]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blame - gdb/ada-lang.c
Enable to link ARM object file that hasn't attribute section.
[thirdparty/binutils-gdb.git] / gdb / ada-lang.c
CommitLineData
6e681866 1/* Ada language support routines for GDB, the GNU debugger.
10a2c479 2
ecd75fc8 3 Copyright (C) 1992-2014 Free Software Foundation, Inc.
14f9c5c9 4
a9762ec7 5 This file is part of GDB.
14f9c5c9 6
a9762ec7
JB
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
14f9c5c9 11
a9762ec7
JB
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
14f9c5c9 16
a9762ec7
JB
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
14f9c5c9 19
96d887e8 20
4c4b4cd2 21#include "defs.h"
14f9c5c9 22#include <ctype.h>
14f9c5c9 23#include "demangle.h"
4c4b4cd2
PH
24#include "gdb_regex.h"
25#include "frame.h"
14f9c5c9
AS
26#include "symtab.h"
27#include "gdbtypes.h"
28#include "gdbcmd.h"
29#include "expression.h"
30#include "parser-defs.h"
31#include "language.h"
a53b64ea 32#include "varobj.h"
14f9c5c9
AS
33#include "c-lang.h"
34#include "inferior.h"
35#include "symfile.h"
36#include "objfiles.h"
37#include "breakpoint.h"
38#include "gdbcore.h"
4c4b4cd2
PH
39#include "hashtab.h"
40#include "gdb_obstack.h"
14f9c5c9 41#include "ada-lang.h"
4c4b4cd2 42#include "completer.h"
53ce3c39 43#include <sys/stat.h>
14f9c5c9 44#include "ui-out.h"
fe898f56 45#include "block.h"
04714b91 46#include "infcall.h"
de4f826b 47#include "dictionary.h"
f7f9143b
JB
48#include "annotate.h"
49#include "valprint.h"
9bbc9174 50#include "source.h"
0259addd 51#include "observer.h"
2ba95b9b 52#include "vec.h"
692465f1 53#include "stack.h"
fa864999 54#include "gdb_vecs.h"
79d43c61 55#include "typeprint.h"
14f9c5c9 56
ccefe4c4 57#include "psymtab.h"
40bc484c 58#include "value.h"
956a9fb9 59#include "mi/mi-common.h"
9ac4176b 60#include "arch-utils.h"
0fcd72ba 61#include "cli/cli-utils.h"
ccefe4c4 62
4c4b4cd2 63/* Define whether or not the C operator '/' truncates towards zero for
0963b4bd 64 differently signed operands (truncation direction is undefined in C).
4c4b4cd2
PH
65 Copied from valarith.c. */
66
67#ifndef TRUNCATION_TOWARDS_ZERO
68#define TRUNCATION_TOWARDS_ZERO ((-5 / 2) == -2)
69#endif
70
d2e4a39e 71static struct type *desc_base_type (struct type *);
14f9c5c9 72
d2e4a39e 73static struct type *desc_bounds_type (struct type *);
14f9c5c9 74
d2e4a39e 75static struct value *desc_bounds (struct value *);
14f9c5c9 76
d2e4a39e 77static int fat_pntr_bounds_bitpos (struct type *);
14f9c5c9 78
d2e4a39e 79static int fat_pntr_bounds_bitsize (struct type *);
14f9c5c9 80
556bdfd4 81static struct type *desc_data_target_type (struct type *);
14f9c5c9 82
d2e4a39e 83static struct value *desc_data (struct value *);
14f9c5c9 84
d2e4a39e 85static int fat_pntr_data_bitpos (struct type *);
14f9c5c9 86
d2e4a39e 87static int fat_pntr_data_bitsize (struct type *);
14f9c5c9 88
d2e4a39e 89static struct value *desc_one_bound (struct value *, int, int);
14f9c5c9 90
d2e4a39e 91static int desc_bound_bitpos (struct type *, int, int);
14f9c5c9 92
d2e4a39e 93static int desc_bound_bitsize (struct type *, int, int);
14f9c5c9 94
d2e4a39e 95static struct type *desc_index_type (struct type *, int);
14f9c5c9 96
d2e4a39e 97static int desc_arity (struct type *);
14f9c5c9 98
d2e4a39e 99static int ada_type_match (struct type *, struct type *, int);
14f9c5c9 100
d2e4a39e 101static int ada_args_match (struct symbol *, struct value **, int);
14f9c5c9 102
40658b94
PH
103static int full_match (const char *, const char *);
104
40bc484c 105static struct value *make_array_descriptor (struct type *, struct value *);
14f9c5c9 106
4c4b4cd2 107static void ada_add_block_symbols (struct obstack *,
f0c5f9b2 108 const struct block *, const char *,
2570f2b7 109 domain_enum, struct objfile *, int);
14f9c5c9 110
4c4b4cd2 111static int is_nonfunction (struct ada_symbol_info *, int);
14f9c5c9 112
76a01679 113static void add_defn_to_vec (struct obstack *, struct symbol *,
f0c5f9b2 114 const struct block *);
14f9c5c9 115
4c4b4cd2
PH
116static int num_defns_collected (struct obstack *);
117
118static struct ada_symbol_info *defns_collected (struct obstack *, int);
14f9c5c9 119
4c4b4cd2 120static struct value *resolve_subexp (struct expression **, int *, int,
76a01679 121 struct type *);
14f9c5c9 122
d2e4a39e 123static void replace_operator_with_call (struct expression **, int, int, int,
270140bd 124 struct symbol *, const struct block *);
14f9c5c9 125
d2e4a39e 126static int possible_user_operator_p (enum exp_opcode, struct value **);
14f9c5c9 127
4c4b4cd2
PH
128static char *ada_op_name (enum exp_opcode);
129
130static const char *ada_decoded_op_name (enum exp_opcode);
14f9c5c9 131
d2e4a39e 132static int numeric_type_p (struct type *);
14f9c5c9 133
d2e4a39e 134static int integer_type_p (struct type *);
14f9c5c9 135
d2e4a39e 136static int scalar_type_p (struct type *);
14f9c5c9 137
d2e4a39e 138static int discrete_type_p (struct type *);
14f9c5c9 139
aeb5907d
JB
140static enum ada_renaming_category parse_old_style_renaming (struct type *,
141 const char **,
142 int *,
143 const char **);
144
145static struct symbol *find_old_style_renaming_symbol (const char *,
270140bd 146 const struct block *);
aeb5907d 147
4c4b4cd2 148static struct type *ada_lookup_struct_elt_type (struct type *, char *,
76a01679 149 int, int, int *);
4c4b4cd2 150
d2e4a39e 151static struct value *evaluate_subexp_type (struct expression *, int *);
14f9c5c9 152
b4ba55a1
JB
153static struct type *ada_find_parallel_type_with_name (struct type *,
154 const char *);
155
d2e4a39e 156static int is_dynamic_field (struct type *, int);
14f9c5c9 157
10a2c479 158static struct type *to_fixed_variant_branch_type (struct type *,
fc1a4b47 159 const gdb_byte *,
4c4b4cd2
PH
160 CORE_ADDR, struct value *);
161
162static struct type *to_fixed_array_type (struct type *, struct value *, int);
14f9c5c9 163
28c85d6c 164static struct type *to_fixed_range_type (struct type *, struct value *);
14f9c5c9 165
d2e4a39e 166static struct type *to_static_fixed_type (struct type *);
f192137b 167static struct type *static_unwrap_type (struct type *type);
14f9c5c9 168
d2e4a39e 169static struct value *unwrap_value (struct value *);
14f9c5c9 170
ad82864c 171static struct type *constrained_packed_array_type (struct type *, long *);
14f9c5c9 172
ad82864c 173static struct type *decode_constrained_packed_array_type (struct type *);
14f9c5c9 174
ad82864c
JB
175static long decode_packed_array_bitsize (struct type *);
176
177static struct value *decode_constrained_packed_array (struct value *);
178
179static int ada_is_packed_array_type (struct type *);
180
181static int ada_is_unconstrained_packed_array_type (struct type *);
14f9c5c9 182
d2e4a39e 183static struct value *value_subscript_packed (struct value *, int,
4c4b4cd2 184 struct value **);
14f9c5c9 185
50810684 186static void move_bits (gdb_byte *, int, const gdb_byte *, int, int, int);
52ce6436 187
4c4b4cd2
PH
188static struct value *coerce_unspec_val_to_type (struct value *,
189 struct type *);
14f9c5c9 190
d2e4a39e 191static struct value *get_var_value (char *, char *);
14f9c5c9 192
d2e4a39e 193static int lesseq_defined_than (struct symbol *, struct symbol *);
14f9c5c9 194
d2e4a39e 195static int equiv_types (struct type *, struct type *);
14f9c5c9 196
d2e4a39e 197static int is_name_suffix (const char *);
14f9c5c9 198
73589123
PH
199static int advance_wild_match (const char **, const char *, int);
200
201static int wild_match (const char *, const char *);
14f9c5c9 202
d2e4a39e 203static struct value *ada_coerce_ref (struct value *);
14f9c5c9 204
4c4b4cd2
PH
205static LONGEST pos_atr (struct value *);
206
3cb382c9 207static struct value *value_pos_atr (struct type *, struct value *);
14f9c5c9 208
d2e4a39e 209static struct value *value_val_atr (struct type *, struct value *);
14f9c5c9 210
4c4b4cd2
PH
211static struct symbol *standard_lookup (const char *, const struct block *,
212 domain_enum);
14f9c5c9 213
4c4b4cd2
PH
214static struct value *ada_search_struct_field (char *, struct value *, int,
215 struct type *);
216
217static struct value *ada_value_primitive_field (struct value *, int, int,
218 struct type *);
219
0d5cff50 220static int find_struct_field (const char *, struct type *, int,
52ce6436 221 struct type **, int *, int *, int *, int *);
4c4b4cd2
PH
222
223static struct value *ada_to_fixed_value_create (struct type *, CORE_ADDR,
224 struct value *);
225
4c4b4cd2
PH
226static int ada_resolve_function (struct ada_symbol_info *, int,
227 struct value **, int, const char *,
228 struct type *);
229
4c4b4cd2
PH
230static int ada_is_direct_array_type (struct type *);
231
72d5681a
PH
232static void ada_language_arch_info (struct gdbarch *,
233 struct language_arch_info *);
714e53ab
PH
234
235static void check_size (const struct type *);
52ce6436
PH
236
237static struct value *ada_index_struct_field (int, struct value *, int,
238 struct type *);
239
240static struct value *assign_aggregate (struct value *, struct value *,
0963b4bd
MS
241 struct expression *,
242 int *, enum noside);
52ce6436
PH
243
244static void aggregate_assign_from_choices (struct value *, struct value *,
245 struct expression *,
246 int *, LONGEST *, int *,
247 int, LONGEST, LONGEST);
248
249static void aggregate_assign_positional (struct value *, struct value *,
250 struct expression *,
251 int *, LONGEST *, int *, int,
252 LONGEST, LONGEST);
253
254
255static void aggregate_assign_others (struct value *, struct value *,
256 struct expression *,
257 int *, LONGEST *, int, LONGEST, LONGEST);
258
259
260static void add_component_interval (LONGEST, LONGEST, LONGEST *, int *, int);
261
262
263static struct value *ada_evaluate_subexp (struct type *, struct expression *,
264 int *, enum noside);
265
266static void ada_forward_operator_length (struct expression *, int, int *,
267 int *);
852dff6c
JB
268
269static struct type *ada_find_any_type (const char *name);
4c4b4cd2
PH
270\f
271
ee01b665
JB
272/* The result of a symbol lookup to be stored in our symbol cache. */
273
274struct cache_entry
275{
276 /* The name used to perform the lookup. */
277 const char *name;
278 /* The namespace used during the lookup. */
279 domain_enum namespace;
280 /* The symbol returned by the lookup, or NULL if no matching symbol
281 was found. */
282 struct symbol *sym;
283 /* The block where the symbol was found, or NULL if no matching
284 symbol was found. */
285 const struct block *block;
286 /* A pointer to the next entry with the same hash. */
287 struct cache_entry *next;
288};
289
290/* The Ada symbol cache, used to store the result of Ada-mode symbol
291 lookups in the course of executing the user's commands.
292
293 The cache is implemented using a simple, fixed-sized hash.
294 The size is fixed on the grounds that there are not likely to be
295 all that many symbols looked up during any given session, regardless
296 of the size of the symbol table. If we decide to go to a resizable
297 table, let's just use the stuff from libiberty instead. */
298
299#define HASH_SIZE 1009
300
301struct ada_symbol_cache
302{
303 /* An obstack used to store the entries in our cache. */
304 struct obstack cache_space;
305
306 /* The root of the hash table used to implement our symbol cache. */
307 struct cache_entry *root[HASH_SIZE];
308};
309
310static void ada_free_symbol_cache (struct ada_symbol_cache *sym_cache);
76a01679 311
4c4b4cd2 312/* Maximum-sized dynamic type. */
14f9c5c9
AS
313static unsigned int varsize_limit;
314
4c4b4cd2
PH
315/* FIXME: brobecker/2003-09-17: No longer a const because it is
316 returned by a function that does not return a const char *. */
317static char *ada_completer_word_break_characters =
318#ifdef VMS
319 " \t\n!@#%^&*()+=|~`}{[]\";:?/,-";
320#else
14f9c5c9 321 " \t\n!@#$%^&*()+=|~`}{[]\";:?/,-";
4c4b4cd2 322#endif
14f9c5c9 323
4c4b4cd2 324/* The name of the symbol to use to get the name of the main subprogram. */
76a01679 325static const char ADA_MAIN_PROGRAM_SYMBOL_NAME[]
4c4b4cd2 326 = "__gnat_ada_main_program_name";
14f9c5c9 327
4c4b4cd2
PH
328/* Limit on the number of warnings to raise per expression evaluation. */
329static int warning_limit = 2;
330
331/* Number of warning messages issued; reset to 0 by cleanups after
332 expression evaluation. */
333static int warnings_issued = 0;
334
335static const char *known_runtime_file_name_patterns[] = {
336 ADA_KNOWN_RUNTIME_FILE_NAME_PATTERNS NULL
337};
338
339static const char *known_auxiliary_function_name_patterns[] = {
340 ADA_KNOWN_AUXILIARY_FUNCTION_NAME_PATTERNS NULL
341};
342
343/* Space for allocating results of ada_lookup_symbol_list. */
344static struct obstack symbol_list_obstack;
345
c6044dd1
JB
346/* Maintenance-related settings for this module. */
347
348static struct cmd_list_element *maint_set_ada_cmdlist;
349static struct cmd_list_element *maint_show_ada_cmdlist;
350
351/* Implement the "maintenance set ada" (prefix) command. */
352
353static void
354maint_set_ada_cmd (char *args, int from_tty)
355{
635c7e8a
TT
356 help_list (maint_set_ada_cmdlist, "maintenance set ada ", all_commands,
357 gdb_stdout);
c6044dd1
JB
358}
359
360/* Implement the "maintenance show ada" (prefix) command. */
361
362static void
363maint_show_ada_cmd (char *args, int from_tty)
364{
365 cmd_show_list (maint_show_ada_cmdlist, from_tty, "");
366}
367
368/* The "maintenance ada set/show ignore-descriptive-type" value. */
369
370static int ada_ignore_descriptive_types_p = 0;
371
e802dbe0
JB
372 /* Inferior-specific data. */
373
374/* Per-inferior data for this module. */
375
376struct ada_inferior_data
377{
378 /* The ada__tags__type_specific_data type, which is used when decoding
379 tagged types. With older versions of GNAT, this type was directly
380 accessible through a component ("tsd") in the object tag. But this
381 is no longer the case, so we cache it for each inferior. */
382 struct type *tsd_type;
3eecfa55
JB
383
384 /* The exception_support_info data. This data is used to determine
385 how to implement support for Ada exception catchpoints in a given
386 inferior. */
387 const struct exception_support_info *exception_info;
e802dbe0
JB
388};
389
390/* Our key to this module's inferior data. */
391static const struct inferior_data *ada_inferior_data;
392
393/* A cleanup routine for our inferior data. */
394static void
395ada_inferior_data_cleanup (struct inferior *inf, void *arg)
396{
397 struct ada_inferior_data *data;
398
399 data = inferior_data (inf, ada_inferior_data);
400 if (data != NULL)
401 xfree (data);
402}
403
404/* Return our inferior data for the given inferior (INF).
405
406 This function always returns a valid pointer to an allocated
407 ada_inferior_data structure. If INF's inferior data has not
408 been previously set, this functions creates a new one with all
409 fields set to zero, sets INF's inferior to it, and then returns
410 a pointer to that newly allocated ada_inferior_data. */
411
412static struct ada_inferior_data *
413get_ada_inferior_data (struct inferior *inf)
414{
415 struct ada_inferior_data *data;
416
417 data = inferior_data (inf, ada_inferior_data);
418 if (data == NULL)
419 {
41bf6aca 420 data = XCNEW (struct ada_inferior_data);
e802dbe0
JB
421 set_inferior_data (inf, ada_inferior_data, data);
422 }
423
424 return data;
425}
426
427/* Perform all necessary cleanups regarding our module's inferior data
428 that is required after the inferior INF just exited. */
429
430static void
431ada_inferior_exit (struct inferior *inf)
432{
433 ada_inferior_data_cleanup (inf, NULL);
434 set_inferior_data (inf, ada_inferior_data, NULL);
435}
436
ee01b665
JB
437
438 /* program-space-specific data. */
439
440/* This module's per-program-space data. */
441struct ada_pspace_data
442{
443 /* The Ada symbol cache. */
444 struct ada_symbol_cache *sym_cache;
445};
446
447/* Key to our per-program-space data. */
448static const struct program_space_data *ada_pspace_data_handle;
449
450/* Return this module's data for the given program space (PSPACE).
451 If not is found, add a zero'ed one now.
452
453 This function always returns a valid object. */
454
455static struct ada_pspace_data *
456get_ada_pspace_data (struct program_space *pspace)
457{
458 struct ada_pspace_data *data;
459
460 data = program_space_data (pspace, ada_pspace_data_handle);
461 if (data == NULL)
462 {
463 data = XCNEW (struct ada_pspace_data);
464 set_program_space_data (pspace, ada_pspace_data_handle, data);
465 }
466
467 return data;
468}
469
470/* The cleanup callback for this module's per-program-space data. */
471
472static void
473ada_pspace_data_cleanup (struct program_space *pspace, void *data)
474{
475 struct ada_pspace_data *pspace_data = data;
476
477 if (pspace_data->sym_cache != NULL)
478 ada_free_symbol_cache (pspace_data->sym_cache);
479 xfree (pspace_data);
480}
481
4c4b4cd2
PH
482 /* Utilities */
483
720d1a40 484/* If TYPE is a TYPE_CODE_TYPEDEF type, return the target type after
eed9788b 485 all typedef layers have been peeled. Otherwise, return TYPE.
720d1a40
JB
486
487 Normally, we really expect a typedef type to only have 1 typedef layer.
488 In other words, we really expect the target type of a typedef type to be
489 a non-typedef type. This is particularly true for Ada units, because
490 the language does not have a typedef vs not-typedef distinction.
491 In that respect, the Ada compiler has been trying to eliminate as many
492 typedef definitions in the debugging information, since they generally
493 do not bring any extra information (we still use typedef under certain
494 circumstances related mostly to the GNAT encoding).
495
496 Unfortunately, we have seen situations where the debugging information
497 generated by the compiler leads to such multiple typedef layers. For
498 instance, consider the following example with stabs:
499
500 .stabs "pck__float_array___XUP:Tt(0,46)=s16P_ARRAY:(0,47)=[...]"[...]
501 .stabs "pck__float_array___XUP:t(0,36)=(0,46)",128,0,6,0
502
503 This is an error in the debugging information which causes type
504 pck__float_array___XUP to be defined twice, and the second time,
505 it is defined as a typedef of a typedef.
506
507 This is on the fringe of legality as far as debugging information is
508 concerned, and certainly unexpected. But it is easy to handle these
509 situations correctly, so we can afford to be lenient in this case. */
510
511static struct type *
512ada_typedef_target_type (struct type *type)
513{
514 while (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
515 type = TYPE_TARGET_TYPE (type);
516 return type;
517}
518
41d27058
JB
519/* Given DECODED_NAME a string holding a symbol name in its
520 decoded form (ie using the Ada dotted notation), returns
521 its unqualified name. */
522
523static const char *
524ada_unqualified_name (const char *decoded_name)
525{
2b0f535a
JB
526 const char *result;
527
528 /* If the decoded name starts with '<', it means that the encoded
529 name does not follow standard naming conventions, and thus that
530 it is not your typical Ada symbol name. Trying to unqualify it
531 is therefore pointless and possibly erroneous. */
532 if (decoded_name[0] == '<')
533 return decoded_name;
534
535 result = strrchr (decoded_name, '.');
41d27058
JB
536 if (result != NULL)
537 result++; /* Skip the dot... */
538 else
539 result = decoded_name;
540
541 return result;
542}
543
544/* Return a string starting with '<', followed by STR, and '>'.
545 The result is good until the next call. */
546
547static char *
548add_angle_brackets (const char *str)
549{
550 static char *result = NULL;
551
552 xfree (result);
88c15c34 553 result = xstrprintf ("<%s>", str);
41d27058
JB
554 return result;
555}
96d887e8 556
4c4b4cd2
PH
557static char *
558ada_get_gdb_completer_word_break_characters (void)
559{
560 return ada_completer_word_break_characters;
561}
562
e79af960
JB
563/* Print an array element index using the Ada syntax. */
564
565static void
566ada_print_array_index (struct value *index_value, struct ui_file *stream,
79a45b7d 567 const struct value_print_options *options)
e79af960 568{
79a45b7d 569 LA_VALUE_PRINT (index_value, stream, options);
e79af960
JB
570 fprintf_filtered (stream, " => ");
571}
572
f27cf670 573/* Assuming VECT points to an array of *SIZE objects of size
14f9c5c9 574 ELEMENT_SIZE, grow it to contain at least MIN_SIZE objects,
f27cf670 575 updating *SIZE as necessary and returning the (new) array. */
14f9c5c9 576
f27cf670
AS
577void *
578grow_vect (void *vect, size_t *size, size_t min_size, int element_size)
14f9c5c9 579{
d2e4a39e
AS
580 if (*size < min_size)
581 {
582 *size *= 2;
583 if (*size < min_size)
4c4b4cd2 584 *size = min_size;
f27cf670 585 vect = xrealloc (vect, *size * element_size);
d2e4a39e 586 }
f27cf670 587 return vect;
14f9c5c9
AS
588}
589
590/* True (non-zero) iff TARGET matches FIELD_NAME up to any trailing
4c4b4cd2 591 suffix of FIELD_NAME beginning "___". */
14f9c5c9
AS
592
593static int
ebf56fd3 594field_name_match (const char *field_name, const char *target)
14f9c5c9
AS
595{
596 int len = strlen (target);
5b4ee69b 597
d2e4a39e 598 return
4c4b4cd2
PH
599 (strncmp (field_name, target, len) == 0
600 && (field_name[len] == '\0'
601 || (strncmp (field_name + len, "___", 3) == 0
76a01679
JB
602 && strcmp (field_name + strlen (field_name) - 6,
603 "___XVN") != 0)));
14f9c5c9
AS
604}
605
606
872c8b51
JB
607/* Assuming TYPE is a TYPE_CODE_STRUCT or a TYPE_CODE_TYPDEF to
608 a TYPE_CODE_STRUCT, find the field whose name matches FIELD_NAME,
609 and return its index. This function also handles fields whose name
610 have ___ suffixes because the compiler sometimes alters their name
611 by adding such a suffix to represent fields with certain constraints.
612 If the field could not be found, return a negative number if
613 MAYBE_MISSING is set. Otherwise raise an error. */
4c4b4cd2
PH
614
615int
616ada_get_field_index (const struct type *type, const char *field_name,
617 int maybe_missing)
618{
619 int fieldno;
872c8b51
JB
620 struct type *struct_type = check_typedef ((struct type *) type);
621
622 for (fieldno = 0; fieldno < TYPE_NFIELDS (struct_type); fieldno++)
623 if (field_name_match (TYPE_FIELD_NAME (struct_type, fieldno), field_name))
4c4b4cd2
PH
624 return fieldno;
625
626 if (!maybe_missing)
323e0a4a 627 error (_("Unable to find field %s in struct %s. Aborting"),
872c8b51 628 field_name, TYPE_NAME (struct_type));
4c4b4cd2
PH
629
630 return -1;
631}
632
633/* The length of the prefix of NAME prior to any "___" suffix. */
14f9c5c9
AS
634
635int
d2e4a39e 636ada_name_prefix_len (const char *name)
14f9c5c9
AS
637{
638 if (name == NULL)
639 return 0;
d2e4a39e 640 else
14f9c5c9 641 {
d2e4a39e 642 const char *p = strstr (name, "___");
5b4ee69b 643
14f9c5c9 644 if (p == NULL)
4c4b4cd2 645 return strlen (name);
14f9c5c9 646 else
4c4b4cd2 647 return p - name;
14f9c5c9
AS
648 }
649}
650
4c4b4cd2
PH
651/* Return non-zero if SUFFIX is a suffix of STR.
652 Return zero if STR is null. */
653
14f9c5c9 654static int
d2e4a39e 655is_suffix (const char *str, const char *suffix)
14f9c5c9
AS
656{
657 int len1, len2;
5b4ee69b 658
14f9c5c9
AS
659 if (str == NULL)
660 return 0;
661 len1 = strlen (str);
662 len2 = strlen (suffix);
4c4b4cd2 663 return (len1 >= len2 && strcmp (str + len1 - len2, suffix) == 0);
14f9c5c9
AS
664}
665
4c4b4cd2
PH
666/* The contents of value VAL, treated as a value of type TYPE. The
667 result is an lval in memory if VAL is. */
14f9c5c9 668
d2e4a39e 669static struct value *
4c4b4cd2 670coerce_unspec_val_to_type (struct value *val, struct type *type)
14f9c5c9 671{
61ee279c 672 type = ada_check_typedef (type);
df407dfe 673 if (value_type (val) == type)
4c4b4cd2 674 return val;
d2e4a39e 675 else
14f9c5c9 676 {
4c4b4cd2
PH
677 struct value *result;
678
679 /* Make sure that the object size is not unreasonable before
680 trying to allocate some memory for it. */
714e53ab 681 check_size (type);
4c4b4cd2 682
41e8491f
JK
683 if (value_lazy (val)
684 || TYPE_LENGTH (type) > TYPE_LENGTH (value_type (val)))
685 result = allocate_value_lazy (type);
686 else
687 {
688 result = allocate_value (type);
9a0dc9e3 689 value_contents_copy_raw (result, 0, val, 0, TYPE_LENGTH (type));
41e8491f 690 }
74bcbdf3 691 set_value_component_location (result, val);
9bbda503
AC
692 set_value_bitsize (result, value_bitsize (val));
693 set_value_bitpos (result, value_bitpos (val));
42ae5230 694 set_value_address (result, value_address (val));
14f9c5c9
AS
695 return result;
696 }
697}
698
fc1a4b47
AC
699static const gdb_byte *
700cond_offset_host (const gdb_byte *valaddr, long offset)
14f9c5c9
AS
701{
702 if (valaddr == NULL)
703 return NULL;
704 else
705 return valaddr + offset;
706}
707
708static CORE_ADDR
ebf56fd3 709cond_offset_target (CORE_ADDR address, long offset)
14f9c5c9
AS
710{
711 if (address == 0)
712 return 0;
d2e4a39e 713 else
14f9c5c9
AS
714 return address + offset;
715}
716
4c4b4cd2
PH
717/* Issue a warning (as for the definition of warning in utils.c, but
718 with exactly one argument rather than ...), unless the limit on the
719 number of warnings has passed during the evaluation of the current
720 expression. */
a2249542 721
77109804
AC
722/* FIXME: cagney/2004-10-10: This function is mimicking the behavior
723 provided by "complaint". */
a0b31db1 724static void lim_warning (const char *format, ...) ATTRIBUTE_PRINTF (1, 2);
77109804 725
14f9c5c9 726static void
a2249542 727lim_warning (const char *format, ...)
14f9c5c9 728{
a2249542 729 va_list args;
a2249542 730
5b4ee69b 731 va_start (args, format);
4c4b4cd2
PH
732 warnings_issued += 1;
733 if (warnings_issued <= warning_limit)
a2249542
MK
734 vwarning (format, args);
735
736 va_end (args);
4c4b4cd2
PH
737}
738
714e53ab
PH
739/* Issue an error if the size of an object of type T is unreasonable,
740 i.e. if it would be a bad idea to allocate a value of this type in
741 GDB. */
742
743static void
744check_size (const struct type *type)
745{
746 if (TYPE_LENGTH (type) > varsize_limit)
323e0a4a 747 error (_("object size is larger than varsize-limit"));
714e53ab
PH
748}
749
0963b4bd 750/* Maximum value of a SIZE-byte signed integer type. */
4c4b4cd2 751static LONGEST
c3e5cd34 752max_of_size (int size)
4c4b4cd2 753{
76a01679 754 LONGEST top_bit = (LONGEST) 1 << (size * 8 - 2);
5b4ee69b 755
76a01679 756 return top_bit | (top_bit - 1);
4c4b4cd2
PH
757}
758
0963b4bd 759/* Minimum value of a SIZE-byte signed integer type. */
4c4b4cd2 760static LONGEST
c3e5cd34 761min_of_size (int size)
4c4b4cd2 762{
c3e5cd34 763 return -max_of_size (size) - 1;
4c4b4cd2
PH
764}
765
0963b4bd 766/* Maximum value of a SIZE-byte unsigned integer type. */
4c4b4cd2 767static ULONGEST
c3e5cd34 768umax_of_size (int size)
4c4b4cd2 769{
76a01679 770 ULONGEST top_bit = (ULONGEST) 1 << (size * 8 - 1);
5b4ee69b 771
76a01679 772 return top_bit | (top_bit - 1);
4c4b4cd2
PH
773}
774
0963b4bd 775/* Maximum value of integral type T, as a signed quantity. */
c3e5cd34
PH
776static LONGEST
777max_of_type (struct type *t)
4c4b4cd2 778{
c3e5cd34
PH
779 if (TYPE_UNSIGNED (t))
780 return (LONGEST) umax_of_size (TYPE_LENGTH (t));
781 else
782 return max_of_size (TYPE_LENGTH (t));
783}
784
0963b4bd 785/* Minimum value of integral type T, as a signed quantity. */
c3e5cd34
PH
786static LONGEST
787min_of_type (struct type *t)
788{
789 if (TYPE_UNSIGNED (t))
790 return 0;
791 else
792 return min_of_size (TYPE_LENGTH (t));
4c4b4cd2
PH
793}
794
795/* The largest value in the domain of TYPE, a discrete type, as an integer. */
43bbcdc2
PH
796LONGEST
797ada_discrete_type_high_bound (struct type *type)
4c4b4cd2 798{
8739bc53 799 type = resolve_dynamic_type (type, 0);
76a01679 800 switch (TYPE_CODE (type))
4c4b4cd2
PH
801 {
802 case TYPE_CODE_RANGE:
690cc4eb 803 return TYPE_HIGH_BOUND (type);
4c4b4cd2 804 case TYPE_CODE_ENUM:
14e75d8e 805 return TYPE_FIELD_ENUMVAL (type, TYPE_NFIELDS (type) - 1);
690cc4eb
PH
806 case TYPE_CODE_BOOL:
807 return 1;
808 case TYPE_CODE_CHAR:
76a01679 809 case TYPE_CODE_INT:
690cc4eb 810 return max_of_type (type);
4c4b4cd2 811 default:
43bbcdc2 812 error (_("Unexpected type in ada_discrete_type_high_bound."));
4c4b4cd2
PH
813 }
814}
815
14e75d8e 816/* The smallest value in the domain of TYPE, a discrete type, as an integer. */
43bbcdc2
PH
817LONGEST
818ada_discrete_type_low_bound (struct type *type)
4c4b4cd2 819{
8739bc53 820 type = resolve_dynamic_type (type, 0);
76a01679 821 switch (TYPE_CODE (type))
4c4b4cd2
PH
822 {
823 case TYPE_CODE_RANGE:
690cc4eb 824 return TYPE_LOW_BOUND (type);
4c4b4cd2 825 case TYPE_CODE_ENUM:
14e75d8e 826 return TYPE_FIELD_ENUMVAL (type, 0);
690cc4eb
PH
827 case TYPE_CODE_BOOL:
828 return 0;
829 case TYPE_CODE_CHAR:
76a01679 830 case TYPE_CODE_INT:
690cc4eb 831 return min_of_type (type);
4c4b4cd2 832 default:
43bbcdc2 833 error (_("Unexpected type in ada_discrete_type_low_bound."));
4c4b4cd2
PH
834 }
835}
836
837/* The identity on non-range types. For range types, the underlying
76a01679 838 non-range scalar type. */
4c4b4cd2
PH
839
840static struct type *
18af8284 841get_base_type (struct type *type)
4c4b4cd2
PH
842{
843 while (type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE)
844 {
76a01679
JB
845 if (type == TYPE_TARGET_TYPE (type) || TYPE_TARGET_TYPE (type) == NULL)
846 return type;
4c4b4cd2
PH
847 type = TYPE_TARGET_TYPE (type);
848 }
849 return type;
14f9c5c9 850}
41246937
JB
851
852/* Return a decoded version of the given VALUE. This means returning
853 a value whose type is obtained by applying all the GNAT-specific
854 encondings, making the resulting type a static but standard description
855 of the initial type. */
856
857struct value *
858ada_get_decoded_value (struct value *value)
859{
860 struct type *type = ada_check_typedef (value_type (value));
861
862 if (ada_is_array_descriptor_type (type)
863 || (ada_is_constrained_packed_array_type (type)
864 && TYPE_CODE (type) != TYPE_CODE_PTR))
865 {
866 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF) /* array access type. */
867 value = ada_coerce_to_simple_array_ptr (value);
868 else
869 value = ada_coerce_to_simple_array (value);
870 }
871 else
872 value = ada_to_fixed_value (value);
873
874 return value;
875}
876
877/* Same as ada_get_decoded_value, but with the given TYPE.
878 Because there is no associated actual value for this type,
879 the resulting type might be a best-effort approximation in
880 the case of dynamic types. */
881
882struct type *
883ada_get_decoded_type (struct type *type)
884{
885 type = to_static_fixed_type (type);
886 if (ada_is_constrained_packed_array_type (type))
887 type = ada_coerce_to_simple_array_type (type);
888 return type;
889}
890
4c4b4cd2 891\f
76a01679 892
4c4b4cd2 893 /* Language Selection */
14f9c5c9
AS
894
895/* If the main program is in Ada, return language_ada, otherwise return LANG
ccefe4c4 896 (the main program is in Ada iif the adainit symbol is found). */
d2e4a39e 897
14f9c5c9 898enum language
ccefe4c4 899ada_update_initial_language (enum language lang)
14f9c5c9 900{
d2e4a39e 901 if (lookup_minimal_symbol ("adainit", (const char *) NULL,
3b7344d5 902 (struct objfile *) NULL).minsym != NULL)
4c4b4cd2 903 return language_ada;
14f9c5c9
AS
904
905 return lang;
906}
96d887e8
PH
907
908/* If the main procedure is written in Ada, then return its name.
909 The result is good until the next call. Return NULL if the main
910 procedure doesn't appear to be in Ada. */
911
912char *
913ada_main_name (void)
914{
3b7344d5 915 struct bound_minimal_symbol msym;
f9bc20b9 916 static char *main_program_name = NULL;
6c038f32 917
96d887e8
PH
918 /* For Ada, the name of the main procedure is stored in a specific
919 string constant, generated by the binder. Look for that symbol,
920 extract its address, and then read that string. If we didn't find
921 that string, then most probably the main procedure is not written
922 in Ada. */
923 msym = lookup_minimal_symbol (ADA_MAIN_PROGRAM_SYMBOL_NAME, NULL, NULL);
924
3b7344d5 925 if (msym.minsym != NULL)
96d887e8 926 {
f9bc20b9
JB
927 CORE_ADDR main_program_name_addr;
928 int err_code;
929
77e371c0 930 main_program_name_addr = BMSYMBOL_VALUE_ADDRESS (msym);
96d887e8 931 if (main_program_name_addr == 0)
323e0a4a 932 error (_("Invalid address for Ada main program name."));
96d887e8 933
f9bc20b9
JB
934 xfree (main_program_name);
935 target_read_string (main_program_name_addr, &main_program_name,
936 1024, &err_code);
937
938 if (err_code != 0)
939 return NULL;
96d887e8
PH
940 return main_program_name;
941 }
942
943 /* The main procedure doesn't seem to be in Ada. */
944 return NULL;
945}
14f9c5c9 946\f
4c4b4cd2 947 /* Symbols */
d2e4a39e 948
4c4b4cd2
PH
949/* Table of Ada operators and their GNAT-encoded names. Last entry is pair
950 of NULLs. */
14f9c5c9 951
d2e4a39e
AS
952const struct ada_opname_map ada_opname_table[] = {
953 {"Oadd", "\"+\"", BINOP_ADD},
954 {"Osubtract", "\"-\"", BINOP_SUB},
955 {"Omultiply", "\"*\"", BINOP_MUL},
956 {"Odivide", "\"/\"", BINOP_DIV},
957 {"Omod", "\"mod\"", BINOP_MOD},
958 {"Orem", "\"rem\"", BINOP_REM},
959 {"Oexpon", "\"**\"", BINOP_EXP},
960 {"Olt", "\"<\"", BINOP_LESS},
961 {"Ole", "\"<=\"", BINOP_LEQ},
962 {"Ogt", "\">\"", BINOP_GTR},
963 {"Oge", "\">=\"", BINOP_GEQ},
964 {"Oeq", "\"=\"", BINOP_EQUAL},
965 {"One", "\"/=\"", BINOP_NOTEQUAL},
966 {"Oand", "\"and\"", BINOP_BITWISE_AND},
967 {"Oor", "\"or\"", BINOP_BITWISE_IOR},
968 {"Oxor", "\"xor\"", BINOP_BITWISE_XOR},
969 {"Oconcat", "\"&\"", BINOP_CONCAT},
970 {"Oabs", "\"abs\"", UNOP_ABS},
971 {"Onot", "\"not\"", UNOP_LOGICAL_NOT},
972 {"Oadd", "\"+\"", UNOP_PLUS},
973 {"Osubtract", "\"-\"", UNOP_NEG},
974 {NULL, NULL}
14f9c5c9
AS
975};
976
4c4b4cd2
PH
977/* The "encoded" form of DECODED, according to GNAT conventions.
978 The result is valid until the next call to ada_encode. */
979
14f9c5c9 980char *
4c4b4cd2 981ada_encode (const char *decoded)
14f9c5c9 982{
4c4b4cd2
PH
983 static char *encoding_buffer = NULL;
984 static size_t encoding_buffer_size = 0;
d2e4a39e 985 const char *p;
14f9c5c9 986 int k;
d2e4a39e 987
4c4b4cd2 988 if (decoded == NULL)
14f9c5c9
AS
989 return NULL;
990
4c4b4cd2
PH
991 GROW_VECT (encoding_buffer, encoding_buffer_size,
992 2 * strlen (decoded) + 10);
14f9c5c9
AS
993
994 k = 0;
4c4b4cd2 995 for (p = decoded; *p != '\0'; p += 1)
14f9c5c9 996 {
cdc7bb92 997 if (*p == '.')
4c4b4cd2
PH
998 {
999 encoding_buffer[k] = encoding_buffer[k + 1] = '_';
1000 k += 2;
1001 }
14f9c5c9 1002 else if (*p == '"')
4c4b4cd2
PH
1003 {
1004 const struct ada_opname_map *mapping;
1005
1006 for (mapping = ada_opname_table;
1265e4aa
JB
1007 mapping->encoded != NULL
1008 && strncmp (mapping->decoded, p,
1009 strlen (mapping->decoded)) != 0; mapping += 1)
4c4b4cd2
PH
1010 ;
1011 if (mapping->encoded == NULL)
323e0a4a 1012 error (_("invalid Ada operator name: %s"), p);
4c4b4cd2
PH
1013 strcpy (encoding_buffer + k, mapping->encoded);
1014 k += strlen (mapping->encoded);
1015 break;
1016 }
d2e4a39e 1017 else
4c4b4cd2
PH
1018 {
1019 encoding_buffer[k] = *p;
1020 k += 1;
1021 }
14f9c5c9
AS
1022 }
1023
4c4b4cd2
PH
1024 encoding_buffer[k] = '\0';
1025 return encoding_buffer;
14f9c5c9
AS
1026}
1027
1028/* Return NAME folded to lower case, or, if surrounded by single
4c4b4cd2
PH
1029 quotes, unfolded, but with the quotes stripped away. Result good
1030 to next call. */
1031
d2e4a39e
AS
1032char *
1033ada_fold_name (const char *name)
14f9c5c9 1034{
d2e4a39e 1035 static char *fold_buffer = NULL;
14f9c5c9
AS
1036 static size_t fold_buffer_size = 0;
1037
1038 int len = strlen (name);
d2e4a39e 1039 GROW_VECT (fold_buffer, fold_buffer_size, len + 1);
14f9c5c9
AS
1040
1041 if (name[0] == '\'')
1042 {
d2e4a39e
AS
1043 strncpy (fold_buffer, name + 1, len - 2);
1044 fold_buffer[len - 2] = '\000';
14f9c5c9
AS
1045 }
1046 else
1047 {
1048 int i;
5b4ee69b 1049
14f9c5c9 1050 for (i = 0; i <= len; i += 1)
4c4b4cd2 1051 fold_buffer[i] = tolower (name[i]);
14f9c5c9
AS
1052 }
1053
1054 return fold_buffer;
1055}
1056
529cad9c
PH
1057/* Return nonzero if C is either a digit or a lowercase alphabet character. */
1058
1059static int
1060is_lower_alphanum (const char c)
1061{
1062 return (isdigit (c) || (isalpha (c) && islower (c)));
1063}
1064
c90092fe
JB
1065/* ENCODED is the linkage name of a symbol and LEN contains its length.
1066 This function saves in LEN the length of that same symbol name but
1067 without either of these suffixes:
29480c32
JB
1068 . .{DIGIT}+
1069 . ${DIGIT}+
1070 . ___{DIGIT}+
1071 . __{DIGIT}+.
c90092fe 1072
29480c32
JB
1073 These are suffixes introduced by the compiler for entities such as
1074 nested subprogram for instance, in order to avoid name clashes.
1075 They do not serve any purpose for the debugger. */
1076
1077static void
1078ada_remove_trailing_digits (const char *encoded, int *len)
1079{
1080 if (*len > 1 && isdigit (encoded[*len - 1]))
1081 {
1082 int i = *len - 2;
5b4ee69b 1083
29480c32
JB
1084 while (i > 0 && isdigit (encoded[i]))
1085 i--;
1086 if (i >= 0 && encoded[i] == '.')
1087 *len = i;
1088 else if (i >= 0 && encoded[i] == '$')
1089 *len = i;
1090 else if (i >= 2 && strncmp (encoded + i - 2, "___", 3) == 0)
1091 *len = i - 2;
1092 else if (i >= 1 && strncmp (encoded + i - 1, "__", 2) == 0)
1093 *len = i - 1;
1094 }
1095}
1096
1097/* Remove the suffix introduced by the compiler for protected object
1098 subprograms. */
1099
1100static void
1101ada_remove_po_subprogram_suffix (const char *encoded, int *len)
1102{
1103 /* Remove trailing N. */
1104
1105 /* Protected entry subprograms are broken into two
1106 separate subprograms: The first one is unprotected, and has
1107 a 'N' suffix; the second is the protected version, and has
0963b4bd 1108 the 'P' suffix. The second calls the first one after handling
29480c32
JB
1109 the protection. Since the P subprograms are internally generated,
1110 we leave these names undecoded, giving the user a clue that this
1111 entity is internal. */
1112
1113 if (*len > 1
1114 && encoded[*len - 1] == 'N'
1115 && (isdigit (encoded[*len - 2]) || islower (encoded[*len - 2])))
1116 *len = *len - 1;
1117}
1118
69fadcdf
JB
1119/* Remove trailing X[bn]* suffixes (indicating names in package bodies). */
1120
1121static void
1122ada_remove_Xbn_suffix (const char *encoded, int *len)
1123{
1124 int i = *len - 1;
1125
1126 while (i > 0 && (encoded[i] == 'b' || encoded[i] == 'n'))
1127 i--;
1128
1129 if (encoded[i] != 'X')
1130 return;
1131
1132 if (i == 0)
1133 return;
1134
1135 if (isalnum (encoded[i-1]))
1136 *len = i;
1137}
1138
29480c32
JB
1139/* If ENCODED follows the GNAT entity encoding conventions, then return
1140 the decoded form of ENCODED. Otherwise, return "<%s>" where "%s" is
1141 replaced by ENCODED.
14f9c5c9 1142
4c4b4cd2 1143 The resulting string is valid until the next call of ada_decode.
29480c32 1144 If the string is unchanged by decoding, the original string pointer
4c4b4cd2
PH
1145 is returned. */
1146
1147const char *
1148ada_decode (const char *encoded)
14f9c5c9
AS
1149{
1150 int i, j;
1151 int len0;
d2e4a39e 1152 const char *p;
4c4b4cd2 1153 char *decoded;
14f9c5c9 1154 int at_start_name;
4c4b4cd2
PH
1155 static char *decoding_buffer = NULL;
1156 static size_t decoding_buffer_size = 0;
d2e4a39e 1157
29480c32
JB
1158 /* The name of the Ada main procedure starts with "_ada_".
1159 This prefix is not part of the decoded name, so skip this part
1160 if we see this prefix. */
4c4b4cd2
PH
1161 if (strncmp (encoded, "_ada_", 5) == 0)
1162 encoded += 5;
14f9c5c9 1163
29480c32
JB
1164 /* If the name starts with '_', then it is not a properly encoded
1165 name, so do not attempt to decode it. Similarly, if the name
1166 starts with '<', the name should not be decoded. */
4c4b4cd2 1167 if (encoded[0] == '_' || encoded[0] == '<')
14f9c5c9
AS
1168 goto Suppress;
1169
4c4b4cd2 1170 len0 = strlen (encoded);
4c4b4cd2 1171
29480c32
JB
1172 ada_remove_trailing_digits (encoded, &len0);
1173 ada_remove_po_subprogram_suffix (encoded, &len0);
529cad9c 1174
4c4b4cd2
PH
1175 /* Remove the ___X.* suffix if present. Do not forget to verify that
1176 the suffix is located before the current "end" of ENCODED. We want
1177 to avoid re-matching parts of ENCODED that have previously been
1178 marked as discarded (by decrementing LEN0). */
1179 p = strstr (encoded, "___");
1180 if (p != NULL && p - encoded < len0 - 3)
14f9c5c9
AS
1181 {
1182 if (p[3] == 'X')
4c4b4cd2 1183 len0 = p - encoded;
14f9c5c9 1184 else
4c4b4cd2 1185 goto Suppress;
14f9c5c9 1186 }
4c4b4cd2 1187
29480c32
JB
1188 /* Remove any trailing TKB suffix. It tells us that this symbol
1189 is for the body of a task, but that information does not actually
1190 appear in the decoded name. */
1191
4c4b4cd2 1192 if (len0 > 3 && strncmp (encoded + len0 - 3, "TKB", 3) == 0)
14f9c5c9 1193 len0 -= 3;
76a01679 1194
a10967fa
JB
1195 /* Remove any trailing TB suffix. The TB suffix is slightly different
1196 from the TKB suffix because it is used for non-anonymous task
1197 bodies. */
1198
1199 if (len0 > 2 && strncmp (encoded + len0 - 2, "TB", 2) == 0)
1200 len0 -= 2;
1201
29480c32
JB
1202 /* Remove trailing "B" suffixes. */
1203 /* FIXME: brobecker/2006-04-19: Not sure what this are used for... */
1204
4c4b4cd2 1205 if (len0 > 1 && strncmp (encoded + len0 - 1, "B", 1) == 0)
14f9c5c9
AS
1206 len0 -= 1;
1207
4c4b4cd2 1208 /* Make decoded big enough for possible expansion by operator name. */
29480c32 1209
4c4b4cd2
PH
1210 GROW_VECT (decoding_buffer, decoding_buffer_size, 2 * len0 + 1);
1211 decoded = decoding_buffer;
14f9c5c9 1212
29480c32
JB
1213 /* Remove trailing __{digit}+ or trailing ${digit}+. */
1214
4c4b4cd2 1215 if (len0 > 1 && isdigit (encoded[len0 - 1]))
d2e4a39e 1216 {
4c4b4cd2
PH
1217 i = len0 - 2;
1218 while ((i >= 0 && isdigit (encoded[i]))
1219 || (i >= 1 && encoded[i] == '_' && isdigit (encoded[i - 1])))
1220 i -= 1;
1221 if (i > 1 && encoded[i] == '_' && encoded[i - 1] == '_')
1222 len0 = i - 1;
1223 else if (encoded[i] == '$')
1224 len0 = i;
d2e4a39e 1225 }
14f9c5c9 1226
29480c32
JB
1227 /* The first few characters that are not alphabetic are not part
1228 of any encoding we use, so we can copy them over verbatim. */
1229
4c4b4cd2
PH
1230 for (i = 0, j = 0; i < len0 && !isalpha (encoded[i]); i += 1, j += 1)
1231 decoded[j] = encoded[i];
14f9c5c9
AS
1232
1233 at_start_name = 1;
1234 while (i < len0)
1235 {
29480c32 1236 /* Is this a symbol function? */
4c4b4cd2
PH
1237 if (at_start_name && encoded[i] == 'O')
1238 {
1239 int k;
5b4ee69b 1240
4c4b4cd2
PH
1241 for (k = 0; ada_opname_table[k].encoded != NULL; k += 1)
1242 {
1243 int op_len = strlen (ada_opname_table[k].encoded);
06d5cf63
JB
1244 if ((strncmp (ada_opname_table[k].encoded + 1, encoded + i + 1,
1245 op_len - 1) == 0)
1246 && !isalnum (encoded[i + op_len]))
4c4b4cd2
PH
1247 {
1248 strcpy (decoded + j, ada_opname_table[k].decoded);
1249 at_start_name = 0;
1250 i += op_len;
1251 j += strlen (ada_opname_table[k].decoded);
1252 break;
1253 }
1254 }
1255 if (ada_opname_table[k].encoded != NULL)
1256 continue;
1257 }
14f9c5c9
AS
1258 at_start_name = 0;
1259
529cad9c
PH
1260 /* Replace "TK__" with "__", which will eventually be translated
1261 into "." (just below). */
1262
4c4b4cd2
PH
1263 if (i < len0 - 4 && strncmp (encoded + i, "TK__", 4) == 0)
1264 i += 2;
529cad9c 1265
29480c32
JB
1266 /* Replace "__B_{DIGITS}+__" sequences by "__", which will eventually
1267 be translated into "." (just below). These are internal names
1268 generated for anonymous blocks inside which our symbol is nested. */
1269
1270 if (len0 - i > 5 && encoded [i] == '_' && encoded [i+1] == '_'
1271 && encoded [i+2] == 'B' && encoded [i+3] == '_'
1272 && isdigit (encoded [i+4]))
1273 {
1274 int k = i + 5;
1275
1276 while (k < len0 && isdigit (encoded[k]))
1277 k++; /* Skip any extra digit. */
1278
1279 /* Double-check that the "__B_{DIGITS}+" sequence we found
1280 is indeed followed by "__". */
1281 if (len0 - k > 2 && encoded [k] == '_' && encoded [k+1] == '_')
1282 i = k;
1283 }
1284
529cad9c
PH
1285 /* Remove _E{DIGITS}+[sb] */
1286
1287 /* Just as for protected object subprograms, there are 2 categories
0963b4bd 1288 of subprograms created by the compiler for each entry. The first
529cad9c
PH
1289 one implements the actual entry code, and has a suffix following
1290 the convention above; the second one implements the barrier and
1291 uses the same convention as above, except that the 'E' is replaced
1292 by a 'B'.
1293
1294 Just as above, we do not decode the name of barrier functions
1295 to give the user a clue that the code he is debugging has been
1296 internally generated. */
1297
1298 if (len0 - i > 3 && encoded [i] == '_' && encoded[i+1] == 'E'
1299 && isdigit (encoded[i+2]))
1300 {
1301 int k = i + 3;
1302
1303 while (k < len0 && isdigit (encoded[k]))
1304 k++;
1305
1306 if (k < len0
1307 && (encoded[k] == 'b' || encoded[k] == 's'))
1308 {
1309 k++;
1310 /* Just as an extra precaution, make sure that if this
1311 suffix is followed by anything else, it is a '_'.
1312 Otherwise, we matched this sequence by accident. */
1313 if (k == len0
1314 || (k < len0 && encoded[k] == '_'))
1315 i = k;
1316 }
1317 }
1318
1319 /* Remove trailing "N" in [a-z0-9]+N__. The N is added by
1320 the GNAT front-end in protected object subprograms. */
1321
1322 if (i < len0 + 3
1323 && encoded[i] == 'N' && encoded[i+1] == '_' && encoded[i+2] == '_')
1324 {
1325 /* Backtrack a bit up until we reach either the begining of
1326 the encoded name, or "__". Make sure that we only find
1327 digits or lowercase characters. */
1328 const char *ptr = encoded + i - 1;
1329
1330 while (ptr >= encoded && is_lower_alphanum (ptr[0]))
1331 ptr--;
1332 if (ptr < encoded
1333 || (ptr > encoded && ptr[0] == '_' && ptr[-1] == '_'))
1334 i++;
1335 }
1336
4c4b4cd2
PH
1337 if (encoded[i] == 'X' && i != 0 && isalnum (encoded[i - 1]))
1338 {
29480c32
JB
1339 /* This is a X[bn]* sequence not separated from the previous
1340 part of the name with a non-alpha-numeric character (in other
1341 words, immediately following an alpha-numeric character), then
1342 verify that it is placed at the end of the encoded name. If
1343 not, then the encoding is not valid and we should abort the
1344 decoding. Otherwise, just skip it, it is used in body-nested
1345 package names. */
4c4b4cd2
PH
1346 do
1347 i += 1;
1348 while (i < len0 && (encoded[i] == 'b' || encoded[i] == 'n'));
1349 if (i < len0)
1350 goto Suppress;
1351 }
cdc7bb92 1352 else if (i < len0 - 2 && encoded[i] == '_' && encoded[i + 1] == '_')
4c4b4cd2 1353 {
29480c32 1354 /* Replace '__' by '.'. */
4c4b4cd2
PH
1355 decoded[j] = '.';
1356 at_start_name = 1;
1357 i += 2;
1358 j += 1;
1359 }
14f9c5c9 1360 else
4c4b4cd2 1361 {
29480c32
JB
1362 /* It's a character part of the decoded name, so just copy it
1363 over. */
4c4b4cd2
PH
1364 decoded[j] = encoded[i];
1365 i += 1;
1366 j += 1;
1367 }
14f9c5c9 1368 }
4c4b4cd2 1369 decoded[j] = '\000';
14f9c5c9 1370
29480c32
JB
1371 /* Decoded names should never contain any uppercase character.
1372 Double-check this, and abort the decoding if we find one. */
1373
4c4b4cd2
PH
1374 for (i = 0; decoded[i] != '\0'; i += 1)
1375 if (isupper (decoded[i]) || decoded[i] == ' ')
14f9c5c9
AS
1376 goto Suppress;
1377
4c4b4cd2
PH
1378 if (strcmp (decoded, encoded) == 0)
1379 return encoded;
1380 else
1381 return decoded;
14f9c5c9
AS
1382
1383Suppress:
4c4b4cd2
PH
1384 GROW_VECT (decoding_buffer, decoding_buffer_size, strlen (encoded) + 3);
1385 decoded = decoding_buffer;
1386 if (encoded[0] == '<')
1387 strcpy (decoded, encoded);
14f9c5c9 1388 else
88c15c34 1389 xsnprintf (decoded, decoding_buffer_size, "<%s>", encoded);
4c4b4cd2
PH
1390 return decoded;
1391
1392}
1393
1394/* Table for keeping permanent unique copies of decoded names. Once
1395 allocated, names in this table are never released. While this is a
1396 storage leak, it should not be significant unless there are massive
1397 changes in the set of decoded names in successive versions of a
1398 symbol table loaded during a single session. */
1399static struct htab *decoded_names_store;
1400
1401/* Returns the decoded name of GSYMBOL, as for ada_decode, caching it
1402 in the language-specific part of GSYMBOL, if it has not been
1403 previously computed. Tries to save the decoded name in the same
1404 obstack as GSYMBOL, if possible, and otherwise on the heap (so that,
1405 in any case, the decoded symbol has a lifetime at least that of
0963b4bd 1406 GSYMBOL).
4c4b4cd2
PH
1407 The GSYMBOL parameter is "mutable" in the C++ sense: logically
1408 const, but nevertheless modified to a semantically equivalent form
0963b4bd 1409 when a decoded name is cached in it. */
4c4b4cd2 1410
45e6c716 1411const char *
f85f34ed 1412ada_decode_symbol (const struct general_symbol_info *arg)
4c4b4cd2 1413{
f85f34ed
TT
1414 struct general_symbol_info *gsymbol = (struct general_symbol_info *) arg;
1415 const char **resultp =
1416 &gsymbol->language_specific.mangled_lang.demangled_name;
5b4ee69b 1417
f85f34ed 1418 if (!gsymbol->ada_mangled)
4c4b4cd2
PH
1419 {
1420 const char *decoded = ada_decode (gsymbol->name);
f85f34ed 1421 struct obstack *obstack = gsymbol->language_specific.obstack;
5b4ee69b 1422
f85f34ed 1423 gsymbol->ada_mangled = 1;
5b4ee69b 1424
f85f34ed
TT
1425 if (obstack != NULL)
1426 *resultp = obstack_copy0 (obstack, decoded, strlen (decoded));
1427 else
76a01679 1428 {
f85f34ed
TT
1429 /* Sometimes, we can't find a corresponding objfile, in
1430 which case, we put the result on the heap. Since we only
1431 decode when needed, we hope this usually does not cause a
1432 significant memory leak (FIXME). */
1433
76a01679
JB
1434 char **slot = (char **) htab_find_slot (decoded_names_store,
1435 decoded, INSERT);
5b4ee69b 1436
76a01679
JB
1437 if (*slot == NULL)
1438 *slot = xstrdup (decoded);
1439 *resultp = *slot;
1440 }
4c4b4cd2 1441 }
14f9c5c9 1442
4c4b4cd2
PH
1443 return *resultp;
1444}
76a01679 1445
2c0b251b 1446static char *
76a01679 1447ada_la_decode (const char *encoded, int options)
4c4b4cd2
PH
1448{
1449 return xstrdup (ada_decode (encoded));
14f9c5c9
AS
1450}
1451
1452/* Returns non-zero iff SYM_NAME matches NAME, ignoring any trailing
4c4b4cd2
PH
1453 suffixes that encode debugging information or leading _ada_ on
1454 SYM_NAME (see is_name_suffix commentary for the debugging
1455 information that is ignored). If WILD, then NAME need only match a
1456 suffix of SYM_NAME minus the same suffixes. Also returns 0 if
1457 either argument is NULL. */
14f9c5c9 1458
2c0b251b 1459static int
40658b94 1460match_name (const char *sym_name, const char *name, int wild)
14f9c5c9
AS
1461{
1462 if (sym_name == NULL || name == NULL)
1463 return 0;
1464 else if (wild)
73589123 1465 return wild_match (sym_name, name) == 0;
d2e4a39e
AS
1466 else
1467 {
1468 int len_name = strlen (name);
5b4ee69b 1469
4c4b4cd2
PH
1470 return (strncmp (sym_name, name, len_name) == 0
1471 && is_name_suffix (sym_name + len_name))
1472 || (strncmp (sym_name, "_ada_", 5) == 0
1473 && strncmp (sym_name + 5, name, len_name) == 0
1474 && is_name_suffix (sym_name + len_name + 5));
d2e4a39e 1475 }
14f9c5c9 1476}
14f9c5c9 1477\f
d2e4a39e 1478
4c4b4cd2 1479 /* Arrays */
14f9c5c9 1480
28c85d6c
JB
1481/* Assuming that INDEX_DESC_TYPE is an ___XA structure, a structure
1482 generated by the GNAT compiler to describe the index type used
1483 for each dimension of an array, check whether it follows the latest
1484 known encoding. If not, fix it up to conform to the latest encoding.
1485 Otherwise, do nothing. This function also does nothing if
1486 INDEX_DESC_TYPE is NULL.
1487
1488 The GNAT encoding used to describle the array index type evolved a bit.
1489 Initially, the information would be provided through the name of each
1490 field of the structure type only, while the type of these fields was
1491 described as unspecified and irrelevant. The debugger was then expected
1492 to perform a global type lookup using the name of that field in order
1493 to get access to the full index type description. Because these global
1494 lookups can be very expensive, the encoding was later enhanced to make
1495 the global lookup unnecessary by defining the field type as being
1496 the full index type description.
1497
1498 The purpose of this routine is to allow us to support older versions
1499 of the compiler by detecting the use of the older encoding, and by
1500 fixing up the INDEX_DESC_TYPE to follow the new one (at this point,
1501 we essentially replace each field's meaningless type by the associated
1502 index subtype). */
1503
1504void
1505ada_fixup_array_indexes_type (struct type *index_desc_type)
1506{
1507 int i;
1508
1509 if (index_desc_type == NULL)
1510 return;
1511 gdb_assert (TYPE_NFIELDS (index_desc_type) > 0);
1512
1513 /* Check if INDEX_DESC_TYPE follows the older encoding (it is sufficient
1514 to check one field only, no need to check them all). If not, return
1515 now.
1516
1517 If our INDEX_DESC_TYPE was generated using the older encoding,
1518 the field type should be a meaningless integer type whose name
1519 is not equal to the field name. */
1520 if (TYPE_NAME (TYPE_FIELD_TYPE (index_desc_type, 0)) != NULL
1521 && strcmp (TYPE_NAME (TYPE_FIELD_TYPE (index_desc_type, 0)),
1522 TYPE_FIELD_NAME (index_desc_type, 0)) == 0)
1523 return;
1524
1525 /* Fixup each field of INDEX_DESC_TYPE. */
1526 for (i = 0; i < TYPE_NFIELDS (index_desc_type); i++)
1527 {
0d5cff50 1528 const char *name = TYPE_FIELD_NAME (index_desc_type, i);
28c85d6c
JB
1529 struct type *raw_type = ada_check_typedef (ada_find_any_type (name));
1530
1531 if (raw_type)
1532 TYPE_FIELD_TYPE (index_desc_type, i) = raw_type;
1533 }
1534}
1535
4c4b4cd2 1536/* Names of MAX_ADA_DIMENS bounds in P_BOUNDS fields of array descriptors. */
14f9c5c9 1537
d2e4a39e
AS
1538static char *bound_name[] = {
1539 "LB0", "UB0", "LB1", "UB1", "LB2", "UB2", "LB3", "UB3",
14f9c5c9
AS
1540 "LB4", "UB4", "LB5", "UB5", "LB6", "UB6", "LB7", "UB7"
1541};
1542
1543/* Maximum number of array dimensions we are prepared to handle. */
1544
4c4b4cd2 1545#define MAX_ADA_DIMENS (sizeof(bound_name) / (2*sizeof(char *)))
14f9c5c9 1546
14f9c5c9 1547
4c4b4cd2
PH
1548/* The desc_* routines return primitive portions of array descriptors
1549 (fat pointers). */
14f9c5c9
AS
1550
1551/* The descriptor or array type, if any, indicated by TYPE; removes
4c4b4cd2
PH
1552 level of indirection, if needed. */
1553
d2e4a39e
AS
1554static struct type *
1555desc_base_type (struct type *type)
14f9c5c9
AS
1556{
1557 if (type == NULL)
1558 return NULL;
61ee279c 1559 type = ada_check_typedef (type);
720d1a40
JB
1560 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
1561 type = ada_typedef_target_type (type);
1562
1265e4aa
JB
1563 if (type != NULL
1564 && (TYPE_CODE (type) == TYPE_CODE_PTR
1565 || TYPE_CODE (type) == TYPE_CODE_REF))
61ee279c 1566 return ada_check_typedef (TYPE_TARGET_TYPE (type));
14f9c5c9
AS
1567 else
1568 return type;
1569}
1570
4c4b4cd2
PH
1571/* True iff TYPE indicates a "thin" array pointer type. */
1572
14f9c5c9 1573static int
d2e4a39e 1574is_thin_pntr (struct type *type)
14f9c5c9 1575{
d2e4a39e 1576 return
14f9c5c9
AS
1577 is_suffix (ada_type_name (desc_base_type (type)), "___XUT")
1578 || is_suffix (ada_type_name (desc_base_type (type)), "___XUT___XVE");
1579}
1580
4c4b4cd2
PH
1581/* The descriptor type for thin pointer type TYPE. */
1582
d2e4a39e
AS
1583static struct type *
1584thin_descriptor_type (struct type *type)
14f9c5c9 1585{
d2e4a39e 1586 struct type *base_type = desc_base_type (type);
5b4ee69b 1587
14f9c5c9
AS
1588 if (base_type == NULL)
1589 return NULL;
1590 if (is_suffix (ada_type_name (base_type), "___XVE"))
1591 return base_type;
d2e4a39e 1592 else
14f9c5c9 1593 {
d2e4a39e 1594 struct type *alt_type = ada_find_parallel_type (base_type, "___XVE");
5b4ee69b 1595
14f9c5c9 1596 if (alt_type == NULL)
4c4b4cd2 1597 return base_type;
14f9c5c9 1598 else
4c4b4cd2 1599 return alt_type;
14f9c5c9
AS
1600 }
1601}
1602
4c4b4cd2
PH
1603/* A pointer to the array data for thin-pointer value VAL. */
1604
d2e4a39e
AS
1605static struct value *
1606thin_data_pntr (struct value *val)
14f9c5c9 1607{
828292f2 1608 struct type *type = ada_check_typedef (value_type (val));
556bdfd4 1609 struct type *data_type = desc_data_target_type (thin_descriptor_type (type));
5b4ee69b 1610
556bdfd4
UW
1611 data_type = lookup_pointer_type (data_type);
1612
14f9c5c9 1613 if (TYPE_CODE (type) == TYPE_CODE_PTR)
556bdfd4 1614 return value_cast (data_type, value_copy (val));
d2e4a39e 1615 else
42ae5230 1616 return value_from_longest (data_type, value_address (val));
14f9c5c9
AS
1617}
1618
4c4b4cd2
PH
1619/* True iff TYPE indicates a "thick" array pointer type. */
1620
14f9c5c9 1621static int
d2e4a39e 1622is_thick_pntr (struct type *type)
14f9c5c9
AS
1623{
1624 type = desc_base_type (type);
1625 return (type != NULL && TYPE_CODE (type) == TYPE_CODE_STRUCT
4c4b4cd2 1626 && lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL);
14f9c5c9
AS
1627}
1628
4c4b4cd2
PH
1629/* If TYPE is the type of an array descriptor (fat or thin pointer) or a
1630 pointer to one, the type of its bounds data; otherwise, NULL. */
76a01679 1631
d2e4a39e
AS
1632static struct type *
1633desc_bounds_type (struct type *type)
14f9c5c9 1634{
d2e4a39e 1635 struct type *r;
14f9c5c9
AS
1636
1637 type = desc_base_type (type);
1638
1639 if (type == NULL)
1640 return NULL;
1641 else if (is_thin_pntr (type))
1642 {
1643 type = thin_descriptor_type (type);
1644 if (type == NULL)
4c4b4cd2 1645 return NULL;
14f9c5c9
AS
1646 r = lookup_struct_elt_type (type, "BOUNDS", 1);
1647 if (r != NULL)
61ee279c 1648 return ada_check_typedef (r);
14f9c5c9
AS
1649 }
1650 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
1651 {
1652 r = lookup_struct_elt_type (type, "P_BOUNDS", 1);
1653 if (r != NULL)
61ee279c 1654 return ada_check_typedef (TYPE_TARGET_TYPE (ada_check_typedef (r)));
14f9c5c9
AS
1655 }
1656 return NULL;
1657}
1658
1659/* If ARR is an array descriptor (fat or thin pointer), or pointer to
4c4b4cd2
PH
1660 one, a pointer to its bounds data. Otherwise NULL. */
1661
d2e4a39e
AS
1662static struct value *
1663desc_bounds (struct value *arr)
14f9c5c9 1664{
df407dfe 1665 struct type *type = ada_check_typedef (value_type (arr));
5b4ee69b 1666
d2e4a39e 1667 if (is_thin_pntr (type))
14f9c5c9 1668 {
d2e4a39e 1669 struct type *bounds_type =
4c4b4cd2 1670 desc_bounds_type (thin_descriptor_type (type));
14f9c5c9
AS
1671 LONGEST addr;
1672
4cdfadb1 1673 if (bounds_type == NULL)
323e0a4a 1674 error (_("Bad GNAT array descriptor"));
14f9c5c9
AS
1675
1676 /* NOTE: The following calculation is not really kosher, but
d2e4a39e 1677 since desc_type is an XVE-encoded type (and shouldn't be),
4c4b4cd2 1678 the correct calculation is a real pain. FIXME (and fix GCC). */
14f9c5c9 1679 if (TYPE_CODE (type) == TYPE_CODE_PTR)
4c4b4cd2 1680 addr = value_as_long (arr);
d2e4a39e 1681 else
42ae5230 1682 addr = value_address (arr);
14f9c5c9 1683
d2e4a39e 1684 return
4c4b4cd2
PH
1685 value_from_longest (lookup_pointer_type (bounds_type),
1686 addr - TYPE_LENGTH (bounds_type));
14f9c5c9
AS
1687 }
1688
1689 else if (is_thick_pntr (type))
05e522ef
JB
1690 {
1691 struct value *p_bounds = value_struct_elt (&arr, NULL, "P_BOUNDS", NULL,
1692 _("Bad GNAT array descriptor"));
1693 struct type *p_bounds_type = value_type (p_bounds);
1694
1695 if (p_bounds_type
1696 && TYPE_CODE (p_bounds_type) == TYPE_CODE_PTR)
1697 {
1698 struct type *target_type = TYPE_TARGET_TYPE (p_bounds_type);
1699
1700 if (TYPE_STUB (target_type))
1701 p_bounds = value_cast (lookup_pointer_type
1702 (ada_check_typedef (target_type)),
1703 p_bounds);
1704 }
1705 else
1706 error (_("Bad GNAT array descriptor"));
1707
1708 return p_bounds;
1709 }
14f9c5c9
AS
1710 else
1711 return NULL;
1712}
1713
4c4b4cd2
PH
1714/* If TYPE is the type of an array-descriptor (fat pointer), the bit
1715 position of the field containing the address of the bounds data. */
1716
14f9c5c9 1717static int
d2e4a39e 1718fat_pntr_bounds_bitpos (struct type *type)
14f9c5c9
AS
1719{
1720 return TYPE_FIELD_BITPOS (desc_base_type (type), 1);
1721}
1722
1723/* If TYPE is the type of an array-descriptor (fat pointer), the bit
4c4b4cd2
PH
1724 size of the field containing the address of the bounds data. */
1725
14f9c5c9 1726static int
d2e4a39e 1727fat_pntr_bounds_bitsize (struct type *type)
14f9c5c9
AS
1728{
1729 type = desc_base_type (type);
1730
d2e4a39e 1731 if (TYPE_FIELD_BITSIZE (type, 1) > 0)
14f9c5c9
AS
1732 return TYPE_FIELD_BITSIZE (type, 1);
1733 else
61ee279c 1734 return 8 * TYPE_LENGTH (ada_check_typedef (TYPE_FIELD_TYPE (type, 1)));
14f9c5c9
AS
1735}
1736
4c4b4cd2 1737/* If TYPE is the type of an array descriptor (fat or thin pointer) or a
556bdfd4
UW
1738 pointer to one, the type of its array data (a array-with-no-bounds type);
1739 otherwise, NULL. Use ada_type_of_array to get an array type with bounds
1740 data. */
4c4b4cd2 1741
d2e4a39e 1742static struct type *
556bdfd4 1743desc_data_target_type (struct type *type)
14f9c5c9
AS
1744{
1745 type = desc_base_type (type);
1746
4c4b4cd2 1747 /* NOTE: The following is bogus; see comment in desc_bounds. */
14f9c5c9 1748 if (is_thin_pntr (type))
556bdfd4 1749 return desc_base_type (TYPE_FIELD_TYPE (thin_descriptor_type (type), 1));
14f9c5c9 1750 else if (is_thick_pntr (type))
556bdfd4
UW
1751 {
1752 struct type *data_type = lookup_struct_elt_type (type, "P_ARRAY", 1);
1753
1754 if (data_type
1755 && TYPE_CODE (ada_check_typedef (data_type)) == TYPE_CODE_PTR)
05e522ef 1756 return ada_check_typedef (TYPE_TARGET_TYPE (data_type));
556bdfd4
UW
1757 }
1758
1759 return NULL;
14f9c5c9
AS
1760}
1761
1762/* If ARR is an array descriptor (fat or thin pointer), a pointer to
1763 its array data. */
4c4b4cd2 1764
d2e4a39e
AS
1765static struct value *
1766desc_data (struct value *arr)
14f9c5c9 1767{
df407dfe 1768 struct type *type = value_type (arr);
5b4ee69b 1769
14f9c5c9
AS
1770 if (is_thin_pntr (type))
1771 return thin_data_pntr (arr);
1772 else if (is_thick_pntr (type))
d2e4a39e 1773 return value_struct_elt (&arr, NULL, "P_ARRAY", NULL,
323e0a4a 1774 _("Bad GNAT array descriptor"));
14f9c5c9
AS
1775 else
1776 return NULL;
1777}
1778
1779
1780/* If TYPE is the type of an array-descriptor (fat pointer), the bit
4c4b4cd2
PH
1781 position of the field containing the address of the data. */
1782
14f9c5c9 1783static int
d2e4a39e 1784fat_pntr_data_bitpos (struct type *type)
14f9c5c9
AS
1785{
1786 return TYPE_FIELD_BITPOS (desc_base_type (type), 0);
1787}
1788
1789/* If TYPE is the type of an array-descriptor (fat pointer), the bit
4c4b4cd2
PH
1790 size of the field containing the address of the data. */
1791
14f9c5c9 1792static int
d2e4a39e 1793fat_pntr_data_bitsize (struct type *type)
14f9c5c9
AS
1794{
1795 type = desc_base_type (type);
1796
1797 if (TYPE_FIELD_BITSIZE (type, 0) > 0)
1798 return TYPE_FIELD_BITSIZE (type, 0);
d2e4a39e 1799 else
14f9c5c9
AS
1800 return TARGET_CHAR_BIT * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 0));
1801}
1802
4c4b4cd2 1803/* If BOUNDS is an array-bounds structure (or pointer to one), return
14f9c5c9 1804 the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
4c4b4cd2
PH
1805 bound, if WHICH is 1. The first bound is I=1. */
1806
d2e4a39e
AS
1807static struct value *
1808desc_one_bound (struct value *bounds, int i, int which)
14f9c5c9 1809{
d2e4a39e 1810 return value_struct_elt (&bounds, NULL, bound_name[2 * i + which - 2], NULL,
323e0a4a 1811 _("Bad GNAT array descriptor bounds"));
14f9c5c9
AS
1812}
1813
1814/* If BOUNDS is an array-bounds structure type, return the bit position
1815 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
4c4b4cd2
PH
1816 bound, if WHICH is 1. The first bound is I=1. */
1817
14f9c5c9 1818static int
d2e4a39e 1819desc_bound_bitpos (struct type *type, int i, int which)
14f9c5c9 1820{
d2e4a39e 1821 return TYPE_FIELD_BITPOS (desc_base_type (type), 2 * i + which - 2);
14f9c5c9
AS
1822}
1823
1824/* If BOUNDS is an array-bounds structure type, return the bit field size
1825 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
4c4b4cd2
PH
1826 bound, if WHICH is 1. The first bound is I=1. */
1827
76a01679 1828static int
d2e4a39e 1829desc_bound_bitsize (struct type *type, int i, int which)
14f9c5c9
AS
1830{
1831 type = desc_base_type (type);
1832
d2e4a39e
AS
1833 if (TYPE_FIELD_BITSIZE (type, 2 * i + which - 2) > 0)
1834 return TYPE_FIELD_BITSIZE (type, 2 * i + which - 2);
1835 else
1836 return 8 * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 2 * i + which - 2));
14f9c5c9
AS
1837}
1838
1839/* If TYPE is the type of an array-bounds structure, the type of its
4c4b4cd2
PH
1840 Ith bound (numbering from 1). Otherwise, NULL. */
1841
d2e4a39e
AS
1842static struct type *
1843desc_index_type (struct type *type, int i)
14f9c5c9
AS
1844{
1845 type = desc_base_type (type);
1846
1847 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
d2e4a39e
AS
1848 return lookup_struct_elt_type (type, bound_name[2 * i - 2], 1);
1849 else
14f9c5c9
AS
1850 return NULL;
1851}
1852
4c4b4cd2
PH
1853/* The number of index positions in the array-bounds type TYPE.
1854 Return 0 if TYPE is NULL. */
1855
14f9c5c9 1856static int
d2e4a39e 1857desc_arity (struct type *type)
14f9c5c9
AS
1858{
1859 type = desc_base_type (type);
1860
1861 if (type != NULL)
1862 return TYPE_NFIELDS (type) / 2;
1863 return 0;
1864}
1865
4c4b4cd2
PH
1866/* Non-zero iff TYPE is a simple array type (not a pointer to one) or
1867 an array descriptor type (representing an unconstrained array
1868 type). */
1869
76a01679
JB
1870static int
1871ada_is_direct_array_type (struct type *type)
4c4b4cd2
PH
1872{
1873 if (type == NULL)
1874 return 0;
61ee279c 1875 type = ada_check_typedef (type);
4c4b4cd2 1876 return (TYPE_CODE (type) == TYPE_CODE_ARRAY
76a01679 1877 || ada_is_array_descriptor_type (type));
4c4b4cd2
PH
1878}
1879
52ce6436 1880/* Non-zero iff TYPE represents any kind of array in Ada, or a pointer
0963b4bd 1881 * to one. */
52ce6436 1882
2c0b251b 1883static int
52ce6436
PH
1884ada_is_array_type (struct type *type)
1885{
1886 while (type != NULL
1887 && (TYPE_CODE (type) == TYPE_CODE_PTR
1888 || TYPE_CODE (type) == TYPE_CODE_REF))
1889 type = TYPE_TARGET_TYPE (type);
1890 return ada_is_direct_array_type (type);
1891}
1892
4c4b4cd2 1893/* Non-zero iff TYPE is a simple array type or pointer to one. */
14f9c5c9 1894
14f9c5c9 1895int
4c4b4cd2 1896ada_is_simple_array_type (struct type *type)
14f9c5c9
AS
1897{
1898 if (type == NULL)
1899 return 0;
61ee279c 1900 type = ada_check_typedef (type);
14f9c5c9 1901 return (TYPE_CODE (type) == TYPE_CODE_ARRAY
4c4b4cd2 1902 || (TYPE_CODE (type) == TYPE_CODE_PTR
b0dd7688
JB
1903 && TYPE_CODE (ada_check_typedef (TYPE_TARGET_TYPE (type)))
1904 == TYPE_CODE_ARRAY));
14f9c5c9
AS
1905}
1906
4c4b4cd2
PH
1907/* Non-zero iff TYPE belongs to a GNAT array descriptor. */
1908
14f9c5c9 1909int
4c4b4cd2 1910ada_is_array_descriptor_type (struct type *type)
14f9c5c9 1911{
556bdfd4 1912 struct type *data_type = desc_data_target_type (type);
14f9c5c9
AS
1913
1914 if (type == NULL)
1915 return 0;
61ee279c 1916 type = ada_check_typedef (type);
556bdfd4
UW
1917 return (data_type != NULL
1918 && TYPE_CODE (data_type) == TYPE_CODE_ARRAY
1919 && desc_arity (desc_bounds_type (type)) > 0);
14f9c5c9
AS
1920}
1921
1922/* Non-zero iff type is a partially mal-formed GNAT array
4c4b4cd2 1923 descriptor. FIXME: This is to compensate for some problems with
14f9c5c9 1924 debugging output from GNAT. Re-examine periodically to see if it
4c4b4cd2
PH
1925 is still needed. */
1926
14f9c5c9 1927int
ebf56fd3 1928ada_is_bogus_array_descriptor (struct type *type)
14f9c5c9 1929{
d2e4a39e 1930 return
14f9c5c9
AS
1931 type != NULL
1932 && TYPE_CODE (type) == TYPE_CODE_STRUCT
1933 && (lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL
4c4b4cd2
PH
1934 || lookup_struct_elt_type (type, "P_ARRAY", 1) != NULL)
1935 && !ada_is_array_descriptor_type (type);
14f9c5c9
AS
1936}
1937
1938
4c4b4cd2 1939/* If ARR has a record type in the form of a standard GNAT array descriptor,
14f9c5c9 1940 (fat pointer) returns the type of the array data described---specifically,
4c4b4cd2 1941 a pointer-to-array type. If BOUNDS is non-zero, the bounds data are filled
14f9c5c9 1942 in from the descriptor; otherwise, they are left unspecified. If
4c4b4cd2
PH
1943 the ARR denotes a null array descriptor and BOUNDS is non-zero,
1944 returns NULL. The result is simply the type of ARR if ARR is not
14f9c5c9 1945 a descriptor. */
d2e4a39e
AS
1946struct type *
1947ada_type_of_array (struct value *arr, int bounds)
14f9c5c9 1948{
ad82864c
JB
1949 if (ada_is_constrained_packed_array_type (value_type (arr)))
1950 return decode_constrained_packed_array_type (value_type (arr));
14f9c5c9 1951
df407dfe
AC
1952 if (!ada_is_array_descriptor_type (value_type (arr)))
1953 return value_type (arr);
d2e4a39e
AS
1954
1955 if (!bounds)
ad82864c
JB
1956 {
1957 struct type *array_type =
1958 ada_check_typedef (desc_data_target_type (value_type (arr)));
1959
1960 if (ada_is_unconstrained_packed_array_type (value_type (arr)))
1961 TYPE_FIELD_BITSIZE (array_type, 0) =
1962 decode_packed_array_bitsize (value_type (arr));
1963
1964 return array_type;
1965 }
14f9c5c9
AS
1966 else
1967 {
d2e4a39e 1968 struct type *elt_type;
14f9c5c9 1969 int arity;
d2e4a39e 1970 struct value *descriptor;
14f9c5c9 1971
df407dfe
AC
1972 elt_type = ada_array_element_type (value_type (arr), -1);
1973 arity = ada_array_arity (value_type (arr));
14f9c5c9 1974
d2e4a39e 1975 if (elt_type == NULL || arity == 0)
df407dfe 1976 return ada_check_typedef (value_type (arr));
14f9c5c9
AS
1977
1978 descriptor = desc_bounds (arr);
d2e4a39e 1979 if (value_as_long (descriptor) == 0)
4c4b4cd2 1980 return NULL;
d2e4a39e 1981 while (arity > 0)
4c4b4cd2 1982 {
e9bb382b
UW
1983 struct type *range_type = alloc_type_copy (value_type (arr));
1984 struct type *array_type = alloc_type_copy (value_type (arr));
4c4b4cd2
PH
1985 struct value *low = desc_one_bound (descriptor, arity, 0);
1986 struct value *high = desc_one_bound (descriptor, arity, 1);
4c4b4cd2 1987
5b4ee69b 1988 arity -= 1;
0c9c3474
SA
1989 create_static_range_type (range_type, value_type (low),
1990 longest_to_int (value_as_long (low)),
1991 longest_to_int (value_as_long (high)));
4c4b4cd2 1992 elt_type = create_array_type (array_type, elt_type, range_type);
ad82864c
JB
1993
1994 if (ada_is_unconstrained_packed_array_type (value_type (arr)))
e67ad678
JB
1995 {
1996 /* We need to store the element packed bitsize, as well as
1997 recompute the array size, because it was previously
1998 computed based on the unpacked element size. */
1999 LONGEST lo = value_as_long (low);
2000 LONGEST hi = value_as_long (high);
2001
2002 TYPE_FIELD_BITSIZE (elt_type, 0) =
2003 decode_packed_array_bitsize (value_type (arr));
2004 /* If the array has no element, then the size is already
2005 zero, and does not need to be recomputed. */
2006 if (lo < hi)
2007 {
2008 int array_bitsize =
2009 (hi - lo + 1) * TYPE_FIELD_BITSIZE (elt_type, 0);
2010
2011 TYPE_LENGTH (array_type) = (array_bitsize + 7) / 8;
2012 }
2013 }
4c4b4cd2 2014 }
14f9c5c9
AS
2015
2016 return lookup_pointer_type (elt_type);
2017 }
2018}
2019
2020/* If ARR does not represent an array, returns ARR unchanged.
4c4b4cd2
PH
2021 Otherwise, returns either a standard GDB array with bounds set
2022 appropriately or, if ARR is a non-null fat pointer, a pointer to a standard
2023 GDB array. Returns NULL if ARR is a null fat pointer. */
2024
d2e4a39e
AS
2025struct value *
2026ada_coerce_to_simple_array_ptr (struct value *arr)
14f9c5c9 2027{
df407dfe 2028 if (ada_is_array_descriptor_type (value_type (arr)))
14f9c5c9 2029 {
d2e4a39e 2030 struct type *arrType = ada_type_of_array (arr, 1);
5b4ee69b 2031
14f9c5c9 2032 if (arrType == NULL)
4c4b4cd2 2033 return NULL;
14f9c5c9
AS
2034 return value_cast (arrType, value_copy (desc_data (arr)));
2035 }
ad82864c
JB
2036 else if (ada_is_constrained_packed_array_type (value_type (arr)))
2037 return decode_constrained_packed_array (arr);
14f9c5c9
AS
2038 else
2039 return arr;
2040}
2041
2042/* If ARR does not represent an array, returns ARR unchanged.
2043 Otherwise, returns a standard GDB array describing ARR (which may
4c4b4cd2
PH
2044 be ARR itself if it already is in the proper form). */
2045
720d1a40 2046struct value *
d2e4a39e 2047ada_coerce_to_simple_array (struct value *arr)
14f9c5c9 2048{
df407dfe 2049 if (ada_is_array_descriptor_type (value_type (arr)))
14f9c5c9 2050 {
d2e4a39e 2051 struct value *arrVal = ada_coerce_to_simple_array_ptr (arr);
5b4ee69b 2052
14f9c5c9 2053 if (arrVal == NULL)
323e0a4a 2054 error (_("Bounds unavailable for null array pointer."));
529cad9c 2055 check_size (TYPE_TARGET_TYPE (value_type (arrVal)));
14f9c5c9
AS
2056 return value_ind (arrVal);
2057 }
ad82864c
JB
2058 else if (ada_is_constrained_packed_array_type (value_type (arr)))
2059 return decode_constrained_packed_array (arr);
d2e4a39e 2060 else
14f9c5c9
AS
2061 return arr;
2062}
2063
2064/* If TYPE represents a GNAT array type, return it translated to an
2065 ordinary GDB array type (possibly with BITSIZE fields indicating
4c4b4cd2
PH
2066 packing). For other types, is the identity. */
2067
d2e4a39e
AS
2068struct type *
2069ada_coerce_to_simple_array_type (struct type *type)
14f9c5c9 2070{
ad82864c
JB
2071 if (ada_is_constrained_packed_array_type (type))
2072 return decode_constrained_packed_array_type (type);
17280b9f
UW
2073
2074 if (ada_is_array_descriptor_type (type))
556bdfd4 2075 return ada_check_typedef (desc_data_target_type (type));
17280b9f
UW
2076
2077 return type;
14f9c5c9
AS
2078}
2079
4c4b4cd2
PH
2080/* Non-zero iff TYPE represents a standard GNAT packed-array type. */
2081
ad82864c
JB
2082static int
2083ada_is_packed_array_type (struct type *type)
14f9c5c9
AS
2084{
2085 if (type == NULL)
2086 return 0;
4c4b4cd2 2087 type = desc_base_type (type);
61ee279c 2088 type = ada_check_typedef (type);
d2e4a39e 2089 return
14f9c5c9
AS
2090 ada_type_name (type) != NULL
2091 && strstr (ada_type_name (type), "___XP") != NULL;
2092}
2093
ad82864c
JB
2094/* Non-zero iff TYPE represents a standard GNAT constrained
2095 packed-array type. */
2096
2097int
2098ada_is_constrained_packed_array_type (struct type *type)
2099{
2100 return ada_is_packed_array_type (type)
2101 && !ada_is_array_descriptor_type (type);
2102}
2103
2104/* Non-zero iff TYPE represents an array descriptor for a
2105 unconstrained packed-array type. */
2106
2107static int
2108ada_is_unconstrained_packed_array_type (struct type *type)
2109{
2110 return ada_is_packed_array_type (type)
2111 && ada_is_array_descriptor_type (type);
2112}
2113
2114/* Given that TYPE encodes a packed array type (constrained or unconstrained),
2115 return the size of its elements in bits. */
2116
2117static long
2118decode_packed_array_bitsize (struct type *type)
2119{
0d5cff50
DE
2120 const char *raw_name;
2121 const char *tail;
ad82864c
JB
2122 long bits;
2123
720d1a40
JB
2124 /* Access to arrays implemented as fat pointers are encoded as a typedef
2125 of the fat pointer type. We need the name of the fat pointer type
2126 to do the decoding, so strip the typedef layer. */
2127 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
2128 type = ada_typedef_target_type (type);
2129
2130 raw_name = ada_type_name (ada_check_typedef (type));
ad82864c
JB
2131 if (!raw_name)
2132 raw_name = ada_type_name (desc_base_type (type));
2133
2134 if (!raw_name)
2135 return 0;
2136
2137 tail = strstr (raw_name, "___XP");
720d1a40 2138 gdb_assert (tail != NULL);
ad82864c
JB
2139
2140 if (sscanf (tail + sizeof ("___XP") - 1, "%ld", &bits) != 1)
2141 {
2142 lim_warning
2143 (_("could not understand bit size information on packed array"));
2144 return 0;
2145 }
2146
2147 return bits;
2148}
2149
14f9c5c9
AS
2150/* Given that TYPE is a standard GDB array type with all bounds filled
2151 in, and that the element size of its ultimate scalar constituents
2152 (that is, either its elements, or, if it is an array of arrays, its
2153 elements' elements, etc.) is *ELT_BITS, return an identical type,
2154 but with the bit sizes of its elements (and those of any
2155 constituent arrays) recorded in the BITSIZE components of its
4c4b4cd2 2156 TYPE_FIELD_BITSIZE values, and with *ELT_BITS set to its total size
4a46959e
JB
2157 in bits.
2158
2159 Note that, for arrays whose index type has an XA encoding where
2160 a bound references a record discriminant, getting that discriminant,
2161 and therefore the actual value of that bound, is not possible
2162 because none of the given parameters gives us access to the record.
2163 This function assumes that it is OK in the context where it is being
2164 used to return an array whose bounds are still dynamic and where
2165 the length is arbitrary. */
4c4b4cd2 2166
d2e4a39e 2167static struct type *
ad82864c 2168constrained_packed_array_type (struct type *type, long *elt_bits)
14f9c5c9 2169{
d2e4a39e
AS
2170 struct type *new_elt_type;
2171 struct type *new_type;
99b1c762
JB
2172 struct type *index_type_desc;
2173 struct type *index_type;
14f9c5c9
AS
2174 LONGEST low_bound, high_bound;
2175
61ee279c 2176 type = ada_check_typedef (type);
14f9c5c9
AS
2177 if (TYPE_CODE (type) != TYPE_CODE_ARRAY)
2178 return type;
2179
99b1c762
JB
2180 index_type_desc = ada_find_parallel_type (type, "___XA");
2181 if (index_type_desc)
2182 index_type = to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, 0),
2183 NULL);
2184 else
2185 index_type = TYPE_INDEX_TYPE (type);
2186
e9bb382b 2187 new_type = alloc_type_copy (type);
ad82864c
JB
2188 new_elt_type =
2189 constrained_packed_array_type (ada_check_typedef (TYPE_TARGET_TYPE (type)),
2190 elt_bits);
99b1c762 2191 create_array_type (new_type, new_elt_type, index_type);
14f9c5c9
AS
2192 TYPE_FIELD_BITSIZE (new_type, 0) = *elt_bits;
2193 TYPE_NAME (new_type) = ada_type_name (type);
2194
4a46959e
JB
2195 if ((TYPE_CODE (check_typedef (index_type)) == TYPE_CODE_RANGE
2196 && is_dynamic_type (check_typedef (index_type)))
2197 || get_discrete_bounds (index_type, &low_bound, &high_bound) < 0)
14f9c5c9
AS
2198 low_bound = high_bound = 0;
2199 if (high_bound < low_bound)
2200 *elt_bits = TYPE_LENGTH (new_type) = 0;
d2e4a39e 2201 else
14f9c5c9
AS
2202 {
2203 *elt_bits *= (high_bound - low_bound + 1);
d2e4a39e 2204 TYPE_LENGTH (new_type) =
4c4b4cd2 2205 (*elt_bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
14f9c5c9
AS
2206 }
2207
876cecd0 2208 TYPE_FIXED_INSTANCE (new_type) = 1;
14f9c5c9
AS
2209 return new_type;
2210}
2211
ad82864c
JB
2212/* The array type encoded by TYPE, where
2213 ada_is_constrained_packed_array_type (TYPE). */
4c4b4cd2 2214
d2e4a39e 2215static struct type *
ad82864c 2216decode_constrained_packed_array_type (struct type *type)
d2e4a39e 2217{
0d5cff50 2218 const char *raw_name = ada_type_name (ada_check_typedef (type));
727e3d2e 2219 char *name;
0d5cff50 2220 const char *tail;
d2e4a39e 2221 struct type *shadow_type;
14f9c5c9 2222 long bits;
14f9c5c9 2223
727e3d2e
JB
2224 if (!raw_name)
2225 raw_name = ada_type_name (desc_base_type (type));
2226
2227 if (!raw_name)
2228 return NULL;
2229
2230 name = (char *) alloca (strlen (raw_name) + 1);
2231 tail = strstr (raw_name, "___XP");
4c4b4cd2
PH
2232 type = desc_base_type (type);
2233
14f9c5c9
AS
2234 memcpy (name, raw_name, tail - raw_name);
2235 name[tail - raw_name] = '\000';
2236
b4ba55a1
JB
2237 shadow_type = ada_find_parallel_type_with_name (type, name);
2238
2239 if (shadow_type == NULL)
14f9c5c9 2240 {
323e0a4a 2241 lim_warning (_("could not find bounds information on packed array"));
14f9c5c9
AS
2242 return NULL;
2243 }
cb249c71 2244 CHECK_TYPEDEF (shadow_type);
14f9c5c9
AS
2245
2246 if (TYPE_CODE (shadow_type) != TYPE_CODE_ARRAY)
2247 {
0963b4bd
MS
2248 lim_warning (_("could not understand bounds "
2249 "information on packed array"));
14f9c5c9
AS
2250 return NULL;
2251 }
d2e4a39e 2252
ad82864c
JB
2253 bits = decode_packed_array_bitsize (type);
2254 return constrained_packed_array_type (shadow_type, &bits);
14f9c5c9
AS
2255}
2256
ad82864c
JB
2257/* Given that ARR is a struct value *indicating a GNAT constrained packed
2258 array, returns a simple array that denotes that array. Its type is a
14f9c5c9
AS
2259 standard GDB array type except that the BITSIZEs of the array
2260 target types are set to the number of bits in each element, and the
4c4b4cd2 2261 type length is set appropriately. */
14f9c5c9 2262
d2e4a39e 2263static struct value *
ad82864c 2264decode_constrained_packed_array (struct value *arr)
14f9c5c9 2265{
4c4b4cd2 2266 struct type *type;
14f9c5c9 2267
11aa919a
PMR
2268 /* If our value is a pointer, then dereference it. Likewise if
2269 the value is a reference. Make sure that this operation does not
2270 cause the target type to be fixed, as this would indirectly cause
2271 this array to be decoded. The rest of the routine assumes that
2272 the array hasn't been decoded yet, so we use the basic "coerce_ref"
2273 and "value_ind" routines to perform the dereferencing, as opposed
2274 to using "ada_coerce_ref" or "ada_value_ind". */
2275 arr = coerce_ref (arr);
828292f2 2276 if (TYPE_CODE (ada_check_typedef (value_type (arr))) == TYPE_CODE_PTR)
284614f0 2277 arr = value_ind (arr);
4c4b4cd2 2278
ad82864c 2279 type = decode_constrained_packed_array_type (value_type (arr));
14f9c5c9
AS
2280 if (type == NULL)
2281 {
323e0a4a 2282 error (_("can't unpack array"));
14f9c5c9
AS
2283 return NULL;
2284 }
61ee279c 2285
50810684 2286 if (gdbarch_bits_big_endian (get_type_arch (value_type (arr)))
32c9a795 2287 && ada_is_modular_type (value_type (arr)))
61ee279c
PH
2288 {
2289 /* This is a (right-justified) modular type representing a packed
2290 array with no wrapper. In order to interpret the value through
2291 the (left-justified) packed array type we just built, we must
2292 first left-justify it. */
2293 int bit_size, bit_pos;
2294 ULONGEST mod;
2295
df407dfe 2296 mod = ada_modulus (value_type (arr)) - 1;
61ee279c
PH
2297 bit_size = 0;
2298 while (mod > 0)
2299 {
2300 bit_size += 1;
2301 mod >>= 1;
2302 }
df407dfe 2303 bit_pos = HOST_CHAR_BIT * TYPE_LENGTH (value_type (arr)) - bit_size;
61ee279c
PH
2304 arr = ada_value_primitive_packed_val (arr, NULL,
2305 bit_pos / HOST_CHAR_BIT,
2306 bit_pos % HOST_CHAR_BIT,
2307 bit_size,
2308 type);
2309 }
2310
4c4b4cd2 2311 return coerce_unspec_val_to_type (arr, type);
14f9c5c9
AS
2312}
2313
2314
2315/* The value of the element of packed array ARR at the ARITY indices
4c4b4cd2 2316 given in IND. ARR must be a simple array. */
14f9c5c9 2317
d2e4a39e
AS
2318static struct value *
2319value_subscript_packed (struct value *arr, int arity, struct value **ind)
14f9c5c9
AS
2320{
2321 int i;
2322 int bits, elt_off, bit_off;
2323 long elt_total_bit_offset;
d2e4a39e
AS
2324 struct type *elt_type;
2325 struct value *v;
14f9c5c9
AS
2326
2327 bits = 0;
2328 elt_total_bit_offset = 0;
df407dfe 2329 elt_type = ada_check_typedef (value_type (arr));
d2e4a39e 2330 for (i = 0; i < arity; i += 1)
14f9c5c9 2331 {
d2e4a39e 2332 if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY
4c4b4cd2
PH
2333 || TYPE_FIELD_BITSIZE (elt_type, 0) == 0)
2334 error
0963b4bd
MS
2335 (_("attempt to do packed indexing of "
2336 "something other than a packed array"));
14f9c5c9 2337 else
4c4b4cd2
PH
2338 {
2339 struct type *range_type = TYPE_INDEX_TYPE (elt_type);
2340 LONGEST lowerbound, upperbound;
2341 LONGEST idx;
2342
2343 if (get_discrete_bounds (range_type, &lowerbound, &upperbound) < 0)
2344 {
323e0a4a 2345 lim_warning (_("don't know bounds of array"));
4c4b4cd2
PH
2346 lowerbound = upperbound = 0;
2347 }
2348
3cb382c9 2349 idx = pos_atr (ind[i]);
4c4b4cd2 2350 if (idx < lowerbound || idx > upperbound)
0963b4bd
MS
2351 lim_warning (_("packed array index %ld out of bounds"),
2352 (long) idx);
4c4b4cd2
PH
2353 bits = TYPE_FIELD_BITSIZE (elt_type, 0);
2354 elt_total_bit_offset += (idx - lowerbound) * bits;
61ee279c 2355 elt_type = ada_check_typedef (TYPE_TARGET_TYPE (elt_type));
4c4b4cd2 2356 }
14f9c5c9
AS
2357 }
2358 elt_off = elt_total_bit_offset / HOST_CHAR_BIT;
2359 bit_off = elt_total_bit_offset % HOST_CHAR_BIT;
d2e4a39e
AS
2360
2361 v = ada_value_primitive_packed_val (arr, NULL, elt_off, bit_off,
4c4b4cd2 2362 bits, elt_type);
14f9c5c9
AS
2363 return v;
2364}
2365
4c4b4cd2 2366/* Non-zero iff TYPE includes negative integer values. */
14f9c5c9
AS
2367
2368static int
d2e4a39e 2369has_negatives (struct type *type)
14f9c5c9 2370{
d2e4a39e
AS
2371 switch (TYPE_CODE (type))
2372 {
2373 default:
2374 return 0;
2375 case TYPE_CODE_INT:
2376 return !TYPE_UNSIGNED (type);
2377 case TYPE_CODE_RANGE:
2378 return TYPE_LOW_BOUND (type) < 0;
2379 }
14f9c5c9 2380}
d2e4a39e 2381
14f9c5c9
AS
2382
2383/* Create a new value of type TYPE from the contents of OBJ starting
2384 at byte OFFSET, and bit offset BIT_OFFSET within that byte,
2385 proceeding for BIT_SIZE bits. If OBJ is an lval in memory, then
0963b4bd 2386 assigning through the result will set the field fetched from.
4c4b4cd2
PH
2387 VALADDR is ignored unless OBJ is NULL, in which case,
2388 VALADDR+OFFSET must address the start of storage containing the
2389 packed value. The value returned in this case is never an lval.
2390 Assumes 0 <= BIT_OFFSET < HOST_CHAR_BIT. */
14f9c5c9 2391
d2e4a39e 2392struct value *
fc1a4b47 2393ada_value_primitive_packed_val (struct value *obj, const gdb_byte *valaddr,
a2bd3dcd 2394 long offset, int bit_offset, int bit_size,
4c4b4cd2 2395 struct type *type)
14f9c5c9 2396{
d2e4a39e 2397 struct value *v;
4c4b4cd2
PH
2398 int src, /* Index into the source area */
2399 targ, /* Index into the target area */
2400 srcBitsLeft, /* Number of source bits left to move */
2401 nsrc, ntarg, /* Number of source and target bytes */
2402 unusedLS, /* Number of bits in next significant
2403 byte of source that are unused */
2404 accumSize; /* Number of meaningful bits in accum */
2405 unsigned char *bytes; /* First byte containing data to unpack */
d2e4a39e 2406 unsigned char *unpacked;
4c4b4cd2 2407 unsigned long accum; /* Staging area for bits being transferred */
14f9c5c9
AS
2408 unsigned char sign;
2409 int len = (bit_size + bit_offset + HOST_CHAR_BIT - 1) / 8;
4c4b4cd2
PH
2410 /* Transmit bytes from least to most significant; delta is the direction
2411 the indices move. */
50810684 2412 int delta = gdbarch_bits_big_endian (get_type_arch (type)) ? -1 : 1;
14f9c5c9 2413
61ee279c 2414 type = ada_check_typedef (type);
14f9c5c9
AS
2415
2416 if (obj == NULL)
2417 {
2418 v = allocate_value (type);
d2e4a39e 2419 bytes = (unsigned char *) (valaddr + offset);
14f9c5c9 2420 }
9214ee5f 2421 else if (VALUE_LVAL (obj) == lval_memory && value_lazy (obj))
14f9c5c9 2422 {
53ba8333 2423 v = value_at (type, value_address (obj));
9f1f738a 2424 type = value_type (v);
d2e4a39e 2425 bytes = (unsigned char *) alloca (len);
53ba8333 2426 read_memory (value_address (v) + offset, bytes, len);
14f9c5c9 2427 }
d2e4a39e 2428 else
14f9c5c9
AS
2429 {
2430 v = allocate_value (type);
0fd88904 2431 bytes = (unsigned char *) value_contents (obj) + offset;
14f9c5c9 2432 }
d2e4a39e
AS
2433
2434 if (obj != NULL)
14f9c5c9 2435 {
53ba8333 2436 long new_offset = offset;
5b4ee69b 2437
74bcbdf3 2438 set_value_component_location (v, obj);
9bbda503
AC
2439 set_value_bitpos (v, bit_offset + value_bitpos (obj));
2440 set_value_bitsize (v, bit_size);
df407dfe 2441 if (value_bitpos (v) >= HOST_CHAR_BIT)
4c4b4cd2 2442 {
53ba8333 2443 ++new_offset;
9bbda503 2444 set_value_bitpos (v, value_bitpos (v) - HOST_CHAR_BIT);
4c4b4cd2 2445 }
53ba8333
JB
2446 set_value_offset (v, new_offset);
2447
2448 /* Also set the parent value. This is needed when trying to
2449 assign a new value (in inferior memory). */
2450 set_value_parent (v, obj);
14f9c5c9
AS
2451 }
2452 else
9bbda503 2453 set_value_bitsize (v, bit_size);
0fd88904 2454 unpacked = (unsigned char *) value_contents (v);
14f9c5c9
AS
2455
2456 srcBitsLeft = bit_size;
2457 nsrc = len;
2458 ntarg = TYPE_LENGTH (type);
2459 sign = 0;
2460 if (bit_size == 0)
2461 {
2462 memset (unpacked, 0, TYPE_LENGTH (type));
2463 return v;
2464 }
50810684 2465 else if (gdbarch_bits_big_endian (get_type_arch (type)))
14f9c5c9 2466 {
d2e4a39e 2467 src = len - 1;
1265e4aa
JB
2468 if (has_negatives (type)
2469 && ((bytes[0] << bit_offset) & (1 << (HOST_CHAR_BIT - 1))))
4c4b4cd2 2470 sign = ~0;
d2e4a39e
AS
2471
2472 unusedLS =
4c4b4cd2
PH
2473 (HOST_CHAR_BIT - (bit_size + bit_offset) % HOST_CHAR_BIT)
2474 % HOST_CHAR_BIT;
14f9c5c9
AS
2475
2476 switch (TYPE_CODE (type))
4c4b4cd2
PH
2477 {
2478 case TYPE_CODE_ARRAY:
2479 case TYPE_CODE_UNION:
2480 case TYPE_CODE_STRUCT:
2481 /* Non-scalar values must be aligned at a byte boundary... */
2482 accumSize =
2483 (HOST_CHAR_BIT - bit_size % HOST_CHAR_BIT) % HOST_CHAR_BIT;
2484 /* ... And are placed at the beginning (most-significant) bytes
2485 of the target. */
529cad9c 2486 targ = (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT - 1;
0056e4d5 2487 ntarg = targ + 1;
4c4b4cd2
PH
2488 break;
2489 default:
2490 accumSize = 0;
2491 targ = TYPE_LENGTH (type) - 1;
2492 break;
2493 }
14f9c5c9 2494 }
d2e4a39e 2495 else
14f9c5c9
AS
2496 {
2497 int sign_bit_offset = (bit_size + bit_offset - 1) % 8;
2498
2499 src = targ = 0;
2500 unusedLS = bit_offset;
2501 accumSize = 0;
2502
d2e4a39e 2503 if (has_negatives (type) && (bytes[len - 1] & (1 << sign_bit_offset)))
4c4b4cd2 2504 sign = ~0;
14f9c5c9 2505 }
d2e4a39e 2506
14f9c5c9
AS
2507 accum = 0;
2508 while (nsrc > 0)
2509 {
2510 /* Mask for removing bits of the next source byte that are not
4c4b4cd2 2511 part of the value. */
d2e4a39e 2512 unsigned int unusedMSMask =
4c4b4cd2
PH
2513 (1 << (srcBitsLeft >= HOST_CHAR_BIT ? HOST_CHAR_BIT : srcBitsLeft)) -
2514 1;
2515 /* Sign-extend bits for this byte. */
14f9c5c9 2516 unsigned int signMask = sign & ~unusedMSMask;
5b4ee69b 2517
d2e4a39e 2518 accum |=
4c4b4cd2 2519 (((bytes[src] >> unusedLS) & unusedMSMask) | signMask) << accumSize;
14f9c5c9 2520 accumSize += HOST_CHAR_BIT - unusedLS;
d2e4a39e 2521 if (accumSize >= HOST_CHAR_BIT)
4c4b4cd2
PH
2522 {
2523 unpacked[targ] = accum & ~(~0L << HOST_CHAR_BIT);
2524 accumSize -= HOST_CHAR_BIT;
2525 accum >>= HOST_CHAR_BIT;
2526 ntarg -= 1;
2527 targ += delta;
2528 }
14f9c5c9
AS
2529 srcBitsLeft -= HOST_CHAR_BIT - unusedLS;
2530 unusedLS = 0;
2531 nsrc -= 1;
2532 src += delta;
2533 }
2534 while (ntarg > 0)
2535 {
2536 accum |= sign << accumSize;
2537 unpacked[targ] = accum & ~(~0L << HOST_CHAR_BIT);
2538 accumSize -= HOST_CHAR_BIT;
2539 accum >>= HOST_CHAR_BIT;
2540 ntarg -= 1;
2541 targ += delta;
2542 }
2543
2544 return v;
2545}
d2e4a39e 2546
14f9c5c9
AS
2547/* Move N bits from SOURCE, starting at bit offset SRC_OFFSET to
2548 TARGET, starting at bit offset TARG_OFFSET. SOURCE and TARGET must
4c4b4cd2 2549 not overlap. */
14f9c5c9 2550static void
fc1a4b47 2551move_bits (gdb_byte *target, int targ_offset, const gdb_byte *source,
50810684 2552 int src_offset, int n, int bits_big_endian_p)
14f9c5c9
AS
2553{
2554 unsigned int accum, mask;
2555 int accum_bits, chunk_size;
2556
2557 target += targ_offset / HOST_CHAR_BIT;
2558 targ_offset %= HOST_CHAR_BIT;
2559 source += src_offset / HOST_CHAR_BIT;
2560 src_offset %= HOST_CHAR_BIT;
50810684 2561 if (bits_big_endian_p)
14f9c5c9
AS
2562 {
2563 accum = (unsigned char) *source;
2564 source += 1;
2565 accum_bits = HOST_CHAR_BIT - src_offset;
2566
d2e4a39e 2567 while (n > 0)
4c4b4cd2
PH
2568 {
2569 int unused_right;
5b4ee69b 2570
4c4b4cd2
PH
2571 accum = (accum << HOST_CHAR_BIT) + (unsigned char) *source;
2572 accum_bits += HOST_CHAR_BIT;
2573 source += 1;
2574 chunk_size = HOST_CHAR_BIT - targ_offset;
2575 if (chunk_size > n)
2576 chunk_size = n;
2577 unused_right = HOST_CHAR_BIT - (chunk_size + targ_offset);
2578 mask = ((1 << chunk_size) - 1) << unused_right;
2579 *target =
2580 (*target & ~mask)
2581 | ((accum >> (accum_bits - chunk_size - unused_right)) & mask);
2582 n -= chunk_size;
2583 accum_bits -= chunk_size;
2584 target += 1;
2585 targ_offset = 0;
2586 }
14f9c5c9
AS
2587 }
2588 else
2589 {
2590 accum = (unsigned char) *source >> src_offset;
2591 source += 1;
2592 accum_bits = HOST_CHAR_BIT - src_offset;
2593
d2e4a39e 2594 while (n > 0)
4c4b4cd2
PH
2595 {
2596 accum = accum + ((unsigned char) *source << accum_bits);
2597 accum_bits += HOST_CHAR_BIT;
2598 source += 1;
2599 chunk_size = HOST_CHAR_BIT - targ_offset;
2600 if (chunk_size > n)
2601 chunk_size = n;
2602 mask = ((1 << chunk_size) - 1) << targ_offset;
2603 *target = (*target & ~mask) | ((accum << targ_offset) & mask);
2604 n -= chunk_size;
2605 accum_bits -= chunk_size;
2606 accum >>= chunk_size;
2607 target += 1;
2608 targ_offset = 0;
2609 }
14f9c5c9
AS
2610 }
2611}
2612
14f9c5c9
AS
2613/* Store the contents of FROMVAL into the location of TOVAL.
2614 Return a new value with the location of TOVAL and contents of
2615 FROMVAL. Handles assignment into packed fields that have
4c4b4cd2 2616 floating-point or non-scalar types. */
14f9c5c9 2617
d2e4a39e
AS
2618static struct value *
2619ada_value_assign (struct value *toval, struct value *fromval)
14f9c5c9 2620{
df407dfe
AC
2621 struct type *type = value_type (toval);
2622 int bits = value_bitsize (toval);
14f9c5c9 2623
52ce6436
PH
2624 toval = ada_coerce_ref (toval);
2625 fromval = ada_coerce_ref (fromval);
2626
2627 if (ada_is_direct_array_type (value_type (toval)))
2628 toval = ada_coerce_to_simple_array (toval);
2629 if (ada_is_direct_array_type (value_type (fromval)))
2630 fromval = ada_coerce_to_simple_array (fromval);
2631
88e3b34b 2632 if (!deprecated_value_modifiable (toval))
323e0a4a 2633 error (_("Left operand of assignment is not a modifiable lvalue."));
14f9c5c9 2634
d2e4a39e 2635 if (VALUE_LVAL (toval) == lval_memory
14f9c5c9 2636 && bits > 0
d2e4a39e 2637 && (TYPE_CODE (type) == TYPE_CODE_FLT
4c4b4cd2 2638 || TYPE_CODE (type) == TYPE_CODE_STRUCT))
14f9c5c9 2639 {
df407dfe
AC
2640 int len = (value_bitpos (toval)
2641 + bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
aced2898 2642 int from_size;
948f8e3d 2643 gdb_byte *buffer = alloca (len);
d2e4a39e 2644 struct value *val;
42ae5230 2645 CORE_ADDR to_addr = value_address (toval);
14f9c5c9
AS
2646
2647 if (TYPE_CODE (type) == TYPE_CODE_FLT)
4c4b4cd2 2648 fromval = value_cast (type, fromval);
14f9c5c9 2649
52ce6436 2650 read_memory (to_addr, buffer, len);
aced2898
PH
2651 from_size = value_bitsize (fromval);
2652 if (from_size == 0)
2653 from_size = TYPE_LENGTH (value_type (fromval)) * TARGET_CHAR_BIT;
50810684 2654 if (gdbarch_bits_big_endian (get_type_arch (type)))
df407dfe 2655 move_bits (buffer, value_bitpos (toval),
50810684 2656 value_contents (fromval), from_size - bits, bits, 1);
14f9c5c9 2657 else
50810684
UW
2658 move_bits (buffer, value_bitpos (toval),
2659 value_contents (fromval), 0, bits, 0);
972daa01 2660 write_memory_with_notification (to_addr, buffer, len);
8cebebb9 2661
14f9c5c9 2662 val = value_copy (toval);
0fd88904 2663 memcpy (value_contents_raw (val), value_contents (fromval),
4c4b4cd2 2664 TYPE_LENGTH (type));
04624583 2665 deprecated_set_value_type (val, type);
d2e4a39e 2666
14f9c5c9
AS
2667 return val;
2668 }
2669
2670 return value_assign (toval, fromval);
2671}
2672
2673
52ce6436
PH
2674/* Given that COMPONENT is a memory lvalue that is part of the lvalue
2675 * CONTAINER, assign the contents of VAL to COMPONENTS's place in
2676 * CONTAINER. Modifies the VALUE_CONTENTS of CONTAINER only, not
2677 * COMPONENT, and not the inferior's memory. The current contents
2678 * of COMPONENT are ignored. */
2679static void
2680value_assign_to_component (struct value *container, struct value *component,
2681 struct value *val)
2682{
2683 LONGEST offset_in_container =
42ae5230 2684 (LONGEST) (value_address (component) - value_address (container));
52ce6436
PH
2685 int bit_offset_in_container =
2686 value_bitpos (component) - value_bitpos (container);
2687 int bits;
2688
2689 val = value_cast (value_type (component), val);
2690
2691 if (value_bitsize (component) == 0)
2692 bits = TARGET_CHAR_BIT * TYPE_LENGTH (value_type (component));
2693 else
2694 bits = value_bitsize (component);
2695
50810684 2696 if (gdbarch_bits_big_endian (get_type_arch (value_type (container))))
52ce6436
PH
2697 move_bits (value_contents_writeable (container) + offset_in_container,
2698 value_bitpos (container) + bit_offset_in_container,
2699 value_contents (val),
2700 TYPE_LENGTH (value_type (component)) * TARGET_CHAR_BIT - bits,
50810684 2701 bits, 1);
52ce6436
PH
2702 else
2703 move_bits (value_contents_writeable (container) + offset_in_container,
2704 value_bitpos (container) + bit_offset_in_container,
50810684 2705 value_contents (val), 0, bits, 0);
52ce6436
PH
2706}
2707
4c4b4cd2
PH
2708/* The value of the element of array ARR at the ARITY indices given in IND.
2709 ARR may be either a simple array, GNAT array descriptor, or pointer
14f9c5c9
AS
2710 thereto. */
2711
d2e4a39e
AS
2712struct value *
2713ada_value_subscript (struct value *arr, int arity, struct value **ind)
14f9c5c9
AS
2714{
2715 int k;
d2e4a39e
AS
2716 struct value *elt;
2717 struct type *elt_type;
14f9c5c9
AS
2718
2719 elt = ada_coerce_to_simple_array (arr);
2720
df407dfe 2721 elt_type = ada_check_typedef (value_type (elt));
d2e4a39e 2722 if (TYPE_CODE (elt_type) == TYPE_CODE_ARRAY
14f9c5c9
AS
2723 && TYPE_FIELD_BITSIZE (elt_type, 0) > 0)
2724 return value_subscript_packed (elt, arity, ind);
2725
2726 for (k = 0; k < arity; k += 1)
2727 {
2728 if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY)
323e0a4a 2729 error (_("too many subscripts (%d expected)"), k);
2497b498 2730 elt = value_subscript (elt, pos_atr (ind[k]));
14f9c5c9
AS
2731 }
2732 return elt;
2733}
2734
deede10c
JB
2735/* Assuming ARR is a pointer to a GDB array, the value of the element
2736 of *ARR at the ARITY indices given in IND.
2737 Does not read the entire array into memory. */
14f9c5c9 2738
2c0b251b 2739static struct value *
deede10c 2740ada_value_ptr_subscript (struct value *arr, int arity, struct value **ind)
14f9c5c9
AS
2741{
2742 int k;
deede10c
JB
2743 struct type *type
2744 = check_typedef (value_enclosing_type (ada_value_ind (arr)));
14f9c5c9
AS
2745
2746 for (k = 0; k < arity; k += 1)
2747 {
2748 LONGEST lwb, upb;
14f9c5c9
AS
2749
2750 if (TYPE_CODE (type) != TYPE_CODE_ARRAY)
323e0a4a 2751 error (_("too many subscripts (%d expected)"), k);
d2e4a39e 2752 arr = value_cast (lookup_pointer_type (TYPE_TARGET_TYPE (type)),
4c4b4cd2 2753 value_copy (arr));
14f9c5c9 2754 get_discrete_bounds (TYPE_INDEX_TYPE (type), &lwb, &upb);
2497b498 2755 arr = value_ptradd (arr, pos_atr (ind[k]) - lwb);
14f9c5c9
AS
2756 type = TYPE_TARGET_TYPE (type);
2757 }
2758
2759 return value_ind (arr);
2760}
2761
0b5d8877 2762/* Given that ARRAY_PTR is a pointer or reference to an array of type TYPE (the
f5938064
JG
2763 actual type of ARRAY_PTR is ignored), returns the Ada slice of HIGH-LOW+1
2764 elements starting at index LOW. The lower bound of this array is LOW, as
0963b4bd 2765 per Ada rules. */
0b5d8877 2766static struct value *
f5938064
JG
2767ada_value_slice_from_ptr (struct value *array_ptr, struct type *type,
2768 int low, int high)
0b5d8877 2769{
b0dd7688 2770 struct type *type0 = ada_check_typedef (type);
6c038f32 2771 CORE_ADDR base = value_as_address (array_ptr)
b0dd7688
JB
2772 + ((low - ada_discrete_type_low_bound (TYPE_INDEX_TYPE (type0)))
2773 * TYPE_LENGTH (TYPE_TARGET_TYPE (type0)));
0c9c3474
SA
2774 struct type *index_type
2775 = create_static_range_type (NULL,
2776 TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type0)),
2777 low, high);
6c038f32 2778 struct type *slice_type =
b0dd7688 2779 create_array_type (NULL, TYPE_TARGET_TYPE (type0), index_type);
5b4ee69b 2780
f5938064 2781 return value_at_lazy (slice_type, base);
0b5d8877
PH
2782}
2783
2784
2785static struct value *
2786ada_value_slice (struct value *array, int low, int high)
2787{
b0dd7688 2788 struct type *type = ada_check_typedef (value_type (array));
0c9c3474
SA
2789 struct type *index_type
2790 = create_static_range_type (NULL, TYPE_INDEX_TYPE (type), low, high);
6c038f32 2791 struct type *slice_type =
0b5d8877 2792 create_array_type (NULL, TYPE_TARGET_TYPE (type), index_type);
5b4ee69b 2793
6c038f32 2794 return value_cast (slice_type, value_slice (array, low, high - low + 1));
0b5d8877
PH
2795}
2796
14f9c5c9
AS
2797/* If type is a record type in the form of a standard GNAT array
2798 descriptor, returns the number of dimensions for type. If arr is a
2799 simple array, returns the number of "array of"s that prefix its
4c4b4cd2 2800 type designation. Otherwise, returns 0. */
14f9c5c9
AS
2801
2802int
d2e4a39e 2803ada_array_arity (struct type *type)
14f9c5c9
AS
2804{
2805 int arity;
2806
2807 if (type == NULL)
2808 return 0;
2809
2810 type = desc_base_type (type);
2811
2812 arity = 0;
d2e4a39e 2813 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
14f9c5c9 2814 return desc_arity (desc_bounds_type (type));
d2e4a39e
AS
2815 else
2816 while (TYPE_CODE (type) == TYPE_CODE_ARRAY)
14f9c5c9 2817 {
4c4b4cd2 2818 arity += 1;
61ee279c 2819 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
14f9c5c9 2820 }
d2e4a39e 2821
14f9c5c9
AS
2822 return arity;
2823}
2824
2825/* If TYPE is a record type in the form of a standard GNAT array
2826 descriptor or a simple array type, returns the element type for
2827 TYPE after indexing by NINDICES indices, or by all indices if
4c4b4cd2 2828 NINDICES is -1. Otherwise, returns NULL. */
14f9c5c9 2829
d2e4a39e
AS
2830struct type *
2831ada_array_element_type (struct type *type, int nindices)
14f9c5c9
AS
2832{
2833 type = desc_base_type (type);
2834
d2e4a39e 2835 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
14f9c5c9
AS
2836 {
2837 int k;
d2e4a39e 2838 struct type *p_array_type;
14f9c5c9 2839
556bdfd4 2840 p_array_type = desc_data_target_type (type);
14f9c5c9
AS
2841
2842 k = ada_array_arity (type);
2843 if (k == 0)
4c4b4cd2 2844 return NULL;
d2e4a39e 2845
4c4b4cd2 2846 /* Initially p_array_type = elt_type(*)[]...(k times)...[]. */
14f9c5c9 2847 if (nindices >= 0 && k > nindices)
4c4b4cd2 2848 k = nindices;
d2e4a39e 2849 while (k > 0 && p_array_type != NULL)
4c4b4cd2 2850 {
61ee279c 2851 p_array_type = ada_check_typedef (TYPE_TARGET_TYPE (p_array_type));
4c4b4cd2
PH
2852 k -= 1;
2853 }
14f9c5c9
AS
2854 return p_array_type;
2855 }
2856 else if (TYPE_CODE (type) == TYPE_CODE_ARRAY)
2857 {
2858 while (nindices != 0 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
4c4b4cd2
PH
2859 {
2860 type = TYPE_TARGET_TYPE (type);
2861 nindices -= 1;
2862 }
14f9c5c9
AS
2863 return type;
2864 }
2865
2866 return NULL;
2867}
2868
4c4b4cd2 2869/* The type of nth index in arrays of given type (n numbering from 1).
dd19d49e
UW
2870 Does not examine memory. Throws an error if N is invalid or TYPE
2871 is not an array type. NAME is the name of the Ada attribute being
2872 evaluated ('range, 'first, 'last, or 'length); it is used in building
2873 the error message. */
14f9c5c9 2874
1eea4ebd
UW
2875static struct type *
2876ada_index_type (struct type *type, int n, const char *name)
14f9c5c9 2877{
4c4b4cd2
PH
2878 struct type *result_type;
2879
14f9c5c9
AS
2880 type = desc_base_type (type);
2881
1eea4ebd
UW
2882 if (n < 0 || n > ada_array_arity (type))
2883 error (_("invalid dimension number to '%s"), name);
14f9c5c9 2884
4c4b4cd2 2885 if (ada_is_simple_array_type (type))
14f9c5c9
AS
2886 {
2887 int i;
2888
2889 for (i = 1; i < n; i += 1)
4c4b4cd2 2890 type = TYPE_TARGET_TYPE (type);
262452ec 2891 result_type = TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type));
4c4b4cd2
PH
2892 /* FIXME: The stabs type r(0,0);bound;bound in an array type
2893 has a target type of TYPE_CODE_UNDEF. We compensate here, but
76a01679 2894 perhaps stabsread.c would make more sense. */
1eea4ebd
UW
2895 if (result_type && TYPE_CODE (result_type) == TYPE_CODE_UNDEF)
2896 result_type = NULL;
14f9c5c9 2897 }
d2e4a39e 2898 else
1eea4ebd
UW
2899 {
2900 result_type = desc_index_type (desc_bounds_type (type), n);
2901 if (result_type == NULL)
2902 error (_("attempt to take bound of something that is not an array"));
2903 }
2904
2905 return result_type;
14f9c5c9
AS
2906}
2907
2908/* Given that arr is an array type, returns the lower bound of the
2909 Nth index (numbering from 1) if WHICH is 0, and the upper bound if
4c4b4cd2 2910 WHICH is 1. This returns bounds 0 .. -1 if ARR_TYPE is an
1eea4ebd
UW
2911 array-descriptor type. It works for other arrays with bounds supplied
2912 by run-time quantities other than discriminants. */
14f9c5c9 2913
abb68b3e 2914static LONGEST
fb5e3d5c 2915ada_array_bound_from_type (struct type *arr_type, int n, int which)
14f9c5c9 2916{
8a48ac95 2917 struct type *type, *index_type_desc, *index_type;
1ce677a4 2918 int i;
262452ec
JK
2919
2920 gdb_assert (which == 0 || which == 1);
14f9c5c9 2921
ad82864c
JB
2922 if (ada_is_constrained_packed_array_type (arr_type))
2923 arr_type = decode_constrained_packed_array_type (arr_type);
14f9c5c9 2924
4c4b4cd2 2925 if (arr_type == NULL || !ada_is_simple_array_type (arr_type))
1eea4ebd 2926 return (LONGEST) - which;
14f9c5c9
AS
2927
2928 if (TYPE_CODE (arr_type) == TYPE_CODE_PTR)
2929 type = TYPE_TARGET_TYPE (arr_type);
2930 else
2931 type = arr_type;
2932
2933 index_type_desc = ada_find_parallel_type (type, "___XA");
28c85d6c 2934 ada_fixup_array_indexes_type (index_type_desc);
262452ec 2935 if (index_type_desc != NULL)
28c85d6c
JB
2936 index_type = to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, n - 1),
2937 NULL);
262452ec 2938 else
8a48ac95
JB
2939 {
2940 struct type *elt_type = check_typedef (type);
2941
2942 for (i = 1; i < n; i++)
2943 elt_type = check_typedef (TYPE_TARGET_TYPE (elt_type));
2944
2945 index_type = TYPE_INDEX_TYPE (elt_type);
2946 }
262452ec 2947
43bbcdc2
PH
2948 return
2949 (LONGEST) (which == 0
2950 ? ada_discrete_type_low_bound (index_type)
2951 : ada_discrete_type_high_bound (index_type));
14f9c5c9
AS
2952}
2953
2954/* Given that arr is an array value, returns the lower bound of the
abb68b3e
JB
2955 nth index (numbering from 1) if WHICH is 0, and the upper bound if
2956 WHICH is 1. This routine will also work for arrays with bounds
4c4b4cd2 2957 supplied by run-time quantities other than discriminants. */
14f9c5c9 2958
1eea4ebd 2959static LONGEST
4dc81987 2960ada_array_bound (struct value *arr, int n, int which)
14f9c5c9 2961{
eb479039
JB
2962 struct type *arr_type;
2963
2964 if (TYPE_CODE (check_typedef (value_type (arr))) == TYPE_CODE_PTR)
2965 arr = value_ind (arr);
2966 arr_type = value_enclosing_type (arr);
14f9c5c9 2967
ad82864c
JB
2968 if (ada_is_constrained_packed_array_type (arr_type))
2969 return ada_array_bound (decode_constrained_packed_array (arr), n, which);
4c4b4cd2 2970 else if (ada_is_simple_array_type (arr_type))
1eea4ebd 2971 return ada_array_bound_from_type (arr_type, n, which);
14f9c5c9 2972 else
1eea4ebd 2973 return value_as_long (desc_one_bound (desc_bounds (arr), n, which));
14f9c5c9
AS
2974}
2975
2976/* Given that arr is an array value, returns the length of the
2977 nth index. This routine will also work for arrays with bounds
4c4b4cd2
PH
2978 supplied by run-time quantities other than discriminants.
2979 Does not work for arrays indexed by enumeration types with representation
2980 clauses at the moment. */
14f9c5c9 2981
1eea4ebd 2982static LONGEST
d2e4a39e 2983ada_array_length (struct value *arr, int n)
14f9c5c9 2984{
eb479039
JB
2985 struct type *arr_type;
2986
2987 if (TYPE_CODE (check_typedef (value_type (arr))) == TYPE_CODE_PTR)
2988 arr = value_ind (arr);
2989 arr_type = value_enclosing_type (arr);
14f9c5c9 2990
ad82864c
JB
2991 if (ada_is_constrained_packed_array_type (arr_type))
2992 return ada_array_length (decode_constrained_packed_array (arr), n);
14f9c5c9 2993
4c4b4cd2 2994 if (ada_is_simple_array_type (arr_type))
1eea4ebd
UW
2995 return (ada_array_bound_from_type (arr_type, n, 1)
2996 - ada_array_bound_from_type (arr_type, n, 0) + 1);
14f9c5c9 2997 else
1eea4ebd
UW
2998 return (value_as_long (desc_one_bound (desc_bounds (arr), n, 1))
2999 - value_as_long (desc_one_bound (desc_bounds (arr), n, 0)) + 1);
4c4b4cd2
PH
3000}
3001
3002/* An empty array whose type is that of ARR_TYPE (an array type),
3003 with bounds LOW to LOW-1. */
3004
3005static struct value *
3006empty_array (struct type *arr_type, int low)
3007{
b0dd7688 3008 struct type *arr_type0 = ada_check_typedef (arr_type);
0c9c3474
SA
3009 struct type *index_type
3010 = create_static_range_type
3011 (NULL, TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (arr_type0)), low, low - 1);
b0dd7688 3012 struct type *elt_type = ada_array_element_type (arr_type0, 1);
5b4ee69b 3013
0b5d8877 3014 return allocate_value (create_array_type (NULL, elt_type, index_type));
14f9c5c9 3015}
14f9c5c9 3016\f
d2e4a39e 3017
4c4b4cd2 3018 /* Name resolution */
14f9c5c9 3019
4c4b4cd2
PH
3020/* The "decoded" name for the user-definable Ada operator corresponding
3021 to OP. */
14f9c5c9 3022
d2e4a39e 3023static const char *
4c4b4cd2 3024ada_decoded_op_name (enum exp_opcode op)
14f9c5c9
AS
3025{
3026 int i;
3027
4c4b4cd2 3028 for (i = 0; ada_opname_table[i].encoded != NULL; i += 1)
14f9c5c9
AS
3029 {
3030 if (ada_opname_table[i].op == op)
4c4b4cd2 3031 return ada_opname_table[i].decoded;
14f9c5c9 3032 }
323e0a4a 3033 error (_("Could not find operator name for opcode"));
14f9c5c9
AS
3034}
3035
3036
4c4b4cd2
PH
3037/* Same as evaluate_type (*EXP), but resolves ambiguous symbol
3038 references (marked by OP_VAR_VALUE nodes in which the symbol has an
3039 undefined namespace) and converts operators that are
3040 user-defined into appropriate function calls. If CONTEXT_TYPE is
14f9c5c9
AS
3041 non-null, it provides a preferred result type [at the moment, only
3042 type void has any effect---causing procedures to be preferred over
3043 functions in calls]. A null CONTEXT_TYPE indicates that a non-void
4c4b4cd2 3044 return type is preferred. May change (expand) *EXP. */
14f9c5c9 3045
4c4b4cd2
PH
3046static void
3047resolve (struct expression **expp, int void_context_p)
14f9c5c9 3048{
30b15541
UW
3049 struct type *context_type = NULL;
3050 int pc = 0;
3051
3052 if (void_context_p)
3053 context_type = builtin_type ((*expp)->gdbarch)->builtin_void;
3054
3055 resolve_subexp (expp, &pc, 1, context_type);
14f9c5c9
AS
3056}
3057
4c4b4cd2
PH
3058/* Resolve the operator of the subexpression beginning at
3059 position *POS of *EXPP. "Resolving" consists of replacing
3060 the symbols that have undefined namespaces in OP_VAR_VALUE nodes
3061 with their resolutions, replacing built-in operators with
3062 function calls to user-defined operators, where appropriate, and,
3063 when DEPROCEDURE_P is non-zero, converting function-valued variables
3064 into parameterless calls. May expand *EXPP. The CONTEXT_TYPE functions
3065 are as in ada_resolve, above. */
14f9c5c9 3066
d2e4a39e 3067static struct value *
4c4b4cd2 3068resolve_subexp (struct expression **expp, int *pos, int deprocedure_p,
76a01679 3069 struct type *context_type)
14f9c5c9
AS
3070{
3071 int pc = *pos;
3072 int i;
4c4b4cd2 3073 struct expression *exp; /* Convenience: == *expp. */
14f9c5c9 3074 enum exp_opcode op = (*expp)->elts[pc].opcode;
4c4b4cd2
PH
3075 struct value **argvec; /* Vector of operand types (alloca'ed). */
3076 int nargs; /* Number of operands. */
52ce6436 3077 int oplen;
14f9c5c9
AS
3078
3079 argvec = NULL;
3080 nargs = 0;
3081 exp = *expp;
3082
52ce6436
PH
3083 /* Pass one: resolve operands, saving their types and updating *pos,
3084 if needed. */
14f9c5c9
AS
3085 switch (op)
3086 {
4c4b4cd2
PH
3087 case OP_FUNCALL:
3088 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
76a01679
JB
3089 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
3090 *pos += 7;
4c4b4cd2
PH
3091 else
3092 {
3093 *pos += 3;
3094 resolve_subexp (expp, pos, 0, NULL);
3095 }
3096 nargs = longest_to_int (exp->elts[pc + 1].longconst);
14f9c5c9
AS
3097 break;
3098
14f9c5c9 3099 case UNOP_ADDR:
4c4b4cd2
PH
3100 *pos += 1;
3101 resolve_subexp (expp, pos, 0, NULL);
3102 break;
3103
52ce6436
PH
3104 case UNOP_QUAL:
3105 *pos += 3;
17466c1a 3106 resolve_subexp (expp, pos, 1, check_typedef (exp->elts[pc + 1].type));
4c4b4cd2
PH
3107 break;
3108
52ce6436 3109 case OP_ATR_MODULUS:
4c4b4cd2
PH
3110 case OP_ATR_SIZE:
3111 case OP_ATR_TAG:
4c4b4cd2
PH
3112 case OP_ATR_FIRST:
3113 case OP_ATR_LAST:
3114 case OP_ATR_LENGTH:
3115 case OP_ATR_POS:
3116 case OP_ATR_VAL:
4c4b4cd2
PH
3117 case OP_ATR_MIN:
3118 case OP_ATR_MAX:
52ce6436
PH
3119 case TERNOP_IN_RANGE:
3120 case BINOP_IN_BOUNDS:
3121 case UNOP_IN_RANGE:
3122 case OP_AGGREGATE:
3123 case OP_OTHERS:
3124 case OP_CHOICES:
3125 case OP_POSITIONAL:
3126 case OP_DISCRETE_RANGE:
3127 case OP_NAME:
3128 ada_forward_operator_length (exp, pc, &oplen, &nargs);
3129 *pos += oplen;
14f9c5c9
AS
3130 break;
3131
3132 case BINOP_ASSIGN:
3133 {
4c4b4cd2
PH
3134 struct value *arg1;
3135
3136 *pos += 1;
3137 arg1 = resolve_subexp (expp, pos, 0, NULL);
3138 if (arg1 == NULL)
3139 resolve_subexp (expp, pos, 1, NULL);
3140 else
df407dfe 3141 resolve_subexp (expp, pos, 1, value_type (arg1));
4c4b4cd2 3142 break;
14f9c5c9
AS
3143 }
3144
4c4b4cd2 3145 case UNOP_CAST:
4c4b4cd2
PH
3146 *pos += 3;
3147 nargs = 1;
3148 break;
14f9c5c9 3149
4c4b4cd2
PH
3150 case BINOP_ADD:
3151 case BINOP_SUB:
3152 case BINOP_MUL:
3153 case BINOP_DIV:
3154 case BINOP_REM:
3155 case BINOP_MOD:
3156 case BINOP_EXP:
3157 case BINOP_CONCAT:
3158 case BINOP_LOGICAL_AND:
3159 case BINOP_LOGICAL_OR:
3160 case BINOP_BITWISE_AND:
3161 case BINOP_BITWISE_IOR:
3162 case BINOP_BITWISE_XOR:
14f9c5c9 3163
4c4b4cd2
PH
3164 case BINOP_EQUAL:
3165 case BINOP_NOTEQUAL:
3166 case BINOP_LESS:
3167 case BINOP_GTR:
3168 case BINOP_LEQ:
3169 case BINOP_GEQ:
14f9c5c9 3170
4c4b4cd2
PH
3171 case BINOP_REPEAT:
3172 case BINOP_SUBSCRIPT:
3173 case BINOP_COMMA:
40c8aaa9
JB
3174 *pos += 1;
3175 nargs = 2;
3176 break;
14f9c5c9 3177
4c4b4cd2
PH
3178 case UNOP_NEG:
3179 case UNOP_PLUS:
3180 case UNOP_LOGICAL_NOT:
3181 case UNOP_ABS:
3182 case UNOP_IND:
3183 *pos += 1;
3184 nargs = 1;
3185 break;
14f9c5c9 3186
4c4b4cd2
PH
3187 case OP_LONG:
3188 case OP_DOUBLE:
3189 case OP_VAR_VALUE:
3190 *pos += 4;
3191 break;
14f9c5c9 3192
4c4b4cd2
PH
3193 case OP_TYPE:
3194 case OP_BOOL:
3195 case OP_LAST:
4c4b4cd2
PH
3196 case OP_INTERNALVAR:
3197 *pos += 3;
3198 break;
14f9c5c9 3199
4c4b4cd2
PH
3200 case UNOP_MEMVAL:
3201 *pos += 3;
3202 nargs = 1;
3203 break;
3204
67f3407f
DJ
3205 case OP_REGISTER:
3206 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
3207 break;
3208
4c4b4cd2
PH
3209 case STRUCTOP_STRUCT:
3210 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
3211 nargs = 1;
3212 break;
3213
4c4b4cd2 3214 case TERNOP_SLICE:
4c4b4cd2
PH
3215 *pos += 1;
3216 nargs = 3;
3217 break;
3218
52ce6436 3219 case OP_STRING:
14f9c5c9 3220 break;
4c4b4cd2
PH
3221
3222 default:
323e0a4a 3223 error (_("Unexpected operator during name resolution"));
14f9c5c9
AS
3224 }
3225
76a01679 3226 argvec = (struct value * *) alloca (sizeof (struct value *) * (nargs + 1));
4c4b4cd2
PH
3227 for (i = 0; i < nargs; i += 1)
3228 argvec[i] = resolve_subexp (expp, pos, 1, NULL);
3229 argvec[i] = NULL;
3230 exp = *expp;
3231
3232 /* Pass two: perform any resolution on principal operator. */
14f9c5c9
AS
3233 switch (op)
3234 {
3235 default:
3236 break;
3237
14f9c5c9 3238 case OP_VAR_VALUE:
4c4b4cd2 3239 if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
76a01679
JB
3240 {
3241 struct ada_symbol_info *candidates;
3242 int n_candidates;
3243
3244 n_candidates =
3245 ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME
3246 (exp->elts[pc + 2].symbol),
3247 exp->elts[pc + 1].block, VAR_DOMAIN,
4eeaa230 3248 &candidates);
76a01679
JB
3249
3250 if (n_candidates > 1)
3251 {
3252 /* Types tend to get re-introduced locally, so if there
3253 are any local symbols that are not types, first filter
3254 out all types. */
3255 int j;
3256 for (j = 0; j < n_candidates; j += 1)
3257 switch (SYMBOL_CLASS (candidates[j].sym))
3258 {
3259 case LOC_REGISTER:
3260 case LOC_ARG:
3261 case LOC_REF_ARG:
76a01679
JB
3262 case LOC_REGPARM_ADDR:
3263 case LOC_LOCAL:
76a01679 3264 case LOC_COMPUTED:
76a01679
JB
3265 goto FoundNonType;
3266 default:
3267 break;
3268 }
3269 FoundNonType:
3270 if (j < n_candidates)
3271 {
3272 j = 0;
3273 while (j < n_candidates)
3274 {
3275 if (SYMBOL_CLASS (candidates[j].sym) == LOC_TYPEDEF)
3276 {
3277 candidates[j] = candidates[n_candidates - 1];
3278 n_candidates -= 1;
3279 }
3280 else
3281 j += 1;
3282 }
3283 }
3284 }
3285
3286 if (n_candidates == 0)
323e0a4a 3287 error (_("No definition found for %s"),
76a01679
JB
3288 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
3289 else if (n_candidates == 1)
3290 i = 0;
3291 else if (deprocedure_p
3292 && !is_nonfunction (candidates, n_candidates))
3293 {
06d5cf63
JB
3294 i = ada_resolve_function
3295 (candidates, n_candidates, NULL, 0,
3296 SYMBOL_LINKAGE_NAME (exp->elts[pc + 2].symbol),
3297 context_type);
76a01679 3298 if (i < 0)
323e0a4a 3299 error (_("Could not find a match for %s"),
76a01679
JB
3300 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
3301 }
3302 else
3303 {
323e0a4a 3304 printf_filtered (_("Multiple matches for %s\n"),
76a01679
JB
3305 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
3306 user_select_syms (candidates, n_candidates, 1);
3307 i = 0;
3308 }
3309
3310 exp->elts[pc + 1].block = candidates[i].block;
3311 exp->elts[pc + 2].symbol = candidates[i].sym;
1265e4aa
JB
3312 if (innermost_block == NULL
3313 || contained_in (candidates[i].block, innermost_block))
76a01679
JB
3314 innermost_block = candidates[i].block;
3315 }
3316
3317 if (deprocedure_p
3318 && (TYPE_CODE (SYMBOL_TYPE (exp->elts[pc + 2].symbol))
3319 == TYPE_CODE_FUNC))
3320 {
3321 replace_operator_with_call (expp, pc, 0, 0,
3322 exp->elts[pc + 2].symbol,
3323 exp->elts[pc + 1].block);
3324 exp = *expp;
3325 }
14f9c5c9
AS
3326 break;
3327
3328 case OP_FUNCALL:
3329 {
4c4b4cd2 3330 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
76a01679 3331 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
4c4b4cd2
PH
3332 {
3333 struct ada_symbol_info *candidates;
3334 int n_candidates;
3335
3336 n_candidates =
76a01679
JB
3337 ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME
3338 (exp->elts[pc + 5].symbol),
3339 exp->elts[pc + 4].block, VAR_DOMAIN,
4eeaa230 3340 &candidates);
4c4b4cd2
PH
3341 if (n_candidates == 1)
3342 i = 0;
3343 else
3344 {
06d5cf63
JB
3345 i = ada_resolve_function
3346 (candidates, n_candidates,
3347 argvec, nargs,
3348 SYMBOL_LINKAGE_NAME (exp->elts[pc + 5].symbol),
3349 context_type);
4c4b4cd2 3350 if (i < 0)
323e0a4a 3351 error (_("Could not find a match for %s"),
4c4b4cd2
PH
3352 SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol));
3353 }
3354
3355 exp->elts[pc + 4].block = candidates[i].block;
3356 exp->elts[pc + 5].symbol = candidates[i].sym;
1265e4aa
JB
3357 if (innermost_block == NULL
3358 || contained_in (candidates[i].block, innermost_block))
4c4b4cd2
PH
3359 innermost_block = candidates[i].block;
3360 }
14f9c5c9
AS
3361 }
3362 break;
3363 case BINOP_ADD:
3364 case BINOP_SUB:
3365 case BINOP_MUL:
3366 case BINOP_DIV:
3367 case BINOP_REM:
3368 case BINOP_MOD:
3369 case BINOP_CONCAT:
3370 case BINOP_BITWISE_AND:
3371 case BINOP_BITWISE_IOR:
3372 case BINOP_BITWISE_XOR:
3373 case BINOP_EQUAL:
3374 case BINOP_NOTEQUAL:
3375 case BINOP_LESS:
3376 case BINOP_GTR:
3377 case BINOP_LEQ:
3378 case BINOP_GEQ:
3379 case BINOP_EXP:
3380 case UNOP_NEG:
3381 case UNOP_PLUS:
3382 case UNOP_LOGICAL_NOT:
3383 case UNOP_ABS:
3384 if (possible_user_operator_p (op, argvec))
4c4b4cd2
PH
3385 {
3386 struct ada_symbol_info *candidates;
3387 int n_candidates;
3388
3389 n_candidates =
3390 ada_lookup_symbol_list (ada_encode (ada_decoded_op_name (op)),
3391 (struct block *) NULL, VAR_DOMAIN,
4eeaa230 3392 &candidates);
4c4b4cd2 3393 i = ada_resolve_function (candidates, n_candidates, argvec, nargs,
76a01679 3394 ada_decoded_op_name (op), NULL);
4c4b4cd2
PH
3395 if (i < 0)
3396 break;
3397
76a01679
JB
3398 replace_operator_with_call (expp, pc, nargs, 1,
3399 candidates[i].sym, candidates[i].block);
4c4b4cd2
PH
3400 exp = *expp;
3401 }
14f9c5c9 3402 break;
4c4b4cd2
PH
3403
3404 case OP_TYPE:
b3dbf008 3405 case OP_REGISTER:
4c4b4cd2 3406 return NULL;
14f9c5c9
AS
3407 }
3408
3409 *pos = pc;
3410 return evaluate_subexp_type (exp, pos);
3411}
3412
3413/* Return non-zero if formal type FTYPE matches actual type ATYPE. If
4c4b4cd2 3414 MAY_DEREF is non-zero, the formal may be a pointer and the actual
5b3d5b7d 3415 a non-pointer. */
14f9c5c9 3416/* The term "match" here is rather loose. The match is heuristic and
5b3d5b7d 3417 liberal. */
14f9c5c9
AS
3418
3419static int
4dc81987 3420ada_type_match (struct type *ftype, struct type *atype, int may_deref)
14f9c5c9 3421{
61ee279c
PH
3422 ftype = ada_check_typedef (ftype);
3423 atype = ada_check_typedef (atype);
14f9c5c9
AS
3424
3425 if (TYPE_CODE (ftype) == TYPE_CODE_REF)
3426 ftype = TYPE_TARGET_TYPE (ftype);
3427 if (TYPE_CODE (atype) == TYPE_CODE_REF)
3428 atype = TYPE_TARGET_TYPE (atype);
3429
d2e4a39e 3430 switch (TYPE_CODE (ftype))
14f9c5c9
AS
3431 {
3432 default:
5b3d5b7d 3433 return TYPE_CODE (ftype) == TYPE_CODE (atype);
14f9c5c9
AS
3434 case TYPE_CODE_PTR:
3435 if (TYPE_CODE (atype) == TYPE_CODE_PTR)
4c4b4cd2
PH
3436 return ada_type_match (TYPE_TARGET_TYPE (ftype),
3437 TYPE_TARGET_TYPE (atype), 0);
d2e4a39e 3438 else
1265e4aa
JB
3439 return (may_deref
3440 && ada_type_match (TYPE_TARGET_TYPE (ftype), atype, 0));
14f9c5c9
AS
3441 case TYPE_CODE_INT:
3442 case TYPE_CODE_ENUM:
3443 case TYPE_CODE_RANGE:
3444 switch (TYPE_CODE (atype))
4c4b4cd2
PH
3445 {
3446 case TYPE_CODE_INT:
3447 case TYPE_CODE_ENUM:
3448 case TYPE_CODE_RANGE:
3449 return 1;
3450 default:
3451 return 0;
3452 }
14f9c5c9
AS
3453
3454 case TYPE_CODE_ARRAY:
d2e4a39e 3455 return (TYPE_CODE (atype) == TYPE_CODE_ARRAY
4c4b4cd2 3456 || ada_is_array_descriptor_type (atype));
14f9c5c9
AS
3457
3458 case TYPE_CODE_STRUCT:
4c4b4cd2
PH
3459 if (ada_is_array_descriptor_type (ftype))
3460 return (TYPE_CODE (atype) == TYPE_CODE_ARRAY
3461 || ada_is_array_descriptor_type (atype));
14f9c5c9 3462 else
4c4b4cd2
PH
3463 return (TYPE_CODE (atype) == TYPE_CODE_STRUCT
3464 && !ada_is_array_descriptor_type (atype));
14f9c5c9
AS
3465
3466 case TYPE_CODE_UNION:
3467 case TYPE_CODE_FLT:
3468 return (TYPE_CODE (atype) == TYPE_CODE (ftype));
3469 }
3470}
3471
3472/* Return non-zero if the formals of FUNC "sufficiently match" the
3473 vector of actual argument types ACTUALS of size N_ACTUALS. FUNC
3474 may also be an enumeral, in which case it is treated as a 0-
4c4b4cd2 3475 argument function. */
14f9c5c9
AS
3476
3477static int
d2e4a39e 3478ada_args_match (struct symbol *func, struct value **actuals, int n_actuals)
14f9c5c9
AS
3479{
3480 int i;
d2e4a39e 3481 struct type *func_type = SYMBOL_TYPE (func);
14f9c5c9 3482
1265e4aa
JB
3483 if (SYMBOL_CLASS (func) == LOC_CONST
3484 && TYPE_CODE (func_type) == TYPE_CODE_ENUM)
14f9c5c9
AS
3485 return (n_actuals == 0);
3486 else if (func_type == NULL || TYPE_CODE (func_type) != TYPE_CODE_FUNC)
3487 return 0;
3488
3489 if (TYPE_NFIELDS (func_type) != n_actuals)
3490 return 0;
3491
3492 for (i = 0; i < n_actuals; i += 1)
3493 {
4c4b4cd2 3494 if (actuals[i] == NULL)
76a01679
JB
3495 return 0;
3496 else
3497 {
5b4ee69b
MS
3498 struct type *ftype = ada_check_typedef (TYPE_FIELD_TYPE (func_type,
3499 i));
df407dfe 3500 struct type *atype = ada_check_typedef (value_type (actuals[i]));
4c4b4cd2 3501
76a01679
JB
3502 if (!ada_type_match (ftype, atype, 1))
3503 return 0;
3504 }
14f9c5c9
AS
3505 }
3506 return 1;
3507}
3508
3509/* False iff function type FUNC_TYPE definitely does not produce a value
3510 compatible with type CONTEXT_TYPE. Conservatively returns 1 if
3511 FUNC_TYPE is not a valid function type with a non-null return type
3512 or an enumerated type. A null CONTEXT_TYPE indicates any non-void type. */
3513
3514static int
d2e4a39e 3515return_match (struct type *func_type, struct type *context_type)
14f9c5c9 3516{
d2e4a39e 3517 struct type *return_type;
14f9c5c9
AS
3518
3519 if (func_type == NULL)
3520 return 1;
3521
4c4b4cd2 3522 if (TYPE_CODE (func_type) == TYPE_CODE_FUNC)
18af8284 3523 return_type = get_base_type (TYPE_TARGET_TYPE (func_type));
4c4b4cd2 3524 else
18af8284 3525 return_type = get_base_type (func_type);
14f9c5c9
AS
3526 if (return_type == NULL)
3527 return 1;
3528
18af8284 3529 context_type = get_base_type (context_type);
14f9c5c9
AS
3530
3531 if (TYPE_CODE (return_type) == TYPE_CODE_ENUM)
3532 return context_type == NULL || return_type == context_type;
3533 else if (context_type == NULL)
3534 return TYPE_CODE (return_type) != TYPE_CODE_VOID;
3535 else
3536 return TYPE_CODE (return_type) == TYPE_CODE (context_type);
3537}
3538
3539
4c4b4cd2 3540/* Returns the index in SYMS[0..NSYMS-1] that contains the symbol for the
14f9c5c9 3541 function (if any) that matches the types of the NARGS arguments in
4c4b4cd2
PH
3542 ARGS. If CONTEXT_TYPE is non-null and there is at least one match
3543 that returns that type, then eliminate matches that don't. If
3544 CONTEXT_TYPE is void and there is at least one match that does not
3545 return void, eliminate all matches that do.
3546
14f9c5c9
AS
3547 Asks the user if there is more than one match remaining. Returns -1
3548 if there is no such symbol or none is selected. NAME is used
4c4b4cd2
PH
3549 solely for messages. May re-arrange and modify SYMS in
3550 the process; the index returned is for the modified vector. */
14f9c5c9 3551
4c4b4cd2
PH
3552static int
3553ada_resolve_function (struct ada_symbol_info syms[],
3554 int nsyms, struct value **args, int nargs,
3555 const char *name, struct type *context_type)
14f9c5c9 3556{
30b15541 3557 int fallback;
14f9c5c9 3558 int k;
4c4b4cd2 3559 int m; /* Number of hits */
14f9c5c9 3560
d2e4a39e 3561 m = 0;
30b15541
UW
3562 /* In the first pass of the loop, we only accept functions matching
3563 context_type. If none are found, we add a second pass of the loop
3564 where every function is accepted. */
3565 for (fallback = 0; m == 0 && fallback < 2; fallback++)
14f9c5c9
AS
3566 {
3567 for (k = 0; k < nsyms; k += 1)
4c4b4cd2 3568 {
61ee279c 3569 struct type *type = ada_check_typedef (SYMBOL_TYPE (syms[k].sym));
4c4b4cd2
PH
3570
3571 if (ada_args_match (syms[k].sym, args, nargs)
30b15541 3572 && (fallback || return_match (type, context_type)))
4c4b4cd2
PH
3573 {
3574 syms[m] = syms[k];
3575 m += 1;
3576 }
3577 }
14f9c5c9
AS
3578 }
3579
3580 if (m == 0)
3581 return -1;
3582 else if (m > 1)
3583 {
323e0a4a 3584 printf_filtered (_("Multiple matches for %s\n"), name);
4c4b4cd2 3585 user_select_syms (syms, m, 1);
14f9c5c9
AS
3586 return 0;
3587 }
3588 return 0;
3589}
3590
4c4b4cd2
PH
3591/* Returns true (non-zero) iff decoded name N0 should appear before N1
3592 in a listing of choices during disambiguation (see sort_choices, below).
3593 The idea is that overloadings of a subprogram name from the
3594 same package should sort in their source order. We settle for ordering
3595 such symbols by their trailing number (__N or $N). */
3596
14f9c5c9 3597static int
0d5cff50 3598encoded_ordered_before (const char *N0, const char *N1)
14f9c5c9
AS
3599{
3600 if (N1 == NULL)
3601 return 0;
3602 else if (N0 == NULL)
3603 return 1;
3604 else
3605 {
3606 int k0, k1;
5b4ee69b 3607
d2e4a39e 3608 for (k0 = strlen (N0) - 1; k0 > 0 && isdigit (N0[k0]); k0 -= 1)
4c4b4cd2 3609 ;
d2e4a39e 3610 for (k1 = strlen (N1) - 1; k1 > 0 && isdigit (N1[k1]); k1 -= 1)
4c4b4cd2 3611 ;
d2e4a39e 3612 if ((N0[k0] == '_' || N0[k0] == '$') && N0[k0 + 1] != '\000'
4c4b4cd2
PH
3613 && (N1[k1] == '_' || N1[k1] == '$') && N1[k1 + 1] != '\000')
3614 {
3615 int n0, n1;
5b4ee69b 3616
4c4b4cd2
PH
3617 n0 = k0;
3618 while (N0[n0] == '_' && n0 > 0 && N0[n0 - 1] == '_')
3619 n0 -= 1;
3620 n1 = k1;
3621 while (N1[n1] == '_' && n1 > 0 && N1[n1 - 1] == '_')
3622 n1 -= 1;
3623 if (n0 == n1 && strncmp (N0, N1, n0) == 0)
3624 return (atoi (N0 + k0 + 1) < atoi (N1 + k1 + 1));
3625 }
14f9c5c9
AS
3626 return (strcmp (N0, N1) < 0);
3627 }
3628}
d2e4a39e 3629
4c4b4cd2
PH
3630/* Sort SYMS[0..NSYMS-1] to put the choices in a canonical order by the
3631 encoded names. */
3632
d2e4a39e 3633static void
4c4b4cd2 3634sort_choices (struct ada_symbol_info syms[], int nsyms)
14f9c5c9 3635{
4c4b4cd2 3636 int i;
5b4ee69b 3637
d2e4a39e 3638 for (i = 1; i < nsyms; i += 1)
14f9c5c9 3639 {
4c4b4cd2 3640 struct ada_symbol_info sym = syms[i];
14f9c5c9
AS
3641 int j;
3642
d2e4a39e 3643 for (j = i - 1; j >= 0; j -= 1)
4c4b4cd2
PH
3644 {
3645 if (encoded_ordered_before (SYMBOL_LINKAGE_NAME (syms[j].sym),
3646 SYMBOL_LINKAGE_NAME (sym.sym)))
3647 break;
3648 syms[j + 1] = syms[j];
3649 }
d2e4a39e 3650 syms[j + 1] = sym;
14f9c5c9
AS
3651 }
3652}
3653
4c4b4cd2
PH
3654/* Given a list of NSYMS symbols in SYMS, select up to MAX_RESULTS>0
3655 by asking the user (if necessary), returning the number selected,
3656 and setting the first elements of SYMS items. Error if no symbols
3657 selected. */
14f9c5c9
AS
3658
3659/* NOTE: Adapted from decode_line_2 in symtab.c, with which it ought
4c4b4cd2 3660 to be re-integrated one of these days. */
14f9c5c9
AS
3661
3662int
4c4b4cd2 3663user_select_syms (struct ada_symbol_info *syms, int nsyms, int max_results)
14f9c5c9
AS
3664{
3665 int i;
d2e4a39e 3666 int *chosen = (int *) alloca (sizeof (int) * nsyms);
14f9c5c9
AS
3667 int n_chosen;
3668 int first_choice = (max_results == 1) ? 1 : 2;
717d2f5a 3669 const char *select_mode = multiple_symbols_select_mode ();
14f9c5c9
AS
3670
3671 if (max_results < 1)
323e0a4a 3672 error (_("Request to select 0 symbols!"));
14f9c5c9
AS
3673 if (nsyms <= 1)
3674 return nsyms;
3675
717d2f5a
JB
3676 if (select_mode == multiple_symbols_cancel)
3677 error (_("\
3678canceled because the command is ambiguous\n\
3679See set/show multiple-symbol."));
3680
3681 /* If select_mode is "all", then return all possible symbols.
3682 Only do that if more than one symbol can be selected, of course.
3683 Otherwise, display the menu as usual. */
3684 if (select_mode == multiple_symbols_all && max_results > 1)
3685 return nsyms;
3686
323e0a4a 3687 printf_unfiltered (_("[0] cancel\n"));
14f9c5c9 3688 if (max_results > 1)
323e0a4a 3689 printf_unfiltered (_("[1] all\n"));
14f9c5c9 3690
4c4b4cd2 3691 sort_choices (syms, nsyms);
14f9c5c9
AS
3692
3693 for (i = 0; i < nsyms; i += 1)
3694 {
4c4b4cd2
PH
3695 if (syms[i].sym == NULL)
3696 continue;
3697
3698 if (SYMBOL_CLASS (syms[i].sym) == LOC_BLOCK)
3699 {
76a01679
JB
3700 struct symtab_and_line sal =
3701 find_function_start_sal (syms[i].sym, 1);
5b4ee69b 3702
323e0a4a
AC
3703 if (sal.symtab == NULL)
3704 printf_unfiltered (_("[%d] %s at <no source file available>:%d\n"),
3705 i + first_choice,
3706 SYMBOL_PRINT_NAME (syms[i].sym),
3707 sal.line);
3708 else
3709 printf_unfiltered (_("[%d] %s at %s:%d\n"), i + first_choice,
3710 SYMBOL_PRINT_NAME (syms[i].sym),
05cba821
JK
3711 symtab_to_filename_for_display (sal.symtab),
3712 sal.line);
4c4b4cd2
PH
3713 continue;
3714 }
d2e4a39e 3715 else
4c4b4cd2
PH
3716 {
3717 int is_enumeral =
3718 (SYMBOL_CLASS (syms[i].sym) == LOC_CONST
3719 && SYMBOL_TYPE (syms[i].sym) != NULL
3720 && TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) == TYPE_CODE_ENUM);
210bbc17 3721 struct symtab *symtab = SYMBOL_SYMTAB (syms[i].sym);
4c4b4cd2
PH
3722
3723 if (SYMBOL_LINE (syms[i].sym) != 0 && symtab != NULL)
323e0a4a 3724 printf_unfiltered (_("[%d] %s at %s:%d\n"),
4c4b4cd2
PH
3725 i + first_choice,
3726 SYMBOL_PRINT_NAME (syms[i].sym),
05cba821
JK
3727 symtab_to_filename_for_display (symtab),
3728 SYMBOL_LINE (syms[i].sym));
76a01679
JB
3729 else if (is_enumeral
3730 && TYPE_NAME (SYMBOL_TYPE (syms[i].sym)) != NULL)
4c4b4cd2 3731 {
a3f17187 3732 printf_unfiltered (("[%d] "), i + first_choice);
76a01679 3733 ada_print_type (SYMBOL_TYPE (syms[i].sym), NULL,
79d43c61 3734 gdb_stdout, -1, 0, &type_print_raw_options);
323e0a4a 3735 printf_unfiltered (_("'(%s) (enumeral)\n"),
4c4b4cd2
PH
3736 SYMBOL_PRINT_NAME (syms[i].sym));
3737 }
3738 else if (symtab != NULL)
3739 printf_unfiltered (is_enumeral
323e0a4a
AC
3740 ? _("[%d] %s in %s (enumeral)\n")
3741 : _("[%d] %s at %s:?\n"),
4c4b4cd2
PH
3742 i + first_choice,
3743 SYMBOL_PRINT_NAME (syms[i].sym),
05cba821 3744 symtab_to_filename_for_display (symtab));
4c4b4cd2
PH
3745 else
3746 printf_unfiltered (is_enumeral
323e0a4a
AC
3747 ? _("[%d] %s (enumeral)\n")
3748 : _("[%d] %s at ?\n"),
4c4b4cd2
PH
3749 i + first_choice,
3750 SYMBOL_PRINT_NAME (syms[i].sym));
3751 }
14f9c5c9 3752 }
d2e4a39e 3753
14f9c5c9 3754 n_chosen = get_selections (chosen, nsyms, max_results, max_results > 1,
4c4b4cd2 3755 "overload-choice");
14f9c5c9
AS
3756
3757 for (i = 0; i < n_chosen; i += 1)
4c4b4cd2 3758 syms[i] = syms[chosen[i]];
14f9c5c9
AS
3759
3760 return n_chosen;
3761}
3762
3763/* Read and validate a set of numeric choices from the user in the
4c4b4cd2 3764 range 0 .. N_CHOICES-1. Place the results in increasing
14f9c5c9
AS
3765 order in CHOICES[0 .. N-1], and return N.
3766
3767 The user types choices as a sequence of numbers on one line
3768 separated by blanks, encoding them as follows:
3769
4c4b4cd2 3770 + A choice of 0 means to cancel the selection, throwing an error.
14f9c5c9
AS
3771 + If IS_ALL_CHOICE, a choice of 1 selects the entire set 0 .. N_CHOICES-1.
3772 + The user chooses k by typing k+IS_ALL_CHOICE+1.
3773
4c4b4cd2 3774 The user is not allowed to choose more than MAX_RESULTS values.
14f9c5c9
AS
3775
3776 ANNOTATION_SUFFIX, if present, is used to annotate the input
4c4b4cd2 3777 prompts (for use with the -f switch). */
14f9c5c9
AS
3778
3779int
d2e4a39e 3780get_selections (int *choices, int n_choices, int max_results,
4c4b4cd2 3781 int is_all_choice, char *annotation_suffix)
14f9c5c9 3782{
d2e4a39e 3783 char *args;
0bcd0149 3784 char *prompt;
14f9c5c9
AS
3785 int n_chosen;
3786 int first_choice = is_all_choice ? 2 : 1;
d2e4a39e 3787
14f9c5c9
AS
3788 prompt = getenv ("PS2");
3789 if (prompt == NULL)
0bcd0149 3790 prompt = "> ";
14f9c5c9 3791
0bcd0149 3792 args = command_line_input (prompt, 0, annotation_suffix);
d2e4a39e 3793
14f9c5c9 3794 if (args == NULL)
323e0a4a 3795 error_no_arg (_("one or more choice numbers"));
14f9c5c9
AS
3796
3797 n_chosen = 0;
76a01679 3798
4c4b4cd2
PH
3799 /* Set choices[0 .. n_chosen-1] to the users' choices in ascending
3800 order, as given in args. Choices are validated. */
14f9c5c9
AS
3801 while (1)
3802 {
d2e4a39e 3803 char *args2;
14f9c5c9
AS
3804 int choice, j;
3805
0fcd72ba 3806 args = skip_spaces (args);
14f9c5c9 3807 if (*args == '\0' && n_chosen == 0)
323e0a4a 3808 error_no_arg (_("one or more choice numbers"));
14f9c5c9 3809 else if (*args == '\0')
4c4b4cd2 3810 break;
14f9c5c9
AS
3811
3812 choice = strtol (args, &args2, 10);
d2e4a39e 3813 if (args == args2 || choice < 0
4c4b4cd2 3814 || choice > n_choices + first_choice - 1)
323e0a4a 3815 error (_("Argument must be choice number"));
14f9c5c9
AS
3816 args = args2;
3817
d2e4a39e 3818 if (choice == 0)
323e0a4a 3819 error (_("cancelled"));
14f9c5c9
AS
3820
3821 if (choice < first_choice)
4c4b4cd2
PH
3822 {
3823 n_chosen = n_choices;
3824 for (j = 0; j < n_choices; j += 1)
3825 choices[j] = j;
3826 break;
3827 }
14f9c5c9
AS
3828 choice -= first_choice;
3829
d2e4a39e 3830 for (j = n_chosen - 1; j >= 0 && choice < choices[j]; j -= 1)
4c4b4cd2
PH
3831 {
3832 }
14f9c5c9
AS
3833
3834 if (j < 0 || choice != choices[j])
4c4b4cd2
PH
3835 {
3836 int k;
5b4ee69b 3837
4c4b4cd2
PH
3838 for (k = n_chosen - 1; k > j; k -= 1)
3839 choices[k + 1] = choices[k];
3840 choices[j + 1] = choice;
3841 n_chosen += 1;
3842 }
14f9c5c9
AS
3843 }
3844
3845 if (n_chosen > max_results)
323e0a4a 3846 error (_("Select no more than %d of the above"), max_results);
d2e4a39e 3847
14f9c5c9
AS
3848 return n_chosen;
3849}
3850
4c4b4cd2
PH
3851/* Replace the operator of length OPLEN at position PC in *EXPP with a call
3852 on the function identified by SYM and BLOCK, and taking NARGS
3853 arguments. Update *EXPP as needed to hold more space. */
14f9c5c9
AS
3854
3855static void
d2e4a39e 3856replace_operator_with_call (struct expression **expp, int pc, int nargs,
4c4b4cd2 3857 int oplen, struct symbol *sym,
270140bd 3858 const struct block *block)
14f9c5c9
AS
3859{
3860 /* A new expression, with 6 more elements (3 for funcall, 4 for function
4c4b4cd2 3861 symbol, -oplen for operator being replaced). */
d2e4a39e 3862 struct expression *newexp = (struct expression *)
8c1a34e7 3863 xzalloc (sizeof (struct expression)
4c4b4cd2 3864 + EXP_ELEM_TO_BYTES ((*expp)->nelts + 7 - oplen));
d2e4a39e 3865 struct expression *exp = *expp;
14f9c5c9
AS
3866
3867 newexp->nelts = exp->nelts + 7 - oplen;
3868 newexp->language_defn = exp->language_defn;
3489610d 3869 newexp->gdbarch = exp->gdbarch;
14f9c5c9 3870 memcpy (newexp->elts, exp->elts, EXP_ELEM_TO_BYTES (pc));
d2e4a39e 3871 memcpy (newexp->elts + pc + 7, exp->elts + pc + oplen,
4c4b4cd2 3872 EXP_ELEM_TO_BYTES (exp->nelts - pc - oplen));
14f9c5c9
AS
3873
3874 newexp->elts[pc].opcode = newexp->elts[pc + 2].opcode = OP_FUNCALL;
3875 newexp->elts[pc + 1].longconst = (LONGEST) nargs;
3876
3877 newexp->elts[pc + 3].opcode = newexp->elts[pc + 6].opcode = OP_VAR_VALUE;
3878 newexp->elts[pc + 4].block = block;
3879 newexp->elts[pc + 5].symbol = sym;
3880
3881 *expp = newexp;
aacb1f0a 3882 xfree (exp);
d2e4a39e 3883}
14f9c5c9
AS
3884
3885/* Type-class predicates */
3886
4c4b4cd2
PH
3887/* True iff TYPE is numeric (i.e., an INT, RANGE (of numeric type),
3888 or FLOAT). */
14f9c5c9
AS
3889
3890static int
d2e4a39e 3891numeric_type_p (struct type *type)
14f9c5c9
AS
3892{
3893 if (type == NULL)
3894 return 0;
d2e4a39e
AS
3895 else
3896 {
3897 switch (TYPE_CODE (type))
4c4b4cd2
PH
3898 {
3899 case TYPE_CODE_INT:
3900 case TYPE_CODE_FLT:
3901 return 1;
3902 case TYPE_CODE_RANGE:
3903 return (type == TYPE_TARGET_TYPE (type)
3904 || numeric_type_p (TYPE_TARGET_TYPE (type)));
3905 default:
3906 return 0;
3907 }
d2e4a39e 3908 }
14f9c5c9
AS
3909}
3910
4c4b4cd2 3911/* True iff TYPE is integral (an INT or RANGE of INTs). */
14f9c5c9
AS
3912
3913static int
d2e4a39e 3914integer_type_p (struct type *type)
14f9c5c9
AS
3915{
3916 if (type == NULL)
3917 return 0;
d2e4a39e
AS
3918 else
3919 {
3920 switch (TYPE_CODE (type))
4c4b4cd2
PH
3921 {
3922 case TYPE_CODE_INT:
3923 return 1;
3924 case TYPE_CODE_RANGE:
3925 return (type == TYPE_TARGET_TYPE (type)
3926 || integer_type_p (TYPE_TARGET_TYPE (type)));
3927 default:
3928 return 0;
3929 }
d2e4a39e 3930 }
14f9c5c9
AS
3931}
3932
4c4b4cd2 3933/* True iff TYPE is scalar (INT, RANGE, FLOAT, ENUM). */
14f9c5c9
AS
3934
3935static int
d2e4a39e 3936scalar_type_p (struct type *type)
14f9c5c9
AS
3937{
3938 if (type == NULL)
3939 return 0;
d2e4a39e
AS
3940 else
3941 {
3942 switch (TYPE_CODE (type))
4c4b4cd2
PH
3943 {
3944 case TYPE_CODE_INT:
3945 case TYPE_CODE_RANGE:
3946 case TYPE_CODE_ENUM:
3947 case TYPE_CODE_FLT:
3948 return 1;
3949 default:
3950 return 0;
3951 }
d2e4a39e 3952 }
14f9c5c9
AS
3953}
3954
4c4b4cd2 3955/* True iff TYPE is discrete (INT, RANGE, ENUM). */
14f9c5c9
AS
3956
3957static int
d2e4a39e 3958discrete_type_p (struct type *type)
14f9c5c9
AS
3959{
3960 if (type == NULL)
3961 return 0;
d2e4a39e
AS
3962 else
3963 {
3964 switch (TYPE_CODE (type))
4c4b4cd2
PH
3965 {
3966 case TYPE_CODE_INT:
3967 case TYPE_CODE_RANGE:
3968 case TYPE_CODE_ENUM:
872f0337 3969 case TYPE_CODE_BOOL:
4c4b4cd2
PH
3970 return 1;
3971 default:
3972 return 0;
3973 }
d2e4a39e 3974 }
14f9c5c9
AS
3975}
3976
4c4b4cd2
PH
3977/* Returns non-zero if OP with operands in the vector ARGS could be
3978 a user-defined function. Errs on the side of pre-defined operators
3979 (i.e., result 0). */
14f9c5c9
AS
3980
3981static int
d2e4a39e 3982possible_user_operator_p (enum exp_opcode op, struct value *args[])
14f9c5c9 3983{
76a01679 3984 struct type *type0 =
df407dfe 3985 (args[0] == NULL) ? NULL : ada_check_typedef (value_type (args[0]));
d2e4a39e 3986 struct type *type1 =
df407dfe 3987 (args[1] == NULL) ? NULL : ada_check_typedef (value_type (args[1]));
d2e4a39e 3988
4c4b4cd2
PH
3989 if (type0 == NULL)
3990 return 0;
3991
14f9c5c9
AS
3992 switch (op)
3993 {
3994 default:
3995 return 0;
3996
3997 case BINOP_ADD:
3998 case BINOP_SUB:
3999 case BINOP_MUL:
4000 case BINOP_DIV:
d2e4a39e 4001 return (!(numeric_type_p (type0) && numeric_type_p (type1)));
14f9c5c9
AS
4002
4003 case BINOP_REM:
4004 case BINOP_MOD:
4005 case BINOP_BITWISE_AND:
4006 case BINOP_BITWISE_IOR:
4007 case BINOP_BITWISE_XOR:
d2e4a39e 4008 return (!(integer_type_p (type0) && integer_type_p (type1)));
14f9c5c9
AS
4009
4010 case BINOP_EQUAL:
4011 case BINOP_NOTEQUAL:
4012 case BINOP_LESS:
4013 case BINOP_GTR:
4014 case BINOP_LEQ:
4015 case BINOP_GEQ:
d2e4a39e 4016 return (!(scalar_type_p (type0) && scalar_type_p (type1)));
14f9c5c9
AS
4017
4018 case BINOP_CONCAT:
ee90b9ab 4019 return !ada_is_array_type (type0) || !ada_is_array_type (type1);
14f9c5c9
AS
4020
4021 case BINOP_EXP:
d2e4a39e 4022 return (!(numeric_type_p (type0) && integer_type_p (type1)));
14f9c5c9
AS
4023
4024 case UNOP_NEG:
4025 case UNOP_PLUS:
4026 case UNOP_LOGICAL_NOT:
d2e4a39e
AS
4027 case UNOP_ABS:
4028 return (!numeric_type_p (type0));
14f9c5c9
AS
4029
4030 }
4031}
4032\f
4c4b4cd2 4033 /* Renaming */
14f9c5c9 4034
aeb5907d
JB
4035/* NOTES:
4036
4037 1. In the following, we assume that a renaming type's name may
4038 have an ___XD suffix. It would be nice if this went away at some
4039 point.
4040 2. We handle both the (old) purely type-based representation of
4041 renamings and the (new) variable-based encoding. At some point,
4042 it is devoutly to be hoped that the former goes away
4043 (FIXME: hilfinger-2007-07-09).
4044 3. Subprogram renamings are not implemented, although the XRS
4045 suffix is recognized (FIXME: hilfinger-2007-07-09). */
4046
4047/* If SYM encodes a renaming,
4048
4049 <renaming> renames <renamed entity>,
4050
4051 sets *LEN to the length of the renamed entity's name,
4052 *RENAMED_ENTITY to that name (not null-terminated), and *RENAMING_EXPR to
4053 the string describing the subcomponent selected from the renamed
0963b4bd 4054 entity. Returns ADA_NOT_RENAMING if SYM does not encode a renaming
aeb5907d
JB
4055 (in which case, the values of *RENAMED_ENTITY, *LEN, and *RENAMING_EXPR
4056 are undefined). Otherwise, returns a value indicating the category
4057 of entity renamed: an object (ADA_OBJECT_RENAMING), exception
4058 (ADA_EXCEPTION_RENAMING), package (ADA_PACKAGE_RENAMING), or
4059 subprogram (ADA_SUBPROGRAM_RENAMING). Does no allocation; the
4060 strings returned in *RENAMED_ENTITY and *RENAMING_EXPR should not be
4061 deallocated. The values of RENAMED_ENTITY, LEN, or RENAMING_EXPR
4062 may be NULL, in which case they are not assigned.
4063
4064 [Currently, however, GCC does not generate subprogram renamings.] */
4065
4066enum ada_renaming_category
4067ada_parse_renaming (struct symbol *sym,
4068 const char **renamed_entity, int *len,
4069 const char **renaming_expr)
4070{
4071 enum ada_renaming_category kind;
4072 const char *info;
4073 const char *suffix;
4074
4075 if (sym == NULL)
4076 return ADA_NOT_RENAMING;
4077 switch (SYMBOL_CLASS (sym))
14f9c5c9 4078 {
aeb5907d
JB
4079 default:
4080 return ADA_NOT_RENAMING;
4081 case LOC_TYPEDEF:
4082 return parse_old_style_renaming (SYMBOL_TYPE (sym),
4083 renamed_entity, len, renaming_expr);
4084 case LOC_LOCAL:
4085 case LOC_STATIC:
4086 case LOC_COMPUTED:
4087 case LOC_OPTIMIZED_OUT:
4088 info = strstr (SYMBOL_LINKAGE_NAME (sym), "___XR");
4089 if (info == NULL)
4090 return ADA_NOT_RENAMING;
4091 switch (info[5])
4092 {
4093 case '_':
4094 kind = ADA_OBJECT_RENAMING;
4095 info += 6;
4096 break;
4097 case 'E':
4098 kind = ADA_EXCEPTION_RENAMING;
4099 info += 7;
4100 break;
4101 case 'P':
4102 kind = ADA_PACKAGE_RENAMING;
4103 info += 7;
4104 break;
4105 case 'S':
4106 kind = ADA_SUBPROGRAM_RENAMING;
4107 info += 7;
4108 break;
4109 default:
4110 return ADA_NOT_RENAMING;
4111 }
14f9c5c9 4112 }
4c4b4cd2 4113
aeb5907d
JB
4114 if (renamed_entity != NULL)
4115 *renamed_entity = info;
4116 suffix = strstr (info, "___XE");
4117 if (suffix == NULL || suffix == info)
4118 return ADA_NOT_RENAMING;
4119 if (len != NULL)
4120 *len = strlen (info) - strlen (suffix);
4121 suffix += 5;
4122 if (renaming_expr != NULL)
4123 *renaming_expr = suffix;
4124 return kind;
4125}
4126
4127/* Assuming TYPE encodes a renaming according to the old encoding in
4128 exp_dbug.ads, returns details of that renaming in *RENAMED_ENTITY,
4129 *LEN, and *RENAMING_EXPR, as for ada_parse_renaming, above. Returns
4130 ADA_NOT_RENAMING otherwise. */
4131static enum ada_renaming_category
4132parse_old_style_renaming (struct type *type,
4133 const char **renamed_entity, int *len,
4134 const char **renaming_expr)
4135{
4136 enum ada_renaming_category kind;
4137 const char *name;
4138 const char *info;
4139 const char *suffix;
14f9c5c9 4140
aeb5907d
JB
4141 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM
4142 || TYPE_NFIELDS (type) != 1)
4143 return ADA_NOT_RENAMING;
14f9c5c9 4144
aeb5907d
JB
4145 name = type_name_no_tag (type);
4146 if (name == NULL)
4147 return ADA_NOT_RENAMING;
4148
4149 name = strstr (name, "___XR");
4150 if (name == NULL)
4151 return ADA_NOT_RENAMING;
4152 switch (name[5])
4153 {
4154 case '\0':
4155 case '_':
4156 kind = ADA_OBJECT_RENAMING;
4157 break;
4158 case 'E':
4159 kind = ADA_EXCEPTION_RENAMING;
4160 break;
4161 case 'P':
4162 kind = ADA_PACKAGE_RENAMING;
4163 break;
4164 case 'S':
4165 kind = ADA_SUBPROGRAM_RENAMING;
4166 break;
4167 default:
4168 return ADA_NOT_RENAMING;
4169 }
14f9c5c9 4170
aeb5907d
JB
4171 info = TYPE_FIELD_NAME (type, 0);
4172 if (info == NULL)
4173 return ADA_NOT_RENAMING;
4174 if (renamed_entity != NULL)
4175 *renamed_entity = info;
4176 suffix = strstr (info, "___XE");
4177 if (renaming_expr != NULL)
4178 *renaming_expr = suffix + 5;
4179 if (suffix == NULL || suffix == info)
4180 return ADA_NOT_RENAMING;
4181 if (len != NULL)
4182 *len = suffix - info;
4183 return kind;
a5ee536b
JB
4184}
4185
4186/* Compute the value of the given RENAMING_SYM, which is expected to
4187 be a symbol encoding a renaming expression. BLOCK is the block
4188 used to evaluate the renaming. */
52ce6436 4189
a5ee536b
JB
4190static struct value *
4191ada_read_renaming_var_value (struct symbol *renaming_sym,
3977b71f 4192 const struct block *block)
a5ee536b 4193{
bbc13ae3 4194 const char *sym_name;
a5ee536b
JB
4195 struct expression *expr;
4196 struct value *value;
4197 struct cleanup *old_chain = NULL;
4198
bbc13ae3 4199 sym_name = SYMBOL_LINKAGE_NAME (renaming_sym);
1bb9788d 4200 expr = parse_exp_1 (&sym_name, 0, block, 0);
bbc13ae3 4201 old_chain = make_cleanup (free_current_contents, &expr);
a5ee536b
JB
4202 value = evaluate_expression (expr);
4203
4204 do_cleanups (old_chain);
4205 return value;
4206}
14f9c5c9 4207\f
d2e4a39e 4208
4c4b4cd2 4209 /* Evaluation: Function Calls */
14f9c5c9 4210
4c4b4cd2 4211/* Return an lvalue containing the value VAL. This is the identity on
40bc484c
JB
4212 lvalues, and otherwise has the side-effect of allocating memory
4213 in the inferior where a copy of the value contents is copied. */
14f9c5c9 4214
d2e4a39e 4215static struct value *
40bc484c 4216ensure_lval (struct value *val)
14f9c5c9 4217{
40bc484c
JB
4218 if (VALUE_LVAL (val) == not_lval
4219 || VALUE_LVAL (val) == lval_internalvar)
c3e5cd34 4220 {
df407dfe 4221 int len = TYPE_LENGTH (ada_check_typedef (value_type (val)));
40bc484c
JB
4222 const CORE_ADDR addr =
4223 value_as_long (value_allocate_space_in_inferior (len));
c3e5cd34 4224
40bc484c 4225 set_value_address (val, addr);
a84a8a0d 4226 VALUE_LVAL (val) = lval_memory;
40bc484c 4227 write_memory (addr, value_contents (val), len);
c3e5cd34 4228 }
14f9c5c9
AS
4229
4230 return val;
4231}
4232
4233/* Return the value ACTUAL, converted to be an appropriate value for a
4234 formal of type FORMAL_TYPE. Use *SP as a stack pointer for
4235 allocating any necessary descriptors (fat pointers), or copies of
4c4b4cd2 4236 values not residing in memory, updating it as needed. */
14f9c5c9 4237
a93c0eb6 4238struct value *
40bc484c 4239ada_convert_actual (struct value *actual, struct type *formal_type0)
14f9c5c9 4240{
df407dfe 4241 struct type *actual_type = ada_check_typedef (value_type (actual));
61ee279c 4242 struct type *formal_type = ada_check_typedef (formal_type0);
d2e4a39e
AS
4243 struct type *formal_target =
4244 TYPE_CODE (formal_type) == TYPE_CODE_PTR
61ee279c 4245 ? ada_check_typedef (TYPE_TARGET_TYPE (formal_type)) : formal_type;
d2e4a39e
AS
4246 struct type *actual_target =
4247 TYPE_CODE (actual_type) == TYPE_CODE_PTR
61ee279c 4248 ? ada_check_typedef (TYPE_TARGET_TYPE (actual_type)) : actual_type;
14f9c5c9 4249
4c4b4cd2 4250 if (ada_is_array_descriptor_type (formal_target)
14f9c5c9 4251 && TYPE_CODE (actual_target) == TYPE_CODE_ARRAY)
40bc484c 4252 return make_array_descriptor (formal_type, actual);
a84a8a0d
JB
4253 else if (TYPE_CODE (formal_type) == TYPE_CODE_PTR
4254 || TYPE_CODE (formal_type) == TYPE_CODE_REF)
14f9c5c9 4255 {
a84a8a0d 4256 struct value *result;
5b4ee69b 4257
14f9c5c9 4258 if (TYPE_CODE (formal_target) == TYPE_CODE_ARRAY
4c4b4cd2 4259 && ada_is_array_descriptor_type (actual_target))
a84a8a0d 4260 result = desc_data (actual);
14f9c5c9 4261 else if (TYPE_CODE (actual_type) != TYPE_CODE_PTR)
4c4b4cd2
PH
4262 {
4263 if (VALUE_LVAL (actual) != lval_memory)
4264 {
4265 struct value *val;
5b4ee69b 4266
df407dfe 4267 actual_type = ada_check_typedef (value_type (actual));
4c4b4cd2 4268 val = allocate_value (actual_type);
990a07ab 4269 memcpy ((char *) value_contents_raw (val),
0fd88904 4270 (char *) value_contents (actual),
4c4b4cd2 4271 TYPE_LENGTH (actual_type));
40bc484c 4272 actual = ensure_lval (val);
4c4b4cd2 4273 }
a84a8a0d 4274 result = value_addr (actual);
4c4b4cd2 4275 }
a84a8a0d
JB
4276 else
4277 return actual;
b1af9e97 4278 return value_cast_pointers (formal_type, result, 0);
14f9c5c9
AS
4279 }
4280 else if (TYPE_CODE (actual_type) == TYPE_CODE_PTR)
4281 return ada_value_ind (actual);
4282
4283 return actual;
4284}
4285
438c98a1
JB
4286/* Convert VALUE (which must be an address) to a CORE_ADDR that is a pointer of
4287 type TYPE. This is usually an inefficient no-op except on some targets
4288 (such as AVR) where the representation of a pointer and an address
4289 differs. */
4290
4291static CORE_ADDR
4292value_pointer (struct value *value, struct type *type)
4293{
4294 struct gdbarch *gdbarch = get_type_arch (type);
4295 unsigned len = TYPE_LENGTH (type);
4296 gdb_byte *buf = alloca (len);
4297 CORE_ADDR addr;
4298
4299 addr = value_address (value);
4300 gdbarch_address_to_pointer (gdbarch, type, buf, addr);
4301 addr = extract_unsigned_integer (buf, len, gdbarch_byte_order (gdbarch));
4302 return addr;
4303}
4304
14f9c5c9 4305
4c4b4cd2
PH
4306/* Push a descriptor of type TYPE for array value ARR on the stack at
4307 *SP, updating *SP to reflect the new descriptor. Return either
14f9c5c9 4308 an lvalue representing the new descriptor, or (if TYPE is a pointer-
4c4b4cd2
PH
4309 to-descriptor type rather than a descriptor type), a struct value *
4310 representing a pointer to this descriptor. */
14f9c5c9 4311
d2e4a39e 4312static struct value *
40bc484c 4313make_array_descriptor (struct type *type, struct value *arr)
14f9c5c9 4314{
d2e4a39e
AS
4315 struct type *bounds_type = desc_bounds_type (type);
4316 struct type *desc_type = desc_base_type (type);
4317 struct value *descriptor = allocate_value (desc_type);
4318 struct value *bounds = allocate_value (bounds_type);
14f9c5c9 4319 int i;
d2e4a39e 4320
0963b4bd
MS
4321 for (i = ada_array_arity (ada_check_typedef (value_type (arr)));
4322 i > 0; i -= 1)
14f9c5c9 4323 {
19f220c3
JK
4324 modify_field (value_type (bounds), value_contents_writeable (bounds),
4325 ada_array_bound (arr, i, 0),
4326 desc_bound_bitpos (bounds_type, i, 0),
4327 desc_bound_bitsize (bounds_type, i, 0));
4328 modify_field (value_type (bounds), value_contents_writeable (bounds),
4329 ada_array_bound (arr, i, 1),
4330 desc_bound_bitpos (bounds_type, i, 1),
4331 desc_bound_bitsize (bounds_type, i, 1));
14f9c5c9 4332 }
d2e4a39e 4333
40bc484c 4334 bounds = ensure_lval (bounds);
d2e4a39e 4335
19f220c3
JK
4336 modify_field (value_type (descriptor),
4337 value_contents_writeable (descriptor),
4338 value_pointer (ensure_lval (arr),
4339 TYPE_FIELD_TYPE (desc_type, 0)),
4340 fat_pntr_data_bitpos (desc_type),
4341 fat_pntr_data_bitsize (desc_type));
4342
4343 modify_field (value_type (descriptor),
4344 value_contents_writeable (descriptor),
4345 value_pointer (bounds,
4346 TYPE_FIELD_TYPE (desc_type, 1)),
4347 fat_pntr_bounds_bitpos (desc_type),
4348 fat_pntr_bounds_bitsize (desc_type));
14f9c5c9 4349
40bc484c 4350 descriptor = ensure_lval (descriptor);
14f9c5c9
AS
4351
4352 if (TYPE_CODE (type) == TYPE_CODE_PTR)
4353 return value_addr (descriptor);
4354 else
4355 return descriptor;
4356}
14f9c5c9 4357\f
3d9434b5
JB
4358 /* Symbol Cache Module */
4359
3d9434b5 4360/* Performance measurements made as of 2010-01-15 indicate that
ee01b665 4361 this cache does bring some noticeable improvements. Depending
3d9434b5
JB
4362 on the type of entity being printed, the cache can make it as much
4363 as an order of magnitude faster than without it.
4364
4365 The descriptive type DWARF extension has significantly reduced
4366 the need for this cache, at least when DWARF is being used. However,
4367 even in this case, some expensive name-based symbol searches are still
4368 sometimes necessary - to find an XVZ variable, mostly. */
4369
ee01b665 4370/* Initialize the contents of SYM_CACHE. */
3d9434b5 4371
ee01b665
JB
4372static void
4373ada_init_symbol_cache (struct ada_symbol_cache *sym_cache)
4374{
4375 obstack_init (&sym_cache->cache_space);
4376 memset (sym_cache->root, '\000', sizeof (sym_cache->root));
4377}
3d9434b5 4378
ee01b665
JB
4379/* Free the memory used by SYM_CACHE. */
4380
4381static void
4382ada_free_symbol_cache (struct ada_symbol_cache *sym_cache)
3d9434b5 4383{
ee01b665
JB
4384 obstack_free (&sym_cache->cache_space, NULL);
4385 xfree (sym_cache);
4386}
3d9434b5 4387
ee01b665
JB
4388/* Return the symbol cache associated to the given program space PSPACE.
4389 If not allocated for this PSPACE yet, allocate and initialize one. */
3d9434b5 4390
ee01b665
JB
4391static struct ada_symbol_cache *
4392ada_get_symbol_cache (struct program_space *pspace)
4393{
4394 struct ada_pspace_data *pspace_data = get_ada_pspace_data (pspace);
4395 struct ada_symbol_cache *sym_cache = pspace_data->sym_cache;
4396
4397 if (sym_cache == NULL)
4398 {
4399 sym_cache = XCNEW (struct ada_symbol_cache);
4400 ada_init_symbol_cache (sym_cache);
4401 }
4402
4403 return sym_cache;
4404}
3d9434b5
JB
4405
4406/* Clear all entries from the symbol cache. */
4407
4408static void
4409ada_clear_symbol_cache (void)
4410{
ee01b665
JB
4411 struct ada_symbol_cache *sym_cache
4412 = ada_get_symbol_cache (current_program_space);
4413
4414 obstack_free (&sym_cache->cache_space, NULL);
4415 ada_init_symbol_cache (sym_cache);
3d9434b5
JB
4416}
4417
4418/* Search our cache for an entry matching NAME and NAMESPACE.
4419 Return it if found, or NULL otherwise. */
4420
4421static struct cache_entry **
4422find_entry (const char *name, domain_enum namespace)
4423{
ee01b665
JB
4424 struct ada_symbol_cache *sym_cache
4425 = ada_get_symbol_cache (current_program_space);
3d9434b5
JB
4426 int h = msymbol_hash (name) % HASH_SIZE;
4427 struct cache_entry **e;
4428
ee01b665 4429 for (e = &sym_cache->root[h]; *e != NULL; e = &(*e)->next)
3d9434b5
JB
4430 {
4431 if (namespace == (*e)->namespace && strcmp (name, (*e)->name) == 0)
4432 return e;
4433 }
4434 return NULL;
4435}
4436
4437/* Search the symbol cache for an entry matching NAME and NAMESPACE.
4438 Return 1 if found, 0 otherwise.
4439
4440 If an entry was found and SYM is not NULL, set *SYM to the entry's
4441 SYM. Same principle for BLOCK if not NULL. */
96d887e8 4442
96d887e8
PH
4443static int
4444lookup_cached_symbol (const char *name, domain_enum namespace,
f0c5f9b2 4445 struct symbol **sym, const struct block **block)
96d887e8 4446{
3d9434b5
JB
4447 struct cache_entry **e = find_entry (name, namespace);
4448
4449 if (e == NULL)
4450 return 0;
4451 if (sym != NULL)
4452 *sym = (*e)->sym;
4453 if (block != NULL)
4454 *block = (*e)->block;
4455 return 1;
96d887e8
PH
4456}
4457
3d9434b5
JB
4458/* Assuming that (SYM, BLOCK) is the result of the lookup of NAME
4459 in domain NAMESPACE, save this result in our symbol cache. */
4460
96d887e8
PH
4461static void
4462cache_symbol (const char *name, domain_enum namespace, struct symbol *sym,
270140bd 4463 const struct block *block)
96d887e8 4464{
ee01b665
JB
4465 struct ada_symbol_cache *sym_cache
4466 = ada_get_symbol_cache (current_program_space);
3d9434b5
JB
4467 int h;
4468 char *copy;
4469 struct cache_entry *e;
4470
4471 /* If the symbol is a local symbol, then do not cache it, as a search
4472 for that symbol depends on the context. To determine whether
4473 the symbol is local or not, we check the block where we found it
4474 against the global and static blocks of its associated symtab. */
4475 if (sym
439247b6
DE
4476 && BLOCKVECTOR_BLOCK (SYMTAB_BLOCKVECTOR (sym->symtab),
4477 GLOBAL_BLOCK) != block
4478 && BLOCKVECTOR_BLOCK (SYMTAB_BLOCKVECTOR (sym->symtab),
4479 STATIC_BLOCK) != block)
3d9434b5
JB
4480 return;
4481
4482 h = msymbol_hash (name) % HASH_SIZE;
ee01b665
JB
4483 e = (struct cache_entry *) obstack_alloc (&sym_cache->cache_space,
4484 sizeof (*e));
4485 e->next = sym_cache->root[h];
4486 sym_cache->root[h] = e;
4487 e->name = copy = obstack_alloc (&sym_cache->cache_space, strlen (name) + 1);
3d9434b5
JB
4488 strcpy (copy, name);
4489 e->sym = sym;
4490 e->namespace = namespace;
4491 e->block = block;
96d887e8 4492}
4c4b4cd2
PH
4493\f
4494 /* Symbol Lookup */
4495
c0431670
JB
4496/* Return nonzero if wild matching should be used when searching for
4497 all symbols matching LOOKUP_NAME.
4498
4499 LOOKUP_NAME is expected to be a symbol name after transformation
4500 for Ada lookups (see ada_name_for_lookup). */
4501
4502static int
4503should_use_wild_match (const char *lookup_name)
4504{
4505 return (strstr (lookup_name, "__") == NULL);
4506}
4507
4c4b4cd2
PH
4508/* Return the result of a standard (literal, C-like) lookup of NAME in
4509 given DOMAIN, visible from lexical block BLOCK. */
4510
4511static struct symbol *
4512standard_lookup (const char *name, const struct block *block,
4513 domain_enum domain)
4514{
acbd605d
MGD
4515 /* Initialize it just to avoid a GCC false warning. */
4516 struct symbol *sym = NULL;
4c4b4cd2 4517
2570f2b7 4518 if (lookup_cached_symbol (name, domain, &sym, NULL))
4c4b4cd2 4519 return sym;
2570f2b7
UW
4520 sym = lookup_symbol_in_language (name, block, domain, language_c, 0);
4521 cache_symbol (name, domain, sym, block_found);
4c4b4cd2
PH
4522 return sym;
4523}
4524
4525
4526/* Non-zero iff there is at least one non-function/non-enumeral symbol
4527 in the symbol fields of SYMS[0..N-1]. We treat enumerals as functions,
4528 since they contend in overloading in the same way. */
4529static int
4530is_nonfunction (struct ada_symbol_info syms[], int n)
4531{
4532 int i;
4533
4534 for (i = 0; i < n; i += 1)
4535 if (TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) != TYPE_CODE_FUNC
4536 && (TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) != TYPE_CODE_ENUM
4537 || SYMBOL_CLASS (syms[i].sym) != LOC_CONST))
14f9c5c9
AS
4538 return 1;
4539
4540 return 0;
4541}
4542
4543/* If true (non-zero), then TYPE0 and TYPE1 represent equivalent
4c4b4cd2 4544 struct types. Otherwise, they may not. */
14f9c5c9
AS
4545
4546static int
d2e4a39e 4547equiv_types (struct type *type0, struct type *type1)
14f9c5c9 4548{
d2e4a39e 4549 if (type0 == type1)
14f9c5c9 4550 return 1;
d2e4a39e 4551 if (type0 == NULL || type1 == NULL
14f9c5c9
AS
4552 || TYPE_CODE (type0) != TYPE_CODE (type1))
4553 return 0;
d2e4a39e 4554 if ((TYPE_CODE (type0) == TYPE_CODE_STRUCT
14f9c5c9
AS
4555 || TYPE_CODE (type0) == TYPE_CODE_ENUM)
4556 && ada_type_name (type0) != NULL && ada_type_name (type1) != NULL
4c4b4cd2 4557 && strcmp (ada_type_name (type0), ada_type_name (type1)) == 0)
14f9c5c9 4558 return 1;
d2e4a39e 4559
14f9c5c9
AS
4560 return 0;
4561}
4562
4563/* True iff SYM0 represents the same entity as SYM1, or one that is
4c4b4cd2 4564 no more defined than that of SYM1. */
14f9c5c9
AS
4565
4566static int
d2e4a39e 4567lesseq_defined_than (struct symbol *sym0, struct symbol *sym1)
14f9c5c9
AS
4568{
4569 if (sym0 == sym1)
4570 return 1;
176620f1 4571 if (SYMBOL_DOMAIN (sym0) != SYMBOL_DOMAIN (sym1)
14f9c5c9
AS
4572 || SYMBOL_CLASS (sym0) != SYMBOL_CLASS (sym1))
4573 return 0;
4574
d2e4a39e 4575 switch (SYMBOL_CLASS (sym0))
14f9c5c9
AS
4576 {
4577 case LOC_UNDEF:
4578 return 1;
4579 case LOC_TYPEDEF:
4580 {
4c4b4cd2
PH
4581 struct type *type0 = SYMBOL_TYPE (sym0);
4582 struct type *type1 = SYMBOL_TYPE (sym1);
0d5cff50
DE
4583 const char *name0 = SYMBOL_LINKAGE_NAME (sym0);
4584 const char *name1 = SYMBOL_LINKAGE_NAME (sym1);
4c4b4cd2 4585 int len0 = strlen (name0);
5b4ee69b 4586
4c4b4cd2
PH
4587 return
4588 TYPE_CODE (type0) == TYPE_CODE (type1)
4589 && (equiv_types (type0, type1)
4590 || (len0 < strlen (name1) && strncmp (name0, name1, len0) == 0
4591 && strncmp (name1 + len0, "___XV", 5) == 0));
14f9c5c9
AS
4592 }
4593 case LOC_CONST:
4594 return SYMBOL_VALUE (sym0) == SYMBOL_VALUE (sym1)
4c4b4cd2 4595 && equiv_types (SYMBOL_TYPE (sym0), SYMBOL_TYPE (sym1));
d2e4a39e
AS
4596 default:
4597 return 0;
14f9c5c9
AS
4598 }
4599}
4600
4c4b4cd2
PH
4601/* Append (SYM,BLOCK,SYMTAB) to the end of the array of struct ada_symbol_info
4602 records in OBSTACKP. Do nothing if SYM is a duplicate. */
14f9c5c9
AS
4603
4604static void
76a01679
JB
4605add_defn_to_vec (struct obstack *obstackp,
4606 struct symbol *sym,
f0c5f9b2 4607 const struct block *block)
14f9c5c9
AS
4608{
4609 int i;
4c4b4cd2 4610 struct ada_symbol_info *prevDefns = defns_collected (obstackp, 0);
14f9c5c9 4611
529cad9c
PH
4612 /* Do not try to complete stub types, as the debugger is probably
4613 already scanning all symbols matching a certain name at the
4614 time when this function is called. Trying to replace the stub
4615 type by its associated full type will cause us to restart a scan
4616 which may lead to an infinite recursion. Instead, the client
4617 collecting the matching symbols will end up collecting several
4618 matches, with at least one of them complete. It can then filter
4619 out the stub ones if needed. */
4620
4c4b4cd2
PH
4621 for (i = num_defns_collected (obstackp) - 1; i >= 0; i -= 1)
4622 {
4623 if (lesseq_defined_than (sym, prevDefns[i].sym))
4624 return;
4625 else if (lesseq_defined_than (prevDefns[i].sym, sym))
4626 {
4627 prevDefns[i].sym = sym;
4628 prevDefns[i].block = block;
4c4b4cd2 4629 return;
76a01679 4630 }
4c4b4cd2
PH
4631 }
4632
4633 {
4634 struct ada_symbol_info info;
4635
4636 info.sym = sym;
4637 info.block = block;
4c4b4cd2
PH
4638 obstack_grow (obstackp, &info, sizeof (struct ada_symbol_info));
4639 }
4640}
4641
4642/* Number of ada_symbol_info structures currently collected in
4643 current vector in *OBSTACKP. */
4644
76a01679
JB
4645static int
4646num_defns_collected (struct obstack *obstackp)
4c4b4cd2
PH
4647{
4648 return obstack_object_size (obstackp) / sizeof (struct ada_symbol_info);
4649}
4650
4651/* Vector of ada_symbol_info structures currently collected in current
4652 vector in *OBSTACKP. If FINISH, close off the vector and return
4653 its final address. */
4654
76a01679 4655static struct ada_symbol_info *
4c4b4cd2
PH
4656defns_collected (struct obstack *obstackp, int finish)
4657{
4658 if (finish)
4659 return obstack_finish (obstackp);
4660 else
4661 return (struct ada_symbol_info *) obstack_base (obstackp);
4662}
4663
7c7b6655
TT
4664/* Return a bound minimal symbol matching NAME according to Ada
4665 decoding rules. Returns an invalid symbol if there is no such
4666 minimal symbol. Names prefixed with "standard__" are handled
4667 specially: "standard__" is first stripped off, and only static and
4668 global symbols are searched. */
4c4b4cd2 4669
7c7b6655 4670struct bound_minimal_symbol
96d887e8 4671ada_lookup_simple_minsym (const char *name)
4c4b4cd2 4672{
7c7b6655 4673 struct bound_minimal_symbol result;
4c4b4cd2 4674 struct objfile *objfile;
96d887e8 4675 struct minimal_symbol *msymbol;
dc4024cd 4676 const int wild_match_p = should_use_wild_match (name);
4c4b4cd2 4677
7c7b6655
TT
4678 memset (&result, 0, sizeof (result));
4679
c0431670
JB
4680 /* Special case: If the user specifies a symbol name inside package
4681 Standard, do a non-wild matching of the symbol name without
4682 the "standard__" prefix. This was primarily introduced in order
4683 to allow the user to specifically access the standard exceptions
4684 using, for instance, Standard.Constraint_Error when Constraint_Error
4685 is ambiguous (due to the user defining its own Constraint_Error
4686 entity inside its program). */
96d887e8 4687 if (strncmp (name, "standard__", sizeof ("standard__") - 1) == 0)
c0431670 4688 name += sizeof ("standard__") - 1;
4c4b4cd2 4689
96d887e8
PH
4690 ALL_MSYMBOLS (objfile, msymbol)
4691 {
efd66ac6 4692 if (match_name (MSYMBOL_LINKAGE_NAME (msymbol), name, wild_match_p)
96d887e8 4693 && MSYMBOL_TYPE (msymbol) != mst_solib_trampoline)
7c7b6655
TT
4694 {
4695 result.minsym = msymbol;
4696 result.objfile = objfile;
4697 break;
4698 }
96d887e8 4699 }
4c4b4cd2 4700
7c7b6655 4701 return result;
96d887e8 4702}
4c4b4cd2 4703
96d887e8
PH
4704/* For all subprograms that statically enclose the subprogram of the
4705 selected frame, add symbols matching identifier NAME in DOMAIN
4706 and their blocks to the list of data in OBSTACKP, as for
48b78332
JB
4707 ada_add_block_symbols (q.v.). If WILD_MATCH_P, treat as NAME
4708 with a wildcard prefix. */
4c4b4cd2 4709
96d887e8
PH
4710static void
4711add_symbols_from_enclosing_procs (struct obstack *obstackp,
76a01679 4712 const char *name, domain_enum namespace,
48b78332 4713 int wild_match_p)
96d887e8 4714{
96d887e8 4715}
14f9c5c9 4716
96d887e8
PH
4717/* True if TYPE is definitely an artificial type supplied to a symbol
4718 for which no debugging information was given in the symbol file. */
14f9c5c9 4719
96d887e8
PH
4720static int
4721is_nondebugging_type (struct type *type)
4722{
0d5cff50 4723 const char *name = ada_type_name (type);
5b4ee69b 4724
96d887e8
PH
4725 return (name != NULL && strcmp (name, "<variable, no debug info>") == 0);
4726}
4c4b4cd2 4727
8f17729f
JB
4728/* Return nonzero if TYPE1 and TYPE2 are two enumeration types
4729 that are deemed "identical" for practical purposes.
4730
4731 This function assumes that TYPE1 and TYPE2 are both TYPE_CODE_ENUM
4732 types and that their number of enumerals is identical (in other
4733 words, TYPE_NFIELDS (type1) == TYPE_NFIELDS (type2)). */
4734
4735static int
4736ada_identical_enum_types_p (struct type *type1, struct type *type2)
4737{
4738 int i;
4739
4740 /* The heuristic we use here is fairly conservative. We consider
4741 that 2 enumerate types are identical if they have the same
4742 number of enumerals and that all enumerals have the same
4743 underlying value and name. */
4744
4745 /* All enums in the type should have an identical underlying value. */
4746 for (i = 0; i < TYPE_NFIELDS (type1); i++)
14e75d8e 4747 if (TYPE_FIELD_ENUMVAL (type1, i) != TYPE_FIELD_ENUMVAL (type2, i))
8f17729f
JB
4748 return 0;
4749
4750 /* All enumerals should also have the same name (modulo any numerical
4751 suffix). */
4752 for (i = 0; i < TYPE_NFIELDS (type1); i++)
4753 {
0d5cff50
DE
4754 const char *name_1 = TYPE_FIELD_NAME (type1, i);
4755 const char *name_2 = TYPE_FIELD_NAME (type2, i);
8f17729f
JB
4756 int len_1 = strlen (name_1);
4757 int len_2 = strlen (name_2);
4758
4759 ada_remove_trailing_digits (TYPE_FIELD_NAME (type1, i), &len_1);
4760 ada_remove_trailing_digits (TYPE_FIELD_NAME (type2, i), &len_2);
4761 if (len_1 != len_2
4762 || strncmp (TYPE_FIELD_NAME (type1, i),
4763 TYPE_FIELD_NAME (type2, i),
4764 len_1) != 0)
4765 return 0;
4766 }
4767
4768 return 1;
4769}
4770
4771/* Return nonzero if all the symbols in SYMS are all enumeral symbols
4772 that are deemed "identical" for practical purposes. Sometimes,
4773 enumerals are not strictly identical, but their types are so similar
4774 that they can be considered identical.
4775
4776 For instance, consider the following code:
4777
4778 type Color is (Black, Red, Green, Blue, White);
4779 type RGB_Color is new Color range Red .. Blue;
4780
4781 Type RGB_Color is a subrange of an implicit type which is a copy
4782 of type Color. If we call that implicit type RGB_ColorB ("B" is
4783 for "Base Type"), then type RGB_ColorB is a copy of type Color.
4784 As a result, when an expression references any of the enumeral
4785 by name (Eg. "print green"), the expression is technically
4786 ambiguous and the user should be asked to disambiguate. But
4787 doing so would only hinder the user, since it wouldn't matter
4788 what choice he makes, the outcome would always be the same.
4789 So, for practical purposes, we consider them as the same. */
4790
4791static int
4792symbols_are_identical_enums (struct ada_symbol_info *syms, int nsyms)
4793{
4794 int i;
4795
4796 /* Before performing a thorough comparison check of each type,
4797 we perform a series of inexpensive checks. We expect that these
4798 checks will quickly fail in the vast majority of cases, and thus
4799 help prevent the unnecessary use of a more expensive comparison.
4800 Said comparison also expects us to make some of these checks
4801 (see ada_identical_enum_types_p). */
4802
4803 /* Quick check: All symbols should have an enum type. */
4804 for (i = 0; i < nsyms; i++)
4805 if (TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) != TYPE_CODE_ENUM)
4806 return 0;
4807
4808 /* Quick check: They should all have the same value. */
4809 for (i = 1; i < nsyms; i++)
4810 if (SYMBOL_VALUE (syms[i].sym) != SYMBOL_VALUE (syms[0].sym))
4811 return 0;
4812
4813 /* Quick check: They should all have the same number of enumerals. */
4814 for (i = 1; i < nsyms; i++)
4815 if (TYPE_NFIELDS (SYMBOL_TYPE (syms[i].sym))
4816 != TYPE_NFIELDS (SYMBOL_TYPE (syms[0].sym)))
4817 return 0;
4818
4819 /* All the sanity checks passed, so we might have a set of
4820 identical enumeration types. Perform a more complete
4821 comparison of the type of each symbol. */
4822 for (i = 1; i < nsyms; i++)
4823 if (!ada_identical_enum_types_p (SYMBOL_TYPE (syms[i].sym),
4824 SYMBOL_TYPE (syms[0].sym)))
4825 return 0;
4826
4827 return 1;
4828}
4829
96d887e8
PH
4830/* Remove any non-debugging symbols in SYMS[0 .. NSYMS-1] that definitely
4831 duplicate other symbols in the list (The only case I know of where
4832 this happens is when object files containing stabs-in-ecoff are
4833 linked with files containing ordinary ecoff debugging symbols (or no
4834 debugging symbols)). Modifies SYMS to squeeze out deleted entries.
4835 Returns the number of items in the modified list. */
4c4b4cd2 4836
96d887e8
PH
4837static int
4838remove_extra_symbols (struct ada_symbol_info *syms, int nsyms)
4839{
4840 int i, j;
4c4b4cd2 4841
8f17729f
JB
4842 /* We should never be called with less than 2 symbols, as there
4843 cannot be any extra symbol in that case. But it's easy to
4844 handle, since we have nothing to do in that case. */
4845 if (nsyms < 2)
4846 return nsyms;
4847
96d887e8
PH
4848 i = 0;
4849 while (i < nsyms)
4850 {
a35ddb44 4851 int remove_p = 0;
339c13b6
JB
4852
4853 /* If two symbols have the same name and one of them is a stub type,
4854 the get rid of the stub. */
4855
4856 if (TYPE_STUB (SYMBOL_TYPE (syms[i].sym))
4857 && SYMBOL_LINKAGE_NAME (syms[i].sym) != NULL)
4858 {
4859 for (j = 0; j < nsyms; j++)
4860 {
4861 if (j != i
4862 && !TYPE_STUB (SYMBOL_TYPE (syms[j].sym))
4863 && SYMBOL_LINKAGE_NAME (syms[j].sym) != NULL
4864 && strcmp (SYMBOL_LINKAGE_NAME (syms[i].sym),
4865 SYMBOL_LINKAGE_NAME (syms[j].sym)) == 0)
a35ddb44 4866 remove_p = 1;
339c13b6
JB
4867 }
4868 }
4869
4870 /* Two symbols with the same name, same class and same address
4871 should be identical. */
4872
4873 else if (SYMBOL_LINKAGE_NAME (syms[i].sym) != NULL
96d887e8
PH
4874 && SYMBOL_CLASS (syms[i].sym) == LOC_STATIC
4875 && is_nondebugging_type (SYMBOL_TYPE (syms[i].sym)))
4876 {
4877 for (j = 0; j < nsyms; j += 1)
4878 {
4879 if (i != j
4880 && SYMBOL_LINKAGE_NAME (syms[j].sym) != NULL
4881 && strcmp (SYMBOL_LINKAGE_NAME (syms[i].sym),
76a01679 4882 SYMBOL_LINKAGE_NAME (syms[j].sym)) == 0
96d887e8
PH
4883 && SYMBOL_CLASS (syms[i].sym) == SYMBOL_CLASS (syms[j].sym)
4884 && SYMBOL_VALUE_ADDRESS (syms[i].sym)
4885 == SYMBOL_VALUE_ADDRESS (syms[j].sym))
a35ddb44 4886 remove_p = 1;
4c4b4cd2 4887 }
4c4b4cd2 4888 }
339c13b6 4889
a35ddb44 4890 if (remove_p)
339c13b6
JB
4891 {
4892 for (j = i + 1; j < nsyms; j += 1)
4893 syms[j - 1] = syms[j];
4894 nsyms -= 1;
4895 }
4896
96d887e8 4897 i += 1;
14f9c5c9 4898 }
8f17729f
JB
4899
4900 /* If all the remaining symbols are identical enumerals, then
4901 just keep the first one and discard the rest.
4902
4903 Unlike what we did previously, we do not discard any entry
4904 unless they are ALL identical. This is because the symbol
4905 comparison is not a strict comparison, but rather a practical
4906 comparison. If all symbols are considered identical, then
4907 we can just go ahead and use the first one and discard the rest.
4908 But if we cannot reduce the list to a single element, we have
4909 to ask the user to disambiguate anyways. And if we have to
4910 present a multiple-choice menu, it's less confusing if the list
4911 isn't missing some choices that were identical and yet distinct. */
4912 if (symbols_are_identical_enums (syms, nsyms))
4913 nsyms = 1;
4914
96d887e8 4915 return nsyms;
14f9c5c9
AS
4916}
4917
96d887e8
PH
4918/* Given a type that corresponds to a renaming entity, use the type name
4919 to extract the scope (package name or function name, fully qualified,
4920 and following the GNAT encoding convention) where this renaming has been
4921 defined. The string returned needs to be deallocated after use. */
4c4b4cd2 4922
96d887e8
PH
4923static char *
4924xget_renaming_scope (struct type *renaming_type)
14f9c5c9 4925{
96d887e8 4926 /* The renaming types adhere to the following convention:
0963b4bd 4927 <scope>__<rename>___<XR extension>.
96d887e8
PH
4928 So, to extract the scope, we search for the "___XR" extension,
4929 and then backtrack until we find the first "__". */
76a01679 4930
96d887e8
PH
4931 const char *name = type_name_no_tag (renaming_type);
4932 char *suffix = strstr (name, "___XR");
4933 char *last;
4934 int scope_len;
4935 char *scope;
14f9c5c9 4936
96d887e8
PH
4937 /* Now, backtrack a bit until we find the first "__". Start looking
4938 at suffix - 3, as the <rename> part is at least one character long. */
14f9c5c9 4939
96d887e8
PH
4940 for (last = suffix - 3; last > name; last--)
4941 if (last[0] == '_' && last[1] == '_')
4942 break;
76a01679 4943
96d887e8 4944 /* Make a copy of scope and return it. */
14f9c5c9 4945
96d887e8
PH
4946 scope_len = last - name;
4947 scope = (char *) xmalloc ((scope_len + 1) * sizeof (char));
14f9c5c9 4948
96d887e8
PH
4949 strncpy (scope, name, scope_len);
4950 scope[scope_len] = '\0';
4c4b4cd2 4951
96d887e8 4952 return scope;
4c4b4cd2
PH
4953}
4954
96d887e8 4955/* Return nonzero if NAME corresponds to a package name. */
4c4b4cd2 4956
96d887e8
PH
4957static int
4958is_package_name (const char *name)
4c4b4cd2 4959{
96d887e8
PH
4960 /* Here, We take advantage of the fact that no symbols are generated
4961 for packages, while symbols are generated for each function.
4962 So the condition for NAME represent a package becomes equivalent
4963 to NAME not existing in our list of symbols. There is only one
4964 small complication with library-level functions (see below). */
4c4b4cd2 4965
96d887e8 4966 char *fun_name;
76a01679 4967
96d887e8
PH
4968 /* If it is a function that has not been defined at library level,
4969 then we should be able to look it up in the symbols. */
4970 if (standard_lookup (name, NULL, VAR_DOMAIN) != NULL)
4971 return 0;
14f9c5c9 4972
96d887e8
PH
4973 /* Library-level function names start with "_ada_". See if function
4974 "_ada_" followed by NAME can be found. */
14f9c5c9 4975
96d887e8 4976 /* Do a quick check that NAME does not contain "__", since library-level
e1d5a0d2 4977 functions names cannot contain "__" in them. */
96d887e8
PH
4978 if (strstr (name, "__") != NULL)
4979 return 0;
4c4b4cd2 4980
b435e160 4981 fun_name = xstrprintf ("_ada_%s", name);
14f9c5c9 4982
96d887e8
PH
4983 return (standard_lookup (fun_name, NULL, VAR_DOMAIN) == NULL);
4984}
14f9c5c9 4985
96d887e8 4986/* Return nonzero if SYM corresponds to a renaming entity that is
aeb5907d 4987 not visible from FUNCTION_NAME. */
14f9c5c9 4988
96d887e8 4989static int
0d5cff50 4990old_renaming_is_invisible (const struct symbol *sym, const char *function_name)
96d887e8 4991{
aeb5907d 4992 char *scope;
1509e573 4993 struct cleanup *old_chain;
aeb5907d
JB
4994
4995 if (SYMBOL_CLASS (sym) != LOC_TYPEDEF)
4996 return 0;
4997
4998 scope = xget_renaming_scope (SYMBOL_TYPE (sym));
1509e573 4999 old_chain = make_cleanup (xfree, scope);
14f9c5c9 5000
96d887e8
PH
5001 /* If the rename has been defined in a package, then it is visible. */
5002 if (is_package_name (scope))
1509e573
JB
5003 {
5004 do_cleanups (old_chain);
5005 return 0;
5006 }
14f9c5c9 5007
96d887e8
PH
5008 /* Check that the rename is in the current function scope by checking
5009 that its name starts with SCOPE. */
76a01679 5010
96d887e8
PH
5011 /* If the function name starts with "_ada_", it means that it is
5012 a library-level function. Strip this prefix before doing the
5013 comparison, as the encoding for the renaming does not contain
5014 this prefix. */
5015 if (strncmp (function_name, "_ada_", 5) == 0)
5016 function_name += 5;
f26caa11 5017
1509e573
JB
5018 {
5019 int is_invisible = strncmp (function_name, scope, strlen (scope)) != 0;
5020
5021 do_cleanups (old_chain);
5022 return is_invisible;
5023 }
f26caa11
PH
5024}
5025
aeb5907d
JB
5026/* Remove entries from SYMS that corresponds to a renaming entity that
5027 is not visible from the function associated with CURRENT_BLOCK or
5028 that is superfluous due to the presence of more specific renaming
5029 information. Places surviving symbols in the initial entries of
5030 SYMS and returns the number of surviving symbols.
96d887e8
PH
5031
5032 Rationale:
aeb5907d
JB
5033 First, in cases where an object renaming is implemented as a
5034 reference variable, GNAT may produce both the actual reference
5035 variable and the renaming encoding. In this case, we discard the
5036 latter.
5037
5038 Second, GNAT emits a type following a specified encoding for each renaming
96d887e8
PH
5039 entity. Unfortunately, STABS currently does not support the definition
5040 of types that are local to a given lexical block, so all renamings types
5041 are emitted at library level. As a consequence, if an application
5042 contains two renaming entities using the same name, and a user tries to
5043 print the value of one of these entities, the result of the ada symbol
5044 lookup will also contain the wrong renaming type.
f26caa11 5045
96d887e8
PH
5046 This function partially covers for this limitation by attempting to
5047 remove from the SYMS list renaming symbols that should be visible
5048 from CURRENT_BLOCK. However, there does not seem be a 100% reliable
5049 method with the current information available. The implementation
5050 below has a couple of limitations (FIXME: brobecker-2003-05-12):
5051
5052 - When the user tries to print a rename in a function while there
5053 is another rename entity defined in a package: Normally, the
5054 rename in the function has precedence over the rename in the
5055 package, so the latter should be removed from the list. This is
5056 currently not the case.
5057
5058 - This function will incorrectly remove valid renames if
5059 the CURRENT_BLOCK corresponds to a function which symbol name
5060 has been changed by an "Export" pragma. As a consequence,
5061 the user will be unable to print such rename entities. */
4c4b4cd2 5062
14f9c5c9 5063static int
aeb5907d
JB
5064remove_irrelevant_renamings (struct ada_symbol_info *syms,
5065 int nsyms, const struct block *current_block)
4c4b4cd2
PH
5066{
5067 struct symbol *current_function;
0d5cff50 5068 const char *current_function_name;
4c4b4cd2 5069 int i;
aeb5907d
JB
5070 int is_new_style_renaming;
5071
5072 /* If there is both a renaming foo___XR... encoded as a variable and
5073 a simple variable foo in the same block, discard the latter.
0963b4bd 5074 First, zero out such symbols, then compress. */
aeb5907d
JB
5075 is_new_style_renaming = 0;
5076 for (i = 0; i < nsyms; i += 1)
5077 {
5078 struct symbol *sym = syms[i].sym;
270140bd 5079 const struct block *block = syms[i].block;
aeb5907d
JB
5080 const char *name;
5081 const char *suffix;
5082
5083 if (sym == NULL || SYMBOL_CLASS (sym) == LOC_TYPEDEF)
5084 continue;
5085 name = SYMBOL_LINKAGE_NAME (sym);
5086 suffix = strstr (name, "___XR");
5087
5088 if (suffix != NULL)
5089 {
5090 int name_len = suffix - name;
5091 int j;
5b4ee69b 5092
aeb5907d
JB
5093 is_new_style_renaming = 1;
5094 for (j = 0; j < nsyms; j += 1)
5095 if (i != j && syms[j].sym != NULL
5096 && strncmp (name, SYMBOL_LINKAGE_NAME (syms[j].sym),
5097 name_len) == 0
5098 && block == syms[j].block)
5099 syms[j].sym = NULL;
5100 }
5101 }
5102 if (is_new_style_renaming)
5103 {
5104 int j, k;
5105
5106 for (j = k = 0; j < nsyms; j += 1)
5107 if (syms[j].sym != NULL)
5108 {
5109 syms[k] = syms[j];
5110 k += 1;
5111 }
5112 return k;
5113 }
4c4b4cd2
PH
5114
5115 /* Extract the function name associated to CURRENT_BLOCK.
5116 Abort if unable to do so. */
76a01679 5117
4c4b4cd2
PH
5118 if (current_block == NULL)
5119 return nsyms;
76a01679 5120
7f0df278 5121 current_function = block_linkage_function (current_block);
4c4b4cd2
PH
5122 if (current_function == NULL)
5123 return nsyms;
5124
5125 current_function_name = SYMBOL_LINKAGE_NAME (current_function);
5126 if (current_function_name == NULL)
5127 return nsyms;
5128
5129 /* Check each of the symbols, and remove it from the list if it is
5130 a type corresponding to a renaming that is out of the scope of
5131 the current block. */
5132
5133 i = 0;
5134 while (i < nsyms)
5135 {
aeb5907d
JB
5136 if (ada_parse_renaming (syms[i].sym, NULL, NULL, NULL)
5137 == ADA_OBJECT_RENAMING
5138 && old_renaming_is_invisible (syms[i].sym, current_function_name))
4c4b4cd2
PH
5139 {
5140 int j;
5b4ee69b 5141
aeb5907d 5142 for (j = i + 1; j < nsyms; j += 1)
76a01679 5143 syms[j - 1] = syms[j];
4c4b4cd2
PH
5144 nsyms -= 1;
5145 }
5146 else
5147 i += 1;
5148 }
5149
5150 return nsyms;
5151}
5152
339c13b6
JB
5153/* Add to OBSTACKP all symbols from BLOCK (and its super-blocks)
5154 whose name and domain match NAME and DOMAIN respectively.
5155 If no match was found, then extend the search to "enclosing"
5156 routines (in other words, if we're inside a nested function,
5157 search the symbols defined inside the enclosing functions).
d0a8ab18
JB
5158 If WILD_MATCH_P is nonzero, perform the naming matching in
5159 "wild" mode (see function "wild_match" for more info).
339c13b6
JB
5160
5161 Note: This function assumes that OBSTACKP has 0 (zero) element in it. */
5162
5163static void
5164ada_add_local_symbols (struct obstack *obstackp, const char *name,
f0c5f9b2 5165 const struct block *block, domain_enum domain,
d0a8ab18 5166 int wild_match_p)
339c13b6
JB
5167{
5168 int block_depth = 0;
5169
5170 while (block != NULL)
5171 {
5172 block_depth += 1;
d0a8ab18
JB
5173 ada_add_block_symbols (obstackp, block, name, domain, NULL,
5174 wild_match_p);
339c13b6
JB
5175
5176 /* If we found a non-function match, assume that's the one. */
5177 if (is_nonfunction (defns_collected (obstackp, 0),
5178 num_defns_collected (obstackp)))
5179 return;
5180
5181 block = BLOCK_SUPERBLOCK (block);
5182 }
5183
5184 /* If no luck so far, try to find NAME as a local symbol in some lexically
5185 enclosing subprogram. */
5186 if (num_defns_collected (obstackp) == 0 && block_depth > 2)
d0a8ab18 5187 add_symbols_from_enclosing_procs (obstackp, name, domain, wild_match_p);
339c13b6
JB
5188}
5189
ccefe4c4 5190/* An object of this type is used as the user_data argument when
40658b94 5191 calling the map_matching_symbols method. */
ccefe4c4 5192
40658b94 5193struct match_data
ccefe4c4 5194{
40658b94 5195 struct objfile *objfile;
ccefe4c4 5196 struct obstack *obstackp;
40658b94
PH
5197 struct symbol *arg_sym;
5198 int found_sym;
ccefe4c4
TT
5199};
5200
40658b94
PH
5201/* A callback for add_matching_symbols that adds SYM, found in BLOCK,
5202 to a list of symbols. DATA0 is a pointer to a struct match_data *
5203 containing the obstack that collects the symbol list, the file that SYM
5204 must come from, a flag indicating whether a non-argument symbol has
5205 been found in the current block, and the last argument symbol
5206 passed in SYM within the current block (if any). When SYM is null,
5207 marking the end of a block, the argument symbol is added if no
5208 other has been found. */
ccefe4c4 5209
40658b94
PH
5210static int
5211aux_add_nonlocal_symbols (struct block *block, struct symbol *sym, void *data0)
ccefe4c4 5212{
40658b94
PH
5213 struct match_data *data = (struct match_data *) data0;
5214
5215 if (sym == NULL)
5216 {
5217 if (!data->found_sym && data->arg_sym != NULL)
5218 add_defn_to_vec (data->obstackp,
5219 fixup_symbol_section (data->arg_sym, data->objfile),
5220 block);
5221 data->found_sym = 0;
5222 data->arg_sym = NULL;
5223 }
5224 else
5225 {
5226 if (SYMBOL_CLASS (sym) == LOC_UNRESOLVED)
5227 return 0;
5228 else if (SYMBOL_IS_ARGUMENT (sym))
5229 data->arg_sym = sym;
5230 else
5231 {
5232 data->found_sym = 1;
5233 add_defn_to_vec (data->obstackp,
5234 fixup_symbol_section (sym, data->objfile),
5235 block);
5236 }
5237 }
5238 return 0;
5239}
5240
db230ce3
JB
5241/* Implements compare_names, but only applying the comparision using
5242 the given CASING. */
5b4ee69b 5243
40658b94 5244static int
db230ce3
JB
5245compare_names_with_case (const char *string1, const char *string2,
5246 enum case_sensitivity casing)
40658b94
PH
5247{
5248 while (*string1 != '\0' && *string2 != '\0')
5249 {
db230ce3
JB
5250 char c1, c2;
5251
40658b94
PH
5252 if (isspace (*string1) || isspace (*string2))
5253 return strcmp_iw_ordered (string1, string2);
db230ce3
JB
5254
5255 if (casing == case_sensitive_off)
5256 {
5257 c1 = tolower (*string1);
5258 c2 = tolower (*string2);
5259 }
5260 else
5261 {
5262 c1 = *string1;
5263 c2 = *string2;
5264 }
5265 if (c1 != c2)
40658b94 5266 break;
db230ce3 5267
40658b94
PH
5268 string1 += 1;
5269 string2 += 1;
5270 }
db230ce3 5271
40658b94
PH
5272 switch (*string1)
5273 {
5274 case '(':
5275 return strcmp_iw_ordered (string1, string2);
5276 case '_':
5277 if (*string2 == '\0')
5278 {
052874e8 5279 if (is_name_suffix (string1))
40658b94
PH
5280 return 0;
5281 else
1a1d5513 5282 return 1;
40658b94 5283 }
dbb8534f 5284 /* FALLTHROUGH */
40658b94
PH
5285 default:
5286 if (*string2 == '(')
5287 return strcmp_iw_ordered (string1, string2);
5288 else
db230ce3
JB
5289 {
5290 if (casing == case_sensitive_off)
5291 return tolower (*string1) - tolower (*string2);
5292 else
5293 return *string1 - *string2;
5294 }
40658b94 5295 }
ccefe4c4
TT
5296}
5297
db230ce3
JB
5298/* Compare STRING1 to STRING2, with results as for strcmp.
5299 Compatible with strcmp_iw_ordered in that...
5300
5301 strcmp_iw_ordered (STRING1, STRING2) <= 0
5302
5303 ... implies...
5304
5305 compare_names (STRING1, STRING2) <= 0
5306
5307 (they may differ as to what symbols compare equal). */
5308
5309static int
5310compare_names (const char *string1, const char *string2)
5311{
5312 int result;
5313
5314 /* Similar to what strcmp_iw_ordered does, we need to perform
5315 a case-insensitive comparison first, and only resort to
5316 a second, case-sensitive, comparison if the first one was
5317 not sufficient to differentiate the two strings. */
5318
5319 result = compare_names_with_case (string1, string2, case_sensitive_off);
5320 if (result == 0)
5321 result = compare_names_with_case (string1, string2, case_sensitive_on);
5322
5323 return result;
5324}
5325
339c13b6
JB
5326/* Add to OBSTACKP all non-local symbols whose name and domain match
5327 NAME and DOMAIN respectively. The search is performed on GLOBAL_BLOCK
5328 symbols if GLOBAL is non-zero, or on STATIC_BLOCK symbols otherwise. */
5329
5330static void
40658b94
PH
5331add_nonlocal_symbols (struct obstack *obstackp, const char *name,
5332 domain_enum domain, int global,
5333 int is_wild_match)
339c13b6
JB
5334{
5335 struct objfile *objfile;
40658b94 5336 struct match_data data;
339c13b6 5337
6475f2fe 5338 memset (&data, 0, sizeof data);
ccefe4c4 5339 data.obstackp = obstackp;
339c13b6 5340
ccefe4c4 5341 ALL_OBJFILES (objfile)
40658b94
PH
5342 {
5343 data.objfile = objfile;
5344
5345 if (is_wild_match)
4186eb54
KS
5346 objfile->sf->qf->map_matching_symbols (objfile, name, domain, global,
5347 aux_add_nonlocal_symbols, &data,
5348 wild_match, NULL);
40658b94 5349 else
4186eb54
KS
5350 objfile->sf->qf->map_matching_symbols (objfile, name, domain, global,
5351 aux_add_nonlocal_symbols, &data,
5352 full_match, compare_names);
40658b94
PH
5353 }
5354
5355 if (num_defns_collected (obstackp) == 0 && global && !is_wild_match)
5356 {
5357 ALL_OBJFILES (objfile)
5358 {
5359 char *name1 = alloca (strlen (name) + sizeof ("_ada_"));
5360 strcpy (name1, "_ada_");
5361 strcpy (name1 + sizeof ("_ada_") - 1, name);
5362 data.objfile = objfile;
ade7ed9e
DE
5363 objfile->sf->qf->map_matching_symbols (objfile, name1, domain,
5364 global,
0963b4bd
MS
5365 aux_add_nonlocal_symbols,
5366 &data,
40658b94
PH
5367 full_match, compare_names);
5368 }
5369 }
339c13b6
JB
5370}
5371
4eeaa230
DE
5372/* Find symbols in DOMAIN matching NAME0, in BLOCK0 and, if full_search is
5373 non-zero, enclosing scope and in global scopes, returning the number of
5374 matches.
9f88c959 5375 Sets *RESULTS to point to a vector of (SYM,BLOCK) tuples,
4c4b4cd2 5376 indicating the symbols found and the blocks and symbol tables (if
4eeaa230
DE
5377 any) in which they were found. This vector is transient---good only to
5378 the next call of ada_lookup_symbol_list.
5379
5380 When full_search is non-zero, any non-function/non-enumeral
4c4b4cd2
PH
5381 symbol match within the nest of blocks whose innermost member is BLOCK0,
5382 is the one match returned (no other matches in that or
d9680e73 5383 enclosing blocks is returned). If there are any matches in or
4eeaa230
DE
5384 surrounding BLOCK0, then these alone are returned.
5385
9f88c959 5386 Names prefixed with "standard__" are handled specially: "standard__"
4c4b4cd2 5387 is first stripped off, and only static and global symbols are searched. */
14f9c5c9 5388
4eeaa230
DE
5389static int
5390ada_lookup_symbol_list_worker (const char *name0, const struct block *block0,
5391 domain_enum namespace,
5392 struct ada_symbol_info **results,
5393 int full_search)
14f9c5c9
AS
5394{
5395 struct symbol *sym;
f0c5f9b2 5396 const struct block *block;
4c4b4cd2 5397 const char *name;
82ccd55e 5398 const int wild_match_p = should_use_wild_match (name0);
14f9c5c9 5399 int cacheIfUnique;
4c4b4cd2 5400 int ndefns;
14f9c5c9 5401
4c4b4cd2
PH
5402 obstack_free (&symbol_list_obstack, NULL);
5403 obstack_init (&symbol_list_obstack);
14f9c5c9 5404
14f9c5c9
AS
5405 cacheIfUnique = 0;
5406
5407 /* Search specified block and its superiors. */
5408
4c4b4cd2 5409 name = name0;
f0c5f9b2 5410 block = block0;
339c13b6
JB
5411
5412 /* Special case: If the user specifies a symbol name inside package
5413 Standard, do a non-wild matching of the symbol name without
5414 the "standard__" prefix. This was primarily introduced in order
5415 to allow the user to specifically access the standard exceptions
5416 using, for instance, Standard.Constraint_Error when Constraint_Error
5417 is ambiguous (due to the user defining its own Constraint_Error
5418 entity inside its program). */
4c4b4cd2
PH
5419 if (strncmp (name0, "standard__", sizeof ("standard__") - 1) == 0)
5420 {
4c4b4cd2
PH
5421 block = NULL;
5422 name = name0 + sizeof ("standard__") - 1;
5423 }
5424
339c13b6 5425 /* Check the non-global symbols. If we have ANY match, then we're done. */
14f9c5c9 5426
4eeaa230
DE
5427 if (block != NULL)
5428 {
5429 if (full_search)
5430 {
5431 ada_add_local_symbols (&symbol_list_obstack, name, block,
5432 namespace, wild_match_p);
5433 }
5434 else
5435 {
5436 /* In the !full_search case we're are being called by
5437 ada_iterate_over_symbols, and we don't want to search
5438 superblocks. */
5439 ada_add_block_symbols (&symbol_list_obstack, block, name,
5440 namespace, NULL, wild_match_p);
5441 }
5442 if (num_defns_collected (&symbol_list_obstack) > 0 || !full_search)
5443 goto done;
5444 }
d2e4a39e 5445
339c13b6
JB
5446 /* No non-global symbols found. Check our cache to see if we have
5447 already performed this search before. If we have, then return
5448 the same result. */
5449
14f9c5c9 5450 cacheIfUnique = 1;
2570f2b7 5451 if (lookup_cached_symbol (name0, namespace, &sym, &block))
4c4b4cd2
PH
5452 {
5453 if (sym != NULL)
2570f2b7 5454 add_defn_to_vec (&symbol_list_obstack, sym, block);
4c4b4cd2
PH
5455 goto done;
5456 }
14f9c5c9 5457
339c13b6
JB
5458 /* Search symbols from all global blocks. */
5459
40658b94 5460 add_nonlocal_symbols (&symbol_list_obstack, name, namespace, 1,
82ccd55e 5461 wild_match_p);
d2e4a39e 5462
4c4b4cd2 5463 /* Now add symbols from all per-file blocks if we've gotten no hits
339c13b6 5464 (not strictly correct, but perhaps better than an error). */
d2e4a39e 5465
4c4b4cd2 5466 if (num_defns_collected (&symbol_list_obstack) == 0)
40658b94 5467 add_nonlocal_symbols (&symbol_list_obstack, name, namespace, 0,
82ccd55e 5468 wild_match_p);
14f9c5c9 5469
4c4b4cd2
PH
5470done:
5471 ndefns = num_defns_collected (&symbol_list_obstack);
5472 *results = defns_collected (&symbol_list_obstack, 1);
5473
5474 ndefns = remove_extra_symbols (*results, ndefns);
5475
2ad01556 5476 if (ndefns == 0 && full_search)
2570f2b7 5477 cache_symbol (name0, namespace, NULL, NULL);
14f9c5c9 5478
2ad01556 5479 if (ndefns == 1 && full_search && cacheIfUnique)
2570f2b7 5480 cache_symbol (name0, namespace, (*results)[0].sym, (*results)[0].block);
14f9c5c9 5481
aeb5907d 5482 ndefns = remove_irrelevant_renamings (*results, ndefns, block0);
14f9c5c9 5483
14f9c5c9
AS
5484 return ndefns;
5485}
5486
4eeaa230
DE
5487/* Find symbols in DOMAIN matching NAME0, in BLOCK0 and enclosing scope and
5488 in global scopes, returning the number of matches, and setting *RESULTS
5489 to a vector of (SYM,BLOCK) tuples.
5490 See ada_lookup_symbol_list_worker for further details. */
5491
5492int
5493ada_lookup_symbol_list (const char *name0, const struct block *block0,
5494 domain_enum domain, struct ada_symbol_info **results)
5495{
5496 return ada_lookup_symbol_list_worker (name0, block0, domain, results, 1);
5497}
5498
5499/* Implementation of the la_iterate_over_symbols method. */
5500
5501static void
5502ada_iterate_over_symbols (const struct block *block,
5503 const char *name, domain_enum domain,
5504 symbol_found_callback_ftype *callback,
5505 void *data)
5506{
5507 int ndefs, i;
5508 struct ada_symbol_info *results;
5509
5510 ndefs = ada_lookup_symbol_list_worker (name, block, domain, &results, 0);
5511 for (i = 0; i < ndefs; ++i)
5512 {
5513 if (! (*callback) (results[i].sym, data))
5514 break;
5515 }
5516}
5517
f8eba3c6
TT
5518/* If NAME is the name of an entity, return a string that should
5519 be used to look that entity up in Ada units. This string should
5520 be deallocated after use using xfree.
5521
5522 NAME can have any form that the "break" or "print" commands might
5523 recognize. In other words, it does not have to be the "natural"
5524 name, or the "encoded" name. */
5525
5526char *
5527ada_name_for_lookup (const char *name)
5528{
5529 char *canon;
5530 int nlen = strlen (name);
5531
5532 if (name[0] == '<' && name[nlen - 1] == '>')
5533 {
5534 canon = xmalloc (nlen - 1);
5535 memcpy (canon, name + 1, nlen - 2);
5536 canon[nlen - 2] = '\0';
5537 }
5538 else
5539 canon = xstrdup (ada_encode (ada_fold_name (name)));
5540 return canon;
5541}
5542
4e5c77fe
JB
5543/* The result is as for ada_lookup_symbol_list with FULL_SEARCH set
5544 to 1, but choosing the first symbol found if there are multiple
5545 choices.
5546
5e2336be
JB
5547 The result is stored in *INFO, which must be non-NULL.
5548 If no match is found, INFO->SYM is set to NULL. */
4e5c77fe
JB
5549
5550void
5551ada_lookup_encoded_symbol (const char *name, const struct block *block,
5552 domain_enum namespace,
5e2336be 5553 struct ada_symbol_info *info)
14f9c5c9 5554{
4c4b4cd2 5555 struct ada_symbol_info *candidates;
14f9c5c9
AS
5556 int n_candidates;
5557
5e2336be
JB
5558 gdb_assert (info != NULL);
5559 memset (info, 0, sizeof (struct ada_symbol_info));
4e5c77fe 5560
4eeaa230 5561 n_candidates = ada_lookup_symbol_list (name, block, namespace, &candidates);
14f9c5c9 5562 if (n_candidates == 0)
4e5c77fe 5563 return;
4c4b4cd2 5564
5e2336be
JB
5565 *info = candidates[0];
5566 info->sym = fixup_symbol_section (info->sym, NULL);
4e5c77fe 5567}
aeb5907d
JB
5568
5569/* Return a symbol in DOMAIN matching NAME, in BLOCK0 and enclosing
5570 scope and in global scopes, or NULL if none. NAME is folded and
5571 encoded first. Otherwise, the result is as for ada_lookup_symbol_list,
0963b4bd 5572 choosing the first symbol if there are multiple choices.
4e5c77fe
JB
5573 If IS_A_FIELD_OF_THIS is not NULL, it is set to zero. */
5574
aeb5907d
JB
5575struct symbol *
5576ada_lookup_symbol (const char *name, const struct block *block0,
21b556f4 5577 domain_enum namespace, int *is_a_field_of_this)
aeb5907d 5578{
5e2336be 5579 struct ada_symbol_info info;
4e5c77fe 5580
aeb5907d
JB
5581 if (is_a_field_of_this != NULL)
5582 *is_a_field_of_this = 0;
5583
4e5c77fe 5584 ada_lookup_encoded_symbol (ada_encode (ada_fold_name (name)),
5e2336be
JB
5585 block0, namespace, &info);
5586 return info.sym;
4c4b4cd2 5587}
14f9c5c9 5588
4c4b4cd2
PH
5589static struct symbol *
5590ada_lookup_symbol_nonlocal (const char *name,
76a01679 5591 const struct block *block,
21b556f4 5592 const domain_enum domain)
4c4b4cd2 5593{
94af9270 5594 return ada_lookup_symbol (name, block_static_block (block), domain, NULL);
14f9c5c9
AS
5595}
5596
5597
4c4b4cd2
PH
5598/* True iff STR is a possible encoded suffix of a normal Ada name
5599 that is to be ignored for matching purposes. Suffixes of parallel
5600 names (e.g., XVE) are not included here. Currently, the possible suffixes
5823c3ef 5601 are given by any of the regular expressions:
4c4b4cd2 5602
babe1480
JB
5603 [.$][0-9]+ [nested subprogram suffix, on platforms such as GNU/Linux]
5604 ___[0-9]+ [nested subprogram suffix, on platforms such as HP/UX]
9ac7f98e 5605 TKB [subprogram suffix for task bodies]
babe1480 5606 _E[0-9]+[bs]$ [protected object entry suffixes]
61ee279c 5607 (X[nb]*)?((\$|__)[0-9](_?[0-9]+)|___(JM|LJM|X([FDBUP].*|R[^T]?)))?$
babe1480
JB
5608
5609 Also, any leading "__[0-9]+" sequence is skipped before the suffix
5610 match is performed. This sequence is used to differentiate homonyms,
5611 is an optional part of a valid name suffix. */
4c4b4cd2 5612
14f9c5c9 5613static int
d2e4a39e 5614is_name_suffix (const char *str)
14f9c5c9
AS
5615{
5616 int k;
4c4b4cd2
PH
5617 const char *matching;
5618 const int len = strlen (str);
5619
babe1480
JB
5620 /* Skip optional leading __[0-9]+. */
5621
4c4b4cd2
PH
5622 if (len > 3 && str[0] == '_' && str[1] == '_' && isdigit (str[2]))
5623 {
babe1480
JB
5624 str += 3;
5625 while (isdigit (str[0]))
5626 str += 1;
4c4b4cd2 5627 }
babe1480
JB
5628
5629 /* [.$][0-9]+ */
4c4b4cd2 5630
babe1480 5631 if (str[0] == '.' || str[0] == '$')
4c4b4cd2 5632 {
babe1480 5633 matching = str + 1;
4c4b4cd2
PH
5634 while (isdigit (matching[0]))
5635 matching += 1;
5636 if (matching[0] == '\0')
5637 return 1;
5638 }
5639
5640 /* ___[0-9]+ */
babe1480 5641
4c4b4cd2
PH
5642 if (len > 3 && str[0] == '_' && str[1] == '_' && str[2] == '_')
5643 {
5644 matching = str + 3;
5645 while (isdigit (matching[0]))
5646 matching += 1;
5647 if (matching[0] == '\0')
5648 return 1;
5649 }
5650
9ac7f98e
JB
5651 /* "TKB" suffixes are used for subprograms implementing task bodies. */
5652
5653 if (strcmp (str, "TKB") == 0)
5654 return 1;
5655
529cad9c
PH
5656#if 0
5657 /* FIXME: brobecker/2005-09-23: Protected Object subprograms end
0963b4bd
MS
5658 with a N at the end. Unfortunately, the compiler uses the same
5659 convention for other internal types it creates. So treating
529cad9c 5660 all entity names that end with an "N" as a name suffix causes
0963b4bd
MS
5661 some regressions. For instance, consider the case of an enumerated
5662 type. To support the 'Image attribute, it creates an array whose
529cad9c
PH
5663 name ends with N.
5664 Having a single character like this as a suffix carrying some
0963b4bd 5665 information is a bit risky. Perhaps we should change the encoding
529cad9c
PH
5666 to be something like "_N" instead. In the meantime, do not do
5667 the following check. */
5668 /* Protected Object Subprograms */
5669 if (len == 1 && str [0] == 'N')
5670 return 1;
5671#endif
5672
5673 /* _E[0-9]+[bs]$ */
5674 if (len > 3 && str[0] == '_' && str [1] == 'E' && isdigit (str[2]))
5675 {
5676 matching = str + 3;
5677 while (isdigit (matching[0]))
5678 matching += 1;
5679 if ((matching[0] == 'b' || matching[0] == 's')
5680 && matching [1] == '\0')
5681 return 1;
5682 }
5683
4c4b4cd2
PH
5684 /* ??? We should not modify STR directly, as we are doing below. This
5685 is fine in this case, but may become problematic later if we find
5686 that this alternative did not work, and want to try matching
5687 another one from the begining of STR. Since we modified it, we
5688 won't be able to find the begining of the string anymore! */
14f9c5c9
AS
5689 if (str[0] == 'X')
5690 {
5691 str += 1;
d2e4a39e 5692 while (str[0] != '_' && str[0] != '\0')
4c4b4cd2
PH
5693 {
5694 if (str[0] != 'n' && str[0] != 'b')
5695 return 0;
5696 str += 1;
5697 }
14f9c5c9 5698 }
babe1480 5699
14f9c5c9
AS
5700 if (str[0] == '\000')
5701 return 1;
babe1480 5702
d2e4a39e 5703 if (str[0] == '_')
14f9c5c9
AS
5704 {
5705 if (str[1] != '_' || str[2] == '\000')
4c4b4cd2 5706 return 0;
d2e4a39e 5707 if (str[2] == '_')
4c4b4cd2 5708 {
61ee279c
PH
5709 if (strcmp (str + 3, "JM") == 0)
5710 return 1;
5711 /* FIXME: brobecker/2004-09-30: GNAT will soon stop using
5712 the LJM suffix in favor of the JM one. But we will
5713 still accept LJM as a valid suffix for a reasonable
5714 amount of time, just to allow ourselves to debug programs
5715 compiled using an older version of GNAT. */
4c4b4cd2
PH
5716 if (strcmp (str + 3, "LJM") == 0)
5717 return 1;
5718 if (str[3] != 'X')
5719 return 0;
1265e4aa
JB
5720 if (str[4] == 'F' || str[4] == 'D' || str[4] == 'B'
5721 || str[4] == 'U' || str[4] == 'P')
4c4b4cd2
PH
5722 return 1;
5723 if (str[4] == 'R' && str[5] != 'T')
5724 return 1;
5725 return 0;
5726 }
5727 if (!isdigit (str[2]))
5728 return 0;
5729 for (k = 3; str[k] != '\0'; k += 1)
5730 if (!isdigit (str[k]) && str[k] != '_')
5731 return 0;
14f9c5c9
AS
5732 return 1;
5733 }
4c4b4cd2 5734 if (str[0] == '$' && isdigit (str[1]))
14f9c5c9 5735 {
4c4b4cd2
PH
5736 for (k = 2; str[k] != '\0'; k += 1)
5737 if (!isdigit (str[k]) && str[k] != '_')
5738 return 0;
14f9c5c9
AS
5739 return 1;
5740 }
5741 return 0;
5742}
d2e4a39e 5743
aeb5907d
JB
5744/* Return non-zero if the string starting at NAME and ending before
5745 NAME_END contains no capital letters. */
529cad9c
PH
5746
5747static int
5748is_valid_name_for_wild_match (const char *name0)
5749{
5750 const char *decoded_name = ada_decode (name0);
5751 int i;
5752
5823c3ef
JB
5753 /* If the decoded name starts with an angle bracket, it means that
5754 NAME0 does not follow the GNAT encoding format. It should then
5755 not be allowed as a possible wild match. */
5756 if (decoded_name[0] == '<')
5757 return 0;
5758
529cad9c
PH
5759 for (i=0; decoded_name[i] != '\0'; i++)
5760 if (isalpha (decoded_name[i]) && !islower (decoded_name[i]))
5761 return 0;
5762
5763 return 1;
5764}
5765
73589123
PH
5766/* Advance *NAMEP to next occurrence of TARGET0 in the string NAME0
5767 that could start a simple name. Assumes that *NAMEP points into
5768 the string beginning at NAME0. */
4c4b4cd2 5769
14f9c5c9 5770static int
73589123 5771advance_wild_match (const char **namep, const char *name0, int target0)
14f9c5c9 5772{
73589123 5773 const char *name = *namep;
5b4ee69b 5774
5823c3ef 5775 while (1)
14f9c5c9 5776 {
aa27d0b3 5777 int t0, t1;
73589123
PH
5778
5779 t0 = *name;
5780 if (t0 == '_')
5781 {
5782 t1 = name[1];
5783 if ((t1 >= 'a' && t1 <= 'z') || (t1 >= '0' && t1 <= '9'))
5784 {
5785 name += 1;
5786 if (name == name0 + 5 && strncmp (name0, "_ada", 4) == 0)
5787 break;
5788 else
5789 name += 1;
5790 }
aa27d0b3
JB
5791 else if (t1 == '_' && ((name[2] >= 'a' && name[2] <= 'z')
5792 || name[2] == target0))
73589123
PH
5793 {
5794 name += 2;
5795 break;
5796 }
5797 else
5798 return 0;
5799 }
5800 else if ((t0 >= 'a' && t0 <= 'z') || (t0 >= '0' && t0 <= '9'))
5801 name += 1;
5802 else
5823c3ef 5803 return 0;
73589123
PH
5804 }
5805
5806 *namep = name;
5807 return 1;
5808}
5809
5810/* Return 0 iff NAME encodes a name of the form prefix.PATN. Ignores any
5811 informational suffixes of NAME (i.e., for which is_name_suffix is
5812 true). Assumes that PATN is a lower-cased Ada simple name. */
5813
5814static int
5815wild_match (const char *name, const char *patn)
5816{
22e048c9 5817 const char *p;
73589123
PH
5818 const char *name0 = name;
5819
5820 while (1)
5821 {
5822 const char *match = name;
5823
5824 if (*name == *patn)
5825 {
5826 for (name += 1, p = patn + 1; *p != '\0'; name += 1, p += 1)
5827 if (*p != *name)
5828 break;
5829 if (*p == '\0' && is_name_suffix (name))
5830 return match != name0 && !is_valid_name_for_wild_match (name0);
5831
5832 if (name[-1] == '_')
5833 name -= 1;
5834 }
5835 if (!advance_wild_match (&name, name0, *patn))
5836 return 1;
96d887e8 5837 }
96d887e8
PH
5838}
5839
40658b94
PH
5840/* Returns 0 iff symbol name SYM_NAME matches SEARCH_NAME, apart from
5841 informational suffix. */
5842
c4d840bd
PH
5843static int
5844full_match (const char *sym_name, const char *search_name)
5845{
40658b94 5846 return !match_name (sym_name, search_name, 0);
c4d840bd
PH
5847}
5848
5849
96d887e8
PH
5850/* Add symbols from BLOCK matching identifier NAME in DOMAIN to
5851 vector *defn_symbols, updating the list of symbols in OBSTACKP
0963b4bd 5852 (if necessary). If WILD, treat as NAME with a wildcard prefix.
4eeaa230 5853 OBJFILE is the section containing BLOCK. */
96d887e8
PH
5854
5855static void
5856ada_add_block_symbols (struct obstack *obstackp,
f0c5f9b2 5857 const struct block *block, const char *name,
96d887e8 5858 domain_enum domain, struct objfile *objfile,
2570f2b7 5859 int wild)
96d887e8 5860{
8157b174 5861 struct block_iterator iter;
96d887e8
PH
5862 int name_len = strlen (name);
5863 /* A matching argument symbol, if any. */
5864 struct symbol *arg_sym;
5865 /* Set true when we find a matching non-argument symbol. */
5866 int found_sym;
5867 struct symbol *sym;
5868
5869 arg_sym = NULL;
5870 found_sym = 0;
5871 if (wild)
5872 {
8157b174
TT
5873 for (sym = block_iter_match_first (block, name, wild_match, &iter);
5874 sym != NULL; sym = block_iter_match_next (name, wild_match, &iter))
76a01679 5875 {
4186eb54
KS
5876 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
5877 SYMBOL_DOMAIN (sym), domain)
73589123 5878 && wild_match (SYMBOL_LINKAGE_NAME (sym), name) == 0)
76a01679 5879 {
2a2d4dc3
AS
5880 if (SYMBOL_CLASS (sym) == LOC_UNRESOLVED)
5881 continue;
5882 else if (SYMBOL_IS_ARGUMENT (sym))
5883 arg_sym = sym;
5884 else
5885 {
76a01679
JB
5886 found_sym = 1;
5887 add_defn_to_vec (obstackp,
5888 fixup_symbol_section (sym, objfile),
2570f2b7 5889 block);
76a01679
JB
5890 }
5891 }
5892 }
96d887e8
PH
5893 }
5894 else
5895 {
8157b174
TT
5896 for (sym = block_iter_match_first (block, name, full_match, &iter);
5897 sym != NULL; sym = block_iter_match_next (name, full_match, &iter))
76a01679 5898 {
4186eb54
KS
5899 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
5900 SYMBOL_DOMAIN (sym), domain))
76a01679 5901 {
c4d840bd
PH
5902 if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED)
5903 {
5904 if (SYMBOL_IS_ARGUMENT (sym))
5905 arg_sym = sym;
5906 else
2a2d4dc3 5907 {
c4d840bd
PH
5908 found_sym = 1;
5909 add_defn_to_vec (obstackp,
5910 fixup_symbol_section (sym, objfile),
5911 block);
2a2d4dc3 5912 }
c4d840bd 5913 }
76a01679
JB
5914 }
5915 }
96d887e8
PH
5916 }
5917
5918 if (!found_sym && arg_sym != NULL)
5919 {
76a01679
JB
5920 add_defn_to_vec (obstackp,
5921 fixup_symbol_section (arg_sym, objfile),
2570f2b7 5922 block);
96d887e8
PH
5923 }
5924
5925 if (!wild)
5926 {
5927 arg_sym = NULL;
5928 found_sym = 0;
5929
5930 ALL_BLOCK_SYMBOLS (block, iter, sym)
76a01679 5931 {
4186eb54
KS
5932 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
5933 SYMBOL_DOMAIN (sym), domain))
76a01679
JB
5934 {
5935 int cmp;
5936
5937 cmp = (int) '_' - (int) SYMBOL_LINKAGE_NAME (sym)[0];
5938 if (cmp == 0)
5939 {
5940 cmp = strncmp ("_ada_", SYMBOL_LINKAGE_NAME (sym), 5);
5941 if (cmp == 0)
5942 cmp = strncmp (name, SYMBOL_LINKAGE_NAME (sym) + 5,
5943 name_len);
5944 }
5945
5946 if (cmp == 0
5947 && is_name_suffix (SYMBOL_LINKAGE_NAME (sym) + name_len + 5))
5948 {
2a2d4dc3
AS
5949 if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED)
5950 {
5951 if (SYMBOL_IS_ARGUMENT (sym))
5952 arg_sym = sym;
5953 else
5954 {
5955 found_sym = 1;
5956 add_defn_to_vec (obstackp,
5957 fixup_symbol_section (sym, objfile),
5958 block);
5959 }
5960 }
76a01679
JB
5961 }
5962 }
76a01679 5963 }
96d887e8
PH
5964
5965 /* NOTE: This really shouldn't be needed for _ada_ symbols.
5966 They aren't parameters, right? */
5967 if (!found_sym && arg_sym != NULL)
5968 {
5969 add_defn_to_vec (obstackp,
76a01679 5970 fixup_symbol_section (arg_sym, objfile),
2570f2b7 5971 block);
96d887e8
PH
5972 }
5973 }
5974}
5975\f
41d27058
JB
5976
5977 /* Symbol Completion */
5978
5979/* If SYM_NAME is a completion candidate for TEXT, return this symbol
5980 name in a form that's appropriate for the completion. The result
5981 does not need to be deallocated, but is only good until the next call.
5982
5983 TEXT_LEN is equal to the length of TEXT.
e701b3c0 5984 Perform a wild match if WILD_MATCH_P is set.
6ea35997 5985 ENCODED_P should be set if TEXT represents the start of a symbol name
41d27058
JB
5986 in its encoded form. */
5987
5988static const char *
5989symbol_completion_match (const char *sym_name,
5990 const char *text, int text_len,
6ea35997 5991 int wild_match_p, int encoded_p)
41d27058 5992{
41d27058
JB
5993 const int verbatim_match = (text[0] == '<');
5994 int match = 0;
5995
5996 if (verbatim_match)
5997 {
5998 /* Strip the leading angle bracket. */
5999 text = text + 1;
6000 text_len--;
6001 }
6002
6003 /* First, test against the fully qualified name of the symbol. */
6004
6005 if (strncmp (sym_name, text, text_len) == 0)
6006 match = 1;
6007
6ea35997 6008 if (match && !encoded_p)
41d27058
JB
6009 {
6010 /* One needed check before declaring a positive match is to verify
6011 that iff we are doing a verbatim match, the decoded version
6012 of the symbol name starts with '<'. Otherwise, this symbol name
6013 is not a suitable completion. */
6014 const char *sym_name_copy = sym_name;
6015 int has_angle_bracket;
6016
6017 sym_name = ada_decode (sym_name);
6018 has_angle_bracket = (sym_name[0] == '<');
6019 match = (has_angle_bracket == verbatim_match);
6020 sym_name = sym_name_copy;
6021 }
6022
6023 if (match && !verbatim_match)
6024 {
6025 /* When doing non-verbatim match, another check that needs to
6026 be done is to verify that the potentially matching symbol name
6027 does not include capital letters, because the ada-mode would
6028 not be able to understand these symbol names without the
6029 angle bracket notation. */
6030 const char *tmp;
6031
6032 for (tmp = sym_name; *tmp != '\0' && !isupper (*tmp); tmp++);
6033 if (*tmp != '\0')
6034 match = 0;
6035 }
6036
6037 /* Second: Try wild matching... */
6038
e701b3c0 6039 if (!match && wild_match_p)
41d27058
JB
6040 {
6041 /* Since we are doing wild matching, this means that TEXT
6042 may represent an unqualified symbol name. We therefore must
6043 also compare TEXT against the unqualified name of the symbol. */
6044 sym_name = ada_unqualified_name (ada_decode (sym_name));
6045
6046 if (strncmp (sym_name, text, text_len) == 0)
6047 match = 1;
6048 }
6049
6050 /* Finally: If we found a mach, prepare the result to return. */
6051
6052 if (!match)
6053 return NULL;
6054
6055 if (verbatim_match)
6056 sym_name = add_angle_brackets (sym_name);
6057
6ea35997 6058 if (!encoded_p)
41d27058
JB
6059 sym_name = ada_decode (sym_name);
6060
6061 return sym_name;
6062}
6063
6064/* A companion function to ada_make_symbol_completion_list().
6065 Check if SYM_NAME represents a symbol which name would be suitable
6066 to complete TEXT (TEXT_LEN is the length of TEXT), in which case
6067 it is appended at the end of the given string vector SV.
6068
6069 ORIG_TEXT is the string original string from the user command
6070 that needs to be completed. WORD is the entire command on which
6071 completion should be performed. These two parameters are used to
6072 determine which part of the symbol name should be added to the
6073 completion vector.
c0af1706 6074 if WILD_MATCH_P is set, then wild matching is performed.
cb8e9b97 6075 ENCODED_P should be set if TEXT represents a symbol name in its
41d27058
JB
6076 encoded formed (in which case the completion should also be
6077 encoded). */
6078
6079static void
d6565258 6080symbol_completion_add (VEC(char_ptr) **sv,
41d27058
JB
6081 const char *sym_name,
6082 const char *text, int text_len,
6083 const char *orig_text, const char *word,
cb8e9b97 6084 int wild_match_p, int encoded_p)
41d27058
JB
6085{
6086 const char *match = symbol_completion_match (sym_name, text, text_len,
cb8e9b97 6087 wild_match_p, encoded_p);
41d27058
JB
6088 char *completion;
6089
6090 if (match == NULL)
6091 return;
6092
6093 /* We found a match, so add the appropriate completion to the given
6094 string vector. */
6095
6096 if (word == orig_text)
6097 {
6098 completion = xmalloc (strlen (match) + 5);
6099 strcpy (completion, match);
6100 }
6101 else if (word > orig_text)
6102 {
6103 /* Return some portion of sym_name. */
6104 completion = xmalloc (strlen (match) + 5);
6105 strcpy (completion, match + (word - orig_text));
6106 }
6107 else
6108 {
6109 /* Return some of ORIG_TEXT plus sym_name. */
6110 completion = xmalloc (strlen (match) + (orig_text - word) + 5);
6111 strncpy (completion, word, orig_text - word);
6112 completion[orig_text - word] = '\0';
6113 strcat (completion, match);
6114 }
6115
d6565258 6116 VEC_safe_push (char_ptr, *sv, completion);
41d27058
JB
6117}
6118
ccefe4c4 6119/* An object of this type is passed as the user_data argument to the
bb4142cf 6120 expand_symtabs_matching method. */
ccefe4c4
TT
6121struct add_partial_datum
6122{
6123 VEC(char_ptr) **completions;
6f937416 6124 const char *text;
ccefe4c4 6125 int text_len;
6f937416
PA
6126 const char *text0;
6127 const char *word;
ccefe4c4
TT
6128 int wild_match;
6129 int encoded;
6130};
6131
bb4142cf
DE
6132/* A callback for expand_symtabs_matching. */
6133
7b08b9eb 6134static int
bb4142cf 6135ada_complete_symbol_matcher (const char *name, void *user_data)
ccefe4c4
TT
6136{
6137 struct add_partial_datum *data = user_data;
7b08b9eb
JK
6138
6139 return symbol_completion_match (name, data->text, data->text_len,
6140 data->wild_match, data->encoded) != NULL;
ccefe4c4
TT
6141}
6142
49c4e619
TT
6143/* Return a list of possible symbol names completing TEXT0. WORD is
6144 the entire command on which completion is made. */
41d27058 6145
49c4e619 6146static VEC (char_ptr) *
6f937416
PA
6147ada_make_symbol_completion_list (const char *text0, const char *word,
6148 enum type_code code)
41d27058
JB
6149{
6150 char *text;
6151 int text_len;
b1ed564a
JB
6152 int wild_match_p;
6153 int encoded_p;
2ba95b9b 6154 VEC(char_ptr) *completions = VEC_alloc (char_ptr, 128);
41d27058
JB
6155 struct symbol *sym;
6156 struct symtab *s;
41d27058
JB
6157 struct minimal_symbol *msymbol;
6158 struct objfile *objfile;
3977b71f 6159 const struct block *b, *surrounding_static_block = 0;
41d27058 6160 int i;
8157b174 6161 struct block_iterator iter;
b8fea896 6162 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
41d27058 6163
2f68a895
TT
6164 gdb_assert (code == TYPE_CODE_UNDEF);
6165
41d27058
JB
6166 if (text0[0] == '<')
6167 {
6168 text = xstrdup (text0);
6169 make_cleanup (xfree, text);
6170 text_len = strlen (text);
b1ed564a
JB
6171 wild_match_p = 0;
6172 encoded_p = 1;
41d27058
JB
6173 }
6174 else
6175 {
6176 text = xstrdup (ada_encode (text0));
6177 make_cleanup (xfree, text);
6178 text_len = strlen (text);
6179 for (i = 0; i < text_len; i++)
6180 text[i] = tolower (text[i]);
6181
b1ed564a 6182 encoded_p = (strstr (text0, "__") != NULL);
41d27058
JB
6183 /* If the name contains a ".", then the user is entering a fully
6184 qualified entity name, and the match must not be done in wild
6185 mode. Similarly, if the user wants to complete what looks like
6186 an encoded name, the match must not be done in wild mode. */
b1ed564a 6187 wild_match_p = (strchr (text0, '.') == NULL && !encoded_p);
41d27058
JB
6188 }
6189
6190 /* First, look at the partial symtab symbols. */
41d27058 6191 {
ccefe4c4
TT
6192 struct add_partial_datum data;
6193
6194 data.completions = &completions;
6195 data.text = text;
6196 data.text_len = text_len;
6197 data.text0 = text0;
6198 data.word = word;
b1ed564a
JB
6199 data.wild_match = wild_match_p;
6200 data.encoded = encoded_p;
bb4142cf
DE
6201 expand_symtabs_matching (NULL, ada_complete_symbol_matcher, ALL_DOMAIN,
6202 &data);
41d27058
JB
6203 }
6204
6205 /* At this point scan through the misc symbol vectors and add each
6206 symbol you find to the list. Eventually we want to ignore
6207 anything that isn't a text symbol (everything else will be
6208 handled by the psymtab code above). */
6209
6210 ALL_MSYMBOLS (objfile, msymbol)
6211 {
6212 QUIT;
efd66ac6 6213 symbol_completion_add (&completions, MSYMBOL_LINKAGE_NAME (msymbol),
b1ed564a
JB
6214 text, text_len, text0, word, wild_match_p,
6215 encoded_p);
41d27058
JB
6216 }
6217
6218 /* Search upwards from currently selected frame (so that we can
6219 complete on local vars. */
6220
6221 for (b = get_selected_block (0); b != NULL; b = BLOCK_SUPERBLOCK (b))
6222 {
6223 if (!BLOCK_SUPERBLOCK (b))
6224 surrounding_static_block = b; /* For elmin of dups */
6225
6226 ALL_BLOCK_SYMBOLS (b, iter, sym)
6227 {
d6565258 6228 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym),
41d27058 6229 text, text_len, text0, word,
b1ed564a 6230 wild_match_p, encoded_p);
41d27058
JB
6231 }
6232 }
6233
6234 /* Go through the symtabs and check the externs and statics for
2dd2cd1c
DE
6235 symbols which match.
6236 Non-primary symtabs share the block vector with their primary symtabs
6237 so we use ALL_PRIMARY_SYMTABS here instead of ALL_SYMTABS. */
41d27058 6238
2dd2cd1c 6239 ALL_PRIMARY_SYMTABS (objfile, s)
41d27058
JB
6240 {
6241 QUIT;
439247b6 6242 b = BLOCKVECTOR_BLOCK (SYMTAB_BLOCKVECTOR (s), GLOBAL_BLOCK);
41d27058
JB
6243 ALL_BLOCK_SYMBOLS (b, iter, sym)
6244 {
d6565258 6245 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym),
41d27058 6246 text, text_len, text0, word,
b1ed564a 6247 wild_match_p, encoded_p);
41d27058
JB
6248 }
6249 }
6250
2dd2cd1c 6251 ALL_PRIMARY_SYMTABS (objfile, s)
41d27058
JB
6252 {
6253 QUIT;
439247b6 6254 b = BLOCKVECTOR_BLOCK (SYMTAB_BLOCKVECTOR (s), STATIC_BLOCK);
41d27058
JB
6255 /* Don't do this block twice. */
6256 if (b == surrounding_static_block)
6257 continue;
6258 ALL_BLOCK_SYMBOLS (b, iter, sym)
6259 {
d6565258 6260 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym),
41d27058 6261 text, text_len, text0, word,
b1ed564a 6262 wild_match_p, encoded_p);
41d27058
JB
6263 }
6264 }
6265
b8fea896 6266 do_cleanups (old_chain);
49c4e619 6267 return completions;
41d27058
JB
6268}
6269
963a6417 6270 /* Field Access */
96d887e8 6271
73fb9985
JB
6272/* Return non-zero if TYPE is a pointer to the GNAT dispatch table used
6273 for tagged types. */
6274
6275static int
6276ada_is_dispatch_table_ptr_type (struct type *type)
6277{
0d5cff50 6278 const char *name;
73fb9985
JB
6279
6280 if (TYPE_CODE (type) != TYPE_CODE_PTR)
6281 return 0;
6282
6283 name = TYPE_NAME (TYPE_TARGET_TYPE (type));
6284 if (name == NULL)
6285 return 0;
6286
6287 return (strcmp (name, "ada__tags__dispatch_table") == 0);
6288}
6289
ac4a2da4
JG
6290/* Return non-zero if TYPE is an interface tag. */
6291
6292static int
6293ada_is_interface_tag (struct type *type)
6294{
6295 const char *name = TYPE_NAME (type);
6296
6297 if (name == NULL)
6298 return 0;
6299
6300 return (strcmp (name, "ada__tags__interface_tag") == 0);
6301}
6302
963a6417
PH
6303/* True if field number FIELD_NUM in struct or union type TYPE is supposed
6304 to be invisible to users. */
96d887e8 6305
963a6417
PH
6306int
6307ada_is_ignored_field (struct type *type, int field_num)
96d887e8 6308{
963a6417
PH
6309 if (field_num < 0 || field_num > TYPE_NFIELDS (type))
6310 return 1;
ffde82bf 6311
73fb9985
JB
6312 /* Check the name of that field. */
6313 {
6314 const char *name = TYPE_FIELD_NAME (type, field_num);
6315
6316 /* Anonymous field names should not be printed.
6317 brobecker/2007-02-20: I don't think this can actually happen
6318 but we don't want to print the value of annonymous fields anyway. */
6319 if (name == NULL)
6320 return 1;
6321
ffde82bf
JB
6322 /* Normally, fields whose name start with an underscore ("_")
6323 are fields that have been internally generated by the compiler,
6324 and thus should not be printed. The "_parent" field is special,
6325 however: This is a field internally generated by the compiler
6326 for tagged types, and it contains the components inherited from
6327 the parent type. This field should not be printed as is, but
6328 should not be ignored either. */
73fb9985
JB
6329 if (name[0] == '_' && strncmp (name, "_parent", 7) != 0)
6330 return 1;
6331 }
6332
ac4a2da4
JG
6333 /* If this is the dispatch table of a tagged type or an interface tag,
6334 then ignore. */
73fb9985 6335 if (ada_is_tagged_type (type, 1)
ac4a2da4
JG
6336 && (ada_is_dispatch_table_ptr_type (TYPE_FIELD_TYPE (type, field_num))
6337 || ada_is_interface_tag (TYPE_FIELD_TYPE (type, field_num))))
73fb9985
JB
6338 return 1;
6339
6340 /* Not a special field, so it should not be ignored. */
6341 return 0;
963a6417 6342}
96d887e8 6343
963a6417 6344/* True iff TYPE has a tag field. If REFOK, then TYPE may also be a
0963b4bd 6345 pointer or reference type whose ultimate target has a tag field. */
96d887e8 6346
963a6417
PH
6347int
6348ada_is_tagged_type (struct type *type, int refok)
6349{
6350 return (ada_lookup_struct_elt_type (type, "_tag", refok, 1, NULL) != NULL);
6351}
96d887e8 6352
963a6417 6353/* True iff TYPE represents the type of X'Tag */
96d887e8 6354
963a6417
PH
6355int
6356ada_is_tag_type (struct type *type)
6357{
6358 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_PTR)
6359 return 0;
6360 else
96d887e8 6361 {
963a6417 6362 const char *name = ada_type_name (TYPE_TARGET_TYPE (type));
5b4ee69b 6363
963a6417
PH
6364 return (name != NULL
6365 && strcmp (name, "ada__tags__dispatch_table") == 0);
96d887e8 6366 }
96d887e8
PH
6367}
6368
963a6417 6369/* The type of the tag on VAL. */
76a01679 6370
963a6417
PH
6371struct type *
6372ada_tag_type (struct value *val)
96d887e8 6373{
df407dfe 6374 return ada_lookup_struct_elt_type (value_type (val), "_tag", 1, 0, NULL);
963a6417 6375}
96d887e8 6376
b50d69b5
JG
6377/* Return 1 if TAG follows the old scheme for Ada tags (used for Ada 95,
6378 retired at Ada 05). */
6379
6380static int
6381is_ada95_tag (struct value *tag)
6382{
6383 return ada_value_struct_elt (tag, "tsd", 1) != NULL;
6384}
6385
963a6417 6386/* The value of the tag on VAL. */
96d887e8 6387
963a6417
PH
6388struct value *
6389ada_value_tag (struct value *val)
6390{
03ee6b2e 6391 return ada_value_struct_elt (val, "_tag", 0);
96d887e8
PH
6392}
6393
963a6417
PH
6394/* The value of the tag on the object of type TYPE whose contents are
6395 saved at VALADDR, if it is non-null, or is at memory address
0963b4bd 6396 ADDRESS. */
96d887e8 6397
963a6417 6398static struct value *
10a2c479 6399value_tag_from_contents_and_address (struct type *type,
fc1a4b47 6400 const gdb_byte *valaddr,
963a6417 6401 CORE_ADDR address)
96d887e8 6402{
b5385fc0 6403 int tag_byte_offset;
963a6417 6404 struct type *tag_type;
5b4ee69b 6405
963a6417 6406 if (find_struct_field ("_tag", type, 0, &tag_type, &tag_byte_offset,
52ce6436 6407 NULL, NULL, NULL))
96d887e8 6408 {
fc1a4b47 6409 const gdb_byte *valaddr1 = ((valaddr == NULL)
10a2c479
AC
6410 ? NULL
6411 : valaddr + tag_byte_offset);
963a6417 6412 CORE_ADDR address1 = (address == 0) ? 0 : address + tag_byte_offset;
96d887e8 6413
963a6417 6414 return value_from_contents_and_address (tag_type, valaddr1, address1);
96d887e8 6415 }
963a6417
PH
6416 return NULL;
6417}
96d887e8 6418
963a6417
PH
6419static struct type *
6420type_from_tag (struct value *tag)
6421{
6422 const char *type_name = ada_tag_name (tag);
5b4ee69b 6423
963a6417
PH
6424 if (type_name != NULL)
6425 return ada_find_any_type (ada_encode (type_name));
6426 return NULL;
6427}
96d887e8 6428
b50d69b5
JG
6429/* Given a value OBJ of a tagged type, return a value of this
6430 type at the base address of the object. The base address, as
6431 defined in Ada.Tags, it is the address of the primary tag of
6432 the object, and therefore where the field values of its full
6433 view can be fetched. */
6434
6435struct value *
6436ada_tag_value_at_base_address (struct value *obj)
6437{
6438 volatile struct gdb_exception e;
6439 struct value *val;
6440 LONGEST offset_to_top = 0;
6441 struct type *ptr_type, *obj_type;
6442 struct value *tag;
6443 CORE_ADDR base_address;
6444
6445 obj_type = value_type (obj);
6446
6447 /* It is the responsability of the caller to deref pointers. */
6448
6449 if (TYPE_CODE (obj_type) == TYPE_CODE_PTR
6450 || TYPE_CODE (obj_type) == TYPE_CODE_REF)
6451 return obj;
6452
6453 tag = ada_value_tag (obj);
6454 if (!tag)
6455 return obj;
6456
6457 /* Base addresses only appeared with Ada 05 and multiple inheritance. */
6458
6459 if (is_ada95_tag (tag))
6460 return obj;
6461
6462 ptr_type = builtin_type (target_gdbarch ())->builtin_data_ptr;
6463 ptr_type = lookup_pointer_type (ptr_type);
6464 val = value_cast (ptr_type, tag);
6465 if (!val)
6466 return obj;
6467
6468 /* It is perfectly possible that an exception be raised while
6469 trying to determine the base address, just like for the tag;
6470 see ada_tag_name for more details. We do not print the error
6471 message for the same reason. */
6472
6473 TRY_CATCH (e, RETURN_MASK_ERROR)
6474 {
6475 offset_to_top = value_as_long (value_ind (value_ptradd (val, -2)));
6476 }
6477
6478 if (e.reason < 0)
6479 return obj;
6480
6481 /* If offset is null, nothing to do. */
6482
6483 if (offset_to_top == 0)
6484 return obj;
6485
6486 /* -1 is a special case in Ada.Tags; however, what should be done
6487 is not quite clear from the documentation. So do nothing for
6488 now. */
6489
6490 if (offset_to_top == -1)
6491 return obj;
6492
6493 base_address = value_address (obj) - offset_to_top;
6494 tag = value_tag_from_contents_and_address (obj_type, NULL, base_address);
6495
6496 /* Make sure that we have a proper tag at the new address.
6497 Otherwise, offset_to_top is bogus (which can happen when
6498 the object is not initialized yet). */
6499
6500 if (!tag)
6501 return obj;
6502
6503 obj_type = type_from_tag (tag);
6504
6505 if (!obj_type)
6506 return obj;
6507
6508 return value_from_contents_and_address (obj_type, NULL, base_address);
6509}
6510
1b611343
JB
6511/* Return the "ada__tags__type_specific_data" type. */
6512
6513static struct type *
6514ada_get_tsd_type (struct inferior *inf)
963a6417 6515{
1b611343 6516 struct ada_inferior_data *data = get_ada_inferior_data (inf);
4c4b4cd2 6517
1b611343
JB
6518 if (data->tsd_type == 0)
6519 data->tsd_type = ada_find_any_type ("ada__tags__type_specific_data");
6520 return data->tsd_type;
6521}
529cad9c 6522
1b611343
JB
6523/* Return the TSD (type-specific data) associated to the given TAG.
6524 TAG is assumed to be the tag of a tagged-type entity.
529cad9c 6525
1b611343 6526 May return NULL if we are unable to get the TSD. */
4c4b4cd2 6527
1b611343
JB
6528static struct value *
6529ada_get_tsd_from_tag (struct value *tag)
4c4b4cd2 6530{
4c4b4cd2 6531 struct value *val;
1b611343 6532 struct type *type;
5b4ee69b 6533
1b611343
JB
6534 /* First option: The TSD is simply stored as a field of our TAG.
6535 Only older versions of GNAT would use this format, but we have
6536 to test it first, because there are no visible markers for
6537 the current approach except the absence of that field. */
529cad9c 6538
1b611343
JB
6539 val = ada_value_struct_elt (tag, "tsd", 1);
6540 if (val)
6541 return val;
e802dbe0 6542
1b611343
JB
6543 /* Try the second representation for the dispatch table (in which
6544 there is no explicit 'tsd' field in the referent of the tag pointer,
6545 and instead the tsd pointer is stored just before the dispatch
6546 table. */
e802dbe0 6547
1b611343
JB
6548 type = ada_get_tsd_type (current_inferior());
6549 if (type == NULL)
6550 return NULL;
6551 type = lookup_pointer_type (lookup_pointer_type (type));
6552 val = value_cast (type, tag);
6553 if (val == NULL)
6554 return NULL;
6555 return value_ind (value_ptradd (val, -1));
e802dbe0
JB
6556}
6557
1b611343
JB
6558/* Given the TSD of a tag (type-specific data), return a string
6559 containing the name of the associated type.
6560
6561 The returned value is good until the next call. May return NULL
6562 if we are unable to determine the tag name. */
6563
6564static char *
6565ada_tag_name_from_tsd (struct value *tsd)
529cad9c 6566{
529cad9c
PH
6567 static char name[1024];
6568 char *p;
1b611343 6569 struct value *val;
529cad9c 6570
1b611343 6571 val = ada_value_struct_elt (tsd, "expanded_name", 1);
4c4b4cd2 6572 if (val == NULL)
1b611343 6573 return NULL;
4c4b4cd2
PH
6574 read_memory_string (value_as_address (val), name, sizeof (name) - 1);
6575 for (p = name; *p != '\0'; p += 1)
6576 if (isalpha (*p))
6577 *p = tolower (*p);
1b611343 6578 return name;
4c4b4cd2
PH
6579}
6580
6581/* The type name of the dynamic type denoted by the 'tag value TAG, as
1b611343
JB
6582 a C string.
6583
6584 Return NULL if the TAG is not an Ada tag, or if we were unable to
6585 determine the name of that tag. The result is good until the next
6586 call. */
4c4b4cd2
PH
6587
6588const char *
6589ada_tag_name (struct value *tag)
6590{
1b611343
JB
6591 volatile struct gdb_exception e;
6592 char *name = NULL;
5b4ee69b 6593
df407dfe 6594 if (!ada_is_tag_type (value_type (tag)))
4c4b4cd2 6595 return NULL;
1b611343
JB
6596
6597 /* It is perfectly possible that an exception be raised while trying
6598 to determine the TAG's name, even under normal circumstances:
6599 The associated variable may be uninitialized or corrupted, for
6600 instance. We do not let any exception propagate past this point.
6601 instead we return NULL.
6602
6603 We also do not print the error message either (which often is very
6604 low-level (Eg: "Cannot read memory at 0x[...]"), but instead let
6605 the caller print a more meaningful message if necessary. */
6606 TRY_CATCH (e, RETURN_MASK_ERROR)
6607 {
6608 struct value *tsd = ada_get_tsd_from_tag (tag);
6609
6610 if (tsd != NULL)
6611 name = ada_tag_name_from_tsd (tsd);
6612 }
6613
6614 return name;
4c4b4cd2
PH
6615}
6616
6617/* The parent type of TYPE, or NULL if none. */
14f9c5c9 6618
d2e4a39e 6619struct type *
ebf56fd3 6620ada_parent_type (struct type *type)
14f9c5c9
AS
6621{
6622 int i;
6623
61ee279c 6624 type = ada_check_typedef (type);
14f9c5c9
AS
6625
6626 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT)
6627 return NULL;
6628
6629 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
6630 if (ada_is_parent_field (type, i))
0c1f74cf
JB
6631 {
6632 struct type *parent_type = TYPE_FIELD_TYPE (type, i);
6633
6634 /* If the _parent field is a pointer, then dereference it. */
6635 if (TYPE_CODE (parent_type) == TYPE_CODE_PTR)
6636 parent_type = TYPE_TARGET_TYPE (parent_type);
6637 /* If there is a parallel XVS type, get the actual base type. */
6638 parent_type = ada_get_base_type (parent_type);
6639
6640 return ada_check_typedef (parent_type);
6641 }
14f9c5c9
AS
6642
6643 return NULL;
6644}
6645
4c4b4cd2
PH
6646/* True iff field number FIELD_NUM of structure type TYPE contains the
6647 parent-type (inherited) fields of a derived type. Assumes TYPE is
6648 a structure type with at least FIELD_NUM+1 fields. */
14f9c5c9
AS
6649
6650int
ebf56fd3 6651ada_is_parent_field (struct type *type, int field_num)
14f9c5c9 6652{
61ee279c 6653 const char *name = TYPE_FIELD_NAME (ada_check_typedef (type), field_num);
5b4ee69b 6654
4c4b4cd2
PH
6655 return (name != NULL
6656 && (strncmp (name, "PARENT", 6) == 0
6657 || strncmp (name, "_parent", 7) == 0));
14f9c5c9
AS
6658}
6659
4c4b4cd2 6660/* True iff field number FIELD_NUM of structure type TYPE is a
14f9c5c9 6661 transparent wrapper field (which should be silently traversed when doing
4c4b4cd2 6662 field selection and flattened when printing). Assumes TYPE is a
14f9c5c9 6663 structure type with at least FIELD_NUM+1 fields. Such fields are always
4c4b4cd2 6664 structures. */
14f9c5c9
AS
6665
6666int
ebf56fd3 6667ada_is_wrapper_field (struct type *type, int field_num)
14f9c5c9 6668{
d2e4a39e 6669 const char *name = TYPE_FIELD_NAME (type, field_num);
5b4ee69b 6670
d2e4a39e 6671 return (name != NULL
4c4b4cd2
PH
6672 && (strncmp (name, "PARENT", 6) == 0
6673 || strcmp (name, "REP") == 0
6674 || strncmp (name, "_parent", 7) == 0
6675 || name[0] == 'S' || name[0] == 'R' || name[0] == 'O'));
14f9c5c9
AS
6676}
6677
4c4b4cd2
PH
6678/* True iff field number FIELD_NUM of structure or union type TYPE
6679 is a variant wrapper. Assumes TYPE is a structure type with at least
6680 FIELD_NUM+1 fields. */
14f9c5c9
AS
6681
6682int
ebf56fd3 6683ada_is_variant_part (struct type *type, int field_num)
14f9c5c9 6684{
d2e4a39e 6685 struct type *field_type = TYPE_FIELD_TYPE (type, field_num);
5b4ee69b 6686
14f9c5c9 6687 return (TYPE_CODE (field_type) == TYPE_CODE_UNION
4c4b4cd2 6688 || (is_dynamic_field (type, field_num)
c3e5cd34
PH
6689 && (TYPE_CODE (TYPE_TARGET_TYPE (field_type))
6690 == TYPE_CODE_UNION)));
14f9c5c9
AS
6691}
6692
6693/* Assuming that VAR_TYPE is a variant wrapper (type of the variant part)
4c4b4cd2 6694 whose discriminants are contained in the record type OUTER_TYPE,
7c964f07
UW
6695 returns the type of the controlling discriminant for the variant.
6696 May return NULL if the type could not be found. */
14f9c5c9 6697
d2e4a39e 6698struct type *
ebf56fd3 6699ada_variant_discrim_type (struct type *var_type, struct type *outer_type)
14f9c5c9 6700{
d2e4a39e 6701 char *name = ada_variant_discrim_name (var_type);
5b4ee69b 6702
7c964f07 6703 return ada_lookup_struct_elt_type (outer_type, name, 1, 1, NULL);
14f9c5c9
AS
6704}
6705
4c4b4cd2 6706/* Assuming that TYPE is the type of a variant wrapper, and FIELD_NUM is a
14f9c5c9 6707 valid field number within it, returns 1 iff field FIELD_NUM of TYPE
4c4b4cd2 6708 represents a 'when others' clause; otherwise 0. */
14f9c5c9
AS
6709
6710int
ebf56fd3 6711ada_is_others_clause (struct type *type, int field_num)
14f9c5c9 6712{
d2e4a39e 6713 const char *name = TYPE_FIELD_NAME (type, field_num);
5b4ee69b 6714
14f9c5c9
AS
6715 return (name != NULL && name[0] == 'O');
6716}
6717
6718/* Assuming that TYPE0 is the type of the variant part of a record,
4c4b4cd2
PH
6719 returns the name of the discriminant controlling the variant.
6720 The value is valid until the next call to ada_variant_discrim_name. */
14f9c5c9 6721
d2e4a39e 6722char *
ebf56fd3 6723ada_variant_discrim_name (struct type *type0)
14f9c5c9 6724{
d2e4a39e 6725 static char *result = NULL;
14f9c5c9 6726 static size_t result_len = 0;
d2e4a39e
AS
6727 struct type *type;
6728 const char *name;
6729 const char *discrim_end;
6730 const char *discrim_start;
14f9c5c9
AS
6731
6732 if (TYPE_CODE (type0) == TYPE_CODE_PTR)
6733 type = TYPE_TARGET_TYPE (type0);
6734 else
6735 type = type0;
6736
6737 name = ada_type_name (type);
6738
6739 if (name == NULL || name[0] == '\000')
6740 return "";
6741
6742 for (discrim_end = name + strlen (name) - 6; discrim_end != name;
6743 discrim_end -= 1)
6744 {
4c4b4cd2
PH
6745 if (strncmp (discrim_end, "___XVN", 6) == 0)
6746 break;
14f9c5c9
AS
6747 }
6748 if (discrim_end == name)
6749 return "";
6750
d2e4a39e 6751 for (discrim_start = discrim_end; discrim_start != name + 3;
14f9c5c9
AS
6752 discrim_start -= 1)
6753 {
d2e4a39e 6754 if (discrim_start == name + 1)
4c4b4cd2 6755 return "";
76a01679 6756 if ((discrim_start > name + 3
4c4b4cd2
PH
6757 && strncmp (discrim_start - 3, "___", 3) == 0)
6758 || discrim_start[-1] == '.')
6759 break;
14f9c5c9
AS
6760 }
6761
6762 GROW_VECT (result, result_len, discrim_end - discrim_start + 1);
6763 strncpy (result, discrim_start, discrim_end - discrim_start);
d2e4a39e 6764 result[discrim_end - discrim_start] = '\0';
14f9c5c9
AS
6765 return result;
6766}
6767
4c4b4cd2
PH
6768/* Scan STR for a subtype-encoded number, beginning at position K.
6769 Put the position of the character just past the number scanned in
6770 *NEW_K, if NEW_K!=NULL. Put the scanned number in *R, if R!=NULL.
6771 Return 1 if there was a valid number at the given position, and 0
6772 otherwise. A "subtype-encoded" number consists of the absolute value
6773 in decimal, followed by the letter 'm' to indicate a negative number.
6774 Assumes 0m does not occur. */
14f9c5c9
AS
6775
6776int
d2e4a39e 6777ada_scan_number (const char str[], int k, LONGEST * R, int *new_k)
14f9c5c9
AS
6778{
6779 ULONGEST RU;
6780
d2e4a39e 6781 if (!isdigit (str[k]))
14f9c5c9
AS
6782 return 0;
6783
4c4b4cd2 6784 /* Do it the hard way so as not to make any assumption about
14f9c5c9 6785 the relationship of unsigned long (%lu scan format code) and
4c4b4cd2 6786 LONGEST. */
14f9c5c9
AS
6787 RU = 0;
6788 while (isdigit (str[k]))
6789 {
d2e4a39e 6790 RU = RU * 10 + (str[k] - '0');
14f9c5c9
AS
6791 k += 1;
6792 }
6793
d2e4a39e 6794 if (str[k] == 'm')
14f9c5c9
AS
6795 {
6796 if (R != NULL)
4c4b4cd2 6797 *R = (-(LONGEST) (RU - 1)) - 1;
14f9c5c9
AS
6798 k += 1;
6799 }
6800 else if (R != NULL)
6801 *R = (LONGEST) RU;
6802
4c4b4cd2 6803 /* NOTE on the above: Technically, C does not say what the results of
14f9c5c9
AS
6804 - (LONGEST) RU or (LONGEST) -RU are for RU == largest positive
6805 number representable as a LONGEST (although either would probably work
6806 in most implementations). When RU>0, the locution in the then branch
4c4b4cd2 6807 above is always equivalent to the negative of RU. */
14f9c5c9
AS
6808
6809 if (new_k != NULL)
6810 *new_k = k;
6811 return 1;
6812}
6813
4c4b4cd2
PH
6814/* Assuming that TYPE is a variant part wrapper type (a VARIANTS field),
6815 and FIELD_NUM is a valid field number within it, returns 1 iff VAL is
6816 in the range encoded by field FIELD_NUM of TYPE; otherwise 0. */
14f9c5c9 6817
d2e4a39e 6818int
ebf56fd3 6819ada_in_variant (LONGEST val, struct type *type, int field_num)
14f9c5c9 6820{
d2e4a39e 6821 const char *name = TYPE_FIELD_NAME (type, field_num);
14f9c5c9
AS
6822 int p;
6823
6824 p = 0;
6825 while (1)
6826 {
d2e4a39e 6827 switch (name[p])
4c4b4cd2
PH
6828 {
6829 case '\0':
6830 return 0;
6831 case 'S':
6832 {
6833 LONGEST W;
5b4ee69b 6834
4c4b4cd2
PH
6835 if (!ada_scan_number (name, p + 1, &W, &p))
6836 return 0;
6837 if (val == W)
6838 return 1;
6839 break;
6840 }
6841 case 'R':
6842 {
6843 LONGEST L, U;
5b4ee69b 6844
4c4b4cd2
PH
6845 if (!ada_scan_number (name, p + 1, &L, &p)
6846 || name[p] != 'T' || !ada_scan_number (name, p + 1, &U, &p))
6847 return 0;
6848 if (val >= L && val <= U)
6849 return 1;
6850 break;
6851 }
6852 case 'O':
6853 return 1;
6854 default:
6855 return 0;
6856 }
6857 }
6858}
6859
0963b4bd 6860/* FIXME: Lots of redundancy below. Try to consolidate. */
4c4b4cd2
PH
6861
6862/* Given a value ARG1 (offset by OFFSET bytes) of a struct or union type
6863 ARG_TYPE, extract and return the value of one of its (non-static)
6864 fields. FIELDNO says which field. Differs from value_primitive_field
6865 only in that it can handle packed values of arbitrary type. */
14f9c5c9 6866
4c4b4cd2 6867static struct value *
d2e4a39e 6868ada_value_primitive_field (struct value *arg1, int offset, int fieldno,
4c4b4cd2 6869 struct type *arg_type)
14f9c5c9 6870{
14f9c5c9
AS
6871 struct type *type;
6872
61ee279c 6873 arg_type = ada_check_typedef (arg_type);
14f9c5c9
AS
6874 type = TYPE_FIELD_TYPE (arg_type, fieldno);
6875
4c4b4cd2 6876 /* Handle packed fields. */
14f9c5c9
AS
6877
6878 if (TYPE_FIELD_BITSIZE (arg_type, fieldno) != 0)
6879 {
6880 int bit_pos = TYPE_FIELD_BITPOS (arg_type, fieldno);
6881 int bit_size = TYPE_FIELD_BITSIZE (arg_type, fieldno);
d2e4a39e 6882
0fd88904 6883 return ada_value_primitive_packed_val (arg1, value_contents (arg1),
4c4b4cd2
PH
6884 offset + bit_pos / 8,
6885 bit_pos % 8, bit_size, type);
14f9c5c9
AS
6886 }
6887 else
6888 return value_primitive_field (arg1, offset, fieldno, arg_type);
6889}
6890
52ce6436
PH
6891/* Find field with name NAME in object of type TYPE. If found,
6892 set the following for each argument that is non-null:
6893 - *FIELD_TYPE_P to the field's type;
6894 - *BYTE_OFFSET_P to OFFSET + the byte offset of the field within
6895 an object of that type;
6896 - *BIT_OFFSET_P to the bit offset modulo byte size of the field;
6897 - *BIT_SIZE_P to its size in bits if the field is packed, and
6898 0 otherwise;
6899 If INDEX_P is non-null, increment *INDEX_P by the number of source-visible
6900 fields up to but not including the desired field, or by the total
6901 number of fields if not found. A NULL value of NAME never
6902 matches; the function just counts visible fields in this case.
6903
0963b4bd 6904 Returns 1 if found, 0 otherwise. */
52ce6436 6905
4c4b4cd2 6906static int
0d5cff50 6907find_struct_field (const char *name, struct type *type, int offset,
76a01679 6908 struct type **field_type_p,
52ce6436
PH
6909 int *byte_offset_p, int *bit_offset_p, int *bit_size_p,
6910 int *index_p)
4c4b4cd2
PH
6911{
6912 int i;
6913
61ee279c 6914 type = ada_check_typedef (type);
76a01679 6915
52ce6436
PH
6916 if (field_type_p != NULL)
6917 *field_type_p = NULL;
6918 if (byte_offset_p != NULL)
d5d6fca5 6919 *byte_offset_p = 0;
52ce6436
PH
6920 if (bit_offset_p != NULL)
6921 *bit_offset_p = 0;
6922 if (bit_size_p != NULL)
6923 *bit_size_p = 0;
6924
6925 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
4c4b4cd2
PH
6926 {
6927 int bit_pos = TYPE_FIELD_BITPOS (type, i);
6928 int fld_offset = offset + bit_pos / 8;
0d5cff50 6929 const char *t_field_name = TYPE_FIELD_NAME (type, i);
76a01679 6930
4c4b4cd2
PH
6931 if (t_field_name == NULL)
6932 continue;
6933
52ce6436 6934 else if (name != NULL && field_name_match (t_field_name, name))
76a01679
JB
6935 {
6936 int bit_size = TYPE_FIELD_BITSIZE (type, i);
5b4ee69b 6937
52ce6436
PH
6938 if (field_type_p != NULL)
6939 *field_type_p = TYPE_FIELD_TYPE (type, i);
6940 if (byte_offset_p != NULL)
6941 *byte_offset_p = fld_offset;
6942 if (bit_offset_p != NULL)
6943 *bit_offset_p = bit_pos % 8;
6944 if (bit_size_p != NULL)
6945 *bit_size_p = bit_size;
76a01679
JB
6946 return 1;
6947 }
4c4b4cd2
PH
6948 else if (ada_is_wrapper_field (type, i))
6949 {
52ce6436
PH
6950 if (find_struct_field (name, TYPE_FIELD_TYPE (type, i), fld_offset,
6951 field_type_p, byte_offset_p, bit_offset_p,
6952 bit_size_p, index_p))
76a01679
JB
6953 return 1;
6954 }
4c4b4cd2
PH
6955 else if (ada_is_variant_part (type, i))
6956 {
52ce6436
PH
6957 /* PNH: Wait. Do we ever execute this section, or is ARG always of
6958 fixed type?? */
4c4b4cd2 6959 int j;
52ce6436
PH
6960 struct type *field_type
6961 = ada_check_typedef (TYPE_FIELD_TYPE (type, i));
4c4b4cd2 6962
52ce6436 6963 for (j = 0; j < TYPE_NFIELDS (field_type); j += 1)
4c4b4cd2 6964 {
76a01679
JB
6965 if (find_struct_field (name, TYPE_FIELD_TYPE (field_type, j),
6966 fld_offset
6967 + TYPE_FIELD_BITPOS (field_type, j) / 8,
6968 field_type_p, byte_offset_p,
52ce6436 6969 bit_offset_p, bit_size_p, index_p))
76a01679 6970 return 1;
4c4b4cd2
PH
6971 }
6972 }
52ce6436
PH
6973 else if (index_p != NULL)
6974 *index_p += 1;
4c4b4cd2
PH
6975 }
6976 return 0;
6977}
6978
0963b4bd 6979/* Number of user-visible fields in record type TYPE. */
4c4b4cd2 6980
52ce6436
PH
6981static int
6982num_visible_fields (struct type *type)
6983{
6984 int n;
5b4ee69b 6985
52ce6436
PH
6986 n = 0;
6987 find_struct_field (NULL, type, 0, NULL, NULL, NULL, NULL, &n);
6988 return n;
6989}
14f9c5c9 6990
4c4b4cd2 6991/* Look for a field NAME in ARG. Adjust the address of ARG by OFFSET bytes,
14f9c5c9
AS
6992 and search in it assuming it has (class) type TYPE.
6993 If found, return value, else return NULL.
6994
4c4b4cd2 6995 Searches recursively through wrapper fields (e.g., '_parent'). */
14f9c5c9 6996
4c4b4cd2 6997static struct value *
d2e4a39e 6998ada_search_struct_field (char *name, struct value *arg, int offset,
4c4b4cd2 6999 struct type *type)
14f9c5c9
AS
7000{
7001 int i;
14f9c5c9 7002
5b4ee69b 7003 type = ada_check_typedef (type);
52ce6436 7004 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
14f9c5c9 7005 {
0d5cff50 7006 const char *t_field_name = TYPE_FIELD_NAME (type, i);
14f9c5c9
AS
7007
7008 if (t_field_name == NULL)
4c4b4cd2 7009 continue;
14f9c5c9
AS
7010
7011 else if (field_name_match (t_field_name, name))
4c4b4cd2 7012 return ada_value_primitive_field (arg, offset, i, type);
14f9c5c9
AS
7013
7014 else if (ada_is_wrapper_field (type, i))
4c4b4cd2 7015 {
0963b4bd 7016 struct value *v = /* Do not let indent join lines here. */
06d5cf63
JB
7017 ada_search_struct_field (name, arg,
7018 offset + TYPE_FIELD_BITPOS (type, i) / 8,
7019 TYPE_FIELD_TYPE (type, i));
5b4ee69b 7020
4c4b4cd2
PH
7021 if (v != NULL)
7022 return v;
7023 }
14f9c5c9
AS
7024
7025 else if (ada_is_variant_part (type, i))
4c4b4cd2 7026 {
0963b4bd 7027 /* PNH: Do we ever get here? See find_struct_field. */
4c4b4cd2 7028 int j;
5b4ee69b
MS
7029 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type,
7030 i));
4c4b4cd2
PH
7031 int var_offset = offset + TYPE_FIELD_BITPOS (type, i) / 8;
7032
52ce6436 7033 for (j = 0; j < TYPE_NFIELDS (field_type); j += 1)
4c4b4cd2 7034 {
0963b4bd
MS
7035 struct value *v = ada_search_struct_field /* Force line
7036 break. */
06d5cf63
JB
7037 (name, arg,
7038 var_offset + TYPE_FIELD_BITPOS (field_type, j) / 8,
7039 TYPE_FIELD_TYPE (field_type, j));
5b4ee69b 7040
4c4b4cd2
PH
7041 if (v != NULL)
7042 return v;
7043 }
7044 }
14f9c5c9
AS
7045 }
7046 return NULL;
7047}
d2e4a39e 7048
52ce6436
PH
7049static struct value *ada_index_struct_field_1 (int *, struct value *,
7050 int, struct type *);
7051
7052
7053/* Return field #INDEX in ARG, where the index is that returned by
7054 * find_struct_field through its INDEX_P argument. Adjust the address
7055 * of ARG by OFFSET bytes, and search in it assuming it has (class) type TYPE.
0963b4bd 7056 * If found, return value, else return NULL. */
52ce6436
PH
7057
7058static struct value *
7059ada_index_struct_field (int index, struct value *arg, int offset,
7060 struct type *type)
7061{
7062 return ada_index_struct_field_1 (&index, arg, offset, type);
7063}
7064
7065
7066/* Auxiliary function for ada_index_struct_field. Like
7067 * ada_index_struct_field, but takes index from *INDEX_P and modifies
0963b4bd 7068 * *INDEX_P. */
52ce6436
PH
7069
7070static struct value *
7071ada_index_struct_field_1 (int *index_p, struct value *arg, int offset,
7072 struct type *type)
7073{
7074 int i;
7075 type = ada_check_typedef (type);
7076
7077 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
7078 {
7079 if (TYPE_FIELD_NAME (type, i) == NULL)
7080 continue;
7081 else if (ada_is_wrapper_field (type, i))
7082 {
0963b4bd 7083 struct value *v = /* Do not let indent join lines here. */
52ce6436
PH
7084 ada_index_struct_field_1 (index_p, arg,
7085 offset + TYPE_FIELD_BITPOS (type, i) / 8,
7086 TYPE_FIELD_TYPE (type, i));
5b4ee69b 7087
52ce6436
PH
7088 if (v != NULL)
7089 return v;
7090 }
7091
7092 else if (ada_is_variant_part (type, i))
7093 {
7094 /* PNH: Do we ever get here? See ada_search_struct_field,
0963b4bd 7095 find_struct_field. */
52ce6436
PH
7096 error (_("Cannot assign this kind of variant record"));
7097 }
7098 else if (*index_p == 0)
7099 return ada_value_primitive_field (arg, offset, i, type);
7100 else
7101 *index_p -= 1;
7102 }
7103 return NULL;
7104}
7105
4c4b4cd2
PH
7106/* Given ARG, a value of type (pointer or reference to a)*
7107 structure/union, extract the component named NAME from the ultimate
7108 target structure/union and return it as a value with its
f5938064 7109 appropriate type.
14f9c5c9 7110
4c4b4cd2
PH
7111 The routine searches for NAME among all members of the structure itself
7112 and (recursively) among all members of any wrapper members
14f9c5c9
AS
7113 (e.g., '_parent').
7114
03ee6b2e
PH
7115 If NO_ERR, then simply return NULL in case of error, rather than
7116 calling error. */
14f9c5c9 7117
d2e4a39e 7118struct value *
03ee6b2e 7119ada_value_struct_elt (struct value *arg, char *name, int no_err)
14f9c5c9 7120{
4c4b4cd2 7121 struct type *t, *t1;
d2e4a39e 7122 struct value *v;
14f9c5c9 7123
4c4b4cd2 7124 v = NULL;
df407dfe 7125 t1 = t = ada_check_typedef (value_type (arg));
4c4b4cd2
PH
7126 if (TYPE_CODE (t) == TYPE_CODE_REF)
7127 {
7128 t1 = TYPE_TARGET_TYPE (t);
7129 if (t1 == NULL)
03ee6b2e 7130 goto BadValue;
61ee279c 7131 t1 = ada_check_typedef (t1);
4c4b4cd2 7132 if (TYPE_CODE (t1) == TYPE_CODE_PTR)
76a01679 7133 {
994b9211 7134 arg = coerce_ref (arg);
76a01679
JB
7135 t = t1;
7136 }
4c4b4cd2 7137 }
14f9c5c9 7138
4c4b4cd2
PH
7139 while (TYPE_CODE (t) == TYPE_CODE_PTR)
7140 {
7141 t1 = TYPE_TARGET_TYPE (t);
7142 if (t1 == NULL)
03ee6b2e 7143 goto BadValue;
61ee279c 7144 t1 = ada_check_typedef (t1);
4c4b4cd2 7145 if (TYPE_CODE (t1) == TYPE_CODE_PTR)
76a01679
JB
7146 {
7147 arg = value_ind (arg);
7148 t = t1;
7149 }
4c4b4cd2 7150 else
76a01679 7151 break;
4c4b4cd2 7152 }
14f9c5c9 7153
4c4b4cd2 7154 if (TYPE_CODE (t1) != TYPE_CODE_STRUCT && TYPE_CODE (t1) != TYPE_CODE_UNION)
03ee6b2e 7155 goto BadValue;
14f9c5c9 7156
4c4b4cd2
PH
7157 if (t1 == t)
7158 v = ada_search_struct_field (name, arg, 0, t);
7159 else
7160 {
7161 int bit_offset, bit_size, byte_offset;
7162 struct type *field_type;
7163 CORE_ADDR address;
7164
76a01679 7165 if (TYPE_CODE (t) == TYPE_CODE_PTR)
b50d69b5 7166 address = value_address (ada_value_ind (arg));
4c4b4cd2 7167 else
b50d69b5 7168 address = value_address (ada_coerce_ref (arg));
14f9c5c9 7169
1ed6ede0 7170 t1 = ada_to_fixed_type (ada_get_base_type (t1), NULL, address, NULL, 1);
76a01679
JB
7171 if (find_struct_field (name, t1, 0,
7172 &field_type, &byte_offset, &bit_offset,
52ce6436 7173 &bit_size, NULL))
76a01679
JB
7174 {
7175 if (bit_size != 0)
7176 {
714e53ab
PH
7177 if (TYPE_CODE (t) == TYPE_CODE_REF)
7178 arg = ada_coerce_ref (arg);
7179 else
7180 arg = ada_value_ind (arg);
76a01679
JB
7181 v = ada_value_primitive_packed_val (arg, NULL, byte_offset,
7182 bit_offset, bit_size,
7183 field_type);
7184 }
7185 else
f5938064 7186 v = value_at_lazy (field_type, address + byte_offset);
76a01679
JB
7187 }
7188 }
7189
03ee6b2e
PH
7190 if (v != NULL || no_err)
7191 return v;
7192 else
323e0a4a 7193 error (_("There is no member named %s."), name);
14f9c5c9 7194
03ee6b2e
PH
7195 BadValue:
7196 if (no_err)
7197 return NULL;
7198 else
0963b4bd
MS
7199 error (_("Attempt to extract a component of "
7200 "a value that is not a record."));
14f9c5c9
AS
7201}
7202
7203/* Given a type TYPE, look up the type of the component of type named NAME.
4c4b4cd2
PH
7204 If DISPP is non-null, add its byte displacement from the beginning of a
7205 structure (pointed to by a value) of type TYPE to *DISPP (does not
14f9c5c9
AS
7206 work for packed fields).
7207
7208 Matches any field whose name has NAME as a prefix, possibly
4c4b4cd2 7209 followed by "___".
14f9c5c9 7210
0963b4bd 7211 TYPE can be either a struct or union. If REFOK, TYPE may also
4c4b4cd2
PH
7212 be a (pointer or reference)+ to a struct or union, and the
7213 ultimate target type will be searched.
14f9c5c9
AS
7214
7215 Looks recursively into variant clauses and parent types.
7216
4c4b4cd2
PH
7217 If NOERR is nonzero, return NULL if NAME is not suitably defined or
7218 TYPE is not a type of the right kind. */
14f9c5c9 7219
4c4b4cd2 7220static struct type *
76a01679
JB
7221ada_lookup_struct_elt_type (struct type *type, char *name, int refok,
7222 int noerr, int *dispp)
14f9c5c9
AS
7223{
7224 int i;
7225
7226 if (name == NULL)
7227 goto BadName;
7228
76a01679 7229 if (refok && type != NULL)
4c4b4cd2
PH
7230 while (1)
7231 {
61ee279c 7232 type = ada_check_typedef (type);
76a01679
JB
7233 if (TYPE_CODE (type) != TYPE_CODE_PTR
7234 && TYPE_CODE (type) != TYPE_CODE_REF)
7235 break;
7236 type = TYPE_TARGET_TYPE (type);
4c4b4cd2 7237 }
14f9c5c9 7238
76a01679 7239 if (type == NULL
1265e4aa
JB
7240 || (TYPE_CODE (type) != TYPE_CODE_STRUCT
7241 && TYPE_CODE (type) != TYPE_CODE_UNION))
14f9c5c9 7242 {
4c4b4cd2 7243 if (noerr)
76a01679 7244 return NULL;
4c4b4cd2 7245 else
76a01679
JB
7246 {
7247 target_terminal_ours ();
7248 gdb_flush (gdb_stdout);
323e0a4a
AC
7249 if (type == NULL)
7250 error (_("Type (null) is not a structure or union type"));
7251 else
7252 {
7253 /* XXX: type_sprint */
7254 fprintf_unfiltered (gdb_stderr, _("Type "));
7255 type_print (type, "", gdb_stderr, -1);
7256 error (_(" is not a structure or union type"));
7257 }
76a01679 7258 }
14f9c5c9
AS
7259 }
7260
7261 type = to_static_fixed_type (type);
7262
7263 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
7264 {
0d5cff50 7265 const char *t_field_name = TYPE_FIELD_NAME (type, i);
14f9c5c9
AS
7266 struct type *t;
7267 int disp;
d2e4a39e 7268
14f9c5c9 7269 if (t_field_name == NULL)
4c4b4cd2 7270 continue;
14f9c5c9
AS
7271
7272 else if (field_name_match (t_field_name, name))
4c4b4cd2
PH
7273 {
7274 if (dispp != NULL)
7275 *dispp += TYPE_FIELD_BITPOS (type, i) / 8;
61ee279c 7276 return ada_check_typedef (TYPE_FIELD_TYPE (type, i));
4c4b4cd2 7277 }
14f9c5c9
AS
7278
7279 else if (ada_is_wrapper_field (type, i))
4c4b4cd2
PH
7280 {
7281 disp = 0;
7282 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (type, i), name,
7283 0, 1, &disp);
7284 if (t != NULL)
7285 {
7286 if (dispp != NULL)
7287 *dispp += disp + TYPE_FIELD_BITPOS (type, i) / 8;
7288 return t;
7289 }
7290 }
14f9c5c9
AS
7291
7292 else if (ada_is_variant_part (type, i))
4c4b4cd2
PH
7293 {
7294 int j;
5b4ee69b
MS
7295 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type,
7296 i));
4c4b4cd2
PH
7297
7298 for (j = TYPE_NFIELDS (field_type) - 1; j >= 0; j -= 1)
7299 {
b1f33ddd
JB
7300 /* FIXME pnh 2008/01/26: We check for a field that is
7301 NOT wrapped in a struct, since the compiler sometimes
7302 generates these for unchecked variant types. Revisit
0963b4bd 7303 if the compiler changes this practice. */
0d5cff50 7304 const char *v_field_name = TYPE_FIELD_NAME (field_type, j);
4c4b4cd2 7305 disp = 0;
b1f33ddd
JB
7306 if (v_field_name != NULL
7307 && field_name_match (v_field_name, name))
7308 t = ada_check_typedef (TYPE_FIELD_TYPE (field_type, j));
7309 else
0963b4bd
MS
7310 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (field_type,
7311 j),
b1f33ddd
JB
7312 name, 0, 1, &disp);
7313
4c4b4cd2
PH
7314 if (t != NULL)
7315 {
7316 if (dispp != NULL)
7317 *dispp += disp + TYPE_FIELD_BITPOS (type, i) / 8;
7318 return t;
7319 }
7320 }
7321 }
14f9c5c9
AS
7322
7323 }
7324
7325BadName:
d2e4a39e 7326 if (!noerr)
14f9c5c9
AS
7327 {
7328 target_terminal_ours ();
7329 gdb_flush (gdb_stdout);
323e0a4a
AC
7330 if (name == NULL)
7331 {
7332 /* XXX: type_sprint */
7333 fprintf_unfiltered (gdb_stderr, _("Type "));
7334 type_print (type, "", gdb_stderr, -1);
7335 error (_(" has no component named <null>"));
7336 }
7337 else
7338 {
7339 /* XXX: type_sprint */
7340 fprintf_unfiltered (gdb_stderr, _("Type "));
7341 type_print (type, "", gdb_stderr, -1);
7342 error (_(" has no component named %s"), name);
7343 }
14f9c5c9
AS
7344 }
7345
7346 return NULL;
7347}
7348
b1f33ddd
JB
7349/* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
7350 within a value of type OUTER_TYPE, return true iff VAR_TYPE
7351 represents an unchecked union (that is, the variant part of a
0963b4bd 7352 record that is named in an Unchecked_Union pragma). */
b1f33ddd
JB
7353
7354static int
7355is_unchecked_variant (struct type *var_type, struct type *outer_type)
7356{
7357 char *discrim_name = ada_variant_discrim_name (var_type);
5b4ee69b 7358
b1f33ddd
JB
7359 return (ada_lookup_struct_elt_type (outer_type, discrim_name, 0, 1, NULL)
7360 == NULL);
7361}
7362
7363
14f9c5c9
AS
7364/* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
7365 within a value of type OUTER_TYPE that is stored in GDB at
4c4b4cd2
PH
7366 OUTER_VALADDR, determine which variant clause (field number in VAR_TYPE,
7367 numbering from 0) is applicable. Returns -1 if none are. */
14f9c5c9 7368
d2e4a39e 7369int
ebf56fd3 7370ada_which_variant_applies (struct type *var_type, struct type *outer_type,
fc1a4b47 7371 const gdb_byte *outer_valaddr)
14f9c5c9
AS
7372{
7373 int others_clause;
7374 int i;
d2e4a39e 7375 char *discrim_name = ada_variant_discrim_name (var_type);
0c281816
JB
7376 struct value *outer;
7377 struct value *discrim;
14f9c5c9
AS
7378 LONGEST discrim_val;
7379
012370f6
TT
7380 /* Using plain value_from_contents_and_address here causes problems
7381 because we will end up trying to resolve a type that is currently
7382 being constructed. */
7383 outer = value_from_contents_and_address_unresolved (outer_type,
7384 outer_valaddr, 0);
0c281816
JB
7385 discrim = ada_value_struct_elt (outer, discrim_name, 1);
7386 if (discrim == NULL)
14f9c5c9 7387 return -1;
0c281816 7388 discrim_val = value_as_long (discrim);
14f9c5c9
AS
7389
7390 others_clause = -1;
7391 for (i = 0; i < TYPE_NFIELDS (var_type); i += 1)
7392 {
7393 if (ada_is_others_clause (var_type, i))
4c4b4cd2 7394 others_clause = i;
14f9c5c9 7395 else if (ada_in_variant (discrim_val, var_type, i))
4c4b4cd2 7396 return i;
14f9c5c9
AS
7397 }
7398
7399 return others_clause;
7400}
d2e4a39e 7401\f
14f9c5c9
AS
7402
7403
4c4b4cd2 7404 /* Dynamic-Sized Records */
14f9c5c9
AS
7405
7406/* Strategy: The type ostensibly attached to a value with dynamic size
7407 (i.e., a size that is not statically recorded in the debugging
7408 data) does not accurately reflect the size or layout of the value.
7409 Our strategy is to convert these values to values with accurate,
4c4b4cd2 7410 conventional types that are constructed on the fly. */
14f9c5c9
AS
7411
7412/* There is a subtle and tricky problem here. In general, we cannot
7413 determine the size of dynamic records without its data. However,
7414 the 'struct value' data structure, which GDB uses to represent
7415 quantities in the inferior process (the target), requires the size
7416 of the type at the time of its allocation in order to reserve space
7417 for GDB's internal copy of the data. That's why the
7418 'to_fixed_xxx_type' routines take (target) addresses as parameters,
4c4b4cd2 7419 rather than struct value*s.
14f9c5c9
AS
7420
7421 However, GDB's internal history variables ($1, $2, etc.) are
7422 struct value*s containing internal copies of the data that are not, in
7423 general, the same as the data at their corresponding addresses in
7424 the target. Fortunately, the types we give to these values are all
7425 conventional, fixed-size types (as per the strategy described
7426 above), so that we don't usually have to perform the
7427 'to_fixed_xxx_type' conversions to look at their values.
7428 Unfortunately, there is one exception: if one of the internal
7429 history variables is an array whose elements are unconstrained
7430 records, then we will need to create distinct fixed types for each
7431 element selected. */
7432
7433/* The upshot of all of this is that many routines take a (type, host
7434 address, target address) triple as arguments to represent a value.
7435 The host address, if non-null, is supposed to contain an internal
7436 copy of the relevant data; otherwise, the program is to consult the
4c4b4cd2 7437 target at the target address. */
14f9c5c9
AS
7438
7439/* Assuming that VAL0 represents a pointer value, the result of
7440 dereferencing it. Differs from value_ind in its treatment of
4c4b4cd2 7441 dynamic-sized types. */
14f9c5c9 7442
d2e4a39e
AS
7443struct value *
7444ada_value_ind (struct value *val0)
14f9c5c9 7445{
c48db5ca 7446 struct value *val = value_ind (val0);
5b4ee69b 7447
b50d69b5
JG
7448 if (ada_is_tagged_type (value_type (val), 0))
7449 val = ada_tag_value_at_base_address (val);
7450
4c4b4cd2 7451 return ada_to_fixed_value (val);
14f9c5c9
AS
7452}
7453
7454/* The value resulting from dereferencing any "reference to"
4c4b4cd2
PH
7455 qualifiers on VAL0. */
7456
d2e4a39e
AS
7457static struct value *
7458ada_coerce_ref (struct value *val0)
7459{
df407dfe 7460 if (TYPE_CODE (value_type (val0)) == TYPE_CODE_REF)
d2e4a39e
AS
7461 {
7462 struct value *val = val0;
5b4ee69b 7463
994b9211 7464 val = coerce_ref (val);
b50d69b5
JG
7465
7466 if (ada_is_tagged_type (value_type (val), 0))
7467 val = ada_tag_value_at_base_address (val);
7468
4c4b4cd2 7469 return ada_to_fixed_value (val);
d2e4a39e
AS
7470 }
7471 else
14f9c5c9
AS
7472 return val0;
7473}
7474
7475/* Return OFF rounded upward if necessary to a multiple of
4c4b4cd2 7476 ALIGNMENT (a power of 2). */
14f9c5c9
AS
7477
7478static unsigned int
ebf56fd3 7479align_value (unsigned int off, unsigned int alignment)
14f9c5c9
AS
7480{
7481 return (off + alignment - 1) & ~(alignment - 1);
7482}
7483
4c4b4cd2 7484/* Return the bit alignment required for field #F of template type TYPE. */
14f9c5c9
AS
7485
7486static unsigned int
ebf56fd3 7487field_alignment (struct type *type, int f)
14f9c5c9 7488{
d2e4a39e 7489 const char *name = TYPE_FIELD_NAME (type, f);
64a1bf19 7490 int len;
14f9c5c9
AS
7491 int align_offset;
7492
64a1bf19
JB
7493 /* The field name should never be null, unless the debugging information
7494 is somehow malformed. In this case, we assume the field does not
7495 require any alignment. */
7496 if (name == NULL)
7497 return 1;
7498
7499 len = strlen (name);
7500
4c4b4cd2
PH
7501 if (!isdigit (name[len - 1]))
7502 return 1;
14f9c5c9 7503
d2e4a39e 7504 if (isdigit (name[len - 2]))
14f9c5c9
AS
7505 align_offset = len - 2;
7506 else
7507 align_offset = len - 1;
7508
4c4b4cd2 7509 if (align_offset < 7 || strncmp ("___XV", name + align_offset - 6, 5) != 0)
14f9c5c9
AS
7510 return TARGET_CHAR_BIT;
7511
4c4b4cd2
PH
7512 return atoi (name + align_offset) * TARGET_CHAR_BIT;
7513}
7514
852dff6c 7515/* Find a typedef or tag symbol named NAME. Ignores ambiguity. */
4c4b4cd2 7516
852dff6c
JB
7517static struct symbol *
7518ada_find_any_type_symbol (const char *name)
4c4b4cd2
PH
7519{
7520 struct symbol *sym;
7521
7522 sym = standard_lookup (name, get_selected_block (NULL), VAR_DOMAIN);
4186eb54 7523 if (sym != NULL && SYMBOL_CLASS (sym) == LOC_TYPEDEF)
4c4b4cd2
PH
7524 return sym;
7525
4186eb54
KS
7526 sym = standard_lookup (name, NULL, STRUCT_DOMAIN);
7527 return sym;
14f9c5c9
AS
7528}
7529
dddfab26
UW
7530/* Find a type named NAME. Ignores ambiguity. This routine will look
7531 solely for types defined by debug info, it will not search the GDB
7532 primitive types. */
4c4b4cd2 7533
852dff6c 7534static struct type *
ebf56fd3 7535ada_find_any_type (const char *name)
14f9c5c9 7536{
852dff6c 7537 struct symbol *sym = ada_find_any_type_symbol (name);
14f9c5c9 7538
14f9c5c9 7539 if (sym != NULL)
dddfab26 7540 return SYMBOL_TYPE (sym);
14f9c5c9 7541
dddfab26 7542 return NULL;
14f9c5c9
AS
7543}
7544
739593e0
JB
7545/* Given NAME_SYM and an associated BLOCK, find a "renaming" symbol
7546 associated with NAME_SYM's name. NAME_SYM may itself be a renaming
7547 symbol, in which case it is returned. Otherwise, this looks for
7548 symbols whose name is that of NAME_SYM suffixed with "___XR".
7549 Return symbol if found, and NULL otherwise. */
4c4b4cd2
PH
7550
7551struct symbol *
270140bd 7552ada_find_renaming_symbol (struct symbol *name_sym, const struct block *block)
aeb5907d 7553{
739593e0 7554 const char *name = SYMBOL_LINKAGE_NAME (name_sym);
aeb5907d
JB
7555 struct symbol *sym;
7556
739593e0
JB
7557 if (strstr (name, "___XR") != NULL)
7558 return name_sym;
7559
aeb5907d
JB
7560 sym = find_old_style_renaming_symbol (name, block);
7561
7562 if (sym != NULL)
7563 return sym;
7564
0963b4bd 7565 /* Not right yet. FIXME pnh 7/20/2007. */
852dff6c 7566 sym = ada_find_any_type_symbol (name);
aeb5907d
JB
7567 if (sym != NULL && strstr (SYMBOL_LINKAGE_NAME (sym), "___XR") != NULL)
7568 return sym;
7569 else
7570 return NULL;
7571}
7572
7573static struct symbol *
270140bd 7574find_old_style_renaming_symbol (const char *name, const struct block *block)
4c4b4cd2 7575{
7f0df278 7576 const struct symbol *function_sym = block_linkage_function (block);
4c4b4cd2
PH
7577 char *rename;
7578
7579 if (function_sym != NULL)
7580 {
7581 /* If the symbol is defined inside a function, NAME is not fully
7582 qualified. This means we need to prepend the function name
7583 as well as adding the ``___XR'' suffix to build the name of
7584 the associated renaming symbol. */
0d5cff50 7585 const char *function_name = SYMBOL_LINKAGE_NAME (function_sym);
529cad9c
PH
7586 /* Function names sometimes contain suffixes used
7587 for instance to qualify nested subprograms. When building
7588 the XR type name, we need to make sure that this suffix is
7589 not included. So do not include any suffix in the function
7590 name length below. */
69fadcdf 7591 int function_name_len = ada_name_prefix_len (function_name);
76a01679
JB
7592 const int rename_len = function_name_len + 2 /* "__" */
7593 + strlen (name) + 6 /* "___XR\0" */ ;
4c4b4cd2 7594
529cad9c 7595 /* Strip the suffix if necessary. */
69fadcdf
JB
7596 ada_remove_trailing_digits (function_name, &function_name_len);
7597 ada_remove_po_subprogram_suffix (function_name, &function_name_len);
7598 ada_remove_Xbn_suffix (function_name, &function_name_len);
529cad9c 7599
4c4b4cd2
PH
7600 /* Library-level functions are a special case, as GNAT adds
7601 a ``_ada_'' prefix to the function name to avoid namespace
aeb5907d 7602 pollution. However, the renaming symbols themselves do not
4c4b4cd2
PH
7603 have this prefix, so we need to skip this prefix if present. */
7604 if (function_name_len > 5 /* "_ada_" */
7605 && strstr (function_name, "_ada_") == function_name)
69fadcdf
JB
7606 {
7607 function_name += 5;
7608 function_name_len -= 5;
7609 }
4c4b4cd2
PH
7610
7611 rename = (char *) alloca (rename_len * sizeof (char));
69fadcdf
JB
7612 strncpy (rename, function_name, function_name_len);
7613 xsnprintf (rename + function_name_len, rename_len - function_name_len,
7614 "__%s___XR", name);
4c4b4cd2
PH
7615 }
7616 else
7617 {
7618 const int rename_len = strlen (name) + 6;
5b4ee69b 7619
4c4b4cd2 7620 rename = (char *) alloca (rename_len * sizeof (char));
88c15c34 7621 xsnprintf (rename, rename_len * sizeof (char), "%s___XR", name);
4c4b4cd2
PH
7622 }
7623
852dff6c 7624 return ada_find_any_type_symbol (rename);
4c4b4cd2
PH
7625}
7626
14f9c5c9 7627/* Because of GNAT encoding conventions, several GDB symbols may match a
4c4b4cd2 7628 given type name. If the type denoted by TYPE0 is to be preferred to
14f9c5c9 7629 that of TYPE1 for purposes of type printing, return non-zero;
4c4b4cd2
PH
7630 otherwise return 0. */
7631
14f9c5c9 7632int
d2e4a39e 7633ada_prefer_type (struct type *type0, struct type *type1)
14f9c5c9
AS
7634{
7635 if (type1 == NULL)
7636 return 1;
7637 else if (type0 == NULL)
7638 return 0;
7639 else if (TYPE_CODE (type1) == TYPE_CODE_VOID)
7640 return 1;
7641 else if (TYPE_CODE (type0) == TYPE_CODE_VOID)
7642 return 0;
4c4b4cd2
PH
7643 else if (TYPE_NAME (type1) == NULL && TYPE_NAME (type0) != NULL)
7644 return 1;
ad82864c 7645 else if (ada_is_constrained_packed_array_type (type0))
14f9c5c9 7646 return 1;
4c4b4cd2
PH
7647 else if (ada_is_array_descriptor_type (type0)
7648 && !ada_is_array_descriptor_type (type1))
14f9c5c9 7649 return 1;
aeb5907d
JB
7650 else
7651 {
7652 const char *type0_name = type_name_no_tag (type0);
7653 const char *type1_name = type_name_no_tag (type1);
7654
7655 if (type0_name != NULL && strstr (type0_name, "___XR") != NULL
7656 && (type1_name == NULL || strstr (type1_name, "___XR") == NULL))
7657 return 1;
7658 }
14f9c5c9
AS
7659 return 0;
7660}
7661
7662/* The name of TYPE, which is either its TYPE_NAME, or, if that is
4c4b4cd2
PH
7663 null, its TYPE_TAG_NAME. Null if TYPE is null. */
7664
0d5cff50 7665const char *
d2e4a39e 7666ada_type_name (struct type *type)
14f9c5c9 7667{
d2e4a39e 7668 if (type == NULL)
14f9c5c9
AS
7669 return NULL;
7670 else if (TYPE_NAME (type) != NULL)
7671 return TYPE_NAME (type);
7672 else
7673 return TYPE_TAG_NAME (type);
7674}
7675
b4ba55a1
JB
7676/* Search the list of "descriptive" types associated to TYPE for a type
7677 whose name is NAME. */
7678
7679static struct type *
7680find_parallel_type_by_descriptive_type (struct type *type, const char *name)
7681{
7682 struct type *result;
7683
c6044dd1
JB
7684 if (ada_ignore_descriptive_types_p)
7685 return NULL;
7686
b4ba55a1
JB
7687 /* If there no descriptive-type info, then there is no parallel type
7688 to be found. */
7689 if (!HAVE_GNAT_AUX_INFO (type))
7690 return NULL;
7691
7692 result = TYPE_DESCRIPTIVE_TYPE (type);
7693 while (result != NULL)
7694 {
0d5cff50 7695 const char *result_name = ada_type_name (result);
b4ba55a1
JB
7696
7697 if (result_name == NULL)
7698 {
7699 warning (_("unexpected null name on descriptive type"));
7700 return NULL;
7701 }
7702
7703 /* If the names match, stop. */
7704 if (strcmp (result_name, name) == 0)
7705 break;
7706
7707 /* Otherwise, look at the next item on the list, if any. */
7708 if (HAVE_GNAT_AUX_INFO (result))
7709 result = TYPE_DESCRIPTIVE_TYPE (result);
7710 else
7711 result = NULL;
7712 }
7713
7714 /* If we didn't find a match, see whether this is a packed array. With
7715 older compilers, the descriptive type information is either absent or
7716 irrelevant when it comes to packed arrays so the above lookup fails.
7717 Fall back to using a parallel lookup by name in this case. */
12ab9e09 7718 if (result == NULL && ada_is_constrained_packed_array_type (type))
b4ba55a1
JB
7719 return ada_find_any_type (name);
7720
7721 return result;
7722}
7723
7724/* Find a parallel type to TYPE with the specified NAME, using the
7725 descriptive type taken from the debugging information, if available,
7726 and otherwise using the (slower) name-based method. */
7727
7728static struct type *
7729ada_find_parallel_type_with_name (struct type *type, const char *name)
7730{
7731 struct type *result = NULL;
7732
7733 if (HAVE_GNAT_AUX_INFO (type))
7734 result = find_parallel_type_by_descriptive_type (type, name);
7735 else
7736 result = ada_find_any_type (name);
7737
7738 return result;
7739}
7740
7741/* Same as above, but specify the name of the parallel type by appending
4c4b4cd2 7742 SUFFIX to the name of TYPE. */
14f9c5c9 7743
d2e4a39e 7744struct type *
ebf56fd3 7745ada_find_parallel_type (struct type *type, const char *suffix)
14f9c5c9 7746{
0d5cff50
DE
7747 char *name;
7748 const char *typename = ada_type_name (type);
14f9c5c9 7749 int len;
d2e4a39e 7750
14f9c5c9
AS
7751 if (typename == NULL)
7752 return NULL;
7753
7754 len = strlen (typename);
7755
b4ba55a1 7756 name = (char *) alloca (len + strlen (suffix) + 1);
14f9c5c9
AS
7757
7758 strcpy (name, typename);
7759 strcpy (name + len, suffix);
7760
b4ba55a1 7761 return ada_find_parallel_type_with_name (type, name);
14f9c5c9
AS
7762}
7763
14f9c5c9 7764/* If TYPE is a variable-size record type, return the corresponding template
4c4b4cd2 7765 type describing its fields. Otherwise, return NULL. */
14f9c5c9 7766
d2e4a39e
AS
7767static struct type *
7768dynamic_template_type (struct type *type)
14f9c5c9 7769{
61ee279c 7770 type = ada_check_typedef (type);
14f9c5c9
AS
7771
7772 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT
d2e4a39e 7773 || ada_type_name (type) == NULL)
14f9c5c9 7774 return NULL;
d2e4a39e 7775 else
14f9c5c9
AS
7776 {
7777 int len = strlen (ada_type_name (type));
5b4ee69b 7778
4c4b4cd2
PH
7779 if (len > 6 && strcmp (ada_type_name (type) + len - 6, "___XVE") == 0)
7780 return type;
14f9c5c9 7781 else
4c4b4cd2 7782 return ada_find_parallel_type (type, "___XVE");
14f9c5c9
AS
7783 }
7784}
7785
7786/* Assuming that TEMPL_TYPE is a union or struct type, returns
4c4b4cd2 7787 non-zero iff field FIELD_NUM of TEMPL_TYPE has dynamic size. */
14f9c5c9 7788
d2e4a39e
AS
7789static int
7790is_dynamic_field (struct type *templ_type, int field_num)
14f9c5c9
AS
7791{
7792 const char *name = TYPE_FIELD_NAME (templ_type, field_num);
5b4ee69b 7793
d2e4a39e 7794 return name != NULL
14f9c5c9
AS
7795 && TYPE_CODE (TYPE_FIELD_TYPE (templ_type, field_num)) == TYPE_CODE_PTR
7796 && strstr (name, "___XVL") != NULL;
7797}
7798
4c4b4cd2
PH
7799/* The index of the variant field of TYPE, or -1 if TYPE does not
7800 represent a variant record type. */
14f9c5c9 7801
d2e4a39e 7802static int
4c4b4cd2 7803variant_field_index (struct type *type)
14f9c5c9
AS
7804{
7805 int f;
7806
4c4b4cd2
PH
7807 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT)
7808 return -1;
7809
7810 for (f = 0; f < TYPE_NFIELDS (type); f += 1)
7811 {
7812 if (ada_is_variant_part (type, f))
7813 return f;
7814 }
7815 return -1;
14f9c5c9
AS
7816}
7817
4c4b4cd2
PH
7818/* A record type with no fields. */
7819
d2e4a39e 7820static struct type *
e9bb382b 7821empty_record (struct type *template)
14f9c5c9 7822{
e9bb382b 7823 struct type *type = alloc_type_copy (template);
5b4ee69b 7824
14f9c5c9
AS
7825 TYPE_CODE (type) = TYPE_CODE_STRUCT;
7826 TYPE_NFIELDS (type) = 0;
7827 TYPE_FIELDS (type) = NULL;
b1f33ddd 7828 INIT_CPLUS_SPECIFIC (type);
14f9c5c9
AS
7829 TYPE_NAME (type) = "<empty>";
7830 TYPE_TAG_NAME (type) = NULL;
14f9c5c9
AS
7831 TYPE_LENGTH (type) = 0;
7832 return type;
7833}
7834
7835/* An ordinary record type (with fixed-length fields) that describes
4c4b4cd2
PH
7836 the value of type TYPE at VALADDR or ADDRESS (see comments at
7837 the beginning of this section) VAL according to GNAT conventions.
7838 DVAL0 should describe the (portion of a) record that contains any
df407dfe 7839 necessary discriminants. It should be NULL if value_type (VAL) is
14f9c5c9
AS
7840 an outer-level type (i.e., as opposed to a branch of a variant.) A
7841 variant field (unless unchecked) is replaced by a particular branch
4c4b4cd2 7842 of the variant.
14f9c5c9 7843
4c4b4cd2
PH
7844 If not KEEP_DYNAMIC_FIELDS, then all fields whose position or
7845 length are not statically known are discarded. As a consequence,
7846 VALADDR, ADDRESS and DVAL0 are ignored.
7847
7848 NOTE: Limitations: For now, we assume that dynamic fields and
7849 variants occupy whole numbers of bytes. However, they need not be
7850 byte-aligned. */
7851
7852struct type *
10a2c479 7853ada_template_to_fixed_record_type_1 (struct type *type,
fc1a4b47 7854 const gdb_byte *valaddr,
4c4b4cd2
PH
7855 CORE_ADDR address, struct value *dval0,
7856 int keep_dynamic_fields)
14f9c5c9 7857{
d2e4a39e
AS
7858 struct value *mark = value_mark ();
7859 struct value *dval;
7860 struct type *rtype;
14f9c5c9 7861 int nfields, bit_len;
4c4b4cd2 7862 int variant_field;
14f9c5c9 7863 long off;
d94e4f4f 7864 int fld_bit_len;
14f9c5c9
AS
7865 int f;
7866
4c4b4cd2
PH
7867 /* Compute the number of fields in this record type that are going
7868 to be processed: unless keep_dynamic_fields, this includes only
7869 fields whose position and length are static will be processed. */
7870 if (keep_dynamic_fields)
7871 nfields = TYPE_NFIELDS (type);
7872 else
7873 {
7874 nfields = 0;
76a01679 7875 while (nfields < TYPE_NFIELDS (type)
4c4b4cd2
PH
7876 && !ada_is_variant_part (type, nfields)
7877 && !is_dynamic_field (type, nfields))
7878 nfields++;
7879 }
7880
e9bb382b 7881 rtype = alloc_type_copy (type);
14f9c5c9
AS
7882 TYPE_CODE (rtype) = TYPE_CODE_STRUCT;
7883 INIT_CPLUS_SPECIFIC (rtype);
7884 TYPE_NFIELDS (rtype) = nfields;
d2e4a39e 7885 TYPE_FIELDS (rtype) = (struct field *)
14f9c5c9
AS
7886 TYPE_ALLOC (rtype, nfields * sizeof (struct field));
7887 memset (TYPE_FIELDS (rtype), 0, sizeof (struct field) * nfields);
7888 TYPE_NAME (rtype) = ada_type_name (type);
7889 TYPE_TAG_NAME (rtype) = NULL;
876cecd0 7890 TYPE_FIXED_INSTANCE (rtype) = 1;
14f9c5c9 7891
d2e4a39e
AS
7892 off = 0;
7893 bit_len = 0;
4c4b4cd2
PH
7894 variant_field = -1;
7895
14f9c5c9
AS
7896 for (f = 0; f < nfields; f += 1)
7897 {
6c038f32
PH
7898 off = align_value (off, field_alignment (type, f))
7899 + TYPE_FIELD_BITPOS (type, f);
945b3a32 7900 SET_FIELD_BITPOS (TYPE_FIELD (rtype, f), off);
d2e4a39e 7901 TYPE_FIELD_BITSIZE (rtype, f) = 0;
14f9c5c9 7902
d2e4a39e 7903 if (ada_is_variant_part (type, f))
4c4b4cd2
PH
7904 {
7905 variant_field = f;
d94e4f4f 7906 fld_bit_len = 0;
4c4b4cd2 7907 }
14f9c5c9 7908 else if (is_dynamic_field (type, f))
4c4b4cd2 7909 {
284614f0
JB
7910 const gdb_byte *field_valaddr = valaddr;
7911 CORE_ADDR field_address = address;
7912 struct type *field_type =
7913 TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type, f));
7914
4c4b4cd2 7915 if (dval0 == NULL)
b5304971
JG
7916 {
7917 /* rtype's length is computed based on the run-time
7918 value of discriminants. If the discriminants are not
7919 initialized, the type size may be completely bogus and
0963b4bd 7920 GDB may fail to allocate a value for it. So check the
b5304971
JG
7921 size first before creating the value. */
7922 check_size (rtype);
012370f6
TT
7923 /* Using plain value_from_contents_and_address here
7924 causes problems because we will end up trying to
7925 resolve a type that is currently being
7926 constructed. */
7927 dval = value_from_contents_and_address_unresolved (rtype,
7928 valaddr,
7929 address);
9f1f738a 7930 rtype = value_type (dval);
b5304971 7931 }
4c4b4cd2
PH
7932 else
7933 dval = dval0;
7934
284614f0
JB
7935 /* If the type referenced by this field is an aligner type, we need
7936 to unwrap that aligner type, because its size might not be set.
7937 Keeping the aligner type would cause us to compute the wrong
7938 size for this field, impacting the offset of the all the fields
7939 that follow this one. */
7940 if (ada_is_aligner_type (field_type))
7941 {
7942 long field_offset = TYPE_FIELD_BITPOS (field_type, f);
7943
7944 field_valaddr = cond_offset_host (field_valaddr, field_offset);
7945 field_address = cond_offset_target (field_address, field_offset);
7946 field_type = ada_aligned_type (field_type);
7947 }
7948
7949 field_valaddr = cond_offset_host (field_valaddr,
7950 off / TARGET_CHAR_BIT);
7951 field_address = cond_offset_target (field_address,
7952 off / TARGET_CHAR_BIT);
7953
7954 /* Get the fixed type of the field. Note that, in this case,
7955 we do not want to get the real type out of the tag: if
7956 the current field is the parent part of a tagged record,
7957 we will get the tag of the object. Clearly wrong: the real
7958 type of the parent is not the real type of the child. We
7959 would end up in an infinite loop. */
7960 field_type = ada_get_base_type (field_type);
7961 field_type = ada_to_fixed_type (field_type, field_valaddr,
7962 field_address, dval, 0);
27f2a97b
JB
7963 /* If the field size is already larger than the maximum
7964 object size, then the record itself will necessarily
7965 be larger than the maximum object size. We need to make
7966 this check now, because the size might be so ridiculously
7967 large (due to an uninitialized variable in the inferior)
7968 that it would cause an overflow when adding it to the
7969 record size. */
7970 check_size (field_type);
284614f0
JB
7971
7972 TYPE_FIELD_TYPE (rtype, f) = field_type;
4c4b4cd2 7973 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
27f2a97b
JB
7974 /* The multiplication can potentially overflow. But because
7975 the field length has been size-checked just above, and
7976 assuming that the maximum size is a reasonable value,
7977 an overflow should not happen in practice. So rather than
7978 adding overflow recovery code to this already complex code,
7979 we just assume that it's not going to happen. */
d94e4f4f 7980 fld_bit_len =
4c4b4cd2
PH
7981 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, f)) * TARGET_CHAR_BIT;
7982 }
14f9c5c9 7983 else
4c4b4cd2 7984 {
5ded5331
JB
7985 /* Note: If this field's type is a typedef, it is important
7986 to preserve the typedef layer.
7987
7988 Otherwise, we might be transforming a typedef to a fat
7989 pointer (encoding a pointer to an unconstrained array),
7990 into a basic fat pointer (encoding an unconstrained
7991 array). As both types are implemented using the same
7992 structure, the typedef is the only clue which allows us
7993 to distinguish between the two options. Stripping it
7994 would prevent us from printing this field appropriately. */
7995 TYPE_FIELD_TYPE (rtype, f) = TYPE_FIELD_TYPE (type, f);
4c4b4cd2
PH
7996 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
7997 if (TYPE_FIELD_BITSIZE (type, f) > 0)
d94e4f4f 7998 fld_bit_len =
4c4b4cd2
PH
7999 TYPE_FIELD_BITSIZE (rtype, f) = TYPE_FIELD_BITSIZE (type, f);
8000 else
5ded5331
JB
8001 {
8002 struct type *field_type = TYPE_FIELD_TYPE (type, f);
8003
8004 /* We need to be careful of typedefs when computing
8005 the length of our field. If this is a typedef,
8006 get the length of the target type, not the length
8007 of the typedef. */
8008 if (TYPE_CODE (field_type) == TYPE_CODE_TYPEDEF)
8009 field_type = ada_typedef_target_type (field_type);
8010
8011 fld_bit_len =
8012 TYPE_LENGTH (ada_check_typedef (field_type)) * TARGET_CHAR_BIT;
8013 }
4c4b4cd2 8014 }
14f9c5c9 8015 if (off + fld_bit_len > bit_len)
4c4b4cd2 8016 bit_len = off + fld_bit_len;
d94e4f4f 8017 off += fld_bit_len;
4c4b4cd2
PH
8018 TYPE_LENGTH (rtype) =
8019 align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
14f9c5c9 8020 }
4c4b4cd2
PH
8021
8022 /* We handle the variant part, if any, at the end because of certain
b1f33ddd 8023 odd cases in which it is re-ordered so as NOT to be the last field of
4c4b4cd2
PH
8024 the record. This can happen in the presence of representation
8025 clauses. */
8026 if (variant_field >= 0)
8027 {
8028 struct type *branch_type;
8029
8030 off = TYPE_FIELD_BITPOS (rtype, variant_field);
8031
8032 if (dval0 == NULL)
9f1f738a 8033 {
012370f6
TT
8034 /* Using plain value_from_contents_and_address here causes
8035 problems because we will end up trying to resolve a type
8036 that is currently being constructed. */
8037 dval = value_from_contents_and_address_unresolved (rtype, valaddr,
8038 address);
9f1f738a
SA
8039 rtype = value_type (dval);
8040 }
4c4b4cd2
PH
8041 else
8042 dval = dval0;
8043
8044 branch_type =
8045 to_fixed_variant_branch_type
8046 (TYPE_FIELD_TYPE (type, variant_field),
8047 cond_offset_host (valaddr, off / TARGET_CHAR_BIT),
8048 cond_offset_target (address, off / TARGET_CHAR_BIT), dval);
8049 if (branch_type == NULL)
8050 {
8051 for (f = variant_field + 1; f < TYPE_NFIELDS (rtype); f += 1)
8052 TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f];
8053 TYPE_NFIELDS (rtype) -= 1;
8054 }
8055 else
8056 {
8057 TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
8058 TYPE_FIELD_NAME (rtype, variant_field) = "S";
8059 fld_bit_len =
8060 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, variant_field)) *
8061 TARGET_CHAR_BIT;
8062 if (off + fld_bit_len > bit_len)
8063 bit_len = off + fld_bit_len;
8064 TYPE_LENGTH (rtype) =
8065 align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
8066 }
8067 }
8068
714e53ab
PH
8069 /* According to exp_dbug.ads, the size of TYPE for variable-size records
8070 should contain the alignment of that record, which should be a strictly
8071 positive value. If null or negative, then something is wrong, most
8072 probably in the debug info. In that case, we don't round up the size
0963b4bd 8073 of the resulting type. If this record is not part of another structure,
714e53ab
PH
8074 the current RTYPE length might be good enough for our purposes. */
8075 if (TYPE_LENGTH (type) <= 0)
8076 {
323e0a4a
AC
8077 if (TYPE_NAME (rtype))
8078 warning (_("Invalid type size for `%s' detected: %d."),
8079 TYPE_NAME (rtype), TYPE_LENGTH (type));
8080 else
8081 warning (_("Invalid type size for <unnamed> detected: %d."),
8082 TYPE_LENGTH (type));
714e53ab
PH
8083 }
8084 else
8085 {
8086 TYPE_LENGTH (rtype) = align_value (TYPE_LENGTH (rtype),
8087 TYPE_LENGTH (type));
8088 }
14f9c5c9
AS
8089
8090 value_free_to_mark (mark);
d2e4a39e 8091 if (TYPE_LENGTH (rtype) > varsize_limit)
323e0a4a 8092 error (_("record type with dynamic size is larger than varsize-limit"));
14f9c5c9
AS
8093 return rtype;
8094}
8095
4c4b4cd2
PH
8096/* As for ada_template_to_fixed_record_type_1 with KEEP_DYNAMIC_FIELDS
8097 of 1. */
14f9c5c9 8098
d2e4a39e 8099static struct type *
fc1a4b47 8100template_to_fixed_record_type (struct type *type, const gdb_byte *valaddr,
4c4b4cd2
PH
8101 CORE_ADDR address, struct value *dval0)
8102{
8103 return ada_template_to_fixed_record_type_1 (type, valaddr,
8104 address, dval0, 1);
8105}
8106
8107/* An ordinary record type in which ___XVL-convention fields and
8108 ___XVU- and ___XVN-convention field types in TYPE0 are replaced with
8109 static approximations, containing all possible fields. Uses
8110 no runtime values. Useless for use in values, but that's OK,
8111 since the results are used only for type determinations. Works on both
8112 structs and unions. Representation note: to save space, we memorize
8113 the result of this function in the TYPE_TARGET_TYPE of the
8114 template type. */
8115
8116static struct type *
8117template_to_static_fixed_type (struct type *type0)
14f9c5c9
AS
8118{
8119 struct type *type;
8120 int nfields;
8121 int f;
8122
4c4b4cd2
PH
8123 if (TYPE_TARGET_TYPE (type0) != NULL)
8124 return TYPE_TARGET_TYPE (type0);
8125
8126 nfields = TYPE_NFIELDS (type0);
8127 type = type0;
14f9c5c9
AS
8128
8129 for (f = 0; f < nfields; f += 1)
8130 {
61ee279c 8131 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type0, f));
4c4b4cd2 8132 struct type *new_type;
14f9c5c9 8133
4c4b4cd2
PH
8134 if (is_dynamic_field (type0, f))
8135 new_type = to_static_fixed_type (TYPE_TARGET_TYPE (field_type));
14f9c5c9 8136 else
f192137b 8137 new_type = static_unwrap_type (field_type);
4c4b4cd2
PH
8138 if (type == type0 && new_type != field_type)
8139 {
e9bb382b 8140 TYPE_TARGET_TYPE (type0) = type = alloc_type_copy (type0);
4c4b4cd2
PH
8141 TYPE_CODE (type) = TYPE_CODE (type0);
8142 INIT_CPLUS_SPECIFIC (type);
8143 TYPE_NFIELDS (type) = nfields;
8144 TYPE_FIELDS (type) = (struct field *)
8145 TYPE_ALLOC (type, nfields * sizeof (struct field));
8146 memcpy (TYPE_FIELDS (type), TYPE_FIELDS (type0),
8147 sizeof (struct field) * nfields);
8148 TYPE_NAME (type) = ada_type_name (type0);
8149 TYPE_TAG_NAME (type) = NULL;
876cecd0 8150 TYPE_FIXED_INSTANCE (type) = 1;
4c4b4cd2
PH
8151 TYPE_LENGTH (type) = 0;
8152 }
8153 TYPE_FIELD_TYPE (type, f) = new_type;
8154 TYPE_FIELD_NAME (type, f) = TYPE_FIELD_NAME (type0, f);
14f9c5c9 8155 }
14f9c5c9
AS
8156 return type;
8157}
8158
4c4b4cd2 8159/* Given an object of type TYPE whose contents are at VALADDR and
5823c3ef
JB
8160 whose address in memory is ADDRESS, returns a revision of TYPE,
8161 which should be a non-dynamic-sized record, in which the variant
8162 part, if any, is replaced with the appropriate branch. Looks
4c4b4cd2
PH
8163 for discriminant values in DVAL0, which can be NULL if the record
8164 contains the necessary discriminant values. */
8165
d2e4a39e 8166static struct type *
fc1a4b47 8167to_record_with_fixed_variant_part (struct type *type, const gdb_byte *valaddr,
4c4b4cd2 8168 CORE_ADDR address, struct value *dval0)
14f9c5c9 8169{
d2e4a39e 8170 struct value *mark = value_mark ();
4c4b4cd2 8171 struct value *dval;
d2e4a39e 8172 struct type *rtype;
14f9c5c9
AS
8173 struct type *branch_type;
8174 int nfields = TYPE_NFIELDS (type);
4c4b4cd2 8175 int variant_field = variant_field_index (type);
14f9c5c9 8176
4c4b4cd2 8177 if (variant_field == -1)
14f9c5c9
AS
8178 return type;
8179
4c4b4cd2 8180 if (dval0 == NULL)
9f1f738a
SA
8181 {
8182 dval = value_from_contents_and_address (type, valaddr, address);
8183 type = value_type (dval);
8184 }
4c4b4cd2
PH
8185 else
8186 dval = dval0;
8187
e9bb382b 8188 rtype = alloc_type_copy (type);
14f9c5c9 8189 TYPE_CODE (rtype) = TYPE_CODE_STRUCT;
4c4b4cd2
PH
8190 INIT_CPLUS_SPECIFIC (rtype);
8191 TYPE_NFIELDS (rtype) = nfields;
d2e4a39e
AS
8192 TYPE_FIELDS (rtype) =
8193 (struct field *) TYPE_ALLOC (rtype, nfields * sizeof (struct field));
8194 memcpy (TYPE_FIELDS (rtype), TYPE_FIELDS (type),
4c4b4cd2 8195 sizeof (struct field) * nfields);
14f9c5c9
AS
8196 TYPE_NAME (rtype) = ada_type_name (type);
8197 TYPE_TAG_NAME (rtype) = NULL;
876cecd0 8198 TYPE_FIXED_INSTANCE (rtype) = 1;
14f9c5c9
AS
8199 TYPE_LENGTH (rtype) = TYPE_LENGTH (type);
8200
4c4b4cd2
PH
8201 branch_type = to_fixed_variant_branch_type
8202 (TYPE_FIELD_TYPE (type, variant_field),
d2e4a39e 8203 cond_offset_host (valaddr,
4c4b4cd2
PH
8204 TYPE_FIELD_BITPOS (type, variant_field)
8205 / TARGET_CHAR_BIT),
d2e4a39e 8206 cond_offset_target (address,
4c4b4cd2
PH
8207 TYPE_FIELD_BITPOS (type, variant_field)
8208 / TARGET_CHAR_BIT), dval);
d2e4a39e 8209 if (branch_type == NULL)
14f9c5c9 8210 {
4c4b4cd2 8211 int f;
5b4ee69b 8212
4c4b4cd2
PH
8213 for (f = variant_field + 1; f < nfields; f += 1)
8214 TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f];
14f9c5c9 8215 TYPE_NFIELDS (rtype) -= 1;
14f9c5c9
AS
8216 }
8217 else
8218 {
4c4b4cd2
PH
8219 TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
8220 TYPE_FIELD_NAME (rtype, variant_field) = "S";
8221 TYPE_FIELD_BITSIZE (rtype, variant_field) = 0;
14f9c5c9 8222 TYPE_LENGTH (rtype) += TYPE_LENGTH (branch_type);
14f9c5c9 8223 }
4c4b4cd2 8224 TYPE_LENGTH (rtype) -= TYPE_LENGTH (TYPE_FIELD_TYPE (type, variant_field));
d2e4a39e 8225
4c4b4cd2 8226 value_free_to_mark (mark);
14f9c5c9
AS
8227 return rtype;
8228}
8229
8230/* An ordinary record type (with fixed-length fields) that describes
8231 the value at (TYPE0, VALADDR, ADDRESS) [see explanation at
8232 beginning of this section]. Any necessary discriminants' values
4c4b4cd2
PH
8233 should be in DVAL, a record value; it may be NULL if the object
8234 at ADDR itself contains any necessary discriminant values.
8235 Additionally, VALADDR and ADDRESS may also be NULL if no discriminant
8236 values from the record are needed. Except in the case that DVAL,
8237 VALADDR, and ADDRESS are all 0 or NULL, a variant field (unless
8238 unchecked) is replaced by a particular branch of the variant.
8239
8240 NOTE: the case in which DVAL and VALADDR are NULL and ADDRESS is 0
8241 is questionable and may be removed. It can arise during the
8242 processing of an unconstrained-array-of-record type where all the
8243 variant branches have exactly the same size. This is because in
8244 such cases, the compiler does not bother to use the XVS convention
8245 when encoding the record. I am currently dubious of this
8246 shortcut and suspect the compiler should be altered. FIXME. */
14f9c5c9 8247
d2e4a39e 8248static struct type *
fc1a4b47 8249to_fixed_record_type (struct type *type0, const gdb_byte *valaddr,
4c4b4cd2 8250 CORE_ADDR address, struct value *dval)
14f9c5c9 8251{
d2e4a39e 8252 struct type *templ_type;
14f9c5c9 8253
876cecd0 8254 if (TYPE_FIXED_INSTANCE (type0))
4c4b4cd2
PH
8255 return type0;
8256
d2e4a39e 8257 templ_type = dynamic_template_type (type0);
14f9c5c9
AS
8258
8259 if (templ_type != NULL)
8260 return template_to_fixed_record_type (templ_type, valaddr, address, dval);
4c4b4cd2
PH
8261 else if (variant_field_index (type0) >= 0)
8262 {
8263 if (dval == NULL && valaddr == NULL && address == 0)
8264 return type0;
8265 return to_record_with_fixed_variant_part (type0, valaddr, address,
8266 dval);
8267 }
14f9c5c9
AS
8268 else
8269 {
876cecd0 8270 TYPE_FIXED_INSTANCE (type0) = 1;
14f9c5c9
AS
8271 return type0;
8272 }
8273
8274}
8275
8276/* An ordinary record type (with fixed-length fields) that describes
8277 the value at (VAR_TYPE0, VALADDR, ADDRESS), where VAR_TYPE0 is a
8278 union type. Any necessary discriminants' values should be in DVAL,
8279 a record value. That is, this routine selects the appropriate
8280 branch of the union at ADDR according to the discriminant value
b1f33ddd 8281 indicated in the union's type name. Returns VAR_TYPE0 itself if
0963b4bd 8282 it represents a variant subject to a pragma Unchecked_Union. */
14f9c5c9 8283
d2e4a39e 8284static struct type *
fc1a4b47 8285to_fixed_variant_branch_type (struct type *var_type0, const gdb_byte *valaddr,
4c4b4cd2 8286 CORE_ADDR address, struct value *dval)
14f9c5c9
AS
8287{
8288 int which;
d2e4a39e
AS
8289 struct type *templ_type;
8290 struct type *var_type;
14f9c5c9
AS
8291
8292 if (TYPE_CODE (var_type0) == TYPE_CODE_PTR)
8293 var_type = TYPE_TARGET_TYPE (var_type0);
d2e4a39e 8294 else
14f9c5c9
AS
8295 var_type = var_type0;
8296
8297 templ_type = ada_find_parallel_type (var_type, "___XVU");
8298
8299 if (templ_type != NULL)
8300 var_type = templ_type;
8301
b1f33ddd
JB
8302 if (is_unchecked_variant (var_type, value_type (dval)))
8303 return var_type0;
d2e4a39e
AS
8304 which =
8305 ada_which_variant_applies (var_type,
0fd88904 8306 value_type (dval), value_contents (dval));
14f9c5c9
AS
8307
8308 if (which < 0)
e9bb382b 8309 return empty_record (var_type);
14f9c5c9 8310 else if (is_dynamic_field (var_type, which))
4c4b4cd2 8311 return to_fixed_record_type
d2e4a39e
AS
8312 (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (var_type, which)),
8313 valaddr, address, dval);
4c4b4cd2 8314 else if (variant_field_index (TYPE_FIELD_TYPE (var_type, which)) >= 0)
d2e4a39e
AS
8315 return
8316 to_fixed_record_type
8317 (TYPE_FIELD_TYPE (var_type, which), valaddr, address, dval);
14f9c5c9
AS
8318 else
8319 return TYPE_FIELD_TYPE (var_type, which);
8320}
8321
8908fca5
JB
8322/* Assuming RANGE_TYPE is a TYPE_CODE_RANGE, return nonzero if
8323 ENCODING_TYPE, a type following the GNAT conventions for discrete
8324 type encodings, only carries redundant information. */
8325
8326static int
8327ada_is_redundant_range_encoding (struct type *range_type,
8328 struct type *encoding_type)
8329{
8330 struct type *fixed_range_type;
8331 char *bounds_str;
8332 int n;
8333 LONGEST lo, hi;
8334
8335 gdb_assert (TYPE_CODE (range_type) == TYPE_CODE_RANGE);
8336
8337 if (is_dynamic_type (range_type))
8338 return 0;
8339
8340 if (TYPE_NAME (encoding_type) == NULL)
8341 return 0;
8342
8343 bounds_str = strstr (TYPE_NAME (encoding_type), "___XDLU_");
8344 if (bounds_str == NULL)
8345 return 0;
8346
8347 n = 8; /* Skip "___XDLU_". */
8348 if (!ada_scan_number (bounds_str, n, &lo, &n))
8349 return 0;
8350 if (TYPE_LOW_BOUND (range_type) != lo)
8351 return 0;
8352
8353 n += 2; /* Skip the "__" separator between the two bounds. */
8354 if (!ada_scan_number (bounds_str, n, &hi, &n))
8355 return 0;
8356 if (TYPE_HIGH_BOUND (range_type) != hi)
8357 return 0;
8358
8359 return 1;
8360}
8361
8362/* Given the array type ARRAY_TYPE, return nonzero if DESC_TYPE,
8363 a type following the GNAT encoding for describing array type
8364 indices, only carries redundant information. */
8365
8366static int
8367ada_is_redundant_index_type_desc (struct type *array_type,
8368 struct type *desc_type)
8369{
8370 struct type *this_layer = check_typedef (array_type);
8371 int i;
8372
8373 for (i = 0; i < TYPE_NFIELDS (desc_type); i++)
8374 {
8375 if (!ada_is_redundant_range_encoding (TYPE_INDEX_TYPE (this_layer),
8376 TYPE_FIELD_TYPE (desc_type, i)))
8377 return 0;
8378 this_layer = check_typedef (TYPE_TARGET_TYPE (this_layer));
8379 }
8380
8381 return 1;
8382}
8383
14f9c5c9
AS
8384/* Assuming that TYPE0 is an array type describing the type of a value
8385 at ADDR, and that DVAL describes a record containing any
8386 discriminants used in TYPE0, returns a type for the value that
8387 contains no dynamic components (that is, no components whose sizes
8388 are determined by run-time quantities). Unless IGNORE_TOO_BIG is
8389 true, gives an error message if the resulting type's size is over
4c4b4cd2 8390 varsize_limit. */
14f9c5c9 8391
d2e4a39e
AS
8392static struct type *
8393to_fixed_array_type (struct type *type0, struct value *dval,
4c4b4cd2 8394 int ignore_too_big)
14f9c5c9 8395{
d2e4a39e
AS
8396 struct type *index_type_desc;
8397 struct type *result;
ad82864c 8398 int constrained_packed_array_p;
14f9c5c9 8399
b0dd7688 8400 type0 = ada_check_typedef (type0);
284614f0 8401 if (TYPE_FIXED_INSTANCE (type0))
4c4b4cd2 8402 return type0;
14f9c5c9 8403
ad82864c
JB
8404 constrained_packed_array_p = ada_is_constrained_packed_array_type (type0);
8405 if (constrained_packed_array_p)
8406 type0 = decode_constrained_packed_array_type (type0);
284614f0 8407
14f9c5c9 8408 index_type_desc = ada_find_parallel_type (type0, "___XA");
28c85d6c 8409 ada_fixup_array_indexes_type (index_type_desc);
8908fca5
JB
8410 if (index_type_desc != NULL
8411 && ada_is_redundant_index_type_desc (type0, index_type_desc))
8412 {
8413 /* Ignore this ___XA parallel type, as it does not bring any
8414 useful information. This allows us to avoid creating fixed
8415 versions of the array's index types, which would be identical
8416 to the original ones. This, in turn, can also help avoid
8417 the creation of fixed versions of the array itself. */
8418 index_type_desc = NULL;
8419 }
8420
14f9c5c9
AS
8421 if (index_type_desc == NULL)
8422 {
61ee279c 8423 struct type *elt_type0 = ada_check_typedef (TYPE_TARGET_TYPE (type0));
5b4ee69b 8424
14f9c5c9 8425 /* NOTE: elt_type---the fixed version of elt_type0---should never
4c4b4cd2
PH
8426 depend on the contents of the array in properly constructed
8427 debugging data. */
529cad9c
PH
8428 /* Create a fixed version of the array element type.
8429 We're not providing the address of an element here,
e1d5a0d2 8430 and thus the actual object value cannot be inspected to do
529cad9c
PH
8431 the conversion. This should not be a problem, since arrays of
8432 unconstrained objects are not allowed. In particular, all
8433 the elements of an array of a tagged type should all be of
8434 the same type specified in the debugging info. No need to
8435 consult the object tag. */
1ed6ede0 8436 struct type *elt_type = ada_to_fixed_type (elt_type0, 0, 0, dval, 1);
14f9c5c9 8437
284614f0
JB
8438 /* Make sure we always create a new array type when dealing with
8439 packed array types, since we're going to fix-up the array
8440 type length and element bitsize a little further down. */
ad82864c 8441 if (elt_type0 == elt_type && !constrained_packed_array_p)
4c4b4cd2 8442 result = type0;
14f9c5c9 8443 else
e9bb382b 8444 result = create_array_type (alloc_type_copy (type0),
4c4b4cd2 8445 elt_type, TYPE_INDEX_TYPE (type0));
14f9c5c9
AS
8446 }
8447 else
8448 {
8449 int i;
8450 struct type *elt_type0;
8451
8452 elt_type0 = type0;
8453 for (i = TYPE_NFIELDS (index_type_desc); i > 0; i -= 1)
4c4b4cd2 8454 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
14f9c5c9
AS
8455
8456 /* NOTE: result---the fixed version of elt_type0---should never
4c4b4cd2
PH
8457 depend on the contents of the array in properly constructed
8458 debugging data. */
529cad9c
PH
8459 /* Create a fixed version of the array element type.
8460 We're not providing the address of an element here,
e1d5a0d2 8461 and thus the actual object value cannot be inspected to do
529cad9c
PH
8462 the conversion. This should not be a problem, since arrays of
8463 unconstrained objects are not allowed. In particular, all
8464 the elements of an array of a tagged type should all be of
8465 the same type specified in the debugging info. No need to
8466 consult the object tag. */
1ed6ede0
JB
8467 result =
8468 ada_to_fixed_type (ada_check_typedef (elt_type0), 0, 0, dval, 1);
1ce677a4
UW
8469
8470 elt_type0 = type0;
14f9c5c9 8471 for (i = TYPE_NFIELDS (index_type_desc) - 1; i >= 0; i -= 1)
4c4b4cd2
PH
8472 {
8473 struct type *range_type =
28c85d6c 8474 to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, i), dval);
5b4ee69b 8475
e9bb382b 8476 result = create_array_type (alloc_type_copy (elt_type0),
4c4b4cd2 8477 result, range_type);
1ce677a4 8478 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
4c4b4cd2 8479 }
d2e4a39e 8480 if (!ignore_too_big && TYPE_LENGTH (result) > varsize_limit)
323e0a4a 8481 error (_("array type with dynamic size is larger than varsize-limit"));
14f9c5c9
AS
8482 }
8483
2e6fda7d
JB
8484 /* We want to preserve the type name. This can be useful when
8485 trying to get the type name of a value that has already been
8486 printed (for instance, if the user did "print VAR; whatis $". */
8487 TYPE_NAME (result) = TYPE_NAME (type0);
8488
ad82864c 8489 if (constrained_packed_array_p)
284614f0
JB
8490 {
8491 /* So far, the resulting type has been created as if the original
8492 type was a regular (non-packed) array type. As a result, the
8493 bitsize of the array elements needs to be set again, and the array
8494 length needs to be recomputed based on that bitsize. */
8495 int len = TYPE_LENGTH (result) / TYPE_LENGTH (TYPE_TARGET_TYPE (result));
8496 int elt_bitsize = TYPE_FIELD_BITSIZE (type0, 0);
8497
8498 TYPE_FIELD_BITSIZE (result, 0) = TYPE_FIELD_BITSIZE (type0, 0);
8499 TYPE_LENGTH (result) = len * elt_bitsize / HOST_CHAR_BIT;
8500 if (TYPE_LENGTH (result) * HOST_CHAR_BIT < len * elt_bitsize)
8501 TYPE_LENGTH (result)++;
8502 }
8503
876cecd0 8504 TYPE_FIXED_INSTANCE (result) = 1;
14f9c5c9 8505 return result;
d2e4a39e 8506}
14f9c5c9
AS
8507
8508
8509/* A standard type (containing no dynamically sized components)
8510 corresponding to TYPE for the value (TYPE, VALADDR, ADDRESS)
8511 DVAL describes a record containing any discriminants used in TYPE0,
4c4b4cd2 8512 and may be NULL if there are none, or if the object of type TYPE at
529cad9c
PH
8513 ADDRESS or in VALADDR contains these discriminants.
8514
1ed6ede0
JB
8515 If CHECK_TAG is not null, in the case of tagged types, this function
8516 attempts to locate the object's tag and use it to compute the actual
8517 type. However, when ADDRESS is null, we cannot use it to determine the
8518 location of the tag, and therefore compute the tagged type's actual type.
8519 So we return the tagged type without consulting the tag. */
529cad9c 8520
f192137b
JB
8521static struct type *
8522ada_to_fixed_type_1 (struct type *type, const gdb_byte *valaddr,
1ed6ede0 8523 CORE_ADDR address, struct value *dval, int check_tag)
14f9c5c9 8524{
61ee279c 8525 type = ada_check_typedef (type);
d2e4a39e
AS
8526 switch (TYPE_CODE (type))
8527 {
8528 default:
14f9c5c9 8529 return type;
d2e4a39e 8530 case TYPE_CODE_STRUCT:
4c4b4cd2 8531 {
76a01679 8532 struct type *static_type = to_static_fixed_type (type);
1ed6ede0
JB
8533 struct type *fixed_record_type =
8534 to_fixed_record_type (type, valaddr, address, NULL);
5b4ee69b 8535
529cad9c
PH
8536 /* If STATIC_TYPE is a tagged type and we know the object's address,
8537 then we can determine its tag, and compute the object's actual
0963b4bd 8538 type from there. Note that we have to use the fixed record
1ed6ede0
JB
8539 type (the parent part of the record may have dynamic fields
8540 and the way the location of _tag is expressed may depend on
8541 them). */
529cad9c 8542
1ed6ede0 8543 if (check_tag && address != 0 && ada_is_tagged_type (static_type, 0))
76a01679 8544 {
b50d69b5
JG
8545 struct value *tag =
8546 value_tag_from_contents_and_address
8547 (fixed_record_type,
8548 valaddr,
8549 address);
8550 struct type *real_type = type_from_tag (tag);
8551 struct value *obj =
8552 value_from_contents_and_address (fixed_record_type,
8553 valaddr,
8554 address);
9f1f738a 8555 fixed_record_type = value_type (obj);
76a01679 8556 if (real_type != NULL)
b50d69b5
JG
8557 return to_fixed_record_type
8558 (real_type, NULL,
8559 value_address (ada_tag_value_at_base_address (obj)), NULL);
76a01679 8560 }
4af88198
JB
8561
8562 /* Check to see if there is a parallel ___XVZ variable.
8563 If there is, then it provides the actual size of our type. */
8564 else if (ada_type_name (fixed_record_type) != NULL)
8565 {
0d5cff50 8566 const char *name = ada_type_name (fixed_record_type);
4af88198
JB
8567 char *xvz_name = alloca (strlen (name) + 7 /* "___XVZ\0" */);
8568 int xvz_found = 0;
8569 LONGEST size;
8570
88c15c34 8571 xsnprintf (xvz_name, strlen (name) + 7, "%s___XVZ", name);
4af88198
JB
8572 size = get_int_var_value (xvz_name, &xvz_found);
8573 if (xvz_found && TYPE_LENGTH (fixed_record_type) != size)
8574 {
8575 fixed_record_type = copy_type (fixed_record_type);
8576 TYPE_LENGTH (fixed_record_type) = size;
8577
8578 /* The FIXED_RECORD_TYPE may have be a stub. We have
8579 observed this when the debugging info is STABS, and
8580 apparently it is something that is hard to fix.
8581
8582 In practice, we don't need the actual type definition
8583 at all, because the presence of the XVZ variable allows us
8584 to assume that there must be a XVS type as well, which we
8585 should be able to use later, when we need the actual type
8586 definition.
8587
8588 In the meantime, pretend that the "fixed" type we are
8589 returning is NOT a stub, because this can cause trouble
8590 when using this type to create new types targeting it.
8591 Indeed, the associated creation routines often check
8592 whether the target type is a stub and will try to replace
0963b4bd 8593 it, thus using a type with the wrong size. This, in turn,
4af88198
JB
8594 might cause the new type to have the wrong size too.
8595 Consider the case of an array, for instance, where the size
8596 of the array is computed from the number of elements in
8597 our array multiplied by the size of its element. */
8598 TYPE_STUB (fixed_record_type) = 0;
8599 }
8600 }
1ed6ede0 8601 return fixed_record_type;
4c4b4cd2 8602 }
d2e4a39e 8603 case TYPE_CODE_ARRAY:
4c4b4cd2 8604 return to_fixed_array_type (type, dval, 1);
d2e4a39e
AS
8605 case TYPE_CODE_UNION:
8606 if (dval == NULL)
4c4b4cd2 8607 return type;
d2e4a39e 8608 else
4c4b4cd2 8609 return to_fixed_variant_branch_type (type, valaddr, address, dval);
d2e4a39e 8610 }
14f9c5c9
AS
8611}
8612
f192137b
JB
8613/* The same as ada_to_fixed_type_1, except that it preserves the type
8614 if it is a TYPE_CODE_TYPEDEF of a type that is already fixed.
96dbd2c1
JB
8615
8616 The typedef layer needs be preserved in order to differentiate between
8617 arrays and array pointers when both types are implemented using the same
8618 fat pointer. In the array pointer case, the pointer is encoded as
8619 a typedef of the pointer type. For instance, considering:
8620
8621 type String_Access is access String;
8622 S1 : String_Access := null;
8623
8624 To the debugger, S1 is defined as a typedef of type String. But
8625 to the user, it is a pointer. So if the user tries to print S1,
8626 we should not dereference the array, but print the array address
8627 instead.
8628
8629 If we didn't preserve the typedef layer, we would lose the fact that
8630 the type is to be presented as a pointer (needs de-reference before
8631 being printed). And we would also use the source-level type name. */
f192137b
JB
8632
8633struct type *
8634ada_to_fixed_type (struct type *type, const gdb_byte *valaddr,
8635 CORE_ADDR address, struct value *dval, int check_tag)
8636
8637{
8638 struct type *fixed_type =
8639 ada_to_fixed_type_1 (type, valaddr, address, dval, check_tag);
8640
96dbd2c1
JB
8641 /* If TYPE is a typedef and its target type is the same as the FIXED_TYPE,
8642 then preserve the typedef layer.
8643
8644 Implementation note: We can only check the main-type portion of
8645 the TYPE and FIXED_TYPE, because eliminating the typedef layer
8646 from TYPE now returns a type that has the same instance flags
8647 as TYPE. For instance, if TYPE is a "typedef const", and its
8648 target type is a "struct", then the typedef elimination will return
8649 a "const" version of the target type. See check_typedef for more
8650 details about how the typedef layer elimination is done.
8651
8652 brobecker/2010-11-19: It seems to me that the only case where it is
8653 useful to preserve the typedef layer is when dealing with fat pointers.
8654 Perhaps, we could add a check for that and preserve the typedef layer
8655 only in that situation. But this seems unecessary so far, probably
8656 because we call check_typedef/ada_check_typedef pretty much everywhere.
8657 */
f192137b 8658 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF
720d1a40 8659 && (TYPE_MAIN_TYPE (ada_typedef_target_type (type))
96dbd2c1 8660 == TYPE_MAIN_TYPE (fixed_type)))
f192137b
JB
8661 return type;
8662
8663 return fixed_type;
8664}
8665
14f9c5c9 8666/* A standard (static-sized) type corresponding as well as possible to
4c4b4cd2 8667 TYPE0, but based on no runtime data. */
14f9c5c9 8668
d2e4a39e
AS
8669static struct type *
8670to_static_fixed_type (struct type *type0)
14f9c5c9 8671{
d2e4a39e 8672 struct type *type;
14f9c5c9
AS
8673
8674 if (type0 == NULL)
8675 return NULL;
8676
876cecd0 8677 if (TYPE_FIXED_INSTANCE (type0))
4c4b4cd2
PH
8678 return type0;
8679
61ee279c 8680 type0 = ada_check_typedef (type0);
d2e4a39e 8681
14f9c5c9
AS
8682 switch (TYPE_CODE (type0))
8683 {
8684 default:
8685 return type0;
8686 case TYPE_CODE_STRUCT:
8687 type = dynamic_template_type (type0);
d2e4a39e 8688 if (type != NULL)
4c4b4cd2
PH
8689 return template_to_static_fixed_type (type);
8690 else
8691 return template_to_static_fixed_type (type0);
14f9c5c9
AS
8692 case TYPE_CODE_UNION:
8693 type = ada_find_parallel_type (type0, "___XVU");
8694 if (type != NULL)
4c4b4cd2
PH
8695 return template_to_static_fixed_type (type);
8696 else
8697 return template_to_static_fixed_type (type0);
14f9c5c9
AS
8698 }
8699}
8700
4c4b4cd2
PH
8701/* A static approximation of TYPE with all type wrappers removed. */
8702
d2e4a39e
AS
8703static struct type *
8704static_unwrap_type (struct type *type)
14f9c5c9
AS
8705{
8706 if (ada_is_aligner_type (type))
8707 {
61ee279c 8708 struct type *type1 = TYPE_FIELD_TYPE (ada_check_typedef (type), 0);
14f9c5c9 8709 if (ada_type_name (type1) == NULL)
4c4b4cd2 8710 TYPE_NAME (type1) = ada_type_name (type);
14f9c5c9
AS
8711
8712 return static_unwrap_type (type1);
8713 }
d2e4a39e 8714 else
14f9c5c9 8715 {
d2e4a39e 8716 struct type *raw_real_type = ada_get_base_type (type);
5b4ee69b 8717
d2e4a39e 8718 if (raw_real_type == type)
4c4b4cd2 8719 return type;
14f9c5c9 8720 else
4c4b4cd2 8721 return to_static_fixed_type (raw_real_type);
14f9c5c9
AS
8722 }
8723}
8724
8725/* In some cases, incomplete and private types require
4c4b4cd2 8726 cross-references that are not resolved as records (for example,
14f9c5c9
AS
8727 type Foo;
8728 type FooP is access Foo;
8729 V: FooP;
8730 type Foo is array ...;
4c4b4cd2 8731 ). In these cases, since there is no mechanism for producing
14f9c5c9
AS
8732 cross-references to such types, we instead substitute for FooP a
8733 stub enumeration type that is nowhere resolved, and whose tag is
4c4b4cd2 8734 the name of the actual type. Call these types "non-record stubs". */
14f9c5c9
AS
8735
8736/* A type equivalent to TYPE that is not a non-record stub, if one
4c4b4cd2
PH
8737 exists, otherwise TYPE. */
8738
d2e4a39e 8739struct type *
61ee279c 8740ada_check_typedef (struct type *type)
14f9c5c9 8741{
727e3d2e
JB
8742 if (type == NULL)
8743 return NULL;
8744
720d1a40
JB
8745 /* If our type is a typedef type of a fat pointer, then we're done.
8746 We don't want to strip the TYPE_CODE_TYPDEF layer, because this is
8747 what allows us to distinguish between fat pointers that represent
8748 array types, and fat pointers that represent array access types
8749 (in both cases, the compiler implements them as fat pointers). */
8750 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF
8751 && is_thick_pntr (ada_typedef_target_type (type)))
8752 return type;
8753
14f9c5c9
AS
8754 CHECK_TYPEDEF (type);
8755 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM
529cad9c 8756 || !TYPE_STUB (type)
14f9c5c9
AS
8757 || TYPE_TAG_NAME (type) == NULL)
8758 return type;
d2e4a39e 8759 else
14f9c5c9 8760 {
0d5cff50 8761 const char *name = TYPE_TAG_NAME (type);
d2e4a39e 8762 struct type *type1 = ada_find_any_type (name);
5b4ee69b 8763
05e522ef
JB
8764 if (type1 == NULL)
8765 return type;
8766
8767 /* TYPE1 might itself be a TYPE_CODE_TYPEDEF (this can happen with
8768 stubs pointing to arrays, as we don't create symbols for array
3a867c22
JB
8769 types, only for the typedef-to-array types). If that's the case,
8770 strip the typedef layer. */
8771 if (TYPE_CODE (type1) == TYPE_CODE_TYPEDEF)
8772 type1 = ada_check_typedef (type1);
8773
8774 return type1;
14f9c5c9
AS
8775 }
8776}
8777
8778/* A value representing the data at VALADDR/ADDRESS as described by
8779 type TYPE0, but with a standard (static-sized) type that correctly
8780 describes it. If VAL0 is not NULL and TYPE0 already is a standard
8781 type, then return VAL0 [this feature is simply to avoid redundant
4c4b4cd2 8782 creation of struct values]. */
14f9c5c9 8783
4c4b4cd2
PH
8784static struct value *
8785ada_to_fixed_value_create (struct type *type0, CORE_ADDR address,
8786 struct value *val0)
14f9c5c9 8787{
1ed6ede0 8788 struct type *type = ada_to_fixed_type (type0, 0, address, NULL, 1);
5b4ee69b 8789
14f9c5c9
AS
8790 if (type == type0 && val0 != NULL)
8791 return val0;
d2e4a39e 8792 else
4c4b4cd2
PH
8793 return value_from_contents_and_address (type, 0, address);
8794}
8795
8796/* A value representing VAL, but with a standard (static-sized) type
8797 that correctly describes it. Does not necessarily create a new
8798 value. */
8799
0c3acc09 8800struct value *
4c4b4cd2
PH
8801ada_to_fixed_value (struct value *val)
8802{
c48db5ca
JB
8803 val = unwrap_value (val);
8804 val = ada_to_fixed_value_create (value_type (val),
8805 value_address (val),
8806 val);
8807 return val;
14f9c5c9 8808}
d2e4a39e 8809\f
14f9c5c9 8810
14f9c5c9
AS
8811/* Attributes */
8812
4c4b4cd2
PH
8813/* Table mapping attribute numbers to names.
8814 NOTE: Keep up to date with enum ada_attribute definition in ada-lang.h. */
14f9c5c9 8815
d2e4a39e 8816static const char *attribute_names[] = {
14f9c5c9
AS
8817 "<?>",
8818
d2e4a39e 8819 "first",
14f9c5c9
AS
8820 "last",
8821 "length",
8822 "image",
14f9c5c9
AS
8823 "max",
8824 "min",
4c4b4cd2
PH
8825 "modulus",
8826 "pos",
8827 "size",
8828 "tag",
14f9c5c9 8829 "val",
14f9c5c9
AS
8830 0
8831};
8832
d2e4a39e 8833const char *
4c4b4cd2 8834ada_attribute_name (enum exp_opcode n)
14f9c5c9 8835{
4c4b4cd2
PH
8836 if (n >= OP_ATR_FIRST && n <= (int) OP_ATR_VAL)
8837 return attribute_names[n - OP_ATR_FIRST + 1];
14f9c5c9
AS
8838 else
8839 return attribute_names[0];
8840}
8841
4c4b4cd2 8842/* Evaluate the 'POS attribute applied to ARG. */
14f9c5c9 8843
4c4b4cd2
PH
8844static LONGEST
8845pos_atr (struct value *arg)
14f9c5c9 8846{
24209737
PH
8847 struct value *val = coerce_ref (arg);
8848 struct type *type = value_type (val);
14f9c5c9 8849
d2e4a39e 8850 if (!discrete_type_p (type))
323e0a4a 8851 error (_("'POS only defined on discrete types"));
14f9c5c9
AS
8852
8853 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
8854 {
8855 int i;
24209737 8856 LONGEST v = value_as_long (val);
14f9c5c9 8857
d2e4a39e 8858 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
4c4b4cd2 8859 {
14e75d8e 8860 if (v == TYPE_FIELD_ENUMVAL (type, i))
4c4b4cd2
PH
8861 return i;
8862 }
323e0a4a 8863 error (_("enumeration value is invalid: can't find 'POS"));
14f9c5c9
AS
8864 }
8865 else
24209737 8866 return value_as_long (val);
4c4b4cd2
PH
8867}
8868
8869static struct value *
3cb382c9 8870value_pos_atr (struct type *type, struct value *arg)
4c4b4cd2 8871{
3cb382c9 8872 return value_from_longest (type, pos_atr (arg));
14f9c5c9
AS
8873}
8874
4c4b4cd2 8875/* Evaluate the TYPE'VAL attribute applied to ARG. */
14f9c5c9 8876
d2e4a39e
AS
8877static struct value *
8878value_val_atr (struct type *type, struct value *arg)
14f9c5c9 8879{
d2e4a39e 8880 if (!discrete_type_p (type))
323e0a4a 8881 error (_("'VAL only defined on discrete types"));
df407dfe 8882 if (!integer_type_p (value_type (arg)))
323e0a4a 8883 error (_("'VAL requires integral argument"));
14f9c5c9
AS
8884
8885 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
8886 {
8887 long pos = value_as_long (arg);
5b4ee69b 8888
14f9c5c9 8889 if (pos < 0 || pos >= TYPE_NFIELDS (type))
323e0a4a 8890 error (_("argument to 'VAL out of range"));
14e75d8e 8891 return value_from_longest (type, TYPE_FIELD_ENUMVAL (type, pos));
14f9c5c9
AS
8892 }
8893 else
8894 return value_from_longest (type, value_as_long (arg));
8895}
14f9c5c9 8896\f
d2e4a39e 8897
4c4b4cd2 8898 /* Evaluation */
14f9c5c9 8899
4c4b4cd2
PH
8900/* True if TYPE appears to be an Ada character type.
8901 [At the moment, this is true only for Character and Wide_Character;
8902 It is a heuristic test that could stand improvement]. */
14f9c5c9 8903
d2e4a39e
AS
8904int
8905ada_is_character_type (struct type *type)
14f9c5c9 8906{
7b9f71f2
JB
8907 const char *name;
8908
8909 /* If the type code says it's a character, then assume it really is,
8910 and don't check any further. */
8911 if (TYPE_CODE (type) == TYPE_CODE_CHAR)
8912 return 1;
8913
8914 /* Otherwise, assume it's a character type iff it is a discrete type
8915 with a known character type name. */
8916 name = ada_type_name (type);
8917 return (name != NULL
8918 && (TYPE_CODE (type) == TYPE_CODE_INT
8919 || TYPE_CODE (type) == TYPE_CODE_RANGE)
8920 && (strcmp (name, "character") == 0
8921 || strcmp (name, "wide_character") == 0
5a517ebd 8922 || strcmp (name, "wide_wide_character") == 0
7b9f71f2 8923 || strcmp (name, "unsigned char") == 0));
14f9c5c9
AS
8924}
8925
4c4b4cd2 8926/* True if TYPE appears to be an Ada string type. */
14f9c5c9
AS
8927
8928int
ebf56fd3 8929ada_is_string_type (struct type *type)
14f9c5c9 8930{
61ee279c 8931 type = ada_check_typedef (type);
d2e4a39e 8932 if (type != NULL
14f9c5c9 8933 && TYPE_CODE (type) != TYPE_CODE_PTR
76a01679
JB
8934 && (ada_is_simple_array_type (type)
8935 || ada_is_array_descriptor_type (type))
14f9c5c9
AS
8936 && ada_array_arity (type) == 1)
8937 {
8938 struct type *elttype = ada_array_element_type (type, 1);
8939
8940 return ada_is_character_type (elttype);
8941 }
d2e4a39e 8942 else
14f9c5c9
AS
8943 return 0;
8944}
8945
5bf03f13
JB
8946/* The compiler sometimes provides a parallel XVS type for a given
8947 PAD type. Normally, it is safe to follow the PAD type directly,
8948 but older versions of the compiler have a bug that causes the offset
8949 of its "F" field to be wrong. Following that field in that case
8950 would lead to incorrect results, but this can be worked around
8951 by ignoring the PAD type and using the associated XVS type instead.
8952
8953 Set to True if the debugger should trust the contents of PAD types.
8954 Otherwise, ignore the PAD type if there is a parallel XVS type. */
8955static int trust_pad_over_xvs = 1;
14f9c5c9
AS
8956
8957/* True if TYPE is a struct type introduced by the compiler to force the
8958 alignment of a value. Such types have a single field with a
4c4b4cd2 8959 distinctive name. */
14f9c5c9
AS
8960
8961int
ebf56fd3 8962ada_is_aligner_type (struct type *type)
14f9c5c9 8963{
61ee279c 8964 type = ada_check_typedef (type);
714e53ab 8965
5bf03f13 8966 if (!trust_pad_over_xvs && ada_find_parallel_type (type, "___XVS") != NULL)
714e53ab
PH
8967 return 0;
8968
14f9c5c9 8969 return (TYPE_CODE (type) == TYPE_CODE_STRUCT
4c4b4cd2
PH
8970 && TYPE_NFIELDS (type) == 1
8971 && strcmp (TYPE_FIELD_NAME (type, 0), "F") == 0);
14f9c5c9
AS
8972}
8973
8974/* If there is an ___XVS-convention type parallel to SUBTYPE, return
4c4b4cd2 8975 the parallel type. */
14f9c5c9 8976
d2e4a39e
AS
8977struct type *
8978ada_get_base_type (struct type *raw_type)
14f9c5c9 8979{
d2e4a39e
AS
8980 struct type *real_type_namer;
8981 struct type *raw_real_type;
14f9c5c9
AS
8982
8983 if (raw_type == NULL || TYPE_CODE (raw_type) != TYPE_CODE_STRUCT)
8984 return raw_type;
8985
284614f0
JB
8986 if (ada_is_aligner_type (raw_type))
8987 /* The encoding specifies that we should always use the aligner type.
8988 So, even if this aligner type has an associated XVS type, we should
8989 simply ignore it.
8990
8991 According to the compiler gurus, an XVS type parallel to an aligner
8992 type may exist because of a stabs limitation. In stabs, aligner
8993 types are empty because the field has a variable-sized type, and
8994 thus cannot actually be used as an aligner type. As a result,
8995 we need the associated parallel XVS type to decode the type.
8996 Since the policy in the compiler is to not change the internal
8997 representation based on the debugging info format, we sometimes
8998 end up having a redundant XVS type parallel to the aligner type. */
8999 return raw_type;
9000
14f9c5c9 9001 real_type_namer = ada_find_parallel_type (raw_type, "___XVS");
d2e4a39e 9002 if (real_type_namer == NULL
14f9c5c9
AS
9003 || TYPE_CODE (real_type_namer) != TYPE_CODE_STRUCT
9004 || TYPE_NFIELDS (real_type_namer) != 1)
9005 return raw_type;
9006
f80d3ff2
JB
9007 if (TYPE_CODE (TYPE_FIELD_TYPE (real_type_namer, 0)) != TYPE_CODE_REF)
9008 {
9009 /* This is an older encoding form where the base type needs to be
9010 looked up by name. We prefer the newer enconding because it is
9011 more efficient. */
9012 raw_real_type = ada_find_any_type (TYPE_FIELD_NAME (real_type_namer, 0));
9013 if (raw_real_type == NULL)
9014 return raw_type;
9015 else
9016 return raw_real_type;
9017 }
9018
9019 /* The field in our XVS type is a reference to the base type. */
9020 return TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (real_type_namer, 0));
d2e4a39e 9021}
14f9c5c9 9022
4c4b4cd2 9023/* The type of value designated by TYPE, with all aligners removed. */
14f9c5c9 9024
d2e4a39e
AS
9025struct type *
9026ada_aligned_type (struct type *type)
14f9c5c9
AS
9027{
9028 if (ada_is_aligner_type (type))
9029 return ada_aligned_type (TYPE_FIELD_TYPE (type, 0));
9030 else
9031 return ada_get_base_type (type);
9032}
9033
9034
9035/* The address of the aligned value in an object at address VALADDR
4c4b4cd2 9036 having type TYPE. Assumes ada_is_aligner_type (TYPE). */
14f9c5c9 9037
fc1a4b47
AC
9038const gdb_byte *
9039ada_aligned_value_addr (struct type *type, const gdb_byte *valaddr)
14f9c5c9 9040{
d2e4a39e 9041 if (ada_is_aligner_type (type))
14f9c5c9 9042 return ada_aligned_value_addr (TYPE_FIELD_TYPE (type, 0),
4c4b4cd2
PH
9043 valaddr +
9044 TYPE_FIELD_BITPOS (type,
9045 0) / TARGET_CHAR_BIT);
14f9c5c9
AS
9046 else
9047 return valaddr;
9048}
9049
4c4b4cd2
PH
9050
9051
14f9c5c9 9052/* The printed representation of an enumeration literal with encoded
4c4b4cd2 9053 name NAME. The value is good to the next call of ada_enum_name. */
d2e4a39e
AS
9054const char *
9055ada_enum_name (const char *name)
14f9c5c9 9056{
4c4b4cd2
PH
9057 static char *result;
9058 static size_t result_len = 0;
d2e4a39e 9059 char *tmp;
14f9c5c9 9060
4c4b4cd2
PH
9061 /* First, unqualify the enumeration name:
9062 1. Search for the last '.' character. If we find one, then skip
177b42fe 9063 all the preceding characters, the unqualified name starts
76a01679 9064 right after that dot.
4c4b4cd2 9065 2. Otherwise, we may be debugging on a target where the compiler
76a01679
JB
9066 translates dots into "__". Search forward for double underscores,
9067 but stop searching when we hit an overloading suffix, which is
9068 of the form "__" followed by digits. */
4c4b4cd2 9069
c3e5cd34
PH
9070 tmp = strrchr (name, '.');
9071 if (tmp != NULL)
4c4b4cd2
PH
9072 name = tmp + 1;
9073 else
14f9c5c9 9074 {
4c4b4cd2
PH
9075 while ((tmp = strstr (name, "__")) != NULL)
9076 {
9077 if (isdigit (tmp[2]))
9078 break;
9079 else
9080 name = tmp + 2;
9081 }
14f9c5c9
AS
9082 }
9083
9084 if (name[0] == 'Q')
9085 {
14f9c5c9 9086 int v;
5b4ee69b 9087
14f9c5c9 9088 if (name[1] == 'U' || name[1] == 'W')
4c4b4cd2
PH
9089 {
9090 if (sscanf (name + 2, "%x", &v) != 1)
9091 return name;
9092 }
14f9c5c9 9093 else
4c4b4cd2 9094 return name;
14f9c5c9 9095
4c4b4cd2 9096 GROW_VECT (result, result_len, 16);
14f9c5c9 9097 if (isascii (v) && isprint (v))
88c15c34 9098 xsnprintf (result, result_len, "'%c'", v);
14f9c5c9 9099 else if (name[1] == 'U')
88c15c34 9100 xsnprintf (result, result_len, "[\"%02x\"]", v);
14f9c5c9 9101 else
88c15c34 9102 xsnprintf (result, result_len, "[\"%04x\"]", v);
14f9c5c9
AS
9103
9104 return result;
9105 }
d2e4a39e 9106 else
4c4b4cd2 9107 {
c3e5cd34
PH
9108 tmp = strstr (name, "__");
9109 if (tmp == NULL)
9110 tmp = strstr (name, "$");
9111 if (tmp != NULL)
4c4b4cd2
PH
9112 {
9113 GROW_VECT (result, result_len, tmp - name + 1);
9114 strncpy (result, name, tmp - name);
9115 result[tmp - name] = '\0';
9116 return result;
9117 }
9118
9119 return name;
9120 }
14f9c5c9
AS
9121}
9122
14f9c5c9
AS
9123/* Evaluate the subexpression of EXP starting at *POS as for
9124 evaluate_type, updating *POS to point just past the evaluated
4c4b4cd2 9125 expression. */
14f9c5c9 9126
d2e4a39e
AS
9127static struct value *
9128evaluate_subexp_type (struct expression *exp, int *pos)
14f9c5c9 9129{
4b27a620 9130 return evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
14f9c5c9
AS
9131}
9132
9133/* If VAL is wrapped in an aligner or subtype wrapper, return the
4c4b4cd2 9134 value it wraps. */
14f9c5c9 9135
d2e4a39e
AS
9136static struct value *
9137unwrap_value (struct value *val)
14f9c5c9 9138{
df407dfe 9139 struct type *type = ada_check_typedef (value_type (val));
5b4ee69b 9140
14f9c5c9
AS
9141 if (ada_is_aligner_type (type))
9142 {
de4d072f 9143 struct value *v = ada_value_struct_elt (val, "F", 0);
df407dfe 9144 struct type *val_type = ada_check_typedef (value_type (v));
5b4ee69b 9145
14f9c5c9 9146 if (ada_type_name (val_type) == NULL)
4c4b4cd2 9147 TYPE_NAME (val_type) = ada_type_name (type);
14f9c5c9
AS
9148
9149 return unwrap_value (v);
9150 }
d2e4a39e 9151 else
14f9c5c9 9152 {
d2e4a39e 9153 struct type *raw_real_type =
61ee279c 9154 ada_check_typedef (ada_get_base_type (type));
d2e4a39e 9155
5bf03f13
JB
9156 /* If there is no parallel XVS or XVE type, then the value is
9157 already unwrapped. Return it without further modification. */
9158 if ((type == raw_real_type)
9159 && ada_find_parallel_type (type, "___XVE") == NULL)
9160 return val;
14f9c5c9 9161
d2e4a39e 9162 return
4c4b4cd2
PH
9163 coerce_unspec_val_to_type
9164 (val, ada_to_fixed_type (raw_real_type, 0,
42ae5230 9165 value_address (val),
1ed6ede0 9166 NULL, 1));
14f9c5c9
AS
9167 }
9168}
d2e4a39e
AS
9169
9170static struct value *
9171cast_to_fixed (struct type *type, struct value *arg)
14f9c5c9
AS
9172{
9173 LONGEST val;
9174
df407dfe 9175 if (type == value_type (arg))
14f9c5c9 9176 return arg;
df407dfe 9177 else if (ada_is_fixed_point_type (value_type (arg)))
d2e4a39e 9178 val = ada_float_to_fixed (type,
df407dfe 9179 ada_fixed_to_float (value_type (arg),
4c4b4cd2 9180 value_as_long (arg)));
d2e4a39e 9181 else
14f9c5c9 9182 {
a53b7a21 9183 DOUBLEST argd = value_as_double (arg);
5b4ee69b 9184
14f9c5c9
AS
9185 val = ada_float_to_fixed (type, argd);
9186 }
9187
9188 return value_from_longest (type, val);
9189}
9190
d2e4a39e 9191static struct value *
a53b7a21 9192cast_from_fixed (struct type *type, struct value *arg)
14f9c5c9 9193{
df407dfe 9194 DOUBLEST val = ada_fixed_to_float (value_type (arg),
4c4b4cd2 9195 value_as_long (arg));
5b4ee69b 9196
a53b7a21 9197 return value_from_double (type, val);
14f9c5c9
AS
9198}
9199
d99dcf51
JB
9200/* Given two array types T1 and T2, return nonzero iff both arrays
9201 contain the same number of elements. */
9202
9203static int
9204ada_same_array_size_p (struct type *t1, struct type *t2)
9205{
9206 LONGEST lo1, hi1, lo2, hi2;
9207
9208 /* Get the array bounds in order to verify that the size of
9209 the two arrays match. */
9210 if (!get_array_bounds (t1, &lo1, &hi1)
9211 || !get_array_bounds (t2, &lo2, &hi2))
9212 error (_("unable to determine array bounds"));
9213
9214 /* To make things easier for size comparison, normalize a bit
9215 the case of empty arrays by making sure that the difference
9216 between upper bound and lower bound is always -1. */
9217 if (lo1 > hi1)
9218 hi1 = lo1 - 1;
9219 if (lo2 > hi2)
9220 hi2 = lo2 - 1;
9221
9222 return (hi1 - lo1 == hi2 - lo2);
9223}
9224
9225/* Assuming that VAL is an array of integrals, and TYPE represents
9226 an array with the same number of elements, but with wider integral
9227 elements, return an array "casted" to TYPE. In practice, this
9228 means that the returned array is built by casting each element
9229 of the original array into TYPE's (wider) element type. */
9230
9231static struct value *
9232ada_promote_array_of_integrals (struct type *type, struct value *val)
9233{
9234 struct type *elt_type = TYPE_TARGET_TYPE (type);
9235 LONGEST lo, hi;
9236 struct value *res;
9237 LONGEST i;
9238
9239 /* Verify that both val and type are arrays of scalars, and
9240 that the size of val's elements is smaller than the size
9241 of type's element. */
9242 gdb_assert (TYPE_CODE (type) == TYPE_CODE_ARRAY);
9243 gdb_assert (is_integral_type (TYPE_TARGET_TYPE (type)));
9244 gdb_assert (TYPE_CODE (value_type (val)) == TYPE_CODE_ARRAY);
9245 gdb_assert (is_integral_type (TYPE_TARGET_TYPE (value_type (val))));
9246 gdb_assert (TYPE_LENGTH (TYPE_TARGET_TYPE (type))
9247 > TYPE_LENGTH (TYPE_TARGET_TYPE (value_type (val))));
9248
9249 if (!get_array_bounds (type, &lo, &hi))
9250 error (_("unable to determine array bounds"));
9251
9252 res = allocate_value (type);
9253
9254 /* Promote each array element. */
9255 for (i = 0; i < hi - lo + 1; i++)
9256 {
9257 struct value *elt = value_cast (elt_type, value_subscript (val, lo + i));
9258
9259 memcpy (value_contents_writeable (res) + (i * TYPE_LENGTH (elt_type)),
9260 value_contents_all (elt), TYPE_LENGTH (elt_type));
9261 }
9262
9263 return res;
9264}
9265
4c4b4cd2
PH
9266/* Coerce VAL as necessary for assignment to an lval of type TYPE, and
9267 return the converted value. */
9268
d2e4a39e
AS
9269static struct value *
9270coerce_for_assign (struct type *type, struct value *val)
14f9c5c9 9271{
df407dfe 9272 struct type *type2 = value_type (val);
5b4ee69b 9273
14f9c5c9
AS
9274 if (type == type2)
9275 return val;
9276
61ee279c
PH
9277 type2 = ada_check_typedef (type2);
9278 type = ada_check_typedef (type);
14f9c5c9 9279
d2e4a39e
AS
9280 if (TYPE_CODE (type2) == TYPE_CODE_PTR
9281 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
14f9c5c9
AS
9282 {
9283 val = ada_value_ind (val);
df407dfe 9284 type2 = value_type (val);
14f9c5c9
AS
9285 }
9286
d2e4a39e 9287 if (TYPE_CODE (type2) == TYPE_CODE_ARRAY
14f9c5c9
AS
9288 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
9289 {
d99dcf51
JB
9290 if (!ada_same_array_size_p (type, type2))
9291 error (_("cannot assign arrays of different length"));
9292
9293 if (is_integral_type (TYPE_TARGET_TYPE (type))
9294 && is_integral_type (TYPE_TARGET_TYPE (type2))
9295 && TYPE_LENGTH (TYPE_TARGET_TYPE (type2))
9296 < TYPE_LENGTH (TYPE_TARGET_TYPE (type)))
9297 {
9298 /* Allow implicit promotion of the array elements to
9299 a wider type. */
9300 return ada_promote_array_of_integrals (type, val);
9301 }
9302
9303 if (TYPE_LENGTH (TYPE_TARGET_TYPE (type2))
9304 != TYPE_LENGTH (TYPE_TARGET_TYPE (type)))
323e0a4a 9305 error (_("Incompatible types in assignment"));
04624583 9306 deprecated_set_value_type (val, type);
14f9c5c9 9307 }
d2e4a39e 9308 return val;
14f9c5c9
AS
9309}
9310
4c4b4cd2
PH
9311static struct value *
9312ada_value_binop (struct value *arg1, struct value *arg2, enum exp_opcode op)
9313{
9314 struct value *val;
9315 struct type *type1, *type2;
9316 LONGEST v, v1, v2;
9317
994b9211
AC
9318 arg1 = coerce_ref (arg1);
9319 arg2 = coerce_ref (arg2);
18af8284
JB
9320 type1 = get_base_type (ada_check_typedef (value_type (arg1)));
9321 type2 = get_base_type (ada_check_typedef (value_type (arg2)));
4c4b4cd2 9322
76a01679
JB
9323 if (TYPE_CODE (type1) != TYPE_CODE_INT
9324 || TYPE_CODE (type2) != TYPE_CODE_INT)
4c4b4cd2
PH
9325 return value_binop (arg1, arg2, op);
9326
76a01679 9327 switch (op)
4c4b4cd2
PH
9328 {
9329 case BINOP_MOD:
9330 case BINOP_DIV:
9331 case BINOP_REM:
9332 break;
9333 default:
9334 return value_binop (arg1, arg2, op);
9335 }
9336
9337 v2 = value_as_long (arg2);
9338 if (v2 == 0)
323e0a4a 9339 error (_("second operand of %s must not be zero."), op_string (op));
4c4b4cd2
PH
9340
9341 if (TYPE_UNSIGNED (type1) || op == BINOP_MOD)
9342 return value_binop (arg1, arg2, op);
9343
9344 v1 = value_as_long (arg1);
9345 switch (op)
9346 {
9347 case BINOP_DIV:
9348 v = v1 / v2;
76a01679
JB
9349 if (!TRUNCATION_TOWARDS_ZERO && v1 * (v1 % v2) < 0)
9350 v += v > 0 ? -1 : 1;
4c4b4cd2
PH
9351 break;
9352 case BINOP_REM:
9353 v = v1 % v2;
76a01679
JB
9354 if (v * v1 < 0)
9355 v -= v2;
4c4b4cd2
PH
9356 break;
9357 default:
9358 /* Should not reach this point. */
9359 v = 0;
9360 }
9361
9362 val = allocate_value (type1);
990a07ab 9363 store_unsigned_integer (value_contents_raw (val),
e17a4113
UW
9364 TYPE_LENGTH (value_type (val)),
9365 gdbarch_byte_order (get_type_arch (type1)), v);
4c4b4cd2
PH
9366 return val;
9367}
9368
9369static int
9370ada_value_equal (struct value *arg1, struct value *arg2)
9371{
df407dfe
AC
9372 if (ada_is_direct_array_type (value_type (arg1))
9373 || ada_is_direct_array_type (value_type (arg2)))
4c4b4cd2 9374 {
f58b38bf
JB
9375 /* Automatically dereference any array reference before
9376 we attempt to perform the comparison. */
9377 arg1 = ada_coerce_ref (arg1);
9378 arg2 = ada_coerce_ref (arg2);
9379
4c4b4cd2
PH
9380 arg1 = ada_coerce_to_simple_array (arg1);
9381 arg2 = ada_coerce_to_simple_array (arg2);
df407dfe
AC
9382 if (TYPE_CODE (value_type (arg1)) != TYPE_CODE_ARRAY
9383 || TYPE_CODE (value_type (arg2)) != TYPE_CODE_ARRAY)
323e0a4a 9384 error (_("Attempt to compare array with non-array"));
4c4b4cd2 9385 /* FIXME: The following works only for types whose
76a01679
JB
9386 representations use all bits (no padding or undefined bits)
9387 and do not have user-defined equality. */
9388 return
df407dfe 9389 TYPE_LENGTH (value_type (arg1)) == TYPE_LENGTH (value_type (arg2))
0fd88904 9390 && memcmp (value_contents (arg1), value_contents (arg2),
df407dfe 9391 TYPE_LENGTH (value_type (arg1))) == 0;
4c4b4cd2
PH
9392 }
9393 return value_equal (arg1, arg2);
9394}
9395
52ce6436
PH
9396/* Total number of component associations in the aggregate starting at
9397 index PC in EXP. Assumes that index PC is the start of an
0963b4bd 9398 OP_AGGREGATE. */
52ce6436
PH
9399
9400static int
9401num_component_specs (struct expression *exp, int pc)
9402{
9403 int n, m, i;
5b4ee69b 9404
52ce6436
PH
9405 m = exp->elts[pc + 1].longconst;
9406 pc += 3;
9407 n = 0;
9408 for (i = 0; i < m; i += 1)
9409 {
9410 switch (exp->elts[pc].opcode)
9411 {
9412 default:
9413 n += 1;
9414 break;
9415 case OP_CHOICES:
9416 n += exp->elts[pc + 1].longconst;
9417 break;
9418 }
9419 ada_evaluate_subexp (NULL, exp, &pc, EVAL_SKIP);
9420 }
9421 return n;
9422}
9423
9424/* Assign the result of evaluating EXP starting at *POS to the INDEXth
9425 component of LHS (a simple array or a record), updating *POS past
9426 the expression, assuming that LHS is contained in CONTAINER. Does
9427 not modify the inferior's memory, nor does it modify LHS (unless
9428 LHS == CONTAINER). */
9429
9430static void
9431assign_component (struct value *container, struct value *lhs, LONGEST index,
9432 struct expression *exp, int *pos)
9433{
9434 struct value *mark = value_mark ();
9435 struct value *elt;
5b4ee69b 9436
52ce6436
PH
9437 if (TYPE_CODE (value_type (lhs)) == TYPE_CODE_ARRAY)
9438 {
22601c15
UW
9439 struct type *index_type = builtin_type (exp->gdbarch)->builtin_int;
9440 struct value *index_val = value_from_longest (index_type, index);
5b4ee69b 9441
52ce6436
PH
9442 elt = unwrap_value (ada_value_subscript (lhs, 1, &index_val));
9443 }
9444 else
9445 {
9446 elt = ada_index_struct_field (index, lhs, 0, value_type (lhs));
c48db5ca 9447 elt = ada_to_fixed_value (elt);
52ce6436
PH
9448 }
9449
9450 if (exp->elts[*pos].opcode == OP_AGGREGATE)
9451 assign_aggregate (container, elt, exp, pos, EVAL_NORMAL);
9452 else
9453 value_assign_to_component (container, elt,
9454 ada_evaluate_subexp (NULL, exp, pos,
9455 EVAL_NORMAL));
9456
9457 value_free_to_mark (mark);
9458}
9459
9460/* Assuming that LHS represents an lvalue having a record or array
9461 type, and EXP->ELTS[*POS] is an OP_AGGREGATE, evaluate an assignment
9462 of that aggregate's value to LHS, advancing *POS past the
9463 aggregate. NOSIDE is as for evaluate_subexp. CONTAINER is an
9464 lvalue containing LHS (possibly LHS itself). Does not modify
9465 the inferior's memory, nor does it modify the contents of
0963b4bd 9466 LHS (unless == CONTAINER). Returns the modified CONTAINER. */
52ce6436
PH
9467
9468static struct value *
9469assign_aggregate (struct value *container,
9470 struct value *lhs, struct expression *exp,
9471 int *pos, enum noside noside)
9472{
9473 struct type *lhs_type;
9474 int n = exp->elts[*pos+1].longconst;
9475 LONGEST low_index, high_index;
9476 int num_specs;
9477 LONGEST *indices;
9478 int max_indices, num_indices;
52ce6436 9479 int i;
52ce6436
PH
9480
9481 *pos += 3;
9482 if (noside != EVAL_NORMAL)
9483 {
52ce6436
PH
9484 for (i = 0; i < n; i += 1)
9485 ada_evaluate_subexp (NULL, exp, pos, noside);
9486 return container;
9487 }
9488
9489 container = ada_coerce_ref (container);
9490 if (ada_is_direct_array_type (value_type (container)))
9491 container = ada_coerce_to_simple_array (container);
9492 lhs = ada_coerce_ref (lhs);
9493 if (!deprecated_value_modifiable (lhs))
9494 error (_("Left operand of assignment is not a modifiable lvalue."));
9495
9496 lhs_type = value_type (lhs);
9497 if (ada_is_direct_array_type (lhs_type))
9498 {
9499 lhs = ada_coerce_to_simple_array (lhs);
9500 lhs_type = value_type (lhs);
9501 low_index = TYPE_ARRAY_LOWER_BOUND_VALUE (lhs_type);
9502 high_index = TYPE_ARRAY_UPPER_BOUND_VALUE (lhs_type);
52ce6436
PH
9503 }
9504 else if (TYPE_CODE (lhs_type) == TYPE_CODE_STRUCT)
9505 {
9506 low_index = 0;
9507 high_index = num_visible_fields (lhs_type) - 1;
52ce6436
PH
9508 }
9509 else
9510 error (_("Left-hand side must be array or record."));
9511
9512 num_specs = num_component_specs (exp, *pos - 3);
9513 max_indices = 4 * num_specs + 4;
9514 indices = alloca (max_indices * sizeof (indices[0]));
9515 indices[0] = indices[1] = low_index - 1;
9516 indices[2] = indices[3] = high_index + 1;
9517 num_indices = 4;
9518
9519 for (i = 0; i < n; i += 1)
9520 {
9521 switch (exp->elts[*pos].opcode)
9522 {
1fbf5ada
JB
9523 case OP_CHOICES:
9524 aggregate_assign_from_choices (container, lhs, exp, pos, indices,
9525 &num_indices, max_indices,
9526 low_index, high_index);
9527 break;
9528 case OP_POSITIONAL:
9529 aggregate_assign_positional (container, lhs, exp, pos, indices,
52ce6436
PH
9530 &num_indices, max_indices,
9531 low_index, high_index);
1fbf5ada
JB
9532 break;
9533 case OP_OTHERS:
9534 if (i != n-1)
9535 error (_("Misplaced 'others' clause"));
9536 aggregate_assign_others (container, lhs, exp, pos, indices,
9537 num_indices, low_index, high_index);
9538 break;
9539 default:
9540 error (_("Internal error: bad aggregate clause"));
52ce6436
PH
9541 }
9542 }
9543
9544 return container;
9545}
9546
9547/* Assign into the component of LHS indexed by the OP_POSITIONAL
9548 construct at *POS, updating *POS past the construct, given that
9549 the positions are relative to lower bound LOW, where HIGH is the
9550 upper bound. Record the position in INDICES[0 .. MAX_INDICES-1]
9551 updating *NUM_INDICES as needed. CONTAINER is as for
0963b4bd 9552 assign_aggregate. */
52ce6436
PH
9553static void
9554aggregate_assign_positional (struct value *container,
9555 struct value *lhs, struct expression *exp,
9556 int *pos, LONGEST *indices, int *num_indices,
9557 int max_indices, LONGEST low, LONGEST high)
9558{
9559 LONGEST ind = longest_to_int (exp->elts[*pos + 1].longconst) + low;
9560
9561 if (ind - 1 == high)
e1d5a0d2 9562 warning (_("Extra components in aggregate ignored."));
52ce6436
PH
9563 if (ind <= high)
9564 {
9565 add_component_interval (ind, ind, indices, num_indices, max_indices);
9566 *pos += 3;
9567 assign_component (container, lhs, ind, exp, pos);
9568 }
9569 else
9570 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
9571}
9572
9573/* Assign into the components of LHS indexed by the OP_CHOICES
9574 construct at *POS, updating *POS past the construct, given that
9575 the allowable indices are LOW..HIGH. Record the indices assigned
9576 to in INDICES[0 .. MAX_INDICES-1], updating *NUM_INDICES as
0963b4bd 9577 needed. CONTAINER is as for assign_aggregate. */
52ce6436
PH
9578static void
9579aggregate_assign_from_choices (struct value *container,
9580 struct value *lhs, struct expression *exp,
9581 int *pos, LONGEST *indices, int *num_indices,
9582 int max_indices, LONGEST low, LONGEST high)
9583{
9584 int j;
9585 int n_choices = longest_to_int (exp->elts[*pos+1].longconst);
9586 int choice_pos, expr_pc;
9587 int is_array = ada_is_direct_array_type (value_type (lhs));
9588
9589 choice_pos = *pos += 3;
9590
9591 for (j = 0; j < n_choices; j += 1)
9592 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
9593 expr_pc = *pos;
9594 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
9595
9596 for (j = 0; j < n_choices; j += 1)
9597 {
9598 LONGEST lower, upper;
9599 enum exp_opcode op = exp->elts[choice_pos].opcode;
5b4ee69b 9600
52ce6436
PH
9601 if (op == OP_DISCRETE_RANGE)
9602 {
9603 choice_pos += 1;
9604 lower = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
9605 EVAL_NORMAL));
9606 upper = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
9607 EVAL_NORMAL));
9608 }
9609 else if (is_array)
9610 {
9611 lower = value_as_long (ada_evaluate_subexp (NULL, exp, &choice_pos,
9612 EVAL_NORMAL));
9613 upper = lower;
9614 }
9615 else
9616 {
9617 int ind;
0d5cff50 9618 const char *name;
5b4ee69b 9619
52ce6436
PH
9620 switch (op)
9621 {
9622 case OP_NAME:
9623 name = &exp->elts[choice_pos + 2].string;
9624 break;
9625 case OP_VAR_VALUE:
9626 name = SYMBOL_NATURAL_NAME (exp->elts[choice_pos + 2].symbol);
9627 break;
9628 default:
9629 error (_("Invalid record component association."));
9630 }
9631 ada_evaluate_subexp (NULL, exp, &choice_pos, EVAL_SKIP);
9632 ind = 0;
9633 if (! find_struct_field (name, value_type (lhs), 0,
9634 NULL, NULL, NULL, NULL, &ind))
9635 error (_("Unknown component name: %s."), name);
9636 lower = upper = ind;
9637 }
9638
9639 if (lower <= upper && (lower < low || upper > high))
9640 error (_("Index in component association out of bounds."));
9641
9642 add_component_interval (lower, upper, indices, num_indices,
9643 max_indices);
9644 while (lower <= upper)
9645 {
9646 int pos1;
5b4ee69b 9647
52ce6436
PH
9648 pos1 = expr_pc;
9649 assign_component (container, lhs, lower, exp, &pos1);
9650 lower += 1;
9651 }
9652 }
9653}
9654
9655/* Assign the value of the expression in the OP_OTHERS construct in
9656 EXP at *POS into the components of LHS indexed from LOW .. HIGH that
9657 have not been previously assigned. The index intervals already assigned
9658 are in INDICES[0 .. NUM_INDICES-1]. Updates *POS to after the
0963b4bd 9659 OP_OTHERS clause. CONTAINER is as for assign_aggregate. */
52ce6436
PH
9660static void
9661aggregate_assign_others (struct value *container,
9662 struct value *lhs, struct expression *exp,
9663 int *pos, LONGEST *indices, int num_indices,
9664 LONGEST low, LONGEST high)
9665{
9666 int i;
5ce64950 9667 int expr_pc = *pos + 1;
52ce6436
PH
9668
9669 for (i = 0; i < num_indices - 2; i += 2)
9670 {
9671 LONGEST ind;
5b4ee69b 9672
52ce6436
PH
9673 for (ind = indices[i + 1] + 1; ind < indices[i + 2]; ind += 1)
9674 {
5ce64950 9675 int localpos;
5b4ee69b 9676
5ce64950
MS
9677 localpos = expr_pc;
9678 assign_component (container, lhs, ind, exp, &localpos);
52ce6436
PH
9679 }
9680 }
9681 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
9682}
9683
9684/* Add the interval [LOW .. HIGH] to the sorted set of intervals
9685 [ INDICES[0] .. INDICES[1] ],..., [ INDICES[*SIZE-2] .. INDICES[*SIZE-1] ],
9686 modifying *SIZE as needed. It is an error if *SIZE exceeds
9687 MAX_SIZE. The resulting intervals do not overlap. */
9688static void
9689add_component_interval (LONGEST low, LONGEST high,
9690 LONGEST* indices, int *size, int max_size)
9691{
9692 int i, j;
5b4ee69b 9693
52ce6436
PH
9694 for (i = 0; i < *size; i += 2) {
9695 if (high >= indices[i] && low <= indices[i + 1])
9696 {
9697 int kh;
5b4ee69b 9698
52ce6436
PH
9699 for (kh = i + 2; kh < *size; kh += 2)
9700 if (high < indices[kh])
9701 break;
9702 if (low < indices[i])
9703 indices[i] = low;
9704 indices[i + 1] = indices[kh - 1];
9705 if (high > indices[i + 1])
9706 indices[i + 1] = high;
9707 memcpy (indices + i + 2, indices + kh, *size - kh);
9708 *size -= kh - i - 2;
9709 return;
9710 }
9711 else if (high < indices[i])
9712 break;
9713 }
9714
9715 if (*size == max_size)
9716 error (_("Internal error: miscounted aggregate components."));
9717 *size += 2;
9718 for (j = *size-1; j >= i+2; j -= 1)
9719 indices[j] = indices[j - 2];
9720 indices[i] = low;
9721 indices[i + 1] = high;
9722}
9723
6e48bd2c
JB
9724/* Perform and Ada cast of ARG2 to type TYPE if the type of ARG2
9725 is different. */
9726
9727static struct value *
9728ada_value_cast (struct type *type, struct value *arg2, enum noside noside)
9729{
9730 if (type == ada_check_typedef (value_type (arg2)))
9731 return arg2;
9732
9733 if (ada_is_fixed_point_type (type))
9734 return (cast_to_fixed (type, arg2));
9735
9736 if (ada_is_fixed_point_type (value_type (arg2)))
a53b7a21 9737 return cast_from_fixed (type, arg2);
6e48bd2c
JB
9738
9739 return value_cast (type, arg2);
9740}
9741
284614f0
JB
9742/* Evaluating Ada expressions, and printing their result.
9743 ------------------------------------------------------
9744
21649b50
JB
9745 1. Introduction:
9746 ----------------
9747
284614f0
JB
9748 We usually evaluate an Ada expression in order to print its value.
9749 We also evaluate an expression in order to print its type, which
9750 happens during the EVAL_AVOID_SIDE_EFFECTS phase of the evaluation,
9751 but we'll focus mostly on the EVAL_NORMAL phase. In practice, the
9752 EVAL_AVOID_SIDE_EFFECTS phase allows us to simplify certain aspects of
9753 the evaluation compared to the EVAL_NORMAL, but is otherwise very
9754 similar.
9755
9756 Evaluating expressions is a little more complicated for Ada entities
9757 than it is for entities in languages such as C. The main reason for
9758 this is that Ada provides types whose definition might be dynamic.
9759 One example of such types is variant records. Or another example
9760 would be an array whose bounds can only be known at run time.
9761
9762 The following description is a general guide as to what should be
9763 done (and what should NOT be done) in order to evaluate an expression
9764 involving such types, and when. This does not cover how the semantic
9765 information is encoded by GNAT as this is covered separatly. For the
9766 document used as the reference for the GNAT encoding, see exp_dbug.ads
9767 in the GNAT sources.
9768
9769 Ideally, we should embed each part of this description next to its
9770 associated code. Unfortunately, the amount of code is so vast right
9771 now that it's hard to see whether the code handling a particular
9772 situation might be duplicated or not. One day, when the code is
9773 cleaned up, this guide might become redundant with the comments
9774 inserted in the code, and we might want to remove it.
9775
21649b50
JB
9776 2. ``Fixing'' an Entity, the Simple Case:
9777 -----------------------------------------
9778
284614f0
JB
9779 When evaluating Ada expressions, the tricky issue is that they may
9780 reference entities whose type contents and size are not statically
9781 known. Consider for instance a variant record:
9782
9783 type Rec (Empty : Boolean := True) is record
9784 case Empty is
9785 when True => null;
9786 when False => Value : Integer;
9787 end case;
9788 end record;
9789 Yes : Rec := (Empty => False, Value => 1);
9790 No : Rec := (empty => True);
9791
9792 The size and contents of that record depends on the value of the
9793 descriminant (Rec.Empty). At this point, neither the debugging
9794 information nor the associated type structure in GDB are able to
9795 express such dynamic types. So what the debugger does is to create
9796 "fixed" versions of the type that applies to the specific object.
9797 We also informally refer to this opperation as "fixing" an object,
9798 which means creating its associated fixed type.
9799
9800 Example: when printing the value of variable "Yes" above, its fixed
9801 type would look like this:
9802
9803 type Rec is record
9804 Empty : Boolean;
9805 Value : Integer;
9806 end record;
9807
9808 On the other hand, if we printed the value of "No", its fixed type
9809 would become:
9810
9811 type Rec is record
9812 Empty : Boolean;
9813 end record;
9814
9815 Things become a little more complicated when trying to fix an entity
9816 with a dynamic type that directly contains another dynamic type,
9817 such as an array of variant records, for instance. There are
9818 two possible cases: Arrays, and records.
9819
21649b50
JB
9820 3. ``Fixing'' Arrays:
9821 ---------------------
9822
9823 The type structure in GDB describes an array in terms of its bounds,
9824 and the type of its elements. By design, all elements in the array
9825 have the same type and we cannot represent an array of variant elements
9826 using the current type structure in GDB. When fixing an array,
9827 we cannot fix the array element, as we would potentially need one
9828 fixed type per element of the array. As a result, the best we can do
9829 when fixing an array is to produce an array whose bounds and size
9830 are correct (allowing us to read it from memory), but without having
9831 touched its element type. Fixing each element will be done later,
9832 when (if) necessary.
9833
9834 Arrays are a little simpler to handle than records, because the same
9835 amount of memory is allocated for each element of the array, even if
1b536f04 9836 the amount of space actually used by each element differs from element
21649b50 9837 to element. Consider for instance the following array of type Rec:
284614f0
JB
9838
9839 type Rec_Array is array (1 .. 2) of Rec;
9840
1b536f04
JB
9841 The actual amount of memory occupied by each element might be different
9842 from element to element, depending on the value of their discriminant.
21649b50 9843 But the amount of space reserved for each element in the array remains
1b536f04 9844 fixed regardless. So we simply need to compute that size using
21649b50
JB
9845 the debugging information available, from which we can then determine
9846 the array size (we multiply the number of elements of the array by
9847 the size of each element).
9848
9849 The simplest case is when we have an array of a constrained element
9850 type. For instance, consider the following type declarations:
9851
9852 type Bounded_String (Max_Size : Integer) is
9853 Length : Integer;
9854 Buffer : String (1 .. Max_Size);
9855 end record;
9856 type Bounded_String_Array is array (1 ..2) of Bounded_String (80);
9857
9858 In this case, the compiler describes the array as an array of
9859 variable-size elements (identified by its XVS suffix) for which
9860 the size can be read in the parallel XVZ variable.
9861
9862 In the case of an array of an unconstrained element type, the compiler
9863 wraps the array element inside a private PAD type. This type should not
9864 be shown to the user, and must be "unwrap"'ed before printing. Note
284614f0
JB
9865 that we also use the adjective "aligner" in our code to designate
9866 these wrapper types.
9867
1b536f04 9868 In some cases, the size allocated for each element is statically
21649b50
JB
9869 known. In that case, the PAD type already has the correct size,
9870 and the array element should remain unfixed.
9871
9872 But there are cases when this size is not statically known.
9873 For instance, assuming that "Five" is an integer variable:
284614f0
JB
9874
9875 type Dynamic is array (1 .. Five) of Integer;
9876 type Wrapper (Has_Length : Boolean := False) is record
9877 Data : Dynamic;
9878 case Has_Length is
9879 when True => Length : Integer;
9880 when False => null;
9881 end case;
9882 end record;
9883 type Wrapper_Array is array (1 .. 2) of Wrapper;
9884
9885 Hello : Wrapper_Array := (others => (Has_Length => True,
9886 Data => (others => 17),
9887 Length => 1));
9888
9889
9890 The debugging info would describe variable Hello as being an
9891 array of a PAD type. The size of that PAD type is not statically
9892 known, but can be determined using a parallel XVZ variable.
9893 In that case, a copy of the PAD type with the correct size should
9894 be used for the fixed array.
9895
21649b50
JB
9896 3. ``Fixing'' record type objects:
9897 ----------------------------------
9898
9899 Things are slightly different from arrays in the case of dynamic
284614f0
JB
9900 record types. In this case, in order to compute the associated
9901 fixed type, we need to determine the size and offset of each of
9902 its components. This, in turn, requires us to compute the fixed
9903 type of each of these components.
9904
9905 Consider for instance the example:
9906
9907 type Bounded_String (Max_Size : Natural) is record
9908 Str : String (1 .. Max_Size);
9909 Length : Natural;
9910 end record;
9911 My_String : Bounded_String (Max_Size => 10);
9912
9913 In that case, the position of field "Length" depends on the size
9914 of field Str, which itself depends on the value of the Max_Size
21649b50 9915 discriminant. In order to fix the type of variable My_String,
284614f0
JB
9916 we need to fix the type of field Str. Therefore, fixing a variant
9917 record requires us to fix each of its components.
9918
9919 However, if a component does not have a dynamic size, the component
9920 should not be fixed. In particular, fields that use a PAD type
9921 should not fixed. Here is an example where this might happen
9922 (assuming type Rec above):
9923
9924 type Container (Big : Boolean) is record
9925 First : Rec;
9926 After : Integer;
9927 case Big is
9928 when True => Another : Integer;
9929 when False => null;
9930 end case;
9931 end record;
9932 My_Container : Container := (Big => False,
9933 First => (Empty => True),
9934 After => 42);
9935
9936 In that example, the compiler creates a PAD type for component First,
9937 whose size is constant, and then positions the component After just
9938 right after it. The offset of component After is therefore constant
9939 in this case.
9940
9941 The debugger computes the position of each field based on an algorithm
9942 that uses, among other things, the actual position and size of the field
21649b50
JB
9943 preceding it. Let's now imagine that the user is trying to print
9944 the value of My_Container. If the type fixing was recursive, we would
284614f0
JB
9945 end up computing the offset of field After based on the size of the
9946 fixed version of field First. And since in our example First has
9947 only one actual field, the size of the fixed type is actually smaller
9948 than the amount of space allocated to that field, and thus we would
9949 compute the wrong offset of field After.
9950
21649b50
JB
9951 To make things more complicated, we need to watch out for dynamic
9952 components of variant records (identified by the ___XVL suffix in
9953 the component name). Even if the target type is a PAD type, the size
9954 of that type might not be statically known. So the PAD type needs
9955 to be unwrapped and the resulting type needs to be fixed. Otherwise,
9956 we might end up with the wrong size for our component. This can be
9957 observed with the following type declarations:
284614f0
JB
9958
9959 type Octal is new Integer range 0 .. 7;
9960 type Octal_Array is array (Positive range <>) of Octal;
9961 pragma Pack (Octal_Array);
9962
9963 type Octal_Buffer (Size : Positive) is record
9964 Buffer : Octal_Array (1 .. Size);
9965 Length : Integer;
9966 end record;
9967
9968 In that case, Buffer is a PAD type whose size is unset and needs
9969 to be computed by fixing the unwrapped type.
9970
21649b50
JB
9971 4. When to ``Fix'' un-``Fixed'' sub-elements of an entity:
9972 ----------------------------------------------------------
9973
9974 Lastly, when should the sub-elements of an entity that remained unfixed
284614f0
JB
9975 thus far, be actually fixed?
9976
9977 The answer is: Only when referencing that element. For instance
9978 when selecting one component of a record, this specific component
9979 should be fixed at that point in time. Or when printing the value
9980 of a record, each component should be fixed before its value gets
9981 printed. Similarly for arrays, the element of the array should be
9982 fixed when printing each element of the array, or when extracting
9983 one element out of that array. On the other hand, fixing should
9984 not be performed on the elements when taking a slice of an array!
9985
9986 Note that one of the side-effects of miscomputing the offset and
9987 size of each field is that we end up also miscomputing the size
9988 of the containing type. This can have adverse results when computing
9989 the value of an entity. GDB fetches the value of an entity based
9990 on the size of its type, and thus a wrong size causes GDB to fetch
9991 the wrong amount of memory. In the case where the computed size is
9992 too small, GDB fetches too little data to print the value of our
9993 entiry. Results in this case as unpredicatble, as we usually read
9994 past the buffer containing the data =:-o. */
9995
9996/* Implement the evaluate_exp routine in the exp_descriptor structure
9997 for the Ada language. */
9998
52ce6436 9999static struct value *
ebf56fd3 10000ada_evaluate_subexp (struct type *expect_type, struct expression *exp,
4c4b4cd2 10001 int *pos, enum noside noside)
14f9c5c9
AS
10002{
10003 enum exp_opcode op;
b5385fc0 10004 int tem;
14f9c5c9 10005 int pc;
5ec18f2b 10006 int preeval_pos;
14f9c5c9
AS
10007 struct value *arg1 = NULL, *arg2 = NULL, *arg3;
10008 struct type *type;
52ce6436 10009 int nargs, oplen;
d2e4a39e 10010 struct value **argvec;
14f9c5c9 10011
d2e4a39e
AS
10012 pc = *pos;
10013 *pos += 1;
14f9c5c9
AS
10014 op = exp->elts[pc].opcode;
10015
d2e4a39e 10016 switch (op)
14f9c5c9
AS
10017 {
10018 default:
10019 *pos -= 1;
6e48bd2c 10020 arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside);
ca1f964d
JG
10021
10022 if (noside == EVAL_NORMAL)
10023 arg1 = unwrap_value (arg1);
6e48bd2c
JB
10024
10025 /* If evaluating an OP_DOUBLE and an EXPECT_TYPE was provided,
10026 then we need to perform the conversion manually, because
10027 evaluate_subexp_standard doesn't do it. This conversion is
10028 necessary in Ada because the different kinds of float/fixed
10029 types in Ada have different representations.
10030
10031 Similarly, we need to perform the conversion from OP_LONG
10032 ourselves. */
10033 if ((op == OP_DOUBLE || op == OP_LONG) && expect_type != NULL)
10034 arg1 = ada_value_cast (expect_type, arg1, noside);
10035
10036 return arg1;
4c4b4cd2
PH
10037
10038 case OP_STRING:
10039 {
76a01679 10040 struct value *result;
5b4ee69b 10041
76a01679
JB
10042 *pos -= 1;
10043 result = evaluate_subexp_standard (expect_type, exp, pos, noside);
10044 /* The result type will have code OP_STRING, bashed there from
10045 OP_ARRAY. Bash it back. */
df407dfe
AC
10046 if (TYPE_CODE (value_type (result)) == TYPE_CODE_STRING)
10047 TYPE_CODE (value_type (result)) = TYPE_CODE_ARRAY;
76a01679 10048 return result;
4c4b4cd2 10049 }
14f9c5c9
AS
10050
10051 case UNOP_CAST:
10052 (*pos) += 2;
10053 type = exp->elts[pc + 1].type;
10054 arg1 = evaluate_subexp (type, exp, pos, noside);
10055 if (noside == EVAL_SKIP)
4c4b4cd2 10056 goto nosideret;
6e48bd2c 10057 arg1 = ada_value_cast (type, arg1, noside);
14f9c5c9
AS
10058 return arg1;
10059
4c4b4cd2
PH
10060 case UNOP_QUAL:
10061 (*pos) += 2;
10062 type = exp->elts[pc + 1].type;
10063 return ada_evaluate_subexp (type, exp, pos, noside);
10064
14f9c5c9
AS
10065 case BINOP_ASSIGN:
10066 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
52ce6436
PH
10067 if (exp->elts[*pos].opcode == OP_AGGREGATE)
10068 {
10069 arg1 = assign_aggregate (arg1, arg1, exp, pos, noside);
10070 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
10071 return arg1;
10072 return ada_value_assign (arg1, arg1);
10073 }
003f3813
JB
10074 /* Force the evaluation of the rhs ARG2 to the type of the lhs ARG1,
10075 except if the lhs of our assignment is a convenience variable.
10076 In the case of assigning to a convenience variable, the lhs
10077 should be exactly the result of the evaluation of the rhs. */
10078 type = value_type (arg1);
10079 if (VALUE_LVAL (arg1) == lval_internalvar)
10080 type = NULL;
10081 arg2 = evaluate_subexp (type, exp, pos, noside);
14f9c5c9 10082 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
4c4b4cd2 10083 return arg1;
df407dfe
AC
10084 if (ada_is_fixed_point_type (value_type (arg1)))
10085 arg2 = cast_to_fixed (value_type (arg1), arg2);
10086 else if (ada_is_fixed_point_type (value_type (arg2)))
76a01679 10087 error
323e0a4a 10088 (_("Fixed-point values must be assigned to fixed-point variables"));
d2e4a39e 10089 else
df407dfe 10090 arg2 = coerce_for_assign (value_type (arg1), arg2);
4c4b4cd2 10091 return ada_value_assign (arg1, arg2);
14f9c5c9
AS
10092
10093 case BINOP_ADD:
10094 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
10095 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
10096 if (noside == EVAL_SKIP)
4c4b4cd2 10097 goto nosideret;
2ac8a782
JB
10098 if (TYPE_CODE (value_type (arg1)) == TYPE_CODE_PTR)
10099 return (value_from_longest
10100 (value_type (arg1),
10101 value_as_long (arg1) + value_as_long (arg2)));
c40cc657
JB
10102 if (TYPE_CODE (value_type (arg2)) == TYPE_CODE_PTR)
10103 return (value_from_longest
10104 (value_type (arg2),
10105 value_as_long (arg1) + value_as_long (arg2)));
df407dfe
AC
10106 if ((ada_is_fixed_point_type (value_type (arg1))
10107 || ada_is_fixed_point_type (value_type (arg2)))
10108 && value_type (arg1) != value_type (arg2))
323e0a4a 10109 error (_("Operands of fixed-point addition must have the same type"));
b7789565
JB
10110 /* Do the addition, and cast the result to the type of the first
10111 argument. We cannot cast the result to a reference type, so if
10112 ARG1 is a reference type, find its underlying type. */
10113 type = value_type (arg1);
10114 while (TYPE_CODE (type) == TYPE_CODE_REF)
10115 type = TYPE_TARGET_TYPE (type);
f44316fa 10116 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
89eef114 10117 return value_cast (type, value_binop (arg1, arg2, BINOP_ADD));
14f9c5c9
AS
10118
10119 case BINOP_SUB:
10120 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
10121 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
10122 if (noside == EVAL_SKIP)
4c4b4cd2 10123 goto nosideret;
2ac8a782
JB
10124 if (TYPE_CODE (value_type (arg1)) == TYPE_CODE_PTR)
10125 return (value_from_longest
10126 (value_type (arg1),
10127 value_as_long (arg1) - value_as_long (arg2)));
c40cc657
JB
10128 if (TYPE_CODE (value_type (arg2)) == TYPE_CODE_PTR)
10129 return (value_from_longest
10130 (value_type (arg2),
10131 value_as_long (arg1) - value_as_long (arg2)));
df407dfe
AC
10132 if ((ada_is_fixed_point_type (value_type (arg1))
10133 || ada_is_fixed_point_type (value_type (arg2)))
10134 && value_type (arg1) != value_type (arg2))
0963b4bd
MS
10135 error (_("Operands of fixed-point subtraction "
10136 "must have the same type"));
b7789565
JB
10137 /* Do the substraction, and cast the result to the type of the first
10138 argument. We cannot cast the result to a reference type, so if
10139 ARG1 is a reference type, find its underlying type. */
10140 type = value_type (arg1);
10141 while (TYPE_CODE (type) == TYPE_CODE_REF)
10142 type = TYPE_TARGET_TYPE (type);
f44316fa 10143 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
89eef114 10144 return value_cast (type, value_binop (arg1, arg2, BINOP_SUB));
14f9c5c9
AS
10145
10146 case BINOP_MUL:
10147 case BINOP_DIV:
e1578042
JB
10148 case BINOP_REM:
10149 case BINOP_MOD:
14f9c5c9
AS
10150 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10151 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10152 if (noside == EVAL_SKIP)
4c4b4cd2 10153 goto nosideret;
e1578042 10154 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
9c2be529
JB
10155 {
10156 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10157 return value_zero (value_type (arg1), not_lval);
10158 }
14f9c5c9 10159 else
4c4b4cd2 10160 {
a53b7a21 10161 type = builtin_type (exp->gdbarch)->builtin_double;
df407dfe 10162 if (ada_is_fixed_point_type (value_type (arg1)))
a53b7a21 10163 arg1 = cast_from_fixed (type, arg1);
df407dfe 10164 if (ada_is_fixed_point_type (value_type (arg2)))
a53b7a21 10165 arg2 = cast_from_fixed (type, arg2);
f44316fa 10166 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
4c4b4cd2
PH
10167 return ada_value_binop (arg1, arg2, op);
10168 }
10169
4c4b4cd2
PH
10170 case BINOP_EQUAL:
10171 case BINOP_NOTEQUAL:
14f9c5c9 10172 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
df407dfe 10173 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
14f9c5c9 10174 if (noside == EVAL_SKIP)
76a01679 10175 goto nosideret;
4c4b4cd2 10176 if (noside == EVAL_AVOID_SIDE_EFFECTS)
76a01679 10177 tem = 0;
4c4b4cd2 10178 else
f44316fa
UW
10179 {
10180 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10181 tem = ada_value_equal (arg1, arg2);
10182 }
4c4b4cd2 10183 if (op == BINOP_NOTEQUAL)
76a01679 10184 tem = !tem;
fbb06eb1
UW
10185 type = language_bool_type (exp->language_defn, exp->gdbarch);
10186 return value_from_longest (type, (LONGEST) tem);
4c4b4cd2
PH
10187
10188 case UNOP_NEG:
10189 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10190 if (noside == EVAL_SKIP)
10191 goto nosideret;
df407dfe
AC
10192 else if (ada_is_fixed_point_type (value_type (arg1)))
10193 return value_cast (value_type (arg1), value_neg (arg1));
14f9c5c9 10194 else
f44316fa
UW
10195 {
10196 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
10197 return value_neg (arg1);
10198 }
4c4b4cd2 10199
2330c6c6
JB
10200 case BINOP_LOGICAL_AND:
10201 case BINOP_LOGICAL_OR:
10202 case UNOP_LOGICAL_NOT:
000d5124
JB
10203 {
10204 struct value *val;
10205
10206 *pos -= 1;
10207 val = evaluate_subexp_standard (expect_type, exp, pos, noside);
fbb06eb1
UW
10208 type = language_bool_type (exp->language_defn, exp->gdbarch);
10209 return value_cast (type, val);
000d5124 10210 }
2330c6c6
JB
10211
10212 case BINOP_BITWISE_AND:
10213 case BINOP_BITWISE_IOR:
10214 case BINOP_BITWISE_XOR:
000d5124
JB
10215 {
10216 struct value *val;
10217
10218 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
10219 *pos = pc;
10220 val = evaluate_subexp_standard (expect_type, exp, pos, noside);
10221
10222 return value_cast (value_type (arg1), val);
10223 }
2330c6c6 10224
14f9c5c9
AS
10225 case OP_VAR_VALUE:
10226 *pos -= 1;
6799def4 10227
14f9c5c9 10228 if (noside == EVAL_SKIP)
4c4b4cd2
PH
10229 {
10230 *pos += 4;
10231 goto nosideret;
10232 }
da5c522f
JB
10233
10234 if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
76a01679
JB
10235 /* Only encountered when an unresolved symbol occurs in a
10236 context other than a function call, in which case, it is
52ce6436 10237 invalid. */
323e0a4a 10238 error (_("Unexpected unresolved symbol, %s, during evaluation"),
4c4b4cd2 10239 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
da5c522f
JB
10240
10241 if (noside == EVAL_AVOID_SIDE_EFFECTS)
4c4b4cd2 10242 {
0c1f74cf 10243 type = static_unwrap_type (SYMBOL_TYPE (exp->elts[pc + 2].symbol));
31dbc1c5
JB
10244 /* Check to see if this is a tagged type. We also need to handle
10245 the case where the type is a reference to a tagged type, but
10246 we have to be careful to exclude pointers to tagged types.
10247 The latter should be shown as usual (as a pointer), whereas
10248 a reference should mostly be transparent to the user. */
10249 if (ada_is_tagged_type (type, 0)
023db19c 10250 || (TYPE_CODE (type) == TYPE_CODE_REF
31dbc1c5 10251 && ada_is_tagged_type (TYPE_TARGET_TYPE (type), 0)))
0d72a7c3
JB
10252 {
10253 /* Tagged types are a little special in the fact that the real
10254 type is dynamic and can only be determined by inspecting the
10255 object's tag. This means that we need to get the object's
10256 value first (EVAL_NORMAL) and then extract the actual object
10257 type from its tag.
10258
10259 Note that we cannot skip the final step where we extract
10260 the object type from its tag, because the EVAL_NORMAL phase
10261 results in dynamic components being resolved into fixed ones.
10262 This can cause problems when trying to print the type
10263 description of tagged types whose parent has a dynamic size:
10264 We use the type name of the "_parent" component in order
10265 to print the name of the ancestor type in the type description.
10266 If that component had a dynamic size, the resolution into
10267 a fixed type would result in the loss of that type name,
10268 thus preventing us from printing the name of the ancestor
10269 type in the type description. */
10270 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_NORMAL);
10271
10272 if (TYPE_CODE (type) != TYPE_CODE_REF)
10273 {
10274 struct type *actual_type;
10275
10276 actual_type = type_from_tag (ada_value_tag (arg1));
10277 if (actual_type == NULL)
10278 /* If, for some reason, we were unable to determine
10279 the actual type from the tag, then use the static
10280 approximation that we just computed as a fallback.
10281 This can happen if the debugging information is
10282 incomplete, for instance. */
10283 actual_type = type;
10284 return value_zero (actual_type, not_lval);
10285 }
10286 else
10287 {
10288 /* In the case of a ref, ada_coerce_ref takes care
10289 of determining the actual type. But the evaluation
10290 should return a ref as it should be valid to ask
10291 for its address; so rebuild a ref after coerce. */
10292 arg1 = ada_coerce_ref (arg1);
10293 return value_ref (arg1);
10294 }
10295 }
0c1f74cf 10296
84754697
JB
10297 /* Records and unions for which GNAT encodings have been
10298 generated need to be statically fixed as well.
10299 Otherwise, non-static fixing produces a type where
10300 all dynamic properties are removed, which prevents "ptype"
10301 from being able to completely describe the type.
10302 For instance, a case statement in a variant record would be
10303 replaced by the relevant components based on the actual
10304 value of the discriminants. */
10305 if ((TYPE_CODE (type) == TYPE_CODE_STRUCT
10306 && dynamic_template_type (type) != NULL)
10307 || (TYPE_CODE (type) == TYPE_CODE_UNION
10308 && ada_find_parallel_type (type, "___XVU") != NULL))
10309 {
10310 *pos += 4;
10311 return value_zero (to_static_fixed_type (type), not_lval);
10312 }
4c4b4cd2 10313 }
da5c522f
JB
10314
10315 arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside);
10316 return ada_to_fixed_value (arg1);
4c4b4cd2
PH
10317
10318 case OP_FUNCALL:
10319 (*pos) += 2;
10320
10321 /* Allocate arg vector, including space for the function to be
10322 called in argvec[0] and a terminating NULL. */
10323 nargs = longest_to_int (exp->elts[pc + 1].longconst);
10324 argvec =
10325 (struct value **) alloca (sizeof (struct value *) * (nargs + 2));
10326
10327 if (exp->elts[*pos].opcode == OP_VAR_VALUE
76a01679 10328 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
323e0a4a 10329 error (_("Unexpected unresolved symbol, %s, during evaluation"),
4c4b4cd2
PH
10330 SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol));
10331 else
10332 {
10333 for (tem = 0; tem <= nargs; tem += 1)
10334 argvec[tem] = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10335 argvec[tem] = 0;
10336
10337 if (noside == EVAL_SKIP)
10338 goto nosideret;
10339 }
10340
ad82864c
JB
10341 if (ada_is_constrained_packed_array_type
10342 (desc_base_type (value_type (argvec[0]))))
4c4b4cd2 10343 argvec[0] = ada_coerce_to_simple_array (argvec[0]);
284614f0
JB
10344 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_ARRAY
10345 && TYPE_FIELD_BITSIZE (value_type (argvec[0]), 0) != 0)
10346 /* This is a packed array that has already been fixed, and
10347 therefore already coerced to a simple array. Nothing further
10348 to do. */
10349 ;
df407dfe
AC
10350 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_REF
10351 || (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_ARRAY
76a01679 10352 && VALUE_LVAL (argvec[0]) == lval_memory))
4c4b4cd2
PH
10353 argvec[0] = value_addr (argvec[0]);
10354
df407dfe 10355 type = ada_check_typedef (value_type (argvec[0]));
720d1a40
JB
10356
10357 /* Ada allows us to implicitly dereference arrays when subscripting
8f465ea7
JB
10358 them. So, if this is an array typedef (encoding use for array
10359 access types encoded as fat pointers), strip it now. */
720d1a40
JB
10360 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
10361 type = ada_typedef_target_type (type);
10362
4c4b4cd2
PH
10363 if (TYPE_CODE (type) == TYPE_CODE_PTR)
10364 {
61ee279c 10365 switch (TYPE_CODE (ada_check_typedef (TYPE_TARGET_TYPE (type))))
4c4b4cd2
PH
10366 {
10367 case TYPE_CODE_FUNC:
61ee279c 10368 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
4c4b4cd2
PH
10369 break;
10370 case TYPE_CODE_ARRAY:
10371 break;
10372 case TYPE_CODE_STRUCT:
10373 if (noside != EVAL_AVOID_SIDE_EFFECTS)
10374 argvec[0] = ada_value_ind (argvec[0]);
61ee279c 10375 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
4c4b4cd2
PH
10376 break;
10377 default:
323e0a4a 10378 error (_("cannot subscript or call something of type `%s'"),
df407dfe 10379 ada_type_name (value_type (argvec[0])));
4c4b4cd2
PH
10380 break;
10381 }
10382 }
10383
10384 switch (TYPE_CODE (type))
10385 {
10386 case TYPE_CODE_FUNC:
10387 if (noside == EVAL_AVOID_SIDE_EFFECTS)
c8ea1972
PH
10388 {
10389 struct type *rtype = TYPE_TARGET_TYPE (type);
10390
10391 if (TYPE_GNU_IFUNC (type))
10392 return allocate_value (TYPE_TARGET_TYPE (rtype));
10393 return allocate_value (rtype);
10394 }
4c4b4cd2 10395 return call_function_by_hand (argvec[0], nargs, argvec + 1);
c8ea1972
PH
10396 case TYPE_CODE_INTERNAL_FUNCTION:
10397 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10398 /* We don't know anything about what the internal
10399 function might return, but we have to return
10400 something. */
10401 return value_zero (builtin_type (exp->gdbarch)->builtin_int,
10402 not_lval);
10403 else
10404 return call_internal_function (exp->gdbarch, exp->language_defn,
10405 argvec[0], nargs, argvec + 1);
10406
4c4b4cd2
PH
10407 case TYPE_CODE_STRUCT:
10408 {
10409 int arity;
10410
4c4b4cd2
PH
10411 arity = ada_array_arity (type);
10412 type = ada_array_element_type (type, nargs);
10413 if (type == NULL)
323e0a4a 10414 error (_("cannot subscript or call a record"));
4c4b4cd2 10415 if (arity != nargs)
323e0a4a 10416 error (_("wrong number of subscripts; expecting %d"), arity);
4c4b4cd2 10417 if (noside == EVAL_AVOID_SIDE_EFFECTS)
0a07e705 10418 return value_zero (ada_aligned_type (type), lval_memory);
4c4b4cd2
PH
10419 return
10420 unwrap_value (ada_value_subscript
10421 (argvec[0], nargs, argvec + 1));
10422 }
10423 case TYPE_CODE_ARRAY:
10424 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10425 {
10426 type = ada_array_element_type (type, nargs);
10427 if (type == NULL)
323e0a4a 10428 error (_("element type of array unknown"));
4c4b4cd2 10429 else
0a07e705 10430 return value_zero (ada_aligned_type (type), lval_memory);
4c4b4cd2
PH
10431 }
10432 return
10433 unwrap_value (ada_value_subscript
10434 (ada_coerce_to_simple_array (argvec[0]),
10435 nargs, argvec + 1));
10436 case TYPE_CODE_PTR: /* Pointer to array */
4c4b4cd2
PH
10437 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10438 {
deede10c 10439 type = to_fixed_array_type (TYPE_TARGET_TYPE (type), NULL, 1);
4c4b4cd2
PH
10440 type = ada_array_element_type (type, nargs);
10441 if (type == NULL)
323e0a4a 10442 error (_("element type of array unknown"));
4c4b4cd2 10443 else
0a07e705 10444 return value_zero (ada_aligned_type (type), lval_memory);
4c4b4cd2
PH
10445 }
10446 return
deede10c
JB
10447 unwrap_value (ada_value_ptr_subscript (argvec[0],
10448 nargs, argvec + 1));
4c4b4cd2
PH
10449
10450 default:
e1d5a0d2
PH
10451 error (_("Attempt to index or call something other than an "
10452 "array or function"));
4c4b4cd2
PH
10453 }
10454
10455 case TERNOP_SLICE:
10456 {
10457 struct value *array = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10458 struct value *low_bound_val =
10459 evaluate_subexp (NULL_TYPE, exp, pos, noside);
714e53ab
PH
10460 struct value *high_bound_val =
10461 evaluate_subexp (NULL_TYPE, exp, pos, noside);
10462 LONGEST low_bound;
10463 LONGEST high_bound;
5b4ee69b 10464
994b9211
AC
10465 low_bound_val = coerce_ref (low_bound_val);
10466 high_bound_val = coerce_ref (high_bound_val);
714e53ab
PH
10467 low_bound = pos_atr (low_bound_val);
10468 high_bound = pos_atr (high_bound_val);
963a6417 10469
4c4b4cd2
PH
10470 if (noside == EVAL_SKIP)
10471 goto nosideret;
10472
4c4b4cd2
PH
10473 /* If this is a reference to an aligner type, then remove all
10474 the aligners. */
df407dfe
AC
10475 if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF
10476 && ada_is_aligner_type (TYPE_TARGET_TYPE (value_type (array))))
10477 TYPE_TARGET_TYPE (value_type (array)) =
10478 ada_aligned_type (TYPE_TARGET_TYPE (value_type (array)));
4c4b4cd2 10479
ad82864c 10480 if (ada_is_constrained_packed_array_type (value_type (array)))
323e0a4a 10481 error (_("cannot slice a packed array"));
4c4b4cd2
PH
10482
10483 /* If this is a reference to an array or an array lvalue,
10484 convert to a pointer. */
df407dfe
AC
10485 if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF
10486 || (TYPE_CODE (value_type (array)) == TYPE_CODE_ARRAY
4c4b4cd2
PH
10487 && VALUE_LVAL (array) == lval_memory))
10488 array = value_addr (array);
10489
1265e4aa 10490 if (noside == EVAL_AVOID_SIDE_EFFECTS
61ee279c 10491 && ada_is_array_descriptor_type (ada_check_typedef
df407dfe 10492 (value_type (array))))
0b5d8877 10493 return empty_array (ada_type_of_array (array, 0), low_bound);
4c4b4cd2
PH
10494
10495 array = ada_coerce_to_simple_array_ptr (array);
10496
714e53ab
PH
10497 /* If we have more than one level of pointer indirection,
10498 dereference the value until we get only one level. */
df407dfe
AC
10499 while (TYPE_CODE (value_type (array)) == TYPE_CODE_PTR
10500 && (TYPE_CODE (TYPE_TARGET_TYPE (value_type (array)))
714e53ab
PH
10501 == TYPE_CODE_PTR))
10502 array = value_ind (array);
10503
10504 /* Make sure we really do have an array type before going further,
10505 to avoid a SEGV when trying to get the index type or the target
10506 type later down the road if the debug info generated by
10507 the compiler is incorrect or incomplete. */
df407dfe 10508 if (!ada_is_simple_array_type (value_type (array)))
323e0a4a 10509 error (_("cannot take slice of non-array"));
714e53ab 10510
828292f2
JB
10511 if (TYPE_CODE (ada_check_typedef (value_type (array)))
10512 == TYPE_CODE_PTR)
4c4b4cd2 10513 {
828292f2
JB
10514 struct type *type0 = ada_check_typedef (value_type (array));
10515
0b5d8877 10516 if (high_bound < low_bound || noside == EVAL_AVOID_SIDE_EFFECTS)
828292f2 10517 return empty_array (TYPE_TARGET_TYPE (type0), low_bound);
4c4b4cd2
PH
10518 else
10519 {
10520 struct type *arr_type0 =
828292f2 10521 to_fixed_array_type (TYPE_TARGET_TYPE (type0), NULL, 1);
5b4ee69b 10522
f5938064
JG
10523 return ada_value_slice_from_ptr (array, arr_type0,
10524 longest_to_int (low_bound),
10525 longest_to_int (high_bound));
4c4b4cd2
PH
10526 }
10527 }
10528 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
10529 return array;
10530 else if (high_bound < low_bound)
df407dfe 10531 return empty_array (value_type (array), low_bound);
4c4b4cd2 10532 else
529cad9c
PH
10533 return ada_value_slice (array, longest_to_int (low_bound),
10534 longest_to_int (high_bound));
4c4b4cd2 10535 }
14f9c5c9 10536
4c4b4cd2
PH
10537 case UNOP_IN_RANGE:
10538 (*pos) += 2;
10539 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8008e265 10540 type = check_typedef (exp->elts[pc + 1].type);
14f9c5c9 10541
14f9c5c9 10542 if (noside == EVAL_SKIP)
4c4b4cd2 10543 goto nosideret;
14f9c5c9 10544
4c4b4cd2
PH
10545 switch (TYPE_CODE (type))
10546 {
10547 default:
e1d5a0d2
PH
10548 lim_warning (_("Membership test incompletely implemented; "
10549 "always returns true"));
fbb06eb1
UW
10550 type = language_bool_type (exp->language_defn, exp->gdbarch);
10551 return value_from_longest (type, (LONGEST) 1);
4c4b4cd2
PH
10552
10553 case TYPE_CODE_RANGE:
030b4912
UW
10554 arg2 = value_from_longest (type, TYPE_LOW_BOUND (type));
10555 arg3 = value_from_longest (type, TYPE_HIGH_BOUND (type));
f44316fa
UW
10556 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10557 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
fbb06eb1
UW
10558 type = language_bool_type (exp->language_defn, exp->gdbarch);
10559 return
10560 value_from_longest (type,
4c4b4cd2
PH
10561 (value_less (arg1, arg3)
10562 || value_equal (arg1, arg3))
10563 && (value_less (arg2, arg1)
10564 || value_equal (arg2, arg1)));
10565 }
10566
10567 case BINOP_IN_BOUNDS:
14f9c5c9 10568 (*pos) += 2;
4c4b4cd2
PH
10569 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10570 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
14f9c5c9 10571
4c4b4cd2
PH
10572 if (noside == EVAL_SKIP)
10573 goto nosideret;
14f9c5c9 10574
4c4b4cd2 10575 if (noside == EVAL_AVOID_SIDE_EFFECTS)
fbb06eb1
UW
10576 {
10577 type = language_bool_type (exp->language_defn, exp->gdbarch);
10578 return value_zero (type, not_lval);
10579 }
14f9c5c9 10580
4c4b4cd2 10581 tem = longest_to_int (exp->elts[pc + 1].longconst);
14f9c5c9 10582
1eea4ebd
UW
10583 type = ada_index_type (value_type (arg2), tem, "range");
10584 if (!type)
10585 type = value_type (arg1);
14f9c5c9 10586
1eea4ebd
UW
10587 arg3 = value_from_longest (type, ada_array_bound (arg2, tem, 1));
10588 arg2 = value_from_longest (type, ada_array_bound (arg2, tem, 0));
d2e4a39e 10589
f44316fa
UW
10590 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10591 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
fbb06eb1 10592 type = language_bool_type (exp->language_defn, exp->gdbarch);
4c4b4cd2 10593 return
fbb06eb1 10594 value_from_longest (type,
4c4b4cd2
PH
10595 (value_less (arg1, arg3)
10596 || value_equal (arg1, arg3))
10597 && (value_less (arg2, arg1)
10598 || value_equal (arg2, arg1)));
10599
10600 case TERNOP_IN_RANGE:
10601 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10602 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10603 arg3 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10604
10605 if (noside == EVAL_SKIP)
10606 goto nosideret;
10607
f44316fa
UW
10608 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10609 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
fbb06eb1 10610 type = language_bool_type (exp->language_defn, exp->gdbarch);
4c4b4cd2 10611 return
fbb06eb1 10612 value_from_longest (type,
4c4b4cd2
PH
10613 (value_less (arg1, arg3)
10614 || value_equal (arg1, arg3))
10615 && (value_less (arg2, arg1)
10616 || value_equal (arg2, arg1)));
10617
10618 case OP_ATR_FIRST:
10619 case OP_ATR_LAST:
10620 case OP_ATR_LENGTH:
10621 {
76a01679 10622 struct type *type_arg;
5b4ee69b 10623
76a01679
JB
10624 if (exp->elts[*pos].opcode == OP_TYPE)
10625 {
10626 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
10627 arg1 = NULL;
5bc23cb3 10628 type_arg = check_typedef (exp->elts[pc + 2].type);
76a01679
JB
10629 }
10630 else
10631 {
10632 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10633 type_arg = NULL;
10634 }
10635
10636 if (exp->elts[*pos].opcode != OP_LONG)
323e0a4a 10637 error (_("Invalid operand to '%s"), ada_attribute_name (op));
76a01679
JB
10638 tem = longest_to_int (exp->elts[*pos + 2].longconst);
10639 *pos += 4;
10640
10641 if (noside == EVAL_SKIP)
10642 goto nosideret;
10643
10644 if (type_arg == NULL)
10645 {
10646 arg1 = ada_coerce_ref (arg1);
10647
ad82864c 10648 if (ada_is_constrained_packed_array_type (value_type (arg1)))
76a01679
JB
10649 arg1 = ada_coerce_to_simple_array (arg1);
10650
aa4fb036 10651 if (op == OP_ATR_LENGTH)
1eea4ebd 10652 type = builtin_type (exp->gdbarch)->builtin_int;
aa4fb036
JB
10653 else
10654 {
10655 type = ada_index_type (value_type (arg1), tem,
10656 ada_attribute_name (op));
10657 if (type == NULL)
10658 type = builtin_type (exp->gdbarch)->builtin_int;
10659 }
76a01679
JB
10660
10661 if (noside == EVAL_AVOID_SIDE_EFFECTS)
1eea4ebd 10662 return allocate_value (type);
76a01679
JB
10663
10664 switch (op)
10665 {
10666 default: /* Should never happen. */
323e0a4a 10667 error (_("unexpected attribute encountered"));
76a01679 10668 case OP_ATR_FIRST:
1eea4ebd
UW
10669 return value_from_longest
10670 (type, ada_array_bound (arg1, tem, 0));
76a01679 10671 case OP_ATR_LAST:
1eea4ebd
UW
10672 return value_from_longest
10673 (type, ada_array_bound (arg1, tem, 1));
76a01679 10674 case OP_ATR_LENGTH:
1eea4ebd
UW
10675 return value_from_longest
10676 (type, ada_array_length (arg1, tem));
76a01679
JB
10677 }
10678 }
10679 else if (discrete_type_p (type_arg))
10680 {
10681 struct type *range_type;
0d5cff50 10682 const char *name = ada_type_name (type_arg);
5b4ee69b 10683
76a01679
JB
10684 range_type = NULL;
10685 if (name != NULL && TYPE_CODE (type_arg) != TYPE_CODE_ENUM)
28c85d6c 10686 range_type = to_fixed_range_type (type_arg, NULL);
76a01679
JB
10687 if (range_type == NULL)
10688 range_type = type_arg;
10689 switch (op)
10690 {
10691 default:
323e0a4a 10692 error (_("unexpected attribute encountered"));
76a01679 10693 case OP_ATR_FIRST:
690cc4eb 10694 return value_from_longest
43bbcdc2 10695 (range_type, ada_discrete_type_low_bound (range_type));
76a01679 10696 case OP_ATR_LAST:
690cc4eb 10697 return value_from_longest
43bbcdc2 10698 (range_type, ada_discrete_type_high_bound (range_type));
76a01679 10699 case OP_ATR_LENGTH:
323e0a4a 10700 error (_("the 'length attribute applies only to array types"));
76a01679
JB
10701 }
10702 }
10703 else if (TYPE_CODE (type_arg) == TYPE_CODE_FLT)
323e0a4a 10704 error (_("unimplemented type attribute"));
76a01679
JB
10705 else
10706 {
10707 LONGEST low, high;
10708
ad82864c
JB
10709 if (ada_is_constrained_packed_array_type (type_arg))
10710 type_arg = decode_constrained_packed_array_type (type_arg);
76a01679 10711
aa4fb036 10712 if (op == OP_ATR_LENGTH)
1eea4ebd 10713 type = builtin_type (exp->gdbarch)->builtin_int;
aa4fb036
JB
10714 else
10715 {
10716 type = ada_index_type (type_arg, tem, ada_attribute_name (op));
10717 if (type == NULL)
10718 type = builtin_type (exp->gdbarch)->builtin_int;
10719 }
1eea4ebd 10720
76a01679
JB
10721 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10722 return allocate_value (type);
10723
10724 switch (op)
10725 {
10726 default:
323e0a4a 10727 error (_("unexpected attribute encountered"));
76a01679 10728 case OP_ATR_FIRST:
1eea4ebd 10729 low = ada_array_bound_from_type (type_arg, tem, 0);
76a01679
JB
10730 return value_from_longest (type, low);
10731 case OP_ATR_LAST:
1eea4ebd 10732 high = ada_array_bound_from_type (type_arg, tem, 1);
76a01679
JB
10733 return value_from_longest (type, high);
10734 case OP_ATR_LENGTH:
1eea4ebd
UW
10735 low = ada_array_bound_from_type (type_arg, tem, 0);
10736 high = ada_array_bound_from_type (type_arg, tem, 1);
76a01679
JB
10737 return value_from_longest (type, high - low + 1);
10738 }
10739 }
14f9c5c9
AS
10740 }
10741
4c4b4cd2
PH
10742 case OP_ATR_TAG:
10743 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10744 if (noside == EVAL_SKIP)
76a01679 10745 goto nosideret;
4c4b4cd2
PH
10746
10747 if (noside == EVAL_AVOID_SIDE_EFFECTS)
76a01679 10748 return value_zero (ada_tag_type (arg1), not_lval);
4c4b4cd2
PH
10749
10750 return ada_value_tag (arg1);
10751
10752 case OP_ATR_MIN:
10753 case OP_ATR_MAX:
10754 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
14f9c5c9
AS
10755 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10756 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10757 if (noside == EVAL_SKIP)
76a01679 10758 goto nosideret;
d2e4a39e 10759 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
df407dfe 10760 return value_zero (value_type (arg1), not_lval);
14f9c5c9 10761 else
f44316fa
UW
10762 {
10763 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10764 return value_binop (arg1, arg2,
10765 op == OP_ATR_MIN ? BINOP_MIN : BINOP_MAX);
10766 }
14f9c5c9 10767
4c4b4cd2
PH
10768 case OP_ATR_MODULUS:
10769 {
31dedfee 10770 struct type *type_arg = check_typedef (exp->elts[pc + 2].type);
4c4b4cd2 10771
5b4ee69b 10772 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
76a01679
JB
10773 if (noside == EVAL_SKIP)
10774 goto nosideret;
4c4b4cd2 10775
76a01679 10776 if (!ada_is_modular_type (type_arg))
323e0a4a 10777 error (_("'modulus must be applied to modular type"));
4c4b4cd2 10778
76a01679
JB
10779 return value_from_longest (TYPE_TARGET_TYPE (type_arg),
10780 ada_modulus (type_arg));
4c4b4cd2
PH
10781 }
10782
10783
10784 case OP_ATR_POS:
10785 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
14f9c5c9
AS
10786 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10787 if (noside == EVAL_SKIP)
76a01679 10788 goto nosideret;
3cb382c9
UW
10789 type = builtin_type (exp->gdbarch)->builtin_int;
10790 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10791 return value_zero (type, not_lval);
14f9c5c9 10792 else
3cb382c9 10793 return value_pos_atr (type, arg1);
14f9c5c9 10794
4c4b4cd2
PH
10795 case OP_ATR_SIZE:
10796 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8c1c099f
JB
10797 type = value_type (arg1);
10798
10799 /* If the argument is a reference, then dereference its type, since
10800 the user is really asking for the size of the actual object,
10801 not the size of the pointer. */
10802 if (TYPE_CODE (type) == TYPE_CODE_REF)
10803 type = TYPE_TARGET_TYPE (type);
10804
4c4b4cd2 10805 if (noside == EVAL_SKIP)
76a01679 10806 goto nosideret;
4c4b4cd2 10807 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
22601c15 10808 return value_zero (builtin_type (exp->gdbarch)->builtin_int, not_lval);
4c4b4cd2 10809 else
22601c15 10810 return value_from_longest (builtin_type (exp->gdbarch)->builtin_int,
8c1c099f 10811 TARGET_CHAR_BIT * TYPE_LENGTH (type));
4c4b4cd2
PH
10812
10813 case OP_ATR_VAL:
10814 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
14f9c5c9 10815 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
4c4b4cd2 10816 type = exp->elts[pc + 2].type;
14f9c5c9 10817 if (noside == EVAL_SKIP)
76a01679 10818 goto nosideret;
4c4b4cd2 10819 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
76a01679 10820 return value_zero (type, not_lval);
4c4b4cd2 10821 else
76a01679 10822 return value_val_atr (type, arg1);
4c4b4cd2
PH
10823
10824 case BINOP_EXP:
10825 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10826 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10827 if (noside == EVAL_SKIP)
10828 goto nosideret;
10829 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
df407dfe 10830 return value_zero (value_type (arg1), not_lval);
4c4b4cd2 10831 else
f44316fa
UW
10832 {
10833 /* For integer exponentiation operations,
10834 only promote the first argument. */
10835 if (is_integral_type (value_type (arg2)))
10836 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
10837 else
10838 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10839
10840 return value_binop (arg1, arg2, op);
10841 }
4c4b4cd2
PH
10842
10843 case UNOP_PLUS:
10844 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10845 if (noside == EVAL_SKIP)
10846 goto nosideret;
10847 else
10848 return arg1;
10849
10850 case UNOP_ABS:
10851 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10852 if (noside == EVAL_SKIP)
10853 goto nosideret;
f44316fa 10854 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
df407dfe 10855 if (value_less (arg1, value_zero (value_type (arg1), not_lval)))
4c4b4cd2 10856 return value_neg (arg1);
14f9c5c9 10857 else
4c4b4cd2 10858 return arg1;
14f9c5c9
AS
10859
10860 case UNOP_IND:
5ec18f2b 10861 preeval_pos = *pos;
6b0d7253 10862 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
14f9c5c9 10863 if (noside == EVAL_SKIP)
4c4b4cd2 10864 goto nosideret;
df407dfe 10865 type = ada_check_typedef (value_type (arg1));
14f9c5c9 10866 if (noside == EVAL_AVOID_SIDE_EFFECTS)
4c4b4cd2
PH
10867 {
10868 if (ada_is_array_descriptor_type (type))
10869 /* GDB allows dereferencing GNAT array descriptors. */
10870 {
10871 struct type *arrType = ada_type_of_array (arg1, 0);
5b4ee69b 10872
4c4b4cd2 10873 if (arrType == NULL)
323e0a4a 10874 error (_("Attempt to dereference null array pointer."));
00a4c844 10875 return value_at_lazy (arrType, 0);
4c4b4cd2
PH
10876 }
10877 else if (TYPE_CODE (type) == TYPE_CODE_PTR
10878 || TYPE_CODE (type) == TYPE_CODE_REF
10879 /* In C you can dereference an array to get the 1st elt. */
10880 || TYPE_CODE (type) == TYPE_CODE_ARRAY)
714e53ab 10881 {
5ec18f2b
JG
10882 /* As mentioned in the OP_VAR_VALUE case, tagged types can
10883 only be determined by inspecting the object's tag.
10884 This means that we need to evaluate completely the
10885 expression in order to get its type. */
10886
023db19c
JB
10887 if ((TYPE_CODE (type) == TYPE_CODE_REF
10888 || TYPE_CODE (type) == TYPE_CODE_PTR)
5ec18f2b
JG
10889 && ada_is_tagged_type (TYPE_TARGET_TYPE (type), 0))
10890 {
10891 arg1 = evaluate_subexp (NULL_TYPE, exp, &preeval_pos,
10892 EVAL_NORMAL);
10893 type = value_type (ada_value_ind (arg1));
10894 }
10895 else
10896 {
10897 type = to_static_fixed_type
10898 (ada_aligned_type
10899 (ada_check_typedef (TYPE_TARGET_TYPE (type))));
10900 }
10901 check_size (type);
714e53ab
PH
10902 return value_zero (type, lval_memory);
10903 }
4c4b4cd2 10904 else if (TYPE_CODE (type) == TYPE_CODE_INT)
6b0d7253
JB
10905 {
10906 /* GDB allows dereferencing an int. */
10907 if (expect_type == NULL)
10908 return value_zero (builtin_type (exp->gdbarch)->builtin_int,
10909 lval_memory);
10910 else
10911 {
10912 expect_type =
10913 to_static_fixed_type (ada_aligned_type (expect_type));
10914 return value_zero (expect_type, lval_memory);
10915 }
10916 }
4c4b4cd2 10917 else
323e0a4a 10918 error (_("Attempt to take contents of a non-pointer value."));
4c4b4cd2 10919 }
0963b4bd 10920 arg1 = ada_coerce_ref (arg1); /* FIXME: What is this for?? */
df407dfe 10921 type = ada_check_typedef (value_type (arg1));
d2e4a39e 10922
96967637
JB
10923 if (TYPE_CODE (type) == TYPE_CODE_INT)
10924 /* GDB allows dereferencing an int. If we were given
10925 the expect_type, then use that as the target type.
10926 Otherwise, assume that the target type is an int. */
10927 {
10928 if (expect_type != NULL)
10929 return ada_value_ind (value_cast (lookup_pointer_type (expect_type),
10930 arg1));
10931 else
10932 return value_at_lazy (builtin_type (exp->gdbarch)->builtin_int,
10933 (CORE_ADDR) value_as_address (arg1));
10934 }
6b0d7253 10935
4c4b4cd2
PH
10936 if (ada_is_array_descriptor_type (type))
10937 /* GDB allows dereferencing GNAT array descriptors. */
10938 return ada_coerce_to_simple_array (arg1);
14f9c5c9 10939 else
4c4b4cd2 10940 return ada_value_ind (arg1);
14f9c5c9
AS
10941
10942 case STRUCTOP_STRUCT:
10943 tem = longest_to_int (exp->elts[pc + 1].longconst);
10944 (*pos) += 3 + BYTES_TO_EXP_ELEM (tem + 1);
5ec18f2b 10945 preeval_pos = *pos;
14f9c5c9
AS
10946 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10947 if (noside == EVAL_SKIP)
4c4b4cd2 10948 goto nosideret;
14f9c5c9 10949 if (noside == EVAL_AVOID_SIDE_EFFECTS)
76a01679 10950 {
df407dfe 10951 struct type *type1 = value_type (arg1);
5b4ee69b 10952
76a01679
JB
10953 if (ada_is_tagged_type (type1, 1))
10954 {
10955 type = ada_lookup_struct_elt_type (type1,
10956 &exp->elts[pc + 2].string,
10957 1, 1, NULL);
5ec18f2b
JG
10958
10959 /* If the field is not found, check if it exists in the
10960 extension of this object's type. This means that we
10961 need to evaluate completely the expression. */
10962
76a01679 10963 if (type == NULL)
5ec18f2b
JG
10964 {
10965 arg1 = evaluate_subexp (NULL_TYPE, exp, &preeval_pos,
10966 EVAL_NORMAL);
10967 arg1 = ada_value_struct_elt (arg1,
10968 &exp->elts[pc + 2].string,
10969 0);
10970 arg1 = unwrap_value (arg1);
10971 type = value_type (ada_to_fixed_value (arg1));
10972 }
76a01679
JB
10973 }
10974 else
10975 type =
10976 ada_lookup_struct_elt_type (type1, &exp->elts[pc + 2].string, 1,
10977 0, NULL);
10978
10979 return value_zero (ada_aligned_type (type), lval_memory);
10980 }
14f9c5c9 10981 else
284614f0
JB
10982 arg1 = ada_value_struct_elt (arg1, &exp->elts[pc + 2].string, 0);
10983 arg1 = unwrap_value (arg1);
10984 return ada_to_fixed_value (arg1);
10985
14f9c5c9 10986 case OP_TYPE:
4c4b4cd2
PH
10987 /* The value is not supposed to be used. This is here to make it
10988 easier to accommodate expressions that contain types. */
14f9c5c9
AS
10989 (*pos) += 2;
10990 if (noside == EVAL_SKIP)
4c4b4cd2 10991 goto nosideret;
14f9c5c9 10992 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
a6cfbe68 10993 return allocate_value (exp->elts[pc + 1].type);
14f9c5c9 10994 else
323e0a4a 10995 error (_("Attempt to use a type name as an expression"));
52ce6436
PH
10996
10997 case OP_AGGREGATE:
10998 case OP_CHOICES:
10999 case OP_OTHERS:
11000 case OP_DISCRETE_RANGE:
11001 case OP_POSITIONAL:
11002 case OP_NAME:
11003 if (noside == EVAL_NORMAL)
11004 switch (op)
11005 {
11006 case OP_NAME:
11007 error (_("Undefined name, ambiguous name, or renaming used in "
e1d5a0d2 11008 "component association: %s."), &exp->elts[pc+2].string);
52ce6436
PH
11009 case OP_AGGREGATE:
11010 error (_("Aggregates only allowed on the right of an assignment"));
11011 default:
0963b4bd
MS
11012 internal_error (__FILE__, __LINE__,
11013 _("aggregate apparently mangled"));
52ce6436
PH
11014 }
11015
11016 ada_forward_operator_length (exp, pc, &oplen, &nargs);
11017 *pos += oplen - 1;
11018 for (tem = 0; tem < nargs; tem += 1)
11019 ada_evaluate_subexp (NULL, exp, pos, noside);
11020 goto nosideret;
14f9c5c9
AS
11021 }
11022
11023nosideret:
22601c15 11024 return value_from_longest (builtin_type (exp->gdbarch)->builtin_int, 1);
14f9c5c9 11025}
14f9c5c9 11026\f
d2e4a39e 11027
4c4b4cd2 11028 /* Fixed point */
14f9c5c9
AS
11029
11030/* If TYPE encodes an Ada fixed-point type, return the suffix of the
11031 type name that encodes the 'small and 'delta information.
4c4b4cd2 11032 Otherwise, return NULL. */
14f9c5c9 11033
d2e4a39e 11034static const char *
ebf56fd3 11035fixed_type_info (struct type *type)
14f9c5c9 11036{
d2e4a39e 11037 const char *name = ada_type_name (type);
14f9c5c9
AS
11038 enum type_code code = (type == NULL) ? TYPE_CODE_UNDEF : TYPE_CODE (type);
11039
d2e4a39e
AS
11040 if ((code == TYPE_CODE_INT || code == TYPE_CODE_RANGE) && name != NULL)
11041 {
14f9c5c9 11042 const char *tail = strstr (name, "___XF_");
5b4ee69b 11043
14f9c5c9 11044 if (tail == NULL)
4c4b4cd2 11045 return NULL;
d2e4a39e 11046 else
4c4b4cd2 11047 return tail + 5;
14f9c5c9
AS
11048 }
11049 else if (code == TYPE_CODE_RANGE && TYPE_TARGET_TYPE (type) != type)
11050 return fixed_type_info (TYPE_TARGET_TYPE (type));
11051 else
11052 return NULL;
11053}
11054
4c4b4cd2 11055/* Returns non-zero iff TYPE represents an Ada fixed-point type. */
14f9c5c9
AS
11056
11057int
ebf56fd3 11058ada_is_fixed_point_type (struct type *type)
14f9c5c9
AS
11059{
11060 return fixed_type_info (type) != NULL;
11061}
11062
4c4b4cd2
PH
11063/* Return non-zero iff TYPE represents a System.Address type. */
11064
11065int
11066ada_is_system_address_type (struct type *type)
11067{
11068 return (TYPE_NAME (type)
11069 && strcmp (TYPE_NAME (type), "system__address") == 0);
11070}
11071
14f9c5c9
AS
11072/* Assuming that TYPE is the representation of an Ada fixed-point
11073 type, return its delta, or -1 if the type is malformed and the
4c4b4cd2 11074 delta cannot be determined. */
14f9c5c9
AS
11075
11076DOUBLEST
ebf56fd3 11077ada_delta (struct type *type)
14f9c5c9
AS
11078{
11079 const char *encoding = fixed_type_info (type);
facc390f 11080 DOUBLEST num, den;
14f9c5c9 11081
facc390f
JB
11082 /* Strictly speaking, num and den are encoded as integer. However,
11083 they may not fit into a long, and they will have to be converted
11084 to DOUBLEST anyway. So scan them as DOUBLEST. */
11085 if (sscanf (encoding, "_%" DOUBLEST_SCAN_FORMAT "_%" DOUBLEST_SCAN_FORMAT,
11086 &num, &den) < 2)
14f9c5c9 11087 return -1.0;
d2e4a39e 11088 else
facc390f 11089 return num / den;
14f9c5c9
AS
11090}
11091
11092/* Assuming that ada_is_fixed_point_type (TYPE), return the scaling
4c4b4cd2 11093 factor ('SMALL value) associated with the type. */
14f9c5c9
AS
11094
11095static DOUBLEST
ebf56fd3 11096scaling_factor (struct type *type)
14f9c5c9
AS
11097{
11098 const char *encoding = fixed_type_info (type);
facc390f 11099 DOUBLEST num0, den0, num1, den1;
14f9c5c9 11100 int n;
d2e4a39e 11101
facc390f
JB
11102 /* Strictly speaking, num's and den's are encoded as integer. However,
11103 they may not fit into a long, and they will have to be converted
11104 to DOUBLEST anyway. So scan them as DOUBLEST. */
11105 n = sscanf (encoding,
11106 "_%" DOUBLEST_SCAN_FORMAT "_%" DOUBLEST_SCAN_FORMAT
11107 "_%" DOUBLEST_SCAN_FORMAT "_%" DOUBLEST_SCAN_FORMAT,
11108 &num0, &den0, &num1, &den1);
14f9c5c9
AS
11109
11110 if (n < 2)
11111 return 1.0;
11112 else if (n == 4)
facc390f 11113 return num1 / den1;
d2e4a39e 11114 else
facc390f 11115 return num0 / den0;
14f9c5c9
AS
11116}
11117
11118
11119/* Assuming that X is the representation of a value of fixed-point
4c4b4cd2 11120 type TYPE, return its floating-point equivalent. */
14f9c5c9
AS
11121
11122DOUBLEST
ebf56fd3 11123ada_fixed_to_float (struct type *type, LONGEST x)
14f9c5c9 11124{
d2e4a39e 11125 return (DOUBLEST) x *scaling_factor (type);
14f9c5c9
AS
11126}
11127
4c4b4cd2
PH
11128/* The representation of a fixed-point value of type TYPE
11129 corresponding to the value X. */
14f9c5c9
AS
11130
11131LONGEST
ebf56fd3 11132ada_float_to_fixed (struct type *type, DOUBLEST x)
14f9c5c9
AS
11133{
11134 return (LONGEST) (x / scaling_factor (type) + 0.5);
11135}
11136
14f9c5c9 11137\f
d2e4a39e 11138
4c4b4cd2 11139 /* Range types */
14f9c5c9
AS
11140
11141/* Scan STR beginning at position K for a discriminant name, and
11142 return the value of that discriminant field of DVAL in *PX. If
11143 PNEW_K is not null, put the position of the character beyond the
11144 name scanned in *PNEW_K. Return 1 if successful; return 0 and do
4c4b4cd2 11145 not alter *PX and *PNEW_K if unsuccessful. */
14f9c5c9
AS
11146
11147static int
07d8f827 11148scan_discrim_bound (char *str, int k, struct value *dval, LONGEST * px,
76a01679 11149 int *pnew_k)
14f9c5c9
AS
11150{
11151 static char *bound_buffer = NULL;
11152 static size_t bound_buffer_len = 0;
11153 char *bound;
11154 char *pend;
d2e4a39e 11155 struct value *bound_val;
14f9c5c9
AS
11156
11157 if (dval == NULL || str == NULL || str[k] == '\0')
11158 return 0;
11159
d2e4a39e 11160 pend = strstr (str + k, "__");
14f9c5c9
AS
11161 if (pend == NULL)
11162 {
d2e4a39e 11163 bound = str + k;
14f9c5c9
AS
11164 k += strlen (bound);
11165 }
d2e4a39e 11166 else
14f9c5c9 11167 {
d2e4a39e 11168 GROW_VECT (bound_buffer, bound_buffer_len, pend - (str + k) + 1);
14f9c5c9 11169 bound = bound_buffer;
d2e4a39e
AS
11170 strncpy (bound_buffer, str + k, pend - (str + k));
11171 bound[pend - (str + k)] = '\0';
11172 k = pend - str;
14f9c5c9 11173 }
d2e4a39e 11174
df407dfe 11175 bound_val = ada_search_struct_field (bound, dval, 0, value_type (dval));
14f9c5c9
AS
11176 if (bound_val == NULL)
11177 return 0;
11178
11179 *px = value_as_long (bound_val);
11180 if (pnew_k != NULL)
11181 *pnew_k = k;
11182 return 1;
11183}
11184
11185/* Value of variable named NAME in the current environment. If
11186 no such variable found, then if ERR_MSG is null, returns 0, and
4c4b4cd2
PH
11187 otherwise causes an error with message ERR_MSG. */
11188
d2e4a39e
AS
11189static struct value *
11190get_var_value (char *name, char *err_msg)
14f9c5c9 11191{
4c4b4cd2 11192 struct ada_symbol_info *syms;
14f9c5c9
AS
11193 int nsyms;
11194
4c4b4cd2 11195 nsyms = ada_lookup_symbol_list (name, get_selected_block (0), VAR_DOMAIN,
4eeaa230 11196 &syms);
14f9c5c9
AS
11197
11198 if (nsyms != 1)
11199 {
11200 if (err_msg == NULL)
4c4b4cd2 11201 return 0;
14f9c5c9 11202 else
8a3fe4f8 11203 error (("%s"), err_msg);
14f9c5c9
AS
11204 }
11205
4c4b4cd2 11206 return value_of_variable (syms[0].sym, syms[0].block);
14f9c5c9 11207}
d2e4a39e 11208
14f9c5c9 11209/* Value of integer variable named NAME in the current environment. If
4c4b4cd2
PH
11210 no such variable found, returns 0, and sets *FLAG to 0. If
11211 successful, sets *FLAG to 1. */
11212
14f9c5c9 11213LONGEST
4c4b4cd2 11214get_int_var_value (char *name, int *flag)
14f9c5c9 11215{
4c4b4cd2 11216 struct value *var_val = get_var_value (name, 0);
d2e4a39e 11217
14f9c5c9
AS
11218 if (var_val == 0)
11219 {
11220 if (flag != NULL)
4c4b4cd2 11221 *flag = 0;
14f9c5c9
AS
11222 return 0;
11223 }
11224 else
11225 {
11226 if (flag != NULL)
4c4b4cd2 11227 *flag = 1;
14f9c5c9
AS
11228 return value_as_long (var_val);
11229 }
11230}
d2e4a39e 11231
14f9c5c9
AS
11232
11233/* Return a range type whose base type is that of the range type named
11234 NAME in the current environment, and whose bounds are calculated
4c4b4cd2 11235 from NAME according to the GNAT range encoding conventions.
1ce677a4
UW
11236 Extract discriminant values, if needed, from DVAL. ORIG_TYPE is the
11237 corresponding range type from debug information; fall back to using it
11238 if symbol lookup fails. If a new type must be created, allocate it
11239 like ORIG_TYPE was. The bounds information, in general, is encoded
11240 in NAME, the base type given in the named range type. */
14f9c5c9 11241
d2e4a39e 11242static struct type *
28c85d6c 11243to_fixed_range_type (struct type *raw_type, struct value *dval)
14f9c5c9 11244{
0d5cff50 11245 const char *name;
14f9c5c9 11246 struct type *base_type;
d2e4a39e 11247 char *subtype_info;
14f9c5c9 11248
28c85d6c
JB
11249 gdb_assert (raw_type != NULL);
11250 gdb_assert (TYPE_NAME (raw_type) != NULL);
dddfab26 11251
1ce677a4 11252 if (TYPE_CODE (raw_type) == TYPE_CODE_RANGE)
14f9c5c9
AS
11253 base_type = TYPE_TARGET_TYPE (raw_type);
11254 else
11255 base_type = raw_type;
11256
28c85d6c 11257 name = TYPE_NAME (raw_type);
14f9c5c9
AS
11258 subtype_info = strstr (name, "___XD");
11259 if (subtype_info == NULL)
690cc4eb 11260 {
43bbcdc2
PH
11261 LONGEST L = ada_discrete_type_low_bound (raw_type);
11262 LONGEST U = ada_discrete_type_high_bound (raw_type);
5b4ee69b 11263
690cc4eb
PH
11264 if (L < INT_MIN || U > INT_MAX)
11265 return raw_type;
11266 else
0c9c3474
SA
11267 return create_static_range_type (alloc_type_copy (raw_type), raw_type,
11268 L, U);
690cc4eb 11269 }
14f9c5c9
AS
11270 else
11271 {
11272 static char *name_buf = NULL;
11273 static size_t name_len = 0;
11274 int prefix_len = subtype_info - name;
11275 LONGEST L, U;
11276 struct type *type;
11277 char *bounds_str;
11278 int n;
11279
11280 GROW_VECT (name_buf, name_len, prefix_len + 5);
11281 strncpy (name_buf, name, prefix_len);
11282 name_buf[prefix_len] = '\0';
11283
11284 subtype_info += 5;
11285 bounds_str = strchr (subtype_info, '_');
11286 n = 1;
11287
d2e4a39e 11288 if (*subtype_info == 'L')
4c4b4cd2
PH
11289 {
11290 if (!ada_scan_number (bounds_str, n, &L, &n)
11291 && !scan_discrim_bound (bounds_str, n, dval, &L, &n))
11292 return raw_type;
11293 if (bounds_str[n] == '_')
11294 n += 2;
0963b4bd 11295 else if (bounds_str[n] == '.') /* FIXME? SGI Workshop kludge. */
4c4b4cd2
PH
11296 n += 1;
11297 subtype_info += 1;
11298 }
d2e4a39e 11299 else
4c4b4cd2
PH
11300 {
11301 int ok;
5b4ee69b 11302
4c4b4cd2
PH
11303 strcpy (name_buf + prefix_len, "___L");
11304 L = get_int_var_value (name_buf, &ok);
11305 if (!ok)
11306 {
323e0a4a 11307 lim_warning (_("Unknown lower bound, using 1."));
4c4b4cd2
PH
11308 L = 1;
11309 }
11310 }
14f9c5c9 11311
d2e4a39e 11312 if (*subtype_info == 'U')
4c4b4cd2
PH
11313 {
11314 if (!ada_scan_number (bounds_str, n, &U, &n)
11315 && !scan_discrim_bound (bounds_str, n, dval, &U, &n))
11316 return raw_type;
11317 }
d2e4a39e 11318 else
4c4b4cd2
PH
11319 {
11320 int ok;
5b4ee69b 11321
4c4b4cd2
PH
11322 strcpy (name_buf + prefix_len, "___U");
11323 U = get_int_var_value (name_buf, &ok);
11324 if (!ok)
11325 {
323e0a4a 11326 lim_warning (_("Unknown upper bound, using %ld."), (long) L);
4c4b4cd2
PH
11327 U = L;
11328 }
11329 }
14f9c5c9 11330
0c9c3474
SA
11331 type = create_static_range_type (alloc_type_copy (raw_type),
11332 base_type, L, U);
d2e4a39e 11333 TYPE_NAME (type) = name;
14f9c5c9
AS
11334 return type;
11335 }
11336}
11337
4c4b4cd2
PH
11338/* True iff NAME is the name of a range type. */
11339
14f9c5c9 11340int
d2e4a39e 11341ada_is_range_type_name (const char *name)
14f9c5c9
AS
11342{
11343 return (name != NULL && strstr (name, "___XD"));
d2e4a39e 11344}
14f9c5c9 11345\f
d2e4a39e 11346
4c4b4cd2
PH
11347 /* Modular types */
11348
11349/* True iff TYPE is an Ada modular type. */
14f9c5c9 11350
14f9c5c9 11351int
d2e4a39e 11352ada_is_modular_type (struct type *type)
14f9c5c9 11353{
18af8284 11354 struct type *subranged_type = get_base_type (type);
14f9c5c9
AS
11355
11356 return (subranged_type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE
690cc4eb 11357 && TYPE_CODE (subranged_type) == TYPE_CODE_INT
4c4b4cd2 11358 && TYPE_UNSIGNED (subranged_type));
14f9c5c9
AS
11359}
11360
4c4b4cd2
PH
11361/* Assuming ada_is_modular_type (TYPE), the modulus of TYPE. */
11362
61ee279c 11363ULONGEST
0056e4d5 11364ada_modulus (struct type *type)
14f9c5c9 11365{
43bbcdc2 11366 return (ULONGEST) TYPE_HIGH_BOUND (type) + 1;
14f9c5c9 11367}
d2e4a39e 11368\f
f7f9143b
JB
11369
11370/* Ada exception catchpoint support:
11371 ---------------------------------
11372
11373 We support 3 kinds of exception catchpoints:
11374 . catchpoints on Ada exceptions
11375 . catchpoints on unhandled Ada exceptions
11376 . catchpoints on failed assertions
11377
11378 Exceptions raised during failed assertions, or unhandled exceptions
11379 could perfectly be caught with the general catchpoint on Ada exceptions.
11380 However, we can easily differentiate these two special cases, and having
11381 the option to distinguish these two cases from the rest can be useful
11382 to zero-in on certain situations.
11383
11384 Exception catchpoints are a specialized form of breakpoint,
11385 since they rely on inserting breakpoints inside known routines
11386 of the GNAT runtime. The implementation therefore uses a standard
11387 breakpoint structure of the BP_BREAKPOINT type, but with its own set
11388 of breakpoint_ops.
11389
0259addd
JB
11390 Support in the runtime for exception catchpoints have been changed
11391 a few times already, and these changes affect the implementation
11392 of these catchpoints. In order to be able to support several
11393 variants of the runtime, we use a sniffer that will determine
28010a5d 11394 the runtime variant used by the program being debugged. */
f7f9143b 11395
82eacd52
JB
11396/* Ada's standard exceptions.
11397
11398 The Ada 83 standard also defined Numeric_Error. But there so many
11399 situations where it was unclear from the Ada 83 Reference Manual
11400 (RM) whether Constraint_Error or Numeric_Error should be raised,
11401 that the ARG (Ada Rapporteur Group) eventually issued a Binding
11402 Interpretation saying that anytime the RM says that Numeric_Error
11403 should be raised, the implementation may raise Constraint_Error.
11404 Ada 95 went one step further and pretty much removed Numeric_Error
11405 from the list of standard exceptions (it made it a renaming of
11406 Constraint_Error, to help preserve compatibility when compiling
11407 an Ada83 compiler). As such, we do not include Numeric_Error from
11408 this list of standard exceptions. */
3d0b0fa3
JB
11409
11410static char *standard_exc[] = {
11411 "constraint_error",
11412 "program_error",
11413 "storage_error",
11414 "tasking_error"
11415};
11416
0259addd
JB
11417typedef CORE_ADDR (ada_unhandled_exception_name_addr_ftype) (void);
11418
11419/* A structure that describes how to support exception catchpoints
11420 for a given executable. */
11421
11422struct exception_support_info
11423{
11424 /* The name of the symbol to break on in order to insert
11425 a catchpoint on exceptions. */
11426 const char *catch_exception_sym;
11427
11428 /* The name of the symbol to break on in order to insert
11429 a catchpoint on unhandled exceptions. */
11430 const char *catch_exception_unhandled_sym;
11431
11432 /* The name of the symbol to break on in order to insert
11433 a catchpoint on failed assertions. */
11434 const char *catch_assert_sym;
11435
11436 /* Assuming that the inferior just triggered an unhandled exception
11437 catchpoint, this function is responsible for returning the address
11438 in inferior memory where the name of that exception is stored.
11439 Return zero if the address could not be computed. */
11440 ada_unhandled_exception_name_addr_ftype *unhandled_exception_name_addr;
11441};
11442
11443static CORE_ADDR ada_unhandled_exception_name_addr (void);
11444static CORE_ADDR ada_unhandled_exception_name_addr_from_raise (void);
11445
11446/* The following exception support info structure describes how to
11447 implement exception catchpoints with the latest version of the
11448 Ada runtime (as of 2007-03-06). */
11449
11450static const struct exception_support_info default_exception_support_info =
11451{
11452 "__gnat_debug_raise_exception", /* catch_exception_sym */
11453 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
11454 "__gnat_debug_raise_assert_failure", /* catch_assert_sym */
11455 ada_unhandled_exception_name_addr
11456};
11457
11458/* The following exception support info structure describes how to
11459 implement exception catchpoints with a slightly older version
11460 of the Ada runtime. */
11461
11462static const struct exception_support_info exception_support_info_fallback =
11463{
11464 "__gnat_raise_nodefer_with_msg", /* catch_exception_sym */
11465 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
11466 "system__assertions__raise_assert_failure", /* catch_assert_sym */
11467 ada_unhandled_exception_name_addr_from_raise
11468};
11469
f17011e0
JB
11470/* Return nonzero if we can detect the exception support routines
11471 described in EINFO.
11472
11473 This function errors out if an abnormal situation is detected
11474 (for instance, if we find the exception support routines, but
11475 that support is found to be incomplete). */
11476
11477static int
11478ada_has_this_exception_support (const struct exception_support_info *einfo)
11479{
11480 struct symbol *sym;
11481
11482 /* The symbol we're looking up is provided by a unit in the GNAT runtime
11483 that should be compiled with debugging information. As a result, we
11484 expect to find that symbol in the symtabs. */
11485
11486 sym = standard_lookup (einfo->catch_exception_sym, NULL, VAR_DOMAIN);
11487 if (sym == NULL)
a6af7abe
JB
11488 {
11489 /* Perhaps we did not find our symbol because the Ada runtime was
11490 compiled without debugging info, or simply stripped of it.
11491 It happens on some GNU/Linux distributions for instance, where
11492 users have to install a separate debug package in order to get
11493 the runtime's debugging info. In that situation, let the user
11494 know why we cannot insert an Ada exception catchpoint.
11495
11496 Note: Just for the purpose of inserting our Ada exception
11497 catchpoint, we could rely purely on the associated minimal symbol.
11498 But we would be operating in degraded mode anyway, since we are
11499 still lacking the debugging info needed later on to extract
11500 the name of the exception being raised (this name is printed in
11501 the catchpoint message, and is also used when trying to catch
11502 a specific exception). We do not handle this case for now. */
3b7344d5 11503 struct bound_minimal_symbol msym
1c8e84b0
JB
11504 = lookup_minimal_symbol (einfo->catch_exception_sym, NULL, NULL);
11505
3b7344d5 11506 if (msym.minsym && MSYMBOL_TYPE (msym.minsym) != mst_solib_trampoline)
a6af7abe
JB
11507 error (_("Your Ada runtime appears to be missing some debugging "
11508 "information.\nCannot insert Ada exception catchpoint "
11509 "in this configuration."));
11510
11511 return 0;
11512 }
f17011e0
JB
11513
11514 /* Make sure that the symbol we found corresponds to a function. */
11515
11516 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
11517 error (_("Symbol \"%s\" is not a function (class = %d)"),
11518 SYMBOL_LINKAGE_NAME (sym), SYMBOL_CLASS (sym));
11519
11520 return 1;
11521}
11522
0259addd
JB
11523/* Inspect the Ada runtime and determine which exception info structure
11524 should be used to provide support for exception catchpoints.
11525
3eecfa55
JB
11526 This function will always set the per-inferior exception_info,
11527 or raise an error. */
0259addd
JB
11528
11529static void
11530ada_exception_support_info_sniffer (void)
11531{
3eecfa55 11532 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
0259addd
JB
11533
11534 /* If the exception info is already known, then no need to recompute it. */
3eecfa55 11535 if (data->exception_info != NULL)
0259addd
JB
11536 return;
11537
11538 /* Check the latest (default) exception support info. */
f17011e0 11539 if (ada_has_this_exception_support (&default_exception_support_info))
0259addd 11540 {
3eecfa55 11541 data->exception_info = &default_exception_support_info;
0259addd
JB
11542 return;
11543 }
11544
11545 /* Try our fallback exception suport info. */
f17011e0 11546 if (ada_has_this_exception_support (&exception_support_info_fallback))
0259addd 11547 {
3eecfa55 11548 data->exception_info = &exception_support_info_fallback;
0259addd
JB
11549 return;
11550 }
11551
11552 /* Sometimes, it is normal for us to not be able to find the routine
11553 we are looking for. This happens when the program is linked with
11554 the shared version of the GNAT runtime, and the program has not been
11555 started yet. Inform the user of these two possible causes if
11556 applicable. */
11557
ccefe4c4 11558 if (ada_update_initial_language (language_unknown) != language_ada)
0259addd
JB
11559 error (_("Unable to insert catchpoint. Is this an Ada main program?"));
11560
11561 /* If the symbol does not exist, then check that the program is
11562 already started, to make sure that shared libraries have been
11563 loaded. If it is not started, this may mean that the symbol is
11564 in a shared library. */
11565
11566 if (ptid_get_pid (inferior_ptid) == 0)
11567 error (_("Unable to insert catchpoint. Try to start the program first."));
11568
11569 /* At this point, we know that we are debugging an Ada program and
11570 that the inferior has been started, but we still are not able to
0963b4bd 11571 find the run-time symbols. That can mean that we are in
0259addd
JB
11572 configurable run time mode, or that a-except as been optimized
11573 out by the linker... In any case, at this point it is not worth
11574 supporting this feature. */
11575
7dda8cff 11576 error (_("Cannot insert Ada exception catchpoints in this configuration."));
0259addd
JB
11577}
11578
f7f9143b
JB
11579/* True iff FRAME is very likely to be that of a function that is
11580 part of the runtime system. This is all very heuristic, but is
11581 intended to be used as advice as to what frames are uninteresting
11582 to most users. */
11583
11584static int
11585is_known_support_routine (struct frame_info *frame)
11586{
4ed6b5be 11587 struct symtab_and_line sal;
55b87a52 11588 char *func_name;
692465f1 11589 enum language func_lang;
f7f9143b 11590 int i;
f35a17b5 11591 const char *fullname;
f7f9143b 11592
4ed6b5be
JB
11593 /* If this code does not have any debugging information (no symtab),
11594 This cannot be any user code. */
f7f9143b 11595
4ed6b5be 11596 find_frame_sal (frame, &sal);
f7f9143b
JB
11597 if (sal.symtab == NULL)
11598 return 1;
11599
4ed6b5be
JB
11600 /* If there is a symtab, but the associated source file cannot be
11601 located, then assume this is not user code: Selecting a frame
11602 for which we cannot display the code would not be very helpful
11603 for the user. This should also take care of case such as VxWorks
11604 where the kernel has some debugging info provided for a few units. */
f7f9143b 11605
f35a17b5
JK
11606 fullname = symtab_to_fullname (sal.symtab);
11607 if (access (fullname, R_OK) != 0)
f7f9143b
JB
11608 return 1;
11609
4ed6b5be
JB
11610 /* Check the unit filename againt the Ada runtime file naming.
11611 We also check the name of the objfile against the name of some
11612 known system libraries that sometimes come with debugging info
11613 too. */
11614
f7f9143b
JB
11615 for (i = 0; known_runtime_file_name_patterns[i] != NULL; i += 1)
11616 {
11617 re_comp (known_runtime_file_name_patterns[i]);
f69c91ad 11618 if (re_exec (lbasename (sal.symtab->filename)))
f7f9143b 11619 return 1;
eb822aa6
DE
11620 if (SYMTAB_OBJFILE (sal.symtab) != NULL
11621 && re_exec (objfile_name (SYMTAB_OBJFILE (sal.symtab))))
4ed6b5be 11622 return 1;
f7f9143b
JB
11623 }
11624
4ed6b5be 11625 /* Check whether the function is a GNAT-generated entity. */
f7f9143b 11626
e9e07ba6 11627 find_frame_funname (frame, &func_name, &func_lang, NULL);
f7f9143b
JB
11628 if (func_name == NULL)
11629 return 1;
11630
11631 for (i = 0; known_auxiliary_function_name_patterns[i] != NULL; i += 1)
11632 {
11633 re_comp (known_auxiliary_function_name_patterns[i]);
11634 if (re_exec (func_name))
55b87a52
KS
11635 {
11636 xfree (func_name);
11637 return 1;
11638 }
f7f9143b
JB
11639 }
11640
55b87a52 11641 xfree (func_name);
f7f9143b
JB
11642 return 0;
11643}
11644
11645/* Find the first frame that contains debugging information and that is not
11646 part of the Ada run-time, starting from FI and moving upward. */
11647
0ef643c8 11648void
f7f9143b
JB
11649ada_find_printable_frame (struct frame_info *fi)
11650{
11651 for (; fi != NULL; fi = get_prev_frame (fi))
11652 {
11653 if (!is_known_support_routine (fi))
11654 {
11655 select_frame (fi);
11656 break;
11657 }
11658 }
11659
11660}
11661
11662/* Assuming that the inferior just triggered an unhandled exception
11663 catchpoint, return the address in inferior memory where the name
11664 of the exception is stored.
11665
11666 Return zero if the address could not be computed. */
11667
11668static CORE_ADDR
11669ada_unhandled_exception_name_addr (void)
0259addd
JB
11670{
11671 return parse_and_eval_address ("e.full_name");
11672}
11673
11674/* Same as ada_unhandled_exception_name_addr, except that this function
11675 should be used when the inferior uses an older version of the runtime,
11676 where the exception name needs to be extracted from a specific frame
11677 several frames up in the callstack. */
11678
11679static CORE_ADDR
11680ada_unhandled_exception_name_addr_from_raise (void)
f7f9143b
JB
11681{
11682 int frame_level;
11683 struct frame_info *fi;
3eecfa55 11684 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
55b87a52 11685 struct cleanup *old_chain;
f7f9143b
JB
11686
11687 /* To determine the name of this exception, we need to select
11688 the frame corresponding to RAISE_SYM_NAME. This frame is
11689 at least 3 levels up, so we simply skip the first 3 frames
11690 without checking the name of their associated function. */
11691 fi = get_current_frame ();
11692 for (frame_level = 0; frame_level < 3; frame_level += 1)
11693 if (fi != NULL)
11694 fi = get_prev_frame (fi);
11695
55b87a52 11696 old_chain = make_cleanup (null_cleanup, NULL);
f7f9143b
JB
11697 while (fi != NULL)
11698 {
55b87a52 11699 char *func_name;
692465f1
JB
11700 enum language func_lang;
11701
e9e07ba6 11702 find_frame_funname (fi, &func_name, &func_lang, NULL);
55b87a52
KS
11703 if (func_name != NULL)
11704 {
11705 make_cleanup (xfree, func_name);
11706
11707 if (strcmp (func_name,
11708 data->exception_info->catch_exception_sym) == 0)
11709 break; /* We found the frame we were looking for... */
11710 fi = get_prev_frame (fi);
11711 }
f7f9143b 11712 }
55b87a52 11713 do_cleanups (old_chain);
f7f9143b
JB
11714
11715 if (fi == NULL)
11716 return 0;
11717
11718 select_frame (fi);
11719 return parse_and_eval_address ("id.full_name");
11720}
11721
11722/* Assuming the inferior just triggered an Ada exception catchpoint
11723 (of any type), return the address in inferior memory where the name
11724 of the exception is stored, if applicable.
11725
11726 Return zero if the address could not be computed, or if not relevant. */
11727
11728static CORE_ADDR
761269c8 11729ada_exception_name_addr_1 (enum ada_exception_catchpoint_kind ex,
f7f9143b
JB
11730 struct breakpoint *b)
11731{
3eecfa55
JB
11732 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
11733
f7f9143b
JB
11734 switch (ex)
11735 {
761269c8 11736 case ada_catch_exception:
f7f9143b
JB
11737 return (parse_and_eval_address ("e.full_name"));
11738 break;
11739
761269c8 11740 case ada_catch_exception_unhandled:
3eecfa55 11741 return data->exception_info->unhandled_exception_name_addr ();
f7f9143b
JB
11742 break;
11743
761269c8 11744 case ada_catch_assert:
f7f9143b
JB
11745 return 0; /* Exception name is not relevant in this case. */
11746 break;
11747
11748 default:
11749 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
11750 break;
11751 }
11752
11753 return 0; /* Should never be reached. */
11754}
11755
11756/* Same as ada_exception_name_addr_1, except that it intercepts and contains
11757 any error that ada_exception_name_addr_1 might cause to be thrown.
11758 When an error is intercepted, a warning with the error message is printed,
11759 and zero is returned. */
11760
11761static CORE_ADDR
761269c8 11762ada_exception_name_addr (enum ada_exception_catchpoint_kind ex,
f7f9143b
JB
11763 struct breakpoint *b)
11764{
bfd189b1 11765 volatile struct gdb_exception e;
f7f9143b
JB
11766 CORE_ADDR result = 0;
11767
11768 TRY_CATCH (e, RETURN_MASK_ERROR)
11769 {
11770 result = ada_exception_name_addr_1 (ex, b);
11771 }
11772
11773 if (e.reason < 0)
11774 {
11775 warning (_("failed to get exception name: %s"), e.message);
11776 return 0;
11777 }
11778
11779 return result;
11780}
11781
28010a5d
PA
11782static char *ada_exception_catchpoint_cond_string (const char *excep_string);
11783
11784/* Ada catchpoints.
11785
11786 In the case of catchpoints on Ada exceptions, the catchpoint will
11787 stop the target on every exception the program throws. When a user
11788 specifies the name of a specific exception, we translate this
11789 request into a condition expression (in text form), and then parse
11790 it into an expression stored in each of the catchpoint's locations.
11791 We then use this condition to check whether the exception that was
11792 raised is the one the user is interested in. If not, then the
11793 target is resumed again. We store the name of the requested
11794 exception, in order to be able to re-set the condition expression
11795 when symbols change. */
11796
11797/* An instance of this type is used to represent an Ada catchpoint
11798 breakpoint location. It includes a "struct bp_location" as a kind
11799 of base class; users downcast to "struct bp_location *" when
11800 needed. */
11801
11802struct ada_catchpoint_location
11803{
11804 /* The base class. */
11805 struct bp_location base;
11806
11807 /* The condition that checks whether the exception that was raised
11808 is the specific exception the user specified on catchpoint
11809 creation. */
11810 struct expression *excep_cond_expr;
11811};
11812
11813/* Implement the DTOR method in the bp_location_ops structure for all
11814 Ada exception catchpoint kinds. */
11815
11816static void
11817ada_catchpoint_location_dtor (struct bp_location *bl)
11818{
11819 struct ada_catchpoint_location *al = (struct ada_catchpoint_location *) bl;
11820
11821 xfree (al->excep_cond_expr);
11822}
11823
11824/* The vtable to be used in Ada catchpoint locations. */
11825
11826static const struct bp_location_ops ada_catchpoint_location_ops =
11827{
11828 ada_catchpoint_location_dtor
11829};
11830
11831/* An instance of this type is used to represent an Ada catchpoint.
11832 It includes a "struct breakpoint" as a kind of base class; users
11833 downcast to "struct breakpoint *" when needed. */
11834
11835struct ada_catchpoint
11836{
11837 /* The base class. */
11838 struct breakpoint base;
11839
11840 /* The name of the specific exception the user specified. */
11841 char *excep_string;
11842};
11843
11844/* Parse the exception condition string in the context of each of the
11845 catchpoint's locations, and store them for later evaluation. */
11846
11847static void
11848create_excep_cond_exprs (struct ada_catchpoint *c)
11849{
11850 struct cleanup *old_chain;
11851 struct bp_location *bl;
11852 char *cond_string;
11853
11854 /* Nothing to do if there's no specific exception to catch. */
11855 if (c->excep_string == NULL)
11856 return;
11857
11858 /* Same if there are no locations... */
11859 if (c->base.loc == NULL)
11860 return;
11861
11862 /* Compute the condition expression in text form, from the specific
11863 expection we want to catch. */
11864 cond_string = ada_exception_catchpoint_cond_string (c->excep_string);
11865 old_chain = make_cleanup (xfree, cond_string);
11866
11867 /* Iterate over all the catchpoint's locations, and parse an
11868 expression for each. */
11869 for (bl = c->base.loc; bl != NULL; bl = bl->next)
11870 {
11871 struct ada_catchpoint_location *ada_loc
11872 = (struct ada_catchpoint_location *) bl;
11873 struct expression *exp = NULL;
11874
11875 if (!bl->shlib_disabled)
11876 {
11877 volatile struct gdb_exception e;
bbc13ae3 11878 const char *s;
28010a5d
PA
11879
11880 s = cond_string;
11881 TRY_CATCH (e, RETURN_MASK_ERROR)
11882 {
1bb9788d
TT
11883 exp = parse_exp_1 (&s, bl->address,
11884 block_for_pc (bl->address), 0);
28010a5d
PA
11885 }
11886 if (e.reason < 0)
849f2b52
JB
11887 {
11888 warning (_("failed to reevaluate internal exception condition "
11889 "for catchpoint %d: %s"),
11890 c->base.number, e.message);
11891 /* There is a bug in GCC on sparc-solaris when building with
11892 optimization which causes EXP to change unexpectedly
11893 (http://gcc.gnu.org/bugzilla/show_bug.cgi?id=56982).
11894 The problem should be fixed starting with GCC 4.9.
11895 In the meantime, work around it by forcing EXP back
11896 to NULL. */
11897 exp = NULL;
11898 }
28010a5d
PA
11899 }
11900
11901 ada_loc->excep_cond_expr = exp;
11902 }
11903
11904 do_cleanups (old_chain);
11905}
11906
11907/* Implement the DTOR method in the breakpoint_ops structure for all
11908 exception catchpoint kinds. */
11909
11910static void
761269c8 11911dtor_exception (enum ada_exception_catchpoint_kind ex, struct breakpoint *b)
28010a5d
PA
11912{
11913 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
11914
11915 xfree (c->excep_string);
348d480f 11916
2060206e 11917 bkpt_breakpoint_ops.dtor (b);
28010a5d
PA
11918}
11919
11920/* Implement the ALLOCATE_LOCATION method in the breakpoint_ops
11921 structure for all exception catchpoint kinds. */
11922
11923static struct bp_location *
761269c8 11924allocate_location_exception (enum ada_exception_catchpoint_kind ex,
28010a5d
PA
11925 struct breakpoint *self)
11926{
11927 struct ada_catchpoint_location *loc;
11928
11929 loc = XNEW (struct ada_catchpoint_location);
11930 init_bp_location (&loc->base, &ada_catchpoint_location_ops, self);
11931 loc->excep_cond_expr = NULL;
11932 return &loc->base;
11933}
11934
11935/* Implement the RE_SET method in the breakpoint_ops structure for all
11936 exception catchpoint kinds. */
11937
11938static void
761269c8 11939re_set_exception (enum ada_exception_catchpoint_kind ex, struct breakpoint *b)
28010a5d
PA
11940{
11941 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
11942
11943 /* Call the base class's method. This updates the catchpoint's
11944 locations. */
2060206e 11945 bkpt_breakpoint_ops.re_set (b);
28010a5d
PA
11946
11947 /* Reparse the exception conditional expressions. One for each
11948 location. */
11949 create_excep_cond_exprs (c);
11950}
11951
11952/* Returns true if we should stop for this breakpoint hit. If the
11953 user specified a specific exception, we only want to cause a stop
11954 if the program thrown that exception. */
11955
11956static int
11957should_stop_exception (const struct bp_location *bl)
11958{
11959 struct ada_catchpoint *c = (struct ada_catchpoint *) bl->owner;
11960 const struct ada_catchpoint_location *ada_loc
11961 = (const struct ada_catchpoint_location *) bl;
11962 volatile struct gdb_exception ex;
11963 int stop;
11964
11965 /* With no specific exception, should always stop. */
11966 if (c->excep_string == NULL)
11967 return 1;
11968
11969 if (ada_loc->excep_cond_expr == NULL)
11970 {
11971 /* We will have a NULL expression if back when we were creating
11972 the expressions, this location's had failed to parse. */
11973 return 1;
11974 }
11975
11976 stop = 1;
11977 TRY_CATCH (ex, RETURN_MASK_ALL)
11978 {
11979 struct value *mark;
11980
11981 mark = value_mark ();
11982 stop = value_true (evaluate_expression (ada_loc->excep_cond_expr));
11983 value_free_to_mark (mark);
11984 }
11985 if (ex.reason < 0)
11986 exception_fprintf (gdb_stderr, ex,
11987 _("Error in testing exception condition:\n"));
11988 return stop;
11989}
11990
11991/* Implement the CHECK_STATUS method in the breakpoint_ops structure
11992 for all exception catchpoint kinds. */
11993
11994static void
761269c8 11995check_status_exception (enum ada_exception_catchpoint_kind ex, bpstat bs)
28010a5d
PA
11996{
11997 bs->stop = should_stop_exception (bs->bp_location_at);
11998}
11999
f7f9143b
JB
12000/* Implement the PRINT_IT method in the breakpoint_ops structure
12001 for all exception catchpoint kinds. */
12002
12003static enum print_stop_action
761269c8 12004print_it_exception (enum ada_exception_catchpoint_kind ex, bpstat bs)
f7f9143b 12005{
79a45e25 12006 struct ui_out *uiout = current_uiout;
348d480f
PA
12007 struct breakpoint *b = bs->breakpoint_at;
12008
956a9fb9 12009 annotate_catchpoint (b->number);
f7f9143b 12010
956a9fb9 12011 if (ui_out_is_mi_like_p (uiout))
f7f9143b 12012 {
956a9fb9
JB
12013 ui_out_field_string (uiout, "reason",
12014 async_reason_lookup (EXEC_ASYNC_BREAKPOINT_HIT));
12015 ui_out_field_string (uiout, "disp", bpdisp_text (b->disposition));
f7f9143b
JB
12016 }
12017
00eb2c4a
JB
12018 ui_out_text (uiout,
12019 b->disposition == disp_del ? "\nTemporary catchpoint "
12020 : "\nCatchpoint ");
956a9fb9
JB
12021 ui_out_field_int (uiout, "bkptno", b->number);
12022 ui_out_text (uiout, ", ");
f7f9143b 12023
f7f9143b
JB
12024 switch (ex)
12025 {
761269c8
JB
12026 case ada_catch_exception:
12027 case ada_catch_exception_unhandled:
956a9fb9
JB
12028 {
12029 const CORE_ADDR addr = ada_exception_name_addr (ex, b);
12030 char exception_name[256];
12031
12032 if (addr != 0)
12033 {
c714b426
PA
12034 read_memory (addr, (gdb_byte *) exception_name,
12035 sizeof (exception_name) - 1);
956a9fb9
JB
12036 exception_name [sizeof (exception_name) - 1] = '\0';
12037 }
12038 else
12039 {
12040 /* For some reason, we were unable to read the exception
12041 name. This could happen if the Runtime was compiled
12042 without debugging info, for instance. In that case,
12043 just replace the exception name by the generic string
12044 "exception" - it will read as "an exception" in the
12045 notification we are about to print. */
967cff16 12046 memcpy (exception_name, "exception", sizeof ("exception"));
956a9fb9
JB
12047 }
12048 /* In the case of unhandled exception breakpoints, we print
12049 the exception name as "unhandled EXCEPTION_NAME", to make
12050 it clearer to the user which kind of catchpoint just got
12051 hit. We used ui_out_text to make sure that this extra
12052 info does not pollute the exception name in the MI case. */
761269c8 12053 if (ex == ada_catch_exception_unhandled)
956a9fb9
JB
12054 ui_out_text (uiout, "unhandled ");
12055 ui_out_field_string (uiout, "exception-name", exception_name);
12056 }
12057 break;
761269c8 12058 case ada_catch_assert:
956a9fb9
JB
12059 /* In this case, the name of the exception is not really
12060 important. Just print "failed assertion" to make it clearer
12061 that his program just hit an assertion-failure catchpoint.
12062 We used ui_out_text because this info does not belong in
12063 the MI output. */
12064 ui_out_text (uiout, "failed assertion");
12065 break;
f7f9143b 12066 }
956a9fb9
JB
12067 ui_out_text (uiout, " at ");
12068 ada_find_printable_frame (get_current_frame ());
f7f9143b
JB
12069
12070 return PRINT_SRC_AND_LOC;
12071}
12072
12073/* Implement the PRINT_ONE method in the breakpoint_ops structure
12074 for all exception catchpoint kinds. */
12075
12076static void
761269c8 12077print_one_exception (enum ada_exception_catchpoint_kind ex,
a6d9a66e 12078 struct breakpoint *b, struct bp_location **last_loc)
f7f9143b 12079{
79a45e25 12080 struct ui_out *uiout = current_uiout;
28010a5d 12081 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
79a45b7d
TT
12082 struct value_print_options opts;
12083
12084 get_user_print_options (&opts);
12085 if (opts.addressprint)
f7f9143b
JB
12086 {
12087 annotate_field (4);
5af949e3 12088 ui_out_field_core_addr (uiout, "addr", b->loc->gdbarch, b->loc->address);
f7f9143b
JB
12089 }
12090
12091 annotate_field (5);
a6d9a66e 12092 *last_loc = b->loc;
f7f9143b
JB
12093 switch (ex)
12094 {
761269c8 12095 case ada_catch_exception:
28010a5d 12096 if (c->excep_string != NULL)
f7f9143b 12097 {
28010a5d
PA
12098 char *msg = xstrprintf (_("`%s' Ada exception"), c->excep_string);
12099
f7f9143b
JB
12100 ui_out_field_string (uiout, "what", msg);
12101 xfree (msg);
12102 }
12103 else
12104 ui_out_field_string (uiout, "what", "all Ada exceptions");
12105
12106 break;
12107
761269c8 12108 case ada_catch_exception_unhandled:
f7f9143b
JB
12109 ui_out_field_string (uiout, "what", "unhandled Ada exceptions");
12110 break;
12111
761269c8 12112 case ada_catch_assert:
f7f9143b
JB
12113 ui_out_field_string (uiout, "what", "failed Ada assertions");
12114 break;
12115
12116 default:
12117 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12118 break;
12119 }
12120}
12121
12122/* Implement the PRINT_MENTION method in the breakpoint_ops structure
12123 for all exception catchpoint kinds. */
12124
12125static void
761269c8 12126print_mention_exception (enum ada_exception_catchpoint_kind ex,
f7f9143b
JB
12127 struct breakpoint *b)
12128{
28010a5d 12129 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
79a45e25 12130 struct ui_out *uiout = current_uiout;
28010a5d 12131
00eb2c4a
JB
12132 ui_out_text (uiout, b->disposition == disp_del ? _("Temporary catchpoint ")
12133 : _("Catchpoint "));
12134 ui_out_field_int (uiout, "bkptno", b->number);
12135 ui_out_text (uiout, ": ");
12136
f7f9143b
JB
12137 switch (ex)
12138 {
761269c8 12139 case ada_catch_exception:
28010a5d 12140 if (c->excep_string != NULL)
00eb2c4a
JB
12141 {
12142 char *info = xstrprintf (_("`%s' Ada exception"), c->excep_string);
12143 struct cleanup *old_chain = make_cleanup (xfree, info);
12144
12145 ui_out_text (uiout, info);
12146 do_cleanups (old_chain);
12147 }
f7f9143b 12148 else
00eb2c4a 12149 ui_out_text (uiout, _("all Ada exceptions"));
f7f9143b
JB
12150 break;
12151
761269c8 12152 case ada_catch_exception_unhandled:
00eb2c4a 12153 ui_out_text (uiout, _("unhandled Ada exceptions"));
f7f9143b
JB
12154 break;
12155
761269c8 12156 case ada_catch_assert:
00eb2c4a 12157 ui_out_text (uiout, _("failed Ada assertions"));
f7f9143b
JB
12158 break;
12159
12160 default:
12161 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12162 break;
12163 }
12164}
12165
6149aea9
PA
12166/* Implement the PRINT_RECREATE method in the breakpoint_ops structure
12167 for all exception catchpoint kinds. */
12168
12169static void
761269c8 12170print_recreate_exception (enum ada_exception_catchpoint_kind ex,
6149aea9
PA
12171 struct breakpoint *b, struct ui_file *fp)
12172{
28010a5d
PA
12173 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
12174
6149aea9
PA
12175 switch (ex)
12176 {
761269c8 12177 case ada_catch_exception:
6149aea9 12178 fprintf_filtered (fp, "catch exception");
28010a5d
PA
12179 if (c->excep_string != NULL)
12180 fprintf_filtered (fp, " %s", c->excep_string);
6149aea9
PA
12181 break;
12182
761269c8 12183 case ada_catch_exception_unhandled:
78076abc 12184 fprintf_filtered (fp, "catch exception unhandled");
6149aea9
PA
12185 break;
12186
761269c8 12187 case ada_catch_assert:
6149aea9
PA
12188 fprintf_filtered (fp, "catch assert");
12189 break;
12190
12191 default:
12192 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12193 }
d9b3f62e 12194 print_recreate_thread (b, fp);
6149aea9
PA
12195}
12196
f7f9143b
JB
12197/* Virtual table for "catch exception" breakpoints. */
12198
28010a5d
PA
12199static void
12200dtor_catch_exception (struct breakpoint *b)
12201{
761269c8 12202 dtor_exception (ada_catch_exception, b);
28010a5d
PA
12203}
12204
12205static struct bp_location *
12206allocate_location_catch_exception (struct breakpoint *self)
12207{
761269c8 12208 return allocate_location_exception (ada_catch_exception, self);
28010a5d
PA
12209}
12210
12211static void
12212re_set_catch_exception (struct breakpoint *b)
12213{
761269c8 12214 re_set_exception (ada_catch_exception, b);
28010a5d
PA
12215}
12216
12217static void
12218check_status_catch_exception (bpstat bs)
12219{
761269c8 12220 check_status_exception (ada_catch_exception, bs);
28010a5d
PA
12221}
12222
f7f9143b 12223static enum print_stop_action
348d480f 12224print_it_catch_exception (bpstat bs)
f7f9143b 12225{
761269c8 12226 return print_it_exception (ada_catch_exception, bs);
f7f9143b
JB
12227}
12228
12229static void
a6d9a66e 12230print_one_catch_exception (struct breakpoint *b, struct bp_location **last_loc)
f7f9143b 12231{
761269c8 12232 print_one_exception (ada_catch_exception, b, last_loc);
f7f9143b
JB
12233}
12234
12235static void
12236print_mention_catch_exception (struct breakpoint *b)
12237{
761269c8 12238 print_mention_exception (ada_catch_exception, b);
f7f9143b
JB
12239}
12240
6149aea9
PA
12241static void
12242print_recreate_catch_exception (struct breakpoint *b, struct ui_file *fp)
12243{
761269c8 12244 print_recreate_exception (ada_catch_exception, b, fp);
6149aea9
PA
12245}
12246
2060206e 12247static struct breakpoint_ops catch_exception_breakpoint_ops;
f7f9143b
JB
12248
12249/* Virtual table for "catch exception unhandled" breakpoints. */
12250
28010a5d
PA
12251static void
12252dtor_catch_exception_unhandled (struct breakpoint *b)
12253{
761269c8 12254 dtor_exception (ada_catch_exception_unhandled, b);
28010a5d
PA
12255}
12256
12257static struct bp_location *
12258allocate_location_catch_exception_unhandled (struct breakpoint *self)
12259{
761269c8 12260 return allocate_location_exception (ada_catch_exception_unhandled, self);
28010a5d
PA
12261}
12262
12263static void
12264re_set_catch_exception_unhandled (struct breakpoint *b)
12265{
761269c8 12266 re_set_exception (ada_catch_exception_unhandled, b);
28010a5d
PA
12267}
12268
12269static void
12270check_status_catch_exception_unhandled (bpstat bs)
12271{
761269c8 12272 check_status_exception (ada_catch_exception_unhandled, bs);
28010a5d
PA
12273}
12274
f7f9143b 12275static enum print_stop_action
348d480f 12276print_it_catch_exception_unhandled (bpstat bs)
f7f9143b 12277{
761269c8 12278 return print_it_exception (ada_catch_exception_unhandled, bs);
f7f9143b
JB
12279}
12280
12281static void
a6d9a66e
UW
12282print_one_catch_exception_unhandled (struct breakpoint *b,
12283 struct bp_location **last_loc)
f7f9143b 12284{
761269c8 12285 print_one_exception (ada_catch_exception_unhandled, b, last_loc);
f7f9143b
JB
12286}
12287
12288static void
12289print_mention_catch_exception_unhandled (struct breakpoint *b)
12290{
761269c8 12291 print_mention_exception (ada_catch_exception_unhandled, b);
f7f9143b
JB
12292}
12293
6149aea9
PA
12294static void
12295print_recreate_catch_exception_unhandled (struct breakpoint *b,
12296 struct ui_file *fp)
12297{
761269c8 12298 print_recreate_exception (ada_catch_exception_unhandled, b, fp);
6149aea9
PA
12299}
12300
2060206e 12301static struct breakpoint_ops catch_exception_unhandled_breakpoint_ops;
f7f9143b
JB
12302
12303/* Virtual table for "catch assert" breakpoints. */
12304
28010a5d
PA
12305static void
12306dtor_catch_assert (struct breakpoint *b)
12307{
761269c8 12308 dtor_exception (ada_catch_assert, b);
28010a5d
PA
12309}
12310
12311static struct bp_location *
12312allocate_location_catch_assert (struct breakpoint *self)
12313{
761269c8 12314 return allocate_location_exception (ada_catch_assert, self);
28010a5d
PA
12315}
12316
12317static void
12318re_set_catch_assert (struct breakpoint *b)
12319{
761269c8 12320 re_set_exception (ada_catch_assert, b);
28010a5d
PA
12321}
12322
12323static void
12324check_status_catch_assert (bpstat bs)
12325{
761269c8 12326 check_status_exception (ada_catch_assert, bs);
28010a5d
PA
12327}
12328
f7f9143b 12329static enum print_stop_action
348d480f 12330print_it_catch_assert (bpstat bs)
f7f9143b 12331{
761269c8 12332 return print_it_exception (ada_catch_assert, bs);
f7f9143b
JB
12333}
12334
12335static void
a6d9a66e 12336print_one_catch_assert (struct breakpoint *b, struct bp_location **last_loc)
f7f9143b 12337{
761269c8 12338 print_one_exception (ada_catch_assert, b, last_loc);
f7f9143b
JB
12339}
12340
12341static void
12342print_mention_catch_assert (struct breakpoint *b)
12343{
761269c8 12344 print_mention_exception (ada_catch_assert, b);
f7f9143b
JB
12345}
12346
6149aea9
PA
12347static void
12348print_recreate_catch_assert (struct breakpoint *b, struct ui_file *fp)
12349{
761269c8 12350 print_recreate_exception (ada_catch_assert, b, fp);
6149aea9
PA
12351}
12352
2060206e 12353static struct breakpoint_ops catch_assert_breakpoint_ops;
f7f9143b 12354
f7f9143b
JB
12355/* Return a newly allocated copy of the first space-separated token
12356 in ARGSP, and then adjust ARGSP to point immediately after that
12357 token.
12358
12359 Return NULL if ARGPS does not contain any more tokens. */
12360
12361static char *
12362ada_get_next_arg (char **argsp)
12363{
12364 char *args = *argsp;
12365 char *end;
12366 char *result;
12367
0fcd72ba 12368 args = skip_spaces (args);
f7f9143b
JB
12369 if (args[0] == '\0')
12370 return NULL; /* No more arguments. */
12371
12372 /* Find the end of the current argument. */
12373
0fcd72ba 12374 end = skip_to_space (args);
f7f9143b
JB
12375
12376 /* Adjust ARGSP to point to the start of the next argument. */
12377
12378 *argsp = end;
12379
12380 /* Make a copy of the current argument and return it. */
12381
12382 result = xmalloc (end - args + 1);
12383 strncpy (result, args, end - args);
12384 result[end - args] = '\0';
12385
12386 return result;
12387}
12388
12389/* Split the arguments specified in a "catch exception" command.
12390 Set EX to the appropriate catchpoint type.
28010a5d 12391 Set EXCEP_STRING to the name of the specific exception if
5845583d
JB
12392 specified by the user.
12393 If a condition is found at the end of the arguments, the condition
12394 expression is stored in COND_STRING (memory must be deallocated
12395 after use). Otherwise COND_STRING is set to NULL. */
f7f9143b
JB
12396
12397static void
12398catch_ada_exception_command_split (char *args,
761269c8 12399 enum ada_exception_catchpoint_kind *ex,
5845583d
JB
12400 char **excep_string,
12401 char **cond_string)
f7f9143b
JB
12402{
12403 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
12404 char *exception_name;
5845583d 12405 char *cond = NULL;
f7f9143b
JB
12406
12407 exception_name = ada_get_next_arg (&args);
5845583d
JB
12408 if (exception_name != NULL && strcmp (exception_name, "if") == 0)
12409 {
12410 /* This is not an exception name; this is the start of a condition
12411 expression for a catchpoint on all exceptions. So, "un-get"
12412 this token, and set exception_name to NULL. */
12413 xfree (exception_name);
12414 exception_name = NULL;
12415 args -= 2;
12416 }
f7f9143b
JB
12417 make_cleanup (xfree, exception_name);
12418
5845583d 12419 /* Check to see if we have a condition. */
f7f9143b 12420
0fcd72ba 12421 args = skip_spaces (args);
5845583d
JB
12422 if (strncmp (args, "if", 2) == 0
12423 && (isspace (args[2]) || args[2] == '\0'))
12424 {
12425 args += 2;
12426 args = skip_spaces (args);
12427
12428 if (args[0] == '\0')
12429 error (_("Condition missing after `if' keyword"));
12430 cond = xstrdup (args);
12431 make_cleanup (xfree, cond);
12432
12433 args += strlen (args);
12434 }
12435
12436 /* Check that we do not have any more arguments. Anything else
12437 is unexpected. */
f7f9143b
JB
12438
12439 if (args[0] != '\0')
12440 error (_("Junk at end of expression"));
12441
12442 discard_cleanups (old_chain);
12443
12444 if (exception_name == NULL)
12445 {
12446 /* Catch all exceptions. */
761269c8 12447 *ex = ada_catch_exception;
28010a5d 12448 *excep_string = NULL;
f7f9143b
JB
12449 }
12450 else if (strcmp (exception_name, "unhandled") == 0)
12451 {
12452 /* Catch unhandled exceptions. */
761269c8 12453 *ex = ada_catch_exception_unhandled;
28010a5d 12454 *excep_string = NULL;
f7f9143b
JB
12455 }
12456 else
12457 {
12458 /* Catch a specific exception. */
761269c8 12459 *ex = ada_catch_exception;
28010a5d 12460 *excep_string = exception_name;
f7f9143b 12461 }
5845583d 12462 *cond_string = cond;
f7f9143b
JB
12463}
12464
12465/* Return the name of the symbol on which we should break in order to
12466 implement a catchpoint of the EX kind. */
12467
12468static const char *
761269c8 12469ada_exception_sym_name (enum ada_exception_catchpoint_kind ex)
f7f9143b 12470{
3eecfa55
JB
12471 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
12472
12473 gdb_assert (data->exception_info != NULL);
0259addd 12474
f7f9143b
JB
12475 switch (ex)
12476 {
761269c8 12477 case ada_catch_exception:
3eecfa55 12478 return (data->exception_info->catch_exception_sym);
f7f9143b 12479 break;
761269c8 12480 case ada_catch_exception_unhandled:
3eecfa55 12481 return (data->exception_info->catch_exception_unhandled_sym);
f7f9143b 12482 break;
761269c8 12483 case ada_catch_assert:
3eecfa55 12484 return (data->exception_info->catch_assert_sym);
f7f9143b
JB
12485 break;
12486 default:
12487 internal_error (__FILE__, __LINE__,
12488 _("unexpected catchpoint kind (%d)"), ex);
12489 }
12490}
12491
12492/* Return the breakpoint ops "virtual table" used for catchpoints
12493 of the EX kind. */
12494
c0a91b2b 12495static const struct breakpoint_ops *
761269c8 12496ada_exception_breakpoint_ops (enum ada_exception_catchpoint_kind ex)
f7f9143b
JB
12497{
12498 switch (ex)
12499 {
761269c8 12500 case ada_catch_exception:
f7f9143b
JB
12501 return (&catch_exception_breakpoint_ops);
12502 break;
761269c8 12503 case ada_catch_exception_unhandled:
f7f9143b
JB
12504 return (&catch_exception_unhandled_breakpoint_ops);
12505 break;
761269c8 12506 case ada_catch_assert:
f7f9143b
JB
12507 return (&catch_assert_breakpoint_ops);
12508 break;
12509 default:
12510 internal_error (__FILE__, __LINE__,
12511 _("unexpected catchpoint kind (%d)"), ex);
12512 }
12513}
12514
12515/* Return the condition that will be used to match the current exception
12516 being raised with the exception that the user wants to catch. This
12517 assumes that this condition is used when the inferior just triggered
12518 an exception catchpoint.
12519
12520 The string returned is a newly allocated string that needs to be
12521 deallocated later. */
12522
12523static char *
28010a5d 12524ada_exception_catchpoint_cond_string (const char *excep_string)
f7f9143b 12525{
3d0b0fa3
JB
12526 int i;
12527
0963b4bd 12528 /* The standard exceptions are a special case. They are defined in
3d0b0fa3 12529 runtime units that have been compiled without debugging info; if
28010a5d 12530 EXCEP_STRING is the not-fully-qualified name of a standard
3d0b0fa3
JB
12531 exception (e.g. "constraint_error") then, during the evaluation
12532 of the condition expression, the symbol lookup on this name would
0963b4bd 12533 *not* return this standard exception. The catchpoint condition
3d0b0fa3
JB
12534 may then be set only on user-defined exceptions which have the
12535 same not-fully-qualified name (e.g. my_package.constraint_error).
12536
12537 To avoid this unexcepted behavior, these standard exceptions are
0963b4bd 12538 systematically prefixed by "standard". This means that "catch
3d0b0fa3
JB
12539 exception constraint_error" is rewritten into "catch exception
12540 standard.constraint_error".
12541
12542 If an exception named contraint_error is defined in another package of
12543 the inferior program, then the only way to specify this exception as a
12544 breakpoint condition is to use its fully-qualified named:
12545 e.g. my_package.constraint_error. */
12546
12547 for (i = 0; i < sizeof (standard_exc) / sizeof (char *); i++)
12548 {
28010a5d 12549 if (strcmp (standard_exc [i], excep_string) == 0)
3d0b0fa3
JB
12550 {
12551 return xstrprintf ("long_integer (e) = long_integer (&standard.%s)",
28010a5d 12552 excep_string);
3d0b0fa3
JB
12553 }
12554 }
28010a5d 12555 return xstrprintf ("long_integer (e) = long_integer (&%s)", excep_string);
f7f9143b
JB
12556}
12557
12558/* Return the symtab_and_line that should be used to insert an exception
12559 catchpoint of the TYPE kind.
12560
28010a5d
PA
12561 EXCEP_STRING should contain the name of a specific exception that
12562 the catchpoint should catch, or NULL otherwise.
f7f9143b 12563
28010a5d
PA
12564 ADDR_STRING returns the name of the function where the real
12565 breakpoint that implements the catchpoints is set, depending on the
12566 type of catchpoint we need to create. */
f7f9143b
JB
12567
12568static struct symtab_and_line
761269c8 12569ada_exception_sal (enum ada_exception_catchpoint_kind ex, char *excep_string,
c0a91b2b 12570 char **addr_string, const struct breakpoint_ops **ops)
f7f9143b
JB
12571{
12572 const char *sym_name;
12573 struct symbol *sym;
f7f9143b 12574
0259addd
JB
12575 /* First, find out which exception support info to use. */
12576 ada_exception_support_info_sniffer ();
12577
12578 /* Then lookup the function on which we will break in order to catch
f7f9143b 12579 the Ada exceptions requested by the user. */
f7f9143b
JB
12580 sym_name = ada_exception_sym_name (ex);
12581 sym = standard_lookup (sym_name, NULL, VAR_DOMAIN);
12582
f17011e0
JB
12583 /* We can assume that SYM is not NULL at this stage. If the symbol
12584 did not exist, ada_exception_support_info_sniffer would have
12585 raised an exception.
f7f9143b 12586
f17011e0
JB
12587 Also, ada_exception_support_info_sniffer should have already
12588 verified that SYM is a function symbol. */
12589 gdb_assert (sym != NULL);
12590 gdb_assert (SYMBOL_CLASS (sym) == LOC_BLOCK);
f7f9143b
JB
12591
12592 /* Set ADDR_STRING. */
f7f9143b
JB
12593 *addr_string = xstrdup (sym_name);
12594
f7f9143b 12595 /* Set OPS. */
4b9eee8c 12596 *ops = ada_exception_breakpoint_ops (ex);
f7f9143b 12597
f17011e0 12598 return find_function_start_sal (sym, 1);
f7f9143b
JB
12599}
12600
b4a5b78b 12601/* Create an Ada exception catchpoint.
f7f9143b 12602
b4a5b78b 12603 EX_KIND is the kind of exception catchpoint to be created.
5845583d 12604
2df4d1d5
JB
12605 If EXCEPT_STRING is NULL, this catchpoint is expected to trigger
12606 for all exceptions. Otherwise, EXCEPT_STRING indicates the name
12607 of the exception to which this catchpoint applies. When not NULL,
12608 the string must be allocated on the heap, and its deallocation
12609 is no longer the responsibility of the caller.
12610
12611 COND_STRING, if not NULL, is the catchpoint condition. This string
12612 must be allocated on the heap, and its deallocation is no longer
12613 the responsibility of the caller.
f7f9143b 12614
b4a5b78b
JB
12615 TEMPFLAG, if nonzero, means that the underlying breakpoint
12616 should be temporary.
28010a5d 12617
b4a5b78b 12618 FROM_TTY is the usual argument passed to all commands implementations. */
28010a5d 12619
349774ef 12620void
28010a5d 12621create_ada_exception_catchpoint (struct gdbarch *gdbarch,
761269c8 12622 enum ada_exception_catchpoint_kind ex_kind,
28010a5d 12623 char *excep_string,
5845583d 12624 char *cond_string,
28010a5d 12625 int tempflag,
349774ef 12626 int disabled,
28010a5d
PA
12627 int from_tty)
12628{
12629 struct ada_catchpoint *c;
b4a5b78b
JB
12630 char *addr_string = NULL;
12631 const struct breakpoint_ops *ops = NULL;
12632 struct symtab_and_line sal
12633 = ada_exception_sal (ex_kind, excep_string, &addr_string, &ops);
28010a5d
PA
12634
12635 c = XNEW (struct ada_catchpoint);
12636 init_ada_exception_breakpoint (&c->base, gdbarch, sal, addr_string,
349774ef 12637 ops, tempflag, disabled, from_tty);
28010a5d
PA
12638 c->excep_string = excep_string;
12639 create_excep_cond_exprs (c);
5845583d
JB
12640 if (cond_string != NULL)
12641 set_breakpoint_condition (&c->base, cond_string, from_tty);
3ea46bff 12642 install_breakpoint (0, &c->base, 1);
f7f9143b
JB
12643}
12644
9ac4176b
PA
12645/* Implement the "catch exception" command. */
12646
12647static void
12648catch_ada_exception_command (char *arg, int from_tty,
12649 struct cmd_list_element *command)
12650{
12651 struct gdbarch *gdbarch = get_current_arch ();
12652 int tempflag;
761269c8 12653 enum ada_exception_catchpoint_kind ex_kind;
28010a5d 12654 char *excep_string = NULL;
5845583d 12655 char *cond_string = NULL;
9ac4176b
PA
12656
12657 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
12658
12659 if (!arg)
12660 arg = "";
b4a5b78b
JB
12661 catch_ada_exception_command_split (arg, &ex_kind, &excep_string,
12662 &cond_string);
12663 create_ada_exception_catchpoint (gdbarch, ex_kind,
12664 excep_string, cond_string,
349774ef
JB
12665 tempflag, 1 /* enabled */,
12666 from_tty);
9ac4176b
PA
12667}
12668
b4a5b78b 12669/* Split the arguments specified in a "catch assert" command.
5845583d 12670
b4a5b78b
JB
12671 ARGS contains the command's arguments (or the empty string if
12672 no arguments were passed).
5845583d
JB
12673
12674 If ARGS contains a condition, set COND_STRING to that condition
b4a5b78b 12675 (the memory needs to be deallocated after use). */
5845583d 12676
b4a5b78b
JB
12677static void
12678catch_ada_assert_command_split (char *args, char **cond_string)
f7f9143b 12679{
5845583d 12680 args = skip_spaces (args);
f7f9143b 12681
5845583d
JB
12682 /* Check whether a condition was provided. */
12683 if (strncmp (args, "if", 2) == 0
12684 && (isspace (args[2]) || args[2] == '\0'))
f7f9143b 12685 {
5845583d 12686 args += 2;
0fcd72ba 12687 args = skip_spaces (args);
5845583d
JB
12688 if (args[0] == '\0')
12689 error (_("condition missing after `if' keyword"));
12690 *cond_string = xstrdup (args);
f7f9143b
JB
12691 }
12692
5845583d
JB
12693 /* Otherwise, there should be no other argument at the end of
12694 the command. */
12695 else if (args[0] != '\0')
12696 error (_("Junk at end of arguments."));
f7f9143b
JB
12697}
12698
9ac4176b
PA
12699/* Implement the "catch assert" command. */
12700
12701static void
12702catch_assert_command (char *arg, int from_tty,
12703 struct cmd_list_element *command)
12704{
12705 struct gdbarch *gdbarch = get_current_arch ();
12706 int tempflag;
5845583d 12707 char *cond_string = NULL;
9ac4176b
PA
12708
12709 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
12710
12711 if (!arg)
12712 arg = "";
b4a5b78b 12713 catch_ada_assert_command_split (arg, &cond_string);
761269c8 12714 create_ada_exception_catchpoint (gdbarch, ada_catch_assert,
b4a5b78b 12715 NULL, cond_string,
349774ef
JB
12716 tempflag, 1 /* enabled */,
12717 from_tty);
9ac4176b 12718}
778865d3
JB
12719
12720/* Return non-zero if the symbol SYM is an Ada exception object. */
12721
12722static int
12723ada_is_exception_sym (struct symbol *sym)
12724{
12725 const char *type_name = type_name_no_tag (SYMBOL_TYPE (sym));
12726
12727 return (SYMBOL_CLASS (sym) != LOC_TYPEDEF
12728 && SYMBOL_CLASS (sym) != LOC_BLOCK
12729 && SYMBOL_CLASS (sym) != LOC_CONST
12730 && SYMBOL_CLASS (sym) != LOC_UNRESOLVED
12731 && type_name != NULL && strcmp (type_name, "exception") == 0);
12732}
12733
12734/* Given a global symbol SYM, return non-zero iff SYM is a non-standard
12735 Ada exception object. This matches all exceptions except the ones
12736 defined by the Ada language. */
12737
12738static int
12739ada_is_non_standard_exception_sym (struct symbol *sym)
12740{
12741 int i;
12742
12743 if (!ada_is_exception_sym (sym))
12744 return 0;
12745
12746 for (i = 0; i < ARRAY_SIZE (standard_exc); i++)
12747 if (strcmp (SYMBOL_LINKAGE_NAME (sym), standard_exc[i]) == 0)
12748 return 0; /* A standard exception. */
12749
12750 /* Numeric_Error is also a standard exception, so exclude it.
12751 See the STANDARD_EXC description for more details as to why
12752 this exception is not listed in that array. */
12753 if (strcmp (SYMBOL_LINKAGE_NAME (sym), "numeric_error") == 0)
12754 return 0;
12755
12756 return 1;
12757}
12758
12759/* A helper function for qsort, comparing two struct ada_exc_info
12760 objects.
12761
12762 The comparison is determined first by exception name, and then
12763 by exception address. */
12764
12765static int
12766compare_ada_exception_info (const void *a, const void *b)
12767{
12768 const struct ada_exc_info *exc_a = (struct ada_exc_info *) a;
12769 const struct ada_exc_info *exc_b = (struct ada_exc_info *) b;
12770 int result;
12771
12772 result = strcmp (exc_a->name, exc_b->name);
12773 if (result != 0)
12774 return result;
12775
12776 if (exc_a->addr < exc_b->addr)
12777 return -1;
12778 if (exc_a->addr > exc_b->addr)
12779 return 1;
12780
12781 return 0;
12782}
12783
12784/* Sort EXCEPTIONS using compare_ada_exception_info as the comparison
12785 routine, but keeping the first SKIP elements untouched.
12786
12787 All duplicates are also removed. */
12788
12789static void
12790sort_remove_dups_ada_exceptions_list (VEC(ada_exc_info) **exceptions,
12791 int skip)
12792{
12793 struct ada_exc_info *to_sort
12794 = VEC_address (ada_exc_info, *exceptions) + skip;
12795 int to_sort_len
12796 = VEC_length (ada_exc_info, *exceptions) - skip;
12797 int i, j;
12798
12799 qsort (to_sort, to_sort_len, sizeof (struct ada_exc_info),
12800 compare_ada_exception_info);
12801
12802 for (i = 1, j = 1; i < to_sort_len; i++)
12803 if (compare_ada_exception_info (&to_sort[i], &to_sort[j - 1]) != 0)
12804 to_sort[j++] = to_sort[i];
12805 to_sort_len = j;
12806 VEC_truncate(ada_exc_info, *exceptions, skip + to_sort_len);
12807}
12808
12809/* A function intended as the "name_matcher" callback in the struct
12810 quick_symbol_functions' expand_symtabs_matching method.
12811
12812 SEARCH_NAME is the symbol's search name.
12813
12814 If USER_DATA is not NULL, it is a pointer to a regext_t object
12815 used to match the symbol (by natural name). Otherwise, when USER_DATA
12816 is null, no filtering is performed, and all symbols are a positive
12817 match. */
12818
12819static int
12820ada_exc_search_name_matches (const char *search_name, void *user_data)
12821{
12822 regex_t *preg = user_data;
12823
12824 if (preg == NULL)
12825 return 1;
12826
12827 /* In Ada, the symbol "search name" is a linkage name, whereas
12828 the regular expression used to do the matching refers to
12829 the natural name. So match against the decoded name. */
12830 return (regexec (preg, ada_decode (search_name), 0, NULL, 0) == 0);
12831}
12832
12833/* Add all exceptions defined by the Ada standard whose name match
12834 a regular expression.
12835
12836 If PREG is not NULL, then this regexp_t object is used to
12837 perform the symbol name matching. Otherwise, no name-based
12838 filtering is performed.
12839
12840 EXCEPTIONS is a vector of exceptions to which matching exceptions
12841 gets pushed. */
12842
12843static void
12844ada_add_standard_exceptions (regex_t *preg, VEC(ada_exc_info) **exceptions)
12845{
12846 int i;
12847
12848 for (i = 0; i < ARRAY_SIZE (standard_exc); i++)
12849 {
12850 if (preg == NULL
12851 || regexec (preg, standard_exc[i], 0, NULL, 0) == 0)
12852 {
12853 struct bound_minimal_symbol msymbol
12854 = ada_lookup_simple_minsym (standard_exc[i]);
12855
12856 if (msymbol.minsym != NULL)
12857 {
12858 struct ada_exc_info info
77e371c0 12859 = {standard_exc[i], BMSYMBOL_VALUE_ADDRESS (msymbol)};
778865d3
JB
12860
12861 VEC_safe_push (ada_exc_info, *exceptions, &info);
12862 }
12863 }
12864 }
12865}
12866
12867/* Add all Ada exceptions defined locally and accessible from the given
12868 FRAME.
12869
12870 If PREG is not NULL, then this regexp_t object is used to
12871 perform the symbol name matching. Otherwise, no name-based
12872 filtering is performed.
12873
12874 EXCEPTIONS is a vector of exceptions to which matching exceptions
12875 gets pushed. */
12876
12877static void
12878ada_add_exceptions_from_frame (regex_t *preg, struct frame_info *frame,
12879 VEC(ada_exc_info) **exceptions)
12880{
3977b71f 12881 const struct block *block = get_frame_block (frame, 0);
778865d3
JB
12882
12883 while (block != 0)
12884 {
12885 struct block_iterator iter;
12886 struct symbol *sym;
12887
12888 ALL_BLOCK_SYMBOLS (block, iter, sym)
12889 {
12890 switch (SYMBOL_CLASS (sym))
12891 {
12892 case LOC_TYPEDEF:
12893 case LOC_BLOCK:
12894 case LOC_CONST:
12895 break;
12896 default:
12897 if (ada_is_exception_sym (sym))
12898 {
12899 struct ada_exc_info info = {SYMBOL_PRINT_NAME (sym),
12900 SYMBOL_VALUE_ADDRESS (sym)};
12901
12902 VEC_safe_push (ada_exc_info, *exceptions, &info);
12903 }
12904 }
12905 }
12906 if (BLOCK_FUNCTION (block) != NULL)
12907 break;
12908 block = BLOCK_SUPERBLOCK (block);
12909 }
12910}
12911
12912/* Add all exceptions defined globally whose name name match
12913 a regular expression, excluding standard exceptions.
12914
12915 The reason we exclude standard exceptions is that they need
12916 to be handled separately: Standard exceptions are defined inside
12917 a runtime unit which is normally not compiled with debugging info,
12918 and thus usually do not show up in our symbol search. However,
12919 if the unit was in fact built with debugging info, we need to
12920 exclude them because they would duplicate the entry we found
12921 during the special loop that specifically searches for those
12922 standard exceptions.
12923
12924 If PREG is not NULL, then this regexp_t object is used to
12925 perform the symbol name matching. Otherwise, no name-based
12926 filtering is performed.
12927
12928 EXCEPTIONS is a vector of exceptions to which matching exceptions
12929 gets pushed. */
12930
12931static void
12932ada_add_global_exceptions (regex_t *preg, VEC(ada_exc_info) **exceptions)
12933{
12934 struct objfile *objfile;
12935 struct symtab *s;
12936
bb4142cf
DE
12937 expand_symtabs_matching (NULL, ada_exc_search_name_matches,
12938 VARIABLES_DOMAIN, preg);
778865d3
JB
12939
12940 ALL_PRIMARY_SYMTABS (objfile, s)
12941 {
439247b6 12942 const struct blockvector *bv = SYMTAB_BLOCKVECTOR (s);
778865d3
JB
12943 int i;
12944
12945 for (i = GLOBAL_BLOCK; i <= STATIC_BLOCK; i++)
12946 {
12947 struct block *b = BLOCKVECTOR_BLOCK (bv, i);
12948 struct block_iterator iter;
12949 struct symbol *sym;
12950
12951 ALL_BLOCK_SYMBOLS (b, iter, sym)
12952 if (ada_is_non_standard_exception_sym (sym)
12953 && (preg == NULL
12954 || regexec (preg, SYMBOL_NATURAL_NAME (sym),
12955 0, NULL, 0) == 0))
12956 {
12957 struct ada_exc_info info
12958 = {SYMBOL_PRINT_NAME (sym), SYMBOL_VALUE_ADDRESS (sym)};
12959
12960 VEC_safe_push (ada_exc_info, *exceptions, &info);
12961 }
12962 }
12963 }
12964}
12965
12966/* Implements ada_exceptions_list with the regular expression passed
12967 as a regex_t, rather than a string.
12968
12969 If not NULL, PREG is used to filter out exceptions whose names
12970 do not match. Otherwise, all exceptions are listed. */
12971
12972static VEC(ada_exc_info) *
12973ada_exceptions_list_1 (regex_t *preg)
12974{
12975 VEC(ada_exc_info) *result = NULL;
12976 struct cleanup *old_chain
12977 = make_cleanup (VEC_cleanup (ada_exc_info), &result);
12978 int prev_len;
12979
12980 /* First, list the known standard exceptions. These exceptions
12981 need to be handled separately, as they are usually defined in
12982 runtime units that have been compiled without debugging info. */
12983
12984 ada_add_standard_exceptions (preg, &result);
12985
12986 /* Next, find all exceptions whose scope is local and accessible
12987 from the currently selected frame. */
12988
12989 if (has_stack_frames ())
12990 {
12991 prev_len = VEC_length (ada_exc_info, result);
12992 ada_add_exceptions_from_frame (preg, get_selected_frame (NULL),
12993 &result);
12994 if (VEC_length (ada_exc_info, result) > prev_len)
12995 sort_remove_dups_ada_exceptions_list (&result, prev_len);
12996 }
12997
12998 /* Add all exceptions whose scope is global. */
12999
13000 prev_len = VEC_length (ada_exc_info, result);
13001 ada_add_global_exceptions (preg, &result);
13002 if (VEC_length (ada_exc_info, result) > prev_len)
13003 sort_remove_dups_ada_exceptions_list (&result, prev_len);
13004
13005 discard_cleanups (old_chain);
13006 return result;
13007}
13008
13009/* Return a vector of ada_exc_info.
13010
13011 If REGEXP is NULL, all exceptions are included in the result.
13012 Otherwise, it should contain a valid regular expression,
13013 and only the exceptions whose names match that regular expression
13014 are included in the result.
13015
13016 The exceptions are sorted in the following order:
13017 - Standard exceptions (defined by the Ada language), in
13018 alphabetical order;
13019 - Exceptions only visible from the current frame, in
13020 alphabetical order;
13021 - Exceptions whose scope is global, in alphabetical order. */
13022
13023VEC(ada_exc_info) *
13024ada_exceptions_list (const char *regexp)
13025{
13026 VEC(ada_exc_info) *result = NULL;
13027 struct cleanup *old_chain = NULL;
13028 regex_t reg;
13029
13030 if (regexp != NULL)
13031 old_chain = compile_rx_or_error (&reg, regexp,
13032 _("invalid regular expression"));
13033
13034 result = ada_exceptions_list_1 (regexp != NULL ? &reg : NULL);
13035
13036 if (old_chain != NULL)
13037 do_cleanups (old_chain);
13038 return result;
13039}
13040
13041/* Implement the "info exceptions" command. */
13042
13043static void
13044info_exceptions_command (char *regexp, int from_tty)
13045{
13046 VEC(ada_exc_info) *exceptions;
13047 struct cleanup *cleanup;
13048 struct gdbarch *gdbarch = get_current_arch ();
13049 int ix;
13050 struct ada_exc_info *info;
13051
13052 exceptions = ada_exceptions_list (regexp);
13053 cleanup = make_cleanup (VEC_cleanup (ada_exc_info), &exceptions);
13054
13055 if (regexp != NULL)
13056 printf_filtered
13057 (_("All Ada exceptions matching regular expression \"%s\":\n"), regexp);
13058 else
13059 printf_filtered (_("All defined Ada exceptions:\n"));
13060
13061 for (ix = 0; VEC_iterate(ada_exc_info, exceptions, ix, info); ix++)
13062 printf_filtered ("%s: %s\n", info->name, paddress (gdbarch, info->addr));
13063
13064 do_cleanups (cleanup);
13065}
13066
4c4b4cd2
PH
13067 /* Operators */
13068/* Information about operators given special treatment in functions
13069 below. */
13070/* Format: OP_DEFN (<operator>, <operator length>, <# args>, <binop>). */
13071
13072#define ADA_OPERATORS \
13073 OP_DEFN (OP_VAR_VALUE, 4, 0, 0) \
13074 OP_DEFN (BINOP_IN_BOUNDS, 3, 2, 0) \
13075 OP_DEFN (TERNOP_IN_RANGE, 1, 3, 0) \
13076 OP_DEFN (OP_ATR_FIRST, 1, 2, 0) \
13077 OP_DEFN (OP_ATR_LAST, 1, 2, 0) \
13078 OP_DEFN (OP_ATR_LENGTH, 1, 2, 0) \
13079 OP_DEFN (OP_ATR_IMAGE, 1, 2, 0) \
13080 OP_DEFN (OP_ATR_MAX, 1, 3, 0) \
13081 OP_DEFN (OP_ATR_MIN, 1, 3, 0) \
13082 OP_DEFN (OP_ATR_MODULUS, 1, 1, 0) \
13083 OP_DEFN (OP_ATR_POS, 1, 2, 0) \
13084 OP_DEFN (OP_ATR_SIZE, 1, 1, 0) \
13085 OP_DEFN (OP_ATR_TAG, 1, 1, 0) \
13086 OP_DEFN (OP_ATR_VAL, 1, 2, 0) \
13087 OP_DEFN (UNOP_QUAL, 3, 1, 0) \
52ce6436
PH
13088 OP_DEFN (UNOP_IN_RANGE, 3, 1, 0) \
13089 OP_DEFN (OP_OTHERS, 1, 1, 0) \
13090 OP_DEFN (OP_POSITIONAL, 3, 1, 0) \
13091 OP_DEFN (OP_DISCRETE_RANGE, 1, 2, 0)
4c4b4cd2
PH
13092
13093static void
554794dc
SDJ
13094ada_operator_length (const struct expression *exp, int pc, int *oplenp,
13095 int *argsp)
4c4b4cd2
PH
13096{
13097 switch (exp->elts[pc - 1].opcode)
13098 {
76a01679 13099 default:
4c4b4cd2
PH
13100 operator_length_standard (exp, pc, oplenp, argsp);
13101 break;
13102
13103#define OP_DEFN(op, len, args, binop) \
13104 case op: *oplenp = len; *argsp = args; break;
13105 ADA_OPERATORS;
13106#undef OP_DEFN
52ce6436
PH
13107
13108 case OP_AGGREGATE:
13109 *oplenp = 3;
13110 *argsp = longest_to_int (exp->elts[pc - 2].longconst);
13111 break;
13112
13113 case OP_CHOICES:
13114 *oplenp = 3;
13115 *argsp = longest_to_int (exp->elts[pc - 2].longconst) + 1;
13116 break;
4c4b4cd2
PH
13117 }
13118}
13119
c0201579
JK
13120/* Implementation of the exp_descriptor method operator_check. */
13121
13122static int
13123ada_operator_check (struct expression *exp, int pos,
13124 int (*objfile_func) (struct objfile *objfile, void *data),
13125 void *data)
13126{
13127 const union exp_element *const elts = exp->elts;
13128 struct type *type = NULL;
13129
13130 switch (elts[pos].opcode)
13131 {
13132 case UNOP_IN_RANGE:
13133 case UNOP_QUAL:
13134 type = elts[pos + 1].type;
13135 break;
13136
13137 default:
13138 return operator_check_standard (exp, pos, objfile_func, data);
13139 }
13140
13141 /* Invoke callbacks for TYPE and OBJFILE if they were set as non-NULL. */
13142
13143 if (type && TYPE_OBJFILE (type)
13144 && (*objfile_func) (TYPE_OBJFILE (type), data))
13145 return 1;
13146
13147 return 0;
13148}
13149
4c4b4cd2
PH
13150static char *
13151ada_op_name (enum exp_opcode opcode)
13152{
13153 switch (opcode)
13154 {
76a01679 13155 default:
4c4b4cd2 13156 return op_name_standard (opcode);
52ce6436 13157
4c4b4cd2
PH
13158#define OP_DEFN(op, len, args, binop) case op: return #op;
13159 ADA_OPERATORS;
13160#undef OP_DEFN
52ce6436
PH
13161
13162 case OP_AGGREGATE:
13163 return "OP_AGGREGATE";
13164 case OP_CHOICES:
13165 return "OP_CHOICES";
13166 case OP_NAME:
13167 return "OP_NAME";
4c4b4cd2
PH
13168 }
13169}
13170
13171/* As for operator_length, but assumes PC is pointing at the first
13172 element of the operator, and gives meaningful results only for the
52ce6436 13173 Ada-specific operators, returning 0 for *OPLENP and *ARGSP otherwise. */
4c4b4cd2
PH
13174
13175static void
76a01679
JB
13176ada_forward_operator_length (struct expression *exp, int pc,
13177 int *oplenp, int *argsp)
4c4b4cd2 13178{
76a01679 13179 switch (exp->elts[pc].opcode)
4c4b4cd2
PH
13180 {
13181 default:
13182 *oplenp = *argsp = 0;
13183 break;
52ce6436 13184
4c4b4cd2
PH
13185#define OP_DEFN(op, len, args, binop) \
13186 case op: *oplenp = len; *argsp = args; break;
13187 ADA_OPERATORS;
13188#undef OP_DEFN
52ce6436
PH
13189
13190 case OP_AGGREGATE:
13191 *oplenp = 3;
13192 *argsp = longest_to_int (exp->elts[pc + 1].longconst);
13193 break;
13194
13195 case OP_CHOICES:
13196 *oplenp = 3;
13197 *argsp = longest_to_int (exp->elts[pc + 1].longconst) + 1;
13198 break;
13199
13200 case OP_STRING:
13201 case OP_NAME:
13202 {
13203 int len = longest_to_int (exp->elts[pc + 1].longconst);
5b4ee69b 13204
52ce6436
PH
13205 *oplenp = 4 + BYTES_TO_EXP_ELEM (len + 1);
13206 *argsp = 0;
13207 break;
13208 }
4c4b4cd2
PH
13209 }
13210}
13211
13212static int
13213ada_dump_subexp_body (struct expression *exp, struct ui_file *stream, int elt)
13214{
13215 enum exp_opcode op = exp->elts[elt].opcode;
13216 int oplen, nargs;
13217 int pc = elt;
13218 int i;
76a01679 13219
4c4b4cd2
PH
13220 ada_forward_operator_length (exp, elt, &oplen, &nargs);
13221
76a01679 13222 switch (op)
4c4b4cd2 13223 {
76a01679 13224 /* Ada attributes ('Foo). */
4c4b4cd2
PH
13225 case OP_ATR_FIRST:
13226 case OP_ATR_LAST:
13227 case OP_ATR_LENGTH:
13228 case OP_ATR_IMAGE:
13229 case OP_ATR_MAX:
13230 case OP_ATR_MIN:
13231 case OP_ATR_MODULUS:
13232 case OP_ATR_POS:
13233 case OP_ATR_SIZE:
13234 case OP_ATR_TAG:
13235 case OP_ATR_VAL:
13236 break;
13237
13238 case UNOP_IN_RANGE:
13239 case UNOP_QUAL:
323e0a4a
AC
13240 /* XXX: gdb_sprint_host_address, type_sprint */
13241 fprintf_filtered (stream, _("Type @"));
4c4b4cd2
PH
13242 gdb_print_host_address (exp->elts[pc + 1].type, stream);
13243 fprintf_filtered (stream, " (");
13244 type_print (exp->elts[pc + 1].type, NULL, stream, 0);
13245 fprintf_filtered (stream, ")");
13246 break;
13247 case BINOP_IN_BOUNDS:
52ce6436
PH
13248 fprintf_filtered (stream, " (%d)",
13249 longest_to_int (exp->elts[pc + 2].longconst));
4c4b4cd2
PH
13250 break;
13251 case TERNOP_IN_RANGE:
13252 break;
13253
52ce6436
PH
13254 case OP_AGGREGATE:
13255 case OP_OTHERS:
13256 case OP_DISCRETE_RANGE:
13257 case OP_POSITIONAL:
13258 case OP_CHOICES:
13259 break;
13260
13261 case OP_NAME:
13262 case OP_STRING:
13263 {
13264 char *name = &exp->elts[elt + 2].string;
13265 int len = longest_to_int (exp->elts[elt + 1].longconst);
5b4ee69b 13266
52ce6436
PH
13267 fprintf_filtered (stream, "Text: `%.*s'", len, name);
13268 break;
13269 }
13270
4c4b4cd2
PH
13271 default:
13272 return dump_subexp_body_standard (exp, stream, elt);
13273 }
13274
13275 elt += oplen;
13276 for (i = 0; i < nargs; i += 1)
13277 elt = dump_subexp (exp, stream, elt);
13278
13279 return elt;
13280}
13281
13282/* The Ada extension of print_subexp (q.v.). */
13283
76a01679
JB
13284static void
13285ada_print_subexp (struct expression *exp, int *pos,
13286 struct ui_file *stream, enum precedence prec)
4c4b4cd2 13287{
52ce6436 13288 int oplen, nargs, i;
4c4b4cd2
PH
13289 int pc = *pos;
13290 enum exp_opcode op = exp->elts[pc].opcode;
13291
13292 ada_forward_operator_length (exp, pc, &oplen, &nargs);
13293
52ce6436 13294 *pos += oplen;
4c4b4cd2
PH
13295 switch (op)
13296 {
13297 default:
52ce6436 13298 *pos -= oplen;
4c4b4cd2
PH
13299 print_subexp_standard (exp, pos, stream, prec);
13300 return;
13301
13302 case OP_VAR_VALUE:
4c4b4cd2
PH
13303 fputs_filtered (SYMBOL_NATURAL_NAME (exp->elts[pc + 2].symbol), stream);
13304 return;
13305
13306 case BINOP_IN_BOUNDS:
323e0a4a 13307 /* XXX: sprint_subexp */
4c4b4cd2 13308 print_subexp (exp, pos, stream, PREC_SUFFIX);
0b48a291 13309 fputs_filtered (" in ", stream);
4c4b4cd2 13310 print_subexp (exp, pos, stream, PREC_SUFFIX);
0b48a291 13311 fputs_filtered ("'range", stream);
4c4b4cd2 13312 if (exp->elts[pc + 1].longconst > 1)
76a01679
JB
13313 fprintf_filtered (stream, "(%ld)",
13314 (long) exp->elts[pc + 1].longconst);
4c4b4cd2
PH
13315 return;
13316
13317 case TERNOP_IN_RANGE:
4c4b4cd2 13318 if (prec >= PREC_EQUAL)
76a01679 13319 fputs_filtered ("(", stream);
323e0a4a 13320 /* XXX: sprint_subexp */
4c4b4cd2 13321 print_subexp (exp, pos, stream, PREC_SUFFIX);
0b48a291 13322 fputs_filtered (" in ", stream);
4c4b4cd2
PH
13323 print_subexp (exp, pos, stream, PREC_EQUAL);
13324 fputs_filtered (" .. ", stream);
13325 print_subexp (exp, pos, stream, PREC_EQUAL);
13326 if (prec >= PREC_EQUAL)
76a01679
JB
13327 fputs_filtered (")", stream);
13328 return;
4c4b4cd2
PH
13329
13330 case OP_ATR_FIRST:
13331 case OP_ATR_LAST:
13332 case OP_ATR_LENGTH:
13333 case OP_ATR_IMAGE:
13334 case OP_ATR_MAX:
13335 case OP_ATR_MIN:
13336 case OP_ATR_MODULUS:
13337 case OP_ATR_POS:
13338 case OP_ATR_SIZE:
13339 case OP_ATR_TAG:
13340 case OP_ATR_VAL:
4c4b4cd2 13341 if (exp->elts[*pos].opcode == OP_TYPE)
76a01679
JB
13342 {
13343 if (TYPE_CODE (exp->elts[*pos + 1].type) != TYPE_CODE_VOID)
79d43c61
TT
13344 LA_PRINT_TYPE (exp->elts[*pos + 1].type, "", stream, 0, 0,
13345 &type_print_raw_options);
76a01679
JB
13346 *pos += 3;
13347 }
4c4b4cd2 13348 else
76a01679 13349 print_subexp (exp, pos, stream, PREC_SUFFIX);
4c4b4cd2
PH
13350 fprintf_filtered (stream, "'%s", ada_attribute_name (op));
13351 if (nargs > 1)
76a01679
JB
13352 {
13353 int tem;
5b4ee69b 13354
76a01679
JB
13355 for (tem = 1; tem < nargs; tem += 1)
13356 {
13357 fputs_filtered ((tem == 1) ? " (" : ", ", stream);
13358 print_subexp (exp, pos, stream, PREC_ABOVE_COMMA);
13359 }
13360 fputs_filtered (")", stream);
13361 }
4c4b4cd2 13362 return;
14f9c5c9 13363
4c4b4cd2 13364 case UNOP_QUAL:
4c4b4cd2
PH
13365 type_print (exp->elts[pc + 1].type, "", stream, 0);
13366 fputs_filtered ("'(", stream);
13367 print_subexp (exp, pos, stream, PREC_PREFIX);
13368 fputs_filtered (")", stream);
13369 return;
14f9c5c9 13370
4c4b4cd2 13371 case UNOP_IN_RANGE:
323e0a4a 13372 /* XXX: sprint_subexp */
4c4b4cd2 13373 print_subexp (exp, pos, stream, PREC_SUFFIX);
0b48a291 13374 fputs_filtered (" in ", stream);
79d43c61
TT
13375 LA_PRINT_TYPE (exp->elts[pc + 1].type, "", stream, 1, 0,
13376 &type_print_raw_options);
4c4b4cd2 13377 return;
52ce6436
PH
13378
13379 case OP_DISCRETE_RANGE:
13380 print_subexp (exp, pos, stream, PREC_SUFFIX);
13381 fputs_filtered ("..", stream);
13382 print_subexp (exp, pos, stream, PREC_SUFFIX);
13383 return;
13384
13385 case OP_OTHERS:
13386 fputs_filtered ("others => ", stream);
13387 print_subexp (exp, pos, stream, PREC_SUFFIX);
13388 return;
13389
13390 case OP_CHOICES:
13391 for (i = 0; i < nargs-1; i += 1)
13392 {
13393 if (i > 0)
13394 fputs_filtered ("|", stream);
13395 print_subexp (exp, pos, stream, PREC_SUFFIX);
13396 }
13397 fputs_filtered (" => ", stream);
13398 print_subexp (exp, pos, stream, PREC_SUFFIX);
13399 return;
13400
13401 case OP_POSITIONAL:
13402 print_subexp (exp, pos, stream, PREC_SUFFIX);
13403 return;
13404
13405 case OP_AGGREGATE:
13406 fputs_filtered ("(", stream);
13407 for (i = 0; i < nargs; i += 1)
13408 {
13409 if (i > 0)
13410 fputs_filtered (", ", stream);
13411 print_subexp (exp, pos, stream, PREC_SUFFIX);
13412 }
13413 fputs_filtered (")", stream);
13414 return;
4c4b4cd2
PH
13415 }
13416}
14f9c5c9
AS
13417
13418/* Table mapping opcodes into strings for printing operators
13419 and precedences of the operators. */
13420
d2e4a39e
AS
13421static const struct op_print ada_op_print_tab[] = {
13422 {":=", BINOP_ASSIGN, PREC_ASSIGN, 1},
13423 {"or else", BINOP_LOGICAL_OR, PREC_LOGICAL_OR, 0},
13424 {"and then", BINOP_LOGICAL_AND, PREC_LOGICAL_AND, 0},
13425 {"or", BINOP_BITWISE_IOR, PREC_BITWISE_IOR, 0},
13426 {"xor", BINOP_BITWISE_XOR, PREC_BITWISE_XOR, 0},
13427 {"and", BINOP_BITWISE_AND, PREC_BITWISE_AND, 0},
13428 {"=", BINOP_EQUAL, PREC_EQUAL, 0},
13429 {"/=", BINOP_NOTEQUAL, PREC_EQUAL, 0},
13430 {"<=", BINOP_LEQ, PREC_ORDER, 0},
13431 {">=", BINOP_GEQ, PREC_ORDER, 0},
13432 {">", BINOP_GTR, PREC_ORDER, 0},
13433 {"<", BINOP_LESS, PREC_ORDER, 0},
13434 {">>", BINOP_RSH, PREC_SHIFT, 0},
13435 {"<<", BINOP_LSH, PREC_SHIFT, 0},
13436 {"+", BINOP_ADD, PREC_ADD, 0},
13437 {"-", BINOP_SUB, PREC_ADD, 0},
13438 {"&", BINOP_CONCAT, PREC_ADD, 0},
13439 {"*", BINOP_MUL, PREC_MUL, 0},
13440 {"/", BINOP_DIV, PREC_MUL, 0},
13441 {"rem", BINOP_REM, PREC_MUL, 0},
13442 {"mod", BINOP_MOD, PREC_MUL, 0},
13443 {"**", BINOP_EXP, PREC_REPEAT, 0},
13444 {"@", BINOP_REPEAT, PREC_REPEAT, 0},
13445 {"-", UNOP_NEG, PREC_PREFIX, 0},
13446 {"+", UNOP_PLUS, PREC_PREFIX, 0},
13447 {"not ", UNOP_LOGICAL_NOT, PREC_PREFIX, 0},
13448 {"not ", UNOP_COMPLEMENT, PREC_PREFIX, 0},
13449 {"abs ", UNOP_ABS, PREC_PREFIX, 0},
4c4b4cd2
PH
13450 {".all", UNOP_IND, PREC_SUFFIX, 1},
13451 {"'access", UNOP_ADDR, PREC_SUFFIX, 1},
13452 {"'size", OP_ATR_SIZE, PREC_SUFFIX, 1},
d2e4a39e 13453 {NULL, 0, 0, 0}
14f9c5c9
AS
13454};
13455\f
72d5681a
PH
13456enum ada_primitive_types {
13457 ada_primitive_type_int,
13458 ada_primitive_type_long,
13459 ada_primitive_type_short,
13460 ada_primitive_type_char,
13461 ada_primitive_type_float,
13462 ada_primitive_type_double,
13463 ada_primitive_type_void,
13464 ada_primitive_type_long_long,
13465 ada_primitive_type_long_double,
13466 ada_primitive_type_natural,
13467 ada_primitive_type_positive,
13468 ada_primitive_type_system_address,
13469 nr_ada_primitive_types
13470};
6c038f32
PH
13471
13472static void
d4a9a881 13473ada_language_arch_info (struct gdbarch *gdbarch,
72d5681a
PH
13474 struct language_arch_info *lai)
13475{
d4a9a881 13476 const struct builtin_type *builtin = builtin_type (gdbarch);
5b4ee69b 13477
72d5681a 13478 lai->primitive_type_vector
d4a9a881 13479 = GDBARCH_OBSTACK_CALLOC (gdbarch, nr_ada_primitive_types + 1,
72d5681a 13480 struct type *);
e9bb382b
UW
13481
13482 lai->primitive_type_vector [ada_primitive_type_int]
13483 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
13484 0, "integer");
13485 lai->primitive_type_vector [ada_primitive_type_long]
13486 = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
13487 0, "long_integer");
13488 lai->primitive_type_vector [ada_primitive_type_short]
13489 = arch_integer_type (gdbarch, gdbarch_short_bit (gdbarch),
13490 0, "short_integer");
13491 lai->string_char_type
13492 = lai->primitive_type_vector [ada_primitive_type_char]
13493 = arch_integer_type (gdbarch, TARGET_CHAR_BIT, 0, "character");
13494 lai->primitive_type_vector [ada_primitive_type_float]
13495 = arch_float_type (gdbarch, gdbarch_float_bit (gdbarch),
13496 "float", NULL);
13497 lai->primitive_type_vector [ada_primitive_type_double]
13498 = arch_float_type (gdbarch, gdbarch_double_bit (gdbarch),
13499 "long_float", NULL);
13500 lai->primitive_type_vector [ada_primitive_type_long_long]
13501 = arch_integer_type (gdbarch, gdbarch_long_long_bit (gdbarch),
13502 0, "long_long_integer");
13503 lai->primitive_type_vector [ada_primitive_type_long_double]
13504 = arch_float_type (gdbarch, gdbarch_double_bit (gdbarch),
13505 "long_long_float", NULL);
13506 lai->primitive_type_vector [ada_primitive_type_natural]
13507 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
13508 0, "natural");
13509 lai->primitive_type_vector [ada_primitive_type_positive]
13510 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
13511 0, "positive");
13512 lai->primitive_type_vector [ada_primitive_type_void]
13513 = builtin->builtin_void;
13514
13515 lai->primitive_type_vector [ada_primitive_type_system_address]
13516 = lookup_pointer_type (arch_type (gdbarch, TYPE_CODE_VOID, 1, "void"));
72d5681a
PH
13517 TYPE_NAME (lai->primitive_type_vector [ada_primitive_type_system_address])
13518 = "system__address";
fbb06eb1 13519
47e729a8 13520 lai->bool_type_symbol = NULL;
fbb06eb1 13521 lai->bool_type_default = builtin->builtin_bool;
6c038f32 13522}
6c038f32
PH
13523\f
13524 /* Language vector */
13525
13526/* Not really used, but needed in the ada_language_defn. */
13527
13528static void
6c7a06a3 13529emit_char (int c, struct type *type, struct ui_file *stream, int quoter)
6c038f32 13530{
6c7a06a3 13531 ada_emit_char (c, type, stream, quoter, 1);
6c038f32
PH
13532}
13533
13534static int
410a0ff2 13535parse (struct parser_state *ps)
6c038f32
PH
13536{
13537 warnings_issued = 0;
410a0ff2 13538 return ada_parse (ps);
6c038f32
PH
13539}
13540
13541static const struct exp_descriptor ada_exp_descriptor = {
13542 ada_print_subexp,
13543 ada_operator_length,
c0201579 13544 ada_operator_check,
6c038f32
PH
13545 ada_op_name,
13546 ada_dump_subexp_body,
13547 ada_evaluate_subexp
13548};
13549
1a119f36 13550/* Implement the "la_get_symbol_name_cmp" language_defn method
74ccd7f5
JB
13551 for Ada. */
13552
1a119f36
JB
13553static symbol_name_cmp_ftype
13554ada_get_symbol_name_cmp (const char *lookup_name)
74ccd7f5
JB
13555{
13556 if (should_use_wild_match (lookup_name))
13557 return wild_match;
13558 else
13559 return compare_names;
13560}
13561
a5ee536b
JB
13562/* Implement the "la_read_var_value" language_defn method for Ada. */
13563
13564static struct value *
13565ada_read_var_value (struct symbol *var, struct frame_info *frame)
13566{
3977b71f 13567 const struct block *frame_block = NULL;
a5ee536b
JB
13568 struct symbol *renaming_sym = NULL;
13569
13570 /* The only case where default_read_var_value is not sufficient
13571 is when VAR is a renaming... */
13572 if (frame)
13573 frame_block = get_frame_block (frame, NULL);
13574 if (frame_block)
13575 renaming_sym = ada_find_renaming_symbol (var, frame_block);
13576 if (renaming_sym != NULL)
13577 return ada_read_renaming_var_value (renaming_sym, frame_block);
13578
13579 /* This is a typical case where we expect the default_read_var_value
13580 function to work. */
13581 return default_read_var_value (var, frame);
13582}
13583
6c038f32
PH
13584const struct language_defn ada_language_defn = {
13585 "ada", /* Language name */
6abde28f 13586 "Ada",
6c038f32 13587 language_ada,
6c038f32 13588 range_check_off,
6c038f32
PH
13589 case_sensitive_on, /* Yes, Ada is case-insensitive, but
13590 that's not quite what this means. */
6c038f32 13591 array_row_major,
9a044a89 13592 macro_expansion_no,
6c038f32
PH
13593 &ada_exp_descriptor,
13594 parse,
13595 ada_error,
13596 resolve,
13597 ada_printchar, /* Print a character constant */
13598 ada_printstr, /* Function to print string constant */
13599 emit_char, /* Function to print single char (not used) */
6c038f32 13600 ada_print_type, /* Print a type using appropriate syntax */
be942545 13601 ada_print_typedef, /* Print a typedef using appropriate syntax */
6c038f32
PH
13602 ada_val_print, /* Print a value using appropriate syntax */
13603 ada_value_print, /* Print a top-level value */
a5ee536b 13604 ada_read_var_value, /* la_read_var_value */
6c038f32 13605 NULL, /* Language specific skip_trampoline */
2b2d9e11 13606 NULL, /* name_of_this */
6c038f32
PH
13607 ada_lookup_symbol_nonlocal, /* Looking up non-local symbols. */
13608 basic_lookup_transparent_type, /* lookup_transparent_type */
13609 ada_la_decode, /* Language specific symbol demangler */
0963b4bd
MS
13610 NULL, /* Language specific
13611 class_name_from_physname */
6c038f32
PH
13612 ada_op_print_tab, /* expression operators for printing */
13613 0, /* c-style arrays */
13614 1, /* String lower bound */
6c038f32 13615 ada_get_gdb_completer_word_break_characters,
41d27058 13616 ada_make_symbol_completion_list,
72d5681a 13617 ada_language_arch_info,
e79af960 13618 ada_print_array_index,
41f1b697 13619 default_pass_by_reference,
ae6a3a4c 13620 c_get_string,
1a119f36 13621 ada_get_symbol_name_cmp, /* la_get_symbol_name_cmp */
f8eba3c6 13622 ada_iterate_over_symbols,
a53b64ea 13623 &ada_varobj_ops,
6c038f32
PH
13624 LANG_MAGIC
13625};
13626
2c0b251b
PA
13627/* Provide a prototype to silence -Wmissing-prototypes. */
13628extern initialize_file_ftype _initialize_ada_language;
13629
5bf03f13
JB
13630/* Command-list for the "set/show ada" prefix command. */
13631static struct cmd_list_element *set_ada_list;
13632static struct cmd_list_element *show_ada_list;
13633
13634/* Implement the "set ada" prefix command. */
13635
13636static void
13637set_ada_command (char *arg, int from_tty)
13638{
13639 printf_unfiltered (_(\
13640"\"set ada\" must be followed by the name of a setting.\n"));
635c7e8a 13641 help_list (set_ada_list, "set ada ", all_commands, gdb_stdout);
5bf03f13
JB
13642}
13643
13644/* Implement the "show ada" prefix command. */
13645
13646static void
13647show_ada_command (char *args, int from_tty)
13648{
13649 cmd_show_list (show_ada_list, from_tty, "");
13650}
13651
2060206e
PA
13652static void
13653initialize_ada_catchpoint_ops (void)
13654{
13655 struct breakpoint_ops *ops;
13656
13657 initialize_breakpoint_ops ();
13658
13659 ops = &catch_exception_breakpoint_ops;
13660 *ops = bkpt_breakpoint_ops;
13661 ops->dtor = dtor_catch_exception;
13662 ops->allocate_location = allocate_location_catch_exception;
13663 ops->re_set = re_set_catch_exception;
13664 ops->check_status = check_status_catch_exception;
13665 ops->print_it = print_it_catch_exception;
13666 ops->print_one = print_one_catch_exception;
13667 ops->print_mention = print_mention_catch_exception;
13668 ops->print_recreate = print_recreate_catch_exception;
13669
13670 ops = &catch_exception_unhandled_breakpoint_ops;
13671 *ops = bkpt_breakpoint_ops;
13672 ops->dtor = dtor_catch_exception_unhandled;
13673 ops->allocate_location = allocate_location_catch_exception_unhandled;
13674 ops->re_set = re_set_catch_exception_unhandled;
13675 ops->check_status = check_status_catch_exception_unhandled;
13676 ops->print_it = print_it_catch_exception_unhandled;
13677 ops->print_one = print_one_catch_exception_unhandled;
13678 ops->print_mention = print_mention_catch_exception_unhandled;
13679 ops->print_recreate = print_recreate_catch_exception_unhandled;
13680
13681 ops = &catch_assert_breakpoint_ops;
13682 *ops = bkpt_breakpoint_ops;
13683 ops->dtor = dtor_catch_assert;
13684 ops->allocate_location = allocate_location_catch_assert;
13685 ops->re_set = re_set_catch_assert;
13686 ops->check_status = check_status_catch_assert;
13687 ops->print_it = print_it_catch_assert;
13688 ops->print_one = print_one_catch_assert;
13689 ops->print_mention = print_mention_catch_assert;
13690 ops->print_recreate = print_recreate_catch_assert;
13691}
13692
3d9434b5
JB
13693/* This module's 'new_objfile' observer. */
13694
13695static void
13696ada_new_objfile_observer (struct objfile *objfile)
13697{
13698 ada_clear_symbol_cache ();
13699}
13700
13701/* This module's 'free_objfile' observer. */
13702
13703static void
13704ada_free_objfile_observer (struct objfile *objfile)
13705{
13706 ada_clear_symbol_cache ();
13707}
13708
d2e4a39e 13709void
6c038f32 13710_initialize_ada_language (void)
14f9c5c9 13711{
6c038f32
PH
13712 add_language (&ada_language_defn);
13713
2060206e
PA
13714 initialize_ada_catchpoint_ops ();
13715
5bf03f13
JB
13716 add_prefix_cmd ("ada", no_class, set_ada_command,
13717 _("Prefix command for changing Ada-specfic settings"),
13718 &set_ada_list, "set ada ", 0, &setlist);
13719
13720 add_prefix_cmd ("ada", no_class, show_ada_command,
13721 _("Generic command for showing Ada-specific settings."),
13722 &show_ada_list, "show ada ", 0, &showlist);
13723
13724 add_setshow_boolean_cmd ("trust-PAD-over-XVS", class_obscure,
13725 &trust_pad_over_xvs, _("\
13726Enable or disable an optimization trusting PAD types over XVS types"), _("\
13727Show whether an optimization trusting PAD types over XVS types is activated"),
13728 _("\
13729This is related to the encoding used by the GNAT compiler. The debugger\n\
13730should normally trust the contents of PAD types, but certain older versions\n\
13731of GNAT have a bug that sometimes causes the information in the PAD type\n\
13732to be incorrect. Turning this setting \"off\" allows the debugger to\n\
13733work around this bug. It is always safe to turn this option \"off\", but\n\
13734this incurs a slight performance penalty, so it is recommended to NOT change\n\
13735this option to \"off\" unless necessary."),
13736 NULL, NULL, &set_ada_list, &show_ada_list);
13737
9ac4176b
PA
13738 add_catch_command ("exception", _("\
13739Catch Ada exceptions, when raised.\n\
13740With an argument, catch only exceptions with the given name."),
13741 catch_ada_exception_command,
13742 NULL,
13743 CATCH_PERMANENT,
13744 CATCH_TEMPORARY);
13745 add_catch_command ("assert", _("\
13746Catch failed Ada assertions, when raised.\n\
13747With an argument, catch only exceptions with the given name."),
13748 catch_assert_command,
13749 NULL,
13750 CATCH_PERMANENT,
13751 CATCH_TEMPORARY);
13752
6c038f32 13753 varsize_limit = 65536;
6c038f32 13754
778865d3
JB
13755 add_info ("exceptions", info_exceptions_command,
13756 _("\
13757List all Ada exception names.\n\
13758If a regular expression is passed as an argument, only those matching\n\
13759the regular expression are listed."));
13760
c6044dd1
JB
13761 add_prefix_cmd ("ada", class_maintenance, maint_set_ada_cmd,
13762 _("Set Ada maintenance-related variables."),
13763 &maint_set_ada_cmdlist, "maintenance set ada ",
13764 0/*allow-unknown*/, &maintenance_set_cmdlist);
13765
13766 add_prefix_cmd ("ada", class_maintenance, maint_show_ada_cmd,
13767 _("Show Ada maintenance-related variables"),
13768 &maint_show_ada_cmdlist, "maintenance show ada ",
13769 0/*allow-unknown*/, &maintenance_show_cmdlist);
13770
13771 add_setshow_boolean_cmd
13772 ("ignore-descriptive-types", class_maintenance,
13773 &ada_ignore_descriptive_types_p,
13774 _("Set whether descriptive types generated by GNAT should be ignored."),
13775 _("Show whether descriptive types generated by GNAT should be ignored."),
13776 _("\
13777When enabled, the debugger will stop using the DW_AT_GNAT_descriptive_type\n\
13778DWARF attribute."),
13779 NULL, NULL, &maint_set_ada_cmdlist, &maint_show_ada_cmdlist);
13780
6c038f32
PH
13781 obstack_init (&symbol_list_obstack);
13782
13783 decoded_names_store = htab_create_alloc
13784 (256, htab_hash_string, (int (*)(const void *, const void *)) streq,
13785 NULL, xcalloc, xfree);
6b69afc4 13786
3d9434b5
JB
13787 /* The ada-lang observers. */
13788 observer_attach_new_objfile (ada_new_objfile_observer);
13789 observer_attach_free_objfile (ada_free_objfile_observer);
e802dbe0 13790 observer_attach_inferior_exit (ada_inferior_exit);
ee01b665
JB
13791
13792 /* Setup various context-specific data. */
e802dbe0 13793 ada_inferior_data
8e260fc0 13794 = register_inferior_data_with_cleanup (NULL, ada_inferior_data_cleanup);
ee01b665
JB
13795 ada_pspace_data_handle
13796 = register_program_space_data_with_cleanup (NULL, ada_pspace_data_cleanup);
14f9c5c9 13797}