]>
Commit | Line | Data |
---|---|---|
197e01b6 | 1 | /* Ada language support routines for GDB, the GNU debugger. Copyright (C) |
10a2c479 | 2 | |
ae6a3a4c TJB |
3 | 1992, 1993, 1994, 1997, 1998, 1999, 2000, 2003, 2004, 2005, 2007, 2008, |
4 | 2009 Free Software Foundation, Inc. | |
14f9c5c9 | 5 | |
a9762ec7 | 6 | This file is part of GDB. |
14f9c5c9 | 7 | |
a9762ec7 JB |
8 | This program is free software; you can redistribute it and/or modify |
9 | it under the terms of the GNU General Public License as published by | |
10 | the Free Software Foundation; either version 3 of the License, or | |
11 | (at your option) any later version. | |
14f9c5c9 | 12 | |
a9762ec7 JB |
13 | This program is distributed in the hope that it will be useful, |
14 | but WITHOUT ANY WARRANTY; without even the implied warranty of | |
15 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
16 | GNU General Public License for more details. | |
14f9c5c9 | 17 | |
a9762ec7 JB |
18 | You should have received a copy of the GNU General Public License |
19 | along with this program. If not, see <http://www.gnu.org/licenses/>. */ | |
14f9c5c9 | 20 | |
96d887e8 | 21 | |
4c4b4cd2 | 22 | #include "defs.h" |
14f9c5c9 | 23 | #include <stdio.h> |
0c30c098 | 24 | #include "gdb_string.h" |
14f9c5c9 AS |
25 | #include <ctype.h> |
26 | #include <stdarg.h> | |
27 | #include "demangle.h" | |
4c4b4cd2 PH |
28 | #include "gdb_regex.h" |
29 | #include "frame.h" | |
14f9c5c9 AS |
30 | #include "symtab.h" |
31 | #include "gdbtypes.h" | |
32 | #include "gdbcmd.h" | |
33 | #include "expression.h" | |
34 | #include "parser-defs.h" | |
35 | #include "language.h" | |
36 | #include "c-lang.h" | |
37 | #include "inferior.h" | |
38 | #include "symfile.h" | |
39 | #include "objfiles.h" | |
40 | #include "breakpoint.h" | |
41 | #include "gdbcore.h" | |
4c4b4cd2 PH |
42 | #include "hashtab.h" |
43 | #include "gdb_obstack.h" | |
14f9c5c9 | 44 | #include "ada-lang.h" |
4c4b4cd2 PH |
45 | #include "completer.h" |
46 | #include "gdb_stat.h" | |
47 | #ifdef UI_OUT | |
14f9c5c9 | 48 | #include "ui-out.h" |
4c4b4cd2 | 49 | #endif |
fe898f56 | 50 | #include "block.h" |
04714b91 | 51 | #include "infcall.h" |
de4f826b | 52 | #include "dictionary.h" |
60250e8b | 53 | #include "exceptions.h" |
f7f9143b JB |
54 | #include "annotate.h" |
55 | #include "valprint.h" | |
9bbc9174 | 56 | #include "source.h" |
0259addd | 57 | #include "observer.h" |
2ba95b9b | 58 | #include "vec.h" |
692465f1 | 59 | #include "stack.h" |
14f9c5c9 | 60 | |
ccefe4c4 | 61 | #include "psymtab.h" |
40bc484c | 62 | #include "value.h" |
ccefe4c4 | 63 | |
4c4b4cd2 | 64 | /* Define whether or not the C operator '/' truncates towards zero for |
0963b4bd | 65 | differently signed operands (truncation direction is undefined in C). |
4c4b4cd2 PH |
66 | Copied from valarith.c. */ |
67 | ||
68 | #ifndef TRUNCATION_TOWARDS_ZERO | |
69 | #define TRUNCATION_TOWARDS_ZERO ((-5 / 2) == -2) | |
70 | #endif | |
71 | ||
d2e4a39e | 72 | static struct type *desc_base_type (struct type *); |
14f9c5c9 | 73 | |
d2e4a39e | 74 | static struct type *desc_bounds_type (struct type *); |
14f9c5c9 | 75 | |
d2e4a39e | 76 | static struct value *desc_bounds (struct value *); |
14f9c5c9 | 77 | |
d2e4a39e | 78 | static int fat_pntr_bounds_bitpos (struct type *); |
14f9c5c9 | 79 | |
d2e4a39e | 80 | static int fat_pntr_bounds_bitsize (struct type *); |
14f9c5c9 | 81 | |
556bdfd4 | 82 | static struct type *desc_data_target_type (struct type *); |
14f9c5c9 | 83 | |
d2e4a39e | 84 | static struct value *desc_data (struct value *); |
14f9c5c9 | 85 | |
d2e4a39e | 86 | static int fat_pntr_data_bitpos (struct type *); |
14f9c5c9 | 87 | |
d2e4a39e | 88 | static int fat_pntr_data_bitsize (struct type *); |
14f9c5c9 | 89 | |
d2e4a39e | 90 | static struct value *desc_one_bound (struct value *, int, int); |
14f9c5c9 | 91 | |
d2e4a39e | 92 | static int desc_bound_bitpos (struct type *, int, int); |
14f9c5c9 | 93 | |
d2e4a39e | 94 | static int desc_bound_bitsize (struct type *, int, int); |
14f9c5c9 | 95 | |
d2e4a39e | 96 | static struct type *desc_index_type (struct type *, int); |
14f9c5c9 | 97 | |
d2e4a39e | 98 | static int desc_arity (struct type *); |
14f9c5c9 | 99 | |
d2e4a39e | 100 | static int ada_type_match (struct type *, struct type *, int); |
14f9c5c9 | 101 | |
d2e4a39e | 102 | static int ada_args_match (struct symbol *, struct value **, int); |
14f9c5c9 | 103 | |
40658b94 PH |
104 | static int full_match (const char *, const char *); |
105 | ||
40bc484c | 106 | static struct value *make_array_descriptor (struct type *, struct value *); |
14f9c5c9 | 107 | |
4c4b4cd2 | 108 | static void ada_add_block_symbols (struct obstack *, |
76a01679 | 109 | struct block *, const char *, |
2570f2b7 | 110 | domain_enum, struct objfile *, int); |
14f9c5c9 | 111 | |
4c4b4cd2 | 112 | static int is_nonfunction (struct ada_symbol_info *, int); |
14f9c5c9 | 113 | |
76a01679 | 114 | static void add_defn_to_vec (struct obstack *, struct symbol *, |
2570f2b7 | 115 | struct block *); |
14f9c5c9 | 116 | |
4c4b4cd2 PH |
117 | static int num_defns_collected (struct obstack *); |
118 | ||
119 | static struct ada_symbol_info *defns_collected (struct obstack *, int); | |
14f9c5c9 | 120 | |
4c4b4cd2 | 121 | static struct value *resolve_subexp (struct expression **, int *, int, |
76a01679 | 122 | struct type *); |
14f9c5c9 | 123 | |
d2e4a39e | 124 | static void replace_operator_with_call (struct expression **, int, int, int, |
4c4b4cd2 | 125 | struct symbol *, struct block *); |
14f9c5c9 | 126 | |
d2e4a39e | 127 | static int possible_user_operator_p (enum exp_opcode, struct value **); |
14f9c5c9 | 128 | |
4c4b4cd2 PH |
129 | static char *ada_op_name (enum exp_opcode); |
130 | ||
131 | static const char *ada_decoded_op_name (enum exp_opcode); | |
14f9c5c9 | 132 | |
d2e4a39e | 133 | static int numeric_type_p (struct type *); |
14f9c5c9 | 134 | |
d2e4a39e | 135 | static int integer_type_p (struct type *); |
14f9c5c9 | 136 | |
d2e4a39e | 137 | static int scalar_type_p (struct type *); |
14f9c5c9 | 138 | |
d2e4a39e | 139 | static int discrete_type_p (struct type *); |
14f9c5c9 | 140 | |
aeb5907d JB |
141 | static enum ada_renaming_category parse_old_style_renaming (struct type *, |
142 | const char **, | |
143 | int *, | |
144 | const char **); | |
145 | ||
146 | static struct symbol *find_old_style_renaming_symbol (const char *, | |
147 | struct block *); | |
148 | ||
4c4b4cd2 | 149 | static struct type *ada_lookup_struct_elt_type (struct type *, char *, |
76a01679 | 150 | int, int, int *); |
4c4b4cd2 | 151 | |
d2e4a39e | 152 | static struct value *evaluate_subexp_type (struct expression *, int *); |
14f9c5c9 | 153 | |
b4ba55a1 JB |
154 | static struct type *ada_find_parallel_type_with_name (struct type *, |
155 | const char *); | |
156 | ||
d2e4a39e | 157 | static int is_dynamic_field (struct type *, int); |
14f9c5c9 | 158 | |
10a2c479 | 159 | static struct type *to_fixed_variant_branch_type (struct type *, |
fc1a4b47 | 160 | const gdb_byte *, |
4c4b4cd2 PH |
161 | CORE_ADDR, struct value *); |
162 | ||
163 | static struct type *to_fixed_array_type (struct type *, struct value *, int); | |
14f9c5c9 | 164 | |
28c85d6c | 165 | static struct type *to_fixed_range_type (struct type *, struct value *); |
14f9c5c9 | 166 | |
d2e4a39e | 167 | static struct type *to_static_fixed_type (struct type *); |
f192137b | 168 | static struct type *static_unwrap_type (struct type *type); |
14f9c5c9 | 169 | |
d2e4a39e | 170 | static struct value *unwrap_value (struct value *); |
14f9c5c9 | 171 | |
ad82864c | 172 | static struct type *constrained_packed_array_type (struct type *, long *); |
14f9c5c9 | 173 | |
ad82864c | 174 | static struct type *decode_constrained_packed_array_type (struct type *); |
14f9c5c9 | 175 | |
ad82864c JB |
176 | static long decode_packed_array_bitsize (struct type *); |
177 | ||
178 | static struct value *decode_constrained_packed_array (struct value *); | |
179 | ||
180 | static int ada_is_packed_array_type (struct type *); | |
181 | ||
182 | static int ada_is_unconstrained_packed_array_type (struct type *); | |
14f9c5c9 | 183 | |
d2e4a39e | 184 | static struct value *value_subscript_packed (struct value *, int, |
4c4b4cd2 | 185 | struct value **); |
14f9c5c9 | 186 | |
50810684 | 187 | static void move_bits (gdb_byte *, int, const gdb_byte *, int, int, int); |
52ce6436 | 188 | |
4c4b4cd2 PH |
189 | static struct value *coerce_unspec_val_to_type (struct value *, |
190 | struct type *); | |
14f9c5c9 | 191 | |
d2e4a39e | 192 | static struct value *get_var_value (char *, char *); |
14f9c5c9 | 193 | |
d2e4a39e | 194 | static int lesseq_defined_than (struct symbol *, struct symbol *); |
14f9c5c9 | 195 | |
d2e4a39e | 196 | static int equiv_types (struct type *, struct type *); |
14f9c5c9 | 197 | |
d2e4a39e | 198 | static int is_name_suffix (const char *); |
14f9c5c9 | 199 | |
73589123 PH |
200 | static int advance_wild_match (const char **, const char *, int); |
201 | ||
202 | static int wild_match (const char *, const char *); | |
14f9c5c9 | 203 | |
d2e4a39e | 204 | static struct value *ada_coerce_ref (struct value *); |
14f9c5c9 | 205 | |
4c4b4cd2 PH |
206 | static LONGEST pos_atr (struct value *); |
207 | ||
3cb382c9 | 208 | static struct value *value_pos_atr (struct type *, struct value *); |
14f9c5c9 | 209 | |
d2e4a39e | 210 | static struct value *value_val_atr (struct type *, struct value *); |
14f9c5c9 | 211 | |
4c4b4cd2 PH |
212 | static struct symbol *standard_lookup (const char *, const struct block *, |
213 | domain_enum); | |
14f9c5c9 | 214 | |
4c4b4cd2 PH |
215 | static struct value *ada_search_struct_field (char *, struct value *, int, |
216 | struct type *); | |
217 | ||
218 | static struct value *ada_value_primitive_field (struct value *, int, int, | |
219 | struct type *); | |
220 | ||
76a01679 | 221 | static int find_struct_field (char *, struct type *, int, |
52ce6436 | 222 | struct type **, int *, int *, int *, int *); |
4c4b4cd2 PH |
223 | |
224 | static struct value *ada_to_fixed_value_create (struct type *, CORE_ADDR, | |
225 | struct value *); | |
226 | ||
4c4b4cd2 PH |
227 | static int ada_resolve_function (struct ada_symbol_info *, int, |
228 | struct value **, int, const char *, | |
229 | struct type *); | |
230 | ||
4c4b4cd2 PH |
231 | static int ada_is_direct_array_type (struct type *); |
232 | ||
72d5681a PH |
233 | static void ada_language_arch_info (struct gdbarch *, |
234 | struct language_arch_info *); | |
714e53ab PH |
235 | |
236 | static void check_size (const struct type *); | |
52ce6436 PH |
237 | |
238 | static struct value *ada_index_struct_field (int, struct value *, int, | |
239 | struct type *); | |
240 | ||
241 | static struct value *assign_aggregate (struct value *, struct value *, | |
0963b4bd MS |
242 | struct expression *, |
243 | int *, enum noside); | |
52ce6436 PH |
244 | |
245 | static void aggregate_assign_from_choices (struct value *, struct value *, | |
246 | struct expression *, | |
247 | int *, LONGEST *, int *, | |
248 | int, LONGEST, LONGEST); | |
249 | ||
250 | static void aggregate_assign_positional (struct value *, struct value *, | |
251 | struct expression *, | |
252 | int *, LONGEST *, int *, int, | |
253 | LONGEST, LONGEST); | |
254 | ||
255 | ||
256 | static void aggregate_assign_others (struct value *, struct value *, | |
257 | struct expression *, | |
258 | int *, LONGEST *, int, LONGEST, LONGEST); | |
259 | ||
260 | ||
261 | static void add_component_interval (LONGEST, LONGEST, LONGEST *, int *, int); | |
262 | ||
263 | ||
264 | static struct value *ada_evaluate_subexp (struct type *, struct expression *, | |
265 | int *, enum noside); | |
266 | ||
267 | static void ada_forward_operator_length (struct expression *, int, int *, | |
268 | int *); | |
4c4b4cd2 PH |
269 | \f |
270 | ||
76a01679 | 271 | |
4c4b4cd2 | 272 | /* Maximum-sized dynamic type. */ |
14f9c5c9 AS |
273 | static unsigned int varsize_limit; |
274 | ||
4c4b4cd2 PH |
275 | /* FIXME: brobecker/2003-09-17: No longer a const because it is |
276 | returned by a function that does not return a const char *. */ | |
277 | static char *ada_completer_word_break_characters = | |
278 | #ifdef VMS | |
279 | " \t\n!@#%^&*()+=|~`}{[]\";:?/,-"; | |
280 | #else | |
14f9c5c9 | 281 | " \t\n!@#$%^&*()+=|~`}{[]\";:?/,-"; |
4c4b4cd2 | 282 | #endif |
14f9c5c9 | 283 | |
4c4b4cd2 | 284 | /* The name of the symbol to use to get the name of the main subprogram. */ |
76a01679 | 285 | static const char ADA_MAIN_PROGRAM_SYMBOL_NAME[] |
4c4b4cd2 | 286 | = "__gnat_ada_main_program_name"; |
14f9c5c9 | 287 | |
4c4b4cd2 PH |
288 | /* Limit on the number of warnings to raise per expression evaluation. */ |
289 | static int warning_limit = 2; | |
290 | ||
291 | /* Number of warning messages issued; reset to 0 by cleanups after | |
292 | expression evaluation. */ | |
293 | static int warnings_issued = 0; | |
294 | ||
295 | static const char *known_runtime_file_name_patterns[] = { | |
296 | ADA_KNOWN_RUNTIME_FILE_NAME_PATTERNS NULL | |
297 | }; | |
298 | ||
299 | static const char *known_auxiliary_function_name_patterns[] = { | |
300 | ADA_KNOWN_AUXILIARY_FUNCTION_NAME_PATTERNS NULL | |
301 | }; | |
302 | ||
303 | /* Space for allocating results of ada_lookup_symbol_list. */ | |
304 | static struct obstack symbol_list_obstack; | |
305 | ||
e802dbe0 JB |
306 | /* Inferior-specific data. */ |
307 | ||
308 | /* Per-inferior data for this module. */ | |
309 | ||
310 | struct ada_inferior_data | |
311 | { | |
312 | /* The ada__tags__type_specific_data type, which is used when decoding | |
313 | tagged types. With older versions of GNAT, this type was directly | |
314 | accessible through a component ("tsd") in the object tag. But this | |
315 | is no longer the case, so we cache it for each inferior. */ | |
316 | struct type *tsd_type; | |
317 | }; | |
318 | ||
319 | /* Our key to this module's inferior data. */ | |
320 | static const struct inferior_data *ada_inferior_data; | |
321 | ||
322 | /* A cleanup routine for our inferior data. */ | |
323 | static void | |
324 | ada_inferior_data_cleanup (struct inferior *inf, void *arg) | |
325 | { | |
326 | struct ada_inferior_data *data; | |
327 | ||
328 | data = inferior_data (inf, ada_inferior_data); | |
329 | if (data != NULL) | |
330 | xfree (data); | |
331 | } | |
332 | ||
333 | /* Return our inferior data for the given inferior (INF). | |
334 | ||
335 | This function always returns a valid pointer to an allocated | |
336 | ada_inferior_data structure. If INF's inferior data has not | |
337 | been previously set, this functions creates a new one with all | |
338 | fields set to zero, sets INF's inferior to it, and then returns | |
339 | a pointer to that newly allocated ada_inferior_data. */ | |
340 | ||
341 | static struct ada_inferior_data * | |
342 | get_ada_inferior_data (struct inferior *inf) | |
343 | { | |
344 | struct ada_inferior_data *data; | |
345 | ||
346 | data = inferior_data (inf, ada_inferior_data); | |
347 | if (data == NULL) | |
348 | { | |
349 | data = XZALLOC (struct ada_inferior_data); | |
350 | set_inferior_data (inf, ada_inferior_data, data); | |
351 | } | |
352 | ||
353 | return data; | |
354 | } | |
355 | ||
356 | /* Perform all necessary cleanups regarding our module's inferior data | |
357 | that is required after the inferior INF just exited. */ | |
358 | ||
359 | static void | |
360 | ada_inferior_exit (struct inferior *inf) | |
361 | { | |
362 | ada_inferior_data_cleanup (inf, NULL); | |
363 | set_inferior_data (inf, ada_inferior_data, NULL); | |
364 | } | |
365 | ||
4c4b4cd2 PH |
366 | /* Utilities */ |
367 | ||
720d1a40 | 368 | /* If TYPE is a TYPE_CODE_TYPEDEF type, return the target type after |
eed9788b | 369 | all typedef layers have been peeled. Otherwise, return TYPE. |
720d1a40 JB |
370 | |
371 | Normally, we really expect a typedef type to only have 1 typedef layer. | |
372 | In other words, we really expect the target type of a typedef type to be | |
373 | a non-typedef type. This is particularly true for Ada units, because | |
374 | the language does not have a typedef vs not-typedef distinction. | |
375 | In that respect, the Ada compiler has been trying to eliminate as many | |
376 | typedef definitions in the debugging information, since they generally | |
377 | do not bring any extra information (we still use typedef under certain | |
378 | circumstances related mostly to the GNAT encoding). | |
379 | ||
380 | Unfortunately, we have seen situations where the debugging information | |
381 | generated by the compiler leads to such multiple typedef layers. For | |
382 | instance, consider the following example with stabs: | |
383 | ||
384 | .stabs "pck__float_array___XUP:Tt(0,46)=s16P_ARRAY:(0,47)=[...]"[...] | |
385 | .stabs "pck__float_array___XUP:t(0,36)=(0,46)",128,0,6,0 | |
386 | ||
387 | This is an error in the debugging information which causes type | |
388 | pck__float_array___XUP to be defined twice, and the second time, | |
389 | it is defined as a typedef of a typedef. | |
390 | ||
391 | This is on the fringe of legality as far as debugging information is | |
392 | concerned, and certainly unexpected. But it is easy to handle these | |
393 | situations correctly, so we can afford to be lenient in this case. */ | |
394 | ||
395 | static struct type * | |
396 | ada_typedef_target_type (struct type *type) | |
397 | { | |
398 | while (TYPE_CODE (type) == TYPE_CODE_TYPEDEF) | |
399 | type = TYPE_TARGET_TYPE (type); | |
400 | return type; | |
401 | } | |
402 | ||
41d27058 JB |
403 | /* Given DECODED_NAME a string holding a symbol name in its |
404 | decoded form (ie using the Ada dotted notation), returns | |
405 | its unqualified name. */ | |
406 | ||
407 | static const char * | |
408 | ada_unqualified_name (const char *decoded_name) | |
409 | { | |
410 | const char *result = strrchr (decoded_name, '.'); | |
411 | ||
412 | if (result != NULL) | |
413 | result++; /* Skip the dot... */ | |
414 | else | |
415 | result = decoded_name; | |
416 | ||
417 | return result; | |
418 | } | |
419 | ||
420 | /* Return a string starting with '<', followed by STR, and '>'. | |
421 | The result is good until the next call. */ | |
422 | ||
423 | static char * | |
424 | add_angle_brackets (const char *str) | |
425 | { | |
426 | static char *result = NULL; | |
427 | ||
428 | xfree (result); | |
88c15c34 | 429 | result = xstrprintf ("<%s>", str); |
41d27058 JB |
430 | return result; |
431 | } | |
96d887e8 | 432 | |
4c4b4cd2 PH |
433 | static char * |
434 | ada_get_gdb_completer_word_break_characters (void) | |
435 | { | |
436 | return ada_completer_word_break_characters; | |
437 | } | |
438 | ||
e79af960 JB |
439 | /* Print an array element index using the Ada syntax. */ |
440 | ||
441 | static void | |
442 | ada_print_array_index (struct value *index_value, struct ui_file *stream, | |
79a45b7d | 443 | const struct value_print_options *options) |
e79af960 | 444 | { |
79a45b7d | 445 | LA_VALUE_PRINT (index_value, stream, options); |
e79af960 JB |
446 | fprintf_filtered (stream, " => "); |
447 | } | |
448 | ||
f27cf670 | 449 | /* Assuming VECT points to an array of *SIZE objects of size |
14f9c5c9 | 450 | ELEMENT_SIZE, grow it to contain at least MIN_SIZE objects, |
f27cf670 | 451 | updating *SIZE as necessary and returning the (new) array. */ |
14f9c5c9 | 452 | |
f27cf670 AS |
453 | void * |
454 | grow_vect (void *vect, size_t *size, size_t min_size, int element_size) | |
14f9c5c9 | 455 | { |
d2e4a39e AS |
456 | if (*size < min_size) |
457 | { | |
458 | *size *= 2; | |
459 | if (*size < min_size) | |
4c4b4cd2 | 460 | *size = min_size; |
f27cf670 | 461 | vect = xrealloc (vect, *size * element_size); |
d2e4a39e | 462 | } |
f27cf670 | 463 | return vect; |
14f9c5c9 AS |
464 | } |
465 | ||
466 | /* True (non-zero) iff TARGET matches FIELD_NAME up to any trailing | |
4c4b4cd2 | 467 | suffix of FIELD_NAME beginning "___". */ |
14f9c5c9 AS |
468 | |
469 | static int | |
ebf56fd3 | 470 | field_name_match (const char *field_name, const char *target) |
14f9c5c9 AS |
471 | { |
472 | int len = strlen (target); | |
5b4ee69b | 473 | |
d2e4a39e | 474 | return |
4c4b4cd2 PH |
475 | (strncmp (field_name, target, len) == 0 |
476 | && (field_name[len] == '\0' | |
477 | || (strncmp (field_name + len, "___", 3) == 0 | |
76a01679 JB |
478 | && strcmp (field_name + strlen (field_name) - 6, |
479 | "___XVN") != 0))); | |
14f9c5c9 AS |
480 | } |
481 | ||
482 | ||
872c8b51 JB |
483 | /* Assuming TYPE is a TYPE_CODE_STRUCT or a TYPE_CODE_TYPDEF to |
484 | a TYPE_CODE_STRUCT, find the field whose name matches FIELD_NAME, | |
485 | and return its index. This function also handles fields whose name | |
486 | have ___ suffixes because the compiler sometimes alters their name | |
487 | by adding such a suffix to represent fields with certain constraints. | |
488 | If the field could not be found, return a negative number if | |
489 | MAYBE_MISSING is set. Otherwise raise an error. */ | |
4c4b4cd2 PH |
490 | |
491 | int | |
492 | ada_get_field_index (const struct type *type, const char *field_name, | |
493 | int maybe_missing) | |
494 | { | |
495 | int fieldno; | |
872c8b51 JB |
496 | struct type *struct_type = check_typedef ((struct type *) type); |
497 | ||
498 | for (fieldno = 0; fieldno < TYPE_NFIELDS (struct_type); fieldno++) | |
499 | if (field_name_match (TYPE_FIELD_NAME (struct_type, fieldno), field_name)) | |
4c4b4cd2 PH |
500 | return fieldno; |
501 | ||
502 | if (!maybe_missing) | |
323e0a4a | 503 | error (_("Unable to find field %s in struct %s. Aborting"), |
872c8b51 | 504 | field_name, TYPE_NAME (struct_type)); |
4c4b4cd2 PH |
505 | |
506 | return -1; | |
507 | } | |
508 | ||
509 | /* The length of the prefix of NAME prior to any "___" suffix. */ | |
14f9c5c9 AS |
510 | |
511 | int | |
d2e4a39e | 512 | ada_name_prefix_len (const char *name) |
14f9c5c9 AS |
513 | { |
514 | if (name == NULL) | |
515 | return 0; | |
d2e4a39e | 516 | else |
14f9c5c9 | 517 | { |
d2e4a39e | 518 | const char *p = strstr (name, "___"); |
5b4ee69b | 519 | |
14f9c5c9 | 520 | if (p == NULL) |
4c4b4cd2 | 521 | return strlen (name); |
14f9c5c9 | 522 | else |
4c4b4cd2 | 523 | return p - name; |
14f9c5c9 AS |
524 | } |
525 | } | |
526 | ||
4c4b4cd2 PH |
527 | /* Return non-zero if SUFFIX is a suffix of STR. |
528 | Return zero if STR is null. */ | |
529 | ||
14f9c5c9 | 530 | static int |
d2e4a39e | 531 | is_suffix (const char *str, const char *suffix) |
14f9c5c9 AS |
532 | { |
533 | int len1, len2; | |
5b4ee69b | 534 | |
14f9c5c9 AS |
535 | if (str == NULL) |
536 | return 0; | |
537 | len1 = strlen (str); | |
538 | len2 = strlen (suffix); | |
4c4b4cd2 | 539 | return (len1 >= len2 && strcmp (str + len1 - len2, suffix) == 0); |
14f9c5c9 AS |
540 | } |
541 | ||
4c4b4cd2 PH |
542 | /* The contents of value VAL, treated as a value of type TYPE. The |
543 | result is an lval in memory if VAL is. */ | |
14f9c5c9 | 544 | |
d2e4a39e | 545 | static struct value * |
4c4b4cd2 | 546 | coerce_unspec_val_to_type (struct value *val, struct type *type) |
14f9c5c9 | 547 | { |
61ee279c | 548 | type = ada_check_typedef (type); |
df407dfe | 549 | if (value_type (val) == type) |
4c4b4cd2 | 550 | return val; |
d2e4a39e | 551 | else |
14f9c5c9 | 552 | { |
4c4b4cd2 PH |
553 | struct value *result; |
554 | ||
555 | /* Make sure that the object size is not unreasonable before | |
556 | trying to allocate some memory for it. */ | |
714e53ab | 557 | check_size (type); |
4c4b4cd2 | 558 | |
41e8491f JK |
559 | if (value_lazy (val) |
560 | || TYPE_LENGTH (type) > TYPE_LENGTH (value_type (val))) | |
561 | result = allocate_value_lazy (type); | |
562 | else | |
563 | { | |
564 | result = allocate_value (type); | |
565 | memcpy (value_contents_raw (result), value_contents (val), | |
566 | TYPE_LENGTH (type)); | |
567 | } | |
74bcbdf3 | 568 | set_value_component_location (result, val); |
9bbda503 AC |
569 | set_value_bitsize (result, value_bitsize (val)); |
570 | set_value_bitpos (result, value_bitpos (val)); | |
42ae5230 | 571 | set_value_address (result, value_address (val)); |
14f9c5c9 AS |
572 | return result; |
573 | } | |
574 | } | |
575 | ||
fc1a4b47 AC |
576 | static const gdb_byte * |
577 | cond_offset_host (const gdb_byte *valaddr, long offset) | |
14f9c5c9 AS |
578 | { |
579 | if (valaddr == NULL) | |
580 | return NULL; | |
581 | else | |
582 | return valaddr + offset; | |
583 | } | |
584 | ||
585 | static CORE_ADDR | |
ebf56fd3 | 586 | cond_offset_target (CORE_ADDR address, long offset) |
14f9c5c9 AS |
587 | { |
588 | if (address == 0) | |
589 | return 0; | |
d2e4a39e | 590 | else |
14f9c5c9 AS |
591 | return address + offset; |
592 | } | |
593 | ||
4c4b4cd2 PH |
594 | /* Issue a warning (as for the definition of warning in utils.c, but |
595 | with exactly one argument rather than ...), unless the limit on the | |
596 | number of warnings has passed during the evaluation of the current | |
597 | expression. */ | |
a2249542 | 598 | |
77109804 AC |
599 | /* FIXME: cagney/2004-10-10: This function is mimicking the behavior |
600 | provided by "complaint". */ | |
a0b31db1 | 601 | static void lim_warning (const char *format, ...) ATTRIBUTE_PRINTF (1, 2); |
77109804 | 602 | |
14f9c5c9 | 603 | static void |
a2249542 | 604 | lim_warning (const char *format, ...) |
14f9c5c9 | 605 | { |
a2249542 | 606 | va_list args; |
a2249542 | 607 | |
5b4ee69b | 608 | va_start (args, format); |
4c4b4cd2 PH |
609 | warnings_issued += 1; |
610 | if (warnings_issued <= warning_limit) | |
a2249542 MK |
611 | vwarning (format, args); |
612 | ||
613 | va_end (args); | |
4c4b4cd2 PH |
614 | } |
615 | ||
714e53ab PH |
616 | /* Issue an error if the size of an object of type T is unreasonable, |
617 | i.e. if it would be a bad idea to allocate a value of this type in | |
618 | GDB. */ | |
619 | ||
620 | static void | |
621 | check_size (const struct type *type) | |
622 | { | |
623 | if (TYPE_LENGTH (type) > varsize_limit) | |
323e0a4a | 624 | error (_("object size is larger than varsize-limit")); |
714e53ab PH |
625 | } |
626 | ||
0963b4bd | 627 | /* Maximum value of a SIZE-byte signed integer type. */ |
4c4b4cd2 | 628 | static LONGEST |
c3e5cd34 | 629 | max_of_size (int size) |
4c4b4cd2 | 630 | { |
76a01679 | 631 | LONGEST top_bit = (LONGEST) 1 << (size * 8 - 2); |
5b4ee69b | 632 | |
76a01679 | 633 | return top_bit | (top_bit - 1); |
4c4b4cd2 PH |
634 | } |
635 | ||
0963b4bd | 636 | /* Minimum value of a SIZE-byte signed integer type. */ |
4c4b4cd2 | 637 | static LONGEST |
c3e5cd34 | 638 | min_of_size (int size) |
4c4b4cd2 | 639 | { |
c3e5cd34 | 640 | return -max_of_size (size) - 1; |
4c4b4cd2 PH |
641 | } |
642 | ||
0963b4bd | 643 | /* Maximum value of a SIZE-byte unsigned integer type. */ |
4c4b4cd2 | 644 | static ULONGEST |
c3e5cd34 | 645 | umax_of_size (int size) |
4c4b4cd2 | 646 | { |
76a01679 | 647 | ULONGEST top_bit = (ULONGEST) 1 << (size * 8 - 1); |
5b4ee69b | 648 | |
76a01679 | 649 | return top_bit | (top_bit - 1); |
4c4b4cd2 PH |
650 | } |
651 | ||
0963b4bd | 652 | /* Maximum value of integral type T, as a signed quantity. */ |
c3e5cd34 PH |
653 | static LONGEST |
654 | max_of_type (struct type *t) | |
4c4b4cd2 | 655 | { |
c3e5cd34 PH |
656 | if (TYPE_UNSIGNED (t)) |
657 | return (LONGEST) umax_of_size (TYPE_LENGTH (t)); | |
658 | else | |
659 | return max_of_size (TYPE_LENGTH (t)); | |
660 | } | |
661 | ||
0963b4bd | 662 | /* Minimum value of integral type T, as a signed quantity. */ |
c3e5cd34 PH |
663 | static LONGEST |
664 | min_of_type (struct type *t) | |
665 | { | |
666 | if (TYPE_UNSIGNED (t)) | |
667 | return 0; | |
668 | else | |
669 | return min_of_size (TYPE_LENGTH (t)); | |
4c4b4cd2 PH |
670 | } |
671 | ||
672 | /* The largest value in the domain of TYPE, a discrete type, as an integer. */ | |
43bbcdc2 PH |
673 | LONGEST |
674 | ada_discrete_type_high_bound (struct type *type) | |
4c4b4cd2 | 675 | { |
76a01679 | 676 | switch (TYPE_CODE (type)) |
4c4b4cd2 PH |
677 | { |
678 | case TYPE_CODE_RANGE: | |
690cc4eb | 679 | return TYPE_HIGH_BOUND (type); |
4c4b4cd2 | 680 | case TYPE_CODE_ENUM: |
690cc4eb PH |
681 | return TYPE_FIELD_BITPOS (type, TYPE_NFIELDS (type) - 1); |
682 | case TYPE_CODE_BOOL: | |
683 | return 1; | |
684 | case TYPE_CODE_CHAR: | |
76a01679 | 685 | case TYPE_CODE_INT: |
690cc4eb | 686 | return max_of_type (type); |
4c4b4cd2 | 687 | default: |
43bbcdc2 | 688 | error (_("Unexpected type in ada_discrete_type_high_bound.")); |
4c4b4cd2 PH |
689 | } |
690 | } | |
691 | ||
692 | /* The largest value in the domain of TYPE, a discrete type, as an integer. */ | |
43bbcdc2 PH |
693 | LONGEST |
694 | ada_discrete_type_low_bound (struct type *type) | |
4c4b4cd2 | 695 | { |
76a01679 | 696 | switch (TYPE_CODE (type)) |
4c4b4cd2 PH |
697 | { |
698 | case TYPE_CODE_RANGE: | |
690cc4eb | 699 | return TYPE_LOW_BOUND (type); |
4c4b4cd2 | 700 | case TYPE_CODE_ENUM: |
690cc4eb PH |
701 | return TYPE_FIELD_BITPOS (type, 0); |
702 | case TYPE_CODE_BOOL: | |
703 | return 0; | |
704 | case TYPE_CODE_CHAR: | |
76a01679 | 705 | case TYPE_CODE_INT: |
690cc4eb | 706 | return min_of_type (type); |
4c4b4cd2 | 707 | default: |
43bbcdc2 | 708 | error (_("Unexpected type in ada_discrete_type_low_bound.")); |
4c4b4cd2 PH |
709 | } |
710 | } | |
711 | ||
712 | /* The identity on non-range types. For range types, the underlying | |
76a01679 | 713 | non-range scalar type. */ |
4c4b4cd2 PH |
714 | |
715 | static struct type * | |
716 | base_type (struct type *type) | |
717 | { | |
718 | while (type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE) | |
719 | { | |
76a01679 JB |
720 | if (type == TYPE_TARGET_TYPE (type) || TYPE_TARGET_TYPE (type) == NULL) |
721 | return type; | |
4c4b4cd2 PH |
722 | type = TYPE_TARGET_TYPE (type); |
723 | } | |
724 | return type; | |
14f9c5c9 | 725 | } |
4c4b4cd2 | 726 | \f |
76a01679 | 727 | |
4c4b4cd2 | 728 | /* Language Selection */ |
14f9c5c9 AS |
729 | |
730 | /* If the main program is in Ada, return language_ada, otherwise return LANG | |
ccefe4c4 | 731 | (the main program is in Ada iif the adainit symbol is found). */ |
d2e4a39e | 732 | |
14f9c5c9 | 733 | enum language |
ccefe4c4 | 734 | ada_update_initial_language (enum language lang) |
14f9c5c9 | 735 | { |
d2e4a39e | 736 | if (lookup_minimal_symbol ("adainit", (const char *) NULL, |
4c4b4cd2 PH |
737 | (struct objfile *) NULL) != NULL) |
738 | return language_ada; | |
14f9c5c9 AS |
739 | |
740 | return lang; | |
741 | } | |
96d887e8 PH |
742 | |
743 | /* If the main procedure is written in Ada, then return its name. | |
744 | The result is good until the next call. Return NULL if the main | |
745 | procedure doesn't appear to be in Ada. */ | |
746 | ||
747 | char * | |
748 | ada_main_name (void) | |
749 | { | |
750 | struct minimal_symbol *msym; | |
f9bc20b9 | 751 | static char *main_program_name = NULL; |
6c038f32 | 752 | |
96d887e8 PH |
753 | /* For Ada, the name of the main procedure is stored in a specific |
754 | string constant, generated by the binder. Look for that symbol, | |
755 | extract its address, and then read that string. If we didn't find | |
756 | that string, then most probably the main procedure is not written | |
757 | in Ada. */ | |
758 | msym = lookup_minimal_symbol (ADA_MAIN_PROGRAM_SYMBOL_NAME, NULL, NULL); | |
759 | ||
760 | if (msym != NULL) | |
761 | { | |
f9bc20b9 JB |
762 | CORE_ADDR main_program_name_addr; |
763 | int err_code; | |
764 | ||
96d887e8 PH |
765 | main_program_name_addr = SYMBOL_VALUE_ADDRESS (msym); |
766 | if (main_program_name_addr == 0) | |
323e0a4a | 767 | error (_("Invalid address for Ada main program name.")); |
96d887e8 | 768 | |
f9bc20b9 JB |
769 | xfree (main_program_name); |
770 | target_read_string (main_program_name_addr, &main_program_name, | |
771 | 1024, &err_code); | |
772 | ||
773 | if (err_code != 0) | |
774 | return NULL; | |
96d887e8 PH |
775 | return main_program_name; |
776 | } | |
777 | ||
778 | /* The main procedure doesn't seem to be in Ada. */ | |
779 | return NULL; | |
780 | } | |
14f9c5c9 | 781 | \f |
4c4b4cd2 | 782 | /* Symbols */ |
d2e4a39e | 783 | |
4c4b4cd2 PH |
784 | /* Table of Ada operators and their GNAT-encoded names. Last entry is pair |
785 | of NULLs. */ | |
14f9c5c9 | 786 | |
d2e4a39e AS |
787 | const struct ada_opname_map ada_opname_table[] = { |
788 | {"Oadd", "\"+\"", BINOP_ADD}, | |
789 | {"Osubtract", "\"-\"", BINOP_SUB}, | |
790 | {"Omultiply", "\"*\"", BINOP_MUL}, | |
791 | {"Odivide", "\"/\"", BINOP_DIV}, | |
792 | {"Omod", "\"mod\"", BINOP_MOD}, | |
793 | {"Orem", "\"rem\"", BINOP_REM}, | |
794 | {"Oexpon", "\"**\"", BINOP_EXP}, | |
795 | {"Olt", "\"<\"", BINOP_LESS}, | |
796 | {"Ole", "\"<=\"", BINOP_LEQ}, | |
797 | {"Ogt", "\">\"", BINOP_GTR}, | |
798 | {"Oge", "\">=\"", BINOP_GEQ}, | |
799 | {"Oeq", "\"=\"", BINOP_EQUAL}, | |
800 | {"One", "\"/=\"", BINOP_NOTEQUAL}, | |
801 | {"Oand", "\"and\"", BINOP_BITWISE_AND}, | |
802 | {"Oor", "\"or\"", BINOP_BITWISE_IOR}, | |
803 | {"Oxor", "\"xor\"", BINOP_BITWISE_XOR}, | |
804 | {"Oconcat", "\"&\"", BINOP_CONCAT}, | |
805 | {"Oabs", "\"abs\"", UNOP_ABS}, | |
806 | {"Onot", "\"not\"", UNOP_LOGICAL_NOT}, | |
807 | {"Oadd", "\"+\"", UNOP_PLUS}, | |
808 | {"Osubtract", "\"-\"", UNOP_NEG}, | |
809 | {NULL, NULL} | |
14f9c5c9 AS |
810 | }; |
811 | ||
4c4b4cd2 PH |
812 | /* The "encoded" form of DECODED, according to GNAT conventions. |
813 | The result is valid until the next call to ada_encode. */ | |
814 | ||
14f9c5c9 | 815 | char * |
4c4b4cd2 | 816 | ada_encode (const char *decoded) |
14f9c5c9 | 817 | { |
4c4b4cd2 PH |
818 | static char *encoding_buffer = NULL; |
819 | static size_t encoding_buffer_size = 0; | |
d2e4a39e | 820 | const char *p; |
14f9c5c9 | 821 | int k; |
d2e4a39e | 822 | |
4c4b4cd2 | 823 | if (decoded == NULL) |
14f9c5c9 AS |
824 | return NULL; |
825 | ||
4c4b4cd2 PH |
826 | GROW_VECT (encoding_buffer, encoding_buffer_size, |
827 | 2 * strlen (decoded) + 10); | |
14f9c5c9 AS |
828 | |
829 | k = 0; | |
4c4b4cd2 | 830 | for (p = decoded; *p != '\0'; p += 1) |
14f9c5c9 | 831 | { |
cdc7bb92 | 832 | if (*p == '.') |
4c4b4cd2 PH |
833 | { |
834 | encoding_buffer[k] = encoding_buffer[k + 1] = '_'; | |
835 | k += 2; | |
836 | } | |
14f9c5c9 | 837 | else if (*p == '"') |
4c4b4cd2 PH |
838 | { |
839 | const struct ada_opname_map *mapping; | |
840 | ||
841 | for (mapping = ada_opname_table; | |
1265e4aa JB |
842 | mapping->encoded != NULL |
843 | && strncmp (mapping->decoded, p, | |
844 | strlen (mapping->decoded)) != 0; mapping += 1) | |
4c4b4cd2 PH |
845 | ; |
846 | if (mapping->encoded == NULL) | |
323e0a4a | 847 | error (_("invalid Ada operator name: %s"), p); |
4c4b4cd2 PH |
848 | strcpy (encoding_buffer + k, mapping->encoded); |
849 | k += strlen (mapping->encoded); | |
850 | break; | |
851 | } | |
d2e4a39e | 852 | else |
4c4b4cd2 PH |
853 | { |
854 | encoding_buffer[k] = *p; | |
855 | k += 1; | |
856 | } | |
14f9c5c9 AS |
857 | } |
858 | ||
4c4b4cd2 PH |
859 | encoding_buffer[k] = '\0'; |
860 | return encoding_buffer; | |
14f9c5c9 AS |
861 | } |
862 | ||
863 | /* Return NAME folded to lower case, or, if surrounded by single | |
4c4b4cd2 PH |
864 | quotes, unfolded, but with the quotes stripped away. Result good |
865 | to next call. */ | |
866 | ||
d2e4a39e AS |
867 | char * |
868 | ada_fold_name (const char *name) | |
14f9c5c9 | 869 | { |
d2e4a39e | 870 | static char *fold_buffer = NULL; |
14f9c5c9 AS |
871 | static size_t fold_buffer_size = 0; |
872 | ||
873 | int len = strlen (name); | |
d2e4a39e | 874 | GROW_VECT (fold_buffer, fold_buffer_size, len + 1); |
14f9c5c9 AS |
875 | |
876 | if (name[0] == '\'') | |
877 | { | |
d2e4a39e AS |
878 | strncpy (fold_buffer, name + 1, len - 2); |
879 | fold_buffer[len - 2] = '\000'; | |
14f9c5c9 AS |
880 | } |
881 | else | |
882 | { | |
883 | int i; | |
5b4ee69b | 884 | |
14f9c5c9 | 885 | for (i = 0; i <= len; i += 1) |
4c4b4cd2 | 886 | fold_buffer[i] = tolower (name[i]); |
14f9c5c9 AS |
887 | } |
888 | ||
889 | return fold_buffer; | |
890 | } | |
891 | ||
529cad9c PH |
892 | /* Return nonzero if C is either a digit or a lowercase alphabet character. */ |
893 | ||
894 | static int | |
895 | is_lower_alphanum (const char c) | |
896 | { | |
897 | return (isdigit (c) || (isalpha (c) && islower (c))); | |
898 | } | |
899 | ||
29480c32 JB |
900 | /* Remove either of these suffixes: |
901 | . .{DIGIT}+ | |
902 | . ${DIGIT}+ | |
903 | . ___{DIGIT}+ | |
904 | . __{DIGIT}+. | |
905 | These are suffixes introduced by the compiler for entities such as | |
906 | nested subprogram for instance, in order to avoid name clashes. | |
907 | They do not serve any purpose for the debugger. */ | |
908 | ||
909 | static void | |
910 | ada_remove_trailing_digits (const char *encoded, int *len) | |
911 | { | |
912 | if (*len > 1 && isdigit (encoded[*len - 1])) | |
913 | { | |
914 | int i = *len - 2; | |
5b4ee69b | 915 | |
29480c32 JB |
916 | while (i > 0 && isdigit (encoded[i])) |
917 | i--; | |
918 | if (i >= 0 && encoded[i] == '.') | |
919 | *len = i; | |
920 | else if (i >= 0 && encoded[i] == '$') | |
921 | *len = i; | |
922 | else if (i >= 2 && strncmp (encoded + i - 2, "___", 3) == 0) | |
923 | *len = i - 2; | |
924 | else if (i >= 1 && strncmp (encoded + i - 1, "__", 2) == 0) | |
925 | *len = i - 1; | |
926 | } | |
927 | } | |
928 | ||
929 | /* Remove the suffix introduced by the compiler for protected object | |
930 | subprograms. */ | |
931 | ||
932 | static void | |
933 | ada_remove_po_subprogram_suffix (const char *encoded, int *len) | |
934 | { | |
935 | /* Remove trailing N. */ | |
936 | ||
937 | /* Protected entry subprograms are broken into two | |
938 | separate subprograms: The first one is unprotected, and has | |
939 | a 'N' suffix; the second is the protected version, and has | |
0963b4bd | 940 | the 'P' suffix. The second calls the first one after handling |
29480c32 JB |
941 | the protection. Since the P subprograms are internally generated, |
942 | we leave these names undecoded, giving the user a clue that this | |
943 | entity is internal. */ | |
944 | ||
945 | if (*len > 1 | |
946 | && encoded[*len - 1] == 'N' | |
947 | && (isdigit (encoded[*len - 2]) || islower (encoded[*len - 2]))) | |
948 | *len = *len - 1; | |
949 | } | |
950 | ||
69fadcdf JB |
951 | /* Remove trailing X[bn]* suffixes (indicating names in package bodies). */ |
952 | ||
953 | static void | |
954 | ada_remove_Xbn_suffix (const char *encoded, int *len) | |
955 | { | |
956 | int i = *len - 1; | |
957 | ||
958 | while (i > 0 && (encoded[i] == 'b' || encoded[i] == 'n')) | |
959 | i--; | |
960 | ||
961 | if (encoded[i] != 'X') | |
962 | return; | |
963 | ||
964 | if (i == 0) | |
965 | return; | |
966 | ||
967 | if (isalnum (encoded[i-1])) | |
968 | *len = i; | |
969 | } | |
970 | ||
29480c32 JB |
971 | /* If ENCODED follows the GNAT entity encoding conventions, then return |
972 | the decoded form of ENCODED. Otherwise, return "<%s>" where "%s" is | |
973 | replaced by ENCODED. | |
14f9c5c9 | 974 | |
4c4b4cd2 | 975 | The resulting string is valid until the next call of ada_decode. |
29480c32 | 976 | If the string is unchanged by decoding, the original string pointer |
4c4b4cd2 PH |
977 | is returned. */ |
978 | ||
979 | const char * | |
980 | ada_decode (const char *encoded) | |
14f9c5c9 AS |
981 | { |
982 | int i, j; | |
983 | int len0; | |
d2e4a39e | 984 | const char *p; |
4c4b4cd2 | 985 | char *decoded; |
14f9c5c9 | 986 | int at_start_name; |
4c4b4cd2 PH |
987 | static char *decoding_buffer = NULL; |
988 | static size_t decoding_buffer_size = 0; | |
d2e4a39e | 989 | |
29480c32 JB |
990 | /* The name of the Ada main procedure starts with "_ada_". |
991 | This prefix is not part of the decoded name, so skip this part | |
992 | if we see this prefix. */ | |
4c4b4cd2 PH |
993 | if (strncmp (encoded, "_ada_", 5) == 0) |
994 | encoded += 5; | |
14f9c5c9 | 995 | |
29480c32 JB |
996 | /* If the name starts with '_', then it is not a properly encoded |
997 | name, so do not attempt to decode it. Similarly, if the name | |
998 | starts with '<', the name should not be decoded. */ | |
4c4b4cd2 | 999 | if (encoded[0] == '_' || encoded[0] == '<') |
14f9c5c9 AS |
1000 | goto Suppress; |
1001 | ||
4c4b4cd2 | 1002 | len0 = strlen (encoded); |
4c4b4cd2 | 1003 | |
29480c32 JB |
1004 | ada_remove_trailing_digits (encoded, &len0); |
1005 | ada_remove_po_subprogram_suffix (encoded, &len0); | |
529cad9c | 1006 | |
4c4b4cd2 PH |
1007 | /* Remove the ___X.* suffix if present. Do not forget to verify that |
1008 | the suffix is located before the current "end" of ENCODED. We want | |
1009 | to avoid re-matching parts of ENCODED that have previously been | |
1010 | marked as discarded (by decrementing LEN0). */ | |
1011 | p = strstr (encoded, "___"); | |
1012 | if (p != NULL && p - encoded < len0 - 3) | |
14f9c5c9 AS |
1013 | { |
1014 | if (p[3] == 'X') | |
4c4b4cd2 | 1015 | len0 = p - encoded; |
14f9c5c9 | 1016 | else |
4c4b4cd2 | 1017 | goto Suppress; |
14f9c5c9 | 1018 | } |
4c4b4cd2 | 1019 | |
29480c32 JB |
1020 | /* Remove any trailing TKB suffix. It tells us that this symbol |
1021 | is for the body of a task, but that information does not actually | |
1022 | appear in the decoded name. */ | |
1023 | ||
4c4b4cd2 | 1024 | if (len0 > 3 && strncmp (encoded + len0 - 3, "TKB", 3) == 0) |
14f9c5c9 | 1025 | len0 -= 3; |
76a01679 | 1026 | |
a10967fa JB |
1027 | /* Remove any trailing TB suffix. The TB suffix is slightly different |
1028 | from the TKB suffix because it is used for non-anonymous task | |
1029 | bodies. */ | |
1030 | ||
1031 | if (len0 > 2 && strncmp (encoded + len0 - 2, "TB", 2) == 0) | |
1032 | len0 -= 2; | |
1033 | ||
29480c32 JB |
1034 | /* Remove trailing "B" suffixes. */ |
1035 | /* FIXME: brobecker/2006-04-19: Not sure what this are used for... */ | |
1036 | ||
4c4b4cd2 | 1037 | if (len0 > 1 && strncmp (encoded + len0 - 1, "B", 1) == 0) |
14f9c5c9 AS |
1038 | len0 -= 1; |
1039 | ||
4c4b4cd2 | 1040 | /* Make decoded big enough for possible expansion by operator name. */ |
29480c32 | 1041 | |
4c4b4cd2 PH |
1042 | GROW_VECT (decoding_buffer, decoding_buffer_size, 2 * len0 + 1); |
1043 | decoded = decoding_buffer; | |
14f9c5c9 | 1044 | |
29480c32 JB |
1045 | /* Remove trailing __{digit}+ or trailing ${digit}+. */ |
1046 | ||
4c4b4cd2 | 1047 | if (len0 > 1 && isdigit (encoded[len0 - 1])) |
d2e4a39e | 1048 | { |
4c4b4cd2 PH |
1049 | i = len0 - 2; |
1050 | while ((i >= 0 && isdigit (encoded[i])) | |
1051 | || (i >= 1 && encoded[i] == '_' && isdigit (encoded[i - 1]))) | |
1052 | i -= 1; | |
1053 | if (i > 1 && encoded[i] == '_' && encoded[i - 1] == '_') | |
1054 | len0 = i - 1; | |
1055 | else if (encoded[i] == '$') | |
1056 | len0 = i; | |
d2e4a39e | 1057 | } |
14f9c5c9 | 1058 | |
29480c32 JB |
1059 | /* The first few characters that are not alphabetic are not part |
1060 | of any encoding we use, so we can copy them over verbatim. */ | |
1061 | ||
4c4b4cd2 PH |
1062 | for (i = 0, j = 0; i < len0 && !isalpha (encoded[i]); i += 1, j += 1) |
1063 | decoded[j] = encoded[i]; | |
14f9c5c9 AS |
1064 | |
1065 | at_start_name = 1; | |
1066 | while (i < len0) | |
1067 | { | |
29480c32 | 1068 | /* Is this a symbol function? */ |
4c4b4cd2 PH |
1069 | if (at_start_name && encoded[i] == 'O') |
1070 | { | |
1071 | int k; | |
5b4ee69b | 1072 | |
4c4b4cd2 PH |
1073 | for (k = 0; ada_opname_table[k].encoded != NULL; k += 1) |
1074 | { | |
1075 | int op_len = strlen (ada_opname_table[k].encoded); | |
06d5cf63 JB |
1076 | if ((strncmp (ada_opname_table[k].encoded + 1, encoded + i + 1, |
1077 | op_len - 1) == 0) | |
1078 | && !isalnum (encoded[i + op_len])) | |
4c4b4cd2 PH |
1079 | { |
1080 | strcpy (decoded + j, ada_opname_table[k].decoded); | |
1081 | at_start_name = 0; | |
1082 | i += op_len; | |
1083 | j += strlen (ada_opname_table[k].decoded); | |
1084 | break; | |
1085 | } | |
1086 | } | |
1087 | if (ada_opname_table[k].encoded != NULL) | |
1088 | continue; | |
1089 | } | |
14f9c5c9 AS |
1090 | at_start_name = 0; |
1091 | ||
529cad9c PH |
1092 | /* Replace "TK__" with "__", which will eventually be translated |
1093 | into "." (just below). */ | |
1094 | ||
4c4b4cd2 PH |
1095 | if (i < len0 - 4 && strncmp (encoded + i, "TK__", 4) == 0) |
1096 | i += 2; | |
529cad9c | 1097 | |
29480c32 JB |
1098 | /* Replace "__B_{DIGITS}+__" sequences by "__", which will eventually |
1099 | be translated into "." (just below). These are internal names | |
1100 | generated for anonymous blocks inside which our symbol is nested. */ | |
1101 | ||
1102 | if (len0 - i > 5 && encoded [i] == '_' && encoded [i+1] == '_' | |
1103 | && encoded [i+2] == 'B' && encoded [i+3] == '_' | |
1104 | && isdigit (encoded [i+4])) | |
1105 | { | |
1106 | int k = i + 5; | |
1107 | ||
1108 | while (k < len0 && isdigit (encoded[k])) | |
1109 | k++; /* Skip any extra digit. */ | |
1110 | ||
1111 | /* Double-check that the "__B_{DIGITS}+" sequence we found | |
1112 | is indeed followed by "__". */ | |
1113 | if (len0 - k > 2 && encoded [k] == '_' && encoded [k+1] == '_') | |
1114 | i = k; | |
1115 | } | |
1116 | ||
529cad9c PH |
1117 | /* Remove _E{DIGITS}+[sb] */ |
1118 | ||
1119 | /* Just as for protected object subprograms, there are 2 categories | |
0963b4bd | 1120 | of subprograms created by the compiler for each entry. The first |
529cad9c PH |
1121 | one implements the actual entry code, and has a suffix following |
1122 | the convention above; the second one implements the barrier and | |
1123 | uses the same convention as above, except that the 'E' is replaced | |
1124 | by a 'B'. | |
1125 | ||
1126 | Just as above, we do not decode the name of barrier functions | |
1127 | to give the user a clue that the code he is debugging has been | |
1128 | internally generated. */ | |
1129 | ||
1130 | if (len0 - i > 3 && encoded [i] == '_' && encoded[i+1] == 'E' | |
1131 | && isdigit (encoded[i+2])) | |
1132 | { | |
1133 | int k = i + 3; | |
1134 | ||
1135 | while (k < len0 && isdigit (encoded[k])) | |
1136 | k++; | |
1137 | ||
1138 | if (k < len0 | |
1139 | && (encoded[k] == 'b' || encoded[k] == 's')) | |
1140 | { | |
1141 | k++; | |
1142 | /* Just as an extra precaution, make sure that if this | |
1143 | suffix is followed by anything else, it is a '_'. | |
1144 | Otherwise, we matched this sequence by accident. */ | |
1145 | if (k == len0 | |
1146 | || (k < len0 && encoded[k] == '_')) | |
1147 | i = k; | |
1148 | } | |
1149 | } | |
1150 | ||
1151 | /* Remove trailing "N" in [a-z0-9]+N__. The N is added by | |
1152 | the GNAT front-end in protected object subprograms. */ | |
1153 | ||
1154 | if (i < len0 + 3 | |
1155 | && encoded[i] == 'N' && encoded[i+1] == '_' && encoded[i+2] == '_') | |
1156 | { | |
1157 | /* Backtrack a bit up until we reach either the begining of | |
1158 | the encoded name, or "__". Make sure that we only find | |
1159 | digits or lowercase characters. */ | |
1160 | const char *ptr = encoded + i - 1; | |
1161 | ||
1162 | while (ptr >= encoded && is_lower_alphanum (ptr[0])) | |
1163 | ptr--; | |
1164 | if (ptr < encoded | |
1165 | || (ptr > encoded && ptr[0] == '_' && ptr[-1] == '_')) | |
1166 | i++; | |
1167 | } | |
1168 | ||
4c4b4cd2 PH |
1169 | if (encoded[i] == 'X' && i != 0 && isalnum (encoded[i - 1])) |
1170 | { | |
29480c32 JB |
1171 | /* This is a X[bn]* sequence not separated from the previous |
1172 | part of the name with a non-alpha-numeric character (in other | |
1173 | words, immediately following an alpha-numeric character), then | |
1174 | verify that it is placed at the end of the encoded name. If | |
1175 | not, then the encoding is not valid and we should abort the | |
1176 | decoding. Otherwise, just skip it, it is used in body-nested | |
1177 | package names. */ | |
4c4b4cd2 PH |
1178 | do |
1179 | i += 1; | |
1180 | while (i < len0 && (encoded[i] == 'b' || encoded[i] == 'n')); | |
1181 | if (i < len0) | |
1182 | goto Suppress; | |
1183 | } | |
cdc7bb92 | 1184 | else if (i < len0 - 2 && encoded[i] == '_' && encoded[i + 1] == '_') |
4c4b4cd2 | 1185 | { |
29480c32 | 1186 | /* Replace '__' by '.'. */ |
4c4b4cd2 PH |
1187 | decoded[j] = '.'; |
1188 | at_start_name = 1; | |
1189 | i += 2; | |
1190 | j += 1; | |
1191 | } | |
14f9c5c9 | 1192 | else |
4c4b4cd2 | 1193 | { |
29480c32 JB |
1194 | /* It's a character part of the decoded name, so just copy it |
1195 | over. */ | |
4c4b4cd2 PH |
1196 | decoded[j] = encoded[i]; |
1197 | i += 1; | |
1198 | j += 1; | |
1199 | } | |
14f9c5c9 | 1200 | } |
4c4b4cd2 | 1201 | decoded[j] = '\000'; |
14f9c5c9 | 1202 | |
29480c32 JB |
1203 | /* Decoded names should never contain any uppercase character. |
1204 | Double-check this, and abort the decoding if we find one. */ | |
1205 | ||
4c4b4cd2 PH |
1206 | for (i = 0; decoded[i] != '\0'; i += 1) |
1207 | if (isupper (decoded[i]) || decoded[i] == ' ') | |
14f9c5c9 AS |
1208 | goto Suppress; |
1209 | ||
4c4b4cd2 PH |
1210 | if (strcmp (decoded, encoded) == 0) |
1211 | return encoded; | |
1212 | else | |
1213 | return decoded; | |
14f9c5c9 AS |
1214 | |
1215 | Suppress: | |
4c4b4cd2 PH |
1216 | GROW_VECT (decoding_buffer, decoding_buffer_size, strlen (encoded) + 3); |
1217 | decoded = decoding_buffer; | |
1218 | if (encoded[0] == '<') | |
1219 | strcpy (decoded, encoded); | |
14f9c5c9 | 1220 | else |
88c15c34 | 1221 | xsnprintf (decoded, decoding_buffer_size, "<%s>", encoded); |
4c4b4cd2 PH |
1222 | return decoded; |
1223 | ||
1224 | } | |
1225 | ||
1226 | /* Table for keeping permanent unique copies of decoded names. Once | |
1227 | allocated, names in this table are never released. While this is a | |
1228 | storage leak, it should not be significant unless there are massive | |
1229 | changes in the set of decoded names in successive versions of a | |
1230 | symbol table loaded during a single session. */ | |
1231 | static struct htab *decoded_names_store; | |
1232 | ||
1233 | /* Returns the decoded name of GSYMBOL, as for ada_decode, caching it | |
1234 | in the language-specific part of GSYMBOL, if it has not been | |
1235 | previously computed. Tries to save the decoded name in the same | |
1236 | obstack as GSYMBOL, if possible, and otherwise on the heap (so that, | |
1237 | in any case, the decoded symbol has a lifetime at least that of | |
0963b4bd | 1238 | GSYMBOL). |
4c4b4cd2 PH |
1239 | The GSYMBOL parameter is "mutable" in the C++ sense: logically |
1240 | const, but nevertheless modified to a semantically equivalent form | |
0963b4bd | 1241 | when a decoded name is cached in it. */ |
4c4b4cd2 | 1242 | |
76a01679 JB |
1243 | char * |
1244 | ada_decode_symbol (const struct general_symbol_info *gsymbol) | |
4c4b4cd2 | 1245 | { |
76a01679 | 1246 | char **resultp = |
afa16725 | 1247 | (char **) &gsymbol->language_specific.mangled_lang.demangled_name; |
5b4ee69b | 1248 | |
4c4b4cd2 PH |
1249 | if (*resultp == NULL) |
1250 | { | |
1251 | const char *decoded = ada_decode (gsymbol->name); | |
5b4ee69b | 1252 | |
714835d5 | 1253 | if (gsymbol->obj_section != NULL) |
76a01679 | 1254 | { |
714835d5 | 1255 | struct objfile *objf = gsymbol->obj_section->objfile; |
5b4ee69b | 1256 | |
714835d5 UW |
1257 | *resultp = obsavestring (decoded, strlen (decoded), |
1258 | &objf->objfile_obstack); | |
76a01679 | 1259 | } |
4c4b4cd2 | 1260 | /* Sometimes, we can't find a corresponding objfile, in which |
76a01679 JB |
1261 | case, we put the result on the heap. Since we only decode |
1262 | when needed, we hope this usually does not cause a | |
1263 | significant memory leak (FIXME). */ | |
4c4b4cd2 | 1264 | if (*resultp == NULL) |
76a01679 JB |
1265 | { |
1266 | char **slot = (char **) htab_find_slot (decoded_names_store, | |
1267 | decoded, INSERT); | |
5b4ee69b | 1268 | |
76a01679 JB |
1269 | if (*slot == NULL) |
1270 | *slot = xstrdup (decoded); | |
1271 | *resultp = *slot; | |
1272 | } | |
4c4b4cd2 | 1273 | } |
14f9c5c9 | 1274 | |
4c4b4cd2 PH |
1275 | return *resultp; |
1276 | } | |
76a01679 | 1277 | |
2c0b251b | 1278 | static char * |
76a01679 | 1279 | ada_la_decode (const char *encoded, int options) |
4c4b4cd2 PH |
1280 | { |
1281 | return xstrdup (ada_decode (encoded)); | |
14f9c5c9 AS |
1282 | } |
1283 | ||
1284 | /* Returns non-zero iff SYM_NAME matches NAME, ignoring any trailing | |
4c4b4cd2 PH |
1285 | suffixes that encode debugging information or leading _ada_ on |
1286 | SYM_NAME (see is_name_suffix commentary for the debugging | |
1287 | information that is ignored). If WILD, then NAME need only match a | |
1288 | suffix of SYM_NAME minus the same suffixes. Also returns 0 if | |
1289 | either argument is NULL. */ | |
14f9c5c9 | 1290 | |
2c0b251b | 1291 | static int |
40658b94 | 1292 | match_name (const char *sym_name, const char *name, int wild) |
14f9c5c9 AS |
1293 | { |
1294 | if (sym_name == NULL || name == NULL) | |
1295 | return 0; | |
1296 | else if (wild) | |
73589123 | 1297 | return wild_match (sym_name, name) == 0; |
d2e4a39e AS |
1298 | else |
1299 | { | |
1300 | int len_name = strlen (name); | |
5b4ee69b | 1301 | |
4c4b4cd2 PH |
1302 | return (strncmp (sym_name, name, len_name) == 0 |
1303 | && is_name_suffix (sym_name + len_name)) | |
1304 | || (strncmp (sym_name, "_ada_", 5) == 0 | |
1305 | && strncmp (sym_name + 5, name, len_name) == 0 | |
1306 | && is_name_suffix (sym_name + len_name + 5)); | |
d2e4a39e | 1307 | } |
14f9c5c9 | 1308 | } |
14f9c5c9 | 1309 | \f |
d2e4a39e | 1310 | |
4c4b4cd2 | 1311 | /* Arrays */ |
14f9c5c9 | 1312 | |
28c85d6c JB |
1313 | /* Assuming that INDEX_DESC_TYPE is an ___XA structure, a structure |
1314 | generated by the GNAT compiler to describe the index type used | |
1315 | for each dimension of an array, check whether it follows the latest | |
1316 | known encoding. If not, fix it up to conform to the latest encoding. | |
1317 | Otherwise, do nothing. This function also does nothing if | |
1318 | INDEX_DESC_TYPE is NULL. | |
1319 | ||
1320 | The GNAT encoding used to describle the array index type evolved a bit. | |
1321 | Initially, the information would be provided through the name of each | |
1322 | field of the structure type only, while the type of these fields was | |
1323 | described as unspecified and irrelevant. The debugger was then expected | |
1324 | to perform a global type lookup using the name of that field in order | |
1325 | to get access to the full index type description. Because these global | |
1326 | lookups can be very expensive, the encoding was later enhanced to make | |
1327 | the global lookup unnecessary by defining the field type as being | |
1328 | the full index type description. | |
1329 | ||
1330 | The purpose of this routine is to allow us to support older versions | |
1331 | of the compiler by detecting the use of the older encoding, and by | |
1332 | fixing up the INDEX_DESC_TYPE to follow the new one (at this point, | |
1333 | we essentially replace each field's meaningless type by the associated | |
1334 | index subtype). */ | |
1335 | ||
1336 | void | |
1337 | ada_fixup_array_indexes_type (struct type *index_desc_type) | |
1338 | { | |
1339 | int i; | |
1340 | ||
1341 | if (index_desc_type == NULL) | |
1342 | return; | |
1343 | gdb_assert (TYPE_NFIELDS (index_desc_type) > 0); | |
1344 | ||
1345 | /* Check if INDEX_DESC_TYPE follows the older encoding (it is sufficient | |
1346 | to check one field only, no need to check them all). If not, return | |
1347 | now. | |
1348 | ||
1349 | If our INDEX_DESC_TYPE was generated using the older encoding, | |
1350 | the field type should be a meaningless integer type whose name | |
1351 | is not equal to the field name. */ | |
1352 | if (TYPE_NAME (TYPE_FIELD_TYPE (index_desc_type, 0)) != NULL | |
1353 | && strcmp (TYPE_NAME (TYPE_FIELD_TYPE (index_desc_type, 0)), | |
1354 | TYPE_FIELD_NAME (index_desc_type, 0)) == 0) | |
1355 | return; | |
1356 | ||
1357 | /* Fixup each field of INDEX_DESC_TYPE. */ | |
1358 | for (i = 0; i < TYPE_NFIELDS (index_desc_type); i++) | |
1359 | { | |
1360 | char *name = TYPE_FIELD_NAME (index_desc_type, i); | |
1361 | struct type *raw_type = ada_check_typedef (ada_find_any_type (name)); | |
1362 | ||
1363 | if (raw_type) | |
1364 | TYPE_FIELD_TYPE (index_desc_type, i) = raw_type; | |
1365 | } | |
1366 | } | |
1367 | ||
4c4b4cd2 | 1368 | /* Names of MAX_ADA_DIMENS bounds in P_BOUNDS fields of array descriptors. */ |
14f9c5c9 | 1369 | |
d2e4a39e AS |
1370 | static char *bound_name[] = { |
1371 | "LB0", "UB0", "LB1", "UB1", "LB2", "UB2", "LB3", "UB3", | |
14f9c5c9 AS |
1372 | "LB4", "UB4", "LB5", "UB5", "LB6", "UB6", "LB7", "UB7" |
1373 | }; | |
1374 | ||
1375 | /* Maximum number of array dimensions we are prepared to handle. */ | |
1376 | ||
4c4b4cd2 | 1377 | #define MAX_ADA_DIMENS (sizeof(bound_name) / (2*sizeof(char *))) |
14f9c5c9 | 1378 | |
14f9c5c9 | 1379 | |
4c4b4cd2 PH |
1380 | /* The desc_* routines return primitive portions of array descriptors |
1381 | (fat pointers). */ | |
14f9c5c9 AS |
1382 | |
1383 | /* The descriptor or array type, if any, indicated by TYPE; removes | |
4c4b4cd2 PH |
1384 | level of indirection, if needed. */ |
1385 | ||
d2e4a39e AS |
1386 | static struct type * |
1387 | desc_base_type (struct type *type) | |
14f9c5c9 AS |
1388 | { |
1389 | if (type == NULL) | |
1390 | return NULL; | |
61ee279c | 1391 | type = ada_check_typedef (type); |
720d1a40 JB |
1392 | if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF) |
1393 | type = ada_typedef_target_type (type); | |
1394 | ||
1265e4aa JB |
1395 | if (type != NULL |
1396 | && (TYPE_CODE (type) == TYPE_CODE_PTR | |
1397 | || TYPE_CODE (type) == TYPE_CODE_REF)) | |
61ee279c | 1398 | return ada_check_typedef (TYPE_TARGET_TYPE (type)); |
14f9c5c9 AS |
1399 | else |
1400 | return type; | |
1401 | } | |
1402 | ||
4c4b4cd2 PH |
1403 | /* True iff TYPE indicates a "thin" array pointer type. */ |
1404 | ||
14f9c5c9 | 1405 | static int |
d2e4a39e | 1406 | is_thin_pntr (struct type *type) |
14f9c5c9 | 1407 | { |
d2e4a39e | 1408 | return |
14f9c5c9 AS |
1409 | is_suffix (ada_type_name (desc_base_type (type)), "___XUT") |
1410 | || is_suffix (ada_type_name (desc_base_type (type)), "___XUT___XVE"); | |
1411 | } | |
1412 | ||
4c4b4cd2 PH |
1413 | /* The descriptor type for thin pointer type TYPE. */ |
1414 | ||
d2e4a39e AS |
1415 | static struct type * |
1416 | thin_descriptor_type (struct type *type) | |
14f9c5c9 | 1417 | { |
d2e4a39e | 1418 | struct type *base_type = desc_base_type (type); |
5b4ee69b | 1419 | |
14f9c5c9 AS |
1420 | if (base_type == NULL) |
1421 | return NULL; | |
1422 | if (is_suffix (ada_type_name (base_type), "___XVE")) | |
1423 | return base_type; | |
d2e4a39e | 1424 | else |
14f9c5c9 | 1425 | { |
d2e4a39e | 1426 | struct type *alt_type = ada_find_parallel_type (base_type, "___XVE"); |
5b4ee69b | 1427 | |
14f9c5c9 | 1428 | if (alt_type == NULL) |
4c4b4cd2 | 1429 | return base_type; |
14f9c5c9 | 1430 | else |
4c4b4cd2 | 1431 | return alt_type; |
14f9c5c9 AS |
1432 | } |
1433 | } | |
1434 | ||
4c4b4cd2 PH |
1435 | /* A pointer to the array data for thin-pointer value VAL. */ |
1436 | ||
d2e4a39e AS |
1437 | static struct value * |
1438 | thin_data_pntr (struct value *val) | |
14f9c5c9 | 1439 | { |
df407dfe | 1440 | struct type *type = value_type (val); |
556bdfd4 | 1441 | struct type *data_type = desc_data_target_type (thin_descriptor_type (type)); |
5b4ee69b | 1442 | |
556bdfd4 UW |
1443 | data_type = lookup_pointer_type (data_type); |
1444 | ||
14f9c5c9 | 1445 | if (TYPE_CODE (type) == TYPE_CODE_PTR) |
556bdfd4 | 1446 | return value_cast (data_type, value_copy (val)); |
d2e4a39e | 1447 | else |
42ae5230 | 1448 | return value_from_longest (data_type, value_address (val)); |
14f9c5c9 AS |
1449 | } |
1450 | ||
4c4b4cd2 PH |
1451 | /* True iff TYPE indicates a "thick" array pointer type. */ |
1452 | ||
14f9c5c9 | 1453 | static int |
d2e4a39e | 1454 | is_thick_pntr (struct type *type) |
14f9c5c9 AS |
1455 | { |
1456 | type = desc_base_type (type); | |
1457 | return (type != NULL && TYPE_CODE (type) == TYPE_CODE_STRUCT | |
4c4b4cd2 | 1458 | && lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL); |
14f9c5c9 AS |
1459 | } |
1460 | ||
4c4b4cd2 PH |
1461 | /* If TYPE is the type of an array descriptor (fat or thin pointer) or a |
1462 | pointer to one, the type of its bounds data; otherwise, NULL. */ | |
76a01679 | 1463 | |
d2e4a39e AS |
1464 | static struct type * |
1465 | desc_bounds_type (struct type *type) | |
14f9c5c9 | 1466 | { |
d2e4a39e | 1467 | struct type *r; |
14f9c5c9 AS |
1468 | |
1469 | type = desc_base_type (type); | |
1470 | ||
1471 | if (type == NULL) | |
1472 | return NULL; | |
1473 | else if (is_thin_pntr (type)) | |
1474 | { | |
1475 | type = thin_descriptor_type (type); | |
1476 | if (type == NULL) | |
4c4b4cd2 | 1477 | return NULL; |
14f9c5c9 AS |
1478 | r = lookup_struct_elt_type (type, "BOUNDS", 1); |
1479 | if (r != NULL) | |
61ee279c | 1480 | return ada_check_typedef (r); |
14f9c5c9 AS |
1481 | } |
1482 | else if (TYPE_CODE (type) == TYPE_CODE_STRUCT) | |
1483 | { | |
1484 | r = lookup_struct_elt_type (type, "P_BOUNDS", 1); | |
1485 | if (r != NULL) | |
61ee279c | 1486 | return ada_check_typedef (TYPE_TARGET_TYPE (ada_check_typedef (r))); |
14f9c5c9 AS |
1487 | } |
1488 | return NULL; | |
1489 | } | |
1490 | ||
1491 | /* If ARR is an array descriptor (fat or thin pointer), or pointer to | |
4c4b4cd2 PH |
1492 | one, a pointer to its bounds data. Otherwise NULL. */ |
1493 | ||
d2e4a39e AS |
1494 | static struct value * |
1495 | desc_bounds (struct value *arr) | |
14f9c5c9 | 1496 | { |
df407dfe | 1497 | struct type *type = ada_check_typedef (value_type (arr)); |
5b4ee69b | 1498 | |
d2e4a39e | 1499 | if (is_thin_pntr (type)) |
14f9c5c9 | 1500 | { |
d2e4a39e | 1501 | struct type *bounds_type = |
4c4b4cd2 | 1502 | desc_bounds_type (thin_descriptor_type (type)); |
14f9c5c9 AS |
1503 | LONGEST addr; |
1504 | ||
4cdfadb1 | 1505 | if (bounds_type == NULL) |
323e0a4a | 1506 | error (_("Bad GNAT array descriptor")); |
14f9c5c9 AS |
1507 | |
1508 | /* NOTE: The following calculation is not really kosher, but | |
d2e4a39e | 1509 | since desc_type is an XVE-encoded type (and shouldn't be), |
4c4b4cd2 | 1510 | the correct calculation is a real pain. FIXME (and fix GCC). */ |
14f9c5c9 | 1511 | if (TYPE_CODE (type) == TYPE_CODE_PTR) |
4c4b4cd2 | 1512 | addr = value_as_long (arr); |
d2e4a39e | 1513 | else |
42ae5230 | 1514 | addr = value_address (arr); |
14f9c5c9 | 1515 | |
d2e4a39e | 1516 | return |
4c4b4cd2 PH |
1517 | value_from_longest (lookup_pointer_type (bounds_type), |
1518 | addr - TYPE_LENGTH (bounds_type)); | |
14f9c5c9 AS |
1519 | } |
1520 | ||
1521 | else if (is_thick_pntr (type)) | |
05e522ef JB |
1522 | { |
1523 | struct value *p_bounds = value_struct_elt (&arr, NULL, "P_BOUNDS", NULL, | |
1524 | _("Bad GNAT array descriptor")); | |
1525 | struct type *p_bounds_type = value_type (p_bounds); | |
1526 | ||
1527 | if (p_bounds_type | |
1528 | && TYPE_CODE (p_bounds_type) == TYPE_CODE_PTR) | |
1529 | { | |
1530 | struct type *target_type = TYPE_TARGET_TYPE (p_bounds_type); | |
1531 | ||
1532 | if (TYPE_STUB (target_type)) | |
1533 | p_bounds = value_cast (lookup_pointer_type | |
1534 | (ada_check_typedef (target_type)), | |
1535 | p_bounds); | |
1536 | } | |
1537 | else | |
1538 | error (_("Bad GNAT array descriptor")); | |
1539 | ||
1540 | return p_bounds; | |
1541 | } | |
14f9c5c9 AS |
1542 | else |
1543 | return NULL; | |
1544 | } | |
1545 | ||
4c4b4cd2 PH |
1546 | /* If TYPE is the type of an array-descriptor (fat pointer), the bit |
1547 | position of the field containing the address of the bounds data. */ | |
1548 | ||
14f9c5c9 | 1549 | static int |
d2e4a39e | 1550 | fat_pntr_bounds_bitpos (struct type *type) |
14f9c5c9 AS |
1551 | { |
1552 | return TYPE_FIELD_BITPOS (desc_base_type (type), 1); | |
1553 | } | |
1554 | ||
1555 | /* If TYPE is the type of an array-descriptor (fat pointer), the bit | |
4c4b4cd2 PH |
1556 | size of the field containing the address of the bounds data. */ |
1557 | ||
14f9c5c9 | 1558 | static int |
d2e4a39e | 1559 | fat_pntr_bounds_bitsize (struct type *type) |
14f9c5c9 AS |
1560 | { |
1561 | type = desc_base_type (type); | |
1562 | ||
d2e4a39e | 1563 | if (TYPE_FIELD_BITSIZE (type, 1) > 0) |
14f9c5c9 AS |
1564 | return TYPE_FIELD_BITSIZE (type, 1); |
1565 | else | |
61ee279c | 1566 | return 8 * TYPE_LENGTH (ada_check_typedef (TYPE_FIELD_TYPE (type, 1))); |
14f9c5c9 AS |
1567 | } |
1568 | ||
4c4b4cd2 | 1569 | /* If TYPE is the type of an array descriptor (fat or thin pointer) or a |
556bdfd4 UW |
1570 | pointer to one, the type of its array data (a array-with-no-bounds type); |
1571 | otherwise, NULL. Use ada_type_of_array to get an array type with bounds | |
1572 | data. */ | |
4c4b4cd2 | 1573 | |
d2e4a39e | 1574 | static struct type * |
556bdfd4 | 1575 | desc_data_target_type (struct type *type) |
14f9c5c9 AS |
1576 | { |
1577 | type = desc_base_type (type); | |
1578 | ||
4c4b4cd2 | 1579 | /* NOTE: The following is bogus; see comment in desc_bounds. */ |
14f9c5c9 | 1580 | if (is_thin_pntr (type)) |
556bdfd4 | 1581 | return desc_base_type (TYPE_FIELD_TYPE (thin_descriptor_type (type), 1)); |
14f9c5c9 | 1582 | else if (is_thick_pntr (type)) |
556bdfd4 UW |
1583 | { |
1584 | struct type *data_type = lookup_struct_elt_type (type, "P_ARRAY", 1); | |
1585 | ||
1586 | if (data_type | |
1587 | && TYPE_CODE (ada_check_typedef (data_type)) == TYPE_CODE_PTR) | |
05e522ef | 1588 | return ada_check_typedef (TYPE_TARGET_TYPE (data_type)); |
556bdfd4 UW |
1589 | } |
1590 | ||
1591 | return NULL; | |
14f9c5c9 AS |
1592 | } |
1593 | ||
1594 | /* If ARR is an array descriptor (fat or thin pointer), a pointer to | |
1595 | its array data. */ | |
4c4b4cd2 | 1596 | |
d2e4a39e AS |
1597 | static struct value * |
1598 | desc_data (struct value *arr) | |
14f9c5c9 | 1599 | { |
df407dfe | 1600 | struct type *type = value_type (arr); |
5b4ee69b | 1601 | |
14f9c5c9 AS |
1602 | if (is_thin_pntr (type)) |
1603 | return thin_data_pntr (arr); | |
1604 | else if (is_thick_pntr (type)) | |
d2e4a39e | 1605 | return value_struct_elt (&arr, NULL, "P_ARRAY", NULL, |
323e0a4a | 1606 | _("Bad GNAT array descriptor")); |
14f9c5c9 AS |
1607 | else |
1608 | return NULL; | |
1609 | } | |
1610 | ||
1611 | ||
1612 | /* If TYPE is the type of an array-descriptor (fat pointer), the bit | |
4c4b4cd2 PH |
1613 | position of the field containing the address of the data. */ |
1614 | ||
14f9c5c9 | 1615 | static int |
d2e4a39e | 1616 | fat_pntr_data_bitpos (struct type *type) |
14f9c5c9 AS |
1617 | { |
1618 | return TYPE_FIELD_BITPOS (desc_base_type (type), 0); | |
1619 | } | |
1620 | ||
1621 | /* If TYPE is the type of an array-descriptor (fat pointer), the bit | |
4c4b4cd2 PH |
1622 | size of the field containing the address of the data. */ |
1623 | ||
14f9c5c9 | 1624 | static int |
d2e4a39e | 1625 | fat_pntr_data_bitsize (struct type *type) |
14f9c5c9 AS |
1626 | { |
1627 | type = desc_base_type (type); | |
1628 | ||
1629 | if (TYPE_FIELD_BITSIZE (type, 0) > 0) | |
1630 | return TYPE_FIELD_BITSIZE (type, 0); | |
d2e4a39e | 1631 | else |
14f9c5c9 AS |
1632 | return TARGET_CHAR_BIT * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 0)); |
1633 | } | |
1634 | ||
4c4b4cd2 | 1635 | /* If BOUNDS is an array-bounds structure (or pointer to one), return |
14f9c5c9 | 1636 | the Ith lower bound stored in it, if WHICH is 0, and the Ith upper |
4c4b4cd2 PH |
1637 | bound, if WHICH is 1. The first bound is I=1. */ |
1638 | ||
d2e4a39e AS |
1639 | static struct value * |
1640 | desc_one_bound (struct value *bounds, int i, int which) | |
14f9c5c9 | 1641 | { |
d2e4a39e | 1642 | return value_struct_elt (&bounds, NULL, bound_name[2 * i + which - 2], NULL, |
323e0a4a | 1643 | _("Bad GNAT array descriptor bounds")); |
14f9c5c9 AS |
1644 | } |
1645 | ||
1646 | /* If BOUNDS is an array-bounds structure type, return the bit position | |
1647 | of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper | |
4c4b4cd2 PH |
1648 | bound, if WHICH is 1. The first bound is I=1. */ |
1649 | ||
14f9c5c9 | 1650 | static int |
d2e4a39e | 1651 | desc_bound_bitpos (struct type *type, int i, int which) |
14f9c5c9 | 1652 | { |
d2e4a39e | 1653 | return TYPE_FIELD_BITPOS (desc_base_type (type), 2 * i + which - 2); |
14f9c5c9 AS |
1654 | } |
1655 | ||
1656 | /* If BOUNDS is an array-bounds structure type, return the bit field size | |
1657 | of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper | |
4c4b4cd2 PH |
1658 | bound, if WHICH is 1. The first bound is I=1. */ |
1659 | ||
76a01679 | 1660 | static int |
d2e4a39e | 1661 | desc_bound_bitsize (struct type *type, int i, int which) |
14f9c5c9 AS |
1662 | { |
1663 | type = desc_base_type (type); | |
1664 | ||
d2e4a39e AS |
1665 | if (TYPE_FIELD_BITSIZE (type, 2 * i + which - 2) > 0) |
1666 | return TYPE_FIELD_BITSIZE (type, 2 * i + which - 2); | |
1667 | else | |
1668 | return 8 * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 2 * i + which - 2)); | |
14f9c5c9 AS |
1669 | } |
1670 | ||
1671 | /* If TYPE is the type of an array-bounds structure, the type of its | |
4c4b4cd2 PH |
1672 | Ith bound (numbering from 1). Otherwise, NULL. */ |
1673 | ||
d2e4a39e AS |
1674 | static struct type * |
1675 | desc_index_type (struct type *type, int i) | |
14f9c5c9 AS |
1676 | { |
1677 | type = desc_base_type (type); | |
1678 | ||
1679 | if (TYPE_CODE (type) == TYPE_CODE_STRUCT) | |
d2e4a39e AS |
1680 | return lookup_struct_elt_type (type, bound_name[2 * i - 2], 1); |
1681 | else | |
14f9c5c9 AS |
1682 | return NULL; |
1683 | } | |
1684 | ||
4c4b4cd2 PH |
1685 | /* The number of index positions in the array-bounds type TYPE. |
1686 | Return 0 if TYPE is NULL. */ | |
1687 | ||
14f9c5c9 | 1688 | static int |
d2e4a39e | 1689 | desc_arity (struct type *type) |
14f9c5c9 AS |
1690 | { |
1691 | type = desc_base_type (type); | |
1692 | ||
1693 | if (type != NULL) | |
1694 | return TYPE_NFIELDS (type) / 2; | |
1695 | return 0; | |
1696 | } | |
1697 | ||
4c4b4cd2 PH |
1698 | /* Non-zero iff TYPE is a simple array type (not a pointer to one) or |
1699 | an array descriptor type (representing an unconstrained array | |
1700 | type). */ | |
1701 | ||
76a01679 JB |
1702 | static int |
1703 | ada_is_direct_array_type (struct type *type) | |
4c4b4cd2 PH |
1704 | { |
1705 | if (type == NULL) | |
1706 | return 0; | |
61ee279c | 1707 | type = ada_check_typedef (type); |
4c4b4cd2 | 1708 | return (TYPE_CODE (type) == TYPE_CODE_ARRAY |
76a01679 | 1709 | || ada_is_array_descriptor_type (type)); |
4c4b4cd2 PH |
1710 | } |
1711 | ||
52ce6436 | 1712 | /* Non-zero iff TYPE represents any kind of array in Ada, or a pointer |
0963b4bd | 1713 | * to one. */ |
52ce6436 | 1714 | |
2c0b251b | 1715 | static int |
52ce6436 PH |
1716 | ada_is_array_type (struct type *type) |
1717 | { | |
1718 | while (type != NULL | |
1719 | && (TYPE_CODE (type) == TYPE_CODE_PTR | |
1720 | || TYPE_CODE (type) == TYPE_CODE_REF)) | |
1721 | type = TYPE_TARGET_TYPE (type); | |
1722 | return ada_is_direct_array_type (type); | |
1723 | } | |
1724 | ||
4c4b4cd2 | 1725 | /* Non-zero iff TYPE is a simple array type or pointer to one. */ |
14f9c5c9 | 1726 | |
14f9c5c9 | 1727 | int |
4c4b4cd2 | 1728 | ada_is_simple_array_type (struct type *type) |
14f9c5c9 AS |
1729 | { |
1730 | if (type == NULL) | |
1731 | return 0; | |
61ee279c | 1732 | type = ada_check_typedef (type); |
14f9c5c9 | 1733 | return (TYPE_CODE (type) == TYPE_CODE_ARRAY |
4c4b4cd2 PH |
1734 | || (TYPE_CODE (type) == TYPE_CODE_PTR |
1735 | && TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_ARRAY)); | |
14f9c5c9 AS |
1736 | } |
1737 | ||
4c4b4cd2 PH |
1738 | /* Non-zero iff TYPE belongs to a GNAT array descriptor. */ |
1739 | ||
14f9c5c9 | 1740 | int |
4c4b4cd2 | 1741 | ada_is_array_descriptor_type (struct type *type) |
14f9c5c9 | 1742 | { |
556bdfd4 | 1743 | struct type *data_type = desc_data_target_type (type); |
14f9c5c9 AS |
1744 | |
1745 | if (type == NULL) | |
1746 | return 0; | |
61ee279c | 1747 | type = ada_check_typedef (type); |
556bdfd4 UW |
1748 | return (data_type != NULL |
1749 | && TYPE_CODE (data_type) == TYPE_CODE_ARRAY | |
1750 | && desc_arity (desc_bounds_type (type)) > 0); | |
14f9c5c9 AS |
1751 | } |
1752 | ||
1753 | /* Non-zero iff type is a partially mal-formed GNAT array | |
4c4b4cd2 | 1754 | descriptor. FIXME: This is to compensate for some problems with |
14f9c5c9 | 1755 | debugging output from GNAT. Re-examine periodically to see if it |
4c4b4cd2 PH |
1756 | is still needed. */ |
1757 | ||
14f9c5c9 | 1758 | int |
ebf56fd3 | 1759 | ada_is_bogus_array_descriptor (struct type *type) |
14f9c5c9 | 1760 | { |
d2e4a39e | 1761 | return |
14f9c5c9 AS |
1762 | type != NULL |
1763 | && TYPE_CODE (type) == TYPE_CODE_STRUCT | |
1764 | && (lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL | |
4c4b4cd2 PH |
1765 | || lookup_struct_elt_type (type, "P_ARRAY", 1) != NULL) |
1766 | && !ada_is_array_descriptor_type (type); | |
14f9c5c9 AS |
1767 | } |
1768 | ||
1769 | ||
4c4b4cd2 | 1770 | /* If ARR has a record type in the form of a standard GNAT array descriptor, |
14f9c5c9 | 1771 | (fat pointer) returns the type of the array data described---specifically, |
4c4b4cd2 | 1772 | a pointer-to-array type. If BOUNDS is non-zero, the bounds data are filled |
14f9c5c9 | 1773 | in from the descriptor; otherwise, they are left unspecified. If |
4c4b4cd2 PH |
1774 | the ARR denotes a null array descriptor and BOUNDS is non-zero, |
1775 | returns NULL. The result is simply the type of ARR if ARR is not | |
14f9c5c9 | 1776 | a descriptor. */ |
d2e4a39e AS |
1777 | struct type * |
1778 | ada_type_of_array (struct value *arr, int bounds) | |
14f9c5c9 | 1779 | { |
ad82864c JB |
1780 | if (ada_is_constrained_packed_array_type (value_type (arr))) |
1781 | return decode_constrained_packed_array_type (value_type (arr)); | |
14f9c5c9 | 1782 | |
df407dfe AC |
1783 | if (!ada_is_array_descriptor_type (value_type (arr))) |
1784 | return value_type (arr); | |
d2e4a39e AS |
1785 | |
1786 | if (!bounds) | |
ad82864c JB |
1787 | { |
1788 | struct type *array_type = | |
1789 | ada_check_typedef (desc_data_target_type (value_type (arr))); | |
1790 | ||
1791 | if (ada_is_unconstrained_packed_array_type (value_type (arr))) | |
1792 | TYPE_FIELD_BITSIZE (array_type, 0) = | |
1793 | decode_packed_array_bitsize (value_type (arr)); | |
1794 | ||
1795 | return array_type; | |
1796 | } | |
14f9c5c9 AS |
1797 | else |
1798 | { | |
d2e4a39e | 1799 | struct type *elt_type; |
14f9c5c9 | 1800 | int arity; |
d2e4a39e | 1801 | struct value *descriptor; |
14f9c5c9 | 1802 | |
df407dfe AC |
1803 | elt_type = ada_array_element_type (value_type (arr), -1); |
1804 | arity = ada_array_arity (value_type (arr)); | |
14f9c5c9 | 1805 | |
d2e4a39e | 1806 | if (elt_type == NULL || arity == 0) |
df407dfe | 1807 | return ada_check_typedef (value_type (arr)); |
14f9c5c9 AS |
1808 | |
1809 | descriptor = desc_bounds (arr); | |
d2e4a39e | 1810 | if (value_as_long (descriptor) == 0) |
4c4b4cd2 | 1811 | return NULL; |
d2e4a39e | 1812 | while (arity > 0) |
4c4b4cd2 | 1813 | { |
e9bb382b UW |
1814 | struct type *range_type = alloc_type_copy (value_type (arr)); |
1815 | struct type *array_type = alloc_type_copy (value_type (arr)); | |
4c4b4cd2 PH |
1816 | struct value *low = desc_one_bound (descriptor, arity, 0); |
1817 | struct value *high = desc_one_bound (descriptor, arity, 1); | |
4c4b4cd2 | 1818 | |
5b4ee69b | 1819 | arity -= 1; |
df407dfe | 1820 | create_range_type (range_type, value_type (low), |
529cad9c PH |
1821 | longest_to_int (value_as_long (low)), |
1822 | longest_to_int (value_as_long (high))); | |
4c4b4cd2 | 1823 | elt_type = create_array_type (array_type, elt_type, range_type); |
ad82864c JB |
1824 | |
1825 | if (ada_is_unconstrained_packed_array_type (value_type (arr))) | |
e67ad678 JB |
1826 | { |
1827 | /* We need to store the element packed bitsize, as well as | |
1828 | recompute the array size, because it was previously | |
1829 | computed based on the unpacked element size. */ | |
1830 | LONGEST lo = value_as_long (low); | |
1831 | LONGEST hi = value_as_long (high); | |
1832 | ||
1833 | TYPE_FIELD_BITSIZE (elt_type, 0) = | |
1834 | decode_packed_array_bitsize (value_type (arr)); | |
1835 | /* If the array has no element, then the size is already | |
1836 | zero, and does not need to be recomputed. */ | |
1837 | if (lo < hi) | |
1838 | { | |
1839 | int array_bitsize = | |
1840 | (hi - lo + 1) * TYPE_FIELD_BITSIZE (elt_type, 0); | |
1841 | ||
1842 | TYPE_LENGTH (array_type) = (array_bitsize + 7) / 8; | |
1843 | } | |
1844 | } | |
4c4b4cd2 | 1845 | } |
14f9c5c9 AS |
1846 | |
1847 | return lookup_pointer_type (elt_type); | |
1848 | } | |
1849 | } | |
1850 | ||
1851 | /* If ARR does not represent an array, returns ARR unchanged. | |
4c4b4cd2 PH |
1852 | Otherwise, returns either a standard GDB array with bounds set |
1853 | appropriately or, if ARR is a non-null fat pointer, a pointer to a standard | |
1854 | GDB array. Returns NULL if ARR is a null fat pointer. */ | |
1855 | ||
d2e4a39e AS |
1856 | struct value * |
1857 | ada_coerce_to_simple_array_ptr (struct value *arr) | |
14f9c5c9 | 1858 | { |
df407dfe | 1859 | if (ada_is_array_descriptor_type (value_type (arr))) |
14f9c5c9 | 1860 | { |
d2e4a39e | 1861 | struct type *arrType = ada_type_of_array (arr, 1); |
5b4ee69b | 1862 | |
14f9c5c9 | 1863 | if (arrType == NULL) |
4c4b4cd2 | 1864 | return NULL; |
14f9c5c9 AS |
1865 | return value_cast (arrType, value_copy (desc_data (arr))); |
1866 | } | |
ad82864c JB |
1867 | else if (ada_is_constrained_packed_array_type (value_type (arr))) |
1868 | return decode_constrained_packed_array (arr); | |
14f9c5c9 AS |
1869 | else |
1870 | return arr; | |
1871 | } | |
1872 | ||
1873 | /* If ARR does not represent an array, returns ARR unchanged. | |
1874 | Otherwise, returns a standard GDB array describing ARR (which may | |
4c4b4cd2 PH |
1875 | be ARR itself if it already is in the proper form). */ |
1876 | ||
720d1a40 | 1877 | struct value * |
d2e4a39e | 1878 | ada_coerce_to_simple_array (struct value *arr) |
14f9c5c9 | 1879 | { |
df407dfe | 1880 | if (ada_is_array_descriptor_type (value_type (arr))) |
14f9c5c9 | 1881 | { |
d2e4a39e | 1882 | struct value *arrVal = ada_coerce_to_simple_array_ptr (arr); |
5b4ee69b | 1883 | |
14f9c5c9 | 1884 | if (arrVal == NULL) |
323e0a4a | 1885 | error (_("Bounds unavailable for null array pointer.")); |
529cad9c | 1886 | check_size (TYPE_TARGET_TYPE (value_type (arrVal))); |
14f9c5c9 AS |
1887 | return value_ind (arrVal); |
1888 | } | |
ad82864c JB |
1889 | else if (ada_is_constrained_packed_array_type (value_type (arr))) |
1890 | return decode_constrained_packed_array (arr); | |
d2e4a39e | 1891 | else |
14f9c5c9 AS |
1892 | return arr; |
1893 | } | |
1894 | ||
1895 | /* If TYPE represents a GNAT array type, return it translated to an | |
1896 | ordinary GDB array type (possibly with BITSIZE fields indicating | |
4c4b4cd2 PH |
1897 | packing). For other types, is the identity. */ |
1898 | ||
d2e4a39e AS |
1899 | struct type * |
1900 | ada_coerce_to_simple_array_type (struct type *type) | |
14f9c5c9 | 1901 | { |
ad82864c JB |
1902 | if (ada_is_constrained_packed_array_type (type)) |
1903 | return decode_constrained_packed_array_type (type); | |
17280b9f UW |
1904 | |
1905 | if (ada_is_array_descriptor_type (type)) | |
556bdfd4 | 1906 | return ada_check_typedef (desc_data_target_type (type)); |
17280b9f UW |
1907 | |
1908 | return type; | |
14f9c5c9 AS |
1909 | } |
1910 | ||
4c4b4cd2 PH |
1911 | /* Non-zero iff TYPE represents a standard GNAT packed-array type. */ |
1912 | ||
ad82864c JB |
1913 | static int |
1914 | ada_is_packed_array_type (struct type *type) | |
14f9c5c9 AS |
1915 | { |
1916 | if (type == NULL) | |
1917 | return 0; | |
4c4b4cd2 | 1918 | type = desc_base_type (type); |
61ee279c | 1919 | type = ada_check_typedef (type); |
d2e4a39e | 1920 | return |
14f9c5c9 AS |
1921 | ada_type_name (type) != NULL |
1922 | && strstr (ada_type_name (type), "___XP") != NULL; | |
1923 | } | |
1924 | ||
ad82864c JB |
1925 | /* Non-zero iff TYPE represents a standard GNAT constrained |
1926 | packed-array type. */ | |
1927 | ||
1928 | int | |
1929 | ada_is_constrained_packed_array_type (struct type *type) | |
1930 | { | |
1931 | return ada_is_packed_array_type (type) | |
1932 | && !ada_is_array_descriptor_type (type); | |
1933 | } | |
1934 | ||
1935 | /* Non-zero iff TYPE represents an array descriptor for a | |
1936 | unconstrained packed-array type. */ | |
1937 | ||
1938 | static int | |
1939 | ada_is_unconstrained_packed_array_type (struct type *type) | |
1940 | { | |
1941 | return ada_is_packed_array_type (type) | |
1942 | && ada_is_array_descriptor_type (type); | |
1943 | } | |
1944 | ||
1945 | /* Given that TYPE encodes a packed array type (constrained or unconstrained), | |
1946 | return the size of its elements in bits. */ | |
1947 | ||
1948 | static long | |
1949 | decode_packed_array_bitsize (struct type *type) | |
1950 | { | |
720d1a40 | 1951 | char *raw_name; |
ad82864c JB |
1952 | char *tail; |
1953 | long bits; | |
1954 | ||
720d1a40 JB |
1955 | /* Access to arrays implemented as fat pointers are encoded as a typedef |
1956 | of the fat pointer type. We need the name of the fat pointer type | |
1957 | to do the decoding, so strip the typedef layer. */ | |
1958 | if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF) | |
1959 | type = ada_typedef_target_type (type); | |
1960 | ||
1961 | raw_name = ada_type_name (ada_check_typedef (type)); | |
ad82864c JB |
1962 | if (!raw_name) |
1963 | raw_name = ada_type_name (desc_base_type (type)); | |
1964 | ||
1965 | if (!raw_name) | |
1966 | return 0; | |
1967 | ||
1968 | tail = strstr (raw_name, "___XP"); | |
720d1a40 | 1969 | gdb_assert (tail != NULL); |
ad82864c JB |
1970 | |
1971 | if (sscanf (tail + sizeof ("___XP") - 1, "%ld", &bits) != 1) | |
1972 | { | |
1973 | lim_warning | |
1974 | (_("could not understand bit size information on packed array")); | |
1975 | return 0; | |
1976 | } | |
1977 | ||
1978 | return bits; | |
1979 | } | |
1980 | ||
14f9c5c9 AS |
1981 | /* Given that TYPE is a standard GDB array type with all bounds filled |
1982 | in, and that the element size of its ultimate scalar constituents | |
1983 | (that is, either its elements, or, if it is an array of arrays, its | |
1984 | elements' elements, etc.) is *ELT_BITS, return an identical type, | |
1985 | but with the bit sizes of its elements (and those of any | |
1986 | constituent arrays) recorded in the BITSIZE components of its | |
4c4b4cd2 PH |
1987 | TYPE_FIELD_BITSIZE values, and with *ELT_BITS set to its total size |
1988 | in bits. */ | |
1989 | ||
d2e4a39e | 1990 | static struct type * |
ad82864c | 1991 | constrained_packed_array_type (struct type *type, long *elt_bits) |
14f9c5c9 | 1992 | { |
d2e4a39e AS |
1993 | struct type *new_elt_type; |
1994 | struct type *new_type; | |
14f9c5c9 AS |
1995 | LONGEST low_bound, high_bound; |
1996 | ||
61ee279c | 1997 | type = ada_check_typedef (type); |
14f9c5c9 AS |
1998 | if (TYPE_CODE (type) != TYPE_CODE_ARRAY) |
1999 | return type; | |
2000 | ||
e9bb382b | 2001 | new_type = alloc_type_copy (type); |
ad82864c JB |
2002 | new_elt_type = |
2003 | constrained_packed_array_type (ada_check_typedef (TYPE_TARGET_TYPE (type)), | |
2004 | elt_bits); | |
262452ec | 2005 | create_array_type (new_type, new_elt_type, TYPE_INDEX_TYPE (type)); |
14f9c5c9 AS |
2006 | TYPE_FIELD_BITSIZE (new_type, 0) = *elt_bits; |
2007 | TYPE_NAME (new_type) = ada_type_name (type); | |
2008 | ||
262452ec | 2009 | if (get_discrete_bounds (TYPE_INDEX_TYPE (type), |
4c4b4cd2 | 2010 | &low_bound, &high_bound) < 0) |
14f9c5c9 AS |
2011 | low_bound = high_bound = 0; |
2012 | if (high_bound < low_bound) | |
2013 | *elt_bits = TYPE_LENGTH (new_type) = 0; | |
d2e4a39e | 2014 | else |
14f9c5c9 AS |
2015 | { |
2016 | *elt_bits *= (high_bound - low_bound + 1); | |
d2e4a39e | 2017 | TYPE_LENGTH (new_type) = |
4c4b4cd2 | 2018 | (*elt_bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT; |
14f9c5c9 AS |
2019 | } |
2020 | ||
876cecd0 | 2021 | TYPE_FIXED_INSTANCE (new_type) = 1; |
14f9c5c9 AS |
2022 | return new_type; |
2023 | } | |
2024 | ||
ad82864c JB |
2025 | /* The array type encoded by TYPE, where |
2026 | ada_is_constrained_packed_array_type (TYPE). */ | |
4c4b4cd2 | 2027 | |
d2e4a39e | 2028 | static struct type * |
ad82864c | 2029 | decode_constrained_packed_array_type (struct type *type) |
d2e4a39e | 2030 | { |
727e3d2e JB |
2031 | char *raw_name = ada_type_name (ada_check_typedef (type)); |
2032 | char *name; | |
2033 | char *tail; | |
d2e4a39e | 2034 | struct type *shadow_type; |
14f9c5c9 | 2035 | long bits; |
14f9c5c9 | 2036 | |
727e3d2e JB |
2037 | if (!raw_name) |
2038 | raw_name = ada_type_name (desc_base_type (type)); | |
2039 | ||
2040 | if (!raw_name) | |
2041 | return NULL; | |
2042 | ||
2043 | name = (char *) alloca (strlen (raw_name) + 1); | |
2044 | tail = strstr (raw_name, "___XP"); | |
4c4b4cd2 PH |
2045 | type = desc_base_type (type); |
2046 | ||
14f9c5c9 AS |
2047 | memcpy (name, raw_name, tail - raw_name); |
2048 | name[tail - raw_name] = '\000'; | |
2049 | ||
b4ba55a1 JB |
2050 | shadow_type = ada_find_parallel_type_with_name (type, name); |
2051 | ||
2052 | if (shadow_type == NULL) | |
14f9c5c9 | 2053 | { |
323e0a4a | 2054 | lim_warning (_("could not find bounds information on packed array")); |
14f9c5c9 AS |
2055 | return NULL; |
2056 | } | |
cb249c71 | 2057 | CHECK_TYPEDEF (shadow_type); |
14f9c5c9 AS |
2058 | |
2059 | if (TYPE_CODE (shadow_type) != TYPE_CODE_ARRAY) | |
2060 | { | |
0963b4bd MS |
2061 | lim_warning (_("could not understand bounds " |
2062 | "information on packed array")); | |
14f9c5c9 AS |
2063 | return NULL; |
2064 | } | |
d2e4a39e | 2065 | |
ad82864c JB |
2066 | bits = decode_packed_array_bitsize (type); |
2067 | return constrained_packed_array_type (shadow_type, &bits); | |
14f9c5c9 AS |
2068 | } |
2069 | ||
ad82864c JB |
2070 | /* Given that ARR is a struct value *indicating a GNAT constrained packed |
2071 | array, returns a simple array that denotes that array. Its type is a | |
14f9c5c9 AS |
2072 | standard GDB array type except that the BITSIZEs of the array |
2073 | target types are set to the number of bits in each element, and the | |
4c4b4cd2 | 2074 | type length is set appropriately. */ |
14f9c5c9 | 2075 | |
d2e4a39e | 2076 | static struct value * |
ad82864c | 2077 | decode_constrained_packed_array (struct value *arr) |
14f9c5c9 | 2078 | { |
4c4b4cd2 | 2079 | struct type *type; |
14f9c5c9 | 2080 | |
4c4b4cd2 | 2081 | arr = ada_coerce_ref (arr); |
284614f0 JB |
2082 | |
2083 | /* If our value is a pointer, then dererence it. Make sure that | |
2084 | this operation does not cause the target type to be fixed, as | |
2085 | this would indirectly cause this array to be decoded. The rest | |
2086 | of the routine assumes that the array hasn't been decoded yet, | |
2087 | so we use the basic "value_ind" routine to perform the dereferencing, | |
2088 | as opposed to using "ada_value_ind". */ | |
df407dfe | 2089 | if (TYPE_CODE (value_type (arr)) == TYPE_CODE_PTR) |
284614f0 | 2090 | arr = value_ind (arr); |
4c4b4cd2 | 2091 | |
ad82864c | 2092 | type = decode_constrained_packed_array_type (value_type (arr)); |
14f9c5c9 AS |
2093 | if (type == NULL) |
2094 | { | |
323e0a4a | 2095 | error (_("can't unpack array")); |
14f9c5c9 AS |
2096 | return NULL; |
2097 | } | |
61ee279c | 2098 | |
50810684 | 2099 | if (gdbarch_bits_big_endian (get_type_arch (value_type (arr))) |
32c9a795 | 2100 | && ada_is_modular_type (value_type (arr))) |
61ee279c PH |
2101 | { |
2102 | /* This is a (right-justified) modular type representing a packed | |
2103 | array with no wrapper. In order to interpret the value through | |
2104 | the (left-justified) packed array type we just built, we must | |
2105 | first left-justify it. */ | |
2106 | int bit_size, bit_pos; | |
2107 | ULONGEST mod; | |
2108 | ||
df407dfe | 2109 | mod = ada_modulus (value_type (arr)) - 1; |
61ee279c PH |
2110 | bit_size = 0; |
2111 | while (mod > 0) | |
2112 | { | |
2113 | bit_size += 1; | |
2114 | mod >>= 1; | |
2115 | } | |
df407dfe | 2116 | bit_pos = HOST_CHAR_BIT * TYPE_LENGTH (value_type (arr)) - bit_size; |
61ee279c PH |
2117 | arr = ada_value_primitive_packed_val (arr, NULL, |
2118 | bit_pos / HOST_CHAR_BIT, | |
2119 | bit_pos % HOST_CHAR_BIT, | |
2120 | bit_size, | |
2121 | type); | |
2122 | } | |
2123 | ||
4c4b4cd2 | 2124 | return coerce_unspec_val_to_type (arr, type); |
14f9c5c9 AS |
2125 | } |
2126 | ||
2127 | ||
2128 | /* The value of the element of packed array ARR at the ARITY indices | |
4c4b4cd2 | 2129 | given in IND. ARR must be a simple array. */ |
14f9c5c9 | 2130 | |
d2e4a39e AS |
2131 | static struct value * |
2132 | value_subscript_packed (struct value *arr, int arity, struct value **ind) | |
14f9c5c9 AS |
2133 | { |
2134 | int i; | |
2135 | int bits, elt_off, bit_off; | |
2136 | long elt_total_bit_offset; | |
d2e4a39e AS |
2137 | struct type *elt_type; |
2138 | struct value *v; | |
14f9c5c9 AS |
2139 | |
2140 | bits = 0; | |
2141 | elt_total_bit_offset = 0; | |
df407dfe | 2142 | elt_type = ada_check_typedef (value_type (arr)); |
d2e4a39e | 2143 | for (i = 0; i < arity; i += 1) |
14f9c5c9 | 2144 | { |
d2e4a39e | 2145 | if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY |
4c4b4cd2 PH |
2146 | || TYPE_FIELD_BITSIZE (elt_type, 0) == 0) |
2147 | error | |
0963b4bd MS |
2148 | (_("attempt to do packed indexing of " |
2149 | "something other than a packed array")); | |
14f9c5c9 | 2150 | else |
4c4b4cd2 PH |
2151 | { |
2152 | struct type *range_type = TYPE_INDEX_TYPE (elt_type); | |
2153 | LONGEST lowerbound, upperbound; | |
2154 | LONGEST idx; | |
2155 | ||
2156 | if (get_discrete_bounds (range_type, &lowerbound, &upperbound) < 0) | |
2157 | { | |
323e0a4a | 2158 | lim_warning (_("don't know bounds of array")); |
4c4b4cd2 PH |
2159 | lowerbound = upperbound = 0; |
2160 | } | |
2161 | ||
3cb382c9 | 2162 | idx = pos_atr (ind[i]); |
4c4b4cd2 | 2163 | if (idx < lowerbound || idx > upperbound) |
0963b4bd MS |
2164 | lim_warning (_("packed array index %ld out of bounds"), |
2165 | (long) idx); | |
4c4b4cd2 PH |
2166 | bits = TYPE_FIELD_BITSIZE (elt_type, 0); |
2167 | elt_total_bit_offset += (idx - lowerbound) * bits; | |
61ee279c | 2168 | elt_type = ada_check_typedef (TYPE_TARGET_TYPE (elt_type)); |
4c4b4cd2 | 2169 | } |
14f9c5c9 AS |
2170 | } |
2171 | elt_off = elt_total_bit_offset / HOST_CHAR_BIT; | |
2172 | bit_off = elt_total_bit_offset % HOST_CHAR_BIT; | |
d2e4a39e AS |
2173 | |
2174 | v = ada_value_primitive_packed_val (arr, NULL, elt_off, bit_off, | |
4c4b4cd2 | 2175 | bits, elt_type); |
14f9c5c9 AS |
2176 | return v; |
2177 | } | |
2178 | ||
4c4b4cd2 | 2179 | /* Non-zero iff TYPE includes negative integer values. */ |
14f9c5c9 AS |
2180 | |
2181 | static int | |
d2e4a39e | 2182 | has_negatives (struct type *type) |
14f9c5c9 | 2183 | { |
d2e4a39e AS |
2184 | switch (TYPE_CODE (type)) |
2185 | { | |
2186 | default: | |
2187 | return 0; | |
2188 | case TYPE_CODE_INT: | |
2189 | return !TYPE_UNSIGNED (type); | |
2190 | case TYPE_CODE_RANGE: | |
2191 | return TYPE_LOW_BOUND (type) < 0; | |
2192 | } | |
14f9c5c9 | 2193 | } |
d2e4a39e | 2194 | |
14f9c5c9 AS |
2195 | |
2196 | /* Create a new value of type TYPE from the contents of OBJ starting | |
2197 | at byte OFFSET, and bit offset BIT_OFFSET within that byte, | |
2198 | proceeding for BIT_SIZE bits. If OBJ is an lval in memory, then | |
0963b4bd | 2199 | assigning through the result will set the field fetched from. |
4c4b4cd2 PH |
2200 | VALADDR is ignored unless OBJ is NULL, in which case, |
2201 | VALADDR+OFFSET must address the start of storage containing the | |
2202 | packed value. The value returned in this case is never an lval. | |
2203 | Assumes 0 <= BIT_OFFSET < HOST_CHAR_BIT. */ | |
14f9c5c9 | 2204 | |
d2e4a39e | 2205 | struct value * |
fc1a4b47 | 2206 | ada_value_primitive_packed_val (struct value *obj, const gdb_byte *valaddr, |
a2bd3dcd | 2207 | long offset, int bit_offset, int bit_size, |
4c4b4cd2 | 2208 | struct type *type) |
14f9c5c9 | 2209 | { |
d2e4a39e | 2210 | struct value *v; |
4c4b4cd2 PH |
2211 | int src, /* Index into the source area */ |
2212 | targ, /* Index into the target area */ | |
2213 | srcBitsLeft, /* Number of source bits left to move */ | |
2214 | nsrc, ntarg, /* Number of source and target bytes */ | |
2215 | unusedLS, /* Number of bits in next significant | |
2216 | byte of source that are unused */ | |
2217 | accumSize; /* Number of meaningful bits in accum */ | |
2218 | unsigned char *bytes; /* First byte containing data to unpack */ | |
d2e4a39e | 2219 | unsigned char *unpacked; |
4c4b4cd2 | 2220 | unsigned long accum; /* Staging area for bits being transferred */ |
14f9c5c9 AS |
2221 | unsigned char sign; |
2222 | int len = (bit_size + bit_offset + HOST_CHAR_BIT - 1) / 8; | |
4c4b4cd2 PH |
2223 | /* Transmit bytes from least to most significant; delta is the direction |
2224 | the indices move. */ | |
50810684 | 2225 | int delta = gdbarch_bits_big_endian (get_type_arch (type)) ? -1 : 1; |
14f9c5c9 | 2226 | |
61ee279c | 2227 | type = ada_check_typedef (type); |
14f9c5c9 AS |
2228 | |
2229 | if (obj == NULL) | |
2230 | { | |
2231 | v = allocate_value (type); | |
d2e4a39e | 2232 | bytes = (unsigned char *) (valaddr + offset); |
14f9c5c9 | 2233 | } |
9214ee5f | 2234 | else if (VALUE_LVAL (obj) == lval_memory && value_lazy (obj)) |
14f9c5c9 AS |
2235 | { |
2236 | v = value_at (type, | |
42ae5230 | 2237 | value_address (obj) + offset); |
d2e4a39e | 2238 | bytes = (unsigned char *) alloca (len); |
42ae5230 | 2239 | read_memory (value_address (v), bytes, len); |
14f9c5c9 | 2240 | } |
d2e4a39e | 2241 | else |
14f9c5c9 AS |
2242 | { |
2243 | v = allocate_value (type); | |
0fd88904 | 2244 | bytes = (unsigned char *) value_contents (obj) + offset; |
14f9c5c9 | 2245 | } |
d2e4a39e AS |
2246 | |
2247 | if (obj != NULL) | |
14f9c5c9 | 2248 | { |
42ae5230 | 2249 | CORE_ADDR new_addr; |
5b4ee69b | 2250 | |
74bcbdf3 | 2251 | set_value_component_location (v, obj); |
42ae5230 | 2252 | new_addr = value_address (obj) + offset; |
9bbda503 AC |
2253 | set_value_bitpos (v, bit_offset + value_bitpos (obj)); |
2254 | set_value_bitsize (v, bit_size); | |
df407dfe | 2255 | if (value_bitpos (v) >= HOST_CHAR_BIT) |
4c4b4cd2 | 2256 | { |
42ae5230 | 2257 | ++new_addr; |
9bbda503 | 2258 | set_value_bitpos (v, value_bitpos (v) - HOST_CHAR_BIT); |
4c4b4cd2 | 2259 | } |
42ae5230 | 2260 | set_value_address (v, new_addr); |
14f9c5c9 AS |
2261 | } |
2262 | else | |
9bbda503 | 2263 | set_value_bitsize (v, bit_size); |
0fd88904 | 2264 | unpacked = (unsigned char *) value_contents (v); |
14f9c5c9 AS |
2265 | |
2266 | srcBitsLeft = bit_size; | |
2267 | nsrc = len; | |
2268 | ntarg = TYPE_LENGTH (type); | |
2269 | sign = 0; | |
2270 | if (bit_size == 0) | |
2271 | { | |
2272 | memset (unpacked, 0, TYPE_LENGTH (type)); | |
2273 | return v; | |
2274 | } | |
50810684 | 2275 | else if (gdbarch_bits_big_endian (get_type_arch (type))) |
14f9c5c9 | 2276 | { |
d2e4a39e | 2277 | src = len - 1; |
1265e4aa JB |
2278 | if (has_negatives (type) |
2279 | && ((bytes[0] << bit_offset) & (1 << (HOST_CHAR_BIT - 1)))) | |
4c4b4cd2 | 2280 | sign = ~0; |
d2e4a39e AS |
2281 | |
2282 | unusedLS = | |
4c4b4cd2 PH |
2283 | (HOST_CHAR_BIT - (bit_size + bit_offset) % HOST_CHAR_BIT) |
2284 | % HOST_CHAR_BIT; | |
14f9c5c9 AS |
2285 | |
2286 | switch (TYPE_CODE (type)) | |
4c4b4cd2 PH |
2287 | { |
2288 | case TYPE_CODE_ARRAY: | |
2289 | case TYPE_CODE_UNION: | |
2290 | case TYPE_CODE_STRUCT: | |
2291 | /* Non-scalar values must be aligned at a byte boundary... */ | |
2292 | accumSize = | |
2293 | (HOST_CHAR_BIT - bit_size % HOST_CHAR_BIT) % HOST_CHAR_BIT; | |
2294 | /* ... And are placed at the beginning (most-significant) bytes | |
2295 | of the target. */ | |
529cad9c | 2296 | targ = (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT - 1; |
0056e4d5 | 2297 | ntarg = targ + 1; |
4c4b4cd2 PH |
2298 | break; |
2299 | default: | |
2300 | accumSize = 0; | |
2301 | targ = TYPE_LENGTH (type) - 1; | |
2302 | break; | |
2303 | } | |
14f9c5c9 | 2304 | } |
d2e4a39e | 2305 | else |
14f9c5c9 AS |
2306 | { |
2307 | int sign_bit_offset = (bit_size + bit_offset - 1) % 8; | |
2308 | ||
2309 | src = targ = 0; | |
2310 | unusedLS = bit_offset; | |
2311 | accumSize = 0; | |
2312 | ||
d2e4a39e | 2313 | if (has_negatives (type) && (bytes[len - 1] & (1 << sign_bit_offset))) |
4c4b4cd2 | 2314 | sign = ~0; |
14f9c5c9 | 2315 | } |
d2e4a39e | 2316 | |
14f9c5c9 AS |
2317 | accum = 0; |
2318 | while (nsrc > 0) | |
2319 | { | |
2320 | /* Mask for removing bits of the next source byte that are not | |
4c4b4cd2 | 2321 | part of the value. */ |
d2e4a39e | 2322 | unsigned int unusedMSMask = |
4c4b4cd2 PH |
2323 | (1 << (srcBitsLeft >= HOST_CHAR_BIT ? HOST_CHAR_BIT : srcBitsLeft)) - |
2324 | 1; | |
2325 | /* Sign-extend bits for this byte. */ | |
14f9c5c9 | 2326 | unsigned int signMask = sign & ~unusedMSMask; |
5b4ee69b | 2327 | |
d2e4a39e | 2328 | accum |= |
4c4b4cd2 | 2329 | (((bytes[src] >> unusedLS) & unusedMSMask) | signMask) << accumSize; |
14f9c5c9 | 2330 | accumSize += HOST_CHAR_BIT - unusedLS; |
d2e4a39e | 2331 | if (accumSize >= HOST_CHAR_BIT) |
4c4b4cd2 PH |
2332 | { |
2333 | unpacked[targ] = accum & ~(~0L << HOST_CHAR_BIT); | |
2334 | accumSize -= HOST_CHAR_BIT; | |
2335 | accum >>= HOST_CHAR_BIT; | |
2336 | ntarg -= 1; | |
2337 | targ += delta; | |
2338 | } | |
14f9c5c9 AS |
2339 | srcBitsLeft -= HOST_CHAR_BIT - unusedLS; |
2340 | unusedLS = 0; | |
2341 | nsrc -= 1; | |
2342 | src += delta; | |
2343 | } | |
2344 | while (ntarg > 0) | |
2345 | { | |
2346 | accum |= sign << accumSize; | |
2347 | unpacked[targ] = accum & ~(~0L << HOST_CHAR_BIT); | |
2348 | accumSize -= HOST_CHAR_BIT; | |
2349 | accum >>= HOST_CHAR_BIT; | |
2350 | ntarg -= 1; | |
2351 | targ += delta; | |
2352 | } | |
2353 | ||
2354 | return v; | |
2355 | } | |
d2e4a39e | 2356 | |
14f9c5c9 AS |
2357 | /* Move N bits from SOURCE, starting at bit offset SRC_OFFSET to |
2358 | TARGET, starting at bit offset TARG_OFFSET. SOURCE and TARGET must | |
4c4b4cd2 | 2359 | not overlap. */ |
14f9c5c9 | 2360 | static void |
fc1a4b47 | 2361 | move_bits (gdb_byte *target, int targ_offset, const gdb_byte *source, |
50810684 | 2362 | int src_offset, int n, int bits_big_endian_p) |
14f9c5c9 AS |
2363 | { |
2364 | unsigned int accum, mask; | |
2365 | int accum_bits, chunk_size; | |
2366 | ||
2367 | target += targ_offset / HOST_CHAR_BIT; | |
2368 | targ_offset %= HOST_CHAR_BIT; | |
2369 | source += src_offset / HOST_CHAR_BIT; | |
2370 | src_offset %= HOST_CHAR_BIT; | |
50810684 | 2371 | if (bits_big_endian_p) |
14f9c5c9 AS |
2372 | { |
2373 | accum = (unsigned char) *source; | |
2374 | source += 1; | |
2375 | accum_bits = HOST_CHAR_BIT - src_offset; | |
2376 | ||
d2e4a39e | 2377 | while (n > 0) |
4c4b4cd2 PH |
2378 | { |
2379 | int unused_right; | |
5b4ee69b | 2380 | |
4c4b4cd2 PH |
2381 | accum = (accum << HOST_CHAR_BIT) + (unsigned char) *source; |
2382 | accum_bits += HOST_CHAR_BIT; | |
2383 | source += 1; | |
2384 | chunk_size = HOST_CHAR_BIT - targ_offset; | |
2385 | if (chunk_size > n) | |
2386 | chunk_size = n; | |
2387 | unused_right = HOST_CHAR_BIT - (chunk_size + targ_offset); | |
2388 | mask = ((1 << chunk_size) - 1) << unused_right; | |
2389 | *target = | |
2390 | (*target & ~mask) | |
2391 | | ((accum >> (accum_bits - chunk_size - unused_right)) & mask); | |
2392 | n -= chunk_size; | |
2393 | accum_bits -= chunk_size; | |
2394 | target += 1; | |
2395 | targ_offset = 0; | |
2396 | } | |
14f9c5c9 AS |
2397 | } |
2398 | else | |
2399 | { | |
2400 | accum = (unsigned char) *source >> src_offset; | |
2401 | source += 1; | |
2402 | accum_bits = HOST_CHAR_BIT - src_offset; | |
2403 | ||
d2e4a39e | 2404 | while (n > 0) |
4c4b4cd2 PH |
2405 | { |
2406 | accum = accum + ((unsigned char) *source << accum_bits); | |
2407 | accum_bits += HOST_CHAR_BIT; | |
2408 | source += 1; | |
2409 | chunk_size = HOST_CHAR_BIT - targ_offset; | |
2410 | if (chunk_size > n) | |
2411 | chunk_size = n; | |
2412 | mask = ((1 << chunk_size) - 1) << targ_offset; | |
2413 | *target = (*target & ~mask) | ((accum << targ_offset) & mask); | |
2414 | n -= chunk_size; | |
2415 | accum_bits -= chunk_size; | |
2416 | accum >>= chunk_size; | |
2417 | target += 1; | |
2418 | targ_offset = 0; | |
2419 | } | |
14f9c5c9 AS |
2420 | } |
2421 | } | |
2422 | ||
14f9c5c9 AS |
2423 | /* Store the contents of FROMVAL into the location of TOVAL. |
2424 | Return a new value with the location of TOVAL and contents of | |
2425 | FROMVAL. Handles assignment into packed fields that have | |
4c4b4cd2 | 2426 | floating-point or non-scalar types. */ |
14f9c5c9 | 2427 | |
d2e4a39e AS |
2428 | static struct value * |
2429 | ada_value_assign (struct value *toval, struct value *fromval) | |
14f9c5c9 | 2430 | { |
df407dfe AC |
2431 | struct type *type = value_type (toval); |
2432 | int bits = value_bitsize (toval); | |
14f9c5c9 | 2433 | |
52ce6436 PH |
2434 | toval = ada_coerce_ref (toval); |
2435 | fromval = ada_coerce_ref (fromval); | |
2436 | ||
2437 | if (ada_is_direct_array_type (value_type (toval))) | |
2438 | toval = ada_coerce_to_simple_array (toval); | |
2439 | if (ada_is_direct_array_type (value_type (fromval))) | |
2440 | fromval = ada_coerce_to_simple_array (fromval); | |
2441 | ||
88e3b34b | 2442 | if (!deprecated_value_modifiable (toval)) |
323e0a4a | 2443 | error (_("Left operand of assignment is not a modifiable lvalue.")); |
14f9c5c9 | 2444 | |
d2e4a39e | 2445 | if (VALUE_LVAL (toval) == lval_memory |
14f9c5c9 | 2446 | && bits > 0 |
d2e4a39e | 2447 | && (TYPE_CODE (type) == TYPE_CODE_FLT |
4c4b4cd2 | 2448 | || TYPE_CODE (type) == TYPE_CODE_STRUCT)) |
14f9c5c9 | 2449 | { |
df407dfe AC |
2450 | int len = (value_bitpos (toval) |
2451 | + bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT; | |
aced2898 | 2452 | int from_size; |
d2e4a39e AS |
2453 | char *buffer = (char *) alloca (len); |
2454 | struct value *val; | |
42ae5230 | 2455 | CORE_ADDR to_addr = value_address (toval); |
14f9c5c9 AS |
2456 | |
2457 | if (TYPE_CODE (type) == TYPE_CODE_FLT) | |
4c4b4cd2 | 2458 | fromval = value_cast (type, fromval); |
14f9c5c9 | 2459 | |
52ce6436 | 2460 | read_memory (to_addr, buffer, len); |
aced2898 PH |
2461 | from_size = value_bitsize (fromval); |
2462 | if (from_size == 0) | |
2463 | from_size = TYPE_LENGTH (value_type (fromval)) * TARGET_CHAR_BIT; | |
50810684 | 2464 | if (gdbarch_bits_big_endian (get_type_arch (type))) |
df407dfe | 2465 | move_bits (buffer, value_bitpos (toval), |
50810684 | 2466 | value_contents (fromval), from_size - bits, bits, 1); |
14f9c5c9 | 2467 | else |
50810684 UW |
2468 | move_bits (buffer, value_bitpos (toval), |
2469 | value_contents (fromval), 0, bits, 0); | |
52ce6436 | 2470 | write_memory (to_addr, buffer, len); |
8cebebb9 PP |
2471 | observer_notify_memory_changed (to_addr, len, buffer); |
2472 | ||
14f9c5c9 | 2473 | val = value_copy (toval); |
0fd88904 | 2474 | memcpy (value_contents_raw (val), value_contents (fromval), |
4c4b4cd2 | 2475 | TYPE_LENGTH (type)); |
04624583 | 2476 | deprecated_set_value_type (val, type); |
d2e4a39e | 2477 | |
14f9c5c9 AS |
2478 | return val; |
2479 | } | |
2480 | ||
2481 | return value_assign (toval, fromval); | |
2482 | } | |
2483 | ||
2484 | ||
52ce6436 PH |
2485 | /* Given that COMPONENT is a memory lvalue that is part of the lvalue |
2486 | * CONTAINER, assign the contents of VAL to COMPONENTS's place in | |
2487 | * CONTAINER. Modifies the VALUE_CONTENTS of CONTAINER only, not | |
2488 | * COMPONENT, and not the inferior's memory. The current contents | |
2489 | * of COMPONENT are ignored. */ | |
2490 | static void | |
2491 | value_assign_to_component (struct value *container, struct value *component, | |
2492 | struct value *val) | |
2493 | { | |
2494 | LONGEST offset_in_container = | |
42ae5230 | 2495 | (LONGEST) (value_address (component) - value_address (container)); |
52ce6436 PH |
2496 | int bit_offset_in_container = |
2497 | value_bitpos (component) - value_bitpos (container); | |
2498 | int bits; | |
2499 | ||
2500 | val = value_cast (value_type (component), val); | |
2501 | ||
2502 | if (value_bitsize (component) == 0) | |
2503 | bits = TARGET_CHAR_BIT * TYPE_LENGTH (value_type (component)); | |
2504 | else | |
2505 | bits = value_bitsize (component); | |
2506 | ||
50810684 | 2507 | if (gdbarch_bits_big_endian (get_type_arch (value_type (container)))) |
52ce6436 PH |
2508 | move_bits (value_contents_writeable (container) + offset_in_container, |
2509 | value_bitpos (container) + bit_offset_in_container, | |
2510 | value_contents (val), | |
2511 | TYPE_LENGTH (value_type (component)) * TARGET_CHAR_BIT - bits, | |
50810684 | 2512 | bits, 1); |
52ce6436 PH |
2513 | else |
2514 | move_bits (value_contents_writeable (container) + offset_in_container, | |
2515 | value_bitpos (container) + bit_offset_in_container, | |
50810684 | 2516 | value_contents (val), 0, bits, 0); |
52ce6436 PH |
2517 | } |
2518 | ||
4c4b4cd2 PH |
2519 | /* The value of the element of array ARR at the ARITY indices given in IND. |
2520 | ARR may be either a simple array, GNAT array descriptor, or pointer | |
14f9c5c9 AS |
2521 | thereto. */ |
2522 | ||
d2e4a39e AS |
2523 | struct value * |
2524 | ada_value_subscript (struct value *arr, int arity, struct value **ind) | |
14f9c5c9 AS |
2525 | { |
2526 | int k; | |
d2e4a39e AS |
2527 | struct value *elt; |
2528 | struct type *elt_type; | |
14f9c5c9 AS |
2529 | |
2530 | elt = ada_coerce_to_simple_array (arr); | |
2531 | ||
df407dfe | 2532 | elt_type = ada_check_typedef (value_type (elt)); |
d2e4a39e | 2533 | if (TYPE_CODE (elt_type) == TYPE_CODE_ARRAY |
14f9c5c9 AS |
2534 | && TYPE_FIELD_BITSIZE (elt_type, 0) > 0) |
2535 | return value_subscript_packed (elt, arity, ind); | |
2536 | ||
2537 | for (k = 0; k < arity; k += 1) | |
2538 | { | |
2539 | if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY) | |
323e0a4a | 2540 | error (_("too many subscripts (%d expected)"), k); |
2497b498 | 2541 | elt = value_subscript (elt, pos_atr (ind[k])); |
14f9c5c9 AS |
2542 | } |
2543 | return elt; | |
2544 | } | |
2545 | ||
2546 | /* Assuming ARR is a pointer to a standard GDB array of type TYPE, the | |
2547 | value of the element of *ARR at the ARITY indices given in | |
4c4b4cd2 | 2548 | IND. Does not read the entire array into memory. */ |
14f9c5c9 | 2549 | |
2c0b251b | 2550 | static struct value * |
d2e4a39e | 2551 | ada_value_ptr_subscript (struct value *arr, struct type *type, int arity, |
4c4b4cd2 | 2552 | struct value **ind) |
14f9c5c9 AS |
2553 | { |
2554 | int k; | |
2555 | ||
2556 | for (k = 0; k < arity; k += 1) | |
2557 | { | |
2558 | LONGEST lwb, upb; | |
14f9c5c9 AS |
2559 | |
2560 | if (TYPE_CODE (type) != TYPE_CODE_ARRAY) | |
323e0a4a | 2561 | error (_("too many subscripts (%d expected)"), k); |
d2e4a39e | 2562 | arr = value_cast (lookup_pointer_type (TYPE_TARGET_TYPE (type)), |
4c4b4cd2 | 2563 | value_copy (arr)); |
14f9c5c9 | 2564 | get_discrete_bounds (TYPE_INDEX_TYPE (type), &lwb, &upb); |
2497b498 | 2565 | arr = value_ptradd (arr, pos_atr (ind[k]) - lwb); |
14f9c5c9 AS |
2566 | type = TYPE_TARGET_TYPE (type); |
2567 | } | |
2568 | ||
2569 | return value_ind (arr); | |
2570 | } | |
2571 | ||
0b5d8877 | 2572 | /* Given that ARRAY_PTR is a pointer or reference to an array of type TYPE (the |
f5938064 JG |
2573 | actual type of ARRAY_PTR is ignored), returns the Ada slice of HIGH-LOW+1 |
2574 | elements starting at index LOW. The lower bound of this array is LOW, as | |
0963b4bd | 2575 | per Ada rules. */ |
0b5d8877 | 2576 | static struct value * |
f5938064 JG |
2577 | ada_value_slice_from_ptr (struct value *array_ptr, struct type *type, |
2578 | int low, int high) | |
0b5d8877 | 2579 | { |
6c038f32 | 2580 | CORE_ADDR base = value_as_address (array_ptr) |
43bbcdc2 | 2581 | + ((low - ada_discrete_type_low_bound (TYPE_INDEX_TYPE (type))) |
0b5d8877 | 2582 | * TYPE_LENGTH (TYPE_TARGET_TYPE (type))); |
6c038f32 PH |
2583 | struct type *index_type = |
2584 | create_range_type (NULL, TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type)), | |
0b5d8877 | 2585 | low, high); |
6c038f32 | 2586 | struct type *slice_type = |
0b5d8877 | 2587 | create_array_type (NULL, TYPE_TARGET_TYPE (type), index_type); |
5b4ee69b | 2588 | |
f5938064 | 2589 | return value_at_lazy (slice_type, base); |
0b5d8877 PH |
2590 | } |
2591 | ||
2592 | ||
2593 | static struct value * | |
2594 | ada_value_slice (struct value *array, int low, int high) | |
2595 | { | |
df407dfe | 2596 | struct type *type = value_type (array); |
6c038f32 | 2597 | struct type *index_type = |
0b5d8877 | 2598 | create_range_type (NULL, TYPE_INDEX_TYPE (type), low, high); |
6c038f32 | 2599 | struct type *slice_type = |
0b5d8877 | 2600 | create_array_type (NULL, TYPE_TARGET_TYPE (type), index_type); |
5b4ee69b | 2601 | |
6c038f32 | 2602 | return value_cast (slice_type, value_slice (array, low, high - low + 1)); |
0b5d8877 PH |
2603 | } |
2604 | ||
14f9c5c9 AS |
2605 | /* If type is a record type in the form of a standard GNAT array |
2606 | descriptor, returns the number of dimensions for type. If arr is a | |
2607 | simple array, returns the number of "array of"s that prefix its | |
4c4b4cd2 | 2608 | type designation. Otherwise, returns 0. */ |
14f9c5c9 AS |
2609 | |
2610 | int | |
d2e4a39e | 2611 | ada_array_arity (struct type *type) |
14f9c5c9 AS |
2612 | { |
2613 | int arity; | |
2614 | ||
2615 | if (type == NULL) | |
2616 | return 0; | |
2617 | ||
2618 | type = desc_base_type (type); | |
2619 | ||
2620 | arity = 0; | |
d2e4a39e | 2621 | if (TYPE_CODE (type) == TYPE_CODE_STRUCT) |
14f9c5c9 | 2622 | return desc_arity (desc_bounds_type (type)); |
d2e4a39e AS |
2623 | else |
2624 | while (TYPE_CODE (type) == TYPE_CODE_ARRAY) | |
14f9c5c9 | 2625 | { |
4c4b4cd2 | 2626 | arity += 1; |
61ee279c | 2627 | type = ada_check_typedef (TYPE_TARGET_TYPE (type)); |
14f9c5c9 | 2628 | } |
d2e4a39e | 2629 | |
14f9c5c9 AS |
2630 | return arity; |
2631 | } | |
2632 | ||
2633 | /* If TYPE is a record type in the form of a standard GNAT array | |
2634 | descriptor or a simple array type, returns the element type for | |
2635 | TYPE after indexing by NINDICES indices, or by all indices if | |
4c4b4cd2 | 2636 | NINDICES is -1. Otherwise, returns NULL. */ |
14f9c5c9 | 2637 | |
d2e4a39e AS |
2638 | struct type * |
2639 | ada_array_element_type (struct type *type, int nindices) | |
14f9c5c9 AS |
2640 | { |
2641 | type = desc_base_type (type); | |
2642 | ||
d2e4a39e | 2643 | if (TYPE_CODE (type) == TYPE_CODE_STRUCT) |
14f9c5c9 AS |
2644 | { |
2645 | int k; | |
d2e4a39e | 2646 | struct type *p_array_type; |
14f9c5c9 | 2647 | |
556bdfd4 | 2648 | p_array_type = desc_data_target_type (type); |
14f9c5c9 AS |
2649 | |
2650 | k = ada_array_arity (type); | |
2651 | if (k == 0) | |
4c4b4cd2 | 2652 | return NULL; |
d2e4a39e | 2653 | |
4c4b4cd2 | 2654 | /* Initially p_array_type = elt_type(*)[]...(k times)...[]. */ |
14f9c5c9 | 2655 | if (nindices >= 0 && k > nindices) |
4c4b4cd2 | 2656 | k = nindices; |
d2e4a39e | 2657 | while (k > 0 && p_array_type != NULL) |
4c4b4cd2 | 2658 | { |
61ee279c | 2659 | p_array_type = ada_check_typedef (TYPE_TARGET_TYPE (p_array_type)); |
4c4b4cd2 PH |
2660 | k -= 1; |
2661 | } | |
14f9c5c9 AS |
2662 | return p_array_type; |
2663 | } | |
2664 | else if (TYPE_CODE (type) == TYPE_CODE_ARRAY) | |
2665 | { | |
2666 | while (nindices != 0 && TYPE_CODE (type) == TYPE_CODE_ARRAY) | |
4c4b4cd2 PH |
2667 | { |
2668 | type = TYPE_TARGET_TYPE (type); | |
2669 | nindices -= 1; | |
2670 | } | |
14f9c5c9 AS |
2671 | return type; |
2672 | } | |
2673 | ||
2674 | return NULL; | |
2675 | } | |
2676 | ||
4c4b4cd2 | 2677 | /* The type of nth index in arrays of given type (n numbering from 1). |
dd19d49e UW |
2678 | Does not examine memory. Throws an error if N is invalid or TYPE |
2679 | is not an array type. NAME is the name of the Ada attribute being | |
2680 | evaluated ('range, 'first, 'last, or 'length); it is used in building | |
2681 | the error message. */ | |
14f9c5c9 | 2682 | |
1eea4ebd UW |
2683 | static struct type * |
2684 | ada_index_type (struct type *type, int n, const char *name) | |
14f9c5c9 | 2685 | { |
4c4b4cd2 PH |
2686 | struct type *result_type; |
2687 | ||
14f9c5c9 AS |
2688 | type = desc_base_type (type); |
2689 | ||
1eea4ebd UW |
2690 | if (n < 0 || n > ada_array_arity (type)) |
2691 | error (_("invalid dimension number to '%s"), name); | |
14f9c5c9 | 2692 | |
4c4b4cd2 | 2693 | if (ada_is_simple_array_type (type)) |
14f9c5c9 AS |
2694 | { |
2695 | int i; | |
2696 | ||
2697 | for (i = 1; i < n; i += 1) | |
4c4b4cd2 | 2698 | type = TYPE_TARGET_TYPE (type); |
262452ec | 2699 | result_type = TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type)); |
4c4b4cd2 PH |
2700 | /* FIXME: The stabs type r(0,0);bound;bound in an array type |
2701 | has a target type of TYPE_CODE_UNDEF. We compensate here, but | |
76a01679 | 2702 | perhaps stabsread.c would make more sense. */ |
1eea4ebd UW |
2703 | if (result_type && TYPE_CODE (result_type) == TYPE_CODE_UNDEF) |
2704 | result_type = NULL; | |
14f9c5c9 | 2705 | } |
d2e4a39e | 2706 | else |
1eea4ebd UW |
2707 | { |
2708 | result_type = desc_index_type (desc_bounds_type (type), n); | |
2709 | if (result_type == NULL) | |
2710 | error (_("attempt to take bound of something that is not an array")); | |
2711 | } | |
2712 | ||
2713 | return result_type; | |
14f9c5c9 AS |
2714 | } |
2715 | ||
2716 | /* Given that arr is an array type, returns the lower bound of the | |
2717 | Nth index (numbering from 1) if WHICH is 0, and the upper bound if | |
4c4b4cd2 | 2718 | WHICH is 1. This returns bounds 0 .. -1 if ARR_TYPE is an |
1eea4ebd UW |
2719 | array-descriptor type. It works for other arrays with bounds supplied |
2720 | by run-time quantities other than discriminants. */ | |
14f9c5c9 | 2721 | |
abb68b3e | 2722 | static LONGEST |
1eea4ebd | 2723 | ada_array_bound_from_type (struct type * arr_type, int n, int which) |
14f9c5c9 | 2724 | { |
1ce677a4 | 2725 | struct type *type, *elt_type, *index_type_desc, *index_type; |
1ce677a4 | 2726 | int i; |
262452ec JK |
2727 | |
2728 | gdb_assert (which == 0 || which == 1); | |
14f9c5c9 | 2729 | |
ad82864c JB |
2730 | if (ada_is_constrained_packed_array_type (arr_type)) |
2731 | arr_type = decode_constrained_packed_array_type (arr_type); | |
14f9c5c9 | 2732 | |
4c4b4cd2 | 2733 | if (arr_type == NULL || !ada_is_simple_array_type (arr_type)) |
1eea4ebd | 2734 | return (LONGEST) - which; |
14f9c5c9 AS |
2735 | |
2736 | if (TYPE_CODE (arr_type) == TYPE_CODE_PTR) | |
2737 | type = TYPE_TARGET_TYPE (arr_type); | |
2738 | else | |
2739 | type = arr_type; | |
2740 | ||
1ce677a4 UW |
2741 | elt_type = type; |
2742 | for (i = n; i > 1; i--) | |
2743 | elt_type = TYPE_TARGET_TYPE (type); | |
2744 | ||
14f9c5c9 | 2745 | index_type_desc = ada_find_parallel_type (type, "___XA"); |
28c85d6c | 2746 | ada_fixup_array_indexes_type (index_type_desc); |
262452ec | 2747 | if (index_type_desc != NULL) |
28c85d6c JB |
2748 | index_type = to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, n - 1), |
2749 | NULL); | |
262452ec | 2750 | else |
1ce677a4 | 2751 | index_type = TYPE_INDEX_TYPE (elt_type); |
262452ec | 2752 | |
43bbcdc2 PH |
2753 | return |
2754 | (LONGEST) (which == 0 | |
2755 | ? ada_discrete_type_low_bound (index_type) | |
2756 | : ada_discrete_type_high_bound (index_type)); | |
14f9c5c9 AS |
2757 | } |
2758 | ||
2759 | /* Given that arr is an array value, returns the lower bound of the | |
abb68b3e JB |
2760 | nth index (numbering from 1) if WHICH is 0, and the upper bound if |
2761 | WHICH is 1. This routine will also work for arrays with bounds | |
4c4b4cd2 | 2762 | supplied by run-time quantities other than discriminants. */ |
14f9c5c9 | 2763 | |
1eea4ebd | 2764 | static LONGEST |
4dc81987 | 2765 | ada_array_bound (struct value *arr, int n, int which) |
14f9c5c9 | 2766 | { |
df407dfe | 2767 | struct type *arr_type = value_type (arr); |
14f9c5c9 | 2768 | |
ad82864c JB |
2769 | if (ada_is_constrained_packed_array_type (arr_type)) |
2770 | return ada_array_bound (decode_constrained_packed_array (arr), n, which); | |
4c4b4cd2 | 2771 | else if (ada_is_simple_array_type (arr_type)) |
1eea4ebd | 2772 | return ada_array_bound_from_type (arr_type, n, which); |
14f9c5c9 | 2773 | else |
1eea4ebd | 2774 | return value_as_long (desc_one_bound (desc_bounds (arr), n, which)); |
14f9c5c9 AS |
2775 | } |
2776 | ||
2777 | /* Given that arr is an array value, returns the length of the | |
2778 | nth index. This routine will also work for arrays with bounds | |
4c4b4cd2 PH |
2779 | supplied by run-time quantities other than discriminants. |
2780 | Does not work for arrays indexed by enumeration types with representation | |
2781 | clauses at the moment. */ | |
14f9c5c9 | 2782 | |
1eea4ebd | 2783 | static LONGEST |
d2e4a39e | 2784 | ada_array_length (struct value *arr, int n) |
14f9c5c9 | 2785 | { |
df407dfe | 2786 | struct type *arr_type = ada_check_typedef (value_type (arr)); |
14f9c5c9 | 2787 | |
ad82864c JB |
2788 | if (ada_is_constrained_packed_array_type (arr_type)) |
2789 | return ada_array_length (decode_constrained_packed_array (arr), n); | |
14f9c5c9 | 2790 | |
4c4b4cd2 | 2791 | if (ada_is_simple_array_type (arr_type)) |
1eea4ebd UW |
2792 | return (ada_array_bound_from_type (arr_type, n, 1) |
2793 | - ada_array_bound_from_type (arr_type, n, 0) + 1); | |
14f9c5c9 | 2794 | else |
1eea4ebd UW |
2795 | return (value_as_long (desc_one_bound (desc_bounds (arr), n, 1)) |
2796 | - value_as_long (desc_one_bound (desc_bounds (arr), n, 0)) + 1); | |
4c4b4cd2 PH |
2797 | } |
2798 | ||
2799 | /* An empty array whose type is that of ARR_TYPE (an array type), | |
2800 | with bounds LOW to LOW-1. */ | |
2801 | ||
2802 | static struct value * | |
2803 | empty_array (struct type *arr_type, int low) | |
2804 | { | |
6c038f32 | 2805 | struct type *index_type = |
0b5d8877 PH |
2806 | create_range_type (NULL, TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (arr_type)), |
2807 | low, low - 1); | |
2808 | struct type *elt_type = ada_array_element_type (arr_type, 1); | |
5b4ee69b | 2809 | |
0b5d8877 | 2810 | return allocate_value (create_array_type (NULL, elt_type, index_type)); |
14f9c5c9 | 2811 | } |
14f9c5c9 | 2812 | \f |
d2e4a39e | 2813 | |
4c4b4cd2 | 2814 | /* Name resolution */ |
14f9c5c9 | 2815 | |
4c4b4cd2 PH |
2816 | /* The "decoded" name for the user-definable Ada operator corresponding |
2817 | to OP. */ | |
14f9c5c9 | 2818 | |
d2e4a39e | 2819 | static const char * |
4c4b4cd2 | 2820 | ada_decoded_op_name (enum exp_opcode op) |
14f9c5c9 AS |
2821 | { |
2822 | int i; | |
2823 | ||
4c4b4cd2 | 2824 | for (i = 0; ada_opname_table[i].encoded != NULL; i += 1) |
14f9c5c9 AS |
2825 | { |
2826 | if (ada_opname_table[i].op == op) | |
4c4b4cd2 | 2827 | return ada_opname_table[i].decoded; |
14f9c5c9 | 2828 | } |
323e0a4a | 2829 | error (_("Could not find operator name for opcode")); |
14f9c5c9 AS |
2830 | } |
2831 | ||
2832 | ||
4c4b4cd2 PH |
2833 | /* Same as evaluate_type (*EXP), but resolves ambiguous symbol |
2834 | references (marked by OP_VAR_VALUE nodes in which the symbol has an | |
2835 | undefined namespace) and converts operators that are | |
2836 | user-defined into appropriate function calls. If CONTEXT_TYPE is | |
14f9c5c9 AS |
2837 | non-null, it provides a preferred result type [at the moment, only |
2838 | type void has any effect---causing procedures to be preferred over | |
2839 | functions in calls]. A null CONTEXT_TYPE indicates that a non-void | |
4c4b4cd2 | 2840 | return type is preferred. May change (expand) *EXP. */ |
14f9c5c9 | 2841 | |
4c4b4cd2 PH |
2842 | static void |
2843 | resolve (struct expression **expp, int void_context_p) | |
14f9c5c9 | 2844 | { |
30b15541 UW |
2845 | struct type *context_type = NULL; |
2846 | int pc = 0; | |
2847 | ||
2848 | if (void_context_p) | |
2849 | context_type = builtin_type ((*expp)->gdbarch)->builtin_void; | |
2850 | ||
2851 | resolve_subexp (expp, &pc, 1, context_type); | |
14f9c5c9 AS |
2852 | } |
2853 | ||
4c4b4cd2 PH |
2854 | /* Resolve the operator of the subexpression beginning at |
2855 | position *POS of *EXPP. "Resolving" consists of replacing | |
2856 | the symbols that have undefined namespaces in OP_VAR_VALUE nodes | |
2857 | with their resolutions, replacing built-in operators with | |
2858 | function calls to user-defined operators, where appropriate, and, | |
2859 | when DEPROCEDURE_P is non-zero, converting function-valued variables | |
2860 | into parameterless calls. May expand *EXPP. The CONTEXT_TYPE functions | |
2861 | are as in ada_resolve, above. */ | |
14f9c5c9 | 2862 | |
d2e4a39e | 2863 | static struct value * |
4c4b4cd2 | 2864 | resolve_subexp (struct expression **expp, int *pos, int deprocedure_p, |
76a01679 | 2865 | struct type *context_type) |
14f9c5c9 AS |
2866 | { |
2867 | int pc = *pos; | |
2868 | int i; | |
4c4b4cd2 | 2869 | struct expression *exp; /* Convenience: == *expp. */ |
14f9c5c9 | 2870 | enum exp_opcode op = (*expp)->elts[pc].opcode; |
4c4b4cd2 PH |
2871 | struct value **argvec; /* Vector of operand types (alloca'ed). */ |
2872 | int nargs; /* Number of operands. */ | |
52ce6436 | 2873 | int oplen; |
14f9c5c9 AS |
2874 | |
2875 | argvec = NULL; | |
2876 | nargs = 0; | |
2877 | exp = *expp; | |
2878 | ||
52ce6436 PH |
2879 | /* Pass one: resolve operands, saving their types and updating *pos, |
2880 | if needed. */ | |
14f9c5c9 AS |
2881 | switch (op) |
2882 | { | |
4c4b4cd2 PH |
2883 | case OP_FUNCALL: |
2884 | if (exp->elts[pc + 3].opcode == OP_VAR_VALUE | |
76a01679 JB |
2885 | && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN) |
2886 | *pos += 7; | |
4c4b4cd2 PH |
2887 | else |
2888 | { | |
2889 | *pos += 3; | |
2890 | resolve_subexp (expp, pos, 0, NULL); | |
2891 | } | |
2892 | nargs = longest_to_int (exp->elts[pc + 1].longconst); | |
14f9c5c9 AS |
2893 | break; |
2894 | ||
14f9c5c9 | 2895 | case UNOP_ADDR: |
4c4b4cd2 PH |
2896 | *pos += 1; |
2897 | resolve_subexp (expp, pos, 0, NULL); | |
2898 | break; | |
2899 | ||
52ce6436 PH |
2900 | case UNOP_QUAL: |
2901 | *pos += 3; | |
17466c1a | 2902 | resolve_subexp (expp, pos, 1, check_typedef (exp->elts[pc + 1].type)); |
4c4b4cd2 PH |
2903 | break; |
2904 | ||
52ce6436 | 2905 | case OP_ATR_MODULUS: |
4c4b4cd2 PH |
2906 | case OP_ATR_SIZE: |
2907 | case OP_ATR_TAG: | |
4c4b4cd2 PH |
2908 | case OP_ATR_FIRST: |
2909 | case OP_ATR_LAST: | |
2910 | case OP_ATR_LENGTH: | |
2911 | case OP_ATR_POS: | |
2912 | case OP_ATR_VAL: | |
4c4b4cd2 PH |
2913 | case OP_ATR_MIN: |
2914 | case OP_ATR_MAX: | |
52ce6436 PH |
2915 | case TERNOP_IN_RANGE: |
2916 | case BINOP_IN_BOUNDS: | |
2917 | case UNOP_IN_RANGE: | |
2918 | case OP_AGGREGATE: | |
2919 | case OP_OTHERS: | |
2920 | case OP_CHOICES: | |
2921 | case OP_POSITIONAL: | |
2922 | case OP_DISCRETE_RANGE: | |
2923 | case OP_NAME: | |
2924 | ada_forward_operator_length (exp, pc, &oplen, &nargs); | |
2925 | *pos += oplen; | |
14f9c5c9 AS |
2926 | break; |
2927 | ||
2928 | case BINOP_ASSIGN: | |
2929 | { | |
4c4b4cd2 PH |
2930 | struct value *arg1; |
2931 | ||
2932 | *pos += 1; | |
2933 | arg1 = resolve_subexp (expp, pos, 0, NULL); | |
2934 | if (arg1 == NULL) | |
2935 | resolve_subexp (expp, pos, 1, NULL); | |
2936 | else | |
df407dfe | 2937 | resolve_subexp (expp, pos, 1, value_type (arg1)); |
4c4b4cd2 | 2938 | break; |
14f9c5c9 AS |
2939 | } |
2940 | ||
4c4b4cd2 | 2941 | case UNOP_CAST: |
4c4b4cd2 PH |
2942 | *pos += 3; |
2943 | nargs = 1; | |
2944 | break; | |
14f9c5c9 | 2945 | |
4c4b4cd2 PH |
2946 | case BINOP_ADD: |
2947 | case BINOP_SUB: | |
2948 | case BINOP_MUL: | |
2949 | case BINOP_DIV: | |
2950 | case BINOP_REM: | |
2951 | case BINOP_MOD: | |
2952 | case BINOP_EXP: | |
2953 | case BINOP_CONCAT: | |
2954 | case BINOP_LOGICAL_AND: | |
2955 | case BINOP_LOGICAL_OR: | |
2956 | case BINOP_BITWISE_AND: | |
2957 | case BINOP_BITWISE_IOR: | |
2958 | case BINOP_BITWISE_XOR: | |
14f9c5c9 | 2959 | |
4c4b4cd2 PH |
2960 | case BINOP_EQUAL: |
2961 | case BINOP_NOTEQUAL: | |
2962 | case BINOP_LESS: | |
2963 | case BINOP_GTR: | |
2964 | case BINOP_LEQ: | |
2965 | case BINOP_GEQ: | |
14f9c5c9 | 2966 | |
4c4b4cd2 PH |
2967 | case BINOP_REPEAT: |
2968 | case BINOP_SUBSCRIPT: | |
2969 | case BINOP_COMMA: | |
40c8aaa9 JB |
2970 | *pos += 1; |
2971 | nargs = 2; | |
2972 | break; | |
14f9c5c9 | 2973 | |
4c4b4cd2 PH |
2974 | case UNOP_NEG: |
2975 | case UNOP_PLUS: | |
2976 | case UNOP_LOGICAL_NOT: | |
2977 | case UNOP_ABS: | |
2978 | case UNOP_IND: | |
2979 | *pos += 1; | |
2980 | nargs = 1; | |
2981 | break; | |
14f9c5c9 | 2982 | |
4c4b4cd2 PH |
2983 | case OP_LONG: |
2984 | case OP_DOUBLE: | |
2985 | case OP_VAR_VALUE: | |
2986 | *pos += 4; | |
2987 | break; | |
14f9c5c9 | 2988 | |
4c4b4cd2 PH |
2989 | case OP_TYPE: |
2990 | case OP_BOOL: | |
2991 | case OP_LAST: | |
4c4b4cd2 PH |
2992 | case OP_INTERNALVAR: |
2993 | *pos += 3; | |
2994 | break; | |
14f9c5c9 | 2995 | |
4c4b4cd2 PH |
2996 | case UNOP_MEMVAL: |
2997 | *pos += 3; | |
2998 | nargs = 1; | |
2999 | break; | |
3000 | ||
67f3407f DJ |
3001 | case OP_REGISTER: |
3002 | *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1); | |
3003 | break; | |
3004 | ||
4c4b4cd2 PH |
3005 | case STRUCTOP_STRUCT: |
3006 | *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1); | |
3007 | nargs = 1; | |
3008 | break; | |
3009 | ||
4c4b4cd2 | 3010 | case TERNOP_SLICE: |
4c4b4cd2 PH |
3011 | *pos += 1; |
3012 | nargs = 3; | |
3013 | break; | |
3014 | ||
52ce6436 | 3015 | case OP_STRING: |
14f9c5c9 | 3016 | break; |
4c4b4cd2 PH |
3017 | |
3018 | default: | |
323e0a4a | 3019 | error (_("Unexpected operator during name resolution")); |
14f9c5c9 AS |
3020 | } |
3021 | ||
76a01679 | 3022 | argvec = (struct value * *) alloca (sizeof (struct value *) * (nargs + 1)); |
4c4b4cd2 PH |
3023 | for (i = 0; i < nargs; i += 1) |
3024 | argvec[i] = resolve_subexp (expp, pos, 1, NULL); | |
3025 | argvec[i] = NULL; | |
3026 | exp = *expp; | |
3027 | ||
3028 | /* Pass two: perform any resolution on principal operator. */ | |
14f9c5c9 AS |
3029 | switch (op) |
3030 | { | |
3031 | default: | |
3032 | break; | |
3033 | ||
14f9c5c9 | 3034 | case OP_VAR_VALUE: |
4c4b4cd2 | 3035 | if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN) |
76a01679 JB |
3036 | { |
3037 | struct ada_symbol_info *candidates; | |
3038 | int n_candidates; | |
3039 | ||
3040 | n_candidates = | |
3041 | ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME | |
3042 | (exp->elts[pc + 2].symbol), | |
3043 | exp->elts[pc + 1].block, VAR_DOMAIN, | |
3044 | &candidates); | |
3045 | ||
3046 | if (n_candidates > 1) | |
3047 | { | |
3048 | /* Types tend to get re-introduced locally, so if there | |
3049 | are any local symbols that are not types, first filter | |
3050 | out all types. */ | |
3051 | int j; | |
3052 | for (j = 0; j < n_candidates; j += 1) | |
3053 | switch (SYMBOL_CLASS (candidates[j].sym)) | |
3054 | { | |
3055 | case LOC_REGISTER: | |
3056 | case LOC_ARG: | |
3057 | case LOC_REF_ARG: | |
76a01679 JB |
3058 | case LOC_REGPARM_ADDR: |
3059 | case LOC_LOCAL: | |
76a01679 | 3060 | case LOC_COMPUTED: |
76a01679 JB |
3061 | goto FoundNonType; |
3062 | default: | |
3063 | break; | |
3064 | } | |
3065 | FoundNonType: | |
3066 | if (j < n_candidates) | |
3067 | { | |
3068 | j = 0; | |
3069 | while (j < n_candidates) | |
3070 | { | |
3071 | if (SYMBOL_CLASS (candidates[j].sym) == LOC_TYPEDEF) | |
3072 | { | |
3073 | candidates[j] = candidates[n_candidates - 1]; | |
3074 | n_candidates -= 1; | |
3075 | } | |
3076 | else | |
3077 | j += 1; | |
3078 | } | |
3079 | } | |
3080 | } | |
3081 | ||
3082 | if (n_candidates == 0) | |
323e0a4a | 3083 | error (_("No definition found for %s"), |
76a01679 JB |
3084 | SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol)); |
3085 | else if (n_candidates == 1) | |
3086 | i = 0; | |
3087 | else if (deprocedure_p | |
3088 | && !is_nonfunction (candidates, n_candidates)) | |
3089 | { | |
06d5cf63 JB |
3090 | i = ada_resolve_function |
3091 | (candidates, n_candidates, NULL, 0, | |
3092 | SYMBOL_LINKAGE_NAME (exp->elts[pc + 2].symbol), | |
3093 | context_type); | |
76a01679 | 3094 | if (i < 0) |
323e0a4a | 3095 | error (_("Could not find a match for %s"), |
76a01679 JB |
3096 | SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol)); |
3097 | } | |
3098 | else | |
3099 | { | |
323e0a4a | 3100 | printf_filtered (_("Multiple matches for %s\n"), |
76a01679 JB |
3101 | SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol)); |
3102 | user_select_syms (candidates, n_candidates, 1); | |
3103 | i = 0; | |
3104 | } | |
3105 | ||
3106 | exp->elts[pc + 1].block = candidates[i].block; | |
3107 | exp->elts[pc + 2].symbol = candidates[i].sym; | |
1265e4aa JB |
3108 | if (innermost_block == NULL |
3109 | || contained_in (candidates[i].block, innermost_block)) | |
76a01679 JB |
3110 | innermost_block = candidates[i].block; |
3111 | } | |
3112 | ||
3113 | if (deprocedure_p | |
3114 | && (TYPE_CODE (SYMBOL_TYPE (exp->elts[pc + 2].symbol)) | |
3115 | == TYPE_CODE_FUNC)) | |
3116 | { | |
3117 | replace_operator_with_call (expp, pc, 0, 0, | |
3118 | exp->elts[pc + 2].symbol, | |
3119 | exp->elts[pc + 1].block); | |
3120 | exp = *expp; | |
3121 | } | |
14f9c5c9 AS |
3122 | break; |
3123 | ||
3124 | case OP_FUNCALL: | |
3125 | { | |
4c4b4cd2 | 3126 | if (exp->elts[pc + 3].opcode == OP_VAR_VALUE |
76a01679 | 3127 | && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN) |
4c4b4cd2 PH |
3128 | { |
3129 | struct ada_symbol_info *candidates; | |
3130 | int n_candidates; | |
3131 | ||
3132 | n_candidates = | |
76a01679 JB |
3133 | ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME |
3134 | (exp->elts[pc + 5].symbol), | |
3135 | exp->elts[pc + 4].block, VAR_DOMAIN, | |
3136 | &candidates); | |
4c4b4cd2 PH |
3137 | if (n_candidates == 1) |
3138 | i = 0; | |
3139 | else | |
3140 | { | |
06d5cf63 JB |
3141 | i = ada_resolve_function |
3142 | (candidates, n_candidates, | |
3143 | argvec, nargs, | |
3144 | SYMBOL_LINKAGE_NAME (exp->elts[pc + 5].symbol), | |
3145 | context_type); | |
4c4b4cd2 | 3146 | if (i < 0) |
323e0a4a | 3147 | error (_("Could not find a match for %s"), |
4c4b4cd2 PH |
3148 | SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol)); |
3149 | } | |
3150 | ||
3151 | exp->elts[pc + 4].block = candidates[i].block; | |
3152 | exp->elts[pc + 5].symbol = candidates[i].sym; | |
1265e4aa JB |
3153 | if (innermost_block == NULL |
3154 | || contained_in (candidates[i].block, innermost_block)) | |
4c4b4cd2 PH |
3155 | innermost_block = candidates[i].block; |
3156 | } | |
14f9c5c9 AS |
3157 | } |
3158 | break; | |
3159 | case BINOP_ADD: | |
3160 | case BINOP_SUB: | |
3161 | case BINOP_MUL: | |
3162 | case BINOP_DIV: | |
3163 | case BINOP_REM: | |
3164 | case BINOP_MOD: | |
3165 | case BINOP_CONCAT: | |
3166 | case BINOP_BITWISE_AND: | |
3167 | case BINOP_BITWISE_IOR: | |
3168 | case BINOP_BITWISE_XOR: | |
3169 | case BINOP_EQUAL: | |
3170 | case BINOP_NOTEQUAL: | |
3171 | case BINOP_LESS: | |
3172 | case BINOP_GTR: | |
3173 | case BINOP_LEQ: | |
3174 | case BINOP_GEQ: | |
3175 | case BINOP_EXP: | |
3176 | case UNOP_NEG: | |
3177 | case UNOP_PLUS: | |
3178 | case UNOP_LOGICAL_NOT: | |
3179 | case UNOP_ABS: | |
3180 | if (possible_user_operator_p (op, argvec)) | |
4c4b4cd2 PH |
3181 | { |
3182 | struct ada_symbol_info *candidates; | |
3183 | int n_candidates; | |
3184 | ||
3185 | n_candidates = | |
3186 | ada_lookup_symbol_list (ada_encode (ada_decoded_op_name (op)), | |
3187 | (struct block *) NULL, VAR_DOMAIN, | |
3188 | &candidates); | |
3189 | i = ada_resolve_function (candidates, n_candidates, argvec, nargs, | |
76a01679 | 3190 | ada_decoded_op_name (op), NULL); |
4c4b4cd2 PH |
3191 | if (i < 0) |
3192 | break; | |
3193 | ||
76a01679 JB |
3194 | replace_operator_with_call (expp, pc, nargs, 1, |
3195 | candidates[i].sym, candidates[i].block); | |
4c4b4cd2 PH |
3196 | exp = *expp; |
3197 | } | |
14f9c5c9 | 3198 | break; |
4c4b4cd2 PH |
3199 | |
3200 | case OP_TYPE: | |
b3dbf008 | 3201 | case OP_REGISTER: |
4c4b4cd2 | 3202 | return NULL; |
14f9c5c9 AS |
3203 | } |
3204 | ||
3205 | *pos = pc; | |
3206 | return evaluate_subexp_type (exp, pos); | |
3207 | } | |
3208 | ||
3209 | /* Return non-zero if formal type FTYPE matches actual type ATYPE. If | |
4c4b4cd2 | 3210 | MAY_DEREF is non-zero, the formal may be a pointer and the actual |
5b3d5b7d | 3211 | a non-pointer. */ |
14f9c5c9 | 3212 | /* The term "match" here is rather loose. The match is heuristic and |
5b3d5b7d | 3213 | liberal. */ |
14f9c5c9 AS |
3214 | |
3215 | static int | |
4dc81987 | 3216 | ada_type_match (struct type *ftype, struct type *atype, int may_deref) |
14f9c5c9 | 3217 | { |
61ee279c PH |
3218 | ftype = ada_check_typedef (ftype); |
3219 | atype = ada_check_typedef (atype); | |
14f9c5c9 AS |
3220 | |
3221 | if (TYPE_CODE (ftype) == TYPE_CODE_REF) | |
3222 | ftype = TYPE_TARGET_TYPE (ftype); | |
3223 | if (TYPE_CODE (atype) == TYPE_CODE_REF) | |
3224 | atype = TYPE_TARGET_TYPE (atype); | |
3225 | ||
d2e4a39e | 3226 | switch (TYPE_CODE (ftype)) |
14f9c5c9 AS |
3227 | { |
3228 | default: | |
5b3d5b7d | 3229 | return TYPE_CODE (ftype) == TYPE_CODE (atype); |
14f9c5c9 AS |
3230 | case TYPE_CODE_PTR: |
3231 | if (TYPE_CODE (atype) == TYPE_CODE_PTR) | |
4c4b4cd2 PH |
3232 | return ada_type_match (TYPE_TARGET_TYPE (ftype), |
3233 | TYPE_TARGET_TYPE (atype), 0); | |
d2e4a39e | 3234 | else |
1265e4aa JB |
3235 | return (may_deref |
3236 | && ada_type_match (TYPE_TARGET_TYPE (ftype), atype, 0)); | |
14f9c5c9 AS |
3237 | case TYPE_CODE_INT: |
3238 | case TYPE_CODE_ENUM: | |
3239 | case TYPE_CODE_RANGE: | |
3240 | switch (TYPE_CODE (atype)) | |
4c4b4cd2 PH |
3241 | { |
3242 | case TYPE_CODE_INT: | |
3243 | case TYPE_CODE_ENUM: | |
3244 | case TYPE_CODE_RANGE: | |
3245 | return 1; | |
3246 | default: | |
3247 | return 0; | |
3248 | } | |
14f9c5c9 AS |
3249 | |
3250 | case TYPE_CODE_ARRAY: | |
d2e4a39e | 3251 | return (TYPE_CODE (atype) == TYPE_CODE_ARRAY |
4c4b4cd2 | 3252 | || ada_is_array_descriptor_type (atype)); |
14f9c5c9 AS |
3253 | |
3254 | case TYPE_CODE_STRUCT: | |
4c4b4cd2 PH |
3255 | if (ada_is_array_descriptor_type (ftype)) |
3256 | return (TYPE_CODE (atype) == TYPE_CODE_ARRAY | |
3257 | || ada_is_array_descriptor_type (atype)); | |
14f9c5c9 | 3258 | else |
4c4b4cd2 PH |
3259 | return (TYPE_CODE (atype) == TYPE_CODE_STRUCT |
3260 | && !ada_is_array_descriptor_type (atype)); | |
14f9c5c9 AS |
3261 | |
3262 | case TYPE_CODE_UNION: | |
3263 | case TYPE_CODE_FLT: | |
3264 | return (TYPE_CODE (atype) == TYPE_CODE (ftype)); | |
3265 | } | |
3266 | } | |
3267 | ||
3268 | /* Return non-zero if the formals of FUNC "sufficiently match" the | |
3269 | vector of actual argument types ACTUALS of size N_ACTUALS. FUNC | |
3270 | may also be an enumeral, in which case it is treated as a 0- | |
4c4b4cd2 | 3271 | argument function. */ |
14f9c5c9 AS |
3272 | |
3273 | static int | |
d2e4a39e | 3274 | ada_args_match (struct symbol *func, struct value **actuals, int n_actuals) |
14f9c5c9 AS |
3275 | { |
3276 | int i; | |
d2e4a39e | 3277 | struct type *func_type = SYMBOL_TYPE (func); |
14f9c5c9 | 3278 | |
1265e4aa JB |
3279 | if (SYMBOL_CLASS (func) == LOC_CONST |
3280 | && TYPE_CODE (func_type) == TYPE_CODE_ENUM) | |
14f9c5c9 AS |
3281 | return (n_actuals == 0); |
3282 | else if (func_type == NULL || TYPE_CODE (func_type) != TYPE_CODE_FUNC) | |
3283 | return 0; | |
3284 | ||
3285 | if (TYPE_NFIELDS (func_type) != n_actuals) | |
3286 | return 0; | |
3287 | ||
3288 | for (i = 0; i < n_actuals; i += 1) | |
3289 | { | |
4c4b4cd2 | 3290 | if (actuals[i] == NULL) |
76a01679 JB |
3291 | return 0; |
3292 | else | |
3293 | { | |
5b4ee69b MS |
3294 | struct type *ftype = ada_check_typedef (TYPE_FIELD_TYPE (func_type, |
3295 | i)); | |
df407dfe | 3296 | struct type *atype = ada_check_typedef (value_type (actuals[i])); |
4c4b4cd2 | 3297 | |
76a01679 JB |
3298 | if (!ada_type_match (ftype, atype, 1)) |
3299 | return 0; | |
3300 | } | |
14f9c5c9 AS |
3301 | } |
3302 | return 1; | |
3303 | } | |
3304 | ||
3305 | /* False iff function type FUNC_TYPE definitely does not produce a value | |
3306 | compatible with type CONTEXT_TYPE. Conservatively returns 1 if | |
3307 | FUNC_TYPE is not a valid function type with a non-null return type | |
3308 | or an enumerated type. A null CONTEXT_TYPE indicates any non-void type. */ | |
3309 | ||
3310 | static int | |
d2e4a39e | 3311 | return_match (struct type *func_type, struct type *context_type) |
14f9c5c9 | 3312 | { |
d2e4a39e | 3313 | struct type *return_type; |
14f9c5c9 AS |
3314 | |
3315 | if (func_type == NULL) | |
3316 | return 1; | |
3317 | ||
4c4b4cd2 PH |
3318 | if (TYPE_CODE (func_type) == TYPE_CODE_FUNC) |
3319 | return_type = base_type (TYPE_TARGET_TYPE (func_type)); | |
3320 | else | |
3321 | return_type = base_type (func_type); | |
14f9c5c9 AS |
3322 | if (return_type == NULL) |
3323 | return 1; | |
3324 | ||
4c4b4cd2 | 3325 | context_type = base_type (context_type); |
14f9c5c9 AS |
3326 | |
3327 | if (TYPE_CODE (return_type) == TYPE_CODE_ENUM) | |
3328 | return context_type == NULL || return_type == context_type; | |
3329 | else if (context_type == NULL) | |
3330 | return TYPE_CODE (return_type) != TYPE_CODE_VOID; | |
3331 | else | |
3332 | return TYPE_CODE (return_type) == TYPE_CODE (context_type); | |
3333 | } | |
3334 | ||
3335 | ||
4c4b4cd2 | 3336 | /* Returns the index in SYMS[0..NSYMS-1] that contains the symbol for the |
14f9c5c9 | 3337 | function (if any) that matches the types of the NARGS arguments in |
4c4b4cd2 PH |
3338 | ARGS. If CONTEXT_TYPE is non-null and there is at least one match |
3339 | that returns that type, then eliminate matches that don't. If | |
3340 | CONTEXT_TYPE is void and there is at least one match that does not | |
3341 | return void, eliminate all matches that do. | |
3342 | ||
14f9c5c9 AS |
3343 | Asks the user if there is more than one match remaining. Returns -1 |
3344 | if there is no such symbol or none is selected. NAME is used | |
4c4b4cd2 PH |
3345 | solely for messages. May re-arrange and modify SYMS in |
3346 | the process; the index returned is for the modified vector. */ | |
14f9c5c9 | 3347 | |
4c4b4cd2 PH |
3348 | static int |
3349 | ada_resolve_function (struct ada_symbol_info syms[], | |
3350 | int nsyms, struct value **args, int nargs, | |
3351 | const char *name, struct type *context_type) | |
14f9c5c9 | 3352 | { |
30b15541 | 3353 | int fallback; |
14f9c5c9 | 3354 | int k; |
4c4b4cd2 | 3355 | int m; /* Number of hits */ |
14f9c5c9 | 3356 | |
d2e4a39e | 3357 | m = 0; |
30b15541 UW |
3358 | /* In the first pass of the loop, we only accept functions matching |
3359 | context_type. If none are found, we add a second pass of the loop | |
3360 | where every function is accepted. */ | |
3361 | for (fallback = 0; m == 0 && fallback < 2; fallback++) | |
14f9c5c9 AS |
3362 | { |
3363 | for (k = 0; k < nsyms; k += 1) | |
4c4b4cd2 | 3364 | { |
61ee279c | 3365 | struct type *type = ada_check_typedef (SYMBOL_TYPE (syms[k].sym)); |
4c4b4cd2 PH |
3366 | |
3367 | if (ada_args_match (syms[k].sym, args, nargs) | |
30b15541 | 3368 | && (fallback || return_match (type, context_type))) |
4c4b4cd2 PH |
3369 | { |
3370 | syms[m] = syms[k]; | |
3371 | m += 1; | |
3372 | } | |
3373 | } | |
14f9c5c9 AS |
3374 | } |
3375 | ||
3376 | if (m == 0) | |
3377 | return -1; | |
3378 | else if (m > 1) | |
3379 | { | |
323e0a4a | 3380 | printf_filtered (_("Multiple matches for %s\n"), name); |
4c4b4cd2 | 3381 | user_select_syms (syms, m, 1); |
14f9c5c9 AS |
3382 | return 0; |
3383 | } | |
3384 | return 0; | |
3385 | } | |
3386 | ||
4c4b4cd2 PH |
3387 | /* Returns true (non-zero) iff decoded name N0 should appear before N1 |
3388 | in a listing of choices during disambiguation (see sort_choices, below). | |
3389 | The idea is that overloadings of a subprogram name from the | |
3390 | same package should sort in their source order. We settle for ordering | |
3391 | such symbols by their trailing number (__N or $N). */ | |
3392 | ||
14f9c5c9 | 3393 | static int |
4c4b4cd2 | 3394 | encoded_ordered_before (char *N0, char *N1) |
14f9c5c9 AS |
3395 | { |
3396 | if (N1 == NULL) | |
3397 | return 0; | |
3398 | else if (N0 == NULL) | |
3399 | return 1; | |
3400 | else | |
3401 | { | |
3402 | int k0, k1; | |
5b4ee69b | 3403 | |
d2e4a39e | 3404 | for (k0 = strlen (N0) - 1; k0 > 0 && isdigit (N0[k0]); k0 -= 1) |
4c4b4cd2 | 3405 | ; |
d2e4a39e | 3406 | for (k1 = strlen (N1) - 1; k1 > 0 && isdigit (N1[k1]); k1 -= 1) |
4c4b4cd2 | 3407 | ; |
d2e4a39e | 3408 | if ((N0[k0] == '_' || N0[k0] == '$') && N0[k0 + 1] != '\000' |
4c4b4cd2 PH |
3409 | && (N1[k1] == '_' || N1[k1] == '$') && N1[k1 + 1] != '\000') |
3410 | { | |
3411 | int n0, n1; | |
5b4ee69b | 3412 | |
4c4b4cd2 PH |
3413 | n0 = k0; |
3414 | while (N0[n0] == '_' && n0 > 0 && N0[n0 - 1] == '_') | |
3415 | n0 -= 1; | |
3416 | n1 = k1; | |
3417 | while (N1[n1] == '_' && n1 > 0 && N1[n1 - 1] == '_') | |
3418 | n1 -= 1; | |
3419 | if (n0 == n1 && strncmp (N0, N1, n0) == 0) | |
3420 | return (atoi (N0 + k0 + 1) < atoi (N1 + k1 + 1)); | |
3421 | } | |
14f9c5c9 AS |
3422 | return (strcmp (N0, N1) < 0); |
3423 | } | |
3424 | } | |
d2e4a39e | 3425 | |
4c4b4cd2 PH |
3426 | /* Sort SYMS[0..NSYMS-1] to put the choices in a canonical order by the |
3427 | encoded names. */ | |
3428 | ||
d2e4a39e | 3429 | static void |
4c4b4cd2 | 3430 | sort_choices (struct ada_symbol_info syms[], int nsyms) |
14f9c5c9 | 3431 | { |
4c4b4cd2 | 3432 | int i; |
5b4ee69b | 3433 | |
d2e4a39e | 3434 | for (i = 1; i < nsyms; i += 1) |
14f9c5c9 | 3435 | { |
4c4b4cd2 | 3436 | struct ada_symbol_info sym = syms[i]; |
14f9c5c9 AS |
3437 | int j; |
3438 | ||
d2e4a39e | 3439 | for (j = i - 1; j >= 0; j -= 1) |
4c4b4cd2 PH |
3440 | { |
3441 | if (encoded_ordered_before (SYMBOL_LINKAGE_NAME (syms[j].sym), | |
3442 | SYMBOL_LINKAGE_NAME (sym.sym))) | |
3443 | break; | |
3444 | syms[j + 1] = syms[j]; | |
3445 | } | |
d2e4a39e | 3446 | syms[j + 1] = sym; |
14f9c5c9 AS |
3447 | } |
3448 | } | |
3449 | ||
4c4b4cd2 PH |
3450 | /* Given a list of NSYMS symbols in SYMS, select up to MAX_RESULTS>0 |
3451 | by asking the user (if necessary), returning the number selected, | |
3452 | and setting the first elements of SYMS items. Error if no symbols | |
3453 | selected. */ | |
14f9c5c9 AS |
3454 | |
3455 | /* NOTE: Adapted from decode_line_2 in symtab.c, with which it ought | |
4c4b4cd2 | 3456 | to be re-integrated one of these days. */ |
14f9c5c9 AS |
3457 | |
3458 | int | |
4c4b4cd2 | 3459 | user_select_syms (struct ada_symbol_info *syms, int nsyms, int max_results) |
14f9c5c9 AS |
3460 | { |
3461 | int i; | |
d2e4a39e | 3462 | int *chosen = (int *) alloca (sizeof (int) * nsyms); |
14f9c5c9 AS |
3463 | int n_chosen; |
3464 | int first_choice = (max_results == 1) ? 1 : 2; | |
717d2f5a | 3465 | const char *select_mode = multiple_symbols_select_mode (); |
14f9c5c9 AS |
3466 | |
3467 | if (max_results < 1) | |
323e0a4a | 3468 | error (_("Request to select 0 symbols!")); |
14f9c5c9 AS |
3469 | if (nsyms <= 1) |
3470 | return nsyms; | |
3471 | ||
717d2f5a JB |
3472 | if (select_mode == multiple_symbols_cancel) |
3473 | error (_("\ | |
3474 | canceled because the command is ambiguous\n\ | |
3475 | See set/show multiple-symbol.")); | |
3476 | ||
3477 | /* If select_mode is "all", then return all possible symbols. | |
3478 | Only do that if more than one symbol can be selected, of course. | |
3479 | Otherwise, display the menu as usual. */ | |
3480 | if (select_mode == multiple_symbols_all && max_results > 1) | |
3481 | return nsyms; | |
3482 | ||
323e0a4a | 3483 | printf_unfiltered (_("[0] cancel\n")); |
14f9c5c9 | 3484 | if (max_results > 1) |
323e0a4a | 3485 | printf_unfiltered (_("[1] all\n")); |
14f9c5c9 | 3486 | |
4c4b4cd2 | 3487 | sort_choices (syms, nsyms); |
14f9c5c9 AS |
3488 | |
3489 | for (i = 0; i < nsyms; i += 1) | |
3490 | { | |
4c4b4cd2 PH |
3491 | if (syms[i].sym == NULL) |
3492 | continue; | |
3493 | ||
3494 | if (SYMBOL_CLASS (syms[i].sym) == LOC_BLOCK) | |
3495 | { | |
76a01679 JB |
3496 | struct symtab_and_line sal = |
3497 | find_function_start_sal (syms[i].sym, 1); | |
5b4ee69b | 3498 | |
323e0a4a AC |
3499 | if (sal.symtab == NULL) |
3500 | printf_unfiltered (_("[%d] %s at <no source file available>:%d\n"), | |
3501 | i + first_choice, | |
3502 | SYMBOL_PRINT_NAME (syms[i].sym), | |
3503 | sal.line); | |
3504 | else | |
3505 | printf_unfiltered (_("[%d] %s at %s:%d\n"), i + first_choice, | |
3506 | SYMBOL_PRINT_NAME (syms[i].sym), | |
3507 | sal.symtab->filename, sal.line); | |
4c4b4cd2 PH |
3508 | continue; |
3509 | } | |
d2e4a39e | 3510 | else |
4c4b4cd2 PH |
3511 | { |
3512 | int is_enumeral = | |
3513 | (SYMBOL_CLASS (syms[i].sym) == LOC_CONST | |
3514 | && SYMBOL_TYPE (syms[i].sym) != NULL | |
3515 | && TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) == TYPE_CODE_ENUM); | |
6f38eac8 | 3516 | struct symtab *symtab = syms[i].sym->symtab; |
4c4b4cd2 PH |
3517 | |
3518 | if (SYMBOL_LINE (syms[i].sym) != 0 && symtab != NULL) | |
323e0a4a | 3519 | printf_unfiltered (_("[%d] %s at %s:%d\n"), |
4c4b4cd2 PH |
3520 | i + first_choice, |
3521 | SYMBOL_PRINT_NAME (syms[i].sym), | |
3522 | symtab->filename, SYMBOL_LINE (syms[i].sym)); | |
76a01679 JB |
3523 | else if (is_enumeral |
3524 | && TYPE_NAME (SYMBOL_TYPE (syms[i].sym)) != NULL) | |
4c4b4cd2 | 3525 | { |
a3f17187 | 3526 | printf_unfiltered (("[%d] "), i + first_choice); |
76a01679 JB |
3527 | ada_print_type (SYMBOL_TYPE (syms[i].sym), NULL, |
3528 | gdb_stdout, -1, 0); | |
323e0a4a | 3529 | printf_unfiltered (_("'(%s) (enumeral)\n"), |
4c4b4cd2 PH |
3530 | SYMBOL_PRINT_NAME (syms[i].sym)); |
3531 | } | |
3532 | else if (symtab != NULL) | |
3533 | printf_unfiltered (is_enumeral | |
323e0a4a AC |
3534 | ? _("[%d] %s in %s (enumeral)\n") |
3535 | : _("[%d] %s at %s:?\n"), | |
4c4b4cd2 PH |
3536 | i + first_choice, |
3537 | SYMBOL_PRINT_NAME (syms[i].sym), | |
3538 | symtab->filename); | |
3539 | else | |
3540 | printf_unfiltered (is_enumeral | |
323e0a4a AC |
3541 | ? _("[%d] %s (enumeral)\n") |
3542 | : _("[%d] %s at ?\n"), | |
4c4b4cd2 PH |
3543 | i + first_choice, |
3544 | SYMBOL_PRINT_NAME (syms[i].sym)); | |
3545 | } | |
14f9c5c9 | 3546 | } |
d2e4a39e | 3547 | |
14f9c5c9 | 3548 | n_chosen = get_selections (chosen, nsyms, max_results, max_results > 1, |
4c4b4cd2 | 3549 | "overload-choice"); |
14f9c5c9 AS |
3550 | |
3551 | for (i = 0; i < n_chosen; i += 1) | |
4c4b4cd2 | 3552 | syms[i] = syms[chosen[i]]; |
14f9c5c9 AS |
3553 | |
3554 | return n_chosen; | |
3555 | } | |
3556 | ||
3557 | /* Read and validate a set of numeric choices from the user in the | |
4c4b4cd2 | 3558 | range 0 .. N_CHOICES-1. Place the results in increasing |
14f9c5c9 AS |
3559 | order in CHOICES[0 .. N-1], and return N. |
3560 | ||
3561 | The user types choices as a sequence of numbers on one line | |
3562 | separated by blanks, encoding them as follows: | |
3563 | ||
4c4b4cd2 | 3564 | + A choice of 0 means to cancel the selection, throwing an error. |
14f9c5c9 AS |
3565 | + If IS_ALL_CHOICE, a choice of 1 selects the entire set 0 .. N_CHOICES-1. |
3566 | + The user chooses k by typing k+IS_ALL_CHOICE+1. | |
3567 | ||
4c4b4cd2 | 3568 | The user is not allowed to choose more than MAX_RESULTS values. |
14f9c5c9 AS |
3569 | |
3570 | ANNOTATION_SUFFIX, if present, is used to annotate the input | |
4c4b4cd2 | 3571 | prompts (for use with the -f switch). */ |
14f9c5c9 AS |
3572 | |
3573 | int | |
d2e4a39e | 3574 | get_selections (int *choices, int n_choices, int max_results, |
4c4b4cd2 | 3575 | int is_all_choice, char *annotation_suffix) |
14f9c5c9 | 3576 | { |
d2e4a39e | 3577 | char *args; |
0bcd0149 | 3578 | char *prompt; |
14f9c5c9 AS |
3579 | int n_chosen; |
3580 | int first_choice = is_all_choice ? 2 : 1; | |
d2e4a39e | 3581 | |
14f9c5c9 AS |
3582 | prompt = getenv ("PS2"); |
3583 | if (prompt == NULL) | |
0bcd0149 | 3584 | prompt = "> "; |
14f9c5c9 | 3585 | |
0bcd0149 | 3586 | args = command_line_input (prompt, 0, annotation_suffix); |
d2e4a39e | 3587 | |
14f9c5c9 | 3588 | if (args == NULL) |
323e0a4a | 3589 | error_no_arg (_("one or more choice numbers")); |
14f9c5c9 AS |
3590 | |
3591 | n_chosen = 0; | |
76a01679 | 3592 | |
4c4b4cd2 PH |
3593 | /* Set choices[0 .. n_chosen-1] to the users' choices in ascending |
3594 | order, as given in args. Choices are validated. */ | |
14f9c5c9 AS |
3595 | while (1) |
3596 | { | |
d2e4a39e | 3597 | char *args2; |
14f9c5c9 AS |
3598 | int choice, j; |
3599 | ||
3600 | while (isspace (*args)) | |
4c4b4cd2 | 3601 | args += 1; |
14f9c5c9 | 3602 | if (*args == '\0' && n_chosen == 0) |
323e0a4a | 3603 | error_no_arg (_("one or more choice numbers")); |
14f9c5c9 | 3604 | else if (*args == '\0') |
4c4b4cd2 | 3605 | break; |
14f9c5c9 AS |
3606 | |
3607 | choice = strtol (args, &args2, 10); | |
d2e4a39e | 3608 | if (args == args2 || choice < 0 |
4c4b4cd2 | 3609 | || choice > n_choices + first_choice - 1) |
323e0a4a | 3610 | error (_("Argument must be choice number")); |
14f9c5c9 AS |
3611 | args = args2; |
3612 | ||
d2e4a39e | 3613 | if (choice == 0) |
323e0a4a | 3614 | error (_("cancelled")); |
14f9c5c9 AS |
3615 | |
3616 | if (choice < first_choice) | |
4c4b4cd2 PH |
3617 | { |
3618 | n_chosen = n_choices; | |
3619 | for (j = 0; j < n_choices; j += 1) | |
3620 | choices[j] = j; | |
3621 | break; | |
3622 | } | |
14f9c5c9 AS |
3623 | choice -= first_choice; |
3624 | ||
d2e4a39e | 3625 | for (j = n_chosen - 1; j >= 0 && choice < choices[j]; j -= 1) |
4c4b4cd2 PH |
3626 | { |
3627 | } | |
14f9c5c9 AS |
3628 | |
3629 | if (j < 0 || choice != choices[j]) | |
4c4b4cd2 PH |
3630 | { |
3631 | int k; | |
5b4ee69b | 3632 | |
4c4b4cd2 PH |
3633 | for (k = n_chosen - 1; k > j; k -= 1) |
3634 | choices[k + 1] = choices[k]; | |
3635 | choices[j + 1] = choice; | |
3636 | n_chosen += 1; | |
3637 | } | |
14f9c5c9 AS |
3638 | } |
3639 | ||
3640 | if (n_chosen > max_results) | |
323e0a4a | 3641 | error (_("Select no more than %d of the above"), max_results); |
d2e4a39e | 3642 | |
14f9c5c9 AS |
3643 | return n_chosen; |
3644 | } | |
3645 | ||
4c4b4cd2 PH |
3646 | /* Replace the operator of length OPLEN at position PC in *EXPP with a call |
3647 | on the function identified by SYM and BLOCK, and taking NARGS | |
3648 | arguments. Update *EXPP as needed to hold more space. */ | |
14f9c5c9 AS |
3649 | |
3650 | static void | |
d2e4a39e | 3651 | replace_operator_with_call (struct expression **expp, int pc, int nargs, |
4c4b4cd2 PH |
3652 | int oplen, struct symbol *sym, |
3653 | struct block *block) | |
14f9c5c9 AS |
3654 | { |
3655 | /* A new expression, with 6 more elements (3 for funcall, 4 for function | |
4c4b4cd2 | 3656 | symbol, -oplen for operator being replaced). */ |
d2e4a39e | 3657 | struct expression *newexp = (struct expression *) |
8c1a34e7 | 3658 | xzalloc (sizeof (struct expression) |
4c4b4cd2 | 3659 | + EXP_ELEM_TO_BYTES ((*expp)->nelts + 7 - oplen)); |
d2e4a39e | 3660 | struct expression *exp = *expp; |
14f9c5c9 AS |
3661 | |
3662 | newexp->nelts = exp->nelts + 7 - oplen; | |
3663 | newexp->language_defn = exp->language_defn; | |
3664 | memcpy (newexp->elts, exp->elts, EXP_ELEM_TO_BYTES (pc)); | |
d2e4a39e | 3665 | memcpy (newexp->elts + pc + 7, exp->elts + pc + oplen, |
4c4b4cd2 | 3666 | EXP_ELEM_TO_BYTES (exp->nelts - pc - oplen)); |
14f9c5c9 AS |
3667 | |
3668 | newexp->elts[pc].opcode = newexp->elts[pc + 2].opcode = OP_FUNCALL; | |
3669 | newexp->elts[pc + 1].longconst = (LONGEST) nargs; | |
3670 | ||
3671 | newexp->elts[pc + 3].opcode = newexp->elts[pc + 6].opcode = OP_VAR_VALUE; | |
3672 | newexp->elts[pc + 4].block = block; | |
3673 | newexp->elts[pc + 5].symbol = sym; | |
3674 | ||
3675 | *expp = newexp; | |
aacb1f0a | 3676 | xfree (exp); |
d2e4a39e | 3677 | } |
14f9c5c9 AS |
3678 | |
3679 | /* Type-class predicates */ | |
3680 | ||
4c4b4cd2 PH |
3681 | /* True iff TYPE is numeric (i.e., an INT, RANGE (of numeric type), |
3682 | or FLOAT). */ | |
14f9c5c9 AS |
3683 | |
3684 | static int | |
d2e4a39e | 3685 | numeric_type_p (struct type *type) |
14f9c5c9 AS |
3686 | { |
3687 | if (type == NULL) | |
3688 | return 0; | |
d2e4a39e AS |
3689 | else |
3690 | { | |
3691 | switch (TYPE_CODE (type)) | |
4c4b4cd2 PH |
3692 | { |
3693 | case TYPE_CODE_INT: | |
3694 | case TYPE_CODE_FLT: | |
3695 | return 1; | |
3696 | case TYPE_CODE_RANGE: | |
3697 | return (type == TYPE_TARGET_TYPE (type) | |
3698 | || numeric_type_p (TYPE_TARGET_TYPE (type))); | |
3699 | default: | |
3700 | return 0; | |
3701 | } | |
d2e4a39e | 3702 | } |
14f9c5c9 AS |
3703 | } |
3704 | ||
4c4b4cd2 | 3705 | /* True iff TYPE is integral (an INT or RANGE of INTs). */ |
14f9c5c9 AS |
3706 | |
3707 | static int | |
d2e4a39e | 3708 | integer_type_p (struct type *type) |
14f9c5c9 AS |
3709 | { |
3710 | if (type == NULL) | |
3711 | return 0; | |
d2e4a39e AS |
3712 | else |
3713 | { | |
3714 | switch (TYPE_CODE (type)) | |
4c4b4cd2 PH |
3715 | { |
3716 | case TYPE_CODE_INT: | |
3717 | return 1; | |
3718 | case TYPE_CODE_RANGE: | |
3719 | return (type == TYPE_TARGET_TYPE (type) | |
3720 | || integer_type_p (TYPE_TARGET_TYPE (type))); | |
3721 | default: | |
3722 | return 0; | |
3723 | } | |
d2e4a39e | 3724 | } |
14f9c5c9 AS |
3725 | } |
3726 | ||
4c4b4cd2 | 3727 | /* True iff TYPE is scalar (INT, RANGE, FLOAT, ENUM). */ |
14f9c5c9 AS |
3728 | |
3729 | static int | |
d2e4a39e | 3730 | scalar_type_p (struct type *type) |
14f9c5c9 AS |
3731 | { |
3732 | if (type == NULL) | |
3733 | return 0; | |
d2e4a39e AS |
3734 | else |
3735 | { | |
3736 | switch (TYPE_CODE (type)) | |
4c4b4cd2 PH |
3737 | { |
3738 | case TYPE_CODE_INT: | |
3739 | case TYPE_CODE_RANGE: | |
3740 | case TYPE_CODE_ENUM: | |
3741 | case TYPE_CODE_FLT: | |
3742 | return 1; | |
3743 | default: | |
3744 | return 0; | |
3745 | } | |
d2e4a39e | 3746 | } |
14f9c5c9 AS |
3747 | } |
3748 | ||
4c4b4cd2 | 3749 | /* True iff TYPE is discrete (INT, RANGE, ENUM). */ |
14f9c5c9 AS |
3750 | |
3751 | static int | |
d2e4a39e | 3752 | discrete_type_p (struct type *type) |
14f9c5c9 AS |
3753 | { |
3754 | if (type == NULL) | |
3755 | return 0; | |
d2e4a39e AS |
3756 | else |
3757 | { | |
3758 | switch (TYPE_CODE (type)) | |
4c4b4cd2 PH |
3759 | { |
3760 | case TYPE_CODE_INT: | |
3761 | case TYPE_CODE_RANGE: | |
3762 | case TYPE_CODE_ENUM: | |
872f0337 | 3763 | case TYPE_CODE_BOOL: |
4c4b4cd2 PH |
3764 | return 1; |
3765 | default: | |
3766 | return 0; | |
3767 | } | |
d2e4a39e | 3768 | } |
14f9c5c9 AS |
3769 | } |
3770 | ||
4c4b4cd2 PH |
3771 | /* Returns non-zero if OP with operands in the vector ARGS could be |
3772 | a user-defined function. Errs on the side of pre-defined operators | |
3773 | (i.e., result 0). */ | |
14f9c5c9 AS |
3774 | |
3775 | static int | |
d2e4a39e | 3776 | possible_user_operator_p (enum exp_opcode op, struct value *args[]) |
14f9c5c9 | 3777 | { |
76a01679 | 3778 | struct type *type0 = |
df407dfe | 3779 | (args[0] == NULL) ? NULL : ada_check_typedef (value_type (args[0])); |
d2e4a39e | 3780 | struct type *type1 = |
df407dfe | 3781 | (args[1] == NULL) ? NULL : ada_check_typedef (value_type (args[1])); |
d2e4a39e | 3782 | |
4c4b4cd2 PH |
3783 | if (type0 == NULL) |
3784 | return 0; | |
3785 | ||
14f9c5c9 AS |
3786 | switch (op) |
3787 | { | |
3788 | default: | |
3789 | return 0; | |
3790 | ||
3791 | case BINOP_ADD: | |
3792 | case BINOP_SUB: | |
3793 | case BINOP_MUL: | |
3794 | case BINOP_DIV: | |
d2e4a39e | 3795 | return (!(numeric_type_p (type0) && numeric_type_p (type1))); |
14f9c5c9 AS |
3796 | |
3797 | case BINOP_REM: | |
3798 | case BINOP_MOD: | |
3799 | case BINOP_BITWISE_AND: | |
3800 | case BINOP_BITWISE_IOR: | |
3801 | case BINOP_BITWISE_XOR: | |
d2e4a39e | 3802 | return (!(integer_type_p (type0) && integer_type_p (type1))); |
14f9c5c9 AS |
3803 | |
3804 | case BINOP_EQUAL: | |
3805 | case BINOP_NOTEQUAL: | |
3806 | case BINOP_LESS: | |
3807 | case BINOP_GTR: | |
3808 | case BINOP_LEQ: | |
3809 | case BINOP_GEQ: | |
d2e4a39e | 3810 | return (!(scalar_type_p (type0) && scalar_type_p (type1))); |
14f9c5c9 AS |
3811 | |
3812 | case BINOP_CONCAT: | |
ee90b9ab | 3813 | return !ada_is_array_type (type0) || !ada_is_array_type (type1); |
14f9c5c9 AS |
3814 | |
3815 | case BINOP_EXP: | |
d2e4a39e | 3816 | return (!(numeric_type_p (type0) && integer_type_p (type1))); |
14f9c5c9 AS |
3817 | |
3818 | case UNOP_NEG: | |
3819 | case UNOP_PLUS: | |
3820 | case UNOP_LOGICAL_NOT: | |
d2e4a39e AS |
3821 | case UNOP_ABS: |
3822 | return (!numeric_type_p (type0)); | |
14f9c5c9 AS |
3823 | |
3824 | } | |
3825 | } | |
3826 | \f | |
4c4b4cd2 | 3827 | /* Renaming */ |
14f9c5c9 | 3828 | |
aeb5907d JB |
3829 | /* NOTES: |
3830 | ||
3831 | 1. In the following, we assume that a renaming type's name may | |
3832 | have an ___XD suffix. It would be nice if this went away at some | |
3833 | point. | |
3834 | 2. We handle both the (old) purely type-based representation of | |
3835 | renamings and the (new) variable-based encoding. At some point, | |
3836 | it is devoutly to be hoped that the former goes away | |
3837 | (FIXME: hilfinger-2007-07-09). | |
3838 | 3. Subprogram renamings are not implemented, although the XRS | |
3839 | suffix is recognized (FIXME: hilfinger-2007-07-09). */ | |
3840 | ||
3841 | /* If SYM encodes a renaming, | |
3842 | ||
3843 | <renaming> renames <renamed entity>, | |
3844 | ||
3845 | sets *LEN to the length of the renamed entity's name, | |
3846 | *RENAMED_ENTITY to that name (not null-terminated), and *RENAMING_EXPR to | |
3847 | the string describing the subcomponent selected from the renamed | |
0963b4bd | 3848 | entity. Returns ADA_NOT_RENAMING if SYM does not encode a renaming |
aeb5907d JB |
3849 | (in which case, the values of *RENAMED_ENTITY, *LEN, and *RENAMING_EXPR |
3850 | are undefined). Otherwise, returns a value indicating the category | |
3851 | of entity renamed: an object (ADA_OBJECT_RENAMING), exception | |
3852 | (ADA_EXCEPTION_RENAMING), package (ADA_PACKAGE_RENAMING), or | |
3853 | subprogram (ADA_SUBPROGRAM_RENAMING). Does no allocation; the | |
3854 | strings returned in *RENAMED_ENTITY and *RENAMING_EXPR should not be | |
3855 | deallocated. The values of RENAMED_ENTITY, LEN, or RENAMING_EXPR | |
3856 | may be NULL, in which case they are not assigned. | |
3857 | ||
3858 | [Currently, however, GCC does not generate subprogram renamings.] */ | |
3859 | ||
3860 | enum ada_renaming_category | |
3861 | ada_parse_renaming (struct symbol *sym, | |
3862 | const char **renamed_entity, int *len, | |
3863 | const char **renaming_expr) | |
3864 | { | |
3865 | enum ada_renaming_category kind; | |
3866 | const char *info; | |
3867 | const char *suffix; | |
3868 | ||
3869 | if (sym == NULL) | |
3870 | return ADA_NOT_RENAMING; | |
3871 | switch (SYMBOL_CLASS (sym)) | |
14f9c5c9 | 3872 | { |
aeb5907d JB |
3873 | default: |
3874 | return ADA_NOT_RENAMING; | |
3875 | case LOC_TYPEDEF: | |
3876 | return parse_old_style_renaming (SYMBOL_TYPE (sym), | |
3877 | renamed_entity, len, renaming_expr); | |
3878 | case LOC_LOCAL: | |
3879 | case LOC_STATIC: | |
3880 | case LOC_COMPUTED: | |
3881 | case LOC_OPTIMIZED_OUT: | |
3882 | info = strstr (SYMBOL_LINKAGE_NAME (sym), "___XR"); | |
3883 | if (info == NULL) | |
3884 | return ADA_NOT_RENAMING; | |
3885 | switch (info[5]) | |
3886 | { | |
3887 | case '_': | |
3888 | kind = ADA_OBJECT_RENAMING; | |
3889 | info += 6; | |
3890 | break; | |
3891 | case 'E': | |
3892 | kind = ADA_EXCEPTION_RENAMING; | |
3893 | info += 7; | |
3894 | break; | |
3895 | case 'P': | |
3896 | kind = ADA_PACKAGE_RENAMING; | |
3897 | info += 7; | |
3898 | break; | |
3899 | case 'S': | |
3900 | kind = ADA_SUBPROGRAM_RENAMING; | |
3901 | info += 7; | |
3902 | break; | |
3903 | default: | |
3904 | return ADA_NOT_RENAMING; | |
3905 | } | |
14f9c5c9 | 3906 | } |
4c4b4cd2 | 3907 | |
aeb5907d JB |
3908 | if (renamed_entity != NULL) |
3909 | *renamed_entity = info; | |
3910 | suffix = strstr (info, "___XE"); | |
3911 | if (suffix == NULL || suffix == info) | |
3912 | return ADA_NOT_RENAMING; | |
3913 | if (len != NULL) | |
3914 | *len = strlen (info) - strlen (suffix); | |
3915 | suffix += 5; | |
3916 | if (renaming_expr != NULL) | |
3917 | *renaming_expr = suffix; | |
3918 | return kind; | |
3919 | } | |
3920 | ||
3921 | /* Assuming TYPE encodes a renaming according to the old encoding in | |
3922 | exp_dbug.ads, returns details of that renaming in *RENAMED_ENTITY, | |
3923 | *LEN, and *RENAMING_EXPR, as for ada_parse_renaming, above. Returns | |
3924 | ADA_NOT_RENAMING otherwise. */ | |
3925 | static enum ada_renaming_category | |
3926 | parse_old_style_renaming (struct type *type, | |
3927 | const char **renamed_entity, int *len, | |
3928 | const char **renaming_expr) | |
3929 | { | |
3930 | enum ada_renaming_category kind; | |
3931 | const char *name; | |
3932 | const char *info; | |
3933 | const char *suffix; | |
14f9c5c9 | 3934 | |
aeb5907d JB |
3935 | if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM |
3936 | || TYPE_NFIELDS (type) != 1) | |
3937 | return ADA_NOT_RENAMING; | |
14f9c5c9 | 3938 | |
aeb5907d JB |
3939 | name = type_name_no_tag (type); |
3940 | if (name == NULL) | |
3941 | return ADA_NOT_RENAMING; | |
3942 | ||
3943 | name = strstr (name, "___XR"); | |
3944 | if (name == NULL) | |
3945 | return ADA_NOT_RENAMING; | |
3946 | switch (name[5]) | |
3947 | { | |
3948 | case '\0': | |
3949 | case '_': | |
3950 | kind = ADA_OBJECT_RENAMING; | |
3951 | break; | |
3952 | case 'E': | |
3953 | kind = ADA_EXCEPTION_RENAMING; | |
3954 | break; | |
3955 | case 'P': | |
3956 | kind = ADA_PACKAGE_RENAMING; | |
3957 | break; | |
3958 | case 'S': | |
3959 | kind = ADA_SUBPROGRAM_RENAMING; | |
3960 | break; | |
3961 | default: | |
3962 | return ADA_NOT_RENAMING; | |
3963 | } | |
14f9c5c9 | 3964 | |
aeb5907d JB |
3965 | info = TYPE_FIELD_NAME (type, 0); |
3966 | if (info == NULL) | |
3967 | return ADA_NOT_RENAMING; | |
3968 | if (renamed_entity != NULL) | |
3969 | *renamed_entity = info; | |
3970 | suffix = strstr (info, "___XE"); | |
3971 | if (renaming_expr != NULL) | |
3972 | *renaming_expr = suffix + 5; | |
3973 | if (suffix == NULL || suffix == info) | |
3974 | return ADA_NOT_RENAMING; | |
3975 | if (len != NULL) | |
3976 | *len = suffix - info; | |
3977 | return kind; | |
3978 | } | |
52ce6436 | 3979 | |
14f9c5c9 | 3980 | \f |
d2e4a39e | 3981 | |
4c4b4cd2 | 3982 | /* Evaluation: Function Calls */ |
14f9c5c9 | 3983 | |
4c4b4cd2 | 3984 | /* Return an lvalue containing the value VAL. This is the identity on |
40bc484c JB |
3985 | lvalues, and otherwise has the side-effect of allocating memory |
3986 | in the inferior where a copy of the value contents is copied. */ | |
14f9c5c9 | 3987 | |
d2e4a39e | 3988 | static struct value * |
40bc484c | 3989 | ensure_lval (struct value *val) |
14f9c5c9 | 3990 | { |
40bc484c JB |
3991 | if (VALUE_LVAL (val) == not_lval |
3992 | || VALUE_LVAL (val) == lval_internalvar) | |
c3e5cd34 | 3993 | { |
df407dfe | 3994 | int len = TYPE_LENGTH (ada_check_typedef (value_type (val))); |
40bc484c JB |
3995 | const CORE_ADDR addr = |
3996 | value_as_long (value_allocate_space_in_inferior (len)); | |
c3e5cd34 | 3997 | |
40bc484c | 3998 | set_value_address (val, addr); |
a84a8a0d | 3999 | VALUE_LVAL (val) = lval_memory; |
40bc484c | 4000 | write_memory (addr, value_contents (val), len); |
c3e5cd34 | 4001 | } |
14f9c5c9 AS |
4002 | |
4003 | return val; | |
4004 | } | |
4005 | ||
4006 | /* Return the value ACTUAL, converted to be an appropriate value for a | |
4007 | formal of type FORMAL_TYPE. Use *SP as a stack pointer for | |
4008 | allocating any necessary descriptors (fat pointers), or copies of | |
4c4b4cd2 | 4009 | values not residing in memory, updating it as needed. */ |
14f9c5c9 | 4010 | |
a93c0eb6 | 4011 | struct value * |
40bc484c | 4012 | ada_convert_actual (struct value *actual, struct type *formal_type0) |
14f9c5c9 | 4013 | { |
df407dfe | 4014 | struct type *actual_type = ada_check_typedef (value_type (actual)); |
61ee279c | 4015 | struct type *formal_type = ada_check_typedef (formal_type0); |
d2e4a39e AS |
4016 | struct type *formal_target = |
4017 | TYPE_CODE (formal_type) == TYPE_CODE_PTR | |
61ee279c | 4018 | ? ada_check_typedef (TYPE_TARGET_TYPE (formal_type)) : formal_type; |
d2e4a39e AS |
4019 | struct type *actual_target = |
4020 | TYPE_CODE (actual_type) == TYPE_CODE_PTR | |
61ee279c | 4021 | ? ada_check_typedef (TYPE_TARGET_TYPE (actual_type)) : actual_type; |
14f9c5c9 | 4022 | |
4c4b4cd2 | 4023 | if (ada_is_array_descriptor_type (formal_target) |
14f9c5c9 | 4024 | && TYPE_CODE (actual_target) == TYPE_CODE_ARRAY) |
40bc484c | 4025 | return make_array_descriptor (formal_type, actual); |
a84a8a0d JB |
4026 | else if (TYPE_CODE (formal_type) == TYPE_CODE_PTR |
4027 | || TYPE_CODE (formal_type) == TYPE_CODE_REF) | |
14f9c5c9 | 4028 | { |
a84a8a0d | 4029 | struct value *result; |
5b4ee69b | 4030 | |
14f9c5c9 | 4031 | if (TYPE_CODE (formal_target) == TYPE_CODE_ARRAY |
4c4b4cd2 | 4032 | && ada_is_array_descriptor_type (actual_target)) |
a84a8a0d | 4033 | result = desc_data (actual); |
14f9c5c9 | 4034 | else if (TYPE_CODE (actual_type) != TYPE_CODE_PTR) |
4c4b4cd2 PH |
4035 | { |
4036 | if (VALUE_LVAL (actual) != lval_memory) | |
4037 | { | |
4038 | struct value *val; | |
5b4ee69b | 4039 | |
df407dfe | 4040 | actual_type = ada_check_typedef (value_type (actual)); |
4c4b4cd2 | 4041 | val = allocate_value (actual_type); |
990a07ab | 4042 | memcpy ((char *) value_contents_raw (val), |
0fd88904 | 4043 | (char *) value_contents (actual), |
4c4b4cd2 | 4044 | TYPE_LENGTH (actual_type)); |
40bc484c | 4045 | actual = ensure_lval (val); |
4c4b4cd2 | 4046 | } |
a84a8a0d | 4047 | result = value_addr (actual); |
4c4b4cd2 | 4048 | } |
a84a8a0d JB |
4049 | else |
4050 | return actual; | |
4051 | return value_cast_pointers (formal_type, result); | |
14f9c5c9 AS |
4052 | } |
4053 | else if (TYPE_CODE (actual_type) == TYPE_CODE_PTR) | |
4054 | return ada_value_ind (actual); | |
4055 | ||
4056 | return actual; | |
4057 | } | |
4058 | ||
438c98a1 JB |
4059 | /* Convert VALUE (which must be an address) to a CORE_ADDR that is a pointer of |
4060 | type TYPE. This is usually an inefficient no-op except on some targets | |
4061 | (such as AVR) where the representation of a pointer and an address | |
4062 | differs. */ | |
4063 | ||
4064 | static CORE_ADDR | |
4065 | value_pointer (struct value *value, struct type *type) | |
4066 | { | |
4067 | struct gdbarch *gdbarch = get_type_arch (type); | |
4068 | unsigned len = TYPE_LENGTH (type); | |
4069 | gdb_byte *buf = alloca (len); | |
4070 | CORE_ADDR addr; | |
4071 | ||
4072 | addr = value_address (value); | |
4073 | gdbarch_address_to_pointer (gdbarch, type, buf, addr); | |
4074 | addr = extract_unsigned_integer (buf, len, gdbarch_byte_order (gdbarch)); | |
4075 | return addr; | |
4076 | } | |
4077 | ||
14f9c5c9 | 4078 | |
4c4b4cd2 PH |
4079 | /* Push a descriptor of type TYPE for array value ARR on the stack at |
4080 | *SP, updating *SP to reflect the new descriptor. Return either | |
14f9c5c9 | 4081 | an lvalue representing the new descriptor, or (if TYPE is a pointer- |
4c4b4cd2 PH |
4082 | to-descriptor type rather than a descriptor type), a struct value * |
4083 | representing a pointer to this descriptor. */ | |
14f9c5c9 | 4084 | |
d2e4a39e | 4085 | static struct value * |
40bc484c | 4086 | make_array_descriptor (struct type *type, struct value *arr) |
14f9c5c9 | 4087 | { |
d2e4a39e AS |
4088 | struct type *bounds_type = desc_bounds_type (type); |
4089 | struct type *desc_type = desc_base_type (type); | |
4090 | struct value *descriptor = allocate_value (desc_type); | |
4091 | struct value *bounds = allocate_value (bounds_type); | |
14f9c5c9 | 4092 | int i; |
d2e4a39e | 4093 | |
0963b4bd MS |
4094 | for (i = ada_array_arity (ada_check_typedef (value_type (arr))); |
4095 | i > 0; i -= 1) | |
14f9c5c9 | 4096 | { |
19f220c3 JK |
4097 | modify_field (value_type (bounds), value_contents_writeable (bounds), |
4098 | ada_array_bound (arr, i, 0), | |
4099 | desc_bound_bitpos (bounds_type, i, 0), | |
4100 | desc_bound_bitsize (bounds_type, i, 0)); | |
4101 | modify_field (value_type (bounds), value_contents_writeable (bounds), | |
4102 | ada_array_bound (arr, i, 1), | |
4103 | desc_bound_bitpos (bounds_type, i, 1), | |
4104 | desc_bound_bitsize (bounds_type, i, 1)); | |
14f9c5c9 | 4105 | } |
d2e4a39e | 4106 | |
40bc484c | 4107 | bounds = ensure_lval (bounds); |
d2e4a39e | 4108 | |
19f220c3 JK |
4109 | modify_field (value_type (descriptor), |
4110 | value_contents_writeable (descriptor), | |
4111 | value_pointer (ensure_lval (arr), | |
4112 | TYPE_FIELD_TYPE (desc_type, 0)), | |
4113 | fat_pntr_data_bitpos (desc_type), | |
4114 | fat_pntr_data_bitsize (desc_type)); | |
4115 | ||
4116 | modify_field (value_type (descriptor), | |
4117 | value_contents_writeable (descriptor), | |
4118 | value_pointer (bounds, | |
4119 | TYPE_FIELD_TYPE (desc_type, 1)), | |
4120 | fat_pntr_bounds_bitpos (desc_type), | |
4121 | fat_pntr_bounds_bitsize (desc_type)); | |
14f9c5c9 | 4122 | |
40bc484c | 4123 | descriptor = ensure_lval (descriptor); |
14f9c5c9 AS |
4124 | |
4125 | if (TYPE_CODE (type) == TYPE_CODE_PTR) | |
4126 | return value_addr (descriptor); | |
4127 | else | |
4128 | return descriptor; | |
4129 | } | |
14f9c5c9 | 4130 | \f |
963a6417 | 4131 | /* Dummy definitions for an experimental caching module that is not |
0963b4bd | 4132 | * used in the public sources. */ |
96d887e8 | 4133 | |
96d887e8 PH |
4134 | static int |
4135 | lookup_cached_symbol (const char *name, domain_enum namespace, | |
2570f2b7 | 4136 | struct symbol **sym, struct block **block) |
96d887e8 PH |
4137 | { |
4138 | return 0; | |
4139 | } | |
4140 | ||
4141 | static void | |
4142 | cache_symbol (const char *name, domain_enum namespace, struct symbol *sym, | |
2570f2b7 | 4143 | struct block *block) |
96d887e8 PH |
4144 | { |
4145 | } | |
4c4b4cd2 PH |
4146 | \f |
4147 | /* Symbol Lookup */ | |
4148 | ||
4149 | /* Return the result of a standard (literal, C-like) lookup of NAME in | |
4150 | given DOMAIN, visible from lexical block BLOCK. */ | |
4151 | ||
4152 | static struct symbol * | |
4153 | standard_lookup (const char *name, const struct block *block, | |
4154 | domain_enum domain) | |
4155 | { | |
4156 | struct symbol *sym; | |
4c4b4cd2 | 4157 | |
2570f2b7 | 4158 | if (lookup_cached_symbol (name, domain, &sym, NULL)) |
4c4b4cd2 | 4159 | return sym; |
2570f2b7 UW |
4160 | sym = lookup_symbol_in_language (name, block, domain, language_c, 0); |
4161 | cache_symbol (name, domain, sym, block_found); | |
4c4b4cd2 PH |
4162 | return sym; |
4163 | } | |
4164 | ||
4165 | ||
4166 | /* Non-zero iff there is at least one non-function/non-enumeral symbol | |
4167 | in the symbol fields of SYMS[0..N-1]. We treat enumerals as functions, | |
4168 | since they contend in overloading in the same way. */ | |
4169 | static int | |
4170 | is_nonfunction (struct ada_symbol_info syms[], int n) | |
4171 | { | |
4172 | int i; | |
4173 | ||
4174 | for (i = 0; i < n; i += 1) | |
4175 | if (TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) != TYPE_CODE_FUNC | |
4176 | && (TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) != TYPE_CODE_ENUM | |
4177 | || SYMBOL_CLASS (syms[i].sym) != LOC_CONST)) | |
14f9c5c9 AS |
4178 | return 1; |
4179 | ||
4180 | return 0; | |
4181 | } | |
4182 | ||
4183 | /* If true (non-zero), then TYPE0 and TYPE1 represent equivalent | |
4c4b4cd2 | 4184 | struct types. Otherwise, they may not. */ |
14f9c5c9 AS |
4185 | |
4186 | static int | |
d2e4a39e | 4187 | equiv_types (struct type *type0, struct type *type1) |
14f9c5c9 | 4188 | { |
d2e4a39e | 4189 | if (type0 == type1) |
14f9c5c9 | 4190 | return 1; |
d2e4a39e | 4191 | if (type0 == NULL || type1 == NULL |
14f9c5c9 AS |
4192 | || TYPE_CODE (type0) != TYPE_CODE (type1)) |
4193 | return 0; | |
d2e4a39e | 4194 | if ((TYPE_CODE (type0) == TYPE_CODE_STRUCT |
14f9c5c9 AS |
4195 | || TYPE_CODE (type0) == TYPE_CODE_ENUM) |
4196 | && ada_type_name (type0) != NULL && ada_type_name (type1) != NULL | |
4c4b4cd2 | 4197 | && strcmp (ada_type_name (type0), ada_type_name (type1)) == 0) |
14f9c5c9 | 4198 | return 1; |
d2e4a39e | 4199 | |
14f9c5c9 AS |
4200 | return 0; |
4201 | } | |
4202 | ||
4203 | /* True iff SYM0 represents the same entity as SYM1, or one that is | |
4c4b4cd2 | 4204 | no more defined than that of SYM1. */ |
14f9c5c9 AS |
4205 | |
4206 | static int | |
d2e4a39e | 4207 | lesseq_defined_than (struct symbol *sym0, struct symbol *sym1) |
14f9c5c9 AS |
4208 | { |
4209 | if (sym0 == sym1) | |
4210 | return 1; | |
176620f1 | 4211 | if (SYMBOL_DOMAIN (sym0) != SYMBOL_DOMAIN (sym1) |
14f9c5c9 AS |
4212 | || SYMBOL_CLASS (sym0) != SYMBOL_CLASS (sym1)) |
4213 | return 0; | |
4214 | ||
d2e4a39e | 4215 | switch (SYMBOL_CLASS (sym0)) |
14f9c5c9 AS |
4216 | { |
4217 | case LOC_UNDEF: | |
4218 | return 1; | |
4219 | case LOC_TYPEDEF: | |
4220 | { | |
4c4b4cd2 PH |
4221 | struct type *type0 = SYMBOL_TYPE (sym0); |
4222 | struct type *type1 = SYMBOL_TYPE (sym1); | |
4223 | char *name0 = SYMBOL_LINKAGE_NAME (sym0); | |
4224 | char *name1 = SYMBOL_LINKAGE_NAME (sym1); | |
4225 | int len0 = strlen (name0); | |
5b4ee69b | 4226 | |
4c4b4cd2 PH |
4227 | return |
4228 | TYPE_CODE (type0) == TYPE_CODE (type1) | |
4229 | && (equiv_types (type0, type1) | |
4230 | || (len0 < strlen (name1) && strncmp (name0, name1, len0) == 0 | |
4231 | && strncmp (name1 + len0, "___XV", 5) == 0)); | |
14f9c5c9 AS |
4232 | } |
4233 | case LOC_CONST: | |
4234 | return SYMBOL_VALUE (sym0) == SYMBOL_VALUE (sym1) | |
4c4b4cd2 | 4235 | && equiv_types (SYMBOL_TYPE (sym0), SYMBOL_TYPE (sym1)); |
d2e4a39e AS |
4236 | default: |
4237 | return 0; | |
14f9c5c9 AS |
4238 | } |
4239 | } | |
4240 | ||
4c4b4cd2 PH |
4241 | /* Append (SYM,BLOCK,SYMTAB) to the end of the array of struct ada_symbol_info |
4242 | records in OBSTACKP. Do nothing if SYM is a duplicate. */ | |
14f9c5c9 AS |
4243 | |
4244 | static void | |
76a01679 JB |
4245 | add_defn_to_vec (struct obstack *obstackp, |
4246 | struct symbol *sym, | |
2570f2b7 | 4247 | struct block *block) |
14f9c5c9 AS |
4248 | { |
4249 | int i; | |
4c4b4cd2 | 4250 | struct ada_symbol_info *prevDefns = defns_collected (obstackp, 0); |
14f9c5c9 | 4251 | |
529cad9c PH |
4252 | /* Do not try to complete stub types, as the debugger is probably |
4253 | already scanning all symbols matching a certain name at the | |
4254 | time when this function is called. Trying to replace the stub | |
4255 | type by its associated full type will cause us to restart a scan | |
4256 | which may lead to an infinite recursion. Instead, the client | |
4257 | collecting the matching symbols will end up collecting several | |
4258 | matches, with at least one of them complete. It can then filter | |
4259 | out the stub ones if needed. */ | |
4260 | ||
4c4b4cd2 PH |
4261 | for (i = num_defns_collected (obstackp) - 1; i >= 0; i -= 1) |
4262 | { | |
4263 | if (lesseq_defined_than (sym, prevDefns[i].sym)) | |
4264 | return; | |
4265 | else if (lesseq_defined_than (prevDefns[i].sym, sym)) | |
4266 | { | |
4267 | prevDefns[i].sym = sym; | |
4268 | prevDefns[i].block = block; | |
4c4b4cd2 | 4269 | return; |
76a01679 | 4270 | } |
4c4b4cd2 PH |
4271 | } |
4272 | ||
4273 | { | |
4274 | struct ada_symbol_info info; | |
4275 | ||
4276 | info.sym = sym; | |
4277 | info.block = block; | |
4c4b4cd2 PH |
4278 | obstack_grow (obstackp, &info, sizeof (struct ada_symbol_info)); |
4279 | } | |
4280 | } | |
4281 | ||
4282 | /* Number of ada_symbol_info structures currently collected in | |
4283 | current vector in *OBSTACKP. */ | |
4284 | ||
76a01679 JB |
4285 | static int |
4286 | num_defns_collected (struct obstack *obstackp) | |
4c4b4cd2 PH |
4287 | { |
4288 | return obstack_object_size (obstackp) / sizeof (struct ada_symbol_info); | |
4289 | } | |
4290 | ||
4291 | /* Vector of ada_symbol_info structures currently collected in current | |
4292 | vector in *OBSTACKP. If FINISH, close off the vector and return | |
4293 | its final address. */ | |
4294 | ||
76a01679 | 4295 | static struct ada_symbol_info * |
4c4b4cd2 PH |
4296 | defns_collected (struct obstack *obstackp, int finish) |
4297 | { | |
4298 | if (finish) | |
4299 | return obstack_finish (obstackp); | |
4300 | else | |
4301 | return (struct ada_symbol_info *) obstack_base (obstackp); | |
4302 | } | |
4303 | ||
96d887e8 PH |
4304 | /* Return a minimal symbol matching NAME according to Ada decoding |
4305 | rules. Returns NULL if there is no such minimal symbol. Names | |
4306 | prefixed with "standard__" are handled specially: "standard__" is | |
4307 | first stripped off, and only static and global symbols are searched. */ | |
4c4b4cd2 | 4308 | |
96d887e8 PH |
4309 | struct minimal_symbol * |
4310 | ada_lookup_simple_minsym (const char *name) | |
4c4b4cd2 | 4311 | { |
4c4b4cd2 | 4312 | struct objfile *objfile; |
96d887e8 PH |
4313 | struct minimal_symbol *msymbol; |
4314 | int wild_match; | |
4c4b4cd2 | 4315 | |
96d887e8 | 4316 | if (strncmp (name, "standard__", sizeof ("standard__") - 1) == 0) |
4c4b4cd2 | 4317 | { |
96d887e8 | 4318 | name += sizeof ("standard__") - 1; |
4c4b4cd2 | 4319 | wild_match = 0; |
4c4b4cd2 PH |
4320 | } |
4321 | else | |
96d887e8 | 4322 | wild_match = (strstr (name, "__") == NULL); |
4c4b4cd2 | 4323 | |
96d887e8 PH |
4324 | ALL_MSYMBOLS (objfile, msymbol) |
4325 | { | |
40658b94 | 4326 | if (match_name (SYMBOL_LINKAGE_NAME (msymbol), name, wild_match) |
96d887e8 PH |
4327 | && MSYMBOL_TYPE (msymbol) != mst_solib_trampoline) |
4328 | return msymbol; | |
4329 | } | |
4c4b4cd2 | 4330 | |
96d887e8 PH |
4331 | return NULL; |
4332 | } | |
4c4b4cd2 | 4333 | |
96d887e8 PH |
4334 | /* For all subprograms that statically enclose the subprogram of the |
4335 | selected frame, add symbols matching identifier NAME in DOMAIN | |
4336 | and their blocks to the list of data in OBSTACKP, as for | |
4337 | ada_add_block_symbols (q.v.). If WILD, treat as NAME with a | |
4338 | wildcard prefix. */ | |
4c4b4cd2 | 4339 | |
96d887e8 PH |
4340 | static void |
4341 | add_symbols_from_enclosing_procs (struct obstack *obstackp, | |
76a01679 | 4342 | const char *name, domain_enum namespace, |
96d887e8 PH |
4343 | int wild_match) |
4344 | { | |
96d887e8 | 4345 | } |
14f9c5c9 | 4346 | |
96d887e8 PH |
4347 | /* True if TYPE is definitely an artificial type supplied to a symbol |
4348 | for which no debugging information was given in the symbol file. */ | |
14f9c5c9 | 4349 | |
96d887e8 PH |
4350 | static int |
4351 | is_nondebugging_type (struct type *type) | |
4352 | { | |
4353 | char *name = ada_type_name (type); | |
5b4ee69b | 4354 | |
96d887e8 PH |
4355 | return (name != NULL && strcmp (name, "<variable, no debug info>") == 0); |
4356 | } | |
4c4b4cd2 | 4357 | |
96d887e8 PH |
4358 | /* Remove any non-debugging symbols in SYMS[0 .. NSYMS-1] that definitely |
4359 | duplicate other symbols in the list (The only case I know of where | |
4360 | this happens is when object files containing stabs-in-ecoff are | |
4361 | linked with files containing ordinary ecoff debugging symbols (or no | |
4362 | debugging symbols)). Modifies SYMS to squeeze out deleted entries. | |
4363 | Returns the number of items in the modified list. */ | |
4c4b4cd2 | 4364 | |
96d887e8 PH |
4365 | static int |
4366 | remove_extra_symbols (struct ada_symbol_info *syms, int nsyms) | |
4367 | { | |
4368 | int i, j; | |
4c4b4cd2 | 4369 | |
96d887e8 PH |
4370 | i = 0; |
4371 | while (i < nsyms) | |
4372 | { | |
339c13b6 JB |
4373 | int remove = 0; |
4374 | ||
4375 | /* If two symbols have the same name and one of them is a stub type, | |
4376 | the get rid of the stub. */ | |
4377 | ||
4378 | if (TYPE_STUB (SYMBOL_TYPE (syms[i].sym)) | |
4379 | && SYMBOL_LINKAGE_NAME (syms[i].sym) != NULL) | |
4380 | { | |
4381 | for (j = 0; j < nsyms; j++) | |
4382 | { | |
4383 | if (j != i | |
4384 | && !TYPE_STUB (SYMBOL_TYPE (syms[j].sym)) | |
4385 | && SYMBOL_LINKAGE_NAME (syms[j].sym) != NULL | |
4386 | && strcmp (SYMBOL_LINKAGE_NAME (syms[i].sym), | |
4387 | SYMBOL_LINKAGE_NAME (syms[j].sym)) == 0) | |
4388 | remove = 1; | |
4389 | } | |
4390 | } | |
4391 | ||
4392 | /* Two symbols with the same name, same class and same address | |
4393 | should be identical. */ | |
4394 | ||
4395 | else if (SYMBOL_LINKAGE_NAME (syms[i].sym) != NULL | |
96d887e8 PH |
4396 | && SYMBOL_CLASS (syms[i].sym) == LOC_STATIC |
4397 | && is_nondebugging_type (SYMBOL_TYPE (syms[i].sym))) | |
4398 | { | |
4399 | for (j = 0; j < nsyms; j += 1) | |
4400 | { | |
4401 | if (i != j | |
4402 | && SYMBOL_LINKAGE_NAME (syms[j].sym) != NULL | |
4403 | && strcmp (SYMBOL_LINKAGE_NAME (syms[i].sym), | |
76a01679 | 4404 | SYMBOL_LINKAGE_NAME (syms[j].sym)) == 0 |
96d887e8 PH |
4405 | && SYMBOL_CLASS (syms[i].sym) == SYMBOL_CLASS (syms[j].sym) |
4406 | && SYMBOL_VALUE_ADDRESS (syms[i].sym) | |
4407 | == SYMBOL_VALUE_ADDRESS (syms[j].sym)) | |
339c13b6 | 4408 | remove = 1; |
4c4b4cd2 | 4409 | } |
4c4b4cd2 | 4410 | } |
339c13b6 JB |
4411 | |
4412 | if (remove) | |
4413 | { | |
4414 | for (j = i + 1; j < nsyms; j += 1) | |
4415 | syms[j - 1] = syms[j]; | |
4416 | nsyms -= 1; | |
4417 | } | |
4418 | ||
96d887e8 | 4419 | i += 1; |
14f9c5c9 | 4420 | } |
96d887e8 | 4421 | return nsyms; |
14f9c5c9 AS |
4422 | } |
4423 | ||
96d887e8 PH |
4424 | /* Given a type that corresponds to a renaming entity, use the type name |
4425 | to extract the scope (package name or function name, fully qualified, | |
4426 | and following the GNAT encoding convention) where this renaming has been | |
4427 | defined. The string returned needs to be deallocated after use. */ | |
4c4b4cd2 | 4428 | |
96d887e8 PH |
4429 | static char * |
4430 | xget_renaming_scope (struct type *renaming_type) | |
14f9c5c9 | 4431 | { |
96d887e8 | 4432 | /* The renaming types adhere to the following convention: |
0963b4bd | 4433 | <scope>__<rename>___<XR extension>. |
96d887e8 PH |
4434 | So, to extract the scope, we search for the "___XR" extension, |
4435 | and then backtrack until we find the first "__". */ | |
76a01679 | 4436 | |
96d887e8 PH |
4437 | const char *name = type_name_no_tag (renaming_type); |
4438 | char *suffix = strstr (name, "___XR"); | |
4439 | char *last; | |
4440 | int scope_len; | |
4441 | char *scope; | |
14f9c5c9 | 4442 | |
96d887e8 PH |
4443 | /* Now, backtrack a bit until we find the first "__". Start looking |
4444 | at suffix - 3, as the <rename> part is at least one character long. */ | |
14f9c5c9 | 4445 | |
96d887e8 PH |
4446 | for (last = suffix - 3; last > name; last--) |
4447 | if (last[0] == '_' && last[1] == '_') | |
4448 | break; | |
76a01679 | 4449 | |
96d887e8 | 4450 | /* Make a copy of scope and return it. */ |
14f9c5c9 | 4451 | |
96d887e8 PH |
4452 | scope_len = last - name; |
4453 | scope = (char *) xmalloc ((scope_len + 1) * sizeof (char)); | |
14f9c5c9 | 4454 | |
96d887e8 PH |
4455 | strncpy (scope, name, scope_len); |
4456 | scope[scope_len] = '\0'; | |
4c4b4cd2 | 4457 | |
96d887e8 | 4458 | return scope; |
4c4b4cd2 PH |
4459 | } |
4460 | ||
96d887e8 | 4461 | /* Return nonzero if NAME corresponds to a package name. */ |
4c4b4cd2 | 4462 | |
96d887e8 PH |
4463 | static int |
4464 | is_package_name (const char *name) | |
4c4b4cd2 | 4465 | { |
96d887e8 PH |
4466 | /* Here, We take advantage of the fact that no symbols are generated |
4467 | for packages, while symbols are generated for each function. | |
4468 | So the condition for NAME represent a package becomes equivalent | |
4469 | to NAME not existing in our list of symbols. There is only one | |
4470 | small complication with library-level functions (see below). */ | |
4c4b4cd2 | 4471 | |
96d887e8 | 4472 | char *fun_name; |
76a01679 | 4473 | |
96d887e8 PH |
4474 | /* If it is a function that has not been defined at library level, |
4475 | then we should be able to look it up in the symbols. */ | |
4476 | if (standard_lookup (name, NULL, VAR_DOMAIN) != NULL) | |
4477 | return 0; | |
14f9c5c9 | 4478 | |
96d887e8 PH |
4479 | /* Library-level function names start with "_ada_". See if function |
4480 | "_ada_" followed by NAME can be found. */ | |
14f9c5c9 | 4481 | |
96d887e8 | 4482 | /* Do a quick check that NAME does not contain "__", since library-level |
e1d5a0d2 | 4483 | functions names cannot contain "__" in them. */ |
96d887e8 PH |
4484 | if (strstr (name, "__") != NULL) |
4485 | return 0; | |
4c4b4cd2 | 4486 | |
b435e160 | 4487 | fun_name = xstrprintf ("_ada_%s", name); |
14f9c5c9 | 4488 | |
96d887e8 PH |
4489 | return (standard_lookup (fun_name, NULL, VAR_DOMAIN) == NULL); |
4490 | } | |
14f9c5c9 | 4491 | |
96d887e8 | 4492 | /* Return nonzero if SYM corresponds to a renaming entity that is |
aeb5907d | 4493 | not visible from FUNCTION_NAME. */ |
14f9c5c9 | 4494 | |
96d887e8 | 4495 | static int |
aeb5907d | 4496 | old_renaming_is_invisible (const struct symbol *sym, char *function_name) |
96d887e8 | 4497 | { |
aeb5907d JB |
4498 | char *scope; |
4499 | ||
4500 | if (SYMBOL_CLASS (sym) != LOC_TYPEDEF) | |
4501 | return 0; | |
4502 | ||
4503 | scope = xget_renaming_scope (SYMBOL_TYPE (sym)); | |
d2e4a39e | 4504 | |
96d887e8 | 4505 | make_cleanup (xfree, scope); |
14f9c5c9 | 4506 | |
96d887e8 PH |
4507 | /* If the rename has been defined in a package, then it is visible. */ |
4508 | if (is_package_name (scope)) | |
aeb5907d | 4509 | return 0; |
14f9c5c9 | 4510 | |
96d887e8 PH |
4511 | /* Check that the rename is in the current function scope by checking |
4512 | that its name starts with SCOPE. */ | |
76a01679 | 4513 | |
96d887e8 PH |
4514 | /* If the function name starts with "_ada_", it means that it is |
4515 | a library-level function. Strip this prefix before doing the | |
4516 | comparison, as the encoding for the renaming does not contain | |
4517 | this prefix. */ | |
4518 | if (strncmp (function_name, "_ada_", 5) == 0) | |
4519 | function_name += 5; | |
f26caa11 | 4520 | |
aeb5907d | 4521 | return (strncmp (function_name, scope, strlen (scope)) != 0); |
f26caa11 PH |
4522 | } |
4523 | ||
aeb5907d JB |
4524 | /* Remove entries from SYMS that corresponds to a renaming entity that |
4525 | is not visible from the function associated with CURRENT_BLOCK or | |
4526 | that is superfluous due to the presence of more specific renaming | |
4527 | information. Places surviving symbols in the initial entries of | |
4528 | SYMS and returns the number of surviving symbols. | |
96d887e8 PH |
4529 | |
4530 | Rationale: | |
aeb5907d JB |
4531 | First, in cases where an object renaming is implemented as a |
4532 | reference variable, GNAT may produce both the actual reference | |
4533 | variable and the renaming encoding. In this case, we discard the | |
4534 | latter. | |
4535 | ||
4536 | Second, GNAT emits a type following a specified encoding for each renaming | |
96d887e8 PH |
4537 | entity. Unfortunately, STABS currently does not support the definition |
4538 | of types that are local to a given lexical block, so all renamings types | |
4539 | are emitted at library level. As a consequence, if an application | |
4540 | contains two renaming entities using the same name, and a user tries to | |
4541 | print the value of one of these entities, the result of the ada symbol | |
4542 | lookup will also contain the wrong renaming type. | |
f26caa11 | 4543 | |
96d887e8 PH |
4544 | This function partially covers for this limitation by attempting to |
4545 | remove from the SYMS list renaming symbols that should be visible | |
4546 | from CURRENT_BLOCK. However, there does not seem be a 100% reliable | |
4547 | method with the current information available. The implementation | |
4548 | below has a couple of limitations (FIXME: brobecker-2003-05-12): | |
4549 | ||
4550 | - When the user tries to print a rename in a function while there | |
4551 | is another rename entity defined in a package: Normally, the | |
4552 | rename in the function has precedence over the rename in the | |
4553 | package, so the latter should be removed from the list. This is | |
4554 | currently not the case. | |
4555 | ||
4556 | - This function will incorrectly remove valid renames if | |
4557 | the CURRENT_BLOCK corresponds to a function which symbol name | |
4558 | has been changed by an "Export" pragma. As a consequence, | |
4559 | the user will be unable to print such rename entities. */ | |
4c4b4cd2 | 4560 | |
14f9c5c9 | 4561 | static int |
aeb5907d JB |
4562 | remove_irrelevant_renamings (struct ada_symbol_info *syms, |
4563 | int nsyms, const struct block *current_block) | |
4c4b4cd2 PH |
4564 | { |
4565 | struct symbol *current_function; | |
4566 | char *current_function_name; | |
4567 | int i; | |
aeb5907d JB |
4568 | int is_new_style_renaming; |
4569 | ||
4570 | /* If there is both a renaming foo___XR... encoded as a variable and | |
4571 | a simple variable foo in the same block, discard the latter. | |
0963b4bd | 4572 | First, zero out such symbols, then compress. */ |
aeb5907d JB |
4573 | is_new_style_renaming = 0; |
4574 | for (i = 0; i < nsyms; i += 1) | |
4575 | { | |
4576 | struct symbol *sym = syms[i].sym; | |
4577 | struct block *block = syms[i].block; | |
4578 | const char *name; | |
4579 | const char *suffix; | |
4580 | ||
4581 | if (sym == NULL || SYMBOL_CLASS (sym) == LOC_TYPEDEF) | |
4582 | continue; | |
4583 | name = SYMBOL_LINKAGE_NAME (sym); | |
4584 | suffix = strstr (name, "___XR"); | |
4585 | ||
4586 | if (suffix != NULL) | |
4587 | { | |
4588 | int name_len = suffix - name; | |
4589 | int j; | |
5b4ee69b | 4590 | |
aeb5907d JB |
4591 | is_new_style_renaming = 1; |
4592 | for (j = 0; j < nsyms; j += 1) | |
4593 | if (i != j && syms[j].sym != NULL | |
4594 | && strncmp (name, SYMBOL_LINKAGE_NAME (syms[j].sym), | |
4595 | name_len) == 0 | |
4596 | && block == syms[j].block) | |
4597 | syms[j].sym = NULL; | |
4598 | } | |
4599 | } | |
4600 | if (is_new_style_renaming) | |
4601 | { | |
4602 | int j, k; | |
4603 | ||
4604 | for (j = k = 0; j < nsyms; j += 1) | |
4605 | if (syms[j].sym != NULL) | |
4606 | { | |
4607 | syms[k] = syms[j]; | |
4608 | k += 1; | |
4609 | } | |
4610 | return k; | |
4611 | } | |
4c4b4cd2 PH |
4612 | |
4613 | /* Extract the function name associated to CURRENT_BLOCK. | |
4614 | Abort if unable to do so. */ | |
76a01679 | 4615 | |
4c4b4cd2 PH |
4616 | if (current_block == NULL) |
4617 | return nsyms; | |
76a01679 | 4618 | |
7f0df278 | 4619 | current_function = block_linkage_function (current_block); |
4c4b4cd2 PH |
4620 | if (current_function == NULL) |
4621 | return nsyms; | |
4622 | ||
4623 | current_function_name = SYMBOL_LINKAGE_NAME (current_function); | |
4624 | if (current_function_name == NULL) | |
4625 | return nsyms; | |
4626 | ||
4627 | /* Check each of the symbols, and remove it from the list if it is | |
4628 | a type corresponding to a renaming that is out of the scope of | |
4629 | the current block. */ | |
4630 | ||
4631 | i = 0; | |
4632 | while (i < nsyms) | |
4633 | { | |
aeb5907d JB |
4634 | if (ada_parse_renaming (syms[i].sym, NULL, NULL, NULL) |
4635 | == ADA_OBJECT_RENAMING | |
4636 | && old_renaming_is_invisible (syms[i].sym, current_function_name)) | |
4c4b4cd2 PH |
4637 | { |
4638 | int j; | |
5b4ee69b | 4639 | |
aeb5907d | 4640 | for (j = i + 1; j < nsyms; j += 1) |
76a01679 | 4641 | syms[j - 1] = syms[j]; |
4c4b4cd2 PH |
4642 | nsyms -= 1; |
4643 | } | |
4644 | else | |
4645 | i += 1; | |
4646 | } | |
4647 | ||
4648 | return nsyms; | |
4649 | } | |
4650 | ||
339c13b6 JB |
4651 | /* Add to OBSTACKP all symbols from BLOCK (and its super-blocks) |
4652 | whose name and domain match NAME and DOMAIN respectively. | |
4653 | If no match was found, then extend the search to "enclosing" | |
4654 | routines (in other words, if we're inside a nested function, | |
4655 | search the symbols defined inside the enclosing functions). | |
4656 | ||
4657 | Note: This function assumes that OBSTACKP has 0 (zero) element in it. */ | |
4658 | ||
4659 | static void | |
4660 | ada_add_local_symbols (struct obstack *obstackp, const char *name, | |
4661 | struct block *block, domain_enum domain, | |
4662 | int wild_match) | |
4663 | { | |
4664 | int block_depth = 0; | |
4665 | ||
4666 | while (block != NULL) | |
4667 | { | |
4668 | block_depth += 1; | |
4669 | ada_add_block_symbols (obstackp, block, name, domain, NULL, wild_match); | |
4670 | ||
4671 | /* If we found a non-function match, assume that's the one. */ | |
4672 | if (is_nonfunction (defns_collected (obstackp, 0), | |
4673 | num_defns_collected (obstackp))) | |
4674 | return; | |
4675 | ||
4676 | block = BLOCK_SUPERBLOCK (block); | |
4677 | } | |
4678 | ||
4679 | /* If no luck so far, try to find NAME as a local symbol in some lexically | |
4680 | enclosing subprogram. */ | |
4681 | if (num_defns_collected (obstackp) == 0 && block_depth > 2) | |
4682 | add_symbols_from_enclosing_procs (obstackp, name, domain, wild_match); | |
4683 | } | |
4684 | ||
ccefe4c4 | 4685 | /* An object of this type is used as the user_data argument when |
40658b94 | 4686 | calling the map_matching_symbols method. */ |
ccefe4c4 | 4687 | |
40658b94 | 4688 | struct match_data |
ccefe4c4 | 4689 | { |
40658b94 | 4690 | struct objfile *objfile; |
ccefe4c4 | 4691 | struct obstack *obstackp; |
40658b94 PH |
4692 | struct symbol *arg_sym; |
4693 | int found_sym; | |
ccefe4c4 TT |
4694 | }; |
4695 | ||
40658b94 PH |
4696 | /* A callback for add_matching_symbols that adds SYM, found in BLOCK, |
4697 | to a list of symbols. DATA0 is a pointer to a struct match_data * | |
4698 | containing the obstack that collects the symbol list, the file that SYM | |
4699 | must come from, a flag indicating whether a non-argument symbol has | |
4700 | been found in the current block, and the last argument symbol | |
4701 | passed in SYM within the current block (if any). When SYM is null, | |
4702 | marking the end of a block, the argument symbol is added if no | |
4703 | other has been found. */ | |
ccefe4c4 | 4704 | |
40658b94 PH |
4705 | static int |
4706 | aux_add_nonlocal_symbols (struct block *block, struct symbol *sym, void *data0) | |
ccefe4c4 | 4707 | { |
40658b94 PH |
4708 | struct match_data *data = (struct match_data *) data0; |
4709 | ||
4710 | if (sym == NULL) | |
4711 | { | |
4712 | if (!data->found_sym && data->arg_sym != NULL) | |
4713 | add_defn_to_vec (data->obstackp, | |
4714 | fixup_symbol_section (data->arg_sym, data->objfile), | |
4715 | block); | |
4716 | data->found_sym = 0; | |
4717 | data->arg_sym = NULL; | |
4718 | } | |
4719 | else | |
4720 | { | |
4721 | if (SYMBOL_CLASS (sym) == LOC_UNRESOLVED) | |
4722 | return 0; | |
4723 | else if (SYMBOL_IS_ARGUMENT (sym)) | |
4724 | data->arg_sym = sym; | |
4725 | else | |
4726 | { | |
4727 | data->found_sym = 1; | |
4728 | add_defn_to_vec (data->obstackp, | |
4729 | fixup_symbol_section (sym, data->objfile), | |
4730 | block); | |
4731 | } | |
4732 | } | |
4733 | return 0; | |
4734 | } | |
4735 | ||
4736 | /* Compare STRING1 to STRING2, with results as for strcmp. | |
4737 | Compatible with strcmp_iw in that strcmp_iw (STRING1, STRING2) <= 0 | |
4738 | implies compare_names (STRING1, STRING2) (they may differ as to | |
4739 | what symbols compare equal). */ | |
5b4ee69b | 4740 | |
40658b94 PH |
4741 | static int |
4742 | compare_names (const char *string1, const char *string2) | |
4743 | { | |
4744 | while (*string1 != '\0' && *string2 != '\0') | |
4745 | { | |
4746 | if (isspace (*string1) || isspace (*string2)) | |
4747 | return strcmp_iw_ordered (string1, string2); | |
4748 | if (*string1 != *string2) | |
4749 | break; | |
4750 | string1 += 1; | |
4751 | string2 += 1; | |
4752 | } | |
4753 | switch (*string1) | |
4754 | { | |
4755 | case '(': | |
4756 | return strcmp_iw_ordered (string1, string2); | |
4757 | case '_': | |
4758 | if (*string2 == '\0') | |
4759 | { | |
052874e8 | 4760 | if (is_name_suffix (string1)) |
40658b94 PH |
4761 | return 0; |
4762 | else | |
4763 | return -1; | |
4764 | } | |
dbb8534f | 4765 | /* FALLTHROUGH */ |
40658b94 PH |
4766 | default: |
4767 | if (*string2 == '(') | |
4768 | return strcmp_iw_ordered (string1, string2); | |
4769 | else | |
4770 | return *string1 - *string2; | |
4771 | } | |
ccefe4c4 TT |
4772 | } |
4773 | ||
339c13b6 JB |
4774 | /* Add to OBSTACKP all non-local symbols whose name and domain match |
4775 | NAME and DOMAIN respectively. The search is performed on GLOBAL_BLOCK | |
4776 | symbols if GLOBAL is non-zero, or on STATIC_BLOCK symbols otherwise. */ | |
4777 | ||
4778 | static void | |
40658b94 PH |
4779 | add_nonlocal_symbols (struct obstack *obstackp, const char *name, |
4780 | domain_enum domain, int global, | |
4781 | int is_wild_match) | |
339c13b6 JB |
4782 | { |
4783 | struct objfile *objfile; | |
40658b94 | 4784 | struct match_data data; |
339c13b6 | 4785 | |
ccefe4c4 | 4786 | data.obstackp = obstackp; |
40658b94 | 4787 | data.arg_sym = NULL; |
339c13b6 | 4788 | |
ccefe4c4 | 4789 | ALL_OBJFILES (objfile) |
40658b94 PH |
4790 | { |
4791 | data.objfile = objfile; | |
4792 | ||
4793 | if (is_wild_match) | |
4794 | objfile->sf->qf->map_matching_symbols (name, domain, objfile, global, | |
4795 | aux_add_nonlocal_symbols, &data, | |
4796 | wild_match, NULL); | |
4797 | else | |
4798 | objfile->sf->qf->map_matching_symbols (name, domain, objfile, global, | |
4799 | aux_add_nonlocal_symbols, &data, | |
4800 | full_match, compare_names); | |
4801 | } | |
4802 | ||
4803 | if (num_defns_collected (obstackp) == 0 && global && !is_wild_match) | |
4804 | { | |
4805 | ALL_OBJFILES (objfile) | |
4806 | { | |
4807 | char *name1 = alloca (strlen (name) + sizeof ("_ada_")); | |
4808 | strcpy (name1, "_ada_"); | |
4809 | strcpy (name1 + sizeof ("_ada_") - 1, name); | |
4810 | data.objfile = objfile; | |
0963b4bd MS |
4811 | objfile->sf->qf->map_matching_symbols (name1, domain, |
4812 | objfile, global, | |
4813 | aux_add_nonlocal_symbols, | |
4814 | &data, | |
40658b94 PH |
4815 | full_match, compare_names); |
4816 | } | |
4817 | } | |
339c13b6 JB |
4818 | } |
4819 | ||
4c4b4cd2 PH |
4820 | /* Find symbols in DOMAIN matching NAME0, in BLOCK0 and enclosing |
4821 | scope and in global scopes, returning the number of matches. Sets | |
6c9353d3 | 4822 | *RESULTS to point to a vector of (SYM,BLOCK) tuples, |
4c4b4cd2 PH |
4823 | indicating the symbols found and the blocks and symbol tables (if |
4824 | any) in which they were found. This vector are transient---good only to | |
4825 | the next call of ada_lookup_symbol_list. Any non-function/non-enumeral | |
4826 | symbol match within the nest of blocks whose innermost member is BLOCK0, | |
4827 | is the one match returned (no other matches in that or | |
4828 | enclosing blocks is returned). If there are any matches in or | |
4829 | surrounding BLOCK0, then these alone are returned. Otherwise, the | |
4830 | search extends to global and file-scope (static) symbol tables. | |
4831 | Names prefixed with "standard__" are handled specially: "standard__" | |
4832 | is first stripped off, and only static and global symbols are searched. */ | |
14f9c5c9 AS |
4833 | |
4834 | int | |
4c4b4cd2 | 4835 | ada_lookup_symbol_list (const char *name0, const struct block *block0, |
76a01679 JB |
4836 | domain_enum namespace, |
4837 | struct ada_symbol_info **results) | |
14f9c5c9 AS |
4838 | { |
4839 | struct symbol *sym; | |
14f9c5c9 | 4840 | struct block *block; |
4c4b4cd2 | 4841 | const char *name; |
4c4b4cd2 | 4842 | int wild_match; |
14f9c5c9 | 4843 | int cacheIfUnique; |
4c4b4cd2 | 4844 | int ndefns; |
14f9c5c9 | 4845 | |
4c4b4cd2 PH |
4846 | obstack_free (&symbol_list_obstack, NULL); |
4847 | obstack_init (&symbol_list_obstack); | |
14f9c5c9 | 4848 | |
14f9c5c9 AS |
4849 | cacheIfUnique = 0; |
4850 | ||
4851 | /* Search specified block and its superiors. */ | |
4852 | ||
4c4b4cd2 PH |
4853 | wild_match = (strstr (name0, "__") == NULL); |
4854 | name = name0; | |
76a01679 JB |
4855 | block = (struct block *) block0; /* FIXME: No cast ought to be |
4856 | needed, but adding const will | |
4857 | have a cascade effect. */ | |
339c13b6 JB |
4858 | |
4859 | /* Special case: If the user specifies a symbol name inside package | |
4860 | Standard, do a non-wild matching of the symbol name without | |
4861 | the "standard__" prefix. This was primarily introduced in order | |
4862 | to allow the user to specifically access the standard exceptions | |
4863 | using, for instance, Standard.Constraint_Error when Constraint_Error | |
4864 | is ambiguous (due to the user defining its own Constraint_Error | |
4865 | entity inside its program). */ | |
4c4b4cd2 PH |
4866 | if (strncmp (name0, "standard__", sizeof ("standard__") - 1) == 0) |
4867 | { | |
4868 | wild_match = 0; | |
4869 | block = NULL; | |
4870 | name = name0 + sizeof ("standard__") - 1; | |
4871 | } | |
4872 | ||
339c13b6 | 4873 | /* Check the non-global symbols. If we have ANY match, then we're done. */ |
14f9c5c9 | 4874 | |
339c13b6 JB |
4875 | ada_add_local_symbols (&symbol_list_obstack, name, block, namespace, |
4876 | wild_match); | |
4c4b4cd2 | 4877 | if (num_defns_collected (&symbol_list_obstack) > 0) |
14f9c5c9 | 4878 | goto done; |
d2e4a39e | 4879 | |
339c13b6 JB |
4880 | /* No non-global symbols found. Check our cache to see if we have |
4881 | already performed this search before. If we have, then return | |
4882 | the same result. */ | |
4883 | ||
14f9c5c9 | 4884 | cacheIfUnique = 1; |
2570f2b7 | 4885 | if (lookup_cached_symbol (name0, namespace, &sym, &block)) |
4c4b4cd2 PH |
4886 | { |
4887 | if (sym != NULL) | |
2570f2b7 | 4888 | add_defn_to_vec (&symbol_list_obstack, sym, block); |
4c4b4cd2 PH |
4889 | goto done; |
4890 | } | |
14f9c5c9 | 4891 | |
339c13b6 JB |
4892 | /* Search symbols from all global blocks. */ |
4893 | ||
40658b94 PH |
4894 | add_nonlocal_symbols (&symbol_list_obstack, name, namespace, 1, |
4895 | wild_match); | |
d2e4a39e | 4896 | |
4c4b4cd2 | 4897 | /* Now add symbols from all per-file blocks if we've gotten no hits |
339c13b6 | 4898 | (not strictly correct, but perhaps better than an error). */ |
d2e4a39e | 4899 | |
4c4b4cd2 | 4900 | if (num_defns_collected (&symbol_list_obstack) == 0) |
40658b94 PH |
4901 | add_nonlocal_symbols (&symbol_list_obstack, name, namespace, 0, |
4902 | wild_match); | |
14f9c5c9 | 4903 | |
4c4b4cd2 PH |
4904 | done: |
4905 | ndefns = num_defns_collected (&symbol_list_obstack); | |
4906 | *results = defns_collected (&symbol_list_obstack, 1); | |
4907 | ||
4908 | ndefns = remove_extra_symbols (*results, ndefns); | |
4909 | ||
d2e4a39e | 4910 | if (ndefns == 0) |
2570f2b7 | 4911 | cache_symbol (name0, namespace, NULL, NULL); |
14f9c5c9 | 4912 | |
4c4b4cd2 | 4913 | if (ndefns == 1 && cacheIfUnique) |
2570f2b7 | 4914 | cache_symbol (name0, namespace, (*results)[0].sym, (*results)[0].block); |
14f9c5c9 | 4915 | |
aeb5907d | 4916 | ndefns = remove_irrelevant_renamings (*results, ndefns, block0); |
14f9c5c9 | 4917 | |
14f9c5c9 AS |
4918 | return ndefns; |
4919 | } | |
4920 | ||
d2e4a39e | 4921 | struct symbol * |
aeb5907d | 4922 | ada_lookup_encoded_symbol (const char *name, const struct block *block0, |
21b556f4 | 4923 | domain_enum namespace, struct block **block_found) |
14f9c5c9 | 4924 | { |
4c4b4cd2 | 4925 | struct ada_symbol_info *candidates; |
14f9c5c9 AS |
4926 | int n_candidates; |
4927 | ||
aeb5907d | 4928 | n_candidates = ada_lookup_symbol_list (name, block0, namespace, &candidates); |
14f9c5c9 AS |
4929 | |
4930 | if (n_candidates == 0) | |
4931 | return NULL; | |
4c4b4cd2 | 4932 | |
aeb5907d JB |
4933 | if (block_found != NULL) |
4934 | *block_found = candidates[0].block; | |
4c4b4cd2 | 4935 | |
21b556f4 | 4936 | return fixup_symbol_section (candidates[0].sym, NULL); |
aeb5907d JB |
4937 | } |
4938 | ||
4939 | /* Return a symbol in DOMAIN matching NAME, in BLOCK0 and enclosing | |
4940 | scope and in global scopes, or NULL if none. NAME is folded and | |
4941 | encoded first. Otherwise, the result is as for ada_lookup_symbol_list, | |
0963b4bd | 4942 | choosing the first symbol if there are multiple choices. |
aeb5907d JB |
4943 | *IS_A_FIELD_OF_THIS is set to 0 and *SYMTAB is set to the symbol |
4944 | table in which the symbol was found (in both cases, these | |
4945 | assignments occur only if the pointers are non-null). */ | |
4946 | struct symbol * | |
4947 | ada_lookup_symbol (const char *name, const struct block *block0, | |
21b556f4 | 4948 | domain_enum namespace, int *is_a_field_of_this) |
aeb5907d JB |
4949 | { |
4950 | if (is_a_field_of_this != NULL) | |
4951 | *is_a_field_of_this = 0; | |
4952 | ||
4953 | return | |
4954 | ada_lookup_encoded_symbol (ada_encode (ada_fold_name (name)), | |
21b556f4 | 4955 | block0, namespace, NULL); |
4c4b4cd2 | 4956 | } |
14f9c5c9 | 4957 | |
4c4b4cd2 PH |
4958 | static struct symbol * |
4959 | ada_lookup_symbol_nonlocal (const char *name, | |
76a01679 | 4960 | const struct block *block, |
21b556f4 | 4961 | const domain_enum domain) |
4c4b4cd2 | 4962 | { |
94af9270 | 4963 | return ada_lookup_symbol (name, block_static_block (block), domain, NULL); |
14f9c5c9 AS |
4964 | } |
4965 | ||
4966 | ||
4c4b4cd2 PH |
4967 | /* True iff STR is a possible encoded suffix of a normal Ada name |
4968 | that is to be ignored for matching purposes. Suffixes of parallel | |
4969 | names (e.g., XVE) are not included here. Currently, the possible suffixes | |
5823c3ef | 4970 | are given by any of the regular expressions: |
4c4b4cd2 | 4971 | |
babe1480 JB |
4972 | [.$][0-9]+ [nested subprogram suffix, on platforms such as GNU/Linux] |
4973 | ___[0-9]+ [nested subprogram suffix, on platforms such as HP/UX] | |
4974 | _E[0-9]+[bs]$ [protected object entry suffixes] | |
61ee279c | 4975 | (X[nb]*)?((\$|__)[0-9](_?[0-9]+)|___(JM|LJM|X([FDBUP].*|R[^T]?)))?$ |
babe1480 JB |
4976 | |
4977 | Also, any leading "__[0-9]+" sequence is skipped before the suffix | |
4978 | match is performed. This sequence is used to differentiate homonyms, | |
4979 | is an optional part of a valid name suffix. */ | |
4c4b4cd2 | 4980 | |
14f9c5c9 | 4981 | static int |
d2e4a39e | 4982 | is_name_suffix (const char *str) |
14f9c5c9 AS |
4983 | { |
4984 | int k; | |
4c4b4cd2 PH |
4985 | const char *matching; |
4986 | const int len = strlen (str); | |
4987 | ||
babe1480 JB |
4988 | /* Skip optional leading __[0-9]+. */ |
4989 | ||
4c4b4cd2 PH |
4990 | if (len > 3 && str[0] == '_' && str[1] == '_' && isdigit (str[2])) |
4991 | { | |
babe1480 JB |
4992 | str += 3; |
4993 | while (isdigit (str[0])) | |
4994 | str += 1; | |
4c4b4cd2 | 4995 | } |
babe1480 JB |
4996 | |
4997 | /* [.$][0-9]+ */ | |
4c4b4cd2 | 4998 | |
babe1480 | 4999 | if (str[0] == '.' || str[0] == '$') |
4c4b4cd2 | 5000 | { |
babe1480 | 5001 | matching = str + 1; |
4c4b4cd2 PH |
5002 | while (isdigit (matching[0])) |
5003 | matching += 1; | |
5004 | if (matching[0] == '\0') | |
5005 | return 1; | |
5006 | } | |
5007 | ||
5008 | /* ___[0-9]+ */ | |
babe1480 | 5009 | |
4c4b4cd2 PH |
5010 | if (len > 3 && str[0] == '_' && str[1] == '_' && str[2] == '_') |
5011 | { | |
5012 | matching = str + 3; | |
5013 | while (isdigit (matching[0])) | |
5014 | matching += 1; | |
5015 | if (matching[0] == '\0') | |
5016 | return 1; | |
5017 | } | |
5018 | ||
529cad9c PH |
5019 | #if 0 |
5020 | /* FIXME: brobecker/2005-09-23: Protected Object subprograms end | |
0963b4bd MS |
5021 | with a N at the end. Unfortunately, the compiler uses the same |
5022 | convention for other internal types it creates. So treating | |
529cad9c | 5023 | all entity names that end with an "N" as a name suffix causes |
0963b4bd MS |
5024 | some regressions. For instance, consider the case of an enumerated |
5025 | type. To support the 'Image attribute, it creates an array whose | |
529cad9c PH |
5026 | name ends with N. |
5027 | Having a single character like this as a suffix carrying some | |
0963b4bd | 5028 | information is a bit risky. Perhaps we should change the encoding |
529cad9c PH |
5029 | to be something like "_N" instead. In the meantime, do not do |
5030 | the following check. */ | |
5031 | /* Protected Object Subprograms */ | |
5032 | if (len == 1 && str [0] == 'N') | |
5033 | return 1; | |
5034 | #endif | |
5035 | ||
5036 | /* _E[0-9]+[bs]$ */ | |
5037 | if (len > 3 && str[0] == '_' && str [1] == 'E' && isdigit (str[2])) | |
5038 | { | |
5039 | matching = str + 3; | |
5040 | while (isdigit (matching[0])) | |
5041 | matching += 1; | |
5042 | if ((matching[0] == 'b' || matching[0] == 's') | |
5043 | && matching [1] == '\0') | |
5044 | return 1; | |
5045 | } | |
5046 | ||
4c4b4cd2 PH |
5047 | /* ??? We should not modify STR directly, as we are doing below. This |
5048 | is fine in this case, but may become problematic later if we find | |
5049 | that this alternative did not work, and want to try matching | |
5050 | another one from the begining of STR. Since we modified it, we | |
5051 | won't be able to find the begining of the string anymore! */ | |
14f9c5c9 AS |
5052 | if (str[0] == 'X') |
5053 | { | |
5054 | str += 1; | |
d2e4a39e | 5055 | while (str[0] != '_' && str[0] != '\0') |
4c4b4cd2 PH |
5056 | { |
5057 | if (str[0] != 'n' && str[0] != 'b') | |
5058 | return 0; | |
5059 | str += 1; | |
5060 | } | |
14f9c5c9 | 5061 | } |
babe1480 | 5062 | |
14f9c5c9 AS |
5063 | if (str[0] == '\000') |
5064 | return 1; | |
babe1480 | 5065 | |
d2e4a39e | 5066 | if (str[0] == '_') |
14f9c5c9 AS |
5067 | { |
5068 | if (str[1] != '_' || str[2] == '\000') | |
4c4b4cd2 | 5069 | return 0; |
d2e4a39e | 5070 | if (str[2] == '_') |
4c4b4cd2 | 5071 | { |
61ee279c PH |
5072 | if (strcmp (str + 3, "JM") == 0) |
5073 | return 1; | |
5074 | /* FIXME: brobecker/2004-09-30: GNAT will soon stop using | |
5075 | the LJM suffix in favor of the JM one. But we will | |
5076 | still accept LJM as a valid suffix for a reasonable | |
5077 | amount of time, just to allow ourselves to debug programs | |
5078 | compiled using an older version of GNAT. */ | |
4c4b4cd2 PH |
5079 | if (strcmp (str + 3, "LJM") == 0) |
5080 | return 1; | |
5081 | if (str[3] != 'X') | |
5082 | return 0; | |
1265e4aa JB |
5083 | if (str[4] == 'F' || str[4] == 'D' || str[4] == 'B' |
5084 | || str[4] == 'U' || str[4] == 'P') | |
4c4b4cd2 PH |
5085 | return 1; |
5086 | if (str[4] == 'R' && str[5] != 'T') | |
5087 | return 1; | |
5088 | return 0; | |
5089 | } | |
5090 | if (!isdigit (str[2])) | |
5091 | return 0; | |
5092 | for (k = 3; str[k] != '\0'; k += 1) | |
5093 | if (!isdigit (str[k]) && str[k] != '_') | |
5094 | return 0; | |
14f9c5c9 AS |
5095 | return 1; |
5096 | } | |
4c4b4cd2 | 5097 | if (str[0] == '$' && isdigit (str[1])) |
14f9c5c9 | 5098 | { |
4c4b4cd2 PH |
5099 | for (k = 2; str[k] != '\0'; k += 1) |
5100 | if (!isdigit (str[k]) && str[k] != '_') | |
5101 | return 0; | |
14f9c5c9 AS |
5102 | return 1; |
5103 | } | |
5104 | return 0; | |
5105 | } | |
d2e4a39e | 5106 | |
aeb5907d JB |
5107 | /* Return non-zero if the string starting at NAME and ending before |
5108 | NAME_END contains no capital letters. */ | |
529cad9c PH |
5109 | |
5110 | static int | |
5111 | is_valid_name_for_wild_match (const char *name0) | |
5112 | { | |
5113 | const char *decoded_name = ada_decode (name0); | |
5114 | int i; | |
5115 | ||
5823c3ef JB |
5116 | /* If the decoded name starts with an angle bracket, it means that |
5117 | NAME0 does not follow the GNAT encoding format. It should then | |
5118 | not be allowed as a possible wild match. */ | |
5119 | if (decoded_name[0] == '<') | |
5120 | return 0; | |
5121 | ||
529cad9c PH |
5122 | for (i=0; decoded_name[i] != '\0'; i++) |
5123 | if (isalpha (decoded_name[i]) && !islower (decoded_name[i])) | |
5124 | return 0; | |
5125 | ||
5126 | return 1; | |
5127 | } | |
5128 | ||
73589123 PH |
5129 | /* Advance *NAMEP to next occurrence of TARGET0 in the string NAME0 |
5130 | that could start a simple name. Assumes that *NAMEP points into | |
5131 | the string beginning at NAME0. */ | |
4c4b4cd2 | 5132 | |
14f9c5c9 | 5133 | static int |
73589123 | 5134 | advance_wild_match (const char **namep, const char *name0, int target0) |
14f9c5c9 | 5135 | { |
73589123 | 5136 | const char *name = *namep; |
5b4ee69b | 5137 | |
5823c3ef | 5138 | while (1) |
14f9c5c9 | 5139 | { |
aa27d0b3 | 5140 | int t0, t1; |
73589123 PH |
5141 | |
5142 | t0 = *name; | |
5143 | if (t0 == '_') | |
5144 | { | |
5145 | t1 = name[1]; | |
5146 | if ((t1 >= 'a' && t1 <= 'z') || (t1 >= '0' && t1 <= '9')) | |
5147 | { | |
5148 | name += 1; | |
5149 | if (name == name0 + 5 && strncmp (name0, "_ada", 4) == 0) | |
5150 | break; | |
5151 | else | |
5152 | name += 1; | |
5153 | } | |
aa27d0b3 JB |
5154 | else if (t1 == '_' && ((name[2] >= 'a' && name[2] <= 'z') |
5155 | || name[2] == target0)) | |
73589123 PH |
5156 | { |
5157 | name += 2; | |
5158 | break; | |
5159 | } | |
5160 | else | |
5161 | return 0; | |
5162 | } | |
5163 | else if ((t0 >= 'a' && t0 <= 'z') || (t0 >= '0' && t0 <= '9')) | |
5164 | name += 1; | |
5165 | else | |
5823c3ef | 5166 | return 0; |
73589123 PH |
5167 | } |
5168 | ||
5169 | *namep = name; | |
5170 | return 1; | |
5171 | } | |
5172 | ||
5173 | /* Return 0 iff NAME encodes a name of the form prefix.PATN. Ignores any | |
5174 | informational suffixes of NAME (i.e., for which is_name_suffix is | |
5175 | true). Assumes that PATN is a lower-cased Ada simple name. */ | |
5176 | ||
5177 | static int | |
5178 | wild_match (const char *name, const char *patn) | |
5179 | { | |
5180 | const char *p, *n; | |
5181 | const char *name0 = name; | |
5182 | ||
5183 | while (1) | |
5184 | { | |
5185 | const char *match = name; | |
5186 | ||
5187 | if (*name == *patn) | |
5188 | { | |
5189 | for (name += 1, p = patn + 1; *p != '\0'; name += 1, p += 1) | |
5190 | if (*p != *name) | |
5191 | break; | |
5192 | if (*p == '\0' && is_name_suffix (name)) | |
5193 | return match != name0 && !is_valid_name_for_wild_match (name0); | |
5194 | ||
5195 | if (name[-1] == '_') | |
5196 | name -= 1; | |
5197 | } | |
5198 | if (!advance_wild_match (&name, name0, *patn)) | |
5199 | return 1; | |
96d887e8 | 5200 | } |
96d887e8 PH |
5201 | } |
5202 | ||
40658b94 PH |
5203 | /* Returns 0 iff symbol name SYM_NAME matches SEARCH_NAME, apart from |
5204 | informational suffix. */ | |
5205 | ||
c4d840bd PH |
5206 | static int |
5207 | full_match (const char *sym_name, const char *search_name) | |
5208 | { | |
40658b94 | 5209 | return !match_name (sym_name, search_name, 0); |
c4d840bd PH |
5210 | } |
5211 | ||
5212 | ||
96d887e8 PH |
5213 | /* Add symbols from BLOCK matching identifier NAME in DOMAIN to |
5214 | vector *defn_symbols, updating the list of symbols in OBSTACKP | |
0963b4bd | 5215 | (if necessary). If WILD, treat as NAME with a wildcard prefix. |
96d887e8 PH |
5216 | OBJFILE is the section containing BLOCK. |
5217 | SYMTAB is recorded with each symbol added. */ | |
5218 | ||
5219 | static void | |
5220 | ada_add_block_symbols (struct obstack *obstackp, | |
76a01679 | 5221 | struct block *block, const char *name, |
96d887e8 | 5222 | domain_enum domain, struct objfile *objfile, |
2570f2b7 | 5223 | int wild) |
96d887e8 PH |
5224 | { |
5225 | struct dict_iterator iter; | |
5226 | int name_len = strlen (name); | |
5227 | /* A matching argument symbol, if any. */ | |
5228 | struct symbol *arg_sym; | |
5229 | /* Set true when we find a matching non-argument symbol. */ | |
5230 | int found_sym; | |
5231 | struct symbol *sym; | |
5232 | ||
5233 | arg_sym = NULL; | |
5234 | found_sym = 0; | |
5235 | if (wild) | |
5236 | { | |
c4d840bd PH |
5237 | for (sym = dict_iter_match_first (BLOCK_DICT (block), name, |
5238 | wild_match, &iter); | |
5239 | sym != NULL; sym = dict_iter_match_next (name, wild_match, &iter)) | |
76a01679 | 5240 | { |
5eeb2539 AR |
5241 | if (symbol_matches_domain (SYMBOL_LANGUAGE (sym), |
5242 | SYMBOL_DOMAIN (sym), domain) | |
73589123 | 5243 | && wild_match (SYMBOL_LINKAGE_NAME (sym), name) == 0) |
76a01679 | 5244 | { |
2a2d4dc3 AS |
5245 | if (SYMBOL_CLASS (sym) == LOC_UNRESOLVED) |
5246 | continue; | |
5247 | else if (SYMBOL_IS_ARGUMENT (sym)) | |
5248 | arg_sym = sym; | |
5249 | else | |
5250 | { | |
76a01679 JB |
5251 | found_sym = 1; |
5252 | add_defn_to_vec (obstackp, | |
5253 | fixup_symbol_section (sym, objfile), | |
2570f2b7 | 5254 | block); |
76a01679 JB |
5255 | } |
5256 | } | |
5257 | } | |
96d887e8 PH |
5258 | } |
5259 | else | |
5260 | { | |
c4d840bd | 5261 | for (sym = dict_iter_match_first (BLOCK_DICT (block), name, |
40658b94 | 5262 | full_match, &iter); |
c4d840bd | 5263 | sym != NULL; sym = dict_iter_match_next (name, full_match, &iter)) |
76a01679 | 5264 | { |
5eeb2539 AR |
5265 | if (symbol_matches_domain (SYMBOL_LANGUAGE (sym), |
5266 | SYMBOL_DOMAIN (sym), domain)) | |
76a01679 | 5267 | { |
c4d840bd PH |
5268 | if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED) |
5269 | { | |
5270 | if (SYMBOL_IS_ARGUMENT (sym)) | |
5271 | arg_sym = sym; | |
5272 | else | |
2a2d4dc3 | 5273 | { |
c4d840bd PH |
5274 | found_sym = 1; |
5275 | add_defn_to_vec (obstackp, | |
5276 | fixup_symbol_section (sym, objfile), | |
5277 | block); | |
2a2d4dc3 | 5278 | } |
c4d840bd | 5279 | } |
76a01679 JB |
5280 | } |
5281 | } | |
96d887e8 PH |
5282 | } |
5283 | ||
5284 | if (!found_sym && arg_sym != NULL) | |
5285 | { | |
76a01679 JB |
5286 | add_defn_to_vec (obstackp, |
5287 | fixup_symbol_section (arg_sym, objfile), | |
2570f2b7 | 5288 | block); |
96d887e8 PH |
5289 | } |
5290 | ||
5291 | if (!wild) | |
5292 | { | |
5293 | arg_sym = NULL; | |
5294 | found_sym = 0; | |
5295 | ||
5296 | ALL_BLOCK_SYMBOLS (block, iter, sym) | |
76a01679 | 5297 | { |
5eeb2539 AR |
5298 | if (symbol_matches_domain (SYMBOL_LANGUAGE (sym), |
5299 | SYMBOL_DOMAIN (sym), domain)) | |
76a01679 JB |
5300 | { |
5301 | int cmp; | |
5302 | ||
5303 | cmp = (int) '_' - (int) SYMBOL_LINKAGE_NAME (sym)[0]; | |
5304 | if (cmp == 0) | |
5305 | { | |
5306 | cmp = strncmp ("_ada_", SYMBOL_LINKAGE_NAME (sym), 5); | |
5307 | if (cmp == 0) | |
5308 | cmp = strncmp (name, SYMBOL_LINKAGE_NAME (sym) + 5, | |
5309 | name_len); | |
5310 | } | |
5311 | ||
5312 | if (cmp == 0 | |
5313 | && is_name_suffix (SYMBOL_LINKAGE_NAME (sym) + name_len + 5)) | |
5314 | { | |
2a2d4dc3 AS |
5315 | if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED) |
5316 | { | |
5317 | if (SYMBOL_IS_ARGUMENT (sym)) | |
5318 | arg_sym = sym; | |
5319 | else | |
5320 | { | |
5321 | found_sym = 1; | |
5322 | add_defn_to_vec (obstackp, | |
5323 | fixup_symbol_section (sym, objfile), | |
5324 | block); | |
5325 | } | |
5326 | } | |
76a01679 JB |
5327 | } |
5328 | } | |
76a01679 | 5329 | } |
96d887e8 PH |
5330 | |
5331 | /* NOTE: This really shouldn't be needed for _ada_ symbols. | |
5332 | They aren't parameters, right? */ | |
5333 | if (!found_sym && arg_sym != NULL) | |
5334 | { | |
5335 | add_defn_to_vec (obstackp, | |
76a01679 | 5336 | fixup_symbol_section (arg_sym, objfile), |
2570f2b7 | 5337 | block); |
96d887e8 PH |
5338 | } |
5339 | } | |
5340 | } | |
5341 | \f | |
41d27058 JB |
5342 | |
5343 | /* Symbol Completion */ | |
5344 | ||
5345 | /* If SYM_NAME is a completion candidate for TEXT, return this symbol | |
5346 | name in a form that's appropriate for the completion. The result | |
5347 | does not need to be deallocated, but is only good until the next call. | |
5348 | ||
5349 | TEXT_LEN is equal to the length of TEXT. | |
5350 | Perform a wild match if WILD_MATCH is set. | |
5351 | ENCODED should be set if TEXT represents the start of a symbol name | |
5352 | in its encoded form. */ | |
5353 | ||
5354 | static const char * | |
5355 | symbol_completion_match (const char *sym_name, | |
5356 | const char *text, int text_len, | |
5357 | int wild_match, int encoded) | |
5358 | { | |
41d27058 JB |
5359 | const int verbatim_match = (text[0] == '<'); |
5360 | int match = 0; | |
5361 | ||
5362 | if (verbatim_match) | |
5363 | { | |
5364 | /* Strip the leading angle bracket. */ | |
5365 | text = text + 1; | |
5366 | text_len--; | |
5367 | } | |
5368 | ||
5369 | /* First, test against the fully qualified name of the symbol. */ | |
5370 | ||
5371 | if (strncmp (sym_name, text, text_len) == 0) | |
5372 | match = 1; | |
5373 | ||
5374 | if (match && !encoded) | |
5375 | { | |
5376 | /* One needed check before declaring a positive match is to verify | |
5377 | that iff we are doing a verbatim match, the decoded version | |
5378 | of the symbol name starts with '<'. Otherwise, this symbol name | |
5379 | is not a suitable completion. */ | |
5380 | const char *sym_name_copy = sym_name; | |
5381 | int has_angle_bracket; | |
5382 | ||
5383 | sym_name = ada_decode (sym_name); | |
5384 | has_angle_bracket = (sym_name[0] == '<'); | |
5385 | match = (has_angle_bracket == verbatim_match); | |
5386 | sym_name = sym_name_copy; | |
5387 | } | |
5388 | ||
5389 | if (match && !verbatim_match) | |
5390 | { | |
5391 | /* When doing non-verbatim match, another check that needs to | |
5392 | be done is to verify that the potentially matching symbol name | |
5393 | does not include capital letters, because the ada-mode would | |
5394 | not be able to understand these symbol names without the | |
5395 | angle bracket notation. */ | |
5396 | const char *tmp; | |
5397 | ||
5398 | for (tmp = sym_name; *tmp != '\0' && !isupper (*tmp); tmp++); | |
5399 | if (*tmp != '\0') | |
5400 | match = 0; | |
5401 | } | |
5402 | ||
5403 | /* Second: Try wild matching... */ | |
5404 | ||
5405 | if (!match && wild_match) | |
5406 | { | |
5407 | /* Since we are doing wild matching, this means that TEXT | |
5408 | may represent an unqualified symbol name. We therefore must | |
5409 | also compare TEXT against the unqualified name of the symbol. */ | |
5410 | sym_name = ada_unqualified_name (ada_decode (sym_name)); | |
5411 | ||
5412 | if (strncmp (sym_name, text, text_len) == 0) | |
5413 | match = 1; | |
5414 | } | |
5415 | ||
5416 | /* Finally: If we found a mach, prepare the result to return. */ | |
5417 | ||
5418 | if (!match) | |
5419 | return NULL; | |
5420 | ||
5421 | if (verbatim_match) | |
5422 | sym_name = add_angle_brackets (sym_name); | |
5423 | ||
5424 | if (!encoded) | |
5425 | sym_name = ada_decode (sym_name); | |
5426 | ||
5427 | return sym_name; | |
5428 | } | |
5429 | ||
2ba95b9b JB |
5430 | DEF_VEC_P (char_ptr); |
5431 | ||
41d27058 JB |
5432 | /* A companion function to ada_make_symbol_completion_list(). |
5433 | Check if SYM_NAME represents a symbol which name would be suitable | |
5434 | to complete TEXT (TEXT_LEN is the length of TEXT), in which case | |
5435 | it is appended at the end of the given string vector SV. | |
5436 | ||
5437 | ORIG_TEXT is the string original string from the user command | |
5438 | that needs to be completed. WORD is the entire command on which | |
5439 | completion should be performed. These two parameters are used to | |
5440 | determine which part of the symbol name should be added to the | |
5441 | completion vector. | |
5442 | if WILD_MATCH is set, then wild matching is performed. | |
5443 | ENCODED should be set if TEXT represents a symbol name in its | |
5444 | encoded formed (in which case the completion should also be | |
5445 | encoded). */ | |
5446 | ||
5447 | static void | |
d6565258 | 5448 | symbol_completion_add (VEC(char_ptr) **sv, |
41d27058 JB |
5449 | const char *sym_name, |
5450 | const char *text, int text_len, | |
5451 | const char *orig_text, const char *word, | |
5452 | int wild_match, int encoded) | |
5453 | { | |
5454 | const char *match = symbol_completion_match (sym_name, text, text_len, | |
5455 | wild_match, encoded); | |
5456 | char *completion; | |
5457 | ||
5458 | if (match == NULL) | |
5459 | return; | |
5460 | ||
5461 | /* We found a match, so add the appropriate completion to the given | |
5462 | string vector. */ | |
5463 | ||
5464 | if (word == orig_text) | |
5465 | { | |
5466 | completion = xmalloc (strlen (match) + 5); | |
5467 | strcpy (completion, match); | |
5468 | } | |
5469 | else if (word > orig_text) | |
5470 | { | |
5471 | /* Return some portion of sym_name. */ | |
5472 | completion = xmalloc (strlen (match) + 5); | |
5473 | strcpy (completion, match + (word - orig_text)); | |
5474 | } | |
5475 | else | |
5476 | { | |
5477 | /* Return some of ORIG_TEXT plus sym_name. */ | |
5478 | completion = xmalloc (strlen (match) + (orig_text - word) + 5); | |
5479 | strncpy (completion, word, orig_text - word); | |
5480 | completion[orig_text - word] = '\0'; | |
5481 | strcat (completion, match); | |
5482 | } | |
5483 | ||
d6565258 | 5484 | VEC_safe_push (char_ptr, *sv, completion); |
41d27058 JB |
5485 | } |
5486 | ||
ccefe4c4 TT |
5487 | /* An object of this type is passed as the user_data argument to the |
5488 | map_partial_symbol_names method. */ | |
5489 | struct add_partial_datum | |
5490 | { | |
5491 | VEC(char_ptr) **completions; | |
5492 | char *text; | |
5493 | int text_len; | |
5494 | char *text0; | |
5495 | char *word; | |
5496 | int wild_match; | |
5497 | int encoded; | |
5498 | }; | |
5499 | ||
5500 | /* A callback for map_partial_symbol_names. */ | |
5501 | static void | |
5502 | ada_add_partial_symbol_completions (const char *name, void *user_data) | |
5503 | { | |
5504 | struct add_partial_datum *data = user_data; | |
5b4ee69b | 5505 | |
ccefe4c4 TT |
5506 | symbol_completion_add (data->completions, name, |
5507 | data->text, data->text_len, data->text0, data->word, | |
5508 | data->wild_match, data->encoded); | |
5509 | } | |
5510 | ||
41d27058 JB |
5511 | /* Return a list of possible symbol names completing TEXT0. The list |
5512 | is NULL terminated. WORD is the entire command on which completion | |
5513 | is made. */ | |
5514 | ||
5515 | static char ** | |
5516 | ada_make_symbol_completion_list (char *text0, char *word) | |
5517 | { | |
5518 | char *text; | |
5519 | int text_len; | |
5520 | int wild_match; | |
5521 | int encoded; | |
2ba95b9b | 5522 | VEC(char_ptr) *completions = VEC_alloc (char_ptr, 128); |
41d27058 JB |
5523 | struct symbol *sym; |
5524 | struct symtab *s; | |
41d27058 JB |
5525 | struct minimal_symbol *msymbol; |
5526 | struct objfile *objfile; | |
5527 | struct block *b, *surrounding_static_block = 0; | |
5528 | int i; | |
5529 | struct dict_iterator iter; | |
5530 | ||
5531 | if (text0[0] == '<') | |
5532 | { | |
5533 | text = xstrdup (text0); | |
5534 | make_cleanup (xfree, text); | |
5535 | text_len = strlen (text); | |
5536 | wild_match = 0; | |
5537 | encoded = 1; | |
5538 | } | |
5539 | else | |
5540 | { | |
5541 | text = xstrdup (ada_encode (text0)); | |
5542 | make_cleanup (xfree, text); | |
5543 | text_len = strlen (text); | |
5544 | for (i = 0; i < text_len; i++) | |
5545 | text[i] = tolower (text[i]); | |
5546 | ||
5547 | encoded = (strstr (text0, "__") != NULL); | |
5548 | /* If the name contains a ".", then the user is entering a fully | |
5549 | qualified entity name, and the match must not be done in wild | |
5550 | mode. Similarly, if the user wants to complete what looks like | |
5551 | an encoded name, the match must not be done in wild mode. */ | |
5552 | wild_match = (strchr (text0, '.') == NULL && !encoded); | |
5553 | } | |
5554 | ||
5555 | /* First, look at the partial symtab symbols. */ | |
41d27058 | 5556 | { |
ccefe4c4 TT |
5557 | struct add_partial_datum data; |
5558 | ||
5559 | data.completions = &completions; | |
5560 | data.text = text; | |
5561 | data.text_len = text_len; | |
5562 | data.text0 = text0; | |
5563 | data.word = word; | |
5564 | data.wild_match = wild_match; | |
5565 | data.encoded = encoded; | |
5566 | map_partial_symbol_names (ada_add_partial_symbol_completions, &data); | |
41d27058 JB |
5567 | } |
5568 | ||
5569 | /* At this point scan through the misc symbol vectors and add each | |
5570 | symbol you find to the list. Eventually we want to ignore | |
5571 | anything that isn't a text symbol (everything else will be | |
5572 | handled by the psymtab code above). */ | |
5573 | ||
5574 | ALL_MSYMBOLS (objfile, msymbol) | |
5575 | { | |
5576 | QUIT; | |
d6565258 | 5577 | symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (msymbol), |
41d27058 JB |
5578 | text, text_len, text0, word, wild_match, encoded); |
5579 | } | |
5580 | ||
5581 | /* Search upwards from currently selected frame (so that we can | |
5582 | complete on local vars. */ | |
5583 | ||
5584 | for (b = get_selected_block (0); b != NULL; b = BLOCK_SUPERBLOCK (b)) | |
5585 | { | |
5586 | if (!BLOCK_SUPERBLOCK (b)) | |
5587 | surrounding_static_block = b; /* For elmin of dups */ | |
5588 | ||
5589 | ALL_BLOCK_SYMBOLS (b, iter, sym) | |
5590 | { | |
d6565258 | 5591 | symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym), |
41d27058 JB |
5592 | text, text_len, text0, word, |
5593 | wild_match, encoded); | |
5594 | } | |
5595 | } | |
5596 | ||
5597 | /* Go through the symtabs and check the externs and statics for | |
5598 | symbols which match. */ | |
5599 | ||
5600 | ALL_SYMTABS (objfile, s) | |
5601 | { | |
5602 | QUIT; | |
5603 | b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), GLOBAL_BLOCK); | |
5604 | ALL_BLOCK_SYMBOLS (b, iter, sym) | |
5605 | { | |
d6565258 | 5606 | symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym), |
41d27058 JB |
5607 | text, text_len, text0, word, |
5608 | wild_match, encoded); | |
5609 | } | |
5610 | } | |
5611 | ||
5612 | ALL_SYMTABS (objfile, s) | |
5613 | { | |
5614 | QUIT; | |
5615 | b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), STATIC_BLOCK); | |
5616 | /* Don't do this block twice. */ | |
5617 | if (b == surrounding_static_block) | |
5618 | continue; | |
5619 | ALL_BLOCK_SYMBOLS (b, iter, sym) | |
5620 | { | |
d6565258 | 5621 | symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym), |
41d27058 JB |
5622 | text, text_len, text0, word, |
5623 | wild_match, encoded); | |
5624 | } | |
5625 | } | |
5626 | ||
5627 | /* Append the closing NULL entry. */ | |
2ba95b9b | 5628 | VEC_safe_push (char_ptr, completions, NULL); |
41d27058 | 5629 | |
2ba95b9b JB |
5630 | /* Make a copy of the COMPLETIONS VEC before we free it, and then |
5631 | return the copy. It's unfortunate that we have to make a copy | |
5632 | of an array that we're about to destroy, but there is nothing much | |
5633 | we can do about it. Fortunately, it's typically not a very large | |
5634 | array. */ | |
5635 | { | |
5636 | const size_t completions_size = | |
5637 | VEC_length (char_ptr, completions) * sizeof (char *); | |
dc19db01 | 5638 | char **result = xmalloc (completions_size); |
2ba95b9b JB |
5639 | |
5640 | memcpy (result, VEC_address (char_ptr, completions), completions_size); | |
5641 | ||
5642 | VEC_free (char_ptr, completions); | |
5643 | return result; | |
5644 | } | |
41d27058 JB |
5645 | } |
5646 | ||
963a6417 | 5647 | /* Field Access */ |
96d887e8 | 5648 | |
73fb9985 JB |
5649 | /* Return non-zero if TYPE is a pointer to the GNAT dispatch table used |
5650 | for tagged types. */ | |
5651 | ||
5652 | static int | |
5653 | ada_is_dispatch_table_ptr_type (struct type *type) | |
5654 | { | |
5655 | char *name; | |
5656 | ||
5657 | if (TYPE_CODE (type) != TYPE_CODE_PTR) | |
5658 | return 0; | |
5659 | ||
5660 | name = TYPE_NAME (TYPE_TARGET_TYPE (type)); | |
5661 | if (name == NULL) | |
5662 | return 0; | |
5663 | ||
5664 | return (strcmp (name, "ada__tags__dispatch_table") == 0); | |
5665 | } | |
5666 | ||
963a6417 PH |
5667 | /* True if field number FIELD_NUM in struct or union type TYPE is supposed |
5668 | to be invisible to users. */ | |
96d887e8 | 5669 | |
963a6417 PH |
5670 | int |
5671 | ada_is_ignored_field (struct type *type, int field_num) | |
96d887e8 | 5672 | { |
963a6417 PH |
5673 | if (field_num < 0 || field_num > TYPE_NFIELDS (type)) |
5674 | return 1; | |
73fb9985 JB |
5675 | |
5676 | /* Check the name of that field. */ | |
5677 | { | |
5678 | const char *name = TYPE_FIELD_NAME (type, field_num); | |
5679 | ||
5680 | /* Anonymous field names should not be printed. | |
5681 | brobecker/2007-02-20: I don't think this can actually happen | |
5682 | but we don't want to print the value of annonymous fields anyway. */ | |
5683 | if (name == NULL) | |
5684 | return 1; | |
5685 | ||
5686 | /* A field named "_parent" is internally generated by GNAT for | |
5687 | tagged types, and should not be printed either. */ | |
5688 | if (name[0] == '_' && strncmp (name, "_parent", 7) != 0) | |
5689 | return 1; | |
5690 | } | |
5691 | ||
5692 | /* If this is the dispatch table of a tagged type, then ignore. */ | |
5693 | if (ada_is_tagged_type (type, 1) | |
5694 | && ada_is_dispatch_table_ptr_type (TYPE_FIELD_TYPE (type, field_num))) | |
5695 | return 1; | |
5696 | ||
5697 | /* Not a special field, so it should not be ignored. */ | |
5698 | return 0; | |
963a6417 | 5699 | } |
96d887e8 | 5700 | |
963a6417 | 5701 | /* True iff TYPE has a tag field. If REFOK, then TYPE may also be a |
0963b4bd | 5702 | pointer or reference type whose ultimate target has a tag field. */ |
96d887e8 | 5703 | |
963a6417 PH |
5704 | int |
5705 | ada_is_tagged_type (struct type *type, int refok) | |
5706 | { | |
5707 | return (ada_lookup_struct_elt_type (type, "_tag", refok, 1, NULL) != NULL); | |
5708 | } | |
96d887e8 | 5709 | |
963a6417 | 5710 | /* True iff TYPE represents the type of X'Tag */ |
96d887e8 | 5711 | |
963a6417 PH |
5712 | int |
5713 | ada_is_tag_type (struct type *type) | |
5714 | { | |
5715 | if (type == NULL || TYPE_CODE (type) != TYPE_CODE_PTR) | |
5716 | return 0; | |
5717 | else | |
96d887e8 | 5718 | { |
963a6417 | 5719 | const char *name = ada_type_name (TYPE_TARGET_TYPE (type)); |
5b4ee69b | 5720 | |
963a6417 PH |
5721 | return (name != NULL |
5722 | && strcmp (name, "ada__tags__dispatch_table") == 0); | |
96d887e8 | 5723 | } |
96d887e8 PH |
5724 | } |
5725 | ||
963a6417 | 5726 | /* The type of the tag on VAL. */ |
76a01679 | 5727 | |
963a6417 PH |
5728 | struct type * |
5729 | ada_tag_type (struct value *val) | |
96d887e8 | 5730 | { |
df407dfe | 5731 | return ada_lookup_struct_elt_type (value_type (val), "_tag", 1, 0, NULL); |
963a6417 | 5732 | } |
96d887e8 | 5733 | |
963a6417 | 5734 | /* The value of the tag on VAL. */ |
96d887e8 | 5735 | |
963a6417 PH |
5736 | struct value * |
5737 | ada_value_tag (struct value *val) | |
5738 | { | |
03ee6b2e | 5739 | return ada_value_struct_elt (val, "_tag", 0); |
96d887e8 PH |
5740 | } |
5741 | ||
963a6417 PH |
5742 | /* The value of the tag on the object of type TYPE whose contents are |
5743 | saved at VALADDR, if it is non-null, or is at memory address | |
0963b4bd | 5744 | ADDRESS. */ |
96d887e8 | 5745 | |
963a6417 | 5746 | static struct value * |
10a2c479 | 5747 | value_tag_from_contents_and_address (struct type *type, |
fc1a4b47 | 5748 | const gdb_byte *valaddr, |
963a6417 | 5749 | CORE_ADDR address) |
96d887e8 | 5750 | { |
b5385fc0 | 5751 | int tag_byte_offset; |
963a6417 | 5752 | struct type *tag_type; |
5b4ee69b | 5753 | |
963a6417 | 5754 | if (find_struct_field ("_tag", type, 0, &tag_type, &tag_byte_offset, |
52ce6436 | 5755 | NULL, NULL, NULL)) |
96d887e8 | 5756 | { |
fc1a4b47 | 5757 | const gdb_byte *valaddr1 = ((valaddr == NULL) |
10a2c479 AC |
5758 | ? NULL |
5759 | : valaddr + tag_byte_offset); | |
963a6417 | 5760 | CORE_ADDR address1 = (address == 0) ? 0 : address + tag_byte_offset; |
96d887e8 | 5761 | |
963a6417 | 5762 | return value_from_contents_and_address (tag_type, valaddr1, address1); |
96d887e8 | 5763 | } |
963a6417 PH |
5764 | return NULL; |
5765 | } | |
96d887e8 | 5766 | |
963a6417 PH |
5767 | static struct type * |
5768 | type_from_tag (struct value *tag) | |
5769 | { | |
5770 | const char *type_name = ada_tag_name (tag); | |
5b4ee69b | 5771 | |
963a6417 PH |
5772 | if (type_name != NULL) |
5773 | return ada_find_any_type (ada_encode (type_name)); | |
5774 | return NULL; | |
5775 | } | |
96d887e8 | 5776 | |
963a6417 PH |
5777 | struct tag_args |
5778 | { | |
5779 | struct value *tag; | |
5780 | char *name; | |
5781 | }; | |
4c4b4cd2 | 5782 | |
529cad9c PH |
5783 | |
5784 | static int ada_tag_name_1 (void *); | |
5785 | static int ada_tag_name_2 (struct tag_args *); | |
5786 | ||
4c4b4cd2 | 5787 | /* Wrapper function used by ada_tag_name. Given a struct tag_args* |
0963b4bd | 5788 | value ARGS, sets ARGS->name to the tag name of ARGS->tag. |
4c4b4cd2 PH |
5789 | The value stored in ARGS->name is valid until the next call to |
5790 | ada_tag_name_1. */ | |
5791 | ||
5792 | static int | |
5793 | ada_tag_name_1 (void *args0) | |
5794 | { | |
5795 | struct tag_args *args = (struct tag_args *) args0; | |
5796 | static char name[1024]; | |
76a01679 | 5797 | char *p; |
4c4b4cd2 | 5798 | struct value *val; |
5b4ee69b | 5799 | |
4c4b4cd2 | 5800 | args->name = NULL; |
03ee6b2e | 5801 | val = ada_value_struct_elt (args->tag, "tsd", 1); |
529cad9c PH |
5802 | if (val == NULL) |
5803 | return ada_tag_name_2 (args); | |
03ee6b2e | 5804 | val = ada_value_struct_elt (val, "expanded_name", 1); |
529cad9c PH |
5805 | if (val == NULL) |
5806 | return 0; | |
5807 | read_memory_string (value_as_address (val), name, sizeof (name) - 1); | |
5808 | for (p = name; *p != '\0'; p += 1) | |
5809 | if (isalpha (*p)) | |
5810 | *p = tolower (*p); | |
5811 | args->name = name; | |
5812 | return 0; | |
5813 | } | |
5814 | ||
e802dbe0 JB |
5815 | /* Return the "ada__tags__type_specific_data" type. */ |
5816 | ||
5817 | static struct type * | |
5818 | ada_get_tsd_type (struct inferior *inf) | |
5819 | { | |
5820 | struct ada_inferior_data *data = get_ada_inferior_data (inf); | |
5821 | ||
5822 | if (data->tsd_type == 0) | |
5823 | data->tsd_type = ada_find_any_type ("ada__tags__type_specific_data"); | |
5824 | return data->tsd_type; | |
5825 | } | |
5826 | ||
529cad9c PH |
5827 | /* Utility function for ada_tag_name_1 that tries the second |
5828 | representation for the dispatch table (in which there is no | |
5829 | explicit 'tsd' field in the referent of the tag pointer, and instead | |
0963b4bd | 5830 | the tsd pointer is stored just before the dispatch table. */ |
529cad9c PH |
5831 | |
5832 | static int | |
5833 | ada_tag_name_2 (struct tag_args *args) | |
5834 | { | |
5835 | struct type *info_type; | |
5836 | static char name[1024]; | |
5837 | char *p; | |
5838 | struct value *val, *valp; | |
5839 | ||
5840 | args->name = NULL; | |
e802dbe0 | 5841 | info_type = ada_get_tsd_type (current_inferior()); |
529cad9c PH |
5842 | if (info_type == NULL) |
5843 | return 0; | |
5844 | info_type = lookup_pointer_type (lookup_pointer_type (info_type)); | |
5845 | valp = value_cast (info_type, args->tag); | |
5846 | if (valp == NULL) | |
5847 | return 0; | |
2497b498 | 5848 | val = value_ind (value_ptradd (valp, -1)); |
4c4b4cd2 PH |
5849 | if (val == NULL) |
5850 | return 0; | |
03ee6b2e | 5851 | val = ada_value_struct_elt (val, "expanded_name", 1); |
4c4b4cd2 PH |
5852 | if (val == NULL) |
5853 | return 0; | |
5854 | read_memory_string (value_as_address (val), name, sizeof (name) - 1); | |
5855 | for (p = name; *p != '\0'; p += 1) | |
5856 | if (isalpha (*p)) | |
5857 | *p = tolower (*p); | |
5858 | args->name = name; | |
5859 | return 0; | |
5860 | } | |
5861 | ||
5862 | /* The type name of the dynamic type denoted by the 'tag value TAG, as | |
e802dbe0 | 5863 | a C string. */ |
4c4b4cd2 PH |
5864 | |
5865 | const char * | |
5866 | ada_tag_name (struct value *tag) | |
5867 | { | |
5868 | struct tag_args args; | |
5b4ee69b | 5869 | |
df407dfe | 5870 | if (!ada_is_tag_type (value_type (tag))) |
4c4b4cd2 | 5871 | return NULL; |
76a01679 | 5872 | args.tag = tag; |
4c4b4cd2 PH |
5873 | args.name = NULL; |
5874 | catch_errors (ada_tag_name_1, &args, NULL, RETURN_MASK_ALL); | |
5875 | return args.name; | |
5876 | } | |
5877 | ||
5878 | /* The parent type of TYPE, or NULL if none. */ | |
14f9c5c9 | 5879 | |
d2e4a39e | 5880 | struct type * |
ebf56fd3 | 5881 | ada_parent_type (struct type *type) |
14f9c5c9 AS |
5882 | { |
5883 | int i; | |
5884 | ||
61ee279c | 5885 | type = ada_check_typedef (type); |
14f9c5c9 AS |
5886 | |
5887 | if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT) | |
5888 | return NULL; | |
5889 | ||
5890 | for (i = 0; i < TYPE_NFIELDS (type); i += 1) | |
5891 | if (ada_is_parent_field (type, i)) | |
0c1f74cf JB |
5892 | { |
5893 | struct type *parent_type = TYPE_FIELD_TYPE (type, i); | |
5894 | ||
5895 | /* If the _parent field is a pointer, then dereference it. */ | |
5896 | if (TYPE_CODE (parent_type) == TYPE_CODE_PTR) | |
5897 | parent_type = TYPE_TARGET_TYPE (parent_type); | |
5898 | /* If there is a parallel XVS type, get the actual base type. */ | |
5899 | parent_type = ada_get_base_type (parent_type); | |
5900 | ||
5901 | return ada_check_typedef (parent_type); | |
5902 | } | |
14f9c5c9 AS |
5903 | |
5904 | return NULL; | |
5905 | } | |
5906 | ||
4c4b4cd2 PH |
5907 | /* True iff field number FIELD_NUM of structure type TYPE contains the |
5908 | parent-type (inherited) fields of a derived type. Assumes TYPE is | |
5909 | a structure type with at least FIELD_NUM+1 fields. */ | |
14f9c5c9 AS |
5910 | |
5911 | int | |
ebf56fd3 | 5912 | ada_is_parent_field (struct type *type, int field_num) |
14f9c5c9 | 5913 | { |
61ee279c | 5914 | const char *name = TYPE_FIELD_NAME (ada_check_typedef (type), field_num); |
5b4ee69b | 5915 | |
4c4b4cd2 PH |
5916 | return (name != NULL |
5917 | && (strncmp (name, "PARENT", 6) == 0 | |
5918 | || strncmp (name, "_parent", 7) == 0)); | |
14f9c5c9 AS |
5919 | } |
5920 | ||
4c4b4cd2 | 5921 | /* True iff field number FIELD_NUM of structure type TYPE is a |
14f9c5c9 | 5922 | transparent wrapper field (which should be silently traversed when doing |
4c4b4cd2 | 5923 | field selection and flattened when printing). Assumes TYPE is a |
14f9c5c9 | 5924 | structure type with at least FIELD_NUM+1 fields. Such fields are always |
4c4b4cd2 | 5925 | structures. */ |
14f9c5c9 AS |
5926 | |
5927 | int | |
ebf56fd3 | 5928 | ada_is_wrapper_field (struct type *type, int field_num) |
14f9c5c9 | 5929 | { |
d2e4a39e | 5930 | const char *name = TYPE_FIELD_NAME (type, field_num); |
5b4ee69b | 5931 | |
d2e4a39e | 5932 | return (name != NULL |
4c4b4cd2 PH |
5933 | && (strncmp (name, "PARENT", 6) == 0 |
5934 | || strcmp (name, "REP") == 0 | |
5935 | || strncmp (name, "_parent", 7) == 0 | |
5936 | || name[0] == 'S' || name[0] == 'R' || name[0] == 'O')); | |
14f9c5c9 AS |
5937 | } |
5938 | ||
4c4b4cd2 PH |
5939 | /* True iff field number FIELD_NUM of structure or union type TYPE |
5940 | is a variant wrapper. Assumes TYPE is a structure type with at least | |
5941 | FIELD_NUM+1 fields. */ | |
14f9c5c9 AS |
5942 | |
5943 | int | |
ebf56fd3 | 5944 | ada_is_variant_part (struct type *type, int field_num) |
14f9c5c9 | 5945 | { |
d2e4a39e | 5946 | struct type *field_type = TYPE_FIELD_TYPE (type, field_num); |
5b4ee69b | 5947 | |
14f9c5c9 | 5948 | return (TYPE_CODE (field_type) == TYPE_CODE_UNION |
4c4b4cd2 | 5949 | || (is_dynamic_field (type, field_num) |
c3e5cd34 PH |
5950 | && (TYPE_CODE (TYPE_TARGET_TYPE (field_type)) |
5951 | == TYPE_CODE_UNION))); | |
14f9c5c9 AS |
5952 | } |
5953 | ||
5954 | /* Assuming that VAR_TYPE is a variant wrapper (type of the variant part) | |
4c4b4cd2 | 5955 | whose discriminants are contained in the record type OUTER_TYPE, |
7c964f07 UW |
5956 | returns the type of the controlling discriminant for the variant. |
5957 | May return NULL if the type could not be found. */ | |
14f9c5c9 | 5958 | |
d2e4a39e | 5959 | struct type * |
ebf56fd3 | 5960 | ada_variant_discrim_type (struct type *var_type, struct type *outer_type) |
14f9c5c9 | 5961 | { |
d2e4a39e | 5962 | char *name = ada_variant_discrim_name (var_type); |
5b4ee69b | 5963 | |
7c964f07 | 5964 | return ada_lookup_struct_elt_type (outer_type, name, 1, 1, NULL); |
14f9c5c9 AS |
5965 | } |
5966 | ||
4c4b4cd2 | 5967 | /* Assuming that TYPE is the type of a variant wrapper, and FIELD_NUM is a |
14f9c5c9 | 5968 | valid field number within it, returns 1 iff field FIELD_NUM of TYPE |
4c4b4cd2 | 5969 | represents a 'when others' clause; otherwise 0. */ |
14f9c5c9 AS |
5970 | |
5971 | int | |
ebf56fd3 | 5972 | ada_is_others_clause (struct type *type, int field_num) |
14f9c5c9 | 5973 | { |
d2e4a39e | 5974 | const char *name = TYPE_FIELD_NAME (type, field_num); |
5b4ee69b | 5975 | |
14f9c5c9 AS |
5976 | return (name != NULL && name[0] == 'O'); |
5977 | } | |
5978 | ||
5979 | /* Assuming that TYPE0 is the type of the variant part of a record, | |
4c4b4cd2 PH |
5980 | returns the name of the discriminant controlling the variant. |
5981 | The value is valid until the next call to ada_variant_discrim_name. */ | |
14f9c5c9 | 5982 | |
d2e4a39e | 5983 | char * |
ebf56fd3 | 5984 | ada_variant_discrim_name (struct type *type0) |
14f9c5c9 | 5985 | { |
d2e4a39e | 5986 | static char *result = NULL; |
14f9c5c9 | 5987 | static size_t result_len = 0; |
d2e4a39e AS |
5988 | struct type *type; |
5989 | const char *name; | |
5990 | const char *discrim_end; | |
5991 | const char *discrim_start; | |
14f9c5c9 AS |
5992 | |
5993 | if (TYPE_CODE (type0) == TYPE_CODE_PTR) | |
5994 | type = TYPE_TARGET_TYPE (type0); | |
5995 | else | |
5996 | type = type0; | |
5997 | ||
5998 | name = ada_type_name (type); | |
5999 | ||
6000 | if (name == NULL || name[0] == '\000') | |
6001 | return ""; | |
6002 | ||
6003 | for (discrim_end = name + strlen (name) - 6; discrim_end != name; | |
6004 | discrim_end -= 1) | |
6005 | { | |
4c4b4cd2 PH |
6006 | if (strncmp (discrim_end, "___XVN", 6) == 0) |
6007 | break; | |
14f9c5c9 AS |
6008 | } |
6009 | if (discrim_end == name) | |
6010 | return ""; | |
6011 | ||
d2e4a39e | 6012 | for (discrim_start = discrim_end; discrim_start != name + 3; |
14f9c5c9 AS |
6013 | discrim_start -= 1) |
6014 | { | |
d2e4a39e | 6015 | if (discrim_start == name + 1) |
4c4b4cd2 | 6016 | return ""; |
76a01679 | 6017 | if ((discrim_start > name + 3 |
4c4b4cd2 PH |
6018 | && strncmp (discrim_start - 3, "___", 3) == 0) |
6019 | || discrim_start[-1] == '.') | |
6020 | break; | |
14f9c5c9 AS |
6021 | } |
6022 | ||
6023 | GROW_VECT (result, result_len, discrim_end - discrim_start + 1); | |
6024 | strncpy (result, discrim_start, discrim_end - discrim_start); | |
d2e4a39e | 6025 | result[discrim_end - discrim_start] = '\0'; |
14f9c5c9 AS |
6026 | return result; |
6027 | } | |
6028 | ||
4c4b4cd2 PH |
6029 | /* Scan STR for a subtype-encoded number, beginning at position K. |
6030 | Put the position of the character just past the number scanned in | |
6031 | *NEW_K, if NEW_K!=NULL. Put the scanned number in *R, if R!=NULL. | |
6032 | Return 1 if there was a valid number at the given position, and 0 | |
6033 | otherwise. A "subtype-encoded" number consists of the absolute value | |
6034 | in decimal, followed by the letter 'm' to indicate a negative number. | |
6035 | Assumes 0m does not occur. */ | |
14f9c5c9 AS |
6036 | |
6037 | int | |
d2e4a39e | 6038 | ada_scan_number (const char str[], int k, LONGEST * R, int *new_k) |
14f9c5c9 AS |
6039 | { |
6040 | ULONGEST RU; | |
6041 | ||
d2e4a39e | 6042 | if (!isdigit (str[k])) |
14f9c5c9 AS |
6043 | return 0; |
6044 | ||
4c4b4cd2 | 6045 | /* Do it the hard way so as not to make any assumption about |
14f9c5c9 | 6046 | the relationship of unsigned long (%lu scan format code) and |
4c4b4cd2 | 6047 | LONGEST. */ |
14f9c5c9 AS |
6048 | RU = 0; |
6049 | while (isdigit (str[k])) | |
6050 | { | |
d2e4a39e | 6051 | RU = RU * 10 + (str[k] - '0'); |
14f9c5c9 AS |
6052 | k += 1; |
6053 | } | |
6054 | ||
d2e4a39e | 6055 | if (str[k] == 'm') |
14f9c5c9 AS |
6056 | { |
6057 | if (R != NULL) | |
4c4b4cd2 | 6058 | *R = (-(LONGEST) (RU - 1)) - 1; |
14f9c5c9 AS |
6059 | k += 1; |
6060 | } | |
6061 | else if (R != NULL) | |
6062 | *R = (LONGEST) RU; | |
6063 | ||
4c4b4cd2 | 6064 | /* NOTE on the above: Technically, C does not say what the results of |
14f9c5c9 AS |
6065 | - (LONGEST) RU or (LONGEST) -RU are for RU == largest positive |
6066 | number representable as a LONGEST (although either would probably work | |
6067 | in most implementations). When RU>0, the locution in the then branch | |
4c4b4cd2 | 6068 | above is always equivalent to the negative of RU. */ |
14f9c5c9 AS |
6069 | |
6070 | if (new_k != NULL) | |
6071 | *new_k = k; | |
6072 | return 1; | |
6073 | } | |
6074 | ||
4c4b4cd2 PH |
6075 | /* Assuming that TYPE is a variant part wrapper type (a VARIANTS field), |
6076 | and FIELD_NUM is a valid field number within it, returns 1 iff VAL is | |
6077 | in the range encoded by field FIELD_NUM of TYPE; otherwise 0. */ | |
14f9c5c9 | 6078 | |
d2e4a39e | 6079 | int |
ebf56fd3 | 6080 | ada_in_variant (LONGEST val, struct type *type, int field_num) |
14f9c5c9 | 6081 | { |
d2e4a39e | 6082 | const char *name = TYPE_FIELD_NAME (type, field_num); |
14f9c5c9 AS |
6083 | int p; |
6084 | ||
6085 | p = 0; | |
6086 | while (1) | |
6087 | { | |
d2e4a39e | 6088 | switch (name[p]) |
4c4b4cd2 PH |
6089 | { |
6090 | case '\0': | |
6091 | return 0; | |
6092 | case 'S': | |
6093 | { | |
6094 | LONGEST W; | |
5b4ee69b | 6095 | |
4c4b4cd2 PH |
6096 | if (!ada_scan_number (name, p + 1, &W, &p)) |
6097 | return 0; | |
6098 | if (val == W) | |
6099 | return 1; | |
6100 | break; | |
6101 | } | |
6102 | case 'R': | |
6103 | { | |
6104 | LONGEST L, U; | |
5b4ee69b | 6105 | |
4c4b4cd2 PH |
6106 | if (!ada_scan_number (name, p + 1, &L, &p) |
6107 | || name[p] != 'T' || !ada_scan_number (name, p + 1, &U, &p)) | |
6108 | return 0; | |
6109 | if (val >= L && val <= U) | |
6110 | return 1; | |
6111 | break; | |
6112 | } | |
6113 | case 'O': | |
6114 | return 1; | |
6115 | default: | |
6116 | return 0; | |
6117 | } | |
6118 | } | |
6119 | } | |
6120 | ||
0963b4bd | 6121 | /* FIXME: Lots of redundancy below. Try to consolidate. */ |
4c4b4cd2 PH |
6122 | |
6123 | /* Given a value ARG1 (offset by OFFSET bytes) of a struct or union type | |
6124 | ARG_TYPE, extract and return the value of one of its (non-static) | |
6125 | fields. FIELDNO says which field. Differs from value_primitive_field | |
6126 | only in that it can handle packed values of arbitrary type. */ | |
14f9c5c9 | 6127 | |
4c4b4cd2 | 6128 | static struct value * |
d2e4a39e | 6129 | ada_value_primitive_field (struct value *arg1, int offset, int fieldno, |
4c4b4cd2 | 6130 | struct type *arg_type) |
14f9c5c9 | 6131 | { |
14f9c5c9 AS |
6132 | struct type *type; |
6133 | ||
61ee279c | 6134 | arg_type = ada_check_typedef (arg_type); |
14f9c5c9 AS |
6135 | type = TYPE_FIELD_TYPE (arg_type, fieldno); |
6136 | ||
4c4b4cd2 | 6137 | /* Handle packed fields. */ |
14f9c5c9 AS |
6138 | |
6139 | if (TYPE_FIELD_BITSIZE (arg_type, fieldno) != 0) | |
6140 | { | |
6141 | int bit_pos = TYPE_FIELD_BITPOS (arg_type, fieldno); | |
6142 | int bit_size = TYPE_FIELD_BITSIZE (arg_type, fieldno); | |
d2e4a39e | 6143 | |
0fd88904 | 6144 | return ada_value_primitive_packed_val (arg1, value_contents (arg1), |
4c4b4cd2 PH |
6145 | offset + bit_pos / 8, |
6146 | bit_pos % 8, bit_size, type); | |
14f9c5c9 AS |
6147 | } |
6148 | else | |
6149 | return value_primitive_field (arg1, offset, fieldno, arg_type); | |
6150 | } | |
6151 | ||
52ce6436 PH |
6152 | /* Find field with name NAME in object of type TYPE. If found, |
6153 | set the following for each argument that is non-null: | |
6154 | - *FIELD_TYPE_P to the field's type; | |
6155 | - *BYTE_OFFSET_P to OFFSET + the byte offset of the field within | |
6156 | an object of that type; | |
6157 | - *BIT_OFFSET_P to the bit offset modulo byte size of the field; | |
6158 | - *BIT_SIZE_P to its size in bits if the field is packed, and | |
6159 | 0 otherwise; | |
6160 | If INDEX_P is non-null, increment *INDEX_P by the number of source-visible | |
6161 | fields up to but not including the desired field, or by the total | |
6162 | number of fields if not found. A NULL value of NAME never | |
6163 | matches; the function just counts visible fields in this case. | |
6164 | ||
0963b4bd | 6165 | Returns 1 if found, 0 otherwise. */ |
52ce6436 | 6166 | |
4c4b4cd2 | 6167 | static int |
76a01679 JB |
6168 | find_struct_field (char *name, struct type *type, int offset, |
6169 | struct type **field_type_p, | |
52ce6436 PH |
6170 | int *byte_offset_p, int *bit_offset_p, int *bit_size_p, |
6171 | int *index_p) | |
4c4b4cd2 PH |
6172 | { |
6173 | int i; | |
6174 | ||
61ee279c | 6175 | type = ada_check_typedef (type); |
76a01679 | 6176 | |
52ce6436 PH |
6177 | if (field_type_p != NULL) |
6178 | *field_type_p = NULL; | |
6179 | if (byte_offset_p != NULL) | |
d5d6fca5 | 6180 | *byte_offset_p = 0; |
52ce6436 PH |
6181 | if (bit_offset_p != NULL) |
6182 | *bit_offset_p = 0; | |
6183 | if (bit_size_p != NULL) | |
6184 | *bit_size_p = 0; | |
6185 | ||
6186 | for (i = 0; i < TYPE_NFIELDS (type); i += 1) | |
4c4b4cd2 PH |
6187 | { |
6188 | int bit_pos = TYPE_FIELD_BITPOS (type, i); | |
6189 | int fld_offset = offset + bit_pos / 8; | |
6190 | char *t_field_name = TYPE_FIELD_NAME (type, i); | |
76a01679 | 6191 | |
4c4b4cd2 PH |
6192 | if (t_field_name == NULL) |
6193 | continue; | |
6194 | ||
52ce6436 | 6195 | else if (name != NULL && field_name_match (t_field_name, name)) |
76a01679 JB |
6196 | { |
6197 | int bit_size = TYPE_FIELD_BITSIZE (type, i); | |
5b4ee69b | 6198 | |
52ce6436 PH |
6199 | if (field_type_p != NULL) |
6200 | *field_type_p = TYPE_FIELD_TYPE (type, i); | |
6201 | if (byte_offset_p != NULL) | |
6202 | *byte_offset_p = fld_offset; | |
6203 | if (bit_offset_p != NULL) | |
6204 | *bit_offset_p = bit_pos % 8; | |
6205 | if (bit_size_p != NULL) | |
6206 | *bit_size_p = bit_size; | |
76a01679 JB |
6207 | return 1; |
6208 | } | |
4c4b4cd2 PH |
6209 | else if (ada_is_wrapper_field (type, i)) |
6210 | { | |
52ce6436 PH |
6211 | if (find_struct_field (name, TYPE_FIELD_TYPE (type, i), fld_offset, |
6212 | field_type_p, byte_offset_p, bit_offset_p, | |
6213 | bit_size_p, index_p)) | |
76a01679 JB |
6214 | return 1; |
6215 | } | |
4c4b4cd2 PH |
6216 | else if (ada_is_variant_part (type, i)) |
6217 | { | |
52ce6436 PH |
6218 | /* PNH: Wait. Do we ever execute this section, or is ARG always of |
6219 | fixed type?? */ | |
4c4b4cd2 | 6220 | int j; |
52ce6436 PH |
6221 | struct type *field_type |
6222 | = ada_check_typedef (TYPE_FIELD_TYPE (type, i)); | |
4c4b4cd2 | 6223 | |
52ce6436 | 6224 | for (j = 0; j < TYPE_NFIELDS (field_type); j += 1) |
4c4b4cd2 | 6225 | { |
76a01679 JB |
6226 | if (find_struct_field (name, TYPE_FIELD_TYPE (field_type, j), |
6227 | fld_offset | |
6228 | + TYPE_FIELD_BITPOS (field_type, j) / 8, | |
6229 | field_type_p, byte_offset_p, | |
52ce6436 | 6230 | bit_offset_p, bit_size_p, index_p)) |
76a01679 | 6231 | return 1; |
4c4b4cd2 PH |
6232 | } |
6233 | } | |
52ce6436 PH |
6234 | else if (index_p != NULL) |
6235 | *index_p += 1; | |
4c4b4cd2 PH |
6236 | } |
6237 | return 0; | |
6238 | } | |
6239 | ||
0963b4bd | 6240 | /* Number of user-visible fields in record type TYPE. */ |
4c4b4cd2 | 6241 | |
52ce6436 PH |
6242 | static int |
6243 | num_visible_fields (struct type *type) | |
6244 | { | |
6245 | int n; | |
5b4ee69b | 6246 | |
52ce6436 PH |
6247 | n = 0; |
6248 | find_struct_field (NULL, type, 0, NULL, NULL, NULL, NULL, &n); | |
6249 | return n; | |
6250 | } | |
14f9c5c9 | 6251 | |
4c4b4cd2 | 6252 | /* Look for a field NAME in ARG. Adjust the address of ARG by OFFSET bytes, |
14f9c5c9 AS |
6253 | and search in it assuming it has (class) type TYPE. |
6254 | If found, return value, else return NULL. | |
6255 | ||
4c4b4cd2 | 6256 | Searches recursively through wrapper fields (e.g., '_parent'). */ |
14f9c5c9 | 6257 | |
4c4b4cd2 | 6258 | static struct value * |
d2e4a39e | 6259 | ada_search_struct_field (char *name, struct value *arg, int offset, |
4c4b4cd2 | 6260 | struct type *type) |
14f9c5c9 AS |
6261 | { |
6262 | int i; | |
14f9c5c9 | 6263 | |
5b4ee69b | 6264 | type = ada_check_typedef (type); |
52ce6436 | 6265 | for (i = 0; i < TYPE_NFIELDS (type); i += 1) |
14f9c5c9 AS |
6266 | { |
6267 | char *t_field_name = TYPE_FIELD_NAME (type, i); | |
6268 | ||
6269 | if (t_field_name == NULL) | |
4c4b4cd2 | 6270 | continue; |
14f9c5c9 AS |
6271 | |
6272 | else if (field_name_match (t_field_name, name)) | |
4c4b4cd2 | 6273 | return ada_value_primitive_field (arg, offset, i, type); |
14f9c5c9 AS |
6274 | |
6275 | else if (ada_is_wrapper_field (type, i)) | |
4c4b4cd2 | 6276 | { |
0963b4bd | 6277 | struct value *v = /* Do not let indent join lines here. */ |
06d5cf63 JB |
6278 | ada_search_struct_field (name, arg, |
6279 | offset + TYPE_FIELD_BITPOS (type, i) / 8, | |
6280 | TYPE_FIELD_TYPE (type, i)); | |
5b4ee69b | 6281 | |
4c4b4cd2 PH |
6282 | if (v != NULL) |
6283 | return v; | |
6284 | } | |
14f9c5c9 AS |
6285 | |
6286 | else if (ada_is_variant_part (type, i)) | |
4c4b4cd2 | 6287 | { |
0963b4bd | 6288 | /* PNH: Do we ever get here? See find_struct_field. */ |
4c4b4cd2 | 6289 | int j; |
5b4ee69b MS |
6290 | struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type, |
6291 | i)); | |
4c4b4cd2 PH |
6292 | int var_offset = offset + TYPE_FIELD_BITPOS (type, i) / 8; |
6293 | ||
52ce6436 | 6294 | for (j = 0; j < TYPE_NFIELDS (field_type); j += 1) |
4c4b4cd2 | 6295 | { |
0963b4bd MS |
6296 | struct value *v = ada_search_struct_field /* Force line |
6297 | break. */ | |
06d5cf63 JB |
6298 | (name, arg, |
6299 | var_offset + TYPE_FIELD_BITPOS (field_type, j) / 8, | |
6300 | TYPE_FIELD_TYPE (field_type, j)); | |
5b4ee69b | 6301 | |
4c4b4cd2 PH |
6302 | if (v != NULL) |
6303 | return v; | |
6304 | } | |
6305 | } | |
14f9c5c9 AS |
6306 | } |
6307 | return NULL; | |
6308 | } | |
d2e4a39e | 6309 | |
52ce6436 PH |
6310 | static struct value *ada_index_struct_field_1 (int *, struct value *, |
6311 | int, struct type *); | |
6312 | ||
6313 | ||
6314 | /* Return field #INDEX in ARG, where the index is that returned by | |
6315 | * find_struct_field through its INDEX_P argument. Adjust the address | |
6316 | * of ARG by OFFSET bytes, and search in it assuming it has (class) type TYPE. | |
0963b4bd | 6317 | * If found, return value, else return NULL. */ |
52ce6436 PH |
6318 | |
6319 | static struct value * | |
6320 | ada_index_struct_field (int index, struct value *arg, int offset, | |
6321 | struct type *type) | |
6322 | { | |
6323 | return ada_index_struct_field_1 (&index, arg, offset, type); | |
6324 | } | |
6325 | ||
6326 | ||
6327 | /* Auxiliary function for ada_index_struct_field. Like | |
6328 | * ada_index_struct_field, but takes index from *INDEX_P and modifies | |
0963b4bd | 6329 | * *INDEX_P. */ |
52ce6436 PH |
6330 | |
6331 | static struct value * | |
6332 | ada_index_struct_field_1 (int *index_p, struct value *arg, int offset, | |
6333 | struct type *type) | |
6334 | { | |
6335 | int i; | |
6336 | type = ada_check_typedef (type); | |
6337 | ||
6338 | for (i = 0; i < TYPE_NFIELDS (type); i += 1) | |
6339 | { | |
6340 | if (TYPE_FIELD_NAME (type, i) == NULL) | |
6341 | continue; | |
6342 | else if (ada_is_wrapper_field (type, i)) | |
6343 | { | |
0963b4bd | 6344 | struct value *v = /* Do not let indent join lines here. */ |
52ce6436 PH |
6345 | ada_index_struct_field_1 (index_p, arg, |
6346 | offset + TYPE_FIELD_BITPOS (type, i) / 8, | |
6347 | TYPE_FIELD_TYPE (type, i)); | |
5b4ee69b | 6348 | |
52ce6436 PH |
6349 | if (v != NULL) |
6350 | return v; | |
6351 | } | |
6352 | ||
6353 | else if (ada_is_variant_part (type, i)) | |
6354 | { | |
6355 | /* PNH: Do we ever get here? See ada_search_struct_field, | |
0963b4bd | 6356 | find_struct_field. */ |
52ce6436 PH |
6357 | error (_("Cannot assign this kind of variant record")); |
6358 | } | |
6359 | else if (*index_p == 0) | |
6360 | return ada_value_primitive_field (arg, offset, i, type); | |
6361 | else | |
6362 | *index_p -= 1; | |
6363 | } | |
6364 | return NULL; | |
6365 | } | |
6366 | ||
4c4b4cd2 PH |
6367 | /* Given ARG, a value of type (pointer or reference to a)* |
6368 | structure/union, extract the component named NAME from the ultimate | |
6369 | target structure/union and return it as a value with its | |
f5938064 | 6370 | appropriate type. |
14f9c5c9 | 6371 | |
4c4b4cd2 PH |
6372 | The routine searches for NAME among all members of the structure itself |
6373 | and (recursively) among all members of any wrapper members | |
14f9c5c9 AS |
6374 | (e.g., '_parent'). |
6375 | ||
03ee6b2e PH |
6376 | If NO_ERR, then simply return NULL in case of error, rather than |
6377 | calling error. */ | |
14f9c5c9 | 6378 | |
d2e4a39e | 6379 | struct value * |
03ee6b2e | 6380 | ada_value_struct_elt (struct value *arg, char *name, int no_err) |
14f9c5c9 | 6381 | { |
4c4b4cd2 | 6382 | struct type *t, *t1; |
d2e4a39e | 6383 | struct value *v; |
14f9c5c9 | 6384 | |
4c4b4cd2 | 6385 | v = NULL; |
df407dfe | 6386 | t1 = t = ada_check_typedef (value_type (arg)); |
4c4b4cd2 PH |
6387 | if (TYPE_CODE (t) == TYPE_CODE_REF) |
6388 | { | |
6389 | t1 = TYPE_TARGET_TYPE (t); | |
6390 | if (t1 == NULL) | |
03ee6b2e | 6391 | goto BadValue; |
61ee279c | 6392 | t1 = ada_check_typedef (t1); |
4c4b4cd2 | 6393 | if (TYPE_CODE (t1) == TYPE_CODE_PTR) |
76a01679 | 6394 | { |
994b9211 | 6395 | arg = coerce_ref (arg); |
76a01679 JB |
6396 | t = t1; |
6397 | } | |
4c4b4cd2 | 6398 | } |
14f9c5c9 | 6399 | |
4c4b4cd2 PH |
6400 | while (TYPE_CODE (t) == TYPE_CODE_PTR) |
6401 | { | |
6402 | t1 = TYPE_TARGET_TYPE (t); | |
6403 | if (t1 == NULL) | |
03ee6b2e | 6404 | goto BadValue; |
61ee279c | 6405 | t1 = ada_check_typedef (t1); |
4c4b4cd2 | 6406 | if (TYPE_CODE (t1) == TYPE_CODE_PTR) |
76a01679 JB |
6407 | { |
6408 | arg = value_ind (arg); | |
6409 | t = t1; | |
6410 | } | |
4c4b4cd2 | 6411 | else |
76a01679 | 6412 | break; |
4c4b4cd2 | 6413 | } |
14f9c5c9 | 6414 | |
4c4b4cd2 | 6415 | if (TYPE_CODE (t1) != TYPE_CODE_STRUCT && TYPE_CODE (t1) != TYPE_CODE_UNION) |
03ee6b2e | 6416 | goto BadValue; |
14f9c5c9 | 6417 | |
4c4b4cd2 PH |
6418 | if (t1 == t) |
6419 | v = ada_search_struct_field (name, arg, 0, t); | |
6420 | else | |
6421 | { | |
6422 | int bit_offset, bit_size, byte_offset; | |
6423 | struct type *field_type; | |
6424 | CORE_ADDR address; | |
6425 | ||
76a01679 JB |
6426 | if (TYPE_CODE (t) == TYPE_CODE_PTR) |
6427 | address = value_as_address (arg); | |
4c4b4cd2 | 6428 | else |
0fd88904 | 6429 | address = unpack_pointer (t, value_contents (arg)); |
14f9c5c9 | 6430 | |
1ed6ede0 | 6431 | t1 = ada_to_fixed_type (ada_get_base_type (t1), NULL, address, NULL, 1); |
76a01679 JB |
6432 | if (find_struct_field (name, t1, 0, |
6433 | &field_type, &byte_offset, &bit_offset, | |
52ce6436 | 6434 | &bit_size, NULL)) |
76a01679 JB |
6435 | { |
6436 | if (bit_size != 0) | |
6437 | { | |
714e53ab PH |
6438 | if (TYPE_CODE (t) == TYPE_CODE_REF) |
6439 | arg = ada_coerce_ref (arg); | |
6440 | else | |
6441 | arg = ada_value_ind (arg); | |
76a01679 JB |
6442 | v = ada_value_primitive_packed_val (arg, NULL, byte_offset, |
6443 | bit_offset, bit_size, | |
6444 | field_type); | |
6445 | } | |
6446 | else | |
f5938064 | 6447 | v = value_at_lazy (field_type, address + byte_offset); |
76a01679 JB |
6448 | } |
6449 | } | |
6450 | ||
03ee6b2e PH |
6451 | if (v != NULL || no_err) |
6452 | return v; | |
6453 | else | |
323e0a4a | 6454 | error (_("There is no member named %s."), name); |
14f9c5c9 | 6455 | |
03ee6b2e PH |
6456 | BadValue: |
6457 | if (no_err) | |
6458 | return NULL; | |
6459 | else | |
0963b4bd MS |
6460 | error (_("Attempt to extract a component of " |
6461 | "a value that is not a record.")); | |
14f9c5c9 AS |
6462 | } |
6463 | ||
6464 | /* Given a type TYPE, look up the type of the component of type named NAME. | |
4c4b4cd2 PH |
6465 | If DISPP is non-null, add its byte displacement from the beginning of a |
6466 | structure (pointed to by a value) of type TYPE to *DISPP (does not | |
14f9c5c9 AS |
6467 | work for packed fields). |
6468 | ||
6469 | Matches any field whose name has NAME as a prefix, possibly | |
4c4b4cd2 | 6470 | followed by "___". |
14f9c5c9 | 6471 | |
0963b4bd | 6472 | TYPE can be either a struct or union. If REFOK, TYPE may also |
4c4b4cd2 PH |
6473 | be a (pointer or reference)+ to a struct or union, and the |
6474 | ultimate target type will be searched. | |
14f9c5c9 AS |
6475 | |
6476 | Looks recursively into variant clauses and parent types. | |
6477 | ||
4c4b4cd2 PH |
6478 | If NOERR is nonzero, return NULL if NAME is not suitably defined or |
6479 | TYPE is not a type of the right kind. */ | |
14f9c5c9 | 6480 | |
4c4b4cd2 | 6481 | static struct type * |
76a01679 JB |
6482 | ada_lookup_struct_elt_type (struct type *type, char *name, int refok, |
6483 | int noerr, int *dispp) | |
14f9c5c9 AS |
6484 | { |
6485 | int i; | |
6486 | ||
6487 | if (name == NULL) | |
6488 | goto BadName; | |
6489 | ||
76a01679 | 6490 | if (refok && type != NULL) |
4c4b4cd2 PH |
6491 | while (1) |
6492 | { | |
61ee279c | 6493 | type = ada_check_typedef (type); |
76a01679 JB |
6494 | if (TYPE_CODE (type) != TYPE_CODE_PTR |
6495 | && TYPE_CODE (type) != TYPE_CODE_REF) | |
6496 | break; | |
6497 | type = TYPE_TARGET_TYPE (type); | |
4c4b4cd2 | 6498 | } |
14f9c5c9 | 6499 | |
76a01679 | 6500 | if (type == NULL |
1265e4aa JB |
6501 | || (TYPE_CODE (type) != TYPE_CODE_STRUCT |
6502 | && TYPE_CODE (type) != TYPE_CODE_UNION)) | |
14f9c5c9 | 6503 | { |
4c4b4cd2 | 6504 | if (noerr) |
76a01679 | 6505 | return NULL; |
4c4b4cd2 | 6506 | else |
76a01679 JB |
6507 | { |
6508 | target_terminal_ours (); | |
6509 | gdb_flush (gdb_stdout); | |
323e0a4a AC |
6510 | if (type == NULL) |
6511 | error (_("Type (null) is not a structure or union type")); | |
6512 | else | |
6513 | { | |
6514 | /* XXX: type_sprint */ | |
6515 | fprintf_unfiltered (gdb_stderr, _("Type ")); | |
6516 | type_print (type, "", gdb_stderr, -1); | |
6517 | error (_(" is not a structure or union type")); | |
6518 | } | |
76a01679 | 6519 | } |
14f9c5c9 AS |
6520 | } |
6521 | ||
6522 | type = to_static_fixed_type (type); | |
6523 | ||
6524 | for (i = 0; i < TYPE_NFIELDS (type); i += 1) | |
6525 | { | |
6526 | char *t_field_name = TYPE_FIELD_NAME (type, i); | |
6527 | struct type *t; | |
6528 | int disp; | |
d2e4a39e | 6529 | |
14f9c5c9 | 6530 | if (t_field_name == NULL) |
4c4b4cd2 | 6531 | continue; |
14f9c5c9 AS |
6532 | |
6533 | else if (field_name_match (t_field_name, name)) | |
4c4b4cd2 PH |
6534 | { |
6535 | if (dispp != NULL) | |
6536 | *dispp += TYPE_FIELD_BITPOS (type, i) / 8; | |
61ee279c | 6537 | return ada_check_typedef (TYPE_FIELD_TYPE (type, i)); |
4c4b4cd2 | 6538 | } |
14f9c5c9 AS |
6539 | |
6540 | else if (ada_is_wrapper_field (type, i)) | |
4c4b4cd2 PH |
6541 | { |
6542 | disp = 0; | |
6543 | t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (type, i), name, | |
6544 | 0, 1, &disp); | |
6545 | if (t != NULL) | |
6546 | { | |
6547 | if (dispp != NULL) | |
6548 | *dispp += disp + TYPE_FIELD_BITPOS (type, i) / 8; | |
6549 | return t; | |
6550 | } | |
6551 | } | |
14f9c5c9 AS |
6552 | |
6553 | else if (ada_is_variant_part (type, i)) | |
4c4b4cd2 PH |
6554 | { |
6555 | int j; | |
5b4ee69b MS |
6556 | struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type, |
6557 | i)); | |
4c4b4cd2 PH |
6558 | |
6559 | for (j = TYPE_NFIELDS (field_type) - 1; j >= 0; j -= 1) | |
6560 | { | |
b1f33ddd JB |
6561 | /* FIXME pnh 2008/01/26: We check for a field that is |
6562 | NOT wrapped in a struct, since the compiler sometimes | |
6563 | generates these for unchecked variant types. Revisit | |
0963b4bd | 6564 | if the compiler changes this practice. */ |
b1f33ddd | 6565 | char *v_field_name = TYPE_FIELD_NAME (field_type, j); |
4c4b4cd2 | 6566 | disp = 0; |
b1f33ddd JB |
6567 | if (v_field_name != NULL |
6568 | && field_name_match (v_field_name, name)) | |
6569 | t = ada_check_typedef (TYPE_FIELD_TYPE (field_type, j)); | |
6570 | else | |
0963b4bd MS |
6571 | t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (field_type, |
6572 | j), | |
b1f33ddd JB |
6573 | name, 0, 1, &disp); |
6574 | ||
4c4b4cd2 PH |
6575 | if (t != NULL) |
6576 | { | |
6577 | if (dispp != NULL) | |
6578 | *dispp += disp + TYPE_FIELD_BITPOS (type, i) / 8; | |
6579 | return t; | |
6580 | } | |
6581 | } | |
6582 | } | |
14f9c5c9 AS |
6583 | |
6584 | } | |
6585 | ||
6586 | BadName: | |
d2e4a39e | 6587 | if (!noerr) |
14f9c5c9 AS |
6588 | { |
6589 | target_terminal_ours (); | |
6590 | gdb_flush (gdb_stdout); | |
323e0a4a AC |
6591 | if (name == NULL) |
6592 | { | |
6593 | /* XXX: type_sprint */ | |
6594 | fprintf_unfiltered (gdb_stderr, _("Type ")); | |
6595 | type_print (type, "", gdb_stderr, -1); | |
6596 | error (_(" has no component named <null>")); | |
6597 | } | |
6598 | else | |
6599 | { | |
6600 | /* XXX: type_sprint */ | |
6601 | fprintf_unfiltered (gdb_stderr, _("Type ")); | |
6602 | type_print (type, "", gdb_stderr, -1); | |
6603 | error (_(" has no component named %s"), name); | |
6604 | } | |
14f9c5c9 AS |
6605 | } |
6606 | ||
6607 | return NULL; | |
6608 | } | |
6609 | ||
b1f33ddd JB |
6610 | /* Assuming that VAR_TYPE is the type of a variant part of a record (a union), |
6611 | within a value of type OUTER_TYPE, return true iff VAR_TYPE | |
6612 | represents an unchecked union (that is, the variant part of a | |
0963b4bd | 6613 | record that is named in an Unchecked_Union pragma). */ |
b1f33ddd JB |
6614 | |
6615 | static int | |
6616 | is_unchecked_variant (struct type *var_type, struct type *outer_type) | |
6617 | { | |
6618 | char *discrim_name = ada_variant_discrim_name (var_type); | |
5b4ee69b | 6619 | |
b1f33ddd JB |
6620 | return (ada_lookup_struct_elt_type (outer_type, discrim_name, 0, 1, NULL) |
6621 | == NULL); | |
6622 | } | |
6623 | ||
6624 | ||
14f9c5c9 AS |
6625 | /* Assuming that VAR_TYPE is the type of a variant part of a record (a union), |
6626 | within a value of type OUTER_TYPE that is stored in GDB at | |
4c4b4cd2 PH |
6627 | OUTER_VALADDR, determine which variant clause (field number in VAR_TYPE, |
6628 | numbering from 0) is applicable. Returns -1 if none are. */ | |
14f9c5c9 | 6629 | |
d2e4a39e | 6630 | int |
ebf56fd3 | 6631 | ada_which_variant_applies (struct type *var_type, struct type *outer_type, |
fc1a4b47 | 6632 | const gdb_byte *outer_valaddr) |
14f9c5c9 AS |
6633 | { |
6634 | int others_clause; | |
6635 | int i; | |
d2e4a39e | 6636 | char *discrim_name = ada_variant_discrim_name (var_type); |
0c281816 JB |
6637 | struct value *outer; |
6638 | struct value *discrim; | |
14f9c5c9 AS |
6639 | LONGEST discrim_val; |
6640 | ||
0c281816 JB |
6641 | outer = value_from_contents_and_address (outer_type, outer_valaddr, 0); |
6642 | discrim = ada_value_struct_elt (outer, discrim_name, 1); | |
6643 | if (discrim == NULL) | |
14f9c5c9 | 6644 | return -1; |
0c281816 | 6645 | discrim_val = value_as_long (discrim); |
14f9c5c9 AS |
6646 | |
6647 | others_clause = -1; | |
6648 | for (i = 0; i < TYPE_NFIELDS (var_type); i += 1) | |
6649 | { | |
6650 | if (ada_is_others_clause (var_type, i)) | |
4c4b4cd2 | 6651 | others_clause = i; |
14f9c5c9 | 6652 | else if (ada_in_variant (discrim_val, var_type, i)) |
4c4b4cd2 | 6653 | return i; |
14f9c5c9 AS |
6654 | } |
6655 | ||
6656 | return others_clause; | |
6657 | } | |
d2e4a39e | 6658 | \f |
14f9c5c9 AS |
6659 | |
6660 | ||
4c4b4cd2 | 6661 | /* Dynamic-Sized Records */ |
14f9c5c9 AS |
6662 | |
6663 | /* Strategy: The type ostensibly attached to a value with dynamic size | |
6664 | (i.e., a size that is not statically recorded in the debugging | |
6665 | data) does not accurately reflect the size or layout of the value. | |
6666 | Our strategy is to convert these values to values with accurate, | |
4c4b4cd2 | 6667 | conventional types that are constructed on the fly. */ |
14f9c5c9 AS |
6668 | |
6669 | /* There is a subtle and tricky problem here. In general, we cannot | |
6670 | determine the size of dynamic records without its data. However, | |
6671 | the 'struct value' data structure, which GDB uses to represent | |
6672 | quantities in the inferior process (the target), requires the size | |
6673 | of the type at the time of its allocation in order to reserve space | |
6674 | for GDB's internal copy of the data. That's why the | |
6675 | 'to_fixed_xxx_type' routines take (target) addresses as parameters, | |
4c4b4cd2 | 6676 | rather than struct value*s. |
14f9c5c9 AS |
6677 | |
6678 | However, GDB's internal history variables ($1, $2, etc.) are | |
6679 | struct value*s containing internal copies of the data that are not, in | |
6680 | general, the same as the data at their corresponding addresses in | |
6681 | the target. Fortunately, the types we give to these values are all | |
6682 | conventional, fixed-size types (as per the strategy described | |
6683 | above), so that we don't usually have to perform the | |
6684 | 'to_fixed_xxx_type' conversions to look at their values. | |
6685 | Unfortunately, there is one exception: if one of the internal | |
6686 | history variables is an array whose elements are unconstrained | |
6687 | records, then we will need to create distinct fixed types for each | |
6688 | element selected. */ | |
6689 | ||
6690 | /* The upshot of all of this is that many routines take a (type, host | |
6691 | address, target address) triple as arguments to represent a value. | |
6692 | The host address, if non-null, is supposed to contain an internal | |
6693 | copy of the relevant data; otherwise, the program is to consult the | |
4c4b4cd2 | 6694 | target at the target address. */ |
14f9c5c9 AS |
6695 | |
6696 | /* Assuming that VAL0 represents a pointer value, the result of | |
6697 | dereferencing it. Differs from value_ind in its treatment of | |
4c4b4cd2 | 6698 | dynamic-sized types. */ |
14f9c5c9 | 6699 | |
d2e4a39e AS |
6700 | struct value * |
6701 | ada_value_ind (struct value *val0) | |
14f9c5c9 | 6702 | { |
d2e4a39e | 6703 | struct value *val = unwrap_value (value_ind (val0)); |
5b4ee69b | 6704 | |
4c4b4cd2 | 6705 | return ada_to_fixed_value (val); |
14f9c5c9 AS |
6706 | } |
6707 | ||
6708 | /* The value resulting from dereferencing any "reference to" | |
4c4b4cd2 PH |
6709 | qualifiers on VAL0. */ |
6710 | ||
d2e4a39e AS |
6711 | static struct value * |
6712 | ada_coerce_ref (struct value *val0) | |
6713 | { | |
df407dfe | 6714 | if (TYPE_CODE (value_type (val0)) == TYPE_CODE_REF) |
d2e4a39e AS |
6715 | { |
6716 | struct value *val = val0; | |
5b4ee69b | 6717 | |
994b9211 | 6718 | val = coerce_ref (val); |
d2e4a39e | 6719 | val = unwrap_value (val); |
4c4b4cd2 | 6720 | return ada_to_fixed_value (val); |
d2e4a39e AS |
6721 | } |
6722 | else | |
14f9c5c9 AS |
6723 | return val0; |
6724 | } | |
6725 | ||
6726 | /* Return OFF rounded upward if necessary to a multiple of | |
4c4b4cd2 | 6727 | ALIGNMENT (a power of 2). */ |
14f9c5c9 AS |
6728 | |
6729 | static unsigned int | |
ebf56fd3 | 6730 | align_value (unsigned int off, unsigned int alignment) |
14f9c5c9 AS |
6731 | { |
6732 | return (off + alignment - 1) & ~(alignment - 1); | |
6733 | } | |
6734 | ||
4c4b4cd2 | 6735 | /* Return the bit alignment required for field #F of template type TYPE. */ |
14f9c5c9 AS |
6736 | |
6737 | static unsigned int | |
ebf56fd3 | 6738 | field_alignment (struct type *type, int f) |
14f9c5c9 | 6739 | { |
d2e4a39e | 6740 | const char *name = TYPE_FIELD_NAME (type, f); |
64a1bf19 | 6741 | int len; |
14f9c5c9 AS |
6742 | int align_offset; |
6743 | ||
64a1bf19 JB |
6744 | /* The field name should never be null, unless the debugging information |
6745 | is somehow malformed. In this case, we assume the field does not | |
6746 | require any alignment. */ | |
6747 | if (name == NULL) | |
6748 | return 1; | |
6749 | ||
6750 | len = strlen (name); | |
6751 | ||
4c4b4cd2 PH |
6752 | if (!isdigit (name[len - 1])) |
6753 | return 1; | |
14f9c5c9 | 6754 | |
d2e4a39e | 6755 | if (isdigit (name[len - 2])) |
14f9c5c9 AS |
6756 | align_offset = len - 2; |
6757 | else | |
6758 | align_offset = len - 1; | |
6759 | ||
4c4b4cd2 | 6760 | if (align_offset < 7 || strncmp ("___XV", name + align_offset - 6, 5) != 0) |
14f9c5c9 AS |
6761 | return TARGET_CHAR_BIT; |
6762 | ||
4c4b4cd2 PH |
6763 | return atoi (name + align_offset) * TARGET_CHAR_BIT; |
6764 | } | |
6765 | ||
6766 | /* Find a symbol named NAME. Ignores ambiguity. */ | |
6767 | ||
6768 | struct symbol * | |
6769 | ada_find_any_symbol (const char *name) | |
6770 | { | |
6771 | struct symbol *sym; | |
6772 | ||
6773 | sym = standard_lookup (name, get_selected_block (NULL), VAR_DOMAIN); | |
6774 | if (sym != NULL && SYMBOL_CLASS (sym) == LOC_TYPEDEF) | |
6775 | return sym; | |
6776 | ||
6777 | sym = standard_lookup (name, NULL, STRUCT_DOMAIN); | |
6778 | return sym; | |
14f9c5c9 AS |
6779 | } |
6780 | ||
dddfab26 UW |
6781 | /* Find a type named NAME. Ignores ambiguity. This routine will look |
6782 | solely for types defined by debug info, it will not search the GDB | |
6783 | primitive types. */ | |
4c4b4cd2 | 6784 | |
d2e4a39e | 6785 | struct type * |
ebf56fd3 | 6786 | ada_find_any_type (const char *name) |
14f9c5c9 | 6787 | { |
4c4b4cd2 | 6788 | struct symbol *sym = ada_find_any_symbol (name); |
14f9c5c9 | 6789 | |
14f9c5c9 | 6790 | if (sym != NULL) |
dddfab26 | 6791 | return SYMBOL_TYPE (sym); |
14f9c5c9 | 6792 | |
dddfab26 | 6793 | return NULL; |
14f9c5c9 AS |
6794 | } |
6795 | ||
aeb5907d JB |
6796 | /* Given NAME and an associated BLOCK, search all symbols for |
6797 | NAME suffixed with "___XR", which is the ``renaming'' symbol | |
4c4b4cd2 PH |
6798 | associated to NAME. Return this symbol if found, return |
6799 | NULL otherwise. */ | |
6800 | ||
6801 | struct symbol * | |
6802 | ada_find_renaming_symbol (const char *name, struct block *block) | |
aeb5907d JB |
6803 | { |
6804 | struct symbol *sym; | |
6805 | ||
6806 | sym = find_old_style_renaming_symbol (name, block); | |
6807 | ||
6808 | if (sym != NULL) | |
6809 | return sym; | |
6810 | ||
0963b4bd | 6811 | /* Not right yet. FIXME pnh 7/20/2007. */ |
aeb5907d JB |
6812 | sym = ada_find_any_symbol (name); |
6813 | if (sym != NULL && strstr (SYMBOL_LINKAGE_NAME (sym), "___XR") != NULL) | |
6814 | return sym; | |
6815 | else | |
6816 | return NULL; | |
6817 | } | |
6818 | ||
6819 | static struct symbol * | |
6820 | find_old_style_renaming_symbol (const char *name, struct block *block) | |
4c4b4cd2 | 6821 | { |
7f0df278 | 6822 | const struct symbol *function_sym = block_linkage_function (block); |
4c4b4cd2 PH |
6823 | char *rename; |
6824 | ||
6825 | if (function_sym != NULL) | |
6826 | { | |
6827 | /* If the symbol is defined inside a function, NAME is not fully | |
6828 | qualified. This means we need to prepend the function name | |
6829 | as well as adding the ``___XR'' suffix to build the name of | |
6830 | the associated renaming symbol. */ | |
6831 | char *function_name = SYMBOL_LINKAGE_NAME (function_sym); | |
529cad9c PH |
6832 | /* Function names sometimes contain suffixes used |
6833 | for instance to qualify nested subprograms. When building | |
6834 | the XR type name, we need to make sure that this suffix is | |
6835 | not included. So do not include any suffix in the function | |
6836 | name length below. */ | |
69fadcdf | 6837 | int function_name_len = ada_name_prefix_len (function_name); |
76a01679 JB |
6838 | const int rename_len = function_name_len + 2 /* "__" */ |
6839 | + strlen (name) + 6 /* "___XR\0" */ ; | |
4c4b4cd2 | 6840 | |
529cad9c | 6841 | /* Strip the suffix if necessary. */ |
69fadcdf JB |
6842 | ada_remove_trailing_digits (function_name, &function_name_len); |
6843 | ada_remove_po_subprogram_suffix (function_name, &function_name_len); | |
6844 | ada_remove_Xbn_suffix (function_name, &function_name_len); | |
529cad9c | 6845 | |
4c4b4cd2 PH |
6846 | /* Library-level functions are a special case, as GNAT adds |
6847 | a ``_ada_'' prefix to the function name to avoid namespace | |
aeb5907d | 6848 | pollution. However, the renaming symbols themselves do not |
4c4b4cd2 PH |
6849 | have this prefix, so we need to skip this prefix if present. */ |
6850 | if (function_name_len > 5 /* "_ada_" */ | |
6851 | && strstr (function_name, "_ada_") == function_name) | |
69fadcdf JB |
6852 | { |
6853 | function_name += 5; | |
6854 | function_name_len -= 5; | |
6855 | } | |
4c4b4cd2 PH |
6856 | |
6857 | rename = (char *) alloca (rename_len * sizeof (char)); | |
69fadcdf JB |
6858 | strncpy (rename, function_name, function_name_len); |
6859 | xsnprintf (rename + function_name_len, rename_len - function_name_len, | |
6860 | "__%s___XR", name); | |
4c4b4cd2 PH |
6861 | } |
6862 | else | |
6863 | { | |
6864 | const int rename_len = strlen (name) + 6; | |
5b4ee69b | 6865 | |
4c4b4cd2 | 6866 | rename = (char *) alloca (rename_len * sizeof (char)); |
88c15c34 | 6867 | xsnprintf (rename, rename_len * sizeof (char), "%s___XR", name); |
4c4b4cd2 PH |
6868 | } |
6869 | ||
6870 | return ada_find_any_symbol (rename); | |
6871 | } | |
6872 | ||
14f9c5c9 | 6873 | /* Because of GNAT encoding conventions, several GDB symbols may match a |
4c4b4cd2 | 6874 | given type name. If the type denoted by TYPE0 is to be preferred to |
14f9c5c9 | 6875 | that of TYPE1 for purposes of type printing, return non-zero; |
4c4b4cd2 PH |
6876 | otherwise return 0. */ |
6877 | ||
14f9c5c9 | 6878 | int |
d2e4a39e | 6879 | ada_prefer_type (struct type *type0, struct type *type1) |
14f9c5c9 AS |
6880 | { |
6881 | if (type1 == NULL) | |
6882 | return 1; | |
6883 | else if (type0 == NULL) | |
6884 | return 0; | |
6885 | else if (TYPE_CODE (type1) == TYPE_CODE_VOID) | |
6886 | return 1; | |
6887 | else if (TYPE_CODE (type0) == TYPE_CODE_VOID) | |
6888 | return 0; | |
4c4b4cd2 PH |
6889 | else if (TYPE_NAME (type1) == NULL && TYPE_NAME (type0) != NULL) |
6890 | return 1; | |
ad82864c | 6891 | else if (ada_is_constrained_packed_array_type (type0)) |
14f9c5c9 | 6892 | return 1; |
4c4b4cd2 PH |
6893 | else if (ada_is_array_descriptor_type (type0) |
6894 | && !ada_is_array_descriptor_type (type1)) | |
14f9c5c9 | 6895 | return 1; |
aeb5907d JB |
6896 | else |
6897 | { | |
6898 | const char *type0_name = type_name_no_tag (type0); | |
6899 | const char *type1_name = type_name_no_tag (type1); | |
6900 | ||
6901 | if (type0_name != NULL && strstr (type0_name, "___XR") != NULL | |
6902 | && (type1_name == NULL || strstr (type1_name, "___XR") == NULL)) | |
6903 | return 1; | |
6904 | } | |
14f9c5c9 AS |
6905 | return 0; |
6906 | } | |
6907 | ||
6908 | /* The name of TYPE, which is either its TYPE_NAME, or, if that is | |
4c4b4cd2 PH |
6909 | null, its TYPE_TAG_NAME. Null if TYPE is null. */ |
6910 | ||
d2e4a39e AS |
6911 | char * |
6912 | ada_type_name (struct type *type) | |
14f9c5c9 | 6913 | { |
d2e4a39e | 6914 | if (type == NULL) |
14f9c5c9 AS |
6915 | return NULL; |
6916 | else if (TYPE_NAME (type) != NULL) | |
6917 | return TYPE_NAME (type); | |
6918 | else | |
6919 | return TYPE_TAG_NAME (type); | |
6920 | } | |
6921 | ||
b4ba55a1 JB |
6922 | /* Search the list of "descriptive" types associated to TYPE for a type |
6923 | whose name is NAME. */ | |
6924 | ||
6925 | static struct type * | |
6926 | find_parallel_type_by_descriptive_type (struct type *type, const char *name) | |
6927 | { | |
6928 | struct type *result; | |
6929 | ||
6930 | /* If there no descriptive-type info, then there is no parallel type | |
6931 | to be found. */ | |
6932 | if (!HAVE_GNAT_AUX_INFO (type)) | |
6933 | return NULL; | |
6934 | ||
6935 | result = TYPE_DESCRIPTIVE_TYPE (type); | |
6936 | while (result != NULL) | |
6937 | { | |
6938 | char *result_name = ada_type_name (result); | |
6939 | ||
6940 | if (result_name == NULL) | |
6941 | { | |
6942 | warning (_("unexpected null name on descriptive type")); | |
6943 | return NULL; | |
6944 | } | |
6945 | ||
6946 | /* If the names match, stop. */ | |
6947 | if (strcmp (result_name, name) == 0) | |
6948 | break; | |
6949 | ||
6950 | /* Otherwise, look at the next item on the list, if any. */ | |
6951 | if (HAVE_GNAT_AUX_INFO (result)) | |
6952 | result = TYPE_DESCRIPTIVE_TYPE (result); | |
6953 | else | |
6954 | result = NULL; | |
6955 | } | |
6956 | ||
6957 | /* If we didn't find a match, see whether this is a packed array. With | |
6958 | older compilers, the descriptive type information is either absent or | |
6959 | irrelevant when it comes to packed arrays so the above lookup fails. | |
6960 | Fall back to using a parallel lookup by name in this case. */ | |
12ab9e09 | 6961 | if (result == NULL && ada_is_constrained_packed_array_type (type)) |
b4ba55a1 JB |
6962 | return ada_find_any_type (name); |
6963 | ||
6964 | return result; | |
6965 | } | |
6966 | ||
6967 | /* Find a parallel type to TYPE with the specified NAME, using the | |
6968 | descriptive type taken from the debugging information, if available, | |
6969 | and otherwise using the (slower) name-based method. */ | |
6970 | ||
6971 | static struct type * | |
6972 | ada_find_parallel_type_with_name (struct type *type, const char *name) | |
6973 | { | |
6974 | struct type *result = NULL; | |
6975 | ||
6976 | if (HAVE_GNAT_AUX_INFO (type)) | |
6977 | result = find_parallel_type_by_descriptive_type (type, name); | |
6978 | else | |
6979 | result = ada_find_any_type (name); | |
6980 | ||
6981 | return result; | |
6982 | } | |
6983 | ||
6984 | /* Same as above, but specify the name of the parallel type by appending | |
4c4b4cd2 | 6985 | SUFFIX to the name of TYPE. */ |
14f9c5c9 | 6986 | |
d2e4a39e | 6987 | struct type * |
ebf56fd3 | 6988 | ada_find_parallel_type (struct type *type, const char *suffix) |
14f9c5c9 | 6989 | { |
b4ba55a1 | 6990 | char *name, *typename = ada_type_name (type); |
14f9c5c9 | 6991 | int len; |
d2e4a39e | 6992 | |
14f9c5c9 AS |
6993 | if (typename == NULL) |
6994 | return NULL; | |
6995 | ||
6996 | len = strlen (typename); | |
6997 | ||
b4ba55a1 | 6998 | name = (char *) alloca (len + strlen (suffix) + 1); |
14f9c5c9 AS |
6999 | |
7000 | strcpy (name, typename); | |
7001 | strcpy (name + len, suffix); | |
7002 | ||
b4ba55a1 | 7003 | return ada_find_parallel_type_with_name (type, name); |
14f9c5c9 AS |
7004 | } |
7005 | ||
14f9c5c9 | 7006 | /* If TYPE is a variable-size record type, return the corresponding template |
4c4b4cd2 | 7007 | type describing its fields. Otherwise, return NULL. */ |
14f9c5c9 | 7008 | |
d2e4a39e AS |
7009 | static struct type * |
7010 | dynamic_template_type (struct type *type) | |
14f9c5c9 | 7011 | { |
61ee279c | 7012 | type = ada_check_typedef (type); |
14f9c5c9 AS |
7013 | |
7014 | if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT | |
d2e4a39e | 7015 | || ada_type_name (type) == NULL) |
14f9c5c9 | 7016 | return NULL; |
d2e4a39e | 7017 | else |
14f9c5c9 AS |
7018 | { |
7019 | int len = strlen (ada_type_name (type)); | |
5b4ee69b | 7020 | |
4c4b4cd2 PH |
7021 | if (len > 6 && strcmp (ada_type_name (type) + len - 6, "___XVE") == 0) |
7022 | return type; | |
14f9c5c9 | 7023 | else |
4c4b4cd2 | 7024 | return ada_find_parallel_type (type, "___XVE"); |
14f9c5c9 AS |
7025 | } |
7026 | } | |
7027 | ||
7028 | /* Assuming that TEMPL_TYPE is a union or struct type, returns | |
4c4b4cd2 | 7029 | non-zero iff field FIELD_NUM of TEMPL_TYPE has dynamic size. */ |
14f9c5c9 | 7030 | |
d2e4a39e AS |
7031 | static int |
7032 | is_dynamic_field (struct type *templ_type, int field_num) | |
14f9c5c9 AS |
7033 | { |
7034 | const char *name = TYPE_FIELD_NAME (templ_type, field_num); | |
5b4ee69b | 7035 | |
d2e4a39e | 7036 | return name != NULL |
14f9c5c9 AS |
7037 | && TYPE_CODE (TYPE_FIELD_TYPE (templ_type, field_num)) == TYPE_CODE_PTR |
7038 | && strstr (name, "___XVL") != NULL; | |
7039 | } | |
7040 | ||
4c4b4cd2 PH |
7041 | /* The index of the variant field of TYPE, or -1 if TYPE does not |
7042 | represent a variant record type. */ | |
14f9c5c9 | 7043 | |
d2e4a39e | 7044 | static int |
4c4b4cd2 | 7045 | variant_field_index (struct type *type) |
14f9c5c9 AS |
7046 | { |
7047 | int f; | |
7048 | ||
4c4b4cd2 PH |
7049 | if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT) |
7050 | return -1; | |
7051 | ||
7052 | for (f = 0; f < TYPE_NFIELDS (type); f += 1) | |
7053 | { | |
7054 | if (ada_is_variant_part (type, f)) | |
7055 | return f; | |
7056 | } | |
7057 | return -1; | |
14f9c5c9 AS |
7058 | } |
7059 | ||
4c4b4cd2 PH |
7060 | /* A record type with no fields. */ |
7061 | ||
d2e4a39e | 7062 | static struct type * |
e9bb382b | 7063 | empty_record (struct type *template) |
14f9c5c9 | 7064 | { |
e9bb382b | 7065 | struct type *type = alloc_type_copy (template); |
5b4ee69b | 7066 | |
14f9c5c9 AS |
7067 | TYPE_CODE (type) = TYPE_CODE_STRUCT; |
7068 | TYPE_NFIELDS (type) = 0; | |
7069 | TYPE_FIELDS (type) = NULL; | |
b1f33ddd | 7070 | INIT_CPLUS_SPECIFIC (type); |
14f9c5c9 AS |
7071 | TYPE_NAME (type) = "<empty>"; |
7072 | TYPE_TAG_NAME (type) = NULL; | |
14f9c5c9 AS |
7073 | TYPE_LENGTH (type) = 0; |
7074 | return type; | |
7075 | } | |
7076 | ||
7077 | /* An ordinary record type (with fixed-length fields) that describes | |
4c4b4cd2 PH |
7078 | the value of type TYPE at VALADDR or ADDRESS (see comments at |
7079 | the beginning of this section) VAL according to GNAT conventions. | |
7080 | DVAL0 should describe the (portion of a) record that contains any | |
df407dfe | 7081 | necessary discriminants. It should be NULL if value_type (VAL) is |
14f9c5c9 AS |
7082 | an outer-level type (i.e., as opposed to a branch of a variant.) A |
7083 | variant field (unless unchecked) is replaced by a particular branch | |
4c4b4cd2 | 7084 | of the variant. |
14f9c5c9 | 7085 | |
4c4b4cd2 PH |
7086 | If not KEEP_DYNAMIC_FIELDS, then all fields whose position or |
7087 | length are not statically known are discarded. As a consequence, | |
7088 | VALADDR, ADDRESS and DVAL0 are ignored. | |
7089 | ||
7090 | NOTE: Limitations: For now, we assume that dynamic fields and | |
7091 | variants occupy whole numbers of bytes. However, they need not be | |
7092 | byte-aligned. */ | |
7093 | ||
7094 | struct type * | |
10a2c479 | 7095 | ada_template_to_fixed_record_type_1 (struct type *type, |
fc1a4b47 | 7096 | const gdb_byte *valaddr, |
4c4b4cd2 PH |
7097 | CORE_ADDR address, struct value *dval0, |
7098 | int keep_dynamic_fields) | |
14f9c5c9 | 7099 | { |
d2e4a39e AS |
7100 | struct value *mark = value_mark (); |
7101 | struct value *dval; | |
7102 | struct type *rtype; | |
14f9c5c9 | 7103 | int nfields, bit_len; |
4c4b4cd2 | 7104 | int variant_field; |
14f9c5c9 | 7105 | long off; |
d94e4f4f | 7106 | int fld_bit_len; |
14f9c5c9 AS |
7107 | int f; |
7108 | ||
4c4b4cd2 PH |
7109 | /* Compute the number of fields in this record type that are going |
7110 | to be processed: unless keep_dynamic_fields, this includes only | |
7111 | fields whose position and length are static will be processed. */ | |
7112 | if (keep_dynamic_fields) | |
7113 | nfields = TYPE_NFIELDS (type); | |
7114 | else | |
7115 | { | |
7116 | nfields = 0; | |
76a01679 | 7117 | while (nfields < TYPE_NFIELDS (type) |
4c4b4cd2 PH |
7118 | && !ada_is_variant_part (type, nfields) |
7119 | && !is_dynamic_field (type, nfields)) | |
7120 | nfields++; | |
7121 | } | |
7122 | ||
e9bb382b | 7123 | rtype = alloc_type_copy (type); |
14f9c5c9 AS |
7124 | TYPE_CODE (rtype) = TYPE_CODE_STRUCT; |
7125 | INIT_CPLUS_SPECIFIC (rtype); | |
7126 | TYPE_NFIELDS (rtype) = nfields; | |
d2e4a39e | 7127 | TYPE_FIELDS (rtype) = (struct field *) |
14f9c5c9 AS |
7128 | TYPE_ALLOC (rtype, nfields * sizeof (struct field)); |
7129 | memset (TYPE_FIELDS (rtype), 0, sizeof (struct field) * nfields); | |
7130 | TYPE_NAME (rtype) = ada_type_name (type); | |
7131 | TYPE_TAG_NAME (rtype) = NULL; | |
876cecd0 | 7132 | TYPE_FIXED_INSTANCE (rtype) = 1; |
14f9c5c9 | 7133 | |
d2e4a39e AS |
7134 | off = 0; |
7135 | bit_len = 0; | |
4c4b4cd2 PH |
7136 | variant_field = -1; |
7137 | ||
14f9c5c9 AS |
7138 | for (f = 0; f < nfields; f += 1) |
7139 | { | |
6c038f32 PH |
7140 | off = align_value (off, field_alignment (type, f)) |
7141 | + TYPE_FIELD_BITPOS (type, f); | |
14f9c5c9 | 7142 | TYPE_FIELD_BITPOS (rtype, f) = off; |
d2e4a39e | 7143 | TYPE_FIELD_BITSIZE (rtype, f) = 0; |
14f9c5c9 | 7144 | |
d2e4a39e | 7145 | if (ada_is_variant_part (type, f)) |
4c4b4cd2 PH |
7146 | { |
7147 | variant_field = f; | |
d94e4f4f | 7148 | fld_bit_len = 0; |
4c4b4cd2 | 7149 | } |
14f9c5c9 | 7150 | else if (is_dynamic_field (type, f)) |
4c4b4cd2 | 7151 | { |
284614f0 JB |
7152 | const gdb_byte *field_valaddr = valaddr; |
7153 | CORE_ADDR field_address = address; | |
7154 | struct type *field_type = | |
7155 | TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type, f)); | |
7156 | ||
4c4b4cd2 | 7157 | if (dval0 == NULL) |
b5304971 JG |
7158 | { |
7159 | /* rtype's length is computed based on the run-time | |
7160 | value of discriminants. If the discriminants are not | |
7161 | initialized, the type size may be completely bogus and | |
0963b4bd | 7162 | GDB may fail to allocate a value for it. So check the |
b5304971 JG |
7163 | size first before creating the value. */ |
7164 | check_size (rtype); | |
7165 | dval = value_from_contents_and_address (rtype, valaddr, address); | |
7166 | } | |
4c4b4cd2 PH |
7167 | else |
7168 | dval = dval0; | |
7169 | ||
284614f0 JB |
7170 | /* If the type referenced by this field is an aligner type, we need |
7171 | to unwrap that aligner type, because its size might not be set. | |
7172 | Keeping the aligner type would cause us to compute the wrong | |
7173 | size for this field, impacting the offset of the all the fields | |
7174 | that follow this one. */ | |
7175 | if (ada_is_aligner_type (field_type)) | |
7176 | { | |
7177 | long field_offset = TYPE_FIELD_BITPOS (field_type, f); | |
7178 | ||
7179 | field_valaddr = cond_offset_host (field_valaddr, field_offset); | |
7180 | field_address = cond_offset_target (field_address, field_offset); | |
7181 | field_type = ada_aligned_type (field_type); | |
7182 | } | |
7183 | ||
7184 | field_valaddr = cond_offset_host (field_valaddr, | |
7185 | off / TARGET_CHAR_BIT); | |
7186 | field_address = cond_offset_target (field_address, | |
7187 | off / TARGET_CHAR_BIT); | |
7188 | ||
7189 | /* Get the fixed type of the field. Note that, in this case, | |
7190 | we do not want to get the real type out of the tag: if | |
7191 | the current field is the parent part of a tagged record, | |
7192 | we will get the tag of the object. Clearly wrong: the real | |
7193 | type of the parent is not the real type of the child. We | |
7194 | would end up in an infinite loop. */ | |
7195 | field_type = ada_get_base_type (field_type); | |
7196 | field_type = ada_to_fixed_type (field_type, field_valaddr, | |
7197 | field_address, dval, 0); | |
27f2a97b JB |
7198 | /* If the field size is already larger than the maximum |
7199 | object size, then the record itself will necessarily | |
7200 | be larger than the maximum object size. We need to make | |
7201 | this check now, because the size might be so ridiculously | |
7202 | large (due to an uninitialized variable in the inferior) | |
7203 | that it would cause an overflow when adding it to the | |
7204 | record size. */ | |
7205 | check_size (field_type); | |
284614f0 JB |
7206 | |
7207 | TYPE_FIELD_TYPE (rtype, f) = field_type; | |
4c4b4cd2 | 7208 | TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f); |
27f2a97b JB |
7209 | /* The multiplication can potentially overflow. But because |
7210 | the field length has been size-checked just above, and | |
7211 | assuming that the maximum size is a reasonable value, | |
7212 | an overflow should not happen in practice. So rather than | |
7213 | adding overflow recovery code to this already complex code, | |
7214 | we just assume that it's not going to happen. */ | |
d94e4f4f | 7215 | fld_bit_len = |
4c4b4cd2 PH |
7216 | TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, f)) * TARGET_CHAR_BIT; |
7217 | } | |
14f9c5c9 | 7218 | else |
4c4b4cd2 | 7219 | { |
9f0dec2d JB |
7220 | struct type *field_type = TYPE_FIELD_TYPE (type, f); |
7221 | ||
720d1a40 JB |
7222 | /* If our field is a typedef type (most likely a typedef of |
7223 | a fat pointer, encoding an array access), then we need to | |
7224 | look at its target type to determine its characteristics. | |
7225 | In particular, we would miscompute the field size if we took | |
7226 | the size of the typedef (zero), instead of the size of | |
7227 | the target type. */ | |
7228 | if (TYPE_CODE (field_type) == TYPE_CODE_TYPEDEF) | |
7229 | field_type = ada_typedef_target_type (field_type); | |
7230 | ||
9f0dec2d | 7231 | TYPE_FIELD_TYPE (rtype, f) = field_type; |
4c4b4cd2 PH |
7232 | TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f); |
7233 | if (TYPE_FIELD_BITSIZE (type, f) > 0) | |
d94e4f4f | 7234 | fld_bit_len = |
4c4b4cd2 PH |
7235 | TYPE_FIELD_BITSIZE (rtype, f) = TYPE_FIELD_BITSIZE (type, f); |
7236 | else | |
d94e4f4f | 7237 | fld_bit_len = |
9f0dec2d | 7238 | TYPE_LENGTH (ada_check_typedef (field_type)) * TARGET_CHAR_BIT; |
4c4b4cd2 | 7239 | } |
14f9c5c9 | 7240 | if (off + fld_bit_len > bit_len) |
4c4b4cd2 | 7241 | bit_len = off + fld_bit_len; |
d94e4f4f | 7242 | off += fld_bit_len; |
4c4b4cd2 PH |
7243 | TYPE_LENGTH (rtype) = |
7244 | align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT; | |
14f9c5c9 | 7245 | } |
4c4b4cd2 PH |
7246 | |
7247 | /* We handle the variant part, if any, at the end because of certain | |
b1f33ddd | 7248 | odd cases in which it is re-ordered so as NOT to be the last field of |
4c4b4cd2 PH |
7249 | the record. This can happen in the presence of representation |
7250 | clauses. */ | |
7251 | if (variant_field >= 0) | |
7252 | { | |
7253 | struct type *branch_type; | |
7254 | ||
7255 | off = TYPE_FIELD_BITPOS (rtype, variant_field); | |
7256 | ||
7257 | if (dval0 == NULL) | |
7258 | dval = value_from_contents_and_address (rtype, valaddr, address); | |
7259 | else | |
7260 | dval = dval0; | |
7261 | ||
7262 | branch_type = | |
7263 | to_fixed_variant_branch_type | |
7264 | (TYPE_FIELD_TYPE (type, variant_field), | |
7265 | cond_offset_host (valaddr, off / TARGET_CHAR_BIT), | |
7266 | cond_offset_target (address, off / TARGET_CHAR_BIT), dval); | |
7267 | if (branch_type == NULL) | |
7268 | { | |
7269 | for (f = variant_field + 1; f < TYPE_NFIELDS (rtype); f += 1) | |
7270 | TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f]; | |
7271 | TYPE_NFIELDS (rtype) -= 1; | |
7272 | } | |
7273 | else | |
7274 | { | |
7275 | TYPE_FIELD_TYPE (rtype, variant_field) = branch_type; | |
7276 | TYPE_FIELD_NAME (rtype, variant_field) = "S"; | |
7277 | fld_bit_len = | |
7278 | TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, variant_field)) * | |
7279 | TARGET_CHAR_BIT; | |
7280 | if (off + fld_bit_len > bit_len) | |
7281 | bit_len = off + fld_bit_len; | |
7282 | TYPE_LENGTH (rtype) = | |
7283 | align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT; | |
7284 | } | |
7285 | } | |
7286 | ||
714e53ab PH |
7287 | /* According to exp_dbug.ads, the size of TYPE for variable-size records |
7288 | should contain the alignment of that record, which should be a strictly | |
7289 | positive value. If null or negative, then something is wrong, most | |
7290 | probably in the debug info. In that case, we don't round up the size | |
0963b4bd | 7291 | of the resulting type. If this record is not part of another structure, |
714e53ab PH |
7292 | the current RTYPE length might be good enough for our purposes. */ |
7293 | if (TYPE_LENGTH (type) <= 0) | |
7294 | { | |
323e0a4a AC |
7295 | if (TYPE_NAME (rtype)) |
7296 | warning (_("Invalid type size for `%s' detected: %d."), | |
7297 | TYPE_NAME (rtype), TYPE_LENGTH (type)); | |
7298 | else | |
7299 | warning (_("Invalid type size for <unnamed> detected: %d."), | |
7300 | TYPE_LENGTH (type)); | |
714e53ab PH |
7301 | } |
7302 | else | |
7303 | { | |
7304 | TYPE_LENGTH (rtype) = align_value (TYPE_LENGTH (rtype), | |
7305 | TYPE_LENGTH (type)); | |
7306 | } | |
14f9c5c9 AS |
7307 | |
7308 | value_free_to_mark (mark); | |
d2e4a39e | 7309 | if (TYPE_LENGTH (rtype) > varsize_limit) |
323e0a4a | 7310 | error (_("record type with dynamic size is larger than varsize-limit")); |
14f9c5c9 AS |
7311 | return rtype; |
7312 | } | |
7313 | ||
4c4b4cd2 PH |
7314 | /* As for ada_template_to_fixed_record_type_1 with KEEP_DYNAMIC_FIELDS |
7315 | of 1. */ | |
14f9c5c9 | 7316 | |
d2e4a39e | 7317 | static struct type * |
fc1a4b47 | 7318 | template_to_fixed_record_type (struct type *type, const gdb_byte *valaddr, |
4c4b4cd2 PH |
7319 | CORE_ADDR address, struct value *dval0) |
7320 | { | |
7321 | return ada_template_to_fixed_record_type_1 (type, valaddr, | |
7322 | address, dval0, 1); | |
7323 | } | |
7324 | ||
7325 | /* An ordinary record type in which ___XVL-convention fields and | |
7326 | ___XVU- and ___XVN-convention field types in TYPE0 are replaced with | |
7327 | static approximations, containing all possible fields. Uses | |
7328 | no runtime values. Useless for use in values, but that's OK, | |
7329 | since the results are used only for type determinations. Works on both | |
7330 | structs and unions. Representation note: to save space, we memorize | |
7331 | the result of this function in the TYPE_TARGET_TYPE of the | |
7332 | template type. */ | |
7333 | ||
7334 | static struct type * | |
7335 | template_to_static_fixed_type (struct type *type0) | |
14f9c5c9 AS |
7336 | { |
7337 | struct type *type; | |
7338 | int nfields; | |
7339 | int f; | |
7340 | ||
4c4b4cd2 PH |
7341 | if (TYPE_TARGET_TYPE (type0) != NULL) |
7342 | return TYPE_TARGET_TYPE (type0); | |
7343 | ||
7344 | nfields = TYPE_NFIELDS (type0); | |
7345 | type = type0; | |
14f9c5c9 AS |
7346 | |
7347 | for (f = 0; f < nfields; f += 1) | |
7348 | { | |
61ee279c | 7349 | struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type0, f)); |
4c4b4cd2 | 7350 | struct type *new_type; |
14f9c5c9 | 7351 | |
4c4b4cd2 PH |
7352 | if (is_dynamic_field (type0, f)) |
7353 | new_type = to_static_fixed_type (TYPE_TARGET_TYPE (field_type)); | |
14f9c5c9 | 7354 | else |
f192137b | 7355 | new_type = static_unwrap_type (field_type); |
4c4b4cd2 PH |
7356 | if (type == type0 && new_type != field_type) |
7357 | { | |
e9bb382b | 7358 | TYPE_TARGET_TYPE (type0) = type = alloc_type_copy (type0); |
4c4b4cd2 PH |
7359 | TYPE_CODE (type) = TYPE_CODE (type0); |
7360 | INIT_CPLUS_SPECIFIC (type); | |
7361 | TYPE_NFIELDS (type) = nfields; | |
7362 | TYPE_FIELDS (type) = (struct field *) | |
7363 | TYPE_ALLOC (type, nfields * sizeof (struct field)); | |
7364 | memcpy (TYPE_FIELDS (type), TYPE_FIELDS (type0), | |
7365 | sizeof (struct field) * nfields); | |
7366 | TYPE_NAME (type) = ada_type_name (type0); | |
7367 | TYPE_TAG_NAME (type) = NULL; | |
876cecd0 | 7368 | TYPE_FIXED_INSTANCE (type) = 1; |
4c4b4cd2 PH |
7369 | TYPE_LENGTH (type) = 0; |
7370 | } | |
7371 | TYPE_FIELD_TYPE (type, f) = new_type; | |
7372 | TYPE_FIELD_NAME (type, f) = TYPE_FIELD_NAME (type0, f); | |
14f9c5c9 | 7373 | } |
14f9c5c9 AS |
7374 | return type; |
7375 | } | |
7376 | ||
4c4b4cd2 | 7377 | /* Given an object of type TYPE whose contents are at VALADDR and |
5823c3ef JB |
7378 | whose address in memory is ADDRESS, returns a revision of TYPE, |
7379 | which should be a non-dynamic-sized record, in which the variant | |
7380 | part, if any, is replaced with the appropriate branch. Looks | |
4c4b4cd2 PH |
7381 | for discriminant values in DVAL0, which can be NULL if the record |
7382 | contains the necessary discriminant values. */ | |
7383 | ||
d2e4a39e | 7384 | static struct type * |
fc1a4b47 | 7385 | to_record_with_fixed_variant_part (struct type *type, const gdb_byte *valaddr, |
4c4b4cd2 | 7386 | CORE_ADDR address, struct value *dval0) |
14f9c5c9 | 7387 | { |
d2e4a39e | 7388 | struct value *mark = value_mark (); |
4c4b4cd2 | 7389 | struct value *dval; |
d2e4a39e | 7390 | struct type *rtype; |
14f9c5c9 AS |
7391 | struct type *branch_type; |
7392 | int nfields = TYPE_NFIELDS (type); | |
4c4b4cd2 | 7393 | int variant_field = variant_field_index (type); |
14f9c5c9 | 7394 | |
4c4b4cd2 | 7395 | if (variant_field == -1) |
14f9c5c9 AS |
7396 | return type; |
7397 | ||
4c4b4cd2 PH |
7398 | if (dval0 == NULL) |
7399 | dval = value_from_contents_and_address (type, valaddr, address); | |
7400 | else | |
7401 | dval = dval0; | |
7402 | ||
e9bb382b | 7403 | rtype = alloc_type_copy (type); |
14f9c5c9 | 7404 | TYPE_CODE (rtype) = TYPE_CODE_STRUCT; |
4c4b4cd2 PH |
7405 | INIT_CPLUS_SPECIFIC (rtype); |
7406 | TYPE_NFIELDS (rtype) = nfields; | |
d2e4a39e AS |
7407 | TYPE_FIELDS (rtype) = |
7408 | (struct field *) TYPE_ALLOC (rtype, nfields * sizeof (struct field)); | |
7409 | memcpy (TYPE_FIELDS (rtype), TYPE_FIELDS (type), | |
4c4b4cd2 | 7410 | sizeof (struct field) * nfields); |
14f9c5c9 AS |
7411 | TYPE_NAME (rtype) = ada_type_name (type); |
7412 | TYPE_TAG_NAME (rtype) = NULL; | |
876cecd0 | 7413 | TYPE_FIXED_INSTANCE (rtype) = 1; |
14f9c5c9 AS |
7414 | TYPE_LENGTH (rtype) = TYPE_LENGTH (type); |
7415 | ||
4c4b4cd2 PH |
7416 | branch_type = to_fixed_variant_branch_type |
7417 | (TYPE_FIELD_TYPE (type, variant_field), | |
d2e4a39e | 7418 | cond_offset_host (valaddr, |
4c4b4cd2 PH |
7419 | TYPE_FIELD_BITPOS (type, variant_field) |
7420 | / TARGET_CHAR_BIT), | |
d2e4a39e | 7421 | cond_offset_target (address, |
4c4b4cd2 PH |
7422 | TYPE_FIELD_BITPOS (type, variant_field) |
7423 | / TARGET_CHAR_BIT), dval); | |
d2e4a39e | 7424 | if (branch_type == NULL) |
14f9c5c9 | 7425 | { |
4c4b4cd2 | 7426 | int f; |
5b4ee69b | 7427 | |
4c4b4cd2 PH |
7428 | for (f = variant_field + 1; f < nfields; f += 1) |
7429 | TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f]; | |
14f9c5c9 | 7430 | TYPE_NFIELDS (rtype) -= 1; |
14f9c5c9 AS |
7431 | } |
7432 | else | |
7433 | { | |
4c4b4cd2 PH |
7434 | TYPE_FIELD_TYPE (rtype, variant_field) = branch_type; |
7435 | TYPE_FIELD_NAME (rtype, variant_field) = "S"; | |
7436 | TYPE_FIELD_BITSIZE (rtype, variant_field) = 0; | |
14f9c5c9 | 7437 | TYPE_LENGTH (rtype) += TYPE_LENGTH (branch_type); |
14f9c5c9 | 7438 | } |
4c4b4cd2 | 7439 | TYPE_LENGTH (rtype) -= TYPE_LENGTH (TYPE_FIELD_TYPE (type, variant_field)); |
d2e4a39e | 7440 | |
4c4b4cd2 | 7441 | value_free_to_mark (mark); |
14f9c5c9 AS |
7442 | return rtype; |
7443 | } | |
7444 | ||
7445 | /* An ordinary record type (with fixed-length fields) that describes | |
7446 | the value at (TYPE0, VALADDR, ADDRESS) [see explanation at | |
7447 | beginning of this section]. Any necessary discriminants' values | |
4c4b4cd2 PH |
7448 | should be in DVAL, a record value; it may be NULL if the object |
7449 | at ADDR itself contains any necessary discriminant values. | |
7450 | Additionally, VALADDR and ADDRESS may also be NULL if no discriminant | |
7451 | values from the record are needed. Except in the case that DVAL, | |
7452 | VALADDR, and ADDRESS are all 0 or NULL, a variant field (unless | |
7453 | unchecked) is replaced by a particular branch of the variant. | |
7454 | ||
7455 | NOTE: the case in which DVAL and VALADDR are NULL and ADDRESS is 0 | |
7456 | is questionable and may be removed. It can arise during the | |
7457 | processing of an unconstrained-array-of-record type where all the | |
7458 | variant branches have exactly the same size. This is because in | |
7459 | such cases, the compiler does not bother to use the XVS convention | |
7460 | when encoding the record. I am currently dubious of this | |
7461 | shortcut and suspect the compiler should be altered. FIXME. */ | |
14f9c5c9 | 7462 | |
d2e4a39e | 7463 | static struct type * |
fc1a4b47 | 7464 | to_fixed_record_type (struct type *type0, const gdb_byte *valaddr, |
4c4b4cd2 | 7465 | CORE_ADDR address, struct value *dval) |
14f9c5c9 | 7466 | { |
d2e4a39e | 7467 | struct type *templ_type; |
14f9c5c9 | 7468 | |
876cecd0 | 7469 | if (TYPE_FIXED_INSTANCE (type0)) |
4c4b4cd2 PH |
7470 | return type0; |
7471 | ||
d2e4a39e | 7472 | templ_type = dynamic_template_type (type0); |
14f9c5c9 AS |
7473 | |
7474 | if (templ_type != NULL) | |
7475 | return template_to_fixed_record_type (templ_type, valaddr, address, dval); | |
4c4b4cd2 PH |
7476 | else if (variant_field_index (type0) >= 0) |
7477 | { | |
7478 | if (dval == NULL && valaddr == NULL && address == 0) | |
7479 | return type0; | |
7480 | return to_record_with_fixed_variant_part (type0, valaddr, address, | |
7481 | dval); | |
7482 | } | |
14f9c5c9 AS |
7483 | else |
7484 | { | |
876cecd0 | 7485 | TYPE_FIXED_INSTANCE (type0) = 1; |
14f9c5c9 AS |
7486 | return type0; |
7487 | } | |
7488 | ||
7489 | } | |
7490 | ||
7491 | /* An ordinary record type (with fixed-length fields) that describes | |
7492 | the value at (VAR_TYPE0, VALADDR, ADDRESS), where VAR_TYPE0 is a | |
7493 | union type. Any necessary discriminants' values should be in DVAL, | |
7494 | a record value. That is, this routine selects the appropriate | |
7495 | branch of the union at ADDR according to the discriminant value | |
b1f33ddd | 7496 | indicated in the union's type name. Returns VAR_TYPE0 itself if |
0963b4bd | 7497 | it represents a variant subject to a pragma Unchecked_Union. */ |
14f9c5c9 | 7498 | |
d2e4a39e | 7499 | static struct type * |
fc1a4b47 | 7500 | to_fixed_variant_branch_type (struct type *var_type0, const gdb_byte *valaddr, |
4c4b4cd2 | 7501 | CORE_ADDR address, struct value *dval) |
14f9c5c9 AS |
7502 | { |
7503 | int which; | |
d2e4a39e AS |
7504 | struct type *templ_type; |
7505 | struct type *var_type; | |
14f9c5c9 AS |
7506 | |
7507 | if (TYPE_CODE (var_type0) == TYPE_CODE_PTR) | |
7508 | var_type = TYPE_TARGET_TYPE (var_type0); | |
d2e4a39e | 7509 | else |
14f9c5c9 AS |
7510 | var_type = var_type0; |
7511 | ||
7512 | templ_type = ada_find_parallel_type (var_type, "___XVU"); | |
7513 | ||
7514 | if (templ_type != NULL) | |
7515 | var_type = templ_type; | |
7516 | ||
b1f33ddd JB |
7517 | if (is_unchecked_variant (var_type, value_type (dval))) |
7518 | return var_type0; | |
d2e4a39e AS |
7519 | which = |
7520 | ada_which_variant_applies (var_type, | |
0fd88904 | 7521 | value_type (dval), value_contents (dval)); |
14f9c5c9 AS |
7522 | |
7523 | if (which < 0) | |
e9bb382b | 7524 | return empty_record (var_type); |
14f9c5c9 | 7525 | else if (is_dynamic_field (var_type, which)) |
4c4b4cd2 | 7526 | return to_fixed_record_type |
d2e4a39e AS |
7527 | (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (var_type, which)), |
7528 | valaddr, address, dval); | |
4c4b4cd2 | 7529 | else if (variant_field_index (TYPE_FIELD_TYPE (var_type, which)) >= 0) |
d2e4a39e AS |
7530 | return |
7531 | to_fixed_record_type | |
7532 | (TYPE_FIELD_TYPE (var_type, which), valaddr, address, dval); | |
14f9c5c9 AS |
7533 | else |
7534 | return TYPE_FIELD_TYPE (var_type, which); | |
7535 | } | |
7536 | ||
7537 | /* Assuming that TYPE0 is an array type describing the type of a value | |
7538 | at ADDR, and that DVAL describes a record containing any | |
7539 | discriminants used in TYPE0, returns a type for the value that | |
7540 | contains no dynamic components (that is, no components whose sizes | |
7541 | are determined by run-time quantities). Unless IGNORE_TOO_BIG is | |
7542 | true, gives an error message if the resulting type's size is over | |
4c4b4cd2 | 7543 | varsize_limit. */ |
14f9c5c9 | 7544 | |
d2e4a39e AS |
7545 | static struct type * |
7546 | to_fixed_array_type (struct type *type0, struct value *dval, | |
4c4b4cd2 | 7547 | int ignore_too_big) |
14f9c5c9 | 7548 | { |
d2e4a39e AS |
7549 | struct type *index_type_desc; |
7550 | struct type *result; | |
ad82864c | 7551 | int constrained_packed_array_p; |
14f9c5c9 | 7552 | |
284614f0 | 7553 | if (TYPE_FIXED_INSTANCE (type0)) |
4c4b4cd2 | 7554 | return type0; |
14f9c5c9 | 7555 | |
ad82864c JB |
7556 | constrained_packed_array_p = ada_is_constrained_packed_array_type (type0); |
7557 | if (constrained_packed_array_p) | |
7558 | type0 = decode_constrained_packed_array_type (type0); | |
284614f0 | 7559 | |
14f9c5c9 | 7560 | index_type_desc = ada_find_parallel_type (type0, "___XA"); |
28c85d6c | 7561 | ada_fixup_array_indexes_type (index_type_desc); |
14f9c5c9 AS |
7562 | if (index_type_desc == NULL) |
7563 | { | |
61ee279c | 7564 | struct type *elt_type0 = ada_check_typedef (TYPE_TARGET_TYPE (type0)); |
5b4ee69b | 7565 | |
14f9c5c9 | 7566 | /* NOTE: elt_type---the fixed version of elt_type0---should never |
4c4b4cd2 PH |
7567 | depend on the contents of the array in properly constructed |
7568 | debugging data. */ | |
529cad9c PH |
7569 | /* Create a fixed version of the array element type. |
7570 | We're not providing the address of an element here, | |
e1d5a0d2 | 7571 | and thus the actual object value cannot be inspected to do |
529cad9c PH |
7572 | the conversion. This should not be a problem, since arrays of |
7573 | unconstrained objects are not allowed. In particular, all | |
7574 | the elements of an array of a tagged type should all be of | |
7575 | the same type specified in the debugging info. No need to | |
7576 | consult the object tag. */ | |
1ed6ede0 | 7577 | struct type *elt_type = ada_to_fixed_type (elt_type0, 0, 0, dval, 1); |
14f9c5c9 | 7578 | |
284614f0 JB |
7579 | /* Make sure we always create a new array type when dealing with |
7580 | packed array types, since we're going to fix-up the array | |
7581 | type length and element bitsize a little further down. */ | |
ad82864c | 7582 | if (elt_type0 == elt_type && !constrained_packed_array_p) |
4c4b4cd2 | 7583 | result = type0; |
14f9c5c9 | 7584 | else |
e9bb382b | 7585 | result = create_array_type (alloc_type_copy (type0), |
4c4b4cd2 | 7586 | elt_type, TYPE_INDEX_TYPE (type0)); |
14f9c5c9 AS |
7587 | } |
7588 | else | |
7589 | { | |
7590 | int i; | |
7591 | struct type *elt_type0; | |
7592 | ||
7593 | elt_type0 = type0; | |
7594 | for (i = TYPE_NFIELDS (index_type_desc); i > 0; i -= 1) | |
4c4b4cd2 | 7595 | elt_type0 = TYPE_TARGET_TYPE (elt_type0); |
14f9c5c9 AS |
7596 | |
7597 | /* NOTE: result---the fixed version of elt_type0---should never | |
4c4b4cd2 PH |
7598 | depend on the contents of the array in properly constructed |
7599 | debugging data. */ | |
529cad9c PH |
7600 | /* Create a fixed version of the array element type. |
7601 | We're not providing the address of an element here, | |
e1d5a0d2 | 7602 | and thus the actual object value cannot be inspected to do |
529cad9c PH |
7603 | the conversion. This should not be a problem, since arrays of |
7604 | unconstrained objects are not allowed. In particular, all | |
7605 | the elements of an array of a tagged type should all be of | |
7606 | the same type specified in the debugging info. No need to | |
7607 | consult the object tag. */ | |
1ed6ede0 JB |
7608 | result = |
7609 | ada_to_fixed_type (ada_check_typedef (elt_type0), 0, 0, dval, 1); | |
1ce677a4 UW |
7610 | |
7611 | elt_type0 = type0; | |
14f9c5c9 | 7612 | for (i = TYPE_NFIELDS (index_type_desc) - 1; i >= 0; i -= 1) |
4c4b4cd2 PH |
7613 | { |
7614 | struct type *range_type = | |
28c85d6c | 7615 | to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, i), dval); |
5b4ee69b | 7616 | |
e9bb382b | 7617 | result = create_array_type (alloc_type_copy (elt_type0), |
4c4b4cd2 | 7618 | result, range_type); |
1ce677a4 | 7619 | elt_type0 = TYPE_TARGET_TYPE (elt_type0); |
4c4b4cd2 | 7620 | } |
d2e4a39e | 7621 | if (!ignore_too_big && TYPE_LENGTH (result) > varsize_limit) |
323e0a4a | 7622 | error (_("array type with dynamic size is larger than varsize-limit")); |
14f9c5c9 AS |
7623 | } |
7624 | ||
ad82864c | 7625 | if (constrained_packed_array_p) |
284614f0 JB |
7626 | { |
7627 | /* So far, the resulting type has been created as if the original | |
7628 | type was a regular (non-packed) array type. As a result, the | |
7629 | bitsize of the array elements needs to be set again, and the array | |
7630 | length needs to be recomputed based on that bitsize. */ | |
7631 | int len = TYPE_LENGTH (result) / TYPE_LENGTH (TYPE_TARGET_TYPE (result)); | |
7632 | int elt_bitsize = TYPE_FIELD_BITSIZE (type0, 0); | |
7633 | ||
7634 | TYPE_FIELD_BITSIZE (result, 0) = TYPE_FIELD_BITSIZE (type0, 0); | |
7635 | TYPE_LENGTH (result) = len * elt_bitsize / HOST_CHAR_BIT; | |
7636 | if (TYPE_LENGTH (result) * HOST_CHAR_BIT < len * elt_bitsize) | |
7637 | TYPE_LENGTH (result)++; | |
7638 | } | |
7639 | ||
876cecd0 | 7640 | TYPE_FIXED_INSTANCE (result) = 1; |
14f9c5c9 | 7641 | return result; |
d2e4a39e | 7642 | } |
14f9c5c9 AS |
7643 | |
7644 | ||
7645 | /* A standard type (containing no dynamically sized components) | |
7646 | corresponding to TYPE for the value (TYPE, VALADDR, ADDRESS) | |
7647 | DVAL describes a record containing any discriminants used in TYPE0, | |
4c4b4cd2 | 7648 | and may be NULL if there are none, or if the object of type TYPE at |
529cad9c PH |
7649 | ADDRESS or in VALADDR contains these discriminants. |
7650 | ||
1ed6ede0 JB |
7651 | If CHECK_TAG is not null, in the case of tagged types, this function |
7652 | attempts to locate the object's tag and use it to compute the actual | |
7653 | type. However, when ADDRESS is null, we cannot use it to determine the | |
7654 | location of the tag, and therefore compute the tagged type's actual type. | |
7655 | So we return the tagged type without consulting the tag. */ | |
529cad9c | 7656 | |
f192137b JB |
7657 | static struct type * |
7658 | ada_to_fixed_type_1 (struct type *type, const gdb_byte *valaddr, | |
1ed6ede0 | 7659 | CORE_ADDR address, struct value *dval, int check_tag) |
14f9c5c9 | 7660 | { |
61ee279c | 7661 | type = ada_check_typedef (type); |
d2e4a39e AS |
7662 | switch (TYPE_CODE (type)) |
7663 | { | |
7664 | default: | |
14f9c5c9 | 7665 | return type; |
d2e4a39e | 7666 | case TYPE_CODE_STRUCT: |
4c4b4cd2 | 7667 | { |
76a01679 | 7668 | struct type *static_type = to_static_fixed_type (type); |
1ed6ede0 JB |
7669 | struct type *fixed_record_type = |
7670 | to_fixed_record_type (type, valaddr, address, NULL); | |
5b4ee69b | 7671 | |
529cad9c PH |
7672 | /* If STATIC_TYPE is a tagged type and we know the object's address, |
7673 | then we can determine its tag, and compute the object's actual | |
0963b4bd | 7674 | type from there. Note that we have to use the fixed record |
1ed6ede0 JB |
7675 | type (the parent part of the record may have dynamic fields |
7676 | and the way the location of _tag is expressed may depend on | |
7677 | them). */ | |
529cad9c | 7678 | |
1ed6ede0 | 7679 | if (check_tag && address != 0 && ada_is_tagged_type (static_type, 0)) |
76a01679 JB |
7680 | { |
7681 | struct type *real_type = | |
1ed6ede0 JB |
7682 | type_from_tag (value_tag_from_contents_and_address |
7683 | (fixed_record_type, | |
7684 | valaddr, | |
7685 | address)); | |
5b4ee69b | 7686 | |
76a01679 | 7687 | if (real_type != NULL) |
1ed6ede0 | 7688 | return to_fixed_record_type (real_type, valaddr, address, NULL); |
76a01679 | 7689 | } |
4af88198 JB |
7690 | |
7691 | /* Check to see if there is a parallel ___XVZ variable. | |
7692 | If there is, then it provides the actual size of our type. */ | |
7693 | else if (ada_type_name (fixed_record_type) != NULL) | |
7694 | { | |
7695 | char *name = ada_type_name (fixed_record_type); | |
7696 | char *xvz_name = alloca (strlen (name) + 7 /* "___XVZ\0" */); | |
7697 | int xvz_found = 0; | |
7698 | LONGEST size; | |
7699 | ||
88c15c34 | 7700 | xsnprintf (xvz_name, strlen (name) + 7, "%s___XVZ", name); |
4af88198 JB |
7701 | size = get_int_var_value (xvz_name, &xvz_found); |
7702 | if (xvz_found && TYPE_LENGTH (fixed_record_type) != size) | |
7703 | { | |
7704 | fixed_record_type = copy_type (fixed_record_type); | |
7705 | TYPE_LENGTH (fixed_record_type) = size; | |
7706 | ||
7707 | /* The FIXED_RECORD_TYPE may have be a stub. We have | |
7708 | observed this when the debugging info is STABS, and | |
7709 | apparently it is something that is hard to fix. | |
7710 | ||
7711 | In practice, we don't need the actual type definition | |
7712 | at all, because the presence of the XVZ variable allows us | |
7713 | to assume that there must be a XVS type as well, which we | |
7714 | should be able to use later, when we need the actual type | |
7715 | definition. | |
7716 | ||
7717 | In the meantime, pretend that the "fixed" type we are | |
7718 | returning is NOT a stub, because this can cause trouble | |
7719 | when using this type to create new types targeting it. | |
7720 | Indeed, the associated creation routines often check | |
7721 | whether the target type is a stub and will try to replace | |
0963b4bd | 7722 | it, thus using a type with the wrong size. This, in turn, |
4af88198 JB |
7723 | might cause the new type to have the wrong size too. |
7724 | Consider the case of an array, for instance, where the size | |
7725 | of the array is computed from the number of elements in | |
7726 | our array multiplied by the size of its element. */ | |
7727 | TYPE_STUB (fixed_record_type) = 0; | |
7728 | } | |
7729 | } | |
1ed6ede0 | 7730 | return fixed_record_type; |
4c4b4cd2 | 7731 | } |
d2e4a39e | 7732 | case TYPE_CODE_ARRAY: |
4c4b4cd2 | 7733 | return to_fixed_array_type (type, dval, 1); |
d2e4a39e AS |
7734 | case TYPE_CODE_UNION: |
7735 | if (dval == NULL) | |
4c4b4cd2 | 7736 | return type; |
d2e4a39e | 7737 | else |
4c4b4cd2 | 7738 | return to_fixed_variant_branch_type (type, valaddr, address, dval); |
d2e4a39e | 7739 | } |
14f9c5c9 AS |
7740 | } |
7741 | ||
f192137b JB |
7742 | /* The same as ada_to_fixed_type_1, except that it preserves the type |
7743 | if it is a TYPE_CODE_TYPEDEF of a type that is already fixed. | |
96dbd2c1 JB |
7744 | |
7745 | The typedef layer needs be preserved in order to differentiate between | |
7746 | arrays and array pointers when both types are implemented using the same | |
7747 | fat pointer. In the array pointer case, the pointer is encoded as | |
7748 | a typedef of the pointer type. For instance, considering: | |
7749 | ||
7750 | type String_Access is access String; | |
7751 | S1 : String_Access := null; | |
7752 | ||
7753 | To the debugger, S1 is defined as a typedef of type String. But | |
7754 | to the user, it is a pointer. So if the user tries to print S1, | |
7755 | we should not dereference the array, but print the array address | |
7756 | instead. | |
7757 | ||
7758 | If we didn't preserve the typedef layer, we would lose the fact that | |
7759 | the type is to be presented as a pointer (needs de-reference before | |
7760 | being printed). And we would also use the source-level type name. */ | |
f192137b JB |
7761 | |
7762 | struct type * | |
7763 | ada_to_fixed_type (struct type *type, const gdb_byte *valaddr, | |
7764 | CORE_ADDR address, struct value *dval, int check_tag) | |
7765 | ||
7766 | { | |
7767 | struct type *fixed_type = | |
7768 | ada_to_fixed_type_1 (type, valaddr, address, dval, check_tag); | |
7769 | ||
96dbd2c1 JB |
7770 | /* If TYPE is a typedef and its target type is the same as the FIXED_TYPE, |
7771 | then preserve the typedef layer. | |
7772 | ||
7773 | Implementation note: We can only check the main-type portion of | |
7774 | the TYPE and FIXED_TYPE, because eliminating the typedef layer | |
7775 | from TYPE now returns a type that has the same instance flags | |
7776 | as TYPE. For instance, if TYPE is a "typedef const", and its | |
7777 | target type is a "struct", then the typedef elimination will return | |
7778 | a "const" version of the target type. See check_typedef for more | |
7779 | details about how the typedef layer elimination is done. | |
7780 | ||
7781 | brobecker/2010-11-19: It seems to me that the only case where it is | |
7782 | useful to preserve the typedef layer is when dealing with fat pointers. | |
7783 | Perhaps, we could add a check for that and preserve the typedef layer | |
7784 | only in that situation. But this seems unecessary so far, probably | |
7785 | because we call check_typedef/ada_check_typedef pretty much everywhere. | |
7786 | */ | |
f192137b | 7787 | if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF |
720d1a40 | 7788 | && (TYPE_MAIN_TYPE (ada_typedef_target_type (type)) |
96dbd2c1 | 7789 | == TYPE_MAIN_TYPE (fixed_type))) |
f192137b JB |
7790 | return type; |
7791 | ||
7792 | return fixed_type; | |
7793 | } | |
7794 | ||
14f9c5c9 | 7795 | /* A standard (static-sized) type corresponding as well as possible to |
4c4b4cd2 | 7796 | TYPE0, but based on no runtime data. */ |
14f9c5c9 | 7797 | |
d2e4a39e AS |
7798 | static struct type * |
7799 | to_static_fixed_type (struct type *type0) | |
14f9c5c9 | 7800 | { |
d2e4a39e | 7801 | struct type *type; |
14f9c5c9 AS |
7802 | |
7803 | if (type0 == NULL) | |
7804 | return NULL; | |
7805 | ||
876cecd0 | 7806 | if (TYPE_FIXED_INSTANCE (type0)) |
4c4b4cd2 PH |
7807 | return type0; |
7808 | ||
61ee279c | 7809 | type0 = ada_check_typedef (type0); |
d2e4a39e | 7810 | |
14f9c5c9 AS |
7811 | switch (TYPE_CODE (type0)) |
7812 | { | |
7813 | default: | |
7814 | return type0; | |
7815 | case TYPE_CODE_STRUCT: | |
7816 | type = dynamic_template_type (type0); | |
d2e4a39e | 7817 | if (type != NULL) |
4c4b4cd2 PH |
7818 | return template_to_static_fixed_type (type); |
7819 | else | |
7820 | return template_to_static_fixed_type (type0); | |
14f9c5c9 AS |
7821 | case TYPE_CODE_UNION: |
7822 | type = ada_find_parallel_type (type0, "___XVU"); | |
7823 | if (type != NULL) | |
4c4b4cd2 PH |
7824 | return template_to_static_fixed_type (type); |
7825 | else | |
7826 | return template_to_static_fixed_type (type0); | |
14f9c5c9 AS |
7827 | } |
7828 | } | |
7829 | ||
4c4b4cd2 PH |
7830 | /* A static approximation of TYPE with all type wrappers removed. */ |
7831 | ||
d2e4a39e AS |
7832 | static struct type * |
7833 | static_unwrap_type (struct type *type) | |
14f9c5c9 AS |
7834 | { |
7835 | if (ada_is_aligner_type (type)) | |
7836 | { | |
61ee279c | 7837 | struct type *type1 = TYPE_FIELD_TYPE (ada_check_typedef (type), 0); |
14f9c5c9 | 7838 | if (ada_type_name (type1) == NULL) |
4c4b4cd2 | 7839 | TYPE_NAME (type1) = ada_type_name (type); |
14f9c5c9 AS |
7840 | |
7841 | return static_unwrap_type (type1); | |
7842 | } | |
d2e4a39e | 7843 | else |
14f9c5c9 | 7844 | { |
d2e4a39e | 7845 | struct type *raw_real_type = ada_get_base_type (type); |
5b4ee69b | 7846 | |
d2e4a39e | 7847 | if (raw_real_type == type) |
4c4b4cd2 | 7848 | return type; |
14f9c5c9 | 7849 | else |
4c4b4cd2 | 7850 | return to_static_fixed_type (raw_real_type); |
14f9c5c9 AS |
7851 | } |
7852 | } | |
7853 | ||
7854 | /* In some cases, incomplete and private types require | |
4c4b4cd2 | 7855 | cross-references that are not resolved as records (for example, |
14f9c5c9 AS |
7856 | type Foo; |
7857 | type FooP is access Foo; | |
7858 | V: FooP; | |
7859 | type Foo is array ...; | |
4c4b4cd2 | 7860 | ). In these cases, since there is no mechanism for producing |
14f9c5c9 AS |
7861 | cross-references to such types, we instead substitute for FooP a |
7862 | stub enumeration type that is nowhere resolved, and whose tag is | |
4c4b4cd2 | 7863 | the name of the actual type. Call these types "non-record stubs". */ |
14f9c5c9 AS |
7864 | |
7865 | /* A type equivalent to TYPE that is not a non-record stub, if one | |
4c4b4cd2 PH |
7866 | exists, otherwise TYPE. */ |
7867 | ||
d2e4a39e | 7868 | struct type * |
61ee279c | 7869 | ada_check_typedef (struct type *type) |
14f9c5c9 | 7870 | { |
727e3d2e JB |
7871 | if (type == NULL) |
7872 | return NULL; | |
7873 | ||
720d1a40 JB |
7874 | /* If our type is a typedef type of a fat pointer, then we're done. |
7875 | We don't want to strip the TYPE_CODE_TYPDEF layer, because this is | |
7876 | what allows us to distinguish between fat pointers that represent | |
7877 | array types, and fat pointers that represent array access types | |
7878 | (in both cases, the compiler implements them as fat pointers). */ | |
7879 | if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF | |
7880 | && is_thick_pntr (ada_typedef_target_type (type))) | |
7881 | return type; | |
7882 | ||
14f9c5c9 AS |
7883 | CHECK_TYPEDEF (type); |
7884 | if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM | |
529cad9c | 7885 | || !TYPE_STUB (type) |
14f9c5c9 AS |
7886 | || TYPE_TAG_NAME (type) == NULL) |
7887 | return type; | |
d2e4a39e | 7888 | else |
14f9c5c9 | 7889 | { |
d2e4a39e AS |
7890 | char *name = TYPE_TAG_NAME (type); |
7891 | struct type *type1 = ada_find_any_type (name); | |
5b4ee69b | 7892 | |
05e522ef JB |
7893 | if (type1 == NULL) |
7894 | return type; | |
7895 | ||
7896 | /* TYPE1 might itself be a TYPE_CODE_TYPEDEF (this can happen with | |
7897 | stubs pointing to arrays, as we don't create symbols for array | |
3a867c22 JB |
7898 | types, only for the typedef-to-array types). If that's the case, |
7899 | strip the typedef layer. */ | |
7900 | if (TYPE_CODE (type1) == TYPE_CODE_TYPEDEF) | |
7901 | type1 = ada_check_typedef (type1); | |
7902 | ||
7903 | return type1; | |
14f9c5c9 AS |
7904 | } |
7905 | } | |
7906 | ||
7907 | /* A value representing the data at VALADDR/ADDRESS as described by | |
7908 | type TYPE0, but with a standard (static-sized) type that correctly | |
7909 | describes it. If VAL0 is not NULL and TYPE0 already is a standard | |
7910 | type, then return VAL0 [this feature is simply to avoid redundant | |
4c4b4cd2 | 7911 | creation of struct values]. */ |
14f9c5c9 | 7912 | |
4c4b4cd2 PH |
7913 | static struct value * |
7914 | ada_to_fixed_value_create (struct type *type0, CORE_ADDR address, | |
7915 | struct value *val0) | |
14f9c5c9 | 7916 | { |
1ed6ede0 | 7917 | struct type *type = ada_to_fixed_type (type0, 0, address, NULL, 1); |
5b4ee69b | 7918 | |
14f9c5c9 AS |
7919 | if (type == type0 && val0 != NULL) |
7920 | return val0; | |
d2e4a39e | 7921 | else |
4c4b4cd2 PH |
7922 | return value_from_contents_and_address (type, 0, address); |
7923 | } | |
7924 | ||
7925 | /* A value representing VAL, but with a standard (static-sized) type | |
7926 | that correctly describes it. Does not necessarily create a new | |
7927 | value. */ | |
7928 | ||
0c3acc09 | 7929 | struct value * |
4c4b4cd2 PH |
7930 | ada_to_fixed_value (struct value *val) |
7931 | { | |
df407dfe | 7932 | return ada_to_fixed_value_create (value_type (val), |
42ae5230 | 7933 | value_address (val), |
4c4b4cd2 | 7934 | val); |
14f9c5c9 | 7935 | } |
d2e4a39e | 7936 | \f |
14f9c5c9 | 7937 | |
14f9c5c9 AS |
7938 | /* Attributes */ |
7939 | ||
4c4b4cd2 PH |
7940 | /* Table mapping attribute numbers to names. |
7941 | NOTE: Keep up to date with enum ada_attribute definition in ada-lang.h. */ | |
14f9c5c9 | 7942 | |
d2e4a39e | 7943 | static const char *attribute_names[] = { |
14f9c5c9 AS |
7944 | "<?>", |
7945 | ||
d2e4a39e | 7946 | "first", |
14f9c5c9 AS |
7947 | "last", |
7948 | "length", | |
7949 | "image", | |
14f9c5c9 AS |
7950 | "max", |
7951 | "min", | |
4c4b4cd2 PH |
7952 | "modulus", |
7953 | "pos", | |
7954 | "size", | |
7955 | "tag", | |
14f9c5c9 | 7956 | "val", |
14f9c5c9 AS |
7957 | 0 |
7958 | }; | |
7959 | ||
d2e4a39e | 7960 | const char * |
4c4b4cd2 | 7961 | ada_attribute_name (enum exp_opcode n) |
14f9c5c9 | 7962 | { |
4c4b4cd2 PH |
7963 | if (n >= OP_ATR_FIRST && n <= (int) OP_ATR_VAL) |
7964 | return attribute_names[n - OP_ATR_FIRST + 1]; | |
14f9c5c9 AS |
7965 | else |
7966 | return attribute_names[0]; | |
7967 | } | |
7968 | ||
4c4b4cd2 | 7969 | /* Evaluate the 'POS attribute applied to ARG. */ |
14f9c5c9 | 7970 | |
4c4b4cd2 PH |
7971 | static LONGEST |
7972 | pos_atr (struct value *arg) | |
14f9c5c9 | 7973 | { |
24209737 PH |
7974 | struct value *val = coerce_ref (arg); |
7975 | struct type *type = value_type (val); | |
14f9c5c9 | 7976 | |
d2e4a39e | 7977 | if (!discrete_type_p (type)) |
323e0a4a | 7978 | error (_("'POS only defined on discrete types")); |
14f9c5c9 AS |
7979 | |
7980 | if (TYPE_CODE (type) == TYPE_CODE_ENUM) | |
7981 | { | |
7982 | int i; | |
24209737 | 7983 | LONGEST v = value_as_long (val); |
14f9c5c9 | 7984 | |
d2e4a39e | 7985 | for (i = 0; i < TYPE_NFIELDS (type); i += 1) |
4c4b4cd2 PH |
7986 | { |
7987 | if (v == TYPE_FIELD_BITPOS (type, i)) | |
7988 | return i; | |
7989 | } | |
323e0a4a | 7990 | error (_("enumeration value is invalid: can't find 'POS")); |
14f9c5c9 AS |
7991 | } |
7992 | else | |
24209737 | 7993 | return value_as_long (val); |
4c4b4cd2 PH |
7994 | } |
7995 | ||
7996 | static struct value * | |
3cb382c9 | 7997 | value_pos_atr (struct type *type, struct value *arg) |
4c4b4cd2 | 7998 | { |
3cb382c9 | 7999 | return value_from_longest (type, pos_atr (arg)); |
14f9c5c9 AS |
8000 | } |
8001 | ||
4c4b4cd2 | 8002 | /* Evaluate the TYPE'VAL attribute applied to ARG. */ |
14f9c5c9 | 8003 | |
d2e4a39e AS |
8004 | static struct value * |
8005 | value_val_atr (struct type *type, struct value *arg) | |
14f9c5c9 | 8006 | { |
d2e4a39e | 8007 | if (!discrete_type_p (type)) |
323e0a4a | 8008 | error (_("'VAL only defined on discrete types")); |
df407dfe | 8009 | if (!integer_type_p (value_type (arg))) |
323e0a4a | 8010 | error (_("'VAL requires integral argument")); |
14f9c5c9 AS |
8011 | |
8012 | if (TYPE_CODE (type) == TYPE_CODE_ENUM) | |
8013 | { | |
8014 | long pos = value_as_long (arg); | |
5b4ee69b | 8015 | |
14f9c5c9 | 8016 | if (pos < 0 || pos >= TYPE_NFIELDS (type)) |
323e0a4a | 8017 | error (_("argument to 'VAL out of range")); |
d2e4a39e | 8018 | return value_from_longest (type, TYPE_FIELD_BITPOS (type, pos)); |
14f9c5c9 AS |
8019 | } |
8020 | else | |
8021 | return value_from_longest (type, value_as_long (arg)); | |
8022 | } | |
14f9c5c9 | 8023 | \f |
d2e4a39e | 8024 | |
4c4b4cd2 | 8025 | /* Evaluation */ |
14f9c5c9 | 8026 | |
4c4b4cd2 PH |
8027 | /* True if TYPE appears to be an Ada character type. |
8028 | [At the moment, this is true only for Character and Wide_Character; | |
8029 | It is a heuristic test that could stand improvement]. */ | |
14f9c5c9 | 8030 | |
d2e4a39e AS |
8031 | int |
8032 | ada_is_character_type (struct type *type) | |
14f9c5c9 | 8033 | { |
7b9f71f2 JB |
8034 | const char *name; |
8035 | ||
8036 | /* If the type code says it's a character, then assume it really is, | |
8037 | and don't check any further. */ | |
8038 | if (TYPE_CODE (type) == TYPE_CODE_CHAR) | |
8039 | return 1; | |
8040 | ||
8041 | /* Otherwise, assume it's a character type iff it is a discrete type | |
8042 | with a known character type name. */ | |
8043 | name = ada_type_name (type); | |
8044 | return (name != NULL | |
8045 | && (TYPE_CODE (type) == TYPE_CODE_INT | |
8046 | || TYPE_CODE (type) == TYPE_CODE_RANGE) | |
8047 | && (strcmp (name, "character") == 0 | |
8048 | || strcmp (name, "wide_character") == 0 | |
5a517ebd | 8049 | || strcmp (name, "wide_wide_character") == 0 |
7b9f71f2 | 8050 | || strcmp (name, "unsigned char") == 0)); |
14f9c5c9 AS |
8051 | } |
8052 | ||
4c4b4cd2 | 8053 | /* True if TYPE appears to be an Ada string type. */ |
14f9c5c9 AS |
8054 | |
8055 | int | |
ebf56fd3 | 8056 | ada_is_string_type (struct type *type) |
14f9c5c9 | 8057 | { |
61ee279c | 8058 | type = ada_check_typedef (type); |
d2e4a39e | 8059 | if (type != NULL |
14f9c5c9 | 8060 | && TYPE_CODE (type) != TYPE_CODE_PTR |
76a01679 JB |
8061 | && (ada_is_simple_array_type (type) |
8062 | || ada_is_array_descriptor_type (type)) | |
14f9c5c9 AS |
8063 | && ada_array_arity (type) == 1) |
8064 | { | |
8065 | struct type *elttype = ada_array_element_type (type, 1); | |
8066 | ||
8067 | return ada_is_character_type (elttype); | |
8068 | } | |
d2e4a39e | 8069 | else |
14f9c5c9 AS |
8070 | return 0; |
8071 | } | |
8072 | ||
5bf03f13 JB |
8073 | /* The compiler sometimes provides a parallel XVS type for a given |
8074 | PAD type. Normally, it is safe to follow the PAD type directly, | |
8075 | but older versions of the compiler have a bug that causes the offset | |
8076 | of its "F" field to be wrong. Following that field in that case | |
8077 | would lead to incorrect results, but this can be worked around | |
8078 | by ignoring the PAD type and using the associated XVS type instead. | |
8079 | ||
8080 | Set to True if the debugger should trust the contents of PAD types. | |
8081 | Otherwise, ignore the PAD type if there is a parallel XVS type. */ | |
8082 | static int trust_pad_over_xvs = 1; | |
14f9c5c9 AS |
8083 | |
8084 | /* True if TYPE is a struct type introduced by the compiler to force the | |
8085 | alignment of a value. Such types have a single field with a | |
4c4b4cd2 | 8086 | distinctive name. */ |
14f9c5c9 AS |
8087 | |
8088 | int | |
ebf56fd3 | 8089 | ada_is_aligner_type (struct type *type) |
14f9c5c9 | 8090 | { |
61ee279c | 8091 | type = ada_check_typedef (type); |
714e53ab | 8092 | |
5bf03f13 | 8093 | if (!trust_pad_over_xvs && ada_find_parallel_type (type, "___XVS") != NULL) |
714e53ab PH |
8094 | return 0; |
8095 | ||
14f9c5c9 | 8096 | return (TYPE_CODE (type) == TYPE_CODE_STRUCT |
4c4b4cd2 PH |
8097 | && TYPE_NFIELDS (type) == 1 |
8098 | && strcmp (TYPE_FIELD_NAME (type, 0), "F") == 0); | |
14f9c5c9 AS |
8099 | } |
8100 | ||
8101 | /* If there is an ___XVS-convention type parallel to SUBTYPE, return | |
4c4b4cd2 | 8102 | the parallel type. */ |
14f9c5c9 | 8103 | |
d2e4a39e AS |
8104 | struct type * |
8105 | ada_get_base_type (struct type *raw_type) | |
14f9c5c9 | 8106 | { |
d2e4a39e AS |
8107 | struct type *real_type_namer; |
8108 | struct type *raw_real_type; | |
14f9c5c9 AS |
8109 | |
8110 | if (raw_type == NULL || TYPE_CODE (raw_type) != TYPE_CODE_STRUCT) | |
8111 | return raw_type; | |
8112 | ||
284614f0 JB |
8113 | if (ada_is_aligner_type (raw_type)) |
8114 | /* The encoding specifies that we should always use the aligner type. | |
8115 | So, even if this aligner type has an associated XVS type, we should | |
8116 | simply ignore it. | |
8117 | ||
8118 | According to the compiler gurus, an XVS type parallel to an aligner | |
8119 | type may exist because of a stabs limitation. In stabs, aligner | |
8120 | types are empty because the field has a variable-sized type, and | |
8121 | thus cannot actually be used as an aligner type. As a result, | |
8122 | we need the associated parallel XVS type to decode the type. | |
8123 | Since the policy in the compiler is to not change the internal | |
8124 | representation based on the debugging info format, we sometimes | |
8125 | end up having a redundant XVS type parallel to the aligner type. */ | |
8126 | return raw_type; | |
8127 | ||
14f9c5c9 | 8128 | real_type_namer = ada_find_parallel_type (raw_type, "___XVS"); |
d2e4a39e | 8129 | if (real_type_namer == NULL |
14f9c5c9 AS |
8130 | || TYPE_CODE (real_type_namer) != TYPE_CODE_STRUCT |
8131 | || TYPE_NFIELDS (real_type_namer) != 1) | |
8132 | return raw_type; | |
8133 | ||
f80d3ff2 JB |
8134 | if (TYPE_CODE (TYPE_FIELD_TYPE (real_type_namer, 0)) != TYPE_CODE_REF) |
8135 | { | |
8136 | /* This is an older encoding form where the base type needs to be | |
8137 | looked up by name. We prefer the newer enconding because it is | |
8138 | more efficient. */ | |
8139 | raw_real_type = ada_find_any_type (TYPE_FIELD_NAME (real_type_namer, 0)); | |
8140 | if (raw_real_type == NULL) | |
8141 | return raw_type; | |
8142 | else | |
8143 | return raw_real_type; | |
8144 | } | |
8145 | ||
8146 | /* The field in our XVS type is a reference to the base type. */ | |
8147 | return TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (real_type_namer, 0)); | |
d2e4a39e | 8148 | } |
14f9c5c9 | 8149 | |
4c4b4cd2 | 8150 | /* The type of value designated by TYPE, with all aligners removed. */ |
14f9c5c9 | 8151 | |
d2e4a39e AS |
8152 | struct type * |
8153 | ada_aligned_type (struct type *type) | |
14f9c5c9 AS |
8154 | { |
8155 | if (ada_is_aligner_type (type)) | |
8156 | return ada_aligned_type (TYPE_FIELD_TYPE (type, 0)); | |
8157 | else | |
8158 | return ada_get_base_type (type); | |
8159 | } | |
8160 | ||
8161 | ||
8162 | /* The address of the aligned value in an object at address VALADDR | |
4c4b4cd2 | 8163 | having type TYPE. Assumes ada_is_aligner_type (TYPE). */ |
14f9c5c9 | 8164 | |
fc1a4b47 AC |
8165 | const gdb_byte * |
8166 | ada_aligned_value_addr (struct type *type, const gdb_byte *valaddr) | |
14f9c5c9 | 8167 | { |
d2e4a39e | 8168 | if (ada_is_aligner_type (type)) |
14f9c5c9 | 8169 | return ada_aligned_value_addr (TYPE_FIELD_TYPE (type, 0), |
4c4b4cd2 PH |
8170 | valaddr + |
8171 | TYPE_FIELD_BITPOS (type, | |
8172 | 0) / TARGET_CHAR_BIT); | |
14f9c5c9 AS |
8173 | else |
8174 | return valaddr; | |
8175 | } | |
8176 | ||
4c4b4cd2 PH |
8177 | |
8178 | ||
14f9c5c9 | 8179 | /* The printed representation of an enumeration literal with encoded |
4c4b4cd2 | 8180 | name NAME. The value is good to the next call of ada_enum_name. */ |
d2e4a39e AS |
8181 | const char * |
8182 | ada_enum_name (const char *name) | |
14f9c5c9 | 8183 | { |
4c4b4cd2 PH |
8184 | static char *result; |
8185 | static size_t result_len = 0; | |
d2e4a39e | 8186 | char *tmp; |
14f9c5c9 | 8187 | |
4c4b4cd2 PH |
8188 | /* First, unqualify the enumeration name: |
8189 | 1. Search for the last '.' character. If we find one, then skip | |
76a01679 JB |
8190 | all the preceeding characters, the unqualified name starts |
8191 | right after that dot. | |
4c4b4cd2 | 8192 | 2. Otherwise, we may be debugging on a target where the compiler |
76a01679 JB |
8193 | translates dots into "__". Search forward for double underscores, |
8194 | but stop searching when we hit an overloading suffix, which is | |
8195 | of the form "__" followed by digits. */ | |
4c4b4cd2 | 8196 | |
c3e5cd34 PH |
8197 | tmp = strrchr (name, '.'); |
8198 | if (tmp != NULL) | |
4c4b4cd2 PH |
8199 | name = tmp + 1; |
8200 | else | |
14f9c5c9 | 8201 | { |
4c4b4cd2 PH |
8202 | while ((tmp = strstr (name, "__")) != NULL) |
8203 | { | |
8204 | if (isdigit (tmp[2])) | |
8205 | break; | |
8206 | else | |
8207 | name = tmp + 2; | |
8208 | } | |
14f9c5c9 AS |
8209 | } |
8210 | ||
8211 | if (name[0] == 'Q') | |
8212 | { | |
14f9c5c9 | 8213 | int v; |
5b4ee69b | 8214 | |
14f9c5c9 | 8215 | if (name[1] == 'U' || name[1] == 'W') |
4c4b4cd2 PH |
8216 | { |
8217 | if (sscanf (name + 2, "%x", &v) != 1) | |
8218 | return name; | |
8219 | } | |
14f9c5c9 | 8220 | else |
4c4b4cd2 | 8221 | return name; |
14f9c5c9 | 8222 | |
4c4b4cd2 | 8223 | GROW_VECT (result, result_len, 16); |
14f9c5c9 | 8224 | if (isascii (v) && isprint (v)) |
88c15c34 | 8225 | xsnprintf (result, result_len, "'%c'", v); |
14f9c5c9 | 8226 | else if (name[1] == 'U') |
88c15c34 | 8227 | xsnprintf (result, result_len, "[\"%02x\"]", v); |
14f9c5c9 | 8228 | else |
88c15c34 | 8229 | xsnprintf (result, result_len, "[\"%04x\"]", v); |
14f9c5c9 AS |
8230 | |
8231 | return result; | |
8232 | } | |
d2e4a39e | 8233 | else |
4c4b4cd2 | 8234 | { |
c3e5cd34 PH |
8235 | tmp = strstr (name, "__"); |
8236 | if (tmp == NULL) | |
8237 | tmp = strstr (name, "$"); | |
8238 | if (tmp != NULL) | |
4c4b4cd2 PH |
8239 | { |
8240 | GROW_VECT (result, result_len, tmp - name + 1); | |
8241 | strncpy (result, name, tmp - name); | |
8242 | result[tmp - name] = '\0'; | |
8243 | return result; | |
8244 | } | |
8245 | ||
8246 | return name; | |
8247 | } | |
14f9c5c9 AS |
8248 | } |
8249 | ||
14f9c5c9 AS |
8250 | /* Evaluate the subexpression of EXP starting at *POS as for |
8251 | evaluate_type, updating *POS to point just past the evaluated | |
4c4b4cd2 | 8252 | expression. */ |
14f9c5c9 | 8253 | |
d2e4a39e AS |
8254 | static struct value * |
8255 | evaluate_subexp_type (struct expression *exp, int *pos) | |
14f9c5c9 | 8256 | { |
4b27a620 | 8257 | return evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS); |
14f9c5c9 AS |
8258 | } |
8259 | ||
8260 | /* If VAL is wrapped in an aligner or subtype wrapper, return the | |
4c4b4cd2 | 8261 | value it wraps. */ |
14f9c5c9 | 8262 | |
d2e4a39e AS |
8263 | static struct value * |
8264 | unwrap_value (struct value *val) | |
14f9c5c9 | 8265 | { |
df407dfe | 8266 | struct type *type = ada_check_typedef (value_type (val)); |
5b4ee69b | 8267 | |
14f9c5c9 AS |
8268 | if (ada_is_aligner_type (type)) |
8269 | { | |
de4d072f | 8270 | struct value *v = ada_value_struct_elt (val, "F", 0); |
df407dfe | 8271 | struct type *val_type = ada_check_typedef (value_type (v)); |
5b4ee69b | 8272 | |
14f9c5c9 | 8273 | if (ada_type_name (val_type) == NULL) |
4c4b4cd2 | 8274 | TYPE_NAME (val_type) = ada_type_name (type); |
14f9c5c9 AS |
8275 | |
8276 | return unwrap_value (v); | |
8277 | } | |
d2e4a39e | 8278 | else |
14f9c5c9 | 8279 | { |
d2e4a39e | 8280 | struct type *raw_real_type = |
61ee279c | 8281 | ada_check_typedef (ada_get_base_type (type)); |
d2e4a39e | 8282 | |
5bf03f13 JB |
8283 | /* If there is no parallel XVS or XVE type, then the value is |
8284 | already unwrapped. Return it without further modification. */ | |
8285 | if ((type == raw_real_type) | |
8286 | && ada_find_parallel_type (type, "___XVE") == NULL) | |
8287 | return val; | |
14f9c5c9 | 8288 | |
d2e4a39e | 8289 | return |
4c4b4cd2 PH |
8290 | coerce_unspec_val_to_type |
8291 | (val, ada_to_fixed_type (raw_real_type, 0, | |
42ae5230 | 8292 | value_address (val), |
1ed6ede0 | 8293 | NULL, 1)); |
14f9c5c9 AS |
8294 | } |
8295 | } | |
d2e4a39e AS |
8296 | |
8297 | static struct value * | |
8298 | cast_to_fixed (struct type *type, struct value *arg) | |
14f9c5c9 AS |
8299 | { |
8300 | LONGEST val; | |
8301 | ||
df407dfe | 8302 | if (type == value_type (arg)) |
14f9c5c9 | 8303 | return arg; |
df407dfe | 8304 | else if (ada_is_fixed_point_type (value_type (arg))) |
d2e4a39e | 8305 | val = ada_float_to_fixed (type, |
df407dfe | 8306 | ada_fixed_to_float (value_type (arg), |
4c4b4cd2 | 8307 | value_as_long (arg))); |
d2e4a39e | 8308 | else |
14f9c5c9 | 8309 | { |
a53b7a21 | 8310 | DOUBLEST argd = value_as_double (arg); |
5b4ee69b | 8311 | |
14f9c5c9 AS |
8312 | val = ada_float_to_fixed (type, argd); |
8313 | } | |
8314 | ||
8315 | return value_from_longest (type, val); | |
8316 | } | |
8317 | ||
d2e4a39e | 8318 | static struct value * |
a53b7a21 | 8319 | cast_from_fixed (struct type *type, struct value *arg) |
14f9c5c9 | 8320 | { |
df407dfe | 8321 | DOUBLEST val = ada_fixed_to_float (value_type (arg), |
4c4b4cd2 | 8322 | value_as_long (arg)); |
5b4ee69b | 8323 | |
a53b7a21 | 8324 | return value_from_double (type, val); |
14f9c5c9 AS |
8325 | } |
8326 | ||
4c4b4cd2 PH |
8327 | /* Coerce VAL as necessary for assignment to an lval of type TYPE, and |
8328 | return the converted value. */ | |
8329 | ||
d2e4a39e AS |
8330 | static struct value * |
8331 | coerce_for_assign (struct type *type, struct value *val) | |
14f9c5c9 | 8332 | { |
df407dfe | 8333 | struct type *type2 = value_type (val); |
5b4ee69b | 8334 | |
14f9c5c9 AS |
8335 | if (type == type2) |
8336 | return val; | |
8337 | ||
61ee279c PH |
8338 | type2 = ada_check_typedef (type2); |
8339 | type = ada_check_typedef (type); | |
14f9c5c9 | 8340 | |
d2e4a39e AS |
8341 | if (TYPE_CODE (type2) == TYPE_CODE_PTR |
8342 | && TYPE_CODE (type) == TYPE_CODE_ARRAY) | |
14f9c5c9 AS |
8343 | { |
8344 | val = ada_value_ind (val); | |
df407dfe | 8345 | type2 = value_type (val); |
14f9c5c9 AS |
8346 | } |
8347 | ||
d2e4a39e | 8348 | if (TYPE_CODE (type2) == TYPE_CODE_ARRAY |
14f9c5c9 AS |
8349 | && TYPE_CODE (type) == TYPE_CODE_ARRAY) |
8350 | { | |
8351 | if (TYPE_LENGTH (type2) != TYPE_LENGTH (type) | |
4c4b4cd2 PH |
8352 | || TYPE_LENGTH (TYPE_TARGET_TYPE (type2)) |
8353 | != TYPE_LENGTH (TYPE_TARGET_TYPE (type2))) | |
323e0a4a | 8354 | error (_("Incompatible types in assignment")); |
04624583 | 8355 | deprecated_set_value_type (val, type); |
14f9c5c9 | 8356 | } |
d2e4a39e | 8357 | return val; |
14f9c5c9 AS |
8358 | } |
8359 | ||
4c4b4cd2 PH |
8360 | static struct value * |
8361 | ada_value_binop (struct value *arg1, struct value *arg2, enum exp_opcode op) | |
8362 | { | |
8363 | struct value *val; | |
8364 | struct type *type1, *type2; | |
8365 | LONGEST v, v1, v2; | |
8366 | ||
994b9211 AC |
8367 | arg1 = coerce_ref (arg1); |
8368 | arg2 = coerce_ref (arg2); | |
df407dfe AC |
8369 | type1 = base_type (ada_check_typedef (value_type (arg1))); |
8370 | type2 = base_type (ada_check_typedef (value_type (arg2))); | |
4c4b4cd2 | 8371 | |
76a01679 JB |
8372 | if (TYPE_CODE (type1) != TYPE_CODE_INT |
8373 | || TYPE_CODE (type2) != TYPE_CODE_INT) | |
4c4b4cd2 PH |
8374 | return value_binop (arg1, arg2, op); |
8375 | ||
76a01679 | 8376 | switch (op) |
4c4b4cd2 PH |
8377 | { |
8378 | case BINOP_MOD: | |
8379 | case BINOP_DIV: | |
8380 | case BINOP_REM: | |
8381 | break; | |
8382 | default: | |
8383 | return value_binop (arg1, arg2, op); | |
8384 | } | |
8385 | ||
8386 | v2 = value_as_long (arg2); | |
8387 | if (v2 == 0) | |
323e0a4a | 8388 | error (_("second operand of %s must not be zero."), op_string (op)); |
4c4b4cd2 PH |
8389 | |
8390 | if (TYPE_UNSIGNED (type1) || op == BINOP_MOD) | |
8391 | return value_binop (arg1, arg2, op); | |
8392 | ||
8393 | v1 = value_as_long (arg1); | |
8394 | switch (op) | |
8395 | { | |
8396 | case BINOP_DIV: | |
8397 | v = v1 / v2; | |
76a01679 JB |
8398 | if (!TRUNCATION_TOWARDS_ZERO && v1 * (v1 % v2) < 0) |
8399 | v += v > 0 ? -1 : 1; | |
4c4b4cd2 PH |
8400 | break; |
8401 | case BINOP_REM: | |
8402 | v = v1 % v2; | |
76a01679 JB |
8403 | if (v * v1 < 0) |
8404 | v -= v2; | |
4c4b4cd2 PH |
8405 | break; |
8406 | default: | |
8407 | /* Should not reach this point. */ | |
8408 | v = 0; | |
8409 | } | |
8410 | ||
8411 | val = allocate_value (type1); | |
990a07ab | 8412 | store_unsigned_integer (value_contents_raw (val), |
e17a4113 UW |
8413 | TYPE_LENGTH (value_type (val)), |
8414 | gdbarch_byte_order (get_type_arch (type1)), v); | |
4c4b4cd2 PH |
8415 | return val; |
8416 | } | |
8417 | ||
8418 | static int | |
8419 | ada_value_equal (struct value *arg1, struct value *arg2) | |
8420 | { | |
df407dfe AC |
8421 | if (ada_is_direct_array_type (value_type (arg1)) |
8422 | || ada_is_direct_array_type (value_type (arg2))) | |
4c4b4cd2 | 8423 | { |
f58b38bf JB |
8424 | /* Automatically dereference any array reference before |
8425 | we attempt to perform the comparison. */ | |
8426 | arg1 = ada_coerce_ref (arg1); | |
8427 | arg2 = ada_coerce_ref (arg2); | |
8428 | ||
4c4b4cd2 PH |
8429 | arg1 = ada_coerce_to_simple_array (arg1); |
8430 | arg2 = ada_coerce_to_simple_array (arg2); | |
df407dfe AC |
8431 | if (TYPE_CODE (value_type (arg1)) != TYPE_CODE_ARRAY |
8432 | || TYPE_CODE (value_type (arg2)) != TYPE_CODE_ARRAY) | |
323e0a4a | 8433 | error (_("Attempt to compare array with non-array")); |
4c4b4cd2 | 8434 | /* FIXME: The following works only for types whose |
76a01679 JB |
8435 | representations use all bits (no padding or undefined bits) |
8436 | and do not have user-defined equality. */ | |
8437 | return | |
df407dfe | 8438 | TYPE_LENGTH (value_type (arg1)) == TYPE_LENGTH (value_type (arg2)) |
0fd88904 | 8439 | && memcmp (value_contents (arg1), value_contents (arg2), |
df407dfe | 8440 | TYPE_LENGTH (value_type (arg1))) == 0; |
4c4b4cd2 PH |
8441 | } |
8442 | return value_equal (arg1, arg2); | |
8443 | } | |
8444 | ||
52ce6436 PH |
8445 | /* Total number of component associations in the aggregate starting at |
8446 | index PC in EXP. Assumes that index PC is the start of an | |
0963b4bd | 8447 | OP_AGGREGATE. */ |
52ce6436 PH |
8448 | |
8449 | static int | |
8450 | num_component_specs (struct expression *exp, int pc) | |
8451 | { | |
8452 | int n, m, i; | |
5b4ee69b | 8453 | |
52ce6436 PH |
8454 | m = exp->elts[pc + 1].longconst; |
8455 | pc += 3; | |
8456 | n = 0; | |
8457 | for (i = 0; i < m; i += 1) | |
8458 | { | |
8459 | switch (exp->elts[pc].opcode) | |
8460 | { | |
8461 | default: | |
8462 | n += 1; | |
8463 | break; | |
8464 | case OP_CHOICES: | |
8465 | n += exp->elts[pc + 1].longconst; | |
8466 | break; | |
8467 | } | |
8468 | ada_evaluate_subexp (NULL, exp, &pc, EVAL_SKIP); | |
8469 | } | |
8470 | return n; | |
8471 | } | |
8472 | ||
8473 | /* Assign the result of evaluating EXP starting at *POS to the INDEXth | |
8474 | component of LHS (a simple array or a record), updating *POS past | |
8475 | the expression, assuming that LHS is contained in CONTAINER. Does | |
8476 | not modify the inferior's memory, nor does it modify LHS (unless | |
8477 | LHS == CONTAINER). */ | |
8478 | ||
8479 | static void | |
8480 | assign_component (struct value *container, struct value *lhs, LONGEST index, | |
8481 | struct expression *exp, int *pos) | |
8482 | { | |
8483 | struct value *mark = value_mark (); | |
8484 | struct value *elt; | |
5b4ee69b | 8485 | |
52ce6436 PH |
8486 | if (TYPE_CODE (value_type (lhs)) == TYPE_CODE_ARRAY) |
8487 | { | |
22601c15 UW |
8488 | struct type *index_type = builtin_type (exp->gdbarch)->builtin_int; |
8489 | struct value *index_val = value_from_longest (index_type, index); | |
5b4ee69b | 8490 | |
52ce6436 PH |
8491 | elt = unwrap_value (ada_value_subscript (lhs, 1, &index_val)); |
8492 | } | |
8493 | else | |
8494 | { | |
8495 | elt = ada_index_struct_field (index, lhs, 0, value_type (lhs)); | |
8496 | elt = ada_to_fixed_value (unwrap_value (elt)); | |
8497 | } | |
8498 | ||
8499 | if (exp->elts[*pos].opcode == OP_AGGREGATE) | |
8500 | assign_aggregate (container, elt, exp, pos, EVAL_NORMAL); | |
8501 | else | |
8502 | value_assign_to_component (container, elt, | |
8503 | ada_evaluate_subexp (NULL, exp, pos, | |
8504 | EVAL_NORMAL)); | |
8505 | ||
8506 | value_free_to_mark (mark); | |
8507 | } | |
8508 | ||
8509 | /* Assuming that LHS represents an lvalue having a record or array | |
8510 | type, and EXP->ELTS[*POS] is an OP_AGGREGATE, evaluate an assignment | |
8511 | of that aggregate's value to LHS, advancing *POS past the | |
8512 | aggregate. NOSIDE is as for evaluate_subexp. CONTAINER is an | |
8513 | lvalue containing LHS (possibly LHS itself). Does not modify | |
8514 | the inferior's memory, nor does it modify the contents of | |
0963b4bd | 8515 | LHS (unless == CONTAINER). Returns the modified CONTAINER. */ |
52ce6436 PH |
8516 | |
8517 | static struct value * | |
8518 | assign_aggregate (struct value *container, | |
8519 | struct value *lhs, struct expression *exp, | |
8520 | int *pos, enum noside noside) | |
8521 | { | |
8522 | struct type *lhs_type; | |
8523 | int n = exp->elts[*pos+1].longconst; | |
8524 | LONGEST low_index, high_index; | |
8525 | int num_specs; | |
8526 | LONGEST *indices; | |
8527 | int max_indices, num_indices; | |
8528 | int is_array_aggregate; | |
8529 | int i; | |
52ce6436 PH |
8530 | |
8531 | *pos += 3; | |
8532 | if (noside != EVAL_NORMAL) | |
8533 | { | |
8534 | int i; | |
5b4ee69b | 8535 | |
52ce6436 PH |
8536 | for (i = 0; i < n; i += 1) |
8537 | ada_evaluate_subexp (NULL, exp, pos, noside); | |
8538 | return container; | |
8539 | } | |
8540 | ||
8541 | container = ada_coerce_ref (container); | |
8542 | if (ada_is_direct_array_type (value_type (container))) | |
8543 | container = ada_coerce_to_simple_array (container); | |
8544 | lhs = ada_coerce_ref (lhs); | |
8545 | if (!deprecated_value_modifiable (lhs)) | |
8546 | error (_("Left operand of assignment is not a modifiable lvalue.")); | |
8547 | ||
8548 | lhs_type = value_type (lhs); | |
8549 | if (ada_is_direct_array_type (lhs_type)) | |
8550 | { | |
8551 | lhs = ada_coerce_to_simple_array (lhs); | |
8552 | lhs_type = value_type (lhs); | |
8553 | low_index = TYPE_ARRAY_LOWER_BOUND_VALUE (lhs_type); | |
8554 | high_index = TYPE_ARRAY_UPPER_BOUND_VALUE (lhs_type); | |
8555 | is_array_aggregate = 1; | |
8556 | } | |
8557 | else if (TYPE_CODE (lhs_type) == TYPE_CODE_STRUCT) | |
8558 | { | |
8559 | low_index = 0; | |
8560 | high_index = num_visible_fields (lhs_type) - 1; | |
8561 | is_array_aggregate = 0; | |
8562 | } | |
8563 | else | |
8564 | error (_("Left-hand side must be array or record.")); | |
8565 | ||
8566 | num_specs = num_component_specs (exp, *pos - 3); | |
8567 | max_indices = 4 * num_specs + 4; | |
8568 | indices = alloca (max_indices * sizeof (indices[0])); | |
8569 | indices[0] = indices[1] = low_index - 1; | |
8570 | indices[2] = indices[3] = high_index + 1; | |
8571 | num_indices = 4; | |
8572 | ||
8573 | for (i = 0; i < n; i += 1) | |
8574 | { | |
8575 | switch (exp->elts[*pos].opcode) | |
8576 | { | |
8577 | case OP_CHOICES: | |
8578 | aggregate_assign_from_choices (container, lhs, exp, pos, indices, | |
8579 | &num_indices, max_indices, | |
8580 | low_index, high_index); | |
8581 | break; | |
8582 | case OP_POSITIONAL: | |
8583 | aggregate_assign_positional (container, lhs, exp, pos, indices, | |
8584 | &num_indices, max_indices, | |
8585 | low_index, high_index); | |
8586 | break; | |
8587 | case OP_OTHERS: | |
8588 | if (i != n-1) | |
8589 | error (_("Misplaced 'others' clause")); | |
8590 | aggregate_assign_others (container, lhs, exp, pos, indices, | |
8591 | num_indices, low_index, high_index); | |
8592 | break; | |
8593 | default: | |
8594 | error (_("Internal error: bad aggregate clause")); | |
8595 | } | |
8596 | } | |
8597 | ||
8598 | return container; | |
8599 | } | |
8600 | ||
8601 | /* Assign into the component of LHS indexed by the OP_POSITIONAL | |
8602 | construct at *POS, updating *POS past the construct, given that | |
8603 | the positions are relative to lower bound LOW, where HIGH is the | |
8604 | upper bound. Record the position in INDICES[0 .. MAX_INDICES-1] | |
8605 | updating *NUM_INDICES as needed. CONTAINER is as for | |
0963b4bd | 8606 | assign_aggregate. */ |
52ce6436 PH |
8607 | static void |
8608 | aggregate_assign_positional (struct value *container, | |
8609 | struct value *lhs, struct expression *exp, | |
8610 | int *pos, LONGEST *indices, int *num_indices, | |
8611 | int max_indices, LONGEST low, LONGEST high) | |
8612 | { | |
8613 | LONGEST ind = longest_to_int (exp->elts[*pos + 1].longconst) + low; | |
8614 | ||
8615 | if (ind - 1 == high) | |
e1d5a0d2 | 8616 | warning (_("Extra components in aggregate ignored.")); |
52ce6436 PH |
8617 | if (ind <= high) |
8618 | { | |
8619 | add_component_interval (ind, ind, indices, num_indices, max_indices); | |
8620 | *pos += 3; | |
8621 | assign_component (container, lhs, ind, exp, pos); | |
8622 | } | |
8623 | else | |
8624 | ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP); | |
8625 | } | |
8626 | ||
8627 | /* Assign into the components of LHS indexed by the OP_CHOICES | |
8628 | construct at *POS, updating *POS past the construct, given that | |
8629 | the allowable indices are LOW..HIGH. Record the indices assigned | |
8630 | to in INDICES[0 .. MAX_INDICES-1], updating *NUM_INDICES as | |
0963b4bd | 8631 | needed. CONTAINER is as for assign_aggregate. */ |
52ce6436 PH |
8632 | static void |
8633 | aggregate_assign_from_choices (struct value *container, | |
8634 | struct value *lhs, struct expression *exp, | |
8635 | int *pos, LONGEST *indices, int *num_indices, | |
8636 | int max_indices, LONGEST low, LONGEST high) | |
8637 | { | |
8638 | int j; | |
8639 | int n_choices = longest_to_int (exp->elts[*pos+1].longconst); | |
8640 | int choice_pos, expr_pc; | |
8641 | int is_array = ada_is_direct_array_type (value_type (lhs)); | |
8642 | ||
8643 | choice_pos = *pos += 3; | |
8644 | ||
8645 | for (j = 0; j < n_choices; j += 1) | |
8646 | ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP); | |
8647 | expr_pc = *pos; | |
8648 | ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP); | |
8649 | ||
8650 | for (j = 0; j < n_choices; j += 1) | |
8651 | { | |
8652 | LONGEST lower, upper; | |
8653 | enum exp_opcode op = exp->elts[choice_pos].opcode; | |
5b4ee69b | 8654 | |
52ce6436 PH |
8655 | if (op == OP_DISCRETE_RANGE) |
8656 | { | |
8657 | choice_pos += 1; | |
8658 | lower = value_as_long (ada_evaluate_subexp (NULL, exp, pos, | |
8659 | EVAL_NORMAL)); | |
8660 | upper = value_as_long (ada_evaluate_subexp (NULL, exp, pos, | |
8661 | EVAL_NORMAL)); | |
8662 | } | |
8663 | else if (is_array) | |
8664 | { | |
8665 | lower = value_as_long (ada_evaluate_subexp (NULL, exp, &choice_pos, | |
8666 | EVAL_NORMAL)); | |
8667 | upper = lower; | |
8668 | } | |
8669 | else | |
8670 | { | |
8671 | int ind; | |
8672 | char *name; | |
5b4ee69b | 8673 | |
52ce6436 PH |
8674 | switch (op) |
8675 | { | |
8676 | case OP_NAME: | |
8677 | name = &exp->elts[choice_pos + 2].string; | |
8678 | break; | |
8679 | case OP_VAR_VALUE: | |
8680 | name = SYMBOL_NATURAL_NAME (exp->elts[choice_pos + 2].symbol); | |
8681 | break; | |
8682 | default: | |
8683 | error (_("Invalid record component association.")); | |
8684 | } | |
8685 | ada_evaluate_subexp (NULL, exp, &choice_pos, EVAL_SKIP); | |
8686 | ind = 0; | |
8687 | if (! find_struct_field (name, value_type (lhs), 0, | |
8688 | NULL, NULL, NULL, NULL, &ind)) | |
8689 | error (_("Unknown component name: %s."), name); | |
8690 | lower = upper = ind; | |
8691 | } | |
8692 | ||
8693 | if (lower <= upper && (lower < low || upper > high)) | |
8694 | error (_("Index in component association out of bounds.")); | |
8695 | ||
8696 | add_component_interval (lower, upper, indices, num_indices, | |
8697 | max_indices); | |
8698 | while (lower <= upper) | |
8699 | { | |
8700 | int pos1; | |
5b4ee69b | 8701 | |
52ce6436 PH |
8702 | pos1 = expr_pc; |
8703 | assign_component (container, lhs, lower, exp, &pos1); | |
8704 | lower += 1; | |
8705 | } | |
8706 | } | |
8707 | } | |
8708 | ||
8709 | /* Assign the value of the expression in the OP_OTHERS construct in | |
8710 | EXP at *POS into the components of LHS indexed from LOW .. HIGH that | |
8711 | have not been previously assigned. The index intervals already assigned | |
8712 | are in INDICES[0 .. NUM_INDICES-1]. Updates *POS to after the | |
0963b4bd | 8713 | OP_OTHERS clause. CONTAINER is as for assign_aggregate. */ |
52ce6436 PH |
8714 | static void |
8715 | aggregate_assign_others (struct value *container, | |
8716 | struct value *lhs, struct expression *exp, | |
8717 | int *pos, LONGEST *indices, int num_indices, | |
8718 | LONGEST low, LONGEST high) | |
8719 | { | |
8720 | int i; | |
5ce64950 | 8721 | int expr_pc = *pos + 1; |
52ce6436 PH |
8722 | |
8723 | for (i = 0; i < num_indices - 2; i += 2) | |
8724 | { | |
8725 | LONGEST ind; | |
5b4ee69b | 8726 | |
52ce6436 PH |
8727 | for (ind = indices[i + 1] + 1; ind < indices[i + 2]; ind += 1) |
8728 | { | |
5ce64950 | 8729 | int localpos; |
5b4ee69b | 8730 | |
5ce64950 MS |
8731 | localpos = expr_pc; |
8732 | assign_component (container, lhs, ind, exp, &localpos); | |
52ce6436 PH |
8733 | } |
8734 | } | |
8735 | ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP); | |
8736 | } | |
8737 | ||
8738 | /* Add the interval [LOW .. HIGH] to the sorted set of intervals | |
8739 | [ INDICES[0] .. INDICES[1] ],..., [ INDICES[*SIZE-2] .. INDICES[*SIZE-1] ], | |
8740 | modifying *SIZE as needed. It is an error if *SIZE exceeds | |
8741 | MAX_SIZE. The resulting intervals do not overlap. */ | |
8742 | static void | |
8743 | add_component_interval (LONGEST low, LONGEST high, | |
8744 | LONGEST* indices, int *size, int max_size) | |
8745 | { | |
8746 | int i, j; | |
5b4ee69b | 8747 | |
52ce6436 PH |
8748 | for (i = 0; i < *size; i += 2) { |
8749 | if (high >= indices[i] && low <= indices[i + 1]) | |
8750 | { | |
8751 | int kh; | |
5b4ee69b | 8752 | |
52ce6436 PH |
8753 | for (kh = i + 2; kh < *size; kh += 2) |
8754 | if (high < indices[kh]) | |
8755 | break; | |
8756 | if (low < indices[i]) | |
8757 | indices[i] = low; | |
8758 | indices[i + 1] = indices[kh - 1]; | |
8759 | if (high > indices[i + 1]) | |
8760 | indices[i + 1] = high; | |
8761 | memcpy (indices + i + 2, indices + kh, *size - kh); | |
8762 | *size -= kh - i - 2; | |
8763 | return; | |
8764 | } | |
8765 | else if (high < indices[i]) | |
8766 | break; | |
8767 | } | |
8768 | ||
8769 | if (*size == max_size) | |
8770 | error (_("Internal error: miscounted aggregate components.")); | |
8771 | *size += 2; | |
8772 | for (j = *size-1; j >= i+2; j -= 1) | |
8773 | indices[j] = indices[j - 2]; | |
8774 | indices[i] = low; | |
8775 | indices[i + 1] = high; | |
8776 | } | |
8777 | ||
6e48bd2c JB |
8778 | /* Perform and Ada cast of ARG2 to type TYPE if the type of ARG2 |
8779 | is different. */ | |
8780 | ||
8781 | static struct value * | |
8782 | ada_value_cast (struct type *type, struct value *arg2, enum noside noside) | |
8783 | { | |
8784 | if (type == ada_check_typedef (value_type (arg2))) | |
8785 | return arg2; | |
8786 | ||
8787 | if (ada_is_fixed_point_type (type)) | |
8788 | return (cast_to_fixed (type, arg2)); | |
8789 | ||
8790 | if (ada_is_fixed_point_type (value_type (arg2))) | |
a53b7a21 | 8791 | return cast_from_fixed (type, arg2); |
6e48bd2c JB |
8792 | |
8793 | return value_cast (type, arg2); | |
8794 | } | |
8795 | ||
284614f0 JB |
8796 | /* Evaluating Ada expressions, and printing their result. |
8797 | ------------------------------------------------------ | |
8798 | ||
21649b50 JB |
8799 | 1. Introduction: |
8800 | ---------------- | |
8801 | ||
284614f0 JB |
8802 | We usually evaluate an Ada expression in order to print its value. |
8803 | We also evaluate an expression in order to print its type, which | |
8804 | happens during the EVAL_AVOID_SIDE_EFFECTS phase of the evaluation, | |
8805 | but we'll focus mostly on the EVAL_NORMAL phase. In practice, the | |
8806 | EVAL_AVOID_SIDE_EFFECTS phase allows us to simplify certain aspects of | |
8807 | the evaluation compared to the EVAL_NORMAL, but is otherwise very | |
8808 | similar. | |
8809 | ||
8810 | Evaluating expressions is a little more complicated for Ada entities | |
8811 | than it is for entities in languages such as C. The main reason for | |
8812 | this is that Ada provides types whose definition might be dynamic. | |
8813 | One example of such types is variant records. Or another example | |
8814 | would be an array whose bounds can only be known at run time. | |
8815 | ||
8816 | The following description is a general guide as to what should be | |
8817 | done (and what should NOT be done) in order to evaluate an expression | |
8818 | involving such types, and when. This does not cover how the semantic | |
8819 | information is encoded by GNAT as this is covered separatly. For the | |
8820 | document used as the reference for the GNAT encoding, see exp_dbug.ads | |
8821 | in the GNAT sources. | |
8822 | ||
8823 | Ideally, we should embed each part of this description next to its | |
8824 | associated code. Unfortunately, the amount of code is so vast right | |
8825 | now that it's hard to see whether the code handling a particular | |
8826 | situation might be duplicated or not. One day, when the code is | |
8827 | cleaned up, this guide might become redundant with the comments | |
8828 | inserted in the code, and we might want to remove it. | |
8829 | ||
21649b50 JB |
8830 | 2. ``Fixing'' an Entity, the Simple Case: |
8831 | ----------------------------------------- | |
8832 | ||
284614f0 JB |
8833 | When evaluating Ada expressions, the tricky issue is that they may |
8834 | reference entities whose type contents and size are not statically | |
8835 | known. Consider for instance a variant record: | |
8836 | ||
8837 | type Rec (Empty : Boolean := True) is record | |
8838 | case Empty is | |
8839 | when True => null; | |
8840 | when False => Value : Integer; | |
8841 | end case; | |
8842 | end record; | |
8843 | Yes : Rec := (Empty => False, Value => 1); | |
8844 | No : Rec := (empty => True); | |
8845 | ||
8846 | The size and contents of that record depends on the value of the | |
8847 | descriminant (Rec.Empty). At this point, neither the debugging | |
8848 | information nor the associated type structure in GDB are able to | |
8849 | express such dynamic types. So what the debugger does is to create | |
8850 | "fixed" versions of the type that applies to the specific object. | |
8851 | We also informally refer to this opperation as "fixing" an object, | |
8852 | which means creating its associated fixed type. | |
8853 | ||
8854 | Example: when printing the value of variable "Yes" above, its fixed | |
8855 | type would look like this: | |
8856 | ||
8857 | type Rec is record | |
8858 | Empty : Boolean; | |
8859 | Value : Integer; | |
8860 | end record; | |
8861 | ||
8862 | On the other hand, if we printed the value of "No", its fixed type | |
8863 | would become: | |
8864 | ||
8865 | type Rec is record | |
8866 | Empty : Boolean; | |
8867 | end record; | |
8868 | ||
8869 | Things become a little more complicated when trying to fix an entity | |
8870 | with a dynamic type that directly contains another dynamic type, | |
8871 | such as an array of variant records, for instance. There are | |
8872 | two possible cases: Arrays, and records. | |
8873 | ||
21649b50 JB |
8874 | 3. ``Fixing'' Arrays: |
8875 | --------------------- | |
8876 | ||
8877 | The type structure in GDB describes an array in terms of its bounds, | |
8878 | and the type of its elements. By design, all elements in the array | |
8879 | have the same type and we cannot represent an array of variant elements | |
8880 | using the current type structure in GDB. When fixing an array, | |
8881 | we cannot fix the array element, as we would potentially need one | |
8882 | fixed type per element of the array. As a result, the best we can do | |
8883 | when fixing an array is to produce an array whose bounds and size | |
8884 | are correct (allowing us to read it from memory), but without having | |
8885 | touched its element type. Fixing each element will be done later, | |
8886 | when (if) necessary. | |
8887 | ||
8888 | Arrays are a little simpler to handle than records, because the same | |
8889 | amount of memory is allocated for each element of the array, even if | |
1b536f04 | 8890 | the amount of space actually used by each element differs from element |
21649b50 | 8891 | to element. Consider for instance the following array of type Rec: |
284614f0 JB |
8892 | |
8893 | type Rec_Array is array (1 .. 2) of Rec; | |
8894 | ||
1b536f04 JB |
8895 | The actual amount of memory occupied by each element might be different |
8896 | from element to element, depending on the value of their discriminant. | |
21649b50 | 8897 | But the amount of space reserved for each element in the array remains |
1b536f04 | 8898 | fixed regardless. So we simply need to compute that size using |
21649b50 JB |
8899 | the debugging information available, from which we can then determine |
8900 | the array size (we multiply the number of elements of the array by | |
8901 | the size of each element). | |
8902 | ||
8903 | The simplest case is when we have an array of a constrained element | |
8904 | type. For instance, consider the following type declarations: | |
8905 | ||
8906 | type Bounded_String (Max_Size : Integer) is | |
8907 | Length : Integer; | |
8908 | Buffer : String (1 .. Max_Size); | |
8909 | end record; | |
8910 | type Bounded_String_Array is array (1 ..2) of Bounded_String (80); | |
8911 | ||
8912 | In this case, the compiler describes the array as an array of | |
8913 | variable-size elements (identified by its XVS suffix) for which | |
8914 | the size can be read in the parallel XVZ variable. | |
8915 | ||
8916 | In the case of an array of an unconstrained element type, the compiler | |
8917 | wraps the array element inside a private PAD type. This type should not | |
8918 | be shown to the user, and must be "unwrap"'ed before printing. Note | |
284614f0 JB |
8919 | that we also use the adjective "aligner" in our code to designate |
8920 | these wrapper types. | |
8921 | ||
1b536f04 | 8922 | In some cases, the size allocated for each element is statically |
21649b50 JB |
8923 | known. In that case, the PAD type already has the correct size, |
8924 | and the array element should remain unfixed. | |
8925 | ||
8926 | But there are cases when this size is not statically known. | |
8927 | For instance, assuming that "Five" is an integer variable: | |
284614f0 JB |
8928 | |
8929 | type Dynamic is array (1 .. Five) of Integer; | |
8930 | type Wrapper (Has_Length : Boolean := False) is record | |
8931 | Data : Dynamic; | |
8932 | case Has_Length is | |
8933 | when True => Length : Integer; | |
8934 | when False => null; | |
8935 | end case; | |
8936 | end record; | |
8937 | type Wrapper_Array is array (1 .. 2) of Wrapper; | |
8938 | ||
8939 | Hello : Wrapper_Array := (others => (Has_Length => True, | |
8940 | Data => (others => 17), | |
8941 | Length => 1)); | |
8942 | ||
8943 | ||
8944 | The debugging info would describe variable Hello as being an | |
8945 | array of a PAD type. The size of that PAD type is not statically | |
8946 | known, but can be determined using a parallel XVZ variable. | |
8947 | In that case, a copy of the PAD type with the correct size should | |
8948 | be used for the fixed array. | |
8949 | ||
21649b50 JB |
8950 | 3. ``Fixing'' record type objects: |
8951 | ---------------------------------- | |
8952 | ||
8953 | Things are slightly different from arrays in the case of dynamic | |
284614f0 JB |
8954 | record types. In this case, in order to compute the associated |
8955 | fixed type, we need to determine the size and offset of each of | |
8956 | its components. This, in turn, requires us to compute the fixed | |
8957 | type of each of these components. | |
8958 | ||
8959 | Consider for instance the example: | |
8960 | ||
8961 | type Bounded_String (Max_Size : Natural) is record | |
8962 | Str : String (1 .. Max_Size); | |
8963 | Length : Natural; | |
8964 | end record; | |
8965 | My_String : Bounded_String (Max_Size => 10); | |
8966 | ||
8967 | In that case, the position of field "Length" depends on the size | |
8968 | of field Str, which itself depends on the value of the Max_Size | |
21649b50 | 8969 | discriminant. In order to fix the type of variable My_String, |
284614f0 JB |
8970 | we need to fix the type of field Str. Therefore, fixing a variant |
8971 | record requires us to fix each of its components. | |
8972 | ||
8973 | However, if a component does not have a dynamic size, the component | |
8974 | should not be fixed. In particular, fields that use a PAD type | |
8975 | should not fixed. Here is an example where this might happen | |
8976 | (assuming type Rec above): | |
8977 | ||
8978 | type Container (Big : Boolean) is record | |
8979 | First : Rec; | |
8980 | After : Integer; | |
8981 | case Big is | |
8982 | when True => Another : Integer; | |
8983 | when False => null; | |
8984 | end case; | |
8985 | end record; | |
8986 | My_Container : Container := (Big => False, | |
8987 | First => (Empty => True), | |
8988 | After => 42); | |
8989 | ||
8990 | In that example, the compiler creates a PAD type for component First, | |
8991 | whose size is constant, and then positions the component After just | |
8992 | right after it. The offset of component After is therefore constant | |
8993 | in this case. | |
8994 | ||
8995 | The debugger computes the position of each field based on an algorithm | |
8996 | that uses, among other things, the actual position and size of the field | |
21649b50 JB |
8997 | preceding it. Let's now imagine that the user is trying to print |
8998 | the value of My_Container. If the type fixing was recursive, we would | |
284614f0 JB |
8999 | end up computing the offset of field After based on the size of the |
9000 | fixed version of field First. And since in our example First has | |
9001 | only one actual field, the size of the fixed type is actually smaller | |
9002 | than the amount of space allocated to that field, and thus we would | |
9003 | compute the wrong offset of field After. | |
9004 | ||
21649b50 JB |
9005 | To make things more complicated, we need to watch out for dynamic |
9006 | components of variant records (identified by the ___XVL suffix in | |
9007 | the component name). Even if the target type is a PAD type, the size | |
9008 | of that type might not be statically known. So the PAD type needs | |
9009 | to be unwrapped and the resulting type needs to be fixed. Otherwise, | |
9010 | we might end up with the wrong size for our component. This can be | |
9011 | observed with the following type declarations: | |
284614f0 JB |
9012 | |
9013 | type Octal is new Integer range 0 .. 7; | |
9014 | type Octal_Array is array (Positive range <>) of Octal; | |
9015 | pragma Pack (Octal_Array); | |
9016 | ||
9017 | type Octal_Buffer (Size : Positive) is record | |
9018 | Buffer : Octal_Array (1 .. Size); | |
9019 | Length : Integer; | |
9020 | end record; | |
9021 | ||
9022 | In that case, Buffer is a PAD type whose size is unset and needs | |
9023 | to be computed by fixing the unwrapped type. | |
9024 | ||
21649b50 JB |
9025 | 4. When to ``Fix'' un-``Fixed'' sub-elements of an entity: |
9026 | ---------------------------------------------------------- | |
9027 | ||
9028 | Lastly, when should the sub-elements of an entity that remained unfixed | |
284614f0 JB |
9029 | thus far, be actually fixed? |
9030 | ||
9031 | The answer is: Only when referencing that element. For instance | |
9032 | when selecting one component of a record, this specific component | |
9033 | should be fixed at that point in time. Or when printing the value | |
9034 | of a record, each component should be fixed before its value gets | |
9035 | printed. Similarly for arrays, the element of the array should be | |
9036 | fixed when printing each element of the array, or when extracting | |
9037 | one element out of that array. On the other hand, fixing should | |
9038 | not be performed on the elements when taking a slice of an array! | |
9039 | ||
9040 | Note that one of the side-effects of miscomputing the offset and | |
9041 | size of each field is that we end up also miscomputing the size | |
9042 | of the containing type. This can have adverse results when computing | |
9043 | the value of an entity. GDB fetches the value of an entity based | |
9044 | on the size of its type, and thus a wrong size causes GDB to fetch | |
9045 | the wrong amount of memory. In the case where the computed size is | |
9046 | too small, GDB fetches too little data to print the value of our | |
9047 | entiry. Results in this case as unpredicatble, as we usually read | |
9048 | past the buffer containing the data =:-o. */ | |
9049 | ||
9050 | /* Implement the evaluate_exp routine in the exp_descriptor structure | |
9051 | for the Ada language. */ | |
9052 | ||
52ce6436 | 9053 | static struct value * |
ebf56fd3 | 9054 | ada_evaluate_subexp (struct type *expect_type, struct expression *exp, |
4c4b4cd2 | 9055 | int *pos, enum noside noside) |
14f9c5c9 AS |
9056 | { |
9057 | enum exp_opcode op; | |
b5385fc0 | 9058 | int tem; |
14f9c5c9 AS |
9059 | int pc; |
9060 | struct value *arg1 = NULL, *arg2 = NULL, *arg3; | |
9061 | struct type *type; | |
52ce6436 | 9062 | int nargs, oplen; |
d2e4a39e | 9063 | struct value **argvec; |
14f9c5c9 | 9064 | |
d2e4a39e AS |
9065 | pc = *pos; |
9066 | *pos += 1; | |
14f9c5c9 AS |
9067 | op = exp->elts[pc].opcode; |
9068 | ||
d2e4a39e | 9069 | switch (op) |
14f9c5c9 AS |
9070 | { |
9071 | default: | |
9072 | *pos -= 1; | |
6e48bd2c JB |
9073 | arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside); |
9074 | arg1 = unwrap_value (arg1); | |
9075 | ||
9076 | /* If evaluating an OP_DOUBLE and an EXPECT_TYPE was provided, | |
9077 | then we need to perform the conversion manually, because | |
9078 | evaluate_subexp_standard doesn't do it. This conversion is | |
9079 | necessary in Ada because the different kinds of float/fixed | |
9080 | types in Ada have different representations. | |
9081 | ||
9082 | Similarly, we need to perform the conversion from OP_LONG | |
9083 | ourselves. */ | |
9084 | if ((op == OP_DOUBLE || op == OP_LONG) && expect_type != NULL) | |
9085 | arg1 = ada_value_cast (expect_type, arg1, noside); | |
9086 | ||
9087 | return arg1; | |
4c4b4cd2 PH |
9088 | |
9089 | case OP_STRING: | |
9090 | { | |
76a01679 | 9091 | struct value *result; |
5b4ee69b | 9092 | |
76a01679 JB |
9093 | *pos -= 1; |
9094 | result = evaluate_subexp_standard (expect_type, exp, pos, noside); | |
9095 | /* The result type will have code OP_STRING, bashed there from | |
9096 | OP_ARRAY. Bash it back. */ | |
df407dfe AC |
9097 | if (TYPE_CODE (value_type (result)) == TYPE_CODE_STRING) |
9098 | TYPE_CODE (value_type (result)) = TYPE_CODE_ARRAY; | |
76a01679 | 9099 | return result; |
4c4b4cd2 | 9100 | } |
14f9c5c9 AS |
9101 | |
9102 | case UNOP_CAST: | |
9103 | (*pos) += 2; | |
9104 | type = exp->elts[pc + 1].type; | |
9105 | arg1 = evaluate_subexp (type, exp, pos, noside); | |
9106 | if (noside == EVAL_SKIP) | |
4c4b4cd2 | 9107 | goto nosideret; |
6e48bd2c | 9108 | arg1 = ada_value_cast (type, arg1, noside); |
14f9c5c9 AS |
9109 | return arg1; |
9110 | ||
4c4b4cd2 PH |
9111 | case UNOP_QUAL: |
9112 | (*pos) += 2; | |
9113 | type = exp->elts[pc + 1].type; | |
9114 | return ada_evaluate_subexp (type, exp, pos, noside); | |
9115 | ||
14f9c5c9 AS |
9116 | case BINOP_ASSIGN: |
9117 | arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside); | |
52ce6436 PH |
9118 | if (exp->elts[*pos].opcode == OP_AGGREGATE) |
9119 | { | |
9120 | arg1 = assign_aggregate (arg1, arg1, exp, pos, noside); | |
9121 | if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS) | |
9122 | return arg1; | |
9123 | return ada_value_assign (arg1, arg1); | |
9124 | } | |
003f3813 JB |
9125 | /* Force the evaluation of the rhs ARG2 to the type of the lhs ARG1, |
9126 | except if the lhs of our assignment is a convenience variable. | |
9127 | In the case of assigning to a convenience variable, the lhs | |
9128 | should be exactly the result of the evaluation of the rhs. */ | |
9129 | type = value_type (arg1); | |
9130 | if (VALUE_LVAL (arg1) == lval_internalvar) | |
9131 | type = NULL; | |
9132 | arg2 = evaluate_subexp (type, exp, pos, noside); | |
14f9c5c9 | 9133 | if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS) |
4c4b4cd2 | 9134 | return arg1; |
df407dfe AC |
9135 | if (ada_is_fixed_point_type (value_type (arg1))) |
9136 | arg2 = cast_to_fixed (value_type (arg1), arg2); | |
9137 | else if (ada_is_fixed_point_type (value_type (arg2))) | |
76a01679 | 9138 | error |
323e0a4a | 9139 | (_("Fixed-point values must be assigned to fixed-point variables")); |
d2e4a39e | 9140 | else |
df407dfe | 9141 | arg2 = coerce_for_assign (value_type (arg1), arg2); |
4c4b4cd2 | 9142 | return ada_value_assign (arg1, arg2); |
14f9c5c9 AS |
9143 | |
9144 | case BINOP_ADD: | |
9145 | arg1 = evaluate_subexp_with_coercion (exp, pos, noside); | |
9146 | arg2 = evaluate_subexp_with_coercion (exp, pos, noside); | |
9147 | if (noside == EVAL_SKIP) | |
4c4b4cd2 | 9148 | goto nosideret; |
2ac8a782 JB |
9149 | if (TYPE_CODE (value_type (arg1)) == TYPE_CODE_PTR) |
9150 | return (value_from_longest | |
9151 | (value_type (arg1), | |
9152 | value_as_long (arg1) + value_as_long (arg2))); | |
df407dfe AC |
9153 | if ((ada_is_fixed_point_type (value_type (arg1)) |
9154 | || ada_is_fixed_point_type (value_type (arg2))) | |
9155 | && value_type (arg1) != value_type (arg2)) | |
323e0a4a | 9156 | error (_("Operands of fixed-point addition must have the same type")); |
b7789565 JB |
9157 | /* Do the addition, and cast the result to the type of the first |
9158 | argument. We cannot cast the result to a reference type, so if | |
9159 | ARG1 is a reference type, find its underlying type. */ | |
9160 | type = value_type (arg1); | |
9161 | while (TYPE_CODE (type) == TYPE_CODE_REF) | |
9162 | type = TYPE_TARGET_TYPE (type); | |
f44316fa | 9163 | binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2); |
89eef114 | 9164 | return value_cast (type, value_binop (arg1, arg2, BINOP_ADD)); |
14f9c5c9 AS |
9165 | |
9166 | case BINOP_SUB: | |
9167 | arg1 = evaluate_subexp_with_coercion (exp, pos, noside); | |
9168 | arg2 = evaluate_subexp_with_coercion (exp, pos, noside); | |
9169 | if (noside == EVAL_SKIP) | |
4c4b4cd2 | 9170 | goto nosideret; |
2ac8a782 JB |
9171 | if (TYPE_CODE (value_type (arg1)) == TYPE_CODE_PTR) |
9172 | return (value_from_longest | |
9173 | (value_type (arg1), | |
9174 | value_as_long (arg1) - value_as_long (arg2))); | |
df407dfe AC |
9175 | if ((ada_is_fixed_point_type (value_type (arg1)) |
9176 | || ada_is_fixed_point_type (value_type (arg2))) | |
9177 | && value_type (arg1) != value_type (arg2)) | |
0963b4bd MS |
9178 | error (_("Operands of fixed-point subtraction " |
9179 | "must have the same type")); | |
b7789565 JB |
9180 | /* Do the substraction, and cast the result to the type of the first |
9181 | argument. We cannot cast the result to a reference type, so if | |
9182 | ARG1 is a reference type, find its underlying type. */ | |
9183 | type = value_type (arg1); | |
9184 | while (TYPE_CODE (type) == TYPE_CODE_REF) | |
9185 | type = TYPE_TARGET_TYPE (type); | |
f44316fa | 9186 | binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2); |
89eef114 | 9187 | return value_cast (type, value_binop (arg1, arg2, BINOP_SUB)); |
14f9c5c9 AS |
9188 | |
9189 | case BINOP_MUL: | |
9190 | case BINOP_DIV: | |
e1578042 JB |
9191 | case BINOP_REM: |
9192 | case BINOP_MOD: | |
14f9c5c9 AS |
9193 | arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside); |
9194 | arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside); | |
9195 | if (noside == EVAL_SKIP) | |
4c4b4cd2 | 9196 | goto nosideret; |
e1578042 | 9197 | else if (noside == EVAL_AVOID_SIDE_EFFECTS) |
9c2be529 JB |
9198 | { |
9199 | binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2); | |
9200 | return value_zero (value_type (arg1), not_lval); | |
9201 | } | |
14f9c5c9 | 9202 | else |
4c4b4cd2 | 9203 | { |
a53b7a21 | 9204 | type = builtin_type (exp->gdbarch)->builtin_double; |
df407dfe | 9205 | if (ada_is_fixed_point_type (value_type (arg1))) |
a53b7a21 | 9206 | arg1 = cast_from_fixed (type, arg1); |
df407dfe | 9207 | if (ada_is_fixed_point_type (value_type (arg2))) |
a53b7a21 | 9208 | arg2 = cast_from_fixed (type, arg2); |
f44316fa | 9209 | binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2); |
4c4b4cd2 PH |
9210 | return ada_value_binop (arg1, arg2, op); |
9211 | } | |
9212 | ||
4c4b4cd2 PH |
9213 | case BINOP_EQUAL: |
9214 | case BINOP_NOTEQUAL: | |
14f9c5c9 | 9215 | arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside); |
df407dfe | 9216 | arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside); |
14f9c5c9 | 9217 | if (noside == EVAL_SKIP) |
76a01679 | 9218 | goto nosideret; |
4c4b4cd2 | 9219 | if (noside == EVAL_AVOID_SIDE_EFFECTS) |
76a01679 | 9220 | tem = 0; |
4c4b4cd2 | 9221 | else |
f44316fa UW |
9222 | { |
9223 | binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2); | |
9224 | tem = ada_value_equal (arg1, arg2); | |
9225 | } | |
4c4b4cd2 | 9226 | if (op == BINOP_NOTEQUAL) |
76a01679 | 9227 | tem = !tem; |
fbb06eb1 UW |
9228 | type = language_bool_type (exp->language_defn, exp->gdbarch); |
9229 | return value_from_longest (type, (LONGEST) tem); | |
4c4b4cd2 PH |
9230 | |
9231 | case UNOP_NEG: | |
9232 | arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside); | |
9233 | if (noside == EVAL_SKIP) | |
9234 | goto nosideret; | |
df407dfe AC |
9235 | else if (ada_is_fixed_point_type (value_type (arg1))) |
9236 | return value_cast (value_type (arg1), value_neg (arg1)); | |
14f9c5c9 | 9237 | else |
f44316fa UW |
9238 | { |
9239 | unop_promote (exp->language_defn, exp->gdbarch, &arg1); | |
9240 | return value_neg (arg1); | |
9241 | } | |
4c4b4cd2 | 9242 | |
2330c6c6 JB |
9243 | case BINOP_LOGICAL_AND: |
9244 | case BINOP_LOGICAL_OR: | |
9245 | case UNOP_LOGICAL_NOT: | |
000d5124 JB |
9246 | { |
9247 | struct value *val; | |
9248 | ||
9249 | *pos -= 1; | |
9250 | val = evaluate_subexp_standard (expect_type, exp, pos, noside); | |
fbb06eb1 UW |
9251 | type = language_bool_type (exp->language_defn, exp->gdbarch); |
9252 | return value_cast (type, val); | |
000d5124 | 9253 | } |
2330c6c6 JB |
9254 | |
9255 | case BINOP_BITWISE_AND: | |
9256 | case BINOP_BITWISE_IOR: | |
9257 | case BINOP_BITWISE_XOR: | |
000d5124 JB |
9258 | { |
9259 | struct value *val; | |
9260 | ||
9261 | arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS); | |
9262 | *pos = pc; | |
9263 | val = evaluate_subexp_standard (expect_type, exp, pos, noside); | |
9264 | ||
9265 | return value_cast (value_type (arg1), val); | |
9266 | } | |
2330c6c6 | 9267 | |
14f9c5c9 AS |
9268 | case OP_VAR_VALUE: |
9269 | *pos -= 1; | |
6799def4 | 9270 | |
14f9c5c9 | 9271 | if (noside == EVAL_SKIP) |
4c4b4cd2 PH |
9272 | { |
9273 | *pos += 4; | |
9274 | goto nosideret; | |
9275 | } | |
9276 | else if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN) | |
76a01679 JB |
9277 | /* Only encountered when an unresolved symbol occurs in a |
9278 | context other than a function call, in which case, it is | |
52ce6436 | 9279 | invalid. */ |
323e0a4a | 9280 | error (_("Unexpected unresolved symbol, %s, during evaluation"), |
4c4b4cd2 | 9281 | SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol)); |
14f9c5c9 | 9282 | else if (noside == EVAL_AVOID_SIDE_EFFECTS) |
4c4b4cd2 | 9283 | { |
0c1f74cf | 9284 | type = static_unwrap_type (SYMBOL_TYPE (exp->elts[pc + 2].symbol)); |
31dbc1c5 JB |
9285 | /* Check to see if this is a tagged type. We also need to handle |
9286 | the case where the type is a reference to a tagged type, but | |
9287 | we have to be careful to exclude pointers to tagged types. | |
9288 | The latter should be shown as usual (as a pointer), whereas | |
9289 | a reference should mostly be transparent to the user. */ | |
9290 | if (ada_is_tagged_type (type, 0) | |
9291 | || (TYPE_CODE(type) == TYPE_CODE_REF | |
9292 | && ada_is_tagged_type (TYPE_TARGET_TYPE (type), 0))) | |
0c1f74cf JB |
9293 | { |
9294 | /* Tagged types are a little special in the fact that the real | |
9295 | type is dynamic and can only be determined by inspecting the | |
9296 | object's tag. This means that we need to get the object's | |
9297 | value first (EVAL_NORMAL) and then extract the actual object | |
9298 | type from its tag. | |
9299 | ||
9300 | Note that we cannot skip the final step where we extract | |
9301 | the object type from its tag, because the EVAL_NORMAL phase | |
9302 | results in dynamic components being resolved into fixed ones. | |
9303 | This can cause problems when trying to print the type | |
9304 | description of tagged types whose parent has a dynamic size: | |
9305 | We use the type name of the "_parent" component in order | |
9306 | to print the name of the ancestor type in the type description. | |
9307 | If that component had a dynamic size, the resolution into | |
9308 | a fixed type would result in the loss of that type name, | |
9309 | thus preventing us from printing the name of the ancestor | |
9310 | type in the type description. */ | |
b79819ba JB |
9311 | struct type *actual_type; |
9312 | ||
0c1f74cf | 9313 | arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_NORMAL); |
b79819ba JB |
9314 | actual_type = type_from_tag (ada_value_tag (arg1)); |
9315 | if (actual_type == NULL) | |
9316 | /* If, for some reason, we were unable to determine | |
9317 | the actual type from the tag, then use the static | |
9318 | approximation that we just computed as a fallback. | |
9319 | This can happen if the debugging information is | |
9320 | incomplete, for instance. */ | |
9321 | actual_type = type; | |
9322 | ||
9323 | return value_zero (actual_type, not_lval); | |
0c1f74cf JB |
9324 | } |
9325 | ||
4c4b4cd2 PH |
9326 | *pos += 4; |
9327 | return value_zero | |
9328 | (to_static_fixed_type | |
9329 | (static_unwrap_type (SYMBOL_TYPE (exp->elts[pc + 2].symbol))), | |
9330 | not_lval); | |
9331 | } | |
d2e4a39e | 9332 | else |
4c4b4cd2 | 9333 | { |
284614f0 JB |
9334 | arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside); |
9335 | arg1 = unwrap_value (arg1); | |
4c4b4cd2 PH |
9336 | return ada_to_fixed_value (arg1); |
9337 | } | |
9338 | ||
9339 | case OP_FUNCALL: | |
9340 | (*pos) += 2; | |
9341 | ||
9342 | /* Allocate arg vector, including space for the function to be | |
9343 | called in argvec[0] and a terminating NULL. */ | |
9344 | nargs = longest_to_int (exp->elts[pc + 1].longconst); | |
9345 | argvec = | |
9346 | (struct value **) alloca (sizeof (struct value *) * (nargs + 2)); | |
9347 | ||
9348 | if (exp->elts[*pos].opcode == OP_VAR_VALUE | |
76a01679 | 9349 | && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN) |
323e0a4a | 9350 | error (_("Unexpected unresolved symbol, %s, during evaluation"), |
4c4b4cd2 PH |
9351 | SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol)); |
9352 | else | |
9353 | { | |
9354 | for (tem = 0; tem <= nargs; tem += 1) | |
9355 | argvec[tem] = evaluate_subexp (NULL_TYPE, exp, pos, noside); | |
9356 | argvec[tem] = 0; | |
9357 | ||
9358 | if (noside == EVAL_SKIP) | |
9359 | goto nosideret; | |
9360 | } | |
9361 | ||
ad82864c JB |
9362 | if (ada_is_constrained_packed_array_type |
9363 | (desc_base_type (value_type (argvec[0])))) | |
4c4b4cd2 | 9364 | argvec[0] = ada_coerce_to_simple_array (argvec[0]); |
284614f0 JB |
9365 | else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_ARRAY |
9366 | && TYPE_FIELD_BITSIZE (value_type (argvec[0]), 0) != 0) | |
9367 | /* This is a packed array that has already been fixed, and | |
9368 | therefore already coerced to a simple array. Nothing further | |
9369 | to do. */ | |
9370 | ; | |
df407dfe AC |
9371 | else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_REF |
9372 | || (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_ARRAY | |
76a01679 | 9373 | && VALUE_LVAL (argvec[0]) == lval_memory)) |
4c4b4cd2 PH |
9374 | argvec[0] = value_addr (argvec[0]); |
9375 | ||
df407dfe | 9376 | type = ada_check_typedef (value_type (argvec[0])); |
720d1a40 JB |
9377 | |
9378 | /* Ada allows us to implicitly dereference arrays when subscripting | |
9379 | them. So, if this is an typedef (encoding use for array access | |
9380 | types encoded as fat pointers), strip it now. */ | |
9381 | if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF) | |
9382 | type = ada_typedef_target_type (type); | |
9383 | ||
4c4b4cd2 PH |
9384 | if (TYPE_CODE (type) == TYPE_CODE_PTR) |
9385 | { | |
61ee279c | 9386 | switch (TYPE_CODE (ada_check_typedef (TYPE_TARGET_TYPE (type)))) |
4c4b4cd2 PH |
9387 | { |
9388 | case TYPE_CODE_FUNC: | |
61ee279c | 9389 | type = ada_check_typedef (TYPE_TARGET_TYPE (type)); |
4c4b4cd2 PH |
9390 | break; |
9391 | case TYPE_CODE_ARRAY: | |
9392 | break; | |
9393 | case TYPE_CODE_STRUCT: | |
9394 | if (noside != EVAL_AVOID_SIDE_EFFECTS) | |
9395 | argvec[0] = ada_value_ind (argvec[0]); | |
61ee279c | 9396 | type = ada_check_typedef (TYPE_TARGET_TYPE (type)); |
4c4b4cd2 PH |
9397 | break; |
9398 | default: | |
323e0a4a | 9399 | error (_("cannot subscript or call something of type `%s'"), |
df407dfe | 9400 | ada_type_name (value_type (argvec[0]))); |
4c4b4cd2 PH |
9401 | break; |
9402 | } | |
9403 | } | |
9404 | ||
9405 | switch (TYPE_CODE (type)) | |
9406 | { | |
9407 | case TYPE_CODE_FUNC: | |
9408 | if (noside == EVAL_AVOID_SIDE_EFFECTS) | |
9409 | return allocate_value (TYPE_TARGET_TYPE (type)); | |
9410 | return call_function_by_hand (argvec[0], nargs, argvec + 1); | |
9411 | case TYPE_CODE_STRUCT: | |
9412 | { | |
9413 | int arity; | |
9414 | ||
4c4b4cd2 PH |
9415 | arity = ada_array_arity (type); |
9416 | type = ada_array_element_type (type, nargs); | |
9417 | if (type == NULL) | |
323e0a4a | 9418 | error (_("cannot subscript or call a record")); |
4c4b4cd2 | 9419 | if (arity != nargs) |
323e0a4a | 9420 | error (_("wrong number of subscripts; expecting %d"), arity); |
4c4b4cd2 | 9421 | if (noside == EVAL_AVOID_SIDE_EFFECTS) |
0a07e705 | 9422 | return value_zero (ada_aligned_type (type), lval_memory); |
4c4b4cd2 PH |
9423 | return |
9424 | unwrap_value (ada_value_subscript | |
9425 | (argvec[0], nargs, argvec + 1)); | |
9426 | } | |
9427 | case TYPE_CODE_ARRAY: | |
9428 | if (noside == EVAL_AVOID_SIDE_EFFECTS) | |
9429 | { | |
9430 | type = ada_array_element_type (type, nargs); | |
9431 | if (type == NULL) | |
323e0a4a | 9432 | error (_("element type of array unknown")); |
4c4b4cd2 | 9433 | else |
0a07e705 | 9434 | return value_zero (ada_aligned_type (type), lval_memory); |
4c4b4cd2 PH |
9435 | } |
9436 | return | |
9437 | unwrap_value (ada_value_subscript | |
9438 | (ada_coerce_to_simple_array (argvec[0]), | |
9439 | nargs, argvec + 1)); | |
9440 | case TYPE_CODE_PTR: /* Pointer to array */ | |
9441 | type = to_fixed_array_type (TYPE_TARGET_TYPE (type), NULL, 1); | |
9442 | if (noside == EVAL_AVOID_SIDE_EFFECTS) | |
9443 | { | |
9444 | type = ada_array_element_type (type, nargs); | |
9445 | if (type == NULL) | |
323e0a4a | 9446 | error (_("element type of array unknown")); |
4c4b4cd2 | 9447 | else |
0a07e705 | 9448 | return value_zero (ada_aligned_type (type), lval_memory); |
4c4b4cd2 PH |
9449 | } |
9450 | return | |
9451 | unwrap_value (ada_value_ptr_subscript (argvec[0], type, | |
9452 | nargs, argvec + 1)); | |
9453 | ||
9454 | default: | |
e1d5a0d2 PH |
9455 | error (_("Attempt to index or call something other than an " |
9456 | "array or function")); | |
4c4b4cd2 PH |
9457 | } |
9458 | ||
9459 | case TERNOP_SLICE: | |
9460 | { | |
9461 | struct value *array = evaluate_subexp (NULL_TYPE, exp, pos, noside); | |
9462 | struct value *low_bound_val = | |
9463 | evaluate_subexp (NULL_TYPE, exp, pos, noside); | |
714e53ab PH |
9464 | struct value *high_bound_val = |
9465 | evaluate_subexp (NULL_TYPE, exp, pos, noside); | |
9466 | LONGEST low_bound; | |
9467 | LONGEST high_bound; | |
5b4ee69b | 9468 | |
994b9211 AC |
9469 | low_bound_val = coerce_ref (low_bound_val); |
9470 | high_bound_val = coerce_ref (high_bound_val); | |
714e53ab PH |
9471 | low_bound = pos_atr (low_bound_val); |
9472 | high_bound = pos_atr (high_bound_val); | |
963a6417 | 9473 | |
4c4b4cd2 PH |
9474 | if (noside == EVAL_SKIP) |
9475 | goto nosideret; | |
9476 | ||
4c4b4cd2 PH |
9477 | /* If this is a reference to an aligner type, then remove all |
9478 | the aligners. */ | |
df407dfe AC |
9479 | if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF |
9480 | && ada_is_aligner_type (TYPE_TARGET_TYPE (value_type (array)))) | |
9481 | TYPE_TARGET_TYPE (value_type (array)) = | |
9482 | ada_aligned_type (TYPE_TARGET_TYPE (value_type (array))); | |
4c4b4cd2 | 9483 | |
ad82864c | 9484 | if (ada_is_constrained_packed_array_type (value_type (array))) |
323e0a4a | 9485 | error (_("cannot slice a packed array")); |
4c4b4cd2 PH |
9486 | |
9487 | /* If this is a reference to an array or an array lvalue, | |
9488 | convert to a pointer. */ | |
df407dfe AC |
9489 | if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF |
9490 | || (TYPE_CODE (value_type (array)) == TYPE_CODE_ARRAY | |
4c4b4cd2 PH |
9491 | && VALUE_LVAL (array) == lval_memory)) |
9492 | array = value_addr (array); | |
9493 | ||
1265e4aa | 9494 | if (noside == EVAL_AVOID_SIDE_EFFECTS |
61ee279c | 9495 | && ada_is_array_descriptor_type (ada_check_typedef |
df407dfe | 9496 | (value_type (array)))) |
0b5d8877 | 9497 | return empty_array (ada_type_of_array (array, 0), low_bound); |
4c4b4cd2 PH |
9498 | |
9499 | array = ada_coerce_to_simple_array_ptr (array); | |
9500 | ||
714e53ab PH |
9501 | /* If we have more than one level of pointer indirection, |
9502 | dereference the value until we get only one level. */ | |
df407dfe AC |
9503 | while (TYPE_CODE (value_type (array)) == TYPE_CODE_PTR |
9504 | && (TYPE_CODE (TYPE_TARGET_TYPE (value_type (array))) | |
714e53ab PH |
9505 | == TYPE_CODE_PTR)) |
9506 | array = value_ind (array); | |
9507 | ||
9508 | /* Make sure we really do have an array type before going further, | |
9509 | to avoid a SEGV when trying to get the index type or the target | |
9510 | type later down the road if the debug info generated by | |
9511 | the compiler is incorrect or incomplete. */ | |
df407dfe | 9512 | if (!ada_is_simple_array_type (value_type (array))) |
323e0a4a | 9513 | error (_("cannot take slice of non-array")); |
714e53ab | 9514 | |
df407dfe | 9515 | if (TYPE_CODE (value_type (array)) == TYPE_CODE_PTR) |
4c4b4cd2 | 9516 | { |
0b5d8877 | 9517 | if (high_bound < low_bound || noside == EVAL_AVOID_SIDE_EFFECTS) |
df407dfe | 9518 | return empty_array (TYPE_TARGET_TYPE (value_type (array)), |
4c4b4cd2 PH |
9519 | low_bound); |
9520 | else | |
9521 | { | |
9522 | struct type *arr_type0 = | |
df407dfe | 9523 | to_fixed_array_type (TYPE_TARGET_TYPE (value_type (array)), |
4c4b4cd2 | 9524 | NULL, 1); |
5b4ee69b | 9525 | |
f5938064 JG |
9526 | return ada_value_slice_from_ptr (array, arr_type0, |
9527 | longest_to_int (low_bound), | |
9528 | longest_to_int (high_bound)); | |
4c4b4cd2 PH |
9529 | } |
9530 | } | |
9531 | else if (noside == EVAL_AVOID_SIDE_EFFECTS) | |
9532 | return array; | |
9533 | else if (high_bound < low_bound) | |
df407dfe | 9534 | return empty_array (value_type (array), low_bound); |
4c4b4cd2 | 9535 | else |
529cad9c PH |
9536 | return ada_value_slice (array, longest_to_int (low_bound), |
9537 | longest_to_int (high_bound)); | |
4c4b4cd2 | 9538 | } |
14f9c5c9 | 9539 | |
4c4b4cd2 PH |
9540 | case UNOP_IN_RANGE: |
9541 | (*pos) += 2; | |
9542 | arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside); | |
8008e265 | 9543 | type = check_typedef (exp->elts[pc + 1].type); |
14f9c5c9 | 9544 | |
14f9c5c9 | 9545 | if (noside == EVAL_SKIP) |
4c4b4cd2 | 9546 | goto nosideret; |
14f9c5c9 | 9547 | |
4c4b4cd2 PH |
9548 | switch (TYPE_CODE (type)) |
9549 | { | |
9550 | default: | |
e1d5a0d2 PH |
9551 | lim_warning (_("Membership test incompletely implemented; " |
9552 | "always returns true")); | |
fbb06eb1 UW |
9553 | type = language_bool_type (exp->language_defn, exp->gdbarch); |
9554 | return value_from_longest (type, (LONGEST) 1); | |
4c4b4cd2 PH |
9555 | |
9556 | case TYPE_CODE_RANGE: | |
030b4912 UW |
9557 | arg2 = value_from_longest (type, TYPE_LOW_BOUND (type)); |
9558 | arg3 = value_from_longest (type, TYPE_HIGH_BOUND (type)); | |
f44316fa UW |
9559 | binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2); |
9560 | binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3); | |
fbb06eb1 UW |
9561 | type = language_bool_type (exp->language_defn, exp->gdbarch); |
9562 | return | |
9563 | value_from_longest (type, | |
4c4b4cd2 PH |
9564 | (value_less (arg1, arg3) |
9565 | || value_equal (arg1, arg3)) | |
9566 | && (value_less (arg2, arg1) | |
9567 | || value_equal (arg2, arg1))); | |
9568 | } | |
9569 | ||
9570 | case BINOP_IN_BOUNDS: | |
14f9c5c9 | 9571 | (*pos) += 2; |
4c4b4cd2 PH |
9572 | arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside); |
9573 | arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside); | |
14f9c5c9 | 9574 | |
4c4b4cd2 PH |
9575 | if (noside == EVAL_SKIP) |
9576 | goto nosideret; | |
14f9c5c9 | 9577 | |
4c4b4cd2 | 9578 | if (noside == EVAL_AVOID_SIDE_EFFECTS) |
fbb06eb1 UW |
9579 | { |
9580 | type = language_bool_type (exp->language_defn, exp->gdbarch); | |
9581 | return value_zero (type, not_lval); | |
9582 | } | |
14f9c5c9 | 9583 | |
4c4b4cd2 | 9584 | tem = longest_to_int (exp->elts[pc + 1].longconst); |
14f9c5c9 | 9585 | |
1eea4ebd UW |
9586 | type = ada_index_type (value_type (arg2), tem, "range"); |
9587 | if (!type) | |
9588 | type = value_type (arg1); | |
14f9c5c9 | 9589 | |
1eea4ebd UW |
9590 | arg3 = value_from_longest (type, ada_array_bound (arg2, tem, 1)); |
9591 | arg2 = value_from_longest (type, ada_array_bound (arg2, tem, 0)); | |
d2e4a39e | 9592 | |
f44316fa UW |
9593 | binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2); |
9594 | binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3); | |
fbb06eb1 | 9595 | type = language_bool_type (exp->language_defn, exp->gdbarch); |
4c4b4cd2 | 9596 | return |
fbb06eb1 | 9597 | value_from_longest (type, |
4c4b4cd2 PH |
9598 | (value_less (arg1, arg3) |
9599 | || value_equal (arg1, arg3)) | |
9600 | && (value_less (arg2, arg1) | |
9601 | || value_equal (arg2, arg1))); | |
9602 | ||
9603 | case TERNOP_IN_RANGE: | |
9604 | arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside); | |
9605 | arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside); | |
9606 | arg3 = evaluate_subexp (NULL_TYPE, exp, pos, noside); | |
9607 | ||
9608 | if (noside == EVAL_SKIP) | |
9609 | goto nosideret; | |
9610 | ||
f44316fa UW |
9611 | binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2); |
9612 | binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3); | |
fbb06eb1 | 9613 | type = language_bool_type (exp->language_defn, exp->gdbarch); |
4c4b4cd2 | 9614 | return |
fbb06eb1 | 9615 | value_from_longest (type, |
4c4b4cd2 PH |
9616 | (value_less (arg1, arg3) |
9617 | || value_equal (arg1, arg3)) | |
9618 | && (value_less (arg2, arg1) | |
9619 | || value_equal (arg2, arg1))); | |
9620 | ||
9621 | case OP_ATR_FIRST: | |
9622 | case OP_ATR_LAST: | |
9623 | case OP_ATR_LENGTH: | |
9624 | { | |
76a01679 | 9625 | struct type *type_arg; |
5b4ee69b | 9626 | |
76a01679 JB |
9627 | if (exp->elts[*pos].opcode == OP_TYPE) |
9628 | { | |
9629 | evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP); | |
9630 | arg1 = NULL; | |
5bc23cb3 | 9631 | type_arg = check_typedef (exp->elts[pc + 2].type); |
76a01679 JB |
9632 | } |
9633 | else | |
9634 | { | |
9635 | arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside); | |
9636 | type_arg = NULL; | |
9637 | } | |
9638 | ||
9639 | if (exp->elts[*pos].opcode != OP_LONG) | |
323e0a4a | 9640 | error (_("Invalid operand to '%s"), ada_attribute_name (op)); |
76a01679 JB |
9641 | tem = longest_to_int (exp->elts[*pos + 2].longconst); |
9642 | *pos += 4; | |
9643 | ||
9644 | if (noside == EVAL_SKIP) | |
9645 | goto nosideret; | |
9646 | ||
9647 | if (type_arg == NULL) | |
9648 | { | |
9649 | arg1 = ada_coerce_ref (arg1); | |
9650 | ||
ad82864c | 9651 | if (ada_is_constrained_packed_array_type (value_type (arg1))) |
76a01679 JB |
9652 | arg1 = ada_coerce_to_simple_array (arg1); |
9653 | ||
1eea4ebd UW |
9654 | type = ada_index_type (value_type (arg1), tem, |
9655 | ada_attribute_name (op)); | |
9656 | if (type == NULL) | |
9657 | type = builtin_type (exp->gdbarch)->builtin_int; | |
76a01679 JB |
9658 | |
9659 | if (noside == EVAL_AVOID_SIDE_EFFECTS) | |
1eea4ebd | 9660 | return allocate_value (type); |
76a01679 JB |
9661 | |
9662 | switch (op) | |
9663 | { | |
9664 | default: /* Should never happen. */ | |
323e0a4a | 9665 | error (_("unexpected attribute encountered")); |
76a01679 | 9666 | case OP_ATR_FIRST: |
1eea4ebd UW |
9667 | return value_from_longest |
9668 | (type, ada_array_bound (arg1, tem, 0)); | |
76a01679 | 9669 | case OP_ATR_LAST: |
1eea4ebd UW |
9670 | return value_from_longest |
9671 | (type, ada_array_bound (arg1, tem, 1)); | |
76a01679 | 9672 | case OP_ATR_LENGTH: |
1eea4ebd UW |
9673 | return value_from_longest |
9674 | (type, ada_array_length (arg1, tem)); | |
76a01679 JB |
9675 | } |
9676 | } | |
9677 | else if (discrete_type_p (type_arg)) | |
9678 | { | |
9679 | struct type *range_type; | |
9680 | char *name = ada_type_name (type_arg); | |
5b4ee69b | 9681 | |
76a01679 JB |
9682 | range_type = NULL; |
9683 | if (name != NULL && TYPE_CODE (type_arg) != TYPE_CODE_ENUM) | |
28c85d6c | 9684 | range_type = to_fixed_range_type (type_arg, NULL); |
76a01679 JB |
9685 | if (range_type == NULL) |
9686 | range_type = type_arg; | |
9687 | switch (op) | |
9688 | { | |
9689 | default: | |
323e0a4a | 9690 | error (_("unexpected attribute encountered")); |
76a01679 | 9691 | case OP_ATR_FIRST: |
690cc4eb | 9692 | return value_from_longest |
43bbcdc2 | 9693 | (range_type, ada_discrete_type_low_bound (range_type)); |
76a01679 | 9694 | case OP_ATR_LAST: |
690cc4eb | 9695 | return value_from_longest |
43bbcdc2 | 9696 | (range_type, ada_discrete_type_high_bound (range_type)); |
76a01679 | 9697 | case OP_ATR_LENGTH: |
323e0a4a | 9698 | error (_("the 'length attribute applies only to array types")); |
76a01679 JB |
9699 | } |
9700 | } | |
9701 | else if (TYPE_CODE (type_arg) == TYPE_CODE_FLT) | |
323e0a4a | 9702 | error (_("unimplemented type attribute")); |
76a01679 JB |
9703 | else |
9704 | { | |
9705 | LONGEST low, high; | |
9706 | ||
ad82864c JB |
9707 | if (ada_is_constrained_packed_array_type (type_arg)) |
9708 | type_arg = decode_constrained_packed_array_type (type_arg); | |
76a01679 | 9709 | |
1eea4ebd | 9710 | type = ada_index_type (type_arg, tem, ada_attribute_name (op)); |
76a01679 | 9711 | if (type == NULL) |
1eea4ebd UW |
9712 | type = builtin_type (exp->gdbarch)->builtin_int; |
9713 | ||
76a01679 JB |
9714 | if (noside == EVAL_AVOID_SIDE_EFFECTS) |
9715 | return allocate_value (type); | |
9716 | ||
9717 | switch (op) | |
9718 | { | |
9719 | default: | |
323e0a4a | 9720 | error (_("unexpected attribute encountered")); |
76a01679 | 9721 | case OP_ATR_FIRST: |
1eea4ebd | 9722 | low = ada_array_bound_from_type (type_arg, tem, 0); |
76a01679 JB |
9723 | return value_from_longest (type, low); |
9724 | case OP_ATR_LAST: | |
1eea4ebd | 9725 | high = ada_array_bound_from_type (type_arg, tem, 1); |
76a01679 JB |
9726 | return value_from_longest (type, high); |
9727 | case OP_ATR_LENGTH: | |
1eea4ebd UW |
9728 | low = ada_array_bound_from_type (type_arg, tem, 0); |
9729 | high = ada_array_bound_from_type (type_arg, tem, 1); | |
76a01679 JB |
9730 | return value_from_longest (type, high - low + 1); |
9731 | } | |
9732 | } | |
14f9c5c9 AS |
9733 | } |
9734 | ||
4c4b4cd2 PH |
9735 | case OP_ATR_TAG: |
9736 | arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside); | |
9737 | if (noside == EVAL_SKIP) | |
76a01679 | 9738 | goto nosideret; |
4c4b4cd2 PH |
9739 | |
9740 | if (noside == EVAL_AVOID_SIDE_EFFECTS) | |
76a01679 | 9741 | return value_zero (ada_tag_type (arg1), not_lval); |
4c4b4cd2 PH |
9742 | |
9743 | return ada_value_tag (arg1); | |
9744 | ||
9745 | case OP_ATR_MIN: | |
9746 | case OP_ATR_MAX: | |
9747 | evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP); | |
14f9c5c9 AS |
9748 | arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside); |
9749 | arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside); | |
9750 | if (noside == EVAL_SKIP) | |
76a01679 | 9751 | goto nosideret; |
d2e4a39e | 9752 | else if (noside == EVAL_AVOID_SIDE_EFFECTS) |
df407dfe | 9753 | return value_zero (value_type (arg1), not_lval); |
14f9c5c9 | 9754 | else |
f44316fa UW |
9755 | { |
9756 | binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2); | |
9757 | return value_binop (arg1, arg2, | |
9758 | op == OP_ATR_MIN ? BINOP_MIN : BINOP_MAX); | |
9759 | } | |
14f9c5c9 | 9760 | |
4c4b4cd2 PH |
9761 | case OP_ATR_MODULUS: |
9762 | { | |
31dedfee | 9763 | struct type *type_arg = check_typedef (exp->elts[pc + 2].type); |
4c4b4cd2 | 9764 | |
5b4ee69b | 9765 | evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP); |
76a01679 JB |
9766 | if (noside == EVAL_SKIP) |
9767 | goto nosideret; | |
4c4b4cd2 | 9768 | |
76a01679 | 9769 | if (!ada_is_modular_type (type_arg)) |
323e0a4a | 9770 | error (_("'modulus must be applied to modular type")); |
4c4b4cd2 | 9771 | |
76a01679 JB |
9772 | return value_from_longest (TYPE_TARGET_TYPE (type_arg), |
9773 | ada_modulus (type_arg)); | |
4c4b4cd2 PH |
9774 | } |
9775 | ||
9776 | ||
9777 | case OP_ATR_POS: | |
9778 | evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP); | |
14f9c5c9 AS |
9779 | arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside); |
9780 | if (noside == EVAL_SKIP) | |
76a01679 | 9781 | goto nosideret; |
3cb382c9 UW |
9782 | type = builtin_type (exp->gdbarch)->builtin_int; |
9783 | if (noside == EVAL_AVOID_SIDE_EFFECTS) | |
9784 | return value_zero (type, not_lval); | |
14f9c5c9 | 9785 | else |
3cb382c9 | 9786 | return value_pos_atr (type, arg1); |
14f9c5c9 | 9787 | |
4c4b4cd2 PH |
9788 | case OP_ATR_SIZE: |
9789 | arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside); | |
8c1c099f JB |
9790 | type = value_type (arg1); |
9791 | ||
9792 | /* If the argument is a reference, then dereference its type, since | |
9793 | the user is really asking for the size of the actual object, | |
9794 | not the size of the pointer. */ | |
9795 | if (TYPE_CODE (type) == TYPE_CODE_REF) | |
9796 | type = TYPE_TARGET_TYPE (type); | |
9797 | ||
4c4b4cd2 | 9798 | if (noside == EVAL_SKIP) |
76a01679 | 9799 | goto nosideret; |
4c4b4cd2 | 9800 | else if (noside == EVAL_AVOID_SIDE_EFFECTS) |
22601c15 | 9801 | return value_zero (builtin_type (exp->gdbarch)->builtin_int, not_lval); |
4c4b4cd2 | 9802 | else |
22601c15 | 9803 | return value_from_longest (builtin_type (exp->gdbarch)->builtin_int, |
8c1c099f | 9804 | TARGET_CHAR_BIT * TYPE_LENGTH (type)); |
4c4b4cd2 PH |
9805 | |
9806 | case OP_ATR_VAL: | |
9807 | evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP); | |
14f9c5c9 | 9808 | arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside); |
4c4b4cd2 | 9809 | type = exp->elts[pc + 2].type; |
14f9c5c9 | 9810 | if (noside == EVAL_SKIP) |
76a01679 | 9811 | goto nosideret; |
4c4b4cd2 | 9812 | else if (noside == EVAL_AVOID_SIDE_EFFECTS) |
76a01679 | 9813 | return value_zero (type, not_lval); |
4c4b4cd2 | 9814 | else |
76a01679 | 9815 | return value_val_atr (type, arg1); |
4c4b4cd2 PH |
9816 | |
9817 | case BINOP_EXP: | |
9818 | arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside); | |
9819 | arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside); | |
9820 | if (noside == EVAL_SKIP) | |
9821 | goto nosideret; | |
9822 | else if (noside == EVAL_AVOID_SIDE_EFFECTS) | |
df407dfe | 9823 | return value_zero (value_type (arg1), not_lval); |
4c4b4cd2 | 9824 | else |
f44316fa UW |
9825 | { |
9826 | /* For integer exponentiation operations, | |
9827 | only promote the first argument. */ | |
9828 | if (is_integral_type (value_type (arg2))) | |
9829 | unop_promote (exp->language_defn, exp->gdbarch, &arg1); | |
9830 | else | |
9831 | binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2); | |
9832 | ||
9833 | return value_binop (arg1, arg2, op); | |
9834 | } | |
4c4b4cd2 PH |
9835 | |
9836 | case UNOP_PLUS: | |
9837 | arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside); | |
9838 | if (noside == EVAL_SKIP) | |
9839 | goto nosideret; | |
9840 | else | |
9841 | return arg1; | |
9842 | ||
9843 | case UNOP_ABS: | |
9844 | arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside); | |
9845 | if (noside == EVAL_SKIP) | |
9846 | goto nosideret; | |
f44316fa | 9847 | unop_promote (exp->language_defn, exp->gdbarch, &arg1); |
df407dfe | 9848 | if (value_less (arg1, value_zero (value_type (arg1), not_lval))) |
4c4b4cd2 | 9849 | return value_neg (arg1); |
14f9c5c9 | 9850 | else |
4c4b4cd2 | 9851 | return arg1; |
14f9c5c9 AS |
9852 | |
9853 | case UNOP_IND: | |
6b0d7253 | 9854 | arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside); |
14f9c5c9 | 9855 | if (noside == EVAL_SKIP) |
4c4b4cd2 | 9856 | goto nosideret; |
df407dfe | 9857 | type = ada_check_typedef (value_type (arg1)); |
14f9c5c9 | 9858 | if (noside == EVAL_AVOID_SIDE_EFFECTS) |
4c4b4cd2 PH |
9859 | { |
9860 | if (ada_is_array_descriptor_type (type)) | |
9861 | /* GDB allows dereferencing GNAT array descriptors. */ | |
9862 | { | |
9863 | struct type *arrType = ada_type_of_array (arg1, 0); | |
5b4ee69b | 9864 | |
4c4b4cd2 | 9865 | if (arrType == NULL) |
323e0a4a | 9866 | error (_("Attempt to dereference null array pointer.")); |
00a4c844 | 9867 | return value_at_lazy (arrType, 0); |
4c4b4cd2 PH |
9868 | } |
9869 | else if (TYPE_CODE (type) == TYPE_CODE_PTR | |
9870 | || TYPE_CODE (type) == TYPE_CODE_REF | |
9871 | /* In C you can dereference an array to get the 1st elt. */ | |
9872 | || TYPE_CODE (type) == TYPE_CODE_ARRAY) | |
714e53ab PH |
9873 | { |
9874 | type = to_static_fixed_type | |
9875 | (ada_aligned_type | |
9876 | (ada_check_typedef (TYPE_TARGET_TYPE (type)))); | |
9877 | check_size (type); | |
9878 | return value_zero (type, lval_memory); | |
9879 | } | |
4c4b4cd2 | 9880 | else if (TYPE_CODE (type) == TYPE_CODE_INT) |
6b0d7253 JB |
9881 | { |
9882 | /* GDB allows dereferencing an int. */ | |
9883 | if (expect_type == NULL) | |
9884 | return value_zero (builtin_type (exp->gdbarch)->builtin_int, | |
9885 | lval_memory); | |
9886 | else | |
9887 | { | |
9888 | expect_type = | |
9889 | to_static_fixed_type (ada_aligned_type (expect_type)); | |
9890 | return value_zero (expect_type, lval_memory); | |
9891 | } | |
9892 | } | |
4c4b4cd2 | 9893 | else |
323e0a4a | 9894 | error (_("Attempt to take contents of a non-pointer value.")); |
4c4b4cd2 | 9895 | } |
0963b4bd | 9896 | arg1 = ada_coerce_ref (arg1); /* FIXME: What is this for?? */ |
df407dfe | 9897 | type = ada_check_typedef (value_type (arg1)); |
d2e4a39e | 9898 | |
96967637 JB |
9899 | if (TYPE_CODE (type) == TYPE_CODE_INT) |
9900 | /* GDB allows dereferencing an int. If we were given | |
9901 | the expect_type, then use that as the target type. | |
9902 | Otherwise, assume that the target type is an int. */ | |
9903 | { | |
9904 | if (expect_type != NULL) | |
9905 | return ada_value_ind (value_cast (lookup_pointer_type (expect_type), | |
9906 | arg1)); | |
9907 | else | |
9908 | return value_at_lazy (builtin_type (exp->gdbarch)->builtin_int, | |
9909 | (CORE_ADDR) value_as_address (arg1)); | |
9910 | } | |
6b0d7253 | 9911 | |
4c4b4cd2 PH |
9912 | if (ada_is_array_descriptor_type (type)) |
9913 | /* GDB allows dereferencing GNAT array descriptors. */ | |
9914 | return ada_coerce_to_simple_array (arg1); | |
14f9c5c9 | 9915 | else |
4c4b4cd2 | 9916 | return ada_value_ind (arg1); |
14f9c5c9 AS |
9917 | |
9918 | case STRUCTOP_STRUCT: | |
9919 | tem = longest_to_int (exp->elts[pc + 1].longconst); | |
9920 | (*pos) += 3 + BYTES_TO_EXP_ELEM (tem + 1); | |
9921 | arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside); | |
9922 | if (noside == EVAL_SKIP) | |
4c4b4cd2 | 9923 | goto nosideret; |
14f9c5c9 | 9924 | if (noside == EVAL_AVOID_SIDE_EFFECTS) |
76a01679 | 9925 | { |
df407dfe | 9926 | struct type *type1 = value_type (arg1); |
5b4ee69b | 9927 | |
76a01679 JB |
9928 | if (ada_is_tagged_type (type1, 1)) |
9929 | { | |
9930 | type = ada_lookup_struct_elt_type (type1, | |
9931 | &exp->elts[pc + 2].string, | |
9932 | 1, 1, NULL); | |
9933 | if (type == NULL) | |
9934 | /* In this case, we assume that the field COULD exist | |
9935 | in some extension of the type. Return an object of | |
9936 | "type" void, which will match any formal | |
0963b4bd | 9937 | (see ada_type_match). */ |
30b15541 UW |
9938 | return value_zero (builtin_type (exp->gdbarch)->builtin_void, |
9939 | lval_memory); | |
76a01679 JB |
9940 | } |
9941 | else | |
9942 | type = | |
9943 | ada_lookup_struct_elt_type (type1, &exp->elts[pc + 2].string, 1, | |
9944 | 0, NULL); | |
9945 | ||
9946 | return value_zero (ada_aligned_type (type), lval_memory); | |
9947 | } | |
14f9c5c9 | 9948 | else |
284614f0 JB |
9949 | arg1 = ada_value_struct_elt (arg1, &exp->elts[pc + 2].string, 0); |
9950 | arg1 = unwrap_value (arg1); | |
9951 | return ada_to_fixed_value (arg1); | |
9952 | ||
14f9c5c9 | 9953 | case OP_TYPE: |
4c4b4cd2 PH |
9954 | /* The value is not supposed to be used. This is here to make it |
9955 | easier to accommodate expressions that contain types. */ | |
14f9c5c9 AS |
9956 | (*pos) += 2; |
9957 | if (noside == EVAL_SKIP) | |
4c4b4cd2 | 9958 | goto nosideret; |
14f9c5c9 | 9959 | else if (noside == EVAL_AVOID_SIDE_EFFECTS) |
a6cfbe68 | 9960 | return allocate_value (exp->elts[pc + 1].type); |
14f9c5c9 | 9961 | else |
323e0a4a | 9962 | error (_("Attempt to use a type name as an expression")); |
52ce6436 PH |
9963 | |
9964 | case OP_AGGREGATE: | |
9965 | case OP_CHOICES: | |
9966 | case OP_OTHERS: | |
9967 | case OP_DISCRETE_RANGE: | |
9968 | case OP_POSITIONAL: | |
9969 | case OP_NAME: | |
9970 | if (noside == EVAL_NORMAL) | |
9971 | switch (op) | |
9972 | { | |
9973 | case OP_NAME: | |
9974 | error (_("Undefined name, ambiguous name, or renaming used in " | |
e1d5a0d2 | 9975 | "component association: %s."), &exp->elts[pc+2].string); |
52ce6436 PH |
9976 | case OP_AGGREGATE: |
9977 | error (_("Aggregates only allowed on the right of an assignment")); | |
9978 | default: | |
0963b4bd MS |
9979 | internal_error (__FILE__, __LINE__, |
9980 | _("aggregate apparently mangled")); | |
52ce6436 PH |
9981 | } |
9982 | ||
9983 | ada_forward_operator_length (exp, pc, &oplen, &nargs); | |
9984 | *pos += oplen - 1; | |
9985 | for (tem = 0; tem < nargs; tem += 1) | |
9986 | ada_evaluate_subexp (NULL, exp, pos, noside); | |
9987 | goto nosideret; | |
14f9c5c9 AS |
9988 | } |
9989 | ||
9990 | nosideret: | |
22601c15 | 9991 | return value_from_longest (builtin_type (exp->gdbarch)->builtin_int, 1); |
14f9c5c9 | 9992 | } |
14f9c5c9 | 9993 | \f |
d2e4a39e | 9994 | |
4c4b4cd2 | 9995 | /* Fixed point */ |
14f9c5c9 AS |
9996 | |
9997 | /* If TYPE encodes an Ada fixed-point type, return the suffix of the | |
9998 | type name that encodes the 'small and 'delta information. | |
4c4b4cd2 | 9999 | Otherwise, return NULL. */ |
14f9c5c9 | 10000 | |
d2e4a39e | 10001 | static const char * |
ebf56fd3 | 10002 | fixed_type_info (struct type *type) |
14f9c5c9 | 10003 | { |
d2e4a39e | 10004 | const char *name = ada_type_name (type); |
14f9c5c9 AS |
10005 | enum type_code code = (type == NULL) ? TYPE_CODE_UNDEF : TYPE_CODE (type); |
10006 | ||
d2e4a39e AS |
10007 | if ((code == TYPE_CODE_INT || code == TYPE_CODE_RANGE) && name != NULL) |
10008 | { | |
14f9c5c9 | 10009 | const char *tail = strstr (name, "___XF_"); |
5b4ee69b | 10010 | |
14f9c5c9 | 10011 | if (tail == NULL) |
4c4b4cd2 | 10012 | return NULL; |
d2e4a39e | 10013 | else |
4c4b4cd2 | 10014 | return tail + 5; |
14f9c5c9 AS |
10015 | } |
10016 | else if (code == TYPE_CODE_RANGE && TYPE_TARGET_TYPE (type) != type) | |
10017 | return fixed_type_info (TYPE_TARGET_TYPE (type)); | |
10018 | else | |
10019 | return NULL; | |
10020 | } | |
10021 | ||
4c4b4cd2 | 10022 | /* Returns non-zero iff TYPE represents an Ada fixed-point type. */ |
14f9c5c9 AS |
10023 | |
10024 | int | |
ebf56fd3 | 10025 | ada_is_fixed_point_type (struct type *type) |
14f9c5c9 AS |
10026 | { |
10027 | return fixed_type_info (type) != NULL; | |
10028 | } | |
10029 | ||
4c4b4cd2 PH |
10030 | /* Return non-zero iff TYPE represents a System.Address type. */ |
10031 | ||
10032 | int | |
10033 | ada_is_system_address_type (struct type *type) | |
10034 | { | |
10035 | return (TYPE_NAME (type) | |
10036 | && strcmp (TYPE_NAME (type), "system__address") == 0); | |
10037 | } | |
10038 | ||
14f9c5c9 AS |
10039 | /* Assuming that TYPE is the representation of an Ada fixed-point |
10040 | type, return its delta, or -1 if the type is malformed and the | |
4c4b4cd2 | 10041 | delta cannot be determined. */ |
14f9c5c9 AS |
10042 | |
10043 | DOUBLEST | |
ebf56fd3 | 10044 | ada_delta (struct type *type) |
14f9c5c9 AS |
10045 | { |
10046 | const char *encoding = fixed_type_info (type); | |
facc390f | 10047 | DOUBLEST num, den; |
14f9c5c9 | 10048 | |
facc390f JB |
10049 | /* Strictly speaking, num and den are encoded as integer. However, |
10050 | they may not fit into a long, and they will have to be converted | |
10051 | to DOUBLEST anyway. So scan them as DOUBLEST. */ | |
10052 | if (sscanf (encoding, "_%" DOUBLEST_SCAN_FORMAT "_%" DOUBLEST_SCAN_FORMAT, | |
10053 | &num, &den) < 2) | |
14f9c5c9 | 10054 | return -1.0; |
d2e4a39e | 10055 | else |
facc390f | 10056 | return num / den; |
14f9c5c9 AS |
10057 | } |
10058 | ||
10059 | /* Assuming that ada_is_fixed_point_type (TYPE), return the scaling | |
4c4b4cd2 | 10060 | factor ('SMALL value) associated with the type. */ |
14f9c5c9 AS |
10061 | |
10062 | static DOUBLEST | |
ebf56fd3 | 10063 | scaling_factor (struct type *type) |
14f9c5c9 AS |
10064 | { |
10065 | const char *encoding = fixed_type_info (type); | |
facc390f | 10066 | DOUBLEST num0, den0, num1, den1; |
14f9c5c9 | 10067 | int n; |
d2e4a39e | 10068 | |
facc390f JB |
10069 | /* Strictly speaking, num's and den's are encoded as integer. However, |
10070 | they may not fit into a long, and they will have to be converted | |
10071 | to DOUBLEST anyway. So scan them as DOUBLEST. */ | |
10072 | n = sscanf (encoding, | |
10073 | "_%" DOUBLEST_SCAN_FORMAT "_%" DOUBLEST_SCAN_FORMAT | |
10074 | "_%" DOUBLEST_SCAN_FORMAT "_%" DOUBLEST_SCAN_FORMAT, | |
10075 | &num0, &den0, &num1, &den1); | |
14f9c5c9 AS |
10076 | |
10077 | if (n < 2) | |
10078 | return 1.0; | |
10079 | else if (n == 4) | |
facc390f | 10080 | return num1 / den1; |
d2e4a39e | 10081 | else |
facc390f | 10082 | return num0 / den0; |
14f9c5c9 AS |
10083 | } |
10084 | ||
10085 | ||
10086 | /* Assuming that X is the representation of a value of fixed-point | |
4c4b4cd2 | 10087 | type TYPE, return its floating-point equivalent. */ |
14f9c5c9 AS |
10088 | |
10089 | DOUBLEST | |
ebf56fd3 | 10090 | ada_fixed_to_float (struct type *type, LONGEST x) |
14f9c5c9 | 10091 | { |
d2e4a39e | 10092 | return (DOUBLEST) x *scaling_factor (type); |
14f9c5c9 AS |
10093 | } |
10094 | ||
4c4b4cd2 PH |
10095 | /* The representation of a fixed-point value of type TYPE |
10096 | corresponding to the value X. */ | |
14f9c5c9 AS |
10097 | |
10098 | LONGEST | |
ebf56fd3 | 10099 | ada_float_to_fixed (struct type *type, DOUBLEST x) |
14f9c5c9 AS |
10100 | { |
10101 | return (LONGEST) (x / scaling_factor (type) + 0.5); | |
10102 | } | |
10103 | ||
14f9c5c9 | 10104 | \f |
d2e4a39e | 10105 | |
4c4b4cd2 | 10106 | /* Range types */ |
14f9c5c9 AS |
10107 | |
10108 | /* Scan STR beginning at position K for a discriminant name, and | |
10109 | return the value of that discriminant field of DVAL in *PX. If | |
10110 | PNEW_K is not null, put the position of the character beyond the | |
10111 | name scanned in *PNEW_K. Return 1 if successful; return 0 and do | |
4c4b4cd2 | 10112 | not alter *PX and *PNEW_K if unsuccessful. */ |
14f9c5c9 AS |
10113 | |
10114 | static int | |
07d8f827 | 10115 | scan_discrim_bound (char *str, int k, struct value *dval, LONGEST * px, |
76a01679 | 10116 | int *pnew_k) |
14f9c5c9 AS |
10117 | { |
10118 | static char *bound_buffer = NULL; | |
10119 | static size_t bound_buffer_len = 0; | |
10120 | char *bound; | |
10121 | char *pend; | |
d2e4a39e | 10122 | struct value *bound_val; |
14f9c5c9 AS |
10123 | |
10124 | if (dval == NULL || str == NULL || str[k] == '\0') | |
10125 | return 0; | |
10126 | ||
d2e4a39e | 10127 | pend = strstr (str + k, "__"); |
14f9c5c9 AS |
10128 | if (pend == NULL) |
10129 | { | |
d2e4a39e | 10130 | bound = str + k; |
14f9c5c9 AS |
10131 | k += strlen (bound); |
10132 | } | |
d2e4a39e | 10133 | else |
14f9c5c9 | 10134 | { |
d2e4a39e | 10135 | GROW_VECT (bound_buffer, bound_buffer_len, pend - (str + k) + 1); |
14f9c5c9 | 10136 | bound = bound_buffer; |
d2e4a39e AS |
10137 | strncpy (bound_buffer, str + k, pend - (str + k)); |
10138 | bound[pend - (str + k)] = '\0'; | |
10139 | k = pend - str; | |
14f9c5c9 | 10140 | } |
d2e4a39e | 10141 | |
df407dfe | 10142 | bound_val = ada_search_struct_field (bound, dval, 0, value_type (dval)); |
14f9c5c9 AS |
10143 | if (bound_val == NULL) |
10144 | return 0; | |
10145 | ||
10146 | *px = value_as_long (bound_val); | |
10147 | if (pnew_k != NULL) | |
10148 | *pnew_k = k; | |
10149 | return 1; | |
10150 | } | |
10151 | ||
10152 | /* Value of variable named NAME in the current environment. If | |
10153 | no such variable found, then if ERR_MSG is null, returns 0, and | |
4c4b4cd2 PH |
10154 | otherwise causes an error with message ERR_MSG. */ |
10155 | ||
d2e4a39e AS |
10156 | static struct value * |
10157 | get_var_value (char *name, char *err_msg) | |
14f9c5c9 | 10158 | { |
4c4b4cd2 | 10159 | struct ada_symbol_info *syms; |
14f9c5c9 AS |
10160 | int nsyms; |
10161 | ||
4c4b4cd2 PH |
10162 | nsyms = ada_lookup_symbol_list (name, get_selected_block (0), VAR_DOMAIN, |
10163 | &syms); | |
14f9c5c9 AS |
10164 | |
10165 | if (nsyms != 1) | |
10166 | { | |
10167 | if (err_msg == NULL) | |
4c4b4cd2 | 10168 | return 0; |
14f9c5c9 | 10169 | else |
8a3fe4f8 | 10170 | error (("%s"), err_msg); |
14f9c5c9 AS |
10171 | } |
10172 | ||
4c4b4cd2 | 10173 | return value_of_variable (syms[0].sym, syms[0].block); |
14f9c5c9 | 10174 | } |
d2e4a39e | 10175 | |
14f9c5c9 | 10176 | /* Value of integer variable named NAME in the current environment. If |
4c4b4cd2 PH |
10177 | no such variable found, returns 0, and sets *FLAG to 0. If |
10178 | successful, sets *FLAG to 1. */ | |
10179 | ||
14f9c5c9 | 10180 | LONGEST |
4c4b4cd2 | 10181 | get_int_var_value (char *name, int *flag) |
14f9c5c9 | 10182 | { |
4c4b4cd2 | 10183 | struct value *var_val = get_var_value (name, 0); |
d2e4a39e | 10184 | |
14f9c5c9 AS |
10185 | if (var_val == 0) |
10186 | { | |
10187 | if (flag != NULL) | |
4c4b4cd2 | 10188 | *flag = 0; |
14f9c5c9 AS |
10189 | return 0; |
10190 | } | |
10191 | else | |
10192 | { | |
10193 | if (flag != NULL) | |
4c4b4cd2 | 10194 | *flag = 1; |
14f9c5c9 AS |
10195 | return value_as_long (var_val); |
10196 | } | |
10197 | } | |
d2e4a39e | 10198 | |
14f9c5c9 AS |
10199 | |
10200 | /* Return a range type whose base type is that of the range type named | |
10201 | NAME in the current environment, and whose bounds are calculated | |
4c4b4cd2 | 10202 | from NAME according to the GNAT range encoding conventions. |
1ce677a4 UW |
10203 | Extract discriminant values, if needed, from DVAL. ORIG_TYPE is the |
10204 | corresponding range type from debug information; fall back to using it | |
10205 | if symbol lookup fails. If a new type must be created, allocate it | |
10206 | like ORIG_TYPE was. The bounds information, in general, is encoded | |
10207 | in NAME, the base type given in the named range type. */ | |
14f9c5c9 | 10208 | |
d2e4a39e | 10209 | static struct type * |
28c85d6c | 10210 | to_fixed_range_type (struct type *raw_type, struct value *dval) |
14f9c5c9 | 10211 | { |
28c85d6c | 10212 | char *name; |
14f9c5c9 | 10213 | struct type *base_type; |
d2e4a39e | 10214 | char *subtype_info; |
14f9c5c9 | 10215 | |
28c85d6c JB |
10216 | gdb_assert (raw_type != NULL); |
10217 | gdb_assert (TYPE_NAME (raw_type) != NULL); | |
dddfab26 | 10218 | |
1ce677a4 | 10219 | if (TYPE_CODE (raw_type) == TYPE_CODE_RANGE) |
14f9c5c9 AS |
10220 | base_type = TYPE_TARGET_TYPE (raw_type); |
10221 | else | |
10222 | base_type = raw_type; | |
10223 | ||
28c85d6c | 10224 | name = TYPE_NAME (raw_type); |
14f9c5c9 AS |
10225 | subtype_info = strstr (name, "___XD"); |
10226 | if (subtype_info == NULL) | |
690cc4eb | 10227 | { |
43bbcdc2 PH |
10228 | LONGEST L = ada_discrete_type_low_bound (raw_type); |
10229 | LONGEST U = ada_discrete_type_high_bound (raw_type); | |
5b4ee69b | 10230 | |
690cc4eb PH |
10231 | if (L < INT_MIN || U > INT_MAX) |
10232 | return raw_type; | |
10233 | else | |
28c85d6c | 10234 | return create_range_type (alloc_type_copy (raw_type), raw_type, |
43bbcdc2 PH |
10235 | ada_discrete_type_low_bound (raw_type), |
10236 | ada_discrete_type_high_bound (raw_type)); | |
690cc4eb | 10237 | } |
14f9c5c9 AS |
10238 | else |
10239 | { | |
10240 | static char *name_buf = NULL; | |
10241 | static size_t name_len = 0; | |
10242 | int prefix_len = subtype_info - name; | |
10243 | LONGEST L, U; | |
10244 | struct type *type; | |
10245 | char *bounds_str; | |
10246 | int n; | |
10247 | ||
10248 | GROW_VECT (name_buf, name_len, prefix_len + 5); | |
10249 | strncpy (name_buf, name, prefix_len); | |
10250 | name_buf[prefix_len] = '\0'; | |
10251 | ||
10252 | subtype_info += 5; | |
10253 | bounds_str = strchr (subtype_info, '_'); | |
10254 | n = 1; | |
10255 | ||
d2e4a39e | 10256 | if (*subtype_info == 'L') |
4c4b4cd2 PH |
10257 | { |
10258 | if (!ada_scan_number (bounds_str, n, &L, &n) | |
10259 | && !scan_discrim_bound (bounds_str, n, dval, &L, &n)) | |
10260 | return raw_type; | |
10261 | if (bounds_str[n] == '_') | |
10262 | n += 2; | |
0963b4bd | 10263 | else if (bounds_str[n] == '.') /* FIXME? SGI Workshop kludge. */ |
4c4b4cd2 PH |
10264 | n += 1; |
10265 | subtype_info += 1; | |
10266 | } | |
d2e4a39e | 10267 | else |
4c4b4cd2 PH |
10268 | { |
10269 | int ok; | |
5b4ee69b | 10270 | |
4c4b4cd2 PH |
10271 | strcpy (name_buf + prefix_len, "___L"); |
10272 | L = get_int_var_value (name_buf, &ok); | |
10273 | if (!ok) | |
10274 | { | |
323e0a4a | 10275 | lim_warning (_("Unknown lower bound, using 1.")); |
4c4b4cd2 PH |
10276 | L = 1; |
10277 | } | |
10278 | } | |
14f9c5c9 | 10279 | |
d2e4a39e | 10280 | if (*subtype_info == 'U') |
4c4b4cd2 PH |
10281 | { |
10282 | if (!ada_scan_number (bounds_str, n, &U, &n) | |
10283 | && !scan_discrim_bound (bounds_str, n, dval, &U, &n)) | |
10284 | return raw_type; | |
10285 | } | |
d2e4a39e | 10286 | else |
4c4b4cd2 PH |
10287 | { |
10288 | int ok; | |
5b4ee69b | 10289 | |
4c4b4cd2 PH |
10290 | strcpy (name_buf + prefix_len, "___U"); |
10291 | U = get_int_var_value (name_buf, &ok); | |
10292 | if (!ok) | |
10293 | { | |
323e0a4a | 10294 | lim_warning (_("Unknown upper bound, using %ld."), (long) L); |
4c4b4cd2 PH |
10295 | U = L; |
10296 | } | |
10297 | } | |
14f9c5c9 | 10298 | |
28c85d6c | 10299 | type = create_range_type (alloc_type_copy (raw_type), base_type, L, U); |
d2e4a39e | 10300 | TYPE_NAME (type) = name; |
14f9c5c9 AS |
10301 | return type; |
10302 | } | |
10303 | } | |
10304 | ||
4c4b4cd2 PH |
10305 | /* True iff NAME is the name of a range type. */ |
10306 | ||
14f9c5c9 | 10307 | int |
d2e4a39e | 10308 | ada_is_range_type_name (const char *name) |
14f9c5c9 AS |
10309 | { |
10310 | return (name != NULL && strstr (name, "___XD")); | |
d2e4a39e | 10311 | } |
14f9c5c9 | 10312 | \f |
d2e4a39e | 10313 | |
4c4b4cd2 PH |
10314 | /* Modular types */ |
10315 | ||
10316 | /* True iff TYPE is an Ada modular type. */ | |
14f9c5c9 | 10317 | |
14f9c5c9 | 10318 | int |
d2e4a39e | 10319 | ada_is_modular_type (struct type *type) |
14f9c5c9 | 10320 | { |
4c4b4cd2 | 10321 | struct type *subranged_type = base_type (type); |
14f9c5c9 AS |
10322 | |
10323 | return (subranged_type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE | |
690cc4eb | 10324 | && TYPE_CODE (subranged_type) == TYPE_CODE_INT |
4c4b4cd2 | 10325 | && TYPE_UNSIGNED (subranged_type)); |
14f9c5c9 AS |
10326 | } |
10327 | ||
0056e4d5 JB |
10328 | /* Try to determine the lower and upper bounds of the given modular type |
10329 | using the type name only. Return non-zero and set L and U as the lower | |
10330 | and upper bounds (respectively) if successful. */ | |
10331 | ||
10332 | int | |
10333 | ada_modulus_from_name (struct type *type, ULONGEST *modulus) | |
10334 | { | |
10335 | char *name = ada_type_name (type); | |
10336 | char *suffix; | |
10337 | int k; | |
10338 | LONGEST U; | |
10339 | ||
10340 | if (name == NULL) | |
10341 | return 0; | |
10342 | ||
10343 | /* Discrete type bounds are encoded using an __XD suffix. In our case, | |
10344 | we are looking for static bounds, which means an __XDLU suffix. | |
10345 | Moreover, we know that the lower bound of modular types is always | |
10346 | zero, so the actual suffix should start with "__XDLU_0__", and | |
10347 | then be followed by the upper bound value. */ | |
10348 | suffix = strstr (name, "__XDLU_0__"); | |
10349 | if (suffix == NULL) | |
10350 | return 0; | |
10351 | k = 10; | |
10352 | if (!ada_scan_number (suffix, k, &U, NULL)) | |
10353 | return 0; | |
10354 | ||
10355 | *modulus = (ULONGEST) U + 1; | |
10356 | return 1; | |
10357 | } | |
10358 | ||
4c4b4cd2 PH |
10359 | /* Assuming ada_is_modular_type (TYPE), the modulus of TYPE. */ |
10360 | ||
61ee279c | 10361 | ULONGEST |
0056e4d5 | 10362 | ada_modulus (struct type *type) |
14f9c5c9 | 10363 | { |
43bbcdc2 | 10364 | return (ULONGEST) TYPE_HIGH_BOUND (type) + 1; |
14f9c5c9 | 10365 | } |
d2e4a39e | 10366 | \f |
f7f9143b JB |
10367 | |
10368 | /* Ada exception catchpoint support: | |
10369 | --------------------------------- | |
10370 | ||
10371 | We support 3 kinds of exception catchpoints: | |
10372 | . catchpoints on Ada exceptions | |
10373 | . catchpoints on unhandled Ada exceptions | |
10374 | . catchpoints on failed assertions | |
10375 | ||
10376 | Exceptions raised during failed assertions, or unhandled exceptions | |
10377 | could perfectly be caught with the general catchpoint on Ada exceptions. | |
10378 | However, we can easily differentiate these two special cases, and having | |
10379 | the option to distinguish these two cases from the rest can be useful | |
10380 | to zero-in on certain situations. | |
10381 | ||
10382 | Exception catchpoints are a specialized form of breakpoint, | |
10383 | since they rely on inserting breakpoints inside known routines | |
10384 | of the GNAT runtime. The implementation therefore uses a standard | |
10385 | breakpoint structure of the BP_BREAKPOINT type, but with its own set | |
10386 | of breakpoint_ops. | |
10387 | ||
0259addd JB |
10388 | Support in the runtime for exception catchpoints have been changed |
10389 | a few times already, and these changes affect the implementation | |
10390 | of these catchpoints. In order to be able to support several | |
10391 | variants of the runtime, we use a sniffer that will determine | |
10392 | the runtime variant used by the program being debugged. | |
10393 | ||
f7f9143b JB |
10394 | At this time, we do not support the use of conditions on Ada exception |
10395 | catchpoints. The COND and COND_STRING fields are therefore set | |
10396 | to NULL (most of the time, see below). | |
10397 | ||
10398 | Conditions where EXP_STRING, COND, and COND_STRING are used: | |
10399 | ||
10400 | When a user specifies the name of a specific exception in the case | |
10401 | of catchpoints on Ada exceptions, we store the name of that exception | |
10402 | in the EXP_STRING. We then translate this request into an actual | |
10403 | condition stored in COND_STRING, and then parse it into an expression | |
10404 | stored in COND. */ | |
10405 | ||
10406 | /* The different types of catchpoints that we introduced for catching | |
10407 | Ada exceptions. */ | |
10408 | ||
10409 | enum exception_catchpoint_kind | |
10410 | { | |
10411 | ex_catch_exception, | |
10412 | ex_catch_exception_unhandled, | |
10413 | ex_catch_assert | |
10414 | }; | |
10415 | ||
3d0b0fa3 JB |
10416 | /* Ada's standard exceptions. */ |
10417 | ||
10418 | static char *standard_exc[] = { | |
10419 | "constraint_error", | |
10420 | "program_error", | |
10421 | "storage_error", | |
10422 | "tasking_error" | |
10423 | }; | |
10424 | ||
0259addd JB |
10425 | typedef CORE_ADDR (ada_unhandled_exception_name_addr_ftype) (void); |
10426 | ||
10427 | /* A structure that describes how to support exception catchpoints | |
10428 | for a given executable. */ | |
10429 | ||
10430 | struct exception_support_info | |
10431 | { | |
10432 | /* The name of the symbol to break on in order to insert | |
10433 | a catchpoint on exceptions. */ | |
10434 | const char *catch_exception_sym; | |
10435 | ||
10436 | /* The name of the symbol to break on in order to insert | |
10437 | a catchpoint on unhandled exceptions. */ | |
10438 | const char *catch_exception_unhandled_sym; | |
10439 | ||
10440 | /* The name of the symbol to break on in order to insert | |
10441 | a catchpoint on failed assertions. */ | |
10442 | const char *catch_assert_sym; | |
10443 | ||
10444 | /* Assuming that the inferior just triggered an unhandled exception | |
10445 | catchpoint, this function is responsible for returning the address | |
10446 | in inferior memory where the name of that exception is stored. | |
10447 | Return zero if the address could not be computed. */ | |
10448 | ada_unhandled_exception_name_addr_ftype *unhandled_exception_name_addr; | |
10449 | }; | |
10450 | ||
10451 | static CORE_ADDR ada_unhandled_exception_name_addr (void); | |
10452 | static CORE_ADDR ada_unhandled_exception_name_addr_from_raise (void); | |
10453 | ||
10454 | /* The following exception support info structure describes how to | |
10455 | implement exception catchpoints with the latest version of the | |
10456 | Ada runtime (as of 2007-03-06). */ | |
10457 | ||
10458 | static const struct exception_support_info default_exception_support_info = | |
10459 | { | |
10460 | "__gnat_debug_raise_exception", /* catch_exception_sym */ | |
10461 | "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */ | |
10462 | "__gnat_debug_raise_assert_failure", /* catch_assert_sym */ | |
10463 | ada_unhandled_exception_name_addr | |
10464 | }; | |
10465 | ||
10466 | /* The following exception support info structure describes how to | |
10467 | implement exception catchpoints with a slightly older version | |
10468 | of the Ada runtime. */ | |
10469 | ||
10470 | static const struct exception_support_info exception_support_info_fallback = | |
10471 | { | |
10472 | "__gnat_raise_nodefer_with_msg", /* catch_exception_sym */ | |
10473 | "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */ | |
10474 | "system__assertions__raise_assert_failure", /* catch_assert_sym */ | |
10475 | ada_unhandled_exception_name_addr_from_raise | |
10476 | }; | |
10477 | ||
10478 | /* For each executable, we sniff which exception info structure to use | |
10479 | and cache it in the following global variable. */ | |
10480 | ||
10481 | static const struct exception_support_info *exception_info = NULL; | |
10482 | ||
10483 | /* Inspect the Ada runtime and determine which exception info structure | |
10484 | should be used to provide support for exception catchpoints. | |
10485 | ||
10486 | This function will always set exception_info, or raise an error. */ | |
10487 | ||
10488 | static void | |
10489 | ada_exception_support_info_sniffer (void) | |
10490 | { | |
10491 | struct symbol *sym; | |
10492 | ||
10493 | /* If the exception info is already known, then no need to recompute it. */ | |
10494 | if (exception_info != NULL) | |
10495 | return; | |
10496 | ||
10497 | /* Check the latest (default) exception support info. */ | |
10498 | sym = standard_lookup (default_exception_support_info.catch_exception_sym, | |
10499 | NULL, VAR_DOMAIN); | |
10500 | if (sym != NULL) | |
10501 | { | |
10502 | exception_info = &default_exception_support_info; | |
10503 | return; | |
10504 | } | |
10505 | ||
10506 | /* Try our fallback exception suport info. */ | |
10507 | sym = standard_lookup (exception_support_info_fallback.catch_exception_sym, | |
10508 | NULL, VAR_DOMAIN); | |
10509 | if (sym != NULL) | |
10510 | { | |
10511 | exception_info = &exception_support_info_fallback; | |
10512 | return; | |
10513 | } | |
10514 | ||
10515 | /* Sometimes, it is normal for us to not be able to find the routine | |
10516 | we are looking for. This happens when the program is linked with | |
10517 | the shared version of the GNAT runtime, and the program has not been | |
10518 | started yet. Inform the user of these two possible causes if | |
10519 | applicable. */ | |
10520 | ||
ccefe4c4 | 10521 | if (ada_update_initial_language (language_unknown) != language_ada) |
0259addd JB |
10522 | error (_("Unable to insert catchpoint. Is this an Ada main program?")); |
10523 | ||
10524 | /* If the symbol does not exist, then check that the program is | |
10525 | already started, to make sure that shared libraries have been | |
10526 | loaded. If it is not started, this may mean that the symbol is | |
10527 | in a shared library. */ | |
10528 | ||
10529 | if (ptid_get_pid (inferior_ptid) == 0) | |
10530 | error (_("Unable to insert catchpoint. Try to start the program first.")); | |
10531 | ||
10532 | /* At this point, we know that we are debugging an Ada program and | |
10533 | that the inferior has been started, but we still are not able to | |
0963b4bd | 10534 | find the run-time symbols. That can mean that we are in |
0259addd JB |
10535 | configurable run time mode, or that a-except as been optimized |
10536 | out by the linker... In any case, at this point it is not worth | |
10537 | supporting this feature. */ | |
10538 | ||
10539 | error (_("Cannot insert catchpoints in this configuration.")); | |
10540 | } | |
10541 | ||
10542 | /* An observer of "executable_changed" events. | |
10543 | Its role is to clear certain cached values that need to be recomputed | |
10544 | each time a new executable is loaded by GDB. */ | |
10545 | ||
10546 | static void | |
781b42b0 | 10547 | ada_executable_changed_observer (void) |
0259addd JB |
10548 | { |
10549 | /* If the executable changed, then it is possible that the Ada runtime | |
10550 | is different. So we need to invalidate the exception support info | |
10551 | cache. */ | |
10552 | exception_info = NULL; | |
10553 | } | |
10554 | ||
f7f9143b JB |
10555 | /* True iff FRAME is very likely to be that of a function that is |
10556 | part of the runtime system. This is all very heuristic, but is | |
10557 | intended to be used as advice as to what frames are uninteresting | |
10558 | to most users. */ | |
10559 | ||
10560 | static int | |
10561 | is_known_support_routine (struct frame_info *frame) | |
10562 | { | |
4ed6b5be | 10563 | struct symtab_and_line sal; |
f7f9143b | 10564 | char *func_name; |
692465f1 | 10565 | enum language func_lang; |
f7f9143b | 10566 | int i; |
f7f9143b | 10567 | |
4ed6b5be JB |
10568 | /* If this code does not have any debugging information (no symtab), |
10569 | This cannot be any user code. */ | |
f7f9143b | 10570 | |
4ed6b5be | 10571 | find_frame_sal (frame, &sal); |
f7f9143b JB |
10572 | if (sal.symtab == NULL) |
10573 | return 1; | |
10574 | ||
4ed6b5be JB |
10575 | /* If there is a symtab, but the associated source file cannot be |
10576 | located, then assume this is not user code: Selecting a frame | |
10577 | for which we cannot display the code would not be very helpful | |
10578 | for the user. This should also take care of case such as VxWorks | |
10579 | where the kernel has some debugging info provided for a few units. */ | |
f7f9143b | 10580 | |
9bbc9174 | 10581 | if (symtab_to_fullname (sal.symtab) == NULL) |
f7f9143b JB |
10582 | return 1; |
10583 | ||
4ed6b5be JB |
10584 | /* Check the unit filename againt the Ada runtime file naming. |
10585 | We also check the name of the objfile against the name of some | |
10586 | known system libraries that sometimes come with debugging info | |
10587 | too. */ | |
10588 | ||
f7f9143b JB |
10589 | for (i = 0; known_runtime_file_name_patterns[i] != NULL; i += 1) |
10590 | { | |
10591 | re_comp (known_runtime_file_name_patterns[i]); | |
10592 | if (re_exec (sal.symtab->filename)) | |
10593 | return 1; | |
4ed6b5be JB |
10594 | if (sal.symtab->objfile != NULL |
10595 | && re_exec (sal.symtab->objfile->name)) | |
10596 | return 1; | |
f7f9143b JB |
10597 | } |
10598 | ||
4ed6b5be | 10599 | /* Check whether the function is a GNAT-generated entity. */ |
f7f9143b | 10600 | |
e9e07ba6 | 10601 | find_frame_funname (frame, &func_name, &func_lang, NULL); |
f7f9143b JB |
10602 | if (func_name == NULL) |
10603 | return 1; | |
10604 | ||
10605 | for (i = 0; known_auxiliary_function_name_patterns[i] != NULL; i += 1) | |
10606 | { | |
10607 | re_comp (known_auxiliary_function_name_patterns[i]); | |
10608 | if (re_exec (func_name)) | |
10609 | return 1; | |
10610 | } | |
10611 | ||
10612 | return 0; | |
10613 | } | |
10614 | ||
10615 | /* Find the first frame that contains debugging information and that is not | |
10616 | part of the Ada run-time, starting from FI and moving upward. */ | |
10617 | ||
0ef643c8 | 10618 | void |
f7f9143b JB |
10619 | ada_find_printable_frame (struct frame_info *fi) |
10620 | { | |
10621 | for (; fi != NULL; fi = get_prev_frame (fi)) | |
10622 | { | |
10623 | if (!is_known_support_routine (fi)) | |
10624 | { | |
10625 | select_frame (fi); | |
10626 | break; | |
10627 | } | |
10628 | } | |
10629 | ||
10630 | } | |
10631 | ||
10632 | /* Assuming that the inferior just triggered an unhandled exception | |
10633 | catchpoint, return the address in inferior memory where the name | |
10634 | of the exception is stored. | |
10635 | ||
10636 | Return zero if the address could not be computed. */ | |
10637 | ||
10638 | static CORE_ADDR | |
10639 | ada_unhandled_exception_name_addr (void) | |
0259addd JB |
10640 | { |
10641 | return parse_and_eval_address ("e.full_name"); | |
10642 | } | |
10643 | ||
10644 | /* Same as ada_unhandled_exception_name_addr, except that this function | |
10645 | should be used when the inferior uses an older version of the runtime, | |
10646 | where the exception name needs to be extracted from a specific frame | |
10647 | several frames up in the callstack. */ | |
10648 | ||
10649 | static CORE_ADDR | |
10650 | ada_unhandled_exception_name_addr_from_raise (void) | |
f7f9143b JB |
10651 | { |
10652 | int frame_level; | |
10653 | struct frame_info *fi; | |
10654 | ||
10655 | /* To determine the name of this exception, we need to select | |
10656 | the frame corresponding to RAISE_SYM_NAME. This frame is | |
10657 | at least 3 levels up, so we simply skip the first 3 frames | |
10658 | without checking the name of their associated function. */ | |
10659 | fi = get_current_frame (); | |
10660 | for (frame_level = 0; frame_level < 3; frame_level += 1) | |
10661 | if (fi != NULL) | |
10662 | fi = get_prev_frame (fi); | |
10663 | ||
10664 | while (fi != NULL) | |
10665 | { | |
692465f1 JB |
10666 | char *func_name; |
10667 | enum language func_lang; | |
10668 | ||
e9e07ba6 | 10669 | find_frame_funname (fi, &func_name, &func_lang, NULL); |
f7f9143b | 10670 | if (func_name != NULL |
0259addd | 10671 | && strcmp (func_name, exception_info->catch_exception_sym) == 0) |
f7f9143b JB |
10672 | break; /* We found the frame we were looking for... */ |
10673 | fi = get_prev_frame (fi); | |
10674 | } | |
10675 | ||
10676 | if (fi == NULL) | |
10677 | return 0; | |
10678 | ||
10679 | select_frame (fi); | |
10680 | return parse_and_eval_address ("id.full_name"); | |
10681 | } | |
10682 | ||
10683 | /* Assuming the inferior just triggered an Ada exception catchpoint | |
10684 | (of any type), return the address in inferior memory where the name | |
10685 | of the exception is stored, if applicable. | |
10686 | ||
10687 | Return zero if the address could not be computed, or if not relevant. */ | |
10688 | ||
10689 | static CORE_ADDR | |
10690 | ada_exception_name_addr_1 (enum exception_catchpoint_kind ex, | |
10691 | struct breakpoint *b) | |
10692 | { | |
10693 | switch (ex) | |
10694 | { | |
10695 | case ex_catch_exception: | |
10696 | return (parse_and_eval_address ("e.full_name")); | |
10697 | break; | |
10698 | ||
10699 | case ex_catch_exception_unhandled: | |
0259addd | 10700 | return exception_info->unhandled_exception_name_addr (); |
f7f9143b JB |
10701 | break; |
10702 | ||
10703 | case ex_catch_assert: | |
10704 | return 0; /* Exception name is not relevant in this case. */ | |
10705 | break; | |
10706 | ||
10707 | default: | |
10708 | internal_error (__FILE__, __LINE__, _("unexpected catchpoint type")); | |
10709 | break; | |
10710 | } | |
10711 | ||
10712 | return 0; /* Should never be reached. */ | |
10713 | } | |
10714 | ||
10715 | /* Same as ada_exception_name_addr_1, except that it intercepts and contains | |
10716 | any error that ada_exception_name_addr_1 might cause to be thrown. | |
10717 | When an error is intercepted, a warning with the error message is printed, | |
10718 | and zero is returned. */ | |
10719 | ||
10720 | static CORE_ADDR | |
10721 | ada_exception_name_addr (enum exception_catchpoint_kind ex, | |
10722 | struct breakpoint *b) | |
10723 | { | |
10724 | struct gdb_exception e; | |
10725 | CORE_ADDR result = 0; | |
10726 | ||
10727 | TRY_CATCH (e, RETURN_MASK_ERROR) | |
10728 | { | |
10729 | result = ada_exception_name_addr_1 (ex, b); | |
10730 | } | |
10731 | ||
10732 | if (e.reason < 0) | |
10733 | { | |
10734 | warning (_("failed to get exception name: %s"), e.message); | |
10735 | return 0; | |
10736 | } | |
10737 | ||
10738 | return result; | |
10739 | } | |
10740 | ||
10741 | /* Implement the PRINT_IT method in the breakpoint_ops structure | |
10742 | for all exception catchpoint kinds. */ | |
10743 | ||
10744 | static enum print_stop_action | |
10745 | print_it_exception (enum exception_catchpoint_kind ex, struct breakpoint *b) | |
10746 | { | |
10747 | const CORE_ADDR addr = ada_exception_name_addr (ex, b); | |
10748 | char exception_name[256]; | |
10749 | ||
10750 | if (addr != 0) | |
10751 | { | |
10752 | read_memory (addr, exception_name, sizeof (exception_name) - 1); | |
10753 | exception_name [sizeof (exception_name) - 1] = '\0'; | |
10754 | } | |
10755 | ||
10756 | ada_find_printable_frame (get_current_frame ()); | |
10757 | ||
10758 | annotate_catchpoint (b->number); | |
10759 | switch (ex) | |
10760 | { | |
10761 | case ex_catch_exception: | |
10762 | if (addr != 0) | |
10763 | printf_filtered (_("\nCatchpoint %d, %s at "), | |
10764 | b->number, exception_name); | |
10765 | else | |
10766 | printf_filtered (_("\nCatchpoint %d, exception at "), b->number); | |
10767 | break; | |
10768 | case ex_catch_exception_unhandled: | |
10769 | if (addr != 0) | |
10770 | printf_filtered (_("\nCatchpoint %d, unhandled %s at "), | |
10771 | b->number, exception_name); | |
10772 | else | |
10773 | printf_filtered (_("\nCatchpoint %d, unhandled exception at "), | |
10774 | b->number); | |
10775 | break; | |
10776 | case ex_catch_assert: | |
10777 | printf_filtered (_("\nCatchpoint %d, failed assertion at "), | |
10778 | b->number); | |
10779 | break; | |
10780 | } | |
10781 | ||
10782 | return PRINT_SRC_AND_LOC; | |
10783 | } | |
10784 | ||
10785 | /* Implement the PRINT_ONE method in the breakpoint_ops structure | |
10786 | for all exception catchpoint kinds. */ | |
10787 | ||
10788 | static void | |
10789 | print_one_exception (enum exception_catchpoint_kind ex, | |
a6d9a66e | 10790 | struct breakpoint *b, struct bp_location **last_loc) |
f7f9143b | 10791 | { |
79a45b7d TT |
10792 | struct value_print_options opts; |
10793 | ||
10794 | get_user_print_options (&opts); | |
10795 | if (opts.addressprint) | |
f7f9143b JB |
10796 | { |
10797 | annotate_field (4); | |
5af949e3 | 10798 | ui_out_field_core_addr (uiout, "addr", b->loc->gdbarch, b->loc->address); |
f7f9143b JB |
10799 | } |
10800 | ||
10801 | annotate_field (5); | |
a6d9a66e | 10802 | *last_loc = b->loc; |
f7f9143b JB |
10803 | switch (ex) |
10804 | { | |
10805 | case ex_catch_exception: | |
10806 | if (b->exp_string != NULL) | |
10807 | { | |
10808 | char *msg = xstrprintf (_("`%s' Ada exception"), b->exp_string); | |
10809 | ||
10810 | ui_out_field_string (uiout, "what", msg); | |
10811 | xfree (msg); | |
10812 | } | |
10813 | else | |
10814 | ui_out_field_string (uiout, "what", "all Ada exceptions"); | |
10815 | ||
10816 | break; | |
10817 | ||
10818 | case ex_catch_exception_unhandled: | |
10819 | ui_out_field_string (uiout, "what", "unhandled Ada exceptions"); | |
10820 | break; | |
10821 | ||
10822 | case ex_catch_assert: | |
10823 | ui_out_field_string (uiout, "what", "failed Ada assertions"); | |
10824 | break; | |
10825 | ||
10826 | default: | |
10827 | internal_error (__FILE__, __LINE__, _("unexpected catchpoint type")); | |
10828 | break; | |
10829 | } | |
10830 | } | |
10831 | ||
10832 | /* Implement the PRINT_MENTION method in the breakpoint_ops structure | |
10833 | for all exception catchpoint kinds. */ | |
10834 | ||
10835 | static void | |
10836 | print_mention_exception (enum exception_catchpoint_kind ex, | |
10837 | struct breakpoint *b) | |
10838 | { | |
10839 | switch (ex) | |
10840 | { | |
10841 | case ex_catch_exception: | |
10842 | if (b->exp_string != NULL) | |
10843 | printf_filtered (_("Catchpoint %d: `%s' Ada exception"), | |
10844 | b->number, b->exp_string); | |
10845 | else | |
10846 | printf_filtered (_("Catchpoint %d: all Ada exceptions"), b->number); | |
10847 | ||
10848 | break; | |
10849 | ||
10850 | case ex_catch_exception_unhandled: | |
10851 | printf_filtered (_("Catchpoint %d: unhandled Ada exceptions"), | |
10852 | b->number); | |
10853 | break; | |
10854 | ||
10855 | case ex_catch_assert: | |
10856 | printf_filtered (_("Catchpoint %d: failed Ada assertions"), b->number); | |
10857 | break; | |
10858 | ||
10859 | default: | |
10860 | internal_error (__FILE__, __LINE__, _("unexpected catchpoint type")); | |
10861 | break; | |
10862 | } | |
10863 | } | |
10864 | ||
6149aea9 PA |
10865 | /* Implement the PRINT_RECREATE method in the breakpoint_ops structure |
10866 | for all exception catchpoint kinds. */ | |
10867 | ||
10868 | static void | |
10869 | print_recreate_exception (enum exception_catchpoint_kind ex, | |
10870 | struct breakpoint *b, struct ui_file *fp) | |
10871 | { | |
10872 | switch (ex) | |
10873 | { | |
10874 | case ex_catch_exception: | |
10875 | fprintf_filtered (fp, "catch exception"); | |
10876 | if (b->exp_string != NULL) | |
10877 | fprintf_filtered (fp, " %s", b->exp_string); | |
10878 | break; | |
10879 | ||
10880 | case ex_catch_exception_unhandled: | |
78076abc | 10881 | fprintf_filtered (fp, "catch exception unhandled"); |
6149aea9 PA |
10882 | break; |
10883 | ||
10884 | case ex_catch_assert: | |
10885 | fprintf_filtered (fp, "catch assert"); | |
10886 | break; | |
10887 | ||
10888 | default: | |
10889 | internal_error (__FILE__, __LINE__, _("unexpected catchpoint type")); | |
10890 | } | |
10891 | } | |
10892 | ||
f7f9143b JB |
10893 | /* Virtual table for "catch exception" breakpoints. */ |
10894 | ||
10895 | static enum print_stop_action | |
10896 | print_it_catch_exception (struct breakpoint *b) | |
10897 | { | |
10898 | return print_it_exception (ex_catch_exception, b); | |
10899 | } | |
10900 | ||
10901 | static void | |
a6d9a66e | 10902 | print_one_catch_exception (struct breakpoint *b, struct bp_location **last_loc) |
f7f9143b | 10903 | { |
a6d9a66e | 10904 | print_one_exception (ex_catch_exception, b, last_loc); |
f7f9143b JB |
10905 | } |
10906 | ||
10907 | static void | |
10908 | print_mention_catch_exception (struct breakpoint *b) | |
10909 | { | |
10910 | print_mention_exception (ex_catch_exception, b); | |
10911 | } | |
10912 | ||
6149aea9 PA |
10913 | static void |
10914 | print_recreate_catch_exception (struct breakpoint *b, struct ui_file *fp) | |
10915 | { | |
10916 | print_recreate_exception (ex_catch_exception, b, fp); | |
10917 | } | |
10918 | ||
f7f9143b JB |
10919 | static struct breakpoint_ops catch_exception_breakpoint_ops = |
10920 | { | |
ce78b96d JB |
10921 | NULL, /* insert */ |
10922 | NULL, /* remove */ | |
10923 | NULL, /* breakpoint_hit */ | |
e09342b5 | 10924 | NULL, /* resources_needed */ |
f7f9143b JB |
10925 | print_it_catch_exception, |
10926 | print_one_catch_exception, | |
6149aea9 PA |
10927 | print_mention_catch_exception, |
10928 | print_recreate_catch_exception | |
f7f9143b JB |
10929 | }; |
10930 | ||
10931 | /* Virtual table for "catch exception unhandled" breakpoints. */ | |
10932 | ||
10933 | static enum print_stop_action | |
10934 | print_it_catch_exception_unhandled (struct breakpoint *b) | |
10935 | { | |
10936 | return print_it_exception (ex_catch_exception_unhandled, b); | |
10937 | } | |
10938 | ||
10939 | static void | |
a6d9a66e UW |
10940 | print_one_catch_exception_unhandled (struct breakpoint *b, |
10941 | struct bp_location **last_loc) | |
f7f9143b | 10942 | { |
a6d9a66e | 10943 | print_one_exception (ex_catch_exception_unhandled, b, last_loc); |
f7f9143b JB |
10944 | } |
10945 | ||
10946 | static void | |
10947 | print_mention_catch_exception_unhandled (struct breakpoint *b) | |
10948 | { | |
10949 | print_mention_exception (ex_catch_exception_unhandled, b); | |
10950 | } | |
10951 | ||
6149aea9 PA |
10952 | static void |
10953 | print_recreate_catch_exception_unhandled (struct breakpoint *b, | |
10954 | struct ui_file *fp) | |
10955 | { | |
10956 | print_recreate_exception (ex_catch_exception_unhandled, b, fp); | |
10957 | } | |
10958 | ||
f7f9143b | 10959 | static struct breakpoint_ops catch_exception_unhandled_breakpoint_ops = { |
ce78b96d JB |
10960 | NULL, /* insert */ |
10961 | NULL, /* remove */ | |
10962 | NULL, /* breakpoint_hit */ | |
e09342b5 | 10963 | NULL, /* resources_needed */ |
f7f9143b JB |
10964 | print_it_catch_exception_unhandled, |
10965 | print_one_catch_exception_unhandled, | |
6149aea9 PA |
10966 | print_mention_catch_exception_unhandled, |
10967 | print_recreate_catch_exception_unhandled | |
f7f9143b JB |
10968 | }; |
10969 | ||
10970 | /* Virtual table for "catch assert" breakpoints. */ | |
10971 | ||
10972 | static enum print_stop_action | |
10973 | print_it_catch_assert (struct breakpoint *b) | |
10974 | { | |
10975 | return print_it_exception (ex_catch_assert, b); | |
10976 | } | |
10977 | ||
10978 | static void | |
a6d9a66e | 10979 | print_one_catch_assert (struct breakpoint *b, struct bp_location **last_loc) |
f7f9143b | 10980 | { |
a6d9a66e | 10981 | print_one_exception (ex_catch_assert, b, last_loc); |
f7f9143b JB |
10982 | } |
10983 | ||
10984 | static void | |
10985 | print_mention_catch_assert (struct breakpoint *b) | |
10986 | { | |
10987 | print_mention_exception (ex_catch_assert, b); | |
10988 | } | |
10989 | ||
6149aea9 PA |
10990 | static void |
10991 | print_recreate_catch_assert (struct breakpoint *b, struct ui_file *fp) | |
10992 | { | |
10993 | print_recreate_exception (ex_catch_assert, b, fp); | |
10994 | } | |
10995 | ||
f7f9143b | 10996 | static struct breakpoint_ops catch_assert_breakpoint_ops = { |
ce78b96d JB |
10997 | NULL, /* insert */ |
10998 | NULL, /* remove */ | |
10999 | NULL, /* breakpoint_hit */ | |
e09342b5 | 11000 | NULL, /* resources_needed */ |
f7f9143b JB |
11001 | print_it_catch_assert, |
11002 | print_one_catch_assert, | |
6149aea9 PA |
11003 | print_mention_catch_assert, |
11004 | print_recreate_catch_assert | |
f7f9143b JB |
11005 | }; |
11006 | ||
11007 | /* Return non-zero if B is an Ada exception catchpoint. */ | |
11008 | ||
11009 | int | |
11010 | ada_exception_catchpoint_p (struct breakpoint *b) | |
11011 | { | |
11012 | return (b->ops == &catch_exception_breakpoint_ops | |
11013 | || b->ops == &catch_exception_unhandled_breakpoint_ops | |
11014 | || b->ops == &catch_assert_breakpoint_ops); | |
11015 | } | |
11016 | ||
f7f9143b JB |
11017 | /* Return a newly allocated copy of the first space-separated token |
11018 | in ARGSP, and then adjust ARGSP to point immediately after that | |
11019 | token. | |
11020 | ||
11021 | Return NULL if ARGPS does not contain any more tokens. */ | |
11022 | ||
11023 | static char * | |
11024 | ada_get_next_arg (char **argsp) | |
11025 | { | |
11026 | char *args = *argsp; | |
11027 | char *end; | |
11028 | char *result; | |
11029 | ||
11030 | /* Skip any leading white space. */ | |
11031 | ||
11032 | while (isspace (*args)) | |
11033 | args++; | |
11034 | ||
11035 | if (args[0] == '\0') | |
11036 | return NULL; /* No more arguments. */ | |
11037 | ||
11038 | /* Find the end of the current argument. */ | |
11039 | ||
11040 | end = args; | |
11041 | while (*end != '\0' && !isspace (*end)) | |
11042 | end++; | |
11043 | ||
11044 | /* Adjust ARGSP to point to the start of the next argument. */ | |
11045 | ||
11046 | *argsp = end; | |
11047 | ||
11048 | /* Make a copy of the current argument and return it. */ | |
11049 | ||
11050 | result = xmalloc (end - args + 1); | |
11051 | strncpy (result, args, end - args); | |
11052 | result[end - args] = '\0'; | |
11053 | ||
11054 | return result; | |
11055 | } | |
11056 | ||
11057 | /* Split the arguments specified in a "catch exception" command. | |
11058 | Set EX to the appropriate catchpoint type. | |
11059 | Set EXP_STRING to the name of the specific exception if | |
11060 | specified by the user. */ | |
11061 | ||
11062 | static void | |
11063 | catch_ada_exception_command_split (char *args, | |
11064 | enum exception_catchpoint_kind *ex, | |
11065 | char **exp_string) | |
11066 | { | |
11067 | struct cleanup *old_chain = make_cleanup (null_cleanup, NULL); | |
11068 | char *exception_name; | |
11069 | ||
11070 | exception_name = ada_get_next_arg (&args); | |
11071 | make_cleanup (xfree, exception_name); | |
11072 | ||
11073 | /* Check that we do not have any more arguments. Anything else | |
11074 | is unexpected. */ | |
11075 | ||
11076 | while (isspace (*args)) | |
11077 | args++; | |
11078 | ||
11079 | if (args[0] != '\0') | |
11080 | error (_("Junk at end of expression")); | |
11081 | ||
11082 | discard_cleanups (old_chain); | |
11083 | ||
11084 | if (exception_name == NULL) | |
11085 | { | |
11086 | /* Catch all exceptions. */ | |
11087 | *ex = ex_catch_exception; | |
11088 | *exp_string = NULL; | |
11089 | } | |
11090 | else if (strcmp (exception_name, "unhandled") == 0) | |
11091 | { | |
11092 | /* Catch unhandled exceptions. */ | |
11093 | *ex = ex_catch_exception_unhandled; | |
11094 | *exp_string = NULL; | |
11095 | } | |
11096 | else | |
11097 | { | |
11098 | /* Catch a specific exception. */ | |
11099 | *ex = ex_catch_exception; | |
11100 | *exp_string = exception_name; | |
11101 | } | |
11102 | } | |
11103 | ||
11104 | /* Return the name of the symbol on which we should break in order to | |
11105 | implement a catchpoint of the EX kind. */ | |
11106 | ||
11107 | static const char * | |
11108 | ada_exception_sym_name (enum exception_catchpoint_kind ex) | |
11109 | { | |
0259addd JB |
11110 | gdb_assert (exception_info != NULL); |
11111 | ||
f7f9143b JB |
11112 | switch (ex) |
11113 | { | |
11114 | case ex_catch_exception: | |
0259addd | 11115 | return (exception_info->catch_exception_sym); |
f7f9143b JB |
11116 | break; |
11117 | case ex_catch_exception_unhandled: | |
0259addd | 11118 | return (exception_info->catch_exception_unhandled_sym); |
f7f9143b JB |
11119 | break; |
11120 | case ex_catch_assert: | |
0259addd | 11121 | return (exception_info->catch_assert_sym); |
f7f9143b JB |
11122 | break; |
11123 | default: | |
11124 | internal_error (__FILE__, __LINE__, | |
11125 | _("unexpected catchpoint kind (%d)"), ex); | |
11126 | } | |
11127 | } | |
11128 | ||
11129 | /* Return the breakpoint ops "virtual table" used for catchpoints | |
11130 | of the EX kind. */ | |
11131 | ||
11132 | static struct breakpoint_ops * | |
4b9eee8c | 11133 | ada_exception_breakpoint_ops (enum exception_catchpoint_kind ex) |
f7f9143b JB |
11134 | { |
11135 | switch (ex) | |
11136 | { | |
11137 | case ex_catch_exception: | |
11138 | return (&catch_exception_breakpoint_ops); | |
11139 | break; | |
11140 | case ex_catch_exception_unhandled: | |
11141 | return (&catch_exception_unhandled_breakpoint_ops); | |
11142 | break; | |
11143 | case ex_catch_assert: | |
11144 | return (&catch_assert_breakpoint_ops); | |
11145 | break; | |
11146 | default: | |
11147 | internal_error (__FILE__, __LINE__, | |
11148 | _("unexpected catchpoint kind (%d)"), ex); | |
11149 | } | |
11150 | } | |
11151 | ||
11152 | /* Return the condition that will be used to match the current exception | |
11153 | being raised with the exception that the user wants to catch. This | |
11154 | assumes that this condition is used when the inferior just triggered | |
11155 | an exception catchpoint. | |
11156 | ||
11157 | The string returned is a newly allocated string that needs to be | |
11158 | deallocated later. */ | |
11159 | ||
11160 | static char * | |
11161 | ada_exception_catchpoint_cond_string (const char *exp_string) | |
11162 | { | |
3d0b0fa3 JB |
11163 | int i; |
11164 | ||
0963b4bd | 11165 | /* The standard exceptions are a special case. They are defined in |
3d0b0fa3 JB |
11166 | runtime units that have been compiled without debugging info; if |
11167 | EXP_STRING is the not-fully-qualified name of a standard | |
11168 | exception (e.g. "constraint_error") then, during the evaluation | |
11169 | of the condition expression, the symbol lookup on this name would | |
0963b4bd | 11170 | *not* return this standard exception. The catchpoint condition |
3d0b0fa3 JB |
11171 | may then be set only on user-defined exceptions which have the |
11172 | same not-fully-qualified name (e.g. my_package.constraint_error). | |
11173 | ||
11174 | To avoid this unexcepted behavior, these standard exceptions are | |
0963b4bd | 11175 | systematically prefixed by "standard". This means that "catch |
3d0b0fa3 JB |
11176 | exception constraint_error" is rewritten into "catch exception |
11177 | standard.constraint_error". | |
11178 | ||
11179 | If an exception named contraint_error is defined in another package of | |
11180 | the inferior program, then the only way to specify this exception as a | |
11181 | breakpoint condition is to use its fully-qualified named: | |
11182 | e.g. my_package.constraint_error. */ | |
11183 | ||
11184 | for (i = 0; i < sizeof (standard_exc) / sizeof (char *); i++) | |
11185 | { | |
11186 | if (strcmp (standard_exc [i], exp_string) == 0) | |
11187 | { | |
11188 | return xstrprintf ("long_integer (e) = long_integer (&standard.%s)", | |
11189 | exp_string); | |
11190 | } | |
11191 | } | |
f7f9143b JB |
11192 | return xstrprintf ("long_integer (e) = long_integer (&%s)", exp_string); |
11193 | } | |
11194 | ||
11195 | /* Return the expression corresponding to COND_STRING evaluated at SAL. */ | |
11196 | ||
11197 | static struct expression * | |
11198 | ada_parse_catchpoint_condition (char *cond_string, | |
11199 | struct symtab_and_line sal) | |
11200 | { | |
11201 | return (parse_exp_1 (&cond_string, block_for_pc (sal.pc), 0)); | |
11202 | } | |
11203 | ||
11204 | /* Return the symtab_and_line that should be used to insert an exception | |
11205 | catchpoint of the TYPE kind. | |
11206 | ||
11207 | EX_STRING should contain the name of a specific exception | |
11208 | that the catchpoint should catch, or NULL otherwise. | |
11209 | ||
11210 | The idea behind all the remaining parameters is that their names match | |
11211 | the name of certain fields in the breakpoint structure that are used to | |
11212 | handle exception catchpoints. This function returns the value to which | |
11213 | these fields should be set, depending on the type of catchpoint we need | |
11214 | to create. | |
11215 | ||
11216 | If COND and COND_STRING are both non-NULL, any value they might | |
11217 | hold will be free'ed, and then replaced by newly allocated ones. | |
11218 | These parameters are left untouched otherwise. */ | |
11219 | ||
11220 | static struct symtab_and_line | |
11221 | ada_exception_sal (enum exception_catchpoint_kind ex, char *exp_string, | |
11222 | char **addr_string, char **cond_string, | |
11223 | struct expression **cond, struct breakpoint_ops **ops) | |
11224 | { | |
11225 | const char *sym_name; | |
11226 | struct symbol *sym; | |
11227 | struct symtab_and_line sal; | |
11228 | ||
0259addd JB |
11229 | /* First, find out which exception support info to use. */ |
11230 | ada_exception_support_info_sniffer (); | |
11231 | ||
11232 | /* Then lookup the function on which we will break in order to catch | |
f7f9143b JB |
11233 | the Ada exceptions requested by the user. */ |
11234 | ||
11235 | sym_name = ada_exception_sym_name (ex); | |
11236 | sym = standard_lookup (sym_name, NULL, VAR_DOMAIN); | |
11237 | ||
11238 | /* The symbol we're looking up is provided by a unit in the GNAT runtime | |
11239 | that should be compiled with debugging information. As a result, we | |
11240 | expect to find that symbol in the symtabs. If we don't find it, then | |
11241 | the target most likely does not support Ada exceptions, or we cannot | |
11242 | insert exception breakpoints yet, because the GNAT runtime hasn't been | |
11243 | loaded yet. */ | |
11244 | ||
11245 | /* brobecker/2006-12-26: It is conceivable that the runtime was compiled | |
11246 | in such a way that no debugging information is produced for the symbol | |
11247 | we are looking for. In this case, we could search the minimal symbols | |
11248 | as a fall-back mechanism. This would still be operating in degraded | |
11249 | mode, however, as we would still be missing the debugging information | |
11250 | that is needed in order to extract the name of the exception being | |
11251 | raised (this name is printed in the catchpoint message, and is also | |
11252 | used when trying to catch a specific exception). We do not handle | |
11253 | this case for now. */ | |
11254 | ||
11255 | if (sym == NULL) | |
0259addd | 11256 | error (_("Unable to break on '%s' in this configuration."), sym_name); |
f7f9143b JB |
11257 | |
11258 | /* Make sure that the symbol we found corresponds to a function. */ | |
11259 | if (SYMBOL_CLASS (sym) != LOC_BLOCK) | |
11260 | error (_("Symbol \"%s\" is not a function (class = %d)"), | |
11261 | sym_name, SYMBOL_CLASS (sym)); | |
11262 | ||
11263 | sal = find_function_start_sal (sym, 1); | |
11264 | ||
11265 | /* Set ADDR_STRING. */ | |
11266 | ||
11267 | *addr_string = xstrdup (sym_name); | |
11268 | ||
11269 | /* Set the COND and COND_STRING (if not NULL). */ | |
11270 | ||
11271 | if (cond_string != NULL && cond != NULL) | |
11272 | { | |
11273 | if (*cond_string != NULL) | |
11274 | { | |
11275 | xfree (*cond_string); | |
11276 | *cond_string = NULL; | |
11277 | } | |
11278 | if (*cond != NULL) | |
11279 | { | |
11280 | xfree (*cond); | |
11281 | *cond = NULL; | |
11282 | } | |
11283 | if (exp_string != NULL) | |
11284 | { | |
11285 | *cond_string = ada_exception_catchpoint_cond_string (exp_string); | |
11286 | *cond = ada_parse_catchpoint_condition (*cond_string, sal); | |
11287 | } | |
11288 | } | |
11289 | ||
11290 | /* Set OPS. */ | |
4b9eee8c | 11291 | *ops = ada_exception_breakpoint_ops (ex); |
f7f9143b JB |
11292 | |
11293 | return sal; | |
11294 | } | |
11295 | ||
11296 | /* Parse the arguments (ARGS) of the "catch exception" command. | |
11297 | ||
11298 | Set TYPE to the appropriate exception catchpoint type. | |
11299 | If the user asked the catchpoint to catch only a specific | |
11300 | exception, then save the exception name in ADDR_STRING. | |
11301 | ||
11302 | See ada_exception_sal for a description of all the remaining | |
11303 | function arguments of this function. */ | |
11304 | ||
11305 | struct symtab_and_line | |
11306 | ada_decode_exception_location (char *args, char **addr_string, | |
11307 | char **exp_string, char **cond_string, | |
11308 | struct expression **cond, | |
11309 | struct breakpoint_ops **ops) | |
11310 | { | |
11311 | enum exception_catchpoint_kind ex; | |
11312 | ||
11313 | catch_ada_exception_command_split (args, &ex, exp_string); | |
11314 | return ada_exception_sal (ex, *exp_string, addr_string, cond_string, | |
11315 | cond, ops); | |
11316 | } | |
11317 | ||
11318 | struct symtab_and_line | |
11319 | ada_decode_assert_location (char *args, char **addr_string, | |
11320 | struct breakpoint_ops **ops) | |
11321 | { | |
11322 | /* Check that no argument where provided at the end of the command. */ | |
11323 | ||
11324 | if (args != NULL) | |
11325 | { | |
11326 | while (isspace (*args)) | |
11327 | args++; | |
11328 | if (*args != '\0') | |
11329 | error (_("Junk at end of arguments.")); | |
11330 | } | |
11331 | ||
11332 | return ada_exception_sal (ex_catch_assert, NULL, addr_string, NULL, NULL, | |
11333 | ops); | |
11334 | } | |
11335 | ||
4c4b4cd2 PH |
11336 | /* Operators */ |
11337 | /* Information about operators given special treatment in functions | |
11338 | below. */ | |
11339 | /* Format: OP_DEFN (<operator>, <operator length>, <# args>, <binop>). */ | |
11340 | ||
11341 | #define ADA_OPERATORS \ | |
11342 | OP_DEFN (OP_VAR_VALUE, 4, 0, 0) \ | |
11343 | OP_DEFN (BINOP_IN_BOUNDS, 3, 2, 0) \ | |
11344 | OP_DEFN (TERNOP_IN_RANGE, 1, 3, 0) \ | |
11345 | OP_DEFN (OP_ATR_FIRST, 1, 2, 0) \ | |
11346 | OP_DEFN (OP_ATR_LAST, 1, 2, 0) \ | |
11347 | OP_DEFN (OP_ATR_LENGTH, 1, 2, 0) \ | |
11348 | OP_DEFN (OP_ATR_IMAGE, 1, 2, 0) \ | |
11349 | OP_DEFN (OP_ATR_MAX, 1, 3, 0) \ | |
11350 | OP_DEFN (OP_ATR_MIN, 1, 3, 0) \ | |
11351 | OP_DEFN (OP_ATR_MODULUS, 1, 1, 0) \ | |
11352 | OP_DEFN (OP_ATR_POS, 1, 2, 0) \ | |
11353 | OP_DEFN (OP_ATR_SIZE, 1, 1, 0) \ | |
11354 | OP_DEFN (OP_ATR_TAG, 1, 1, 0) \ | |
11355 | OP_DEFN (OP_ATR_VAL, 1, 2, 0) \ | |
11356 | OP_DEFN (UNOP_QUAL, 3, 1, 0) \ | |
52ce6436 PH |
11357 | OP_DEFN (UNOP_IN_RANGE, 3, 1, 0) \ |
11358 | OP_DEFN (OP_OTHERS, 1, 1, 0) \ | |
11359 | OP_DEFN (OP_POSITIONAL, 3, 1, 0) \ | |
11360 | OP_DEFN (OP_DISCRETE_RANGE, 1, 2, 0) | |
4c4b4cd2 PH |
11361 | |
11362 | static void | |
554794dc SDJ |
11363 | ada_operator_length (const struct expression *exp, int pc, int *oplenp, |
11364 | int *argsp) | |
4c4b4cd2 PH |
11365 | { |
11366 | switch (exp->elts[pc - 1].opcode) | |
11367 | { | |
76a01679 | 11368 | default: |
4c4b4cd2 PH |
11369 | operator_length_standard (exp, pc, oplenp, argsp); |
11370 | break; | |
11371 | ||
11372 | #define OP_DEFN(op, len, args, binop) \ | |
11373 | case op: *oplenp = len; *argsp = args; break; | |
11374 | ADA_OPERATORS; | |
11375 | #undef OP_DEFN | |
52ce6436 PH |
11376 | |
11377 | case OP_AGGREGATE: | |
11378 | *oplenp = 3; | |
11379 | *argsp = longest_to_int (exp->elts[pc - 2].longconst); | |
11380 | break; | |
11381 | ||
11382 | case OP_CHOICES: | |
11383 | *oplenp = 3; | |
11384 | *argsp = longest_to_int (exp->elts[pc - 2].longconst) + 1; | |
11385 | break; | |
4c4b4cd2 PH |
11386 | } |
11387 | } | |
11388 | ||
c0201579 JK |
11389 | /* Implementation of the exp_descriptor method operator_check. */ |
11390 | ||
11391 | static int | |
11392 | ada_operator_check (struct expression *exp, int pos, | |
11393 | int (*objfile_func) (struct objfile *objfile, void *data), | |
11394 | void *data) | |
11395 | { | |
11396 | const union exp_element *const elts = exp->elts; | |
11397 | struct type *type = NULL; | |
11398 | ||
11399 | switch (elts[pos].opcode) | |
11400 | { | |
11401 | case UNOP_IN_RANGE: | |
11402 | case UNOP_QUAL: | |
11403 | type = elts[pos + 1].type; | |
11404 | break; | |
11405 | ||
11406 | default: | |
11407 | return operator_check_standard (exp, pos, objfile_func, data); | |
11408 | } | |
11409 | ||
11410 | /* Invoke callbacks for TYPE and OBJFILE if they were set as non-NULL. */ | |
11411 | ||
11412 | if (type && TYPE_OBJFILE (type) | |
11413 | && (*objfile_func) (TYPE_OBJFILE (type), data)) | |
11414 | return 1; | |
11415 | ||
11416 | return 0; | |
11417 | } | |
11418 | ||
4c4b4cd2 PH |
11419 | static char * |
11420 | ada_op_name (enum exp_opcode opcode) | |
11421 | { | |
11422 | switch (opcode) | |
11423 | { | |
76a01679 | 11424 | default: |
4c4b4cd2 | 11425 | return op_name_standard (opcode); |
52ce6436 | 11426 | |
4c4b4cd2 PH |
11427 | #define OP_DEFN(op, len, args, binop) case op: return #op; |
11428 | ADA_OPERATORS; | |
11429 | #undef OP_DEFN | |
52ce6436 PH |
11430 | |
11431 | case OP_AGGREGATE: | |
11432 | return "OP_AGGREGATE"; | |
11433 | case OP_CHOICES: | |
11434 | return "OP_CHOICES"; | |
11435 | case OP_NAME: | |
11436 | return "OP_NAME"; | |
4c4b4cd2 PH |
11437 | } |
11438 | } | |
11439 | ||
11440 | /* As for operator_length, but assumes PC is pointing at the first | |
11441 | element of the operator, and gives meaningful results only for the | |
52ce6436 | 11442 | Ada-specific operators, returning 0 for *OPLENP and *ARGSP otherwise. */ |
4c4b4cd2 PH |
11443 | |
11444 | static void | |
76a01679 JB |
11445 | ada_forward_operator_length (struct expression *exp, int pc, |
11446 | int *oplenp, int *argsp) | |
4c4b4cd2 | 11447 | { |
76a01679 | 11448 | switch (exp->elts[pc].opcode) |
4c4b4cd2 PH |
11449 | { |
11450 | default: | |
11451 | *oplenp = *argsp = 0; | |
11452 | break; | |
52ce6436 | 11453 | |
4c4b4cd2 PH |
11454 | #define OP_DEFN(op, len, args, binop) \ |
11455 | case op: *oplenp = len; *argsp = args; break; | |
11456 | ADA_OPERATORS; | |
11457 | #undef OP_DEFN | |
52ce6436 PH |
11458 | |
11459 | case OP_AGGREGATE: | |
11460 | *oplenp = 3; | |
11461 | *argsp = longest_to_int (exp->elts[pc + 1].longconst); | |
11462 | break; | |
11463 | ||
11464 | case OP_CHOICES: | |
11465 | *oplenp = 3; | |
11466 | *argsp = longest_to_int (exp->elts[pc + 1].longconst) + 1; | |
11467 | break; | |
11468 | ||
11469 | case OP_STRING: | |
11470 | case OP_NAME: | |
11471 | { | |
11472 | int len = longest_to_int (exp->elts[pc + 1].longconst); | |
5b4ee69b | 11473 | |
52ce6436 PH |
11474 | *oplenp = 4 + BYTES_TO_EXP_ELEM (len + 1); |
11475 | *argsp = 0; | |
11476 | break; | |
11477 | } | |
4c4b4cd2 PH |
11478 | } |
11479 | } | |
11480 | ||
11481 | static int | |
11482 | ada_dump_subexp_body (struct expression *exp, struct ui_file *stream, int elt) | |
11483 | { | |
11484 | enum exp_opcode op = exp->elts[elt].opcode; | |
11485 | int oplen, nargs; | |
11486 | int pc = elt; | |
11487 | int i; | |
76a01679 | 11488 | |
4c4b4cd2 PH |
11489 | ada_forward_operator_length (exp, elt, &oplen, &nargs); |
11490 | ||
76a01679 | 11491 | switch (op) |
4c4b4cd2 | 11492 | { |
76a01679 | 11493 | /* Ada attributes ('Foo). */ |
4c4b4cd2 PH |
11494 | case OP_ATR_FIRST: |
11495 | case OP_ATR_LAST: | |
11496 | case OP_ATR_LENGTH: | |
11497 | case OP_ATR_IMAGE: | |
11498 | case OP_ATR_MAX: | |
11499 | case OP_ATR_MIN: | |
11500 | case OP_ATR_MODULUS: | |
11501 | case OP_ATR_POS: | |
11502 | case OP_ATR_SIZE: | |
11503 | case OP_ATR_TAG: | |
11504 | case OP_ATR_VAL: | |
11505 | break; | |
11506 | ||
11507 | case UNOP_IN_RANGE: | |
11508 | case UNOP_QUAL: | |
323e0a4a AC |
11509 | /* XXX: gdb_sprint_host_address, type_sprint */ |
11510 | fprintf_filtered (stream, _("Type @")); | |
4c4b4cd2 PH |
11511 | gdb_print_host_address (exp->elts[pc + 1].type, stream); |
11512 | fprintf_filtered (stream, " ("); | |
11513 | type_print (exp->elts[pc + 1].type, NULL, stream, 0); | |
11514 | fprintf_filtered (stream, ")"); | |
11515 | break; | |
11516 | case BINOP_IN_BOUNDS: | |
52ce6436 PH |
11517 | fprintf_filtered (stream, " (%d)", |
11518 | longest_to_int (exp->elts[pc + 2].longconst)); | |
4c4b4cd2 PH |
11519 | break; |
11520 | case TERNOP_IN_RANGE: | |
11521 | break; | |
11522 | ||
52ce6436 PH |
11523 | case OP_AGGREGATE: |
11524 | case OP_OTHERS: | |
11525 | case OP_DISCRETE_RANGE: | |
11526 | case OP_POSITIONAL: | |
11527 | case OP_CHOICES: | |
11528 | break; | |
11529 | ||
11530 | case OP_NAME: | |
11531 | case OP_STRING: | |
11532 | { | |
11533 | char *name = &exp->elts[elt + 2].string; | |
11534 | int len = longest_to_int (exp->elts[elt + 1].longconst); | |
5b4ee69b | 11535 | |
52ce6436 PH |
11536 | fprintf_filtered (stream, "Text: `%.*s'", len, name); |
11537 | break; | |
11538 | } | |
11539 | ||
4c4b4cd2 PH |
11540 | default: |
11541 | return dump_subexp_body_standard (exp, stream, elt); | |
11542 | } | |
11543 | ||
11544 | elt += oplen; | |
11545 | for (i = 0; i < nargs; i += 1) | |
11546 | elt = dump_subexp (exp, stream, elt); | |
11547 | ||
11548 | return elt; | |
11549 | } | |
11550 | ||
11551 | /* The Ada extension of print_subexp (q.v.). */ | |
11552 | ||
76a01679 JB |
11553 | static void |
11554 | ada_print_subexp (struct expression *exp, int *pos, | |
11555 | struct ui_file *stream, enum precedence prec) | |
4c4b4cd2 | 11556 | { |
52ce6436 | 11557 | int oplen, nargs, i; |
4c4b4cd2 PH |
11558 | int pc = *pos; |
11559 | enum exp_opcode op = exp->elts[pc].opcode; | |
11560 | ||
11561 | ada_forward_operator_length (exp, pc, &oplen, &nargs); | |
11562 | ||
52ce6436 | 11563 | *pos += oplen; |
4c4b4cd2 PH |
11564 | switch (op) |
11565 | { | |
11566 | default: | |
52ce6436 | 11567 | *pos -= oplen; |
4c4b4cd2 PH |
11568 | print_subexp_standard (exp, pos, stream, prec); |
11569 | return; | |
11570 | ||
11571 | case OP_VAR_VALUE: | |
4c4b4cd2 PH |
11572 | fputs_filtered (SYMBOL_NATURAL_NAME (exp->elts[pc + 2].symbol), stream); |
11573 | return; | |
11574 | ||
11575 | case BINOP_IN_BOUNDS: | |
323e0a4a | 11576 | /* XXX: sprint_subexp */ |
4c4b4cd2 | 11577 | print_subexp (exp, pos, stream, PREC_SUFFIX); |
0b48a291 | 11578 | fputs_filtered (" in ", stream); |
4c4b4cd2 | 11579 | print_subexp (exp, pos, stream, PREC_SUFFIX); |
0b48a291 | 11580 | fputs_filtered ("'range", stream); |
4c4b4cd2 | 11581 | if (exp->elts[pc + 1].longconst > 1) |
76a01679 JB |
11582 | fprintf_filtered (stream, "(%ld)", |
11583 | (long) exp->elts[pc + 1].longconst); | |
4c4b4cd2 PH |
11584 | return; |
11585 | ||
11586 | case TERNOP_IN_RANGE: | |
4c4b4cd2 | 11587 | if (prec >= PREC_EQUAL) |
76a01679 | 11588 | fputs_filtered ("(", stream); |
323e0a4a | 11589 | /* XXX: sprint_subexp */ |
4c4b4cd2 | 11590 | print_subexp (exp, pos, stream, PREC_SUFFIX); |
0b48a291 | 11591 | fputs_filtered (" in ", stream); |
4c4b4cd2 PH |
11592 | print_subexp (exp, pos, stream, PREC_EQUAL); |
11593 | fputs_filtered (" .. ", stream); | |
11594 | print_subexp (exp, pos, stream, PREC_EQUAL); | |
11595 | if (prec >= PREC_EQUAL) | |
76a01679 JB |
11596 | fputs_filtered (")", stream); |
11597 | return; | |
4c4b4cd2 PH |
11598 | |
11599 | case OP_ATR_FIRST: | |
11600 | case OP_ATR_LAST: | |
11601 | case OP_ATR_LENGTH: | |
11602 | case OP_ATR_IMAGE: | |
11603 | case OP_ATR_MAX: | |
11604 | case OP_ATR_MIN: | |
11605 | case OP_ATR_MODULUS: | |
11606 | case OP_ATR_POS: | |
11607 | case OP_ATR_SIZE: | |
11608 | case OP_ATR_TAG: | |
11609 | case OP_ATR_VAL: | |
4c4b4cd2 | 11610 | if (exp->elts[*pos].opcode == OP_TYPE) |
76a01679 JB |
11611 | { |
11612 | if (TYPE_CODE (exp->elts[*pos + 1].type) != TYPE_CODE_VOID) | |
11613 | LA_PRINT_TYPE (exp->elts[*pos + 1].type, "", stream, 0, 0); | |
11614 | *pos += 3; | |
11615 | } | |
4c4b4cd2 | 11616 | else |
76a01679 | 11617 | print_subexp (exp, pos, stream, PREC_SUFFIX); |
4c4b4cd2 PH |
11618 | fprintf_filtered (stream, "'%s", ada_attribute_name (op)); |
11619 | if (nargs > 1) | |
76a01679 JB |
11620 | { |
11621 | int tem; | |
5b4ee69b | 11622 | |
76a01679 JB |
11623 | for (tem = 1; tem < nargs; tem += 1) |
11624 | { | |
11625 | fputs_filtered ((tem == 1) ? " (" : ", ", stream); | |
11626 | print_subexp (exp, pos, stream, PREC_ABOVE_COMMA); | |
11627 | } | |
11628 | fputs_filtered (")", stream); | |
11629 | } | |
4c4b4cd2 | 11630 | return; |
14f9c5c9 | 11631 | |
4c4b4cd2 | 11632 | case UNOP_QUAL: |
4c4b4cd2 PH |
11633 | type_print (exp->elts[pc + 1].type, "", stream, 0); |
11634 | fputs_filtered ("'(", stream); | |
11635 | print_subexp (exp, pos, stream, PREC_PREFIX); | |
11636 | fputs_filtered (")", stream); | |
11637 | return; | |
14f9c5c9 | 11638 | |
4c4b4cd2 | 11639 | case UNOP_IN_RANGE: |
323e0a4a | 11640 | /* XXX: sprint_subexp */ |
4c4b4cd2 | 11641 | print_subexp (exp, pos, stream, PREC_SUFFIX); |
0b48a291 | 11642 | fputs_filtered (" in ", stream); |
4c4b4cd2 PH |
11643 | LA_PRINT_TYPE (exp->elts[pc + 1].type, "", stream, 1, 0); |
11644 | return; | |
52ce6436 PH |
11645 | |
11646 | case OP_DISCRETE_RANGE: | |
11647 | print_subexp (exp, pos, stream, PREC_SUFFIX); | |
11648 | fputs_filtered ("..", stream); | |
11649 | print_subexp (exp, pos, stream, PREC_SUFFIX); | |
11650 | return; | |
11651 | ||
11652 | case OP_OTHERS: | |
11653 | fputs_filtered ("others => ", stream); | |
11654 | print_subexp (exp, pos, stream, PREC_SUFFIX); | |
11655 | return; | |
11656 | ||
11657 | case OP_CHOICES: | |
11658 | for (i = 0; i < nargs-1; i += 1) | |
11659 | { | |
11660 | if (i > 0) | |
11661 | fputs_filtered ("|", stream); | |
11662 | print_subexp (exp, pos, stream, PREC_SUFFIX); | |
11663 | } | |
11664 | fputs_filtered (" => ", stream); | |
11665 | print_subexp (exp, pos, stream, PREC_SUFFIX); | |
11666 | return; | |
11667 | ||
11668 | case OP_POSITIONAL: | |
11669 | print_subexp (exp, pos, stream, PREC_SUFFIX); | |
11670 | return; | |
11671 | ||
11672 | case OP_AGGREGATE: | |
11673 | fputs_filtered ("(", stream); | |
11674 | for (i = 0; i < nargs; i += 1) | |
11675 | { | |
11676 | if (i > 0) | |
11677 | fputs_filtered (", ", stream); | |
11678 | print_subexp (exp, pos, stream, PREC_SUFFIX); | |
11679 | } | |
11680 | fputs_filtered (")", stream); | |
11681 | return; | |
4c4b4cd2 PH |
11682 | } |
11683 | } | |
14f9c5c9 AS |
11684 | |
11685 | /* Table mapping opcodes into strings for printing operators | |
11686 | and precedences of the operators. */ | |
11687 | ||
d2e4a39e AS |
11688 | static const struct op_print ada_op_print_tab[] = { |
11689 | {":=", BINOP_ASSIGN, PREC_ASSIGN, 1}, | |
11690 | {"or else", BINOP_LOGICAL_OR, PREC_LOGICAL_OR, 0}, | |
11691 | {"and then", BINOP_LOGICAL_AND, PREC_LOGICAL_AND, 0}, | |
11692 | {"or", BINOP_BITWISE_IOR, PREC_BITWISE_IOR, 0}, | |
11693 | {"xor", BINOP_BITWISE_XOR, PREC_BITWISE_XOR, 0}, | |
11694 | {"and", BINOP_BITWISE_AND, PREC_BITWISE_AND, 0}, | |
11695 | {"=", BINOP_EQUAL, PREC_EQUAL, 0}, | |
11696 | {"/=", BINOP_NOTEQUAL, PREC_EQUAL, 0}, | |
11697 | {"<=", BINOP_LEQ, PREC_ORDER, 0}, | |
11698 | {">=", BINOP_GEQ, PREC_ORDER, 0}, | |
11699 | {">", BINOP_GTR, PREC_ORDER, 0}, | |
11700 | {"<", BINOP_LESS, PREC_ORDER, 0}, | |
11701 | {">>", BINOP_RSH, PREC_SHIFT, 0}, | |
11702 | {"<<", BINOP_LSH, PREC_SHIFT, 0}, | |
11703 | {"+", BINOP_ADD, PREC_ADD, 0}, | |
11704 | {"-", BINOP_SUB, PREC_ADD, 0}, | |
11705 | {"&", BINOP_CONCAT, PREC_ADD, 0}, | |
11706 | {"*", BINOP_MUL, PREC_MUL, 0}, | |
11707 | {"/", BINOP_DIV, PREC_MUL, 0}, | |
11708 | {"rem", BINOP_REM, PREC_MUL, 0}, | |
11709 | {"mod", BINOP_MOD, PREC_MUL, 0}, | |
11710 | {"**", BINOP_EXP, PREC_REPEAT, 0}, | |
11711 | {"@", BINOP_REPEAT, PREC_REPEAT, 0}, | |
11712 | {"-", UNOP_NEG, PREC_PREFIX, 0}, | |
11713 | {"+", UNOP_PLUS, PREC_PREFIX, 0}, | |
11714 | {"not ", UNOP_LOGICAL_NOT, PREC_PREFIX, 0}, | |
11715 | {"not ", UNOP_COMPLEMENT, PREC_PREFIX, 0}, | |
11716 | {"abs ", UNOP_ABS, PREC_PREFIX, 0}, | |
4c4b4cd2 PH |
11717 | {".all", UNOP_IND, PREC_SUFFIX, 1}, |
11718 | {"'access", UNOP_ADDR, PREC_SUFFIX, 1}, | |
11719 | {"'size", OP_ATR_SIZE, PREC_SUFFIX, 1}, | |
d2e4a39e | 11720 | {NULL, 0, 0, 0} |
14f9c5c9 AS |
11721 | }; |
11722 | \f | |
72d5681a PH |
11723 | enum ada_primitive_types { |
11724 | ada_primitive_type_int, | |
11725 | ada_primitive_type_long, | |
11726 | ada_primitive_type_short, | |
11727 | ada_primitive_type_char, | |
11728 | ada_primitive_type_float, | |
11729 | ada_primitive_type_double, | |
11730 | ada_primitive_type_void, | |
11731 | ada_primitive_type_long_long, | |
11732 | ada_primitive_type_long_double, | |
11733 | ada_primitive_type_natural, | |
11734 | ada_primitive_type_positive, | |
11735 | ada_primitive_type_system_address, | |
11736 | nr_ada_primitive_types | |
11737 | }; | |
6c038f32 PH |
11738 | |
11739 | static void | |
d4a9a881 | 11740 | ada_language_arch_info (struct gdbarch *gdbarch, |
72d5681a PH |
11741 | struct language_arch_info *lai) |
11742 | { | |
d4a9a881 | 11743 | const struct builtin_type *builtin = builtin_type (gdbarch); |
5b4ee69b | 11744 | |
72d5681a | 11745 | lai->primitive_type_vector |
d4a9a881 | 11746 | = GDBARCH_OBSTACK_CALLOC (gdbarch, nr_ada_primitive_types + 1, |
72d5681a | 11747 | struct type *); |
e9bb382b UW |
11748 | |
11749 | lai->primitive_type_vector [ada_primitive_type_int] | |
11750 | = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch), | |
11751 | 0, "integer"); | |
11752 | lai->primitive_type_vector [ada_primitive_type_long] | |
11753 | = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch), | |
11754 | 0, "long_integer"); | |
11755 | lai->primitive_type_vector [ada_primitive_type_short] | |
11756 | = arch_integer_type (gdbarch, gdbarch_short_bit (gdbarch), | |
11757 | 0, "short_integer"); | |
11758 | lai->string_char_type | |
11759 | = lai->primitive_type_vector [ada_primitive_type_char] | |
11760 | = arch_integer_type (gdbarch, TARGET_CHAR_BIT, 0, "character"); | |
11761 | lai->primitive_type_vector [ada_primitive_type_float] | |
11762 | = arch_float_type (gdbarch, gdbarch_float_bit (gdbarch), | |
11763 | "float", NULL); | |
11764 | lai->primitive_type_vector [ada_primitive_type_double] | |
11765 | = arch_float_type (gdbarch, gdbarch_double_bit (gdbarch), | |
11766 | "long_float", NULL); | |
11767 | lai->primitive_type_vector [ada_primitive_type_long_long] | |
11768 | = arch_integer_type (gdbarch, gdbarch_long_long_bit (gdbarch), | |
11769 | 0, "long_long_integer"); | |
11770 | lai->primitive_type_vector [ada_primitive_type_long_double] | |
11771 | = arch_float_type (gdbarch, gdbarch_double_bit (gdbarch), | |
11772 | "long_long_float", NULL); | |
11773 | lai->primitive_type_vector [ada_primitive_type_natural] | |
11774 | = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch), | |
11775 | 0, "natural"); | |
11776 | lai->primitive_type_vector [ada_primitive_type_positive] | |
11777 | = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch), | |
11778 | 0, "positive"); | |
11779 | lai->primitive_type_vector [ada_primitive_type_void] | |
11780 | = builtin->builtin_void; | |
11781 | ||
11782 | lai->primitive_type_vector [ada_primitive_type_system_address] | |
11783 | = lookup_pointer_type (arch_type (gdbarch, TYPE_CODE_VOID, 1, "void")); | |
72d5681a PH |
11784 | TYPE_NAME (lai->primitive_type_vector [ada_primitive_type_system_address]) |
11785 | = "system__address"; | |
fbb06eb1 | 11786 | |
47e729a8 | 11787 | lai->bool_type_symbol = NULL; |
fbb06eb1 | 11788 | lai->bool_type_default = builtin->builtin_bool; |
6c038f32 | 11789 | } |
6c038f32 PH |
11790 | \f |
11791 | /* Language vector */ | |
11792 | ||
11793 | /* Not really used, but needed in the ada_language_defn. */ | |
11794 | ||
11795 | static void | |
6c7a06a3 | 11796 | emit_char (int c, struct type *type, struct ui_file *stream, int quoter) |
6c038f32 | 11797 | { |
6c7a06a3 | 11798 | ada_emit_char (c, type, stream, quoter, 1); |
6c038f32 PH |
11799 | } |
11800 | ||
11801 | static int | |
11802 | parse (void) | |
11803 | { | |
11804 | warnings_issued = 0; | |
11805 | return ada_parse (); | |
11806 | } | |
11807 | ||
11808 | static const struct exp_descriptor ada_exp_descriptor = { | |
11809 | ada_print_subexp, | |
11810 | ada_operator_length, | |
c0201579 | 11811 | ada_operator_check, |
6c038f32 PH |
11812 | ada_op_name, |
11813 | ada_dump_subexp_body, | |
11814 | ada_evaluate_subexp | |
11815 | }; | |
11816 | ||
11817 | const struct language_defn ada_language_defn = { | |
11818 | "ada", /* Language name */ | |
11819 | language_ada, | |
6c038f32 PH |
11820 | range_check_off, |
11821 | type_check_off, | |
11822 | case_sensitive_on, /* Yes, Ada is case-insensitive, but | |
11823 | that's not quite what this means. */ | |
6c038f32 | 11824 | array_row_major, |
9a044a89 | 11825 | macro_expansion_no, |
6c038f32 PH |
11826 | &ada_exp_descriptor, |
11827 | parse, | |
11828 | ada_error, | |
11829 | resolve, | |
11830 | ada_printchar, /* Print a character constant */ | |
11831 | ada_printstr, /* Function to print string constant */ | |
11832 | emit_char, /* Function to print single char (not used) */ | |
6c038f32 | 11833 | ada_print_type, /* Print a type using appropriate syntax */ |
be942545 | 11834 | ada_print_typedef, /* Print a typedef using appropriate syntax */ |
6c038f32 PH |
11835 | ada_val_print, /* Print a value using appropriate syntax */ |
11836 | ada_value_print, /* Print a top-level value */ | |
11837 | NULL, /* Language specific skip_trampoline */ | |
2b2d9e11 | 11838 | NULL, /* name_of_this */ |
6c038f32 PH |
11839 | ada_lookup_symbol_nonlocal, /* Looking up non-local symbols. */ |
11840 | basic_lookup_transparent_type, /* lookup_transparent_type */ | |
11841 | ada_la_decode, /* Language specific symbol demangler */ | |
0963b4bd MS |
11842 | NULL, /* Language specific |
11843 | class_name_from_physname */ | |
6c038f32 PH |
11844 | ada_op_print_tab, /* expression operators for printing */ |
11845 | 0, /* c-style arrays */ | |
11846 | 1, /* String lower bound */ | |
6c038f32 | 11847 | ada_get_gdb_completer_word_break_characters, |
41d27058 | 11848 | ada_make_symbol_completion_list, |
72d5681a | 11849 | ada_language_arch_info, |
e79af960 | 11850 | ada_print_array_index, |
41f1b697 | 11851 | default_pass_by_reference, |
ae6a3a4c | 11852 | c_get_string, |
6c038f32 PH |
11853 | LANG_MAGIC |
11854 | }; | |
11855 | ||
2c0b251b PA |
11856 | /* Provide a prototype to silence -Wmissing-prototypes. */ |
11857 | extern initialize_file_ftype _initialize_ada_language; | |
11858 | ||
5bf03f13 JB |
11859 | /* Command-list for the "set/show ada" prefix command. */ |
11860 | static struct cmd_list_element *set_ada_list; | |
11861 | static struct cmd_list_element *show_ada_list; | |
11862 | ||
11863 | /* Implement the "set ada" prefix command. */ | |
11864 | ||
11865 | static void | |
11866 | set_ada_command (char *arg, int from_tty) | |
11867 | { | |
11868 | printf_unfiltered (_(\ | |
11869 | "\"set ada\" must be followed by the name of a setting.\n")); | |
11870 | help_list (set_ada_list, "set ada ", -1, gdb_stdout); | |
11871 | } | |
11872 | ||
11873 | /* Implement the "show ada" prefix command. */ | |
11874 | ||
11875 | static void | |
11876 | show_ada_command (char *args, int from_tty) | |
11877 | { | |
11878 | cmd_show_list (show_ada_list, from_tty, ""); | |
11879 | } | |
11880 | ||
d2e4a39e | 11881 | void |
6c038f32 | 11882 | _initialize_ada_language (void) |
14f9c5c9 | 11883 | { |
6c038f32 PH |
11884 | add_language (&ada_language_defn); |
11885 | ||
5bf03f13 JB |
11886 | add_prefix_cmd ("ada", no_class, set_ada_command, |
11887 | _("Prefix command for changing Ada-specfic settings"), | |
11888 | &set_ada_list, "set ada ", 0, &setlist); | |
11889 | ||
11890 | add_prefix_cmd ("ada", no_class, show_ada_command, | |
11891 | _("Generic command for showing Ada-specific settings."), | |
11892 | &show_ada_list, "show ada ", 0, &showlist); | |
11893 | ||
11894 | add_setshow_boolean_cmd ("trust-PAD-over-XVS", class_obscure, | |
11895 | &trust_pad_over_xvs, _("\ | |
11896 | Enable or disable an optimization trusting PAD types over XVS types"), _("\ | |
11897 | Show whether an optimization trusting PAD types over XVS types is activated"), | |
11898 | _("\ | |
11899 | This is related to the encoding used by the GNAT compiler. The debugger\n\ | |
11900 | should normally trust the contents of PAD types, but certain older versions\n\ | |
11901 | of GNAT have a bug that sometimes causes the information in the PAD type\n\ | |
11902 | to be incorrect. Turning this setting \"off\" allows the debugger to\n\ | |
11903 | work around this bug. It is always safe to turn this option \"off\", but\n\ | |
11904 | this incurs a slight performance penalty, so it is recommended to NOT change\n\ | |
11905 | this option to \"off\" unless necessary."), | |
11906 | NULL, NULL, &set_ada_list, &show_ada_list); | |
11907 | ||
6c038f32 | 11908 | varsize_limit = 65536; |
6c038f32 PH |
11909 | |
11910 | obstack_init (&symbol_list_obstack); | |
11911 | ||
11912 | decoded_names_store = htab_create_alloc | |
11913 | (256, htab_hash_string, (int (*)(const void *, const void *)) streq, | |
11914 | NULL, xcalloc, xfree); | |
6b69afc4 JB |
11915 | |
11916 | observer_attach_executable_changed (ada_executable_changed_observer); | |
e802dbe0 JB |
11917 | |
11918 | /* Setup per-inferior data. */ | |
11919 | observer_attach_inferior_exit (ada_inferior_exit); | |
11920 | ada_inferior_data | |
11921 | = register_inferior_data_with_cleanup (ada_inferior_data_cleanup); | |
14f9c5c9 | 11922 | } |