7 5223 int wild)
96d887e8
PH
5224{
5225 struct dict_iterator iter;
5226 int name_len = strlen (name);
5227 /* A matching argument symbol, if any. */
5228 struct symbol *arg_sym;
5229 /* Set true when we find a matching non-argument symbol. */
5230 int found_sym;
5231 struct symbol *sym;
5232
5233 arg_sym = NULL;
5234 found_sym = 0;
5235 if (wild)
5236 {
c4d840bd
PH
5237 for (sym = dict_iter_match_first (BLOCK_DICT (block), name,
5238 wild_match, &iter);
5239 sym != NULL; sym = dict_iter_match_next (name, wild_match, &iter))
76a01679 5240 {
5eeb2539
AR
5241 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
5242 SYMBOL_DOMAIN (sym), domain)
73589123 5243 && wild_match (SYMBOL_LINKAGE_NAME (sym), name) == 0)
76a01679 5244 {
2a2d4dc3
AS
5245 if (SYMBOL_CLASS (sym) == LOC_UNRESOLVED)
5246 continue;
5247 else if (SYMBOL_IS_ARGUMENT (sym))
5248 arg_sym = sym;
5249 else
5250 {
76a01679
JB
5251 found_sym = 1;
5252 add_defn_to_vec (obstackp,
5253 fixup_symbol_section (sym, objfile),
2570f2b7 5254 block);
76a01679
JB
5255 }
5256 }
5257 }
96d887e8
PH
5258 }
5259 else
5260 {
c4d840bd 5261 for (sym = dict_iter_match_first (BLOCK_DICT (block), name,
40658b94 5262 full_match, &iter);
c4d840bd 5263 sym != NULL; sym = dict_iter_match_next (name, full_match, &iter))
76a01679 5264 {
5eeb2539
AR
5265 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
5266 SYMBOL_DOMAIN (sym), domain))
76a01679 5267 {
c4d840bd
PH
5268 if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED)
5269 {
5270 if (SYMBOL_IS_ARGUMENT (sym))
5271 arg_sym = sym;
5272 else
2a2d4dc3 5273 {
c4d840bd
PH
5274 found_sym = 1;
5275 add_defn_to_vec (obstackp,
5276 fixup_symbol_section (sym, objfile),
5277 block);
2a2d4dc3 5278 }
c4d840bd 5279 }
76a01679
JB
5280 }
5281 }
96d887e8
PH
5282 }
5283
5284 if (!found_sym && arg_sym != NULL)
5285 {
76a01679
JB
5286 add_defn_to_vec (obstackp,
5287 fixup_symbol_section (arg_sym, objfile),
2570f2b7 5288 block);
96d887e8
PH
5289 }
5290
5291 if (!wild)
5292 {
5293 arg_sym = NULL;
5294 found_sym = 0;
5295
5296 ALL_BLOCK_SYMBOLS (block, iter, sym)
76a01679 5297 {
5eeb2539
AR
5298 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
5299 SYMBOL_DOMAIN (sym), domain))
76a01679
JB
5300 {
5301 int cmp;
5302
5303 cmp = (int) '_' - (int) SYMBOL_LINKAGE_NAME (sym)[0];
5304 if (cmp == 0)
5305 {
5306 cmp = strncmp ("_ada_", SYMBOL_LINKAGE_NAME (sym), 5);
5307 if (cmp == 0)
5308 cmp = strncmp (name, SYMBOL_LINKAGE_NAME (sym) + 5,
5309 name_len);
5310 }
5311
5312 if (cmp == 0
5313 && is_name_suffix (SYMBOL_LINKAGE_NAME (sym) + name_len + 5))
5314 {
2a2d4dc3
AS
5315 if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED)
5316 {
5317 if (SYMBOL_IS_ARGUMENT (sym))
5318 arg_sym = sym;
5319 else
5320 {
5321 found_sym = 1;
5322 add_defn_to_vec (obstackp,
5323 fixup_symbol_section (sym, objfile),
5324 block);
5325 }
5326 }
76a01679
JB
5327 }
5328 }
76a01679 5329 }
96d887e8
PH
5330
5331 /* NOTE: This really shouldn't be needed for _ada_ symbols.
5332 They aren't parameters, right? */
5333 if (!found_sym && arg_sym != NULL)
5334 {
5335 add_defn_to_vec (obstackp,
76a01679 5336 fixup_symbol_section (arg_sym, objfile),
2570f2b7 5337 block);
96d887e8
PH
5338 }
5339 }
5340}
5341\f
41d27058
JB
5342
5343 /* Symbol Completion */
5344
5345/* If SYM_NAME is a completion candidate for TEXT, return this symbol
5346 name in a form that's appropriate for the completion. The result
5347 does not need to be deallocated, but is only good until the next call.
5348
5349 TEXT_LEN is equal to the length of TEXT.
5350 Perform a wild match if WILD_MATCH is set.
5351 ENCODED should be set if TEXT represents the start of a symbol name
5352 in its encoded form. */
5353
5354static const char *
5355symbol_completion_match (const char *sym_name,
5356 const char *text, int text_len,
5357 int wild_match, int encoded)
5358{
41d27058
JB
5359 const int verbatim_match = (text[0] == '<');
5360 int match = 0;
5361
5362 if (verbatim_match)
5363 {
5364 /* Strip the leading angle bracket. */
5365 text = text + 1;
5366 text_len--;
5367 }
5368
5369 /* First, test against the fully qualified name of the symbol. */
5370
5371 if (strncmp (sym_name, text, text_len) == 0)
5372 match = 1;
5373
5374 if (match && !encoded)
5375 {
5376 /* One needed check before declaring a positive match is to verify
5377 that iff we are doing a verbatim match, the decoded version
5378 of the symbol name starts with '<'. Otherwise, this symbol name
5379 is not a suitable completion. */
5380 const char *sym_name_copy = sym_name;
5381 int has_angle_bracket;
5382
5383 sym_name = ada_decode (sym_name);
5384 has_angle_bracket = (sym_name[0] == '<');
5385 match = (has_angle_bracket == verbatim_match);
5386 sym_name = sym_name_copy;
5387 }
5388
5389 if (match && !verbatim_match)
5390 {
5391 /* When doing non-verbatim match, another check that needs to
5392 be done is to verify that the potentially matching symbol name
5393 does not include capital letters, because the ada-mode would
5394 not be able to understand these symbol names without the
5395 angle bracket notation. */
5396 const char *tmp;
5397
5398 for (tmp = sym_name; *tmp != '\0' && !isupper (*tmp); tmp++);
5399 if (*tmp != '\0')
5400 match = 0;
5401 }
5402
5403 /* Second: Try wild matching... */
5404
5405 if (!match && wild_match)
5406 {
5407 /* Since we are doing wild matching, this means that TEXT
5408 may represent an unqualified symbol name. We therefore must
5409 also compare TEXT against the unqualified name of the symbol. */
5410 sym_name = ada_unqualified_name (ada_decode (sym_name));
5411
5412 if (strncmp (sym_name, text, text_len) == 0)
5413 match = 1;
5414 }
5415
5416 /* Finally: If we found a mach, prepare the result to return. */
5417
5418 if (!match)
5419 return NULL;
5420
5421 if (verbatim_match)
5422 sym_name = add_angle_brackets (sym_name);
5423
5424 if (!encoded)
5425 sym_name = ada_decode (sym_name);
5426
5427 return sym_name;
5428}
5429
2ba95b9b
JB
5430DEF_VEC_P (char_ptr);
5431
41d27058
JB
5432/* A companion function to ada_make_symbol_completion_list().
5433 Check if SYM_NAME represents a symbol which name would be suitable
5434 to complete TEXT (TEXT_LEN is the length of TEXT), in which case
5435 it is appended at the end of the given string vector SV.
5436
5437 ORIG_TEXT is the string original string from the user command
5438 that needs to be completed. WORD is the entire command on which
5439 completion should be performed. These two parameters are used to
5440 determine which part of the symbol name should be added to the
5441 completion vector.
5442 if WILD_MATCH is set, then wild matching is performed.
5443 ENCODED should be set if TEXT represents a symbol name in its
5444 encoded formed (in which case the completion should also be
5445 encoded). */
5446
5447static void
d6565258 5448symbol_completion_add (VEC(char_ptr) **sv,
41d27058
JB
5449 const char *sym_name,
5450 const char *text, int text_len,
5451 const char *orig_text, const char *word,
5452 int wild_match, int encoded)
5453{
5454 const char *match = symbol_completion_match (sym_name, text, text_len,
5455 wild_match, encoded);
5456 char *completion;
5457
5458 if (match == NULL)
5459 return;
5460
5461 /* We found a match, so add the appropriate completion to the given
5462 string vector. */
5463
5464 if (word == orig_text)
5465 {
5466 completion = xmalloc (strlen (match) + 5);
5467 strcpy (completion, match);
5468 }
5469 else if (word > orig_text)
5470 {
5471 /* Return some portion of sym_name. */
5472 completion = xmalloc (strlen (match) + 5);
5473 strcpy (completion, match + (word - orig_text));
5474 }
5475 else
5476 {
5477 /* Return some of ORIG_TEXT plus sym_name. */
5478 completion = xmalloc (strlen (match) + (orig_text - word) + 5);
5479 strncpy (completion, word, orig_text - word);
5480 completion[orig_text - word] = '\0';
5481 strcat (completion, match);
5482 }
5483
d6565258 5484 VEC_safe_push (char_ptr, *sv, completion);
41d27058
JB
5485}
5486
ccefe4c4
TT
5487/* An object of this type is passed as the user_data argument to the
5488 map_partial_symbol_names method. */
5489struct add_partial_datum
5490{
5491 VEC(char_ptr) **completions;
5492 char *text;
5493 int text_len;
5494 char *text0;
5495 char *word;
5496 int wild_match;
5497 int encoded;
5498};
5499
5500/* A callback for map_partial_symbol_names. */
5501static void
5502ada_add_partial_symbol_completions (const char *name, void *user_data)
5503{
5504 struct add_partial_datum *data = user_data;
5b4ee69b 5505
ccefe4c4
TT
5506 symbol_completion_add (data->completions, name,
5507 data->text, data->text_len, data->text0, data->word,
5508 data->wild_match, data->encoded);
5509}
5510
41d27058
JB
5511/* Return a list of possible symbol names completing TEXT0. The list
5512 is NULL terminated. WORD is the entire command on which completion
5513 is made. */
5514
5515static char **
5516ada_make_symbol_completion_list (char *text0, char *word)
5517{
5518 char *text;
5519 int text_len;
5520 int wild_match;
5521 int encoded;
2ba95b9b 5522 VEC(char_ptr) *completions = VEC_alloc (char_ptr, 128);
41d27058
JB
5523 struct symbol *sym;
5524 struct symtab *s;
41d27058
JB
5525 struct minimal_symbol *msymbol;
5526 struct objfile *objfile;
5527 struct block *b, *surrounding_static_block = 0;
5528 int i;
5529 struct dict_iterator iter;
5530
5531 if (text0[0] == '<')
5532 {
5533 text = xstrdup (text0);
5534 make_cleanup (xfree, text);
5535 text_len = strlen (text);
5536 wild_match = 0;
5537 encoded = 1;
5538 }
5539 else
5540 {
5541 text = xstrdup (ada_encode (text0));
5542 make_cleanup (xfree, text);
5543 text_len = strlen (text);
5544 for (i = 0; i < text_len; i++)
5545 text[i] = tolower (text[i]);
5546
5547 encoded = (strstr (text0, "__") != NULL);
5548 /* If the name contains a ".", then the user is entering a fully
5549 qualified entity name, and the match must not be done in wild
5550 mode. Similarly, if the user wants to complete what looks like
5551 an encoded name, the match must not be done in wild mode. */
5552 wild_match = (strchr (text0, '.') == NULL && !encoded);
5553 }
5554
5555 /* First, look at the partial symtab symbols. */
41d27058 5556 {
ccefe4c4
TT
5557 struct add_partial_datum data;
5558
5559 data.completions = &completions;
5560 data.text = text;
5561 data.text_len = text_len;
5562 data.text0 = text0;
5563 data.word = word;
5564 data.wild_match = wild_match;
5565 data.encoded = encoded;
5566 map_partial_symbol_names (ada_add_partial_symbol_completions, &data);
41d27058
JB
5567 }
5568
5569 /* At this point scan through the misc symbol vectors and add each
5570 symbol you find to the list. Eventually we want to ignore
5571 anything that isn't a text symbol (everything else will be
5572 handled by the psymtab code above). */
5573
5574 ALL_MSYMBOLS (objfile, msymbol)
5575 {
5576 QUIT;
d6565258 5577 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (msymbol),
41d27058
JB
5578 text, text_len, text0, word, wild_match, encoded);
5579 }
5580
5581 /* Search upwards from currently selected frame (so that we can
5582 complete on local vars. */
5583
5584 for (b = get_selected_block (0); b != NULL; b = BLOCK_SUPERBLOCK (b))
5585 {
5586 if (!BLOCK_SUPERBLOCK (b))
5587 surrounding_static_block = b; /* For elmin of dups */
5588
5589 ALL_BLOCK_SYMBOLS (b, iter, sym)
5590 {
d6565258 5591 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym),
41d27058
JB
5592 text, text_len, text0, word,
5593 wild_match, encoded);
5594 }
5595 }
5596
5597 /* Go through the symtabs and check the externs and statics for
5598 symbols which match. */
5599
5600 ALL_SYMTABS (objfile, s)
5601 {
5602 QUIT;
5603 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), GLOBAL_BLOCK);
5604 ALL_BLOCK_SYMBOLS (b, iter, sym)
5605 {
d6565258 5606 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym),
41d27058
JB
5607 text, text_len, text0, word,
5608 wild_match, encoded);
5609 }
5610 }
5611
5612 ALL_SYMTABS (objfile, s)
5613 {
5614 QUIT;
5615 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), STATIC_BLOCK);
5616 /* Don't do this block twice. */
5617 if (b == surrounding_static_block)
5618 continue;
5619 ALL_BLOCK_SYMBOLS (b, iter, sym)
5620 {
d6565258 5621 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym),
41d27058
JB
5622 text, text_len, text0, word,
5623 wild_match, encoded);
5624 }
5625 }
5626
5627 /* Append the closing NULL entry. */
2ba95b9b 5628 VEC_safe_push (char_ptr, completions, NULL);
41d27058 5629
2ba95b9b
JB
5630 /* Make a copy of the COMPLETIONS VEC before we free it, and then
5631 return the copy. It's unfortunate that we have to make a copy
5632 of an array that we're about to destroy, but there is nothing much
5633 we can do about it. Fortunately, it's typically not a very large
5634 array. */
5635 {
5636 const size_t completions_size =
5637 VEC_length (char_ptr, completions) * sizeof (char *);
dc19db01 5638 char **result = xmalloc (completions_size);
2ba95b9b
JB
5639
5640 memcpy (result, VEC_address (char_ptr, completions), completions_size);
5641
5642 VEC_free (char_ptr, completions);
5643 return result;
5644 }
41d27058
JB
5645}
5646
963a6417 5647 /* Field Access */
96d887e8 5648
73fb9985
JB
5649/* Return non-zero if TYPE is a pointer to the GNAT dispatch table used
5650 for tagged types. */
5651
5652static int
5653ada_is_dispatch_table_ptr_type (struct type *type)
5654{
5655 char *name;
5656
5657 if (TYPE_CODE (type) != TYPE_CODE_PTR)
5658 return 0;
5659
5660 name = TYPE_NAME (TYPE_TARGET_TYPE (type));
5661 if (name == NULL)
5662 return 0;
5663
5664 return (strcmp (name, "ada__tags__dispatch_table") == 0);
5665}
5666
963a6417
PH
5667/* True if field number FIELD_NUM in struct or union type TYPE is supposed
5668 to be invisible to users. */
96d887e8 5669
963a6417
PH
5670int
5671ada_is_ignored_field (struct type *type, int field_num)
96d887e8 5672{
963a6417
PH
5673 if (field_num < 0 || field_num > TYPE_NFIELDS (type))
5674 return 1;
73fb9985
JB
5675
5676 /* Check the name of that field. */
5677 {
5678 const char *name = TYPE_FIELD_NAME (type, field_num);
5679
5680 /* Anonymous field names should not be printed.
5681 brobecker/2007-02-20: I don't think this can actually happen
5682 but we don't want to print the value of annonymous fields anyway. */
5683 if (name == NULL)
5684 return 1;
5685
5686 /* A field named "_parent" is internally generated by GNAT for
5687 tagged types, and should not be printed either. */
5688 if (name[0] == '_' && strncmp (name, "_parent", 7) != 0)
5689 return 1;
5690 }
5691
5692 /* If this is the dispatch table of a tagged type, then ignore. */
5693 if (ada_is_tagged_type (type, 1)
5694 && ada_is_dispatch_table_ptr_type (TYPE_FIELD_TYPE (type, field_num)))
5695 return 1;
5696
5697 /* Not a special field, so it should not be ignored. */
5698 return 0;
963a6417 5699}
96d887e8 5700
963a6417 5701/* True iff TYPE has a tag field. If REFOK, then TYPE may also be a
0963b4bd 5702 pointer or reference type whose ultimate target has a tag field. */
96d887e8 5703
963a6417
PH
5704int
5705ada_is_tagged_type (struct type *type, int refok)
5706{
5707 return (ada_lookup_struct_elt_type (type, "_tag", refok, 1, NULL) != NULL);
5708}
96d887e8 5709
963a6417 5710/* True iff TYPE represents the type of X'Tag */
96d887e8 5711
963a6417
PH
5712int
5713ada_is_tag_type (struct type *type)
5714{
5715 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_PTR)
5716 return 0;
5717 else
96d887e8 5718 {
963a6417 5719 const char *name = ada_type_name (TYPE_TARGET_TYPE (type));
5b4ee69b 5720
963a6417
PH
5721 return (name != NULL
5722 && strcmp (name, "ada__tags__dispatch_table") == 0);
96d887e8 5723 }
96d887e8
PH
5724}
5725
963a6417 5726/* The type of the tag on VAL. */
76a01679 5727
963a6417
PH
5728struct type *
5729ada_tag_type (struct value *val)
96d887e8 5730{
df407dfe 5731 return ada_lookup_struct_elt_type (value_type (val), "_tag", 1, 0, NULL);
963a6417 5732}
96d887e8 5733
963a6417 5734/* The value of the tag on VAL. */
96d887e8 5735
963a6417
PH
5736struct value *
5737ada_value_tag (struct value *val)
5738{
03ee6b2e 5739 return ada_value_struct_elt (val, "_tag", 0);
96d887e8
PH
5740}
5741
963a6417
PH
5742/* The value of the tag on the object of type TYPE whose contents are
5743 saved at VALADDR, if it is non-null, or is at memory address
0963b4bd 5744 ADDRESS. */
96d887e8 5745
963a6417 5746static struct value *
10a2c479 5747value_tag_from_contents_and_address (struct type *type,
fc1a4b47 5748 const gdb_byte *valaddr,
963a6417 5749 CORE_ADDR address)
96d887e8 5750{
b5385fc0 5751 int tag_byte_offset;
963a6417 5752 struct type *tag_type;
5b4ee69b 5753
963a6417 5754 if (find_struct_field ("_tag", type, 0, &tag_type, &tag_byte_offset,
52ce6436 5755 NULL, NULL, NULL))
96d887e8 5756 {
fc1a4b47 5757 const gdb_byte *valaddr1 = ((valaddr == NULL)
10a2c479
AC
5758 ? NULL
5759 : valaddr + tag_byte_offset);
963a6417 5760 CORE_ADDR address1 = (address == 0) ? 0 : address + tag_byte_offset;
96d887e8 5761
963a6417 5762 return value_from_contents_and_address (tag_type, valaddr1, address1);
96d887e8 5763 }
963a6417
PH
5764 return NULL;
5765}
96d887e8 5766
963a6417
PH
5767static struct type *
5768type_from_tag (struct value *tag)
5769{
5770 const char *type_name = ada_tag_name (tag);
5b4ee69b 5771
963a6417
PH
5772 if (type_name != NULL)
5773 return ada_find_any_type (ada_encode (type_name));
5774 return NULL;
5775}
96d887e8 5776
963a6417
PH
5777struct tag_args
5778{
5779 struct value *tag;
5780 char *name;
5781};
4c4b4cd2 5782
529cad9c
PH
5783
5784static int ada_tag_name_1 (void *);
5785static int ada_tag_name_2 (struct tag_args *);
5786
4c4b4cd2 5787/* Wrapper function used by ada_tag_name. Given a struct tag_args*
0963b4bd 5788 value ARGS, sets ARGS->name to the tag name of ARGS->tag.
4c4b4cd2
PH
5789 The value stored in ARGS->name is valid until the next call to
5790 ada_tag_name_1. */
5791
5792static int
5793ada_tag_name_1 (void *args0)
5794{
5795 struct tag_args *args = (struct tag_args *) args0;
5796 static char name[1024];
76a01679 5797 char *p;
4c4b4cd2 5798 struct value *val;
5b4ee69b 5799
4c4b4cd2 5800 args->name = NULL;
03ee6b2e 5801 val = ada_value_struct_elt (args->tag, "tsd", 1);
529cad9c
PH
5802 if (val == NULL)
5803 return ada_tag_name_2 (args);
03ee6b2e 5804 val = ada_value_struct_elt (val, "expanded_name", 1);
529cad9c
PH
5805 if (val == NULL)
5806 return 0;
5807 read_memory_string (value_as_address (val), name, sizeof (name) - 1);
5808 for (p = name; *p != '\0'; p += 1)
5809 if (isalpha (*p))
5810 *p = tolower (*p);
5811 args->name = name;
5812 return 0;
5813}
5814
e802dbe0
JB
5815/* Return the "ada__tags__type_specific_data" type. */
5816
5817static struct type *
5818ada_get_tsd_type (struct inferior *inf)
5819{
5820 struct ada_inferior_data *data = get_ada_inferior_data (inf);
5821
5822 if (data->tsd_type == 0)
5823 data->tsd_type = ada_find_any_type ("ada__tags__type_specific_data");
5824 return data->tsd_type;
5825}
5826
529cad9c
PH
5827/* Utility function for ada_tag_name_1 that tries the second
5828 representation for the dispatch table (in which there is no
5829 explicit 'tsd' field in the referent of the tag pointer, and instead
0963b4bd 5830 the tsd pointer is stored just before the dispatch table. */
529cad9c
PH
5831
5832static int
5833ada_tag_name_2 (struct tag_args *args)
5834{
5835 struct type *info_type;
5836 static char name[1024];
5837 char *p;
5838 struct value *val, *valp;
5839
5840 args->name = NULL;
e802dbe0 5841 info_type = ada_get_tsd_type (current_inferior());
529cad9c
PH
5842 if (info_type == NULL)
5843 return 0;
5844 info_type = lookup_pointer_type (lookup_pointer_type (info_type));
5845 valp = value_cast (info_type, args->tag);
5846 if (valp == NULL)
5847 return 0;
2497b498 5848 val = value_ind (value_ptradd (valp, -1));
4c4b4cd2
PH
5849 if (val == NULL)
5850 return 0;
03ee6b2e 5851 val = ada_value_struct_elt (val, "expanded_name", 1);
4c4b4cd2
PH
5852 if (val == NULL)
5853 return 0;
5854 read_memory_string (value_as_address (val), name, sizeof (name) - 1);
5855 for (p = name; *p != '\0'; p += 1)
5856 if (isalpha (*p))
5857 *p = tolower (*p);
5858 args->name = name;
5859 return 0;
5860}
5861
5862/* The type name of the dynamic type denoted by the 'tag value TAG, as
e802dbe0 5863 a C string. */
4c4b4cd2
PH
5864
5865const char *
5866ada_tag_name (struct value *tag)
5867{
5868 struct tag_args args;
5b4ee69b 5869
df407dfe 5870 if (!ada_is_tag_type (value_type (tag)))
4c4b4cd2 5871 return NULL;
76a01679 5872 args.tag = tag;
4c4b4cd2
PH
5873 args.name = NULL;
5874 catch_errors (ada_tag_name_1, &args, NULL, RETURN_MASK_ALL);
5875 return args.name;
5876}
5877
5878/* The parent type of TYPE, or NULL if none. */
14f9c5c9 5879
d2e4a39e 5880struct type *
ebf56fd3 5881ada_parent_type (struct type *type)
14f9c5c9
AS
5882{
5883 int i;
5884
61ee279c 5885 type = ada_check_typedef (type);
14f9c5c9
AS
5886
5887 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT)
5888 return NULL;
5889
5890 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
5891 if (ada_is_parent_field (type, i))
0c1f74cf
JB
5892 {
5893 struct type *parent_type = TYPE_FIELD_TYPE (type, i);
5894
5895 /* If the _parent field is a pointer, then dereference it. */
5896 if (TYPE_CODE (parent_type) == TYPE_CODE_PTR)
5897 parent_type = TYPE_TARGET_TYPE (parent_type);
5898 /* If there is a parallel XVS type, get the actual base type. */
5899 parent_type = ada_get_base_type (parent_type);
5900
5901 return ada_check_typedef (parent_type);
5902 }
14f9c5c9
AS
5903
5904 return NULL;
5905}
5906
4c4b4cd2
PH
5907/* True iff field number FIELD_NUM of structure type TYPE contains the
5908 parent-type (inherited) fields of a derived type. Assumes TYPE is
5909 a structure type with at least FIELD_NUM+1 fields. */
14f9c5c9
AS
5910
5911int
ebf56fd3 5912ada_is_parent_field (struct type *type, int field_num)
14f9c5c9 5913{
61ee279c 5914 const char *name = TYPE_FIELD_NAME (ada_check_typedef (type), field_num);
5b4ee69b 5915
4c4b4cd2
PH
5916 return (name != NULL
5917 && (strncmp (name, "PARENT", 6) == 0
5918 || strncmp (name, "_parent", 7) == 0));
14f9c5c9
AS
5919}
5920
4c4b4cd2 5921/* True iff field number FIELD_NUM of structure type TYPE is a
14f9c5c9 5922 transparent wrapper field (which should be silently traversed when doing
4c4b4cd2 5923 field selection and flattened when printing). Assumes TYPE is a
14f9c5c9 5924 structure type with at least FIELD_NUM+1 fields. Such fields are always
4c4b4cd2 5925 structures. */
14f9c5c9
AS
5926
5927int
ebf56fd3 5928ada_is_wrapper_field (struct type *type, int field_num)
14f9c5c9 5929{
d2e4a39e 5930 const char *name = TYPE_FIELD_NAME (type, field_num);
5b4ee69b 5931
d2e4a39e 5932 return (name != NULL
4c4b4cd2
PH
5933 && (strncmp (name, "PARENT", 6) == 0
5934 || strcmp (name, "REP") == 0
5935 || strncmp (name, "_parent", 7) == 0
5936 || name[0] == 'S' || name[0] == 'R' || name[0] == 'O'));
14f9c5c9
AS
5937}
5938
4c4b4cd2
PH
5939/* True iff field number FIELD_NUM of structure or union type TYPE
5940 is a variant wrapper. Assumes TYPE is a structure type with at least
5941 FIELD_NUM+1 fields. */
14f9c5c9
AS
5942
5943int
ebf56fd3 5944ada_is_variant_part (struct type *type, int field_num)
14f9c5c9 5945{
d2e4a39e 5946 struct type *field_type = TYPE_FIELD_TYPE (type, field_num);
5b4ee69b 5947
14f9c5c9 5948 return (TYPE_CODE (field_type) == TYPE_CODE_UNION
4c4b4cd2 5949 || (is_dynamic_field (type, field_num)
c3e5cd34
PH
5950 && (TYPE_CODE (TYPE_TARGET_TYPE (field_type))
5951 == TYPE_CODE_UNION)));
14f9c5c9
AS
5952}
5953
5954/* Assuming that VAR_TYPE is a variant wrapper (type of the variant part)
4c4b4cd2 5955 whose discriminants are contained in the record type OUTER_TYPE,
7c964f07
UW
5956 returns the type of the controlling discriminant for the variant.
5957 May return NULL if the type could not be found. */
14f9c5c9 5958
d2e4a39e 5959struct type *
ebf56fd3 5960ada_variant_discrim_type (struct type *var_type, struct type *outer_type)
14f9c5c9 5961{
d2e4a39e 5962 char *name = ada_variant_discrim_name (var_type);
5b4ee69b 5963
7c964f07 5964 return ada_lookup_struct_elt_type (outer_type, name, 1, 1, NULL);
14f9c5c9
AS
5965}
5966
4c4b4cd2 5967/* Assuming that TYPE is the type of a variant wrapper, and FIELD_NUM is a
14f9c5c9 5968 valid field number within it, returns 1 iff field FIELD_NUM of TYPE
4c4b4cd2 5969 represents a 'when others' clause; otherwise 0. */
14f9c5c9
AS
5970
5971int
ebf56fd3 5972ada_is_others_clause (struct type *type, int field_num)
14f9c5c9 5973{
d2e4a39e 5974 const char *name = TYPE_FIELD_NAME (type, field_num);
5b4ee69b 5975
14f9c5c9
AS
5976 return (name != NULL && name[0] == 'O');
5977}
5978
5979/* Assuming that TYPE0 is the type of the variant part of a record,
4c4b4cd2
PH
5980 returns the name of the discriminant controlling the variant.
5981 The value is valid until the next call to ada_variant_discrim_name. */
14f9c5c9 5982
d2e4a39e 5983char *
ebf56fd3 5984ada_variant_discrim_name (struct type *type0)
14f9c5c9 5985{
d2e4a39e 5986 static char *result = NULL;
14f9c5c9 5987 static size_t result_len = 0;
d2e4a39e
AS
5988 struct type *type;
5989 const char *name;
5990 const char *discrim_end;
5991 const char *discrim_start;
14f9c5c9
AS
5992
5993 if (TYPE_CODE (type0) == TYPE_CODE_PTR)
5994 type = TYPE_TARGET_TYPE (type0);
5995 else
5996 type = type0;
5997
5998 name = ada_type_name (type);
5999
6000 if (name == NULL || name[0] == '\000')
6001 return "";
6002
6003 for (discrim_end = name + strlen (name) - 6; discrim_end != name;
6004 discrim_end -= 1)
6005 {
4c4b4cd2
PH
6006 if (strncmp (discrim_end, "___XVN", 6) == 0)
6007 break;
14f9c5c9
AS
6008 }
6009 if (discrim_end == name)
6010 return "";
6011
d2e4a39e 6012 for (discrim_start = discrim_end; discrim_start != name + 3;
14f9c5c9
AS
6013 discrim_start -= 1)
6014 {
d2e4a39e 6015 if (discrim_start == name + 1)
4c4b4cd2 6016 return "";
76a01679 6017 if ((discrim_start > name + 3
4c4b4cd2
PH
6018 && strncmp (discrim_start - 3, "___", 3) == 0)
6019 || discrim_start[-1] == '.')
6020 break;
14f9c5c9
AS
6021 }
6022
6023 GROW_VECT (result, result_len, discrim_end - discrim_start + 1);
6024 strncpy (result, discrim_start, discrim_end - discrim_start);
d2e4a39e 6025 result[discrim_end - discrim_start] = '\0';
14f9c5c9
AS
6026 return result;
6027}
6028
4c4b4cd2
PH
6029/* Scan STR for a subtype-encoded number, beginning at position K.
6030 Put the position of the character just past the number scanned in
6031 *NEW_K, if NEW_K!=NULL. Put the scanned number in *R, if R!=NULL.
6032 Return 1 if there was a valid number at the given position, and 0
6033 otherwise. A "subtype-encoded" number consists of the absolute value
6034 in decimal, followed by the letter 'm' to indicate a negative number.
6035 Assumes 0m does not occur. */
14f9c5c9
AS
6036
6037int
d2e4a39e 6038ada_scan_number (const char str[], int k, LONGEST * R, int *new_k)
14f9c5c9
AS
6039{
6040 ULONGEST RU;
6041
d2e4a39e 6042 if (!isdigit (str[k]))
14f9c5c9
AS
6043 return 0;
6044
4c4b4cd2 6045 /* Do it the hard way so as not to make any assumption about
14f9c5c9 6046 the relationship of unsigned long (%lu scan format code) and
4c4b4cd2 6047 LONGEST. */
14f9c5c9
AS
6048 RU = 0;
6049 while (isdigit (str[k]))
6050 {
d2e4a39e 6051 RU = RU * 10 + (str[k] - '0');
14f9c5c9
AS
6052 k += 1;
6053 }
6054
d2e4a39e 6055 if (str[k] == 'm')
14f9c5c9
AS
6056 {
6057 if (R != NULL)
4c4b4cd2 6058 *R = (-(LONGEST) (RU - 1)) - 1;
14f9c5c9
AS
6059 k += 1;
6060 }
6061 else if (R != NULL)
6062 *R = (LONGEST) RU;
6063
4c4b4cd2 6064 /* NOTE on the above: Technically, C does not say what the results of
14f9c5c9
AS
6065 - (LONGEST) RU or (LONGEST) -RU are for RU == largest positive
6066 number representable as a LONGEST (although either would probably work
6067 in most implementations). When RU>0, the locution in the then branch
4c4b4cd2 6068 above is always equivalent to the negative of RU. */
14f9c5c9
AS
6069
6070 if (new_k != NULL)
6071 *new_k = k;
6072 return 1;
6073}
6074
4c4b4cd2
PH
6075/* Assuming that TYPE is a variant part wrapper type (a VARIANTS field),
6076 and FIELD_NUM is a valid field number within it, returns 1 iff VAL is
6077 in the range encoded by field FIELD_NUM of TYPE; otherwise 0. */
14f9c5c9 6078
d2e4a39e 6079int
ebf56fd3 6080ada_in_variant (LONGEST val, struct type *type, int field_num)
14f9c5c9 6081{
d2e4a39e 6082 const char *name = TYPE_FIELD_NAME (type, field_num);
14f9c5c9
AS
6083 int p;
6084
6085 p = 0;
6086 while (1)
6087 {
d2e4a39e 6088 switch (name[p])
4c4b4cd2
PH
6089 {
6090 case '\0':
6091 return 0;
6092 case 'S':
6093 {
6094 LONGEST W;
5b4ee69b 6095
4c4b4cd2
PH
6096 if (!ada_scan_number (name, p + 1, &W, &p))
6097 return 0;
6098 if (val == W)
6099 return 1;
6100 break;
6101 }
6102 case 'R':
6103 {
6104 LONGEST L, U;
5b4ee69b 6105
4c4b4cd2
PH
6106 if (!ada_scan_number (name, p + 1, &L, &p)
6107 || name[p] != 'T' || !ada_scan_number (name, p + 1, &U, &p))
6108 return 0;
6109 if (val >= L && val <= U)
6110 return 1;
6111 break;
6112 }
6113 case 'O':
6114 return 1;
6115 default:
6116 return 0;
6117 }
6118 }
6119}
6120
0963b4bd 6121/* FIXME: Lots of redundancy below. Try to consolidate. */
4c4b4cd2
PH
6122
6123/* Given a value ARG1 (offset by OFFSET bytes) of a struct or union type
6124 ARG_TYPE, extract and return the value of one of its (non-static)
6125 fields. FIELDNO says which field. Differs from value_primitive_field
6126 only in that it can handle packed values of arbitrary type. */
14f9c5c9 6127
4c4b4cd2 6128static struct value *
d2e4a39e 6129ada_value_primitive_field (struct value *arg1, int offset, int fieldno,
4c4b4cd2 6130 struct type *arg_type)
14f9c5c9 6131{
14f9c5c9
AS
6132 struct type *type;
6133
61ee279c 6134 arg_type = ada_check_typedef (arg_type);
14f9c5c9
AS
6135 type = TYPE_FIELD_TYPE (arg_type, fieldno);
6136
4c4b4cd2 6137 /* Handle packed fields. */
14f9c5c9
AS
6138
6139 if (TYPE_FIELD_BITSIZE (arg_type, fieldno) != 0)
6140 {
6141 int bit_pos = TYPE_FIELD_BITPOS (arg_type, fieldno);
6142 int bit_size = TYPE_FIELD_BITSIZE (arg_type, fieldno);
d2e4a39e 6143
0fd88904 6144 return ada_value_primitive_packed_val (arg1, value_contents (arg1),
4c4b4cd2
PH
6145 offset + bit_pos / 8,
6146 bit_pos % 8, bit_size, type);
14f9c5c9
AS
6147 }
6148 else
6149 return value_primitive_field (arg1, offset, fieldno, arg_type);
6150}
6151
52ce6436
PH
6152/* Find field with name NAME in object of type TYPE. If found,
6153 set the following for each argument that is non-null:
6154 - *FIELD_TYPE_P to the field's type;
6155 - *BYTE_OFFSET_P to OFFSET + the byte offset of the field within
6156 an object of that type;
6157 - *BIT_OFFSET_P to the bit offset modulo byte size of the field;
6158 - *BIT_SIZE_P to its size in bits if the field is packed, and
6159 0 otherwise;
6160 If INDEX_P is non-null, increment *INDEX_P by the number of source-visible
6161 fields up to but not including the desired field, or by the total
6162 number of fields if not found. A NULL value of NAME never
6163 matches; the function just counts visible fields in this case.
6164
0963b4bd 6165 Returns 1 if found, 0 otherwise. */
52ce6436 6166
4c4b4cd2 6167static int
76a01679
JB
6168find_struct_field (char *name, struct type *type, int offset,
6169 struct type **field_type_p,
52ce6436
PH
6170 int *byte_offset_p, int *bit_offset_p, int *bit_size_p,
6171 int *index_p)
4c4b4cd2
PH
6172{
6173 int i;
6174
61ee279c 6175 type = ada_check_typedef (type);
76a01679 6176
52ce6436
PH
6177 if (field_type_p != NULL)
6178 *field_type_p = NULL;
6179 if (byte_offset_p != NULL)
d5d6fca5 6180 *byte_offset_p = 0;
52ce6436
PH
6181 if (bit_offset_p != NULL)
6182 *bit_offset_p = 0;
6183 if (bit_size_p != NULL)
6184 *bit_size_p = 0;
6185
6186 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
4c4b4cd2
PH
6187 {
6188 int bit_pos = TYPE_FIELD_BITPOS (type, i);
6189 int fld_offset = offset + bit_pos / 8;
6190 char *t_field_name = TYPE_FIELD_NAME (type, i);
76a01679 6191
4c4b4cd2
PH
6192 if (t_field_name == NULL)
6193 continue;
6194
52ce6436 6195 else if (name != NULL && field_name_match (t_field_name, name))
76a01679
JB
6196 {
6197 int bit_size = TYPE_FIELD_BITSIZE (type, i);
5b4ee69b 6198
52ce6436
PH
6199 if (field_type_p != NULL)
6200 *field_type_p = TYPE_FIELD_TYPE (type, i);
6201 if (byte_offset_p != NULL)
6202 *byte_offset_p = fld_offset;
6203 if (bit_offset_p != NULL)
6204 *bit_offset_p = bit_pos % 8;
6205 if (bit_size_p != NULL)
6206 *bit_size_p = bit_size;
76a01679
JB
6207 return 1;
6208 }
4c4b4cd2
PH
6209 else if (ada_is_wrapper_field (type, i))
6210 {
52ce6436
PH
6211 if (find_struct_field (name, TYPE_FIELD_TYPE (type, i), fld_offset,
6212 field_type_p, byte_offset_p, bit_offset_p,
6213 bit_size_p, index_p))
76a01679
JB
6214 return 1;
6215 }
4c4b4cd2
PH
6216 else if (ada_is_variant_part (type, i))
6217 {
52ce6436
PH
6218 /* PNH: Wait. Do we ever execute this section, or is ARG always of
6219 fixed type?? */
4c4b4cd2 6220 int j;
52ce6436
PH
6221 struct type *field_type
6222 = ada_check_typedef (TYPE_FIELD_TYPE (type, i));
4c4b4cd2 6223
52ce6436 6224 for (j = 0; j < TYPE_NFIELDS (field_type); j += 1)
4c4b4cd2 6225 {
76a01679
JB
6226 if (find_struct_field (name, TYPE_FIELD_TYPE (field_type, j),
6227 fld_offset
6228 + TYPE_FIELD_BITPOS (field_type, j) / 8,
6229 field_type_p, byte_offset_p,
52ce6436 6230 bit_offset_p, bit_size_p, index_p))
76a01679 6231 return 1;
4c4b4cd2
PH
6232 }
6233 }
52ce6436
PH
6234 else if (index_p != NULL)
6235 *index_p += 1;
4c4b4cd2
PH
6236 }
6237 return 0;
6238}
6239
0963b4bd 6240/* Number of user-visible fields in record type TYPE. */
4c4b4cd2 6241
52ce6436
PH
6242static int
6243num_visible_fields (struct type *type)
6244{
6245 int n;
5b4ee69b 6246
52ce6436
PH
6247 n = 0;
6248 find_struct_field (NULL, type, 0, NULL, NULL, NULL, NULL, &n);
6249 return n;
6250}
14f9c5c9 6251
4c4b4cd2 6252/* Look for a field NAME in ARG. Adjust the address of ARG by OFFSET bytes,
14f9c5c9
AS
6253 and search in it assuming it has (class) type TYPE.
6254 If found, return value, else return NULL.
6255
4c4b4cd2 6256 Searches recursively through wrapper fields (e.g., '_parent'). */
14f9c5c9 6257
4c4b4cd2 6258static struct value *
d2e4a39e 6259ada_search_struct_field (char *name, struct value *arg, int offset,
4c4b4cd2 6260 struct type *type)
14f9c5c9
AS
6261{
6262 int i;
14f9c5c9 6263
5b4ee69b 6264 type = ada_check_typedef (type);
52ce6436 6265 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
14f9c5c9
AS
6266 {
6267 char *t_field_name = TYPE_FIELD_NAME (type, i);
6268
6269 if (t_field_name == NULL)
4c4b4cd2 6270 continue;
14f9c5c9
AS
6271
6272 else if (field_name_match (t_field_name, name))
4c4b4cd2 6273 return ada_value_primitive_field (arg, offset, i, type);
14f9c5c9
AS
6274
6275 else if (ada_is_wrapper_field (type, i))
4c4b4cd2 6276 {
0963b4bd 6277 struct value *v = /* Do not let indent join lines here. */
06d5cf63
JB
6278 ada_search_struct_field (name, arg,
6279 offset + TYPE_FIELD_BITPOS (type, i) / 8,
6280 TYPE_FIELD_TYPE (type, i));
5b4ee69b 6281
4c4b4cd2
PH
6282 if (v != NULL)
6283 return v;
6284 }
14f9c5c9
AS
6285
6286 else if (ada_is_variant_part (type, i))
4c4b4cd2 6287 {
0963b4bd 6288 /* PNH: Do we ever get here? See find_struct_field. */
4c4b4cd2 6289 int j;
5b4ee69b
MS
6290 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type,
6291 i));
4c4b4cd2
PH
6292 int var_offset = offset + TYPE_FIELD_BITPOS (type, i) / 8;
6293
52ce6436 6294 for (j = 0; j < TYPE_NFIELDS (field_type); j += 1)
4c4b4cd2 6295 {
0963b4bd
MS
6296 struct value *v = ada_search_struct_field /* Force line
6297 break. */
06d5cf63
JB
6298 (name, arg,
6299 var_offset + TYPE_FIELD_BITPOS (field_type, j) / 8,
6300 TYPE_FIELD_TYPE (field_type, j));
5b4ee69b 6301
4c4b4cd2
PH
6302 if (v != NULL)
6303 return v;
6304 }
6305 }
14f9c5c9
AS
6306 }
6307 return NULL;
6308}
d2e4a39e 6309
52ce6436
PH
6310static struct value *ada_index_struct_field_1 (int *, struct value *,
6311 int, struct type *);
6312
6313
6314/* Return field #INDEX in ARG, where the index is that returned by
6315 * find_struct_field through its INDEX_P argument. Adjust the address
6316 * of ARG by OFFSET bytes, and search in it assuming it has (class) type TYPE.
0963b4bd 6317 * If found, return value, else return NULL. */
52ce6436
PH
6318
6319static struct value *
6320ada_index_struct_field (int index, struct value *arg, int offset,
6321 struct type *type)
6322{
6323 return ada_index_struct_field_1 (&index, arg, offset, type);
6324}
6325
6326
6327/* Auxiliary function for ada_index_struct_field. Like
6328 * ada_index_struct_field, but takes index from *INDEX_P and modifies
0963b4bd 6329 * *INDEX_P. */
52ce6436
PH
6330
6331static struct value *
6332ada_index_struct_field_1 (int *index_p, struct value *arg, int offset,
6333 struct type *type)
6334{
6335 int i;
6336 type = ada_check_typedef (type);
6337
6338 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
6339 {
6340 if (TYPE_FIELD_NAME (type, i) == NULL)
6341 continue;
6342 else if (ada_is_wrapper_field (type, i))
6343 {
0963b4bd 6344 struct value *v = /* Do not let indent join lines here. */
52ce6436
PH
6345 ada_index_struct_field_1 (index_p, arg,
6346 offset + TYPE_FIELD_BITPOS (type, i) / 8,
6347 TYPE_FIELD_TYPE (type, i));
5b4ee69b 6348
52ce6436
PH
6349 if (v != NULL)
6350 return v;
6351 }
6352
6353 else if (ada_is_variant_part (type, i))
6354 {
6355 /* PNH: Do we ever get here? See ada_search_struct_field,
0963b4bd 6356 find_struct_field. */
52ce6436
PH
6357 error (_("Cannot assign this kind of variant record"));
6358 }
6359 else if (*index_p == 0)
6360 return ada_value_primitive_field (arg, offset, i, type);
6361 else
6362 *index_p -= 1;
6363 }
6364 return NULL;
6365}
6366
4c4b4cd2
PH
6367/* Given ARG, a value of type (pointer or reference to a)*
6368 structure/union, extract the component named NAME from the ultimate
6369 target structure/union and return it as a value with its
f5938064 6370 appropriate type.
14f9c5c9 6371
4c4b4cd2
PH
6372 The routine searches for NAME among all members of the structure itself
6373 and (recursively) among all members of any wrapper members
14f9c5c9
AS
6374 (e.g., '_parent').
6375
03ee6b2e
PH
6376 If NO_ERR, then simply return NULL in case of error, rather than
6377 calling error. */
14f9c5c9 6378
d2e4a39e 6379struct value *
03ee6b2e 6380ada_value_struct_elt (struct value *arg, char *name, int no_err)
14f9c5c9 6381{
4c4b4cd2 6382 struct type *t, *t1;
d2e4a39e 6383 struct value *v;
14f9c5c9 6384
4c4b4cd2 6385 v = NULL;
df407dfe 6386 t1 = t = ada_check_typedef (value_type (arg));
4c4b4cd2
PH
6387 if (TYPE_CODE (t) == TYPE_CODE_REF)
6388 {
6389 t1 = TYPE_TARGET_TYPE (t);
6390 if (t1 == NULL)
03ee6b2e 6391 goto BadValue;
61ee279c 6392 t1 = ada_check_typedef (t1);
4c4b4cd2 6393 if (TYPE_CODE (t1) == TYPE_CODE_PTR)
76a01679 6394 {
994b9211 6395 arg = coerce_ref (arg);
76a01679
JB
6396 t = t1;
6397 }
4c4b4cd2 6398 }
14f9c5c9 6399
4c4b4cd2
PH
6400 while (TYPE_CODE (t) == TYPE_CODE_PTR)
6401 {
6402 t1 = TYPE_TARGET_TYPE (t);
6403 if (t1 == NULL)
03ee6b2e 6404 goto BadValue;
61ee279c 6405 t1 = ada_check_typedef (t1);
4c4b4cd2 6406 if (TYPE_CODE (t1) == TYPE_CODE_PTR)
76a01679
JB
6407 {
6408 arg = value_ind (arg);
6409 t = t1;
6410 }
4c4b4cd2 6411 else
76a01679 6412 break;
4c4b4cd2 6413 }
14f9c5c9 6414
4c4b4cd2 6415 if (TYPE_CODE (t1) != TYPE_CODE_STRUCT && TYPE_CODE (t1) != TYPE_CODE_UNION)
03ee6b2e 6416 goto BadValue;
14f9c5c9 6417
4c4b4cd2
PH
6418 if (t1 == t)
6419 v = ada_search_struct_field (name, arg, 0, t);
6420 else
6421 {
6422 int bit_offset, bit_size, byte_offset;
6423 struct type *field_type;
6424 CORE_ADDR address;
6425
76a01679
JB
6426 if (TYPE_CODE (t) == TYPE_CODE_PTR)
6427 address = value_as_address (arg);
4c4b4cd2 6428 else
0fd88904 6429 address = unpack_pointer (t, value_contents (arg));
14f9c5c9 6430
1ed6ede0 6431 t1 = ada_to_fixed_type (ada_get_base_type (t1), NULL, address, NULL, 1);
76a01679
JB
6432 if (find_struct_field (name, t1, 0,
6433 &field_type, &byte_offset, &bit_offset,
52ce6436 6434 &bit_size, NULL))
76a01679
JB
6435 {
6436 if (bit_size != 0)
6437 {
714e53ab
PH
6438 if (TYPE_CODE (t) == TYPE_CODE_REF)
6439 arg = ada_coerce_ref (arg);
6440 else
6441 arg = ada_value_ind (arg);
76a01679
JB
6442 v = ada_value_primitive_packed_val (arg, NULL, byte_offset,
6443 bit_offset, bit_size,
6444 field_type);
6445 }
6446 else
f5938064 6447 v = value_at_lazy (field_type, address + byte_offset);
76a01679
JB
6448 }
6449 }
6450
03ee6b2e
PH
6451 if (v != NULL || no_err)
6452 return v;
6453 else
323e0a4a 6454 error (_("There is no member named %s."), name);
14f9c5c9 6455
03ee6b2e
PH
6456 BadValue:
6457 if (no_err)
6458 return NULL;
6459 else
0963b4bd
MS
6460 error (_("Attempt to extract a component of "
6461 "a value that is not a record."));
14f9c5c9
AS
6462}
6463
6464/* Given a type TYPE, look up the type of the component of type named NAME.
4c4b4cd2
PH
6465 If DISPP is non-null, add its byte displacement from the beginning of a
6466 structure (pointed to by a value) of type TYPE to *DISPP (does not
14f9c5c9
AS
6467 work for packed fields).
6468
6469 Matches any field whose name has NAME as a prefix, possibly
4c4b4cd2 6470 followed by "___".
14f9c5c9 6471
0963b4bd 6472 TYPE can be either a struct or union. If REFOK, TYPE may also
4c4b4cd2
PH
6473 be a (pointer or reference)+ to a struct or union, and the
6474 ultimate target type will be searched.
14f9c5c9
AS
6475
6476 Looks recursively into variant clauses and parent types.
6477
4c4b4cd2
PH
6478 If NOERR is nonzero, return NULL if NAME is not suitably defined or
6479 TYPE is not a type of the right kind. */
14f9c5c9 6480
4c4b4cd2 6481static struct type *
76a01679
JB
6482ada_lookup_struct_elt_type (struct type *type, char *name, int refok,
6483 int noerr, int *dispp)
14f9c5c9
AS
6484{
6485 int i;
6486
6487 if (name == NULL)
6488 goto BadName;
6489
76a01679 6490 if (refok && type != NULL)
4c4b4cd2
PH
6491 while (1)
6492 {
61ee279c 6493 type = ada_check_typedef (type);
76a01679
JB
6494 if (TYPE_CODE (type) != TYPE_CODE_PTR
6495 && TYPE_CODE (type) != TYPE_CODE_REF)
6496 break;
6497 type = TYPE_TARGET_TYPE (type);
4c4b4cd2 6498 }
14f9c5c9 6499
76a01679 6500 if (type == NULL
1265e4aa
JB
6501 || (TYPE_CODE (type) != TYPE_CODE_STRUCT
6502 && TYPE_CODE (type) != TYPE_CODE_UNION))
14f9c5c9 6503 {
4c4b4cd2 6504 if (noerr)
76a01679 6505 return NULL;
4c4b4cd2 6506 else
76a01679
JB
6507 {
6508 target_terminal_ours ();
6509 gdb_flush (gdb_stdout);
323e0a4a
AC
6510 if (type == NULL)
6511 error (_("Type (null) is not a structure or union type"));
6512 else
6513 {
6514 /* XXX: type_sprint */
6515 fprintf_unfiltered (gdb_stderr, _("Type "));
6516 type_print (type, "", gdb_stderr, -1);
6517 error (_(" is not a structure or union type"));
6518 }
76a01679 6519 }
14f9c5c9
AS
6520 }
6521
6522 type = to_static_fixed_type (type);
6523
6524 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
6525 {
6526 char *t_field_name = TYPE_FIELD_NAME (type, i);
6527 struct type *t;
6528 int disp;
d2e4a39e 6529
14f9c5c9 6530 if (t_field_name == NULL)
4c4b4cd2 6531 continue;
14f9c5c9
AS
6532
6533 else if (field_name_match (t_field_name, name))
4c4b4cd2
PH
6534 {
6535 if (dispp != NULL)
6536 *dispp += TYPE_FIELD_BITPOS (type, i) / 8;
61ee279c 6537 return ada_check_typedef (TYPE_FIELD_TYPE (type, i));
4c4b4cd2 6538 }
14f9c5c9
AS
6539
6540 else if (ada_is_wrapper_field (type, i))
4c4b4cd2
PH
6541 {
6542 disp = 0;
6543 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (type, i), name,
6544 0, 1, &disp);
6545 if (t != NULL)
6546 {
6547 if (dispp != NULL)
6548 *dispp += disp + TYPE_FIELD_BITPOS (type, i) / 8;
6549 return t;
6550 }
6551 }
14f9c5c9
AS
6552
6553 else if (ada_is_variant_part (type, i))
4c4b4cd2
PH
6554 {
6555 int j;
5b4ee69b
MS
6556 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type,
6557 i));
4c4b4cd2
PH
6558
6559 for (j = TYPE_NFIELDS (field_type) - 1; j >= 0; j -= 1)
6560 {
b1f33ddd
JB
6561 /* FIXME pnh 2008/01/26: We check for a field that is
6562 NOT wrapped in a struct, since the compiler sometimes
6563 generates these for unchecked variant types. Revisit
0963b4bd 6564 if the compiler changes this practice. */
b1f33ddd 6565 char *v_field_name = TYPE_FIELD_NAME (field_type, j);
4c4b4cd2 6566 disp = 0;
b1f33ddd
JB
6567 if (v_field_name != NULL
6568 && field_name_match (v_field_name, name))
6569 t = ada_check_typedef (TYPE_FIELD_TYPE (field_type, j));
6570 else
0963b4bd
MS
6571 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (field_type,
6572 j),
b1f33ddd
JB
6573 name, 0, 1, &disp);
6574
4c4b4cd2
PH
6575 if (t != NULL)
6576 {
6577 if (dispp != NULL)
6578 *dispp += disp + TYPE_FIELD_BITPOS (type, i) / 8;
6579 return t;
6580 }
6581 }
6582 }
14f9c5c9
AS
6583
6584 }
6585
6586BadName:
d2e4a39e 6587 if (!noerr)
14f9c5c9
AS
6588 {
6589 target_terminal_ours ();
6590 gdb_flush (gdb_stdout);
323e0a4a
AC
6591 if (name == NULL)
6592 {
6593 /* XXX: type_sprint */
6594 fprintf_unfiltered (gdb_stderr, _("Type "));
6595 type_print (type, "", gdb_stderr, -1);
6596 error (_(" has no component named <null>"));
6597 }
6598 else
6599 {
6600 /* XXX: type_sprint */
6601 fprintf_unfiltered (gdb_stderr, _("Type "));
6602 type_print (type, "", gdb_stderr, -1);
6603 error (_(" has no component named %s"), name);
6604 }
14f9c5c9
AS
6605 }
6606
6607 return NULL;
6608}
6609
b1f33ddd
JB
6610/* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
6611 within a value of type OUTER_TYPE, return true iff VAR_TYPE
6612 represents an unchecked union (that is, the variant part of a
0963b4bd 6613 record that is named in an Unchecked_Union pragma). */
b1f33ddd
JB
6614
6615static int
6616is_unchecked_variant (struct type *var_type, struct type *outer_type)
6617{
6618 char *discrim_name = ada_variant_discrim_name (var_type);
5b4ee69b 6619
b1f33ddd
JB
6620 return (ada_lookup_struct_elt_type (outer_type, discrim_name, 0, 1, NULL)
6621 == NULL);
6622}
6623
6624
14f9c5c9
AS
6625/* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
6626 within a value of type OUTER_TYPE that is stored in GDB at
4c4b4cd2
PH
6627 OUTER_VALADDR, determine which variant clause (field number in VAR_TYPE,
6628 numbering from 0) is applicable. Returns -1 if none are. */
14f9c5c9 6629
d2e4a39e 6630int
ebf56fd3 6631ada_which_variant_applies (struct type *var_type, struct type *outer_type,
fc1a4b47 6632 const gdb_byte *outer_valaddr)
14f9c5c9
AS
6633{
6634 int others_clause;
6635 int i;
d2e4a39e 6636 char *discrim_name = ada_variant_discrim_name (var_type);
0c281816
JB
6637 struct value *outer;
6638 struct value *discrim;
14f9c5c9
AS
6639 LONGEST discrim_val;
6640
0c281816
JB
6641 outer = value_from_contents_and_address (outer_type, outer_valaddr, 0);
6642 discrim = ada_value_struct_elt (outer, discrim_name, 1);
6643 if (discrim == NULL)
14f9c5c9 6644 return -1;
0c281816 6645 discrim_val = value_as_long (discrim);
14f9c5c9
AS
6646
6647 others_clause = -1;
6648 for (i = 0; i < TYPE_NFIELDS (var_type); i += 1)
6649 {
6650 if (ada_is_others_clause (var_type, i))
4c4b4cd2 6651 others_clause = i;
14f9c5c9 6652 else if (ada_in_variant (discrim_val, var_type, i))
4c4b4cd2 6653 return i;
14f9c5c9
AS
6654 }
6655
6656 return others_clause;
6657}
d2e4a39e 6658\f
14f9c5c9
AS
6659
6660
4c4b4cd2 6661 /* Dynamic-Sized Records */
14f9c5c9
AS
6662
6663/* Strategy: The type ostensibly attached to a value with dynamic size
6664 (i.e., a size that is not statically recorded in the debugging
6665 data) does not accurately reflect the size or layout of the value.
6666 Our strategy is to convert these values to values with accurate,
4c4b4cd2 6667 conventional types that are constructed on the fly. */
14f9c5c9
AS
6668
6669/* There is a subtle and tricky problem here. In general, we cannot
6670 determine the size of dynamic records without its data. However,
6671 the 'struct value' data structure, which GDB uses to represent
6672 quantities in the inferior process (the target), requires the size
6673 of the type at the time of its allocation in order to reserve space
6674 for GDB's internal copy of the data. That's why the
6675 'to_fixed_xxx_type' routines take (target) addresses as parameters,
4c4b4cd2 6676 rather than struct value*s.
14f9c5c9
AS
6677
6678 However, GDB's internal history variables ($1, $2, etc.) are
6679 struct value*s containing internal copies of the data that are not, in
6680 general, the same as the data at their corresponding addresses in
6681 the target. Fortunately, the types we give to these values are all
6682 conventional, fixed-size types (as per the strategy described
6683 above), so that we don't usually have to perform the
6684 'to_fixed_xxx_type' conversions to look at their values.
6685 Unfortunately, there is one exception: if one of the internal
6686 history variables is an array whose elements are unconstrained
6687 records, then we will need to create distinct fixed types for each
6688 element selected. */
6689
6690/* The upshot of all of this is that many routines take a (type, host
6691 address, target address) triple as arguments to represent a value.
6692 The host address, if non-null, is supposed to contain an internal
6693 copy of the relevant data; otherwise, the program is to consult the
4c4b4cd2 6694 target at the target address. */
14f9c5c9
AS
6695
6696/* Assuming that VAL0 represents a pointer value, the result of
6697 dereferencing it. Differs from value_ind in its treatment of
4c4b4cd2 6698 dynamic-sized types. */
14f9c5c9 6699
d2e4a39e
AS
6700struct value *
6701ada_value_ind (struct value *val0)
14f9c5c9 6702{
d2e4a39e 6703 struct value *val = unwrap_value (value_ind (val0));
5b4ee69b 6704
4c4b4cd2 6705 return ada_to_fixed_value (val);
14f9c5c9
AS
6706}
6707
6708/* The value resulting from dereferencing any "reference to"
4c4b4cd2
PH
6709 qualifiers on VAL0. */
6710
d2e4a39e
AS
6711static struct value *
6712ada_coerce_ref (struct value *val0)
6713{
df407dfe 6714 if (TYPE_CODE (value_type (val0)) == TYPE_CODE_REF)
d2e4a39e
AS
6715 {
6716 struct value *val = val0;
5b4ee69b 6717
994b9211 6718 val = coerce_ref (val);
d2e4a39e 6719 val = unwrap_value (val);
4c4b4cd2 6720 return ada_to_fixed_value (val);
d2e4a39e
AS
6721 }
6722 else
14f9c5c9
AS
6723 return val0;
6724}
6725
6726/* Return OFF rounded upward if necessary to a multiple of
4c4b4cd2 6727 ALIGNMENT (a power of 2). */
14f9c5c9
AS
6728
6729static unsigned int
ebf56fd3 6730align_value (unsigned int off, unsigned int alignment)
14f9c5c9
AS
6731{
6732 return (off + alignment - 1) & ~(alignment - 1);
6733}
6734
4c4b4cd2 6735/* Return the bit alignment required for field #F of template type TYPE. */
14f9c5c9
AS
6736
6737static unsigned int
ebf56fd3 6738field_alignment (struct type *type, int f)
14f9c5c9 6739{
d2e4a39e 6740 const char *name = TYPE_FIELD_NAME (type, f);
64a1bf19 6741 int len;
14f9c5c9
AS
6742 int align_offset;
6743
64a1bf19
JB
6744 /* The field name should never be null, unless the debugging information
6745 is somehow malformed. In this case, we assume the field does not
6746 require any alignment. */
6747 if (name == NULL)
6748 return 1;
6749
6750 len = strlen (name);
6751
4c4b4cd2
PH
6752 if (!isdigit (name[len - 1]))
6753 return 1;
14f9c5c9 6754
d2e4a39e 6755 if (isdigit (name[len - 2]))
14f9c5c9
AS
6756 align_offset = len - 2;
6757 else
6758 align_offset = len - 1;
6759
4c4b4cd2 6760 if (align_offset < 7 || strncmp ("___XV", name + align_offset - 6, 5) != 0)
14f9c5c9
AS
6761 return TARGET_CHAR_BIT;
6762
4c4b4cd2
PH
6763 return atoi (name + align_offset) * TARGET_CHAR_BIT;
6764}
6765
6766/* Find a symbol named NAME. Ignores ambiguity. */
6767
6768struct symbol *
6769ada_find_any_symbol (const char *name)
6770{
6771 struct symbol *sym;
6772
6773 sym = standard_lookup (name, get_selected_block (NULL), VAR_DOMAIN);
6774 if (sym != NULL && SYMBOL_CLASS (sym) == LOC_TYPEDEF)
6775 return sym;
6776
6777 sym = standard_lookup (name, NULL, STRUCT_DOMAIN);
6778 return sym;
14f9c5c9
AS
6779}
6780
dddfab26
UW
6781/* Find a type named NAME. Ignores ambiguity. This routine will look
6782 solely for types defined by debug info, it will not search the GDB
6783 primitive types. */
4c4b4cd2 6784
d2e4a39e 6785struct type *
ebf56fd3 6786ada_find_any_type (const char *name)
14f9c5c9 6787{
4c4b4cd2 6788 struct symbol *sym = ada_find_any_symbol (name);
14f9c5c9 6789
14f9c5c9 6790 if (sym != NULL)
dddfab26 6791 return SYMBOL_TYPE (sym);
14f9c5c9 6792
dddfab26 6793 return NULL;
14f9c5c9
AS
6794}
6795
aeb5907d
JB
6796/* Given NAME and an associated BLOCK, search all symbols for
6797 NAME suffixed with "___XR", which is the ``renaming'' symbol
4c4b4cd2
PH
6798 associated to NAME. Return this symbol if found, return
6799 NULL otherwise. */
6800
6801struct symbol *
6802ada_find_renaming_symbol (const char *name, struct block *block)
aeb5907d
JB
6803{
6804 struct symbol *sym;
6805
6806 sym = find_old_style_renaming_symbol (name, block);
6807
6808 if (sym != NULL)
6809 return sym;
6810
0963b4bd 6811 /* Not right yet. FIXME pnh 7/20/2007. */
aeb5907d
JB
6812 sym = ada_find_any_symbol (name);
6813 if (sym != NULL && strstr (SYMBOL_LINKAGE_NAME (sym), "___XR") != NULL)
6814 return sym;
6815 else
6816 return NULL;
6817}
6818
6819static struct symbol *
6820find_old_style_renaming_symbol (const char *name, struct block *block)
4c4b4cd2 6821{
7f0df278 6822 const struct symbol *function_sym = block_linkage_function (block);
4c4b4cd2
PH
6823 char *rename;
6824
6825 if (function_sym != NULL)
6826 {
6827 /* If the symbol is defined inside a function, NAME is not fully
6828 qualified. This means we need to prepend the function name
6829 as well as adding the ``___XR'' suffix to build the name of
6830 the associated renaming symbol. */
6831 char *function_name = SYMBOL_LINKAGE_NAME (function_sym);
529cad9c
PH
6832 /* Function names sometimes contain suffixes used
6833 for instance to qualify nested subprograms. When building
6834 the XR type name, we need to make sure that this suffix is
6835 not included. So do not include any suffix in the function
6836 name length below. */
69fadcdf 6837 int function_name_len = ada_name_prefix_len (function_name);
76a01679
JB
6838 const int rename_len = function_name_len + 2 /* "__" */
6839 + strlen (name) + 6 /* "___XR\0" */ ;
4c4b4cd2 6840
529cad9c 6841 /* Strip the suffix if necessary. */
69fadcdf
JB
6842 ada_remove_trailing_digits (function_name, &function_name_len);
6843 ada_remove_po_subprogram_suffix (function_name, &function_name_len);
6844 ada_remove_Xbn_suffix (function_name, &function_name_len);
529cad9c 6845
4c4b4cd2
PH
6846 /* Library-level functions are a special case, as GNAT adds
6847 a ``_ada_'' prefix to the function name to avoid namespace
aeb5907d 6848 pollution. However, the renaming symbols themselves do not
4c4b4cd2
PH
6849 have this prefix, so we need to skip this prefix if present. */
6850 if (function_name_len > 5 /* "_ada_" */
6851 && strstr (function_name, "_ada_") == function_name)
69fadcdf
JB
6852 {
6853 function_name += 5;
6854 function_name_len -= 5;
6855 }
4c4b4cd2
PH
6856
6857 rename = (char *) alloca (rename_len * sizeof (char));
69fadcdf
JB
6858 strncpy (rename, function_name, function_name_len);
6859 xsnprintf (rename + function_name_len, rename_len - function_name_len,
6860 "__%s___XR", name);
4c4b4cd2
PH
6861 }
6862 else
6863 {
6864 const int rename_len = strlen (name) + 6;
5b4ee69b 6865
4c4b4cd2 6866 rename = (char *) alloca (rename_len * sizeof (char));
88c15c34 6867 xsnprintf (rename, rename_len * sizeof (char), "%s___XR", name);
4c4b4cd2
PH
6868 }
6869
6870 return ada_find_any_symbol (rename);
6871}
6872
14f9c5c9 6873/* Because of GNAT encoding conventions, several GDB symbols may match a
4c4b4cd2 6874 given type name. If the type denoted by TYPE0 is to be preferred to
14f9c5c9 6875 that of TYPE1 for purposes of type printing, return non-zero;
4c4b4cd2
PH
6876 otherwise return 0. */
6877
14f9c5c9 6878int
d2e4a39e 6879ada_prefer_type (struct type *type0, struct type *type1)
14f9c5c9
AS
6880{
6881 if (type1 == NULL)
6882 return 1;
6883 else if (type0 == NULL)
6884 return 0;
6885 else if (TYPE_CODE (type1) == TYPE_CODE_VOID)
6886 return 1;
6887 else if (TYPE_CODE (type0) == TYPE_CODE_VOID)
6888 return 0;
4c4b4cd2
PH
6889 else if (TYPE_NAME (type1) == NULL && TYPE_NAME (type0) != NULL)
6890 return 1;
ad82864c 6891 else if (ada_is_constrained_packed_array_type (type0))
14f9c5c9 6892 return 1;
4c4b4cd2
PH
6893 else if (ada_is_array_descriptor_type (type0)
6894 && !ada_is_array_descriptor_type (type1))
14f9c5c9 6895 return 1;
aeb5907d
JB
6896 else
6897 {
6898 const char *type0_name = type_name_no_tag (type0);
6899 const char *type1_name = type_name_no_tag (type1);
6900
6901 if (type0_name != NULL && strstr (type0_name, "___XR") != NULL
6902 && (type1_name == NULL || strstr (type1_name, "___XR") == NULL))
6903 return 1;
6904 }
14f9c5c9
AS
6905 return 0;
6906}
6907
6908/* The name of TYPE, which is either its TYPE_NAME, or, if that is
4c4b4cd2
PH
6909 null, its TYPE_TAG_NAME. Null if TYPE is null. */
6910
d2e4a39e
AS
6911char *
6912ada_type_name (struct type *type)
14f9c5c9 6913{
d2e4a39e 6914 if (type == NULL)
14f9c5c9
AS
6915 return NULL;
6916 else if (TYPE_NAME (type) != NULL)
6917 return TYPE_NAME (type);
6918 else
6919 return TYPE_TAG_NAME (type);
6920}
6921
b4ba55a1
JB
6922/* Search the list of "descriptive" types associated to TYPE for a type
6923 whose name is NAME. */
6924
6925static struct type *
6926find_parallel_type_by_descriptive_type (struct type *type, const char *name)
6927{
6928 struct type *result;
6929
6930 /* If there no descriptive-type info, then there is no parallel type
6931 to be found. */
6932 if (!HAVE_GNAT_AUX_INFO (type))
6933 return NULL;
6934
6935 result = TYPE_DESCRIPTIVE_TYPE (type);
6936 while (result != NULL)
6937 {
6938 char *result_name = ada_type_name (result);
6939
6940 if (result_name == NULL)
6941 {
6942 warning (_("unexpected null name on descriptive type"));
6943 return NULL;
6944 }
6945
6946 /* If the names match, stop. */
6947 if (strcmp (result_name, name) == 0)
6948 break;
6949
6950 /* Otherwise, look at the next item on the list, if any. */
6951 if (HAVE_GNAT_AUX_INFO (result))
6952 result = TYPE_DESCRIPTIVE_TYPE (result);
6953 else
6954 result = NULL;
6955 }
6956
6957 /* If we didn't find a match, see whether this is a packed array. With
6958 older compilers, the descriptive type information is either absent or
6959 irrelevant when it comes to packed arrays so the above lookup fails.
6960 Fall back to using a parallel lookup by name in this case. */
12ab9e09 6961 if (result == NULL && ada_is_constrained_packed_array_type (type))
b4ba55a1
JB
6962 return ada_find_any_type (name);
6963
6964 return result;
6965}
6966
6967/* Find a parallel type to TYPE with the specified NAME, using the
6968 descriptive type taken from the debugging information, if available,
6969 and otherwise using the (slower) name-based method. */
6970
6971static struct type *
6972ada_find_parallel_type_with_name (struct type *type, const char *name)
6973{
6974 struct type *result = NULL;
6975
6976 if (HAVE_GNAT_AUX_INFO (type))
6977 result = find_parallel_type_by_descriptive_type (type, name);
6978 else
6979 result = ada_find_any_type (name);
6980
6981 return result;
6982}
6983
6984/* Same as above, but specify the name of the parallel type by appending
4c4b4cd2 6985 SUFFIX to the name of TYPE. */
14f9c5c9 6986
d2e4a39e 6987struct type *
ebf56fd3 6988ada_find_parallel_type (struct type *type, const char *suffix)
14f9c5c9 6989{
b4ba55a1 6990 char *name, *typename = ada_type_name (type);
14f9c5c9 6991 int len;
d2e4a39e 6992
14f9c5c9
AS
6993 if (typename == NULL)
6994 return NULL;
6995
6996 len = strlen (typename);
6997
b4ba55a1 6998 name = (char *) alloca (len + strlen (suffix) + 1);
14f9c5c9
AS
6999
7000 strcpy (name, typename);
7001 strcpy (name + len, suffix);
7002
b4ba55a1 7003 return ada_find_parallel_type_with_name (type, name);
14f9c5c9
AS
7004}
7005
14f9c5c9 7006/* If TYPE is a variable-size record type, return the corresponding template
4c4b4cd2 7007 type describing its fields. Otherwise, return NULL. */
14f9c5c9 7008
d2e4a39e
AS
7009static struct type *
7010dynamic_template_type (struct type *type)
14f9c5c9 7011{
61ee279c 7012 type = ada_check_typedef (type);
14f9c5c9
AS
7013
7014 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT
d2e4a39e 7015 || ada_type_name (type) == NULL)
14f9c5c9 7016 return NULL;
d2e4a39e 7017 else
14f9c5c9
AS
7018 {
7019 int len = strlen (ada_type_name (type));
5b4ee69b 7020
4c4b4cd2
PH
7021 if (len > 6 && strcmp (ada_type_name (type) + len - 6, "___XVE") == 0)
7022 return type;
14f9c5c9 7023 else
4c4b4cd2 7024 return ada_find_parallel_type (type, "___XVE");
14f9c5c9
AS
7025 }
7026}
7027
7028/* Assuming that TEMPL_TYPE is a union or struct type, returns
4c4b4cd2 7029 non-zero iff field FIELD_NUM of TEMPL_TYPE has dynamic size. */
14f9c5c9 7030
d2e4a39e
AS
7031static int
7032is_dynamic_field (struct type *templ_type, int field_num)
14f9c5c9
AS
7033{
7034 const char *name = TYPE_FIELD_NAME (templ_type, field_num);
5b4ee69b 7035
d2e4a39e 7036 return name != NULL
14f9c5c9
AS
7037 && TYPE_CODE (TYPE_FIELD_TYPE (templ_type, field_num)) == TYPE_CODE_PTR
7038 && strstr (name, "___XVL") != NULL;
7039}
7040
4c4b4cd2
PH
7041/* The index of the variant field of TYPE, or -1 if TYPE does not
7042 represent a variant record type. */
14f9c5c9 7043
d2e4a39e 7044static int
4c4b4cd2 7045variant_field_index (struct type *type)
14f9c5c9
AS
7046{
7047 int f;
7048
4c4b4cd2
PH
7049 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT)
7050 return -1;
7051
7052 for (f = 0; f < TYPE_NFIELDS (type); f += 1)
7053 {
7054 if (ada_is_variant_part (type, f))
7055 return f;
7056 }
7057 return -1;
14f9c5c9
AS
7058}
7059
4c4b4cd2
PH
7060/* A record type with no fields. */
7061
d2e4a39e 7062static struct type *
e9bb382b 7063empty_record (struct type *template)
14f9c5c9 7064{
e9bb382b 7065 struct type *type = alloc_type_copy (template);
5b4ee69b 7066
14f9c5c9
AS
7067 TYPE_CODE (type) = TYPE_CODE_STRUCT;
7068 TYPE_NFIELDS (type) = 0;
7069 TYPE_FIELDS (type) = NULL;
b1f33ddd 7070 INIT_CPLUS_SPECIFIC (type);
14f9c5c9
AS
7071 TYPE_NAME (type) = "<empty>";
7072 TYPE_TAG_NAME (type) = NULL;
14f9c5c9
AS
7073 TYPE_LENGTH (type) = 0;
7074 return type;
7075}
7076
7077/* An ordinary record type (with fixed-length fields) that describes
4c4b4cd2
PH
7078 the value of type TYPE at VALADDR or ADDRESS (see comments at
7079 the beginning of this section) VAL according to GNAT conventions.
7080 DVAL0 should describe the (portion of a) record that contains any
df407dfe 7081 necessary discriminants. It should be NULL if value_type (VAL) is
14f9c5c9
AS
7082 an outer-level type (i.e., as opposed to a branch of a variant.) A
7083 variant field (unless unchecked) is replaced by a particular branch
4c4b4cd2 7084 of the variant.
14f9c5c9 7085
4c4b4cd2
PH
7086 If not KEEP_DYNAMIC_FIELDS, then all fields whose position or
7087 length are not statically known are discarded. As a consequence,
7088 VALADDR, ADDRESS and DVAL0 are ignored.
7089
7090 NOTE: Limitations: For now, we assume that dynamic fields and
7091 variants occupy whole numbers of bytes. However, they need not be
7092 byte-aligned. */
7093
7094struct type *
10a2c479 7095ada_template_to_fixed_record_type_1 (struct type *type,
fc1a4b47 7096 const gdb_byte *valaddr,
4c4b4cd2
PH
7097 CORE_ADDR address, struct value *dval0,
7098 int keep_dynamic_fields)
14f9c5c9 7099{
d2e4a39e
AS
7100 struct value *mark = value_mark ();
7101 struct value *dval;
7102 struct type *rtype;
14f9c5c9 7103 int nfields, bit_len;
4c4b4cd2 7104 int variant_field;
14f9c5c9 7105 long off;
d94e4f4f 7106 int fld_bit_len;
14f9c5c9
AS
7107 int f;
7108
4c4b4cd2
PH
7109 /* Compute the number of fields in this record type that are going
7110 to be processed: unless keep_dynamic_fields, this includes only
7111 fields whose position and length are static will be processed. */
7112 if (keep_dynamic_fields)
7113 nfields = TYPE_NFIELDS (type);
7114 else
7115 {
7116 nfields = 0;
76a01679 7117 while (nfields < TYPE_NFIELDS (type)
4c4b4cd2
PH
7118 && !ada_is_variant_part (type, nfields)
7119 && !is_dynamic_field (type, nfields))
7120 nfields++;
7121 }
7122
e9bb382b 7123 rtype = alloc_type_copy (type);
14f9c5c9
AS
7124 TYPE_CODE (rtype) = TYPE_CODE_STRUCT;
7125 INIT_CPLUS_SPECIFIC (rtype);
7126 TYPE_NFIELDS (rtype) = nfields;
d2e4a39e 7127 TYPE_FIELDS (rtype) = (struct field *)
14f9c5c9
AS
7128 TYPE_ALLOC (rtype, nfields * sizeof (struct field));
7129 memset (TYPE_FIELDS (rtype), 0, sizeof (struct field) * nfields);
7130 TYPE_NAME (rtype) = ada_type_name (type);
7131 TYPE_TAG_NAME (rtype) = NULL;
876cecd0 7132 TYPE_FIXED_INSTANCE (rtype) = 1;
14f9c5c9 7133
d2e4a39e
AS
7134 off = 0;
7135 bit_len = 0;
4c4b4cd2
PH
7136 variant_field = -1;
7137
14f9c5c9
AS
7138 for (f = 0; f < nfields; f += 1)
7139 {
6c038f32
PH
7140 off = align_value (off, field_alignment (type, f))
7141 + TYPE_FIELD_BITPOS (type, f);
14f9c5c9 7142 TYPE_FIELD_BITPOS (rtype, f) = off;
d2e4a39e 7143 TYPE_FIELD_BITSIZE (rtype, f) = 0;
14f9c5c9 7144
d2e4a39e 7145 if (ada_is_variant_part (type, f))
4c4b4cd2
PH
7146 {
7147 variant_field = f;
d94e4f4f 7148 fld_bit_len = 0;
4c4b4cd2 7149 }
14f9c5c9 7150 else if (is_dynamic_field (type, f))
4c4b4cd2 7151 {
284614f0
JB
7152 const gdb_byte *field_valaddr = valaddr;
7153 CORE_ADDR field_address = address;
7154 struct type *field_type =
7155 TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type, f));
7156
4c4b4cd2 7157 if (dval0 == NULL)
b5304971
JG
7158 {
7159 /* rtype's length is computed based on the run-time
7160 value of discriminants. If the discriminants are not
7161 initialized, the type size may be completely bogus and
0963b4bd 7162 GDB may fail to allocate a value for it. So check the
b5304971
JG
7163 size first before creating the value. */
7164 check_size (rtype);
7165 dval = value_from_contents_and_address (rtype, valaddr, address);
7166 }
4c4b4cd2
PH
7167 else
7168 dval = dval0;
7169
284614f0
JB
7170 /* If the type referenced by this field is an aligner type, we need
7171 to unwrap that aligner type, because its size might not be set.
7172 Keeping the aligner type would cause us to compute the wrong
7173 size for this field, impacting the offset of the all the fields
7174 that follow this one. */
7175 if (ada_is_aligner_type (field_type))
7176 {
7177 long field_offset = TYPE_FIELD_BITPOS (field_type, f);
7178
7179 field_valaddr = cond_offset_host (field_valaddr, field_offset);
7180 field_address = cond_offset_target (field_address, field_offset);
7181 field_type = ada_aligned_type (field_type);
7182 }
7183
7184 field_valaddr = cond_offset_host (field_valaddr,
7185 off / TARGET_CHAR_BIT);
7186 field_address = cond_offset_target (field_address,
7187 off / TARGET_CHAR_BIT);
7188
7189 /* Get the fixed type of the field. Note that, in this case,
7190 we do not want to get the real type out of the tag: if
7191 the current field is the parent part of a tagged record,
7192 we will get the tag of the object. Clearly wrong: the real
7193 type of the parent is not the real type of the child. We
7194 would end up in an infinite loop. */
7195 field_type = ada_get_base_type (field_type);
7196 field_type = ada_to_fixed_type (field_type, field_valaddr,
7197 field_address, dval, 0);
27f2a97b
JB
7198 /* If the field size is already larger than the maximum
7199 object size, then the record itself will necessarily
7200 be larger than the maximum object size. We need to make
7201 this check now, because the size might be so ridiculously
7202 large (due to an uninitialized variable in the inferior)
7203 that it would cause an overflow when adding it to the
7204 record size. */
7205 check_size (field_type);
284614f0
JB
7206
7207 TYPE_FIELD_TYPE (rtype, f) = field_type;
4c4b4cd2 7208 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
27f2a97b
JB
7209 /* The multiplication can potentially overflow. But because
7210 the field length has been size-checked just above, and
7211 assuming that the maximum size is a reasonable value,
7212 an overflow should not happen in practice. So rather than
7213 adding overflow recovery code to this already complex code,
7214 we just assume that it's not going to happen. */
d94e4f4f 7215 fld_bit_len =
4c4b4cd2
PH
7216 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, f)) * TARGET_CHAR_BIT;
7217 }
14f9c5c9 7218 else
4c4b4cd2 7219 {
9f0dec2d
JB
7220 struct type *field_type = TYPE_FIELD_TYPE (type, f);
7221
720d1a40
JB
7222 /* If our field is a typedef type (most likely a typedef of
7223 a fat pointer, encoding an array access), then we need to
7224 look at its target type to determine its characteristics.
7225 In particular, we would miscompute the field size if we took
7226 the size of the typedef (zero), instead of the size of
7227 the target type. */
7228 if (TYPE_CODE (field_type) == TYPE_CODE_TYPEDEF)
7229 field_type = ada_typedef_target_type (field_type);
7230
9f0dec2d 7231 TYPE_FIELD_TYPE (rtype, f) = field_type;
4c4b4cd2
PH
7232 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
7233 if (TYPE_FIELD_BITSIZE (type, f) > 0)
d94e4f4f 7234 fld_bit_len =
4c4b4cd2
PH
7235 TYPE_FIELD_BITSIZE (rtype, f) = TYPE_FIELD_BITSIZE (type, f);
7236 else
d94e4f4f 7237 fld_bit_len =
9f0dec2d 7238 TYPE_LENGTH (ada_check_typedef (field_type)) * TARGET_CHAR_BIT;
4c4b4cd2 7239 }
14f9c5c9 7240 if (off + fld_bit_len > bit_len)
4c4b4cd2 7241 bit_len = off + fld_bit_len;
d94e4f4f 7242 off += fld_bit_len;
4c4b4cd2
PH
7243 TYPE_LENGTH (rtype) =
7244 align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
14f9c5c9 7245 }
4c4b4cd2
PH
7246
7247 /* We handle the variant part, if any, at the end because of certain
b1f33ddd 7248 odd cases in which it is re-ordered so as NOT to be the last field of
4c4b4cd2
PH
7249 the record. This can happen in the presence of representation
7250 clauses. */
7251 if (variant_field >= 0)
7252 {
7253 struct type *branch_type;
7254
7255 off = TYPE_FIELD_BITPOS (rtype, variant_field);
7256
7257 if (dval0 == NULL)
7258 dval = value_from_contents_and_address (rtype, valaddr, address);
7259 else
7260 dval = dval0;
7261
7262 branch_type =
7263 to_fixed_variant_branch_type
7264 (TYPE_FIELD_TYPE (type, variant_field),
7265 cond_offset_host (valaddr, off / TARGET_CHAR_BIT),
7266 cond_offset_target (address, off / TARGET_CHAR_BIT), dval);
7267 if (branch_type == NULL)
7268 {
7269 for (f = variant_field + 1; f < TYPE_NFIELDS (rtype); f += 1)
7270 TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f];
7271 TYPE_NFIELDS (rtype) -= 1;
7272 }
7273 else
7274 {
7275 TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
7276 TYPE_FIELD_NAME (rtype, variant_field) = "S";
7277 fld_bit_len =
7278 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, variant_field)) *
7279 TARGET_CHAR_BIT;
7280 if (off + fld_bit_len > bit_len)
7281 bit_len = off + fld_bit_len;
7282 TYPE_LENGTH (rtype) =
7283 align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
7284 }
7285 }
7286
714e53ab
PH
7287 /* According to exp_dbug.ads, the size of TYPE for variable-size records
7288 should contain the alignment of that record, which should be a strictly
7289 positive value. If null or negative, then something is wrong, most
7290 probably in the debug info. In that case, we don't round up the size
0963b4bd 7291 of the resulting type. If this record is not part of another structure,
714e53ab
PH
7292 the current RTYPE length might be good enough for our purposes. */
7293 if (TYPE_LENGTH (type) <= 0)
7294 {
323e0a4a
AC
7295 if (TYPE_NAME (rtype))
7296 warning (_("Invalid type size for `%s' detected: %d."),
7297 TYPE_NAME (rtype), TYPE_LENGTH (type));
7298 else
7299 warning (_("Invalid type size for <unnamed> detected: %d."),
7300 TYPE_LENGTH (type));
714e53ab
PH
7301 }
7302 else
7303 {
7304 TYPE_LENGTH (rtype) = align_value (TYPE_LENGTH (rtype),
7305 TYPE_LENGTH (type));
7306 }
14f9c5c9
AS
7307
7308 value_free_to_mark (mark);
d2e4a39e 7309 if (TYPE_LENGTH (rtype) > varsize_limit)
323e0a4a 7310 error (_("record type with dynamic size is larger than varsize-limit"));
14f9c5c9
AS
7311 return rtype;
7312}
7313
4c4b4cd2
PH
7314/* As for ada_template_to_fixed_record_type_1 with KEEP_DYNAMIC_FIELDS
7315 of 1. */
14f9c5c9 7316
d2e4a39e 7317static struct type *
fc1a4b47 7318template_to_fixed_record_type (struct type *type, const gdb_byte *valaddr,
4c4b4cd2
PH
7319 CORE_ADDR address, struct value *dval0)
7320{
7321 return ada_template_to_fixed_record_type_1 (type, valaddr,
7322 address, dval0, 1);
7323}
7324
7325/* An ordinary record type in which ___XVL-convention fields and
7326 ___XVU- and ___XVN-convention field types in TYPE0 are replaced with
7327 static approximations, containing all possible fields. Uses
7328 no runtime values. Useless for use in values, but that's OK,
7329 since the results are used only for type determinations. Works on both
7330 structs and unions. Representation note: to save space, we memorize
7331 the result of this function in the TYPE_TARGET_TYPE of the
7332 template type. */
7333
7334static struct type *
7335template_to_static_fixed_type (struct type *type0)
14f9c5c9
AS
7336{
7337 struct type *type;
7338 int nfields;
7339 int f;
7340
4c4b4cd2
PH
7341 if (TYPE_TARGET_TYPE (type0) != NULL)
7342 return TYPE_TARGET_TYPE (type0);
7343
7344 nfields = TYPE_NFIELDS (type0);
7345 type = type0;
14f9c5c9
AS
7346
7347 for (f = 0; f < nfields; f += 1)
7348 {
61ee279c 7349 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type0, f));
4c4b4cd2 7350 struct type *new_type;
14f9c5c9 7351
4c4b4cd2
PH
7352 if (is_dynamic_field (type0, f))
7353 new_type = to_static_fixed_type (TYPE_TARGET_TYPE (field_type));
14f9c5c9 7354 else
f192137b 7355 new_type = static_unwrap_type (field_type);
4c4b4cd2
PH
7356 if (type == type0 && new_type != field_type)
7357 {
e9bb382b 7358 TYPE_TARGET_TYPE (type0) = type = alloc_type_copy (type0);
4c4b4cd2
PH
7359 TYPE_CODE (type) = TYPE_CODE (type0);
7360 INIT_CPLUS_SPECIFIC (type);
7361 TYPE_NFIELDS (type) = nfields;
7362 TYPE_FIELDS (type) = (struct field *)
7363 TYPE_ALLOC (type, nfields * sizeof (struct field));
7364 memcpy (TYPE_FIELDS (type), TYPE_FIELDS (type0),
7365 sizeof (struct field) * nfields);
7366 TYPE_NAME (type) = ada_type_name (type0);
7367 TYPE_TAG_NAME (type) = NULL;
876cecd0 7368 TYPE_FIXED_INSTANCE (type) = 1;
4c4b4cd2
PH
7369 TYPE_LENGTH (type) = 0;
7370 }
7371 TYPE_FIELD_TYPE (type, f) = new_type;
7372 TYPE_FIELD_NAME (type, f) = TYPE_FIELD_NAME (type0, f);
14f9c5c9 7373 }
14f9c5c9
AS
7374 return type;
7375}
7376
4c4b4cd2 7377/* Given an object of type TYPE whose contents are at VALADDR and
5823c3ef
JB
7378 whose address in memory is ADDRESS, returns a revision of TYPE,
7379 which should be a non-dynamic-sized record, in which the variant
7380 part, if any, is replaced with the appropriate branch. Looks
4c4b4cd2
PH
7381 for discriminant values in DVAL0, which can be NULL if the record
7382 contains the necessary discriminant values. */
7383
d2e4a39e 7384static struct type *
fc1a4b47 7385to_record_with_fixed_variant_part (struct type *type, const gdb_byte *valaddr,
4c4b4cd2 7386 CORE_ADDR address, struct value *dval0)
14f9c5c9 7387{
d2e4a39e 7388 struct value *mark = value_mark ();
4c4b4cd2 7389 struct value *dval;
d2e4a39e 7390 struct type *rtype;
14f9c5c9
AS
7391 struct type *branch_type;
7392 int nfields = TYPE_NFIELDS (type);
4c4b4cd2 7393 int variant_field = variant_field_index (type);
14f9c5c9 7394
4c4b4cd2 7395 if (variant_field == -1)
14f9c5c9
AS
7396 return type;
7397
4c4b4cd2
PH
7398 if (dval0 == NULL)
7399 dval = value_from_contents_and_address (type, valaddr, address);
7400 else
7401 dval = dval0;
7402
e9bb382b 7403 rtype = alloc_type_copy (type);
14f9c5c9 7404 TYPE_CODE (rtype) = TYPE_CODE_STRUCT;
4c4b4cd2
PH
7405 INIT_CPLUS_SPECIFIC (rtype);
7406 TYPE_NFIELDS (rtype) = nfields;
d2e4a39e
AS
7407 TYPE_FIELDS (rtype) =
7408 (struct field *) TYPE_ALLOC (rtype, nfields * sizeof (struct field));
7409 memcpy (TYPE_FIELDS (rtype), TYPE_FIELDS (type),
4c4b4cd2 7410 sizeof (struct field) * nfields);
14f9c5c9
AS
7411 TYPE_NAME (rtype) = ada_type_name (type);
7412 TYPE_TAG_NAME (rtype) = NULL;
876cecd0 7413 TYPE_FIXED_INSTANCE (rtype) = 1;
14f9c5c9
AS
7414 TYPE_LENGTH (rtype) = TYPE_LENGTH (type);
7415
4c4b4cd2
PH
7416 branch_type = to_fixed_variant_branch_type
7417 (TYPE_FIELD_TYPE (type, variant_field),
d2e4a39e 7418 cond_offset_host (valaddr,
4c4b4cd2
PH
7419 TYPE_FIELD_BITPOS (type, variant_field)
7420 / TARGET_CHAR_BIT),
d2e4a39e 7421 cond_offset_target (address,
4c4b4cd2
PH
7422 TYPE_FIELD_BITPOS (type, variant_field)
7423 / TARGET_CHAR_BIT), dval);
d2e4a39e 7424 if (branch_type == NULL)
14f9c5c9 7425 {
4c4b4cd2 7426 int f;
5b4ee69b 7427
4c4b4cd2
PH
7428 for (f = variant_field + 1; f < nfields; f += 1)
7429 TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f];
14f9c5c9 7430 TYPE_NFIELDS (rtype) -= 1;
14f9c5c9
AS
7431 }
7432 else
7433 {
4c4b4cd2
PH
7434 TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
7435 TYPE_FIELD_NAME (rtype, variant_field) = "S";
7436 TYPE_FIELD_BITSIZE (rtype, variant_field) = 0;
14f9c5c9 7437 TYPE_LENGTH (rtype) += TYPE_LENGTH (branch_type);
14f9c5c9 7438 }
4c4b4cd2 7439 TYPE_LENGTH (rtype) -= TYPE_LENGTH (TYPE_FIELD_TYPE (type, variant_field));
d2e4a39e 7440
4c4b4cd2 7441 value_free_to_mark (mark);
14f9c5c9
AS
7442 return rtype;
7443}
7444
7445/* An ordinary record type (with fixed-length fields) that describes
7446 the value at (TYPE0, VALADDR, ADDRESS) [see explanation at
7447 beginning of this section]. Any necessary discriminants' values
4c4b4cd2
PH
7448 should be in DVAL, a record value; it may be NULL if the object
7449 at ADDR itself contains any necessary discriminant values.
7450 Additionally, VALADDR and ADDRESS may also be NULL if no discriminant
7451 values from the record are needed. Except in the case that DVAL,
7452 VALADDR, and ADDRESS are all 0 or NULL, a variant field (unless
7453 unchecked) is replaced by a particular branch of the variant.
7454
7455 NOTE: the case in which DVAL and VALADDR are NULL and ADDRESS is 0
7456 is questionable and may be removed. It can arise during the
7457 processing of an unconstrained-array-of-record type where all the
7458 variant branches have exactly the same size. This is because in
7459 such cases, the compiler does not bother to use the XVS convention
7460 when encoding the record. I am currently dubious of this
7461 shortcut and suspect the compiler should be altered. FIXME. */
14f9c5c9 7462
d2e4a39e 7463static struct type *
fc1a4b47 7464to_fixed_record_type (struct type *type0, const gdb_byte *valaddr,
4c4b4cd2 7465 CORE_ADDR address, struct value *dval)
14f9c5c9 7466{
d2e4a39e 7467 struct type *templ_type;
14f9c5c9 7468
876cecd0 7469 if (TYPE_FIXED_INSTANCE (type0))
4c4b4cd2
PH
7470 return type0;
7471
d2e4a39e 7472 templ_type = dynamic_template_type (type0);
14f9c5c9
AS
7473
7474 if (templ_type != NULL)
7475 return template_to_fixed_record_type (templ_type, valaddr, address, dval);
4c4b4cd2
PH
7476 else if (variant_field_index (type0) >= 0)
7477 {
7478 if (dval == NULL && valaddr == NULL && address == 0)
7479 return type0;
7480 return to_record_with_fixed_variant_part (type0, valaddr, address,
7481 dval);
7482 }
14f9c5c9
AS
7483 else
7484 {
876cecd0 7485 TYPE_FIXED_INSTANCE (type0) = 1;
14f9c5c9
AS
7486 return type0;
7487 }
7488
7489}
7490
7491/* An ordinary record type (with fixed-length fields) that describes
7492 the value at (VAR_TYPE0, VALADDR, ADDRESS), where VAR_TYPE0 is a
7493 union type. Any necessary discriminants' values should be in DVAL,
7494 a record value. That is, this routine selects the appropriate
7495 branch of the union at ADDR according to the discriminant value
b1f33ddd 7496 indicated in the union's type name. Returns VAR_TYPE0 itself if
0963b4bd 7497 it represents a variant subject to a pragma Unchecked_Union. */
14f9c5c9 7498
d2e4a39e 7499static struct type *
fc1a4b47 7500to_fixed_variant_branch_type (struct type *var_type0, const gdb_byte *valaddr,
4c4b4cd2 7501 CORE_ADDR address, struct value *dval)
14f9c5c9
AS
7502{
7503 int which;
d2e4a39e
AS
7504 struct type *templ_type;
7505 struct type *var_type;
14f9c5c9
AS
7506
7507 if (TYPE_CODE (var_type0) == TYPE_CODE_PTR)
7508 var_type = TYPE_TARGET_TYPE (var_type0);
d2e4a39e 7509 else
14f9c5c9
AS
7510 var_type = var_type0;
7511
7512 templ_type = ada_find_parallel_type (var_type, "___XVU");
7513
7514 if (templ_type != NULL)
7515 var_type = templ_type;
7516
b1f33ddd
JB
7517 if (is_unchecked_variant (var_type, value_type (dval)))
7518 return var_type0;
d2e4a39e
AS
7519 which =
7520 ada_which_variant_applies (var_type,
0fd88904 7521 value_type (dval), value_contents (dval));
14f9c5c9
AS
7522
7523 if (which < 0)
e9bb382b 7524 return empty_record (var_type);
14f9c5c9 7525 else if (is_dynamic_field (var_type, which))
4c4b4cd2 7526 return to_fixed_record_type
d2e4a39e
AS
7527 (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (var_type, which)),
7528 valaddr, address, dval);
4c4b4cd2 7529 else if (variant_field_index (TYPE_FIELD_TYPE (var_type, which)) >= 0)
d2e4a39e
AS
7530 return
7531 to_fixed_record_type
7532 (TYPE_FIELD_TYPE (var_type, which), valaddr, address, dval);
14f9c5c9
AS
7533 else
7534 return TYPE_FIELD_TYPE (var_type, which);
7535}
7536
7537/* Assuming that TYPE0 is an array type describing the type of a value
7538 at ADDR, and that DVAL describes a record containing any
7539 discriminants used in TYPE0, returns a type for the value that
7540 contains no dynamic components (that is, no components whose sizes
7541 are determined by run-time quantities). Unless IGNORE_TOO_BIG is
7542 true, gives an error message if the resulting type's size is over
4c4b4cd2 7543 varsize_limit. */
14f9c5c9 7544
d2e4a39e
AS
7545static struct type *
7546to_fixed_array_type (struct type *type0, struct value *dval,
4c4b4cd2 7547 int ignore_too_big)
14f9c5c9 7548{
d2e4a39e
AS
7549 struct type *index_type_desc;
7550 struct type *result;
ad82864c 7551 int constrained_packed_array_p;
14f9c5c9 7552
284614f0 7553 if (TYPE_FIXED_INSTANCE (type0))
4c4b4cd2 7554 return type0;
14f9c5c9 7555
ad82864c
JB
7556 constrained_packed_array_p = ada_is_constrained_packed_array_type (type0);
7557 if (constrained_packed_array_p)
7558 type0 = decode_constrained_packed_array_type (type0);
284614f0 7559
14f9c5c9 7560 index_type_desc = ada_find_parallel_type (type0, "___XA");
28c85d6c 7561 ada_fixup_array_indexes_type (index_type_desc);
14f9c5c9
AS
7562 if (index_type_desc == NULL)
7563 {
61ee279c 7564 struct type *elt_type0 = ada_check_typedef (TYPE_TARGET_TYPE (type0));
5b4ee69b 7565
14f9c5c9 7566 /* NOTE: elt_type---the fixed version of elt_type0---should never
4c4b4cd2
PH
7567 depend on the contents of the array in properly constructed
7568 debugging data. */
529cad9c
PH
7569 /* Create a fixed version of the array element type.
7570 We're not providing the address of an element here,
e1d5a0d2 7571 and thus the actual object value cannot be inspected to do
529cad9c
PH
7572 the conversion. This should not be a problem, since arrays of
7573 unconstrained objects are not allowed. In particular, all
7574 the elements of an array of a tagged type should all be of
7575 the same type specified in the debugging info. No need to
7576 consult the object tag. */
1ed6ede0 7577 struct type *elt_type = ada_to_fixed_type (elt_type0, 0, 0, dval, 1);
14f9c5c9 7578
284614f0
JB
7579 /* Make sure we always create a new array type when dealing with
7580 packed array types, since we're going to fix-up the array
7581 type length and element bitsize a little further down. */
ad82864c 7582 if (elt_type0 == elt_type && !constrained_packed_array_p)
4c4b4cd2 7583 result = type0;
14f9c5c9 7584 else
e9bb382b 7585 result = create_array_type (alloc_type_copy (type0),
4c4b4cd2 7586 elt_type, TYPE_INDEX_TYPE (type0));
14f9c5c9
AS
7587 }
7588 else
7589 {
7590 int i;
7591 struct type *elt_type0;
7592
7593 elt_type0 = type0;
7594 for (i = TYPE_NFIELDS (index_type_desc); i > 0; i -= 1)
4c4b4cd2 7595 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
14f9c5c9
AS
7596
7597 /* NOTE: result---the fixed version of elt_type0---should never
4c4b4cd2
PH
7598 depend on the contents of the array in properly constructed
7599 debugging data. */
529cad9c
PH
7600 /* Create a fixed version of the array element type.
7601 We're not providing the address of an element here,
e1d5a0d2 7602 and thus the actual object value cannot be inspected to do
529cad9c
PH
7603 the conversion. This should not be a problem, since arrays of
7604 unconstrained objects are not allowed. In particular, all
7605 the elements of an array of a tagged type should all be of
7606 the same type specified in the debugging info. No need to
7607 consult the object tag. */
1ed6ede0
JB
7608 result =
7609 ada_to_fixed_type (ada_check_typedef (elt_type0), 0, 0, dval, 1);
1ce677a4
UW
7610
7611 elt_type0 = type0;
14f9c5c9 7612 for (i = TYPE_NFIELDS (index_type_desc) - 1; i >= 0; i -= 1)
4c4b4cd2
PH
7613 {
7614 struct type *range_type =
28c85d6c 7615 to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, i), dval);
5b4ee69b 7616
e9bb382b 7617 result = create_array_type (alloc_type_copy (elt_type0),
4c4b4cd2 7618 result, range_type);
1ce677a4 7619 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
4c4b4cd2 7620 }
d2e4a39e 7621 if (!ignore_too_big && TYPE_LENGTH (result) > varsize_limit)
323e0a4a 7622 error (_("array type with dynamic size is larger than varsize-limit"));
14f9c5c9
AS
7623 }
7624
ad82864c 7625 if (constrained_packed_array_p)
284614f0
JB
7626 {
7627 /* So far, the resulting type has been created as if the original
7628 type was a regular (non-packed) array type. As a result, the
7629 bitsize of the array elements needs to be set again, and the array
7630 length needs to be recomputed based on that bitsize. */
7631 int len = TYPE_LENGTH (result) / TYPE_LENGTH (TYPE_TARGET_TYPE (result));
7632 int elt_bitsize = TYPE_FIELD_BITSIZE (type0, 0);
7633
7634 TYPE_FIELD_BITSIZE (result, 0) = TYPE_FIELD_BITSIZE (type0, 0);
7635 TYPE_LENGTH (result) = len * elt_bitsize / HOST_CHAR_BIT;
7636 if (TYPE_LENGTH (result) * HOST_CHAR_BIT < len * elt_bitsize)
7637 TYPE_LENGTH (result)++;
7638 }
7639
876cecd0 7640 TYPE_FIXED_INSTANCE (result) = 1;
14f9c5c9 7641 return result;
d2e4a39e 7642}
14f9c5c9
AS
7643
7644
7645/* A standard type (containing no dynamically sized components)
7646 corresponding to TYPE for the value (TYPE, VALADDR, ADDRESS)
7647 DVAL describes a record containing any discriminants used in TYPE0,
4c4b4cd2 7648 and may be NULL if there are none, or if the object of type TYPE at
529cad9c
PH
7649 ADDRESS or in VALADDR contains these discriminants.
7650
1ed6ede0
JB
7651 If CHECK_TAG is not null, in the case of tagged types, this function
7652 attempts to locate the object's tag and use it to compute the actual
7653 type. However, when ADDRESS is null, we cannot use it to determine the
7654 location of the tag, and therefore compute the tagged type's actual type.
7655 So we return the tagged type without consulting the tag. */
529cad9c 7656
f192137b
JB
7657static struct type *
7658ada_to_fixed_type_1 (struct type *type, const gdb_byte *valaddr,
1ed6ede0 7659 CORE_ADDR address, struct value *dval, int check_tag)
14f9c5c9 7660{
61ee279c 7661 type = ada_check_typedef (type);
d2e4a39e
AS
7662 switch (TYPE_CODE (type))
7663 {
7664 default:
14f9c5c9 7665 return type;
d2e4a39e 7666 case TYPE_CODE_STRUCT:
4c4b4cd2 7667 {
76a01679 7668 struct type *static_type = to_static_fixed_type (type);
1ed6ede0
JB
7669 struct type *fixed_record_type =
7670 to_fixed_record_type (type, valaddr, address, NULL);
5b4ee69b 7671
529cad9c
PH
7672 /* If STATIC_TYPE is a tagged type and we know the object's address,
7673 then we can determine its tag, and compute the object's actual
0963b4bd 7674 type from there. Note that we have to use the fixed record
1ed6ede0
JB
7675 type (the parent part of the record may have dynamic fields
7676 and the way the location of _tag is expressed may depend on
7677 them). */
529cad9c 7678
1ed6ede0 7679 if (check_tag && address != 0 && ada_is_tagged_type (static_type, 0))
76a01679
JB
7680 {
7681 struct type *real_type =
1ed6ede0
JB
7682 type_from_tag (value_tag_from_contents_and_address
7683 (fixed_record_type,
7684 valaddr,
7685 address));
5b4ee69b 7686
76a01679 7687 if (real_type != NULL)
1ed6ede0 7688 return to_fixed_record_type (real_type, valaddr, address, NULL);
76a01679 7689 }
4af88198
JB
7690
7691 /* Check to see if there is a parallel ___XVZ variable.
7692 If there is, then it provides the actual size of our type. */
7693 else if (ada_type_name (fixed_record_type) != NULL)
7694 {
7695 char *name = ada_type_name (fixed_record_type);
7696 char *xvz_name = alloca (strlen (name) + 7 /* "___XVZ\0" */);
7697 int xvz_found = 0;
7698 LONGEST size;
7699
88c15c34 7700 xsnprintf (xvz_name, strlen (name) + 7, "%s___XVZ", name);
4af88198
JB
7701 size = get_int_var_value (xvz_name, &xvz_found);
7702 if (xvz_found && TYPE_LENGTH (fixed_record_type) != size)
7703 {
7704 fixed_record_type = copy_type (fixed_record_type);
7705 TYPE_LENGTH (fixed_record_type) = size;
7706
7707 /* The FIXED_RECORD_TYPE may have be a stub. We have
7708 observed this when the debugging info is STABS, and
7709 apparently it is something that is hard to fix.
7710
7711 In practice, we don't need the actual type definition
7712 at all, because the presence of the XVZ variable allows us
7713 to assume that there must be a XVS type as well, which we
7714 should be able to use later, when we need the actual type
7715 definition.
7716
7717 In the meantime, pretend that the "fixed" type we are
7718 returning is NOT a stub, because this can cause trouble
7719 when using this type to create new types targeting it.
7720 Indeed, the associated creation routines often check
7721 whether the target type is a stub and will try to replace
0963b4bd 7722 it, thus using a type with the wrong size. This, in turn,
4af88198
JB
7723 might cause the new type to have the wrong size too.
7724 Consider the case of an array, for instance, where the size
7725 of the array is computed from the number of elements in
7726 our array multiplied by the size of its element. */
7727 TYPE_STUB (fixed_record_type) = 0;
7728 }
7729 }
1ed6ede0 7730 return fixed_record_type;
4c4b4cd2 7731 }
d2e4a39e 7732 case TYPE_CODE_ARRAY:
4c4b4cd2 7733 return to_fixed_array_type (type, dval, 1);
d2e4a39e
AS
7734 case TYPE_CODE_UNION:
7735 if (dval == NULL)
4c4b4cd2 7736 return type;
d2e4a39e 7737 else
4c4b4cd2 7738 return to_fixed_variant_branch_type (type, valaddr, address, dval);
d2e4a39e 7739 }
14f9c5c9
AS
7740}
7741
f192137b
JB
7742/* The same as ada_to_fixed_type_1, except that it preserves the type
7743 if it is a TYPE_CODE_TYPEDEF of a type that is already fixed.
96dbd2c1
JB
7744
7745 The typedef layer needs be preserved in order to differentiate between
7746 arrays and array pointers when both types are implemented using the same
7747 fat pointer. In the array pointer case, the pointer is encoded as
7748 a typedef of the pointer type. For instance, considering:
7749
7750 type String_Access is access String;
7751 S1 : String_Access := null;
7752
7753 To the debugger, S1 is defined as a typedef of type String. But
7754 to the user, it is a pointer. So if the user tries to print S1,
7755 we should not dereference the array, but print the array address
7756 instead.
7757
7758 If we didn't preserve the typedef layer, we would lose the fact that
7759 the type is to be presented as a pointer (needs de-reference before
7760 being printed). And we would also use the source-level type name. */
f192137b
JB
7761
7762struct type *
7763ada_to_fixed_type (struct type *type, const gdb_byte *valaddr,
7764 CORE_ADDR address, struct value *dval, int check_tag)
7765
7766{
7767 struct type *fixed_type =
7768 ada_to_fixed_type_1 (type, valaddr, address, dval, check_tag);
7769
96dbd2c1
JB
7770 /* If TYPE is a typedef and its target type is the same as the FIXED_TYPE,
7771 then preserve the typedef layer.
7772
7773 Implementation note: We can only check the main-type portion of
7774 the TYPE and FIXED_TYPE, because eliminating the typedef layer
7775 from TYPE now returns a type that has the same instance flags
7776 as TYPE. For instance, if TYPE is a "typedef const", and its
7777 target type is a "struct", then the typedef elimination will return
7778 a "const" version of the target type. See check_typedef for more
7779 details about how the typedef layer elimination is done.
7780
7781 brobecker/2010-11-19: It seems to me that the only case where it is
7782 useful to preserve the typedef layer is when dealing with fat pointers.
7783 Perhaps, we could add a check for that and preserve the typedef layer
7784 only in that situation. But this seems unecessary so far, probably
7785 because we call check_typedef/ada_check_typedef pretty much everywhere.
7786 */
f192137b 7787 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF
720d1a40 7788 && (TYPE_MAIN_TYPE (ada_typedef_target_type (type))
96dbd2c1 7789 == TYPE_MAIN_TYPE (fixed_type)))
f192137b
JB
7790 return type;
7791
7792 return fixed_type;
7793}
7794
14f9c5c9 7795/* A standard (static-sized) type corresponding as well as possible to
4c4b4cd2 7796 TYPE0, but based on no runtime data. */
14f9c5c9 7797
d2e4a39e
AS
7798static struct type *
7799to_static_fixed_type (struct type *type0)
14f9c5c9 7800{
d2e4a39e 7801 struct type *type;
14f9c5c9
AS
7802
7803 if (type0 == NULL)
7804 return NULL;
7805
876cecd0 7806 if (TYPE_FIXED_INSTANCE (type0))
4c4b4cd2
PH
7807 return type0;
7808
61ee279c 7809 type0 = ada_check_typedef (type0);
d2e4a39e 7810
14f9c5c9
AS
7811 switch (TYPE_CODE (type0))
7812 {
7813 default:
7814 return type0;
7815 case TYPE_CODE_STRUCT:
7816 type = dynamic_template_type (type0);
d2e4a39e 7817 if (type != NULL)
4c4b4cd2
PH
7818 return template_to_static_fixed_type (type);
7819 else
7820 return template_to_static_fixed_type (type0);
14f9c5c9
AS
7821 case TYPE_CODE_UNION:
7822 type = ada_find_parallel_type (type0, "___XVU");
7823 if (type != NULL)
4c4b4cd2
PH
7824 return template_to_static_fixed_type (type);
7825 else
7826 return template_to_static_fixed_type (type0);
14f9c5c9
AS
7827 }
7828}
7829
4c4b4cd2
PH
7830/* A static approximation of TYPE with all type wrappers removed. */
7831
d2e4a39e
AS
7832static struct type *
7833static_unwrap_type (struct type *type)
14f9c5c9
AS
7834{
7835 if (ada_is_aligner_type (type))
7836 {
61ee279c 7837 struct type *type1 = TYPE_FIELD_TYPE (ada_check_typedef (type), 0);
14f9c5c9 7838 if (ada_type_name (type1) == NULL)
4c4b4cd2 7839 TYPE_NAME (type1) = ada_type_name (type);
14f9c5c9
AS
7840
7841 return static_unwrap_type (type1);
7842 }
d2e4a39e 7843 else
14f9c5c9 7844 {
d2e4a39e 7845 struct type *raw_real_type = ada_get_base_type (type);
5b4ee69b 7846
d2e4a39e 7847 if (raw_real_type == type)
4c4b4cd2 7848 return type;
14f9c5c9 7849 else
4c4b4cd2 7850 return to_static_fixed_type (raw_real_type);
14f9c5c9
AS
7851 }
7852}
7853
7854/* In some cases, incomplete and private types require
4c4b4cd2 7855 cross-references that are not resolved as records (for example,
14f9c5c9
AS
7856 type Foo;
7857 type FooP is access Foo;
7858 V: FooP;
7859 type Foo is array ...;
4c4b4cd2 7860 ). In these cases, since there is no mechanism for producing
14f9c5c9
AS
7861 cross-references to such types, we instead substitute for FooP a
7862 stub enumeration type that is nowhere resolved, and whose tag is
4c4b4cd2 7863 the name of the actual type. Call these types "non-record stubs". */
14f9c5c9
AS
7864
7865/* A type equivalent to TYPE that is not a non-record stub, if one
4c4b4cd2
PH
7866 exists, otherwise TYPE. */
7867
d2e4a39e 7868struct type *
61ee279c 7869ada_check_typedef (struct type *type)
14f9c5c9 7870{
727e3d2e
JB
7871 if (type == NULL)
7872 return NULL;
7873
720d1a40
JB
7874 /* If our type is a typedef type of a fat pointer, then we're done.
7875 We don't want to strip the TYPE_CODE_TYPDEF layer, because this is
7876 what allows us to distinguish between fat pointers that represent
7877 array types, and fat pointers that represent array access types
7878 (in both cases, the compiler implements them as fat pointers). */
7879 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF
7880 && is_thick_pntr (ada_typedef_target_type (type)))
7881 return type;
7882
14f9c5c9
AS
7883 CHECK_TYPEDEF (type);
7884 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM
529cad9c 7885 || !TYPE_STUB (type)
14f9c5c9
AS
7886 || TYPE_TAG_NAME (type) == NULL)
7887 return type;
d2e4a39e 7888 else
14f9c5c9 7889 {
d2e4a39e
AS
7890 char *name = TYPE_TAG_NAME (type);
7891 struct type *type1 = ada_find_any_type (name);
5b4ee69b 7892
05e522ef
JB
7893 if (type1 == NULL)
7894 return type;
7895
7896 /* TYPE1 might itself be a TYPE_CODE_TYPEDEF (this can happen with
7897 stubs pointing to arrays, as we don't create symbols for array
3a867c22
JB
7898 types, only for the typedef-to-array types). If that's the case,
7899 strip the typedef layer. */
7900 if (TYPE_CODE (type1) == TYPE_CODE_TYPEDEF)
7901 type1 = ada_check_typedef (type1);
7902
7903 return type1;
14f9c5c9
AS
7904 }
7905}
7906
7907/* A value representing the data at VALADDR/ADDRESS as described by
7908 type TYPE0, but with a standard (static-sized) type that correctly
7909 describes it. If VAL0 is not NULL and TYPE0 already is a standard
7910 type, then return VAL0 [this feature is simply to avoid redundant
4c4b4cd2 7911 creation of struct values]. */
14f9c5c9 7912
4c4b4cd2
PH
7913static struct value *
7914ada_to_fixed_value_create (struct type *type0, CORE_ADDR address,
7915 struct value *val0)
14f9c5c9 7916{
1ed6ede0 7917 struct type *type = ada_to_fixed_type (type0, 0, address, NULL, 1);
5b4ee69b 7918
14f9c5c9
AS
7919 if (type == type0 && val0 != NULL)
7920 return val0;
d2e4a39e 7921 else
4c4b4cd2
PH
7922 return value_from_contents_and_address (type, 0, address);
7923}
7924
7925/* A value representing VAL, but with a standard (static-sized) type
7926 that correctly describes it. Does not necessarily create a new
7927 value. */
7928
0c3acc09 7929struct value *
4c4b4cd2
PH
7930ada_to_fixed_value (struct value *val)
7931{
df407dfe 7932 return ada_to_fixed_value_create (value_type (val),
42ae5230 7933 value_address (val),
4c4b4cd2 7934 val);
14f9c5c9 7935}
d2e4a39e 7936\f
14f9c5c9 7937
14f9c5c9
AS
7938/* Attributes */
7939
4c4b4cd2
PH
7940/* Table mapping attribute numbers to names.
7941 NOTE: Keep up to date with enum ada_attribute definition in ada-lang.h. */
14f9c5c9 7942
d2e4a39e 7943static const char *attribute_names[] = {
14f9c5c9
AS
7944 "<?>",
7945
d2e4a39e 7946 "first",
14f9c5c9
AS
7947 "last",
7948 "length",
7949 "image",
14f9c5c9
AS
7950 "max",
7951 "min",
4c4b4cd2
PH
7952 "modulus",
7953 "pos",
7954 "size",
7955 "tag",
14f9c5c9 7956 "val",
14f9c5c9
AS
7957 0
7958};
7959
d2e4a39e 7960const char *
4c4b4cd2 7961ada_attribute_name (enum exp_opcode n)
14f9c5c9 7962{
4c4b4cd2
PH
7963 if (n >= OP_ATR_FIRST && n <= (int) OP_ATR_VAL)
7964 return attribute_names[n - OP_ATR_FIRST + 1];
14f9c5c9
AS
7965 else
7966 return attribute_names[0];
7967}
7968
4c4b4cd2 7969/* Evaluate the 'POS attribute applied to ARG. */
14f9c5c9 7970
4c4b4cd2
PH
7971static LONGEST
7972pos_atr (struct value *arg)
14f9c5c9 7973{
24209737
PH
7974 struct value *val = coerce_ref (arg);
7975 struct type *type = value_type (val);
14f9c5c9 7976
d2e4a39e 7977 if (!discrete_type_p (type))
323e0a4a 7978 error (_("'POS only defined on discrete types"));
14f9c5c9
AS
7979
7980 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
7981 {
7982 int i;
24209737 7983 LONGEST v = value_as_long (val);
14f9c5c9 7984
d2e4a39e 7985 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
4c4b4cd2
PH
7986 {
7987 if (v == TYPE_FIELD_BITPOS (type, i))
7988 return i;
7989 }
323e0a4a 7990 error (_("enumeration value is invalid: can't find 'POS"));
14f9c5c9
AS
7991 }
7992 else
24209737 7993 return value_as_long (val);
4c4b4cd2
PH
7994}
7995
7996static struct value *
3cb382c9 7997value_pos_atr (struct type *type, struct value *arg)
4c4b4cd2 7998{
3cb382c9 7999 return value_from_longest (type, pos_atr (arg));
14f9c5c9
AS
8000}
8001
4c4b4cd2 8002/* Evaluate the TYPE'VAL attribute applied to ARG. */
14f9c5c9 8003
d2e4a39e
AS
8004static struct value *
8005value_val_atr (struct type *type, struct value *arg)
14f9c5c9 8006{
d2e4a39e 8007 if (!discrete_type_p (type))
323e0a4a 8008 error (_("'VAL only defined on discrete types"));
df407dfe 8009 if (!integer_type_p (value_type (arg)))
323e0a4a 8010 error (_("'VAL requires integral argument"));
14f9c5c9
AS
8011
8012 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
8013 {
8014 long pos = value_as_long (arg);
5b4ee69b 8015
14f9c5c9 8016 if (pos < 0 || pos >= TYPE_NFIELDS (type))
323e0a4a 8017 error (_("argument to 'VAL out of range"));
d2e4a39e 8018 return value_from_longest (type, TYPE_FIELD_BITPOS (type, pos));
14f9c5c9
AS
8019 }
8020 else
8021 return value_from_longest (type, value_as_long (arg));
8022}
14f9c5c9 8023\f
d2e4a39e 8024
4c4b4cd2 8025 /* Evaluation */
14f9c5c9 8026
4c4b4cd2
PH
8027/* True if TYPE appears to be an Ada character type.
8028 [At the moment, this is true only for Character and Wide_Character;
8029 It is a heuristic test that could stand improvement]. */
14f9c5c9 8030
d2e4a39e
AS
8031int
8032ada_is_character_type (struct type *type)
14f9c5c9 8033{
7b9f71f2
JB
8034 const char *name;
8035
8036 /* If the type code says it's a character, then assume it really is,
8037 and don't check any further. */
8038 if (TYPE_CODE (type) == TYPE_CODE_CHAR)
8039 return 1;
8040
8041 /* Otherwise, assume it's a character type iff it is a discrete type
8042 with a known character type name. */
8043 name = ada_type_name (type);
8044 return (name != NULL
8045 && (TYPE_CODE (type) == TYPE_CODE_INT
8046 || TYPE_CODE (type) == TYPE_CODE_RANGE)
8047 && (strcmp (name, "character") == 0
8048 || strcmp (name, "wide_character") == 0
5a517ebd 8049 || strcmp (name, "wide_wide_character") == 0
7b9f71f2 8050 || strcmp (name, "unsigned char") == 0));
14f9c5c9
AS
8051}
8052
4c4b4cd2 8053/* True if TYPE appears to be an Ada string type. */
14f9c5c9
AS
8054
8055int
ebf56fd3 8056ada_is_string_type (struct type *type)
14f9c5c9 8057{
61ee279c 8058 type = ada_check_typedef (type);
d2e4a39e 8059 if (type != NULL
14f9c5c9 8060 && TYPE_CODE (type) != TYPE_CODE_PTR
76a01679
JB
8061 && (ada_is_simple_array_type (type)
8062 || ada_is_array_descriptor_type (type))
14f9c5c9
AS
8063 && ada_array_arity (type) == 1)
8064 {
8065 struct type *elttype = ada_array_element_type (type, 1);
8066
8067 return ada_is_character_type (elttype);
8068 }
d2e4a39e 8069 else
14f9c5c9
AS
8070 return 0;
8071}
8072
5bf03f13
JB
8073/* The compiler sometimes provides a parallel XVS type for a given
8074 PAD type. Normally, it is safe to follow the PAD type directly,
8075 but older versions of the compiler have a bug that causes the offset
8076 of its "F" field to be wrong. Following that field in that case
8077 would lead to incorrect results, but this can be worked around
8078 by ignoring the PAD type and using the associated XVS type instead.
8079
8080 Set to True if the debugger should trust the contents of PAD types.
8081 Otherwise, ignore the PAD type if there is a parallel XVS type. */
8082static int trust_pad_over_xvs = 1;
14f9c5c9
AS
8083
8084/* True if TYPE is a struct type introduced by the compiler to force the
8085 alignment of a value. Such types have a single field with a
4c4b4cd2 8086 distinctive name. */
14f9c5c9
AS
8087
8088int
ebf56fd3 8089ada_is_aligner_type (struct type *type)
14f9c5c9 8090{
61ee279c 8091 type = ada_check_typedef (type);
714e53ab 8092
5bf03f13 8093 if (!trust_pad_over_xvs && ada_find_parallel_type (type, "___XVS") != NULL)
714e53ab
PH
8094 return 0;
8095
14f9c5c9 8096 return (TYPE_CODE (type) == TYPE_CODE_STRUCT
4c4b4cd2
PH
8097 && TYPE_NFIELDS (type) == 1
8098 && strcmp (TYPE_FIELD_NAME (type, 0), "F") == 0);
14f9c5c9
AS
8099}
8100
8101/* If there is an ___XVS-convention type parallel to SUBTYPE, return
4c4b4cd2 8102 the parallel type. */
14f9c5c9 8103
d2e4a39e
AS
8104struct type *
8105ada_get_base_type (struct type *raw_type)
14f9c5c9 8106{
d2e4a39e
AS
8107 struct type *real_type_namer;
8108 struct type *raw_real_type;
14f9c5c9
AS
8109
8110 if (raw_type == NULL || TYPE_CODE (raw_type) != TYPE_CODE_STRUCT)
8111 return raw_type;
8112
284614f0
JB
8113 if (ada_is_aligner_type (raw_type))
8114 /* The encoding specifies that we should always use the aligner type.
8115 So, even if this aligner type has an associated XVS type, we should
8116 simply ignore it.
8117
8118 According to the compiler gurus, an XVS type parallel to an aligner
8119 type may exist because of a stabs limitation. In stabs, aligner
8120 types are empty because the field has a variable-sized type, and
8121 thus cannot actually be used as an aligner type. As a result,
8122 we need the associated parallel XVS type to decode the type.
8123 Since the policy in the compiler is to not change the internal
8124 representation based on the debugging info format, we sometimes
8125 end up having a redundant XVS type parallel to the aligner type. */
8126 return raw_type;
8127
14f9c5c9 8128 real_type_namer = ada_find_parallel_type (raw_type, "___XVS");
d2e4a39e 8129 if (real_type_namer == NULL
14f9c5c9
AS
8130 || TYPE_CODE (real_type_namer) != TYPE_CODE_STRUCT
8131 || TYPE_NFIELDS (real_type_namer) != 1)
8132 return raw_type;
8133
f80d3ff2
JB
8134 if (TYPE_CODE (TYPE_FIELD_TYPE (real_type_namer, 0)) != TYPE_CODE_REF)
8135 {
8136 /* This is an older encoding form where the base type needs to be
8137 looked up by name. We prefer the newer enconding because it is
8138 more efficient. */
8139 raw_real_type = ada_find_any_type (TYPE_FIELD_NAME (real_type_namer, 0));
8140 if (raw_real_type == NULL)
8141 return raw_type;
8142 else
8143 return raw_real_type;
8144 }
8145
8146 /* The field in our XVS type is a reference to the base type. */
8147 return TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (real_type_namer, 0));
d2e4a39e 8148}
14f9c5c9 8149
4c4b4cd2 8150/* The type of value designated by TYPE, with all aligners removed. */
14f9c5c9 8151
d2e4a39e
AS
8152struct type *
8153ada_aligned_type (struct type *type)
14f9c5c9
AS
8154{
8155 if (ada_is_aligner_type (type))
8156 return ada_aligned_type (TYPE_FIELD_TYPE (type, 0));
8157 else
8158 return ada_get_base_type (type);
8159}
8160
8161
8162/* The address of the aligned value in an object at address VALADDR
4c4b4cd2 8163 having type TYPE. Assumes ada_is_aligner_type (TYPE). */
14f9c5c9 8164
fc1a4b47
AC
8165const gdb_byte *
8166ada_aligned_value_addr (struct type *type, const gdb_byte *valaddr)
14f9c5c9 8167{
d2e4a39e 8168 if (ada_is_aligner_type (type))
14f9c5c9 8169 return ada_aligned_value_addr (TYPE_FIELD_TYPE (type, 0),
4c4b4cd2
PH
8170 valaddr +
8171 TYPE_FIELD_BITPOS (type,
8172 0) / TARGET_CHAR_BIT);
14f9c5c9
AS
8173 else
8174 return valaddr;
8175}
8176
4c4b4cd2
PH
8177
8178
14f9c5c9 8179/* The printed representation of an enumeration literal with encoded
4c4b4cd2 8180 name NAME. The value is good to the next call of ada_enum_name. */
d2e4a39e
AS
8181const char *
8182ada_enum_name (const char *name)
14f9c5c9 8183{
4c4b4cd2
PH
8184 static char *result;
8185 static size_t result_len = 0;
d2e4a39e 8186 char *tmp;
14f9c5c9 8187
4c4b4cd2
PH
8188 /* First, unqualify the enumeration name:
8189 1. Search for the last '.' character. If we find one, then skip
76a01679
JB
8190 all the preceeding characters, the unqualified name starts
8191 right after that dot.
4c4b4cd2 8192 2. Otherwise, we may be debugging on a target where the compiler
76a01679
JB
8193 translates dots into "__". Search forward for double underscores,
8194 but stop searching when we hit an overloading suffix, which is
8195 of the form "__" followed by digits. */
4c4b4cd2 8196
c3e5cd34
PH
8197 tmp = strrchr (name, '.');
8198 if (tmp != NULL)
4c4b4cd2
PH
8199 name = tmp + 1;
8200 else
14f9c5c9 8201 {
4c4b4cd2
PH
8202 while ((tmp = strstr (name, "__")) != NULL)
8203 {
8204 if (isdigit (tmp[2]))
8205 break;
8206 else
8207 name = tmp + 2;
8208 }
14f9c5c9
AS
8209 }
8210
8211 if (name[0] == 'Q')
8212 {
14f9c5c9 8213 int v;
5b4ee69b 8214
14f9c5c9 8215 if (name[1] == 'U' || name[1] == 'W')
4c4b4cd2
PH
8216 {
8217 if (sscanf (name + 2, "%x", &v) != 1)
8218 return name;
8219 }
14f9c5c9 8220 else
4c4b4cd2 8221 return name;
14f9c5c9 8222
4c4b4cd2 8223 GROW_VECT (result, result_len, 16);
14f9c5c9 8224 if (isascii (v) && isprint (v))
88c15c34 8225 xsnprintf (result, result_len, "'%c'", v);
14f9c5c9 8226 else if (name[1] == 'U')
88c15c34 8227 xsnprintf (result, result_len, "[\"%02x\"]", v);
14f9c5c9 8228 else
88c15c34 8229 xsnprintf (result, result_len, "[\"%04x\"]", v);
14f9c5c9
AS
8230
8231 return result;
8232 }
d2e4a39e 8233 else
4c4b4cd2 8234 {
c3e5cd34
PH
8235 tmp = strstr (name, "__");
8236 if (tmp == NULL)
8237 tmp = strstr (name, "$");
8238 if (tmp != NULL)
4c4b4cd2
PH
8239 {
8240 GROW_VECT (result, result_len, tmp - name + 1);
8241 strncpy (result, name, tmp - name);
8242 result[tmp - name] = '\0';
8243 return result;
8244 }
8245
8246 return name;
8247 }
14f9c5c9
AS
8248}
8249
14f9c5c9
AS
8250/* Evaluate the subexpression of EXP starting at *POS as for
8251 evaluate_type, updating *POS to point just past the evaluated
4c4b4cd2 8252 expression. */
14f9c5c9 8253
d2e4a39e
AS
8254static struct value *
8255evaluate_subexp_type (struct expression *exp, int *pos)
14f9c5c9 8256{
4b27a620 8257 return evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
14f9c5c9
AS
8258}
8259
8260/* If VAL is wrapped in an aligner or subtype wrapper, return the
4c4b4cd2 8261 value it wraps. */
14f9c5c9 8262
d2e4a39e
AS
8263static struct value *
8264unwrap_value (struct value *val)
14f9c5c9 8265{
df407dfe 8266 struct type *type = ada_check_typedef (value_type (val));
5b4ee69b 8267
14f9c5c9
AS
8268 if (ada_is_aligner_type (type))
8269 {
de4d072f 8270 struct value *v = ada_value_struct_elt (val, "F", 0);
df407dfe 8271 struct type *val_type = ada_check_typedef (value_type (v));
5b4ee69b 8272
14f9c5c9 8273 if (ada_type_name (val_type) == NULL)
4c4b4cd2 8274 TYPE_NAME (val_type) = ada_type_name (type);
14f9c5c9
AS
8275
8276 return unwrap_value (v);
8277 }
d2e4a39e 8278 else
14f9c5c9 8279 {
d2e4a39e 8280 struct type *raw_real_type =
61ee279c 8281 ada_check_typedef (ada_get_base_type (type));
d2e4a39e 8282
5bf03f13
JB
8283 /* If there is no parallel XVS or XVE type, then the value is
8284 already unwrapped. Return it without further modification. */
8285 if ((type == raw_real_type)
8286 && ada_find_parallel_type (type, "___XVE") == NULL)
8287 return val;
14f9c5c9 8288
d2e4a39e 8289 return
4c4b4cd2
PH
8290 coerce_unspec_val_to_type
8291 (val, ada_to_fixed_type (raw_real_type, 0,
42ae5230 8292 value_address (val),
1ed6ede0 8293 NULL, 1));
14f9c5c9
AS
8294 }
8295}
d2e4a39e
AS
8296
8297static struct value *
8298cast_to_fixed (struct type *type, struct value *arg)
14f9c5c9
AS
8299{
8300 LONGEST val;
8301
df407dfe 8302 if (type == value_type (arg))
14f9c5c9 8303 return arg;
df407dfe 8304 else if (ada_is_fixed_point_type (value_type (arg)))
d2e4a39e 8305 val = ada_float_to_fixed (type,
df407dfe 8306 ada_fixed_to_float (value_type (arg),
4c4b4cd2 8307 value_as_long (arg)));
d2e4a39e 8308 else
14f9c5c9 8309 {
a53b7a21 8310 DOUBLEST argd = value_as_double (arg);
5b4ee69b 8311
14f9c5c9
AS
8312 val = ada_float_to_fixed (type, argd);
8313 }
8314
8315 return value_from_longest (type, val);
8316}
8317
d2e4a39e 8318static struct value *
a53b7a21 8319cast_from_fixed (struct type *type, struct value *arg)
14f9c5c9 8320{
df407dfe 8321 DOUBLEST val = ada_fixed_to_float (value_type (arg),
4c4b4cd2 8322 value_as_long (arg));
5b4ee69b 8323
a53b7a21 8324 return value_from_double (type, val);
14f9c5c9
AS
8325}
8326
4c4b4cd2
PH
8327/* Coerce VAL as necessary for assignment to an lval of type TYPE, and
8328 return the converted value. */
8329
d2e4a39e
AS
8330static struct value *
8331coerce_for_assign (struct type *type, struct value *val)
14f9c5c9 8332{
df407dfe 8333 struct type *type2 = value_type (val);
5b4ee69b 8334
14f9c5c9
AS
8335 if (type == type2)
8336 return val;
8337
61ee279c
PH
8338 type2 = ada_check_typedef (type2);
8339 type = ada_check_typedef (type);
14f9c5c9 8340
d2e4a39e
AS
8341 if (TYPE_CODE (type2) == TYPE_CODE_PTR
8342 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
14f9c5c9
AS
8343 {
8344 val = ada_value_ind (val);
df407dfe 8345 type2 = value_type (val);
14f9c5c9
AS
8346 }
8347
d2e4a39e 8348 if (TYPE_CODE (type2) == TYPE_CODE_ARRAY
14f9c5c9
AS
8349 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
8350 {
8351 if (TYPE_LENGTH (type2) != TYPE_LENGTH (type)
4c4b4cd2
PH
8352 || TYPE_LENGTH (TYPE_TARGET_TYPE (type2))
8353 != TYPE_LENGTH (TYPE_TARGET_TYPE (type2)))
323e0a4a 8354 error (_("Incompatible types in assignment"));
04624583 8355 deprecated_set_value_type (val, type);
14f9c5c9 8356 }
d2e4a39e 8357 return val;
14f9c5c9
AS
8358}
8359
4c4b4cd2
PH
8360static struct value *
8361ada_value_binop (struct value *arg1, struct value *arg2, enum exp_opcode op)
8362{
8363 struct value *val;
8364 struct type *type1, *type2;
8365 LONGEST v, v1, v2;
8366
994b9211
AC
8367 arg1 = coerce_ref (arg1);
8368 arg2 = coerce_ref (arg2);
df407dfe
AC
8369 type1 = base_type (ada_check_typedef (value_type (arg1)));
8370 type2 = base_type (ada_check_typedef (value_type (arg2)));
4c4b4cd2 8371
76a01679
JB
8372 if (TYPE_CODE (type1) != TYPE_CODE_INT
8373 || TYPE_CODE (type2) != TYPE_CODE_INT)
4c4b4cd2
PH
8374 return value_binop (arg1, arg2, op);
8375
76a01679 8376 switch (op)
4c4b4cd2
PH
8377 {
8378 case BINOP_MOD:
8379 case BINOP_DIV:
8380 case BINOP_REM:
8381 break;
8382 default:
8383 return value_binop (arg1, arg2, op);
8384 }
8385
8386 v2 = value_as_long (arg2);
8387 if (v2 == 0)
323e0a4a 8388 error (_("second operand of %s must not be zero."), op_string (op));
4c4b4cd2
PH
8389
8390 if (TYPE_UNSIGNED (type1) || op == BINOP_MOD)
8391 return value_binop (arg1, arg2, op);
8392
8393 v1 = value_as_long (arg1);
8394 switch (op)
8395 {
8396 case BINOP_DIV:
8397 v = v1 / v2;
76a01679
JB
8398 if (!TRUNCATION_TOWARDS_ZERO && v1 * (v1 % v2) < 0)
8399 v += v > 0 ? -1 : 1;
4c4b4cd2
PH
8400 break;
8401 case BINOP_REM:
8402 v = v1 % v2;
76a01679
JB
8403 if (v * v1 < 0)
8404 v -= v2;
4c4b4cd2
PH
8405 break;
8406 default:
8407 /* Should not reach this point. */
8408 v = 0;
8409 }
8410
8411 val = allocate_value (type1);
990a07ab 8412 store_unsigned_integer (value_contents_raw (val),
e17a4113
UW
8413 TYPE_LENGTH (value_type (val)),
8414 gdbarch_byte_order (get_type_arch (type1)), v);
4c4b4cd2
PH
8415 return val;
8416}
8417
8418static int
8419ada_value_equal (struct value *arg1, struct value *arg2)
8420{
df407dfe
AC
8421 if (ada_is_direct_array_type (value_type (arg1))
8422 || ada_is_direct_array_type (value_type (arg2)))
4c4b4cd2 8423 {
f58b38bf
JB
8424 /* Automatically dereference any array reference before
8425 we attempt to perform the comparison. */
8426 arg1 = ada_coerce_ref (arg1);
8427 arg2 = ada_coerce_ref (arg2);
8428
4c4b4cd2
PH
8429 arg1 = ada_coerce_to_simple_array (arg1);
8430 arg2 = ada_coerce_to_simple_array (arg2);
df407dfe
AC
8431 if (TYPE_CODE (value_type (arg1)) != TYPE_CODE_ARRAY
8432 || TYPE_CODE (value_type (arg2)) != TYPE_CODE_ARRAY)
323e0a4a 8433 error (_("Attempt to compare array with non-array"));
4c4b4cd2 8434 /* FIXME: The following works only for types whose
76a01679
JB
8435 representations use all bits (no padding or undefined bits)
8436 and do not have user-defined equality. */
8437 return
df407dfe 8438 TYPE_LENGTH (value_type (arg1)) == TYPE_LENGTH (value_type (arg2))
0fd88904 8439 && memcmp (value_contents (arg1), value_contents (arg2),
df407dfe 8440 TYPE_LENGTH (value_type (arg1))) == 0;
4c4b4cd2
PH
8441 }
8442 return value_equal (arg1, arg2);
8443}
8444
52ce6436
PH
8445/* Total number of component associations in the aggregate starting at
8446 index PC in EXP. Assumes that index PC is the start of an
0963b4bd 8447 OP_AGGREGATE. */
52ce6436
PH
8448
8449static int
8450num_component_specs (struct expression *exp, int pc)
8451{
8452 int n, m, i;
5b4ee69b 8453
52ce6436
PH
8454 m = exp->elts[pc + 1].longconst;
8455 pc += 3;
8456 n = 0;
8457 for (i = 0; i < m; i += 1)
8458 {
8459 switch (exp->elts[pc].opcode)
8460 {
8461 default:
8462 n += 1;
8463 break;
8464 case OP_CHOICES:
8465 n += exp->elts[pc + 1].longconst;
8466 break;
8467 }
8468 ada_evaluate_subexp (NULL, exp, &pc, EVAL_SKIP);
8469 }
8470 return n;
8471}
8472
8473/* Assign the result of evaluating EXP starting at *POS to the INDEXth
8474 component of LHS (a simple array or a record), updating *POS past
8475 the expression, assuming that LHS is contained in CONTAINER. Does
8476 not modify the inferior's memory, nor does it modify LHS (unless
8477 LHS == CONTAINER). */
8478
8479static void
8480assign_component (struct value *container, struct value *lhs, LONGEST index,
8481 struct expression *exp, int *pos)
8482{
8483 struct value *mark = value_mark ();
8484 struct value *elt;
5b4ee69b 8485
52ce6436
PH
8486 if (TYPE_CODE (value_type (lhs)) == TYPE_CODE_ARRAY)
8487 {
22601c15
UW
8488 struct type *index_type = builtin_type (exp->gdbarch)->builtin_int;
8489 struct value *index_val = value_from_longest (index_type, index);
5b4ee69b 8490
52ce6436
PH
8491 elt = unwrap_value (ada_value_subscript (lhs, 1, &index_val));
8492 }
8493 else
8494 {
8495 elt = ada_index_struct_field (index, lhs, 0, value_type (lhs));
8496 elt = ada_to_fixed_value (unwrap_value (elt));
8497 }
8498
8499 if (exp->elts[*pos].opcode == OP_AGGREGATE)
8500 assign_aggregate (container, elt, exp, pos, EVAL_NORMAL);
8501 else
8502 value_assign_to_component (container, elt,
8503 ada_evaluate_subexp (NULL, exp, pos,
8504 EVAL_NORMAL));
8505
8506 value_free_to_mark (mark);
8507}
8508
8509/* Assuming that LHS represents an lvalue having a record or array
8510 type, and EXP->ELTS[*POS] is an OP_AGGREGATE, evaluate an assignment
8511 of that aggregate's value to LHS, advancing *POS past the
8512 aggregate. NOSIDE is as for evaluate_subexp. CONTAINER is an
8513 lvalue containing LHS (possibly LHS itself). Does not modify
8514 the inferior's memory, nor does it modify the contents of
0963b4bd 8515 LHS (unless == CONTAINER). Returns the modified CONTAINER. */
52ce6436
PH
8516
8517static struct value *
8518assign_aggregate (struct value *container,
8519 struct value *lhs, struct expression *exp,
8520 int *pos, enum noside noside)
8521{
8522 struct type *lhs_type;
8523 int n = exp->elts[*pos+1].longconst;
8524 LONGEST low_index, high_index;
8525 int num_specs;
8526 LONGEST *indices;
8527 int max_indices, num_indices;
8528 int is_array_aggregate;
8529 int i;
52ce6436
PH
8530
8531 *pos += 3;
8532 if (noside != EVAL_NORMAL)
8533 {
8534 int i;
5b4ee69b 8535
52ce6436
PH
8536 for (i = 0; i < n; i += 1)
8537 ada_evaluate_subexp (NULL, exp, pos, noside);
8538 return container;
8539 }
8540
8541 container = ada_coerce_ref (container);
8542 if (ada_is_direct_array_type (value_type (container)))
8543 container = ada_coerce_to_simple_array (container);
8544 lhs = ada_coerce_ref (lhs);
8545 if (!deprecated_value_modifiable (lhs))
8546 error (_("Left operand of assignment is not a modifiable lvalue."));
8547
8548 lhs_type = value_type (lhs);
8549 if (ada_is_direct_array_type (lhs_type))
8550 {
8551 lhs = ada_coerce_to_simple_array (lhs);
8552 lhs_type = value_type (lhs);
8553 low_index = TYPE_ARRAY_LOWER_BOUND_VALUE (lhs_type);
8554 high_index = TYPE_ARRAY_UPPER_BOUND_VALUE (lhs_type);
8555 is_array_aggregate = 1;
8556 }
8557 else if (TYPE_CODE (lhs_type) == TYPE_CODE_STRUCT)
8558 {
8559 low_index = 0;
8560 high_index = num_visible_fields (lhs_type) - 1;
8561 is_array_aggregate = 0;
8562 }
8563 else
8564 error (_("Left-hand side must be array or record."));
8565
8566 num_specs = num_component_specs (exp, *pos - 3);
8567 max_indices = 4 * num_specs + 4;
8568 indices = alloca (max_indices * sizeof (indices[0]));
8569 indices[0] = indices[1] = low_index - 1;
8570 indices[2] = indices[3] = high_index + 1;
8571 num_indices = 4;
8572
8573 for (i = 0; i < n; i += 1)
8574 {
8575 switch (exp->elts[*pos].opcode)
8576 {
8577 case OP_CHOICES:
8578 aggregate_assign_from_choices (container, lhs, exp, pos, indices,
8579 &num_indices, max_indices,
8580 low_index, high_index);
8581 break;
8582 case OP_POSITIONAL:
8583 aggregate_assign_positional (container, lhs, exp, pos, indices,
8584 &num_indices, max_indices,
8585 low_index, high_index);
8586 break;
8587 case OP_OTHERS:
8588 if (i != n-1)
8589 error (_("Misplaced 'others' clause"));
8590 aggregate_assign_others (container, lhs, exp, pos, indices,
8591 num_indices, low_index, high_index);
8592 break;
8593 default:
8594 error (_("Internal error: bad aggregate clause"));
8595 }
8596 }
8597
8598 return container;
8599}
8600
8601/* Assign into the component of LHS indexed by the OP_POSITIONAL
8602 construct at *POS, updating *POS past the construct, given that
8603 the positions are relative to lower bound LOW, where HIGH is the
8604 upper bound. Record the position in INDICES[0 .. MAX_INDICES-1]
8605 updating *NUM_INDICES as needed. CONTAINER is as for
0963b4bd 8606 assign_aggregate. */
52ce6436
PH
8607static void
8608aggregate_assign_positional (struct value *container,
8609 struct value *lhs, struct expression *exp,
8610 int *pos, LONGEST *indices, int *num_indices,
8611 int max_indices, LONGEST low, LONGEST high)
8612{
8613 LONGEST ind = longest_to_int (exp->elts[*pos + 1].longconst) + low;
8614
8615 if (ind - 1 == high)
e1d5a0d2 8616 warning (_("Extra components in aggregate ignored."));
52ce6436
PH
8617 if (ind <= high)
8618 {
8619 add_component_interval (ind, ind, indices, num_indices, max_indices);
8620 *pos += 3;
8621 assign_component (container, lhs, ind, exp, pos);
8622 }
8623 else
8624 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
8625}
8626
8627/* Assign into the components of LHS indexed by the OP_CHOICES
8628 construct at *POS, updating *POS past the construct, given that
8629 the allowable indices are LOW..HIGH. Record the indices assigned
8630 to in INDICES[0 .. MAX_INDICES-1], updating *NUM_INDICES as
0963b4bd 8631 needed. CONTAINER is as for assign_aggregate. */
52ce6436
PH
8632static void
8633aggregate_assign_from_choices (struct value *container,
8634 struct value *lhs, struct expression *exp,
8635 int *pos, LONGEST *indices, int *num_indices,
8636 int max_indices, LONGEST low, LONGEST high)
8637{
8638 int j;
8639 int n_choices = longest_to_int (exp->elts[*pos+1].longconst);
8640 int choice_pos, expr_pc;
8641 int is_array = ada_is_direct_array_type (value_type (lhs));
8642
8643 choice_pos = *pos += 3;
8644
8645 for (j = 0; j < n_choices; j += 1)
8646 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
8647 expr_pc = *pos;
8648 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
8649
8650 for (j = 0; j < n_choices; j += 1)
8651 {
8652 LONGEST lower, upper;
8653 enum exp_opcode op = exp->elts[choice_pos].opcode;
5b4ee69b 8654
52ce6436
PH
8655 if (op == OP_DISCRETE_RANGE)
8656 {
8657 choice_pos += 1;
8658 lower = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
8659 EVAL_NORMAL));
8660 upper = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
8661 EVAL_NORMAL));
8662 }
8663 else if (is_array)
8664 {
8665 lower = value_as_long (ada_evaluate_subexp (NULL, exp, &choice_pos,
8666 EVAL_NORMAL));
8667 upper = lower;
8668 }
8669 else
8670 {
8671 int ind;
8672 char *name;
5b4ee69b 8673
52ce6436
PH
8674 switch (op)
8675 {
8676 case OP_NAME:
8677 name = &exp->elts[choice_pos + 2].string;
8678 break;
8679 case OP_VAR_VALUE:
8680 name = SYMBOL_NATURAL_NAME (exp->elts[choice_pos + 2].symbol);
8681 break;
8682 default:
8683 error (_("Invalid record component association."));
8684 }
8685 ada_evaluate_subexp (NULL, exp, &choice_pos, EVAL_SKIP);
8686 ind = 0;
8687 if (! find_struct_field (name, value_type (lhs), 0,
8688 NULL, NULL, NULL, NULL, &ind))
8689 error (_("Unknown component name: %s."), name);
8690 lower = upper = ind;
8691 }
8692
8693 if (lower <= upper && (lower < low || upper > high))
8694 error (_("Index in component association out of bounds."));
8695
8696 add_component_interval (lower, upper, indices, num_indices,
8697 max_indices);
8698 while (lower <= upper)
8699 {
8700 int pos1;
5b4ee69b 8701
52ce6436
PH
8702 pos1 = expr_pc;
8703 assign_component (container, lhs, lower, exp, &pos1);
8704 lower += 1;
8705 }
8706 }
8707}
8708
8709/* Assign the value of the expression in the OP_OTHERS construct in
8710 EXP at *POS into the components of LHS indexed from LOW .. HIGH that
8711 have not been previously assigned. The index intervals already assigned
8712 are in INDICES[0 .. NUM_INDICES-1]. Updates *POS to after the
0963b4bd 8713 OP_OTHERS clause. CONTAINER is as for assign_aggregate. */
52ce6436
PH
8714static void
8715aggregate_assign_others (struct value *container,
8716 struct value *lhs, struct expression *exp,
8717 int *pos, LONGEST *indices, int num_indices,
8718 LONGEST low, LONGEST high)
8719{
8720 int i;
5ce64950 8721 int expr_pc = *pos + 1;
52ce6436
PH
8722
8723 for (i = 0; i < num_indices - 2; i += 2)
8724 {
8725 LONGEST ind;
5b4ee69b 8726
52ce6436
PH
8727 for (ind = indices[i + 1] + 1; ind < indices[i + 2]; ind += 1)
8728 {
5ce64950 8729 int localpos;
5b4ee69b 8730
5ce64950
MS
8731 localpos = expr_pc;
8732 assign_component (container, lhs, ind, exp, &localpos);
52ce6436
PH
8733 }
8734 }
8735 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
8736}
8737
8738/* Add the interval [LOW .. HIGH] to the sorted set of intervals
8739 [ INDICES[0] .. INDICES[1] ],..., [ INDICES[*SIZE-2] .. INDICES[*SIZE-1] ],
8740 modifying *SIZE as needed. It is an error if *SIZE exceeds
8741 MAX_SIZE. The resulting intervals do not overlap. */
8742static void
8743add_component_interval (LONGEST low, LONGEST high,
8744 LONGEST* indices, int *size, int max_size)
8745{
8746 int i, j;
5b4ee69b 8747
52ce6436
PH
8748 for (i = 0; i < *size; i += 2) {
8749 if (high >= indices[i] && low <= indices[i + 1])
8750 {
8751 int kh;
5b4ee69b 8752
52ce6436
PH
8753 for (kh = i + 2; kh < *size; kh += 2)
8754 if (high < indices[kh])
8755 break;
8756 if (low < indices[i])
8757 indices[i] = low;
8758 indices[i + 1] = indices[kh - 1];
8759 if (high > indices[i + 1])
8760 indices[i + 1] = high;
8761 memcpy (indices + i + 2, indices + kh, *size - kh);
8762 *size -= kh - i - 2;
8763 return;
8764 }
8765 else if (high < indices[i])
8766 break;
8767 }
8768
8769 if (*size == max_size)
8770 error (_("Internal error: miscounted aggregate components."));
8771 *size += 2;
8772 for (j = *size-1; j >= i+2; j -= 1)
8773 indices[j] = indices[j - 2];
8774 indices[i] = low;
8775 indices[i + 1] = high;
8776}
8777
6e48bd2c
JB
8778/* Perform and Ada cast of ARG2 to type TYPE if the type of ARG2
8779 is different. */
8780
8781static struct value *
8782ada_value_cast (struct type *type, struct value *arg2, enum noside noside)
8783{
8784 if (type == ada_check_typedef (value_type (arg2)))
8785 return arg2;
8786
8787 if (ada_is_fixed_point_type (type))
8788 return (cast_to_fixed (type, arg2));
8789
8790 if (ada_is_fixed_point_type (value_type (arg2)))
a53b7a21 8791 return cast_from_fixed (type, arg2);
6e48bd2c
JB
8792
8793 return value_cast (type, arg2);
8794}
8795
284614f0
JB
8796/* Evaluating Ada expressions, and printing their result.
8797 ------------------------------------------------------
8798
21649b50
JB
8799 1. Introduction:
8800 ----------------
8801
284614f0
JB
8802 We usually evaluate an Ada expression in order to print its value.
8803 We also evaluate an expression in order to print its type, which
8804 happens during the EVAL_AVOID_SIDE_EFFECTS phase of the evaluation,
8805 but we'll focus mostly on the EVAL_NORMAL phase. In practice, the
8806 EVAL_AVOID_SIDE_EFFECTS phase allows us to simplify certain aspects of
8807 the evaluation compared to the EVAL_NORMAL, but is otherwise very
8808 similar.
8809
8810 Evaluating expressions is a little more complicated for Ada entities
8811 than it is for entities in languages such as C. The main reason for
8812 this is that Ada provides types whose definition might be dynamic.
8813 One example of such types is variant records. Or another example
8814 would be an array whose bounds can only be known at run time.
8815
8816 The following description is a general guide as to what should be
8817 done (and what should NOT be done) in order to evaluate an expression
8818 involving such types, and when. This does not cover how the semantic
8819 information is encoded by GNAT as this is covered separatly. For the
8820 document used as the reference for the GNAT encoding, see exp_dbug.ads
8821 in the GNAT sources.
8822
8823 Ideally, we should embed each part of this description next to its
8824 associated code. Unfortunately, the amount of code is so vast right
8825 now that it's hard to see whether the code handling a particular
8826 situation might be duplicated or not. One day, when the code is
8827 cleaned up, this guide might become redundant with the comments
8828 inserted in the code, and we might want to remove it.
8829
21649b50
JB
8830 2. ``Fixing'' an Entity, the Simple Case:
8831 -----------------------------------------
8832
284614f0
JB
8833 When evaluating Ada expressions, the tricky issue is that they may
8834 reference entities whose type contents and size are not statically
8835 known. Consider for instance a variant record:
8836
8837 type Rec (Empty : Boolean := True) is record
8838 case Empty is
8839 when True => null;
8840 when False => Value : Integer;
8841 end case;
8842 end record;
8843 Yes : Rec := (Empty => False, Value => 1);
8844 No : Rec := (empty => True);
8845
8846 The size and contents of that record depends on the value of the
8847 descriminant (Rec.Empty). At this point, neither the debugging
8848 information nor the associated type structure in GDB are able to
8849 express such dynamic types. So what the debugger does is to create
8850 "fixed" versions of the type that applies to the specific object.
8851 We also informally refer to this opperation as "fixing" an object,
8852 which means creating its associated fixed type.
8853
8854 Example: when printing the value of variable "Yes" above, its fixed
8855 type would look like this:
8856
8857 type Rec is record
8858 Empty : Boolean;
8859 Value : Integer;
8860 end record;
8861
8862 On the other hand, if we printed the value of "No", its fixed type
8863 would become:
8864
8865 type Rec is record
8866 Empty : Boolean;
8867 end record;
8868
8869 Things become a little more complicated when trying to fix an entity
8870 with a dynamic type that directly contains another dynamic type,
8871 such as an array of variant records, for instance. There are
8872 two possible cases: Arrays, and records.
8873
21649b50
JB
8874 3. ``Fixing'' Arrays:
8875 ---------------------
8876
8877 The type structure in GDB describes an array in terms of its bounds,
8878 and the type of its elements. By design, all elements in the array
8879 have the same type and we cannot represent an array of variant elements
8880 using the current type structure in GDB. When fixing an array,
8881 we cannot fix the array element, as we would potentially need one
8882 fixed type per element of the array. As a result, the best we can do
8883 when fixing an array is to produce an array whose bounds and size
8884 are correct (allowing us to read it from memory), but without having
8885 touched its element type. Fixing each element will be done later,
8886 when (if) necessary.
8887
8888 Arrays are a little simpler to handle than records, because the same
8889 amount of memory is allocated for each element of the array, even if
1b536f04 8890 the amount of space actually used by each element differs from element
21649b50 8891 to element. Consider for instance the following array of type Rec:
284614f0
JB
8892
8893 type Rec_Array is array (1 .. 2) of Rec;
8894
1b536f04
JB
8895 The actual amount of memory occupied by each element might be different
8896 from element to element, depending on the value of their discriminant.
21649b50 8897 But the amount of space reserved for each element in the array remains
1b536f04 8898 fixed regardless. So we simply need to compute that size using
21649b50
JB
8899 the debugging information available, from which we can then determine
8900 the array size (we multiply the number of elements of the array by
8901 the size of each element).
8902
8903 The simplest case is when we have an array of a constrained element
8904 type. For instance, consider the following type declarations:
8905
8906 type Bounded_String (Max_Size : Integer) is
8907 Length : Integer;
8908 Buffer : String (1 .. Max_Size);
8909 end record;
8910 type Bounded_String_Array is array (1 ..2) of Bounded_String (80);
8911
8912 In this case, the compiler describes the array as an array of
8913 variable-size elements (identified by its XVS suffix) for which
8914 the size can be read in the parallel XVZ variable.
8915
8916 In the case of an array of an unconstrained element type, the compiler
8917 wraps the array element inside a private PAD type. This type should not
8918 be shown to the user, and must be "unwrap"'ed before printing. Note
284614f0
JB
8919 that we also use the adjective "aligner" in our code to designate
8920 these wrapper types.
8921
1b536f04 8922 In some cases, the size allocated for each element is statically
21649b50
JB
8923 known. In that case, the PAD type already has the correct size,
8924 and the array element should remain unfixed.
8925
8926 But there are cases when this size is not statically known.
8927 For instance, assuming that "Five" is an integer variable:
284614f0
JB
8928
8929 type Dynamic is array (1 .. Five) of Integer;
8930 type Wrapper (Has_Length : Boolean := False) is record
8931 Data : Dynamic;
8932 case Has_Length is
8933 when True => Length : Integer;
8934 when False => null;
8935 end case;
8936 end record;
8937 type Wrapper_Array is array (1 .. 2) of Wrapper;
8938
8939 Hello : Wrapper_Array := (others => (Has_Length => True,
8940 Data => (others => 17),
8941 Length => 1));
8942
8943
8944 The debugging info would describe variable Hello as being an
8945 array of a PAD type. The size of that PAD type is not statically
8946 known, but can be determined using a parallel XVZ variable.
8947 In that case, a copy of the PAD type with the correct size should
8948 be used for the fixed array.
8949
21649b50
JB
8950 3. ``Fixing'' record type objects:
8951 ----------------------------------
8952
8953 Things are slightly different from arrays in the case of dynamic
284614f0
JB
8954 record types. In this case, in order to compute the associated
8955 fixed type, we need to determine the size and offset of each of
8956 its components. This, in turn, requires us to compute the fixed
8957 type of each of these components.
8958
8959 Consider for instance the example:
8960
8961 type Bounded_String (Max_Size : Natural) is record
8962 Str : String (1 .. Max_Size);
8963 Length : Natural;
8964 end record;
8965 My_String : Bounded_String (Max_Size => 10);
8966
8967 In that case, the position of field "Length" depends on the size
8968 of field Str, which itself depends on the value of the Max_Size
21649b50 8969 discriminant. In order to fix the type of variable My_String,
284614f0
JB
8970 we need to fix the type of field Str. Therefore, fixing a variant
8971 record requires us to fix each of its components.
8972
8973 However, if a component does not have a dynamic size, the component
8974 should not be fixed. In particular, fields that use a PAD type
8975 should not fixed. Here is an example where this might happen
8976 (assuming type Rec above):
8977
8978 type Container (Big : Boolean) is record
8979 First : Rec;
8980 After : Integer;
8981 case Big is
8982 when True => Another : Integer;
8983 when False => null;
8984 end case;
8985 end record;
8986 My_Container : Container := (Big => False,
8987 First => (Empty => True),
8988 After => 42);
8989
8990 In that example, the compiler creates a PAD type for component First,
8991 whose size is constant, and then positions the component After just
8992 right after it. The offset of component After is therefore constant
8993 in this case.
8994
8995 The debugger computes the position of each field based on an algorithm
8996 that uses, among other things, the actual position and size of the field
21649b50
JB
8997 preceding it. Let's now imagine that the user is trying to print
8998 the value of My_Container. If the type fixing was recursive, we would
284614f0
JB
8999 end up computing the offset of field After based on the size of the
9000 fixed version of field First. And since in our example First has
9001 only one actual field, the size of the fixed type is actually smaller
9002 than the amount of space allocated to that field, and thus we would
9003 compute the wrong offset of field After.
9004
21649b50
JB
9005 To make things more complicated, we need to watch out for dynamic
9006 components of variant records (identified by the ___XVL suffix in
9007 the component name). Even if the target type is a PAD type, the size
9008 of that type might not be statically known. So the PAD type needs
9009 to be unwrapped and the resulting type needs to be fixed. Otherwise,
9010 we might end up with the wrong size for our component. This can be
9011 observed with the following type declarations:
284614f0
JB
9012
9013 type Octal is new Integer range 0 .. 7;
9014 type Octal_Array is array (Positive range <>) of Octal;
9015 pragma Pack (Octal_Array);
9016
9017 type Octal_Buffer (Size : Positive) is record
9018 Buffer : Octal_Array (1 .. Size);
9019 Length : Integer;
9020 end record;
9021
9022 In that case, Buffer is a PAD type whose size is unset and needs
9023 to be computed by fixing the unwrapped type.
9024
21649b50
JB
9025 4. When to ``Fix'' un-``Fixed'' sub-elements of an entity:
9026 ----------------------------------------------------------
9027
9028 Lastly, when should the sub-elements of an entity that remained unfixed
284614f0
JB
9029 thus far, be actually fixed?
9030
9031 The answer is: Only when referencing that element. For instance
9032 when selecting one component of a record, this specific component
9033 should be fixed at that point in time. Or when printing the value
9034 of a record, each component should be fixed before its value gets
9035 printed. Similarly for arrays, the element of the array should be
9036 fixed when printing each element of the array, or when extracting
9037 one element out of that array. On the other hand, fixing should
9038 not be performed on the elements when taking a slice of an array!
9039
9040 Note that one of the side-effects of miscomputing the offset and
9041 size of each field is that we end up also miscomputing the size
9042 of the containing type. This can have adverse results when computing
9043 the value of an entity. GDB fetches the value of an entity based
9044 on the size of its type, and thus a wrong size causes GDB to fetch
9045 the wrong amount of memory. In the case where the computed size is
9046 too small, GDB fetches too little data to print the value of our
9047 entiry. Results in this case as unpredicatble, as we usually read
9048 past the buffer containing the data =:-o. */
9049
9050/* Implement the evaluate_exp routine in the exp_descriptor structure
9051 for the Ada language. */
9052
52ce6436 9053static struct value *
ebf56fd3 9054ada_evaluate_subexp (struct type *expect_type, struct expression *exp,
4c4b4cd2 9055 int *pos, enum noside noside)
14f9c5c9
AS
9056{
9057 enum exp_opcode op;
b5385fc0 9058 int tem;
14f9c5c9
AS
9059 int pc;
9060 struct value *arg1 = NULL, *arg2 = NULL, *arg3;
9061 struct type *type;
52ce6436 9062 int nargs, oplen;
d2e4a39e 9063 struct value **argvec;
14f9c5c9 9064
d2e4a39e
AS
9065 pc = *pos;
9066 *pos += 1;
14f9c5c9
AS
9067 op = exp->elts[pc].opcode;
9068
d2e4a39e 9069 switch (op)
14f9c5c9
AS
9070 {
9071 default:
9072 *pos -= 1;
6e48bd2c
JB
9073 arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside);
9074 arg1 = unwrap_value (arg1);
9075
9076 /* If evaluating an OP_DOUBLE and an EXPECT_TYPE was provided,
9077 then we need to perform the conversion manually, because
9078 evaluate_subexp_standard doesn't do it. This conversion is
9079 necessary in Ada because the different kinds of float/fixed
9080 types in Ada have different representations.
9081
9082 Similarly, we need to perform the conversion from OP_LONG
9083 ourselves. */
9084 if ((op == OP_DOUBLE || op == OP_LONG) && expect_type != NULL)
9085 arg1 = ada_value_cast (expect_type, arg1, noside);
9086
9087 return arg1;
4c4b4cd2
PH
9088
9089 case OP_STRING:
9090 {
76a01679 9091 struct value *result;
5b4ee69b 9092
76a01679
JB
9093 *pos -= 1;
9094 result = evaluate_subexp_standard (expect_type, exp, pos, noside);
9095 /* The result type will have code OP_STRING, bashed there from
9096 OP_ARRAY. Bash it back. */
df407dfe
AC
9097 if (TYPE_CODE (value_type (result)) == TYPE_CODE_STRING)
9098 TYPE_CODE (value_type (result)) = TYPE_CODE_ARRAY;
76a01679 9099 return result;
4c4b4cd2 9100 }
14f9c5c9
AS
9101
9102 case UNOP_CAST:
9103 (*pos) += 2;
9104 type = exp->elts[pc + 1].type;
9105 arg1 = evaluate_subexp (type, exp, pos, noside);
9106 if (noside == EVAL_SKIP)
4c4b4cd2 9107 goto nosideret;
6e48bd2c 9108 arg1 = ada_value_cast (type, arg1, noside);
14f9c5c9
AS
9109 return arg1;
9110
4c4b4cd2
PH
9111 case UNOP_QUAL:
9112 (*pos) += 2;
9113 type = exp->elts[pc + 1].type;
9114 return ada_evaluate_subexp (type, exp, pos, noside);
9115
14f9c5c9
AS
9116 case BINOP_ASSIGN:
9117 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
52ce6436
PH
9118 if (exp->elts[*pos].opcode == OP_AGGREGATE)
9119 {
9120 arg1 = assign_aggregate (arg1, arg1, exp, pos, noside);
9121 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
9122 return arg1;
9123 return ada_value_assign (arg1, arg1);
9124 }
003f3813
JB
9125 /* Force the evaluation of the rhs ARG2 to the type of the lhs ARG1,
9126 except if the lhs of our assignment is a convenience variable.
9127 In the case of assigning to a convenience variable, the lhs
9128 should be exactly the result of the evaluation of the rhs. */
9129 type = value_type (arg1);
9130 if (VALUE_LVAL (arg1) == lval_internalvar)
9131 type = NULL;
9132 arg2 = evaluate_subexp (type, exp, pos, noside);
14f9c5c9 9133 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
4c4b4cd2 9134 return arg1;
df407dfe
AC
9135 if (ada_is_fixed_point_type (value_type (arg1)))
9136 arg2 = cast_to_fixed (value_type (arg1), arg2);
9137 else if (ada_is_fixed_point_type (value_type (arg2)))
76a01679 9138 error
323e0a4a 9139 (_("Fixed-point values must be assigned to fixed-point variables"));
d2e4a39e 9140 else
df407dfe 9141 arg2 = coerce_for_assign (value_type (arg1), arg2);
4c4b4cd2 9142 return ada_value_assign (arg1, arg2);
14f9c5c9
AS
9143
9144 case BINOP_ADD:
9145 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
9146 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
9147 if (noside == EVAL_SKIP)
4c4b4cd2 9148 goto nosideret;
2ac8a782
JB
9149 if (TYPE_CODE (value_type (arg1)) == TYPE_CODE_PTR)
9150 return (value_from_longest
9151 (value_type (arg1),
9152 value_as_long (arg1) + value_as_long (arg2)));
df407dfe
AC
9153 if ((ada_is_fixed_point_type (value_type (arg1))
9154 || ada_is_fixed_point_type (value_type (arg2)))
9155 && value_type (arg1) != value_type (arg2))
323e0a4a 9156 error (_("Operands of fixed-point addition must have the same type"));
b7789565
JB
9157 /* Do the addition, and cast the result to the type of the first
9158 argument. We cannot cast the result to a reference type, so if
9159 ARG1 is a reference type, find its underlying type. */
9160 type = value_type (arg1);
9161 while (TYPE_CODE (type) == TYPE_CODE_REF)
9162 type = TYPE_TARGET_TYPE (type);
f44316fa 9163 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
89eef114 9164 return value_cast (type, value_binop (arg1, arg2, BINOP_ADD));
14f9c5c9
AS
9165
9166 case BINOP_SUB:
9167 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
9168 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
9169 if (noside == EVAL_SKIP)
4c4b4cd2 9170 goto nosideret;
2ac8a782
JB
9171 if (TYPE_CODE (value_type (arg1)) == TYPE_CODE_PTR)
9172 return (value_from_longest
9173 (value_type (arg1),
9174 value_as_long (arg1) - value_as_long (arg2)));
df407dfe
AC
9175 if ((ada_is_fixed_point_type (value_type (arg1))
9176 || ada_is_fixed_point_type (value_type (arg2)))
9177 && value_type (arg1) != value_type (arg2))
0963b4bd
MS
9178 error (_("Operands of fixed-point subtraction "
9179 "must have the same type"));
b7789565
JB
9180 /* Do the substraction, and cast the result to the type of the first
9181 argument. We cannot cast the result to a reference type, so if
9182 ARG1 is a reference type, find its underlying type. */
9183 type = value_type (arg1);
9184 while (TYPE_CODE (type) == TYPE_CODE_REF)
9185 type = TYPE_TARGET_TYPE (type);
f44316fa 9186 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
89eef114 9187 return value_cast (type, value_binop (arg1, arg2, BINOP_SUB));
14f9c5c9
AS
9188
9189 case BINOP_MUL:
9190 case BINOP_DIV:
e1578042
JB
9191 case BINOP_REM:
9192 case BINOP_MOD:
14f9c5c9
AS
9193 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9194 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9195 if (noside == EVAL_SKIP)
4c4b4cd2 9196 goto nosideret;
e1578042 9197 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
9c2be529
JB
9198 {
9199 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9200 return value_zero (value_type (arg1), not_lval);
9201 }
14f9c5c9 9202 else
4c4b4cd2 9203 {
a53b7a21 9204 type = builtin_type (exp->gdbarch)->builtin_double;
df407dfe 9205 if (ada_is_fixed_point_type (value_type (arg1)))
a53b7a21 9206 arg1 = cast_from_fixed (type, arg1);
df407dfe 9207 if (ada_is_fixed_point_type (value_type (arg2)))
a53b7a21 9208 arg2 = cast_from_fixed (type, arg2);
f44316fa 9209 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
4c4b4cd2
PH
9210 return ada_value_binop (arg1, arg2, op);
9211 }
9212
4c4b4cd2
PH
9213 case BINOP_EQUAL:
9214 case BINOP_NOTEQUAL:
14f9c5c9 9215 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
df407dfe 9216 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
14f9c5c9 9217 if (noside == EVAL_SKIP)
76a01679 9218 goto nosideret;
4c4b4cd2 9219 if (noside == EVAL_AVOID_SIDE_EFFECTS)
76a01679 9220 tem = 0;
4c4b4cd2 9221 else
f44316fa
UW
9222 {
9223 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9224 tem = ada_value_equal (arg1, arg2);
9225 }
4c4b4cd2 9226 if (op == BINOP_NOTEQUAL)
76a01679 9227 tem = !tem;
fbb06eb1
UW
9228 type = language_bool_type (exp->language_defn, exp->gdbarch);
9229 return value_from_longest (type, (LONGEST) tem);
4c4b4cd2
PH
9230
9231 case UNOP_NEG:
9232 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9233 if (noside == EVAL_SKIP)
9234 goto nosideret;
df407dfe
AC
9235 else if (ada_is_fixed_point_type (value_type (arg1)))
9236 return value_cast (value_type (arg1), value_neg (arg1));
14f9c5c9 9237 else
f44316fa
UW
9238 {
9239 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
9240 return value_neg (arg1);
9241 }
4c4b4cd2 9242
2330c6c6
JB
9243 case BINOP_LOGICAL_AND:
9244 case BINOP_LOGICAL_OR:
9245 case UNOP_LOGICAL_NOT:
000d5124
JB
9246 {
9247 struct value *val;
9248
9249 *pos -= 1;
9250 val = evaluate_subexp_standard (expect_type, exp, pos, noside);
fbb06eb1
UW
9251 type = language_bool_type (exp->language_defn, exp->gdbarch);
9252 return value_cast (type, val);
000d5124 9253 }
2330c6c6
JB
9254
9255 case BINOP_BITWISE_AND:
9256 case BINOP_BITWISE_IOR:
9257 case BINOP_BITWISE_XOR:
000d5124
JB
9258 {
9259 struct value *val;
9260
9261 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
9262 *pos = pc;
9263 val = evaluate_subexp_standard (expect_type, exp, pos, noside);
9264
9265 return value_cast (value_type (arg1), val);
9266 }
2330c6c6 9267
14f9c5c9
AS
9268 case OP_VAR_VALUE:
9269 *pos -= 1;
6799def4 9270
14f9c5c9 9271 if (noside == EVAL_SKIP)
4c4b4cd2
PH
9272 {
9273 *pos += 4;
9274 goto nosideret;
9275 }
9276 else if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
76a01679
JB
9277 /* Only encountered when an unresolved symbol occurs in a
9278 context other than a function call, in which case, it is
52ce6436 9279 invalid. */
323e0a4a 9280 error (_("Unexpected unresolved symbol, %s, during evaluation"),
4c4b4cd2 9281 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
14f9c5c9 9282 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
4c4b4cd2 9283 {
0c1f74cf 9284 type = static_unwrap_type (SYMBOL_TYPE (exp->elts[pc + 2].symbol));
31dbc1c5
JB
9285 /* Check to see if this is a tagged type. We also need to handle
9286 the case where the type is a reference to a tagged type, but
9287 we have to be careful to exclude pointers to tagged types.
9288 The latter should be shown as usual (as a pointer), whereas
9289 a reference should mostly be transparent to the user. */
9290 if (ada_is_tagged_type (type, 0)
9291 || (TYPE_CODE(type) == TYPE_CODE_REF
9292 && ada_is_tagged_type (TYPE_TARGET_TYPE (type), 0)))
0c1f74cf
JB
9293 {
9294 /* Tagged types are a little special in the fact that the real
9295 type is dynamic and can only be determined by inspecting the
9296 object's tag. This means that we need to get the object's
9297 value first (EVAL_NORMAL) and then extract the actual object
9298 type from its tag.
9299
9300 Note that we cannot skip the final step where we extract
9301 the object type from its tag, because the EVAL_NORMAL phase
9302 results in dynamic components being resolved into fixed ones.
9303 This can cause problems when trying to print the type
9304 description of tagged types whose parent has a dynamic size:
9305 We use the type name of the "_parent" component in order
9306 to print the name of the ancestor type in the type description.
9307 If that component had a dynamic size, the resolution into
9308 a fixed type would result in the loss of that type name,
9309 thus preventing us from printing the name of the ancestor
9310 type in the type description. */
b79819ba
JB
9311 struct type *actual_type;
9312
0c1f74cf 9313 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_NORMAL);
b79819ba
JB
9314 actual_type = type_from_tag (ada_value_tag (arg1));
9315 if (actual_type == NULL)
9316 /* If, for some reason, we were unable to determine
9317 the actual type from the tag, then use the static
9318 approximation that we just computed as a fallback.
9319 This can happen if the debugging information is
9320 incomplete, for instance. */
9321 actual_type = type;
9322
9323 return value_zero (actual_type, not_lval);
0c1f74cf
JB
9324 }
9325
4c4b4cd2
PH
9326 *pos += 4;
9327 return value_zero
9328 (to_static_fixed_type
9329 (static_unwrap_type (SYMBOL_TYPE (exp->elts[pc + 2].symbol))),
9330 not_lval);
9331 }
d2e4a39e 9332 else
4c4b4cd2 9333 {
284614f0
JB
9334 arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside);
9335 arg1 = unwrap_value (arg1);
4c4b4cd2
PH
9336 return ada_to_fixed_value (arg1);
9337 }
9338
9339 case OP_FUNCALL:
9340 (*pos) += 2;
9341
9342 /* Allocate arg vector, including space for the function to be
9343 called in argvec[0] and a terminating NULL. */
9344 nargs = longest_to_int (exp->elts[pc + 1].longconst);
9345 argvec =
9346 (struct value **) alloca (sizeof (struct value *) * (nargs + 2));
9347
9348 if (exp->elts[*pos].opcode == OP_VAR_VALUE
76a01679 9349 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
323e0a4a 9350 error (_("Unexpected unresolved symbol, %s, during evaluation"),
4c4b4cd2
PH
9351 SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol));
9352 else
9353 {
9354 for (tem = 0; tem <= nargs; tem += 1)
9355 argvec[tem] = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9356 argvec[tem] = 0;
9357
9358 if (noside == EVAL_SKIP)
9359 goto nosideret;
9360 }
9361
ad82864c
JB
9362 if (ada_is_constrained_packed_array_type
9363 (desc_base_type (value_type (argvec[0]))))
4c4b4cd2 9364 argvec[0] = ada_coerce_to_simple_array (argvec[0]);
284614f0
JB
9365 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_ARRAY
9366 && TYPE_FIELD_BITSIZE (value_type (argvec[0]), 0) != 0)
9367 /* This is a packed array that has already been fixed, and
9368 therefore already coerced to a simple array. Nothing further
9369 to do. */
9370 ;
df407dfe
AC
9371 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_REF
9372 || (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_ARRAY
76a01679 9373 && VALUE_LVAL (argvec[0]) == lval_memory))
4c4b4cd2
PH
9374 argvec[0] = value_addr (argvec[0]);
9375
df407dfe 9376 type = ada_check_typedef (value_type (argvec[0]));
720d1a40
JB
9377
9378 /* Ada allows us to implicitly dereference arrays when subscripting
9379 them. So, if this is an typedef (encoding use for array access
9380 types encoded as fat pointers), strip it now. */
9381 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
9382 type = ada_typedef_target_type (type);
9383
4c4b4cd2
PH
9384 if (TYPE_CODE (type) == TYPE_CODE_PTR)
9385 {
61ee279c 9386 switch (TYPE_CODE (ada_check_typedef (TYPE_TARGET_TYPE (type))))
4c4b4cd2
PH
9387 {
9388 case TYPE_CODE_FUNC:
61ee279c 9389 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
4c4b4cd2
PH
9390 break;
9391 case TYPE_CODE_ARRAY:
9392 break;
9393 case TYPE_CODE_STRUCT:
9394 if (noside != EVAL_AVOID_SIDE_EFFECTS)
9395 argvec[0] = ada_value_ind (argvec[0]);
61ee279c 9396 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
4c4b4cd2
PH
9397 break;
9398 default:
323e0a4a 9399 error (_("cannot subscript or call something of type `%s'"),
df407dfe 9400 ada_type_name (value_type (argvec[0])));
4c4b4cd2
PH
9401 break;
9402 }
9403 }
9404
9405 switch (TYPE_CODE (type))
9406 {
9407 case TYPE_CODE_FUNC:
9408 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9409 return allocate_value (TYPE_TARGET_TYPE (type));
9410 return call_function_by_hand (argvec[0], nargs, argvec + 1);
9411 case TYPE_CODE_STRUCT:
9412 {
9413 int arity;
9414
4c4b4cd2
PH
9415 arity = ada_array_arity (type);
9416 type = ada_array_element_type (type, nargs);
9417 if (type == NULL)
323e0a4a 9418 error (_("cannot subscript or call a record"));
4c4b4cd2 9419 if (arity != nargs)
323e0a4a 9420 error (_("wrong number of subscripts; expecting %d"), arity);
4c4b4cd2 9421 if (noside == EVAL_AVOID_SIDE_EFFECTS)
0a07e705 9422 return value_zero (ada_aligned_type (type), lval_memory);
4c4b4cd2
PH
9423 return
9424 unwrap_value (ada_value_subscript
9425 (argvec[0], nargs, argvec + 1));
9426 }
9427 case TYPE_CODE_ARRAY:
9428 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9429 {
9430 type = ada_array_element_type (type, nargs);
9431 if (type == NULL)
323e0a4a 9432 error (_("element type of array unknown"));
4c4b4cd2 9433 else
0a07e705 9434 return value_zero (ada_aligned_type (type), lval_memory);
4c4b4cd2
PH
9435 }
9436 return
9437 unwrap_value (ada_value_subscript
9438 (ada_coerce_to_simple_array (argvec[0]),
9439 nargs, argvec + 1));
9440 case TYPE_CODE_PTR: /* Pointer to array */
9441 type = to_fixed_array_type (TYPE_TARGET_TYPE (type), NULL, 1);
9442 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9443 {
9444 type = ada_array_element_type (type, nargs);
9445 if (type == NULL)
323e0a4a 9446 error (_("element type of array unknown"));
4c4b4cd2 9447 else
0a07e705 9448 return value_zero (ada_aligned_type (type), lval_memory);
4c4b4cd2
PH
9449 }
9450 return
9451 unwrap_value (ada_value_ptr_subscript (argvec[0], type,
9452 nargs, argvec + 1));
9453
9454 default:
e1d5a0d2
PH
9455 error (_("Attempt to index or call something other than an "
9456 "array or function"));
4c4b4cd2
PH
9457 }
9458
9459 case TERNOP_SLICE:
9460 {
9461 struct value *array = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9462 struct value *low_bound_val =
9463 evaluate_subexp (NULL_TYPE, exp, pos, noside);
714e53ab
PH
9464 struct value *high_bound_val =
9465 evaluate_subexp (NULL_TYPE, exp, pos, noside);
9466 LONGEST low_bound;
9467 LONGEST high_bound;
5b4ee69b 9468
994b9211
AC
9469 low_bound_val = coerce_ref (low_bound_val);
9470 high_bound_val = coerce_ref (high_bound_val);
714e53ab
PH
9471 low_bound = pos_atr (low_bound_val);
9472 high_bound = pos_atr (high_bound_val);
963a6417 9473
4c4b4cd2
PH
9474 if (noside == EVAL_SKIP)
9475 goto nosideret;
9476
4c4b4cd2
PH
9477 /* If this is a reference to an aligner type, then remove all
9478 the aligners. */
df407dfe
AC
9479 if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF
9480 && ada_is_aligner_type (TYPE_TARGET_TYPE (value_type (array))))
9481 TYPE_TARGET_TYPE (value_type (array)) =
9482 ada_aligned_type (TYPE_TARGET_TYPE (value_type (array)));
4c4b4cd2 9483
ad82864c 9484 if (ada_is_constrained_packed_array_type (value_type (array)))
323e0a4a 9485 error (_("cannot slice a packed array"));
4c4b4cd2
PH
9486
9487 /* If this is a reference to an array or an array lvalue,
9488 convert to a pointer. */
df407dfe
AC
9489 if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF
9490 || (TYPE_CODE (value_type (array)) == TYPE_CODE_ARRAY
4c4b4cd2
PH
9491 && VALUE_LVAL (array) == lval_memory))
9492 array = value_addr (array);
9493
1265e4aa 9494 if (noside == EVAL_AVOID_SIDE_EFFECTS
61ee279c 9495 && ada_is_array_descriptor_type (ada_check_typedef
df407dfe 9496 (value_type (array))))
0b5d8877 9497 return empty_array (ada_type_of_array (array, 0), low_bound);
4c4b4cd2
PH
9498
9499 array = ada_coerce_to_simple_array_ptr (array);
9500
714e53ab
PH
9501 /* If we have more than one level of pointer indirection,
9502 dereference the value until we get only one level. */
df407dfe
AC
9503 while (TYPE_CODE (value_type (array)) == TYPE_CODE_PTR
9504 && (TYPE_CODE (TYPE_TARGET_TYPE (value_type (array)))
714e53ab
PH
9505 == TYPE_CODE_PTR))
9506 array = value_ind (array);
9507
9508 /* Make sure we really do have an array type before going further,
9509 to avoid a SEGV when trying to get the index type or the target
9510 type later down the road if the debug info generated by
9511 the compiler is incorrect or incomplete. */
df407dfe 9512 if (!ada_is_simple_array_type (value_type (array)))
323e0a4a 9513 error (_("cannot take slice of non-array"));
714e53ab 9514
df407dfe 9515 if (TYPE_CODE (value_type (array)) == TYPE_CODE_PTR)
4c4b4cd2 9516 {
0b5d8877 9517 if (high_bound < low_bound || noside == EVAL_AVOID_SIDE_EFFECTS)
df407dfe 9518 return empty_array (TYPE_TARGET_TYPE (value_type (array)),
4c4b4cd2
PH
9519 low_bound);
9520 else
9521 {
9522 struct type *arr_type0 =
df407dfe 9523 to_fixed_array_type (TYPE_TARGET_TYPE (value_type (array)),
4c4b4cd2 9524 NULL, 1);
5b4ee69b 9525
f5938064
JG
9526 return ada_value_slice_from_ptr (array, arr_type0,
9527 longest_to_int (low_bound),
9528 longest_to_int (high_bound));
4c4b4cd2
PH
9529 }
9530 }
9531 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
9532 return array;
9533 else if (high_bound < low_bound)
df407dfe 9534 return empty_array (value_type (array), low_bound);
4c4b4cd2 9535 else
529cad9c
PH
9536 return ada_value_slice (array, longest_to_int (low_bound),
9537 longest_to_int (high_bound));
4c4b4cd2 9538 }
14f9c5c9 9539
4c4b4cd2
PH
9540 case UNOP_IN_RANGE:
9541 (*pos) += 2;
9542 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8008e265 9543 type = check_typedef (exp->elts[pc + 1].type);
14f9c5c9 9544
14f9c5c9 9545 if (noside == EVAL_SKIP)
4c4b4cd2 9546 goto nosideret;
14f9c5c9 9547
4c4b4cd2
PH
9548 switch (TYPE_CODE (type))
9549 {
9550 default:
e1d5a0d2
PH
9551 lim_warning (_("Membership test incompletely implemented; "
9552 "always returns true"));
fbb06eb1
UW
9553 type = language_bool_type (exp->language_defn, exp->gdbarch);
9554 return value_from_longest (type, (LONGEST) 1);
4c4b4cd2
PH
9555
9556 case TYPE_CODE_RANGE:
030b4912
UW
9557 arg2 = value_from_longest (type, TYPE_LOW_BOUND (type));
9558 arg3 = value_from_longest (type, TYPE_HIGH_BOUND (type));
f44316fa
UW
9559 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9560 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
fbb06eb1
UW
9561 type = language_bool_type (exp->language_defn, exp->gdbarch);
9562 return
9563 value_from_longest (type,
4c4b4cd2
PH
9564 (value_less (arg1, arg3)
9565 || value_equal (arg1, arg3))
9566 && (value_less (arg2, arg1)
9567 || value_equal (arg2, arg1)));
9568 }
9569
9570 case BINOP_IN_BOUNDS:
14f9c5c9 9571 (*pos) += 2;
4c4b4cd2
PH
9572 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9573 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
14f9c5c9 9574
4c4b4cd2
PH
9575 if (noside == EVAL_SKIP)
9576 goto nosideret;
14f9c5c9 9577
4c4b4cd2 9578 if (noside == EVAL_AVOID_SIDE_EFFECTS)
fbb06eb1
UW
9579 {
9580 type = language_bool_type (exp->language_defn, exp->gdbarch);
9581 return value_zero (type, not_lval);
9582 }
14f9c5c9 9583
4c4b4cd2 9584 tem = longest_to_int (exp->elts[pc + 1].longconst);
14f9c5c9 9585
1eea4ebd
UW
9586 type = ada_index_type (value_type (arg2), tem, "range");
9587 if (!type)
9588 type = value_type (arg1);
14f9c5c9 9589
1eea4ebd
UW
9590 arg3 = value_from_longest (type, ada_array_bound (arg2, tem, 1));
9591 arg2 = value_from_longest (type, ada_array_bound (arg2, tem, 0));
d2e4a39e 9592
f44316fa
UW
9593 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9594 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
fbb06eb1 9595 type = language_bool_type (exp->language_defn, exp->gdbarch);
4c4b4cd2 9596 return
fbb06eb1 9597 value_from_longest (type,
4c4b4cd2
PH
9598 (value_less (arg1, arg3)
9599 || value_equal (arg1, arg3))
9600 && (value_less (arg2, arg1)
9601 || value_equal (arg2, arg1)));
9602
9603 case TERNOP_IN_RANGE:
9604 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9605 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9606 arg3 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9607
9608 if (noside == EVAL_SKIP)
9609 goto nosideret;
9610
f44316fa
UW
9611 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9612 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
fbb06eb1 9613 type = language_bool_type (exp->language_defn, exp->gdbarch);
4c4b4cd2 9614 return
fbb06eb1 9615 value_from_longest (type,
4c4b4cd2
PH
9616 (value_less (arg1, arg3)
9617 || value_equal (arg1, arg3))
9618 && (value_less (arg2, arg1)
9619 || value_equal (arg2, arg1)));
9620
9621 case OP_ATR_FIRST:
9622 case OP_ATR_LAST:
9623 case OP_ATR_LENGTH:
9624 {
76a01679 9625 struct type *type_arg;
5b4ee69b 9626
76a01679
JB
9627 if (exp->elts[*pos].opcode == OP_TYPE)
9628 {
9629 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
9630 arg1 = NULL;
5bc23cb3 9631 type_arg = check_typedef (exp->elts[pc + 2].type);
76a01679
JB
9632 }
9633 else
9634 {
9635 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9636 type_arg = NULL;
9637 }
9638
9639 if (exp->elts[*pos].opcode != OP_LONG)
323e0a4a 9640 error (_("Invalid operand to '%s"), ada_attribute_name (op));
76a01679
JB
9641 tem = longest_to_int (exp->elts[*pos + 2].longconst);
9642 *pos += 4;
9643
9644 if (noside == EVAL_SKIP)
9645 goto nosideret;
9646
9647 if (type_arg == NULL)
9648 {
9649 arg1 = ada_coerce_ref (arg1);
9650
ad82864c 9651 if (ada_is_constrained_packed_array_type (value_type (arg1)))
76a01679
JB
9652 arg1 = ada_coerce_to_simple_array (arg1);
9653
1eea4ebd
UW
9654 type = ada_index_type (value_type (arg1), tem,
9655 ada_attribute_name (op));
9656 if (type == NULL)
9657 type = builtin_type (exp->gdbarch)->builtin_int;
76a01679
JB
9658
9659 if (noside == EVAL_AVOID_SIDE_EFFECTS)
1eea4ebd 9660 return allocate_value (type);
76a01679
JB
9661
9662 switch (op)
9663 {
9664 default: /* Should never happen. */
323e0a4a 9665 error (_("unexpected attribute encountered"));
76a01679 9666 case OP_ATR_FIRST:
1eea4ebd
UW
9667 return value_from_longest
9668 (type, ada_array_bound (arg1, tem, 0));
76a01679 9669 case OP_ATR_LAST:
1eea4ebd
UW
9670 return value_from_longest
9671 (type, ada_array_bound (arg1, tem, 1));
76a01679 9672 case OP_ATR_LENGTH:
1eea4ebd
UW
9673 return value_from_longest
9674 (type, ada_array_length (arg1, tem));
76a01679
JB
9675 }
9676 }
9677 else if (discrete_type_p (type_arg))
9678 {
9679 struct type *range_type;
9680 char *name = ada_type_name (type_arg);
5b4ee69b 9681
76a01679
JB
9682 range_type = NULL;
9683 if (name != NULL && TYPE_CODE (type_arg) != TYPE_CODE_ENUM)
28c85d6c 9684 range_type = to_fixed_range_type (type_arg, NULL);
76a01679
JB
9685 if (range_type == NULL)
9686 range_type = type_arg;
9687 switch (op)
9688 {
9689 default:
323e0a4a 9690 error (_("unexpected attribute encountered"));
76a01679 9691 case OP_ATR_FIRST:
690cc4eb 9692 return value_from_longest
43bbcdc2 9693 (range_type, ada_discrete_type_low_bound (range_type));
76a01679 9694 case OP_ATR_LAST:
690cc4eb 9695 return value_from_longest
43bbcdc2 9696 (range_type, ada_discrete_type_high_bound (range_type));
76a01679 9697 case OP_ATR_LENGTH:
323e0a4a 9698 error (_("the 'length attribute applies only to array types"));
76a01679
JB
9699 }
9700 }
9701 else if (TYPE_CODE (type_arg) == TYPE_CODE_FLT)
323e0a4a 9702 error (_("unimplemented type attribute"));
76a01679
JB
9703 else
9704 {
9705 LONGEST low, high;
9706
ad82864c
JB
9707 if (ada_is_constrained_packed_array_type (type_arg))
9708 type_arg = decode_constrained_packed_array_type (type_arg);
76a01679 9709
1eea4ebd 9710 type = ada_index_type (type_arg, tem, ada_attribute_name (op));
76a01679 9711 if (type == NULL)
1eea4ebd
UW
9712 type = builtin_type (exp->gdbarch)->builtin_int;
9713
76a01679
JB
9714 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9715 return allocate_value (type);
9716
9717 switch (op)
9718 {
9719 default:
323e0a4a 9720 error (_("unexpected attribute encountered"));
76a01679 9721 case OP_ATR_FIRST:
1eea4ebd 9722 low = ada_array_bound_from_type (type_arg, tem, 0);
76a01679
JB
9723 return value_from_longest (type, low);
9724 case OP_ATR_LAST:
1eea4ebd 9725 high = ada_array_bound_from_type (type_arg, tem, 1);
76a01679
JB
9726 return value_from_longest (type, high);
9727 case OP_ATR_LENGTH:
1eea4ebd
UW
9728 low = ada_array_bound_from_type (type_arg, tem, 0);
9729 high = ada_array_bound_from_type (type_arg, tem, 1);
76a01679
JB
9730 return value_from_longest (type, high - low + 1);
9731 }
9732 }
14f9c5c9
AS
9733 }
9734
4c4b4cd2
PH
9735 case OP_ATR_TAG:
9736 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9737 if (noside == EVAL_SKIP)
76a01679 9738 goto nosideret;
4c4b4cd2
PH
9739
9740 if (noside == EVAL_AVOID_SIDE_EFFECTS)
76a01679 9741 return value_zero (ada_tag_type (arg1), not_lval);
4c4b4cd2
PH
9742
9743 return ada_value_tag (arg1);
9744
9745 case OP_ATR_MIN:
9746 case OP_ATR_MAX:
9747 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
14f9c5c9
AS
9748 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9749 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9750 if (noside == EVAL_SKIP)
76a01679 9751 goto nosideret;
d2e4a39e 9752 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
df407dfe 9753 return value_zero (value_type (arg1), not_lval);
14f9c5c9 9754 else
f44316fa
UW
9755 {
9756 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9757 return value_binop (arg1, arg2,
9758 op == OP_ATR_MIN ? BINOP_MIN : BINOP_MAX);
9759 }
14f9c5c9 9760
4c4b4cd2
PH
9761 case OP_ATR_MODULUS:
9762 {
31dedfee 9763 struct type *type_arg = check_typedef (exp->elts[pc + 2].type);
4c4b4cd2 9764
5b4ee69b 9765 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
76a01679
JB
9766 if (noside == EVAL_SKIP)
9767 goto nosideret;
4c4b4cd2 9768
76a01679 9769 if (!ada_is_modular_type (type_arg))
323e0a4a 9770 error (_("'modulus must be applied to modular type"));
4c4b4cd2 9771
76a01679
JB
9772 return value_from_longest (TYPE_TARGET_TYPE (type_arg),
9773 ada_modulus (type_arg));
4c4b4cd2
PH
9774 }
9775
9776
9777 case OP_ATR_POS:
9778 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
14f9c5c9
AS
9779 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9780 if (noside == EVAL_SKIP)
76a01679 9781 goto nosideret;
3cb382c9
UW
9782 type = builtin_type (exp->gdbarch)->builtin_int;
9783 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9784 return value_zero (type, not_lval);
14f9c5c9 9785 else
3cb382c9 9786 return value_pos_atr (type, arg1);
14f9c5c9 9787
4c4b4cd2
PH
9788 case OP_ATR_SIZE:
9789 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8c1c099f
JB
9790 type = value_type (arg1);
9791
9792 /* If the argument is a reference, then dereference its type, since
9793 the user is really asking for the size of the actual object,
9794 not the size of the pointer. */
9795 if (TYPE_CODE (type) == TYPE_CODE_REF)
9796 type = TYPE_TARGET_TYPE (type);
9797
4c4b4cd2 9798 if (noside == EVAL_SKIP)
76a01679 9799 goto nosideret;
4c4b4cd2 9800 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
22601c15 9801 return value_zero (builtin_type (exp->gdbarch)->builtin_int, not_lval);
4c4b4cd2 9802 else
22601c15 9803 return value_from_longest (builtin_type (exp->gdbarch)->builtin_int,
8c1c099f 9804 TARGET_CHAR_BIT * TYPE_LENGTH (type));
4c4b4cd2
PH
9805
9806 case OP_ATR_VAL:
9807 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
14f9c5c9 9808 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
4c4b4cd2 9809 type = exp->elts[pc + 2].type;
14f9c5c9 9810 if (noside == EVAL_SKIP)
76a01679 9811 goto nosideret;
4c4b4cd2 9812 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
76a01679 9813 return value_zero (type, not_lval);
4c4b4cd2 9814 else
76a01679 9815 return value_val_atr (type, arg1);
4c4b4cd2
PH
9816
9817 case BINOP_EXP:
9818 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9819 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9820 if (noside == EVAL_SKIP)
9821 goto nosideret;
9822 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
df407dfe 9823 return value_zero (value_type (arg1), not_lval);
4c4b4cd2 9824 else
f44316fa
UW
9825 {
9826 /* For integer exponentiation operations,
9827 only promote the first argument. */
9828 if (is_integral_type (value_type (arg2)))
9829 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
9830 else
9831 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9832
9833 return value_binop (arg1, arg2, op);
9834 }
4c4b4cd2
PH
9835
9836 case UNOP_PLUS:
9837 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9838 if (noside == EVAL_SKIP)
9839 goto nosideret;
9840 else
9841 return arg1;
9842
9843 case UNOP_ABS:
9844 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9845 if (noside == EVAL_SKIP)
9846 goto nosideret;
f44316fa 9847 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
df407dfe 9848 if (value_less (arg1, value_zero (value_type (arg1), not_lval)))
4c4b4cd2 9849 return value_neg (arg1);
14f9c5c9 9850 else
4c4b4cd2 9851 return arg1;
14f9c5c9
AS
9852
9853 case UNOP_IND:
6b0d7253 9854 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
14f9c5c9 9855 if (noside == EVAL_SKIP)
4c4b4cd2 9856 goto nosideret;
df407dfe 9857 type = ada_check_typedef (value_type (arg1));
14f9c5c9 9858 if (noside == EVAL_AVOID_SIDE_EFFECTS)
4c4b4cd2
PH
9859 {
9860 if (ada_is_array_descriptor_type (type))
9861 /* GDB allows dereferencing GNAT array descriptors. */
9862 {
9863 struct type *arrType = ada_type_of_array (arg1, 0);
5b4ee69b 9864
4c4b4cd2 9865 if (arrType == NULL)
323e0a4a 9866 error (_("Attempt to dereference null array pointer."));
00a4c844 9867 return value_at_lazy (arrType, 0);
4c4b4cd2
PH
9868 }
9869 else if (TYPE_CODE (type) == TYPE_CODE_PTR
9870 || TYPE_CODE (type) == TYPE_CODE_REF
9871 /* In C you can dereference an array to get the 1st elt. */
9872 || TYPE_CODE (type) == TYPE_CODE_ARRAY)
714e53ab
PH
9873 {
9874 type = to_static_fixed_type
9875 (ada_aligned_type
9876 (ada_check_typedef (TYPE_TARGET_TYPE (type))));
9877 check_size (type);
9878 return value_zero (type, lval_memory);
9879 }
4c4b4cd2 9880 else if (TYPE_CODE (type) == TYPE_CODE_INT)
6b0d7253
JB
9881 {
9882 /* GDB allows dereferencing an int. */
9883 if (expect_type == NULL)
9884 return value_zero (builtin_type (exp->gdbarch)->builtin_int,
9885 lval_memory);
9886 else
9887 {
9888 expect_type =
9889 to_static_fixed_type (ada_aligned_type (expect_type));
9890 return value_zero (expect_type, lval_memory);
9891 }
9892 }
4c4b4cd2 9893 else
323e0a4a 9894 error (_("Attempt to take contents of a non-pointer value."));
4c4b4cd2 9895 }
0963b4bd 9896 arg1 = ada_coerce_ref (arg1); /* FIXME: What is this for?? */
df407dfe 9897 type = ada_check_typedef (value_type (arg1));
d2e4a39e 9898
96967637
JB
9899 if (TYPE_CODE (type) == TYPE_CODE_INT)
9900 /* GDB allows dereferencing an int. If we were given
9901 the expect_type, then use that as the target type.
9902 Otherwise, assume that the target type is an int. */
9903 {
9904 if (expect_type != NULL)
9905 return ada_value_ind (value_cast (lookup_pointer_type (expect_type),
9906 arg1));
9907 else
9908 return value_at_lazy (builtin_type (exp->gdbarch)->builtin_int,
9909 (CORE_ADDR) value_as_address (arg1));
9910 }
6b0d7253 9911
4c4b4cd2
PH
9912 if (ada_is_array_descriptor_type (type))
9913 /* GDB allows dereferencing GNAT array descriptors. */
9914 return ada_coerce_to_simple_array (arg1);
14f9c5c9 9915 else
4c4b4cd2 9916 return ada_value_ind (arg1);
14f9c5c9
AS
9917
9918 case STRUCTOP_STRUCT:
9919 tem = longest_to_int (exp->elts[pc + 1].longconst);
9920 (*pos) += 3 + BYTES_TO_EXP_ELEM (tem + 1);
9921 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9922 if (noside == EVAL_SKIP)
4c4b4cd2 9923 goto nosideret;
14f9c5c9 9924 if (noside == EVAL_AVOID_SIDE_EFFECTS)
76a01679 9925 {
df407dfe 9926 struct type *type1 = value_type (arg1);
5b4ee69b 9927
76a01679
JB
9928 if (ada_is_tagged_type (type1, 1))
9929 {
9930 type = ada_lookup_struct_elt_type (type1,
9931 &exp->elts[pc + 2].string,
9932 1, 1, NULL);
9933 if (type == NULL)
9934 /* In this case, we assume that the field COULD exist
9935 in some extension of the type. Return an object of
9936 "type" void, which will match any formal
0963b4bd 9937 (see ada_type_match). */
30b15541
UW
9938 return value_zero (builtin_type (exp->gdbarch)->builtin_void,
9939 lval_memory);
76a01679
JB
9940 }
9941 else
9942 type =
9943 ada_lookup_struct_elt_type (type1, &exp->elts[pc + 2].string, 1,
9944 0, NULL);
9945
9946 return value_zero (ada_aligned_type (type), lval_memory);
9947 }
14f9c5c9 9948 else
284614f0
JB
9949 arg1 = ada_value_struct_elt (arg1, &exp->elts[pc + 2].string, 0);
9950 arg1 = unwrap_value (arg1);
9951 return ada_to_fixed_value (arg1);
9952
14f9c5c9 9953 case OP_TYPE:
4c4b4cd2
PH
9954 /* The value is not supposed to be used. This is here to make it
9955 easier to accommodate expressions that contain types. */
14f9c5c9
AS
9956 (*pos) += 2;
9957 if (noside == EVAL_SKIP)
4c4b4cd2 9958 goto nosideret;
14f9c5c9 9959 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
a6cfbe68 9960 return allocate_value (exp->elts[pc + 1].type);
14f9c5c9 9961 else
323e0a4a 9962 error (_("Attempt to use a type name as an expression"));
52ce6436
PH
9963
9964 case OP_AGGREGATE:
9965 case OP_CHOICES:
9966 case OP_OTHERS:
9967 case OP_DISCRETE_RANGE:
9968 case OP_POSITIONAL:
9969 case OP_NAME:
9970 if (noside == EVAL_NORMAL)
9971 switch (op)
9972 {
9973 case OP_NAME:
9974 error (_("Undefined name, ambiguous name, or renaming used in "
e1d5a0d2 9975 "component association: %s."), &exp->elts[pc+2].string);
52ce6436
PH
9976 case OP_AGGREGATE:
9977 error (_("Aggregates only allowed on the right of an assignment"));
9978 default:
0963b4bd
MS
9979 internal_error (__FILE__, __LINE__,
9980 _("aggregate apparently mangled"));
52ce6436
PH
9981 }
9982
9983 ada_forward_operator_length (exp, pc, &oplen, &nargs);
9984 *pos += oplen - 1;
9985 for (tem = 0; tem < nargs; tem += 1)
9986 ada_evaluate_subexp (NULL, exp, pos, noside);
9987 goto nosideret;
14f9c5c9
AS
9988 }
9989
9990nosideret:
22601c15 9991 return value_from_longest (builtin_type (exp->gdbarch)->builtin_int, 1);
14f9c5c9 9992}
14f9c5c9 9993\f
d2e4a39e 9994
4c4b4cd2 9995 /* Fixed point */
14f9c5c9
AS
9996
9997/* If TYPE encodes an Ada fixed-point type, return the suffix of the
9998 type name that encodes the 'small and 'delta information.
4c4b4cd2 9999 Otherwise, return NULL. */
14f9c5c9 10000
d2e4a39e 10001static const char *
ebf56fd3 10002fixed_type_info (struct type *type)
14f9c5c9 10003{
d2e4a39e 10004 const char *name = ada_type_name (type);
14f9c5c9
AS
10005 enum type_code code = (type == NULL) ? TYPE_CODE_UNDEF : TYPE_CODE (type);
10006
d2e4a39e
AS
10007 if ((code == TYPE_CODE_INT || code == TYPE_CODE_RANGE) && name != NULL)
10008 {
14f9c5c9 10009 const char *tail = strstr (name, "___XF_");
5b4ee69b 10010
14f9c5c9 10011 if (tail == NULL)
4c4b4cd2 10012 return NULL;
d2e4a39e 10013 else
4c4b4cd2 10014 return tail + 5;
14f9c5c9
AS
10015 }
10016 else if (code == TYPE_CODE_RANGE && TYPE_TARGET_TYPE (type) != type)
10017 return fixed_type_info (TYPE_TARGET_TYPE (type));
10018 else
10019 return NULL;
10020}
10021
4c4b4cd2 10022/* Returns non-zero iff TYPE represents an Ada fixed-point type. */
14f9c5c9
AS
10023
10024int
ebf56fd3 10025ada_is_fixed_point_type (struct type *type)
14f9c5c9
AS
10026{
10027 return fixed_type_info (type) != NULL;
10028}
10029
4c4b4cd2
PH
10030/* Return non-zero iff TYPE represents a System.Address type. */
10031
10032int
10033ada_is_system_address_type (struct type *type)
10034{
10035 return (TYPE_NAME (type)
10036 && strcmp (TYPE_NAME (type), "system__address") == 0);
10037}
10038
14f9c5c9
AS
10039/* Assuming that TYPE is the representation of an Ada fixed-point
10040 type, return its delta, or -1 if the type is malformed and the
4c4b4cd2 10041 delta cannot be determined. */
14f9c5c9
AS
10042
10043DOUBLEST
ebf56fd3 10044ada_delta (struct type *type)
14f9c5c9
AS
10045{
10046 const char *encoding = fixed_type_info (type);
facc390f 10047 DOUBLEST num, den;
14f9c5c9 10048
facc390f
JB
10049 /* Strictly speaking, num and den are encoded as integer. However,
10050 they may not fit into a long, and they will have to be converted
10051 to DOUBLEST anyway. So scan them as DOUBLEST. */
10052 if (sscanf (encoding, "_%" DOUBLEST_SCAN_FORMAT "_%" DOUBLEST_SCAN_FORMAT,
10053 &num, &den) < 2)
14f9c5c9 10054 return -1.0;
d2e4a39e 10055 else
facc390f 10056 return num / den;
14f9c5c9
AS
10057}
10058
10059/* Assuming that ada_is_fixed_point_type (TYPE), return the scaling
4c4b4cd2 10060 factor ('SMALL value) associated with the type. */
14f9c5c9
AS
10061
10062static DOUBLEST
ebf56fd3 10063scaling_factor (struct type *type)
14f9c5c9
AS
10064{
10065 const char *encoding = fixed_type_info (type);
facc390f 10066 DOUBLEST num0, den0, num1, den1;
14f9c5c9 10067 int n;
d2e4a39e 10068
facc390f
JB
10069 /* Strictly speaking, num's and den's are encoded as integer. However,
10070 they may not fit into a long, and they will have to be converted
10071 to DOUBLEST anyway. So scan them as DOUBLEST. */
10072 n = sscanf (encoding,
10073 "_%" DOUBLEST_SCAN_FORMAT "_%" DOUBLEST_SCAN_FORMAT
10074 "_%" DOUBLEST_SCAN_FORMAT "_%" DOUBLEST_SCAN_FORMAT,
10075 &num0, &den0, &num1, &den1);
14f9c5c9
AS
10076
10077 if (n < 2)
10078 return 1.0;
10079 else if (n == 4)
facc390f 10080 return num1 / den1;
d2e4a39e 10081 else
facc390f 10082 return num0 / den0;
14f9c5c9
AS
10083}
10084
10085
10086/* Assuming that X is the representation of a value of fixed-point
4c4b4cd2 10087 type TYPE, return its floating-point equivalent. */
14f9c5c9
AS
10088
10089DOUBLEST
ebf56fd3 10090ada_fixed_to_float (struct type *type, LONGEST x)
14f9c5c9 10091{
d2e4a39e 10092 return (DOUBLEST) x *scaling_factor (type);
14f9c5c9
AS
10093}
10094
4c4b4cd2
PH
10095/* The representation of a fixed-point value of type TYPE
10096 corresponding to the value X. */
14f9c5c9
AS
10097
10098LONGEST
ebf56fd3 10099ada_float_to_fixed (struct type *type, DOUBLEST x)
14f9c5c9
AS
10100{
10101 return (LONGEST) (x / scaling_factor (type) + 0.5);
10102}
10103
14f9c5c9 10104\f
d2e4a39e 10105
4c4b4cd2 10106 /* Range types */
14f9c5c9
AS
10107
10108/* Scan STR beginning at position K for a discriminant name, and
10109 return the value of that discriminant field of DVAL in *PX. If
10110 PNEW_K is not null, put the position of the character beyond the
10111 name scanned in *PNEW_K. Return 1 if successful; return 0 and do
4c4b4cd2 10112 not alter *PX and *PNEW_K if unsuccessful. */
14f9c5c9
AS
10113
10114static int
07d8f827 10115scan_discrim_bound (char *str, int k, struct value *dval, LONGEST * px,
76a01679 10116 int *pnew_k)
14f9c5c9
AS
10117{
10118 static char *bound_buffer = NULL;
10119 static size_t bound_buffer_len = 0;
10120 char *bound;
10121 char *pend;
d2e4a39e 10122 struct value *bound_val;
14f9c5c9
AS
10123
10124 if (dval == NULL || str == NULL || str[k] == '\0')
10125 return 0;
10126
d2e4a39e 10127 pend = strstr (str + k, "__");
14f9c5c9
AS
10128 if (pend == NULL)
10129 {
d2e4a39e 10130 bound = str + k;
14f9c5c9
AS
10131 k += strlen (bound);
10132 }
d2e4a39e 10133 else
14f9c5c9 10134 {
d2e4a39e 10135 GROW_VECT (bound_buffer, bound_buffer_len, pend - (str + k) + 1);
14f9c5c9 10136 bound = bound_buffer;
d2e4a39e
AS
10137 strncpy (bound_buffer, str + k, pend - (str + k));
10138 bound[pend - (str + k)] = '\0';
10139 k = pend - str;
14f9c5c9 10140 }
d2e4a39e 10141
df407dfe 10142 bound_val = ada_search_struct_field (bound, dval, 0, value_type (dval));
14f9c5c9
AS
10143 if (bound_val == NULL)
10144 return 0;
10145
10146 *px = value_as_long (bound_val);
10147 if (pnew_k != NULL)
10148 *pnew_k = k;
10149 return 1;
10150}
10151
10152/* Value of variable named NAME in the current environment. If
10153 no such variable found, then if ERR_MSG is null, returns 0, and
4c4b4cd2
PH
10154 otherwise causes an error with message ERR_MSG. */
10155
d2e4a39e
AS
10156static struct value *
10157get_var_value (char *name, char *err_msg)
14f9c5c9 10158{
4c4b4cd2 10159 struct ada_symbol_info *syms;
14f9c5c9
AS
10160 int nsyms;
10161
4c4b4cd2
PH
10162 nsyms = ada_lookup_symbol_list (name, get_selected_block (0), VAR_DOMAIN,
10163 &syms);
14f9c5c9
AS
10164
10165 if (nsyms != 1)
10166 {
10167 if (err_msg == NULL)
4c4b4cd2 10168 return 0;
14f9c5c9 10169 else
8a3fe4f8 10170 error (("%s"), err_msg);
14f9c5c9
AS
10171 }
10172
4c4b4cd2 10173 return value_of_variable (syms[0].sym, syms[0].block);
14f9c5c9 10174}
d2e4a39e 10175
14f9c5c9 10176/* Value of integer variable named NAME in the current environment. If
4c4b4cd2
PH
10177 no such variable found, returns 0, and sets *FLAG to 0. If
10178 successful, sets *FLAG to 1. */
10179
14f9c5c9 10180LONGEST
4c4b4cd2 10181get_int_var_value (char *name, int *flag)
14f9c5c9 10182{
4c4b4cd2 10183 struct value *var_val = get_var_value (name, 0);
d2e4a39e 10184
14f9c5c9
AS
10185 if (var_val == 0)
10186 {
10187 if (flag != NULL)
4c4b4cd2 10188 *flag = 0;
14f9c5c9
AS
10189 return 0;
10190 }
10191 else
10192 {
10193 if (flag != NULL)
4c4b4cd2 10194 *flag = 1;
14f9c5c9
AS
10195 return value_as_long (var_val);
10196 }
10197}
d2e4a39e 10198
14f9c5c9
AS
10199
10200/* Return a range type whose base type is that of the range type named
10201 NAME in the current environment, and whose bounds are calculated
4c4b4cd2 10202 from NAME according to the GNAT range encoding conventions.
1ce677a4
UW
10203 Extract discriminant values, if needed, from DVAL. ORIG_TYPE is the
10204 corresponding range type from debug information; fall back to using it
10205 if symbol lookup fails. If a new type must be created, allocate it
10206 like ORIG_TYPE was. The bounds information, in general, is encoded
10207 in NAME, the base type given in the named range type. */
14f9c5c9 10208
d2e4a39e 10209static struct type *
28c85d6c 10210to_fixed_range_type (struct type *raw_type, struct value *dval)
14f9c5c9 10211{
28c85d6c 10212 char *name;
14f9c5c9 10213 struct type *base_type;
d2e4a39e 10214 char *subtype_info;
14f9c5c9 10215
28c85d6c
JB
10216 gdb_assert (raw_type != NULL);
10217 gdb_assert (TYPE_NAME (raw_type) != NULL);
dddfab26 10218
1ce677a4 10219 if (TYPE_CODE (raw_type) == TYPE_CODE_RANGE)
14f9c5c9
AS
10220 base_type = TYPE_TARGET_TYPE (raw_type);
10221 else
10222 base_type = raw_type;
10223
28c85d6c 10224 name = TYPE_NAME (raw_type);
14f9c5c9
AS
10225 subtype_info = strstr (name, "___XD");
10226 if (subtype_info == NULL)
690cc4eb 10227 {
43bbcdc2
PH
10228 LONGEST L = ada_discrete_type_low_bound (raw_type);
10229 LONGEST U = ada_discrete_type_high_bound (raw_type);
5b4ee69b 10230
690cc4eb
PH
10231 if (L < INT_MIN || U > INT_MAX)
10232 return raw_type;
10233 else
28c85d6c 10234 return create_range_type (alloc_type_copy (raw_type), raw_type,
43bbcdc2
PH
10235 ada_discrete_type_low_bound (raw_type),
10236 ada_discrete_type_high_bound (raw_type));
690cc4eb 10237 }
14f9c5c9
AS
10238 else
10239 {
10240 static char *name_buf = NULL;
10241 static size_t name_len = 0;
10242 int prefix_len = subtype_info - name;
10243 LONGEST L, U;
10244 struct type *type;
10245 char *bounds_str;
10246 int n;
10247
10248 GROW_VECT (name_buf, name_len, prefix_len + 5);
10249 strncpy (name_buf, name, prefix_len);
10250 name_buf[prefix_len] = '\0';
10251
10252 subtype_info += 5;
10253 bounds_str = strchr (subtype_info, '_');
10254 n = 1;
10255
d2e4a39e 10256 if (*subtype_info == 'L')
4c4b4cd2
PH
10257 {
10258 if (!ada_scan_number (bounds_str, n, &L, &n)
10259 && !scan_discrim_bound (bounds_str, n, dval, &L, &n))
10260 return raw_type;
10261 if (bounds_str[n] == '_')
10262 n += 2;
0963b4bd 10263 else if (bounds_str[n] == '.') /* FIXME? SGI Workshop kludge. */
4c4b4cd2
PH
10264 n += 1;
10265 subtype_info += 1;
10266 }
d2e4a39e 10267 else
4c4b4cd2
PH
10268 {
10269 int ok;
5b4ee69b 10270
4c4b4cd2
PH
10271 strcpy (name_buf + prefix_len, "___L");
10272 L = get_int_var_value (name_buf, &ok);
10273 if (!ok)
10274 {
323e0a4a 10275 lim_warning (_("Unknown lower bound, using 1."));
4c4b4cd2
PH
10276 L = 1;
10277 }
10278 }
14f9c5c9 10279
d2e4a39e 10280 if (*subtype_info == 'U')
4c4b4cd2
PH
10281 {
10282 if (!ada_scan_number (bounds_str, n, &U, &n)
10283 && !scan_discrim_bound (bounds_str, n, dval, &U, &n))
10284 return raw_type;
10285 }
d2e4a39e 10286 else
4c4b4cd2
PH
10287 {
10288 int ok;
5b4ee69b 10289
4c4b4cd2
PH
10290 strcpy (name_buf + prefix_len, "___U");
10291 U = get_int_var_value (name_buf, &ok);
10292 if (!ok)
10293 {
323e0a4a 10294 lim_warning (_("Unknown upper bound, using %ld."), (long) L);
4c4b4cd2
PH
10295 U = L;
10296 }
10297 }
14f9c5c9 10298
28c85d6c 10299 type = create_range_type (alloc_type_copy (raw_type), base_type, L, U);
d2e4a39e 10300 TYPE_NAME (type) = name;
14f9c5c9
AS
10301 return type;
10302 }
10303}
10304
4c4b4cd2
PH
10305/* True iff NAME is the name of a range type. */
10306
14f9c5c9 10307int
d2e4a39e 10308ada_is_range_type_name (const char *name)
14f9c5c9
AS
10309{
10310 return (name != NULL && strstr (name, "___XD"));
d2e4a39e 10311}
14f9c5c9 10312\f
d2e4a39e 10313
4c4b4cd2
PH
10314 /* Modular types */
10315
10316/* True iff TYPE is an Ada modular type. */
14f9c5c9 10317
14f9c5c9 10318int
d2e4a39e 10319ada_is_modular_type (struct type *type)
14f9c5c9 10320{
4c4b4cd2 10321 struct type *subranged_type = base_type (type);
14f9c5c9
AS
10322
10323 return (subranged_type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE
690cc4eb 10324 && TYPE_CODE (subranged_type) == TYPE_CODE_INT
4c4b4cd2 10325 && TYPE_UNSIGNED (subranged_type));
14f9c5c9
AS
10326}
10327
0056e4d5
JB
10328/* Try to determine the lower and upper bounds of the given modular type
10329 using the type name only. Return non-zero and set L and U as the lower
10330 and upper bounds (respectively) if successful. */
10331
10332int
10333ada_modulus_from_name (struct type *type, ULONGEST *modulus)
10334{
10335 char *name = ada_type_name (type);
10336 char *suffix;
10337 int k;
10338 LONGEST U;
10339
10340 if (name == NULL)
10341 return 0;
10342
10343 /* Discrete type bounds are encoded using an __XD suffix. In our case,
10344 we are looking for static bounds, which means an __XDLU suffix.
10345 Moreover, we know that the lower bound of modular types is always
10346 zero, so the actual suffix should start with "__XDLU_0__", and
10347 then be followed by the upper bound value. */
10348 suffix = strstr (name, "__XDLU_0__");
10349 if (suffix == NULL)
10350 return 0;
10351 k = 10;
10352 if (!ada_scan_number (suffix, k, &U, NULL))
10353 return 0;
10354
10355 *modulus = (ULONGEST) U + 1;
10356 return 1;
10357}
10358
4c4b4cd2
PH
10359/* Assuming ada_is_modular_type (TYPE), the modulus of TYPE. */
10360
61ee279c 10361ULONGEST
0056e4d5 10362ada_modulus (struct type *type)
14f9c5c9 10363{
43bbcdc2 10364 return (ULONGEST) TYPE_HIGH_BOUND (type) + 1;
14f9c5c9 10365}
d2e4a39e 10366\f
f7f9143b
JB
10367
10368/* Ada exception catchpoint support:
10369 ---------------------------------
10370
10371 We support 3 kinds of exception catchpoints:
10372 . catchpoints on Ada exceptions
10373 . catchpoints on unhandled Ada exceptions
10374 . catchpoints on failed assertions
10375
10376 Exceptions raised during failed assertions, or unhandled exceptions
10377 could perfectly be caught with the general catchpoint on Ada exceptions.
10378 However, we can easily differentiate these two special cases, and having
10379 the option to distinguish these two cases from the rest can be useful
10380 to zero-in on certain situations.
10381
10382 Exception catchpoints are a specialized form of breakpoint,
10383 since they rely on inserting breakpoints inside known routines
10384 of the GNAT runtime. The implementation therefore uses a standard
10385 breakpoint structure of the BP_BREAKPOINT type, but with its own set
10386 of breakpoint_ops.
10387
0259addd
JB
10388 Support in the runtime for exception catchpoints have been changed
10389 a few times already, and these changes affect the implementation
10390 of these catchpoints. In order to be able to support several
10391 variants of the runtime, we use a sniffer that will determine
10392 the runtime variant used by the program being debugged.
10393
f7f9143b
JB
10394 At this time, we do not support the use of conditions on Ada exception
10395 catchpoints. The COND and COND_STRING fields are therefore set
10396 to NULL (most of the time, see below).
10397
10398 Conditions where EXP_STRING, COND, and COND_STRING are used:
10399
10400 When a user specifies the name of a specific exception in the case
10401 of catchpoints on Ada exceptions, we store the name of that exception
10402 in the EXP_STRING. We then translate this request into an actual
10403 condition stored in COND_STRING, and then parse it into an expression
10404 stored in COND. */
10405
10406/* The different types of catchpoints that we introduced for catching
10407 Ada exceptions. */
10408
10409enum exception_catchpoint_kind
10410{
10411 ex_catch_exception,
10412 ex_catch_exception_unhandled,
10413 ex_catch_assert
10414};
10415
3d0b0fa3
JB
10416/* Ada's standard exceptions. */
10417
10418static char *standard_exc[] = {
10419 "constraint_error",
10420 "program_error",
10421 "storage_error",
10422 "tasking_error"
10423};
10424
0259addd
JB
10425typedef CORE_ADDR (ada_unhandled_exception_name_addr_ftype) (void);
10426
10427/* A structure that describes how to support exception catchpoints
10428 for a given executable. */
10429
10430struct exception_support_info
10431{
10432 /* The name of the symbol to break on in order to insert
10433 a catchpoint on exceptions. */
10434 const char *catch_exception_sym;
10435
10436 /* The name of the symbol to break on in order to insert
10437 a catchpoint on unhandled exceptions. */
10438 const char *catch_exception_unhandled_sym;
10439
10440 /* The name of the symbol to break on in order to insert
10441 a catchpoint on failed assertions. */
10442 const char *catch_assert_sym;
10443
10444 /* Assuming that the inferior just triggered an unhandled exception
10445 catchpoint, this function is responsible for returning the address
10446 in inferior memory where the name of that exception is stored.
10447 Return zero if the address could not be computed. */
10448 ada_unhandled_exception_name_addr_ftype *unhandled_exception_name_addr;
10449};
10450
10451static CORE_ADDR ada_unhandled_exception_name_addr (void);
10452static CORE_ADDR ada_unhandled_exception_name_addr_from_raise (void);
10453
10454/* The following exception support info structure describes how to
10455 implement exception catchpoints with the latest version of the
10456 Ada runtime (as of 2007-03-06). */
10457
10458static const struct exception_support_info default_exception_support_info =
10459{
10460 "__gnat_debug_raise_exception", /* catch_exception_sym */
10461 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
10462 "__gnat_debug_raise_assert_failure", /* catch_assert_sym */
10463 ada_unhandled_exception_name_addr
10464};
10465
10466/* The following exception support info structure describes how to
10467 implement exception catchpoints with a slightly older version
10468 of the Ada runtime. */
10469
10470static const struct exception_support_info exception_support_info_fallback =
10471{
10472 "__gnat_raise_nodefer_with_msg", /* catch_exception_sym */
10473 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
10474 "system__assertions__raise_assert_failure", /* catch_assert_sym */
10475 ada_unhandled_exception_name_addr_from_raise
10476};
10477
10478/* For each executable, we sniff which exception info structure to use
10479 and cache it in the following global variable. */
10480
10481static const struct exception_support_info *exception_info = NULL;
10482
10483/* Inspect the Ada runtime and determine which exception info structure
10484 should be used to provide support for exception catchpoints.
10485
10486 This function will always set exception_info, or raise an error. */
10487
10488static void
10489ada_exception_support_info_sniffer (void)
10490{
10491 struct symbol *sym;
10492
10493 /* If the exception info is already known, then no need to recompute it. */
10494 if (exception_info != NULL)
10495 return;
10496
10497 /* Check the latest (default) exception support info. */
10498 sym = standard_lookup (default_exception_support_info.catch_exception_sym,
10499 NULL, VAR_DOMAIN);
10500 if (sym != NULL)
10501 {
10502 exception_info = &default_exception_support_info;
10503 return;
10504 }
10505
10506 /* Try our fallback exception suport info. */
10507 sym = standard_lookup (exception_support_info_fallback.catch_exception_sym,
10508 NULL, VAR_DOMAIN);
10509 if (sym != NULL)
10510 {
10511 exception_info = &exception_support_info_fallback;
10512 return;
10513 }
10514
10515 /* Sometimes, it is normal for us to not be able to find the routine
10516 we are looking for. This happens when the program is linked with
10517 the shared version of the GNAT runtime, and the program has not been
10518 started yet. Inform the user of these two possible causes if
10519 applicable. */
10520
ccefe4c4 10521 if (ada_update_initial_language (language_unknown) != language_ada)
0259addd
JB
10522 error (_("Unable to insert catchpoint. Is this an Ada main program?"));
10523
10524 /* If the symbol does not exist, then check that the program is
10525 already started, to make sure that shared libraries have been
10526 loaded. If it is not started, this may mean that the symbol is
10527 in a shared library. */
10528
10529 if (ptid_get_pid (inferior_ptid) == 0)
10530 error (_("Unable to insert catchpoint. Try to start the program first."));
10531
10532 /* At this point, we know that we are debugging an Ada program and
10533 that the inferior has been started, but we still are not able to
0963b4bd 10534 find the run-time symbols. That can mean that we are in
0259addd
JB
10535 configurable run time mode, or that a-except as been optimized
10536 out by the linker... In any case, at this point it is not worth
10537 supporting this feature. */
10538
10539 error (_("Cannot insert catchpoints in this configuration."));
10540}
10541
10542/* An observer of "executable_changed" events.
10543 Its role is to clear certain cached values that need to be recomputed
10544 each time a new executable is loaded by GDB. */
10545
10546static void
781b42b0 10547ada_executable_changed_observer (void)
0259addd
JB
10548{
10549 /* If the executable changed, then it is possible that the Ada runtime
10550 is different. So we need to invalidate the exception support info
10551 cache. */
10552 exception_info = NULL;
10553}
10554
f7f9143b
JB
10555/* True iff FRAME is very likely to be that of a function that is
10556 part of the runtime system. This is all very heuristic, but is
10557 intended to be used as advice as to what frames are uninteresting
10558 to most users. */
10559
10560static int
10561is_known_support_routine (struct frame_info *frame)
10562{
4ed6b5be 10563 struct symtab_and_line sal;
f7f9143b 10564 char *func_name;
692465f1 10565 enum language func_lang;
f7f9143b 10566 int i;
f7f9143b 10567
4ed6b5be
JB
10568 /* If this code does not have any debugging information (no symtab),
10569 This cannot be any user code. */
f7f9143b 10570
4ed6b5be 10571 find_frame_sal (frame, &sal);
f7f9143b
JB
10572 if (sal.symtab == NULL)
10573 return 1;
10574
4ed6b5be
JB
10575 /* If there is a symtab, but the associated source file cannot be
10576 located, then assume this is not user code: Selecting a frame
10577 for which we cannot display the code would not be very helpful
10578 for the user. This should also take care of case such as VxWorks
10579 where the kernel has some debugging info provided for a few units. */
f7f9143b 10580
9bbc9174 10581 if (symtab_to_fullname (sal.symtab) == NULL)
f7f9143b
JB
10582 return 1;
10583
4ed6b5be
JB
10584 /* Check the unit filename againt the Ada runtime file naming.
10585 We also check the name of the objfile against the name of some
10586 known system libraries that sometimes come with debugging info
10587 too. */
10588
f7f9143b
JB
10589 for (i = 0; known_runtime_file_name_patterns[i] != NULL; i += 1)
10590 {
10591 re_comp (known_runtime_file_name_patterns[i]);
10592 if (re_exec (sal.symtab->filename))
10593 return 1;
4ed6b5be
JB
10594 if (sal.symtab->objfile != NULL
10595 && re_exec (sal.symtab->objfile->name))
10596 return 1;
f7f9143b
JB
10597 }
10598
4ed6b5be 10599 /* Check whether the function is a GNAT-generated entity. */
f7f9143b 10600
e9e07ba6 10601 find_frame_funname (frame, &func_name, &func_lang, NULL);
f7f9143b
JB
10602 if (func_name == NULL)
10603 return 1;
10604
10605 for (i = 0; known_auxiliary_function_name_patterns[i] != NULL; i += 1)
10606 {
10607 re_comp (known_auxiliary_function_name_patterns[i]);
10608 if (re_exec (func_name))
10609 return 1;
10610 }
10611
10612 return 0;
10613}
10614
10615/* Find the first frame that contains debugging information and that is not
10616 part of the Ada run-time, starting from FI and moving upward. */
10617
0ef643c8 10618void
f7f9143b
JB
10619ada_find_printable_frame (struct frame_info *fi)
10620{
10621 for (; fi != NULL; fi = get_prev_frame (fi))
10622 {
10623 if (!is_known_support_routine (fi))
10624 {
10625 select_frame (fi);
10626 break;
10627 }
10628 }
10629
10630}
10631
10632/* Assuming that the inferior just triggered an unhandled exception
10633 catchpoint, return the address in inferior memory where the name
10634 of the exception is stored.
10635
10636 Return zero if the address could not be computed. */
10637
10638static CORE_ADDR
10639ada_unhandled_exception_name_addr (void)
0259addd
JB
10640{
10641 return parse_and_eval_address ("e.full_name");
10642}
10643
10644/* Same as ada_unhandled_exception_name_addr, except that this function
10645 should be used when the inferior uses an older version of the runtime,
10646 where the exception name needs to be extracted from a specific frame
10647 several frames up in the callstack. */
10648
10649static CORE_ADDR
10650ada_unhandled_exception_name_addr_from_raise (void)
f7f9143b
JB
10651{
10652 int frame_level;
10653 struct frame_info *fi;
10654
10655 /* To determine the name of this exception, we need to select
10656 the frame corresponding to RAISE_SYM_NAME. This frame is
10657 at least 3 levels up, so we simply skip the first 3 frames
10658 without checking the name of their associated function. */
10659 fi = get_current_frame ();
10660 for (frame_level = 0; frame_level < 3; frame_level += 1)
10661 if (fi != NULL)
10662 fi = get_prev_frame (fi);
10663
10664 while (fi != NULL)
10665 {
692465f1
JB
10666 char *func_name;
10667 enum language func_lang;
10668
e9e07ba6 10669 find_frame_funname (fi, &func_name, &func_lang, NULL);
f7f9143b 10670 if (func_name != NULL
0259addd 10671 && strcmp (func_name, exception_info->catch_exception_sym) == 0)
f7f9143b
JB
10672 break; /* We found the frame we were looking for... */
10673 fi = get_prev_frame (fi);
10674 }
10675
10676 if (fi == NULL)
10677 return 0;
10678
10679 select_frame (fi);
10680 return parse_and_eval_address ("id.full_name");
10681}
10682
10683/* Assuming the inferior just triggered an Ada exception catchpoint
10684 (of any type), return the address in inferior memory where the name
10685 of the exception is stored, if applicable.
10686
10687 Return zero if the address could not be computed, or if not relevant. */
10688
10689static CORE_ADDR
10690ada_exception_name_addr_1 (enum exception_catchpoint_kind ex,
10691 struct breakpoint *b)
10692{
10693 switch (ex)
10694 {
10695 case ex_catch_exception:
10696 return (parse_and_eval_address ("e.full_name"));
10697 break;
10698
10699 case ex_catch_exception_unhandled:
0259addd 10700 return exception_info->unhandled_exception_name_addr ();
f7f9143b
JB
10701 break;
10702
10703 case ex_catch_assert:
10704 return 0; /* Exception name is not relevant in this case. */
10705 break;
10706
10707 default:
10708 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
10709 break;
10710 }
10711
10712 return 0; /* Should never be reached. */
10713}
10714
10715/* Same as ada_exception_name_addr_1, except that it intercepts and contains
10716 any error that ada_exception_name_addr_1 might cause to be thrown.
10717 When an error is intercepted, a warning with the error message is printed,
10718 and zero is returned. */
10719
10720static CORE_ADDR
10721ada_exception_name_addr (enum exception_catchpoint_kind ex,
10722 struct breakpoint *b)
10723{
10724 struct gdb_exception e;
10725 CORE_ADDR result = 0;
10726
10727 TRY_CATCH (e, RETURN_MASK_ERROR)
10728 {
10729 result = ada_exception_name_addr_1 (ex, b);
10730 }
10731
10732 if (e.reason < 0)
10733 {
10734 warning (_("failed to get exception name: %s"), e.message);
10735 return 0;
10736 }
10737
10738 return result;
10739}
10740
10741/* Implement the PRINT_IT method in the breakpoint_ops structure
10742 for all exception catchpoint kinds. */
10743
10744static enum print_stop_action
10745print_it_exception (enum exception_catchpoint_kind ex, struct breakpoint *b)
10746{
10747 const CORE_ADDR addr = ada_exception_name_addr (ex, b);
10748 char exception_name[256];
10749
10750 if (addr != 0)
10751 {
10752 read_memory (addr, exception_name, sizeof (exception_name) - 1);
10753 exception_name [sizeof (exception_name) - 1] = '\0';
10754 }
10755
10756 ada_find_printable_frame (get_current_frame ());
10757
10758 annotate_catchpoint (b->number);
10759 switch (ex)
10760 {
10761 case ex_catch_exception:
10762 if (addr != 0)
10763 printf_filtered (_("\nCatchpoint %d, %s at "),
10764 b->number, exception_name);
10765 else
10766 printf_filtered (_("\nCatchpoint %d, exception at "), b->number);
10767 break;
10768 case ex_catch_exception_unhandled:
10769 if (addr != 0)
10770 printf_filtered (_("\nCatchpoint %d, unhandled %s at "),
10771 b->number, exception_name);
10772 else
10773 printf_filtered (_("\nCatchpoint %d, unhandled exception at "),
10774 b->number);
10775 break;
10776 case ex_catch_assert:
10777 printf_filtered (_("\nCatchpoint %d, failed assertion at "),
10778 b->number);
10779 break;
10780 }
10781
10782 return PRINT_SRC_AND_LOC;
10783}
10784
10785/* Implement the PRINT_ONE method in the breakpoint_ops structure
10786 for all exception catchpoint kinds. */
10787
10788static void
10789print_one_exception (enum exception_catchpoint_kind ex,
a6d9a66e 10790 struct breakpoint *b, struct bp_location **last_loc)
f7f9143b 10791{
79a45b7d
TT
10792 struct value_print_options opts;
10793
10794 get_user_print_options (&opts);
10795 if (opts.addressprint)
f7f9143b
JB
10796 {
10797 annotate_field (4);
5af949e3 10798 ui_out_field_core_addr (uiout, "addr", b->loc->gdbarch, b->loc->address);
f7f9143b
JB
10799 }
10800
10801 annotate_field (5);
a6d9a66e 10802 *last_loc = b->loc;
f7f9143b
JB
10803 switch (ex)
10804 {
10805 case ex_catch_exception:
10806 if (b->exp_string != NULL)
10807 {
10808 char *msg = xstrprintf (_("`%s' Ada exception"), b->exp_string);
10809
10810 ui_out_field_string (uiout, "what", msg);
10811 xfree (msg);
10812 }
10813 else
10814 ui_out_field_string (uiout, "what", "all Ada exceptions");
10815
10816 break;
10817
10818 case ex_catch_exception_unhandled:
10819 ui_out_field_string (uiout, "what", "unhandled Ada exceptions");
10820 break;
10821
10822 case ex_catch_assert:
10823 ui_out_field_string (uiout, "what", "failed Ada assertions");
10824 break;
10825
10826 default:
10827 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
10828 break;
10829 }
10830}
10831
10832/* Implement the PRINT_MENTION method in the breakpoint_ops structure
10833 for all exception catchpoint kinds. */
10834
10835static void
10836print_mention_exception (enum exception_catchpoint_kind ex,
10837 struct breakpoint *b)
10838{
10839 switch (ex)
10840 {
10841 case ex_catch_exception:
10842 if (b->exp_string != NULL)
10843 printf_filtered (_("Catchpoint %d: `%s' Ada exception"),
10844 b->number, b->exp_string);
10845 else
10846 printf_filtered (_("Catchpoint %d: all Ada exceptions"), b->number);
10847
10848 break;
10849
10850 case ex_catch_exception_unhandled:
10851 printf_filtered (_("Catchpoint %d: unhandled Ada exceptions"),
10852 b->number);
10853 break;
10854
10855 case ex_catch_assert:
10856 printf_filtered (_("Catchpoint %d: failed Ada assertions"), b->number);
10857 break;
10858
10859 default:
10860 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
10861 break;
10862 }
10863}
10864
6149aea9
PA
10865/* Implement the PRINT_RECREATE method in the breakpoint_ops structure
10866 for all exception catchpoint kinds. */
10867
10868static void
10869print_recreate_exception (enum exception_catchpoint_kind ex,
10870 struct breakpoint *b, struct ui_file *fp)
10871{
10872 switch (ex)
10873 {
10874 case ex_catch_exception:
10875 fprintf_filtered (fp, "catch exception");
10876 if (b->exp_string != NULL)
10877 fprintf_filtered (fp, " %s", b->exp_string);
10878 break;
10879
10880 case ex_catch_exception_unhandled:
78076abc 10881 fprintf_filtered (fp, "catch exception unhandled");
6149aea9
PA
10882 break;
10883
10884 case ex_catch_assert:
10885 fprintf_filtered (fp, "catch assert");
10886 break;
10887
10888 default:
10889 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
10890 }
10891}
10892
f7f9143b
JB
10893/* Virtual table for "catch exception" breakpoints. */
10894
10895static enum print_stop_action
10896print_it_catch_exception (struct breakpoint *b)
10897{
10898 return print_it_exception (ex_catch_exception, b);
10899}
10900
10901static void
a6d9a66e 10902print_one_catch_exception (struct breakpoint *b, struct bp_location **last_loc)
f7f9143b 10903{
a6d9a66e 10904 print_one_exception (ex_catch_exception, b, last_loc);
f7f9143b
JB
10905}
10906
10907static void
10908print_mention_catch_exception (struct breakpoint *b)
10909{
10910 print_mention_exception (ex_catch_exception, b);
10911}
10912
6149aea9
PA
10913static void
10914print_recreate_catch_exception (struct breakpoint *b, struct ui_file *fp)
10915{
10916 print_recreate_exception (ex_catch_exception, b, fp);
10917}
10918
f7f9143b
JB
10919static struct breakpoint_ops catch_exception_breakpoint_ops =
10920{
ce78b96d
JB
10921 NULL, /* insert */
10922 NULL, /* remove */
10923 NULL, /* breakpoint_hit */
e09342b5 10924 NULL, /* resources_needed */
f7f9143b
JB
10925 print_it_catch_exception,
10926 print_one_catch_exception,
6149aea9
PA
10927 print_mention_catch_exception,
10928 print_recreate_catch_exception
f7f9143b
JB
10929};
10930
10931/* Virtual table for "catch exception unhandled" breakpoints. */
10932
10933static enum print_stop_action
10934print_it_catch_exception_unhandled (struct breakpoint *b)
10935{
10936 return print_it_exception (ex_catch_exception_unhandled, b);
10937}
10938
10939static void
a6d9a66e
UW
10940print_one_catch_exception_unhandled (struct breakpoint *b,
10941 struct bp_location **last_loc)
f7f9143b 10942{
a6d9a66e 10943 print_one_exception (ex_catch_exception_unhandled, b, last_loc);
f7f9143b
JB
10944}
10945
10946static void
10947print_mention_catch_exception_unhandled (struct breakpoint *b)
10948{
10949 print_mention_exception (ex_catch_exception_unhandled, b);
10950}
10951
6149aea9
PA
10952static void
10953print_recreate_catch_exception_unhandled (struct breakpoint *b,
10954 struct ui_file *fp)
10955{
10956 print_recreate_exception (ex_catch_exception_unhandled, b, fp);
10957}
10958
f7f9143b 10959static struct breakpoint_ops catch_exception_unhandled_breakpoint_ops = {
ce78b96d
JB
10960 NULL, /* insert */
10961 NULL, /* remove */
10962 NULL, /* breakpoint_hit */
e09342b5 10963 NULL, /* resources_needed */
f7f9143b
JB
10964 print_it_catch_exception_unhandled,
10965 print_one_catch_exception_unhandled,
6149aea9
PA
10966 print_mention_catch_exception_unhandled,
10967 print_recreate_catch_exception_unhandled
f7f9143b
JB
10968};
10969
10970/* Virtual table for "catch assert" breakpoints. */
10971
10972static enum print_stop_action
10973print_it_catch_assert (struct breakpoint *b)
10974{
10975 return print_it_exception (ex_catch_assert, b);
10976}
10977
10978static void
a6d9a66e 10979print_one_catch_assert (struct breakpoint *b, struct bp_location **last_loc)
f7f9143b 10980{
a6d9a66e 10981 print_one_exception (ex_catch_assert, b, last_loc);
f7f9143b
JB
10982}
10983
10984static void
10985print_mention_catch_assert (struct breakpoint *b)
10986{
10987 print_mention_exception (ex_catch_assert, b);
10988}
10989
6149aea9
PA
10990static void
10991print_recreate_catch_assert (struct breakpoint *b, struct ui_file *fp)
10992{
10993 print_recreate_exception (ex_catch_assert, b, fp);
10994}
10995
f7f9143b 10996static struct breakpoint_ops catch_assert_breakpoint_ops = {
ce78b96d
JB
10997 NULL, /* insert */
10998 NULL, /* remove */
10999 NULL, /* breakpoint_hit */
e09342b5 11000 NULL, /* resources_needed */
f7f9143b
JB
11001 print_it_catch_assert,
11002 print_one_catch_assert,
6149aea9
PA
11003 print_mention_catch_assert,
11004 print_recreate_catch_assert
f7f9143b
JB
11005};
11006
11007/* Return non-zero if B is an Ada exception catchpoint. */
11008
11009int
11010ada_exception_catchpoint_p (struct breakpoint *b)
11011{
11012 return (b->ops == &catch_exception_breakpoint_ops
11013 || b->ops == &catch_exception_unhandled_breakpoint_ops
11014 || b->ops == &catch_assert_breakpoint_ops);
11015}
11016
f7f9143b
JB
11017/* Return a newly allocated copy of the first space-separated token
11018 in ARGSP, and then adjust ARGSP to point immediately after that
11019 token.
11020
11021 Return NULL if ARGPS does not contain any more tokens. */
11022
11023static char *
11024ada_get_next_arg (char **argsp)
11025{
11026 char *args = *argsp;
11027 char *end;
11028 char *result;
11029
11030 /* Skip any leading white space. */
11031
11032 while (isspace (*args))
11033 args++;
11034
11035 if (args[0] == '\0')
11036 return NULL; /* No more arguments. */
11037
11038 /* Find the end of the current argument. */
11039
11040 end = args;
11041 while (*end != '\0' && !isspace (*end))
11042 end++;
11043
11044 /* Adjust ARGSP to point to the start of the next argument. */
11045
11046 *argsp = end;
11047
11048 /* Make a copy of the current argument and return it. */
11049
11050 result = xmalloc (end - args + 1);
11051 strncpy (result, args, end - args);
11052 result[end - args] = '\0';
11053
11054 return result;
11055}
11056
11057/* Split the arguments specified in a "catch exception" command.
11058 Set EX to the appropriate catchpoint type.
11059 Set EXP_STRING to the name of the specific exception if
11060 specified by the user. */
11061
11062static void
11063catch_ada_exception_command_split (char *args,
11064 enum exception_catchpoint_kind *ex,
11065 char **exp_string)
11066{
11067 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
11068 char *exception_name;
11069
11070 exception_name = ada_get_next_arg (&args);
11071 make_cleanup (xfree, exception_name);
11072
11073 /* Check that we do not have any more arguments. Anything else
11074 is unexpected. */
11075
11076 while (isspace (*args))
11077 args++;
11078
11079 if (args[0] != '\0')
11080 error (_("Junk at end of expression"));
11081
11082 discard_cleanups (old_chain);
11083
11084 if (exception_name == NULL)
11085 {
11086 /* Catch all exceptions. */
11087 *ex = ex_catch_exception;
11088 *exp_string = NULL;
11089 }
11090 else if (strcmp (exception_name, "unhandled") == 0)
11091 {
11092 /* Catch unhandled exceptions. */
11093 *ex = ex_catch_exception_unhandled;
11094 *exp_string = NULL;
11095 }
11096 else
11097 {
11098 /* Catch a specific exception. */
11099 *ex = ex_catch_exception;
11100 *exp_string = exception_name;
11101 }
11102}
11103
11104/* Return the name of the symbol on which we should break in order to
11105 implement a catchpoint of the EX kind. */
11106
11107static const char *
11108ada_exception_sym_name (enum exception_catchpoint_kind ex)
11109{
0259addd
JB
11110 gdb_assert (exception_info != NULL);
11111
f7f9143b
JB
11112 switch (ex)
11113 {
11114 case ex_catch_exception:
0259addd 11115 return (exception_info->catch_exception_sym);
f7f9143b
JB
11116 break;
11117 case ex_catch_exception_unhandled:
0259addd 11118 return (exception_info->catch_exception_unhandled_sym);
f7f9143b
JB
11119 break;
11120 case ex_catch_assert:
0259addd 11121 return (exception_info->catch_assert_sym);
f7f9143b
JB
11122 break;
11123 default:
11124 internal_error (__FILE__, __LINE__,
11125 _("unexpected catchpoint kind (%d)"), ex);
11126 }
11127}
11128
11129/* Return the breakpoint ops "virtual table" used for catchpoints
11130 of the EX kind. */
11131
11132static struct breakpoint_ops *
4b9eee8c 11133ada_exception_breakpoint_ops (enum exception_catchpoint_kind ex)
f7f9143b
JB
11134{
11135 switch (ex)
11136 {
11137 case ex_catch_exception:
11138 return (&catch_exception_breakpoint_ops);
11139 break;
11140 case ex_catch_exception_unhandled:
11141 return (&catch_exception_unhandled_breakpoint_ops);
11142 break;
11143 case ex_catch_assert:
11144 return (&catch_assert_breakpoint_ops);
11145 break;
11146 default:
11147 internal_error (__FILE__, __LINE__,
11148 _("unexpected catchpoint kind (%d)"), ex);
11149 }
11150}
11151
11152/* Return the condition that will be used to match the current exception
11153 being raised with the exception that the user wants to catch. This
11154 assumes that this condition is used when the inferior just triggered
11155 an exception catchpoint.
11156
11157 The string returned is a newly allocated string that needs to be
11158 deallocated later. */
11159
11160static char *
11161ada_exception_catchpoint_cond_string (const char *exp_string)
11162{
3d0b0fa3
JB
11163 int i;
11164
0963b4bd 11165 /* The standard exceptions are a special case. They are defined in
3d0b0fa3
JB
11166 runtime units that have been compiled without debugging info; if
11167 EXP_STRING is the not-fully-qualified name of a standard
11168 exception (e.g. "constraint_error") then, during the evaluation
11169 of the condition expression, the symbol lookup on this name would
0963b4bd 11170 *not* return this standard exception. The catchpoint condition
3d0b0fa3
JB
11171 may then be set only on user-defined exceptions which have the
11172 same not-fully-qualified name (e.g. my_package.constraint_error).
11173
11174 To avoid this unexcepted behavior, these standard exceptions are
0963b4bd 11175 systematically prefixed by "standard". This means that "catch
3d0b0fa3
JB
11176 exception constraint_error" is rewritten into "catch exception
11177 standard.constraint_error".
11178
11179 If an exception named contraint_error is defined in another package of
11180 the inferior program, then the only way to specify this exception as a
11181 breakpoint condition is to use its fully-qualified named:
11182 e.g. my_package.constraint_error. */
11183
11184 for (i = 0; i < sizeof (standard_exc) / sizeof (char *); i++)
11185 {
11186 if (strcmp (standard_exc [i], exp_string) == 0)
11187 {
11188 return xstrprintf ("long_integer (e) = long_integer (&standard.%s)",
11189 exp_string);
11190 }
11191 }
f7f9143b
JB
11192 return xstrprintf ("long_integer (e) = long_integer (&%s)", exp_string);
11193}
11194
11195/* Return the expression corresponding to COND_STRING evaluated at SAL. */
11196
11197static struct expression *
11198ada_parse_catchpoint_condition (char *cond_string,
11199 struct symtab_and_line sal)
11200{
11201 return (parse_exp_1 (&cond_string, block_for_pc (sal.pc), 0));
11202}
11203
11204/* Return the symtab_and_line that should be used to insert an exception
11205 catchpoint of the TYPE kind.
11206
11207 EX_STRING should contain the name of a specific exception
11208 that the catchpoint should catch, or NULL otherwise.
11209
11210 The idea behind all the remaining parameters is that their names match
11211 the name of certain fields in the breakpoint structure that are used to
11212 handle exception catchpoints. This function returns the value to which
11213 these fields should be set, depending on the type of catchpoint we need
11214 to create.
11215
11216 If COND and COND_STRING are both non-NULL, any value they might
11217 hold will be free'ed, and then replaced by newly allocated ones.
11218 These parameters are left untouched otherwise. */
11219
11220static struct symtab_and_line
11221ada_exception_sal (enum exception_catchpoint_kind ex, char *exp_string,
11222 char **addr_string, char **cond_string,
11223 struct expression **cond, struct breakpoint_ops **ops)
11224{
11225 const char *sym_name;
11226 struct symbol *sym;
11227 struct symtab_and_line sal;
11228
0259addd
JB
11229 /* First, find out which exception support info to use. */
11230 ada_exception_support_info_sniffer ();
11231
11232 /* Then lookup the function on which we will break in order to catch
f7f9143b
JB
11233 the Ada exceptions requested by the user. */
11234
11235 sym_name = ada_exception_sym_name (ex);
11236 sym = standard_lookup (sym_name, NULL, VAR_DOMAIN);
11237
11238 /* The symbol we're looking up is provided by a unit in the GNAT runtime
11239 that should be compiled with debugging information. As a result, we
11240 expect to find that symbol in the symtabs. If we don't find it, then
11241 the target most likely does not support Ada exceptions, or we cannot
11242 insert exception breakpoints yet, because the GNAT runtime hasn't been
11243 loaded yet. */
11244
11245 /* brobecker/2006-12-26: It is conceivable that the runtime was compiled
11246 in such a way that no debugging information is produced for the symbol
11247 we are looking for. In this case, we could search the minimal symbols
11248 as a fall-back mechanism. This would still be operating in degraded
11249 mode, however, as we would still be missing the debugging information
11250 that is needed in order to extract the name of the exception being
11251 raised (this name is printed in the catchpoint message, and is also
11252 used when trying to catch a specific exception). We do not handle
11253 this case for now. */
11254
11255 if (sym == NULL)
0259addd 11256 error (_("Unable to break on '%s' in this configuration."), sym_name);
f7f9143b
JB
11257
11258 /* Make sure that the symbol we found corresponds to a function. */
11259 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
11260 error (_("Symbol \"%s\" is not a function (class = %d)"),
11261 sym_name, SYMBOL_CLASS (sym));
11262
11263 sal = find_function_start_sal (sym, 1);
11264
11265 /* Set ADDR_STRING. */
11266
11267 *addr_string = xstrdup (sym_name);
11268
11269 /* Set the COND and COND_STRING (if not NULL). */
11270
11271 if (cond_string != NULL && cond != NULL)
11272 {
11273 if (*cond_string != NULL)
11274 {
11275 xfree (*cond_string);
11276 *cond_string = NULL;
11277 }
11278 if (*cond != NULL)
11279 {
11280 xfree (*cond);
11281 *cond = NULL;
11282 }
11283 if (exp_string != NULL)
11284 {
11285 *cond_string = ada_exception_catchpoint_cond_string (exp_string);
11286 *cond = ada_parse_catchpoint_condition (*cond_string, sal);
11287 }
11288 }
11289
11290 /* Set OPS. */
4b9eee8c 11291 *ops = ada_exception_breakpoint_ops (ex);
f7f9143b
JB
11292
11293 return sal;
11294}
11295
11296/* Parse the arguments (ARGS) of the "catch exception" command.
11297
11298 Set TYPE to the appropriate exception catchpoint type.
11299 If the user asked the catchpoint to catch only a specific
11300 exception, then save the exception name in ADDR_STRING.
11301
11302 See ada_exception_sal for a description of all the remaining
11303 function arguments of this function. */
11304
11305struct symtab_and_line
11306ada_decode_exception_location (char *args, char **addr_string,
11307 char **exp_string, char **cond_string,
11308 struct expression **cond,
11309 struct breakpoint_ops **ops)
11310{
11311 enum exception_catchpoint_kind ex;
11312
11313 catch_ada_exception_command_split (args, &ex, exp_string);
11314 return ada_exception_sal (ex, *exp_string, addr_string, cond_string,
11315 cond, ops);
11316}
11317
11318struct symtab_and_line
11319ada_decode_assert_location (char *args, char **addr_string,
11320 struct breakpoint_ops **ops)
11321{
11322 /* Check that no argument where provided at the end of the command. */
11323
11324 if (args != NULL)
11325 {
11326 while (isspace (*args))
11327 args++;
11328 if (*args != '\0')
11329 error (_("Junk at end of arguments."));
11330 }
11331
11332 return ada_exception_sal (ex_catch_assert, NULL, addr_string, NULL, NULL,
11333 ops);
11334}
11335
4c4b4cd2
PH
11336 /* Operators */
11337/* Information about operators given special treatment in functions
11338 below. */
11339/* Format: OP_DEFN (<operator>, <operator length>, <# args>, <binop>). */
11340
11341#define ADA_OPERATORS \
11342 OP_DEFN (OP_VAR_VALUE, 4, 0, 0) \
11343 OP_DEFN (BINOP_IN_BOUNDS, 3, 2, 0) \
11344 OP_DEFN (TERNOP_IN_RANGE, 1, 3, 0) \
11345 OP_DEFN (OP_ATR_FIRST, 1, 2, 0) \
11346 OP_DEFN (OP_ATR_LAST, 1, 2, 0) \
11347 OP_DEFN (OP_ATR_LENGTH, 1, 2, 0) \
11348 OP_DEFN (OP_ATR_IMAGE, 1, 2, 0) \
11349 OP_DEFN (OP_ATR_MAX, 1, 3, 0) \
11350 OP_DEFN (OP_ATR_MIN, 1, 3, 0) \
11351 OP_DEFN (OP_ATR_MODULUS, 1, 1, 0) \
11352 OP_DEFN (OP_ATR_POS, 1, 2, 0) \
11353 OP_DEFN (OP_ATR_SIZE, 1, 1, 0) \
11354 OP_DEFN (OP_ATR_TAG, 1, 1, 0) \
11355 OP_DEFN (OP_ATR_VAL, 1, 2, 0) \
11356 OP_DEFN (UNOP_QUAL, 3, 1, 0) \
52ce6436
PH
11357 OP_DEFN (UNOP_IN_RANGE, 3, 1, 0) \
11358 OP_DEFN (OP_OTHERS, 1, 1, 0) \
11359 OP_DEFN (OP_POSITIONAL, 3, 1, 0) \
11360 OP_DEFN (OP_DISCRETE_RANGE, 1, 2, 0)
4c4b4cd2
PH
11361
11362static void
554794dc
SDJ
11363ada_operator_length (const struct expression *exp, int pc, int *oplenp,
11364 int *argsp)
4c4b4cd2
PH
11365{
11366 switch (exp->elts[pc - 1].opcode)
11367 {
76a01679 11368 default:
4c4b4cd2
PH
11369 operator_length_standard (exp, pc, oplenp, argsp);
11370 break;
11371
11372#define OP_DEFN(op, len, args, binop) \
11373 case op: *oplenp = len; *argsp = args; break;
11374 ADA_OPERATORS;
11375#undef OP_DEFN
52ce6436
PH
11376
11377 case OP_AGGREGATE:
11378 *oplenp = 3;
11379 *argsp = longest_to_int (exp->elts[pc - 2].longconst);
11380 break;
11381
11382 case OP_CHOICES:
11383 *oplenp = 3;
11384 *argsp = longest_to_int (exp->elts[pc - 2].longconst) + 1;
11385 break;
4c4b4cd2
PH
11386 }
11387}
11388
c0201579
JK
11389/* Implementation of the exp_descriptor method operator_check. */
11390
11391static int
11392ada_operator_check (struct expression *exp, int pos,
11393 int (*objfile_func) (struct objfile *objfile, void *data),
11394 void *data)
11395{
11396 const union exp_element *const elts = exp->elts;
11397 struct type *type = NULL;
11398
11399 switch (elts[pos].opcode)
11400 {
11401 case UNOP_IN_RANGE:
11402 case UNOP_QUAL:
11403 type = elts[pos + 1].type;
11404 break;
11405
11406 default:
11407 return operator_check_standard (exp, pos, objfile_func, data);
11408 }
11409
11410 /* Invoke callbacks for TYPE and OBJFILE if they were set as non-NULL. */
11411
11412 if (type && TYPE_OBJFILE (type)
11413 && (*objfile_func) (TYPE_OBJFILE (type), data))
11414 return 1;
11415
11416 return 0;
11417}
11418
4c4b4cd2
PH
11419static char *
11420ada_op_name (enum exp_opcode opcode)
11421{
11422 switch (opcode)
11423 {
76a01679 11424 default:
4c4b4cd2 11425 return op_name_standard (opcode);
52ce6436 11426
4c4b4cd2
PH
11427#define OP_DEFN(op, len, args, binop) case op: return #op;
11428 ADA_OPERATORS;
11429#undef OP_DEFN
52ce6436
PH
11430
11431 case OP_AGGREGATE:
11432 return "OP_AGGREGATE";
11433 case OP_CHOICES:
11434 return "OP_CHOICES";
11435 case OP_NAME:
11436 return "OP_NAME";
4c4b4cd2
PH
11437 }
11438}
11439
11440/* As for operator_length, but assumes PC is pointing at the first
11441 element of the operator, and gives meaningful results only for the
52ce6436 11442 Ada-specific operators, returning 0 for *OPLENP and *ARGSP otherwise. */
4c4b4cd2
PH
11443
11444static void
76a01679
JB
11445ada_forward_operator_length (struct expression *exp, int pc,
11446 int *oplenp, int *argsp)
4c4b4cd2 11447{
76a01679 11448 switch (exp->elts[pc].opcode)
4c4b4cd2
PH
11449 {
11450 default:
11451 *oplenp = *argsp = 0;
11452 break;
52ce6436 11453
4c4b4cd2
PH
11454#define OP_DEFN(op, len, args, binop) \
11455 case op: *oplenp = len; *argsp = args; break;
11456 ADA_OPERATORS;
11457#undef OP_DEFN
52ce6436
PH
11458
11459 case OP_AGGREGATE:
11460 *oplenp = 3;
11461 *argsp = longest_to_int (exp->elts[pc + 1].longconst);
11462 break;
11463
11464 case OP_CHOICES:
11465 *oplenp = 3;
11466 *argsp = longest_to_int (exp->elts[pc + 1].longconst) + 1;
11467 break;
11468
11469 case OP_STRING:
11470 case OP_NAME:
11471 {
11472 int len = longest_to_int (exp->elts[pc + 1].longconst);
5b4ee69b 11473
52ce6436
PH
11474 *oplenp = 4 + BYTES_TO_EXP_ELEM (len + 1);
11475 *argsp = 0;
11476 break;
11477 }
4c4b4cd2
PH
11478 }
11479}
11480
11481static int
11482ada_dump_subexp_body (struct expression *exp, struct ui_file *stream, int elt)
11483{
11484 enum exp_opcode op = exp->elts[elt].opcode;
11485 int oplen, nargs;
11486 int pc = elt;
11487 int i;
76a01679 11488
4c4b4cd2
PH
11489 ada_forward_operator_length (exp, elt, &oplen, &nargs);
11490
76a01679 11491 switch (op)
4c4b4cd2 11492 {
76a01679 11493 /* Ada attributes ('Foo). */
4c4b4cd2
PH
11494 case OP_ATR_FIRST:
11495 case OP_ATR_LAST:
11496 case OP_ATR_LENGTH:
11497 case OP_ATR_IMAGE:
11498 case OP_ATR_MAX:
11499 case OP_ATR_MIN:
11500 case OP_ATR_MODULUS:
11501 case OP_ATR_POS:
11502 case OP_ATR_SIZE:
11503 case OP_ATR_TAG:
11504 case OP_ATR_VAL:
11505 break;
11506
11507 case UNOP_IN_RANGE:
11508 case UNOP_QUAL:
323e0a4a
AC
11509 /* XXX: gdb_sprint_host_address, type_sprint */
11510 fprintf_filtered (stream, _("Type @"));
4c4b4cd2
PH
11511 gdb_print_host_address (exp->elts[pc + 1].type, stream);
11512 fprintf_filtered (stream, " (");
11513 type_print (exp->elts[pc + 1].type, NULL, stream, 0);
11514 fprintf_filtered (stream, ")");
11515 break;
11516 case BINOP_IN_BOUNDS:
52ce6436
PH
11517 fprintf_filtered (stream, " (%d)",
11518 longest_to_int (exp->elts[pc + 2].longconst));
4c4b4cd2
PH
11519 break;
11520 case TERNOP_IN_RANGE:
11521 break;
11522
52ce6436
PH
11523 case OP_AGGREGATE:
11524 case OP_OTHERS:
11525 case OP_DISCRETE_RANGE:
11526 case OP_POSITIONAL:
11527 case OP_CHOICES:
11528 break;
11529
11530 case OP_NAME:
11531 case OP_STRING:
11532 {
11533 char *name = &exp->elts[elt + 2].string;
11534 int len = longest_to_int (exp->elts[elt + 1].longconst);
5b4ee69b 11535
52ce6436
PH
11536 fprintf_filtered (stream, "Text: `%.*s'", len, name);
11537 break;
11538 }
11539
4c4b4cd2
PH
11540 default:
11541 return dump_subexp_body_standard (exp, stream, elt);
11542 }
11543
11544 elt += oplen;
11545 for (i = 0; i < nargs; i += 1)
11546 elt = dump_subexp (exp, stream, elt);
11547
11548 return elt;
11549}
11550
11551/* The Ada extension of print_subexp (q.v.). */
11552
76a01679
JB
11553static void
11554ada_print_subexp (struct expression *exp, int *pos,
11555 struct ui_file *stream, enum precedence prec)
4c4b4cd2 11556{
52ce6436 11557 int oplen, nargs, i;
4c4b4cd2
PH
11558 int pc = *pos;
11559 enum exp_opcode op = exp->elts[pc].opcode;
11560
11561 ada_forward_operator_length (exp, pc, &oplen, &nargs);
11562
52ce6436 11563 *pos += oplen;
4c4b4cd2
PH
11564 switch (op)
11565 {
11566 default:
52ce6436 11567 *pos -= oplen;
4c4b4cd2
PH
11568 print_subexp_standard (exp, pos, stream, prec);
11569 return;
11570
11571 case OP_VAR_VALUE:
4c4b4cd2
PH
11572 fputs_filtered (SYMBOL_NATURAL_NAME (exp->elts[pc + 2].symbol), stream);
11573 return;
11574
11575 case BINOP_IN_BOUNDS:
323e0a4a 11576 /* XXX: sprint_subexp */
4c4b4cd2 11577 print_subexp (exp, pos, stream, PREC_SUFFIX);
0b48a291 11578 fputs_filtered (" in ", stream);
4c4b4cd2 11579 print_subexp (exp, pos, stream, PREC_SUFFIX);
0b48a291 11580 fputs_filtered ("'range", stream);
4c4b4cd2 11581 if (exp->elts[pc + 1].longconst > 1)
76a01679
JB
11582 fprintf_filtered (stream, "(%ld)",
11583 (long) exp->elts[pc + 1].longconst);
4c4b4cd2
PH
11584 return;
11585
11586 case TERNOP_IN_RANGE:
4c4b4cd2 11587 if (prec >= PREC_EQUAL)
76a01679 11588 fputs_filtered ("(", stream);
323e0a4a 11589 /* XXX: sprint_subexp */
4c4b4cd2 11590 print_subexp (exp, pos, stream, PREC_SUFFIX);
0b48a291 11591 fputs_filtered (" in ", stream);
4c4b4cd2
PH
11592 print_subexp (exp, pos, stream, PREC_EQUAL);
11593 fputs_filtered (" .. ", stream);
11594 print_subexp (exp, pos, stream, PREC_EQUAL);
11595 if (prec >= PREC_EQUAL)
76a01679
JB
11596 fputs_filtered (")", stream);
11597 return;
4c4b4cd2
PH
11598
11599 case OP_ATR_FIRST:
11600 case OP_ATR_LAST:
11601 case OP_ATR_LENGTH:
11602 case OP_ATR_IMAGE:
11603 case OP_ATR_MAX:
11604 case OP_ATR_MIN:
11605 case OP_ATR_MODULUS:
11606 case OP_ATR_POS:
11607 case OP_ATR_SIZE:
11608 case OP_ATR_TAG:
11609 case OP_ATR_VAL:
4c4b4cd2 11610 if (exp->elts[*pos].opcode == OP_TYPE)
76a01679
JB
11611 {
11612 if (TYPE_CODE (exp->elts[*pos + 1].type) != TYPE_CODE_VOID)
11613 LA_PRINT_TYPE (exp->elts[*pos + 1].type, "", stream, 0, 0);
11614 *pos += 3;
11615 }
4c4b4cd2 11616 else
76a01679 11617 print_subexp (exp, pos, stream, PREC_SUFFIX);
4c4b4cd2
PH
11618 fprintf_filtered (stream, "'%s", ada_attribute_name (op));
11619 if (nargs > 1)
76a01679
JB
11620 {
11621 int tem;
5b4ee69b 11622
76a01679
JB
11623 for (tem = 1; tem < nargs; tem += 1)
11624 {
11625 fputs_filtered ((tem == 1) ? " (" : ", ", stream);
11626 print_subexp (exp, pos, stream, PREC_ABOVE_COMMA);
11627 }
11628 fputs_filtered (")", stream);
11629 }
4c4b4cd2 11630 return;
14f9c5c9 11631
4c4b4cd2 11632 case UNOP_QUAL:
4c4b4cd2
PH
11633 type_print (exp->elts[pc + 1].type, "", stream, 0);
11634 fputs_filtered ("'(", stream);
11635 print_subexp (exp, pos, stream, PREC_PREFIX);
11636 fputs_filtered (")", stream);
11637 return;
14f9c5c9 11638
4c4b4cd2 11639 case UNOP_IN_RANGE:
323e0a4a 11640 /* XXX: sprint_subexp */
4c4b4cd2 11641 print_subexp (exp, pos, stream, PREC_SUFFIX);
0b48a291 11642 fputs_filtered (" in ", stream);
4c4b4cd2
PH
11643 LA_PRINT_TYPE (exp->elts[pc + 1].type, "", stream, 1, 0);
11644 return;
52ce6436
PH
11645
11646 case OP_DISCRETE_RANGE:
11647 print_subexp (exp, pos, stream, PREC_SUFFIX);
11648 fputs_filtered ("..", stream);
11649 print_subexp (exp, pos, stream, PREC_SUFFIX);
11650 return;
11651
11652 case OP_OTHERS:
11653 fputs_filtered ("others => ", stream);
11654 print_subexp (exp, pos, stream, PREC_SUFFIX);
11655 return;
11656
11657 case OP_CHOICES:
11658 for (i = 0; i < nargs-1; i += 1)
11659 {
11660 if (i > 0)
11661 fputs_filtered ("|", stream);
11662 print_subexp (exp, pos, stream, PREC_SUFFIX);
11663 }
11664 fputs_filtered (" => ", stream);
11665 print_subexp (exp, pos, stream, PREC_SUFFIX);
11666 return;
11667
11668 case OP_POSITIONAL:
11669 print_subexp (exp, pos, stream, PREC_SUFFIX);
11670 return;
11671
11672 case OP_AGGREGATE:
11673 fputs_filtered ("(", stream);
11674 for (i = 0; i < nargs; i += 1)
11675 {
11676 if (i > 0)
11677 fputs_filtered (", ", stream);
11678 print_subexp (exp, pos, stream, PREC_SUFFIX);
11679 }
11680 fputs_filtered (")", stream);
11681 return;
4c4b4cd2
PH
11682 }
11683}
14f9c5c9
AS
11684
11685/* Table mapping opcodes into strings for printing operators
11686 and precedences of the operators. */
11687
d2e4a39e
AS
11688static const struct op_print ada_op_print_tab[] = {
11689 {":=", BINOP_ASSIGN, PREC_ASSIGN, 1},
11690 {"or else", BINOP_LOGICAL_OR, PREC_LOGICAL_OR, 0},
11691 {"and then", BINOP_LOGICAL_AND, PREC_LOGICAL_AND, 0},
11692 {"or", BINOP_BITWISE_IOR, PREC_BITWISE_IOR, 0},
11693 {"xor", BINOP_BITWISE_XOR, PREC_BITWISE_XOR, 0},
11694 {"and", BINOP_BITWISE_AND, PREC_BITWISE_AND, 0},
11695 {"=", BINOP_EQUAL, PREC_EQUAL, 0},
11696 {"/=", BINOP_NOTEQUAL, PREC_EQUAL, 0},
11697 {"<=", BINOP_LEQ, PREC_ORDER, 0},
11698 {">=", BINOP_GEQ, PREC_ORDER, 0},
11699 {">", BINOP_GTR, PREC_ORDER, 0},
11700 {"<", BINOP_LESS, PREC_ORDER, 0},
11701 {">>", BINOP_RSH, PREC_SHIFT, 0},
11702 {"<<", BINOP_LSH, PREC_SHIFT, 0},
11703 {"+", BINOP_ADD, PREC_ADD, 0},
11704 {"-", BINOP_SUB, PREC_ADD, 0},
11705 {"&", BINOP_CONCAT, PREC_ADD, 0},
11706 {"*", BINOP_MUL, PREC_MUL, 0},
11707 {"/", BINOP_DIV, PREC_MUL, 0},
11708 {"rem", BINOP_REM, PREC_MUL, 0},
11709 {"mod", BINOP_MOD, PREC_MUL, 0},
11710 {"**", BINOP_EXP, PREC_REPEAT, 0},
11711 {"@", BINOP_REPEAT, PREC_REPEAT, 0},
11712 {"-", UNOP_NEG, PREC_PREFIX, 0},
11713 {"+", UNOP_PLUS, PREC_PREFIX, 0},
11714 {"not ", UNOP_LOGICAL_NOT, PREC_PREFIX, 0},
11715 {"not ", UNOP_COMPLEMENT, PREC_PREFIX, 0},
11716 {"abs ", UNOP_ABS, PREC_PREFIX, 0},
4c4b4cd2
PH
11717 {".all", UNOP_IND, PREC_SUFFIX, 1},
11718 {"'access", UNOP_ADDR, PREC_SUFFIX, 1},
11719 {"'size", OP_ATR_SIZE, PREC_SUFFIX, 1},
d2e4a39e 11720 {NULL, 0, 0, 0}
14f9c5c9
AS
11721};
11722\f
72d5681a
PH
11723enum ada_primitive_types {
11724 ada_primitive_type_int,
11725 ada_primitive_type_long,
11726 ada_primitive_type_short,
11727 ada_primitive_type_char,
11728 ada_primitive_type_float,
11729 ada_primitive_type_double,
11730 ada_primitive_type_void,
11731 ada_primitive_type_long_long,
11732 ada_primitive_type_long_double,
11733 ada_primitive_type_natural,
11734 ada_primitive_type_positive,
11735 ada_primitive_type_system_address,
11736 nr_ada_primitive_types
11737};
6c038f32
PH
11738
11739static void
d4a9a881 11740ada_language_arch_info (struct gdbarch *gdbarch,
72d5681a
PH
11741 struct language_arch_info *lai)
11742{
d4a9a881 11743 const struct builtin_type *builtin = builtin_type (gdbarch);
5b4ee69b 11744
72d5681a 11745 lai->primitive_type_vector
d4a9a881 11746 = GDBARCH_OBSTACK_CALLOC (gdbarch, nr_ada_primitive_types + 1,
72d5681a 11747 struct type *);
e9bb382b
UW
11748
11749 lai->primitive_type_vector [ada_primitive_type_int]
11750 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
11751 0, "integer");
11752 lai->primitive_type_vector [ada_primitive_type_long]
11753 = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
11754 0, "long_integer");
11755 lai->primitive_type_vector [ada_primitive_type_short]
11756 = arch_integer_type (gdbarch, gdbarch_short_bit (gdbarch),
11757 0, "short_integer");
11758 lai->string_char_type
11759 = lai->primitive_type_vector [ada_primitive_type_char]
11760 = arch_integer_type (gdbarch, TARGET_CHAR_BIT, 0, "character");
11761 lai->primitive_type_vector [ada_primitive_type_float]
11762 = arch_float_type (gdbarch, gdbarch_float_bit (gdbarch),
11763 "float", NULL);
11764 lai->primitive_type_vector [ada_primitive_type_double]
11765 = arch_float_type (gdbarch, gdbarch_double_bit (gdbarch),
11766 "long_float", NULL);
11767 lai->primitive_type_vector [ada_primitive_type_long_long]
11768 = arch_integer_type (gdbarch, gdbarch_long_long_bit (gdbarch),
11769 0, "long_long_integer");
11770 lai->primitive_type_vector [ada_primitive_type_long_double]
11771 = arch_float_type (gdbarch, gdbarch_double_bit (gdbarch),
11772 "long_long_float", NULL);
11773 lai->primitive_type_vector [ada_primitive_type_natural]
11774 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
11775 0, "natural");
11776 lai->primitive_type_vector [ada_primitive_type_positive]
11777 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
11778 0, "positive");
11779 lai->primitive_type_vector [ada_primitive_type_void]
11780 = builtin->builtin_void;
11781
11782 lai->primitive_type_vector [ada_primitive_type_system_address]
11783 = lookup_pointer_type (arch_type (gdbarch, TYPE_CODE_VOID, 1, "void"));
72d5681a
PH
11784 TYPE_NAME (lai->primitive_type_vector [ada_primitive_type_system_address])
11785 = "system__address";
fbb06eb1 11786
47e729a8 11787 lai->bool_type_symbol = NULL;
fbb06eb1 11788 lai->bool_type_default = builtin->builtin_bool;
6c038f32 11789}
6c038f32
PH
11790\f
11791 /* Language vector */
11792
11793/* Not really used, but needed in the ada_language_defn. */
11794
11795static void
6c7a06a3 11796emit_char (int c, struct type *type, struct ui_file *stream, int quoter)
6c038f32 11797{
6c7a06a3 11798 ada_emit_char (c, type, stream, quoter, 1);
6c038f32
PH
11799}
11800
11801static int
11802parse (void)
11803{
11804 warnings_issued = 0;
11805 return ada_parse ();
11806}
11807
11808static const struct exp_descriptor ada_exp_descriptor = {
11809 ada_print_subexp,
11810 ada_operator_length,
c0201579 11811 ada_operator_check,
6c038f32
PH
11812 ada_op_name,
11813 ada_dump_subexp_body,
11814 ada_evaluate_subexp
11815};
11816
11817const struct language_defn ada_language_defn = {
11818 "ada", /* Language name */
11819 language_ada,
6c038f32
PH
11820 range_check_off,
11821 type_check_off,
11822 case_sensitive_on, /* Yes, Ada is case-insensitive, but
11823 that's not quite what this means. */
6c038f32 11824 array_row_major,
9a044a89 11825 macro_expansion_no,
6c038f32
PH
11826 &ada_exp_descriptor,
11827 parse,
11828 ada_error,
11829 resolve,
11830 ada_printchar, /* Print a character constant */
11831 ada_printstr, /* Function to print string constant */
11832 emit_char, /* Function to print single char (not used) */
6c038f32 11833 ada_print_type, /* Print a type using appropriate syntax */
be942545 11834 ada_print_typedef, /* Print a typedef using appropriate syntax */
6c038f32
PH
11835 ada_val_print, /* Print a value using appropriate syntax */
11836 ada_value_print, /* Print a top-level value */
11837 NULL, /* Language specific skip_trampoline */
2b2d9e11 11838 NULL, /* name_of_this */
6c038f32
PH
11839 ada_lookup_symbol_nonlocal, /* Looking up non-local symbols. */
11840 basic_lookup_transparent_type, /* lookup_transparent_type */
11841 ada_la_decode, /* Language specific symbol demangler */
0963b4bd
MS
11842 NULL, /* Language specific
11843 class_name_from_physname */
6c038f32
PH
11844 ada_op_print_tab, /* expression operators for printing */
11845 0, /* c-style arrays */
11846 1, /* String lower bound */
6c038f32 11847 ada_get_gdb_completer_word_break_characters,
41d27058 11848 ada_make_symbol_completion_list,
72d5681a 11849 ada_language_arch_info,
e79af960 11850 ada_print_array_index,
41f1b697 11851 default_pass_by_reference,
ae6a3a4c 11852 c_get_string,
6c038f32
PH
11853 LANG_MAGIC
11854};
11855
2c0b251b
PA
11856/* Provide a prototype to silence -Wmissing-prototypes. */
11857extern initialize_file_ftype _initialize_ada_language;
11858
5bf03f13
JB
11859/* Command-list for the "set/show ada" prefix command. */
11860static struct cmd_list_element *set_ada_list;
11861static struct cmd_list_element *show_ada_list;
11862
11863/* Implement the "set ada" prefix command. */
11864
11865static void
11866set_ada_command (char *arg, int from_tty)
11867{
11868 printf_unfiltered (_(\
11869"\"set ada\" must be followed by the name of a setting.\n"));
11870 help_list (set_ada_list, "set ada ", -1, gdb_stdout);
11871}
11872
11873/* Implement the "show ada" prefix command. */
11874
11875static void
11876show_ada_command (char *args, int from_tty)
11877{
11878 cmd_show_list (show_ada_list, from_tty, "");
11879}
11880
d2e4a39e 11881void
6c038f32 11882_initialize_ada_language (void)
14f9c5c9 11883{
6c038f32
PH
11884 add_language (&ada_language_defn);
11885
5bf03f13
JB
11886 add_prefix_cmd ("ada", no_class, set_ada_command,
11887 _("Prefix command for changing Ada-specfic settings"),
11888 &set_ada_list, "set ada ", 0, &setlist);
11889
11890 add_prefix_cmd ("ada", no_class, show_ada_command,
11891 _("Generic command for showing Ada-specific settings."),
11892 &show_ada_list, "show ada ", 0, &showlist);
11893
11894 add_setshow_boolean_cmd ("trust-PAD-over-XVS", class_obscure,
11895 &trust_pad_over_xvs, _("\
11896Enable or disable an optimization trusting PAD types over XVS types"), _("\
11897Show whether an optimization trusting PAD types over XVS types is activated"),
11898 _("\
11899This is related to the encoding used by the GNAT compiler. The debugger\n\
11900should normally trust the contents of PAD types, but certain older versions\n\
11901of GNAT have a bug that sometimes causes the information in the PAD type\n\
11902to be incorrect. Turning this setting \"off\" allows the debugger to\n\
11903work around this bug. It is always safe to turn this option \"off\", but\n\
11904this incurs a slight performance penalty, so it is recommended to NOT change\n\
11905this option to \"off\" unless necessary."),
11906 NULL, NULL, &set_ada_list, &show_ada_list);
11907
6c038f32 11908 varsize_limit = 65536;
6c038f32
PH
11909
11910 obstack_init (&symbol_list_obstack);
11911
11912 decoded_names_store = htab_create_alloc
11913 (256, htab_hash_string, (int (*)(const void *, const void *)) streq,
11914 NULL, xcalloc, xfree);
6b69afc4
JB
11915
11916 observer_attach_executable_changed (ada_executable_changed_observer);
e802dbe0
JB
11917
11918 /* Setup per-inferior data. */
11919 observer_attach_inferior_exit (ada_inferior_exit);
11920 ada_inferior_data
11921 = register_inferior_data_with_cleanup (ada_inferior_data_cleanup);
14f9c5c9 11922}