]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blame - gdb/ada-lang.c
* v850.h: Add e3v5 support.
[thirdparty/binutils-gdb.git] / gdb / ada-lang.c
CommitLineData
6e681866 1/* Ada language support routines for GDB, the GNU debugger.
10a2c479 2
28e7fd62 3 Copyright (C) 1992-2013 Free Software Foundation, Inc.
14f9c5c9 4
a9762ec7 5 This file is part of GDB.
14f9c5c9 6
a9762ec7
JB
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
14f9c5c9 11
a9762ec7
JB
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
14f9c5c9 16
a9762ec7
JB
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
14f9c5c9 19
96d887e8 20
4c4b4cd2 21#include "defs.h"
14f9c5c9 22#include <stdio.h>
0c30c098 23#include "gdb_string.h"
14f9c5c9
AS
24#include <ctype.h>
25#include <stdarg.h>
26#include "demangle.h"
4c4b4cd2
PH
27#include "gdb_regex.h"
28#include "frame.h"
14f9c5c9
AS
29#include "symtab.h"
30#include "gdbtypes.h"
31#include "gdbcmd.h"
32#include "expression.h"
33#include "parser-defs.h"
34#include "language.h"
35#include "c-lang.h"
36#include "inferior.h"
37#include "symfile.h"
38#include "objfiles.h"
39#include "breakpoint.h"
40#include "gdbcore.h"
4c4b4cd2
PH
41#include "hashtab.h"
42#include "gdb_obstack.h"
14f9c5c9 43#include "ada-lang.h"
4c4b4cd2
PH
44#include "completer.h"
45#include "gdb_stat.h"
46#ifdef UI_OUT
14f9c5c9 47#include "ui-out.h"
4c4b4cd2 48#endif
fe898f56 49#include "block.h"
04714b91 50#include "infcall.h"
de4f826b 51#include "dictionary.h"
60250e8b 52#include "exceptions.h"
f7f9143b
JB
53#include "annotate.h"
54#include "valprint.h"
9bbc9174 55#include "source.h"
0259addd 56#include "observer.h"
2ba95b9b 57#include "vec.h"
692465f1 58#include "stack.h"
fa864999 59#include "gdb_vecs.h"
79d43c61 60#include "typeprint.h"
14f9c5c9 61
ccefe4c4 62#include "psymtab.h"
40bc484c 63#include "value.h"
956a9fb9 64#include "mi/mi-common.h"
9ac4176b 65#include "arch-utils.h"
28010a5d 66#include "exceptions.h"
0fcd72ba 67#include "cli/cli-utils.h"
ccefe4c4 68
4c4b4cd2 69/* Define whether or not the C operator '/' truncates towards zero for
0963b4bd 70 differently signed operands (truncation direction is undefined in C).
4c4b4cd2
PH
71 Copied from valarith.c. */
72
73#ifndef TRUNCATION_TOWARDS_ZERO
74#define TRUNCATION_TOWARDS_ZERO ((-5 / 2) == -2)
75#endif
76
d2e4a39e 77static struct type *desc_base_type (struct type *);
14f9c5c9 78
d2e4a39e 79static struct type *desc_bounds_type (struct type *);
14f9c5c9 80
d2e4a39e 81static struct value *desc_bounds (struct value *);
14f9c5c9 82
d2e4a39e 83static int fat_pntr_bounds_bitpos (struct type *);
14f9c5c9 84
d2e4a39e 85static int fat_pntr_bounds_bitsize (struct type *);
14f9c5c9 86
556bdfd4 87static struct type *desc_data_target_type (struct type *);
14f9c5c9 88
d2e4a39e 89static struct value *desc_data (struct value *);
14f9c5c9 90
d2e4a39e 91static int fat_pntr_data_bitpos (struct type *);
14f9c5c9 92
d2e4a39e 93static int fat_pntr_data_bitsize (struct type *);
14f9c5c9 94
d2e4a39e 95static struct value *desc_one_bound (struct value *, int, int);
14f9c5c9 96
d2e4a39e 97static int desc_bound_bitpos (struct type *, int, int);
14f9c5c9 98
d2e4a39e 99static int desc_bound_bitsize (struct type *, int, int);
14f9c5c9 100
d2e4a39e 101static struct type *desc_index_type (struct type *, int);
14f9c5c9 102
d2e4a39e 103static int desc_arity (struct type *);
14f9c5c9 104
d2e4a39e 105static int ada_type_match (struct type *, struct type *, int);
14f9c5c9 106
d2e4a39e 107static int ada_args_match (struct symbol *, struct value **, int);
14f9c5c9 108
40658b94
PH
109static int full_match (const char *, const char *);
110
40bc484c 111static struct value *make_array_descriptor (struct type *, struct value *);
14f9c5c9 112
4c4b4cd2 113static void ada_add_block_symbols (struct obstack *,
76a01679 114 struct block *, const char *,
2570f2b7 115 domain_enum, struct objfile *, int);
14f9c5c9 116
4c4b4cd2 117static int is_nonfunction (struct ada_symbol_info *, int);
14f9c5c9 118
76a01679 119static void add_defn_to_vec (struct obstack *, struct symbol *,
2570f2b7 120 struct block *);
14f9c5c9 121
4c4b4cd2
PH
122static int num_defns_collected (struct obstack *);
123
124static struct ada_symbol_info *defns_collected (struct obstack *, int);
14f9c5c9 125
4c4b4cd2 126static struct value *resolve_subexp (struct expression **, int *, int,
76a01679 127 struct type *);
14f9c5c9 128
d2e4a39e 129static void replace_operator_with_call (struct expression **, int, int, int,
270140bd 130 struct symbol *, const struct block *);
14f9c5c9 131
d2e4a39e 132static int possible_user_operator_p (enum exp_opcode, struct value **);
14f9c5c9 133
4c4b4cd2
PH
134static char *ada_op_name (enum exp_opcode);
135
136static const char *ada_decoded_op_name (enum exp_opcode);
14f9c5c9 137
d2e4a39e 138static int numeric_type_p (struct type *);
14f9c5c9 139
d2e4a39e 140static int integer_type_p (struct type *);
14f9c5c9 141
d2e4a39e 142static int scalar_type_p (struct type *);
14f9c5c9 143
d2e4a39e 144static int discrete_type_p (struct type *);
14f9c5c9 145
aeb5907d
JB
146static enum ada_renaming_category parse_old_style_renaming (struct type *,
147 const char **,
148 int *,
149 const char **);
150
151static struct symbol *find_old_style_renaming_symbol (const char *,
270140bd 152 const struct block *);
aeb5907d 153
4c4b4cd2 154static struct type *ada_lookup_struct_elt_type (struct type *, char *,
76a01679 155 int, int, int *);
4c4b4cd2 156
d2e4a39e 157static struct value *evaluate_subexp_type (struct expression *, int *);
14f9c5c9 158
b4ba55a1
JB
159static struct type *ada_find_parallel_type_with_name (struct type *,
160 const char *);
161
d2e4a39e 162static int is_dynamic_field (struct type *, int);
14f9c5c9 163
10a2c479 164static struct type *to_fixed_variant_branch_type (struct type *,
fc1a4b47 165 const gdb_byte *,
4c4b4cd2
PH
166 CORE_ADDR, struct value *);
167
168static struct type *to_fixed_array_type (struct type *, struct value *, int);
14f9c5c9 169
28c85d6c 170static struct type *to_fixed_range_type (struct type *, struct value *);
14f9c5c9 171
d2e4a39e 172static struct type *to_static_fixed_type (struct type *);
f192137b 173static struct type *static_unwrap_type (struct type *type);
14f9c5c9 174
d2e4a39e 175static struct value *unwrap_value (struct value *);
14f9c5c9 176
ad82864c 177static struct type *constrained_packed_array_type (struct type *, long *);
14f9c5c9 178
ad82864c 179static struct type *decode_constrained_packed_array_type (struct type *);
14f9c5c9 180
ad82864c
JB
181static long decode_packed_array_bitsize (struct type *);
182
183static struct value *decode_constrained_packed_array (struct value *);
184
185static int ada_is_packed_array_type (struct type *);
186
187static int ada_is_unconstrained_packed_array_type (struct type *);
14f9c5c9 188
d2e4a39e 189static struct value *value_subscript_packed (struct value *, int,
4c4b4cd2 190 struct value **);
14f9c5c9 191
50810684 192static void move_bits (gdb_byte *, int, const gdb_byte *, int, int, int);
52ce6436 193
4c4b4cd2
PH
194static struct value *coerce_unspec_val_to_type (struct value *,
195 struct type *);
14f9c5c9 196
d2e4a39e 197static struct value *get_var_value (char *, char *);
14f9c5c9 198
d2e4a39e 199static int lesseq_defined_than (struct symbol *, struct symbol *);
14f9c5c9 200
d2e4a39e 201static int equiv_types (struct type *, struct type *);
14f9c5c9 202
d2e4a39e 203static int is_name_suffix (const char *);
14f9c5c9 204
73589123
PH
205static int advance_wild_match (const char **, const char *, int);
206
207static int wild_match (const char *, const char *);
14f9c5c9 208
d2e4a39e 209static struct value *ada_coerce_ref (struct value *);
14f9c5c9 210
4c4b4cd2
PH
211static LONGEST pos_atr (struct value *);
212
3cb382c9 213static struct value *value_pos_atr (struct type *, struct value *);
14f9c5c9 214
d2e4a39e 215static struct value *value_val_atr (struct type *, struct value *);
14f9c5c9 216
4c4b4cd2
PH
217static struct symbol *standard_lookup (const char *, const struct block *,
218 domain_enum);
14f9c5c9 219
4c4b4cd2
PH
220static struct value *ada_search_struct_field (char *, struct value *, int,
221 struct type *);
222
223static struct value *ada_value_primitive_field (struct value *, int, int,
224 struct type *);
225
0d5cff50 226static int find_struct_field (const char *, struct type *, int,
52ce6436 227 struct type **, int *, int *, int *, int *);
4c4b4cd2
PH
228
229static struct value *ada_to_fixed_value_create (struct type *, CORE_ADDR,
230 struct value *);
231
4c4b4cd2
PH
232static int ada_resolve_function (struct ada_symbol_info *, int,
233 struct value **, int, const char *,
234 struct type *);
235
4c4b4cd2
PH
236static int ada_is_direct_array_type (struct type *);
237
72d5681a
PH
238static void ada_language_arch_info (struct gdbarch *,
239 struct language_arch_info *);
714e53ab
PH
240
241static void check_size (const struct type *);
52ce6436
PH
242
243static struct value *ada_index_struct_field (int, struct value *, int,
244 struct type *);
245
246static struct value *assign_aggregate (struct value *, struct value *,
0963b4bd
MS
247 struct expression *,
248 int *, enum noside);
52ce6436
PH
249
250static void aggregate_assign_from_choices (struct value *, struct value *,
251 struct expression *,
252 int *, LONGEST *, int *,
253 int, LONGEST, LONGEST);
254
255static void aggregate_assign_positional (struct value *, struct value *,
256 struct expression *,
257 int *, LONGEST *, int *, int,
258 LONGEST, LONGEST);
259
260
261static void aggregate_assign_others (struct value *, struct value *,
262 struct expression *,
263 int *, LONGEST *, int, LONGEST, LONGEST);
264
265
266static void add_component_interval (LONGEST, LONGEST, LONGEST *, int *, int);
267
268
269static struct value *ada_evaluate_subexp (struct type *, struct expression *,
270 int *, enum noside);
271
272static void ada_forward_operator_length (struct expression *, int, int *,
273 int *);
852dff6c
JB
274
275static struct type *ada_find_any_type (const char *name);
4c4b4cd2
PH
276\f
277
76a01679 278
4c4b4cd2 279/* Maximum-sized dynamic type. */
14f9c5c9
AS
280static unsigned int varsize_limit;
281
4c4b4cd2
PH
282/* FIXME: brobecker/2003-09-17: No longer a const because it is
283 returned by a function that does not return a const char *. */
284static char *ada_completer_word_break_characters =
285#ifdef VMS
286 " \t\n!@#%^&*()+=|~`}{[]\";:?/,-";
287#else
14f9c5c9 288 " \t\n!@#$%^&*()+=|~`}{[]\";:?/,-";
4c4b4cd2 289#endif
14f9c5c9 290
4c4b4cd2 291/* The name of the symbol to use to get the name of the main subprogram. */
76a01679 292static const char ADA_MAIN_PROGRAM_SYMBOL_NAME[]
4c4b4cd2 293 = "__gnat_ada_main_program_name";
14f9c5c9 294
4c4b4cd2
PH
295/* Limit on the number of warnings to raise per expression evaluation. */
296static int warning_limit = 2;
297
298/* Number of warning messages issued; reset to 0 by cleanups after
299 expression evaluation. */
300static int warnings_issued = 0;
301
302static const char *known_runtime_file_name_patterns[] = {
303 ADA_KNOWN_RUNTIME_FILE_NAME_PATTERNS NULL
304};
305
306static const char *known_auxiliary_function_name_patterns[] = {
307 ADA_KNOWN_AUXILIARY_FUNCTION_NAME_PATTERNS NULL
308};
309
310/* Space for allocating results of ada_lookup_symbol_list. */
311static struct obstack symbol_list_obstack;
312
e802dbe0
JB
313 /* Inferior-specific data. */
314
315/* Per-inferior data for this module. */
316
317struct ada_inferior_data
318{
319 /* The ada__tags__type_specific_data type, which is used when decoding
320 tagged types. With older versions of GNAT, this type was directly
321 accessible through a component ("tsd") in the object tag. But this
322 is no longer the case, so we cache it for each inferior. */
323 struct type *tsd_type;
3eecfa55
JB
324
325 /* The exception_support_info data. This data is used to determine
326 how to implement support for Ada exception catchpoints in a given
327 inferior. */
328 const struct exception_support_info *exception_info;
e802dbe0
JB
329};
330
331/* Our key to this module's inferior data. */
332static const struct inferior_data *ada_inferior_data;
333
334/* A cleanup routine for our inferior data. */
335static void
336ada_inferior_data_cleanup (struct inferior *inf, void *arg)
337{
338 struct ada_inferior_data *data;
339
340 data = inferior_data (inf, ada_inferior_data);
341 if (data != NULL)
342 xfree (data);
343}
344
345/* Return our inferior data for the given inferior (INF).
346
347 This function always returns a valid pointer to an allocated
348 ada_inferior_data structure. If INF's inferior data has not
349 been previously set, this functions creates a new one with all
350 fields set to zero, sets INF's inferior to it, and then returns
351 a pointer to that newly allocated ada_inferior_data. */
352
353static struct ada_inferior_data *
354get_ada_inferior_data (struct inferior *inf)
355{
356 struct ada_inferior_data *data;
357
358 data = inferior_data (inf, ada_inferior_data);
359 if (data == NULL)
360 {
361 data = XZALLOC (struct ada_inferior_data);
362 set_inferior_data (inf, ada_inferior_data, data);
363 }
364
365 return data;
366}
367
368/* Perform all necessary cleanups regarding our module's inferior data
369 that is required after the inferior INF just exited. */
370
371static void
372ada_inferior_exit (struct inferior *inf)
373{
374 ada_inferior_data_cleanup (inf, NULL);
375 set_inferior_data (inf, ada_inferior_data, NULL);
376}
377
4c4b4cd2
PH
378 /* Utilities */
379
720d1a40 380/* If TYPE is a TYPE_CODE_TYPEDEF type, return the target type after
eed9788b 381 all typedef layers have been peeled. Otherwise, return TYPE.
720d1a40
JB
382
383 Normally, we really expect a typedef type to only have 1 typedef layer.
384 In other words, we really expect the target type of a typedef type to be
385 a non-typedef type. This is particularly true for Ada units, because
386 the language does not have a typedef vs not-typedef distinction.
387 In that respect, the Ada compiler has been trying to eliminate as many
388 typedef definitions in the debugging information, since they generally
389 do not bring any extra information (we still use typedef under certain
390 circumstances related mostly to the GNAT encoding).
391
392 Unfortunately, we have seen situations where the debugging information
393 generated by the compiler leads to such multiple typedef layers. For
394 instance, consider the following example with stabs:
395
396 .stabs "pck__float_array___XUP:Tt(0,46)=s16P_ARRAY:(0,47)=[...]"[...]
397 .stabs "pck__float_array___XUP:t(0,36)=(0,46)",128,0,6,0
398
399 This is an error in the debugging information which causes type
400 pck__float_array___XUP to be defined twice, and the second time,
401 it is defined as a typedef of a typedef.
402
403 This is on the fringe of legality as far as debugging information is
404 concerned, and certainly unexpected. But it is easy to handle these
405 situations correctly, so we can afford to be lenient in this case. */
406
407static struct type *
408ada_typedef_target_type (struct type *type)
409{
410 while (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
411 type = TYPE_TARGET_TYPE (type);
412 return type;
413}
414
41d27058
JB
415/* Given DECODED_NAME a string holding a symbol name in its
416 decoded form (ie using the Ada dotted notation), returns
417 its unqualified name. */
418
419static const char *
420ada_unqualified_name (const char *decoded_name)
421{
422 const char *result = strrchr (decoded_name, '.');
423
424 if (result != NULL)
425 result++; /* Skip the dot... */
426 else
427 result = decoded_name;
428
429 return result;
430}
431
432/* Return a string starting with '<', followed by STR, and '>'.
433 The result is good until the next call. */
434
435static char *
436add_angle_brackets (const char *str)
437{
438 static char *result = NULL;
439
440 xfree (result);
88c15c34 441 result = xstrprintf ("<%s>", str);
41d27058
JB
442 return result;
443}
96d887e8 444
4c4b4cd2
PH
445static char *
446ada_get_gdb_completer_word_break_characters (void)
447{
448 return ada_completer_word_break_characters;
449}
450
e79af960
JB
451/* Print an array element index using the Ada syntax. */
452
453static void
454ada_print_array_index (struct value *index_value, struct ui_file *stream,
79a45b7d 455 const struct value_print_options *options)
e79af960 456{
79a45b7d 457 LA_VALUE_PRINT (index_value, stream, options);
e79af960
JB
458 fprintf_filtered (stream, " => ");
459}
460
f27cf670 461/* Assuming VECT points to an array of *SIZE objects of size
14f9c5c9 462 ELEMENT_SIZE, grow it to contain at least MIN_SIZE objects,
f27cf670 463 updating *SIZE as necessary and returning the (new) array. */
14f9c5c9 464
f27cf670
AS
465void *
466grow_vect (void *vect, size_t *size, size_t min_size, int element_size)
14f9c5c9 467{
d2e4a39e
AS
468 if (*size < min_size)
469 {
470 *size *= 2;
471 if (*size < min_size)
4c4b4cd2 472 *size = min_size;
f27cf670 473 vect = xrealloc (vect, *size * element_size);
d2e4a39e 474 }
f27cf670 475 return vect;
14f9c5c9
AS
476}
477
478/* True (non-zero) iff TARGET matches FIELD_NAME up to any trailing
4c4b4cd2 479 suffix of FIELD_NAME beginning "___". */
14f9c5c9
AS
480
481static int
ebf56fd3 482field_name_match (const char *field_name, const char *target)
14f9c5c9
AS
483{
484 int len = strlen (target);
5b4ee69b 485
d2e4a39e 486 return
4c4b4cd2
PH
487 (strncmp (field_name, target, len) == 0
488 && (field_name[len] == '\0'
489 || (strncmp (field_name + len, "___", 3) == 0
76a01679
JB
490 && strcmp (field_name + strlen (field_name) - 6,
491 "___XVN") != 0)));
14f9c5c9
AS
492}
493
494
872c8b51
JB
495/* Assuming TYPE is a TYPE_CODE_STRUCT or a TYPE_CODE_TYPDEF to
496 a TYPE_CODE_STRUCT, find the field whose name matches FIELD_NAME,
497 and return its index. This function also handles fields whose name
498 have ___ suffixes because the compiler sometimes alters their name
499 by adding such a suffix to represent fields with certain constraints.
500 If the field could not be found, return a negative number if
501 MAYBE_MISSING is set. Otherwise raise an error. */
4c4b4cd2
PH
502
503int
504ada_get_field_index (const struct type *type, const char *field_name,
505 int maybe_missing)
506{
507 int fieldno;
872c8b51
JB
508 struct type *struct_type = check_typedef ((struct type *) type);
509
510 for (fieldno = 0; fieldno < TYPE_NFIELDS (struct_type); fieldno++)
511 if (field_name_match (TYPE_FIELD_NAME (struct_type, fieldno), field_name))
4c4b4cd2
PH
512 return fieldno;
513
514 if (!maybe_missing)
323e0a4a 515 error (_("Unable to find field %s in struct %s. Aborting"),
872c8b51 516 field_name, TYPE_NAME (struct_type));
4c4b4cd2
PH
517
518 return -1;
519}
520
521/* The length of the prefix of NAME prior to any "___" suffix. */
14f9c5c9
AS
522
523int
d2e4a39e 524ada_name_prefix_len (const char *name)
14f9c5c9
AS
525{
526 if (name == NULL)
527 return 0;
d2e4a39e 528 else
14f9c5c9 529 {
d2e4a39e 530 const char *p = strstr (name, "___");
5b4ee69b 531
14f9c5c9 532 if (p == NULL)
4c4b4cd2 533 return strlen (name);
14f9c5c9 534 else
4c4b4cd2 535 return p - name;
14f9c5c9
AS
536 }
537}
538
4c4b4cd2
PH
539/* Return non-zero if SUFFIX is a suffix of STR.
540 Return zero if STR is null. */
541
14f9c5c9 542static int
d2e4a39e 543is_suffix (const char *str, const char *suffix)
14f9c5c9
AS
544{
545 int len1, len2;
5b4ee69b 546
14f9c5c9
AS
547 if (str == NULL)
548 return 0;
549 len1 = strlen (str);
550 len2 = strlen (suffix);
4c4b4cd2 551 return (len1 >= len2 && strcmp (str + len1 - len2, suffix) == 0);
14f9c5c9
AS
552}
553
4c4b4cd2
PH
554/* The contents of value VAL, treated as a value of type TYPE. The
555 result is an lval in memory if VAL is. */
14f9c5c9 556
d2e4a39e 557static struct value *
4c4b4cd2 558coerce_unspec_val_to_type (struct value *val, struct type *type)
14f9c5c9 559{
61ee279c 560 type = ada_check_typedef (type);
df407dfe 561 if (value_type (val) == type)
4c4b4cd2 562 return val;
d2e4a39e 563 else
14f9c5c9 564 {
4c4b4cd2
PH
565 struct value *result;
566
567 /* Make sure that the object size is not unreasonable before
568 trying to allocate some memory for it. */
714e53ab 569 check_size (type);
4c4b4cd2 570
41e8491f
JK
571 if (value_lazy (val)
572 || TYPE_LENGTH (type) > TYPE_LENGTH (value_type (val)))
573 result = allocate_value_lazy (type);
574 else
575 {
576 result = allocate_value (type);
577 memcpy (value_contents_raw (result), value_contents (val),
578 TYPE_LENGTH (type));
579 }
74bcbdf3 580 set_value_component_location (result, val);
9bbda503
AC
581 set_value_bitsize (result, value_bitsize (val));
582 set_value_bitpos (result, value_bitpos (val));
42ae5230 583 set_value_address (result, value_address (val));
2fa15f23 584 set_value_optimized_out (result, value_optimized_out (val));
14f9c5c9
AS
585 return result;
586 }
587}
588
fc1a4b47
AC
589static const gdb_byte *
590cond_offset_host (const gdb_byte *valaddr, long offset)
14f9c5c9
AS
591{
592 if (valaddr == NULL)
593 return NULL;
594 else
595 return valaddr + offset;
596}
597
598static CORE_ADDR
ebf56fd3 599cond_offset_target (CORE_ADDR address, long offset)
14f9c5c9
AS
600{
601 if (address == 0)
602 return 0;
d2e4a39e 603 else
14f9c5c9
AS
604 return address + offset;
605}
606
4c4b4cd2
PH
607/* Issue a warning (as for the definition of warning in utils.c, but
608 with exactly one argument rather than ...), unless the limit on the
609 number of warnings has passed during the evaluation of the current
610 expression. */
a2249542 611
77109804
AC
612/* FIXME: cagney/2004-10-10: This function is mimicking the behavior
613 provided by "complaint". */
a0b31db1 614static void lim_warning (const char *format, ...) ATTRIBUTE_PRINTF (1, 2);
77109804 615
14f9c5c9 616static void
a2249542 617lim_warning (const char *format, ...)
14f9c5c9 618{
a2249542 619 va_list args;
a2249542 620
5b4ee69b 621 va_start (args, format);
4c4b4cd2
PH
622 warnings_issued += 1;
623 if (warnings_issued <= warning_limit)
a2249542
MK
624 vwarning (format, args);
625
626 va_end (args);
4c4b4cd2
PH
627}
628
714e53ab
PH
629/* Issue an error if the size of an object of type T is unreasonable,
630 i.e. if it would be a bad idea to allocate a value of this type in
631 GDB. */
632
633static void
634check_size (const struct type *type)
635{
636 if (TYPE_LENGTH (type) > varsize_limit)
323e0a4a 637 error (_("object size is larger than varsize-limit"));
714e53ab
PH
638}
639
0963b4bd 640/* Maximum value of a SIZE-byte signed integer type. */
4c4b4cd2 641static LONGEST
c3e5cd34 642max_of_size (int size)
4c4b4cd2 643{
76a01679 644 LONGEST top_bit = (LONGEST) 1 << (size * 8 - 2);
5b4ee69b 645
76a01679 646 return top_bit | (top_bit - 1);
4c4b4cd2
PH
647}
648
0963b4bd 649/* Minimum value of a SIZE-byte signed integer type. */
4c4b4cd2 650static LONGEST
c3e5cd34 651min_of_size (int size)
4c4b4cd2 652{
c3e5cd34 653 return -max_of_size (size) - 1;
4c4b4cd2
PH
654}
655
0963b4bd 656/* Maximum value of a SIZE-byte unsigned integer type. */
4c4b4cd2 657static ULONGEST
c3e5cd34 658umax_of_size (int size)
4c4b4cd2 659{
76a01679 660 ULONGEST top_bit = (ULONGEST) 1 << (size * 8 - 1);
5b4ee69b 661
76a01679 662 return top_bit | (top_bit - 1);
4c4b4cd2
PH
663}
664
0963b4bd 665/* Maximum value of integral type T, as a signed quantity. */
c3e5cd34
PH
666static LONGEST
667max_of_type (struct type *t)
4c4b4cd2 668{
c3e5cd34
PH
669 if (TYPE_UNSIGNED (t))
670 return (LONGEST) umax_of_size (TYPE_LENGTH (t));
671 else
672 return max_of_size (TYPE_LENGTH (t));
673}
674
0963b4bd 675/* Minimum value of integral type T, as a signed quantity. */
c3e5cd34
PH
676static LONGEST
677min_of_type (struct type *t)
678{
679 if (TYPE_UNSIGNED (t))
680 return 0;
681 else
682 return min_of_size (TYPE_LENGTH (t));
4c4b4cd2
PH
683}
684
685/* The largest value in the domain of TYPE, a discrete type, as an integer. */
43bbcdc2
PH
686LONGEST
687ada_discrete_type_high_bound (struct type *type)
4c4b4cd2 688{
76a01679 689 switch (TYPE_CODE (type))
4c4b4cd2
PH
690 {
691 case TYPE_CODE_RANGE:
690cc4eb 692 return TYPE_HIGH_BOUND (type);
4c4b4cd2 693 case TYPE_CODE_ENUM:
14e75d8e 694 return TYPE_FIELD_ENUMVAL (type, TYPE_NFIELDS (type) - 1);
690cc4eb
PH
695 case TYPE_CODE_BOOL:
696 return 1;
697 case TYPE_CODE_CHAR:
76a01679 698 case TYPE_CODE_INT:
690cc4eb 699 return max_of_type (type);
4c4b4cd2 700 default:
43bbcdc2 701 error (_("Unexpected type in ada_discrete_type_high_bound."));
4c4b4cd2
PH
702 }
703}
704
14e75d8e 705/* The smallest value in the domain of TYPE, a discrete type, as an integer. */
43bbcdc2
PH
706LONGEST
707ada_discrete_type_low_bound (struct type *type)
4c4b4cd2 708{
76a01679 709 switch (TYPE_CODE (type))
4c4b4cd2
PH
710 {
711 case TYPE_CODE_RANGE:
690cc4eb 712 return TYPE_LOW_BOUND (type);
4c4b4cd2 713 case TYPE_CODE_ENUM:
14e75d8e 714 return TYPE_FIELD_ENUMVAL (type, 0);
690cc4eb
PH
715 case TYPE_CODE_BOOL:
716 return 0;
717 case TYPE_CODE_CHAR:
76a01679 718 case TYPE_CODE_INT:
690cc4eb 719 return min_of_type (type);
4c4b4cd2 720 default:
43bbcdc2 721 error (_("Unexpected type in ada_discrete_type_low_bound."));
4c4b4cd2
PH
722 }
723}
724
725/* The identity on non-range types. For range types, the underlying
76a01679 726 non-range scalar type. */
4c4b4cd2
PH
727
728static struct type *
18af8284 729get_base_type (struct type *type)
4c4b4cd2
PH
730{
731 while (type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE)
732 {
76a01679
JB
733 if (type == TYPE_TARGET_TYPE (type) || TYPE_TARGET_TYPE (type) == NULL)
734 return type;
4c4b4cd2
PH
735 type = TYPE_TARGET_TYPE (type);
736 }
737 return type;
14f9c5c9 738}
41246937
JB
739
740/* Return a decoded version of the given VALUE. This means returning
741 a value whose type is obtained by applying all the GNAT-specific
742 encondings, making the resulting type a static but standard description
743 of the initial type. */
744
745struct value *
746ada_get_decoded_value (struct value *value)
747{
748 struct type *type = ada_check_typedef (value_type (value));
749
750 if (ada_is_array_descriptor_type (type)
751 || (ada_is_constrained_packed_array_type (type)
752 && TYPE_CODE (type) != TYPE_CODE_PTR))
753 {
754 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF) /* array access type. */
755 value = ada_coerce_to_simple_array_ptr (value);
756 else
757 value = ada_coerce_to_simple_array (value);
758 }
759 else
760 value = ada_to_fixed_value (value);
761
762 return value;
763}
764
765/* Same as ada_get_decoded_value, but with the given TYPE.
766 Because there is no associated actual value for this type,
767 the resulting type might be a best-effort approximation in
768 the case of dynamic types. */
769
770struct type *
771ada_get_decoded_type (struct type *type)
772{
773 type = to_static_fixed_type (type);
774 if (ada_is_constrained_packed_array_type (type))
775 type = ada_coerce_to_simple_array_type (type);
776 return type;
777}
778
4c4b4cd2 779\f
76a01679 780
4c4b4cd2 781 /* Language Selection */
14f9c5c9
AS
782
783/* If the main program is in Ada, return language_ada, otherwise return LANG
ccefe4c4 784 (the main program is in Ada iif the adainit symbol is found). */
d2e4a39e 785
14f9c5c9 786enum language
ccefe4c4 787ada_update_initial_language (enum language lang)
14f9c5c9 788{
d2e4a39e 789 if (lookup_minimal_symbol ("adainit", (const char *) NULL,
4c4b4cd2
PH
790 (struct objfile *) NULL) != NULL)
791 return language_ada;
14f9c5c9
AS
792
793 return lang;
794}
96d887e8
PH
795
796/* If the main procedure is written in Ada, then return its name.
797 The result is good until the next call. Return NULL if the main
798 procedure doesn't appear to be in Ada. */
799
800char *
801ada_main_name (void)
802{
803 struct minimal_symbol *msym;
f9bc20b9 804 static char *main_program_name = NULL;
6c038f32 805
96d887e8
PH
806 /* For Ada, the name of the main procedure is stored in a specific
807 string constant, generated by the binder. Look for that symbol,
808 extract its address, and then read that string. If we didn't find
809 that string, then most probably the main procedure is not written
810 in Ada. */
811 msym = lookup_minimal_symbol (ADA_MAIN_PROGRAM_SYMBOL_NAME, NULL, NULL);
812
813 if (msym != NULL)
814 {
f9bc20b9
JB
815 CORE_ADDR main_program_name_addr;
816 int err_code;
817
96d887e8
PH
818 main_program_name_addr = SYMBOL_VALUE_ADDRESS (msym);
819 if (main_program_name_addr == 0)
323e0a4a 820 error (_("Invalid address for Ada main program name."));
96d887e8 821
f9bc20b9
JB
822 xfree (main_program_name);
823 target_read_string (main_program_name_addr, &main_program_name,
824 1024, &err_code);
825
826 if (err_code != 0)
827 return NULL;
96d887e8
PH
828 return main_program_name;
829 }
830
831 /* The main procedure doesn't seem to be in Ada. */
832 return NULL;
833}
14f9c5c9 834\f
4c4b4cd2 835 /* Symbols */
d2e4a39e 836
4c4b4cd2
PH
837/* Table of Ada operators and their GNAT-encoded names. Last entry is pair
838 of NULLs. */
14f9c5c9 839
d2e4a39e
AS
840const struct ada_opname_map ada_opname_table[] = {
841 {"Oadd", "\"+\"", BINOP_ADD},
842 {"Osubtract", "\"-\"", BINOP_SUB},
843 {"Omultiply", "\"*\"", BINOP_MUL},
844 {"Odivide", "\"/\"", BINOP_DIV},
845 {"Omod", "\"mod\"", BINOP_MOD},
846 {"Orem", "\"rem\"", BINOP_REM},
847 {"Oexpon", "\"**\"", BINOP_EXP},
848 {"Olt", "\"<\"", BINOP_LESS},
849 {"Ole", "\"<=\"", BINOP_LEQ},
850 {"Ogt", "\">\"", BINOP_GTR},
851 {"Oge", "\">=\"", BINOP_GEQ},
852 {"Oeq", "\"=\"", BINOP_EQUAL},
853 {"One", "\"/=\"", BINOP_NOTEQUAL},
854 {"Oand", "\"and\"", BINOP_BITWISE_AND},
855 {"Oor", "\"or\"", BINOP_BITWISE_IOR},
856 {"Oxor", "\"xor\"", BINOP_BITWISE_XOR},
857 {"Oconcat", "\"&\"", BINOP_CONCAT},
858 {"Oabs", "\"abs\"", UNOP_ABS},
859 {"Onot", "\"not\"", UNOP_LOGICAL_NOT},
860 {"Oadd", "\"+\"", UNOP_PLUS},
861 {"Osubtract", "\"-\"", UNOP_NEG},
862 {NULL, NULL}
14f9c5c9
AS
863};
864
4c4b4cd2
PH
865/* The "encoded" form of DECODED, according to GNAT conventions.
866 The result is valid until the next call to ada_encode. */
867
14f9c5c9 868char *
4c4b4cd2 869ada_encode (const char *decoded)
14f9c5c9 870{
4c4b4cd2
PH
871 static char *encoding_buffer = NULL;
872 static size_t encoding_buffer_size = 0;
d2e4a39e 873 const char *p;
14f9c5c9 874 int k;
d2e4a39e 875
4c4b4cd2 876 if (decoded == NULL)
14f9c5c9
AS
877 return NULL;
878
4c4b4cd2
PH
879 GROW_VECT (encoding_buffer, encoding_buffer_size,
880 2 * strlen (decoded) + 10);
14f9c5c9
AS
881
882 k = 0;
4c4b4cd2 883 for (p = decoded; *p != '\0'; p += 1)
14f9c5c9 884 {
cdc7bb92 885 if (*p == '.')
4c4b4cd2
PH
886 {
887 encoding_buffer[k] = encoding_buffer[k + 1] = '_';
888 k += 2;
889 }
14f9c5c9 890 else if (*p == '"')
4c4b4cd2
PH
891 {
892 const struct ada_opname_map *mapping;
893
894 for (mapping = ada_opname_table;
1265e4aa
JB
895 mapping->encoded != NULL
896 && strncmp (mapping->decoded, p,
897 strlen (mapping->decoded)) != 0; mapping += 1)
4c4b4cd2
PH
898 ;
899 if (mapping->encoded == NULL)
323e0a4a 900 error (_("invalid Ada operator name: %s"), p);
4c4b4cd2
PH
901 strcpy (encoding_buffer + k, mapping->encoded);
902 k += strlen (mapping->encoded);
903 break;
904 }
d2e4a39e 905 else
4c4b4cd2
PH
906 {
907 encoding_buffer[k] = *p;
908 k += 1;
909 }
14f9c5c9
AS
910 }
911
4c4b4cd2
PH
912 encoding_buffer[k] = '\0';
913 return encoding_buffer;
14f9c5c9
AS
914}
915
916/* Return NAME folded to lower case, or, if surrounded by single
4c4b4cd2
PH
917 quotes, unfolded, but with the quotes stripped away. Result good
918 to next call. */
919
d2e4a39e
AS
920char *
921ada_fold_name (const char *name)
14f9c5c9 922{
d2e4a39e 923 static char *fold_buffer = NULL;
14f9c5c9
AS
924 static size_t fold_buffer_size = 0;
925
926 int len = strlen (name);
d2e4a39e 927 GROW_VECT (fold_buffer, fold_buffer_size, len + 1);
14f9c5c9
AS
928
929 if (name[0] == '\'')
930 {
d2e4a39e
AS
931 strncpy (fold_buffer, name + 1, len - 2);
932 fold_buffer[len - 2] = '\000';
14f9c5c9
AS
933 }
934 else
935 {
936 int i;
5b4ee69b 937
14f9c5c9 938 for (i = 0; i <= len; i += 1)
4c4b4cd2 939 fold_buffer[i] = tolower (name[i]);
14f9c5c9
AS
940 }
941
942 return fold_buffer;
943}
944
529cad9c
PH
945/* Return nonzero if C is either a digit or a lowercase alphabet character. */
946
947static int
948is_lower_alphanum (const char c)
949{
950 return (isdigit (c) || (isalpha (c) && islower (c)));
951}
952
c90092fe
JB
953/* ENCODED is the linkage name of a symbol and LEN contains its length.
954 This function saves in LEN the length of that same symbol name but
955 without either of these suffixes:
29480c32
JB
956 . .{DIGIT}+
957 . ${DIGIT}+
958 . ___{DIGIT}+
959 . __{DIGIT}+.
c90092fe 960
29480c32
JB
961 These are suffixes introduced by the compiler for entities such as
962 nested subprogram for instance, in order to avoid name clashes.
963 They do not serve any purpose for the debugger. */
964
965static void
966ada_remove_trailing_digits (const char *encoded, int *len)
967{
968 if (*len > 1 && isdigit (encoded[*len - 1]))
969 {
970 int i = *len - 2;
5b4ee69b 971
29480c32
JB
972 while (i > 0 && isdigit (encoded[i]))
973 i--;
974 if (i >= 0 && encoded[i] == '.')
975 *len = i;
976 else if (i >= 0 && encoded[i] == '$')
977 *len = i;
978 else if (i >= 2 && strncmp (encoded + i - 2, "___", 3) == 0)
979 *len = i - 2;
980 else if (i >= 1 && strncmp (encoded + i - 1, "__", 2) == 0)
981 *len = i - 1;
982 }
983}
984
985/* Remove the suffix introduced by the compiler for protected object
986 subprograms. */
987
988static void
989ada_remove_po_subprogram_suffix (const char *encoded, int *len)
990{
991 /* Remove trailing N. */
992
993 /* Protected entry subprograms are broken into two
994 separate subprograms: The first one is unprotected, and has
995 a 'N' suffix; the second is the protected version, and has
0963b4bd 996 the 'P' suffix. The second calls the first one after handling
29480c32
JB
997 the protection. Since the P subprograms are internally generated,
998 we leave these names undecoded, giving the user a clue that this
999 entity is internal. */
1000
1001 if (*len > 1
1002 && encoded[*len - 1] == 'N'
1003 && (isdigit (encoded[*len - 2]) || islower (encoded[*len - 2])))
1004 *len = *len - 1;
1005}
1006
69fadcdf
JB
1007/* Remove trailing X[bn]* suffixes (indicating names in package bodies). */
1008
1009static void
1010ada_remove_Xbn_suffix (const char *encoded, int *len)
1011{
1012 int i = *len - 1;
1013
1014 while (i > 0 && (encoded[i] == 'b' || encoded[i] == 'n'))
1015 i--;
1016
1017 if (encoded[i] != 'X')
1018 return;
1019
1020 if (i == 0)
1021 return;
1022
1023 if (isalnum (encoded[i-1]))
1024 *len = i;
1025}
1026
29480c32
JB
1027/* If ENCODED follows the GNAT entity encoding conventions, then return
1028 the decoded form of ENCODED. Otherwise, return "<%s>" where "%s" is
1029 replaced by ENCODED.
14f9c5c9 1030
4c4b4cd2 1031 The resulting string is valid until the next call of ada_decode.
29480c32 1032 If the string is unchanged by decoding, the original string pointer
4c4b4cd2
PH
1033 is returned. */
1034
1035const char *
1036ada_decode (const char *encoded)
14f9c5c9
AS
1037{
1038 int i, j;
1039 int len0;
d2e4a39e 1040 const char *p;
4c4b4cd2 1041 char *decoded;
14f9c5c9 1042 int at_start_name;
4c4b4cd2
PH
1043 static char *decoding_buffer = NULL;
1044 static size_t decoding_buffer_size = 0;
d2e4a39e 1045
29480c32
JB
1046 /* The name of the Ada main procedure starts with "_ada_".
1047 This prefix is not part of the decoded name, so skip this part
1048 if we see this prefix. */
4c4b4cd2
PH
1049 if (strncmp (encoded, "_ada_", 5) == 0)
1050 encoded += 5;
14f9c5c9 1051
29480c32
JB
1052 /* If the name starts with '_', then it is not a properly encoded
1053 name, so do not attempt to decode it. Similarly, if the name
1054 starts with '<', the name should not be decoded. */
4c4b4cd2 1055 if (encoded[0] == '_' || encoded[0] == '<')
14f9c5c9
AS
1056 goto Suppress;
1057
4c4b4cd2 1058 len0 = strlen (encoded);
4c4b4cd2 1059
29480c32
JB
1060 ada_remove_trailing_digits (encoded, &len0);
1061 ada_remove_po_subprogram_suffix (encoded, &len0);
529cad9c 1062
4c4b4cd2
PH
1063 /* Remove the ___X.* suffix if present. Do not forget to verify that
1064 the suffix is located before the current "end" of ENCODED. We want
1065 to avoid re-matching parts of ENCODED that have previously been
1066 marked as discarded (by decrementing LEN0). */
1067 p = strstr (encoded, "___");
1068 if (p != NULL && p - encoded < len0 - 3)
14f9c5c9
AS
1069 {
1070 if (p[3] == 'X')
4c4b4cd2 1071 len0 = p - encoded;
14f9c5c9 1072 else
4c4b4cd2 1073 goto Suppress;
14f9c5c9 1074 }
4c4b4cd2 1075
29480c32
JB
1076 /* Remove any trailing TKB suffix. It tells us that this symbol
1077 is for the body of a task, but that information does not actually
1078 appear in the decoded name. */
1079
4c4b4cd2 1080 if (len0 > 3 && strncmp (encoded + len0 - 3, "TKB", 3) == 0)
14f9c5c9 1081 len0 -= 3;
76a01679 1082
a10967fa
JB
1083 /* Remove any trailing TB suffix. The TB suffix is slightly different
1084 from the TKB suffix because it is used for non-anonymous task
1085 bodies. */
1086
1087 if (len0 > 2 && strncmp (encoded + len0 - 2, "TB", 2) == 0)
1088 len0 -= 2;
1089
29480c32
JB
1090 /* Remove trailing "B" suffixes. */
1091 /* FIXME: brobecker/2006-04-19: Not sure what this are used for... */
1092
4c4b4cd2 1093 if (len0 > 1 && strncmp (encoded + len0 - 1, "B", 1) == 0)
14f9c5c9
AS
1094 len0 -= 1;
1095
4c4b4cd2 1096 /* Make decoded big enough for possible expansion by operator name. */
29480c32 1097
4c4b4cd2
PH
1098 GROW_VECT (decoding_buffer, decoding_buffer_size, 2 * len0 + 1);
1099 decoded = decoding_buffer;
14f9c5c9 1100
29480c32
JB
1101 /* Remove trailing __{digit}+ or trailing ${digit}+. */
1102
4c4b4cd2 1103 if (len0 > 1 && isdigit (encoded[len0 - 1]))
d2e4a39e 1104 {
4c4b4cd2
PH
1105 i = len0 - 2;
1106 while ((i >= 0 && isdigit (encoded[i]))
1107 || (i >= 1 && encoded[i] == '_' && isdigit (encoded[i - 1])))
1108 i -= 1;
1109 if (i > 1 && encoded[i] == '_' && encoded[i - 1] == '_')
1110 len0 = i - 1;
1111 else if (encoded[i] == '$')
1112 len0 = i;
d2e4a39e 1113 }
14f9c5c9 1114
29480c32
JB
1115 /* The first few characters that are not alphabetic are not part
1116 of any encoding we use, so we can copy them over verbatim. */
1117
4c4b4cd2
PH
1118 for (i = 0, j = 0; i < len0 && !isalpha (encoded[i]); i += 1, j += 1)
1119 decoded[j] = encoded[i];
14f9c5c9
AS
1120
1121 at_start_name = 1;
1122 while (i < len0)
1123 {
29480c32 1124 /* Is this a symbol function? */
4c4b4cd2
PH
1125 if (at_start_name && encoded[i] == 'O')
1126 {
1127 int k;
5b4ee69b 1128
4c4b4cd2
PH
1129 for (k = 0; ada_opname_table[k].encoded != NULL; k += 1)
1130 {
1131 int op_len = strlen (ada_opname_table[k].encoded);
06d5cf63
JB
1132 if ((strncmp (ada_opname_table[k].encoded + 1, encoded + i + 1,
1133 op_len - 1) == 0)
1134 && !isalnum (encoded[i + op_len]))
4c4b4cd2
PH
1135 {
1136 strcpy (decoded + j, ada_opname_table[k].decoded);
1137 at_start_name = 0;
1138 i += op_len;
1139 j += strlen (ada_opname_table[k].decoded);
1140 break;
1141 }
1142 }
1143 if (ada_opname_table[k].encoded != NULL)
1144 continue;
1145 }
14f9c5c9
AS
1146 at_start_name = 0;
1147
529cad9c
PH
1148 /* Replace "TK__" with "__", which will eventually be translated
1149 into "." (just below). */
1150
4c4b4cd2
PH
1151 if (i < len0 - 4 && strncmp (encoded + i, "TK__", 4) == 0)
1152 i += 2;
529cad9c 1153
29480c32
JB
1154 /* Replace "__B_{DIGITS}+__" sequences by "__", which will eventually
1155 be translated into "." (just below). These are internal names
1156 generated for anonymous blocks inside which our symbol is nested. */
1157
1158 if (len0 - i > 5 && encoded [i] == '_' && encoded [i+1] == '_'
1159 && encoded [i+2] == 'B' && encoded [i+3] == '_'
1160 && isdigit (encoded [i+4]))
1161 {
1162 int k = i + 5;
1163
1164 while (k < len0 && isdigit (encoded[k]))
1165 k++; /* Skip any extra digit. */
1166
1167 /* Double-check that the "__B_{DIGITS}+" sequence we found
1168 is indeed followed by "__". */
1169 if (len0 - k > 2 && encoded [k] == '_' && encoded [k+1] == '_')
1170 i = k;
1171 }
1172
529cad9c
PH
1173 /* Remove _E{DIGITS}+[sb] */
1174
1175 /* Just as for protected object subprograms, there are 2 categories
0963b4bd 1176 of subprograms created by the compiler for each entry. The first
529cad9c
PH
1177 one implements the actual entry code, and has a suffix following
1178 the convention above; the second one implements the barrier and
1179 uses the same convention as above, except that the 'E' is replaced
1180 by a 'B'.
1181
1182 Just as above, we do not decode the name of barrier functions
1183 to give the user a clue that the code he is debugging has been
1184 internally generated. */
1185
1186 if (len0 - i > 3 && encoded [i] == '_' && encoded[i+1] == 'E'
1187 && isdigit (encoded[i+2]))
1188 {
1189 int k = i + 3;
1190
1191 while (k < len0 && isdigit (encoded[k]))
1192 k++;
1193
1194 if (k < len0
1195 && (encoded[k] == 'b' || encoded[k] == 's'))
1196 {
1197 k++;
1198 /* Just as an extra precaution, make sure that if this
1199 suffix is followed by anything else, it is a '_'.
1200 Otherwise, we matched this sequence by accident. */
1201 if (k == len0
1202 || (k < len0 && encoded[k] == '_'))
1203 i = k;
1204 }
1205 }
1206
1207 /* Remove trailing "N" in [a-z0-9]+N__. The N is added by
1208 the GNAT front-end in protected object subprograms. */
1209
1210 if (i < len0 + 3
1211 && encoded[i] == 'N' && encoded[i+1] == '_' && encoded[i+2] == '_')
1212 {
1213 /* Backtrack a bit up until we reach either the begining of
1214 the encoded name, or "__". Make sure that we only find
1215 digits or lowercase characters. */
1216 const char *ptr = encoded + i - 1;
1217
1218 while (ptr >= encoded && is_lower_alphanum (ptr[0]))
1219 ptr--;
1220 if (ptr < encoded
1221 || (ptr > encoded && ptr[0] == '_' && ptr[-1] == '_'))
1222 i++;
1223 }
1224
4c4b4cd2
PH
1225 if (encoded[i] == 'X' && i != 0 && isalnum (encoded[i - 1]))
1226 {
29480c32
JB
1227 /* This is a X[bn]* sequence not separated from the previous
1228 part of the name with a non-alpha-numeric character (in other
1229 words, immediately following an alpha-numeric character), then
1230 verify that it is placed at the end of the encoded name. If
1231 not, then the encoding is not valid and we should abort the
1232 decoding. Otherwise, just skip it, it is used in body-nested
1233 package names. */
4c4b4cd2
PH
1234 do
1235 i += 1;
1236 while (i < len0 && (encoded[i] == 'b' || encoded[i] == 'n'));
1237 if (i < len0)
1238 goto Suppress;
1239 }
cdc7bb92 1240 else if (i < len0 - 2 && encoded[i] == '_' && encoded[i + 1] == '_')
4c4b4cd2 1241 {
29480c32 1242 /* Replace '__' by '.'. */
4c4b4cd2
PH
1243 decoded[j] = '.';
1244 at_start_name = 1;
1245 i += 2;
1246 j += 1;
1247 }
14f9c5c9 1248 else
4c4b4cd2 1249 {
29480c32
JB
1250 /* It's a character part of the decoded name, so just copy it
1251 over. */
4c4b4cd2
PH
1252 decoded[j] = encoded[i];
1253 i += 1;
1254 j += 1;
1255 }
14f9c5c9 1256 }
4c4b4cd2 1257 decoded[j] = '\000';
14f9c5c9 1258
29480c32
JB
1259 /* Decoded names should never contain any uppercase character.
1260 Double-check this, and abort the decoding if we find one. */
1261
4c4b4cd2
PH
1262 for (i = 0; decoded[i] != '\0'; i += 1)
1263 if (isupper (decoded[i]) || decoded[i] == ' ')
14f9c5c9
AS
1264 goto Suppress;
1265
4c4b4cd2
PH
1266 if (strcmp (decoded, encoded) == 0)
1267 return encoded;
1268 else
1269 return decoded;
14f9c5c9
AS
1270
1271Suppress:
4c4b4cd2
PH
1272 GROW_VECT (decoding_buffer, decoding_buffer_size, strlen (encoded) + 3);
1273 decoded = decoding_buffer;
1274 if (encoded[0] == '<')
1275 strcpy (decoded, encoded);
14f9c5c9 1276 else
88c15c34 1277 xsnprintf (decoded, decoding_buffer_size, "<%s>", encoded);
4c4b4cd2
PH
1278 return decoded;
1279
1280}
1281
1282/* Table for keeping permanent unique copies of decoded names. Once
1283 allocated, names in this table are never released. While this is a
1284 storage leak, it should not be significant unless there are massive
1285 changes in the set of decoded names in successive versions of a
1286 symbol table loaded during a single session. */
1287static struct htab *decoded_names_store;
1288
1289/* Returns the decoded name of GSYMBOL, as for ada_decode, caching it
1290 in the language-specific part of GSYMBOL, if it has not been
1291 previously computed. Tries to save the decoded name in the same
1292 obstack as GSYMBOL, if possible, and otherwise on the heap (so that,
1293 in any case, the decoded symbol has a lifetime at least that of
0963b4bd 1294 GSYMBOL).
4c4b4cd2
PH
1295 The GSYMBOL parameter is "mutable" in the C++ sense: logically
1296 const, but nevertheless modified to a semantically equivalent form
0963b4bd 1297 when a decoded name is cached in it. */
4c4b4cd2 1298
76a01679
JB
1299char *
1300ada_decode_symbol (const struct general_symbol_info *gsymbol)
4c4b4cd2 1301{
76a01679 1302 char **resultp =
afa16725 1303 (char **) &gsymbol->language_specific.mangled_lang.demangled_name;
5b4ee69b 1304
4c4b4cd2
PH
1305 if (*resultp == NULL)
1306 {
1307 const char *decoded = ada_decode (gsymbol->name);
5b4ee69b 1308
714835d5 1309 if (gsymbol->obj_section != NULL)
76a01679 1310 {
714835d5 1311 struct objfile *objf = gsymbol->obj_section->objfile;
5b4ee69b 1312
10f0c4bb
TT
1313 *resultp = obstack_copy0 (&objf->objfile_obstack,
1314 decoded, strlen (decoded));
76a01679 1315 }
4c4b4cd2 1316 /* Sometimes, we can't find a corresponding objfile, in which
76a01679
JB
1317 case, we put the result on the heap. Since we only decode
1318 when needed, we hope this usually does not cause a
1319 significant memory leak (FIXME). */
4c4b4cd2 1320 if (*resultp == NULL)
76a01679
JB
1321 {
1322 char **slot = (char **) htab_find_slot (decoded_names_store,
1323 decoded, INSERT);
5b4ee69b 1324
76a01679
JB
1325 if (*slot == NULL)
1326 *slot = xstrdup (decoded);
1327 *resultp = *slot;
1328 }
4c4b4cd2 1329 }
14f9c5c9 1330
4c4b4cd2
PH
1331 return *resultp;
1332}
76a01679 1333
2c0b251b 1334static char *
76a01679 1335ada_la_decode (const char *encoded, int options)
4c4b4cd2
PH
1336{
1337 return xstrdup (ada_decode (encoded));
14f9c5c9
AS
1338}
1339
1340/* Returns non-zero iff SYM_NAME matches NAME, ignoring any trailing
4c4b4cd2
PH
1341 suffixes that encode debugging information or leading _ada_ on
1342 SYM_NAME (see is_name_suffix commentary for the debugging
1343 information that is ignored). If WILD, then NAME need only match a
1344 suffix of SYM_NAME minus the same suffixes. Also returns 0 if
1345 either argument is NULL. */
14f9c5c9 1346
2c0b251b 1347static int
40658b94 1348match_name (const char *sym_name, const char *name, int wild)
14f9c5c9
AS
1349{
1350 if (sym_name == NULL || name == NULL)
1351 return 0;
1352 else if (wild)
73589123 1353 return wild_match (sym_name, name) == 0;
d2e4a39e
AS
1354 else
1355 {
1356 int len_name = strlen (name);
5b4ee69b 1357
4c4b4cd2
PH
1358 return (strncmp (sym_name, name, len_name) == 0
1359 && is_name_suffix (sym_name + len_name))
1360 || (strncmp (sym_name, "_ada_", 5) == 0
1361 && strncmp (sym_name + 5, name, len_name) == 0
1362 && is_name_suffix (sym_name + len_name + 5));
d2e4a39e 1363 }
14f9c5c9 1364}
14f9c5c9 1365\f
d2e4a39e 1366
4c4b4cd2 1367 /* Arrays */
14f9c5c9 1368
28c85d6c
JB
1369/* Assuming that INDEX_DESC_TYPE is an ___XA structure, a structure
1370 generated by the GNAT compiler to describe the index type used
1371 for each dimension of an array, check whether it follows the latest
1372 known encoding. If not, fix it up to conform to the latest encoding.
1373 Otherwise, do nothing. This function also does nothing if
1374 INDEX_DESC_TYPE is NULL.
1375
1376 The GNAT encoding used to describle the array index type evolved a bit.
1377 Initially, the information would be provided through the name of each
1378 field of the structure type only, while the type of these fields was
1379 described as unspecified and irrelevant. The debugger was then expected
1380 to perform a global type lookup using the name of that field in order
1381 to get access to the full index type description. Because these global
1382 lookups can be very expensive, the encoding was later enhanced to make
1383 the global lookup unnecessary by defining the field type as being
1384 the full index type description.
1385
1386 The purpose of this routine is to allow us to support older versions
1387 of the compiler by detecting the use of the older encoding, and by
1388 fixing up the INDEX_DESC_TYPE to follow the new one (at this point,
1389 we essentially replace each field's meaningless type by the associated
1390 index subtype). */
1391
1392void
1393ada_fixup_array_indexes_type (struct type *index_desc_type)
1394{
1395 int i;
1396
1397 if (index_desc_type == NULL)
1398 return;
1399 gdb_assert (TYPE_NFIELDS (index_desc_type) > 0);
1400
1401 /* Check if INDEX_DESC_TYPE follows the older encoding (it is sufficient
1402 to check one field only, no need to check them all). If not, return
1403 now.
1404
1405 If our INDEX_DESC_TYPE was generated using the older encoding,
1406 the field type should be a meaningless integer type whose name
1407 is not equal to the field name. */
1408 if (TYPE_NAME (TYPE_FIELD_TYPE (index_desc_type, 0)) != NULL
1409 && strcmp (TYPE_NAME (TYPE_FIELD_TYPE (index_desc_type, 0)),
1410 TYPE_FIELD_NAME (index_desc_type, 0)) == 0)
1411 return;
1412
1413 /* Fixup each field of INDEX_DESC_TYPE. */
1414 for (i = 0; i < TYPE_NFIELDS (index_desc_type); i++)
1415 {
0d5cff50 1416 const char *name = TYPE_FIELD_NAME (index_desc_type, i);
28c85d6c
JB
1417 struct type *raw_type = ada_check_typedef (ada_find_any_type (name));
1418
1419 if (raw_type)
1420 TYPE_FIELD_TYPE (index_desc_type, i) = raw_type;
1421 }
1422}
1423
4c4b4cd2 1424/* Names of MAX_ADA_DIMENS bounds in P_BOUNDS fields of array descriptors. */
14f9c5c9 1425
d2e4a39e
AS
1426static char *bound_name[] = {
1427 "LB0", "UB0", "LB1", "UB1", "LB2", "UB2", "LB3", "UB3",
14f9c5c9
AS
1428 "LB4", "UB4", "LB5", "UB5", "LB6", "UB6", "LB7", "UB7"
1429};
1430
1431/* Maximum number of array dimensions we are prepared to handle. */
1432
4c4b4cd2 1433#define MAX_ADA_DIMENS (sizeof(bound_name) / (2*sizeof(char *)))
14f9c5c9 1434
14f9c5c9 1435
4c4b4cd2
PH
1436/* The desc_* routines return primitive portions of array descriptors
1437 (fat pointers). */
14f9c5c9
AS
1438
1439/* The descriptor or array type, if any, indicated by TYPE; removes
4c4b4cd2
PH
1440 level of indirection, if needed. */
1441
d2e4a39e
AS
1442static struct type *
1443desc_base_type (struct type *type)
14f9c5c9
AS
1444{
1445 if (type == NULL)
1446 return NULL;
61ee279c 1447 type = ada_check_typedef (type);
720d1a40
JB
1448 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
1449 type = ada_typedef_target_type (type);
1450
1265e4aa
JB
1451 if (type != NULL
1452 && (TYPE_CODE (type) == TYPE_CODE_PTR
1453 || TYPE_CODE (type) == TYPE_CODE_REF))
61ee279c 1454 return ada_check_typedef (TYPE_TARGET_TYPE (type));
14f9c5c9
AS
1455 else
1456 return type;
1457}
1458
4c4b4cd2
PH
1459/* True iff TYPE indicates a "thin" array pointer type. */
1460
14f9c5c9 1461static int
d2e4a39e 1462is_thin_pntr (struct type *type)
14f9c5c9 1463{
d2e4a39e 1464 return
14f9c5c9
AS
1465 is_suffix (ada_type_name (desc_base_type (type)), "___XUT")
1466 || is_suffix (ada_type_name (desc_base_type (type)), "___XUT___XVE");
1467}
1468
4c4b4cd2
PH
1469/* The descriptor type for thin pointer type TYPE. */
1470
d2e4a39e
AS
1471static struct type *
1472thin_descriptor_type (struct type *type)
14f9c5c9 1473{
d2e4a39e 1474 struct type *base_type = desc_base_type (type);
5b4ee69b 1475
14f9c5c9
AS
1476 if (base_type == NULL)
1477 return NULL;
1478 if (is_suffix (ada_type_name (base_type), "___XVE"))
1479 return base_type;
d2e4a39e 1480 else
14f9c5c9 1481 {
d2e4a39e 1482 struct type *alt_type = ada_find_parallel_type (base_type, "___XVE");
5b4ee69b 1483
14f9c5c9 1484 if (alt_type == NULL)
4c4b4cd2 1485 return base_type;
14f9c5c9 1486 else
4c4b4cd2 1487 return alt_type;
14f9c5c9
AS
1488 }
1489}
1490
4c4b4cd2
PH
1491/* A pointer to the array data for thin-pointer value VAL. */
1492
d2e4a39e
AS
1493static struct value *
1494thin_data_pntr (struct value *val)
14f9c5c9 1495{
828292f2 1496 struct type *type = ada_check_typedef (value_type (val));
556bdfd4 1497 struct type *data_type = desc_data_target_type (thin_descriptor_type (type));
5b4ee69b 1498
556bdfd4
UW
1499 data_type = lookup_pointer_type (data_type);
1500
14f9c5c9 1501 if (TYPE_CODE (type) == TYPE_CODE_PTR)
556bdfd4 1502 return value_cast (data_type, value_copy (val));
d2e4a39e 1503 else
42ae5230 1504 return value_from_longest (data_type, value_address (val));
14f9c5c9
AS
1505}
1506
4c4b4cd2
PH
1507/* True iff TYPE indicates a "thick" array pointer type. */
1508
14f9c5c9 1509static int
d2e4a39e 1510is_thick_pntr (struct type *type)
14f9c5c9
AS
1511{
1512 type = desc_base_type (type);
1513 return (type != NULL && TYPE_CODE (type) == TYPE_CODE_STRUCT
4c4b4cd2 1514 && lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL);
14f9c5c9
AS
1515}
1516
4c4b4cd2
PH
1517/* If TYPE is the type of an array descriptor (fat or thin pointer) or a
1518 pointer to one, the type of its bounds data; otherwise, NULL. */
76a01679 1519
d2e4a39e
AS
1520static struct type *
1521desc_bounds_type (struct type *type)
14f9c5c9 1522{
d2e4a39e 1523 struct type *r;
14f9c5c9
AS
1524
1525 type = desc_base_type (type);
1526
1527 if (type == NULL)
1528 return NULL;
1529 else if (is_thin_pntr (type))
1530 {
1531 type = thin_descriptor_type (type);
1532 if (type == NULL)
4c4b4cd2 1533 return NULL;
14f9c5c9
AS
1534 r = lookup_struct_elt_type (type, "BOUNDS", 1);
1535 if (r != NULL)
61ee279c 1536 return ada_check_typedef (r);
14f9c5c9
AS
1537 }
1538 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
1539 {
1540 r = lookup_struct_elt_type (type, "P_BOUNDS", 1);
1541 if (r != NULL)
61ee279c 1542 return ada_check_typedef (TYPE_TARGET_TYPE (ada_check_typedef (r)));
14f9c5c9
AS
1543 }
1544 return NULL;
1545}
1546
1547/* If ARR is an array descriptor (fat or thin pointer), or pointer to
4c4b4cd2
PH
1548 one, a pointer to its bounds data. Otherwise NULL. */
1549
d2e4a39e
AS
1550static struct value *
1551desc_bounds (struct value *arr)
14f9c5c9 1552{
df407dfe 1553 struct type *type = ada_check_typedef (value_type (arr));
5b4ee69b 1554
d2e4a39e 1555 if (is_thin_pntr (type))
14f9c5c9 1556 {
d2e4a39e 1557 struct type *bounds_type =
4c4b4cd2 1558 desc_bounds_type (thin_descriptor_type (type));
14f9c5c9
AS
1559 LONGEST addr;
1560
4cdfadb1 1561 if (bounds_type == NULL)
323e0a4a 1562 error (_("Bad GNAT array descriptor"));
14f9c5c9
AS
1563
1564 /* NOTE: The following calculation is not really kosher, but
d2e4a39e 1565 since desc_type is an XVE-encoded type (and shouldn't be),
4c4b4cd2 1566 the correct calculation is a real pain. FIXME (and fix GCC). */
14f9c5c9 1567 if (TYPE_CODE (type) == TYPE_CODE_PTR)
4c4b4cd2 1568 addr = value_as_long (arr);
d2e4a39e 1569 else
42ae5230 1570 addr = value_address (arr);
14f9c5c9 1571
d2e4a39e 1572 return
4c4b4cd2
PH
1573 value_from_longest (lookup_pointer_type (bounds_type),
1574 addr - TYPE_LENGTH (bounds_type));
14f9c5c9
AS
1575 }
1576
1577 else if (is_thick_pntr (type))
05e522ef
JB
1578 {
1579 struct value *p_bounds = value_struct_elt (&arr, NULL, "P_BOUNDS", NULL,
1580 _("Bad GNAT array descriptor"));
1581 struct type *p_bounds_type = value_type (p_bounds);
1582
1583 if (p_bounds_type
1584 && TYPE_CODE (p_bounds_type) == TYPE_CODE_PTR)
1585 {
1586 struct type *target_type = TYPE_TARGET_TYPE (p_bounds_type);
1587
1588 if (TYPE_STUB (target_type))
1589 p_bounds = value_cast (lookup_pointer_type
1590 (ada_check_typedef (target_type)),
1591 p_bounds);
1592 }
1593 else
1594 error (_("Bad GNAT array descriptor"));
1595
1596 return p_bounds;
1597 }
14f9c5c9
AS
1598 else
1599 return NULL;
1600}
1601
4c4b4cd2
PH
1602/* If TYPE is the type of an array-descriptor (fat pointer), the bit
1603 position of the field containing the address of the bounds data. */
1604
14f9c5c9 1605static int
d2e4a39e 1606fat_pntr_bounds_bitpos (struct type *type)
14f9c5c9
AS
1607{
1608 return TYPE_FIELD_BITPOS (desc_base_type (type), 1);
1609}
1610
1611/* If TYPE is the type of an array-descriptor (fat pointer), the bit
4c4b4cd2
PH
1612 size of the field containing the address of the bounds data. */
1613
14f9c5c9 1614static int
d2e4a39e 1615fat_pntr_bounds_bitsize (struct type *type)
14f9c5c9
AS
1616{
1617 type = desc_base_type (type);
1618
d2e4a39e 1619 if (TYPE_FIELD_BITSIZE (type, 1) > 0)
14f9c5c9
AS
1620 return TYPE_FIELD_BITSIZE (type, 1);
1621 else
61ee279c 1622 return 8 * TYPE_LENGTH (ada_check_typedef (TYPE_FIELD_TYPE (type, 1)));
14f9c5c9
AS
1623}
1624
4c4b4cd2 1625/* If TYPE is the type of an array descriptor (fat or thin pointer) or a
556bdfd4
UW
1626 pointer to one, the type of its array data (a array-with-no-bounds type);
1627 otherwise, NULL. Use ada_type_of_array to get an array type with bounds
1628 data. */
4c4b4cd2 1629
d2e4a39e 1630static struct type *
556bdfd4 1631desc_data_target_type (struct type *type)
14f9c5c9
AS
1632{
1633 type = desc_base_type (type);
1634
4c4b4cd2 1635 /* NOTE: The following is bogus; see comment in desc_bounds. */
14f9c5c9 1636 if (is_thin_pntr (type))
556bdfd4 1637 return desc_base_type (TYPE_FIELD_TYPE (thin_descriptor_type (type), 1));
14f9c5c9 1638 else if (is_thick_pntr (type))
556bdfd4
UW
1639 {
1640 struct type *data_type = lookup_struct_elt_type (type, "P_ARRAY", 1);
1641
1642 if (data_type
1643 && TYPE_CODE (ada_check_typedef (data_type)) == TYPE_CODE_PTR)
05e522ef 1644 return ada_check_typedef (TYPE_TARGET_TYPE (data_type));
556bdfd4
UW
1645 }
1646
1647 return NULL;
14f9c5c9
AS
1648}
1649
1650/* If ARR is an array descriptor (fat or thin pointer), a pointer to
1651 its array data. */
4c4b4cd2 1652
d2e4a39e
AS
1653static struct value *
1654desc_data (struct value *arr)
14f9c5c9 1655{
df407dfe 1656 struct type *type = value_type (arr);
5b4ee69b 1657
14f9c5c9
AS
1658 if (is_thin_pntr (type))
1659 return thin_data_pntr (arr);
1660 else if (is_thick_pntr (type))
d2e4a39e 1661 return value_struct_elt (&arr, NULL, "P_ARRAY", NULL,
323e0a4a 1662 _("Bad GNAT array descriptor"));
14f9c5c9
AS
1663 else
1664 return NULL;
1665}
1666
1667
1668/* If TYPE is the type of an array-descriptor (fat pointer), the bit
4c4b4cd2
PH
1669 position of the field containing the address of the data. */
1670
14f9c5c9 1671static int
d2e4a39e 1672fat_pntr_data_bitpos (struct type *type)
14f9c5c9
AS
1673{
1674 return TYPE_FIELD_BITPOS (desc_base_type (type), 0);
1675}
1676
1677/* If TYPE is the type of an array-descriptor (fat pointer), the bit
4c4b4cd2
PH
1678 size of the field containing the address of the data. */
1679
14f9c5c9 1680static int
d2e4a39e 1681fat_pntr_data_bitsize (struct type *type)
14f9c5c9
AS
1682{
1683 type = desc_base_type (type);
1684
1685 if (TYPE_FIELD_BITSIZE (type, 0) > 0)
1686 return TYPE_FIELD_BITSIZE (type, 0);
d2e4a39e 1687 else
14f9c5c9
AS
1688 return TARGET_CHAR_BIT * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 0));
1689}
1690
4c4b4cd2 1691/* If BOUNDS is an array-bounds structure (or pointer to one), return
14f9c5c9 1692 the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
4c4b4cd2
PH
1693 bound, if WHICH is 1. The first bound is I=1. */
1694
d2e4a39e
AS
1695static struct value *
1696desc_one_bound (struct value *bounds, int i, int which)
14f9c5c9 1697{
d2e4a39e 1698 return value_struct_elt (&bounds, NULL, bound_name[2 * i + which - 2], NULL,
323e0a4a 1699 _("Bad GNAT array descriptor bounds"));
14f9c5c9
AS
1700}
1701
1702/* If BOUNDS is an array-bounds structure type, return the bit position
1703 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
4c4b4cd2
PH
1704 bound, if WHICH is 1. The first bound is I=1. */
1705
14f9c5c9 1706static int
d2e4a39e 1707desc_bound_bitpos (struct type *type, int i, int which)
14f9c5c9 1708{
d2e4a39e 1709 return TYPE_FIELD_BITPOS (desc_base_type (type), 2 * i + which - 2);
14f9c5c9
AS
1710}
1711
1712/* If BOUNDS is an array-bounds structure type, return the bit field size
1713 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
4c4b4cd2
PH
1714 bound, if WHICH is 1. The first bound is I=1. */
1715
76a01679 1716static int
d2e4a39e 1717desc_bound_bitsize (struct type *type, int i, int which)
14f9c5c9
AS
1718{
1719 type = desc_base_type (type);
1720
d2e4a39e
AS
1721 if (TYPE_FIELD_BITSIZE (type, 2 * i + which - 2) > 0)
1722 return TYPE_FIELD_BITSIZE (type, 2 * i + which - 2);
1723 else
1724 return 8 * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 2 * i + which - 2));
14f9c5c9
AS
1725}
1726
1727/* If TYPE is the type of an array-bounds structure, the type of its
4c4b4cd2
PH
1728 Ith bound (numbering from 1). Otherwise, NULL. */
1729
d2e4a39e
AS
1730static struct type *
1731desc_index_type (struct type *type, int i)
14f9c5c9
AS
1732{
1733 type = desc_base_type (type);
1734
1735 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
d2e4a39e
AS
1736 return lookup_struct_elt_type (type, bound_name[2 * i - 2], 1);
1737 else
14f9c5c9
AS
1738 return NULL;
1739}
1740
4c4b4cd2
PH
1741/* The number of index positions in the array-bounds type TYPE.
1742 Return 0 if TYPE is NULL. */
1743
14f9c5c9 1744static int
d2e4a39e 1745desc_arity (struct type *type)
14f9c5c9
AS
1746{
1747 type = desc_base_type (type);
1748
1749 if (type != NULL)
1750 return TYPE_NFIELDS (type) / 2;
1751 return 0;
1752}
1753
4c4b4cd2
PH
1754/* Non-zero iff TYPE is a simple array type (not a pointer to one) or
1755 an array descriptor type (representing an unconstrained array
1756 type). */
1757
76a01679
JB
1758static int
1759ada_is_direct_array_type (struct type *type)
4c4b4cd2
PH
1760{
1761 if (type == NULL)
1762 return 0;
61ee279c 1763 type = ada_check_typedef (type);
4c4b4cd2 1764 return (TYPE_CODE (type) == TYPE_CODE_ARRAY
76a01679 1765 || ada_is_array_descriptor_type (type));
4c4b4cd2
PH
1766}
1767
52ce6436 1768/* Non-zero iff TYPE represents any kind of array in Ada, or a pointer
0963b4bd 1769 * to one. */
52ce6436 1770
2c0b251b 1771static int
52ce6436
PH
1772ada_is_array_type (struct type *type)
1773{
1774 while (type != NULL
1775 && (TYPE_CODE (type) == TYPE_CODE_PTR
1776 || TYPE_CODE (type) == TYPE_CODE_REF))
1777 type = TYPE_TARGET_TYPE (type);
1778 return ada_is_direct_array_type (type);
1779}
1780
4c4b4cd2 1781/* Non-zero iff TYPE is a simple array type or pointer to one. */
14f9c5c9 1782
14f9c5c9 1783int
4c4b4cd2 1784ada_is_simple_array_type (struct type *type)
14f9c5c9
AS
1785{
1786 if (type == NULL)
1787 return 0;
61ee279c 1788 type = ada_check_typedef (type);
14f9c5c9 1789 return (TYPE_CODE (type) == TYPE_CODE_ARRAY
4c4b4cd2 1790 || (TYPE_CODE (type) == TYPE_CODE_PTR
b0dd7688
JB
1791 && TYPE_CODE (ada_check_typedef (TYPE_TARGET_TYPE (type)))
1792 == TYPE_CODE_ARRAY));
14f9c5c9
AS
1793}
1794
4c4b4cd2
PH
1795/* Non-zero iff TYPE belongs to a GNAT array descriptor. */
1796
14f9c5c9 1797int
4c4b4cd2 1798ada_is_array_descriptor_type (struct type *type)
14f9c5c9 1799{
556bdfd4 1800 struct type *data_type = desc_data_target_type (type);
14f9c5c9
AS
1801
1802 if (type == NULL)
1803 return 0;
61ee279c 1804 type = ada_check_typedef (type);
556bdfd4
UW
1805 return (data_type != NULL
1806 && TYPE_CODE (data_type) == TYPE_CODE_ARRAY
1807 && desc_arity (desc_bounds_type (type)) > 0);
14f9c5c9
AS
1808}
1809
1810/* Non-zero iff type is a partially mal-formed GNAT array
4c4b4cd2 1811 descriptor. FIXME: This is to compensate for some problems with
14f9c5c9 1812 debugging output from GNAT. Re-examine periodically to see if it
4c4b4cd2
PH
1813 is still needed. */
1814
14f9c5c9 1815int
ebf56fd3 1816ada_is_bogus_array_descriptor (struct type *type)
14f9c5c9 1817{
d2e4a39e 1818 return
14f9c5c9
AS
1819 type != NULL
1820 && TYPE_CODE (type) == TYPE_CODE_STRUCT
1821 && (lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL
4c4b4cd2
PH
1822 || lookup_struct_elt_type (type, "P_ARRAY", 1) != NULL)
1823 && !ada_is_array_descriptor_type (type);
14f9c5c9
AS
1824}
1825
1826
4c4b4cd2 1827/* If ARR has a record type in the form of a standard GNAT array descriptor,
14f9c5c9 1828 (fat pointer) returns the type of the array data described---specifically,
4c4b4cd2 1829 a pointer-to-array type. If BOUNDS is non-zero, the bounds data are filled
14f9c5c9 1830 in from the descriptor; otherwise, they are left unspecified. If
4c4b4cd2
PH
1831 the ARR denotes a null array descriptor and BOUNDS is non-zero,
1832 returns NULL. The result is simply the type of ARR if ARR is not
14f9c5c9 1833 a descriptor. */
d2e4a39e
AS
1834struct type *
1835ada_type_of_array (struct value *arr, int bounds)
14f9c5c9 1836{
ad82864c
JB
1837 if (ada_is_constrained_packed_array_type (value_type (arr)))
1838 return decode_constrained_packed_array_type (value_type (arr));
14f9c5c9 1839
df407dfe
AC
1840 if (!ada_is_array_descriptor_type (value_type (arr)))
1841 return value_type (arr);
d2e4a39e
AS
1842
1843 if (!bounds)
ad82864c
JB
1844 {
1845 struct type *array_type =
1846 ada_check_typedef (desc_data_target_type (value_type (arr)));
1847
1848 if (ada_is_unconstrained_packed_array_type (value_type (arr)))
1849 TYPE_FIELD_BITSIZE (array_type, 0) =
1850 decode_packed_array_bitsize (value_type (arr));
1851
1852 return array_type;
1853 }
14f9c5c9
AS
1854 else
1855 {
d2e4a39e 1856 struct type *elt_type;
14f9c5c9 1857 int arity;
d2e4a39e 1858 struct value *descriptor;
14f9c5c9 1859
df407dfe
AC
1860 elt_type = ada_array_element_type (value_type (arr), -1);
1861 arity = ada_array_arity (value_type (arr));
14f9c5c9 1862
d2e4a39e 1863 if (elt_type == NULL || arity == 0)
df407dfe 1864 return ada_check_typedef (value_type (arr));
14f9c5c9
AS
1865
1866 descriptor = desc_bounds (arr);
d2e4a39e 1867 if (value_as_long (descriptor) == 0)
4c4b4cd2 1868 return NULL;
d2e4a39e 1869 while (arity > 0)
4c4b4cd2 1870 {
e9bb382b
UW
1871 struct type *range_type = alloc_type_copy (value_type (arr));
1872 struct type *array_type = alloc_type_copy (value_type (arr));
4c4b4cd2
PH
1873 struct value *low = desc_one_bound (descriptor, arity, 0);
1874 struct value *high = desc_one_bound (descriptor, arity, 1);
4c4b4cd2 1875
5b4ee69b 1876 arity -= 1;
df407dfe 1877 create_range_type (range_type, value_type (low),
529cad9c
PH
1878 longest_to_int (value_as_long (low)),
1879 longest_to_int (value_as_long (high)));
4c4b4cd2 1880 elt_type = create_array_type (array_type, elt_type, range_type);
ad82864c
JB
1881
1882 if (ada_is_unconstrained_packed_array_type (value_type (arr)))
e67ad678
JB
1883 {
1884 /* We need to store the element packed bitsize, as well as
1885 recompute the array size, because it was previously
1886 computed based on the unpacked element size. */
1887 LONGEST lo = value_as_long (low);
1888 LONGEST hi = value_as_long (high);
1889
1890 TYPE_FIELD_BITSIZE (elt_type, 0) =
1891 decode_packed_array_bitsize (value_type (arr));
1892 /* If the array has no element, then the size is already
1893 zero, and does not need to be recomputed. */
1894 if (lo < hi)
1895 {
1896 int array_bitsize =
1897 (hi - lo + 1) * TYPE_FIELD_BITSIZE (elt_type, 0);
1898
1899 TYPE_LENGTH (array_type) = (array_bitsize + 7) / 8;
1900 }
1901 }
4c4b4cd2 1902 }
14f9c5c9
AS
1903
1904 return lookup_pointer_type (elt_type);
1905 }
1906}
1907
1908/* If ARR does not represent an array, returns ARR unchanged.
4c4b4cd2
PH
1909 Otherwise, returns either a standard GDB array with bounds set
1910 appropriately or, if ARR is a non-null fat pointer, a pointer to a standard
1911 GDB array. Returns NULL if ARR is a null fat pointer. */
1912
d2e4a39e
AS
1913struct value *
1914ada_coerce_to_simple_array_ptr (struct value *arr)
14f9c5c9 1915{
df407dfe 1916 if (ada_is_array_descriptor_type (value_type (arr)))
14f9c5c9 1917 {
d2e4a39e 1918 struct type *arrType = ada_type_of_array (arr, 1);
5b4ee69b 1919
14f9c5c9 1920 if (arrType == NULL)
4c4b4cd2 1921 return NULL;
14f9c5c9
AS
1922 return value_cast (arrType, value_copy (desc_data (arr)));
1923 }
ad82864c
JB
1924 else if (ada_is_constrained_packed_array_type (value_type (arr)))
1925 return decode_constrained_packed_array (arr);
14f9c5c9
AS
1926 else
1927 return arr;
1928}
1929
1930/* If ARR does not represent an array, returns ARR unchanged.
1931 Otherwise, returns a standard GDB array describing ARR (which may
4c4b4cd2
PH
1932 be ARR itself if it already is in the proper form). */
1933
720d1a40 1934struct value *
d2e4a39e 1935ada_coerce_to_simple_array (struct value *arr)
14f9c5c9 1936{
df407dfe 1937 if (ada_is_array_descriptor_type (value_type (arr)))
14f9c5c9 1938 {
d2e4a39e 1939 struct value *arrVal = ada_coerce_to_simple_array_ptr (arr);
5b4ee69b 1940
14f9c5c9 1941 if (arrVal == NULL)
323e0a4a 1942 error (_("Bounds unavailable for null array pointer."));
529cad9c 1943 check_size (TYPE_TARGET_TYPE (value_type (arrVal)));
14f9c5c9
AS
1944 return value_ind (arrVal);
1945 }
ad82864c
JB
1946 else if (ada_is_constrained_packed_array_type (value_type (arr)))
1947 return decode_constrained_packed_array (arr);
d2e4a39e 1948 else
14f9c5c9
AS
1949 return arr;
1950}
1951
1952/* If TYPE represents a GNAT array type, return it translated to an
1953 ordinary GDB array type (possibly with BITSIZE fields indicating
4c4b4cd2
PH
1954 packing). For other types, is the identity. */
1955
d2e4a39e
AS
1956struct type *
1957ada_coerce_to_simple_array_type (struct type *type)
14f9c5c9 1958{
ad82864c
JB
1959 if (ada_is_constrained_packed_array_type (type))
1960 return decode_constrained_packed_array_type (type);
17280b9f
UW
1961
1962 if (ada_is_array_descriptor_type (type))
556bdfd4 1963 return ada_check_typedef (desc_data_target_type (type));
17280b9f
UW
1964
1965 return type;
14f9c5c9
AS
1966}
1967
4c4b4cd2
PH
1968/* Non-zero iff TYPE represents a standard GNAT packed-array type. */
1969
ad82864c
JB
1970static int
1971ada_is_packed_array_type (struct type *type)
14f9c5c9
AS
1972{
1973 if (type == NULL)
1974 return 0;
4c4b4cd2 1975 type = desc_base_type (type);
61ee279c 1976 type = ada_check_typedef (type);
d2e4a39e 1977 return
14f9c5c9
AS
1978 ada_type_name (type) != NULL
1979 && strstr (ada_type_name (type), "___XP") != NULL;
1980}
1981
ad82864c
JB
1982/* Non-zero iff TYPE represents a standard GNAT constrained
1983 packed-array type. */
1984
1985int
1986ada_is_constrained_packed_array_type (struct type *type)
1987{
1988 return ada_is_packed_array_type (type)
1989 && !ada_is_array_descriptor_type (type);
1990}
1991
1992/* Non-zero iff TYPE represents an array descriptor for a
1993 unconstrained packed-array type. */
1994
1995static int
1996ada_is_unconstrained_packed_array_type (struct type *type)
1997{
1998 return ada_is_packed_array_type (type)
1999 && ada_is_array_descriptor_type (type);
2000}
2001
2002/* Given that TYPE encodes a packed array type (constrained or unconstrained),
2003 return the size of its elements in bits. */
2004
2005static long
2006decode_packed_array_bitsize (struct type *type)
2007{
0d5cff50
DE
2008 const char *raw_name;
2009 const char *tail;
ad82864c
JB
2010 long bits;
2011
720d1a40
JB
2012 /* Access to arrays implemented as fat pointers are encoded as a typedef
2013 of the fat pointer type. We need the name of the fat pointer type
2014 to do the decoding, so strip the typedef layer. */
2015 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
2016 type = ada_typedef_target_type (type);
2017
2018 raw_name = ada_type_name (ada_check_typedef (type));
ad82864c
JB
2019 if (!raw_name)
2020 raw_name = ada_type_name (desc_base_type (type));
2021
2022 if (!raw_name)
2023 return 0;
2024
2025 tail = strstr (raw_name, "___XP");
720d1a40 2026 gdb_assert (tail != NULL);
ad82864c
JB
2027
2028 if (sscanf (tail + sizeof ("___XP") - 1, "%ld", &bits) != 1)
2029 {
2030 lim_warning
2031 (_("could not understand bit size information on packed array"));
2032 return 0;
2033 }
2034
2035 return bits;
2036}
2037
14f9c5c9
AS
2038/* Given that TYPE is a standard GDB array type with all bounds filled
2039 in, and that the element size of its ultimate scalar constituents
2040 (that is, either its elements, or, if it is an array of arrays, its
2041 elements' elements, etc.) is *ELT_BITS, return an identical type,
2042 but with the bit sizes of its elements (and those of any
2043 constituent arrays) recorded in the BITSIZE components of its
4c4b4cd2
PH
2044 TYPE_FIELD_BITSIZE values, and with *ELT_BITS set to its total size
2045 in bits. */
2046
d2e4a39e 2047static struct type *
ad82864c 2048constrained_packed_array_type (struct type *type, long *elt_bits)
14f9c5c9 2049{
d2e4a39e
AS
2050 struct type *new_elt_type;
2051 struct type *new_type;
99b1c762
JB
2052 struct type *index_type_desc;
2053 struct type *index_type;
14f9c5c9
AS
2054 LONGEST low_bound, high_bound;
2055
61ee279c 2056 type = ada_check_typedef (type);
14f9c5c9
AS
2057 if (TYPE_CODE (type) != TYPE_CODE_ARRAY)
2058 return type;
2059
99b1c762
JB
2060 index_type_desc = ada_find_parallel_type (type, "___XA");
2061 if (index_type_desc)
2062 index_type = to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, 0),
2063 NULL);
2064 else
2065 index_type = TYPE_INDEX_TYPE (type);
2066
e9bb382b 2067 new_type = alloc_type_copy (type);
ad82864c
JB
2068 new_elt_type =
2069 constrained_packed_array_type (ada_check_typedef (TYPE_TARGET_TYPE (type)),
2070 elt_bits);
99b1c762 2071 create_array_type (new_type, new_elt_type, index_type);
14f9c5c9
AS
2072 TYPE_FIELD_BITSIZE (new_type, 0) = *elt_bits;
2073 TYPE_NAME (new_type) = ada_type_name (type);
2074
99b1c762 2075 if (get_discrete_bounds (index_type, &low_bound, &high_bound) < 0)
14f9c5c9
AS
2076 low_bound = high_bound = 0;
2077 if (high_bound < low_bound)
2078 *elt_bits = TYPE_LENGTH (new_type) = 0;
d2e4a39e 2079 else
14f9c5c9
AS
2080 {
2081 *elt_bits *= (high_bound - low_bound + 1);
d2e4a39e 2082 TYPE_LENGTH (new_type) =
4c4b4cd2 2083 (*elt_bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
14f9c5c9
AS
2084 }
2085
876cecd0 2086 TYPE_FIXED_INSTANCE (new_type) = 1;
14f9c5c9
AS
2087 return new_type;
2088}
2089
ad82864c
JB
2090/* The array type encoded by TYPE, where
2091 ada_is_constrained_packed_array_type (TYPE). */
4c4b4cd2 2092
d2e4a39e 2093static struct type *
ad82864c 2094decode_constrained_packed_array_type (struct type *type)
d2e4a39e 2095{
0d5cff50 2096 const char *raw_name = ada_type_name (ada_check_typedef (type));
727e3d2e 2097 char *name;
0d5cff50 2098 const char *tail;
d2e4a39e 2099 struct type *shadow_type;
14f9c5c9 2100 long bits;
14f9c5c9 2101
727e3d2e
JB
2102 if (!raw_name)
2103 raw_name = ada_type_name (desc_base_type (type));
2104
2105 if (!raw_name)
2106 return NULL;
2107
2108 name = (char *) alloca (strlen (raw_name) + 1);
2109 tail = strstr (raw_name, "___XP");
4c4b4cd2
PH
2110 type = desc_base_type (type);
2111
14f9c5c9
AS
2112 memcpy (name, raw_name, tail - raw_name);
2113 name[tail - raw_name] = '\000';
2114
b4ba55a1
JB
2115 shadow_type = ada_find_parallel_type_with_name (type, name);
2116
2117 if (shadow_type == NULL)
14f9c5c9 2118 {
323e0a4a 2119 lim_warning (_("could not find bounds information on packed array"));
14f9c5c9
AS
2120 return NULL;
2121 }
cb249c71 2122 CHECK_TYPEDEF (shadow_type);
14f9c5c9
AS
2123
2124 if (TYPE_CODE (shadow_type) != TYPE_CODE_ARRAY)
2125 {
0963b4bd
MS
2126 lim_warning (_("could not understand bounds "
2127 "information on packed array"));
14f9c5c9
AS
2128 return NULL;
2129 }
d2e4a39e 2130
ad82864c
JB
2131 bits = decode_packed_array_bitsize (type);
2132 return constrained_packed_array_type (shadow_type, &bits);
14f9c5c9
AS
2133}
2134
ad82864c
JB
2135/* Given that ARR is a struct value *indicating a GNAT constrained packed
2136 array, returns a simple array that denotes that array. Its type is a
14f9c5c9
AS
2137 standard GDB array type except that the BITSIZEs of the array
2138 target types are set to the number of bits in each element, and the
4c4b4cd2 2139 type length is set appropriately. */
14f9c5c9 2140
d2e4a39e 2141static struct value *
ad82864c 2142decode_constrained_packed_array (struct value *arr)
14f9c5c9 2143{
4c4b4cd2 2144 struct type *type;
14f9c5c9 2145
4c4b4cd2 2146 arr = ada_coerce_ref (arr);
284614f0
JB
2147
2148 /* If our value is a pointer, then dererence it. Make sure that
2149 this operation does not cause the target type to be fixed, as
2150 this would indirectly cause this array to be decoded. The rest
2151 of the routine assumes that the array hasn't been decoded yet,
2152 so we use the basic "value_ind" routine to perform the dereferencing,
2153 as opposed to using "ada_value_ind". */
828292f2 2154 if (TYPE_CODE (ada_check_typedef (value_type (arr))) == TYPE_CODE_PTR)
284614f0 2155 arr = value_ind (arr);
4c4b4cd2 2156
ad82864c 2157 type = decode_constrained_packed_array_type (value_type (arr));
14f9c5c9
AS
2158 if (type == NULL)
2159 {
323e0a4a 2160 error (_("can't unpack array"));
14f9c5c9
AS
2161 return NULL;
2162 }
61ee279c 2163
50810684 2164 if (gdbarch_bits_big_endian (get_type_arch (value_type (arr)))
32c9a795 2165 && ada_is_modular_type (value_type (arr)))
61ee279c
PH
2166 {
2167 /* This is a (right-justified) modular type representing a packed
2168 array with no wrapper. In order to interpret the value through
2169 the (left-justified) packed array type we just built, we must
2170 first left-justify it. */
2171 int bit_size, bit_pos;
2172 ULONGEST mod;
2173
df407dfe 2174 mod = ada_modulus (value_type (arr)) - 1;
61ee279c
PH
2175 bit_size = 0;
2176 while (mod > 0)
2177 {
2178 bit_size += 1;
2179 mod >>= 1;
2180 }
df407dfe 2181 bit_pos = HOST_CHAR_BIT * TYPE_LENGTH (value_type (arr)) - bit_size;
61ee279c
PH
2182 arr = ada_value_primitive_packed_val (arr, NULL,
2183 bit_pos / HOST_CHAR_BIT,
2184 bit_pos % HOST_CHAR_BIT,
2185 bit_size,
2186 type);
2187 }
2188
4c4b4cd2 2189 return coerce_unspec_val_to_type (arr, type);
14f9c5c9
AS
2190}
2191
2192
2193/* The value of the element of packed array ARR at the ARITY indices
4c4b4cd2 2194 given in IND. ARR must be a simple array. */
14f9c5c9 2195
d2e4a39e
AS
2196static struct value *
2197value_subscript_packed (struct value *arr, int arity, struct value **ind)
14f9c5c9
AS
2198{
2199 int i;
2200 int bits, elt_off, bit_off;
2201 long elt_total_bit_offset;
d2e4a39e
AS
2202 struct type *elt_type;
2203 struct value *v;
14f9c5c9
AS
2204
2205 bits = 0;
2206 elt_total_bit_offset = 0;
df407dfe 2207 elt_type = ada_check_typedef (value_type (arr));
d2e4a39e 2208 for (i = 0; i < arity; i += 1)
14f9c5c9 2209 {
d2e4a39e 2210 if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY
4c4b4cd2
PH
2211 || TYPE_FIELD_BITSIZE (elt_type, 0) == 0)
2212 error
0963b4bd
MS
2213 (_("attempt to do packed indexing of "
2214 "something other than a packed array"));
14f9c5c9 2215 else
4c4b4cd2
PH
2216 {
2217 struct type *range_type = TYPE_INDEX_TYPE (elt_type);
2218 LONGEST lowerbound, upperbound;
2219 LONGEST idx;
2220
2221 if (get_discrete_bounds (range_type, &lowerbound, &upperbound) < 0)
2222 {
323e0a4a 2223 lim_warning (_("don't know bounds of array"));
4c4b4cd2
PH
2224 lowerbound = upperbound = 0;
2225 }
2226
3cb382c9 2227 idx = pos_atr (ind[i]);
4c4b4cd2 2228 if (idx < lowerbound || idx > upperbound)
0963b4bd
MS
2229 lim_warning (_("packed array index %ld out of bounds"),
2230 (long) idx);
4c4b4cd2
PH
2231 bits = TYPE_FIELD_BITSIZE (elt_type, 0);
2232 elt_total_bit_offset += (idx - lowerbound) * bits;
61ee279c 2233 elt_type = ada_check_typedef (TYPE_TARGET_TYPE (elt_type));
4c4b4cd2 2234 }
14f9c5c9
AS
2235 }
2236 elt_off = elt_total_bit_offset / HOST_CHAR_BIT;
2237 bit_off = elt_total_bit_offset % HOST_CHAR_BIT;
d2e4a39e
AS
2238
2239 v = ada_value_primitive_packed_val (arr, NULL, elt_off, bit_off,
4c4b4cd2 2240 bits, elt_type);
14f9c5c9
AS
2241 return v;
2242}
2243
4c4b4cd2 2244/* Non-zero iff TYPE includes negative integer values. */
14f9c5c9
AS
2245
2246static int
d2e4a39e 2247has_negatives (struct type *type)
14f9c5c9 2248{
d2e4a39e
AS
2249 switch (TYPE_CODE (type))
2250 {
2251 default:
2252 return 0;
2253 case TYPE_CODE_INT:
2254 return !TYPE_UNSIGNED (type);
2255 case TYPE_CODE_RANGE:
2256 return TYPE_LOW_BOUND (type) < 0;
2257 }
14f9c5c9 2258}
d2e4a39e 2259
14f9c5c9
AS
2260
2261/* Create a new value of type TYPE from the contents of OBJ starting
2262 at byte OFFSET, and bit offset BIT_OFFSET within that byte,
2263 proceeding for BIT_SIZE bits. If OBJ is an lval in memory, then
0963b4bd 2264 assigning through the result will set the field fetched from.
4c4b4cd2
PH
2265 VALADDR is ignored unless OBJ is NULL, in which case,
2266 VALADDR+OFFSET must address the start of storage containing the
2267 packed value. The value returned in this case is never an lval.
2268 Assumes 0 <= BIT_OFFSET < HOST_CHAR_BIT. */
14f9c5c9 2269
d2e4a39e 2270struct value *
fc1a4b47 2271ada_value_primitive_packed_val (struct value *obj, const gdb_byte *valaddr,
a2bd3dcd 2272 long offset, int bit_offset, int bit_size,
4c4b4cd2 2273 struct type *type)
14f9c5c9 2274{
d2e4a39e 2275 struct value *v;
4c4b4cd2
PH
2276 int src, /* Index into the source area */
2277 targ, /* Index into the target area */
2278 srcBitsLeft, /* Number of source bits left to move */
2279 nsrc, ntarg, /* Number of source and target bytes */
2280 unusedLS, /* Number of bits in next significant
2281 byte of source that are unused */
2282 accumSize; /* Number of meaningful bits in accum */
2283 unsigned char *bytes; /* First byte containing data to unpack */
d2e4a39e 2284 unsigned char *unpacked;
4c4b4cd2 2285 unsigned long accum; /* Staging area for bits being transferred */
14f9c5c9
AS
2286 unsigned char sign;
2287 int len = (bit_size + bit_offset + HOST_CHAR_BIT - 1) / 8;
4c4b4cd2
PH
2288 /* Transmit bytes from least to most significant; delta is the direction
2289 the indices move. */
50810684 2290 int delta = gdbarch_bits_big_endian (get_type_arch (type)) ? -1 : 1;
14f9c5c9 2291
61ee279c 2292 type = ada_check_typedef (type);
14f9c5c9
AS
2293
2294 if (obj == NULL)
2295 {
2296 v = allocate_value (type);
d2e4a39e 2297 bytes = (unsigned char *) (valaddr + offset);
14f9c5c9 2298 }
9214ee5f 2299 else if (VALUE_LVAL (obj) == lval_memory && value_lazy (obj))
14f9c5c9 2300 {
53ba8333 2301 v = value_at (type, value_address (obj));
d2e4a39e 2302 bytes = (unsigned char *) alloca (len);
53ba8333 2303 read_memory (value_address (v) + offset, bytes, len);
14f9c5c9 2304 }
d2e4a39e 2305 else
14f9c5c9
AS
2306 {
2307 v = allocate_value (type);
0fd88904 2308 bytes = (unsigned char *) value_contents (obj) + offset;
14f9c5c9 2309 }
d2e4a39e
AS
2310
2311 if (obj != NULL)
14f9c5c9 2312 {
53ba8333 2313 long new_offset = offset;
5b4ee69b 2314
74bcbdf3 2315 set_value_component_location (v, obj);
9bbda503
AC
2316 set_value_bitpos (v, bit_offset + value_bitpos (obj));
2317 set_value_bitsize (v, bit_size);
df407dfe 2318 if (value_bitpos (v) >= HOST_CHAR_BIT)
4c4b4cd2 2319 {
53ba8333 2320 ++new_offset;
9bbda503 2321 set_value_bitpos (v, value_bitpos (v) - HOST_CHAR_BIT);
4c4b4cd2 2322 }
53ba8333
JB
2323 set_value_offset (v, new_offset);
2324
2325 /* Also set the parent value. This is needed when trying to
2326 assign a new value (in inferior memory). */
2327 set_value_parent (v, obj);
2328 value_incref (obj);
14f9c5c9
AS
2329 }
2330 else
9bbda503 2331 set_value_bitsize (v, bit_size);
0fd88904 2332 unpacked = (unsigned char *) value_contents (v);
14f9c5c9
AS
2333
2334 srcBitsLeft = bit_size;
2335 nsrc = len;
2336 ntarg = TYPE_LENGTH (type);
2337 sign = 0;
2338 if (bit_size == 0)
2339 {
2340 memset (unpacked, 0, TYPE_LENGTH (type));
2341 return v;
2342 }
50810684 2343 else if (gdbarch_bits_big_endian (get_type_arch (type)))
14f9c5c9 2344 {
d2e4a39e 2345 src = len - 1;
1265e4aa
JB
2346 if (has_negatives (type)
2347 && ((bytes[0] << bit_offset) & (1 << (HOST_CHAR_BIT - 1))))
4c4b4cd2 2348 sign = ~0;
d2e4a39e
AS
2349
2350 unusedLS =
4c4b4cd2
PH
2351 (HOST_CHAR_BIT - (bit_size + bit_offset) % HOST_CHAR_BIT)
2352 % HOST_CHAR_BIT;
14f9c5c9
AS
2353
2354 switch (TYPE_CODE (type))
4c4b4cd2
PH
2355 {
2356 case TYPE_CODE_ARRAY:
2357 case TYPE_CODE_UNION:
2358 case TYPE_CODE_STRUCT:
2359 /* Non-scalar values must be aligned at a byte boundary... */
2360 accumSize =
2361 (HOST_CHAR_BIT - bit_size % HOST_CHAR_BIT) % HOST_CHAR_BIT;
2362 /* ... And are placed at the beginning (most-significant) bytes
2363 of the target. */
529cad9c 2364 targ = (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT - 1;
0056e4d5 2365 ntarg = targ + 1;
4c4b4cd2
PH
2366 break;
2367 default:
2368 accumSize = 0;
2369 targ = TYPE_LENGTH (type) - 1;
2370 break;
2371 }
14f9c5c9 2372 }
d2e4a39e 2373 else
14f9c5c9
AS
2374 {
2375 int sign_bit_offset = (bit_size + bit_offset - 1) % 8;
2376
2377 src = targ = 0;
2378 unusedLS = bit_offset;
2379 accumSize = 0;
2380
d2e4a39e 2381 if (has_negatives (type) && (bytes[len - 1] & (1 << sign_bit_offset)))
4c4b4cd2 2382 sign = ~0;
14f9c5c9 2383 }
d2e4a39e 2384
14f9c5c9
AS
2385 accum = 0;
2386 while (nsrc > 0)
2387 {
2388 /* Mask for removing bits of the next source byte that are not
4c4b4cd2 2389 part of the value. */
d2e4a39e 2390 unsigned int unusedMSMask =
4c4b4cd2
PH
2391 (1 << (srcBitsLeft >= HOST_CHAR_BIT ? HOST_CHAR_BIT : srcBitsLeft)) -
2392 1;
2393 /* Sign-extend bits for this byte. */
14f9c5c9 2394 unsigned int signMask = sign & ~unusedMSMask;
5b4ee69b 2395
d2e4a39e 2396 accum |=
4c4b4cd2 2397 (((bytes[src] >> unusedLS) & unusedMSMask) | signMask) << accumSize;
14f9c5c9 2398 accumSize += HOST_CHAR_BIT - unusedLS;
d2e4a39e 2399 if (accumSize >= HOST_CHAR_BIT)
4c4b4cd2
PH
2400 {
2401 unpacked[targ] = accum & ~(~0L << HOST_CHAR_BIT);
2402 accumSize -= HOST_CHAR_BIT;
2403 accum >>= HOST_CHAR_BIT;
2404 ntarg -= 1;
2405 targ += delta;
2406 }
14f9c5c9
AS
2407 srcBitsLeft -= HOST_CHAR_BIT - unusedLS;
2408 unusedLS = 0;
2409 nsrc -= 1;
2410 src += delta;
2411 }
2412 while (ntarg > 0)
2413 {
2414 accum |= sign << accumSize;
2415 unpacked[targ] = accum & ~(~0L << HOST_CHAR_BIT);
2416 accumSize -= HOST_CHAR_BIT;
2417 accum >>= HOST_CHAR_BIT;
2418 ntarg -= 1;
2419 targ += delta;
2420 }
2421
2422 return v;
2423}
d2e4a39e 2424
14f9c5c9
AS
2425/* Move N bits from SOURCE, starting at bit offset SRC_OFFSET to
2426 TARGET, starting at bit offset TARG_OFFSET. SOURCE and TARGET must
4c4b4cd2 2427 not overlap. */
14f9c5c9 2428static void
fc1a4b47 2429move_bits (gdb_byte *target, int targ_offset, const gdb_byte *source,
50810684 2430 int src_offset, int n, int bits_big_endian_p)
14f9c5c9
AS
2431{
2432 unsigned int accum, mask;
2433 int accum_bits, chunk_size;
2434
2435 target += targ_offset / HOST_CHAR_BIT;
2436 targ_offset %= HOST_CHAR_BIT;
2437 source += src_offset / HOST_CHAR_BIT;
2438 src_offset %= HOST_CHAR_BIT;
50810684 2439 if (bits_big_endian_p)
14f9c5c9
AS
2440 {
2441 accum = (unsigned char) *source;
2442 source += 1;
2443 accum_bits = HOST_CHAR_BIT - src_offset;
2444
d2e4a39e 2445 while (n > 0)
4c4b4cd2
PH
2446 {
2447 int unused_right;
5b4ee69b 2448
4c4b4cd2
PH
2449 accum = (accum << HOST_CHAR_BIT) + (unsigned char) *source;
2450 accum_bits += HOST_CHAR_BIT;
2451 source += 1;
2452 chunk_size = HOST_CHAR_BIT - targ_offset;
2453 if (chunk_size > n)
2454 chunk_size = n;
2455 unused_right = HOST_CHAR_BIT - (chunk_size + targ_offset);
2456 mask = ((1 << chunk_size) - 1) << unused_right;
2457 *target =
2458 (*target & ~mask)
2459 | ((accum >> (accum_bits - chunk_size - unused_right)) & mask);
2460 n -= chunk_size;
2461 accum_bits -= chunk_size;
2462 target += 1;
2463 targ_offset = 0;
2464 }
14f9c5c9
AS
2465 }
2466 else
2467 {
2468 accum = (unsigned char) *source >> src_offset;
2469 source += 1;
2470 accum_bits = HOST_CHAR_BIT - src_offset;
2471
d2e4a39e 2472 while (n > 0)
4c4b4cd2
PH
2473 {
2474 accum = accum + ((unsigned char) *source << accum_bits);
2475 accum_bits += HOST_CHAR_BIT;
2476 source += 1;
2477 chunk_size = HOST_CHAR_BIT - targ_offset;
2478 if (chunk_size > n)
2479 chunk_size = n;
2480 mask = ((1 << chunk_size) - 1) << targ_offset;
2481 *target = (*target & ~mask) | ((accum << targ_offset) & mask);
2482 n -= chunk_size;
2483 accum_bits -= chunk_size;
2484 accum >>= chunk_size;
2485 target += 1;
2486 targ_offset = 0;
2487 }
14f9c5c9
AS
2488 }
2489}
2490
14f9c5c9
AS
2491/* Store the contents of FROMVAL into the location of TOVAL.
2492 Return a new value with the location of TOVAL and contents of
2493 FROMVAL. Handles assignment into packed fields that have
4c4b4cd2 2494 floating-point or non-scalar types. */
14f9c5c9 2495
d2e4a39e
AS
2496static struct value *
2497ada_value_assign (struct value *toval, struct value *fromval)
14f9c5c9 2498{
df407dfe
AC
2499 struct type *type = value_type (toval);
2500 int bits = value_bitsize (toval);
14f9c5c9 2501
52ce6436
PH
2502 toval = ada_coerce_ref (toval);
2503 fromval = ada_coerce_ref (fromval);
2504
2505 if (ada_is_direct_array_type (value_type (toval)))
2506 toval = ada_coerce_to_simple_array (toval);
2507 if (ada_is_direct_array_type (value_type (fromval)))
2508 fromval = ada_coerce_to_simple_array (fromval);
2509
88e3b34b 2510 if (!deprecated_value_modifiable (toval))
323e0a4a 2511 error (_("Left operand of assignment is not a modifiable lvalue."));
14f9c5c9 2512
d2e4a39e 2513 if (VALUE_LVAL (toval) == lval_memory
14f9c5c9 2514 && bits > 0
d2e4a39e 2515 && (TYPE_CODE (type) == TYPE_CODE_FLT
4c4b4cd2 2516 || TYPE_CODE (type) == TYPE_CODE_STRUCT))
14f9c5c9 2517 {
df407dfe
AC
2518 int len = (value_bitpos (toval)
2519 + bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
aced2898 2520 int from_size;
d2e4a39e
AS
2521 char *buffer = (char *) alloca (len);
2522 struct value *val;
42ae5230 2523 CORE_ADDR to_addr = value_address (toval);
14f9c5c9
AS
2524
2525 if (TYPE_CODE (type) == TYPE_CODE_FLT)
4c4b4cd2 2526 fromval = value_cast (type, fromval);
14f9c5c9 2527
52ce6436 2528 read_memory (to_addr, buffer, len);
aced2898
PH
2529 from_size = value_bitsize (fromval);
2530 if (from_size == 0)
2531 from_size = TYPE_LENGTH (value_type (fromval)) * TARGET_CHAR_BIT;
50810684 2532 if (gdbarch_bits_big_endian (get_type_arch (type)))
df407dfe 2533 move_bits (buffer, value_bitpos (toval),
50810684 2534 value_contents (fromval), from_size - bits, bits, 1);
14f9c5c9 2535 else
50810684
UW
2536 move_bits (buffer, value_bitpos (toval),
2537 value_contents (fromval), 0, bits, 0);
972daa01 2538 write_memory_with_notification (to_addr, buffer, len);
8cebebb9 2539
14f9c5c9 2540 val = value_copy (toval);
0fd88904 2541 memcpy (value_contents_raw (val), value_contents (fromval),
4c4b4cd2 2542 TYPE_LENGTH (type));
04624583 2543 deprecated_set_value_type (val, type);
d2e4a39e 2544
14f9c5c9
AS
2545 return val;
2546 }
2547
2548 return value_assign (toval, fromval);
2549}
2550
2551
52ce6436
PH
2552/* Given that COMPONENT is a memory lvalue that is part of the lvalue
2553 * CONTAINER, assign the contents of VAL to COMPONENTS's place in
2554 * CONTAINER. Modifies the VALUE_CONTENTS of CONTAINER only, not
2555 * COMPONENT, and not the inferior's memory. The current contents
2556 * of COMPONENT are ignored. */
2557static void
2558value_assign_to_component (struct value *container, struct value *component,
2559 struct value *val)
2560{
2561 LONGEST offset_in_container =
42ae5230 2562 (LONGEST) (value_address (component) - value_address (container));
52ce6436
PH
2563 int bit_offset_in_container =
2564 value_bitpos (component) - value_bitpos (container);
2565 int bits;
2566
2567 val = value_cast (value_type (component), val);
2568
2569 if (value_bitsize (component) == 0)
2570 bits = TARGET_CHAR_BIT * TYPE_LENGTH (value_type (component));
2571 else
2572 bits = value_bitsize (component);
2573
50810684 2574 if (gdbarch_bits_big_endian (get_type_arch (value_type (container))))
52ce6436
PH
2575 move_bits (value_contents_writeable (container) + offset_in_container,
2576 value_bitpos (container) + bit_offset_in_container,
2577 value_contents (val),
2578 TYPE_LENGTH (value_type (component)) * TARGET_CHAR_BIT - bits,
50810684 2579 bits, 1);
52ce6436
PH
2580 else
2581 move_bits (value_contents_writeable (container) + offset_in_container,
2582 value_bitpos (container) + bit_offset_in_container,
50810684 2583 value_contents (val), 0, bits, 0);
52ce6436
PH
2584}
2585
4c4b4cd2
PH
2586/* The value of the element of array ARR at the ARITY indices given in IND.
2587 ARR may be either a simple array, GNAT array descriptor, or pointer
14f9c5c9
AS
2588 thereto. */
2589
d2e4a39e
AS
2590struct value *
2591ada_value_subscript (struct value *arr, int arity, struct value **ind)
14f9c5c9
AS
2592{
2593 int k;
d2e4a39e
AS
2594 struct value *elt;
2595 struct type *elt_type;
14f9c5c9
AS
2596
2597 elt = ada_coerce_to_simple_array (arr);
2598
df407dfe 2599 elt_type = ada_check_typedef (value_type (elt));
d2e4a39e 2600 if (TYPE_CODE (elt_type) == TYPE_CODE_ARRAY
14f9c5c9
AS
2601 && TYPE_FIELD_BITSIZE (elt_type, 0) > 0)
2602 return value_subscript_packed (elt, arity, ind);
2603
2604 for (k = 0; k < arity; k += 1)
2605 {
2606 if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY)
323e0a4a 2607 error (_("too many subscripts (%d expected)"), k);
2497b498 2608 elt = value_subscript (elt, pos_atr (ind[k]));
14f9c5c9
AS
2609 }
2610 return elt;
2611}
2612
2613/* Assuming ARR is a pointer to a standard GDB array of type TYPE, the
2614 value of the element of *ARR at the ARITY indices given in
4c4b4cd2 2615 IND. Does not read the entire array into memory. */
14f9c5c9 2616
2c0b251b 2617static struct value *
d2e4a39e 2618ada_value_ptr_subscript (struct value *arr, struct type *type, int arity,
4c4b4cd2 2619 struct value **ind)
14f9c5c9
AS
2620{
2621 int k;
2622
2623 for (k = 0; k < arity; k += 1)
2624 {
2625 LONGEST lwb, upb;
14f9c5c9
AS
2626
2627 if (TYPE_CODE (type) != TYPE_CODE_ARRAY)
323e0a4a 2628 error (_("too many subscripts (%d expected)"), k);
d2e4a39e 2629 arr = value_cast (lookup_pointer_type (TYPE_TARGET_TYPE (type)),
4c4b4cd2 2630 value_copy (arr));
14f9c5c9 2631 get_discrete_bounds (TYPE_INDEX_TYPE (type), &lwb, &upb);
2497b498 2632 arr = value_ptradd (arr, pos_atr (ind[k]) - lwb);
14f9c5c9
AS
2633 type = TYPE_TARGET_TYPE (type);
2634 }
2635
2636 return value_ind (arr);
2637}
2638
0b5d8877 2639/* Given that ARRAY_PTR is a pointer or reference to an array of type TYPE (the
f5938064
JG
2640 actual type of ARRAY_PTR is ignored), returns the Ada slice of HIGH-LOW+1
2641 elements starting at index LOW. The lower bound of this array is LOW, as
0963b4bd 2642 per Ada rules. */
0b5d8877 2643static struct value *
f5938064
JG
2644ada_value_slice_from_ptr (struct value *array_ptr, struct type *type,
2645 int low, int high)
0b5d8877 2646{
b0dd7688 2647 struct type *type0 = ada_check_typedef (type);
6c038f32 2648 CORE_ADDR base = value_as_address (array_ptr)
b0dd7688
JB
2649 + ((low - ada_discrete_type_low_bound (TYPE_INDEX_TYPE (type0)))
2650 * TYPE_LENGTH (TYPE_TARGET_TYPE (type0)));
6c038f32 2651 struct type *index_type =
b0dd7688 2652 create_range_type (NULL, TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type0)),
0b5d8877 2653 low, high);
6c038f32 2654 struct type *slice_type =
b0dd7688 2655 create_array_type (NULL, TYPE_TARGET_TYPE (type0), index_type);
5b4ee69b 2656
f5938064 2657 return value_at_lazy (slice_type, base);
0b5d8877
PH
2658}
2659
2660
2661static struct value *
2662ada_value_slice (struct value *array, int low, int high)
2663{
b0dd7688 2664 struct type *type = ada_check_typedef (value_type (array));
6c038f32 2665 struct type *index_type =
0b5d8877 2666 create_range_type (NULL, TYPE_INDEX_TYPE (type), low, high);
6c038f32 2667 struct type *slice_type =
0b5d8877 2668 create_array_type (NULL, TYPE_TARGET_TYPE (type), index_type);
5b4ee69b 2669
6c038f32 2670 return value_cast (slice_type, value_slice (array, low, high - low + 1));
0b5d8877
PH
2671}
2672
14f9c5c9
AS
2673/* If type is a record type in the form of a standard GNAT array
2674 descriptor, returns the number of dimensions for type. If arr is a
2675 simple array, returns the number of "array of"s that prefix its
4c4b4cd2 2676 type designation. Otherwise, returns 0. */
14f9c5c9
AS
2677
2678int
d2e4a39e 2679ada_array_arity (struct type *type)
14f9c5c9
AS
2680{
2681 int arity;
2682
2683 if (type == NULL)
2684 return 0;
2685
2686 type = desc_base_type (type);
2687
2688 arity = 0;
d2e4a39e 2689 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
14f9c5c9 2690 return desc_arity (desc_bounds_type (type));
d2e4a39e
AS
2691 else
2692 while (TYPE_CODE (type) == TYPE_CODE_ARRAY)
14f9c5c9 2693 {
4c4b4cd2 2694 arity += 1;
61ee279c 2695 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
14f9c5c9 2696 }
d2e4a39e 2697
14f9c5c9
AS
2698 return arity;
2699}
2700
2701/* If TYPE is a record type in the form of a standard GNAT array
2702 descriptor or a simple array type, returns the element type for
2703 TYPE after indexing by NINDICES indices, or by all indices if
4c4b4cd2 2704 NINDICES is -1. Otherwise, returns NULL. */
14f9c5c9 2705
d2e4a39e
AS
2706struct type *
2707ada_array_element_type (struct type *type, int nindices)
14f9c5c9
AS
2708{
2709 type = desc_base_type (type);
2710
d2e4a39e 2711 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
14f9c5c9
AS
2712 {
2713 int k;
d2e4a39e 2714 struct type *p_array_type;
14f9c5c9 2715
556bdfd4 2716 p_array_type = desc_data_target_type (type);
14f9c5c9
AS
2717
2718 k = ada_array_arity (type);
2719 if (k == 0)
4c4b4cd2 2720 return NULL;
d2e4a39e 2721
4c4b4cd2 2722 /* Initially p_array_type = elt_type(*)[]...(k times)...[]. */
14f9c5c9 2723 if (nindices >= 0 && k > nindices)
4c4b4cd2 2724 k = nindices;
d2e4a39e 2725 while (k > 0 && p_array_type != NULL)
4c4b4cd2 2726 {
61ee279c 2727 p_array_type = ada_check_typedef (TYPE_TARGET_TYPE (p_array_type));
4c4b4cd2
PH
2728 k -= 1;
2729 }
14f9c5c9
AS
2730 return p_array_type;
2731 }
2732 else if (TYPE_CODE (type) == TYPE_CODE_ARRAY)
2733 {
2734 while (nindices != 0 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
4c4b4cd2
PH
2735 {
2736 type = TYPE_TARGET_TYPE (type);
2737 nindices -= 1;
2738 }
14f9c5c9
AS
2739 return type;
2740 }
2741
2742 return NULL;
2743}
2744
4c4b4cd2 2745/* The type of nth index in arrays of given type (n numbering from 1).
dd19d49e
UW
2746 Does not examine memory. Throws an error if N is invalid or TYPE
2747 is not an array type. NAME is the name of the Ada attribute being
2748 evaluated ('range, 'first, 'last, or 'length); it is used in building
2749 the error message. */
14f9c5c9 2750
1eea4ebd
UW
2751static struct type *
2752ada_index_type (struct type *type, int n, const char *name)
14f9c5c9 2753{
4c4b4cd2
PH
2754 struct type *result_type;
2755
14f9c5c9
AS
2756 type = desc_base_type (type);
2757
1eea4ebd
UW
2758 if (n < 0 || n > ada_array_arity (type))
2759 error (_("invalid dimension number to '%s"), name);
14f9c5c9 2760
4c4b4cd2 2761 if (ada_is_simple_array_type (type))
14f9c5c9
AS
2762 {
2763 int i;
2764
2765 for (i = 1; i < n; i += 1)
4c4b4cd2 2766 type = TYPE_TARGET_TYPE (type);
262452ec 2767 result_type = TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type));
4c4b4cd2
PH
2768 /* FIXME: The stabs type r(0,0);bound;bound in an array type
2769 has a target type of TYPE_CODE_UNDEF. We compensate here, but
76a01679 2770 perhaps stabsread.c would make more sense. */
1eea4ebd
UW
2771 if (result_type && TYPE_CODE (result_type) == TYPE_CODE_UNDEF)
2772 result_type = NULL;
14f9c5c9 2773 }
d2e4a39e 2774 else
1eea4ebd
UW
2775 {
2776 result_type = desc_index_type (desc_bounds_type (type), n);
2777 if (result_type == NULL)
2778 error (_("attempt to take bound of something that is not an array"));
2779 }
2780
2781 return result_type;
14f9c5c9
AS
2782}
2783
2784/* Given that arr is an array type, returns the lower bound of the
2785 Nth index (numbering from 1) if WHICH is 0, and the upper bound if
4c4b4cd2 2786 WHICH is 1. This returns bounds 0 .. -1 if ARR_TYPE is an
1eea4ebd
UW
2787 array-descriptor type. It works for other arrays with bounds supplied
2788 by run-time quantities other than discriminants. */
14f9c5c9 2789
abb68b3e 2790static LONGEST
1eea4ebd 2791ada_array_bound_from_type (struct type * arr_type, int n, int which)
14f9c5c9 2792{
1ce677a4 2793 struct type *type, *elt_type, *index_type_desc, *index_type;
1ce677a4 2794 int i;
262452ec
JK
2795
2796 gdb_assert (which == 0 || which == 1);
14f9c5c9 2797
ad82864c
JB
2798 if (ada_is_constrained_packed_array_type (arr_type))
2799 arr_type = decode_constrained_packed_array_type (arr_type);
14f9c5c9 2800
4c4b4cd2 2801 if (arr_type == NULL || !ada_is_simple_array_type (arr_type))
1eea4ebd 2802 return (LONGEST) - which;
14f9c5c9
AS
2803
2804 if (TYPE_CODE (arr_type) == TYPE_CODE_PTR)
2805 type = TYPE_TARGET_TYPE (arr_type);
2806 else
2807 type = arr_type;
2808
1ce677a4
UW
2809 elt_type = type;
2810 for (i = n; i > 1; i--)
2811 elt_type = TYPE_TARGET_TYPE (type);
2812
14f9c5c9 2813 index_type_desc = ada_find_parallel_type (type, "___XA");
28c85d6c 2814 ada_fixup_array_indexes_type (index_type_desc);
262452ec 2815 if (index_type_desc != NULL)
28c85d6c
JB
2816 index_type = to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, n - 1),
2817 NULL);
262452ec 2818 else
1ce677a4 2819 index_type = TYPE_INDEX_TYPE (elt_type);
262452ec 2820
43bbcdc2
PH
2821 return
2822 (LONGEST) (which == 0
2823 ? ada_discrete_type_low_bound (index_type)
2824 : ada_discrete_type_high_bound (index_type));
14f9c5c9
AS
2825}
2826
2827/* Given that arr is an array value, returns the lower bound of the
abb68b3e
JB
2828 nth index (numbering from 1) if WHICH is 0, and the upper bound if
2829 WHICH is 1. This routine will also work for arrays with bounds
4c4b4cd2 2830 supplied by run-time quantities other than discriminants. */
14f9c5c9 2831
1eea4ebd 2832static LONGEST
4dc81987 2833ada_array_bound (struct value *arr, int n, int which)
14f9c5c9 2834{
df407dfe 2835 struct type *arr_type = value_type (arr);
14f9c5c9 2836
ad82864c
JB
2837 if (ada_is_constrained_packed_array_type (arr_type))
2838 return ada_array_bound (decode_constrained_packed_array (arr), n, which);
4c4b4cd2 2839 else if (ada_is_simple_array_type (arr_type))
1eea4ebd 2840 return ada_array_bound_from_type (arr_type, n, which);
14f9c5c9 2841 else
1eea4ebd 2842 return value_as_long (desc_one_bound (desc_bounds (arr), n, which));
14f9c5c9
AS
2843}
2844
2845/* Given that arr is an array value, returns the length of the
2846 nth index. This routine will also work for arrays with bounds
4c4b4cd2
PH
2847 supplied by run-time quantities other than discriminants.
2848 Does not work for arrays indexed by enumeration types with representation
2849 clauses at the moment. */
14f9c5c9 2850
1eea4ebd 2851static LONGEST
d2e4a39e 2852ada_array_length (struct value *arr, int n)
14f9c5c9 2853{
df407dfe 2854 struct type *arr_type = ada_check_typedef (value_type (arr));
14f9c5c9 2855
ad82864c
JB
2856 if (ada_is_constrained_packed_array_type (arr_type))
2857 return ada_array_length (decode_constrained_packed_array (arr), n);
14f9c5c9 2858
4c4b4cd2 2859 if (ada_is_simple_array_type (arr_type))
1eea4ebd
UW
2860 return (ada_array_bound_from_type (arr_type, n, 1)
2861 - ada_array_bound_from_type (arr_type, n, 0) + 1);
14f9c5c9 2862 else
1eea4ebd
UW
2863 return (value_as_long (desc_one_bound (desc_bounds (arr), n, 1))
2864 - value_as_long (desc_one_bound (desc_bounds (arr), n, 0)) + 1);
4c4b4cd2
PH
2865}
2866
2867/* An empty array whose type is that of ARR_TYPE (an array type),
2868 with bounds LOW to LOW-1. */
2869
2870static struct value *
2871empty_array (struct type *arr_type, int low)
2872{
b0dd7688 2873 struct type *arr_type0 = ada_check_typedef (arr_type);
6c038f32 2874 struct type *index_type =
b0dd7688 2875 create_range_type (NULL, TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (arr_type0)),
0b5d8877 2876 low, low - 1);
b0dd7688 2877 struct type *elt_type = ada_array_element_type (arr_type0, 1);
5b4ee69b 2878
0b5d8877 2879 return allocate_value (create_array_type (NULL, elt_type, index_type));
14f9c5c9 2880}
14f9c5c9 2881\f
d2e4a39e 2882
4c4b4cd2 2883 /* Name resolution */
14f9c5c9 2884
4c4b4cd2
PH
2885/* The "decoded" name for the user-definable Ada operator corresponding
2886 to OP. */
14f9c5c9 2887
d2e4a39e 2888static const char *
4c4b4cd2 2889ada_decoded_op_name (enum exp_opcode op)
14f9c5c9
AS
2890{
2891 int i;
2892
4c4b4cd2 2893 for (i = 0; ada_opname_table[i].encoded != NULL; i += 1)
14f9c5c9
AS
2894 {
2895 if (ada_opname_table[i].op == op)
4c4b4cd2 2896 return ada_opname_table[i].decoded;
14f9c5c9 2897 }
323e0a4a 2898 error (_("Could not find operator name for opcode"));
14f9c5c9
AS
2899}
2900
2901
4c4b4cd2
PH
2902/* Same as evaluate_type (*EXP), but resolves ambiguous symbol
2903 references (marked by OP_VAR_VALUE nodes in which the symbol has an
2904 undefined namespace) and converts operators that are
2905 user-defined into appropriate function calls. If CONTEXT_TYPE is
14f9c5c9
AS
2906 non-null, it provides a preferred result type [at the moment, only
2907 type void has any effect---causing procedures to be preferred over
2908 functions in calls]. A null CONTEXT_TYPE indicates that a non-void
4c4b4cd2 2909 return type is preferred. May change (expand) *EXP. */
14f9c5c9 2910
4c4b4cd2
PH
2911static void
2912resolve (struct expression **expp, int void_context_p)
14f9c5c9 2913{
30b15541
UW
2914 struct type *context_type = NULL;
2915 int pc = 0;
2916
2917 if (void_context_p)
2918 context_type = builtin_type ((*expp)->gdbarch)->builtin_void;
2919
2920 resolve_subexp (expp, &pc, 1, context_type);
14f9c5c9
AS
2921}
2922
4c4b4cd2
PH
2923/* Resolve the operator of the subexpression beginning at
2924 position *POS of *EXPP. "Resolving" consists of replacing
2925 the symbols that have undefined namespaces in OP_VAR_VALUE nodes
2926 with their resolutions, replacing built-in operators with
2927 function calls to user-defined operators, where appropriate, and,
2928 when DEPROCEDURE_P is non-zero, converting function-valued variables
2929 into parameterless calls. May expand *EXPP. The CONTEXT_TYPE functions
2930 are as in ada_resolve, above. */
14f9c5c9 2931
d2e4a39e 2932static struct value *
4c4b4cd2 2933resolve_subexp (struct expression **expp, int *pos, int deprocedure_p,
76a01679 2934 struct type *context_type)
14f9c5c9
AS
2935{
2936 int pc = *pos;
2937 int i;
4c4b4cd2 2938 struct expression *exp; /* Convenience: == *expp. */
14f9c5c9 2939 enum exp_opcode op = (*expp)->elts[pc].opcode;
4c4b4cd2
PH
2940 struct value **argvec; /* Vector of operand types (alloca'ed). */
2941 int nargs; /* Number of operands. */
52ce6436 2942 int oplen;
14f9c5c9
AS
2943
2944 argvec = NULL;
2945 nargs = 0;
2946 exp = *expp;
2947
52ce6436
PH
2948 /* Pass one: resolve operands, saving their types and updating *pos,
2949 if needed. */
14f9c5c9
AS
2950 switch (op)
2951 {
4c4b4cd2
PH
2952 case OP_FUNCALL:
2953 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
76a01679
JB
2954 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
2955 *pos += 7;
4c4b4cd2
PH
2956 else
2957 {
2958 *pos += 3;
2959 resolve_subexp (expp, pos, 0, NULL);
2960 }
2961 nargs = longest_to_int (exp->elts[pc + 1].longconst);
14f9c5c9
AS
2962 break;
2963
14f9c5c9 2964 case UNOP_ADDR:
4c4b4cd2
PH
2965 *pos += 1;
2966 resolve_subexp (expp, pos, 0, NULL);
2967 break;
2968
52ce6436
PH
2969 case UNOP_QUAL:
2970 *pos += 3;
17466c1a 2971 resolve_subexp (expp, pos, 1, check_typedef (exp->elts[pc + 1].type));
4c4b4cd2
PH
2972 break;
2973
52ce6436 2974 case OP_ATR_MODULUS:
4c4b4cd2
PH
2975 case OP_ATR_SIZE:
2976 case OP_ATR_TAG:
4c4b4cd2
PH
2977 case OP_ATR_FIRST:
2978 case OP_ATR_LAST:
2979 case OP_ATR_LENGTH:
2980 case OP_ATR_POS:
2981 case OP_ATR_VAL:
4c4b4cd2
PH
2982 case OP_ATR_MIN:
2983 case OP_ATR_MAX:
52ce6436
PH
2984 case TERNOP_IN_RANGE:
2985 case BINOP_IN_BOUNDS:
2986 case UNOP_IN_RANGE:
2987 case OP_AGGREGATE:
2988 case OP_OTHERS:
2989 case OP_CHOICES:
2990 case OP_POSITIONAL:
2991 case OP_DISCRETE_RANGE:
2992 case OP_NAME:
2993 ada_forward_operator_length (exp, pc, &oplen, &nargs);
2994 *pos += oplen;
14f9c5c9
AS
2995 break;
2996
2997 case BINOP_ASSIGN:
2998 {
4c4b4cd2
PH
2999 struct value *arg1;
3000
3001 *pos += 1;
3002 arg1 = resolve_subexp (expp, pos, 0, NULL);
3003 if (arg1 == NULL)
3004 resolve_subexp (expp, pos, 1, NULL);
3005 else
df407dfe 3006 resolve_subexp (expp, pos, 1, value_type (arg1));
4c4b4cd2 3007 break;
14f9c5c9
AS
3008 }
3009
4c4b4cd2 3010 case UNOP_CAST:
4c4b4cd2
PH
3011 *pos += 3;
3012 nargs = 1;
3013 break;
14f9c5c9 3014
4c4b4cd2
PH
3015 case BINOP_ADD:
3016 case BINOP_SUB:
3017 case BINOP_MUL:
3018 case BINOP_DIV:
3019 case BINOP_REM:
3020 case BINOP_MOD:
3021 case BINOP_EXP:
3022 case BINOP_CONCAT:
3023 case BINOP_LOGICAL_AND:
3024 case BINOP_LOGICAL_OR:
3025 case BINOP_BITWISE_AND:
3026 case BINOP_BITWISE_IOR:
3027 case BINOP_BITWISE_XOR:
14f9c5c9 3028
4c4b4cd2
PH
3029 case BINOP_EQUAL:
3030 case BINOP_NOTEQUAL:
3031 case BINOP_LESS:
3032 case BINOP_GTR:
3033 case BINOP_LEQ:
3034 case BINOP_GEQ:
14f9c5c9 3035
4c4b4cd2
PH
3036 case BINOP_REPEAT:
3037 case BINOP_SUBSCRIPT:
3038 case BINOP_COMMA:
40c8aaa9
JB
3039 *pos += 1;
3040 nargs = 2;
3041 break;
14f9c5c9 3042
4c4b4cd2
PH
3043 case UNOP_NEG:
3044 case UNOP_PLUS:
3045 case UNOP_LOGICAL_NOT:
3046 case UNOP_ABS:
3047 case UNOP_IND:
3048 *pos += 1;
3049 nargs = 1;
3050 break;
14f9c5c9 3051
4c4b4cd2
PH
3052 case OP_LONG:
3053 case OP_DOUBLE:
3054 case OP_VAR_VALUE:
3055 *pos += 4;
3056 break;
14f9c5c9 3057
4c4b4cd2
PH
3058 case OP_TYPE:
3059 case OP_BOOL:
3060 case OP_LAST:
4c4b4cd2
PH
3061 case OP_INTERNALVAR:
3062 *pos += 3;
3063 break;
14f9c5c9 3064
4c4b4cd2
PH
3065 case UNOP_MEMVAL:
3066 *pos += 3;
3067 nargs = 1;
3068 break;
3069
67f3407f
DJ
3070 case OP_REGISTER:
3071 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
3072 break;
3073
4c4b4cd2
PH
3074 case STRUCTOP_STRUCT:
3075 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
3076 nargs = 1;
3077 break;
3078
4c4b4cd2 3079 case TERNOP_SLICE:
4c4b4cd2
PH
3080 *pos += 1;
3081 nargs = 3;
3082 break;
3083
52ce6436 3084 case OP_STRING:
14f9c5c9 3085 break;
4c4b4cd2
PH
3086
3087 default:
323e0a4a 3088 error (_("Unexpected operator during name resolution"));
14f9c5c9
AS
3089 }
3090
76a01679 3091 argvec = (struct value * *) alloca (sizeof (struct value *) * (nargs + 1));
4c4b4cd2
PH
3092 for (i = 0; i < nargs; i += 1)
3093 argvec[i] = resolve_subexp (expp, pos, 1, NULL);
3094 argvec[i] = NULL;
3095 exp = *expp;
3096
3097 /* Pass two: perform any resolution on principal operator. */
14f9c5c9
AS
3098 switch (op)
3099 {
3100 default:
3101 break;
3102
14f9c5c9 3103 case OP_VAR_VALUE:
4c4b4cd2 3104 if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
76a01679
JB
3105 {
3106 struct ada_symbol_info *candidates;
3107 int n_candidates;
3108
3109 n_candidates =
3110 ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME
3111 (exp->elts[pc + 2].symbol),
3112 exp->elts[pc + 1].block, VAR_DOMAIN,
d9680e73 3113 &candidates, 1);
76a01679
JB
3114
3115 if (n_candidates > 1)
3116 {
3117 /* Types tend to get re-introduced locally, so if there
3118 are any local symbols that are not types, first filter
3119 out all types. */
3120 int j;
3121 for (j = 0; j < n_candidates; j += 1)
3122 switch (SYMBOL_CLASS (candidates[j].sym))
3123 {
3124 case LOC_REGISTER:
3125 case LOC_ARG:
3126 case LOC_REF_ARG:
76a01679
JB
3127 case LOC_REGPARM_ADDR:
3128 case LOC_LOCAL:
76a01679 3129 case LOC_COMPUTED:
76a01679
JB
3130 goto FoundNonType;
3131 default:
3132 break;
3133 }
3134 FoundNonType:
3135 if (j < n_candidates)
3136 {
3137 j = 0;
3138 while (j < n_candidates)
3139 {
3140 if (SYMBOL_CLASS (candidates[j].sym) == LOC_TYPEDEF)
3141 {
3142 candidates[j] = candidates[n_candidates - 1];
3143 n_candidates -= 1;
3144 }
3145 else
3146 j += 1;
3147 }
3148 }
3149 }
3150
3151 if (n_candidates == 0)
323e0a4a 3152 error (_("No definition found for %s"),
76a01679
JB
3153 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
3154 else if (n_candidates == 1)
3155 i = 0;
3156 else if (deprocedure_p
3157 && !is_nonfunction (candidates, n_candidates))
3158 {
06d5cf63
JB
3159 i = ada_resolve_function
3160 (candidates, n_candidates, NULL, 0,
3161 SYMBOL_LINKAGE_NAME (exp->elts[pc + 2].symbol),
3162 context_type);
76a01679 3163 if (i < 0)
323e0a4a 3164 error (_("Could not find a match for %s"),
76a01679
JB
3165 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
3166 }
3167 else
3168 {
323e0a4a 3169 printf_filtered (_("Multiple matches for %s\n"),
76a01679
JB
3170 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
3171 user_select_syms (candidates, n_candidates, 1);
3172 i = 0;
3173 }
3174
3175 exp->elts[pc + 1].block = candidates[i].block;
3176 exp->elts[pc + 2].symbol = candidates[i].sym;
1265e4aa
JB
3177 if (innermost_block == NULL
3178 || contained_in (candidates[i].block, innermost_block))
76a01679
JB
3179 innermost_block = candidates[i].block;
3180 }
3181
3182 if (deprocedure_p
3183 && (TYPE_CODE (SYMBOL_TYPE (exp->elts[pc + 2].symbol))
3184 == TYPE_CODE_FUNC))
3185 {
3186 replace_operator_with_call (expp, pc, 0, 0,
3187 exp->elts[pc + 2].symbol,
3188 exp->elts[pc + 1].block);
3189 exp = *expp;
3190 }
14f9c5c9
AS
3191 break;
3192
3193 case OP_FUNCALL:
3194 {
4c4b4cd2 3195 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
76a01679 3196 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
4c4b4cd2
PH
3197 {
3198 struct ada_symbol_info *candidates;
3199 int n_candidates;
3200
3201 n_candidates =
76a01679
JB
3202 ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME
3203 (exp->elts[pc + 5].symbol),
3204 exp->elts[pc + 4].block, VAR_DOMAIN,
d9680e73 3205 &candidates, 1);
4c4b4cd2
PH
3206 if (n_candidates == 1)
3207 i = 0;
3208 else
3209 {
06d5cf63
JB
3210 i = ada_resolve_function
3211 (candidates, n_candidates,
3212 argvec, nargs,
3213 SYMBOL_LINKAGE_NAME (exp->elts[pc + 5].symbol),
3214 context_type);
4c4b4cd2 3215 if (i < 0)
323e0a4a 3216 error (_("Could not find a match for %s"),
4c4b4cd2
PH
3217 SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol));
3218 }
3219
3220 exp->elts[pc + 4].block = candidates[i].block;
3221 exp->elts[pc + 5].symbol = candidates[i].sym;
1265e4aa
JB
3222 if (innermost_block == NULL
3223 || contained_in (candidates[i].block, innermost_block))
4c4b4cd2
PH
3224 innermost_block = candidates[i].block;
3225 }
14f9c5c9
AS
3226 }
3227 break;
3228 case BINOP_ADD:
3229 case BINOP_SUB:
3230 case BINOP_MUL:
3231 case BINOP_DIV:
3232 case BINOP_REM:
3233 case BINOP_MOD:
3234 case BINOP_CONCAT:
3235 case BINOP_BITWISE_AND:
3236 case BINOP_BITWISE_IOR:
3237 case BINOP_BITWISE_XOR:
3238 case BINOP_EQUAL:
3239 case BINOP_NOTEQUAL:
3240 case BINOP_LESS:
3241 case BINOP_GTR:
3242 case BINOP_LEQ:
3243 case BINOP_GEQ:
3244 case BINOP_EXP:
3245 case UNOP_NEG:
3246 case UNOP_PLUS:
3247 case UNOP_LOGICAL_NOT:
3248 case UNOP_ABS:
3249 if (possible_user_operator_p (op, argvec))
4c4b4cd2
PH
3250 {
3251 struct ada_symbol_info *candidates;
3252 int n_candidates;
3253
3254 n_candidates =
3255 ada_lookup_symbol_list (ada_encode (ada_decoded_op_name (op)),
3256 (struct block *) NULL, VAR_DOMAIN,
d9680e73 3257 &candidates, 1);
4c4b4cd2 3258 i = ada_resolve_function (candidates, n_candidates, argvec, nargs,
76a01679 3259 ada_decoded_op_name (op), NULL);
4c4b4cd2
PH
3260 if (i < 0)
3261 break;
3262
76a01679
JB
3263 replace_operator_with_call (expp, pc, nargs, 1,
3264 candidates[i].sym, candidates[i].block);
4c4b4cd2
PH
3265 exp = *expp;
3266 }
14f9c5c9 3267 break;
4c4b4cd2
PH
3268
3269 case OP_TYPE:
b3dbf008 3270 case OP_REGISTER:
4c4b4cd2 3271 return NULL;
14f9c5c9
AS
3272 }
3273
3274 *pos = pc;
3275 return evaluate_subexp_type (exp, pos);
3276}
3277
3278/* Return non-zero if formal type FTYPE matches actual type ATYPE. If
4c4b4cd2 3279 MAY_DEREF is non-zero, the formal may be a pointer and the actual
5b3d5b7d 3280 a non-pointer. */
14f9c5c9 3281/* The term "match" here is rather loose. The match is heuristic and
5b3d5b7d 3282 liberal. */
14f9c5c9
AS
3283
3284static int
4dc81987 3285ada_type_match (struct type *ftype, struct type *atype, int may_deref)
14f9c5c9 3286{
61ee279c
PH
3287 ftype = ada_check_typedef (ftype);
3288 atype = ada_check_typedef (atype);
14f9c5c9
AS
3289
3290 if (TYPE_CODE (ftype) == TYPE_CODE_REF)
3291 ftype = TYPE_TARGET_TYPE (ftype);
3292 if (TYPE_CODE (atype) == TYPE_CODE_REF)
3293 atype = TYPE_TARGET_TYPE (atype);
3294
d2e4a39e 3295 switch (TYPE_CODE (ftype))
14f9c5c9
AS
3296 {
3297 default:
5b3d5b7d 3298 return TYPE_CODE (ftype) == TYPE_CODE (atype);
14f9c5c9
AS
3299 case TYPE_CODE_PTR:
3300 if (TYPE_CODE (atype) == TYPE_CODE_PTR)
4c4b4cd2
PH
3301 return ada_type_match (TYPE_TARGET_TYPE (ftype),
3302 TYPE_TARGET_TYPE (atype), 0);
d2e4a39e 3303 else
1265e4aa
JB
3304 return (may_deref
3305 && ada_type_match (TYPE_TARGET_TYPE (ftype), atype, 0));
14f9c5c9
AS
3306 case TYPE_CODE_INT:
3307 case TYPE_CODE_ENUM:
3308 case TYPE_CODE_RANGE:
3309 switch (TYPE_CODE (atype))
4c4b4cd2
PH
3310 {
3311 case TYPE_CODE_INT:
3312 case TYPE_CODE_ENUM:
3313 case TYPE_CODE_RANGE:
3314 return 1;
3315 default:
3316 return 0;
3317 }
14f9c5c9
AS
3318
3319 case TYPE_CODE_ARRAY:
d2e4a39e 3320 return (TYPE_CODE (atype) == TYPE_CODE_ARRAY
4c4b4cd2 3321 || ada_is_array_descriptor_type (atype));
14f9c5c9
AS
3322
3323 case TYPE_CODE_STRUCT:
4c4b4cd2
PH
3324 if (ada_is_array_descriptor_type (ftype))
3325 return (TYPE_CODE (atype) == TYPE_CODE_ARRAY
3326 || ada_is_array_descriptor_type (atype));
14f9c5c9 3327 else
4c4b4cd2
PH
3328 return (TYPE_CODE (atype) == TYPE_CODE_STRUCT
3329 && !ada_is_array_descriptor_type (atype));
14f9c5c9
AS
3330
3331 case TYPE_CODE_UNION:
3332 case TYPE_CODE_FLT:
3333 return (TYPE_CODE (atype) == TYPE_CODE (ftype));
3334 }
3335}
3336
3337/* Return non-zero if the formals of FUNC "sufficiently match" the
3338 vector of actual argument types ACTUALS of size N_ACTUALS. FUNC
3339 may also be an enumeral, in which case it is treated as a 0-
4c4b4cd2 3340 argument function. */
14f9c5c9
AS
3341
3342static int
d2e4a39e 3343ada_args_match (struct symbol *func, struct value **actuals, int n_actuals)
14f9c5c9
AS
3344{
3345 int i;
d2e4a39e 3346 struct type *func_type = SYMBOL_TYPE (func);
14f9c5c9 3347
1265e4aa
JB
3348 if (SYMBOL_CLASS (func) == LOC_CONST
3349 && TYPE_CODE (func_type) == TYPE_CODE_ENUM)
14f9c5c9
AS
3350 return (n_actuals == 0);
3351 else if (func_type == NULL || TYPE_CODE (func_type) != TYPE_CODE_FUNC)
3352 return 0;
3353
3354 if (TYPE_NFIELDS (func_type) != n_actuals)
3355 return 0;
3356
3357 for (i = 0; i < n_actuals; i += 1)
3358 {
4c4b4cd2 3359 if (actuals[i] == NULL)
76a01679
JB
3360 return 0;
3361 else
3362 {
5b4ee69b
MS
3363 struct type *ftype = ada_check_typedef (TYPE_FIELD_TYPE (func_type,
3364 i));
df407dfe 3365 struct type *atype = ada_check_typedef (value_type (actuals[i]));
4c4b4cd2 3366
76a01679
JB
3367 if (!ada_type_match (ftype, atype, 1))
3368 return 0;
3369 }
14f9c5c9
AS
3370 }
3371 return 1;
3372}
3373
3374/* False iff function type FUNC_TYPE definitely does not produce a value
3375 compatible with type CONTEXT_TYPE. Conservatively returns 1 if
3376 FUNC_TYPE is not a valid function type with a non-null return type
3377 or an enumerated type. A null CONTEXT_TYPE indicates any non-void type. */
3378
3379static int
d2e4a39e 3380return_match (struct type *func_type, struct type *context_type)
14f9c5c9 3381{
d2e4a39e 3382 struct type *return_type;
14f9c5c9
AS
3383
3384 if (func_type == NULL)
3385 return 1;
3386
4c4b4cd2 3387 if (TYPE_CODE (func_type) == TYPE_CODE_FUNC)
18af8284 3388 return_type = get_base_type (TYPE_TARGET_TYPE (func_type));
4c4b4cd2 3389 else
18af8284 3390 return_type = get_base_type (func_type);
14f9c5c9
AS
3391 if (return_type == NULL)
3392 return 1;
3393
18af8284 3394 context_type = get_base_type (context_type);
14f9c5c9
AS
3395
3396 if (TYPE_CODE (return_type) == TYPE_CODE_ENUM)
3397 return context_type == NULL || return_type == context_type;
3398 else if (context_type == NULL)
3399 return TYPE_CODE (return_type) != TYPE_CODE_VOID;
3400 else
3401 return TYPE_CODE (return_type) == TYPE_CODE (context_type);
3402}
3403
3404
4c4b4cd2 3405/* Returns the index in SYMS[0..NSYMS-1] that contains the symbol for the
14f9c5c9 3406 function (if any) that matches the types of the NARGS arguments in
4c4b4cd2
PH
3407 ARGS. If CONTEXT_TYPE is non-null and there is at least one match
3408 that returns that type, then eliminate matches that don't. If
3409 CONTEXT_TYPE is void and there is at least one match that does not
3410 return void, eliminate all matches that do.
3411
14f9c5c9
AS
3412 Asks the user if there is more than one match remaining. Returns -1
3413 if there is no such symbol or none is selected. NAME is used
4c4b4cd2
PH
3414 solely for messages. May re-arrange and modify SYMS in
3415 the process; the index returned is for the modified vector. */
14f9c5c9 3416
4c4b4cd2
PH
3417static int
3418ada_resolve_function (struct ada_symbol_info syms[],
3419 int nsyms, struct value **args, int nargs,
3420 const char *name, struct type *context_type)
14f9c5c9 3421{
30b15541 3422 int fallback;
14f9c5c9 3423 int k;
4c4b4cd2 3424 int m; /* Number of hits */
14f9c5c9 3425
d2e4a39e 3426 m = 0;
30b15541
UW
3427 /* In the first pass of the loop, we only accept functions matching
3428 context_type. If none are found, we add a second pass of the loop
3429 where every function is accepted. */
3430 for (fallback = 0; m == 0 && fallback < 2; fallback++)
14f9c5c9
AS
3431 {
3432 for (k = 0; k < nsyms; k += 1)
4c4b4cd2 3433 {
61ee279c 3434 struct type *type = ada_check_typedef (SYMBOL_TYPE (syms[k].sym));
4c4b4cd2
PH
3435
3436 if (ada_args_match (syms[k].sym, args, nargs)
30b15541 3437 && (fallback || return_match (type, context_type)))
4c4b4cd2
PH
3438 {
3439 syms[m] = syms[k];
3440 m += 1;
3441 }
3442 }
14f9c5c9
AS
3443 }
3444
3445 if (m == 0)
3446 return -1;
3447 else if (m > 1)
3448 {
323e0a4a 3449 printf_filtered (_("Multiple matches for %s\n"), name);
4c4b4cd2 3450 user_select_syms (syms, m, 1);
14f9c5c9
AS
3451 return 0;
3452 }
3453 return 0;
3454}
3455
4c4b4cd2
PH
3456/* Returns true (non-zero) iff decoded name N0 should appear before N1
3457 in a listing of choices during disambiguation (see sort_choices, below).
3458 The idea is that overloadings of a subprogram name from the
3459 same package should sort in their source order. We settle for ordering
3460 such symbols by their trailing number (__N or $N). */
3461
14f9c5c9 3462static int
0d5cff50 3463encoded_ordered_before (const char *N0, const char *N1)
14f9c5c9
AS
3464{
3465 if (N1 == NULL)
3466 return 0;
3467 else if (N0 == NULL)
3468 return 1;
3469 else
3470 {
3471 int k0, k1;
5b4ee69b 3472
d2e4a39e 3473 for (k0 = strlen (N0) - 1; k0 > 0 && isdigit (N0[k0]); k0 -= 1)
4c4b4cd2 3474 ;
d2e4a39e 3475 for (k1 = strlen (N1) - 1; k1 > 0 && isdigit (N1[k1]); k1 -= 1)
4c4b4cd2 3476 ;
d2e4a39e 3477 if ((N0[k0] == '_' || N0[k0] == '$') && N0[k0 + 1] != '\000'
4c4b4cd2
PH
3478 && (N1[k1] == '_' || N1[k1] == '$') && N1[k1 + 1] != '\000')
3479 {
3480 int n0, n1;
5b4ee69b 3481
4c4b4cd2
PH
3482 n0 = k0;
3483 while (N0[n0] == '_' && n0 > 0 && N0[n0 - 1] == '_')
3484 n0 -= 1;
3485 n1 = k1;
3486 while (N1[n1] == '_' && n1 > 0 && N1[n1 - 1] == '_')
3487 n1 -= 1;
3488 if (n0 == n1 && strncmp (N0, N1, n0) == 0)
3489 return (atoi (N0 + k0 + 1) < atoi (N1 + k1 + 1));
3490 }
14f9c5c9
AS
3491 return (strcmp (N0, N1) < 0);
3492 }
3493}
d2e4a39e 3494
4c4b4cd2
PH
3495/* Sort SYMS[0..NSYMS-1] to put the choices in a canonical order by the
3496 encoded names. */
3497
d2e4a39e 3498static void
4c4b4cd2 3499sort_choices (struct ada_symbol_info syms[], int nsyms)
14f9c5c9 3500{
4c4b4cd2 3501 int i;
5b4ee69b 3502
d2e4a39e 3503 for (i = 1; i < nsyms; i += 1)
14f9c5c9 3504 {
4c4b4cd2 3505 struct ada_symbol_info sym = syms[i];
14f9c5c9
AS
3506 int j;
3507
d2e4a39e 3508 for (j = i - 1; j >= 0; j -= 1)
4c4b4cd2
PH
3509 {
3510 if (encoded_ordered_before (SYMBOL_LINKAGE_NAME (syms[j].sym),
3511 SYMBOL_LINKAGE_NAME (sym.sym)))
3512 break;
3513 syms[j + 1] = syms[j];
3514 }
d2e4a39e 3515 syms[j + 1] = sym;
14f9c5c9
AS
3516 }
3517}
3518
4c4b4cd2
PH
3519/* Given a list of NSYMS symbols in SYMS, select up to MAX_RESULTS>0
3520 by asking the user (if necessary), returning the number selected,
3521 and setting the first elements of SYMS items. Error if no symbols
3522 selected. */
14f9c5c9
AS
3523
3524/* NOTE: Adapted from decode_line_2 in symtab.c, with which it ought
4c4b4cd2 3525 to be re-integrated one of these days. */
14f9c5c9
AS
3526
3527int
4c4b4cd2 3528user_select_syms (struct ada_symbol_info *syms, int nsyms, int max_results)
14f9c5c9
AS
3529{
3530 int i;
d2e4a39e 3531 int *chosen = (int *) alloca (sizeof (int) * nsyms);
14f9c5c9
AS
3532 int n_chosen;
3533 int first_choice = (max_results == 1) ? 1 : 2;
717d2f5a 3534 const char *select_mode = multiple_symbols_select_mode ();
14f9c5c9
AS
3535
3536 if (max_results < 1)
323e0a4a 3537 error (_("Request to select 0 symbols!"));
14f9c5c9
AS
3538 if (nsyms <= 1)
3539 return nsyms;
3540
717d2f5a
JB
3541 if (select_mode == multiple_symbols_cancel)
3542 error (_("\
3543canceled because the command is ambiguous\n\
3544See set/show multiple-symbol."));
3545
3546 /* If select_mode is "all", then return all possible symbols.
3547 Only do that if more than one symbol can be selected, of course.
3548 Otherwise, display the menu as usual. */
3549 if (select_mode == multiple_symbols_all && max_results > 1)
3550 return nsyms;
3551
323e0a4a 3552 printf_unfiltered (_("[0] cancel\n"));
14f9c5c9 3553 if (max_results > 1)
323e0a4a 3554 printf_unfiltered (_("[1] all\n"));
14f9c5c9 3555
4c4b4cd2 3556 sort_choices (syms, nsyms);
14f9c5c9
AS
3557
3558 for (i = 0; i < nsyms; i += 1)
3559 {
4c4b4cd2
PH
3560 if (syms[i].sym == NULL)
3561 continue;
3562
3563 if (SYMBOL_CLASS (syms[i].sym) == LOC_BLOCK)
3564 {
76a01679
JB
3565 struct symtab_and_line sal =
3566 find_function_start_sal (syms[i].sym, 1);
5b4ee69b 3567
323e0a4a
AC
3568 if (sal.symtab == NULL)
3569 printf_unfiltered (_("[%d] %s at <no source file available>:%d\n"),
3570 i + first_choice,
3571 SYMBOL_PRINT_NAME (syms[i].sym),
3572 sal.line);
3573 else
3574 printf_unfiltered (_("[%d] %s at %s:%d\n"), i + first_choice,
3575 SYMBOL_PRINT_NAME (syms[i].sym),
3576 sal.symtab->filename, sal.line);
4c4b4cd2
PH
3577 continue;
3578 }
d2e4a39e 3579 else
4c4b4cd2
PH
3580 {
3581 int is_enumeral =
3582 (SYMBOL_CLASS (syms[i].sym) == LOC_CONST
3583 && SYMBOL_TYPE (syms[i].sym) != NULL
3584 && TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) == TYPE_CODE_ENUM);
210bbc17 3585 struct symtab *symtab = SYMBOL_SYMTAB (syms[i].sym);
4c4b4cd2
PH
3586
3587 if (SYMBOL_LINE (syms[i].sym) != 0 && symtab != NULL)
323e0a4a 3588 printf_unfiltered (_("[%d] %s at %s:%d\n"),
4c4b4cd2
PH
3589 i + first_choice,
3590 SYMBOL_PRINT_NAME (syms[i].sym),
3591 symtab->filename, SYMBOL_LINE (syms[i].sym));
76a01679
JB
3592 else if (is_enumeral
3593 && TYPE_NAME (SYMBOL_TYPE (syms[i].sym)) != NULL)
4c4b4cd2 3594 {
a3f17187 3595 printf_unfiltered (("[%d] "), i + first_choice);
76a01679 3596 ada_print_type (SYMBOL_TYPE (syms[i].sym), NULL,
79d43c61 3597 gdb_stdout, -1, 0, &type_print_raw_options);
323e0a4a 3598 printf_unfiltered (_("'(%s) (enumeral)\n"),
4c4b4cd2
PH
3599 SYMBOL_PRINT_NAME (syms[i].sym));
3600 }
3601 else if (symtab != NULL)
3602 printf_unfiltered (is_enumeral
323e0a4a
AC
3603 ? _("[%d] %s in %s (enumeral)\n")
3604 : _("[%d] %s at %s:?\n"),
4c4b4cd2
PH
3605 i + first_choice,
3606 SYMBOL_PRINT_NAME (syms[i].sym),
3607 symtab->filename);
3608 else
3609 printf_unfiltered (is_enumeral
323e0a4a
AC
3610 ? _("[%d] %s (enumeral)\n")
3611 : _("[%d] %s at ?\n"),
4c4b4cd2
PH
3612 i + first_choice,
3613 SYMBOL_PRINT_NAME (syms[i].sym));
3614 }
14f9c5c9 3615 }
d2e4a39e 3616
14f9c5c9 3617 n_chosen = get_selections (chosen, nsyms, max_results, max_results > 1,
4c4b4cd2 3618 "overload-choice");
14f9c5c9
AS
3619
3620 for (i = 0; i < n_chosen; i += 1)
4c4b4cd2 3621 syms[i] = syms[chosen[i]];
14f9c5c9
AS
3622
3623 return n_chosen;
3624}
3625
3626/* Read and validate a set of numeric choices from the user in the
4c4b4cd2 3627 range 0 .. N_CHOICES-1. Place the results in increasing
14f9c5c9
AS
3628 order in CHOICES[0 .. N-1], and return N.
3629
3630 The user types choices as a sequence of numbers on one line
3631 separated by blanks, encoding them as follows:
3632
4c4b4cd2 3633 + A choice of 0 means to cancel the selection, throwing an error.
14f9c5c9
AS
3634 + If IS_ALL_CHOICE, a choice of 1 selects the entire set 0 .. N_CHOICES-1.
3635 + The user chooses k by typing k+IS_ALL_CHOICE+1.
3636
4c4b4cd2 3637 The user is not allowed to choose more than MAX_RESULTS values.
14f9c5c9
AS
3638
3639 ANNOTATION_SUFFIX, if present, is used to annotate the input
4c4b4cd2 3640 prompts (for use with the -f switch). */
14f9c5c9
AS
3641
3642int
d2e4a39e 3643get_selections (int *choices, int n_choices, int max_results,
4c4b4cd2 3644 int is_all_choice, char *annotation_suffix)
14f9c5c9 3645{
d2e4a39e 3646 char *args;
0bcd0149 3647 char *prompt;
14f9c5c9
AS
3648 int n_chosen;
3649 int first_choice = is_all_choice ? 2 : 1;
d2e4a39e 3650
14f9c5c9
AS
3651 prompt = getenv ("PS2");
3652 if (prompt == NULL)
0bcd0149 3653 prompt = "> ";
14f9c5c9 3654
0bcd0149 3655 args = command_line_input (prompt, 0, annotation_suffix);
d2e4a39e 3656
14f9c5c9 3657 if (args == NULL)
323e0a4a 3658 error_no_arg (_("one or more choice numbers"));
14f9c5c9
AS
3659
3660 n_chosen = 0;
76a01679 3661
4c4b4cd2
PH
3662 /* Set choices[0 .. n_chosen-1] to the users' choices in ascending
3663 order, as given in args. Choices are validated. */
14f9c5c9
AS
3664 while (1)
3665 {
d2e4a39e 3666 char *args2;
14f9c5c9
AS
3667 int choice, j;
3668
0fcd72ba 3669 args = skip_spaces (args);
14f9c5c9 3670 if (*args == '\0' && n_chosen == 0)
323e0a4a 3671 error_no_arg (_("one or more choice numbers"));
14f9c5c9 3672 else if (*args == '\0')
4c4b4cd2 3673 break;
14f9c5c9
AS
3674
3675 choice = strtol (args, &args2, 10);
d2e4a39e 3676 if (args == args2 || choice < 0
4c4b4cd2 3677 || choice > n_choices + first_choice - 1)
323e0a4a 3678 error (_("Argument must be choice number"));
14f9c5c9
AS
3679 args = args2;
3680
d2e4a39e 3681 if (choice == 0)
323e0a4a 3682 error (_("cancelled"));
14f9c5c9
AS
3683
3684 if (choice < first_choice)
4c4b4cd2
PH
3685 {
3686 n_chosen = n_choices;
3687 for (j = 0; j < n_choices; j += 1)
3688 choices[j] = j;
3689 break;
3690 }
14f9c5c9
AS
3691 choice -= first_choice;
3692
d2e4a39e 3693 for (j = n_chosen - 1; j >= 0 && choice < choices[j]; j -= 1)
4c4b4cd2
PH
3694 {
3695 }
14f9c5c9
AS
3696
3697 if (j < 0 || choice != choices[j])
4c4b4cd2
PH
3698 {
3699 int k;
5b4ee69b 3700
4c4b4cd2
PH
3701 for (k = n_chosen - 1; k > j; k -= 1)
3702 choices[k + 1] = choices[k];
3703 choices[j + 1] = choice;
3704 n_chosen += 1;
3705 }
14f9c5c9
AS
3706 }
3707
3708 if (n_chosen > max_results)
323e0a4a 3709 error (_("Select no more than %d of the above"), max_results);
d2e4a39e 3710
14f9c5c9
AS
3711 return n_chosen;
3712}
3713
4c4b4cd2
PH
3714/* Replace the operator of length OPLEN at position PC in *EXPP with a call
3715 on the function identified by SYM and BLOCK, and taking NARGS
3716 arguments. Update *EXPP as needed to hold more space. */
14f9c5c9
AS
3717
3718static void
d2e4a39e 3719replace_operator_with_call (struct expression **expp, int pc, int nargs,
4c4b4cd2 3720 int oplen, struct symbol *sym,
270140bd 3721 const struct block *block)
14f9c5c9
AS
3722{
3723 /* A new expression, with 6 more elements (3 for funcall, 4 for function
4c4b4cd2 3724 symbol, -oplen for operator being replaced). */
d2e4a39e 3725 struct expression *newexp = (struct expression *)
8c1a34e7 3726 xzalloc (sizeof (struct expression)
4c4b4cd2 3727 + EXP_ELEM_TO_BYTES ((*expp)->nelts + 7 - oplen));
d2e4a39e 3728 struct expression *exp = *expp;
14f9c5c9
AS
3729
3730 newexp->nelts = exp->nelts + 7 - oplen;
3731 newexp->language_defn = exp->language_defn;
3489610d 3732 newexp->gdbarch = exp->gdbarch;
14f9c5c9 3733 memcpy (newexp->elts, exp->elts, EXP_ELEM_TO_BYTES (pc));
d2e4a39e 3734 memcpy (newexp->elts + pc + 7, exp->elts + pc + oplen,
4c4b4cd2 3735 EXP_ELEM_TO_BYTES (exp->nelts - pc - oplen));
14f9c5c9
AS
3736
3737 newexp->elts[pc].opcode = newexp->elts[pc + 2].opcode = OP_FUNCALL;
3738 newexp->elts[pc + 1].longconst = (LONGEST) nargs;
3739
3740 newexp->elts[pc + 3].opcode = newexp->elts[pc + 6].opcode = OP_VAR_VALUE;
3741 newexp->elts[pc + 4].block = block;
3742 newexp->elts[pc + 5].symbol = sym;
3743
3744 *expp = newexp;
aacb1f0a 3745 xfree (exp);
d2e4a39e 3746}
14f9c5c9
AS
3747
3748/* Type-class predicates */
3749
4c4b4cd2
PH
3750/* True iff TYPE is numeric (i.e., an INT, RANGE (of numeric type),
3751 or FLOAT). */
14f9c5c9
AS
3752
3753static int
d2e4a39e 3754numeric_type_p (struct type *type)
14f9c5c9
AS
3755{
3756 if (type == NULL)
3757 return 0;
d2e4a39e
AS
3758 else
3759 {
3760 switch (TYPE_CODE (type))
4c4b4cd2
PH
3761 {
3762 case TYPE_CODE_INT:
3763 case TYPE_CODE_FLT:
3764 return 1;
3765 case TYPE_CODE_RANGE:
3766 return (type == TYPE_TARGET_TYPE (type)
3767 || numeric_type_p (TYPE_TARGET_TYPE (type)));
3768 default:
3769 return 0;
3770 }
d2e4a39e 3771 }
14f9c5c9
AS
3772}
3773
4c4b4cd2 3774/* True iff TYPE is integral (an INT or RANGE of INTs). */
14f9c5c9
AS
3775
3776static int
d2e4a39e 3777integer_type_p (struct type *type)
14f9c5c9
AS
3778{
3779 if (type == NULL)
3780 return 0;
d2e4a39e
AS
3781 else
3782 {
3783 switch (TYPE_CODE (type))
4c4b4cd2
PH
3784 {
3785 case TYPE_CODE_INT:
3786 return 1;
3787 case TYPE_CODE_RANGE:
3788 return (type == TYPE_TARGET_TYPE (type)
3789 || integer_type_p (TYPE_TARGET_TYPE (type)));
3790 default:
3791 return 0;
3792 }
d2e4a39e 3793 }
14f9c5c9
AS
3794}
3795
4c4b4cd2 3796/* True iff TYPE is scalar (INT, RANGE, FLOAT, ENUM). */
14f9c5c9
AS
3797
3798static int
d2e4a39e 3799scalar_type_p (struct type *type)
14f9c5c9
AS
3800{
3801 if (type == NULL)
3802 return 0;
d2e4a39e
AS
3803 else
3804 {
3805 switch (TYPE_CODE (type))
4c4b4cd2
PH
3806 {
3807 case TYPE_CODE_INT:
3808 case TYPE_CODE_RANGE:
3809 case TYPE_CODE_ENUM:
3810 case TYPE_CODE_FLT:
3811 return 1;
3812 default:
3813 return 0;
3814 }
d2e4a39e 3815 }
14f9c5c9
AS
3816}
3817
4c4b4cd2 3818/* True iff TYPE is discrete (INT, RANGE, ENUM). */
14f9c5c9
AS
3819
3820static int
d2e4a39e 3821discrete_type_p (struct type *type)
14f9c5c9
AS
3822{
3823 if (type == NULL)
3824 return 0;
d2e4a39e
AS
3825 else
3826 {
3827 switch (TYPE_CODE (type))
4c4b4cd2
PH
3828 {
3829 case TYPE_CODE_INT:
3830 case TYPE_CODE_RANGE:
3831 case TYPE_CODE_ENUM:
872f0337 3832 case TYPE_CODE_BOOL:
4c4b4cd2
PH
3833 return 1;
3834 default:
3835 return 0;
3836 }
d2e4a39e 3837 }
14f9c5c9
AS
3838}
3839
4c4b4cd2
PH
3840/* Returns non-zero if OP with operands in the vector ARGS could be
3841 a user-defined function. Errs on the side of pre-defined operators
3842 (i.e., result 0). */
14f9c5c9
AS
3843
3844static int
d2e4a39e 3845possible_user_operator_p (enum exp_opcode op, struct value *args[])
14f9c5c9 3846{
76a01679 3847 struct type *type0 =
df407dfe 3848 (args[0] == NULL) ? NULL : ada_check_typedef (value_type (args[0]));
d2e4a39e 3849 struct type *type1 =
df407dfe 3850 (args[1] == NULL) ? NULL : ada_check_typedef (value_type (args[1]));
d2e4a39e 3851
4c4b4cd2
PH
3852 if (type0 == NULL)
3853 return 0;
3854
14f9c5c9
AS
3855 switch (op)
3856 {
3857 default:
3858 return 0;
3859
3860 case BINOP_ADD:
3861 case BINOP_SUB:
3862 case BINOP_MUL:
3863 case BINOP_DIV:
d2e4a39e 3864 return (!(numeric_type_p (type0) && numeric_type_p (type1)));
14f9c5c9
AS
3865
3866 case BINOP_REM:
3867 case BINOP_MOD:
3868 case BINOP_BITWISE_AND:
3869 case BINOP_BITWISE_IOR:
3870 case BINOP_BITWISE_XOR:
d2e4a39e 3871 return (!(integer_type_p (type0) && integer_type_p (type1)));
14f9c5c9
AS
3872
3873 case BINOP_EQUAL:
3874 case BINOP_NOTEQUAL:
3875 case BINOP_LESS:
3876 case BINOP_GTR:
3877 case BINOP_LEQ:
3878 case BINOP_GEQ:
d2e4a39e 3879 return (!(scalar_type_p (type0) && scalar_type_p (type1)));
14f9c5c9
AS
3880
3881 case BINOP_CONCAT:
ee90b9ab 3882 return !ada_is_array_type (type0) || !ada_is_array_type (type1);
14f9c5c9
AS
3883
3884 case BINOP_EXP:
d2e4a39e 3885 return (!(numeric_type_p (type0) && integer_type_p (type1)));
14f9c5c9
AS
3886
3887 case UNOP_NEG:
3888 case UNOP_PLUS:
3889 case UNOP_LOGICAL_NOT:
d2e4a39e
AS
3890 case UNOP_ABS:
3891 return (!numeric_type_p (type0));
14f9c5c9
AS
3892
3893 }
3894}
3895\f
4c4b4cd2 3896 /* Renaming */
14f9c5c9 3897
aeb5907d
JB
3898/* NOTES:
3899
3900 1. In the following, we assume that a renaming type's name may
3901 have an ___XD suffix. It would be nice if this went away at some
3902 point.
3903 2. We handle both the (old) purely type-based representation of
3904 renamings and the (new) variable-based encoding. At some point,
3905 it is devoutly to be hoped that the former goes away
3906 (FIXME: hilfinger-2007-07-09).
3907 3. Subprogram renamings are not implemented, although the XRS
3908 suffix is recognized (FIXME: hilfinger-2007-07-09). */
3909
3910/* If SYM encodes a renaming,
3911
3912 <renaming> renames <renamed entity>,
3913
3914 sets *LEN to the length of the renamed entity's name,
3915 *RENAMED_ENTITY to that name (not null-terminated), and *RENAMING_EXPR to
3916 the string describing the subcomponent selected from the renamed
0963b4bd 3917 entity. Returns ADA_NOT_RENAMING if SYM does not encode a renaming
aeb5907d
JB
3918 (in which case, the values of *RENAMED_ENTITY, *LEN, and *RENAMING_EXPR
3919 are undefined). Otherwise, returns a value indicating the category
3920 of entity renamed: an object (ADA_OBJECT_RENAMING), exception
3921 (ADA_EXCEPTION_RENAMING), package (ADA_PACKAGE_RENAMING), or
3922 subprogram (ADA_SUBPROGRAM_RENAMING). Does no allocation; the
3923 strings returned in *RENAMED_ENTITY and *RENAMING_EXPR should not be
3924 deallocated. The values of RENAMED_ENTITY, LEN, or RENAMING_EXPR
3925 may be NULL, in which case they are not assigned.
3926
3927 [Currently, however, GCC does not generate subprogram renamings.] */
3928
3929enum ada_renaming_category
3930ada_parse_renaming (struct symbol *sym,
3931 const char **renamed_entity, int *len,
3932 const char **renaming_expr)
3933{
3934 enum ada_renaming_category kind;
3935 const char *info;
3936 const char *suffix;
3937
3938 if (sym == NULL)
3939 return ADA_NOT_RENAMING;
3940 switch (SYMBOL_CLASS (sym))
14f9c5c9 3941 {
aeb5907d
JB
3942 default:
3943 return ADA_NOT_RENAMING;
3944 case LOC_TYPEDEF:
3945 return parse_old_style_renaming (SYMBOL_TYPE (sym),
3946 renamed_entity, len, renaming_expr);
3947 case LOC_LOCAL:
3948 case LOC_STATIC:
3949 case LOC_COMPUTED:
3950 case LOC_OPTIMIZED_OUT:
3951 info = strstr (SYMBOL_LINKAGE_NAME (sym), "___XR");
3952 if (info == NULL)
3953 return ADA_NOT_RENAMING;
3954 switch (info[5])
3955 {
3956 case '_':
3957 kind = ADA_OBJECT_RENAMING;
3958 info += 6;
3959 break;
3960 case 'E':
3961 kind = ADA_EXCEPTION_RENAMING;
3962 info += 7;
3963 break;
3964 case 'P':
3965 kind = ADA_PACKAGE_RENAMING;
3966 info += 7;
3967 break;
3968 case 'S':
3969 kind = ADA_SUBPROGRAM_RENAMING;
3970 info += 7;
3971 break;
3972 default:
3973 return ADA_NOT_RENAMING;
3974 }
14f9c5c9 3975 }
4c4b4cd2 3976
aeb5907d
JB
3977 if (renamed_entity != NULL)
3978 *renamed_entity = info;
3979 suffix = strstr (info, "___XE");
3980 if (suffix == NULL || suffix == info)
3981 return ADA_NOT_RENAMING;
3982 if (len != NULL)
3983 *len = strlen (info) - strlen (suffix);
3984 suffix += 5;
3985 if (renaming_expr != NULL)
3986 *renaming_expr = suffix;
3987 return kind;
3988}
3989
3990/* Assuming TYPE encodes a renaming according to the old encoding in
3991 exp_dbug.ads, returns details of that renaming in *RENAMED_ENTITY,
3992 *LEN, and *RENAMING_EXPR, as for ada_parse_renaming, above. Returns
3993 ADA_NOT_RENAMING otherwise. */
3994static enum ada_renaming_category
3995parse_old_style_renaming (struct type *type,
3996 const char **renamed_entity, int *len,
3997 const char **renaming_expr)
3998{
3999 enum ada_renaming_category kind;
4000 const char *name;
4001 const char *info;
4002 const char *suffix;
14f9c5c9 4003
aeb5907d
JB
4004 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM
4005 || TYPE_NFIELDS (type) != 1)
4006 return ADA_NOT_RENAMING;
14f9c5c9 4007
aeb5907d
JB
4008 name = type_name_no_tag (type);
4009 if (name == NULL)
4010 return ADA_NOT_RENAMING;
4011
4012 name = strstr (name, "___XR");
4013 if (name == NULL)
4014 return ADA_NOT_RENAMING;
4015 switch (name[5])
4016 {
4017 case '\0':
4018 case '_':
4019 kind = ADA_OBJECT_RENAMING;
4020 break;
4021 case 'E':
4022 kind = ADA_EXCEPTION_RENAMING;
4023 break;
4024 case 'P':
4025 kind = ADA_PACKAGE_RENAMING;
4026 break;
4027 case 'S':
4028 kind = ADA_SUBPROGRAM_RENAMING;
4029 break;
4030 default:
4031 return ADA_NOT_RENAMING;
4032 }
14f9c5c9 4033
aeb5907d
JB
4034 info = TYPE_FIELD_NAME (type, 0);
4035 if (info == NULL)
4036 return ADA_NOT_RENAMING;
4037 if (renamed_entity != NULL)
4038 *renamed_entity = info;
4039 suffix = strstr (info, "___XE");
4040 if (renaming_expr != NULL)
4041 *renaming_expr = suffix + 5;
4042 if (suffix == NULL || suffix == info)
4043 return ADA_NOT_RENAMING;
4044 if (len != NULL)
4045 *len = suffix - info;
4046 return kind;
a5ee536b
JB
4047}
4048
4049/* Compute the value of the given RENAMING_SYM, which is expected to
4050 be a symbol encoding a renaming expression. BLOCK is the block
4051 used to evaluate the renaming. */
52ce6436 4052
a5ee536b
JB
4053static struct value *
4054ada_read_renaming_var_value (struct symbol *renaming_sym,
4055 struct block *block)
4056{
4057 char *sym_name;
4058 struct expression *expr;
4059 struct value *value;
4060 struct cleanup *old_chain = NULL;
4061
4062 sym_name = xstrdup (SYMBOL_LINKAGE_NAME (renaming_sym));
4063 old_chain = make_cleanup (xfree, sym_name);
1bb9788d 4064 expr = parse_exp_1 (&sym_name, 0, block, 0);
a5ee536b
JB
4065 make_cleanup (free_current_contents, &expr);
4066 value = evaluate_expression (expr);
4067
4068 do_cleanups (old_chain);
4069 return value;
4070}
14f9c5c9 4071\f
d2e4a39e 4072
4c4b4cd2 4073 /* Evaluation: Function Calls */
14f9c5c9 4074
4c4b4cd2 4075/* Return an lvalue containing the value VAL. This is the identity on
40bc484c
JB
4076 lvalues, and otherwise has the side-effect of allocating memory
4077 in the inferior where a copy of the value contents is copied. */
14f9c5c9 4078
d2e4a39e 4079static struct value *
40bc484c 4080ensure_lval (struct value *val)
14f9c5c9 4081{
40bc484c
JB
4082 if (VALUE_LVAL (val) == not_lval
4083 || VALUE_LVAL (val) == lval_internalvar)
c3e5cd34 4084 {
df407dfe 4085 int len = TYPE_LENGTH (ada_check_typedef (value_type (val)));
40bc484c
JB
4086 const CORE_ADDR addr =
4087 value_as_long (value_allocate_space_in_inferior (len));
c3e5cd34 4088
40bc484c 4089 set_value_address (val, addr);
a84a8a0d 4090 VALUE_LVAL (val) = lval_memory;
40bc484c 4091 write_memory (addr, value_contents (val), len);
c3e5cd34 4092 }
14f9c5c9
AS
4093
4094 return val;
4095}
4096
4097/* Return the value ACTUAL, converted to be an appropriate value for a
4098 formal of type FORMAL_TYPE. Use *SP as a stack pointer for
4099 allocating any necessary descriptors (fat pointers), or copies of
4c4b4cd2 4100 values not residing in memory, updating it as needed. */
14f9c5c9 4101
a93c0eb6 4102struct value *
40bc484c 4103ada_convert_actual (struct value *actual, struct type *formal_type0)
14f9c5c9 4104{
df407dfe 4105 struct type *actual_type = ada_check_typedef (value_type (actual));
61ee279c 4106 struct type *formal_type = ada_check_typedef (formal_type0);
d2e4a39e
AS
4107 struct type *formal_target =
4108 TYPE_CODE (formal_type) == TYPE_CODE_PTR
61ee279c 4109 ? ada_check_typedef (TYPE_TARGET_TYPE (formal_type)) : formal_type;
d2e4a39e
AS
4110 struct type *actual_target =
4111 TYPE_CODE (actual_type) == TYPE_CODE_PTR
61ee279c 4112 ? ada_check_typedef (TYPE_TARGET_TYPE (actual_type)) : actual_type;
14f9c5c9 4113
4c4b4cd2 4114 if (ada_is_array_descriptor_type (formal_target)
14f9c5c9 4115 && TYPE_CODE (actual_target) == TYPE_CODE_ARRAY)
40bc484c 4116 return make_array_descriptor (formal_type, actual);
a84a8a0d
JB
4117 else if (TYPE_CODE (formal_type) == TYPE_CODE_PTR
4118 || TYPE_CODE (formal_type) == TYPE_CODE_REF)
14f9c5c9 4119 {
a84a8a0d 4120 struct value *result;
5b4ee69b 4121
14f9c5c9 4122 if (TYPE_CODE (formal_target) == TYPE_CODE_ARRAY
4c4b4cd2 4123 && ada_is_array_descriptor_type (actual_target))
a84a8a0d 4124 result = desc_data (actual);
14f9c5c9 4125 else if (TYPE_CODE (actual_type) != TYPE_CODE_PTR)
4c4b4cd2
PH
4126 {
4127 if (VALUE_LVAL (actual) != lval_memory)
4128 {
4129 struct value *val;
5b4ee69b 4130
df407dfe 4131 actual_type = ada_check_typedef (value_type (actual));
4c4b4cd2 4132 val = allocate_value (actual_type);
990a07ab 4133 memcpy ((char *) value_contents_raw (val),
0fd88904 4134 (char *) value_contents (actual),
4c4b4cd2 4135 TYPE_LENGTH (actual_type));
40bc484c 4136 actual = ensure_lval (val);
4c4b4cd2 4137 }
a84a8a0d 4138 result = value_addr (actual);
4c4b4cd2 4139 }
a84a8a0d
JB
4140 else
4141 return actual;
b1af9e97 4142 return value_cast_pointers (formal_type, result, 0);
14f9c5c9
AS
4143 }
4144 else if (TYPE_CODE (actual_type) == TYPE_CODE_PTR)
4145 return ada_value_ind (actual);
4146
4147 return actual;
4148}
4149
438c98a1
JB
4150/* Convert VALUE (which must be an address) to a CORE_ADDR that is a pointer of
4151 type TYPE. This is usually an inefficient no-op except on some targets
4152 (such as AVR) where the representation of a pointer and an address
4153 differs. */
4154
4155static CORE_ADDR
4156value_pointer (struct value *value, struct type *type)
4157{
4158 struct gdbarch *gdbarch = get_type_arch (type);
4159 unsigned len = TYPE_LENGTH (type);
4160 gdb_byte *buf = alloca (len);
4161 CORE_ADDR addr;
4162
4163 addr = value_address (value);
4164 gdbarch_address_to_pointer (gdbarch, type, buf, addr);
4165 addr = extract_unsigned_integer (buf, len, gdbarch_byte_order (gdbarch));
4166 return addr;
4167}
4168
14f9c5c9 4169
4c4b4cd2
PH
4170/* Push a descriptor of type TYPE for array value ARR on the stack at
4171 *SP, updating *SP to reflect the new descriptor. Return either
14f9c5c9 4172 an lvalue representing the new descriptor, or (if TYPE is a pointer-
4c4b4cd2
PH
4173 to-descriptor type rather than a descriptor type), a struct value *
4174 representing a pointer to this descriptor. */
14f9c5c9 4175
d2e4a39e 4176static struct value *
40bc484c 4177make_array_descriptor (struct type *type, struct value *arr)
14f9c5c9 4178{
d2e4a39e
AS
4179 struct type *bounds_type = desc_bounds_type (type);
4180 struct type *desc_type = desc_base_type (type);
4181 struct value *descriptor = allocate_value (desc_type);
4182 struct value *bounds = allocate_value (bounds_type);
14f9c5c9 4183 int i;
d2e4a39e 4184
0963b4bd
MS
4185 for (i = ada_array_arity (ada_check_typedef (value_type (arr)));
4186 i > 0; i -= 1)
14f9c5c9 4187 {
19f220c3
JK
4188 modify_field (value_type (bounds), value_contents_writeable (bounds),
4189 ada_array_bound (arr, i, 0),
4190 desc_bound_bitpos (bounds_type, i, 0),
4191 desc_bound_bitsize (bounds_type, i, 0));
4192 modify_field (value_type (bounds), value_contents_writeable (bounds),
4193 ada_array_bound (arr, i, 1),
4194 desc_bound_bitpos (bounds_type, i, 1),
4195 desc_bound_bitsize (bounds_type, i, 1));
14f9c5c9 4196 }
d2e4a39e 4197
40bc484c 4198 bounds = ensure_lval (bounds);
d2e4a39e 4199
19f220c3
JK
4200 modify_field (value_type (descriptor),
4201 value_contents_writeable (descriptor),
4202 value_pointer (ensure_lval (arr),
4203 TYPE_FIELD_TYPE (desc_type, 0)),
4204 fat_pntr_data_bitpos (desc_type),
4205 fat_pntr_data_bitsize (desc_type));
4206
4207 modify_field (value_type (descriptor),
4208 value_contents_writeable (descriptor),
4209 value_pointer (bounds,
4210 TYPE_FIELD_TYPE (desc_type, 1)),
4211 fat_pntr_bounds_bitpos (desc_type),
4212 fat_pntr_bounds_bitsize (desc_type));
14f9c5c9 4213
40bc484c 4214 descriptor = ensure_lval (descriptor);
14f9c5c9
AS
4215
4216 if (TYPE_CODE (type) == TYPE_CODE_PTR)
4217 return value_addr (descriptor);
4218 else
4219 return descriptor;
4220}
14f9c5c9 4221\f
963a6417 4222/* Dummy definitions for an experimental caching module that is not
0963b4bd 4223 * used in the public sources. */
96d887e8 4224
96d887e8
PH
4225static int
4226lookup_cached_symbol (const char *name, domain_enum namespace,
2570f2b7 4227 struct symbol **sym, struct block **block)
96d887e8
PH
4228{
4229 return 0;
4230}
4231
4232static void
4233cache_symbol (const char *name, domain_enum namespace, struct symbol *sym,
270140bd 4234 const struct block *block)
96d887e8
PH
4235{
4236}
4c4b4cd2
PH
4237\f
4238 /* Symbol Lookup */
4239
c0431670
JB
4240/* Return nonzero if wild matching should be used when searching for
4241 all symbols matching LOOKUP_NAME.
4242
4243 LOOKUP_NAME is expected to be a symbol name after transformation
4244 for Ada lookups (see ada_name_for_lookup). */
4245
4246static int
4247should_use_wild_match (const char *lookup_name)
4248{
4249 return (strstr (lookup_name, "__") == NULL);
4250}
4251
4c4b4cd2
PH
4252/* Return the result of a standard (literal, C-like) lookup of NAME in
4253 given DOMAIN, visible from lexical block BLOCK. */
4254
4255static struct symbol *
4256standard_lookup (const char *name, const struct block *block,
4257 domain_enum domain)
4258{
acbd605d
MGD
4259 /* Initialize it just to avoid a GCC false warning. */
4260 struct symbol *sym = NULL;
4c4b4cd2 4261
2570f2b7 4262 if (lookup_cached_symbol (name, domain, &sym, NULL))
4c4b4cd2 4263 return sym;
2570f2b7
UW
4264 sym = lookup_symbol_in_language (name, block, domain, language_c, 0);
4265 cache_symbol (name, domain, sym, block_found);
4c4b4cd2
PH
4266 return sym;
4267}
4268
4269
4270/* Non-zero iff there is at least one non-function/non-enumeral symbol
4271 in the symbol fields of SYMS[0..N-1]. We treat enumerals as functions,
4272 since they contend in overloading in the same way. */
4273static int
4274is_nonfunction (struct ada_symbol_info syms[], int n)
4275{
4276 int i;
4277
4278 for (i = 0; i < n; i += 1)
4279 if (TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) != TYPE_CODE_FUNC
4280 && (TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) != TYPE_CODE_ENUM
4281 || SYMBOL_CLASS (syms[i].sym) != LOC_CONST))
14f9c5c9
AS
4282 return 1;
4283
4284 return 0;
4285}
4286
4287/* If true (non-zero), then TYPE0 and TYPE1 represent equivalent
4c4b4cd2 4288 struct types. Otherwise, they may not. */
14f9c5c9
AS
4289
4290static int
d2e4a39e 4291equiv_types (struct type *type0, struct type *type1)
14f9c5c9 4292{
d2e4a39e 4293 if (type0 == type1)
14f9c5c9 4294 return 1;
d2e4a39e 4295 if (type0 == NULL || type1 == NULL
14f9c5c9
AS
4296 || TYPE_CODE (type0) != TYPE_CODE (type1))
4297 return 0;
d2e4a39e 4298 if ((TYPE_CODE (type0) == TYPE_CODE_STRUCT
14f9c5c9
AS
4299 || TYPE_CODE (type0) == TYPE_CODE_ENUM)
4300 && ada_type_name (type0) != NULL && ada_type_name (type1) != NULL
4c4b4cd2 4301 && strcmp (ada_type_name (type0), ada_type_name (type1)) == 0)
14f9c5c9 4302 return 1;
d2e4a39e 4303
14f9c5c9
AS
4304 return 0;
4305}
4306
4307/* True iff SYM0 represents the same entity as SYM1, or one that is
4c4b4cd2 4308 no more defined than that of SYM1. */
14f9c5c9
AS
4309
4310static int
d2e4a39e 4311lesseq_defined_than (struct symbol *sym0, struct symbol *sym1)
14f9c5c9
AS
4312{
4313 if (sym0 == sym1)
4314 return 1;
176620f1 4315 if (SYMBOL_DOMAIN (sym0) != SYMBOL_DOMAIN (sym1)
14f9c5c9
AS
4316 || SYMBOL_CLASS (sym0) != SYMBOL_CLASS (sym1))
4317 return 0;
4318
d2e4a39e 4319 switch (SYMBOL_CLASS (sym0))
14f9c5c9
AS
4320 {
4321 case LOC_UNDEF:
4322 return 1;
4323 case LOC_TYPEDEF:
4324 {
4c4b4cd2
PH
4325 struct type *type0 = SYMBOL_TYPE (sym0);
4326 struct type *type1 = SYMBOL_TYPE (sym1);
0d5cff50
DE
4327 const char *name0 = SYMBOL_LINKAGE_NAME (sym0);
4328 const char *name1 = SYMBOL_LINKAGE_NAME (sym1);
4c4b4cd2 4329 int len0 = strlen (name0);
5b4ee69b 4330
4c4b4cd2
PH
4331 return
4332 TYPE_CODE (type0) == TYPE_CODE (type1)
4333 && (equiv_types (type0, type1)
4334 || (len0 < strlen (name1) && strncmp (name0, name1, len0) == 0
4335 && strncmp (name1 + len0, "___XV", 5) == 0));
14f9c5c9
AS
4336 }
4337 case LOC_CONST:
4338 return SYMBOL_VALUE (sym0) == SYMBOL_VALUE (sym1)
4c4b4cd2 4339 && equiv_types (SYMBOL_TYPE (sym0), SYMBOL_TYPE (sym1));
d2e4a39e
AS
4340 default:
4341 return 0;
14f9c5c9
AS
4342 }
4343}
4344
4c4b4cd2
PH
4345/* Append (SYM,BLOCK,SYMTAB) to the end of the array of struct ada_symbol_info
4346 records in OBSTACKP. Do nothing if SYM is a duplicate. */
14f9c5c9
AS
4347
4348static void
76a01679
JB
4349add_defn_to_vec (struct obstack *obstackp,
4350 struct symbol *sym,
2570f2b7 4351 struct block *block)
14f9c5c9
AS
4352{
4353 int i;
4c4b4cd2 4354 struct ada_symbol_info *prevDefns = defns_collected (obstackp, 0);
14f9c5c9 4355
529cad9c
PH
4356 /* Do not try to complete stub types, as the debugger is probably
4357 already scanning all symbols matching a certain name at the
4358 time when this function is called. Trying to replace the stub
4359 type by its associated full type will cause us to restart a scan
4360 which may lead to an infinite recursion. Instead, the client
4361 collecting the matching symbols will end up collecting several
4362 matches, with at least one of them complete. It can then filter
4363 out the stub ones if needed. */
4364
4c4b4cd2
PH
4365 for (i = num_defns_collected (obstackp) - 1; i >= 0; i -= 1)
4366 {
4367 if (lesseq_defined_than (sym, prevDefns[i].sym))
4368 return;
4369 else if (lesseq_defined_than (prevDefns[i].sym, sym))
4370 {
4371 prevDefns[i].sym = sym;
4372 prevDefns[i].block = block;
4c4b4cd2 4373 return;
76a01679 4374 }
4c4b4cd2
PH
4375 }
4376
4377 {
4378 struct ada_symbol_info info;
4379
4380 info.sym = sym;
4381 info.block = block;
4c4b4cd2
PH
4382 obstack_grow (obstackp, &info, sizeof (struct ada_symbol_info));
4383 }
4384}
4385
4386/* Number of ada_symbol_info structures currently collected in
4387 current vector in *OBSTACKP. */
4388
76a01679
JB
4389static int
4390num_defns_collected (struct obstack *obstackp)
4c4b4cd2
PH
4391{
4392 return obstack_object_size (obstackp) / sizeof (struct ada_symbol_info);
4393}
4394
4395/* Vector of ada_symbol_info structures currently collected in current
4396 vector in *OBSTACKP. If FINISH, close off the vector and return
4397 its final address. */
4398
76a01679 4399static struct ada_symbol_info *
4c4b4cd2
PH
4400defns_collected (struct obstack *obstackp, int finish)
4401{
4402 if (finish)
4403 return obstack_finish (obstackp);
4404 else
4405 return (struct ada_symbol_info *) obstack_base (obstackp);
4406}
4407
96d887e8 4408/* Return a minimal symbol matching NAME according to Ada decoding
2e6e0353
JB
4409 rules. Returns NULL if there is no such minimal symbol. Names
4410 prefixed with "standard__" are handled specially: "standard__" is
96d887e8 4411 first stripped off, and only static and global symbols are searched. */
4c4b4cd2 4412
96d887e8
PH
4413struct minimal_symbol *
4414ada_lookup_simple_minsym (const char *name)
4c4b4cd2 4415{
4c4b4cd2 4416 struct objfile *objfile;
96d887e8 4417 struct minimal_symbol *msymbol;
dc4024cd 4418 const int wild_match_p = should_use_wild_match (name);
4c4b4cd2 4419
c0431670
JB
4420 /* Special case: If the user specifies a symbol name inside package
4421 Standard, do a non-wild matching of the symbol name without
4422 the "standard__" prefix. This was primarily introduced in order
4423 to allow the user to specifically access the standard exceptions
4424 using, for instance, Standard.Constraint_Error when Constraint_Error
4425 is ambiguous (due to the user defining its own Constraint_Error
4426 entity inside its program). */
96d887e8 4427 if (strncmp (name, "standard__", sizeof ("standard__") - 1) == 0)
c0431670 4428 name += sizeof ("standard__") - 1;
4c4b4cd2 4429
96d887e8
PH
4430 ALL_MSYMBOLS (objfile, msymbol)
4431 {
dc4024cd 4432 if (match_name (SYMBOL_LINKAGE_NAME (msymbol), name, wild_match_p)
96d887e8
PH
4433 && MSYMBOL_TYPE (msymbol) != mst_solib_trampoline)
4434 return msymbol;
4435 }
4c4b4cd2 4436
96d887e8
PH
4437 return NULL;
4438}
4c4b4cd2 4439
96d887e8
PH
4440/* For all subprograms that statically enclose the subprogram of the
4441 selected frame, add symbols matching identifier NAME in DOMAIN
4442 and their blocks to the list of data in OBSTACKP, as for
48b78332
JB
4443 ada_add_block_symbols (q.v.). If WILD_MATCH_P, treat as NAME
4444 with a wildcard prefix. */
4c4b4cd2 4445
96d887e8
PH
4446static void
4447add_symbols_from_enclosing_procs (struct obstack *obstackp,
76a01679 4448 const char *name, domain_enum namespace,
48b78332 4449 int wild_match_p)
96d887e8 4450{
96d887e8 4451}
14f9c5c9 4452
96d887e8
PH
4453/* True if TYPE is definitely an artificial type supplied to a symbol
4454 for which no debugging information was given in the symbol file. */
14f9c5c9 4455
96d887e8
PH
4456static int
4457is_nondebugging_type (struct type *type)
4458{
0d5cff50 4459 const char *name = ada_type_name (type);
5b4ee69b 4460
96d887e8
PH
4461 return (name != NULL && strcmp (name, "<variable, no debug info>") == 0);
4462}
4c4b4cd2 4463
8f17729f
JB
4464/* Return nonzero if TYPE1 and TYPE2 are two enumeration types
4465 that are deemed "identical" for practical purposes.
4466
4467 This function assumes that TYPE1 and TYPE2 are both TYPE_CODE_ENUM
4468 types and that their number of enumerals is identical (in other
4469 words, TYPE_NFIELDS (type1) == TYPE_NFIELDS (type2)). */
4470
4471static int
4472ada_identical_enum_types_p (struct type *type1, struct type *type2)
4473{
4474 int i;
4475
4476 /* The heuristic we use here is fairly conservative. We consider
4477 that 2 enumerate types are identical if they have the same
4478 number of enumerals and that all enumerals have the same
4479 underlying value and name. */
4480
4481 /* All enums in the type should have an identical underlying value. */
4482 for (i = 0; i < TYPE_NFIELDS (type1); i++)
14e75d8e 4483 if (TYPE_FIELD_ENUMVAL (type1, i) != TYPE_FIELD_ENUMVAL (type2, i))
8f17729f
JB
4484 return 0;
4485
4486 /* All enumerals should also have the same name (modulo any numerical
4487 suffix). */
4488 for (i = 0; i < TYPE_NFIELDS (type1); i++)
4489 {
0d5cff50
DE
4490 const char *name_1 = TYPE_FIELD_NAME (type1, i);
4491 const char *name_2 = TYPE_FIELD_NAME (type2, i);
8f17729f
JB
4492 int len_1 = strlen (name_1);
4493 int len_2 = strlen (name_2);
4494
4495 ada_remove_trailing_digits (TYPE_FIELD_NAME (type1, i), &len_1);
4496 ada_remove_trailing_digits (TYPE_FIELD_NAME (type2, i), &len_2);
4497 if (len_1 != len_2
4498 || strncmp (TYPE_FIELD_NAME (type1, i),
4499 TYPE_FIELD_NAME (type2, i),
4500 len_1) != 0)
4501 return 0;
4502 }
4503
4504 return 1;
4505}
4506
4507/* Return nonzero if all the symbols in SYMS are all enumeral symbols
4508 that are deemed "identical" for practical purposes. Sometimes,
4509 enumerals are not strictly identical, but their types are so similar
4510 that they can be considered identical.
4511
4512 For instance, consider the following code:
4513
4514 type Color is (Black, Red, Green, Blue, White);
4515 type RGB_Color is new Color range Red .. Blue;
4516
4517 Type RGB_Color is a subrange of an implicit type which is a copy
4518 of type Color. If we call that implicit type RGB_ColorB ("B" is
4519 for "Base Type"), then type RGB_ColorB is a copy of type Color.
4520 As a result, when an expression references any of the enumeral
4521 by name (Eg. "print green"), the expression is technically
4522 ambiguous and the user should be asked to disambiguate. But
4523 doing so would only hinder the user, since it wouldn't matter
4524 what choice he makes, the outcome would always be the same.
4525 So, for practical purposes, we consider them as the same. */
4526
4527static int
4528symbols_are_identical_enums (struct ada_symbol_info *syms, int nsyms)
4529{
4530 int i;
4531
4532 /* Before performing a thorough comparison check of each type,
4533 we perform a series of inexpensive checks. We expect that these
4534 checks will quickly fail in the vast majority of cases, and thus
4535 help prevent the unnecessary use of a more expensive comparison.
4536 Said comparison also expects us to make some of these checks
4537 (see ada_identical_enum_types_p). */
4538
4539 /* Quick check: All symbols should have an enum type. */
4540 for (i = 0; i < nsyms; i++)
4541 if (TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) != TYPE_CODE_ENUM)
4542 return 0;
4543
4544 /* Quick check: They should all have the same value. */
4545 for (i = 1; i < nsyms; i++)
4546 if (SYMBOL_VALUE (syms[i].sym) != SYMBOL_VALUE (syms[0].sym))
4547 return 0;
4548
4549 /* Quick check: They should all have the same number of enumerals. */
4550 for (i = 1; i < nsyms; i++)
4551 if (TYPE_NFIELDS (SYMBOL_TYPE (syms[i].sym))
4552 != TYPE_NFIELDS (SYMBOL_TYPE (syms[0].sym)))
4553 return 0;
4554
4555 /* All the sanity checks passed, so we might have a set of
4556 identical enumeration types. Perform a more complete
4557 comparison of the type of each symbol. */
4558 for (i = 1; i < nsyms; i++)
4559 if (!ada_identical_enum_types_p (SYMBOL_TYPE (syms[i].sym),
4560 SYMBOL_TYPE (syms[0].sym)))
4561 return 0;
4562
4563 return 1;
4564}
4565
96d887e8
PH
4566/* Remove any non-debugging symbols in SYMS[0 .. NSYMS-1] that definitely
4567 duplicate other symbols in the list (The only case I know of where
4568 this happens is when object files containing stabs-in-ecoff are
4569 linked with files containing ordinary ecoff debugging symbols (or no
4570 debugging symbols)). Modifies SYMS to squeeze out deleted entries.
4571 Returns the number of items in the modified list. */
4c4b4cd2 4572
96d887e8
PH
4573static int
4574remove_extra_symbols (struct ada_symbol_info *syms, int nsyms)
4575{
4576 int i, j;
4c4b4cd2 4577
8f17729f
JB
4578 /* We should never be called with less than 2 symbols, as there
4579 cannot be any extra symbol in that case. But it's easy to
4580 handle, since we have nothing to do in that case. */
4581 if (nsyms < 2)
4582 return nsyms;
4583
96d887e8
PH
4584 i = 0;
4585 while (i < nsyms)
4586 {
a35ddb44 4587 int remove_p = 0;
339c13b6
JB
4588
4589 /* If two symbols have the same name and one of them is a stub type,
4590 the get rid of the stub. */
4591
4592 if (TYPE_STUB (SYMBOL_TYPE (syms[i].sym))
4593 && SYMBOL_LINKAGE_NAME (syms[i].sym) != NULL)
4594 {
4595 for (j = 0; j < nsyms; j++)
4596 {
4597 if (j != i
4598 && !TYPE_STUB (SYMBOL_TYPE (syms[j].sym))
4599 && SYMBOL_LINKAGE_NAME (syms[j].sym) != NULL
4600 && strcmp (SYMBOL_LINKAGE_NAME (syms[i].sym),
4601 SYMBOL_LINKAGE_NAME (syms[j].sym)) == 0)
a35ddb44 4602 remove_p = 1;
339c13b6
JB
4603 }
4604 }
4605
4606 /* Two symbols with the same name, same class and same address
4607 should be identical. */
4608
4609 else if (SYMBOL_LINKAGE_NAME (syms[i].sym) != NULL
96d887e8
PH
4610 && SYMBOL_CLASS (syms[i].sym) == LOC_STATIC
4611 && is_nondebugging_type (SYMBOL_TYPE (syms[i].sym)))
4612 {
4613 for (j = 0; j < nsyms; j += 1)
4614 {
4615 if (i != j
4616 && SYMBOL_LINKAGE_NAME (syms[j].sym) != NULL
4617 && strcmp (SYMBOL_LINKAGE_NAME (syms[i].sym),
76a01679 4618 SYMBOL_LINKAGE_NAME (syms[j].sym)) == 0
96d887e8
PH
4619 && SYMBOL_CLASS (syms[i].sym) == SYMBOL_CLASS (syms[j].sym)
4620 && SYMBOL_VALUE_ADDRESS (syms[i].sym)
4621 == SYMBOL_VALUE_ADDRESS (syms[j].sym))
a35ddb44 4622 remove_p = 1;
4c4b4cd2 4623 }
4c4b4cd2 4624 }
339c13b6 4625
a35ddb44 4626 if (remove_p)
339c13b6
JB
4627 {
4628 for (j = i + 1; j < nsyms; j += 1)
4629 syms[j - 1] = syms[j];
4630 nsyms -= 1;
4631 }
4632
96d887e8 4633 i += 1;
14f9c5c9 4634 }
8f17729f
JB
4635
4636 /* If all the remaining symbols are identical enumerals, then
4637 just keep the first one and discard the rest.
4638
4639 Unlike what we did previously, we do not discard any entry
4640 unless they are ALL identical. This is because the symbol
4641 comparison is not a strict comparison, but rather a practical
4642 comparison. If all symbols are considered identical, then
4643 we can just go ahead and use the first one and discard the rest.
4644 But if we cannot reduce the list to a single element, we have
4645 to ask the user to disambiguate anyways. And if we have to
4646 present a multiple-choice menu, it's less confusing if the list
4647 isn't missing some choices that were identical and yet distinct. */
4648 if (symbols_are_identical_enums (syms, nsyms))
4649 nsyms = 1;
4650
96d887e8 4651 return nsyms;
14f9c5c9
AS
4652}
4653
96d887e8
PH
4654/* Given a type that corresponds to a renaming entity, use the type name
4655 to extract the scope (package name or function name, fully qualified,
4656 and following the GNAT encoding convention) where this renaming has been
4657 defined. The string returned needs to be deallocated after use. */
4c4b4cd2 4658
96d887e8
PH
4659static char *
4660xget_renaming_scope (struct type *renaming_type)
14f9c5c9 4661{
96d887e8 4662 /* The renaming types adhere to the following convention:
0963b4bd 4663 <scope>__<rename>___<XR extension>.
96d887e8
PH
4664 So, to extract the scope, we search for the "___XR" extension,
4665 and then backtrack until we find the first "__". */
76a01679 4666
96d887e8
PH
4667 const char *name = type_name_no_tag (renaming_type);
4668 char *suffix = strstr (name, "___XR");
4669 char *last;
4670 int scope_len;
4671 char *scope;
14f9c5c9 4672
96d887e8
PH
4673 /* Now, backtrack a bit until we find the first "__". Start looking
4674 at suffix - 3, as the <rename> part is at least one character long. */
14f9c5c9 4675
96d887e8
PH
4676 for (last = suffix - 3; last > name; last--)
4677 if (last[0] == '_' && last[1] == '_')
4678 break;
76a01679 4679
96d887e8 4680 /* Make a copy of scope and return it. */
14f9c5c9 4681
96d887e8
PH
4682 scope_len = last - name;
4683 scope = (char *) xmalloc ((scope_len + 1) * sizeof (char));
14f9c5c9 4684
96d887e8
PH
4685 strncpy (scope, name, scope_len);
4686 scope[scope_len] = '\0';
4c4b4cd2 4687
96d887e8 4688 return scope;
4c4b4cd2
PH
4689}
4690
96d887e8 4691/* Return nonzero if NAME corresponds to a package name. */
4c4b4cd2 4692
96d887e8
PH
4693static int
4694is_package_name (const char *name)
4c4b4cd2 4695{
96d887e8
PH
4696 /* Here, We take advantage of the fact that no symbols are generated
4697 for packages, while symbols are generated for each function.
4698 So the condition for NAME represent a package becomes equivalent
4699 to NAME not existing in our list of symbols. There is only one
4700 small complication with library-level functions (see below). */
4c4b4cd2 4701
96d887e8 4702 char *fun_name;
76a01679 4703
96d887e8
PH
4704 /* If it is a function that has not been defined at library level,
4705 then we should be able to look it up in the symbols. */
4706 if (standard_lookup (name, NULL, VAR_DOMAIN) != NULL)
4707 return 0;
14f9c5c9 4708
96d887e8
PH
4709 /* Library-level function names start with "_ada_". See if function
4710 "_ada_" followed by NAME can be found. */
14f9c5c9 4711
96d887e8 4712 /* Do a quick check that NAME does not contain "__", since library-level
e1d5a0d2 4713 functions names cannot contain "__" in them. */
96d887e8
PH
4714 if (strstr (name, "__") != NULL)
4715 return 0;
4c4b4cd2 4716
b435e160 4717 fun_name = xstrprintf ("_ada_%s", name);
14f9c5c9 4718
96d887e8
PH
4719 return (standard_lookup (fun_name, NULL, VAR_DOMAIN) == NULL);
4720}
14f9c5c9 4721
96d887e8 4722/* Return nonzero if SYM corresponds to a renaming entity that is
aeb5907d 4723 not visible from FUNCTION_NAME. */
14f9c5c9 4724
96d887e8 4725static int
0d5cff50 4726old_renaming_is_invisible (const struct symbol *sym, const char *function_name)
96d887e8 4727{
aeb5907d
JB
4728 char *scope;
4729
4730 if (SYMBOL_CLASS (sym) != LOC_TYPEDEF)
4731 return 0;
4732
4733 scope = xget_renaming_scope (SYMBOL_TYPE (sym));
d2e4a39e 4734
96d887e8 4735 make_cleanup (xfree, scope);
14f9c5c9 4736
96d887e8
PH
4737 /* If the rename has been defined in a package, then it is visible. */
4738 if (is_package_name (scope))
aeb5907d 4739 return 0;
14f9c5c9 4740
96d887e8
PH
4741 /* Check that the rename is in the current function scope by checking
4742 that its name starts with SCOPE. */
76a01679 4743
96d887e8
PH
4744 /* If the function name starts with "_ada_", it means that it is
4745 a library-level function. Strip this prefix before doing the
4746 comparison, as the encoding for the renaming does not contain
4747 this prefix. */
4748 if (strncmp (function_name, "_ada_", 5) == 0)
4749 function_name += 5;
f26caa11 4750
aeb5907d 4751 return (strncmp (function_name, scope, strlen (scope)) != 0);
f26caa11
PH
4752}
4753
aeb5907d
JB
4754/* Remove entries from SYMS that corresponds to a renaming entity that
4755 is not visible from the function associated with CURRENT_BLOCK or
4756 that is superfluous due to the presence of more specific renaming
4757 information. Places surviving symbols in the initial entries of
4758 SYMS and returns the number of surviving symbols.
96d887e8
PH
4759
4760 Rationale:
aeb5907d
JB
4761 First, in cases where an object renaming is implemented as a
4762 reference variable, GNAT may produce both the actual reference
4763 variable and the renaming encoding. In this case, we discard the
4764 latter.
4765
4766 Second, GNAT emits a type following a specified encoding for each renaming
96d887e8
PH
4767 entity. Unfortunately, STABS currently does not support the definition
4768 of types that are local to a given lexical block, so all renamings types
4769 are emitted at library level. As a consequence, if an application
4770 contains two renaming entities using the same name, and a user tries to
4771 print the value of one of these entities, the result of the ada symbol
4772 lookup will also contain the wrong renaming type.
f26caa11 4773
96d887e8
PH
4774 This function partially covers for this limitation by attempting to
4775 remove from the SYMS list renaming symbols that should be visible
4776 from CURRENT_BLOCK. However, there does not seem be a 100% reliable
4777 method with the current information available. The implementation
4778 below has a couple of limitations (FIXME: brobecker-2003-05-12):
4779
4780 - When the user tries to print a rename in a function while there
4781 is another rename entity defined in a package: Normally, the
4782 rename in the function has precedence over the rename in the
4783 package, so the latter should be removed from the list. This is
4784 currently not the case.
4785
4786 - This function will incorrectly remove valid renames if
4787 the CURRENT_BLOCK corresponds to a function which symbol name
4788 has been changed by an "Export" pragma. As a consequence,
4789 the user will be unable to print such rename entities. */
4c4b4cd2 4790
14f9c5c9 4791static int
aeb5907d
JB
4792remove_irrelevant_renamings (struct ada_symbol_info *syms,
4793 int nsyms, const struct block *current_block)
4c4b4cd2
PH
4794{
4795 struct symbol *current_function;
0d5cff50 4796 const char *current_function_name;
4c4b4cd2 4797 int i;
aeb5907d
JB
4798 int is_new_style_renaming;
4799
4800 /* If there is both a renaming foo___XR... encoded as a variable and
4801 a simple variable foo in the same block, discard the latter.
0963b4bd 4802 First, zero out such symbols, then compress. */
aeb5907d
JB
4803 is_new_style_renaming = 0;
4804 for (i = 0; i < nsyms; i += 1)
4805 {
4806 struct symbol *sym = syms[i].sym;
270140bd 4807 const struct block *block = syms[i].block;
aeb5907d
JB
4808 const char *name;
4809 const char *suffix;
4810
4811 if (sym == NULL || SYMBOL_CLASS (sym) == LOC_TYPEDEF)
4812 continue;
4813 name = SYMBOL_LINKAGE_NAME (sym);
4814 suffix = strstr (name, "___XR");
4815
4816 if (suffix != NULL)
4817 {
4818 int name_len = suffix - name;
4819 int j;
5b4ee69b 4820
aeb5907d
JB
4821 is_new_style_renaming = 1;
4822 for (j = 0; j < nsyms; j += 1)
4823 if (i != j && syms[j].sym != NULL
4824 && strncmp (name, SYMBOL_LINKAGE_NAME (syms[j].sym),
4825 name_len) == 0
4826 && block == syms[j].block)
4827 syms[j].sym = NULL;
4828 }
4829 }
4830 if (is_new_style_renaming)
4831 {
4832 int j, k;
4833
4834 for (j = k = 0; j < nsyms; j += 1)
4835 if (syms[j].sym != NULL)
4836 {
4837 syms[k] = syms[j];
4838 k += 1;
4839 }
4840 return k;
4841 }
4c4b4cd2
PH
4842
4843 /* Extract the function name associated to CURRENT_BLOCK.
4844 Abort if unable to do so. */
76a01679 4845
4c4b4cd2
PH
4846 if (current_block == NULL)
4847 return nsyms;
76a01679 4848
7f0df278 4849 current_function = block_linkage_function (current_block);
4c4b4cd2
PH
4850 if (current_function == NULL)
4851 return nsyms;
4852
4853 current_function_name = SYMBOL_LINKAGE_NAME (current_function);
4854 if (current_function_name == NULL)
4855 return nsyms;
4856
4857 /* Check each of the symbols, and remove it from the list if it is
4858 a type corresponding to a renaming that is out of the scope of
4859 the current block. */
4860
4861 i = 0;
4862 while (i < nsyms)
4863 {
aeb5907d
JB
4864 if (ada_parse_renaming (syms[i].sym, NULL, NULL, NULL)
4865 == ADA_OBJECT_RENAMING
4866 && old_renaming_is_invisible (syms[i].sym, current_function_name))
4c4b4cd2
PH
4867 {
4868 int j;
5b4ee69b 4869
aeb5907d 4870 for (j = i + 1; j < nsyms; j += 1)
76a01679 4871 syms[j - 1] = syms[j];
4c4b4cd2
PH
4872 nsyms -= 1;
4873 }
4874 else
4875 i += 1;
4876 }
4877
4878 return nsyms;
4879}
4880
339c13b6
JB
4881/* Add to OBSTACKP all symbols from BLOCK (and its super-blocks)
4882 whose name and domain match NAME and DOMAIN respectively.
4883 If no match was found, then extend the search to "enclosing"
4884 routines (in other words, if we're inside a nested function,
4885 search the symbols defined inside the enclosing functions).
d0a8ab18
JB
4886 If WILD_MATCH_P is nonzero, perform the naming matching in
4887 "wild" mode (see function "wild_match" for more info).
339c13b6
JB
4888
4889 Note: This function assumes that OBSTACKP has 0 (zero) element in it. */
4890
4891static void
4892ada_add_local_symbols (struct obstack *obstackp, const char *name,
4893 struct block *block, domain_enum domain,
d0a8ab18 4894 int wild_match_p)
339c13b6
JB
4895{
4896 int block_depth = 0;
4897
4898 while (block != NULL)
4899 {
4900 block_depth += 1;
d0a8ab18
JB
4901 ada_add_block_symbols (obstackp, block, name, domain, NULL,
4902 wild_match_p);
339c13b6
JB
4903
4904 /* If we found a non-function match, assume that's the one. */
4905 if (is_nonfunction (defns_collected (obstackp, 0),
4906 num_defns_collected (obstackp)))
4907 return;
4908
4909 block = BLOCK_SUPERBLOCK (block);
4910 }
4911
4912 /* If no luck so far, try to find NAME as a local symbol in some lexically
4913 enclosing subprogram. */
4914 if (num_defns_collected (obstackp) == 0 && block_depth > 2)
d0a8ab18 4915 add_symbols_from_enclosing_procs (obstackp, name, domain, wild_match_p);
339c13b6
JB
4916}
4917
ccefe4c4 4918/* An object of this type is used as the user_data argument when
40658b94 4919 calling the map_matching_symbols method. */
ccefe4c4 4920
40658b94 4921struct match_data
ccefe4c4 4922{
40658b94 4923 struct objfile *objfile;
ccefe4c4 4924 struct obstack *obstackp;
40658b94
PH
4925 struct symbol *arg_sym;
4926 int found_sym;
ccefe4c4
TT
4927};
4928
40658b94
PH
4929/* A callback for add_matching_symbols that adds SYM, found in BLOCK,
4930 to a list of symbols. DATA0 is a pointer to a struct match_data *
4931 containing the obstack that collects the symbol list, the file that SYM
4932 must come from, a flag indicating whether a non-argument symbol has
4933 been found in the current block, and the last argument symbol
4934 passed in SYM within the current block (if any). When SYM is null,
4935 marking the end of a block, the argument symbol is added if no
4936 other has been found. */
ccefe4c4 4937
40658b94
PH
4938static int
4939aux_add_nonlocal_symbols (struct block *block, struct symbol *sym, void *data0)
ccefe4c4 4940{
40658b94
PH
4941 struct match_data *data = (struct match_data *) data0;
4942
4943 if (sym == NULL)
4944 {
4945 if (!data->found_sym && data->arg_sym != NULL)
4946 add_defn_to_vec (data->obstackp,
4947 fixup_symbol_section (data->arg_sym, data->objfile),
4948 block);
4949 data->found_sym = 0;
4950 data->arg_sym = NULL;
4951 }
4952 else
4953 {
4954 if (SYMBOL_CLASS (sym) == LOC_UNRESOLVED)
4955 return 0;
4956 else if (SYMBOL_IS_ARGUMENT (sym))
4957 data->arg_sym = sym;
4958 else
4959 {
4960 data->found_sym = 1;
4961 add_defn_to_vec (data->obstackp,
4962 fixup_symbol_section (sym, data->objfile),
4963 block);
4964 }
4965 }
4966 return 0;
4967}
4968
4969/* Compare STRING1 to STRING2, with results as for strcmp.
4970 Compatible with strcmp_iw in that strcmp_iw (STRING1, STRING2) <= 0
4971 implies compare_names (STRING1, STRING2) (they may differ as to
4972 what symbols compare equal). */
5b4ee69b 4973
40658b94
PH
4974static int
4975compare_names (const char *string1, const char *string2)
4976{
4977 while (*string1 != '\0' && *string2 != '\0')
4978 {
4979 if (isspace (*string1) || isspace (*string2))
4980 return strcmp_iw_ordered (string1, string2);
4981 if (*string1 != *string2)
4982 break;
4983 string1 += 1;
4984 string2 += 1;
4985 }
4986 switch (*string1)
4987 {
4988 case '(':
4989 return strcmp_iw_ordered (string1, string2);
4990 case '_':
4991 if (*string2 == '\0')
4992 {
052874e8 4993 if (is_name_suffix (string1))
40658b94
PH
4994 return 0;
4995 else
1a1d5513 4996 return 1;
40658b94 4997 }
dbb8534f 4998 /* FALLTHROUGH */
40658b94
PH
4999 default:
5000 if (*string2 == '(')
5001 return strcmp_iw_ordered (string1, string2);
5002 else
5003 return *string1 - *string2;
5004 }
ccefe4c4
TT
5005}
5006
339c13b6
JB
5007/* Add to OBSTACKP all non-local symbols whose name and domain match
5008 NAME and DOMAIN respectively. The search is performed on GLOBAL_BLOCK
5009 symbols if GLOBAL is non-zero, or on STATIC_BLOCK symbols otherwise. */
5010
5011static void
40658b94
PH
5012add_nonlocal_symbols (struct obstack *obstackp, const char *name,
5013 domain_enum domain, int global,
5014 int is_wild_match)
339c13b6
JB
5015{
5016 struct objfile *objfile;
40658b94 5017 struct match_data data;
339c13b6 5018
6475f2fe 5019 memset (&data, 0, sizeof data);
ccefe4c4 5020 data.obstackp = obstackp;
339c13b6 5021
ccefe4c4 5022 ALL_OBJFILES (objfile)
40658b94
PH
5023 {
5024 data.objfile = objfile;
5025
5026 if (is_wild_match)
5027 objfile->sf->qf->map_matching_symbols (name, domain, objfile, global,
5028 aux_add_nonlocal_symbols, &data,
5029 wild_match, NULL);
5030 else
5031 objfile->sf->qf->map_matching_symbols (name, domain, objfile, global,
5032 aux_add_nonlocal_symbols, &data,
5033 full_match, compare_names);
5034 }
5035
5036 if (num_defns_collected (obstackp) == 0 && global && !is_wild_match)
5037 {
5038 ALL_OBJFILES (objfile)
5039 {
5040 char *name1 = alloca (strlen (name) + sizeof ("_ada_"));
5041 strcpy (name1, "_ada_");
5042 strcpy (name1 + sizeof ("_ada_") - 1, name);
5043 data.objfile = objfile;
0963b4bd
MS
5044 objfile->sf->qf->map_matching_symbols (name1, domain,
5045 objfile, global,
5046 aux_add_nonlocal_symbols,
5047 &data,
40658b94
PH
5048 full_match, compare_names);
5049 }
5050 }
339c13b6
JB
5051}
5052
4c4b4cd2 5053/* Find symbols in DOMAIN matching NAME0, in BLOCK0 and enclosing
9f88c959
JB
5054 scope and in global scopes, returning the number of matches.
5055 Sets *RESULTS to point to a vector of (SYM,BLOCK) tuples,
4c4b4cd2 5056 indicating the symbols found and the blocks and symbol tables (if
9f88c959
JB
5057 any) in which they were found. This vector are transient---good only to
5058 the next call of ada_lookup_symbol_list. Any non-function/non-enumeral
4c4b4cd2
PH
5059 symbol match within the nest of blocks whose innermost member is BLOCK0,
5060 is the one match returned (no other matches in that or
d9680e73
TT
5061 enclosing blocks is returned). If there are any matches in or
5062 surrounding BLOCK0, then these alone are returned. Otherwise, if
5063 FULL_SEARCH is non-zero, then the search extends to global and
5064 file-scope (static) symbol tables.
9f88c959 5065 Names prefixed with "standard__" are handled specially: "standard__"
4c4b4cd2 5066 is first stripped off, and only static and global symbols are searched. */
14f9c5c9
AS
5067
5068int
4c4b4cd2 5069ada_lookup_symbol_list (const char *name0, const struct block *block0,
d9680e73
TT
5070 domain_enum namespace,
5071 struct ada_symbol_info **results,
5072 int full_search)
14f9c5c9
AS
5073{
5074 struct symbol *sym;
14f9c5c9 5075 struct block *block;
4c4b4cd2 5076 const char *name;
82ccd55e 5077 const int wild_match_p = should_use_wild_match (name0);
14f9c5c9 5078 int cacheIfUnique;
4c4b4cd2 5079 int ndefns;
14f9c5c9 5080
4c4b4cd2
PH
5081 obstack_free (&symbol_list_obstack, NULL);
5082 obstack_init (&symbol_list_obstack);
14f9c5c9 5083
14f9c5c9
AS
5084 cacheIfUnique = 0;
5085
5086 /* Search specified block and its superiors. */
5087
4c4b4cd2 5088 name = name0;
76a01679
JB
5089 block = (struct block *) block0; /* FIXME: No cast ought to be
5090 needed, but adding const will
5091 have a cascade effect. */
339c13b6
JB
5092
5093 /* Special case: If the user specifies a symbol name inside package
5094 Standard, do a non-wild matching of the symbol name without
5095 the "standard__" prefix. This was primarily introduced in order
5096 to allow the user to specifically access the standard exceptions
5097 using, for instance, Standard.Constraint_Error when Constraint_Error
5098 is ambiguous (due to the user defining its own Constraint_Error
5099 entity inside its program). */
4c4b4cd2
PH
5100 if (strncmp (name0, "standard__", sizeof ("standard__") - 1) == 0)
5101 {
4c4b4cd2
PH
5102 block = NULL;
5103 name = name0 + sizeof ("standard__") - 1;
5104 }
5105
339c13b6 5106 /* Check the non-global symbols. If we have ANY match, then we're done. */
14f9c5c9 5107
339c13b6 5108 ada_add_local_symbols (&symbol_list_obstack, name, block, namespace,
82ccd55e 5109 wild_match_p);
d9680e73 5110 if (num_defns_collected (&symbol_list_obstack) > 0 || !full_search)
14f9c5c9 5111 goto done;
d2e4a39e 5112
339c13b6
JB
5113 /* No non-global symbols found. Check our cache to see if we have
5114 already performed this search before. If we have, then return
5115 the same result. */
5116
14f9c5c9 5117 cacheIfUnique = 1;
2570f2b7 5118 if (lookup_cached_symbol (name0, namespace, &sym, &block))
4c4b4cd2
PH
5119 {
5120 if (sym != NULL)
2570f2b7 5121 add_defn_to_vec (&symbol_list_obstack, sym, block);
4c4b4cd2
PH
5122 goto done;
5123 }
14f9c5c9 5124
339c13b6
JB
5125 /* Search symbols from all global blocks. */
5126
40658b94 5127 add_nonlocal_symbols (&symbol_list_obstack, name, namespace, 1,
82ccd55e 5128 wild_match_p);
d2e4a39e 5129
4c4b4cd2 5130 /* Now add symbols from all per-file blocks if we've gotten no hits
339c13b6 5131 (not strictly correct, but perhaps better than an error). */
d2e4a39e 5132
4c4b4cd2 5133 if (num_defns_collected (&symbol_list_obstack) == 0)
40658b94 5134 add_nonlocal_symbols (&symbol_list_obstack, name, namespace, 0,
82ccd55e 5135 wild_match_p);
14f9c5c9 5136
4c4b4cd2
PH
5137done:
5138 ndefns = num_defns_collected (&symbol_list_obstack);
5139 *results = defns_collected (&symbol_list_obstack, 1);
5140
5141 ndefns = remove_extra_symbols (*results, ndefns);
5142
2ad01556 5143 if (ndefns == 0 && full_search)
2570f2b7 5144 cache_symbol (name0, namespace, NULL, NULL);
14f9c5c9 5145
2ad01556 5146 if (ndefns == 1 && full_search && cacheIfUnique)
2570f2b7 5147 cache_symbol (name0, namespace, (*results)[0].sym, (*results)[0].block);
14f9c5c9 5148
aeb5907d 5149 ndefns = remove_irrelevant_renamings (*results, ndefns, block0);
14f9c5c9 5150
14f9c5c9
AS
5151 return ndefns;
5152}
5153
f8eba3c6
TT
5154/* If NAME is the name of an entity, return a string that should
5155 be used to look that entity up in Ada units. This string should
5156 be deallocated after use using xfree.
5157
5158 NAME can have any form that the "break" or "print" commands might
5159 recognize. In other words, it does not have to be the "natural"
5160 name, or the "encoded" name. */
5161
5162char *
5163ada_name_for_lookup (const char *name)
5164{
5165 char *canon;
5166 int nlen = strlen (name);
5167
5168 if (name[0] == '<' && name[nlen - 1] == '>')
5169 {
5170 canon = xmalloc (nlen - 1);
5171 memcpy (canon, name + 1, nlen - 2);
5172 canon[nlen - 2] = '\0';
5173 }
5174 else
5175 canon = xstrdup (ada_encode (ada_fold_name (name)));
5176 return canon;
5177}
5178
5179/* Implementation of the la_iterate_over_symbols method. */
5180
5181static void
5182ada_iterate_over_symbols (const struct block *block,
5183 const char *name, domain_enum domain,
8e704927 5184 symbol_found_callback_ftype *callback,
f8eba3c6
TT
5185 void *data)
5186{
5187 int ndefs, i;
5188 struct ada_symbol_info *results;
5189
d9680e73 5190 ndefs = ada_lookup_symbol_list (name, block, domain, &results, 0);
f8eba3c6
TT
5191 for (i = 0; i < ndefs; ++i)
5192 {
5193 if (! (*callback) (results[i].sym, data))
5194 break;
5195 }
5196}
5197
4e5c77fe
JB
5198/* The result is as for ada_lookup_symbol_list with FULL_SEARCH set
5199 to 1, but choosing the first symbol found if there are multiple
5200 choices.
5201
5e2336be
JB
5202 The result is stored in *INFO, which must be non-NULL.
5203 If no match is found, INFO->SYM is set to NULL. */
4e5c77fe
JB
5204
5205void
5206ada_lookup_encoded_symbol (const char *name, const struct block *block,
5207 domain_enum namespace,
5e2336be 5208 struct ada_symbol_info *info)
14f9c5c9 5209{
4c4b4cd2 5210 struct ada_symbol_info *candidates;
14f9c5c9
AS
5211 int n_candidates;
5212
5e2336be
JB
5213 gdb_assert (info != NULL);
5214 memset (info, 0, sizeof (struct ada_symbol_info));
4e5c77fe
JB
5215
5216 n_candidates = ada_lookup_symbol_list (name, block, namespace, &candidates,
d9680e73 5217 1);
14f9c5c9
AS
5218
5219 if (n_candidates == 0)
4e5c77fe 5220 return;
4c4b4cd2 5221
5e2336be
JB
5222 *info = candidates[0];
5223 info->sym = fixup_symbol_section (info->sym, NULL);
4e5c77fe 5224}
aeb5907d
JB
5225
5226/* Return a symbol in DOMAIN matching NAME, in BLOCK0 and enclosing
5227 scope and in global scopes, or NULL if none. NAME is folded and
5228 encoded first. Otherwise, the result is as for ada_lookup_symbol_list,
0963b4bd 5229 choosing the first symbol if there are multiple choices.
4e5c77fe
JB
5230 If IS_A_FIELD_OF_THIS is not NULL, it is set to zero. */
5231
aeb5907d
JB
5232struct symbol *
5233ada_lookup_symbol (const char *name, const struct block *block0,
21b556f4 5234 domain_enum namespace, int *is_a_field_of_this)
aeb5907d 5235{
5e2336be 5236 struct ada_symbol_info info;
4e5c77fe 5237
aeb5907d
JB
5238 if (is_a_field_of_this != NULL)
5239 *is_a_field_of_this = 0;
5240
4e5c77fe 5241 ada_lookup_encoded_symbol (ada_encode (ada_fold_name (name)),
5e2336be
JB
5242 block0, namespace, &info);
5243 return info.sym;
4c4b4cd2 5244}
14f9c5c9 5245
4c4b4cd2
PH
5246static struct symbol *
5247ada_lookup_symbol_nonlocal (const char *name,
76a01679 5248 const struct block *block,
21b556f4 5249 const domain_enum domain)
4c4b4cd2 5250{
94af9270 5251 return ada_lookup_symbol (name, block_static_block (block), domain, NULL);
14f9c5c9
AS
5252}
5253
5254
4c4b4cd2
PH
5255/* True iff STR is a possible encoded suffix of a normal Ada name
5256 that is to be ignored for matching purposes. Suffixes of parallel
5257 names (e.g., XVE) are not included here. Currently, the possible suffixes
5823c3ef 5258 are given by any of the regular expressions:
4c4b4cd2 5259
babe1480
JB
5260 [.$][0-9]+ [nested subprogram suffix, on platforms such as GNU/Linux]
5261 ___[0-9]+ [nested subprogram suffix, on platforms such as HP/UX]
9ac7f98e 5262 TKB [subprogram suffix for task bodies]
babe1480 5263 _E[0-9]+[bs]$ [protected object entry suffixes]
61ee279c 5264 (X[nb]*)?((\$|__)[0-9](_?[0-9]+)|___(JM|LJM|X([FDBUP].*|R[^T]?)))?$
babe1480
JB
5265
5266 Also, any leading "__[0-9]+" sequence is skipped before the suffix
5267 match is performed. This sequence is used to differentiate homonyms,
5268 is an optional part of a valid name suffix. */
4c4b4cd2 5269
14f9c5c9 5270static int
d2e4a39e 5271is_name_suffix (const char *str)
14f9c5c9
AS
5272{
5273 int k;
4c4b4cd2
PH
5274 const char *matching;
5275 const int len = strlen (str);
5276
babe1480
JB
5277 /* Skip optional leading __[0-9]+. */
5278
4c4b4cd2
PH
5279 if (len > 3 && str[0] == '_' && str[1] == '_' && isdigit (str[2]))
5280 {
babe1480
JB
5281 str += 3;
5282 while (isdigit (str[0]))
5283 str += 1;
4c4b4cd2 5284 }
babe1480
JB
5285
5286 /* [.$][0-9]+ */
4c4b4cd2 5287
babe1480 5288 if (str[0] == '.' || str[0] == '$')
4c4b4cd2 5289 {
babe1480 5290 matching = str + 1;
4c4b4cd2
PH
5291 while (isdigit (matching[0]))
5292 matching += 1;
5293 if (matching[0] == '\0')
5294 return 1;
5295 }
5296
5297 /* ___[0-9]+ */
babe1480 5298
4c4b4cd2
PH
5299 if (len > 3 && str[0] == '_' && str[1] == '_' && str[2] == '_')
5300 {
5301 matching = str + 3;
5302 while (isdigit (matching[0]))
5303 matching += 1;
5304 if (matching[0] == '\0')
5305 return 1;
5306 }
5307
9ac7f98e
JB
5308 /* "TKB" suffixes are used for subprograms implementing task bodies. */
5309
5310 if (strcmp (str, "TKB") == 0)
5311 return 1;
5312
529cad9c
PH
5313#if 0
5314 /* FIXME: brobecker/2005-09-23: Protected Object subprograms end
0963b4bd
MS
5315 with a N at the end. Unfortunately, the compiler uses the same
5316 convention for other internal types it creates. So treating
529cad9c 5317 all entity names that end with an "N" as a name suffix causes
0963b4bd
MS
5318 some regressions. For instance, consider the case of an enumerated
5319 type. To support the 'Image attribute, it creates an array whose
529cad9c
PH
5320 name ends with N.
5321 Having a single character like this as a suffix carrying some
0963b4bd 5322 information is a bit risky. Perhaps we should change the encoding
529cad9c
PH
5323 to be something like "_N" instead. In the meantime, do not do
5324 the following check. */
5325 /* Protected Object Subprograms */
5326 if (len == 1 && str [0] == 'N')
5327 return 1;
5328#endif
5329
5330 /* _E[0-9]+[bs]$ */
5331 if (len > 3 && str[0] == '_' && str [1] == 'E' && isdigit (str[2]))
5332 {
5333 matching = str + 3;
5334 while (isdigit (matching[0]))
5335 matching += 1;
5336 if ((matching[0] == 'b' || matching[0] == 's')
5337 && matching [1] == '\0')
5338 return 1;
5339 }
5340
4c4b4cd2
PH
5341 /* ??? We should not modify STR directly, as we are doing below. This
5342 is fine in this case, but may become problematic later if we find
5343 that this alternative did not work, and want to try matching
5344 another one from the begining of STR. Since we modified it, we
5345 won't be able to find the begining of the string anymore! */
14f9c5c9
AS
5346 if (str[0] == 'X')
5347 {
5348 str += 1;
d2e4a39e 5349 while (str[0] != '_' && str[0] != '\0')
4c4b4cd2
PH
5350 {
5351 if (str[0] != 'n' && str[0] != 'b')
5352 return 0;
5353 str += 1;
5354 }
14f9c5c9 5355 }
babe1480 5356
14f9c5c9
AS
5357 if (str[0] == '\000')
5358 return 1;
babe1480 5359
d2e4a39e 5360 if (str[0] == '_')
14f9c5c9
AS
5361 {
5362 if (str[1] != '_' || str[2] == '\000')
4c4b4cd2 5363 return 0;
d2e4a39e 5364 if (str[2] == '_')
4c4b4cd2 5365 {
61ee279c
PH
5366 if (strcmp (str + 3, "JM") == 0)
5367 return 1;
5368 /* FIXME: brobecker/2004-09-30: GNAT will soon stop using
5369 the LJM suffix in favor of the JM one. But we will
5370 still accept LJM as a valid suffix for a reasonable
5371 amount of time, just to allow ourselves to debug programs
5372 compiled using an older version of GNAT. */
4c4b4cd2
PH
5373 if (strcmp (str + 3, "LJM") == 0)
5374 return 1;
5375 if (str[3] != 'X')
5376 return 0;
1265e4aa
JB
5377 if (str[4] == 'F' || str[4] == 'D' || str[4] == 'B'
5378 || str[4] == 'U' || str[4] == 'P')
4c4b4cd2
PH
5379 return 1;
5380 if (str[4] == 'R' && str[5] != 'T')
5381 return 1;
5382 return 0;
5383 }
5384 if (!isdigit (str[2]))
5385 return 0;
5386 for (k = 3; str[k] != '\0'; k += 1)
5387 if (!isdigit (str[k]) && str[k] != '_')
5388 return 0;
14f9c5c9
AS
5389 return 1;
5390 }
4c4b4cd2 5391 if (str[0] == '$' && isdigit (str[1]))
14f9c5c9 5392 {
4c4b4cd2
PH
5393 for (k = 2; str[k] != '\0'; k += 1)
5394 if (!isdigit (str[k]) && str[k] != '_')
5395 return 0;
14f9c5c9
AS
5396 return 1;
5397 }
5398 return 0;
5399}
d2e4a39e 5400
aeb5907d
JB
5401/* Return non-zero if the string starting at NAME and ending before
5402 NAME_END contains no capital letters. */
529cad9c
PH
5403
5404static int
5405is_valid_name_for_wild_match (const char *name0)
5406{
5407 const char *decoded_name = ada_decode (name0);
5408 int i;
5409
5823c3ef
JB
5410 /* If the decoded name starts with an angle bracket, it means that
5411 NAME0 does not follow the GNAT encoding format. It should then
5412 not be allowed as a possible wild match. */
5413 if (decoded_name[0] == '<')
5414 return 0;
5415
529cad9c
PH
5416 for (i=0; decoded_name[i] != '\0'; i++)
5417 if (isalpha (decoded_name[i]) && !islower (decoded_name[i]))
5418 return 0;
5419
5420 return 1;
5421}
5422
73589123
PH
5423/* Advance *NAMEP to next occurrence of TARGET0 in the string NAME0
5424 that could start a simple name. Assumes that *NAMEP points into
5425 the string beginning at NAME0. */
4c4b4cd2 5426
14f9c5c9 5427static int
73589123 5428advance_wild_match (const char **namep, const char *name0, int target0)
14f9c5c9 5429{
73589123 5430 const char *name = *namep;
5b4ee69b 5431
5823c3ef 5432 while (1)
14f9c5c9 5433 {
aa27d0b3 5434 int t0, t1;
73589123
PH
5435
5436 t0 = *name;
5437 if (t0 == '_')
5438 {
5439 t1 = name[1];
5440 if ((t1 >= 'a' && t1 <= 'z') || (t1 >= '0' && t1 <= '9'))
5441 {
5442 name += 1;
5443 if (name == name0 + 5 && strncmp (name0, "_ada", 4) == 0)
5444 break;
5445 else
5446 name += 1;
5447 }
aa27d0b3
JB
5448 else if (t1 == '_' && ((name[2] >= 'a' && name[2] <= 'z')
5449 || name[2] == target0))
73589123
PH
5450 {
5451 name += 2;
5452 break;
5453 }
5454 else
5455 return 0;
5456 }
5457 else if ((t0 >= 'a' && t0 <= 'z') || (t0 >= '0' && t0 <= '9'))
5458 name += 1;
5459 else
5823c3ef 5460 return 0;
73589123
PH
5461 }
5462
5463 *namep = name;
5464 return 1;
5465}
5466
5467/* Return 0 iff NAME encodes a name of the form prefix.PATN. Ignores any
5468 informational suffixes of NAME (i.e., for which is_name_suffix is
5469 true). Assumes that PATN is a lower-cased Ada simple name. */
5470
5471static int
5472wild_match (const char *name, const char *patn)
5473{
22e048c9 5474 const char *p;
73589123
PH
5475 const char *name0 = name;
5476
5477 while (1)
5478 {
5479 const char *match = name;
5480
5481 if (*name == *patn)
5482 {
5483 for (name += 1, p = patn + 1; *p != '\0'; name += 1, p += 1)
5484 if (*p != *name)
5485 break;
5486 if (*p == '\0' && is_name_suffix (name))
5487 return match != name0 && !is_valid_name_for_wild_match (name0);
5488
5489 if (name[-1] == '_')
5490 name -= 1;
5491 }
5492 if (!advance_wild_match (&name, name0, *patn))
5493 return 1;
96d887e8 5494 }
96d887e8
PH
5495}
5496
40658b94
PH
5497/* Returns 0 iff symbol name SYM_NAME matches SEARCH_NAME, apart from
5498 informational suffix. */
5499
c4d840bd
PH
5500static int
5501full_match (const char *sym_name, const char *search_name)
5502{
40658b94 5503 return !match_name (sym_name, search_name, 0);
c4d840bd
PH
5504}
5505
5506
96d887e8
PH
5507/* Add symbols from BLOCK matching identifier NAME in DOMAIN to
5508 vector *defn_symbols, updating the list of symbols in OBSTACKP
0963b4bd 5509 (if necessary). If WILD, treat as NAME with a wildcard prefix.
96d887e8
PH
5510 OBJFILE is the section containing BLOCK.
5511 SYMTAB is recorded with each symbol added. */
5512
5513static void
5514ada_add_block_symbols (struct obstack *obstackp,
76a01679 5515 struct block *block, const char *name,
96d887e8 5516 domain_enum domain, struct objfile *objfile,
2570f2b7 5517 int wild)
96d887e8 5518{
8157b174 5519 struct block_iterator iter;
96d887e8
PH
5520 int name_len = strlen (name);
5521 /* A matching argument symbol, if any. */
5522 struct symbol *arg_sym;
5523 /* Set true when we find a matching non-argument symbol. */
5524 int found_sym;
5525 struct symbol *sym;
5526
5527 arg_sym = NULL;
5528 found_sym = 0;
5529 if (wild)
5530 {
8157b174
TT
5531 for (sym = block_iter_match_first (block, name, wild_match, &iter);
5532 sym != NULL; sym = block_iter_match_next (name, wild_match, &iter))
76a01679 5533 {
5eeb2539
AR
5534 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
5535 SYMBOL_DOMAIN (sym), domain)
73589123 5536 && wild_match (SYMBOL_LINKAGE_NAME (sym), name) == 0)
76a01679 5537 {
2a2d4dc3
AS
5538 if (SYMBOL_CLASS (sym) == LOC_UNRESOLVED)
5539 continue;
5540 else if (SYMBOL_IS_ARGUMENT (sym))
5541 arg_sym = sym;
5542 else
5543 {
76a01679
JB
5544 found_sym = 1;
5545 add_defn_to_vec (obstackp,
5546 fixup_symbol_section (sym, objfile),
2570f2b7 5547 block);
76a01679
JB
5548 }
5549 }
5550 }
96d887e8
PH
5551 }
5552 else
5553 {
8157b174
TT
5554 for (sym = block_iter_match_first (block, name, full_match, &iter);
5555 sym != NULL; sym = block_iter_match_next (name, full_match, &iter))
76a01679 5556 {
5eeb2539
AR
5557 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
5558 SYMBOL_DOMAIN (sym), domain))
76a01679 5559 {
c4d840bd
PH
5560 if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED)
5561 {
5562 if (SYMBOL_IS_ARGUMENT (sym))
5563 arg_sym = sym;
5564 else
2a2d4dc3 5565 {
c4d840bd
PH
5566 found_sym = 1;
5567 add_defn_to_vec (obstackp,
5568 fixup_symbol_section (sym, objfile),
5569 block);
2a2d4dc3 5570 }
c4d840bd 5571 }
76a01679
JB
5572 }
5573 }
96d887e8
PH
5574 }
5575
5576 if (!found_sym && arg_sym != NULL)
5577 {
76a01679
JB
5578 add_defn_to_vec (obstackp,
5579 fixup_symbol_section (arg_sym, objfile),
2570f2b7 5580 block);
96d887e8
PH
5581 }
5582
5583 if (!wild)
5584 {
5585 arg_sym = NULL;
5586 found_sym = 0;
5587
5588 ALL_BLOCK_SYMBOLS (block, iter, sym)
76a01679 5589 {
5eeb2539
AR
5590 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
5591 SYMBOL_DOMAIN (sym), domain))
76a01679
JB
5592 {
5593 int cmp;
5594
5595 cmp = (int) '_' - (int) SYMBOL_LINKAGE_NAME (sym)[0];
5596 if (cmp == 0)
5597 {
5598 cmp = strncmp ("_ada_", SYMBOL_LINKAGE_NAME (sym), 5);
5599 if (cmp == 0)
5600 cmp = strncmp (name, SYMBOL_LINKAGE_NAME (sym) + 5,
5601 name_len);
5602 }
5603
5604 if (cmp == 0
5605 && is_name_suffix (SYMBOL_LINKAGE_NAME (sym) + name_len + 5))
5606 {
2a2d4dc3
AS
5607 if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED)
5608 {
5609 if (SYMBOL_IS_ARGUMENT (sym))
5610 arg_sym = sym;
5611 else
5612 {
5613 found_sym = 1;
5614 add_defn_to_vec (obstackp,
5615 fixup_symbol_section (sym, objfile),
5616 block);
5617 }
5618 }
76a01679
JB
5619 }
5620 }
76a01679 5621 }
96d887e8
PH
5622
5623 /* NOTE: This really shouldn't be needed for _ada_ symbols.
5624 They aren't parameters, right? */
5625 if (!found_sym && arg_sym != NULL)
5626 {
5627 add_defn_to_vec (obstackp,
76a01679 5628 fixup_symbol_section (arg_sym, objfile),
2570f2b7 5629 block);
96d887e8
PH
5630 }
5631 }
5632}
5633\f
41d27058
JB
5634
5635 /* Symbol Completion */
5636
5637/* If SYM_NAME is a completion candidate for TEXT, return this symbol
5638 name in a form that's appropriate for the completion. The result
5639 does not need to be deallocated, but is only good until the next call.
5640
5641 TEXT_LEN is equal to the length of TEXT.
e701b3c0 5642 Perform a wild match if WILD_MATCH_P is set.
6ea35997 5643 ENCODED_P should be set if TEXT represents the start of a symbol name
41d27058
JB
5644 in its encoded form. */
5645
5646static const char *
5647symbol_completion_match (const char *sym_name,
5648 const char *text, int text_len,
6ea35997 5649 int wild_match_p, int encoded_p)
41d27058 5650{
41d27058
JB
5651 const int verbatim_match = (text[0] == '<');
5652 int match = 0;
5653
5654 if (verbatim_match)
5655 {
5656 /* Strip the leading angle bracket. */
5657 text = text + 1;
5658 text_len--;
5659 }
5660
5661 /* First, test against the fully qualified name of the symbol. */
5662
5663 if (strncmp (sym_name, text, text_len) == 0)
5664 match = 1;
5665
6ea35997 5666 if (match && !encoded_p)
41d27058
JB
5667 {
5668 /* One needed check before declaring a positive match is to verify
5669 that iff we are doing a verbatim match, the decoded version
5670 of the symbol name starts with '<'. Otherwise, this symbol name
5671 is not a suitable completion. */
5672 const char *sym_name_copy = sym_name;
5673 int has_angle_bracket;
5674
5675 sym_name = ada_decode (sym_name);
5676 has_angle_bracket = (sym_name[0] == '<');
5677 match = (has_angle_bracket == verbatim_match);
5678 sym_name = sym_name_copy;
5679 }
5680
5681 if (match && !verbatim_match)
5682 {
5683 /* When doing non-verbatim match, another check that needs to
5684 be done is to verify that the potentially matching symbol name
5685 does not include capital letters, because the ada-mode would
5686 not be able to understand these symbol names without the
5687 angle bracket notation. */
5688 const char *tmp;
5689
5690 for (tmp = sym_name; *tmp != '\0' && !isupper (*tmp); tmp++);
5691 if (*tmp != '\0')
5692 match = 0;
5693 }
5694
5695 /* Second: Try wild matching... */
5696
e701b3c0 5697 if (!match && wild_match_p)
41d27058
JB
5698 {
5699 /* Since we are doing wild matching, this means that TEXT
5700 may represent an unqualified symbol name. We therefore must
5701 also compare TEXT against the unqualified name of the symbol. */
5702 sym_name = ada_unqualified_name (ada_decode (sym_name));
5703
5704 if (strncmp (sym_name, text, text_len) == 0)
5705 match = 1;
5706 }
5707
5708 /* Finally: If we found a mach, prepare the result to return. */
5709
5710 if (!match)
5711 return NULL;
5712
5713 if (verbatim_match)
5714 sym_name = add_angle_brackets (sym_name);
5715
6ea35997 5716 if (!encoded_p)
41d27058
JB
5717 sym_name = ada_decode (sym_name);
5718
5719 return sym_name;
5720}
5721
5722/* A companion function to ada_make_symbol_completion_list().
5723 Check if SYM_NAME represents a symbol which name would be suitable
5724 to complete TEXT (TEXT_LEN is the length of TEXT), in which case
5725 it is appended at the end of the given string vector SV.
5726
5727 ORIG_TEXT is the string original string from the user command
5728 that needs to be completed. WORD is the entire command on which
5729 completion should be performed. These two parameters are used to
5730 determine which part of the symbol name should be added to the
5731 completion vector.
c0af1706 5732 if WILD_MATCH_P is set, then wild matching is performed.
cb8e9b97 5733 ENCODED_P should be set if TEXT represents a symbol name in its
41d27058
JB
5734 encoded formed (in which case the completion should also be
5735 encoded). */
5736
5737static void
d6565258 5738symbol_completion_add (VEC(char_ptr) **sv,
41d27058
JB
5739 const char *sym_name,
5740 const char *text, int text_len,
5741 const char *orig_text, const char *word,
cb8e9b97 5742 int wild_match_p, int encoded_p)
41d27058
JB
5743{
5744 const char *match = symbol_completion_match (sym_name, text, text_len,
cb8e9b97 5745 wild_match_p, encoded_p);
41d27058
JB
5746 char *completion;
5747
5748 if (match == NULL)
5749 return;
5750
5751 /* We found a match, so add the appropriate completion to the given
5752 string vector. */
5753
5754 if (word == orig_text)
5755 {
5756 completion = xmalloc (strlen (match) + 5);
5757 strcpy (completion, match);
5758 }
5759 else if (word > orig_text)
5760 {
5761 /* Return some portion of sym_name. */
5762 completion = xmalloc (strlen (match) + 5);
5763 strcpy (completion, match + (word - orig_text));
5764 }
5765 else
5766 {
5767 /* Return some of ORIG_TEXT plus sym_name. */
5768 completion = xmalloc (strlen (match) + (orig_text - word) + 5);
5769 strncpy (completion, word, orig_text - word);
5770 completion[orig_text - word] = '\0';
5771 strcat (completion, match);
5772 }
5773
d6565258 5774 VEC_safe_push (char_ptr, *sv, completion);
41d27058
JB
5775}
5776
ccefe4c4 5777/* An object of this type is passed as the user_data argument to the
7b08b9eb 5778 expand_partial_symbol_names method. */
ccefe4c4
TT
5779struct add_partial_datum
5780{
5781 VEC(char_ptr) **completions;
5782 char *text;
5783 int text_len;
5784 char *text0;
5785 char *word;
5786 int wild_match;
5787 int encoded;
5788};
5789
7b08b9eb
JK
5790/* A callback for expand_partial_symbol_names. */
5791static int
e078317b 5792ada_expand_partial_symbol_name (const char *name, void *user_data)
ccefe4c4
TT
5793{
5794 struct add_partial_datum *data = user_data;
7b08b9eb
JK
5795
5796 return symbol_completion_match (name, data->text, data->text_len,
5797 data->wild_match, data->encoded) != NULL;
ccefe4c4
TT
5798}
5799
49c4e619
TT
5800/* Return a list of possible symbol names completing TEXT0. WORD is
5801 the entire command on which completion is made. */
41d27058 5802
49c4e619 5803static VEC (char_ptr) *
2f68a895 5804ada_make_symbol_completion_list (char *text0, char *word, enum type_code code)
41d27058
JB
5805{
5806 char *text;
5807 int text_len;
b1ed564a
JB
5808 int wild_match_p;
5809 int encoded_p;
2ba95b9b 5810 VEC(char_ptr) *completions = VEC_alloc (char_ptr, 128);
41d27058
JB
5811 struct symbol *sym;
5812 struct symtab *s;
41d27058
JB
5813 struct minimal_symbol *msymbol;
5814 struct objfile *objfile;
5815 struct block *b, *surrounding_static_block = 0;
5816 int i;
8157b174 5817 struct block_iterator iter;
41d27058 5818
2f68a895
TT
5819 gdb_assert (code == TYPE_CODE_UNDEF);
5820
41d27058
JB
5821 if (text0[0] == '<')
5822 {
5823 text = xstrdup (text0);
5824 make_cleanup (xfree, text);
5825 text_len = strlen (text);
b1ed564a
JB
5826 wild_match_p = 0;
5827 encoded_p = 1;
41d27058
JB
5828 }
5829 else
5830 {
5831 text = xstrdup (ada_encode (text0));
5832 make_cleanup (xfree, text);
5833 text_len = strlen (text);
5834 for (i = 0; i < text_len; i++)
5835 text[i] = tolower (text[i]);
5836
b1ed564a 5837 encoded_p = (strstr (text0, "__") != NULL);
41d27058
JB
5838 /* If the name contains a ".", then the user is entering a fully
5839 qualified entity name, and the match must not be done in wild
5840 mode. Similarly, if the user wants to complete what looks like
5841 an encoded name, the match must not be done in wild mode. */
b1ed564a 5842 wild_match_p = (strchr (text0, '.') == NULL && !encoded_p);
41d27058
JB
5843 }
5844
5845 /* First, look at the partial symtab symbols. */
41d27058 5846 {
ccefe4c4
TT
5847 struct add_partial_datum data;
5848
5849 data.completions = &completions;
5850 data.text = text;
5851 data.text_len = text_len;
5852 data.text0 = text0;
5853 data.word = word;
b1ed564a
JB
5854 data.wild_match = wild_match_p;
5855 data.encoded = encoded_p;
7b08b9eb 5856 expand_partial_symbol_names (ada_expand_partial_symbol_name, &data);
41d27058
JB
5857 }
5858
5859 /* At this point scan through the misc symbol vectors and add each
5860 symbol you find to the list. Eventually we want to ignore
5861 anything that isn't a text symbol (everything else will be
5862 handled by the psymtab code above). */
5863
5864 ALL_MSYMBOLS (objfile, msymbol)
5865 {
5866 QUIT;
d6565258 5867 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (msymbol),
b1ed564a
JB
5868 text, text_len, text0, word, wild_match_p,
5869 encoded_p);
41d27058
JB
5870 }
5871
5872 /* Search upwards from currently selected frame (so that we can
5873 complete on local vars. */
5874
5875 for (b = get_selected_block (0); b != NULL; b = BLOCK_SUPERBLOCK (b))
5876 {
5877 if (!BLOCK_SUPERBLOCK (b))
5878 surrounding_static_block = b; /* For elmin of dups */
5879
5880 ALL_BLOCK_SYMBOLS (b, iter, sym)
5881 {
d6565258 5882 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym),
41d27058 5883 text, text_len, text0, word,
b1ed564a 5884 wild_match_p, encoded_p);
41d27058
JB
5885 }
5886 }
5887
5888 /* Go through the symtabs and check the externs and statics for
5889 symbols which match. */
5890
5891 ALL_SYMTABS (objfile, s)
5892 {
5893 QUIT;
5894 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), GLOBAL_BLOCK);
5895 ALL_BLOCK_SYMBOLS (b, iter, sym)
5896 {
d6565258 5897 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym),
41d27058 5898 text, text_len, text0, word,
b1ed564a 5899 wild_match_p, encoded_p);
41d27058
JB
5900 }
5901 }
5902
5903 ALL_SYMTABS (objfile, s)
5904 {
5905 QUIT;
5906 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), STATIC_BLOCK);
5907 /* Don't do this block twice. */
5908 if (b == surrounding_static_block)
5909 continue;
5910 ALL_BLOCK_SYMBOLS (b, iter, sym)
5911 {
d6565258 5912 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym),
41d27058 5913 text, text_len, text0, word,
b1ed564a 5914 wild_match_p, encoded_p);
41d27058
JB
5915 }
5916 }
5917
49c4e619 5918 return completions;
41d27058
JB
5919}
5920
963a6417 5921 /* Field Access */
96d887e8 5922
73fb9985
JB
5923/* Return non-zero if TYPE is a pointer to the GNAT dispatch table used
5924 for tagged types. */
5925
5926static int
5927ada_is_dispatch_table_ptr_type (struct type *type)
5928{
0d5cff50 5929 const char *name;
73fb9985
JB
5930
5931 if (TYPE_CODE (type) != TYPE_CODE_PTR)
5932 return 0;
5933
5934 name = TYPE_NAME (TYPE_TARGET_TYPE (type));
5935 if (name == NULL)
5936 return 0;
5937
5938 return (strcmp (name, "ada__tags__dispatch_table") == 0);
5939}
5940
ac4a2da4
JG
5941/* Return non-zero if TYPE is an interface tag. */
5942
5943static int
5944ada_is_interface_tag (struct type *type)
5945{
5946 const char *name = TYPE_NAME (type);
5947
5948 if (name == NULL)
5949 return 0;
5950
5951 return (strcmp (name, "ada__tags__interface_tag") == 0);
5952}
5953
963a6417
PH
5954/* True if field number FIELD_NUM in struct or union type TYPE is supposed
5955 to be invisible to users. */
96d887e8 5956
963a6417
PH
5957int
5958ada_is_ignored_field (struct type *type, int field_num)
96d887e8 5959{
963a6417
PH
5960 if (field_num < 0 || field_num > TYPE_NFIELDS (type))
5961 return 1;
ffde82bf 5962
73fb9985
JB
5963 /* Check the name of that field. */
5964 {
5965 const char *name = TYPE_FIELD_NAME (type, field_num);
5966
5967 /* Anonymous field names should not be printed.
5968 brobecker/2007-02-20: I don't think this can actually happen
5969 but we don't want to print the value of annonymous fields anyway. */
5970 if (name == NULL)
5971 return 1;
5972
ffde82bf
JB
5973 /* Normally, fields whose name start with an underscore ("_")
5974 are fields that have been internally generated by the compiler,
5975 and thus should not be printed. The "_parent" field is special,
5976 however: This is a field internally generated by the compiler
5977 for tagged types, and it contains the components inherited from
5978 the parent type. This field should not be printed as is, but
5979 should not be ignored either. */
73fb9985
JB
5980 if (name[0] == '_' && strncmp (name, "_parent", 7) != 0)
5981 return 1;
5982 }
5983
ac4a2da4
JG
5984 /* If this is the dispatch table of a tagged type or an interface tag,
5985 then ignore. */
73fb9985 5986 if (ada_is_tagged_type (type, 1)
ac4a2da4
JG
5987 && (ada_is_dispatch_table_ptr_type (TYPE_FIELD_TYPE (type, field_num))
5988 || ada_is_interface_tag (TYPE_FIELD_TYPE (type, field_num))))
73fb9985
JB
5989 return 1;
5990
5991 /* Not a special field, so it should not be ignored. */
5992 return 0;
963a6417 5993}
96d887e8 5994
963a6417 5995/* True iff TYPE has a tag field. If REFOK, then TYPE may also be a
0963b4bd 5996 pointer or reference type whose ultimate target has a tag field. */
96d887e8 5997
963a6417
PH
5998int
5999ada_is_tagged_type (struct type *type, int refok)
6000{
6001 return (ada_lookup_struct_elt_type (type, "_tag", refok, 1, NULL) != NULL);
6002}
96d887e8 6003
963a6417 6004/* True iff TYPE represents the type of X'Tag */
96d887e8 6005
963a6417
PH
6006int
6007ada_is_tag_type (struct type *type)
6008{
6009 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_PTR)
6010 return 0;
6011 else
96d887e8 6012 {
963a6417 6013 const char *name = ada_type_name (TYPE_TARGET_TYPE (type));
5b4ee69b 6014
963a6417
PH
6015 return (name != NULL
6016 && strcmp (name, "ada__tags__dispatch_table") == 0);
96d887e8 6017 }
96d887e8
PH
6018}
6019
963a6417 6020/* The type of the tag on VAL. */
76a01679 6021
963a6417
PH
6022struct type *
6023ada_tag_type (struct value *val)
96d887e8 6024{
df407dfe 6025 return ada_lookup_struct_elt_type (value_type (val), "_tag", 1, 0, NULL);
963a6417 6026}
96d887e8 6027
b50d69b5
JG
6028/* Return 1 if TAG follows the old scheme for Ada tags (used for Ada 95,
6029 retired at Ada 05). */
6030
6031static int
6032is_ada95_tag (struct value *tag)
6033{
6034 return ada_value_struct_elt (tag, "tsd", 1) != NULL;
6035}
6036
963a6417 6037/* The value of the tag on VAL. */
96d887e8 6038
963a6417
PH
6039struct value *
6040ada_value_tag (struct value *val)
6041{
03ee6b2e 6042 return ada_value_struct_elt (val, "_tag", 0);
96d887e8
PH
6043}
6044
963a6417
PH
6045/* The value of the tag on the object of type TYPE whose contents are
6046 saved at VALADDR, if it is non-null, or is at memory address
0963b4bd 6047 ADDRESS. */
96d887e8 6048
963a6417 6049static struct value *
10a2c479 6050value_tag_from_contents_and_address (struct type *type,
fc1a4b47 6051 const gdb_byte *valaddr,
963a6417 6052 CORE_ADDR address)
96d887e8 6053{
b5385fc0 6054 int tag_byte_offset;
963a6417 6055 struct type *tag_type;
5b4ee69b 6056
963a6417 6057 if (find_struct_field ("_tag", type, 0, &tag_type, &tag_byte_offset,
52ce6436 6058 NULL, NULL, NULL))
96d887e8 6059 {
fc1a4b47 6060 const gdb_byte *valaddr1 = ((valaddr == NULL)
10a2c479
AC
6061 ? NULL
6062 : valaddr + tag_byte_offset);
963a6417 6063 CORE_ADDR address1 = (address == 0) ? 0 : address + tag_byte_offset;
96d887e8 6064
963a6417 6065 return value_from_contents_and_address (tag_type, valaddr1, address1);
96d887e8 6066 }
963a6417
PH
6067 return NULL;
6068}
96d887e8 6069
963a6417
PH
6070static struct type *
6071type_from_tag (struct value *tag)
6072{
6073 const char *type_name = ada_tag_name (tag);
5b4ee69b 6074
963a6417
PH
6075 if (type_name != NULL)
6076 return ada_find_any_type (ada_encode (type_name));
6077 return NULL;
6078}
96d887e8 6079
b50d69b5
JG
6080/* Given a value OBJ of a tagged type, return a value of this
6081 type at the base address of the object. The base address, as
6082 defined in Ada.Tags, it is the address of the primary tag of
6083 the object, and therefore where the field values of its full
6084 view can be fetched. */
6085
6086struct value *
6087ada_tag_value_at_base_address (struct value *obj)
6088{
6089 volatile struct gdb_exception e;
6090 struct value *val;
6091 LONGEST offset_to_top = 0;
6092 struct type *ptr_type, *obj_type;
6093 struct value *tag;
6094 CORE_ADDR base_address;
6095
6096 obj_type = value_type (obj);
6097
6098 /* It is the responsability of the caller to deref pointers. */
6099
6100 if (TYPE_CODE (obj_type) == TYPE_CODE_PTR
6101 || TYPE_CODE (obj_type) == TYPE_CODE_REF)
6102 return obj;
6103
6104 tag = ada_value_tag (obj);
6105 if (!tag)
6106 return obj;
6107
6108 /* Base addresses only appeared with Ada 05 and multiple inheritance. */
6109
6110 if (is_ada95_tag (tag))
6111 return obj;
6112
6113 ptr_type = builtin_type (target_gdbarch ())->builtin_data_ptr;
6114 ptr_type = lookup_pointer_type (ptr_type);
6115 val = value_cast (ptr_type, tag);
6116 if (!val)
6117 return obj;
6118
6119 /* It is perfectly possible that an exception be raised while
6120 trying to determine the base address, just like for the tag;
6121 see ada_tag_name for more details. We do not print the error
6122 message for the same reason. */
6123
6124 TRY_CATCH (e, RETURN_MASK_ERROR)
6125 {
6126 offset_to_top = value_as_long (value_ind (value_ptradd (val, -2)));
6127 }
6128
6129 if (e.reason < 0)
6130 return obj;
6131
6132 /* If offset is null, nothing to do. */
6133
6134 if (offset_to_top == 0)
6135 return obj;
6136
6137 /* -1 is a special case in Ada.Tags; however, what should be done
6138 is not quite clear from the documentation. So do nothing for
6139 now. */
6140
6141 if (offset_to_top == -1)
6142 return obj;
6143
6144 base_address = value_address (obj) - offset_to_top;
6145 tag = value_tag_from_contents_and_address (obj_type, NULL, base_address);
6146
6147 /* Make sure that we have a proper tag at the new address.
6148 Otherwise, offset_to_top is bogus (which can happen when
6149 the object is not initialized yet). */
6150
6151 if (!tag)
6152 return obj;
6153
6154 obj_type = type_from_tag (tag);
6155
6156 if (!obj_type)
6157 return obj;
6158
6159 return value_from_contents_and_address (obj_type, NULL, base_address);
6160}
6161
1b611343
JB
6162/* Return the "ada__tags__type_specific_data" type. */
6163
6164static struct type *
6165ada_get_tsd_type (struct inferior *inf)
963a6417 6166{
1b611343 6167 struct ada_inferior_data *data = get_ada_inferior_data (inf);
4c4b4cd2 6168
1b611343
JB
6169 if (data->tsd_type == 0)
6170 data->tsd_type = ada_find_any_type ("ada__tags__type_specific_data");
6171 return data->tsd_type;
6172}
529cad9c 6173
1b611343
JB
6174/* Return the TSD (type-specific data) associated to the given TAG.
6175 TAG is assumed to be the tag of a tagged-type entity.
529cad9c 6176
1b611343 6177 May return NULL if we are unable to get the TSD. */
4c4b4cd2 6178
1b611343
JB
6179static struct value *
6180ada_get_tsd_from_tag (struct value *tag)
4c4b4cd2 6181{
4c4b4cd2 6182 struct value *val;
1b611343 6183 struct type *type;
5b4ee69b 6184
1b611343
JB
6185 /* First option: The TSD is simply stored as a field of our TAG.
6186 Only older versions of GNAT would use this format, but we have
6187 to test it first, because there are no visible markers for
6188 the current approach except the absence of that field. */
529cad9c 6189
1b611343
JB
6190 val = ada_value_struct_elt (tag, "tsd", 1);
6191 if (val)
6192 return val;
e802dbe0 6193
1b611343
JB
6194 /* Try the second representation for the dispatch table (in which
6195 there is no explicit 'tsd' field in the referent of the tag pointer,
6196 and instead the tsd pointer is stored just before the dispatch
6197 table. */
e802dbe0 6198
1b611343
JB
6199 type = ada_get_tsd_type (current_inferior());
6200 if (type == NULL)
6201 return NULL;
6202 type = lookup_pointer_type (lookup_pointer_type (type));
6203 val = value_cast (type, tag);
6204 if (val == NULL)
6205 return NULL;
6206 return value_ind (value_ptradd (val, -1));
e802dbe0
JB
6207}
6208
1b611343
JB
6209/* Given the TSD of a tag (type-specific data), return a string
6210 containing the name of the associated type.
6211
6212 The returned value is good until the next call. May return NULL
6213 if we are unable to determine the tag name. */
6214
6215static char *
6216ada_tag_name_from_tsd (struct value *tsd)
529cad9c 6217{
529cad9c
PH
6218 static char name[1024];
6219 char *p;
1b611343 6220 struct value *val;
529cad9c 6221
1b611343 6222 val = ada_value_struct_elt (tsd, "expanded_name", 1);
4c4b4cd2 6223 if (val == NULL)
1b611343 6224 return NULL;
4c4b4cd2
PH
6225 read_memory_string (value_as_address (val), name, sizeof (name) - 1);
6226 for (p = name; *p != '\0'; p += 1)
6227 if (isalpha (*p))
6228 *p = tolower (*p);
1b611343 6229 return name;
4c4b4cd2
PH
6230}
6231
6232/* The type name of the dynamic type denoted by the 'tag value TAG, as
1b611343
JB
6233 a C string.
6234
6235 Return NULL if the TAG is not an Ada tag, or if we were unable to
6236 determine the name of that tag. The result is good until the next
6237 call. */
4c4b4cd2
PH
6238
6239const char *
6240ada_tag_name (struct value *tag)
6241{
1b611343
JB
6242 volatile struct gdb_exception e;
6243 char *name = NULL;
5b4ee69b 6244
df407dfe 6245 if (!ada_is_tag_type (value_type (tag)))
4c4b4cd2 6246 return NULL;
1b611343
JB
6247
6248 /* It is perfectly possible that an exception be raised while trying
6249 to determine the TAG's name, even under normal circumstances:
6250 The associated variable may be uninitialized or corrupted, for
6251 instance. We do not let any exception propagate past this point.
6252 instead we return NULL.
6253
6254 We also do not print the error message either (which often is very
6255 low-level (Eg: "Cannot read memory at 0x[...]"), but instead let
6256 the caller print a more meaningful message if necessary. */
6257 TRY_CATCH (e, RETURN_MASK_ERROR)
6258 {
6259 struct value *tsd = ada_get_tsd_from_tag (tag);
6260
6261 if (tsd != NULL)
6262 name = ada_tag_name_from_tsd (tsd);
6263 }
6264
6265 return name;
4c4b4cd2
PH
6266}
6267
6268/* The parent type of TYPE, or NULL if none. */
14f9c5c9 6269
d2e4a39e 6270struct type *
ebf56fd3 6271ada_parent_type (struct type *type)
14f9c5c9
AS
6272{
6273 int i;
6274
61ee279c 6275 type = ada_check_typedef (type);
14f9c5c9
AS
6276
6277 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT)
6278 return NULL;
6279
6280 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
6281 if (ada_is_parent_field (type, i))
0c1f74cf
JB
6282 {
6283 struct type *parent_type = TYPE_FIELD_TYPE (type, i);
6284
6285 /* If the _parent field is a pointer, then dereference it. */
6286 if (TYPE_CODE (parent_type) == TYPE_CODE_PTR)
6287 parent_type = TYPE_TARGET_TYPE (parent_type);
6288 /* If there is a parallel XVS type, get the actual base type. */
6289 parent_type = ada_get_base_type (parent_type);
6290
6291 return ada_check_typedef (parent_type);
6292 }
14f9c5c9
AS
6293
6294 return NULL;
6295}
6296
4c4b4cd2
PH
6297/* True iff field number FIELD_NUM of structure type TYPE contains the
6298 parent-type (inherited) fields of a derived type. Assumes TYPE is
6299 a structure type with at least FIELD_NUM+1 fields. */
14f9c5c9
AS
6300
6301int
ebf56fd3 6302ada_is_parent_field (struct type *type, int field_num)
14f9c5c9 6303{
61ee279c 6304 const char *name = TYPE_FIELD_NAME (ada_check_typedef (type), field_num);
5b4ee69b 6305
4c4b4cd2
PH
6306 return (name != NULL
6307 && (strncmp (name, "PARENT", 6) == 0
6308 || strncmp (name, "_parent", 7) == 0));
14f9c5c9
AS
6309}
6310
4c4b4cd2 6311/* True iff field number FIELD_NUM of structure type TYPE is a
14f9c5c9 6312 transparent wrapper field (which should be silently traversed when doing
4c4b4cd2 6313 field selection and flattened when printing). Assumes TYPE is a
14f9c5c9 6314 structure type with at least FIELD_NUM+1 fields. Such fields are always
4c4b4cd2 6315 structures. */
14f9c5c9
AS
6316
6317int
ebf56fd3 6318ada_is_wrapper_field (struct type *type, int field_num)
14f9c5c9 6319{
d2e4a39e 6320 const char *name = TYPE_FIELD_NAME (type, field_num);
5b4ee69b 6321
d2e4a39e 6322 return (name != NULL
4c4b4cd2
PH
6323 && (strncmp (name, "PARENT", 6) == 0
6324 || strcmp (name, "REP") == 0
6325 || strncmp (name, "_parent", 7) == 0
6326 || name[0] == 'S' || name[0] == 'R' || name[0] == 'O'));
14f9c5c9
AS
6327}
6328
4c4b4cd2
PH
6329/* True iff field number FIELD_NUM of structure or union type TYPE
6330 is a variant wrapper. Assumes TYPE is a structure type with at least
6331 FIELD_NUM+1 fields. */
14f9c5c9
AS
6332
6333int
ebf56fd3 6334ada_is_variant_part (struct type *type, int field_num)
14f9c5c9 6335{
d2e4a39e 6336 struct type *field_type = TYPE_FIELD_TYPE (type, field_num);
5b4ee69b 6337
14f9c5c9 6338 return (TYPE_CODE (field_type) == TYPE_CODE_UNION
4c4b4cd2 6339 || (is_dynamic_field (type, field_num)
c3e5cd34
PH
6340 && (TYPE_CODE (TYPE_TARGET_TYPE (field_type))
6341 == TYPE_CODE_UNION)));
14f9c5c9
AS
6342}
6343
6344/* Assuming that VAR_TYPE is a variant wrapper (type of the variant part)
4c4b4cd2 6345 whose discriminants are contained in the record type OUTER_TYPE,
7c964f07
UW
6346 returns the type of the controlling discriminant for the variant.
6347 May return NULL if the type could not be found. */
14f9c5c9 6348
d2e4a39e 6349struct type *
ebf56fd3 6350ada_variant_discrim_type (struct type *var_type, struct type *outer_type)
14f9c5c9 6351{
d2e4a39e 6352 char *name = ada_variant_discrim_name (var_type);
5b4ee69b 6353
7c964f07 6354 return ada_lookup_struct_elt_type (outer_type, name, 1, 1, NULL);
14f9c5c9
AS
6355}
6356
4c4b4cd2 6357/* Assuming that TYPE is the type of a variant wrapper, and FIELD_NUM is a
14f9c5c9 6358 valid field number within it, returns 1 iff field FIELD_NUM of TYPE
4c4b4cd2 6359 represents a 'when others' clause; otherwise 0. */
14f9c5c9
AS
6360
6361int
ebf56fd3 6362ada_is_others_clause (struct type *type, int field_num)
14f9c5c9 6363{
d2e4a39e 6364 const char *name = TYPE_FIELD_NAME (type, field_num);
5b4ee69b 6365
14f9c5c9
AS
6366 return (name != NULL && name[0] == 'O');
6367}
6368
6369/* Assuming that TYPE0 is the type of the variant part of a record,
4c4b4cd2
PH
6370 returns the name of the discriminant controlling the variant.
6371 The value is valid until the next call to ada_variant_discrim_name. */
14f9c5c9 6372
d2e4a39e 6373char *
ebf56fd3 6374ada_variant_discrim_name (struct type *type0)
14f9c5c9 6375{
d2e4a39e 6376 static char *result = NULL;
14f9c5c9 6377 static size_t result_len = 0;
d2e4a39e
AS
6378 struct type *type;
6379 const char *name;
6380 const char *discrim_end;
6381 const char *discrim_start;
14f9c5c9
AS
6382
6383 if (TYPE_CODE (type0) == TYPE_CODE_PTR)
6384 type = TYPE_TARGET_TYPE (type0);
6385 else
6386 type = type0;
6387
6388 name = ada_type_name (type);
6389
6390 if (name == NULL || name[0] == '\000')
6391 return "";
6392
6393 for (discrim_end = name + strlen (name) - 6; discrim_end != name;
6394 discrim_end -= 1)
6395 {
4c4b4cd2
PH
6396 if (strncmp (discrim_end, "___XVN", 6) == 0)
6397 break;
14f9c5c9
AS
6398 }
6399 if (discrim_end == name)
6400 return "";
6401
d2e4a39e 6402 for (discrim_start = discrim_end; discrim_start != name + 3;
14f9c5c9
AS
6403 discrim_start -= 1)
6404 {
d2e4a39e 6405 if (discrim_start == name + 1)
4c4b4cd2 6406 return "";
76a01679 6407 if ((discrim_start > name + 3
4c4b4cd2
PH
6408 && strncmp (discrim_start - 3, "___", 3) == 0)
6409 || discrim_start[-1] == '.')
6410 break;
14f9c5c9
AS
6411 }
6412
6413 GROW_VECT (result, result_len, discrim_end - discrim_start + 1);
6414 strncpy (result, discrim_start, discrim_end - discrim_start);
d2e4a39e 6415 result[discrim_end - discrim_start] = '\0';
14f9c5c9
AS
6416 return result;
6417}
6418
4c4b4cd2
PH
6419/* Scan STR for a subtype-encoded number, beginning at position K.
6420 Put the position of the character just past the number scanned in
6421 *NEW_K, if NEW_K!=NULL. Put the scanned number in *R, if R!=NULL.
6422 Return 1 if there was a valid number at the given position, and 0
6423 otherwise. A "subtype-encoded" number consists of the absolute value
6424 in decimal, followed by the letter 'm' to indicate a negative number.
6425 Assumes 0m does not occur. */
14f9c5c9
AS
6426
6427int
d2e4a39e 6428ada_scan_number (const char str[], int k, LONGEST * R, int *new_k)
14f9c5c9
AS
6429{
6430 ULONGEST RU;
6431
d2e4a39e 6432 if (!isdigit (str[k]))
14f9c5c9
AS
6433 return 0;
6434
4c4b4cd2 6435 /* Do it the hard way so as not to make any assumption about
14f9c5c9 6436 the relationship of unsigned long (%lu scan format code) and
4c4b4cd2 6437 LONGEST. */
14f9c5c9
AS
6438 RU = 0;
6439 while (isdigit (str[k]))
6440 {
d2e4a39e 6441 RU = RU * 10 + (str[k] - '0');
14f9c5c9
AS
6442 k += 1;
6443 }
6444
d2e4a39e 6445 if (str[k] == 'm')
14f9c5c9
AS
6446 {
6447 if (R != NULL)
4c4b4cd2 6448 *R = (-(LONGEST) (RU - 1)) - 1;
14f9c5c9
AS
6449 k += 1;
6450 }
6451 else if (R != NULL)
6452 *R = (LONGEST) RU;
6453
4c4b4cd2 6454 /* NOTE on the above: Technically, C does not say what the results of
14f9c5c9
AS
6455 - (LONGEST) RU or (LONGEST) -RU are for RU == largest positive
6456 number representable as a LONGEST (although either would probably work
6457 in most implementations). When RU>0, the locution in the then branch
4c4b4cd2 6458 above is always equivalent to the negative of RU. */
14f9c5c9
AS
6459
6460 if (new_k != NULL)
6461 *new_k = k;
6462 return 1;
6463}
6464
4c4b4cd2
PH
6465/* Assuming that TYPE is a variant part wrapper type (a VARIANTS field),
6466 and FIELD_NUM is a valid field number within it, returns 1 iff VAL is
6467 in the range encoded by field FIELD_NUM of TYPE; otherwise 0. */
14f9c5c9 6468
d2e4a39e 6469int
ebf56fd3 6470ada_in_variant (LONGEST val, struct type *type, int field_num)
14f9c5c9 6471{
d2e4a39e 6472 const char *name = TYPE_FIELD_NAME (type, field_num);
14f9c5c9
AS
6473 int p;
6474
6475 p = 0;
6476 while (1)
6477 {
d2e4a39e 6478 switch (name[p])
4c4b4cd2
PH
6479 {
6480 case '\0':
6481 return 0;
6482 case 'S':
6483 {
6484 LONGEST W;
5b4ee69b 6485
4c4b4cd2
PH
6486 if (!ada_scan_number (name, p + 1, &W, &p))
6487 return 0;
6488 if (val == W)
6489 return 1;
6490 break;
6491 }
6492 case 'R':
6493 {
6494 LONGEST L, U;
5b4ee69b 6495
4c4b4cd2
PH
6496 if (!ada_scan_number (name, p + 1, &L, &p)
6497 || name[p] != 'T' || !ada_scan_number (name, p + 1, &U, &p))
6498 return 0;
6499 if (val >= L && val <= U)
6500 return 1;
6501 break;
6502 }
6503 case 'O':
6504 return 1;
6505 default:
6506 return 0;
6507 }
6508 }
6509}
6510
0963b4bd 6511/* FIXME: Lots of redundancy below. Try to consolidate. */
4c4b4cd2
PH
6512
6513/* Given a value ARG1 (offset by OFFSET bytes) of a struct or union type
6514 ARG_TYPE, extract and return the value of one of its (non-static)
6515 fields. FIELDNO says which field. Differs from value_primitive_field
6516 only in that it can handle packed values of arbitrary type. */
14f9c5c9 6517
4c4b4cd2 6518static struct value *
d2e4a39e 6519ada_value_primitive_field (struct value *arg1, int offset, int fieldno,
4c4b4cd2 6520 struct type *arg_type)
14f9c5c9 6521{
14f9c5c9
AS
6522 struct type *type;
6523
61ee279c 6524 arg_type = ada_check_typedef (arg_type);
14f9c5c9
AS
6525 type = TYPE_FIELD_TYPE (arg_type, fieldno);
6526
4c4b4cd2 6527 /* Handle packed fields. */
14f9c5c9
AS
6528
6529 if (TYPE_FIELD_BITSIZE (arg_type, fieldno) != 0)
6530 {
6531 int bit_pos = TYPE_FIELD_BITPOS (arg_type, fieldno);
6532 int bit_size = TYPE_FIELD_BITSIZE (arg_type, fieldno);
d2e4a39e 6533
0fd88904 6534 return ada_value_primitive_packed_val (arg1, value_contents (arg1),
4c4b4cd2
PH
6535 offset + bit_pos / 8,
6536 bit_pos % 8, bit_size, type);
14f9c5c9
AS
6537 }
6538 else
6539 return value_primitive_field (arg1, offset, fieldno, arg_type);
6540}
6541
52ce6436
PH
6542/* Find field with name NAME in object of type TYPE. If found,
6543 set the following for each argument that is non-null:
6544 - *FIELD_TYPE_P to the field's type;
6545 - *BYTE_OFFSET_P to OFFSET + the byte offset of the field within
6546 an object of that type;
6547 - *BIT_OFFSET_P to the bit offset modulo byte size of the field;
6548 - *BIT_SIZE_P to its size in bits if the field is packed, and
6549 0 otherwise;
6550 If INDEX_P is non-null, increment *INDEX_P by the number of source-visible
6551 fields up to but not including the desired field, or by the total
6552 number of fields if not found. A NULL value of NAME never
6553 matches; the function just counts visible fields in this case.
6554
0963b4bd 6555 Returns 1 if found, 0 otherwise. */
52ce6436 6556
4c4b4cd2 6557static int
0d5cff50 6558find_struct_field (const char *name, struct type *type, int offset,
76a01679 6559 struct type **field_type_p,
52ce6436
PH
6560 int *byte_offset_p, int *bit_offset_p, int *bit_size_p,
6561 int *index_p)
4c4b4cd2
PH
6562{
6563 int i;
6564
61ee279c 6565 type = ada_check_typedef (type);
76a01679 6566
52ce6436
PH
6567 if (field_type_p != NULL)
6568 *field_type_p = NULL;
6569 if (byte_offset_p != NULL)
d5d6fca5 6570 *byte_offset_p = 0;
52ce6436
PH
6571 if (bit_offset_p != NULL)
6572 *bit_offset_p = 0;
6573 if (bit_size_p != NULL)
6574 *bit_size_p = 0;
6575
6576 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
4c4b4cd2
PH
6577 {
6578 int bit_pos = TYPE_FIELD_BITPOS (type, i);
6579 int fld_offset = offset + bit_pos / 8;
0d5cff50 6580 const char *t_field_name = TYPE_FIELD_NAME (type, i);
76a01679 6581
4c4b4cd2
PH
6582 if (t_field_name == NULL)
6583 continue;
6584
52ce6436 6585 else if (name != NULL && field_name_match (t_field_name, name))
76a01679
JB
6586 {
6587 int bit_size = TYPE_FIELD_BITSIZE (type, i);
5b4ee69b 6588
52ce6436
PH
6589 if (field_type_p != NULL)
6590 *field_type_p = TYPE_FIELD_TYPE (type, i);
6591 if (byte_offset_p != NULL)
6592 *byte_offset_p = fld_offset;
6593 if (bit_offset_p != NULL)
6594 *bit_offset_p = bit_pos % 8;
6595 if (bit_size_p != NULL)
6596 *bit_size_p = bit_size;
76a01679
JB
6597 return 1;
6598 }
4c4b4cd2
PH
6599 else if (ada_is_wrapper_field (type, i))
6600 {
52ce6436
PH
6601 if (find_struct_field (name, TYPE_FIELD_TYPE (type, i), fld_offset,
6602 field_type_p, byte_offset_p, bit_offset_p,
6603 bit_size_p, index_p))
76a01679
JB
6604 return 1;
6605 }
4c4b4cd2
PH
6606 else if (ada_is_variant_part (type, i))
6607 {
52ce6436
PH
6608 /* PNH: Wait. Do we ever execute this section, or is ARG always of
6609 fixed type?? */
4c4b4cd2 6610 int j;
52ce6436
PH
6611 struct type *field_type
6612 = ada_check_typedef (TYPE_FIELD_TYPE (type, i));
4c4b4cd2 6613
52ce6436 6614 for (j = 0; j < TYPE_NFIELDS (field_type); j += 1)
4c4b4cd2 6615 {
76a01679
JB
6616 if (find_struct_field (name, TYPE_FIELD_TYPE (field_type, j),
6617 fld_offset
6618 + TYPE_FIELD_BITPOS (field_type, j) / 8,
6619 field_type_p, byte_offset_p,
52ce6436 6620 bit_offset_p, bit_size_p, index_p))
76a01679 6621 return 1;
4c4b4cd2
PH
6622 }
6623 }
52ce6436
PH
6624 else if (index_p != NULL)
6625 *index_p += 1;
4c4b4cd2
PH
6626 }
6627 return 0;
6628}
6629
0963b4bd 6630/* Number of user-visible fields in record type TYPE. */
4c4b4cd2 6631
52ce6436
PH
6632static int
6633num_visible_fields (struct type *type)
6634{
6635 int n;
5b4ee69b 6636
52ce6436
PH
6637 n = 0;
6638 find_struct_field (NULL, type, 0, NULL, NULL, NULL, NULL, &n);
6639 return n;
6640}
14f9c5c9 6641
4c4b4cd2 6642/* Look for a field NAME in ARG. Adjust the address of ARG by OFFSET bytes,
14f9c5c9
AS
6643 and search in it assuming it has (class) type TYPE.
6644 If found, return value, else return NULL.
6645
4c4b4cd2 6646 Searches recursively through wrapper fields (e.g., '_parent'). */
14f9c5c9 6647
4c4b4cd2 6648static struct value *
d2e4a39e 6649ada_search_struct_field (char *name, struct value *arg, int offset,
4c4b4cd2 6650 struct type *type)
14f9c5c9
AS
6651{
6652 int i;
14f9c5c9 6653
5b4ee69b 6654 type = ada_check_typedef (type);
52ce6436 6655 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
14f9c5c9 6656 {
0d5cff50 6657 const char *t_field_name = TYPE_FIELD_NAME (type, i);
14f9c5c9
AS
6658
6659 if (t_field_name == NULL)
4c4b4cd2 6660 continue;
14f9c5c9
AS
6661
6662 else if (field_name_match (t_field_name, name))
4c4b4cd2 6663 return ada_value_primitive_field (arg, offset, i, type);
14f9c5c9
AS
6664
6665 else if (ada_is_wrapper_field (type, i))
4c4b4cd2 6666 {
0963b4bd 6667 struct value *v = /* Do not let indent join lines here. */
06d5cf63
JB
6668 ada_search_struct_field (name, arg,
6669 offset + TYPE_FIELD_BITPOS (type, i) / 8,
6670 TYPE_FIELD_TYPE (type, i));
5b4ee69b 6671
4c4b4cd2
PH
6672 if (v != NULL)
6673 return v;
6674 }
14f9c5c9
AS
6675
6676 else if (ada_is_variant_part (type, i))
4c4b4cd2 6677 {
0963b4bd 6678 /* PNH: Do we ever get here? See find_struct_field. */
4c4b4cd2 6679 int j;
5b4ee69b
MS
6680 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type,
6681 i));
4c4b4cd2
PH
6682 int var_offset = offset + TYPE_FIELD_BITPOS (type, i) / 8;
6683
52ce6436 6684 for (j = 0; j < TYPE_NFIELDS (field_type); j += 1)
4c4b4cd2 6685 {
0963b4bd
MS
6686 struct value *v = ada_search_struct_field /* Force line
6687 break. */
06d5cf63
JB
6688 (name, arg,
6689 var_offset + TYPE_FIELD_BITPOS (field_type, j) / 8,
6690 TYPE_FIELD_TYPE (field_type, j));
5b4ee69b 6691
4c4b4cd2
PH
6692 if (v != NULL)
6693 return v;
6694 }
6695 }
14f9c5c9
AS
6696 }
6697 return NULL;
6698}
d2e4a39e 6699
52ce6436
PH
6700static struct value *ada_index_struct_field_1 (int *, struct value *,
6701 int, struct type *);
6702
6703
6704/* Return field #INDEX in ARG, where the index is that returned by
6705 * find_struct_field through its INDEX_P argument. Adjust the address
6706 * of ARG by OFFSET bytes, and search in it assuming it has (class) type TYPE.
0963b4bd 6707 * If found, return value, else return NULL. */
52ce6436
PH
6708
6709static struct value *
6710ada_index_struct_field (int index, struct value *arg, int offset,
6711 struct type *type)
6712{
6713 return ada_index_struct_field_1 (&index, arg, offset, type);
6714}
6715
6716
6717/* Auxiliary function for ada_index_struct_field. Like
6718 * ada_index_struct_field, but takes index from *INDEX_P and modifies
0963b4bd 6719 * *INDEX_P. */
52ce6436
PH
6720
6721static struct value *
6722ada_index_struct_field_1 (int *index_p, struct value *arg, int offset,
6723 struct type *type)
6724{
6725 int i;
6726 type = ada_check_typedef (type);
6727
6728 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
6729 {
6730 if (TYPE_FIELD_NAME (type, i) == NULL)
6731 continue;
6732 else if (ada_is_wrapper_field (type, i))
6733 {
0963b4bd 6734 struct value *v = /* Do not let indent join lines here. */
52ce6436
PH
6735 ada_index_struct_field_1 (index_p, arg,
6736 offset + TYPE_FIELD_BITPOS (type, i) / 8,
6737 TYPE_FIELD_TYPE (type, i));
5b4ee69b 6738
52ce6436
PH
6739 if (v != NULL)
6740 return v;
6741 }
6742
6743 else if (ada_is_variant_part (type, i))
6744 {
6745 /* PNH: Do we ever get here? See ada_search_struct_field,
0963b4bd 6746 find_struct_field. */
52ce6436
PH
6747 error (_("Cannot assign this kind of variant record"));
6748 }
6749 else if (*index_p == 0)
6750 return ada_value_primitive_field (arg, offset, i, type);
6751 else
6752 *index_p -= 1;
6753 }
6754 return NULL;
6755}
6756
4c4b4cd2
PH
6757/* Given ARG, a value of type (pointer or reference to a)*
6758 structure/union, extract the component named NAME from the ultimate
6759 target structure/union and return it as a value with its
f5938064 6760 appropriate type.
14f9c5c9 6761
4c4b4cd2
PH
6762 The routine searches for NAME among all members of the structure itself
6763 and (recursively) among all members of any wrapper members
14f9c5c9
AS
6764 (e.g., '_parent').
6765
03ee6b2e
PH
6766 If NO_ERR, then simply return NULL in case of error, rather than
6767 calling error. */
14f9c5c9 6768
d2e4a39e 6769struct value *
03ee6b2e 6770ada_value_struct_elt (struct value *arg, char *name, int no_err)
14f9c5c9 6771{
4c4b4cd2 6772 struct type *t, *t1;
d2e4a39e 6773 struct value *v;
14f9c5c9 6774
4c4b4cd2 6775 v = NULL;
df407dfe 6776 t1 = t = ada_check_typedef (value_type (arg));
4c4b4cd2
PH
6777 if (TYPE_CODE (t) == TYPE_CODE_REF)
6778 {
6779 t1 = TYPE_TARGET_TYPE (t);
6780 if (t1 == NULL)
03ee6b2e 6781 goto BadValue;
61ee279c 6782 t1 = ada_check_typedef (t1);
4c4b4cd2 6783 if (TYPE_CODE (t1) == TYPE_CODE_PTR)
76a01679 6784 {
994b9211 6785 arg = coerce_ref (arg);
76a01679
JB
6786 t = t1;
6787 }
4c4b4cd2 6788 }
14f9c5c9 6789
4c4b4cd2
PH
6790 while (TYPE_CODE (t) == TYPE_CODE_PTR)
6791 {
6792 t1 = TYPE_TARGET_TYPE (t);
6793 if (t1 == NULL)
03ee6b2e 6794 goto BadValue;
61ee279c 6795 t1 = ada_check_typedef (t1);
4c4b4cd2 6796 if (TYPE_CODE (t1) == TYPE_CODE_PTR)
76a01679
JB
6797 {
6798 arg = value_ind (arg);
6799 t = t1;
6800 }
4c4b4cd2 6801 else
76a01679 6802 break;
4c4b4cd2 6803 }
14f9c5c9 6804
4c4b4cd2 6805 if (TYPE_CODE (t1) != TYPE_CODE_STRUCT && TYPE_CODE (t1) != TYPE_CODE_UNION)
03ee6b2e 6806 goto BadValue;
14f9c5c9 6807
4c4b4cd2
PH
6808 if (t1 == t)
6809 v = ada_search_struct_field (name, arg, 0, t);
6810 else
6811 {
6812 int bit_offset, bit_size, byte_offset;
6813 struct type *field_type;
6814 CORE_ADDR address;
6815
76a01679 6816 if (TYPE_CODE (t) == TYPE_CODE_PTR)
b50d69b5 6817 address = value_address (ada_value_ind (arg));
4c4b4cd2 6818 else
b50d69b5 6819 address = value_address (ada_coerce_ref (arg));
14f9c5c9 6820
1ed6ede0 6821 t1 = ada_to_fixed_type (ada_get_base_type (t1), NULL, address, NULL, 1);
76a01679
JB
6822 if (find_struct_field (name, t1, 0,
6823 &field_type, &byte_offset, &bit_offset,
52ce6436 6824 &bit_size, NULL))
76a01679
JB
6825 {
6826 if (bit_size != 0)
6827 {
714e53ab
PH
6828 if (TYPE_CODE (t) == TYPE_CODE_REF)
6829 arg = ada_coerce_ref (arg);
6830 else
6831 arg = ada_value_ind (arg);
76a01679
JB
6832 v = ada_value_primitive_packed_val (arg, NULL, byte_offset,
6833 bit_offset, bit_size,
6834 field_type);
6835 }
6836 else
f5938064 6837 v = value_at_lazy (field_type, address + byte_offset);
76a01679
JB
6838 }
6839 }
6840
03ee6b2e
PH
6841 if (v != NULL || no_err)
6842 return v;
6843 else
323e0a4a 6844 error (_("There is no member named %s."), name);
14f9c5c9 6845
03ee6b2e
PH
6846 BadValue:
6847 if (no_err)
6848 return NULL;
6849 else
0963b4bd
MS
6850 error (_("Attempt to extract a component of "
6851 "a value that is not a record."));
14f9c5c9
AS
6852}
6853
6854/* Given a type TYPE, look up the type of the component of type named NAME.
4c4b4cd2
PH
6855 If DISPP is non-null, add its byte displacement from the beginning of a
6856 structure (pointed to by a value) of type TYPE to *DISPP (does not
14f9c5c9
AS
6857 work for packed fields).
6858
6859 Matches any field whose name has NAME as a prefix, possibly
4c4b4cd2 6860 followed by "___".
14f9c5c9 6861
0963b4bd 6862 TYPE can be either a struct or union. If REFOK, TYPE may also
4c4b4cd2
PH
6863 be a (pointer or reference)+ to a struct or union, and the
6864 ultimate target type will be searched.
14f9c5c9
AS
6865
6866 Looks recursively into variant clauses and parent types.
6867
4c4b4cd2
PH
6868 If NOERR is nonzero, return NULL if NAME is not suitably defined or
6869 TYPE is not a type of the right kind. */
14f9c5c9 6870
4c4b4cd2 6871static struct type *
76a01679
JB
6872ada_lookup_struct_elt_type (struct type *type, char *name, int refok,
6873 int noerr, int *dispp)
14f9c5c9
AS
6874{
6875 int i;
6876
6877 if (name == NULL)
6878 goto BadName;
6879
76a01679 6880 if (refok && type != NULL)
4c4b4cd2
PH
6881 while (1)
6882 {
61ee279c 6883 type = ada_check_typedef (type);
76a01679
JB
6884 if (TYPE_CODE (type) != TYPE_CODE_PTR
6885 && TYPE_CODE (type) != TYPE_CODE_REF)
6886 break;
6887 type = TYPE_TARGET_TYPE (type);
4c4b4cd2 6888 }
14f9c5c9 6889
76a01679 6890 if (type == NULL
1265e4aa
JB
6891 || (TYPE_CODE (type) != TYPE_CODE_STRUCT
6892 && TYPE_CODE (type) != TYPE_CODE_UNION))
14f9c5c9 6893 {
4c4b4cd2 6894 if (noerr)
76a01679 6895 return NULL;
4c4b4cd2 6896 else
76a01679
JB
6897 {
6898 target_terminal_ours ();
6899 gdb_flush (gdb_stdout);
323e0a4a
AC
6900 if (type == NULL)
6901 error (_("Type (null) is not a structure or union type"));
6902 else
6903 {
6904 /* XXX: type_sprint */
6905 fprintf_unfiltered (gdb_stderr, _("Type "));
6906 type_print (type, "", gdb_stderr, -1);
6907 error (_(" is not a structure or union type"));
6908 }
76a01679 6909 }
14f9c5c9
AS
6910 }
6911
6912 type = to_static_fixed_type (type);
6913
6914 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
6915 {
0d5cff50 6916 const char *t_field_name = TYPE_FIELD_NAME (type, i);
14f9c5c9
AS
6917 struct type *t;
6918 int disp;
d2e4a39e 6919
14f9c5c9 6920 if (t_field_name == NULL)
4c4b4cd2 6921 continue;
14f9c5c9
AS
6922
6923 else if (field_name_match (t_field_name, name))
4c4b4cd2
PH
6924 {
6925 if (dispp != NULL)
6926 *dispp += TYPE_FIELD_BITPOS (type, i) / 8;
61ee279c 6927 return ada_check_typedef (TYPE_FIELD_TYPE (type, i));
4c4b4cd2 6928 }
14f9c5c9
AS
6929
6930 else if (ada_is_wrapper_field (type, i))
4c4b4cd2
PH
6931 {
6932 disp = 0;
6933 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (type, i), name,
6934 0, 1, &disp);
6935 if (t != NULL)
6936 {
6937 if (dispp != NULL)
6938 *dispp += disp + TYPE_FIELD_BITPOS (type, i) / 8;
6939 return t;
6940 }
6941 }
14f9c5c9
AS
6942
6943 else if (ada_is_variant_part (type, i))
4c4b4cd2
PH
6944 {
6945 int j;
5b4ee69b
MS
6946 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type,
6947 i));
4c4b4cd2
PH
6948
6949 for (j = TYPE_NFIELDS (field_type) - 1; j >= 0; j -= 1)
6950 {
b1f33ddd
JB
6951 /* FIXME pnh 2008/01/26: We check for a field that is
6952 NOT wrapped in a struct, since the compiler sometimes
6953 generates these for unchecked variant types. Revisit
0963b4bd 6954 if the compiler changes this practice. */
0d5cff50 6955 const char *v_field_name = TYPE_FIELD_NAME (field_type, j);
4c4b4cd2 6956 disp = 0;
b1f33ddd
JB
6957 if (v_field_name != NULL
6958 && field_name_match (v_field_name, name))
6959 t = ada_check_typedef (TYPE_FIELD_TYPE (field_type, j));
6960 else
0963b4bd
MS
6961 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (field_type,
6962 j),
b1f33ddd
JB
6963 name, 0, 1, &disp);
6964
4c4b4cd2
PH
6965 if (t != NULL)
6966 {
6967 if (dispp != NULL)
6968 *dispp += disp + TYPE_FIELD_BITPOS (type, i) / 8;
6969 return t;
6970 }
6971 }
6972 }
14f9c5c9
AS
6973
6974 }
6975
6976BadName:
d2e4a39e 6977 if (!noerr)
14f9c5c9
AS
6978 {
6979 target_terminal_ours ();
6980 gdb_flush (gdb_stdout);
323e0a4a
AC
6981 if (name == NULL)
6982 {
6983 /* XXX: type_sprint */
6984 fprintf_unfiltered (gdb_stderr, _("Type "));
6985 type_print (type, "", gdb_stderr, -1);
6986 error (_(" has no component named <null>"));
6987 }
6988 else
6989 {
6990 /* XXX: type_sprint */
6991 fprintf_unfiltered (gdb_stderr, _("Type "));
6992 type_print (type, "", gdb_stderr, -1);
6993 error (_(" has no component named %s"), name);
6994 }
14f9c5c9
AS
6995 }
6996
6997 return NULL;
6998}
6999
b1f33ddd
JB
7000/* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
7001 within a value of type OUTER_TYPE, return true iff VAR_TYPE
7002 represents an unchecked union (that is, the variant part of a
0963b4bd 7003 record that is named in an Unchecked_Union pragma). */
b1f33ddd
JB
7004
7005static int
7006is_unchecked_variant (struct type *var_type, struct type *outer_type)
7007{
7008 char *discrim_name = ada_variant_discrim_name (var_type);
5b4ee69b 7009
b1f33ddd
JB
7010 return (ada_lookup_struct_elt_type (outer_type, discrim_name, 0, 1, NULL)
7011 == NULL);
7012}
7013
7014
14f9c5c9
AS
7015/* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
7016 within a value of type OUTER_TYPE that is stored in GDB at
4c4b4cd2
PH
7017 OUTER_VALADDR, determine which variant clause (field number in VAR_TYPE,
7018 numbering from 0) is applicable. Returns -1 if none are. */
14f9c5c9 7019
d2e4a39e 7020int
ebf56fd3 7021ada_which_variant_applies (struct type *var_type, struct type *outer_type,
fc1a4b47 7022 const gdb_byte *outer_valaddr)
14f9c5c9
AS
7023{
7024 int others_clause;
7025 int i;
d2e4a39e 7026 char *discrim_name = ada_variant_discrim_name (var_type);
0c281816
JB
7027 struct value *outer;
7028 struct value *discrim;
14f9c5c9
AS
7029 LONGEST discrim_val;
7030
0c281816
JB
7031 outer = value_from_contents_and_address (outer_type, outer_valaddr, 0);
7032 discrim = ada_value_struct_elt (outer, discrim_name, 1);
7033 if (discrim == NULL)
14f9c5c9 7034 return -1;
0c281816 7035 discrim_val = value_as_long (discrim);
14f9c5c9
AS
7036
7037 others_clause = -1;
7038 for (i = 0; i < TYPE_NFIELDS (var_type); i += 1)
7039 {
7040 if (ada_is_others_clause (var_type, i))
4c4b4cd2 7041 others_clause = i;
14f9c5c9 7042 else if (ada_in_variant (discrim_val, var_type, i))
4c4b4cd2 7043 return i;
14f9c5c9
AS
7044 }
7045
7046 return others_clause;
7047}
d2e4a39e 7048\f
14f9c5c9
AS
7049
7050
4c4b4cd2 7051 /* Dynamic-Sized Records */
14f9c5c9
AS
7052
7053/* Strategy: The type ostensibly attached to a value with dynamic size
7054 (i.e., a size that is not statically recorded in the debugging
7055 data) does not accurately reflect the size or layout of the value.
7056 Our strategy is to convert these values to values with accurate,
4c4b4cd2 7057 conventional types that are constructed on the fly. */
14f9c5c9
AS
7058
7059/* There is a subtle and tricky problem here. In general, we cannot
7060 determine the size of dynamic records without its data. However,
7061 the 'struct value' data structure, which GDB uses to represent
7062 quantities in the inferior process (the target), requires the size
7063 of the type at the time of its allocation in order to reserve space
7064 for GDB's internal copy of the data. That's why the
7065 'to_fixed_xxx_type' routines take (target) addresses as parameters,
4c4b4cd2 7066 rather than struct value*s.
14f9c5c9
AS
7067
7068 However, GDB's internal history variables ($1, $2, etc.) are
7069 struct value*s containing internal copies of the data that are not, in
7070 general, the same as the data at their corresponding addresses in
7071 the target. Fortunately, the types we give to these values are all
7072 conventional, fixed-size types (as per the strategy described
7073 above), so that we don't usually have to perform the
7074 'to_fixed_xxx_type' conversions to look at their values.
7075 Unfortunately, there is one exception: if one of the internal
7076 history variables is an array whose elements are unconstrained
7077 records, then we will need to create distinct fixed types for each
7078 element selected. */
7079
7080/* The upshot of all of this is that many routines take a (type, host
7081 address, target address) triple as arguments to represent a value.
7082 The host address, if non-null, is supposed to contain an internal
7083 copy of the relevant data; otherwise, the program is to consult the
4c4b4cd2 7084 target at the target address. */
14f9c5c9
AS
7085
7086/* Assuming that VAL0 represents a pointer value, the result of
7087 dereferencing it. Differs from value_ind in its treatment of
4c4b4cd2 7088 dynamic-sized types. */
14f9c5c9 7089
d2e4a39e
AS
7090struct value *
7091ada_value_ind (struct value *val0)
14f9c5c9 7092{
c48db5ca 7093 struct value *val = value_ind (val0);
5b4ee69b 7094
b50d69b5
JG
7095 if (ada_is_tagged_type (value_type (val), 0))
7096 val = ada_tag_value_at_base_address (val);
7097
4c4b4cd2 7098 return ada_to_fixed_value (val);
14f9c5c9
AS
7099}
7100
7101/* The value resulting from dereferencing any "reference to"
4c4b4cd2
PH
7102 qualifiers on VAL0. */
7103
d2e4a39e
AS
7104static struct value *
7105ada_coerce_ref (struct value *val0)
7106{
df407dfe 7107 if (TYPE_CODE (value_type (val0)) == TYPE_CODE_REF)
d2e4a39e
AS
7108 {
7109 struct value *val = val0;
5b4ee69b 7110
994b9211 7111 val = coerce_ref (val);
b50d69b5
JG
7112
7113 if (ada_is_tagged_type (value_type (val), 0))
7114 val = ada_tag_value_at_base_address (val);
7115
4c4b4cd2 7116 return ada_to_fixed_value (val);
d2e4a39e
AS
7117 }
7118 else
14f9c5c9
AS
7119 return val0;
7120}
7121
7122/* Return OFF rounded upward if necessary to a multiple of
4c4b4cd2 7123 ALIGNMENT (a power of 2). */
14f9c5c9
AS
7124
7125static unsigned int
ebf56fd3 7126align_value (unsigned int off, unsigned int alignment)
14f9c5c9
AS
7127{
7128 return (off + alignment - 1) & ~(alignment - 1);
7129}
7130
4c4b4cd2 7131/* Return the bit alignment required for field #F of template type TYPE. */
14f9c5c9
AS
7132
7133static unsigned int
ebf56fd3 7134field_alignment (struct type *type, int f)
14f9c5c9 7135{
d2e4a39e 7136 const char *name = TYPE_FIELD_NAME (type, f);
64a1bf19 7137 int len;
14f9c5c9
AS
7138 int align_offset;
7139
64a1bf19
JB
7140 /* The field name should never be null, unless the debugging information
7141 is somehow malformed. In this case, we assume the field does not
7142 require any alignment. */
7143 if (name == NULL)
7144 return 1;
7145
7146 len = strlen (name);
7147
4c4b4cd2
PH
7148 if (!isdigit (name[len - 1]))
7149 return 1;
14f9c5c9 7150
d2e4a39e 7151 if (isdigit (name[len - 2]))
14f9c5c9
AS
7152 align_offset = len - 2;
7153 else
7154 align_offset = len - 1;
7155
4c4b4cd2 7156 if (align_offset < 7 || strncmp ("___XV", name + align_offset - 6, 5) != 0)
14f9c5c9
AS
7157 return TARGET_CHAR_BIT;
7158
4c4b4cd2
PH
7159 return atoi (name + align_offset) * TARGET_CHAR_BIT;
7160}
7161
852dff6c 7162/* Find a typedef or tag symbol named NAME. Ignores ambiguity. */
4c4b4cd2 7163
852dff6c
JB
7164static struct symbol *
7165ada_find_any_type_symbol (const char *name)
4c4b4cd2
PH
7166{
7167 struct symbol *sym;
7168
7169 sym = standard_lookup (name, get_selected_block (NULL), VAR_DOMAIN);
7170 if (sym != NULL && SYMBOL_CLASS (sym) == LOC_TYPEDEF)
7171 return sym;
7172
7173 sym = standard_lookup (name, NULL, STRUCT_DOMAIN);
7174 return sym;
14f9c5c9
AS
7175}
7176
dddfab26
UW
7177/* Find a type named NAME. Ignores ambiguity. This routine will look
7178 solely for types defined by debug info, it will not search the GDB
7179 primitive types. */
4c4b4cd2 7180
852dff6c 7181static struct type *
ebf56fd3 7182ada_find_any_type (const char *name)
14f9c5c9 7183{
852dff6c 7184 struct symbol *sym = ada_find_any_type_symbol (name);
14f9c5c9 7185
14f9c5c9 7186 if (sym != NULL)
dddfab26 7187 return SYMBOL_TYPE (sym);
14f9c5c9 7188
dddfab26 7189 return NULL;
14f9c5c9
AS
7190}
7191
739593e0
JB
7192/* Given NAME_SYM and an associated BLOCK, find a "renaming" symbol
7193 associated with NAME_SYM's name. NAME_SYM may itself be a renaming
7194 symbol, in which case it is returned. Otherwise, this looks for
7195 symbols whose name is that of NAME_SYM suffixed with "___XR".
7196 Return symbol if found, and NULL otherwise. */
4c4b4cd2
PH
7197
7198struct symbol *
270140bd 7199ada_find_renaming_symbol (struct symbol *name_sym, const struct block *block)
aeb5907d 7200{
739593e0 7201 const char *name = SYMBOL_LINKAGE_NAME (name_sym);
aeb5907d
JB
7202 struct symbol *sym;
7203
739593e0
JB
7204 if (strstr (name, "___XR") != NULL)
7205 return name_sym;
7206
aeb5907d
JB
7207 sym = find_old_style_renaming_symbol (name, block);
7208
7209 if (sym != NULL)
7210 return sym;
7211
0963b4bd 7212 /* Not right yet. FIXME pnh 7/20/2007. */
852dff6c 7213 sym = ada_find_any_type_symbol (name);
aeb5907d
JB
7214 if (sym != NULL && strstr (SYMBOL_LINKAGE_NAME (sym), "___XR") != NULL)
7215 return sym;
7216 else
7217 return NULL;
7218}
7219
7220static struct symbol *
270140bd 7221find_old_style_renaming_symbol (const char *name, const struct block *block)
4c4b4cd2 7222{
7f0df278 7223 const struct symbol *function_sym = block_linkage_function (block);
4c4b4cd2
PH
7224 char *rename;
7225
7226 if (function_sym != NULL)
7227 {
7228 /* If the symbol is defined inside a function, NAME is not fully
7229 qualified. This means we need to prepend the function name
7230 as well as adding the ``___XR'' suffix to build the name of
7231 the associated renaming symbol. */
0d5cff50 7232 const char *function_name = SYMBOL_LINKAGE_NAME (function_sym);
529cad9c
PH
7233 /* Function names sometimes contain suffixes used
7234 for instance to qualify nested subprograms. When building
7235 the XR type name, we need to make sure that this suffix is
7236 not included. So do not include any suffix in the function
7237 name length below. */
69fadcdf 7238 int function_name_len = ada_name_prefix_len (function_name);
76a01679
JB
7239 const int rename_len = function_name_len + 2 /* "__" */
7240 + strlen (name) + 6 /* "___XR\0" */ ;
4c4b4cd2 7241
529cad9c 7242 /* Strip the suffix if necessary. */
69fadcdf
JB
7243 ada_remove_trailing_digits (function_name, &function_name_len);
7244 ada_remove_po_subprogram_suffix (function_name, &function_name_len);
7245 ada_remove_Xbn_suffix (function_name, &function_name_len);
529cad9c 7246
4c4b4cd2
PH
7247 /* Library-level functions are a special case, as GNAT adds
7248 a ``_ada_'' prefix to the function name to avoid namespace
aeb5907d 7249 pollution. However, the renaming symbols themselves do not
4c4b4cd2
PH
7250 have this prefix, so we need to skip this prefix if present. */
7251 if (function_name_len > 5 /* "_ada_" */
7252 && strstr (function_name, "_ada_") == function_name)
69fadcdf
JB
7253 {
7254 function_name += 5;
7255 function_name_len -= 5;
7256 }
4c4b4cd2
PH
7257
7258 rename = (char *) alloca (rename_len * sizeof (char));
69fadcdf
JB
7259 strncpy (rename, function_name, function_name_len);
7260 xsnprintf (rename + function_name_len, rename_len - function_name_len,
7261 "__%s___XR", name);
4c4b4cd2
PH
7262 }
7263 else
7264 {
7265 const int rename_len = strlen (name) + 6;
5b4ee69b 7266
4c4b4cd2 7267 rename = (char *) alloca (rename_len * sizeof (char));
88c15c34 7268 xsnprintf (rename, rename_len * sizeof (char), "%s___XR", name);
4c4b4cd2
PH
7269 }
7270
852dff6c 7271 return ada_find_any_type_symbol (rename);
4c4b4cd2
PH
7272}
7273
14f9c5c9 7274/* Because of GNAT encoding conventions, several GDB symbols may match a
4c4b4cd2 7275 given type name. If the type denoted by TYPE0 is to be preferred to
14f9c5c9 7276 that of TYPE1 for purposes of type printing, return non-zero;
4c4b4cd2
PH
7277 otherwise return 0. */
7278
14f9c5c9 7279int
d2e4a39e 7280ada_prefer_type (struct type *type0, struct type *type1)
14f9c5c9
AS
7281{
7282 if (type1 == NULL)
7283 return 1;
7284 else if (type0 == NULL)
7285 return 0;
7286 else if (TYPE_CODE (type1) == TYPE_CODE_VOID)
7287 return 1;
7288 else if (TYPE_CODE (type0) == TYPE_CODE_VOID)
7289 return 0;
4c4b4cd2
PH
7290 else if (TYPE_NAME (type1) == NULL && TYPE_NAME (type0) != NULL)
7291 return 1;
ad82864c 7292 else if (ada_is_constrained_packed_array_type (type0))
14f9c5c9 7293 return 1;
4c4b4cd2
PH
7294 else if (ada_is_array_descriptor_type (type0)
7295 && !ada_is_array_descriptor_type (type1))
14f9c5c9 7296 return 1;
aeb5907d
JB
7297 else
7298 {
7299 const char *type0_name = type_name_no_tag (type0);
7300 const char *type1_name = type_name_no_tag (type1);
7301
7302 if (type0_name != NULL && strstr (type0_name, "___XR") != NULL
7303 && (type1_name == NULL || strstr (type1_name, "___XR") == NULL))
7304 return 1;
7305 }
14f9c5c9
AS
7306 return 0;
7307}
7308
7309/* The name of TYPE, which is either its TYPE_NAME, or, if that is
4c4b4cd2
PH
7310 null, its TYPE_TAG_NAME. Null if TYPE is null. */
7311
0d5cff50 7312const char *
d2e4a39e 7313ada_type_name (struct type *type)
14f9c5c9 7314{
d2e4a39e 7315 if (type == NULL)
14f9c5c9
AS
7316 return NULL;
7317 else if (TYPE_NAME (type) != NULL)
7318 return TYPE_NAME (type);
7319 else
7320 return TYPE_TAG_NAME (type);
7321}
7322
b4ba55a1
JB
7323/* Search the list of "descriptive" types associated to TYPE for a type
7324 whose name is NAME. */
7325
7326static struct type *
7327find_parallel_type_by_descriptive_type (struct type *type, const char *name)
7328{
7329 struct type *result;
7330
7331 /* If there no descriptive-type info, then there is no parallel type
7332 to be found. */
7333 if (!HAVE_GNAT_AUX_INFO (type))
7334 return NULL;
7335
7336 result = TYPE_DESCRIPTIVE_TYPE (type);
7337 while (result != NULL)
7338 {
0d5cff50 7339 const char *result_name = ada_type_name (result);
b4ba55a1
JB
7340
7341 if (result_name == NULL)
7342 {
7343 warning (_("unexpected null name on descriptive type"));
7344 return NULL;
7345 }
7346
7347 /* If the names match, stop. */
7348 if (strcmp (result_name, name) == 0)
7349 break;
7350
7351 /* Otherwise, look at the next item on the list, if any. */
7352 if (HAVE_GNAT_AUX_INFO (result))
7353 result = TYPE_DESCRIPTIVE_TYPE (result);
7354 else
7355 result = NULL;
7356 }
7357
7358 /* If we didn't find a match, see whether this is a packed array. With
7359 older compilers, the descriptive type information is either absent or
7360 irrelevant when it comes to packed arrays so the above lookup fails.
7361 Fall back to using a parallel lookup by name in this case. */
12ab9e09 7362 if (result == NULL && ada_is_constrained_packed_array_type (type))
b4ba55a1
JB
7363 return ada_find_any_type (name);
7364
7365 return result;
7366}
7367
7368/* Find a parallel type to TYPE with the specified NAME, using the
7369 descriptive type taken from the debugging information, if available,
7370 and otherwise using the (slower) name-based method. */
7371
7372static struct type *
7373ada_find_parallel_type_with_name (struct type *type, const char *name)
7374{
7375 struct type *result = NULL;
7376
7377 if (HAVE_GNAT_AUX_INFO (type))
7378 result = find_parallel_type_by_descriptive_type (type, name);
7379 else
7380 result = ada_find_any_type (name);
7381
7382 return result;
7383}
7384
7385/* Same as above, but specify the name of the parallel type by appending
4c4b4cd2 7386 SUFFIX to the name of TYPE. */
14f9c5c9 7387
d2e4a39e 7388struct type *
ebf56fd3 7389ada_find_parallel_type (struct type *type, const char *suffix)
14f9c5c9 7390{
0d5cff50
DE
7391 char *name;
7392 const char *typename = ada_type_name (type);
14f9c5c9 7393 int len;
d2e4a39e 7394
14f9c5c9
AS
7395 if (typename == NULL)
7396 return NULL;
7397
7398 len = strlen (typename);
7399
b4ba55a1 7400 name = (char *) alloca (len + strlen (suffix) + 1);
14f9c5c9
AS
7401
7402 strcpy (name, typename);
7403 strcpy (name + len, suffix);
7404
b4ba55a1 7405 return ada_find_parallel_type_with_name (type, name);
14f9c5c9
AS
7406}
7407
14f9c5c9 7408/* If TYPE is a variable-size record type, return the corresponding template
4c4b4cd2 7409 type describing its fields. Otherwise, return NULL. */
14f9c5c9 7410
d2e4a39e
AS
7411static struct type *
7412dynamic_template_type (struct type *type)
14f9c5c9 7413{
61ee279c 7414 type = ada_check_typedef (type);
14f9c5c9
AS
7415
7416 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT
d2e4a39e 7417 || ada_type_name (type) == NULL)
14f9c5c9 7418 return NULL;
d2e4a39e 7419 else
14f9c5c9
AS
7420 {
7421 int len = strlen (ada_type_name (type));
5b4ee69b 7422
4c4b4cd2
PH
7423 if (len > 6 && strcmp (ada_type_name (type) + len - 6, "___XVE") == 0)
7424 return type;
14f9c5c9 7425 else
4c4b4cd2 7426 return ada_find_parallel_type (type, "___XVE");
14f9c5c9
AS
7427 }
7428}
7429
7430/* Assuming that TEMPL_TYPE is a union or struct type, returns
4c4b4cd2 7431 non-zero iff field FIELD_NUM of TEMPL_TYPE has dynamic size. */
14f9c5c9 7432
d2e4a39e
AS
7433static int
7434is_dynamic_field (struct type *templ_type, int field_num)
14f9c5c9
AS
7435{
7436 const char *name = TYPE_FIELD_NAME (templ_type, field_num);
5b4ee69b 7437
d2e4a39e 7438 return name != NULL
14f9c5c9
AS
7439 && TYPE_CODE (TYPE_FIELD_TYPE (templ_type, field_num)) == TYPE_CODE_PTR
7440 && strstr (name, "___XVL") != NULL;
7441}
7442
4c4b4cd2
PH
7443/* The index of the variant field of TYPE, or -1 if TYPE does not
7444 represent a variant record type. */
14f9c5c9 7445
d2e4a39e 7446static int
4c4b4cd2 7447variant_field_index (struct type *type)
14f9c5c9
AS
7448{
7449 int f;
7450
4c4b4cd2
PH
7451 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT)
7452 return -1;
7453
7454 for (f = 0; f < TYPE_NFIELDS (type); f += 1)
7455 {
7456 if (ada_is_variant_part (type, f))
7457 return f;
7458 }
7459 return -1;
14f9c5c9
AS
7460}
7461
4c4b4cd2
PH
7462/* A record type with no fields. */
7463
d2e4a39e 7464static struct type *
e9bb382b 7465empty_record (struct type *template)
14f9c5c9 7466{
e9bb382b 7467 struct type *type = alloc_type_copy (template);
5b4ee69b 7468
14f9c5c9
AS
7469 TYPE_CODE (type) = TYPE_CODE_STRUCT;
7470 TYPE_NFIELDS (type) = 0;
7471 TYPE_FIELDS (type) = NULL;
b1f33ddd 7472 INIT_CPLUS_SPECIFIC (type);
14f9c5c9
AS
7473 TYPE_NAME (type) = "<empty>";
7474 TYPE_TAG_NAME (type) = NULL;
14f9c5c9
AS
7475 TYPE_LENGTH (type) = 0;
7476 return type;
7477}
7478
7479/* An ordinary record type (with fixed-length fields) that describes
4c4b4cd2
PH
7480 the value of type TYPE at VALADDR or ADDRESS (see comments at
7481 the beginning of this section) VAL according to GNAT conventions.
7482 DVAL0 should describe the (portion of a) record that contains any
df407dfe 7483 necessary discriminants. It should be NULL if value_type (VAL) is
14f9c5c9
AS
7484 an outer-level type (i.e., as opposed to a branch of a variant.) A
7485 variant field (unless unchecked) is replaced by a particular branch
4c4b4cd2 7486 of the variant.
14f9c5c9 7487
4c4b4cd2
PH
7488 If not KEEP_DYNAMIC_FIELDS, then all fields whose position or
7489 length are not statically known are discarded. As a consequence,
7490 VALADDR, ADDRESS and DVAL0 are ignored.
7491
7492 NOTE: Limitations: For now, we assume that dynamic fields and
7493 variants occupy whole numbers of bytes. However, they need not be
7494 byte-aligned. */
7495
7496struct type *
10a2c479 7497ada_template_to_fixed_record_type_1 (struct type *type,
fc1a4b47 7498 const gdb_byte *valaddr,
4c4b4cd2
PH
7499 CORE_ADDR address, struct value *dval0,
7500 int keep_dynamic_fields)
14f9c5c9 7501{
d2e4a39e
AS
7502 struct value *mark = value_mark ();
7503 struct value *dval;
7504 struct type *rtype;
14f9c5c9 7505 int nfields, bit_len;
4c4b4cd2 7506 int variant_field;
14f9c5c9 7507 long off;
d94e4f4f 7508 int fld_bit_len;
14f9c5c9
AS
7509 int f;
7510
4c4b4cd2
PH
7511 /* Compute the number of fields in this record type that are going
7512 to be processed: unless keep_dynamic_fields, this includes only
7513 fields whose position and length are static will be processed. */
7514 if (keep_dynamic_fields)
7515 nfields = TYPE_NFIELDS (type);
7516 else
7517 {
7518 nfields = 0;
76a01679 7519 while (nfields < TYPE_NFIELDS (type)
4c4b4cd2
PH
7520 && !ada_is_variant_part (type, nfields)
7521 && !is_dynamic_field (type, nfields))
7522 nfields++;
7523 }
7524
e9bb382b 7525 rtype = alloc_type_copy (type);
14f9c5c9
AS
7526 TYPE_CODE (rtype) = TYPE_CODE_STRUCT;
7527 INIT_CPLUS_SPECIFIC (rtype);
7528 TYPE_NFIELDS (rtype) = nfields;
d2e4a39e 7529 TYPE_FIELDS (rtype) = (struct field *)
14f9c5c9
AS
7530 TYPE_ALLOC (rtype, nfields * sizeof (struct field));
7531 memset (TYPE_FIELDS (rtype), 0, sizeof (struct field) * nfields);
7532 TYPE_NAME (rtype) = ada_type_name (type);
7533 TYPE_TAG_NAME (rtype) = NULL;
876cecd0 7534 TYPE_FIXED_INSTANCE (rtype) = 1;
14f9c5c9 7535
d2e4a39e
AS
7536 off = 0;
7537 bit_len = 0;
4c4b4cd2
PH
7538 variant_field = -1;
7539
14f9c5c9
AS
7540 for (f = 0; f < nfields; f += 1)
7541 {
6c038f32
PH
7542 off = align_value (off, field_alignment (type, f))
7543 + TYPE_FIELD_BITPOS (type, f);
945b3a32 7544 SET_FIELD_BITPOS (TYPE_FIELD (rtype, f), off);
d2e4a39e 7545 TYPE_FIELD_BITSIZE (rtype, f) = 0;
14f9c5c9 7546
d2e4a39e 7547 if (ada_is_variant_part (type, f))
4c4b4cd2
PH
7548 {
7549 variant_field = f;
d94e4f4f 7550 fld_bit_len = 0;
4c4b4cd2 7551 }
14f9c5c9 7552 else if (is_dynamic_field (type, f))
4c4b4cd2 7553 {
284614f0
JB
7554 const gdb_byte *field_valaddr = valaddr;
7555 CORE_ADDR field_address = address;
7556 struct type *field_type =
7557 TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type, f));
7558
4c4b4cd2 7559 if (dval0 == NULL)
b5304971
JG
7560 {
7561 /* rtype's length is computed based on the run-time
7562 value of discriminants. If the discriminants are not
7563 initialized, the type size may be completely bogus and
0963b4bd 7564 GDB may fail to allocate a value for it. So check the
b5304971
JG
7565 size first before creating the value. */
7566 check_size (rtype);
7567 dval = value_from_contents_and_address (rtype, valaddr, address);
7568 }
4c4b4cd2
PH
7569 else
7570 dval = dval0;
7571
284614f0
JB
7572 /* If the type referenced by this field is an aligner type, we need
7573 to unwrap that aligner type, because its size might not be set.
7574 Keeping the aligner type would cause us to compute the wrong
7575 size for this field, impacting the offset of the all the fields
7576 that follow this one. */
7577 if (ada_is_aligner_type (field_type))
7578 {
7579 long field_offset = TYPE_FIELD_BITPOS (field_type, f);
7580
7581 field_valaddr = cond_offset_host (field_valaddr, field_offset);
7582 field_address = cond_offset_target (field_address, field_offset);
7583 field_type = ada_aligned_type (field_type);
7584 }
7585
7586 field_valaddr = cond_offset_host (field_valaddr,
7587 off / TARGET_CHAR_BIT);
7588 field_address = cond_offset_target (field_address,
7589 off / TARGET_CHAR_BIT);
7590
7591 /* Get the fixed type of the field. Note that, in this case,
7592 we do not want to get the real type out of the tag: if
7593 the current field is the parent part of a tagged record,
7594 we will get the tag of the object. Clearly wrong: the real
7595 type of the parent is not the real type of the child. We
7596 would end up in an infinite loop. */
7597 field_type = ada_get_base_type (field_type);
7598 field_type = ada_to_fixed_type (field_type, field_valaddr,
7599 field_address, dval, 0);
27f2a97b
JB
7600 /* If the field size is already larger than the maximum
7601 object size, then the record itself will necessarily
7602 be larger than the maximum object size. We need to make
7603 this check now, because the size might be so ridiculously
7604 large (due to an uninitialized variable in the inferior)
7605 that it would cause an overflow when adding it to the
7606 record size. */
7607 check_size (field_type);
284614f0
JB
7608
7609 TYPE_FIELD_TYPE (rtype, f) = field_type;
4c4b4cd2 7610 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
27f2a97b
JB
7611 /* The multiplication can potentially overflow. But because
7612 the field length has been size-checked just above, and
7613 assuming that the maximum size is a reasonable value,
7614 an overflow should not happen in practice. So rather than
7615 adding overflow recovery code to this already complex code,
7616 we just assume that it's not going to happen. */
d94e4f4f 7617 fld_bit_len =
4c4b4cd2
PH
7618 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, f)) * TARGET_CHAR_BIT;
7619 }
14f9c5c9 7620 else
4c4b4cd2 7621 {
5ded5331
JB
7622 /* Note: If this field's type is a typedef, it is important
7623 to preserve the typedef layer.
7624
7625 Otherwise, we might be transforming a typedef to a fat
7626 pointer (encoding a pointer to an unconstrained array),
7627 into a basic fat pointer (encoding an unconstrained
7628 array). As both types are implemented using the same
7629 structure, the typedef is the only clue which allows us
7630 to distinguish between the two options. Stripping it
7631 would prevent us from printing this field appropriately. */
7632 TYPE_FIELD_TYPE (rtype, f) = TYPE_FIELD_TYPE (type, f);
4c4b4cd2
PH
7633 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
7634 if (TYPE_FIELD_BITSIZE (type, f) > 0)
d94e4f4f 7635 fld_bit_len =
4c4b4cd2
PH
7636 TYPE_FIELD_BITSIZE (rtype, f) = TYPE_FIELD_BITSIZE (type, f);
7637 else
5ded5331
JB
7638 {
7639 struct type *field_type = TYPE_FIELD_TYPE (type, f);
7640
7641 /* We need to be careful of typedefs when computing
7642 the length of our field. If this is a typedef,
7643 get the length of the target type, not the length
7644 of the typedef. */
7645 if (TYPE_CODE (field_type) == TYPE_CODE_TYPEDEF)
7646 field_type = ada_typedef_target_type (field_type);
7647
7648 fld_bit_len =
7649 TYPE_LENGTH (ada_check_typedef (field_type)) * TARGET_CHAR_BIT;
7650 }
4c4b4cd2 7651 }
14f9c5c9 7652 if (off + fld_bit_len > bit_len)
4c4b4cd2 7653 bit_len = off + fld_bit_len;
d94e4f4f 7654 off += fld_bit_len;
4c4b4cd2
PH
7655 TYPE_LENGTH (rtype) =
7656 align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
14f9c5c9 7657 }
4c4b4cd2
PH
7658
7659 /* We handle the variant part, if any, at the end because of certain
b1f33ddd 7660 odd cases in which it is re-ordered so as NOT to be the last field of
4c4b4cd2
PH
7661 the record. This can happen in the presence of representation
7662 clauses. */
7663 if (variant_field >= 0)
7664 {
7665 struct type *branch_type;
7666
7667 off = TYPE_FIELD_BITPOS (rtype, variant_field);
7668
7669 if (dval0 == NULL)
7670 dval = value_from_contents_and_address (rtype, valaddr, address);
7671 else
7672 dval = dval0;
7673
7674 branch_type =
7675 to_fixed_variant_branch_type
7676 (TYPE_FIELD_TYPE (type, variant_field),
7677 cond_offset_host (valaddr, off / TARGET_CHAR_BIT),
7678 cond_offset_target (address, off / TARGET_CHAR_BIT), dval);
7679 if (branch_type == NULL)
7680 {
7681 for (f = variant_field + 1; f < TYPE_NFIELDS (rtype); f += 1)
7682 TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f];
7683 TYPE_NFIELDS (rtype) -= 1;
7684 }
7685 else
7686 {
7687 TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
7688 TYPE_FIELD_NAME (rtype, variant_field) = "S";
7689 fld_bit_len =
7690 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, variant_field)) *
7691 TARGET_CHAR_BIT;
7692 if (off + fld_bit_len > bit_len)
7693 bit_len = off + fld_bit_len;
7694 TYPE_LENGTH (rtype) =
7695 align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
7696 }
7697 }
7698
714e53ab
PH
7699 /* According to exp_dbug.ads, the size of TYPE for variable-size records
7700 should contain the alignment of that record, which should be a strictly
7701 positive value. If null or negative, then something is wrong, most
7702 probably in the debug info. In that case, we don't round up the size
0963b4bd 7703 of the resulting type. If this record is not part of another structure,
714e53ab
PH
7704 the current RTYPE length might be good enough for our purposes. */
7705 if (TYPE_LENGTH (type) <= 0)
7706 {
323e0a4a
AC
7707 if (TYPE_NAME (rtype))
7708 warning (_("Invalid type size for `%s' detected: %d."),
7709 TYPE_NAME (rtype), TYPE_LENGTH (type));
7710 else
7711 warning (_("Invalid type size for <unnamed> detected: %d."),
7712 TYPE_LENGTH (type));
714e53ab
PH
7713 }
7714 else
7715 {
7716 TYPE_LENGTH (rtype) = align_value (TYPE_LENGTH (rtype),
7717 TYPE_LENGTH (type));
7718 }
14f9c5c9
AS
7719
7720 value_free_to_mark (mark);
d2e4a39e 7721 if (TYPE_LENGTH (rtype) > varsize_limit)
323e0a4a 7722 error (_("record type with dynamic size is larger than varsize-limit"));
14f9c5c9
AS
7723 return rtype;
7724}
7725
4c4b4cd2
PH
7726/* As for ada_template_to_fixed_record_type_1 with KEEP_DYNAMIC_FIELDS
7727 of 1. */
14f9c5c9 7728
d2e4a39e 7729static struct type *
fc1a4b47 7730template_to_fixed_record_type (struct type *type, const gdb_byte *valaddr,
4c4b4cd2
PH
7731 CORE_ADDR address, struct value *dval0)
7732{
7733 return ada_template_to_fixed_record_type_1 (type, valaddr,
7734 address, dval0, 1);
7735}
7736
7737/* An ordinary record type in which ___XVL-convention fields and
7738 ___XVU- and ___XVN-convention field types in TYPE0 are replaced with
7739 static approximations, containing all possible fields. Uses
7740 no runtime values. Useless for use in values, but that's OK,
7741 since the results are used only for type determinations. Works on both
7742 structs and unions. Representation note: to save space, we memorize
7743 the result of this function in the TYPE_TARGET_TYPE of the
7744 template type. */
7745
7746static struct type *
7747template_to_static_fixed_type (struct type *type0)
14f9c5c9
AS
7748{
7749 struct type *type;
7750 int nfields;
7751 int f;
7752
4c4b4cd2
PH
7753 if (TYPE_TARGET_TYPE (type0) != NULL)
7754 return TYPE_TARGET_TYPE (type0);
7755
7756 nfields = TYPE_NFIELDS (type0);
7757 type = type0;
14f9c5c9
AS
7758
7759 for (f = 0; f < nfields; f += 1)
7760 {
61ee279c 7761 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type0, f));
4c4b4cd2 7762 struct type *new_type;
14f9c5c9 7763
4c4b4cd2
PH
7764 if (is_dynamic_field (type0, f))
7765 new_type = to_static_fixed_type (TYPE_TARGET_TYPE (field_type));
14f9c5c9 7766 else
f192137b 7767 new_type = static_unwrap_type (field_type);
4c4b4cd2
PH
7768 if (type == type0 && new_type != field_type)
7769 {
e9bb382b 7770 TYPE_TARGET_TYPE (type0) = type = alloc_type_copy (type0);
4c4b4cd2
PH
7771 TYPE_CODE (type) = TYPE_CODE (type0);
7772 INIT_CPLUS_SPECIFIC (type);
7773 TYPE_NFIELDS (type) = nfields;
7774 TYPE_FIELDS (type) = (struct field *)
7775 TYPE_ALLOC (type, nfields * sizeof (struct field));
7776 memcpy (TYPE_FIELDS (type), TYPE_FIELDS (type0),
7777 sizeof (struct field) * nfields);
7778 TYPE_NAME (type) = ada_type_name (type0);
7779 TYPE_TAG_NAME (type) = NULL;
876cecd0 7780 TYPE_FIXED_INSTANCE (type) = 1;
4c4b4cd2
PH
7781 TYPE_LENGTH (type) = 0;
7782 }
7783 TYPE_FIELD_TYPE (type, f) = new_type;
7784 TYPE_FIELD_NAME (type, f) = TYPE_FIELD_NAME (type0, f);
14f9c5c9 7785 }
14f9c5c9
AS
7786 return type;
7787}
7788
4c4b4cd2 7789/* Given an object of type TYPE whose contents are at VALADDR and
5823c3ef
JB
7790 whose address in memory is ADDRESS, returns a revision of TYPE,
7791 which should be a non-dynamic-sized record, in which the variant
7792 part, if any, is replaced with the appropriate branch. Looks
4c4b4cd2
PH
7793 for discriminant values in DVAL0, which can be NULL if the record
7794 contains the necessary discriminant values. */
7795
d2e4a39e 7796static struct type *
fc1a4b47 7797to_record_with_fixed_variant_part (struct type *type, const gdb_byte *valaddr,
4c4b4cd2 7798 CORE_ADDR address, struct value *dval0)
14f9c5c9 7799{
d2e4a39e 7800 struct value *mark = value_mark ();
4c4b4cd2 7801 struct value *dval;
d2e4a39e 7802 struct type *rtype;
14f9c5c9
AS
7803 struct type *branch_type;
7804 int nfields = TYPE_NFIELDS (type);
4c4b4cd2 7805 int variant_field = variant_field_index (type);
14f9c5c9 7806
4c4b4cd2 7807 if (variant_field == -1)
14f9c5c9
AS
7808 return type;
7809
4c4b4cd2
PH
7810 if (dval0 == NULL)
7811 dval = value_from_contents_and_address (type, valaddr, address);
7812 else
7813 dval = dval0;
7814
e9bb382b 7815 rtype = alloc_type_copy (type);
14f9c5c9 7816 TYPE_CODE (rtype) = TYPE_CODE_STRUCT;
4c4b4cd2
PH
7817 INIT_CPLUS_SPECIFIC (rtype);
7818 TYPE_NFIELDS (rtype) = nfields;
d2e4a39e
AS
7819 TYPE_FIELDS (rtype) =
7820 (struct field *) TYPE_ALLOC (rtype, nfields * sizeof (struct field));
7821 memcpy (TYPE_FIELDS (rtype), TYPE_FIELDS (type),
4c4b4cd2 7822 sizeof (struct field) * nfields);
14f9c5c9
AS
7823 TYPE_NAME (rtype) = ada_type_name (type);
7824 TYPE_TAG_NAME (rtype) = NULL;
876cecd0 7825 TYPE_FIXED_INSTANCE (rtype) = 1;
14f9c5c9
AS
7826 TYPE_LENGTH (rtype) = TYPE_LENGTH (type);
7827
4c4b4cd2
PH
7828 branch_type = to_fixed_variant_branch_type
7829 (TYPE_FIELD_TYPE (type, variant_field),
d2e4a39e 7830 cond_offset_host (valaddr,
4c4b4cd2
PH
7831 TYPE_FIELD_BITPOS (type, variant_field)
7832 / TARGET_CHAR_BIT),
d2e4a39e 7833 cond_offset_target (address,
4c4b4cd2
PH
7834 TYPE_FIELD_BITPOS (type, variant_field)
7835 / TARGET_CHAR_BIT), dval);
d2e4a39e 7836 if (branch_type == NULL)
14f9c5c9 7837 {
4c4b4cd2 7838 int f;
5b4ee69b 7839
4c4b4cd2
PH
7840 for (f = variant_field + 1; f < nfields; f += 1)
7841 TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f];
14f9c5c9 7842 TYPE_NFIELDS (rtype) -= 1;
14f9c5c9
AS
7843 }
7844 else
7845 {
4c4b4cd2
PH
7846 TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
7847 TYPE_FIELD_NAME (rtype, variant_field) = "S";
7848 TYPE_FIELD_BITSIZE (rtype, variant_field) = 0;
14f9c5c9 7849 TYPE_LENGTH (rtype) += TYPE_LENGTH (branch_type);
14f9c5c9 7850 }
4c4b4cd2 7851 TYPE_LENGTH (rtype) -= TYPE_LENGTH (TYPE_FIELD_TYPE (type, variant_field));
d2e4a39e 7852
4c4b4cd2 7853 value_free_to_mark (mark);
14f9c5c9
AS
7854 return rtype;
7855}
7856
7857/* An ordinary record type (with fixed-length fields) that describes
7858 the value at (TYPE0, VALADDR, ADDRESS) [see explanation at
7859 beginning of this section]. Any necessary discriminants' values
4c4b4cd2
PH
7860 should be in DVAL, a record value; it may be NULL if the object
7861 at ADDR itself contains any necessary discriminant values.
7862 Additionally, VALADDR and ADDRESS may also be NULL if no discriminant
7863 values from the record are needed. Except in the case that DVAL,
7864 VALADDR, and ADDRESS are all 0 or NULL, a variant field (unless
7865 unchecked) is replaced by a particular branch of the variant.
7866
7867 NOTE: the case in which DVAL and VALADDR are NULL and ADDRESS is 0
7868 is questionable and may be removed. It can arise during the
7869 processing of an unconstrained-array-of-record type where all the
7870 variant branches have exactly the same size. This is because in
7871 such cases, the compiler does not bother to use the XVS convention
7872 when encoding the record. I am currently dubious of this
7873 shortcut and suspect the compiler should be altered. FIXME. */
14f9c5c9 7874
d2e4a39e 7875static struct type *
fc1a4b47 7876to_fixed_record_type (struct type *type0, const gdb_byte *valaddr,
4c4b4cd2 7877 CORE_ADDR address, struct value *dval)
14f9c5c9 7878{
d2e4a39e 7879 struct type *templ_type;
14f9c5c9 7880
876cecd0 7881 if (TYPE_FIXED_INSTANCE (type0))
4c4b4cd2
PH
7882 return type0;
7883
d2e4a39e 7884 templ_type = dynamic_template_type (type0);
14f9c5c9
AS
7885
7886 if (templ_type != NULL)
7887 return template_to_fixed_record_type (templ_type, valaddr, address, dval);
4c4b4cd2
PH
7888 else if (variant_field_index (type0) >= 0)
7889 {
7890 if (dval == NULL && valaddr == NULL && address == 0)
7891 return type0;
7892 return to_record_with_fixed_variant_part (type0, valaddr, address,
7893 dval);
7894 }
14f9c5c9
AS
7895 else
7896 {
876cecd0 7897 TYPE_FIXED_INSTANCE (type0) = 1;
14f9c5c9
AS
7898 return type0;
7899 }
7900
7901}
7902
7903/* An ordinary record type (with fixed-length fields) that describes
7904 the value at (VAR_TYPE0, VALADDR, ADDRESS), where VAR_TYPE0 is a
7905 union type. Any necessary discriminants' values should be in DVAL,
7906 a record value. That is, this routine selects the appropriate
7907 branch of the union at ADDR according to the discriminant value
b1f33ddd 7908 indicated in the union's type name. Returns VAR_TYPE0 itself if
0963b4bd 7909 it represents a variant subject to a pragma Unchecked_Union. */
14f9c5c9 7910
d2e4a39e 7911static struct type *
fc1a4b47 7912to_fixed_variant_branch_type (struct type *var_type0, const gdb_byte *valaddr,
4c4b4cd2 7913 CORE_ADDR address, struct value *dval)
14f9c5c9
AS
7914{
7915 int which;
d2e4a39e
AS
7916 struct type *templ_type;
7917 struct type *var_type;
14f9c5c9
AS
7918
7919 if (TYPE_CODE (var_type0) == TYPE_CODE_PTR)
7920 var_type = TYPE_TARGET_TYPE (var_type0);
d2e4a39e 7921 else
14f9c5c9
AS
7922 var_type = var_type0;
7923
7924 templ_type = ada_find_parallel_type (var_type, "___XVU");
7925
7926 if (templ_type != NULL)
7927 var_type = templ_type;
7928
b1f33ddd
JB
7929 if (is_unchecked_variant (var_type, value_type (dval)))
7930 return var_type0;
d2e4a39e
AS
7931 which =
7932 ada_which_variant_applies (var_type,
0fd88904 7933 value_type (dval), value_contents (dval));
14f9c5c9
AS
7934
7935 if (which < 0)
e9bb382b 7936 return empty_record (var_type);
14f9c5c9 7937 else if (is_dynamic_field (var_type, which))
4c4b4cd2 7938 return to_fixed_record_type
d2e4a39e
AS
7939 (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (var_type, which)),
7940 valaddr, address, dval);
4c4b4cd2 7941 else if (variant_field_index (TYPE_FIELD_TYPE (var_type, which)) >= 0)
d2e4a39e
AS
7942 return
7943 to_fixed_record_type
7944 (TYPE_FIELD_TYPE (var_type, which), valaddr, address, dval);
14f9c5c9
AS
7945 else
7946 return TYPE_FIELD_TYPE (var_type, which);
7947}
7948
7949/* Assuming that TYPE0 is an array type describing the type of a value
7950 at ADDR, and that DVAL describes a record containing any
7951 discriminants used in TYPE0, returns a type for the value that
7952 contains no dynamic components (that is, no components whose sizes
7953 are determined by run-time quantities). Unless IGNORE_TOO_BIG is
7954 true, gives an error message if the resulting type's size is over
4c4b4cd2 7955 varsize_limit. */
14f9c5c9 7956
d2e4a39e
AS
7957static struct type *
7958to_fixed_array_type (struct type *type0, struct value *dval,
4c4b4cd2 7959 int ignore_too_big)
14f9c5c9 7960{
d2e4a39e
AS
7961 struct type *index_type_desc;
7962 struct type *result;
ad82864c 7963 int constrained_packed_array_p;
14f9c5c9 7964
b0dd7688 7965 type0 = ada_check_typedef (type0);
284614f0 7966 if (TYPE_FIXED_INSTANCE (type0))
4c4b4cd2 7967 return type0;
14f9c5c9 7968
ad82864c
JB
7969 constrained_packed_array_p = ada_is_constrained_packed_array_type (type0);
7970 if (constrained_packed_array_p)
7971 type0 = decode_constrained_packed_array_type (type0);
284614f0 7972
14f9c5c9 7973 index_type_desc = ada_find_parallel_type (type0, "___XA");
28c85d6c 7974 ada_fixup_array_indexes_type (index_type_desc);
14f9c5c9
AS
7975 if (index_type_desc == NULL)
7976 {
61ee279c 7977 struct type *elt_type0 = ada_check_typedef (TYPE_TARGET_TYPE (type0));
5b4ee69b 7978
14f9c5c9 7979 /* NOTE: elt_type---the fixed version of elt_type0---should never
4c4b4cd2
PH
7980 depend on the contents of the array in properly constructed
7981 debugging data. */
529cad9c
PH
7982 /* Create a fixed version of the array element type.
7983 We're not providing the address of an element here,
e1d5a0d2 7984 and thus the actual object value cannot be inspected to do
529cad9c
PH
7985 the conversion. This should not be a problem, since arrays of
7986 unconstrained objects are not allowed. In particular, all
7987 the elements of an array of a tagged type should all be of
7988 the same type specified in the debugging info. No need to
7989 consult the object tag. */
1ed6ede0 7990 struct type *elt_type = ada_to_fixed_type (elt_type0, 0, 0, dval, 1);
14f9c5c9 7991
284614f0
JB
7992 /* Make sure we always create a new array type when dealing with
7993 packed array types, since we're going to fix-up the array
7994 type length and element bitsize a little further down. */
ad82864c 7995 if (elt_type0 == elt_type && !constrained_packed_array_p)
4c4b4cd2 7996 result = type0;
14f9c5c9 7997 else
e9bb382b 7998 result = create_array_type (alloc_type_copy (type0),
4c4b4cd2 7999 elt_type, TYPE_INDEX_TYPE (type0));
14f9c5c9
AS
8000 }
8001 else
8002 {
8003 int i;
8004 struct type *elt_type0;
8005
8006 elt_type0 = type0;
8007 for (i = TYPE_NFIELDS (index_type_desc); i > 0; i -= 1)
4c4b4cd2 8008 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
14f9c5c9
AS
8009
8010 /* NOTE: result---the fixed version of elt_type0---should never
4c4b4cd2
PH
8011 depend on the contents of the array in properly constructed
8012 debugging data. */
529cad9c
PH
8013 /* Create a fixed version of the array element type.
8014 We're not providing the address of an element here,
e1d5a0d2 8015 and thus the actual object value cannot be inspected to do
529cad9c
PH
8016 the conversion. This should not be a problem, since arrays of
8017 unconstrained objects are not allowed. In particular, all
8018 the elements of an array of a tagged type should all be of
8019 the same type specified in the debugging info. No need to
8020 consult the object tag. */
1ed6ede0
JB
8021 result =
8022 ada_to_fixed_type (ada_check_typedef (elt_type0), 0, 0, dval, 1);
1ce677a4
UW
8023
8024 elt_type0 = type0;
14f9c5c9 8025 for (i = TYPE_NFIELDS (index_type_desc) - 1; i >= 0; i -= 1)
4c4b4cd2
PH
8026 {
8027 struct type *range_type =
28c85d6c 8028 to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, i), dval);
5b4ee69b 8029
e9bb382b 8030 result = create_array_type (alloc_type_copy (elt_type0),
4c4b4cd2 8031 result, range_type);
1ce677a4 8032 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
4c4b4cd2 8033 }
d2e4a39e 8034 if (!ignore_too_big && TYPE_LENGTH (result) > varsize_limit)
323e0a4a 8035 error (_("array type with dynamic size is larger than varsize-limit"));
14f9c5c9
AS
8036 }
8037
2e6fda7d
JB
8038 /* We want to preserve the type name. This can be useful when
8039 trying to get the type name of a value that has already been
8040 printed (for instance, if the user did "print VAR; whatis $". */
8041 TYPE_NAME (result) = TYPE_NAME (type0);
8042
ad82864c 8043 if (constrained_packed_array_p)
284614f0
JB
8044 {
8045 /* So far, the resulting type has been created as if the original
8046 type was a regular (non-packed) array type. As a result, the
8047 bitsize of the array elements needs to be set again, and the array
8048 length needs to be recomputed based on that bitsize. */
8049 int len = TYPE_LENGTH (result) / TYPE_LENGTH (TYPE_TARGET_TYPE (result));
8050 int elt_bitsize = TYPE_FIELD_BITSIZE (type0, 0);
8051
8052 TYPE_FIELD_BITSIZE (result, 0) = TYPE_FIELD_BITSIZE (type0, 0);
8053 TYPE_LENGTH (result) = len * elt_bitsize / HOST_CHAR_BIT;
8054 if (TYPE_LENGTH (result) * HOST_CHAR_BIT < len * elt_bitsize)
8055 TYPE_LENGTH (result)++;
8056 }
8057
876cecd0 8058 TYPE_FIXED_INSTANCE (result) = 1;
14f9c5c9 8059 return result;
d2e4a39e 8060}
14f9c5c9
AS
8061
8062
8063/* A standard type (containing no dynamically sized components)
8064 corresponding to TYPE for the value (TYPE, VALADDR, ADDRESS)
8065 DVAL describes a record containing any discriminants used in TYPE0,
4c4b4cd2 8066 and may be NULL if there are none, or if the object of type TYPE at
529cad9c
PH
8067 ADDRESS or in VALADDR contains these discriminants.
8068
1ed6ede0
JB
8069 If CHECK_TAG is not null, in the case of tagged types, this function
8070 attempts to locate the object's tag and use it to compute the actual
8071 type. However, when ADDRESS is null, we cannot use it to determine the
8072 location of the tag, and therefore compute the tagged type's actual type.
8073 So we return the tagged type without consulting the tag. */
529cad9c 8074
f192137b
JB
8075static struct type *
8076ada_to_fixed_type_1 (struct type *type, const gdb_byte *valaddr,
1ed6ede0 8077 CORE_ADDR address, struct value *dval, int check_tag)
14f9c5c9 8078{
61ee279c 8079 type = ada_check_typedef (type);
d2e4a39e
AS
8080 switch (TYPE_CODE (type))
8081 {
8082 default:
14f9c5c9 8083 return type;
d2e4a39e 8084 case TYPE_CODE_STRUCT:
4c4b4cd2 8085 {
76a01679 8086 struct type *static_type = to_static_fixed_type (type);
1ed6ede0
JB
8087 struct type *fixed_record_type =
8088 to_fixed_record_type (type, valaddr, address, NULL);
5b4ee69b 8089
529cad9c
PH
8090 /* If STATIC_TYPE is a tagged type and we know the object's address,
8091 then we can determine its tag, and compute the object's actual
0963b4bd 8092 type from there. Note that we have to use the fixed record
1ed6ede0
JB
8093 type (the parent part of the record may have dynamic fields
8094 and the way the location of _tag is expressed may depend on
8095 them). */
529cad9c 8096
1ed6ede0 8097 if (check_tag && address != 0 && ada_is_tagged_type (static_type, 0))
76a01679 8098 {
b50d69b5
JG
8099 struct value *tag =
8100 value_tag_from_contents_and_address
8101 (fixed_record_type,
8102 valaddr,
8103 address);
8104 struct type *real_type = type_from_tag (tag);
8105 struct value *obj =
8106 value_from_contents_and_address (fixed_record_type,
8107 valaddr,
8108 address);
76a01679 8109 if (real_type != NULL)
b50d69b5
JG
8110 return to_fixed_record_type
8111 (real_type, NULL,
8112 value_address (ada_tag_value_at_base_address (obj)), NULL);
76a01679 8113 }
4af88198
JB
8114
8115 /* Check to see if there is a parallel ___XVZ variable.
8116 If there is, then it provides the actual size of our type. */
8117 else if (ada_type_name (fixed_record_type) != NULL)
8118 {
0d5cff50 8119 const char *name = ada_type_name (fixed_record_type);
4af88198
JB
8120 char *xvz_name = alloca (strlen (name) + 7 /* "___XVZ\0" */);
8121 int xvz_found = 0;
8122 LONGEST size;
8123
88c15c34 8124 xsnprintf (xvz_name, strlen (name) + 7, "%s___XVZ", name);
4af88198
JB
8125 size = get_int_var_value (xvz_name, &xvz_found);
8126 if (xvz_found && TYPE_LENGTH (fixed_record_type) != size)
8127 {
8128 fixed_record_type = copy_type (fixed_record_type);
8129 TYPE_LENGTH (fixed_record_type) = size;
8130
8131 /* The FIXED_RECORD_TYPE may have be a stub. We have
8132 observed this when the debugging info is STABS, and
8133 apparently it is something that is hard to fix.
8134
8135 In practice, we don't need the actual type definition
8136 at all, because the presence of the XVZ variable allows us
8137 to assume that there must be a XVS type as well, which we
8138 should be able to use later, when we need the actual type
8139 definition.
8140
8141 In the meantime, pretend that the "fixed" type we are
8142 returning is NOT a stub, because this can cause trouble
8143 when using this type to create new types targeting it.
8144 Indeed, the associated creation routines often check
8145 whether the target type is a stub and will try to replace
0963b4bd 8146 it, thus using a type with the wrong size. This, in turn,
4af88198
JB
8147 might cause the new type to have the wrong size too.
8148 Consider the case of an array, for instance, where the size
8149 of the array is computed from the number of elements in
8150 our array multiplied by the size of its element. */
8151 TYPE_STUB (fixed_record_type) = 0;
8152 }
8153 }
1ed6ede0 8154 return fixed_record_type;
4c4b4cd2 8155 }
d2e4a39e 8156 case TYPE_CODE_ARRAY:
4c4b4cd2 8157 return to_fixed_array_type (type, dval, 1);
d2e4a39e
AS
8158 case TYPE_CODE_UNION:
8159 if (dval == NULL)
4c4b4cd2 8160 return type;
d2e4a39e 8161 else
4c4b4cd2 8162 return to_fixed_variant_branch_type (type, valaddr, address, dval);
d2e4a39e 8163 }
14f9c5c9
AS
8164}
8165
f192137b
JB
8166/* The same as ada_to_fixed_type_1, except that it preserves the type
8167 if it is a TYPE_CODE_TYPEDEF of a type that is already fixed.
96dbd2c1
JB
8168
8169 The typedef layer needs be preserved in order to differentiate between
8170 arrays and array pointers when both types are implemented using the same
8171 fat pointer. In the array pointer case, the pointer is encoded as
8172 a typedef of the pointer type. For instance, considering:
8173
8174 type String_Access is access String;
8175 S1 : String_Access := null;
8176
8177 To the debugger, S1 is defined as a typedef of type String. But
8178 to the user, it is a pointer. So if the user tries to print S1,
8179 we should not dereference the array, but print the array address
8180 instead.
8181
8182 If we didn't preserve the typedef layer, we would lose the fact that
8183 the type is to be presented as a pointer (needs de-reference before
8184 being printed). And we would also use the source-level type name. */
f192137b
JB
8185
8186struct type *
8187ada_to_fixed_type (struct type *type, const gdb_byte *valaddr,
8188 CORE_ADDR address, struct value *dval, int check_tag)
8189
8190{
8191 struct type *fixed_type =
8192 ada_to_fixed_type_1 (type, valaddr, address, dval, check_tag);
8193
96dbd2c1
JB
8194 /* If TYPE is a typedef and its target type is the same as the FIXED_TYPE,
8195 then preserve the typedef layer.
8196
8197 Implementation note: We can only check the main-type portion of
8198 the TYPE and FIXED_TYPE, because eliminating the typedef layer
8199 from TYPE now returns a type that has the same instance flags
8200 as TYPE. For instance, if TYPE is a "typedef const", and its
8201 target type is a "struct", then the typedef elimination will return
8202 a "const" version of the target type. See check_typedef for more
8203 details about how the typedef layer elimination is done.
8204
8205 brobecker/2010-11-19: It seems to me that the only case where it is
8206 useful to preserve the typedef layer is when dealing with fat pointers.
8207 Perhaps, we could add a check for that and preserve the typedef layer
8208 only in that situation. But this seems unecessary so far, probably
8209 because we call check_typedef/ada_check_typedef pretty much everywhere.
8210 */
f192137b 8211 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF
720d1a40 8212 && (TYPE_MAIN_TYPE (ada_typedef_target_type (type))
96dbd2c1 8213 == TYPE_MAIN_TYPE (fixed_type)))
f192137b
JB
8214 return type;
8215
8216 return fixed_type;
8217}
8218
14f9c5c9 8219/* A standard (static-sized) type corresponding as well as possible to
4c4b4cd2 8220 TYPE0, but based on no runtime data. */
14f9c5c9 8221
d2e4a39e
AS
8222static struct type *
8223to_static_fixed_type (struct type *type0)
14f9c5c9 8224{
d2e4a39e 8225 struct type *type;
14f9c5c9
AS
8226
8227 if (type0 == NULL)
8228 return NULL;
8229
876cecd0 8230 if (TYPE_FIXED_INSTANCE (type0))
4c4b4cd2
PH
8231 return type0;
8232
61ee279c 8233 type0 = ada_check_typedef (type0);
d2e4a39e 8234
14f9c5c9
AS
8235 switch (TYPE_CODE (type0))
8236 {
8237 default:
8238 return type0;
8239 case TYPE_CODE_STRUCT:
8240 type = dynamic_template_type (type0);
d2e4a39e 8241 if (type != NULL)
4c4b4cd2
PH
8242 return template_to_static_fixed_type (type);
8243 else
8244 return template_to_static_fixed_type (type0);
14f9c5c9
AS
8245 case TYPE_CODE_UNION:
8246 type = ada_find_parallel_type (type0, "___XVU");
8247 if (type != NULL)
4c4b4cd2
PH
8248 return template_to_static_fixed_type (type);
8249 else
8250 return template_to_static_fixed_type (type0);
14f9c5c9
AS
8251 }
8252}
8253
4c4b4cd2
PH
8254/* A static approximation of TYPE with all type wrappers removed. */
8255
d2e4a39e
AS
8256static struct type *
8257static_unwrap_type (struct type *type)
14f9c5c9
AS
8258{
8259 if (ada_is_aligner_type (type))
8260 {
61ee279c 8261 struct type *type1 = TYPE_FIELD_TYPE (ada_check_typedef (type), 0);
14f9c5c9 8262 if (ada_type_name (type1) == NULL)
4c4b4cd2 8263 TYPE_NAME (type1) = ada_type_name (type);
14f9c5c9
AS
8264
8265 return static_unwrap_type (type1);
8266 }
d2e4a39e 8267 else
14f9c5c9 8268 {
d2e4a39e 8269 struct type *raw_real_type = ada_get_base_type (type);
5b4ee69b 8270
d2e4a39e 8271 if (raw_real_type == type)
4c4b4cd2 8272 return type;
14f9c5c9 8273 else
4c4b4cd2 8274 return to_static_fixed_type (raw_real_type);
14f9c5c9
AS
8275 }
8276}
8277
8278/* In some cases, incomplete and private types require
4c4b4cd2 8279 cross-references that are not resolved as records (for example,
14f9c5c9
AS
8280 type Foo;
8281 type FooP is access Foo;
8282 V: FooP;
8283 type Foo is array ...;
4c4b4cd2 8284 ). In these cases, since there is no mechanism for producing
14f9c5c9
AS
8285 cross-references to such types, we instead substitute for FooP a
8286 stub enumeration type that is nowhere resolved, and whose tag is
4c4b4cd2 8287 the name of the actual type. Call these types "non-record stubs". */
14f9c5c9
AS
8288
8289/* A type equivalent to TYPE that is not a non-record stub, if one
4c4b4cd2
PH
8290 exists, otherwise TYPE. */
8291
d2e4a39e 8292struct type *
61ee279c 8293ada_check_typedef (struct type *type)
14f9c5c9 8294{
727e3d2e
JB
8295 if (type == NULL)
8296 return NULL;
8297
720d1a40
JB
8298 /* If our type is a typedef type of a fat pointer, then we're done.
8299 We don't want to strip the TYPE_CODE_TYPDEF layer, because this is
8300 what allows us to distinguish between fat pointers that represent
8301 array types, and fat pointers that represent array access types
8302 (in both cases, the compiler implements them as fat pointers). */
8303 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF
8304 && is_thick_pntr (ada_typedef_target_type (type)))
8305 return type;
8306
14f9c5c9
AS
8307 CHECK_TYPEDEF (type);
8308 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM
529cad9c 8309 || !TYPE_STUB (type)
14f9c5c9
AS
8310 || TYPE_TAG_NAME (type) == NULL)
8311 return type;
d2e4a39e 8312 else
14f9c5c9 8313 {
0d5cff50 8314 const char *name = TYPE_TAG_NAME (type);
d2e4a39e 8315 struct type *type1 = ada_find_any_type (name);
5b4ee69b 8316
05e522ef
JB
8317 if (type1 == NULL)
8318 return type;
8319
8320 /* TYPE1 might itself be a TYPE_CODE_TYPEDEF (this can happen with
8321 stubs pointing to arrays, as we don't create symbols for array
3a867c22
JB
8322 types, only for the typedef-to-array types). If that's the case,
8323 strip the typedef layer. */
8324 if (TYPE_CODE (type1) == TYPE_CODE_TYPEDEF)
8325 type1 = ada_check_typedef (type1);
8326
8327 return type1;
14f9c5c9
AS
8328 }
8329}
8330
8331/* A value representing the data at VALADDR/ADDRESS as described by
8332 type TYPE0, but with a standard (static-sized) type that correctly
8333 describes it. If VAL0 is not NULL and TYPE0 already is a standard
8334 type, then return VAL0 [this feature is simply to avoid redundant
4c4b4cd2 8335 creation of struct values]. */
14f9c5c9 8336
4c4b4cd2
PH
8337static struct value *
8338ada_to_fixed_value_create (struct type *type0, CORE_ADDR address,
8339 struct value *val0)
14f9c5c9 8340{
1ed6ede0 8341 struct type *type = ada_to_fixed_type (type0, 0, address, NULL, 1);
5b4ee69b 8342
14f9c5c9
AS
8343 if (type == type0 && val0 != NULL)
8344 return val0;
d2e4a39e 8345 else
4c4b4cd2
PH
8346 return value_from_contents_and_address (type, 0, address);
8347}
8348
8349/* A value representing VAL, but with a standard (static-sized) type
8350 that correctly describes it. Does not necessarily create a new
8351 value. */
8352
0c3acc09 8353struct value *
4c4b4cd2
PH
8354ada_to_fixed_value (struct value *val)
8355{
c48db5ca
JB
8356 val = unwrap_value (val);
8357 val = ada_to_fixed_value_create (value_type (val),
8358 value_address (val),
8359 val);
8360 return val;
14f9c5c9 8361}
d2e4a39e 8362\f
14f9c5c9 8363
14f9c5c9
AS
8364/* Attributes */
8365
4c4b4cd2
PH
8366/* Table mapping attribute numbers to names.
8367 NOTE: Keep up to date with enum ada_attribute definition in ada-lang.h. */
14f9c5c9 8368
d2e4a39e 8369static const char *attribute_names[] = {
14f9c5c9
AS
8370 "<?>",
8371
d2e4a39e 8372 "first",
14f9c5c9
AS
8373 "last",
8374 "length",
8375 "image",
14f9c5c9
AS
8376 "max",
8377 "min",
4c4b4cd2
PH
8378 "modulus",
8379 "pos",
8380 "size",
8381 "tag",
14f9c5c9 8382 "val",
14f9c5c9
AS
8383 0
8384};
8385
d2e4a39e 8386const char *
4c4b4cd2 8387ada_attribute_name (enum exp_opcode n)
14f9c5c9 8388{
4c4b4cd2
PH
8389 if (n >= OP_ATR_FIRST && n <= (int) OP_ATR_VAL)
8390 return attribute_names[n - OP_ATR_FIRST + 1];
14f9c5c9
AS
8391 else
8392 return attribute_names[0];
8393}
8394
4c4b4cd2 8395/* Evaluate the 'POS attribute applied to ARG. */
14f9c5c9 8396
4c4b4cd2
PH
8397static LONGEST
8398pos_atr (struct value *arg)
14f9c5c9 8399{
24209737
PH
8400 struct value *val = coerce_ref (arg);
8401 struct type *type = value_type (val);
14f9c5c9 8402
d2e4a39e 8403 if (!discrete_type_p (type))
323e0a4a 8404 error (_("'POS only defined on discrete types"));
14f9c5c9
AS
8405
8406 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
8407 {
8408 int i;
24209737 8409 LONGEST v = value_as_long (val);
14f9c5c9 8410
d2e4a39e 8411 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
4c4b4cd2 8412 {
14e75d8e 8413 if (v == TYPE_FIELD_ENUMVAL (type, i))
4c4b4cd2
PH
8414 return i;
8415 }
323e0a4a 8416 error (_("enumeration value is invalid: can't find 'POS"));
14f9c5c9
AS
8417 }
8418 else
24209737 8419 return value_as_long (val);
4c4b4cd2
PH
8420}
8421
8422static struct value *
3cb382c9 8423value_pos_atr (struct type *type, struct value *arg)
4c4b4cd2 8424{
3cb382c9 8425 return value_from_longest (type, pos_atr (arg));
14f9c5c9
AS
8426}
8427
4c4b4cd2 8428/* Evaluate the TYPE'VAL attribute applied to ARG. */
14f9c5c9 8429
d2e4a39e
AS
8430static struct value *
8431value_val_atr (struct type *type, struct value *arg)
14f9c5c9 8432{
d2e4a39e 8433 if (!discrete_type_p (type))
323e0a4a 8434 error (_("'VAL only defined on discrete types"));
df407dfe 8435 if (!integer_type_p (value_type (arg)))
323e0a4a 8436 error (_("'VAL requires integral argument"));
14f9c5c9
AS
8437
8438 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
8439 {
8440 long pos = value_as_long (arg);
5b4ee69b 8441
14f9c5c9 8442 if (pos < 0 || pos >= TYPE_NFIELDS (type))
323e0a4a 8443 error (_("argument to 'VAL out of range"));
14e75d8e 8444 return value_from_longest (type, TYPE_FIELD_ENUMVAL (type, pos));
14f9c5c9
AS
8445 }
8446 else
8447 return value_from_longest (type, value_as_long (arg));
8448}
14f9c5c9 8449\f
d2e4a39e 8450
4c4b4cd2 8451 /* Evaluation */
14f9c5c9 8452
4c4b4cd2
PH
8453/* True if TYPE appears to be an Ada character type.
8454 [At the moment, this is true only for Character and Wide_Character;
8455 It is a heuristic test that could stand improvement]. */
14f9c5c9 8456
d2e4a39e
AS
8457int
8458ada_is_character_type (struct type *type)
14f9c5c9 8459{
7b9f71f2
JB
8460 const char *name;
8461
8462 /* If the type code says it's a character, then assume it really is,
8463 and don't check any further. */
8464 if (TYPE_CODE (type) == TYPE_CODE_CHAR)
8465 return 1;
8466
8467 /* Otherwise, assume it's a character type iff it is a discrete type
8468 with a known character type name. */
8469 name = ada_type_name (type);
8470 return (name != NULL
8471 && (TYPE_CODE (type) == TYPE_CODE_INT
8472 || TYPE_CODE (type) == TYPE_CODE_RANGE)
8473 && (strcmp (name, "character") == 0
8474 || strcmp (name, "wide_character") == 0
5a517ebd 8475 || strcmp (name, "wide_wide_character") == 0
7b9f71f2 8476 || strcmp (name, "unsigned char") == 0));
14f9c5c9
AS
8477}
8478
4c4b4cd2 8479/* True if TYPE appears to be an Ada string type. */
14f9c5c9
AS
8480
8481int
ebf56fd3 8482ada_is_string_type (struct type *type)
14f9c5c9 8483{
61ee279c 8484 type = ada_check_typedef (type);
d2e4a39e 8485 if (type != NULL
14f9c5c9 8486 && TYPE_CODE (type) != TYPE_CODE_PTR
76a01679
JB
8487 && (ada_is_simple_array_type (type)
8488 || ada_is_array_descriptor_type (type))
14f9c5c9
AS
8489 && ada_array_arity (type) == 1)
8490 {
8491 struct type *elttype = ada_array_element_type (type, 1);
8492
8493 return ada_is_character_type (elttype);
8494 }
d2e4a39e 8495 else
14f9c5c9
AS
8496 return 0;
8497}
8498
5bf03f13
JB
8499/* The compiler sometimes provides a parallel XVS type for a given
8500 PAD type. Normally, it is safe to follow the PAD type directly,
8501 but older versions of the compiler have a bug that causes the offset
8502 of its "F" field to be wrong. Following that field in that case
8503 would lead to incorrect results, but this can be worked around
8504 by ignoring the PAD type and using the associated XVS type instead.
8505
8506 Set to True if the debugger should trust the contents of PAD types.
8507 Otherwise, ignore the PAD type if there is a parallel XVS type. */
8508static int trust_pad_over_xvs = 1;
14f9c5c9
AS
8509
8510/* True if TYPE is a struct type introduced by the compiler to force the
8511 alignment of a value. Such types have a single field with a
4c4b4cd2 8512 distinctive name. */
14f9c5c9
AS
8513
8514int
ebf56fd3 8515ada_is_aligner_type (struct type *type)
14f9c5c9 8516{
61ee279c 8517 type = ada_check_typedef (type);
714e53ab 8518
5bf03f13 8519 if (!trust_pad_over_xvs && ada_find_parallel_type (type, "___XVS") != NULL)
714e53ab
PH
8520 return 0;
8521
14f9c5c9 8522 return (TYPE_CODE (type) == TYPE_CODE_STRUCT
4c4b4cd2
PH
8523 && TYPE_NFIELDS (type) == 1
8524 && strcmp (TYPE_FIELD_NAME (type, 0), "F") == 0);
14f9c5c9
AS
8525}
8526
8527/* If there is an ___XVS-convention type parallel to SUBTYPE, return
4c4b4cd2 8528 the parallel type. */
14f9c5c9 8529
d2e4a39e
AS
8530struct type *
8531ada_get_base_type (struct type *raw_type)
14f9c5c9 8532{
d2e4a39e
AS
8533 struct type *real_type_namer;
8534 struct type *raw_real_type;
14f9c5c9
AS
8535
8536 if (raw_type == NULL || TYPE_CODE (raw_type) != TYPE_CODE_STRUCT)
8537 return raw_type;
8538
284614f0
JB
8539 if (ada_is_aligner_type (raw_type))
8540 /* The encoding specifies that we should always use the aligner type.
8541 So, even if this aligner type has an associated XVS type, we should
8542 simply ignore it.
8543
8544 According to the compiler gurus, an XVS type parallel to an aligner
8545 type may exist because of a stabs limitation. In stabs, aligner
8546 types are empty because the field has a variable-sized type, and
8547 thus cannot actually be used as an aligner type. As a result,
8548 we need the associated parallel XVS type to decode the type.
8549 Since the policy in the compiler is to not change the internal
8550 representation based on the debugging info format, we sometimes
8551 end up having a redundant XVS type parallel to the aligner type. */
8552 return raw_type;
8553
14f9c5c9 8554 real_type_namer = ada_find_parallel_type (raw_type, "___XVS");
d2e4a39e 8555 if (real_type_namer == NULL
14f9c5c9
AS
8556 || TYPE_CODE (real_type_namer) != TYPE_CODE_STRUCT
8557 || TYPE_NFIELDS (real_type_namer) != 1)
8558 return raw_type;
8559
f80d3ff2
JB
8560 if (TYPE_CODE (TYPE_FIELD_TYPE (real_type_namer, 0)) != TYPE_CODE_REF)
8561 {
8562 /* This is an older encoding form where the base type needs to be
8563 looked up by name. We prefer the newer enconding because it is
8564 more efficient. */
8565 raw_real_type = ada_find_any_type (TYPE_FIELD_NAME (real_type_namer, 0));
8566 if (raw_real_type == NULL)
8567 return raw_type;
8568 else
8569 return raw_real_type;
8570 }
8571
8572 /* The field in our XVS type is a reference to the base type. */
8573 return TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (real_type_namer, 0));
d2e4a39e 8574}
14f9c5c9 8575
4c4b4cd2 8576/* The type of value designated by TYPE, with all aligners removed. */
14f9c5c9 8577
d2e4a39e
AS
8578struct type *
8579ada_aligned_type (struct type *type)
14f9c5c9
AS
8580{
8581 if (ada_is_aligner_type (type))
8582 return ada_aligned_type (TYPE_FIELD_TYPE (type, 0));
8583 else
8584 return ada_get_base_type (type);
8585}
8586
8587
8588/* The address of the aligned value in an object at address VALADDR
4c4b4cd2 8589 having type TYPE. Assumes ada_is_aligner_type (TYPE). */
14f9c5c9 8590
fc1a4b47
AC
8591const gdb_byte *
8592ada_aligned_value_addr (struct type *type, const gdb_byte *valaddr)
14f9c5c9 8593{
d2e4a39e 8594 if (ada_is_aligner_type (type))
14f9c5c9 8595 return ada_aligned_value_addr (TYPE_FIELD_TYPE (type, 0),
4c4b4cd2
PH
8596 valaddr +
8597 TYPE_FIELD_BITPOS (type,
8598 0) / TARGET_CHAR_BIT);
14f9c5c9
AS
8599 else
8600 return valaddr;
8601}
8602
4c4b4cd2
PH
8603
8604
14f9c5c9 8605/* The printed representation of an enumeration literal with encoded
4c4b4cd2 8606 name NAME. The value is good to the next call of ada_enum_name. */
d2e4a39e
AS
8607const char *
8608ada_enum_name (const char *name)
14f9c5c9 8609{
4c4b4cd2
PH
8610 static char *result;
8611 static size_t result_len = 0;
d2e4a39e 8612 char *tmp;
14f9c5c9 8613
4c4b4cd2
PH
8614 /* First, unqualify the enumeration name:
8615 1. Search for the last '.' character. If we find one, then skip
177b42fe 8616 all the preceding characters, the unqualified name starts
76a01679 8617 right after that dot.
4c4b4cd2 8618 2. Otherwise, we may be debugging on a target where the compiler
76a01679
JB
8619 translates dots into "__". Search forward for double underscores,
8620 but stop searching when we hit an overloading suffix, which is
8621 of the form "__" followed by digits. */
4c4b4cd2 8622
c3e5cd34
PH
8623 tmp = strrchr (name, '.');
8624 if (tmp != NULL)
4c4b4cd2
PH
8625 name = tmp + 1;
8626 else
14f9c5c9 8627 {
4c4b4cd2
PH
8628 while ((tmp = strstr (name, "__")) != NULL)
8629 {
8630 if (isdigit (tmp[2]))
8631 break;
8632 else
8633 name = tmp + 2;
8634 }
14f9c5c9
AS
8635 }
8636
8637 if (name[0] == 'Q')
8638 {
14f9c5c9 8639 int v;
5b4ee69b 8640
14f9c5c9 8641 if (name[1] == 'U' || name[1] == 'W')
4c4b4cd2
PH
8642 {
8643 if (sscanf (name + 2, "%x", &v) != 1)
8644 return name;
8645 }
14f9c5c9 8646 else
4c4b4cd2 8647 return name;
14f9c5c9 8648
4c4b4cd2 8649 GROW_VECT (result, result_len, 16);
14f9c5c9 8650 if (isascii (v) && isprint (v))
88c15c34 8651 xsnprintf (result, result_len, "'%c'", v);
14f9c5c9 8652 else if (name[1] == 'U')
88c15c34 8653 xsnprintf (result, result_len, "[\"%02x\"]", v);
14f9c5c9 8654 else
88c15c34 8655 xsnprintf (result, result_len, "[\"%04x\"]", v);
14f9c5c9
AS
8656
8657 return result;
8658 }
d2e4a39e 8659 else
4c4b4cd2 8660 {
c3e5cd34
PH
8661 tmp = strstr (name, "__");
8662 if (tmp == NULL)
8663 tmp = strstr (name, "$");
8664 if (tmp != NULL)
4c4b4cd2
PH
8665 {
8666 GROW_VECT (result, result_len, tmp - name + 1);
8667 strncpy (result, name, tmp - name);
8668 result[tmp - name] = '\0';
8669 return result;
8670 }
8671
8672 return name;
8673 }
14f9c5c9
AS
8674}
8675
14f9c5c9
AS
8676/* Evaluate the subexpression of EXP starting at *POS as for
8677 evaluate_type, updating *POS to point just past the evaluated
4c4b4cd2 8678 expression. */
14f9c5c9 8679
d2e4a39e
AS
8680static struct value *
8681evaluate_subexp_type (struct expression *exp, int *pos)
14f9c5c9 8682{
4b27a620 8683 return evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
14f9c5c9
AS
8684}
8685
8686/* If VAL is wrapped in an aligner or subtype wrapper, return the
4c4b4cd2 8687 value it wraps. */
14f9c5c9 8688
d2e4a39e
AS
8689static struct value *
8690unwrap_value (struct value *val)
14f9c5c9 8691{
df407dfe 8692 struct type *type = ada_check_typedef (value_type (val));
5b4ee69b 8693
14f9c5c9
AS
8694 if (ada_is_aligner_type (type))
8695 {
de4d072f 8696 struct value *v = ada_value_struct_elt (val, "F", 0);
df407dfe 8697 struct type *val_type = ada_check_typedef (value_type (v));
5b4ee69b 8698
14f9c5c9 8699 if (ada_type_name (val_type) == NULL)
4c4b4cd2 8700 TYPE_NAME (val_type) = ada_type_name (type);
14f9c5c9
AS
8701
8702 return unwrap_value (v);
8703 }
d2e4a39e 8704 else
14f9c5c9 8705 {
d2e4a39e 8706 struct type *raw_real_type =
61ee279c 8707 ada_check_typedef (ada_get_base_type (type));
d2e4a39e 8708
5bf03f13
JB
8709 /* If there is no parallel XVS or XVE type, then the value is
8710 already unwrapped. Return it without further modification. */
8711 if ((type == raw_real_type)
8712 && ada_find_parallel_type (type, "___XVE") == NULL)
8713 return val;
14f9c5c9 8714
d2e4a39e 8715 return
4c4b4cd2
PH
8716 coerce_unspec_val_to_type
8717 (val, ada_to_fixed_type (raw_real_type, 0,
42ae5230 8718 value_address (val),
1ed6ede0 8719 NULL, 1));
14f9c5c9
AS
8720 }
8721}
d2e4a39e
AS
8722
8723static struct value *
8724cast_to_fixed (struct type *type, struct value *arg)
14f9c5c9
AS
8725{
8726 LONGEST val;
8727
df407dfe 8728 if (type == value_type (arg))
14f9c5c9 8729 return arg;
df407dfe 8730 else if (ada_is_fixed_point_type (value_type (arg)))
d2e4a39e 8731 val = ada_float_to_fixed (type,
df407dfe 8732 ada_fixed_to_float (value_type (arg),
4c4b4cd2 8733 value_as_long (arg)));
d2e4a39e 8734 else
14f9c5c9 8735 {
a53b7a21 8736 DOUBLEST argd = value_as_double (arg);
5b4ee69b 8737
14f9c5c9
AS
8738 val = ada_float_to_fixed (type, argd);
8739 }
8740
8741 return value_from_longest (type, val);
8742}
8743
d2e4a39e 8744static struct value *
a53b7a21 8745cast_from_fixed (struct type *type, struct value *arg)
14f9c5c9 8746{
df407dfe 8747 DOUBLEST val = ada_fixed_to_float (value_type (arg),
4c4b4cd2 8748 value_as_long (arg));
5b4ee69b 8749
a53b7a21 8750 return value_from_double (type, val);
14f9c5c9
AS
8751}
8752
d99dcf51
JB
8753/* Given two array types T1 and T2, return nonzero iff both arrays
8754 contain the same number of elements. */
8755
8756static int
8757ada_same_array_size_p (struct type *t1, struct type *t2)
8758{
8759 LONGEST lo1, hi1, lo2, hi2;
8760
8761 /* Get the array bounds in order to verify that the size of
8762 the two arrays match. */
8763 if (!get_array_bounds (t1, &lo1, &hi1)
8764 || !get_array_bounds (t2, &lo2, &hi2))
8765 error (_("unable to determine array bounds"));
8766
8767 /* To make things easier for size comparison, normalize a bit
8768 the case of empty arrays by making sure that the difference
8769 between upper bound and lower bound is always -1. */
8770 if (lo1 > hi1)
8771 hi1 = lo1 - 1;
8772 if (lo2 > hi2)
8773 hi2 = lo2 - 1;
8774
8775 return (hi1 - lo1 == hi2 - lo2);
8776}
8777
8778/* Assuming that VAL is an array of integrals, and TYPE represents
8779 an array with the same number of elements, but with wider integral
8780 elements, return an array "casted" to TYPE. In practice, this
8781 means that the returned array is built by casting each element
8782 of the original array into TYPE's (wider) element type. */
8783
8784static struct value *
8785ada_promote_array_of_integrals (struct type *type, struct value *val)
8786{
8787 struct type *elt_type = TYPE_TARGET_TYPE (type);
8788 LONGEST lo, hi;
8789 struct value *res;
8790 LONGEST i;
8791
8792 /* Verify that both val and type are arrays of scalars, and
8793 that the size of val's elements is smaller than the size
8794 of type's element. */
8795 gdb_assert (TYPE_CODE (type) == TYPE_CODE_ARRAY);
8796 gdb_assert (is_integral_type (TYPE_TARGET_TYPE (type)));
8797 gdb_assert (TYPE_CODE (value_type (val)) == TYPE_CODE_ARRAY);
8798 gdb_assert (is_integral_type (TYPE_TARGET_TYPE (value_type (val))));
8799 gdb_assert (TYPE_LENGTH (TYPE_TARGET_TYPE (type))
8800 > TYPE_LENGTH (TYPE_TARGET_TYPE (value_type (val))));
8801
8802 if (!get_array_bounds (type, &lo, &hi))
8803 error (_("unable to determine array bounds"));
8804
8805 res = allocate_value (type);
8806
8807 /* Promote each array element. */
8808 for (i = 0; i < hi - lo + 1; i++)
8809 {
8810 struct value *elt = value_cast (elt_type, value_subscript (val, lo + i));
8811
8812 memcpy (value_contents_writeable (res) + (i * TYPE_LENGTH (elt_type)),
8813 value_contents_all (elt), TYPE_LENGTH (elt_type));
8814 }
8815
8816 return res;
8817}
8818
4c4b4cd2
PH
8819/* Coerce VAL as necessary for assignment to an lval of type TYPE, and
8820 return the converted value. */
8821
d2e4a39e
AS
8822static struct value *
8823coerce_for_assign (struct type *type, struct value *val)
14f9c5c9 8824{
df407dfe 8825 struct type *type2 = value_type (val);
5b4ee69b 8826
14f9c5c9
AS
8827 if (type == type2)
8828 return val;
8829
61ee279c
PH
8830 type2 = ada_check_typedef (type2);
8831 type = ada_check_typedef (type);
14f9c5c9 8832
d2e4a39e
AS
8833 if (TYPE_CODE (type2) == TYPE_CODE_PTR
8834 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
14f9c5c9
AS
8835 {
8836 val = ada_value_ind (val);
df407dfe 8837 type2 = value_type (val);
14f9c5c9
AS
8838 }
8839
d2e4a39e 8840 if (TYPE_CODE (type2) == TYPE_CODE_ARRAY
14f9c5c9
AS
8841 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
8842 {
d99dcf51
JB
8843 if (!ada_same_array_size_p (type, type2))
8844 error (_("cannot assign arrays of different length"));
8845
8846 if (is_integral_type (TYPE_TARGET_TYPE (type))
8847 && is_integral_type (TYPE_TARGET_TYPE (type2))
8848 && TYPE_LENGTH (TYPE_TARGET_TYPE (type2))
8849 < TYPE_LENGTH (TYPE_TARGET_TYPE (type)))
8850 {
8851 /* Allow implicit promotion of the array elements to
8852 a wider type. */
8853 return ada_promote_array_of_integrals (type, val);
8854 }
8855
8856 if (TYPE_LENGTH (TYPE_TARGET_TYPE (type2))
8857 != TYPE_LENGTH (TYPE_TARGET_TYPE (type)))
323e0a4a 8858 error (_("Incompatible types in assignment"));
04624583 8859 deprecated_set_value_type (val, type);
14f9c5c9 8860 }
d2e4a39e 8861 return val;
14f9c5c9
AS
8862}
8863
4c4b4cd2
PH
8864static struct value *
8865ada_value_binop (struct value *arg1, struct value *arg2, enum exp_opcode op)
8866{
8867 struct value *val;
8868 struct type *type1, *type2;
8869 LONGEST v, v1, v2;
8870
994b9211
AC
8871 arg1 = coerce_ref (arg1);
8872 arg2 = coerce_ref (arg2);
18af8284
JB
8873 type1 = get_base_type (ada_check_typedef (value_type (arg1)));
8874 type2 = get_base_type (ada_check_typedef (value_type (arg2)));
4c4b4cd2 8875
76a01679
JB
8876 if (TYPE_CODE (type1) != TYPE_CODE_INT
8877 || TYPE_CODE (type2) != TYPE_CODE_INT)
4c4b4cd2
PH
8878 return value_binop (arg1, arg2, op);
8879
76a01679 8880 switch (op)
4c4b4cd2
PH
8881 {
8882 case BINOP_MOD:
8883 case BINOP_DIV:
8884 case BINOP_REM:
8885 break;
8886 default:
8887 return value_binop (arg1, arg2, op);
8888 }
8889
8890 v2 = value_as_long (arg2);
8891 if (v2 == 0)
323e0a4a 8892 error (_("second operand of %s must not be zero."), op_string (op));
4c4b4cd2
PH
8893
8894 if (TYPE_UNSIGNED (type1) || op == BINOP_MOD)
8895 return value_binop (arg1, arg2, op);
8896
8897 v1 = value_as_long (arg1);
8898 switch (op)
8899 {
8900 case BINOP_DIV:
8901 v = v1 / v2;
76a01679
JB
8902 if (!TRUNCATION_TOWARDS_ZERO && v1 * (v1 % v2) < 0)
8903 v += v > 0 ? -1 : 1;
4c4b4cd2
PH
8904 break;
8905 case BINOP_REM:
8906 v = v1 % v2;
76a01679
JB
8907 if (v * v1 < 0)
8908 v -= v2;
4c4b4cd2
PH
8909 break;
8910 default:
8911 /* Should not reach this point. */
8912 v = 0;
8913 }
8914
8915 val = allocate_value (type1);
990a07ab 8916 store_unsigned_integer (value_contents_raw (val),
e17a4113
UW
8917 TYPE_LENGTH (value_type (val)),
8918 gdbarch_byte_order (get_type_arch (type1)), v);
4c4b4cd2
PH
8919 return val;
8920}
8921
8922static int
8923ada_value_equal (struct value *arg1, struct value *arg2)
8924{
df407dfe
AC
8925 if (ada_is_direct_array_type (value_type (arg1))
8926 || ada_is_direct_array_type (value_type (arg2)))
4c4b4cd2 8927 {
f58b38bf
JB
8928 /* Automatically dereference any array reference before
8929 we attempt to perform the comparison. */
8930 arg1 = ada_coerce_ref (arg1);
8931 arg2 = ada_coerce_ref (arg2);
8932
4c4b4cd2
PH
8933 arg1 = ada_coerce_to_simple_array (arg1);
8934 arg2 = ada_coerce_to_simple_array (arg2);
df407dfe
AC
8935 if (TYPE_CODE (value_type (arg1)) != TYPE_CODE_ARRAY
8936 || TYPE_CODE (value_type (arg2)) != TYPE_CODE_ARRAY)
323e0a4a 8937 error (_("Attempt to compare array with non-array"));
4c4b4cd2 8938 /* FIXME: The following works only for types whose
76a01679
JB
8939 representations use all bits (no padding or undefined bits)
8940 and do not have user-defined equality. */
8941 return
df407dfe 8942 TYPE_LENGTH (value_type (arg1)) == TYPE_LENGTH (value_type (arg2))
0fd88904 8943 && memcmp (value_contents (arg1), value_contents (arg2),
df407dfe 8944 TYPE_LENGTH (value_type (arg1))) == 0;
4c4b4cd2
PH
8945 }
8946 return value_equal (arg1, arg2);
8947}
8948
52ce6436
PH
8949/* Total number of component associations in the aggregate starting at
8950 index PC in EXP. Assumes that index PC is the start of an
0963b4bd 8951 OP_AGGREGATE. */
52ce6436
PH
8952
8953static int
8954num_component_specs (struct expression *exp, int pc)
8955{
8956 int n, m, i;
5b4ee69b 8957
52ce6436
PH
8958 m = exp->elts[pc + 1].longconst;
8959 pc += 3;
8960 n = 0;
8961 for (i = 0; i < m; i += 1)
8962 {
8963 switch (exp->elts[pc].opcode)
8964 {
8965 default:
8966 n += 1;
8967 break;
8968 case OP_CHOICES:
8969 n += exp->elts[pc + 1].longconst;
8970 break;
8971 }
8972 ada_evaluate_subexp (NULL, exp, &pc, EVAL_SKIP);
8973 }
8974 return n;
8975}
8976
8977/* Assign the result of evaluating EXP starting at *POS to the INDEXth
8978 component of LHS (a simple array or a record), updating *POS past
8979 the expression, assuming that LHS is contained in CONTAINER. Does
8980 not modify the inferior's memory, nor does it modify LHS (unless
8981 LHS == CONTAINER). */
8982
8983static void
8984assign_component (struct value *container, struct value *lhs, LONGEST index,
8985 struct expression *exp, int *pos)
8986{
8987 struct value *mark = value_mark ();
8988 struct value *elt;
5b4ee69b 8989
52ce6436
PH
8990 if (TYPE_CODE (value_type (lhs)) == TYPE_CODE_ARRAY)
8991 {
22601c15
UW
8992 struct type *index_type = builtin_type (exp->gdbarch)->builtin_int;
8993 struct value *index_val = value_from_longest (index_type, index);
5b4ee69b 8994
52ce6436
PH
8995 elt = unwrap_value (ada_value_subscript (lhs, 1, &index_val));
8996 }
8997 else
8998 {
8999 elt = ada_index_struct_field (index, lhs, 0, value_type (lhs));
c48db5ca 9000 elt = ada_to_fixed_value (elt);
52ce6436
PH
9001 }
9002
9003 if (exp->elts[*pos].opcode == OP_AGGREGATE)
9004 assign_aggregate (container, elt, exp, pos, EVAL_NORMAL);
9005 else
9006 value_assign_to_component (container, elt,
9007 ada_evaluate_subexp (NULL, exp, pos,
9008 EVAL_NORMAL));
9009
9010 value_free_to_mark (mark);
9011}
9012
9013/* Assuming that LHS represents an lvalue having a record or array
9014 type, and EXP->ELTS[*POS] is an OP_AGGREGATE, evaluate an assignment
9015 of that aggregate's value to LHS, advancing *POS past the
9016 aggregate. NOSIDE is as for evaluate_subexp. CONTAINER is an
9017 lvalue containing LHS (possibly LHS itself). Does not modify
9018 the inferior's memory, nor does it modify the contents of
0963b4bd 9019 LHS (unless == CONTAINER). Returns the modified CONTAINER. */
52ce6436
PH
9020
9021static struct value *
9022assign_aggregate (struct value *container,
9023 struct value *lhs, struct expression *exp,
9024 int *pos, enum noside noside)
9025{
9026 struct type *lhs_type;
9027 int n = exp->elts[*pos+1].longconst;
9028 LONGEST low_index, high_index;
9029 int num_specs;
9030 LONGEST *indices;
9031 int max_indices, num_indices;
9032 int is_array_aggregate;
9033 int i;
52ce6436
PH
9034
9035 *pos += 3;
9036 if (noside != EVAL_NORMAL)
9037 {
52ce6436
PH
9038 for (i = 0; i < n; i += 1)
9039 ada_evaluate_subexp (NULL, exp, pos, noside);
9040 return container;
9041 }
9042
9043 container = ada_coerce_ref (container);
9044 if (ada_is_direct_array_type (value_type (container)))
9045 container = ada_coerce_to_simple_array (container);
9046 lhs = ada_coerce_ref (lhs);
9047 if (!deprecated_value_modifiable (lhs))
9048 error (_("Left operand of assignment is not a modifiable lvalue."));
9049
9050 lhs_type = value_type (lhs);
9051 if (ada_is_direct_array_type (lhs_type))
9052 {
9053 lhs = ada_coerce_to_simple_array (lhs);
9054 lhs_type = value_type (lhs);
9055 low_index = TYPE_ARRAY_LOWER_BOUND_VALUE (lhs_type);
9056 high_index = TYPE_ARRAY_UPPER_BOUND_VALUE (lhs_type);
9057 is_array_aggregate = 1;
9058 }
9059 else if (TYPE_CODE (lhs_type) == TYPE_CODE_STRUCT)
9060 {
9061 low_index = 0;
9062 high_index = num_visible_fields (lhs_type) - 1;
9063 is_array_aggregate = 0;
9064 }
9065 else
9066 error (_("Left-hand side must be array or record."));
9067
9068 num_specs = num_component_specs (exp, *pos - 3);
9069 max_indices = 4 * num_specs + 4;
9070 indices = alloca (max_indices * sizeof (indices[0]));
9071 indices[0] = indices[1] = low_index - 1;
9072 indices[2] = indices[3] = high_index + 1;
9073 num_indices = 4;
9074
9075 for (i = 0; i < n; i += 1)
9076 {
9077 switch (exp->elts[*pos].opcode)
9078 {
1fbf5ada
JB
9079 case OP_CHOICES:
9080 aggregate_assign_from_choices (container, lhs, exp, pos, indices,
9081 &num_indices, max_indices,
9082 low_index, high_index);
9083 break;
9084 case OP_POSITIONAL:
9085 aggregate_assign_positional (container, lhs, exp, pos, indices,
52ce6436
PH
9086 &num_indices, max_indices,
9087 low_index, high_index);
1fbf5ada
JB
9088 break;
9089 case OP_OTHERS:
9090 if (i != n-1)
9091 error (_("Misplaced 'others' clause"));
9092 aggregate_assign_others (container, lhs, exp, pos, indices,
9093 num_indices, low_index, high_index);
9094 break;
9095 default:
9096 error (_("Internal error: bad aggregate clause"));
52ce6436
PH
9097 }
9098 }
9099
9100 return container;
9101}
9102
9103/* Assign into the component of LHS indexed by the OP_POSITIONAL
9104 construct at *POS, updating *POS past the construct, given that
9105 the positions are relative to lower bound LOW, where HIGH is the
9106 upper bound. Record the position in INDICES[0 .. MAX_INDICES-1]
9107 updating *NUM_INDICES as needed. CONTAINER is as for
0963b4bd 9108 assign_aggregate. */
52ce6436
PH
9109static void
9110aggregate_assign_positional (struct value *container,
9111 struct value *lhs, struct expression *exp,
9112 int *pos, LONGEST *indices, int *num_indices,
9113 int max_indices, LONGEST low, LONGEST high)
9114{
9115 LONGEST ind = longest_to_int (exp->elts[*pos + 1].longconst) + low;
9116
9117 if (ind - 1 == high)
e1d5a0d2 9118 warning (_("Extra components in aggregate ignored."));
52ce6436
PH
9119 if (ind <= high)
9120 {
9121 add_component_interval (ind, ind, indices, num_indices, max_indices);
9122 *pos += 3;
9123 assign_component (container, lhs, ind, exp, pos);
9124 }
9125 else
9126 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
9127}
9128
9129/* Assign into the components of LHS indexed by the OP_CHOICES
9130 construct at *POS, updating *POS past the construct, given that
9131 the allowable indices are LOW..HIGH. Record the indices assigned
9132 to in INDICES[0 .. MAX_INDICES-1], updating *NUM_INDICES as
0963b4bd 9133 needed. CONTAINER is as for assign_aggregate. */
52ce6436
PH
9134static void
9135aggregate_assign_from_choices (struct value *container,
9136 struct value *lhs, struct expression *exp,
9137 int *pos, LONGEST *indices, int *num_indices,
9138 int max_indices, LONGEST low, LONGEST high)
9139{
9140 int j;
9141 int n_choices = longest_to_int (exp->elts[*pos+1].longconst);
9142 int choice_pos, expr_pc;
9143 int is_array = ada_is_direct_array_type (value_type (lhs));
9144
9145 choice_pos = *pos += 3;
9146
9147 for (j = 0; j < n_choices; j += 1)
9148 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
9149 expr_pc = *pos;
9150 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
9151
9152 for (j = 0; j < n_choices; j += 1)
9153 {
9154 LONGEST lower, upper;
9155 enum exp_opcode op = exp->elts[choice_pos].opcode;
5b4ee69b 9156
52ce6436
PH
9157 if (op == OP_DISCRETE_RANGE)
9158 {
9159 choice_pos += 1;
9160 lower = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
9161 EVAL_NORMAL));
9162 upper = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
9163 EVAL_NORMAL));
9164 }
9165 else if (is_array)
9166 {
9167 lower = value_as_long (ada_evaluate_subexp (NULL, exp, &choice_pos,
9168 EVAL_NORMAL));
9169 upper = lower;
9170 }
9171 else
9172 {
9173 int ind;
0d5cff50 9174 const char *name;
5b4ee69b 9175
52ce6436
PH
9176 switch (op)
9177 {
9178 case OP_NAME:
9179 name = &exp->elts[choice_pos + 2].string;
9180 break;
9181 case OP_VAR_VALUE:
9182 name = SYMBOL_NATURAL_NAME (exp->elts[choice_pos + 2].symbol);
9183 break;
9184 default:
9185 error (_("Invalid record component association."));
9186 }
9187 ada_evaluate_subexp (NULL, exp, &choice_pos, EVAL_SKIP);
9188 ind = 0;
9189 if (! find_struct_field (name, value_type (lhs), 0,
9190 NULL, NULL, NULL, NULL, &ind))
9191 error (_("Unknown component name: %s."), name);
9192 lower = upper = ind;
9193 }
9194
9195 if (lower <= upper && (lower < low || upper > high))
9196 error (_("Index in component association out of bounds."));
9197
9198 add_component_interval (lower, upper, indices, num_indices,
9199 max_indices);
9200 while (lower <= upper)
9201 {
9202 int pos1;
5b4ee69b 9203
52ce6436
PH
9204 pos1 = expr_pc;
9205 assign_component (container, lhs, lower, exp, &pos1);
9206 lower += 1;
9207 }
9208 }
9209}
9210
9211/* Assign the value of the expression in the OP_OTHERS construct in
9212 EXP at *POS into the components of LHS indexed from LOW .. HIGH that
9213 have not been previously assigned. The index intervals already assigned
9214 are in INDICES[0 .. NUM_INDICES-1]. Updates *POS to after the
0963b4bd 9215 OP_OTHERS clause. CONTAINER is as for assign_aggregate. */
52ce6436
PH
9216static void
9217aggregate_assign_others (struct value *container,
9218 struct value *lhs, struct expression *exp,
9219 int *pos, LONGEST *indices, int num_indices,
9220 LONGEST low, LONGEST high)
9221{
9222 int i;
5ce64950 9223 int expr_pc = *pos + 1;
52ce6436
PH
9224
9225 for (i = 0; i < num_indices - 2; i += 2)
9226 {
9227 LONGEST ind;
5b4ee69b 9228
52ce6436
PH
9229 for (ind = indices[i + 1] + 1; ind < indices[i + 2]; ind += 1)
9230 {
5ce64950 9231 int localpos;
5b4ee69b 9232
5ce64950
MS
9233 localpos = expr_pc;
9234 assign_component (container, lhs, ind, exp, &localpos);
52ce6436
PH
9235 }
9236 }
9237 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
9238}
9239
9240/* Add the interval [LOW .. HIGH] to the sorted set of intervals
9241 [ INDICES[0] .. INDICES[1] ],..., [ INDICES[*SIZE-2] .. INDICES[*SIZE-1] ],
9242 modifying *SIZE as needed. It is an error if *SIZE exceeds
9243 MAX_SIZE. The resulting intervals do not overlap. */
9244static void
9245add_component_interval (LONGEST low, LONGEST high,
9246 LONGEST* indices, int *size, int max_size)
9247{
9248 int i, j;
5b4ee69b 9249
52ce6436
PH
9250 for (i = 0; i < *size; i += 2) {
9251 if (high >= indices[i] && low <= indices[i + 1])
9252 {
9253 int kh;
5b4ee69b 9254
52ce6436
PH
9255 for (kh = i + 2; kh < *size; kh += 2)
9256 if (high < indices[kh])
9257 break;
9258 if (low < indices[i])
9259 indices[i] = low;
9260 indices[i + 1] = indices[kh - 1];
9261 if (high > indices[i + 1])
9262 indices[i + 1] = high;
9263 memcpy (indices + i + 2, indices + kh, *size - kh);
9264 *size -= kh - i - 2;
9265 return;
9266 }
9267 else if (high < indices[i])
9268 break;
9269 }
9270
9271 if (*size == max_size)
9272 error (_("Internal error: miscounted aggregate components."));
9273 *size += 2;
9274 for (j = *size-1; j >= i+2; j -= 1)
9275 indices[j] = indices[j - 2];
9276 indices[i] = low;
9277 indices[i + 1] = high;
9278}
9279
6e48bd2c
JB
9280/* Perform and Ada cast of ARG2 to type TYPE if the type of ARG2
9281 is different. */
9282
9283static struct value *
9284ada_value_cast (struct type *type, struct value *arg2, enum noside noside)
9285{
9286 if (type == ada_check_typedef (value_type (arg2)))
9287 return arg2;
9288
9289 if (ada_is_fixed_point_type (type))
9290 return (cast_to_fixed (type, arg2));
9291
9292 if (ada_is_fixed_point_type (value_type (arg2)))
a53b7a21 9293 return cast_from_fixed (type, arg2);
6e48bd2c
JB
9294
9295 return value_cast (type, arg2);
9296}
9297
284614f0
JB
9298/* Evaluating Ada expressions, and printing their result.
9299 ------------------------------------------------------
9300
21649b50
JB
9301 1. Introduction:
9302 ----------------
9303
284614f0
JB
9304 We usually evaluate an Ada expression in order to print its value.
9305 We also evaluate an expression in order to print its type, which
9306 happens during the EVAL_AVOID_SIDE_EFFECTS phase of the evaluation,
9307 but we'll focus mostly on the EVAL_NORMAL phase. In practice, the
9308 EVAL_AVOID_SIDE_EFFECTS phase allows us to simplify certain aspects of
9309 the evaluation compared to the EVAL_NORMAL, but is otherwise very
9310 similar.
9311
9312 Evaluating expressions is a little more complicated for Ada entities
9313 than it is for entities in languages such as C. The main reason for
9314 this is that Ada provides types whose definition might be dynamic.
9315 One example of such types is variant records. Or another example
9316 would be an array whose bounds can only be known at run time.
9317
9318 The following description is a general guide as to what should be
9319 done (and what should NOT be done) in order to evaluate an expression
9320 involving such types, and when. This does not cover how the semantic
9321 information is encoded by GNAT as this is covered separatly. For the
9322 document used as the reference for the GNAT encoding, see exp_dbug.ads
9323 in the GNAT sources.
9324
9325 Ideally, we should embed each part of this description next to its
9326 associated code. Unfortunately, the amount of code is so vast right
9327 now that it's hard to see whether the code handling a particular
9328 situation might be duplicated or not. One day, when the code is
9329 cleaned up, this guide might become redundant with the comments
9330 inserted in the code, and we might want to remove it.
9331
21649b50
JB
9332 2. ``Fixing'' an Entity, the Simple Case:
9333 -----------------------------------------
9334
284614f0
JB
9335 When evaluating Ada expressions, the tricky issue is that they may
9336 reference entities whose type contents and size are not statically
9337 known. Consider for instance a variant record:
9338
9339 type Rec (Empty : Boolean := True) is record
9340 case Empty is
9341 when True => null;
9342 when False => Value : Integer;
9343 end case;
9344 end record;
9345 Yes : Rec := (Empty => False, Value => 1);
9346 No : Rec := (empty => True);
9347
9348 The size and contents of that record depends on the value of the
9349 descriminant (Rec.Empty). At this point, neither the debugging
9350 information nor the associated type structure in GDB are able to
9351 express such dynamic types. So what the debugger does is to create
9352 "fixed" versions of the type that applies to the specific object.
9353 We also informally refer to this opperation as "fixing" an object,
9354 which means creating its associated fixed type.
9355
9356 Example: when printing the value of variable "Yes" above, its fixed
9357 type would look like this:
9358
9359 type Rec is record
9360 Empty : Boolean;
9361 Value : Integer;
9362 end record;
9363
9364 On the other hand, if we printed the value of "No", its fixed type
9365 would become:
9366
9367 type Rec is record
9368 Empty : Boolean;
9369 end record;
9370
9371 Things become a little more complicated when trying to fix an entity
9372 with a dynamic type that directly contains another dynamic type,
9373 such as an array of variant records, for instance. There are
9374 two possible cases: Arrays, and records.
9375
21649b50
JB
9376 3. ``Fixing'' Arrays:
9377 ---------------------
9378
9379 The type structure in GDB describes an array in terms of its bounds,
9380 and the type of its elements. By design, all elements in the array
9381 have the same type and we cannot represent an array of variant elements
9382 using the current type structure in GDB. When fixing an array,
9383 we cannot fix the array element, as we would potentially need one
9384 fixed type per element of the array. As a result, the best we can do
9385 when fixing an array is to produce an array whose bounds and size
9386 are correct (allowing us to read it from memory), but without having
9387 touched its element type. Fixing each element will be done later,
9388 when (if) necessary.
9389
9390 Arrays are a little simpler to handle than records, because the same
9391 amount of memory is allocated for each element of the array, even if
1b536f04 9392 the amount of space actually used by each element differs from element
21649b50 9393 to element. Consider for instance the following array of type Rec:
284614f0
JB
9394
9395 type Rec_Array is array (1 .. 2) of Rec;
9396
1b536f04
JB
9397 The actual amount of memory occupied by each element might be different
9398 from element to element, depending on the value of their discriminant.
21649b50 9399 But the amount of space reserved for each element in the array remains
1b536f04 9400 fixed regardless. So we simply need to compute that size using
21649b50
JB
9401 the debugging information available, from which we can then determine
9402 the array size (we multiply the number of elements of the array by
9403 the size of each element).
9404
9405 The simplest case is when we have an array of a constrained element
9406 type. For instance, consider the following type declarations:
9407
9408 type Bounded_String (Max_Size : Integer) is
9409 Length : Integer;
9410 Buffer : String (1 .. Max_Size);
9411 end record;
9412 type Bounded_String_Array is array (1 ..2) of Bounded_String (80);
9413
9414 In this case, the compiler describes the array as an array of
9415 variable-size elements (identified by its XVS suffix) for which
9416 the size can be read in the parallel XVZ variable.
9417
9418 In the case of an array of an unconstrained element type, the compiler
9419 wraps the array element inside a private PAD type. This type should not
9420 be shown to the user, and must be "unwrap"'ed before printing. Note
284614f0
JB
9421 that we also use the adjective "aligner" in our code to designate
9422 these wrapper types.
9423
1b536f04 9424 In some cases, the size allocated for each element is statically
21649b50
JB
9425 known. In that case, the PAD type already has the correct size,
9426 and the array element should remain unfixed.
9427
9428 But there are cases when this size is not statically known.
9429 For instance, assuming that "Five" is an integer variable:
284614f0
JB
9430
9431 type Dynamic is array (1 .. Five) of Integer;
9432 type Wrapper (Has_Length : Boolean := False) is record
9433 Data : Dynamic;
9434 case Has_Length is
9435 when True => Length : Integer;
9436 when False => null;
9437 end case;
9438 end record;
9439 type Wrapper_Array is array (1 .. 2) of Wrapper;
9440
9441 Hello : Wrapper_Array := (others => (Has_Length => True,
9442 Data => (others => 17),
9443 Length => 1));
9444
9445
9446 The debugging info would describe variable Hello as being an
9447 array of a PAD type. The size of that PAD type is not statically
9448 known, but can be determined using a parallel XVZ variable.
9449 In that case, a copy of the PAD type with the correct size should
9450 be used for the fixed array.
9451
21649b50
JB
9452 3. ``Fixing'' record type objects:
9453 ----------------------------------
9454
9455 Things are slightly different from arrays in the case of dynamic
284614f0
JB
9456 record types. In this case, in order to compute the associated
9457 fixed type, we need to determine the size and offset of each of
9458 its components. This, in turn, requires us to compute the fixed
9459 type of each of these components.
9460
9461 Consider for instance the example:
9462
9463 type Bounded_String (Max_Size : Natural) is record
9464 Str : String (1 .. Max_Size);
9465 Length : Natural;
9466 end record;
9467 My_String : Bounded_String (Max_Size => 10);
9468
9469 In that case, the position of field "Length" depends on the size
9470 of field Str, which itself depends on the value of the Max_Size
21649b50 9471 discriminant. In order to fix the type of variable My_String,
284614f0
JB
9472 we need to fix the type of field Str. Therefore, fixing a variant
9473 record requires us to fix each of its components.
9474
9475 However, if a component does not have a dynamic size, the component
9476 should not be fixed. In particular, fields that use a PAD type
9477 should not fixed. Here is an example where this might happen
9478 (assuming type Rec above):
9479
9480 type Container (Big : Boolean) is record
9481 First : Rec;
9482 After : Integer;
9483 case Big is
9484 when True => Another : Integer;
9485 when False => null;
9486 end case;
9487 end record;
9488 My_Container : Container := (Big => False,
9489 First => (Empty => True),
9490 After => 42);
9491
9492 In that example, the compiler creates a PAD type for component First,
9493 whose size is constant, and then positions the component After just
9494 right after it. The offset of component After is therefore constant
9495 in this case.
9496
9497 The debugger computes the position of each field based on an algorithm
9498 that uses, among other things, the actual position and size of the field
21649b50
JB
9499 preceding it. Let's now imagine that the user is trying to print
9500 the value of My_Container. If the type fixing was recursive, we would
284614f0
JB
9501 end up computing the offset of field After based on the size of the
9502 fixed version of field First. And since in our example First has
9503 only one actual field, the size of the fixed type is actually smaller
9504 than the amount of space allocated to that field, and thus we would
9505 compute the wrong offset of field After.
9506
21649b50
JB
9507 To make things more complicated, we need to watch out for dynamic
9508 components of variant records (identified by the ___XVL suffix in
9509 the component name). Even if the target type is a PAD type, the size
9510 of that type might not be statically known. So the PAD type needs
9511 to be unwrapped and the resulting type needs to be fixed. Otherwise,
9512 we might end up with the wrong size for our component. This can be
9513 observed with the following type declarations:
284614f0
JB
9514
9515 type Octal is new Integer range 0 .. 7;
9516 type Octal_Array is array (Positive range <>) of Octal;
9517 pragma Pack (Octal_Array);
9518
9519 type Octal_Buffer (Size : Positive) is record
9520 Buffer : Octal_Array (1 .. Size);
9521 Length : Integer;
9522 end record;
9523
9524 In that case, Buffer is a PAD type whose size is unset and needs
9525 to be computed by fixing the unwrapped type.
9526
21649b50
JB
9527 4. When to ``Fix'' un-``Fixed'' sub-elements of an entity:
9528 ----------------------------------------------------------
9529
9530 Lastly, when should the sub-elements of an entity that remained unfixed
284614f0
JB
9531 thus far, be actually fixed?
9532
9533 The answer is: Only when referencing that element. For instance
9534 when selecting one component of a record, this specific component
9535 should be fixed at that point in time. Or when printing the value
9536 of a record, each component should be fixed before its value gets
9537 printed. Similarly for arrays, the element of the array should be
9538 fixed when printing each element of the array, or when extracting
9539 one element out of that array. On the other hand, fixing should
9540 not be performed on the elements when taking a slice of an array!
9541
9542 Note that one of the side-effects of miscomputing the offset and
9543 size of each field is that we end up also miscomputing the size
9544 of the containing type. This can have adverse results when computing
9545 the value of an entity. GDB fetches the value of an entity based
9546 on the size of its type, and thus a wrong size causes GDB to fetch
9547 the wrong amount of memory. In the case where the computed size is
9548 too small, GDB fetches too little data to print the value of our
9549 entiry. Results in this case as unpredicatble, as we usually read
9550 past the buffer containing the data =:-o. */
9551
9552/* Implement the evaluate_exp routine in the exp_descriptor structure
9553 for the Ada language. */
9554
52ce6436 9555static struct value *
ebf56fd3 9556ada_evaluate_subexp (struct type *expect_type, struct expression *exp,
4c4b4cd2 9557 int *pos, enum noside noside)
14f9c5c9
AS
9558{
9559 enum exp_opcode op;
b5385fc0 9560 int tem;
14f9c5c9
AS
9561 int pc;
9562 struct value *arg1 = NULL, *arg2 = NULL, *arg3;
9563 struct type *type;
52ce6436 9564 int nargs, oplen;
d2e4a39e 9565 struct value **argvec;
14f9c5c9 9566
d2e4a39e
AS
9567 pc = *pos;
9568 *pos += 1;
14f9c5c9
AS
9569 op = exp->elts[pc].opcode;
9570
d2e4a39e 9571 switch (op)
14f9c5c9
AS
9572 {
9573 default:
9574 *pos -= 1;
6e48bd2c 9575 arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside);
ca1f964d
JG
9576
9577 if (noside == EVAL_NORMAL)
9578 arg1 = unwrap_value (arg1);
6e48bd2c
JB
9579
9580 /* If evaluating an OP_DOUBLE and an EXPECT_TYPE was provided,
9581 then we need to perform the conversion manually, because
9582 evaluate_subexp_standard doesn't do it. This conversion is
9583 necessary in Ada because the different kinds of float/fixed
9584 types in Ada have different representations.
9585
9586 Similarly, we need to perform the conversion from OP_LONG
9587 ourselves. */
9588 if ((op == OP_DOUBLE || op == OP_LONG) && expect_type != NULL)
9589 arg1 = ada_value_cast (expect_type, arg1, noside);
9590
9591 return arg1;
4c4b4cd2
PH
9592
9593 case OP_STRING:
9594 {
76a01679 9595 struct value *result;
5b4ee69b 9596
76a01679
JB
9597 *pos -= 1;
9598 result = evaluate_subexp_standard (expect_type, exp, pos, noside);
9599 /* The result type will have code OP_STRING, bashed there from
9600 OP_ARRAY. Bash it back. */
df407dfe
AC
9601 if (TYPE_CODE (value_type (result)) == TYPE_CODE_STRING)
9602 TYPE_CODE (value_type (result)) = TYPE_CODE_ARRAY;
76a01679 9603 return result;
4c4b4cd2 9604 }
14f9c5c9
AS
9605
9606 case UNOP_CAST:
9607 (*pos) += 2;
9608 type = exp->elts[pc + 1].type;
9609 arg1 = evaluate_subexp (type, exp, pos, noside);
9610 if (noside == EVAL_SKIP)
4c4b4cd2 9611 goto nosideret;
6e48bd2c 9612 arg1 = ada_value_cast (type, arg1, noside);
14f9c5c9
AS
9613 return arg1;
9614
4c4b4cd2
PH
9615 case UNOP_QUAL:
9616 (*pos) += 2;
9617 type = exp->elts[pc + 1].type;
9618 return ada_evaluate_subexp (type, exp, pos, noside);
9619
14f9c5c9
AS
9620 case BINOP_ASSIGN:
9621 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
52ce6436
PH
9622 if (exp->elts[*pos].opcode == OP_AGGREGATE)
9623 {
9624 arg1 = assign_aggregate (arg1, arg1, exp, pos, noside);
9625 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
9626 return arg1;
9627 return ada_value_assign (arg1, arg1);
9628 }
003f3813
JB
9629 /* Force the evaluation of the rhs ARG2 to the type of the lhs ARG1,
9630 except if the lhs of our assignment is a convenience variable.
9631 In the case of assigning to a convenience variable, the lhs
9632 should be exactly the result of the evaluation of the rhs. */
9633 type = value_type (arg1);
9634 if (VALUE_LVAL (arg1) == lval_internalvar)
9635 type = NULL;
9636 arg2 = evaluate_subexp (type, exp, pos, noside);
14f9c5c9 9637 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
4c4b4cd2 9638 return arg1;
df407dfe
AC
9639 if (ada_is_fixed_point_type (value_type (arg1)))
9640 arg2 = cast_to_fixed (value_type (arg1), arg2);
9641 else if (ada_is_fixed_point_type (value_type (arg2)))
76a01679 9642 error
323e0a4a 9643 (_("Fixed-point values must be assigned to fixed-point variables"));
d2e4a39e 9644 else
df407dfe 9645 arg2 = coerce_for_assign (value_type (arg1), arg2);
4c4b4cd2 9646 return ada_value_assign (arg1, arg2);
14f9c5c9
AS
9647
9648 case BINOP_ADD:
9649 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
9650 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
9651 if (noside == EVAL_SKIP)
4c4b4cd2 9652 goto nosideret;
2ac8a782
JB
9653 if (TYPE_CODE (value_type (arg1)) == TYPE_CODE_PTR)
9654 return (value_from_longest
9655 (value_type (arg1),
9656 value_as_long (arg1) + value_as_long (arg2)));
df407dfe
AC
9657 if ((ada_is_fixed_point_type (value_type (arg1))
9658 || ada_is_fixed_point_type (value_type (arg2)))
9659 && value_type (arg1) != value_type (arg2))
323e0a4a 9660 error (_("Operands of fixed-point addition must have the same type"));
b7789565
JB
9661 /* Do the addition, and cast the result to the type of the first
9662 argument. We cannot cast the result to a reference type, so if
9663 ARG1 is a reference type, find its underlying type. */
9664 type = value_type (arg1);
9665 while (TYPE_CODE (type) == TYPE_CODE_REF)
9666 type = TYPE_TARGET_TYPE (type);
f44316fa 9667 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
89eef114 9668 return value_cast (type, value_binop (arg1, arg2, BINOP_ADD));
14f9c5c9
AS
9669
9670 case BINOP_SUB:
9671 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
9672 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
9673 if (noside == EVAL_SKIP)
4c4b4cd2 9674 goto nosideret;
2ac8a782
JB
9675 if (TYPE_CODE (value_type (arg1)) == TYPE_CODE_PTR)
9676 return (value_from_longest
9677 (value_type (arg1),
9678 value_as_long (arg1) - value_as_long (arg2)));
df407dfe
AC
9679 if ((ada_is_fixed_point_type (value_type (arg1))
9680 || ada_is_fixed_point_type (value_type (arg2)))
9681 && value_type (arg1) != value_type (arg2))
0963b4bd
MS
9682 error (_("Operands of fixed-point subtraction "
9683 "must have the same type"));
b7789565
JB
9684 /* Do the substraction, and cast the result to the type of the first
9685 argument. We cannot cast the result to a reference type, so if
9686 ARG1 is a reference type, find its underlying type. */
9687 type = value_type (arg1);
9688 while (TYPE_CODE (type) == TYPE_CODE_REF)
9689 type = TYPE_TARGET_TYPE (type);
f44316fa 9690 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
89eef114 9691 return value_cast (type, value_binop (arg1, arg2, BINOP_SUB));
14f9c5c9
AS
9692
9693 case BINOP_MUL:
9694 case BINOP_DIV:
e1578042
JB
9695 case BINOP_REM:
9696 case BINOP_MOD:
14f9c5c9
AS
9697 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9698 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9699 if (noside == EVAL_SKIP)
4c4b4cd2 9700 goto nosideret;
e1578042 9701 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
9c2be529
JB
9702 {
9703 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9704 return value_zero (value_type (arg1), not_lval);
9705 }
14f9c5c9 9706 else
4c4b4cd2 9707 {
a53b7a21 9708 type = builtin_type (exp->gdbarch)->builtin_double;
df407dfe 9709 if (ada_is_fixed_point_type (value_type (arg1)))
a53b7a21 9710 arg1 = cast_from_fixed (type, arg1);
df407dfe 9711 if (ada_is_fixed_point_type (value_type (arg2)))
a53b7a21 9712 arg2 = cast_from_fixed (type, arg2);
f44316fa 9713 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
4c4b4cd2
PH
9714 return ada_value_binop (arg1, arg2, op);
9715 }
9716
4c4b4cd2
PH
9717 case BINOP_EQUAL:
9718 case BINOP_NOTEQUAL:
14f9c5c9 9719 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
df407dfe 9720 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
14f9c5c9 9721 if (noside == EVAL_SKIP)
76a01679 9722 goto nosideret;
4c4b4cd2 9723 if (noside == EVAL_AVOID_SIDE_EFFECTS)
76a01679 9724 tem = 0;
4c4b4cd2 9725 else
f44316fa
UW
9726 {
9727 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9728 tem = ada_value_equal (arg1, arg2);
9729 }
4c4b4cd2 9730 if (op == BINOP_NOTEQUAL)
76a01679 9731 tem = !tem;
fbb06eb1
UW
9732 type = language_bool_type (exp->language_defn, exp->gdbarch);
9733 return value_from_longest (type, (LONGEST) tem);
4c4b4cd2
PH
9734
9735 case UNOP_NEG:
9736 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9737 if (noside == EVAL_SKIP)
9738 goto nosideret;
df407dfe
AC
9739 else if (ada_is_fixed_point_type (value_type (arg1)))
9740 return value_cast (value_type (arg1), value_neg (arg1));
14f9c5c9 9741 else
f44316fa
UW
9742 {
9743 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
9744 return value_neg (arg1);
9745 }
4c4b4cd2 9746
2330c6c6
JB
9747 case BINOP_LOGICAL_AND:
9748 case BINOP_LOGICAL_OR:
9749 case UNOP_LOGICAL_NOT:
000d5124
JB
9750 {
9751 struct value *val;
9752
9753 *pos -= 1;
9754 val = evaluate_subexp_standard (expect_type, exp, pos, noside);
fbb06eb1
UW
9755 type = language_bool_type (exp->language_defn, exp->gdbarch);
9756 return value_cast (type, val);
000d5124 9757 }
2330c6c6
JB
9758
9759 case BINOP_BITWISE_AND:
9760 case BINOP_BITWISE_IOR:
9761 case BINOP_BITWISE_XOR:
000d5124
JB
9762 {
9763 struct value *val;
9764
9765 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
9766 *pos = pc;
9767 val = evaluate_subexp_standard (expect_type, exp, pos, noside);
9768
9769 return value_cast (value_type (arg1), val);
9770 }
2330c6c6 9771
14f9c5c9
AS
9772 case OP_VAR_VALUE:
9773 *pos -= 1;
6799def4 9774
14f9c5c9 9775 if (noside == EVAL_SKIP)
4c4b4cd2
PH
9776 {
9777 *pos += 4;
9778 goto nosideret;
9779 }
9780 else if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
76a01679
JB
9781 /* Only encountered when an unresolved symbol occurs in a
9782 context other than a function call, in which case, it is
52ce6436 9783 invalid. */
323e0a4a 9784 error (_("Unexpected unresolved symbol, %s, during evaluation"),
4c4b4cd2 9785 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
14f9c5c9 9786 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
4c4b4cd2 9787 {
0c1f74cf 9788 type = static_unwrap_type (SYMBOL_TYPE (exp->elts[pc + 2].symbol));
31dbc1c5
JB
9789 /* Check to see if this is a tagged type. We also need to handle
9790 the case where the type is a reference to a tagged type, but
9791 we have to be careful to exclude pointers to tagged types.
9792 The latter should be shown as usual (as a pointer), whereas
9793 a reference should mostly be transparent to the user. */
9794 if (ada_is_tagged_type (type, 0)
9795 || (TYPE_CODE(type) == TYPE_CODE_REF
9796 && ada_is_tagged_type (TYPE_TARGET_TYPE (type), 0)))
0c1f74cf
JB
9797 {
9798 /* Tagged types are a little special in the fact that the real
9799 type is dynamic and can only be determined by inspecting the
9800 object's tag. This means that we need to get the object's
9801 value first (EVAL_NORMAL) and then extract the actual object
9802 type from its tag.
9803
9804 Note that we cannot skip the final step where we extract
9805 the object type from its tag, because the EVAL_NORMAL phase
9806 results in dynamic components being resolved into fixed ones.
9807 This can cause problems when trying to print the type
9808 description of tagged types whose parent has a dynamic size:
9809 We use the type name of the "_parent" component in order
9810 to print the name of the ancestor type in the type description.
9811 If that component had a dynamic size, the resolution into
9812 a fixed type would result in the loss of that type name,
9813 thus preventing us from printing the name of the ancestor
9814 type in the type description. */
9815 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_NORMAL);
b50d69b5
JG
9816
9817 if (TYPE_CODE (type) != TYPE_CODE_REF)
9818 {
9819 struct type *actual_type;
9820
9821 actual_type = type_from_tag (ada_value_tag (arg1));
9822 if (actual_type == NULL)
9823 /* If, for some reason, we were unable to determine
9824 the actual type from the tag, then use the static
9825 approximation that we just computed as a fallback.
9826 This can happen if the debugging information is
9827 incomplete, for instance. */
9828 actual_type = type;
9829 return value_zero (actual_type, not_lval);
9830 }
9831 else
9832 {
9833 /* In the case of a ref, ada_coerce_ref takes care
9834 of determining the actual type. But the evaluation
9835 should return a ref as it should be valid to ask
9836 for its address; so rebuild a ref after coerce. */
9837 arg1 = ada_coerce_ref (arg1);
9838 return value_ref (arg1);
9839 }
0c1f74cf
JB
9840 }
9841
4c4b4cd2
PH
9842 *pos += 4;
9843 return value_zero
9844 (to_static_fixed_type
9845 (static_unwrap_type (SYMBOL_TYPE (exp->elts[pc + 2].symbol))),
9846 not_lval);
9847 }
d2e4a39e 9848 else
4c4b4cd2 9849 {
284614f0 9850 arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside);
4c4b4cd2
PH
9851 return ada_to_fixed_value (arg1);
9852 }
9853
9854 case OP_FUNCALL:
9855 (*pos) += 2;
9856
9857 /* Allocate arg vector, including space for the function to be
9858 called in argvec[0] and a terminating NULL. */
9859 nargs = longest_to_int (exp->elts[pc + 1].longconst);
9860 argvec =
9861 (struct value **) alloca (sizeof (struct value *) * (nargs + 2));
9862
9863 if (exp->elts[*pos].opcode == OP_VAR_VALUE
76a01679 9864 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
323e0a4a 9865 error (_("Unexpected unresolved symbol, %s, during evaluation"),
4c4b4cd2
PH
9866 SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol));
9867 else
9868 {
9869 for (tem = 0; tem <= nargs; tem += 1)
9870 argvec[tem] = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9871 argvec[tem] = 0;
9872
9873 if (noside == EVAL_SKIP)
9874 goto nosideret;
9875 }
9876
ad82864c
JB
9877 if (ada_is_constrained_packed_array_type
9878 (desc_base_type (value_type (argvec[0]))))
4c4b4cd2 9879 argvec[0] = ada_coerce_to_simple_array (argvec[0]);
284614f0
JB
9880 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_ARRAY
9881 && TYPE_FIELD_BITSIZE (value_type (argvec[0]), 0) != 0)
9882 /* This is a packed array that has already been fixed, and
9883 therefore already coerced to a simple array. Nothing further
9884 to do. */
9885 ;
df407dfe
AC
9886 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_REF
9887 || (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_ARRAY
76a01679 9888 && VALUE_LVAL (argvec[0]) == lval_memory))
4c4b4cd2
PH
9889 argvec[0] = value_addr (argvec[0]);
9890
df407dfe 9891 type = ada_check_typedef (value_type (argvec[0]));
720d1a40
JB
9892
9893 /* Ada allows us to implicitly dereference arrays when subscripting
8f465ea7
JB
9894 them. So, if this is an array typedef (encoding use for array
9895 access types encoded as fat pointers), strip it now. */
720d1a40
JB
9896 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
9897 type = ada_typedef_target_type (type);
9898
4c4b4cd2
PH
9899 if (TYPE_CODE (type) == TYPE_CODE_PTR)
9900 {
61ee279c 9901 switch (TYPE_CODE (ada_check_typedef (TYPE_TARGET_TYPE (type))))
4c4b4cd2
PH
9902 {
9903 case TYPE_CODE_FUNC:
61ee279c 9904 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
4c4b4cd2
PH
9905 break;
9906 case TYPE_CODE_ARRAY:
9907 break;
9908 case TYPE_CODE_STRUCT:
9909 if (noside != EVAL_AVOID_SIDE_EFFECTS)
9910 argvec[0] = ada_value_ind (argvec[0]);
61ee279c 9911 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
4c4b4cd2
PH
9912 break;
9913 default:
323e0a4a 9914 error (_("cannot subscript or call something of type `%s'"),
df407dfe 9915 ada_type_name (value_type (argvec[0])));
4c4b4cd2
PH
9916 break;
9917 }
9918 }
9919
9920 switch (TYPE_CODE (type))
9921 {
9922 case TYPE_CODE_FUNC:
9923 if (noside == EVAL_AVOID_SIDE_EFFECTS)
c8ea1972
PH
9924 {
9925 struct type *rtype = TYPE_TARGET_TYPE (type);
9926
9927 if (TYPE_GNU_IFUNC (type))
9928 return allocate_value (TYPE_TARGET_TYPE (rtype));
9929 return allocate_value (rtype);
9930 }
4c4b4cd2 9931 return call_function_by_hand (argvec[0], nargs, argvec + 1);
c8ea1972
PH
9932 case TYPE_CODE_INTERNAL_FUNCTION:
9933 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9934 /* We don't know anything about what the internal
9935 function might return, but we have to return
9936 something. */
9937 return value_zero (builtin_type (exp->gdbarch)->builtin_int,
9938 not_lval);
9939 else
9940 return call_internal_function (exp->gdbarch, exp->language_defn,
9941 argvec[0], nargs, argvec + 1);
9942
4c4b4cd2
PH
9943 case TYPE_CODE_STRUCT:
9944 {
9945 int arity;
9946
4c4b4cd2
PH
9947 arity = ada_array_arity (type);
9948 type = ada_array_element_type (type, nargs);
9949 if (type == NULL)
323e0a4a 9950 error (_("cannot subscript or call a record"));
4c4b4cd2 9951 if (arity != nargs)
323e0a4a 9952 error (_("wrong number of subscripts; expecting %d"), arity);
4c4b4cd2 9953 if (noside == EVAL_AVOID_SIDE_EFFECTS)
0a07e705 9954 return value_zero (ada_aligned_type (type), lval_memory);
4c4b4cd2
PH
9955 return
9956 unwrap_value (ada_value_subscript
9957 (argvec[0], nargs, argvec + 1));
9958 }
9959 case TYPE_CODE_ARRAY:
9960 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9961 {
9962 type = ada_array_element_type (type, nargs);
9963 if (type == NULL)
323e0a4a 9964 error (_("element type of array unknown"));
4c4b4cd2 9965 else
0a07e705 9966 return value_zero (ada_aligned_type (type), lval_memory);
4c4b4cd2
PH
9967 }
9968 return
9969 unwrap_value (ada_value_subscript
9970 (ada_coerce_to_simple_array (argvec[0]),
9971 nargs, argvec + 1));
9972 case TYPE_CODE_PTR: /* Pointer to array */
9973 type = to_fixed_array_type (TYPE_TARGET_TYPE (type), NULL, 1);
9974 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9975 {
9976 type = ada_array_element_type (type, nargs);
9977 if (type == NULL)
323e0a4a 9978 error (_("element type of array unknown"));
4c4b4cd2 9979 else
0a07e705 9980 return value_zero (ada_aligned_type (type), lval_memory);
4c4b4cd2
PH
9981 }
9982 return
9983 unwrap_value (ada_value_ptr_subscript (argvec[0], type,
9984 nargs, argvec + 1));
9985
9986 default:
e1d5a0d2
PH
9987 error (_("Attempt to index or call something other than an "
9988 "array or function"));
4c4b4cd2
PH
9989 }
9990
9991 case TERNOP_SLICE:
9992 {
9993 struct value *array = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9994 struct value *low_bound_val =
9995 evaluate_subexp (NULL_TYPE, exp, pos, noside);
714e53ab
PH
9996 struct value *high_bound_val =
9997 evaluate_subexp (NULL_TYPE, exp, pos, noside);
9998 LONGEST low_bound;
9999 LONGEST high_bound;
5b4ee69b 10000
994b9211
AC
10001 low_bound_val = coerce_ref (low_bound_val);
10002 high_bound_val = coerce_ref (high_bound_val);
714e53ab
PH
10003 low_bound = pos_atr (low_bound_val);
10004 high_bound = pos_atr (high_bound_val);
963a6417 10005
4c4b4cd2
PH
10006 if (noside == EVAL_SKIP)
10007 goto nosideret;
10008
4c4b4cd2
PH
10009 /* If this is a reference to an aligner type, then remove all
10010 the aligners. */
df407dfe
AC
10011 if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF
10012 && ada_is_aligner_type (TYPE_TARGET_TYPE (value_type (array))))
10013 TYPE_TARGET_TYPE (value_type (array)) =
10014 ada_aligned_type (TYPE_TARGET_TYPE (value_type (array)));
4c4b4cd2 10015
ad82864c 10016 if (ada_is_constrained_packed_array_type (value_type (array)))
323e0a4a 10017 error (_("cannot slice a packed array"));
4c4b4cd2
PH
10018
10019 /* If this is a reference to an array or an array lvalue,
10020 convert to a pointer. */
df407dfe
AC
10021 if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF
10022 || (TYPE_CODE (value_type (array)) == TYPE_CODE_ARRAY
4c4b4cd2
PH
10023 && VALUE_LVAL (array) == lval_memory))
10024 array = value_addr (array);
10025
1265e4aa 10026 if (noside == EVAL_AVOID_SIDE_EFFECTS
61ee279c 10027 && ada_is_array_descriptor_type (ada_check_typedef
df407dfe 10028 (value_type (array))))
0b5d8877 10029 return empty_array (ada_type_of_array (array, 0), low_bound);
4c4b4cd2
PH
10030
10031 array = ada_coerce_to_simple_array_ptr (array);
10032
714e53ab
PH
10033 /* If we have more than one level of pointer indirection,
10034 dereference the value until we get only one level. */
df407dfe
AC
10035 while (TYPE_CODE (value_type (array)) == TYPE_CODE_PTR
10036 && (TYPE_CODE (TYPE_TARGET_TYPE (value_type (array)))
714e53ab
PH
10037 == TYPE_CODE_PTR))
10038 array = value_ind (array);
10039
10040 /* Make sure we really do have an array type before going further,
10041 to avoid a SEGV when trying to get the index type or the target
10042 type later down the road if the debug info generated by
10043 the compiler is incorrect or incomplete. */
df407dfe 10044 if (!ada_is_simple_array_type (value_type (array)))
323e0a4a 10045 error (_("cannot take slice of non-array"));
714e53ab 10046
828292f2
JB
10047 if (TYPE_CODE (ada_check_typedef (value_type (array)))
10048 == TYPE_CODE_PTR)
4c4b4cd2 10049 {
828292f2
JB
10050 struct type *type0 = ada_check_typedef (value_type (array));
10051
0b5d8877 10052 if (high_bound < low_bound || noside == EVAL_AVOID_SIDE_EFFECTS)
828292f2 10053 return empty_array (TYPE_TARGET_TYPE (type0), low_bound);
4c4b4cd2
PH
10054 else
10055 {
10056 struct type *arr_type0 =
828292f2 10057 to_fixed_array_type (TYPE_TARGET_TYPE (type0), NULL, 1);
5b4ee69b 10058
f5938064
JG
10059 return ada_value_slice_from_ptr (array, arr_type0,
10060 longest_to_int (low_bound),
10061 longest_to_int (high_bound));
4c4b4cd2
PH
10062 }
10063 }
10064 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
10065 return array;
10066 else if (high_bound < low_bound)
df407dfe 10067 return empty_array (value_type (array), low_bound);
4c4b4cd2 10068 else
529cad9c
PH
10069 return ada_value_slice (array, longest_to_int (low_bound),
10070 longest_to_int (high_bound));
4c4b4cd2 10071 }
14f9c5c9 10072
4c4b4cd2
PH
10073 case UNOP_IN_RANGE:
10074 (*pos) += 2;
10075 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8008e265 10076 type = check_typedef (exp->elts[pc + 1].type);
14f9c5c9 10077
14f9c5c9 10078 if (noside == EVAL_SKIP)
4c4b4cd2 10079 goto nosideret;
14f9c5c9 10080
4c4b4cd2
PH
10081 switch (TYPE_CODE (type))
10082 {
10083 default:
e1d5a0d2
PH
10084 lim_warning (_("Membership test incompletely implemented; "
10085 "always returns true"));
fbb06eb1
UW
10086 type = language_bool_type (exp->language_defn, exp->gdbarch);
10087 return value_from_longest (type, (LONGEST) 1);
4c4b4cd2
PH
10088
10089 case TYPE_CODE_RANGE:
030b4912
UW
10090 arg2 = value_from_longest (type, TYPE_LOW_BOUND (type));
10091 arg3 = value_from_longest (type, TYPE_HIGH_BOUND (type));
f44316fa
UW
10092 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10093 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
fbb06eb1
UW
10094 type = language_bool_type (exp->language_defn, exp->gdbarch);
10095 return
10096 value_from_longest (type,
4c4b4cd2
PH
10097 (value_less (arg1, arg3)
10098 || value_equal (arg1, arg3))
10099 && (value_less (arg2, arg1)
10100 || value_equal (arg2, arg1)));
10101 }
10102
10103 case BINOP_IN_BOUNDS:
14f9c5c9 10104 (*pos) += 2;
4c4b4cd2
PH
10105 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10106 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
14f9c5c9 10107
4c4b4cd2
PH
10108 if (noside == EVAL_SKIP)
10109 goto nosideret;
14f9c5c9 10110
4c4b4cd2 10111 if (noside == EVAL_AVOID_SIDE_EFFECTS)
fbb06eb1
UW
10112 {
10113 type = language_bool_type (exp->language_defn, exp->gdbarch);
10114 return value_zero (type, not_lval);
10115 }
14f9c5c9 10116
4c4b4cd2 10117 tem = longest_to_int (exp->elts[pc + 1].longconst);
14f9c5c9 10118
1eea4ebd
UW
10119 type = ada_index_type (value_type (arg2), tem, "range");
10120 if (!type)
10121 type = value_type (arg1);
14f9c5c9 10122
1eea4ebd
UW
10123 arg3 = value_from_longest (type, ada_array_bound (arg2, tem, 1));
10124 arg2 = value_from_longest (type, ada_array_bound (arg2, tem, 0));
d2e4a39e 10125
f44316fa
UW
10126 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10127 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
fbb06eb1 10128 type = language_bool_type (exp->language_defn, exp->gdbarch);
4c4b4cd2 10129 return
fbb06eb1 10130 value_from_longest (type,
4c4b4cd2
PH
10131 (value_less (arg1, arg3)
10132 || value_equal (arg1, arg3))
10133 && (value_less (arg2, arg1)
10134 || value_equal (arg2, arg1)));
10135
10136 case TERNOP_IN_RANGE:
10137 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10138 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10139 arg3 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10140
10141 if (noside == EVAL_SKIP)
10142 goto nosideret;
10143
f44316fa
UW
10144 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10145 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
fbb06eb1 10146 type = language_bool_type (exp->language_defn, exp->gdbarch);
4c4b4cd2 10147 return
fbb06eb1 10148 value_from_longest (type,
4c4b4cd2
PH
10149 (value_less (arg1, arg3)
10150 || value_equal (arg1, arg3))
10151 && (value_less (arg2, arg1)
10152 || value_equal (arg2, arg1)));
10153
10154 case OP_ATR_FIRST:
10155 case OP_ATR_LAST:
10156 case OP_ATR_LENGTH:
10157 {
76a01679 10158 struct type *type_arg;
5b4ee69b 10159
76a01679
JB
10160 if (exp->elts[*pos].opcode == OP_TYPE)
10161 {
10162 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
10163 arg1 = NULL;
5bc23cb3 10164 type_arg = check_typedef (exp->elts[pc + 2].type);
76a01679
JB
10165 }
10166 else
10167 {
10168 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10169 type_arg = NULL;
10170 }
10171
10172 if (exp->elts[*pos].opcode != OP_LONG)
323e0a4a 10173 error (_("Invalid operand to '%s"), ada_attribute_name (op));
76a01679
JB
10174 tem = longest_to_int (exp->elts[*pos + 2].longconst);
10175 *pos += 4;
10176
10177 if (noside == EVAL_SKIP)
10178 goto nosideret;
10179
10180 if (type_arg == NULL)
10181 {
10182 arg1 = ada_coerce_ref (arg1);
10183
ad82864c 10184 if (ada_is_constrained_packed_array_type (value_type (arg1)))
76a01679
JB
10185 arg1 = ada_coerce_to_simple_array (arg1);
10186
1eea4ebd
UW
10187 type = ada_index_type (value_type (arg1), tem,
10188 ada_attribute_name (op));
10189 if (type == NULL)
10190 type = builtin_type (exp->gdbarch)->builtin_int;
76a01679
JB
10191
10192 if (noside == EVAL_AVOID_SIDE_EFFECTS)
1eea4ebd 10193 return allocate_value (type);
76a01679
JB
10194
10195 switch (op)
10196 {
10197 default: /* Should never happen. */
323e0a4a 10198 error (_("unexpected attribute encountered"));
76a01679 10199 case OP_ATR_FIRST:
1eea4ebd
UW
10200 return value_from_longest
10201 (type, ada_array_bound (arg1, tem, 0));
76a01679 10202 case OP_ATR_LAST:
1eea4ebd
UW
10203 return value_from_longest
10204 (type, ada_array_bound (arg1, tem, 1));
76a01679 10205 case OP_ATR_LENGTH:
1eea4ebd
UW
10206 return value_from_longest
10207 (type, ada_array_length (arg1, tem));
76a01679
JB
10208 }
10209 }
10210 else if (discrete_type_p (type_arg))
10211 {
10212 struct type *range_type;
0d5cff50 10213 const char *name = ada_type_name (type_arg);
5b4ee69b 10214
76a01679
JB
10215 range_type = NULL;
10216 if (name != NULL && TYPE_CODE (type_arg) != TYPE_CODE_ENUM)
28c85d6c 10217 range_type = to_fixed_range_type (type_arg, NULL);
76a01679
JB
10218 if (range_type == NULL)
10219 range_type = type_arg;
10220 switch (op)
10221 {
10222 default:
323e0a4a 10223 error (_("unexpected attribute encountered"));
76a01679 10224 case OP_ATR_FIRST:
690cc4eb 10225 return value_from_longest
43bbcdc2 10226 (range_type, ada_discrete_type_low_bound (range_type));
76a01679 10227 case OP_ATR_LAST:
690cc4eb 10228 return value_from_longest
43bbcdc2 10229 (range_type, ada_discrete_type_high_bound (range_type));
76a01679 10230 case OP_ATR_LENGTH:
323e0a4a 10231 error (_("the 'length attribute applies only to array types"));
76a01679
JB
10232 }
10233 }
10234 else if (TYPE_CODE (type_arg) == TYPE_CODE_FLT)
323e0a4a 10235 error (_("unimplemented type attribute"));
76a01679
JB
10236 else
10237 {
10238 LONGEST low, high;
10239
ad82864c
JB
10240 if (ada_is_constrained_packed_array_type (type_arg))
10241 type_arg = decode_constrained_packed_array_type (type_arg);
76a01679 10242
1eea4ebd 10243 type = ada_index_type (type_arg, tem, ada_attribute_name (op));
76a01679 10244 if (type == NULL)
1eea4ebd
UW
10245 type = builtin_type (exp->gdbarch)->builtin_int;
10246
76a01679
JB
10247 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10248 return allocate_value (type);
10249
10250 switch (op)
10251 {
10252 default:
323e0a4a 10253 error (_("unexpected attribute encountered"));
76a01679 10254 case OP_ATR_FIRST:
1eea4ebd 10255 low = ada_array_bound_from_type (type_arg, tem, 0);
76a01679
JB
10256 return value_from_longest (type, low);
10257 case OP_ATR_LAST:
1eea4ebd 10258 high = ada_array_bound_from_type (type_arg, tem, 1);
76a01679
JB
10259 return value_from_longest (type, high);
10260 case OP_ATR_LENGTH:
1eea4ebd
UW
10261 low = ada_array_bound_from_type (type_arg, tem, 0);
10262 high = ada_array_bound_from_type (type_arg, tem, 1);
76a01679
JB
10263 return value_from_longest (type, high - low + 1);
10264 }
10265 }
14f9c5c9
AS
10266 }
10267
4c4b4cd2
PH
10268 case OP_ATR_TAG:
10269 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10270 if (noside == EVAL_SKIP)
76a01679 10271 goto nosideret;
4c4b4cd2
PH
10272
10273 if (noside == EVAL_AVOID_SIDE_EFFECTS)
76a01679 10274 return value_zero (ada_tag_type (arg1), not_lval);
4c4b4cd2
PH
10275
10276 return ada_value_tag (arg1);
10277
10278 case OP_ATR_MIN:
10279 case OP_ATR_MAX:
10280 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
14f9c5c9
AS
10281 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10282 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10283 if (noside == EVAL_SKIP)
76a01679 10284 goto nosideret;
d2e4a39e 10285 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
df407dfe 10286 return value_zero (value_type (arg1), not_lval);
14f9c5c9 10287 else
f44316fa
UW
10288 {
10289 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10290 return value_binop (arg1, arg2,
10291 op == OP_ATR_MIN ? BINOP_MIN : BINOP_MAX);
10292 }
14f9c5c9 10293
4c4b4cd2
PH
10294 case OP_ATR_MODULUS:
10295 {
31dedfee 10296 struct type *type_arg = check_typedef (exp->elts[pc + 2].type);
4c4b4cd2 10297
5b4ee69b 10298 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
76a01679
JB
10299 if (noside == EVAL_SKIP)
10300 goto nosideret;
4c4b4cd2 10301
76a01679 10302 if (!ada_is_modular_type (type_arg))
323e0a4a 10303 error (_("'modulus must be applied to modular type"));
4c4b4cd2 10304
76a01679
JB
10305 return value_from_longest (TYPE_TARGET_TYPE (type_arg),
10306 ada_modulus (type_arg));
4c4b4cd2
PH
10307 }
10308
10309
10310 case OP_ATR_POS:
10311 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
14f9c5c9
AS
10312 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10313 if (noside == EVAL_SKIP)
76a01679 10314 goto nosideret;
3cb382c9
UW
10315 type = builtin_type (exp->gdbarch)->builtin_int;
10316 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10317 return value_zero (type, not_lval);
14f9c5c9 10318 else
3cb382c9 10319 return value_pos_atr (type, arg1);
14f9c5c9 10320
4c4b4cd2
PH
10321 case OP_ATR_SIZE:
10322 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8c1c099f
JB
10323 type = value_type (arg1);
10324
10325 /* If the argument is a reference, then dereference its type, since
10326 the user is really asking for the size of the actual object,
10327 not the size of the pointer. */
10328 if (TYPE_CODE (type) == TYPE_CODE_REF)
10329 type = TYPE_TARGET_TYPE (type);
10330
4c4b4cd2 10331 if (noside == EVAL_SKIP)
76a01679 10332 goto nosideret;
4c4b4cd2 10333 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
22601c15 10334 return value_zero (builtin_type (exp->gdbarch)->builtin_int, not_lval);
4c4b4cd2 10335 else
22601c15 10336 return value_from_longest (builtin_type (exp->gdbarch)->builtin_int,
8c1c099f 10337 TARGET_CHAR_BIT * TYPE_LENGTH (type));
4c4b4cd2
PH
10338
10339 case OP_ATR_VAL:
10340 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
14f9c5c9 10341 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
4c4b4cd2 10342 type = exp->elts[pc + 2].type;
14f9c5c9 10343 if (noside == EVAL_SKIP)
76a01679 10344 goto nosideret;
4c4b4cd2 10345 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
76a01679 10346 return value_zero (type, not_lval);
4c4b4cd2 10347 else
76a01679 10348 return value_val_atr (type, arg1);
4c4b4cd2
PH
10349
10350 case BINOP_EXP:
10351 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10352 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10353 if (noside == EVAL_SKIP)
10354 goto nosideret;
10355 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
df407dfe 10356 return value_zero (value_type (arg1), not_lval);
4c4b4cd2 10357 else
f44316fa
UW
10358 {
10359 /* For integer exponentiation operations,
10360 only promote the first argument. */
10361 if (is_integral_type (value_type (arg2)))
10362 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
10363 else
10364 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10365
10366 return value_binop (arg1, arg2, op);
10367 }
4c4b4cd2
PH
10368
10369 case UNOP_PLUS:
10370 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10371 if (noside == EVAL_SKIP)
10372 goto nosideret;
10373 else
10374 return arg1;
10375
10376 case UNOP_ABS:
10377 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10378 if (noside == EVAL_SKIP)
10379 goto nosideret;
f44316fa 10380 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
df407dfe 10381 if (value_less (arg1, value_zero (value_type (arg1), not_lval)))
4c4b4cd2 10382 return value_neg (arg1);
14f9c5c9 10383 else
4c4b4cd2 10384 return arg1;
14f9c5c9
AS
10385
10386 case UNOP_IND:
6b0d7253 10387 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
14f9c5c9 10388 if (noside == EVAL_SKIP)
4c4b4cd2 10389 goto nosideret;
df407dfe 10390 type = ada_check_typedef (value_type (arg1));
14f9c5c9 10391 if (noside == EVAL_AVOID_SIDE_EFFECTS)
4c4b4cd2
PH
10392 {
10393 if (ada_is_array_descriptor_type (type))
10394 /* GDB allows dereferencing GNAT array descriptors. */
10395 {
10396 struct type *arrType = ada_type_of_array (arg1, 0);
5b4ee69b 10397
4c4b4cd2 10398 if (arrType == NULL)
323e0a4a 10399 error (_("Attempt to dereference null array pointer."));
00a4c844 10400 return value_at_lazy (arrType, 0);
4c4b4cd2
PH
10401 }
10402 else if (TYPE_CODE (type) == TYPE_CODE_PTR
10403 || TYPE_CODE (type) == TYPE_CODE_REF
10404 /* In C you can dereference an array to get the 1st elt. */
10405 || TYPE_CODE (type) == TYPE_CODE_ARRAY)
714e53ab
PH
10406 {
10407 type = to_static_fixed_type
10408 (ada_aligned_type
10409 (ada_check_typedef (TYPE_TARGET_TYPE (type))));
10410 check_size (type);
10411 return value_zero (type, lval_memory);
10412 }
4c4b4cd2 10413 else if (TYPE_CODE (type) == TYPE_CODE_INT)
6b0d7253
JB
10414 {
10415 /* GDB allows dereferencing an int. */
10416 if (expect_type == NULL)
10417 return value_zero (builtin_type (exp->gdbarch)->builtin_int,
10418 lval_memory);
10419 else
10420 {
10421 expect_type =
10422 to_static_fixed_type (ada_aligned_type (expect_type));
10423 return value_zero (expect_type, lval_memory);
10424 }
10425 }
4c4b4cd2 10426 else
323e0a4a 10427 error (_("Attempt to take contents of a non-pointer value."));
4c4b4cd2 10428 }
0963b4bd 10429 arg1 = ada_coerce_ref (arg1); /* FIXME: What is this for?? */
df407dfe 10430 type = ada_check_typedef (value_type (arg1));
d2e4a39e 10431
96967637
JB
10432 if (TYPE_CODE (type) == TYPE_CODE_INT)
10433 /* GDB allows dereferencing an int. If we were given
10434 the expect_type, then use that as the target type.
10435 Otherwise, assume that the target type is an int. */
10436 {
10437 if (expect_type != NULL)
10438 return ada_value_ind (value_cast (lookup_pointer_type (expect_type),
10439 arg1));
10440 else
10441 return value_at_lazy (builtin_type (exp->gdbarch)->builtin_int,
10442 (CORE_ADDR) value_as_address (arg1));
10443 }
6b0d7253 10444
4c4b4cd2
PH
10445 if (ada_is_array_descriptor_type (type))
10446 /* GDB allows dereferencing GNAT array descriptors. */
10447 return ada_coerce_to_simple_array (arg1);
14f9c5c9 10448 else
4c4b4cd2 10449 return ada_value_ind (arg1);
14f9c5c9
AS
10450
10451 case STRUCTOP_STRUCT:
10452 tem = longest_to_int (exp->elts[pc + 1].longconst);
10453 (*pos) += 3 + BYTES_TO_EXP_ELEM (tem + 1);
10454 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10455 if (noside == EVAL_SKIP)
4c4b4cd2 10456 goto nosideret;
14f9c5c9 10457 if (noside == EVAL_AVOID_SIDE_EFFECTS)
76a01679 10458 {
df407dfe 10459 struct type *type1 = value_type (arg1);
5b4ee69b 10460
76a01679
JB
10461 if (ada_is_tagged_type (type1, 1))
10462 {
10463 type = ada_lookup_struct_elt_type (type1,
10464 &exp->elts[pc + 2].string,
10465 1, 1, NULL);
10466 if (type == NULL)
10467 /* In this case, we assume that the field COULD exist
10468 in some extension of the type. Return an object of
10469 "type" void, which will match any formal
0963b4bd 10470 (see ada_type_match). */
30b15541
UW
10471 return value_zero (builtin_type (exp->gdbarch)->builtin_void,
10472 lval_memory);
76a01679
JB
10473 }
10474 else
10475 type =
10476 ada_lookup_struct_elt_type (type1, &exp->elts[pc + 2].string, 1,
10477 0, NULL);
10478
10479 return value_zero (ada_aligned_type (type), lval_memory);
10480 }
14f9c5c9 10481 else
284614f0
JB
10482 arg1 = ada_value_struct_elt (arg1, &exp->elts[pc + 2].string, 0);
10483 arg1 = unwrap_value (arg1);
10484 return ada_to_fixed_value (arg1);
10485
14f9c5c9 10486 case OP_TYPE:
4c4b4cd2
PH
10487 /* The value is not supposed to be used. This is here to make it
10488 easier to accommodate expressions that contain types. */
14f9c5c9
AS
10489 (*pos) += 2;
10490 if (noside == EVAL_SKIP)
4c4b4cd2 10491 goto nosideret;
14f9c5c9 10492 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
a6cfbe68 10493 return allocate_value (exp->elts[pc + 1].type);
14f9c5c9 10494 else
323e0a4a 10495 error (_("Attempt to use a type name as an expression"));
52ce6436
PH
10496
10497 case OP_AGGREGATE:
10498 case OP_CHOICES:
10499 case OP_OTHERS:
10500 case OP_DISCRETE_RANGE:
10501 case OP_POSITIONAL:
10502 case OP_NAME:
10503 if (noside == EVAL_NORMAL)
10504 switch (op)
10505 {
10506 case OP_NAME:
10507 error (_("Undefined name, ambiguous name, or renaming used in "
e1d5a0d2 10508 "component association: %s."), &exp->elts[pc+2].string);
52ce6436
PH
10509 case OP_AGGREGATE:
10510 error (_("Aggregates only allowed on the right of an assignment"));
10511 default:
0963b4bd
MS
10512 internal_error (__FILE__, __LINE__,
10513 _("aggregate apparently mangled"));
52ce6436
PH
10514 }
10515
10516 ada_forward_operator_length (exp, pc, &oplen, &nargs);
10517 *pos += oplen - 1;
10518 for (tem = 0; tem < nargs; tem += 1)
10519 ada_evaluate_subexp (NULL, exp, pos, noside);
10520 goto nosideret;
14f9c5c9
AS
10521 }
10522
10523nosideret:
22601c15 10524 return value_from_longest (builtin_type (exp->gdbarch)->builtin_int, 1);
14f9c5c9 10525}
14f9c5c9 10526\f
d2e4a39e 10527
4c4b4cd2 10528 /* Fixed point */
14f9c5c9
AS
10529
10530/* If TYPE encodes an Ada fixed-point type, return the suffix of the
10531 type name that encodes the 'small and 'delta information.
4c4b4cd2 10532 Otherwise, return NULL. */
14f9c5c9 10533
d2e4a39e 10534static const char *
ebf56fd3 10535fixed_type_info (struct type *type)
14f9c5c9 10536{
d2e4a39e 10537 const char *name = ada_type_name (type);
14f9c5c9
AS
10538 enum type_code code = (type == NULL) ? TYPE_CODE_UNDEF : TYPE_CODE (type);
10539
d2e4a39e
AS
10540 if ((code == TYPE_CODE_INT || code == TYPE_CODE_RANGE) && name != NULL)
10541 {
14f9c5c9 10542 const char *tail = strstr (name, "___XF_");
5b4ee69b 10543
14f9c5c9 10544 if (tail == NULL)
4c4b4cd2 10545 return NULL;
d2e4a39e 10546 else
4c4b4cd2 10547 return tail + 5;
14f9c5c9
AS
10548 }
10549 else if (code == TYPE_CODE_RANGE && TYPE_TARGET_TYPE (type) != type)
10550 return fixed_type_info (TYPE_TARGET_TYPE (type));
10551 else
10552 return NULL;
10553}
10554
4c4b4cd2 10555/* Returns non-zero iff TYPE represents an Ada fixed-point type. */
14f9c5c9
AS
10556
10557int
ebf56fd3 10558ada_is_fixed_point_type (struct type *type)
14f9c5c9
AS
10559{
10560 return fixed_type_info (type) != NULL;
10561}
10562
4c4b4cd2
PH
10563/* Return non-zero iff TYPE represents a System.Address type. */
10564
10565int
10566ada_is_system_address_type (struct type *type)
10567{
10568 return (TYPE_NAME (type)
10569 && strcmp (TYPE_NAME (type), "system__address") == 0);
10570}
10571
14f9c5c9
AS
10572/* Assuming that TYPE is the representation of an Ada fixed-point
10573 type, return its delta, or -1 if the type is malformed and the
4c4b4cd2 10574 delta cannot be determined. */
14f9c5c9
AS
10575
10576DOUBLEST
ebf56fd3 10577ada_delta (struct type *type)
14f9c5c9
AS
10578{
10579 const char *encoding = fixed_type_info (type);
facc390f 10580 DOUBLEST num, den;
14f9c5c9 10581
facc390f
JB
10582 /* Strictly speaking, num and den are encoded as integer. However,
10583 they may not fit into a long, and they will have to be converted
10584 to DOUBLEST anyway. So scan them as DOUBLEST. */
10585 if (sscanf (encoding, "_%" DOUBLEST_SCAN_FORMAT "_%" DOUBLEST_SCAN_FORMAT,
10586 &num, &den) < 2)
14f9c5c9 10587 return -1.0;
d2e4a39e 10588 else
facc390f 10589 return num / den;
14f9c5c9
AS
10590}
10591
10592/* Assuming that ada_is_fixed_point_type (TYPE), return the scaling
4c4b4cd2 10593 factor ('SMALL value) associated with the type. */
14f9c5c9
AS
10594
10595static DOUBLEST
ebf56fd3 10596scaling_factor (struct type *type)
14f9c5c9
AS
10597{
10598 const char *encoding = fixed_type_info (type);
facc390f 10599 DOUBLEST num0, den0, num1, den1;
14f9c5c9 10600 int n;
d2e4a39e 10601
facc390f
JB
10602 /* Strictly speaking, num's and den's are encoded as integer. However,
10603 they may not fit into a long, and they will have to be converted
10604 to DOUBLEST anyway. So scan them as DOUBLEST. */
10605 n = sscanf (encoding,
10606 "_%" DOUBLEST_SCAN_FORMAT "_%" DOUBLEST_SCAN_FORMAT
10607 "_%" DOUBLEST_SCAN_FORMAT "_%" DOUBLEST_SCAN_FORMAT,
10608 &num0, &den0, &num1, &den1);
14f9c5c9
AS
10609
10610 if (n < 2)
10611 return 1.0;
10612 else if (n == 4)
facc390f 10613 return num1 / den1;
d2e4a39e 10614 else
facc390f 10615 return num0 / den0;
14f9c5c9
AS
10616}
10617
10618
10619/* Assuming that X is the representation of a value of fixed-point
4c4b4cd2 10620 type TYPE, return its floating-point equivalent. */
14f9c5c9
AS
10621
10622DOUBLEST
ebf56fd3 10623ada_fixed_to_float (struct type *type, LONGEST x)
14f9c5c9 10624{
d2e4a39e 10625 return (DOUBLEST) x *scaling_factor (type);
14f9c5c9
AS
10626}
10627
4c4b4cd2
PH
10628/* The representation of a fixed-point value of type TYPE
10629 corresponding to the value X. */
14f9c5c9
AS
10630
10631LONGEST
ebf56fd3 10632ada_float_to_fixed (struct type *type, DOUBLEST x)
14f9c5c9
AS
10633{
10634 return (LONGEST) (x / scaling_factor (type) + 0.5);
10635}
10636
14f9c5c9 10637\f
d2e4a39e 10638
4c4b4cd2 10639 /* Range types */
14f9c5c9
AS
10640
10641/* Scan STR beginning at position K for a discriminant name, and
10642 return the value of that discriminant field of DVAL in *PX. If
10643 PNEW_K is not null, put the position of the character beyond the
10644 name scanned in *PNEW_K. Return 1 if successful; return 0 and do
4c4b4cd2 10645 not alter *PX and *PNEW_K if unsuccessful. */
14f9c5c9
AS
10646
10647static int
07d8f827 10648scan_discrim_bound (char *str, int k, struct value *dval, LONGEST * px,
76a01679 10649 int *pnew_k)
14f9c5c9
AS
10650{
10651 static char *bound_buffer = NULL;
10652 static size_t bound_buffer_len = 0;
10653 char *bound;
10654 char *pend;
d2e4a39e 10655 struct value *bound_val;
14f9c5c9
AS
10656
10657 if (dval == NULL || str == NULL || str[k] == '\0')
10658 return 0;
10659
d2e4a39e 10660 pend = strstr (str + k, "__");
14f9c5c9
AS
10661 if (pend == NULL)
10662 {
d2e4a39e 10663 bound = str + k;
14f9c5c9
AS
10664 k += strlen (bound);
10665 }
d2e4a39e 10666 else
14f9c5c9 10667 {
d2e4a39e 10668 GROW_VECT (bound_buffer, bound_buffer_len, pend - (str + k) + 1);
14f9c5c9 10669 bound = bound_buffer;
d2e4a39e
AS
10670 strncpy (bound_buffer, str + k, pend - (str + k));
10671 bound[pend - (str + k)] = '\0';
10672 k = pend - str;
14f9c5c9 10673 }
d2e4a39e 10674
df407dfe 10675 bound_val = ada_search_struct_field (bound, dval, 0, value_type (dval));
14f9c5c9
AS
10676 if (bound_val == NULL)
10677 return 0;
10678
10679 *px = value_as_long (bound_val);
10680 if (pnew_k != NULL)
10681 *pnew_k = k;
10682 return 1;
10683}
10684
10685/* Value of variable named NAME in the current environment. If
10686 no such variable found, then if ERR_MSG is null, returns 0, and
4c4b4cd2
PH
10687 otherwise causes an error with message ERR_MSG. */
10688
d2e4a39e
AS
10689static struct value *
10690get_var_value (char *name, char *err_msg)
14f9c5c9 10691{
4c4b4cd2 10692 struct ada_symbol_info *syms;
14f9c5c9
AS
10693 int nsyms;
10694
4c4b4cd2 10695 nsyms = ada_lookup_symbol_list (name, get_selected_block (0), VAR_DOMAIN,
d9680e73 10696 &syms, 1);
14f9c5c9
AS
10697
10698 if (nsyms != 1)
10699 {
10700 if (err_msg == NULL)
4c4b4cd2 10701 return 0;
14f9c5c9 10702 else
8a3fe4f8 10703 error (("%s"), err_msg);
14f9c5c9
AS
10704 }
10705
4c4b4cd2 10706 return value_of_variable (syms[0].sym, syms[0].block);
14f9c5c9 10707}
d2e4a39e 10708
14f9c5c9 10709/* Value of integer variable named NAME in the current environment. If
4c4b4cd2
PH
10710 no such variable found, returns 0, and sets *FLAG to 0. If
10711 successful, sets *FLAG to 1. */
10712
14f9c5c9 10713LONGEST
4c4b4cd2 10714get_int_var_value (char *name, int *flag)
14f9c5c9 10715{
4c4b4cd2 10716 struct value *var_val = get_var_value (name, 0);
d2e4a39e 10717
14f9c5c9
AS
10718 if (var_val == 0)
10719 {
10720 if (flag != NULL)
4c4b4cd2 10721 *flag = 0;
14f9c5c9
AS
10722 return 0;
10723 }
10724 else
10725 {
10726 if (flag != NULL)
4c4b4cd2 10727 *flag = 1;
14f9c5c9
AS
10728 return value_as_long (var_val);
10729 }
10730}
d2e4a39e 10731
14f9c5c9
AS
10732
10733/* Return a range type whose base type is that of the range type named
10734 NAME in the current environment, and whose bounds are calculated
4c4b4cd2 10735 from NAME according to the GNAT range encoding conventions.
1ce677a4
UW
10736 Extract discriminant values, if needed, from DVAL. ORIG_TYPE is the
10737 corresponding range type from debug information; fall back to using it
10738 if symbol lookup fails. If a new type must be created, allocate it
10739 like ORIG_TYPE was. The bounds information, in general, is encoded
10740 in NAME, the base type given in the named range type. */
14f9c5c9 10741
d2e4a39e 10742static struct type *
28c85d6c 10743to_fixed_range_type (struct type *raw_type, struct value *dval)
14f9c5c9 10744{
0d5cff50 10745 const char *name;
14f9c5c9 10746 struct type *base_type;
d2e4a39e 10747 char *subtype_info;
14f9c5c9 10748
28c85d6c
JB
10749 gdb_assert (raw_type != NULL);
10750 gdb_assert (TYPE_NAME (raw_type) != NULL);
dddfab26 10751
1ce677a4 10752 if (TYPE_CODE (raw_type) == TYPE_CODE_RANGE)
14f9c5c9
AS
10753 base_type = TYPE_TARGET_TYPE (raw_type);
10754 else
10755 base_type = raw_type;
10756
28c85d6c 10757 name = TYPE_NAME (raw_type);
14f9c5c9
AS
10758 subtype_info = strstr (name, "___XD");
10759 if (subtype_info == NULL)
690cc4eb 10760 {
43bbcdc2
PH
10761 LONGEST L = ada_discrete_type_low_bound (raw_type);
10762 LONGEST U = ada_discrete_type_high_bound (raw_type);
5b4ee69b 10763
690cc4eb
PH
10764 if (L < INT_MIN || U > INT_MAX)
10765 return raw_type;
10766 else
28c85d6c 10767 return create_range_type (alloc_type_copy (raw_type), raw_type,
43bbcdc2
PH
10768 ada_discrete_type_low_bound (raw_type),
10769 ada_discrete_type_high_bound (raw_type));
690cc4eb 10770 }
14f9c5c9
AS
10771 else
10772 {
10773 static char *name_buf = NULL;
10774 static size_t name_len = 0;
10775 int prefix_len = subtype_info - name;
10776 LONGEST L, U;
10777 struct type *type;
10778 char *bounds_str;
10779 int n;
10780
10781 GROW_VECT (name_buf, name_len, prefix_len + 5);
10782 strncpy (name_buf, name, prefix_len);
10783 name_buf[prefix_len] = '\0';
10784
10785 subtype_info += 5;
10786 bounds_str = strchr (subtype_info, '_');
10787 n = 1;
10788
d2e4a39e 10789 if (*subtype_info == 'L')
4c4b4cd2
PH
10790 {
10791 if (!ada_scan_number (bounds_str, n, &L, &n)
10792 && !scan_discrim_bound (bounds_str, n, dval, &L, &n))
10793 return raw_type;
10794 if (bounds_str[n] == '_')
10795 n += 2;
0963b4bd 10796 else if (bounds_str[n] == '.') /* FIXME? SGI Workshop kludge. */
4c4b4cd2
PH
10797 n += 1;
10798 subtype_info += 1;
10799 }
d2e4a39e 10800 else
4c4b4cd2
PH
10801 {
10802 int ok;
5b4ee69b 10803
4c4b4cd2
PH
10804 strcpy (name_buf + prefix_len, "___L");
10805 L = get_int_var_value (name_buf, &ok);
10806 if (!ok)
10807 {
323e0a4a 10808 lim_warning (_("Unknown lower bound, using 1."));
4c4b4cd2
PH
10809 L = 1;
10810 }
10811 }
14f9c5c9 10812
d2e4a39e 10813 if (*subtype_info == 'U')
4c4b4cd2
PH
10814 {
10815 if (!ada_scan_number (bounds_str, n, &U, &n)
10816 && !scan_discrim_bound (bounds_str, n, dval, &U, &n))
10817 return raw_type;
10818 }
d2e4a39e 10819 else
4c4b4cd2
PH
10820 {
10821 int ok;
5b4ee69b 10822
4c4b4cd2
PH
10823 strcpy (name_buf + prefix_len, "___U");
10824 U = get_int_var_value (name_buf, &ok);
10825 if (!ok)
10826 {
323e0a4a 10827 lim_warning (_("Unknown upper bound, using %ld."), (long) L);
4c4b4cd2
PH
10828 U = L;
10829 }
10830 }
14f9c5c9 10831
28c85d6c 10832 type = create_range_type (alloc_type_copy (raw_type), base_type, L, U);
d2e4a39e 10833 TYPE_NAME (type) = name;
14f9c5c9
AS
10834 return type;
10835 }
10836}
10837
4c4b4cd2
PH
10838/* True iff NAME is the name of a range type. */
10839
14f9c5c9 10840int
d2e4a39e 10841ada_is_range_type_name (const char *name)
14f9c5c9
AS
10842{
10843 return (name != NULL && strstr (name, "___XD"));
d2e4a39e 10844}
14f9c5c9 10845\f
d2e4a39e 10846
4c4b4cd2
PH
10847 /* Modular types */
10848
10849/* True iff TYPE is an Ada modular type. */
14f9c5c9 10850
14f9c5c9 10851int
d2e4a39e 10852ada_is_modular_type (struct type *type)
14f9c5c9 10853{
18af8284 10854 struct type *subranged_type = get_base_type (type);
14f9c5c9
AS
10855
10856 return (subranged_type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE
690cc4eb 10857 && TYPE_CODE (subranged_type) == TYPE_CODE_INT
4c4b4cd2 10858 && TYPE_UNSIGNED (subranged_type));
14f9c5c9
AS
10859}
10860
4c4b4cd2
PH
10861/* Assuming ada_is_modular_type (TYPE), the modulus of TYPE. */
10862
61ee279c 10863ULONGEST
0056e4d5 10864ada_modulus (struct type *type)
14f9c5c9 10865{
43bbcdc2 10866 return (ULONGEST) TYPE_HIGH_BOUND (type) + 1;
14f9c5c9 10867}
d2e4a39e 10868\f
f7f9143b
JB
10869
10870/* Ada exception catchpoint support:
10871 ---------------------------------
10872
10873 We support 3 kinds of exception catchpoints:
10874 . catchpoints on Ada exceptions
10875 . catchpoints on unhandled Ada exceptions
10876 . catchpoints on failed assertions
10877
10878 Exceptions raised during failed assertions, or unhandled exceptions
10879 could perfectly be caught with the general catchpoint on Ada exceptions.
10880 However, we can easily differentiate these two special cases, and having
10881 the option to distinguish these two cases from the rest can be useful
10882 to zero-in on certain situations.
10883
10884 Exception catchpoints are a specialized form of breakpoint,
10885 since they rely on inserting breakpoints inside known routines
10886 of the GNAT runtime. The implementation therefore uses a standard
10887 breakpoint structure of the BP_BREAKPOINT type, but with its own set
10888 of breakpoint_ops.
10889
0259addd
JB
10890 Support in the runtime for exception catchpoints have been changed
10891 a few times already, and these changes affect the implementation
10892 of these catchpoints. In order to be able to support several
10893 variants of the runtime, we use a sniffer that will determine
28010a5d 10894 the runtime variant used by the program being debugged. */
f7f9143b
JB
10895
10896/* The different types of catchpoints that we introduced for catching
10897 Ada exceptions. */
10898
10899enum exception_catchpoint_kind
10900{
10901 ex_catch_exception,
10902 ex_catch_exception_unhandled,
10903 ex_catch_assert
10904};
10905
3d0b0fa3
JB
10906/* Ada's standard exceptions. */
10907
10908static char *standard_exc[] = {
10909 "constraint_error",
10910 "program_error",
10911 "storage_error",
10912 "tasking_error"
10913};
10914
0259addd
JB
10915typedef CORE_ADDR (ada_unhandled_exception_name_addr_ftype) (void);
10916
10917/* A structure that describes how to support exception catchpoints
10918 for a given executable. */
10919
10920struct exception_support_info
10921{
10922 /* The name of the symbol to break on in order to insert
10923 a catchpoint on exceptions. */
10924 const char *catch_exception_sym;
10925
10926 /* The name of the symbol to break on in order to insert
10927 a catchpoint on unhandled exceptions. */
10928 const char *catch_exception_unhandled_sym;
10929
10930 /* The name of the symbol to break on in order to insert
10931 a catchpoint on failed assertions. */
10932 const char *catch_assert_sym;
10933
10934 /* Assuming that the inferior just triggered an unhandled exception
10935 catchpoint, this function is responsible for returning the address
10936 in inferior memory where the name of that exception is stored.
10937 Return zero if the address could not be computed. */
10938 ada_unhandled_exception_name_addr_ftype *unhandled_exception_name_addr;
10939};
10940
10941static CORE_ADDR ada_unhandled_exception_name_addr (void);
10942static CORE_ADDR ada_unhandled_exception_name_addr_from_raise (void);
10943
10944/* The following exception support info structure describes how to
10945 implement exception catchpoints with the latest version of the
10946 Ada runtime (as of 2007-03-06). */
10947
10948static const struct exception_support_info default_exception_support_info =
10949{
10950 "__gnat_debug_raise_exception", /* catch_exception_sym */
10951 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
10952 "__gnat_debug_raise_assert_failure", /* catch_assert_sym */
10953 ada_unhandled_exception_name_addr
10954};
10955
10956/* The following exception support info structure describes how to
10957 implement exception catchpoints with a slightly older version
10958 of the Ada runtime. */
10959
10960static const struct exception_support_info exception_support_info_fallback =
10961{
10962 "__gnat_raise_nodefer_with_msg", /* catch_exception_sym */
10963 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
10964 "system__assertions__raise_assert_failure", /* catch_assert_sym */
10965 ada_unhandled_exception_name_addr_from_raise
10966};
10967
f17011e0
JB
10968/* Return nonzero if we can detect the exception support routines
10969 described in EINFO.
10970
10971 This function errors out if an abnormal situation is detected
10972 (for instance, if we find the exception support routines, but
10973 that support is found to be incomplete). */
10974
10975static int
10976ada_has_this_exception_support (const struct exception_support_info *einfo)
10977{
10978 struct symbol *sym;
10979
10980 /* The symbol we're looking up is provided by a unit in the GNAT runtime
10981 that should be compiled with debugging information. As a result, we
10982 expect to find that symbol in the symtabs. */
10983
10984 sym = standard_lookup (einfo->catch_exception_sym, NULL, VAR_DOMAIN);
10985 if (sym == NULL)
a6af7abe
JB
10986 {
10987 /* Perhaps we did not find our symbol because the Ada runtime was
10988 compiled without debugging info, or simply stripped of it.
10989 It happens on some GNU/Linux distributions for instance, where
10990 users have to install a separate debug package in order to get
10991 the runtime's debugging info. In that situation, let the user
10992 know why we cannot insert an Ada exception catchpoint.
10993
10994 Note: Just for the purpose of inserting our Ada exception
10995 catchpoint, we could rely purely on the associated minimal symbol.
10996 But we would be operating in degraded mode anyway, since we are
10997 still lacking the debugging info needed later on to extract
10998 the name of the exception being raised (this name is printed in
10999 the catchpoint message, and is also used when trying to catch
11000 a specific exception). We do not handle this case for now. */
11001 if (lookup_minimal_symbol (einfo->catch_exception_sym, NULL, NULL))
11002 error (_("Your Ada runtime appears to be missing some debugging "
11003 "information.\nCannot insert Ada exception catchpoint "
11004 "in this configuration."));
11005
11006 return 0;
11007 }
f17011e0
JB
11008
11009 /* Make sure that the symbol we found corresponds to a function. */
11010
11011 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
11012 error (_("Symbol \"%s\" is not a function (class = %d)"),
11013 SYMBOL_LINKAGE_NAME (sym), SYMBOL_CLASS (sym));
11014
11015 return 1;
11016}
11017
0259addd
JB
11018/* Inspect the Ada runtime and determine which exception info structure
11019 should be used to provide support for exception catchpoints.
11020
3eecfa55
JB
11021 This function will always set the per-inferior exception_info,
11022 or raise an error. */
0259addd
JB
11023
11024static void
11025ada_exception_support_info_sniffer (void)
11026{
3eecfa55 11027 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
0259addd
JB
11028
11029 /* If the exception info is already known, then no need to recompute it. */
3eecfa55 11030 if (data->exception_info != NULL)
0259addd
JB
11031 return;
11032
11033 /* Check the latest (default) exception support info. */
f17011e0 11034 if (ada_has_this_exception_support (&default_exception_support_info))
0259addd 11035 {
3eecfa55 11036 data->exception_info = &default_exception_support_info;
0259addd
JB
11037 return;
11038 }
11039
11040 /* Try our fallback exception suport info. */
f17011e0 11041 if (ada_has_this_exception_support (&exception_support_info_fallback))
0259addd 11042 {
3eecfa55 11043 data->exception_info = &exception_support_info_fallback;
0259addd
JB
11044 return;
11045 }
11046
11047 /* Sometimes, it is normal for us to not be able to find the routine
11048 we are looking for. This happens when the program is linked with
11049 the shared version of the GNAT runtime, and the program has not been
11050 started yet. Inform the user of these two possible causes if
11051 applicable. */
11052
ccefe4c4 11053 if (ada_update_initial_language (language_unknown) != language_ada)
0259addd
JB
11054 error (_("Unable to insert catchpoint. Is this an Ada main program?"));
11055
11056 /* If the symbol does not exist, then check that the program is
11057 already started, to make sure that shared libraries have been
11058 loaded. If it is not started, this may mean that the symbol is
11059 in a shared library. */
11060
11061 if (ptid_get_pid (inferior_ptid) == 0)
11062 error (_("Unable to insert catchpoint. Try to start the program first."));
11063
11064 /* At this point, we know that we are debugging an Ada program and
11065 that the inferior has been started, but we still are not able to
0963b4bd 11066 find the run-time symbols. That can mean that we are in
0259addd
JB
11067 configurable run time mode, or that a-except as been optimized
11068 out by the linker... In any case, at this point it is not worth
11069 supporting this feature. */
11070
7dda8cff 11071 error (_("Cannot insert Ada exception catchpoints in this configuration."));
0259addd
JB
11072}
11073
f7f9143b
JB
11074/* True iff FRAME is very likely to be that of a function that is
11075 part of the runtime system. This is all very heuristic, but is
11076 intended to be used as advice as to what frames are uninteresting
11077 to most users. */
11078
11079static int
11080is_known_support_routine (struct frame_info *frame)
11081{
4ed6b5be 11082 struct symtab_and_line sal;
0d5cff50 11083 const char *func_name;
692465f1 11084 enum language func_lang;
f7f9143b 11085 int i;
f35a17b5 11086 const char *fullname;
f7f9143b 11087
4ed6b5be
JB
11088 /* If this code does not have any debugging information (no symtab),
11089 This cannot be any user code. */
f7f9143b 11090
4ed6b5be 11091 find_frame_sal (frame, &sal);
f7f9143b
JB
11092 if (sal.symtab == NULL)
11093 return 1;
11094
4ed6b5be
JB
11095 /* If there is a symtab, but the associated source file cannot be
11096 located, then assume this is not user code: Selecting a frame
11097 for which we cannot display the code would not be very helpful
11098 for the user. This should also take care of case such as VxWorks
11099 where the kernel has some debugging info provided for a few units. */
f7f9143b 11100
f35a17b5
JK
11101 fullname = symtab_to_fullname (sal.symtab);
11102 if (access (fullname, R_OK) != 0)
f7f9143b
JB
11103 return 1;
11104
4ed6b5be
JB
11105 /* Check the unit filename againt the Ada runtime file naming.
11106 We also check the name of the objfile against the name of some
11107 known system libraries that sometimes come with debugging info
11108 too. */
11109
f7f9143b
JB
11110 for (i = 0; known_runtime_file_name_patterns[i] != NULL; i += 1)
11111 {
11112 re_comp (known_runtime_file_name_patterns[i]);
f69c91ad 11113 if (re_exec (lbasename (sal.symtab->filename)))
f7f9143b 11114 return 1;
4ed6b5be
JB
11115 if (sal.symtab->objfile != NULL
11116 && re_exec (sal.symtab->objfile->name))
11117 return 1;
f7f9143b
JB
11118 }
11119
4ed6b5be 11120 /* Check whether the function is a GNAT-generated entity. */
f7f9143b 11121
e9e07ba6 11122 find_frame_funname (frame, &func_name, &func_lang, NULL);
f7f9143b
JB
11123 if (func_name == NULL)
11124 return 1;
11125
11126 for (i = 0; known_auxiliary_function_name_patterns[i] != NULL; i += 1)
11127 {
11128 re_comp (known_auxiliary_function_name_patterns[i]);
11129 if (re_exec (func_name))
11130 return 1;
11131 }
11132
11133 return 0;
11134}
11135
11136/* Find the first frame that contains debugging information and that is not
11137 part of the Ada run-time, starting from FI and moving upward. */
11138
0ef643c8 11139void
f7f9143b
JB
11140ada_find_printable_frame (struct frame_info *fi)
11141{
11142 for (; fi != NULL; fi = get_prev_frame (fi))
11143 {
11144 if (!is_known_support_routine (fi))
11145 {
11146 select_frame (fi);
11147 break;
11148 }
11149 }
11150
11151}
11152
11153/* Assuming that the inferior just triggered an unhandled exception
11154 catchpoint, return the address in inferior memory where the name
11155 of the exception is stored.
11156
11157 Return zero if the address could not be computed. */
11158
11159static CORE_ADDR
11160ada_unhandled_exception_name_addr (void)
0259addd
JB
11161{
11162 return parse_and_eval_address ("e.full_name");
11163}
11164
11165/* Same as ada_unhandled_exception_name_addr, except that this function
11166 should be used when the inferior uses an older version of the runtime,
11167 where the exception name needs to be extracted from a specific frame
11168 several frames up in the callstack. */
11169
11170static CORE_ADDR
11171ada_unhandled_exception_name_addr_from_raise (void)
f7f9143b
JB
11172{
11173 int frame_level;
11174 struct frame_info *fi;
3eecfa55 11175 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
f7f9143b
JB
11176
11177 /* To determine the name of this exception, we need to select
11178 the frame corresponding to RAISE_SYM_NAME. This frame is
11179 at least 3 levels up, so we simply skip the first 3 frames
11180 without checking the name of their associated function. */
11181 fi = get_current_frame ();
11182 for (frame_level = 0; frame_level < 3; frame_level += 1)
11183 if (fi != NULL)
11184 fi = get_prev_frame (fi);
11185
11186 while (fi != NULL)
11187 {
0d5cff50 11188 const char *func_name;
692465f1
JB
11189 enum language func_lang;
11190
e9e07ba6 11191 find_frame_funname (fi, &func_name, &func_lang, NULL);
f7f9143b 11192 if (func_name != NULL
3eecfa55 11193 && strcmp (func_name, data->exception_info->catch_exception_sym) == 0)
f7f9143b
JB
11194 break; /* We found the frame we were looking for... */
11195 fi = get_prev_frame (fi);
11196 }
11197
11198 if (fi == NULL)
11199 return 0;
11200
11201 select_frame (fi);
11202 return parse_and_eval_address ("id.full_name");
11203}
11204
11205/* Assuming the inferior just triggered an Ada exception catchpoint
11206 (of any type), return the address in inferior memory where the name
11207 of the exception is stored, if applicable.
11208
11209 Return zero if the address could not be computed, or if not relevant. */
11210
11211static CORE_ADDR
11212ada_exception_name_addr_1 (enum exception_catchpoint_kind ex,
11213 struct breakpoint *b)
11214{
3eecfa55
JB
11215 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
11216
f7f9143b
JB
11217 switch (ex)
11218 {
11219 case ex_catch_exception:
11220 return (parse_and_eval_address ("e.full_name"));
11221 break;
11222
11223 case ex_catch_exception_unhandled:
3eecfa55 11224 return data->exception_info->unhandled_exception_name_addr ();
f7f9143b
JB
11225 break;
11226
11227 case ex_catch_assert:
11228 return 0; /* Exception name is not relevant in this case. */
11229 break;
11230
11231 default:
11232 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
11233 break;
11234 }
11235
11236 return 0; /* Should never be reached. */
11237}
11238
11239/* Same as ada_exception_name_addr_1, except that it intercepts and contains
11240 any error that ada_exception_name_addr_1 might cause to be thrown.
11241 When an error is intercepted, a warning with the error message is printed,
11242 and zero is returned. */
11243
11244static CORE_ADDR
11245ada_exception_name_addr (enum exception_catchpoint_kind ex,
11246 struct breakpoint *b)
11247{
bfd189b1 11248 volatile struct gdb_exception e;
f7f9143b
JB
11249 CORE_ADDR result = 0;
11250
11251 TRY_CATCH (e, RETURN_MASK_ERROR)
11252 {
11253 result = ada_exception_name_addr_1 (ex, b);
11254 }
11255
11256 if (e.reason < 0)
11257 {
11258 warning (_("failed to get exception name: %s"), e.message);
11259 return 0;
11260 }
11261
11262 return result;
11263}
11264
28010a5d
PA
11265static struct symtab_and_line ada_exception_sal (enum exception_catchpoint_kind,
11266 char *, char **,
c0a91b2b 11267 const struct breakpoint_ops **);
28010a5d
PA
11268static char *ada_exception_catchpoint_cond_string (const char *excep_string);
11269
11270/* Ada catchpoints.
11271
11272 In the case of catchpoints on Ada exceptions, the catchpoint will
11273 stop the target on every exception the program throws. When a user
11274 specifies the name of a specific exception, we translate this
11275 request into a condition expression (in text form), and then parse
11276 it into an expression stored in each of the catchpoint's locations.
11277 We then use this condition to check whether the exception that was
11278 raised is the one the user is interested in. If not, then the
11279 target is resumed again. We store the name of the requested
11280 exception, in order to be able to re-set the condition expression
11281 when symbols change. */
11282
11283/* An instance of this type is used to represent an Ada catchpoint
11284 breakpoint location. It includes a "struct bp_location" as a kind
11285 of base class; users downcast to "struct bp_location *" when
11286 needed. */
11287
11288struct ada_catchpoint_location
11289{
11290 /* The base class. */
11291 struct bp_location base;
11292
11293 /* The condition that checks whether the exception that was raised
11294 is the specific exception the user specified on catchpoint
11295 creation. */
11296 struct expression *excep_cond_expr;
11297};
11298
11299/* Implement the DTOR method in the bp_location_ops structure for all
11300 Ada exception catchpoint kinds. */
11301
11302static void
11303ada_catchpoint_location_dtor (struct bp_location *bl)
11304{
11305 struct ada_catchpoint_location *al = (struct ada_catchpoint_location *) bl;
11306
11307 xfree (al->excep_cond_expr);
11308}
11309
11310/* The vtable to be used in Ada catchpoint locations. */
11311
11312static const struct bp_location_ops ada_catchpoint_location_ops =
11313{
11314 ada_catchpoint_location_dtor
11315};
11316
11317/* An instance of this type is used to represent an Ada catchpoint.
11318 It includes a "struct breakpoint" as a kind of base class; users
11319 downcast to "struct breakpoint *" when needed. */
11320
11321struct ada_catchpoint
11322{
11323 /* The base class. */
11324 struct breakpoint base;
11325
11326 /* The name of the specific exception the user specified. */
11327 char *excep_string;
11328};
11329
11330/* Parse the exception condition string in the context of each of the
11331 catchpoint's locations, and store them for later evaluation. */
11332
11333static void
11334create_excep_cond_exprs (struct ada_catchpoint *c)
11335{
11336 struct cleanup *old_chain;
11337 struct bp_location *bl;
11338 char *cond_string;
11339
11340 /* Nothing to do if there's no specific exception to catch. */
11341 if (c->excep_string == NULL)
11342 return;
11343
11344 /* Same if there are no locations... */
11345 if (c->base.loc == NULL)
11346 return;
11347
11348 /* Compute the condition expression in text form, from the specific
11349 expection we want to catch. */
11350 cond_string = ada_exception_catchpoint_cond_string (c->excep_string);
11351 old_chain = make_cleanup (xfree, cond_string);
11352
11353 /* Iterate over all the catchpoint's locations, and parse an
11354 expression for each. */
11355 for (bl = c->base.loc; bl != NULL; bl = bl->next)
11356 {
11357 struct ada_catchpoint_location *ada_loc
11358 = (struct ada_catchpoint_location *) bl;
11359 struct expression *exp = NULL;
11360
11361 if (!bl->shlib_disabled)
11362 {
11363 volatile struct gdb_exception e;
11364 char *s;
11365
11366 s = cond_string;
11367 TRY_CATCH (e, RETURN_MASK_ERROR)
11368 {
1bb9788d
TT
11369 exp = parse_exp_1 (&s, bl->address,
11370 block_for_pc (bl->address), 0);
28010a5d
PA
11371 }
11372 if (e.reason < 0)
11373 warning (_("failed to reevaluate internal exception condition "
11374 "for catchpoint %d: %s"),
11375 c->base.number, e.message);
11376 }
11377
11378 ada_loc->excep_cond_expr = exp;
11379 }
11380
11381 do_cleanups (old_chain);
11382}
11383
11384/* Implement the DTOR method in the breakpoint_ops structure for all
11385 exception catchpoint kinds. */
11386
11387static void
11388dtor_exception (enum exception_catchpoint_kind ex, struct breakpoint *b)
11389{
11390 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
11391
11392 xfree (c->excep_string);
348d480f 11393
2060206e 11394 bkpt_breakpoint_ops.dtor (b);
28010a5d
PA
11395}
11396
11397/* Implement the ALLOCATE_LOCATION method in the breakpoint_ops
11398 structure for all exception catchpoint kinds. */
11399
11400static struct bp_location *
11401allocate_location_exception (enum exception_catchpoint_kind ex,
11402 struct breakpoint *self)
11403{
11404 struct ada_catchpoint_location *loc;
11405
11406 loc = XNEW (struct ada_catchpoint_location);
11407 init_bp_location (&loc->base, &ada_catchpoint_location_ops, self);
11408 loc->excep_cond_expr = NULL;
11409 return &loc->base;
11410}
11411
11412/* Implement the RE_SET method in the breakpoint_ops structure for all
11413 exception catchpoint kinds. */
11414
11415static void
11416re_set_exception (enum exception_catchpoint_kind ex, struct breakpoint *b)
11417{
11418 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
11419
11420 /* Call the base class's method. This updates the catchpoint's
11421 locations. */
2060206e 11422 bkpt_breakpoint_ops.re_set (b);
28010a5d
PA
11423
11424 /* Reparse the exception conditional expressions. One for each
11425 location. */
11426 create_excep_cond_exprs (c);
11427}
11428
11429/* Returns true if we should stop for this breakpoint hit. If the
11430 user specified a specific exception, we only want to cause a stop
11431 if the program thrown that exception. */
11432
11433static int
11434should_stop_exception (const struct bp_location *bl)
11435{
11436 struct ada_catchpoint *c = (struct ada_catchpoint *) bl->owner;
11437 const struct ada_catchpoint_location *ada_loc
11438 = (const struct ada_catchpoint_location *) bl;
11439 volatile struct gdb_exception ex;
11440 int stop;
11441
11442 /* With no specific exception, should always stop. */
11443 if (c->excep_string == NULL)
11444 return 1;
11445
11446 if (ada_loc->excep_cond_expr == NULL)
11447 {
11448 /* We will have a NULL expression if back when we were creating
11449 the expressions, this location's had failed to parse. */
11450 return 1;
11451 }
11452
11453 stop = 1;
11454 TRY_CATCH (ex, RETURN_MASK_ALL)
11455 {
11456 struct value *mark;
11457
11458 mark = value_mark ();
11459 stop = value_true (evaluate_expression (ada_loc->excep_cond_expr));
11460 value_free_to_mark (mark);
11461 }
11462 if (ex.reason < 0)
11463 exception_fprintf (gdb_stderr, ex,
11464 _("Error in testing exception condition:\n"));
11465 return stop;
11466}
11467
11468/* Implement the CHECK_STATUS method in the breakpoint_ops structure
11469 for all exception catchpoint kinds. */
11470
11471static void
11472check_status_exception (enum exception_catchpoint_kind ex, bpstat bs)
11473{
11474 bs->stop = should_stop_exception (bs->bp_location_at);
11475}
11476
f7f9143b
JB
11477/* Implement the PRINT_IT method in the breakpoint_ops structure
11478 for all exception catchpoint kinds. */
11479
11480static enum print_stop_action
348d480f 11481print_it_exception (enum exception_catchpoint_kind ex, bpstat bs)
f7f9143b 11482{
79a45e25 11483 struct ui_out *uiout = current_uiout;
348d480f
PA
11484 struct breakpoint *b = bs->breakpoint_at;
11485
956a9fb9 11486 annotate_catchpoint (b->number);
f7f9143b 11487
956a9fb9 11488 if (ui_out_is_mi_like_p (uiout))
f7f9143b 11489 {
956a9fb9
JB
11490 ui_out_field_string (uiout, "reason",
11491 async_reason_lookup (EXEC_ASYNC_BREAKPOINT_HIT));
11492 ui_out_field_string (uiout, "disp", bpdisp_text (b->disposition));
f7f9143b
JB
11493 }
11494
00eb2c4a
JB
11495 ui_out_text (uiout,
11496 b->disposition == disp_del ? "\nTemporary catchpoint "
11497 : "\nCatchpoint ");
956a9fb9
JB
11498 ui_out_field_int (uiout, "bkptno", b->number);
11499 ui_out_text (uiout, ", ");
f7f9143b 11500
f7f9143b
JB
11501 switch (ex)
11502 {
11503 case ex_catch_exception:
f7f9143b 11504 case ex_catch_exception_unhandled:
956a9fb9
JB
11505 {
11506 const CORE_ADDR addr = ada_exception_name_addr (ex, b);
11507 char exception_name[256];
11508
11509 if (addr != 0)
11510 {
11511 read_memory (addr, exception_name, sizeof (exception_name) - 1);
11512 exception_name [sizeof (exception_name) - 1] = '\0';
11513 }
11514 else
11515 {
11516 /* For some reason, we were unable to read the exception
11517 name. This could happen if the Runtime was compiled
11518 without debugging info, for instance. In that case,
11519 just replace the exception name by the generic string
11520 "exception" - it will read as "an exception" in the
11521 notification we are about to print. */
967cff16 11522 memcpy (exception_name, "exception", sizeof ("exception"));
956a9fb9
JB
11523 }
11524 /* In the case of unhandled exception breakpoints, we print
11525 the exception name as "unhandled EXCEPTION_NAME", to make
11526 it clearer to the user which kind of catchpoint just got
11527 hit. We used ui_out_text to make sure that this extra
11528 info does not pollute the exception name in the MI case. */
11529 if (ex == ex_catch_exception_unhandled)
11530 ui_out_text (uiout, "unhandled ");
11531 ui_out_field_string (uiout, "exception-name", exception_name);
11532 }
11533 break;
f7f9143b 11534 case ex_catch_assert:
956a9fb9
JB
11535 /* In this case, the name of the exception is not really
11536 important. Just print "failed assertion" to make it clearer
11537 that his program just hit an assertion-failure catchpoint.
11538 We used ui_out_text because this info does not belong in
11539 the MI output. */
11540 ui_out_text (uiout, "failed assertion");
11541 break;
f7f9143b 11542 }
956a9fb9
JB
11543 ui_out_text (uiout, " at ");
11544 ada_find_printable_frame (get_current_frame ());
f7f9143b
JB
11545
11546 return PRINT_SRC_AND_LOC;
11547}
11548
11549/* Implement the PRINT_ONE method in the breakpoint_ops structure
11550 for all exception catchpoint kinds. */
11551
11552static void
11553print_one_exception (enum exception_catchpoint_kind ex,
a6d9a66e 11554 struct breakpoint *b, struct bp_location **last_loc)
f7f9143b 11555{
79a45e25 11556 struct ui_out *uiout = current_uiout;
28010a5d 11557 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
79a45b7d
TT
11558 struct value_print_options opts;
11559
11560 get_user_print_options (&opts);
11561 if (opts.addressprint)
f7f9143b
JB
11562 {
11563 annotate_field (4);
5af949e3 11564 ui_out_field_core_addr (uiout, "addr", b->loc->gdbarch, b->loc->address);
f7f9143b
JB
11565 }
11566
11567 annotate_field (5);
a6d9a66e 11568 *last_loc = b->loc;
f7f9143b
JB
11569 switch (ex)
11570 {
11571 case ex_catch_exception:
28010a5d 11572 if (c->excep_string != NULL)
f7f9143b 11573 {
28010a5d
PA
11574 char *msg = xstrprintf (_("`%s' Ada exception"), c->excep_string);
11575
f7f9143b
JB
11576 ui_out_field_string (uiout, "what", msg);
11577 xfree (msg);
11578 }
11579 else
11580 ui_out_field_string (uiout, "what", "all Ada exceptions");
11581
11582 break;
11583
11584 case ex_catch_exception_unhandled:
11585 ui_out_field_string (uiout, "what", "unhandled Ada exceptions");
11586 break;
11587
11588 case ex_catch_assert:
11589 ui_out_field_string (uiout, "what", "failed Ada assertions");
11590 break;
11591
11592 default:
11593 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
11594 break;
11595 }
11596}
11597
11598/* Implement the PRINT_MENTION method in the breakpoint_ops structure
11599 for all exception catchpoint kinds. */
11600
11601static void
11602print_mention_exception (enum exception_catchpoint_kind ex,
11603 struct breakpoint *b)
11604{
28010a5d 11605 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
79a45e25 11606 struct ui_out *uiout = current_uiout;
28010a5d 11607
00eb2c4a
JB
11608 ui_out_text (uiout, b->disposition == disp_del ? _("Temporary catchpoint ")
11609 : _("Catchpoint "));
11610 ui_out_field_int (uiout, "bkptno", b->number);
11611 ui_out_text (uiout, ": ");
11612
f7f9143b
JB
11613 switch (ex)
11614 {
11615 case ex_catch_exception:
28010a5d 11616 if (c->excep_string != NULL)
00eb2c4a
JB
11617 {
11618 char *info = xstrprintf (_("`%s' Ada exception"), c->excep_string);
11619 struct cleanup *old_chain = make_cleanup (xfree, info);
11620
11621 ui_out_text (uiout, info);
11622 do_cleanups (old_chain);
11623 }
f7f9143b 11624 else
00eb2c4a 11625 ui_out_text (uiout, _("all Ada exceptions"));
f7f9143b
JB
11626 break;
11627
11628 case ex_catch_exception_unhandled:
00eb2c4a 11629 ui_out_text (uiout, _("unhandled Ada exceptions"));
f7f9143b
JB
11630 break;
11631
11632 case ex_catch_assert:
00eb2c4a 11633 ui_out_text (uiout, _("failed Ada assertions"));
f7f9143b
JB
11634 break;
11635
11636 default:
11637 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
11638 break;
11639 }
11640}
11641
6149aea9
PA
11642/* Implement the PRINT_RECREATE method in the breakpoint_ops structure
11643 for all exception catchpoint kinds. */
11644
11645static void
11646print_recreate_exception (enum exception_catchpoint_kind ex,
11647 struct breakpoint *b, struct ui_file *fp)
11648{
28010a5d
PA
11649 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
11650
6149aea9
PA
11651 switch (ex)
11652 {
11653 case ex_catch_exception:
11654 fprintf_filtered (fp, "catch exception");
28010a5d
PA
11655 if (c->excep_string != NULL)
11656 fprintf_filtered (fp, " %s", c->excep_string);
6149aea9
PA
11657 break;
11658
11659 case ex_catch_exception_unhandled:
78076abc 11660 fprintf_filtered (fp, "catch exception unhandled");
6149aea9
PA
11661 break;
11662
11663 case ex_catch_assert:
11664 fprintf_filtered (fp, "catch assert");
11665 break;
11666
11667 default:
11668 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
11669 }
d9b3f62e 11670 print_recreate_thread (b, fp);
6149aea9
PA
11671}
11672
f7f9143b
JB
11673/* Virtual table for "catch exception" breakpoints. */
11674
28010a5d
PA
11675static void
11676dtor_catch_exception (struct breakpoint *b)
11677{
11678 dtor_exception (ex_catch_exception, b);
11679}
11680
11681static struct bp_location *
11682allocate_location_catch_exception (struct breakpoint *self)
11683{
11684 return allocate_location_exception (ex_catch_exception, self);
11685}
11686
11687static void
11688re_set_catch_exception (struct breakpoint *b)
11689{
11690 re_set_exception (ex_catch_exception, b);
11691}
11692
11693static void
11694check_status_catch_exception (bpstat bs)
11695{
11696 check_status_exception (ex_catch_exception, bs);
11697}
11698
f7f9143b 11699static enum print_stop_action
348d480f 11700print_it_catch_exception (bpstat bs)
f7f9143b 11701{
348d480f 11702 return print_it_exception (ex_catch_exception, bs);
f7f9143b
JB
11703}
11704
11705static void
a6d9a66e 11706print_one_catch_exception (struct breakpoint *b, struct bp_location **last_loc)
f7f9143b 11707{
a6d9a66e 11708 print_one_exception (ex_catch_exception, b, last_loc);
f7f9143b
JB
11709}
11710
11711static void
11712print_mention_catch_exception (struct breakpoint *b)
11713{
11714 print_mention_exception (ex_catch_exception, b);
11715}
11716
6149aea9
PA
11717static void
11718print_recreate_catch_exception (struct breakpoint *b, struct ui_file *fp)
11719{
11720 print_recreate_exception (ex_catch_exception, b, fp);
11721}
11722
2060206e 11723static struct breakpoint_ops catch_exception_breakpoint_ops;
f7f9143b
JB
11724
11725/* Virtual table for "catch exception unhandled" breakpoints. */
11726
28010a5d
PA
11727static void
11728dtor_catch_exception_unhandled (struct breakpoint *b)
11729{
11730 dtor_exception (ex_catch_exception_unhandled, b);
11731}
11732
11733static struct bp_location *
11734allocate_location_catch_exception_unhandled (struct breakpoint *self)
11735{
11736 return allocate_location_exception (ex_catch_exception_unhandled, self);
11737}
11738
11739static void
11740re_set_catch_exception_unhandled (struct breakpoint *b)
11741{
11742 re_set_exception (ex_catch_exception_unhandled, b);
11743}
11744
11745static void
11746check_status_catch_exception_unhandled (bpstat bs)
11747{
11748 check_status_exception (ex_catch_exception_unhandled, bs);
11749}
11750
f7f9143b 11751static enum print_stop_action
348d480f 11752print_it_catch_exception_unhandled (bpstat bs)
f7f9143b 11753{
348d480f 11754 return print_it_exception (ex_catch_exception_unhandled, bs);
f7f9143b
JB
11755}
11756
11757static void
a6d9a66e
UW
11758print_one_catch_exception_unhandled (struct breakpoint *b,
11759 struct bp_location **last_loc)
f7f9143b 11760{
a6d9a66e 11761 print_one_exception (ex_catch_exception_unhandled, b, last_loc);
f7f9143b
JB
11762}
11763
11764static void
11765print_mention_catch_exception_unhandled (struct breakpoint *b)
11766{
11767 print_mention_exception (ex_catch_exception_unhandled, b);
11768}
11769
6149aea9
PA
11770static void
11771print_recreate_catch_exception_unhandled (struct breakpoint *b,
11772 struct ui_file *fp)
11773{
11774 print_recreate_exception (ex_catch_exception_unhandled, b, fp);
11775}
11776
2060206e 11777static struct breakpoint_ops catch_exception_unhandled_breakpoint_ops;
f7f9143b
JB
11778
11779/* Virtual table for "catch assert" breakpoints. */
11780
28010a5d
PA
11781static void
11782dtor_catch_assert (struct breakpoint *b)
11783{
11784 dtor_exception (ex_catch_assert, b);
11785}
11786
11787static struct bp_location *
11788allocate_location_catch_assert (struct breakpoint *self)
11789{
11790 return allocate_location_exception (ex_catch_assert, self);
11791}
11792
11793static void
11794re_set_catch_assert (struct breakpoint *b)
11795{
843e694d 11796 re_set_exception (ex_catch_assert, b);
28010a5d
PA
11797}
11798
11799static void
11800check_status_catch_assert (bpstat bs)
11801{
11802 check_status_exception (ex_catch_assert, bs);
11803}
11804
f7f9143b 11805static enum print_stop_action
348d480f 11806print_it_catch_assert (bpstat bs)
f7f9143b 11807{
348d480f 11808 return print_it_exception (ex_catch_assert, bs);
f7f9143b
JB
11809}
11810
11811static void
a6d9a66e 11812print_one_catch_assert (struct breakpoint *b, struct bp_location **last_loc)
f7f9143b 11813{
a6d9a66e 11814 print_one_exception (ex_catch_assert, b, last_loc);
f7f9143b
JB
11815}
11816
11817static void
11818print_mention_catch_assert (struct breakpoint *b)
11819{
11820 print_mention_exception (ex_catch_assert, b);
11821}
11822
6149aea9
PA
11823static void
11824print_recreate_catch_assert (struct breakpoint *b, struct ui_file *fp)
11825{
11826 print_recreate_exception (ex_catch_assert, b, fp);
11827}
11828
2060206e 11829static struct breakpoint_ops catch_assert_breakpoint_ops;
f7f9143b 11830
f7f9143b
JB
11831/* Return a newly allocated copy of the first space-separated token
11832 in ARGSP, and then adjust ARGSP to point immediately after that
11833 token.
11834
11835 Return NULL if ARGPS does not contain any more tokens. */
11836
11837static char *
11838ada_get_next_arg (char **argsp)
11839{
11840 char *args = *argsp;
11841 char *end;
11842 char *result;
11843
0fcd72ba 11844 args = skip_spaces (args);
f7f9143b
JB
11845 if (args[0] == '\0')
11846 return NULL; /* No more arguments. */
11847
11848 /* Find the end of the current argument. */
11849
0fcd72ba 11850 end = skip_to_space (args);
f7f9143b
JB
11851
11852 /* Adjust ARGSP to point to the start of the next argument. */
11853
11854 *argsp = end;
11855
11856 /* Make a copy of the current argument and return it. */
11857
11858 result = xmalloc (end - args + 1);
11859 strncpy (result, args, end - args);
11860 result[end - args] = '\0';
11861
11862 return result;
11863}
11864
11865/* Split the arguments specified in a "catch exception" command.
11866 Set EX to the appropriate catchpoint type.
28010a5d 11867 Set EXCEP_STRING to the name of the specific exception if
5845583d
JB
11868 specified by the user.
11869 If a condition is found at the end of the arguments, the condition
11870 expression is stored in COND_STRING (memory must be deallocated
11871 after use). Otherwise COND_STRING is set to NULL. */
f7f9143b
JB
11872
11873static void
11874catch_ada_exception_command_split (char *args,
11875 enum exception_catchpoint_kind *ex,
5845583d
JB
11876 char **excep_string,
11877 char **cond_string)
f7f9143b
JB
11878{
11879 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
11880 char *exception_name;
5845583d 11881 char *cond = NULL;
f7f9143b
JB
11882
11883 exception_name = ada_get_next_arg (&args);
5845583d
JB
11884 if (exception_name != NULL && strcmp (exception_name, "if") == 0)
11885 {
11886 /* This is not an exception name; this is the start of a condition
11887 expression for a catchpoint on all exceptions. So, "un-get"
11888 this token, and set exception_name to NULL. */
11889 xfree (exception_name);
11890 exception_name = NULL;
11891 args -= 2;
11892 }
f7f9143b
JB
11893 make_cleanup (xfree, exception_name);
11894
5845583d 11895 /* Check to see if we have a condition. */
f7f9143b 11896
0fcd72ba 11897 args = skip_spaces (args);
5845583d
JB
11898 if (strncmp (args, "if", 2) == 0
11899 && (isspace (args[2]) || args[2] == '\0'))
11900 {
11901 args += 2;
11902 args = skip_spaces (args);
11903
11904 if (args[0] == '\0')
11905 error (_("Condition missing after `if' keyword"));
11906 cond = xstrdup (args);
11907 make_cleanup (xfree, cond);
11908
11909 args += strlen (args);
11910 }
11911
11912 /* Check that we do not have any more arguments. Anything else
11913 is unexpected. */
f7f9143b
JB
11914
11915 if (args[0] != '\0')
11916 error (_("Junk at end of expression"));
11917
11918 discard_cleanups (old_chain);
11919
11920 if (exception_name == NULL)
11921 {
11922 /* Catch all exceptions. */
11923 *ex = ex_catch_exception;
28010a5d 11924 *excep_string = NULL;
f7f9143b
JB
11925 }
11926 else if (strcmp (exception_name, "unhandled") == 0)
11927 {
11928 /* Catch unhandled exceptions. */
11929 *ex = ex_catch_exception_unhandled;
28010a5d 11930 *excep_string = NULL;
f7f9143b
JB
11931 }
11932 else
11933 {
11934 /* Catch a specific exception. */
11935 *ex = ex_catch_exception;
28010a5d 11936 *excep_string = exception_name;
f7f9143b 11937 }
5845583d 11938 *cond_string = cond;
f7f9143b
JB
11939}
11940
11941/* Return the name of the symbol on which we should break in order to
11942 implement a catchpoint of the EX kind. */
11943
11944static const char *
11945ada_exception_sym_name (enum exception_catchpoint_kind ex)
11946{
3eecfa55
JB
11947 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
11948
11949 gdb_assert (data->exception_info != NULL);
0259addd 11950
f7f9143b
JB
11951 switch (ex)
11952 {
11953 case ex_catch_exception:
3eecfa55 11954 return (data->exception_info->catch_exception_sym);
f7f9143b
JB
11955 break;
11956 case ex_catch_exception_unhandled:
3eecfa55 11957 return (data->exception_info->catch_exception_unhandled_sym);
f7f9143b
JB
11958 break;
11959 case ex_catch_assert:
3eecfa55 11960 return (data->exception_info->catch_assert_sym);
f7f9143b
JB
11961 break;
11962 default:
11963 internal_error (__FILE__, __LINE__,
11964 _("unexpected catchpoint kind (%d)"), ex);
11965 }
11966}
11967
11968/* Return the breakpoint ops "virtual table" used for catchpoints
11969 of the EX kind. */
11970
c0a91b2b 11971static const struct breakpoint_ops *
4b9eee8c 11972ada_exception_breakpoint_ops (enum exception_catchpoint_kind ex)
f7f9143b
JB
11973{
11974 switch (ex)
11975 {
11976 case ex_catch_exception:
11977 return (&catch_exception_breakpoint_ops);
11978 break;
11979 case ex_catch_exception_unhandled:
11980 return (&catch_exception_unhandled_breakpoint_ops);
11981 break;
11982 case ex_catch_assert:
11983 return (&catch_assert_breakpoint_ops);
11984 break;
11985 default:
11986 internal_error (__FILE__, __LINE__,
11987 _("unexpected catchpoint kind (%d)"), ex);
11988 }
11989}
11990
11991/* Return the condition that will be used to match the current exception
11992 being raised with the exception that the user wants to catch. This
11993 assumes that this condition is used when the inferior just triggered
11994 an exception catchpoint.
11995
11996 The string returned is a newly allocated string that needs to be
11997 deallocated later. */
11998
11999static char *
28010a5d 12000ada_exception_catchpoint_cond_string (const char *excep_string)
f7f9143b 12001{
3d0b0fa3
JB
12002 int i;
12003
0963b4bd 12004 /* The standard exceptions are a special case. They are defined in
3d0b0fa3 12005 runtime units that have been compiled without debugging info; if
28010a5d 12006 EXCEP_STRING is the not-fully-qualified name of a standard
3d0b0fa3
JB
12007 exception (e.g. "constraint_error") then, during the evaluation
12008 of the condition expression, the symbol lookup on this name would
0963b4bd 12009 *not* return this standard exception. The catchpoint condition
3d0b0fa3
JB
12010 may then be set only on user-defined exceptions which have the
12011 same not-fully-qualified name (e.g. my_package.constraint_error).
12012
12013 To avoid this unexcepted behavior, these standard exceptions are
0963b4bd 12014 systematically prefixed by "standard". This means that "catch
3d0b0fa3
JB
12015 exception constraint_error" is rewritten into "catch exception
12016 standard.constraint_error".
12017
12018 If an exception named contraint_error is defined in another package of
12019 the inferior program, then the only way to specify this exception as a
12020 breakpoint condition is to use its fully-qualified named:
12021 e.g. my_package.constraint_error. */
12022
12023 for (i = 0; i < sizeof (standard_exc) / sizeof (char *); i++)
12024 {
28010a5d 12025 if (strcmp (standard_exc [i], excep_string) == 0)
3d0b0fa3
JB
12026 {
12027 return xstrprintf ("long_integer (e) = long_integer (&standard.%s)",
28010a5d 12028 excep_string);
3d0b0fa3
JB
12029 }
12030 }
28010a5d 12031 return xstrprintf ("long_integer (e) = long_integer (&%s)", excep_string);
f7f9143b
JB
12032}
12033
12034/* Return the symtab_and_line that should be used to insert an exception
12035 catchpoint of the TYPE kind.
12036
28010a5d
PA
12037 EXCEP_STRING should contain the name of a specific exception that
12038 the catchpoint should catch, or NULL otherwise.
f7f9143b 12039
28010a5d
PA
12040 ADDR_STRING returns the name of the function where the real
12041 breakpoint that implements the catchpoints is set, depending on the
12042 type of catchpoint we need to create. */
f7f9143b
JB
12043
12044static struct symtab_and_line
28010a5d 12045ada_exception_sal (enum exception_catchpoint_kind ex, char *excep_string,
c0a91b2b 12046 char **addr_string, const struct breakpoint_ops **ops)
f7f9143b
JB
12047{
12048 const char *sym_name;
12049 struct symbol *sym;
f7f9143b 12050
0259addd
JB
12051 /* First, find out which exception support info to use. */
12052 ada_exception_support_info_sniffer ();
12053
12054 /* Then lookup the function on which we will break in order to catch
f7f9143b 12055 the Ada exceptions requested by the user. */
f7f9143b
JB
12056 sym_name = ada_exception_sym_name (ex);
12057 sym = standard_lookup (sym_name, NULL, VAR_DOMAIN);
12058
f17011e0
JB
12059 /* We can assume that SYM is not NULL at this stage. If the symbol
12060 did not exist, ada_exception_support_info_sniffer would have
12061 raised an exception.
f7f9143b 12062
f17011e0
JB
12063 Also, ada_exception_support_info_sniffer should have already
12064 verified that SYM is a function symbol. */
12065 gdb_assert (sym != NULL);
12066 gdb_assert (SYMBOL_CLASS (sym) == LOC_BLOCK);
f7f9143b
JB
12067
12068 /* Set ADDR_STRING. */
f7f9143b
JB
12069 *addr_string = xstrdup (sym_name);
12070
f7f9143b 12071 /* Set OPS. */
4b9eee8c 12072 *ops = ada_exception_breakpoint_ops (ex);
f7f9143b 12073
f17011e0 12074 return find_function_start_sal (sym, 1);
f7f9143b
JB
12075}
12076
12077/* Parse the arguments (ARGS) of the "catch exception" command.
12078
f7f9143b
JB
12079 If the user asked the catchpoint to catch only a specific
12080 exception, then save the exception name in ADDR_STRING.
12081
5845583d
JB
12082 If the user provided a condition, then set COND_STRING to
12083 that condition expression (the memory must be deallocated
12084 after use). Otherwise, set COND_STRING to NULL.
12085
f7f9143b
JB
12086 See ada_exception_sal for a description of all the remaining
12087 function arguments of this function. */
12088
9ac4176b 12089static struct symtab_and_line
f7f9143b 12090ada_decode_exception_location (char *args, char **addr_string,
28010a5d 12091 char **excep_string,
5845583d 12092 char **cond_string,
c0a91b2b 12093 const struct breakpoint_ops **ops)
f7f9143b
JB
12094{
12095 enum exception_catchpoint_kind ex;
12096
5845583d 12097 catch_ada_exception_command_split (args, &ex, excep_string, cond_string);
28010a5d
PA
12098 return ada_exception_sal (ex, *excep_string, addr_string, ops);
12099}
12100
12101/* Create an Ada exception catchpoint. */
12102
12103static void
12104create_ada_exception_catchpoint (struct gdbarch *gdbarch,
12105 struct symtab_and_line sal,
12106 char *addr_string,
12107 char *excep_string,
5845583d 12108 char *cond_string,
c0a91b2b 12109 const struct breakpoint_ops *ops,
28010a5d
PA
12110 int tempflag,
12111 int from_tty)
12112{
12113 struct ada_catchpoint *c;
12114
12115 c = XNEW (struct ada_catchpoint);
12116 init_ada_exception_breakpoint (&c->base, gdbarch, sal, addr_string,
12117 ops, tempflag, from_tty);
12118 c->excep_string = excep_string;
12119 create_excep_cond_exprs (c);
5845583d
JB
12120 if (cond_string != NULL)
12121 set_breakpoint_condition (&c->base, cond_string, from_tty);
3ea46bff 12122 install_breakpoint (0, &c->base, 1);
f7f9143b
JB
12123}
12124
9ac4176b
PA
12125/* Implement the "catch exception" command. */
12126
12127static void
12128catch_ada_exception_command (char *arg, int from_tty,
12129 struct cmd_list_element *command)
12130{
12131 struct gdbarch *gdbarch = get_current_arch ();
12132 int tempflag;
12133 struct symtab_and_line sal;
12134 char *addr_string = NULL;
28010a5d 12135 char *excep_string = NULL;
5845583d 12136 char *cond_string = NULL;
c0a91b2b 12137 const struct breakpoint_ops *ops = NULL;
9ac4176b
PA
12138
12139 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
12140
12141 if (!arg)
12142 arg = "";
5845583d
JB
12143 sal = ada_decode_exception_location (arg, &addr_string, &excep_string,
12144 &cond_string, &ops);
28010a5d 12145 create_ada_exception_catchpoint (gdbarch, sal, addr_string,
5845583d
JB
12146 excep_string, cond_string, ops,
12147 tempflag, from_tty);
9ac4176b
PA
12148}
12149
5845583d
JB
12150/* Assuming that ARGS contains the arguments of a "catch assert"
12151 command, parse those arguments and return a symtab_and_line object
12152 for a failed assertion catchpoint.
12153
12154 Set ADDR_STRING to the name of the function where the real
12155 breakpoint that implements the catchpoint is set.
12156
12157 If ARGS contains a condition, set COND_STRING to that condition
12158 (the memory needs to be deallocated after use). Otherwise, set
12159 COND_STRING to NULL. */
12160
9ac4176b 12161static struct symtab_and_line
f7f9143b 12162ada_decode_assert_location (char *args, char **addr_string,
5845583d 12163 char **cond_string,
c0a91b2b 12164 const struct breakpoint_ops **ops)
f7f9143b 12165{
5845583d 12166 args = skip_spaces (args);
f7f9143b 12167
5845583d
JB
12168 /* Check whether a condition was provided. */
12169 if (strncmp (args, "if", 2) == 0
12170 && (isspace (args[2]) || args[2] == '\0'))
f7f9143b 12171 {
5845583d 12172 args += 2;
0fcd72ba 12173 args = skip_spaces (args);
5845583d
JB
12174 if (args[0] == '\0')
12175 error (_("condition missing after `if' keyword"));
12176 *cond_string = xstrdup (args);
f7f9143b
JB
12177 }
12178
5845583d
JB
12179 /* Otherwise, there should be no other argument at the end of
12180 the command. */
12181 else if (args[0] != '\0')
12182 error (_("Junk at end of arguments."));
12183
28010a5d 12184 return ada_exception_sal (ex_catch_assert, NULL, addr_string, ops);
f7f9143b
JB
12185}
12186
9ac4176b
PA
12187/* Implement the "catch assert" command. */
12188
12189static void
12190catch_assert_command (char *arg, int from_tty,
12191 struct cmd_list_element *command)
12192{
12193 struct gdbarch *gdbarch = get_current_arch ();
12194 int tempflag;
12195 struct symtab_and_line sal;
12196 char *addr_string = NULL;
5845583d 12197 char *cond_string = NULL;
c0a91b2b 12198 const struct breakpoint_ops *ops = NULL;
9ac4176b
PA
12199
12200 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
12201
12202 if (!arg)
12203 arg = "";
5845583d 12204 sal = ada_decode_assert_location (arg, &addr_string, &cond_string, &ops);
28010a5d 12205 create_ada_exception_catchpoint (gdbarch, sal, addr_string,
5845583d
JB
12206 NULL, cond_string, ops, tempflag,
12207 from_tty);
9ac4176b 12208}
4c4b4cd2
PH
12209 /* Operators */
12210/* Information about operators given special treatment in functions
12211 below. */
12212/* Format: OP_DEFN (<operator>, <operator length>, <# args>, <binop>). */
12213
12214#define ADA_OPERATORS \
12215 OP_DEFN (OP_VAR_VALUE, 4, 0, 0) \
12216 OP_DEFN (BINOP_IN_BOUNDS, 3, 2, 0) \
12217 OP_DEFN (TERNOP_IN_RANGE, 1, 3, 0) \
12218 OP_DEFN (OP_ATR_FIRST, 1, 2, 0) \
12219 OP_DEFN (OP_ATR_LAST, 1, 2, 0) \
12220 OP_DEFN (OP_ATR_LENGTH, 1, 2, 0) \
12221 OP_DEFN (OP_ATR_IMAGE, 1, 2, 0) \
12222 OP_DEFN (OP_ATR_MAX, 1, 3, 0) \
12223 OP_DEFN (OP_ATR_MIN, 1, 3, 0) \
12224 OP_DEFN (OP_ATR_MODULUS, 1, 1, 0) \
12225 OP_DEFN (OP_ATR_POS, 1, 2, 0) \
12226 OP_DEFN (OP_ATR_SIZE, 1, 1, 0) \
12227 OP_DEFN (OP_ATR_TAG, 1, 1, 0) \
12228 OP_DEFN (OP_ATR_VAL, 1, 2, 0) \
12229 OP_DEFN (UNOP_QUAL, 3, 1, 0) \
52ce6436
PH
12230 OP_DEFN (UNOP_IN_RANGE, 3, 1, 0) \
12231 OP_DEFN (OP_OTHERS, 1, 1, 0) \
12232 OP_DEFN (OP_POSITIONAL, 3, 1, 0) \
12233 OP_DEFN (OP_DISCRETE_RANGE, 1, 2, 0)
4c4b4cd2
PH
12234
12235static void
554794dc
SDJ
12236ada_operator_length (const struct expression *exp, int pc, int *oplenp,
12237 int *argsp)
4c4b4cd2
PH
12238{
12239 switch (exp->elts[pc - 1].opcode)
12240 {
76a01679 12241 default:
4c4b4cd2
PH
12242 operator_length_standard (exp, pc, oplenp, argsp);
12243 break;
12244
12245#define OP_DEFN(op, len, args, binop) \
12246 case op: *oplenp = len; *argsp = args; break;
12247 ADA_OPERATORS;
12248#undef OP_DEFN
52ce6436
PH
12249
12250 case OP_AGGREGATE:
12251 *oplenp = 3;
12252 *argsp = longest_to_int (exp->elts[pc - 2].longconst);
12253 break;
12254
12255 case OP_CHOICES:
12256 *oplenp = 3;
12257 *argsp = longest_to_int (exp->elts[pc - 2].longconst) + 1;
12258 break;
4c4b4cd2
PH
12259 }
12260}
12261
c0201579
JK
12262/* Implementation of the exp_descriptor method operator_check. */
12263
12264static int
12265ada_operator_check (struct expression *exp, int pos,
12266 int (*objfile_func) (struct objfile *objfile, void *data),
12267 void *data)
12268{
12269 const union exp_element *const elts = exp->elts;
12270 struct type *type = NULL;
12271
12272 switch (elts[pos].opcode)
12273 {
12274 case UNOP_IN_RANGE:
12275 case UNOP_QUAL:
12276 type = elts[pos + 1].type;
12277 break;
12278
12279 default:
12280 return operator_check_standard (exp, pos, objfile_func, data);
12281 }
12282
12283 /* Invoke callbacks for TYPE and OBJFILE if they were set as non-NULL. */
12284
12285 if (type && TYPE_OBJFILE (type)
12286 && (*objfile_func) (TYPE_OBJFILE (type), data))
12287 return 1;
12288
12289 return 0;
12290}
12291
4c4b4cd2
PH
12292static char *
12293ada_op_name (enum exp_opcode opcode)
12294{
12295 switch (opcode)
12296 {
76a01679 12297 default:
4c4b4cd2 12298 return op_name_standard (opcode);
52ce6436 12299
4c4b4cd2
PH
12300#define OP_DEFN(op, len, args, binop) case op: return #op;
12301 ADA_OPERATORS;
12302#undef OP_DEFN
52ce6436
PH
12303
12304 case OP_AGGREGATE:
12305 return "OP_AGGREGATE";
12306 case OP_CHOICES:
12307 return "OP_CHOICES";
12308 case OP_NAME:
12309 return "OP_NAME";
4c4b4cd2
PH
12310 }
12311}
12312
12313/* As for operator_length, but assumes PC is pointing at the first
12314 element of the operator, and gives meaningful results only for the
52ce6436 12315 Ada-specific operators, returning 0 for *OPLENP and *ARGSP otherwise. */
4c4b4cd2
PH
12316
12317static void
76a01679
JB
12318ada_forward_operator_length (struct expression *exp, int pc,
12319 int *oplenp, int *argsp)
4c4b4cd2 12320{
76a01679 12321 switch (exp->elts[pc].opcode)
4c4b4cd2
PH
12322 {
12323 default:
12324 *oplenp = *argsp = 0;
12325 break;
52ce6436 12326
4c4b4cd2
PH
12327#define OP_DEFN(op, len, args, binop) \
12328 case op: *oplenp = len; *argsp = args; break;
12329 ADA_OPERATORS;
12330#undef OP_DEFN
52ce6436
PH
12331
12332 case OP_AGGREGATE:
12333 *oplenp = 3;
12334 *argsp = longest_to_int (exp->elts[pc + 1].longconst);
12335 break;
12336
12337 case OP_CHOICES:
12338 *oplenp = 3;
12339 *argsp = longest_to_int (exp->elts[pc + 1].longconst) + 1;
12340 break;
12341
12342 case OP_STRING:
12343 case OP_NAME:
12344 {
12345 int len = longest_to_int (exp->elts[pc + 1].longconst);
5b4ee69b 12346
52ce6436
PH
12347 *oplenp = 4 + BYTES_TO_EXP_ELEM (len + 1);
12348 *argsp = 0;
12349 break;
12350 }
4c4b4cd2
PH
12351 }
12352}
12353
12354static int
12355ada_dump_subexp_body (struct expression *exp, struct ui_file *stream, int elt)
12356{
12357 enum exp_opcode op = exp->elts[elt].opcode;
12358 int oplen, nargs;
12359 int pc = elt;
12360 int i;
76a01679 12361
4c4b4cd2
PH
12362 ada_forward_operator_length (exp, elt, &oplen, &nargs);
12363
76a01679 12364 switch (op)
4c4b4cd2 12365 {
76a01679 12366 /* Ada attributes ('Foo). */
4c4b4cd2
PH
12367 case OP_ATR_FIRST:
12368 case OP_ATR_LAST:
12369 case OP_ATR_LENGTH:
12370 case OP_ATR_IMAGE:
12371 case OP_ATR_MAX:
12372 case OP_ATR_MIN:
12373 case OP_ATR_MODULUS:
12374 case OP_ATR_POS:
12375 case OP_ATR_SIZE:
12376 case OP_ATR_TAG:
12377 case OP_ATR_VAL:
12378 break;
12379
12380 case UNOP_IN_RANGE:
12381 case UNOP_QUAL:
323e0a4a
AC
12382 /* XXX: gdb_sprint_host_address, type_sprint */
12383 fprintf_filtered (stream, _("Type @"));
4c4b4cd2
PH
12384 gdb_print_host_address (exp->elts[pc + 1].type, stream);
12385 fprintf_filtered (stream, " (");
12386 type_print (exp->elts[pc + 1].type, NULL, stream, 0);
12387 fprintf_filtered (stream, ")");
12388 break;
12389 case BINOP_IN_BOUNDS:
52ce6436
PH
12390 fprintf_filtered (stream, " (%d)",
12391 longest_to_int (exp->elts[pc + 2].longconst));
4c4b4cd2
PH
12392 break;
12393 case TERNOP_IN_RANGE:
12394 break;
12395
52ce6436
PH
12396 case OP_AGGREGATE:
12397 case OP_OTHERS:
12398 case OP_DISCRETE_RANGE:
12399 case OP_POSITIONAL:
12400 case OP_CHOICES:
12401 break;
12402
12403 case OP_NAME:
12404 case OP_STRING:
12405 {
12406 char *name = &exp->elts[elt + 2].string;
12407 int len = longest_to_int (exp->elts[elt + 1].longconst);
5b4ee69b 12408
52ce6436
PH
12409 fprintf_filtered (stream, "Text: `%.*s'", len, name);
12410 break;
12411 }
12412
4c4b4cd2
PH
12413 default:
12414 return dump_subexp_body_standard (exp, stream, elt);
12415 }
12416
12417 elt += oplen;
12418 for (i = 0; i < nargs; i += 1)
12419 elt = dump_subexp (exp, stream, elt);
12420
12421 return elt;
12422}
12423
12424/* The Ada extension of print_subexp (q.v.). */
12425
76a01679
JB
12426static void
12427ada_print_subexp (struct expression *exp, int *pos,
12428 struct ui_file *stream, enum precedence prec)
4c4b4cd2 12429{
52ce6436 12430 int oplen, nargs, i;
4c4b4cd2
PH
12431 int pc = *pos;
12432 enum exp_opcode op = exp->elts[pc].opcode;
12433
12434 ada_forward_operator_length (exp, pc, &oplen, &nargs);
12435
52ce6436 12436 *pos += oplen;
4c4b4cd2
PH
12437 switch (op)
12438 {
12439 default:
52ce6436 12440 *pos -= oplen;
4c4b4cd2
PH
12441 print_subexp_standard (exp, pos, stream, prec);
12442 return;
12443
12444 case OP_VAR_VALUE:
4c4b4cd2
PH
12445 fputs_filtered (SYMBOL_NATURAL_NAME (exp->elts[pc + 2].symbol), stream);
12446 return;
12447
12448 case BINOP_IN_BOUNDS:
323e0a4a 12449 /* XXX: sprint_subexp */
4c4b4cd2 12450 print_subexp (exp, pos, stream, PREC_SUFFIX);
0b48a291 12451 fputs_filtered (" in ", stream);
4c4b4cd2 12452 print_subexp (exp, pos, stream, PREC_SUFFIX);
0b48a291 12453 fputs_filtered ("'range", stream);
4c4b4cd2 12454 if (exp->elts[pc + 1].longconst > 1)
76a01679
JB
12455 fprintf_filtered (stream, "(%ld)",
12456 (long) exp->elts[pc + 1].longconst);
4c4b4cd2
PH
12457 return;
12458
12459 case TERNOP_IN_RANGE:
4c4b4cd2 12460 if (prec >= PREC_EQUAL)
76a01679 12461 fputs_filtered ("(", stream);
323e0a4a 12462 /* XXX: sprint_subexp */
4c4b4cd2 12463 print_subexp (exp, pos, stream, PREC_SUFFIX);
0b48a291 12464 fputs_filtered (" in ", stream);
4c4b4cd2
PH
12465 print_subexp (exp, pos, stream, PREC_EQUAL);
12466 fputs_filtered (" .. ", stream);
12467 print_subexp (exp, pos, stream, PREC_EQUAL);
12468 if (prec >= PREC_EQUAL)
76a01679
JB
12469 fputs_filtered (")", stream);
12470 return;
4c4b4cd2
PH
12471
12472 case OP_ATR_FIRST:
12473 case OP_ATR_LAST:
12474 case OP_ATR_LENGTH:
12475 case OP_ATR_IMAGE:
12476 case OP_ATR_MAX:
12477 case OP_ATR_MIN:
12478 case OP_ATR_MODULUS:
12479 case OP_ATR_POS:
12480 case OP_ATR_SIZE:
12481 case OP_ATR_TAG:
12482 case OP_ATR_VAL:
4c4b4cd2 12483 if (exp->elts[*pos].opcode == OP_TYPE)
76a01679
JB
12484 {
12485 if (TYPE_CODE (exp->elts[*pos + 1].type) != TYPE_CODE_VOID)
79d43c61
TT
12486 LA_PRINT_TYPE (exp->elts[*pos + 1].type, "", stream, 0, 0,
12487 &type_print_raw_options);
76a01679
JB
12488 *pos += 3;
12489 }
4c4b4cd2 12490 else
76a01679 12491 print_subexp (exp, pos, stream, PREC_SUFFIX);
4c4b4cd2
PH
12492 fprintf_filtered (stream, "'%s", ada_attribute_name (op));
12493 if (nargs > 1)
76a01679
JB
12494 {
12495 int tem;
5b4ee69b 12496
76a01679
JB
12497 for (tem = 1; tem < nargs; tem += 1)
12498 {
12499 fputs_filtered ((tem == 1) ? " (" : ", ", stream);
12500 print_subexp (exp, pos, stream, PREC_ABOVE_COMMA);
12501 }
12502 fputs_filtered (")", stream);
12503 }
4c4b4cd2 12504 return;
14f9c5c9 12505
4c4b4cd2 12506 case UNOP_QUAL:
4c4b4cd2
PH
12507 type_print (exp->elts[pc + 1].type, "", stream, 0);
12508 fputs_filtered ("'(", stream);
12509 print_subexp (exp, pos, stream, PREC_PREFIX);
12510 fputs_filtered (")", stream);
12511 return;
14f9c5c9 12512
4c4b4cd2 12513 case UNOP_IN_RANGE:
323e0a4a 12514 /* XXX: sprint_subexp */
4c4b4cd2 12515 print_subexp (exp, pos, stream, PREC_SUFFIX);
0b48a291 12516 fputs_filtered (" in ", stream);
79d43c61
TT
12517 LA_PRINT_TYPE (exp->elts[pc + 1].type, "", stream, 1, 0,
12518 &type_print_raw_options);
4c4b4cd2 12519 return;
52ce6436
PH
12520
12521 case OP_DISCRETE_RANGE:
12522 print_subexp (exp, pos, stream, PREC_SUFFIX);
12523 fputs_filtered ("..", stream);
12524 print_subexp (exp, pos, stream, PREC_SUFFIX);
12525 return;
12526
12527 case OP_OTHERS:
12528 fputs_filtered ("others => ", stream);
12529 print_subexp (exp, pos, stream, PREC_SUFFIX);
12530 return;
12531
12532 case OP_CHOICES:
12533 for (i = 0; i < nargs-1; i += 1)
12534 {
12535 if (i > 0)
12536 fputs_filtered ("|", stream);
12537 print_subexp (exp, pos, stream, PREC_SUFFIX);
12538 }
12539 fputs_filtered (" => ", stream);
12540 print_subexp (exp, pos, stream, PREC_SUFFIX);
12541 return;
12542
12543 case OP_POSITIONAL:
12544 print_subexp (exp, pos, stream, PREC_SUFFIX);
12545 return;
12546
12547 case OP_AGGREGATE:
12548 fputs_filtered ("(", stream);
12549 for (i = 0; i < nargs; i += 1)
12550 {
12551 if (i > 0)
12552 fputs_filtered (", ", stream);
12553 print_subexp (exp, pos, stream, PREC_SUFFIX);
12554 }
12555 fputs_filtered (")", stream);
12556 return;
4c4b4cd2
PH
12557 }
12558}
14f9c5c9
AS
12559
12560/* Table mapping opcodes into strings for printing operators
12561 and precedences of the operators. */
12562
d2e4a39e
AS
12563static const struct op_print ada_op_print_tab[] = {
12564 {":=", BINOP_ASSIGN, PREC_ASSIGN, 1},
12565 {"or else", BINOP_LOGICAL_OR, PREC_LOGICAL_OR, 0},
12566 {"and then", BINOP_LOGICAL_AND, PREC_LOGICAL_AND, 0},
12567 {"or", BINOP_BITWISE_IOR, PREC_BITWISE_IOR, 0},
12568 {"xor", BINOP_BITWISE_XOR, PREC_BITWISE_XOR, 0},
12569 {"and", BINOP_BITWISE_AND, PREC_BITWISE_AND, 0},
12570 {"=", BINOP_EQUAL, PREC_EQUAL, 0},
12571 {"/=", BINOP_NOTEQUAL, PREC_EQUAL, 0},
12572 {"<=", BINOP_LEQ, PREC_ORDER, 0},
12573 {">=", BINOP_GEQ, PREC_ORDER, 0},
12574 {">", BINOP_GTR, PREC_ORDER, 0},
12575 {"<", BINOP_LESS, PREC_ORDER, 0},
12576 {">>", BINOP_RSH, PREC_SHIFT, 0},
12577 {"<<", BINOP_LSH, PREC_SHIFT, 0},
12578 {"+", BINOP_ADD, PREC_ADD, 0},
12579 {"-", BINOP_SUB, PREC_ADD, 0},
12580 {"&", BINOP_CONCAT, PREC_ADD, 0},
12581 {"*", BINOP_MUL, PREC_MUL, 0},
12582 {"/", BINOP_DIV, PREC_MUL, 0},
12583 {"rem", BINOP_REM, PREC_MUL, 0},
12584 {"mod", BINOP_MOD, PREC_MUL, 0},
12585 {"**", BINOP_EXP, PREC_REPEAT, 0},
12586 {"@", BINOP_REPEAT, PREC_REPEAT, 0},
12587 {"-", UNOP_NEG, PREC_PREFIX, 0},
12588 {"+", UNOP_PLUS, PREC_PREFIX, 0},
12589 {"not ", UNOP_LOGICAL_NOT, PREC_PREFIX, 0},
12590 {"not ", UNOP_COMPLEMENT, PREC_PREFIX, 0},
12591 {"abs ", UNOP_ABS, PREC_PREFIX, 0},
4c4b4cd2
PH
12592 {".all", UNOP_IND, PREC_SUFFIX, 1},
12593 {"'access", UNOP_ADDR, PREC_SUFFIX, 1},
12594 {"'size", OP_ATR_SIZE, PREC_SUFFIX, 1},
d2e4a39e 12595 {NULL, 0, 0, 0}
14f9c5c9
AS
12596};
12597\f
72d5681a
PH
12598enum ada_primitive_types {
12599 ada_primitive_type_int,
12600 ada_primitive_type_long,
12601 ada_primitive_type_short,
12602 ada_primitive_type_char,
12603 ada_primitive_type_float,
12604 ada_primitive_type_double,
12605 ada_primitive_type_void,
12606 ada_primitive_type_long_long,
12607 ada_primitive_type_long_double,
12608 ada_primitive_type_natural,
12609 ada_primitive_type_positive,
12610 ada_primitive_type_system_address,
12611 nr_ada_primitive_types
12612};
6c038f32
PH
12613
12614static void
d4a9a881 12615ada_language_arch_info (struct gdbarch *gdbarch,
72d5681a
PH
12616 struct language_arch_info *lai)
12617{
d4a9a881 12618 const struct builtin_type *builtin = builtin_type (gdbarch);
5b4ee69b 12619
72d5681a 12620 lai->primitive_type_vector
d4a9a881 12621 = GDBARCH_OBSTACK_CALLOC (gdbarch, nr_ada_primitive_types + 1,
72d5681a 12622 struct type *);
e9bb382b
UW
12623
12624 lai->primitive_type_vector [ada_primitive_type_int]
12625 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
12626 0, "integer");
12627 lai->primitive_type_vector [ada_primitive_type_long]
12628 = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
12629 0, "long_integer");
12630 lai->primitive_type_vector [ada_primitive_type_short]
12631 = arch_integer_type (gdbarch, gdbarch_short_bit (gdbarch),
12632 0, "short_integer");
12633 lai->string_char_type
12634 = lai->primitive_type_vector [ada_primitive_type_char]
12635 = arch_integer_type (gdbarch, TARGET_CHAR_BIT, 0, "character");
12636 lai->primitive_type_vector [ada_primitive_type_float]
12637 = arch_float_type (gdbarch, gdbarch_float_bit (gdbarch),
12638 "float", NULL);
12639 lai->primitive_type_vector [ada_primitive_type_double]
12640 = arch_float_type (gdbarch, gdbarch_double_bit (gdbarch),
12641 "long_float", NULL);
12642 lai->primitive_type_vector [ada_primitive_type_long_long]
12643 = arch_integer_type (gdbarch, gdbarch_long_long_bit (gdbarch),
12644 0, "long_long_integer");
12645 lai->primitive_type_vector [ada_primitive_type_long_double]
12646 = arch_float_type (gdbarch, gdbarch_double_bit (gdbarch),
12647 "long_long_float", NULL);
12648 lai->primitive_type_vector [ada_primitive_type_natural]
12649 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
12650 0, "natural");
12651 lai->primitive_type_vector [ada_primitive_type_positive]
12652 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
12653 0, "positive");
12654 lai->primitive_type_vector [ada_primitive_type_void]
12655 = builtin->builtin_void;
12656
12657 lai->primitive_type_vector [ada_primitive_type_system_address]
12658 = lookup_pointer_type (arch_type (gdbarch, TYPE_CODE_VOID, 1, "void"));
72d5681a
PH
12659 TYPE_NAME (lai->primitive_type_vector [ada_primitive_type_system_address])
12660 = "system__address";
fbb06eb1 12661
47e729a8 12662 lai->bool_type_symbol = NULL;
fbb06eb1 12663 lai->bool_type_default = builtin->builtin_bool;
6c038f32 12664}
6c038f32
PH
12665\f
12666 /* Language vector */
12667
12668/* Not really used, but needed in the ada_language_defn. */
12669
12670static void
6c7a06a3 12671emit_char (int c, struct type *type, struct ui_file *stream, int quoter)
6c038f32 12672{
6c7a06a3 12673 ada_emit_char (c, type, stream, quoter, 1);
6c038f32
PH
12674}
12675
12676static int
12677parse (void)
12678{
12679 warnings_issued = 0;
12680 return ada_parse ();
12681}
12682
12683static const struct exp_descriptor ada_exp_descriptor = {
12684 ada_print_subexp,
12685 ada_operator_length,
c0201579 12686 ada_operator_check,
6c038f32
PH
12687 ada_op_name,
12688 ada_dump_subexp_body,
12689 ada_evaluate_subexp
12690};
12691
1a119f36 12692/* Implement the "la_get_symbol_name_cmp" language_defn method
74ccd7f5
JB
12693 for Ada. */
12694
1a119f36
JB
12695static symbol_name_cmp_ftype
12696ada_get_symbol_name_cmp (const char *lookup_name)
74ccd7f5
JB
12697{
12698 if (should_use_wild_match (lookup_name))
12699 return wild_match;
12700 else
12701 return compare_names;
12702}
12703
a5ee536b
JB
12704/* Implement the "la_read_var_value" language_defn method for Ada. */
12705
12706static struct value *
12707ada_read_var_value (struct symbol *var, struct frame_info *frame)
12708{
12709 struct block *frame_block = NULL;
12710 struct symbol *renaming_sym = NULL;
12711
12712 /* The only case where default_read_var_value is not sufficient
12713 is when VAR is a renaming... */
12714 if (frame)
12715 frame_block = get_frame_block (frame, NULL);
12716 if (frame_block)
12717 renaming_sym = ada_find_renaming_symbol (var, frame_block);
12718 if (renaming_sym != NULL)
12719 return ada_read_renaming_var_value (renaming_sym, frame_block);
12720
12721 /* This is a typical case where we expect the default_read_var_value
12722 function to work. */
12723 return default_read_var_value (var, frame);
12724}
12725
6c038f32
PH
12726const struct language_defn ada_language_defn = {
12727 "ada", /* Language name */
12728 language_ada,
6c038f32 12729 range_check_off,
6c038f32
PH
12730 case_sensitive_on, /* Yes, Ada is case-insensitive, but
12731 that's not quite what this means. */
6c038f32 12732 array_row_major,
9a044a89 12733 macro_expansion_no,
6c038f32
PH
12734 &ada_exp_descriptor,
12735 parse,
12736 ada_error,
12737 resolve,
12738 ada_printchar, /* Print a character constant */
12739 ada_printstr, /* Function to print string constant */
12740 emit_char, /* Function to print single char (not used) */
6c038f32 12741 ada_print_type, /* Print a type using appropriate syntax */
be942545 12742 ada_print_typedef, /* Print a typedef using appropriate syntax */
6c038f32
PH
12743 ada_val_print, /* Print a value using appropriate syntax */
12744 ada_value_print, /* Print a top-level value */
a5ee536b 12745 ada_read_var_value, /* la_read_var_value */
6c038f32 12746 NULL, /* Language specific skip_trampoline */
2b2d9e11 12747 NULL, /* name_of_this */
6c038f32
PH
12748 ada_lookup_symbol_nonlocal, /* Looking up non-local symbols. */
12749 basic_lookup_transparent_type, /* lookup_transparent_type */
12750 ada_la_decode, /* Language specific symbol demangler */
0963b4bd
MS
12751 NULL, /* Language specific
12752 class_name_from_physname */
6c038f32
PH
12753 ada_op_print_tab, /* expression operators for printing */
12754 0, /* c-style arrays */
12755 1, /* String lower bound */
6c038f32 12756 ada_get_gdb_completer_word_break_characters,
41d27058 12757 ada_make_symbol_completion_list,
72d5681a 12758 ada_language_arch_info,
e79af960 12759 ada_print_array_index,
41f1b697 12760 default_pass_by_reference,
ae6a3a4c 12761 c_get_string,
1a119f36 12762 ada_get_symbol_name_cmp, /* la_get_symbol_name_cmp */
f8eba3c6 12763 ada_iterate_over_symbols,
6c038f32
PH
12764 LANG_MAGIC
12765};
12766
2c0b251b
PA
12767/* Provide a prototype to silence -Wmissing-prototypes. */
12768extern initialize_file_ftype _initialize_ada_language;
12769
5bf03f13
JB
12770/* Command-list for the "set/show ada" prefix command. */
12771static struct cmd_list_element *set_ada_list;
12772static struct cmd_list_element *show_ada_list;
12773
12774/* Implement the "set ada" prefix command. */
12775
12776static void
12777set_ada_command (char *arg, int from_tty)
12778{
12779 printf_unfiltered (_(\
12780"\"set ada\" must be followed by the name of a setting.\n"));
12781 help_list (set_ada_list, "set ada ", -1, gdb_stdout);
12782}
12783
12784/* Implement the "show ada" prefix command. */
12785
12786static void
12787show_ada_command (char *args, int from_tty)
12788{
12789 cmd_show_list (show_ada_list, from_tty, "");
12790}
12791
2060206e
PA
12792static void
12793initialize_ada_catchpoint_ops (void)
12794{
12795 struct breakpoint_ops *ops;
12796
12797 initialize_breakpoint_ops ();
12798
12799 ops = &catch_exception_breakpoint_ops;
12800 *ops = bkpt_breakpoint_ops;
12801 ops->dtor = dtor_catch_exception;
12802 ops->allocate_location = allocate_location_catch_exception;
12803 ops->re_set = re_set_catch_exception;
12804 ops->check_status = check_status_catch_exception;
12805 ops->print_it = print_it_catch_exception;
12806 ops->print_one = print_one_catch_exception;
12807 ops->print_mention = print_mention_catch_exception;
12808 ops->print_recreate = print_recreate_catch_exception;
12809
12810 ops = &catch_exception_unhandled_breakpoint_ops;
12811 *ops = bkpt_breakpoint_ops;
12812 ops->dtor = dtor_catch_exception_unhandled;
12813 ops->allocate_location = allocate_location_catch_exception_unhandled;
12814 ops->re_set = re_set_catch_exception_unhandled;
12815 ops->check_status = check_status_catch_exception_unhandled;
12816 ops->print_it = print_it_catch_exception_unhandled;
12817 ops->print_one = print_one_catch_exception_unhandled;
12818 ops->print_mention = print_mention_catch_exception_unhandled;
12819 ops->print_recreate = print_recreate_catch_exception_unhandled;
12820
12821 ops = &catch_assert_breakpoint_ops;
12822 *ops = bkpt_breakpoint_ops;
12823 ops->dtor = dtor_catch_assert;
12824 ops->allocate_location = allocate_location_catch_assert;
12825 ops->re_set = re_set_catch_assert;
12826 ops->check_status = check_status_catch_assert;
12827 ops->print_it = print_it_catch_assert;
12828 ops->print_one = print_one_catch_assert;
12829 ops->print_mention = print_mention_catch_assert;
12830 ops->print_recreate = print_recreate_catch_assert;
12831}
12832
d2e4a39e 12833void
6c038f32 12834_initialize_ada_language (void)
14f9c5c9 12835{
6c038f32
PH
12836 add_language (&ada_language_defn);
12837
2060206e
PA
12838 initialize_ada_catchpoint_ops ();
12839
5bf03f13
JB
12840 add_prefix_cmd ("ada", no_class, set_ada_command,
12841 _("Prefix command for changing Ada-specfic settings"),
12842 &set_ada_list, "set ada ", 0, &setlist);
12843
12844 add_prefix_cmd ("ada", no_class, show_ada_command,
12845 _("Generic command for showing Ada-specific settings."),
12846 &show_ada_list, "show ada ", 0, &showlist);
12847
12848 add_setshow_boolean_cmd ("trust-PAD-over-XVS", class_obscure,
12849 &trust_pad_over_xvs, _("\
12850Enable or disable an optimization trusting PAD types over XVS types"), _("\
12851Show whether an optimization trusting PAD types over XVS types is activated"),
12852 _("\
12853This is related to the encoding used by the GNAT compiler. The debugger\n\
12854should normally trust the contents of PAD types, but certain older versions\n\
12855of GNAT have a bug that sometimes causes the information in the PAD type\n\
12856to be incorrect. Turning this setting \"off\" allows the debugger to\n\
12857work around this bug. It is always safe to turn this option \"off\", but\n\
12858this incurs a slight performance penalty, so it is recommended to NOT change\n\
12859this option to \"off\" unless necessary."),
12860 NULL, NULL, &set_ada_list, &show_ada_list);
12861
9ac4176b
PA
12862 add_catch_command ("exception", _("\
12863Catch Ada exceptions, when raised.\n\
12864With an argument, catch only exceptions with the given name."),
12865 catch_ada_exception_command,
12866 NULL,
12867 CATCH_PERMANENT,
12868 CATCH_TEMPORARY);
12869 add_catch_command ("assert", _("\
12870Catch failed Ada assertions, when raised.\n\
12871With an argument, catch only exceptions with the given name."),
12872 catch_assert_command,
12873 NULL,
12874 CATCH_PERMANENT,
12875 CATCH_TEMPORARY);
12876
6c038f32 12877 varsize_limit = 65536;
6c038f32
PH
12878
12879 obstack_init (&symbol_list_obstack);
12880
12881 decoded_names_store = htab_create_alloc
12882 (256, htab_hash_string, (int (*)(const void *, const void *)) streq,
12883 NULL, xcalloc, xfree);
6b69afc4 12884
e802dbe0
JB
12885 /* Setup per-inferior data. */
12886 observer_attach_inferior_exit (ada_inferior_exit);
12887 ada_inferior_data
8e260fc0 12888 = register_inferior_data_with_cleanup (NULL, ada_inferior_data_cleanup);
14f9c5c9 12889}